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Zusammenfassung

Die Klassifizierung und das Verständnis von Skalierungslösungen in isolierten Quanten-
systemen, die weit vom thermischen Gleichgewicht entfernt sind und als nichtthermische
Fixpunkte bezeichnet werden, sind eines der offenen Probleme in der Nichtgleichgewichts-
Vielteilchenquantentheorie. Die üblicheMethode beinhaltet die Suche nachmöglichen selb-
stähnlichen Lösungen für eine (nicht-perturbative) Evolutionsgleichung, z. B. Boltzmann
oder Kadanoff-Baym, ausgehend von einer gleichgewichtsfernen Anfangsbedingung. In
dieser Arbeit entwickeln wir einen alternativen Ansatz, der auf der Übereinstimmungen
zwischen Skalierung und Fixpunkten der Renormierungsgruppe basiert. Am Beispiel eines
ultrakalten Bose Gases zeigen wir, wie mögliche gleichgewichtsferne Skalierungslösun-
gen systematisch durch die Lösung von Fixpunkt-Renormierungsgruppen-Gleichungen er-
halten werden können. Im zweiten Teil dieser Arbeit untersuchen wir die Dynamik, die
einer voll entwickelten selbstähnlichen Evolution vorausgeht. Wir verwenden die Hamilton-
Formulierung der kinetischen Theorie, um eine Stabilitätsanalyse von nicht-thermischen
Fixpunkten in einem expandierenden nicht-Abelschen Plasma durchzuführen, das durch den
Fokker-Planck-Kollisionsintegral charakterisiert ist. Unter Verwendung einer adiabatischen
Entwicklung erstellen wir eine Störungstheorie, die es uns ermöglicht, Stabilitätsgleichun-
gen für Skalierungsexponenten abzuleiten und die Ljapunow-Relaxationsraten zu erhalten,
die mit einem nichtthermischen Fixpunkt verbunden sind.
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Abstract

Classification and understanding of scaling solutions in closed quantum systems far from
thermal equilibrium, known as nonthermal fixed points, are one of the open problems in
nonequilibrium quantum many-body theory. The usual method involves searching for pos-
sible self-similar solutions to a (nonperturbative) evolution equation, e.g., Boltzmann or
Kadanoff–Baym, starting from a far-from-equilibrium initial condition. In this work, we
develop an alternative approach based on the correspondence between scaling and fixed
points of the renormalization group. Using an ultracold Bose gas as an example we show
how possible far-from-equilibrium scaling solutions can be systematically obtained by solv-
ing fixed-point renormalization-group equations. In the second part of this thesis, we inves-
tigate dynamics preceding a fully developed self-similar evolution. We use the Hamiltonian
formulation of kinetic theory to perform a stability analysis of nonthermal fixed points in an
expanding non-Abelian plasma characterized by the Fokker–Planck collision kernel. Em-
ploying an adiabatic expansion we develop a perturbation theory, which at next-to-leading
order allows us to derive stability equations for scaling exponents and obtain the Lyapunov
relaxation rates associated with a nonthermal fixed point.
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6.A Computation of U , Ĥ0, and V̂ . . . . . . . . . . . . . . . . . . . . . . . . 127

6.A.1 Solving the eigenproblem . . . . . . . . . . . . . . . . . . . . . . 127
6.A.2 Finding U(q)−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
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Chapter 1

General introduction

Relaxation dynamics of closed quantummany-body systems quenched far from equilibrium
has been studied intensively during recent years. Examples range from thermalization and
hadronization of a quark-gluon plasma and evolution of the early universe after the inflation
epoch to relaxation of ultracold atomic systems in extreme conditions studied in table-top
experiments. Yet, despite a great effort, a complete systematization of potential evolution
pathways is far from being achieved. A great variety of possible scenarios has been proposed
and observed, such as prethermalization [1, 2], generalized Gibbs ensembles (GGE) [3–5],
critical and prethermal dynamics [6–9], many-body localization [10], turbulence [11], deco-
herence and revivals [12], prescaling [13, 14], universal scaling dynamics and the approach
of a nonthermal fixed point [15–17]. The broad spectrum of possible phenomena occurring
during the evolution reflects a deep difference of quantum dynamics as compared to the
relaxation of classical systems.

In this work, we focus on studying universal dynamics of two (seemingly) vastly dif-
ferent systems: a dilute Bose gas quenched far from equilibrium and a non-Abelian plasma
forming in ultrarelativistic hadron-hadron collisions. Universality here means that the evo-
lution after some time becomes independent of the initial condition and microscopic details,
and such a universal intermediate state is determined only by symmetry properties and pos-
sibly a limited set of relevant quantities and/or functions that characterize the initial state.
This allows categorizing systems into universality classes based on their symmetry prop-
erties and to which family of far-from-equilbrium states does the initial condition belong
to. The situation highly resembles the ideas of the classical theory of critical phenomena.
The concepts of universality and scaling were first introduced in the pioneering works of
Widom, Kadanoff, and Wilson [18–21] and almost immediately generalized to the case of
dynamics [22, 23]. This discussion was then extended to coarsening and phase-ordering
kinetics [24], glassy dynamics and ageing [25], (wave-)turbulence [26–28], and its variants
in the quantum realm of superfluids [29, 30]. Recently, various possible realizations of
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prethermal and universal dynamics of far-from-equilibrium quantum many-body systems
were studied [2, 31–51], of which many considered ultracold atomic systems. The concept
of nonthermal fixed points has been discussed, without [52–58] and with [59–62] relation
to topological defects, order parameters and ordering kinetics, advancing a comprehensive
description of universal dynamics.

A standard analytical approach that is usually employed for studying scaling at non-
thermal fixed points consists of deriving evolution equations governing the dynamics of
correlation functions in a given model and then analyzing the scaling properties of these
equations. A particularly approachable class of models is given by scalar theories with
quartic interactions between N -component fields (either relativistic or nonrelativistic, real
or complex), symmetric under some matrix group (e.g., U(N) or O(N)) in the space of field
components. In this case, one can apply various techniques such as the 1/N expansion [54,
57, 63] or the low-energy effective description [64] to systematically derive approximate
evolution equations, e.g., the quantum Boltzmann equation, and predict and explain the ob-
served scaling. Though rather simple, such models can often be seen as approximations of
the experimentally relevant systems. For example, a nonrelativistic U(N)-symmetric model
can be considered a limiting case of a spin-1 Bose gas, in which a nonthermal fixed point
was observed for the first time [15], see Fig. 1.1. This further emphasizes the importance of
theoretical developments in this area. In this work, however, we decide to go beyond both
such a class of models and the standard dynamical approach to scaling at nonthermal fixed
points. Firstly, we consider a single-component Bose gas, in which a universal self-similar
dynamics has been recently observed [17] and which lacks a 1/N expansion parameter. Sec-
ondly, instead of studying nonthermal fixed points through the lens of evolution equations,
we develop a functional renormalization group approach to far-from-equilibrium scaling.

In the second part of this work, we concentrate on the dynamics preceding a fully devel-
oped self-similar evolution. In [13] and [14], it was proposed that already before achieving
fully developed scaling the system may exhibit a dramatic reduction in complexity such that
its dynamics can be described by a few slowly evolving quantities. In particular, numeri-
cally solving the leading-order QCD kinetic theory [65] it was observed that much before
the scaling with universal exponents is established, the evolution is already governed by the
fixed-point scaling function with time-dependent scaling exponents [14]. In this work, we
consider a toy model of an expanding Yang-Mills plasma and derive approximate equations
that govern the dynamics of its scaling exponents. More specifically, employing the Hamil-
tonian formulation of kinetic theory we derive the stability equations for scaling exponents,
which can be interpreted as relaxation equations to a nonthermal fixed point, and demon-
strate for the first time that the nonthermal fixed point is stable under small perturbations.

The thesis is organized as follows. We begin, in Ch. 2, with an introduction of the
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Figure 1.1. Self-similar evolution of a structure factor fθ(k, t) in a quasi-one-dimensional
spin-1 Bose gas after a quench. The curve rescales with the amplitude critical exponent
α = 0.33± 0.08 and the momentum critical exponent β = 0.54± 0.06. Figure taken from
[15].

general concept of nonthermal fixed points and, in addition, outline the usual kinetic ap-
proach to studying them. Then, in Ch. 3, we provide an overview of functional methods
of (nonequilibrium) quantum field theory by introducing most of the important definitions,
techniques, and approximations necessary for the main part. In Ch. 4, we develop a func-
tional renormalization group approach to nonthermal fixed points in a single-component
Bose gas. To that end, we derive fixed-point equations that control their universal scaling
properties. Adopting a certain approximation scheme we then solve these equations nu-
merically and demonstrate how information about the scaling can be extracted from their
solutions. After that, we switch our attention to high-energy physics, starting by outlining
in Ch. 5 the physical picture of ultrarelativstic hadron-hadron collisions. We show how at
extremely high energies a new universal state of matter, known as the color glass condensate
(CGC), emerges as a description of the colliding nuclei. We then argue how a collision of
two CGC sheets leads to the formation of a far-from-equilibrium longitudinally expanding
non-Abelian plasma, which can be studied by means of kinetic theory. Finally, in Ch. 6, we
use the Hamiltonian kinetic description in order to analyze stability properties of nonthermal
fixed points in such systems and investigate the proposed preceding prescaling regime.
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Chapter 2

Nonthermal fixed points

2.1 Introduction to the concept of nonthermal fixed points

As already mentioned in the general introduction, the main subject of this work is a phe-
nomenon of so-called nonthermal fixed points (NTFP), a concept motivated by the ideas of
(near-)equilibrium renormalization group (RG) theory. In the RG framework, one essen-
tially studies a physical system through a microscope at different resolutions. Close to a
critical point one observes that the correlation functions take a self-similar form, i.e., they
no longer depend on the resolution. As a simple example, consider a two-point correlation
function in a homogeneous and isotropic system. Changing the value of a spatial resolution
scale parameter s, the correlation function C(x; s) describing the correlations between two
points separated by the distance x should change accordingly. Self-similarity implies that
C(x; s) has to rescale as C(x; s) = sζf(x/s). Hence, the correlations are solely character-
ized by a universal exponent ζ and the universal scaling function f . A fixed point of the RG
flow equation corresponds to the case when the system becomes fully scale-independent,
which happens when f(x) ∼ xζ . Typically, however, for a realistic physical system, the
scaling function f retains some information of characteristic scales such as a correlation
length ξ and thus does not have a pure power-law form. In this case, the system can only
approximately approach the fixed point.

Taking the time t as the scale parameter, the renormalization-group idea can be extended
to a time evolution of (strongly) nonequilibrium systems. The corresponding fixed point of
the RG flow is called a nonthermal fixed point. In the scaling regime near a nonthermal fixed
point, the evolution of, e.g., the time-dependent version of the correlations discussed above
is determined by C(x; t) = tαf(t−βx), with now two universal exponents α and β that as-
sume, in general, nonzero values. The associated correlation length of the system changes
as a power of time, ξ(t) ∼ tβ . Note that the time evolution taking power-law characteristics
is equivalent to critical slowing down, here in real time. We remark that, depending on the
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6 Introduction to the concept of nonthermal fixed points

sign of β, increasing the time t can correspond to either a reduction or an increase of the
microscope resolution. The scaling exponents α and β allow to determine the universality
class associated with the fixed point [55].1 Hence, the evolution of very different physical
systems far from equilibrium can be categorized by means of their possible kinds of scaling
behavior. A full classification of such universality classes remains an open problem. How-
ever, similar to the case of equilibrium critical phenomena, underlying symmetries of the
system are expected to play a crucial role.

In contrast to the equilibrium case, however, initial conditions are not completely irrel-
evant. Whether a physical system is able to approach a nonthermal fixed point and show
universal scaling dynamics or which fixed point can be reached in general may depend on
the initial state. Going back to the RG analogy, one can imagine a space of all possible
states. The evolution of one state to another can be then represented as a trajectory in this
space. A set of all the trajectories forms a flow in the state space, similar to a flow of cou-
pling constants in the RG theory or to a phase portrait of some dynamical system. While the
asymptotic state is typically expected to correspond to the thermal equilibrium, there can be
attractors near which the evolution is critically slowed down. These attractors are exactly
the aforementioned nonthermal fixed points. Therefore, in general, the whole space can be
divided into regions that are attracted to different nonthermal fixed points. At the same time,
some initial conditions may not lead to a nonthermal fixed point at all but instead correspond
to the direct thermalization, see Fig. 2.1. It is commonly accepted, however, that the key in-
gredient for the occurrence of self-similar dynamics is an extreme out-of-equilibrium initial
configuration.

As a relevant example, consider the time evolution of a dilute Bose gas in three spa-
tial dimensions after a strong cooling quench [57], see Fig. 2.2 as well as [55, 67–69]. An
extreme version of such a quench can be achieved, e.g., by first cooling the system adiabat-
ically such that its chemical potential is 0 < −µ≪ kBT , where the temperature T ≳ Tc is
just above the critical temperature Tc separating the normal and the Bose condensed phase
of the gas, and then removing all particles with energy higher than ∼ |µ|. This leads to a
distribution that drops abruptly above a momentum scale Q,

n(t0, k) ≈ n0Θ(Q− |k|) , (2.1)

see Fig. 2.2. If the corresponding energy is on the order of the ground-state energy of the
post-quench fully condensed gas, (ħQ)2/2m ≃ |µ| ≃ gρ, where g = 4πħ2a/m, with the

1In this work, we restrict ourselves to two-point correlators only and furthermore assume that the corre-
sponding statistical and spectral functions are related via simple proportionality, such that they encode the
same scaling information. The latter assumption was recently tested and was shown to not hold in general
[66].
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Direct thermalization

Self-similar dynamics
‘Far from equilibrium’

‘Close to equilibrium’

Figure 2.1. Schematics of different scenarios of thermalization. Within a subclass of far-
from-equilibrium conditions all the states undergo the same self-similar evolution regime
before reaching equilibrium. In contrast, a generic close-to-equilibrium initial state ther-
malizes directly without any universal scaling dynamics in-between. Figure adapted from
[15].

scattering length a and the atom mass m, then the energy of the entire gas after the quench
is concentrated at the scale Q ≃ kξ, with healing-length momentum scale kξ =

√
8πaρ.

Most importantly, such a strong cooling quench leads to an extreme initial condition
for the subsequent dynamics. The post-quench distribution is strongly overoccupied at mo-
menta k < Q, as compared to the final equilibrium distribution. This initial overpopulation
of modes with energies ∼ (ħQ)2/2m induces inverse particle transport to lower momenta,
while energy is transported to higher wavenumbers [55, 67, 68], as indicated by the arrows
in Fig. 2.2. The rescaling is thus characterized by a bi-directional, in general nonlocal re-
distribution of particles and energy. Furthermore, in contrast to the case of a weak quench
leading to a scaling evolution in which, typically, weak wave turbulence is induced [57, 70],
where the inverse transport is characterized by a different, strongly nonthermal power-law
form of the scaling function in the infrared (IR) region. While the spatio-temporal scaling
provides the ‘smoking gun’ for the approach of a nonthermal fixed point, in all cases ex-
amined so far, this steep power-law scaling of the momentum distribution, n(k) ∼ k−ζ ,
has been observed and reflects the character of the underlying transport, see Fig. 2.2. The
evolution during this period is universal in the sense that it becomes mainly independent of
the precise initial conditions set by the cooling quench as well as of the particular values of
the physical parameters characterizing the system.

In the vicinity of a nonthermal fixed point, the momentum distribution of the Bose gas



8 Introduction to the concept of nonthermal fixed points

initial distribution 
after quench particles removed

by strong cooling 
quench

Figure 2.2. Self-similar scaling in time and space close to a nonthermal fixed point. The
sketch shows, on a double-logarithmic scale, the time evolution of the single-particle mo-
mentum distribution n(t, k) of a Bose gas for two different times t (solid and short-dashed
line). Starting from an extreme initial distribution marked by the red long-dashed line, being
the result of a strong cooling quench, a bi-directional redistribution of particles in momen-
tum space occurs as indicated by the arrows. Particle transport towards zero momentum
as well as energy transport to large momenta are characterized by self-similar scaling evo-
lutions in space and time according to n(t, k) = (t/tref)

αn(tref, [t/tref]
βk), with universal

scaling exponents α and β, in general, different for both directions. Here, tref is an arbitrary
reference time within the temporal scaling regime. The infrared transport (blue arrow) con-
serves the particle number which is concentrated at small momenta. In contrast, the energy,
being concentrated at high momenta, is conserved in the redistribution of short-wavelength
fluctuations (green arrow). See main text for details. Figure adapted from [69].

rescales self-similarly, within a certain range of momenta, according to

n(t, k) = (t/tref)
αn(tref, [t/tref]

βk) , (2.2)

with some reference time tref. The distribution shifts to lower momenta for β > 0, while
transport to larger momenta occurs in the case of β < 0. A bi-directional scaling evolution
is, in general, characterized by two different sets of scaling exponents. One set describes the
inverse particle transport towards low momenta whereas the second set quantifies the trans-
port of energy towards large momenta. Evaluated at a fixed reference time tref, the fixed-
point solution (2.2) further defines the universal scaling function nS(k) = n(tref, k). Within
a limited range of momenta, it satisfies the scaling hypothesis nS(k) = sζnS(sk), with an
additional, in general independent scaling exponent ζ . A frequently used simple Ansatz for
the scaling function nS(Q) in the infrared region is given by nS(k) ∼

[
1 + (k/kΛ)

ζ
]−1. It

interpolates between the universal power-law behavior nS(k) ∼ k−ζ for k > kΛ and the
plateau region nS(k) ∼ const. below the running scale kΛ, see Fig. 2.2.
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Global conservation laws – applying within a certain, extended regime of momenta –
strongly constrain the redistribution underlying the self-similar dynamics in the vicinity of
the nonthermal fixed point. Hence, they play a crucial role for the possible scaling evolu-
tion as they impose scaling relations between the scaling exponents. For example, particle
number conservation in the infrared regime of long wavelengths, in d spatial dimensions,
requires that α = dβ.

The resulting transport in momentum space can emerge from rather different underlying
physical configurations and processes. For instance, the dynamics can be driven not only
by the conserved redistribution of quasiparticle excitations such as in weak wave turbulence
[55, 57] but also by the reconfiguration and annihilation of (topological) defects populating
the system [62, 67]. The latter dynamics is often connected to the concept of superfluid tur-
bulence [59, 60, 62]. If defects are subdominant or absent at all, the strongly occupiedmodes
exhibiting scaling near the fixed point [55, 57] typically reflect strong phase fluctuations not
subject to an incompressibility constraint. They can be described by the low-energy effec-
tive theory discussed in Ch. 4.1 or [64]. The associated scaling exponents are generically
different for both types of dynamics, with and without defects [55, 61, 62].

The existence and significance of strongly nonthermal momentum power-laws, requir-
ing a nonperturbative description reminiscent of wave turbulence, was proposed in the con-
text of reheating after early-universe inflation [52, 71], then later generalized to scenarios of
strong matterwave turbulence [53] and to the case of topological defects [59–61, 67, 72], see
also [62, 73–78]. Universal scaling at a nonthermal fixed point in both space and time was
studied for relativistic and nonrelativistic O(N)-symmetric models [55, 79], see also [56,
80], and discussed in the context of heavy-ion collisions [81–84] as well as axionic models
[77].

As a final remark, we note that the concept of nonthermal fixed points includes scaling
dynamics which exhibits coarsening and phase-ordering kinetics [24] following the creation
of defects and nonlinear patterns after a quench, e.g., across an ordering phase transition.
We emphasize, however, that coarsening and phase-ordering kinetics in most cases are being
discussed within an open-system framework, considering the system to be coupled to a
heat bath. Moreover, most theoretical treatments of these phenomena do not take nonlinear
dynamics and transport into account.

2.2 Kinetic theory of nonthermal fixed points

In the previous section, we have introduced the basic ideas of nonthermal fixed points. For
their theoretical investigation, one can make use of analytical as well as numerical tools. In
this section, we will briefly overview a standard analytical approach to describe the scaling
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behavior at such fixed points. Technical details at various levels of depth can be found in
[56, 57, 85, 86].

For a general analytical treatment of nonthermal fixed points one needs to be able to
calculate the time evolution of a quantum many-body system out-of equilibrium. Suitable
techniques are provided by the framework of nonequilibrium quantum field theory (QFT),
which will be properly described in Ch. 3. Using a path integral formulation, all information
about the time-evolving quantum system is contained in the so-called Schwinger-Keldysh
nonequilibrium generating functional [85]. Correlation functions, which show universal
scaling at a nonthermal fixed point, can be obtained by functional differentiation of the
generating functional with respect to corresponding sources. To calculate such observables
at some instant in time, the system is evolved along a Schwinger-Keldysh closed time path
which reflects the nature of nonequilibrium QFT as an initial value problem. This is in
contrast to equilibrium QFT, where only asymptotic input and output states are used. The
initial configuration of the out-of equilibrium system is contained in the initial densitymatrix
which enters the generating functional. In the majority of cases it is sufficient to choose the
initial density matrix to be Gaussian. Calculating the nonequilibrium generating functional
in its most general formulation is highly nontrivial and generally cannot be done analytically.

To study the universal scaling behavior at nonthermal fixed points, we focus on the
evolution of two-point correlators. From these, e.g., (quasi)particle occupation numbers
in momentum space can be derived if the system is, on average, spatially translation in-
variant. Taking the Schwinger-Keldysh description one derives dynamical equations for
unequal-time two-point correlators, called Kadanoff-Baym equations [87]. These functional
integro-differential equations describe the nonequilibrium dynamics of a two-point correla-
tion function exactly but are extremely nontrivial. In order to make some computations, at
least numerically, one has to truncate the infinite series of diagrams entering the appropri-
ate self-energy. Nevertheless, even in this case, the resulting equations are generically too
complicated for an analytical treatment, and one is thus held to reduce the complexity of
the problem and to obtain approximate dynamical equations that are capturing the physics
relevant at a nonthermal fixed point. It turns out that a kinetic theory approach provides
such an approximation, see, e.g., [56, 85, 88].

Using a kinetic-theory description enables us to perform a scaling analysis, from which
the scaling exponents associated with the nonthermal fixed point can be predicted analyt-
ically. Within kinetic theory, the object of interest is the occupation number distribution
n(t, k) =

〈
Ψ̂†(t, k)Ψ̂(t, k)

〉
, where for definiteness we consider a nonrelativistic Bose gas

system, with Ψ̂ being its field operator. Within he kinetic framework, the time evolution of
n(t, k) is described in terms of a generalized quantum Boltzmann equation (QBE)

∂tn(t, k) = I[n](t, k) , (2.3)
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where I[n](t, k) is a scattering integral. Restricting ourselves to the case of elastic 2 ↔ 2

scatterings, the latter takes the form

I[n](t, k) =
∫
pqr
|Tkpqr|2 δ(k+ p− q− r) δ(ωk + ωp − ωq − ωr)

× [(nk + 1)(np + 1)nqnr − nknp(nq + 1)(nr + 1)] . (2.4)

with Tkpqr being the scattering T-matrix. The collision kernel (2.4) describes the redistri-
bution of the occupations nk of momentum modes k with eigenfrequency ωk due to elastic
2↔ 2 collisions. In presence of a Bose condensate, the occupation numbers describe quasi-
particle excitations. This modifies the scattering matrix and the mode eigenfrequencies.
Here, we consider transport entirely within the range of a fixed scaling of the dispersion
ωk ∼ kz, with dynamical scaling exponent z, such that processes leading to a change in
particle number are suppressed. The collective scattering effects beyond 2 ↔ 2 processes
can be captured in the T-matrix using, e.g., resummation techniques (see Sec. 2.2.1).

Two classical limits of the QBE scattering integral I[n](t, k) exist. The usual Boltzmann
integral for classical particles is obtained in the limit of n(t, k) ≪ 1. In case of large
occupation numbers n(t, k)≫ 1, termed classical-wave limit, the scattering integral reads

I[n](t, k) =
∫
pqr
|Tkpqr|2 δ(k+ p− q− r) δ(ωk + ωp − ωq − ωr)

× [(nk + np)nqnr − nknp(nq + nr)] . (2.5)

The QBE then reduces to the wave-Boltzmann equation (WBE), which is subject of the
following discussion as we are interested in the universal dynamics of a near-degenerate
Bose gas obeying n(t, k)≫ 1 within the relevant momentum regime.

2.2.1 Properties of the scattering integral and the T-matrix

In the kinetic approximation, scaling features of the system at a nonthermal fixed point
are directly encoded in the properties of the scattering integral. For a general treatment that
governs the cases of presence and absence of a condensate density, we focus on the scaling of
the distribution of quasiparticles, in the following denoted by nQ(k), instead of the single-
particle momentum distribution n(k). Note that in case of free particles, with dispersion
ω(k) = k2/2m ∼ kz, i.e., dynamical exponent z = 2, we obtain nQ ≡ n. For Bogoliubov
sound with dispersion ω(k) = csk and thus z = 1, the scaling of nQ differs from the scaling
of n due to the k-dependent Bogoliubov mode functions characterizing the transformation
between the particle and quasiparticle basis, n(k) ≃ (gρ0/csk)nQ(k), for k → 0, in general
n(k) ∼ kz−2+ηnQ(k), with anomalous exponent η. Here, cs denotes the speed of sound of
the Bogoliubov excitations and ρ0 is the condensate density.
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Using a positive, real scaling factor s, the self-similar evolution of the quasiparticle
distribution at a nonthermal fixed point reads

nQ(t, k) = sα/βnQ

(
s−1/βt, sk

)
. (2.6)

We remark that by choosing the scaling parameter s = (t/tref)
β one obtains the scaling form

stated in the example in Sec. 2.1.
As the scattering integral, in the classical-wave limit, is a homogeneous function of

momentum and time, it obeys scaling, provided the scaling of the quasiparticle distribution
in (2.6), according to

I[nQ](t, k) = s−µI[nQ](s
−1/βt, sk) , (2.7)

with scaling exponent µ = 2(d+m)− z − 3α/β. Here,m is the scaling dimension of the
modulus of the T-matrix

|T (k, p, q, r; t)| = s−m|T (sk, sp, sq, sr; s−1/βt)|. (2.8)

At a fixed instance in time, the T-matrix can have a purely spatial momentum scaling
form. Consider a simple example of a universal quasiparticle distribution at a fixed time t0,
which, at least in a limited regime of momenta, shows power-law scaling,

nQ(sk) = s−κnQ(k), (2.9)

with fixed-time momentum scaling exponent κ. The T-matrix is then expected to scale as

|T (k, p, q, r; t0)| = s−mκ |T (sk, sp, sq, sr; t0)| , (2.10)

withmκ being, in general, different fromm. Note that Eq. (2.9) in realistic cases is regular-
ized by an IR cutoff kΛ or, respectively, a UV cutoff kλ to ensure that the scattering integral
stays finite in the limit k ≫ kΛ or k ≪ kλ.

Generally, the scaling hypothesis for the T-matrix, Eq. (2.8), does not hold over the
whole range of momenta. In fact, scaling, with different exponents, is found within separate
limited scaling regions, which we discuss in the following.

Perturbative region: two-body scattering

For the non-condensed, weakly interacting Bose gas away from unitarity the T -matrix is
well approximated by

|Tkpqr|2 = (2π)4g2 . (2.11)

As thematrix elements aremomentum independent we obtainmκ = m = 0. It can be shown
that Eq. (2.11) represents the leading perturbative approximation of the full momentum-
dependent many-body coupling function.
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Figure 2.3. Graphical representation of the resummation scheme. (a) The two lowest-
order diagrams of the loop expansion of the two-particle irreducible effective Γ[ϕ,G] (see
Sec. 3.1.4) that lead to the quantum Boltzmann equation with perturbative T-matrix (2.11)
or (2.12). Solid lines represent the full propagator G(x, y), black dots the bare vertex ∼
gδ(x − y). (b) Diagram representing the resummation approximation which replaces the
diagrams in (a) within the IR regime of momenta and gives rise to the modified scaling of
the T -matrix. (c) The wiggly line is the effective coupling function entering the T -matrix,
which corresponds to a sum of bubble-chain diagrams. Figure taken from [57].

In presence of a condensate density ρ0 ≤ ρ, sound wave excitations become relevant be-
low the healing-length momentum scale kξ =

√
2gρ0m. Within leading-order perturbative

approximation, the elastic scattering of these sound waves is described by the T-matrix

|Tkpqr|2 = (2π)4
(mcs)

4

kpqr

3g2

2
. (2.12)

Here, the speed of sound of the quasiparticle excitations cs is given by mcs = kξ/
√
2 =

√
gρ0m. For the Bogoliubov sound we obtain the scaling exponentsmκ = m = −2.
The above perturbative results are in general applicable to the UV range of momenta.

However, scaling behavior in the far IR regime, where the momentum occupation numbers
grow large, requires an approach beyond the leading-order perturbative approximation as
contributions to the scattering integral of order higher than g2 (i.e., collective phenomena)
are no longer negligible.

Collective scattering: nonperturbative many-body T -matrix

To do so, one uses a nonperturbative s-channel loop resummation scheme, which is typically
derivedwithin a 2PI effective action formalism (see Sec. 3.1.4). The resummation procedure
is schematically depicted in Fig. 2.3. It is equivalent to a large-N approximation at next-to-
leading order and enables to calculate an effective momentum-dependent coupling constant
geff(k) which replaces the bare coupling g. The effective coupling also changes the scaling
exponentm of the T-matrix within the IR regime of momenta. In particular, geff(k) becomes
suppressed in the IR to below its bare value g. This ultimately leads to an even steeper rise
of the (quasi)particle spectrum.

For free particles (z = 2) in d = 3 dimensions one obtains

|Tkpqr| = (2π)4g2eff(εk − εr, k− r), (2.13)
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Figure 2.4. Left panel: Effective coupling geff(k0, k)/g in d = 3 dimensions as a function of
the spatial momentum k = |k|, on a double-logarithmic scale. The graph shows cuts along
k0 = 0.5εk (dark solid lines) and k0 = 1.5εk (transparent solid lines), where εk = |k|2/2m.
Different colors correspond to different IR cutoffs kΛ which are set by the scaling form of
the occupation number distribution entering the nonperturbative coupling function. All mo-
menta are measured in units of the ‘healing’-length momentum scale kΞ = (2gρncm)1/2 of
the non-condensed particle density ρnc under n(k). kΞ sets the scale separating the pertur-
bative region at large momenta from the nonperturbative collective-scattering region within
which the coupling assumes the form given in Eq. (2.15). Right panel: Contour plot of the
effective coupling function geff(k0, k)/g as a function ofE = 2mk0 and momentum k = |k|.
The data is depicted for kΛ = 10−3kΞ. The two cuts shown in the left panel correspond to
the black dashed lines. The quasiparticle distribution nQ(k) ≡ n(k) was chosen to scale
with κ = 3.5 such that we are in a regime where the effective coupling assumes the univer-
sal scaling form (2.15). Figures adapted from [57].

where εk−εr and k−r are the energy (εk = |k|2/2m) and momentum transfer in a scattering
process, respectively.

The resulting momentum-dependent effective coupling function geff(k0, k) along two
exemplary cuts k0 = 0.5εk and k0 = 1.5εk in frequency-momentum space, for three differ-
ent IR cutoffs kΛ, is shown in the left panel of Fig. 2.4.

At large momenta, the effective coupling is constant and agrees with the perturbative
result, i.e., one finds geff = g. However, below the characteristic momentum scale kΞ =
√
2gρncm, the effective coupling deviates from the bare coupling g. Within a momentum

range of

kΛ ≪ k ≪ kΞ , (2.14)

the effective coupling is found to assume the universal scaling form

geff(k0, k) ≃
|ε2k − k20|
2ρnc εk

, (κ > 3) (2.15)
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independent of both, the microscopic interaction constant g, and the particular value of the
scaling exponent κ of nQ. Here, ρnc = ρtot− ρ0 denotes the non-condensed particle density.
Below the IR cutoff, i.e., for momenta k < kΛ, the effective coupling becomes constant
again. The dependence of the scaling form (2.15) on E = 2mk0 and k is visualized in the
right panel of Fig. 2.4.

It should be emphasized that the simple universal form of the effective coupling (2.15)
only requires a sufficiently steep power-law scaling of the quasiparticle distributionnQ(k) ∼
k−κ and an IR regularization kΛ ensuring finite particle number.

Making use of the scaling properties of the effective coupling,

geff(k0, k) = s−γκgeff(s
zk0, sk) , (2.16)

we obtain γκ = 0 in the perturbative regime and γκ = 2 in the collective-scattering regime
for free particles with z = 2. Together with (2.13) this yields the corresponding scaling
exponent of the T-matrix to bemκ = 2. The same analysis of the effective coupling can be
performed for the Bogoliubov dispersion with z = 1. In contrast to free particles the scaling
exponent of the T-matrix readsmκ = 0, see [57] for details.

2.2.2 Scaling analysis of the kinetic equation

We are now in the position to determine the scaling properties of the Bose gas at a nonthermal
fixed point. Here, we focus on the case of a bi-directional self-similar evolution as obtained
after performing a strong cooling quench, recall the example introduced in Sec. 2.1. For a
detailed discussion of the scaling behavior occurring after weak cooling quenches, where
only a few of the high-energy particles in the thermal tail are removed from the system, we
also refer to [57].

To quantify the momentum exponent κ leading to a bi-directional scaling evolution we
study the scaling of the quasiparticle distribution at a fixed evolution time as stated in (2.9).
As the density of quasiparticles

ρQ =

∫
ddk
(2π)d

nQ(k) (2.17)

and the energy density

ϵQ =

∫
ddk
(2π)d

ωQ(k)nQ(k) (2.18)

are physical observables, they must be finite. Let us assume that the momentum distribution
is isotropic, i.e., nQ(k) ≡ nQ(k), and given by a bare power-law scaling nQ ∼ k−κ. The
exponent κ then determines whether the IR or the UV regime dominates quasiparticle and
energy densities. For a bi-directional self-similar evolution the quasiparticle density has to
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dominate the IR and the energy density the UV, due to their different scaling with k. Hence,
the scaling exponent κ has to fulfill

d ≤ κ ≤ d+ z . (2.19)

Note that, for ρQ and ϵQ to be finite, the quasiparticle distribution requires regularizations
in the IR and the UV limits in that case as already introduced before in terms of kΛ and kλ,
respectively.

According to the scaling hypothesis the time evolution of the quasiparticle distribution
is captured by (2.6), with universal scaling exponents α and β. Global conservation laws
strongly constrain the form of the correlations in the system and the ensuing dynamics and
thus play a crucial role for the possible scaling phenomena as they imply scaling relations
between the exponents α and β. Conservation of the total quasiparticle density (2.17) re-
quires

α = dβ . (2.20)

Analogously, if the dynamics conserves the energy density (2.18), the relation

α = (d+ z)β (2.21)

has to be fulfilled.
Obviously, the scaling relations (2.20)) and (2.21) cannot both be satisfied for nonzero

α and β if z ̸= 0. This leaves us with two possibilities: Either α = β = 0 or the scaling
hypothesis (2.6) has to be extended to allow for different rescalings of the IR and the UV
parts of the scaling function. In the following, we denote IR exponents with α, β and UV
exponents with α′, β′, respectively. Making use of the global conservation laws as well as
of the power-law scaling of the quasiparticle distribution, nQ ∼ k−κ, one finds the scaling
relations

α = dβ , (2.22a)

(d+ z − κ)β′ = (d− κ)β . (2.22b)

This implies ββ′ ≤ 0, i.e., the IR and UV scales kΛ and kλ rescale in opposite directions.
We remark that these relations hold in the limit of a large scaling region of momenta, i.e.,
for kΛ ≪ kλ. Note that energy conservation only affects the UV shift with exponent β′,
(2.22b), while particle conservation gives the relation (2.22a) for the exponent β in the IR.

With this at hand we are finally able to derive analytical expressions for the scaling ex-
ponents based on the kinetic theory approach. Performing the s-channel loop-resummation,
the effective coupling geff can be expressed by the retarded one-loop self-energy ΠR, which
is defined in terms of the statistical and spectral function encoding the mode occupations
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and, respectively, the dispersion relation as well as the density of states of the system. The
aforementioned anomalous dimension η appears as a scaling dimension of the spectral func-
tion. The particle and quasiparticle distributions are obtained by frequency integrations over
the statistical function. The resulting, most general scaling relations for the (quasi)particle
distributions then read

nQ(t, k) = sα/βnQ

(
s−1/βt, sk

)
, (2.23a)

nQ(t0, k) = sκnQ (t0, sk) , (2.23b)

n(t, k) = sα/β−η+2−zn
(
s−1/βt, sk

)
, (2.23c)

n(t0, k) = sκ−η+2−zn (t0, sk) = sζn (t0, sk) . (2.23d)

To show possible differences in the scaling behavior of the particle and quasiparticle distri-
butionswe added the relations for the particle distributionwhich scales asn(k) ∼ kz−2+ηnQ(k)
relative to the quasiparticle number, see beginning of Sec. 2.2.1. Note that the momentum
scaling of n(k) is characterized by the scaling exponent ζ according to (2.23d).

