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Abstract

Most resources of modern computer clusters are locked behind the need for a high
degree of parallel efficiency, having millions of processing units on heterogeneous
hardware, e.g. having both CPUs and GPUs. Post-HF wave function-based meth-
ods offer a high accuracy while having high computational scaling and memory
requirements. Their need for storing, transforming, manipulating, and commu-
nicating their underlying high-dimensional quantities makes them a bad fit for
modern computer architecture.
The second-order Møller-Plesset perturbation theory (MP2) is a commonly used
method to recover the electron correlation energy that the Hartree-Fock method is
missing. Its computational scaling is O(N5) (N representing the number of atomic
orbitals), as its two-electron integrals have to be transformed from their atomic
orbital representation to their molecular orbital representation, and its memory
requirements scale with O(N4).
This thesis applies the ideas of a quadrature scheme1–4 to the MP2 method to
arrive at a lower scaling form that is embarrassingly parallel. The full Q-MP2
energy integral scales with O(P 2OV ) (spatial grid points P , occupied molecular
orbitals O, virtual molecular orbitals V ) with its largest entity needing O(PN2)

memory. In this thesis, an efficient efficient implementation in the form of the
open-source libqqc library is presented.
The setup of the integration grids is the deciding factor of the accuracy of the
Q-MP2 method. To investigate this a benchmark of small molecules is shown,
consisting of seven molecules, three basis sets, and 28 different grid combinations.
All but the smallest grid combinations are shown to be within the magnitude of
the target chemical accuracy, with only four points on the one-dimensional inte-
gration grid being necessary. The error of the spatial grid falls asymptotically with
the number of grid points, with the third smallest grid of 20 radial and 38 angular
points being chosen for further tests as it is the smallest well-behaved one.
The total single-node performance, measured as the number of floating point oper-
ations performed per second compared to the theoretical maximum, of the differ-
ent variants of the algorithm is found to be below 15%. The algorithm is memory
bound. The parallelisation strategy shows near-perfect load balancing over the
computational nodes. The single-node parallel efficiency is shown to be superlin-
ear for large systems, as a higher percentage of memory can be stored in low-level
and fast memory caches with an increasing number of cores. This trend is followed
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at the multi-node level, which was investigated for up to 960 cores/20 nodes on
the JUSTUS 2 computer cluster.
Future optimisation strategies will be focused on optimising the integration grids
to lower the number of necessary integration grid points, integral screening, bet-
ter utilisation of temporal locality, and exploitation of matrix sparsity. Finally,
the quadrature scheme was extended to coupled-cluster theory (Q-CC2) and the
algebraic-diagrammatic construction scheme for the polarisation propagator (Q-
ADC(2)). For the latter method, the computational scaling associated with the
solution of the particle-hole state was lowered from originally O(N5) to O(P 2OV 2)

and the memory requirement can be additionally lowered from O(N4) to O(PN2)

by folding of the doubles space into the singles space. Compared to the perfor-
mance of Q-MP2, a future implementation is expected to have a better single-node
performance as more computational work needs to be done per memory trans-
action, and to have similar parallel efficiency as little additional node-to-node
communication is necessary.





Zusammenfassung

Moderne Rechencluster besitzen üblicherweise Millionen von Recheneinheiten auf
heterogener Hardware, wie etwa CPUs oder GPUs. Damit ein Programm diese
Leistung vollständig nutzen kann, ist ein hohes Maß an paralleler Effizienz gefordert.
Wellenfunktionsbasierte Methoden auf Grundlage der Hartree-Fock-Nährung er-
möglichen eine hohe Genauigkeit, sind jedoch üblicherweise gekennzeichnet durch
eine hohe Skalierung ihres Rechenaufwands und hohe Speicheranforderungen. Die
ihnen zugrunde liegenden hoch-dimensionalen Datenstrukturen, wie z.Bsp. Zwei-
elektronenintegrale, müssen gespeichert, transformiert, manipuliert und kommu-
niziert werden, was sie ungünstig für moderne Computerarchitektur macht.
Die Møller-Plesset-Störungstheorie der zweiten Ordnung (MP2) ist eine oft ver-
wendete Methode zur Berechnung der Elektronenkorrelationsenergie, welche der
Hartree-Fock Methode fehlt. Aufgrund der notwendigen Transformation der Zwei-
elektronenintegrale von der Atomorbital- in die Molekülorbitalbasis skaliert ihr
Rechenaufwand mitO(N5) (mit der Anzahl an AtomorbitalenN). Ihr Speicherbe-
darf skaliert mit O(N4).
Die vorliegende Arbeit wendet die Ideen eines Quadraturschemas1–4 auf die MP2-
Methode an und erreicht damit eine niedrigere Skalierung und eine natürlich par-
allelisierbare Form. Das komplette Q-MP2 Energieintegral hat einen Rechenauf-
wand welcher mit O(P 2OV ) (räumliche Gitterpunkte P , besetzte Molekülorbitale
O, virtuelle Molekülorbitale V ) skaliert und einen Speicherbedarf von O(PN2).
Der Autor präsentiert mit dieser Arbeit eine effiziente Implementierung in Form
der Open-Source libqqc Bibliothek.
Die Struktur der Integrationsgitter ist der für die Genauigkeit entscheidende Fak-
tor der Q-MP2 Methode. Um diese zu untersuchen, wird ein Benchmark von
kleinen Molekülen vorgestellt, welcher aus sieben Systemen, drei Basissätzen und
28 verschiedenen Integrationsgittern besteht. Alle bis auf das kleinste Gitter kon-
nten die angepeilte chemische Genauigkeit erreichen, wobei nur vier Punkte für
das eindimensionale Integrationsgitter ausreichend sind. Der Fehler des räum-
lichen Gitters nimmt mit steigender Anzahlan Quadraturpunkten asymptotisch
ab, wobei das dritt-kleinste Gitter mit 20 Radial- und 38 Winkelpunkten für die
weiteren Tests verwendet wurde, da diese Kombination das kleinste Gitter mit
regulärem Verhalten ist.
Die absolute Leistung der verschiedenen Varianten des Algorithmus auf einem
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einzelnen Rechenknoten, gemessen an der Anzahl ausgeführter Fließkommarechen-
operationen pro Sekunde im Vergleich zum theoretischen Maximum, liegt bei unter
15%. Der Algorithmus ist durch seine Speicheranforderung limitiert. Die Paral-
lelisierungsstrategie zeigt eine beinahe perfekte Verteilung des Arbeitsaufwandes
zwischen den Rechenknoten. Die Ein-Knoten-Paralleleffizienz zeigt superlineares
Verhalten für große Systeme, da ein größerer Anteil der benötigten Daten mit
steigender Anzahl an Kernen in schnellerem Low-Level-Speicher verbleibt. Dieser
Trend zeigt sich ebenfalls bei der gleichzeitigen Verwendung mehrerer Rechen-
knoten. Dabei wurde die Verwendung auf bis zu 960 Kernen/20 Rechenknoten
des JUSTUS 2 Rechenclusters getestet.
Zukünftige Optimierungsstrategien werden darauf fokussiert sein die Integrations-
gitter zu optimieren, um die Anzahl an Gitterpunkten zu reduzieren, unnötige
Integrale auszusieben, die zeitliche Lokalität der Daten und die Struktur dünnbe-
setzter Matritzen besser auszunutzen. Schlussendlich wurde das Quadraturschema
auch auf die Coupled-Cluster Methode (Q-CC2) und das algebraisch-diagrammatische
Konstruktionsschema des Polarisationspropagators (Q-ADC(2)) angewandt. Der
Rechenaufwand zur Berechnung einfach angeregter Zustände von Letzterem wurde
von O(N5) auf O(P 2OV 2) reduziert und der Speicherbedarf kann durch das zusät-
zliche Falten des Doppelanregungsblocks in den Einfachanregungsblock vonO(N4)

auf O(PN2) reduziert werden. Verglichen mit Q-MP2 kann von einer zukündigen
Q-ADC(2)-Impelentierung erwartet werden, dass sie eine höhere absolute Ein-
Knoten-Leistung zeigt, da mehr Rechenarbeit pro Datentransaktion ausgeführt
wird. Ebenso wird erwartet, dass sie eine ähnliche parallele Effizienz zeigt, da nur
geringe zusätzliche Knoten-zu-Knoten-Kommunikation anfällt.
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Chapter 1

General Introduction

The field of theoretical chemistry has become a trusted ally of many areas of
research since its inception at the end of the 19th century. The modern computa-
tional chemist is involved in protein research10–13, drug design10,14,15, development
of improved batteries for electric cars16–19, improvement of photovoltaic cells20–23,
and much more.
The traditional methods of the field can be roughly split into two categories.
Methods relying on classical mechanics use classical and semi-classical force fields
to calculate molecular properties. They are often used in areas where very large
molecular systems, such as proteins24–26 or bulk materials27–29, are included ex-
plicitly in the calculation. This is possible because of their comparatively low cost
in terms of computational resources and time. The downside of these force field
methods is that they often have to be parameterised on training data, leading to
overfitting and less general applicability.
In contrast to this, methods exist which try to model the quantum mechanical
nature of real systems intrinsically. These methods aim to solve the equation
postulated by Erwin Schrödinger30 in the early 20th century. This equation is of
the same fundamental importance to the field of quantum mechanics as Newton’s
equation on motion are to classical mechanics. Theoretically, solving Schrödinger’s
equation for the exact wave function of a system would give access to accurate
properties.
Due to its nature as a system of coupled differential equations, a direct solution
is not accessible for systems of more than two particles. To remedy this, approxi-
mations are employed to the exact theory, which then can be solved feasibly. This

1
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approach results in a multitude of different method families, each with their ad-
vantages and disadvantages depending on the underlying approximations.
Generally speaking, the higher the level of the employed theory, the more accurate
is the description of the system. The trade-off for this accuracy comes in form
of higher computational complexity and resource requirements. For example, the
Hartree-Fock approximation is the most basic of the wave function-based meth-
ods regularly used by quantum chemists. The number of mathematical operations
that need to be performed scales formally with the system size, represented by the
number of atomic orbitals N , to the fourth power (O(N4)) and it recovers approx.
97% of the total (ground state) energy of the system. The missing three percent,
which stem from the only approximately described electron-electron correlation,
has to be recovered by using even higher-scaling levels of theory. The most com-
mon first step in this direction is done through the Møller-Plesset perturbation
theory31.
Two factors therefore ultimately decide if a calculation is feasible: The scaling
of the method and the amount of available and usable resources. Much work is
invested in introducing additional approximations to lower the scaling of a calcu-
lation. This can be done, for example, by partitioning the system into an active
core and its surrounding environment. Each part is dealt with different levels of
theory. An example would be the description of a solvated molecule, where the
solvent is approximated with a lower level of theory (e.g. PCM32–34). Many ap-
proximations, however, aim to lower the scaling of the method directly.
There are two main paths to lowering the scaling. The first one consists of low-
ering the system size N . This can be achieved, for example, through numerical
optimization. This means that parts of the initial integrals are not calculated at
all, as they are expected to contribute little to the answer (e.g. through integral
screening or exploitation of interelectronic distances in R12/F12 methods35–39).
Another ansatz partitions the orbital space into a relevant and a not-relevant
part. An example would be the separation of the full occupied orbital space into
lower-lying core orbitals and outer valence orbitals40–42. Disconnecting the two
orbital spaces gives easier access to the core orbital properties (CVS-ADC43–45,
CVS-EOM-CC46).
The second main path to lowering the scaling aims at decreasing the scaling ex-
ponent. An example (for the scaling of the required memory space) would be
the reexpression of the underlying electron-repulsion integrals with the help of an
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auxiliary basis, through the resolution-of-the-identity47,48/density fitting approx-
imation (e.g. RI-MP49, RI-CC50). Most wave function-based methods consist of
expressions of the form

∑︂
pqrs

⟨pq|rs⟩
εp + εq + εr + εs

(1.1)

with p, q, r, s being arbitrary molecular orbital indices and εp denoting the cor-
responding energy. These indices are coupled through the energy denominator,
meaning that the computational scaling of eq. 1.1, O(N4), cannot be lowered.
Almlöw et al.1,51,52 have shown that the energy denominator can be expressed
through a numerical quadrature, which allows for the decoupling of the indices.
This idea is the starting point for the quadrature scheme presented in this thesis.
Ishimura et al.2 then showed that this can be used to reexpress certain quantities
into lower scaling forms. Hirata et al.53,54 presented an embarrassingly parallel
Monte-Carlo evaluated Møller-Plesset perturbation theory formulation using this
ansatz. Barca, Bloomfield and Gill3 used the general idea to treat the opposite-
spin part of the second-order Møller-Plesset perturbation (MP2-OS) energy inte-
gral with a numerical quadrature directly. They arrived through the heavy use of
grid pruning and integral screening at a quadratic scaling, embarrassingly parallel
version of the MP2 method (Q-MP2-OS). This ansatz is used in the following
thesis to arrive at an expression for the full energy integral and is later extended
to other, higher-scaling methods.
Lowering the scaling through any of the above-mentioned methods means losing
accuracy. The only way around this conundrum is to increase of the available
resources instead. Modern computational chemistry, especially of large systems
and/or higher levels of theory, is done on extensive computer clusters. These are
systems of dozens to tens of thousands of computational nodes, interconnected
with high-bandwidth, low-latency networks. Until the end of the last century, one
could simply rely on the steady advancement in processing frequency for faster
calculations on one of these nodes. Systems that could not be treated were made
quickly possible by the steady increase in computational power, with minimal
changes to the algorithms necessary. This is often expressed in one of the different
forms of Moore’s Law, which can be stated as the doubling of transistor density
on chips every two years.
However, many argue that Moore’s Law has come to an end55,56. For the last
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two decades, the frequencies of central processing units (CPUs) have roughly sta-
bilised. There are a lot of reasons for that, but one of the major ones is that
the ever-increasing demand for power leads to more and more heat that has to
be dispersed. Another problem is that at the scale that modern chip dies are
manufactured at (< 15 nm), quantum effects start to become prevalent57.
The manufacturers’ answer to these problems was the addition of multiple process-
ing units per CPU die. Modern computer nodes can have more than 64 physical
cores. The fastest supercomputer cluster system, in terms of FLOPS, is as of
November 2022 the FRONTIER - HPE CRAY EX235A58 at the Oak Ridge National
Laboratory. It features 8.730.112 processing units with a total theoretical peak
performance of 1.6 × 1018 FLOPS. The term processing units here refers to the
available cores of the central processing units (CPUs), as well as the cores available
through graphical processing units (GPUs). Most modern supercomputer archi-
tectures have some degree of this hardware heterogeneity. This staggering amount
of calculations per second shows that today most computational performance is
locked behind the ability of a program to execute efficiently in parallel.
The need for both, a lower scaling and higher parallel efficiency, is the main mo-
tivation for this thesis. The following chapters will give an introduction to their
respective concepts and the state of the art before showcasing the derivation, im-
plementation and testing for a low scaling, highly parallel efficient implementation
of quadrature evaluated second-order Møller-Plesset perturbation theory. Addi-
tional relevant projects as well as an outlook of extending this quadrature scheme
to new methods are showcased at the end.

1.1 Thesis Overview

The thesis is organised as follows: Chapter 2 introduces the basic theory to the
reader. It starts by introducing general mathematical concepts used in theoretical
chemistry, such as matrix/vector algebra, function operators and the variational
principle, before introducing general numerical integration strategies. These con-
cepts are then used in the derivation of the most basic building blocks of quantum
chemistry up to electron-correlated wave function-based methods. From there
the quadrature scheme presented in this thesis is introduced in chapter 3. First,
the state of the art is summarised, and then previous relevant works are closely
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inspected. Finally, the derivation of the quadrature evaluated second-order Møller-
Plesset perturbation theory is presented and some example results are shown. The
grid dependency of the method is discussed in chapter 5. To do so, the utilised
molecular grids are introduced and a benchmark for the different grid setups is
presented. The main work of the thesis consists of the efficient and massively par-
allel implementation of this method. The basic concepts used to achieve this are
discussed at the beginning of chapter 4, which is then followed by a detailed look
into the structure of the open-source libqqc library. In chapter 6 the basic theory
necessary for high-performance computation is discussed, the utilised strategies
are presented and finally, the performance of the implementation is shown. The
remaining smaller projects the author contributed to along with an outlook into fu-
ture possibilities for the quadrature scheme are presented in chapter 7. It finishes
with providing some working equation for a new quadrature evaluated ADC(2)
method. Finally, the results of this thesis are summarised in chapter 8.





Chapter 2

General Theory

Interdisciplinary research is ingrained in the DNA of theoretical chemistry. Much,
if not all, of the underlying theory, is based more on physics than chemistry and
much work lives in the abstract world of mathematics. And while this may once
have been the whole sum of fields connected to theoretical chemistry, it is so no
more. Modern research blurs the line not only between chemistry and physics,
but between biology, toxicology, and medicine, to only name a few. The field has
become so interconnected, that basically all modern work in the lab requires some
backup from a theoretician. The advancements talked about in the introductory
chapter has made it possible to utilise theoretical chemistry in many applications.
And so, the modern chemist needs a broad understanding of numerous different
topics.

The work presented in this thesis lives in the intersection between method de-
velopment and high-performance computing. One would be very optimistic to
expect in-depth knowledge of both subjects from the general chemist or computer
scientist. As such, the following chapter tries to bring both sides of the equation
to a common understanding of the presented work.

In the opening section 2.1 some general introductions to the key mathematical
concepts of the following theory are presented, as well as some introduction to the
numerical integration aspect. General physics concepts are introduced in section
2.2. Afterwards, the foundation of theoretical chemistry is summarised in section
2.3.

7
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2.1 Mathematical Foundations

Not all fundamental concepts will be discussed here. However, the concepts of
linear algebra and operator-based mathematics are heavily used both in the elec-
tronic structure theory and the optimisation work discussed later. Therefore, what
follows is a short reminder. This recap follows largely the introductory chapter of
Szabo and Ostlund’s ’Modern Quantum Chemistry’59.

2.1.1 Vectors, Matrices and Operators

The math behind electronic structure theory is often expressed in terms of integrals
and operators. The underlying calculations however are generally done by vector
and matrix representation of these concepts.

We define a vector a⃗ as a collection of scalars representing a single entity, which
can be expressed in terms of the sum of scaled unit vectors {ep⃗}.

a⃗ =
∑︂
p

apep⃗ ep⃗ · ej⃗ = δij (2.1)

These are orthonormal to each other and represent the vectors of the basis in
which the vector is expressed. The symbol δij is called the Kronecker delta.

δij =

⎧⎨⎩1 for i = j

0 for i ̸= j
(2.2)

Neither the set of scaling factors ap nor the unit vectors ep⃗ are generally unique.
Therefore the same vector can have a different representation in another set of
basis vectors.

An operator Ô is an entity capable of transforming vector a⃗ into a new vector b⃗
by

Ôa⃗ = b⃗ (2.3)
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When a linear operator acts on a unit vector ep⃗ it produces another vector which
can be expressed in the same basis.

Ôep⃗ =
∑︂
j

ej⃗Oij (2.4)

The rectangular array of elements is called a matrix. A matrix of all components
Oij is called the matrix representation of the operator in this basis.

O =

⎛⎜⎜⎝
O11 O12 . . .

O21 O22 . . .

. . . . . . . . .

⎞⎟⎟⎠ (2.5)

This matrix representation completely defines the behaviour of the operator acting
on a vector in the same basis as the matrix, as any vector can be represented in a
linear combination of unit vectors of this basis. From the general matrix formalism
and multiplication, rules follow that the order of operators acting on a vector is
generally not commutative.

ABa⃗ ̸= BAb⃗ (2.6)

The adjoint of a matrix Aij is the matrix A† where the rows and columns of the
matrix have been transposed and each new element is the complex conjugate of
the old element.

Aij
† = A⋆

ji (2.7)

A square matrix has the same number of rows and columns. A square matrix is
called unitary if its inverse is equal to its adjoint matrix A−1 = A†.

A square matrix is called hermitian when it is self-adjoint. This means that the
adjoint of the matrix returns the same matrix A† = A. If all elements of the
matrix are real it is called symmetric.
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2.1.1.1 Dirac Notation for Vector Spaces

A vector space is a set of all possible vectors {v⃗} over a field F of scalars. The
space has two binary operations (addition and scalar multiplication) and fulfils
eight axioms for these operations for all members of the space.

Theoretical chemistry concepts such as quantum states are often expressed in the
Dirac notation59–61. The interpretation of this notation is interchangeably between
vector spaces and functions in a Hilbert space, which will be explained shortly.

An n-dimensional complex vector in the Dirac notation is noted in terms of unit
vectors |i⟩, so the vector a⃗ becomes

|a⟩ =
N∑︂
p

|i⟩ ap =

⎛⎜⎜⎝
a1

a2

. . .

⎞⎟⎟⎠ (2.8)

This is called a ’ket’ and represents a column vector. The adjoint row vector of
|a⟩ can be represented by the equivalent ’bra’

⟨a| =
N∑︂
p

a⋆p ⟨i| (2.9)

The scalar product ⟨a|b⟩ represents the known scalar product between the two
vectors a ∗⃗ and b⃗ or the matrix product of their representations a∗b.

An operator in this notation becomes thus

Ô |a⟩ = |b⟩ Ô |i⟩ =
∑︂
j

|j⟩Oji (2.10)

Multiplying the operator with a bra ⟨k| ’from the left’, meaning building the scalar
product with this bra, gives us the element of the operator representation in the
basis with the indices ki.

⟨k|Ô|i⟩ =
∑︂
j

⟨k|j⟩ (O)ji =
∑︂
j

δkj = (O)ki (2.11)
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as ⟨a|b⟩ =
∑︁

ij a
⋆
p ⟨i|j⟩ bj can only be satisfied if ⟨i|j⟩ = δij.

The adjoint of the operator Ô acts in turn on a bra instead of a ket ⟨a| O† = ⟨b|.

A self-adjoint operator Ô = O† is called Hermitian and the following relationship
holds for the elements of its matrix representation: ⟨a|Ô|b⟩ = ⟨a|Ô|b⟩ = ⟨b|Ô|a⟩

⋆
.

Many operators in theoretical chemistry are Hermitian and much of what the
methods in the following chapters try to achieve is to find the eigenvalue or the
eigenvector of a given operator.

2.1.1.2 Eigenvalues, Eigenvectors and Eigenfunctions of Operators

The eigenvector of an operator is a vector |a⟩ such that letting the operator act
on the vector returns the same vector times a scalar, Ô |a⟩ = ωa |a⟩. The scalar
is called the eigenvalue of the operator. Eigenvectors of Hermitian operators are
orthogonal to each other if their eigenvalues are not the same (non-degenerate)
and those values are real.

Not every matrix representation of a Hermitian operator is diagonal. This is
however the case if the representation is in the basis of the eigenvectors of the
operator. Finding the eigenvectors of an operator to use in its diagonalization is
one of the core computational problems in theoretical chemistry. The eigenvectors
can then be used to form a unitary transformation matrix U with which the
matrix representation of the operator can be transformed into its diagonal form
Ω through Ω = U†OU. A Hermitian operator has n eigenvalues.

As mentioned before, many formulas in theoretical chemistry are generally dis-
cussed in terms of Dirac formalism. It represents either a vector space or a function
space. Dirac formalism can be used interchangeably between these two domains.
The Fourier series shows that a well-behaved function a(x) on an interval [x1, x2]
can be described by a linear combination of sinuses and cosines with its own set of
expansion parameters for each function. This is equivalent to the idea of expand-
ing a vector in terms of the unit vectors of a basis. With the functions ψp, which
fulfil the orthonormality condition

∫︂ x2

x1

dxψpψj = δij (2.12)
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on the interval we can construct any function a(x) in terms of these functions

a(x) =
∑︂
p

ψpap (2.13)

which, as mentioned, is analogous to the expansion of a vector in the set of basis
functions in equation 2.8.

ψp(x) = |i⟩ ψ∗
p(x) = ⟨i| (2.14)

With this any function a(x) can be written in terms of Dirac notation as a(x) = |a⟩.
The scalar product becomes

∫︂
dτa(x)b(x) = ⟨a|b⟩ (2.15)

Let an operator now act upon the function a(x) to produce b(x) analogously to
equation 2.3. This becomes in Dirac notation equivalent to equation 2.10. A
function |a⟩ which, after an operator acts upon it returns itself multiplied by a
scalar is called an eigenfunction.

Ô |a⟩ = ωa |a⟩ (2.16)

One can obtain the prefactor for normalised eigenfunctions ϕa through

ωa =

∫︂
dτϕ∗

aOϕa = ⟨a|Ô|a⟩ (2.17)

Integrals of the form

⟨a|Ô|b⟩ =
∫︂
dτϕ∗

aÔϕb (2.18)

will become important in later sections discussing the Schrödinger equation and
its variants. For a Hermitian operator, the following relationship follows from this

⟨a|Ô|b⟩ = ⟨b|Ô|a⟩
∗

(2.19)
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2.1.2 Hilbert Space

The underlying quantum mechanics of theoretical chemistry, which will be confined
to the view of the common chemist in this work, exists in a complex, separable
so-called Hilbert space. A Hilbert space is a vector space with a defined inner
product between its vectors. In this methodology, these vectors represent the
quantum mechanical state of a system and can in turn be expressed in terms of
unit state vectors. Each desired observable resulting from the measurement of a
system can be represented as linear Hermitian operators acting on the unit vectors.
An eigenstate of the measurements is therefore an eigenvector of the operator and
its eigenvalue the observable.

The inner product described in the Hilbert space is defined as

⟨ψp|ψj⟩ =
∫︂
dτψ∗

pψj (2.20)

and is generally interpreted as the probability amplitude of the initial systems
ψp collapsing into the specific eigenstate of the final system ψj at the point of
measurement, with the result of the measurement representing the eigenvalue of
the eigenstate.

2.1.3 The Variational Principle

The time-independent Schrödinger equation, which will be fully introduced later,
is in essence an eigenvalue problem of the form

Ĥ |Φ⟩ = ε |Φ⟩ (2.21)

where Ĥ is a Hermitian operator acting on the wave function of the system |Φ⟩,
which is an orthonormal eigenfunction of the operator, and ε represents the energy
of the system. The Schrödinger equation is generally not exactly solvable, as it
represents a many-body problem, which calls for approximate solutions to find the
eigenvalues. One of the most used methods to solve the above equation is called
the variational principle.
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The variational principle relies on trial functions |Φ̃⟩ which can be expressed as a
linear combination of eigenfunctions |ϕa⟩ with their respective eigenvalues εa

|Φ̃⟩ =
∑︂
a

|ϕa⟩ ca =
∑︂
a

|ϕa⟩ ⟨ϕa|Φ̃⟩ (2.22)

and respectively

⟨Φ̃| =
∑︂
a

c∗a ⟨ϕa| =
∑︂
a

⟨Φ̃|ϕa⟩ ⟨ϕa| (2.23)

If this trial function is normalised ⟨Φ̃|Φ̃⟩ = 1 then any eigenvalue formed from
letting it interact with the operator Ĥ has to be equal or higher then the lowest
lying eigenvalue.

⟨Φ̃|Ĥ|Φ̃⟩ ≥ ε0 (2.24)

This would only be true if the trial function is identical to the lowest lying eigen-
function |ϕ0⟩. This ansatz is typically transformed into a diagonalisation problem.

Assuming that the trial function consists of a linear combination of n fixed, real,
orthonormal basis functions

|Φ̃⟩ =
n∑︂
p

cp |ϕp⟩ (2.25)

we can transform the operator in its matrix representation in the basis of these
functions

(H)ij = Hij = ⟨ϕp|Ĥ|ϕj⟩ (2.26)

Because of the Hermeticity of the operator this matrix is symmetric, Hji = Hij.
With the assumption of the trial function being normalised the expectation value
becomes

⟨Φ̃|Ĥ|Φ̃⟩ =
∑︂
ij

cp ⟨ϕp|Ĥ|ϕj⟩ cj =
∑︂
ij

cpcjHij (2.27)
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This function can now be minimised, which boils down to solving the set of equa-
tions which follow

Hc⃗ = Ec⃗ (2.28)

with c⃗ being the column vector of the coefficients cp. This can be solved in the usual
manner to gain the eigenvalues and eigenfunctions, which results in n solutions
for trial wavefunctions |Φ̃a⟩, with the eigenvalues Ea representing the expectation
value for ⟨Φ̃a|Ĥ|Φ̃a⟩. The lowest eigenvalue corresponds to the best approxima-
tion of the so-called ground state energy when speaking specifically about the
Schrödinger equation. The approximation is here that it is the ground state en-
ergy in the finite basis |ϕp⟩ and it is an upper bound to the ’real’ ground state
energy in an infinite basis.

E0 = ⟨Φ̃0|Ĥ|Φ̃0⟩ ≥ ε0 (2.29)

2.1.4 Numerical Integration

Analytical evaluation of integrals is not always a feasible path, as will become one
of the main aspects of this thesis. To remedy this we need numerical integration
techniques. The most simple form of approximating the analytical solution of an
integral is the sum over sample points in the integral space.

F (x) =

∫︂
dxf(x) ≈

nP∑︂
P

ωPf(xP ) (2.30)

From here on out if not noted otherwise the index of a grid point on which a
function has been evaluated will be written with an upper case exponent, typically
P . The number of sampling points xP is nP . ωP is a weighting factor which
decides the amount of contribution of the point to the overall integral. This is the
fundamental idea behind quadrature62 techniques, of which the simplest form is
the trapezoid rule learned in school

F (x) =

∫︂
dxf(x) ≈

nP∑︂
P

f(xP−1) + f(xP )

2
(xP − xP−1) (2.31)
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a = x0 xP−1xP b = xn

x

f(x)

Figure 2.1: Example of simple numerical integration by uniformly sampling
the function space6.

A simple example is demonstrated in fig. 2.1. A further look into the numerical
integration techniques important for this work is given in chapter 5.

2.1.4.1 Monte Carlo Integration

One final numerical technique, which is used in one of the publications leading to
the derivation of this thesis’ main subject, shall be quickly sketched here. Quadra-
ture techniques go through all the points on their integration grid, which all have
to be evaluated and weighted. If the integration space is erratic the grid has to
be finer, which increases the number of points which have to be evaluated on it.
This ansatz is deterministic, which means for the same input parameters and the
same problem it will always return the same answer.

Another technique for the approximation of integrals stems from the Monte Carlo
method family. It is not dissimilar to the trapezoid rule discussed above. The main
difference lies in the choice of evaluation points. In the Monte Carlo integration,
the points are drawn from a random distribution, evaluated on the integral then
multiplied by a randomly sampled width (b− a) from the integral space.

F (x) =

∫︂ b

a

f(x)dx ≈ 1

N
(b− a)

N∑︂
k=1

f(xp) (2.32)

This idea relies on the law of large numbers that for a sufficiently large N the
integral will be sufficiently well approximated

lim
N→∞

1

N
(b− a)

N∑︂
k=1

f(xp) = F (x) (2.33)

The error for this integral, for a not infinite number of points, scales O( 1
N
) with

the number of samples.
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Figure 2.2: Example use of Monte Carlo method. By calculating the ratio of
randomly sampled points in and out of the area π can be calculated.

An often-used example to demonstrate a Monte Carlo method is shown in figure
2.2. To calculate π random samples are drawn from the area. Both the area of
the quarter circle AC and the area of the square AS is known

AC

AS

=
πr2

4∗4
r2

=
π

16
(2.34)

π can then be estimated as

nin Circle

ntotal
=

π

16
(2.35)

Simple Monte Carlo integration uses a uniform distribution for the sampling
points, which is not optimal for all applications. Importance sampling Monte
Carlo generalises this ansatz to any distribution, which, if cleverly chosen, can be
used to decrease the variance and with that the error of the method. This leads
to the use of fewer points for the same accuracy. One of the most used algorithms
is the Metroplis-Hasting63,64 algorithm.

2.2 Failures of Classical Mechanics

Theoretical chemistry is a field resulting from the developments of quantum me-
chanics. This happened relatively recently, beginning at the start of the last
century.
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Until about 150 years ago the area of physics was completely defined. The laws
of Newton and Maxwell, among others, fully explained the movements, light and
energy of an object. If one has the starting conditions of a moving body, its kinetic
energy or impulse, and sufficient information about the environment, one could
make precise predictions of the position, energy, momentum and other properties
of this body.

