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Abstract

The field of automatic biomedical image analysis substantially benefits from the rise of Artificial
Intelligence (AI). Proper validation of those AI algorithms is, however, frequently neglected in
favor of a strong focus on the development and exploration of new models. This research practice
can, however, be risky since it may propagate poorly validated algorithms that could cause
adverse outcomes for patients. Thus, a thorough and high-quality validation is crucial for any
algorithm to potentially be used in clinical practice. This particularly holds true for biomedical
image analysis competitions, so-called challenges, which have emerged as the state-of-the-art
technique for comparative assessment of AI algorithms and determining which is the most
effective in solving a certain research question. Challenges have strong implications. While
challenge winners typically receive large monetary awards and are highly cited, the algorithm
also stands a better chance of being translated into clinical practice. Given the tremendous
importance of challenges, it is surprising that hardly any attention has so far been given to
quality control.

The objective of the work presented in this thesis was to analyze common practice in challenges,
to systematically reveal flaws in both challenges and general image analysis validation, to
propose solutions to eliminate those issues and to improve general validation practice. Con-
tributions related to the analysis of flaws and strategies for improvement are presented for
four areas: challenge design, validation metrics, rankings, as well as reporting and result analysis.

First, we demonstrate that challenges are highly heterogeneous yet not standardized, making
it difficult to assess their overall quality. We further show that the research community is
concerned about critical quality issues of challenges. The community eagerly asked for more
quality control and best practice recommendations. Moreover, we evidence how effortlessly
both challenge participants and organizers could, in theory, manipulate challenges by taking
advantage of potential security holes in the challenge design. To compensate for this issue, we
introduce a structured challenge submission system to collect comprehensive information about
the challenge design, which can then be critically reviewed by independent referees.

We further demonstrate that validation metrics, the key measures in the assessment of AI
algorithms, come with critical limitations that are often not taken into account during validation.
In fact, researchers typically favor the use of common metrics without being aware of the
numerous pitfalls pertaining to their use. An exhaustive list of metric-related pitfalls in the
context of image-level classification, semantic segmentation, instance segmentation, and object
detection tasks is provided in this thesis. To promote the selection of validation metrics based
on their suitability to the underlying research problem rather than popularity, we propose
a problem-driven metric recommendation framework that empowers researchers to make
educated decisions while being made aware of the pitfalls to avoid.

Since challenge rankings are an integral part of competitions, we place particular emphasis on
analyzing the stability and robustness of rankings against changes in the ranking computation
method. We demonstrate that rankings are typically unstable, meaning that an algorithm
could win a challenge simply due to the nature of a ranking calculation scheme and not due to
actually being the best fit for solving a particular research task. To enable uncertainty-based
ranking analysis, we present an open-source toolkit that includes several analysis and advanced



visualization techniques for challenges and general benchmarking experiments.

Finally, the transparency of validation studies is one of the core elements of high-quality
research and should thus be carefully considered. However, our analysis of the transparency and
reproducibility of both challenge design and participating algorithms shows that this is often
not the case, substantially decreasing the interpretability of challenge results. To facilitate and
enhance challenge transparency, we present a guideline for challenge reporting. In addition, we
introduce the concept of challenge registration, i.e. publishing the complete challenge design
before execution. This concept is already successfully applied in clinical trials and increases
the transparency and reliability of a challenge, as it makes substantial changes in the design
traceable. Finally, we show that challenge results can be used for a dedicated strength-weakness
analysis of participating algorithms, from which future algorithm development could heavily
benefit in addressing unsolved issues.

In summary, this thesis uncovers several critical flaws in biomedical image analysis challenges and
algorithm validation. In response, it also introduces several measures that have already proven
their practice-changing impact and substantially increased the overall quality of challenges,
especially for the well-known Medical Image Computing and Computer Assisted Interventions
(MICCAI) and IEEE International Symposium on Biomedical Imaging (ISBI) conferences. The
suggested advancements in challenge design promise to give rise to competitions with a higher
level of reliability, interpretability, and trust. The overall findings and suggested improvements
are not specific to challenges alone, but also generalize to the entire field of algorithm validation.
The presented thesis thus paves the way for high-quality and thorough validation of AI algorithms,
which is crucial to avoiding translating inefficient or clinically useless algorithms into clinical
practice.



Zusammenfassung

Automatisierte biomedizinische Bildanalyseverfahren können erheblich von Künstlicher Intelli-
genz (KI) profitieren. Die Validierung solcher Algorithmen wird oft von Wissenschaftler:innen
unterschätzt, die sich primär mit der Entwicklung und Erforschung neuer Modelle und Algo-
rithmen beschäftigen. Diese Forschungspraxis kann durchaus riskant sein, wenn sie schlecht
validierte Algorithmen propagiert, die für Patienten nachteilige Folgen haben könnten. Daher
ist eine gründliche und qualitativ hochwertige Validierung von entscheidender Bedeutung für
jeden Algorithmus, der potenziell in der klinischen Praxis eingesetzt werden soll. Dies gilt
insbesondere für Wettbewerbe in der biomedizinischen Bildanalyse, sogenannte Challenges,
welche als Standard-Methodik zur vergleichenden Analyse von KI-Algorithmen und zur Ermit-
tlung des effektivsten Algorithmus für die Lösung einer bestimmten Forschungsfrage fungieren.
Challenges haben starke Implikationen. Die Gewinner einer Challenge erhalten typischerweise
hohe Preisgelder und werden häufig zitiert. Zudem ist die Wahrscheinlichkeit höher, dass der
entsprechende Algorithmus in die klinische Praxis überführt wird. Angesichts der Relevanz
von Challenges ist es überraschend, dass ihrer Qualitätskontrolle bisher kaum Aufmerksamkeit
geschenkt wurde.

Ziel dieser Arbeit war es, die gängige Praxis von Challenges zu analysieren, systematisch
Schwachstellen in Challenges und der allgemeinen Validierung von biomedizinischen Bild-
analysealgorithmen aufzudecken und Lösungen zur Beseitigung dieser Probleme sowie zur
Verbesserung der generellen Validierungspraxis vorzuschlagen. In dieser Arbeit werden Beiträge
zur Analyse von Fehlern und Verbesserungsstrategien für vier Bereiche vorgestellt: Design von
Challenges, Validierungsmetriken, Ranglisten sowie Berichterstattung und Ergebnisanalyse.

Wir demonstrieren zunächst die Heterogenität und fehlende Standardisierung von Challenges,
welche eine Bewertung ihrer Gesamtqualität erschwert. Wir zeigen außerdem, dass die
Forschungsgemeinschaft über kritische Qualitätsprobleme von Challenges besorgt ist. Die
Forschungsgemeinschaft verlangt mehrheitlich mehr Qualitätskontrolle und Empfehlungen zu
guter wissenschaftlicher Praxis. Darüber hinaus zeigen wir experimentell, dass es sowohl für
Challenge-Teilnehmer:innen als auch -Organisator:innen theoretisch möglich wäre, Challenges
durch die Ausnutzung potentieller Sicherheitslücken im Design zu manipulieren. Um dieses
Problem zu kompensieren, führen wir ein strukturiertes Onlinesystem zur Einreichung von
Challenges ein, um umfassende Informationen über den Aufbau einer Challenge zu sammeln,
welche darüber hinaus von unabhängigen Gutachtern kritisch geprüft werden können.

Ferner weisen wir nach, dass Validierungsmetriken, die wichtigsten Maßstäbe für die Bewertung
von KI-Algorithmen, mit kritischen Einschränkungen verbunden sind, die bei der Validierung
oft nicht berücksichtigt werden. Tatsächlich bevorzugen Forscher:innen in der Regel gängige
Metriken, ohne sich der zahlreichen Probleme bewusst zu sein, die mit ihrer Verwendung verbun-
den sein können. Diese Arbeit beinhaltet einen umfassenden Überblick über Fallstricke in Bezug
auf Metriken im Kontext von Klassifizierungsproblemen, der semantischen und Instanzsegmen-
tierung sowie der Objekterkennung. Um zu vermeiden, dass Validierungsmetriken nur aufgrund
ihrer Popularität ausgewählt werden, präsentieren wir ein problemorientiertes Empfehlungssys-
tem für Metriken, welches es Forscher:innen ermöglicht, fundierte Entscheidungen zu treffen,
während sie gleichzeitig auf zu vermeidende Fallstricke aufmerksam gemacht werden.



Da Challenge-Ranglisten ein integraler Bestandteil von Wettbewerben sind, legen wir besonderen
Wert auf die Analyse der Stabilität und Robustheit von Ranglisten gegenüber Änderungen
in deren Berechnungsmethode. Wir zeigen, dass Ranglisten in der Regel instabil sind, was
bedeutet, dass ein Algorithmus eine Challenge nur aufgrund der Beschaffenheit der Berech-
nungsmethode der Rangliste gewinnen könnte, und nicht aufgrund seiner Eignung für eine
bestimmte Forschungsfrage. Um eine auf Unsicherheit basierende Analyse von Ranglisten zu
ermöglichen, stellen wir ein Open-Source-Toolkit vor, das verschiedene Analyse- und fortgeschrit-
tene Visualisierungstechniken für Challenges und allgemeine Benchmarking-Experimente enthält.

Schließlich befassen wir uns mit der Transparenz von Validierungsstudien, welche eines der
Kernelemente qualitativ hochwertiger Forschung darstellt und kritisch geprüft werden sollte.
Unsere Analyse der Transparenz und Reproduzierbarkeit sowohl des Challenge-Designs als auch
der teilnehmenden Algorithmen zeigt jedoch, dass dies häufig nicht der Fall ist, wodurch die
Interpretierbarkeit von Challenge-Ergebnissen erheblich einschränkt wird. Um die Transparenz
von Challenges zu verbessern, stellen wir eine Leitlinie zur Beschreibung und Dokumentation
von Challenges vor. Darüber hinaus präsentieren wir das Konzept der Challenge-Registrierung,
bei dem das vollständige Challenge-Design bereits vor deren Durchführung veröffentlicht
wird. Dieses Konzept wird bereits erfolgreich in klinischen Studien angewandt und erhöht die
Transparenz und Zuverlässigkeit einer Challenge, da es gravierende Änderungen des Designs
rückverfolgbar macht. Schließlich demonstrieren wir, dass die Ergebnisse von Challenges für
eine dedizierte Stärken-Schwächen-Analyse der teilnehmenden Algorithmen verwendet werden
können. Von einer solchen Analyse kann künftige Algorithmenentwicklung stark profitieren, um
bislang ungelöste Probleme zu adressieren.

Zusammenfassend deckt diese Arbeit mehrere kritische Mängel auf dem Gebiet von Challenges
und der Validierung biomedizinischer Bildanalyseverfahren auf. Die präsentierten Mängel werden
um entsprechende Lösungsansätze ergänzt, welche bereits in der Praxis umgesetzt werden und
die Gesamtqualität von Challenges erheblich verbessert haben, vor allem im Rahmen der bekan-
nten Konferenzen Medical Image Computing and Computer Assisted Interventions (MICCAI) und
IEEE International Symposium on Biomedical Imaging (ISBI). Die vorgeschlagenen Verbesserun-
gen versprechen Challenges mit einem höheren Maß an Zuverlässigkeit, Interpretierbarkeit und
Vertrauen. Die allgemeinen Erkenntnisse und Verbesserungsvorschläge sind nicht spezifisch
für Challenges, sondern lassen sich auch auf das gesamte Gebiet der Algorithmenvalidierung
übertragen. Die vorliegende Arbeit bereitet damit den Weg für die hochwertige und gründliche
Validierung von KI-Algorithmen, was entscheidend dazu beiträgt, die Übertragung ineffizienter
oder klinisch nutzloser Algorithmen in die klinische Praxis zu verhindern.
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1 | Introduction

1.1 Motivation
The relevance of Machine Learning (ML)-based analysis of biomedical images is continuously
growing [Litjens et al., 2017]. Nowadays, automatic image analysis is used to solve a variety of
problems, including tumor classification and detection (e.g. [Khan et al., 2020; Hu et al., 2018]),
organ, lesion, or cell segmentation (e.g. [Antonelli/Reinke et al., 2022; Menze et al., 2014; Ulman
et al., 2017]), or surgical skill assessment (e.g. [Wang and Majewicz Fey, 2018]). Given the high
number of algorithms for solving biomedical image analysis tasks that are published every year
[Litjens et al., 2017], it becomes challenging to keep track of which methodological strategy is
most effective for a certain problem.

Since the conditions under which the research is conducted – for example the used data sets
or the available hardware – differ between publications, methods cannot easily be compared
against each other in a fair manner. In medicine, clinical trials are the state-of-the-art approach
for assessing and comparing the effects of new medications or treatments. Benchmarking in the
field of data science is accordingly conducted through international competitions, which are
commonly known as challenges [Maier-Hein et al., 2018; Reinke, 2021].

Challenges allow for a fair comparison of the performance of participating algorithms by enforc-
ing the same conditions for every competing method (for example same data sets). Challenge
participants are usually provided with a training data set (and optionally a validation set), which
can be used to train and tune the algorithms to the specific application. Their performance is
then validated using a test data set, for which the reference annotations are hidden from the
participants. Challenges typically generate a ranking or leaderboard based on the results of this
test set, which informs the research community and the participants about the winning method
and the respective performances.

Given the scarcity of large-scale medical data sets [Ker et al., 2017], arising for example from
patient privacy concerns, challenges frequently make their training data sets public. As shown in
Varoquaux and Cheplygina [2022], this practice hugely impacts and drives the research itself. In
their specific example, the authors show that there was a large increase of lung cancer studies
in the area of Artificial Intelligence (AI) publications compared to general medical oncology
publications after the organization of the Kaggle lung cancer challenge [Kaggle, 2016] in 2016.

1



2 CHAPTER 1. INTRODUCTION

Challenges have become a standard technique for comparing algorithms, and they often receive
tremendous attention in terms of citations and monetary incentives [Maier-Hein et al., 2018].
Meanwhile, many journals request authors to demonstrate the performance of their approaches
on challenge data to improve comparability. This means that the acceptance of a publication,
and consequently a scientist’s career, may be dependent on challenge results and challenge data.
Furthermore, challenge winners enjoy a higher likelihood of their methods being transferred
into clinical practice [Maier-Hein et al., 2018].

Due to their immense scientific impact, challenge organizers are faced with a lot of responsibility
concerning the organization, design, and data quality of a challenge. Figure 1.1 summarizes the
advantages as well as typical main steps in organizing a challenge. As shown in this workflow,
a substantial amount of work must be completed before the challenge itself is conducted.
Organizers need to define the goal of the challenge, generate the data sets including reference
annotations accordingly, and work out the details of the challenge design, such as its mission
and assessment method. Another large part of the organization lies in the evaluation of the
challenge results, by calculating rankings and providing insights based on statistical analyses of
the algorithm performances.

Given their relevance in the scientific community, challenges should be subject to
stringent quality control, equivalent to quality control measures in clinical trials.
However, as will be demonstrated throughout this thesis, numerous fundamental
weaknesses in challenge design, reporting, and implementation are prevalent. Due
to the lack of quality control in challenges, a totally inefficient, clinically useless
algorithm could, in theory, win a biomedical imaging challenge. This could notably
explain the lack of translation of AI algorithms into clinical practice [Panch et al.,
2019; Lennerz et al., 2022].

’However, “the inconvenient truth” is that at present the
algorithms that feature prominently in research literature are in
fact not, for the most part, executable at the frontlines of clinical
practice.’

— [Panch et al., 2019]
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Figure 1.1: Top: Goals and advantages of organizing challenges. Bottom: Common steps in organizing a
biomedical image analysis challenge.
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The work presented in my thesis has been conducted within several interdisciplinary
consortia. Therefore, other researchers were involved in most of the research. For
that reason, I will use the "we" formulation throughout the thesis. In every section
of the contribution Chapters 3 - 5, a disclosure states the core team members for
the presented work. Furthermore, my specific contributions in the broader context
are described in Chapter A.1.



4 CHAPTER 1. INTRODUCTION

1.2 Objectives

The objectives of the research presented in this thesis are to examine common practices in
biomedical challenge design, metrics, rankings, and reporting, and subsequently provide so-
lutions to the identified weaknesses as well as ensure that upcoming challenges will undergo
a more rigorous quality control process, comparable to that of clinical trials. For this purpose,
we first examine the status quo of challenges by reviewing more than 500 biomedical image
analysis competitions to identify common practices. Moreover, we present the results of a
community survey dedicated to gathering the general opinion of the community on challenge
design [Maier-Hein et al., 2018]. In the ensuing sections of the thesis, we consider the following
four hypotheses:

Hypothesis 1 (H1): Current biomedical challenge design is heavily flawed.

We hypothesize that past quality control mechanisms of challenges were not sufficient to ensure
high-quality challenge design and organization. More specifically, we analyze weaknesses in
challenge design to investigate whether challenge results are susceptible to manipulation [Reinke
et al., 2018a]. To eliminate those weaknesses, we demonstrate the advantages of a structured
challenge submission system including a dedicated peer review process for challenges [Reinke
et al., 2018b].

Hypothesis 2 (H2): Common image analysis metrics do not reflect the biomedical domain interest.

We hypothesize that different choices of validation metrics may entirely change the winner(s) of
a challenge. Moreover, we hypothesize that researchers are often not aware of the limitations
of metrics. For this reason, we first show that there is no common access point to information
on metric-related pitfalls, which is why this thesis includes the first comprehensive overview of
that matter [Reinke et al., 2021a,b]. We conclude that validation metrics should not be chosen
according to their popularity and introduce a problem-aware metric recommendation framework
to ensure metric selection that reflects biomedical needs [Maier-Hein et al., 2022].

Hypothesis 3 (H3): Challenge rankings are highly unstable.

Given the importance of challenge rankings in determining a challenge winner, rankings should
be computed carefully. We demonstrate that rankings are generally very sensitive to the cho-
sen challenge design [Maier-Hein et al., 2018]. To address this problem, we highlight how the
interpretability of challenge rankings can be enhanced by advanced visualization techniques
[Wiesenfarth et al., 2021; Antonelli/Reinke et al., 2022; Roß/Reinke et al., 2020].

Hypothesis 4 (H4): Challenge results are not reproducible.

Lastly, we hypothesize that challenges are not transparent and their results can typically not be
reproduced. We show that both challenge details provided by the organizers and methodological
details from the participants are often not sufficient to reproduce challenge results [Maier-Hein
et al., 2018]. To address the lack of transparent reporting, we adapt common practice in the
context of clinical trials to challenges. First, we introduce a challenge reporting guideline; second,
we apply the concept of challenge registration [Maier-Hein et al., 2020]. Finally, we show how we
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can gain more insights from challenge results by introducing a mixed model-based framework
for a strength-weakness analysis of participating algorithms [Roß et al., 2021].

Generalizability of results
Although the focus of this thesis are biomedical image analysis challenges, the presented
flaws and solutions can easily be generalized to a broad range of general validation problems
as indicated in the respective chapters. Thus, rather than solely maximizing the impact of
competitions, the presented work aims to enhance the quality of AI validation in general.

1.3 Outline
In the following Chapter 2, we introduce fundamental concepts related to image analysis, statis-
tics, ML, and validation metrics. The fundamentals chapter ends with an overview of related work.

The contributions of this thesis are presented in Chapters 3 - 5. Every contribution section
includes an introduction, a description of the used methods, results, and a brief discussion
and conclusion. Contributions were partitioned into three parts, as summarized in Figure 1.2:
Chapter 3 examines the role of challenges and current practices. This part concludes with the
presentation of a community survey on challenges.

Chapter 4, including Sections 4.1 - 4.4, focuses on revealing flaws of common practice in challenges
and is guided by Hypotheses 1 to 4. Flaws are examined related to the topics of challenge design
(Section 4.1), validation metrics (Section 4.2), challenge rankings (Section 4.3), and the reporting
and analyses of challenge results (Section 4.4). A conclusion of this part is given in Section 4.5.

For all of the presented issues, Chapter 5, which contains the Sections 5.1 - 5.4, provides strategies
for improvement and mirrors the topics of the previous part, namely presenting solutions for
issues in challenge design (Section 5.1), validation metrics (Section 5.2), challenge rankings
(Section 5.3), and the reporting and analyses of challenge results (Section 5.4).

Chapter 6 discusses the findings of Chapters 3 - 5 in a broad context, showing how they relate to
each other and bringing them into the context of general validation of AI algorithms, not only
from the biomedical image analysis perspective.

My specific contributions in the broader context are described in Chapter 7, which also contains
a listing of my publications. Finally, the Appendix contains complementary information to the
presented results.
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Figure 1.2: Overview of contributions. The contributions of the thesis are presented in three parts. While
Chapter 3 gives a general overview of challenges, including a community survey, Chapters 4 and 5 cover the
topics of challenge design, metrics, rankings, and reporting and analyses. Chapter 4 focuses on revealing
flaws related to the four topics while Chapter 5 presents solutions. The book icon refers to publications and
H1 - H4 to Hypotheses 1 - 4, as presented in Section 1.2.



2 | Fundamentals

In this chapter, we present an overview of the concepts used throughout this thesis. The first
section describes fundamentals in image analysis (Section 2.1), including the presentation of
common problem categories and validation strategies, while the second section focuses on
fundamentals in statistics (Section 2.2). Subsequently, we describe Machine Learning (ML)
concepts in Section 2.3, followed by reviewing common validation metrics in Section 2.4. We
conclude this chapter with a review of related work in Section 2.5.

7



8 CHAPTER 2. FUNDAMENTALS

2.1 | Fundamentals of image analysis

The principles of image analysis and benchmarking are covered in this section. First, we describe
common problem categories of image analysis algorithms in Section 2.1.1. The following Sec-
tion 2.1.2 then presents general concepts related to the validation and benchmarking of image
analysis algorithms. This includes the description of biomedical image analysis challenges as
well as ranking methods.

It should be noted that we focus on the term validation rather than evaluation in this thesis.
Validation involves determining whether the model actually achieved the goal for which it was
designed. On the other hand, the objective of evaluation is to determine whether the model is
effective and valuable for the intended purpose and is accepted by the end users [Jannin et al.,
2006].

2.1.1 Problem categories
In this thesis, we focus on problem categories that are related to classification tasks. We refer to
classification on image level as image-level classification, classification on object level as object
detection and instance segmentation, and classification on pixel level as semantic and instance
segmentation. Note that instance segmentation may operate on both, object and pixel level. A
comparison of the four problem categories is provided in Figure 2.1.

Image-level classification

In image-level classification problems, class labels y ∈ {1, . . . , C} of C classes are assigned to an
image. In the case of multiple labels per image, the labels y ∈ {0, 1}C indicate the presence or
absence of every class. Binary classification refers to the case with only one class of interest. For
instance, the decision of whether a patient shows a disease versus a healthy patient falls into
this category. In the case of multiple classes of interest, we refer to categorical or multi-class
classification. A common example is disease type classification, such as disease classification in
dermoscopic images [Codella et al., 2019]. Nowadays, neural networks usually produce predicted
class scores ŷ ∈ [0, 1]C as an output for every class instead of a fixed class label (see Section 2.3).
Introducing a threshold on the predicted class scores divides the predictions into positive (greater
than or equal to the threshold) and negative (less than the threshold) classes [Davis and Goadrich,
2006]. We provide further details on the thresholding in Section 2.4.

Semantic segmentation

The process of partitioning an image into multiple content-related regions or segments is known
as semantic segmentation. To achieve this, each pixel P is assigned one or more labels yP ∈
{1, . . . , C} or yP ∈ {0, 1}C for C classes and pixels of the same class receive the same label
[Guo et al., 2018]. Similar to image-level classification tasks (although less common in semantic
segmentation), some neural networks output class scores ŷP ∈ [0, 1]C , which are assigned
to a class label based on a threshold [Asgari Taghanaki et al., 2021]. However, in semantic
segmentation, many networks directly output a binary label ŷP ∈ {0, 1}C for every pixel for every
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class. It is important to note that semantic segmentation problems do not distinguish between
different object instances. Instances that belong to the same class receive the same labels. If
instances should be differentiated, one should consider an instance segmentation task instead
(see below). Common examples of semantic segmentation are liver [Heimann et al., 2009] or
brain tumor segmentation [Menze et al., 2014].
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Figure 2.1: Problem categories covered in this thesis that are illustrated for three different application
domains: radiology (left), cell biology (middle), and surgery (right). The fact that they can be interpreted as
classification tasks is a common denominator among the underlying research problems. They assign a class
label to the image or (multiple) components of it: A class label is assigned to the whole image in image-level
classification tasks (a), to each individual pixel in semantic segmentation tasks (b), to identified objects in
object detection tasks (c), and to identified objects made up of multiple pixels in instance segmentation
tasks (d). Gray boxes show the predicted class scores on image, pixel, or object level. The class with the
highest probability is highlighted in boldface. Abbreviations: Red Blood Cell (RBC), White Blood Cell (WBC).
Figure adapted from Reinke et al. [2021a] and Maier-Hein et al. [2022].

Object detection

The detection and (rough) localization of objects in an image are referred to as object detection
[Lin et al., 2014]. Object detection can therefore be interpreted as object-level classification.
Each object O is assigned with a class label yO ∈ {1, . . . , C} (or yO ∈ {0, 1}C for multiple labels
per object), along with localization information lO, which may be bounding box coordinates,
center points, or similar. For each object, algorithms typically output predicted class scores
ŷO ∈ [0, 1]C . In the context of object detection, they are often referred to as confidence scores.
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Objects can be represented in different ways. The most common representation are bounding
boxes, typically provided as coordinates of the boxes, that are drawn around the object of
interest. Alternatively, a rough approximation or the center of an object can be used. In the case
of pixel-level annotations, the full pixel masks can serve as the representation of the object.
Object detection algorithms involve two additional steps, first, deciding on whether a reference
object was correctly detected, and second, which predicted objects are matched with which
reference objects. Section 2.4.3 explains both processes in more detail. Common examples of
object detection are lung nodule detection [Setio et al., 2017] or polyp detection in colonoscopy
videos [Sánchez-Montes et al., 2019].

Instance segmentation

While semantic segmentation does not differentiate between objects of the same class, this
is done in instance segmentation [Gupta et al., 2019; Reinke et al., 2021a]. Each object or in-
stance is detected and localized with pixel-level accuracy, in addition to drawing accurate object
boundaries, making instance segmentation a combination of object detection and semantic
segmentation. Instance segmentation problems are therefore typically validated similarly to
object detection tasks, with additional semantic segmentation performance metrics applied to
each instance (see Section 2.4.4 for details). Often, instance segmentation outputs are generated
from semantic segmentation outputs by applying connected component analysis [Rosenfeld and
Pfaltz, 1966; Reinke et al., 2021a], that provides the segmentations for every instance. Common
examples of instance segmentation are cell nuclei instance segmentation [Ulman et al., 2017] or
spine vertebrae instance segmentation [Sekuboyina et al., 2021].

Other problem categories

In contrast to image-level classification, regression problems require a continuous output rather
than a categorical class label. Predictive regression of the cardiac output is a common example
[Critchley et al., 2010]. Prediction refers to predicting the probability of a disease or outcome
and is often interpreted as a classification or regression task. Popular examples include patient
outcome prediction of progression-free survival [Andrearczyk et al., 2021] or survival prediction
[Bakas et al., 2018]. Image retrieval is the process of retrieving images from an image database
via a search query. A prominent example in medical image retrieval is finding similar images
from a database based on different features such as the imaging modality or anatomical region
[Clough et al., 2004]. The problem of automated object tracking can be expressed as detecting
(and optionally segmenting) all object occurrences in a time series. A common example is cell
tracking [Matula et al., 2015]. In a registration task, different images are transformed into a single
coordinate system. Registration of thoracic images is a common example [Murphy et al., 2011].
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2.1.2 Validation and benchmarking of image analysis algorithms
in the following paragraphs, we explain how biomedical image analysis challenges are typically
constructed. We further cover methods for evaluating algorithm performance in the form of
rankings.

Biomedical image analysis challenges

A biomedical image analysis challenge or benchmarking competition refers to a competition
organized in the scope of a certain research problem in the field of biomedical image analysis.
They typically aim to gain insight into a research problem or to find the best algorithm for a given
scientific question or problem [Mendrik and Aylward, 2019]. Challenges are the standard method
to compare algorithms under similar requirements, such as using the same data for performance
validation [Maier-Hein et al., 2018]. Challenges are often organized at conferences and attract
participants who submit their algorithms and methods to the challenge. They may be organized
as one-time or repeated events and may feature an open call, i.e. accepting submissions even
after a dedicated conference event [Kozubek, 2016]. The main steps for organizing, executing,
and analyzing challenges are provided in Figure 1.1.

A challenge may encompass several tasks or sub-challenges to solve a sub-problem of the
challenge [Maier-Hein et al., 2018]. For example, the overall goal of a challenge may be seg-
mentation with several segmentation tasks of different organs or structures of interest (e.g.
[Antonelli/Reinke et al., 2022; Goksel et al., 2015]). Another challenge may feature different
problem categories, such as one task for the detection of cancer metastases and a second task
for classifying them (e.g. [Bejnordi et al., 2017]). Typically, the assessment method (see below) or
validation is performed individually for every task. In addition, some challenges compute an
aggregated ranking across tasks.

A challenge is typically split into a training and a test phase [Maier-Hein et al., 2018; Kozubek,
2016]. First, challenge participants are provided with a training data set, commonly supplemented
with a reference annotation, which can be used to train their algorithms. Depending on the
challenge’s design, either the challenge organizers give a validation data set or it is up to the
competitors to separate the training data set into training and validation sets. Occasionally,
participants may be allowed to complement the provided training data with publicly available or
private data sets, subject to the challenge design. Some challenges feature a pre-evaluation
based on results on a validation data set (if any).

To avoid potential misuse by participants, most challenges do not include reference annotations
in the test data sets. The test phase commonly serves the purpose of the final assessment of
participating methods and, if any, to calculate rankings. The test phase may be additionally
divided into off-site and on-site phases. The off-site phase defines the standard challenge
setting, in which participants submit their results on the test set or methods online (details
on the submission process are given below). An optional on-site phase includes an in-person
workshop, in which participants work on an additional test set.

The challenge data set(s) are typically composed of several cases. A training or test case is
defined as the data for which the challenge participants produce an output for the challenge
[Maier-Hein et al., 2018]. For example, a case may refer to one or multiple images or may be



12 CHAPTER 2. FUNDAMENTALS

complemented by additional meta information. In contrast to test cases, training cases usually
also include a reference annotation.

The submission of results may be organized in various ways. For example, the algorithm outputs
can be directly sent to the organizers or uploaded to a challenge platform or cloud. On the other
hand, organizers may opt for the methods to be directly sent to them, for instance in the form
of docker containers [Docker, 2022]. This setup comes with the advantage that the test data
can be kept secret, which may be beneficial in terms of data privacy or in avoiding potential
cheating or overfitting of methods [Goodfellow et al., 2016]. Participants may have the possibility
to upload their results or methods multiple times and get feedback on their performances either
individually or in the form of a public leaderboard.

The assessment method of a challenge includes the chosen performance metrics, ranking
schemes, and statistical analysis methods, if any. A challenge should follow an assessment aim,
corresponding to the properties of algorithms that should be assessed. The metrics should be
chosen to reflect this aim. If challenge organizers choose to calculate a ranking (see below for
details), it determines the winner or winning groups of a challenge or task and is commonly
based on one or multiple metrics being assessed. The challenge results may be complemented
by statistical analyses, for example investigating whether the challenge winner’s performance is
significantly superior to the other participants.

Ranking methods

From a mathematical perspective, a ranking is a partially ordered set, as defined in order theory
[Davey and Priestley, 2002]:

Definition 2.1.1 (Ordered set as defined by [Davey and Priestley, 2002]). Let P be a set. An order
(or partial order) on P is a binary relation ≤ on P such that, for all x, y and z ∈ P ,

(i) x ≤ x (reflexivity),

(ii) x ≤ y and y ≤ x implies x = y (antisymmetry),

(iii) x ≤ y and y ≤ z implies x ≤ z (transitivity).

A ranking may contain ranked objects sharing the same rank, so-called ties. In this case, different
strategies may be applied to calculate a ranking, as presented in the following:

Standard competition ranking The standard competition ranking is the most commonly applied
ranking method in cases of tied ranks [Madani et al., 2014]. Equally ranked objects receive the
same rank, followed by a gap, which is equal to the number of the tied objects for the current
rank. This ranking method is also referred to as the "1-2-2-4" rule [Mishra, 2009]. In this specific
example, two objects share the same rank ("2"). Rank 2 appears twice, followed by a gap of two
ranks, continuing with rank 4.

Modified competition ranking The modified competition ranking is very similar to the standard
competition ranking except for adding the gap before the set of tied ranks, not afterward [Madani
et al., 2014]. This ranking method is also referred to as the "1-3-3-4" rule [Mishra, 2009]. In this
specific example, two objects share the same rank ("3"). After the first rank, a gap of two is
included, followed by twice the rank of 3 for the equally ranked objects.
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Dense ranking The dense ranking assigns the same rank to the tied objects without adding a gap
before or afterward [Madani et al., 2014]. This ranking method is also referred to as the "1-2-2-3"
rule [Mishra, 2009]. In this specific example, two objects share the same rank ("2"). After the
shared ranks, no gap is included, so the ties are directly followed by rank 3.

Ordinal (strict order) ranking The ordinal or strictly ordered ranking assigns different ranks to every
ranked object even if objects are observed equally according to the ranking criterion [Madani
et al., 2014]. The ranks for the tied objects are assigned either randomly or based on another
ranking criterion (for example the runtime of an algorithm or any other secondary validation
metric). This ranking method is also referred to as the "1-2-3-4" rule [Mishra, 2009]. In this specific
example, objects may share the same rank based on the ranking criterion but are assigned
different ranks.

Fractional ranking The fractional ranking assigns the average of ranks that tied objects would
receive with an ordinal ranking. This ranking method is also referred to as the "1-2.5-2.5-4" rule
[Mishra, 2009]. In this specific example, two objects share the same rank ("2.5"). The rank 2.5
appears twice, other than that the ranking is continued as an ordinal ranking.

In a challenge (task), participating teams are typically ranked by the performances of their
submitted methods to identify the winning algorithm(s). Determining a winner and deciding
on the ranking scheme depends on the underlying problem category. In binary image-level
classification problems, for example, the performance metrics are typically calculated over the
complete data set [Russakovsky et al., 2015]. For instance, the number of True Positives (TPs),
True Negatives (TNs), False Positives (FPs), and False Negatives (FNs) are determined over the
whole data set and the corresponding metric scores (like Sensitivity or Accuracy) are calculated,
resulting in one score per metric per data set. In this case, no further aggregation needs to be
applied and participating methods can directly be ranked according to their metric scores.