Zeroes of the scattering integral in the kinetic equation correspond to fixed points of the
time evolution. From a scaling analysis of the QBE one obtains the scaling relation

α = 1− βµ. (2.24)

Making use of the scaling of the T-matrix within the different momentum regimes as well
as the global conservation laws of the system, one finds the scaling exponents by means of
simple power counting to be

α = d/z, β = 1/z, (2.25a)

α′ = β′(d+ z), β′ = β(3z − 4 + 2η)(z − 4− 2η)−1, (2.25b)

κ = d+ (3z − 4)/2 + η, ζ = d+ z/2. (2.25c)

On the grounds of numerical simulations in [89], the IR scaling exponent β = 1/z has
been proposed. Note that the exponents stated in (2.25b) are usually not observed as the UV
region is dominated by a near-thermalized tail. During the early-time evolution after a strong
cooling quench, an exponent ζ ≃ d+ 1 was seen in semi-classical simulations for d = 3 in
[55] and [64], for d = 2 in [67], and for d = 1 in .2 Numerical implementation of the kinetic
equation in d = 3 dimensions also resulted in κ ≃ 4, see [90]. For a single-component
Bose gas in d = 3 dimensions, the IR scaling exponents have recently been numerically

2In fact, in numerical simulations, one often observes the exponent to be close to d+ 2 rather than d+ 1,
see [60, 67]. At least for the case of a nonrelativistic single-component Bose gas, this can be related to vortex
scaling (in d = 2 and 3 spatial dimensions), as discussed in [67]. In these studies, scaling with d+1 was only
observed in the compressible component when the incompressible component had become subdominant after
the decay of the last vortex pair/ring.
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determined to be α = 1.66(12), β = 0.55(3), in agreement with the analytically predicted
values [55].

For the Bose gas, the above stated exponents are expected to be valid in d = 3 dimen-
sions as well as in d = 2. The one-dimensional case is rather different due to kinematic
constraints on elastic 2 ↔ 2 scattering from energy and particle-number conservation. As
a final remark, it should be noted that the development of nonlinear and topological excita-
tions in combination with strong phase coherence is likely to modify the results presented,
potentially through an appropriate modification of the scaling exponents z and η.

As a closing remark, let us notice that, while in the above discussion collective phenom-
ena that modify the properties of the scattering matrix were taken into account by means of a
coupling resummation scheme, there are alternative approaches available. For example, one
can think of an idea to reformulate the theory in terms of new degrees of freedom in the first
place, such that the resulting description becomes more easy to treat in nonperturbative re-
gions. Since the nonperturbative behavior appears at low momentum scales, it is suggestive
to use a low-energy effective field theory (LEEFT) approach [91, 92]. This typically implies
a choice of suitable degrees of freedom describing the physics occurring below a chosen
energy scale. In [64], this idea was implemented to described nonthermal fixed points in
a U(N)-symmetric multicomponent Bose gas. Remarkably, the IR scaling exponents de-
rived within the effective-field-theory approach indeed reproduced the exponents (2.25a)
and (2.25c) obtained by performing an s-channel (1/N ) resummation.



Chapter 3

Introduction to functional methods in
nonequilbrium quantum field theory

The aim of this section is to provide a brief overview of some theoretical tools that we will
employ for studying universal scaling dynamics of far-from-equilibrium quantum many-
body systems. We first give a quick introduction to the general framework of nonequil-
brium quantum field theory. We recall how a general quantum-mechanical system can be
described in terms of a functional integral over classical variables and show what specifics
emerge in the nonequilibrium case. We then discuss the structure of correlation functions
out of equilibrium and show how they can be extracted from various generating functionals.
The second part is dedicated to constraints on the structure of these functionals that fol-
low from symmetries and causality. Finally, we present the framework of the (functional)
renormalization group, a natural language of scaling phenomena.

3.1 Nonequilibrium quantum field theory

The description of any nonequilbrium quantum system consists of two main ingredients.
First, one typically needs to specify an initial condition at some fixed time t0. This can be
done via a density operator ρ̂(t0) ≡ ρ̂0, which, in general, can correspond to either a mixed
(Tr{ρ̂20} < 1) or a pure (Tr{ρ̂20} = 1) state. An equivalent way of specifying the initial state
can be achieved by providing all initial correlation functions: one-point Tr{ρ̂0φ̂(t0, x)},
two-point Tr{ρ̂0φ̂(t0, x)φ̂(t0, y)}, etc. Here, φ̂(t0, x) denotes a bosonic (real) scalar field
operator defined at the spacetime point (t0, x).

Typically, the initial state can be well-approximated by specifying only a few lowest
correlators, while the higher ones may build up during the evolution at later times t >
t0. In practice, one often restricts the description of the initial state to only one- and two-
point correlation function. In terms of density matrix this approximation is equivalent to

19
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Figure 3.1. Schwinger–Keldysh contour C. Note that, due to causality, for any n-point
function with finite time arguments t1, . . . , tn, contributions of a CTP cancel for times ex-
ceeding tmax = max(t1, . . . , tn).

assumption of Gaussianity of ρ̂0, see Sec. 3.1.2.
Given the initial state the subsequent time-evolution of a closed quantum system is uni-

tary and entirely defined by the Hamiltonian. As we will see in the next section, this can be
translated to the path-integral language with a (semi-)classical action defined on the closed
time contour.

3.1.1 Path integral formalism and Schwinger–Keldysh contour

Perhaps, the main goal of any quantum field theory is providing the expectation values of
observables. The latter typically take a form〈

Ô(x1) . . . Ô(xn)
〉
= Tr

{
ρ̂0 Ô(x1) . . . Ô(xn)

}
, (3.1)

with Ô(x) being some local operator at the spacetime point x = (x0, x). Here, we have
adopted the Heisenberg picture, in which observables are represented by time-dependent
operators, whereas the density matrix does not evolve in time.

In most cases, observables of interest can be constructed from linear combinations of
products of field operators φ̂. The problem therefore reduces to finding the expectation
value of such products. They, in turn, can be conveniently extracted from the so-called
generating functional for correlation functions

Z[J ; ρ̂0] = Tr
{
ρ̂0TC exp

(
i
∫
x,C
J(x)φ̂(x)

)}
, (3.2)

where J(x) represents a classical source and ρ̂0 is assumed to be properly normalized,
Tr{ρ̂0} = 1. The symbol C appearing in the integration limit indicates that the integration
goes along the closed time (Schwinger–Keldysh) contour, which we will discuss shortly.
One should furthermore note presence of the time-ordering operator TC , which corresponds
to the usual time ordering along the positive branch C+ and reversed ordering along the
negative piece C−. As a result, (3.2) generates time-ordered correlation functions.
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Let us first address the origin of the Schwinger–Keldysh contour. To that end, consider
the expectation value 〈

ÔH(x)
〉
= Tr

{
ρ̂0ÔH(x)

}
, (3.3)

where we introduced the subscriptH to emphasize that we work in the Heisenberg picture.
The time dependence of operators is given by

ÔH(x) = U †(t, t0)Ô(x)U(t, t0), (3.4)

with the time evolution operator U(t, t0) = T exp
[
−i
∫ t

t0
dt′Ĥ(t′)

]
= U †(t0, t), so that

(3.3) can be rewritten as〈
ÔH(x)

〉
= Tr

{
ρ̂0U

†(t, t0)Ô(x)U(t, t0)
}
. (3.5)

Inserting the identity operator U(t,+∞)U(+∞, t) = 1 and using U(t0, t)U(t,+∞) =

U(t0,+∞) one immediately finds〈
Ô(x)

〉
= Tr

{
U (t0,+∞)U (+∞, t) Ô(x)U (t, t0) ρ̂0

}
, (3.6)

where we have suppressed theH subscript on the left-hand side since an expectation value
of any observable is picture-independent. The expression under the trace in (3.6) describes
(reading from right to left) the evolution from t = t0, at which the initial state is specified,
towards t, where the observable is computed, until t = +∞, at which point it ‘turns back’
to t = t0. Such a closed time path (CTP), known as the Schwinger–Keldysh contour, is
schematically depicted in Fig. 3.1. In the literature, one can often find the definition of the
CTP with t = −∞ and/or ρ̂0 = ρ̂(eq). In the latter case, the equilibrium density matrix
ρ(eq) = Z−1

β e−βĤ can be interpreted as an evolution along the imaginary time branch from
t0 to t0 − iβ leading to an additional piece of the Schwinger–Keldysh contour.

We are now set to derive a functional-integral representation of the generating functional
Z[J ; ρ̂0]. To that end, we define the eigenstates of the field operator φ̂± at a reference time
t0,

φ̂±(t0, x)
∣∣φ±〉 = φ±

0 (x)
∣∣φ±〉 , (3.7)

where ± indicates on which piece C± of the contour t0 is located, i.e.,

O(x) =

O+, if x0 ∈ C+

O−, otherwise.
(3.8)

This allows to rewrite (3.2) as

Z[J ; ρ̂0] =

∫
[dφ+

0 ]
〈
φ+
∣∣ ρ̂0TC exp [i∫

x,C
J(x)φ̂(x)

] ∣∣φ+
〉
, (3.9)
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with the integration measure [dφ±
0 ] ≡

∏
x
dφ±

0 (x). Inserting the identity operator 1 =∫
[dφ−

0 ]|φ−⟩⟨φ−| one readily obtains

Z[J ; ρ̂0] =

∫
[dφ+

0 ][dφ
−
0 ]
〈
φ+| ρ̂0|φ−〉 (φ−, t0|φ+, t0

)
J
, (3.10)

where (
φ−, t0|φ+, t0

)
J
=
〈
φ−∣∣ TC exp [i∫

x,C
J(x)φ̂(x)

] ∣∣φ+
〉

(3.11)

is the transition amplitude in the presence of the source J . Same as in the standard vacuum
quantum field theory, this amplitude can be written as a path integral over classical fields
φ(x) with the corresponding (semi-)classical action S[φ]:

(
φ−, t0|φ+, t0

)
J
=

φ−
0∫

φ+
0

D′φ exp
[
iS[φ] + i

∫
x,C
J(x)φ(x)

]
. (3.12)

Here, the prime symbol in D′φ represents the fact that integration over fields at t0 is ex-
cluded, while the integration limits denote that the boundary condition φ±(t0, x) = φ±

0 (x)
has to be satisfied. The (semi-)classical action is given by integrating the appropriate La-
grangian density over the closed time contour:

S[φ] =

∫
C
dx0

∫
ddxL[φ] =

∫
t0

dx0
∫

ddx
(
L
[
φ+
]
− L

[
φ−]) . (3.13)

With that, we may finally express the generating functional Z[J ; ρ̂0] in terms of a path inte-
gral as

Z[J ; ρ̂0] =

∫
[dφ+

0 ][dφ
−
0 ]
〈
φ+
∣∣ ρ̂0 ∣∣φ−〉

︸ ︷︷ ︸
initial conditions

φ−
0∫

φ+
0

D′φ ei{S[φ]+
∫
x,C J(x)φ(x)}

︸ ︷︷ ︸
quantum dynamics

. (3.14)

Note how this expression visualizes the two main ingredients of nonequilibrium quantum
field theory: statistical fluctuations captured by averaging over the initial density matrix ρ̂0
and quantum fluctuations encoded in the functional integral with the action S[φ].

As a final remark, let us mention that it is customary to introduce a ‘metric’ cab =

diag(1,−1) that reflects the structure of the Schwinger-Keldysh contour. The source term
then, for example, can be written as∫

x,C
J(x)φ(x) =

∫
x,t0

[
J+(x)φ+(x)− J−(x)φ−(x)

]
=

∫
x,t0

Ja(x)φ
a(x) , (3.15)

where we have used J+(x) = J+(x) and J−(x) = −J−(x).
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3.1.2 Initial conditions

As it was already mentioned in the beginning, one of the key ingredients for describing the
evolution of quantum many-body systems is a specification of the initial conditions. The
most general density matrix reads

〈
φ+
∣∣ ρ̂0 ∣∣φ−〉 = N eihC [φ] , (3.16)

where N is a normalization prefactor and h[φ] can be expanded in fields as

hC[φ] =

∫
x,C
α1(x)φ(x) +

1

2!

∫
xy,C

α2(x, y)φ(x)φ(y) + . . . (3.17)

Since the initial conditions are specified at t = t0, all the time integrals in (3.17) contribute
only at the endpoints of C. Therefore, the coefficients α1(x), α2(x, y), . . . should vanish for
t ̸= t0. In other words,∫

x,C
α1(x)φ(x) =

∫
x

{
α+
1 (x)φ+(x) + α−

1 (x)φ−(x)
}
, (3.18a)∫

xy,C
α2(x, y)φ(x)φ(y) =

∫
xy

{
α++
2 (x, y)φ+(x)φ+(y) + α+−

2 (x, y)φ+(x)φ−(y)

+ α−+
2 (x, y)φ−(x)φ+ (y) + α−−

2 (x, y)φ−(x)φ−(y)
}
, (3.18b)

and so forth. For ρ̂0 to be hermitian, the coefficients {αi} have to satisfy certain condi-
tions: iα1,+ = (iα1,−)

∗, iα2,++ = (iα2,−−), iα2,+− = (iα2,−+)
∗, etc. In addition, symmetry

requirements of the initial state (both spacetime and internal) may give rise to further con-
straints on αn(x1, . . . , xn).

Using the parameterization (3.17) one can rewrite the expression for generating func-
tional (3.2) as

Z[J ; ρ̂0] =

∫
Dφ ei{S[φ]+

∫
x,C J(x)φ(x)+ 1

2

∫
xy,C φ(x)α2(x,y)φ(y)+

1
3!

∫
xyz,C α3(x,y,z)φ(x)φ(y)φ(z)+...} ,

(3.19)
where we ignored the irrelevant normalization prefactor and shifted the source term J(x)+

α1(x)→ J(x).
A very important class of initial conditions is given by the family of Gaussian density

matrices, for which αn(x1, . . . , xn) ≡ 0, n ≥ 3. In this instance, the expression (3.19) is
simplified significantly and reads

Z(Gauss)[J,R] =

∫
Dφ ei{S[φ]+

∫
x,C J(x)φ(x)+ 1

2

∫
xy,C φ(x)R(x,y)φ(y)} . (3.20)

Dependence of the generating functional on the initial state then is completely determined
by the initial-time linear (J) and bilinear (R) sources.
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3.1.3 Correlation functions

Time-ordered correlation functions

The (nonequilibrium) generating functional introduced in the previous section plays a crucial
role in (nonequilibrium) quantum field theory. It provides a very convenient way of com-
puting time-ordered correlation functions of any order. For example, the one-point function
– the macroscopic field ϕ(x) – can be obtained by differentiating Z[J ; ρ̂0] with respect to
the source J(x). Indeed,

δZ[J ; ρ̂0]

iδJ(x)

∣∣∣∣
J=0

= Tr{ρ̂0φ̂(x)} ≡ ⟨φ̂(x)⟩ ≡ ϕ(x) . (3.21)

By taking further derivatives we can extract the time-ordered two-point correlator,

δ2Z[J ; ρ̂0]

iδJ(x)iδJ(y)

∣∣∣∣
J=0

= Tr{ρ̂0TCφ̂(x)φ̂(y)} ≡ ⟨TCφ̂(x)φ̂(y)⟩ , (3.22)

or any higher-order correlation function ⟨TCφ̂(x1) . . . φ̂(xn)⟩ in a similar fashion.
From the perspective of probability theory, the above correlation functions can be under-

stood as the functional generalization of moments of a probability distribution. One disad-
vantage of such description is that higher-order correlators carry some information about the
lower-order ones. In the diagrammatic language, this redundant information corresponds to
disconnected diagrams contributing to higher-order correlation functions. Amore economic
description can be achieved by considering connected correlation functions, which are gen-
erated by the Schwinger functional W [J ; ρ̂0] = −i logZ[J ; ρ̂0]. Its first-order derivative
results in a macroscopic field ϕ, as we had before:

δW [J ; ρ̂0]

δJ(x)

∣∣∣∣
J=0

= − i
Z[J, ρ̂0]

δZ[J ; ρ̂0]

δJ(x)

∣∣∣∣
J=0

= ϕ(x) . (3.23)

Taking one further derivative yields the connected two-point correlator (or the propagator)

1

i
δ2W [J ; ρ̂0]

δJ(x)δJ(y)

∣∣∣∣
J=0

=
δ2Z[J ; ρ̂0]

iδJ(x)iδJ(y)
− δZ[J ; ρ̂0]

iδJ(x)
δZ[J ; ρ̂0]

iδJ(y)

= ⟨TCφ̂(x)φ̂(y)⟩ − ⟨φ̂(x)⟩ ⟨φ̂(y)⟩ ≡ G(x, y) , (3.24)

which will be one of the central objects in the following discussion. By analogy, any n-
point connected correlator (or the n-point cumulant) can be obtained by taking n functional
derivatives ofW [J ; ρ̂0] with respect to J .

Recalling the ‘±-notation’ (3.8) established in the previous section, we can introduce
additional nonequilibrium correlation functions by taking functional derivatives with respect
to J+(x) and J−(x). For instance, the one-point function for vanishing sources,

δZ[J ; ρ̂0]

iδJ±(x)

∣∣∣∣
J=0

= Tr{ρ̂0φ̂(x)} ≡ ϕ(x) , (3.25)
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is identical to the previous result (3.21) and does not depend on the choice of a branch. On
contrary, the two-point correlator provides four distinct options:

δ2Z[J ; ρ̂0]

iδJ+(x)iδJ+(y)

∣∣∣∣
J=0

= ⟨φ̂(x)φ̂(y)⟩Θ(x0 − y0) + ⟨φ̂(y)φ̂(x)⟩Θ(y0 − x0)

≡ G++(x, y) + ϕ(x)ϕ(y) ,

δ2Z[J ; ρ̂0]

iδJ−(x)iδJ−(y)

∣∣∣∣
J=0

= ⟨φ̂(x)φ̂(y)⟩Θ(y0 − x0) + ⟨φ̂(y)φ̂(x)⟩Θ(x0 − y0)

≡ G−−(x, y) + ϕ(x)ϕ(y) ,

δ2Z[J ; ρ̂0]

iδJ+(x)iδJ−(y)

∣∣∣∣
J=0

= ⟨φ̂(y)φ̂(x)⟩ ≡ G+−(x, y) + ϕ(x)ϕ(y) ,

δ2Z[J ; ρ̂0]

iδJ−(x)iδJ+(y)

∣∣∣∣
J=0

= ⟨φ̂(x)φ̂(y)⟩ ≡ G−+(x, y) + ϕ(x)ϕ(y) ,

(3.26)

where, analogously to (3.24), we adopted the notation G±±(x, y) to denote connected cor-
relation functions.

In principle, any nonequilibrium two-point correlator, not only the time-ordered one, can
be expressed in terms of the components (3.26). However, not all of them are independent.
First of all, there is an obvious symmetry G+−(x, y) = G−+(y, x). Furthermore, using the
property Θ(x0 − y0) + Θ(y0 − x0) = 1 one can readily check that

G++(x, y) +G−−(x, y) = G+−(x, y) +G−+(x, y) . (3.27)

Therefore, a general propagator can be completely parameterized by two independent func-
tions.

Statistical and spectral functions

It is often convenient to split the full propagatorG into symmetric and anti-symmetric parts.
To that end, we consider the expectation values of the commutator and the anti-commutator
of φ̂:

ρ(x, y) = i ⟨[φ̂(x), φ̂(y)]⟩ ,

F (x, y) =
1

2
⟨{φ̂(x), φ̂(y)}⟩ − ϕ(x)ϕ(y) .

(3.28)

The anti-symmetric function ρ(x, y) is known as the spectral function, whereas the symmet-
ric part F (x, y) is called the statistical function. They have a simple physical interpretation:
while the former carries information about the spectrum of a theory, the latter one encodes
information about occupation numbers.

Since these functions play a prominent role in nonequilibrium quantum many-body dy-
namics, it is worth spending a bit of time discussing their properties. First, let us establish
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their connection to the time-ordered propagator (3.24) introduced in the previous section:

⟨TCφ̂(x)φ̂(y)⟩ = ⟨φ̂(x)φ̂(y)⟩ΘC(x
0 − y0) + ⟨φ̂(y)φ̂(x)⟩ΘC(y

0 − x0)

=
1

2
⟨{φ̂(x), φ̂(y)}⟩

[
ΘC(x

0 − y0) + ΘC(y
0 − x0)

]
+

1

2
⟨[φ̂(x), φ̂(y)]⟩

[
ΘC(x

0 − y0)−ΘC(y
0 − x0)

]
. (3.29)

This yields

G(x, y) = F (x, y)− i
2
ρ(x, y) sgnC(x0 − y0) , (3.30)

where we made use of the contour signum function sgnC(x0 − y0). Secondly, from the
definition of ρ(x, y) and the commutation relations of a scalar field it readily follows that

ρ(x, y)|x0=y0 = 0, ∂x0ρ(x, y)|x0=y0 = δ(x− y) . (3.31)

Keldysh rotation

In the opening part of this chapter, we have demonstrated how description of a nonequil-
brium quantum system gives rise to the Schwinger–Keldysh contour, effectively doubling
the number of degrees of freedom: for instance, a single scalar field φ splits into two com-
ponents φ± living on the opposite branches of the closed time path. In practice, however, it
is often more convenient to work with another (rotated) pair of fields,(

φcl

φq

)
=

(
1/2 1/2

1 −1

)(
φ+

φ−

)
≡ A

(
φ+

φ−

)
, (3.32)

called a classical φcl and a quantum φq components of the field, respectively. Consequently,(
Gclcl Gclq

Gqcl Gqq

)
= A

(
G++ G+−

G−+ G−−

)
AT =

(
F −iGR

−iGA F̃

)
, (3.33)

where GR(x, y) = ρ(x, y)Θ(x0 − y0) and GA(x, y) = −ρ(x, y)Θ(y0 − x0) are called the
retarded and advanced propagators, respectively. Note that (3.27) implies F̃ ≡ 0.

3.1.4 Quantum effective action

The generating functionalZ[J ; ρ̂0] introduced in Sec. 3.1.1 is a nonequilibrium field-theoretic
generalization of the thermodynamic partition function from statistical mechanics. Simi-
larly, the Schwinger functionalW [J ; ρ̂0] is a generalization of the Helmholtz free energy in
the presence of an external source. Continuing with the ideas of statistical mechanics even
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further it is then suggestive to consider the Legendre transform ofW [J ; ρ̂0],1

Γ[ϕ; ρ̂0] = W [Jϕ; ρ̂0]−
∫
x,C
Jϕ(x)ϕ(x), (3.34)

which in thermodynamics would correspond to the Gibbs free energy. Here, Jϕ(x) is de-
fined as the source that extremizes the expressionW [J ; ρ̂0]−

∫
x,C J(x)ϕ(x). The resulting

functional of the macroscopic field ϕ(x) is called the one-particle irreducible (1PI) (quan-
tum) effective action Γ[ϕ; ρ̂0], for reasons that will become apparent shortly. It should be
emphasized that, in the absence of approximations, computation of any of these generating
functionals provides an exact description of the system. In this sense, they are all equivalent
and any choice is only a matter of convenience.

From a physical viewpoint, the effective action can be understood as a generalization of
the classical action that takes all the quantum-statistical fluctuations into account. To see
this, we observe that a functional derivative of Γ[ϕ; ρ̂0] reads

δΓ[ϕ; ρ̂0]

δϕ(x)
= −Jϕ(x). (3.35)

Here, we have used

Jϕ :
δW [J ; ρ̂0]

δJ(x)

∣∣∣∣
J=Jϕ

= ϕ(x), (3.36)

which follows immediately from the definition (3.34). Inverting the dependence Jϕ → ϕJ

we readily obtain

δΓ[ϕ; ρ̂0]

δϕ(x)

∣∣∣∣
ϕ=ϕJ

= −J(x), δW [J ; ρ̂0]

δJ(x)
= ϕJ(x). (3.37)

Therefore, ϕJ can be identified as the expectation value ⟨φ̂⟩J in the presence of a current
J , while (3.37) can be understood as quantum equation of motion for a given background
source J . In the following, we will often suppress the subscripts J and ϕ as well as the
dependence of the generating functionals on the initial state ρ̂0.

Let us now discuss the objects generated by the 1PI effective action,

Γ(n)(x1, . . . , xn) ≡
δnΓ[ϕ]

δϕ(x1) . . . δϕ(xn)
, (3.38)

known as the vertex functions, the 1PI functions or the 1PI vertices. To establish their rela-
tion to connected correlation functions, we first note∫

y

δ2Γ[ϕ]

δϕ(x1)δϕ(y)

δ2W [J ]

δJ(y)δJ(x2)
=

∫
y

δ

δϕ(x1)

(
δΓ[ϕ]

δϕ(y)

)
δ

δJ(y)

(
δW [J ]

δJ(x2)

)
= −

∫
y

δJ(y)

δϕ(x1)

δϕ(x2)

δJ(y)
= −δ(x1 − x2) . (3.39)

1Following [56, 85] we adopt a slightly unusual convention of the Legendre transform when discussing
nonequilibrium QFT, in which one subtracts the source term from the Schwinger functional, and not the other
way around.
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In other words, the two-point 1PI function is the inverse of the propagator (3.24):(
Γ(2) ◦G

)
(x1, x2) ≡

∫
y

Γ(2)(x1, y)G(y, x2) = iδ(x1 − x2). (3.40)

Naturally, for multicomponent fields, spacetime arguments have to be supplemented with
field-component indices. For example, a real scalar field in Keldysh basis would have a
label a ∈ {cl, q}. Inverting (3.33) and using F̃ ≡ 0 we can then read off(

Γ
(2)
clcl Γ

(2)
clq

Γ
(2)
qcl Γ

(2)
qq

)
=

(
0 iG−1

qcl

iG−1
clq G−1

clq ◦ F ◦G
−1
qcl

)
. (3.41)

We will discuss the structure of the two-point function in more details in Sec. 3.3.1, but for
now we simply note that Γ(2)

clcl ≡ 0.
For a general conversion between vertex functions and connected correlators, it is left

to establish a connection between J-derivatives and ϕ-derivatives:

δ

δJ(x)
=

∫
y

δϕ(y)

δJ(x)

δ

δϕ(y)
= i
∫
y

G(x, y)
δ

δϕ(y)
, (3.42)

where we have used that ϕ(x) = W (1)(x) such that δϕ(y)/δJ(x) = W (2)(x, y). Therefore,

W (n)(x1, . . . , xn) =
n−1∏
i=1

∫
x′
i

(
iG(xi, x′i)

δ

δϕ(x′i)

)
ϕ(xn) . (3.43)

For example, the four-point function takes the form

W (4)(x1, . . . , x4) =

(
4∏

i=1

∫
x′
i

G(xi, x
′
i)

){
− Γ(4)(x′1, . . . , x

′
4)

+ i
[∫

y,z

Γ(3)(x′1, x
′
2, y)G(y, z) Γ

(3)(z, x′3, x
′
4) +

(
2↔ 3

2↔ 4

)]}
. (3.44)

Note that the first term cannot be separated into two disconnected ones by cutting a
single internal line, i.e., by removing one internal (bare) propagator. Such contributions
are called one-particle irreducible (1PI). On the other hand, the second term is clearly one-
particle reducible. In general, any connected correlation function can always be decomposed
into one-particle irreducible and one-particle reducible parts. From this perspective, 1PI
functions are even more economical way of storing information as compared to connected
correlators as they do not contain any one-particle reducible data, which is already stored
in lower-order correlators. In fact, one can show that the whole quantum effective action
Γ is one-particle irreducible, i.e., its loop expansion contains only 1PI diagrams [93, 94].
Likewise, the vertex functions are 1PI.

In principle, one can go further and construct a functional whose loop expansion con-
tains only n-particle irreducible diagrams. By analogy to the previous case, functionals of
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this kind are called nPI effective actions. A particularly significant role in nonequilbrium
QFT is played by the 2PI effective action Γ[ϕ,G], also known as the Luttinger–Ward (or
Cornwall–Jackiw–Tomboulis) functional [95, 96], which can be obtained by performing a
second Legendre transform with respect to an additional two-point source R(x, y). A very
attractive feature that makes Γ[ϕ,G] so appealing is that its expansion is self-consistent with
respect to both the mean field ϕ and the propagatorG. In particular, this allows one to avoid
secular terms in the evolution equations for ϕ, F , and ρ at a finite loop order [85]. This prop-
erty is crucial for obtaining a universal late-time dynamics that is insensitive to the initial
condition (e.g., thermalization or nonthermal fixed points). However, since an approxima-
tion scheme for the effective action that will be adopted in this work does not involve any
loop expansion in the first place and since we are also not going to use it for deriving evo-
lution equations, we will not discuss Γ[ϕ,G] any further and refer to the literature instead
([85, 97] and references therein).

3.1.5 Wigner transform, spectral function, and the gradient expansion

In physics, it is often more convenient to work in Fourier space rather than in coordinate
space. When spacetime-translation invariance is present, an arbitrary two-point function
G(x, x′) will depend only on the difference of its arguments x−x′ implying that its Fourier
image will be a function of a single momentum p only.

Out of equilibrium, however, time-translation invariance in general does not hold,2 so a
two-point function depends on both the difference t − t′ and the sum t + t′ of its temporal
arguments. Likewise, in spatially inhomogeneous systems, it will depend on both x − x′

and x + x′. The Wigner transform of a two-point function is then defined as the Fourier
transform with respect to its relative coordinates only:

GW (X, p) =

∫ 2X

−2X

dd+1σ eip·σG (X + σ/2, X − σ/2) , (3.45)

where the integration limits signify the fact that the integration over σµ is bounded by±2Xµ.
However, in order to exploit usual properties of the standard Fourier transform it is common
to extend the limits to ±∞ [56]. The inverse map of (3.45) is sometimes referred to as the
Weyl transform.

Recall that in standard quantum field theory the system’s spectrum is determined by the
pole structure of the full propagator in Fourier space. In nonequilbrium, this role is assigned,
as its name suggests, to the spectral function in Wigner space ρW . In general, poles of ρW

may be complex. The real part then determines the excitation’s dispersion relation, whereas
the imaginary part sets its inverse lifetime.

2When it does hold, one says that the system is in stationary nonequilibrium.
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Using an integral representation of the Heaviside function,

Θ(σ) =

∫ +∞

−∞

dω′

2πi
e−iω′σ

ω′ + i0+
, (3.46)

one readily obtains that the retarded propagator admits the following integral representation
in terms of the spectral function:

iGW
clq(τ, ω, p) =

∫ +∞

−∞

dω′

2πi
ρW (τ, ω′, p)
ω − ω′ + i0+

≡ G(τ, ω + i0+, p) , (3.47)

where we have assumed spatial homogeneity. Likewise, the advanced propagator is given
by G(τ, ω − i0+, p). Now, in general, ρW will have poles in both upper and lower complex
planes in a symmetric manner. In contrast, the retarded (advanced) propagator is analytic
in the upper (lower), while in the lower (upper) plane its poles are shifted by i0+ (−i0+)
(see, e.g., [98]). In other words, the spectral information can be equally (and even more
conveniently) extracted from the retarded/advanced propagator.

From (3.41), it follows that the retarded propagator can be obtained by virtue of inverting
the q− cl-component of the effective action:(

Γ
(2)
qcl ◦Gclq

)
(x, y) = iδ(x− y) . (3.48)

For spacetime-translation invariant systems, this convolution may be readily translated into
a simple algebraic product in Fourier space. This, in turn, implies that the pole structure
of the retarded propagator can be extracted by studying zeros of the q − cl-component of
the effective action. As will be more thoroughly discussed in Sec. 3.3.1, one may generally
write Γ(2)

qcl (t, t
′, p) = D (t, t′, p)Θ(t− t′), withD being an odd function in t− t′. Following

the same logic as in (3.47) we thus conclude(
Γ
(2)
qcl

)W
(τ, ω, p) =

∫ +∞

−∞

dω′

2πi
DW (τ, ω′, p)
ω − ω′ + i0+

≡ Ω(τ, ω + i0+, p) . (3.49)

Therefore, for stationary nonequilibrium, one can obtain information about the system’s
spectrum by examining zeros of Ω.

The situation, however, is more involved once we go beyond stationary nonequilibrium.
An important result of the Wigner-Weyl calculus is that the Wigner transform of a convolu-
tion of two functions is given by (see, e.g., [99])

(A ◦B)W (X, p) = AW (X, p) exp
[
i
2

(←−
∂p
−→
∂X −

←−
∂X
−→
∂p

)]
BW (X, p)

≡ AW (X, p) ⋆ BW (X, p) . (3.50)

where we have introduced the notation ⋆ for the bilinear map known as theMoyal (or Weyl–
Groenewold) product. Therefore, for time-evolving nonequilibrium systems,

ΓW
qcl (τ, ω, p) ⋆ GW

clq (τ, ω, p) = i, (3.51)
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where, for the sake of brevity, we have dropped the derivative superscript in the Wigner
transform of Γ(2).

In general, a ⋆-inverse needs not to share the singularity structure of a multiplicative
inverse. Thus, strictly speaking, in time-evolving nonequilibrium, it does not suffice to
study zeros of the inverse (retarded/advanced) propagator to analyze the system’s spectrum.

In practice, however, one often encounters the case when the two-point functions of
interest are relatively slow (fast) functions of the central (relative) coordinate. One can then
treat ∂X∂p in (3.50) as a small parameter and expand:

(A ◦B)W (X, p) = AW (X, p)BW (X, p) +
i
2

{
AW (X, p), BW (X, p)

}
PB + . . . , (3.52)

where {·, ·}PB denotes the standard Poisson bracket. Such an expansion in terms of ∂X and
∂p is known as the gradient expansion and plays a prominent role in the context of trans-
port theory: in particular, the quantum kinetic equation, discussed in Sec. 2.2, is obtained
in the lowest-order in the gradient expansion. Typically, after an initial stage of evolution
characterized by rapid oscillations, the latter get effectively damped out and the subsequent
dynamics becomes comparably smooth [88, 100–103]. Since the self-similar dynamics as-
sociated with nonthermal fixed points is an asymptotically late phenomenon, it is expected
that the gradient expansion should be a reliable approximation during the scaling regime.

3.1.6 Fluctuation-dissipation relation and the quasiparticle Ansatz

In equilibrium, there is an addition relation between the statistical (F ) and the spectral (ρ)
functions, known as the fluctuation-dissipation theorem:

F (eq)(ω, p) = −i
(
f(ω) +

1

2

)
ρ(eq)(ω, p) , (3.53)

where f(ω) is the distribution function. Out of equilibrium, on the other hands, such a
proportionality does not generally hold [66]. Nevertheless, in practice, one often employs a
similar Ansatz:

FW (τ, ω, p) = −i
(
f(τ, ω) +

1

2

)
ρW (τ, ω, p) . (3.54)

To better understand the physics behind this parameterization, it is helpful to consider
first the case of a free theory. In the absence of interactions, the equation that governs
evolution of the spectral function takes a very simple form(

∂2 +m2
)
ρ(free)(x, y) = 0, (3.55)

where for concreteness and brevity we again consider the case of a real scalar theory. The
solution of (3.55) reads

ρ(free)(t, t′, p) = 1

ω
(0)
p

sin
[
ω(0)
p (t− t′)

]
, (3.56)
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where ω(0)
p =

√
p2 +m2 is the free-particle dispersion relation. Upon performing Wigner

transform we readily find

−iρ(free)(τ, ω, p) =
sin
[
(ω − ω(0)

p )2τ
]

ω
(0)
p

(
ω − ω(0)

p

) −
sin
[
(ω + ω

(0)
p )2τ

]
ω
(0)
p

(
ω + ω

(0)
p

) . (3.57)

At finite central time τ , the free spectral function inWigner space shows a rapidly oscillating
behavior, with it enveloped peaked at ω = ±ω(0)

p . In the late-time limit τ →∞, it reduces
to the expected δ-like form:

−iρ(free)(τ, ω, p) = 2πδ
(
ω2 −

(
ω(0)
p
)2)

. (3.58)

In other words, in the non-interacting case, the Ansatz (3.54) simply puts the occupation
number f(τ, ω) on the mass-shell.

Once interactions are included, the spectral function will in general have a more com-
plicated form. Despite that, in many cases, it will still have a peaked structure, albeit with
generally a modified dispersion relation ωp and peaks acquiring a nonzero ‘width’ γp. Phys-
ically, this corresponds to the case of well-defined quasiparticles. The Ansatz (3.54) is
therefore expected to be adequate in cases where the dynamics of a noenquilbrium sys-
tem is dominated by quasiparticle excitations. While not all the observed nonthermal fixed
points fall to this physical picture, in this work, we are going to restrict ourselves to such
scenarios.

3.2 Equal-time formulation of nonequilibriumquantum field
theory

An alternative formulation of nonequilibrium quantum field theory can be given solely in
terms of equal-time quantities [104]. This formalism will prove useful when discussing
symmetry constraints on equal-time propagators in Sec. 3.3.2, so let us briefly outline its
key concepts here.