Until the end of the 19th century, when experimental data pointed to problems
which could not be explained by classical physics. The reigning theory of the time,
investigated by Rayleigh and Jeans among others, was that the electromagnetic
field behaved as a collection of harmonic oscillators with an infinite amount of
variable frequencies. This however meant that the light spectrum of a heated
body should show that oscillators with a short wavelength are excited at any
temperature. Which would mean that a body always glows and that no such
thing as darkness exists.

In the 1890s Max Planck proposed a solution to this problem. If energy was
not a continuous spectrum, but a discrete one, one could explain why certain
wavelengths would only be excited at higher temperatures. This idea sounded
counter-intuitive to our understanding of nature, which we observe to be contin-
uous. However, this packaging of energy, or quantising, proved to be correct.

This quantisation was shown to be not only a property of energy. In the 1920s
Stern and Gerlach reported the observation of the quantisation of the angular
momentum of atoms. They send a beam of silver atoms through a strongly inho-
mogeneous electric field, see figure 2.3, and recorded the interaction with a glass
screen. One could see two distinct dots on the screen. This could be explained by
the structure of the silver atom: silver’s most outer electron sits in an incomplete
5s shell with a total angular momentum of l = 0. However, the electron itself has
an underlying property which produces this effect, called spin. The term ’spin’
is reminiscent of the rotation of a charged classical body, which would result in
similar deflection behaviour, although the electron does not spin in the classical
sense.

This intrinsic spin of the electron, a charged particle, interacting with the mag-
netic field results in a force acting on the particle, diverting its path. Classically,



Chapter 2. General Theory 19

Figure 2.3: Simplified summary of the Stern-Gerlach experiment. A beam
source (furnace) expells a beam of silver atoms, which is sent through an inho-

mogeneous field and detected afterwards.

Figure 2.4: Classical view of the atom as a solar-system-like arrangement of
electrons orbiting the nucleus.

one would have assumed this spin to be continuous. What the Stern-Gerlach ex-
periment showed however was that the electron spin only had two discrete values
and the resulting angular momentum was therefore quantised.

One more problem of classical physics shall be discussed, as it has more relevance
to quantum chemistry. At the time one traditional view of the atom was the solar
system model (fig. 2.4). The atomic nucleus sits positively charged at the centre,
and the negatively charged electron orbits it with a speed large enough to keep it
in orbit.

Already at the end of the 18th century, the first experiments suggested that light
behaved like a wave. Maxwell connected this behaviour to his theory of electro-
magnetic waves and correctly identified light as such. Together with the experi-
ments by Hertz, this posed a question: Maxwell’s equation proposed that a moving
charge in an electric field emits an electromagnetic wave, which we know as light.
Light however carries energy, and that energy can only come from the original
charged particle. Electrons move in circular motions and should therefore emit
light. This should cause the electron to lose energy, which means losing speed and
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collapsing into its nucleus. A process which should take about 10−11 s. Seeing as
the universe still exists, this cannot be the nature of the atom, nor that of the
electron.

Other experiments both for the electron, such as the electron diffraction experi-
ment, and for light itself, such as the Compton-effect and the photoelectric effect,
would soon point to a new theory: particles of small enough size behave not only
as a particle, but also as a wave. This new idea of the particle-wave duality of
matter, later generalised by de Broglie, was another foundational change to the
classical concepts of physics. This, together with the idea of quantisation and the
discovery of the Uncertainty principle by Heisenberg, lead to a new area of physics
called quantum mechanics.

2.3 Quantum Chemistry Foundations

Quantum chemistry, uses the ideas and equations of quantum mechanics to model
and explain chemical processes.

2.3.1 Schrödinger Equation

Electronic structure theory is concerned with solutions to the Schrödinger equa-
tion. Published by Erwin Schrödinger in 192630 it is the foundational equation of
quantum mechanics, similar to what Newton’s equation is to classical mechanics.

Ĥ(r) |Φ(r, t)⟩ = Ê(t) |Φ(r, t)⟩ = −i δ
δt
|Φ(r, t)⟩ (2.36)

with the operator Ĥ being the Hermitian Hamiltonian, the wave function of the
system |Φ⟩ and the energy operator E . The parameter r depicts the dependency of
the spatial configuration of the wave function, and the coordinates of its underlying
particles. Going forward it will be dropped unless relevant.

This thesis is mostly about non-relativistic ground state methodology. Going for-
ward only the time-independent form of the Schrödinger equation will be discussed,
if not noted explicitly otherwise.
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Ĥ |Φ⟩ = ε |Φ⟩ (2.37)

with the Hamiltonian consisting of all operators acting on the system.

Ĥ = Te + TN + VNe + Vee + VNN (2.38)

Going forward parameters written in upper case, M,R, will denote properties
of the nuclei and parameters written in lower case, n, r, those of the electrons.
Equation 2.38 consists of the kinetic energy of the electrons Te and the nuclei TN ,
the repulsive potential between the electrons Vee and the nuclei VNN themselves
and the attractive forces between nuclei and electrons VNe. The operator equations
are respectively

Te = −
n∑︂

a=1

1

2
∇2

a , TN = −
M∑︂

A=1

1

2MA

∇2
A (2.39)

Vee = +
n∑︂

a=1

∑︂
b>i

1

rab
, VNN = +

M∑︂
A=1

M∑︂
B>A

ZAZB

RAB

(2.40)

VNe = −
n∑︂

a=1

M∑︂
A=1

ZA

raA
(2.41)

All equations in this thesis are written in terms of atomic units.

The wave function |Φ⟩ consists of the wave functions of the particles of the system,
which are in turn expanded in a set of basis function |ϕ⟩, which will be discussed
shortly. There is no true physical interpretation of the wave function |Φ⟩. However,
its square, ⟨Φ|Φ⟩, is generally interpreted as the probability of finding the described
system at a specific point in space. This interpretation, which is analogous to the
square of a light wave function describing the intensity of light, is called Born’s
Interpretation. For this reason, the wave function is generally normalised over all
space

∫︂ ∞

−∞
dτΦ(τ) = 1 (2.42)
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as the probability of finding the system anywhere should be exactly one.

The quantisation property of quantum mechanics stems from this and other bound-
ary conditions to the wave function. To fulfil the normalisation criteria the wave
function must not be infinite at any point. The Schrödinger equation is also a
differential equation of the second order. This means that the second, and follow-
ing from that the first, derivation of the wave function must exist and the wave
function has to be continuous. Finally, only one probability of finding the system
at a point in space should exist. This means that the wave function has to be
unambiguous.

The major problem with the Schrödinger equation stems from its differential equa-
tion nature. Solving it for any system with more than two particles, e.g. a helium
atom (two protons, two electrons), is not only not feasible, but generally assumed
to be impossible. No analytical solution exists for these many body problems, in-
cluding the two-body problem for specific setups. This is covered for example by
the KAM theory 65–67 and it is not a special property of the Schrödinger equation
but rather a general problem with, among other things, multi-body Hamiltonian
partial differential equations in Hilbert spaces.

To remedy this the field of quantum chemistry has introduced a series of approxi-
mations to the Schrödinger equation. There are two major branches of Schrödinger
equation based quantum chemistry, density functional theory and electronic struc-
ture theory. Most of the theory in this work is covered by the latter.

2.3.2 The Adiabatic Approximation

The first major approximation to the Schrödinger equation is the adiabatic Ap-
proximation, also called Born-Oppenheimer68 Approximation. It aims to decouple
the electronic and nuclear problems. To do so it argues that, because the mass
of a proton is around 1800 times that of an electron, the speed at which the elec-
trons move has to be much higher than that of the heavy nuclei. Therefore, the
movement of the latter can be neglected and the system is only parametrically
dependent on the nuclei’s position. This means that one can separate the full
Hamiltonian into the kinetic energy of the nuclei and an electronic contribution.

Ĥ = TN + Ĥe (2.43)
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with

Ĥe = Te + VN + Vee + VNe (2.44)

Where the potential energy of the nuclei is a constant and the potential energy
between the electrons and nuclei only depends parametrically on the nuclei’s po-
sition.

This electronic Hamiltonian has its own set of eigenfunctions, which are called
the electronic wave function of the system |Φe⟩. The VN term of the electronic
Hamiltonian is constant and any addition of a constant to the eigenvalues of an
operator does not effect its eigenfunctions. This term is therefore often dropped
for derivations. The wave function and the energy of the electronic Schrödinger
equation

ĤeΦe(r : R) = εe(R)Φe(r : R) (2.45)

now only has a parametric dependency on the positions of the nuclei R. Addi-
tionally, the wave function explicitly depends on the electronic positions r. The
electronic wave function is once again assumed to be normalised. The full wave
function can be recovered as a sum of superpositions of the nuclei and electronic
wave functions

Φexact(r, R) =
∑︂
n

ΦN(R)Φn(r : R) (2.46)

The actual approximation is that the electronic wave function is not, or only very
weakly, dependent on the nuclei coordinates. Or, that the movement of the nuclei
does not influence the energy of the electrons.

TNΦe ≈ ΦeTN (2.47)

This approximation holds for many systems in theoretical chemistry. It breaks
down if external fields are applied to a system, which couple the electronic and
the nuclei movement, or when there is a degeneracy in the potential surfaces of
the electronic states, such as with conical intersections69–71.
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The total energy of the system is the sum of the electronic energy plus the po-
tential of the nuclei. Analogously to the electronic problem, one can formulate a
Schrödinger equation for the nuclei.

If not explicitly mentioned, all following derivations will be in terms of the elec-
tronic Schrödinger equation.

2.3.3 Description of the Wave Function

Up until now the structure of the wave function, apart from its wave character-
istic, was left unmentioned. They are however of importance for the following
discussions.

What is the wave function of a single electron? It has a position in space, described
by its coordinates, e.g. r = {x, y, z}, and a quantity called spin. The wave function
of the electron, therefore, has to be made up of both of these quantities. Let ϕ(r)
denote the set of spatial functions for an electron p, which we call spatial orbitals,
which is dependent on the spatial coordinates and {α(s), β(s)} a set of spin
functions dependent on the spin of the electron. The full function can then be
described as a spin orbital χ(x)

χ(x) =

⎧⎨⎩ϕ(r)α(s) for spin up

ϕ(r)β(s) for spin down
(2.48)

where the parameter x = {r, s} denotes both the spin and spatial coordinates of
the orbital. The set of spatial orbitals is assumed to be orthonormal, as are the
spin orbitals.

The question now becomes: What is the wave function of a many-electron system?
Assuming one could transform the electron-electron repulsion Vee term of the
Hamiltonian into a form where one can separate the contribution for each electron,
either by neglecting or averaging it, the electronic Hamiltonian could be written
as the sum of its one-electron parts

Ĥ =
ne∑︂
p

ĥ(p) (2.49)
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the one-electron Hamiltonian ĥ(p) (p being the index for a general electron) would
then have a set of eigenfunctions that one could connect to the spin orbitals from
before

ĥ(p)χ(p) = εχ(p) (2.50)

The eigenfunction Φ of the full Hamiltonian of eq. 2.49 would then be simply a
product of the one-electron spin orbitals

Φ(x1, x2, . . . , xn) = χ1(x1)χ2(x2) . . . χn(xn) (2.51)

This ansatz for the wave function is called the Hartree product.

However, one problem arises. In Born’s interpretation of the wave function the
probability of these eigenfunctions would be equal to the product of the probability
of the spin orbitals, so

⟨Φ(x1, x2, . . . , xn)|Φ(x1, x2, . . . , xn)⟩ = ⟨χ1(x1)|χ1(x1)⟩ ⟨χ2(x2)|χ2(x2)⟩ . . . ⟨χn(xn)|χn(xn)⟩
(2.52)

This in turn would mean that the probability of finding one electron is independent
of all the other electrons, which is not the physical behaviour. Electrons repel each
other, so their movement and position are correlated. Another problem is that
the Pauli anti-symmetric principle72 is not represented in the wave function. The
wave function of a fermionic system, a system of identical particles with spin 1

2
,

must be anti-symmetric with respect to the interchange of the position of two of
its particles. This is not the case for the Hartree product.

To remedy this the wave function is typically formed in terms of a Slater deter-
minant.
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Φ(x1, x2, . . . , xn) =
1√
N !

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
χ1(x1) χ2(x1) . . . χn(x1)

χ1(x2) χ2(x2) . . . χn(x2)

. . . . . . . . .

χ1(xn) χ2(xn) . . . χn(xn)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ = |χ1χ2, . . . , χn⟩ (2.53)

This determinant, together with the normalisation factor, now introduces the anti-
symmetric principles to the wave function.

Φ(x1, x2, . . . , xn) = −Φ(x2, x1, . . . , xn) (2.54)

This also introduces an exchange-correlation between the electrons, as the final
probability of the system should not depend on the exchange of two electrons.
This ultimately correlates the movement of electrons of parallel spin.

2.3.4 The Mathematics of Orbitals

Before the next foundational approximation step, a quick mention of the mathe-
matical structure of the above-mentioned orbitals shall be given. The set of or-
thonormal orbitals is the basis in which the quantum chemical system is expressed.
But what do they look like mathematically? For a single electron, the choice of ba-
sis follows phenomenological arguments: the electronic density of a system should
have a sharp peak at the position of the nuclei and fall off asymptotically for an
increasing range. This function can be expressed in terms of a Slater-type orbital
function. Such a function for a 1s orbital is given in the following equation

ϕSTOabc(ζ, d) =

√︃
ζ3

π
e−ηd (2.55)

with the parameter ζ describing the size or diffuseness of the orbital and d denoting
the distance of the electron to the nuclei. Figure 2.5 shows that this expression
observes the correct behaviour, with a cusp at the central coordinate and an
asymptote towards zero at increasing range.
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d

STO
GTO

Figure 2.5: Slater-type and Gaussian-type 1s orbital example6.

While these Slater-type orbitals exhibit correct behaviour they are generally not
used. The reason behind it is that the product of two of these orbitals is compar-
atively hard to evaluate.

A workaround is the use of Gaussian functions. The product of two Gaussian
functions produces another Gaussian function, which is very easy to evaluate. An
example for the 1s orbital is given in the following equation

ϕGTO
abc (α, d) =

2α3/4

π
e−αd2 (2.56)

However, they do not exhibit the correct behaviour, as can be seen in figure 2.5,
having a wrong maximum and long-range behaviour. To remedy this a contraction
of multiple types of Gaussian function is used to approximate the Slate-type orbital
and recover the cusp and long-range behaviour, as can be seen in figure 2.6.

There are many categories of basis sets which are commonly used. The smallest
ones are called minimal basis sets, as they consist of the minimum amount of
orbitals needed to represent the occupied orbitals in a system. They follow the
naming convention STO−NG, with N being the number of primitive Gaussians
that approximate the Slater function. Another set of basis functions uses multiple
Gaussians with different parameters. They are summarised under the category of
multiple-ζ basis function (double-, triple-). Basis sets which use different numbers
of Gaussians for different regions of the atom are called split-valence basis sets. An
example of these kinds of sets is the ones developed by Pople73–75, which follow the
naming scheme X−Y Z . . . G. The first number describes the amount of Gaussians
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STO
STO-1G
STO-2G
STO-3G

Figure 2.6: Minimal basis set example approximating the Slater-type orbital6.

used in the core region of the atom and the parameters behind the dash describe
the multiple-ζ functions of the valence region. Over the years many additions to
these categories have been developed. Diffuse functions in the outer regions of the
basis sets have been added to help with large excited state descriptions (such as
charge-transfer states). Other examples of commonly used basis sets are the ones
by Dunning et al.76 and Ahlrich et al.77.

2.3.5 The Hartree-Fock Approximation

One of the earliest, still used, methods of computational quantum chemistry, stems
from the approximation introduced by Hartree78 and Fock79. It is an ab-initio
method, meaning that the calculation is done solely on principles of quantum
mechanics without any pre-existing information or parametrisation. The Hartree-
Fock method is the starting point of most more sophisticated methods that follow,
which includes the method derived in the next chapter.

This section aims to derive the Hartree-Fock approximation in its commonly used
matrix form to explain the underlying algorithm and have a foundation of where
to go on from. The derivation will not be step by step, but will only cover the
most important parts.

Starting from a single determinant wave function |Φ⟩ = |χ1χ2 . . . χn⟩ where the
spin orbitals are restrained to remain orthonormal ⟨a|b⟩ = δab the energy of the
electronic system is
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E0({χa}) = ⟨Φ0|Ĥ|Φ0⟩ =
∑︂
a

⟨χa|ĥ|χa⟩ (2.57)

+
1

2

∑︂
ab

[︁
⟨a(1)b(2)| 1

r12
|a(1)b(2)⟩

− ⟨a(1)b(2)| 1
r12

b(1)a(1)⟩
]︁

where the variational principle is used to minimize the energy. The spin-orbital
was shortened to χa(x1) = a(1). The only flexibility stems from the choice of
spin orbitals χa. The aim is to minimise the energy equation 2.57. This can be
done using Lagrangian multipliers because of the constraint of orthogonality. The
Lagrangian function is

L({χa}) = E0({χa})−
∑︂
ab

λba(⟨a|b⟩ − δab) (2.58)

To minimise the Lagrangian function its derivative δL = 0 is calculated. With the
energy expression for the Slater determinant 2.57 this leads to the expression

δL({χa}) = 0 = ĥ(1)a(1)+
∑︂
b

∫︂ [︁
b∗(2)

1

r12
a(1)b(2)−b(2) 1

r12
b(1)a(2)

]︁
d2−

∑︂
a

λabb(1)

(2.59)

which can be rewritten as

[︄
ĥ(1) +

∑︂
b

⟨b(2)|1− P̂12

r12
|b(2)⟩

]︄
a(1) =

∑︂
b

λabb(1) (2.60)

using the permutation operator

P̂12χa(x1)χb(x2) = χa(x2)χb(x1) (2.61)

This leads to an expression of the form

F̂ (1) |a⟩ = λ |b⟩ (2.62)
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with λ denoting the matrix of Lagrangian multipliers. The expression in eq. 2.61
can be transformed to an eigenvalue equation by the transformation of this matrix
through the use of a unitary transformation matrix U †U = 1.

ε = U†λU (2.63)

This step also transforms the one-electron Hamiltonian and the spin orbitals.
Inserting unity and multiplying with U† from the left

U†ĥ(1)UU† |χ(1)⟩+

[︄
⟨χ(2)U|1− P̂12

r12
|U†χ(2)⟩

]︄
U† |χ(1)⟩ = U†λUU† |χ(1)⟩

(2.64)

ĥ
′
(1) |χ′(1)⟩+

[︄
⟨χ′(2)|1− P̂12

r12
|χ′(2)⟩

]︄
|χ′(1)⟩ = ε |χ′(1)⟩ (2.65)

The component form of this expression is commonly called the ’canonical’ Hartree-
Fock expression. The prime mark will be dropped from now on.

[︄
ĥ(1) +

∑︂
b

⟨b(2)|1− P̂12

r12
|b(2)⟩

]︄
χa(1) = εkχa(1) (2.66)

It is common to define the following two quantities

Ĵ (1) =
∑︂
b

⟨b(2)| 1
r12
|b(2)⟩ K̂(1) =

∑︂
b

⟨b(2)| P̂12

r12
|b(2)⟩ (2.67)

Here the operator Ĵ is called the Coulomb operator. It can be interpreted as the
average electrostatic repulsion an electron at position 1 feels against an electron
at position 2. This is because the integration turns the two-electron operator 1

r12

into a one-electron operator.

Ĵ (1)χa(1) =

(︃∫︂
d2
χ∗
b(2)χb(2)

r12

)︃
χa(1) =

(︃∫︂
d2
|χb(2)|2

r12

)︃
χa(1) (2.68)
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The other operator K̂ is called the exchange operator. It does not have a simple
physical interpretation and stems from the antisymmetrical nature of the original
one-Slater-determinant wave function. Both operators are commonly bundled with
the one-electron operator ĥ into the full Fock operator F̂ . The main approximation
of the Hartree-Fock equation is that the wave function is only a single Slater
determinant.

The canonical form of the Hartree-Fock equation is not the one that is used in
actual computation. This is done by transforming equation 2.66 into a matrix
representation in the basis of a finite basis set (which has basis functions of the
form discussed in the previous chapter). Different variants are branching out from
this point, depending on the nature of the system described. For closed-shell
systems, with no unpaired electrons, one can simplify the equations further. If the
additional restriction, that the spin functions for the spin orbitals are the same for
alpha and beta spin, is chosen then the most commonly used Hartree-Fock flavour,
the restricted closed-shell Roothaan-Hall59,80,81 matrix equation, is generated.

2.3.5.1 Restricted Closed-Shell Roothaan-Hall

First, the restricted closed-shell form of the Hartree-Fock equation is derived.
Assuming that the spin function part of the spin-orbital is the same function for
both α and β electrons and that ⟨α(s)|α(s)⟩ = ⟨β(s)|β(s)⟩ = 1 and ⟨α(s)|β(s)⟩ =
⟨β(s)|α(s)⟩ = 0 one has

f(x1)ϕp(r1)α(s1) = ϵpϕp(r1)α(s1) (2.69)

where f(x1) is the one-particle Fock operator

f(x1) = h(r1) +
N∑︂
p

∫︂
dx2χ

∗
p

1− P̂12

r12
χp(x2) (2.70)

The derivation is identical for the β spin function. Multiplying equation 2.69 with
α∗(s) from the left and integrating over the spin results in
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h(r1)ϕq(r1) +
∑︂
p

∫︂
ds1dx2α

∗(s1)χ
∗
p(x2)α

1

r12
χp(c2)α(s1)ϕp(r1) (2.71)

−
∑︂
p

∫︂
ds1dx2α

∗(s1)χ
∗
p(x2)

1

r12
χp(x1)α(s2)ϕp(x2) = εqϕq(r1)

The space of spin orbitals ne is exactly half for the space of those with α spin and
those with β spin, leading to

h(r1)ϕq(r1) +

ne/2∑︂
p

∫︂
ds1ds2dr2α

∗(s1)ϕ
∗
p(r2)α

∗(s2)
1

r12
ϕp(r2)α

∗(s2)α(s1)ϕq(r1)

(2.72)

+

ne/2∑︂
p

∫︂
ds1ds2dr2α

∗(s1)ϕ
∗
p(r2)β

∗(s2)
1

r12
ϕp(r2)β

∗(s2)α(s1)ϕq(r1)

−
ne/2∑︂
p

∫︂
ds1ds2dr2α

∗(s1)ϕ
∗
p(r2)α

∗(s2)
1

r12
ϕp(r1)α

∗(s1)α(s2)ϕ1(x2)

−
ne/2∑︂
p

∫︂
ds1ds2dr2α

∗(s1)ϕ
∗
p(r2)β

∗(s2)
1

r12
ϕp(r1)β

∗(s1)α(s2)ϕ1(x2) = εqϕq(r1)

Integrating over the spins s1 and s2 eliminates the last line in the equation and
simplifies the first two lines as they become identical. What is left is

h(r1)ϕp(r1) + 2

⎡⎣ne/2∑︂
p

∫︂
dr2ϕp(r2)

1

r12
ϕp(r2)

⎤⎦ϕq(r1) (2.73)

−

⎡⎣ne/2∑︂
p

∫︂
dr2ϕ

∗
p(r2)

1

r12
ϕq(r2)

⎤⎦ϕp(r1) = εpϕp(r1) (2.74)

which is the closed-shell spatial orbital form of the Hartree-Fock equation with
the Fock operator
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f(r1) = h(r1) +

ne/2∑︂
q

2J(r1)−K(r1) (2.75)

These equations are not solved analytically or numerically with a computer, but
rather as a set of matrix equations. For this, the spatial orbitals are represented
in a finite, given basis (as discussed in the previous chapter).

ϕr =
∑︂
r

Cµrψµ (2.76)

The orbital ϕr represents a molecular orbital, whereas the basis functions typically
used are evaluated around atomic centres and are therefore atomic orbitals. This
expansion is a further approximation, as a finite basis set is incomplete. The
molecular orbitals in the closed-shell Hartree-Fock equation can be expanded in
this basis

f(r1)
∑︂
r

Cµ,rψµ(r1) = εr
∑︂
r

Cµ,rψµ(r1) (2.77)

Multiplying with the basis function ψnu(r1) from the left and integrating over it
we arrive at the matrix equation

FC = εSC (2.78)

with S being the matrix of the overlap integral between the two functions

Sµν =

∫︂
dr1ψmu

∗(r1)ψnu(r1) (2.79)

C the matrix of expansian coefficients, F the Fock matrix

Fµν =

∫︂
dr1ψ

∗
µ(r1)f(r1)ψnu(r1) (2.80)
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and ε the diagonal matrix of orbital energies εp. One additional step is taken
before calculation: the basis functions are typically not orthonormal, so the ma-
trix equation is transformed with a unitary transformation matrix X so that the
overlap matrix becomes unity. The final equation is then

F′C′ = C′ε (2.81)

2.3.5.2 The SCF Algorithm

The algorithm to solve the Roothan-Hall equation is called the self-consistent field
method. Because the Fock operator F̂ is dependent on the orbitals itself in the
coulomb and exchange terms, solving the Roothan-Hall method has to be done
iteratively. The SCF algorithm is sketched in algo. 1.

Algorithm 1: General self-consistent-field algorithm used to calculate the
Hartree-Fock method family.

1 define nuclei coordinates RA, core charges ZA, define total number of
electrons ne, basis set ϕλ

2 guess set of coefficients {cpλ} for molecular orbitals
3 calculate Spq, Fpq, ⟨λµ|νσ⟩
4 diagonalise Spq to get transformation matrix X
5 while residual > threshold do
6 form Fock matrix F
7 calculate the transformed Fock matrix F′ = X†FX
8 diagonalise F′ to obtain C′, ε
9 calculate Cnew = XC′

10 calculate residual Cnew −Cold

11 calculate expected quantities

2.3.6 Recovering Electronic Correlation

The Hartree-Fock method results in around 97 % of the total energy of common
systems. The last percents are however important in many chemical systems,
which often feature flat energy surfaces. It is important to recover the difference
between the exact energy and the Hartree-Fock energy to accurately describe these
systems.
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Eexact − EHF = Ecorrelation (2.82)

This difference is commonly called the electron-correlation energy. The single
Slater determinant ansatz of the Hartree-Fock equation results in the average
treatment of the electron-electron interaction term. This is a major approximation
to physical systems.

The Hartree-Fock method is used often by computational chemists as a first ap-
proximation for large systems or implicitly in the use of higher levels of theory.
These post-Hartree-Fock methods aim to recover this electron-correlation energy.
As there are many, only two will be introduced in this general theory introduction.
One will be computationally exact, however realistically unfeasible, and the other
will be less exact, but more commonly used.

2.3.6.1 Configuration Interaction

The simplest method to recover the electron-electron correlation is called config-
uration interaction. Where on the Hartree-Fock level only one Slater determinant
of spin-orbitals is used to approximate the wave function of the system, in config-
uration interaction it is instead expanded in a sum of all possible combinations of
such Slater determinants. These additional determinants differ in the exchange of
one, two, three . . . orbitals. Such as, if orbital l and m are exchanged, the resulting
Slater determinant is

|Φ⟩ = |χ1χ2 . . . χlχm . . . χm⟩ → |Φm
l ⟩ = |χ1χ2 . . . χmχl . . . χm⟩ (2.83)

This wave function is called singly excited. If this is done for all possible com-
binations of exchanging orbitals the resulting method is called full configuration
interaction (full CI)

|Φ⟩ = c0 |Φ0⟩+
(︃
1

1!

)︃2∑︂
ia

cap |Φa
p⟩+

(︃
1

2!

)︃2∑︂
ijab

cabij |Φab
ij ⟩+ . . . (2.84)

Where the prefactor has been added to avoid double counting of the determi-
nants. The Hartree-Fock spin-orbitals resulting from the SCF procedure are used
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as the underlying spin-orbitals in this method. This wave function is then inserted
into the Schrödinger Equation and projected on each configuration state function
⟨Φ0| , |Φa

p⟩ , . . . . The resulting matrices of the form ⟨Φ0|Ĥ − E0|Φ⟩, ⟨Φa
p|Ĥ − E0|Φ⟩,

. . . are then expanded in a set of basis function and an eigenvalue equation is
recovered. These matrices are then diagonalised to gain the correlation energy
correction of the configuration interaction method. They can be further simplified
by employing Brillouin’s theorem (resulting in no coupling between the HF ground
state and the single excited determinant) and the Slator-Condon rules for one- and
two-particle operator matrix elements (all matrix elements between determinants
differing by more than two indices are zero). However, they are still generally
unusable.

Full configuration interaction is typically only done for systems with few particles.
The reason behind it is the numerical explosion of excited Slater determinants
in a full-CI system. While this can be somewhat remedied with the exploitation
of integral symmetries or clever choice of different diagonalisation schemes, the
number of systems which can be treated with full CI is minuscule.

The configuration interaction picture gives instead rise to further approximative
methods, by neglecting higher orders of excited determinants. This leads for
example to the configuration interaction method for single and double excitations,
CISD.

2.3.6.2 Perturbation Theory

The last method that will be discussed in this chapter is the perturbative treatment
of the Schrödinger equation which follows the Rayleigh-Schrödinger formalism. It
will result in the starting equation for the method derived in this thesis in the
next chapter.

The Rayleigh-Schrödinger equation assumes that we know the solution to a part
of the full Hamiltonian, Ĥ0, with its solution E(0). The full Hamiltonian shall
be the sum of this plus a small perturbation for which one does not know the
solution for, Ĥ = Ĥ0 + λV̂ . The prefactor λ is just an addition which will be
useful for the math later. The perturbation is chosen to be small, which means
that the eigenfunctions of the full Hamiltonian should not differ much from the
eigenfunction of the known Hamiltonian. Therefore both the energy and the wave
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function of the full system can be approximated in a Taylor series around the
known eigenfunctions.

Ep = E(0)
p + λE(1)

p + λ2E(2)
p + . . . (2.85)

|Φp⟩ = |Φ(0)
p ⟩+ λ |Φ(1)

p ⟩+ λ2 |Φ(2)
p ⟩+ . . . (2.86)

The known eigenfunctions of Ĥ0, |Φ(0)
p ⟩ are orthogonal to the n-th order part of

this expansion ⟨Φ(0)
p |Φ(n)

p )⟩ = 0 for n ̸= 0. These equations are inserted into the
eigenvalue equation of the full system.

Ĥ |Φp⟩ = Ep |Φp⟩ (2.87)(︂
Ĥ0 + V̂

)︂ (︁
|Φ(0)

p ⟩+ λ |Φ(1)
p ⟩+ λ2 |Φ(2)

p ⟩+ . . .
)︁

(2.88)

=
(︁
E(0)

p + λE(1)
p + λ2E(2)

p + . . .
)︁ (︁
|Φ(0)

p ⟩+ λ |Φ(1)
p ⟩+ λ2 |Φ(2)

p ⟩+ . . .
)︁

(2.89)

Expanding all of these brackets gives rise to parts which can be grouped by their
power of λ

Ĥ
(0)
|Φ(0)

p ⟩ = E(0)
p |Φ(0)

p ⟩ n = 0

Ĥ
(0)
|Φ(1)

p ⟩+ V̂ |Φ(0)
p ⟩ = E(0)

p |Φ(1)
p ⟩+ E(1)

p |Φ(0)
p ⟩ n = 1

Ĥ
(0)
|Φ(2)

p ⟩+ V̂ |Φ(1)
p ⟩ = E(0)

p |Φ(2)
p ⟩+ E(1)

p |Φ(1)
p ⟩+ E(2)

p |Φ(0)
p ⟩ n = 2

· · ·

(2.90)

Projecting these functions on the unperturbed ground state by multiplying with
⟨Φ(0)

p | from the left results in

E(0)
p = ⟨Φ(0)

p |Ĥ|Φ(0)
p ⟩

E(1)
p = ⟨Φ(0)

p |V̂|Φ(0)
p ⟩

E(2)
p = ⟨Φ(0)

p |V̂|Φ(1)
p ⟩

(2.91)



Chapter 2. General Theory 38

Where E(n)
p is the n-th order energy correction to the unperturbed ground state.

To arrive at a form for the second-order energy one can expand the first-order wave
function in terms of a complete set, which is chosen to be the set of eigenfunction
Φp of the known unperturbed Hamiltonian

∑︁
n |Φn⟩ ⟨Φn| = 1.

