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Abstract
Photons emitted in heavy-ion collisions are an important probe to study the quark–
gluon plasma. In this thesis, the standard reconstruction of photon conversions into
electron–positron pairs in the ALICE experiment using mainly the Time Projection
Chamber (TPC) is expanded by using the Transition Radiation Detector (TRD).
Because of the material budget in front and within the TRD, many conversions
take place in its vicinity. To reconstruct these conversions, a stand-alone track re-
construction was implemented. The photon reconstruction was also made possible
by a newly developed kinematic fit that uses automatic differentiation. This offers
improved parameter estimation compared to other kinematic reconstruction meth-
ods. Using simulated and real proton–lead collision data at center-of-mass energies
per nucleon–nucleon pair of

√
sNN = 5.02 TeV, the functionality of the approach

is proven by reconstructing neutral pions in the decay channel π0 → γγ via the
photon conversion method. By reconstructing both photons in the TRD, as well
as using a mixed mode with one photon in the TRD and one photon in the TPC,
the neutral pion statistics could be improved by about 75% compared to using only
photons in the TPC. The photons reconstructed in the TRD could be important
for LHC Run 3, as the new continuous readout may cause difficulties for photon
reconstruction in the TPC.
In addition, an outlook is given on the detection of other interactions in the material
with the TRD using graph neural networks. In particular, it is shown that the TRD
can be used to search for sexaquarks and to identify inelastic interactions of light
antinuclei.





Zusammenfassung
Bei Schwerionenkollisionen emittierte Photonen sind eine wichtige Probe, um das
Quark-Gluon-Plasma zu untersuchen. In dieser Dissertation wird die Standard-
rekonstruktion von Photonkonversionen in Elektron-Positron-Paare im ALICE-Ex-
periment mittels Zeitprojektionskammer (TPC) um eine Rekonstruktion mittels des
Übergangsstrahlungsdetektors (TRD) erweitert. Aufgrund des vorhandenen Mate-
rials finden viele Konversionen in der unmittelbaren Umgebung des TRDs statt.
Um diese Photonen zu rekonstruieren, wurde eine unabhängige Spurrekonstruktion
implementiert. Ermöglicht wurde die Photonrekonstruktion zudem durch einen neu
entwickelten kinematischen Fit, der sich des Verfahrens des automatischen Differen-
zierens bedient. Dieser bietet im Vergleich zu anderen kinematischen Rekonstruk-
tionen eine verbesserte Parameterschätzung. Anhand von simulierten und echten
Proton-Blei-Kollisionsdaten bei einer Schwerpunktsenergie pro Nukleon-Nukleon-
Paar von

√
sNN = 5.02 TeV wird die Funktionalität durch eine Rekonstruktion neu-

traler Pionen im Zerfallskanal π0 → γγ mittels Photonkonversionsmethode gezeigt.
Durch die Rekonstruktionen von beiden Photonen im TRD, als auch mittels eines
gemischten Modus mit TRD und TPC, konnte die Statistik der neutralen Pionen
um 75% gegenüber einer reinen TPC-Rekonstruktion erhöht werden. Die im TRD
rekonstruierten Photonen könnten im LHC Run 3 von besonderer Bedeutung sein,
da das kontinuierliche Auslesen der TPC Schwierigkeiten bei der Photonrekonstruk-
tion verursachen könnte.
Zudem wird ein Ausblick auf den Nachweis anderer Interaktionen im Material mit
dem TRD durch Graph Neural Networks gegeben. Insbesondere wird gezeigt, dass
mit dem TRD Sexaquarks gesucht werden können und sich unelastische Interaktio-
nen von leichten Antikernen identifizieren lassen.
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1 Introduction

Among the four large experiments at CERN’s Large Hadron Collider (LHC) [1], A
Large Ion Collider Experiment (ALICE) [2] is the dedicated heavy-ion experiment.
The main research interest of ALICE is the state of strongly interacting matter at a
high energy density, the quark–gluon plasma (QGP). This state of matter is created
via high energy nucleus–nucleus collisions. An insight into the dynamics of these
collisions is provided by the emerging particles. To detect them, a detector system
is provided that is capable of delivering track finding and parameter estimation in a
high multiplicity environment especially in the MeV/c to GeV/c transverse momen-
tum range and also particle identification. An important component of this detector
system is the Transition Radiation Detector (TRD) [3], which delivers electron trig-
gering and identification capabilities and also contributes to the full tracking and
calibration of the central barrel.

So-called direct photons give us an undisturbed insight into the quark–gluon plasma.
Direct photons are defined as those that do not originate from particle decays.
Besides using calorimeters, these are reconstructed using the Photon Conversion
Method (PCM) via electron–positron pairs which originate from photon conversions
in the detector material. Compared to the calorimeter measurements, the photon
conversion method provides a higher energy resolution in the region of interest, i.e.
also in the region 1 . pT . 3 GeV/c, in which thermal photons are expected to give
a significant contribution [4]. A huge statistics is needed for this analysis since the
background from the two-photon decays of neutral pions and η mesons is large and
the reconstruction efficiency via the photon conversion method relatively low.

The TRD, which is located at a radial distance from the beamline of about 3 m, con-
tains a material budget with a mean radiation length of 〈X/X0〉 ≈ 25%. In addition
there are also mechanical structures with a significant material budget right in front
of the TRD. In front of the TPC, the mean radiation length of the material budget is
below 15%. Naturally, this leads to a high conversion probability and thus to many
signals in the TRD from the electron–positron pairs created in photon conversions.
A detection of these conversions can increase the total photon efficiency. It also
serves as a cross-check, and it provides a natural insight into the distribution of the
material. The material distribution is also relevant for analyses that use the time-of-
flight measurement from behind the TRD. Furthermore, the recent upgrades of the
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1 Introduction

ALICE Time Projection Chamber (TPC) [5] with continuous readout deliver uncer-
tainties for reconstruction capabilities in the future. A clear assignment of the TPC
tracks to certain events is not possible anymore, which enhances the combinatorics
to find candidates for photon conversions. The electron and positron candidates
from fake photon conversions may be created in different events. In addition, if
requiring hits in the Inner Tracking System (ITS) to reduce this effect, only pho-
ton conversions happening in the first ITS layers can be considered. In these layers
the material budget is significantly reduced and thus also the conversion probability.

Up to now, the TRD is only used in conjunction with the other detector systems,
i.e. the TPC. Thus, the current tracking is not capable of finding the conversion
electrons and positrons from the material within and right before the TRD. In this
work, a full stand-alone tracking procedure with this detector is presented that is
capable of enhancing the photon reconstruction capabilities of ALICE. The maximal
limits of the photon reconstruction efficiency are tested by using a calibration pro-
cedure that is not limited by the readout capacities of the TRD, i.e. the currently
used online tracking. Lower momenta can be achieved by also allowing a larger
inclination of the track segments called tracklets. Thus, the photon analysis using
the TRD presented in this thesis is a feasibility study.

The development of tracking methods in this work was highly influenced by modern
computational approaches. In recent years, great progress in the field of so-called
Artificial Intelligence raised a lot of attention [6]. Artificial Neural Networks rev-
olutionized among other things image and language processing. One driving force
behind these advances is dataflow programming, where the program is interpreted as
a directed graph of the data flowing between the operations. Graphic cards provide
the hardware for efficient calculation of vectorized programs. Besides that, differ-
entiable programming played a crucial role. Complex minimization procedures can
now be employed highly efficient with lower effort than ever before and is highly sta-
ble. In a recent white paper, Tommaso Dorigo et al. argue that ‘the most relevant
recent advancement for particle detector development is the rise of differentiable
programming’ [7]. Sophisticated software development tools such as TensorFlow [8]
and PyTorch [9] accelerate this process as they allow the developer to focus on the
model design.

These side products of modern neural networks are exploited in this work for the
track finding and parameter estimation procedure. A combinatorial track search
in combination with helix fits is presented. For the reconstruction of photon con-
versions, the exploitation of differential programming capabilities is driven even
further. A mathematical model of the photon conversion topology is embedded into
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a differentiable framework, and thus a very precise fit is performed. In contrast to
common frameworks for kinematic fitting, fewer approximations need to be made,
which shows up in improvements of the fit quality.

Photons are not the only interesting particles that interact with the material result-
ing in daughter particles. In the collisions studied by ALICE, particles are produced
that are not only interesting to deliver more insights into the QGP. Light nuclei for
instance interact with the material. Thereby the cross section is an important mea-
surement [10]. This cross section is important to get insights into the generation of
nuclei in the galaxy that might arise from dark matter. A first measurement of the
absorption of antihelium-3 in ALICE is presented in [10]. Here, the disappearance
of the antinuclei in the TRD is calculated by using the surrounding detectors, but
not the signal in the TRD explicitly. Besides that also dark matter candidates like
the hypothetical Sexaquark (S) might be generated directly in the collisions within
ALICE [11]. These also might interact with the material within and in front of the
TRD. A first search for the S̄ with CMS is presented in [12]. The reconstruction
suffers from a low efficiency that might be improved with ALICE, i.e. also using the
signals of the TRD. Thus, these two examples are further interesting interactions to
be detected with the TRD. A first detection approach for these two particle types
is presented in this work.

Due to the large amount of fragmentation to daughter tracks it often happens that
the nuclei and the sexaquark interactions do not result in a sufficient number of
tracklets to be reconstructed with the stand-alone algorithm. The local spatial
structure of the relation of the tracklets can be formulated as graphs. Analog to
the image classification with convolutional neural networks, graph neural networks
can efficiently operate on these structures [13]. First reconstruction approaches are
presented in this work.
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2 Physics Motivation

The underlying experiment, the ALICE experiment, is the dedicated heavy-ion colli-
sion experiment at the LHC. Thereby, quantum chromodynamics and especially the
quark–gluon plasma and its thermodynamic properties are the main interest. The
theoretical basics of these topics are introduced within this chapter. A focus is put
on photons as a probe, as they are of particular interest within this work. Besides
studying the quark–gluon plasma, ALICE is also well equipped to study nuclei and
exotic particle yields. As subsidiary topics within this work, nuclear interaction and
a proposed exotic particle state, the sexaquark, are also introduced in this chapter.

2.1 Quantum Chromodynamics and the
Quark–Gluon Plasma

Until in 1963 Gell-Mann and Zweig found a first ordering principle [14][15], a variety
of different particles were found from cosmic rays and in accelerator experiments.
This mess was known as particle zoo. With the eightfold way Murray Gell-Mann
and Yuval Ne’eman proposed a first quark model to describe the structure and
some particle properties in 1961 [16]. Consequently, Gell-Mann and Zweig com-
bined the particle mess to a model for strongly interacting particles later called
quarks. Initially, Zweig called them aces. Counter-intuitively, free quarks with frac-
tional electrical charge could not be found and serious symmetry issues for baryons
appeared [17]. The baryons require the assumption that the wave function is totally
symmetric under interchange of quark spin and flavor quantum numbers, contrary
to the expectation that quarks are fermions with spin 1/2. Han and Nambu as well
as Greenberg and Gell-Mann introduced a new quantum number, the color charge,
that solved the given issues [18]. Inspired by the Yang-Mills Lagrangian, a new
SU(3) global symmetry was introduced. This theory is today called Quantum Chro-
modynamics (QCD).

QCD is a gauge field theory and the eight traceless generators can be associated
with eight colored gluons, the corresponding exchange particle of the given force [17].
While the quarks are spin 1/2 fermions, the gluons are spin 1 bosons. The non-
Abelian QCD Lagrangian includes a self coupling between the gluons. As every
Yang-Mills Lagrangian, QCD represents an asymptotically free theory. Asymptotic
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2 Physics Motivation

free means that in the limit of very small distances between the quarks the quark-
quark interaction vanishes. This was supported by electron–proton and neutrino–
proton scattering experiments. In the deep inelastic scattering regime so-called
parton scattering was observed. These partons are interpreted as quarks nowadays.

With the observation of the J/Ψ [19][20] a new quark flavor was found, which was
postulated earlier by the GIM mechanism (or Glashow–Iliopoulos–Maiani mecha-
nism) [21]. In the following the standard quark model was completed with three
families of fermions and six flavors of quarks belonging to the three families and
the gauge bosons of the electroweak and strong forces. Another interesting observa-
tion of the existence of the J/Ψ is the similarity of its spectrum to the positronium
(e+–e−) spectrum.

In contrast to Quantum Electrodynamics (QED) the calculation of observables in
the context of QCD is more complex. In the high energy regime, the coupling con-
stant becomes small and perturbative methods are feasible. This type of calculations
is called perturbative QCD (pQCD). In the regime of strong coupling an approxima-
tion scheme introduced by Wilson leads to a statistical mechanical system. These
methods are called lattice QCD (lQCD) [22][23]. For example, mass predictions of
quark–anti quark pairs or the proton are made by lQCD methods. It is noteworthy
that the gluons only couple to the quarks and themselves.

Experimentally, free quarks were not observed. As a consequence, a concept that
does not allow unconfined color charges like quarks was introduced. This is concept
is known as confinement. It is a natural property of the QCD Lagrangian. The con-
finement of the quarks can be described by the phenomenological quark–antiquark
potential:

Vqq̄ = −4

3

αs(r)

r
+ k · r. (2.1)

The distance between the quarks q and q̄ is given by r, αs is the coupling of the
strong interaction and k a proportionality factor known as "string tension". The first
term describes the quark–antiquark interaction at very small distances for pointlike
particles. The second term is an effective description for long distances due to the
self-coupling of the gluons. An infinite amount of energy is necessary to separate the
particles. This potential successfully describes the masses of bound quark–antiquark
states, e.g. J/Ψ. The effective coupling constant of QCD αs cannot be defined for
on-shell quarks, because they do not physically exist. Thus, the coupling constant
depends on an arbitrary renormalization point. This is removed using a mass scale
Λ and then αs can be written as [24][25]

αs(Q
2) =

12π

(33− 2Nf ) · ln(Q2/Λ2)
, (2.2)
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2.1 Quantum Chromodynamics and the Quark–Gluon Plasma

Figure 2.1: The QCD phase diagram with the temperature versus the net baryon
density. At the LHC the high temperature region at low net baryon
densities is explored. High baryon densities at low temperatures may
occur in neutron stars. Figure taken from [30].

where Nf is the number of quark flavors (Nf ≤ 6) and Q the momentum transfer.
In the limit of infinite momentum transfer the coupling vanishes.

Very high temperatures and/or high net baryon densities lead to a state of matter
where confinement and chiral symmetry breaking are no longer present [26][27][28].
Different assumption can motivate this state of matter: On the one hand, it can be
assumed that if two or more hadrons are very close to each other, i.e. in the order
of their size, the quarks cannot be uniquely assigned to one of the hadrons. On
the other hand, if a temperature is reached above the mass of the pion, the lightest
hadron, new hadrons are created. This was first mentioned by Hagedorn [29]. It
should be mentioned, that this does not imply an upper limit of the temperature.
This new state of matter, which is interpreted as a soup of quark and gluons, is
known as Quark–Gluon Plasma (QGP). It has an increase of degrees of freedom
arising from the different quantum states, e.g. flavors, colors, spins, and polarization
states of quarks and gluons. Due to their low mass, the dominant quark flavors
are up, down and strange quarks, described by the so-called (2+1)-flavor QCD [28].
Other known flavors like the charm quark also appear in the QGP due to hard par-
tonic scattering processes.

In Fig. 2.1 the QCD phase diagram is shown. The QGP is understood in the
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2 Physics Motivation

framework of a thermodynamic system. Thus, it is described by the temperature
and net baryon density. As can be seen in the figure, at very low net baryon
densities, the transition temperature is close to the pion mass. This is in agree-
ment with theoretical predictions of lattice QCD, that predict the temperature
as TC = 155 ± 1(stat.) ± 8(syst.) MeV [31]. With an increase of the net baryon
density, the deconfined state of matter also occurs at lower temperatures. At the
Large Hadron Collider (LHC) [1] as well as the Relativistic Heavy Ion Collider
(RHIC) [32][33][34][35] the low baryon density limit is explored. At the Facility for
Antiproton and Ion Research (FAIR) [36], which is currently under construction, it
is aimed to reach higher baryon densities. The transition at vanishing net baryon
density is not of first or second order, but it is a continuous crossover [37]. Moreover,
the QGP is relevant for the astronomical interpretation of the development of the
universe, as it is expected that the universe developed through this kind of state of
matter within the first fractions of a second. The experimental access is described
in the next section.

2.2 Heavy-Ion Collisions

Heavy-ion collisions have been found to be an appropriate tool to access the QGP
experimentally. First heavy-ion collisions with several GeV were performed at the
Brookhaven National Laboratory (BNL) with the accelerator AGS and at CERN
with the SPS. Clear indications for a QGP were then found with the follow-up ac-
celerators RHIC with

√
sNN = 200 GeV using gold ions and with the LHC at TeV

center-of-mass energies using lead ions. These accelerators are also the first colliders
used for heavy-ion collisions. At the corresponding energies the lead ions are con-
tracted due to the high relativistic gamma factor to flat "pancakes" perpendicular
to the beam line. Thus, very high energy densities are generated. The collision
overlap varies and thus the collisions can be referred to different centrality classes.

The space-time evolution of a collision is shown in Fig. 2.2. While the pancakes col-
lide, in a very short thermalization phase (τ0 < 1 fm/c) QCD processes constitute an
equilibrated QGP. As it is spatially not constrained, an expansion takes place that
is determined by the inner pressure given by the collision geometry and the temper-
ature. At the LHC, the lifetime of the QGP is estimated to be about 10 fm/c [39].
After reaching a certain pseudocritical temperature a continuous crossover region
leads to the hadronization. For a short time period the hadrons establish a hadron
gas before a kinetic freeze-out happens and observable particles leave the interaction
region.
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2.3 Photons in Heavy-Ion Collisions

Figure 2.2: The space-time evolution of a heavy-ion collision is visualized in the light
cone. The different stages consist of the thermalization, the QGP, the
cross-over region and finally the hadron gas which kinetically freezes out
to the measurable particles. Figure taken from [38].

2.3 Photons in Heavy-Ion Collisions

As the reconstruction of photons is the main topic within this work, a theoretical
insight into photon production in heavy-ion collisions is given as a first example of
a probe of the dynamics of the collision. The electromagnetic nature of the photon
implies that there is no strong coupling. The electromagnetic coupling constant αem

is much smaller than the (running) coupling constant of the strong interaction αs.
This leads to a mean free path length that is long enough to leave the plasma with-
out significant interaction [41]. The photon production thus gives a unique insight
into the evolution of the collision.

The photons from heavy-ion collisions are structured by production processes ac-
cording to the evolution. In the following the main sources of direct photons are
specified [42]. Prompt photons are produced in initial interactions of the partons
from the colliding nuclei. These photons are also called pQCD photons as the
production can be calculated via perturbative QCD calculations [43][44]. Before
reaching thermodynamic equilibrium photons are also expected to be produced: the
pre-equilibrium photons [45]. Then the thermal phase begins. Here, a hydrodynam-
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2 Physics Motivation

Figure 2.3: The invariant photon yield as a function of the transverse momentum.
With the models, different parts of the spectrum can be assigned to
different stages of the time evolution of the heavy-ion collision process.
Figure taken from [40].

ical description of the evolution is usual [40]. Photons produced during this phase
reflect the temperature of the medium and they are called thermal photons.

In reality, these direct photons are overlaid by decay photons, for example from
neutral pion and eta decays. Given that the yield of all photons γinc (inclusive
photons) is measured, the yield of the direct photons is defined by

γdir = γinc − γdec, (2.3)

where γdir is the direct photons yield and γdec is the decay photons yield. Experi-
mentally one extracts the double ratio Rγ defined as

Rγ =
γinc

γdec
=

(γinc/π
0)meas

(γdec/π0)calc
(2.4)

in order to minimize systematic uncertainties. It follows

γdir = (1− 1

Rγ

)γinc. (2.5)

The via a Monte Carlo approach calculated decay photon spectrum γcalc is based on
the measured π0 spectrum. With this ratio an access to the direct photon yield is
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given.

An example of the expected direct photon spectrum in Au–Au collisions is shown
in Fig. 2.3. Here, the invariant yield is plotted versus the transverse momentum.
The yield as given by hydrodynamical calculations for the hadron gas and QGP
as well as pQCD photons are separately shown. At low transverse momenta, the
hadron gas dominates, in the range between 1 GeV/c and 3 GeV/c the thermal
photons dominate, and at high pT most photons are created by the initial pQCD
phase as expected. For the hydrodynamical calculations it is worth to mention that
the expansion of the fireball leads to a blueshifted photon spectrum which has to be
considered for the slope of the photon spectrum. A further observable is the elliptic
flow [46]. By using the Fourier series of the spectrum and taking the second order
coefficient v2 from dN/dφ ∝ N(1 + 2v2 cos(2φ)) a description of the ellipticity is
provided. Measurements show a v2 that is unequal to zero. Thus, the observation
of v2 also delivers insights into the dynamics. Hydrodynamical models also show a
v2 unequal to zero.
A simultaneous description of the spectrum and elliptic flow by the models is still
not perfectly given. This tension is referred to as the photon puzzle.