We begin by introducing the generating functional for equal-time correlation functions
via

Zt [Kφ, Kπ] = Tr
{
ρ̂t exp

[∫
x
Kφ(x) φ̂(x) +Kπ(x) π̂(x)

]}
. (3.59)

Here, ρ̂t is the system’s density matrix in the Heisenberg picture at time t and ϕ̂ and π̂ are
canonically conjugate fields. Making use of the Baker–Campbell–Hausdorff formula it can
be readily rewritten as

Zt [Kφ, Kπ] = Tr
{
ρ̂te

∫
x Kφ(x) φ̂(x)e

∫
x Kπ(x) π̂(x)e−(i/2)

∫
x Kφ(x)Kπ(x)

}
. (3.60)
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Similarly to the conventional generating functional, its equal-time counterpart admits a path-
integral representation:

Zt [Kφ, Kπ] =

∫
Dφ+Dφ−Dπ

〈
φ+
∣∣ ρ̂t ∣∣φ−〉 〈φ−∣∣ exp [∫

x
Kφ(x) φ̂(x)

] ∣∣π〉
×
〈
π
∣∣ exp [∫

x
Kπ(x) π̂(x)

] ∣∣φ+
〉
exp

[
− i
2

∫
x
Kφ(x)Kπ(x)

]
=

∫
DφDπWt [φ, π] exp

[∫
x
Kφ(x)φ(x) +Kπ(x) π(x)

]
. (3.61)

Here, we have used ⟨φ|π⟩ = exp
[
i
∫
x φ(x)π(x)

]
and shifted the integration variable π →

π + iKφ/2. The weight functionalWt, defined as

Wt [φ, π] =

∫
Dφ̃

〈
φ− φ̃

2

∣∣∣∣ ρ̂t ∣∣∣∣φ+
φ̃

2

〉
exp

[
−i
∫
x
π(x)φ̃(x)

]
, (3.62)

is known as the Wigner functional in the literature and plays a central role in the phase-
space formulation of quantum mechanics/field theory [105, 106]. Being its corresponding
characteristic functional, Zt is known to generate symmetric (or Weyl) ordered correlation
functions [107]. For example, the two-point functions take the form:

δ2Zt [Kφ, Kπ]

δKφ(x) δKφ(y)

∣∣∣∣
Kφ,Kπ=0

=
1

2
⟨φ̂(x) φ̂(y) + φ̂(y) φ̂(x)⟩ = ⟨φ̂(x)φ̂(y)⟩ ,

δ2Zt [Kφ, Kπ]

δKφ(x) δKπ(y)

∣∣∣∣
Kφ,Kπ=0

=
1

2
⟨φ̂(x) π̂(y) + π̂(y) φ̂(x)⟩ = 1

2
⟨{φ̂(x), π̂(y)}⟩ ,

δ2Zt [Kφ, Kπ]

δKπ(x) δKπ(y)

∣∣∣∣
Kφ,Kπ=0

=
1

2
⟨π̂(x) π̂(y) + π̂(y) π̂(x)⟩ = ⟨π̂(x)π̂(y)⟩ .

(3.63)

To generate connected correlation functions, one can invoke an equal-time equivalent of the
Schwinger functional:

Et [Kφ, Kπ] = logZt [Kφ, Kπ] . (3.64)

Comparing to (3.28) we note that the second derivative of Et with respect to the φ-source
generates an equal-time statistical propagator:

E
(2,0)
t (x, y) = F (t, x, t, y) . (3.65)

Here, E(n,m)
t means taking n derivatives with respect to the source Kφ and m derivatives

with respect to the sourceKπ.
Likewise, the generator for 1PI vertices can be obtained via the usual Legendre transform

Γt [Π,Φ] = sup
Kφ,Kπ

{∫
x
[Kφ(x) Φ(x) +Kπ(x)Π(x)]− Et [Kφ, Kπ]

}
. (3.66)

Relations between connected correlators and vertex functionsmatch those derived in Sec. 3.1.4.
In particular, ∫

y
Γ
(2)
t,ac(x1, y)Gt,cb(y, x2) = δabδ(x1 − x2) , (3.67)
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where the Latin subscripts label the phase-space components Φ and Π.
The dynamics in this framework is covered by the von Neumann equation for the density

matrix ρ̂t, which can be recast into the evolution equation for the Wigner functional,

∂tWt = {{H,Wt}} , (3.68)

called theMoyal equation. Here, {{·, ·}} denotes the (functional)Moyal bracket

{{A,B}} = 2A[φ, π] sin

[
1

2

∫
x

( ←−
δ

δφ(x)

−→
δ

δπ(x)
−
←−
δ

δπ(x)

−→
δ

δφ(x)

)]
B[φ, π] . (3.69)

These equations can be further recast into the exact evolution equations for the equal-time
generating functionals [104]. For a deeper discussion on the equal-time approach to nonequi-
librium QFT, we refer to [108]. An experimental extraction of the equal-time vertex func-
tions was performed in [109, 110].

3.3 Structure of a nonequilibrium effective action

3.3.1 Causal properties and associated constraints

In this section, we briefly recall some exact causal features of a 1PI effective action defined
on a Schwinger–Keldysh contour. For more details, see [97, 111].

We begin by recalling that a nonequilibrium generating functional admits the represen-
tation

Z
[
J+, J−; ρ̂0

]
≡ exp

(
iW
[
J+, J−; ρ̂0

])
= Tr

[
ÛJ−(t0, t) ÛJ+(t, t0) ρ̂0

]
t→∞

, (3.70)

cf. (3.2), with the evolution operator ÛJ(t1, t2) given by

ÛJ(t2, t1) = T exp
[
−i
∫ t2

t1

dt
∫

ddx
(
Ĥ − Jφ̂

)]
. (3.71)

Provided that the initial density matrix is Hermitian and the evolution operator is unitary –
which is the case for closed quantum systems – one readily obtains

exp
(
−iW ∗ [J+, J−; ρ̂0

])
= Tr

[
ÛJ+(t0, t) ÛJ−(t, t0) ρ̂0

]
t→∞

= exp
(
iW
[
J−, J+; ρ̂0

])
,

(3.72)
implying

W
[
J+, J−; ρ̂0

]
= −W

[
J−, J+; ρ̂0

]∗
. (3.73)

Taking derivatives with respect to the sources,

ϕ+

[
J+, J−] = δW [J+, J−; ρ̂0]

δJ+
, ϕ−

[
J+, J−] = δW [J+, J−; ρ̂0]

δJ− , (3.74)
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we readily derive a constraint on the field expectation value:

ϕ+[J
+, J−] = −ϕ−[J

−, J+]∗, ϕ−[J
+, J−] = −ϕ+[J

−, J+]∗. (3.75)

It is worth emphasizing that, even for a real scalar theory, the mean fields ϕa are not in
general real. As one can see from (3.75), the latter must only hold in the coincidence limit
J+ = J− = J , in which there is a single real mean field ϕ[J, J ] = ϕ+[J, J ] = ϕ−[J, J ],3 as
one would expect from a real scalar field theory.

Introducing further, as usual, the 1PI effective action via Legendre transform (3.34), one
finds

Γ
[
ϕ+∗, ϕ−∗; ρ̂0

]
= −Γ

[
ϕ−, ϕ+; ρ̂0

]∗
. (3.76)

We thus conclude that the diagonal entries of the generating functionals vanish: W [J, J ] ≡ 0

and Γ[ϕ, ϕ] ≡ 0. Hence, in terms of Keldysh-rotated fields (3.33), we discover two impor-
tant constraints on the effective action:

Γ [ϕcl, ϕq = 0; ρ̂0] ≡ 0, Γ
[
ϕ∗
cl, ϕ

∗
q; ρ̂0

]
= −Γ [ϕcl,−ϕq; ρ̂0]∗ . (3.77)

Note that for real configurations, the second constraint can be reformulated as

ReΓ[ϕcl, ϕq] = −ReΓ[ϕcl,−ϕq] , ImΓ[ϕcl, ϕq] = ImΓ[ϕcl,−ϕq] . (3.78)

Therefore, a Taylor expansion of Γ [ϕcl, ϕq; ρ̂0] takes the form

Γ [ϕcl, ϕq; ρ̂0] =

∫
x

ϕq(x)D[ϕcl](x) +
1

2

∫
x,x′

ϕq(x)N(x, x′)ϕq(x
′) + . . . (3.79)

Using that, we can readily write the quantum equation of motion as

δΓ [ϕcl, ϕq; ρ̂0]

δϕq(x)

∣∣∣∣
ϕcl=ϕ,ϕq=0

= D[ϕcl](x) = −J(x) . (3.80)

AssumingD[ϕ = 0] = 04 and that the action is analytic in the fields near (0, 0), one realizes
that D[ϕcl] admits its own Taylor expansion,

D[ϕcl](x) =
∫
x′
D(x, x′)ϕcl(x

′) + . . . , (3.81)

so that the linearized quantum equation of motion is given by∫
x′
D(x, x′)ϕcl(x

′) = −J(x). (3.82)

3Notice the change of sign due to raising the indices, cf. (3.15).
4Otherwise, one shall simply shift the expansion point.
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Together with (3.78) this implies thatD(x, x′) is real and causal (in particular, it has no sup-
port for t < t′), whilst N(x, x′) is purely imaginary. Finally, we translate these constraints
to the two-point functions by noticing

δ2Γ[ϕcl, ϕq]

δϕq(x)δϕcl(x′)

∣∣∣∣
ϕcl=ϕ,ϕq=0

≡ Γ
(2)
qcl [ϕ, 0](x, x

′) = Γ
(2)
clq [ϕ, 0](x

′, x) = D(x, x′) , (3.83a)

δ2Γ[ϕcl, ϕq]

δϕq(x)δϕq(x′)

∣∣∣∣
ϕcl=ϕ,ϕq=0

≡ Γ(2)
qq [ϕ, 0](x, x

′) = N(x, x′) , (3.83b)

δ2Γ[ϕcl, ϕq]

δϕcl(x)δϕcl(x′)

∣∣∣∣
ϕcl=ϕ,ϕq=0

≡ Γ
(2)
clcl[ϕ, 0](x, x

′) ≡ 0 . (3.83c)

3.3.2 Aspects of symmetry

Schwinger–Keldysh formulation and spontaneous symmetry breaking

Just like in equilibrium, the existence of a global continuous symmetry G has great conse-
quences on the structure of the nonequilibrium effective action and correlation functions.
These symmetry constraints can be most easily derived in the path-integral formulation in-
troduced in Sec. 3.1.1. To that end, consider an infinitesimal symmetry transformation:

xµ → x̃µ = xµ + ϵk(x)Y
µ
k (x) , φa(x)→ φ̃a(x̃) = φa(x) + ϵk(x)X

a
k [x;φ] . (3.84)

Here, the superscript a labels whether the field belongs to an upper ‘+’ or lower ‘−’ branch
of the Schwinger–Keldysh contour as well as other possible internal indices. Even though
ϵk = const for global symmetries, for deriving symmetry identities it is convenient to sup-
pose them spacetime-dependent. It is customary to also define generatorsFk of a symmetry
via an infinitesimal transformation at the same spacetime point,

φ̃a(x) ≡ φa(x) + iϵk(x)Fa
k [x;φ] , (3.85)

which can be easily related to (3.84) upon performing a Taylor expansion of φ̃a(x̃) to linear
order:

iFa
k [x;φ] = Xa

k [x;φ]− Y
µ
k (x)∂µφ

a(x) . (3.86)

We are now set to discuss the effect of symmetries on the structure of correlation func-
tions. In the path integral formalism, the latter take a form〈

n∏
i=1

φai(xi)

〉
K

=

∫
dφ+

0 dφ−
0 ρ0

[
φ+
0 , φ

−
0

] ∫ φ−
0

φ+
0

D′φ+D′φ−

(
n∏

i=1

φai(xi)

)
ei(S[φ]+K·φ),

(3.87)
where the subscript denotes the expectation value in the presence of the sourceK and con-
tour time-ordering is implied. Let us now change the dummy integration variable on the
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right-hand side to φ̃ from (3.85). The variation in the field operators product is explicitly
given by

n∏
i=1

φ̃ai(xi) = i
n∑
i

ϵk(xi)Fai
k [x;φ]

∏
j ̸=i

φaj(xj) +O
(
ϵ2
)

= i
∫
x,t0

ϵk(x)
n∑

i=1

[
Fai

k [x;φ]
∏
j ̸=i

φaj(xj)

]
δ(x− xi) +O

(
ϵ2
)
, (3.88)

with the short-hand notation ∈x,t0 defined in (7.4). Next, recalling the celebrated Noether
theorem, we note that for a continuous global symmetry the change in action can be written
as

δS = −
∫
x,t0

ϵk∂µJ
µ
k , (3.89)

where the (classically conserved) current J is given by [112, 113]

Jµ
k =

∂L
∂ (∂µφa)

Xa
k −

(
∂L

∂ (∂µφa)
∂νφ

a − δµνL
)
Y ν
a . (3.90)

We are also going to assume that the measure is invariant under the symmetry transforma-
tion:5

dφ̃+
0 dφ̃−

0 = dφ+
0 dφ−

0 , D′φ̃+D′φ̃− = D′φ+D′φ−. (3.91)

A final – and new as compared to the usual equilibrium case – ingredient is the initial density
matrix ρ0. Under the infinitesimal transformation (3.85) it changes according to

ρ0[φ̃
+
0 , φ̃

−
0 ] = ρ0[φ

+
0 , φ

−
0 ]

{
1−

∫
x,t0

δhC[φ0]

δφa
0(x)
Fa

k [x;φ0]δ
(
x0 − t0

)
ϵk(x)

}
+O

(
ϵ2
)
,

(3.92)
where we have made use of the parameterization (3.17) and introduced a dummy δ-function
to have integration over temporal axis as in other terms. Taking into account that the source
term transforms as exp (iK · φ) → exp [iK · (φ+ iϵkFk)], expanding everything to first
order in ϵ, using that it is arbitrary, and finally settingK = 0 we get〈

∂µJ
µ
k (x)

n∏
i=1

φai(xi)

〉
=

n∑
i=1

δ(x− xi)

〈
Fai

k [xi;φ]
∏
j ̸=i

φaj(xj)

〉

+ i

〈
δhC[φ0]

δφa
0(x)
Fa

k [x;φ0]
n∏

i=1

φaj(xj)

〉
δ
(
x0 − t0

)
.

(3.93)

Expressions of these kind are collectively known asWard–Takahashi identities (WTIs). It is
easy to see that the above derivation can be easily generalized to the case of product of any
local operators O[x;φ]. Assuming they transform under (3.85) as

Oa[x; φ̃] = Oa[x;φ] + iϵk(x)Gak [x;φ] , (3.94)
5In other words, we assume that the symmetry in question is free of quantum anomalies.
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with Gk = δO/δφ · Fk, the generalized WTIs then read〈
∂µJ

µ
k (x)

n∏
i=1

Oai(xi)

〉
=

n∑
i=1

δ(x− xi)

〈
Gaik [xi;φ]

∏
j ̸=i

Oaj(xj)

〉

+ i

〈
δhC[φ0]

δφa
0(x)
Fa

k [x;φ0]
n∏

i=1

Oaj(xj)

〉
δ
(
x0 − t0

)
.

(3.95)

In particular, for the trivial case O = 1 one readily obtains

⟨∂µJµ
k (x)⟩ = i

〈
δhC[φ0]

δφa
0(x)
Fa

k [x;φ0]

〉
δ
(
x0 − t0

)
. (3.96)

This highlights a simple observation that out of equilibrium, even when the Hamiltonian
enjoys some continuous symmetry, the associated current (operator) may be not fully con-
served if the initial density matrix does not respect the symmetry, i.e., δhC ̸= 0. Apart from
that, however, nonequilibrium Ward–Takahashi identities match their equilibrium counter-
parts for virtually any case of continuous symmetry, with the exception that the temporal
arguments may take any value on the Schwinger–Keldysh contour [114]. A possible excep-
tion would be a class of exotic symmetries that mix ± components.

After covering consequences of continuous symmetries on correlation functions, let us
shift our attention to constraints that symmetries impose on the structure of the quantum
effective action itself. To that end, we first note that in the presence of the external source
K the equation (3.96) reads

⟨∂µJµ
k (x)⟩K = i

〈
δhC[φ0]

δφa
0(x)
Fa

k [x;φ0]

〉
K

δ
(
x0 − t0

)
+ iKa(x) ⟨Fa

k [x;φ]⟩K . (3.97)

Taking the integral of both sides and applying Stokes’ theorem,∫
x,t0

⟨∂µJµ
k (x)⟩K =

∫
∂Ω

⟨Jµ
k (x)⟩K = 0, (3.98)

we readily obtain∫
x,t0

Ka(x)⟨Fa
k [x;φ]⟩K = −

∫
x

〈
δh

δφa
0(x)
Fa

k [x;φ0]

〉
K

. (3.99)

Here, we have assumed that the current decays quickly enough at the boundaries. For sim-
plicity, we are also going to assume that the initial density matrix respects the symmetry in
question, so that the right-hand side of (3.99) vanishes. Then, upon invoking the quantum
equation of motion (3.35), one finds∫

x,t0

δΓ[ϕ]

δϕa(x)
⟨Fa

k (φ)⟩Kϕ
= 0. (3.100)

In other words, the quantum effective action is invariant under the transformation

ϕ̃a(x) = ϕa(x) + ϵk ⟨Fa
k [x;φ]⟩Kϕ

. (3.101)
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Avery important and rather common case is when the symmetry transformations act linearly
on the fields,

Fa
k [x;φ] = cak(x) +

∫
y,t0

T a
kb(x, y)φ

b(y) , (3.102)

for which
⟨Fa

k [x;φ]⟩Kϕ
= cak(x) +

∫
y,t0

T a
kb(x, y)ϕ

b(y) = Fa
k [x;ϕ] . (3.103)

Hence, for linearly realized symmetries the quantum effective action has the same symmetry
properties as the classical one: ∫

x,t0

δΓ[ϕ]

δϕa(x)
Fa

k [x;ϕ] = 0. (3.104)

Taking further field derivatives will generate relations between higher n-point 1PI vertices.
For instance, taking one field derivative yields∫

x,t0

[
T a
kb

δ2Γ[ϕ]

δϕa(x)δϕc(y)
ϕb(x) + T a

kc

δΓ[ϕ]

δϕa(x)
δ(x− y)

]
= 0, (3.105)

where, for brevity, we assumed T a
kb(x, y) = T a

kbδ(x−y) and cak = 0, which is often the case.
Symmetry identities of these kind, relating vertex functions to one another, are commonly
known as Slavnov–Taylor identities (STIs).

In equilibrium, STIs for the two-point function play an important role in the case of
spontaneously broken symmetries (SSB). In particular, they allow to establish that for each
broken symmetry there is a massless (Nambu–)Goldstone mode. We close this section by
making a sketch of how this statement translates to nonequilbrium.

To that end, we evaluate (3.105) at the solution of the quantum equation of motion. For
our purposes, it is more convenient to work in the Keldysh-rotated basis, in which only the
classical component of the mean field can take a nonzero value. In addition to that, for
conventional symmetries that do not mix± components, it is easy to see that T a

kb is diagonal
in Keldysh space. Hence, since ϕb in (3.105) is classical, so is ϕa in the derivative. But as
discussed in Sec. 3.3.1, Γ(2)

clcl ≡ 0 for causal reasons, soϕc in the derivative has to be quantum.
Finally, in the absence of an external field, the second term vanishes. We thus conclude that
for spatially translation-invariant systemswith spontaneous symmetry breaking the equation
(3.105) reduces to ∫

t

T α
kβΓ

(2)
clα,qγ[ϕ, 0](t, t

′, p = 0)ϕβ(t) = 0, (3.106)

where we have also assumed that the mean field ϕ is spatially translation-invariant. An
important class of configurations that break translation invariance are topological defects,
such as solitons, skyrmions, vortices, etc. In the following, we distance ourselves from
subtleties associated with such configurations and suppose that the field expectation value
is homogeneous.
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Let us first consider the case of stationary nonequilbrium, in which one considers states
that are not in equilibrium, yet not evolving in time. The two-point function is then time-
translation invariant, so that the equation further simplifies to

Ωαγ(ω = i0+, p = 0)T α
kβϕ

β = 0, (3.107)

cf. (3.49). At this point, the proof goes exactly the sameway as in the standard quantum field
theory [115]. As argued in Sec. 3.1.5, Ω encodes the system’s spectrum. Evaluated at zero
momenta, it (or rather its real part) can be identified with the mass matrix. From the equation
(3.107), it follows that Tkϕ are its eigenvectors with zero eigenvalue. The corresponding
geometric – and since the mass matrix is symmetric,6 also algebraic – multiplicity is given
by the number of such eigenvectors. Finally, since for unbroken generators Tkϕ vanishes,
the number of zero modes is given by the number of broken symmetries, which closes the
proof. Note that, according to the above argument, also imaginary parts of the eigenvalues
vanish, which might seem to suggest that these gapless modes are stable. However, the
prove only states that their decay rates go to zero as p→ 0.

Coming back to the case of a time-evolving nonequilbrium system, where time-translation
invariance no longer holds, we instead rewrite (3.106) in Wigner space by means of (3.45).
After some simple algebra, one then finds∫

σ,ω

Ωαγ(τ, ω + i0+, p = 0) exp
[
σ

(
1

2

←−
∂ τ − iω +

−→
∂ τ

)]
T α
kβϕ

β(τ) = 0. (3.108)

where σ = t− t′ and, for aesthetic reasons, we have changed t′ to τ . In principle, not much
can be generally done to further simplify this equation. However, as argued in Sec. 3.1.5, one
expects later stages of evolution to be comparatively smooth with respect to central time.
Therefore, to leading order (in the gradient expansion), one may neglect ∂τ -derivatives,
which yields

Ωαγ

(
τ, ω = i0+, p = 0

)
T α
kβϕ

β(τ) ≈ 0. (3.109)

Following the same line of reasoning as above, we readily conclude that Ωαβ(τ, p = 0)

contains zero modes. At this point, we further recall that to lowest order in the gradient
expansion also the Moyal inverse reduces to the ordinary multiplicative one, see (3.50) and
(3.52). Hence, the pole structure of the retarded/advanced propagator is again encoded in
the zeros of Ω. The presence of zero eigenvalues in the mass matrix Ωαβ(τ, p = 0) there-
fore signals that there are gapless modes in the spectrum. While hand-waving at best, this
argument suggests that, at least during later stages of the evolution, the Goldstone theorem
should work in the usual manner even for time-evolving nonequilibrium systems.

6It is straightforward to show that Ωαβ(τ, ω + i0+, p) = Ωβα(τ,−ω − i0+,−p), so that Ωαβ(τ, ω =

i0+, p = 0) = Ωβα(τ, ω = −i0+, p = 0). The ±i0+ part, which stems from the causal structure of the
effective action, is not relevant in this context and can be ignored.
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We close this discussion by noting that the question of the number of Goldstone modes
is in fact more subtle in nonrelativistic systems. In that case, some of the ostensible zero
modes can actually be null-vectors.7 This was first explored in [116] and then not too long
ago thoroughly examined in [117]. The result is that, in nonrelativistic systems with N
spontaneously broken generators, gapless excitations in general come in two kinds: the so-
called type-A modes with ω(p) ∼ |p|2l+1 and the type-B modes with ω(p) ∼ |p|2l. In total,
there are n+ 2m = N of them, where n (m) is the number of type-A (type-B) modes.

Out of equilibrium, the status of Goldstone’s theorem for open classical and quantum
systems has been recently studied in detail in [118]. As far as the author knows, the case of
time-evolving nonequilibrium in closed systems is yet to be systematically investigated.

Equal-time correlation functions and symmetries

As we have just seen, symmetry identities provide powerful constraints on the structure of
correlation functions. In cases when a system exhibits spontaneous breaking of a continuous
symmetry, we were able to argue that the spectrum contains gapless modes, which sets
limitations on the system’s spectral function. Recall, however, that the latter vanishes for
coinciding temporal arguments, cf. (3.31). Therefore, this condition does not, in general,
impose any constraints on the equal-time (statistical) correlator. To study what effect do
symmetries have on the structure of the time-diagonal part of the propagator, it is suggestive
to make use of the framework introduced in Sec. 3.2.

We again begin by considering an infinitesimal continuous transformation:

φ̃a(x) = φa(x) + iϵk(x)Fa
k [x; Φ] , π̃a(x) = πa(x) + iϵk(x)Pa

k [x; Φ] . (3.110)

Here, for brevity, we have introduced the superfieldΦ = (φ1, . . . , φn; π1, . . . , πn) to denote
the collection of both all the fields and their canonically conjugate momenta. As the next
step, we change the dummy integration variable in (3.61),

Zt [Kφ, Kπ] =

∫
Dφ̃Dπ̃ Wt [φ̃, π̃] exp

[∫
x
Ka

φ(x)φ̃a(x) +Ka
π(x)π̃a(x)

]
, (3.111)

and take φ̃ with π̃ to be of (3.110). Assuming, as before, that the measure is invariant under
the transformations in question, expanding to linear order, and using that ϵ is arbitrary we
then get〈[

δ logWt

δφ(x)
+Ka

φ(x)
]
Fk,a[x; Φ] +

[
δ logWt

δπ(x)
+Ka

π(x)
]
Pk,a[x; Φ]

〉
Wt,Kφ,Kπ

= 0,

(3.112)
7Physically, this happens if the symmetry-breaking field corresponds to one of the conserved charges. A

textbook example is the O(3)Heisenberg ferromagnetic model. There is only a single gapless mode associated
with the O(3)→ O(2) symmetry-breaking pattern, known as the magnon.
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cf. (3.97). In the integrated form, the terms with Wt constitute nothing but the change
δ logWt under infinitesimal symmetry transformations. If, as presumed in the previous
section, the initial condition does not explicitly break the symmetry in question (i.e., δWt0 =

0), the Wigner functionalWt will remain symmetry-invariant also at any t > t0. For a prove
of this (rather self-evident) fact, see App. 3.A. Upon performing the Legendre transform one
then ends up with the usual Slavnov–Taylor identities:∫

x

(
δΓ[Φ]

δϕa(x)
Fa

k [x; Φ] +
δΓ[Φ]

δΠa(x)
Fa

k [x; Φ]
)

= 0. (3.113)

Here, for lack of a better notation, Φ denotes the collection (ϕ1, . . . , ϕn; Π1, . . . ,Πn) of the
full mean fields and conjugate momenta. We have also again supposed that the symmetry
is linearly realized.

For concreteness and in light of further relevance, let’s consider the case of a simple U(1)
symmetry in a nonrelativistic system. Adopting the field representation ψ =

√
n exp(iφ),

the canonically conjugate variables are now the density n and the phase φ [113]. Under an
infinitesimal U(1) transform they change as

φ̃(x) = φ(x) + ϵ, ñ(x) = n(x) . (3.114)

The master Slavnov–Taylor identity generated by this symmetry transformation reads∫
x Γ

(1)
t,ϕ (x) = 0, where ϕ is the full mean phase field (the full density field is denoted by ρ).

Upon taking ϕ and ρ derivatives one gets∫
x
Γ
(2)
t,ϕϕ (x, y) =

∫
x
Γ
(2)
t,ϕρ (x, y) = 0, (3.115)

which for a spatially translation-invariant case means Γ(2)
t,ϕϕ (p = 0) = Γ

(2)
t,ϕρ (p = 0) = 0.

The equal-time propagatorsGt,αβ can be readily obtained by virtue of inverting the Γ(2)

matrix:(
Gt,ϕϕ(p) Gt,ϕρ(p)
Gt,ρϕ(p) Gt,ρρ(p)

)
=

1

Γ
(2)
t,ϕϕ(p)Γ

(2)
t,ρρ(p)− Γ

(2)
t,ϕρ(p)Γ

(2)
t,ρϕ(p)

(
Γ
(2)
t,ρρ(p) −Γ(2)

t,ϕρ(p)
−Γ(2)

t,ρϕ(p) Γ
(2)
t,ϕϕ(p)

)
,

(3.116)
or explicitly,

Gt,ρϕ(p) =
Γ
(2)
t,ρϕ(p)

Γ
(2)
t,ϕϕ(p)Γ

(2)
t,ρρ(p)− Γ

(2)
t,ρϕ(p)Γ

(2)
t,ϕρ(p)

, (3.117a)

Gt,ρρ(p) =
1

Γ
(2)
t,ρρ(p)− Γ

(2)
t,ρϕ(p)Γ

(2)
t,ϕρ(p)/Γ

(2)
t,ϕϕ(p)

, (3.117b)

Gt,ϕϕ(p) =
1

Γ
(2)
t,ϕϕ(p)− Γ

(2)
t,ρϕ(p)Γ

(2)
t,ϕρ(p)/Γ

(2)
t,ρρ(p)

. (3.117c)
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With this, we can analyze the p→ 0 limit. To that end, we first note that, for a homogeneous
full mean field to be stable, the second order derivative of the effective action Γ(2)

αβ(p→ 0)

evaluated in said configuration has to be positive definite. In our case, this simply implies
Γ
(2)
t,ρρ(p → 0) = const. > 0. Plugging this into (3.117c) we then readily deduce that Gt,ϕϕ

does not have a finite p → 0 limit. In contrast, the density-density correlator Gt,ρρ ap-
proaches a finite constant value. Generalizing this argument to other cases of spontaneous
symmetry breaking, we say that equal-time propagators of soft (Goldstone) modes are ex-
pected to diverge in the limit of vanishing momentum, whereas the massive modes should
have a finite p→ 0 limit.

Recalling the discussion in Sec. 2.1 one can speculate that the IR plateau observed in
Fig. 2.2 is due to densities, while the phase correlator is expected to have a pure power-law
form all the way up to the IR cutoff scale. Note that in this case one can no longer distinguish
between the dynamical scaling exponents α and β. Instead, one has a very simple scaling
form F (t, t, p) ∼ t−γp−κ, with a single temporal exponent γ.

A remark is in order. Note that a typical initial condition is not translationally invariant.
For example, the box initial condition (2.1) explicitly introduces a scale Q and a plateau
to the system. Intuitively, based on the above discussion, one expects this scale to de-
couple from the late-time IR behavior of the Goldstone propagators. Such an absence of
an IR plateau in phase correlators during the scaling regime after quenches has been in-
deed observed in classical-statistical simulations [119], although a thorough investigation
is still lacking. It would be therefore interesting to systematically study the IR behavior of
soft-mode propagators in various systems (having different symmetry groups, relativistic
and nonrelativistic), with and without transnationally-invariant initial conditions, to test the
above formulated intuitive picture.

Finally, of great theoretical and experimental relevance is also the topic of small explicit
symmetry violations. They can come either from a Hamiltonian itself, or from initial con-
ditions, or both. In App. 3.A, we show that in the second case, the symmetry violation at
time t > t0 can be expressed as

δWt [φ, π] =
∞∑
n=0

(it)n

n!
{{(H [φ, π])n , δWt0 [φ, π]}} . (3.118)

This raises a series of natural questions. First, one may ask if there is a class of Hamiltonians
and symmetry violation scenarios (e.g., linear or quadratic), for which the above expression
can be brought to a closed form. Secondly, what can be said about the general fate of initial
symmetry violations: when do they grow and when do they decay? Lastly, what is the effect
of such symmetry violations? Could they generate an IR plateau for soft modes?8 To the

8As a suggestive analogy, recall how in QCD, would-be-Goldstone pions acquire small but finite masses
due to a minor explicit chiral symmetry violation.
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best of author’s knowledge, none of these question have been so far properly addressed in
the literature.

3.4 Basics of functional renormalization group

In the following part, we will provide a quick overview of the (functional) renormalization
group framework and its connection to critical phenomena and scaling. In contrast to the
previous sections, here we consider the case of a real scalar field in d-dimensional Euclidean
space. Compared to the Minkowski case, it has the advantage that unfavorable field con-
figurations are strongly exponentially damped via exp(−S) rather than being suppressed
by a rapidly oscillating phase factor exp(iS), which makes the convergence properties more
evident and clear. A formal generalization to theMinkowski spacetime, however, is straight-
forward.

3.4.1 Wilsonian renormalization group

In the path-integral language, the generating functionals introduced in Sec. 3.1 are equivalent
to integrating out all quantum fluctuations at once:

Z[J ; Λ] =

∫
[Dφ]reg e

−SΛ[φ;g]+J ·φ. (3.119)

Here, we have punctiliously assumed a properly regularized measure [Dφ]reg, which, in
particular, instructs one that only field configurations with momenta smaller than Λ are
involved. In the following, we will drop both the subscript ‘reg’ as well as the indication of
the implicit dependence of Z[J ] on Λ.

The ultraviolet (UV) cutoff scale Λ serves as a maximally allowed energy, which only
for UV-complete theories can be sent to infinity. This scale may have a physical origin,
in which case it usually marks the breakdown of a model: for example, it can be an in-
verse lattice spacing 1/a when studying discrete models using field-theoretic methods or
the electroweak scale in quantum electrodynamics. On the other hand, it might also be a
mere technical tool to regulate short-distance divergences and render computations finite.
In either case, the microscopic action SΛ[ϕ; g] describes the system in terms of degrees of
freedom – represented by the field φ – that are appropriate at this scale Λ.

Usually, the action can be written as an integral of a polynomial of the field and deriva-
tives thereof, with the coefficients g = (g1, g2, . . .) called coupling constants. If the action
is quadratic in the field, it is called Gaussian and the integration (3.119) can be performed
exactly. Unfortunately, in virtually all cases of interest, the action involves higher-order
(interaction) terms hindering the exact integration. One therefore has to rely on approxima-
tions. Among the simplest of them are mean-field theory, in which one evaluates the path
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integral using a saddlepoint method, and the Gaussian approximation, where one retains
fluctuations around the saddle point to the quadratic order. As we will see, however, in low-
dimensional systems (more specifically, below the so-called upper critical dimension of the
system) these approximation schemes become unreliable. The Wilsonian renormalization
groupmethod will allow us to not only overcome this problem, but will also provide us with
a natural framework to study scaling phenomena.

The basic idea of Wilson is, instead of integrating all the fluctuations in one go, to do
it iteratively, integrating out high-energy fluctuations step by step. After each iteration, one
obtains an effective theory for the remaining low-energy modes. To achieve this, we first
split the degrees of freedom into slow (φ<) and fast (φ>) modes by writing the field as a
sum

φ(p) = φ>(p) + φ<(p) , (3.120)

where

supp(φ<) =
{
p ∈ Rd : |p| ≤ Λ/b

}
, supp(φ>) =

{
p ∈ Rd : Λ ≥ |p| ≥ Λ/b

}
, (3.121)

with b > 1. Let us choose the source J such that it only couples to the slow modes. The
generating functional Z[J ] can then be rewritten as

Z[J ] =

∫
Dφ< eJ ·φ<

∫
Dφ> e−SΛ[φ<+φ>;g] ≡

∫
Dφ< e−S<

Λ′ [φ<;g<]+J ·φ< . (3.122)

Here, Λ′ ≡ Λ/b and the couplings g< in the new effective action S<
Λ′ will in general differ

from the original ones. In fact, such a coarse-graining procedure will always generate all
possible terms (couplings) that are compatible with the system’s symmetries. As we will
shortly see, however, for many purposes it suffices to keep track on only a handful of them.

After completing the mode elimination step, one still cannot directly compare the origi-
nal action SΛ with its coarse-grained counterpart S<

Λ′ . To bring everything to the same form
as before the mode integration, one has to rescale all momenta and fields. This point is best
illustrated in the Kadanoff block-spin picture, which can be thought as both the precursor
and the real-space analogue of the Wilsonian momentum-shell renormalization, see Fig. 3.2
and the caption therein. Stated mathematically, we define rescaled momenta p′ and fields
φ′ via

p′ = bp, φ′(p′) = ζ−1
b ϕ<(p′/b) . (3.123)

Here, ζb is the field rescaling factor to be determined shortly. Although there is a certain
freedom in its choice, it is customary to define it such that the kinetic term of the renormal-
ized actionS ′[φ′] retains its canonical form. As an example, consider a simpleZ2-symmetric
scalar field. As has been already mentioned, in general a mode elimination step will gener-
ate all possible terms consistent with the system’s symmetries, so the quadratic part of the
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mode elimination

(decimation)

rescaling

Figure 3.2. Kadanoff’s mode elimination and rescaling procedures for the two-dimensional
Ising model. In the first step (left), the microscopic spins are grouped forming ‘mesoscopic’
block spins (middle) for b = 3. After this step, the lattice spacing a′ is b = 3 as big as the
original one a. By rescaling the distances and fields by a′ one comes back to the situation
where all the distances are measured by the intrinsic unit a′. Note that the new lattice is then
identical to the original one, except the number of spins has reduced by the factor of b2. In
thermodynamic limit, however, which is always implicitly assumed, the latter does not play
a significant role.

action will take a form

1

2

∫
|p|<Λ/b

ddp
(2π)d

φ<(−p)
[
m2

< + a2,<p2 + a4,<p4 + . . .
]
φ<(p)

=
1

2

∫
|p|<Λ

ddp′

(2π)d
φ′(−p′)

[
m′2 + p′2 + a′4p′

4
+ . . .

]
φ′(p′) .

(3.124)

From the second line, we can read off the scaling factor as

ζb = b1+d/2√a2,< ≡ b1+d/2
√
Zb. (3.125)

We observe that it consists of two pieces: the simple part b1+d/2 ≡ bdφ , which is present
even in the absence of interactions, follows readily from the microscopic action by means
of dimensional analysis. It defines the engineering dimension dφ of the field φ(p). The
nontrivial part Zb, known as the wave function renormalization, on the other hand, is due
to interactions and can modify the field’s simple scaling properties near a critical point (see
below).

