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1 INTRODUCTION 

1.1 Mental Disorders – categorical versus dimensional nosology  

Mental disorders are currently classified using standardized diagnostic systems that 

define symptom-based criteria for diagnostic categories, considering additional vari-

ables, such as the number, severity and duration of symptoms and disease episodes. 

The two most widely used diagnostic systems are the International Classification of 

Diseases in its 10th and 11th revision respectively (ICD10 and ICD11) (World Health 

Organization. Division of Mental, 1992, 2019) and the 5th revision of the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-5) (Association, 2013). While the use 

of ICD10 and DSM-5 have enhanced the reliability and standardization of diagnosing 

mental disorders, current field studies investigating the ICD11 and DSM-5 reported 

limited reliability for several key diagnoses, such as Major Depressive Disorder (MDD, 

DSM-5) (Regier et al., 2013) and Dysthymic Disorder and Dysthymia respectively 

(ICD10 and ICD11). In addition, surveys of diagnosing mental health professionals in-

dicated that only a little more than half of the respondents routinely went through 

diagnostic criteria to determine whether they apply to an individual patient and about 

10% to 20% of health care professionals routinely used unspecified “residual” diagnos-

tic categories, because they deemed that the clinical presentation did not conform to 

a specific diagnostic category. Moreover, most patients receive not one, but multiple 

diagnoses at the same time, while patients with the same diagnosis might not have a 

single symptom in common. Furthermore, the missing consideration of etiological 

factors and the simplification that results from applying categorical diagnoses or cut-

offs to clinical symptomatology are increasingly questioned. It has been argued that 

this categorical approach cannot account for the clinical significance of symptoms 

that are below a specified cut-off (Helzer et al., 2006), but still cause clinically signifi-

cant psychological strain and might disregard the shared neurobiological basis across 

different categorical diagnoses. This argument has been supported by findings show-
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ing largely overlapping neural activation patterns across diagnostic categories, includ-

ing schizophrenia, bipolar disorder, major depressive disorder, anxiety disorders, and 

obsessive-compulsive disorder (Sprooten et al., 2017). These and other observations 

have led to the establishment of initiatives that seek to put forward a dimensional un-

derstanding and nosology of mental disorders, e.g., the Research Domain Criteria 

(RDoC) initiative of the National Institute of Mental Health (Insel et al., 2010) or the 

Hierarchical Taxonomy Of Psychopathology (HiTOP) initiative (Kotov et al., 2017). 

The core aim of the RDoC initiative is to explore and identify central brain mechanisms 

and molecular entities that underlie the six postulated core behavioral domains or 

constructs: a negative valence system, a positive valence system, a cognitive system, 

a system for social processes, an arousal and regulatory processes system and a sen-

sorimotor system. A central tool that has been used to investigate the neurocircuitry 

underlying the hypothesized domains and brain mechanisms, which are supposed to 

be shared across diagnostic categories, is functional magnetic resonance imaging 

(fMRI). While the RDoC initiative stimulated translational neuroscientific research, the 

efforts to identify the neurocircuitry underlying the RDoC constructs has been chal-

lenged by findings of the Open Science Collaboration that the rate of success replicat-

ing the findings of 100 neuroscientific experiments was as low as 40% (Collaboration, 

2015) and recent meta-analytical results that indicate poor overall reliability across a 

range of 90 fMRI studies (Elliott et al., 2020). As a prominent example of this debate, 

Vul and colleagues in their publication “Voodoo Correlations in Social Neuroscience” ar-

gued that the reliability of fMRI measures places an upper limit to the strength of cor-

relations between fMRI signal and behavioral measures (Vul et al., 2009). At the same 

time, effect size estimates derived from non-reliable measures can also be considered 

being prone to over-estimating the true population effects. While some of the argu-

ments have been rebutted (Jabbi et al., 2011), the debate still seems important, since 

any effort to precisely define brain circuits and functions on an individual level using 

fMRI critically depends on the reliability and replicability of the applied fMRI measure.  
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In the following sections the general principles of magnetic resonance imaging and 

fMRI will be portrayed and the different approaches to determining the reliability of 

fMRI measures will be introduced, followed by a presentation of the current state of 

evidence on the reliability of task fMRI and an outline of the research questions of the 

doctoral thesis.  

1.2 Magnetic resonance imaging (MRI) 

Magnetic resonance imaging is a non-invasive in-vivo imaging technique that is based 

on the excitation of protons in a magnetic field by means of high-frequency pulses 

(Schneider, 2013; Weishaupt, 2014). Protons possess an intrinsic angular momentum, 

a so-called "spin". By applying a strong magnetic field, the spin axes of the protons can 

be aligned parallel or antiparallel to the magnetic field. This results in a precession 

motion of the protons proportional to the strength of the magnetic field with the so-

called Lamor frequency. With the aid of high-frequency pulses switched perpendicular 

to the magnetic field and resonant with the Lamor frequency, the protons can be de-

flected out of the plane of the magnetic field in phase synchronism. This results in a 

measurable magnetic vector, the so-called transverse magnetization. After the high-

frequency pulse is switched off, the protons return to their initial position. This results 

in longitudinal tilting of the protons back into the plane of the magnetic field. This is 

called “T1 relaxation” or “longitudinal relaxation”. Furthermore, the in-phase spin of 

the protons slowly de-phases. This is called “T2 relaxation” or “transverse relaxation”. 

During both relaxation processes, energy is emitted in the form of electromagnetic 

radiation, which can be detected and measured using a head coil. T1 and T2 relaxation 

are independent processes that occur in parallel. The duration of relaxation is meas-

ured as T1 and T2 relaxation time. The T1 relaxation time describes the duration until 

about 63% of the initial value of the longitudinal magnetization has been regained. 

The T2 relaxation time describes the duration until the transverse magnetization has 

decreased to approximately 37%. The MRI signal depends on the magnetic field 

strength as well as the T1 and T2 relaxation time and the proton density. The latter 
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three are thereby dependent on tissue composition, resulting in a different signal de-

pending on the tissue. This allows different image contrasts to be calculated for imag-

ing different tissues. 

1.2.1 Functional magnetic resonance imaging (fMRI) 

Functional magnetic resonance imaging (fMRI) aims to measure neuronal activity in-

directly and noninvasively. It exploits the different magnetic properties of oxygenated 

and deoxygenated blood (Schneider, 2013; Weishaupt, 2014). Deoxygenated hemo-

globin molecules are more magnetic and thus affect the relaxation behavior of pro-

tons in the environment. The resulting inhomogeneity in the magnetic field lead to a 

shorter transverse relaxation time (T2* relaxation) of the protons in the vicinity of de-

oxygenated hemoglobin molecules. As a result, a different signal can be measured de-

pending on the amount of deoxygenated blood in a brain area. The Blood Oxygenated 

Level Dependent (BOLD) signal shows variability over time. Milliseconds after the on-

set of a stimulus, there is a decrease in the signal as an indication of an increase in the 

proportion of deoxygenated hemoglobin as a result of an increase in the oxygen de-

mand of active neurons (Ernst & Hennig, 1994). This signal decrease is followed by an 

increase in the intensity of the BOLD signal due to an increase in the proportion of 

oxygenated hemoglobin above baseline level in terms of hemodynamic overcompen-

sation of the initial reduced oxygen supply. The local adaptation of cerebral blood flow 

to the increasing oxygen demand is also called hemodynamic response. Studies have 

shown that during the processing of stimuli there is an initial reduction in the propor-

tion of oxygenated blood. After approximately 1000 milliseconds, hemodynamic ad-

aptation occurs and the proportion of oxygenated blood increases (Frostig et al., 

1990). The maximum signal increase is reached 5 to 8 seconds after the onset of neu-

ronal activity (Lee et al., 1995). Studies have demonstrated a relationship between 

neuronal activity and increase in BOLD signal (Logothetis et al., 2001). It has been 

shown that the level of neuronal activity is closely correlated with the level of the 

BOLD signal. However, the change in MR signal due to the BOLD effect is very small. 

Therefore, to map brain activity indirectly using fMRI, a stimulation condition (e.g., 
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presentation of stimuli) is often compared with a control condition (e.g., resting) to 

form a contrast between a phase with pronounced brain activity and a phase with 

baseline activity. In addition, it must be taken into account that the measured signal 

is composed of the BOLD signal and noise. Noise in this context includes physiological 

effects (e.g., respiratory and body movements) and thermal factors (e.g., tissue heat-

ing) that may overlay the BOLD signal. The fMRI method is characterized by a rela-

tively poor signal-to-noise ratio. However, the highest possible signal-to-noise ratio is 

important to detect effects of experimental conditions. Therefore, various measures 

are taken to reduce the noise. For this purpose, temporal and spatial adjustments or 

corrections of the data are made during the processing of the fMRI data, among other 

things.  

1.3 Reliability of functional magnetic resonance imaging (fMRI)  

Reliability in general can be considered as the consistency with which a measure or 

measurement produces similar results or values under consistent conditions. In the 

context of the doctoral thesis, which focusses on fMRI-based measures, specifically 

the test-retest reliability will be considered, which can be considered as the con-

sistency with which repeated measurements that are gathered from a single rater who 

uses the same methods and testing conditions to produce similar results. In this case, 

the rater is considered to be the fMRI scanner and the associated methods. 

First and foremost, the reliability of the fMRI BOLD signal in a voxel is influenced by 

the signal-to-noise ratio (SNR) in this voxel (Bennett & Miller, 2010). A high signal-to-

noise ratio in a voxel would implicate that the primary source of variance within this 

voxel is due to “true” changes in regional cerebral blood flow and ultimately changes 

in neural activity, while a low SNR would implicate that the primary source of variance 

is due to noise or measurement errors.  

Other parameters for expressing differences in signal strength between different 

brain areas or different time points are the image contrast-to-noise ratio (CNR) and 

the temporal CNR respectively. The latter can be considered as relative difference in 
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signal intensity in a specific voxel between e.g. two task conditions. This implies that 

a high temporal CNR is important, when trying to detect robust task condition effects. 

Theoretically, the ability to measure reliable fMRI signal is limited by all factors that 

add error to the measurement of the signal. A detailed discussion of all factors is be-

yond the scope of the thesis, but specific factors that were identified by previous work 

should be outlined in brief.  

1.3.1 Determinants of the fMRI Signal-to-Noise Ratio 

Determinants of the fMRI SNR can be roughly divided into factors that relate to the 

properties of the fMRI scanner and measurement parameters and factors that relate 

to data processing and data analyses. The former includes the magnetic field strength 

of the fMRI scanner that is expressed in Tesla (T). Theoretically, an increase of the 

magnetic field strength by 100% would double the SNR. The practical increase in SNR 

by increasing the field strength from 1.5 to 3 T has been shown to be around 60-80%, 

which was attributed to counter-acting effects (e.g. increasing risk of susceptibility ar-

tefacts)(Hoenig et al., 2005). In addition, parameters of the fMRI acquisition were 

shown to have a substantial impact on the SNR and CNR. Specifically, higher voxel 

sizes (3mm vs. 1.5mm) were associated with a higher SNR. Other parameters that 

were shown to affect the SNR are the repetition time (TR), the echo time (TE), the 

bandwidth and the slice gap (Moser et al., 1996). However, the effect of each param-

eter might vary, depending on the field strength and the specific fMRI set-up, so that 

there is no generally optimal parameter set-up. Determinants of the SNR that relate 

to data processing and analyses are – among other – the spatial and temporal realign-

ment procedures, temporal filtering of the EPI time series and spatial smoothing of 

the fMRI data (Bennett & Miller, 2010). All these parameters have been shown to sig-

nificantly affect the SNR and CNR. In addition, changes to the parameters of the ana-

lytical pipeline have been shown to produce substantially different results and differ-

ences in the reliability of fMRI-based measures.  
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1.3.2 Estimates of fMRI reliability 

There is a range of estimates of fMRI reliability, which assess different aspects of the 

reliability of the fMRI signal, but currently there is no common standard. While some 

estimates of reliability mainly focus on voxels that surpass a pre-defined statistical 

threshold, other reliability estimates focus on the magnitude of activity in specific 

brain voxels or across a set of voxels. While the former can be assessed using so-called 

cluster overlap methods, the latter can be assessed by computing the intraclass cor-

relation (ICC) coefficients. Since these two methods were applied most frequently 

across previous studies assessing fMRI reliability, these are presented in detail. In ad-

dition, the concept of similarity estimation as an approach to measuring test-retest 

reliability is presented, because this approach tries to determine whether or not a spe-

cific subject can be identified by his or her neural activation patterns, which closely 

follows the idea of identifying neural biomarkers. It is acknowledged that a range of 

other reliability estimates exist that include similarity indices, receiver operating char-

acteristic curves, Pearson correlation coefficients, Cohen's kappa index, predictive 

modeling and others. A detailed description of these approaches is beyond the scope 

of the submitted thesis.  

Cluster overlap reliability estimates – the Jaccard and Dice coefficients 

The cluster overlap method is used to assess the proportion of voxels in the brain that 

show significant activation above a pre-defined statistical threshold for both the test 

and retest session. The computed reliability estimates seek to represent the propor-

tion of voxels that remain significant across repeated test sessions. Two approaches 

have been established to determine the cluster overlap. Both require a pre-defined 

statistical threshold for defining which voxels are to be considered significantly active. 

While there is no consistent standard in the literature, the most frequently used 

thresholds are an uncorrected threshold of p < 0.001 and p < 0.01 respectively. The 

first overlap method is the Jaccard coefficient. It is defined as the size of the intersec-

tion divided by the size of the union of the voxel sets that show significant activation 
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during the test session (A) and the retest session (B). The Jaccard coefficient can be 

computed as follows: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
 

Following the definition, the Jaccard coefficient can be interpreted as the number of 

overlapping voxels that show significant activation above a predefined statistical 

threshold during the test and retest sessions, divided by the number of all voxels that 

show significant activation during the test or retest session  (Jaccard, 1902; Maitra, 

2010). Consequently, a value of 1.0 reflects a 100% overlap between the voxel set 

showing significant activation during the test session with the voxel set showing sig-

nificant activation during the retest session. In contrast to that, a value of 0.0 indicates 

that – in the case that there are any significant voxels – none of these overlap between 

the test and retest sessions.   

The second overlap method is the Dice coefficient, which is defined as the number of 

super-threshold voxels that overlap between the test (A) and retest sessions (B) di-

vided by the average number of significant voxels across sessions (A + B): 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) =  
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

Following the definition, the Dice coefficient can be interpreted as the number of 

voxels that overlap between test and retest sessions divided by the number of signifi-

cant voxels across both sessions. Much like the Jaccard coefficient, the values of the 

Dice coefficient range from 0 (“no overlap”) to 1 (“perfect overlap”).  

It has to be noted that the results of the overlap methods are not independent from 

the statistical threshold that is used to define significant voxels (Duncan et al., 2009; 

Rombouts et al., 1998). With higher and more stringent statistical thresholds, the clus-

ter overlap methods yields lower reliability estimates. This limitation should be con-

sidered when interpreting both coefficients. Furthermore, there is currently no con-

sensus on cut-offs for “poor” and “good” ranges of overlap values (Bennett & Miller, 

2010), which complicates the interpretation of the overlap statistics.  
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The Intraclass Correlation (ICC) 

The ICC seeks to test whether the magnitude of activation in a specific voxel or in a set 

of voxels remains stable across test sessions. The ICC coefficient can be conceived as 

a correlation, which represents the correlation between the magnitudes of activation 

in two voxels or voxel sets. It has been argued that this measure might be more strin-

gent than other fMRI reliability estimates, because it also requires near zero values to 

be stable over time (Bennett & Miller, 2010). In principle, six types of ICCs were de-

scribed. It was suggested that the ICC(3,1)-type is most appropriate for the assess-

ment of test-retest reliability of fMRI data (Ombao et al., 2016). Mathematically, this 

coefficient puts within-subject variance (σ2
within) in relation to between-subject vari-

ance (σ2
between) (Shrout & Fleiss, 1979) and is defined as: 

𝐼𝐶𝐶 =
(σ2

between − σ2
within)

(σ2
between + σ2

within)
 

Consequently, ICC values close to 1.0 represent near perfect agreement between the 

magnitudes of activation across test and retest sessions, while values close to 0.0 in-

dicate that there is no agreement across sessions. According to Fleiss (1986), ICC co-

efficients < 0.4 can be regarded to represent poor reliability, while ICC coefficients 

>0.4 and <0.75 represent fair (< 0.6) to good (>0.6) reliability. According to the pro-

posed classification, ICC coefficients that exceed a value of 0.75 represent good to ex-

cellent reliability (Fleiss, 1986). Like other reliability estimates, the ICC faces some lim-

itations. Strictly speaking, the ICC coefficients are specific to the investigated data and 

sample, hampering generalization. In addition, the magnitude of the ICC depends on 

the between-subject variability, so that ICC estimates determined in samples with 

high inter-subject variance can yield higher ICC coefficients, even if the stability of the 

fMRI signal is similar.  

Similarity  

Another concept to represent test-retest of fMRI data are similarity analyses. This pro-

cedure seeks to capture the resemblance of brain activation patterns across time 

points, based on the alignment of high versus low brain activation values across the 
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brain (Frohner et al., 2019). In principle, this is achieved by computing all within- and 

between-subject correlations between brain activation patterns. The resulting coeffi-

cients are correlation coefficients that range from ‘perfect’ inverse relationship (-1.00) 

to a ‘perfect’ direct relationship (1.00) and can be represented in a matrix with a row 

and column for each measurement and session (Finn et al., 2015; Frohner et al., 2019). 

When the within-subject similarity estimate for a specific participant exceeds all be-

tween-subject similarity estimates, it can be assumed that the brain activation of this 

participant across the test and retest are more similar than the activation pattern of 

any other participant. In this case, authors proposed that a participant can be re-iden-

tified based on his or her neural activation pattern across sessions (Finn et al., 2015; 

Frohner et al., 2019). 

1.4 Reliability of fMRI task measures – Relevance and Evidence 

fMRI has been used since the 1990s to study individual differences in activation be-

tween fMRI task conditions. To this end, fMRI methods were optimized to produce 

robust activation during distinct task conditions in brain regions of interest. The robust 

within-subject effects and average group main effects led researchers to use the same 

fMRI tasks to study between-subject effects. The assumption underlying this ap-

proach is that if a brain region shows robust activation during a task condition, then 

inter-subject differences in the magnitude of this brain response pattern may underlie 

phenotypic differences in individual behavior. In a way, the focus of fMRI research 

partly moved from identifying average brain activation to studying differences in brain 

activation patterns between individuals. Applying fMRI to study between-subject ef-

fects heralds the potential to discovering biomarkers for brain disorders. Broadly 

speaking, a biomarker can be conceived as a biological indicator for disease risk, diag-

nosis or prognosis.  

Stimulated by the RDoC initiative, a substantial amount of fMRI studies set out to de-

termine the neurocircuitry underlying behaviors and mental disorders, and ultimately 

identify individual neural “biomarkers”. This endeavor, however, critically depends on 

the test-retest reliability of the fMRI measure. On the one hand, the reliability of fMRI 
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determines the strength of possible correlations between fMRI measures and behav-

ioral measures (Vul et al., 2009) and on the other hand poor reliability can lead to bi-

ased effect sizes estimates that would not mirror the true population effects size 

(Fried et al., 2017; Friedman, 1968; Wright, 2014). Consequently, fMRI reliability is crit-

ical for both research and clinical practice. Low reliability fMRI markers would be un-

suitable as biomarkers and could not predict clinical outcomes.  

Despite the undoubtedly high importance of reliability to the aims of most fMRI stud-

ies, only very few studies reported reliability estimates and even fewer studies have 

systematically analyzed fMRI reliability across studies. This has complicated individual 

studies on fMRI reliability with highly variable reported estimates, based on small test-

retest samples and different methods to determine fMRI reliability, which has resulted 

in partially contradictory conclusions (Manuck et al., 2007; Nord et al., 2017). 

The most comprehensive meta-analysis of task fMRI reliability was conducted by El-

liott and colleagues (2020). Their meta-analysis included data from 90 experiments 

with N = 1008 subjects of 56 independent fMRI studies. Only 46% of the reported reli-

ability scores that fell within the range of at least moderate reliability (ICC > 0.40), only 

20% of the studies reported ICCs that fell in the range of good reliability (Elliott et al., 

2020). The average ICC across all studies was 0.397 with a significant inter-study vari-

ability. The authors also conducted a moderator analysis, which indicated that neither 

task type, task design, task length, test-retest interval, ROI type (structural versus 

functional), nor sample type (healthy versus clinical) significantly affected the magni-

tude of the reliability estimates. Acknowledging the potential bias that might result 

from the heterogeneity between studies, the authors used data from the Human Con-

nectome Project and the Dunedin study to assess the reliability of eleven task-fMRI 

measures, which were conducted on modern scanners using cutting-edge acquisition 

parameters, and standardized preprocessing pipelines. Nevertheless, results of relia-

bility analyses of these data showed a poor reliability (ICC = 0.228) in a set of ROIs with 

no support for a better reliability, when ROIs targeted by the task were analyzed 

(mean ICC = .270 for target ROIs and .228 for non-target ROIs).  
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While the results might appear unexpected, it might point towards a fundamental 

problem because task-fMRI measures are based on contrasts between different task 

conditions. Due to the fact that the brain activation between task conditions fre-

quently correlate substantially, a difference score between these two conditions elim-

inates substantial parts of the true variance, while the error variance is added. The au-

thors concluded that difference scores will always have lower reliability than their con-

stituent scores or conditions (Elliott et al., 2020). This, however, has implications for 

almost all fMRI studies that compute difference scores between task conditions. Sur-

prisingly, the effect of the correlation between constituent task conditions on the re-

liability of the contrast between these conditions has been addressed by only a few 

studies and only for a limited selection of fMRI tasks. Two prototypical fMRI tasks that 

use a block design and compute a difference score between constituent task condi-

tions are so-called cue-reactivity tasks and tasks that assess the self-concept.  

1.4.1 The fMRI-based assessment of neural cue-reactivity  

The investigation of neural responses to imagery with disease-specific context (e.g. 

pictures of alcohol) was used in the effort to determine the neurobiological underpin-

nings of the individual reactivity to such cues and associated behaviors. The so-called 

cue-reactivity paradigm are used to investigate a range of neurobiological processes 

including motivation, reward processing and – in the context of addictions – craving 

and incentive salience (Goldstein & Volkow, 2011; Hill-Bowen et al., 2020; Noori et al., 

2016; Noori et al., 2012). The central assumption underlying the cue-reactivity tasks is 

stimuli that predicted availability or receipt of a reward (e.g. food, drug, sex) in the 

past can trigger arousal and changes in behavioral motivation and thereby elicit stim-

ulus-associated responses such as an urge to seek food or drugs. These cue-induced 

responses or “cue-reactivity” can be physiological and behavioral. Tasks that assess 

neural cue-reactivity typically incorporate certain stimulus categories (drug, food, 

etc.) and stimulus modalities (e.g. visual cues, olfactory cues, auditory cues) or a com-

bination thereof and present these in the framework of a block- or even-related-de-

sign to participants, while neural activation is measured using fMRI (see also section 
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1.2 for details on MRI methodology). Even though the procedure of cue-reactivity 

tasks can be considered as simple, studies reported that presentation of cues induced 

wide-spread brain activation in a wide network of brain areas involved in perception, 

attention, memory, reward and emotion processing (Hill-Bowen et al., 2020; Noori et 

al., 2016; Schulte et al., 2019). A recent meta-analysis compared the brain activation 

patterns across 196 cue-reactivity studies that incorporated visual drug or food cues 

(Hill-Bowen et al., 2020). The authors found convergent brain activation across all 

studies in brain areas including limbic, insular and frontal, parietal and occipital brain 

regions. Connectivity analyses of the fMRI task data indicated that neural cue-reactiv-

ity can be decomposed into elemental processes and indicated engagement of six 

functional subnetworks during cue-reactivity. Based on data from the Neurosynth da-

tabase (Neurosynth.org), these six subnetworks were interpreted as visual perceptive 

network, visual association network, cognitive control network, salience network, val-

uation network and emotion processing network. These results suggest that multiple 

brain networks are engaged during cue-reactivity tasks, which contribute to cue-in-

duced changes in perception and behavior. 

While the so-called fMRI “cue-reactivity” paradigms were established for almost every 

stimulus category (e.g. alcohol, nicotine, cocaine, cannabis, heroin, amphetamine, 

food) and many stimulus modalities (e.g. visual cues, olfactory cues, auditory cues), 

reliability and temporal stability of the neural activation patterns during these tasks 

have not been thoroughly investigated yet. This seems surprising, as reliability is a 

prerequisite with many imaging studies aiming to capture individual neural “bi-

omarkers” of brain function, and predicting future behavior based on these “bi-

omarkers”. This endeavor, however, seems to critically depend on the reliability of the 

specific fMRI task. Only a single study with n = 9 alcohol-dependent patients has spe-

cifically assessed the reliability and temporal stability of fMRI alcohol-cue reactivity 

tasks over a period of 14 days in the ventral striatum (VS) and dorsal striatum (DS) 

(Schacht et al., 2011). Results indicated good reliability in the right VS and DS, while 

poor reliability was reported for the left VS and DS. But even though many cue-reac-

tivity studies also investigate brain activation beyond VS and DS, a comprehensive 
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analysis of the reliability of cue-reactivity patterns across the whole has not been con-

ducted yet. With regards to food cues, only a single fMRI study assessed the test-re-

test reliability over a period of about 18 days in a limited range of a priori defined re-

gions of interest (ROI) (bilateral insula, amygdala, orbitofrontal cortex, caudate and 

putamen) (R. Drew Sayer et al., 2016). Results of this study showed that only activa-

tion in the left orbitofrontal cortex ROI showed fair reliability, while brain activation in 

all other ROIs showed poor reliability. Overall, data on the reliability of the fMRI-based 

assessment of neural cue-reactivity is currently limited to a small range of ROIs and 

small samples, and a comprehensive analysis of whole-brain reliability is still missing.  

1.4.2 The fMRI-based assessment of the self-concept 

Empirical findings across substance use disorders and behavioral addictions support 

the importance of self-concept to onset and course of the disorder, and to changes in 

dysfunctional behavior (Corte & Zucker, 2008; Downey et al., 2000; Israelashvili et al., 

2012; Leménager et al., 2018). Due to the fact that self-concept is conceived as stable 

construct, the investigation of the neurocircuitry of the self-concept has gained sub-

stantial interest in the effort to identify stable “biomarkers” for addictive disorders.  

fMRI studies have intended to address this question by the application of fMRI self-

referential and fMRI self-recognition paradigms. During the so-called self-referential 

fMRI tasks, individuals are asked to judge their personality traits, physical appearance 

and personal preferences. This is then compared to the evaluation of another person 

(a close friend, a famous person, or a foreign person) (Fossati et al., 2004; Johnson et 

al., 2002; Lou et al., 2004). Neural activation during evaluation of the own person is 

then compared to activation elicited by evaluating the properties of other persons. 

The resulting neural activation patters are regarded as neurobiological substrate of 

different facets of the self-concept, such as the social and emotional self-concept. 

Self-recognition paradigms are less explicit in the sense that individuals are not asked 

for their explicit judgement, but rather exposed by e.g. pictures of their own face or 

body and  to pictures of others (Northoff et al., 2006).  It was proposed that the neural 

activation, which is indicated by contrasting activation during presentation of pictures 
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of one-self vs. another person, reflects the neurobiological substrate of the physical 

self-concept.  

Even though the fMRI-based assessment of aspects of the self-concept has gained sig-

nificant attention in the last decades (Kim et al., 2018; Leménager et al., 2014; 

Lemenager et al., 2020), there is currently no data on the test-retest reliability of the 

fMRI tasks that are used to capture facets of the self-concept. Test-retest reliability of 

an fMRI task, however, is essential for capturing individual neural activation patters 

that reflect facets of the self-concept and for determining associations between these 

activation patterns and addictive behavior.  

1.5 Research Questions and Hypotheses 

Even though the advent of the RDoC initiative stimulated the conduct of a significant 

number of fMRI studies that aimed at identifying individual neural “biomarkers” for 

mental disorders, the test-retest reliability of the majority of the applied fMRI tasks 

remains largely unknown (Elliott et al., 2020). This, however, is an essential prerequi-

site for identifying individual neural “biomarkers”, and for establishing associations 

between neural brain activation patterns and behavior. In addition, previous research 

highlighted the negative impact that might arise from computing difference scores 

between two correlated constituent task conditions, when applying fMRI tasks (Elliott 

et al., 2020; Infantolino et al., 2018). Even though there is a high probability that this 

also affects the results of fMRI cue-reactivity tasks and fMRI studies that investigate 

facets of the self-concept, this has not been thoroughly investigated yet. This, how-

ever, seems critical to determine, whether or not these fMRI-based measures fulfill 

the prerequisites to reliably assess neural brain activation, establish robust associa-

tions with behavior and estimate effect sizes. Against this background, the research 

questions and hypotheses were derived. Please note that parts of this thesis have 

been published (Study 1: (Bach et al., 2022) Study 2: (Bach, Grosshans, Koopmann, 

Kienle, et al., 2021), and Study 3: (Bach, Hill, et al., 2021)) by the doctoral candidate as 

first author. Therefore, certain text passages, tables and figures of this thesis will be 
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identical to these publications (the respective publisher has granted the respective 

rights for the use of this content in the framework of the doctoral thesis). 

Research Question 1 (Study 1, 2 and 3): Is the test-retest reliability of the constituent 

conditions of an fMRI block design paradigm higher than the reliability of the differ-

ence score, which is created by subtracting brain activation during one condition from 

another condition and commonly used across a range of block design fMRI para-

digms?  

Hypothesis 1: The test-retest reliability of the constituting fMRI task conditions (e.g. 

alcohol and neutral), estimated by computing the ICC, Jaccard, and Dice coefficients  

exceeds the reliability of the difference score (e.g. alcohol-neutral) (Infantolino et al., 

2018). 

 

Research Question 2 (Study 1, 2 and 3): Does the level of correlation between the 

constituent conditions of an fMRI paradigm determine the level of the resulting relia-

bility of the difference score? How does the test-retest reliability of the difference 

score of an fMRI food-cue reactivity paradigm compare to the test-retest reliability of 

validated psychometric scales used to examining subjective food craving? 

Hypothesis 2A: A high correlation between the two constituting conditions results in a 

low reliability of the difference score. 

Hypothesis 2B: The test-retest reliability of validated psychometric scales that assess 

food craving (study 2) and facets of the self-concept (study 3) is higher, compared to 

the reliability of the difference scores capturing food-cue induced brain activation 

(“food – neutral”, study 2) and self-concept related processes (“self – familiar and un-

known persons”, study 3) respectively.  

Research Question 3 (Study 1): Does the level of test-retest reliability of the differ-

ence score affect the ability to establish associations with external behavioral varia-

bles? 
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Hypothesis 3: The correlation between the difference score, contrasting two fMRI task 

conditions, and alcohol craving (external behavioral variable) is lower compared to the 

correlation between the constituent task conditions and the same external variable.  
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2 EMPIRICAL STUDIES 

2.1 Study 1 - Test-retest reliability of fMRI-based assessments of alcohol cue-re-

activity: is there light at the end of the MRI tube?1 

2.1.1 Abstract 

Over the last decades, the assessment of alcohol cue-reactivity gained popularity in 

addiction research and efforts were undertaken to establish neural biomarkers. This 

attempt however depends on the reliability of cue-induced brain activation. Thus, we 

assessed test-retest reliability of alcohol cue-reactivity and its implications for imag-

ing studies in addiction. We investigated test-retest reliability of alcohol cue-induced 

brain activation in 144 alcohol-dependent patients over two weeks. We computed es-

tablished reliability estimates, such as intraclass correlation (ICC), Dice and Jaccard 

coefficients, for the three contrast conditions of interest: “alcohol”, “neutral” and the 

“alcohol vs. neutral” difference contrast. We also investigated how test-retest reliabil-

ity of the different contrasts affected the capacity to establishing associations with 

clinical data and determining effect size estimates. While brain activation, indexed by 

the constituting contrast conditions “alcohol” and “neutral” separately, displayed 

overall moderate (ICC>0.4) to good (ICC>0.75) test-retest reliability in areas of the 

mesocorticolimbic system, the difference contrast “alcohol vs. neutral” showed poor 

overall reliability (ICC<0.40), which was related to the inter-correlation between the 

constituting conditions. Data simulations and analyses of craving data confirmed that 

the low reliability of the difference contrast substantially limited the capacity to es-

tablish associations with clinical data and precisely estimate effects sizes. Future re-

search on alcohol cue-reactivity should be cautioned by the low reliability of the com-

mon “alcohol vs. neutral” difference contrast. We propose that this limitation can be 

                                                        

1 Bach P, Reinhard I, Koopmann A, Bumb JM, Sommer WH, Vollstädt-Klein S, Kiefer F. Test-retest reliability of 

neural alcohol cue-reactivity: Is there light at the end of the magnetic resonance imaging tube? Addict Biol. 2022 

Jan;27(1):e13069. doi: 10.1111/adb.13069. Epub 2021 Jun 15. PMID: 34132011. 
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overcome by using the constituent task conditions as an individual difference meas-

ure, when intending to longitudinally monitor brain responses.  