2.4 Other Probes

As the neutral pions mainly decay to two photons, a reconstruction for the direct
photon measurement is necessary. But besides providing a background for the pho-
ton measurement, they are also interesting as a probe by themselves.
Usually, the yield in AA collisions NAA and in pp collision are compared using the
nuclear modification factor RAA. This factor is defined by [47]

RAA =
d2NAA/dpTdy
〈TAA〉d2σpp/dpTdy

, (2.6)

where σpp is the cross section in pp collisions and 〈TAA〉 is the nuclear overlap
function. The nuclear overlap would scale the pp collision to an AA collision if it
was an independent superposition of pp collisions. Thus, a value of RAA below 1
indicates a suppression in the yield induced by nuclear effects. This modification
factor is also considered for other hadronic spectra.
There are also many further observables of heavy-ion collisions including soft probes
originating from processes with low momentum transfer and hard probes from initial
hard parton scattering.
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2.5 Inelastic Interactions of Light Nuclei

Besides studying the quark–gluon plasma, the given collisions also provide particle
yields of light nuclei and antinuclei such as protons, deuterons or helium-3 and the
corresponding antiparticles [10].

These nuclei are also produced by processes in the universe. For a better under-
standing of these processes, precise measurements of the nuclear interaction cross
sections are needed. Heavy-ion collisions and the corresponding reference systems
provide such particle yields.

Dark matter candidates that may exist in the galaxy are expected to produce antin-
uclei in annihilation processes that peak at low energies with Ekin . 1 GeV/A [48].
As the spectrum of produced antinuclei from cosmic rays is much larger, a nearly
background free signal of antinuclei yields from dark matter can be expected in the
GeV range.

These generated antinuclei travel a long path through our galaxy and thus many
nuclear interactions appear. For the corresponding models the cross section for nu-
clear interactions play a crucial role, as it reduces the yield that can be measured
close to earth. Thus, it is important to have precise measurements of the inelastic
cross sections of these particles.

2.6 Sexaquark

Besides producing nuclei, collisions at the LHC could also produce exotic particles.
A candidate is the Sexaquark (S), which was proposed by G. Ferrar in [49]. Heavy-
ion collisions are also a possible good production environment [11]. The sexaquark
is a compact bound state with the quark content uuddss. A recent overview is given
in [11]. Other multiple quark states were already observed, for instance the pen-
taquark state with ccuud. In contrast to the sexaquark the found states involve no
pure quark or antiquark combinations.

Already in 1976 R. Jaffe proposed the existence of an H-dibaryon [50], a compo-
sition of two weakly bound uds hyperons. Despite searches with many experiments
no evidence yet exists.

The sexaquark has the following properties: spin 0, flavor singlet, parity even, not
charged, baryon number B = 2, strangeness S = −2. Lattice QCD is not capa-
ble of predicting the mass precisely nowadays and empirical assumption provide a
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large range for it. For effective stability a mass below 2.054 GeV/c2 is required [11].
The stability of the sexaquark corresponds to the possibility to be a dark matter
candidate. This increases the relevance for the search for it.
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In the following chapter, the experimental setup is described. First, the Large
Hadron Collider (LHC) is introduced which provides the collision beams. The ex-
periment of interest is the ALICE experiment. The most important detectors of
ALICE are explained before describing the transition radiation detector in more
detail.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [1] is a circular particle collider which has a cir-
cumference of 26.7 km and it is placed approximately 100 m under ground. It is the
world’s largest accelerator and provides the highest energies. The LHC is placed
in the former Large Electron–Positron Collider (LEP) tunnel within the CERN ac-
celerator complex. It is located close to Geneva and crosses the border of France
and Switzerland. A sketch including its interaction points with the experiments and
its pre-accelerators is shown in Fig. 3.1. It provides proton beams with an injec-
tion that starts at the LINAC 2 and lead beams with an injection starting at the
LINAC 3. The lead ions are stripped during two stages until they are fully ion-
ized. The pre-accelerator chain ending with the Super Proton Synchrotron (SPS)
allows injection energies of 450 GeV for proton beams and 177 GeV per nucleon for
lead beams. The LHC itself provides proton–proton beams with a center-of-mass
energy of up to 14 TeV. The energy of the injected 208

82 Pb82+ ions is scaled corre-
sponding to the charge per mass. The peak luminosity of proton–proton collisions is
1034 cm−2s−1, which is also the highest value provided from any existing accelerator.

In total, eight straight sections in the LHC exist, either for experiments or beam
tuning. The points are named in numerical order from Point 1 to Point 8. At four
of these places big experiments are located: ATLAS [51], CMS [52], LHCb [53] and
ALICE. At Point 2 the experiment of interest is placed: ALICE. This is the only
dedicated heavy–ion research experiment at the LHC. But at the other facilities also
heavy-ion programs exist.
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Figure 3.1: A sketch of CERN’s whole accelerator complex, including the LHC [54].
The position of ALICE is indicated as well.
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Figure 3.2: A sketch of the ALICE detector system as it is given in Run 3 including
the central barrel detectors as well as the forward muon arm. Figure
taken from [55].

3.2 A Large Ion Collider Experiment

ALICE is an acronym for A Large Ion Collider Experiment. It is designed to fo-
cus on studies of the properties of the color deconfined state of strongly interacting
matter called Quark–Gluon Plasma (QGP) created in heavy-ion collisions. These
studies require a reconstruction of events with high multiplicities and a good reso-
lution down to low momenta (pT ≈ 150 MeV/c) where many particles in heavy-ion
collisions are produced. These requirements are fulfilled by ALICE [2].

The central barrel detectors surrounding the nominal collision point include the
Inner Tracking System (ITS), the Time Projection Chamber (TPC), the Transi-
tion Radiation Detector (TRD) and the Time-Of-Flight (TOF) detector. They are
shown in Fig. 3.2 together with the other detectors. The solenoid magnet provides
a 0.5 T magnetic field parallel to the beam axis. At high pseudorapidities smaller
detectors are placed that are used for global event characterization and triggering.
Furthermore, the EMCal/DCal (Di-Jet Calorimeter) and PHOS (Photon Spectrom-
eter) are used for photon reconstruction. The relevant detectors for this work are
explained in the following. Information regarding the remaining detectors can be
found in [56] as given for Run 2 and information regarding upgrades of the readout
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and trigger system can be found in [57].

The ITS [58] is the detector closest to the interaction point. Until the upgrade
for Run 3 it consisted of six layers of silicon detectors with three different technolo-
gies placed at radii between 3.9 cm and 43.0 cm. The first two layers constitute
the Silicon Pixel Detector (SPD). Operating closest to the interaction point it pro-
vides high precision and granularity which is important for determining primary
and secondary vertices. The intermediate layers of the ITS form the Silicon Drift
Detector (SDD) which combine a very good multi-track reconstruction capability
with dE/dx information. The last two layers, the Silicon Strip Detector (SSD),
also provide dE/dx information. The energy loss signals can be used for particle
identification (PID) and provide information for low-momentum particles.
Recently, the ITS was upgraded for Run 3 [59]. The different mentioned technologies
were replaced by Monolithic Active Pixel Sensors (MAPS). The new ITS consists of
seven layers. Three of them are close to the vertex at 2.3 cm, 3.2 cm and 3.9 cm.
The inner layers have a reduction of the material budget to 0.35% X0 compared to
1.14% X0 before. This reduces the conversion probability of photons, which makes
the standard PCM measurement more difficult. The other four layers are between
19.6 cm and 39.3 cm. The new ITS is closer to the primary vertex, has less material
budget and allows a higher readout rate equipped for a continuous readout. There
will be no energy loss information anymore.

The TPC [60] surrounds the ITS and has an overall volume of nearly 90 m3. A
sketch of the TPC and the measured signals are shown in Fig. 3.3. A crossing par-
ticle traverses and ionizes the gas in the environment of the magnetic field. The
ionization charges drift under the influence of an electric field to the endplates of
the TPC. There, the arrival point and time can be precisely measured and so the
complete trajectory be reconstructed. Until the upgrades of Run 3 the readout was
based on Multi-Wire Proportional Chambers (MWPC). These MWPC require a
gating grid due to the backfloating ions which limits the readout frequency. Thus,
for Run 3 the MWPC were replaced by Gas Electron Multipliers (GEMs) that al-
low a readout of 50 kHz for Pb–Pb collisions [61]. The GEMs provide intrinsic ion
blocking capabilities. An ion backflow of about 1% still remains [62].
The design of the TPC delivers the capabilities to be the main device for track-
ing of charged particles and particle identification via the measurement of specific
ionization energy loss in the central barrel. For PID, the mass dependence of the
energy loss given by the Bethe Bloch formula is exploited. More on the Bethe Bloch
formula can be found in Chapter 4. The mass dependency is also shown in Fig. 3.3.
The resolution of the specific energy loss measurement is about 5% [56].
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Figure 3.3: Left: The central electrode, the inner and outer field cage and the end
plates with readout chambers form the TPC [5]. Right: The TPC pro-
vides particle identification via the measurement of the dE/dx informa-
tion of crossing particles [56].

The TRD [3] provides enhanced electron identification by exploiting specific ion-
ization energy loss and transition radiation. In addition, it can be used as a trigger
to enhance rare probes that e.g. include an electron in the decay. The TRD stand-
alone capabilities for the reconstruction of photon conversions and other material
interactions are discussed in this work. Since the emphasis of this work lies on the
TRD, it will be explained in detail in the next section.

The TOF [63] covers the momentum region from 0.5 to 2.5 GeV/c for pion/kaon
separation and up to 4 GeV/c for pion/proton separation via time-of-flight measure-
ments using Multi-gap Resistive Plate Chambers (MRPCs). This provides particle
identification in the crossing regions of the deposited charge in the TPC for electrons
and kaons or protons, respectively. The overall TOF resolution is 80 ps for pions
with a momentum around 1 GeV/c.

In Run 2 on each side of the detector a scintillation counter called V0 was placed [2].
They are used for triggering as well as collision centrality estimation. The Cherenkov
detector T0 was located on both sides, allowing a time resolution of 20-25 ps in Pb–
Pb collisions and around 40 ps in pp collisions [56]. This served as the start time for
the TOF measurement. In Run 3, a Fast Interaction Trigger (FIT) detector com-
bines Cherenkov arrays (T0+) and scintillator rings (V0+) as fast minimum bias
trigger [57]. Furthermore, there is the Zero Degree calorimeter (ZDC) consisting of
two tungsten-quartz neutron and two brass-quartz proton calorimeters also in both

23



3 Experimental Setup

Figure 3.4: The TRD cross section with its 18 supermodules (yellow) surrounding
the TPC. Figure taken from [3].

sides in beam direction to detect spectator nucleons [56].

3.3 Transition Radiation Detector

Details concerning the TRD can be found in [3]. The TRD was built to improve the
electron identification at relatively large momenta (p > 1 GeV/c) where the sepa-
ration via specific ionization energy loss in the TPC worsens. The specific energy
loss dE/dx via charge deposition is described by the Bethe-Bloch formula. In the
relativistic rise a weak mass dependence at fixed momenta due to the dependence
of βγ = p/(mc) complicates particle identification. For highly relativistic parti-
cles (γ & 1000) [56] transition radiation (TR) can be exploited. TR was predicted
by V. Ginzburg and I. Frank in 1946 [64]. Highly relativistic particles crossing a
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3.3 Transition Radiation Detector

Figure 3.5: One supermodule consists of five stacks with six read-out chambers each.
Figure taken from [3].

boundary surface between two media with different dielectric constants emit ex-
tremely forward peaked photons [65]. Since the TR only depends on γ = E/(mc2)
pion/electron discrimination is supported at the desired momenta, i.e. at momenta
larger than 1 GeV/c. On average, for each electron with a momentum above 1 GeV/c,
at least one TR photon is produced. For pions the onset of TR is above 100 GeV/c
and so not appearing at relevant momenta at ALICE. Additionally, the TRD can
contribute to trigger on rare probes such as electrons and jets as well as tracking.
Stand-alone tracking capabilities are presented in this work.

The TRD is positioned in the central barrel behind the TPC at radii of 2.90 m
to 3.68 m from the nominal interaction point. It consists of 18 supermodules with
five stacks and each stack with six layers, which cover the full azimuth range and a
pseudorapidity range of −0.84 < η < 0.84. To reduce the material budget in front
of the PHOS detector, the middle stacks of three supermodules are left out (sector
13–15). This results in a total of 522 individual readout chambers. The TRD cross
section with its 18 supermodules is shown in the context of the surrounding detector
components in Fig. 3.4. The structure of one supermodule is shown in Fig. 3.5.

A schematic cross section of a TRD chamber as can be seen in Fig. 3.6 consists
of the radiator, the drift region and the amplification region. The active area per
chamber varies from 0.90 m × 1.06 m to 1.13 m × 1.43 m (x × z). The thickness is
about 12 cm including radiator, electronics and cooling.

Since the intensity of TR is of the order of the fine structure constant (α =1/137)
per boundary crossing, many boundaries are necessary to produce an appropriate
signal. In the ALICE TRD this is reached via a fiber/foam sandwich radiator with a
total depth of 4.7 cm. The material choice is due to reasons of mechanical stability
and space. For a fast enough particle (γ & 1000) this results in a mean production
of approximately 1.45 TR photons [67].
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Figure 3.6: Left: A TRD chamber consists of the radiator, the drift region and the
amplification region [3]. Right: The TRD signal is shown as a function of
time. Here, the average signals for electrons and pions with momenta of
2 GeV/c are shown. At small times a clear peak due to the amplification
region can be seen. A second peak appears only for electrons due to TR
contributions [66].

The following drift region of 3 cm is filled with a Xe-CO2 gas mixture (85:15).
The forward peaked TR photons in the X-ray regime are absorbed by xenon in less
than a centimeter on average [3]. CO2 is chosen as a good quenching gas. The TR
photons, which are fully absorbed, and the crossing particles ionize the gas. The
ionization can be measured in temporal dependence with a granularity of 100 ns.
For that, the drift under the influence of a constant electric field is exploited. In
the amplification region a strong electric field provokes avalanches and allows a clear
pad readout induced in the MWPC. The length of the amplification region is 0.7 cm.

The temporal signal is shown in Fig. 3.6 as an average. A clear difference be-
tween the charge deposition of electrons and pions can be seen. The peak at small
times is due to charges drifting from both sides in the amplification region. This
peak is followed by charges from the drift region. A clear difference between the
charge deposition without TR can be seen because of the different specific energy
loss due to the different masses. By including the contribution of TR, a second peak
in the electron signal at larger times appears. The charges arrive later since the TR
photons are absorbed right after the radiator.

In Fig. 3.7 a sketch of the TRD cathode pad plane can be seen. Manufactured
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Figure 3.7: A sketch of the TRD pad plane. The pads are much larger in z direc-
tion than in y direction. The pads are tilted to still obtain a better z
resolution. Figure taken from [3].
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from thin printed circuit boards, they are stabilized by a light honeycomb and car-
bon fiber sandwich. The design goal of a deviation from planarity of 150 µm is
achieved by almost all chambers. The plane is segmented into 12 or 16 pads along z
and 144 pads in rφ with an area of 0.635 cm × 7.5 cm to 0.785 cm × 9 cm (y× z in
the local system). To diminish the effect of the large z pads to the z resolution the
pads are tilted alternating from layer to layer by 2◦ in the yz plane. There is still
a dead zone given in rφ from 12% to 14% and in z on average of 2.5%. Multi-Chip
Modules (MCMs) are connected directly to 18 pads of the cathode plane. Analog to
Digital Converters (ADCs) return a signal of 100 ns time bins leading to the input
for the cluster finder and tracklet calibration procedure.
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4 Charged Particle Tracking

To motivate the algorithms for the TRD stand-alone tracking, this chapter gives a
general overview over the most important tracking basics. A more detailed insight
can be found in [68]. The motion of a charged particle in a magnetic field is described.
The interaction of the particles with matter influences the motion of the particle,
and thus it is also an important topic of charged particle tracking. In general, the
motion of the particle is described by a helix which has to be fitted to selected clusters
produced in the detectors to obtain the track parameters. A brief introduction to
helix fits is given. The standard method used in ALICE for parameter estimation is
the Kalman filter [69]. Track seeds that are necessary for this procedure are given
using the cellular automaton [70]. The Kalman filter and the corresponding seeding
procedure is also explained.

4.1 The Track Model

The motion of a particle with an electric charge in a magnetic field is governed by
the Lorentz force [71], given by

~F = q( ~E + ~v × ~B). (4.1)

Here, q is the signed charge number, ~B the magnetic field and ~v the velocity of
the particle. This equation is also valid for a relativistic motion with p = βγm.
Moreover, the absence of material is assumed. In case there is no electric field, this
leads to the differential equation

d~p

dt
= q~v × ~B. (4.2)

From this equation it can be obtained that the absolute value of the momentum is
not time dependent. This is shown by the calculation

d~p2

dt
= 2~p

d~p

dt
=

2

mγ
q~p(~p× ~B) = 0 (4.3)

where the relativistic momentum ~p = mγ~v was inserted, with m the rest mass of the
particle and γ the Lorentz factor. A typical choice for the direction of a magnetic
field is ~B = B~ez, such that the field points along the beam axis. The magnetic field
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4 Charged Particle Tracking

Figure 4.1: Left: An example of a trajectory of a charged particle in the xy plane per-
pendicular to the direction of the magnetic field. Right: The definition
of λ is given by the linear dependence of the motion in the zs plane. The
parameter s is a running parameter along the arc of the two-dimensional
circle.
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is created as homogenous as possible. B is the absolute value of the magnetic field.
By inserting this relation into the differential equation Eq. 4.2 and using the fact
that the momentum is conserved, it follows that the momentum pz in z direction
and the transversal momentum pT do not change in time. A helical ansatz solves
the differential equation. The motion of the charged particle using pT = p cosλ and
pz = p sinλ can be described by

px = pT cos(Cs+ φ0) (4.4a)
py = pT sin(Cs+ φ0) (4.4b)
pz = pT tanλ, (4.4c)

where s is the relative arc length of the two-dimensional circular part of the helix.
It is a natural running parameter along the helix. The curvature C is defined as the
inverse of the radius of this circle |C| = 1/R. The parametrization

x(s) = xc + sin(Cs+ φ0)/C (4.5a)
y(s) = yc − cos(Cs+ φ0)/C (4.5b)
z(s) = z0 + s tanλ (4.5c)

is in agreement with the upper one. Here, xc and yc are the coordinates of the center
of the circle and z0 is the corresponding z coordinate at s = 0. The centers might
be replaced by

xc = x0 − sin(φ0)/C (4.6a)
yc = y0 + cos(φ0)/C. (4.6b)

A visualization of the given parameters is shown in Fig. 4.1.

4.2 Interaction with Material

The track model as given in the previous section describes the motion of a charged
particle in a homogeneous magnetic field in the absence of material. In real detectors,
the motion of the particles is influenced by material. One source of a change of the
movement caused by material is the energy loss due to ionization or excitation. The
mean energy loss of charged heavy particles crossing material is described by the
Bethe-Bloch formula [72]〈

−dE
dx

〉
= Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]
(4.7)
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with a precision of a few percent for 0.1 ≤ βγ ≤ 1000. As it is the mass stopping
power, the units are [MeV g−1cm2] of the mean energy loss. To obtain the energy
loss per unit length, the formula has to be multiplied with the mass density ρ. K
is a coefficient of proportionality with K = 0.307075 MeV mol−1 cm2, z the charge
number of the incident particle, Z the atomic number of the absorber, A the atomic
mass of the absorber, Wmax the maximum possible energy transfer to an electron in
a single collision, I the mean exciting energy and δ(βγ) the density correction. In
general, a small mass dependence of Wmax can be neglected and the function only
depends on β. This β dependence enables the particle identification capabilities if
measuring the momentum besides the energy loss.

Besides very small effects of Møller scattering, Bhabha scattering and positron an-
nihilation, the ionization energy loss described before dominates for low energy elec-
trons/positrons. For most materials, bremsstrahlung starts to dominate at a few
tens of MeV. For heavier particles this is not relevant at typical ALICE momenta.
For copper, the fraction of ionization and bremsstrahlung of electrons to the total
energy loss is shown in Fig. 4.2. Close to a nucleus an electron/positron can radiate
a photon (e+N → γ + e+N). Compared to the energy loss by ionization this is a
very fluctuating process. The probability density function can be described by the
Bethe-Heitler formula [73]

f(z) =
(− ln(z))c−1

Γ(c)
(4.8)

with c = t/ ln(2), z = Ef/Ei, t = X/X0. Ef is the energy of the electron before the
radiation and Ei after the radiation. The length within the material crossed by the
particle is X, and X0 is defined as the characteristic radiation length in a certain
material. The radiation length is the mean distance where 1/e of the energy of the
electron is lost by bremsstrahlung in units of [g cm−2]. The linear behavior can be
seen in the formula, as there is no energy dependence for the relative energy loss in
the probability density function f(z).