Upon performing both steps (mode elimination and rescaling) the renormalized action
takes the same form as the original one, but with modified coupling constants g′, which
defines a mapping

g′ = R(b; g) . (3.126)

One can then proceed by iterating the same procedure again, but now with g′ as the initial
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couplings. By construction,

g′′ = R(b′; g′) = R(b′;R(b; g)) = R(b′b; g) , R(1; g) = g, (3.127)

which implies that the set of transformations R form a one-parameter semigroup, known
as the renormalization group (RG). Upon iterating RG transformations over and over again,
one probes more and more macroscopic (infrared) physics. In practice, it is more convenient
to do this in infinitesimal steps, b = exp(l), l ≪ 1, and recast the map (3.126) into a set of
ordinary differential equations:

∂lgi = βgi(g) , (3.128)

where on the right-hand side we have introduced the (Gell-Mann–Low) β-functions βgi(g) =
liml→0

[
Ri

(
el; g

)
− g
]
/l.

Of great importance are fixed points g∗ of the map (3.126) or, equivalently, of the RG
flow (3.128):

g∗ : g∗ = R(b; g∗) ⇐⇒ βi(g∗) = 0. (3.129)

Once the system reaches an RG fixed point, it no longer changes under subsequent RG trans-
formations: the coarse-grained (and appropriately rescaled) picture looks exactly the same
as the original one. Such systems are called self-similar or scale-invariant. To better illus-
trate this point, recall that for any system there is always an intrinsic scale ξ characterizing
an exponential decay of correlations.9 It is straightforward to show that, under an RG step,
the latter transforms as ξ′ ≡ ξ(g′) = ξ(g)/b. At a fixed point, one has ξ(g∗) = ξ(g∗)/b,
which can be only satisfied if either ξ = ∞ (critical fixed points), in which case the (two-
point) correlator is expected to have a power-law form, or ξ = 0 (trivial fixed points), so
that the correlator is simply constant.

In fact, it is easy to see that ξ =∞ not only for the specific values g∗ of the couplings,
but also for the entire basin of attraction of the critical point, i.e., for all the couplings that
are mapped to g∗ by the RG flow. Such a subspace of couplings {g : R(n→∞)(b; g) = g∗}
is called the fixed point’s critical surface. The existence of such basins of attraction ex-
plains the notion of the universality of critical phenomena: all theories with microscopic
couplings lying on a critical surface flow to the same critical point and thus demonstrate the
same macroscopic behavior. The codimension of a critical manifold defines the number of
couplings that have to be fine-tuned in order to observe universal scaling behavior. In prac-
tice, however, it suffices to set fine-tuning parameters close, but not exactly on the critical
surface (which is anyway experimentally impossible). In this case, the RG trajectory will
move toward g∗ and stay in its vicinity until eventually departing away. However, because

9Of course, for anisotropic/nonequilibrium/etc. systems, there could be more than one such scale, each
characterizing exponential decay along their respective coordinate.



48 Basics of functional renormalization group

the flow almost vanishes in the neighborhood of a fixed point, this ‘nearly critical’ RG tra-
jectory will stuck around the fixed point for a long ‘RG time’. The correlation length then
will be finite, yet exceeding the physical dimension L, which also determines the maximum
RG time in this scenario.

Since, as just discussed, scaling behavior is controlled by a given fixed point g∗ and its
surroundings, it is suggestive to consider it more closely by studying the linearized flow
(3.128) in the vicinity of g∗:

∂lδgi = Bij(g∗)δgj +O(δg2) , (3.130)

where δg ≡ g − g∗ and Bij ≡ ∂βgi/∂gj . Near the fixed point, the flow is determined
by the stability matrix Bij . Let vα be its (left) eigenvector with eigenvalue λα. The linear
combinations uα = vTα · δg are called scaling variables. By construction, their RG flow
takes a particularly simple form ∂luα = λαyα. Scaling variables with Re{λα} < 0 are
called irrelevant since, even if one tunes them away from the critical surface, the RG flow
will bring them back as if they never existed. Likewise, variables with Re{λα} > 0 are
called relevant: they are the fine-tuning parameters one has to adjust in order to get on the
critical surface and their corresponding eigenvectors span the tangent plane to the critical
surface at the fixed point. Finally, there are marginal scaling variables with Re{λα} = 0,
whose stability cannot be determined by a linearized RG flow.

In general, scaling variables need not to coincide with any of the coupling constants.
One important exception is the Gaussian fixed point, where all the eigenvectors are aligned
along the ‘couplings axes’ and their eigenvalues can be deduced by virtue of simple power
counting. Above the aforementioned upper critical dimension dup, all the eigenvalues cor-
responding to interaction couplings turn out to be negative implying that the system flows
in the direction of a free field theory. Consequently, large-scale physics is described by
the mean-field approximation. Below dup, however, some of the interaction terms will star
flowing away from the Gaussian fixed point, thus spoiling the mean-field description. New
– non-Gaussian – fixed points may then emerge, controlling macroscopic physics in their
vicinity. When fixed-point values of the interaction couplings at such critical points are
small, one may employ weak-coupling methods to study them. For more details on the
perturbative Wilsonian renormalization group and its application to critical phenomena, we
refer to [93, 120, 121].

3.4.2 Functional renormalization group and the Wetterich equation

In the previous section, we have seen how scaling behavior of a self-similar system is con-
trolled by the corresponding RG fixed point and its vicinity. It is therefore tempting to
apply the same RG framework to study far-from-equilibrium scaling dynamics associated
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with nonthermal fixed points. We face, however, two obstacles. Firstly, the original Wilso-
nian momentum-shell RG, which we discussed above, is perturbative in nature. Nonthermal
fixed points, on the other hand, are typically characterized by strong fluctuations/large oc-
cupancies, making perturbative approaches generally not suitable. We shall thus seek for
nonperturbative RG schemes. Secondly, since NTFP scaling is formulated in terms of cor-
relation functions, it is desirable to have an RG framework that operates directly with such
objects. Both of these goals are achieved by the functional renormalization group, which
we outline in the following.

The idea that one can write down an exact equation for theWilsonian effective action SΛ

(or Hamiltonian) goes as back as 1970s, with the first attempts due toWegner and Houghton
[122] and Wilson and Kogut [123]. It was later understood that the sharp separation into
fast and slow modes makes such equations hard to work with in practice and even leads to
spurious effects. An exact RG equation with a smoothly implemented cutoff was then pro-
posed by Polchinski [124]. Finally, it was realized by Wetterich [125] and slightly later by
Morris [126] that a more convenient formulation of an exact flow equation can be obtained
in terms of the effective action, whose derivation will be outlined in what follows.

We begin by introducing a cutoff. A versatile and analytically stable way of implement-
ing a smooth cutoff is achieved by adding a quadratic mass-like term ∆Sk[φ] to the action:

∆Sk[φ] =
1

2

∫
x,y

φ(x)Rk(x, y)φ(y) . (3.131)

The regulator function Rk is chosen such that it suppresses modes with momenta p2 ≲ k2

and does not affect modes with momenta p2 ≳ k2. This imposes a set of requirements on
the regulator:

IR suppression : lim
k2/p2→∞

Rk(p2) > 0, (3.132a)

physical limit : lim
p2/k2→∞

Rk(p2) = 0, (3.132b)

UV limit : lim
k→Λ

Rk(p2) =∞. (3.132c)

The first condition simply implements an IR regularization. The second one ensures that
we recover full generating functionals once the regulator is removed as k → 0. Finally, one
can show that the last property implies that the scale-dependent effective action reduces to
the bare/microscopic one in the UV limit k → Λ.

For simple scalar theories, the regulator is often written as

Rk

(
p2
)
= p2r

(
p2/k2

)
, (3.133)

where r(y) is a dimensionless regulator shape function. The requirements (3.132) on the
regulatorRk translate in an obviousmanner into conditions on the shape function. Explicitly,
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Figure 3.3. A sketch of a typical regulator and its derivative. In this example, we used the
exponential shape function (3.136) with a = c = 1, b = 3. The derivative having a peak
around p2/k2 implements the Wilsonian momentum-shell idea.

the latter can be summarized as [127]

lim
y→∞

yd/2r(y) = 0, (3.134a)

lim
y→0

r(y) ∝ y−n, n ≥ 1. (3.134b)

For analytical calculations, popular choices for the shape function include

Litim regulator : r(y) =

(
1

y
− 1

)
Θ(1− y) ,

sharp regulator : r(y) =
1

Θ(y − 1)
− 1,

(3.135)

with Θ(x) being the Heaviside step function. However, non-analytic nature of these regu-
lators make them not-too-suited for numerical implementations. For the latter purposes, a
better choice is a family of smooth exponential regulators,

r(y) =
ayb−c

exp (yb)− 1
, (3.136)

with a, b, and c being parameters to be chosen by hand. A sketch of a typical regulator is
shown in Fig. 3.3.

We are now set to derive a functional RG equation. In the presence of a regulator, the
generating functional takes the form

Zk[J ] =

∫
Dφ e−S[φ]−∆Sk[φ]+J ·φ, (3.137)
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where the source is taken to be k-independent. Assuming the existence ofZk=0 we can write

Zk[J ] = e−∆Sk[δ/δJ ]Zk=0[J ] , (3.138)

from which one infers the equation that governs the generating functional’s k-dependence:

k∂kZk[J ] = −k∂k∆Sk[δ/δJ ]Zk[J ] = −
1

2

∫
p
Z

(2)
k [J ] (p,−p) k∂kRk(p2) . (3.139)

where Ȯk ≡ k∂kOk. The k∂k-derivative is used for convenience as it does not alter the
dimension of the generating functional.

Introducing the regularized Schwinger functional Wk = logZk[J ], the flow equation
can be readily rewritten in terms of connected correlation functions:

k∂kWk[J ] = −
1

2

∫
p

[
W

(2)
k [J ](p,−p) +W

(1)
k [J ](p)W (1)

k [J ](−p)
]
k∂kRk(p2) . (3.140)

In this form, it is known as the (Wilson–)Polchinski equation. Before we proceed with the
flow equation for the quantum effective action, let us take a closer look at the structure of the
Polchinski equation. Recalling thatW (1) = ϕwe recognize resemblance of the second term
to the derivative of the regulator∆Sk[ϕ] evaluated on the mean field. This term is therefore
trivial in terms of ϕ, which suggests subtracting it from the flow equation for the effective
action for convenience. This can be achieved by modifying the Legendre transform when
defining the scale-dependent effective action Γk[ϕ]:

Γk[ϕ] = sup
J

(∫
p
J(x)ϕ(x)−Wk[J ]

)
−∆Sk[ϕ] =

∫
p
Jk,ϕ(x)ϕ(x)−Wk[Jk,ϕ]−∆Sk[ϕ],

(3.141)
cf. (3.34). Note that one recovers the usual Legendre transform in the limit k → 0, as it
should be. Since we eventually want to study Γk as a functional of a k-independent mean
field ϕ, the supremum source Jk,ϕ is necessarily k-dependent, which explains the subscript.
As usual, from the definition (3.141),

ϕ(x) = W
(1)
k [Jk,ϕ](x) , (3.142)

while the quantum equation of motion gets slightly modified:

Γ
(1)
k [ϕ](x) = Jk,ϕ(x) +

∫
y

δJk,ϕ(y)
δϕ(x)

[
ϕ(y)−W (1)

k [Jk,ϕ](y)
]
−
∫
y
Rk(x, y)ϕ(y)

= Jk,ϕ(x)−
∫
y
Rk(x, y)ϕ(y) , (3.143)

from which we deduce

δJk,ϕ(x)
δϕ(y)

= Γ
(2)
k [ϕ](x, y) + Rk(x, y) . (3.144)
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Following the same logic as in Sec. 3.1.4 one then readily obtains

Gk[ϕ] ≡ W
(2)
k [Jk,ϕ] =

(
Γ
(2)
k [ϕ] + Rk

)−1

. (3.145)

We are now set to derive the flow equation for Γk:

k∂kΓk[ϕ] =

∫
x
k∂kJk,ϕ(x)

[
ϕ(x)−W (1)

k [Jk,ϕ](x)
]
− k∂kWk[J ]|J=Jk,ϕ

− k∂k∆Sk[ϕ]

(3.142), (3.140)
=

1

2

∫
x,y
W

(2)
k [Jk,ϕ] (x, y) k∂kRk(x, y)

(3.145)
=

1

2

∫
x,y

(
Γ
(2)
k [ϕ] + Rk

)−1

(x, y) k∂kRk(x, y) . (3.146)

In the compact notation, this flow equation for the effective action, known as theWetterich
equation, can be written as

k∂kΓk[ϕ] =
1

2
Tr
[(

Γ
(2)
k [ϕ] + Rk

)−1

· k∂kRk

]
. (3.147)

Written in this form, it may be easily generalized to more complicated theories. Here, the
trace sums/integrates over spacetime variables, internal indices, and, in general, different
fields (if fermions are present, the trace has to be replace with the supertrace). It is worth
emphasizing that both the Polchinski and the Wetterich equations are exact and equivalent
to one another. The former has a very appealing mathematical structure of a heat equation
and is preferred in mathematical physics [128]. In particular, it is widely used for proofs of
perturbative renormalizability. On the other hand, theWetterich equation has better stability
properties and is more suitable for practical applications.

By taking field derivatives one readily obtains the flow equations governing k-dependence
of the n-point functions Γ(n)

k . For example,

k∂kΓ
(1)
k = −1

2
Tr
[
Γ
(3)
k [ϕ] · (Gk[ϕ] · k∂kRk ·Gk[ϕ])

]
, (3.148a)

k∂kΓ
(2)
k =

1

2
Tr
[(
−Γ(4)

k [ϕ] + 2Γ
(3)
k [ϕ] ·Gk[ϕ] · Γ(3)

k [ϕ]
)
· (Gk[ϕ] · k∂kRk ·Gk[ϕ])

]
,

(3.148b)

an so forth. For a diagrammatic representation, see Fig. 3.4. Note that all of the equations
have a one-loop structure.

One furthermore observes that, e.g., the flow equation for the two-point function Γ
(2)
k

involves 3- and 4-point vertices Γ(3)
k and Γ

(4)
k , respectively. In general, the flow of the n-

point function will involve propagators up to Γ(n+2)
k and have a form

k∂kΓ
(n)
k [ϕ] = −1

2
Tr
[
Γ
(n+2)
k [ϕ] · (Gk[ϕ] · k∂kRk ·Gk[ϕ]) + Γ

(m<n+2)
k [ϕ] – terms

]
,

(3.149)
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k = −1
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k∂kΓ
(2)
k = −1

2
+

1

Figure 3.4. Diagrammatic representation of the flow equations (3.147) and (3.148). Bold
dots denote the propagators and the vertices, whereas the circled cross stands for the insertion
of the regulator derivative: ⊗ = k∂kRk.

In other words, the flow equations result in an infinite hierarchy of coupled integro-differential
equations and therefore require a choice of an expansion/truncation scheme that will allow
to close it. For an overview of such systematic expansion schemes and their applications
in a wide range of physical problems (as well as for a broader introduction to the topic of
nonperturbative RG), one is invited to read [129–133]. A deep discussion on the general
structure of functional RG flows can be found in [127].



54 Wigner functional and initial conditions

APPENDIX

3.A Wigner functional and initial conditions

Suppose the Hamiltonian H of a system is invariant under some symmetry group G, while
the initial condition may violate the symmetry in question. Infinitesimally then,

Wt0 → Wt0 + δWt0 , H → H, (3.A.1)

where δWt0 is not necessarily vanishing. With the help of the functional Moyal product,

A ⋆ B = A[φ, π] exp

[
i
2

∫
x

( ←−
δ

δφ(x)

−→
δ

δπ(x)
−
←−
δ

δπ(x)

−→
δ

δφ(x)

)]
B[φ, π], (3.A.2)

cf. (3.50), a formal solution to the Moyal equation (3.68) can be written as [105]

Wt [φ, π] = U−1
t,⋆ [φ, π] ⋆ Wt0 [φ, π] ⋆ Ut,⋆ [φ, π] , (3.A.3)

Here, we have also introduced a ⋆-unitary evolution operator

Ut,⋆ = exp⋆ (itH) ≡ 1 + itH − t2

2
H ⋆ H − it3

3!
H ⋆ H ⋆ H + . . . (3.A.4)

and set t0 = 0 for brevity. Since ⋆-map is bilinear andH is invariant, we deduce that under
the infinitesimal symmetry transformation

Wt [φ, π]→ Wt [φ, π] + U−1
t,⋆ [φ, π] ⋆ δWt0 [φ,π] ⋆ Ut,⋆ [φ, π]︸ ︷︷ ︸

≡δWt[φ,π]

. (3.A.5)

For δWt0 = 0, we immediately obtain that also δWt>t0 ≡ 0, as expected.
Let us also briefly discuss the case δWt0 ̸= 0. Invoking the Baker–Campbell–Hausdorff

formula for the Moyal product,

eX ⋆ Y ⋆ e−X =
∞∑
n=0

1

n!
{{(X)n, Y }} , (3.A.6)

where
{{(X)n, Y }} ≡ {{X, . . . {{X, {{X︸ ︷︷ ︸

n times

, Y }}}} . . .}}, (3.A.7)

one immediately finds

δWt [φ, π] =
∞∑
n=0

(it)n

n!
{{(H [φ, π])n , δWt0 [φ, π]}} . (3.A.8)



Chapter 4

A functional renormalization group
approach to nonthermal fixed points in
an ultracold Bose gas

In Ch. 2, we have presented the general concept of a far-from-equilibrium scaling near non-
thermal fixed points. In addition, we have shown how nonthermal fixed points can be de-
scribed as self-similar solutions to evolution equations governing the dynamics of correla-
tion functions. In Sec. 3.4, on the other hand, we have seen how a general scaling has a
natural interpretation in terms of fixed points of the renormalization group flow. In partic-
ular, we saw that all the universal scaling properties can be extracted from the vicinity of a
given infrared fixed point. It is therefore suggestive to try to extend this idea to the case of
a far-from-equilibrium self-similar dynamics and demonstrate how nonthermal fixed points
can be understood from the renormalization-group perspective. To a certain degree, this
goal has been already achieved for the case of (strong) stationary nonequilibrium, see, e.g.,
[71, 134, 135]. In addition, an alternative renormalization scheme involving a temporal
regulator has been proposed as a suitable description of far-from-equilibrium systems even
beyond the stationary case [136–138]. However, a complete satisfactory RG description
of nonthermal fixed points is still lacking. In this work, we attempt to implement this pro-
gram for a specific example of a single-component Bose gas. The employed method follows
closely the works [139] and [135], in which the fixed-point fRG equations were used to ana-
lyze infrared scaling properties in Landau gauge QCD and the stochastic driven-dissipative
Burgers’ equation, respectively.

55
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4.1 Model

We consider a system of a uniform single-component Bose gas described by the Hamiltonian

Ĥ =

∫
ddx
[
−Ψ̂†∇2

2m
Ψ̂ +

g

2

(
Ψ̂†Ψ̂

)2]
, (4.1)

wherem is the particle mass and the nonrelativistic bosonic field operators satisfy the usual
commutation relations,

[Ψ̂(x), Ψ̂†(y)] = δ(x− y), [Ψ̂(x), Ψ̂(y)] = [Ψ̂†(x), Ψ̂†(y)] = 0, (4.2)

in the Schrödinger picture. As has been mentioned in Ch. 1, nonequilibrium scaling as-
sociated with nonthermal fixed points has been recently observed in such systems in the
experiment [17].

From this Hamiltonian, using the coherent-state path integral formalism [140] one may
obtain the microscopic action

S[ψ, ψ∗] =

∫
ddx dt

[
i
2
(ψ∗ ∂tψ − ψ ∂tψ∗)− 1

2m
∇ψ∗ · ∇ψ − g

2
(ψ∗ ψ)2

]
. (4.3)

This action is clearly invariant under global U(1) transformations,

ψ(x)→ eiαψ(x) , ψ∗(x)→ e−iαψ∗(x) , (4.4)

implying the particle-number conservation. This symmetry may be (spontaneously) broken
forming a (quasi)condensate〈

Ψ̂(x)
〉
= ψ0(x) =

√
n0(x) exp [iK(x)] ̸= 0. (4.5)

In this case, it is often convenient to adopt the density-phase representation of the field,

ψ(x) =
√
n(x) exp [iθ(x)] , (4.6)

and consider the dynamics of density-phase fluctuations on top of the background solution:
n(x) = n0(x) + δn(x), θ(x) = K(x) + φ(x). In the Bogoliubov approximation and in
the absence of external potential, KB(x) = −µt and nB0 = µ/g, with µ being the chemical
potential generally defined through the condition∫

ddx
〈
Ψ̂†(x) Ψ̂(x)

〉
= N, (4.7)

where N is the total particle number [111].
At sufficiently low energies/temperatures (below the healing-length momentum scale),

density fluctuations are suppressed and the interesting physics is mostly encoded in the
dynamics of phase fluctuations. As first argued in [141, 142] and [143] based on Galilean
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invariance and later further explored in [144], the leading-order Lagrangian of the phase
excitations in superfluids is given by

LLOeff = P (Dtθ) , (4.8)

whereP is a polynomial function andDtθ is a Galilei-invariant combination (seeApp. 4.A.1):

Dtθ = ∂tθ −
1

2m
(∇θ)2 = −µ+ ∂tφ−

(∇φ)2

2m
. (4.9)

In equilibrium, the simplest nontrivial Lagrangian of the form (4.8),

L = a1Dtθ + a2 (Dtθ)
2 (4.10)

gives qualitatively correct results, such as the Beliaev damping rate, already at one loop
[145]. It is therefore suggestive to employ such an effective-field-theoretic (EFT) descrip-
tion also for nonequilibrium studies. In [64], an EFT approach was successfully applied for
the description of nonthermal fixed points in a U(N)-symmetric Bose gas. Scaling proper-
ties derived within the EFT formalism were shown to be equivalent to those obtained using
the large-N resummed kinetic theory. This further reinforces the idea of adopting the EFT
description for studying scaling dynamics far from thermal equilibrium.

Out of equilibrium, however, the approximation K = −µt no longer holds. Neverthe-
less, if there is a nontrivial static equilibrium solution to the Gross–Pitaevskii equation,[

i∂t +
∇2

2m
− g|ψ0|2 − 2gρqp − ∂tK

]
ψ0 = 0, (4.11)

with ρqp(x) being a quasiparticle density at x = (t, x), then the background phase K(x)
can be expressed through the slowly varying densities of the condensate ρ0 = |ψ0|2 and the
quasiparticles as [111]

−∂tK = gρ0 + 2gρqp = µ. (4.12)

The nonequilibrium chemical potential may then be fixed by the condition
∫
ddx (ρ0+ρqp) =

N . Hence, even out of equilibrium, in the presence of a (quasi)condensate, one expects that
the leading-order phase dynamics may be captured by the Lagrangian (4.8). The existence
of such a quasicondensate during the scaling regime of a single-component Bose gas at the
NTFP has been observed in, e.g., [66].

4.2 Fixed point equations

4.2.1 Nonperturbative RG flow equation action and parameterization
of the propagators

In Sec. 3.4.2, we have derived the exact renormalization-group equation for the quantum
effective action in Euclidean space. This equation can be straightforwardly generalized to
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the case of Minkowski spacetime:

k∂kΓk[ϕ] =
i
2
Tr
[(

Γ
(2)
k [ϕ] + Rk

)−1

· k∂kRk

]
, (4.13)

where, as usual, the trace sums/integrates over spacetime variables, internal indices, and, in
general, different fields. In our case of a single-component scalar field out of equilibrium,
the role of an internal index is played by a ∈ {cl, q}.

The central object of interest in this work will be a two-point function Γ(2)
k whose flow

equation can be readily obtained by taking two field derivatives of (4.13):

k∂kΓ
(2)
k,ab =

i
2
Gk,cdΓ

(4)
k,dabeGk,efk∂kRk,cf

− 1

2

Gk,cdΓ
(3)
k,daeGk,ehΓ

(3)
k,hbjGk,jfk∂kRk,cf + perm.︸ ︷︷ ︸

a↔b

 ≡ Ik,ab. (4.14)

cf. (3.148). Here, perm. stands for permutation of the external legs and the DeWitt notation
a = (t, x, cl/q) as well as the Einstein summation convention are assumed. The regularized
propagator is directly related to the second derivative of the modified effective action:

Gk,ab[ϕ] = i
(
Γ
(2)
k [ϕ] + Rk

)−1

ab
, (4.15)

cf. (3.40) and (3.145).

4.2.2 Parametrization

As has been discussed in Sec. 3.4, information about the universal scaling properties, such
as the scaling exponents, is encoded in the IR fixed points and their vicinities. This suggests
to parameterize the inverse propagator, as we approach a fixed point at vanishing cutoff
k = 0, in terms of the scaling form as [135, 139]

Γ
(2)
k,clq(t, t

′, p) = Γ
(2)
clq (t, t

′, p)− i
(
Γ
(2)
clq ◦ [GqclδZk,ρ] ◦ Γ(2)

clq

)
(t, t′, p) ,

Γ
(2)
k,qcl(t, t

′, p) = Γ
(2)
qcl (t, t

′, p)− i
(
Γ
(2)
qcl ◦ [δZk,ρGclq] ◦ Γ(2)

qcl

)
(t, t′, p) ,

(4.16a)

Γ
(2)
k,qq (t, t

′, p) = Γ(2)
qq (t, t′, p) + i

(
Γ
(2)
qcl ◦ [FδZk,F ] ◦ Γ(2)

clq

)
(t, t′, p) , (4.16b)

where δZρ and δZF are the deviations of the two-point correlators from those at vanishing
cutoff. Here, ◦ denotes a convolution in temporal arguments, products in the square brackets
denote a simple algebraic multiplication, and we have already assumed spatial isotropy.

Recall that for systems with a unitary evolution operator (see Sec. 3.3.1),

Γ
(2)
clcl (t, t

′, p) ≡ 0, Γ
(2)
clq (t, t

′, p) = Γ
(2)
qcl (t

′, t,−p) . (4.17)
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If the regulator Rk,ab is chosen such that it does not break the unitarity, relations (4.17) hold
also at any finite cutoff k. In particular, this implies δZk(t, t

′, p) = δZk(t
′, t,−p) is an even

function.
In general, δZk is a function of dimensionless variables only. In other words, if scales

such as k or m are present, δZk will only depend on dimensionless combinations such as
p2/k2, p2/m2, etc. On the other hand, at the vicinity of an infrared fixed point, the only
remaining relevant scale is k implying that δZk depends on k only implicitly through di-
mensionless arguments:

δZk(τ, σ, p) = δZ (τ̂ , σ̂, x) , (4.18)

with
x ≡ p2/k2 ≡ p̂2, τ̂ ≡ k1/βτ, σ̂ ≡ kzσ. (4.19)

Here, as always, τ ≡ (t+ t′)/2 and σ ≡ t− t′ are central and relative times, respectively. In
the most general case, their scaling dimensions 1/β and z need not to coincide. However, in
all studies known to the author that investigated the relation between β and z, their scaling
dimensions were observed to coincide to a good approximation, see, e.g., [57, 89]. For that
reason, one often supposes the constraint β = 1/z, which we are also going to assume in
this work.

4.2.3 Asymptotic behavior of δZ

Let us now discuss the asymptotic behavior of δZ. In the scaling limit k → 0, we shall
recover the full inverse propagator Γ(2)

ab , which immediately implies

δZ (τ̂ → 0, σ̂ → 0, x→∞) = 0. (4.20)

In Wigner space (3.45), we therefore expect

δZW (τ̂ → 0, ω̂ →∞, x→∞) = 0. (4.21)

Note, however, that for UV-divergent fixed points this may only be achieved if the scaling
range is restricted to momenta smaller than some upper cutoff Λ and

δZW
(
Λ̂−1/β < τ̂ ≪ 1, 1≪ ω̂ ≪ Λ̂z, 1≪ x < Λ̂2

)
≃ 0, (4.22)

where Λ̂ ≡ Λ/k. In this situation of a UV-divergent fixed point, the theory is not well
defined exactly at the fixed point, but the latter can be approached arbitrarily by choosing Λ
accordingly large [135]. Since we consider an effective field theory,1 there is no reason to
anticipate for the fixed point in question to be UV-finite.

1And even for a UV complete theory, in the case of a nonthermal fixed point solution, one would typically
expect a UV scale characterizing transition to an energy cascade.
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In the opposite (regulator-dominated) limit k →∞, according to (4.16),

δZF (τ̂ →∞, σ̂ →∞, x→ 0) = −1 +

(
Gclq ◦ Γ(2)

k→∞,qq ◦Gqcl

)
(t, t′, p)

iF (t, t′, p)
,

δZρ (τ̂ →∞, σ̂ →∞, x→ 0) = −1 +

(
Gclq ◦ Γ(2)

k→∞,qcl ◦Gclq

)
(t, t′, p)

iGclq (t, t′, p)
.

(4.23)

The ‘−1 term’ ensures cancellation of the scaling part in the parameterization (4.16) such
that the trivial spatio-temporal dependence Γ(2)

k→∞ is recovered as a consequence of the cut-
off. It is worth noting that one should be careful with associating Γ

(2)
k→∞ with the classical

propagator. This point is nicely illustrated in [139], where the gluon propagator contains a
k-dependent mass term in the regulator-dominated regime k → ∞. The bare propagator,
one the other hand, is manifestly massless due to gauge invariance. This can be explained by
the fact that the regulator term is not gauge-invariant and therefore terms not present in the
bare action can be generated in the regulator-dominated regime. Likewise, Goldstone fields
may acquire nonzero masses if the chosen regulator does not respect the system’s symme-
tries. In the following, however, we are going to choose the regulator in such a manner
that it respects all the symmetries of the full quantum effective action by construction, see
Sec. 4.2.6.

4.2.4 Integrated flow equations

Using the parameterization (4.16) the flow equation (4.14) can be straightforwardly recast
into a more convenient form of a set of integral equations for δZρ and δZF . To achieve
that, one integrates the flow for Γ(2)

k,qcl (Γ
(2)
k,clq) from k1 to k2 and then contracts it with Gclq

(Gqcl) from the left and from the right. Likewise, we integrate the flow equation for Γ(2)
k,qq

and contract it with Gclq from the left and Gqcl from the right. The result reads

−i
(
Gclq ◦ Γ(2)

qcl ◦ [GqclδZk2,ρ] ◦ Γ
(2)
qcl ◦Gclq

)
− (k1 ↔ k2) =

∫ k2

k1

dk′

k′
(Gclq ◦ Ik′,qcl ◦Gclq) ,

−i
(
Gqcl ◦ Γ(2)

clq ◦ [δZk2,ρGclq] ◦ Γ(2)
clq ◦Gqcl

)
− (k1 ↔ k2) =

∫ k2

k1

dk′

k′
(Gqcl ◦ Ik′,clq ◦Gqcl) ,

i
(
Gclq ◦ Γ(2)

qcl ◦ [FδZk2,F ] ◦ Γ
(2)
clq ◦Gqcl

)
− (k1 ↔ k2) =

∫ k2

k1

dk′

k′
(Gclq ◦ Ik′,qq ◦Gqcl) .

(4.24)
Finally, employing (3.41) and ρ = i (Gclq −Gqcl) we obtain

[δZk2,ρ − δZk1,ρ] (t, t
′, p) = 1

ρ (t, t′, p)

∫ k2

k1

dk′

k′
[(Gclq ◦ Ik′,qcl ◦Gclq) (t, t

′, p)− (q↔ cl)] ,

(4.25a)

[δZk2,F − δZk1,F ] (t, t
′, p) = i

F (t, t′, p)

∫ k2

k1

dk′

k′
(Gclq ◦ Ik′,qq ◦Gqcl) (t, t

′, p) . (4.25b)
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Note that δZρ and δZF enter the right-hand side of the equations (4.25) through the ker-
nels Ik,ab since the latter contain regularized propagators. In other words, (4.25) is a set of
coupled nonlinear integral equations.

In addition, the fixed-point equations have an explicit dependence on the full propagators
F and ρ. At the fixed point, the latter are fully specified by their scaling forms and values
of the critical exponents. This suggests the following strategy for searching for possible
scaling solutions:

1. Solve the fixed point equations for a given choice of the scaling forms Fs and ρs and
values of the critical exponents κ.

2. Extract the asymptotic behavior of the solutions δZF and δZρ. Importantly, in the
regulator-dominated limit, the regular (constant) part of the solution, which we will
denote for a second by cF and cρ, is given by −1.

3. As a result, one derives two equations for Fs, ρs, and κ: cF (Fs, ρs,κ) = −1 and
cρ(Fs, ρs,κ) = −1. In the following, we will argue how one can narrow down the
number of unknowns such that the two equations are sufficient to fix the scaling.

In principle, the expressions for cF and cρ could be found analytically, in which case the
problem would reduce to solving a set of simple algebraic equations. However, given the
complexity of the equations (4.25) such prospect does not look feasible. A more realistic
approach is therefore to probe promising scaling solutions and check if they satisfy the above
conditions.

4.2.5 Scaling forms

Since the parameter space of all possible scaling forms is, in general, infinitely large, we are
going to fix the scaling forms treating them as an input to our problem. In this work, our
choice of scaling forms for the spectral and statistical functions is motivated by the quasi-
particle Ansatz discussed in Sec. 3.1.6. In addition, we make use of the symmetry consid-
erations from Sec. 3.3.2. First, since ϕ corresponds to Goldstone excitations (phonons), the
dispersion relation is expected to be gapless. Furthermore, the equal-time propagator should
not have a finite p→ 0 limit. Putting all these conditions together, we then come up with

ρ (τ, σ, p) = ρ0
sin [ω(τ, p) σ]

ω(τ, p)
, (4.26a)

F (τ, σ, p) = f0 τ
−γ

pκ
cos[ω(τ, p) σ] , (4.26b)

where the dispersion relation is generally given by

ω(τ, p) = c0τ
−β(z−z0) |p|z0 . (4.27)
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We note that a time-dependent dispersion relation of the kind (4.27) was indeed observed in
classical-statistical simulations of a single-component Bose gas [66] and a real scalar field
in the nonrelativistic limit [146]. In both cases the observed excitations had approximately
linear dispersion relation, z0 = 1, and z = 1/β = 2. On the other hand, in both studies
the observed scaling forms were more complicated than (4.26): the spectral function had a
finite width γ(τ, p), the peak structure was more involved,2 and both the spectral as well the
statistical functions were not of Breit–Wigner (Lorentzian) form. Though it goes beyond
the scope of this work, it may be an interesting direction to consider more complex scaling
forms motivated by phenomenological studies.

Note also that, reflecting the adopted generalized fluctuation-dissipation relation (3.54),
the statistical function (4.26b) may be written as

F (τ, σ, p) = f (τ, ω(τ, p)) ρ0
cos[ω(τ, p) σ]

ω(τ, p)
, (4.28)

where

f (τ, ω(τ, p)) = f0c
κ/z0

ρ0

τ−γ−βκ(z/z0−1)

ω(τ, p)κ/z0−1
(4.29)

plays the role of an (on-shell) quasiparticle distribution function, in the limit of large occu-
pancies when one may neglect the quantum 1/2.

After we have covered the form aspect of the propagators, let us quickly discuss their
scaling properties. The scaling dimensions of the propagators F and ρ are defined as

ρ(τ, σ, p) = s∆ρ ρ(s−1/βτ, s−zσ, sp) ,

F (τ, σ, p) = s∆F F (s−1/βτ, s−zσ, sp) .
(4.30)

Using (4.26) the scaling dimensions ∆ρ and ∆F can be expressed as

∆ρ = z, ∆F = κ− γ/β. (4.31)

In the language of NTFP scaling,∆F = α/β. In the following, wewill impose the constraint
∆F = d, which can be considered as stemming from the particle number conservation law
of the underlying ‘fundamental bosons’, cf. (2.20). In addition, we will assume that the
excitations have a strictly linear dispersion relation, which fixes the scaling exponent z0 = 1.
Finally, as have been mentioned at the end of Sec. 4.2.2, we will also employ the constraint
β = 1/z, which leaves us with only two independent scaling exponents.

To close the discussion, we check how our choice of the scaling forms fits the EFT
considerations of Sec. 4.1. Recall that the leading-order microscopic action governing the

2Presumably, due to the presence of topological excitations, which, however, we exclude in the present
work.
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dynamics of phonon excitations is given by (4.10). The simplest extension to the Schwinger-
Keldysh contour then reads

S[θ+, θ−] =

∫
x,t0

{
a1 (Dtθ+ −Dtθ−) + a2

[
(Dtθ+)

2 − (Dtθ−)
2]}.