E(2)
p ) = ⟨Φ(0)

p |V̂|Φ(1)
p ⟩ =

∑︂
n ̸=p

⟨Φ(0)
p |V̂|Φn⟩ ⟨Φn|V̂|Φ(1)

p ⟩ (2.92)

With the expansion for ⟨Φn|V̂|Φ(1)
p ⟩

⟨Φn|V̂|Φ(1)
p ⟩ =

⟨Φn|V̂|Φ(0)
p ⟩

E
(0)
p − E(0)

n

(2.93)

which is gained by reordering the first order part of equation 2.90 and projecting
it on ⟨Φn|. The final second-order energy correction is then

E(2)
p =

∑︂
n̸=p

⟨Φ(0)
p |V̂|Φn⟩ ⟨Φn|V̂|Φ(0)

p ⟩
E

(0)
p − E(0

n

=
∑︂
n ̸=p

| ⟨Φn|V̂|Φ(0)
p ⟩ |2

E
(0)
p − E(0

n

(2.94)

Up until now, no choice has been made as to what the unperturbed and known
Hamiltonian is. If one chooses the Hamiltonian to be the Hartree-Fock Hamilto-
nian one arrives at the Møller-Plesset perturbation method. Let the Hartree-Fock
Hamiltonian be the sum of the one-particle part and the average treatment po-
tential of the system. The perturbation shall be the difference between the exact
potential and the average one.

Ĥ0 =
∑︂
p

(h(p) + v(p)) (2.95)

V̂ =
∑︂
p<q

1

rpq
−
∑︂
p

v(p) (2.96)

With the following integrals which will be used from here on out
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⟨pq|rs⟩ =
∫︂
dx1dx2ϕ

∗
p(x1)ϕ

∗
q(x2)

1

r12
ϕr(x1)ϕs(x2) (2.97)

⟨pq||rs⟩ = ⟨pq|rs⟩ − ⟨pq|sr⟩ (2.98)

The second-order correction to the energy was singled out because the zeroth and
first-order energy only recovers the general Hartree-Fock energy. The Hartree-
Fock ground state is in this formulation |Φ(0)⟩. The states |Φrs

pq⟩ are double excited
Hartree-Fock states

Ĥ0 |Φrs
pq⟩ =

(︂
E

(0)
0 − (εp + εq + εr − εs)

)︂
|Φrs

pq⟩ (2.99)

Where the electrons of spin orbitals p, q have been promoted to the orbitals r, s.
Together with the expression of for the coulomb operator

⟨Φ0|
1

rij
|Φrs

pq⟩ = ⟨pq||rs⟩ (2.100)

and removing the sum restrictions in favour of a full summation with prefactors to
avoid double counting one arrives at the second-order correction to the Hartree-
Fock energy

E(2) =
1

4

∑︂
pqrs

| ⟨pq||rs⟩ |2

εp + εq − εr − εs
(2.101)

Going forward this thesis will adhere to the general naming scheme for orbital
indices. The indices i, j, . . . will denote occupied orbitals and a, b, . . . unoccupied
orbitals. The indices p, q, . . . will be left for general orbitals.

Equation 2.101 is formulated in the space of spin-orbitals. The spin functions com-
plicate the mathematical treatment during computation, however. It is therefore
common to integrate them out for systems where spin effects are not of interest.
This is generally the case with closed-shell molecules, which have only paired elec-
trons of both spins in each shell. Starting from the above equation, which in the
new naming scheme is
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E(2) =
1

4

∑︂
ijab

| ⟨ij||ab⟩ |2

εa + εb − εi − εj
(2.102)

One can fully expand the numerator in the squared absolute as

∑︂
ijab

| ⟨ij||ab⟩ |2 =
∑︂
ijab

| ⟨ij|ab⟩ − ⟨ij|ba⟩ |2 (2.103)

=
∑︂
ijab

⟨ij|ab⟩ ⟨ab|ij⟩+
∑︂
ijab

⟨ij|ba⟩ ⟨ba|ij⟩

−
∑︂
ijab

⟨ij|ab⟩ ⟨ba|ij⟩ −
∑︂
ijab

⟨ij|ba⟩ ⟨ab|ij⟩

= t1 + t2 + t3 + t4

All indices within closed summations are free to be relabelled. The spin-orbitals
a, b in integral t2 can therefore be switched which lets t2 = t1. Adding both
together leads to a prefactor of 2. The only integrals surviving the orthonormality
factor of the spin function ⟨a|b⟩ = 0 after integration are the integrals with the
spin combinations ⟨αα|αα⟩, ⟨αβ|αβ⟩, ⟨βα|βα⟩, ⟨ββ|ββ⟩. The symmetry of t1 lets
all four variants survive, resulting in an additional factor of 22 = 4 after spin
integration.

For the same reason, one can prove t3 = t4. Because of the cross of indices the only
spin combinations surviving are ⟨αα|αα⟩ and ⟨ββ|ββ⟩. The additional prefactor
is therefore 2. The sum over all spin orbitals

∑︁n is halved in closed-shell systems
as there are no spin functions to produce two spin orbitals per spatial orbital.

t1 + t2 + t3 + t4 = 2t1 − 2t3 (2.104)

= 8

n/2∑︂
ijab

⟨ij|ab⟩ ⟨ab|ij⟩ − 4

n/2∑︂
ijab

⟨ij|ba⟩ ⟨ab|ij⟩

Where the summation limits now indicate the spatial character of the wave func-
tions. Inserting this equation in 2.102 results in the closed-shell form of the Møller-
Plesset perturbation energy correction of second order.
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E(2) =

n/2∑︂
ijab

2 ⟨ij|ab⟩ ⟨ab|ij⟩ − ⟨ij|ba⟩ ⟨ab|ij⟩
εa + εb − εp − εj

(2.105)

This form will be the playing ground for the quadrature scheme derived in this
thesis in the next chapter.





Chapter 3

Derivation of Quadrature MP2

This chapter contains the derivation of the quadrature method presented in this
thesis. Section 3.1 introduces the specific theoretical background to understand
the derivation. Afterwards, the derivation will be explained in detail in section
3.2. Finally, the first energy benchmark is given in section 3.3 and shows the
performance of the method in terms of recovering the full MP2 energy.

3.1 State of the Art

This thesis is concerned with reformulating integrals and terms used in computa-
tional chemistry into lower-scaling massively parallel forms. The derivation in this
chapter will do so with the closed-shell form of the Møller-Plesset perturbation
theory of second order.

E(2) =

n/2∑︂
ijab

2 ⟨ij|ab⟩ ⟨ab|ij⟩ − ⟨ij|ba⟩ ⟨ab|ij⟩
εa + εb − εi − εj

(3.1)

This integral scales naively with O(O2V 2) for the calculation, with O and V

being the number of occupied and virtual orbitals respectively. This scaling repre-
sents the computational complexity. The memory complexity is dominated by the
fourth-ranked tensors of the form ⟨pq|rs⟩ which have to be evaluated and saved in
memory for the derivation.

43
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⟨pq|rs⟩ =
∫︂
dx1dx2ψ

∗
p(x1)ψ

∗
q (x2)

1

r12
ψr(x1)ψs(x2) (3.2)

Initial evaluation of these integrals is done in the atomic orbital representation
⟨µν|λσ⟩. This integral has to be transformed into the molecular orbital repre-
sentation, which scales with O(NO2V 2) computationally, N being the number of
atomic orbitals.

⟨pq|rs⟩ = CT
µpC

T
νq ⟨µν|λσ⟩CλrCλs (3.3)

It is also the largest object held in memory and therefore gives the method its
total memory complexity of O(N4).

There are numerous optimisations focused on improving the computational and
memory scaling of the MP2 method. They generally focus on reformulating the
above-mentioned tensors in lower scaling forms and/or exploiting local orbital
character through additional integral screening to reduce the matrix elements
which have to be computed. The following section will summarise some of these
techniques leading up to the quadrature reformulation.

3.1.1 Resolution-of-the-Identity Approximation

The Resolution-of-the-Identity (RI) approximation82–84, which is sometimes also
called Density Fitting (DF), aims to express the two-electron-repulsion integrals
(ERI) in a lower dimensional form. These matrices are generally sparse, meaning
that a large part of their entries are close to zero. One can reformulate the ma-
trix into a form of smaller dimensions and save computational time and storage
requirements. They also often have linear dependencies, which can be removed
through standard schemes.

The RI approximation does so by casting the fourth-ranked tensors into three-
ranked forms with the help of an orthonormal auxiliary basis, X or Y , as per

⟨µν|λσ⟩ =
∑︂
XY

⟨µν|X⟩ ⟨X|Y ⟩−1 ⟨Y |λσ⟩ (3.4)
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where the following integral is a Coulomb matrix of the form

⟨X|Y ⟩ =
∫︂
dr1dr2

X(r1)Y (r2)

r12
(3.5)

This reexpression is often written by bundling half of the integral 3.4 into RI
vectors

ZX
µν =

∑︂
Y

⟨X|Y ⟩−
1
2 ⟨Y |µν⟩ (3.6)

which approximates the original integral through

⟨µν|λσ⟩ =
∑︂
X

BX
µνBλσ (3.7)

This approximation is done on the atomic orbital level. It lowers the memory com-
plexity of the integrals to O(N2X), X being the size of the auxiliary basis and the
computational complexity of the transformation bottleneck step to O(NOVX).
The auxiliary bases are prefitted to atom-centric systems, which may not be the
best approximation depending on the system.

This approximation is one of the most widely used ones to lower the complexity
of computational chemistry methods. In some software suits it is the standard for
the calculation of the Møller-Plesset or the Coupled Cluster method families.

However, the choice of the best auxiliary basis set for a system disturbs the general
black-box nature of most ab inito calculations. This is remedied by the on-the-fly
generation of the auxiliary basis set through the Cholesky Decomposition tech-
nique.

3.1.1.1 Cholesky Decomposition

The Cholesky Decomposition85,86 is a technique often used in linear algebra to
cast Hermitian matrices into a product of their lower triangular matrix and its
conjugate transpose. It was first applied to the area of quantum chemistry in 1977
by Bebe and Linderberg87.
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The Cholesky Decomposition algorithm, which is summarised for the Q-Chem88

implementation by Epifanovksy7,8, is given in figure 3.1. Diagonal elements of
the ERI are computed and the largest one is chosen. The matrix elements with
this diagonal and two of the four indices is calculated and a Cholesky vector
is calculated, which has the form of the auxiliary basis function used in the RI
approximation. This is then subtracted from the diagonal elements. The largest
element is chosen once again and checked against a threshold. If it is above
the threshold, a new Cholesky vector is calculated and subtracted. Once the
threshold is reached the basis set generation is finished and the program starts a
RI approximated version of the method with the Cholesky vectors as the auxiliary
basis functions.

The Cholesky Decomposition allows for on-the-fly generation of the RI auxiliary
basis. It can be arbitrarily accurate, as its algorithm involves a threshold param-
eter which the generation of the basis function vectors is checked against. This
ansatz provides much more flexibility compared to the rigid precalculated basis
sets used in standard RI, at the cost of the calculation of the auxiliary vectors for
each new system.

3.1.2 Laplace-transformed MP

As mentioned before, the complexity of many post-HF methods stems from the
need for transformation and storage of the fourth-ranked ERIs. Additionally,
the form of the integral in eq. 3.1 introduces certain constraints to the choice
of orbitals, which have to be orthonormal and canonical (diagonalising the Fock
matrix). These constraints stem from the interconnection of the orbitals in the
integrals with the indices of the energy denominator. They are coupled. This
also affects the parallel efficiency of the integral evaluation, as the large tensor
object of the fourth-ranked ERI has to be saved and traversed. Almlöf1,51,52 has
shown in a series of papers that one can decouple the indices of the (spin-orbital)
MP2 correlation energy by transforming the energy denominator with the Laplace
transform, see eq. 3.9.

E(2) = −1

4

∑︂
ijab

| ⟨ij||ab⟩2 |
(εa + εb − εi − εj)

(3.8)
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Figure 3.1: Cholesky algorithm of the Q-Chem implementation by Epi-
fanovsky et al.7,8.
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1

εa + εb − εi − εj
= −

∫︂ ∞

0

dτe(εa+εb−εi−εj)τ (3.9)

Where the dependence on the integration grid can be transferred to the orbitals
through

ψp(t) = ψp(0)e
±εpt (3.10)

This has the effect that these orbitals do not have to be orthogonal or canoni-
cal, making the choice much more flexible. Especially in large, extended systems,
transformed orbitals with high localised properties can be chosen and exploited.
Localisation increases the sparsity of the resulting matrices, which in turn reduces
the number of matrix elements that need to be saved for an accurate representa-
tion, ultimately reducing the dimensions of the integrals.

3.1.3 Monte Carlo Stochastic MP2 (MC-MP2)

Willow and Hirata53 used the above-described decoupling of the energy denomina-
tor to reformulate the MP2 integral into the sum of two 13-dimensional integrals.
With this, they eliminated the need for the transformation of the full ERI from
its atomic orbital representation into its molecular orbital one. The integral is of
the form

E(2) =

∫︂
dr1dr2dr3dr4

(︂o(r1, r3, τ)o(r2, r4, τ)v(r1, r4, τ)o(r2, r3, τ)
|r12r34|

(3.11)

− 2o(r1, r3, τ)o(r2, r4, τ)v(r1, r3, τ)v(r2, r4, τ)

|r12r34|

)︂

with the occupied orbital contributions of

o(r1, r3, τ) =
occ.∑︂
i

ϕ∗
i (r1)ϕi(r3)e

−εiτ (3.12)

and the virtual orbital contributions of
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v(r1, r3, τ) =
occ.∑︂
a

ϕ∗
a(r1)ϕa(r3)e

εaτ (3.13)

where equations 3.12 and 3.13 are the only quantities which have to be manipu-
lated and saved, lowering the memory complexity to O(P 2KN), with P being the
size of the spatial and K the size of the one-dimensional integration grid intro-
duced through the Laplace transformation. However, the curse of dimensionality
prohibits the straightforward evaluation of the 13-dimensional integral 3.11. The
authors favoured a Monte Carlo integration approach to evaluate the target inte-
gral, where samples from a random distribution are drawn, weighted and summed
up to approximate the integral through the law of large numbers.

I =

∫︂
dxf(x) ≈ 1

N

N∑︂
n=1

f(xn)

w(xn
(3.14)

This approach has the advantage over the previous formulation of stochastically
evaluated MP289–91 of not needing the full four indices ERI tensor, circumventing
the largest spatial complexity and the need for the expensive integral transfor-
mation. The Monte Carlo integration also exposed massive parallelism for the
integral evaluation, as all random walkers act independently in exploring the multi-
dimensional space. This was shown in a GPU optimised implementation54 which
shows quadratic speed up for an increase in computational complexity of O(N3)

or better for smaller systems, and a linear speed up for most larger systems.

The disadvantages of this ansatz lie in its stochastic nature and the singularities
of its spatial integration grid where r12 ≈ 0.

3.1.4 MPI/OpenMP hybrid parallel quadrature MP2-F12

Ishimura and Ten-no2 published a hybrid OpenMP/MPI parallelised algorithm
for orbital invariant quadrature-based Møller-Plesset theory (MP2-F12) in 2011,
where the two-electron integrals were decomposed in terms of two-dimensional
Coulomb integrals and quadrature evaluated molecular orbitals.



Chapter 3. Derivation of Quadrature MP2 50

⟨ij|ab⟩ =
∑︂
P

ϕā(rP )ϕi(rP ) ⟨j|r−1
1P |b⟩ (3.15)

ϕā = ω(rP )ϕa(rP ) (3.16)

⟨j|r−1
1P |b⟩ =

∫︂
dr1

ϕb(r1)ϕj(r1)

|r1 − rP |
(3.17)

(3.18)

They achieved near-linear parallel efficiency for their test systems of anthracene,
tetracene and coronene on Becke-style integration grids with up to 8192 CPU
cores. Their implementation suffered however from the required communication
time, which made up 22− 43% of the total execution time on 8192 cores. As the
indices were not decoupled the computational scaling for their implementation is
O(O2V 2P ).

This partitioning of the two-electron integral and their parallel algorithm resembles
the pseudospectral formulation of MP2 by Martinez92.

3.1.5 Quadrature of opposite-spin MP2 (Q-MP2-OS)

The decoupling of the energy denominator was also the starting point for Barca
and Gill3, which used a quadrature treatment to reformulate the opposite-spin
part of the MP2 integral into a connected sum of low dimensional entities

E
(2)
OS ≈ +

K∑︂
k

G∑︂
pq

T k
pqT̄

k
qp (3.19)

with
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T k
pq =

N∑︂
νa

Skp
aνV

kq
νa (3.20)

Vνa =
N∑︂
β

YνβU
q
aβ

Skp
aν =

N∑︂
µ

Xk
µaD

p
µν

where the quantities U and D are defined as

Dp
µν =

√
wpDµν(rp) =

√
wpϕµ(r)ϕν(r) (3.21)

Up
λσ =

√
wpUλσ(rp) =

√
wp

∫︂
dr′

ϕλ(r
′)ϕσ(r

′)

|rp − r′|
dr′∫︂

drDµν(r)Uλσ(r) ≈
G∑︂
p

Dp
µνU

p
λσ

and the only entities that need to be saved are

Xµa(t) =
No∑︂
i

CµiCaie
εi (3.22)

Yνβ(t) =
Nv∑︂
i

CνaCβae
−εa (3.23)

These sums are carried out over a one-dimensional grid determined by nonlinear
min-max optimizations between the lowest and highest energy of its active orbitals.
The one-dimensional grid consisted of a low grid point count of 6 and the molecular
grid used was similar to the standard one employed in density functional theory,
which uses Euler-Maclaurin and Lebedev quadrature rules with Becke weights. It
was additionally heavily pruned. They employed multiple screening schemes, such
as screening of the relevant shell pairs or cutoff strategies for the molecular grid
points, to arrive at an algorithm which scales with a complexity of O(N2) with a
large prefactor resulting from the molecular grid.
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This quadrature ansatz has multiple advantages. It is formulated in the atomic
orbital representation, eliminating the need for the costly transformation of the
ERI integrals, with the evaluation of the coefficient matrix quantities through the
X and Y entities. It is also embarrassingly parallel.

Generally speaking, many methods used in computational chemistry exhibit low
parallel efficiency, which is essential for modern high-performance computation
clusters. Their testing of the Q-MP2-OS method shows a near-ideal speed up of
around ∼ 99 % efficiency. They mentioned however that transformation of the
same-spin component of the MP2 correlation energy, which is missing for a full
MP2 formulation, is more involved and not easily done.

The lower scaling, both in computational and memory complexity, and the ideal
parallelisation possibilities are the reason for the next section, which employs a
similar scheme for the full MP2 correlation energy integral.

3.2 Derivation of Q-MP2

The starting point of the derivation6, which follows the Ideas by Almlöf51, Häser1,52,
Ishimura2, Barca3 and Bloomfield4 is the closed-shell form of the complete Møller-
Plesset perturbation theory of second order (eq. 3.25) in its molecular orbital rep-
resentation. It will be split into two parts for better readability. The summation
over the indices i, j and a, b are carried out over the full space of occupied and
virtual orbitals.

EMP2 =
∑︂
ij

∑︂
ab

⟨ij|ab⟩ ⟨ab|ji⟩ − 2 ⟨ij|ab⟩ ⟨ab|ij⟩
εa + εb − εi − εj

(3.24)

= B − A (3.25)

with

A =
∑︂
ij

∑︂
ab

2 ⟨ij|ab⟩ ⟨ab|ij⟩
εa + εb − εi − εj

(3.26)

and
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B =
∑︂
ij

∑︂
ab

⟨ij|ab⟩ ⟨ab|ji⟩
εa + εb − εi − εj

(3.27)

Following Almlöf1,52, the energy denominator is transformed and then approxi-
mated by a one-dimensional quadrature (eq. 3.28 and 3.29).

1

A
≈
∫︂ 1

0

tA−1dt ≈
nK∑︂
K

ωKt
A−1
K (3.28)

Where the summation over K is carried out over all points in the integration grid.

1

εa + εb − εi − εj
≈
∫︂ 1

0

tεa+εb−εi−εj−1dt ≈
nK∑︂
K

ωKtεa+εb−εi−εj−1 (3.29)

Secondly, the integrals are expanded and restructured, see equation 3.33. An
analytical integration over a coulomb-type integral leads to an integral being de-
pendent only on its second set of coordinates. This integral is readily available
after the SCF is carried out in a program and has to be evaluated on the grid. If
the above transformation of the energy denominator is carried out the indices can
be reorganized into a lower scaling form.

Finally, to deal with the set of three spatial coordinates a quadrature over a spatial
grid is employed. Once again, the summations are carried out over the full set of
grid points.

∑︂
ijab

⟨ij|ab⟩ =
∫︂
dr

∫︂
dr′

ϕi(r)ϕj(r
′)ϕa(r)ϕb(r

′)

|r− r′|
(3.30)

=
∑︂
ijab

∫︂
drϕi(r)ϕa(r)

(︃∫︂
dr′

ϕj(r)ϕb(r
′)

|r− r′|

)︃
(3.31)

=

∫︂
dr

(︄∑︂
i

ϕi(r)

)︄(︄∑︂
a

ϕa(r)

)︄(︄∑︂
jb

Ijb(r)

)︄
(3.32)

=

nP∑︂
P

ωP

(︄∑︂
i

ϕP
i

)︄(︄∑︂
a

ϕP
a

)︄(︄∑︂
jb

IPjb

)︄
(3.33)
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These steps will be now carried out for the two parts of the energy expression.
Starting with the fragment A the integrals are expanded

A = 2
∑︂
ij

∑︂
ab

(︃∫︂
dr1dr2ϕi(r1)ϕj(r2)ϕa(r1)ϕb(r2)r

−1
12

)︃
× (3.34)(︁∫︁

dr1dr2ϕa(r1)ϕb(r2)ϕi(r1)ϕj(r2)r
−1
12

)︁
εa + εb − εi − εj

(3.35)

Then the analytical integration is carried out

A = 2
∑︂
ij

∑︂
ab

∫︂
dr1ϕi(r1)ϕa(r1)

∫︂
dr2
(︁
ϕj(r2)ϕb(r2)r

−1
12

)︁
× (3.36)(︁∫︁

dr1ϕa(r1)ϕi(r1)
∫︁
dr2
(︁
ϕb(r2)ϕj(r2)r

−1
12

)︁)︁
εa + εb − εi − εj

(3.37)

and the transformation of the energy denominator is employed

A = 2
∑︂
ij

∑︂
ab

∑︂
K

ωK

(︃∫︂
dr1ϕi(r1)ϕa(r1)Ijb(r1)

)︃
× (3.38)(︃∫︂

dr1ϕa(r1)ϕi(r1)Ijb(r1)

)︃
t
εa+εb−εi−εj−1
K (3.39)

with the integrals

Ijb(r1) = Ibj(r1) =

∫︂
dr2

ϕj(r2)ϕb(r2)

|r1 − r2|
(3.40)

These integrals, in their atomic orbital form, are the largest objects of the method
that have to be stored. Now two quadratures are employed to deal with the two
sets of three-dimensional coordinates
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A = 2
∑︂
ij

∑︂
ab

∑︂
K

ωK

∫︂
dr

∫︂
dr′ϕi(r)ϕa(r)Ijb(r)ϕa(r

′)ϕi(r
′)Ijb(r

′)t
εa+εb−εi−εj−1
K

(3.41)

A = 2
∑︂
ij

∑︂
ab

∑︂
K

ωK
∑︂
P

ωP
∑︂
P ′

ωP ′
ϕi(r)ϕa(r)Ijb(r)ϕa(r

′)ϕi(r
′)Ijb(r

′)t
εa+εb−εi−εj−1
K

(3.42)

the quadrature of the second set of coordinates is renamed for better readability.
Additionally, the parameter r will be dropped from now on and the exponents
K,P,Q will denote the indices of the quadrature grids, to distinguish them from
the molecular orbital indices (except for the one-dimensional integrand t to avoid
confusion with the energy exponents).

A = 2
∑︂
ij

∑︂
ab

∑︂
K

ωK
∑︂
P

ωP
∑︂
Q

ωQϕP
i ϕ

P
a I

P
jbϕ

Q
a ϕ

Q
i I

Q
jbt

εa+εb−εi−εj−1
K (3.43)

Now the summation can be reorganized and the molecular orbital indices re-
grouped to arrive at a lower dimensionality in terms of the system size.

A = 2
∑︂
K

ωK
∑︂
P

ωP
∑︂
Q

ωQ

(︄∑︂
i

ϕP
i ϕ

Q
i tK−εi

)︄
× (3.44)(︄∑︂

a

ϕP
a ϕ

Q
a t

εa
K

)︄
× (3.45)(︄∑︂

jb

IPjbI
Q
jbt

−εj+εb−1
K

)︄
(3.46)

which leads to the final expression of
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A = 2
∑︂
K

ωK
∑︂
P

ωP
∑︂
Q

ωQOKPQV KPQCKPQ (3.47)

These steps are repeated for the second part B. Once again the integrals are
expanded

B =
∑︂
ij

∑︂
ab

(︃∫︂
dr1ϕi(r1)ϕa(r1)

∫︂
dr2
(︁
ϕj(rj)ϕb(r2)r

−1
12

)︁)︃
× (3.48)(︁∫︁

dr1ϕa(r1)ϕj(r1)
∫︁
dr2
(︁
ϕb(r2)ϕi(r2)r

−1
12

)︁)︁
εa + εb − εi − εj

(3.49)

And the analytical integration over the second set of coordinates in each integral
carried out

B =
∑︂
ij

∑︂
ab

(︃∫︂
dr1ϕi(r1)ϕa(r1)Ijb(r1)

)︃
× (3.50)(︁∫︁

dr1ϕa(r1)ϕj(r1)Iib(r1)
)︁

εa + εb − εi − εj
(3.51)

The transformation of the energy denominator is then employed

B =
∑︂
ij

∑︂
ab

∑︂
K

ωK

(︃∫︂
dr1ϕi(r1)ϕa(r1)Ijb(r1)

)︃
× (3.52)(︃∫︂

dr1ϕa(r1)ϕj(r1)Iib(r1)

)︃
tεa+εb−εi−εj (3.53)

and the two remaining integrations are approximated by the quadratures

B =
∑︂
ij

∑︂
ab

∑︂
K

ωK

∑︂
P

ωP
∑︂
Q

ωQϕP
i ϕ

P
a I

P
jbϕ

Q
a ϕ

Q
j I

Q
ib t

εa+εb−εi−εj−1 (3.54)
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Finally, the summations are reorganized to minimize the scaling

B =
∑︂
K

ωK

∑︂
P

ωP
∑︂
Q

ωQϕP
i

(︄∑︂
a

ϕP
a ϕ

Q
a t

εa

)︄(︄∑︂
b

(︄∑︂
i

IPibϕ
Q
i t

−εi+εb/2

)︄(︄∑︂
i

ϕP
i I

Q
ib t

−εi+εb/2

)︄)︄
(3.55)

Which leads to the following expression

B =
∑︂
K

ωK

∑︂
P

ωP
∑︂
Q

ωQV KPQDKPQ (3.56)

The final energy expression for the quadrature-based Møller-Plesset perturbation
theory of second order is therefore

EQ−MP2 =
∑︂
K

ωK

∑︂
P

ωP
∑︂
Q

ωQ(DKPQ − 2OKPQCKPQ)V KPQ (3.57)

OKPQ =
∑︂
i

ϕP
i ϕ

Q
i t

−εi V KPQ =
∑︂
a

ϕP
a ϕ

Q
a t

εa (3.58)

CKPQ =
∑︂
ib

IPibI
Q
ib t

−εi+εb−1 (3.59)

DKPQ =
∑︂
b

(︄∑︂
i

IPibϕ
Q
i t

−εi+εb/2

)︄(︄∑︂
i

ϕP
i I

Q
ib t

−εi+εb/2

)︄
(3.60)

The final scaling of the integral employing the quadratures is O(KPQOV ) in
terms of computational work and O(POV ) in terms of necessary storage. The
one-dimensional integration, as will be shown in chapter 5, can sufficiently be
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carried out with K < 10. The bottleneck of the calculation is therefore the
number of three-dimensional grid points P and Q. This leads to a larger realistical
scaling compared to the transformation of the largest integral IPµν , which has the
theoretically higher scaling in terms of system size of O(PNOV ), as P ≥≥ N

without grid pruning. The choice of the spatial grid is therefore paramount to the
performance of the calculation.

The only objects that are needed for the calculation are the Fock matrix Fµν (or
the molecular orbital energies), the P grid evaluated orbitals ϕP

ν , the evaluated
integral IPµν , the coefficient matrix for the AO-to-MO transformation, the grid
weights of P and the grid points and weights of K.

3.3 Energy Benchmark

The method was implemented (see chapter 4) and tested on a set of small and
medium-sized molecules.

3.3.1 Computational Details

The accuracy of the method in reproducing the parent MP2 energy was tested with
a set of small and medium molecules at different basis set levels. The molecules are:
H2, H2O, CO, CH4, H2CO, H2CO, H3COH, NH3, anthracene and poryphrine.
All calculations were done with a development version of libqqc, interfaces with
Q-Chem 5.2.2 as its host program.

Geometry optimisations were done on the MP2 level of theory with the same basis
set (STO-3G, 3-21g, 6-31g) as the individual calculations. The Q-MP2 calculation
werewas done on a 20/38 Becke-weighted grid withNK = 4 for the one-dimensional
quadrature. All calculations were run on the computational cluster of the Dreuw
group (see chapter 4 for details).

3.3.2 Results

As a first step, the accuracy of the Q-MP2 method in reproducing the energy of
the MP2 method was tested. For this, consistent integration grids were chosen,



Chapter 3. Derivation of Quadrature MP2 59

Figure 3.2: Absolute error for the correlation energy of Q-MP2 compared to
the parent MP2 method on the 20/38 Becke weighted grid with NK = 4.

as well as a set of molecules. The molecules were chosen in such a way to have
comparisons between molecules of the same NP (H2, CO and NH3, H2CO) as well
as molecules with similar orbital numbers (CO, CH4, NH3 and H2CO, H3COH).
Two additional larger systems were also included.

The absolute errors and the relative absolute errors for these systems are given in
table A.1 and illustrated in figures 3.2 and 3.3.

It is important to compare both the absolute error as well as the relative error
of the methods. The error will be larger for systems with higher values for their
correlation energy correction, as the absolute quadrature error also scales with the
integral value.

Comparing all systems with each other some trends can be concluded. Both the
absolute and the relative error seem to be dependent on the choice of basis set for
the molecules, with STO-3G giving the lowest error. Going up to the Pople basis
set the smaller 3-21g performs worse than the larger set.

The number of orbitals, which decide the matrix dimensions and therefore the
number of operations to be carried out, appear to have some correlation with the
errors. Comparing CO, NH3 and CH4, which have a similar number of orbitals,
shows that while CO and CH4 have similar absolute errors, CH4 has a much
larger absolute error. NH3 shows both a lower absolute and a lower relative error.
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Figure 3.3: Relative absolute error for the correlation energy of Q-MP2 com-
pared to the parent MP2 method on the 20/38 Becke weighted grid with NK = 4.

It also has the lowest amount of virtual orbitals of the set, however, it’s grid size
is between that of the two others.

The size of the system seems to have a big impact on both the absolute and relative
error. The minimal H2 system has the best accuracy, whereas the medium-sized
systems have comparable absolute errors. The two larger systems perform the
worst in terms of absolute error. They also have the highest absolute value for
their energy correction by about a magnitude, which explains the bad performance.
The fluctuations of the absolute errors are much larger in the smallest STO-3G
basis. However, the relative error does not seem to show much of a correlation.
The worst performing system, CH4, is of medium size and higher grid density
because of the small C −H bond lengths.

The deciding factor for the accuracy of the method is the size and make-up of the
two quadrature grids. The quadrature grids and their effect on the accuracy will
be discussed in a later chapter.



Chapter 4

Implementation

One of the biggest pitfalls many researchers fall into is neglecting the technical side
of the research. "Is it science or engineering?" may be a jokingly exclamation, but
the reality is that good, reliable, and reproducible science has to be an exchange
between good engineering practices and ’pure’ scientific endeavor. Once a Ph.D.
leaves their position, their code gets buried in not easily accessible folders and
soon forgotten. And even if found, the code quality often means that retracing
the thoughts and ideas within is very tedious indeed.