The third important interaction leading to distortions, which needs to be added to
the ideal track model from before, is multiple scattering. These deflections mainly
come from Coulomb scattering [72]. It consists of many small angle deflections,
which can be described by a Gaussian approximation due to the central limit the-
orem. This approximation is valid for the central 98% of the angular distribution
and from Lynch & Dahl [74] the rms width of the angle is given by

θ =
13.6 MeV
βcp

z

√
X

X0

[
1 + 0.038 ln

(
Xz2

X0β2

)]
, (4.9)

where z is the charge number of the incident particle and X/X0 is the length passed
by the particle in terms of the radiation length as defined before. Nevertheless, some
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Figure 4.2: The energy loss of electrons crossing copper. Bremsstrahlung is already
dominant compared to ionization at energies much lower than it is pos-
sible to measure with the TRD. Figure taken from [72].

"hard" scatters produce non-Gaussian tails.

4.3 Kalman Filter

The Kalman filter, named after Rudolf Emil Kálmán, who published one of the first
descriptions of the algorithm in 1960 [75], is the standard method for particle track-
ing in ALICE. Details about the implementation in ALICE can be found in [69].
The given algorithm is a recursive parameter estimator/fit. Besides the parameters
also the uncertainty of the parameters are an output of the algorithm. An initial
estimate (seed) is required.

Having an optimal initial estimate and measurements with Gaussian uncertainties,
the Kalman filter is an optimal estimator for linear models. In this case, the result
is equivalent to a least squares fit. The given algorithm with a linearized model by
using a local Taylor series expansion is called the extended Kalman filter.
One of the first and very famous applications was the use within the Apollo naviga-
tion computer by NASA Ames Research Center [76]. NASA Ames was faced with
a non-linear problem and contributed to the non-linear formulation of the extended
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4 Charged Particle Tracking

Kalman filter.

For the application of charged particle tracking in a magnetic field the Kalman
filter provides a generalization for a linearized helix fit. The requirement for an op-
timal tracking in ALICE are besides the track parameter estimation also a very good
selection of the space points which belong to a track. Being recursive, the Kalman
filter provides a combination of both. It also provides a natural implementation of
external noise for instance from material effects.

To start with the mathematical description [69] of the linear Kalman filter, a func-
tional model description is needed. This is given by a state vector ~xk which changes
by the time-like parameter tk. The function representing the variation from state
tk−1 to tk given a certain noise ~εk is then

~xk = Fk~xk−1 + ~εk. (4.10)

The linear operator Fk represents the linear transport. This description provides
a recursive propagation of the fit function including the uncertainty from external
disturbance. The full uncertainties of the parameters are described by its covari-
ance matrix Ck. The measurements ~mk are a projection Hk of the state xk. The
transformation from the model parameter to the observation mk is then defined by

~mk = Hk~xk + ~δk, (4.11)

with δk being the uncertainty of the measurement. The observations also have
a covariance matrix Vk. In the generalization of the extended Kalman filter, in
Eq. 4.10 the propagation operation Fk~xk−1 is substituted by a functional represen-
tation fk(~xk−1).

The process of the Kalman filtering now starts with a measurement or the seed,
which is extrapolated to the current state. The goal is to update the parameters
from tk−1 to tk. In the following ~xk−1|k−1 is the unpropagated state, ~xk|k−1 the prop-
agated but not updated state and ~xk|k the final updated state. For the covariance
matrix the same convention is used. The extrapolation then applies as follows:

~xk|k−1 = Fk~xk−1|k−1 (4.12a)
Ck|k−1 = FkCk−1|k−1F

T
k +Qk. (4.12b)

Qk is the contribution of external noise to the covariance matrix. Given the measure-
ment ~mk at the current state, the fit parameters ~xk|k−1 and the covariance matrix
Ck|k−1 can now be updated. To do that, the Kalman gain Kk is introduced and
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4.3 Kalman Filter

Figure 4.3: A summary of the most important formulas of the Kalman filter [75].
The algorithm consists of an extrapolation step and the parameter up-
dates. The meaning of the variables is described in the text.

applies as follows:

~xk|k = ~xk|k−1 +Kk(~mk −Hk~xk|k−1) (4.13a)
Ck|k = Ck|k−1 +KkHkCk|k−1 (4.13b)

Here, the Kalman gain is given by

Kk = Ck|k−1H
T
k (Vk +HkCk|k−1H

T
k )−1. (4.14)

Via
χ2
k = (~rk)

T (Rk)
−1~rk (4.15)

with the residual ~rk = ~mk−Hk~xk|k and Rk = Vk−HkCk|kH
T
k finally the χ2 increment

can be calculated to check the quality of the fit. This is equivalent to the χ2 of the
least squared fit in the linear case. The most important formulas are summarized
in Fig. 4.3.

In concrete applications within ALICE, a local coordinate system is typically cho-
sen, where the running time-like parameter is in radial direction perpendicular to
the detector layers. Multiple scattering and energy loss described by the Bethe-
Bloch formula can be implemented by adding a corresponding noise term Qk to
the covariance matrix of the measurements. Details can be found in [77]. Noise
from bremsstrahlung in the case of electrons is in general not Gaussian and thus the
Kalman filter is not accurate. A possibility to get more accurate results is to apply
a modification of the Kalman filter called the Gaussian Sum Filter [78].
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4 Charged Particle Tracking

4.4 Helix Fits

The three-dimensional helix parameter estimation is in general a non-linear prob-
lem. In the case of the Kalman filter these circumstances are simplified by using a
linearization of the propagation of the covariance matrix.
A common ansatz to solve the parameter estimation is to separate the helix into a
circle fit and a straight line fit with the arc length s of the circle as parameter in
direction of the magnetic field. For the circle parameter the following expression has
to be minimized:

χ2 =
∑
i

(√
(xi − xc)2 + (yi − yc)2 −R

)2

. (4.16)

This minimization procedure results in estimates for the center xc and yc of the
circle and the radius R. It should be remarked that with this parameterization
there is no continuous transition between positive and negative curvatures/charges.
The radius and the center are highly correlated. The given minimization is not
analytical solvable.
Instead, a common approach is to solve the minimization of the following χ̃2:

χ̃2 =
∑
i

[(xi − xc)2 + (yi − yc)2 −R2]2. (4.17)

This approximation provides a system of linear equations which can be solved an-
alytically and the approximation holds as long as the residuals are much smaller
than the radius of the circle. Karimäki proposed a parameterization based on this
assumption which provides linear errors [79]. This parameterization is also smooth
in the transition from positive to negative curvatures and vice versa. When applying
this fit for studies for this work it was noted that the structure of this model with
the double square nature leads to issues with outliers, that are heavily weighted.

4.5 Track Finding and Track Seeding

It is distinguished between track finding and track parameter estimation. The aim
of track finding is to associate the detector clusters to tracks. A special property of
the Kalman filter is that after having a proper seed it can also contribute to track
finding. In the case of the Kalman filter the track finding is thus also necessary at
least in a part of the detector to select seed clusters. From the seed clusters, proper
start parameters for the state and for the covariance matrix need to be estimated.

A typical approach for track finding or track seeding with respect to the Kalman
filter is a cellular automaton based algorithm [70][68]. The cellular automaton is also
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4.5 Track Finding and Track Seeding

Figure 4.4: The working principle of the cellular automaton is depicted. The cellular
automaton creates the tracklets and assigns state numbers, which are
then used to collect the tracks. Figure taken from [70].

used in ALICE [80]. A cellular automaton consists of a graph with nodes and edges.
An introduction to graphs is given later in Sec. 10.1.1 in the context of graph neu-
ral networks. From two clusters in neighboring detector layers, tracklets are built.
These tracklets are short track segments described by a position and direction vector
or two hits, respectively, and called cells. These are represented by the nodes of the
graph. To construct the graph, a neighbor discovery is necessary. Sometimes it is
also allowed to skip detector layers. In common cases, the graph is a directed graph
from the inner layers to the outer layers. The cells are called neighbors if they share
a hit. Different cuts depending on the detector geometry are applied for accepting
the tracklets, for example cuts on the angles.

The actual track search starts by assigning a counter to each cell, initialized with 1.
Then, every counter is updated by 1 if the counter of the inner neighbor has the
same value. This is called a time step. This procedure is repeated in every subse-
quent time step until no state changes. This procedure allows parallel execution.
On the basis of the counter values, starting from the highest values, the tracks can
be constructed by appending neighbors with a counter value decremented by 1. De-
pending on the track model, finally a χ2-criterion can be applied for the final track
selection after fitting the track candidates. The working principle is depicted in
Fig. 4.4. This algorithm profits from a high parallelizability and the local search
suppresses excessive combinatorics.
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A common tool to detect photons is the reconstruction of the electron–positron pairs
from photon conversions, which is also the only way by utilizing the tracking de-
tectors of ALICE. In this thesis, an important topic is the reconstruction of photon
conversions in the ALICE TRD. This can complement the reconstruction of pho-
ton conversions in the ALICE TPC. This chapter gives an introduction to this topic.

To reconstruct photon conversions, the topological properties of the daughter pairs
are exploited. Thus, it is important to introduce the physics of photon conversion,
which is explained in the first section. To exploit the physics on the level of tracking,
in ALICE the so-called Kalman Filter Particle package (KFParticle) is used. This
enables constraints concerning for instance the invariant mass or a vertex constraint.
Section 2 is meant to give an insight to this method. Finally in the last section of
this chapter, a short overview of the general procedure of the photon conversion
method using the ALICE TPC is given.

5.1 The Physics of Photon Conversions

To reconstruct photon conversions, physical and kinematic constraints of the daugh-
ter tracks are exploited. In the following, the physical and kinematic properties are
described.

In Fig. 5.1 the total photon cross section is shown in carbon as an example for
a light material and lead as an example for a heavy material. The three domi-
nant processes over different energy scales are the photo effect at low energies below
100 keV, the Compton effect at the order of 1 MeV, and at higher energies the cross
section for pair creation starts to rise quickly. Pair creation is the process in which
a photon converts to an electron–positron pair. Pair creation was first observed by
Carl David Anderson in 1933 in the context of the discovery of the positron [81].
Due to energy momentum conversation, this process is only possible in the vicinity
of a nucleus transferring a bit of its energy. The energy Eγ of the photon must
exceed the threshold for the creation given by [82]

Eγ ≥ 2mec
2 + 2

m2
ec

2

mnucleus
. (5.1)
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5 Reconstruction of Photon Conversions

Figure 5.1: Total photon cross section in carbon (left) and lead (right) as a function
of the photon energy. The different contributions are indicated by: σp.e.:
atomic photoelectric effect, σRayleigh: Rayleigh scattering – atom neither
ionized nor excited, σCompton: Compton scattering, κnuc: pair production
in nuclear field, κe: pair production in electron field, σg.d.r.: photonu-
clear interactions (giant dipole resonance). Figure taken from [72] and
modified.

As the mass of the electron is much smaller than the mass of the nucleus, the second
term can be neglected. At the energies measured in ALICE starting above 10 MeV
this is already fulfilled and the pair creation is the dominant effect. Pair creation
can also happen in the vicinity of an electron field, but is strongly suppressed, as
can be seen in Fig. 5.1.

The kinematics of the pair creation is described by the Feynman diagrams shown in
Fig. 5.2. Let ε be defined as the ratio of the photon energy to the electron mass:

ε =
Eγ
mec2

. (5.2)

Then, in the limit ε� 1/(αZ1/3), where complete screening by atomic electrons of
the nuclear charge appears, the cross section for pair production σpair is [82][83]

σpair = 4αr2
eZ

2

(
7

9
ln

183

Z1/3
− 1

54

)
, (5.3)
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5.1 The Physics of Photon Conversions

Figure 5.2: The two Feynman diagrams for pair creation.

where α is the fine-structure constant, Z is the atomic number and re is the classical
electron radius. For the asymptotic case the term 1

54
can be neglected, and it follows

σpair ≈
7

9
4αr2

eZ
2 ln

183

Z1/3
≈ 7

9
· A
NA
· 1

X0

(5.4)

with X0 being the radiation length introduced in the previous chapter and NA is
the Avogadro number. This equation is accurate within a few percent down to
1 GeV [72]. The photon conversion probability is thus given by [83]

P = 1− e−
7
9
X
X0 . (5.5)

For the understanding of the kinematics of a photon conversion two observables
are of interest. The first one is the angular distribution of the electron or positron
with respect to the photon. An overview is given in [73]. The mean angle is of the
order of θ ≈ mec

2/E0. E0 is the energy of the created electron/positron. This angle
vanishes at large energies. The explicit probability distribution is approximately
given by

Φ(θ0)dθ0 =
θ0dθ0

Θ2 + θ2
0

, Θ =
mec

2

E0

. (5.6)

This formula is not valid for energies of the order of mc2. An approximation for the
angle between the electron and positron is given in [84]:

Θ+− ≈ 1.6 MeV/Eγ. (5.7)
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In addition, there is the asymmetry given by the energy fraction x = E1/(E1 +E2),
where E1 is the energy of the electron/positron with the lower energy and E2 the
one with the higher energy. A calculation of the cross section of the positron or
electron σ(E+)=σ(E−) can be found in [73] and [85]. From this cross section the
ratio can be obtained. At photon energies of 100 MeV the distribution of the energy
fraction is nearly flat and for higher energies it starts to peak at the edges.

5.2 The Kalman Filter Particle Package

In the photon conversion method, the fact is exploited that the photons convert
to an electron–positron pair with a negligible energy loss during the transition.
These charged particles can make signals in the tracking detectors and then be re-
constructed. In the simplest approach, the closest distance between the tracks is
considered as an estimation of the conversion vertex and the momentum of the pho-
ton can be estimated using the daughter momenta.
Due to further topological and physical constraints, more information can be used
for the reconstruction of the photon kinematics as shown in the previous section. In
case of the photon conversion of a primary photon, these constraints are the com-
mon conversion vertex, an invariant mass constraint of zero and the primary vertex
as production vertex of the photon.

A commonly used method in ALICE that was developed for short-lived particles
but also for photon conversion is the Kalman Filter Particle package or short KF-
Particle package. A precise insight into the state-of-the-art application is given in
[86] and [87]. Beyond the value for photon conversion reconstruction, decay chains
can also be reconstructed.

The principle behind the KFParticle package is to use the Kalman filter intro-
duced in Chapter 4 for mother particle reconstruction. Instead of reconstructing
tracks from position coordinates, mother tracks are updated by recursively adding
daughter tracks treated as measurements. Also, physical and topological constraints
are handled as measurements. Again, the starting point is a state vector and its
covariance matrix. The canonical choice is given by

r = {x, y, z, px, py, pz, E, s} (5.8)

with the position and momentum, as well as the energy E and s = l/p the length of
the particle trajectory l normalized to its momentum. After an initial guess of the
state vector, Kalman updates using the state vectors of daughters tracks and the
corresponding covariance matrices deliver a common estimate of the state vector
including the fit quality. Thereby, a common vertex is constrained. Mother and
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Figure 5.3: The KFParticle package consists of the Kalman filter operating on
track level. Other constraints can be added as additional pseudo-
measurements. Updates are performed at a vertex estimate, which
is then a vertex constraint. Input and state are of the same
parametrization.

daughter tracks are handled with the same set of parameters. After the reconstruc-
tion of the mother particle, a transport along the trajectory parameter including the
covariance matrix can be performed. This allows a precise reconstruction of decay
chains. Moreover, particles can also be removed afterwards. Due to the architecture
of the implementation, the KFParticle package is a high-performance solution for
vertex and mother particle kinematics reconstruction. The procedure is summarized
in Fig. 5.3.

An important property of the KFParticle package is the handling of constraints.
Constraints are fitted as additional measurements. The "Lagrange multipliers" tech-
nique is a standard tool to implement hard constraints to fits. This is not feasible
in the Kalman filter approach. Instead, soft constraints are added as measurements,
i.e. regularization terms. Thereby, it is considered that the hard constraint is a
particular case of the soft constraint. Besides a primary vertex constraint also a
non-linear mass constraint can be applied [87]. Especially in the case of mass con-
straints, a linearization of energy momentum conservation leads to tails of the mass
distribution. Thus, the solution used in the KFParticle package for this particular
case includes an iterative ansatz of the Lagrangian multiplier problem.

5.3 Reconstruction of Photon Conversions using
the ALICE TPC

In this section, it is shown how a typical photon signal extraction proceeds in ALICE
for photon conversions that take place mainly in the ITS and also in the TPC. As

43



5 Reconstruction of Photon Conversions

an example, a Pb–Pb analysis at
√
sNN = 2.76 TeV is shown following reference [88].

For this application, the excellent tracking and PID capabilities of the ALICE TPC
are exploited.

The photon extraction procedure can be divided into four steps:

• candidate selection

• track and V0 cuts

• PID cuts

• photon cuts

The most important cuts are listed and explained in this section.

First, candidates are searched via the so-called V0 finder. The online V0 finder,
which runs during the reconstruction, searches for two unlike-sign tracks with a ver-
tex that is at least 1 mm away from the primary vertex and a minimal distance
between the tracks of less than 1.5 cm. A cut on the pointing angle is then per-
formed. This is the angle between the vector pointing from the primary vertex to
the vertex estimate and the common momentum of the track pair. The cosine of
the pointing angle must be greater than 0.9.
The output of the V0 finder are not only photon candidates but also K0

s , Λ and
Λ̄. The tracks are refitted using the KFParticle method introduced in the previous
section. A common χ2 is thus given as selection quality criterion. Moreover, a re-
calculation of the vertex takes place where the electron and positron are considered
to have parallel momenta at their origin, as the photon is massless.
Besides other track quality criteria, it is required that the photon conversion takes
place within a conversion radius of 5 cm < Rconv < 180 cm and |zconv| < 240 cm
with a transverse momentum of pT > 0.05 GeV/c of the daughter tracks and a pseu-
dorapidity |η| < 0.9 for the daughter tracks as well as the mother track. In addition,
a cone selection is applied that removes tracks that lie outside the fiducial region.
These cuts allow a signal within the TPC.

For the TPC PID an electron signal of the form of −3 < Nσe < 5 is required.
Nσe is the deviation to the mean dE/dx in terms of standard deviations for elec-
trons. Additionally, pions are rejected for momenta of 0.4 GeV/c < pe < 2 GeV/c
via Nσπ > 3 and for pe > 2 GeV/c via Nσπ > 1. If available, additional TOF PID
is applied via −5 < Nσe < 5. The TPC signal is shown in Fig. 5.4, before and after
all selection cuts are applied.
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Figure 5.4: The TPC signal left before and right after all selection cuts are applied
for real Pb–Pb data at

√
sNN = 2.76 TeV. Especially the PID rejection

cuts are clearly visible. Figure taken from [88].

To benefit from the topological constraints given by the kinematics of a photon
conversion different variables are introduced. The longitudinal momentum asymme-
try α is given by

α =
pe

+

l − pe
−

l

pe
+

l + pe
−

l
, (5.9)

where pl is the component of the electron/positron momentum pointing vector in
the direction of the photon. The transverse component is then given by qT =
pe · sin(θV0,e). The plotted distribution given by qT versus α is called Armenteros-
Podolanski plot [89]. The distribution is commonly used for the separation of dif-
ferent V0 candidates. For the photon conversions, α is symmetric, as the daughter
particles have the same mass and qT is nearly zero. In [88], a two-dimensional elliptic
cut is applied on this distribution via(

αV 0

αV 0
max

)2

+

(
qT

qT,max

)2

< 1, (5.10)

where αV 0
max

= 0.95 and qT,max = 0.05 GeV/c. The Armenteros-Podolanski plot as
given in [88] before and after all selection cuts are applied is shown in Fig. 5.5.

An appropriate fit quality is guaranteed via a cut on the photon χ2
γ/ndf of 20 given

by the KFParticle package.
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Figure 5.5: The Armenteros-Podolanski plot before and after applying all cuts, i.e.
an elliptic cut on the given distribution. The variables are described in
the text. Figure taken from [88].

The opening angle ξpair is defined as the angle between the electron and positron
momentum vectors at the conversion point:

ξpair = arccos

(
~pe− · ~pe+
|~pe− | · |~pe+ |

)
. (5.11)

The angle between the xy plane where the magnetic field affects the bending and
the plane in which the opening happens is defined by

ψpair = arcsin

(
∆θ

ξpair

)
, (5.12)

where ∆θ = θe− − θe+ is defined as the difference between the polar angles of the
electron and positron. The definition of ψpair is illustrated in Fig. 5.6. This angle is
cut at ψpair,cut = 0.1 rad.
In addition, this cut is put in relation with the fit quality χ2 using a two-dimensional
cut

|ψpair| <
−ψpair,cut

χ2
γ,cut · χ2

γ

+ ψpair,cut (5.13)

with the cut values given before.
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Figure 5.6: The angle ψpair is the angle between the plane defined by the momentum
vectors of the electron and of the positron and the xy plane. Figure taken
from [90].
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6 Dataflow and Differentiable
Programming

In the following chapters, frameworks and methods for machine learning are used in
the context of track and particle reconstruction and the estimation of corresponding
parameters. In this chapter, the main concepts of some of these tools are presented.
More concretely, the tracking and the photon conversion fit were implemented using
modern machine learning tools.