Upon performing the Keldysh rotation and ignoring the boundary term we obtain

S[ϕcl, ϕq] =

∫
x,t0

{
a

2
∂tϕcl∂tϕq −

b

2
∇ϕcl∇ϕq −

a

4m
∂tϕq (∇ϕcl)2 −

a

2m
∂tϕcl∇ϕcl∇ϕq

− a

16m
∂tϕq (∇ϕq)2 +

a

4m2
(∇ϕcl)3∇ϕq +

a

16m2
∇ϕcl (∇ϕq)3 + (qq− term)

}
, (4.32)

with a ≡ 4a2 and b/2 ≡ (a1 − 2µa2)/m. Note that the m−1 and m−2 ratios between
the couplings involving a are ensured by symmetry identities even beyond the classical
level (see App. 4.A.2). Since we consider a closed system, the q − q-component is a pure
regularization, which is, however, necessary in order to have a nonzero occupation number.
To ensure the scaling Ansatz (4.28), the q− q-term then has to take the form

S(2)
qq (t, t′, x) =

∫
t1

[
f(t, t1)S

(2)
clq (t1, t

′, x)− S(2)
qcl (t, t1, x) f(t1, t

′)

]
, (4.33)

up to subleading terms in the gradient expansion. Here, f(t, t′) is the inverse Wigner trans-
form of f(τ, ω) in (4.29).

From (4.32) we may readily infer the dispersion relation, ω2
p = (b/a) p2 ≡ c2sp2, iden-

tifying cs with the sound velocity. Using the above microscopic action as an Ansatz for
the full nonequilibrium quantum effective action we allow a and b to depend on time. The
simplest nontrivial generalization is then to let b be time-dependent, whilst keeping a time-
independent. To match the scaling forms (4.26), we then set

a =
a0(t0)

m2
, b =

b0(t0) t
β−1

m2
, f(t, t′) = f0(t0) g(t, t

′), (4.34)

with g(t, t′) being a parameter-free function. By appropriately rescaling the fields and
choosing the right units of momentum one may get rid of all but two parameters,

gcl =
a0f

1/2
0

b0c
d/2
0

, gq =
gcl
f 2
0

, (4.35)

which serve as effective coupling constants. The resulting rescaled microscopic action reads

S[ϕcl, ϕq] =

∫
x,t0

{
1

2

[
∂tϕcl∂tϕq − tβ−1∇ϕcl∇ϕq

]
− gcl

4
∂tϕq (∇ϕcl)2 −

gcl
2
∂tϕcl∇ϕcl∇ϕq

+
g2cl
4

(∇ϕcl)3∇ϕq −
gq
16
∂tϕq (∇ϕq)2 +

gqgcl
16
∇ϕcl (∇ϕq)3 + (qq− term)

}
, (4.36)

where the q− q-component no longer contains any parameters, see App. 4.B for details. In
terms of the scaling forms (4.26) and (4.27) this implies that one can set ρ0, f0, c0 → 1 by
appropriately choosing the units and rescaling the fields.
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4.2.6 Choice of the regulator

To fully fix the quadratic part of Γk, we still have to specify the regulator Rk. In the ±
notation, it is given by

∆Sk =
1

2

∫
(φ+, φ−)

(
R++

k −R+−
k

−R−+
k R−−

k

)(
φ+

φ−

)
, (4.37)

and the regulators before and after Keldysh rotation are related via(
Rk,clcl −Rk,clq

−Rk,qcl Rk,qq

)
= A

(
R++

k −R+−
k

−R−+
k R−−

k

)
AT , (4.38)

cf. (3.33). The simplest choice motivated by the standard form of a mass term is R++
k =

−R−−
k , R+−

k = R−+
k ≡ 0 or, equivalently, Rk,clq = Rk,qcl, Rclcl = Rqq ≡ 0. In this work,

we employ a regulator of the form

Rk,ab(t, t
′, p) = Γ

(2)
ab (t, t

′, p) rab
(
p2/k2

)
, (4.39)

with rclcl = rqq ≡ 0 and rclq = rqcl ≡ r. This choice has a nice advantage that, by construc-
tion, it enjoys the correct symmetry properties and causal structure of the full effective ac-
tion. Therefore, any constraints imposed by symmetry or causality arguments (see Sec. 3.3)
shall hold also for any finite cutoff k.

It remains to choose the shape function r(y). As discussed in Sec. 3.4.2, a suitable
candidate for numerical purposes is the exponential regulator

r(y) =
ayb−c

exp (yb)− 1
, (4.40)

where a, b, and c are parameters to be chosen by hand. The most common choice is a = b =

c = 1, for which r(y → 0) ∼ y−1 reflecting the usual p2 form of the inverse propagator.
However, in our case, to better match the momentum-dependence structure of the scaling
forms (4.26), it might be helpful to instead take a κ-dependent c.

Note that the above regulator does not concern temporal fluctuations. Together with our
Ansatz for the scaling forms, this implies that temporal scaling persists even in the limit
k → ∞. In principle, one may overcome this ‘issue’ by implementing a temporal cutoff.
Regulators of this kind have been discussed in, e.g., [147]. However, for the purpose of
finding scaling solutions, it will turn out to be unnecessary. This will be discussed in more
detail in Sec. 4.4.

4.2.7 Vertices

In the previous sections, we covered the Ansatz for the quadratic part of the regularized ef-
fective Γk within our approximation. To complete our approximation scheme, we still have
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to specify the choice of vertices Γ(n≥3)
k,a1...an . In the present truncation scheme, they schemati-

cally read

Γ
(n≥3)
k = znS

(n≥3)
k , (4.41)

with the classical vertices S(n≥3)
k , which can be derived from the action (4.36) that we again

use as a guiding Ansatz, taken with running couplings gn,k. Together with the k-dependent
prefactors zn the latter form dimensionless couplings

ĝn,k = zngn,k ≡ k−[gn]gn,k, (4.42)

with the scaling dimensions [gn] to be fixed in Sec. 4.3. Since we consider the IR critical
region,

k∂kĝn,k = 0, (4.43)

so that dimensionless couplings approach their respective IR fixed-point values. Therefore,
e.g., ĝn,k′ in the loop is k′-independent and can be replaced by ĝ∗n. Thus, in the vicinity of
the IR fixed point

k∂kΓ
(n≥3)
k = 0 (4.44)

in the chosen truncation scheme.

4.2.8 Approximate equations for δZ

We are now set up to discuss the equations (4.25) for δZ outlined in Sec. 4.2.4. As we have
already mentioned there, in order to find δZ one has to solve a set of coupled nonlinear
integral equations. Therefore, the full solution is out of reach even numerically.

On the other hand, as argued in [139], the equations for δZ can be significantly simplified
in the limit k →∞, which we are primarily interested in. In this case, the regions q2/k2 ≲ 1

and (p+q)2/k2 ≲ 1 in the loops are suppressed due to the regulator. According to (4.20), we
can thus set δZ → 0 in the loops to a good approximation. Equivalently, when computing
the flow one may take

G̃k,ab[ϕ] ≡ i
(
Γ(2)[ϕ] + Rk

)−1

ab (4.45)

instead of the full regularized propagators (4.15). For the choice of the regulator (4.39),
these ‘deformed propagators’ take a simple form G̃k(t, t

′, p) = P (p2/k2)G(t, t, p), with
the functions

Pρ(p2/k2) =
1

1 + r(p2/k2)
, PF (p2/k2) =

1

[1 + r(p2/k2)]2
= Pρ(p2/k2)2, (4.46)

which we depict in Fig. 4.1.



66 Fixed point equations

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

y

Pρ(y)

PF (y)

Figure 4.1. The suppressing prefactors (4.46) entering the deformed propagators. Here, we
have used the exponential regulator (4.40) with a = b = c = 1. Note that P and δZ always
appear in the flow equation together as they both enter through the regularized propagator
Gk. Hence, δZ always has a limited support in the infrared region of the loop, as claimed
in the main text.

Together with (4.44) this dramatically simplifies the equations for δZ. Indeed, noting
that G̃k[ϕ] · ∂kRk · G̃k[ϕ] = −i∂kG̃k[ϕ] we readily obtain

Ik,ab ≃
1

2
Γ
(4)
k,dabek∂kG̃k,ed +

i
2
k∂kG̃k,jdΓ

(3)
k,daeG̃k,ehΓ

(3)
k,hbj +

i
2
k∂kG̃k,jdΓ

(3)
k,dbeG̃k,ehΓ

(3)
k,hej

=
1

2
Γ
(4)
k,dabek∂kG̃k,ed +

i
2
Γ
(3)
k,dae

(
k∂kG̃k,jdG̃k,eh + k∂kG̃k,ehG̃k,jd

)
Γ
(3)
k,hbj

=
1

2
Γ
(4)
k,dabek∂kG̃k,ed +

i
2
Γ
(3)
k,daek∂k

(
G̃k,jdG̃k,eh

)
Γ
(3)
k,hbj. (4.47)

Using the assumption (4.44) we thus conclude

Ik,ab ≃
1

2
k∂k

[
Γ
(4)
k,dabeG̃k,ed + iG̃k,jdΓ

(3)
k,daeG̃k,ehΓ

(3)
k,hbj

]
≡ 1

2
k∂kΣk,ab =

1

2
k∂kΣab

[
G̃k,Γ

(n≥3)
∗

]
, (4.48)

where in the last line we have denoted the vertex functions by Γ
(n≥3)
∗ to emphasize their

k-independence in the chosen truncation scheme. For a diagrammatic representation of the
simplified flow equations, see App. 4.C.

To summarize, within the chosen truncation scheme, the k-dependence of the flow re-
duces to a total-derivative form. This, in turn, allows us to perform the integration in (4.25)
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explicitly:

δZk,ρ (t, t
′, p) ◦≃ 1

2ρ (t, t′, p)
[(Gclq ◦ Σk,qcl ◦Gclq) (t, t

′, p)− (q↔ cl)] , (4.49a)

δZk,F (t, t′, p) ◦≃ i
2F (t, t′, p)

(Gclq ◦ Σk,qq ◦Gqcl) (t, t
′, p) , (4.49b)

cf. with Eqs. (13) in [139]. Here, to shorten the equations, we have introduced the following
short-hand notation:

Ak
◦
= Bk ⇐⇒ Ak2 − Ak1 = Bk2 − Bk1 . (4.50)

4.2.9 Causal structure of the equations

In their present form, the equations (4.49) involve integrals of functions that have a limited
support in the temporal domain, e.g.,Gclq orGqcl. Performing integration for such integrands
is numerically problematic, so we shall examine the implications of causal properties of the
propagators on the temporal structure of the integrals to bring (4.49) to a more suitable form.

Tadpole contributions

We begin by considering the four-point (tadpole) contributions (III) and (VI), see Fig. 4.14.
For Σk,qq, this contribution has the form

∫
q Γ

(4)
∗,clqqq (t, q, p,−p,−q) G̃

R/A
k (t, t, q). Since

G̃
R/A
k (t, t, q) ≡ 0, this term does not contribute to Σk,qq. In contrast, the four-point contri-

butions to Σk,clq and Σk,qcl are non-vanishing:

Σ
(t)
k,clq (t1, t2, p) = δ (t1 − t2)

∫
q
Γ
(4)
∗,clclclq (t1, q, p,−p,−q) F̃k (t1, t1, q)

≡ Σ
(t)
k,ρ (t1, p) δ (t1 − t2) , (4.51)

and likewise for Σ(t)
k,qcl. Plugging this into the fixed-point equation (4.49a) results in the

following contribution to δZρ:

δZ
(t)
k,ρ (t, t

′, p) ◦≃ 1

ρ (t, t′, p)

∫ t′

t

dt1 ρ (t, t1, p) Σ(t)
k,ρ (t1, p) ρ (t1, t

′, p) . (4.52)
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t′ t2
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Figure 4.2. Integration domain for δZρ when t < t′ (left) and t > t′ (right).

Non-tadpole contributions

Next, let us examine the non-tadpole diagrams (I), (II), (IV), and (V) depicted in Fig. 4.14.
We first observe that there is only one contribution of this kind for δZρ:

Σ
(nt)
k,clq (t1, t2, p) =

∫
q
Γ
(3)
∗,clclq (t1, q, p,−p− q) F̃k (t2, t1, q)

× G̃A
k (t1, t2, p+ q) Γ(3)

∗,clqcl (t2, p+ q,−p,−q) , (4.53a)

Σ
(nt)
k,qcl (t1, t2, p) =

∫
q
Γ
(3)
∗,clqcl (t1, q, p,−p− q) F̃k (t2, t1, q)

× G̃R
k (t1, t2, p+ q) Γ(3)

∗,clclq (t2, p+ q,−p,−q) . (4.53b)

Making use of some basic symmetry properties of the propagators and vertex functions one
easily finds

Σ
(nt)
k,qcl (t1, t2, p) = Σ

(nt)
k,ρ (t1, t2, p)Θ (t1 − t2) ,

Σ
(nt)
k,clq (t1, t2, p) = −Σ

(nt)
k,ρ (t1, t2, p)Θ (t2 − t1) ,

(4.54)

which reflects the causal structure of the kernel. We thus conclude

δZ
(nt)
k,ρ (t, t′, p) ◦≃ 1

ρ (t, t′, p)

∫ t2

t

dt1
∫ t′

t

dt2 ρ (t, t1, p) Σ(nt)
k,ρ (t1, t2, p) ρ (t2, t

′, p) . (4.55)

The temporal integration domain for cases t < t′ and t > t′ is summarized in Fig. 4.2. For
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δZF , on the other hand, there are two distinct non-tadpole contributions:

Σ
(cl)
k,qq (t1, t2, p) = i

∫
q
Γ
(3)
∗,clqcl (t1, q, p,−p− q) F̃k (t2, t1, q)

× F̃k (t1, t2, p+ q) Γ(3)
∗,clqcl (t2, p+ q,−p,−q) , (4.56a)

Σ
(q)
k,qq (t1, t2, p) = i

∫
q
Γ
(3)
∗,clqcl (t1, q, p,−p− q) G̃A

k (t2, t1, q)

× G̃R
k (t1, t2, p+ q) Γ(3)

∗,qqq (t2, p+ q,−p,−q)

+ i
∫
q
Γ(3)
∗,qqq (t1, q, p,−p− q) G̃R

k (t2, t1, q)

× G̃A
k (t1, t2, p+ q) Γ(3)

∗,clqcl (t2, p+ q,−p,−q)

= i
∫
q
Γ(3)
∗,qqq (t1, q, p,−p− q) ρ̃k (t2, t1, q)

× ρ̃k (t1, t2, p+ q) Γ(3)
∗,clqcl (t2, p+ q,−p,−q) , (4.56b)

cf. Fig. 4.14, (I) and (II). We note that Σ(cl)
k,qq ∝ F̃ 2

k , whereas Σ
(q)
k,qq ∝ ρ̃2k. Therefore, one

expects that the contribution coming from Σ
(cl)
k,qq dominates over the one from Σ

(q)
k,qq if∣∣∣F̃k (t, t

′, q) F̃k (t, t
′, k)

∣∣∣≫ |ρ̃k (t, t′, q) ρ̃k (t, t′, k)| , (4.57)

known as the classicality condition [56, 85, 148]. One expects it to hold if the number of
field quanta in each mode is sufficiently high, i.e., if the occupation number is large, which
is one of the trademarks of nonthermal fixed points. Plugging (4.56) into (4.49b) we finally
arrive at

δZk,F (t, t′, p) ◦≃ −1
2F (t, t′, p)

∫ t

t0

dt1
∫ t′

t0

dt2 ρ (t, t1, p) Σk,F (t1, t2, p) ρ (t2, t′, p) , (4.58)

where iΣk,F ≡ Σ
(cl)
k,qq + Σ

(q)
k,qq.

4.3 Dimensionless form of the fixed point equations and
preliminary dimensional analysis

4.3.1 Dimensionless form of the fixed point equations

As we noted in Sec. 4.2.2, near the IR fixed point, k is the only relevant scale. It is therefore
suggestive to rewrite the equations for δZ in terms of dimensionless functions and variables
(4.19). To that end, we first employ the definition (4.30) with s = 1/k:

ρ(τ, σ, p) ≡ k−∆ρ ρ̂ (τ̂ , σ̂, x) ,

F (τ, σ, p) ≡ k−∆F F̂ (τ̂ , σ̂, x) .
(4.59)
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Because we adopt the approximation β = 1/z, relative and central times have the same
scaling properties. This implies that it suffices to introduce η ≡ k1/βt, η′ ≡ k1/βt′ and work
with the functions F̂ (η, η′, x) ≡ F̂ (τ̂ , σ̂, x), ρ̂ (η, η′, x) ≡ ρ̂ (τ̂ , σ̂, x). Similarly, we define
dimensionless vertex functions, which in our truncation scheme read

Γ
(3)
k,clqcl (t, q, p,−p− q) = k∆3Ŝ3,cl (η, y, x,−u) ,

Γ
(3)
k,clqcl (t, q, p,−p− q) = k∆̃3Ŝ3,q (η, y, x,−u) ,

(4.60)

and likewise for the four-point vertices Γ(4)
k . Here, we have further introduced the notations

y ≡ q2/k2, u = x+ y + 2ζ
√
xy, ζ =

p · q
|p||q|

, (4.61)

together with Ŝ3,cl/q (η, y, x,−u) = ĝcl/q,k [. . .], Ŝ4,cl (η, y, x,−u) = ĝ2cl/q,k [. . .], and
Ŝ4,q (η, y, x,−u) = ĝcl,kĝcl,k [. . .], where [. . .] schematically denote the dimensionless ver-
sions of the vertex structures in (4.36) and ĝcl/q being the dimensionless couplings defined
in Sec. 4.2.7. From this definition, one may infer the scaling dimensions of the vertices:

∆3 = [gcl] + 2 + 1/β, ∆4 = 2[gcl] + 4, (4.62a)

∆̃3 = [gq] + 2 + 1/β, ∆̃4 = [gq] + [gcl] + 4. (4.62b)

Assembling the above definitions we can bring the equations (4.49) to their dimensionless
form:

δZF (η, η′, x)− δZF

(
ε1/βη, ε1/βη′, x/ε2

)
≃ − kµF

2

2F̂ (η, η′, x)

∫ η

η0

dη1
∫ η′

η0

dη2 ρ̂ (η, η1, x)

×
[
Σ̂

(cl)
F (η1, η2, x)− ε−∆ΣF Σ̂

(cl)
F

(
ε1/βη1, ε

1/βη2, x/ε
2
)]
ρ̂ (η2, η

′, x)

− kµ̃F
2

2F̂ (η, η′, x)

∫ η

η0

dη1
∫ η′

η0

dη2 ρ̂ (η, η1, x)

×
[
Σ̂

(q)
F (η1, η2, x)− ε−∆̃ΣF Σ̂

(q)
F

(
ε1/βη1, ε

1/βη2, x/ε
2
)]
ρ̂ (η2, η

′, x) , (4.63a)

δZρ (η, η
′, x)− δZρ

(
ε1/βη, ε1/βη′, x/ε

)
≃ k

µρ

2

ρ̂ (η, η′, x)

∫ η2

η

dη1
∫ η′

η

dη2 ρ̂ (η, η1, x)

×
[
Σ̂(nt)

ρ (η1, η2, x)− ε−∆Σρ Σ̂(nt)
ρ

(
ε1/βη1, ε

1/βη2, x/ε
2
)]
ρ̂ (η2, η

′, x)

+
k
µ̃ρ

2

ρ̂ (η, η′, x)

∫ η′

η

dη1 ρ̂ (η, η1, x)
[
Σ̂(t)

ρ (η1, x)− ε−∆̃Σρ Σ̂(t)
ρ

(
ε1/βη1, x/ε

2
)]
ρ̂ (η1, η

′, x) ,

(4.63b)

where x = p2/k22 and we have introduced ε ≡ k1/k2 < 1 and

µF = −∆F − 2∆ρ + 2∆3 + d− 2/β, µ̃F = ∆F − 4∆ρ +∆3 + ∆̃3 + d− 2/β,

µρ = −∆F − 2∆ρ + 2∆3 + d− 2/β, µ̃ρ = −∆F −∆ρ +∆4 + d− 1/β.
(4.64)
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Upon inspecting the dimensionless equations (4.63) one may notice a troubling explicit de-
pendence on the dimensionless ‘initial’ time η0 in the equation for δZF . It is therefore impor-
tant to realize that this dependence is only seeming. Indeed, a fully developed self-similar
evolution has no notion of past or future time, so the scale t0 is arbitrary. In particular, it may
be chosen as the reference scale in the usual NTFP definition (2.2). From this perspective,
the scaling forms (4.26) should have been understood as functions of t/tref = t/t0 from the
very beginning. In this light, all the temporal arguments in (4.63) are taken with respect to
dimensionless t0. Equivalently, one may simply take η0 = 1.

4.3.2 Preliminary dimensional analysis

Before we proceed with numerical implementation of the dimensionless fixed-point equa-
tions, it is suggestive to make a preliminary dimensional analysis in order to estimate possi-
ble scaling exponents, thus providing us a starting point for a region in which we are going
to look for scaling solutions.

Scaling with k

The dimensionless fixed-point equations (4.63) still involve some residual k-dependence.
At the same time, δZ should have no explicit dependence on the cutoff scale k. We therefore
demand µF = µ̃F = 0, which yields

∆F − 4∆ρ +∆3 + ∆̃3 + d− 2/β = 0, (4.65a)

−∆F − 2∆ρ + 2∆3 + d− 2/β = 0, (4.65b)

In particular, this implies that the scaling dimensions of the quantum and classical three-
point vertices are related to each other

∆3 − ∆̃3 = 2 (∆F −∆ρ) . (4.66)

In our truncation scheme,∆3 and ∆̃3 are given by (4.62), for which∆3− ∆̃3 = [gcl]− [gq],
so that (4.66) yields

[gcl]− [gq]

2
= ∆F −∆ρ, (4.67)

as one would expect.
Similarly, the condition of no explicit k-dependence for δZρ requires µρ = µ̃ρ = 0.

Since µF = µρ, it only leads to a single further constraint: −∆F −∆ρ+∆4+ d− 1/β = 0.

Spatio-temporal scaling

Under the approximation (4.48) we find k∂kΓ(2)
k,ab ≃ k∂kΣk,ab. To estimate scaling properties

of the full propagator in the present truncation scheme, we may therefore investigate how
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does Γ(2)
ab ∼ Σk→0,ab behave with respect to scaling transformations. Contracting, as usual,

with GR/A we end up with the equations that can be schematically written as

F (t, t′, p) ∼
∫ t

t0

dt1
∫ t′

t0

dt2
∫
q
ρ(. . .)S

(3)
clqcl(. . .)F (. . .)S

(3)
clqcl(. . .)F (. . .)ρ(. . .)

+

∫ t

t0

dt1
∫ t′

t0

dt2
∫
q
ρ(. . .)S

(3)
clqcl(. . .)ρ(. . .)S

(3)
qqq(. . .)ρ(. . .)ρ(. . .) , (4.68a)

ρ (t, t′, p) ∼
∫ t2

t

dt1
∫ t′

t

dt2
∫
q
ρ(. . .)Sclclq(. . .)ρ(. . .)Sclqcl(. . .)F (. . .)ρ(. . .)

+

∫ t′

t

dt1
∫
q
ρ(. . .)S

(4)
clclqcl(. . .)F (. . .)ρ(. . .) . (4.68b)

Employing the definitions introduced in Sec. 4.2.5 and performing a full spatio-temporal
scaling transformation of both sides we obtain

classical : −∆F = −2/β − 2∆ρ − 2∆F + d+ 4 + 2/β, (4.69a)

quantum : −∆F = −2/β − 4∆ρ + d+ 4 + 2/β, (4.69b)

from the first and the second terms of (4.68a), respectively. Recalling (4.31) the first equa-
tion yields

classical :
∆F − d

2
= 2− 1/β, (4.70)

Upon invoking the particle-number conservation constraint ∆F = d we conclude that the
left-hand side shall vanish. Therefore, based on a simple power countingwe expectβ ≃ 1/2.
The second equation, on the other hand, gives

quantum : β =
4

∆F + d+ 4
≃ 1

1 + d/2
. (4.71)

Note that the results (4.70) and (4.71) coincide in d = 2 spatial dimensions. We thus con-
clude that dc = 2 is a special dimension, which sets a border between the cases when the
‘classical’ loop dominates over the ‘quantum’ one, and vice-versa.3 One may therefore ex-
pect that for d > dc neglecting the quantum contribution Σ

(q)
F is a reliable approximation,

cf. the discussion in Sec. 4.2.9. In the nonequilibrium quantum dynamics literature, this is
often referred to as the classical statistical approximation [41, 148, 149]. In the following,
we are going to adopt this approximation in order to further simplify the equations.

A pure-spatial scaling transformation at some fixed time τ∗ is more involved. Note that
time derivatives in the bare vertices will generally result in factors of the form ω2

p+ωp/τ∗+

1/τ 2∗ . Suppose the region ωp ≫ 1/τ∗ has the biggest support in the loop integral. In that

3Coincidentally, dc = 2 is also the upper critical dimension of a quantum phase transition in a single
component Bose gas [140].
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case, one would obtain

classical : κ = d+ 4, (4.72a)

quantum : κ = 4− 2z0 − d, (4.72b)

which does not look too promising, cf. (2.19).4 If we instead suppose that the contribution
ωp ≪ 1/τ∗ dominates, then

classical : κ = d+ 4− 2z0, (4.73a)

quantum : κ = 4− 4z0 − d. (4.73b)

Recall that we assumed the excitations to be linear (z0 = 1). From the first equation, we
therefore expect κ ≃ d + 2, which is comparable to the usual κ ≃ d + 1 result, see (2.25c)
and [57, 64, 150]. Finally, combining (4.31) with the assumption ∆F = d we obtain

γ = β (κ−∆F ) ≃

1, κ ≃ d+ 2,

2, κ ≃ d+ 4,
. (4.74)

for β ≃ 1/2. The equation for ρ provides no new information: the scaling properties of the
first term in (4.68b) are identical to those of the first term of (4.68a), while the second term
gives −∆ρ = −1/β − 2∆ρ − ∆F + d + 4, which under the same assumptions as above
yields (4.70).

4.4 Numerical solution of the fixed-point equations

In this section, we finally show how the equations derived in the previous sections can be
solved numerically and discuss how the resulting solutions may be analyzed in order to
extract scaling exponents associated with nonthermal fixed points.

The code for this work has been written using Julia language [151]. All symbolic com-
putations were carried out by the Symbolics.jl package [152]. Numerical integrations over
n-dimensional rectangular domains were done using an adaptive integrator [153] imple-
mented in the HCubature.jl library. The integration over triangular temporal domain, cf.
Fig. 4.2, was performed using the Grundmann–Möller quadrature [154] from the Grund-
mannMoeller.jl package. When performing integration, all the relative errors were taken to
be 10−2, which is not visible in any of the following plots.

For the regulator, we used the exponential shape function (4.40) with a = b = 1 and
c ∈ [0; κ/4]. We found no significant difference when varying c, so in the following all
the plots are using data obtained with c = κ/4. Finally, in all the cases below, we consider
d = 3 spatial dimensions.

4It should be noted, however, that the constraint (2.19) was based on the bi-directional cascade picture.
Here, on the other hand, we consider a single IR cascade only.
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4.4.1 General structure of the equations and residual temporal scaling

Taking all the approximations discussed in the previous sections into account wemay rewrite
the equations for δZ in the form more suitable for numerical purposes:

δZF (η, η′, x)− δZF

(
ε1/βη, ε1/βη′, x/ε2

)
≃ λdfε (η, η

′, x;κ) , (4.75a)

δZρ (η, η
′, x)− δZρ

(
ε1/βη, ε1/βη′, x/ε2

)
≃ λd [gε (η, η

′, x;κ) + lε (η, η
′, x;κ)] . (4.75b)

Here, λd ≡ Cdĝ
2
cl plays the role of a dimensionless coupling, where Cd is given by (4.D.3)

and stems from the angular integration, see App. 4.D. The functions fε, gε, and lε can be
written as

fε (η, η
′, x) =

∞∫
0

dy
1∫

−1

dζ
η∫
1

dη1
η′∫
1

dη2DF (x, y, ζ, ε)LF (η, η′, x, ζ, η1, η2, y)

F̂ (η, η′, x)
, (4.76a)

gε (η, η
′, x) =

∞∫
0

dy
1∫

−1

dζ
η2∫
η

dη1
η′∫
η

dη2D(nt)
ρ (x, y, ζ, ε)L

(nt)
ρ (η, η′, x, ζ, η1, η2, y)

ρ̂ (η, η′, x)
, (4.76b)

lε (η, η
′, x) =

∞∫
0

dy
1∫

−1

dζ
η′∫
η

dη1D(t)
ρ (y, ζ, ε)L

(t)
ρ (η, η′, x, ζ, η1, η2, y)

ρ̂ (η, η′, x)
. (4.76c)

where DX and LX can be found in (4.E.6) and (4.E.7 – 4.E.9), respectively (see App. 4.E
for more details). The integration over [0,∞) can be mapped to a finite region [0, 1] by
performing a change of variable, e.g., y = atanh(w) or y = w/(1 − w). In this work, we
use the former map.

Finally, we have also introduced the notation κ = (κ, γ) for the collection of scaling
exponents. Together with the coupling λd, there are therefore three unknowns and only two
equations. The missing equation will be discussed in Sec. 4.4.3.

In Sec. 4.2.6, we have already hinted that since time variables are not affected by the
regulator, temporal scaling should persist even in the k →∞ limit. On the other hand, due
to a quasiparticle nature of the taken Ansatz, one still expects a suppression in the frequency
domain. Recalling that δZF and δZρ are even functions and thus performing the cosine
Wigner transform, we expect from (4.23) the following ω-dependence of the δZ functions
in the regulator-dominated regime:

δZW
F/ρ (τ, ω → 0, x→ 0) = −sin (2ωτ)

ω
+ . . . , (4.77)

where, for brevity, we dropped the hats from the dimensionless variables τ̂ and ω̂. As can
be observed in Fig. 4.3, the sinc function indeed describes the low-frequency part of the
numerical data quite accurately.
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Figure 4.3. The dependence of f̃W
ε (left), g̃Wε (middle), and l̃Wε (right) on ω at τ = 8, x =

10−4 for fixed κ = 4.2, γ = 0.5, and ε = 10−4 in d = 3 spatial dimensions plotted in a semi-
log scale. The fitting function is given by m(ω) = −aω−1 sin(ω/ω0) + c. The parameters
used for the fits are (a, ω0, c) = (−4.51·10−4, 15.8·10−2,−6.35·10−4), (10.2, 6·10−2, 41.2),
and (5.2·10−3, 5.5·10−2, 2.9·10−2) for f̃W

ε , g̃Wε , and l̃Wε , respectively. Note that the extracted
values of ω0 are consistent with the expectation 1/2τ = 6.25 · 10−2 for all the functions,
with the exception of f̃W

ε . Even for that case, however, by simply looking at the plot one can
clearly see that the fitting routine overestimatesω0 by a factor of∼ 2, which can be attributed
to a poor quality of data for f̃W

ϵ in the region ω ≳ ω0, where the numerical scheme becomes
less stable. Analogous computations for τ = 16 (not shown here) yield ω0 consistent with
1/2τ = 3.125 · 10−2

4.4.2 Removing divergences

In fact, however, the functions plotted in Fig. 4.3 are not exactly the ones defined in (4.76).
Recall that ε was introduced as a ratio between the lower k1 and the upper k2 cutoff scale
values. By construction, δZk→0 has to vanish, so it is suggestive to take k1 = 0 or, equiv-
alently, ε → 0. However, as mentioned in Sec. 2.2.2, in order for a system’s quasiparticle
density to be finite, an IR cutoff is required if the system demonstrates a strong power-law
behavior in the p → 0 limit. For scaling forms with an infrared plateau, this regularization
appeared naturally, through the scale pΛ. In our case, there is no such natural IR cutoff
scale,5 so we ought to keep ε > 0.

Nevertheless, for ε such that ω/εz ≫ 1, x/ε2 ≫ 1, we expect the second terms on the
left-hand side of (4.75) to give either a vanishing or a purely singular contribution. We may
therefore generally write

XW
ε→0(τ, ω → 0, x→ 0) = aX + bXε

−pX + cXε
−pX+1 + . . . , (4.78)

with X ∈ {f, g, l}, with pX > 0 corresponding to the ε-diverging case. The desired ‘−1
term’ is given by the regular part aX , so we should develop an efficient method of extracting
it.

5Also, even in the case of scaling forms with a natural regularization, one may restrict oneself to studying
the power-law region only. This way, one may trade having a less complicated scaling form to working with
a simpler fixed point equation.
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Figure 4.4. The dependence of fW
ε (top left), gWε (bottom left), and lWε (bottom right) on

ε for different values κ plotted in a semi-logarithmic scale. Top right: the only divergent
function (fW

ε ) plotted in a double-logarithmic scale. All the plots correspond to fixed τ = 8,
ω = 0, x = 10−4, and γ = 0.5 in d = 3 spatial dimensions.

Now, since the cutoff scale k does not concern the temporal part of the loop, it is natural
to expect that pX shall come from the momentum divergence only. Examining in each case
the most divergent contribution and making use of a simple power counting, one readily
finds pf = κ− d, pg = −d, and pl = κ− d− 2. Following the arguments in Sec. 4.3.2 we
are going to restrict ourselves to d ≤ κ ≤ d + 2. We thus expect only fW

ϵ to diverge, with
the degree of divergence pX ≤ 2. This estimate is indeed corroborated by the numerical
computations, see Figs. 4.4 and 4.5.

To remove the divergent contribution and get access to the constant part aX , it is thus
sufficient to take6

X̃W
ε := XW

ε +
2ε∂εX

W
ε

pX − 1
+

ε2∂2εX
W
ε

pX (pX − 1)
. (4.79)

As one can see in Fig. 4.6, the procedure described in (4.79) indeed removes the ε-divergence
leaving only the regular part. Furthermore, as illustrated by Fig. 4.5, even for quantities that
do not suffer from ε-divergences it might be beneficial to consider X̃W

ε instead ofXW
ε since

it gives an access to the regular part already at relatively large values of ε, for which numer-
ical integration is more stable. On the other hand, as computations involving ε-derivatives

6As a remark, we note that the derivatives in (4.79) can be again performed symbolically using the Sym-
bolics.jl library, so no approximate methods are needed.
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Figure 4.5. Left: The dependence of fW
ε on ε for different values of γ and fixed κ = 4.2 in

a double-logarithmic scale. Right: The dependence of l̃Wε (solid line) and lWε (dashed line)
on ε for different values of γ and fixed κ = 4.2 plotted in a semi-logarithmic scale. Both
plots correspond to τ = 8, ω = 0, and x = 10−4.
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Figure 4.6. The dependence of f̃W
ε on ε after removing the ε-divergence plotted in a semi-

logarithmic scale. The plots are done at fixed γ = 0.5, τ = 8, ω = 0, and x = 10−4 and
different values of κ.

are more time consuming, in practice it is also advantageous to reduce the number of deriva-
tives taken. Because of that, in the following, we are going to employ the simplified version
of (4.79) for lWε : l̃Wε = lWε + ε∂εl

W
ε /(pl − 1), and make no modifications at all for gWε :

g̃Wε = gWε .

4.4.3 Time dependence and the missing equation

Recall that our goal is to find such κ (and λd) that the asymptotics of δZF and δZρ in the
suppressed region give −1. According to the discussion in Sec. 4.2.4, such values of the
exponents correspond to proper scaling solutions. However, as we have just argued, in our
case, the cutoff-dominated regime remains τ -dependent, cf. (4.2.4). This implies that the
value κ∗ for which the desired limits −1 are achieved may depend on τ .

Indeed, taking the limit ωτ ≪ 1 we can extract the coupling constant using (4.75b)
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together with (4.77):

λ∗d(τ) = −
2τ

g̃Wε→0 (τ, ω, x;κ
∗) + l̃Wε→0 (τ, ω, x;κ

∗)

∣∣∣∣
ω→0,x→0

. (4.80)

Now, plugging this into (4.75a) and defining

Qε(τ ;κ) ≡
f̃W
ε (τ, ω, x;κ)

g̃Wε (τ, ω, x;κ) + l̃Wε (τ, ω, x;κ)

∣∣∣∣∣
ω→0,x→0

(4.81)

the condition that both δZF and δZρ reach −1 can be rewritten as Qε→0(τ ;κ
∗) = 1 for any

τ . As expected, this might require time-dependent scaling exponents κ∗(τ) such that

Qε→0(τ ;κ
∗) = 1,

(
∂τ +

∂κ∗i
∂τ

∂

∂κ∗i

)
Qε→0(τ ;κ

∗) = 0. (4.82)

Therefore, upon fixing γ∗, the solutions κ∗ and λ∗d will generally depend on both γ∗ and τ .
The remaining missing equation then follows from the self-consistency condition that the
input temporal scaling (characterized by γ∗) is also the same for the regularized propagator
in the presence of δZ, computed with κ∗ and λ∗d.

Recall, however, that by assumption ∂τγ∗ = ∂τκ
∗ = 0, so in practice, even before

checking for the aforementioned self-consistency condition, one can use time-independence
of the scaling exponents as a guiding principle when looking for potential solutions. In
Fig. 4.7, one can see the dependence of f̃W

ε , g̃Wε , and l̃Wε on τ for different fixed values of
the scaling exponents. Notably, the scaling with τ shows no strong dependence on κ, but
for the most part only on the exponent γ. This dependence is further explored in Fig. 4.8,
where we find that the scaling with τ is given by τ 3+γ , τ 3−2γ , and τ 3−γ for f̃W

ϵ , g̃Wϵ , and l̃Wϵ ,
respectively, at least for not too large values of τ .
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Figure 4.7. The dependence of f̃W
ε (left), g̃Wε (middle), and l̃Wε (right) on τ at x = 10−4,

ω = 0 for fixed ε = 10−4 and different values of κ and γ in d = 3 spatial dimensions plotted
in a log-log scale.