However, one may choose to calculate metric values per case to allow for a case- or patient-
sensitive validation, since a per-data set validation might oversee results for a specific case or
patient. In this situation, multiple metric values are present for every participating team, which
have to be aggregated to generate a concrete ordering of participants. In the following, three
possible ranking schemes are presented. Please note that several other ranking methods exist.
In some challenges, even heuristics or specific weighting schemes are applied.

Metric-based ranking scheme In a metric-based ranking or aggregate-then-rank method, the
metric values per participating team are aggregated first (for example using the mean, median,
or a specific percentile). Afterwards, the ranking is computed based on the aggregated result per
team [Wiesenfarth et al., 2021; Maier-Hein et al., 2018]. Alternatively to the presented algorithm,
one may choose to calculate one ranking per metric without aggregation. We present this ranking
method more formally in Algorithm 1 in Appendix A.2.

Case-based ranking scheme In a case-based ranking or rank-then-aggregate method, a ranking
is computed for every test case over all participating teams. Those ranks are then aggregated
(for example using the mean, median, or a specific percentile) for the final ranking [Wiesenfarth
et al., 2021; Maier-Hein et al., 2018]. Alternatively to the presented algorithm, one may choose
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to calculate one ranking per metric without aggregation. We present this ranking method more
formally in Algorithm 2 in Appendix A.2.

Test-based ranking scheme In a test-based method or significance ranking, differences in the per-
formances between teams are determined by pairwise comparisons using statistical significance
testing. The ranking may then be based on the number of significant test results [Wiesenfarth
et al., 2021; Maier-Hein et al., 2018]. Alternatively, relations obtained from the testing may be
used for the ranking, as suggested by Demšar [2006]. Alternatively to the presented algorithm,
one may choose to calculate one ranking per metric without aggregation. We present this ranking
method more formally in Algorithm 3 in Appendix A.2 with the example of using a Wilcoxon signed
rank test and the number of statistical test results as the ranking measure.
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2.2 | Fundamentals of statistics

This section serves as an overview of the statistical concepts used in this thesis. The first two
parts 2.2.1 and 2.2.2 present techniques that can be leveraged for ranking comparisons and for
measuring ranking variability. We conclude by explaining the concepts of a mixed model analysis
in Section 2.2.3.

2.2.1 Ranking comparison
In the course of the thesis, we compare rankings at various points. This is done to identify the
influence of various ranking schemes or to analyze ranking uncertainty. In the following, we
present two measures that can be used for ranking comparisons: Kendall’s tau and Spearman’s
footrule.

Kendall’s tau rank correlation coefficient

Kendall’s τ measures the correlation between two rankings by determining how often one
rank order deviates from the other [Kendall, 1938]. More formally, consider a set of observa-
tions (x1, y1), (x2, y2), . . . , (xn, yn) from the random variables X and Y . The values of (xi) and
(yi), i = 1, . . . , n describe two rankings of same lengths n with unique values of (xi) and (yi) in
each ordering [Szmidt and Kacprzyk, 2011].

Definition 2.2.1 (Concordant and discordant pairs as defined by Szmidt and Kacprzyk [2011] and
Nelsen [2001]). A pair of (xi, yi) and (xj , yj), i < j is concordant if either

(i) xi > xj and yi > yj or

(ii) xi < xj and yi < yj ,

meaning that the order of sorting is the same in both rankings. Otherwise, the pair is called
discordant.

When calculating Kendall’s τ , we compute the S, namely the difference between the number of
concordant pairs C and the number of discordant pairs D, and divide it by the total amount of
possible pairs of observations

(
n
2

)
= n(n−1)

2 [Kendall, 1938]:

τ =
C −D(

n
2

) =
C −D
n(n−1)

2

=
2(C −D)

n(n− 1)
=

2S

n(n− 1)
[Kendall, 1938] (2.1)

By definition, Kendall’s τ is bounded between [−1, 1]. A value of 1 corresponds to a perfect
agreement between rankings (similar rankings; all pairs are concordant) and -1 to a complete
disagreement (reverse rankings; all pairs are discordant). Independent rankings yield a value of
0 (same number of concordant and discordant pairs) [Szmidt and Kacprzyk, 2011].
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Spearman’s footrule

Spearman’s footrule denotes the absolute distance between two ranking vectors and can thus
be used to compare the distance between two rankings. It is defined as

D(x, y) =

n∑
i=1

|xi − yi| [Spearman, 1987] (2.2)

where xi and yi refer to the ith rank of two rankings x and y. However, this distance does not
consider the correlation between rankings. Thus, we mostly calculate Kendall’s τ for ranking
comparisons throughout this thesis.

2.2.2 Ranking variability
Throughout this thesis, we examine the stability and robustness of rankings. Bootstrapping refers
to the process of resampling with replacement [Efron and Tibshirani, 1994]. Such a technique can
be used to estimate errors, confidence intervals, or variances from an approximate distribution
[Stine, 1989]. Bootstrapping can also be used to measure the uncertainty and variability of
rankings. In this context, we simulate small variations to the original data set that was used to
compute the ranking by sampling with replacement, as shown in Figure 2.2. The resulting rankings
may differ from the original ranking due to those perturbations. The ranking uncertainty can
then be assessed, for example by measuring Kendall’s τ (see Section 2.2.1) between the original
and each bootstrap ranking. Calculating several bootstrap rankings (we typically assume 1,000
bootstraps) can be used to identify the uncertainty of a ranking [Wiesenfarth et al., 2021].
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Figure 2.2: Illustration of bootstrapping in the case of ranking variability. Different cases from the data
set are shown in different colors. To generate one bootstrap sample (ranking), samples from the original
data set are randomly drawn with replacement until the original data set size is achieved. This means, a
bootstrap sample may contain one case several times or not once, simulating small perturbations from the
original data set. For every bootstrap sample, a ranking is computed based on the same ranking scheme.
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2.2.3 Mixed model analysis
Biomedical image data often features a hierarchical data structure. Data from the same patient,
device, or hospital is typically correlated and cannot be assumed to be independent. However,
this property is required for classical linear regression models [West et al., 2006]. In such a case,
we can leverage Linear Mixed Models (LMMs) [West et al., 2006]. LMMs have been designed as a
generalization of linear models used for the regression of continuous variables in the case of
non-independent data and are typically defined as:

Y = 1α+Xβ + Zu+ ϵ (2.3)

Y denotes the outcome variable, also known as the dependent variable, and refers to the
outcome that should be regressed. It is an N × 1 vector, with N being the number of data points.
The outcome variable could, for example, refer to the performance of an algorithm for N images.

LMMs incorporate fixed and random effects. The fixed effects estimate the effect or influence
of independent explanatory variables that are not random (i.e. fixed). X , an N × p matrix,
denotes the design matrix for the fixed effects. The rows of X correspond to the data points
(e.g. images), whereas the columns represent p explanatory variables. For instance, if we aim
to measure how specific image artifacts affect algorithm performance, the fixed effects would
be the p image artifacts (see for example [Roß et al., 2021]). The design matrix is weighted
by the regression coefficients β, which are of p × 1 shape. In the mentioned binary example
of the presence of a specific image characteristic a, it would yield a change in the expected
algorithm performance by βa in comparison to the case in which a is not present in an image
(see for example [Roß et al., 2021]). The scalar intercept α constitutes the average outcome in
the case that all explanatory variables are not present and is multiplied by an N×1 vector of ones.

Random effects, on the other hand, refer to the non-independent variables that are correlated.
Thus, they seek to explain the data hierarchy. In the example above, the image and patient would
be modeled as a random effect. For q random effects, Z is the corresponding N × q design matrix.
Every random effect, e.g. the image and patient, corresponds to one column of Z. The q × 1
vector u represents the respective coefficients of regression and quantifies the how the random
effects impact the outcome variable Y . In LMMs, we assume that u follows a normal distribution.

The error term, called residuals, is incorporated by the N × 1 vector ϵ and refers to the variation
that is not explained by the random and fixed effects. For LMMs, the residuals are assumed to
follow a normal distribution, i.e. the outcome variables should be normally distributed given the
explanatory variables. For the outcome variable, a transformation can be applied to make sure
that it approximately follows a normal distribution. For example, to achieve a value range of
(−∞,∞), a logit transformation could be used for values that are bounded by [0, 1]. After the
model fitting, the distribution of the residuals needs to be checked for normality. This could be
done by analyzing the Quantile-Quantile plot (Q-Q plot) of residuals [Thode, 2002].
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If this normality assumption is violated, we cannot utilize LMMs. Generalized Linear Mixed
Models (GLMMs) [McCulloch and Searle, 2004] can be used as an alternative, as they generalize
from outcome variables of a normal distribution to various other distributions, such as Bernoulli
or Poisson. This is accomplished by including a link function [McCulloch and Searle, 2004; Roß
et al., 2021]:

g(E[Y ]) = g(π) = 1α+Xβ + Zu+ ϵ (2.4)
A logit link function is a canonical choice in a binary environment based on a Bernoulli distribution,
i.e. g = π

1−π .
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2.3 | Fundamentals of machine learning

There is no standardized definition of Artificial Intelligence (AI). As stated by Luger [2005], defini-
tions of AI "suffer from the fact that intelligence itself is not very well defined or understood".
Poole and Mackworth [2010] describe AI as "the field that studies the synthesis and analysis
of computational agents that act intelligently". Another opinion can be found in Russell and
Norvig [2020], for instance, who discuss the differences between human or rational thinking
and human or rational acting when defining AI. Moreover, Fan et al. [2020] and others discuss
the connections between the human brain and AI. A broad discussion on various approaches
to defining AI is out of the scope of this thesis and can be followed by reading the provided
references. Generally, we can note that AI deals with machines that somehow act in an intelligent
way. This thesis focuses on two sub-fields of AI: Machine Learning (ML) and Deep Learning (DL).
The sub-field of AI called ML concentrates on learning from data and makes use of principles
from both statistics and optimization [Mitchell and Mitchell, 1997; Sun et al., 2019; Goodfellow
et al., 2016]. DL, on the other hand, is a sub-group of ML algorithms, which make use of Neural
Networks (NNs) with multiple layers [Goodfellow et al., 2016].

ML algorithms can be subdivided into supervised, unsupervised, and reinforcement learning
[Buduma et al., 2022; Goodfellow et al., 2016]. Supervised problems link a given input x to a
label or target y. They aim to predict the labels of an input image. Unsupervised methods
operate without labels and typically cluster the data based on similarities of intrinsic properties
by recognizing patterns. Reinforcement learning, on the other hand, refers to the interaction
between an agent and an environment in order to learn independently based on a reward
system [Goodfellow et al., 2016]. In this thesis, we focus on supervised methods, which are often
subdivided into regression and classification problems. We focus on the classification aspect.

2.3.1 Fundamentals of neural networks
The concept of NNs was derived from the functionality of neurons in the human brain [Rosenblatt,
1958]. The input neurons are modeled as a weighted sum, which is given to a non-linear activation
function, mimicking the action potential of neurons [McCulloch and Pitts, 1943]:

ŷ = g

( n∑
i=1

xi · wi + b · w0

)
[Goodfellow et al., 2016] (2.5)

The output of the model is given by ŷ, predicting the target y. The n input variables are given
by xi, i = 1, . . . , n and wi refer to the weights of the model that are learned during model
training. The bias of the model is given by b and g denotes its non-linear activation function.
NNs often produce pseudo probabilities between 0 and 1, which represent the likelihood of
belonging to a particular class, rather than directly predicting a specific label or class. We refer
to those pseudo probabilities as predicted class scores. They are also called confidence scores
or continuous class scores. It should be noted that the predicted class scores should not auto-
matically be interpreted as probabilities. More details on this aspect are provided in Section 2.4.5.
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NNs that are composed of several layers of neurons are called deep NNs, thus referring to
DL. DL algorithms are typically very powerful in modeling complex non-linear situations and
may comprise intricate operations such as pooling, normalizations, or convolutional layers.
Convolutional layers are especially useful in image analysis since they are able to capture the
spatial information of an image in contrast to encoding an image as a vector, as it would by done
in a standard neural network, for example. A network composed of convolutional layers is called
a Convolutional Neural Network (CNN), and is used as a standard technique in biomedical image
analysis (e.g. [Li et al., 2014; Shin et al., 2016]). In a convolutional layer, a so-called kernel or filter,
containing weights, is used to capture specific information about the image in a sliding-window
approach. Importantly, the kernel is always applied to a small region of the image only, before
moving on to the next region. Following Goodfellow et al. [2016], a convolution operation for a
two-dimensional image I and a kernel K is defined as:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.6)

The weights of the kernel are learned by the network during training. CNNs are usually composed
of three components. First, the network is typically composed of multiple convolutions, whose
outputs are secondly given to a non-linear activation function. Finally, a pooling layer is applied,
which aims for making the representation invariant to translations of the image [Goodfellow
et al., 2016]. A pooling layer acts as a summary or aggregation function, for example by computing
the maximum (max pooling) or the average (average pooling) of a specific region in the image. In
this way, the dimension of the input is reduced.

2.3.2 Training and inference of neural networks

Data split and data augmentation

ML models learn to predict the labels of a data set during the process of training. Thus, the given
data set should be split into a training set, comprising roughly 80% of the data, a validation, and
a test set, comprising roughly 20% of the data [Goodfellow et al., 2016]. The training data is then
solely used for training and optimizing the model, while the performance is reviewed on the
validation set. This step is important to avoid the model overfitting on the training data. This
indicates that the model cannot generalize to unseen data when it is strongly optimized on the
training set. Finally, the test set should remain untouched until the final validation is performed.

For small data sets, one may choose to not define a specific validation set, but rather use
other techniques, such as k-fold cross-validation [Stone, 1974]. In cross-validation, the data is
randomly split into k subsets. For each subset, one of the subsets is considered as the hold-out
test set, while the remaining data is treated as the training data. This process is repeated such
that each of the subsets is considered as the test set once and the scores for each of the k folds
are aggregated [Gareth et al., 2013]. Additionally, in the case of limited training data, the amount
of data points can be synthetically increased by using data augmentation. . In this process, new
data is generated with a certain probability such that the input images are slightly transformed.
Common data augmentations involve the rotation of images, changing the color, or adding blur
[Shorten and Khoshgoftaar, 2019].
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Weight initialization and pre-training

The network weights must first be initialized before the training can begin. This could be done
either randomly or with pre-defined weights. In the Xavier normalization, for example, the
weights are initialized as random numbers from a uniform distribution in the range of ± 1√

n

[Glorot and Bengio, 2010]. Another common practice lies in the pre-training of networks, for
which the weights are taken from a model that was already trained on a different task. Nowadays,
pre-trained networks are available in common DL libraries and are often based on the famous
ImageNet [Deng et al., 2009] or Microsoft-Common Objects in COntext (COCO) [Lin et al., 2014]
data sets.

Loss functions

The goal of the training step lies in minimizing a loss function in order to optimize the network
weights. The score of the loss function reflects the performance of the model in predicting the
reference labels. In the following, we present some popular loss functions that will be used in
this thesis.

The Cross Entropy (CE) loss (also known as logarithmic loss) [Cybenko et al., 1998] is a popular
loss function in classification problems, which is defined as

LCE(y, ŷ) = −
N∑
i=1

yi · log(ŷ) (2.7)

for N classes. Here, y and ŷ denote the reference and predicted vector, in which every component
refers to a specific class. The loss is calculated and summed up for the different classes i. It is
known as Binary Cross Entropy (BCE) loss for binary classification tasks and simplifies to

LBCE(y, ŷ) = −
(
y · log(ŷ) + (1− y) · log(1− ŷ)

)
, (2.8)

with y and ŷ reducing to scalars.

The focal loss [Lin et al., 2017b] has been suggested as an improvement of the CE loss, especially
for binary object detection problems. The advantages include better handling of class imbalances
via the parameter αt and the ability to differentiate easy and hard cases by the focusing parameter
γ:

LFL(ŷt) = −αt · (1− ŷt)
γ · log(ŷt) (2.9)

with

ŷt =

{
ŷ y = 1

1− ŷ otherwise
(2.10)

Note that the focal loss is identical to the BCE loss for γ = 0 and αt = 1.
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The Smooth L1 loss, also known as Huber loss [Huber, 1992; Girshick, 2015] can be interpreted as
an L1 function with a smooth transition for values near zero to avoid exploding gradients and is
defined as

Lsmooth−L1(y, ŷ) =

{
0.5 · (y − ŷ)2 |y| < 1

|y| − 0.5 otherwise
(2.11)

It is often used in object detection tasks for the prediction of bounding boxes.

The Dice Similarity Coefficient (DSC) loss [Milletari et al., 2016], used for segmentation tasks,
follows the definition of the DSC validation metric (see Section 2.4) and measures the overlap
between a prediction and the reference on pixel level. In this case, it is iterated over pixels i.
The loss is defined as:

LDSC(y, ŷ) =
2 ·
∑N

i=1 yi · ŷi∑N
i=1 y

2
i +

∑N
i=1 ŷ

2
i

. (2.12)

Finally, the Jaccard loss [Iglovikov and Shvets, 2018] for segmentation tasks similarly follows
the definition of the Intersection over Union (IoU) metric (also known as Jaccard Index) (see
Section 2.4), calculating the overlap of the prediction and reference. It is given by

LJacc(y, ŷ) =
1

N

N∑
i=1

yi · ŷi
yi + ŷi − yi · ŷi

. (2.13)

Both the DSC and Jaccard losses are typically calculated per class.

Optimization

Given the typically high amount of data, the data set is usually further split into several (mini)
batches. The number of batches is one of the hyperparameters of a NN, the so-called batch
size. In every training step, the trainable weights of the network are updated via the gradient of
the loss. This step is achieved by the concept of backpropagation [Goodfellow et al., 2016]. In
an optimization step, the loss function is minimized, typically done by gradient descent. The
optimizer of a network is based on the learning rate, another hyperparameter, which defines
the step length of the optimization and should be carefully chosen. A learning rate that is too
high may miss the minimum, while a low learning rate slows down the training process. The
commonly used Stochastic Gradient Descent (SGD) optimizer [Kiefer and Wolfowitz, 1952] relies
on the basic concept of gradient descent, but rather than calculating the gradient descent for
the whole data set, it is computed over randomly selected batches. Another standard optimizer
is the Adaptive Moment Estimation (Adam) optimizer [Kingma and Ba, 2014], which is similarly
computed over batches. It further uses adaptive learning rates instead of a single learning rate
(as for the SGD). The training step is repeated for several epochs1, until the maximum number of
epochs is reached or a pre-defined stop criterion is reached.

1One epoch may be finished once either all data or a specific number of batches was presented to the network.
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Model selection and inference

Finally, after the model training is completed, the final model is selected based on specific
criteria, for example, a specific score of the loss function of the validation set or based on
application-related metrics. The model is then tested against the unseen test data set. This step
is typically referred to as inference. The final performance of the model on the hidden test set is
given by the validation metrics.

2.3.3 Model architectures used in this thesis
Residual Neural Network (ResNet)

Very deep NNs often show a degradation in training performance since they suffer from gradients
that converge to zero very quickly [He et al., 2016]. This concept is known as "vanishing gradients".
Vanishing gradients cause the learning of the network to stop because the weights are not
updated anymore given the gradients turned to zero. Thus, He et al. [2016] have introduced
residual blocks in their Residual Neural Network (ResNet) architecture. Those blocks help to
overcome the problem of vanishing gradients by using so-called skip connections or identity
connections, as shown in Figure 2.3. Those connections skip some layers of the network by
connecting them via the identity function. With this modification, the gradients are enabled to
directly flow through the skip connections in the backpropagation step. In this way, very deep
architectures can be created, such as the ResNet-50 or ResNet-101, with 50 or 101 layers.
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Figure 2.3: Residual block as proposed by He et al. [2016].
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U-Net

Ronneberger et al. [2015] suggested the U-Net architecture in the context of semantic segmen-
tation of biomedical images as a fully convolutional NN. It adheres to the principles of an
Autoencoder by using an encoder-decoder structure, which, together with the below-mentioned
skip connections, naturally introduce the "U" shape (see Figure 2.4), the basis for the architec-
ture’s name. The downsampling path of the network (encoder; left part of Figure 2.4) serves the
purpose of capturing the context of the input image by compressing the spatial information
(bottleneck), but increasing the number of feature channels. This is achieved by step-wise
convolutions, followed by non-linear activation functions and a pooling operation, reducing
the spatial resolution of the image. The encoder results in an increasing semantic explanatory
ability of the network at the expense of a reduced spatial resolution of the image. Encoders are
typically used for the classification part of a model.

The upsampling path (decoder; right part of Figure 2.4) is symmetric to the encoder and serves
the purpose of creating a segmentation map at increasing image resolutions from the bottleneck
to ensure a correct localization of objects in the original image. It utilizes step-wise upsampling
operations instead of pooling. To combine the local and global information, the upsampling
also involves the concatenation of the encoder and decoder layers of the same sizes (skip
connections) to overcome the problem of information loss in the bottleneck. As the U-Net was
designed for semantic segmentation problems, it naturally cannot distinguish between different
instances or objects. If used for instance segmentation problems, the network output is usually
post-processed with a connected component analysis, which separates different objects into
multiple instances [Chen et al., 2006].
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Figure 2.4: U-Net architecture as proposed by Ronneberger et al. [2015].
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Mask R-CNN

In contrast to the U-Net, the Mask R-CNN [He et al., 2017] was directly designed for solving
instance segmentation problems. The architecture is composed of several small NNs handling
different steps of the pipeline. First, the backbone is used to convert the input image to a latent
representation, aiming to extract relevant features. It is typically a pre-trained classification
or detection network, such as the ResNet, a VGG [Simonyan and Zisserman, 2014] or a Feature
Pyramid Network (FPN) [Lin et al., 2017a]. Based on the feature representation, the so-called
Region Proposal Network (RPN) predicts several regions in the image, which may be candidates
for the objects that should be segmented. This network is typically a small binary classifier. In
the following steps, bounding box coordinates for the different regions and their classes are
predicted for the different regions and the objects within the boxes are segmented. All of those
steps are done by individual small CNNs. The architecture is trained via a multi-task loss:

Lmaskrcnn(y, ŷ) = Lcls(y, ŷ) + Lbox(y, ŷ) + Lmask(y, ŷ) (2.14)

The classification loss Lcls is typically defined as a CE loss (see Equation 2.7) and assesses
the performance of the object classifier. The bounding box regression loss Lbox(y, ŷ) rates the
accuracy of the bounding boxes and was introduced as a smooth L1 loss (see Equation 2.11).
Finally, Lmask(y, ŷ) measures the segmentation quality and was defined as the average BCE loss
(see Equation 2.8) [He et al., 2017].
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Figure 2.5: Mask R-CNN architecture as proposed by He et al. [2017]. The architecture is composed of several
sub-networks: the backbone, the Region Proposal Network (RPN) and several small Convolutional Neural
Networks (CNNs), which predict the bounding box, class, and segmentation mask for every proposed region.
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2.4 | Common validation metrics

Disclosure

This section presents common validation metrics used in Sections 4.2 and 5.2 of this
thesis. We follow the fundamentals presented in the work of Reinke et al. [2021a]
for a comprehensive overview.

In this section, we present common validation metrics used to assess the performance of
algorithms. We focus on validation metrics that assess the classification abilities of a prediction.
This can be done at various levels, based on the underlying problem category. Particularly, we
consider the following levels: Per image (image-level classification), per object (object detection),
per pixel (semantic segmentation) as well as per object and per pixel (instance segmentation).

In this thesis, our focus are supervised Machine Learning (ML) algorithms that link a given input
x to a label or target y [Goodfellow et al., 2016] (see Section 2.3). The algorithms aim to predict
the labels of a reference annotation, which typically involves manual annotation efforts. In
this section, we consider reference-based validation metrics that analyze how well the algo-
rithm replicated the reference by comparing the prediction to the reference and providing a score.

In the following, we introduce several common reference-based validation metrics related to the
four problem categories. Some of them overlap between categories and can be used for different
problem formulations, as indicated below. Appendix A.3 provides a profile of the most-relevant
metrics presented in this section including relevant information such as the formula, definition,
information on cardinalities, prevalence dependency, and metric family. The profile further
contains relevant limitations and recommendations based on the results of Sections 4.2 and 5.2.

Most of the presented metrics rely on the creation of the confusion matrix, also known as the
error matrix [Stehman, 1997; Tharwat, 2020], by comparing an algorithm prediction to a reference
annotation as illustrated in Figure 2.6 for the binary case. In the binary case, the confusion matrix
divides a prediction into the following cardinalities:

True Positives (TPs) i.e. positively predicted samples that are actually positive,
False Negatives (FNs) i.e. negatively predicted samples that are actually positive,
False Positives (FPs) i.e. positively predicted samples that are actually negative and
True Negatives (TNs) i.e. negatively predicted samples that are actually negative.
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Figure 2.6: Visualization of a binary confusion matrix. (A) The confusion matrix shows the cardinalities True
Positive (TP) (green), False Negative (FN) (pink), False Positive (FP) (red), and True Negative (TN) (blue). (B)
Schematic example of a binary classification into positive (triangle) and negative (circle) classes.

For non-binary problems with C classes, C > 2, the confusion matrix is extended to a C × C
matrix, from which the entries are also referred to as cardinalities. To introduce the concepts of
the presented metrics, we restrict ourselves to the binary case for illustration purposes. However,
most metrics can be generalized to the multi-class case, as described below.

Neural networks nowadays typically output predicted class scores instead of a fixed class
[Vaicenavicius et al., 2019] (see Section 2.3). In order to calculate the entries of the confusion
matrix, a threshold or cutoff value τ needs to be set. Predictions greater than or equal to τ
are considered positive, while predictions below the cutoff value are interpreted as negative.
In comparison to the actual positive and negative sample distributions, this results in the
confusion matrix for this specific threshold. For a different threshold, the confusion matrix may
change, since the number of positive and negative predicted samples may differ. The concept
is illustrated in Figure 2.7 for τ = 0.5. It should be noted that setting a cutoff value is more
complicated for C > 2 (multi-class), for which one might need to define decision regions as a par-
tition of [0, 1]C−1. Alternatively, a global decision threshold needs to be defined across all classes.

For image-level classification, semantic segmentation, object detection, and instance segmenta-
tion, validation metrics can roughly be classified into counting metrics, multi-threshold metrics,
distance metrics, and calibration metrics, as described in the following paragraphs.

Counting metrics Counting metrics rely on a fixed classification threshold, based on which the
confusion matrix is calculated. Counting metrics then compute different ratios of its cardinalities.
We further distinguish between per-class counting metrics and multi-class counting metrics.
Per-class counting metrics require the definition of a concrete positive (or foreground) and
negative (or background) class. Multi-class counting metrics are defined for multiple classes
while being invariant to the order of classes. In the case of segmentation problems, counting
metrics are often referred to as overlap-based metrics, as those metrics focus on the predicted
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pixels that are overlapping with the reference segmentation pixels (TP).

Multi-threshold metrics In contrast to counting metrics, multi-threshold metrics operate on
multiple thresholds. Usually, predictions are ranked by the predicted class scores and the
confusion matrix is dynamically calculated based on the current threshold. Multi-threshold
metrics are typically the (approximated) area under a curve drawn from the multiple thresholds.

Distance-based metrics In the case of semantic and instance segmentation problems, the distance
from the object boundaries are often of specific interest, measured by distance-based metrics,
often referred to as boundary-based metrics.

Calibration metrics Calibration metrics focus on the accuracy of the predicted class scores and
how close they are to the actual probabilities for a certain class.
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Figure 2.7: Illustration of thresholding of predicted class scores. (a) The green curve shows the distribution
of the positive, the dark blue curve the distribution of the negative class. An exemplary threshold τ of 0.5 is
set to be able to compute the cardinalities of the confusion matrix, i.e. True Positive (TP) (light green), False
Positive (FP) (dark red), False Negative (FN) (light red) and True Negative (TN) (light blue). Samples with
class scores above the threshold are predicted as positive, while values below the threshold are predicted
as negative. (b) Example for one prediction. The table shows the actual class, the predicted class scores,
their class based on τ = 0.5, and the resulting cardinalities. Figure adapted from [Reinke et al., 2021a].
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2.4.1 Image-level classification metrics
In classification tasks, it is important to be aware of the prevalence ϕ. In the context of epidemi-
ology, prevalence refers to the proportion of a population that is affected by a particular disease
[Rothman, 2012]. More generally, prevalence is defined as the proportion of actual positive
samples in a data set:

ϕ =
TP + FN

N
∈ [0, 1], N = TP + FN + FP + TN (2.15)

Several metrics are dependent on the underlying prevalence of the data set. In this case, metric
values can not directly be compared across data sets with different ϕ. Throughout this section,
we indicate which metrics depend on the prevalence. Figure 2.8 illustrates the behavior of the
presented image-level classification counting metrics as functions of the prevalence for given
Sensitivity and Specificity values.
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Figure 2.8: Image-level counting metrics as functions of the prevalence for a fixed Sensitivity of 0.95 and a
fixed Specificity of 0.90. Used abbreviations: Balanced Accuracy (BA), Cohen’s Kappa (CK), Youden’s Index (J),
Matthews Correlation Coefficient (MCC), Negative Predictive Value (NPV), Positive Predictive Value (PPV).
Figure adapted from [Reinke et al., 2021a].

Per-class counting metrics

An illustration of all presented per-class counting metrics is given in Figure 2.9.
The Sensitivity (also known as Recall, True Positive Rate (TPR) or Hit rate) [Tharwat, 2020] mea-
sures how many of the actual positive samples were predicted as such. Sensitivity is independent
of the prevalence and calculated as follows:

Sensitivity =
TP

TP + FN ∈ [0, 1] (2.16)
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The Specificity (also known as True Negative Rate (TNR) or Selectivity) [Tharwat, 2020] measures
how many of the actual negative samples were predicted as such. Similar to Sensitivity, Specificity
is independent of the prevalence and calculated as follows:

Specificity =
TN

TN + FP ∈ [0, 1] (2.17)

Sensitivity and Specificity are usually calculated together to assess the full performance of a
prediction to classify images into positive and negative samples.

The PPV (also known as Precision) metric [Tharwat, 2020] represents the likelihood that a
prediction marked as positive matches an actual positive sample. For ϕ = 0.5, PPV can be
computed as

PPV =
TP

TP + FP ∈ [0, 1] (2.18)

However, PPV crucially depends on the prevalence ϕ, as shown in Figure 2.8. Thus, if the prevalence
is different from 0.5, the following formula should be used for prevalence correction:

PPVcorrected =
Sensitivity · ϕ

Sensitivity · ϕ+ (1− Specificity) · (1− ϕ)
∈ [0, 1] (2.19)

Please note that typical sample implementations (e.g. [Maier, 2013; MONAI-developers, 2019;
Scikitlearn, 2007; PyTorchLightning, 2020]) often only refer to Equation 2.18, ignoring the nec-
essary prevalence-correction given in Equation 2.19 for prevalences unequal to 0.5. It should
be noted that we focus on the term PPV rather than Precision in this thesis because different
scientific communities use the word "precision" in different ways. For instance, it frequently
relates to the degree of output confidence in the medical community.

NPV [Tharwat, 2020] is the negative equivalent of PPV and represents likelihood that a prediction
marked as negative matches an actual negative sample. For a prevalence of 50%, NPV can be
computed as

NPV =
TN

TN + FN ∈ [0, 1] (2.20)

Similar to PPV and as shown in Figure 2.8, NPV depends on ϕ:

NPVcorrected =
Specificity · (1− ϕ)

Specificity · (1− ϕ) + (1− Sensitivity) · ϕ ∈ [0, 1] (2.21)

As described for PPV, common sample implementations of NPV ([Maier, 2013; MONAI-developers,
2019]) refer to Equation 2.20 rather than using the corrected formula, displayed in Equation 2.21.

The Fβ Score [Chinchor, 1992] weights PPV, i.e. the FP samples, and Sensitivity, i.e. the FN samples,
by the parameter β:

Fβ = (1 + β2)
PPV · Sensitivity

β2 · PPV + Sensitivity =
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP ∈ [0, 1], β ∈ R+ (2.22)

A higher value of β (e.g. β = 2) gives Sensitivity or FN samples a higher weight over PPV or
FP samples. Similarly, a value lower than 1 (e.g. β = 0.5) weights PPV or FP over Sensitivity or
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FN samples. It is quite common to set β to 1, which results in the harmonic mean of PPV and
Sensitivity:

F1 =
2 · PPV · Sensitivity
PPV + Sensitivity =

2 · TP
2 · TP + FN + FP ∈ [0, 1] (2.23)

The Fβ Score depends on PPV, implying prevalence dependency (see Figure 2.8).

The Positive Likelihood Ratio (LR+) [Attia, 2003] indicates the factor by which a positive prediction
occurs more frequently among positive samples than among negative samples. LR+ is the odds
ratio of Sensitivity and Specificity and thus invariant to the prevalence [Šimundić, 2009]:

LR+ =
Sensitivity

1− Specificity ∈ [0,∞) (2.24)

Finally, the Net Benefit (NB) [Vickers and Elkin, 2006] has been introduced as "a simple type of
decision analysis, with benefits and harms put on the same scale so that they can be compared
directly" [Vickers et al., 2016]. More specifically, the benefit is given by the fraction of TPs and
the harm by the fraction of FPs, which is multiplied by an exchange rate, defined via the decision
thresholds pt:

NB =
TP

TP + FN + FP + TN − FP
TP + FN + FP + TN · pt

1− pt
∈ [−1, 1] (2.25)

NB can also be used to tune the decision threshold of a model and is typically calculated for a
range of clinically-relevant thresholds.
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Figure 2.9: Overview of the most frequent per-class counting classification metrics that are based on
the confusion matrix’s cardinalities True Positive (TP), False Negative (FN), False Positive (FP) and True
Negative (TN), as illustrated in Figure 2.6. Used abbreviations: Positive Likelihood Ratio (LR+), Negative
Predictive Value (NPV), Positive Predictive Value (PPV). Figure adapted from [Reinke et al., 2021a].
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Multi-class counting metrics (binary)

An illustration of all presented multi-class counting metrics is given in Figure 2.10.

Accuracy [Tharwat, 2020] is a well-known metric in image-level classification and measures the
ratio of samples that were correctly predicted over all predictions made. The metric can be
calculated as:

Accuracy =
TP + TN

TP + FN + FP + TN
= Sensitivity · ϕ+ Specificity · (1− ϕ) ∈ [0, 1]

(2.26)

As can be seen from Equation 2.26, Accuracy is dependent on ϕ. In contrast to other multi-class
counting metrics, Accuracy does not weight different classes equally.

The Balanced Accuracy (BA) [Tharwat, 2020] is often used as an alternative metric given its
prevalence independence. It measures the arithmetic mean of Sensitivity and Specificity:

BA =
Sensitivity + Specificity

2
∈ [0, 1] (2.27)

In the case of ϕ = 0.5, Accuracy is equivalent to the BA.