In recent years, there have been big steps forward in the area of machine learn-
ing, especially in the subcategory of deep learning [6]. These advances were mainly
driven by the capability of deep neural networks to automatically discover represen-
tations from raw data in the areas of image, video, speech, text and audio processing.
These raw data are handled as a data flow via array-based programming, as the ex-
ecution of neural networks is based on multidimensional array operations (called
tensor operations within TensorFlow [8]). For instance, matrix multiplications and
corresponding linear algebra operations provide a high parallelizability and thus a
very efficient computation on multiple Central Processing Units (CPUs) and Graph-
ics Processing Units (GPUs). Recently, there is also a growing market for special
devices for this purpose such as Tensor Processing Units (TPUs) [91].

For the optimization of deep neural networks a stable minimization of a loss function
with respect to a large number of free parameters is necessary. To accelerate the
research, many machine learning frameworks were developed for the implementation
and deployment for large scale machine learning models. The most popular ones
are TensorFlow [8] and PyTorch [9]. These frameworks provide the possibility for
flexible design and experimentation with new models and research while delivering a
high parallelization with low effort. The models are optimized for the corresponding
devices (system resources), which are automatically allocated. For the stability of
high dimensional parameter minimization of both frameworks the automatic differ-
entiation feature is crucial. Automatic differentiation exploits the chain rule and the
fact that computational operations are reduced to combined basic operations to give
derivatives with working precision, i.e. not a numerical approximation is used. In
this work, the implementation of the TRD stand-alone tracking is based on Tensor-
Flow and therefore the following description refers mainly to functionalities given
by TensorFlow. An implementation using PyTorch would also be possible. The

49



6 Dataflow and Differentiable Programming

Figure 6.1: An example for a computational graph with the corresponding reverse
graph for gradient calculation. The gray lines indicate variables that are
not used in the backward graph. Figure taken from [8].

application of Graph Neural Networks in Chapter 10 is based on PyTorch, as with
PyTorch Geometric [92] a very convenient framework for these purposes is provided,
that is also well documented. In Chapter 10, the theoretical background of Graph
Neural Networks is then also introduced.

Based on the dataflow programming paradigm in TensorFlow, computational graphs
in the form of directed graphs are produced. These graphs result in the big advan-
tages of TensorFlow compared to conventional programming methods.

On the one hand, there is the very efficient and stable gradient computation via
automatic differentiation, short AutoDiff. Other forms of gradient computation are
numerical differentiation and symbolic differentiation. AutoDiff is more accurate
and less compute intense than numerical differentiation [93]. The accuracy is of
the order of machine precision. In contrast to symbolic differentiation, it delivers
efficient runtime calculations. In TensorFlow, procedures for the derivative are reg-
istered for primitive differentiable operations. Now, for each tensor gradient tensors
are computed by extending the computational graph [8]. After first creating the
computational graph in forward direction, it backtracks again and for each node the
partial derivatives are calculated using the chain rule. This procedure is visualized
in Fig. 6.1. The goal is not to calculate a formula as in symbolic regression, but an
efficient and accurate computation.
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On the other hand, computational graphs deliver the opportunity to (automatically)
split the execution of the program onto a broad variety of multi-device settings in
the context of a parallelized execution. The generation of the graph and the execu-
tion of the graph are different steps, and can be done in different environments. For
instance, one can create a model in a python environment and the execution can be
performed using the C++ API. For the following implementations this functionality
was used for the coupling of ROOT environments with TensorFlow models. There-
for, the rapid prototype advantages of for instance python and jupyter notebooks
were exploited in this thesis. Worth to mention is also the TensorFlow profiler, which
can be used to precisely analyze where time consumption of the models happen and
where optimization can give improvements.
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7 Stand-Alone Tracking with the TRD

In this chapter, the algorithm and performance of the TRD stand-alone tracking is
shown. The TPC and the other detectors are not used in this approach. Thus, the
reconstruction is completely independent. Particles that are produced in the outer
region of the TPC and in front of and within the TRD can be observed with this
approach. In the following chapters, the photon conversion will be used as main
application. A new TRD tracklet reconstruction and calibration was developed
for Run 3 [94]. A variation of this reconstruction is used within this work for
the stand-alone tracking. Here, not only TRD tracklets along the TPC tracks are
stored, as in Run 2, but all possibles signals are measured. Lower momenta can be
achieved by also allowing a larger inclination of the tracklets compared to the new
standard tracklet reconstruction approach for Run 3. Using the modified approach,
the full potential of the tracking procedure can be shown. This reconstruction is
introduced in the first section. Then the properties of the used data set are shown.
The challenges of the tracking are explained, and the algorithm is motivated. The
following sections focus on track finding and parameter estimation. Finally, the
performance is discussed.

7.1 Tracklet Reconstruction

As an input to the stand-alone tracking, the TRD tracklets are used with their po-
sition and direction vectors. Several steps are performed to obtain this information
from the charge deposition generated by the charged particles which ionize the gas
in the detector. The charge deposition is stored as ADC counts in 24 time bins.
In LHC Run 3, TRD tracklets are generated online based on a new calibration. A
prototype of this new calibration is applied for the data that is used within this
work. The following description of the algorithm is based on [94]. Three important
steps are performed: First, the spatial position of the ADC digits is calibrated for
a shift due to the Lorentz angle and an inaccurate drift time. Then the relevant
clusters are calculated using a cluster finder. Finally, a straight line fit of the clusters
is applied that delivers the position and direction. In Fig. 7.1 the raw clusters and
the corrected clusters are shown for the different time bins.

The TRD chambers are aligned in a way that the magnetic field is perpendicular to
the electric field in the chamber. This leads to a drift of the ionized charges that is
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Figure 7.1: Left: The ADC counts for 24 time bins. Right: The raw cluster positions
and the cluster positions after the correction are shown for the different
time bins. Figure taken from [3].

not directly in the direction of the anode wire, but under a certain angle called the
Lorentz angle. This affects the tracklet position and direction. The second effect is
the drift time that may vary due to gas pressure, gas mixture fluctuations and/or
high voltage changes. The slower drift of the backflowing ions also leads to an ef-
fective change of the drift velocity. By using a certain fit model, both effects are
entangled and corrected for. This is done using default values as a starting point
and the TPC tracks that are prolonged to the TRD as a reference.

The next step is the cluster finding. Starting point is the maximum ADC count
in a chamber for each of the 24 time bins. The ADC counts in an interval of ±3
pads in each column in y direction and ±1 pads in each row in z direction are added.
This procedure is performed for all ADC counts above a certain threshold. The po-
sition of the clusters is weighted by the ADC counts subtracted by the baseline.

These clusters are the foundation for the final fit. Up to 24 clusters from the differ-
ent time bins are connected by a straight line fit. The straight line fit based on the
three-dimensional orthogonal distance regression is performed using the so-called
singular value decomposition (SVD). The intersection of the straight line with the
anode wire plane is calculated. This position together with the direction vector
defines the final tracklet.
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7.2 Data Set

The stand-alone tracking was developed and tested using different data sets:

• simplified GEANT4 simulation of a TRD-like detector

• simple toy simulation of the TRD including detector effects

• 300k events p–Pb MC data at
√
sNN = 5.02 TeV with additional pions injected

• 10M events p–Pb real data at
√
sNN = 5.02 TeV

The purpose of the simplified GEANT4 simulation is to visualize the interaction
with the material and obtain a clear impression of how the kinematics looks like.
For this purpose, a simplified setup was used by taking six silicon layers instead of
the gas chambers. The distance between the layers is equal to the real one and also
the material budget was implemented in a realistic way. In addition, a few cen-
timeters before the first layer, a lead plate was placed to induce additional photon
conversions. Now, neutral pions and other particles can be injected and with the
GEANT GUI the interaction and topological hits can be visualized. In addition,
the exact hit position is saved in a file. Examples of photon conversions as given
by this simulation are shown in Fig. 7.2. A goal of the tracking is to find and re-
construct such electron–positron pairs from photon conversion with a high accuracy.

With the experience of the GEANT simulation for test purposes of the tracking
algorithm, a toy simulation was developed that includes the most relevant detector
effects of the electrons: multiple scattering and bremsstrahlung. Also resolution
effects and the pad tilting of the TRD can be tested. With this simulation, all
these effects can be analyzed separately. This separation is especially important for
development of tracking, debugging, performance tests and cross checks.

Roughly 300k p–Pb MC data were simulated at
√
sNN = 5.02 TeV using the HIJING

event generator [95] to test the functionality and obtain corresponding performance
plots. For later parts of this work, in addition to the particles coming from the
p–Pb collision, 50 extra neutral pions were added to each event. The transverse
momentum of these injected neutral pions lies between 1 and 5 GeV/c as in this
region there are naturally fewer pions in the production distribution from the colli-
sions due to the steeply falling pion transverse momentum spectrum. The η range
is between -0.85 and 0.85. Two drawbacks should be noted here. On the one hand,
with the given TRD calibration the real label of the corresponding tracks to the
tracklets is not propagated through the reconstruction steps and thus not available
on the tracklet level. Thus, an additional matching was performed of the MC tracks
with the tracklets. Here, it can happen, that a track is lost due to the interaction
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7 Stand-Alone Tracking with the TRD

Figure 7.2: Two photon conversions from a simplified GEANT4 TRD simulation.
Photons are indicated by green lines, while the charged tracks are shown
in yellow. The hits are indicated by the red points. Many photons
from bremsstrahlung can be seen. A goal of the tracking is to find and
reconstruct the electron/positron tracks.

with the material and not matched. Also fake tracklets might be assigned. In the
corresponding sections, more information regarding this procedure will be provided.
On the other hand, the calibration was applied to real data and there might be a
difference in the drift time and thus the MC data is most probable calibrated worse
than the real data. But, in contrast to the real data, the alignment of the chambers
in the MC data is perfect.

The tracking was also tested using 10M real p–Pb events at
√
sNN = 5.02 TeV

at the beamtime LHC16q. To finally achieve a good performance with these data is
the most important goal. An event display of a full p–Pb event is shown in Fig. 7.3.
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Figure 7.3: All tracklets of a real real p–Pb event in an event display. The TRD
chambers are indicated by the boxes.

7.3 Challenges of TRD Stand-Alone Tracking

To motivate the tracking algorithm, it should be clear which challenges for the
tracking should be kept in mind. All considerations are made with respect to recon-
structing photon conversions in front of and within the TRD, and other tracks that
are generated far away from the interaction point. It was shown, that only about
6% of the tracklets generated by the standard TRD online tracking are produced
by primary tracks in [62]. With the new tracklet reconstruction algorithm used in
this work, it is expected to be similar. In the case of primary tracks, a track seeding
using the TPC tracks should be favored and used as in [62]. In this work, tracklets
from particles that do not produce TPC tracks should also be considered.
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In this section, the focus is on the main challenges of the stand-alone tracking:

• the material budget

• noise tracklets

• empty layers

• shared clusters

• z pad resolution

• pad tilting

7.3.1 Material Budget

The reason for the large number of tracklets generated by non-primary tracks is the
increased material budget in front of and within the TRD. The distribution of the
radiation length as a function of the radial distance to the interaction point is shown
in Fig. 7.4. The increased amount of material in front of and within the TRD is
clearly visible. Four categories of material sum up to a total of 2.85% for one TRD
chamber in units of radiation length X/X0: the radiator (0.69%), chamber gas and
amplification region (0.21%), the pad plane (0.77%) and the electronics (1.18%) [3].
This leads to different effects like bremsstrahlung and multiple scattering that have
a significant effect on the tracking.

7.3.2 Noise Tracklets

Under the given circumstances a lot of tracklets cannot be assigned to a certain track.
As mentioned before, only 6% of the tracklets are generated by primary tracks. The
noise tracklets are generated due to the high material budget, for instance from
delta electrons or other knockout particles as well as electrons and positrons from
conversions. Also detector noise might play a role. Other sources for noise track-
lets are lost tracks due to multiple scattering with large angles or bremsstrahlung.
All these tracklets cannot be assigned to a certain track, either because they do
not belong to a track or there is not enough information to reconstruct the track.
These tracklets disturb the track reconstruction process and fake matches cannot
be completely avoided at high fake densities, for instance by curling tracks. As a
consequence, the tracking algorithm must be robust against outliers.
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Figure 7.4: The material in terms of the radiation length X/X0 as a function of the
radial distance to the interaction point for tracks in the xy plane. The
center of a TRD sector is equal to the center of a TOF sector. The large
contribution to the material budget in front of and within the TRD is
clearly visible. Figure taken from [96].

7.3.3 Empty Layers

A particle might not produce tracklets in all six layers. This leads to empty layers.
If only tracks with six tracklets are considered, the reconstruction efficiency suffers
and a lot of reconstruction potential would be lost.

There are different reasons for empty layers. Tracks might get lost at the edges
of a chamber or due to large bremsstahlung, multiple scattering with large angles,
and some particles are annihilated. Also some photon conversions occur within the
TRD such that the most inner layers naturally have no signal. Some chambers in
the middle of the track might not have a signal. There are different reasons for this.
For instance, a chamber could have a defect. Thus, another requirement is that the
tracking algorithm should work for all combinations of quartets spread over the six
layers in a row.
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Figure 7.5: In the middle of the shown sector the tracklets of a typical photon can-
didate from the p–Pb MC simulation can be seen in the xy plane. The
tracking algorithm must be capable of reconstructing the electron and
positron created by the photon conversion.

7.3.4 Shared Clusters

Shared clusters of multiple tracks are produced within the TRD in case two tracks
are very close. For instance, these are generated by photon conversions, where the
electron and positron especially at higher momenta cross the detector very close to
each other if these conversions happen in a TRD layer. In this case, the clusters
are spread over more pads and thus, the position resolution as well as the direction
resolution of the shared tracklets deteriorates. This leads to "natural" outliers.
Also the tracking has to be flexible and a tracklet might be assigned to more than
one track. The tracking algorithm should respect non-fake tracklets e.g. from other
particles nearby. A shared cluster as given by an electron–positron pair from a
photon conversion can be seen in Fig. 7.5.

7.3.5 Z Pad Resolution

The resolution of the pads in z direction is significantly lower than the resolution
in y direction. The pads have sizes of (0.515 – 0.965) × (7.5 – 9.0) cm2 (rφ × z).
The resolution given by the pad size is lpad/

√
12. This corresponds to a resolution

in y direction of around 0.2 cm and in z direction of around 2 cm. In reality, the
resolution depends on the inclination angle and is calculated for y via a fit over
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many measurements given by the time dependent signal in several time bins. Also
the charge sharing over adjacent pads comes into play. In case of the y direction,
this leads to effective values up to 0.04 cm for an optimal inclination angle in the
direction of the Lorentz angle [62]. In the case of the online tracking, the MCMs are
only connected to one pad row and thus clusters in z that are spread over more than
one pad cannot be found. The z resolution is therefore limited to the size of the pad.
A spread over more than one z pad is considered in the reconstruction used for the
studies shown in this work, but are expected to have a low impact. By using a pad
tilting, the z resolution is improved after accounting for this effect. More details
can be found in the next subsection. In the later course of this thesis it is shown
via a toy simulation that this pad tilting improves the z resolution by a factor of two.

The large z pad resolution has different consequences to be considered for the stand-
alone tracking. First of all, the z component of the direction vectors contain little
information, only direction vectors in the xy plane are useful. The second point is
that for a full helix fit the weights that determine the relation between the residuals
in y and z must be set appropriately. The position estimate in z is also not as good
as in the xy plane.

The impact of the size of the z resolution on tanλ and the z component of the
momentum can be estimated using the solution of an analytical linear fit. For the
assumption of a track with infinite momentum the curvature is zero and a straight
line fit can be performed as a function of the length/arc length in the xy plane. The
slope of the track is then given by tanλ. The uncertainty of the slope parameter
tanλ is given by

∆ tanλ =
∆z√

n(〈s2〉 − 〈s〉2)
, (7.1)

where ∆z is the resolution in z direction, n is the number of measurements and s is
the length/arc lengths in the xy plane. This relation is in general also approximately
correct for bent tracks where the momentum is not infinite. A large variance of the
arc length of the measurements leads to a lower resolution of the inclination due to
the larger lever arm. The resolution of the momentum in z direction can then be
found using pz = pT · tanλ as

∆pz =
√

(∆pT · tanλ)2 + (∆ tanλ · pT)2. (7.2)

Typical values for the uncertainty of tanλ lie between 0.03 and 0.044. The relative
pT resolution above 10% at the given momenta as shown later for the stand-alone
tracking is thus dominant for the total momentum.

Another effect of the low resolution in z direction is the impact on possible multiple
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Figure 7.6: The pads of the TRD are tilted alternating from layer to layer as indi-
cated in this sketch. Figure taken from [97].

scattering corrections. To exploit the effect of multiple scattering in the tracking,
the fact is used that the angle in y direction and the angle in z direction are corre-
lated. If it is not possible to resolve the multiple scattering angle in z direction, it is
not possible to correct for multiple scattering. Arguing via information theory, two
variables are added to the measurement, so two measurements are needed to correct
for this. Otherwise it just disturbs the measurement. In the case of the TRD a scat-
tering angle of roughly 1◦ is obtained, if assuming a very low momentum electron
with 100 MeV/c for a mean radiation length of 2.28% (one layer), calculated via
Eq. 4.9 in Ch. 4. For an arc length of the helix of 15 cm between two layers, a mean
angle of roughly 4◦ is obtained when considering a z resolution of 1 cm. Thus, the
possible uncertainty of a multiple scattering angle measurement between two TRD
layers is much larger than the real scattering angle.

7.3.6 Pad Tilting

To tackle the low z resolution, the pads are tilted [3][97]. A visualization is shown
in Fig. 7.6. The tilt is ±2◦ in the yz plane with respect to the z axis alternating the
sign with each layer. This very small tilt decreases the y resolution only marginally
while improving the z resolution. By introducing the corresponding correlations to
the uncertainties, an improvement of the z resolution is possible. The covariance
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matrix for the measurements is then given by [62]

CovTRD = R
(
σ2
y 0

0 σ2
z

)
RT . (7.3)

A rotation R is applied via

R =

(
cos βt − sin βt
sin βt cos βt

)
, (7.4)

where βt is the tilting angle. An alternative to implementing the tilt to the covariance
matrix is a change of the coordinate system at the corresponding measurement
position. By changing to a local rotated coordinate system with the pad tilt an
uncorrelated measurement can be performed.

7.4 Helix Fit

In this section, it is shown why the least squares helix fit is chosen for the track pa-
rameter estimation. The gold standard for charged particle tracking is the Kalman
filter. Nevertheless, the Kalman filter is not used in the presented approach. This
section is about the track parameter estimation. The track finding is described in
the next section.

The goal is to achieve a maximum efficiency in the track finding besides an optimal
parameter estimation. This means that with empty layers in between, a seeding
algorithm for the Kalman filter must be implemented that already iterates through
nearly all possible combinations, as only a maximum of six layers is available. A
usable seeding needs at least three tracklets. Thus, the track finding advantages of
the Kalman filter are not useful here. A combinatorial search must be implemented
anyway. The quality of the track parameter estimation is discussed after the fit itself
is introduced and then compared to other parameter estimation methods.

7.4.1 Fit Algorithm

For the track fitting, a real helix fit is performed in several stages in the track find-
ing. In the context of the implementation, the TensorFlow API with its autodiff
and vectorization capabilities was used. Thus, no linearization is needed and the
gradients are calculated automatically. This allows an easy feasibility study and fast
and flexible prototyping.
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7 Stand-Alone Tracking with the TRD

Figure 7.7: A sketch of the calculation of the residuals, i.e. the L2 distance between
measurement and prediction. The value of si converges to s̃i.