2.1.2 Introduction 

The use of functional magnetic resonance imaging (fMRI)-based tasks gained popu-

larity in addiction research over the last decade. Recently, the advent of Research Do-

main Criteria (RDoC) has led to a surge of interest in individual biomarkers for mental 

disorders that include neural biomarkers (Insel et al., 2010; Voon et al., 2020). Partic-

ularly, the investigation of neural responses to addiction-related imagery was used to 

determine the neurobiological underpinnings of the individual reactivity to drug cues 

and associated behaviors, such as craving and relapse (Bach et al., 2020; Grüsser et al., 

2004; Karl Mann et al., 2014; Schacht et al., 2017). While so-called “cue-reactivity” par-

adigms were established for almost every stimulus category and over 100 publications 

reported fMRI data from such paradigms, to our knowledge only a single study in n=9 

alcohol-dependent patients specifically assessed the reliability and temporal stability 

of fMRI alcohol-cue reactivity tasks over a period of 14 days in the ventral striatum 

(VS) and dorsal striatum (DS) (Schacht et al., 2011). This seems surprising, because 

reliability is a prerequisite for the aim of many imaging studies, i.e. associating brain 

activation with behavioral variables (e.g. craving), predicting future behavior and de-

veloping treatment responsive biomarkers and neuroscience-based treatments for al-

cohol addiction (Heilig et al., 2019; Heilig et al., 2016).  

A recent meta-analysis pointed out that the overall reliability of task fMRI across dif-

ferent tasks was poor (Elliott et al., 2020). This might be due to the fact that in many 

fMRI studies difference scores or difference contrasts between two constituting task 

conditions are computed. For example, for alcohol cue-reactivity tasks it is a common 

procedure to subtract the brain activation during alcohol picture blocks from activa-

tion during neutral picture blocks. However, in the case of a high correlation between 

the constituting conditions, the resulting reliability of the resulting difference score is 

limited, because much of the shared “true” variance is removed (Infantolino et al., 
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2018; Peter et al., 1993). Such a measure largely consists of unsystematic error vari-

ance, which would not show robust and replicable associations with any external var-

iable and whose effects would not replicate. Even though alcohol cue-reactivity para-

digms were implemented in many studies, no study to date assessed whole-brain re-

liability of this paradigm and its implications. 

Hence, we set out to assess the reliability of the different contrast alcohol vs. neutral 

that is commonly computed in alcohol cue-reactivity MRI studies of an established al-

cohol-cue reactivity task and its implications for establishing associations with clinical 

data and estimating treatment effects. We assumed that the alcohol and neutral con-

trast conditions separately show higher test-retest reliability compared to the differ-

ence contrast alcohol vs. neutral. Specifically, we hypothesized that the overlap of sig-

nificantly activated voxels between first and second fMRI assessment, indexed by the 

Jaccard and Dice coefficients, would be higher for the neutral and alcohol contrast 

conditions, compared to the difference contrast. Further, we hypothesized that the 

magnitude of voxel-wise activation shows a higher resemblance between fMRI ses-

sions, expressed by the intraclass correlation coefficient, for the neutral and alcohol 

contrast conditions, compared to the difference contrast. Moreover, we expected that 

a higher proportion of patients could be re-identified by their neural activation pat-

terns from first to second fMRI, expressed by a higher within-subject similarity, for the 

neutral and alcohol contrast conditions, compared to the difference contrast. 

2.1.3 Methods 

Study sample and patient subgroups 

Datasets of N=144 alcohol-dependent patients were included in the current analyses. 

Patients were recruited as part of three studies (NCT01503931, NCT00926900, 

DRKS00003357). All procedures were carried out in accordance to the Declaration of 

Helsinki and the local ethics committee approved the study procedures and all partic-

ipants provided informed written consent. All patients were abstinent at the time of 
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MRI assessment and remained in in-patient or day-care treatment at the Central Insti-

tute of Mental Health (Mannheim) during the time between the first and second MRI 

session. Abstinence from substance use was controlled by daily breath alcohol testing 

and random drug urine screening. Data of five patient subgroups (see Figure 1) were 

included in the current analyses. All patients received treatment as usual (i.e. multi-

disciplinary three-week intensified withdrawal treatment [IWT]).  

Subgroup 1: The first subgroup of n=21 patients (titled IWT subgroup) received treat-

ment as usual (i.e. a treatment program that runs about 21 days with a daily multi-

professional medically-supervised therapy schedule, here termed Intensified with-

drawal treatment) (Loeber et al., 2009).  

Subgroup 2: The second subgroup of n=42 patients (IWT + CET I group) also received 

standard in-patient treatment and individualized cue-exposure treatment (CET) ses-

sions (5 to 9 per patients à 60 to 90 minutes each) between baseline and 2nd fMRI ses-

sion. Patients received multiple sessions of cue-exposure treatment, i.e. they were ex-

posed to their favorite drink (i.e. viewing handling and smelling, but no consumption), 

while being supervised by a trained psychologist until the cue-induced craving re-

turned to zero. In contrast to the IWT + CET II group, a different version of the alcohol 

cue-reactivity task was included in this study that did not include a rating phase during 

the task (see section on fMRI task design). 

Subgroup 3: The third subgroup (IWT + NTX) consists of n=20 patients that received 

IWT plus adjuvant oral naltrexone (NTX, 50mg per day). NTX treatment was initiated 

after the baseline fMRI and continued until the second fMRI that was conducted at 

about 14 days into treatment. Detailed results are reported elsewhere (Bach et al., 

2020).  

Subgroup 4: The fourth subgroup (IWT + CET II group) were n=29 patients that re-

ceived about 9 CET sessions (à 60 to 90 minutes each) in addition to IWT. The details 

of the study are described in detail in a previous publication (Vollstadt-Klein et al., 

2011).  
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Subgroup 5: The fifth subgroup of n=32 patients (IWT + CET + DCS group) underwent 

standard in-patient treatment and nine standardized CET sessions and additionally 

received a 50-mg dose of d-cycloserine (DCS), a partial agonist at the glycine binding 

site of the NMDA receptor, 1 h prior to each CET session (Kiefer et al., 2015).  

Detailed exclusion and inclusion criteria and subgroup characteristics are reported in 

the supplementary Methods section (see Supplementary Methods).  

Assessment 

All patients underwent two assessment sessions, both including functional magnetic 

resonance imaging of alcohol cue-reactivity. The first assessment was scheduled prior 

to initiation of any intervention in addition to IWT.  

fMRI alcohol cue-reactivity tasks, fMRI acquisition and pre-processing 

Two versions of an established alcohol picture cue-reactivity task were used. The tasks 

were validated in previous studies (Bach et al., 2020; Vollstadt-Klein et al., 2012). Both 

versions of the alcohol cue-reactivity task use a block-design that includes the presen-

tation of series of either alcohol or neutral pictures in subsequent blocks. Per block, 

series of 5 alcohol-related or neutral pictures were presented to participants via MRI 

compatible googles (MRI Audio/Video Systems, Resonance Technology Inc., Los An-

geles, CA, USA) in a pseudo-randomized order. In the first version of the task (referred 

to as ALCUE = Alcohol Cue-Reactivity Task), a total of 12 blocks of alcohol pictures (5 

pictures per block) and 9 blocks of neutral pictures (5 pictures per block) were dis-

played. Each picture was presented for 4 seconds. In the first version of the task, par-

ticipants were asked to rate their current subjective craving after each block (e.g. 21 

times) on a visual analogue scale from 0 (“no craving at all”) to 100 (“very intense crav-

ing”). The task took approximately 12 minutes to complete in its entirety, depending 

on the duration of the rating phases (i.e. time till participants entered their response). 

In the second version of the task (referred to as ALCUEPV = Alcohol Cue-Reactivity 

Picture Viewing Task) there was no rating phase and the task consisted of 12 blocks of 

the same alcohol stimuli and 12 blocks of the same neutral stimuli that were presented 
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for 4 seconds each. The task was designed, in order to keep the time on task similar 

across participants (i.e. avoid rating phases that could be individually longer or 

shorter, hence affecting the delay between blocks and the overall time on task). This 

task took 12:15 minutes. Data presentation and recording was monitored using the 

Presentation® software (Version 16.0, Neurobehavioral Systems Inc., Albany, CA, 

USA).  

Detailed information on the fMRI acquisition and pre-processing procedures are pre-

sented in the Supplements (see Supplementary Methods).  

Reliability measures 

All reliability analyses were conducted using the SPM Reliability Toolbox 

(https://github.com/CPernet/spmrt/) by Cyril Pernet and colleagues and the fmreli 

toolbox for SPM12 (https://github.com/nkroemer/reliability)(Frohner et al., 2019). In-

dividual contrast images of the different task conditions served as input for the relia-

bility analyses.  

Intraclass correlation  

Reliability of fMRI data was estimated for each voxel of the brain activation maps by 

computing the intraclass correlation (ICC) coefficients between time points. It was ar-

gued that the ICC(3,1)-type is most appropriate for assessing longitudinal fMRI data 

(Ombao et al., 2016). Hence, the ICC(3,1)-type was computed (for details see Supple-

mentary Methods) for the difference contrast alcohol vs. neutral and the neutral and 

alcohol contrasts separately. Thresholded ICC brain maps were created, in order to 

identify brain areas that show moderate to good (ICC > 0.4) and good to excellent (ICC 

> 0.75) reliability. To facilitate the assessment of local differences in reliability, we 

computed the mean ICC for anatomical regions specified in the Automatic Anatomic 

Labeling (aal) atlas (Tzourio-Mazoyer et al., 2002). For details see Supplementary 

Methods.  

Jaccard and Dice Coefficients 

https://github.com/CPernet/spmrt/)


Empirical studies 

34 

The Jaccard and Dice coefficients were computed for every participant to investigate 

overlap of significant voxels surpassing a predefined statistical threshold between first 

and second fMRI (see Supplementary Methods). Repeated measures analyses of vari-

ance models with the factors contrast category (alcohol, neutral, alcohol vs. neutral) 

and groups (5 patient subgroups) were used to test main effects and interactions on 

the magnitude of the Jaccard and Dice coefficients. 

Similarity 

We calculated the similarity of the fMRI activation maps using the fmreli toolbox 

(Frohner et al., 2019). This procedure captures the resemblance of two activation pat-

terns based on the alignment of high versus low brain activation values across the 

brain. It was suggested that subjects can be re-identified by their neural activation 

patterns, if the within-subject similarity exceeds all between-subject association coef-

ficients of the same participant (Finn et al., 2015; Frohner et al., 2019). 

Correlation between contrast maps 

In order to assess the correlation between the different task conditions, voxel-wise 

Pearson correlation coefficients were computed between the alcohol and neutral con-

trast conditions, as well as between the alcohol vs. neutral difference contrast and the 

former two conditions using the fmreli toolbox.  

Analyses of group-level fRMI activation 

On a group level, imaging data were analyzed using full factorial models with the fac-

tor time (1st and 2nd scan) for the five separate subgroups, in order to assess the con-

gruence and robustness of task main effects on the group level brain activation over 

time (contrast: alcohol vs. neutral). We conducted additional analyses of first-level 

contrast images (contrast: alcohol vs. neutral) by applying a repeated measures full 

factorial design using the SPM12 software toolbox with factors study subgroup (n=5) 

as between subject factor and time (T1, T2) as within-subject factor. In order to satisfy 

a family-wise error rate correction of pFWE<.05, we determined a combined voxel-wise- 

[p<.001] and cluster-extent-threshold [k ≥ 110] by running 10.000 permutations by 
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Monte Carlo simulations (the estimated smoothness was x/y/z = 10.22/10.753/9.03 

mm) using in the Neuroelf analysis package (www.neuroelf.net) (Bennett et al., 2009). 

Analyses of associations with clinical data and simulation analyses 

We investigated associations between subjective craving, using the Obsessive-Com-

pulsive Drinking Scale (OCDS), and brain activation in the two regions of interest (pu-

tamen and caudate), which showed moderate to good reliability in the reliability anal-

yses, for the neutral, alcohol and difference (alcohol vs. neutral) contrasts (see Sup-

plementary Methods). Additionally, we performed simulation analysis to test our hy-

pothesis that associations between the difference contrast and clinical variables are 

limited by the magnitude of the inter-correlation between the constituting contrast 

conditions. Simulation was carried out for determining the estimated correlation be-

tween the difference score of the two constituting variables with external variables for 

varying correlation parameters. In doing this, samples of size N=144 were generated 

(see Supplementary Methods). Due to fact that the reliability of fMRI brain activation 

attenuates the observed effect size, compared to the population parameter (Hunter 

& Schmidt, 1994), we assessed how test–retest reliability (or lack thereof) would at-

tenuate small, medium, and large effect sizes resulting from clinical studies (see Sup-

plementary Methods).  
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2.1.4 Results 

Sample characteristics 

The patient subgroups showed similar values across demographical and psychometric 

variables with the exception of the BDI scores and time of abstinence (see Table 2.1). 

The mean abstinence of patients at baseline was 13.1 days (SD=8.8) and 29.7 days 

(SD=9.9) at the time of the second assessment (mean difference 16.7 days [SD=4.3]). 

None of the patients relapsed between baseline and second assessment. Comparison 

between fMRI sessions showed a significant effect of time for the magnitude of AUQ 

(F=15.20, p<0.001) and OCDS scores (F=60.61, p<0.001) and a significant interaction 

between study subgroup and time for the OCDS (F=8.69, p=0.049), while there was 

no significant interaction between study subgroup and time for the AUQ (F=2.91, 

p=0.146) and no significant main effect of subgroup on the magnitude of AUQ 

(F=1.317, p=0.273) or OCDS (F=0.99, p=0.397) scores. The significant interaction effect 

was driven by a more pronounced craving reduction, measured using the OCDS, in the 

subgroup receiving IWT and NTX, compared to the other study subgroups (post-hoc 

tests: p < 0.044, see Table 2.1). 
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Table 2.1 Demographic data, alcohol use and severity measures for patient groups with available im-

aging data for both time points (baseline and week two scan). 

Subgroup 1 2 3 4 5   

 

IWT (AL-

CUEPV) 

(n=21) 

IWT + CET I 

(ALCUEPV) 

(n=42) 

IWT + NTX 

(ALCUEPV) 

(n=20) 

IWT + CET 

II (ALCUE) 

(n = 29) 

IWT + CET 

+ DCS (AL-

CUE) 

(n=32) 

Statistics Signifi-

cance 

Demographical variables        

Age (years) 47.6 (10.5) 46.6 (10.0) 48.3 (8.4) 47.5 (10.3) 44.0 (10.1) F(4,139) = .801 p=.526 

Education (no post-sec-

ondary educ./ apprentice-

ship only/ attended col-

lege/ higher education) 

2/9/5/5 8/22/7/5 2/13/1/3 4/13/5/7 6/22/2/2 Z = 12.745 p=.371 

Substance use patterns        

Ethanol (g/day; mean of 

last 90 days) 

178.8 

(104.5) 

162.5 

(129.0) 

182.3 

(135.6) 

108.0 (96.2) 126.7 (98.7) F(4,136) = 2.138 p=.079 

Drinks per drinking day 

(mean of last 90 days) 

19.1 (9.4) 18.4 (13.6) 17.3 (10.3) 13.5 (7.8) 14.4 (8.4) F(4,135)  = 1.555 p=.190 

Abstinent days (% in last 90 

days) 

22.0 (19.0) 22.0 (28.1) 16.1 (22.3) 34.2 (33.6) 26.8 (29.1) F(4,135)  =1.516  p=.201 

Heavy-drinking days (% in 

last 90 days) 

74.6 (20.0) 71.2 (30.9) 76.2 (28.0) 58.8 (34.6) 63.7 (32.6) F(4,135)  = 1.515 p=.201 

Abstinence in days before 

baseline fMRI 

9.9 (6.0)° 12.5 (11.0) 20.6 (7.3)° 12.1 (7.4) 12.0 (6.8) F(4,139) = 8.095 p < .001* 

Abstinence in days before 

2nd fMRI 

25.2 (7.3)° 28.2 (7.9) 36.2 (7.8)° 28.3 (8.6) 30.3 (8.7) F(4,139) = 5.297 p = .001* 

Days between 1st and 2nd 

fMRI session 

16.1 (3.6) 16.9 (3.4) 15.6 (3.6) 16.2 (4.7) 18.2 (4.4) F(4,138) =  1.846 p = .123 

Smoker (yes/no) 10:11 27:15 13:7 21:8 24:8 Chi2
(4) = 4.910 p=.297 

Cigarettes per day (smok-

ers only) 

1.7 (1.2) 1.6 (1.0) 1.1 (1.3) 1.6 (1.1) 1.3 (0.9) F(4,100) = 0.968 p=.428 

1st fMRI - Clinical scales        

OCDS (total score) 18.0 (7.6) 15.5 (7.0) 13.7 (5.8) 16.1 (6.0) 15.9 (6.5) F(4,139) =1.080 p=.369 

FTND (total score) 3.7 (3.8) 3.7 (3.3) 5.5 (2.7) 5.0 (3.2) 4.7 (2.9) F(4,114) = 1.369 p=.249 

ADS (total score) 15.7 (6.3) 16.2 (6.7) 12.9 (5.9) 16.6 (5.7) 14.8 (7.4) F(4,139) =1.215 p=.307 

STAI (trait sumscore) 44.2 (15.9) 45.8 (12.0) 37.9 (10.8) 43.2 (9.6) 46.3 (10.6) F(4,135) = 1.868 p=.120 
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STAI (state sumscore) 40.2 (12.8) 43.5 (12.0) 36.9 (8.3) 43.4 (10.6) 45.0 (10.1) F(4,135) = 2.012 p=.096 

AUQ (total score) 12.9 (5.3) 12.6 (5.8) - 11.2 (4.9) 13.4 (7.4) F(3,111) = .717 p=.544 

BDI (total score) 14.5 (11.7) 15.9 (10.1)° 9.7 (8.0)° 10.3 (7.4) 11.6 (8.9) F(4,138) =  2.495 p=.046* 

2nd  fMRI - Clinical scales        

OCDS (total score) 12,2 (6.8) 9.9 (5.9) 4.0 (4.1) 11.6 (5.7) 10.8 (5.3) F(4,124) = 2.378 p=.055 

AUQ (total score) 10.3 (3.4) 9.9 (3.1) - 9.3 (2.4) 10.9 (3.4) F(3,111) = 1.317 p=.273 

ADS = Alcohol Dependence Scale; BDI = Beck Depression Inventory; FTND = Fagerstroem Test for Nicotine Dependence; 

OCDS = Obsessive-Compulsive Drinking Scale; STAI = State-Trait-Anxiety Inventory; SD = standard deviation; * = significant 

differences p < 0.05; ° = significant post-hoc test p < 0.05; IWT = subgroup receiving treatment as usual (i.e. multidisciplinary 

three-week intensified withdrawal treatment [IWT]). IWT+CET I = subgroup receiving nine cue-exposure treatment (CET) 

sessions in addition to IWT, IWT+CET II = subgroup receiving nine cue-exposure treatment (CET) sessions in addition to IWT, 

IWT + CET + DCS = subgroup receiving nine doses of 50-mg dose of d-cycloserine (DCS) concurrently with nine CET sessions 

in addition to IWT, IWT + NTX = subgroup receiving daily naltrexone (NTX) in addition to IWT; ALCUE = version 1 of the 

alcohol cue-reactivity task, ALCUEPV = version 2 of the alcohol cue-reactivity task without a rating phase (see Supplemen-

tary Methods for Details) 
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Robust main effects of the alcohol vs. neutral contrast 

Analyses of group-level brain activation demonstrated robust alcohol cue-induced 

brain response (contrast: alcohol vs. neutral) across the different subgroups and for 

both fMRI assessment sessions including the inferior, middle and superior occipital 

gyri, the cuneus, lingual and fusiform gyri as well as middle and superior parietal gyri, 

the putamen and caudate (see Supplementary Table S 2.1). There was no significant 

main effect of time or subgroup on the magnitude of alcohol cue-induced brain acti-

vation (contrast: alcohol vs. neutral). 

Moderate to good mean test-retest reliability of the alcohol and neutral contrast  

conditions  

ICC values for the alcohol contrast condition showed moderate mean global ICC val-

ues, when computing the mean ICC across the whole brain (ICCMean>0.40, see Table 

2.2) and good to excellent local reliability (ICC>0.75), mainly in the occipital gyri and 

to a lesser extent in the inferior and superior frontal gyri (see Figure 2.2) and moderate 

to good reliability (ICC>0.4) in large clusters of brain areas including mesolimbic brain 

regions (insula, putamen, caudate), as well as temporal and parietal gyri (see Supple-

mentary Figure S1). The patterns of brain areas depicting moderate and good reliabil-

ity for the neutral contrast condition resembled these findings.  

Similarity analyses showed higher within-subject similarity compared to between-

subject similarity over time for the alcohol and neutral contrast conditions (tAlco-

hol>=11.02, p<0.001, tNeutral>=9.85, p<0.001) with overall high within-subject similarity 

values (rAlcohol=0.71, rNeutral=0.69), which is visible in a prominent diagonal in the simi-

larity matrices of the alcohol and neutral contrast maps (see Figure 2.3). This trans-

lated into the observation that > 77% of the individual patients could be re-identified, 

based on their neural activation pattern during alcohol and neutral contrast condi-

tions. 

The Dice and Jaccard coefficients showed values ranging from 0.44 to 0.64 for the al-

cohol and neutral contrasts, indicating that about half of the significant activation 
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clusters could be replicated in the second fMRI session (seeSupplementary Table S 

2.3). Across both statistical thresholds, both overlap indices were significantly higher 

for the alcohol and neutral contrast conditions than for the alcohol vs. neutral differ-

ence contrast (F(2,278)>=10.717, p<0.001, for detailed results see Supplementary Re-

sults). 
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Table 2.2 Mean ICC values across groups and contrast conditions  

A] Difference Contrast: alcohol-neutral 

 Group IWT (ALCU-

EPV) (n=21) 

IWT + CET II 

(ALCUE) 

(n = 29)  

IWT + CET I 

(ALCUEPV) 

(n=42) 

IWT + CET + 

DCS (AL-

CUE) 

(n=32) 

IWT + NTX 

(ALCUEPV) 

(n=20) 

Group Mean (SD) 

[range] 

0.23 (.23) 

[-.70 – .89] 

    0.18 (.18)  

[-.63 – .70] 

0.06 (.06) 

[-.57 – .69] 

0.00 (.00) 

[-.73 – .67] 

0.18 (.19) 

[-.79 – .84] 

IWT (n=21) 0.23 (.23)  t(43) = 0.820 t(61) = 

3.245*** 

t(51) = 

3.775*** 

t(39) = 0.931 

IWT + CET II (n = 

29) 

0.18 (.18)    t(69) = 2.673** t(59) = 

3.461*** 

t(47) = 0.097 

IWT + CET I (n=42) 0.06 (.06)    t(72) = 1.377 t(60) = 2.433* 

IWT + CET+DCS 

(n=32) 

0.00 (.00)     t(50) = 3.103** 

B] Contrast: alcohol 

 Group IWT (ALCU-

EPV) (n=21) 

IWT + CET II 

(ALCUE) 

(n = 29)  

IWT + CET I 

(ALCUEPV) 

(n=42) 

IWT + CET + 

DCS (AL-

CUE) 

(n=32) 

IWT + NTX 

(ALCUEPV) 

(n=20) 

Group Mean (SD) 

[range] 

0.40 (.25) 

[-.79 – .94] 

0.54 (.22) 

[-.53 – .97] 

0.30 (.23) 

[-.47 – .92] 

0.43 (.25) 

[-.78 – .96] 

0.38 (.25) 

[-.63 – .96] 

IWT (n=21) 0.40 (.25) 

 

 t(43) = 2.041 t(61) = 1.661 t(51) = 0.397 t(39) = 0.239 

IWT + CET II (n = 

29) 

0.54 (.22) 

 

  t(69) = 

4.435*** 

t(59) = 1.790 t(47) = 2.305** 

IWT + CET I (n=42) 0.30 (.23) 

 

   t(72) = 

2.379** 

t(60) = 1.353 

IWT + CET+DCS 

(n=32) 

0.43 (.25) 

 

    t(50) = 0.656 

C] Contrast: neutral     
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 Group IWT (ALCU-

EPV) (n=21) 

IWT + CET II 

(ALCUE) 

(n = 29)  

IWT + CET I 

(ALCUEPV) 

(n=42) 

IWT + CET + 

DCS (AL-

CUE) 

(n=32) 

IWT + NTX 

(ALCUEPV) 

(n=20) 

Group Mean (SD) 

[range] 

0.25 (.29) 

[-.72 – .95] 

0.46 (.22) 

[-.49 – .96] 

0.27 (.24) 

[-.58 – .92] 

0.21 (.31) 

[-.73 – .96] 

0.39 (.24) 

[-.66 – .96] 

IWT (n=21) 0.25 (.29) 

 

 t(43) = 

2.998*** 

t(61) = 0.312 t(51) = 0.396 t(39) = 1.787 

IWT + CET II (n = 

29) 

0.46 (.22) 

 

  t(69) = 

3.474*** 

t(59) = 

3.569*** 

t(47) = 0.997 

IWT + CET I (n=42) 0.27 (.24) 

 

   t(72) = 0.858 t(60) = 2.017* 

IWT + CET+DCS 

(n=32) 

0.21 (.31) 

 

    t(50) = 2.231* 

* p < 0.05, ** p < 0.01, *** p < 0.005; IWT = subgroup receiving treatment as usual (i.e. multidisciplinary three-week inten-

sified withdrawal treatment [IWT]). IWT+CET II = subgroup receiving nine cue-exposure treatment (CET) sessions in addition 

to IWT, IWT+CET I = subgroup receiving nine cue-exposure treatment (CET) sessions in addition to IWT, IWT + CET + DCS = 

subgroup receiving nine doses of 50-mg dose of d-cycloserine (DCS) concurrently with nine CET sessions in addition to IWT, 

IWT + NTX = subgroup receiving daily naltrexone (NTX) in addition to IWT; ALCUE = version 1 of the alcohol cue-reactivity 

task, ALCUEPV = version 2 of the alcohol cue-reactivity task without a rating phase (see Supplementary Methods for Details) 
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Figure 2.1 Depiction of the five different study subgroups. All patients received treatment as usual 

over two weeks (i.e. multidisciplinary intensified withdrawal treatment [IWT]). Subgroup 1 received 

no additional study treatment and hence serves as the reference group in the current analyses. Sub-

groups 2 and 4 received five to nine cue-exposure treatment (CET) sessions over two weeks in addition 

to IWT. Subgroup 3 received 50mg oral naltrexone (NTX) daily over two weeks in addition to IWT. 

Subgroup 5 received nine doses of 50-mg dose of d-cycloserine (DCS) concurrently with nine CET ses-

sions over two weeks in addition to IWT. Two versions of an established alcohol picture cue-reactivity 

task were used (ALCUEPV = Alcohol Cue-Reactivity Picture Viewing Task and ALCUE = Alcohol Cue-

Reactivity Task). Both versions of the alcohol cue-reactivity task use a block-design that includes the 

presentation of series of either alcohol or neutral pictures in subsequent blocks that were presented 

in pseudo-randomized order. In contrast to the ALCUE task, the ALCUEPV task did not include a rat-

ing phase in-between successive picture blocks. 
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Figure 2.2 Depiction of brain areas that show good to excellent reliability or the alcohol condition 

contrast (Intraclass correlation [ICC] > 0.75) for the different study groups (A to E, left column) and 

histograms depicting the distribution of ICC values and the mean and median for the different study 

groups (right column).  
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Figure 2.3 Similarity maps (upper row) and empirical cumulative distribution functions (lower row – 

red lines: between-subject similarity, blue lines: within-subject similarity) for longitudinal compari-

sons (1st and 2nd fMRI session) for the three contrasts: A] alcohol, B] alcohol-neutral and C] neutral. 
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The diagonal of each color matrix represents the within-subject similarity values. Re-identification of 

a subject based on the neural activation map is affirmed the within-subject similarity value (diagonal) 

exceeds all between-subject association coefficients of the same participant (i.e. similarity values in 

the respective row of the matrix). Higher within-subject similarity is also illustrated by a right-shift of 

the cumulative density functions for the within-subject similarity values (blue lines) relative to the be-

tween-subject similarity (red lines) for the A] alcohol and C] neutral contrast maps, whereas the cu-

mulative density functions overlapped for B] the alcohol-neutral contrast. 

  



Empirical studies 

48 

Poor mean test-retest reliability of the of the alcohol vs. neutral difference contrast 

In contrast to the robust main effects and contrary to the good reliability of the alcohol 

and neutral contrasts separately, the difference contrast showed poor mean whole-

brain reliability (ICCMean<0.4)(see Table 2.2). Subsequent voxel-wise analyses using 

thresholded ICC-maps showed that several brain areas surpassed the threshold of 

ICC>0.75 (indicating good reliability) in the IWT and IWT + NTX study groups. These 

areas included the bilateral insulae, part of the rostral right putamen, parts of the in-

ferior medial occipital gyrus, parts of the bilateral middle and inferior frontal gyri (spe-

cifically the Heschl gyri), the left cuneus and parts of the right lateral frontal gyrus and 

bilateral superior frontal gyri (see Figure 2.4). Further analyses indicated that several 

additional brain areas showed moderate to good reliability, such as the occipital gyri, 

parts of the putamen and caudate, as well as parts of the inferior and superior frontal 

gyri (see Supplementary Figure S 2.1).  

Similarity analyses showed that overall similarity values for the difference contrast 

were low (rAlcohol-Neutral=0.19) and within-subject similarity did not exceed between sub-

ject similarity (tAlcohol-Neutral<=1.83, p>0.05) (see Figure 2.3). This reflected in a low pro-

portion of patients of 22% that could be re-identified based on their brain activation 

signature captured by the difference contrast (alcohol vs. neutral).  

The Dice and Jaccard coefficients indicated minimal overlap of significant activation 

clusters between scanning time points of about 0.07 to 0.14, indicating that only a 

small fraction of super-threshold clusters could be replicated. The overlap indices 

were significantly lower for the alcohol vs. neutral difference contrast (see Supple-

mentary Table S 2.3), compared to the constituting task conditions across both statis-

tical thresholds (p<0.001, p<0.01) that were used to define significant voxels (Jaccard: 

F(2,278)=860.093, p<0.001 and F(2,278)=648.951, p<0.001 respectively; Dice: 

F(2,278)=948.150, p<0.001 and F(2,278)=10.717 p < 0.001 respectively)(for detailed results 

see Supplementary Results). 

The atlas-based summary of mean ICC values for the difference contrast alcohol vs. 

neutral again showed that only a few brain regions surpassed a mean ICC value of 0.4 
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for moderate reliability. Specifically, the left superior occipital gyrus, the left and right 

Heschl gyri and the left cuneus showed values of 0.4 or higher in the IWT group that 

received treatment as usual (see Supplementary Table S 2.2). This pattern was not 

consistent across groups. Atlas based summary measures for the patient subgroups 2, 

3 and 4 did not exceed values of 0.4, except for the left superior occipital gyrus in the 

IWT + CET I subgroup (group 2). The IWT + NTX subgroup showed mean ICC values > 

0.4 for the bilateral calcarine and the left pallidum. With regards to the left and right 

dorsal and ventral striatum masks that were adapted from Schacht et al. (2011) to fa-

cilitate comparability, results show poor mean reliability (ICC<0.4) across all groups in 

all of the four masks (see Supplementary Table S 2.2). 
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Figure 2.4 Depiction of brain areas that show good to excellent reliability for the difference contrast alcohol-

neutral (Intraclass correlation [ICC] > 0.75) for two study groups (all other groups did not show ICCs > 0.75).  
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Assessment of factors underlying the reliability differences across contrast conditions  

Results show a high correlation between the alcohol and neutral task condition con-

trast maps (r = 0.48, SD = 0.34, R2=0.23). This indicates that both conditions share 

about 23% of their variance. A part of this variance is removed by subtracting both 

conditions, illustrated by the lower correlation coefficients between the difference 

contrast and the constituting condition contrast maps (alcohol, r=0.24, SD=0.25 

R2=0.06; neutral, r=-0.25, SD=0.24, R2=0.06).  

Impact of low test-retest reliability of the difference contrast  

Analyses indicated a significant correlation between OCDS scores (total score) and 

brain activation in the left caudate, indexed by the alcohol contrast (r=0.231, p=0.005, 

pFDR=0.01, n=144). The significant correlation however could not be replicated using 

the difference contrast (r=0.077, p=0.356, pFDR=0.356, n=144), even though the sample 

size was sufficient to detect even small to medium effects (r>=0.20) with a power of 

78%. Further, the data simulations indicated that the mean correlations between the 

difference score (V1-V2) and the external variables, which were modeled according to 

the actual cue-reactivity and OCDS data, were always substantially lower, by about 

one third, compared to the correlation between the constituting conditions (V1 and 

V2) and the external variables (see Supplementary Table S 2.4 and Supplementary Fig-

ure S 2.3). Additional data simulations showed that any effect size measure, which was 

determined using tools with poor to moderate reliability (i.e. ICC scores <0.6), sub-

stantially over-estimated the population effect sizes (see Supplementary Supplemen-

tary Figure S 2.4). 

2.1.5 Discussion 

Here, we present the first whole-brain investigation of the reliability of an established 

alcohol cue-reactivity task and demonstrate how the reliability of the common differ-

ence contrast (alcohol vs. neutral) determines the capacity to establish associations 

with clinical data and estimate effects sizes from clinical trials.  

Moderate to good reliability of the constituting task contrasts  
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Overall, reliability measures indicated good to excellent reliability over roughly 14 

days between the first and second fMRI session across the five different study sub-

groups for the alcohol and neutral contrast conditions, supporting the robustness of 

our findings. Computation of the voxel-wise ICC showed moderate to excellent relia-

bility in several brain areas of the mesocorticolimbic system. Additionally, roughly half 

of the significant activation clusters overlapped between successive fMRI scans for the 

alcohol and neutral contrasts and about 70% of the patients could be re-identified 

based on their neural signature captured by either the alcohol or neutral contrast. In 

addition, Jaccard and Dice coefficients for the alcohol and neutral contrast conditions 

indicated that – depending on the threshold for defining active voxels – about 50% to 

60% of the activation clusters could be replicated from first to second fMRI. This sup-

ports the general potential of fMRI-based cue-reactivity measures to provide reliable 

indicators of individual brain activation in areas that are part of the addiction network.  