A related metric is the Youden’s Index (J) [Youden, 1950] (also known as Bookmaker Informedness
(BM)), measuring the sum of Sensitivity and Specificity:

J = Sensitivity + Specificity − 1 ∈ [−1, 1] (2.28)
Both BA and J are independent of the prevalence (see Figure 2.8). J can directly be derived from
the BA score:

BA =
J + 1

2
(2.29)

J = 2 · BA − 1 (2.30)

Matthews Correlation Coefficient (MCC) [Matthews, 1975; Chicco et al., 2021] (also known as Phi
Coefficient) calculates how the prediction is correlated with the actual outcome. The metric is
calculated as follows:

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
∈ [−1, 1]

=
√

PPV · Sensitivity · Specificity · NPV

−
√
(1− PPV) · (1− Sensitivity) · (1− Specificity) · (1− NPV)

(2.31)

Given the dependency on PPV and NPV, MCC is similarly dependent on ϕ, as shown in Figure 2.8.
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Cohen’s Kappa (CK) [Cohen, 1960] was introduced to measure the agreement between two raters.
In the ML community, it is often used for a comparison between the reference and the prediction.
It incorporates the agreement given by change with the term pe in Equation 2.32:

CK =
p0 − pe
1− pe

=
2 · (TP · TN − FP · FN)

(TP + FP) · (TN + FP) + (TP + FN) · (TN + FN) ∈ [−1, 1]

p0 = Accuracy

pe =
(TP + FP) · (TP + FN)
TP + FN + FP + TN +

(TN + FP) · (TN + FN)
TP + FN + FP + TN

(2.32)

CK can also be rewritten in terms of Sensitivity, Specificity, and prevalence ϕ [Feuerman and
Miller, 2008]:

CK =
2 · ϕ · (1− ϕ) · (Sensitivity + Specificity − 1)

ϕ2 + (1− ϕ)2 + (1− 2 · ϕ) · (ϕ · Sensitivity − (1− ϕ) · Specificity) (2.33)

For a prevalence of 0.5, CK is equal to J.

An extension of CK is its weighted version Weighted Cohen’s Kappa (WCK) [Cohen, 1960]. In
contrast to the unweighted version, it takes into account the degree of disagreement between
reference and prediction.

WCK =
pw0 − pwe
1− pwe

∈ (−∞,∞)

pw0 =
wTP · TP + wFN · FN + wFP · FP + wTN · TN

pwe = wTP · (TP + FP) · (TP + FN)
TP + FN + FP + TN + wTN · (TN + FP) · (TN + FN)

TP + FN + FP + TN

+ wFN · (FN + FP) · (FN + TN)
TP + FN + FP + TN + wFP · (FP + TP) · (FP + TN)

TP + FN + FP + TN

(2.34)

Usually, wTP and wTN are chosen to be equal to zero, while wFP and wFN > 0, yielding WCK bounded
between -1 and 1, similar to CK.

Unlike all other metrics presented so far, MCC, CK, and WCK do not give us an easy-to-interpret
value. For all three of them, a value of 1 indicates a perfect prediction, -1 means total disagree-
ment and a value of 0 refers to a prediction that is not better than a naive classifier, which
would always predict only one class (random performance). However, there is no standard for
interpreting the values in between.

Finally, the Expected Cost (EC) [Bishop and Nasrabadi, 2006; Hastie et al., 2009; Ferrer, 2022]
is a metric describing a weighted sum of error rates, in which each error rate can be weighted
individually given its severity. It is defined as

EC = Cmiss · Pmiss · Ptar + CFA · PFA · (1− Ptar) ∈ (0,∞)

Pmiss =
FN

TP + FN

PFA =
FP

FP + TN ,

(2.35)
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where Pmiss describes the miss rate or FN rate and PFA the false alarm or FP rate. Ptar is the
prior probability of the positives, equivalent to the prevalence. Finally, Cmiss and CFA refer to the
estimated costs of both error rates, which are typically positive real numbers. The EC can be
reformulated as

θ =
Ptar

1− Ptar
· Cmiss

CFA

Peff =
θ

1− θ

EC = Peff · Pmiss + (1− Peff) · PFA,

(2.36)

such that the deduced parameter Peff becomes a hyperparameter, which can be used to indi-
vidually weight the error rates. In EC, Ptar can be adjusted to reflect the intended behavior,
such as using the prevalence ϕ, setting ϕ = 0.5, or inserting any anticipated future prevalence.
Furthermore, EC can be used to assess the discrimination and calibration ability of a model in a
single parameter. By calculating the difference of an EC based on an analytically ideal threshold
value τ1 and an empirically optimized threshold τ2, the calibration performance of a prediction
can be measured.

Based on the choice of the costs and priors, the values of EC may change, making a direct
comparison difficult. For this reason, EC can be normalized by dividing it using the value that EC
would take for a random classifier, i.e. a classifier that always takes the same decision d. For a
classifier always predicting the positive class, FNs and TNs are equal to zero, meaning that EC
reduces to

d = positive : EC = CFA · (1− Ptar) given that Pmiss = 0 (FN = 0),PFA = 1 (TN = 0) (2.37)
Similarly, for always predicting the negative class, TPs and FPs are equal to zero, such that EC
reduces to

d = negative : EC = Cmiss · Ptar given that Pmiss = 1 (TP = 0),PFA = 0 (FP = 0) (2.38)
The normalized variant of EC divides EC by the value it takes for such a naive system [Ferrer,
2022]:

ECnorm =
Cmiss · Pmiss · Ptar + CFA · PFA · (1− Ptar)

min(Cmiss · Ptar,CFA · (1− Ptar))
(2.39)

Lastly, according to Ferrer [2022] and based on the underlying conditions (choice of costs and
priors), EC can be reformulated such that:

EC = 1− Accuracy
EC = 1− BA

EC = (1− Fβ) ·
(
β2 · Ptar ·

TP + FP
N

)
EC = 1− (LR+ − 1) · PFA

EC = 1− MCC√
(FP+TN)·(TP+FN)
(FN+TN)·(TP+FP)

(2.40)
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Figure 2.10: Overview of the most frequent multi-class counting classification metrics that are based
on the confusion matrix’s cardinalities True Positive (TP), False Negative (FN), False Positive (FP) and
True Negative (TN), as illustrated in Figure 2.6. Used abbreviations: Balanced Accuracy (BA), Cohen’s
Kappa (CK), Expected Cost (EC), Youden’s Index (J), Matthews Correlation Coefficient (MCC), Weighted Cohen’s
Kappa (WCK). Figure adapted from [Reinke et al., 2021a].
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Multi-class counting metrics (multi-class)

For the case of more than two classes C, two strategies can be applied. On the one hand, the
setting can be evaluated by considering one class at a time and merging all other samples into
the negative class ("one-versus-rest"), finally averaging over all perspectives. This allows for
using the metric definitions of the binary case. On the other hand, the binary confusion matrix
can be extended to a C × C matrix, as shown in Figure 2.11.
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Figure 2.11: Visualization of a confusion matrix with C classes and N samples. The last row and column
show the sum of all respective row and column entries.

The generalized version of the Accuracy can then be written as:

Accuracy =

∑C
i=1 nii

N
(2.41)

For the multi-class case of BA and J, the metrics can be interpreted as either the arithmetic mean
of Sensitivities per class (BA) or the sum of Sensitivities per class minus (C − 1) (J).

The generalized MCC uses the following intermediate variables:

c =
∑C

k=1 nkk: Number of correctly predicted samples

s =
∑C

i=1

∑C
j=1 nij : Total number of samples

pk =
∑C

i=1 nki: Number of times that class k was predicted

tk =
∑C

i=1 nik: Number of times that class k actually occurred

and result in the following formula [Gorodkin, 2004]:

MCC =
c · s−

∑C
k=1 pk · tk

s2 −
∑C

k=1 pk · tk
(2.42)

The formulations of CK [Brennan and Prediger, 1981] and WCK [Schuster, 2004] are generalized to
the following terms:

CK =
p0 − pe
1− pe

, p0 =

∑C
i=1 nii

N
, pe =

∑C
i=1 ni· · n·i

N2
(2.43)



38 CHAPTER 2. FUNDAMENTALS

WCK = 1−
∑C

i=1

∑C
j=1 wij · nij∑C

i=1

∑C
j=1 wij · ni··n·j

N2

(2.44)

The multi-class case of the EC can be interpreted as the weighted sum of the resulting error rates
for all classes [Ferrer, 2022]:

EC =

C∑
i=1

C∑
j=1

Pi · wij ·
nij

ni·
(2.45)

Here, wij refers to the chosen weights or costs and Pi to the priors (prevalences) of class i. The
normalized variant of EC is given by [Ferrer, 2022]:

ECnorm =

∑C
i=1

∑C
j=1 Pi · wij · nij

ni·

min
d

∑C
i=1 widPi

(2.46)

Multi-threshold metrics

Per-class counting metrics rely on setting one cutoff value as a threshold on the predicted class
scores to calculate the confusion matrix and subsequent metrics. However, results may change
substantially when changing the threshold. To compensate for this issue, multi-threshold metrics
can be applied.

The Area under the Receiver Operating Characteristic Curve (AUROC) [Hanley and McNeil, 1982]
(also referred to as Area under the Curve (AUC)) of a prediction indicates how well it differentiates
between the positive and negative classes. It is measured as the area under the Receiver
Operating Characteristic (ROC) curve. The ROC curve plots 1 - Specificity against the Sensitivity
(see Figure 2.12). Samples are ordered descendingly by their predicted class scores for the ROC
curve computation, with each score regarded as a potential threshold. Each point on the curve
then corresponds to one threshold, for which Sensitivity and 1 - Specificity are calculated. The
points are connected via a linear interpolation [Davis and Goadrich, 2006]. Given its reliance on
Sensitivity and Specificity only, AUROC is independent of the prevalence.
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Figure 2.12: Multi-threshold metrics Area under the Receiver Operating Characteristic Curve (AUROC) and
Average Precision (AP) (top) and per-class counting metrics with application-driven thresholds (bottom).
Multi-threshold-based metrics integrate across a range of thresholds to generate a dynamic confusion
matrix rather than being based on a single threshold. Based on the cardinalities for each threshold, i.e.
the true (T)/false (F) positives (P)/negatives (N) values, Sensitivity (Recall), and 1 - Specificity or Positive
Predictive Value (PPV) are calculated and plotted against each other (top right). Repeated for several
thresholds, this results in the Receiver Operating Characteristic (ROC) or Precision-Recall (PR) curves. The
area under the ROC/PR curve is referred to as AUROC/AUC PR. The Average Precision (AP) metric is frequently
used to interpolate AUC PR. A classifier with no skill level (random guessing) is represented by dashed gray
lines. In the case of an application-driven threshold (for example, required Sensitivity of 0.9), the metrics
Sensitivity@Specificity, Specificity@Sensitivity, PPV@Sensitivity and Sensitivity@PPV can be computed
using the ROC/PR curves. Figure adapted from [Reinke et al., 2021a].
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The Average Precision (AP) [Lin et al., 2014; Everingham et al., 2015] refers to an interpolation of
the area under the Precision-Recall (PR) curve. For the PR curve, we plot the Sensitivity against
PPV based on multiple thresholds. Please note that we use the term Precision-Recall curve
instead of PPV-Sensitivity curve, as this term is more prominent in the research community.
Similar to the ROC curve considerations, samples are ranked by the predicted class scores, and
Sensitivity and PPV are calculated for every threshold to form a point of the PR curve. A zigzag
shape is common for the PR curve, as illustrated in Figure 2.12. Because FP substitutes FN in the
denominator of the PPV, PPV does not necessarily vary linearly as the level of Sensitivity changes
[Davis and Goadrich, 2006]. As discussed in [Davis and Goadrich, 2006], this means that a linear
interpolation would be unduly optimistic, necessitating a more complicated interpolation. AP
denotes a conservative curve interpolation simplification and is defined as

AP =
∑
i

(Ri −Ri−1)Pi, (2.47)

with Ri and Pi denoting the Recall (Sensitivity) and Precision (PPV) at the ith threshold, with R0

being equal to zero.

Metric1@Metric2

Per definition, AUROC and AP measure the complete area under their respective curves. It is,
however, possible to further utilize their curves in order to derive per-class counting metrics for
a pre-defined target value at a single working point of the curves. For example, an application
might require a Sensitivity of 0.98. We could use the AUROC to find the corresponding Specificity
value linked to a Sensitivity of 0.98, denoted as Specificity@Sensitivity. We refer to such an
approach as Metric1@Metric2 for a specific target value in Section 5.2. Similarly, AP can be used
to find the respective PPV (see the bottom of Figure 2.12). However, it is not necessary to draw a
curve for such a setup. When optimizing an algorithm and threshold to yield a pre-defined target
value (e.g. Sensitivity of 0.98), other metrics can be directly calculated for the threshold yielding
the respective target score.

2.4.2 Semantic segmentation metrics

Overlap-based metrics

In semantic segmentation, counting metrics are the most frequently used type of metrics. In this
context, TPs refer to the overlapping pixels between the reference and predicted segmentation,
FPs to all pixels that were incorrectly predicted as positive pixels, and FNs to all reference pixels
that were not predicted as positive. Thus, counting metrics are often referred to as overlap-based
metrics in the context of segmentation.

The Dice Similarity Coefficient (DSC) [Dice, 1945] is a frequently used metric in segmentation
problems [Maier-Hein et al., 2018]. It is equal to the pixel-level F1 Score and is defined as

DSC(A,B) =
2 · PPV · Sensitivity
PPV + Sensitivity =

2 · TP
2 · TP + FN + FP

=
2|A ∩B|
|A|+ |B|

∈ [0, 1],

(2.48)



2.4. COMMON VALIDATION METRICS 41

with A referring to the reference structure and B to the predicted structure, |A| and |B| denoting
the cardinality of both structures, i.e. their total number of pixels, and |A ∩ B| the number of
pixels of the intersection between structures A and B.

The Intersection over Union (IoU) (also known as Jaccard Index) [Jaccard, 1912] is closely related
to the DSC and defined as

IoU(A,B) =
PPV · Sensitivity

PPV + Sensitivity − PPV · Sensitivity =
TP

TP + FP + FN

=
|A ∩B|

|A|+ |B| − |A ∩B|
=

|A ∩B|
|A ∪B|

∈ [0, 1],

(2.49)

with |A∪B| being the number of pixels of the union of structures A and B. DSC is more common
in the biomedical community, while the general computer vision community prefers the IoU.
Irrespective of that use, both metrics basically measure the same properties and can directly be
translated into each other:

DSC =
2 · IoU
1 + IoU

IoU =
DSC

2− DSC

(2.50)

Similar to image-level classification, the Fβ Score is a generalization of the DSC, which can also
be applied on pixel level, with A \B being the difference of structure A and B:

Fβ(A,B) =
(1 + β2) · PPV · Sensitivity
β2 · PPV + Sensitivity =

(1 + β2) · TP
(1 + β2) · TP + β2 · FN + FP

=
(1 + β2) · |A ∩B|

(1 + β2) · |A ∩B|+ β2 · |A \B|+ |B \A|
∈ [0, 1],

(2.51)
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Figure 2.13: Most frequently used overlap-based metrics: (a) Dice Similarity Coefficient (DSC), (b) Intersection
over Union (IoU) and (c) Fβ Score for two structures A and B. Figure adapted from [Reinke et al., 2021a].
Figure adapted from [Reinke et al., 2021a].

In the case of tubular structures, such as airway trees or vessels, in which we are particularly
interested in their center or centerline, connectivity, or network topology, the Centerline Dice
Similarity Coefficient (clDice) [Shit et al., 2021] offers an alternative to DSC or IoU. For the
computation of clDice, it is necessary to calculate the skeletons from the binary segmentation
masks. Please refer to [Shit et al., 2021] for a detailed description of how to derive the skeletons,
as this is out of the scope of this thesis. The clDice is similarly defined as the standard DSC,
namely the harmonic mean of the PPV and Sensitivity. However, clDice uses the definition of
the Topology Precision and Topology Sensitivity instead, as illustrated in Figure 2.14. The most
important difference between the standard definition is the use of skeletons in contrast to whole
masks. The Topology Precision measures the FP pixels of the predicted skeleton, while Topology
Sensitivity focuses on the FN pixels.
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Figure 2.14: Illustration of the Centerline Dice Similarity Coefficient (clDice), measuring the connectivity
of structures. The metric is designed for tubular structures and relies on the skeletons of the structures
SRef and SPred for structures Ref and Pred. The clDice is the harmonic mean of the Topology Precision and
Topology Sensitivity. Figure adapted from [Reinke et al., 2021a].
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Boundary-based metrics

Boundary-based metrics measure the distances between the reference boundary and the
predicted boundary (therefore also referred to as distance-based metrics) and are focusing on
the accuracy of a predicted structure boundary.

Many boundary-based metrics build upon calculation the minimal distance from one boundary
to the other. For two boundaries A and B and a boundary pixel a ∈ A, the shortest distance is
defined as

d(a,B) = min
b∈B

d(a, b), (2.52)

with d being the euclidean distance between a and b.

The Hausdorff Distance (HD) [Huttenlocher et al., 1993] (also known as Maximum Symmetric
Surface Distance, Hausdorff Metric or Pompeiu–Hausdorff Distance) is the maximum of all
shortest distances (as defined in Equation 2.52):

HD(A,B) = max
{
max
a∈A

d(a,B),max
b∈B

d(A, b)
}
∈ [0,∞) (2.53)

HD is unbounded to the top and the lower its value, the better the predicted boundary.

Since calculating the maximum of all shortest distances heavily penalizes spatial outliers, an
alternative metric is the Hausdorff Distance 95 Percentile (HD95) [Huttenlocher et al., 1993].
Instead of calculating the total maximum of all shortest distances, HD95 measures the maximum
of the 95 percentiles x95 of distances for each boundary:

d95(A,B) = x95
a∈A

{
min
b∈B

d(a, b)
}

HD95(A,B) = max
{
d95(A,B), d95(B,A)

}
∈ [0,∞)

(2.54)

Please note that the 95 percentile can be replaced by any other percentile.

The Average Symmetric Surface Distance (ASSD) [Yeghiazaryan and Voiculescu, 2015] symmet-
rically measures the average over all shortest distances. Based on Equation 2.52, it is defined
as:

ASSD(A,B) =
1

|A|+ |B|
·
(∑

a∈A

d(a,B) +
∑
b∈B

d(A, b)

)
∈ [0,∞) (2.55)

The Mean Absolute Surface Distance (MASD) [Beneš and Zitová, 2015] also calculates the average
of shortest paths, but independently for every boundary to the other. The averages per boundary
are then averaged:

MASD(A,B) =
1

2
·
(∑

a∈A d(a,B)

|A|
+

∑
b∈B d(A, b)

|B|

)
∈ [0,∞) (2.56)
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Figure 2.15 illustrates the differences between the four metrics.
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Figure 2.15: Boundary-based metrics that aggregate shortest distances of boundaries A and B: (a) Hausdorff
Distance (HD), (b) Hausdorff Distance 95 Percentile (HD95), (c) Average Symmetric Surface Distance (ASSD),
Mean Absolute Surface Distance (MASD). Figure adapted from [Reinke et al., 2021a].

HD, HD95, ASSD, and MASD are not able to compensate for labeling imprecisions or inter-rater
variability. However, we often face inter-rater variability in biomedical image analysis problems
[Joskowicz et al., 2019]. In situations in which the annotators themselves are not certain, we
might not want to penalize our predictions for errors within the inter-rater variability. For this
purpose, the Normalized Surface Distance (NSD) [Nikolov et al., 2021] (also known as Surface
Dice or Normalized Surface Dice) has been designed. Annotation imprecisions or noise in the
reference are captured by the hyperparameter τ . It measures the maximum tolerated distance
from the reference boundary and controls the rigor with which a boundary pixel is defined. Only
boundary parts within this range are considered as TP boundary pixels. Given two boundaries
SA and SB of structures A and B, we consider the border regions, i.e. pixels that are within the
maximum tolerated distance of the boundaries, as B(τ)

A and B(τ)
B (see Figure 2.16a). The NSD is

then calculated as:
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NSD(A,B)(τ) =
|SA ∩ B(τ)

B |+ |SB ∩ B(τ)
A |

|SA|+ |SB |
∈ [0, 1] (2.57)

NSD can be considered as the DSC on boundary pixels and can be interpreted as the ratio of
correctly predicted boundary pixels [Nikolov et al., 2021]. Similarly to its original, the metric is
bounded between 0 and 1, with 1 indicating a perfect prediction.

The Boundary Intersection over Union (Boundary IoU) [Cheng et al., 2021] directly calculates the
overlap between predicted and reference boundaries without imposing a tolerance. It computes
the IoU between two boundaries up to a pre-defined width, determined by the distance parameter
d. There is a direct relationship between the width and boundary errors, i.e. the smaller the
distance, the higher the sensitivity to boundary errors. In contrast to NSD, Boundary IoU is not
concerned about noise or uncertainties, but rather assesses errors at the boundaries or wider
areas around the boundary lines (see Figure 2.16b). Let Ad and Bd be the boundary areas up to
the width d. Boundary IoU is then defined as:

Boundary IoU(A,B) =
|Ad ∩Bd|

|Ad|+ |Bd| − |Ad ∩Bd|
=

|Ad ∩Bd|
|Ad ∪Bd|

∈ [0, 1] (2.58)
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Figure 2.16: Boundary-based metrics based on hyperparameters. (a) Normalized Surface Distance (NSD) cal-
culates the overlap between two boundaries, while the parameter τ represents the maximum tolerated differ-
ence between the reference and predicted boundary. (b) Boundary Intersection over Union (Boundary IoU)
calculates the overlap between two boundaries up to a certain width d. Figure adapted from [Reinke et al.,
2021a].
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2.4.3 Object detection metrics
The first step for validating an object detection problem lies in the determination of whether
a prediction correctly detected a reference object, which can be measured by calculating the
localization criterion. This step is achieved by the localization criterion. In addition, we need
to decide how to deal with assignment ambiguities. This is important for cases, where multiple
predictions can be assigned to the same reference or multiple references which may correspond
to the same prediction. After both steps were applied, performance metrics can be calculated.

Localization criteria

The localization or hit criterion determines whether a prediction detected/hit the reference
object (TP) or whether it missed any reference (FP). Remaining reference objects, for which no
prediction could be assigned are defined asFN. Localization criteria can be defined at various
levels based on the available reference annotation. An overview of the presented localization
criteria can be found in Figure 2.17.

The simplest way to define a hit is via the Point inside Mask or Point inside Box/Approximation
criterion. In this case, a prediction is defined as TP once there is a point inside the reference
annotation. The latter may be expressed as a mask, bounding box, or approximation (such as an
convex hull) of the structure.

If we are interested only in the position of an object, a localization criterion operating on the
object centers is useful. The Center Distance (or distance-based hit criterion) [Gurcan et al.,
2010; Piccinini et al., 2012] measures the distance between the reference and prediction center
and considers the prediction as TP if the distance is below a pre-defined localization threshold.
The center-cover criterion classifies the prediction as TP if the center of the reference structure
is contained within it. Contrarily, the center-hit criterion defines a TP prediction if the predicted
object’s center is located inside the reference.

Overlap-based localization criteria are more fine-granular and measure the overlap between
reference and prediction. This is most often done by using the IoU (see Section 2.4.2) at various
scales depending on the required granularity of localization. Once the IoU is above a certain
threshold, the prediction is considered as TP. In the case of bounding boxes or approximations
of the desired structure, the Box/Approximation Intersection over Union (Box/Approx IoU) is
calculated, which equals the IoU over a bounding box or approximation. For pixel-level local-
ization, the Mask Intersection over Union (Mask IoU) calculates the IoU over two segmentation
masks. If the concrete structure boundary is of particular importance, the Boundary IoU (see
Section 2.4.2) can be used as an alternative overlap-based localization criterion. The Intersection
over Reference (IoR) [Maška et al., 2014] depicts an alternative to the IoU criteria. It is similar to
the Sensitivity on pixel level and therefore only considers FN pixels:

IoR(A,B) =
TP

TP + FN =
|A ∩B|
|A|

∈ [0, 1] (2.59)
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Figure 2.17: Overview of (a) center-/point-based and (b) overlap-based localization criteria. For each
criterion, an example of a True Positive (TP) (detected/hit) and False Positive (FP) (missed) is presented.
Center-/point-based include the Center-cover Criterion, Center-hit Criterion, Centroid Distance, and Point
inside Mask/Box/Approx(imation), while overlap-based criteria include the Mask/Box/Approx(imation)
Intersection over Union (IoU), Boundary IoU, and Intersection over Reference (IoR).

The localization criterion heavily influences the final metric scores and must be carefully chosen.
For instance, it should be noted that a localization at a lower resolution, such as a bounding box
or center point, leads to an information loss, as illustrated in Figure 2.18. Similarly, in the case of
overlap-based localization criteria, the chosen cutoff value may result in substantial differences
in the final metric scores and should be selected carefully. For example, if precise boundaries
are of particular interest, higher thresholds should be used. A low cutoff value, on the other
hand, is preferable for noisy reference standards.
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Figure 2.18: Localization criteria may discard spatial information and should be well motivated by the
underlying task. Figure adapted from [Reinke et al., 2021a].

Assignment strategies

During object detection validation, assignment ambiguities may occur. During the localization
step, it may happen that multiple predictions could be assigned to the same reference object or
multiple reference objects may correspond to only one prediction. In such situations, the assign-
ment strategy decides how such ambiguities are handled. An example is shown in Figure 2.19.

A common strategy is the Greedy by Score Matching [Everingham et al., 2015], in which all
predicted objects are ordered given their predicted class scores. Predictions are iteratively
allocated to the reference object for which they offer the highest localization criterion, starting
with the prediction with the highest predicted class score. Because it was already assigned, the
selected reference object is removed from the process. In the case that no predicted class scores
are available, the strategy can be replaced with the Greedy by "localization criterion"2 Matching,
for which the prediction with the highest overlap-based localization criterion for a reference
object is matched.

In order to find the best match between predicted and reference objects, the Optimal Hungarian
Matching [Kuhn, 1955] strategy is more sophisticated and minimizes a cost function that is
typically dependent on the localization criterion.

In the biomedical domain, more simplified approaches are often desired. One option is the
Matching via "localization criterion"2, in which only non-overlapping predictions are allowed,
thereby preventing matching conflicts. In the case of many touching reference objects and one
prediction overlapping with multiple reference objects, the Matching via IoR > 0.5 [Matula et al.,
2015] strategy should be preferred.

2"Localization criterion" refers to the selected localization criterion.
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Figure 2.19: Example of an assignment strategy in the case of two predictions that have been assigned to
the same reference object. This step entails deciding how to proceed with the remaining prediction. For
instance, remaining predictions can be penalized with a False Positive (FP) assignment or may be ignored.
Further abbreviations: True Positive (TP). Figure from [Reinke et al., 2021a].

Multi-threshold metrics

Similarly to image-level classification, AP is a popular metric for object detection problems
as the PR curve can be calculated for objects rather than images. Contrary, the ROC curve is
usually drawn on image level, hindering a per-object validation. As described above, the cutoff
value chosen for the localization criterion impacts the resulting metric scores. For this reason, it
has become common practice to average the metric values over multiple localization criterion
cutoff values. For example, the default for the IoU localization criterion is AP@0.50:0.05:0.95
[Lin et al., 2014]. This means that the AP is calculated for the localization thresholds, IoU≤0.50,
IoU≤0.55, . . ., IoU≤0.95. The resulting scores are averaged over all thresholds. The mean Average
Precision (mAP) [Lin et al., 2014] is a related commonly known metric, which averages the
class-wise AP over classes.

In the biomedical context, the Free-Response Receiver Operating Characteristic (FROC) Score
[Van Ginneken et al., 2010; Bandos et al., 2009] is often preferred given its simpler interpretation.
As shown in Figure 2.20, it operates on object level. For every threshold, the average number
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of False Positives per Image (FPPI) and the average Sensitivity per image are calculated and
added to the curve as one point. The procedure is repeated over multiple thresholds. The FROC
Score then measures the area under the FROC curve and indicates how well the probabilities of
the positive class are separated from those of the negative class while considering object-level
information. In contrast to other multi-threshold metrics, the FROC Score is unbounded to the
top, given the FPPI on the abscissa. The concrete values on the abscissa are not standardized,
meaning that FROC Scores cannot easily be compared across data sets.

Per-class counting metrics

In contrast to image-level classification, cardinalities in object detection problems are computed
per object rather than per image. Based on this, TN are typically not defined for object detection
problems. Thus, not all counting metrics presented in Section 2.4.1 can be used in object detection
problems. We can similarly compute Sensitivity, PPV, and Fβ Score for detection tasks. However,
Specificity and all metrics based on it (LR+, Accuracy, BA and J) in addition to EC, MCC and (W)CK
can not be measured. Furthermore, we can use the FPPI as a per-class counting metric. As
with image-level classification metrics, we can calculate the metrics based on an application-
specific threshold as a single working point of the PR or FROC curves. For instance, for a required
Sensitivity of 0.9, we can calculate the FPPI@Sensitivity for the threshold yielding this Sensitivity
value.

Counting cardinalities at different scales

Validation is generally performed on the entire data set in image-level classification problems.
In semantic segmentation, the metric values are usually computed image-wise, while they are
aggregated to produce a single score over the data set. Because of the small number of objects
per image rather than the thousands of pixels in semantic segmentation, the latter approach is
not easily applicable to object detection. In most cases, object detection problems are validated
on the entire data set. The difference between the validation scales is illustrated in Figure 2.21. If
one chooses the per-image (or per-patient) validation for object detection problems, counting
metrics can easily be applied (see Figure 2.21). For multi-threshold metrics, the Sensitivity and
PPV or FPPI are computed for every threshold for every image (or patient) and aggregated over
the data set. The aggregated metric pairs can then be used to form the respective curves, from
which the metric scores can be derived (e.g. AP and FROC Score).
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Figure 2.20: Principle of the Free-Response Receiver Operating Characteristic (FROC) Score. The FROC curve
integrates across a range of thresholds to generate a dynamic confusion matrix rather than being based
on a single threshold. Based on the cardinalities for each threshold, i.e. the true (T)/false (F) positives
(P)/negatives (N) values, Sensitivity and False Positives per Image (FPPI) are calculated and plotted against
each other (middle). FROC operates on object level and the FROC Score measures the area under the FROC
curve. In the case of an application-driven threshold (for example, required Sensitivity of 0.9), the metrics
Sensitivity@FPPI and FPPI@Sensitivity can be computed using the FROC curve. Figure from [Reinke et al.,
2021a].
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Figure 2.21: Validation at object level can be done on a per-data-set (left) or per-image (right) basis. When
validated per data set, cardinalities are counted over all objects of the entire data set, from which the
metric scores can be derived (here: F1 Score). Contrary, when validated per image, the metric values are
directly computed for every image (here: F1 Score) and aggregated afterwards. ∅ refers to the average F1
Score. Figure adapted from [Reinke et al., 2021a].

2.4.4 Instance segmentation metrics
In instance segmentation problems, object detection metrics are typically combined with se-
mantic segmentation metrics that are applied per instance. Thus, the same localization criteria
(Mask IoU (> 0), Box/Approx IoU, Centroid Distance, Point inside Mask/Box/Approximation, IoR
and Boundary IoU) and assignment strategies (Greedy by Score Matching, Greedy by "localization
criterion" Matching, Optimal Hungarian Matching, Matching via "localization criterion" > 0.5) as
presented in Section 2.4.3 can be applied to instance segmentation problems to find out which
instances were detected and how to deal with ambiguities.
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Per-class counting metrics (Sensitivity, PPV, Fβ Score, and FPPI) can be applied to assess the
detection performance of the instance segmentation algorithm, while overlap-based metrics
(DSC, IoU, Fβ Score, and clDice) and boundary-based metrics (HD, HD95, ASSD, MASD, NSD, and
Boundary IoU) assess the pixel-wise segmentation performance per instance.

Panoptic Quality (PQ) [Kirillov et al., 2019] was designed to assess detection and segmentation
performance in one score. The detection quality is measured by the F1 Score, taking into account
TP, FP, and FN, while the segmentation performance is measured by averaging IoU scores of all
TP instances (see Figure 2.22 for illustration):

PQ =

∑
(Ref,Pred)∈TP IoU(Ref,Pred)

|TP|+ 0.5 · |FP|+ 0.5 · |FN|

=

∑
(Ref,Pred)∈TP IoU(Ref,Pred)

|TP|︸ ︷︷ ︸
Segmentation quality

· |TP|
|TP|+ 0.5 · |FP|+ 0.5 · |FN|︸ ︷︷ ︸

Detection quality

∈ [0, 1]
(2.60)

PQ was initially used to validate panoptic segmentation problems, which combine semantic and
instance segmentation [Kirillov et al., 2019]. The metric is calculated for each class, including
the background class, and can be used to solve instance segmentation problems directly by
validating only foreground instances.
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Figure 2.22: Principle of the Panoptic Quality (PQ). The metric measures the segmentation and detection
quality simultaneously. Figure adapted from [Reinke et al., 2021a].
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2.4.5 Calibration metrics
A model’s discrimination capability is defined as its ability to distinguish between samples
containing and excluding a specific class. If the model discriminates perfectly, for example as
indicated by an AUROC score of 1.0, then all predicted class scores for the samples that belong
to the class of interest are higher than for the other samples. In contrast, predicted class scores
from a calibrated model match the empirical success rate. For instance, if a model generates
a predicted class score of 0.7 for a particular class, this indicates that it empirically belongs
to this class in 70% of cases [Cook, 2007]. Indeed, a model discriminating perfectly does not
automatically imply that it is also well-calibrated.

For this reason, calibration metrics measure the calibration of a predictor. When assessing the
calibration performance of a method, the concrete validation question should be clearly defined.
In many cases, a comparative calibration assessment is desired, i.e. ranking different models on
how well they perform the calibration. This type of calibration can be further subdivided into
three main use cases, as illustrated in Figure 2.23 (U1-U3). One may be interested a comparison of
different re-calibration methods for one fixed classifier (U1). In such a case, one would not be in-
terested in interpreting the calibration errors, but rather in the comparison of the re-calibrations.
Alternatively, the calibration performance should be compared across multiple classifiers with
optional re-calibration (U2). Finally, one may wish to assess the overall performance of different
models, both in terms of discrimination and calibration (U3). Comparative calibration assessment
could be either complemented or replaced by an interpretable estimate of the calibration error
(U4), i.e. an understandable and shareable indicator of the calibration performance. In such a
use case, the interest lies in quantifying and communicating the reliability of the predicted class
scores for a fixed model.

It should be noted that different publications refer to varying definitions of calibration based
on the output vectors of a model containing predicted class scores. An example illustrating the
difference between them for the computation of the calibration error (see Definition 2.4.1) is
provided in Figure 2.24. Based on Vaicenavicius et al. [2019] and Posocco and Bonnefoy [2021], we
refer two random variables X ∈ X as the input and Y ∈ Y as the label, and distinguish between:

Top-label or max-confidence calibration: In top-label calibration, only the maximum predicted
class score (top prediction) is considered. All other scores are neglected. A model g is
calibrated if the following condition holds: P [Y = argmax g(X) | max g(X)] = max g(X).