The starting point is the track model given in Ch. 4. The implementation starts
with the parametrization

x(s) = x0 −
sin(φ0)

C
+

sin(φ0 + Cs)

C
(7.5a)

y(s) = y0 +
cos(φ0)

C
− cos(φ0 + Cs)

C
(7.5b)

z(s) = z0 + tanλ · s (7.5c)

with x0, y0 and z0 being a point on the helix and s a running parameter along
the arc of the circle. For a curvature of C = 0 the singularity is removable and
thus a continuous transition from positive to negative charges is possible. In the
implementation the 1/C dependence was removed via trigonometric identities. The
center of the circle of the helix in the xy plane are given by

xc = x0 −
sinφ0

C
(7.6a)

yc = y0 +
cosφ0

C
. (7.6b)

As there is freedom in the choice of x0 and y0, now si is set such that
∑
si = 0 holds,

where i is the number of the layer. The points x0 and y0 are close to the center of
gravity of the hits. Since the center (xc, yc) is correlated with the curvature C, the
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chosen parametrization has the advantage that (x0, y0) is nearly uncorrelated to C.
The iterative algorithm starts with an initial guess for x0, y0, z0, φ0, C and tanλ.
The following residuals are calculated:

resx,i = xi − x(si) (7.7a)
resy,i = yi − y(si) (7.7b)
resz,i = zi − z(si). (7.7c)

The local running parameter si along the arc is calculated via ∆φi/C:

s̃i =
arctan2(C(yc − yi), C(xi − xc))− φ0

C
. (7.8)

This parameter is then normalized to si = s̃i−
∑
s̃i to fullfill

∑
si = 0. The value of

si converges to s̃i. In this way, the chosen points on the circle stabilize the fit. These
values for si are used to calculate the residuals. The residuals are in the xy plane
and not only in y direction, but the deviation is sufficiently small. The residuals
are weighted by rough estimates of the resolution. The full χ2 is given by the sum
of the weighted squares of the residuals. This can now be minimized using gradient
descent, resulting in a stable set of parameter estimates. A sketch of the calculation
of the residuals is shown in Fig. 7.7.

This fit is converging within very few optimizations steps. The amount of time
spent for the fitting is much less than for the track finding itself. In contrast to the
Kalman filter, this procedure is not very sensitive to the seeding of the parameters
and a seeding of the covariance matrix is not needed at all. The fit results are equal
to the Kalman filter in case there is no material and no corresponding adjustment
of the covariance matrix.

7.4.2 Advantages

The primary goal of the fit procedure is to have a tool for tracklet association to
track candidates. A high precision fit for electron/positron pairs from photon con-
versions is presented later. Here, also an increase of the purity can be reached. The
found parameters are then used as initial guess for the precision fit.

A commonly used choice for helix fits is the Karimäki fit as shown in Ch. 4. It
provides an analytical solution, i.e. it is non-iterative. But it was noticed that the
use of the square in Eq. 4.17 leads to a higher sensitivity to outliers. The conse-
quence is a systematic bias towards higher momenta. In the previous section it was
already discussed that a certain robustness towards outliers is a requirement for
the tracking. In addition, the used helix fit is a full three-dimensional fit that uses

65



7 Stand-Alone Tracking with the TRD

Figure 7.8: The probability density for the relative energy loss according to the Bethe
Heitler formula (Eq. 4.8) at 〈X/X0〉 = 25%. Ei is the initial energy and
Ef the energy after emitting bremsstrahlung.

additional information about the curvature given from the z resolution.

A big advantage of the Kalman filter is the uncomplicated handling of material
corrections. Due to the following circumstances, these corrections are not straight-
forward. On the one hand, there is multiple scattering. The extra information from
the scatter angles cannot be decomposed due to the large z pads as discussed be-
fore. Thus it only adds a smearing to the covariance matrix. In case of electrons,
which is the most important observable in this work, multiple scattering is a minor
effect. On the other hand, for energy loss corrections a particle identification guess
would be necessary. The fact that electrons/positrons from photon conversions are
in main interest in this work, one must be aware of bremsstrahlung. As shown in
Ch. 4, over the full range of momenta, this is the dominant effect. Fig. 7.8 shows the
distribution of the relative energy loss for a material thickness of 〈X/X0〉 = 25%.
This corresponds to the full material budget in the TRD. Electrons and positrons
might be created already in front of the TRD and even lose more energy. An in-
tegration shows an energy loss of more than 5% for 2/3 of the electrons/positrons.
There is no correction that can be applied to the Kalman filter to be added to the
covariance matrix as this is not a Gaussian effect. In general there is an adaption of
the Kalman filter that is capable to handle these kind of uncertainties, the Gaussian
Sum Filter [78]. But the given approach provides a sufficient track fit quality while
having a low complexity.

The chosen approach is sufficient for the candidate finding. The corresponding
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electrons/positrons from photons are then cleaned and fitted later with a higher
precision, and then also the bremsstrahlung is taken into account. Thereby, the
purity is also increased. Moreover, the influence of the pad tilting is then used to
increase the quality of the parameter estimation.

7.5 Combinatorial Search

The input to the tracking are tracklets with a position and a direction vector from
up to six TRD layers. The tracking has to face the following challenges: Empty
layers, noise tracklets, limited resolution of direction vectors, large z pad size and
high material budget.

To face the different challenges of the TRD stand-alone tracking, a purely com-
binatorial tracking was found to be optimal. To be more precise, this combinatorial
tracking is a hierarchical search. A sketch of the track finding procedure is given
in Fig. 7.9. The direction vectors in the xy plane of the tracklets are used to find
pairs of tracklets. These pairs are used to build quartets, which are then combined
to quintets and hexads. It is obvious that the runtime behavior is proportional to
the number of relevant combinations, i.e. quadratic, and there is a strong filtering
effect due to the hierarchical nature of the algorithm.

The track finding and fitting is separated, even though in some steps in between
fits are used as selection criterion. A cellular automaton as an alternative, as used
in other detectors, could be used in a similar manner, but is more complex. Combi-
natorial pairs would also be constructed. The chosen combinatorial track search is
suited for a high efficiency, depending on the demands. Shared clusters, necessary
for the reconstruction of photon conversions, can be handled. The final tracks must
include at least four tracklets, which are necessary for the fit to have enough degrees
of freedom, as the resolution of the direction vector is not sufficient.

The track finding consists of the following steps which will be explained in more
detail in the further course of this section: pair finding, quartet finding, quintets
and hexads, cleaning hexads, cleaning quintets, mixed cleaning and cleaning quar-
tets. The calculations are performed in the local coordinate system of each sector.

Tracklet pairs (Ti, Tj) are searched within one sector. They should lie either in the
same stack or a neighboring one. The layer of Tj is required to be further out than
the layer of Ti. The maximum distance between the tracklets is ∆l×30 cm, where ∆l

is the number of layers between the given tracklets. The direction vectors ~vi and ~vj
are then used in the following angle condition: cos(i, j) ≡ ~vi+~vj

|~vi+~vj | ·
~vij
|~vij | < cut, with the
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Tracklet pair building:

distance metric

angle condition

Quartet building

concatenate pairs to quartets

pair condition for inner tracklets

use fit quality criterion

Quintets and hexads:

check overlap

use fit quality criterion

Figure 7.9: The different hierarchical steps of the track finding. After quartets,
quintets and hexads are constructed, these are cleaned in case they are
similar and overlapping, as described in the text.

cut set to 0.9. The vector ~vij is the mean direction between the position of tracklet i
and tracklet j, which is equal to the pointing vector from the position of tracklet i
to the position of tracklet j. This is motivated by the fact that the normalized mean
direction of two direction vectors on a circle is equal to the normalized connecting
direction vector of the two points.

Quartet finding starts with a combination of all tracklet pairs (Ti, Tj) and (Tk, Tl).
The criteria for pairs are applied to (Tj, Tk) and (Ti, Tl). These candidates are fitted
with a helix fit, then a maximum curvature and a z constraint are applied. The
result is a sample of many quartets with any possible overlaps.

Quintets and hexads are constructed by combining two quintets (Ti,a, Tj,a, Tk,a, Tl,a)
and (Ti,b, Tj,b, Tk,b, Tl,b) with Tk,a = Ti,b and Tl,a = Tj,b for hexads, for quintets it ap-
plies Tj,a = Ti,b, Tk,a = Tj,b and Tl,a = Tk,b.

Now there is a large number of overlapping track candidates. So a cleaning of
the quintets and hexads is applied and only allows overlap in the first layers. All
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candidates are fitted again and χ2
xy and χ2

z cuts as well as a curvature constraint are
applied.

A mixed cleaning is implemented to reject all quintets that are part of the hexads,
quartets that are part of the hexads and quartets that are part of the quintets. In
case the fit of a hexad is much better than a fit of a quintet, the hexad is rejected
due to a possible outlier tracklet.
The quartet cleaning is then done in the same way as for the quintets and quartets.

The result is a sample of track candidates with four to six tracklets, the associ-
ated track parameter estimates and fit quality parameters. The cuts are chosen
such that the efficiency is sufficient high (≥ 95%). The purity may suffer, but all
possible photon candidates should be stored. A higher purity is achieved by using
more precise photon fits later in the case of the conversion candidates.

7.6 Tracking Output Evaluation

Due to the limited MC information that is provided by the given data sets, it makes
sense to first obtain a general impression of the performance of the tracking. The MC
data are limited as there are no labels assigned to the tracklets and only the track
parameters at the production vertex and the production vertex itself is given as MC
truth information. These parameters change when crossing the material, and this
local information is not provided. Thus, a purity cannot exactly be verified. A more
detailed analysis of the information given by the MC data is shown in the next sec-
tion. Nevertheless, some impression is given here for two variables for the p–Pb MC
data with added neutral pions and the real p–Pb data, both at

√
sNN = 5.02 TeV.

The focus is on the number of tracks per event and the number of tracklets per track.

The first variable is the number of tracks per event found by the stand-alone tracking
in comparison to the TPC tracks. This is shown in Fig. 7.10 in a two-dimensional
histogram for MC and real data, respectively. The number of found TRD tracks is
much lower than the number of TPC tracks from the standard track reconstruction.
The injected neutral pions for the MC data lead to a minimum number of tracks,
which shifts the distribution to more TRD tracks.

The acceptance of the TRD is reduced by the space between the supermodules
and also by faulty chambers. This reduces the number of tracks in the TRD. Be-
sides that, primary low pT tracks do not reach the TRD. In the real data, many
high multiplicity TPC events have even lower TRD multiplicities due to pile-up in
the TPC. This effect is not present for MC data. In reality, some TRD chambers
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Figure 7.10: Left: Number of TPC tracks versus number of TRD tracks per event
for p–Pb Monte Carlo data with added π0s. The TRD tracks are found
by the TRD stand-alone tracking. Right: The same for real p–Pb data.
In general, there are differences between the real and the MC data, as
described in the text.

are broken for a certain period of time and the calibration is not always working
properly. The ratio between TPC tracks and TRD tracks for the MC data is roughly
30% and for the recorded data only 10%. The added neutral pions in the MC data
result in a large number of photons. The electrons/positrons from the photon con-
versions are quite well reconstructed. This can be seen, as there is a similar number
of electron–positron pairs produced within the ITS before the TPC, as in the ma-
terial before and within the TRD, and a shift of the number of tracks arising from
these particles is more significant in the TRD than in the TPC. Low pT and heavy
particles experience a lot of multiple scattering in the TRD which is not the case
for the electrons from conversion.

Figure 7.11 shows the number of quartets, quintets and hexads per event. Whereas
there are more quintets than hexads, the number decreases for the quartets. This
pattern is the same for real and MC data. Another property of the implemented
tracking is that there are tracks that are counted twice. This happens if two track-
lets are close to each other and the requirement for the direction vector is satisfied.
These tracks will be cleaned for the conversion finding later, where a more precise
fit is applied and so the choice which candidate is more appropriate can be made.
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Figure 7.11: The number of tracks per event with a certain number of tracklets for
the MC data with additional π0 on the left and on the right for the real
p–Pb data. The number of tracks which share a cluster with another
track of the same charge is shown with the orange part of the bar.

Up to this stage this leads to a certain acceptable impurity. In Fig. 7.11 the number
of tracks that share a tracklet with another track with the same charge is shown.

7.7 Monte Carlo Performance

For a more quantitative impression of the performance of the stand-alone tracking
the given MC data are analyzed. Special attention is given to the secondary par-
ticles, which are of special interest in this work, i.e. electrons/positrons that might
arise from photon conversions.

As mentioned before, the exact association between the tracklets and the MC tracks
is not possible with the given data set. Only the production vertex, the momentum
information at the production vertex and the particle species are given as MC truth
information. Thus, to obtain performance plots, a matching is performed in two
steps. First, the tracklets are assigned to the MC tracks. Then, the tracklets found
by the tracking are compared to those from the MC matching. While propagating
through the detector, the local momentum changes. Thus, especially for primary
particles with a long path through the material in front of the TRD, the momentum
might significantly differ from the original momentum at the production vertex. As
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the focus is on secondaries that are created closer to the TRD the impact of this
effect decreases. But still, for instance particles with a lot of multiple scattering or
electrons with a large bremsstrahlung contribution might be lost. Nevertheless, up
to a certain level a clear impression of the functionality is given.
On the basis of the MC data three quantities are discussed: The efficiency with
respect to MC pT, the reconstructed pT compared MC pT and the closest distance
to the production vertex in the xy plane dcaxy, which is especially important for
photon candidate finding.

The purity of the tracking is not shown, as on the one hand, tracks might pro-
duce tracklets, for which the path changed so much that the tracklets cannot be
assigned to the MC track at the vertex anymore. On the other hand, as shown in
the previous section, there might be more than one track candidate corresponding
to one MC track. The tracking aims to find candidates for the photon conversion
fit, where a more precise fit gives more precise selection abilities.

7.7.1 Matching

To obtain performance plots, first the MC tracks and the TRD tracklets have to be
matched. A tracklet is matched to a track if three criteria are fulfilled:

• the distance in xy must be smaller than 3 cm

• the distance in z smaller than 8 cm

• the cosine of the angle between the direction of the track and the tracklet
direction must be larger than 0.92

These criteria already tolerate a certain amount of energy loss and multiple scat-
tering. Heavier particles and/or particles with a lower momentum are nevertheless
more likely to not fulfill the criteria. Tracks with at least four assigned tracklets
are taken into account as tracks that can be found by the tracking, as this is the
minimum number of tracklets required by the tracking. If more than one tracklet
fulfills the conditions, the one that is closer in the xy plane is taken.
A track from the tracking is matched to one of these MC tracks in case it shares at
least three tracklets, as only in this case enough information is given to determine
the structure of the helix.

7.7.2 Efficiency

The number of MC tracks that are matched to at least four tracklets that share at
least three tracklets with a stand-alone tracking track is the baseline for the pre-
sumed reconstructable efficiency. Certainly this number must be seen in view of
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Figure 7.12: The reconstructable tracking efficiency (see Sec. 7.7.2) for all particle
species as well as for electrons that are produced at vertices in radial
direction between 250 cm and 330 cm. At very low pT as well as at pT

larger than 0.6 GeV/c nearly all tracks are electrons. Thus, in these
regions the efficiency is equal for both shown samples. As other particles
than electrons/positrons have a higher multiple scattering contribution
the performance for them deteriorates at low pT.

the limitation of the MC tracks to tracklet matching. Some reconstructable tracks
might be lost, others might be fakes.
The resulting efficiency is shown as a function of transverse momentum in Fig. 7.12
for all particle species and for electrons/positrons. Only particles that are produced
between 250 cm and 330 cm in radial direction are considered for the calculation.
Primary particles are more likely to be fakes as mentioned before. The difference
in decrease of the efficiency of the samples at low momenta is due to the particle
composition where the other particles than electrons/positrons have a higher mul-
tiple scattering contribution, and thus the efficiency is lower. The efficiency starts
at above 80% and quickly saturates at above 97% for the electrons/positrons at
transverse momenta of about 300 MeV/c and for all species at about 500 MeV/c.
Especially, the electrons/positrons that are important for the photon conversion
studies are reconstructed very well. A part of the inefficiency may also come from
fake MC matches.
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Figure 7.13: The inverse transverse momentum multiplied with the charge number
q/pT of the matched tracks from the tracking is shown versus the origi-
nal q/pT of the Monte Carlo information on the left side for all matched
tracks and on the right side for the tracks with six tracklets in the Monte
Carlo matching as well as the tracking. At the red line, Monte Carlo
q/pT and tracking q/pT are equal.

7.7.3 Momentum Resolution

In Fig. 7.13 the tracking q/pT, where q is the sign of the charge, versus the MC
q/pT is shown in two-dimensional histograms for all matched tracks and for the
optimal case where the MC tracks have six tracklets assigned and also the tracks
from the stand-alone tracking have six tracklets assigned. As expected, the TRD
stand-alone tracking does not provide a very good pT resolution, but the purpose
of the procedure is the selection of the tracks. A rough estimate leads to a relative
uncertainty clearly larger than 10%, increasing to higher values with increasing
momenta due to the smaller lever arm. This momentum resolution was roughly
confirmed by a toy simulation. The histogram delivers two other important insights
into the tracking. The first one is that there is no clear shift of the mean. Thus, at
this point it is sufficient to neglect the energy loss. The second point is that the tail
from bremsstrahlung is clearly visible, especially for low q/pT. The final fit for the
photon conversion candidates delivers a more precise pT resolution. Due to the large
lever arm, this then provides an acceptable resolution that a stand-alone tracking
of single tracks cannot provide without using the primary vertex in addition to the
tracklets.
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Figure 7.14: The minimal distance in the xy plane of the track to the production
vertex dcaxy given by the Monte Carlo information is shown, on the
left side in a two-dimensional histogram as a function of pT, and on the
right side, as a projection for the full pT range. The red line indicates a
perfect match. In case of values of dcaxy larger than zero, the produc-
tion vertex is outside of the circle. Only those tracks with a production
radius larger than 250 cm are shown.

7.7.4 Vertex Resolution

More important for the reconstruction of the photon conversions than the pT reso-
lution is the distance of the found track to the production vertex. In the following,
for this quantity a signed value is used, and a negative sign means that the distance
between the vertex and the center of the circle is smaller than the radius of the
circle. A cut on this quantity is the main selection criterion for photon conversion
candidates. In that case a smearing appears, as the vertex is not known and, in-
stead of the distance between a point and track, the distance of closest approach
between two tracks is calculated. A decreasing pT resolution for large momenta has
a smaller impact as the tracks get more straight. The distance in the xy plane is
shown in Fig. 7.14 in a two-dimensional histogram as a function of pT, and as a
one-dimensional histogram. In the two-dimensional histogram it can be seen that
the distance to the vertex is centered over the whole pT range and the structure does
not change. From the one-dimensional histogram it can be seen that the resolution
is of the order of a centimeter. A tail from bremsstrahlung can also be seen. This
allows a clear selection of candidates for photon conversion finding.
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8 Synchronous Fitting of Daughter
Tracks from Photon Conversions

In this chapter, the newly developed method of full synchronous photon conversion
daughter track fitting using the conversion topology is introduced. In the following,
this fit is called syncfit. The syncfitter operates on a preselection of electron–positron
pair candidates based on the TRD stand-alone tracking and its helix parameter es-
timates shown before.
The aim is to identify electron–positron pairs from photon conversions in the TRD
and to measure all necessary kinematic variables of primary photons. Before showing
the performance on a full Monte Carlo simulation and real data in the next chap-
ter, the concept and mathematical formulation is presented and evaluated using a
toy simulation. This has the advantage that all detector effects can be analyzed
separately and no distortions by a non-optimal track selection are included. This
provides a detailed understanding of the syncfit and its performance. Thereby,
this new method is also compared to the standard method for photon conversion
daughter fitting, the KFParticle package [86][87]. Using the topological (geometri-
cal/kinematical) constraints, a significant resolution gain of the photon momentum
can be obtained compared to using the single fits and combine them. This is a
consequence of the reduction of degrees of freedom within the fit.

8.1 Concept

In this section, the basic idea of the syncfit is described. The syncfitter simulta-
neously implements a classifier and regressor for photon conversion candidates. In
this sense this algorithm provides a full synchronous fit of preselected TRD track-
lets generated by daughter tracks of photon conversion candidates, i.e. the electron
and positron track, simultaneously. Essential topological constraints given by the
underlying physics of a conversion from a primary photon are implemented. This
implies that a photon hypothesis test based on the fit quality can be used as selec-
tion criterion. In this context, a primary photon is defined as a photon originating
at the primary vertex, which means its point of creation is indistinguishable close
to the primary vertex.

As many of the criteria as possible given by the topology of the photon conver-
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Figure 8.1: The full topology of a photon conversion is fitted via the syncfit, includ-
ing the primary vertex, the conversion vertex as common point on the
helices of the daughter tracks, and a vanishing opening angle is assumed.
The long lever arm strongly constraints the direction of flight.

sion should be fulfilled. The following assumptions are taken into account:

• the primary vertex is known with infinite precision compared to the resolution
given by the TRD

• the opening angle of the electron–positron pair can be assumed to be zero

• the conversion radius R in the xy plane is in a specified range [Rmin,Rmax]

• the daughter tracks cross the outermost TRD layer

By using the fact that the daughter tracks have a vanishingly small opening angle
the constraints φe+ = φe− and λe+ = λe− are defined. These are the angles as de-
fined by the helices. In addition, these angles are fixed by the common vertex: the
conversion vertex. Then, only the curvatures Ce− and Ce+ remain. So in total, the
conversion vertex and the transverse momenta are the five free parameters. These
are for instance given by the conversion vertex (R cos (φ), R sin (φ), R tanλ) and the
transverse momenta of the daughter track represented by the curvatures Ce+ and
Ce− . Thus, it is obvious that the conversion vertex constrains the angles. A sketch
of the topology is shown in Fig. 8.1. In contrast, two uncorrelated free helices have
twelve parameters. The information gain by the syncfitter is the reason for the im-
provement of the momentum resolution and the reason why uncorrelated fake tracks
are assigned a bad fit quality and can be rejected.