Poor reliability of the difference contrasts and its impact on imaging studies 

In sharp contrast, the difference contrast (alcohol-neutral) showed poor overall relia-

bility, indicated by low mean ICC values and low Jaccard and Dice coefficients. The 

lower reliability of the difference contrast results from the substantial inter-correla-

tion of the constituting contrast conditions (alcohol, neutral), which eliminates parts 

of the shared variance and summates the error variance. This phenomenon was al-

ready demonstrated in previous work by Infantolino and colleagues (2018). Their data 

on the difference contrast between face- and shape-matching trials of the well-estab-

lished faces paradigm (Hariri et al., 2002; Infantolino et al., 2018) showed very poor 

reliability of the difference contrast, which was attributed to a high correlation (0.97) 

of the constituting task conditions. A recent meta-analysis on 56 independent fMRI 

studies concluded that only 46% of the reported reliability scores fell within the range 

of at least moderate reliability (Elliott et al., 2020). A subsequent moderator analysis 

indicated that neither task type, task design, task length, test-retest interval, ROI type 

(i.e., structural versus functional), nor sample type (i.e., healthy versus clinical) signif-
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icantly moderated reliability scores. While this seems unexpected, it might point to-

wards a fundamental problem, i.e. that most of the studies applied difference score 

measures. A measure that constitutes largely of unsystematic variance would show 

no systematic variation depending on the aforementioned factors. Elliot and col-

leagues (2019)  concluded that difference scores will always have lower reliability than 

their constituent scores or conditions (Elliott et al., 2020). Besides all aforementioned 

limitations, several brain areas that are part of the mesocorticolimbic system showed 

moderate to good and good to excellent reliability in the reference group with treat-

ment as usual (IWT) for the difference contrast alcohol-neutral, and also in the group 

receiving treatment with naltrexone (IWT + NTX). This suggests that the fMRI-signal, 

captured by the difference contrast, shows heterogenous but locally satisfactory reli-

ability to monitor treatment effects and treatment efficacy.  

Factors underlying the low reliability of the difference contrast 

We showed that the low mean test-retest reliability of the difference contrast (alcohol 

vs. neutral) resulted from the substantial inter-correlation between the constituting 

task conditions (alcohol and neutral). The low reliability impaired the capacity to es-

tablishing associations between fMRI and clinical data (i.e. OCDS scores). Our data 

simulations fortified this assumption. They showed a systematic reduction in the mag-

nitude of the correlation coefficients between the difference contrast and external 

variables by about 34%, compared to the correlation with the constituent task condi-

tions (i.e. alcohol, neutral) separately. This illustrates that elimination of the shared 

variance dramatically impacts on the capacity to replicate correlations between the 

constituting task conditions and external variables when using the difference contrast. 

One could argue that the difference contrast is the relevant contrast and any associa-

tion should be exclusively investigated using this contrast. However, the fact that this 

measure largely consists of error variance, depending on the extent of inter-correla-

tion of the constituent task conditions, argues against this approach. Any analysis 

would be prone to producing spurious results (i.e. correlation with the error variance 

component).  
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Overcoming low reliability of the alcohol vs. neutral difference contrast 

To overcome the problems associated with computing difference contrasts, we sug-

gest to use one of the constituent task conditions as an individual difference measure, 

given it has adequate reliability. In the case of a linear association and high correlation 

between the constituting conditions, one task condition could substitute the other 

quite well, without losing information on the individual differences between partici-

pants (Infantolino et al., 2018). Translating this to the alcohol cue-reactivity task, we 

argue that the alcohol condition can be used to monitor alcohol-cue induced brain re-

sponses over time and capture the potential impact of treatment interventions on this 

parameter, because one would assume that changes in brain responses to alcoholic 

stimuli and associated changes in alcohol cue-induced subjective alcohol cravings 

would more likely be captured by the alcohol condition contrast. The neutral condition 

on the other hand can serve as an index for the stability and reliability of cue-induced 

fMRI signal in general, which should not change due to alcohol addiction treatment 

(e.g. cue-exposure treatment or anti-craving medication).  

Hence, we suggest a two-step approach. Firstly, the specificity of the fMRI signal for 

the cognitive processes under investigation should be supported by either relying on 

robust meta-analysis that could inform about the role of a certain brain region in the 

respective fMRI task or could be established by investigating within-subject effects 

between the constituting task conditions first, in order to identify regions that activate 

differently under each condition. These regions of interest could be used to restrict 

the following analyses. In a next step, brain activation during the alcohol condition 

could be used as a measure that reliably captures individual differences over time and 

the neutral condition could serve as measure for the stability of the cue-induced fMRI 

signal.  

We applied this approach to our dataset, i.e. we specified the putamen and caudate 

as ROIs based on reliability scores and their roles for the cognitive process under in-

vestigation, i.e. alcohol craving (Noori et al., 2016). Applying this approach, we could 

show a significant correlation between OCDS scores and caudate activation during 
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the alcohol contrast, which could not be shown, when relying on the difference con-

trast. This is also supported by the results of our simulation analyses, illustrating the 

relevance of reliability and inter-correlation of the task conditions for establishing as-

sociations with clinical data.  

Limitations 

It could be argued that the inclusion of patients without any treatment might be fa-

vorable with regards to yielding optimal reliability. However, we strongly advocate for 

testing reliability under the conditions in which the actual task is applied. When in-

tending to use neural brain response as biomarker for monitoring treatment response, 

reliability of this putative biomarker should be tested under the very same conditions. 

Moreover, withholding standard patient care from patients would contradict princi-

ples of good clinical practice in research. Two version of an alcohol cue-reactivity task 

were used, differing in that one of the versions included a rating phase between pic-

ture blocks and the second version did not. The version without a rating phase was 

designed to keep task duration constant across subjects and to minimize the risk of 

carry-over effects of the rating phase on the measured BOLD response. However, at 

the group level, the comparison of task versions currently showed no significant dif-

ference in neural activation patterns between the two task versions. A possible expla-

nation for this finding is that the rating phase was relatively short in relation to the 

duration of the stimulus blocks (< 50%) and that possible effects were leveled out by 

averaging over the stimulus blocks. Furthermore, there was also no systematic ad-

vantage of either task version across study groups in terms of the reliability achieved. 

Based on the present data, both task versions appear to be similarly suited to investi-

gate the neural response to alcohol stimuli.  

2.1.6 Conclusion 

For the first time, we conducted longitudinal whole-brain analyses of test-retest reli-

ability of an established alcohol cue-reactivity task and demonstrated that the low 

mean reliability of the difference contrast (alcohol vs. neutral) substantially limits the 
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capacity to establish associations with clinical data and determine precise effect sizes 

estimates. Contrary to the low mean reliability of the difference contrast, the consti-

tuting task conditions showed good to excellent reliability. This disparity resulted 

from the substantial correlation between the constituting task conditions, which lim-

ited the shared “true” variance of the difference contrast. This highlights the general 

conceptual problems associated with computing difference scores in alcohol-cue re-

activity research. Still, the good test-retest reliability of the constituting task condi-

tions supports the general potential of fMRI for providing reliable measures of brain 

activation. Our data simulations and association analyses also show that measures 

can be taken to overcome the problems that are associated with low reliability of the 

difference contrast. Future research on neural alcohol cue-reactivity should be cau-

tioned by these findings and employ methods to overcome these limitations. 

2.1.7 Supplements 

Supplementary Material 

Detailed description of exclusion and inclusion criteria 

Patients were recruited from the inpatient unit of the Department of Addictive Behav-

iour and Addiction Medicine at the Central Institute of Mental Health (Mannheim, Ger-

many) from 2010 to 2017. All participants were required to be aged between 18 to 75 

years. Patients also had to meet all following inclusion criteria: i) diagnosis of an alco-

hol-dependence according to the Diagnostic Statistical Manual of Mental Disorders 

(DSM-IV), ii) right handedness, and iii) completed detoxification (i.e. treatment - if 

necessary - of withdrawal symptoms with short-acting benzodiazepines had to be 

completed for at least 5x elimination half-life times). Patients were excluded if they 

met any of the following exclusion criteria: i) comorbid axis-I disorder (other than nic-

otine-dependence, assessed using the standardized clinical interview for DSM-IV axis 

I disorders, SKID i) in the last year, ii) treatment with psychotropic or anticonvulsive 

medications, iii) severe neurological or physiological disease [such as, but not limited 



Empirical studies 

57 

to stroke, aneurysm, dementia, epilepsy, liver cirrhosis], iv) positive drug urine screen-

ing on the day of testing, or v) contraindications for MRI scanning (i.e. pace-makers, 

metal implants, tattoos). On the first assessment day, all participants completed ques-

tionnaires, including the Beck Depression Inventory (BDI (Hautzinger, 2009), the Al-

cohol Dependence Scale (ADS (Kivlahan et al., 1989)), the Alcohol Urge Questionnaire 

(AUQ (Bohn et al., 1995)), the Obsessive Compulsive Drinking Scale (OCDS (Anton et 

al., 1995)) the Fagerstroem Test for Nicotine Dependence (FTND (Heatherton et al., 

1991)) and the State Trait Anxiety Inventory (STAI; (Spielberger, 1983)). Substance use 

during the 90 days before the experiment was assessed using a semi-structured inter-

view (Timeline Followback (Sobell et al., 1996)).  

fMRI acquisition and pre-processing details 

Functional activation during both alcohol cue-reactivity tasks was measured using a 

Siemens MAGNETOM 3 Tesla whole-body-tomograph (MAGNETOM Trio, TIM tech-

nology, Siemens, Erlangen, Germany). During the task, a total of 305 (ALCUE) and 303 

(ALCUEPV) T2*-weighted echo-planar images (EPI) were acquired per participant us-

ing standardized imaging parameters (TR = 2.41 s, TE = 25 ms, flip angle = 80°, 42 

slices, slice thickness = 2 mm, 1-mm gap, voxel dimensions 3 x 3 x 3 mm3, FOV = 192 x 

192 mm2, 64 x 64 in-plane resolution). The first five T2*-weighted EPI images were 

eliminated from the datasets, in order to avoid bias due to magnetic saturation ef-

fects.  

The functional EPI data were pre-processed according to standard procedures imple-

mented in the statistical parametric mapping software for Matlab (SPM, Wellcome 

Department of Cognitive Neurology, London, UK) version 8 (i.e. spatial realignment, 

movement correction, normalization to a standard MNI [Montreal Neurological Insti-

tute, Quebec, Canada] EPI template and smoothing using an isotropic Gaussian kernel 

for group analysis [8 mm Full Width at Half Maximum]). Standardized quality checks 

were implemented for all datasets. Data were excluded if the spatial realignment or 

movement correction indicated excessive motion (>3 degrees of rotation or >3mm 

movement in any axis) or if visual inspection indicated poor fitting to the standard EPI 
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template. First-level statistics were computed for each participant, modelling the dif-

ferent experimental conditions (ALCUE: alcohol pictures, neutral pictures, rating 

phase or ALCUEPV: alcohol pictures, neutral pictures) in a generalized linear model 

including motion parameters as covariates. The contrast images for the alcohol and 

neutral condition, as well as the difference contrast between both conditions (alcohol-

neutral) were computed. Due to the fact that alcohol cue-reactivity studies focussed 

on the difference contrast (alcohol – neutral), reliability analyses were conducted for 

this contrast. On the other hand, previous studies suggested that difference measures 

suffer from low inherent reliability, when the constituting conditions are correlated 

(Infantolino et al., 2018). The reason for this being that the variance of a difference 

score (e.g. alcohol-neutral) reflects the sum of the unique variance of both the neutral 

and alcohol condition, as well as their measurement error. Hence, any variance of the 

true scores that is shared between conditions is eliminated through subtraction, while 

condition-related error summates. This applies to all scenarios where the single con-

ditions under investigation show a substantial inter-correlation, resulting in consider-

able shared variance of the true scores (Chiou & Spreng, 1996). Hence, we also esti-

mated reliability separately for the alcohol and neutral conditions.  

Reliability Analyses 

Intraclass correlation coefficient  

Reliability of fMRI data was estimated for each voxel of the brain activation maps by 

computing the intraclass correlation (ICC) coefficients between time points. Accord-

ing to Fleiss (1986), ICC coefficients lower than 0.4 represent poor reliability, ICCs be-

tween 0.4 and 0.75 represent fair (< 0.6) to good (>0.6) reliability, and ICCs higher than 

0.75 represent good to excellent reliability (Fleiss, 1986). This coefficient sets within-

subject variance (σ2
within) in relation to between-subject variance (σ2

between).: 

𝐼𝐶𝐶 =
(σ2

between − σ2
within)

(σ2
between + σ2

within)
 

ICC values were computed for the contrasts “alcohol-neutral”, “neutral” and “alcohol” 

and for every study subgroup (1 to 5). We generated thresholded ICC brain maps, to 
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identify brain areas that show moderate to good (ICC > 0.4) and good to excellent (ICC 

> 0.75) reliability and we computed additional atlas-based mean ICC values for a stand-

ard set of anatomical brain regions (see below). 

Atlas- and ROI-based summary measures 

To facilitate the assessment of local differences in reliability, we computed the mean 

ICC for anatomical regions specified in the Automatic Anatomic Labeling (AAL) atlas 

(Tzourio-Mazoyer et al., 2002). Additionally, we extracted the ICC values from the dor-

sal and ventral striatum using the ROI definition that was used by Schacht and col-

leagues (2011) in their analyses. All ICC values were extracted from the ROIs using the 

data extraction routine of the MarsBar software package (http://marsbar.source-

forge.net/) and exported into the IBM SPSS statistics software (version 25.0) or further 

analyses.  

Jaccard and Dice Coefficients 

Reliability of patterns of significant voxels was assessed using the modified Jaccard 

coefficient as an established and commonly used measure in fMRI reliability studies. 

It can be interpreted as the percentage of overlapping significant voxels above a pre-

defined threshold (e.g. p < 0.001) within all significant voxels and is defined as the size 

of the intersection divided by the size of the union of the voxel sets  (Jaccard, 1902; 

Maitra, 2010).  

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
 

Another measure of overlap between super-threshold voxels is the Dice coefficient. It 

was introduced to assess fMRI cluster overlap and has become an established measure 

of fMRI data reliability (Rombouts et al., 1997). It is calculated as the number of super-

threshold voxels that overlap between sessions divided by the average number of sig-

nificant voxels across sessions: 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) =  
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

http://marsbar.sourceforge.net/)
http://marsbar.sourceforge.net/)
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Both, Jaccard and Dice coefficients range from no overlap (0) to perfect overlap (1) 

between super-threshold voxels, but there is currently no consensus on specific values 

or cut-offs that would differentiate between “poor” and “good” values (Bennett & 

Miller, 2010). The interpretation is further complicated by the fact that cluster overlap 

methods depend on the statistical threshold used to define what is “active” and stud-

ies reported that the reliability of the cluster overlap method decreases, when the sig-

nificance threshold is increased (Duncan et al., 2009; Rombouts et al., 1998). In the 

current analyses, we therefore used two common thresholds and compared the re-

sulting indices (p < 0.001 and p < 0.01). Jaccard and Dice coefficients were determined 

for every patient comparing the baseline and 2nd fMRI for the different contrast images 

(alcohol-neutral; alcohol; neutral). Jaccard and Dice coefficients were exported into 

the IBM SPSS statistics software (version 25.0) and effects of contrast conditions and 

patient subgroups (n=5) were tested using a repeated measures analysis of variance 

model with contrast condition as within-subject factor and patient group as between-

subject factor.  

Supplementary Material – Analyses of associations between alcohol cue-reactivity with 

clinical data  

We investigated associations between subjective craving, using the Obsessive Com-

pulsive Drinking Scale (OCDS), and brain activation in the two regions of interest (pu-

tamen and caudate, which showed moderate to good reliability) during the neutral, 

alcohol and difference (alcohol-neutral) contrasts. The regions were defined by using 

the standardized anatomical masks as implemented in the automated anatomical la-

belling atlas (aal) atlas (Tzourio-Mazoyer et al., 2002) for the left and right caudate 

and putamen. Data on mean brain activation during the different contrast conditions 

(“alcohol”, neutral”, “alcohol-neutral”) were extracted from the regions of interest us-

ing the data extraction routine of the MarsBar software package (http://mars-

bar.sourceforge.net/) and exported into the IBM SPSS statistics software (version 

25.0) for further analyses. 

Simulation study 

http://marsbar.sourceforge.net/)
http://marsbar.sourceforge.net/)
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We hypothesized that associations between the difference contrast and clinical varia-

bles are limited by the magnitude of the inter-correlation between the constituting 

contrast conditions. To fortify this assumption, we conducted a simulation study. Sim-

ulation was carried out for determining the estimated correlation between the differ-

ence score of the two constituting variables with external variables for varying corre-

lation parameters. Specifically, we simulated and tested associations between the 

constituting contrast conditions (V1 and V2) and external variables (modeled after the 

OCDS scores) and between the difference contrast (V1-V2). In doing this, samples of 

size N=144 were generated under the following assumptions: the constituting con-

trast conditions alcohol (V1) and neutral (V2) are correlated with r=0.57, with means 

M1=0.1035 and M2=0.2272 as well as standard deviations S1=0.3906 and S2=0.8686 

(analogue to the characteristics in our sample). For varying parameter values, correla-

tions of external variables V3 to V10 with V1 and V2 respectively were defined to range 

from r=0.1 to r=0.8, while the mean and standard deviation of V3 to V10 was set to 

15.8264 and 6.6557 respectively (analogue the characteristics of the OCDS values). We 

conducted 10.000 replications for each scenario V3 to V10.  

Additionally, we assessed how test–retest reliability (or lack thereof) would attenuate 

small, medium, and large effect sizes resulting from clinical studies, following previ-

ously applied methodology (Fried et al., 2017; Friedman, 1968; Wright, 2014). We 

computed the reliability-adjusted effects sizes estimates, expressed as Cohen’s d, 

which is an established effect size estimate in clinical studies. Adjusted Cohen’s d val-

ues were determined for values ranging from 0.001 to 0.900 in steps of 0.001 for ICC 

values of 0.3 = poor reliability, 0.4 = cut-off between poor and moderate reliability, 0.6 

= cur-off between moderate and good reliability, 0.75 = cut-off between good and ex-

cellent reliability and 0.9 = excellent reliability. In a first step Cohen’s d were trans-

formed to idealized r values according to Cohen (Cohen, 2013) using the following for-

mula: 

𝑟𝑖𝑑𝑒𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑑

√𝑑2 + 4
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In a second step, the r values were adjusted for reliability using the ICC values 

(Wright, 2014):  

𝑟𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑟𝑖𝑑𝑒𝑎𝑙𝑖𝑧𝑒𝑑
2 × √𝐼𝐶𝐶 

In a last step, the adjusted r value was converted back to an adjusted Cohen’s d using 

the formula (Friedman, 1968): 

𝑑𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
2 × 𝑟𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

√1 − 𝑟𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2

 

 

Supplementary Results  

Jaccard coefficient 

Descriptive analyses of the Jaccard coefficients showed a large inter-individual varia-

bility across the contrast image conditions and across both statistical thresholds that 

were used to define significant voxels (see supplementary Table S3A-B). When the 

statistical threshold for defining super-threshold voxels was set to p<0.001, repeated 

measures analyses showed a significant main effect of contrast image category (neu-

tral, alcohol and alcohol-neutral) (F(2,278)=860.093, p<0.001) on the magnitude of the 

Jaccard indices, but no significant main effect of patient sub-group (F(4,139)=0.954 

p=0.435) or interaction between contrast category and patient sub-group 

(F(8,278)=1.452 p = 0.175), such that the Jaccard coefficient were significantly higher for 

the neutral and alcohol condition contrast, compared to the difference contrast (alco-

hol-neutral) (both p<0.001, see supplementary Table S3A-B). For analyses where the 

statistical threshold for defining super-threshold voxels was set to p<0.01, results rep-

licate the significant main effect of contrast image category (F(2,278)=648.951, 

p<0.001), while neither the main effect of patient group F(8,278)=0.945, p=0.480), nor 

the interaction (F(4,139)=0.796, p=0.530) between both yielded significance. 

Dice Coefficient 

Across all contrast image conditions and across both statistical thresholds (p<0.001, 

p<0.01), descriptive analyses of the Dice coefficients showed a large inter-individual 
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variability (see supplementary Table S3C and 3D). For the statistical threshold of 

p<0.001, analyses showed a significant main effect of contrast image category (neu-

tral, alcohol and alcohol-neutral) (F(2,278)=948.150, p<0.001) on the magnitude of the 

Dice coefficient and a significant interaction effect between contrast category and pa-

tient sub-group (F(8,278)=2.022, p=0.044), but no main effect of patient sub-group 

(F(4,139)=0.985, p=0.418), such that the Dice coefficients were significantly higher for 

the neutral and alcohol condition contrast, compared to the difference contrast (both 

p<0.001, see supplementary Table S3C and 3D). For analyses where the statistical 

threshold for defining super-threshold voxels was set to p<0.01, results replicate the 

significant main effect of contrast image category (F(2,278)=10.717 p < 0.001), while nei-

ther the main effect of patient group (F(4,139)=1.409 p=0.234), not the interaction 

(F(8,278)=1.376 p=0.207) between condition and group were significant. 
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Supplementary Tables 

Supplementary Table S 2.1 Brain areas depicting significantly higher activation during alcohol pic-

ture blocks compared to neutral picture blocks during the 1st and 2nd fMRI session in the five patient 

subgroups (contrast: alcohol-neutral, combined voxel-wise- [p < .001] and cluster-extent-threshold [k 

> 110 voxel], corresponding to pFWE < .05). 

Side Lobe Brain areas Cluster 

size 

(voxel) 

MNI 

coordinates 

(x, y, z) 

tmax 

a) Group 1 

(IWT) 

 

T1 

n = 21       

L Occipital, 

Temporal 

Inferior Occipital Gyrus, Middle 

Occipital Gyrus, Fusiform Gyrus, 

Cerebellum, Lingual Gyrus, 

Calcarine, Cerebellum, Inferior 

Temporal Gyrus, Superior 

Occipital Gyrus 

1714 -20 -94 -8 7.28 

R Occipital Inferior Occipital Gyrus, Lingual 

Gyrus, Calcarine, Cerebellum, 

Middle Occipital Gyrus, Superior 

Occipital Gyrus, Cuneus, 

Fusiform 

1116 18 -90 -22 5.59 

L, R  Posterior Cingulum, Middle 

Cingulum, Precuneus, Posterior 

Cingulum, Precuneus, Middle 

Cingulum 

1129 10 -38 26 5.39 

 

T2 

       

L Occipital, 

Temporal 

Fusiform Gyrus, Inferior Occipital 

Gyrus, Middle Occipital Gyrus, 

Lingual Gyrus, Cerebellum, 

2367 -20 -94 -10 8.54 
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Cerebellum, Calcarine,  Inferior 

Temporal Gyrus 

R Occipital Inferior Occipital Gyrus, Lingual 

Gyrus, Middle Occipital Gyrus, 

Calcarine,  Fusiform Gyrus, 

Cerebellum, Superior Occipital 

Gyrus, Cerebellum 

1022 34 -92 -2 6.30 

L, R  Cerebellum 135 8 -74 -26 4.38 

L, R  Middle Cingulum, Posterior 

Cingulum, Posterior Cingulum 

100 8 -34 30 4.32 

R Parietal Superior Parietal Gyrus, Angular 

Gyrus,  

100 32 -68 52 4.10 

b) Group 2 

(CET I) 

 

T1 

n = 29       

L, R Occipital, 

Temporal 

Middle Occipital Gyrus, Inferior 

Occipital Gyrus, Fusiform Gyrus, 

Lingual Gyrus, Cerebellum, 

Superior Occipital Gyrus, Lingual 

Gyrus, Inferior Temporal Gyrus 

2705 -20 -98 -6 7.85 

L, R Occipital Inferior Occipital Gyrus, Fusiform 

Gyrus, Lingual Gyrus, 

Cerebellum, Calcarine, 

Cerebellum,  Middle Occipital 

Gyrus, Cuneus, Superior 

Occipital Gyrus, Calcarine 

2024 24 -84 -12 6.79 

 

T2 

       

L Occipital Middle Occipital Gyrus, Inferior 

Occipital Gyrus, Fusiform Gyrus, 

Lingual Gyrus, Calcarine,  

Cerebellum, Superior Occipital 

2013 -22 -100 -6 8.59 
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Gyrus, Cerebellum 

R Occipital Inferior Occipital Gyrus, Fusiform 

Gyrus, Lingual Gyrus, Middle 

Occipital Gyrus, Calcarine, 

Superior Occipital Gyrus, 

Cerebellum,  Cuneus, 

Cerebellum 

1611 28 -94 -8 7.85 

c) Group 3 

(CET II) 

 

T1 

n = 42       

L, R Occipital, 

Temporal 

Fusiform Gyrus, Inferior Occipital 

Gyrus, Middle Occipital Gyrus, 

Inferior Occipital Gyrus, Lingual 

Gyrus, Fusiform Gyrus, Lingual 

Gyrus, Calcarine,  Cerebellum, 

Cerebellum, Calcarine, 

Cerebellum, Middle Occipital 

Gyrus, Cerebellum, Superior 

Occipital Gyrus, Inferior 

Temporal Gyrus, Cuneus 

4899 -26 -90 -12 9.25 

L Occipital, 

Temporal, 

Parietal 

Angular Gyrus, Inferior Parietal 

Gyrus, Superior Parietal Gyrus, 

Middle Occipital Gyrus, Superior 

Occipital Gyrus, Middle Temporal 

Gyrus 

693 -32 -70 52 5.45 

L, R  Precuneus, Posterior Cingulum,  

Cuneus, Posterior Cingulum, 

Precuneus, Middle Cingulum, 

Calcarine 

721 0 -36 26 5.06 

L Frontal Precentral Gyrus, Middle Frontal 

Gyrus,  Postcentral Gyrus 

141 -48 -2 54 4.53 

R Occipital, 

Parietal 

Superior Occipital Gyrus, 

Angular Gyrus, Middle Occipital 

Gyrus, Superior Parietal Gyrus 

195 32 -66 40 4.09 
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T2 

       

L Occipital, 

Temporal 

Middle Occipital Gyrus, Fusiform 

Gyrus, Inferior Occipital Gyrus, 

Lingual Gyrus, Cerebellum, 

Cerebellum,  Calcarine, Inferior 

Temporal Gyrus, Superior 

Occipital Gyrus 

3285 -28 -90 -8 11.17 

R Occipital Inferior Occipital Gyrus, Lingual 

Gyrus, Fusiform Gyrus, 

Cerebellum, Calcarine, Middle 

Occipital Gyrus,  Superior 

Occipital Gyrus, Cuneus 

2108 32 -94 -10 9.35 

L Occipital, 

Parietal 

Superior Parietal Gyrus, Inferior 

Parietal Gyrus, Middle Occipital 

Gyrus, Superior Occipital Gyrus,  

Angular 

663 -22 -62 42 5.47 

R Occipital, 

Parietal 

Superior Occipital Gyrus, 

Angular Gyrus, Superior Parietal 

Gyrus, Middle Occipital Gyrus,  

Cuneus 

680 30 -64 44 5.31 

L Frontal Precentral Gyrus, Inferior Frontal 

Gyrus, Postcentral Gyrus, 

581 -44 -8 44 5.00 

L, R  Precuneus, Posterior Cingulum, 

Precuneus,  Calcarine, Posterior 

Cingulum 

354 -4 -54 26 4.45 

d) Group 4 

(CET + DCS) 

 

T1 

n = 32       

L, R Occipital, 

Temporal 

Middle Occipital Gyrus, Fusiform 

Gyrus, Lingual Gyrus, Inferior 

Occipital Gyrus, Inferior Occipital 

6430 -24 -100 -4 9.65 
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Gyrus, Lingual Gyrus, Fusiform 

Gyrus, Calcarine,  Middle 

Occipital Gyrus, Cerebellum, 

Calcarine, Cerebellum, 

Cerebellum, Cerebellum, 

Superior Occipital Gyrus, 

Superior Occipital Gyrus, 

Cuneus, Inferior Temporal Gyrus, 

Cuneus 

 

T2 

       

L, R Occipital, 

Temporal 

Middle Occipital Gyrus, Fusiform 

Gyrus, Lingual Gyrus, Inferior 

Occipital Gyrus, Inferior Occipital 

Gyrus, Lingual Gyrus, Fusiform 

Gyrus, Calcarine,   Calcarine, 

Middle Occipital Gyrus, 

Cerebellum, Cerebellum, 

Cerebellum, Superior Occipital 

Gyrus, Superior Occipital Gyrus, 

Cerebellum, Cuneus, Cuneus, 

Inferior Temporal Gyrus, Inferior 

Temporal Gyrus 

5811 -24 -98 -4 9.42 

L, R  Precuneus, Posterior Cingulum 111 -2 -54 22 4.44 

e) Group 5 

(NTX) 

 

T1 

n = 20       

L Occipital Inferior Occipital Gyrus,  

Fusiform Gyrus, Middle Occipital 

Gyrus, Lingual Gyrus, 

Cerebellum, Calcarine, 

Cerebellum 

1803 -34 -90 -12 7.16 

R Occipital Inferior Occipital Gyrus, Lingual 

Gyrus,  Calcarine, Middle 

678 24 -98 -12 6.92 
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Occipital Gyrus, Fusiform Gyrus, 

Superior Occipital Gyrus 

L, R Occipital Precuneus, Precuneus, Cuneus, 

Posterior Cingulum, Cuneus, 

Outsiede, Posterior Cingulum, 

Superior Occipital Gyrus, Middle 

Cingulum, Superior Occipital 

Gyrus 

1083 0 -38 26 4.88 

L Occipital Angular Gyrus, Middle Occipital 

Gyrus 

119 -44 -66 34 4.48 

R 

 

 Caudate, Pallidum, Putamen 140 18 -4 6 4.08 

T2        

R Occipital Inferior Occipital Gyrus, Lingual 

Gyrus, Calcarine, Middle 

Occipital Gyrus, Fusiform Gyrus,   

Superior Occipital Gyrus, 

Cuneus, Cerebellum, 

Cerebellum 

1242 24 -98 -8 9.42 

L Occipital Middle Occipital Gyrus, Inferior 

Occipital Gyrus,  Fusiform Gyrus, 

Lingual Gyrus, Cerebellum, 

Calcarine, Cerebellum 

1975 -26 -96 -8 8.02 

L Occipital, 

Parietal 

Superior Parietal Gyrus, Inferior 

Parietal Gyrus, Middle Occipital 

Gyrus, Superior Occipital Gyrus,  

Angular 

582 -26 -68 44 5.47 

R Occipital, 

Parietal 

Superior Parietal Gyrus, Superior 

Occipital Gyrus, Angular Gyrus,  

Middle Occipital Gyrus, Inferior 

Parietal Gyrus 

468 28 -68 44 4.72 
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Supplementary Table S 2.2 Atlas-based mean Intraclass Correlation (ICC) values for the anatomical 

regions specified in the aal atlas and mean ICC values for the ventral and dorsal striatum regions of 

interest mask that were built according to the definition of Schacht et al. (2011), in order to allow 

comparability between studies.  