4.4.4 Searching for solutions and residual x-dependence

At this point, we have completely covered the dependence of Xε on both of the temporal
arguments (τ and ω) as well as on the regularization parameter ε. The only variable that has
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Figure 4.8. The dependence of f̃W
ε (left), g̃Wε (middle), and l̃Wε (right) on τ in d = 3 spatial

dimensions at x = 10−4, ω = 0 for fixed ε = 10−4 and κ = 4.2 and different values of γ
plotted in a log-log scale.
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Figure 4.9. The dependence of f̃W
ε (left), g̃Wε (middle), and l̃Wε (right) on x in d = 3 spatial

dimensions at τ = 8, ω = 0 for fixed κ = 3.6, γ = 1/2, and ε = 10−4 plotted in a semi-
logarithmic scale.

not yet been properly addressed is x. For the method to work, we need a finite x→ 0 limit
after all the ε-divergences are subtracted. As can be seen in Fig. 4.9, however, only g̃Wε has
a finite x → 0 limit, whereas the other two functions vanish as they approach x = 0. In
principle, since the functions f̃W

ε , g̃Wε , and l̃Wε do not enter the definitions (4.80) and (4.81)
independently, it is possible that their dependencies on x cancel each other in the x → 0

limit. However, as shown in App. 4.F, that’s not the case.

Recall that, at least for the case of fW
ε , we had to remove the ε-divergence by performing

the operation described in (4.79). It is therefore suggestive to associate the absence of a finite
x → 0 limit with the procedure (4.79). However, as one can see in Fig. 4.10, even without
removing the ε-divergences, fW

ε still tends to vanish as x→ 0, albeit with a different power
law. Interestingly, however, as shown in Figs. 4.11 and 4.12, the asymptotic x→ 0 behavior
shows a very mild dependnce on both κ and γ. For f̃W

ε , we always find an approximate x3/2

behavior, whereas g̃Wε decreases linearly as x→ 0.

This suggests a possible explanation for the observed absence of a nontrivial x → 0

limit. From Sec. 4.2.3, it is clear that a non-vanishing limit δZk→∞ is only required if the
flow alters the propagators at finite cutoff scale k. If, however, the flow has a form that is
proportional to the propagator itself, the deviation δZk from the full scaling can vanish even
in the k → ∞ limit since the propagator keeps its full form throughout the flow. In the
chosen approximation scheme, this scenario then implies k∂kΣk,ab ∝ Γ

(2)
ab − Γ

(2)
k,ab.



80 Conclusions

10−4 10−3 10−2

x

10−6

10−4

10−2

100

102

104

∣∣fWε
∣∣

∣∣∣f̃Wε
∣∣∣

x2

x1.5

Figure 4.10. The dependence of fW
ε (solid

blue) and f̃W
ε (dashed red) on x in d = 3

spatial dimensions at τ = 8, ω = 0 for fixed
κ = 4.2, γ = 1/2, and ε = 10−4 plotted in a
log-log scale.

Figure 4.11. The dependence of l̃Wε on x in
d = 3 spatial dimensions at τ = 8, ω = 0 for
fixed κ = 4.2, ε = 10−4 and different values
of γ plotted in a linear scale.

A second option is that the ε-divergence removal procedure is performed in such a man-
ner that it spoils the x-dependence. This is hinted at by the fact that the observed asymp-
totic behavior of fW

ε before the regularization differs from that of f̃W
ε after removing the

ε-divergence. Curiously, for lWε , the effect of the divergence-removing procedure on the
x-dependence depends on whether the case is divergent or not, i.e., if pl > 0 or pl < 0.
When pl < 0, the procedure (4.79) seems to have no effect on the x-dependence of lWε at all.
On the other hand, for pl > 0, while not altering the linear behavior, the operation (4.79)
dramatically changes the slope (and even the sign). See Fig. 4.13 for both cases. We thus
conclude that the procedure (4.79) requires a careful reexamination.

Finally, the problem might be on the numerical side. The integrals (4.76) are character-
ized by a strongly singular structure of their integrands. In particular, they have a limited
support in the momentum domain. When mapped to the finite w ∈ [0, 1] integration region,
the integrands typically have a very narrow peak around either w ≈ 0, w ≈ 1, or both, de-
pending on values of the input scaling exponents. Because of that, especially in the limiting
cases, numerical integration can often become unstable, even for adaptive schemes, which
is especially evident in Fig. 4.12. A clever coordinate transformation, similar to, e.g., the
one described in [155], which would help to smooth out such singular structures depending
on the input scaling exponents, is therefore highly desirable.

4.5 Conclusions

In this work, we have proposed a new approach to searching for nonthermal fixed point solu-
tions based on the renormalization group framework. To that end, we derived the fixed-point
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Figure 4.12. The dependence of f̃W
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equations that control universal scaling properties of the statistical and spectral functions at
a nonthermal fixed point. We then argued that in the limit of interest the equations can be
significantly simplified, becoming accessible for numerical methods. Due to the presence of
strong IR divergence (characteristic of NTFP solutions), however, a divergence-removing
procedure had to be introduced in order to extract the relevant regular part of a solution. We
then demonstrated how one can work around the residual temporal scaling stemming from
the absence of regularization in the time domain. Apart from the momentum-dependence in
the regulator-dominated regime, the numerical data shows the expected behavior, indicat-
ing that the proposed method can be used to search for and classify possible universal scal-
ing solutions in far-from-equilibrium many-body systems once the momentum-dependence
problem is fixed. For the latter, we have proposed three possible sources of origin. The
most probable explanation is that the divergence-removing procedure affects the small-
momentum behavior, thus spoiling the asymptotic limit of interest. A careful reexamination
is therefore required and is currently work in progress. After the issue is fixed, we expect the
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proposed approach to play a central role in a complete categorization of possible nonthermal
fixed points into different universality classes. In addition, it can be seen as complementary
to other numerical methods such as, e.g., classical-statistical simulations.
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APPENDIX

4.A Galilean invariance of the nonrelativistic Bose gas

4.A.1 Covariant derivative

The action (4.3) enjoys the symmetry under Galilean transformations,

t→ t′ = t, x→ x′ = Rx+ vt,

ψ(x)→ ψ′(x′) = eiγ(x)ψ(x) , ψ∗(x)→ ψ∗′(x′) = e−iγ(x)ψ∗(x) ,
(4.A.1)

with
γ(x) = m

(
R−1v · x+ v2t

2

)
. (4.A.2)

In the density-phase representation the same transformation reads

n(x)→ n′(x′) = n(x) , θ(x)→ θ′(x′) = θ(x) + γ(x) . (4.A.3)

Using
∂t′ = ∂t −R−1v · ∇, ∇′ = R∇ (4.A.4)

we therefore find

∂tθ(x)→ ∂t′θ
′(x′) = ∂tθ(x)−R−1v · ∇θ(x)− 1

2
mv2 ,

∇θ(x)→ ∇′θ′(x′) = R∇θ(x) +mv .
(4.A.5)

Thus, the combination
Dtθ = ∂tθ −

1

2m
(∇θ)2 (4.A.6)

is Galilei-invariant.

4.A.2 Slavnov–Taylor identities for vertices

Let us also discuss how Galilei symmetry restricts the form of interaction terms of our EFT.
For simplicity, let’s consider the case R = I . Then, an infinitesimal Galilean boost acts on
the classical component of the field as

φ′
cl(t, x) = φcl(t, x−vt)+mv·x−

mv2t
2

= φcl(t, x)+mv·x−tv·∇φ(t, x)+O(v2), (4.A.7)

so that the generator of the boost is given by

Fcl[x;φ] = mv · x− tv · ∇φcl(t, x). (4.A.8)
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Likewise, for the quantum/response field,

Fq[x;φ] = −tv · ∇φq(t, x). (4.A.9)

The Slavnov–Taylor identity (3.104) associated with the Galilean symmetry therefore reads∫
x

{
[mv · x− tv · ∇ϕcl(x)] Γ(1)

cl (x)− tv · ∇ϕq(x) Γ
(1)
q (x)

}
= 0, (4.A.10)

Taking one derivative with respect to ϕcl and then one with respect to ϕq then yields∫
x

{
[mv · x− tv · ∇ϕcl(x)] Γ(3)

clclq(x, y, z)− tv · ∇δ(x− y) Γ
(2)
clq (x, z)

− tv · ∇δ(x− z) Γ(2)
qcl (x, y)− tv · ∇ϕq(x) Γ

(3)
qclq(x, y, z)

}
= 0. (4.A.11)

Evaluating at ϕcl = const, ϕq = 0 we end up with∫
x

mv · xΓ(3)
clclq(x, y, z) = −y

0v · ∇yΓ
(2)
clq (y, z)− z

0v · ∇zΓ
(2)
qcl (z, y) . (4.A.12)

Taking time-locality into account and with a slight abuse of notation we then obtain∫
x
mv · xΓ(3)

clclq(t; x, y, z) = −tv ·
[
∇yΓ

(2)
clq (t; y, z) +∇zΓ

(2)
qcl (t; z, y)

]
. (4.A.13)

Going to Fourier space and using that v is arbitrary we finally find

∂pΓ
(3)
clclq (t; p, q, r)

∣∣
p=0

= m−1t
[
qΓ(2)

clq (t; q, r) + rΓ(2)
qcl (t; q, r)

]
. (4.A.14)

Likewise, by taking one more ϕcl one may obtain

∂pΓ
(4)
clclclq (t; p, q, r, l)

∣∣
p=0

= m−1t
[
qΓ(3)

clclq(t; q, r, l) + rΓ(3)
clclq(t; r, q, l) + lΓ(3)

qclcl(t; l, q, r)
]
.

(4.A.15)
The t-factors here should be understood as anti-derivatives.

4.B Choice of units and fields redefinition

Consider the action (4.32). Rescaling the fields and choosing the units such that

t′ = t, x′ =
√
a0/b0 x ≡ c−1

0 x, ϕ′
cl =

(cd0a0/f0)
1/2

m
ϕcl, ϕ′

q =
(cd0a0f0)

1/2

m
ϕq

(4.B.1)
and omitting the primes one obtains

Γ[ϕcl, ϕq] =

∫
x,t0

{
1

2

[
∂tϕcl∂tϕq − tβ−1∇ϕcl∇ϕq

]
− gcl

4
∂tϕq (∇ϕcl)2 −

gcl
2
∂tϕcl∇ϕcl∇ϕq

+
g2cl
4

(∇ϕcl)3∇ϕq −
gq
16
∂tϕq (∇ϕq)2 +

gclgq
16
∇ϕcl (∇ϕq)3 + (qq− term)

}
, (4.B.2)
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with the effective coupling constants gcl = a0f
1/2
0 /(b0c

d/2
0 ), gq = gcl/f

2
0 . To close the

discussion, let us show that (4.B.1) leaves the q − q-component parameter-free. Indeed,
upon rescaling x′ = c−1

0 x one readily obtains

1

2

∫
t,t′,x

ϕq(t, x) Γ(2)
qq (t, t

′, x)ϕq(t′, x) =
cd0
2

∫
t,t′,x′

ϕq(t, c0x′) Γ(2)
qq (t, t

′, c0x′)ϕq(t′, c0x′).

(4.B.3)
Using eqs. (4.32) to (4.34) we find

Γ(2)
qq (t, t′, c0x) =

∫
t1

[
f(t, t1) Γ

(2)
clq (t1, t

′, c0x)− Γ
(2)
qcl (t, t1, c0x) f(t1, t

′)

]
=
a0f0
m2

Γ̄(2)
qq (t, t′, x) , (4.B.4)

where Γ̄(2)
qq is a parameter-free function. Therefore,

1

2

∫
t,t′,x

ϕq(t, x) Γ(2)
qq (t, t

′, x)ϕq(t′, x) =
a0f0c

d
0

2m2

∫
t,t′,x′

ϕq(t, c0x′) Γ̄(2)
qq (t, t

′, x′)ϕq(t′, c0x′).

(4.B.5)
Finally, defining ϕ′

q(t, x) = m−1(cd0a0f0)
1/2 ϕq(t, c0x), as we did in (4.B.1), we end up with

a parameter-free q− q-term.

4.C Diagrammatics

To better visualize contributions entering the kernels Ik,ab, it is convenient to come up with
a diagrammatic representation of G̃k, k∂G̃k, and Γ(n≥3)

k . In this work, we are going to adopt
the following notation for the (deformed) propagators and derivatives thereof,

t1 t2
p

= F̃k (t1, t2, p) , t1 t2

p
\ = k∂kF̃k (t1, t2, p) , (4.C.1a)

t1 t2
p

= G̃A
k (t1, t2, p) , t1 t2

p
\ = k∂kG̃

A
k (t1, t2, p) , (4.C.1b)

t1 t2
p

= G̃R
k (t1, t2, p) , t1 t2

p
\ = k∂kG̃

R
k (t1, t2, p) , (4.C.1c)
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as well as vertices,

p1, t1 p2, t2

p3, t3

= Γ
(3)
k,clclq (t1, p1, . . . , t3, p3) , (4.C.2a)

p1, t1 p2, t2

p3, t3

= Γ
(3)
k,qqq (t1, p1, . . . , t3, p3) , (4.C.2b)

p1, t1 p2, t2

p3, t3p4, t4

= Γ
(4)
k,qclclcl (t1, p1, . . . , t4, p4) , (4.C.2c)

p1, t1 p2, t2

p3, t3p4, t4

= Γ
(4)
k,clqqq (t1, p1, . . . , t4, p4) . (4.C.2d)

With this notation in mind, contributions to kernels Iqq and Iclq can be depicted as shown in
Fig. 4.14. Diagrams entering Ik,qcl can be obtained by mirroring those contributing to Ik,clq.

(I) \ (IIa) \ (IIb) \

(IIIa) \ (IIIb) \

(IV) \ (V) \ (VI) \

Figure 4.14. Diagrams contributing to Ik,qq (left) and Ik,clq (right). As argued in the main
text, the tadpole diagrams (IIIa) and (IIIb) vanish due to causal reasons.



Volume element 87

4.D Volume element

The volume element ddq /(2π)d in spherical coordinates,

q1 = q cos(χ1),

q2 = q sin(χ1) cos(χ2),

q3 = q sin(χ1) sin(χ2) cos(χ3),

...

qd−1 = q sin(χ1) · · · sin(χd−2) cos(χd−1),

qd = q sin(χ1) · · · sin(χd−2) sin(χd−1),

(4.D.1)

reads
ddq
(2π)d

= qd−1 dq
sind−2 χ1 sind−3 χ2 · · · sinχd−2 dχ1 · · · dχd−1

(2π)d
, (4.D.2)

with χ1, . . . , χd−2 ∈ [0, π] and χd−1 ∈ [0, 2π). A generic integrand will be a function of p,
q, and p · q. Due to rotational symmetry we can always choose p = (p, 0, 0, . . . , 0) such
that the integrand only depends on χ1. The remaining angular integration can be readily
performed resulting in a d-depending prefactor:

Cd ≡
1

(2π)d

∫ 2π

0

dχd−1

∫ π

0

dχd−2 sinχd−2 . . .

∫ π

0

dχ2 sind−3 χ2 =
2π

(2π)d

d−3∏
n=1

√
π Γ
(
n+1
2

)
Γ
(
n+2
2

)
=
π(d−3)/2

(2π)d−1

1

Γ
(
d−1
2

) =
1

2d−1π(d+1)/2

1

Γ
(
d−1
2

) =
Ωd−1

(2π)d
, (4.D.3)

which is nothing but the total (d − 1)-dimensional solid angle Ωd−1 divided by (2π)d. We
thus conclude∫
q
. . .→ Cd

∫ ∞

0

dq qd−1

∫ π

0

dχ1 sind−2 χ1 . . . = Cd

∫ ∞

0

dq qd−1

∫ 1

−1

dζ
(
1− ζ2

)(d−3)/2
. . .

(4.D.4)
Note that this result does not hold for d = 1 where the integration should be replaced by the
summation ζ = ±1. On the other hand, (4.D.4) is compatible with d = 2. Indeed, in that
case, ∫

d2q
(2π)2

f(q, q · ep) =
1

(2π)2

∫ ∞

0

dq q
∫ π

−π

dχ f(q, cosχ)

=
1

(2π)2

∫ ∞

0

dq q
∫ π

0

dχ f(q, cosχ) +
1

(2π)2

∫ ∞

0

dq q
∫ 0

−π

dχ f(q, cosχ)

=
1

(2π)2

∫ ∞

0

dq q
∫ π

0

dχ f(q, cosχ)− 1

(2π)2

∫ ∞

0

dq q
∫ 0

π

dχ f (q, cos (−χ))

=
2

(2π)2

∫ ∞

0

dq q
∫ π

0

dχ f(q, cosχ) = − 2

(2π)2

∫ ∞

0

dq q
∫ π

0

d cosχ
sinχ

f(q, cosχ)

=
2

(2π)2

∫ ∞

0

dq q
∫ 1

−1

dζ√
1− ζ2

f(q, ζ) . (4.D.5)
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4.E Numerical integrals

The ε-dependent parts in the dimensionless equations (4.63) come solely from the regu-
larization functions introduced in (4.46). Together with the momentum-volume prefactor
D(y, ζ) = (1− ζ2)(d−3)/2

yd/2−1, cf. (4.D.4), their combined effect can be written as

DF (x, y, ζ, ε) = −1

2
D(y, ζ)

[
PF (y)PF (u)− PF

(
y/ε2

)
PF

(
u/ε2

)]
,

D(nt)
ρ (x, y, ζ, ε) = D(y, ζ)

[
PF (y)Pρ (u)− PF

(
y/ε2

)
Pρ

(
u/ε2

)]
,

D(t)
ρ (y, ζ, ε) = D(y, ζ)

[
PF (y)− PF

(
y/ε2

)]
,

(4.E.6)

where u = x+ y + 2ζ
√
xy, see (4.61). Introducing the functions

L(nt)
ρ (. . .) =

[
∂η1 ρ̂ (η, η1, x) ρ̂ (η1, η2, u) F̂ (η1, η2, y) ∂η2 ρ̂ (η2, η

′, x) y
(
ζ
√
x+
√
y
)2

+ ∂η1 ρ̂ (η, η1, x) ρ̂ (η1, η2, u) ∂η2F̂ (η1, η2, y) ρ̂ (η2, η
′, x) ζ

√
xy (x+ y + 2ζ

√
xy)

+ ∂η1 ρ̂ (η, η1, x) ∂η2 ρ̂ (η1, η2, u) F̂ (η1, η2, y) ρ̂ (η2, η
′, x) ζy

√
x
(
ζ
√
x+
√
y
)

+ ρ̂ (η, η1, x) ∂η1 ρ̂ (η1, η2, u) F̂ (η1, η2, y) ∂η2 ρ̂ (η2, η
′, x) ζy

√
x
(
ζ
√
x+
√
y
)

+ ρ̂ (η, η1, x) ∂η1 ρ̂ (η1, η2, u) ∂η2F̂ (η1, η2, y) ρ̂ (η2, η
′, x) x

√
y
(√

x+ ζ
√
y
)

+ ρ̂ (η, η1, x) ∂η1∂η2 ρ̂ (η1, η2, u) F̂ (η1, η2, y) ρ̂ (η2, η
′, x) ζ2xy

+ ρ̂ (η, η1, x) ρ̂ (η1, η2, u) ∂η1F̂ (η1, η2, y) ∂η2 ρ̂ (η2, η
′, x)
√
xy
(
ζ
√
x+
√
y
) (√

x+ ζ
√
y
)

+ ρ̂ (η, η1, x) ρ̂ (η1, η2, u) ∂η1∂η2F̂ (η1, η2, y) ρ̂ (η2, η
′, x) x

(√
x+ ζ

√
y
)2

+ ρ̂ (η, η1, x) ∂η2 ρ̂ (η1, η2, u) ∂η1F̂ (η1, η2, y) ρ̂ (η2, η
′, x) ζx

√
y
(√

x+ ζ
√
y
) ]
, (4.E.7)

L(t)
ρ (. . .) = ρ̂ (η, η1, x) F̂ (η1, η1, y) ρ̂ (η1, η

′, x) xy (1 + 2ζ) , (4.E.8)

LF (. . .) =
[
∂η1 ρ̂ (η, η1, x) F̂ (η1, η2, u) F̂ (η1, η2, y) ∂η2 ρ̂ (η2, η

′, x) y
(
ζ
√
x+
√
y
)2

+ ∂η1 ρ̂ (η, η1, x) F̂ (η1, η2, u) ∂η2F̂ (η1, η2, y) ρ̂ (η2, η
′, x)
√
xy
(
ζ
√
x+
√
y
) (√

x+ ζ
√
y
)

+ ∂η1 ρ̂ (η, η1, x) ∂η2F̂ (η1, η2, u) F̂ (η1, η2, y) ρ̂ (η2, η
′, x) ζy

√
x
(
ζ
√
x+
√
y
)

+ ρ̂ (η, η1, x) ∂η1F̂ (η1, η2, u) F̂ (η1, η2, y) ∂η2 ρ̂ (η2, η
′, x) ζy

√
x
(
ζ
√
x+
√
y
)

+ ρ̂ (η, η1, x) ∂η1F̂ (η1, η2, u) ∂η2F̂ (η1, η2, y) ρ̂ (η2, η
′, x) x

√
y
(√

x+ ζ
√
y
)

+ ρ̂ (η, η1, x) ∂η1∂η2F̂ (η1, η2, u) F̂ (η1, η2, y) ρ̂ (η2, η
′, x) ζ2xy

+ ρ̂ (η, η1, x) F̂ (η1, η2, u) ∂η1F̂ (η1, η2, y) ∂η2 ρ̂ (η2, η
′, x)
√
xy
(
ζ
√
x+
√
y
) (√

x+ ζ
√
y
)

+ ρ̂ (η, η1, x) F̂ (η1, η2, u) ∂η1∂η2F̂ (η1, η2, y) ρ̂ (η2, η
′, x) x

(√
x+ ζ

√
y
)2

+ ρ̂ (η, η1, x) ∂η2F̂ (η1, η2, u) ∂η1F̂ (η1, η2, y) ρ̂ (η2, η
′, x) ζx

√
y
(√

x+ ζ
√
y
) ]
, (4.E.9)

with the dimensionless propagators

ρ̂ (η, η′, x) =
sin [ω(η + η′, x) (η − η′)]

ω(η + η′, x)
,

F̂ (η, η′, x) =
(η + η′)−γ

xκ/2
cos [ω(η + η′, x) (η − η′)] ,

(4.E.10)
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where ω(η + η′, x) = (η + η′)β−1 x1/2, the dimensionless equations (4.63) take the form
(4.75) and (4.76). All the derivatives in (4.E.7 – 4.E.9) are taken analytically by virtue of
the Symbolics.jl library.

4.F Combined (x, τ )-dependence of theQ-ratio and the di-
mensionless coupling constant λ

As discussed in the beginning of Sec. 4.4.4, despite having a problem with the residual x-
dependence, one could still try to extract the coupling (4.80) and the ‘Q-ratio’ (4.81), at least
for a fixed value of x. Indeed, while f̃ε, g̃Wε , and l̃Wε depend on x, their dependencies may
cancel each other resulting in x-independent quantities in the x→ 0 limit.

In Fig. 4.15, one can see the dependence of Q and λd on time τ for different values
of x (note the extended time window). From this plot it may seem as if the coupling con-
stant7 does not depend on x. This, however, can be readily explained by the fact that, for
chosen values of scaling exponents, the x-independent contribution g̃ε dominates over the
x-dependent l̃ε, cf. Fig. 4.9.

One could also imagine the existence of a constant region in the combined (τ, x)-plane.
If such region existed, it could give a hint on how to approach the desired suppressed limit.
In Figs. 4.16 and 4.17, we depict the full (τ, x)-dependence of f̃W

ε , g̃Wε , and l̃Wε as well as
of the of the coupling and the Q-ratio. Unfortunately, no constant region is found.

Finally, let us address the observed coupling’s time-dependence. In [64], it was proposed
that the nonthermal fixed point associated with the late-time dynamics of a multicomponent
Bose gas is Gaussian. The large-τ asymptotic behavior of the coupling λ is therefore of
great interest. Curiously, for a given choice of scaling exponents (κ = 3.9, γ = 0.5), the
coupling constant does not show a monotonic dependence on time, see Fig. 4.17. When
averaged over different values of x, the coupling rather first drops dramatically until slowly
rising again at later times, all the while remaining small (λ≪ 1) in the given time window,
see Fig. 4.18. At the moment, it is unclear whether the observed behavior is physical or not
and, if so, whether this behavior is expected to be shared by a proper scaling solution κ∗.

7Strictly speaking, for κ ̸= κ∗, the expression (4.80) cannot be identified with the effective dimensionless
coupling constant.
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Figure 4.15. The dimensionless scaling coupling (4.80) (left) and the ratio (4.81) (right) at
late times τ for fixed ω = 0, ε = 10−4, κ = 4.2, γ = 0.5 and different values of x in d = 3

spatial dimensions plotted in a log-log scale.

Figure 4.16. The dependence of g̃Wε (left), l̃Wε (middle), and f̃W
ε (right) on (τ, x) in d = 3

spatial dimensions at fixed ω = 0, ε = 10−4, κ = 3.9, and γ = 0.5 plotted in a log-log
scale. Top row: τ ∈ [6, 15]; bottom row: τ ∈ [60, 150]. In each case, x ∈ [10−4, 10−3]. The
dark spots on the f̃W

ε heatmap are due to numerical instabilities.
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Figure 4.17. The dependence of λ (left) andQε (right) on (τ, x) in d = 3 spatial dimensions
at fixed ω = 0, ε = 10−4, κ = 3.9, and γ = 0.5 plotted in a log-log scale. Top row:
τ ∈ [6, 15]; bottom row: τ ∈ [60, 150]. In each case, x ∈ [10−4, 10−3].

Figure 4.18. The dimensionless coupling λ as a function of τ in d = 3 spatial dimensions
at fixed ω = 0, ε = 10−4, κ = 3.9, γ = 0.5 plotted in a linear scale. The coupling was
averaged over different values of x, cf. Fig. 4.17, resulting in a statistical error depicted by
the confidence ribbon.





Chapter 5

Far-from-equilibrium states in
ultrarelativistic hadron-hadron collisions

Another relevant example of a quantum many-body system far from equilibrium can be
found on the opposite side of the energy spectrum: in ultrarelativistic heavy-ion collisions.
A complete understanding of thermalization process of such systems is still lacking and thus
remains an open problem. A significant progress has been made in two opposing limits. The
first one is the strong-coupling limit, which can be studied by means of dual descriptions
in supersymmetric Yang–Mills theories [156–160]. In this work, we instead focus on the
opposite (weak-coupling) limit, in particular on the aspects of universal scaling dynamics
observed for small couplings [82].

To set the scene, we first provide a basic introduction to hadron structure in the context
of high energy physics. We will then argue that at sufficiently high energies colliding nu-
clei can be described by a (semi)classical effective field theory, known as the color glass
condensate (CGC). Finally, we will discuss how a collision of two CGC Lorentz-contracted
sheets eventually leads to a formation of a far-from-equilibrium boost-invariant non-Abelian
plasma, whose dynamics can be described by means of perturbative kinetic theory, which
will be the subject of Ch. 6.

5.1 Parton model and the perturbative picture of hadron
structure

Our goal is to understand what kind of a nonequilibrium state is formed upon colliding two
hadrons at extremely high energies. Obviously, to that end, one first has to understand the
structure of a single ultrarelativistic hadron. In high energy physics, the way one probes
the internal structure of a hadron is by scattering some other particle off it. Consider, for
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q

X
p

k

k′

Figure 5.1. Kinematics of deep inelastic scattering.

instance, a scattering lh → lX of some lepton (say, an electron) with momentum k on a
hadron (for example, a proton) with momentum p, as depicted in Fig. 5.1. After interacting
by exchanging a virtual photon (or a Z boson) of transfer momentum q, the outgoing lepton
will have an altered momentum k′, while the target hadron may, in general, ‘shatter’ into
many new particles. The kinematics of this process, known as the deep inelastic scattering
(DIS), can be described using the standard Lorentz invariants:

Q2 = −q2 > 0, ν = p · q =M(E ′ − E),

x =
Q2

2ν
=

Q2

2M(E − E ′)
, 0 ≤ x ≤ 1,

y =
p · q
p · k

= 1− E ′/E, 0 ≤ y ≤ 1.

(5.1)

Here,M is the hadron mass and the energy variables E and E ′ refer to the target rest frame.
For an elastic scattering process, (p+ q)2 =M2 and E ′ = E such that x = 1 and y = 0.

The structure of a target (hadron) as ‘seen’ by the virtual photon is parameterized by
structure functions Fi(x,Q

2), which are defined via the lepton scattering cross sections as
[161]

d2σ
dxdy

=
8πα2ME

Q4

{[
1 + (1− y)2

2

]
2xF1(x,Q

2)

+ (1− y)
[
F2(x,Q

2)− 2xF1(x,Q
2)
]
− M

2E
xyF2(x,Q

2)

}
, (5.2)

for a charged lepton scattering in the limit where the weak sector can be ignored,Q2 < M2
Z .

In the Bjorken limit, the structure functions show an approximate scaling law [162]

Fi(x,Q
2)→ Fi(x), Q2, ν →∞, x fixed. (5.3)

This implies that the virtual exchange boson scatters off pointlike constituents, referred col-
lectively as partons. In the modern language of QCD, we can identify them with quarks.
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The parton model of deep inelastic scattering is most easily formulated in the infinite-
momentum frame (also known as the Breit frame), in which the hadron is moving very fast,
pµ ≈ (P, 0, 0, P ) with P ≫M . Suppose that, in this frame, the photon scatters off a quark
constituent that moves parallel with the hadron and carries a fraction ξ of its momentum,
i.e., pµq = ξpµ. From the momentum conservation, p′q = pq + q and thus

0 ≈ m2
q = (pq + q)2 = ξ2p2 + 2ξp · q + q2 ≈ 2ξp · q −Q2, (5.4)

which implies ξ ≈ x. Therefore, the variable x has a nice and simple interpretation in
the Breit frame: it is a fraction of the hadron’s total momentum carried by the parton in a
scattering characterized by the Bjorken variable of value x. From QED, the leading-order
spin-averaged differential cross section for lq → lq is given by

dσ̂
dQ2

=
2πα2e2q
Q4

[
1 + (1− y)2

]
→ d2σ̂

dxdQ2
=

4πα2

Q4

[
1 + (1− y)2

] 1
2
e2qδ(x− ξ). (5.5)

At the same time, neglectingM in (5.2) and using Q2 = 2MxyE we have

d2σ
dxdQ2

≈ 4πα2

Q4

{[
1 + (1− y)2

2

]
F1(x,Q

2) +
1− y
x

[
F2(x,Q

2)− 2xF1(x,Q
2)
]}

.

(5.6)

By comparing (5.5) with (5.6) we conclude that the structure functions for scattering off a
parton with momentum fraction ξ are given by

F̂2(x,Q
2) = xe2qδ(x− ξ) = 2xF̂1(x,Q

2). (5.7)

The actual structure functions, however, are not delta functions, but rather smooth distribu-
tions. This gives rise to a simple parton model:

• q(ξ,Q2) dξ represents the probability that a quark q carries momentum fraction [ξ, ξ+
dξ] of a total hadron;

• the virtual exchange boson scatters incoherently off the constituents.

The hadron structure functions are thus obtained by weighting the quark structure functions
with the parton distribution functions (PDFs) q:

F2(x,Q
2) = 2xF1(x,Q

2) =
∑
q

∫ 1

0

dξ q(ξ,Q2)xe2qδ(x− ξ) =
∑
q

xe2qq(x,Q
2), (5.8)

where the summation goes over possible flavors of (anti-)quarks. It can be shown that the
constraint 2xF1 = F2, known as the Callan–Cross relation [163], actually reflects the spin-
1/2 nature of quarks.
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Figure 5.2. Schematic depiction of factorization in hadron-hadron collisions.

Assuming there are no other constituents the integral
∑

q

∫ 1

0
dxxq(x) should be equal

to 1. In actuality, however, it is observed
∑

q

∫ 1

0
dxxq(x) < 1. The remaining momentum

then must be carried by some other, electroweak-neutral, constituents. From the modern
perspective of QCD, we immediately recognize in these constituents gluons, vector bosons
mediating the strong interaction, with their respective PDF usually denoted by g(x,Q2).

Though the above probabilistic picture of hadron internal structure has been formulated
from the perspective of DIS, it can be applied to the case of hadron-hadron collisions thanks
to the property of factorization of hard processes in QCD [164]. To sketch how it works,
consider a hadronic process h1h2 → kX schematically depicted in Fig. 5.2. Here, hi are
the initial hadrons, whereas k is some triggering particle or pair of particles specifying the
relevant momentum-transfer scaleQ, which is in general somewhat smaller than the center-
of-mass energy

√
s. For instance, it could be a W or a Z boson, some other hadron, a jet

of transverse momentum pT , etc. Finally, byX we understand a totally inclusive collection
of final states. Loosely speaking, factorization then states that one can write a total cross
section as

σ =
∑
i,j

∫
dx1 fi(x1, µ2)

∫
dx2 fj(x2, µ2) σ̂ij

(
x1x2s, αs(Q

2), Q2/µ2
)
, (5.9)

where µ is a factorization scale and σ̂ij is the partonic cross-section that can be computed in
perturbation theory, provided Q2 is large enough. Crucially, the PDFs entering (5.9) are the
same PDFs that we have just discussed in the context of deep inelastic scatterings. In other
words, parton densities are universal between different reactions. On a practical side, this
allows one to extract PDFs from, for example, DIS experiments, such as the ZEUS experi-
ment at HERA, and then use them as inputs in other setups. On a more conceptual level, it
tells us that we may adopt the same probabilistic picture of hadrons’ internal structure when
studying physics of, e.g., ultrarelativistic heavy-ion collisions.

The typical x-values relevant for latter processes are x1,2 ∝ Q/
√
s for central rapidi-

ties [165]. Importantly, note that for colliders with high center-of-mass energies
√
s, such

as RHIC or LHC, contributing partons correspond to small values of Bjorken x. For that
reason, one may often find in the literature identification of high-energy physics with the
so-called ‘small-x physics’. Therefore, in order to understand the initial state in, e.g., rel-



Parton model and the perturbative picture of hadron structure 97

Pgq(z)Pqq(z)

Pqg(z) Pgg(z)

z

1− z

z

1− z

z

1− z

z

1− z

Figure 5.3. Pictorial representation of the splitting functions Pij entering the DGLAP equa-
tions.

ativistic heavy-ion collisions, one has to understand how parton distributions functions be-
have as x→ 0. This regime, in whichQ is finite (and fixed), while x→ 0, is often referred
to as the Regge–Gribov limit.

Within the perturbative paradigm, the dependence of parton distribution functions fi
on their arguments x and Q2 is governed by two sets of integro-differential equations.
The dependence on Q2 (at fixed x) is given by the celebrated Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) equations [166–168]:

∂fi(x, µ
2)

∂ lnQ2
=
αs(Q

2)

2π

∑
j

∫ 1

x

dξ
ξ
Pij

(
x/ξ;αs(Q

2)
)
fj(ξ,Q

2) , (5.10)

where the splitting functions Pij admit expansion in the coupling constant, Pij(z;αs) =

P
(0)
ij (z)+ (αs/2π)P

(1)(z)+O(α2
s). Physically, (to leading order) Pij(z) can be understood

as a probability density of a parton j branching into a parton i with momentum fraction z
and another parton with momentum fraction 1 − z, see Fig. 5.3. The exact form of these
kernels is not important for the following discussion, so let us only mention that Pqg and Pgg

experience a singularity as z → 0 reflecting the fact that the low-x region is dominated by
gluons.

However, the DGLAP equations themselves do not allow us to study this regime. Firstly,
because they rather describe the evolution in Q2 direction. And secondly, because some of
the assumptions entering their derivation break down as x → 0. To see that, we recall
that, effectively, the DGLAP equations sum over leading powers of [αs lnQ2]n emerging
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from a multiparton emission in a region of phase space where the partons have strongly-
ordered transverse momenta, Q2 ≫ k2nT ≫ . . . k21T [161]. Such a resummation scheme
is appropriate when lnQ2 ≪ ln(1/x). As mentioned above, however, for collisions with
high center-of-mass energies, typical x-values are so small that the opposite limit lnQ2 ≪
ln(1/x) is usually more relevant. In this regime, one instead has to resum terms proportional
to αs ln(1/x). Such a resummation to all orders is accomplished by the Balitsky–Fadin–
Kuraev–Lipatov (BFKL) equation [169, 170],

∂φ(x, q2)
∂ ln(1/x)

=
αs(q2)Nc

π2

∫
d2kK(q, k)φ(x, k2), (5.11)

which is usually written in terms of the unintegrated gluon distribution defined as

xg(x,Q2) =

∫ Q2

d2kφ(x, k2). (5.12)

Similarly to the DGLAP case, the kernel K(q, k) can be computed order by order using
pertubration theory, given Q2 is still sufficiently large. To leading order,1 it is given by
[172]

K(q, k) = 1

(q− k)2
− 1

2

∫
d2p k2

p2(k− p)2
δ(k− q) . (5.13)

Neglecting scale-dependence of the running coupling, αs(q2) → α0, the leading-order
BFKL equation can be solved analytically yielding

φ(x,Q2) ∼ x−λ, λ =
4α0Nc

π
ln 2, (5.14)

which suggests that the gluon distribution experiences a power-law growth at small x and
can grow arbitrarily as x→ 0.