Marginal or class-wise calibration: In the class-wise calibration, the marginal predictions of an
algorithm should be calibrated. The predicted class scores are compared to the reference
class-wise, neglecting all other scores that do not belong to the current class. A model g is
calibrated if the following condition holds: P [Y = k | gk(X)] = gk(X) for all classes k.

Canonical calibration: The canonical calibration definition inspects the full vectors of predicted
class scores and is therefore the strictest definition. A model g is calibrated if the following
condition holds: P [Y ∈ · | g(X)] = g(X).
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Figure 2.23: Use cases of calibration assessment. Depending on the use case U, either a comparative assess-
ment of calibration (U1-U3) or an interpretable estimate of the calibration error (U4) may be desired. For the
four use cases U1-U4, the type of classifier (fixed classifier versus multiple classifiers), re-calibration (once or
multiple; may be optional as indicated by dotted lines), potential ranking and/or model selection strategies
(by calibration error or by discrimination), and potential interpretation, diagnosis, or communication is
listed.

Figure 2.24: Illustration of different definitions of calibration for the exemplary computation of the calibration
error. ∅ denotes the average or expectation of values.
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Calibration errors [Guo et al., 2017] measure the difference between the predicted class scores of
a model g and the actual outcome for one of the three definitions of calibration. According to
Kumar et al. [2019], an ℓp calibration error for a binary situation is defined as follows:

Definition 2.4.1 (Calibration error as defined by Kumar et al. [2019]). Let X be the input space and
Y = {0, 1} be the label space. The ℓp calibration error CEp of a model g : X → [0, 1] is given by

CEp =

(
E
(
|g(X)− E

(
Y | g(X)

)
|p
))1/p

(2.61)

Since the conditional expectation for the calibration error is unknown and must be estimated
using the validation data, determining the true calibration error is usually an intractable problem.
In order to empirically compute the conditional expectation for the calibration error, density
estimation is typically applied. In many cases, this is done by subdividing the interval of predicted
class scores [0, 1] into bins and quantify deviations from the described matching [Naeini et al.,
2015; Popordanoska et al., 2022]. They often rely on so-called reliability diagrams, which "are a
visual representation of model calibration" [Guo et al., 2017].

The ℓ1 calibration error is commonly known as the Expected Calibration Error (ECE) [Naeini
et al., 2015]. In the course of the thesis, we use ECE for top-label calibration. More concretely,
for different bins of confidence conf(Bm), ECE considers the expected accuracy acc(Bm) of the
calibration. It is defined as:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| ∈ [0, 1]

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i,

(2.62)

where Bm denotes the indices of all n samples, which are put into one bin, ŷi is the predicted
and yi the true class label, 1 is referred to as the indicator function, which is one if ŷi = yi and
zero otherwise, and p̂i refers to the predicted class score. The score can be interpreted as the
weighted average of the difference between the average predicted class scores in a bin and the
number of correct predictions in this bin [Nixon et al., 2019].

Instead of measuring an average of the difference between accuracy and confidence, the Maximum
Calibration Error (MCE) [Guo et al., 2017] measures the maximum of this difference:

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)| ∈ [0, 1] (2.63)

Small values of the ECE and MCE correspond to a better-calibrated model.

The definition of calibration is not clearly defined in a non-binary environment with K classes
[Kumar et al., 2019]. The Top-label Calibration Error (TCE) [Kumar et al., 2019] is the calibration
error when only considering the top predicted class scores:
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TCE =

(
E
(
P
[
Y = argmax

j∈|K|
g(X)j | max

j∈|K|
g(X)j

]
− max

j∈|K|
g(X)j

)2
)1/2

(2.64)

The Marginal or Class-wise Calibration Error (CWCE) [Kumar et al., 2019], on the other hand,
focuses on the class-wise calibration performance and is defined as

CWCE =

( K∑
k=1

wkE
((

g(X)k − P [Y = k|g(X)k]
)2))1/2

(2.65)

with wk being a class-specific weight. With wk = 1/k, all classes are given the same weight.

In contrast, the Kernel Calibration Error (KCE) [Widmann et al., 2019; Gruber and Buettner, 2022]
includes the whole predicted class score vector in its calculation and is based on a matrix-valued
kernel k, instead of binning, from a reproducing kernel Hilbert space H. Based on [Micchelli
and Pontil, 2005; Caponnetto et al., 2008], reproducing kernel Hilbert spaces and matrix-valued
kernels are defined as follows:

Definition 2.4.2 (Reproducing Hilbert space as defined by [Caponnetto et al., 2008]). Let Y be a
real Hilbert space with inner product (·, ·), X be a set, and H a linear space of functions on X
and values from Y . H is a reproducing kernel Hilbert space when for any y ∈ Y and x ∈ X the
linear functional that maps g ∈ H to (y, g(x)) is continuous.

Definition 2.4.3 (Matrix-valued kernel as defined by [Widmann et al., 2019; Micchelli and Pontil,
2005]). A function k : ∆m ×∆m → Rm×m is called a matrix-valued kernel if k(s, t) = k(t, s)T

for all s, t ∈ ∆m and it is positive semi-definite, that means for all n ∈ N, t1, . . . , tn ∈ ∆m, and
u1, . . . , un ∈ Rm:

n∑
i,j=1

uT
i k(ti, tj)uj ≤ 0. (2.66)

Based on these definitions, the KCE can be defined with the matrix-value based kernel k from a
reproducing kernel Hilbert space H:

KCE =
∥∥∥E((g(X)− P [Y | g(X)]

)
k(g(X), ·)

)∥∥∥
H

(2.67)

The proposed discretization of the conditional expectation of the calibration error by binned
estimates of the predicted class scores comes with the problem of not being differentiable,
thus, the calibration error cannot be easily integrated into the training of a Neural Network (NN)
[Popordanoska et al., 2022]. Therefore, Popordanoska et al. [2022] proposed a different strategy,
namely the Expected Calibration Error Kernel Density Estimate (ECEKDE), which is based on kernel
density estimates instead of binning. With the kernel density estimate, ECE can be reformulated
as

ECEKDE =
1

n

n∑
j=1

∣∣∣E( ̂y | g(X))|g(xj) − g(xj)
∣∣∣

E(y | g(X)) ≈
∑n

j=1 k(g(X), g(xj))yj∑n
j=1 k(g(X), g(xj))

=: E( ̂y | g(X))

(2.68)
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with k being the kernel of a kernel density estimate and E( ̂y | g(X))|g(xj) referring to E( ̂y | g(X))|
being evaluated at g(X) = g(xj).

Proper Scoring Rules (PSR) [Gneiting and Raftery, 2007] validate how closely the predicted class
scores match the actual probability for each class given the reference. An ideal score of a PSR
reflects the accuracy of the predictions, and PSR measures both calibration and discrimination
ability. A prominent example is the Brier Score (BS) [Brier et al., 1950], defined as the mean
squared error of a predicted class score pt for one of n events t and the actual outcome yt. The
actual outcome is typically defined as 1 if the event holds true, i.e. if a specific class is correct,
and 0 otherwise. Small values of the BS correspond to a better-calibrated model.

BS =
1

n

n∑
t=1

(pt − yt)
2 ∈ [0, 1] (2.69)

For use case U1 (see Figure 2.23), BS can be decomposed into discrimination and calibration
terms showing that the calibration term exactly resembles the canonical calibration error (see
Definition 2.4.1) [Gneiting and Raftery, 2007].

A normalization variant of BS is the Brier Skill Score (BSS), which quantifies how far off a forecast
is from an ideal prediction [Varoquaux and Colliot, 2022]. A value of zero for this metric indicates
that the predicted class scores are only as insightful as the Prevalence ϕ. It is defined as:

BSS = 1− BS(p, y)
BS(ϕ, y) ∈ (−∞, 1] (2.70)

The Root Brier Score (RBS) [Gruber and Buettner, 2022] denotes the square root of the BS:

RBS =

√√√√ 1

n

n∑
t=1

(pt − yt)2 ∈ [0, 1] (2.71)

According to Gruber and Buettner [2022], RBS calculates an asymptotically tight and unbiased
upper bound of the canonical calibration error (see Definition 2.4.1).

Another example is the Negative Log Likelihood (NLL) [Cybenko et al., 1998], which calculates the
negative logarithms of the predicted class scores pt multiplied by the actual outcome yt:

NLL = − 1

n

n∑
t=1

yt · log(pt) ∈ (−∞, 0] (2.72)

NLL validates a weighted version of the canonical calibration condition, since the logarithm
introduces a great emphasis on penalizing tail-probabilities [Quinonero-Candela et al., 2005].
For use case U3 (see Figure 2.23), both BS and NLL imply that an optimal score corresponds to
perfect prediction and perfect discrimination [Gneiting and Raftery, 2007].

While calibration is typically considered for image-level classification problems, it can also be
applied to object detection and instance segmentation problems with available predicted class
scores. For these problems, the background class is typically neglected from the calibration
measurement. Only the NLL cannot be computed for the two problem categories, due to the its
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consideration of the predicted class scores for the correct reference class. For FP predictions
that could not be matched to a specific reference object, the correct reference class would be
the background, which is not used for calibration assessment [Maier-Hein et al., 2022].
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2.5 | Related work

In this section, we present an overview of related work concerning the topics of this thesis.
Concretely, we review literature on the four topics of challenge design, validation metrics,
rankings, and reporting. While there is a large amount of work on network architectures and
Artificial Intelligence (AI) models themselves, the available literature on the validation of those
models is limited. Nonetheless, we present the most important current work related to biomedical
challenges and the validation of biomedical image analysis algorithms.

2.5.1 Challenge design
Only limited research is available on the design of biomedical image analysis competitions.
Kozubek [2016] provides a review on challenges and benchmark design in bioimage analysis,
abstracting from medical use cases and focusing on biological applications. The author describes
the design of challenges similarly to our description in Section 2.1.2. The focus, however, is on
design choices related to bioimaging.

Mendrik and Aylward [2019] categorize challenges into insight and development challenges.
Gaining a comprehensive understanding of a biomedical research problem is the aim of insight
challenges. They provide insights into how the variables of interest affect the performance of
the participants. Their primary goal is to understand certain parameters, such as the impact of a
certain metric to the greatest possible extent rather than to generalize to a larger population.
Given that they typically operate on only a small subset of the general population, the rankings
of insight challenges only provide a rough estimate of algorithm performance. Deployment
challenges, on the other hand, generalize to a broader population, possibly based on the insights
gained from an insight challenge, aiming to identify whether the submitted methods solve the
primary research question of the challenge. The work highlights the fact that the challenge
design and objective should match and mentions important problems such as ’leaderboard
climbing’, in which challenge participants only incrementally increase their metric values rather
than actually working towards solving a particular problem.

2.5.2 Metrics
Taha and Hanbury [2015] present an overview of 20 validation metrics for segmentation problems,
including a definition and explanation of each presented measure. In addition, all metrics were
implemented in a toolkit in C++. The metrics were categorized into

- Spatial overlap-based metrics (e.g. Dice Similarity Coefficient (DSC)),
- Volume-based metrics (e.g. Volumetric Similarity (VS) [Cárdenes et al., 2009]),
- Pair counting based metrics (e.g. Rand Index (RI) [Reddy et al., 2013]),
- Information theoretic-based metrics (e.g. Mutual Information (MI) [Zou et al., 2004]),
- Probabilistic metrics (e.g. Cohen’s Kappa (CK)) and
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- Spatial distance-based metrics (e.g. Hausdorff Distance (HD)).

The authors further present some insights into metric correlation and limitations.

Nai et al. [2021] provides another review of segmentation metrics, for the special case of prostate
segmentation. They compared nine previously proposed measures with 24 standard metrics to
check which metrics work best for clinical validation of segmentation problems. The performance
assessment was conducted with three deep learning methods and two additional human raters
who further assessed the visual agreement of segmentations and whether the metric values
agreed with their inspection. The authors found that the Interclass Correlation (ICC) [Gerig et al.,
2001] achieved the highest correlation with the visual agreement of the human raters and that
previously proposed metrics did not outperform older validation measures. However, this review
is only based on a single data set for segmentation problems and it is unclear whether the
results transfer to a different study.

A similar overview of image-level classification metrics is provided by Hicks et al. [2022] with
a specific focus on gastroenterology use cases. They describe and define several metrics and
briefly mention some limitations along with publishing an open-source toolkit for calculating
several counting metrics from problem-specific confusion matrices.

Several publications mention the limitations of metrics. For example, Kofler et al. [2021] show
that the DSC only moderately correlates with results assessed by human raters. Yeghiazaryan and
Voiculescu [2015] highlight the shape unawareness of overlap-based metrics. Moreover, some
flaws of image-level classification metrics are highlighted in [Chicco and Jurman, 2020; Chicco
et al., 2021]. More frequently, blog posts have been utilized to discuss limitations of metrics in
more depth (e.g. [Kooi, 2021a; Widmann, 2020; Brownlee, 2020]).

2.5.3 Rankings
Rankings in general have been clearly defined in the literature, e.g. in [Davey and Priestley, 2002],
as described in Section 2.1.2. Some attention has been drawn to the question of how to visualize
ranking variability. Demšar [2006] presents basic diagrams for the visualization of post-hoc tests
across multiple data sets. Changes in rankings were visualized by parallel coordinates diagrams
by Gratzl et al. [2013]. More advanced visualization of benchmark results is presented in Eugster
et al. [2008, 2012]. The authors illustrate benchmark results using boxplots, podium plots, and
cluster dendrograms, for example.

In the case of multiple tasks or metrics, aggregating tasks is often desired. Fishbaugh et al.
[2017] presents a data-driven approach to combining aggregate rankings for different metrics
in biomedical image analysis challenges. Metrics that are robust to small changes in the data
will be given higher weights compared to metrics whose rankings change more drastically. In
addition, metrics that yield similar rankings will receive higher weights. Although this approach
seems reasonable, it has not yet been implemented in practice. Lin [2010]; Hornik and Meyer
[2007] present a more convenient way to achieve a consensus ranking, for example by finding
the ranking that minimizes distances between individual rankings.
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2.5.4 Reporting
Several reporting guidelines, checklists, and statements for standardization exist outside the
field of biomedical image analysis, such as

- ’Consolidated Standards of Reporting Trials (CONSORT)’ for reporting randomized controlled
trials [Begg et al., 1996; Schulz et al., 2010],

- ’Standards for Reporting of Diagnostic Accuracy Studies (STARD)’ for reporting diagnostic
or prognostic studies [Bossuyt and Reitsma, 2003; Bossuyt et al., 2003, 2015; Cohen et al.,
2016],

- ’Strengthening the Reporting of Observational studies in Epidemiology (STROBE)’ [Vanden-
broucke et al., 2007] for reporting observational studies, or

- ’Case Reporting Guidelines (CARE)’ [Gagnier et al., 2013] for case reports.

All of those guidelines have been registered with the ’Enhancing the QUAlity and Transparency
Of health Research (EQUATOR)’ network [Altman et al., 2008], an umbrella organization for high
quality and transparency Of health research. Guidelines in the context of Machine Learning (ML)
and AI are much less common. The CONSORT statement, for instance, released an extension
for clinical trial reports for AI research [Liu et al., 2020]. Very recently, the ’Developmental
and Exploratory Clinical Investigations of DEcision support systems driven by Artificial Intel-
ligence (DECIDE-AI)’ reporting guideline was published for early-stage clinical validation of
support systems using AI [Vasey et al., 2022]. The ’Checklist for Artificial Intelligence in Medical
Imaging (CLAIM)’ [Mongan et al., 2020] was specifically developed for reporting the results of
medical image analysis algorithms. It includes AI-specific items, such as detailed descriptions
of the model architecture, inputs and outputs, or potentially used ensembling techniques. It
further gives advice on how to report the model performance. However, none of those guidelines
cover challenge-specific parameters.

Jannin et al. [2006] propose a model for reporting the results of validation of image processing
methods for segmentation and registration problems. Their model relies on an ontological
approach and was instantiated for several use cases. The authors highlight the importance of
the definition of a validation objective, which includes both the clinical context and the clinical
goal of the validation research. However, the checklist provided alongside the model by the
authors does not cover challenge-specific parameters such as a challenge’s life cycle, rankings,
or submission methods. It further mainly focuses on segmentation and registration problems.



2.5.5 Conclusion
The literature concretely focusing on biomedical challenges is sparse. Mendrik and Aylward
[2019] and Kozubek [2016] briefly mention some limitations of challenges, but without analyzing
them in a structured fashion. In this thesis, we build upon their definitions and expand their
analysis on limitations.

Several publications mention metric limitations. However, previous work usually did not cover
multiple problem categories and only provided limited insight into potential issues regarding
metrics. Nonetheless, we collected metric pitfalls from previous work that we include in Sec-
tion 4.2. In addition, we used the work of Taha and Hanbury [2015], Nai et al. [2021] and Hicks
et al. [2022] as a basic list for the metric selection and families in Section 5.2.

Although there is some literature on the visualization of rankings, we are not aware of challenges
or benchmarking experiments in the biomedical image analysis community that were using the
presented plots and diagrams before our intervention and proposed work on ranking uncertainty,
presented in Section 5.3. This work builds upon the proposed visualization of Eugster et al. [2008,
2012].

In comparison to other research fields such as epidemiology and general diagnostic testing,
biomedical image analysis lacks a variety of reporting guidelines. Jannin et al. [2006] provides
a highly relevant basic variant for reporting validation studies that is, however, restricted to
segmentation and registration approaches. In addition, this and other checklists for AI research,
such as CLAIM, do not cover challenge-specific parameters that are important to report. Still,
the model proposed by [Jannin et al., 2006] served as the basis for our considerations for a
challenge design-specific parameter list presented in Chapter 3 and Sections 4.4 and 5.4.

Summary:

The literature on the design, validation, and reporting of challenges is sparse. To
our knowledge, there is neither a comprehensive work on collecting limitations
of challenges or general validation of biomedical image analysis algorithms nor
comprehensive work on solving potential issues. We used related work from other
communities, such that related to clinical trials, as the basis for our work, adapting
it for use in biomedical image analysis applications, such as challenges.
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3.1 Common practice of challenges

Disclosure

This work has been supervised by Lena Maier-Hein. It has been conducted to-
gether with several co-authors, especially Matthias Eisenmann and Annette Kopp-
Schneider. The work has been published in Nature Communications [Maier-Hein
et al., 2018]. Please refer to Chapter A.1 for full disclosure.

3.1.1 Introduction
The Machine Learning (ML) research community has historically relied primarily on authors’
personal data sets for the validation and assessment of new methodologies. This meant that a
direct and fair comparison of algorithms was not possible, as other researchers typically did not
have access to the exact same data sets or hardware setup. Comparisons between data sets are
challenging: On the one hand, the conditions are not comparable. Data sets may differ regarding
the difficulty of their processing, may be different in volume, or may be subject to domain shifts.
On the other hand, many of the common performance metrics rely on the prevalence of samples
in the data (see Section 2.4) and behave differently for different data sets.

Comparing various methods for brain registration was the focus of the first attempt at a fair
comparison of algorithms in the biomedical community, carried out in 1997 [West et al., 1997].
In this comparative study, methods were benchmarked on the same data set. An interesting
modification to previous research practice was that the teams taking part were not given access
to the reference annotations of the test data. Since 2004, there have been yearly competitions
in the field of medical image retrieval in the context of the Image Cross Language Evaluation
Forum (ImageCLEF). The largest conference for computer-assisted interventions and biomedical
image processing (Medical Image Computing and Computer Assisted Interventions (MICCAI))
adopted this novel idea and presented its first two segmentation challenges in 2007 [Heimann
et al., 2009; Van Ginneken et al., 2007]. Since then, the number of challenges has increased
yearly, with challenges becoming the state-of-the-art method for assessing the performance of
ML algorithms comparatively.

In this section, we review more than 500 competitions from the biomedical image analysis
domain to assess the impact of challenges as well as common practices. Finally, we present the
findings of an international survey that reflects the viewpoint of the general scientific community.
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Research questions investigated in this chapter

We contend that prior quality assurance mechanisms for challenges were
insufficient to guarantee high-quality challenge design and organization. We
focus on the following three research questions:

1. What is the role of challenges?

2. What are common practices in designing challenges?

3. What is the general opinion of the community on challenge design?

3.1.2 Methods

With the following experiment, we aimed to analyze common practices of challenges. For this
purpose, we captured several challenges from different sources, as described below. For those
challenges, we conducted a descriptive analysis of their designs and results. This step was
achieved by creating a list of challenge parameters that was instantiated for all challenges. The
challenge parameter list is presented in Section 4.4 in more depth. Finally, we examined the
opinion of the research community with an international survey.

Challenges inclusion criteria

To assess the role of challenges in the research community, we collected all competitions
from the biomedical image analysis area that were conducted in the period from 2004–2016.
Challenges organized at a later point in time were omitted given that their reports were not
available at the time of the study. To collect all data, we first gathered challenges organized at
biomedical image analysis conferences.

In the second step, we sourced challenges from three popular challenge platforms that were not
already included:

1. The Grand Challenge1 website is a well-known platform for hosting and organizing biomed-
ical challenges. Many challenges organized at the above-mentioned conferences were
hosted on Grand Challenge (83% of the acquired challenges).

2. The Dialogue on Reverse Engineering Assessment and Methods (DREAM)2 is a platform for
crowdsourced challenges, especially focusing on biological algorithms, but also hosting
several challenges from the image analysis domain which were included in our list.

3. Kaggle3 is a large-scale organization for data scientists, hosting thousands of competitions
for different applications and use cases. We scanned the platform for biomedical image
analysis challenges.

1grand-challenge.org
2dreamchallenges.org
3kaggle.com/competitions

https://grand-challenge.org/
https://dreamchallenges.org/
https://www.kaggle.com/competitions
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Descriptive analysis

The research questions presented at the beginning of this section address the role of challenges
in the community and common practice. With these research questions, we were aiming to
identify a comprehensive overview of organized challenges, including the number of challenges,
tasks and data, fields of application, problem categories, and similar.

We implemented a meta-model in Java 11, using Eclipse Modeling Tools, in which we mod-
eled important challenge design parameters (see Section 4.4 for details). A total of four engineers,
including myself, and one medical student served as observers for challenge instantiation,
supported by four engineering Master students. At least two individual observers instantiated
the parameters for each challenge, such that all competitions in the period from 2004 to 2016
were instantiated by two independent observers. In this process, information from a dedicated
publication of the challenge results, if available, was preferred over the challenge website
content, since the latter was outdated in some cases. Using the implemented meta-model,
we then automatically compared the instantiation of parameters for every challenge done
by the independent observers and checked for ambiguities. In such a case, we consulted an
independent third observer for the final decision. In cases of adaptation of the parameter list,
we repeated the process and updated the challenge instantiation. We based our descriptive
analysis addressing the role and common practice of challenges on this ontological data.

International community survey

To identify the broader community view on biomedical image analysis challenges, we prepared a
survey, which was taken by all co-authors of the study presented by Maier-Hein et al. [2018]. Fur-
thermore, the chairs of the MICCAI 2015–2017 challenges distributed the survey among challenge
organizers. In addition, it was shared via mailing lists of international recognized conferences
or societies, such as ImageWorld and the MICCAI society. Finally, the URL for the survey was
available on the Grand Challenge website. The survey was composed of 34 questions covering
the following question categories:

Background with respect to challenge participation: We asked survey respondents if they
had participated in any challenge so far. Those who did were asked about the number
of challenges they took part in and their main motivation for participating. In addition,
we asked if they ever registered for a challenge but did not submit results and, if so, for
what reason. Lastly, we asked them to indicate any major issues they faced during their
participation in challenges, as well as whether they could easily interpret their challenge
ranks.

Background with respect to challenge organization: We asked survey respondents if they
organized any challenges. Those who did were asked about the number of organized
challenges and the temporal effort put into challenge organization. Moreover, we asked
them to indicate whether they ever participated in their own challenge(s) and whether
they struggled with the creation of the data set, reference annotation, or the choice of
validation metrics. Finally, we advised them to list potential issues related to challenge
design and organization.

General view on challenges: We asked survey respondents about their general views on
challenges. Specifically, we asked whether pre-evaluation results should be provided to
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participants, whether organizers should be permitted to participate in their own challenges,
and whether they think that rankings adequately reflect algorithm performance. Further-
more, we asked them to indicate if they think that the design of biomedical image analysis
challenges should be improved in general.

Open issues and recommendations: We asked survey respondents about open issues in
challenges related to data, reference annotations, validation, and documentation. We
finally asked for concrete recommendations and whether they think challenges should
undergo more quality control.

3.1.3 Results
Descriptive analysis of common practices in challenge design

Based on the above-mentioned search criteria, we captured a total of 150 challenges organized
in the period from 2004 to 2016, including 549 tasks. We present most of the numbers below on
task rather than challenge level. This is due to the fact that a challenge is often organized in
terms of multiple tasks with different focuses, problem categories, or data sets. A challenge-level
validation is therefore often not possible. An overview of the results is given in Figure 3.1. A
comparison to more recent challenges conducted within the past five years is provided in
Section 5.4 and Figure 5.1.

A median of seven challenges (Interquartile Range (IQR): (3, 18)) and 13 tasks (IQR: (4, 18)) were
organized in the period from 2004 to 2016 (cf. Figure 3.1(a)). 57% of challenges were published
in journals or conference proceedings. Half of the challenges were organized along the MICCAI
conference, followed by 34% of challenges organized at ISBI. More than half of the challenges
(57%) were organized as repeated events with a fixed conference submission deadline, followed
by challenges organized as one-time events (26%). Challenges opening for new submissions
after the conference deadline were less common, with 10% being repeated and 7% organized as
one-time events. For most of the challenges, challenge participants were supposed to submit
their results via a cloud (40%), followed by directly sending their results to the organizers (26%).
Semantic or instance segmentation were by far the most commonly used problem categories for
challenge tasks (70%), followed by image-level classification (10%) and object detection tasks
(7%) (see Figure 3.1(b)).

Challenges were very heterogeneous in their goals and applications. Magnetic Resonance Imag-
ing (MRI) (40%) and Computed Tomography (CT) (26%) were the most commonly applied imaging
techniques, but less common modalities such as Endoscopic Imaging (2%) or Ultrasound (US) (2%)
could also be found (see Figure 3.1(d)). Most challenges’ application fields were cross-topic (29%),
followed by tasks designed for diagnosis (28%) and assistance purposes (13%) (see Figure 3.1(e)).

Challenge data was usually acquired from a median of one center. Only 5% of challenges provided
the concrete ethical approval ID for the data, with 6% of challenges claiming that no ethical
approval was needed, for instance due to complete anonymization of data or simulations. The
number of training and test cases in the data sets varied substantially across challenge tasks, as
shown in Figure 3.1(c). A training set contained of a median of 15 cases, an IQR of (7, 30) cases
and a maximum number of 32,468 cases. The number of test cases was usually higher, with a
median of 20 cases, an IQR of (21, 33) cases, and a maximum number of 30,804 cases.
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Figure 3.1: Overview and statistics of biomedical image analysis challenges. (a) Number of challenges and
tasks per year. (b) Percentage of problem categories assessed in challenge tasks. (c) Dots- and boxplots
of the number of training and test cases used in challenge data sets. (d) Percentage of used imaging
techniques. (e) Percentage of fields of application per year. For better readability, we only show results for
every second year. Figure adapted from [Maier-Hein et al., 2018].
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The overall median ratio of training and test cases was 0.75. The data was annotated by a median
of three annotators (IQR: (3, 4); maximum: 9).

Similar to the data, the challenge validation was highly heterogeneous. A total of 97 different
performance metrics were used, with the Dice Similarity Coefficient (DSC) being the most com-
monly used metric, employed by 64% of tasks (92% of the segmentation tasks), followed by the
Hausdorff Distance (HD) or the Hausdorff Distance 95 Percentile (HD95), utilized in 34% of tasks
(47% of segmentation tasks). 46% of the metrics were only used in a single task, and 58% of
tasks did not provide a justification for why a specific metric was chosen. A challenge winner,
determined by computing a ranking, was announced in only 39% of challenge tasks. This was not
possible in 20% of tasks since only a single team participated in those challenge tasks. From
the challenge tasks computing a ranking, 57% calculated the ranking only based on one single
metric (45%). Ten different ranking schemes were identified, with a metric-based aggregation
being the most common scheme (employed in 76% of tasks). The ranking analysis was done by
statistical testing for only 6% of tasks. The t-test was the most commonly applied statistical test
(36%), followed by a Wilcoxon signed rank test (17%).

General opinion of the community on challenge design

A total of 295 researchers from 23 countries worldwide participated in the international commu-
nity survey (see Figure 3.2 for a summary of results). The majority of participants (87%) were
from academia (30% professors, 24% Ph.D. students, 14% postdocs, 13% staff scientists, and 6%
junior group leader or equivalent), 7% from industry, and 6% from other positions. Most of them
(94%) had their primary background in engineering, maths, computer science, or physics, but
researchers from medicine and biology (5%) also participated, with 1% of researchers having
backgrounds in both areas.

63% of respondents participated in at least one challenge. The main motivation for challenge
participation was to gain insights into the algorithm performance in competition with other
researchers (47%). For some researchers, a publication required participation in the challenge
(19%), and 17% participated to get data access. After submitting their results to the challenge, 18%
of challenge participants struggled with interpreting their challenge ranks and 18% of all survey
respondents (including non-challenge-participants) agreed that rankings did not represent
algorithm performance well. 38% of challenge participants further stated that they registered for
a challenge one or multiple times but did not submit their algorithms or results. This was mostly
due to strict deadlines and the fact that participating in a challenge is very time-consuming (41%).

Roughly one third of survey respondents (31%) had already organized at least one challenge, of
which 37% had participated in their own challenge(s). However, 36% of the survey participants
thought that this should not be allowed or only under specific conditions (39%). 27% of challenge
organizers indicated issues with the generation of the reference data, 23% with choosing the
performance metrics, and 22% with finding the challenge data set and deciding on how to create
the challenge ranking.

92% of the survey respondents agreed that the design of current biomedical challenges should
be improved (44%/48% voted for slight/significant improvement), and 84% of respondents
thought there should be greater quality control applied to challenges held as part of major con-
ferences. Best practice recommendations would have been appreciated by 87% of respondents.
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Figure 3.2: Overview of the results of the community survey with n = 295 respondents. The upper part (dark
gray) summarizes the opinion of the survey respondents relating to design improvements, best practice
guidelines, and quality control. The lower part (light gray) summarizes issues that were raised by the
survey respondents related to challenge design for the categories documentation, data, annotations, and
validation.

The second part of the survey aimed to identify the most pressing issues related to (1) the data, (2)
the reference annotation, (3) the validation, and (4) the documentation of biomedical challenges,
as summarized in the following:

Data Most concerns were raised with respect to data representativeness, realism, data balance
in the training, validation, and test sets as well as selection bias in the data set generation (33%).
Furthermore, it was mentioned that data was often only acquired by a single center and/or
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device, limiting its representativeness (cf. results in Descriptive statistics of past and recent
challenges). Acquisition of data, which is time-consuming and costly and often hindered by legal
barriers, was found to be one of the main problems for challenge organizers (17%).

Reference annotation The quality of reference annotations was considered crucial for challenge
data sets, but also one of the most important issues (33%). Survey respondents mentioned
that annotators may often be biased or subjective when generating the annotations, therefore
the results depend on the people working on the references. The method on how to create the
reference annotations was found problematic as well by 16% of respondents. While annotations
may be generated by multiple annotators to overcome individual differences, this is often not
done due to time and cost issues.

Validation Choosing the right metric for a challenge was determined as the most problematic
issue for challenge validation by 20% of the respondents. The facts that metrics often do not
reflect the clinical or biological context, that metrics measuring the runtime or computational
complexity of algorithms were used very rarely and that the aggregation of metrics was not
straightforward were criticized. 19% of survey respondents further missed standards in the metric
choice and implementation as well as the frameworks used for validation.

Documentation Nearly half of the survey respondents (47%) criticized the lack of completeness
and transparency in challenge documentation, although survey respondents wished to document
a challenge as exhaustively as possible. Similarly, the submitted algorithms are in many cases
not easily reproducible, although they may become the new state-of-the-art methods. Finally,
respondents mentioned issues regarding the publication of challenge results (13%). Publishing a
challenge paper often takes time, with it possibly only appearing years after the actual submission
deadline. Furthermore, the frequent and unexplained differences in challenge website content
versus the publication were criticized.

3.1.4 Discussion
We showed that challenges have become an integral part of the validation of biomedical image
analysis algorithms. Researchers are able to find a challenge for nearly all research problems and
can easily test their algorithms against other methods. Challenges have been designed around a
range of modalities and fields of application. While their focus lies on segmentation problems,
there are multiple challenges for other common problems such as image-level classification
and object detection problems. Indeed, it is harder to find a suitable challenge for less common
problem categories such as registration or reconstruction.

However, the high heterogeneity of challenges may also be a problem since there are no common
standards related to challenge design. For instance, the number of training and test cases sub-
stantially differs across challenges. While there are several challenges with only a single training
or test case, others use more than 30,000 cases. Similarly, nearly 100 different performance
metrics have been employed, of which half have only been used for a single challenge.

Due to the high importance of challenges and their wide applicability, the biomedical image
analysis community agrees that challenges should undergo more quality control, that the
design should be standardized and improved, and that best practice recommendations are
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necessary. The community raised several concerns about the data and annotation quality. This
issue is especially important given the fact that challenge data sets are often publicly available
and used as new benchmarking data sets, compensating for the sparsity of available data in
health research. Nonetheless, many researchers rate the data quality and representativeness
as low although of immense importance. In addition, many researchers rate the choice of
the right performance metric as the most critical issue related to the validation of challenge
results. Although there numerous metrics are employed in challenges, they often do not reflect
the biomedical needs for a specific problem or application. This opens up the question of
whether standard metrics are actually suited for validating challenges. A performance metric
suitable for one research problem may be absolutely inadequate for another. Problem-aware
recommendations could be a feasible step towards solving this specific issue.

Finally, researchers complained about the lack of completeness and transparency in challenge
documentation. This comprises the individual challenge websites, especially important for active
challenge participants, as well as the following challenge reports. Missing information on the
websites may be very frustrating for a challenge participant and may even discourage from
participation. Lack of transparency is also critical for the challenge design and post-challenge
analysis since the results may not be reproducible and interpretable – which is highly relevant
for validation studies. Clinical trials, for example, have very high standards related to study
design and reporting to ensure high-quality results.

3.1.5 Conclusion
Biomedical image analysis challenges have led to a tremendous increase in the comparability
of algorithms. They are the equivalent of clinical trials in the assessment of image analysis
algorithms. However, they are very heterogeneous in their design, raising the question of whether
challenge results are actually meaningful. The research community shares the opinion that the
design and quality of challenges need to be improved.