Seeing as most of this work is focused on performance optimization modern coding
and working principles were put at the center stage. That means spending time
on code documentation, collaborative version control systems, a functioning test
suit for unit and integration tests, and a continuous integration workflow.

The following chapter tries to sketch the approach and the inner workings of the
most important facets of the code in as much clear detail as possible, so that
anyone with this thesis may retrace its inception if desired. It starts with the
design goals that were put forth for this project in section 4.1 and with a list of
the used hardware and underlying supporting software in section 4.2. Finally, we
dive into the code of the libqqc93 library in section 4.3.

4.1 Design Goals

As with any coding project, much of the final result evolved over time. During
this, the following criteria become important:

61
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4.1.1 Portability

Especially in the early stages of development portable, small, and contained setups
that could easily be moved and compiled on new cluster systems without much
setup were found necessary. This was realized by designing the first iterations to
be as independent of other sources as possible. The first iteration of the algorithm
was written with C-style arrays and not with high-level algebraic libraries for this
reason. In the same line of thinking it was avoided to marry the project to any
specific host program and it was decided to export some smaller and larger test
systems in human-readable ’column separated value’ format. Together with a
simple ’read-in’ routine, this lead to independence from any larger body of code.
This allowed a workflow of fast code iterations and very flexible testing conditions
to research the intricacies of high-performance code execution.

4.1.2 Modularity

After the first code iterations were finalized and showing promise the underlying
code structure was developed. Early on it was decided that committing the code
to one specific quantum chemistry program was to be avoided and to keep it as
extensible and flexible as possible. So a modular library structure was developed
with an easy-to-use interface and easy-to-extend support for different host pro-
grams. The first iteration of the major parts of the code base was drafted with
a storage holding facility and a modular setup where each method would be its
self-contained, callable part. A utility module was added, housing the ’read-in’
routine for the test systems and the setup for the necessary timings.

4.1.3 Sustainability

As mentioned before one large problem (academic) science is facing is the loss of
research results and workflows after the researcher has left their position. The
author has personally witnessed large and important works vanish into unattain-
ability either through unmaintainable code or simply lost data. This problem is
sometimes called coding ’sustainability’.

There are multiple ways to help with this. The first, and arguably most important
one, is using a version control systems that is accessible to others. Such a
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version control system allows the user to keep track of any changes they have
made to the program throughout a project and to be able to roll back to any
previous versions (ideally marked with notes and comments of what changed).
This means no version of the code gets lost, even in the case of fully overwriting
or losing the data on-site. It was decided to use the git tool family and the project
was hosted on a local gitea repository at the beginning. It was later moved to
a public github page, where the code was released as an open-source project for
anyone to use and modify.

The second most important step is clear codedocumentation. Doxygen was used
as a documentation back-end, which is a well-known C/C++ documentation soft-
ware. Correct documentation is an art in itself, and much discussion is still being
held in the community over how much, how little or simple how documentation
should be done. Generally, the rules are to keep the variable, function, and class
names as close to self-explanatory as possible and only provide written comments
where necessary (always assuming the reader has basic knowledge of the language).
So instead of writing code like shown in listing 4.1, the code in listing 4.2 is much
easier to read.

Listing 4.1: This code is not very readable.

1 f l o a t magic_number = 3 . 1 4 ;
2 b = function_a ( magic_number , 3 . 0 ) ;
3 graphic (b , 2 . 4 ) ;

Listing 4.2: This code is much more readable.

1 f l o a t PI = 3 . 1 4 ;
2 f l o a t radius = 3 . 0 ; // in m
3 f l o a t height = 2 . 4 ; // in m
4 circle_area = calculate_circle_area (PI , radius ) ;
5 // us ing the c i r c l e area con s t ru c t s a c y l i nd e r and outputs an ASCII ←↩

graph ic to std : : cout
6 plot_3D_cylinder ( circle_area ) ;

Documentation is always an ongoing task. However, if you are using a documenta-
tion back-end such as Doxygen, which can output a handy html or pdf summary
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of the documentation, the need for manually recompiling the documentation gets
tedious.

The third pillar of code sustainability is an often overlooked one: continues test-

ing. Writing good tests is very important and very difficult. Especially larger code
basis tend to be so interconnected that no one can know if even benign changes
to it will break some functionality. There are many different types of tests, but
the three major categories are:

• unit tests: test a ’unit’ of code, by which is meant the smallest indepen-
dently callable unit possible, such as a single function call.

• integration tests: testing a small number of code ’units’ with each other
to see if the interplay of them leads to any errors

• system tests: testing the behavior of the whole system to see if any prob-
lems arise from the interplay of all ’units’

There are more categories (such as different kinds of performance tests), but these
three are needed to assure the correct behavior of the program throughout its
development. The goal is to have as much code being tested as possible, which
often means that writing good tests takes the majority of development time for
sustainable software. This is often the reason, especially in such a result-driven
environment as research, that this important step gets neglected.

Writing the code, documenting it, recompiling the documentation, writing the
tests, and executing them after every change to the code basis takes time, even
without any major problems arising. To help with this it is generally favorable to
setup what is known as a ’continuous integration/development pipeline. Such a
pipeline is used to do any housekeeping that can be automated, e.g. recompiling
the documentation and the tests and executing them, after an update to the code
base is made. Many git based repository providers have easy-to-use tools to set
them up. For github these are called ’actions’. Such a pipeline was implemented
to automate the testing and documentation throughout the project, which will be
discussed later in this chapter.
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XPS 13 9360 IWR CompChem Cluster

CPU Intel i5-7200U 2× Intel Xeon Gold 5120
4 (physical) at 2.5 GHz min./ 14 (physical) at 2.20 GHz min./

3.10 GHz max. 3.20 GHz max.
RAM 8 GB at 1867 MHz 512 GB at 2400 MHz

Table 4.1: Hardware of early stages of development, mainly during single-node
performance optimization.

bwHPC JUSTUS 294

CPU 2× Intel Xeon Gold Prozessor 6252
24 (physical) at 2.10 GHz min./

3.70 GHz max.
RAM 384 GB

Network Omni-Path 100 GBit/s

Table 4.2: Hardware of later stages of development, used during multi-node
(MPI) performance optimization.

XPS 13 IWR CompChem JUSTUS 2

Compiler GCC 9.4.0 GCC 7.4.0 GCC 10.1.0
OpenMP 4.5 (5.0 partially) 4.5 4.5 (5.0 partially)
CMAKE 3.16.3 3.10.2 3.10.2

MPI OpenMPI 4.0.3 - OpenMPI 4.0.5
Eigen 3.4.0 3.4.0 3.4.9

Table 4.3: Summary of supporting software on the different architectures.

4.2 Hardware Architecture and

Supporting Software

What follows is a list of the hardware architecture and underlying supporting
software used during the different stages of development.

The early stages of development, mainly the single node optimization were done
on the hardware listed in table 4.1. Later development, especially the multi-node
MPI-enabled iterations, were done on the hardware listed in table 4.2.

All results reported in this thesis were run on the hardware listed in 4.2 if not
noted otherwise.

The library was compiled using the GNU family of compilers95, using a CMAKE96,97
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setup and OpenMPI98–101 to provide the MPI functionality through the mpicc com-
piler wrapper. All software versions used can be found in table 4.3, which also
lists the supported OpenMP102–104 version and the version of the Eigen105 library
used for its implementation variant.

The compilation procedure follows the configure script of the repository, meaning
that the following flags were set if compiled as a release version: −O3 −ffast−←↩

math −march=native.

Lastly, for the results published in this thesis an interface with the commercial
Q-Chem88 software suite was written, which uses some common utilities of the
software, especially of the libdftn, libgrid and libqints modules.

4.3 The libqqc library

The code used in this thesis was published as an open-source C/C++ library at
https://github.com/BenTho-Uni/libqqc under the GPL-3.0 license. The main
contributor as of the writing of this thesis is the author, Benjamin Thomitzni,
with grid implementations by Isabel Vinterbladh. The documentation of the main
branch can be found at bentho-uni.github.io/libqqc/. Parts of the code use
the open-source Eigen, OpenMP, and OpenMPI libraries in the above-mentioned
versions. Additionally, parts of the loader module use code by the commercial
Q-Chem88 software suite.

4.3.1 General Structure

The repository of the library consists of the following parts:

4.3.1.1 Repository Structure

.github/workflows/

Continuous integration pipeline for automated testing and deployment of doc-
umentation after every push to the main branch through the use of Doxygen.
The documentation is deployed to a separate branch, which is then hosted as the

https://github.com/BenTho-Uni/libqqc
https://github.com/BenTho-Uni/libqqc/blob/main/LICENSE
bentho-uni.github.io/libqqc/
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above-mentioned GitHub page. The continuous integration action executes the
cmake setup, compiles the code, and then executes ctest (see listing B.1 for an
example).

data/

Four differently sized test systems have been provided to allow stand-alone ex-
ecution of the library for testing purposes: Water, methanol, anthracene, and
porphyrin data exported from Q-Chem88 using the 6 − 31G basis set with the
20, 38 Becke grid of the libdftn module. Each folder provides the grid-evaluated
atomic orbital integrals and Fock matrix, the evaluated Coulomb integral, as well
as the grid data on which the integrals were evaluated. The water case is directly
included in the repository. This is not possible for the other systems because of
size constraints, but they can be downloaded through the download_data.sh script.

docs/

Folder for the Doxygen documentation.

host_example/

Minimal host program examples to showcase the library usage and allow stand-
alone testing. One variant for the single-node case, one with the necessary MPI

setup. The necessary steps for this will be discussed in section 4.3.1.3

libqqc/

Folder for the libqqc source code. Discussed in detail below.

runs/

Outputs of example runs of the provided test systems on the JUSTUS 2 cluster.
Each test system runs with the array and with the Eigen variant provided and
with either the OpenMP+MPI and the MPI only schemes. Additionally, the submis-
sion generator (make_run_XxY.sh), and submitter (multi_submit.sh), timings-to-csv
converter (process) and scatter plot scripts (make_scatter.py) are provided. One
such example run is shown in listing B.2.

templates/

This folder consists of some template body and header files which are easily copied
and modified to be included in the library.

tests/
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Figure 4.1: General modular structure of the libqqc library as of date.

Contains the testing suite with the implemented unit and integration tests. Dis-
cussed in more detail below.

configure

Main cmake configure script to set the correct compiler, flags, and compilation
variant options.

4.3.1.2 libqqc/ Structure

The internal structure of the libqqc library is presented in figure 4.1.

The library consists of five internal modules. Two modules are as of now gener-
alized and method independent, namely the grid and utils modules. The other
three modules, methods, vault, and loader have to be provided for their specific
use case. However, much can be abstracted from the base classes. Currently, the
only implementation published in the library is the Q-MP2 scheme.
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The method module consists of the routines necessary for the property calculations.
It consists of any transformations and pre-calculation before the final function call,
as well as the MPI setup if necessary. For a deeper explanation see section 4.3.6.

In the vault module the classes of the same name function as the data holding
facility for a calculation. See section 4.3.5 for further details.

Interfacing and input capabilities are handled by the loader module. This is
the only part of the code where host-program-specific changes have to be made
to facilitate the necessary data for the calculation. Additionally, some integral
transformations and operations are carried out in this module. This is done to
save as much space as possible and to reduce network communication. For more
explanations see section 4.3.4.

The grid module consists of the library’s grid-generating methods, as well as
the base classes for interaction with the properties of the employed grid. This is
generalized in the current iteration of the code. For an outlook on future changes
to the library see section 7.1.1.

Finally, the last module, utils, consists of miscellaneous utility functions, such
as the timing and printing facilities and the file interfacing procedures. See 4.3.2
for more detail.

The library has three optional dependencies (OpenMP, OpenMPI, Eigen), depend-
ing on the requested compilation setup.

4.3.1.3 Library Usage Example

An example of how to use this library is provided in the repository under the
host_example folder. These examples can be adapted to any host program, e.g.
Q-Chem.

The only necessary code includes in the host program consists of the method that
is used and the timer facility, if desired (listing 4.3).

Listing 4.3: Including the necessary header files for the calculation.

1 #inc lude " . . / l i bqqc /methods/do_qmp2 . h"
2 #inc lude " . . / l i bqqc / u t i l s / t t imer . h"
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The usage of the library consists of three parts. First, one has to specify which
interface loader class should be used (listing 4.4). This may take additional
arguments depending on the interface. Then, the data vault is generated and the
loader as an argument is passed to its constructor (listing 4.5), which handles the
input of the data. Finally, the method class for the desired calculation is generated,
which executes the final calculation (listing 4.6.

Listing 4.4: Generating the method specific loader interface class.

1 libqqc : : Loader_qmp2_from_file loader ( " . . / data/h2o/" ) ;

Listing 4.5: Generating the method specific vault storage class.

1 libqqc : : Vault_qmp2 vault ( loader ) ;

Listing 4.6: Generating the desired method class and executing the calculation.

1 libqqc : : Do_qmp2 qmp2 ( vault ) ;
2 qmp2 . run ( out ) ;

The run method of the Do_qmp2 class prints the result directly to the output.

A full overview of the classes and their relationships is shown in figure 4.2. Cen-
tral to the calculation is the method class Do_qmp2, which is dependent on the
data holding class Vault_qmp2. This is in turn dependent both on the interface
Loader_qmp2 and the manager class for the grid data, Grid. A closer look into
the structure of these classes follows.

The next sections will dive deeper into the code and explain the internal workflow
of this setup.

4.3.2 The utils Module

The utils module houses any utility functions and classes used in the library. As
of now, it covers three areas:
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Printer_qmp2 Grid

Loader_qmp2

Vault_qmp2Do_qmp2Qmp2_energy

Figure 4.2: Full class relationship diagram of all relevant classes of the libqqc
library for the calculation.

4.3.2.1 printers

This subsection covers the printing facilities for the different methods. The class
diagram is given in figure 4.3.

This class takes the vault object as an argument to its constructor which it
uses to extract the desired information, such as the number of atomic orbitals
for example. The main function print_final takes an output stringsstream and
clears it. A flowchart diagram of its functionality can be seen in graph 4.4. After
it adds general information, such as the authors or the library versions, it calls the
method-specific printer which adds the method information. Lastly, it checks the
desired printing level and calls the internal printer methods of the Ttimer class
objects.

Most of the printer functionality, except for the method-specific printer function,
will be abstracted in a future release from a base class, as it doesn’t change between
methods.

4.3.2.2 load_from_file

The load_from_file facilitates the interaction with a columns-separated-data
format file, such as the ones provided in the example systems in this repository. It
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Printer_qmp2

- mwidth : size_t
- mmethod_name : string
- mauthors : string
- mlibqqc_vers : string
- mloader_vers : string
- mvault_vers : string
- mdopqmp2_vers : string
- mb_openmp : bool
- mnthreads : size_t
- mb_mpi : bool
- mmnprocs : size_t
- mnao : size_t
- mnmo : size_t
- mnocc : size_t
- mnvirt : size_t
- m3Dnpts : size_t
- m1Dnpts : size_t
- mprnt_lvl : int
- mtimings : &Ttimer

+ Printer_qmp2 (vault : &Vault_qmp2,
timings : &Ttimer)
+ print_openmp (out : &std::ostringstream) : void
+ print_mpi (out : &std::ostringstream) : void
+ print_method_qmp2 (out : &std::ostringstream) : void
+ make_line (in : string, align: char) : string
+ make_full_line (c : char) : string
+ make_hdr_ftr (type : bool) : string
+ print_final (out : &ostringstream) : void

Figure 4.3: Class diagram for the Printer_qmp2 class of the utils module.

has two function calls, one which loads the data dimensions from a header line in
the file (load_dim_from_file and one which then reads the file line by line and
writes each cell to an array address (load_array_from_file).

A flowchart summary of the second function can be found in figure 4.5. The read-
in is done by utilizing the file and line stream functionality of iostream. The file
is opened as a file stream and an exception is thrown if the path does not exist.
Any header rows specified are skipped and then the next line is loaded as a line
stream object. The function then iterates through the cells by use of the getline

method and the specified delimiter. If a cell is not empty or consists of white
space, a cast to double is attempted. Any exceptions of this cast are caught and
the value of the cell is then assumed to be zero. In future iterations, more care
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Figure 4.4: Flowchart representation of the print_final method of the
Printer_qmp2 class.

should be taken with data sanitation at this step. Finally, successful execution is
marked by returning a true value.

This utility function is sufficient for the provided data, but, as noted, may have to
be expended in terms of data integration in the future. However, most use cases
outside of initial testing will involve direct interfacing with a host program and
will therefore not involve manual file read-in.

Additionally, this manual file read-in is also a huge bottleneck in the parallel
capabilities in testing scenarios. However, as it is not used in real scenarios, the
read-in timings can simply be ignored for performance testing.

Parallelising file input is a major problem of the discipline. It has not been at-
tempted in this thesis as of date. Any parallel scheme would involve distributed
cluster systems, as not much computational work is done and the major bottleneck
is the input/output latency of the local storage. A distributed system could cut
the input time by utilizing multiple disk bandwidths. It would however involve
additional synchronization and data movement, as the file would have to be dis-
tributed over the cluster resources, and the read-in data would then have to be
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Figure 4.5: Flowchart representation of the load_from_file utility function.
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Tclock

- mcpu_start : std::clock_t
- mcpu_stop : std::clock_t
- mwall_start : std::chrono::high_resolution_clock::time_point
- mrun : bool
- mname : string
- mprnt_lvl : int

+ Tclock (name : string)
+ Tclock (name : string, prnt_lvl : int)
+ get_mrun (): bool
+ start_clock (): void
+ stop_clock (): void
+ wall_time (): std::chrono::high_resolution_clock::duration
+ cpu_time (): std::clock_t
+ print_time (out_prnt_lvl : int) : string

Figure 4.6: Class diagram of the Tclock single timer class of the utils module.

exchanged. Finally, the total data object would then have to be constructed from
the different parts of the distributed algorithm.

In the current method iteration, the Q-MP2 algorithm iterates over all available
data on each cluster node anyway, which is why a complex distributed file input
scheme was not deemed necessary for the niche case of manual file input.

4.3.2.3 ttimer

The timing functionality of the library is provided by two classes, Tclock and
Ttimer.

The class diagram of Tclock can be found in figure 4.6. Both CPU and walltime
are being tracked through external classes from standard C++ libraries. As the
wall time carries the information used for the performance testing it uses a high-
resolution clock with a resolution of the smallest tick period provided by the
implementation of the library.

Timing objects can be single clocks or collection classes called Ttimer, with the
class diagram given in figure 4.7. The collection class provides a way to start, stop
and queue multiple clock objects and print their content in a single call. Every
timing in this thesis was done through these timer classes and one collection object
was generally used per function call, using multiple clocks.
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Ttimer

- mprnt_lvl : int
- mclocks : vector<Tclock>
- mclock_ids : vector<int>

+ Ttimer (prnt_lvl : int)
+ get_clocks (id : int): vector<Tclock>
+ start_new_clock (name : string, id : int, prnt_lvl : int)
+ stop_clock (id : int)
+ stop_all_clocks ()
+ print_clocks (id : int): string
+ print_all_clocks (): string

Figure 4.7: Class diagram of the Ttimer class of the utils module.

4.3.3 The grid Module

The grid module consists of classes facilitating the storage, generation, and traver-
sion of the integration grids.

The base class is summarised in the class diagram found in figure 4.8. It consists
mostly of storage methods and members handling the underlying arrays which
store the (multi-) dimensional grid coordinates and their weights.

Further integration work was done by Isabel Vinterbladh during a master thesis
project5 in collaboration with the author. The focus of the thesis was the imple-
mentation of common Becke integration grids, their underlying foundations, and
some further grid abstractions to test different spatial grid representations.

A summary of her implementations follows but can be seen in full detail in the
cited thesis. The theoretical foundations of the Voronoi cell generation and the
Becke grid are discussed in section 5.1.

Please also be aware that these implementations have not yet been implemented
in the main branch of the code repository.

4.3.3.1 One and Multi-Dimensional Grid Generation

A one-dimensional grid generator class, Grid1D, is used using the abovementioned
Grid class as its basis. It differs from the base class in three public methods
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Grid

- mnpts : size_t
- mndim : size_mndim
- mpts : *double
- mwts : *double

+ check_data_validity : bool
+ Grid (grid1 : &Grid)
+ set_grid (npts : size_t, ndim : size_t, pts : *double, wts : *double)
+ Grid ()
+ Grid (npts : size_t, ndim : size_t, pts : *double, wts : *double)
+ ∼ Grid
+ get_mnpts (): size_t
+ get_mndim (): size_t
+ get_mpts (): double
+ get_mwts (): *double

Figure 4.8: Class diagram of the base Grid class of the grids module which
handles the storage and traversion of the integration grid.

which are used to generate and to set a uniform and a Gauss-Chebyshev style
one-dimensional grid.

Using the one-dimensional case as a template a two and three-dimensional grid
class is provided. The latter handles the generation of different spatial grids used
in the thesis and is discussed in chapter 5. This includes the Becke grid106 and
abstractions using different spherical arrangements (such as ellipsoidal around the
chemical bond) for the grid point coordinates.

4.3.3.2 Voronoi Cell Generation and Supporting Functions5

The Delaunay triangulation of the Bowyer-Watson107–110 algorithm was imple-
mented in the Voronoi class, which handles the generation of the Voronoi cells in
the procedure published by Becke106. Common vector operations and supporting
functions, such as cross products, distance, and determinant calculations, were
bundled in the VectorFuncs class of the same module.

4.3.4 The loader Module

The loader module covers the interface to the host program and with that the
input routines to the vault module. For each host program and each method, a
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Loader_qmp2

+ Loader_qmp2
+ load_nocc (nocc : &size_t) : void
+ load_nvirt (nvirt : &size_t) : void
+ load_nao (nao : &size_t) : void
+ load_prnt_lvl (prnt_lvl : &int) : void
+ load_1Dgrid (grid : &Grid) : void
+ load_3Dgrid (grid : &Grid) : void
+ load_mat_fock (mat_fock : *double) : void
+ load_mat_cgto (mat_cgto : *double) : void
+ load_cube_coul (cube_coul : *double) : void

Figure 4.9: Class diagram of the base Loader class of the loader module
which handles the interfacing with the host program and the data input

loader instance has to be implemented. The repository provides a dummy class
example, an example for the manual file-from-disk read-in, and a Q-Chem specific
implementation.

An example class diagram is given in figure 4.9 for the base implementation of
the Q-MP2 algorithm. The only implementation differing from this structure is
the loader for the file read-in, which adds private file name attributes to the class
and its constructor. As can be seen, the Loader class is simply used to host the
different methods which pass references and points from the host program to the
caller. However, this class is not purely for data input but also handles the basic
integral transformations so that the vault module only has to store the user data
in its molecular orbital representation.

An example flow chart of one such load function is given in figure 4.10. First,
the meta data is gathered, such as the number of atomic, occupied, and virtual
orbitals as well as the number of grid points. Then the coefficient matrix C

and the integral (in this case the coulomb integral I) are loaded. Finally, the
transformation is carried out.

A closer look at the transformation is shown in algorithm 2. The transformation
that can be seen here is in its most straightforward form, scaling with O(PN4)

in regards to system size with a prefactor of P , representing the number of grid
points of the integration grid.
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Figure 4.10: Flowchart sketch of Loader_qmp2 method loading in the atomic
orbital representation of the coulomb integral and its transformation.
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Algorithm 2: Straight forward transformation of the atomic orbital integral
to its molecular orbital representation used in the Loader_qmp2 class.

1 for each point P do
2 for each occupied orbital i do
3 for each virtual orbital a do
4 IPia = 0 for each atomic orbital µ do
5 t = 0 // temporary intermediate
6 for each atomic orbital ν do
7 t += IPµν ∗ Cνa

8 IPia += Ciµ ∗ t

There is room for improvement of this algorithm and lowering the scaling further.
The scaling can be lowered to O(PN3) by the introduction of a fully sized in-
termediate and restructuring of the loops (see algorithm 3. This is achieved by
trading memory complexity (from O(PN2+POV ) to O(PN2+POV +NV )) for
computational complexity.

Algorithm 3: Optimised transformation algorithm with computational scal-
ing of O(N3).

1 for each point P do
2 for each occupied orbital i do
3 for each virtual orbital a do
4 IPia = 0
5 Iµa = 0 // temporary intermediate
6 for each atomic orbital ν do
7 Iµa+=IPµν ∗ Cνa

8 for each atomic orbital µ do
9 IPia += Ciµ ∗ Iµa

The highest computationally scaling step of the algorithm is therefore the trans-
formation with O(PN3) with this implementation. The transformation step is
however not the bottleneck of the calculation and so not much work has been
put into lowering the scaling. Work has been invested in increasing its parallel
efficiency, as the grid points are independent of each other. All transformation
schemes have been fully parallelized with shared and distributed memory tech-
niques and minimal network communications. For a deep dive into the parallel
capabilities, see chapter 6.
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The only difference in interfacing to other host programs lies within the loading
calls shown in figure 4.10. For the from-disk read this consists of simply calling
the utility function to load from a local file, mentioned above, as can be seen in
listing 4.7 for the coulomb integral.

Listing 4.7: Example call to load in the AO integral data from file

1 // i n i t i a l i z i n g memory on heap due to s i z e
2 double ∗ coul_ao = new double [ npts ∗ nao ∗ nao ] ;
3 load_array_from_file ( msrc_folder+mfname_coul ,
4 dim_ao , coul_ao , ' ' , 1) ;

These are the parts that have to be changed to interface host programs. An
example is given in listing B.3 for the Q-Chem interface of the same integral.

At the start, the memory is allocated on the heap to avoid memory constraints.
This memory is later freed again. Then the one-electron-one-center contracted
Gaussian-type atomic orbital basis is generated. Then a vector is created which
consists of multipole coordinates, which are the coordinates of the integration grid
points and a moment of one. this is passed to generate the one-electron-one-center
multipole matrix. Array view objects for the multipole moments and the integral
data memory is then passed into an integral ’digester’ which writes the atomic
orbital integral data to the memory locations. The digester consists of Q-Chem

internal code adapted from the libfock and libqints modules. This code is not
published in the public repository due to a signed NDA.

4.3.5 The vault Module

The classes from the vault module take the Loader_ class instance and call it in
their constructor to load in the data they store. A class diagram is shown in figure
4.11.

As each method has its own set of data not much abstraction can be done to
simplify the class generation. The Vault_ class consists of the necessary data
fields, which are references and pointers for larger sets of data, and the getter
methods necessary for access. All data input is done through the constructor.
As only molecular orbital data is initially saved and no changes to the data are
necessary, no setter functions are needed.
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Vault_qmp2

- mnocc : size_t
- mnvirt : size_t
- mnmo : size_t
- nmao : size_t
- mprnt_lvl : int
- m1Dgrid : Grid
- m3Dgrid : Grid
- mmat_fock : *double
- mmat_cgto : *double
- mcube_coul : *double

+ check_data_validity (): bool
+ Vault_qmp2 (loader : Loader_qmp2)
+ Vault_qmp2 (loader : Loader_qmp2_from_file)
+ Vault_qmp2 (loader : Loader_qmp2_from_qchem)
+ ∼Vault_qmp2 ()
+ get_mnocc (): size_t
+ get_mnvirt (): size_t
+ get_mnmo (): size_t
+ get_mnao (): size_t
+ get_mprnt_lvl (): size_t
+ get_m1Dgrid (): &Grid
+ get_m3Dgrid (): &Grid
+ get_mmat_fock (): *double
+ get_mmat_cgto () *double
+ get_mcube_coul (): *double

Figure 4.11: Class diagram of the base Vault_qmp2 class of the vault module
which handles the storage of the data.

The constructor takes a class instance of the different Loader_ classes as an ar-
gument, which it uses to call the routines responsible for extracting and initially
transforming data. All of them follow the scheme shown in listing 4.8, with the
only difference being which loader class instance is called upon. This will be moved
to a template structure in future releases. All heap-declared memory is freed when
the destructor is called. After the data is loaded some checks are performed on
the data. This covers mainly the metadata (e.g. the number of orbitals shouldn’t
be zero), the grid data validity, and the memory locations of the pointers (which
shouldn’t be NULL).

Listing 4.8: Constructor of the Vault_qmp2 class using the standard

Loader_qmp2 interface.

1 loader . load_nocc ( mnocc ) ;
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2 loader . load_nvirt ( mnvirt ) ;
3 mnmo = mnocc + mnvirt ;
4 loader . load_nao ( mnao ) ;
5 // load ing input in fo rmat ion
6 loader . load_prnt_lvl ( mprnt_lvl ) ;
7 // load gr id ob j e c t
8 loader . load_1Dgrid ( m1Dgrid ) ;
9 loader . load_3Dgrid ( m3Dgrid ) ;

10 // load ing in matr i ce s
11 size_t nao2 = mnao ∗ mnao ;
12 size_t npts = m3Dgrid . get_mnpts ( ) ;
13 mmat_fock = new double [ mnmo ∗ mnmo ] ;
14 loader . load_mat_fock ( mmat_fock ) ;
15 mmat_cgto = new double [ npts ∗ mnmo ] ;
16 loader . load_mat_cgto ( mmat_cgto ) ;
17 mcube_coul = new double [ npts ∗ mnocc ∗ mnvirt ] ;
18 loader . load_cube_coul ( mcube_coul ) ;
19 check_data_validity ( ) ;

4.3.6 The methods Module

The methods module consists of the different quadrature methods and their vari-
ants depending on the requested parallelization scheme. Right now only the Q-
MP2 algorithm is publically available.

There are two distinct parts for each method: a setup class and a class for
each property to be calculated. These follow the naming scheme Do_method and
Method_property respectively. For the Q-MP2 scheme, these are the Do_qmp2

and the Qmp2_energy classes.

The optimization and parallelization work done on these classes will be discussed
in chapters 6. Their general implementation is discussed in detail below. An
initial version was done in collaboration with Liam Keegan of the Scientific Soft-
ware Centre of the Interdisciplinary Centre for Scientific Computing at Heidelberg
University111 and then developed further by the author.
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Do_qmp2

- mvault : &Vault_qmp2

+ Do_qmp2 (vault : &Vault_qmp2)
+ run (out : &std::ostringstream) : void

Figure 4.12: Class diagram of the base Do_qmp2 class of the methods mod-
ule which handles the setup and the necessary calculation before calling the

requested property calculation methods.

4.3.6.1 Do_qmp2 in Detail

The class diagram of the setup class for the Q-MP2 method is shown in figure 4.12.
It consists of a private reference to the data storing object of the Vault_qmp2 class.
The constructor sets the reference to the vault. All of the setups for the calculation
are done in the run method, which only takes a string stream to print the results.

Figure 4.13 shows the setup steps for the calculation. First, all references and
pointers from the vault are acquired and the orbital data is split into an occupied
and a virtual block (solely for ease of handling).

Next, the exponential factors stemming from the one-dimensional integration (e.g.
tεa) are precalculated (see listing 4.9). It will be discussed in further detail in
chapter 6, but for many instruction sets an exponential function is very costly. By
precalculating and storing these factors one simplifies the following algorithm to a
set of floating point operations which has a higher chance of vectorization through
the compiler. This comes at a cost of storing integrals with a maximum size
scaling of O(KOV ). However, as mentioned before, K is generally below ten, and
therefore this data is much smaller than the initial O(PN2) integral data object.
It, therefore, does not contribute significantly to the overall memory scaling of the
method.

Then the property class instance is initialized with the necessary data passed to it
and the property is calculated through the compute method. See the next section
for further details on the algorithm.

Finally, the Printer instances are initialized and their main method is called to
finish up the calculation. At the end of the method, any leftover heap memory is
freed.
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Figure 4.13: Flowchart of the run method used in the Do_qmp2 method in-
stance.
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Listing 4.9: Code excerpt of the precalculation for the exponential factors used

for scaling in the algorithm.