5.2 Saturation and color glass condensate

In the previous section, we have outlined the perturbative picture of hadron internal struc-
ture. In particular, we have seen how perturbative QCD predicts a rapid increase of the
parton distributions at small values of Bjorken x, cf. Fig. 5.4. Such an increase, however,
cannot go indefinitely. For example, on the basis of very general principles such as unitarity,
analyticity and crossing, it has been shown that the total cross-section for the strong interac-
tions cannot grow faster than ln2 s [173], whereas the BFKL solution implies a power-law
growth. It has been therefore realized since long time ago that at some point this rapid
growth has to be tamed [174]. Physically, the rapid growth at x→ 0 is due to the radiation
of small-x partons (mostly gluons and, to a lesser extent, qq̄-pairs emitted from gluons). In

1A nice pedagogical discussion of the next-to-leading results can be found in [171].
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Figure 5.4. Parton distribution functions of a proton at Q2 = 10GeV2 (left) and Q2 =

104GeV2 (right) computed to next-to-leading order in the strong coupling αs. Figure taken
from [183].

the BFKL formalism, the latter are assumed to be non-interacting, which is reflected by the
fact that the equation is linear. When the density of partons becomes too large, however, this
assumption no longer holds and one has to take into account gluon recombination effects.
At some point, this effect will balance the emission marking the saturation of gluons. On an
algebraic level, the interaction effects can be incorporated by adding appropriate nonlinear
terms to the BFKL equation emerging from resumming a certain class of diagrams. Among
such modified equations the most well-known are the Gribov–Levin–Ryskin–Mueller–Qiu
(GLR-MQ) [174, 175], the Balitsky–Kovchegov (BK) [176–178], and the Jalilian-Marian–
Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK) [172, 179–182] equations. Be-
hind these complicated nonlinear integro-differential equations, however, lies an appealing
(semi)classical effective field theory that we will discuss shortly.

We begin with a simple geometric argument that will give an estimate of where in the
(x,Q2)-space one might expect the saturation. The number of gluons (per unit of longitu-
dinal phase space) with transverse momenta ≤ Q2 is given by xg(x,Q2). Upon dividing
it by πR2, where R is the hadron radius, we obtain the respective density in the transverse
plane. Multiplying it by the typical gluon-gluon cross section σgg(Q2) ∼ αs(Q

2)/Q2 we
get the probability for gluons to interact with other gluons (geometrically, one can think of
“overlapping”). This probability becomes of order one for Q2 lower than the critical value

Q2
s(x) ∼ αs(Q

2
s)
xg(x,Q2

s)

R2
, (5.15)
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known as the saturation scale. For nuclei with the atomic numberA, we have g(x,Q2) ∝ A

and R ∝ A1/3 such that Q2
s ∼ A1/3. To estimate the x-dependence, we can make use of the

leading-order BFKL solution (5.14) to obtain

Q2
s(x,A) ∼ Aδx−λ, δ ≈ 1/3. (5.16)

Hence, for sufficiently large nuclei and/or high enough energies this dynamically generated
scale is hard,Q2

s ≫ Λ2
QCD. For LHC, for instance, estimates giveQs ∼ 2−3GeV for nuclei

[184, 185]. The saturation physics therefore operates well in the weak-coupling region,
αs(Q

2
s) ≪ 1. Nevertheless, this regime cannot be described by naive perturbation theory.

Indeed, at saturation, g(x,Q2
s) ∼ 1/αs, so propagators in the loops are amplified by 1/αs

hindering the expansion in αs. These large occupation numbers (corresponding to strong
classical fields A ∼ 1/g), however, suggest the use of (semi)classical methods.

As for any other effective theory, the next ingredient for a classical effective field theory
is the idea of separation of scales. To see this separation more clearly, let us again consider
a hadron in the Breit frame moving in the z direction. Due to the kinematics of the problem
it is suggestive to work using light-cone coordinates, x± = (x0 ± x3)/

√
2. As has been

established, the majority of partons have a very small fraction x of the total momentum.
There are, however, still a few constituents (mostly valence quarks) with a large fraction of
momentum x = O(1). Because of the time dilation, their dynamics is considerably slowed
down and they therefore appear static to the observer. The only relevant information about
these ‘fast’ partons is the color current they carry. This current is longitudinal2 and, since
the constituents are static, it does not depend on x+, which plays the role of time:

Jµ
a (x) = δµ+ρa(x

−, xT ) , (5.17)

with ρ being the spatial distribution of color charge, and for brevity we absorbed the
√
2

prefactor. By virtue of the uncertainty relation, ∆x∓ ∼ 1/p±, we deduce that, since p+ is
large, the support of the color charge density ρ is concentrated around x− = 0,3 an in the
literature one often considers the limiting case ρa(x−, xT ) = δ(x−)ρa(xT ). At the same time,
the dependence on xT is more complicated and reflects the distribution of the fast partons
on the sheet transverse to the propagation axis. As the peculiar arrangement of the color
charges is not known, the function ρ(x−, xT ) may be considered as a random variable with
a probability distributionW [ρ]. For observables that involve averaging over many hadronic
configurations (e.g., over many hadrons in a beam), the expectation value is obtained by

2Indeed, recall that for quarks J = (ρ, ρv). But in our case v3 ≈ 1, whereas v1,2 ≈ 0, so that the only
nonzero component is J+ ≈

√
2ρ.

3A similar argument may also be used to more carefully justify the slow dependence on x+ by using that
p− is small.
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taking the average:

⟨O⟩ =
∫
DρW [ρ]O[ρ] , (5.18)

where O[ρ] is the value of this observable computed for a given color density ρa.
The constituents with small Bjorken x (‘wee’ partons, as called by Feynman), on the

other hand, have a time evolution that cannot be neglected. Their dynamics has to be de-
scribed by the first-principle Yang-Mills action. The coupling between the ‘fast’ and the
‘slow’ modes can be approximated by a current term JµA

µ, known as eikonal approxima-
tion. The resulting effective action thus reads

Seff =

∫
d4x

(
−1

4
F a
µνF

aµν + JaµA
µ
a

)
, (5.19)

which goes by the name of the color glass condensate (CGC) model [186–188].
Note that in order for the produced small-x field configurations to be parametrically

large A ∼ 1/g, so should be the sources J [94]. With that in mind, let us make some simple
power counting. To that end, we first note that schematically the CGC Lagrangian has a
form

Leff ⊃ A2 + gA3 + g2A4 + JA. (5.20)

Consider now a simply connected diagramD with nE external legs (emitted wee partons), nI
internal lines4, nL loops, nJ sources, and n3 and n4 cubic and quartic vertices, respectively.
Using

nE + 2nI = nJ + 3n3 + 4n4 (5.21)

together with

nL = nI − n3 − n4 − nJ + 1, (5.22)

we find

D ∼ gn3+2n4JnJ = gnE+2(nL−1) (gJ)nJ . (5.23)

We observe that in the saturation regime, where J ∼ 1/g, the magnitude of the diagram does
not depend on the number of inserted currents. Therefore, computation of an observable at
a given order in αs requires resummation of all the diagrams obtained by inserting extra
sources to the relevant diagram.

The leading order (LO) in αs is, expectedly, achieved when nL = 0, i.e., at a tree-level,
which corresponds to solving the classical Yang-Mills equation,

(DµF
µν)a = Jν

a , (5.24)

4Note that the internal lines here correspond to bare Yang-Mills propagators and are thus not amplified by
α−1
s .
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that has to be accompanied by a retarded boundary condition limx0→−∞Aµ = 0. A conve-
nient choice of gauge for solving this equation turns out to be the covariant gauge ∂µAµ = 0,
in which it boils down to a simple Poisson equation [189]

∇2
TA

+
cov = −J+, A−

cov = Ai
cov = 0. (5.25)

On the other hand, we are eventually interested in the gluon distribution function, which
is related to the two-point function of gluon fields. However, the latter is not a gauge-
invariant object and one can show that the partonic interpretation of the propagator only
holds in the light-cone gauge A+ = 0 [190–192]. Therefore, to find the distribution, one
has to transform the solution of (5.25) to the light-cone gauge. This can be achieved by the
transformation

A+
LC(x

−, xT ) = V †(x−, xT )A+
cov(x

−, xT )V (x−, xT )−
i
g
V †(x−, xT )∂−V (x−, xT ) = 0 ,

A−
LC(x

−, xT ) = −
i
g
V †(x−, xT )∂+V (x−, xT ) = 0 , (5.26)

Ai
LC(x

−, xT ) =
i
g
V †(x−, xT )∂iV (x−, xT ) ,

where we have used ∂± = ∂∓ ≡ ∂/∂x∓ and ∂i = −∂i. We note that, thanks to the high-
energy kinematics, the gauge transformation did not generate anA−-component, so the only
non-vanishing part of the field in this gauge is its transverse components Ai, which take a
pure gauge form. Solving (5.26) we find

V (x−, xT ) = P exp

[
−ig

∫ x−

−∞
dy−A+

cov(y
−, xT )

]
, (5.27)

in which one immediately recognizes a Wilson line. Since A+(y−, xT ) is very localized
around y− = 0, the Wilson line’s exponential has a Θ(x−)-like discontinuity in the vicinity
of x− = 0. As the transverse componentAi is essentially a logarithmic derivative of V with
respect to xi, we conclude that

Ai
LC(x

−, xT ) ≈ Θ(x−)Ai
LC(x

− = +∞, xT ) ≡ Θ(x−)αi(xT ). (5.28)

One can further show that the two-point correlation function of the transverse components
in the light-cone gauge

φWW(x, q2) = 1

2π2

∫
d2xT d2yT eiq·(xT−yT )

〈
Tr
[
αi(xT )αi(yT )

]〉
, (5.29)

known as the Weizsäcker-Williams gluon distribution, corresponds to the unintegrated dis-
tribution (5.12) introduced above [189].5 Here, the trace goes over color indices and the
averaging is understood in the (5.18) sense.

5As will be explained at the end of this section, the x-dependence of φWW enters via the weight functional
W [ρ].
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The only ingredient left to be specified in order to compute (5.29) is the probability den-
sity W [ρ]. Note first that in general the division of modes into dynamical fields and those
that form static sources is arbitrary. The weight functional W [ρ] is therefore expected to
depend on a cutoff in rapidity ycut ≡ log(1/xcut) that separates the two types of degrees of
freedom. In the simplest approximation, one takes into account color charge of the valence
quarks only, corresponding to a relatively large value of the cutoff scale y0. As anything
but valence quarks is disregarded, quantum loop corrections are completely neglected in
this model. To still have a strong color source and operate with statistically large number of
constituents forming it, one then considers hadrons with large atomic number A ≫ 1. The
small-x wee gluons, having a large longitudinal coherence length, probe the whole nucleus
coherently in the longitudinal direction. On the other hand, in the transverse direction, a
typical probe area ST ∼ 1/Q2 is much smaller than the nucleon size since Q2 ≫ Λ2

QCD.
A wee gluon therefore interacts with a color contained in a tube of cross size ST passing
through a parametrically large number n ∼ A1/3 of nucleons in the longitudinal direction.
At each point in the transverse plane, the resulting charge comes from summation over color
charges of the individual partons, and thus differs from point to point and is random. On
average, this charge is zero since the nucleus is color-free as a whole and its charge is dis-
tributed evenly in the transverse direction. Furthermore, since the valence quarks come from
separate nucleons, they are expected to be uncorrelated with one another in the longitudinal
direction. As there are parametrically large number of them, the sum of their uncorrelated
charges is expected to be normally distributed due the central limit theorem. We therefore
conclude that the weight functional takes a simple Gaussian form:

Wy0 [ρ] = N exp
{
−1

2

∫
d2xT

∫ +∞

−∞
dx−

ρa(x
−, xT )ρa(x−, xT )
µ2(x−)

}
. (5.30)

Here, µ(x−) is some function characterizing color-charge fluctuations. Parametrically, it is
naturally closely related to the saturation scale: Q2

s ∼ αs

∫ +∞
−∞ dx− µ2(x−).

Thanks to its simple Gaussian form, the approximation (5.30), known as theMcLerran–
Venugopalan (MV) model [186–188], enables one to compute the gluon distribution even
without fully resorting to numerical methods, which was first done in [193]. In particular,
the limiting case of large and small qT = |qT | can be done analytically. For qT ≫ Qs, one re-
covers the perturbative Bremsstrahlungαs/q

2
T spectrum. For qT ≪ Qs, this rapid power-law

growth gets tamed and is replaced by a much milder logarithmic growth α−1
s log(Qs/qT ),

marking the saturation:

φWW(x, q2T ) ∼

α−1
s log(Qs/qT ) , qT ≪ Qs,

αsq
−2
T , qT ≫ Qs.

(5.31)

In Fig. 5.5, we schematically sketch the MV gluon distribution φ multiplied by the two-
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ΛQCD Qs

∼ 1/qT
∼ qT log (Qs/qT )

Figure 5.5. Schematic depiction of the phase-space distribution of gluons within the
McLerran–Venugopalan model.

dimensional phase-space factor qT . Note that the majority of gluons have a transverse mo-
mentum ∼ Qs.

As a final remark, let us briefly discuss the cutoff-dependence mentioned earlier. Going
beyond tree-level, it will explicitly enter in loop corrections as an upper limit in the integrals
over longitudinal momenta (modes with y > ycut are included via the source Jµ

a ). Suppose
we change this cutoff ycut → ycut + δy (equivalently, xcut → xcut − δx). It turns out that at
one loop, for a large class of observables, this leads to a linear dependence on δy:

δO[ρ] = δyHO[ρ] + ycut – independent terms, (5.32)

whereH is a universal (i.e., observable-independent) operator known as the JIMWLKHamil-
tonian [172, 179–182], which is self-adjoint:∫

Dρ (HO1[ρ])O2[ρ] =

∫
DρO1[ρ] (HO2[ρ]) . (5.33)

Furthermore, since the sources now include modes with rapidities in [ycut, ycut + δy], the
weight functional has to change as well: Wycut → Wycut+δy = Wycut + δWycut . On the
other hand, expectation values of observables should not depend on our choice of the cutoff.
Therefore,

⟨O⟩ =
∫
Dρ (Wy[ρ] + δWy[ρ]) (O[ρ] + δyHO[ρ])

= ⟨O⟩+
∫
DρO[ρ] (δyHWy[ρ] + δWy) +O

(
δy2
)
. (5.34)

where we have used (5.33) and dropped the ‘cut’ subscript for brevity. As have been already
mentioned, this result is universal for a large class of test operators, which implies that the
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bracket in the last line should vanish. Taking the δy → 0 limit we then obtain

∂yWy[ρ] = −HWy[ρ] , (5.35)

which is the aforementioned JIMWLK equation. Note that it is of Wilsonian-RG nature as
it describes how the effective theory changes upon iteratively integrating out high-energy
modes (gradually incorporating produced dynamical fields as sources for modes of smaller
Bjorken x), cf. Sec. 3.4.

The explicit form and a derivation of H can be found in, e.g., [194]. Schematically, it
can be written as

HWy =
1

2

δ

δρ
·
(
χ · δ

δρ
Wy

)
, (5.36)

where the kernel χ[ρ] is positive definite and can contain arbitrary powers of ρ. In other
words, the JIMWLKevolution is described by a functional Fokker–Planck equation. Though
it is extremely complicated, one can still make some simple observations. Recall that the
MV probability density (5.30) was Gaussian, with its variance directly related to the sat-
uration scale. Being of the Fokker-Planck type, the JIMWLK equation will change this
variance as y = log(1/x) increases. Hence, at next-to-leading order (NLO), the saturation
scaleQs, which at tree-level was constant, generates some x-dependence, cf. (5.16). Look-
ing at (5.31), we see then that in the saturation region the NLO solution experiences only a
logarithmic growth in x, as desired.

5.3 Glasma, instabilities, and overoccupied plasma

Let us finally move to collisions of two high-energy hadrons. Within the framework intro-
duced in the previous section, the projectiles can be considered as two CGC sheets propagat-
ing along the x+ = 0 and x− = 0 worldlines, respectively, until colliding at x+ = x− = 0.
Formulated in the algebraic language, to leading order in αs, one now has to solve the clas-
sical Yang-Mills equation in the presence of the current

Jµ
a (x) = δµ+ρ1,a(x

−, xT ) + δµ−ρ2,a(x
+, xT ) . (5.37)

Because of the causal structure of the problem, the (t, z)-plane can be separated into four
regions as depicted in Fig. 5.6. For each of the currents separately, we already know the
solution in the light-cone gaugeA± = 0 of the respective projectile. As has been mentioned
when discussing the transformation (5.26), due to the high-energy kinematics properties of
the problem, solutions to the equation associated with one of the nuclei will automatically
satisfy the light-cone gauge condition of the other one. Therefore, solutions in the regions
(I), (II), and (III), which are causally connected only to one of the nuclei, are already known.
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x−x− x+x+

x0 = tx0 = t

x3 = zx3 = z

(I)(I)

(II)(II) (III)(III)

(IV)(IV)
ρB(xT )δ(x

−)ρB(xT )δ(x
−)ρA(xT )δ(x

+)ρA(xT )δ(x
+)

Aµ = 0Aµ = 0

αiB = 1
igVB∂

iV †BαiB = 1
igVB∂

iV †B αiA = 1
igVA∂

iV †AαiA = 1
igVA∂

iV †A

Aµ(τ, xT )Aµ(τ, xT )

Figure 5.6. Spacetime structure of an ultrarelativistic hadron-hadron collision. The gray
hyperbolas in region (IV) are contour lines of constant proper time τ , whereas the straight
dashed lines are isolines of spacetime rapidity η, see (5.38) for the definitions. Figure taken
from [195].

The region (IV), however, is causally connected to both of the nuclei. Recall that in the
case of a single nucleus we were able to set both A+ and A− to zero by appealing to two
arguments. The first one (A+ = 0) was simply a gauge choice, while the other one was a
result of the current being independent of the light-cone time x+. This does no longer hold in
the case of two nuclei, where there is a dependence on both x+ and x−. Consequently, inside
the forward light cone, we may only set one of the components to zero. A common choice
is the Fock–Schwinger gauge Aτ ≡ (x−A+ + x+A−)/τ = 0, where we have introduced
the proper time τ ≡

√
t2 − z2 =

√
2x+x−. This gauge has a nice property of coinciding

with the two light-cone gauges A± = 0 on the x± = 0 surfaces, respectively. The third (in
addition to the transverse ones) nonvanishing component in this gauge is Aη, which will be
properly introduced shortly.

At extremely high collision energies, the solution is expected to be (longitudinally)
boost-invariant in the mid-rapidity region.6 Because of that, a convenient choice of co-

6The mid-rapidity (or central rapidity) region is the region of phase-space where y ≈ η ≈ 0 in the center-
of-mass frame. Usually, it is the region of most interest since particles there are either created during the
collision process or are already present in the beams but underwent several rescattering events. Generally,
it is also accompanied by two regions corresponding to the initial projectiles’ rapidities (y ≈ ±yP, for the
symmetric case), called the fragmentation regions. In the phase-space distribution plot, they typically lead
to having two peaks around y ≈ ±yP. Under longitudinal boosts, these peaks shift and are thus clearly not
boost-invariant. However, since they correspond mostly to particles that were not involved in any collisions,
one usually ignores them and concentrates on the mid-rapidity part.
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ordinates in the forward light cone is given by the aforementioned proper time τ and the
spacetime rapidity η:

τ ≡
√
t2 − z2 =

√
2x+x−, η ≡ 1

2
ln
(
t+ z

t− z

)
=

1

2
ln
(
x+/x−

)
. (5.38)

Being a four-vector, the gauge field A′µ after coordinate transformation can be expressed as

A′µ(x′) =
∂x′µ

∂xν
Aν(x), (5.39)

so that
Aτ =

∂τ

∂x+
A+ +

∂τ

∂x−
A− =

1

τ

(
x−A+ + x+A−) ,

Aη =
∂η

∂x+
A+ +

∂η

∂x−
A− =

1

τ 2
(
x−A+ − x+A−) , (5.40)

while the covariant components Aτ and Aη can be obtained using the metric tensor gµν =

diag(1,−1,−1,−τ 2).
To complete formulating the problem of describing the evolution inside the forward

light cone, one still has to specify the initial condition. Since we know the solution outside
the region (IV), the classical field configurations Ai and Aη immediately after the collision
(τ = 0+) can be determined by simply matching the solution in the regions (II) and (III) to
that in the forward light cone (IV). To achieve this, one employs the Ansatz [196],

Ai(τ, xT ) = Θ(−x+)Θ(x−)αi
1(xT ) + Θ(x+)Θ(−x−)αi

2(xT )

+ Θ(x+)Θ(x−)αi
3(τ, xT ) ,

Aη(τ, xT ) = Θ(x+)Θ(x−)β(τ, xT ) ,

(5.41)

which reflects the afore-outlined causal structure of the solution. Here, α1 and α2 are the
solutions associated each with their respective current ρ1,2. Upon inserting (5.41) into the
equations of motion a number of terms with δ-functions will rise from differentiating the
Heaviside functions. The matching condition is then achieved by requiring the coefficients
of such terms to vanish. The result reads

Ai(τ = 0+, xT ) = αi
3(τ = 0+, x) = αi

1(xT ) + αi
2(xT ) ,

Aη(τ = 0+, xT ) = β(τ = 0+, xT ) =
ig
2

[
αi
1(xT ), αi

2(xT )
]
,

(5.42)

together with ∂ταi
3(τ = 0+, xT ) = ∂τβ(τ = 0+, xT ) = 0. Here, [·, ·] denotes the usual

commutator, which, despiteα1,2 being classical objects, needs not to vanish due to thematrix
nature of the latter. Physically, such a field configuration results in nonzero longitudinal
chromo-electric and chromo-magentic fields in the laboratory frame [197]:

Ez(τ = 0+, xT ) = −ig
[
αi
1(xT ), αi

2(xT )
]
, Bz(τ = 0+, xT ) = igϵij

[
αi
1(xT ), αi

2(xT )
]
,

(5.43)
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Figure 5.7. Schematic depiction of the longitudinal chromo-electric and chromo-magnetic
fields forming the glasma. Figure taken from [198].

where ϵij is the Levi–Civita symbol. Following their formation, these boost-invariant fields
will be contained within color flux tubes of transverse size∼ Q−1

s (which is the only relevant
transverse scale) between the two separating nuclei, see Fig. 5.7 for a schematic depiction.

For τ > 0, the field equations describing the evolution of such glasma flux tubes can
only be solved numerically (by means of real-time lattice methods). In the remainder of this
section, we will briefly outline some key aspects of the early-time dynamics, which will set
the scene for the next chapter. For details, see [195, 199, 200] and references therein.

Initially, the fully longitudinal glasma fields (5.43) give rise to a very peculiar form of
the energy-momentum tensor, T µν = diag(ϵ, ϵ, ϵ,−ϵ), with ϵ = (E2

x + E2
y + E2

z + B2
x +

B2
y +B

2
z )/2. Importantly, the longitudinal pressure PL is negative. This leads to a period of

rapid relaxation, after which PL vanishes on a time scale τ ∼ Q−1
s , whereupon a description

in terms of on-shell gluons becomes applicable and the system settles into free-streaming
expansion characterized by PL ≈ 0, PT ≈ ϵ/2, and ϵ(τ) ∼ τ−1. At the leading (fully
classical) order, the system remains stuck in such a highly anisotropic state, which is clearly
in contrast to the experimentally observed (fast) isotropization.

One thus has to go beyond the LO approximation and introduce quantum fluctuations
(generated by the NLO corrections) to the initial state. These (boost non-invariant) fluc-
tuations have been observed to be unstable, experiencing a rapid exponential growth ∼
exp
(√

Qsτ
)
and thus becoming of order of the leading-order classical field on times scales

τ0 ∼ Q−1
s ln2(α−1

s ), after which the growth saturates. Since the initial seed for these fluctu-
ations is statistically distributed, they contribute to the classical field with an arbitrary phase
and, by the time τ0, a comparable amplitude. At this time scale, one thus expects a decay
of the classical field due to phase decoherence, ⟨A⟩ ∼ 0, in favor of large fluctuations,
⟨AA⟩ ∼ 1/g2.
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The corresponding picture is that of an overoccupied non-Abelian plasma. In accor-
dance with the above discussion, gluons constituting the plasma come from radiation of
the flux tubes. As the latter have a typical transverse size Q−1

s , it is reasonable to expect
that most of the radiated gluons will have pT ∼ Qs. Furthermore, due to the initial field’s
boost-invariance, the distribution at τ ∼ τ0 is still expected to be extremely anisotropic.
The degree of initial anisotropy as well as the magnitude of the initial overoccupancy are
sensitive to the value of the coupling constant and uncertainties associated with higher-order
corrections. To capture a wide range of different initial conditions, the phase-space distri-
bution characterizing the initial state of the strongly correlated non-Abelian plasma is often
modeled as [82, 201, 202]

f(τ0, pT , pz) =
n0

2g2
Θ

(
Qs −

√
p2T + (ξ0pz)

2

)
, (5.44)

with τ0 ∼ Q−1
s ln2(α−1

s ), the initial anisotropy parameter ξ0 > 1, and the initial overoc-
cupancy parameter typically n0 < 1, cf. also (3.17). Here, the distribution is assumed to
be averaged over spin and color degrees of freedom. Note that due to the momentum vol-
ume factor, most gluons indeed sit at pT ∼ Qs. For practical purposes (e.g., numerical
simulations), one often adopts a smoother, Gaussian-like family of initial conditions [14,
203].

This initial condition serves as a starting point for the ensuing dynamics at times τ > τ0.
Interestingly, the early-time evolution admits a dual description. On the one hand, due to
large occupancies, the system’s dynamics can be described within the classical statistical
approximation [204], which provides a powerful tool for first-principle numerical investi-
gations. For more analytically oriented purposes, however, a more convenient choice is the
kinetic-theory framework, which we will be the subject of the next chapter.





Chapter 6

Stability analysis of nonthermal fixed
points in longitudinally expanding
kinetic theory

We have seen in the previous chapter how collisions of ultrarelativistic hadrons lead to the
formation of an approximately boost-invariant overoccupied non-Abelian plasma. As dis-
cussed in Ch. 2, such extreme initial conditions are perfect candidates for a universal self-
similar dynamics. In the following, we will argue that a scaling dynamics characterized by
a nonthermal fixed point is indeed expected in such systems. Using the Hamiltonian formu-
lation of kinetic theory we will then perform a stability analysis and find the relaxation rate
to this nonthermal fixed point.

6.1 Boost-invariant kinetic theory

We begin by considering the structure of a kinetic equation in longitudinally boost-invariant
systems [205, 206]. In the absence of external forces, the Boltzmann equation reads(

∂

∂t
+ v · ∂

∂x

)
f = −C[f ] , (6.1)

where f(t, x, p) is the distribution function in phase space, v is the velocity associated with a
quasiparticle ofmomentum p, andC[f ] is the collision integral. For boost-invariant systems,
a convenient choice of coordinates [207] involves spacetime and momentum rapidities

η =
1

2
ln
(
t+ z

t− z

)
and y =

1

2
ln
(
E + pz
E − pz

)
= artanh(vz) , (6.2)

respectively, as well as the longitudinal proper time τ =
√
t2 − z2, cf. (5.38). The latter is

invariant under boosts in z direction, whereas both y and η transform additively. Therefore, a
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boost-invariant distribution function can only depend on its longitudinal arguments through
τ and y − η:

f(t, x, p)→ f(τ, x⊥, y − η, pT ). (6.3)

The derivatives entering the Boltzmann equation then take a form

∂f

∂t
=

(
t

τ

∂

∂τ
+

z

τ 2
∂

∂η

)
f,

∂f

∂z
=

(
−z
τ

∂

∂τ
− t

τ 2
∂

∂η

)
f, (6.4)

from which one readily obtains(
∂

∂t
+ vz

∂

∂z

)
f =

cosh(y − η)
cosh y

(
∂

∂τ
− tanh(y − η)

τ

∂

∂y

)
f, (6.5)

where we have used ∂ηf = −∂yf . Assuming transverse homogeneity and isotropy this is
precisely the left-hand side of the Boltzmann equation.

Furthermore, thanks to boost-invariance, it suffices to consider the system’s spacetime
evolution in the plane z = η = 0 only.1 The distribution at any z ̸= 0 can then be obtained
by applying the appropriate Lorentz boost. It is left to simplify the tanh(y)∂yf part. To that
end, we note that the derivative here is taken at fixed pT and that pz =

√
m2 + p2T sinh y.

Hence, tanh(y)∂yf = pz∂pzf and we end up with(
∂

∂τ
− pz

τ

∂

∂pz

)
f = −C[f ] , (6.6)

where for the following convenience f is now understood as a function of τ , pT , and pz.
Note that the second term on the left-hand side is absent in the standard Boltzmann equation
and is due to the longitudinal expansion (hence the name ‘longitudinally expanding kinetic
theory’).

6.2 Collision kernel and the Fokker-Planck approximation

To complete a formulation of the kinetic-theory problem, it is left to specify the collision ker-
nel C[f ]. At leading order in αs, this generally requires including 2↔ 2 elastic scatterings
and effective 1↔ 2 collinear2 radiation processes [65]:

C[f ] = C2↔2[f ] + C1↔2[f ] . (6.7)
1Note that, for z = 0, one has τ = t. Nevertheless, we will keep the notation τ for aesthetic reasons.
2For strictly massless quasiparticles, 1↔ 2 process are kinematically forbidden unless particles are exactly

collinear. In the case of small (effective) masses, the inelastic part is therefore dominated by nearly collinear
splittings/mergings. Depending on the formation time, additional soft collisions may appear during the split-
ting process disrupting the coherence between nearly collinear excitations (the Landau–Pomeranchuk–Migdal
(LPM) effect). In such cases, one has to resum 1 + n → 2 + n processes in order to get the correct 1 ↔ 2

splitting/merging rate. See [65, 208] for a more detailed discussion.
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Before we proceed, it is useful to first consider the stage that occurs before any scatter-
ing/splitting events take place. Known as the free-streaming regime, it can described by
the vanishing collision integrals: C2↔2[f ] = C1↔2[f ] = 0. Now, the initial spectrum
is dominated by hard gluons with pT ∼ Qs and pz ∼ Qs/ξ0 ≪ Qs. In the absence of
any interactions, the longitudinal momenta would be simply redshifted due to the expan-
sion

√
⟨p2z⟩ ∼ τ−1 (making the distribution even narrower), while the typical occupancy

and transverse momentum ⟨pT ⟩ would remain unchanged. However, once elastic collisions
start taking place, they begin to redistribute momenta, leading to broadening of the distribu-
tion and dropping of the typical occupancy of hard gluons. The initial stage can therefore be
understood as a competition between the two processes, suggesting to investigate the elastic
part C2↔2 more closely.

The scattering integral that describes 2↔ 2 elastic collisions can be schematically writ-
ten as

Cel[f ] =
1

2

∫
q,k,l

|M(p, q, k, l)|2

2ωp2ωq2ωk2ωl
(2π)4 δ (ωp + ωq − ωk − ωl) δ (p+ q− k− l)

× [(1 + fp) (1 + fq) fkfl − fpfq (1 + fk) (1 + fl)] . (6.8)

In vacuum, the scattering matrix of a gluon-on-gluon process is given by [161]

|M(p, q, k, l)|2 = 128π2α2
sN

2
c

(
3− tu

s2
− su

t2
− ts

u2

)
, (6.9)

where s, t, and u are the usual Mandelstam variables. For small momentum transfers, how-
ever, the matrix element (6.9) is in fact infrared divergent. One therefore has to take into
account medium effects, which regulate the divergence by generating an effective Debye
screening mass

m2
D(τ) ∼ αsNc

∫
d3p
(2π)3

f (τ, pT , pz)√
p2T + p2z

, (6.10)

Using (5.44) it is easy to see that the initial value of m2
D is suppressed by the factor f0/ξ0

as compared to the hard scale Qs. In addition, as a result of the longitudinal expansion, it
decreases during the free-streaming regime m2

D(τ) ∼ τ−1 (as we will argue, this result is
not affected by elastic collisions). Consequently, the screening mass is a much softer scale
as compared to Qs and, as will be verified a posteriori, even to the typical size of pz.

In other words, the elastic part of the collision integral is dominated by scatterings that
involve small momenta transfers of order mD. From the perspective of single quasiparti-
cle, this translates to a Brownian motion in momentum space. Therefore, as has been first
demonstrated in the classical work by Landau [209], in this limit the Boltzmann equation
takes a simplified Fokker–Planck form. For gluons, standard computations, which can be
found in, e.g., [210], then give

C2↔2[f ] ≈ −4πα2
sN

2
cL∇p

[
Ia∇pf + Ib

p
|p|
f(1 + f)

]
, (6.11)
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where

Ia[f ] =

∫
d3p
(2π)3

f(τ, pT , pz) [1 + f(τ, pT , pz)] , Ib[f ] = 2

∫
d3p
(2π)3

f(τ, pT , pz)√
p2T + p2z

, (6.12)

and
L = log pmax/pmin (6.13)

is the Coulomb logarithm. Here, pmax and pmin can be understood as the maximum and min-
imum allowed momentum transfers, respectively. Note that the UV cutoff was not required
in the original scattering integral, but was provided naturally by a limited support of the
distributions. A natural choice is thus p2min ∼ m2

D and p2max ∼ ⟨p2T ⟩.
Finally, in the highly anisotropic limit, the leading-order contribution is given by the

term with the highest derivative in pz:

C2↔2[f ] ≈ −q̂∂2pzf, (6.14)

where the momentum diffusion parameter q̂ reads

q̂(τ) ≈ 4πα2
sN

2
cL
∫

d3p
(2π)d

f 2 (τ, pz, pT ) , (6.15)

in the overoccupied limit f ≫ 1.
The physical picture behind (6.15) is simple: the longitudinal momentum diffuses as

⟨p2z⟩ ∼ q̂τ , while ⟨pT ⟩ remains essentially unaffected since the size of a typical ‘kick’ mD

is too small as compared to the characteristic transverse scale Qs. The diffusion coefficient
can be estimated as q̂ ∼ α2

sn
2
h/(Q

2
s

√
⟨p2z⟩), where nh is the hard-gluon number density. Due

to the number-conserving nature of the Fokker–Planck kernel, the latter would be constant
in time if there was no expansion. The longitudinal expansion, however, implies that nh ∼
Q2

s/(αsτ). Putting everything together we thus conclude

⟨pT ⟩ ∼ Qs ∼ const., ⟨p2z⟩ ∼ Q2
s/(Qsτ)

2/3. (6.16)

Furthermore, usingQ2
s/(αsτ) ∼ nh ∼ fhQ

2
s

√
⟨p2z⟩ andm2

D ∼ αsnh/Qs one readily obtains

fh ∼ α−1
s /(Qsτ)

2/3, m2
D ∼ Qs/τ. (6.17)

Note thatmD ≪ pz since Qsτ ≫ 1, justifying the adopted Fokker-Planck picture.
In the above discussion, we have completely neglected soft collinear splittings, without

providing any justification. In reality, one can show that, due to the collinear enhancement,
inelastic processes are of the same order as the elastic scatterings. However, their primary
impact is a production of soft gluons. On the other hand, initially, both the screening mass,
the particle number, and the energy are dominated by hard gluons, so their behavior at this
stage, which we have just considered, is not affected by soft partons.
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This picture starts breaking down once the typical hard-gluon occupancy becomes of
order one, which happens at Qsτ ∼ α

−3/2
s . At this point, soft gluons’ contribution start

overcoming the screeningmassmD and one can no longer ignore their role in thermalization.
We close with a remark that the above considerations outline, in fact, only the first phase of
a more general ‘bottom-up’ thermalization scenario, which was proposed by Baier, Mueller,
Schiff, and Son (BMSS) as a possible description for the equilibration of an overoccupied
non-Abelian plasma in the limit of extremely weak couplings. In this work, however, we
will concentrate on the first stage only.

6.3 Scaling and prescaling

In the language of scaling dynamics, the behavior (6.16) and (6.17) during the first stage of
bottom-up can be understood as a nonthermal fixed point solution,

f (τ, pT , pz)
sclaing
= τ αfS

(
τ βpT , τ

γpz
)
, (6.18)

with the scaling exponents αBMSS = −2/3, βBMSS = 0, γBMSS = 1/3. In a variant of bottom-
up including the effects of plasma instabilities [211], the exponents are slightly different
and expected to be αBD = −3/4, βBD = 0, γBD = 1/4. While exact values of the scaling
exponents are not completely settled3, the existence of such a universal scaling attractor is
well established and has been observed also numerically using classical-statistical lattice
simulations [81, 82] as well as effective kinetic theory [14].