In the following Chapter 4, we examine several problems of challenges related to their design,
rankings, metrics, and reporting, providing evidence for the issues raised by the research com-
munity. While uncovering problems and creating awareness among researchers is a good step,
solving them is even better. This is why we provide solutions for the presented problems in
Chapter 5 of this thesis. For this, we build upon the best practice recommendations compiled by
the survey respondents.
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4.1 Revealing flaws related to challenge design

Disclosure

This work has been supervised by Lena Maier-Hein. It has been conducted to-
gether with several co-authors, especially Matthias Eisenmann and Annette Kopp-
Schneider. The work has been published at the Medical Image Computing and
Computer Assisted Interventions (MICCAI) conference [Reinke et al., 2018a]. Please
refer to Chapter A.1 for full disclosure.

4.1.1 Introduction
In the previous Chapter 3, we demonstrated that challenges have become an essential component
of the current research practice. However, we also found that they are very heterogeneous in
design and lack standardization, for example in terms of validation metrics or rankings. In fact,
92% of 295 researchers felt that the design of the biomedical challenges needed to be improved
(see Chapter 3).

In this section, we review the consequences of low-quality challenge design. From the per-
spectives of both the challenge organizer and participant, we particularly examine whether
challenge design could be exploited for rank manipulation. As cheating is unfortunately quite
common among competitions in general [Chui et al., 2021; Dannenberg and Khachatryan, 2020]
and practices like ’leaderboard climbing’ are not uncommon in challenges [Mendrik and Aylward,
2019], we think that this bad practice may also occur in the research context. Young researchers
and Ph.D. candidates in particular often experience extreme pressure to produce high-quality
results. Thus, it may be reasonable to suppose that researchers regard rank manipulation as a
valid alternative to achieve a higher rank in a challenge.

For this reason, we present the results of two theoretical experiments: First, from the perspective
of a challenge organizer, altering a ranking that would see their competitor as the challenge
winner may appear worthwhile. We hence simulated a decrease in the rank position of the main
competitor by altering the ranking scheme – after the challenge participants submitted their
results, and without informing them. Second, from the perspective of a challenge participant, it
may appear beneficial to only submit results for those images on which the algorithm worked
well. Other, subpar results might be disregarded and not submitted. Based on current challenge
design, both situations are possible and may represent a potential security hole and a large risk
in terms of cheating.
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Hypothesis investigated in this chapter

H1: Current biomedical challenge design is heavily flawed.

In our community survey presented in the last section, many researchers
mentioned potential flaws in challenge design. We thus investigate whether
such weaknesses can be exploited in order to achieve higher ranks or to
decrease the rank of an unpopular competitor.

4.1.2 Methods
The following experiments aim to analyze whether challenge rankings could be easily manipulated
by both challenge organizers and participants. We first describe the challenge inclusion criteria
and subsequently the concrete experimental setups.

Challenge inclusion criteria

As shown in Chapter 3, we identified segmentation as the most prominent problem category
for challenges. To investigate the above-mentioned hypothesis, we aimed for an in-depth
analysis of all 14 Medical Image Computing and Computer Assisted Interventions (MICCAI) 2015
segmentation challenges. We approached all challenge organizers and asked them to compute
the confusion matrices (True Positives (TPs), True Negatives (TNs), False Positives (FPs), and False
Negatives (FNs)) per image based on the segmentation masks. We asked for the results to be
provided for all available annotators who annotated the references in the challenge data set and
the resulting scores for every challenge participant based on every annotator. We found the Dice
Similarity Coefficient (DSC) and Hausdorff Distance (HD) to be the most commonly used metrics
across all challenges; therefore, we requested the organizers to calculate these scores as well in
addition to the 95% percentile of the HD metric, the Hausdorff Distance 95 Percentile (HD95), as
a metric variant. For one of the challenges, the required HD(95) values could not be computed,
and we therefore excluded this challenge from the analysis. This resulted in 13 challenges with
124 tasks.

In the case of more than one annotator generating the reference annotation, we used the metric
scores based on the merged annotation to calculate the rankings (if available). Two challenges
provided results for multiple annotators but without a merged annotation. For one of those two
challenges, the segmentation masks generated by the first annotator varied substantially from
those of all other raters. Therefore, we used the metric scores based on the segmentation masks
provided by the second annotator for the two challenges. Another challenge provided on- and
off-site results. In this case, we used the results with most challenge participants. Lastly, we
excluded algorithms outputting invalid metric scores for all test cases of a challenge task from
the ranking calculation.

For ranking analyses using bootstrapping (ranking robustness analysis; see paragraph reducing
ranks via altering the ranking scheme), we only considered challenge tasks with three or more
participating algorithms (42 tasks excluded) and more than one test case (25 tasks excluded),
yielding 56 challenge tasks.
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Rank manipulation

In Chapter 3, we showed that challenges were exposed to several weaknesses. To investigate
whether and how these may, in theory, be exploited, we conducted the following experiments:

Reducing ranks via altering the ranking scheme. As we show in Section 4.4, the ranking scheme
was not published for 20% of the challenge tasks from 2004 to 2016. Indeed, 40% of the
MICCAI 2018 challenges did not publish the complete ranking schemes before the challenge was
conducted. In theory, this may easily be exploited by a challenge organizer wishing to hinder a
specific participant (e.g. their main competitor) from winning by adjusting the ranking scheme
until the desired ranking is achieved.

Given the results from Chapter 3, we found metric-based aggregation based on a single metric
with an aggregation based on the mean as aggregation operator (used by 72% of all segmentation
challenges) as the most commonly used ranking scheme. Furthermore, we identified the DSC to
be the most commonly used metric, which was used in all MICCAI 2015 segmentation challenges.
Therefore, we defined the default ranking scheme as a metric-based aggregation using the DSC as
a ranking metric and the mean as the aggregation operator. For all 56 MICCAI 2015 segmentation
tasks meeting the inclusion criteria, we computed rankings with several variations in the ranking
scheme:

- Metric variant: We computed rankings for the DSC, HD, and HD95 metrics separately.

- Aggregation method: We computed rankings for a metric-based and a case-based aggrega-
tion scheme.

- Aggregation operator: We computed rankings using the mean and median for aggregation.

We applied these twelve different ranking schemes to all MICCAI 2015 segmentation tasks.
Subsequently, we analyzed the winning and non-winning teams for the default ranking scheme
by computing the maximal rank differences over all rank variations in bootstrapping simulations.
Finally, we calculated Kendall’s τ to measure the deviation from the default ranking scheme. We
repeated the same experiment for the use case in which challenge organizers did not publish the
full ranking scheme but announced the metric(s) used for evaluation. In this case, we considered
the metrics as fixed and three default ranking schemes were calculated for the three metrics
DSC, HD, and HD95.

Increasing ranks via exclusive submission of test cases. In Section 4.4, we demonstrate that 82%
of challenge tasks did not describe their missing value handling, i.e. how they processed invalid
submissions of participants. A strategy for missing values is needed for metric-based rankings.
Simply ignoring a missing test case submission leads to different aggregated results compared
to, for example, assigning the worst possible metric values to these cases.

Working with the 56 MICCAI 2015 segmentation tasks meeting the inclusion criteria, we simulated
this problem by manually removing the test cases with DSC values smaller than 0.5 from the
individual participants. With this strategy, we aimed to mimic a challenge participant only
submitting the most plausible results with the highest metric scores. Although participants usually
do not have access to the test case’s reference annotations, it can be assumed that participants
may clearly identify and separate those cases by visually inspecting their results before the
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submission. We compared the default rankings based on a selective test case submission to the
default rankings for all test cases.

4.1.3 Results
In the following, we present the results of the ranking analyses for 56 MICCAI 2015 segmentation
tasks, for which we performed the rank manipulation experiments.

Reducing ranks via altering the ranking scheme

We computed twelve different ranking schemes for each of the 56 MICCAI 2015 segmentation
tasks. Figure 4.1 illustrates the resulting rankings and changes for one example challenge task
with 13 algorithms A1 to A13. In this example, the winner of the default ranking scheme A is stable
for the DSC for all variations of the aggregation method and operator. Kendall’s τ values were
between 0.79 and 0.90, indicating a high correlation to the default ranking scheme. However,
changing the metric (HD in ranking schemes E - H and HD95 in ranking schemes I - L) results in a
dramatic change in rankings 4 to 11, forcing the original winner down to rank 11, with Kendall’s τ
values in the range of 0.28 and 0.65.

In general, the winner of the default ranking scheme changed in 84% of tasks. Furthermore, a
shared first rank was achieved in 11% of tasks that did not show a tie for the winner in the default
ranking. On average, the default winner remained the same in only 57% of rank variations. For
one task, the winner even dropped down to rank 11. 20% of the non-winning algorithms could
have been ranked first in at least one ranking scheme.

The experiments were repeated for the assumption that the metric has been published before
the challenge but the ranking scheme itself was unknown. In this case, the winner was stable in
63% (DSC), 46% (HD) and 41% (HD95) of tasks. In 5% (DSC), 9% (HD), and 8% (HD95) of all tasks, it
was possible that the non-winning participants could have been the winner.
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Figure 4.1: Effect of exchanging parameters of the ranking designs for one example MICCAI 2015 segmentation
task. Ranking scheme A (first column, bold box) is considered as default for the algorithms A1 to A13. Ranking
schemes B - L are varied by the metric ∈ {DSC, HD, HD95}, aggregation (aggr.) method ∈ {Metric-based,
Case-based} and the aggregation operator ∈ {Mean, Median}. Algorithms A1 (green), A6 (blue), and A11 (red)
are highlighted to accentuate the changes in ranks across ranking schemes. Kendall’s τ for every ranking
and the default is provided in the last column. Figure adapted from [Reinke et al., 2018a].

Increasing ranks via exclusive submission of test cases

82% of challenge tasks did not explain how they dealt with missing values (see Section 4.4.3)
and only 33% of MICCAI segmentation tasks explain how to penalize missing data. The choice of
missing value handling, however, has a crucial impact on the resulting aggregated metric scores
and subsequently on the resulting ranks (see Figures 4.14(b) and (c) in Section 4.2.3). Of the MICCAI
2015 segmentation tasks, 27% of participants did not submit results for every test case. The
average proportion of missing values was 20% (maximum: 80%). By simulating a selective test
case submission, 25% of all 419 non-winning algorithms of the MICCAI 2015 segmentation tasks
could have been ranked first by only submitting the most plausible test case results. Furthermore,
every single participant could have been ranked first by selective test case submission in 9% of
the tasks. The threshold for implausible test cases in the experiments was a DSC value of 0.5.



82 CHAPTER 4. REVEALING FLAWS IN COMMON PRACTICE

Still, even by considering withholding only the worst 5% of test cases, 11% of the non-winning
algorithms could have been the winner.

4.1.4 Discussion

The presented results show that rankings are indeed susceptible to manipulation due to weak-
nesses in the challenge design. One of the factors enabling this is the lack of reporting of the
full ranking scheme calculation. According to our experiments, challenge rankings appear to be
sensitive to the concrete design, in particular the aggregation scheme and operator as well as
the metric choice. Combined with the reporting problem for ranking design, we showed that
cheating is, in theory, very simple from a challenge organizer perspective. This may happen on
purpose to either avoid or ensure that a specific team wins. It may also happen accidentally
when organizers find issues with their original ranking scheme.

Another weakness in challenge design is the fact that organizers sometimes require the submis-
sion of concrete algorithm outputs for their validation. In two-thirds of the tasks in the period
2004 to 2016, participants were required to directly submit their results to a cloud or send the
results to the organizers via email (see Chapter 3). In this case, participants could easily submit
only a subset of their outputs and may receive a better rank for selective test case submission.
In fact, during our assessment (see Chapter 3), we found challenges for which participants only
submitted a fraction of the test cases. For example, the ranking tables of the Ischemic Stroke
Lesion Segmentation (ISLES) challenge 2015 contained a column that lists the number of cases
that were submitted by each team. For the task of sub-acute ischemic stroke lesion segmentation,
none of the teams submitted results for the whole data set [Maier et al., 2015]. This concept was
also chosen for the Brain Tumor Image Segmentation (BRATS) 2015 challenge [BRATS2015, 2015].
While most of the participants submitted results for all test cases, the third-ranked algorithm
only submitted 2 out of 110 images. It is therefore reasonable to assume that this practice may
be exploited by challenge participants.

A limitation of our experimental setup may be the fact that we used a threshold for the DSC
metric to remove test cases. However, we think that a result yielding such a low metric score
could easily have been found by visual inspection of the algorithm outputs. Indeed, the current
experimental setup avoids a subjective rating of "bad" images, and instead uses an objective and
scalable, easily reproducible approach. This experiment was only performed for the DSC metric
as thresholding would not have been easily possible for the HD/HD95 metrics. Both metrics are
unbounded to the top and a bad score highly depends on the image and task. Nevertheless, we
think the experimental setup and results are sufficient to highlight our point: It is, in theory,
possible to easily increase a rank through selective test case submission in the case of ignoring
missing values. This issue can be aggravated by the fact that, where challenge participants are
only required to upload their outputs, organizers can not even check whether participants may
have manipulated their results manually.

Notably, by requesting the concrete confusion matrices from the challenge organizers, we were
able to detect errors in their metric implementations that were not identified by either organizers
or participants. One could argue that we should trust our research colleagues and that they
organize and participate fairly. However, given the tremendous pressure to perform in various
research environments, we believe that weaknesses in challenge design or security flaws will
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eventually be exploited [Ioannidis, 2005; Chui et al., 2021], either on purpose or unwittingly.
Indeed, in a survey of the organizers of MICCAI 2020 and 2021 challenges, 21% of them reported
the occurrence of cheating.

4.1.5 Conclusion
In this section, we presented evidence that challenge rankings are sensitive to the type of
ranking calculation. In addition, we found that many challenges do not accurately report the
ranking schemes. As both are very critical issues, we investigate them in depth in Sections 4.3
and 4.4. Their combination may lead to severe weaknesses or even security flaws in the challenge
design, which can – in theory – be easily exploited to tune challenge rankings. Although we
assume the scientific integrity of challenge organizers and participants, we think that specific
circumstances and performance pressure in the scientific community may lead researchers to
use unfair practices. Weaknesses in challenge design may even encourage them to do so. This is
a very damaging practice that may negatively impact healthcare research in a severe manner, if
for example poorly performing algorithms become the new state of the art or are even translated
into clinical practice only due to cheating.



4.2 Revealing flaws related to metrics

Disclosure

This work has been supervised by Lena Maier-Hein. It has been conducted together
with several co-authors, especially with Minu D. Tizabi and Paul F. Jäger. The work
has been is available in a dynamic preprint [Reinke et al., 2021a] and was published
at the Medical Imaging with Deep Learning conference (MIDL) conference [Reinke
et al., 2021b] (short paper). Please refer to Chapter A.1 for full disclosure.

4.2.1 Introduction

One of the most important challenge design concerns, according to the research community,
is the selection of the validation metrics (see Chapter 3). However, reviewing current research
shows that most of the scientific work in the general image analysis community focuses on the
development of new algorithms rather than their validation [Lin et al., 2020]. Certainly, it is
crucial for scientific advancement and the application of methodological research that Machine
Learning (ML) algorithms are properly validated.

The efficacy of new medication or new treatments can be easily assessed via the patient outcome.
In contrast, the validation of algorithms is more complex and is done via performance metrics,
which form an integral part of the validation pipeline. They inform the researchers about how
good or bad the algorithms performed on specific data points or the whole data set and serve
as indicators for scientific advancement. They are therefore anticipated to reflect a validation
objective that is specific to the research question. Unfortunately, previous work has shown that
metrics often do not reflect the underlying research interest [Saha et al., 2021]. These findings
are very critical since the metric scores serve as the foundation for determining whether an
algorithm is clinically appropriate, and as a result, have significant consequences for patients.

Metrics that are not chosen properly therefore not reflect the actual clinical or biological needs
that an algorithm must fulfill. Indeed, an entirely subpar algorithm may win a challenge if the
metrics are not appropriate. It is therefore crucial that researchers choose adequate metrics
and are aware of their specific properties, advantages, and limitations. However, it is not
straightforward to be aware of all the restrictions associated with a particular validation metric.
Weaknesses of metrics are discussed in several publications (e.g. [Gooding et al., 2018; Vaassen
et al., 2020; Cheng et al., 2021]), but there is no common entry point that comprehensively lists
and describes metric-related pitfalls.

In this section, we present an extensive review of metric limitations in the context of the most
common problem categories in challenges, namely segmentation, image-level classification, and
object detection. We found that a visual presentation helps to better understand the actual
problem. To illustrate the broad issues of category-metric mismatches, inherent metric properties,
and the post-processing of metric results, we demonstrate the metric pitfalls in an illustrative
manner.
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Hypothesis investigated in this chapter

H2: Common image analysis metrics do not reflect the biomedical domain
interest.

Previous work has found that metrics often do not reflect clinical interest.
Furthermore, it is very hard to find comprehensive information on metric
limitations. As choosing the wrong metric may also result in inadequate
challenge winners, we investigate (1) whether the limitations of metrics can
be easily assessed and (2) what potential pitfalls are regarding metrics.

4.2.2 Methods
First, we describe our experiments that simulate literature research from the perspective of a
researcher trying to find an overview of metric limitations. Second, we describe a multi-stage
Delphi process used as the basis for a comprehensive overview of metric-related pitfalls.

Literature research

In a first attempt to review the literature for metric limitations, we performed a structured and
exploratory literature search. For every included metric, we collected possible synonyms and
acronyms. All of them were combined with a logical disjunction (OR). In addition, we used the
following words, also combined with a logical OR, to describe the limitations: pitfall, limitation,
caveat, drawback, shortcoming, weakness, flaw, disadvantage, and suffer. The metric names,
limitation terms, and the term "metric" were combined with logical conjunction (AND). Google
Scholar was used as a search engine.

In a follow-up experiment, we simulated the situation that the rough problem or limitation
regarding a certain metric is known to the researcher, who wishes to find an explicit publication
or online resource (such as blog posts) detailing the specific limitation. This search was based
on the results of the Delphi process (see the following paragraph). Own publications or online
resources were excluded from this search.

Delphi process

We collected pitfalls regarding metrics in the form of a multi-stage survey approach, inspired by
the concept of a Delphi process [Brown, 1968]. A Delphi process aims to combine the expertise
of several experts and reaches a consensus agreement through a series of questionnaires. The
expert panel was composed of international researchers with expertise in the field of biomedical
image analysis validation. First, we gathered consensus on a selection of properties that affect
the choice of the metrics (conducted by 30 experts). In the second step, we asked the experts to
describe pitfalls that may occur when this property is present (26 experts). During this survey
round, we specifically reached out to the experts with biological and clinical expertise, asking for
general problems in validation from their points of view (9/26 experts). The pitfalls collected
through this analysis were complemented by literature research and feedback from the scientific
community (provided by eleven additional researchers that were no members of the consortium).
Based on the expert feedback and suggestions, examples for proposed pitfalls were created and
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illustrations were designed. We asked the following questions for every pitfall illustration in the
following round of the Delphi process:

- Please indicate whether you consider the illustration to represent a relevant pitfall and (if
so) how practically relevant you consider this pitfall.

- Please provide comments or suggestions for improvement (if any).

In addition, we asked for general feedback for every problem category and whether we missed
important pitfalls. 26 experts replied to this survey. All metric scores used in the examples and
illustrations have been verified by a second observer. In a final survey, we asked the consortium
about consensus on the pitfall taxonomy and the presented pitfalls. 52 experts voted in this
round and the taxonomy and pitfalls reached a consensus agreement.

4.2.3 Results
In the following, we first present the results of the literature research. It is followed by the illus-
tration of the concrete pitfalls that were found during the analysis and the Delphi process. The
pitfalls were categorized into the following categories: Four pitfalls related to problem-category
mismatch, 31 pitfalls related to metric selection, and 27 pitfalls related to the metric application.

In the pitfall illustrations, we highlight the most relevant metric values in order to maintain
visual clarity. A "good" metric value is represented by a green number, whereas a "poor" value
is represented by a red number. Red crosses denote poor metric behavior, whereas green
checkmarks indicate desired behavior. Finally, for simplicity, we typically refrain from providing
precisely the predicted class scores for each sample.

Literature research

The literature research yielded an extremely high amount of publications found for most of
the metrics. The highest number of publications was found for the Sensitivity metric, for which
roughly 962,000 publications were returned by the search engine, followed by Accuracy with
895,000 hits. The lowest number of publications was given for the Centerline Dice Similarity
Coefficient (clDice) with 49 results. From the pitfalls presented in the following paragraphs, 51%
were identified to be presented in the literature or in online resources (24%). 13% were present
in both, publications and online resources. Of all findings, only 30% presented the pitfalls in an
easily understandable visual way.

Context-agnostic pitfalls taxonomy

We defined a context-agnostic taxonomy for metric pitfalls in order to present them in a compre-
hensive and structured manner. An overview of the proposed taxonomy is given in Figure 4.2.
Based on our definition, we distinguish three major types of metric pitfalls:

Pitfall Type 1: Pitfalls related to incorrect problem categorization
Pitfall Type 2: Pitfalls related to poor metric selection
Pitfall Type 3: Pitfalls related to poor metric application
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Figure 4.2: Metric pitfalls taxonomy. Pitfalls can be distinguished into three major types: Pitfall Type 1 –
pitfalls related to incorrect problem categorization, pitfall Type 2 – pitfalls related to poor metric selection,
pitfall Type 3 – pitfalls related to poor metric application. Types 2 and 3 can be further separated into
subtypes.

Pitfall Type 1: Pitfalls related to incorrect problem categorization

Validation metrics typically assess a specific property for a specific problem category. While
some metrics may be used at different classification scales, for example at pixel or object level,
care should be taken when directly transferring a metric to a different problem category. We
divide pitfalls of type 1 into those related to a wrong choice of the problem category and those
related to a lack of a missing problem category. In the following, we describe exemplary pitfalls
of both types that are presented in Figure 4.3:

Wrong choice of the problem category: Segmentation metrics used for object detection. In Section 2.4.3,
the Fβ Score was listed as a metric validating object detection problems at object level. However,
the Dice Similarity Coefficient (DSC) (which is equivalent to the Fβ Score, β = 1) or other pixel-level
segmentation measures are often used to validate object detection problems at pixel level
[Carass et al., 2020; Jäger, 2020]. Figure 4.3(a) provides an example of a reference with three
objects. While Prediction 2 successfully detects all objects, Prediction 1 only hits the large object
and misses the two tiny structures. The DSC, however, would rate Prediction 1 as superior because
this prediction has a larger overlap in terms of counted pixels. This would be a very critical pitfall
for clinical applications. For instance, several missed polyps during colonoscopy may negatively
impact a patient’s survival. Because the pixel-level DSC generally has a strong bias against single
objects, it is inappropriate for the detection of multiple structures [Yeghiazaryan and Voiculescu,
2018; Kirillov et al., 2019].

Wrong choice of the problem category: Image-level metrics used for object-level problems. The Receiver
Operating Characteristic (ROC) curve and its respective multi-threshold metric, the Area under the
Receiver Operating Characteristic Curve (AUROC), have been designed for image-level assessment
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of problems. They rely on the computation of the Specificity, thus, on True Negatives (TNs) of
the confusion matrix, which are typically undefined in object detection problems. Still, ROC
and AUROC are sometimes employed for object detection problems. In these settings, typically,
only one object in an image with the highest predicted class score is considered, neglecting all
others. This practice may lead to severe pitfalls, as illustrated in Figure 4.3(b): The ROC curve
was designed for image-level classification problems, in which no additional localization step
is needed. Thus, it neglects the localization performance when applied to object detection
problems. Thus, objects may be at the completely wrong location and still be interpreted as True
Positive (TP) (top part of the figure). In addition, the ROC curve neglects the number of reference
objects. A single detected object is automatically considered a TP for this image, although other
objects may have been missed (middle part of the figure). Finally, as already mentioned, the
curve is similarly unable to distinguish between a model that detects all objects in an image and
a model that only detects one object and misses several others (bottom part of the figure). In
clinical practice, such a misuse of a metric could yield very misleading results. Tumors could be
localized at an entirely incorrect position or completely missed.

Wrong choice of the problem category: Semantic segmentation reference for instance segmentation ob-
jective. A prediction can only be as accurate as the provided reference. Special care therefore
needs to be taken when preparing the reference annotation to make sure that it reflects the un-
derlying research question. For example, in the case of many touching or overlapping structures,
often present for cell or surgical instrument segmentation problems, a semantic segmentation
reference may cause multiple cells or instruments to be merged into one object although a
distinction would be desirable. Thus, an algorithm predicting a semantic segmentation reference
may yield perfect metric scores although the desired output was not achieved, as shown in the
example in Figure 4.3(c), which could lead to incorrect conclusions in clinical practice.

Lack of a missing problem category: Metrics not designed for specific property-related applications. Val-
idation metrics should be chosen to reflect a specific biomedical domain interest. However,
depending on the actual application, use cases may occur that are not assessed and reflected
by standard technical metrics, such as the DSC. For instance, in [Bamira and Picard, 2018], the
ejection fraction in a cardiac cycle may be the property of interest, i.e. how accurately the ratio
between blood volumes match. Such an example is given in Figure 4.3(d). Despite the substantial
differences in the volumes predicted, both predictions yield DSC scores with a similar average.
Thus, typical segmentation measures do not capture the property of interest in such use cases.
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Figure 4.3: Pitfalls related to a mismatch between the problem category and the metric. (a) Effect of
a mismatch of semantic segmentation and object detection. A prediction that only recognizes one of
three structures (Prediction 1) yields a higher Dice Similarity Coefficient (DSC) than a prediction made by an
algorithm that recognizes every structure (Prediction 2). (b) Effect of a mismatch of image-level classification
and object detection. The Receiver Operating Characteristic (ROC) curve does not assess the localization
performance of a prediction, which may lead to predictions at the wrong position being categorized as True
Positive (TP). It is further invariant to the number of reference and detected objects in an image. Predicted
class scores are indicated by confidence scores (conf.). (c) Effect of a mismatch of semantic and instance
segmentation. If instance information is not available (although desired), connected components are often
treated as one instance. Even if the task is not solved, the metrics may yield perfect results, here shown for
the DSC and Hausdorff Distance (HD). (d) Metrics may be poor proxies for computing properties of interest.
The property of interest is the accuracy of the ratio between two volumes. Although both predictions lead
to a distinct ratio of structure volumes – the parameter of interest – they produce similar averaged DSC
metric values, which do not reflect the actual interest. Figure adapted from [Reinke et al., 2021a].
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Pitfall Type 2: Pitfalls related to poor metric selection

Pitfalls of type 2 relate to all limitations resulting from a poor selection of metrics, such as
ignoring inherent properties of a specific metric. We further distinguish type 2 into four subtypes:
Disregard of the domain interest (2.1), of properties of the target structure (2.2), data set (2.3),
and algorithm output (2.4).

Pitfall Subtype 2.1: Disregard of the domain interest

Generally, metrics should reflect the domain interest of the practitioner. Since every metric was
designed for a specific purpose, not every metric assesses the correct properties. The actual
interest should not be confused with other inherent properties of a use case. This is why we
distinguish subtype 2.1 particularly from the other subtypes such as disregarding properties of
the data set. In the following, we present pitfalls that relate to a disregard of the domain interest.

Importance of structure boundaries Whenever the concrete boundary of a structure is the domain
interest, the metrics should be chosen accordingly. However, common overlap-based metrics
such as the DSC or volume-based metrics, such as the volumetric difference, do not consider
object boundaries in their calculation. Example 1 in Figure 4.4(a) shows two predictions, of which
one perfectly matches the outline, while the other misses it. However, both yield the same DSC
value, since overlap-based metrics do not penalize incorrect predictions of boundaries. On the
other hand, both predictions from Example 2 completely miss the object and are at the incorrect
position, however, Prediction 2 should be penalized much more strongly since the distance
of the boundary is higher. While the volumetric difference is correct for both predictions, the
predictions are not overlapping at all, yielding a DSC score of zero as well. Nonetheless, the DSC
does not measure the extent of mislocalization and distance to the object boundaries.

Importance of structure center(line) Some applications, such as nerve segmentation [Mlynarski
et al., 2020], require a specific focus on the center of a structure. The exact outline or overlap
with the reference is less important in those cases. Overlap-based metrics are typically not good
proxies for assessing the center point or line of a structure, as indicated in Figure 4.4(b). While
both predictions have the same amount of overlapping pixels, yielding the same DSC score, the
center point prediction is worse for Prediction 2. However, this is not reflected when using the
DSC as the only metric. This pitfall is also relevant for object detection problems.

Importance of structure volume Radiologists are often solely interested in structure volumes rather
than technical measures such as overlap-based metrics. Boundary-based metrics do not focus
on the object volumes themselves, but rather on inspecting the object boundaries. The Boundary
Intersection over Union (Boundary IoU), for example, only considers the pixels that are inside
the defined distance from the boundary (see Section 2.4.2). Thus, it does not recognize whether
a prediction shows a large hole inside the object (incorrect volume), as presented in Figure 4.4(c)
and still yields a perfect score [Cheng et al., 2021] that may be misleading if the volume is of
interest. A similar example is provided in Figure 4.4(d). Moreover, predictions with a spotted
pattern of small holes are similarly not heavily penalized, although the volume and overlap are
rather low [Taha and Hanbury, 2015]. This pitfall may be critical in clinical practice, especially if a
particular interest lies in the object determining the exact volumes.
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Figure 4.4: Pitfalls related to disregard of the domain interest: Importance of structure boundaries, center,
and volume. (a) Boundary unawareness of overlap- and volume-based metrics. Common metrics that rely
on the overlap or volume of structures do not consider the actual boundaries. In Example 1, Prediction
1 perfectly hits the structure boundaries, while Prediction 2 only hits parts of the boundaries. The Dice
Similarity Coefficient (DSC) value, however, would be similar, not penalizing errors in the boundaries. In
Example 2, neither the volumetric difference nor the DSC penalize the distance from the boundaries. (b)
Center unawareness of overlap-based metrics. The most common overlap-based metrics are subpar
substitutes for center point alignment. Although Prediction 1 more closely approximates the object’s center,
Prediction 2 nevertheless produces the same DSC value. (c) Volume unawareness of Boundary Intersection
over Union (Boundary IoU). If the distance to the border contains all mask pixels (in this case, distance =
2), the Boundary IoU may yield a perfect score for a prediction with a large hole inside of the object. (d)
Volume unawareness of boundary-based metrics Similarly, other boundary-based metrics (here: Hausdorff
Distance (HD)) do not recognize holes within the objects. A spotted pattern of holes (left) is also not heavily
penalized. Figure adapted from [Reinke et al., 2021a].
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Unequal severity of class confusions In biomedical image analysis problems, classes and class
confusions may be of unequal importance. For example, in colon polyp detection in the gastroin-
testinal tract, it is crucial for the survival of the patient to detect all polyps. In this use case,
False Negatives (FNs), i.e. missing polyps, would be extremely critical. The Positive Predictive
Value (PPV) yields misleading results for such a use case, since this metric does not account for
FNs (see the top part of Figure 4.5(a)). On the other hand, in image retrieval tasks, the property
of interest is not finding all images with certain characteristics, but the correct identification of
all collected images. Thus, False Positives (FPs) should be particularly penalized. In this case,
Sensitivity is not an adequate metric, since it is not concerned with FPs (see the bottom part of
Figure 4.5(a)). This pitfall also translates to Specificity and Negative Predictive Value (NPV).

Over- vs. undersegmentation In radiotherapy, for example, it may be crucial to determine whether
an algorithm systematically predicts larger (oversegmentation; more FPs) or smaller objects
(undersegmentation; more FNs) compared to the reference. Overlap-based metrics such as the
DSC treat both situations unequal [Yeghiazaryan and Voiculescu, 2018]. Figure 4.5(b) shows an
example in which Prediction 1 and Prediction 2 both have a difference of a single layer of pixels
compared to the reference, with Prediction 1 presenting an undersegmentation and Prediction 2
presenting an oversegmentation of the target structure. However, the overlap-based metrics
yield substantially different scores for both predictions [Taha and Hanbury, 2015]. On the other
hand, boundary-based metrics treat over- and undersegmentation similarly.

Ordinal classification (counting metrics) An unequal severity of class confusions is especially
common in ordinal classification problems. In the case of ordinal classes, metrics should be
carefully interpreted. Figure 4.5(c) presents two examples with a five-class severity scale, with
zero referring to the lowest severity and four to the highest severity. This could represent the
severity of a disease as determined in diabetic retinopathy grading, for example [Zachariah et al.,
2015]. Both predictions correctly classify the disease severity for the first four patients. However,
they misclassify the severity of Patient 5. While the predicted class from Prediction 2 is close to
the actual class 4, Prediction 1 vastly underrates the disease severity for this patient. This issue
is not recognized by the Accuracy and other multi-class metrics. Only the quadratic-weighted
Cohen’s Kappa (CK) detects the problem and heavily penalizes Prediction 1.

Ordinal classification (counting metrics) Similarly, calibration metrics that simultaneously assess
the discrimination performance of a classifier should be used with caution in ordinal classification.
Figure 4.5(d) provides an example of three levels, which may be interpreted as a very short survival
time of zero to one year (pink circle), a longer survival time of two to three years (blue triangle),
and a long survival time of more than three years (green square). Both predictions in this example
fail to predict the right survival time. However, Prediction 1 is closer to the actual survival time
and should thus be penalized less than Prediction 2. However, the Brier Score (BS) does not
recognize this difference, penalizing both predictions similarly. By only examining the score, this
important information would be hidden from the practitioner and patient, although the expected
survival time could make a tremendous difference.
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Figure 4.5: Pitfalls related to disregard of the domain interest: Unequal severity of class confusions. (a)
Effects of utilizing criteria that are inappropriate for False Negative (FN)/False Positive (FP) punishment.
The Positive Predictive Value (PPV) does not assess the number of FN and is therefore inappropriate to
punish FN from a prediction. Similarly, Sensitivity does not penalize FP properly. (b) Effect of over- and
undersegmentation. One layer of pixels separates the predictions of two algorithms compared to the
reference. While the Hausdorff Distance (HD) treats the under- and oversegmentation the same, it yields
a substantial difference in the Dice Similarity Coefficient (DSC). (c) Effect of ordinal classes on counting
metrics. The Accuracy cannot distinguish between a prediction that is close to the actual scale (Prediction 2)
and a prediction far away from the actual scale (Prediction 1). This difference is penalized by the quadratic-
weighted CK (Quad. κ). (d) Effect of ordinal classes on calibration metrics. The Brier Score (BS) cannot
distinguish between a prediction that is closer to the actual scale (Prediction 1) and a prediction far away
from the actual scale (Prediction 2). Figure adapted from [Reinke et al., 2021a].
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Importance of comparability across data sets - prevalence correction As previously discussed in
Section 2.4.1, many metrics rely on the prevalence. Although PPV and NPV should be corrected
for the respective prevalence, this is often not done in practice. In many cases, it is assumed
that the prevalence of a study group is similar to the prevalence of the general population.
However, due to the study design or clinician observations, case-control groups are frequently
strongly biased, implying that this assumption is frequently untrue and resulting in higher study
group prevalences than are observed in the general population. Such an example is provided
in Figure 4.6(a), in which the assumed prevalence equals 50%, whereas the actual prevalence
of the general population is only 0.5%. Without using the formulas for prevalence correction
(see Equations 2.19 and 2.21), this practice can lead to misleading results or patient confusion.
For example, in Covid-19 prediction models, the data sets are often created with a prevalence
of roughly 50% (e.g. [Ko et al., 2020]). However, the general prevalence is usually much lower
[Iacobucci, 2020].