The algorithm proceeds in the following steps: The starting point is an initial guess
based on the helix fits (seeds). The actual syncfitter is split into two parts: A stable
fit that does not use the exact layer crossing positions. The residuals are minimized
in the xy plane, i.e. not only in the y plane, and in the z plane separately. Starting
at the conversion vertex, both daughter tracks are propagated iteratively from layer
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to layer leading to certain predictions of the track in the local system at the layer
crossing position. In the second step, the final syncfit is fed with the results of
the first step as a seed, but with the exact layer crossing position and thus, with
residuals only in the local y and z plane. Only in the second step, energy loss and
pad tilting are included. Thereby a loose selection of good tracks is already applied,
requiring a certain χ2 criterion after the first step. Stabilizing regularizations are
included in both steps. All derivatives of the complete chains of detailed formulas
are provided by the TensorFlow autodiff functionality. Based on these derivatives,
a stable minimization process of the residuals is performed. The full algorithm is
automatically parallelized, i.e. some parts are vectorized.

8.2 Technical Implementation

As mentioned before, candidates consisting of two helices with four to six tracklets
each, are fed to the syncfitter. Shared clusters are allowed. The syncfitter consists of
two stages, which are described in parallel within this section. First, the syncfitter
stage two is described in detail, as this one is more precise and the first stage is a less
constrained version of the second one. A special emphasis is placed on regularization,
which stabilizes the fit, and the pad tilting. The energy loss correction is explained
in passing. The algorithm provides a quadratic loss function including regularization
that is minimized iteratively. A summary of the different steps is shown as a sketch
in Fig. 8.2.

8.2.1 Stage 2

Starting at the proposed conversion vertex (seed or result of the previous iteration),
each track is transported from layer to layer in the xy plane after being transported
to the first layer after the conversion vertex. This happens in the local coordinate
system of the respective TRD sector. The distance between the layers ∆xn is known
exactly. The transport is given by

sin(φn+1) = Cn∆xn + sin(φn) (8.1a)
yn+1 = yn + cos(φn)/Cn − cos(φn+1)/Cn (8.1b)
sn+1 = (φn+1 − φn)/Cn (8.1c)

where yn is the coordinate in the plane of the TRD layers. φn is the local angle of
the momentum in the xy plane. Cn is the local curvature that might change during
the propagation process due to energy loss. With

cos(φn)− cos(φn+1) =
cos2(φn)− cos2(φn+1)

cos(φn) + cos(φn+1)
(8.2)
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Figure 8.2: The syncfitter consists of two stages. Starting with single helix can-
didates as input, reasonable seeds for stage 1 are generated. Stage 1 is
then necessary to deliver stable seeds for stage 2, to avoid computational
issues. Thereby, some corrections for higher precision are neglected and
bad candidates are removed afterwards.

Eq. 8.1a and Eq. 8.1b are combined to

yn+1 = yn +
Cn∆x2

n + 2∆xn sin(φn)

cos(φn) + cos(φn+1)
. (8.3)

This equation is numerical more stable due to the eliminated 1/C dependence. To
avoid singularities also for the arc length sn+1 a Taylor series up to order C2 was
calculated via SymPy [98] and implemented. In this context it might be noted that
the circle center coordinates are implicitly changed by the choice of the parametriza-
tion in the case energy loss occurs. In this parametrization only the momentum is
modified. Note that if |Cn∆xn + sin(φn)| > 1 the arcus sinus is undefined. To
avoid this, regularization terms are included. After each transport, the curvature
is increased by a factor of ef∆x to correct for the mean energy loss by bremsstrahlung.

The results are the predictions yn in each layer n. With these predictions, the
residuals in y are calculated. They are given by

resy,n = yn − ymeas
n . (8.4)

If there is no signal in a certain layer (given by dummy values of x = −999 and
y = −999), the residual resy,n is multiplied by a weight of w = 0. This conserves the
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input shape and with that also the parallelization capability of the implementation
using TensorFlow.

With these residuals, the χ2
y is calculated. On the z axis tanλ and the z-coordinate

of the vertex z0 are calculated by using

z(s) = z0 + s tanλ (8.5)

where s is the arc length in the xy plane. Here, the primary vertex assumption is
used to calculate z0 according to

z0 = tanλ
√
x2

0 + y2
0 + zprim

0 . (8.6)

zprim
0 is the z coordinate of the primary vertex. Hence, the residuals in z are given
by

resz,n = wn · (zn − zmeas
n ) (8.7)

where zn = z(sn) with the arc length sn is calculated at each layer n in the xy plane.

By minimizing the full χ2 given by

χ2 = χ2
xy + χ2

z + χ2
reg, (8.8)

including also the regularization χ2
reg, the minimization takes place for the global χ2

and the y and z residuals are optimized due to the chain rule applied by TensorFlow.
For further comparisons the χ2 is corrected by the weights wn.

The minimization process is stabilized by the autodiff functionality of TensorFlow.
The autodiff mechanism is capable of propagating the derivatives through the com-
plete transport chain. Thus, this functionality enables the implementation of the
full concept of the syncfit.

8.2.2 Stage 1

In case syncfitter stage 2 is seeded with bad starting parameters, issues could appear
due to values in undefined regions. Syncfitter stage 1 solves this issue and has the
functionality to produce more precise seeds and fit parameters from two helix fits as
input for stage 2. Stage 2 then optimizes the fit by the mentioned detector effects.
Thus, energy loss and pad tilting is neglected in stage 1.

There is only one global transport from the vertex to all layers to increase the
parallelizability. The neglected energy loss correction enables this transport mecha-
nism. To avoid the undefined arguments of the arcsin due to more fakes and worse
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seeds, the residuals in the xy plane and not in the y plane are calculated. These
residuals are given by the shortest distance between the circle and measurement as
already used for helix fits in the tracking. This has the advantage that circles that
do not reach the last layer still have a residuum.

The following seeds are calculated from the two single helices as input to stage 1:
The curvatures are taken from the helix fits. The seeding x coordinate of the vertex
is the closest measured x value to the primary vertex, and the y coordinate is the
mean of the two closest measured y values of the two tracks.

8.2.3 Regularization

There are some fake photons or bad seeds in the preselection that lead to exceptions
in the syncfitter (not invertible error, divergences). If the exception handling is done
individually, the parallelization is broken. Therefore, a regularization loss is added
to the full χ2. These extra constraints help the fit to converge (faster) and to avoid
exceptions. The full loss of these fakes takes high values which allow one to identify
them and increases the classification properties of the syncfitter.

A continuous cut-off of the following constraints is applied using the Relu func-
tion, which is commonly applied in neural networks as activation function. It is a
linear function for values larger than zero and elsewhere zero. The first of these
regularization constraints force the conversion vertex to be more than 60 cm away
from the primary vertex. The radii of the circles are set to more than 50 cm, corre-
sponding to a transverse momentum of at least 75 MeV/c. |asin(φ)| must be smaller
than unity such that the track reaches all layers. Finally, the full χ2 is minimized
with respect to the parameters.

8.2.4 Pad Tilting

The pads in the TRD are tilted by the tilt angle αtilt by two degrees with alternating
sign from layer to layer. Thus, the residuals need to be modified for optimal fitting.
The residuals are corrected by a rotation

yres,tilt = cos(αtilt)yres − sin(±αtilt)zres (8.9a)
zres,tilt = sin(±αtilt)yres + cos(αtilt)zres. (8.9b)

The sign within the sine is alternating from layer to layer.
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8.2.5 Multiple Scattering

As mentioned in Ch. 7, it is not possible to resolve multiple scattering in the ALICE
TRD due to the limited z resolution. Thus, a multiple scattering correction is not
included in the syncfit. But in general, an extra loss term that exploits the angle
could be included. Based on [99] an extra loss of the form

χ2
MS =

∑
i

(
Θ2
i

σ2
Θ,i

+
Φ2
i

σ2
Φ,i

)
(8.10)

can be added. Here, Φ and Θ are the azimuthal and polar multiple scattering angles
and i is the index of the clusters/tracklets. The derivatives of the angles would
again be automatically propagated via autodiff. This extra term was tested. It adds
complexity, but had no effect on the result.
It should be mentioned, that, in the case that multiple scattering dominates the
global momentum and local direction, parameters of a helix fit can be determined
by only using the multiple scattering uncertainties. This is done in [99].

8.3 Syncfitter versus KFParticle

In this section, the difference between the syncfit method and the KFParticle pack-
age [86][87] is described qualitatively. The KFParticle package is used as the stan-
dard method to include the photon conversion topology to the fits of the daughter
tracks in ALICE. The main difference is that the KFParticle package is based on
tracks, i.e. not on the underlying tracklets directly, including their covariance ma-
trices. In contrast, the syncfitter operates on the full sample of individual tracklets.
Thus, the correlation between the tracklets are conserved as input to the calculation.

The KFParticle package is based on simple matrix operations using the Kalman
filter technique. Thus, less complex computational operations need to be performed
compared to the syncfit approach. However, due to modern programming methods
with TensorFlow, the syncfit is reasonable fast for the given amount of data and
stable. Thereby, a more complex model in the syncfitter exploits the underlying
physics better and reflects the full information of the tracklets.

An important difference, which leads to more precise results, is the handling of
the topology. Within the syncfit the number of free parameters is reduced to only
five, as described before. Here, the topology is not considered as an external con-
straint, but as an intrinsic part of the model. In the case of the KFParticle package,
the fit results from the helices of the individual tracks are used as input includ-
ing their covariance matrices and used as measurements for the photon parameters.
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Here, the helices are the measurements. The topological constraints do not lead to a
reduction of the number of free parameters, but they are handled as extra (pseudo)
measurements. The Kalman filter is based on Gaussian measurements. In contrast,
the obvious complex correlations between the tracklets play a dominant role in the
syncfit. This has the following implications: While shared clusters or outliers dis-
turb the single fits heavily within the KFParticle, they play a smaller role for the
syncfit. The estimation from the syncfitter of both angles λ and φ, of the photon
kinematics, is excellent. For example, the azimuthal angle φ is restricted from both
sides by the innermost clusters in the TRD and the long lever arm to the primary
vertex. This directly causes a direction measurement of the electron and positron at
the conversion vertex. This direction measurement stabilizes the transverse momen-
tum measurement, especially also at higher momenta, where the small lever arm in
the TRD implies a decreasing momentum resolution.

8.4 Performance

To obtain a first unbiased impression of the performance of the syncfitter before ex-
ploring the complex TRD data, a simple toy simulation is set up. In the toy simula-
tion an electron–positron pair is drawn at a conversion vertex of (270±2) cm without
an opening angle. The transverse momenta of each electron/positron are indepen-
dently drawn from a uniform distribution between 0.15 GeV/c up to 2.15 GeV/c,
leading to a photon transverse momentum pT up to and above 4 GeV/c. For sim-
plicity, the angles φ and λ are set to zero. Signals are generated in all six layers
at the real positions of the TRD with a Gaussian resolution of 0.04 cm in y and
8/
√

12 cm in z. This corresponds to the optimal y resolution with an inclination
angle in the direction of the Lorentz angle. Thus, it is assumed that the z resolution
is dominated by the pad size. Multiple scattering is included according to the mean
material budget of a real TRD chamber. Bremsstrahlung and pad tilting are ne-
glected in this first step to study the raw performance of the syncfit in nearly ideal
circumstances.

In Fig. 8.3 the RMS of the photon parameters pT, φ and tanλ given by the syncfitter
are shown as a function of the transverse momentum in comparison to the perfor-
mance of the KFParticle package. For the KFParticle package, the input tracks
are fitted with the Kalman filter as implemented in AliRoot with the same seeding
algorithm as implemented there. Thus, this process is fully decoupled from the new
algorithms. The syncfitter is seeded with the standard helix fits as described before.
The excellent resolution of the syncfitter in φ and tanλ can be clearly seen, and
it outperforms the KFParticle package by far. Moreover, while with the KFParti-
cle package the small lever arm for large momenta in the TRD is noticeable by a
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Figure 8.3: Syncfitter and KFParticle performance for electron–positron pairs using
a TRD toy simulation with only Gaussian errors, no pad tilting and no
bremsstrahlung.

nearly linear decrease of the relative transverse momentum resolution from 2% at
low pT up to over 10% for 4 GeV/c, the syncfitter stabilizes the resolution also at
higher momenta as described in the previous section and the effect of the lever arm
is mitigated.

8.5 Detector Effects

In this section, the two corrections for detector effects that are applied in the sync-
fitter stage two are discussed, i.e. bremsstrahlung and pad tilting. Again, toy simu-
lations are used.
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Figure 8.4: Scatter plot of the fitted transverse momentum using the syncfitter
versus the true transverse momentum given by a toy simulation that
includes multiple scattering and bremsstrahlung. Left: Syncfitter in-
cluding the bremsstrahlung correction. Right: Syncfitter without the
bremsstrahlung correction. The red line indicates the perfect fit to which
the syncfit is centered after correcting for bremsstrahlung.

8.5.1 Bremsstrahlung

To illustrate the correction for bremsstahlung, the previous toy simulation is ex-
tended by bremsstrahlung. In Fig. 8.4, the output data of the toy simulation is
shown that is the result of fits with the syncfitter including this correction and
without this correction. Shown are the true (drawn) transverse momenta versus the
fitted transverse momenta in a two-dimensional histogram. It is apparant from the
figure that the correction works well and centers the momenta to the right posi-
tion. This also leads to a less biased χ2 in the selection of the photon candidates.
Nevertheless, a large tail remains towards lower transverse momenta.

8.5.2 Pad Tilting

Moreover, in Fig. 8.5 the effect of the pad tilting correction is shown. The toy simu-
lation is extended by tilted pads with an alternating angle of ±2◦. Bremsstrahlung
and multiple scattering are not considered in this test scenario. Now, tanλ is drawn
between −0.5 and 0.5, to study the impact on the z resolution. The distance be-
tween the fitted position in y and z and the real simulated true position of the track
is calculated. An improvement of the resolution of a factor of two is visible for both
dimensions. This was also confirmed using a loose fit, which is not shown. In the z
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Figure 8.5: The distance between the fitted position and the true MC position left
in y direction and right in z direction are shown for a toy simulation
of the TRD including pad tilting for a syncfit that includes a pad tilt
correction and one that does not include it. The distances are roughly
halved compared to before for y and z.

direction, this corresponds to the improvement given by applying a pad tilting and
in y this corresponds to removing the distortion given by the tilting. As the sync-
fitter uses the primary vertex, the tanλ resolution is excellent also without tilting,
and thus the tilting is not that important when using this kind of fit. But this plot
shows clearly that if tilting is used, a correction has a substantial impact on the
resolution of the transverse momentum, as the y resolution is improved by a factor
of two.
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9 Measurement of Photons from
Conversions in the TRD

In this chapter, the potential of photon reconstruction in the ALICE TRD is ex-
amined. In the previous chapters, it was shown that classical fits and the Kalman
filter in combination with the KFParticle package have disadvantages compared to
the syncfit. The workflow using the syncfitter is shown and afterwards the perfor-
mance using the full ALICE Monte Carlo simulation as well as real data is evaluated.

The following approach is applied: First, the tracking algorithm as shown in Ch. 7
is applied. Then a loose preselection leads to photon candidates that are fed to the
syncfitter. Based on quality criteria, photons are identified. Due to ambiguities, a
post cleaning is necessary based on fit quality measures.

Finally, the performance is evaluated using the efficiency and purity, as well as the
resolution of the track parameters as criteria. Moreover, the quality of the syncfitter
is investigated using as data driven measure the π0 invariant mass reconstruction in
real data. Independent of using the π0 invariant mass as quality measure, this is in
general an important physics observable in ALICE.

9.1 Preselection

The first step is the preselection of the photon candidates using the stand-alone
tracking helix fits and the associated tracklets. This selection is chosen to be very
loose to achieve a high selection efficiency, but as tight as needed to significantly
reduce runtime. The purity is increased afterwards by the classification capabilities
of the syncfitter. Here, the quality measure is more precise than in the individual
particle fits.

As the resolution of the pads in the transverse plane is much higher than the reso-
lution of the pads in z direction, first a simple selection criterion in the xy plane is
applied. It is based on the circle parameter estimates of the helices. The cuts are
based on the ideal concept where the circles touch and there is a vanishing opening
angle between the daughter pairs. To implement this, all unlike sign pairs of found
tracks in each event are combined. First, the distance between the circles ∆circles is
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calculated. This distance is defined as the absolute difference between the distance
of the two centers and the sum of the two radii:

∆circles =

∣∣∣∣∆centers −
1

|Ce+ |
− 1

|Ce−|

∣∣∣∣ . (9.1)

Ce+ and Ce− are the curvatures of the positron e+ and the electron e− candidates.
At this hypothetical conversion vertex in the xy plane also the z-distance ∆circles,z

between the helices is calculated. Additionally, a cut on the conversion radius at
this point is applied. The conversion radius is required to lie within a certain inter-
val, where it is expected to have good TRD reconstruction capabilities, and where
a measurement in the TPC is not possible anymore. The conversion vertex should
also be in a certain distance to the mean position of the associated tracklets. This
rejects candidates for which the conversion vertex guess is for instance on the op-
posite side of the detector. A guess for tanλ is calculated from the hypothetical
conversion vertex. It is compared to the tanλe+ and tanλe− as a further criterion
to ensure the right flight direction.

Some helix fits are disturbed by shared clusters and at large momenta the pT resolu-
tion is not sufficient for the selection. Thus, besides the described selection, further
criteria are applied. An additional selection includes pairs of helices with tracklets
that are closer than 20 cm in the three-dimensional distance. At larger momenta
sometimes an insufficient transverse momentum resolution leads to a switch of the
sign of the curvature. To tackle this problem, for transverse momenta larger than
1 GeV/c, the selection criteria are also applied with a switch of the sign.

The input to the syncfit is then given by two helices with opposite sign and be-
tween four and six tracklets each. Shared cluster are very common. The direction
vector of the tracklets is neglected in the following as the resolution is low and the
complexity of the fit algorithm would be increased. Nevertheless, it can make sense
to investigate the effect of this additional information in the future.

9.2 Post Cleaning

After the syncfit is performed, different selection criteria for reasonable tracks are
applied. Instead of a single cut on the full χ2 that is minimized during the fitting
process, three cuts on the constituents of this value are adjusted. The constituents
are the χ2 in y direction, the one in z direction and a regularization term. The
use of multiple cuts has the advantage that the regularization term due to a large
prefactor does not dominate the selection. Also a clearer selection is possible. The
raw output distributions from the syncfit of the different χ2 values including the
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Figure 9.1: The χ2 from the syncfit consists of a part in the local y direction and z
direction, as well as a regularization term. For the final photon selection,
single cuts on the different parts are applied. The distributions including
the cut values (red lines) are shown.

cuts are shown in Fig. 9.1. The choice of the cut values are adjusted by hand to find
a good trade-off between efficiency and purity. The purity and efficiency are shown
later in this chapter.

In the next step, further quality criteria are applied. On the one hand, the con-
version radius is required to be between 200 cm and 320 cm, such that a reasonable
measurable signal is within the TRD and within the range where the syncfitter
works best. On the other hand, the daughter tracks are required to have at least
three unique tracklets assigned beside the shared ones, to ensure enough information
for a reasonable helix. Furthermore, these unique tracklets are required to have a
distance of less than 1.8 cm in the xy plane to the output helix from the syncfitter
and the cosine of the angle between the tracklet direction and the fitted helix should
be larger than 0.97.

By allowing shared tracklets within the track finding, it sometimes happens that
two electron/positron candidates or more are combined with another photon daugh-
ter candidate. To avoid these cases and other similar ambiguities, shared tracklets
between two photon candidates are not allowed. For these cases the candidate with
the better χ2

y is chosen.
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9 Measurement of Photons from Conversions in the TRD

9.3 Performance using Full Monte Carlo
Simulation

Within this section, the identified photons are analyzed and compared to the MC
truth information. It should be noted, that as before for the MC information the
tracklets are not assigned to the tracks, but only the vertex position and the mo-
menta at the vertex, as well as the production vertex, are known. Thus, a matching
procedure is described not only for the matching between the MC tracks and the
identified tracks, but also between the MC tracks and the measured tracklets. This
procedure differs from the single track matching described before. Now a full photon
MC matching is implemented.

9.3.1 Conversion Vertices

An important measure of photon conversions are the conversion vertices, as they
give an insight into the material budget distribution. Furthermore, it is a check for
the proper functioning of the algorithm by a comparison of the MC truth vertices
with reconstructed MC vertices. Many conversions should be observed in areas with
a lot of material.