Group IWT N=21 CET I N=29 CET II N=42 

CET+DCS 

N=32 NTX N=20 

Paradigm ALCUEPV ALCUE ALCUEPV ALCUE ALCUE 

Amygdala_L 4201 0.29 0.19 0.11 -0.15 0.18 

Amygdala_R 4202 0.09 -0.03 0.00 -0.21 0.28 

Angular_L 6221 0.20 0.27 0.23 0.14 0.08 

Angular_R 6222 0.17 0.17 0.15 0.05 0.08 

Calcarine_L 5001 0.30 0.25 0.10 0.09 0.46 

Calcarine_R 5002 0.30 0.28 -0.01 0.05 0.42 

Caudate_L 7001 0.06 0.13 0.05 0.09 0.13 

Caudate_R 7002 0.15 0.16 -0.05 0.02 0.30 

Cerebelum_L 9081 0.37 0.35 -0.10 0.02 0.25 

Cerebelum_R 9082 0.14 0.02 -0.13 -0.23 0.22 

Cerebelum_L 9021 -0.02 -0.11 -0.15 0.13 0.34 

Cerebelum_R 9022 -0.10 -0.16 -0.20 0.05 0.41 

Cerebelum_L 9031 0.17 0.11 -0.16 -0.01 0.25 

Cerebelum_R 9032 0.05 0.01 -0.12 -0.01 0.21 

Cerebelum_L 9041 0.17 0.17 0.01 -0.05 0.23 

Cerebelum R 9042 0.13 0.05 0.01 -0.13 0.29 

Cerebelum_L 9051 0.21 -0.11 0.00 0.00 0.19 

Cerebelum_R 9052 0.03 0.09 0.05 0.17 0.06 

Cerebelum_L 9061 0.19 0.08 -0.06 -0.28 0.18 
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Cerebelum_R 9062 0.20 0.07 0.22 -0.21 0.16 

Cerebelum_L 9071 0.18 0.01 0.20 -0.21 0.20 

Cerebelum R 9072 0.13 0.12 0.01 -0.14 0.19 

Cerebelum_Crus_L 9001 0.21 0.16 0.12 -0.12 0.26 

Cerebelum_Crus_R 9002 0.22 0.17 0.07 -0.10 0.30 

Cerebelum_Crus_L 9011 0.33 0.10 -0.04 -0.14 0.18 

Cerebelum_Crus_R 9012 0.03 0.13 0.04 -0.13 0.20 

Cingulum_Ant_L 4001 0.20 0.09 0.13 -0.12 0.24 

Cingulum_Ant_R 4002 0.24 0.08 0.11 -0.14 0.20 

Cingulum_Mid_L 4011 0.15 0.11 -0.06 0.11 0.18 

Cingulum_Mid_R 4012 0.15 0.09 -0.03 0.05 0.13 

Cingulum_Post_L 4021 0.23 0.29 0.21 0.12 0.05 

Cingulum_Post_R 4022 0.13 0.31 0.16 0.11 0.02 

Cuneus_L 5011 0.46 0.33 0.14 0.08 0.19 

Cuneus_R 5012 0.35 0.29 0.09 0.00 0.24 

Frontal_Inf_Oper_L 2301 0.29 0.18 0.22 0.05 0.27 

Frontal_Inf_Oper_R 2302 0.29 0.13 0.14 0.03 0.00 

Frontal_Inf_Orb_L 2321 0.25 0.21 0.17 0.15 0.21 

Frontal_Inf_Orb_R 2322 0.28 0.18 0.07 0.05 0.12 

Frontal_Inf_Tri_L 2311 0.16 0.28 0.21 -0.06 0.28 

Frontal_Inf_Tri_R 2312 0.26 0.09 0.13 -0.05 0.01 

Frontal_Med_Orb_L 2611 0.05 0.10 0.24 -0.08 0.20 

Frontal_Med_Orb_R 2612 0.10 0.15 0.14 -0.02 0.10 

Frontal_Mid_L 2201 0.28 0.21 -0.01 -0.05 0.31 

Frontal_Mid_Orb_L 2211 0.23 0.23 0.28 0.12 0.28 

Frontal_Mid_Orb_R 2212 0.24 0.25 0.11 -0.03 0.14 

Frontal_Mid_R 2202 0.25 0.19 0.03 -0.10 0.09 
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Frontal_Sup_L 2101 0.22 0.10 0.02 -0.04 0.28 

Frontal_Sup_Medial_L 2601 0.25 0.06 0.02 -0.08 0.20 

Frontal_Sup_Medial_R 2602 0.16 0.12 0.03 -0.10 0.16 

Frontal_Sup_Orb_L 2111 0.20 0.09 0.30 -0.12 0.05 

Frontal_Sup_Orb_R 2112 0.19 0.24 0.03 -0.10 0.10 

Frontal_Sup_R 2102 0.14 0.15 0.01 -0.09 0.18 

Fusiform_L 5401 0.21 0.30 0.25 0.21 0.30 

Fusiform_R 5402 0.19 0.20 0.09 0.24 0.27 

Heschl_L 8101 0.57 0.19 0.12 -0.08 0.13 

Heschl_R 8102 0.42 0.15 -0.01 -0.12 0.22 

Hippocampus_L 4101 0.24 0.30 0.08 0.00 0.21 

Hippocampus_R 4102 0.27 0.06 0.01 -0.01 0.17 

Insula_L 3001 0.31 0.14 0.06 0.00 0.11 

Insula_R 3002 0.21 0.12 0.03 -0.10 0.11 

Lingual_L 5021 0.26 0.34 0.14 0.11 0.30 

Lingual_R 5022 0.37 0.30 0.04 0.00 0.30 

Occipital_Inf_L 5301 0.33 0.33 0.36 0.35 0.33 

Occipital_Inf_R 5302 0.32 0.37 0.28 0.29 0.32 

Occipital_Mid_L 5201 0.30 0.32 0.27 0.22 0.38 

Occipital_Mid_R 5202 0.25 0.32 0.21 0.21 0.32 

Occipital_Sup_L 5101 0.40 0.43 0.16 0.06 0.25 

Occipital_Sup_R 5102 0.31 0.36 0.10 0.05 0.22 

Olfactory_L 2501 0.25 0.24 0.16 0.00 0.11 

Olfactory_R 2502 0.16 0.22 -0.06 -0.03 0.09 

Pallidum_L 7021 0.17 -0.04 0.16 -0.02 0.41 

Pallidum_R 7022 0.32 0.13 -0.03 0.01 0.38 

Paracentral_Lobule_L 6401 0.38 0.22 -0.07 -0.05 0.12 
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Paracentral_Lobule_R 6402 0.30 0.21 -0.13 0.02 0.20 

Para_Hippocampal_L 4111 0.18 0.08 0.01 0.03 0.15 

Para_Hippocampal_R 4112 0.14 -0.06 -0.09 0.03 0.11 

Parietal_Inf_L 6201 0.17 0.33 0.01 0.19 0.30 

Parietal_Inf_R 6202 0.10 0.38 -0.01 0.12 0.19 

Parietal_Sup_L 6101 0.39 0.30 0.03 0.09 0.38 

Parietal_Sup_R 6102 0.28 0.24 0.06 0.03 0.29 

Postcentral_L 6001 0.28 0.22 0.00 0.00 0.12 

Postcentral_R 6002 0.30 0.10 -0.03 0.03 0.09 

Precentral_L 2001 0.16 0.22 0.11 -0.02 0.23 

Precentral_R 2002 0.22 0.19 0.00 -0.10 0.06 

Precuneus_L 6301 0.24 0.32 0.11 0.11 0.07 

Precuneus_R 6302 0.07 0.30 0.08 0.12 0.10 

Putamen_L 7011 0.31 0.04 0.11 -0.01 0.33 

Putamen_R 7012 0.23 0.07 0.10 -0.14 0.35 

Rectus_L 2701 0.15 0.22 0.25 -0.03 0.10 

Rectus_R 2702 0.19 0.17 0.12 -0.09 0.17 

Rolandic_Oper_L 2331 0.51 0.13 0.13 -0.11 0.11 

Rolandic_Oper_R 2332 0.39 0.19 0.04 -0.24 0.16 

Supplementary_Motor_Area_L 

2401 0.24 0.16 -0.04 -0.07 0.03 

Supplementary_Motor_Area_R 

2402 0.22 0.22 -0.05 -0.09 0.03 

SupraMarginal_L 6211 0.27 0.18 -0.09 -0.02 0.28 

SupraMarginal_R 6212 0.27 0.04 -0.04 0.02 0.00 

Temporal_Inf_L 8301 0.25 0.18 0.21 0.01 0.21 

Temporal_Inf_R 8302 0.15 0.22 0.08 0.14 0.23 
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Temporal_Mid_L 8201 0.28 0.15 0.20 0.06 0.26 

Temporal_Mid_R 8202 0.16 0.11 0.14 0.05 0.22 

Temporal_Pole_Mid_L 8211 0.36 -0.08 -0.09 -0.03 0.04 

Temporal_Pole_Mid_R 8212 0.25 0.19 0.06 -0.05 0.02 

Temporal_Pole_Sup_L 8121 0.11 0.11 0.02 -0.01 0.17 

Temporal_Pole_Sup_R 8122 0.02 0.16 -0.03 -0.09 0.07 

Temporal_Sup_L 8111 0.37 0.18 0.10 -0.03 0.12 

Temporal_Sup_R 8112 0.27 0.16 0.02 -0.05 0.14 

Thalamus_L 7101 0.32 0.23 0.09 -0.10 0.19 

Thalamus_R 7102 0.35 0.25 0.06 -0.17 0.21 

Vermis_9100 0.17 0.00 -0.19 -0.01 0.30 

Vermis_9110 0.02 0.05 -0.08 0.16 0.26 

Vermis 9120 0.07 0.11 -0.01 -0.12 0.21 

Vermis_9130 0.03 0.10 0.12 -0.15 0.20 

Vermis_9140 -0.14 0.08 0.14 -0.31 0.36 

Vermis_9150 -0.18 0.09 0.00 -0.29 0.22 

Vermis 9160 0.01 0.12 0.00 -0.24 0.18 

Vermis_9170 0.11 -0.16 0.00 -0.07 0.06 

      
DS_L (Schacht et al. 2011) 0.19 -0.04 0.01 -0.10 -0.04 

DS_R (Schacht et al. 2011) 0.30 -0.01 -0.11 -0.08 0.06 

VS_L (Schacht et al. 2011) 0.09 0.33 0.06 0.33 0.10 

VS_R (Schacht et al. 2011) 0.25 0.36 -0.21 0.16 0.29 

VS=Ventral Striatum, DS=Dorsal Striatum, L=left hemisphere, R=right hemisphere, Ant=Anterior, Post=Pos-

terior, Mid=Middle, Sup=Superior, Inf=Inferior, numbers indicate the number of the aal atlas, ALCUE = version 

1 of the alcohol cue-reactivity task, ALCUEPV = version 2 of the alcohol cue-reactivity task without a rating 

phase 
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Supplementary Table S 2.3 Jaccard and Dice coefficients for the three task condition contrasts alco-

hol-neutral, alcohol and neutral, illustrating the proportion of overlapping significant voxels between 

the and second fMRI session (for the thresholds p<0.001 and p<0.01, defining super-threshold activa-

tion).  

Jaccard Coefficient 

A] Threshold p < 0.01 

Difference Contrast: alcohol vs. neutral 

Group IWT CET I CET II CET + DCS IWT + NTX Total 

M 0,07 0,03 0,10 0,06 0,09 0,07* 

SD 0,11 0,06 0,11 0,09 0,09 0,10 

Contrast: alcohol 

Group IWT CET I CET II CET + DCS IWT + NTX Total 

M 0,51 0,50 0,52 0,58 0,52 0,53* 

SD 0,20 0,18 0,17 0,13 0,17 0,17 

Contrast: neutral 

Group IWT CET I CET II CET + DCS IWT + NTX Total 

M 0,51 0,50 0,55 0,58 0,52 0,54* 

SD 0,21 0,18 0,17 0,13 0,18 0,17 

B] Threshold p < 0.001 

Difference Contrast: alcohol vs. neutral 

Group IWT CET I CET II CET + DCS IWT + NTX Total 

M 0,09 0,05 0,11 0,08 0,10 0,08* 

SD 0,12 0,07 0,10 0,10 0,09 0,10 

Contrast: alcohol 

Group IWT CET I CET II CET + DCS IWT + NTX Total 

M 0,46 0,46 0,48 0,53 0,49 0,48* 

SD 0,18 0,14 0,15 0,10 0,14 0,14 

Contrast: neutral 
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Group IWT CET I CET II CET + DCS IWT + NTX Total 

M 0,46 0,44 0,49 0,52 0,48 0,48* 

SD 0,17 0,16 0,15 0,14 0,14 0,15 

Dice Coefficient 

C] Threshold p < 0.01 

Difference Contrast: alcohol vs. neutral 

Group IWT CET I CET II CET + DCS IWT + NTX Total 

M 0,12 0,06 0,17 0,09 0,15 0,12* 

SD 0,17 0,11 0,17 0,14 0,15 0,15 

Contrast: alcohol 

Group IWT CET I CET II CET + DCS IWT + NTX Total 

M 0,65 0,65 0,67 0,72 0,67 0,67* 

SD 0,23 0,19 0,19 0,11 0,19 0,18 

Contrast: neutral 

Group IWT CET I CET II CET + DCS IWT + NTX Total 

M 0,64 0,65 0,69 0,72 0,66 0,68* 

SD 0,24 0,19 0,18 0,11 0,19 0,18 

D] Threshold p < 0.001 

Difference Contrast: alcohol vs. neutral 

Group IWT CET I CET II CET + DCS IWT + NTX Total 

M 0,15 0,08 0,18 0,13 0,17 0,14* 

SD 0,17 0,11 0,15 0,15 0,14 0,15 

Contrast: alcohol 

Group IWT CET I CET II CET + DCS IWT + NTX Total 

M 0,61 0,62 0,63 0,68 0,64 0,64* 

SD 0,21 0,15 0,17 0,09 0,14 0,16 

Contrast: neutral 

Group IWT CET I CET II CET + DCS IWT + NTX Total 
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M 0,61 0,60 0,64 0,67 0,63 0,63* 

SD 0,19 0,18 0,17 0,12 0,15 0,16 

* = significant main effect of task contrast condition (alcohol-neutral, alcohol, neutral) at p < 0.05, such that values for the difference con-

trasts (alcohol-neutral) significantly differed from the other two conditions 
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Supplementary Table S 2.4 Results of the data simulation on the magnitude of the correlations be-

tween the constituting contrast conditions (V1 and V2) and external variables (correlating with the con-

stituting contrast conditions to V3=0.1, V4=0.2, V5=0.3, V6=0.4, V7=0.5, V8=0.6, V9=0.7, V10=0.8) and 

between the difference score (V1-V2) and the external variables. The absolute difference increases for 

higher correlations between the constituting task conditions and the external variables, while the per-

cent difference remained stable at about 33 to 34% across all correlation magnitudes.  

  V1 V2 V1-V2 Absolute Difference (V1,V2 vs. V1-V2) Deviation in % 

V3 0.100 0.099 0.066 0.034 33.668 

V4 0.199 0.199 0.132 0.067 33.668 

V5 0.298 0.298 0.197 0.101 33.893 

V6 0.398 0.398 0.264 0.134 33.668 

V7 0.499 0.498 0.329 0.170 34.002 

V8 0.598 0.598 0.396 0.202 33.779 

V9 0.699 0.699 0.462 0.237 33.906 

V10 0.799 0.798 0.527 0.272 34.001 
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Supplementary Figures 

Supplementary Figure S 2.1 Depiction of brain areas that show moderate to good reliability or the 

alcohol condition contrast (Intraclass correlation [ICC] > 0.4) for the different study groups (A to E, left 

column) and histograms depicting the distribution of ICC values and the mean and median for the 

different study groups (right column). 
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Supplementary Figure S 2.2 Depiction of brain areas that show moderate to good reliability for the 

difference contrast alcohol-neutral (Intraclass correlation [ICC] > 0.4) for the different study groups (A 

to E, left column) and histograms depicting the distribution of ICC values and the mean and median 

for the different study groups (right column). 
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Supplementary Figure S 2.3 Depiction of the results of the data simulation illustrating the lower cor-

relation between the simulated external variables (modeled after the OCDS scores, correlating with 

the constituting contrast conditions V1 and V2 to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) and the difference 

score (V1-V2). 
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Supplementary Figure S 2.4 Illustration of the dependence between effect size estimates (Cohen’s 

d), reliability and adjusted Cohen’s d approximating the “true” population effect. Values show that 

the effect sizes are substantially over-estimated when studies rely on un-reliable measures.   
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2.2 Study 2 - Reliability of neural food-cue reactivity in participants with obesity 

undergoing bariatric surgery: a 26-week longitudinal fMRI study2 

2.2.1 Abstract 

Obesity is highly prevalent worldwide and results in a high disease burden. The efforts 

to monitor and predict treatment outcome in participants with obesity using func-

tional magnetic resonance imaging (fMRI) depends on the reliability of the investi-

gated task-fMRI brain activation. To date, no study has investigated whole-brain reli-

ability of neural food cue-reactivity. To close this gap, we analyzed the longitudinal 

reliability of an established food cue-reactivity task. 

Longitudinal reliability of neural food-cue induced brain activation and subjective food 

craving ratings over three fMRI sessions (T0: two weeks before surgery, T1: eight 

weeks and T2: 24 weeks after surgery) were investigated in N=11 participants with 

obesity. We computed an array of established reliability estimates, including the in-

traclass correlation (ICC), the Dice and Jaccard coefficients and similarity of brain ac-

tivation maps.  

The data indicated good reliability (ICC > 0.6) of subjective food craving ratings over 

26 weeks and excellent reliability (ICC > 0.75) of brain activation signals for the con-

trast of interest (food>neutral) in the caudate, putamen, thalamus, middle cingulum, 

inferior, middle and superior occipital gyri, and middle and superior temporal gyri and 

cunei. Using similarity estimates, it was possible to re-identify individuals based on 

their neural activation maps (73%) with a fading degree of accuracy, when comparing 

fMRI sessions further apart. 

                                                        

2 Bach P, Grosshans M, Koopmann A, Kienle P, Vassilev G, Otto M, Bumb JM, Kiefer F. Reliability of neural food 

cue-reactivity in participants with obesity undergoing bariatric surgery: a 26-week longitudinal fMRI study. Eur 

Arch Psychiatry Clin Neurosci. 2021 Aug;271(5):951-962. doi: 10.1007/s00406-020-01218-8. Epub 2020 Dec 17. 

PMID: 33331960; PMCID: PMC8236041. 
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The results show excellent reliability of task-fMRI neural brain activation in several 

brain regions. Current data suggests that fMRI-based measures might indeed be suit-

able to monitor and predict treatment outcome in participants with obesity undergo-

ing bariatric surgery.   

2.2.2 Introduction 

Obesity affects more than 650 million people worldwide (WHO, 2018). Overweight 

has been identified as a major cause of cardiovascular diseases, diabetes, musculo-

skeletal disorders as well as several types of cancer (Bhaskaran et al., 2014). The as-

sessment of behavioral and neural responses towards food cues has received some 

interest in the last decade as a tool to investigate the neurobiological basis of obesity 

(Harding et al., 2018; Kerem et al., 2019). A recent meta-analysis on food cue-reactiv-

ity concluded that across 45 published reports the overall effect of food cue-reactivity 

and craving on outcomes in patients was of medium size (r=0.3) with a large variability 

across studies. Authors concluded that food cue exposure and the experience of crav-

ing have a significant influence on and contribute to eating behavior and weight gain 

(Boswell & Kober, 2016). Functional magnetic resonance imaging (fMRI) was used to 

identify the neural correlates of food craving, food perception, and food intake. Struc-

tures implicated in food‐intake regulation include the anterior insula, inferior frontal 

and orbitofrontal cortices, the medial temporal cortex with the amygdala and para-

hippocampus, as well as the nucleus accumbens, and visual cortices (Benarroch, 

2010). In the last years, efforts were undertaken to establish neural predictors for eat-

ing behavior and treatment response. Some studies reported significant associations 

between neural responses to food cues and weight loss during treatment, but overall 

the studies report heterogeneous findings (Huerta et al., 2014). The inconsistencies in 

study results demand for an investigation of the reliability and robustness of the ap-

plied food cue-reactivity task, because the possibility to establishing meaningful and 

robust associations between neural brain responses during food cue presentation and 

any behavioral or clinical variable critically depends on the reliability of the investi-
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gated task-fMRI brain activation. Previous studies have demonstrated substantial var-

iability in findings of food cue-reactivity studies. Although brain responses to visual 

food cues in participants with obesity have been found to have relatively good mean-

level reproducibility, they had poor within-subject test-retest reliability (R Drew Sayer 

et al., 2016). Several factors were associated with the heterogeneity in findings, in-

cluding different expression of the fat mass and obesity-associated genes (e.g. FTO) 

(Karra et al., 2013; Rapuano et al., 2017; Wiemerslage et al., 2016), fasted state vs. glu-

cose ingestion prior to fMRI (Heni et al., 2014) and divergent characteristics of the in-

dividual study designs, including the structure, timing and stimuli used during the food 

cue-reactivity fMRI task. Further, there are clear individual differences in food prefer-

ences that were associated with additional variance across studies (Van Der Laan & 

Smeets, 2015). Additionally, small sample sizes and a lack of power were related to 

inconsistencies between studies (Button et al., 2013). Moreover, a study comparing 

the results of 70 different teams analyzing the same dataset, revealed significant var-

iability in the analysis of the same fMRI food cue-reactivity dataset depending on the 

researcher’s decision to use a certain the statistical software (e.g. SPM vs. FSL vs. 

AFNI) or statistical method (parametric vs. non-parametric) as well as the applied 

smoothing kernel (Botvinik-Nezer et al., 2020). The results highlight the need for bet-

ter standardization of the food stimuli and fMRI task designs and the additional data 

that is collected on participant’s state (hunger, mood, hormones etc.) and personal 

characteristics that may be used to control for confounding effects in the analyses. 

The aforementioned findings emphasize the importance of establishing standardized 

food cue-reactivity paradigms, study protocols and analysis workflows. To this end, 

guidelines for good practice in food cue-reactivity neuroimaging studies were pro-

posed. According to these guidelines, researchers planning fMRI studies should take 

special care to: power calculation, hunger state and related factors, personal charac-

teristics, the selection of food-related stimuli, setting well-considered statistical 

thresholds for whole brain analyses, minimizing the risk of movement artifacts, anal-

ysis of prospective designs as well as predictive modelling. Moreover, the authors sug-

gest to pre-register planned studies and to share the data obtained (Smeets et al., 
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2019). In doing so, it would be possible to ensure reproducibility of results across cue-

reactivity studies (Smeets et al., 2019). 

To date, there is no study that investigated whole-brain reliability of food cue-induced 

brain activation. To our knowledge, only a single fMRI study investigated the longitu-

dinal reliability of extracted mean brain activation during food cue processing over a 

mean period of 18 days (3-35 days), which is short considering follow-up periods of 

clinical studies that run over months. Additionally, reliability was only assessed in a 

selected range of a priori defined regions of interest (bilateral insula, amygdala, or-

bitofrontal cortex, caudate and putamen) (R. Drew Sayer et al., 2016). The authors 

reported that in their dataset, only the left orbitofrontal cortex response showed fair 

reliability, while all other regions of interest showed poor reliability. The authors also 

stated that the large inter-individual range of days between the two assessment ses-

sions might have limited reliability in their study. Additionally, previous research high-

lighted that low reliability in fMRI studies might also be associated to the computation 

of difference scores or difference contrasts, where one condition is subtracted from 

the other. For example, regarding the food cue-reactivity tasks, it is common to sub-

tract the brain activation during food picture blocks from activation during neutral pic-

ture blocks. However, in the case of a high correlation between the constituting con-

ditions of a difference score, the resulting reliability of that score is limited, because 

much of the shared “true” variance is removed, while the measurement errors are 

added (Infantolino et al., 2018; Peter et al., 1993). To date however, no study investi-

gated whole brain reliability of food-cue induced brain responses over a longer period 

of time and, importantly, no study to date investigated reliability in samples of pa-

tients undergoing surgery. This, however, seems relevant to the ongoing efforts to 

establish predictors and biomarkers for treatment efficacy in obesity. In this context, 

it is necessary to determine the reliability of food cue-reactivity in clinical populations 

undergoing treatment, because only this way the robustness and suitability of cue-

reactivity as a biomarker in obesity can be assessed. Hence, we conducted our anal-

yses in a clinical population undergoing surgery, as this sample reflects a sample for 

whom biomarkers should be established to predict and monitor treatment outcomes 
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using fMRI biomarkers. Hence, we set out to assess the reliability of neural food-cue 

reactivity in a longitudinal dataset of individuals with obesity over three neuroimaging 

assessments that were scheduled two weeks before bariatric surgery, and eight and 

twenty-four weeks after surgical intervention. We used an unrestricted whole-brain 

approach and a set of complementary measures for fMRI reliability, aimed at deter-

mining the global and local reliability of the difference contrast (food-neutral) and of 

the constituting food and neutral picture conditions. Additionally, we compared the 

reliability of food cue-reactivity to the reliability of commonly applied subjective crav-

ing measures that were measured during the fMRI session. 

2.2.3 Methods 

Participants  

Current analyses were conducted on a dataset of N=11 individuals with obesity of 

whom fMRI task data was available for three time points and that were part of a larger 

longitudinal clinical study, including a total of N=26 participants with obesity, of 

whom however only the N=11 participants met the inclusions criteria for undergoing 

fMRI scanning (e.g. absence of metal implants, claustrophobia and waist circumfer-

ence < 160 cm (due to the scanner diameter). The clinical data of the of the whole 

study group are reported elsewhere. In short, patients showed a percent total weight 

loss after surgery (%TWL) from T0 to T2 of 23.8 %TWL after Roux-en-Y gastric bypass 

(n=21) and 12.7 %TWL after sleeve gastrectomy (n=5) with no significant difference 

between both procedures (p = 0.126). There were also significant reductions of resting 

heart rate, fasting plasma glucose levels and depressive symptoms (all p < 0.001). Only 

individuals with obesity that already decided to receive bariatric surgery were re-

cruited for this study. The study procedure was approved by the local ethics commit-

tee and all participants provided written informed consent. 

Individuals with obesity undergoing fMRI had to meet the following inclusion criteria: 

i) age between 18 and 65 years, ii) BMI (kg/m2) > 35 (i.e. ≥ grade 2 obesity), iii) a waist 
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circumference < 160 cm (limited by scanner diameter), iv) the capacity to give in-

formed consent, v) no history or current diagnosis of any psychiatric, neurological, ne-

oplastic or untreated endocrine illnesses (with the exception of nicotine addiction), 

and no current intake of any centrally acting psychoactive or anti-obesity medications 

(i.e. sedatives, antipsychotics, including long-acting injectable antipsychotics, antide-

pressants, opioid analgesics as well as DPP (dipeptidyl peptidose IV) inhibitors and 

GLP (Glucagon-like peptide)-1 antagonists, vi) all participants with a history of surgical 

interventions in the gastrointestinal system or contraindications to fMRI scanning 

(e.g. metal implants), and pregnant or breast-feeding females were excluded.  

Twenty-six individuals (17 females and 9 males, mean age 41 ± 12 years, mean BMI 46 

± 6 kg/m2) were eligible for analyses (demographics, bariatric surgery, blood analyses 

as well as behavioral data) and included in the study. Of these 26 individuals, 21 re-

ceived Roux-en-Y gastric bypass and 5 sleeve gastrectomy. Imaging data could be ob-

tained for 11 obese individuals (10 individuals received Roux-en-Y gastric bypass and 

1 sleeve gastrectomy; 15 individuals had to be excluded due to the fact that they did 

not fit the scanner.  

Procedures 

T0 (Two weeks before bariatric surgery) 

During the first assessment session, sociodemographic data, information on internal 

and neurological disorders, as well as information on eating habits was collected. In 

addition, participants were screened for any psychiatric comorbidities using the Struc-

tured Clinical Interviews for DSM-IV, SKID-I, (H.U. Wittchen et al., 1997). Additionally, 

a urine drug screening, and in females a pregnancy test was conducted.  

fMRI scanning was performed between noon and 3 PM. All participants received a 

standardized breakfast of 500 kcal (2093 kJ) 6 hours before fMRI scanning and did not 

eat until the scanning. Subsequently, participants completed a series of question-

naires including the Beck Depression Inventory (BDI, (Beck et al., 1961), the Fager-

strom Test for Cigarette Dependence (FTCD (Fagerstrom, 2012) as well as the Yale 

Food Addiction Scale (YFAS) (Gearhardt et al., 2009).  
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T1 and T2 (Eight and 24 weeks after bariatric surgery) 

At both time points, participants were examined medically, urine drug screenings, and 

in females a pregnancy test were performed. Moreover, possible changes in medica-

tion were documented. MRI measurements were performed at both time points using 

the same procedures and tasks as during the first scanning session.  

 Imaging procedure 

fMRI food cue-reactivity task 

All patients included in the current analyses underwent three different imaging ses-

sions. During these sessions, patients laid in the scanner wearing MRI-compatible 

goggles, on which sets of visual food and neutral stimuli were presented using a block 

design. The task consisted of a total of 18 blocks of food stimuli and 12 blocks of neu-

tral stimuli. Each block comprised of a series of five food or neutral pictures. Food 

stimuli were further divided in three categories: salty high-calorie, sweet high-calorie, 

low-calorie, yielding 6 blocks for each category. All stimuli were shown for 4 seconds 

(i.e. 20 seconds per block) in a pseudo-randomized order. Participants were instructed 

to closely watch each picture and were informed that they will be asked to rate their 

subjective craving. In-between each picture block, patients were asked to rate their 

current craving for food on a visual analogue scale (VAS) that ranged from 0 - “very 

weak” to 100 - “very strong”. The fMRI took 18 minutes. Food stimuli chosen were 

rated according to their ability to induce food craving by 44 voluntary participants at 

our institution (Grosshans et al., 2012) and neutral cues were taken from the Interna-

tional Affective Picture Series (Lang et al., 1999). 

fMRI acquisition and pre-processing 

A total of 453 images T2*-weighted, echo planar images covering the entire brain 

were acquired during the food cue task using a 3-T whole-body tomography scanner 

(MAGNETOM Trio with TIM technology; Siemens). Imaging parameters were: repeti-

tion time = 2.41 seconds, echo time = 25 milliseconds, flip angle = 80°, number of slices 

= 42, slice thickness = 2 mm, voxel-gap = 1 mm, voxel dimensions = 3 × 3 × 3 mm3, field 
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of view = 192 × 192 mm2, in-plane resolution = 64 × 64. The short echo time and the 

30° flip angle to anterior commissure–posterior commissure orientation was chosen 

to minimize susceptibility artefacts. Stimuli were presented using Presentation soft-

ware (version 9.9, Neurobehavioral Systems Inc.) and MRI-compatible goggles (MRI 

Audio/Video Systems; Resonance Technology Inc., CA).  

Functional-imaging data was processed and analyzed using SPM8 and SPM12. The 

first 5 scans were excluded from imaging analyses to avoid any artefacts caused by the 

effects of magnetic saturation. All images were realigned spatially (movement was 

considered excessive with > 2mm translation or >2° rotation), normalized to a stand-

ardized EPI template from MNI (Montreal Neurological Institute, Quebec, Canada), 

and smoothed using an isotropic Gaussian kernel for group analyses (full width at half 

maximum: 8 mm). 

Food cue-reactivity imaging data was analyzed by modelling the different task condi-

tions (food with the subcategories salty high-calorie, sweet high-calorie, low-calorie 

and neutral) as explanatory variables within a general linear model in SPM implement-

ing the movement parameters as nuisance variables. Individual contrast images (food 

cues > neutral cues) were computed for each individual and then included into follow-

ing second-level analyses in SPM. Nicotine consumption (categorical) was considered 

as covariate, because previous work indicated that nicotine modulates food–cue reac-

tivity (Kroemer et al., 2013). In order to satisfy a family-wise error rate correction of 

pFWE < .05, we determined a combined height (p < .001) and extent (k ≥ 103) threshold 

by running 10.000 Monte Carlo simulations using AlphaSim as implemented in the 

Neuroelf analysis package (www.neuroelf.net) (Bennett et al., 2009), (estimated 

smoothness was x/y/z = 10.13/9.86/10.33 mm) (Eklund et al., 2016). 

  

http://www.neuroelf.net/
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Reliability analyses 

We investigated the reliability of subjective food craving ratings (i.e. mean craving for 

food – mean craving for neutral stimuli during the 1st, 2nd and 3rd assessment session, 

in order to correspond to the fMRI task contrast “food – neutral”) over the three fMRI 

sessions by computing the intraclass correlation coefficients using a two-way, mixed 

effects model in IBM SPSS (version 25.0). Additionally, whole-brain longitudinal relia-

bility of individual brain responses to food stimuli over the three imaging sessions by 

computing measures of local and global reliability using the fmreli toolbox for SPM12 

by Kroemer, Frohner and colleagues (Frohner et al., 2019) (https://github.com/nkroe-

mer/reliability). Analyses were conducted on the whole brain without a-priori re-

strictions to specific regions of interest. 

Jaccard and Dice coefficients 

We computed the modified Jaccard coefficient, a common measure in fMRI reliability 

studies between the three different time points for the difference contrast food > neu-

tral and the constituting contrasts (i.e. food and neutral separately). It is defined as the 

size of the intersection divided by the size of the union of the voxel sets and computed 

as follows: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
 

The Jaccard coefficient can be interpreted as the percentage of overlapping significant 

voxels above a predefined statistical threshold (e.g. p < 0.001) within all significant 

voxels (Jaccard, 1902; Maitra, 2010).  

Additionally, we computed the Dice coefficient for the three different contrasts and 

scanning time points. It is calculated as the number of super-threshold voxels that 

overlap between sessions divided by the average number of significant voxels across 

sessions: 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) =  
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
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The Dice coefficient was introduced to assess the overlap of significant fMRI clusters 

between scans. It has become an established measure of fMRI data reliability 

(Rombouts et al., 1997). Both coefficients have values from 0 (“no overlap”) to 1 (“per-

fect overlap”) between significant super-threshold voxels. Both measures are, how-

ever, limited by the missing consensus on specific values or cut-offs that would differ-

entiate between “poor” and “good” values (Bennett & Miller, 2010). Additionally, the 

magnitude of both coefficients depends on the statistical threshold used to define 

what is “active”. Studies showed that the reliability of the cluster overlap method de-

creases, when the significance threshold is increased (Duncan et al., 2009; Rombouts 

et al., 1998). In the current analyses, we therefore applied a commonly used threshold 

of p < 0.001. Resulting values were imported into the IBM SPSS Statistics software 

(version 25.0) for further analyses using a repeated measure analysis of variance 

(ANOVA) model with the factors time (1st, 2nd, 3rd) assessment and task contrast (food, 

neutral, food > neutral). 

Similarity 

Secondly, we calculated the within- and between-subject similarity of the fMRI acti-

vation maps using the fmreli toolbox (Frohner et al., 2019). Similarity in this context is 

defined as the resemblance of two activation patterns based on the alignment of high 

versus low brain activation values across the brain between- and within-subjects (for 

details see Frohner et al., 2019). The resulting coefficients are correlation coefficients 

that range from ‘perfect’ inverse relationship (-1.00) to a ‘perfect’ direct relationship 

(1.00). It was suggested that individuals can be successfully identified by their neural 

activation patterns, if the within-subject similarity exceeds all between-subject asso-

ciation coefficients of the same participant (Finn et al., 2015; Frohner et al., 2019). An 

advantage of this procedure is that it does not require an a-priori (and potentially ar-

bitrary) statistical threshold. 