1 double ∗ m1Deps_o = new double [ p1Dnpts ∗ nocc ] ( ) ;
2 double ∗ m1Deps_v = new double [ p1Dnpts ∗ nvirt ] ( ) ;
3 double ∗ c1Deps_ov = new double [ p1Dnpts ∗ nocc ∗ nvirt ] ( ) ;
4 f o r ( size_t k = 0 ; k < p1Dnpts ; k++){
5 f o r ( size_t i = 0 ; i < nocc ; i++){
6 m1Deps_o [ k ∗ nocc+ i ] =
7 pow ( ( double ) v1Dpts [ k ] , ( double ) (− vf [ i ] ) ) ;
8 }// f o r i
9 f o r ( size_t a = 0 ; a < nvirt ; a++){

10 size_t pos_f = a + nocc ;
11 m1Deps_v [ k ∗ nvirt + a ] =
12 pow ( ( double ) v1Dpts [ k ] , ( double ) ( vf [ pos_f ] ) ) ;
13 }// f o r a
14 double inv_t = 1.0 / ( double ) v1Dpts [ k ] ;
15 f o r ( size_t i = 0 ; i < nocc ; i++){
16 f o r ( size_t a = 0 ; a < nvirt ; a++){
17 c1Deps_ov [ k ∗ nocc ∗ nvirt + i ∗ nvirt + a ] =
18 m1Deps_o [ k ∗ nocc + i ] ∗ m1Deps_v [ k ∗ nvirt + a ] ∗ ←↩

inv_t ;
19 }// f o r a
20 }// f o r i
21 }// f o r k

4.3.6.2 Qmp2_energy in Detail

The diagram for the property instance of the Q-MP2 energy is given in figure 4.14.
It consists of private reference and pointer attributed to the necessary data which
was passed to it through its constructor.

The constructor does one final setup step before the calculation can be run. This is
an optimization specific to the Q-MP2 method, but the coulomb integrals IPia can
be bundled together with the weights of the three-dimensional grid, ωP . There-
fore they are scaled once with the appropriate weight for their point P to avoid
unnecessary computational work (see algorithm 4).

The implemented algorithm for the Q-MP2 method is given in alg. 5. The algo-
rithm loops through every point K on the one-dimensional integration grid. For
each point, it then loops through the larger three-dimensional grid P . Then one
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Qmp2_energy

- m1Dnpts : &size_t
- m3Dnpts : &size_t
- mnocc : &size_t
- mnvirt : &size_t
- mmo : *double
- mmv : *double
- mc_c : *double
- mm1Deps_o : *double
- mm1Deps_v : *double
- mm1Deps_ov : *double
- mvf : *double
- mv1Dpts : *double
- mv1Dwts : *double
- mv3Dwts : *double
- moffset : &size_t
- mnpts_to_proc : &size_t

+ Qmp2_energy (p1Dnpts : &size_t, p3Dnpts : &size_t, nocc : &size_t,
nvirt : &size_t, mno : *double, mmv : *double, mc_c : *double,
m1Deps_o : *double, m1Deps_v : *double, m1Deps_ov : *double,
mvf : *double, mv1Dpts : *double, mv1Dwts : *double, mv3Dwts : *double,
offset : &size_t, npts_to_proc : &size_t)
+ compute() : double

Figure 4.14: Class diagram of the base Qmp2_energy class of the methods
module which run the Q-MP2 energy calculation.

Algorithm 4: Prescaling of the Integral IPia slices done in the constructor of
Qmp2_energy to avoid double computation later.

1 for each point P do
2 for each occupied orbital i do
3 for each virtual orbital a do
4 IPia ∗= ωP

final optimization is done. To avoid unnecessary work the occupied and virtual
orbital blocks as well as the coulomb integrals are scaled with their respective
precalculated scaling factor shown in listing 4.9. Once again this does not con-
tribute significantly to the memory complexity of the algorithm, as the largest
object stored is only of O(OV ), as it is only that single slice P of the integral
for this iteration. Then the algorithm loops over the second set of indices of the
same spatial grid, Q. However, all of the following calculations consist of fully
commutative multiplications. Therefore, only the ’upper diagonal triangle’ of the
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P,Q pair has to be calculated. This results in only P 2

2
points that have to be

evaluated. After all parts are brought together, the remaining energy is weighted
with the one-dimensional weights ωK and multiplied by two to double count the
nondiagonal elements.

Algorithm 5: Algorithm used in the Qmp2_energy method property class in
the methods module to calculate the energy correction.

1 EQ-MP2 = 0
2 for each point K of one dimensional integration do
3 for each point P in spatial integration do
4 for each occupied orbital i do
5 oPi = ΦP

i ∗ SK
i // S being the scaling factor mm1Deps_k

6 for each virtual orbital a do
7 vPa = ΦP

a ∗ SK
a // S being the scaling factor mm1Deps_k

8 for each occupied orbital i do
9 for each virtual orbital a do

10 cPia = IPia ∗ SK
ia // S being the scaling factor mm1Deps_k

11 for each point Q < P in spatial integration do
12 D = 0
13 for each virtual orbital a do
14 t1 = 0
15 t2 = 0
16 for each occupied orbital i do
17 t1 += oPi ∗ I

Q
ia

18 t2 += ΦQ
i ∗ cPia

19 D += t1 ∗ t2
20 C = 0
21 for each occupied orbital i do
22 for each virtual orbital a do
23 C = cPia ∗ I

Q
ia

24 O = 0
25 for each occupied orbital i do
26 O += oPi ∗ Φ

Q
i

27 V = 0
28 for each virtual orbital a do
29 V += vPa ∗ ΦQ

a

30 R = (D − 2 ∗ C ∗O) ∗ V
31 if P ̸= Q then
32 R ∗= 2.0

33 EQ-MP2 += R ∗ ωK
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The largest spatial scaling that has to be consistently held in memory at any point
of the algorithm is the coulomb integral in its molecular orbital form, which scales
with O(POV ). The largest overall memory necessary for the full calculation is its
atomic form of O(PN2), which is provided by the host program.

This algorithm has a final computational scaling ofO(KPQOV ). WithQ = P
2

and
K being in the order of one to ten this reduces to O(P 2OV ). Comparing this to
the atomic to molecular orbital transformation, which scales with O(POV N) one
could assume the latter to be the bottleneck. However, as P is linearly dependent
on the number of atoms and the grid size, P has a nontrivial connection to the
system size as well. The standard Becke weighted grid106 is generally large enough
that the P 2 factor outweighs the PN2. This makes the grid size to be the sole
deciding factor in the computational scaling of the method. This is why the
investigation into optimized grids for this algorithm was started. A first look is
given in chapter 5.

Using the Eigen library

Additionally, a second variant of the Q-MP2 algorithm was implemented. This
variant uses the Eigen 3105 library.

Eigen provides linear algebra techniques for matrix and vector operations, numer-
ical solvers, and related algorithms. It is a template-based header-only library.
This makes it easy to implement, as it does not require complicated compilation
setups. It is released under the MPL2 license and is open-source.

This implementation was used as a comparison point for the array variant the
author wrote. It is included in the repository and can be optionally activated
through a compilation variable and a path to the local Eigen location.

The library provides high-level matrix and vector containers, which can also be
mapped to continuous memory arrays, as shown in 4.10. The library provides
optimized methods for these containers.

Listing 4.10: Example matrix constructs used in the Eigen variant of the

algorithm.

1 //on heap dec l a r ed memory f o r the occupied o r b i t a l b lock
2 double ∗ mmo = new double [ p3Dnpts ∗ nocc ] ( ) ;
3 // Using Eigens matrix maps
4 us ing MatMap = Map<Matrix <double , Dynamic , Dynamic , RowMajor>>;

https://www.mozilla.org/en-US/MPL/2.0/
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5 us ing VecMap = Map<VectorXd>;
6 MatMap map_mmo (mmo , m3Dnpts , mnocc ) ; // occupied o r b i t a l s

Some of the ones used in this implementation are shown in listing 4.11. The
method setup makes the code much more readable, as nested contractions are
handled by a single matrix-vector operation command.

Listing 4.11: Example usage of the utilised Eigen methods.

1 // s c a l e each c e l l o f the map with one s c a l a r
2 o_p = map_mmo . row (p )
3 . cwiseProduct ( map_mm1Deps_o . row (k ) ) ;
4 // t ranspose a matrix / vec to r
5 VectorXd o_q = map_mmo . row (q ) . transpose ( ) ;
6 // form dot product between two vec to r s
7 double o = ( o_p ) . dot ( o_q ) ;
8 // form sum of a l l e lements in the matrix / vec to r
9 double j = ( c2_p . cwiseProduct ( map_mc_c_q ) ) . sum ( ) ;

Listing 4.12: Example calculation of the C term for the only-array and for the

Eigen implementation.

1 // array only c a l c u l a t i o n o f the X term
2 double X = 0 ;
3 f o r ( size_t i = 0 ; i < mnocc ; i++){
4 f o r ( size_t a = 0 ; a < mnvirt ; a++){
5 C += m_c_p [ i ] [ a ]
6 ∗ mc_c [ q ∗ mnocc ∗ mnvirt + i ∗ mnvirt+a ] ;
7 }
8 }// f o r i
9 // Eigen s t y l e c a l c u l a t i o n o f the same term

10 double C = ( c2_p . cwiseProduct ( map_mc_c_q ) ) . sum ( ) ;

An example of the difference between the two implementations can be seen in
listing 4.12. Whereas the only-array implementation has multiple nested for loops
to perform the matrix multiplication for each matrix cell manually, the Eigen

provides the same functionality in a much more concise form. The trade-off is the
lost insight and control over the data movement. In the above example, it is clear
that the data is iterated in a way that is optimal to avoid cache misses and facilitate
vectorization. The Eigen implementation does not provide any insight into how
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the data is traversed. This is the main reason why the low-level implementation
was favored for this project.

The performance comparison between the two implementation variants is discussed
in chapter 6.

4.3.7 The Test Suite

The test suite is based on ctest which is facilitated by the compilation setup
software cmake. The basic structure follows the libqqc library. Each libqqc

class and each method in this class has its test_ equivalent in the same setup,
plus some testing data to test against. Each module has a collector file that calls
each of these tests and checks the returned Booleans for any errors. Executing
ctest, as is done by the continuous integration setup on GitHub, returns how
many and which ones failed. An example can be seen in listing B.4.





Chapter 5

Grid Benchmark

The following chapter will provide an overview of the grid dependency of the
Q-MP2 method using standard Becke-weighted molecular grids implemented in
Q-Chem and libqqc. Section 5.1 will provide a basic primer on the integration
grids, whereas sections 5.2 and 7.1.1 will summarise the benchmark of the grid
performance of Q-MP2.

5.1 Introduction to Integration Grids

This section provides the basic info about the two integration grids that the Q-
MP2 was tested on. A one-dimensional integration grid K is introduced by the
Laplace transformation of the energy denominator as well as a molecular grid P

(or Q) in three-dimensional space on which the integral is evaluated.

5.1.1 Gauss Quadrature

The one-dimensional integration is done through Gauss quadrature. The original
integral is approximated by an orthogonal polynomial function p(x) times a weight
function w(x).

∫︂ b

a

f(x)dx ≈
∫︂ b

a

pn(x)w(x)dx =
K∑︂
k=1

p(xk)ωk (5.1)

93
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with

∫︂ b

a

pk(x)pl(x)w(x)dx = δkl (5.2)

The points at which these functions are evaluated, xk, are equal to the roots of
the polynomial. The choice of the polynomial function and the weight function
depend on the specific Gauss quadrature variant. Two of these variants were
used in the thesis. The integration to approximate the energy denominator is a
Gauss-Legendre type integration. The weight function is

w(x) = 1 (5.3)

and the polynomial function is a Legendre polynomial of the first kind, which
generation function follows

pn(x) =

n/2∑︂
k=0

(−1)k (2n− 2k)!

(n− k)!(n− 2k)!k!2n
xn−2k (5.4)

The integration points follow the form of

xk ≈ cos

(︃
π
4k − 1

4n+ 2

)︃
k = 1, . . . , n (5.5)

The molecular grid will be discussed later, but its implementation uses the Gauss-
Chebyshev integration. The weight function is

w(x) =
1√

1− x2
(5.6)

and the polynomial is a Chebyshev polynomial of the second kind, which is a
recursively generated function. Its roots follow

xk,n = cos

(︃
2k − 1

2n

)︃
(5.7)

with the integration weights
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ωk,n =
π

n
(5.8)

5.1.2 Molecular Becke Grid

The molecular grid used in the following benchmark employs the Becke partition-
ing scheme106 for polyatomic molecules. It proposes that any polyatomic molecu-
lar function F (x) can be approximated as the sum of its single-center components
Fk(r) with a nuclear, relative weight function wk(r). The sum of all weight func-
tions over the molecule is defined as unity.

∑︂
n

wn(r) = 1 (5.9)

and the full molecular function and its integral can be approximated as

F (r) =
∑︂
k

wk(r)F (r) (5.10)

I =
∑︂
k

Ik (5.11)

Only single-center integrations have to be carried out. The integral for these parts
is approximated through quadrature in a spherical coordinate system

Ik =

∫︂
drdϕdψFk(r, ϕ, ψ)r

2 (5.12)

where the two angular dimensions are dealt with as a quadrature over a unit sphere
by Gauss-Lebedev quadrature (or Gauss-MacLaurin in the Q-Chem implementa-
tion) and the radial part is approximated by Gauss-Chebyshev quadrature. This
treatment leads to the generation of the integration points on spheres over the
atomic center, which has been visualized for a simplified two-dimensional case in
figure 5.1.

The main work of the Becke partitioning scheme is focused on deriving fitting and
well-behaved nuclear weighting functions for the final integration. To do so, the
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Figure 5.1: Simplified example of grid point generation in standard Becke
weighted molecular grids on the H2O molecule.

molecular system is first partitioned into Voronoi cells in which the nuclear weight
functions for each center are then defined.

There are numerous algorithms available for the generation of these cells. This
thesis will quickly summarise the Delaunay triangulation, which was implemented
into libqqc5.

5.1.2.1 Delaunay Triangulation

The Delaunay triangulation generates edge connections between given points in
such a way that the resulting triangles have a maximized minimal angle, which
avoids triangles with very sharp angles and low area/volume. One algorithm to
generate this triangulation is named after papers of Boyer107 and Watson108, which
is implemented in the library5 following a master thesis by Isabel Vinterbladh. In
the three-dimensional case, this leads to a set of tetrahedrons.

5.1.2.2 Voronoi Cells

From the Delaunay triangles/tetrahedrons, the polyhedrons of the Voronoi cells
are generated. Becke uses these cells to determine the appropriate nuclear center
for the weighting function, as all points in a cell are closer to the nuclear center
that generated the cell than to any other centers.
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Figure 5.2: Example of the Voronoi cells (green) resulting from the Delaunay
triangulation (blue) for a simplified H2O molecule.

Using the Delaunay triangles/tetrahedrons perpendicular bisecting planes are gen-
erated on the edge vectors, which form the Voronoi polyhedrons. A simplified view
of this scheme is given in figure 5.2.

5.1.2.3 Construction of Becke Weights

The Voronoi polyhedrons are a binary bounding condition for the nuclear weight
function, which is not a well-behaved function for the quadrature integration men-
tioned above. Becke, therefore, smoothed the boundaries of these cells out into
overlapping, analytically continuous functions. The final weight for a grid point is
a sum of all nuclear weight functions for each atomic center. For a point close to
the nuclear center i all other weight contributions from centers j should vanish.

A hyperboloid parameter µ is defined for each center pair i, j

µij =
ri − rj
Rij

(5.13)

with a range of −1 < µij < 1. For each nuclear weight, a step function s(µij)

is introduced which vanishes if the integration point i is too far away from the
respective nucleus j.

s(µij) =

⎧⎨⎩1, −1 ≤ µij ≤ 0

0, −10 < µij ≤ 1
(5.14)
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To smooth out the step function a cutoff function is employed

s(µ) =
1

2
(1− f(µ)) (5.15)

with the smoothing function being a simple two-term polynomial such as

f(µ) =
3

2
µ− 1

2
µ3 (5.16)

To further smooth out the step function this polynomial is used recursively with
three iterations being seen as sufficient by Becke.

s(µ) =
1

2
(1− f(f(f(µ))) (5.17)

Using these smooth step functions, a cell function for the Voronoi polyhedron is
defined as

Pi(r) = Πj ̸=is(µij) (5.18)

and the resulting nuclear weighting function is constructed using this cell function
weighted by the sum of all cell functions

wk(r) =
Pk∑︁
l(r)

(5.19)

The resulting grid of atom-centered spherical grid points is the main integration
grid used for many methods, such as the numerical evaluation of density functional
theory integrals. It was used as the integration grid for the molecular three-
dimensional part of Q-MP2.

In the previous chapter only a proof-of-concept energy benchmark was given for
the Q-MP2 method. What follows is a scan over the different integration grid size
combinations to investigate the grid dependency of the method.
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5.2 Grid Benchmark

5.2.1 Computational Details

To test the grid dependency of the Q-MP2 energy a benchmark set of small and
medium-sized molecules was used. The molecules are H2, H2O, CO, CH4, H2CO,
H3COH, NH3. The geometries of the structures were optimized with MP2 and
the same basis set level as the Q-MP2 calculations. The basis sets STO-3G, 3-
21g, and 6-31g were chosen to see the effect on the energy correction in going from
single-valence to double-valence basis sets and within the Pople basis set73–75. The
small size of these basis sets allowed fast iteration and consistency with the results
in the next chapter, where larger systems are discussed. All calculations were
carried out with Q-Chem 5.2.2 and a development version of the libqqc library on
the computer cluster of the Dreuw group.

5.2.2 Energy Benchmark

The average error for the Q-MP2 correlation energy compared to the parent MP2
energy is given in tables A.2, A.3 and A.4 for the set of chosen molecules. Some of
these results have been published in a previous thesis of the author6, but have been
recalculated with the current version of the libqqc library to ensure consistency.
It should be noted that the energies have been compared to the parent method at
the same basis set level, so Q-MP2/STO-3G has been compared to MP2/STO-3G.

The results for the minimal STO-3G basis are visualized in figure 5.3. The Becke-
weighted P grid is chosen as a tuple of radial and angular grid points. The
seven most commonly used combinations in Q-Chem have been investigated with
varying numbers for the one-dimensional K grid from 4 to 10. For anything but
the smallest 20/6 grid the standard chemical accuracy of < 0.0015 h is reached.
Generally, NK = 4 is sufficient for the one-dimensional K grid, as this choice
produces the lowest correlation energy error. Only the 20/18 grid falls out of line
with this behaviour. Grids with NK > 4 result in similar errors.

Going up to the split-valence basis 3-21g in figure 5.4 lowers the accuracy of the
method. As the orbital function density increases the penalty of the incomplete
quadrature description also increases. NK = 4 produces the best estimate of the
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Figure 5.3: Average absolute correlation energy correction error of the bench-
mark set for the STO-3G basis.

Figure 5.4: Average absolute correlation energy correction error of the bench-
mark set for the 3-21g basis.

energy, reaching the target chemical accuracy. Higher amounts of points increase
the energy error. Once again, the smallest 20/6 set fails to reach the target
accuracy by a magnitude.

Increasing the number of basis functions in the split-valence series to the 6-31g case
results in lowering the overall error of the method, as can be seen in figure 5.5. The
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Figure 5.5: Average absolute correlation energy correction error of the bench-
mark set for the 6-31g basis.

trends of the smaller 3-21g basis hold. NK = 4 produces the best reproduction of
the energy, with the higher number of quadrature points recovering similar energy
values. The target accuracy is once again reached for all combinations but the
smallest one, with the 20/18/4 error being a magnitude smaller than the target.

In most cases, NK = 4 reproduced the best estimate of the energy. Figure 5.6 com-
pares the three results for this quadrature. For most combinations, the smallest
basis set reproduces its energy the best, with 6-31g performing better than 3-21g.
Once again, the 20/18 case falls out of this behavior, with 6-31g performing the
best.

It was therefore concluded that the energy was sufficiently recovered for grids of
size 20/18 and up for the given basis set. Important for the investigation into
the advantages of the Q-MP2 method is the computational performance, which
will be covered in the next chapter. To keep a balance between the number of
points which will heavily impact the runtime due to the PQ scaling prefactor
and a sufficient number of molecular orbitals for the OV part of the scaling the
6− 31g basis was used together with the 20/38 Becke-weighted grid and NK = 4

one-dimensional quadrature points.
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Figure 5.6: Average absolute correlation energy correction error of the bench-
mark set comparing basis sets for NK = 4.



Chapter 6

High-Performance Optimisations

The following chapter will focus on the main topic of this thesis, performance
and parallel efficiency of the Q-MP2 method. Section 6.1 will give an introduc-
tion to high-performance computing concepts and the parallelism paradigms used
in the implementation. Section 6.2 will showcase important implementations of
how the parallelism was achieved. Finally, section 6.3 will show and discuss the
performance benchmarks.

6.1 High-Performance Concepts

High-performance computing is an area of computer science where programs are
executed on large-scale cluster systems. It calls for performant code, both on
the individual nodes and the whole computational cluster. Depending on the
resources available different strategies have to be employed. To do so, one first
has to understand these resources. This section will dive into the single-node
optimisation strategies explored and used in the libqqc code.

Single-node performance is mostly reliant on two areas: the number of operations
which have to be carried out and the number of memory transactions that have
to be dealt with.

103
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Figure 6.1: Historical overview of processor clock speed over the decades.

6.1.1 Processor Performance

Each operation performed by a central processing unit (CPU) takes a certain
amount of time to perform. The smallest operation unit is called a cycle. The
amount of cycles that the CPU can process in a second gives rise to the frequency
of the processor, which is the most common way how performance is advertised.
Another often-used number is the number of operations that can be performed on
floating point numbers per second (FLOPS).

An increase in the frequency of performed operations used to be the hallmark of
the development of CPUs for many years, as can be seen in figure 6.1. To increase
it, the density of the underlying transistors of the chip (also called a die) has to
be increased. The exponential growth seen in the figure leads to the well-known
Moore’s Law, which in one of its iterations predicts the doubling of the transistor
density per chip every year and with it the increase of frequency of the processor.
The development for the more modern CPUs in this graph is more complex: nearly
all modern CPUs have a mode in which the speed can be temporarily boosted or
throttled depending on demand and temperature. Some of these options can be
disabled in the BIOS, however, most clusters which are not specifically used for
performance benchmarking, will have them enabled.
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Moore’s Law started breaking down about two decades ago. The main reason for
it is that the energy which is required for the transistor to function has a direct
connection to the heat that needs to be dissipated to avoid hardware failure. The
usual cooling strategies cannot keep up with this requirement. This is the reason
why many modern CPUs try to be much more energy efficient.

There are other reasons, however. The scale at which modern chips are built
leads to undesired quantum effects, such as electron tunnelling. This calls for
more sophisticated chip designs, which drive the cost of the chip facilities and the
production costs up. Which in turn cuts down on profit margins. Today most
CPU speed improvements stem from other areas instead.

The main solution for the last two decades to this conundrum was the idea of par-
allel execution. This is done in multiple ways in modern chips. Modern consumer-
grade CPUs can have up to 64 physical cores and modern motherboards, especially
in a server-based setting such as a cluster, can have multiple CPUs installed. How-
ever, the increase of cores in CPUs does not automatically increase performance.

Programs have to be optimised by software engineers for execution on multiple
cores. This is often not straightforward and for many programs not possible, as
too much communication has to be carried out between operations. The following
sections will delve deeper into the intricacies of parallelising programs for execution
across multiple CPU cores.

A different kind of parallelism is sometimes called hyperthreading. Physical cores
are split into two logical ones, which share a unit for floating point operations,
as well as the other physical resources. The performance increase comes from the
idea that if one of the logical cores has to wait for a data transaction, the other
can use these resources to operator on already available data. The speed gain of
hyperthreading is minimal to non-existent in compute-heavy scenarios, which is
why all results presented in this thesis are reported on physical cores (with the
threads/tasks bound to them).

Another improvement to the performance of modern CPUs was the introduction
of fused multiply-add units. These are components which can deal with operations
of the type

y ← a ∗ x+ b (6.1)
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in one combined operation. This type of parallelism is often called single instruc-
tion, multiple data (SIMD) or vectorization. Modern vectorization instruction set
extensions, such as Intel’s AVX, can handle up to 16 single-precision floating point
operations, or 8 double-precision floating point operations at once. However, once
again, this has many pitfalls. Generally speaking, vectorization relies on the de-
veloper. Modern compilers do try to optimise for vectorizations in higher-level op-
timisation settings, but their results are not guaranteed. Also, once again, not all
code can be efficiently vectorized. Conditional heavy code may make vectorization
not possible. Data has to be specifically aligned in memory for the vectorization
to work. Different CPU manufacturers may implement the vectorization instruc-
tion set in different ways. Something that works on one CPU, may not work on
another. All in all, the amount of control a developer has in vectorizing their code
is limited by many technical challenges.

The peak performance of a modern CPU can be generalised as the speed of the
processor times the number of cores times the number of FMA units times the
operations per FMA unit possible (depending on single- or double-precision num-
bers).

PP =
f ∗ ncores ∗ nFMA unit ∗ noperations per FMA

second
(6.2)

6.1.2 Memory Performance

A calculation operation can only be performed if the necessary data is available
in the CPUs register. To do so, it has to be transferred from higher-level memory.
The developer’s need for fast memory transactions and the manufacturer’s aim for
cost reduction have resulted in a memory hierarchy, each with different transaction
speeds. Generally, the faster the memory, the closer it is physically to the CPU
and the smaller its capacity, as it is more expensive to build. Figure 6.2 gives an
overview of such a hierarchy for a multiple-core system.

The closest memory to a CPU core is its registers, which can hold around 125
double-precision numbers on modern hardware. It then has two levels of exclu-
sive cache, where the first level (L1) is split into two parts: one for describing
which instructions to use and one for the data on which the instructions will be
performed. This level can be typically accessed within a nanosecond, which is
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Figure 6.2: Overview of the memory hierarchy of modern CPUs with typical
sizes and speeds of commercial desktop hardware and cluster server.

about one magnitude slower than the register. The next step-down performance-
wise happens in the third level (L3) cache. It is typically shared among all CPU
cores on a board and can be accessed within around 10 nanoseconds, which is
two magnitudes slower than the registers. However, its storage is around 4 mag-
nitudes higher than that of the core’s registers. It is generally the last level of
CPU-only cache. If the data is not within one of these caches they have to be
fetched from the machine’s memory. There are two types of machine memory.
The RAM (random access memory) can hold up to terabytes of data and can be
accessed in around 100 nanoseconds. If it has to hold data that is too large, some
of it can be outsourced as virtual pages on the main storage together with the
other stored data. The two types of storage mediums in modern computers are
either flash memory (e.g. SSD, M.3, . . . ) or physical disk storage. Flash storage
can be accessed in around 100 microseconds, whereas disk storage is particularly
slow at around 10 milliseconds.

Why is it so important to know the memory hierarchy of a system if one works
on high-performance computations? If data is not found in the registers of a CPU
core it is fetched from the cache. If it is not found in L1, it will be searched for
in L2, then L3, etc. Once found, it is transported towards the CPU through all
levels of memory and cache. Therefore, it is paramount that as much of the data
operated on is in the cache which is closest to the CPU.

However, CPU memory design does not work on single numbers. When a cache
cascade is started data is fetched from higher levels in packages of a fixed length,
which are called cache lines. So, for example, a byte which was found in L2
would be transported into L1 together with the physically following 63 bytes in
one complete cache line. If the following data is needed next, no transaction is
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required, which is called a cache hit. If the data is not in these 64 bytes, or any
other 64 bytes at the same level, one of the existing cache lines is overwritten with
the fetched line from a higher level. This is called a cache miss, and it carries with
it a latency depending on where the necessary data resides. Meaning, that a cache
miss can, in the worst case, take tens of milliseconds to resolve, as a RAM page
has to be loaded in the ram and then transported through all the lower levels.

Cache misses and their latency penalty give rise to one of the most important
concepts behind performance optimisation: locality.

6.1.3 Locality

A cache miss carries with it a waiting time until the data has been fetched to the
low cache levels. It is therefore paramount to the performance that cache misses
are avoided as much as possible. This is done by iterating through the data in
the same order as it is physically present (spatial locality) and keeping often-used
data as long as possible in the cache (temporal locality).

As an example, see listings 6.1 and 6.2. They differ in the way the two arrays are
traversed. The arrays in 6.1 have their fastest changing indices i as the variable
for the outer loop and their slower indices j in the inner loop. A good analogy
would be thinking of these two arrays as two-dimensional matrices where each row
has been saved after another, as shown in figure 6.3.

Listing 6.1: Example of bad spatial locality while multiplying two matrices.

1 f o r ( i n t i = 0 ; i < N ; i++){
2 f o r ( i n t j = 0 ; j < N ; j++){
3 result += matA [ i + N ∗ j ] ∗ matB [ i + N ∗ j ] ;
4 }
5 }

Listing 6.2: Example of good spatial locality while multiplying two matrices.

1 f o r ( i n t i = 0 ; i < N ; i++){
2 f o r ( i n t j = 0 ; j < N ; j++){
3 result += matA [ j + N ∗ i ] ∗ matB [ j + N ∗ i ] ;
4 }
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Figure 6.3: Example how a row-major matrix is saved in memory.

5 }

In this example, the code in 6.1 would iterate over the array elements 0, 3, 6, 1, 4, 7, 2, 5, 9
for N = 3. If one assumes the cache line to be 3 numbers wide, then for calculating
the first elements, the CPU would grab two cache lines of the first three elements
0, 1, 2 of both matrices. The second iteration multiplies the elements with the one-
dimensional index 3 together, resulting in a cache miss and a latency penalty. The
second code in 6.2 is better organised and iterates through the elements optimally,
only resulting in a cache miss if all data was used.

Compiling these two codes without any optimisation (−0O) shows that the more
optimal example is about one magnitude faster in execution (for N = 1024).

As mentioned, optimising for temporal locality means trying to keep data as long
as possible in low-level caches. As an example, for a classic matrix multiplication
C = A∗B elements of both matrices are used multiple times across the procedure,
and therefore cache misses can be avoided if the calculations which use them are
bundled together. This is often achieved by blocking the matrices in smaller
sections and running the calculations on these blocks together.

6.1.4 Amdahl’s Law

One of the most important rules in program optimisation is called Amdahl’s Law.
It is used to calculate performance gains that one can get for the overall program
by optimising only one specific part.

speedup =
1

1− p+ p
s

(6.3)
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Figure 6.4: Difference between the overall concept of concurrency, the execu-
tion of multiple programs at the same time and true parallelism, the execution

of commands at the same time. Parallelism is a subfield of concurrency.

with p being the fraction of the overall execution time of the part of the program
that is going to be optimised and s being the possible speedup of the optimisation.
If 90 % of the running time for a program is spent in one part, and a code change
results in halving the time necessary for this part, the resulting overall speedup
cannot exceed 1.8. If the part that can be optimised takes only 10 % of the
execution time of the program but can be sped up 100 times then the overall
speedup cannot exceed 1.1.

It is therefore very important to continuously benchmark a program and identify
and improve the correct bottlenecks.

6.1.5 Exploiting Parallelism

As has been shown most of the performance improvement of processors over the
last decade came from the introduction of multiple cores architectures instead of
a substantial increase in clock speed. This is a form of parallelism.
Nearly all computers are capable of some form of multiprogram concurrency, which
is the ability to have several programmes running simultaneously. There exist
however a difference between general concurrency, as with task switching, and
true parallelism. In figure 6.4 this difference is made clear: whereas computers
have long been able to sustain the execution of different programs at the same time,
switching between the active processes, not all were capable of directly running
programs in a parallel execution model.

There are two general types of parallelism. Data-level parallelism is the execu-
tion of operations on independent data, whereas task-level parallelism consists of
subprograms which can chip away at a larger execution goal independently. From
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there on multiple subcategories have developed. The first is instruction-level par-
allelism, which falls under the data paradigm. This category is mainly exploited
by the compiler and the chip itself, by using very fundamental pipelining strategies
and branch predictions. Pipelining means ordering operations in such a way that
they can overlap temporarily (e.g. two memory requests being bundled together).
Branch prediction facilities try to guess which execution path the program will
take and how those can be optimised. The developer has very little leverage over
these concepts. The second is the previously mentioned vector unit architecture
of modern CPUs, which is also a data-level parallelism subcategory. They consist
of SIMD units, which can perform combined multiply-add commands on vectors
of data simultaneously. Graphic processing units, which are a type of accelerator
originally used in computer graphics, also fall under this category, as their struc-
ture on the lowest level does not differ much from the typical SIMD units found in
processors. They will be discussed in a later section. Exploiting vectorization as a
developer is generally done by using specific math libraries, such as BLAS (basic
linear algebra subprograms), which have been at least partially directly written in
optimised assembler code. Modern compilers will also try to generate the vector-
ized assembler code from higher-level languages (such as C++), and the developer
can try to encourage this by the use of specific software architectures. The third
level discussed in the sections below is thread-level parallelism. Each program
consists of one or multiple processes, which are contained sets of instructions and
data using private process states for bookkeeping and their own address space.
Threads are substructures in such processes, which share heap data among the
threads of the same process. This is illustrated in figure 6.5

Thread-level parallelism has to be added by the developer, it is not automatically
generated by the compiler or hardware. It is used to split up the workload while
accessing the same data space and is the main parallelism paradigm in symmetric
multi-processing (SMP), which will be discussed more below. A different concept is
splitting the workload over different processes. This results in resource flexibility,
as the processes do not have to stay locally close to each other, introducing however
the problem of how to exchange data. To handle this, message-passing libraries
are needed, as will be discussed in one of the next sections.
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Figure 6.5: An overview of the address space of a process and the thread
substructure.