In Fig. 9.2 the vertices are shown in the xy plane and the z-Rconv plane. Shown
are only conversion vertices with a reconstructable vertex in the given Rconv and z
range. In the xy plane, it is obvious that photons are mainly reconstructed in a short
distance before and within the first two layers of TRD. Photons converting further
out cannot generate enough TRD tracklets to be reconstructed with sufficient qual-
ity. While in the MC data most conversion vertices are visible between the eighteen
supermodules, these cannot be reconstructed with the given algorithm as they do
not generate enough signals within the TRD. In the z-Rconv plane the main sources
of material for conversion are clearly visible. Seven clusters from support structures
of which six are symmetric around z = 0 can be seen. These can be assigned to
certain positions also for the MC truth information. The one closest to the primary
vertex is at z = 0 at the outer end of the central high voltage electrode of the TPC.
Two clusters are generated at the most outer distance of the end caps of the TPC.
Four cluster appear between the stacks of the TRD support structures.

Four different components can also be seen in the Rconv histograms in the low-
est row of Fig. 9.2. Tests have shown that a Gaussian smearing of 2 cm brings the
MC truth and measured histogram in the relevant range together and the double
peak structures are merged to single peaks. The peaks at the outer field cage can
be reconstructed very well.
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Figure 9.2: In the upper two rows the conversion vertices are shown, left the truth
information for all MC photons in the given window and right the recon-
structed vertices. In the lowest row, histograms with the distribution of
the conversion radii are shown.
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9 Measurement of Photons from Conversions in the TRD

Figure 9.3: The reconstructable efficiency as defined in the text. The efficiency dete-
riorates at low momenta due to multiple scattering and at high momenta
due to the spatial resolution.

9.3.2 Efficiency of reconstructable candidates

As mentioned before, only the momenta of the MC information at the true conver-
sion vertex are available. Thus, a matching procedure also for the MC tracks and
the measured tracklets has to be performed to obtain an efficiency measure. The
aim is to obtain the tracks that are likely reconstructable and from this, the relative
number of reconstructed tracks as a function of transverse momentum.

The matching procedure of the MC tracks and the tracklets for the photon con-
version daughters is as follows: The shortest distance between the tracks and the
tracklets in the xy plane is required to be less than 3 cm and in z less than 7.5 cm.
These values are larger than the detector resolution to consider for detector effects.
The cosine of the angle between the direction of the track and the tracklet direction
at the tracklet position should be larger than 0.98 corresponding to a maximum of
roughly 11.5◦. Every track is required to have at least four unique tracklets and a
maximum of two missing tracklets. The conversion vertex is required to lie in the
range 250 cm ≤ Rconv ≤ 320 cm. Furthermore, the radial position of the conversion
point needs to be smaller than the radial position of the assigned tracklets.

The next step is the matching of the tracklets that are assigned to MC tracks with
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9.3 Performance using Full Monte Carlo Simulation

Figure 9.4: The distribution of the angles between the MC true and the measured
information is very narrow in both directions of the coordinate system,
but especially in φ direction.

the tracklets found by the reconstruction algorithm. Tracks that have at least two
tracklets for each daughter track in common with the syncfitter tracks are counted
as matched.

The resulting efficiency plot is shown in Fig 9.3 as function of the transverse momen-
tum. Over the whole range an efficiency of roughly 90% can be achieved. It increases
at low momenta up to higher momenta, where multiple scattering plays a role and
decreases for large momenta, where the tracking resolution deteriorates. Still, fake
matches in the MC matching procedure with the tracklets cannot be excluded, and
the efficiency might be better than shown.

9.3.3 Purity

While examining the data, it was found that many tracks that are not matched
via the given matching procedure for the efficiency probably are still photons. As
mentioned before, the tracklets are not perfectly assigned to the MC tracks due to
multiple scattering and bremsstrahlung. But as shown in this section, the purity is
nevertheless good. For the estimation of the purity a different appropriate matching
procedure is applied.

The toy MC simulation already showed that the angular resolution of the sync-
fit is excellent. For the so far used matched candidates, the resolution in φ and λ is
shown in Fig. 9.4. Here, the cosine of the azimuth angle difference cos(φMC,meas) is
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9 Measurement of Photons from Conversions in the TRD

Figure 9.5: The purity for different matching criteria. A clear selection of primary
photons compared to looser selections with also secondary photons and
looser matching criteria show that secondary photons are the dominating
source of contamination.

defined by the normalized scalar product of the conversion vertices in xy:

cos(φMC,meas) =
xconv,MCxconv,meas + yconv,MCyconv,meas

Rconv,MCRconv,meas
. (9.2)

For demonstration, 1− cos(φMC,meas) is plotted. The values in the distribution cor-
respond to angles smaller than 0.1◦. Also the difference between tanλ for measured
and MC tracks is shown in this figure, which is very small as well. As in the MC data
only a handful of conversion take place per event, a selection using these criteria is
sufficient. Thus, for calculating the purity, the MC matching with the tracklets is
neglected and only a vertex matching of the MC vertices with cuts on the angles
given in Fig. 9.4 is performed.

In Fig. 9.5 the resulting purity is shown as a function of pT for different scenar-
ios. The first selection requires a production of the photon at the primary vertex
and selection of cos(φMC,meas) > 0.99999 as well as ∆ tanλ < 0.03. For these pri-
mary photons, it can be seen that starting at 80% purity at momenta of 0.3 GeV/c
the purity rapidly increases up to 1.5 GeV/c to above 95%. The same tight match-
ing including secondary particles already shows a large increase for the whole range
to nearly at least 90%. If now also the selection cut is loosened, over the whole
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9.3 Performance using Full Monte Carlo Simulation

Figure 9.6: The tanλ distribution of the vertices for matched tracks and unmatched
tracks for transverse momenta smaller than 0.8 GeV/c. A comparison
with Fig. 9.2 shows that the contamination comes still from those areas
with a high material budget. Thus, also most of the leftover contamina-
tion tracks probably originate from secondary photons.

range more than 95% can be achieved. Many secondary photons appear due to
bremsstrahlung. These cannot be distinguished physically from primary tracks if
they point to the primary vertex within given detector resolution. These appear
more often at low momenta as the low momenta bremsstrahlung contribution is
more probable.

In Fig. 9.6 the normalized tan (λ) distribution of the unmatched MC candidates
after applying the loose cuts and for all matched candidates for transverse momenta
smaller than 0.8 GeV/c is plotted. It becomes obvious that the remaining impu-
rity also mostly originates from the areas with a high material budget as shown in
Fig. 9.2, more than for the matched candidates. In these areas, the probability to
generate bremsstrahlung is larger. Thus, the purity is even higher than calculated if
also secondary photons are considered, which unfortunately cannot all be excluded.

9.3.4 Transverse Momentum Resolution

With the tight selection via the vertex matching, it is now possible to estimate the
transverse momentum resolution for primary photons. In Fig. 9.7 on the left side the
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9 Measurement of Photons from Conversions in the TRD

Figure 9.7: Left: The MC pT versus the measured pT. Even though the distribu-
tion is well centered, a tail from bremsstrahlung remains. Right: From
different slices from the distribution left, the resolution is calculated.
The crystal ball function is fitted to the different histograms. To ac-
count for the tail, not only the Gaussian sigma is shown, but also the
FWHM/2.3548, to emphasize the effect from bremsstrahlung.

MC pT is shown versus the reconstructed pT from the syncfitter in a logarithmic two-
dimensional histogram. It is well centered, but the large tail from bremsstrahlung
remains towards smaller measured momenta, which is especially visible due to the
logarithmic scale. A tail from outliers also appears at large momenta, as here the
previously mentioned lever arm plays a role. In that case, only a very small segment
of the full circle of the motion of the particle is subtended by the area of the TRD.

To obtain a quantitative description of the resolution, projected slices of the two-
dimensional histogram are fitted using a crystal ball function as given in the python
framework SciPy [100]. This function accounts for lossy processes, as given by
bremsstrahlung. In particular, the tail of the bremsstrahlung can be described by
this distribution. It has the form

f(x;α, n, x̄, σ) = N ·

{
exp(− (x−x̄)2

2σ2 ) for x−x̄
σ
> −α

A · (B − x−x̄
σ

)−n for x−x̄
σ

6 −α
(9.3)
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√
sNN = 5.02 TeV

with

A =

(
n

|α|

)n
· exp

(
−|α|

2

2

)
(9.4a)

B =
n

|α|
− |α| , (9.4b)

where N is a normalization factor. The distribution consists of a Gaussian part and
a tail towards low values.

The corresponding fits of the transverse momentum distribution can be found in
appendix A. In Fig. 9.7 in the right plot, the resulting standard deviation from
the Gaussian part, as well as the full width half maximum (FWHM) divided by
2
√

2 ln 2 ≈ 2.3548 are plotted for the different fitted transverse momentum inter-
vals. The FWHM is used to account for the tail and see the corresponding effect.
The chosen factor is the ratio between the FWHM and the standard deviation of
a normal distribution. The fits are only shown up to momenta of 3 GeV/c, as for
higher momenta the tail towards large momenta is not described by the fit function
anymore. The tail from bremsstrahlung becomes more significant for large momenta.
For small momenta, tracks with a lot of bremsstrahlung are more probable during
track reconstruction. Up to more than 1 GeV/c, the resolution is better than 10%
and quite stable, even though the segment of the circle becomes very small.

9.4 Performance using real p–Pb data at
√
sNN =

5.02 TeV

The next step is to verify the functionality of the syncfitter using real data. Roughly
ten million p–Pb events at

√
sNN = 5.02 TeV from the 2016 run are analyzed. The

same photon selection cuts as for the MC data are applied. About 1.6 million
photons are found and reconstructed. The corresponding transverse momentum
distribution is shown in Fig. 9.8 with a log scale on the y-axis. The rise of the
distribution starts at 200 MeV/c and a significant number of photons can be found
starting at 250 MeV/c.
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9 Measurement of Photons from Conversions in the TRD

Figure 9.8: The transverse momentum distribution for all identified photons with a
log scale on the y-axis. The lower boundary to measure photons from
conversions in the TRD are transverse momenta of 200 MeV/c.

Figure 9.10: The distribution of the conversion radii for real measured photons. The
most outer peak is more pronounced as there are more tracks with lower
transverse momenta.
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√
sNN = 5.02 TeV

Figure 9.9: Photon conversion vertices for all identified photons left in the xy plane
and right in the z-Rconv plane. The density is plotted in a logarithmic
scale.

As for the MC data, in Fig. 9.9 the conversion vertices are also shown in logarith-
mic two-dimensional histograms in the xy plane as well as in the z-Rconv plane.
Compared to the MC reconstructed vertices in Fig. 9.2 photons from the support
structures are less pronounced. Especially in the TRD layers, a lot more conversions
take place. By having a larger relative number of low pT photons than in the MC
simulation, later conversion are more probable to be measured. These effects can
also be seen in the one-dimensional histogram of the conversion radii.
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9.5 π0 Reconstruction

With the reconstructed photons it is possible to reconstruct the neutral pion and eta
meson. The π0 decays to two photons with a branching ratio of (98.823 ± 0.024)%
and the η decays to two photons with a ratio of (39.41 ± 0.20)%. Energy and
momentum conservation delivers the invariant mass via

Mγγ =
√

2Eγ1Eγ2(1− cos θ12) (9.5)

with the energy Eγ1 and Eγ2 of each of the two photons and the angle θ12 between
the momenta of both photons.

For the real data the two photon invariant mass spectrum is shown in Fig. 9.5
in the upper plot. For all two photon combinations the invariant mass is calculated
with Eq. 9.5 and shown as a histogram. The well known mass of the neutral pion as
well as the mass of the eta meson are indicated by red lines. The π0 peak is clearly
centered at the right position, but a tail from bremsstrahlung remains. This pro-
vides a further cross check that shows that the photon reconstruction works properly.
There is not enough statistics to see the η meson. The lower plot of Fig. 9.5 shows
the invariant mass vs. the transverse momentum. A lower transverse momentum
limit of roughly 0.7 MeV/c can be achieved for the reconstructed neutral pions.

Furthermore, the photons reconstructed with only the TRD can now be combined
with photons reconstructed with the TPC and thus increase the full π0 reconstruc-
tion efficiency. To do so, the TPC photons are reconstructed based on the TPC
tracks with a simple photon finder. This simple photon finder uses the preselection
criteria with adjusted cuts that were used as input for the syncfit before. This se-
lection is based on the distance between two helices with opposite charge sign. This
selection does not deliver a very high purity, but it is efficient and thus the inte-
gration of the π0 peak gives a reasonable estimate of the number of reconstructable
particles. The invariant mass for two photons from the TPC is shown in the upper
panel of Fig. 9.12. Due to the higher momentum resolution of the TPC the peak is
of course narrower. Also, there is a higher photon efficiency such that the peak of
the η meson can already be seen with the available 10 million events.
In the lower panel of Fig. 9.12 the combined invariant mass of the TPC and TRD
photons is shown. As expected, the width of the peak is of a magnitude between
TPC only and TRD only. But also with this combination a small eta peak is visible.

To obtain a quantitative estimate of the increase of the π0 efficiency, the invari-
ant mass peaks are fitted together with the background. The following function was
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Figure 9.11: Top: The invariant mass spectrum of π0 candidates from two photons
reconstructed only with the TRD. The red lines indicate the values for
the invariant mass of the π0 as well as the η meson. A clear π0 signal
can be seen. Bottom: The invariant mass is shown vs. the transverse
momentum. A lower limit of roughly 0.7 GeV/c can be achieved.
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Figure 9.12: Top: The invariant mass for π0 candidates from two photons recon-
structed with the TPC. Bottom: The invariant mass for π0 candidates
with one photon reconstructed in the TRD and the other in the TPC.
In both cases, a clear π0 signal and a small η signal can be seen.
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chosen, similar as in [101]

f(Mγγ) = A · (g(Mγγ) + e(Mγγ)) + r(Mγγ) (9.6a)

g(Mγγ) = exp

(
−1

2

(
Mγγ − µ

σ

)2
)

(9.6b)

e(Mγγ) = exp

(
Mγγ − µ

λ

)
· (1− g(Mγγ)) · (µ−Mγγ) (9.6c)

r(Mγγ) = a+ bMγγ + cM2
γγ. (9.6d)

In total, there are seven free parameters (A, µ, σ, λ, a, b, c). Thus, the background
is described with a polynomial of third order and the signal with a Gaussian and
an exponential function accounting for the tail from bremsstrahlung. The fits are
shown in appendix B. Integrating each signal delivers 2239 TRD-TRD π0s, 16636
TPC-TPC π0s and 10315 TRD-TPC π0s. Thus, there is an increase from only
TPC-TPC π0 of about 75% when including both other combinations.
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10 Identification of Inelastic Interactions
of Light Antinuclei and the Sexaquark
using Graph Neural Networks

Besides photon conversions also other interaction in the material in front of and
within the TRD can be detected and analyzed. As in Ch. 2 presented, interesting
candidates are the identification of inelastic interactions of light antinuclei as well
as the identification of the exotic sexaquark state.

These interactions were analyzed with MC data and it was found that not enough
tracklets of daughter tracks exist in most cases to use the stand-alone tracking
approach. In recent years, graph neural network (GNN) gained attention as an al-
ternative to the established tracking methods. An overview can be found in [13]. In
this chapter, a first feasibility study for the identification of interactions with the
TRD using GNNs for the two mentioned physics topics is presented.

10.1 Introduction to Graph Neural Networks

Especially for image processing tasks, neural networks were a great success in the last
years. Convolutional neural networks played a crucial role in this context [6]. De-
tector signals can often be considered as three-dimensional images. Unfortunately,
the corresponding detector data is very sparse. But the sparse data points can be
put into a mathematical relation by formulating them as graphs. Neighborhood
relations, i.e. metrics, can be exploited using a graph formalism.

To show why graph neural networks (GNNs) are a proper tool to operate as an
alternative to the given tracking algorithm, graphs, neural networks and then fi-
nally graph neural networks are introduced within this section. First, graphs in
general are introduced and it is shown why they are a mathematical model of raw
data for particle tracking. Then, the basics of neural networks are introduced, before
it is finally shown how they can operate on graph structured data.
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Figure 10.1: Examples of a directed graph (left) and an undirected graph (right).
Figure taken from [102].

10.1.1 Graphs

A graph is constructed from data points, the nodes, which are generally unordered.
The relation of the nodes to the other nodes is given by edges. In our use cases
each node is assigned a certain number of features and also the edges can be as-
signed features. Global graph attributes might also exist. Let N v be the number of
nodes, or also called vertices, and N e be the number of edges. Not all vertices are
connected with each other. The connection, i.e. the given edges, can be defined by
the adjacency matrix. The dimension of this matrix is N v ×N v, and it is typically
sparse as most nodes are not connected. The edges between the nodes are either
directed or undirected. An illustration is shown in Fig. 10.1. Alternatives to the
adjacency matrix are the incidence matrix with the dimension N v ×N e, where the
connection between the nodes and the edges is described, and the coordinate list
with the dimension 2×N v as a list of all connected nodes.

Now, it is trivial that the tracks in a detector can be expressed as graphs. In
this context, the detector clusters might be the nodes with the position coordinates
as the features and the connections, given by the track of the particle, are the edges.

10.1.2 Neural Networks

In this section, modern neural networks are described in the context of classification
and regression applications. Only supervised learning is considered in this work, i.e.
labeled data is used to optimize the models.

In general, the neural networks are fed with a certain number of input features.
These input features are propagated through several layers, that are connected by
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weight matrices. Only neurons of consecutive layers are connected, which reduces
the number of parameters and the complexity. The output is finally given by the
output neurons, that are either a real number assigned to different classes or certain
regression values. After a normalization, the output of the different classes can be
interpreted as a probability. Thus, efficiencies can be defined. In case of a binary
classification, where signal and background are defined, the signal efficiency can be
determined as a function of the background efficiency. Such a plot is known as Re-
ceiver Operating Characteristic (ROC) curve.

The fitting of the neural network to the labeled data is performed by minimiz-
ing a certain loss function with respect to the weights of the neural network. This
complex minimization procedure using gradient descent variants can nowadays be
performed by the tools provided for differentiable programming as shown in Ch. 6.
For classification tasks the cross entropy loss turned out to be a good choice, for
regression one could for instance use the squared error loss, depending on the given
circumstances (e.g. Gaussian errors).

In the following, different building blocks that are relevant within this work are
introduced: dense layers, convolutional layers and the pooling layers. On simple
tabular data, a wide variety of neural networks can be constructed with only dense
layers. The other shown building block, the convolutional layers and pooling layer,
led to the big success of large scale models for image classification, starting with the
AlexNet [103]. This illustrates the basic functionality of modern neural networks.

The dense layers are the simplest building block used in modern neural networks.
Here, each neuron of the previous layer is connected with each neuron from the sub-
sequent layer. To describe non-linear behavior, the linearity is broken by applying a
non-linear activation function on top of the given output. Let ~xl be the input layer
l. The output of the dense layer l + 1 is provided by

~xl+1 = φ(Wl~xl +~bl), (10.1)

where Wl is the weight matrix which is optimized during the optimization proce-
dure and ~bl are learnable bias weights. A typical choice for the non-linear activation
function φ is the ReLU function (ReLU(x)=max(x, 0)).

Convolutional layers led to a big breakthrough in the field of image classifica-
tion. These perform especially well for data structured like images (e.g. n × m pixel
with neighborhood relation), as they profit from weight sharing and thus the number
of parameters is reduced drastically, and the network training is stabilized. Instead
of connecting the previous layer with all neurons from the subsequent layer, certain
windows are chosen, e.g. 3×3, and on each of the given two-dimensional windows of
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Figure 10.2: The AlexNet consists of convolutional layers, pooling layer and dense
layers. Figure taken from [103].

the input the same weights are used. New pixels with a definable number of features
are generated. Thus, local features are learned. Later, these are combined to global
features by further operations.

A pooling layer reduces the total size of image-like data. The output values within
certain window sizes are condensed to a single value by applying simple operations
like using the max value or the average value.

In Fig. 10.2 AlexNet as used in [103] is shown as an example of a full convolutional
network. The different building blocks are used consecutively and recurring.

10.1.3 Graph Neural Networks

The previously explained convolutional layers, which operate on image-like data,
where the coordinates are given in a canonical way, can now be naturally gener-
alized to graph structured data. As mentioned before, a more abstract relation
between the feature vectors of the different nodes is given by the adjacency matrix.
It should be mentioned that the input shape defined by the number of nodes might
vary within the input data, i.e. the number of input nodes and edges varies from
input to input.

In this section, two variants of graph neural networks that operate on the given
data structure, i.e. with each node vector having the same size and no edge features,
are given. The first one are the graph convolutional networks as proposed in [104]
and the second one are the graph attention networks which have first been proposed
in [105]. The most important operations of these networks, the graph convolution
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and graph attention, preserve the number of nodes after each layer and result in
each layer being a graph with a new number of features. Every layer corresponds to
a message passing to its neighbors.