On the other hand, not much is known about how the system evolves to such a self-
similar regime. In [13] (in the context of ultracold atomic systems) and [14], it was proposed
that already before achieving fully developed scaling the system may exhibit a dramatic re-
duction in complexity such that its dynamics can be described by a few slowly evolving
quantities. In particular, numerically solving the leading-order QCD kinetic theory [65] it
was observed that much before the scaling with universal exponents is established, the evo-
lution is already governed by the fixed-point scaling function with time-dependent scaling
exponents [14]. Such a regime, coined prescaling, is characterized by a distribution function
evolving according to

f (τ, pT , pz)
presclaing
= τ α(τ)fS

(
τ β(τ)pT , τ

γ(τ)pz
)
, (6.19)

with non-universal time-dependent exponents α(τ), β(τ), and γ(τ). One can therefore re-
gard prescaling as a partial fixed point at which the scaling function fS has already reached

3In particular, it is still unclear which of the scenarios [212] and [211] is realized. Whereas lattice classical-
statistical simulations seem to favor the original bottom-up prediction [82], kinetic results were found to be
equally close to both of the predictions [14]. In each case, neither scenario can be excluded as both lie within
the confidence interval.
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its fixed-point form, whereas the scaling exponents α, β, and γ still deviate from their
asymptotic values. In the original work, such a description in terms of a small number of
slowly evolving degrees of freedomwas compared to the conventional hydrodynamics [14],
with the key difference that in this case, instead of a local equilibrium with slowly varying
temperature, density, etc., one has a scaling solution with slowly varying exponents.

In the remainder of this chapter, we are going to derive approximate equations that de-
scribe the dynamics of scaling exponents in longitudinally expanding kinetic theory with a
Fokker-Planck collision kernel discussed in the previous section. We will also derive the
stability equations for scaling exponents, which can be interpreted as relaxation equations to
a nonthermal fixed point and demonstrate for the first time that the nonthermal fixed point
is stable under small perturbations.

6.4 Hamiltonian formulation of kinetic theory

In order to derive equations governing the prescaling dynamics, we are going to employ the
Hamiltonian formulation of kinetic theory [202, 213, 214], the key points of which we will
briefly summarize in this section.

6.4.1 Moment equations

Our goal is to recast the problem into an (infinite) set of ordinary differential equations for
quantities that characterize the distribution f . While this choice is not unique, inspired by
the original work [14], we pick moments of the occupation number f ,

nn,m(τ) ≡
∫

ddp
(2π)d

p2nz p
m
T f (τ, pz, pT ) , (6.20)

for this purpose. Although for a general collision integral the expression∫
ddp
(2π)d

p2nz p
m
T C[f ] (τ, pz, pT ) (6.21)

does not have a simple form in terms of the moments nn,m, in this work, we are going to
focus on the kernel (6.15), for which a nonlinearity in f enters only through the parameter
q̂, which allows to reformulate the problem in the form

∂log τnn,m = −Hn,m;n′,m′nn′,m′ , (6.22)

with the ‘Hamiltonian’H given by

Hn,n;n′,m′ = [(2n+ 1)δn,n′ − q2n(2n− 1)δn−1,n′ ] δm,m′ . (6.23)
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Here, for further convenience we have also introduced q ≡ τ q̂. Note that the Hamiltonian
(6.23) has a simple block diagonal structure.

Adopting Dirac notation we rewrite the equation (6.22) in a more convenient manner:

∂y |ψ(y)⟩ = −Ĥ (q(y)) |ψ(y)⟩ , y ≡ log τ/τ0, (6.24)

with
nn,m ≡ ⟨n,m|ψ⟩ , Hn,m;n′m′ ≡

〈
n,m

∣∣∣Ĥ∣∣∣n′,m′
〉
, (6.25)

where the inner product is given by l2 (Z≥0 × Z≥0) and {|n,m⟩ ≡ |n⟩ ⊗ |m⟩} span the
respective natural basis,

|0, 0⟩ =


1

0

0
...

⊗

1

0

0
...

 , |1, 0⟩ =


0

1

0
...

⊗

1

0

0
...

 , . . . (6.26)

Equation (6.24) with the Hamiltonian (6.23) will be the subject of discussion in the remain-
ing text.

6.4.2 Adiabatic approximation

One notes that Ĥ depends on y only through the parameter q(y). This immediately sug-
gests applying the well-known adiabatic approximation from quantum mechanics. In con-
trast to quantum mechanics (of closed systems), however, the operator Ĥ is not necessarily
(anti-)Hermitian and hence the method requires some modifications. A particularly conve-
nient generalization to the case of non-Hermitian yet diagonalizable Hamiltonians, which
we summarize below, was developed in [215].

The key idea is instead of the original ‘wave function’ |ψ(y)⟩ to consider the ‘equivalent
solution’

|χ(y)⟩ ≡ U (q(y))−1 |ψ(y)⟩ (6.27)

where U is a transformation that diagonalizes Ĥ at each instance y,

U(q)−1Ĥ(q)U(q) = diag (λ1(q), λ2(q), . . .) ≡ Ĥd(q). (6.28)

For example, in the standard basis {|k⟩} this transformation reads

U(q) =
∑
k

|vk(q)⟩ ⟨k| , Ĥ(q) |vk(q)⟩ = λk(q) |vk(q)⟩ . (6.29)

Now, one may easily check that |χ(y)⟩ satisfies the equation that is similar to (6.24),

∂y |χ(y)⟩ = −Ĥe(q(y)) |χ(y)⟩ , (6.30)
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but with the modified Hamiltonian

Ĥe(q) = Ĥd(q) + U(q)−1∂yU(q) . (6.31)

At this point, we split the second term into diagonal and off-diagonal parts and introduce

Ĥ0(q) = Ĥd(q) + diagonal part of
[
U(q)−1∂yU(q)

]
(6.32)

and
V̂ (q) = off-diagonal part of

[
U(q)−1∂yU(q)

]
, (6.33)

so that
Ĥe(q) = Ĥ0(q) + V̂ (q). (6.34)

One can already guess that the diagonal part Ĥ0(q) governs adiabatic element of the evolu-
tion, whereas the off-diagonal piece V̂ (q) gives rise to non-adiabatic transitions between the
quasi-energy levels. Furthermore, since V̂ (q) vanishes when there is no time-dependence,
we anticipate that one can treat V̂ (q) as a perturbation if q(y) depends on y slowly enough.
We will therefore look for solutions in the form

|χ(y)⟩ =
∞∑
l=0

∣∣χ(l)(y)
〉
. (6.35)

Here, the functions χ(l) can be found iteratively order by order as

∂y
∣∣χ(0)(y)

〉
= −Ĥ0(q(y))

∣∣χ(0)(y)
〉
, (6.36a)

∂y
∣∣χ(l)(y)

〉
= −Ĥ0(q(y))

∣∣χ(l)(y)
〉
− V̂ (q)

∣∣χ(l−1)(y)
〉
, (6.36b)

where l ≥ 1. The procedure is initiated with the zeroth order solution, which is given by∣∣χ(0)(y)
〉
= exp

[
−
∫ y

0

dz Ĥ0(q(z))

]
|χ(0)⟩ , (6.37)

with |χ(0)⟩ ≡ U(q(0))−1 |ψ(0)⟩. Since the expression for
∣∣χ(0)

〉
involves the evolution

operator of a diagonal part of the Hamiltonian Ĥ0, it is convenient to work in the basis of
its eigenvectors. We can choose them to be

|0⟩ =


1

0

0
...

 , |1⟩ =


0

1

0
...

 , . . . . (6.38)

The corresponding eigenvalues read ϵn = λn + ∂yγn, with γn being the non-Hermitian
generalization of the Berry phase,

γn(y) =

∫ y

0

dz ⟨n|U(q(z))−1∂zU(q(z)) |n⟩ . (6.39)
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Expanding the l-th order solution in this basis as

∣∣χ(l)(y)
〉
=
∑
n

C(l)
n (y) exp

[
−
∫ y

0

dz ϵn(q(z))
]
|n⟩ (6.40)

and substituting it into (6.36) we obtain, for l ≥ 1,∑
m

∂yC
(l)
m (y) exp

[
−
∫ y

0

dz ϵm(q(z))
]
|m⟩

−
∑
m

C(l)
m (y) ϵm(y) exp

[
−
∫ y

0

dz ϵm(q(z))
]
|m⟩

=−
∑
m

C(l)
m (y) ϵm(q(y)) exp

[
−
∫ y

0

dz ϵm(q(z))
]
|m⟩

−
∑
m

C(l−1)
m (y) exp

[
−
∫ y

0

dz ϵm(q(z))
]
V̂ (q(y)) |m⟩ , (6.41)

where we have used Ĥ0 |m⟩ = ϵm |m⟩. First, we notice that the last term on the left-hand
side cancels the first term on the right-hand side. Multiplying both sides by ⟨n| and using
the orthogonality condition ⟨n|m⟩ = δmn we then readily get

∂yC
(l)
n (y) = −

∑
m

Vnm(y) exp
[
−
∫ y

0

ds ωnm(s)

]
C(l−1)

m (y), (6.42)

with
ωnm(y) ≡ ϵm(q(y))− ϵn(q(y)) (6.43)

and
Vnm(y) ≡ ⟨n| V̂ (q(y)) |m⟩ . (6.44)

We thus conclude

C(l)
n (y) = −

∑
m

∫ y

0

dz Vnm(z) exp
[
−
∫ z

0

ds ωnm(s)

]
C(l−1)

m (z) , (6.45a)

C(0)
n (y) = C(0)

n = ⟨n|χ(0)⟩ =
〈
n
∣∣U (q(0))−1

∣∣ψ(0)〉 , (6.45b)

which closes the construction. As a closing side remark, one can prove that there is also no
ambiguity regarding the choice of the instantaneous eigenfunctions |vk(q)⟩. In other words,∣∣ψ(l)

〉
are invariant under reparameterizations

|vk(y)⟩ → eϕk(y) |vk(y)⟩ (6.46)

at each order of perturbation theory.
Now that we have outlined the general framework, let us go back to the specific case

of the Fokker-Planck collision kernel (6.23), for which one has to double the number of
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indices: |n⟩ → |n,m⟩, cf. (6.26). Simple computations yield (see App. 6.A)

Unm,kl(q) =


(
n

k

)
(2n− 1)!!

(2k − 1)!!
qn−kδml, n ≥ k,

0, otherwise,

(6.47)

with

U(q)−1 = U(−q) , (6.48)

and

ϵnm(q) = 2n+ 1, Vnm,kl(q) = ∂yqn (2n− 1) δn,k+1δml. (6.49)

Knowing U−1 one may also express zeroth-order coefficients C(0)
nm in terms of initial mo-

ments of the distribution:

C(0)
nm =

〈
n,m

∣∣U (q(0))−1
∣∣ψ(0)〉 =∑

k,l

〈
n,m

∣∣U (q(0))−1
∣∣k, l〉 〈k, l ∣∣ψ(0)〉

=
n∑

k=0

(
n

k

)
(2n− 1)!!

(2k − 1)!!
(−q(τ0))n−k nk,m(τ0). (6.50)

6.5 Prescaling regime

Weare now ready to study the time-dependent scaling exponents (prescaling) in the adiabatic
approximation of the Hamiltonian formalism. To make analytical progress, we will define
a small expansion parameter and will investigate the scaling exponents’ behavior at leading
and next-to-leading orders.

First, consider the l-th order contribution to the (n,m)-th moment of the distribution
function:

〈
n,m

∣∣ψ(l)(y)
〉
=
∑
kp

C
(l)
kp (y) e

−(2k+1)y ⟨n,m|U(q) |k, p⟩

=
n∑

k=0

(
n

k

)
(2n− 1)!!

(2k − 1)!!
C

(l)
km (y) e(n−3k−1)y q̂n−k. (6.51)

Here, we have used (6.47) to get the second line. For the perturbation (6.49) the iterative
relation (6.45) takes a very simple form:

C
(l)
km(y) = −

∑
pr

∫ y

0

dz Vkm,pr(z) exp
[
−
∫ z

0

ds ωkm,pr(s)

]
C(l−1)

pr (z)

= −k(2k − 1)

∫ y

0

dz ∂zq (z) e2zC(l−1)
k−1m(z) . (6.52)
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Upon repeating the procedure (6.52) l times one readily obtains

C
(l)
km(y) = C

(0)
k−lm(−1)

l k!

(k − l)!
(2k − 1)!!

(2k − 2l − 1)!!

×
∫ y

0

dz1
∫ z1

0

dz2 . . .
∫ zl−1

0

dzl V(z1)V(z2) . . .V(zl) , (6.53)

with C(l>k)
km ≡ 0 and V(z) ≡ exp(2z) ∂zq(z). We now recall that∫ y

0

dz1
∫ z1

0

dz2 . . .
∫ zl−1

0

dzl V(z1)V(z2) . . .V(zl)

=

∫ y

0

dz1
∫ z1

0

dz2 . . .
∫ zl−1

0

dzl T {V(z1)V(z2) . . .V(zl)}

=
1

l!

∫ y

0

dz1
∫ y

0

dz2 . . .
∫ y

0

dzl T {V(z1)V(z2) . . .V(zl)} , (6.54)

where T is a time-ordering operator. Since V(zi) are ordinary numbers, the time-ordering
operator drops out and we are left with

C
(l)
km(τ) = (−1)lC(0)

k−lm

(
k

l

)
(2k − 1)!!

(2k − 2l − 1)!!

[
v(τ)

∆(τ)

]l
, (6.55)

where we went back to τ = τ0 exp(y) (setting also τ0 = 1 for brevity). Here, we have also
introduced the functions

v(τ) =
1

τ 3q̂(τ)

∫ τ

1

dτ ′ (τ ′)2
∂q(τ ′)

∂τ ′
=

1

τ 3q̂(τ)

∫ τ

1

dτ ′ (τ ′)2 q̂(τ ′)
[
1 +

∂ log q̂(τ ′)
∂ log τ ′

]
(6.56)

and
∆(τ) =

1

τ 3q̂(τ)
, (6.57)

which will later serve as an expansion parameter. Putting everything together we end up
with 〈

n,m
∣∣ψ(l)(τ)

〉
= (2n− 1)!!n!τn−1 [q̂(τ)]n [−v(τ)]l

×
n∑

k=l

C
(0)
k−lm

l!(k − l)!(n− k)!(2k − 2l − 1)!!
[∆(τ)]k−l . (6.58)

6.5.1 Perturbative expansion

To go further, we need to truncate the series (6.58). To do so, let us first estimate the large-
time behavior of the quantities entering the expansion (6.58). Near the fixed point, q̂ ∼
τ 2α∗−2β∗−γ∗ implying the large-time behavior

∆(τ ≫ 1) ∼ τ−2α∗+2β∗+γ∗−3. (6.59)
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Hence, if 2α∗ − 2β∗ − γ∗ + 3 > 0, we expect ∆(τ) to decay at large times τ and therefore
may use it as a small parameter, at least when the scaling exponents are not too far off their
asymptotic values. Note that this condition holds both for the bottom-up [212] and for the
modified [211] scaling solutions. On contrary, for v the same analysis results in

v(τ ≫ 1) ∼ const. (6.60)

One may even easily estimate the asymptotic value as

v(τ →∞) =
1 + 2α∗ − 2β∗ − γ∗
3 + 2α∗ − 2β∗ − γ∗

. (6.61)

We thus conclude that the k-th term in
〈
n,m

∣∣ψ(l)(τ)
〉
at large times scales as〈

n,m
∣∣ψ(l)(τ ≫ 1)

〉
k-th term ∼ τn−1q̂n∆k−l, n ≥ k ≥ l, (6.62)

with ∆(τ) playing a role of the small parameter. The leading order (LO) contribution to〈
n,m

∣∣ψ(l)(y)
〉
is then given by the l-th term in (6.58),〈

n,m
∣∣ψ(l)(τ)

〉
LO ∼ τn−1q̂n, n ≥ l, (6.63)

the next-to-leading (NLO) contribution is given by the (l + 1)-st term,〈
n,m

∣∣ψ(l)(τ)
〉
NLO ∼ τn−1q̂n∆ , n ≥ l + 1, (6.64)

and so forth. Importantly, this behavior is independent of l, which alludes to a possible need
of resummation of all the terms of the same kind:

⟨n,m|ψ(τ)⟩ =
n∑

l=0

〈
n,m

∣∣ψ(l)(τ)
〉
l-th term︸ ︷︷ ︸

LO ⇐⇒ O(∆0)

+
n−1∑
l=0

〈
n,m

∣∣ψ(l)(τ)
〉
(l+1)-st term︸ ︷︷ ︸

NLO ⇐⇒ O(∆1)

+ . . . , (6.65)

see Fig. 6.1 for visualization and more details.
At this point, we are finally in a position to derive equations that govern the prescal-

ing dynamics at next-to-leading order. According to the above discussion, at this level of
approximation, the (n,m)-th moment of the distribution takes the form

⟨n,m|ψ(τ)⟩NLO = (2n− 1)!!τn−1q̂(τ)n

{
C

(0)
0m

n∑
l=0

(
n

l

)
[−v(τ)]l

+ C
(0)
1mn∆(τ)

n−1∑
l=0

(
n− 1

l

)
[−v(τ)]l

}
. (6.66)

Recognizing the binomial expansion we readily obtain

⟨n,m|ψ(τ)⟩NLO = anmτ
n−1q̂(τ)n [1− v(τ)]n

{
1 + bm

n∆(τ)

1− v(τ)

}
, (6.67)

with anm = C
(0)
0m(2n− 1)!! and bm = C

(0)
1m/C

(0)
0m.
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Figure 6.1. Schematic depiction of the resummation scheme. At any order l of perturbation
theory the leading-order (blue) and the next-to-leading-order (red) contributions to ⟨n,m|ψ⟩
are given by the l-th and (l + 1)-st term in the expansion (6.58), respectively. In both cases
the resulting behavior does not depend on the order l, cf. (6.63) and (6.64), so that one has
to take all the orders of perturbation theory into account. Figure taken from [216].

6.5.2 Fixed-point equations

Up until this point, we have not assumed any particular ansatz for the time evolution of mo-
ments nn,m of the distribution function. If the prescaling assumption (6.19) holds, however,
we can recast the equations for the moments in terms of time-dependent scaling exponents.
Following the original work [14], in order to reflect instantaneous scaling properties we
redefine the exponents in (6.19) as

τα(τ) → exp
[∫ τ

1

dτ ′

τ ′
α (τ ′)

]
, (6.68)

which for constant α reduces to the power law τα. The rate of change of a particular moment
nn,m, as well as of the momentum diffusion parameter q̂, is given by a linear combination
of scaling exponents:4

∂ lognn,m(τ)

∂ log τ
= α(τ)− (m+ 2) β(τ)− (2n+ 1) γ(τ) , (6.69a)

∂ log q̂(τ)
∂ log τ

= 2α(τ)− 2β(τ)− γ(τ) . (6.69b)

4Note that in general the Coulomb logarithm (6.13) also depends on time as L ∼ log
(〈
p2T
〉
/m2

D

)
, which

would lead to corrections to (6.69b). However, this time-dependence is expected to be only logarithmic during
the (pre)scaling regime. For that reason, in the following, we will assume L to be constant. In a similar recent
study [217], the authors took this time-dependence into account and demonstrated that it leads to a small shift
in the resulting scaling exponents.
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This also implies

∂v(τ)

∂ log τ
= [1 + 2α(τ)− 2β(τ)− γ(τ)] [1− v(τ)]− 2v(τ) , (6.70a)

∂ log∆(τ)

∂ log τ
= −3− 2α(τ) + 2β(τ) + γ(τ) . (6.70b)

Taking then the log of both sides of (6.67) and after that the derivative with respect to log τ
we end up with

α− (m+ 2) β − (2n+ 1) γ = n− 1 + n (2α− 2β − γ) + n
2v

1− v

− n (1 + 2α− 2β − γ) + ∂

∂ log τ
log
(
1 + bm

n∆

1− v

)
. (6.71)

Since the NLO approximation is O(∆), we have to expand also the log term on the right-
hand side to first order in∆ to be consistent. After some simple algebra, one then eventually
arrives at

α− 2β − γ + 1−mβ − 2n

[
γ +

v

1− v
− bm∆

(1− v)2

]
= 0 . (6.72)

First, we observe that in order for this equation to hold for any n andm (as it should during
prescaling), one has to impose

α(τ)− 2β(τ)− γ(τ) + 1 = 0 . (6.73)

One recognizes in (6.73) the scaling relation that follows from conservation of the total parti-
cle number [82]. This reflects the particle-number-conserving nature of the elastic collision
kernel. It is then suggestive to also demand that the term containing m and the term con-
taining n should individually vanish identically, too. This would result in another constraint

β(τ) = 0 , (6.74)

which together with (6.73) indicates energy conservation [82]. The remaining equation then
reads

γ +
v

1− v
=

bm∆

(1− v)2
. (6.75)

For this condition to hold bm has to bem-independent. Since

bm =
C

(0)
1m

C
(0)
0m

= 1− q(τ0)
n1m(τ0)

n0m(τ0)
, (6.76)

see (6.50), the latter holds as long as n1m(τ0)/n0m(τ0) does not depend on m. An impor-
tant class of distributions for which this condition is always satisfied is given by separable
distributions, i.e., f(τ0, pT , pz) = f1(τ0, pT ) f2(τ0, pz). Let us note that initial conditions of
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Figure 6.2. The flow diagram of (6.79). A single fixed point (1/3,−1/2) corresponds to
the ‘bottom-up’ scaling [212]. Figure taken from [216].

this kind were employed in the work [14], in which prescaling with time-dependent scaling
exponents was originally observed.

We have already derived the equation (6.70a) governing the dynamics of v during prescal-
ing. To obtain a similar equation for the remaining scaling exponent γ, we first take onemore
logarithmic derivative of both sides of (6.75):

γ̇ + v̇/(1− v)2

γ + v/(1− v)
=
∂ log∆
∂ log τ

+
2v̇

1− v
, (6.77)

where Ȯ ≡ ∂log τO. Finally, using (6.70a) and (6.70b) and imposing the constraints (6.73)
and (6.74) one ends up with the system of differential equations:

κ̇ = B (κ) , (6.78)

where we have introduced κ = (γ, v) and

Bγ(κ) = −
v2 + 2v − 1− (1− v)2 γ2 + 4 (1− v) γ

(1− v)2
, (6.79a)

Bv(κ) = γ − 1− (γ + 1) v . (6.79b)

The above equations resemble flow equations describing a running of couplings in the con-
text of renormalization group flow, cf. (3.128). The flow diagram of (6.79) is depicted in
Fig. 6.2.
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Scaling is achieved when the flow reaches a fixed point

B (κ∗)
scaling
= 0. (6.80)

Using (6.79) one recognizes the standard bottom-up scaling exponents, α∗ = −2/3, β∗ =

0, γ∗ = 1/3, v∗ = −1/2, cf. (6.61), as a stable fixed point of the flow equations (6.78).
Indeed, using the standard notation δκ ≡ κ− κ∗ one has

δκ̇
bottom-up

=

(
−2 0

3/2 −4/3

)
δκ+O

(
δκ2i
)
. (6.81)

The corresponding characteristic polynomial reads (λ+ 2) (λ+ 4/3) resulting in two (sim-
ple) eigenvaluesλ1 = −2, λ2 = −4/3, with the respective eigenvectorsh1 = (−4/9, 1)T ,
h2 = (0, 1)T .

The general solution near the fixed point is therefore given by

δκ = K1τ
λ1h1 +K2τ

λ2h2, (6.82)

or explicitly,
δγ(τ) = −4

9
K1τ

−2, δv(τ) = K1τ
−2 +K2τ

−4/3 , (6.83)

which describes evolution in the vicinity of the bottom-up attractor.

6.6 Conclusions

In this work, we studied the self-similar evolution phenomena in Fokker-Planck type kinetic
theory. Using the Hamiltonian formalism of kinetic theory and adiabatic approximation we
were able to derive the flow equations of the time-dependent scaling exponents. The fixed
point of scaling exponents for the Fokker-Planck kinetic theory coincides with the scaling
exponents characterizing the early stage of the bottom-up thermalization scenario [212].

Working at next-to-leading order in the small expansion parameter, we found the re-
laxation rate for scaling exponents to the fixed point and demonstrated its stability. This
analysis lays ground for the study of scaling phenomena in more complex systems, such as
full QCD kinetic theory.
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APPENDIX

6.A Computation of U , Ĥ0, and V̂

6.A.1 Solving the eigenproblem

To find a transformation U that diagonalizes the matrix (6.23), one shall solve the corre-
sponding eigenproblem.

Ĥ(q) |vk,l⟩ = λk,l |vk,l⟩ . (6.A.1)

Here, the subscript enumerates eigenvalues and eigenvectors. Since Ĥ has a block diagonal
structure, it obviously suffices to study only one block as generalization to the full case is
straightforward. In Dirac notation,∑

n′

〈
n
∣∣∣Ĥ(q)

∣∣∣n′
〉
⟨n′|vk⟩ = λk ⟨n|vk⟩ , (6.A.2)

with
⟨n| Ĥ(q) |n′⟩ = (2n+ 1) δn,n′ − q 2n (2n− 1) δn−1,n′ . (6.A.3)

Since Ĥ −λÎ is bidiagonal and determinant of a bidiagonal matrix is equal to product of its
diagonal elements, the characteristic equation simply reads∏

n≥0

(2k + 1− λ) = 0, (6.A.4)

from which we easily deduce
λk = 2k + 1. (6.A.5)

Plugging this into (6.A.2) yields the recursion relation

⟨n− 1|vk⟩ =
n− k

qn(2n− 1)
⟨n|vk⟩ , n ≥ 1. (6.A.6)

One can verify that ⟨n < k|vk⟩ = 0. It is then suggestive to set ⟨k|vk⟩ = 1 and compute the
remaining components of each eigenvector ascending with

⟨n|vk⟩ = q
n(2n− 1)

n− k
⟨n− 1|vk⟩ , n > k. (6.A.7)

Hence,

⟨n|vk⟩ =
n∏

p>k

p

p− k
(2p− 1) q =

(
n

k

)
(2n− 1)!!

(2k − 1)!!
qn−k , n > k. (6.A.8)

Here, we have used
n∏

p>k

p

p− k
=

(k + 1) · (k + 2) · . . . · n
1 · 2 · . . . · (n− k)

=
n!

k!(n− k)!
=

(
n

k

)
(6.A.9)
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and
n∏

p>k

(2p− 1) =

∏n
p=1(2p− 1)∏k
p=1(2p− 1)

=
(2n− 1)!!

(2k − 1)!!
, (6.A.10)

with the standard convention (−1)!! = 1. We therefore conclude

Unm(q) =


(
n

m

)
(2n− 1)!!

(2m− 1)!!
qn−m, n ≥ m,

0, otherwise.

(6.A.11)

6.A.2 Finding U(q)−1

For brevity, we are going to temporarily denote the entries of U(q) and U(q)−1 by anm and
bnm, respectively. Let us prove that

U(q)−1 = U(−q) ⇐⇒ bnm = (−1)n−manm. (6.A.12)

We are going to do so by induction. First, we note that since U(q) is lower triangular,
U(q)−1 is also lower triangular. The diagonal elements of a product are then just a product
of diagonal elements, which implies 1 = annbnn = bnn. The second row yields, on top of
that, one nontrivial condition:

0 = a10b00 + a11b10 = a10 + b10 ⇒ b10 = −a10. (6.A.13)

Now that we have already showed the base case, it is only left to show that if bkn =

(−1)n−kakn for k < m, then bmn = (−1)n−mamn. In general, the m-th row results in
m− 1 nontrivial conditions of the form

m∑
k=m−l

amkbkm−l = 0, l = 1, . . . ,m, (6.A.14)

from which it follows

bmm−l = −
m−1∑

k=m−l

amkbkm−l = −
m−1∑

k=m−l

(−1)k−m+lamkakm−l, (6.A.15)

where we have used that, by assumption, bkn = (−1)n−kakn for k < m. Now we plug in
the expression for amn to get

bmm−l = −
m−1∑

k=m−l

(−1)k−m+l m!

k!(m− k)!
k!

(m− l)!(k −m+ l)!

× (2m− 1)!!

(2k − 1)!!

(2k − 1)!!

(2m− 2l − 1)!!
qm−kqk−m+l

r=k−m+l
= ql

(2m− 1)!!

(2m− 2l − 1)!!

m!

(m− l)!

l−1∑
r=0

(−1)r+1

(l − r)!r!
. (6.A.16)
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It remains to show that the last sum is equal to (−1)l/l!. Indeed,

l−1∑
r=0

(−1)r+1

(l − r)!r!
= − 1

l!

l−1∑
r=0

(−1)r
(
l

r

)
=

(−1)l

l!
, (6.A.17)

where we have used the identity

k∑
r=0

(−1)r
(
n

r

)
= (−1)k

(
n− 1

k

)
. (6.A.18)

Plugging this into (6.A.16) we finally get

bmm−l =

(
m

l

)
(2m− 1)!!

(2m− 2l − 1)!!
(−q)l = (U(−q))mm−l , (6.A.19)

which closes the proof.

6.A.3 Computing Ĥ0 and V̂

Finally, let us compute Ĥ0 and V̂ . To that end, we first take the derivative of U(q) using
(6.A.11):

U̇nm(q) =


(
n

m

)
(2n− 1)!!

(2m− 1)!!
(n−m) qn−m−1q̇, n > m,

0 , otherwise.

(6.A.20)

Since U̇(q) is again lower triangular and in addition its diagonal elements are all zero and
U(q)−1 is lower triangular, too, the product of two, U(q)−1U̇(q), will be lower triangular
with zero diagonal elements as well. Hence,

[
U(q)−1U̇(q)

]
nm

= 0 for n ≤ m. To get the
remaining entries, we simply multiply the two matrices:

[
U(q)−1U̇(q)

]
nm

= q̇

n∑
k=m+1

(
n

k

)(
k

m

)
(2n− 1)!!

(2k − 1)!!

(2k − 1)!!

(2m− 1)!!
(k −m) (−1)n−k qn−m−1

= q̇ (−q)n−m−1 (m+ 1)
(2n− 1)!!

(2m− 1)!!

n∑
k=m+1

(−1)k−m−1

(
n

k

)(
k

m+ 1

)

= q̇ (−q)n−m−1 (m+ 1)
(2n− 1)!!

(2m− 1)!!
δn,m+1

= q̇ (m+ 1)
(2m+ 1)!!

(2m− 1)!!
δn,m+1 = q̇n (2n− 1) δn,m+1, (6.A.21)

where we have used the identity

n∑
k=m

(−1)k−m

(
k

m

)(
n

k

)
= δmn. (6.A.22)





Chapter 7

General conclusion

In this work, we investigated universal far-from-equilibrium scaling dynamics in two dif-
ferent systems, using two different methods, concentrating on two different aspects.

The first part of this thesis was dedicated to universal dynamics happening exactly at a
nonthermal fixed point, taking an ultracold atomic system as an example. Based on gen-
eral concepts of the renormalization group framework, in which scaling solutions can be
understood as fixed points of the RG flow, we developed an alternative approach to sys-
tematically obtain scaling solutions associated with nonthermal fixed points. To achieve
that, we first employed a convenient parameterization for correlation functions near a fixed
point as a sum of a full (scaling) part and a deviation δZ from it. Following the analogy
to the usual RG approach to critical phenomena, in which information about the universal
scaling properties is encoded in the behavior of such deviations, we subsequently derived
fixed-point equations for δZ. We then demonstrated that the asymptotics of δZ provide a
set of equations for scaling exponents characterizing a given nonthermal fixed point. We
have further shown how the fixed-point equations can be greatly simplified in this asym-
potic limit of interest. Using physical considerations we were then able to narrow down the
number of unknowns in order to close the system of equations, which we thereafter solved
numerically. Apart from the momentum-dependence in the regulator-dominated regime, the
numerical data shows the expected behavior, indicating that the proposed method can be
used to search for and classify possible universal scaling solutions in far-from-equilibrium
many-body systems once the momentum-dependence issue, which we discussed in detail in
Sec. 4.4.4, is fixed. We expect that the latter can be related to the divergence-removing pro-
cedure developed in Sec. 4.4.2. A careful reexamination is therefore required and is work
in progress. After the problem is resolved, this approach is expected to pave the way for
a complete categorization of possible far-from-equilibrium scaling solutions into different
universality classes based on scale-invariance principles.

In the second half, the center of our attention shifted toward high-energy systems and
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phenomena preceding the final scaling limit. According to the famous bottom-up thermal-
ization scenario, one expects emergence of the universal self-similar dynamics during early
stages of the evolution in a longitudinally expanding overoccupied non-Abelian plasma.
Using the Hamiltonian formulation of kinetic theory we were able to shed some light on
how the system approaches such an attractor and, importantly, its stability properties under
small perturbations. We showed that the bottom-up nonthermal fixed point is stable (within
the Fokker–Planck approximation) and computed the associated relaxation rates.

There are many directions in which one can go within each of the problems separately.
For example, for the RG part, an accessible scheme for numerically solving the fixed-point
equations beyond the first iteration would be very welcome. In addition, one could improve
the truncation scheme (e.g., by going past classical vertices), study more involved scaling
forms, or perhaps work directly with the ‘fundamental’ bosonic degrees of freedom instead
of the effective ones. Likewise, a straightforward improvement in the prescaling project
would be to go beyond the simple Fokker–Planck description of a non-Abelian plasma.
Particularly appealing sounds the idea of including inelastic collisions in some approximate
form, to see whether an additional fixed point (corresponding to the second stage of bottom-
up thermalization) emerges and if the two fixed points could be connected by a (modified)
prescaling regime. On a more fundamental level, the question of universality of the relax-
ation exponents is of great interest.

Perhaps, an even more intriguing prospect is the idea of combining the projects. For
instance, an immediate question is whether the scaling dynamics during the first stage of
bottom-up thermalization could be obtained using the functional renormalization group ap-
proach developed for an ultracold Bose gas. Conversely, one could try applying the Hamil-
tonian kinetic formalism to study stability properties of nonthermal fixed points in ultracold
atomic systems. In [13], a different type of prescaling regime was observed, in which cer-
tain ‘moments of the distribution’ had already behaved as if they were at a nonthermal fixed
point, whereas others still deviated from the fixed-point scaling. One may naturally ask if
the Hamiltonian approach to kinetic theory can be applied to study partial fixed points of
such kind as well. This question is directly related to the possibility of recasting a kinetic
equation into a set of moment equations. While the general case looks hopeless, one can
still try to consider a class of relatively simple collision integrals and assume a simplified
scaling form. For example, in [217], the authors demonstrated that the scaling function of
a nonthermal fixed point characterized by the Fokker–Planck collision kernel is Gaussian.
While such a particularly simple structure has to be attributed to the diffusive nature of the
collision integral, it suggests that, perhaps, a relatively small number of independent mo-
ments characterizing the distribution could suffice to observe (approximate) partial fixed
points.



Notations and conventions

Units

Throughout the whole thesis, unless fundamental physical constants are written explicitly,
we assume natural (Planck) units implying ħ = c = kB = 1.

Spacetime conventions

In this work, spatial variables are denoted by bold letters x and their co- and contravariant
components by Latin indices, xi or xi. Regular letters are reserved to indicate a collection
of both the spatial and the corresponding temporal coordinates: x = (x0, x). We adopt
the (−, . . . ,−,+) metric convention such that the product of two (d + 1)-vectors, x =

(x0, x1, . . . , xd) ≡ (x0, x) and y = (y0, y1, . . . , yd) ≡ (y0, y), is given by x ·y = x0y0−x ·y.

Fourier transform

We define the Fourier transform as

F [f ](p) ≡ f̃(p) =

∫
dd+1

(2π)d+1
e−ip·xf(x) , F−1[f̃ ](x) ≡ f(x) =

∫
dd+1x eip·xf̃(p) .

(7.1)
Whenever there is no risk of confusion, the tilde on the Fourier transform may be omitted.

Integrals

The following short-hand notation for integrals in real and Fourier spaces is often employed:∫
x

=

∫
dd+1x ,

∫
q

=

∫
dd+1q

(2π)d+1
, (7.2)

and likewise for an integration over spatial variables (x or p) only. The notation for integrals
over Schwinger-Keldysh contour is shortened as∫

C
dx0

∫
ddx =

∫
x,C
. (7.3)
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For the case of Keldysh-rotated variables, where the integration goes from t0 to +∞, we
adopt ∫ +∞

t0

dx0
∫

ddx =

∫
x,t0

. (7.4)

Convolution

We use the symbol ◦ to denote the convolution operation of two functions:

(A ◦B) (x1, x2) =

∫
y

A(x1, y)B(y, x2) . (7.5)

Depending on the context, the integration may go either over all the spacetime arguments
or over the temporal coordinate only.

DeWitt notation

Throughout this thesis, we occasionally employ the short-hand DeWitt notation, in which
spacetime arguments and internal indices aremerged into a singlemulti-index covering both:
φa(x) = φa. The combined integration/summation over spacetime coordinates/internal
field indices can then be written as a scalar product:∑

a

∫
dd+1xφa(x)χa(x) =

∑
a

φaχa = φ · χ. (7.6)
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