Importance of comparability across data sets - prevalence dependency Whenever using prevalence-
dependent metrics, one should be careful with comparisons across data sets. Figure 4.6(b)
presents the results for two data sets with different prevalence values but similar Sensitivity and
Specificity. Metrics that can be computed independently from the prevalence yield the same
metric scores for both data sets. Prevalence-dependent metrics, however, produce different
results and are thus not comparable across data sets. Appendix A.3 indicates which metrics
depend on the prevalence.

Importance of comparability across data sets - rankings Metrics like the Balanced Accuracy (BA) may
lead to different rankings of predictions compared to the Matthews Correlation Coefficient (MCC)
for data sets with a prevalence dissimilar to 50% [Chicco et al., 2021]. Figure 4.6(c) shows two
settings of prevalences (40% and 50%) as well as two data sets for each situation. In the case of
a 50% prevalence, the rankings of all four metrics are the same, favoring the right prediction over
the left one. For different prevalence values, MCC may lead to different rankings, preferring the
left prediction. Thus, interpreting metric scores across data sets needs to be done with caution.
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Figure 4.6: Pitfalls related to disregard of the domain interest: Importance of comparability across data
sets. (a) Effect of missing prevalence correction. Prevalence correction based on the general population
must be applied for case-control studies for the Positive Predictive Value (PPV) and Negative Predictive
Value (NPV) metrics. Using the case-control prevalence incorrectly produces inaccurate metric scores as
opposed to using the correct prevalence from the general population (which is often significantly lower
compared to a study group). (b) Effect of prevalence-dependent metrics. Prevalence-dependent metrics
(here: Positive Predictive Value (PPV), F1 Score, Matthews Correlation Coefficient (MCC)) should not be
used for data sets with different prevalence levels. Only prevalence-independent metrics (here: Balanced
Accuracy (BA), Expected Cost (EC)) yield the same scores in this setting with similar Sensitivity and Specificity
scores. (c) Effect of rankings in the case of prevalence dependency. The rankings produced by the Balanced
Accuracy (BA) (favoring the right predictions) are different from those produced by Matthews Correlation
Coefficient (MCC) (favoring the left predictions) for a prevalence different from 0.5. Only a prevalence
of 0.5 maintains rankings (favoring the right prediction). Further abbreviations: True Positive (TP), False
Negative (FN), False Positive (FP) and True Negative (TN). Figure adapted from [Reinke et al., 2021a].
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Importance of confidence values Perfect discrimination does not guarantee that a model is also
well-calibrated. Figure 4.7(a) shows an example that discriminates perfectly between the triangle
and circle class (AUROC score of 1.0). The predicted class scores, however, are not representative
of an empirical success rate, with scores of 0.51 for the circles and 0.52 for the triangles. This
model is, unfortunately, not well-calibrated. In diagnostics, one should therefore be careful when
interpreting the model outputs. Only the class scores of calibrated models can be interpreted as
the probability of an event, such as a disease or the risk of post-surgery complications. This
pitfall is also relevant for object detection and segmentation problems, which make use of
predicted class scores.

Generally, the definition of calibration may influence the chosen calibration errors. As shown by
Gruber and Buettner [2022] and Vaicenavicius et al. [2019], the Expected Calibration Error (ECE)
can appear to indicate a perfect calibration for top-level and class-wise calibration, although
the predicted class scores are not fully calibrated. This is illustrated in Figure 4.7(d), in which
only the canonical definition of the ECE indicates imperfect calibration.

While providing predicted class scores per pixel is less common for segmentation problems, the
use of fuzzy segmentation outputs is becoming more widespread [Nida et al., 2019; AlZu’bi et al.,
2020]. Thus, a decision threshold is important to be defined for those use cases. Based on the
threshold, the resulting segmentation masks vary and substantially influence the metric scores
[Nair, 2018]. This is illustrated in Figure 4.7(b), in which results are shown for three different
thresholds, which yield a difference in DSC scores of 0.44.

Importance of benefit-cost analysis Common validation metrics do not take into account the
potential analysis of benefits of TP predictions and the harms of FP predictions. This is reflected
by the Net Benefit (NB), which comes with an additional exchange rate parameter to incorporate
individualized costs of FP harm. An example is illustrated in Figure 4.7(c), based on [Vickers et al.,
2016]. Here, the specific exchange rate is defined by accepting about nine unnecessary biopsies
for detecting one lesion (1/9). This is incorporated into the NB calculation as a weight of the
fraction of FPs. When comparing two situations (directly applying the biopsy to all patients
versus only having biopsies for patients with a specific marker), common metrics like Accuracy
are in favor of the marker-based decision. Incorporating the exchange rate and benefit-harm
analysis, however, favors the biopsy of all patients, indicated by a higher NB.
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Figure 4.7: Pitfalls related to disregard of the domain interest: Importance of confidence values and benefit-
cost analysis. (a) Effect of perfect discrimination but poor calibration. The example discriminates perfectly
between the triangle and circle classes, yielding an Area under the Receiver Operating Characteristic
Curve (AUROC) score of 1.0. However, there is very little association between the predicted class scores and
the actual probability, therefore the predicted class scores are not well calibrated. (b) Effect of choosing
a global decision threshold. The resulting segmentation masks for three decision thresholds (0.2, 0.5,
and 0.8) are provided. The metric scores (here: Dice Similarity Coefficient (DSC)) are severely affected by
the choice of thresholds. (c) Effect of neglecting benefit-cost analysis. Accuracy and similar metrics do
not consider benefit-cost analyses, here resulting in favoring the marker-based biopsy. Incorporating the
clinically defined exchange rate yields a higher Net Benefit (NB), favoring the biopsy of all patients in
contrast to Accuracy. (d) Definition of calibration. Based on the used definition of calibration, the values of
the Expected Calibration Error (ECE) change. For the top-label and class-wise calibration, the metric appears
to indicate a perfect calibration, although the full probability vectors are not perfectly calibrated. This is
only revealed by calculating the canonical calibration errors. Further abbreviations: True Positive (TP), False
Negative (FN), False Positive (FP), True Negative (TN). Figure adapted from [Reinke et al., 2021a].
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Pitfall Subtype 2.2: Disregard of the properties of the target structure

In image analysis, the appearance of the targeted structures may severely impact the metric
values for improper metrics. We distinguish between size- and shape-related and topology-
related pitfalls of this subtype. In the following, we present pitfalls that relate to a disregard of
the properties of the target structure.

Small size of structures (size-related) In several biomedical use cases, we are faced with small
structures of interest, such as stem cells [Maška et al., 2014] or brain lesions [Menze et al., 2014].
Metrics like the DSC and Intersection over Union (IoU) should be used carefully in these cases
[Cheng et al., 2021], as illustrated in Figure 4.8(a). A difference of one or two pixels only slightly
impacts the DSC (and IoU) value for a large structure, yielding a decrease of 0.01 and 0.03 in
the presented example (top row). Yet, the same setting for small structures substantially varies
the metric values, yielding a decrease of 0.20 and 0.50 in the presented example (bottom row).
Those differences are even more relevant if one faces a high variability of structure sizes. In
such a situation, one should report the results by stratification of sizes. It is often undesirable
that few pixels influence the metrics that much since the correct boundaries of structures are
unknown in most of the cases and reference annotations may be subject to high inter-observer
variability [Joskowicz et al., 2019]. The same problems arise for Fβ Score. Similarly, they affect
the clDice when being applied to tiny tubular structures and are also relevant for localization
criteria in object detection and instance segmentation problems. For boundary-based metrics,
the effects are substantially less.

High variability of structure sizes (size-related) The Average Symmetric Surface Distance (ASSD)
and Mean Absolute Surface Distance (MASD) both calculate the average of minimal distances
between two boundaries (see Section 2.4.2). However, MASD greatly favors circumstances in
which the predicted structure is much smaller than the reference object and is located close to
the reference boundary, illustrated in Figure 4.8(b). MASD takes into account the average over
minimal distances (1) from the prediction boundary to the reference boundary and (2) vice versa.
In (1), the average would be approximately zero since the prediction boundary is closely related
to the reference boundary. Thus, the MASD score is only determined by (2), i.e. the minimal
distances from the reference to the prediction. As opposed to ASSD, this average distance is
halved in the case of the MASD, which results in a substantial benefit compared to ASSD.

When overlap-based metrics are used as a localization criterion, the pitfalls regarding overlap-
based metrics should be noted as well. For example, similarly to the DSC, the Mask/Box/Approx
IoU treats large and small objects differently and is less sensitive to boundary errors of large
objects, as shown in Figure 4.8(c), in which the Mask IoU is substantially less for the small structure.
This effect is less problematic for the Boundary IoU. In particular, Boundary IoU penalizes errors
in the boundaries more. However, it should be noted that the score heavily depends on the
chosen distance parameter. If a very high distance is chosen, Boundary IoU score does converge
towards the Mask IoU score.
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Figure 4.8: Pitfalls related to disregard of properties of the target structure: Small structure sizes and
high variability of structure sizes. (a) Effect of small structures. Only one pixel distinguishes Prediction 1
and 2 in the large and a small structures. This has a major impact on the corresponding Dice Similarity
Coefficient (DSC) values for the small structure (bottom row). (b) Effect of high variability of structure
sizes. The Mean Absolute Surface Distance (MASD) is substantially lower than the Average Symmetric
Surface Distance (ASSD) if the Prediction is very small (in this case, one pixel) and close to the reference
boundary. (c) Effect of small structure on localization criterion. Mask Intersection over Union (Mask IoU)
is less susceptible to boundary errors of large objects compared to the Boundary IoU, which penalizes
boundary errors and is more invariant to structure size. Figure adapted from [Reinke et al., 2021a].
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Complex shapes (shape- and topology-related) Overlap-based metrics are not designed to accurately
predict a segmentation boundary. As a result, they might not be able to distinguish between
differences in the shapes and contours of objects, which would be crucial for applications like
radiation, where locating and treating a tumor’s entire surface is necessary to prevent recurrence
[Burnet et al., 2004]. This issue is illustrated in Figure 4.9(a), which shows five different predictions
with various shapes. The scores of the overlap-based metrics are the same for all predictions,
neglecting the shapes of objects [Yeghiazaryan and Voiculescu, 2015]. This issue is better handled
by boundary-based metrics.

Complex shapes often appear in biomedical images, such as images of the bronchial tube or
hepatic vessels. In those cases, it is often desirable to segment the centerline rather than the
full object. However, common metrics such as the DSC do not measure differences in shapes (see
also Figure 4.9(a)). In Figure 4.9(b), we present an object inspired by bronchia. Prediction 1 solely
measures the root of the object, obviously not being a favorable approximation of the object.
Prediction 2 misses some pixels because it focuses solely on the structure’s centerline, which
would be favorable. The DSC, however, yields the same score for both predictions. The clDice
was designed for such use cases and penalizes Prediction 1 more for missing the centerline of
the structure.

Occurrence of overlapping or touching structures (shape- and topology-related) Pixels may not only be
assigned a single label. In brain tumor segmentation, for example, the tumor core lies inside the
tumor, resulting in two labels for the tumor core pixels [Menze et al., 2014]. In such scenarios, prior
knowledge indicates that an additional requirement should be added: The tumor core should lie
inside the tumor. Those requirements, however, are not implemented in common overlap-based
metrics. A similar example is illustrated in Figure 4.9(c), which shows two predictions. Despite
not meeting the condition that Label 2 must be inside of Label 1, Prediction 2 still receives a
higher DSC score than Prediction 1.

Occurrence of disconnected structures (shape- and topology-related) For object detection problems,
the granularity of annotations should be chosen to reflect biomedical needs. However, often
standard procedures such as the creation of bounding boxes are preferred. Bounding boxes may
not be appropriate to approximate complex structures, such as the tubular object in the top
example of Figure 4.9(d). Similarly, a box hides whether an object is disconnected, such as the
one in the bottom example. For both examples, the Prediction is considered as a TP, although
the object is not covered by the predicted bounding box. Moreover, the predicted bounding box
of the right example only covers one part of the disconnected structure and is still interpreted
as TP.
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Figure 4.9: Pitfalls related to disregard of properties of the target structure: Complex shapes, overlapping and
disconnected structures. (a) Effect of shape unawareness. The predictions of five algorithms (Predictions 1 to
5) have very different shapes but yield the same Dice Similarity Coefficient (DSC) scores. (b) Effect of complex
shapes. The DSC does not distinguish between a prediction only segmenting the root of the structure
(Prediction 1) and a prediction segmenting the centerlines (Prediction 2), which would be preferable. This
is recognized by the Centerline Dice Similarity Coefficient (clDice). (c) Effect of several labels per unit.
Prediction 2 violates the requirement that Label 2 be included within Label 1. Nonetheless, Prediction
2 yields a greater DSC score than Prediction 1, which meets the condition. (d) Effect of the annotation
type. Bounding boxes are not appropriate to approximate complex or disconnected objects. Although
the Prediction’s bounding box is not hitting the object, it is still considered as True Positive (TP) as the
localization criterion is fulfilled (here: Box Intersection over Union (Box IoU) > 0.3. Figure adapted from
[Reinke et al., 2021a].
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Pitfall Subtype 2.3: Disregard of the properties of the data set

The data sets used for performance assessment highly influence metrics. In the following, we
present pitfalls that relate to a disregard of properties of the data set.

High class imbalance Class imbalance often occurs if one disease for example may be underrep-
resented in a data set. While Accuracy is one of the most commonly used metrics for image-level
classification, one of its most critical limitations is that it is not designed to properly handle
class imbalances. Figure 4.10(a) illustrates an example of an extremely imbalanced data set with
only three occurrences of the positive and 97 samples of the negative class. Prediction 1 provides
a valid separation between both classes. However, Prediction 2 only suggests a majority vote,
always predicting a sample to be of the most frequently occurring class, namely class 2 (blue
triangles). Nonetheless, the Accuracy grants both predictions the same near-perfect score of 0.97.
This issue is spotted by metrics like the BA. Similarly, the MCC values indicate that Prediction
2 is not better than random guessing [Chicco and Jurman, 2020]. Class imbalance is quite
common in biomedical data sets. Thus, a high Accuracy score could be dangerous and misleading
in clinical practice. For instance, in a data set mostly composed of healthy subjects, using
Accuracy could quite easily lead to misdiagnosing those that are sick as healthy. This pitfall is
also relevant for the AUROC metric, which can be overly optimistic in the case of class imbalances.

As shown in Figure 4.6(b), BA has desirable properties given its prevalence independence. Still,
the metric might be deceptive in a very imbalanced situation, like in use case 2 from Chicco et al.
[2021]. Such an example is illustrated in Figure 4.10(b). The BA score is very high, implying that
the prediction is performing very well, although it predicts 499 FPs. This is because BA does
not consider predictive values. This issue is revealed by the MCC (and CK). In clinical practice,
focusing only on the BA score could thus be critical and lead to healthy subjects receiving harmful
unnecessary treatments.

Small sample sizes Due to privacy and resource issues, sample sizes are often low in the biomed-
ical domain. Severe problems may arise for the computation of some metrics in such situations,
such as the AUROC. Six images, three positive and three negative samples, are shown in Fig-
ure 4.10(c) along with the predicted class scores per sample. The two predictions only differ
in a single predicted class score. Still, even with this small change, the AUROC scores differ by
0.11. In the case of very small sample sizes, the respective 95% Confidence Interval (CI) [DeLong
et al., 1988] is very large and does not allow for meaningful interpretation. This pitfall is also
relevant for other multi-threshold metrics used in image-level classification, object detection,
and instance segmentation problems. Moreover, the ECE depends on the sample size. Even for a
perfectly calibrated model, the values may be unequal to zero for small sample sizes, as shown
by Gruber and Buettner [2022] and illustrated in Figure 4.10(d).
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Figure 4.10: Pitfalls related to disregard of properties of the data set: Class imbalance, small sample sizes.
(a) Class imbalance. Some metrics fail to properly reflect class imbalances (e.g. Accuracy). Even if the
classifier performs very poorly for one of the classes (Prediction 2), the metric produces a high score for the
underrepresented classes. (b) Misleading Balanced Accuracy (BA) scores. Even though the prediction is
ineffective, as evidenced by the Matthews Correlation Coefficient (MCC) score, BA may still produce a nearly
perfect score in imbalanced settings. (c) Area under the Receiver Operating Characteristic Curve (AUROC)
for small sample sizes. When sample sizes are small, multi-threshold metrics are unstable. Although only
one score differs between data sets 1 and 2, there is substantial variation in the AUROC scores between
both sets. The 95% Confidence Interval (CI) demonstrates the wide range of potential value. (d) Sample size
dependency. Even for a perfectly calibrated model, the Expected Calibration Error (ECE) may be unequal to
zero (indicating imperfect calibration) for small sample sizes. Figure adapted from [Reinke et al., 2021a].
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High inter-rater variability Errors in the annotations occur frequently for biomedical data, result-
ing in high inter-rater variability [Joskowicz et al., 2019]. An example of inter-rater variability
is illustrated in Figure 4.11(a), which shows the annotations of two raters (which can also be
interpreted as reference and prediction). The segmentation masks slightly differ in the outer
pixels of the boundaries, yielding a DSC score of 0.68, although the main body of the structure
is perfectly segmented. Using a sufficient threshold for the Normalized Surface Distance (NSD)
metric resolves the issue with a perfect score of 1.0. This pitfall is also relevant to other metrics
(e.g. the IoU, HD(95), ASSD or MASD) and for the localization criteria in object detection.

Outliers, noise, and artifacts in the reference annotation Metric scores may be substantially impacted
by the existence of spatial outliers, for instance given by noise or reference annotation distortions.
An example is shown in Figure 4.11(b), for which a single outlier pixel heavily affects the HD score.
By the definition of using the 95% percentile instead of the maximum of shortest distances,
outliers are handled better by the Hausdorff Distance 95 Percentile (HD95) compared to the
regular HD.

Empty reference Biomedical image analysis data sets often contain data from healthy and sick
patients, for example in the case of tumor monitoring. Thus, images of healthy patients do
not contain a tumor and are empty. In those images, the number of TP predictions is naturally
zero, as the target structure is not present. In the case of an empty reference, a non-empty
prediction shows a FP with no TP. Vice versa, in the case of a non-empty reference, an empty
prediction would yield a FN with no TP as well. If either the reference or prediction is empty,
several boundary-based metrics are undefined, depending on the implementation. Similarly, if
both of them are empty, this causes division by zero errors for metrics such as the DSC and NSD.
These use cases are illustrated in Figure 4.11(c). In such cases, ad hoc rules need to be defined to
handle those issues.
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Figure 4.11: Pitfalls related to disregard of properties of the data set: High inter-rater variability, spatial
outliers in the reference and empty reference or prediction. (a) Effect of inter-rater variability. Validating
Annotator 2’s performance while utilizing Annotator 1 to create the reference yields a poor Dice Similarity
Coefficient (DSC) score, as inter-rater variability is not taken into account. The Normalized Surface Distance
(NSD) captures this variability. (b) Effect of annotation errors or noise. Particularly in the case of the
Hausdorff Distance (HD) when applied to small structures, a single incorrectly annotated pixel may result in
a significant reduction in performance. In contrast, the Hausdorff Distance 95 Percentile (HD95) can handle
spatial outliers. (c) Effect of empty reference or prediction. An empty reference and/or prediction yields
division by zero errors, which in turn yield metric scores of Not a Number (NaN). Further abbreviations:
Average Symmetric Surface Distance (ASSD), Mean Absolute Surface Distance (MASD). Figure adapted from
[Reinke et al., 2021a].
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Pitfall Subtype 2.4: Disregard of the properties of the algorithm output

Depending on the output of algorithms, metric values may be affected. In the following, we
present pitfalls that relate to a disregard of properties of the algorithm output.

Empty prediction Similar to the previous example, an empty prediction may cause division by
zero errors, as shown in Figure 4.11(c).

Possibility of overlapping predictions Similar to how overlapping reference objects may cause
pitfalls, overlapping predictions may be problematic. On the one hand, they may cause problems
in the assignment strategy of object detection and instance segmentation tasks. On the other
hand, they can lead to misleading results when phrasing the problem as semantic or instance
segmentation. The two objects in Figure 4.12(a) end up being merged into a single object when
being phrased as semantic segmentation, yielding ideal metric scores. However, the predictions
are not perfect, which is shown by phrasing the problem as instance segmentation. Given the
amount of overlap, they end up reflecting the merged shape perfectly. However, the prediction of
Instance 1 only shows a U-shape, not the actual rectangular shape, leading to a reduced DSC of
0.51. Also, the amount of overlap between the objects is much lower compared to the reference,
which is not reflected in the metric scores.

Unavailability of predicted class scores If an algorithm outputs predicted class scores rather than a
class label, multi-threshold metrics can be computed. If those scores are not available, other
metrics should be used. However, some applications still calculate multi-threshold metrics (for
example [Bai and Urtasun, 2017; Hirsch et al., 2020]). Often, it is assumed that all confidence
scores are the same, meaning that the formula of the Average Precision (AP) would simplify to
Sensitivity · PPV. Those assumptions are not standardized and may yield different results for
different implementations, as shown in the example of Figure 4.12(b).
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Figure 4.12: Pitfalls related to disregard of properties of the algorithm output: Possibility of overlapping pre-
dictions and unavailability of predicted class scores. (a) Effect of overlapping predictions. The overlapping
instances of the prediction are combined into a single structure in Semantic Segmentation (SemS) problems,
producing an ideal metric score. Instance 1 is not at all well-approximated when the issue is framed as
an Instance Segmentation (InS) problem. Common measures (here: Dice Similarity Coefficient (DSC)) do
not highlight this problem. (b) Effect of unavailability of predicted class scores. Predicted class scores are
necessary for being able to calculate multi-threshold metrics, such as the Average Precision (AP). Different
strategies/heuristics for such situations (here: implementations 1 and 2) yield varying values. Figure adapted
from [Reinke et al., 2021a].
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Pitfall Type 3: Pitfalls related to poor metric application

Type 3 of pitfalls relate to all limitations resulting from a poor application of metrics. We further
distinguish type 3 into five subtypes: Inadequate metric aggregation (3.1), ranking schemes (3.2),
metric implementation (3.3), metric reporting (3.4), and interpretation of metric values.

Pitfall Subtype 3.1: Inadequate metric aggregation

In real situations, metric values are typically calculated for several images and are usually
reported in an aggregated fashion. The type of aggregation, however, can have a huge impact
on the resulting values. We distinguish between class-related and data set-related aggregation
pitfalls, as presented in the following:

Hierarchical structure of classes (class-related) Many counting metrics are similarly defined for
a setting with more than two classes (see Section 2.4.1). These classes are often set up in a
hierarchical manner. For example, one class could refer to the absence of pathology, while
other classes define different specifications of pathologies. In these cases, the performance
assessment should be done per class and not for the binary case only. Figure 4.13(a) provides
an illustration of how triangles and circles can be classified, with the circle class being further
divided into two different classes (green and pink; for example representing different types of
pathologies). The middle example’s binary distinction between triangle and circle yields a high
metric score (Accuracy of 0.88). The predictor, however, has trouble distinguishing between the
circles when analyzing the three classes separately (pathologies), which results in a considerable
decrease in their per-class Accuracy scores (0.63). This difference could be problematic in clinical
practice if the classifier is assumed to perform well across all pathologies, missing that it may
not be ideal to classify a specific pathology.

Non-binary situations (class-related) Different methods may be used to compute the metric values
for multi-class problems. One could validate metrics per class and aggregate the values over
the classes in a subsequent step. However, similar to class confusions, some classes may be
more important than others. Such an example is provided in Figure 4.13(b), illustrating three
classes with a pre-defined weight. Simple macro-averaging of classes (averaging scores over
all classes) leads to misleading results compared to the weighted average. The pitfall is also
relevant for object detection and segmentation problems and other metrics from all families
that do not define a class aggregation by definition. For example, in the case of brain tumor
segmentation, three classes are typically assumed, the contrast-enhancing tumor, the tumor
core, and the whole tumor. From a clinical perspective, the contrast-enhancing tumor is more
important than the other channels [Weller et al., 2014] and should be given a higher weighting.

A similar situation is displayed in Figure 4.13(c) for the segmentation of multiple classes. Simply
averaging over all values and ignoring classes would not yield a good representation of the
performance. Only a validation per class would reveal that the performance is very different
over the different classes. A simple average would for example have hidden that the aggregated
metric score for class 2 is only at 0.30.
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Figure 4.13: Pitfalls related to inadequate metric aggregation: Hierarchical structure of classes, unequal
handling of classes, and per-class aggregation. (a) Pitfall: Hierarchical structure of classes. In categorical
classification, classes may be arranged hierarchically, for instance, as a number of positive classes and a
single negative class. The validation outcome is substantially impacted by whether the problem is stated
as binary or multi-class. While a per-class validation produces a poor Accuracy score of 0.63 because
the two circle classes cannot be separated well, binary classification (middle), which only distinguishes
triangles from circles, produces a high Accuracy. A red cross denotes a prediction that was incorrect. (b)
Unequal handling of classes. Unequal relevance of classes, as indicated by pre-defined weights of classes,
is ignored by simple averaging (macro-averaging) of the Accuracy. A red cross denotes a prediction that
was incorrect. (c) Effect of aggregating over all scores. Simply averaging over all metric values (here: Dice
Similarity Coefficient (DSC)) rather than stratifying per class would not reveal the actual low performance
for Classes 2 and 3. ∅ denotes the average DSC values. Figure adapted from [Reinke et al., 2021a].
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Non-independence of test cases (data set-related) In biomedical image analysis, data is often struc-
tured hierarchically, such as data from different hospitals or patients, as shown in Figure 4.14(a).
In this example, data was acquired from five patients with different amounts of images. A sim-
ple aggregation of metric scores (DSCall) would not represent this hierarchy correctly, given
the non-independence of data and the differing number of images per patient. As shown by
computing the average metric scores per patient, the metric values are substantially different
for the patients. Patients 2 to 4 yield much lower metric scores compared to Patients 1 and 5.
Especially given the high number of images for Patient 1, the aggregation would be overruled by a
simple aggregation. Instead, aggregating the average metric scores per patient into a hierarchical
average (DSChierarchical) would give a better representation of the actual data structure.

Metric aggregation and NaN handling (data set-related) In the previous paragraphs, we showed that
NaN values may occur in several cases, for example, if one or both of reference and prediction is
empty (see Figure 4.11(c)). In the case of challenges, participants may miss submitting results
for some images, which also yields NaN values. Depending on the NaN type, a strategy should
be defined on how to deal with those missing scores. A common strategy is to simply ignore
them while aggregating, as in the examples presented in Figure 4.14(b) and (c). Another way to
handle the values would be to set them to the worst possible value. For metrics like the DSC
– and other metrics that are bounded between 0 and 1 and for which a value of 1 relates to a
perfect score – the value would be set to 0. Depending on the chosen strategy, it should be
noted that the aggregated value differs; in our example from Figure 4.14(b), the difference is quite
substantial. Deciding on a missing value strategy is even more complex for metrics without an
upper bound, such as the HD(95), the MASD, or ASSD. In these cases, there is no common worst
possible value (see Figure 4.14(c)). One possibility would be to use the maximum distance of
the images as the worst possible value. However, this distance would be different across data
sets (or even within a data set) and may thus not be ideal for comparison or generalization. A
case-based ranking scheme (see Section 2.1.2) would overcome the issue by assigning the last
rank to every image with NaN values. Another strategy lies in normalizing the metric scores so that
they are bounded (e.g. between 0 and 1) and using the highest score as the worst possible metric
value. Similar to metrics with fixed boundaries, the missing value-handling strategy impacts the
resulting aggregates.
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Figure 4.14: Pitfalls related to inadequate metric aggregation: Ignoring hierarchical data structure and
missing value handling. (a) Effect of ignoring the hierarchical structure of data. In this example, images are
taken from different patients with a varying number of images. A simple average of the metric scores (here:
Dice Similarity Coefficient (DSC)) would yield a high value that does not represent the actual performance.
In this case, the low performances for Patients 2 to 4 would be overruled by the high scores of Patient 1, for
which the highest amount of data points was collected. (b) Effect of Not a Number (NaN) handling in the
case of fixed bounds. The strategy of missing value handling largely impacts the aggregated metric scores.
For the DSC, ignoring NaNs yields a score of 0.90, setting the score to the worst possible value resulting in a
mean score of 0.60. (c) Effect of NaN handling in the case of no fixed bounds. If no fixed upper (or lower)
bounds are defined (as for the Hausdorff Distance (HD)), even more possibilities for the missing value
handling may arise, with all of them yielding (substantially) different metric aggregates. Figure adapted
from [Reinke et al., 2021a].
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Lack of stratification and interdependencies between classes (data set-related) Data sets in biomedical
image analysis are very often accompanied by different kinds of meta-data, such as specifi-
cations of acquisition protocols, image resolution (see Figure 4.22(a)), the presence of metal
artifacts, or patient-related information such as age or gender. Figure 4.15(a) shows an example
of ignoring the gender of patients, which was provided as meta-information along with the
images. The overall Accuracy yields a value of 0.58. However, this value does not adequately
represent the performance across the specific data set. It becomes clear that the performance
is substantially worse for women than for images of men when the Accuracy is computed
separately for both types of gender. This pitfall is also relevant for object detection and seg-
mentation problems and generalizes to all metrics that do not take into account the stratification.

Additionally, if there are multiple classes present in a data set, one must carefully consider
how classes are correlated. Classes may be interdependent by nature, for example the body
fat percentage and Body Mass Index (BMI). On the other hand, interdependencies may occur
from the data acquisition, for example by including images from the same patient. Figure 4.15(b)
provides the example of a classifier aiming to classify the blue triangles. The prediction yields an
Accuracy of 0.94, indicating a near-perfect prediction. When calculating the Accuracy for images
with and without light blue squares, it becomes apparent that high Accuracy was only observed
for images with visible light blue squares. Images without the square yielded a much lower
performance. This pitfall is also relevant for object detection and segmentation problems and
generalizes to all metrics that do not take into account the interdependencies.

Disregard of number of images (data set-related) The AP metric does not consider the total number
of images. Figure 4.15(c) provides an example of two data sets. The second data set contains two
additional empty images that were correctly predicted as empty. The AP score is similar for both
situations, while data set D1 receives a higher number of False Positives per Image (FPPI) and is
thus penalized with a lower Free-Response Receiver Operating Characteristic (FROC) Score.
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Figure 4.15: Pitfalls related to inadequate metric aggregation: Lack of stratification, interdependencies,
and disregarding number of images. (a) Effect of ignoring meta-information (here: gender). The overall
Accuracy does not indicate that the prediction yields much higher scores for men compared to women
when the patient’s gender is ignored from the available meta-information for each image. (b) Effect of
interdependencies between classes. Given that the blue triangle regularly appears alongside the light blue
square, a prediction may yield a nearly perfect Accuracy score of 0.94 for it. The algorithm only performs
well when the pink class is present, apparent from computing the Accuracy in the presence and absence
of the square class. (c) Effect of the number of images. Data sets D1 and D2 are similar, but D2 contains
additional empty images that were correctly predicted as such. While the Free-Response Receiver Operating
Characteristic (FROC) Score correctly penalizes D1, the Average Precision (AP) ignores the total number of
images, yielding the same score for both data sets. Figure adapted from [Reinke et al., 2021a].
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Pitfall Subtype 3.2: Inadequate ranking schemes

In challenges or benchmarking experiments, algorithms are typically ranked to compare perfor-
mances. As we discuss in the following sections, the chosen ranking scheme and metrics may
substantially change.

Combination of related metrics in rankings Every metric reflects a certain property. When using
multiple metrics, it should be made sure that the metrics highlight different properties and
are not focused on the same effects. If so, a specific property might be overrated in the case
of mathematically related metrics, such as the DSC and IoU (see Equation 2.50). Figure 4.16(a)
provides an example of a ranking based on three metrics, the DSC, IoU, and HD. Since DSC and
IoU focus on the overlap between structures and measuring the same properties, they lead to the
same ranking scheme. The HD, reflecting the accuracy of the object boundaries, yields a different
ranking. If all ranks would be aggregated into one single ranking, the property of overlap would
receive a higher weight in this case. In addition, the DSC and IoU rankings won’t add additional
value to the other, thus, being redundant. In fact, when checking the challenge tasks that were
analyzed in Sections 3.1 and 5.1 (with a total of 804 tasks in both Sections), we found that 15 tasks
used both metrics, the DSC and IoU, simultaneously in their rankings. More severely, three tasks
based their rankings on metrics that were identical because the organizers were not aware of
metric synonyms: Two tasks used the F1 Score and the DSC, and one task used the Sensitivity
and Recall simultaneously.

Ranking variability As we show in the following Section 4.3, rankings are quite sensitive to the
chosen calculation method. The common practice of only computing ranking tables (as we show
in Section 5.3, 27% of challenges solely report ranking tables), hides important information on
the distribution of metric values and differences between algorithms.
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Figure 4.16: Pitfalls related to inadequate ranking scheme: Ignoring metric relationships and ranking
variability. (a) Effect of computing rankings for mathematically related metrics. Related metrics, such
as the Dice Similarity Coefficient (DSC) and Intersection over Union (IoU) usually yield the same rankings,
while metrics focusing on other properties, such as the Hausdorff Distance (HD), may result in a completely
different ranking. (b) Effect of ranking variability. Different benchmarking experiments (top: clear ranking,
bottom: unclear ranking) may yield the same ranking tables. Only reporting tables may hide information on
the distribution of metric scores. Figure adapted from [Reinke et al., 2021a].
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Pitfall Subtype 3.3: Inadequate metric implementation

Theoretical knowledge of metrics is only one important step. The implementation of metrics is
also not always straightforward and well-defined. In the following, we present several pitfalls
related to metric implementation:

Non-standardized metric definition Although the FROC Score is often favored by clinicians given its
easier interpretation, the abscissa of the FROC curve is not standardized. This results in different
FROC Scores for different value ranges of the abscissa. Figure 4.17(a) shows the example of three
different value ranges for the same prediction. The FROC Scores differ substantially from 0.69 to
0.78.