6.1.5.1 Shared Memory Parallelism

Modern CPUs generally fall under the symmetric multi-processing (SMP) cate-
gory. This means that each processor shares the same memory space and therefore
each memory transaction takes the same amount of time. As has been said before,
modern CPU architecture is multi-core. And for reasons of construction cost, the
multi-core architecture results in a memory hierarchy (figure 6.2). This means
that when processor A requests memory that lies in the L1 of processor B, or its
L1, the memory transactions are not truly equal. One of the last true SMP ar-
chitectures was the Cray-2 supercomputer released in 1985 and discontinued just
5 years later. However, modern CPUs are still generally considered SMP, as they
share a local memory space.

This shared memory allows for a process to split itself into multiple threads, with
each thread executing on a different core, but accessing the same memory address
space without a need for further communications. This is called shared-memory
parallelism. There are many challenges with this form of parallelism. How should
the threads be scheduled to the resources? How does one ensure that the data
transaction of thread A in L3 is being communicated to the copy of the data in the
L2 of a different processor? These decisions are today handled by the operating
system and the hardware and are mainly out of the hands of the developer, so
the text will not delve further into them. The author recommends Computer
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Figure 6.6: Fork-join model of OpenMP, where the master thread of the process
creates the thread team, which split off and joins back after the code execution.

Architecture by Hennessy and Patterson112 for a very close look at these underlying
concepts.

The code presented in this thesis heavily relies on shared memory parallelism on
the single-node level. To do so, the high-level API and library OpenMP102 has been
used to create the threads and divide the workload of the program.

OpenMP is a set of compiler directives (and some library functions) which allow
for the high-level and easy creation and handling of thread teams. The main
concept of OpenMP is the fork-join model.

An example code is given in listing 6.3 and illustrated in figure 6.6.

Listing 6.3: Example use of OpenMP paradigm to increment 512 double values.

1 double ∗arr = new double [ 5 1 2 ] ;
2 std : : fill_n (arr , 512 , 1 . 0 ) ;
3 // gene ra t ing the thread team and
4 // d i v i d i ng the workload
5 #pragma omp p a r a l l e l f o r
6 f o r ( i n t i = 0 ; i < 512 ; i++){
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7 arr [ i ]++;
8 }
9 de l e t e arr ;

OpenMP works on a set of compiler directives (#pragma omp), which create the
threads (parallel) and then execute them on a following block. In this example,
the block is a for loop. The iterator of the underlying for loop is then divided
among these threads and all threads are run in parallel (if resources allow). Di-
viding the workload among the threads is done by a scheduler and can be set with
the schedule(type, chunk) clause. The two most used ones are of type static and
dynamic. Scheduling can be important for performance. The static clause is the
default and divides the for loop iterations into blocks of fixed sizes. It performs
well if all loop iterations can be finished in about the same timeframe. It can
also be used to help with vectorization. In the above example, if the chunk size is
set to 4 then the automatic vectorization of the compiler may work better. The
dynamic scheduler has more overhead attributed to it. It has a scheduling queue,
where each iteration, or each chunk of iterations, is placed. If a thread is done
with its workload, it grabs the next chunk from the queue. This is more perfor-
mant than the static clause if the workload is asymmetrical. There also exists a
new SIMD compiler directive with #pragma omp simd. This is meant to help with
code vectorisation. However, while all other directives are directly translated by
the compiler into their manual threading equivalent (e.g. using pthreads on Linux
systems), the SIMD directive is merely a suggestion to the compiler and can be
arbitrarily ignored by it. The author has found this directive to not work very
well at the time of writing and even slow down calculations and therefore choose
to omit it and rely on the compiler for vectorisation.

The last concept of OpenMP which can have a huge impact on performance is
thread pinning. This is the concept of how the different threads are distributed
over the available cores. Modern CPUs in a cluster context will have the previously
mentioned hyperthreading technology enabled, subscribing multiple logical cores
per one physical core resource. As the algorithm in this thesis is very compute
intensive the performance boost of subscribing two threads to one physical core
would be only a benefit if all other cores are also in use. This can be controlled
at run time with the OpenMP environment variables such as OMP_PLACES to directly
specify the logical cores that should be used or OMP_PROC_BIND to choose between
a set of directives which should be followed. An example of such directives is
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Figure 6.7: Example architecture of cluster system utilising multiple single
servers (nodes) connected over a high throughput network interface.

close, which tries to keep threads physically close to each other, often resulting
in utilising both hyper threads, or spread, which tries to maximise the distance of
the threads.

6.1.5.2 Distributed Memory Parallelism

If the workload is not distributed over multiple threads of a process, but rather
over multiple processes, the advantage of a single address space is missing. If data
has to be exchanged or synchronisation is required then a networking interface
has to be introduced. The most used one in scientific software is the message-
passing interface (MPI). MPI is a standard for process communication, often used in
(physically) distributed systems. This is the case in most cluster-based computer
systems, such as the JUSTUS 2 system of the BWgrid initiative used for this thesis.
It allows for any type of network communication to facilitate data exchange, be
it Omni-Path, Nvidia’s InfiniBand technology, or even simple TCP/IP protocols.
An example of such a cluster system is given in figure 6.7.

A program using one of the two major implementations of the standard (OpenMPI98

or MPICH2113,114) is run the same way on every resource instance. The parallelism
aspect has to be managed by the developer, as the MPI standard only provides
communication and supporting utilities. As no shared memory space is available
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(excluding the shared memory window functionality introduced in recent versions)
all data movements have to be managed. Parallelism can be introduced, for exam-
ple, by identifying each process during runtime and subscribing only its specific
workload to it. A short example is given in code listing 6.4, which achieves the
same thing as the OpenMP example, incrementing 512 numbers.

Listing 6.4: Example use of the MPI standard.

1 size_t N = 512 ;
2 // i n i t i a l i s i n g MPI environment
3 MPI_Init (NULL , NULL ) ;
4 i n t comm_size ;
5 //how many o v e r a l l p r o c e s s e s
6 MPI_Comm_size ( MPI_COMM_WORLD , &comm_size ) ;
7 i n t id ;
8 // id o f t h i s p roc e s s
9 MPI_Comm_rank ( MPI_COMM_WORLD , &id ) ;

10

11 // assuming no r e s t
12 size_t n_proc = N / comm_size ;
13

14 i f (id != 0) {
15 // l o c a l array to increment
16 double arr [ n_proc ] ;
17 std : : fill_n (arr , n_proc , 1 . 0 ) ;
18 f o r ( i n t i = 0 ; i < n_proc ; i++){
19 arr [ i ]++;
20 }
21 // send to master p roce s s
22 MPI_Gather (arr , n_proc , MPI_DOUBLE , NULL ,
23 n_proc , MPI_DOUBLE , 0 , MPI_COMM_WORLD ) ;
24 }
25 i f (id == 0) {
26 // c r e a t i n g f i n a l bu f f e r on master
27 double ∗final_arr = new double [ N ] ;
28 std : : fill_n ( final_arr , n_proc , 1 . 0 ) ;
29

30 f o r ( i n t i = 0 ; i < ( n_proc ) ; i++){
31 final_arr [ i ]++;
32 }
33 // gather in to f i n a l a r r from a l l p r o c e s s e s
34 MPI_Gather ( final_arr , n_proc , MPI_DOUBLE , i
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35 final_arr , n_proc , MPI_DOUBLE , 0 , MPI_COMM_WORLD ) ;
36

37 de l e t e final_arr ;
38 }
39

40 // c l o s i n g MPI environment
41 MPI_Finalize ( ) ;

As can be seen, utilising the MPI standard is more complex than utilising the
parallelism offered by OpenMP, which does not handle distributed systems. First,
the MPI environment is initialised, then the number of processes and the id of the
current process are fetched. The number of elements to process is calculated (with
any rest ignored here). Then parallelism comes into play: The master progress
generates the final array and computes its share before gathering all the data
from the other processes, which were only working on a small part of the overall
workload.

The MPI standard can be used on a single node, but it includes communication
overhead. It is most often used in a cluster context. The communication over the
network introduces additional latency to the memory transaction which for high-
performance InfiniBand networks is around 1 µs, so one magnitude larger than
access to RAM. It is therefore important for the performance of a program that
communication is kept to a minimum and ideally bundled in as few communication
calls as possible.

6.1.5.3 Accelerator-based Parallelism

The last form of parallel computing discussed in this thesis is the use of graphic ac-
celerators. A graphic processing unit (GPU), originally called graphic accelerator,
is a separate device which is connected to the PC by a high throughput adapter.
While the naming scheme suggests it, GPUs have less in common with standard
CPUs and more with wide arrays of SIMD units. They developed as a specialised
device to perform the vector multiplications necessary for computer graphics. In
the last three decades, the amount of non-graphics software run on a GPU rather
than on a CPU has increased dramatically, as more easy-to-use development tools
became available. While their development was, and still is, driven by computer
graphics applications, mainly the consumer gaming market, they find heavy use in
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Figure 6.8: General architecture of modern graphics processing units.

scientific software where vector operations have to be carried out over a large set of
data. They are optimized for data throughput rather than complicated execution
paths.

The architecture of a modern GPU is summarized in figure 6.8.

The terminology for the GPU architecture is manufacturer-dependent. The follow-
ing text will use the terminology generally associated with the CUDA environment
of Nvidia’s graphics card lineup.

The lowest level of parallelism is called a (CUDA) thread. Each thread executes
on a logical ALU (arithmetic logic unit) for SIMD instructions. Multiple threads
can be subscribed to the same units, to hide memory latency in case of stalling.
The threads are bundled into thread blocks, which have their own instruction
cache and can share local memory. This is only the case if the threat blocks are
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executed on the same streaming multiprocessor, which houses a certain number
of CUDA cores. These streaming multiprocessors are the main execution unit
of thread-level parallelism in graphics cards. There can be between 2 and 80
streaming multiprocessors on a modern card, with one or multiple thread blocks
of up to 512 units. The closest comparison to a CPU core is such a streaming
multiprocessor. One of the differences, however, is that the memory hierarchy is
much more shallow. There are generally only two memory levels: L1 levels for the
thread blocks on one streaming processor and a global memory L2. However, to
reiterate, it is usually not possible to share memory natively between two streaming
multiprocessors.

GPUs, therefore, offer two levels of data parallelism: Massive thread-level paral-
lelism and SIMD vectorization. They are extremely useful for performing the same
instructions on massive data sets. Thread scheduling and resource management
is done at the hardware level and the developer has no access to it.

There are two drawbacks to utilising GPUs. Number one, the data movement
from the host (the CPU) to the device (the GPU) has to be managed manually.
Additionally, complex execution pathways cannot be handled well on GPUs. There
is no sophisticated branch prediction and full threat blocks can stall if one thread
has to handle a conditional statement.

The reason why GPUs have seen much more use outside the computer graphics
community is the development of high-level APIs and easy-to-use extensions for
well-known coding languages. The two most well-known ones are OpenCL, which
tries to establish a standard which is manifacturer-independent, and Nvidia’s
CUDA (compute unified device architecture). CUDA is available as an exten-
sion to the C/C++ coding language with its own set of compilers and tools.

Coding using CUDA resembles the usage of MPI in the sense that much of the
underlying parallelism has to be included by the developer. An example is given
in listing 6.5.

Listing 6.5: Example use of the CUDA language.

1 //CUDA kerne l f unc t i on
2 __global__ void inc_array ( double ∗arr , size_t N ) {
3 size_t id = threadidx + blockDimx ∗ blockIdx ;
4 i f (id < N ) arr [ id ]++;
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5 }
6

7 i n t main ( i n t argc , char ∗∗ argv ) {
8 // a l l o c a t e data on host
9 double ∗d_arr ;

10 double ∗arr = new double [ 5 1 2 ] ;
11 // supor t ing func t i on f i l l i n g ar r with 1 .0
12 std : : fill_n (arr , 512 , 1 . 0 ) ;
13

14 // a l l o c a t e data on dev i ce
15 cudaMalloc ( ( void ∗∗) &d_arr , s i z e o f ( double ) ∗ 512) ;
16 //copy host data to dev i ce
17 cudaMemcpy ( d_arr , arr , s i z e o f ( double ) ∗ 512 , ←↩

cudaMemcpyHostToDevice ) ;
18

19 // execute CUDA kerne l f unc t i on in p a r a l l e l
20 inc_array<<<2, 256>>>(d_arr , 512) ;
21

22 //copy dev i ce data to host
23 cudaMemcpy (arr , d_arr , s i z e o f ( double ) ∗ 512 , ←↩

cudaMemcpyDeviceToHost ) ;
24 // f r e e dev i ce memory
25 cudaFree ( d_arr ) ;
26

27 de l e t e arr ;
28 re turn 0 ;
29 }

The code listing is once again used to iterate 512 numbers. First, the array on
the host device, the CPU side, is initialised together with an address space for
the device data. With this address space memory on the device is allocated and
the memory is copied to the device. Then the workload is executed. This is done
by specifying a kernel function, which is the function consisting of the workload
per thread. Parallelism has to be introduced manually. This means in this case
calculating the array position for the thread. After the kernel, which is marked by
the triple chevrons, has been executed the data is copied from the device to the
host and the device data is deleted.

As can be seen, this data movement can be quite complex and cumbersome. Much
work is invested today into developing generalised high-level APIs, like OpenMP is
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for shared memory parallelism. The new versions of OpenMP compliant compilers
support its target directive.

With this directive, it is possible to utilise OpenMP to parallelise workload and
offload it to an accelerator device, such as a GPU. The syntax is quite similar to
the standard CPU-shared memory model. An example is given in code listing 6.6.

Listing 6.6: Utilising the OpenMP target directive to offload the work to the

GPU.

1 double ∗arr = new double [ 5 1 2 ] ;
2 std : : fill_n (arr , 512 , 1 . 0 ) ;
3 // gene ra t ing the thread team and
4 // d i v i d i ng the work load
5 #pragma omp ta rg e t teams d i s t r i b u t e p a r a l l e l f o r map( tofrom : ar r )
6 f o r ( i n t i = 0 ; i < 512 ; i++){
7 arr [ i ]++;
8 }
9 de l e t e arr ;

Here all parallelism is automatically generated. The target directive tells the
compiler to compile for the established target (e.g. ptx code for Nvidia GPUs),
the teams distribute generates thread blocks and distributed them over the
target device and the data movement is handled by the map clause.

While this syntax is much simpler, its underlying technology is still quite new
at the time of writing and not many compilers support it fully. The author has
tried some implementation work using this directive and stumbled into numerous
problems and bugs. Also, the setup of the compiler target device is much more
involved and not very easily generalised, especially if one wants to target older
generation GPUs (such as the Nvidias 900 series).

6.2 Implementation of Optimisations and Paral-

lelism in libqqc

The following sections will cover the performance-specific implementations, focus-
ing on the parallelism-enabling techniques used in libqqc.
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6.2.1 General Optimisations

The energy transformation step has been covered in section 4.3.4 which dicusses
the loader module of libqqc. It relied on an intermediate-based rewriting of the
transformation from the atomic orbital to the molecular orbital space, as can be
seen in algorithms 2 and 3. The highest computational scaling step was lowered
from O(PN2OV ) to O(PNOV ). The big-O memory scaling did not change as
the intermediate is of lower rank as the full atomic orbital integral (which scales
with O(PN2)), only contributing to the prefactor.

The next important optimisations were presented in section 4.3.6.2. Both the
scaling of the P grid integral weights in the constructor, outside of the main
work function and the pre-scaling outside of the inner Q grid loop of one part of
the orbital doublets in the final quadrature reduced the number of floating point
operations needed in the main work loop. The trade-off is once again a higher
memory scaling, contributing as a prefactor to the big-O complexity to

O(PN2 + POV ) ≤ O(2PN2) (6.4)

As has also been mentioned while discussing algorithm 5 in section 4.3.6.2, the
multiplication symmetry of the main work loop over the KPQ pair was exploited
to roughly half the number of PQ iterations, lowering the computational complex-
ity from a full O(PQOV ) to O(1

2
PQOV ) (neglecting K ≈ 4).

The last optimisation was the heavy exploitation of spatial locality in the matrix
and vector traversion. Nearly all operations are perfectly cache aligned, iterating
through the fastest-changing index of the operations. The only exception to this
is the forming of the intermediates t1 =

∑︁
i o

P
i I

Q
ia and t2 =

∑︁
i Φ

Q
i c

P
ia. The latter

matrix is not traversed correctly, as the forming of the intermediates (which lowers
the scaling of these operations) involves iteration over the slower index. This
could be remedied by saving a transposed copy of both the unscaled cPia and the
scaled IQia integral matrix, which would double the big-O memory complexity of
the algorithm. It was decided to not use this optimisation, as the higher memory
scaling was not deemed acceptable.
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6.2.2 Adding Shared-Memory Parallelism: OpenMP

The shared-memory parallelism was introduced to the libqqc library through
the use of the OpenMP library, which has been introduced in section 6.1.5.1. All
matrix operations have been refactored as cache-optimised for-loops which are
parallelised through an OpenMP compiler directive construct. An example is given
in code listing 6.7.

Listing 6.7: Utilising the OpenMP compiler directive to introduce shared-

memory parallelism to the library main work loop of the qmp2_energy module.

1 #pragma omp p a r a l l e l f o r r educt ion (+: energy ) schedu le ( dynamic ) ←↩
de f au l t ( none ) \

2 shared ( moffset , mnpts_to_proc , m1Dnpts , m3Dnpts , mnocc , mnvirt ,←↩
mv1Dwts , mmo , mm1Deps_o , mmv , mm1Deps_v , mc_c , mm1Deps_ov ) \

3 collapse (2 )
4

5 f o r ( size_t k = 0 ; k < m1Dnpts ; k++){
6 f o r ( size_t p = moffset ; p < moffset+mnpts_to_proc ; p++){

As this loop construct is ultimately trying to reduce the matrix multiplications to a
single energy contribution of the PQ point pair one can use the reduce directive to
spawn local copies of the energy variable which are later contracted. The scheduler
was set to dynamic, as the work of a PQ pair is not linear and increases with later
P values. This means that OpenMP generates a scheduling queue where each thread
takes the next loop iterations after completing its chunk. This helped with the
workload balancing. The dynamic scheduler produces more overhead, however, so
static was generally favoured for other linear workload distributions.

At run time the environment variable OMP_PROC_BIND=spread was set to avoid hyper-
threading subscription with one OpenMP thread subscribed to one physical core.

6.2.3 Adding Distributed-Memory Parallelism: MPI

Moving from the shared-memory environment of a single node to the full clus-
ter is not trivial. Distributed-memory systems are more complex to develop, as
both the network communication and the synchronisation of the workload overall
computing nodes will be important to the final performance.
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The libqqc library uses the message-passing interface, MPI, through the OpenMPI

library to facilitate node-to-node communication. The host program is tasked with
setting up the correct environment. If OpenMP is used for node-level parallelisation,
then the specific setup in code listing 6.8 is necessary to guarantee thread safety.

Listing 6.8: Correct setup for simultanious use of MPI and OpenMP to guarantee

thread safety.

1 #i f d e f _OPENMP
2 i n t provided = 0 ; // check thread ing
3 MPI_Init_thread(&argc , &argv , MPI_THREAD_FUNNELED , &provided ) ;
4 i f ( provided < MPI_THREAD_FUNNELED ) {
5 printf ( "The supported thread ing i s not s u f f i c i e n t . \
6 ( l e s s than MPI_THREAD_FUNNELED)\n" ) ;
7 MPI_Abort ( MPI_COMM_WORLD , EXIT_FAILURE ) ;
8 }
9 #e l s e

10 MPI_Init(&argc , &argv ) ;
11 #end i f

This setup checks if multi-threading MPI calls are supported (necessary for correct
behaviour if the program was compiled with OpenMP).

Two major steps are currently parallelised over the distributed system, which are
illustrated in figure 6.9. The first one is the AO-to-MO transformation in the
loader module. The grid evaluated Coulomb AO integral IPµν transformation is
parallelised over the grid slices P . For this, the full AO integral is exchanged in
chunks to avoid the maximum message length in earlier versions of the standard.
Then only those transformations are carried out which are associated with the P
slice for this particular node. As all nodes rely on the full integral data set each
node then receives the transformed chunks from the other nodes once.

The second, more complex parallelisation step is the parallelisation of the main
work function which calculates the Q-MP2 energy. The main loop of this function
consists of the iteration through the K grid and the iteration through the P grid
and its Q ≤ P counterpart. As the workload is triangular over the PQ grid pair
and intermediates are precalculated for every iteration through the Q part, only
the outer KP pair is accessible for parallelisation. A problem arises however if
a straightforward parallelisation is implemented over the KP pair. PQ Chunks
with Q ≤ P of same size result in different amounts of work depending on the
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Figure 6.9: Overview of the communication and workload distribution of the
MPI implementation of the libqqc library.

position in the P set. This leads to an imbalanced load across the nodes. To avoid
this the workload is instead divided up into two times the number of available
nodes. Then, each node handles two of these chunks, n and max− n. This levels
out the workload over the different iterations. This schema is also illustrated in
6.9.

Finally, the OpenMPI library is tasked with any exchange of data that is needed on
the nodes, e.g. read-in from a file on node A which has to be communicated with
node B. These data movements are structured in such a way as to only happen
once for each integral in their AO form, with the above-mentioned exception of
the Coulomb integral transformation. The only other communication is the trivial
exchange of the single double-value energy contribution of the node to the full Q-
MP2 energy.
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6.2.4 Accelerator Parallelism: OpenMP target

The OpenMP standard supports offloading to accelerator targets, such as the GPU,
since its 4.0 release in 2012. However, this support of heterogenous systems con-
tinues to evolve and is still in active development and testing.

Seeing as the libqqc library is already fully parallelised through OpenMP the appli-
cation extension to GPUs was tested. A stand-alone file with the main work loop
was created, in which the #pragma omp clause was altered to move the workload
to the device, as can be seen in code listing 6.9.

Listing 6.9: Utilisinge the target directive of OpenMP to offload work to the

GPU.

1 size_t nthreads = 64 ;
2 size_t nteams = npts ∗ tsize/nthreads ;
3 #pragma omp ta rg e t teams d i s t r i b u t e p a r a l l e l f o r \
4 map ( tofrom : e_mp2 ) map (to : v_twts , m_o [ 0 : npts∗occ ] , m_teps_o , m_v←↩

[ 0 : npts∗virt ] , m_teps_v , c_c [ 0 : npts∗occ∗virt ] , c_teps ) \
5 num_teams ( nteams ) thread_limit ( nthreads ) \
6 dist_schedule ( s t a t i c , 64) schedule ( s t a t i c , 1) \
7 reduction (+:e_mp2 ) collapse (2 )
8 f o r ( i n t k = 0 ; k < tsize ; k++){
9 f o r ( i n t p = 0 ; p < npts ; p++){

The implementation of the standard only supported utilising one GPU through
this directive. This was done by calling #pragma omp target. To utilise all streaming
multiprocessors the threads have to be bundled into teams distributed over the
whole device (teams distribute). Memory movement from and to the device is
specified by the map(to:) directive. The number of teams and the limit of threads
per team is specified. These map to CUDA’s above mentioned grid notation within
the triple chevrons. Finally, a scheduler is set for the distribution of the thread
teams.

At the time of testing this implementation was then compiled with gcc 9.3.0, which
did not fully support the target feature set, on NVidia GPUs. The performance
was deemed to be unsatisfactory at the time, giving about a 3 times speedup with
a GTX 960 over one 3.7 GHz CPU core. Further testing with the implementation
of the newer OpenMP standard is planned.
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6.3 Performance Benchmarking

The following chapter will present the current implementation’s single-node and
multi-node performance.

6.3.1 Computational Details

Four molecular systems of different sizes were chosen for the benchmark. All
geometries were optimised using MP2/6-31g level of theory and these geometries
were then used for the input quantities. The input quantities (grid evaluated AO
integrals, GTOs and atomic orbital energies) were provided by Q-Chem88 5.2.2

using the 20/38 Becke-weighted grid of the libdftn library and exported to disk.
The test systems consist of water, methanol, anthracene and porphyrin.

A standalone version of the libqqc library was compiled with a minimal host
program to minimise any host program-specific overhead. The input quantities
for each test system and the minimal host program are available through the
libqqc93 GitHub for verification.

The calculations were run on the JUSTUS 2 bwGrid computation cluster with the
hardware listed in chapter 4. They were run in the normal cluster environment
and not on isolated nodes.

6.3.2 Node-Level Performance

As previously mentioned there are four total variants for the library execution:
The main algorithm is expressed either in low-level C-style arrays or through the
container methods of the Eigen library. Furthermore, both variants are then
parallelised either through MPI tasks alone or through OpenMP threads at node-
level with MPI tasks solely used for communication between the nodes.

A summary of the timings for the different test systems can be found in tables
A.8, A.7, A.6 and A.5. Their speedup is shown in figures 6.10 and 6.11.

The absolute timings show the current performance problem of the Q-MP2 method:
The PQ prefactor results in a runtime magnitudes slower than that for standard
MP2 implementations. This is especially apparent as PQ >> N2 for very small
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variant nodes cores GFLOPs Perf%

MPI+OpenMP array 1 1 11,33 14,75%
1 48 629,04 17,06%

20 48 11523,76 15,63%
Eigen 1 1 10,76 14,01%

1 48 520,77 14,13%
20 48 10269,22 13,93%

MPI only array 1 1 11,33 14,75%
1 48 373,75 10,14%

20 48 7378,27 10,01%
Eigen 1 1 10,76 14,01%

1 48 351,13 9,52%
20 48 6927,95 9,40%

Table 6.1: Example GFLOPs performance of a Q-MP2 porphyrin calculation
compared to the theoretical performance of the equivalent number of cores of
the Intel® Xeon® Gold processor 6252 with advertised 2.1 GHz frequency.

systems, meaning that the overall scaling (e.g. O(PQOV )) is worse than that of
the standard MP2 method.

This problem will have to be remedied in the future by grid pruning and integral
screening strategies to reduce the effective PQ prefactor. As mentioned in chapter
5, these investigations are already underway.

A different problem arises if one compares the absolute performance to the the-
oretical peak performance of the node, which is listed for one example in table
6.1. Only up to < 17% of theoretical peak performance is achieved. As a note
of caution, theoretical peak performance is not an easily summarised number, as
the frequency is lowered and raised dynamically. Still, the general rule of thumb
is that ≥ 60% of theoretical peak performance is considered good.

This means that the computation is most likely memory-bound, meaning that
the program has to wait a considerable fraction of the running time for memory
transactions. Seeing as the spatial locality is already exploited heavily, strategies
for an increased temporal locality may increase performance. This could be done
in later iterations of the library through blocking strategies of the main work loop.

Comparing the peak performance for the different variants shows that the imple-
mentation with low-level C-style arrays and the MPI+OpenMP libraries for paralleli-
sation is the most performant.
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The saving grace of the implementation is its parallel capabilities. Figures 6.10
and 6.11 show the speedup over the number of cores for the different test systems.

Two main observations can be made: Utilising only the OpenMPI library for paral-
lelisation performs worse than having the OpenMP library for node-level parallelisa-
tion and the MPI standard for node-to-node communication. For the first case, all
test systems show approximately the same parallel scaling, with significant perfor-
mance loss after about 12 cores. The mixed variant performs much better. Here,
two clear fields can be identified: The smaller systems scale sublinearly but with-
out showing asymptotic slow down at around ≈ 70% speedup. The computational
work for the smallest test system, water, is easier affected by artefacts due to the
workload of other running processes on the node, which explains the misbehaviour
around 30 to 40 cores. The larger systems however show either near-perfect or
even superlinear behaviour for this variant. This means that the speedup exceeds
100% of the theoretical best speedup. This can be explained by cache effects. As
the chunks of the KP loop get smaller less data movement has to be carried out
per core, with more reused data in higher levels of cache, which also leads to faster
memory transactions.

(a) using C-style arrays (b) using the Eigen implementation

Figure 6.10: Speedup of the hybrid MPI + OpenMP variant of the algorithm.

Despite the bad computational efficiency of the implementation the high degree of
parallel efficiency with good exploitation of cache effects show the real advantage
of the method.
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(a) using C-style arrays (b) using the Eigen library

Figure 6.11: Speedup of the MPI only variant of the algorithm.

Figure 6.12: Workload balancing example for the anthracene system on three
nodes.

6.3.3 Multi-Node-Level Performance

Utilising the MPI standard for intra-node communication allows for the use of
large distributed cluster systems. Important for the performance of these imple-
mentations is the workload balancing across the distributed system. Through the
above-mentioned partitioning scheme, a balanced load was achieved. An example
of the timings is given in figure 6.12.

After the serial read-in from the disk (grey area), the integrals are exchanged (blue
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area), and the main work loop is started (green area). The recorded average CPU
load for all nodes is consistently at ≈ 100%. The minor difference at the end of the
workload is easily explained as the minor load imbalance from different sections
of the P space and contributing waiting times for the exchange of the final energy
contribution. The workload balancing is therefore deemed satisfactory.

The speedups for up to 20 nodes with 960 physical cores are summarised in figures
6.13 and 6.14.

(a) using C-style arrays (b) using the Eigen implementation

Figure 6.13: Speedup of the hybrid MPI + OpenMP variant of the algorithm.

(a) using C-style arrays (b) using the Eigen library

Figure 6.14: Speedup of the MPI only variant of the algorithm.



Chapter 6. High-Performance Optimisations 132

The trends of the single-node level hold on the multi-node scale. The parallelisa-
tion over only the MPI tasks performs more consistently but worse than the mixed
variant. The latter split once again into two fields corresponding with the size of
the system. The smaller water and methanol systems scale sublinearly, whereas
the C-style arrays scale super linearly for the array implementation and linearly
for the Eigen implementation.

This shows the full potential of the method in the mixed parallelisation scheme im-
plementation. For the full 960 physical cores speedups exceeding 1000 are reached
for medium-sized and larger systems.



Chapter 7

Further Work and Outlook

The following chapter will showcase some of the collaborative projects that were
undertaken for the Q-MP2 method and the libqqc library and provids an outlook
into possible future projects. It is separated into a section about optimising the
performance of the libqqc library and a section about the application of the
quadrature scheme to new methods.

7.1 Increasing Performance

As has been mentioned in chapter 6 the single- and multi-node performance is
bottlenecked by the large P 2 prefactor of the method, which is memory-bound.
To decrease the dimensionality of the P grid and reduce memory-heavy operations
some further optimisations can be applied.

7.1.1 Investigation into Optimised Grids

The spatial quadrature grid has the most influence over the accuracy and com-
putational cost of the Q-MP2 method. Optimising this grid is therefore the most
important step to further optimise the performance of the method. Investigations
into optimised grids were started during the master project of Isabel Vinterbladh5,
which the author supervised.

The project was focused on further implementing grid functionalities in the re-
spective module as reported in chapter 4. The infrastructure for one-, two- and

133
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Figure 7.1: Different Strategies implemented and tested during the project.

three-dimensional grids was implemented as well as the weighting by Becke106

and its respective atomic-centred scheme. Additionally, two different grid setups
were investigated. For the first one, the grid density was increased by placing
pseudo-centres on chemically important features, such as molecular bonds. The
second setup changed the grid distribution from a spherical to an ellipsoidal one
and centred it on the bonds to approximate the shape of the molecular system.
The three molecular grids that were implemented are illustrated on the 2D water
case in figure 7.1. Additionally, optimisations in terms of grid cutoffs, screening
and scaling (in accordance with Becke’s implementation) were implemented and
different settings were tested.