The graph convolution is defined as [104]:

H(l+1) = σ
(
D̃

1
2 ÃD̃−

1
2H(l)W (l)

)
. (10.2)

Here, the adjacency matrix A including self-connections is given by Ã. The degree
matrix of the corrected adjacency matrix is given by D̃ii = ΣjÃij. The weights of
the given layer are called W (l), and H(l) is the matrix for activations in layer l, for
instance the input nodes are given by H(0). The activation function σ might again
be the ReLU function. The degree matrix D̃ normalizes the input. It is split to
ensure the symmetry of the normalization.

For the graph attention layer [105] the first step is to calculate the attention co-
efficients eij from the features ~h for each node i with its neighbors j

eij = a
(
W~hi,W~hj

)
, (10.3)

whereW is a weight matrix and a is a single-layer feedforward network. The network
a is parametrized by a learnable weight vector ~a with a LeakyReLU (max(x, βx),
with β the slope parameter) such that the output is a real number:

eij = LeakyReLU
(
~aT
[
W~hi||W~hj

])
(10.4)

The symbol || represents a concatenation. The attention coefficients are then nor-
malized via a softmax function for all neighbors k of each node:

αij = softmaxj(eij) =
exp(eij)

Σkexp(eik)
(10.5)

The final node features are then calculated via

~h
(l+1)
i = σ

(
ΣαijW~hlj

)
(10.6)

by applying an activation function σ. An extension of this mechanism is the appli-
cation of several attention coefficients in parallel, called multi-head attention. An
illustration of the algorithm is shown in Fig. 10.3.

On the basis of the shown algorithm, different kinds of regression and classification
tasks can be performed: node classification, edge classification and graph classifica-
tion. For the graph classification, that is of interest in this work, a global pooling
needs to take place after several steps of message passing.
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Figure 10.3: Left: First, the attention coefficients are calculated. Right: Then the
message passing is performed. In this case, multi-head attention with
three heads is shown. Figure taken from [105].

10.2 Identification of Inelastic Interactions of Light
Antinuclei

In this section, the results from the bachelor’s thesis from Max Hammermann ‘Iden-
tification of inelastic interactions of light antinuclei in the Transition Radiation De-
tector in ALICE using Graph Neural Networks’ [106] are summarized. This thesis
provides a first example of the identification of nuclear interactions in the TRD with
GNNs. A brief physics motivation is given in Sec. 2.5.

As the tracks that are generated by the nuclear interaction are not well-structured
and many fragments exist with less than four tracklets, it is not feasible to use a
straightforward track finder as for the photon conversion analysis. In this Monte
Carlo study, nuclear interactions of charged antinuclei are analyzed. These provide
a higher cross section than the corresponding positively charged nuclei and are es-
pecially interesting for dark matter searches. Due to the nuclei being charged, TPC
tracks might exist. The TPC tracks are extrapolated into the TRD and along the
tracks TRD tracklets are collected that serve as an input to the GNNs. Now, the
goal is to classify whether a nuclear interaction of these antinuclei takes place or
not. Within this study, a perfect TPC track matching is assumed.
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10.2.1 Dataset

For this study, an MC simulation with 257,200 p–Pb events at center-of-mass ener-
gies of

√
sNN = 5.02 TeV were generated. The previous analyzed data could not be

used, as it was necessary to use GEANT4 [107]. In GEANT3 nuclear interaction are
not considered. In addition, in each event antinuclei are injected: one antideuteron
(d), one antitriton (t) and one antihelium-3 (3He). This is an additional benefit of
the new simulation and provides enough statistics for these studies.

The target volume to identify interactions is set to a radial distance from 270 cm
to 345.5 cm. This includes most of the interactions right in front and within the
TRD that are well measurable. Tracks with a daughter creation before these 270 cm
are rejected. Furthermore, to ensure a sufficient data quality, the MC antinucleus
momentum is larger than 0.3 GeV/c and |η| < 0.84 to reach the TRD. Now, signal
events are required to have at least two daughter tracks with a momentum larger
than 40 MeV/c.

The following values serve as input to the final training procedure: All tracks that
are closer than 35 cm to the TPC tracks are used. This selection rejects a sufficient
number of noise tracklets. At least seven tracklets are required, such that a reason-
able graph can be constructed. These tracklets now serve as nodes for the input
graph to the GNN. Besides the position and direction of the tracklets, the three-
dimensional distance to the TPC track was calculated as an additional node feature.

In Fig. 10.4 and Fig. 10.5 examples of selected signal and background events are
shown. The fragmentation of the different daughter tracks is clearly visible. An
attribute of the background events is the fact that often the track of the charged
nucleus generates tracklets. This is a reason why it makes sense to use also the
distance to the TPC track as additional node feature.

10.2.2 Model and Workflow

Details of the optimization of the GNN can be found in [106]. For the graph construc-
tion a simple approach is to use a k-nearest-neighbor (kNN) graph. Five neighbors
were found to be a good choice. In the following, Graph Attention (GAT) layers
and GraphConv layers are used as they gave the best results. GraphConv, as pro-
posed in [108], is a slight adaption of the graph convolution as shown before. Here,
weight matrices are applied to the neighborhood. The general design of the full
network (the same for both variants) is shown in Fig. 10.6. The optimization pro-
cedure by varying the architecture led to a design of three message passing layers.
Furthermore, a readout multilayer perceptron (MLP) (a dense layer as explained
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10 Identification of Inelastic Interactions of Light Antinuclei and the Sexaquark

Figure 10.4: Two examples of input signals: a 3He (left) and d (right). The
TPC track and the interaction vertex are also shown. Figures taken
from [106].

Figure 10.5: Two examples for background tracks from antideuterons. The track of
the particles can be seen and thus it might be identified by the GNN.
Figures taken from [106].
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10.2 Identification of Inelastic Interactions of Light Antinuclei

Figure 10.6: The design of the full GNNs as used in the shown analysis. Figure
taken from [106].

in the section before) after the pooling was crucial for a good performance. After
a training over 200 epochs (with a learning rate adjusted between the epochs) no
significant improvement was found.

As a benchmark a random forest was chosen as reference using the implementa-
tion from scikit learn [109]. In the underlying work also a simple cut-based model
was constructed for comparison, which is by construction disadvantaged compared
to the random forest and thus not shown here. Due to the complex and variable
data structure, simpler input features need to be constructed for the random forest.
The following features were chosen:

• distances of the seven nearest tracklet position coordinates to the TPC track

• mean distance of all tracklet positions to the TPC track

• number of assigned tracklets

The hyperparameters were optimized with a cross validation procedure.

10.2.3 Performance

The two variants of the GNNs are now compared to the random forest. In Fig. 10.7
the ROC (receiver operating characteristic) curves, which show the signal efficiency
vs. the background efficiency, as well as the precision-recall curves, where the purity
is shown as a function of the signal efficiency. With the GNNs as well as the ran-
dom forest a clear separation of the signal and background is possible. Thereby, the
GNN performs better than the random forest model. Both GNN variants perform
similarly well.

In Fig. 10.8 the purity is shown for all three models as a function of the transverse
momentum for three different signal efficiencies. The models perform well over the
full range of transverse momenta. With an efficiency of 70% a purity clearly above
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10 Identification of Inelastic Interactions of Light Antinuclei and the Sexaquark

Figure 10.7: The signal efficiency vs. the background efficiency (upper plot) as well
as the purity vs. the signal efficiency (lower plot) are shown for the two
GNNs and the random forest. Figures taken from [106].
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10.3 Identification of the Sexaquark

Figure 10.8: The purity is shown as a function of the transverse momentum for
different signal efficiencies for the three models. Figure taken from
[106].

90% can be achieved for GNNs. They perform better than the random forest over
the full pT range.

The GNNs provide a better exploitation of the underlying structures, probably due
to the access to the full raw input information. But it should be mentioned that
the training of the GNNs took order of days while the random forest can be trained
within minutes. In [106] also the optimal operating point to set the background
efficiency as function of the signal efficiency is discussed.

10.3 Identification of the Sexaquark

As a second application of the identification of particle interactions in the material
with the TRD using GNNs, a simple sexaquark search is presented. A brief physics
motivation is given in Sec. 2.6. The nuclear interaction of antisexaquarks with neu-
trons likely involves V0 decays, i.e. the Λ and/or K0

S. For reasons of simplicity only
the channel S̄ + n → Λ̄ + K0

S is considered. This channel is characterized by two
V0’s in the final state with a clear topological structure. In contrast to the method
in the previous section, no charged track that can be identified can exist as a TPC
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10 Identification of Inelastic Interactions of Light Antinuclei and the Sexaquark

Figure 10.9: Two examples of signals from interactions of sexaquarks in the TRD.
The TRD tracklets in the six TRD layers as well as the true MC tracks
are shown.

track. Thus, a simple approach is to use the full existing background, i.e. all TRD
sectors, and search for the interactions. This leads to a large amount of background
compared to signal data and the goal is to achieve a very high background suppres-
sion. Another drawback is that the time for applying the GNN to the data is much
longer compared to having a simple preselection. In this work, only Monte Carlo
data is considered.

In Fig. 10.9 two examples of signals from the sexaquark in the TRD are shown. The
Monte Carlo tracks with the parameters at the interaction vertex are also shown.
As can be seen, the signal often spreads over more than one module.

10.3.1 Dataset

For this analysis a simulation was set up with roughly 200,000 p–Pb events anchored
to the same runs as before [110]. In each event one sexaquark was injected. The
mass is assumed to be mS̄ = 1.8 GeV/c2. The transverse momentum pT is flat and
the upper limit is 5 GeV/c. The distribution of the rapidity y is flat with |y| < 0.8.
Each sexaquark interaction happens in the given channel in a radial distance to the
vertex between 260 cm and 340 cm such that enough signals can be measured in the
TRD.

To obtain clean training data a few selection criteria are applied. Only decays
without π0s are allowed. Thus, only Λ̄0 → p̄+π+ (63.9%) and K0

S → π+π− (69.2%)
are considered, which reduces the statistics to 44.2%.
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10.3 Identification of the Sexaquark

As in the photon analysis, again the tracklet labels are unknown. As the statistics
are limited and the GNN is very sensitive to the amount of data, a loose selection
is applied to obtain as much data as possible. A cone selection of signal tracklets is
applied to label the data. For this selection, the (straight) Λ̄0 and K0

S MC tracks
are prolonged. Tracklets nearby are selected by the following rule: if the distance of
the tracklets to the MC track is within the cone around the prolonged MC track

d = 10 cm + 0.3l + 0.005l2/cm, (10.7)

tracklets are accepted. Here, l is a running parameter along the MC track. The sex-
aquark interaction vertex is at l = 0 cm. For both of the two cones more than five
accepted tracklets are required. This loose selection is necessary to obtain enough
data, as there might be many tracklets generated by other particles (e.g. knockout
particles).

If a sexaquark is accepted as signal, all tracklets from the corresponding sector
to which the sexaquark flight direction vector points are stored as signal data. In
addition, also the tracklets in the neighboring sectors are stored, as many sexaquark
daughter tracks cross more than one sector.

In total, this leads to roughly 26,000 signals as input for the following analysis.
All remaining sectors including the neighboring sectors are used as background
candidates. The background is required to have at least five tracklets, which is
the mathematical minimum for the signal criteria in case both sexaquark daughter
tracklet candidates completely overlap. The signal candidates after the selection
have a mean of 59 tracklets and the background candidates a mean of 39 tracklets.

10.3.2 Model and Workflow

To train the model, one half of the data is used as training sample and the other
half as test sample. The coordinates are transformed into the local coordinate
system of the central sector. The position and direction vectors are used as node
features for the input graph and additionally the direction vector in the xy plane
is added, as here the direction resolution is cleaner due to the large z pads of the
TRD. As in the previous section, the five-nearest-neighbor graph is constructed.
The GNN architecture as given in the previous section is varied around the found
hyperparameters and the parameter from before seem to be also a good choice for
this application. The training was performed in two stages. First, a random sample
of the background with same size as the signal is used. For the second stage only
the background candidates that are assigned a high probability to be a signal are
taken into account with the same number as the signal candidates. This does not
only accelerate the training, but also leads to a better performance.
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10.3.3 Performance

In Fig. 10.10 the ROC curves for the graph attention model as well as the Graph-
Conv model are shown. Thereby, the data is used as given for the GNN training,
i.e. after the previously mentioned selection. Thus, some background is already
suppressed before. The result after both training stages is shown. The background
efficiency is shown with a linear scale as well as with a logarithmic scale. Again,
both kinds of GNNs perform similarly. With a signal efficiency of around 80% it
is possible to reject 99% of the background and for signal efficiencies of 20% it is
possible to reject 99.9% of the background. But still, in such an analysis there is
much more background than signal. In general, this procedure leads to promising
results.

Classification dependencies with respect to the momentum or position were checked
and were not observed. During the training it was seen that the performance is still
very sensitive to the amount of data. In Fig. 10.11 a with a high probability correctly
classified signal and a wrong classified signal are shown. In Fig. 10.12 a background
candidate with a high signal probability given by the output of the GNN is shown.
From these examples it can be already seen that the quality of the data can be im-
proved. With more statistics it is possible to select for signals with a higher quality
which would lead to a better classification performance. This cannot be done with
the given data, because the given selection provides only 26,000 true signals. Also
without a better label selection, the GNNs were sensitive to the amount of data and
more data will still deliver better results.
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10.3 Identification of the Sexaquark

Figure 10.10: The signal efficiency is shown as a function of the background efficiency
for the two variants of the GNN, the GraphConv (GC) and the graph
attention (GA) based networks. On the upper plot a linear scale and
in the lower plot a logarithmic scale is used. A more efficient selection
of the background (2nd stage) leads a significant better performance.
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Figure 10.11: Left: a true positive sexaquark candidate. Right: a false negative
sexaquark candidate.

Figure 10.12: A false positive sexaquark candidate.
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11 Summary and Outlook

The Transition Radiation Detector (TRD) [3] is constructed especially for electron
triggering and particle identification. It also contributes to the tracking and calibra-
tion of the central barrel. In this work, it was shown that the TRD is also capable
of reconstructing photon conversions from larger radii. In addition, it also can be
used for the identification of inelastic interactions of light antinuclei as well as for
the search for sexaquarks.

For the reconstruction of the photons different steps were performed. Track candi-
dates for the conversion products, the electrons and positrons, were identified using
a newly developed stand-alone tracking including track finding and track parameter
estimation. A new photon fit procedure is then performed on top of the found can-
didates. It exploits most of the combined kinematic information of the conversion
daughter tracks. It is more precise than the typical kinematic fit used in ALICE, the
KFParticle package [86][87]. The TRD is intentionally not constructed for stand-
alone tracking. The precision of the combined photon daughter fit allows neverthe-
less a very good reconstruction. We call this fit syncfit. The advantages of this fit,
especially of the precision in the parameter estimation, is shown first using toy data
and then also with a full GEANT ALICE simulation (p–Pb at

√
sNN = 5.02 TeV

+ injected π0s) as well as with real p–Pb data at
√
sNN = 5.02 TeV. A clearly

well centered neutral pion peak confirms the applicability to real measured data. A
Pb–Pb collision system has not yet been considered. For the higher multiplicities
a distinct modification of the tracking parameters would be necessary, i.e. smaller
cells for the combinatorial track finding.

The capabilities of the full reconstruction chain of the photons for real data as
well as for the data of the full GEANT simulation were shown with a reconstruc-
tion procedure of the track segments called tracklets created among other purposes
for this work. It is not based on the currently implemented TRD online tracklet
reconstruction, as the goal is to show the best possible result quality. The online
tracklets are limited especially for lower momenta by the inclination. The recon-
struction procedure used in this work does not provide the real tracklet labels, and
thus the tracklet information is obtained via a matching with the Monte Carlo labels
with the kinematic properties at the vertices afterwards. A propagation of the true
labels could lead to better hyperparameter estimation for different steps within the
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11 Summary and Outlook

track reconstruction.

The stand-alone tracking was built respecting the challenges given by the construc-
tion of the TRD and in view of being able to find as many electron/positron can-
didates as possible for the photon reconstruction. These electron/positron tracks
suffer from bremsstrahlung. A combinatorial approach is chosen that is capable of
handling noise tracklets, empty layers, shared clusters and also blurring effects from
the material. The strategy thereby is similar to the cellular automaton. The fit
precision is just as good as necessary to have a good selection for the final photon
fits, but not the focus during the single track finding. The purity is later optimized
for the photons, as there is more information accessible. Pad tilting is thus neglected
at this stage. The efficiency for electrons/positrons starting at transverse momenta
of 100 MeV/c is above 95%. At smaller transverse momenta multiple scattering has
a deteriorating influence.

For the photon reconstruction a full kinematic fit called syncfit was developed.
Thereby the tracks of the positron and electron are fitted synchronously with its
topological constraints to the tracklets within the TRD, i.e. not with tracks as it
is done within the KFParticle package [86][87]. A primary vertex position and an
opening angle of zero are constraint. Corrections for the mean bremsstrahlung and
the pad tilting are included. The fit is technically implemented with TensorFlow
which allows one to apply the complex relations from the kinematics without ap-
proximations. Standard tools for kinematic fitting such as KFParticle use linear
approximations and soft constraints. It was shown via toy data that compared to
these tools the syncfitter gives better results for all kinematic parameters and pro-
vides a good transverse momentum resolution also for higher transverse momenta.
The high parallelizability of TensorFlow permits a reasonable runtime for these com-
plex calculations, although the syncfit is much slower than KFParticle.

Applied to the full GEANT simulation, a photon efficiency that is close to 90%
could be achieved for findable candidates. The purity of these data suffered at lower
momenta especially from secondary bremsstrahlung arising from high momentum
particles in the inner tracking system. If this contribution to impurities is neglected,
the purity is clearly larger than 95%. The contribution from bremsstrahlung is dis-
tinctive in this simulation, as many electrons and positrons at large momenta are
created by the many photons from neutral pions, that were injected to this simula-
tion with a flat momentum distribution. A higher purity might also be achieved by
using the particle identification properties of the detector. The lower limit for the
reconstructable transverse momentum for the photons is 200 MeV/c. Below, mul-
tiple scattering disturbs the reconstruction. Due to the relatively large size of the
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pads in z direction of the TRD, the momentum conservation of multiple scattering
cannot be exploited within the reconstruction.

For the first time, a tomographical map of the TRD material distribution is shown
that is created from the conversion vertices. Contributions from support material
structures are clearly visible. Photons from between the chambers do not give suf-
ficient signals to be reconstructed. This improved knowledge about the material
in the TRD and especially the difference between the Monte Carlo data and the
real data can contribute to the matching with the time-of-flight detector positioned
behind the TRD by a more accurate track propagation.

As a cross check neutral pions are reconstructed. The invariant mass of two photon
combinations show a clear peak at the position of the neutral pion mass. The lower
limit in the transverse momentum is roughly 700 MeV/c. By using the TRD in
conjunction with the TPC, the yield of using only TPC-TPC pion candidates can
be increased by 75% by adding TRD photons.

Furthermore, graph neural networks were studied for the identification of interac-
tions in the material in a full Monte Carlo simulation. The interactions of antinulei
were detected using candidates selected along the TPC tracks of the respective par-
ticles. For the sexaquark, no such clear preselection was possible. A first approach
was to use all chambers as input to the algorithm. In both cases, the neural networks
give promising results. The most straightforward way to achieve even better results
is to improve the statistics of the Monte Carlo data. Especially in the case of the
sexaquark, a subsequent analysis of the found candidates could provide information
about the kinematics and thus the basis for a hypothesis test. Inspiration for such
an analysis could also be given by the syncfitter.

In conclusion, the syncfitter is a good tool for high precision photon fits. Candidates
from nuclear interaction in the TRD can be found using graph neural networks. An
implementation using the currently in Run 3 used online tracking is not clear. It
would be possible to think of an algorithm that finds promising candidates and thus
respects the online readout capacities in addition. Dataflow programming known
from machine learning is suitable to improve the modeling of complex topological
physical processes in particle detectors in a very efficient way. The intrinsic vector-
ization capabilities lead to a natural usage of modern parallelization devices such as
GPUs which are necessary to handle the large amount of data in the future.
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A Syncfitter Momentum Resolution
Estimation

Figure A.1: The fits of the measured transverse momentum in different MC truth
transverse momentum intervals for the resolution estimation in Ch. 9.
The Gaussian standard deviation is given by σ and σ∗ accounts for the
tail as described in the text.
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B Pion Invariant Mass Fits

Figure B.1: Fit of the neutral pion invariant mass peak for TPC-TPC photon
combinations.
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B Pion Invariant Mass Fits

Figure B.2: Fit of the neutral pion invariant mass peak for TRD-TRD photon
combinations.

Figure B.3: Fit of the neutral pion invariant mass peak for TPC-TRD photon
combinations.
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