Using different implementations for one metric may result in different values. For example,
popular repositories use varying approaches to handle the corner case of identical confidence
scores in object detection or instance segmentation problems for the AP metric. While MS
Common Objects in COntext (COCO) [Lin et al., 2014] applies one step for every prediction (also
for duplicate scores), the CityScapes [Cordts et al., 2015] implementation treats all objects
with duplicate scores in a single step. Also, they use different ways of interpolation. All these
implementations yield different AP scores, as shown in Figure 4.17(b).

Sensitivity to hyperparameters As shown in Section 2.4, several metrics rely on defining additional
hyperparameters. For example, the tolerated distance from a structure’s boundary can be defined
by the hyperparameter τ for the NSD, while the parameter β defines the treatment of FPs versus
FNs in the Fβ Score. In object detection or instance segmentation tasks, the chosen localization
criterion (for example the (Box) IoU) includes the definition of a localization threshold. Only
predictions whose localization criterion is higher than the defined threshold, are considered as
TP instances. Yet, the threshold may highly influence the resulting metric scores. Figure 4.17(c)
shows an example of a loose criterion, for which a TP is considered as soon as the IoU score is
greater than zero. In this case, the prediction is far from perfect as it is vastly too large for the
small reference instance and the overlap is only marginal with an IoU score of 0.05. Especially in
the case of tubular structures, the threshold should be chosen carefully. Figure 4.17(d) illustrates
an example with a diagonal, tubular shape. However, the bounding boxes quickly grow given the
tubular nature of the object, resulting in Prediction 1 being considered as TP and Prediction 2 as
FP, although both predictions look very similar.
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Figure 4.17: Pitfalls related to inadequate metric implementation: Non-standardized metric definition and
sensitivity to hyperparameters. (a) Effect of the abscissa for the FROC curve. The Free-Response Receiver
Operating Characteristic (FROC) curve is not standardized. Different choices of the abscissa yield different
curves and substantially different FROC Scores. (b) Effect of duplicate confidence scores. In the case of
duplicate confidence scores, implementations of the Average Precision (AP) vary and result in substantially
different metric values. (c) Effect of a loose threshold. Large predictions may deceive the localizations
when a True Positive (TP) is defined by an Intersection over Union (IoU) > 0. (d) Effect of the threshold for
tubular structures. There may be a quadratic difference in the number of bounding box pixels, especially for
diagonal, narrow objects, resulting in one prediction considered as TP and the other as False Positive (FP),
although fairly similar. Figure adapted from [Reinke et al., 2021a].
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Defining global decision thresholds In a scenario of multiple classes, a single cutoff value for a
threshold must be determined for all classes. As the ideal threshold range for one class may be
different from the ideal threshold range for another class, multi-threshold metrics like AUROC
may be unduly optimistic. Three classes with three perfect discriminations are provided in
Figure 4.18(a). The corresponding counting metrics (here: Accuracy) produce very poor results for
classes 2 and 3 if a single threshold (0.7) is chosen based on the results of class 1. Other counting
metrics would also be affected by this issue. Thus, if not chosen to represent all classes, this
pitfall could yield a classifier that would only be able to, for example, predict one specific type
of tumor, missing or wrongly classifying all others.

Discretization issues Calibration errors, such as the ECE and Maximum Calibration Error (MCE),
often use a binning strategy to divide the probability interval of [0, 1] into bins. However, how to
choose those bins is not clearly defined . The number could be chosen freely, similarly to the
choice of whether it should be an equidistant split or not. The choice of the bins heavily affects the
corresponding metric scores, as shown in Figure 4.18(b), which depicts three different numbers
of equidistant bins for the same prediction. The calibration error scores vary substantially,
especially the MCE is much higher for ten bins compared to three or five bins.

Definition of class labels In binary classification problems, classes are often defined as positive
(e.g. cancer) and negative (e.g. no cancer). Per-class counting metrics heavily rely on the
definition of those labels and yield completely different scores when exchanging them. Such an
example is provided in Figure 4.18(c). When exchanging the positive and negative classes, the
values of the presented per-class counting metrics substantially differ. Reversing the labels does
not affect multi-class counting metrics. While defining the positive and negative class may be
straightforward in some cases, there may be scenarios for which the interpretation can favor
both ways. When classifying patients into sick and healthy, one could assume the sick class as
positive (because it has the condition) as the goal would be to predict which patients suffer
from a disease. On the other hand, one may be interested in identifying patients that are fully
recovered, thus defining the healthy class as positive.

Assessing different properties simultaneously In instance segmentation problems, the Panoptic
Quality (PQ) can be utilized to assess the detection and segmentation quality simultaneously in
a single score. The metric value can, however, be ambiguous. Figure 4.18(d) provides an example
with two predictions. While Prediction 1 produces perfect segmentation results, the detection
quality is low, as two additional FP objects are predicted. In contrast, Prediction 2 is perfect in
terms of object detection but rather poor in segmentation. However, the PQ is the same for both
predictions.
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Figure 4.18: Pitfalls related to inadequate metric implementation: Cutoff value, discretization issues, defini-
tion of class labels, and assessing multiple properties. (a) Effect of the determination of a global threshold
for all classes based on a single class. In this example, the class-specific Area under the Receiver Operating
Characteristic Curve (AUROC) score is 1.0 for all three classes. The resulting counting metrics for classes 2
and 3 are subpar when selecting an overall threshold based on class 1 for all classes. (b) Effect of the choice
of bins. The number of bins is not standardized for the Expected Calibration Error (ECE) and Maximum
Calibration Error (MCE). However, the number of bins substantially affects the respective scores. (c) Effect
of the definition of class labels. Per-class counting metrics (here: Sensitivity, Specificity, Positive Predictive
Value (PPV)) depend on the definition of the positive class. Switching class labels yields substantially
different metric scores. Multi-class metrics (here: Accuracy, Matthews Correlation Coefficient (MCC)) are
not affected. (d) Effect of assessing segmentation and detection quality simultaneously. With many False
Positive (FP) predictions, Prediction 1 produces an excellent segmentation but shows low detection quality,
whereas Prediction 2 does the opposite (only predicting True Positive (TP) instances; no FP but low segmen-
tation quality). Both, however, produce the same Panoptic Quality (PQ) score. Figure adapted from [Reinke
et al., 2021a].
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Metric-specific limitations Several pitfalls are related to the inherent mathematical properties
of a metric. In the following, we will present two examples for multi-threshold metrics for the
example of the AP and four examples for center-based localization criteria.

The AP is one of the most popular metrics for validating object detection problems and is based
on the Precision-Recall (PR)-curve. For the creation of the curve, the predicted class scores
(usually referred to as confidence scores in object detection) are ordered. Once such a ranking of
confidence scores has been generated, the actual values of the confidence scores are no longer
of importance.

Figure 4.19(a) shows an example of two predictions for the same two reference objects. The
predictions are very similar to each other (both yielding two TPs and one FP), but they differ in
one confidence score. However, they yield the exact same PR-curve and AP score because the
confidence score that differs across predictions but do not change the ranking of confidence
scores, thus not affecting the resulting AP score. Thereby, the predicted class scores are neglected
within the ranking as long they are not changing the ordering.

In contrast, in other situations, very small changes in the confidence scores may substantially
affect the AP if they are changing the ordering of predicted class scores. Such a situation is
shown in Figure 4.19(b). In this example, the predictions again are very similar with small changes
(0.04) in the confidence scores for two predicted objects. However, those differences cause a
different ordering of class scores, thus affecting the PR-curve and AP scores.
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Figure 4.19: Pitfalls related to inadequate metric implementation: Pitfalls regarding multi-threshold metrics.
(a) Effect of predicted class scores that do not change the ranking. Predictions 1 and 2 show the same
bounding boxes, but differ in one predicted class score. This is not recognized by the Average Precision (AP)
if the score does not change the overall ranking of scores. (b) Effect of small changes in the predicted
class scores. Predictions 1 and 2 show the same bounding boxes and are only marginally different in their
predicted class scores. However, the AP values differ substantially, since the small changes in the class
scores change the ranking of predicted class scores. Figure adapted from [Reinke et al., 2021a].
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Other mathematical implications arise from center- or point-based localization criteria. Since
those criteria only rely on a single point (either a center point or a point inside a mask, box, or
approximation), they are naturally susceptible to errors. Figure 4.20 presents four pitfalls of
center- or point-based localization criteria.

The center-cover criterion, which assigns a TP if the reference center is inside the predicted
object, and the point inside mask/box/approximation criterion can easily be deceived by very
large predictions, as shown in Figure 4.20(a).

On the other hand, the Center Distance does not consider the overlap between objects. Thus, as
shown in Figure 4.20(b), a prediction that does not overlap the reference could be considered as
a TP object.

Similar to the center-cover criterion, the center-hit criterion assigns any prediction as TP for large
reference objects since it assigns a TP as soon as the prediction center is inside the reference
object (see Figure 4.20(c)).

For elongated, tubular objects, the Center Distance may assign a FP to a prediction that ac-
tually hits the object, as shown in Figure 4.20(d). This could be overcome by the point inside
mask/box/approximation criterion.

In summary, center- or point-based localization criteria may be easily deceived, for example by
always predicting an extremely large structure. Thus, this may yield detecting much more TPs
than actually seem reasonable. For example, an algorithm predicting many very large structures
could be translated into clinical practice although it is not able to accurately localize the actual
tumor or similar objects.
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Figure 4.20: Pitfalls related to inadequate metric implementation: Center- or point-based localization
criteria. (a) Effect of large predictions for the center-cover criterion. The center-cover criterion is more
likely to assign large predictions True Positive (TP). (b) Effect of no overlap for distance-based criteria.
The center distance-based criterion only considers the distance between two center points and ignores
whether the prediction actually overlaps the reference object. (c) Effect of large references for the center-hit
criterion. The center-hit criterion is more likely to assign an object TP if the reference is large. (d) Effect of
tubular structures on the distance-based criterion. The center distance-based criterion may consider an
object as False Positive (FP) for a tubular shape, although the point is inside the tube. Figure adapted from
[Reinke et al., 2021a] and [Kooi, 2021b].
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Pitfall Subtype 3.4: Inadequate metric reporting

Metric values should be carefully reported, keeping the above-mentioned limitations of metric
application in mind. In the following, we present pitfalls specifically related to metric reporting:

Non-determinism of algorithms When reporting metric values, one should be aware of the fact
that Artificial Intelligence (AI) algorithms are non-deterministic, i.e. several runs of the same
algorithm may yield different results (see Figure 4.21(a)). This effect can be decreased by using
fixed seeds. But even when using the exact same architecture, data splits, and random seeds,
there is still variation in the metric scores, for example given by non-deterministic layers (e.g.
dropout layers) or weight initialization [Pham et al., 2020].

Misleading visualization Visualizing the distribution of metric scores is a simple but powerful
tool for analyzing the results of a challenge or even a single algorithm. This could be achieved
via boxplots, as shown in the top left example in Figure 4.21(b). However, boxplots do not show
the actual distribution of scores. The boxplot hides a cluster of images, for which only very low
scores were achieved. This is better shown by either using violin plots (top right) or overlaying
the plots with the individual metric scores as dots (bottom left). Yet, those two variants still
hide important information and the meaningfulness of the plots can be further increased by
color-coding the dots, as in the bottom right part of the figure. This kind of plot is especially
useful for hierarchical data, which is not independent, such as videos or images from the same
patient. Assuming that the metric scores were provided for images from four videos, only this
last plot reveals that all low metric scores were achieved for Video 4 (pink). Thus, the analysis of
results could prompt investigation of why all images from this video were hard to process.
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Figure 4.21: Pitfalls related to inadequate metric reporting. (a) Effect of non-determinism of algorithms.
Artificial Intelligence (AI) algorithms are non-deterministic and yield different values in different runs,
although network and data stay constant. Even when fixing random seeds, results still differ slightly. (b)
Effect of misleading visualization of raw metric scores. Simple boxplots (top left) do not provide information
on the distribution of the metric values (here: Dice Similarity Coefficient (DSC)), which would be given by
violin plots (top right) or dots- and boxplots (bottom left). Yet, both plots would hide information in the
case of hierarchical data and could be improved by color-coding the dots. Figure adapted from [Reinke
et al., 2021a].
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Pitfall Subtype 3.5: Inadequate interpretation of metric values

Whenever metric values are reported, they should be carefully interpreted, keeping the domain
interest and current situation in mind. In the following, we present pitfalls related to metric
value interpretation:

Image resolution and dimension The appearance and accuracy of the reference annotation and
predictions highly depend on the image resolution, pixel size, and spacing. An example of
different resolutions is shown in Figure 4.22(a). The resulting metric scores are different for low
and high-resolution images, as the manifestation of the objects changes. This pitfall is also
relevant for object detection problems.

Generally, it should be noted that the dimensionality of an image differently affects the metric
values of overlap-based metrics. Figure 4.22(b) shows an example of two rectangles or bounding
boxes in a 2D and 3D setting. In the 3D case, being off by one voxel in the z-dimension yields a
much lower Box/Approximation Intersection over Union (Box/Approx IoU) score than in 2D.

Lack of upper or lower bounds CK examines how closely a prediction matches the distribution of
the actual class. The resulting score can be accompanied by the calculation of the maximum
CK, which represents a corner case where either of FP or FN are equal to zero [Umesh et al.,
1989]. The maximum CK score decreases the more the predicted positive and negative sample
numbers diverge from the actual positive and negative sample numbers, respectively [Widmann,
2020]. The distribution of positive and negative samples of the left prediction in Figure 4.22(c)
closely follows the actual distribution of positive and negative samples (13 circle and 87 triangle
predictions; 15 actual circles and 85 actual triangles), yielding a high maximum CK. With a larger
difference to the actual number of circles and triangles, such as given by the right prediction,
the maximum CK decreases, although the Accuracy and CK values increase.

Relevance of metric differences in rankings When ranking algorithms by aggregated metric scores,
one should further note that extremely small differences in the scores may yield different ranks,
but the differences may not be relevant from a biomedical perspective. An algorithm which
surpasses another by a score difference of only 0.0001 (such as the algorithm in Figure 4.22(d)) may
not actually be superior in practice, especially considering the non-determinism of algorithms
(see above). Instead, assigning both algorithms a shared rank would be favorable.
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Figure 4.22: Pitfalls related to inadequate interpretation of metric values. (a) Effect of different image
resolutions. The prediction and the reference annotation (blue shape (reference) vs. pink outline (desired
circular shape)) are significantly influenced by variations in the image resolution. Due to the varied
resolution, a prediction of the exact same shape yields different Dice Similarity Coefficient (DSC) and
Hausdorff Distance (HD) scores. (b) Effect of image dimension. The additional z-dimension in 3D settings
causes an increase in incorrect pixels that is cubical in size and thus impacts the Box Intersection over
Union (Box IoU) more than in 2D settings. (c) Upper bound not equally obtainable in Cohen’s Kappa (CK) (κ).
In comparison to Prediction 2 with a dissimilar distribution of positive and negative samples to the actual
distribution, Prediction 1 with a similar count of positive and negative samples to the actual distribution
yields high maximum CK (κmax) values. This is in contrast to the Accuracy and κ values. (d) Effect of relevance
of metric differences. When calculating rankings, one should be aware that irrelevant metric differences
(here: 0.0001) yield differences in the ranks. Figure adapted from [Reinke et al., 2021a].
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Overview of pitfalls related to problem category

Here, we show which of the presented pitfalls apply to the metrics proposed in Section 2.4. We
provide an overview of potential pitfalls and the metrics that are affected by the properties
for image-level classification and calibration (Table 4.1), semantic and instance segmentation
(Table 4.2), and object detection (Table 4.3).

Table 4.1: Overview of pitfalls related to image-level classification and calibration metrics. For each
illustration, the metrics that are affected by the property are marked with a red cross. Abbreviations:
Area under the Receiver Operating Characteristic Curve (AUROC), Balanced Accuracy (BA), Brier Score (BS),
Cohen’s Kappa (CK), Expected Cost (EC), Expected Calibration Error (ECE), Positive Likelihood Ratio (LR+),
Matthews Correlation Coefficient (MCC), Net Benefit (NB), Negative Predictive Value (NPV), Positive Predictive
Value (PPV) and Youden’s Index (J).

Source of poten-
tial pitfall

Figure Accuracy AUROC BA/J BS CK EC ECE Fβ
Score

LR+ MCC NB NPV/
PPV

Sensitivity/
Specificity

Unequal impor-
tance of class
confusions

Figs. 4.5(a),
(c) and (d)

é é é é é é é

Missing preva-
lence correction

Fig. 4.6(a) é

Prevalence depen-
dency

Fig. 4.6(b) é é é* é é é

Rankings in the
case of prevalence
dependency

Fig. 4.6(c) é é

Neglecting confi-
dence values

Fig. 4.7(a) é é é é é é é é é é é

Neglecting of
benefit-cost
analysis

Fig. 4.7(c) é é é é é é é é é é é

High class imbal-
ance

Figs. 4.10(a)
and (b)

é é é* é

Misleading scores Fig. 4.10(b) é

Low sample sizes Fig. 4.10(c) é

Single cut-off
value for multiple
classes

Fig. 4.18(a) é

Choice of bins for
calibration errors

Fig. 4.18(b) é

Definition of class
labels

Fig. 4.18(c) é é é é é

Upper bound not
equally obtain-
able

Fig. 4.22(c) é

* Depending on the selected parameters, EC can be changed to become prevalence-independent.
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Table 4.2: Overview of pitfalls related to segmentation metrics. For each illustration, the metrics that
are affected by the property are marked with a red cross. Abbreviations: Average Symmetric Surface
Distance (ASSD), Centerline Dice Similarity Coefficient (clDice), Dice Similarity Coefficient (DSC), Hausdorff
Distance (HD), Hausdorff Distance 95 Percentile (HD95), Intersection over Union (IoU), Mean Absolute Surface
Distance (MASD), Normalized Surface Distance (NSD) and Panoptic Quality (PQ).

Source of potential pitfall Figure ASSD clDice DSC Fβ
Score

HD HD95 IoU MASD NSD/
Boundary

IoU

PQ

Boundary unawareness Fig. 4.4(a) é é é é

Structure center unawareness Fig. 4.4(b) é é é é

Volume unawareness Fig. 4.4(c) and
(d)

é é é é é

Preference for over- vs. under-
segmentation

Fig. 4.5(b) é é

Neglecting confidence values Fig. 4.7(a) é é é é é é é é é é

Small size of structures rela-
tive to pixel size

Fig. 4.8(a) é é é é

High variability of structure
sizes

Figs. 4.8(b)
and (c)

é é é é é

Complex shapes of structures Figs. 4.9(a)
and (b)

é é

Occurrence of overlapping
structures

Fig. 4.9(c) é é é é

High inter-rater variability Fig. 4.11(a) é é é é é é é é é

Outliers, noise and artifacts in
the reference annotation

Fig. 4.11(b) é

Empty reference or prediction Fig. 4.11(c) é é é é é é é é é é

Possibility of overlapping pre-
dictions

Fig. 4.12(a) é é é é é é é é é é

Sensitivity to hyperparameters Fig. 4.17(c)
and (d)

é é

Segmentation vs. detection
quality

Fig. 4.18(d) é

Image dimension Fig. 4.22(b) é é é é
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Table 4.3: Overview of pitfalls related to object detection metrics. For each illustration, the metrics that
are affected by the property are marked with a red cross. Abbreviations: Average Precision (AP), Boundary
Intersection over Union (Boundary IoU), Box/Approximation Intersection over Union (Box/Approx IoU),
Center-/point-based localization criterion (Center/Point), Free-Response Receiver Operating Characteristic
(FROC), Mask Intersection over Union (Mask IoU), and Positive Predictive Value (PPV).

Source of potential pitfall Figure AP Boundary IoU Box/Approx IoU Center/
Point

FROC
Score

Mask IoU PPV Sensitivity

Small size of structure sizes Fig. 4.8(a) é é

High variability of structure
sizes

Fig. 4.8(c) é é

Complex shapes of struc-
tures

Figs. 4.9(a)
and (b)

é é

Occurrence of disconnected
structures

Fig. 4.9(d) é

Empty reference or predic-
tion

Fig. 4.11(c) é é é é é

Unavailability of predicted
class scores

Fig. 4.12(b) é é

Disregard of number of im-
ages

Fig. 4.15(c) é

Non-standardized metric
definition

Figs. 4.17(a)
and (b)

é é

Sensitivity to hyperparame-
ters

Fig. 4.17(c)
and (d)

é é

Predicted class scores ne-
glected within ranking

Fig. 4.19(a) é

Large effects of small
changes in predicted class
scores

Fig. 4.19(b) é

Mathematical properties of
center- or point-based lo-
calization criteria

Fig. 4.20 é

Image dimension Fig. 4.22(b) é é

4.2.4 Discussion

In this section, we presented a comprehensive compilation of metric limitations that are relevant
for image-level classification, semantic segmentation, object detection, and instance segmenta-
tion problems. Researchers have rated metric selection as one of the most critical issues related
to challenge design (see Chapter 3). Thus, we aimed to present a common access point for metric
limitations, grouped by similar properties according to our presented taxonomy. While some of
the pitfalls are mentioned in the literature or online resources, we did not find any publication
that systematically presented them in a comprehensive way.

In addition, a search may not actually retrieve all relevant results, since there is no standardized
format of how pitfalls are described. Terms like ’problem’ or ’issue’ are used in most research
papers to describe the purpose of the presented methodology. Indeed, our search yielded
hundreds of thousands of results, making it impossible to review all of them as a practitioner.
Even the smallest number of publications (49 for the clDice) would be too much for a researcher
to review in depth. Moreover, a metric acronym, such as the ASSD may be used for multiple
metrics. For instance, the implementation of this metric in the medpy library [Maier, 2013] refers
to our definition of the MASD (see Section 2.4), not to ASSD. Finally, several pitfalls were only
briefly mentioned in the text or the appendix of publications, thus may be easily overlooked
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by practitioners. Only a fraction of the pitfalls we found was presented in an easy-to-follow
format, such as a figure. These findings support our hypothesis that it can be challenging for
researchers retrieve information on metric limitations within reasonable time an efforts. In many
circumstances, retrieval only appears viable if the specific problem and the exact wording in the
respective publication are already known, which is naturally not the situation most researchers
find themselves in.

We therefore decided to follow a different approach for our pitfall compilation and implemented
a multi-stage Delphi process, leveraging the expert knowledge from a large international con-
sortium. During our analysis, we found that 24% of challenges in the period of 2018 to 2022
(see Section 5.1 for details) justified their metric choice by stating that commonly used metrics
were chosen. For segmentation tasks, the DSC is by far the most frequently used metric (see
Chapter 3). However, in this section, we presented multiple pitfalls regarding this metric, such as
a strong penalization of small objects, shape, center, and volume unawareness, or the inability
to properly handle inter-rater variability. Similarly, in object detection problems, the AP is a
common metric [Lin et al., 2014] which for example suffers from disregarding the total number
of images. Moreover, common image-level classification metrics are largely influenced by their
prevalence dependency (e.g. PPV and MCC) or are affected by class imbalances (e.g. Accuracy
and AUROC). Finally, it should be noted that the metric implementation itself may also heavily
impact the metric values. For example, boundary-based metrics rely on the extraction of the
boundary from the reference and prediction. This step can be implemented in several ways,
which affects the resulting scores. Similarly, the implementation of the AP metric related to
corner cases differs for different repositories and is thus not standardized. Given these findings,
it becomes clear that choosing a metric for its popularity may not properly reflect algorithm
performance and produce meaningful challenge results on the properties of interest, which are
determined by the underlying biomedical problem.

Of note, the conclusions from this chapter go beyond challenges. They apply to image analysis
in general, irrespective of whether the focus is on biological, radiological, surgical, or even
general computer vision problems. In fact, the source of a metric-related limitation or pitfall
is independent of the target domain and often based on purely mathematical implications.
However, in the biomedical domain, the consequences of choosing an improper metric not
reflecting the actual interest may be more critical, since the well-being of patients is directly
affected by translating an inappropriate algorithm into clinical practice. We thus argue that a
collection of pitfalls is crucial to ensure safe validation of algorithms and to educate researchers
to avoid common mistakes. In this thesis, we further provide an overview of common validation
metrics in the form of a metric profile in Appendix A.3. This profile contains important information
on metrics, such in the form of illustrations, explanations, statements on prevalence dependency
as well as relevant limitations and recommendations.
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4.2.5 Conclusion
Choosing the right metric for a specific problem is not straightforward and being aware of every
single limitation of every metric is not possible in practice. With this collection of metric pitfalls,
we hope to contribute to educating challenge organizers and researchers on which metrics should
be avoided under certain circumstances. Our contribution is structured according to a pitfall
taxonomy based on certain properties, so as to make the information easily retrievable. By
providing several examples, we emphasized that the choice of a metric is very use case-specific
and should be chosen accordingly. Selecting an inappropriate metric may yield misleading and
incorrect conclusions for clinical applications. In the following, we show that the choice of metrics
also heavily impacts challenge rankings (see Section 4.3) and finally present a problem-aware
metric recommendations framework that builds upon the results of this section (see Section 5.2).



4.3 Revealing flaws related to rankings

Disclosure

This work has been supervised by Lena Maier-Hein. It has been conducted to-
gether with several co-authors, especially Matthias Eisenmann and Annette Kopp-
Schneider. The work has been published in Nature Communications [Maier-Hein
et al., 2018]. Please refer to Chapter A.1 for full disclosure.

4.3.1 Introduction

The goal of biomedical image analysis challenges is typically to identify the best algorithm for
solving a specific biomedical problem. It is common practice to calculate one or multiple rankings
to determine the winner of a challenge. Since there is only one score for each participant in a
validation over the whole data set (see Section 2.4 and Figure 2.21), the winner can be determined
directly from the metric scores. When the performances are validated per image, there is one
metric score for each image for every participant in the challenge. To establish a ranking that
orders the challenge participants according to their performance, the metric scores must be
combined based on a predetermined aggregation scheme. Although the intuitive ranking scheme
would be to average all metric scores per participant, there are several other possibilities to
calculate a ranking (see Section 2.1.2). In this section, we focus on the metric-based ranking
scheme (see Algorithm 1 for details), which is the most commonly used ranking method (see
Chapter 3), and the case-based ranking scheme (see Algorithm 2 for details). Both ranking
schemes rely on an aggregation of either metric values or ranks. Thus, an aggregation operator
needs to be chosen, such as the mean or median.

A challenge winner should ideally remain the same no matter how the ranking scheme is changed
and should be superior to the other algorithms regardless of the ranking method, aggregation
operator, or other parameters used. If this is not the case, it is difficult for the organizers to
decide which algorithm is truly the best at achieving the challenge’s objective. This is crucial
since challenge winners often receive much attention, will almost certainly replace an existing
state-of-the-art method, acquire many citations, and may have their algorithms incorporated
into clinical procedures.

However, in Section 4.1, we showed that challenge rankings can be manipulated easily to change
the winner. In the present section, we further examine the sensitivity of challenge rankings to a
range of design parameters. We specifically examine how frequently the winner changes when
the ranking scheme, aggregation operator, metrics, and annotators are altered by using data from
actual biomedical image analysis challenges. In addition, we explore how often non-winning
algorithms could achieve the first rank for those perturbations.

133
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Hypothesis investigated in this chapter

H3: Challenge rankings are highly unstable.

Considering the importance of challenge rankings in determining a challenge
winner, caution should be applied when selecting the ranking schemes. We
believe that rankings are highly influenced by the chosen calculation scheme.
Thus, we investigate whether challenge rankings remain stable when the
ranking scheme changes.

4.3.2 Methods
In this section, we build upon the results of Section 4.1 and analyze the robustness of rankings
in more depth. For this purpose, we use the same challenge inclusion criteria as presented
earlier. Namely, we considered all Medical Image Computing and Computer Assisted Interven-
tions (MICCAI) 2015 segmentation challenges for a detailed analysis, yielding 13 challenges with
124 tasks. Similarly, for the ranking analyses using bootstrapping approaches (ranking robustness
analysis; see below), we only considered challenge tasks with three or more participating algo-
rithms (42 tasks excluded) and more than one test case (25 tasks excluded), yielding 56 challenge
tasks. The experimental setup for the ranking robustness analysis is described in the following.

Ranking robustness analysis

For the ranking robustness analysis, we computed the twelve ranking schemes presented in
Section 4.1 for the 56 MICCAI 2015 segmentation tasks meeting the inclusion criteria. For challenge
tasks for which multiple annotators generated the reference segmentation, we additionally
analyzed the effect of the annotator on the (default) ranking scheme. In order to calculate
the differences between different ranking methods, we employed Kendall’s τ rank correlation
coefficient, presented in Section 2.2.1 (Equation 2.1). Kendall’s τ is bounded between −1 (reverse
ranking) and 1 (identical ranking), with 0 indicating no correlation between rankings.

To investigate whether specific ranking choices are more robust than others, we defined the
robustness as a function of (1) the metric applied, (2) the aggregation method, and (3) the
aggregation operator. For different ranking configurations, we simulated new rankings using a
bootstrapping approach with 1,000 bootstrap samples. Thus, we investigated ranking variability
against small perturbations within the test data set (cf. Section 2.2.2). We analyzed the robustness
of every challenge task in terms of the percentage of bootstrap samples in which (a) the original
winning method remained unchanged and (b) the original non-winning algorithms became the
winner. For the same bootstrap sample, we computed different ranking schemes. In addition, we
performed a Wilcoxon signed rank test with a significance level of α = 5% for the proportion of
challenge task winners staying robust. Tasks with more than one winner were omitted from this
analysis.

Finally, we conducted a leave-one-out analysis in addition to the bootstrap simulations. To this
end, the original ranking scheme was computed for all challenge tasks. For every task, the test
data set was reduced by one case and the original rankings were re-computed. Similarly to the
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simulations above, we considered the robustness as the percentage of bootstrap samples in
which (a) the original winning method remained unchanged and (b) the original non-winning
algorithms became the winner.

4.3.3 Results
In the following, we present the results of the ranking analyses for 56 MICCAI 2015 segmentation
tasks, for which we inspected the robustness of rankings to several design choices. We use
the Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), and Hausdorff Distance 95 Per-
centile (HD95) for the ranking robustness analysis. Given the three metrics, we further consider
the metric-based and case-based ranking schemes as well as mean and median as aggregation
operators. This results in twelve different ranking schemes that were calculated for each of the
56 MICCAI 2015 segmentation tasks.

The comparison of the resulting rankings for different ranking design choices for all tasks is
shown in Figure 4.23 in form of dots- and boxplots over Kendall’s τ values. Large variability in the
ranking can be seen for every change in the ranking scheme. Although a high number of tasks
received Kendall’s τ values of 1 and therefore showed identical rankings (49% of tasks for HD vs.
HD95 in Figure 4.23(a); 34% of tasks for metric- vs. the case-based rankings in Figure 4.23(b); 36%
of tasks for mean vs. median aggregation in Figure 4.23(c), and 60% of tasks for the different
annotators in Figure 4.23(d)), the majority of tasks yielded a lower τ , indicating some (radical)
changes in the rankings, as exemplarily shown in Figure 4.1 in Section 4.1. In one of the challenges,
when switching between the HD and HD95 metrics, the last-ranked algorithm (rank 10) for one
metric was the winner for the other.

As we show in Section 4.4, 62% of all challenge tasks did not indicate the exact number of
annotators. Therefore, in addition to the general ranking design choices, we examined the
influence of the annotator producing the reference annotations to which the participant’s meth-
ods were compared. For challenge tasks with multiple annotators (n = 4), we compared the
resulting ranking pairwise for each annotator to the others for all three metrics. It can be seen
that the differences in rankings for the DSC were only marginal with a median Kendall’s τ of 1
(Interquartile Range (IQR): (1, 1); minimum: 0.8). For the HD and HD95, however, the differences
in the annotations had a larger effect on the rankings, leading to lower Kendall’s τ values and
a larger IQR, namely to a median of 1 (IQR: (0.33, 1); minimum: -0.02) for the HD and a median
of 0.8 (IQR: (0.33, 1); minimum: 0.07) for the HD95. The winning algorithm in the metric-based
ranking with the mean was changed in 15% (DSC), 46% (HD), and 62% (HD95) of tasks by changing
the annotator.
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Figure 4.23: Ranking robustness for several ranking design changes for the MICCAI 2015 segmentation task
(n = 56). Dots- and boxplots for which one data point represents Kendall’s τ between two rankings for
one task. (a) Kendall’s τ values for the HD vs. the HD95 for a metric-based ranking with mean aggregation.
(b) Kendall’s τ values for the metric- vs. the cased-based ranking with mean aggregation for the HD. (c)
Kendall’s τ values for the mean vs. the median aggregation for a metric-based ranking for the HD. (d)
Kendall’s τ values for the comparison of rankings based on different annotators for the four tasks with
multiple annotators. Metric-based rankings aggregated with the mean were compared for the DSC, HD, and
HD95 metrics. Figure adapted from [Maier-Hein et al., 2018].
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Figure 4.24: Ranking robustness shown for the MICCAI 2015 segmentation task (n = 56). Dots- and boxplots
for which one data point represents the percentage value for one task. The most robust setting per row is
marked in light blue. (a) Percentage of bootstrap samples for which the task’s winner does not change. In
this setting, three ranking schemes were calculated for the DSC metric: metric-based ranking aggregated
with the median (left), metric-based ranking aggregated with the mean (middle), and case-based ranking
aggregated with the mean (right). (b) Percentage of bootstrap samples for which the task’s winner does
not change. In this setting, three ranking metric-based ranking schemes aggregated with the mean were
calculated for the DSC, HD and HD95 metrics. (c) Percentage of non-winning participants who were ranked
first. In this setting, three ranking metric-based ranking schemes aggregated with the mean were calculated
for the DSC, HD, and HD95 metrics. Figure adapted from [Maier-Hein et al., 2018].



138 CHAPTER 4. REVEALING FLAWS IN COMMON PRACTICE

We examined the ranking uncertainty by utilizing bootstrapping techniques and found that the
rankings heavily depend on the test data set. Figure 4.24 shows the percentage of bootstrap
samples in which the winner remained unchanged ((a) and (b)) and the percentage of non-
winning algorithms that were ranked first in at least one bootstrap sample (c). The most robust
configuration is highlighted in green. We compared different ranking configurations for the DSC
metric with these simulations (Figure 4.24(a)), and found that the metric-based aggregation with
the mean was much more robust compared to the other ranking schemes, resulting in a median
of 93% (IQR: (74%, 100%); minimum: 40%) of robust winning methods. For the metric-based
aggregation with the median, a median of only 75% (IQR: (64%, 90%); minimum: 28%) of winning
methods was robust and a median of 85% (IQR: (67%, 97%); minimum: 38%) of winning methods
was robust for case-based aggregation with the mean.