The cutoffs tested did not improve the accuracy of the quadrature, the different
scaling values however did have an impact on the accuracy and could improve it
for the system in question. The PQ screening, which identifies relevant pairs by
spatial proximity, also resulted in an improvement. However, due to the limited
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Figure 7.2: Exploiting the spatial symmetry of systems to lower the PQ di-
mensionality.

time of the project, some bugs remained, as convergence to the parent MP2 method
was not achieved for larger numbers of quadrature points.

The implementations will be moved to the main branch after further optimisation
work and then tested on the benchmark set.

7.1.2 Exploiting Spatial Symmetry

Another way to lower the dimensionality of the P grid is to exploit its spatial
symmetry. The atomic-centred setup of the Becke-weighted integration grid al-
lows for more exploitation as the standard molecular symmetry, as different atom
centres produce the same grid. If a system is set up correctly, the resulting atomic
grids should have the same orientation for each centre. This should allow for the
sampling of only a part of the overall space. As an example consider the 2D case
for the C2v symmetric 3D H2O system illustrated in figure 7.2.

The mirror axis results in only half of the point being unique (and only a quarter
for the 3D case). The sampling of the full PQ super grid however needs additional
support infrastructure. In the figure, both Q1 and Q2 are symmetrically identical.
Therefore to sample both P1Q1 and P1Q2 one would have to identify the symmetric
equivalent of the virtual Q2 point, Q1, and double count the contribution.

The full restructuring of the grid code would then involve:

1. Identifying the symmetry of the grid (and not only the molecular symmetry)
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Figure 7.3: Example strategy to increase temporal locality in the PQ point
pair supermatrix.

Matrix Memory Scaling at P/Q

ϕP
o O(O)
ϕQ
o O(O)
ϕP
v O(V )

ϕQ
V O(V )
IPov O(OV )
IQov O(OV )

Total Memory O(2OV + 2O + 2V )

Table 7.1: List of necessary quantities for a PQ pair calculation and their
memory contributions.

2. Masking the reducible PQ sampling space

3. Identifying the symmetry-dictated factor for each symmetry-reduced PQ

sampling pair and multiplying the contribution with it

7.1.3 Exploiting Temporal Locality

The blocking strategy discussed in section 6.2.3 already exploits the temporal
locality of the P quantities to some extent. However, the temporal locality could
be improved by the introduction of a further blocking dimension of the PQ pair
matrix, as illustrated in figure 7.3.

By forming smaller blocks of the P and Q grid space the relevant quantities can
be kept in lower cache levels if the orbital space permits. For a full PQ pair the
following matrices are needed:
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Figure 7.4: Linked list representation example and memory calculation of a
sparse matrix.

As long as the total memory for the PQ pair quantities, which is around (2OV +

2O+2V )× 8 byte, is under the memory limit of a Lx cache a blocking scheme as
illustrated in the above figure would lead to a performance increase and allow for
higher exploitation of the peak computational performance of the hardware.

For this, the data movement, especially in the distributed memory case, has to
be rewritten. This will result in more data transactions. However, if the blocks
per execution units can be determined beforehand this additional data movement
could be simplified into one transaction with a more fractured memory structure.
This would result in a performance hit due to worse spatial locality. If this trade-off
results in performance improvement remains to be determined.

7.1.4 Exploiting Matrix Sparsity

Depending on the density of the spatial grid, the spatial grid cutoff and the system
in question the resulting matrix quantities can exhibit a high degree of sparsity,
meaning a large number of elements are close to 0. The field of linear algebra allows
for strategies to approximate sparse matrices with smaller entities and decrease the
number of computation operations in matrix-matrix and matrix-vector products.

There are different strategies to save space while storing sparse matrices. These
range from saving subblocks of matrix entries which exhibit a lower degree of
sparsity to only storing the non-zero elements of the matrix as a tuple in either
an array, dictionary or linked list, such as illustrated in figure 7.4.



Chapter 7. Further Work and Outlook 138

There are different advantages and disadvantages depending on the chosen rep-
resentation. Some allow for faster single access of elements but slower sequential
element access, others trade element access time for a higher penalty when modi-
fying the matrix.

There are also direct and iterative procedures to efficiently work on sparse matrix-
vector products, such as the generalised minimal residual method.

These solvers and different matrix representations are implemented in a wide array
of available linear algebra libraries. Depending on the setup and system in question
implementing them could speed up the Q-MP2 calculation and allow for larger
systems.

7.1.5 Integral Screening

The original Q-MP2-OS paper by Barca et al.3 heavily relies on integral screening
to improve the absolute performance of the algorithm. Three kinds of screening
were employed:

PQ-grid screening: The formulation of the Q-MP2-OS algorithm in terms of
first-order density matrices allowed for the exploitation of the nearsightedness of
these quantities, i.e. their exponential decay in space. PQ pairs are ordered by
their distance, and the energy contribution of the nearest pair is calculated. This
goes on until rPQ ≤ rPQ

crit . The critical range was defined as the range of the
PQ pair plus the logarithmic user-defined ratio of the energy contribution of this
pair, divided by the exponential decay parameter of the density. The latter factor
is unknown and had to be manually approximated. This screening lowered the
number of relevant PQ pairs from quadratic to linear.

K-grid screening: The number of K grid points was determined by a cutoff
strategy, resulting in three to four relevant grid points for the tested systems.

µν shell-pair screening: The Q-MP2-OS algorithm is expressed in terms of
atomic orbital quantities. Direct screening of µν shell pairs was therefore possible.
For this, a cutoff threshold using the Gaussian product prefactors of the basis
function was used to decrease the number of relevant shell pairs from quadratic to
linear. Furthermore, these relevant shell pairs were additionally screened for their
relevancy to the grid point P , reducing the number of overall pairs to O(1).
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αν shell-pair screening: The final screening was done on the relevant αν shell
pairs of the SKP

αν quantities, where the previously discussed exponential decay
strategy was used together with traditional shell-pair screening.

As of now, no screening steps are implemented for the Q-MP2 algorithm in libqqc.
Reducing the number of relevant PQ points would lead to a noticeable speedup of
the algorithm. Direct shell-pair screening of AO quantities is not possible, as the
algorithm is formulated in terms of molecular orbital contributions. Additionally,
the PQ strategy of ordering the quantities in terms of their distance would lead to
less sequential memory traversion, lowering the spatial locality of the algorithm.
As this algorithm is mostly memory-bound, this step could result in worse per-
formance, especially for smaller and medium-sized systems where one PQ pair
matrices do not exhaust the lower-level caches.

7.2 Application to New Methods

The Q-MP2 implementation in the libqqc library has been used as a guinea pig
for that specific quadrature reformulation. The next step would be to apply this
approach to other methods. Especially high-scaling methods would benefit from
the lower computational and memory scaling that the quadrature method has to
offer.

One project that has already started is the extension of the reformulation to the
MP2 equivalent coupled cluster second-order approximation CC2.

7.2.1 Coupled Cluster Method Family

Post-HF methods aim to recover the electron correlation. This is generally done by
extending the mathematical space used to describe the system by the introduction
of excited determinants, i.e. determinants in which electrons have been promoted
from occupied into virtual orbitals. How these excited determinants are included
in the description is dependent on the specific method family. For example, in
CI a set of excitation operators T̂ is used which acts on the ground state wave
function to generate the set of excited determinants.
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T̂ = T̂ 1 + T̂ 2 + T̂ 3 + . . . (7.1)

Where T̂ n acting upon the ground state determinant generates the nth excited
determinant.
Within the coupled-cluster formalism, this operator is not employed directly but
enters the wave function expansion using the exponential ansatz

|ΦCC⟩ = eT̂ |Φ0⟩ (7.2)

This transformed wave function can then be used in the Schrödinger Equation

ĤeT̂ |Φ0⟩ = EeT̂ |Φ0⟩ (7.3)

Two problems arise. The power series of the eT̂ operator includes all possible
excitation of the system following eq. 7.1, where T̂ 1 acting on the ground state
wave function generates the single excited determinant Φa

i , etc. In the second
quantisation formalism, the T̂ operators consist of a string of annihilation and
creation operators

T̂ 1 =
∑︂
ia

a†aai (7.4)

T̂ 2 =
∑︂
ijab

a†aa
†
bajai (7.5)

Therein, the annihilation operator removes one electron and its corresponding
orbital from the system

ap |Φ0⟩ = ap |ϕpϕq . . . ϕs⟩ = |ϕq . . . ϕs⟩ = |Φa
i ⟩ (7.6)

and the creation orbital adds one electron to a new orbital in the system

a†t |Φ0⟩ = a†t |ϕpϕq . . . ϕs⟩ = a†t |ϕtϕpϕq . . . ϕs⟩ = |Φab
ij ⟩ (7.7)
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The full derivation using the second quantisation formalism is outside the scope
of this work and can be found in the standard literature115. One frequently ap-
proximation is the truncation of the full T̂ operator to only single and double
excitations, which is referred to as Coupled-Cluster Singles Doubles (CCSD)116.

T̂ = T̂ 1 + T̂ 2 (7.8)

The CCSD wave function generating operator can then be approximated by the
power series

eT̂ 1+T̂ 2 = 1 + (T̂ 1 + T̂ 2) +
1

2
(T̂ 1 + T̂ 2)

2 +
1

6
(T̂ 1 + T̂ 2)

3 + . . . (7.9)

= 1 + T̂ 1 +
1

2
T̂

2

1 + T̂ 2 + T̂ 1T̂ 2 +
1

6
T̂

2

2 + . . . (7.10)

This series goes on until all excitation for the the N -electron limit have been
considered. However, as the reference state Φ0 is chosen to be a single Slater
determinant one can employ Slater’s rules, which state that matrix elements of
two-particle operators between determinants that differ by more than two orbitals
vanish. Projecting the reference wave function on the resulting Schrödinger equa-
tion

⟨Φ0|Ĥ|ΦCC⟩ = E ⟨Φ0|ΦCC⟩ (7.11)

leads to an expression for the energy. At most terms up to T̂
2

survive. Employing
the second quantisation formalism together with Wick’s theorem and Slater’s rules
one arrives at the CCSD energy expression

ECCSD =
1

2

∑︂
ijab

⟨Φ0|Ĥ|Φab
ij ⟩ (tabij + tai t

b
j − tbitaj ) (7.12)

That expression already bears structural similarities with the MP2 energy expres-
sion, mainly differing in the dependence on the amplitude expression tai and tabij .
Similarly, projecting an excited state determinant on the equation in this manner
leads to an expression for the corresponding amplitude equations.
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⟨Φa
i |Ĥ|ΦCC⟩ = E ⟨Φa

i |eT̂ |Φ0⟩ (7.13)

⟨Φab
ij |Ĥ|ΦCC⟩ = E ⟨Φab

ij |eT̂ |Φ0⟩ (7.14)

The resulting expressions are non-linear and coupled to the energy. To remedy this
the formalism introduces the similarity transformed Hamiltonian by multiplying
the inverse of the cluster exponential from the left. The equations then become

⟨Φ0|e−T̂ ĤeT̂ |Φ0⟩ = E (7.15)

⟨Φa
i |e−T̂ ĤeT̂ |Φ0⟩ = 0 (7.16)

⟨Φab
ij |e−T̂ ĤeT̂ |Φ0⟩ = 0 (7.17)

The amplitude equations are now decoupled from the energy expression. Using the
Baker-Campbell-Hausdorff formula117 one can find a natural termination of the
resulting power series for the similarity transformed Hamiltonian e−T̂ ĤeT̂ which
is then used with the second quantisation formalism to arrive at the working
equations.

7.2.1.1 Approximated second-order Coupled Cluster: CC2

The working equation expression of the CCSD energy is dependent on the t am-
plitude equations

ECCSD =
∑︂
ijab

[2 ⟨ij|ab⟩ − ⟨ij|ba⟩] (tabij + tai t
b
j) (7.18)

However, the single and double amplitude expressions are a set of coupled non-
linear expressions. Therefore an iterative procedure has to be employed, where
one first constructs tai through a guess, then uses this to construct tabij , which is
then used to construct a new tai and so on. To remedy this fact one additional
approximation can be done. The contributions of the tabij terms can be neglected
when calculating tabij , so that only tai have to be solved iteratively.
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This so-called CC2 approximation to the second-order Coupled Cluster energy
(CC2) performs comparatively to MP2118,119 in terms of accuracy and computa-
tional cost. Its amplitude equations can be expressed as

tai = ([2 ⟨ik|ac⟩ − ⟨ia|kc⟩] tck + [2 ⟨ak|cd⟩ − ⟨ak|dc⟩] tci tdk
− [2 ⟨il|kc⟩ − ⟨ik|lc⟩] taktcl − [2 ⟨kl|cd⟩ − ⟨kl|dc⟩] tci taktdl
− [2 ⟨ak|cd⟩ − ⟨ak|dc⟩] tcdik − [2 ⟨il|kc⟩ − ⟨ik|lc⟩] tackl
+ [2 ⟨kl|cd⟩ − ⟨kl|dc⟩] (2tacik − tcaik )tdl

− [2 ⟨kl|cd⟩ − ⟨kl|dc⟩] (tackl tci + tcdil t
a
k))

1

εa − εi
(7.19)

tabij = (⟨ij|ab⟩+ ⟨aj|cb⟩ tci + ⟨ib|ac⟩ tcj + ⟨ij|kb⟩ tak − ⟨ij|ak⟩ tbk
+ ⟨ab|cd⟩ tci tdj + ⟨ij|kl⟩ taktbl − ⟨ib|kc⟩ taktcj − ⟨aj|ck⟩ tci tbk − ⟨ik|ac⟩ tbktcj
− ⟨kj|cb⟩ taktci
+ ⟨ic|kl⟩ taktbl tcj + ⟨kj|cl⟩ taktbl tci − ⟨ak|cd⟩ tci tdj tbk − ⟨kb|cd⟩ tci tdj tak
+ ⟨kl|cd⟩ tci tdj taktbl )

1

εa + εb − εi − εj
(7.20)

where the Einstein summation convention has been implied.

7.2.1.2 Applying the Quadrature: Q-CC2

Because of the similarities with the MP2 expression and the similar performance
CC2 was chosen as the first application of the quadrature formalism to a new
method. This project was conducted under the supervision of the author by The-
ofilos Dimitrakopoulos120 in the course of his final year theaching thesis. Applying
the quadrature formalism results in the following working equations of the Q-CC2
method

EQ−CC2 =
∑︂
P

ωP

[︄∑︂
i

ϕP
i

∑︂
jab

[︁(︁
2ϕP

a I
P
jb − ϕP

b I
P
ja

)︁ (︁
tabij + tai t

b
j

)︁]︁]︄
(7.21)
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tai =
1

εa − εi

∑︂
P

ωP (

ϕP
i

(︄∑︂
kc

[︁(︁
2ϕP

a I
P
kc − ϕP

k I
P
ac

)︁
tck
]︁
−
∑︂
lck

[︁(︁
2ϕP

c I
P
kd − ϕP

d I
P
kc

)︁
(takt

c
l + tackl )

]︁)︄
+ ϕP

a

∑︂
kcd

[︁(︁
2ϕP

c I
P
kd − ϕP

d I
P
kc

)︁ (︁
tci t

d
k + tcdik

)︁]︁
−
∑︂
k

[︄
ϕP
k

∑︂
lcd

[︁(︁
2ϕP

c I
P
ld − ϕP

d I
P
lc

)︁ (︁
2tacik t

d
l − tcaik tdl − tci taktdl − tadkl tci + tcdil t

a
k

)︁]︁]︄
)

(7.22)

tabij =
1

εa + εb − εi − εj

∑︂
P

ωP (ϕP
i ϕ

P
a I

P
jb

−
∑︂
kc

[︁
ϕP
i ϕ

P
k I

P
bct

a
kt

c
j − ϕP

i ϕ
P
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P
kct

b
kt

c
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c
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b
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k ϕ
P
c I

P
jbt

a
kt

c
i

]︁
+
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dlkc
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ϕP
k ϕ

P
c I

P
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c
i t

d
j t

a
kt

b
l

]︁
+ ϕP

a I
P
jb
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c

(︁
ϕP
c t

c
i

)︁
+ ϕP

i ϕ
P
a
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c

(︁
IPbct
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j

)︁
−
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c
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c
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a I

P
kdt
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i t

d
j t
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k I
P
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i t

d
j t

a
k
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− ϕP

i
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k
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ϕP
k I

P
jbt

a
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a I
P
jkt

b
k
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− ϕP

i
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k
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ϕP
k I

P
jbt

a
k + ϕP

a I
P
jkt

b
k

]︁
+
∑︂
k

[︄
ϕP
k
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lc

(︁
ϕP
i I

P
lc t

a
kt

b
l t

c
j + ϕP

c I
P
jl t

a
kt

b
l t

c
i

)︁]︄
)

(7.23)

The Q-CC2 equations show major differences from the Q-MP2 method. The
energy expression 7.21 has no energy denominator, a quadrature over the K grid
is therefore not needed. Additionally, only integrals on centres of the P quadrature
grid exist, so no PQ pairs are necessary. However, the indices remain fully coupled
through the amplitude expressions which cannot be resolved. The final scaling for
the energy expression is O(PO2V 2) compared to the O(P 2OV ) scaling of MP2.
The highest-scaling term of Q-CC2 can be found in the last term of eq. 7.22, which
scales with O(PN4). It is the most costly term as the integral transformation of
IPνµ, which is the highest-dimensional integral, only scales with O(PN3). In the
above derivation, the Q-CC2 method offers no advantage in memory scaling over
the CC2 parent method, as the tabij amplitudes have to be stored. It is possible to
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resolve this scaling and only express the method in terms of up to two-dimensional
quantities by inserting eq. 7.23 into eq. 7.22 and 7.21.

No full implementation of Q-CC2 has been released in libqqc, therefore investigat-
ing the parallel capabilities will be done at a later time. The non-linear memory
traversion of the amplitude matrices however will result in a higher number of
cache misses and a worse performance.

7.2.2 Algebraic Diagrammatic Construction Method Fam-

ily

So far only ground state methods have been discussed, which often already have
(comparatively) low scaling and high-performing variants. wave function-based
methods for the description of excited states, however, still suffer from their high
scaling and low parallel efficiency.

One such method family is the algebraic diagrammatic construction scheme121.
Originally developed to determine the poles of the polarisation propagator, which
corresponds to the vertical excitation energies of the system, the ADC method fam-
ily allows for a straightforward, perturbation theory approach to excited states.
The original derivation is outside the scope of this work, but an alternative for-
mulation shall be quickly summarised here.

A set of non-orthogonal correlated excited states is generated by letting an ex-
citation operator {Ĉn} = {a†aai; a†aa

†
bajai; . . . } act upon the ground state wave

function |Φ0⟩

|Φ0
N⟩ = ĈN |Φ0⟩ (7.24)

These are then orthogonalized using Gram-Schmidt orthogonalization with respect
to each other and the ground state, starting from the lowest-lying excitation class.
This results in a set of precursor states |Φ#

l ⟩. Afterwards, these precursor states
are orthogonalized within each excitation class. The resulting states are called the
intermediate states9,44,122,123 |ΦIS

n ⟩.

The Hamiltonian can then be expressed in the basis of these intermediate states
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Figure 7.5: Schematic view of the ADC matrices for different orders of ap-
proximation9. The orders of terms contributing to each block are shown.

Mnm = ⟨ΦIS
n |Ĥ − E0|ΦIS

m⟩ (7.25)

By using the Møller-Plesset perturbation expansion of the wave function and the
energy expression with this ansatz one arrives at a perturbation-based expression
which results in a Hermitian eigenvalue problem of the form

MY = YE Y†Y = 1 (7.26)

where Y is the matrix of amplitude vectors expanding the excited states into the
intermediate state basis Yn and En is the diagonal matrix of vertical excitation
energy eigenvalues.

As a result of the perturbative ground state wave function the resulting Hermitian
matrix M is also expressed as a sum of different perturbation orders

M = M(0) +M(1) +M(2) + . . . (7.27)

These orders terminate differently for the single, double, . . . excitation block of the
overall matrix, depending on the chosen order of the ADC scheme. This results
in the matrix structure shown in fig. 7.5 for the examples of the first three orders
of the ADC method family for the polarization propagator.

The working equations of the single excitation (particle-hole) block for the second-
order ADC scheme for the polarisation propagator (ADC(2)-pp) are given in eq.
7.28.
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Figure 7.6: Matrix-Vector-Product form of the ADC algorithm which is used
by the Davidson solver.

Mia,jb =f
a
b δij − f i

jδab

− ⟨ib||ja⟩

+
1

4

∑︂
klc

⟨kl||ac⟩ tbckl
(1)
δij +

1

4

∑︂
klc

⟨kl||bc⟩ tackl
(1)δij

+
1

4

∑︂
kcd

⟨ik||cd⟩ tcdjk
(1)
δab +

1

4

∑︂
kcd

⟨jk||cd⟩ tcdik
(1)
δab

− 1

2

∑︂
kc

⟨ik||ac⟩ tbcjk
(1) − 1

2

∑︂
kc

⟨jk||bc⟩ tacik
(1) (7.28)

Diagonalisation of the full matrix leads to the vertical excitation energies as the
eigenvalues and the excited state wave functions as eigenfunctions. This is however
unfeasible, as the necessary memory for the largest block of the matrix scales with
O(N8) with respect to the system size.

To remedy this problem and to only calculate the lowest-lying eigenstates a David-
son124,125 algorithm is used. For this eq. 7.28 can be re-expressed in terms of a
matrix-vector product form (figure 7.6), where only the underlying entities have
to be stored.
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This results in the two vector equations which are iterated until convergence is
reached (using r for the new Y ). The vector product consists of the following
terms

M

(︄
rai

rabij

)︄
=

(︄
r
a,(1)
i + r

a,(2)
i

r
ab,(1)
ij + r

ab,(2)
ij

)︄
=

(︄ ∑︁
jbMia,jbY

b
j +

∑︁
jkbcMia,jkbcY

bc
jk∑︁

kcMijab,kcY
b
j +

∑︁
klcdMijab,klcdY

cd
kl

)︄
(7.29)

An example for the ra,(1)i part of the matrix-vector product is given in eq. 7.30.

r
a,(1)
i =

∑︂
b

Y b
i f

a
b −

∑︂
j

Y a
j f

i
j

−
∑︂
jb

Y b
j ⟨ib||ja⟩

+
∑︂
b

Y b
i · iab1

+
∑︂
j

Y a
j · i2,ij

− 1

2

∑︂
jkbc

Y b
j ⟨ik||ac⟩ tbcjk

(1) − 1

2

∑︂
jkbc

Y b
j ⟨jk||bc⟩ tacik

(1) (7.30)

iab1 =
1

4

∑︂
jkc

⟨jk||ac⟩ tbcjk
(1)

+
1

4

∑︂
jkc

⟨jk||bc⟩ tacjk
(1) (7.31)

i2,ij =
1

4

∑︂
kbc

⟨ik||bc⟩ tbcjk
(1)

+
1

4

∑︂
kbc

⟨jk||bc⟩ tbcik
(1) (7.32)

Therein, Y is the ADC vector and tabij
(1) are the first-order doubles amplitudes

from Møller-Plesset theory

tabij
(1)

=
⟨ij||ab⟩

εa + εb − εi − εj
(7.33)

This is done for a set of guess vectors depending on the number of requested
lowest-lying states.

The highest-scaling steps for this method are the AO-to-MO transformation of the
⟨pq|rs⟩ integrals as well as e.g. the full summation over the intermediate states
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in the sixth and seventh term of eq. 7.30. A simple implementation of these
expressions would have a computational scaling of O(N6), although the final im-
plementation of the method scales with O(N5).

The ADC(2) equations are made up of antisymmetriesed ERIs ⟨pq||rs⟩ and ex-
pressions of the form ⟨ij||ab⟩ tcdkl . Employing the Q-MP2-style quadrature scheme
one can re-express these underlying quantities as

⟨ij|ab⟩ →
∑︂
P

ωP
[︁(︁
ϕP
i

)︁ (︁
ϕP
a I

P
jb

)︁]︁
(7.34)

⟨ij||ab⟩ →
∑︂
P

ωP
[︁(︁
ϕP
i

)︁ (︁
ϕP
a I

P
jb − ϕP

b I
P
ja

)︁]︁
(7.35)

⟨ij||ab⟩
εa + εb − εi − εj

→
∑︂
K

ωK
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i t
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b t
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K

)︂]︂
(7.36)

and

⟨ij||ab⟩ tcdkl →
∑︂
P

ωP
[︁(︁
ϕP
i

)︁ (︁
ϕP
a I

P
jb − ϕP
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P
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(7.37)∑︂
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(7.38)

Inserting eq. 7.35, 7.36 and 7.38 into 7.30 and utilising the symmetry ⟨ik||bc⟩ =
⟨ki||cb⟩ changes the scaling to O(P 2OV 2). The full equations are given in eq. 7.39
- 7.41.
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(7.39)
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The largest remaining quantity is the IPpq integral, which lowers the AO-to-MO
transformation step scaling to O(PN3), which is the most expensive step in terms
of system size. The highest-scaling memory object is rijab, meaning that memory
still scales with O(N4), however with a lower prefactor as the need for storing
⟨νµ|λσ⟩ is removed. A Schur complement ansatz can then be used to fold the
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doubles space into the single space, lowering the memory scaling to O(PN2),
dominated by the IPpq integral.
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Solving eq. 7.42 for Y ab
ij one arrives at eq. 7.43. This eliminates the necessity of

storing rabij by plugging this equation into the equation for rai , eq. 7.44, which leads
to eq. 7.43. Now only rai has to be stored and iterated over. The double part of
the amplitude can be recovered through eq. 7.43.

The calculation of ria and rijab has the chance of becoming embarrassingly parallel,
with a parallelisation scheme very close to the Q-MP2 algorithm. The only dif-
ference is that after the calculation of ria and rijab both have to be communicated
to the other nodes for the Davidson algorithm. Alternatively, only ria has to be
communicated if the above-mentioned ansatz is used.

In summary, with the provided equations a fully parallel, high-performance Q-
ADC(2) calculation is within reach.



Chapter 8

Conclusion

Modern (super-)computer clusters achieve their peta- and now exascale perfor-
mance through the use of millions of parallel execution units, such as CPU or
GPU cores. To utilise these resources fully a high degree of parallel efficiency is
necessary for an algorithm, as well as a low level of data communication. Achiev-
ing these properties for common wave function-based methods is not a trivial task
and many present implementations of post-HF method are therefore limited in
the system size they can treat not because of lacking resources, but because of
lacking implementation. Additionally, their high computational and memory scal-
ing limits their applicability, which often stems from the need to store, transform
and manipulate two- and more-electron repulsion integrals. The constant search
for low-scaling methods must also be a search for formulations which show a high
parallel efficiency to utilise modern computer architecture to its fullest potential.
The Møller-Plesset perturbation theory is a common ground state method used
daily by computational chemists for the treatment of small to large systems. It
is most often used in its second-order form, which scales computationally with
O(N5) and with a memory scaling of O(N4) with N being the number of atomic
orbitals of the system. Its memory scaling comes from storing the atomic orbital
representation of the two-electron integral ⟨µν|λω⟩ and its computational scaling
from the need to transform this quantity into its molecular orbital representation.
The calculation of the MP2 correlation energy correction has a computational scal-
ing of O(O2V 2), as all molecular orbital indices are coupled through the energy
denominator.
This thesis presented an ansatz based on the Laplace transformation of the energy
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denominator1,51,52, which effectively decouples the orbital indices, as well as the re-
formulation of the four indices ERI into lower-ranking two- and three-dimensional
entities2–4 through numerical quadrature. The quadrature form of the full MP2
energy expression, Q-MP26, has a lower computational scaling (O(PQOV )) and
lower memory scaling (O(POV )) as its parent method. The scaling is dominated
by the P,Q prefactors, which are the number of spatial quadrature grid points.
Furthermore, the quadrature scheme is embarrassingly parallel, as all PQ quadra-
ture pairs are fully independent. The accuracy of this method in reproducing the
energies of the parent MP2 method was shown to be dependent on the number
and nature of atomic centres, as well as of the employed integration grids. The
latter was found to be of the most importance.
The Q-MP2 method was implemented into a new open-source C++ library, libqqc93.
This library was developed to be portable, modular, and follow sustainable coding
guidelines with automatic continuous integration and documentation. The energy
calculation is provided in two variants, one utilising the Eigen105 library and one
written in terms of low-level C arrays. The implementation focuses on high par-
allel efficiency, either as a MPI, (single-node only) OpenMP or hybrid OpenMP+MPI

variant.
This implementation was then used to investigate the influence of the different
integration grids on the accuracy of the Q-MP2 method. For this, the libqqc

library was interfaced with Q-Chem88, which provided the underlying quantities
and the Becke-weighted integration grid commonly used by DFT calculations. A
specialized integration grid module was later added to the implementation5. The
grid benchmark was performed for seven small-sized systems with 28 different
integration grid setups and 3 different basis sets. Both the absolute and rela-
tive energy errors were calculated, as the numerical quadrature only recovers the
parent method energy proportionally. For all but the smallest spatial grids, the
relative energy error is between 0.33 % and 1.5 % with the absolute error being
the same magnitude as the target chemical accuracy or one order of magnitude
lower. The energy error increased when going from STO-3G to 3-21G, but got
lowered by increasing the Pople basis set to 6-31G. A one-dimensional integration
grid of k = 4 was deemed to be sufficient and therefore dropped from the formal
scaling. However, the chosen one-dimensional quadrature scheme seemed to be
misbehaved for the Laplace transformed integral. The spatial integration followed
expectations which produced lower relative errors with a denser integration grid.
There appears to be a specific error cancellation with 20/18 (radial, angular) grids,
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that lowered the error more than expected. As all but the lowest grid setting was
shown to provide the target accuracy, the lowest well-behaved value, 20/38, was
chosen for future runs.
The parallel efficiency was tested for all combinations of the two implementations
and the three parallelisation schemes. To increase efficiency, a minimal commu-
nication scheme was employed as well as a scheme to balance the computational
load between the nodes. The different tests were done on up to 960 physical cores
and on up to 20 nodes on the JUSTUS 2 computer cluster. The hybrid OpenMP+MPI

variant with the low-level C arrays was shown to have the best single-node perfor-
mance. The performance however was lacking overall, only reaching up to ≈ 17 %

of the theoretical peak. This shows that the algorithm is memory-bound and can
most likely be increased in the future by better exploitation of data locality and
sparsity. However, parallel efficiency on the single-node level was above ≈ 70 %,
with the larger systems achieving superlinear speedups in the hybrid variant. This
is most likely the result of better utilisation of faster, low-lying caches at a higher
number of employed cores. This effect was not seen on any of the small examples,
as their data already resides mostly in the fast caches.
An example of the efficiency of the load-balancing scheme was shown for three
nodes. Multi-node performance of up to 960 cores/20 nodes followed the trend of
the single-node performance. For the hybrid variant, the larger systems were once
again shown to exhibit linear to superlinear parallel efficiency, with the smallest
examples showing sublinear performance. The variant utilising only MPI for par-
allelization shows a more consistent behaviour, with a parallel efficiency of over
70 %.
Future work will focus on increasing the absolute performance by optimising the
integration grids and lowering the number of integration grid points. This project
has already been started through the master thesis of Isabel Vinterbladh5. Addi-
tional performance increases may come from further integral screening techniques
and the better utilisation of temporal locality and exploitation of the sparsity of
the underlying matrix entities.

The quadrature scheme presented in this thesis was extended to new methods.
The quadrature form of the second-order approximation of the coupled cluster
method (Q-CC2) was derived in cooperation with Theofilos Dimitrakopoulos120,
however, the decoupling of the indices was not possible due to the explicit coupling
of the amplitude terms in the energy expression.
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Finally, the quadrature scheme was extended to the particle-hole matrix-vector-
products of the second-order excited-state algebraic diagrammatic construction
scheme for the polarisation propagator in its ISR formalism. Here the theoreti-
cal computational scaling of the parent method is O(N5), stemming from both
the terms and the AO-to-MO transformation of the two-electron ERIs, and the
memory scaling is O(N4). This calculation has to be repeated multiple times for
each requested excited state and has a low parallel efficiency in its current im-
plementation. The newly derived Q-ADC(2) equations have a theoretical scaling
of O(P 2OV 2) and the largest stored entity needs O(O2V 2) memory. The latter
problem, however, can be addressed by folding the doubles space into the singles
space, decreasing the memory scaling to O(PN2). A future implementation is
expected to have higher absolute single-node performance compared to Q-MP2,
as more computational work is done per memory operation. Its parallel efficiency
is expected to be similar to the current Q-MP2 implementation, as the partial
calculations of the matrix-vector-products remain fully independent and the only
additional communication is the exchange of the partial MVPs between nodes.