Intraclass Correlation (ICC) 

Thirdly, we estimated voxel-wise reliability of brain activation patterns by computing 

the intraclass correlation (ICC) coefficients between all three fMRI sessions. The ICC is 
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used to assess whether the magnitude of activation in each voxel of the brain is stable 

from test scan to retest scan. Previous work suggested that this measure might be 

more stringent than other fMRI reliability measures, as it also requires near zero values 

to be stable over time (Bennett & Miller, 2010). It was suggested that the ICC(3,1) var-

iant is most appropriate for assessing longitudinal fMRI datasets (Ombao et al., 2016). 

Mathematically, this coefficient sets within-subject variance (σ2
within) in relation to be-

tween-subject variance (σ2
between). We used the ICC(3,1)-type to assess voxel-wise reli-

ability (Shrout & Fleiss, 1979), defined as: 

𝐼𝐶𝐶 =
(σ2

between − σ2
within)

(σ2
between + σ2

within)
 

According to Fleiss (1986), ICC coefficients lower than 0.4 represent poor reliability, 

ICCs between 0.4 and 0.75 represent fair (< 0.6) to good (>0.6) reliability, and ICCs 

higher than 0.75 represent good to excellent reliability (Fleiss, 1986). We calculated 

ICC coefficients for every brain voxel, in order to allow identification of brain regions 

that show high reliability without restriction to predefined regions of interest. How-

ever, we were aware that much of the (un-thresholded) brain activation might be un-

related to food cue task and hence would not replicate in its magnitude, resulting in a 

low overall ICC value. Therefore, we generated thresholded ICC brain maps, to identify 

brain areas that show good to excellent (ICC > 0.75) reliability and we computed addi-

tional atlas-based mean ICC values for a standard set of anatomical brain regions (see 

below). 

Spearman’s correlation 

In order to assess whether reliability of the common difference contrast food > neutral 

might be limited by a high correlation between the constituting conditions, we com-

puted the voxel-wise Spearman’s correlation coefficients between the three food im-

age categories (i.e. sweet, high caloric, low caloric) and the neutral condition using the 

fmreli toolbox.  

Computation of Atlas-based summary measures 
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In accordance to previous work (Frohner et al., 2019), we computed the mean ICC for 

N = 120 anatomical regions specified in the Automatic Anatomic Labeling (AAL) atlas 

(Tzourio-Mazoyer et al., 2002). The additional atlas-based summary intended to facil-

itate the assessment of local differences in reliability and identify reliable anatomical 

ROIs for future analyses. ICC values were extracted using the ROI data extraction rou-

tine of the MarsBar software package (http://marsbar.sourceforge.net/) and was im-

ported into SPSS (IBM SPSS Statistics version 25.0) for further analyses.  

Group-level fRMI task activation 

On a group level, imaging data for every single time point (e.g. 1st, 2nd, 3rd assessment) 

were analyzed using a one sample t-test, in order to assess the robustness of task main 

effects (i.e. between condition effects) on group-level brain activation and to deter-

mine brain areas that show higher brain activation in response to food cues, compared 

to neutral cues (contrast: food - neutral). Additionally, we performed analyses of 

changes in food cue-induced brain responses over time, by setting up a flexible facto-

rial model with the within subject factor time (i.e. 1st, 2nd, 3rd assessment) and the co-

variates BMI at baseline, surgery type and smoking status. In order to satisfy a family-

wise error rate correction of pFWE<.05, we determined a combined voxel-wise- 

[p<.001] and cluster-extent-threshold [k ≥ 103] by running 10.000 permutations by 

Monte Carlo simulations (the estimated smoothness was x/y/z = 10.13/9.86/10.33 mm) 

using the Neuroelf analysis package (www.neuroelf.net) (Bennett et al., 2009).  

 

  

http://marsbar.sourceforge.net/)
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2.2.4 Results 

Sample characteristics 

Demographical, clinical and psychometric data are depicted in Table 2.3.  

Table 2.3 Demographic and clinical characteristics of obese study participants that underwent three 

imaging assessments at T0 = two weeks prior to surgery, T1 = eight weeks after surgery and T2 = 

twenty-four weeks after surgery (N = 11). 

N = 11 participants with obesity  Absolute  

numbers 

 Relative proportions (%) 

Sex (male/female) 3/8  27.3/72.7 

Smoking Status (non-smoking/<10 cig. per 

day/>=10 cig. per day) 

7/2/2  63.6/18.2/18.2 

 Mean  SD 

Age (years) 41.18  10.1 

Height (m) 1.68  0.1 

Weight (kg) 128.78  17.1 

BMI 45.40  4.7 

BDI (total score) 9.45  4.6 

BDI = Beck Depression Inventory, BMI = Body Mass Index 
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Group-level food cue-induced brain activation 

Group-level analyses of brain activation demonstrated significant food cue-induced 

brain activation (contrast: food > neutral) in parts of the frontal and orbitofrontal cor-

tex, the occipital and parietal gyri, the cuneus, calcarine, the lingual gyrus, as well as 

the caudate, putamen, thalamus and insula (see Table 2.4). On the other hand, no sig-

nificant brain activation was detected during presentation of neutral pictures com-

pared to food pictures (contrast: neutral > food). Whole analyses of longitudinal 

changes in brain responses towards food cues over assessment sessions before and 

after surgery showed no main effect of time on brain response towards food cues and 

post-hoc comparisons between separate assessment time points did not surpass the 

predefined statistical threshold.   
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Table 2.4 Brain areas depicting higher brain response to visual food cues compared to neutral cues 

(contrast: food > neutral, combined voxel-wise- [p < .001] and cluster-extent-threshold [k > 103 voxel], 

corresponding to pFWE < .05). 

Si

de Lobe Brain areas 

Cluster size 

(voxel) 

MNI coordinates 

(x, y, z) tmax 

R 

& 

L 

Occipital Superior, Middle and Inferior Occipital 

Gyrus, Calcarine, Cuneus, Fusiform Gy-

rus, Lingual Gyrus 

7081 32 -76 -14 21.9 

R Parietal Inferior Parietal Gyrus, Angular Gyrus   133 32 -68 54 9.6 

L Occipital, 

Parietal 

Superior and Middle Parietal and Occipi-

tal Gyrus 

275 -24 -60 44 8.9 

L  Putamen, Insula 129 -40 -6 10 8.7 

L Parietal Inferior Parietal Gyrus, Postcentral Gyrus, 

Supramarginal Gyrus 

142 -48 -24 40 8.6 

R 

& 

L 

 Anterior and Middle Cingulate Gyrus 176 -8 24 24 7.4 

L Frontal Middle and Inferior Frontal Gyrus, Orbito-

frontal Cortex 

130 -44 36 14 7.2 

R  Caudate, Thalamus 104 14 -4 12 6.9 
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Reliability analyses  

Food craving ratings 

Analyses indicated good reliability of the mean subjective food craving ratings during 

fMRI across the different assessment sessions (ICC[3,1]=0.611, p = 0.002). Food cues 

induced higher craving values compared to neutral cues throughout all three assess-

ment sessions. There was a significant reduction in the magnitude of reported food 

craving over the trial period from baseline (M=45.195, SD=23.443) to T1 (M=18.550, 

SD=39.917) that remained stable until T2 (M=32.450, SD=25.972, F(2,18) = 4.301, 

p=0.032). 

Jaccard coefficient 

Mean Jaccard coefficients for the comparisons of the different time points are dis-

played in Table 3. Repeated measures ANOVA showed a significant main effect of 

contrast image category (neutral, food and food>neutral) (F(2,20)=83.806 p < 0.001) on 

the magnitude of the Jaccard indices. Post-hoc analyses demonstrated lower Jaccard 

coefficients for the difference contrast condition (food>neutral) compared to both 

constituting conditions (food and neutral, p<0.001). There was no main effect of time 

on the magnitude of the Jaccard coefficients (i.e. whether we compared to 1st to 2nd or 

3rd scanning session, F(2,20)=0.152 p = 0.860).  

Dice Coefficient 

The mean Dice coefficients for the comparisons of the different fMRI sessions are de-

picted in Table 3. Analyses demonstrated a significant main effect of contrast image 

category (neutral, food and food>neutral) (F(2,20)=77.102 p < 0.001) on the magnitude 

of the Jaccard indices. Post-hoc analyses demonstrated lower Jaccard coefficients for 

the difference contrast condition (food>neutral) compared to both constituting con-

ditions (food and neutral, p<0.001). There was no main effect of time on the magni-

tude of the Jaccard coefficients (i.e. whether we compared to 1st to 2nd or 3rd scanning 

session, F(2,20)=0.208 p = 0.814).  
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Table 2.5 A] Dice and B] Jaccard coefficients for the three task contrasts (food > neutral, food and 

neutral), illustrating the proportion of overlapping significant voxels between the different fMRI ses-

sions at T0 = two weeks prior to surgery, T1 = eight weeks after surgery and T2 = twenty-four weeks 

after surgery (whole brain threshold of p < 0.001 for defining super-threshold activation).  

A] Dice Coefficients      

Compari-

son of  
Session 1 and 2  Session 1 and 3  Session 2 and 3 

 

Contrast 
Food > Neut-
ral 

Food Neutral 
Food > 
Neutral 

Food Neutral 
Food > 
Neutral 

Food Neutral 

Mean 0.2743*** 0.6763 0.7103 0.2049*** 0.7181 0.7260 0.2218*** 0.6921 0.6790 

SD 0.2036 0.2160 0.2067 0.1599 0.0763 0.0762 0.1918 0.2187 0.2106 

B] Jaccard Coefficients         

Compari-
son of Ses-
sions 

Session 1 and 2 Session 1 and 3 Session 2 and 3 

Contrast 
Food > Neut-
ral 

Food Neutral 
Food > 
Neutral 

Food Neutral 
Food > 
Neutral 

Food Neutral 

Mean 0.1744*** 0.5400 0.5772 0.1222*** 0.5651 0.5750 0.1375*** 0.5596 0.5406 

SD 0.1443 0.1970 0.1830 0.0996 0.0911 0.0935 0.1316 0.2024 0.1853 

SD = standard deviation; *** = significant difference at p < 0.001 between the contrast condition food > neutral and each of the other two 

conditions (food and neutral) 
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Intraclass Correlation Coefficient 

Comparisons of ICC coefficients between the different fMRI sessions (1st, 2nd, 3rd) indi-

cated that several regions showed good to excellent reliability (i.e. ICC > 0.75) across 

all sessions (see Figure 1). These regions included the bilateral caudate and left puta-

men, parts of the right thalamus and middle cingulum, as well as parts of the bilateral 

inferior, middle and superior occipital gyri (brodmann areas BA 7/17/18/19/39) and 

parts of the bilateral middle and superior temporal gyri (BA 20/21/22/37) and in addi-

tion parts of the bilateral cunei, lingual gyri and calcarine (see Figure 1). These patterns 

appeared to be relatively stable across all session time points, supporting the stability 

of the observed findings. 

In a second step, we determined the mean ICC for a standard set of n = 120 anatomical 

regions of interest defined in the aal atlas. As expected, based on the patterns of 

voxel-wise ICC values (i.e. good to excellent reliability only in parts of the anatomical 

region), the mean overall ICC for the separate regions did not exceed the voxel-wise 

values. However, several anatomical regions of interest masks showed good or fair 

reliability (see supplementary Table S1), specifically the bilateral inferior, middle and 

superior occipital gyri ROIs showed good overall reliability (>0.6) and the several other 

regions showed fair reliability (>0.4) Left putamen, bilateral caudate, left amygdala, 

bilateral lingual gyri, right fusiform gyrus, bilateral calcarine, bilateral cunei, posterior 

cingulate, right middle temporal gyrus, bilateral middle frontal gyri, right superior me-

dial gyrus, left superior parietal gyrus and angular gyrus. The ICC maps underlying the 

presented results are provided on Neurovault.org (https://identifiers.org/neu-

rovault.collection:9026). 

https://identifiers.org/neurovault.collection:9026
https://identifiers.org/neurovault.collection:9026
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Figure 2.5 Depiction of brain areas that show good to excellent reliability for the difference contrast food-

neutral (Intraclass correlation [ICC] > 0.75) for the comparisons between: A] session 1 and 2 (i.e. two weeks prior 

to surgery and eight weeks after surgery), B] session two and three (i.e. two weeks prior to surgery and twenty-

four weeks after surgery), C] session 1 and three and D] over all sessions. 
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Spearman’s rho  

We computed spearman’s rho coefficients between the food category contrast maps 

and the neutral contrast maps, in order to assess whether there is a high correlation 

between the constituting conditions (food and neutral), which would reduce the max-

imum possible reliability of the difference contrast (food-neutral), due to elimination 

of shared variance during performing the subtraction. Results demonstrate a substan-

tial correlation between the all three food stimuli category contrast maps and the neu-

tral stimuli contrast maps (rhosweet-neutral = 0.49, SD = 0.29, R2=0.24, rholow-neutral = 0.42, 

SD = 0.33, R2=0.17, rhohigh-neutral = 0.42, SD = 0.33, R2=0.17). This indicates that both 

food and neutral conditions share about 17 to 24% of their variance. A part of this var-

iance is removed by subtracting both conditions, which results in lower reliability of 

the difference contrast (Infantolino et al., 2018).  

Similarity 

The analyses of similarity between activation maps for the difference contrast (food > 

neutral) showed a gradual decrease of within-subject similarity over comparisons be-

tween fMRI sessions with increasing time between the respective sessions (i.e. higher 

within-subject similarity between T0 and T2 that were 10 weeks apart vs. T2 and T3 

that were 16 weeks apart). This reflected in lower t-values for the comparisons be-

tween within-subject and between-subject similarity for the respective sessions and 

lower mean similarity values (r T0_T1=0.37, tT0_T1=5.14, p<0.001, rT1_T2=0.32, tT1_T2=3.82, 

p<0.05, rT1_T3=0.29 tT1_T3=3.01, p<0.05). The difference between within and between-

subject similarity is visible in the matrices and cumulative distribution functions for 

within- and between-subject similarity in Figure 2. The proportion of patients that 

could be re-identified based on their neural brain activation (i.e. the magnitude of 

within-subject similarity exceeded all between-subject similarity values). While about 

73% of the patients could be re-identified between T0 and T1, this number dropped 

when comparing longer time periods between T1 to T2 (64%) and T0 to T2 (45%, see 

Figure 2).  
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Figure 2.6 Similarity maps (upper row) and empirical cumulative distribution functions (lower row – red lines: 

between-subject similarity, blue lines: within-subject similarity) for the contrast food-neutral and comparisons 

between A] 1st and 2nd fMRI session, B] 2nd and 3rd fMRI session and C] 1st and 3rd fMRI session. The diagonal of 

each color matrix represents the within-subject similarity values. Re-identification of a subject based on the 

neural activation map is affirmed the within-subject similarity value (diagonal) exceeds all between-subject as-

sociation coefficients of the same participant (i.e. similarity values in the respective row of the matrix). Higher 

within-subject similarity is also illustrated by a right-shift of the cumulative density functions for the within-

subject similarity values (blue lines) relative to the between-subject similarity (red lines). Percent values in the 

upper right of the upper row panels represent the number of individuals that could be identified based on their 

brain response (i.e. within-subject similarity values exceeded all between-subject similarity values for the re-

spective participant [rows in matrix]). 
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2.2.5 Discussion 

The purpose of this study was to investigate the longitudinal reliability of the different 

task contrasts an established food cue-reactivity task. ICC values indicated good to 

excellent reliability of brain activation, captures by the common difference contrast 

food vs. neutral, in a range of brain areas (i.e. the mesolimbic system with putamen 

and caudate, as well as parts of the frontal and occipital cortices) over a time period of 

26 weeks. In addition, the reliability of food cue-induced brain activation in these brain 

regions, indexed by the difference contrast food vs. neutral, outperformed the relia-

bility of subjective food craving (i.e. craving during food blocks vs. neutral blocks) that 

was measured concurrently during fMRI using visual analogue scales. Still, it should be 

noted that local reliability did not surpass the threshold for good reliability in all areas 

of the mesocorticolimbic system, which were implicated in processing food cues 

(Noori et al., 2012). Furthermore, Jaccard and Dice coefficients, which provide esti-

mates for the replicability of significant activation clusters across the whole brain, in-

dicated that only a small proportion of activation could be replicated, when investi-

gating the difference contrast (food > neutral). This stood in sharp contrast to the re-

sults for the constituting task contrast conditions food vs. baseline and neutral vs. 

baseline separately. For these two contrast conditions Jaccard and Dice coefficients 

showed that more than 50% of the super-threshold clusters could be replicated during 

the other assessment sessions. This indicates that the global reliability of the common 

difference contrast food vs. neutral is limited. Several reasons might account for these 

findings. In previous studies, Infantolino and colleagues (2018) argued that the corre-

lation between the constituting contrast conditions of a difference contrast place a 

limit on the reliability of the resulting difference measure, because in this case, large 

proportions of the shared and potentially true variance are eliminated by subtracting 

both constituting task conditions. The authors sustained their argument with data on 

the difference contrast between face- and shape-matching trials of a so-called faces 

paradigm, where the constitution shape and face conditions correlated to 0.97 (Hariri 

et al., 2002; Infantolino et al., 2018). Other fMRI studies that also computed difference 
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contrasts as the measure of interest, reported higher reliability of brain activation that 

was mirrored by an only modest correlation between the constituting conditions 

(Luking et al., 2017). Current data show a moderate correlation between the food and 

neutral contrast images with a shared variance of about 24%. This supports the notion 

that the global reliability of the difference contrast (food vs. neutral) in the current 

dataset is limited by the correlation between the constituting conditions, which re-

sults in an elimination of proportions of the shared variance. The similarity analyses 

indicated that the capacity to identify individual individuals based on their individual 

brain activation pattern during the food vs. neutral contrast fades, when time periods 

between sessions increase. This was an expected finding and suggests that in the case 

of food cue-reactivity, follow-up fMRI scans should not be scheduled too far apart, 

when one intends to yield high reliability.  

The only other previous study specifically investigating reliability of food cue-reactiv-

ity used a pre-selected range of ROIs (insula, putamen, amygdala, orbitofrontal cor-

tex, caudate) and reported overall poor reliability in these ROIs. Several reasons might 

have accounted for the differences between this and the current study. The study by 

Sayer et al. (2016) used a different fMRI task design. The number of blocks of neutral 

and food stimuli per run was markedly lower (i.e. 3 and 3) compared to the task that 

was used as a basis for current analyses. Fewer data points per subject might however 

lead to less robust estimates of the individuals “true” mean value, e.g. brain response. 

Additionally, the study did not investigate voxel-wise reliability, but instead extracted 

brain activation estimates from predefined regions of interest and focused on the ICC 

as only an estimate for reliability. The use of the local maxima that were detected in 

the group level analyses as center of these ROIs, might have biased results. Studies 

have shown that a robust effect on the group level does not indicate stability or relia-

bility of within-subject effects and might also be influenced by outliers (Infantolino et 

al., 2018). Hence, the focus on these specific ROIs that only covered a diameter of 

3mm around the activation maximum, might have limited the possibility to identify 

regions with robust reliability. Current atlas-based summaries support the notion that 
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the areas under investigation, specifically the caudate, putamen and amygdala show 

at least moderate reliability, when using the fMRI task of the current study.  

Multiple studies intended to determine predictors for successful weight loss after bar-

iatric surgery and establish neural “biomarkers” (Holsen et al., 2018; Ness et al., 2014). 

As reliability is a prerequisite for any measure that could potentially serve as “bi-

omarker”, current results could inform future studies and support the notion that neu-

ral responses to food cues in a selected range of brain areas might indeed meet the 

requirements for a potential predictor of treatment outcome.  

Strengths and Limitations 

We investigated a specific block-design food cue-reactivity task that was used and val-

idated in previous work by our group (Grosshans et al., 2012). Hence, our results may 

be generalized for food cue-reactivity tasks that incorporate different picture sets or 

a different task design. Still, the convergence of the different reliability estimates sup-

ports the robustness of the findings and the applied methods. We also acknowledge 

that other methods for the estimation of fMRI reliability exist (e.g. support vector ma-

chine learning) and might be informative. We investigated the reliability in a clinical 

population undergoing surgery. Due to the fact that reliability depends on the popu-

lation under investigation, we argue that this approach complements the investiga-

tion of healthy reference samples, in order to assess the potential of fMRI-based mark-

ers for application in clinical populations. Still, the investigation of healthy samples 

and individuals with obesity are essential, in order to yield robust estimates of reliabil-

ity of food cue-reactivity without potential bias and reduction in reliability due to sur-

gical intervention or weight loss and improve the overall precision of reliability esti-

mates. We, however, intended to provide a conservative estimate of the reliability of 

food cue-reactivity, because we acknowledge that statistical control might not be fea-

sible and is also arbitrary to a certain extent (e.g. only controlling variables that show 

a significant effect of time in a respective trial would lead to differences between tri-

als). This might lead to bias in the estimating of the reliability of food cue-reactivity. It 
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could be argued that the inclusion of patients without any treatment might be favor-

able with regards to yielding optimal reliability. However, we strongly advocate for 

testing reliability under the conditions in which the actual task is applied. When in-

tending to use neural brain response as biomarker for monitoring e.g. treatment re-

sponse, reliability of this putative biomarker should be tested under the very same 

conditions. It should be noted that reliability estimates, which are based on small da-

tasets, are prone to imprecision, due to large confidence intervals and high impact of 

single participant data, which also accounts for the presented dataset. The comple-

mentary whole brain analyses that compared brain responses towards food cues be-

tween the different assessment session did not yield significance, when applying a 

stringent whole-brain correction for multiple testing. This result is unexpected and 

contrasts previous studies that showed longitudinal changes in brain response from 

before to after surgery (Li et al., 2019; Zoon et al., 2018). The lack of significant main 

effects of time on brain response might relate to a limited power and a stringent whole 

brain threshold (e.g. previous studies applied regions of interest analyses), resulting 

from the small dataset. However, power analyses indicated that analyses comparing 

different time points yielded sufficient power (see Supplementary Figure S1). Addi-

tionally, several significant findings were derived from studies applying more liberal 

regions of interest analyses. Overall, the lack of substantial time effects on the extent 

of food cue-induced brain response in the current dataset support the notion that re-

liability estimates were not substantially biased by surgical intervention.  

2.2.6 Conclusion 

We could show excellent local longitudinal reliability in a range of brain areas of the 

reward (e.g. caudate, putamen) and food-cue processing networks (e.g. occipital and 

frontal cortices) in participants with obesity from two weeks before, to 24 weeks after 

surgery. The reliability of food cue-reactivity in these areas outperformed to reliability 

of subjective craving measures that were measured concurrently. Our results suggest 

that fMRI-based measures might indeed be suitable to monitor and predict treatment 

outcome in participants with obesity undergoing bariatric surgery. 
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2.2.7 Supplements 

Supplementary Tables 

Supplementary Table S 2.5 Atlas-based mean intraclass correlation (ICC) values for the N=120 ana-

tomical regions specified in the automated anatomical labeling (aal) atlas (contrast: food > neutral 

stimuli, comparisons across sessions 1 to 3). Regions exceeding a mean ICC value of 0.4, correspond-

ing to a moderate reliability, are marked in bold font. 

 Region (AAL) Mean ICC value 

1.  Amygdala_L           0.40763759 

2.  Amygdala_R           0.36786118 

3.  Angular_L            0.4153282 

4.  Angular_R            0.48685384 

5.  Calcarine_L          0.53597925 

6.  Calcarine_R          0.57968044 

7.  Caudate_L            0.48102494 

8.  Caudate_R            0.44163647 

9.  Cerebelum_10_L       0.27364602 

10.  Cerebelum_10_R       0.09230089 

11.  Cerebelum_3_L        0.06165687 

12.  Cerebelum_3_R        0.17436859 

13.  Cerebelum_4_5_L      0.15992892 

14.  Cerebelum_4_5_R      0.21595067 

15.  Cerebelum_6_L        0.30154894 

16.  Cerebelum_6_R        0.32449259 

17.  Cerebelum_7b_L       0.00027952 

18.  Cerebelum_7b_R       0.15759062 

19.  Cerebelum_8_L        -0.02479433 

20.  Cerebelum_8_R        0.10007577 

21.  Cerebelum_9_L        0.12451792 

22.  Cerebelum_9_R        0.06073853 



Empirical studies 

113 

23.  Cerebelum_Crus1_L    0.34667738 

24.  Cerebelum_Crus1_R    0.34672601 

25.  Cerebelum_Crus2_L    0.16982958 

26.  Cerebelum_Crus2_R    0.26460454 

27.  Cingulate_Ant_L      0.31521474 

28.  Cingulate_Ant_R      0.29600421 

29.  Cingulate_Mid_L      0.27712185 

30.  Cingulate_Mid_R      0.27994037 

31.  Cingulate_Post_L     0.50434102 

32.  Cingulate_Post_R     0.49553011 

33.  Cuneus_L             0.56512844 

34.  Cuneus_R             0.5228328 

35.  Frontal_Inf_Oper_L   0.14184759 

36.  Frontal_Inf_Oper_R   0.21942506 

37.  Frontal_Inf_Orb_2_L  0.27682627 

38.  Frontal_Inf_Orb_2_R  0.21755721 

39.  Frontal_Inf_Tri_L    0.30462771 

40.  Frontal_Inf_Tri_R    0.24102302 

41.  Frontal_Med_Orb_L    0.25330428 

42.  Frontal_Med_Orb_R    0.25289913 

43.  Frontal_Mid_2_L      0.41863018 

44.  Frontal_Mid_2_R      0.4209279 

45.  Frontal_Sup_2_L      0.32470793 

46.  Frontal_Sup_2_R      0.32815861 

47.  Frontal_Sup_Medial_L 0.45450867 

48.  Frontal_Sup_Medial_R 0.40819146 

49.  Fusiform_L           0.54252807 

50.  Fusiform_R           0.58699878 

51.  Heschl_L             0.05446871 

52.  Heschl_R             0.20525357 

53.  Hippocampus_L        0.30091927 
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54.  Hippocampus_R        0.18147327 

55.  Insula_L             0.20153209 

56.  Insula_R             0.1647087 

57.  Lingual_L            0.6225418 

58.  Lingual_R            0.57012037 

59.  Occipital_Inf_L      0.68905961 

60.  Occipital_Inf_R      0.63069714 

61.  Occipital_Mid_L      0.70694477 

62.  Occipital_Mid_R      0.73225597 

63.  Occipital_Sup_L      0.6863284 

64.  Occipital_Sup_R      0.64287727 

65.  OFCant_L             0.20520715 

66.  OFCant_R             0.26953573 

67.  OFClat_L             0.11979768 

68.  OFClat_R             0.31150854 

69.  OFCmed_L             0.10423343 

70.  OFCmed_R             0.18515158 

71.  OFCpost_L            0.30889935 

72.  OFCpost_R            0.24117885 

73.  Olfactory_L          0.24754212 

74.  Olfactory_R          0.26154753 

75.  Pallidum_L           0.27670088 

76.  Pallidum_R           0.21066503 

77.  Paracentral_Lobule_L 0.14723272 

78.  Paracentral_Lobule_R 0.06484738 

79.  ParaHippocampal_L    0.30799088 

80.  ParaHippocampal_R    0.28349796 

81.  Parietal_Inf_L       0.26225495 

82.  Parietal_Inf_R       0.22906141 

83.  Parietal_Sup_L       0.41622173 

84.  Parietal_Sup_R       0.3988176 
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85.  Postcentral_L        0.16078831 

86.  Postcentral_R        0.08968218 

87.  Precentral_L         0.39168091 

88.  Precentral_R         0.18921363 

89.  Precuneus_L          0.36465171 

90.  Precuneus_R          0.35655186 

91.  Putamen_L            0.45442722 

92.  Putamen_R            0.30970413 

93.  Rectus_L             0.17306424 

94.  Rectus_R             0.14920027 

95.  Rolandic_Oper_L      0.13431982 

96.  Rolandic_Oper_R      0.10625991 

97.  Supp_Motor_Area_L    0.26899723 

98.  Supp_Motor_Area_R    0.18813331 

99.  SupraMarginal_L      0.05553424 

100.  SupraMarginal_R      0.36478604 

101.  Temporal_Inf_L       0.35265871 

102.  Temporal_Inf_R       0.34174827 

103.  Temporal_Mid_L       0.2828941 

104.  Temporal_Mid_R       0.46616954 

105.  Temporal_Pole_Mid_L  0.17525254 

106.  Temporal_Pole_Mid_R  0.23368946 

107.  Temporal_Pole_Sup_L  0.2615089 

108.  Temporal_Pole_Sup_R  0.09053107 

109.  Temporal_Sup_L       0.18427253 

110.  Temporal_Sup_R       0.34549048 

111.  Thalamus_L           0.23469258 

112.  Thalamus_R           0.23898485 

113.  Vermis_1_2           0.19670743 

114.  Vermis_10            0.25951009 

115.  Vermis_3             0.14516806 
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116.  Vermis_4_5           -0.03299619 

117.  Vermis_6             0.12162924 

118.  Vermis_7             -0.00733943 

119.  Vermis_8             -0.18407945 

120.  Vermis_9             -0.06657724 
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Supplementary Figures 

Supplementary Figure S 2.5 Depiction of the course of mean craving ratings for food stimuli for the 

three assessment sessions, for a) the 1st, b) the 2nd and c) the 3rd assessment. Depiction of the course 

of mean craving ratings for neutral stimuli for the three assessment sessions, for d) the 1st, e) the 2nd 

and f) the 3rd assessment (Mean + 2 SE). 
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Supplementary Figure S 2.6 Depiction of power estimates and mean effects for different 

brain regions defined by the automated anatomical labeling (aal) atlas, which were 

computed for a pairwise comparison between 1st and 3rd assessment sessions, based 

on the dataset of N=11 participants, using the FMRIpower software toolbox for SPM 

(https://www.nitrc.org/projects/fmripower/).

 

https://www.nitrc.org/projects/fmripower/
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2.3 Study 3 – Reliability of the fMRI-based assessment of self-evaluation in indi-

viduals with internet gaming disorder3 

2.3.1 Abstract 

The self-concept—defined as the cognitive representation of beliefs about oneself—

determines how individuals view themselves, others, and their actions. A negative 

self-concept can drive gaming use and internet gaming disorder (IGD). The assess-

ment of the neural correlates of self-evaluation gained popularity to assess the self-

concept in individuals with IGD. This attempt, however, seems to critically depend on 

the reliability of the investigated task-fMRI brain activation. As first study to date, we 

assessed test-retest reliability of an fMRI self-evaluation task. 

Test-retest reliability of neural brain activation between two separate fMRI sessions 

(approximately 12 months apart) was investigated in N=29 healthy participants and 

N=11 individuals with pathological internet gaming. We computed reliability esti-

mates for the different task contrasts (self, a familiar, and an unknown person) and 

the contrast (self > familiar and unknown person). 

Data indicated good test-retest reliability of brain activation, captured by the “self”, 

“familiar person”, and “unknown person” contrasts, in a large network of brain regions 

in the whole sample (N=40) and when considering both experimental groups sepa-

rately. In contrast to that, only a small set of brain regions showed moderate to good 

reliability, when investigating the contrasts (“self > familiar and unknown person”). 

The lower reliability of the contrast can be attributed to the fact that the constituting 

contrast conditions were highly correlated. 

                                                        

3 Bach P, Hill H, Reinhard I, Gädeke T, Kiefer F, Leménager T. Reliability of the fMRI-based assessment of self-

evaluation in individuals with internet gaming disorder. Eur Arch Psychiatry Clin Neurosci. 2021 Jul 17. doi: 

10.1007/s00406-021-01307-2. Epub ahead of print. PMID: 34275007. 
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Future research on self-evaluation should be cautioned by the findings of substantial 

local reliability differences across the brain and employ methods to overcome these 

limitations. 

2.3.2 Introduction 

Converging lines of evidence implicate deficits in an individual’s self-concept as a rel-

evant factor in the development of internet gaming disorders (IGD). Due to their social 

and concomitantly anonymous characteristics, reports portray internet games as a 

tempting pastime to compensate a negative self-concept. The self-concept can be re-

garded as a relatively stable cognitive representation (i.e., knowledge system and be-

liefs) about the own person (Rammsayer & Weber, 2016; Swarm Jr, 1983). It is defined 

as the subjective evaluation of one’s own physical appearance (physical self-concept); 

social competences (social self-concept); the capability to recognize, express, and reg-

ulate one’s feelings (emotional self-concept); and skills for reaching academic goals 

(academic self-concept) (Mummendey, 2006). Mummendey (2006) assumes that the 

self-concept evolves from comparisons between the subjective view of oneself and 

the ideal self (i.e., how one would like to be). The ideal self is mainly influenced by an 

individual’s environment, such as family members, peer groups, society, and media. A 

negative self-concept—defined as a high discrepancy in the evaluation between the 

subjective self and ideal self—is often reported to be associated with gaming and 

other internet related disorders (Leménager et al., 2018; Lemmens et al., 2015; 

Wartberg et al., 2017; Wartberg et al., 2019). A recent review on self-esteem and self-

concept in gaming disorders, reported stable associations between gaming disorders 

and negative physical and academic self-concept domains (Lemenager et al., 2020). 