A highly parallel efficient and lower scaling Q-ADC(2) method is therefore within
reach.
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A.1 Energy Benchmark

Table containing the energy benchmark of the Q-MP2 method as presented in
section 3.3.2.

System Basis NP NO NV ∆E[Ha] ∆Erel

H2 STO-3G 1,520 1 1 2.36 · 10−6 0.02%
3-21g 1,520 1 3 2.85 · 10−5 0.16%
6-31g 1,520 1 3 7.99 · 10−6 0.05%

H2O STO-3G 2,280 5 2 6.71 · 10−5 0.16%
3-21g 2,280 5 8 1.02 · 10−3 0.83%
6-31g 2,280 5 8 9.29 · 10−4 0.72%

CO STO-3G 1,520 7 3 3.25 · 10−4 0.22%
3-21g 1,520 7 11 2.37 · 10−3 1.10%
6-31g 1,520 7 11 1.75 · 10−3 0.80%

CH4 STO-3G 3,800 5 4 4.55 · 10−4 0.80%
3-21g 3,800 5 12 2.08 · 10−3 2.10%
6-31g 3,800 5 12 1.46 · 10−3 1.47%

H2CO STO-3G 3,040 8 4 7.93 · 10−4 0.63%
3-21g 3,040 8 14 2.22 · 10−3 1.00%
6-31g 3,040 8 14 1.89 · 10−3 0.84%

H3COH STO-3G 4,560 9 5 4.67 · 10−4 0.50%
3-21g 4,560 9 17 1.82 · 10−3 0.86%
6-31g 4,560 9 17 1.61 · 10−3 0.74%

NH3 STO-3G 3,040 5 3 2.38 · 10−4 0.44%
3-21g 3,040 5 10 8.87 · 10−4 0.79%
6-31g 3,040 5 10 7.18 · 10−4 0.62%

Anthracene STO-3G 18,240 47 33 7.35 · 10−3 0.87%
3-21g 18,240 47 99 2.15 · 10−2 1.76%
6-31g 18,240 47 99 1.97 · 10−2 1.61%

Porphyrine STO-3G 28,880 81 53 7.80 · 10−3 0.51%
3-21g 28,880 81 163 %
6-31g 28,880 81 163 2.49 · 10−2 1.11%

Table A.1: Correlation energy errors of the Q-MP2 method for smaller and
medium size molecules using different basis sets and 20, 38 molecular Becke
weighted grid points. Energy difference against the parent MP2 method in

Hartree.
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A.2 Grid Benchmark

Basis NR NL NK ∆Eavr σ(∆Eavr) ∆Erel
avr σ(∆Erel

avr)

STO-3G 20 6 4 −1.06 · 10−2 9.33 · 10−3 11.39% 11.39%
6 −1.06 · 10−2 9.36 · 10−3 11.46% 11.38%
8 −1.06 · 10−2 9.36 · 10−3 11.47% 11.38%
10 −1.06 · 10−2 9.36 · 10−3 11.47% 11.38%

18 4 3.83 · 10−4 5.84 · 10−4 −0.52% 1.03%
6 2.10 · 10−4 5.14 · 10−4 −0.36% 0.87%
8 2.01 · 10−4 5.15 · 10−4 −0.36% 0.87%
10 2.00 · 10−4 5.15 · 10−4 −0.35% 0.87%

38 4 −3.91 · 10−4 2.47 · 10−4 0.46% 0.24%
6 −4.56 · 10−4 2.81 · 10−4 0.53% 0.24%
8 −4.65 · 10−4 2.88 · 10−4 0.54% 0.24%
10 −4.66 · 10−4 2.89 · 10−4 0.54% 0.24%

25 50 4 −3.42 · 10−4 2.26 · 10−4 0.46% 0.42%
6 −4.08 · 10−4 2.24 · 10−4 0.54% 0.40%
8 −4.17 · 10−4 2.24 · 10−4 0.54% 0.40%
10 −4.18 · 10−4 2.24 · 10−4 0.55% 0.40%

86 4 −3.12 · 10−4 1.70 · 10−4 0.39% 0.26%
6 −3.77 · 10−4 1.88 · 10−4 0.46% 0.25%
8 −3.86 · 10−4 1.91 · 10−4 0.47% 0.24%
10 −3.87 · 10−4 1.92 · 10−4 0.47% 0.24%

30 86 4 −2.81 · 10−4 1.59 · 10−4 0.35% 0.25%
6 −3.47 · 10−4 1.75 · 10−4 0.42% 0.23%
8 −3.56 · 10−4 1.78 · 10−4 0.43% 0.23%
10 −3.57 · 10−4 1.78 · 10−4 0.43% 0.23%

110 4 −2.89 · 10−4 1.57 · 10−4 0.36% 0.24%
6 −3.54 · 10−4 1.73 · 10−4 0.43% 0.23%
8 −3.63 · 10−4 1.77 · 10−4 0.44% 0.22%
10 −3.64 · 10−4 1.77 · 10−4 0.44% 0.22%

Table A.2: Average error (in Hartree) and average relative error (in %) of the
Q-MP2 correlation energy compared to the parent MP2 method for the STO-3G

basis set.
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Basis NR NL NK ∆Eavr σ(∆Eavr) ∆Erel
avr σ(∆Erel

avr)

3-21g 20 6 4 −1.37 · 10−2 1.29 · 10−2 7.63% 7.11%
6 −1.45 · 10−2 1.33 · 10−2 8.12% 7.18%
8 −1.47 · 10−2 1.35 · 10−2 8.23% 7.19%
10 −1.47 · 10−2 1.35 · 10−2 8.25% 7.19%

18 4 −7.30 · 10−4 1.44 · 10−3 0.98% 1.35%
6 −1.56 · 10−3 1.24 · 10−3 1.43% 1.11%
8 −1.77 · 10−3 1.21 · 10−3 1.54% 1.04%
10 −1.81 · 10−3 1.20 · 10−3 1.56% 1.02%

38 4 −1.58 · 10−3 9.22 · 10−4 0.95% 0.72%
6 −2.42 · 10−3 1.41 · 10−3 1.41% 0.83%
8 −2.62 · 10−3 1.55 · 10−3 1.52% 0.87%
10 −2.66 · 10−3 1.58 · 10−3 1.54% 0.87%

25 50 4 −1.25 · 10−3 7.21 · 10−4 0.78% 0.53%
6 −2.09 · 10−3 1.20 · 10−3 1.23% 0.63%
8 −2.29 · 10−3 1.34 · 10−3 1.34% 0.66%
10 −2.33 · 10−3 1.37 · 10−3 1.36% 0.67%

86 4 −1.23 · 10−3 7.21 · 10−4 0.75% 0.46%
6 −2.06 · 10−3 1.23 · 10−3 1.20% 0.59%
8 −2.27 · 10−3 1.37 · 10−3 1.59% 0.11%
10 −2.31 · 10−3 1.40 · 10−3 1.33% 0.65%

30 86 4 −1.19 · 10−3 7.13 · 10−4 0.72% 0.45%
6 −2.03 · 10−3 1.21 · 10−3 1.17% 0.59%
8 −2.23 · 10−3 1.36 · 10−3 1.28% 0.63%
10 −2.27 · 10−3 1.39 · 10−3 1.30% 0.64%

110 4 −1.17 · 10−3 7.06 · 10−4 0.71% 0.46%
6 −2.01 · 10−3 1.20 · 10−3 1.16% 0.59%
8 −2.22 · 10−3 1.35 · 10−3 1.27% 0.63%
10 −2.25 · 10−3 1.38 · 10−3 1.29% 0.64%

Table A.3: Average error (in Hartree) and average relative error (in %) of the
Q-MP2 correlation energy compared to the parent MP2 method for the 3-21g

basis set.
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Basis NR NL NK ∆Eavr σ(∆Eavr) ∆Erel
avr σ(∆Erel

avr)

6-31g 20 6 4 −1.63 · 10−2 1.16 · 10−2 9.41% 6.53%
6 −1.59 · 10−2 1.31 · 10−2 8.73% 7.82%
8 −1.61 · 10−2 1.31 · 10−2 8.79% 7.83%
10 −1.61 · 10−2 1.31 · 10−2 8.80% 7.83%

18 4 −1.71 · 10−4 1.59 · 10−3 0.33% 1.31%
6 −4.84 · 10−4 1.31 · 10−3 0.68% 1.29%
8 −6.06 · 10−4 1.26 · 10−3 0.75% 1.24%
10 −6.27 · 10−4 1.25 · 10−3 0.76% 1.24%

38 4 −1.27 · 10−3 7.09 · 10−4 0.75% 0.48%
6 −1.78 · 10−3 1.03 · 10−3 1.03% 0.57%
8 −1.91 · 10−3 1.11 · 10−3 1.09% 0.59%
10 −1.93 · 10−3 1.13 · 10−3 1.10% 0.59%

25 50 4 −9.34 · 10−4 5.73 · 10−4 0.58% 0.47%
6 −1.45 · 10−3 8.35 · 10−4 0.86% 0.52%
8 −1.57 · 10−3 9.08 · 10−4 0.92% 0.53%
10 −1.59 · 10−3 9.22 · 10−4 0.93% 0.53%

86 4 −8.97 · 10−4 5.56 · 10−4 0.53% 0.37%
6 −1.41 · 10−3 8.57 · 10−4 0.81% 0.44%
8 −1.53 · 10−3 9.38 · 10−4 0.87% 0.46%
10 −1.55 · 10−3 9.53 · 10−4 0.88% 0.46%

30 86 4 −8.70 · 10−4 5.44 · 10−4 0.52% 0.36%
6 −1.38 · 10−3 8.43 · 10−4 0.79% 0.43%
8 −1.50 · 10−3 9.23 · 10−4 0.85% 0.45%
10 −1.52 · 10−3 9.37 · 10−4 0.86% 0.45%

110 4 −8.68 · 10−4 5.38 · 10−4 0.52% 0.36%
6 −1.38 · 10−3 8.37 · 10−4 0.79% 0.43%
8 −1.50 · 10−3 9.17 · 10−4 0.85% 0.45%
10 −1.52 · 10−3 9.32 · 10−4 0.86% 0.45%

Table A.4: Average error (in Hartree) and average relative error (in %) of the
Q-MP2 correlation energy compared to the parent MP2 method for the 6-31g

basis set.
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A.3 Performance Benchmark

cores/tasks nodes tarray, hybrid tarray, mpi teigen, hybrid teigen, mpi

1 1 1 4.30 · 107 4.30 · 107 4.53 · 107 4.53 · 107
4 1 4 7.33 · 106 1.14 · 107 8.63 · 106 1.20 · 107
8 1 8 3.60 · 106 5.96 · 106 4.11 · 106 6.29 · 106
12 1 12 2.62 · 106 4.05 · 106 2.92 · 106 4.33 · 106
16 1 16 1.98 · 106 2.99 · 106 2.42 · 106 3.34 · 106
20 1 20 2.22 · 106 2.47 · 106 2.50 · 106 2.77 · 106
24 1 24 1.61 · 106 2.07 · 106 1.94 · 106 2.29 · 106
28 1 28 1.39 · 106 1.85 · 106 1.59 · 106 2.09 · 106
32 1 32 1.21 · 106 1.41 · 106 1.88 · 106
36 1 36 1.04 · 106 1.56 · 106 1.25 · 106 1.73 · 106
40 1 40 9.43 · 105 1.45 · 106 1.14 · 106 1.61 · 106
44 1 44 8.53 · 105 1.34 · 106 1.03 · 106 1.49 · 106
48 1 48 7.67 · 105 1.30 · 106 9.36 · 105 1.39 · 106
48 2 96 3.96 · 105 6.53 · 105 4.74 · 105 6.89 · 105
48 3 144 2.73 · 105 4.35 · 105 3.30 · 105 4.61 · 105
48 4 192 1.96 · 105 3.22 · 105 2.35 · 105 3.47 · 105
48 5 240 1.54 · 105 2.58 · 105 1.95 · 105 2.78 · 105
48 6 288 1.37 · 105 2.19 · 105 1.66 · 105 2.31 · 105
48 7 336 1.13 · 105 1.79 · 105 1.38 · 105 1.96 · 105
48 8 384 9.81 · 104 1.61 · 105 1.25 · 105 1.71 · 105
48 9 432 8.79 · 104 1.41 · 105 1.10 · 105 1.53 · 105
48 10 480 8.14 · 104 1.33 · 105 1.01 · 105 1.40 · 105
48 11 528 7.32 · 104 1.19 · 105 9.11 · 104 1.25 · 105
48 12 576 6.82 · 104 1.09 · 105 8.21 · 104 1.17 · 105
48 13 624 6.41 · 104 1.01 · 105 7.75 · 104 1.07 · 105
48 14 672 5.92 · 104 9.20 · 104 7.26 · 104 9.83 · 104
48 15 720 5.20 · 104 8.81 · 104 6.39 · 104 9.30 · 104
48 16 768 5.17 · 104 7.87 · 104 5.99 · 104 8.45 · 104
48 17 816 4.81 · 104 7.44 · 104 5.84 · 104 7.92 · 104
48 18 864 4.54 · 104 7.06 · 104 5.30 · 104 7.52 · 104
48 19 912 4.28 · 104 6.57 · 104 5.01 · 104 7.01 · 104
48 20 960 4.23 · 104 6.60 · 104 4.75 · 104 7.03 · 104

Table A.5: Main workload timings of Q-MP2 for the porphyrine system in ms
on the JUSTUS2 cluster system.
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cores/tasks nodes tarray, hybrid tarray, mpi teigen, hybrid teigen, mpi

1 1 1 2.66 · 107 2.66 · 107 2.94 · 107 2.94 · 107
4 1 4 4.50 · 106 6.83 · 106 5.44 · 106 7.55 · 106
8 1 8 2.06 · 106 3.58 · 106 2.59 · 106 3.91 · 106
12 1 12 1.39 · 106 2.40 · 106 1.82 · 106 2.70 · 106
16 1 16 1.11 · 106 1.87 · 106 1.49 · 106 2.07 · 106
20 1 20 9.40 · 105 1.51 · 106 1.28 · 106 1.71 · 106
24 1 24 8.80 · 105 1.30 · 106 1.11 · 106 1.47 · 106
28 1 28 7.86 · 105 1.25 · 106 9.79 · 105 1.31 · 106
32 1 32 6.98 · 105 1.04 · 106 8.32 · 105 1.18 · 106
36 1 36 5.91 · 105 9.42 · 105 7.54 · 105 1.10 · 106
40 1 40 5.34 · 105 8.64 · 105 6.72 · 105 1.00 · 106
44 1 44 5.05 · 105 8.17 · 105 6.31 · 105 9.38 · 105
48 1 48 4.52 · 105 7.84 · 105 5.75 · 105 8.64 · 105
48 2 96 2.27 · 105 3.84 · 105 5.06 · 105
48 3 144 1.65 · 105 2.53 · 105 1.90 · 105 2.91 · 105
48 4 192 1.11 · 105 1.95 · 105 1.48 · 105 2.14 · 105
48 5 240 8.96 · 104 1.58 · 105 1.15 · 105 1.76 · 105
48 6 288 7.38 · 104 1.26 · 105 9.87 · 104 1.43 · 105
48 7 336 6.67 · 104 1.08 · 105 8.12 · 104 1.24 · 105
48 8 384 5.69 · 104 9.28 · 104 7.26 · 104 1.07 · 105
48 9 432 4.95 · 104 8.63 · 104 6.39 · 104 9.67 · 104
48 10 480 4.43 · 104 7.63 · 104 5.77 · 104 8.71 · 104
48 11 528 4.13 · 104 6.94 · 104 5.26 · 104 7.88 · 104
48 12 576 3.91 · 104 6.01 · 104 4.90 · 104 6.83 · 104
48 13 624 3.38 · 104 5.83 · 104 4.45 · 104 6.42 · 104
48 14 672 3.36 · 104 5.22 · 104 4.21 · 104 5.97 · 104
48 15 720 3.12 · 104 5.01 · 104 3.84 · 104 5.51 · 104
48 16 768 2.90 · 104 4.44 · 104 3.57 · 104 5.06 · 104
48 17 816 2.61 · 104 4.57 · 104 3.39 · 104 5.10 · 104
48 18 864 2.59 · 104 4.00 · 104 3.19 · 104 4.55 · 104
48 19 912 2.47 · 104 4.11 · 104 3.09 · 104 4.63 · 104
48 20 960 2.22 · 104 3.63 · 104 2.99 · 104 4.14 · 104

Table A.6: Main workload timings of Q-MP2 for the anthracene system in ms
on the JUSTUS2 cluster system.
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cores/tasks nodes tarray, hybrid tarray, mpi teigen, hybrid teigen, mpi

1 1 1 6.58 · 104 6.58 · 104 6.57 · 104 6.57 · 104
4 1 4 1.73 · 104 1.65 · 104 1.74 · 104 1.65 · 104
8 1 8 8.94 · 103 8.74 · 103 8.93 · 103 8.83 · 103
12 1 12 6.53 · 103 6.05 · 103 6.57 · 103 6.04 · 103
16 1 16 5.36 · 103 4.71 · 103 5.33 · 103 4.66 · 103
20 1 20 4.66 · 103 4.06 · 103 4.66 · 103 4.00 · 103
24 1 24 4.04 · 103 3.41 · 103 4.04 · 103 3.42 · 103
28 1 28 3.42 · 103 3.18 · 103 3.42 · 103 3.18 · 103
32 1 32 2.99 · 103 2.95 · 103 2.91 · 103 2.89 · 103
36 1 36 2.65 · 103 2.76 · 103 2.63 · 103 2.77 · 103
40 1 40 2.38 · 103 2.51 · 103 2.40 · 103 2.56 · 103
44 1 44 2.23 · 103 2.34 · 103 2.26 · 103 2.33 · 103
48 1 48 2.03 · 103 2.18 · 103 2.04 · 103 2.15 · 103
48 2 96 1.02 · 103 1.05 · 103 1.06 · 103
48 3 144 6.93 · 102 6.92 · 102 6.97 · 102 6.86 · 102
48 4 192 5.16 · 102 5.08 · 102 5.56 · 102 5.03 · 102
48 5 240 4.17 · 102 4.11 · 102 4.18 · 102 4.14 · 102
48 6 288 3.65 · 102 3.20 · 102 3.67 · 102 3.19 · 102
48 7 336 3.10 · 102 2.76 · 102 3.17 · 102 2.75 · 102
48 8 384 2.66 · 102 2.28 · 102 2.63 · 102 2.28 · 102
48 9 432 2.44 · 102 2.29 · 102 2.36 · 102 2.30 · 102
48 10 480 2.14 · 102 1.83 · 102 2.34 · 102 1.85 · 102
48 11 528 2.02 · 102 1.83 · 102 2.10 · 102 1.82 · 102
48 12 576 1.77 · 102 1.38 · 102 1.88 · 102 1.38 · 102
48 13 624 1.58 · 102 1.37 · 102 1.60 · 102 1.37 · 102
48 14 672 1.52 · 102 1.37 · 102 1.49 · 102 1.37 · 102
48 15 720 1.43 · 102 1.38 · 102 1.48 · 102 1.39 · 102
48 16 768 1.40 · 102 9.10 · 101 1.32 · 102 9.10 · 101
48 17 816 1.49 · 102 9.20 · 101 1.23 · 102 9.10 · 101
48 18 864 1.29 · 102 9.10 · 101 1.33 · 102 9.10 · 101
48 19 912 1.15 · 102 9.20 · 101 1.31 · 102 9.10 · 101
48 20 960 1.16 · 102 9.10 · 101 1.12 · 102 9.20 · 101

Table A.7: Main workload timings of Q-MP2 for the H3COH system in ms
on the JUSTUS2 cluster system.
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cores/tasks nodes tarray, hybrid tarray, mpi teigen, hybrid teigen, mpi

1 1 1 7.54 · 102 7.54 · 102 1.34 · 103 1.34 · 103
4 1 4 2.01 · 102 1.91 · 102 3.63 · 102 3.38 · 102
8 1 8 1.02 · 102 1.02 · 102 1.92 · 102 1.81 · 102
12 1 12 6.84 · 101 6.89 · 101 1.44 · 102 1.23 · 102
16 1 16 5.75 · 101 5.15 · 101 1.19 · 102 9.44 · 101
20 1 20 5.14 · 101 4.15 · 101 1.31 · 102 7.84 · 101
24 1 24 4.67 · 101 3.56 · 101 8.94 · 101 6.46 · 101
28 1 28 4.61 · 101 3.12 · 101 8.03 · 101 6.12 · 101
32 1 32 3.98 · 101 2.91 · 101 1.06 · 102 5.45 · 101
36 1 36 3.45 · 101 2.57 · 101 2.54 · 102 5.25 · 101
40 1 40 3.02 · 101 2.44 · 101 5.46 · 101 4.99 · 101
44 1 44 2.59 · 101 2.19 · 101 5.43 · 101 4.86 · 101
48 1 48 2.35 · 101 2.03 · 101 5.21 · 101 4.10 · 101
48 2 96 1.16 · 101 1.04 · 101 2.04 · 101
48 3 144 7.34 · 100 6.69 · 100 1.74 · 101 1.33 · 101
48 4 192 5.92 · 100 4.75 · 100 1.60 · 101 9.75 · 100
48 5 240 4.79 · 100 3.81 · 100 1.05 · 101 7.83 · 100
48 6 288 3.80 · 100 2.83 · 100 9.23 · 100 6.03 · 100
48 7 336 3.68 · 100 2.81 · 100 7.72 · 100 5.41 · 100
48 8 384 3.36 · 100 1.93 · 100 8.56 · 100 4.26 · 100
48 9 432 2.79 · 100 1.87 · 100 6.58 · 100 4.39 · 100
48 10 480 2.70 · 100 1.90 · 100 5.80 · 100 4.27 · 100
48 11 528 2.29 · 100 1.89 · 100 6.05 · 100 3.62 · 100
48 12 576 2.40 · 100 1.03 · 100 5.94 · 100 2.79 · 100
48 13 624 1.89 · 100 1.00 · 100 4.99 · 100 2.48 · 100
48 14 672 1.89 · 100 1.03 · 100 4.50 · 100 2.42 · 100
48 15 720 1.81 · 100 1.23 · 100 5.75 · 100 1.89 · 100
48 16 768 1.89 · 100 9.94 · 10−1 5.17 · 100 2.55 · 100
48 17 816 1.64 · 100 9.12 · 10−1 5.37 · 100 1.86 · 100
48 18 864 1.48 · 100 9.04 · 10−1 6.17 · 100 2.36 · 100
48 19 912 1.46 · 100 1.00 · 100 3.85 · 100 2.40 · 100
48 20 960 1.42 · 100 1.00 · 100 4.29 · 100 2.72 · 100

Table A.8: Main workload timings of Q-MP2 for the H2O system in ms on
the JUSTUS2 cluster system.
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Additional Code Listings

B.1 Implementation

Listing B.1: Example GitHub action executing the CI pipeline

1 name : CI

2

3 on :
4 push :
5 branches : [ main ]
6 pull_request :
7 branches : [ main ]
8

9 jobs :
10 build :
11

12 runs−on : ubuntu−latest

13

14 steps :
15 − uses : actions/checkout@v2
16 − name : configure

17 run : . / configure
18 − name : make

19 run : cd build && make

20 − name : ctest

21 run : cd build && ctest −V

175
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Listing B.2: Example run output for the anthracene (6 − 31G) test system,

using the array variant and the hybrid OpenMP+MPI parallelization scheme. The

run was executed on 19 nodes.

1 /home/hd/hd_hd/hd_tb381/workspace/libqqc/runs/scan_hybrid
2 n1405

3 Fr 15 . Apr 15 : 46 : 20 CEST 2022
4 #!/ bin /bash
5 #SBATCH −J libqqc_hybrid_20x48
6 #SBATCH −n20 −−cpus−per−task=48 −t12 : 0 0 : 0 0
7 #SBATCH −−mem=200G
8 #SBATCH −−job−name=libqqc_hybrid_20x48
9 #SBATCH −−output=libqqc_hybrid_20x48_por−%j . out

10 #SBATCH −−e r r o r=libqqc_hybrid_20x48_por−%j . e r r
11 pwd ; hostname ; date

12 cat run_20x48 . sh
13 module load compiler/gnu
14 module load mpi/openmpi
15 cd . . / . . / host_example / .
16 mpic++ −fopenmp −O3 −ffast−math −march=native main_mpi . cpp . . / lib/←↩

libqqc . a −o 20x48 . out
17 OMP_NUM_THREADS=48 srun −−cpus−per−task=$OMP_NUM_THREADS . /20 x48 .←↩

out

18 rm 20x48 . out
19 Timing Loader_qmp2_from_file : : loader : CPU : 0 ms ; Wall : 0 ms

20 Timings AoToMo CGTO : CPU : 1740 ms ; Wall : 831 ms

21 −− Loading in : CPU : 744 ms ; Wall : 745 ms

22 −− Distribute Batch : CPU : 8 ms ; Wall : 7 ms

23 −− Tranforming Batch : CPU : 398 ms ; Wall : 9 ms

24 −− Distribute Batch Results : CPU : 311 ms ; Wall : 39 ms

25

26 Timings AoToMo Coulomb Integral : CPU : 172604 ms ; Wall : 108470 ms

27 −− Loading in : CPU : 105441 ms ; Wall : 105563 ms

28 −− Distribute Batch : CPU : 601 ms ; Wall : 602 ms

29 −− Transforming Batch : CPU : 65355 ms ; Wall : 1366 ms

30 −− Distribute Batch Results : CPU : 1129 ms ; Wall : 857 ms

31

32 Timing Vault_qmp2 : : vault : CPU : 174743 ms ; Wall : 109366 ms

33 Timing Do_qmp2 : : qmp2 : CPU : 1061861 ms ; Wall : 23351 ms

34 ________________________________________________________________

35 | |
36 | ∗∗ Quadrature Calculation through libqqc ∗∗ |
37 | |
38 |++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++|
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39 | ∗ Author (s ) : Benjamin Thomitzni |
40 |++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++|
41 | Programm Details |
42 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
43 | ∗ library vers . v0 . 1 |
44 | −− Loader vers . v0 . 1 |
45 | −− Vault vers . v0 . 1 |
46 | −− Do_qmp2 vers . v0 . 1 |
47 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
48 | ∗ OpenMP enabled |
49 | −− threads : 48 |
50 | ∗ MPI enabled |
51 | −− processes : 20 |
52 |++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++|
53 | Calculation Details |
54 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
55 | ∗ Method : Q−MP (2 ) |
56 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
57 | ∗ grid points (3D ) : 18240 |
58 | ∗ grid points (1D ) : 16 |
59 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
60 | ∗ atomic orbitals : 146 |
61 | ∗ molecular orbitals : 146 |
62 | −− occupied : 47 |
63 | −− v i r t u a l : 99 |
64 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
65 | Results |
66 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
67 | ∗ Ground State Energy Correction (eV ) : −1.24223 |
68 |++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++|
69 | Calculation Timings |
70 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
71 | Timing Qmp2_energy : : compute : CPU : 1060257 ms ; Wall : 22236 ms |
72 | −− Setting up calculation : CPU : 805 ms ; Wall : 17 ms |
73 | −− Calc . Batch 1/2 : CPU : 11612 ms ; Wall : 242 ms |
74 | −− Calc . Batch 2/2 : CPU : 1047840 ms ; Wall : 21976 ms |
75 | Gather result fr . nodes : CPU : 1348 ms ; Wall : 1100 ms |
76 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
77 | i f no timings are printed , choose higher print level |
78 | _________________________________________________________________ |

Listing B.3: Example call to load in the AO integral data Q-Chem
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1 // i n i t i a l i z i n g memory on heap due to s i z e
2 double ∗ coul_ao = new double [ npts ∗ nao ∗ nao ] ;
3 libqints : : basis_1e1c_cgto<double> basis = libqints : : qchem : : aobasis .←↩

b1 ;
4 std : : vector< libqints : : ftype_multipole > v_pts ;
5 f o r ( i n t i = 0 ; i < npts ; i++){
6 libqints : : ftype_multipole f_mult ;
7 f_mult . x = grid . get_mpts ( ) [ i ∗ 3 + 0 ] ;
8 f_mult . y = grid . get_mpts ( ) [ i ∗ 3 + 1 ] ;
9 f_mult . z = grid . get_mpts ( ) [ i ∗ 3 + 2 ] ;

10 f_mult . k = 0 ;
11 v_pts . push_back ( f_mult ) ;
12 }// f o r i
13 libqints : : basis_1e1c_multipole bm ( v_pts ) ;
14 double mom [ npts ] ;
15 f o r ( i n t i = 0 ; i < npts ; i++) mom [ i ] = 1 ;
16 libqints : : array_view<double> av_mom ( ( double ∗) &mom [ 0 ] , npts ) ;
17 libqints : : dev_omp dev ;
18 dev . init (256UL ∗ 1024 ∗ 1024) ;
19 libqints : : array_view<double> av_vmul ( coul_ao , npts∗nao∗nao ) ;
20 //This i s the d i g e s t e r , which we grabbed from l i b f o c k and modi f i ed
21 // i t f o r out i n t e g r a l . This g i v e s us back the eva luated AO ←↩

i n t e g r a l s
22 qqc_vmul<double >(basis , bm , dev ) . compute ( av_mom , av_vmul ) ;

Listing B.4: Example fail state of the testing suite automatically executed by

each push to the main branch of the repository.

1 Test project /home/bentho/workspace/libqqc/build
2 Start 1 : LIBQQC_LOADER_TESTS

3 1/5 Test #1: LIBQQC_LOADER_TESTS . . . . . . . . . . . . . . Passed 0 .25 sec

4 Start 2 : LIBQQC_GRIDS_TESTS

5 2/5 Test #2: LIBQQC_GRIDS_TESTS . . . . . . . . . . . . . . . Passed 0 .00 sec

6 Start 3 : LIBQQC_METHODS_TESTS

7 3/5 Test #3: LIBQQC_METHODS_TESTS . . . . . . . . . . . . . Passed 2 .96 sec

8 Start 4 : LIBQQC_UTILS_TESTS

9 4/5 Test #4: LIBQQC_UTILS_TESTS . . . . . . . . . . . . . . . ∗ ∗ ∗ Failed 0 .54 sec

10 Performing tests f o r libqqc/utils . . .
11

12 Testing utils/ttimer . h , Tclock : :
13 Testing Tclock : : get_mrun ( ) . . . passed

14 Testing Tclock : : stop_clock ( ) . . . passed
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15 Testing Tclock : : start_clock ( ) . . . passed

16 Testing Tclock : : wall_time ( ) . . . passed

17 Testing Tclock : : cpu_time ( ) . . . passed

18 Testing Tclock : : print_time ( ) . . . failed

19 . . . some failed

20

21 Testing utils/ttimer . h , Ttimer : :
22 Testing Ttimer : : get_clocks ( ) . . . passed

23 Testing Ttimer : : start_new_clock ( ) . . . passed

24 Testing Ttimer : : stop_clock ( ) . . . passed

25 Testing Ttimer : : stop_all_clocks ( ) . . . passed

26 Testing Ttimer : : print_clocks ( ) . . . failed

27 Testing Ttimer : : print_all_clocks ( ) . . . failed

28 . . . some failed

29

30 Testing utils/load_from_file . h ,
31 Testing load_dim_from_file ( ) . . . passed

32 Testing load_array_from_file ( ) . . . passed

33 . . . all passed

34

35 Start 5 : LIBQQC_VAULTS_TESTS

36 5/5 Test #5: LIBQQC_VAULTS_TESTS . . . . . . . . . . . . . . Passed 0 .00 sec

37

38 80% tests passed , 1 tests failed out of 5
39

40 Total Test time ( real ) = 3 .76 sec

41

42 The following tests FAILED :
43 4 − LIBQQC_UTILS_TESTS ( Failed )
44 Errors whi le running CTest
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