Functional imaging studies have tried to identify the neural correlates of the self-con-

cept by applying self-referential and self-recognition paradigms. During self-referen-

tial tasks, participants are asked to evaluate their personality traits, physical appear-

ance, preferences, or thoughts. Resulting neural activation patterns are compared to 

those that emerge during the evaluation of one’s ideal self, a close friend, a famous 

person, or a foreign person (Fossati et al., 2004; Johnson et al., 2002; Lou et al., 2004). 
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The neural activations during self-referential paradigms are regarded as a functional 

network underlying different self-concept aspects (e.g., reflecting on one’s own social 

competencies can be regarded as part of the social self-concept). Self-recognition par-

adigms, in which participants see pictures of their own face or body relative to faces 

or bodies of others (Northoff et al., 2006), involve unconscious comparisons between 

one’s own physical appearance and that of others. It can be assumed that these com-

parisons mirror neurobiological correlates of the physical self-concept. 

A meta-analysis of Hu et al. (Hu et al., 2016) compared neural correlates of self-face 

recognition and self-referential paradigms in healthy participants to identify distinct 

and common neural regions underlying self-referential and self-recognition. Pro-

cessing one’s own face relative to the face of another person, induced activation in the 

right inferior frontal gyrus (IFG); the bilateral fusiform gyrus; the inferior temporal gy-

rus; the bilateral insula; the right postcentral and supramarginal gyrus (SMG); the an-

terior cingulate (ACC); and the right superior occipital and angular gyrus. The meta-

analysis also indicated that, across studies, self-referential paradigms induced brain 

activation in the bilateral ACC; the middle frontal gyrus and the superior temporal gy-

rus; the precuneus as well as the left inferior parietal gyrus. The conjunction analysis 

of both tasks revealed shared activation in the right ACC and in the left insula and IFG 

(Hu et al., 2016). The results of the meta-analysis also demonstrated that self-referen-

tial and self-recognition tasks induce activation in regions of the temporoparietal junc-

tion (TPJ), extending over several cortical areas, including posterior portions of the 

superior temporal gyrus and adjacent parietal regions in the supramarginal and angu-

lar gyri (Hu et al., 2016). Studies in addicted gamers revealed increased activation in 

the right inferior parietal lobule (Kim et al., 2018) and a decrease in the right inferior 

frontal gyrus (Choi et al., 2018) during self-reflection. Choi et al. (2018) assessed the 

self-concept in addicted adolescent gamers compared to healthy controls during self-

referential tasks. The authors observed a decrease in the inferior frontal gyrus in the 

addicted group, indicating that addicted gamers might find it more difficult to retrieve 

information regarding their self-concept. Furthermore, Kim et al. (2018) found an in-

crease in activation in the inferior parietal lobule in the addicted group during self vs. 
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ideal self-reflection. The authors interpreted their findings as an increased identifica-

tion with the real self, as compared to the ideal self, in individuals with gaming disor-

ders. The investigation of self-concept-related characteristics via self-evaluation tasks 

seems to be a promising approach to further elucidate the neurobiological basis of 

gaming disorders; however, currently there is no data on the reliability of fMRI tasks 

that assess self-concept in individuals with IGD. Reliability of an fMRI task, however, 

is an important prerequisite for capturing individual neural correlates of the self-con-

cept and for establishing associations between neural processes and behavior. Fur-

thermore, it is used to predict future behavior in gaming disorders, based on neural 

activation patterns. Elliot and colleagues (2019) conducted a meta-analysis of fMRI 

studies and pointed out that the overall reliability of fMRI tasks across different task 

categories, designs, and study groups was low (Elliott et al., 2020). A study by Infan-

tolino et al. (2018) also indicated that low reliability of fMRI tasks might result when 

fMRI task contrasts are computed by subtracting two correlated task conditions, even 

when the constituting task conditions show excellent reliability. This is because much 

of the shared “true” variance is removed when subtracting two task conditions from 

one another, while the error variance is summed (Infantolino et al., 2018; Peter et al., 

1993). Hence, we set out to assess the reliability of neural responses during a video-

based fMRI paradigm assessing neural correlates of physical, social, and emotional as-

pects of the self-concept in young adults. The video paradigm combines self-referen-

tial and self-recognition aspects. During the fMRI session, video clips of the partici-

pant, a close friend, and an unknown person are presented. The protagonists in the 

videos introduce themselves and talk about topics related to the self-concept, such as 

their positive personality traits (emotional and social self-concept); their expectations 

of others (social self-concept); as well as their future goals (academic self-concept). 

We assume that the comparison of neural activation between the self and other con-

ditions mirrors neural correlates of the self-concept. To our knowledge this is the first 

paradigm measuring self-concept-related aspects by combining self-referential and 

self-recognition paradigms. We tested this paradigm in the framework of a one-year 
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longitudinal study in a sample of healthy participants as well as individuals with patho-

logical internet game use.  

2.3.3 Methods 

Study sample and patient subgroups 

A total of N=40 male individuals (n=11 pathological [problematic and addicted] gam-

ers and n=29 controls) were included in the current analyses. Initially, N=83 partici-

pants enrolled in the study and completed baseline assessment. Of those, N=40 re-

turned for a second assessment after 12 months. N=40 participants provided com-

plete datasets. Participants were recruited between March 2016 and June 2019 (trial 

registration: DRKS 00009439). All procedures were carried out in accordance with the 

Declaration of Helsinki. The local ethics committee (application number 2014-602N-

MA) approved the study procedures and all participants provided informed written 

consent. Individuals were recruited via advertisement and outpatient care for patho-

logical gamers in the Central Institute of Mental Health, Mannheim, Germany. Be-

tween the first (T1) and second assessment (T2), participants did not receive any spe-

cific intervention. The average time span between T1 and T2 was 396 days (SD=67). 

Abstinence from substance use was monitored through drug urine screening at each 

assessment. 

Participants were required to be aged between 18 and 27 years and had to be right-

handed. Pathological gamers were excluded if they met any of the following exclusion 

criteria: (i) comorbid axis I disorders in the preceding year aside from nicotine-depend-

ence and internet gaming disorder, assessed using the Structured Clinical Interview 

for DSM-IV Axis I Disorders (SCID) (H. U. Wittchen et al., 1997) and the Assessment of 

Internet and Computer Game Addiction (AICA) (Wölfling et al., 2012); (ii) treatment 

with psychotropic or anticonvulsive medications; (iii) severe neurological or physio-

logical disease (such as, but not limited to stroke, aneurysm, dementia, epilepsy, liver 

cirrhosis); (iv) negative urine drug test on the day of assessment; or (v) contraindica-

tions for MRI scans (i.e., pace-makers, metal implants, tattoos). 
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Assessment 

Participants underwent two assessment sessions, both including psychometric 

measures and fMRI. All participants completed questionnaires on (and after) the as-

sessment day, including the Rosenberg Self-Esteem Scale (Rosenberg, 1965), the 

Scale for Social Anxiety and Social Competence Deficits (SASKO; (Kolbeck & Maß, 

2009)), the Emotional Competence Questionnaire (Rindermann, 2009) and the Empa-

thy Quotient (Baron-Cohen & Wheelwright, 2004). Diagnosis of internet gaming ad-

diction as well as problematic usage was evaluated with the Assessment of Internet 

and Computer game Addiction-Checklist (AICA-C>13 for addictive usage and AICA-S 

>6 and <13 for problematic usage; (Wölfling et al., 2012)). After the first assessment, 

participants underwent interviews and filled out questionnaires every three months. 

After 12 months, participants were assessed via fMRI once again. Before the second 

scan, the exclusion criteria were reconfirmed. Participants were excluded if they had 

developed a comorbid axis I disorder (other than nicotine-dependence and internet 

gaming disorder, in the preceding year); if they underwent treatment with psycho-

tropic or anticonvulsive medications; or if they had suffered severe neurological or 

physiological disease in the preceding 12 months. 

fMRI self-evaluation task 

The paradigm comprised video clips of the participant themselves, an age-matched 

familiar person, and an unknown person. The task was programmed with the software 

Presentation Version 16.3 (Neurobehavioral Systems, Albany, Calif., USA). During a 

video session, participants and their close friend were asked to introduce themselves 

and talk about different topics related to their person. Four videos of each condition 

(self, a familiar, and an unknown person) comprised the following topics: (1) personal 

introduction (instruction: “Introduce yourself: name, age, family, etc.”); (2) positive 

character traits (instruction: “What are your personal strengths and hobbies?”); (3) 

personal values and expectations of other people (instruction: “What is important to 

you concerning your fellow humans?”); and (4) future goals (instruction: “Where do 
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you see yourself in five years from now, what did you achieve?”). The videos, with du-

ration of 15 seconds each, were recorded in advance with a Panasonic high-definition 

video camera (Type HC-V707) and converted using VSDS Free Video Editor software 

(Version 3). 

The fMRI paradigm was conducted in a block design. Each paradigm block consisted 

of a video clip regarding one topic from one specific condition. All blocks were pre-

sented in a randomized order. Every participant watched 12 video clips in total (three 

conditions comprising four videos each). Each video clip was followed by a fixation 

cross (two seconds) and a distractor (calculation task with a maximum duration of 13 

seconds), where participants had to move the cursor to select an answer. Then, an-

other fixation cross appeared before the subsequent video clip began. The distractor 

was used to create distance between the previous videos’ content. The total paradigm 

took a minimum of four and a maximum of 8 minutes, depending on how fast the par-

ticipants solved the calculation task. 

MRI acquisition 

MRI data acquisition was performed on a 3.0 Tesla MR scanner (SIEMENS 

MAGNETOM Trio) with a standard multi-channel receiver head coil (12-channel). Dur-

ing the functional self-concept MRI task, 205 volumes were acquired by applying a 

T2*-weighted echo-planar imaging (EPI) sequence [repetition time (TR) = 2410 ms, 

echo time (TE) = 25 ms, flip angle (FA) = 80°, field of view (FOV) = 192 mm × 192 mm, 

matrix size 64 × 64, 42 slices, slice thickness = 2.00 mm, distance factor = 50%, and 

voxel size = 3 × 3 × 2 mm]. Three-dimensional T1-weighted structural images (Mag-

netization Prepared Rapid Acquisition Gradient Echo, MPRAGE) were collected over 

8 minutes. The T1-weighted anatomical scans comprised 192 sagittal slices (flip angle: 

9˚; repetition time: 2.3 ms; echo time: 3.03 ms; field of view 256 × 256; voxel size, 1 mm 

x 1 mm x 1 mm). The automated Siemens Multi-Angle Projection (MAP) Shim cor-

rected magnetic field inhomogeneity. Presentation software (Version 16.3, Neurobe-

havioral Systems, Inc., Albany, CA, USA) was used for both the registration of scanner 

triggers and the recording of behavioral responses. All participants viewed the video 
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clips through a tilted mirror placed above their heads. During the assessment, the test 

persons wore foam ear plugs and headphones. Prior to the assessment, participants 

underwent a hearing test to adjust the sound of the video clips if necessary. After com-

pletion of the scan, participants were asked to rate the sound quality of the videos on 

a scale from 0 to 10. One patient, who rated the sound quality under 7, was excluded 

from the analyses. 

fMRI pre-processing and statistical analyses 

The functional images were pre-processed according to standard procedures imple-

mented in the statistical parametric mapping software for Matlab (SPM, Wellcome 

Department of Cognitive Neurology, London, UK) version 12. The first five scans of 

every measurement were discarded to avoid artifacts due to magnetic saturation. We 

conducted slice time correction, followed by spatial realignment and unwarping. A 

phase map correction was applied to correct geometric distortions, using a voxel dis-

placement map that was computed from a gray field mapping sequence using the 

VDM utility in SPM12. Movement correction was conducted using standard SPM12 

parameters and images were normalized to the standard tissue probability template 

provided in SPM12. Smoothing was conducted using an isotropic Gaussian kernel for 

group analysis (8 mm Full Width at Half Maximum). The following procedures were 

carried out to assess the quality of pre-processed functional MRI data. Motion correc-

tion and realignment parameters, as well as results from the normalization procedure, 

were assessed by two independent trained members of the study team. Datasets of 

participants were excluded if the spatial realignment or movement correction param-

eters indicated excessive motion (>3 degrees of rotation or >3 mm movement in any 

axis) or if visual inspection indicated poor fitting to the standard TPM template. The 

first-level statistics were computed for each participant, modelling the different ex-

perimental conditions: (i) self, (ii) familiar person, (iii) unknown person, and (iv) dis-

tractor task in a generalized linear model including six motion parameters as covari-

ates. The general view of the self-concept is that of a stable cognitive representation 

(i.e., knowledge system and beliefs) about one’s subjective self in comparison to an 

ideal self, the latter of which is formed by the environment. In line with this view, the 
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neural correlates of the self-concept were operationalized by subtracting brain activa-

tion during the presentation of videos of oneself from the brain activation during the 

presentation of videos of familiar and unknown persons (i.e., self > familiar person and 

unknown person). Thus, apart from the contrast images for (i) self vs. implicit baseline; 

(ii) familiar person vs. implicit baseline; (iii) unknown person vs. implicit baseline; (iv) 

distractor condition vs. implicit baseline; and (v) self vs. familiar and unknown person. 

The contrast between self and familiar person + unknown person was computed using 

the contrast weights [2 -1 -1 0]. 

Previous studies suggested that difference measures suffer from low inherent reliabil-

ity when the constituting conditions are correlated (Infantolino et al., 2018). Hence, 

we also estimated reliability separately for the “self”, “familiar other”, and “unknown 

other” contrast conditions. 

Analyses of self-concept-related measures 

We tested the stability of self-concept measures (i.e., with SASKO, the Emotional 

Competence Questionnaire, the Rosenberg Self-Esteem Scale, and the Empathy 

Quotient) by assessing differences between the first and second experimental session 

(t-tests for dependent samples) for pathological (problematic and addicted) gamers 

and healthy controls separately. Furthermore, we assessed test-retest reliability of 

self-concept measures by computing the intraclass correlation coefficient between 

the first and second session. 

Analyses of group-level fMRI activation 

On a group level, imaging data were analyzed using full factorial models with the fac-

tor time (first and second scan) to assess the congruence of task effects on the group 

level brain activation over time. This was accomplished by determining brain areas 

that show higher brain activation in response to viewing videos of the own person 

compared to brain activation when viewing videos of familiar and foreign persons 

(contrast: “self > familiar and unknown person”). In addition, group-level brain activa-

tion patterns were analyzed for the constituting task conditions separately (i.e., re-

sponses to videos of the “self”); a familiar person (contrast: “familiar person”); and an 
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unknown person (contrast: “unknown person”) at each time point. We applied a 

whole-brain family-wise error rate correction of pFWE<.05 at the cluster level to correct 

for multiple comparisons. 

Reliability measures 

To assess longitudinal test-retest reliability of the self-evaluation fMRI task, we com-

puted global and local measures of reliability. All reliability analyses were conducted 

using the fmreli toolbox for SPM12 (Frohner et al., 2019). Individual contrast images 

of the different task conditions served as input for the reliability analyses. Dice and 

Jaccard coefficients were analyzed within the framework of an ANOVA with the con-

trast condition set as four-level within-subject factor (i. self; ii. familiar person; iii. un-

known person; iv. self > familiar + unknown person) and the experimental group set as 

two-level between-subject factor (i. healthy individuals; ii. IGD). 

Intraclass correlation 

Voxel-wise reliability of each contrast condition was estimated by computing the in-

traclass correlation coefficient (ICC) between the first and second assessment points. 

The ICC tests whether the magnitude of brain activation in each voxel is stable be-

tween the first and the second fMRI scan. Fleiss (1986) proposed that ICCs lower than 

0.4 indicate poor reliability; ICCs between 0.4 and 0.6 indicate fair reliability; ICCs be-

tween 0.6 and 0.75 indicate good reliability; and ICCs with values higher than 0.75 in-

dicate good to excellent reliability (Fleiss, 1986). The ICC sets within-subject variance 

(σ2
within) in relation to between-subject variance (σ2

between). The ICC(3,1)-type was pro-

posed as being the most appropriate for assessing single site longitudinal fMRI da-

tasets (Ombao et al., 2016). Hence, we used the ICC(3,1)-type (Shrout & Fleiss, 1979), 

defined as: 

𝐼𝐶𝐶 =
(σ2

between − σ2
within)

(σ2
between + σ2

within)
 

ICC values were computed for the contrasts of “self”, “familiar person”, “unknown per-

son”, and the contrasts “self > familiar and unknown person”. We computed ICCs for 

every brain voxel and generated thresholded ICC brain maps to identify brain areas 
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that show good (ICC > 0.6) and good to excellent (ICC > 0.75) reliability. Furthermore, 

we computed additional atlas-based mean ICC values for a standard set of anatomical 

brain regions (see below). 

Similarity 

Similarities in the fMRI activation maps from the first and second scans were deter-

mined. The analysis captures the resemblance of two brain activation maps based on 

the alignment of high vs. low brain activation values across the brain. The authors of 

the fmreli toolbox propose that this method could be used to quantify within-subject 

and between-subject similarities of brain activation without requiring an a priori (and 

potentially arbitrary) statistical threshold. A high within-subject similarity supports 

the notion that individuals can be re-identified based on their neural brain activation 

patterns. The resulting coefficients are correlation coefficients that range from a “per-

fect” negative relationship (-1.00) to a “perfect” positive relationship (1.00). In the 

past, studies have suggested that subjects can be successfully identified based on 

their neural activation pattern if the within-subject similarity exceeds all between-sub-

ject association coefficients of the same participant (Finn et al., 2015; Frohner et al., 

2019). The similarity analyses, therefore, complement the computation of the ICC, 

which allow inferences on a group level, providing additional information on the sta-

bility and resemblance of brain activation at an individual participant level. 

Pearson’s correlation 

We computed the mean voxel-wise Pearson’s correlation coefficients between the 

“self”, “familiar other”, and “unknown other” contrast conditions using the procedures 

provided in the fmreli toolbox. This step was taken to assess the correlation between 

the different task condition contrasts. This is important due to the fact that the relia-

bility of a contrast between two conditions is limited in the case of high correlation 

between the activation patterns of the constituting contrast conditions. 

Jaccard and Dice Coefficients 
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The modified Jaccard coefficient is a commonly used measure in fMRI reliability stud-

ies. It can be interpreted as the percentage of overlapping significant voxels above a 

predefined threshold (e.g., p < 0.001) within all significant voxels. The Jaccard coeffi-

cient is defined as the ratio of intersection between the number of three-dimensional 

image voxels, which were found to be activated in the first fMRI assessment (A) and 

the replication (B), divided by the size of the union of the voxel sets of A and B (Jaccard, 

1902; Maitra, 2010).  

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
 

Another measure of global reliability or overlap between super-threshold voxels is the 

Dice coefficient. It is calculated as the number of super-threshold voxels that overlap 

between sessions A and B (see above) divided by the average number of significant 

voxels across sessions A and B (see above): 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) =  
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

Both, Jaccard and Dice coefficients range from no overlap (0) to perfect overlap (1) 

between super-threshold voxels; however, currently there is no consensus on specific 

values or cut-offs that would differentiate between “poor” and “good” values (Bennett 

& Miller, 2010). In accordance with previous studies, the current analyses used a 

threshold of p < 0.001. Jaccard and Dice coefficients were determined for every pa-

tient by comparing the baseline and the second fMRI results for the different contrast 

images. Resulting values were exported into the IBM SPSS statistics software (version 

25.0) and effects of contrast conditions were tested using a repeated measures anal-

ysis of variance model with contrast condition as within-subject factor. 

Atlas- and ROI-based summary measures 

To facilitate the assessment of local differences in reliability, we computed the mean 

ICC for N=116 anatomical regions, specified in the Automatic Anatomic Labeling 

(AAL) atlas (Tzourio-Mazoyer et al., 2002). ICC values were extracted from the ROIs 
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using the data extraction routine of the MarsBar software package (http://mars-

bar.sourceforge.net/); then, these data were exported into the IBM SPSS statistics 

software (version 25.0) for further analyses. 

2.3.4 Results 

Reliability of psychometric self-concept-related measures 

Demographic, gaming, and self-concept-related psychometric data for both time 

points of N=40 participants are shown in Table 2.6. The mean period between the two 

fMRI scans was 396 days (SD=67). As expected, pathological gamers showed signifi-

cantly higher AICA_30 and AICA_lifetime scores than healthy controls at T1 and T2. 

The AICA_30 score showed a significant decrease from T1 to T2 for the pathological 

gaming group but not for the healthy control group. Regarding between-group differ-

ences, pathological gamers rated their social anxiety of feeling rejected higher, com-

pared to the control groups in T2. Both subgroups did not differ in other self-concept-

related measures. Furthermore, the majority of self-concept-related measures did not 

show a significant change over time, which indicates stability (see Table 2.6). Only the 

subscale assessing emotional regulation (EKF-RE) showed a significant increase from 

T1 to T2 in pathological gamers. The stability of self-concept-related measures was 

further supported by high test-retest reliability estimates (see Table 2.7). 

  

http://marsbar.sourceforge.net/)
http://marsbar.sourceforge.net/)
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Table 2.6 Sample description - Differences in demographic, gaming, as well as self-concept-related 

characteristics between pathological (problematic and addicted) gamers and healthy controls at both 

time points (t-tests for independent samples) and between the time points (t-tests for dependent 

samples). 

Between Group Comparison T1 – 1st Assessment    

 Total score Pathological gamers 

(n=11) 

Healthy con-

trols (n=29) 

t-value p-value 

Age (SD) 21.23 (2.51) 21.45 (3.05) 21.14 (2.33) -.353 .726 

AICA_30 (SD) 5.15 (5.89) 13.09 (5.55) 2.14 (1.79) -.641 .007 

AICA_lifetime (SD) 13.70 (8.36) 22.27 (5.73) 10.45 (6.77) -5.125 <.001 

Years of education (SD) 13.92 (1.90) 14.09 (1.92) 13.86 (1.92) -.336 .739 

SASKO: Speaking (SD) 8.40 (5.92) 10.64 (6.91) 7.55 (5.38) -1.33 .202 

SASKO: Rejection (SD) 7.95 (5.27) 10.36 (5.83) 7.03 (4.83) -1.839 .074 

SASKO: Interaction (SD) 6.10 (4.75) 7.36 (7.00) 5.62 (3.62) -1.03 .307 

SASKO: Information 

(SD) 

6.08 (3.82) 8.36 (4.80) 5.20 (3.04) -2.032 .063 

SASKO: Loneliness (SD) 2.15 (2.50) 2.73 (2.76) 1.93 (2.40) -.898 .375 

EKF-EE (SD) 56.90 (8.27) 56.73 (9.81) 56.97 (10.18) .067 .947 

EKF-EA (SD) 62.552 (8.27)) 61.18 (10.57) 63.03 (7.38) .628 .534 

EKF-RE (SD) 48.25 (6.89 47.18 (8.11) 48.66 (6.48) .599 .553 

EKF-EX (SD) 51.25 (11.18) 50.73 (13.88) 51.44 (10.25) .180 .858 

Rosenberg Selfworth 

(SD) 

22.90 (4.87) 21.36 (6.76) 23.48 (3.93) 1.238 .223 

Empathy (SD) 36.13 (8.03) 37.45 (9.85) 35.62 (7.36) -.640 .526 

Between Group Comparison T2 – 2nd Assessment    

 Total score Pathological gamers 

(n=11) 

Healthy con-

trols (n=29) 

t-value p-value 

Age (SD) 22.34 (2.12) 22.72 (2.94) 22.19 (2.37) -.597 .554 

AICA_30 (SD) 2.65 (2.94) 4.63 (3.59) 1,90 (2,30) -2.865 .007 
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AICA_lifetime (SD) 13.65 (9.33) 23.19 (6.19) 10.03 (7.64) -5,094 <.001 

Years of education (SD) - - - - - 

SASKO: Speaking (SD) 7.78 (5.04) 9.63 (5.85) 6.86 (4.56) -1.589 .120 

SASKO: Rejection (SD) 6.81 (4.71) 9.45 (6.15) 6.04 (3.71) -2.152 .038 

SASKO: Interaction (SD) 5.50 (3.58) 5.91 (3.78) 5.41 (3.50) -.377 .711 

SASKO: Information 

(SD) 

6.18 (3.91) 7.82 (4.40) 5.66 (3.60) -1.456 .119 

SASKO: Loneliness (SD) 1.84 (2.42) 2.36 (2.11) 1.72 (2.47) -.814 .454 

EKF-EE (SD) 58.05 (9.21) 57.36 (11.78) 58.33 (8.19) .291 .773 

EKF-EA (SD) 62.06 (14.27) 58.32 (22.32) 63.59 (7.21) .757 .464 

EKF-RE (SD) 51.08 (6.94) 53.09 (7.57) 50.26 (6.64) -1.146 .259 

EKF-EX (SD) 51.98 (13.92) 51.12 (20.29) 52.33 (10.88) .240 .812 

Rosenberg Selfworth 

(SD) 

23.76 (4.76) 23.09 (3.70) 24.04 (4.01) .551 .585 

Empathy (SD) 36.14 (9.75) 39.10 (9.99) 35.00 (9.61) .803 .265 

Within-group comparisons T1 > T2    

 Pathological 

gamers 

t-value 

p-value Healthy con-

trols 

t-value 

p-value  

Age (SD) -9.037 <.001 -13.25 <.001  

AICA_30 (SD) 4.087 .002 .462 .647  

AICA_lifetime (SD) -.396 .700 .405 .688  

Years of education (SD) - - - -  

SASKO: Speaking (SD) .840 .421 1.204 .238  

SASKO: Rejection (SD) .897 .391 1.528 .138  

SASKO: Interaction (SD) 1.168 .270 .328 .745  

SASKO: Information 

(SD) 

.482 .640 -.982 .334  

SASKO: Loneliness (SD) .510 .563 1.063 .297  

EKF-EE (SD) -.398 .699 -.400 .692  

EKF-EA (SD) .467 .651 .029 .977  

EKF-RE (SD) -2.444 .035 -1.090 .285  
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AICA_30: Severity of computer game addiction during the last 30 days, AICA_Lifetime: lifetime usage of com-

puter games, SD: standard deviation, SASKO: Social Anxiety and Social Competence Deficits, EKF-EE: Rec-

ognizing and understating own emotions, EKF-EA: Recognizing and understanding others’ emotions, EKF-RE: 

Regulation and control of own emotions, EKF-EX: Emotional expressiveness; t= two sample t-test statistics 

  

EKF-EX (SD) -.100 .922 -.410 .685  

Rosenberg Selfworth 

(SD) 

-2.000 .074 -.583 .565  

Empathy (SD) -.425 .681 .782 .442  
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Table 2.7 Intraclass correlation coefficients of self-concept-related measures 

 Total Sample 

N=40 

Pathological  

gamers (n=11) 

Healthy controls 

(n=29) 

 Intraclass  

Correlation  

coefficient  

p-value Intraclass  

Correlation  

coefficient  

p-value Intraclass  

Correlation  

coefficient  

p-value 

SASKO: Speaking  .820 <.001 .810 .001 .809 <.001 

SASKO: Rejection  .762 <.001 .843 <.001 .665 <.001 

SASKO: Interaction .631 <.001 .730 .003 .545 .001 

SASKO: Information .727 <.001 .668 .009 .728 <.001 

SASKO: Loneliness .845 <.001 .664 .009 .908 <.001 

EKF-EE  .552 <.001 .881 <.001 .390 .017 

EKF-EA .481 .001 .319 .156 .717 <.001 

EKF-RE  .461 .001 .478 .058 .502 .002 

EKF-EX  .709 <.001 .712 .005 .705 <.001 

Rosenberg  

Selfworth  

.787 <.001 .905 <.001 .679 <.001 

Empathy  .464 .002 .475 .070 .453 .009 

SASKO: Social Anxiety and Social Competence Deficits, EKF-EE: Recognizing and understating own emotions, EKF-EA: Rec-

ognizing and understanding others’ emotions, EKF-RE: Regulation and control of own emotions, EKF-EX: Emotional expres-

siveness 
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Group-level brain activation 

Analyses of brain activation across both groups (N=40) indicated significant self-con-

cept associated brain activation (contrast: “self > familiar and unknown person”) in the 

bilateral insula; the anterior and medial cingulum; the IFG; the operculum; the bilat-

eral putamen; the claustrum; the superior motor area; the precentral gyrus and the 

STG; the right globus pallidus; the superior and medial frontal gyri; the supramarginal 

gyrus; the postcentral gyrus; and the inferior parietal lobe (see Supplementary Table 

S 2.6). The patterns of brain activation were replicated, when analyzing both groups 

separately (see Supplementary Table S 2.6). Between-group comparisons did not re-

veal significant differences in brain activations at T1 or T2. Longitudinal comparison 

of the brain activation during first and second fMRI did not show a significant change 

in brain activation over time (two-tailed: increase over time [T1<T2] or decrease 

[T1>T2]; see Supplementary Table S 2.6). Detailed results of the group-level analyses 

for the constituting task conditions (self, familiar person, and unknown person) are 

depicted in the Supplementary Figure S 2.7. In short, self-related activation patterns 

were detected in both groups in the insula as well as in the superior and inferior tem-

poral gyrus. For the familiar and unknown condition, activation was recorded in the 

middle and superior temporal gyrus. 

Reliability analyses 

Reliability of the contrast “self > familiar and unknown person” 

For the pooled study sample (N=40) and in both study groups separately, the mean 

ICC values of the contrast “self > familiar and unknown person” were under the thresh-

old of moderate reliability (ICC<0.4, see Table 2.8). This finding, however, came as no 

surprise as we had assumed that brain activation in areas, which are unrelated to the 

fMRI task, and the construct of self-evaluation could not be replicated in its magni-

tude. This resulted in a low overall ICC value across the whole brain. Both groups did 

not significantly differ in mean ICC values. Thresholded ICC maps illustrated that the 

local reliability of the contrast “self > familiar and unknown person” did not surpass 

the threshold for good reliability, neither in the pooled sample, nor when considering 
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both experimental groups separately (ICC>0.75, see Figure 2.7 and Supplementary 

Figure S 2.8 and Supplementary Figure S 2.9; ICC maps are available at https://identi-

fiers.org/neurovault.collection:9777). However, several brain areas showed moderate 

to good reliability (0.75>ICC>0.60, see Figure 2.8). In the patient group these areas in-

cluded the right middle and anterior cingulum; the right superior temporal gyrus, in-

cluding parts of the TPJ; the bilateral middle and inferior temporal gyrus; the left fusi-

form gyrus; the left insula; and the right inferior occipital gyrus. In the control group 

the areas included the bilateral middle occipital gyri as well as the right superior and 

middle temporal gyrus, including parts of the TPJ.  

The atlas-based summary of mean ICC values for 120 brain regions for the contrast 

“self > familiar and unknown person” (collapsed across both groups) showed that no 

brain region surpassed an average mean ICC value of 0.4 (see Supplementary Table S 

2.7). 

The overall within-subject similarity for all contrast conditions exceeded the between 

subject similarity values (within: rself = 0.50, rfamiliar other = 0.19, runkown other = 0.52, rself-other 

= 0.23; between: rself = 0.28, rfamiliar other = 0.04, runkown other = 0.32, rself-other = 0.09). This 

translated into a high proportion of participants that could be re-identified based on 

their neural signature during the different task conditions (i.e. participants can be re-

identified if their within-subject correlation coefficients exceeded all between-subject 

correlation coefficients with other participants). 55% of participants could be re-iden-

tified based on their activation during the “self” condition and 69%, when investigat-

ing the “unknown other” contrast, while 36% of the sample could be re-identified 

based on the activation during the “familiar other” condition, and still 30% of partici-

pants could be re-identified using the difference contrast (“self-other”). 

Results of the similarity analysis demonstrate higher within-subject similarity com-

pared to between-subject similarity from first to second fMRI for the contrast “self > 

familiar and unknown person” (tself-familiar+unknown other>=5.37, tself>=9.93, p<0.001). In 

both groups, the overall within-subject similarity exceeded the mean between-subject 

similarity values (within: rself- familiar+unknown person r>=0.16; between: rself- familiar+unknown person 



Empirical studies 

138 

<=0.10). This translated into a proportion of participants that could be re-identified 

based on their neural signature captured by the contrast “self > familiar and unknown 

person” of 30% (pooled sample, N=40) with a higher proportion in the group of healthy 

participants (37%), compared to the groups of individuals with problematic internet 

use (27%, see Figure 2.9 and Figure 2.10). 

The low overall reliability of the “self > familiar and unknown person” contrast also 

reflected in low Jaccard and Dice coefficients, in the whole study sample and also 

when analyzing both study groups separately (see Table 2.9), which indicated that 

only about 1–8% of significant voxels could be replicated during the second fMRI ses-

sion. Analyses showed that the magnitude of Jaccard and Dice reliability estimates 

was significantly lower for the “self > familiar and unknown person” contrast, com-

pared to the three constituent task conditions (FJaccard(3,114)=54.386, p<0.001, 

eta2=0.589; FDice(3,114)=64.886, p<0.001, eta2=0.631). There was no significant differ-

ence between pathological gamers and controls (F(1,38)Jaccard=0.453, p=0.505, 

eta2=0.012; F(1,38)Dice=0.355, p=0.555, eta2=0.009). 
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Figure 2.7 Depiction of brain areas that show good to excellent reliability for the different task con-

trasts: A] “Self”, B] “Familiar Person”, C] “Unknown Person” and D] “Self > Familiar + Unknown Per-

son” (Intraclass correlation coefficient [ICC] > 0.75), when performing pooled analyses of the whole 

dataset of N=40 participants. 
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Figure 2.8 Depiction of brain areas that show moderate to good reliability (0.75>ICC>0.60) for the 

contrast “self > familiar and unknown person” in (A) the patient group and (B) the control group. 
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Figure 2.9 Similarity maps for the problematic gamers group (upper row) and empirical cumulative 

distribution functions (lower row, red lines: between-subject similarity: lower row, blue lines: within-

subject similarity) for longitudinal comparisons (first and second fMRI sessions) for the four contrast 

conditions: A] “self”, B] “familiar person”, C] “unknown person”, and D] “self > familiar and unknown 

person”. The diagonal of each color matrix represents the within-subject similarity values. Re-identi-

fication of a subject based on the neural activation map is affirmed if the within-subject similarity 

value (diagonal) exceeds all between-subject association coefficients of the same participant (i.e., 

similarity values in the respective row of the matrix). Higher within-subject similarity is also illustrated 

by a right-shift of the cumulative density functions for the within-subject similarity values (blue lines) 

relative to the between-subject similarity values (red lines) for the A] “self”, B] “familiar person”, and 

C] “unknown person” contrast maps; hereby, the cumulative density functions overlapped for D] the 

“self > familiar and unknown person” contrast. 



Empirical studies 

143  



Empirical studies 

144 

Figure 2.10 Similarity maps for the control group (upper row) and empirical cumulative distribution 

functions (lower row, red lines: between-subject similarity; lower row, blue lines: within-subject simi-

larity) for longitudinal comparisons (first and second fMRI sessions) for the four contrast conditions: 

A] “self”, B] “familiar person”, C] “unknown person”, and D] “self > familiar and unknown person”. The 

diagonal of each color matrix represents the within-subject similarity values. 
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Table 2.8 Mean Intraclass Correlation (ICC) values for different contrast conditions for the pooled 

sample and both study groups separately. 

    Contrasts  

  Self Familiar Per-

son 

Unknown Per-

son 

Self > Famil-

iar + Un-

known Per-

son 

Pooled 

group (N=40) 

Mean ICC 

(SD)  

0.24 (.24) 0.30 (.24)  0.25 (.24) 0.06 (.21) 

Controls 

(N=29) 

Mean ICC 

(SD)  

0.25 (.24)  0.28 (.24)  0.27 (.24) 0.07 (.21) 

Patients 

(N=11) 

Mean ICC 

(SD) 

0.25 (0.23) 0.24 (0.22) 0.21 (0.21) -0.03 (0.18) 
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Table 2.9 Comparison of Jaccard and Dice coefficients across the different task conditions for the 

pooled sample and both study groups separately. 

     Contrasts    

   Self Familiar 

Person 

Unknown 

Person 

Self > Fa-

miliar + 

Unknown 

Person 

Statistics p 

Pooled 

group  

Jaccard Coef-

ficient 

Mean  0.24 0.30 0.32 0.04 F(3,84)=78.766 <0.001 

(N=40)  (SD) (0.16) (0.14) (0.15) (0.09)   

 Dice Coeffi-

cient 

Mean 0.36 0.44 0.47 0.07 F(3,84)=89.051 <0.001 

  (SD) (0.22) (0.18) (0.20) (0.14)   

Controls 

(N=29) 

Jaccard Coef-

ficient 

Mean  0.25 0.31 0.34 0.05 F(3,84)=41.825 <0.001 

  (SD) (0.16) (0.14) (0.15) (0.09)   

 Dice Coeffi-

cient 

Mean  0.38 0.45 0.49 0.08 F(3,84)=48.060 <0.001 

  (SD) (0.21) (0.19) (0.19) (0.14)   

Patients 

(N=11) 

Jaccard Coef-

ficient 

Mean  0.37 0.43 0.47 0.02 F(3,30)=29.128 <0.001 

  (SD) (0.23) (0.12) (0.15) (0.03)   

 Dice Coeffi-

cient 

Mean  0.24 0.28 0.32 0.01 F(3,30)=34.137 <0.001 

  (SD) (0.17) (0.09) (0.12) (0.02)   

Post-hoc tests demonstrated a significant difference between the “self > familiar and unknown person” contrast and all other 

contrast conditions (all p’s<0.003), while the (i) self, (ii) familiar person, and (iii) unknown person contrast conditions did not 

differ in the magnitude of the Dice and Jaccard coefficients (all p’s >0.05). 
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Reliability of the constituent task conditions “self”, “familiar person”, and “unknown per-

son” 

The mean ICC values for the (i) self, (ii) familiar person, and (iii) unknown person con-

trasts were remarkably higher, compared to the contrast “self > familiar and unknown 

person” in the pooled sample and also when analyzing both study groups separately 

(see Table 3). Still, the mean ICC values for the pooled dataset (N=40) were below the 

threshold for moderate reliability (0.4). Thresholded ICC maps for the (i) self, (ii) famil-

iar person, and (iii) unknown person contrast demonstrated good to excellent reliabil-

ity (1.0>ICC>0.75, see Figure 2.7) in several brain areas. In the patient group these ar-

eas included parts of the bilateral superior; middle and inferior temporal gyrus, includ-

ing parts of the TPJ; the left and right fusiform gyrus; the right angular gyrus; the mid-

dle and inferior occipital gyrus; precuneus; cuneus; superior frontal gyrus; postcentral 

and precentral gyrus; amygdala; pallidum; insula; cerebellum and parts of the left lin-

gual gyrus; the fusiform gyrus; middle and inferior occipital gyrus; superior, middle, 

and inferior frontal gyrus; precentral and postcentral gyrus; cuneus; calcarine; and 

caudate (see supplementary Figure S2). In the control group these areas included 

parts of the right middle and inferior occipital gyrus; the superior and middle temporal 

gyrus; cuneus; lingual gyrus; calcarine; precuneus and the left superior; middle and in-

ferior temporal gyrus; the postcentral gyrus; precentral gyrus; Heschl gyrus; supra-

marginal gyrus; insula; the superior and inferior frontal gyrus and superior occipital 

gyrus (see Supplementary Figure S 2.9). 

The atlas-based summary of mean ICC values for the contrast conditions (i) self, (ii) 

familiar person, and (iii) unknown person showed that several brain regions surpassed 

the threshold of fair to moderate reliability (ICC>0.4). These included the bilateral su-

perior; middle and inferior occipital gyri; the superior and middle temporal gyri; the 

Heschl gyri; the supramarginal gyri; as well as the cuneus, calcarine and lingual gyri 

(see Supplementary Table S 2.7). 

Results of the three constituting contrast conditions show higher within-subject simi-

larity than between-subject similarity from the first to the second fMRI. The difference 
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between within-subject and between-subject similarity is depicted as the prominent 

diagonal in the similarity matrices (see Figure 2.9and Figure 2.10). In both groups, the 

overall within-subject similarity for all contrast conditions exceeded the between-sub-

ject similarity values (within: rself >= 0.50, rfamiliar person = 0.50, runknown person = 0.47; be-

tween: rself <= 0.29, rfamiliar person <= 0.31, runknown person <= 0.33). Analyses based on the 

pooled dataset (N=40) indicated that 55% of participants could be re-identified based 

on their activation during the “self” contrast, 69%  could be re-identified based on 

their activation during the “unknown person” contrast and 36% could be re-identified 

based on their activation during the “familiar person” contrast. Considering the two 

experimental groups separately, these results showed comparable results. 63% of the 

participants in the patient group and 58% of the participants in the control group could 

be re-identified based on their activation during the “self” contrast condition. 54% and 

72% respectively could be re-identified based on the “unknown person” contrast. 63% 

and 75% respectively could be re-identified based on the activation during the “famil-

iar person” condition (see Figure 2.9 and Figure 2.10). 

Analyses of the Jaccard and Dice coefficients for the pooled dataset and considering 

both experimental groups separately demonstrated a significant main effect in the 

contrast category for both coefficients, while there was no significant difference be-

tween groups. The “self”, “familiar person”, and “unknown person” contrast condi-

tions displayed significantly higher Dice and Jaccard coefficients compared to the “self 

> familiar and unknown person” contrast (all p’s <=0.003, see Table 2.9). About 24–

47% of the significant voxels for “self”, “familiar person”, and “unknown person” con-

trasts were replicated during the second fMRI session. 

Assessment of factors underlying the reliability differences across the contrast conditions 

In order to assess whether the comparatively low reliability of the contrast (“self > fa-

miliar and unknown person”) might result from an inter-correlation between the con-

stituting single task condition contrasts, we computed the voxel-wise Pearson corre-

lation coefficient for all three constituting conditions. Data indicate substantial corre-

lations between the three conditions (rself x familiar person = 0.36, SD = 0.26, R2=0.13, rself x 
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unknown person = 0.28, SD = 0.32, R2=0.08, runknown person x familiar person = 0.29, SD = 0.35, 

R2=0.08). This evinces that the three constituting task conditions share about 8–12% 

of their variance. Previous studies indicate that part of the shared variance is removed 

by subtracting the constituting contrast conditions. In our case, this is illustrated by 

the lower correlation coefficients between the “self vs. familiar and unknown person” 

contrast and the constituting contrast conditions (r(self- familiar+unknown person) x self =0.22, 

SD=0.30, R2=0.05; r(self- familiar+unknown person) x familiar person=-0.01, SD=0.18, R2<0.01; r(self- fa-

miliar+unknown person) x unknown person =-0.16, SD=0.24, R2=0.03). 

2.3.5 Discussion 

Our study assessed whole-brain longitudinal reliability of an fMRI task that was de-

signed to investigate the neurobiological correlates of participants’ self-concept. 

First, we assessed the robustness of group-level brain activation for the task contrast 

of interest (“self vs. familiar and unknown person”). Results indicate stable brain acti-

vation in the bilateral insula; the anterior and medial cingulate; as well as the IFG in 

both groups at T1. This is in line with the meta-analytical findings of Hu et al. (2016) 

who report that the ACC, the insula, the IFG as well as regions of the TPJ are activated 

during reflections and recognition of the own person as compared to other individuals. 

Furthermore, analyses of psychometric measures that assessed aspects of the self-

concept indicated that the vast majority of measures did not show a significant change 

over time, with moderate to high test-retest reliability of the measures. This supports 

the notion that self-concept-related aspects can be regarded as relatively stable, thus, 

confirming the stability of the self-concept construct (Rammsayer & Weber, 2016; 

Swarm Jr, 1983). 

Reliability analyses for the contrast of interest “self > familiar and unknown person” 

showed poor overall reliability, indicated by low mean ICC values and low Jaccard and 

Dice coefficients. Still, local ICC values indicated fair to moderate reliability in parts of 

the bilateral middle occipital gyri; the middle and superior temporal gyri; and parts of 

the TPJ. Similarity analysis indicated that a quarter to a third of the participants could 

be re-identified based on their neural activation pattern encoded by the contrast “self 
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> familiar and unknown person”. This value might seem unexpectedly high consider-

ing the low ICC, Dice, and Jaccard coefficients. However, the very low between-sub-

ject correlation values for the contrast in combination with the moderate within-sub-

ject correlation coefficients resulted in a re-identification of a substantial proportion 

of the sample (i.e., the within-subject correlation is higher than all between-subject 

correlation coefficients). In order to determine whether the results depended on the 

sample size, we conducted reliability analyses with the pooled datasets of n=40 par-

ticipants, in addition to the analyses for the two experimental groups separately. Re-

sults of the pooled dataset (N=40) confirm the findings derived from the separate 

group analyses. 

In opposition to the low overall reliability of the “self > familiar and unknown person” 

contrast, the single constituting contrast conditions “self”, “familiar person”, and “un-

known person” showed good to excellent longitudinal reliability in several brain re-

gions associated with the processing of self-referential information (Goldin et al., 

2014; Hu et al., 2016). Specifically, this included the bilateral superior and middle tem-

poral and occipital gyri; portions of the TPJ; as well as parts of the cuneus, lingual gy-

rus, calcarine and areas of the mesolimbic system, such as the insula. The Dice and 

Jaccard coefficients indicated that about a quarter to a third of the clusters displaying 

significant activation for the “self”, “familiar person”, and “unknown person” contrasts 

during the baseline fMRI assessment could be replicated in the second fMRI assess-

ment after one year. Similarity analyses also showed that more than half of the par-

ticipants could be re-identified based on neural activation patterns. 

The lower reliability of the contrast “self > familiar and unknown person” might re-

sult—at least in part—from a substantial correlation between the constituting contrast 

conditions. These conditions share about a tenth of their variance, as indicated by the 

Pearson correlation coefficients. This proportion of shared variance is removed by 

subtracting the conditions from one another, while the error variances are added. In 

their recent publication, Infantolino et al. (2018) confirmed that the correlation be-

tween the constituting contrast conditions of a contrast, places an upper limit on the 
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reliability of a difference measure. Summarizing the results of 56 independent fMRI 

studies, a recent meta-analysis showed that only half of the reliability scores fell within 

the range of at least moderate reliability (Elliott et al., 2020). The authors concluded 

that difference scores will always have lower reliability than their constituent contrast 

conditions; hence, limiting the reliability of such a measure (Elliott et al., 2020). 

The sub-perfect reliability of the constituting task condition contrasts points out that 

additional factors underlie the observed limited reliability. Elliot et al. (2020) investi-

gated factors that might limit reliability of task fMRI. Their moderator analysis indi-

cated that neither task type (i.e., process under investigation); task design (e.g., block 

vs. event-related); task length; test-retest interval; ROI type (i.e., structural vs. func-

tional); nor sample type (i.e., healthy vs. clinical) significantly moderated reliability 

scores. In the presented analyses, we could not determine the individual factors un-

derlying the sub-perfect reliability of the constituting task condition contrasts. How-

ever, it is likely that the self-concept—as well as the associated cognitive processes 

that are captured by the task under investigation—vary over the test-retest interval of 

one year, limiting the overall reliability. Still, we observed good local reliability of the 

constituent task conditions, which suggests that fMRI-based measures of the pre-

sented task can provide sufficiently reliable estimates of brain activation. In regard to 

the poor reliability of the contrast “self > familiar and unknown person”, several steps 

can be undertaken to mitigate the problems associated with computing the contrast 

between the constituent task conditions. In the case of a linear association and corre-

lation between the constituent task conditions, one task condition can substitute the 

other condition without losing information on the individual differences between par-

ticipants (Infantolino et al., 2018). Regarding the self-evaluation task, we argue that 

the individual response trajectories to pictures of oneself are of special interest. We 

assume that changes in altered self-concept translates into changes in brain activation 

captured by the “self” contrast. It can be argued that the focus on a solitary task con-

dition reduces the capacity to isolate specific cognitive processes. This could be over-

come by either relying on meta-analysis that could inform on the role of a certain brain 

region for the cognitive process under investigation. Alternatively, the investigation 
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of within-subject effects between the constituting task conditions could be used to 

identify regions that specifically activate differently to various task conditions and re-

gions of interest. In a next step, brain activation during the constituting condition 

“self” could be used as a measure to index individual differences over time with mod-

erate to good or even excellent reliability. 

Limitations 

The small sample size of the group of participants with problematic internet gaming 

use and IGD should be considered a relevant limitation. In addition, the meta-analysis 

by Elliott et al. (2020) reported that the sample size of studies assessing fMRI reliability 

ranged from five to 58 subjects with a median below 30. While the sample size of the 

current study should be regarded as a potential limitation, the sample size does, in 

fact, exceed most previous fMRI reliability studies. Still, the presented findings should 

be regarded as preliminary and future studies with larger sample sizes are needed. 

2.3.6 Conclusion 

To the best of our knowledge, this is the first study that presents longitudinal reliabil-

ity analyses of a self-evaluation fMRI paradigm. Self-concept-associated brain activa-

tion, indexed by the contrast “self > familiar and unknown person” showed poor over-

all reliability. Still, local reliability measures demonstrated good reliability in regions 

of the TPJ. Furthermore, similarity analyses indicated that about a third of the partic-

ipants could be re-identified based on their neural activation, captured by the contrast 

“self > familiar and unknown person”. In contrast, the reliability estimates consistently 

indicated good to excellent reliability of the constituting task conditions “self”, “un-

known person”, and “familiar person” in several brain regions associated with social 

cognition. The poor global reliability of the contrast “self > familiar and unknown per-

son” could be explained—at least in part—with a substantial correlation between the 

brain activation of the constituting contrast conditions. Future fMRI research on self-

evaluation should be cautioned by these findings and employ methods to overcome 

these limitations. 
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2.3.7 Supplements 

Supplementary Tables 

Supplementary Table S 2.6  Brain areas depicting significantly higher activating during viewing vid-

eos of oneself compared to videos of other persons (contrast: “self > familiar + unknown person”, 

whole-brain threshold p<.001, pFWE, Cluster < .05). 

     MNI coordina-

tes 

 

H Lobe BA Brain regions Cluster 

size 

X Y Z T 

Pathological gamers (N=11) T1 

L Frontal  13/44  Insula, inferior frontal 

Gyrus, Gyrus Precen-

tralis 

577 -40 8 4 5.89 

R/L Limbic/Frontal 32/24 Anterior and medial 

Cingulum  

530 -2 38 8 4.75 

R Frontal 13/47 Insula, inferior frontal 

Operculum, Putamen, 

inferior Frontal Gyrus 

611 36 16 10 4.45 

Controls (N=29) T1 

L Frontal/ Tem-

poral 

13/22  Insula, inferior frontal 

Gyrus, inferior  

frontal Triangularis, 

superior temporal gy-

rus, Claustrum, 

 Gyrus precentralis 

1149 -42 12 -2 6.66 

R Frontal 45/47 Insula, inferior frontal 

Gyrus, inferior  

frontal Operculum, Gy-

rus Precentralis,  

Putamen, Claustrum 

 

   834 30 24 6 6.26 
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L/R Limbic/ Fron-

tal 

32/24 Anterior and medial   

Cingulum  

1129 4 28 26 4.93 

All (N=40) T1 

L Frontal 13/22/38/44/45/47 Insula, inferior frontal 

Gyrus Precentralis, Pu-

tamen, superior tem-

poral Gyrus, Claus-

trum, inferior frontal 

Operculum, 

 

1651 -40 10 2 8.1 

R Frontal/tem-

poral 

13/22/44/45/47 Insula, inferior frontal 

Gyrus, inferior frontal 

Operculum, Putamen, 

Gyrus Precentralis, 

Globus Pallidum, Supe-

rior Temporal Gyrus, 

Claustrum 

1764 32 20 8 6.43 

L/R Limbic/Frontal 24/9/32 Anterior and medial   

Cingulum (r and  l), su-

perior and medial 

frontal Gyrus (r), supe-

rior Motor Area (r and l) 

1807 2 28 26 6.36 

L/R Frontal 6/8 Superior and medial 

frontal Gyrus (r), supe-

rior Motor Area (r and l) 

585 -4 6 62 5.99 

R Parietal 1/2/3/40 Gyrus supramarginalis, 

Gyrus postcentralis, in-

ferior parietal Lobe, 

Gyrus Precentralis 

345 56 -30 38 5.35 

 

Pathological gamers (N=11) T2 

n.s. 

Controls (N=29) T2 

n.s. 

All (N=40) T2 

n.s. 
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Pathological gamers (N=11) T2>T1 and T2<T1 

n.s. 

Controls (N=29) T2>T1 and T2<T1 

n.s. 

All (N=40) T2>T1 and T2<T1 

n.s. 

Note. H = hemisphere; L = left; R = right; BA = Brodmann area; MNI = Montreal Neurological Institute 

n.s. = not significant; Whole-Brain Threshold p<.001, pFWE, Cluster < .05). 
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Supplementary Table S 2.7 Atlas-based mean Intraclass Correlation (ICC) values for the four task 

contrasts “self”, “familiar other”, unknown other” and “self – other” for 120 anatomical regions spec-

ified in the aal atlas for the pooled analyses of the whole sample (N=40).  

 Contrasts 

Brain Region (aal atlas) Self 

Familiar  

Person 

Unknown 

Person 

Self > Familiar +  

Unknown Person 

2001_Precentral_L 0.27 0.38 0.37 0.03 

2002_Precentral_R 0.37 0.35 0.33 0.00 

2101_Frontal_Sup_2_L 0.22 0.28 0.23 0.05 

2102_Frontal_Sup_2_R 0.25 0.29 0.28 -0.01 

2201_Frontal_Mid_2_L 0.17 0.32 0.21 -0.01 

2202_Frontal_Mid_2_R 0.20 0.29 0.26 -0.02 

2301_Frontal_Inf_Oper_L 0.23 0.39 0.28 0.09 

2302_Frontal_Inf_Oper_R 0.19 0.27 0.21 -0.03 

2311_Frontal_Inf_Tri_L 0.34 0.37 0.23 0.09 

2312_Frontal_Inf_Tri_R 0.22 0.32 0.14 0.00 

2321_Frontal_Inf_Orb_2_L 0.21 0.28 0.17 0.05 

2322_Frontal_Inf_Orb_2_R 0.08 0.29 0.17 -0.06 

2331_Rolandic_Oper_L 0.40 0.53 0.40 0.09 

2332_Rolandic_Oper_R 0.37 0.46 0.29 0.03 

2401_Supp_Motor_Area_L 0.36 0.35 0.30 0.01 

2402_Supp_Motor_Area_R 0.32 0.37 0.29 -0.01 

2501_Olfactory_L 0.23 0.19 0.23 -0.06 

2502_Olfactory_R 0.23 0.19 0.21 -0.13 

2601_Frontal_Sup_Medial_L 0.21 0.30 0.24 0.04 

2602_Frontal_Sup_Medial_R 0.16 0.26 0.25 -0.01 
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2611_Frontal_Med_Orb_L 0.07 0.22 0.09 0.00 

2612_Frontal_Med_Orb_R 0.03 0.14 0.06 -0.06 

2701_Rectus_L -0.04 0.26 0.11 -0.07 

2702_Rectus_R 0.02 0.18 0.07 -0.18 

2801_OFCmed_L -0.01 0.24 0.07 -0.15 

2802_OFCmed_R 0.04 0.21 0.09 -0.06 

2811_OFCant_L 0.00 0.25 0.13 -0.07 

2812_OFCant_R -0.01 0.20 0.09 -0.02 

2821_OFCpost_L 0.02 0.21 0.06 -0.10 

2822_OFCpost_R 0.07 0.27 0.15 -0.09 

2831_OFClat_L 0.03 0.32 0.12 -0.02 

2832_OFClat_R 0.08 0.26 0.02 0.02 

3001_Insula_L 0.10 0.28 0.17 -0.02 

3002_Insula_R 0.12 0.29 0.16 -0.04 

4001_Cingulate_Ant_L 0.08 0.25 0.18 0.03 

4002_Cingulate_Ant_R -0.02 0.24 0.16 0.06 

4011_Cingulate_Mid_L 0.15 0.36 0.21 -0.02 

4012_Cingulate_Mid_R 0.18 0.33 0.24 0.01 

4021_Cingulate_Post_L 0.20 0.36 0.19 0.17 

4022_Cingulate_Post_R 0.09 0.30 0.24 0.16 

4101_Hippocampus_L 0.07 0.24 -0.02 0.07 

4102_Hippocampus_R 0.06 0.19 -0.01 -0.01 

4111_ParaHippocampal_L 0.10 0.22 0.14 -0.02 

4112_ParaHippocampal_R 0.09 0.23 0.11 -0.06 

4201_Amygdala_L 0.20 0.32 0.17 0.04 

4202_Amygdala_R 0.16 0.28 0.08 -0.08 

5001_Calcarine_L 0.47 0.57 0.56 0.18 
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5002_Calcarine_R 0.54 0.61 0.57 0.21 

5011_Cuneus_L 0.48 0.49 0.53 0.14 

5012_Cuneus_R 0.51 0.48 0.53 0.11 

5021_Lingual_L 0.42 0.52 0.43 0.09 

5022_Lingual_R 0.45 0.48 0.42 0.16 

5101_Occipital_Sup_L 0.53 0.45 0.53 0.22 

5102_Occipital_Sup_R 0.45 0.44 0.47 0.19 

5201_Occipital_Mid_L 0.43 0.46 0.51 0.22 

5202_Occipital_Mid_R 0.43 0.41 0.44 0.29 

5301_Occipital_Inf_L 0.45 0.48 0.46 0.27 

5302_Occipital_Inf_R 0.43 0.43 0.44 0.29 

5401_Fusiform_L 0.26 0.33 0.32 0.07 

5402_Fusiform_R 0.28 0.33 0.33 0.07 

6001_Postcentral_L 0.27 0.32 0.30 0.02 

6002_Postcentral_R 0.32 0.31 0.31 0.07 

6101_Parietal_Sup_L 0.35 0.34 0.37 0.04 

6102_Parietal_Sup_R 0.38 0.31 0.40 0.21 

6201_Parietal_Inf_L 0.26 0.39 0.33 0.03 

6202_Parietal_Inf_R 0.26 0.41 0.43 0.13 

6211_SupraMarginal_L 0.43 0.57 0.45 0.11 

6212_SupraMarginal_R 0.31 0.44 0.42 0.11 

6221_Angular_L 0.29 0.51 0.37 0.04 

6222_Angular_R 0.20 0.38 0.32 0.16 

6301_Precuneus_L 0.30 0.41 0.34 0.09 

6302_Precuneus_R 0.30 0.35 0.33 0.09 

6401_Paracentral_Lobule_L 0.33 0.30 0.27 0.04 

6402_Paracentral_Lobule_R 0.35 0.31 0.30 0.01 
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7001_Caudate_L 0.32 0.31 0.31 0.05 

7002_Caudate_R 0.26 0.30 0.30 0.03 

7011_Putamen_L 0.22 0.31 0.20 -0.01 

7012_Putamen_R 0.23 0.29 0.19 -0.07 

7021_Pallidum_L 0.26 0.25 0.13 0.07 

7022_Pallidum_R 0.20 0.21 0.14 -0.01 

7101_Thalamus_L 0.06 0.28 0.13 -0.06 

7102_Thalamus_R 0.06 0.34 0.17 -0.03 

8101_Heschl_L 0.52 0.60 0.39 0.22 

8102_Heschl_R 0.52 0.61 0.41 0.15 

8111_Temporal_Sup_L 0.59 0.64 0.54 0.20 

8112_Temporal_Sup_R 0.56 0.62 0.54 0.13 

8121_Temporal_Pole_Sup_L 0.21 0.39 0.25 -0.04 

8122_Temporal_Pole_Sup_R 0.27 0.45 0.31 -0.09 

8201_Temporal_Mid_L 0.43 0.51 0.47 0.09 

8202_Temporal_Mid_R 0.39 0.49 0.46 0.07 

8211_Temporal_Pole_Mid_L 0.26 0.41 0.21 -0.02 

8212_Temporal_Pole_Mid_R 0.25 0.31 0.28 -0.03 

8301_Temporal_Inf_L 0.13 0.28 0.22 -0.04 

8302_Temporal_Inf_R 0.21 0.22 0.28 0.01 

9001_Cerebelum_Crus1_L 0.23 0.29 0.19 -0.03 

9002_Cerebelum_Crus1_R 0.21 0.21 0.20 0.02 

9011_Cerebelum_Crus2_L 0.14 0.26 0.12 -0.15 

9012_Cerebelum_Crus2_R 0.04 0.14 0.16 0.00 

9021_Cerebelum_3_L 0.08 0.09 -0.04 0.14 

9022_Cerebelum_3_R 0.07 0.14 0.06 0.04 

9031_Cerebelum_4_5_L 0.14 0.19 0.11 0.03 
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9032_Cerebelum_4_5_R 0.10 0.18 0.16 0.00 

9041_Cerebelum_6_L 0.28 0.32 0.22 -0.05 

9042_Cerebelum_6_R 0.28 0.27 0.25 -0.05 

9051_Cerebelum_7b_L 0.19 0.18 0.08 -0.12 

9052_Cerebelum_7b_R 0.20 0.19 0.14 0.16 

9061_Cerebelum_8_L 0.22 0.17 0.07 0.10 

9062_Cerebelum_8_R 0.30 0.14 0.08 0.14 

9071_Cerebelum_9_L 0.27 0.05 0.12 0.11 

9072_Cerebelum_9_R 0.26 0.05 0.09 0.10 

9081_Cerebelum_10_L 0.18 0.05 -0.03 0.15 

9082_Cerebelum_10_R 0.27s -0.01 0.14 0.15 

9100_Vermis_1_2 0.20 0.18 -0.03 0.22 

9110_Vermis_3 0.06 0.14 -0.02 0.21 

9120_Vermis_4_5 0.09 0.19 0.09 0.00 

9130_Vermis_6 0.08 0.22 0.11 -0.11 

9140_Vermis_7 0.10 0.24 0.06 -0.12 

9150_Vermis_8 0.18 0.22 0.03 0.05 

9160_Vermis_9 0.15 0.17 0.04 0.07 

9170_Vermis_10 0.32 0.22 0.12 0.22 

Bold font = Areas in which mean ICC values exceed the threshold for moderate reliability (ICC > 0.40) 
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Supplementary Figure S 2.7 Depiction of brain areas that show significant activation in patients and 

healthy participants for the different task contrasts: “Self”, “Familiar Person”, “Unknown Person” and 

“Self > Familiar + Unknown Person” (One-sample t-test, pFWE < .05 whole-brain corrected). 
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Supplementary Figure S 2.8 Depiction of brain areas that show good to excellent reliability (Intra-

class correlation [ICC] > 0.75) for the constituent task conditions “self”, “familiar person”, and “un-

known person” as well as the contrast “self > familiar and unknown person” in the patient group 

(N=11). 
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Supplementary Figure S 2.9 Depiction of brain areas that show good to excellent reliability (Intra-

class correlation [ICC] > 0.75) for the constituent task conditions “self”, “familiar person”, and “un-

known person” as well as the contrast “self > familiar and unknown person” in the control group 

(N=29). 
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3 DISCUSSION 

The results of all three empirical studies consistently show a poor overall global test-

retest reliability of the fMRI difference contrast, computed by subtracting two constit-

uent task conditions. This stood in contrast to a moderate to good test-retest reliabil-

ity of the constituent task conditions underlying the difference score.  

3.1  Test-retest reliability of common fMRI block design tasks  

With respect to the first research question, the three presented studies showed poor 

overall reliability of the fMRI difference contrast, computed by subtracting two con-

stituent task conditions, which in the case of the empirical studies were the contrasts 

“alcohol – neutral”, “food – neutral” and “self – other”. Consistent with our first hy-

pothesis, the reliability estimates for the constituent task conditions (study 1: “alco-

hol”, “neutral”; study 2: “food”, “neutral”; study 3: “self”, “familiar person”, “unknown 

person”) exceeded the reliability of the difference contrast across all empirical studies, 

showing moderate to good reliability.  

3.1.1 Reliability of the difference score  

The overall test-retest reliability of the difference contrasts was estimated by compu-

ting the Dice and Jaccard coefficients, as well as the ICC and similarity between brain 

activation maps. The overlap methods indicated that only 1% to 27% of significant 

voxels that were observed during the first test session remained significantly active 

during the re-test session, indicating that only a very small fraction of super-threshold 

voxels showed reliable activation. These low values were observed consistently across 

the three empirical studies and in all sub-samples. This support the notion that the low 

Dice and Jaccard coefficients are not due to specifics of the fMRI paradigm, the sample 

or the duration between test session and re-test session, which were substantially dif-

ferent across the three empirical studies. The mean ICC values across the three empir-

ical studies and all sub-samples fell well below the threshold for moderate test-retest 

reliability of 0.4, indicating a limited stability of the magnitude of brain activation 
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across the test session. This was also consistent across all three empirical studies. Con-

sidering the results of the similarity analyses, results of the three empirical studies in-

dicated that only about 22% to 73% of the individuals could be re-identified based on 

the neural activation pattern captured by the difference score.  

These results are in line with previous studies. In their meta-analysis, Elliott and col-

leagues (2020) found mean reliability estimates that resemble the mean reliability, 

which was found across the three empirical studies, which are presented here. The 

results of the meta-analysis showed an average ICC of 0.397. This, however, is far be-

low the boundary, which is considered to reflect good reliability (ICC > 0.6). The results 

also indicated a substantial variability of reliability scores across the different studies. 

Only a single study reported reliability estimates that fell within the range of good to 

excellent reliability (ICC > 0.8) (Rath et al., 2016). This study investigated a motor and 

a sensory fMRI paradigm in seventeen individuals from one day to another.  

A subsequent moderator analysis by Elliott et al. (2020) indicated that neither task 

type (i.e., paradigm); task design (e.g., block vs. event-related); task length; test-re-

test interval; ROI type (i.e., structural vs. functional); nor sample type (i.e., healthy vs. 

clinical) significantly moderated the magnitude of the reliability estimates. The au-

thors conducted additional reliability analyses on fMRI data from the Human Connec-

tome Project, arguing that low reliability estimates might have resulted from out-

dated fMRI scanner hardware or sub-optimal processing pipelines. For this purpose, 

the authors analyzed reliability in a set of pre-defined ROIs. They found that the test-

retest reliability of brain activation in anatomically and functionally defined ROIs was 

poor (mean ICCanatomical ROIs = 0.251 and mean ICCfunctional ROIs = 0.381). The results also 

indicated that ROIs targeted by the task did not yield higher reliability, compared to 

“non-target” ROIs. For the reliability analyses of the fMRI data from the Dunedin 

study, the authors reported similar results with mean reliability below the threshold 

for moderate reliability.  

The results by Elliott et al. (2020) are in line with reports of Schacht and colleagues 

(Schacht et al., 2011; Schacht et al., 2017). In an early study, they reported good to 
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excellent test-retest reliability of brain activation (ICC > 0.8) during an alcohol cue-re-

activity paradigm over fourteen days in the right VS and DS ROIs in a small sample of 

nine individuals (Schacht et al., 2011). In contrast, a more recent reliability analysis 

within the framework of a larger study by this group, using the same fMRI paradigm 

indicated poor to moderate (ICC < 0.44) reliability of brain activation in the same ROIs 

over roughly fourteen days (Schacht et al., 2017).  

3.1.2 Reliability of the constituent task conditions 

Contrary to the poor reliability of the difference contrast across the three empirical 

studies, the overall test-retest reliability of the constituent task conditions, which un-

derlie the investigated difference contrasts (“alcohol – neutral”, “food – neutral” and 

“self – other”), was moderate to good. Computing the Dice and Jaccard coefficients 

for the constituent task contrasts (study 1: “alcohol”, “neutral”; study 2: “food”, “neu-

tral”; study 3: “self”, “familiar person”, “unknown person”), we found that about 25% 

to 71% of significant voxels that were observed during the first test session remained 

significantly active during the re-test session. This indicates that the proportion of sig-

nificant voxels that remained significantly active between test sessions was up to 

three times higher for the constituent task conditions, compared to the difference 

score.  The mean ICC values across the three empirical studies showed values in the 

range between ICC 0.21 and 0.54 and local ICC values > 0.75 in several key regions of 

the mesocorticolimbic system. The results of the similarity analyses showed values 

>77% (study 1), > 45% (study 2), and > 36% (study 3) across the three empirical studies, 

indicating that a higher proportion of participants could be re-identified based on the 

neural activation patterns captured by the constituent task conditions.  

Across the three empirical studies, the reliability estimates indicated moderate to ex-

cellent reliability between the first and second fMRI session for all constituent task 

conditions of the three fMRI paradigms. This supports the general potential of fMRI-

based measures to provide reliable indicators of individual brain activation in areas 

that are part of the addiction network.  
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This is also in line with the findings by Infantolino and colleagues (2018), who showed 

excellent reliability of the constituent task conditions of the fMRI faces paradigm 

(“faces” and “forms”), while the difference contrast (“faces – forms”) showed a poor 

reliability. Like the paradigms that were investigated in the presented empirical stud-

ies, this paradigm is a block-design fMRI paradigm with multiple task conditions, 

which are subtracted from another to build the so-called difference score. This sup-

ports the notion that – even though the fMRI-based measures in principle can provide 

reliable measures – the computation of the difference score leads to an impairment of 

the reliability of fMRI-based measures.  

3.2 Determinants of the reliability of difference scores in fMRI block design tasks 

With respect to the second research question, the three presented empirical studies 

showed a significant and substantial correlation between the constituent task condi-

tions (study 1: “alcohol”, “neutral”; study 2: “food”, “neutral”; study 3: “self”, “familiar 

person”, “unknown person”) between r = 0.28 and r = 0.49. Depending on the level of 

correlation between the constituent task conditions, the resulting reliability estimates 

of the difference score were lower, when the correlation between the constituent task 

conditions was high. These findings are in line with hypothesis 2.  

Several reasons might account for divergence between the moderate to excellent re-

liability of the constituent task conditions of the three block design tasks and the poor 

reliability of the difference contrast of the same fMRI tasks. First of all, previous stud-

ies demonstrated that – in the case of a substantial correlation between the constitu-

ent task conditions of a block design task – a substantial proportion of the shared var-

iance is removed, when subtracting both task conditions (Infantolino et al., 2018). 

Specifically, the authors compared the internal consistency of the brain activation in 

the amygdala, captured by the constituent task conditions of an established face-

matching block design task (“faces”, “shapes”) to the internal consistency of the dif-

ference contrast (“faces – shapes”). Results demonstrated an excellent internal con-

sistency of the two constituent task conditions, while the internal consistency of the 

difference contrast was close to zero. The authors also found that the brain activation 
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in the amygdala, captured by the two constituent task conditions, was highly corre-

lated (r = 0.97) and that the majority of variance (> 90%) was shared between both 

conditions (Hariri et al., 2002; Infantolino et al., 2018). The low reliability of the differ-

ence contrast results, because this shared variance is removed when amygdala acti-

vation, captured by the faces contrast, is subtracted from amygdala activation cap-

tured by the shapes contrast. In principle, these findings can be applied to other stud-

ies using block design fMRI tasks. Based on the findings of Infantolino and colleagues 

(2018), the reliability of a difference contrast between constituent task conditions 

should be lower, when brain activation during both task conditions is highly corre-

lated, while the reliability should be higher, when brain activation during both task 

conditions shows a moderate correlation. This conclusion is in line with previous find-

ings by Luking and colleagues (Luking et al., 2017). In their fMRI study, they investi-

gated the internal consistency of BOLD responses during an fMRI reward task for the 

task conditions “gain feedback” and “loss feedback”, as well as the difference score 

between both conditions. They found a high internal consistency of both task condi-

tions (Spearman Brown Coefficient > 0.70), while the reliability of the difference score 

was low (Spearman Brown Coefficient <0.36), which was mirrored by an only modest 

correlation between the constituting task conditions (Luking et al., 2017). The findings 

of the presented three empirical studies demonstrate a moderate correlation between 

the constituting task conditions across all studies (study 1: “alcohol”, “neutral”; study 

2: “food”, “neutral”; study 3: “self”, “familiar person”, “unknown person”) with a 

shared variance between 8% and 24%. These findings are compatible with the inter-

pretation that reliability of the respective difference contrast is limited by the correla-

tion between the brain activation that is captured by the constituting task conditions 

and the resulting elimination of substantial parts of the shared variance. Taken to-

gether, the results of the three presented empirical studies are in line with hypothesis 

2A.  

It should be noted that the sub-perfect reliability of the constituent task conditions 

suggest that other factors also influence the observed test-retest reliability. These fac-
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tors include limitations inherent to the BOLD signal itself (see section 1.3), factors lim-

iting the SNR (see section 1.3), factors relating to the preprocessing and analysis of 

the fMRI data and factors relating to the specific sample and task under investigation.  

3.2.1 Comparison of the test-retest reliabilities of psychometric scales and the 

fMRI difference contrasts of cue-reactivity and self-concept paradigms  

In the presented empirical studies, we compared the test-retest reliability of the func-

tional brain activation captured by the different tasks in contrast to psychometric 

measures that conceptually measure resembling constructs (i.e. craving and facets of 

the self-construct).  

With regards to the comparison of the reliability of psychometric scales assessing 

craving and reliability of brain activation captured by the fMRI food cue-reactivity 

task, the second presented empirical study provided evidence that the mean global 

reliability of the fMRI signal, captured by the difference contrast “food – neutral” was 

lower than the reliability of the psychometric craving scale, while also indicating that 

the local test-retest reliability of brain activation in several areas of the brain exceeded 

the test-retest reliability of the psychometric craving scale. This suggests two things. 

Firstly, and not surprisingly, that the global reliability of brain activation across the 

whole brain – not limited to brain areas implicated specifically in processing of food 

cues and food craving (Noori et al., 2012) – is lower than the reliability of psychometric 

scales that assess the construct of craving. Secondly, the local test-retest reliability of 

brain activation, captured by the difference contrast “food – neutral”, in brain regions 

that have been shown to be involved in processing of visual food cues and food craving 

(Noori et al., 2012) outperformed the reliability of the psychometric scale assessing 

food craving, which was measured concurrently during the fMRI sessions using visual 

analogue scales. This suggests that local brain activation patterns might indeed pro-

vide reliable measures of neural food cue-reactivity.  

When we compared the test-retest reliability of psychometric scales assessing differ-

ent facets of the self-concept to the reliability of brain activation, captured by the fMRI 
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self-concept paradigm, we found comparable results. Specifically, results of empirical 

study 3 showed that the mean global reliability of the fMRI signal, captured by the 

difference contrast “self – unknown and familiar other” was lower than the test-retest 

reliability of a range of psychometric scales assessing facets of the self-concept, such 

as self-worth, empathy and social anxiety and social competence deficits. In contrast, 

the local test-retest reliability of brain activation in several areas of the brain, which 

were implicated in processing aspects of the self-concept  (Hu et al., 2016), exceeded 

the test-retest reliability of the majority of the psychometric scales. This supports the 

notion that local brain activation in areas, which are involved in the specific processes 

that conceptually underlie the task performance, can provide reliable measures of 

neural self-concept related processes.   

These findings are consistent with the results reported by Elliott and colleagues 

(2020). When analyzing the reliability of brain activation in ROIs that are specifically 

targeted by the respective fMRI paradigm under investigation (e.g. amygdala in emo-

tion processing fMRI paradigms) they found descriptively higher ICC coefficients for 

these target ROIs, compared to non-target ROIs for the Human Connectom Project 

dataset (ICCtarget ROIs = 0.251 and ICCnon-target ROIs = 0.239) and the Dunedin Study dataset 

(ICCtarget ROIs = 0.358 and ICCnon-target ROIs = 0.192), even though the statistical compari-

sons did not yield significance.  

Taken together, the presented evidence partially supports hypothesis 2B, i.e. the reli-

ability of validated psychometric scales is higher than the global test-retest reliability 

of brain activation across the whole brain, captured by the FMRI difference contrasts, 

but local reliability in ROIs that are targeted by the specific fMRI task surpass the reli-

ability of psychometric scales.  

3.3 Consequences of the reliability of difference scores in fMRI block design tasks 

With respect to the third research question, the first presented study compared the 

correlation between brain activation in the putamen and caudate captured by the “al-

cohol” and “neutral” task conditions of the fMRI alcohol cue-reactivity task, as well as 
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between the difference contrast and subjective craving for alcohol, measured using 

the Obsessive Compulsive Drinking Scale (OCDS). Results show that the significant 

correlation between brain activation in the caudate, captured by the “alcohol” con-

trast, and the OCDS could not be replicated, when investigating the association be-

tween OCDS and brain activation in the same area, captured by the difference con-

trast (“alcohol – neutral”). The power to detect even small to medium correlations ex-

ceeded 78%. This suggests that this finding was not due to power issues.  

The relevance of the reliability of the fMRI signal for establishing correlations with be-

havioral data has been debated previously. Prominently, Vul and colleagues (2009) 

pointed to the fact that the reliability of fMRI data limits the strength of correlations, 

which can be established with any external variable. Our data simulations fortified this 

idea. The results of the data simulation showed that the correlation between the dif-

ference score (modelled according to the actual fMRI data) and the behavioral variable 

(modelled according to the OCDS data) was lower by about one third, compared to 

the correlation between the constituting task conditions and the external variable. 

This is in line with hypothesis 3.  

Our findings are in line with previous studies investigating the association between 

ICC and effects sizes (Brown et al., 2011) using a working memory fMRI paradigm. Au-

thors found a curvilinear association between effect size estimates (Cohen’s d) and 

ICC magnitudes, suggesting that the effect sizes, derived from fMRI measures, de-

pend on the reliability of the fMRI data. Taken together, previous research and the 

presented empirical studies supports the notion that the low reliability of fMRI-based 

measures can substantially impair the capacity to establish associations between 

these fMRI measures and external variables, and the capacity to detect (true) effects 

in the data and estimate effect sizes.  

3.4 Critical reflection and limitations of fMRI-based measures 

Several conceptual and methodological issues limit the capacity of fMRI to provide 

reliable and replicable measures.  
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3.4.1 Non-linearity and susceptibility of the BOLD signal 

Even though the BOLD signal has been the basis of fMRI research for decades, it is still 

debatable whether it can be assumed that the BOLD signal itself is sufficiently stable 

to provide a reliable measure for brain activation. The BOLD signal itself is a complex 

physiological response and is viewed as indirect surrogate of activation of neuronal 

ensembles. It has been shown that the BOLD signal reflects changes in deoxyhemo-

globin that are driven by changes in local blood flow and blood oxygenation. These 

changes in blood flow and oxygenation in turn are coupled to neuronal activity by a 

process termed neurovascular coupling. Currently, however, there is still a substantial 

gap in the knowledge regarding the processes, which play a role in the neurovascular 

coupling, as well as the association between the underlying processes and the BOLD 

signal. Previous studies have implicated different cellular mechanisms to play a role in 

functional neurovascular coupling, including contributions of neurons, astrocytes, and 

pericytes (Hillman, 2014). However, there is still an ongoing debate on the relative 

contribution of these processes. 

Regarding the association between BOLD response and the underlying neural pro-

cesses, basically all fMRI research assumes a linear relationship between both. How-

ever, there is no reason to assume a strict linear neurovascular coupling, as this would 

also mean that the BOLD signal should not vary as a function of either the strength of 

the neural response or with previous response history, and that the BOLD signal 

should grow indefinitely in proportion to the underlying neural activity (Boynton, 

2011). This highlights that the assumption of a strict linear association between BOLD 

response and neural activity is questionable. Nevertheless, early studies, which com-

bined fMRI and electrophysiological recordings, suggested that the BOLD signal reli-

ably follows the spiking activation of local neuronal ensembles (Boynton et al., 1996; 

Dale & Buckner, 1997). Further studies, however, observed that the response to re-

peated stimulation was smaller than predicted based on a linear model, and that the 

BOLD response to very brief stimulation is larger than predicted (Huettel & McCarthy, 

2000; Vazquez & Noll, 1998). A more recent study also observed that the synaptic and 
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spiking responses of neurons were more selective than the vascular responses in the 

way that small vessels in responded to stimuli that elicited only minimal neural activity 

in the local tissue. These findings suggest that several aspects of the neurovascular 

coupling process are non-linear, and that local neural and haemodynamic responses 

are partly decoupled (O'Herron et al., 2016).  Consequently, variability in the BOLD 

signal does not necessarily reflect changes in neuronal activity, and vice versa. Inter-

estingly, larger deviations from linearity were observed in fMRI studies using more 

complex fMRI paradigms (Boynton, 2011), while linearity is approximated when sim-

ple stimulation fMRI paradigms were used (Boynton et al., 1996; Dale & Buckner, 

1997). Against this background, it can be argued that the higher reliability (ICC > 0.80), 

which was reported for rather simple motor and sensorimotor stimulation fMRI tasks 

(Rath et al., 2016) could be due to the fact that the neurovascular coupling approxi-

mates linearity, thus more closely meeting the assumption of the statistical models 

used to analyze the data. 

Beyond that, several studies have pointed towards a susceptibility of the BOLD signal 

to endogenous and exogenous influences. Specifically, the age of an individual, blood 

pressure, hormonal status, body mass index and time of the day were associated with 

changes in blood flow and hence the BOLD signal (Alosco et al., 2014; Curtis et al., 

2016; Muller et al., 2012; Whitworth et al., 2005). All these parameters introduce ad-

ditional sources of variability to the fMRI BOLD signal and suggest that the BOLD sig-

nal might neither be stable within an individual, nor comparable between two individ-

uals that show different properties on the above listed factors. This might also explain 

why different studies using the same fMRI paradigm yielded different reliability esti-

mates. This strongly supports the argument that a standardization of fMRI studies is 

necessary, in order to limit the bias that is introduced by the above stated factors. Re-

garding the alcohol cue-reactivity paradigm, an international consensus group has 

proposed a checklist, which can be guide the standardization of the fMRI-based meas-

urement of neural cue-reactivity (Ekhtiari et al., 2020). Such efforts are needed to es-

tablish standards for collecting, analyzing and interpreting fMRI data, in order to limit 

the sources of variance.  
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3.4.2 Parameters of fMRI acquisition and analysis that influence reliability 

In principle, all factors limiting the SNR can impair the resulting reliability of fMRI task 

measures (see section 1.3). In addition, parameters in the analytical pipeline of fMRI 

data can introduce additional variance in the data that limit the reliability of fMRI-

based measures. Different analysis pipelines applied on the same dataset may not 

produce the same results. Differences in the software versions, operating systems and 

algorithms can all contribute to variability in results. Recent work analyzed publicly 

available fMRI datasets using three common software packages, the Analysis of Func-

tional NeuroImages (AFNI) software, the FMRIB Software Library (FSL) and SPM us-

ing the parameters of the respective source publication (Bowring et al., 2019).  Results 

showed marked differences, such as Dice similarity coefficients ranging from 0.000 to 

0.684, depending on the software package. Across the re-analyzed datasets, the au-

thors reported considerable differences between the AFNI, FSL, and SPM results on 

all investigated metrics. For example, Bland–Altman plots showed that differences 

between reported T- values across software packages were as large as four for a con-

siderable quantity of voxels. Euler Curves showed a substantial difference in the num-

ber of clusters that were found using the separate software packages. The findings 

show that small effects may not be replicable, when analyzing datasets with different 

software packages. Authors also concluded that there is currently no gold-standard 

and reference point when attempting to analyze fMRI datasets and hence no direct 

comparison can be made between analytical strategies with regards to optimal pa-

rameters. The same authors compared the statistical fMRI maps, in order to deter-

mine the main sources of variability between the software packages (Bowring et al., 

2022). The authors found that the variations between the software packages are 

largely attributable to a few individual analysis stages, such as the choice of the first-

level signal model and first-level noise model. In contrast, group-level results were 

largely unaffected by which software package is used to model the low-frequency 

fMRI drifts. These results stress the need for a harmonization of analytical pipelines. 
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Unfortunately, there is currently no agreed-upon standard in the field. Authors sug-

gested that raw data could be analyzed using a range of workflows. By deriving a 

range of analysis results from a single dataset, meta-analytic methods could be ap-

plied to account for the variability between pipelines and integrate inconsistent find-

ings. In addition, until standardization of analytical pipelines is achieved, replication 

studies seem important, in order to provide evidence for the robustness of single study 

fMRI findings.  

3.4.3 Limitation of reliability estimates 

A range of methods have been developed to estimate the test-retest reliability of 

fMRI, which capture different aspects of reliability. While several measures address 

the proportion of voxels that remain significant from one test session to a follow-up 

test session, other methods assess the similarity of the magnitude of brain activation. 

To date however, there is no consensus on what method should be used as a standard.  

The methods that are most frequently applied by fMRI studies are the ICC and the 

overlap methods (see also section 1.3.2 for details). However, both methods face sev-

eral important limitations. For example, the magnitude of the ICC depends on the het-

erogeneity of the sample under investigation. If all other factors are kept constant, 

more heterogeneous samples with higher between-subject variance will result in 

higher ICC values, while more homogenous sample would yield lower ICC values. This 

also limits the capacity to transfer the findings from one study sample to another 

study sample. The dependence of the ICC on the between-subject variance can also 

be applied to the experimental fMRI paradigm under investigation. A fMRI paradigm 

that produces a higher between-subject variability in neural response patterns would 

yield higher ICC values (Bennett & Miller, 2010). The overlap methods, such as the Dice 

and Jaccard coefficients, face major limitations. The first one is the fact that the results 

obtained by both methods heavily depend on the pre-defined threshold that defines 

significantly active voxels (e.g. p < 0.001). For higher p-values, the overlap methods 

produce higher values. This can be illustrated when assuming that a p-value of 1.0 is 
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chosen. In this case, both overlap methods would show a perfect overlap of 100%, be-

cause all voxels would be defined as “active”, even though the majority would just 

show noise and falsely active voxels. Hence, this finding would be meaningless. In ad-

dition, due to its definition, the Dice coefficient will also yield higher values compared 

to the Jaccard coefficient, which complicates a direct comparison of both measures. 

This illustrates that the choice of an optimal p-threshold is not trivial. Nevertheless, 

there is no established standard on which p-value should be chosen. This complicates 

the comparability of overlap estimates across studies. Another major limitation to all 

available reliability estimates for fMRI data is that there is no established optimal 

threshold to interpret these data. Whilst there have been suggestions on which ICC 

values could be considered as moderate, good or excellent (Shrout & Fleiss, 1979), the 

use of these thresholds and their interpretation currently varies substantially across 

studies. In addition, for other reliability estimates, there is currently no established 

standard on how to interpret the resulting reliability estimates, which complicates the 

interpretation and comparability of studies.  

Other methods exist to determine the different aspects of fMRI reliability (see also 

section 1.3.2 for details). However, these methods are less common, and are some-

times complicated to compute and interpret, with no standards having been estab-

lished as to how to interpret the resulting values regarding which values can be con-

sidered to reflect “good” reliability.  

In summary, there is a dire need to establish standards regarding which reliability es-

timates should be used, together with common thresholds to interpret the resulting 

values in order to advance the efforts of fMRI reliability research.  

3.5 Future Directions 

3.5.1 Better characterization of the factors that influence reliability 

Currently, there is few data on how reliable and replicable the cognitive domains are 

that are to be assessed using fMRI. Longitudinal studies are required to establish the 

“natural” course of these cognitive domains and to determine their reproducibility and 
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reliability. In addition, most neuroimaging studies currently do not report reliability 

metrics. Even if reliability estimates are reported, the precision of such estimates de-

pends on the sample size. Large sample sizes of 150 or more participants seem neces-

sary in order to provide precise reliability estimates for an fMRI task. In addition, stud-

ies should explore moderators of test-retest reliability (e.g., the test-retest interval). 

Studies that systematically assess the influence of potential moderators are needed 

to inform future fMRI studies. Currently, there is a lack of knowledge on which factors 

might moderate test-retest reliability.  

Furthermore, the fMRI task design might also influence the test-retest reliability. Cur-

rently, most tasks were developed to maximize within-subject differences (i.e. differ-

ences between task conditions), instead of between subject differences. Research try-

ing to identify neural biomarkers and associations between neural brain responses and 

behavior, however, relies on stable between-subject differences and variance. fMRI 

tasks could be optimized with regards to providing reliable individual-differences 

measures e.g. by selecting stimuli for fMRI tasks on the basis of their capacity to dis-

tinguish between different groups or to elicit reliable between-subjects variance. 

The heterogeneity in study design, fMRI acquisition, analytical pipelines and partici-

pant characteristics currently limit the reproducibility in the field of fMRI research. A 

harmonization of task designs, fMRI procedures and analytical steps seems important, 

in order to enhance comparability between studies and reproducibility. Efforts have 

been undertaken by several consortia and groups to propose standards or make rec-

ommendations on parameters and study details, which should be reported, including 

sample details, details on the fMRI task and details on the analytical pipeline (Ekhtiari 

et al., 2020). Overall, harmonization of fMRI methods across studies seems important 

with regards to enhancing comparability between studies.  
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3.5.2 Development of novel measures to quantify fMRI signals 

A range of different metrics are currently used by different studies to quantify the cap-

tured fMRI signal using the respective fMRI task. For example, a range of contrast im-

ages can be calculated from the same fMRI task (e.g. difference between to constitu-

ent task conditions or one task condition vs. implicit baseline), which most likely pro-

duces different results. In addition, the fMRI signal can be expressed using different 

metrics, such as, but not limited to, the weighted or unweighted mean of activation 

values in a specific region or the sum of voxels in a brain area that surpass a predefined 

statistical threshold or the maximum t-statistic value in a specific region or the sum of 

t-statistics in a region (Reinhard et al., 2015). Previous work has shown that these 

measures perform very differently with regards to predicting clinical outcome (e.g. re-

lapse risk). At the moment, most metrics are derived from difference contrast maps 

that reflect the difference of brain activation statistics between two task conditions 

(e.g. alcohol, neutral). As evidenced by the presented empirical studies and previous 

work, such difference scores will have lower reliability than the constituent task con-

ditions and thus limit the reliability of task fMRI (Infantolino et al., 2018). Alternative 

approaches to expressing the magnitude of brain activation which is captured using 

fMRI might overcome some of the limitations. Multivoxel pattern analysis might be 

one approach to exploiting the high dimensionality of fMRI data to develop measures 

with latent-variable models that capture individual differences in representational 

spaces (Cooper et al., 2019) and confirm reliability through prediction of individual dif-

ferences in independent samples (Yarkoni & Westfall, 2017). In addition, combining 

the data of an individual from different fMRI tasks could enhance the precision of the 

resulting measure by reducing the impact of the measurements error of a single pa-

rameter. Related to this issue, currently many fMRI studies use the sample mean as a 

reference points for interpreting the obtained data, e.g. which participants show a 

high or low response. As the mean, however, heavily depends on the sample under 

investigation and may be prone to extreme values, especially in the case of small sam-



Discussion 

181 

ples, a shift to measures that do not rely on a specific sample seems important to en-

hance comparability, and to allow transfer of results from one study to new datasets. 

One option with regards to differences between two task conditions could be to define 

0 as the reference point, e.g. when brain activation is similar in both task conditions. 

This would create a threshold, which is independent from group means and sample 

homogeneity. However, the meaningfulness of such a threshold relies on the question 

under investigation. Another option would be the use of individual level comparisons, 

i.e. increase vs. decrease of brain activation over fMRI task blocks to create an individ-

ual-level parameter that is independent from the other study datasets. Again, the 

meaningfulness of such a parameter needs to be established for the specific question 

under investigation. Also, with regards to this point, establishing standards across 

fMRI studies seems important to promote transfer of results from one study to new 

datasets.  

3.5.3 Prospects for translation to clinical care 

Even though currently fMRI research is hampered by test-retest reliability, a lack of 

replication and missing standards for data collection, data processing and data report-

ing, several lines of evidence support its potential for translation to clinical care. Pre-

vious research has shown that predictive models, which incorporate structural and 

functional MRI data yield a higher accuracy in predicting a subsequent relapse, com-

pared to models that solely rely on clinical patient data (Seo et al., 2015). This finding 

supports the potential of MRI data to predict clinically relevant patient outcomes. 

These results were supported by other studies, which repeatedly demonstrated that 

neural alcohol cue-reactivity predicts relapse risk in alcohol dependent patients after 

withdrawal treatment (Bach et al., 2015; Reinhard et al., 2015). Further studies also 

provided evidence that patients that show a high neural response to alcohol cues are 

those showing a better treatment response to naltrexone, an approved anti-craving 

medication (Bach, Weil, et al., 2021; K. Mann et al., 2014). Furthermore, studies 

showed that the neural response to alcohol cues is also sensitive to the effects of anti-

relapse medication, such as naltrexone and nalmefene (Bach et al., 2020; Karl et al., 
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2021), indicating that neural alcohol cue-reactivity might be capable of monitoring ef-

fective treatment. In addition, a reduction in striatal alcohol cue-induced brain activa-

tion during pharmacological relapse-prevention treatment with naltrexone been as-

sociated with lower relapse risk and better patient outcome (Bach et al., 2020; Schacht 

et al., 2017). Furthermore, preliminary studies indicated the real-time fMRI can be 

used to modify the extent of alcohol cue-induced brain activation in key regions of the 

mesolimbic reward system (Kirsch et al., 2016). Even though the potential of this 

method for translation into clinical care needs to be confirmed, it suggests that neural 

alcohol cue-reactivity might not only provide a potential biomarker for relapse risk 

and successful treatment, but might also represent a target for treatment interven-

tions.  

Likewise, studies in obese patients demonstrated a significant relationship between 

neural food-cue reactivity during the presentation of food stimuli and the extent of 

subjective craving for food. For example, an early study by Pelchat and colleagues 

demonstrated significant correlations between neural food-cue reactivity in the hip-

pocampus, insula, caudate, and food craving (Pelchat et al., 2004). Further studies 

confirmed the significant association between neural food-cue reactivity in the cau-

date, thalamus, hippocampus, cerebellum, and posterior cingulate with the magni-

tude of subjective craving for food (Jastreboff et al., 2013).  

Three studies involving diet and lifestyle intervention examined the relationship be-

tween neural stimulus reactivity at baseline and the degree of success and mainte-

nance of weight loss. These studies showed significant associations between success-

ful weight loss and neural food-cue reactivity in the insula, ACC, NAcc, and ACC 

(Murdaugh et al., 2012), orbitofrontal cortex (Weygandt et al., 2019), PFC (Nock et al., 

2012), and putamen, caudate, and pallidum (Hermann et al., 2019). In a recent study, 

authors examined the relationship between neural food-cue reactivity before starting 

a low-calorie diet, and after one, and three months of treatment with treatment suc-

cess in terms of greater weight loss in obese individuals (Neseliler et al., 2019). Initial 

weight loss in the first month of treatment correlated positively with an increase in 
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neural food cue-reactivity in the dlPFC, IFG, dorsal ACC, inferior parietal lobule, and 

caudate. Food cue-reactivity in these areas also correlated positively with subsequent 

weight loss from the first to the third month of treatment. In addition, a reduction in 

neural stimulus reactivity in these areas (i.e., a return to baseline) correlated with a 

return to weight gain 2 years later. Another study that examined the relationship be-

tween neural food cue-reactivity at the start of a weight loss intervention (3-month 

program consisting of exercise and calorie reduction) and treatment success reported 

an indirect effect of neural food cue-reactivity on weight loss mediated by treatment 

adherence (Szabo-Reed et al., 2020).  

In addition, studies showed that participants who successfully lost weight and main-

tained their weight loss had differential neural food cue-reactivity in the parietal cor-

tex (Tregellas et al., 2011) and the PFC and ACC (McCaffery et al., 2009). In a recent 

longitudinal imaging study from our group that examined obese patients before and 

after bariatric surgery using fMRI, there was a significant increase in neural food cue-

reactivity in the OFC and a decrease in neural stimulus reactivity in the amygdala from 

the time point before surgery compared to both examinations 8 weeks and 24 weeks 

after surgery (Bach, Grosshans, Koopmann, Pfeifer, et al., 2021). Here, activation in 

the amygdala showed a positive correlation with the level of subjective desire for food, 

whereas activation in the OFC showed a negative correlation with desire for food. 

Consistent with these findings, another study showed that more successful weight 

loss after gastric bypass surgery was associated with increased neural food cue-reac-

tivity in the dlPFC (Goldman et al., 2013).   

Other studies comparing neural food cue-reactivity before and after bariatric inter-

vention showed similar findings. For example, there was a reduction in neural food 

cue-reactivity in the insula and putamen after bariatric intervention (Bruce et al., 2012; 

Ochner et al., 2011; Ochner, Laferrère, et al., 2012; Ochner, Stice, et al., 2012). 

In addition to studies on the effect of bariatric intervention on neural food cue-reac-

tivity, some studies also examined the effect of behavioral interventions. For example, 

a study comparing the effect of caloric restriction via meal replacement with the effect 
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of caloric restriction by reducing meal size showed that caloric restriction via meal re-

placement (shakes) resulted in higher neural food cue-reactivity in the dlPFC, OFC, 

ACC, insula, and NAcc (Kahathuduwa et al., 2018). 

A preliminary study examined the effect of neurofeedback on neural food cue-reac-

tivity during the presentation of food stimuli in normal weight subjects (Ihssen et al., 

2017). Neurofeedback training aimed to help subjects learn to downregulate their 

brain activation during exposure to appetitive images of food stimuli. The fMRI feed-

back was provided by reducing or increasing the size of the food images. The authors 

reported a reduction in neural food cue-reactivity in the amygdala, insula, dmPFC, and 

precuneus and cuneus following neurofeedback training. In addition, the authors re-

ported a significant reduction in subjective hunger sensation after neurofeedback in-

tervention, which correlated with neural food cue-reactivity in the amygdala.  

Taken together, the three empirical studies and previous research point towards the 

potential of neural brain activation, captured using fMRI, as markers (e.g. for predict-

ing treatment responses) and also as targets for non-pharmacological and pharmaco-

logical interventions. However, to exploit the full potential of fMRI-based measures, a 

standardization with regards to data collection, data analysis and data interpretation 

seems to be important and needs to be established in the future to confirm the ro-

bustness of single-study findings.    
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4 SUMMARY 

The identification of “neural biomarkers” of psychiatric disorders has been the aim of 

many recent fMRI studies. This endeavor, however, critically depends on the test-re-

test reliability of the corresponding fMRI task under investigation, which is an essen-

tial prerequisite for establishing associations between neural brain activation patterns 

and behavior. Previous research highlighted the low overall reliability of fMRI-based 

measures across studies and pointed towards the negative impact that might arise 

from computing difference scores between two correlated constituent task condi-

tions, when applying fMRI tasks (Elliott et al., 2020; Infantolino et al., 2018). The pre-

sented thesis investigated whether the test-retest reliability of the constituent condi-

tions of an fMRI block design paradigm is higher than the reliability of the difference 

score, which is created by subtracting brain activation during one condition from an-

other condition and is commonly used across a range of block design fMRI paradigms. 

All three empirical studies show that the reliability estimates of the constituent task 

conditions across three different block-design fMRI paradigms exceed the reliability 

estimates of the difference score. In addition, the presented empirical studies show 

that the level of correlation between the constituent conditions of the respective fMRI 

paradigm determined the level of the resulting reliability of the difference score.  

While moderate to good reliability of the difference score could be demonstrated in 

several brain regions and comparison of the test-retest reliability of the fMRI signal to 

the test-retest reliability of psychometric scales used to assess e.g. craving for food, 

in principle support the potential of fMRI of providing reliable measures, the presented 

results also challenge the application of difference scores when analyzing fMRI block-

design tasks. This seems especially important in the light of the results of the first em-

pirical study that demonstrated that the inter-correlation between the constituent 

task conditions of a difference score determine the magnitude of associations be-

tween the fMRI signal and external variables, and the precision with which effect size 

estimates can be derived from a specific fMRI study.  
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A part of the limitations of fMRI-based measures that were identified by the presented 

empirical studies could be overcome in the future by establishing standards for fMRI 

data collection, data analysis and data interpretation, as well as using individual-level 

metrics to express brain activation, and by exploration and consideration of factors 

that influence test-retest reliability of fMRI block-design studies.   
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9 APPENDIX 

Statement of own contribution to the Empirical Studies and Publications 

Work steps Study 1 / Publica-

tion 1 

Study 2 / Publica-

tion 2 

Study 3 / Publica-

tion 3 

Concept Partly; for the reli-

ability analysis 

part completely 

Partly; for the reli-

ability analysis 

part completely 

Partly; for the reli-

ability analysis 

part completely 

Literature review  Completely Completely Completely 

Data collection Partly Partly Partly 

Data analysis Completely Completely Completely 

Interpretation of 

results 

Predominantly Predominantly Predominantly 

Preparation of 

manuscript 

Predominantly Predominantly Predominantly 

Revision of manu-

script 

Predominantly Predominantly Predominantly 

 

 