The same comparison was performed for the default ranking scheme but with different metrics
(Figure 4.24(b)). In this case, the DSC again was more stable compared to the other metrics (same
ranking scheme and median (IQR; minimum) as above). For the HD/HD95, a winning algorithm
remained unchanged in a median of 85%/83% (IQR: (63%, 97%)/(65%, 97%); minimum: 46%/38%)
of bootstrap samples.

Similarly, the percentage of non-winning algorithms that could have been ranked first was
determined in the bootstrap simulations. Again, the DSC was more robust in this setting, with
a median of only 15% (IQR: (0%, 25%); maximum: 100%) of non-winning algorithms becoming
the winner. This number was higher for the HD/HD95 with a median of 20%/20% (IQR: (11%,
40%)/(13%, 38%); maximum: 100%/80%) of non-winning participants that were ranked first in at
least one bootstrap sample.

Finally, in addition to the bootstrap simulations, we applied a leave-one-test-case-out approach
to the ranking analysis. In this setting with removing one test case, 16% of non-winning algorithms
were winners for the DSC. For one of the tasks employed, 67% of non-winning algorithms were
ranked first.

4.3.4 Discussion

In this section, we provided evidence for our observations presented in Section 4.1, indicating
that a variety of design parameters have a substantial impact on challenge rankings. Even small
changes to the ranking scheme may dramatically change the rankings. In one challenge, for
example, the last-ranked algorithm became the winner when a different metric was used. High
variability was not only caused by the ranking scheme itself, but by also the annotator based on
which the reference standard was generated, where changes hugely impacted rankings using
distance-based metrics (HD(95)). This is probably due to the fact that even expert raters often
disagree on an object’s boundary [Joskowicz et al., 2019].

We further showed that a bootstrapping analysis reveals important and interesting insights into
ranking robustness across challenges. For most of the investigated challenge tasks, the winner
was not robust against small variations of the underlying data set or ranking scheme. We found
the metric-based aggregation with the mean to be the most robust ranking scheme. However,
this finding should be treated with caution. Case-based ranking schemes offer a straightforward
missing value handling by assigning algorithms the last rank for missing submissions. This is
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not as easy for metric-based aggregation schemes. For metric-based aggregation, a missing
value-handling strategy needs to be determined before the start of the challenge and communi-
cated accordingly. The chosen strategy can make a huge difference in the resulting aggregates
(see Figures 4.14(b) and (c) and the experiments in Section 4.1). Surprisingly, rankings based on
the mean were more robust than rankings based on the median, although the mean naturally
includes outliers.

In comparison with the HD and HD95, the DSC yielded much more robust rankings. This finding
should be viewed with caution. While the DSC is more robust for a ranking, it still comes with
several limitations (see Section 4.2) and it should only be chosen for an appropriate problem,
optimally in combination with other metrics, such as the HD(95). Generally, the metric choice
for a ranking should depend on the underlying biomedical problem. For example, if object
boundaries are of particular interest, a distance-based metric such as the HD(95) should still
be chosen for the rankings. In this case, it is of particular importance to analyze the ranking
variability.

Furthermore, the results of this section show that the general challenge design has a high
influence on the resulting rankings. For challenges in which many participants yield quite narrow
results, this opens up the question of whether a ranking generally makes sense or if we should
announce a group of algorithms as winners. The sensitivity of rankings to its calculation scheme
also hampers identifying why a specific algorithm was better than others. Finally, we may ask
ourselves if challenge design may have a larger influence on determining a winner than the
actual algorithms.

4.3.5 Conclusion
Challenge rankings heavily rely on the challenge design, especially the choice of metrics, ranking
schemes, and annotators. Thus, rankings should be very carefully chosen and analyzed. Advanced
analyzing techniques for rankings are be investigated in Chapter 5 of this thesis.

Since rankings are one of the most prominent building blocks of a challenge, it was an important
step to raise the the research community’s awareness of highly relevant related issues. Ranking
sensitivity can be easily exploited, as we showed in Section 4.1. We should therefore not underrate
the final choice of a ranking scheme and make sure that ranking uncertainty is analyzed in
challenge reports. If not, an inadequate algorithm may end up being translated into clinical
practice due to an improper assessment.
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4.4 Revealing flaws related to reporting and analyses

Disclosure

This work has been supervised by Lena Maier-Hein. It has been conducted together
with several co-authors, especially Matthias Eisenmann, Annette Kopp-Schneider,
and Georg Grab. Parts of this work have been published in Nature Communications
[Maier-Hein et al., 2018]. Please refer to Chapter A.1 for full disclosure.

4.4.1 Introduction

Biomedical image analysis challenges can be seen as the Artificial Intelligence (AI) algorithm
equivalent to clinical trials which measure how well new medications or treatments perform
compared to others. Clinical trials follow a strict quality control process with transparency and
reproducibility of results being crucial for ensuring high-quality research [Baker, 2016; McNutt,
2014; Schulz et al., 2010]. Both aspects are important criteria for accepting clinical trials and
their publications, which is in turn important for translating the medications or treatments into
clinical practice.

’Trust and confidence are critical to the success of health
care models. There are two main methods for achieving this:
transparency (people can see how the model is built) and
validation (how well the model reproduces reality).’

— [Eddy et al., 2012]

Eddy et al. [2012] contend that the most crucial factors in establishing trust and confidence in
biomedical models are validation and transparency. In the course of this thesis, we showed that
challenges are of tremendous importance for biomedical image analysis research but we also
revealed several critical flaws related to cheating and the validation of challenges. In this section,
we focus on the transparency aspect, especially regarding the provided general challenge details
by the organizers and the submitted reports of the methods by the participants.

Since challenges are validation studies, challenge organizers should describe their design and
organization transparently to the public. This means that they should describe all facets of
the challenge, including more obvious parameters such as the challenge’s main objective, the
number of training and test cases, or the choice of the metric. However, there are also less
obvious parameters that are important, for example, whether the provided training data could
be complemented with other public or private data or who annotated the data. In the first case,
it could make a huge difference in performance if one challenge participant would have access
to additional several hundreds of images to train their algorithm. Other participants with fewer
resources could heavily suffer in terms of performance. If not transparent, the challenge organiz-
ers could not decide if an algorithm won the challenge because of their model or pipeline or just
because of the higher amount of training data or compute power. In the second example of who
annotated the data, it could make a huge difference in the reliability of challenge results if expert
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raters or professional annotation companies generated the reference annotation or untrained
students or crowdworkers. Similarly, the number of annotators and the quality of provided
labeling instructions may hugely impact the quality of the reference annotations [Joskowicz
et al., 2019; Rädsch et al., 2022]. Specifically, challenge organizers should be transparent in
the label-generation process. In this section, we review the challenges that were analyzed in
Chapter 3 of this thesis and examine the degree of completeness and transparency of reporting
challenge design parameters.

As described in previous sections, challenge winners receive large attention and often end
up being the new state-of-the-art method for a specific problem. It is therefore reasonable
to reuse the top-ranked challenge algorithms for similar problems and questions. Thus, the
participant’s method descriptions should be as detailed and transparent as possible to ensure a
direct implementation. The best-performing algorithms are frequently described in challenge
reports. Occasionally, these usually short explanations of the methods are supplemented by
longer and more detailed descriptions in the appendix or on the challenge website. This would
be the only source of knowledge for a reimplementation if there were no other method-specific
publications or public source codes. As an example, we reimplemented the algorithms that
participated in the Robust Medical Instrument Segmentation (RobustMIS) challenge 2019 based
on the information provided by the challenge participants. We compare the original rankings with
the rankings based on the reimplementation to explore whether their description was sufficient
for a proper re-creation of the challenge results.

Hypothesis investigated in this chapter

H4: Challenge results are not reproducible.

Transparency is crucial to ensure the reproducibility and interpretability of
challenge results. However, based on previous findings, we hypothesize that
challenge results and algorithms are not reproducible. We investigate whether
(1) challenge organizers provide sufficient details and (2) whether challenge
results are reproducible given the participants’ submitted method descrip-
tions.

4.4.2 Methods

Acquisition of challenge design details

In this experiment, we examined the question of whether challenge designs are reported with
sufficient detail to ensure the transparency and reproducibility of the results. For this purpose, we
reviewed a critical amount of challenges (150 challenges and 549 tasks) and analyzed how many
important parameters were reported by the challenge organizers. The structured capturing of
the challenges was based on a challenge parameter list, as described below. We instantiated the
parameters for all collected challenges. Based on this instantiation, we could derive descriptive
statistics such as the information for how many challenges and tasks each of the parameters
were reported or the median number of reported parameters per challenge.
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Challenge inclusion criteria Similar to our experiments from Chapter 3, we collected all biomedical
image analysis challenges that were organized between 2004 and 2016, yielding a total of 150
challenges and 549 tasks.

Structured challenge parameter list For a structured review and comparison of challenges, we
introduced a challenge parameter list, based on the work of Jannin et al. [2006] (see Section 2.5).
We refined this initial list, which was originally designed for general validation studies, by adding
challenge-specific parameters, which we noted as important while scanning through the 150
challenges. Subsequently, we provided the pre-final list to all co-authors of the study presented
by Maier-Hein et al. [2018]. To achieve a consensus decision, we prepared a survey in which every
single parameter was presented to the co-authors, asking for agreement with the parameter’s
name, an explanation as well as constructive feedback in case of disagreement. We required the
co-authors to indicate the importance of each parameter (essential, important, optional) and
to add exemplary instantiations. Lastly, they were allowed to propose additional parameters.
Based on the survey feedback, we finalized the challenge parameter list and translated it into
the Eclipse Meta Model introduced in Chapter 3.

Reproduction of challenge results given submitted reports

In a second experiment, we explored whether the challenge results are reproducible if we
reimplement the participating algorithms based on their submitted method descriptions. This
was done exemplarily for the RobustMIS challenge, which is briefly described in the following
paragraph. The concrete experimental design is described subsequently.

Robust medical instrument segmentation (RobustMIS) challenge For the reimplementation, we chose
a challenge that we organized ourselves, the RobustMIS challenge, such that we had access to the
submitted method descriptions of the challenge participants. This challenge aimed to compare
the robustness and generalizability of algorithms for medical instrument instance segmentation,
which was assessed via two different ranking schemes (see below). We reimplemented the
seven methods that participated in the challenge. A more detailed description of the RobustMIS
challenge design can be found in Section 5.3 and Appendix A.6.

Only challenge participants who submitted a method description along with their algorithm were
eligible for the final challenge rankings. Authors were provided with a method write-up template1

to ensure that all relevant information was integrated into their descriptions. Participants were
required to state their main motivation for the chosen approach, benefits over other common
methods, and the (potential) novelty of the method. They were further asked give a detailed
description of the submitted methods in a way that an independent researcher would be able to
reproduce the results. We specifically asked them to describe all variables used in the model, to
describe methods used for data filtering, processing, or normalization, and to fully specify the
concrete algorithm architecture. The challenge participants were asked to submit a short paper
based on the given template along with their results. However, they were not explicitly forced
to provide all information, thus, some fields could have been missing or could have been only
described very briefly.

1https://www.synapse.org/#!Synapse:syn18779624/wiki/592664

https://www.synapse.org/#!Synapse:syn18779624/wiki/592664
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For the final publication [Roß/Reinke et al., 2020], we contacted the challenge participants and
asked them to provide further details about their methods since we found many details to be
missing. Specifically, we asked for clarification on whether temporal and/or additional training
data was used, to describe all pre-processing steps, the network architecture, loss functions,
hyperparameters, data augmentation techniques, optimizer, and training procedures.

In the original challenge, participants were validated based on the Multi-Instance Dice Similarity
Coefficient (MI DSC) metric, defined as the Dice Similarity Coefficient (DSC) per instance. Two
ranking schemes were employed: a) the accuracy ranking and b) the robustness ranking. The
accuracy ranking refers to a test-based ranking scheme (see Section 2.1.2) based on a Wilcoxon
signed rank test with a significance level of α = 0.05. A metric-based ranking (see Section 2.1.2)
served as the robustness ranking with the 5% percentile serving as the aggregation operator.
This ranking aimed to reflect the worst-case performance.

Experimental design The seven submitted method descriptions of the participating algorithms
along with additional information acquired from the challenge participants served as a basis for
reimplementation. We followed the method descriptions as closely as possible. For example, in
the case that concrete programming languages or libraries were provided, we also used those
for our reimplementation. In the case of missing information or ambiguities in the method
descriptions, we applied a three-stage procedure:

1. We inspected cited literature to find out if missing or ambiguous information was provided
in those references.

2. If we could not find the information in the cited literature, we used secondary literature
related to the task or network architecture.

3. Whenever 1. and 2. were not feasible, we reviewed publicly available implementations
of similar approaches and selected the most popular approach that appeared to work
reasonably well for the problem domain.

In the case of multiple possible interpretations, we implemented all of them and took the one
with the best validation performance. All participating methods were reimplemented based on
this approach and trained on a single Nvidia RTX 2080 Graphics Processing Unit (GPU), except for
teams Casial SRL and fisensee, which required a high amount of GPU memory and were therefore
trained on a single Nvidia V100 GPU. The two ranking schemes employed in the RobustMIS
challenge were also computed for the reimplementation. To investigate ranking uncertainty,
we calculated 1,000 bootstrap rankings for both ranking schemes and computed Kendall’s τ
between the original and the bootstrap ranking samples. The ranking computation was done
with the R package challengeR [Wiesenfarth et al., 2021] (see Section 5.3). The participating
methods based on their descriptions, missing information, and ambiguities we found during
the reimplementation can be found in Appendix A.5. In cases of ambiguities, our assumptions
made are explained. A summary of the most important design choices that could be retrieved
from the method descriptions is provided in Table 4.4. It should be noted that even for the basic
information in the table, not all fields could be filled.
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Table 4.4: Summary of the most important design choices that could be retrieved from the method de-
scriptions for the Robust Medical Instrument Segmentation (RobustMIS) challenge participants. Used
abbreviations: Adaptive Moment Estimation (Adam), Binary Cross Entropy (BCE), Cross Entropy (CE), Dice
Similarity Coefficient (DSC), Residual Neural Network (ResNet), Region Proposal Network (RPN), Stochastic
Gradient Descent (SGD). A detailed description of all methods and assumptions drawn from the descriptions
is provided in Appendix A.5. Table adapted from Roß/Reinke et al. [2020].

Team Basic architecture Usage of
videos

Loss functions Data augmentation Optimizer

caresyntax Mask R-CNN,
backbone:
ResNet-50

No Smooth L1 loss, CE
loss, BCE loss

Applied in each epoch with 50%
probability: horizontal random
flip

SGD

CASIA SRL U-Net with
additional unclear

components

No CE loss
−α log(Jaccard loss)

Once before training: Random
rotation, shifting, flipping

Adam

fisensee U-Net with residual
encoder

No DSC and CE loss Randomly applied for each
batch: Rotation, elastic de-
formation, scaling, mirroring,
Gaussian noise, brightness,
contrast, gamma

SGD

SQUASH Mask R-CNN,
backbone:
ResNet-50

Yes ResNet-50: Focal
loss, Mask R-CNN:
Mask R-CNN loss

and CE loss

Classification (35% of images):
gaussian blur, sharpening,
gamma contrast enhancement;
additional 35% of images:
mirroring; minority class: hori-
zontal translation

SGD

Uniandes Mask R-CNN,
backbone:
ResNet-101

Yes Mask R-CNN losses Applied for each batch: Random
horizontal flips, propagating an-
notation backwards to previous
video frames

SGD

VIE Mask R-CNN,
backbone:
ResNet-50

Yes RPN class loss,
Mask R-CNN losses

Applied for each batch: image
resizing, bounding boxes, label
generation

Unclear

www Mask R-CNN,
backbone:
ResNet-50

No Smooth L1 loss,
focal loss, BCE loss

Applied for each batch: horizon-
tal and vertical random flip, ro-
tations of [0,10]◦

Adam

4.4.3 Results

Acquisition of challenge design details

Nichols et al. [2017] identified transparent reporting as an integral part of a validation study.
Therefore, we built a list of 53 important challenge design parameters, which cover the topics
challenge organization (eight parameters), participation conditions (seven parameters), mission
of the challenge (six parameters), study conditions (seven parameters), challenge data sets
(fifteen parameters), assessment method (seven parameters), and challenge outcome (three
parameters) [Maier-Hein et al., 2018]. The corresponding parameters can be found in Table 4.5.
The following numbers are presented for the challenges organized in the period of 2004 to 2016.

From the 53 parameters, a median of 62% (Interquartile Range (IQR): (51%, 72%); minimum: 21%)
was reported per challenge task, from which only three parameters (6%) were reported for all
tasks, namely the challenge name, life cycle type, and task category(ies). 43% of parameters
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were reported by less than half of the challenge tasks, from which 9% of parameters have
been reported by less than 10%. Those rarely reported parameters were the operator(s) and
uncertainty handling (7% of tasks), the organizer participation policy and statistical tests (6% of
tasks), and the pre-evaluation method (5% of tasks). In the following, we provide examples of
incomplete reporting in the context of training data and pre-processing, annotation details, and
metric-based ranking.

58% of challenge tasks made no mention of whether the organizers’ training data may have
been supplemented with data from other public or private sources. In 75% of tasks, it was
unclear whether data pre-processing was performed and for those tasks that reported data
pre-processing, this information was mostly given on a very basic level (82%). The generation of
the reference annotations was not explained in 66% of challenge tasks and 62% did not mention
how many annotators produced the reference annotation. The expertise and number of the
annotators were not contributed in 19% of tasks and for the tasks, for which more than one
person annotated the same cases of the data set, 45% did not emphasize how the results were
aggregated or merged (e.g. majority vote). Inter- and intra-rater-variability was reported for 27%
of challenge tasks. Sources of errors in the annotation were not reported in 84% of tasks.

8% of challenge tasks using multiple metrics for the final ranking did not explain how the results
were aggregated. The ranking scheme itself was not published for 20% of the tasks. Finally, we
asked all Medical Image Computing and Computer Assisted Interventions (MICCAI) 2018 challenge
organizers whether they published the full ranking scheme before the challenge took place and
40% of them did not. In the ranking calculations, 82% of challenge tasks did not announce how
to deal with missing values in the submissions. Ranking uncertainty analyses were not reported
in 94% of challenge tasks. Finally, the number of allowed (re-)submissions per algorithm was not
reported in 67% of tasks.

Reproduction of challenge results given submitted reports

Based on the experimental design described in Section 4.4.2, we reimplemented all participating
teams of the RobustMIS challenge, trained them on the challenge training data set, and validated
them similarly to the original challenge. In the following, we provide an analysis of the missing
information and the results of the reimplementation compared to the original challenge results.

Analysis of missing information Based on the missing information and ambiguities described in the
above paragraphs, we summarized the shortcomings of the method descriptions for a qualitative
summary, as depicted in Table 4.6 and Figure 4.25. The colors indicate how severely the specific
issue may impact the final ranking outcome and the confidence with which assumptions have
been taken in the reimplementation2. A minor deficiency refers to an assumption that had to
be made due to missing or blatantly incorrect information, but this assumption was expected
to have a minor impact on model performance or there was high confidence that the correct
assumption was derived given context. On the other hand, major deficiencies were described as
missing design decisions that were either assumed to have a significant impact on final model
performance, or where there was little confidence that the proper assumption was made from
context, or where the context was completely lost.

2Please note that the categorization is based on our subjective indication.
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Table 4.5: List of parameters important for reporting a biomedical image analysis challenge, including the
coverage of 549 tasks reporting each parameter in percent. The coverage columns are further highlighted
by color-coding: Red: 0–19%, light red: 20-49%, light blue: 50–79%, green: 80-100%. Parameters used in the
structured challenge submission system are highlighted with an asterisk. Table adapted from [Maier-Hein
et al., 2018].

Parameter name Coverage [%] Parameter name Coverage [%]

Challenge organization

Challenge name* 100 Challenge venue or platform 99
Challenge website* 99 Challenge schedule* 81
Organizing institutions and contact per-
son*

97 Ethics approval* 32

Life cycle type* 100 Data usage agreement 60

Participation conditions

Interaction level policy* 62 Evaluation software 26
Organizer participation policy* 6 Submission format* 91
Training data policy* 16 Submission instructions 91
Pre-evaluation method 5

Mission of the challenge

Field(s) of application* 97 Algorithm target(s)* 99
Task category(ies)* 100 Data origin* 98
Target cohort* 65 Assessment aim(s)* 38

Study conditions

Study cohort* 88 Acquisition device(s) 25
Context information* 35 Acquisition protocol(s) 72
Center(s)* 44 Operator(s) 7
Imaging modality(ies)* 99

Challenge data sets

Distribution of training and test cases* 18 Data pre-processing method(s) 24
Category of training data generation
method*

89 Category of test data generation method* 87

Number of training cases* 89 Number of test cases* 77
Characteristics of training cases* 79 Characteristics of test cases* 77
Annotation policy for training cases* 34 Annotation policy for test cases* 34
Annotator(s) of training cases* 81 Annotator(s) of test cases* 78
Annotation aggregation method(s) for
training cases*

30 Annotation aggregation method(s) for test
cases*

34

Potential sources of reference errors 28

Assessment method

Metric(s)* 96 Missing data handling* 18
Justification of metric(s)* 23 Uncertainty handling* 7
Rank computation method* 36 Statistical test(s)* 6
Interaction level handling* 44

Challenge outcome

Information on participants 88 Report document 74
Results 87
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During our experiment, we found most of the shortcomings in the model selection and data
augmentation, for which we identified deficiencies for six out of seven teams. In addition, we
found the data split, model architecture, and data pre-processing subject to be the major issues.
The optimizer was the least critical part of the method description.

Rankings and performance analysis The raw metric value distribution of participating teams is
shown in Figure 4.26. The original scores are shown in dark blue, whereas the scores from the
reimplementation are represented in green. It can be seen that the general performance of
the reimplemented methods was substantially worse compared to the original scores. This is
especially apparent for team VIE. Only the performance for team Uniandes was similar to the
original metric scores, as this team described their method in sufficient detail.

In the original RobustMIS challenge, two ranking schemes were calculated. Table 4.7 presents the
accuracy ranking for the original challenge (a) and the reimplementation (b). It can be seen that
the winner and runner-up algorithms changed their ranks after the reimplementation. Generally,
only one algorithm stayed robust (team www), while all other methods changed their ranks
compared to the original ranking with a Kendall’s τ of 0.59. The mean change in rank was one
rank for this ranking scheme.

The results of the robustness ranking are provided in Table 4.8 for the original challenge (a) and
the reimplementation (b). The winner also changed for this ranking scheme. With Kendall’s τ
between the two rankings of 0.40, the changes are even more pronounced than for the accuracy
ranking. Specifically, it should be noted that two algorithms shared the last rank in the official
ranking with a 5% percentile of 0.00. For the reimplementation, the number of algorithms sharing
the last rank was doubled. The mean change in rank was 1.3 ranks for this ranking scheme and
increased compared to the accuracy ranking.

Table 4.6: Overview of shortcomings of method descriptions from the participating teams of the Robust
Medical Instrument Segmentation (RobustMIS) challenge [Roß/Reinke et al., 2020]. The severity column
provides a subjective indication of how severely the issue may impact final leaderboard outcome, and the
confidence with which assumptions have been taken in the reimplementation, described in Chapter 4.4.
Teams for which no shortcomings were found, were excluded from the respective topic.

Data pre-processing
Team Severity Description of issue
Casia SRL Minor From their main figure, it can be assumed that no modifications were applied to the images. This

was not specified.
Uniandes Major Not specified.
VIE Major The described resizing step is implausible. Input and output formats and the optical flow were

not specified.
www Major Not specified.
Data augmentation
Team Severity Description of issue
Casia SRL Minor The combination and hyperparameters were not specified.
fisensee Minor The used library and types of augmentations were specified, hyperparameters were missing.
Squash Minor The horizontal translation was not specified. 5% of width seemed too small, the upscale factor

of 1.5 resulted in images that severely differed from the original images.
Uniandes Minor The attempt to incorporate temporal data as data augmentation was described as not effective

and was not reimplemented.
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VIE Major Not specified.
www Minor Associated parameters and combination of rotations and flips were not specified.
Data split
Team Severity Description of issue
caresyntax Major The data split was done manually, which could not be exactly reproduced.
Casia SRL Minor The reported data set split quantities did not match the actual data set size.
fisensee Minor The split for the validation folds yielded major imbalance between the folds.
VIE Major Not specified.
www Major Not specified.
Model architecture
Team Severity Description of issue
caresyntax Minor The tuning of confidence thresholds was not specified.
Casia SRL Major Multiple names for the non-standard network architecture were used, prohibiting proper reim-

plementation. Description of network details was not sufficient.
VIE Major It was not specified how the optical flow was supplied as a model input.
www Major The Dense Atrous Convolution (DAC) integration was not specified.
Model backbone and pre-training
Team Severity Description of issue
caresyntax Minor Pre-training on Microsoft-Common Objects in COntext (COCO) seemed unlikely given the descrip-

tion. It may have been confused with the library’s naming convention.
VIE Minor It remained unclear whether pre-training was applied.
www Minor Given the modified architecture, it was unclear whether an Feature Pyramid Network (FPN) or

standard configuration was chosen.
Optimizer
Team Severity Description of issue
VIE Minor Not specified. The described hyperparameters made Stochastic Gradient Descent (SGD) plausible.

Learning rate
Team Severity Description of issue
Casia SRL Minor It was unclear how the team specified the term "iterations". It could have been interpreted as

actual minibatch iterations or full epochs.
fisensee Major The initial learning rate was implausible. No hyperparameters to the learning rate scheduler

were specified.
Squash Major The specified learning rate did not reach convergence in the reimplementation. It may have been

a typo.
Training loss function
caresyntax Minor Not specified, but based on the strong overlap to the official Mask R-CNN implementation

[FacebookResearch, 2019], the default loss was likely.
Uniandes Minor Not specified, but based on the strong overlap to the official Mask R-CNN implementation

[FacebookResearch, 2019], the default loss was likely.
Batch size
Uniandes Major Not specified.
VIE Major Not specified.
Training duration
Team Severity Description of issue
Casia SRL Minor Not specified, but the final performance was described.
VIE Minor Not specified.
www Minor Only the absolute training time on the Graphics Processing Unit (GPU) was specified.
Model selection
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Team Severity Description of issue
caresyntax Minor Not mentioned, but the validation performance was specified.
Casia SRL Minor Not mentioned, but as the validation loss was specified, the lowest validation loss was plausible.
fisensee Major Not specified.
Uniandes Minor Multiple validation criteria were described, but it was not clear how they were employed.
VIE Major Not specified.
www Major Not specified.
Inference
Team Severity Description of issue
caresyntax Major Not specified and not thresholds were provided, although this step was explicitly mentioned.
Casia SRL Major Not specified how instance segmentation results were obtained. A connected component analysis

was likely, but not specified.
fisensee Minor Connected component analysis not completely specified.
VIE Minor Not specified, but based on the strong overlap to the official Mask R-CNN implementation

[FacebookResearch, 2019], the default inference behavior was likely.
www Minor Not specified, but based on the strong overlap to the official Mask R-CNN implementation

[FacebookResearch, 2019], the default inference behavior was likely.
Programming language / framework
Team Severity Description of issue
caresyntax Minor Not specified. Python and PyTorch were plausible, given the identical configuration to the official

PyTorch Mask R-CNN implementation [FacebookResearch, 2019].
Casia SRL Minor Not specified. Python and PyTorch were plausible, given that the ResNet-34 is available in PyTorch

for the described configuration.
VIE Minor Not specified. Python was plausible, given the mention of the OpenCV Python library [Bradski,

2000].
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Figure 4.25: Qualitative analysis of deficiencies in the seven method descriptions (x-axis) of the experiment
Reproduction of challenge results given submitted reports across several different aspects of implementation.
A detailed overview is provided in Table 4.6.



150 CHAPTER 4. REVEALING FLAWS IN COMMON PRACTICE

0.00

0.25

0.50

0.75

1.00

fisensee Uniandes Caresyntax SQUASH www VIE CASIA_SRL

Algorithm

M
I  
D
SC

Original Reimplementation

Figure 4.26: Dot- and boxplots showing the individual algorithm performance for Stage 3 of the Robust
Medical Instrument Segmentation (RobustMIS) challenge for the Multi-Instance Dice Similarity Coefficient
(MI DSC). Results are shown for the original challenge (blue) and the reimplementation (green). A large
gap between the original and the reimplemented methods can be observed. The median metric score is
represented by the center line of the boxplots and the lower and upper border of the boxes denote the
first and third quartiles.

Table 4.7: Accuracy rankings for Stage 3 of the Robust Medical Instrument Segmentation (RobustMIS)
challenge of the seven competing teams based on the Multi-Instance Dice Similarity Coefficient (MI DSC).
The accuracy is determined by the proportion of how often a team is significantly superior to others divided
by the number of teams (Prop. sign). The last column in (b), ∆, refers to the relative rank difference between
the original challenge ranking and reimplementation ranking for the respective algorithm. A positive change
in ranks is shown by a green arrow ↑, while a rank decrease is shown in red ↓. No rank change is indicated
by a gray arrow →.

Team identifier Prop. sign. Rank
fisensee 1.00 1
Uniandes 0.83 2

caresyntax 0.67 3
SQUASH 0.33 4

www 0.33 4
VIE 0.17 6

CASIA SRL 0.00 7

(a) Original ranking as of Roß/Reinke et al. [2020]

Team identifier Prop. sign. Rank ∆

Uniandes 1.00 1 ↑ 1
fisensee 0.83 2 ↓ 1
SQUASH 0.67 3 ↑ 1

www 0.50 4 → 0
caresyntax 0.33 5 ↓ 2
CASIA SRL 0.17 6 ↑ 1

VIE 0.00 7 ↓ 1

(b) Ranking based on reimplementation
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Table 4.8: Robustness rankings for Stage 3 of the Robust Medical Instrument Segmentation (RobustMIS)
challenge of the seven competing teams based on the 5% quantile (Q5) of the Multi-Instance Dice Similarity
Coefficient (MI DSC). The last column in (b), ∆, refers to the relative rank difference between the original
challenge ranking and reimplementation ranking for the respective algorithm. A positive change in ranks is
shown by a green arrow ↑, while a rank decrease is shown in red ↓. No rank change is indicated by a gray
arrow →.

Team identifier Q5 MI DSC Rank
www 0.31 1

Uniandes 0.26 2
SQUASH 0.22 3

CASIA SRL 0.19 4
fisensee 0.17 5

caresyntax 0.00 6
VIE 0.00 6

(a) Original ranking as of Roß/Reinke et al. [2020]

Team identifier Q5 MI DSC Rank ∆

Uniandes 0.28 1 ↑ 1
fisensee 0.11 2 ↑ 3

www 0.04 3 ↓ 2
caresyntax 0.00 4 ↑ 2
CASIA SRL 0.00 4 → 0
SQUASH 0.00 4 ↓ 1

VIE 0.00 4 ↑ 2

(b) Ranking based on reimplementation

To investigate ranking uncertainty, we applied bootstrapping to the original challenge and the
reimplemented results. For the accuracy ranking, the mean (median, IQR) Kendall’s τ between the
original ranking and all bootstrap samples was 1.00 (median: 1.00; IQR: (1.00, 1.00)), indicating
a very robust ranking. For the reimplementation, the mean (median, IQR) Kendall’s τ was only
slightly less with 0.98 (median: 0.98; IQR: (0.98, 1.00)). For the robustness ranking, the original
challenge ranking was quite less robust with a mean (median, IQR) Kendall’s τ of 0.85 (median:
0.98; IQR: (0.98, 1.00)). The robustness ranking was less variable in the reimplementation with a
mean (median, IQR) Kendall’s τ of 0.97 (median: 1.00; IQR: (1.00, 1.00)).

4.4.4 Discussion
Transparency of validation studies is crucial for being able to interpret and reproduce their
results. However, we found that it is not possible to fully understand and replicate challenge
results, both in terms of design and participating methods.

Most challenges we analyzed did not provide sufficient information on important design parame-
ters, such as the data annotation process. Given that algorithms rely on the provided labels, it is
surprising to see that only little information is provided on the number of annotators, annotation
protocols, and aggregation. According to Joskowicz et al. [2019], numerous annotators are needed
to capture natural inter- and intra-rater variability. Indeed, as we showed in Section 4.3, the
annotators have a crucial effect on the final challenge rankings. Full information on the rankings
was not provided for more than two-thirds of the reviewed challenge tasks. This may have critical
consequences: As shown in Section 4.1, this may serve as the basis for severe cheating.

Similarly to challenge organizers, participants often fail to transparently describe their methods
used for challenge participation. In our attempt to reimplement the seven methods submitted
to the RobustMIS challenge, we came up with results substantially different from the original
scores. We had to take several assumptions throughout the whole model reimplementation
pipeline. For one team, we could not even identify the underlying network architecture. During
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our analysis, we found that more complex design choices (such as model selection or data
augmentation) are described less thoroughly than simple choices (such as optimizers). This
could be because only a small number of optimizers are typically used. Most of the teams
successfully described their optimizing method and its hyperparameters in sufficient detail. The
model selection, on the other side, was often not directly visible from the method description
and often not described at all, although it is a very important step for applying a method to
a new application. The RobustMIS challenge employed a rather unusual ranking scheme by
using the 5% percentile as an aggregation operator. Model selection would have benefited from
including this consideration. However, most of the teams did not specify the model selection
step, which may explain why more than half of the teams failed in the reimplemented robustness
ranking. Data augmentation is another complex process, which showed major shortcomings in
the descriptions. Most augmentation methods come with additional hyperparameters that were
often not described. Moreover, augmentations can be applied individually or combined with
other augmentations. When combined, the case order and application probabilities additionally
need to be specified to ensure reproducibility. Given that the influence of data augmentation
has a crucial impact on performance results [Isensee et al., 2021], it is even more critical that it
was insufficiently described for almost all methods.

We only provided the reimplementation of challenge results for one task. Nevertheless, we
think that our experiments successfully illustrate the lack of transparency, as we were not able
to reproduce the results of a single algorithm in the challenge. While the training of Deep
Learning (DL) models comes with a high amount of non-determinism [Pham et al., 2020], which
additionally contributes to the problem of reproducibility, we think the primary reason for failing
to reproduce the participating methods is to the insufficient documentation of model details. As
shown in Figure 4.25, many details of the methods remained unclear and were subject to several
assumptions from our side. To overcome this problem, challenge participants should make their
source codes available.

4.4.5 Conclusion
In this section, we showed that challenge design and algorithms typically cannot be reproduced,
although transparency is one of the most important steps of proper validation studies. Lacking
transparency may have critical consequences, such as severe changes in the rankings or the
possibility of cheating. In addition, reimplementing the winning method is very attractive to
many researchers to drive their research. Not being able to compile all information from the de-
scriptions is frustrating and may yield errors due to missing information and misunderstandings
propagating through several publications. Given that algorithms should be potentially translated
into clinical practice, those errors could lead to severe consequences for patients.

Ideally, a challenge should report all important design parameters on their website and in the
resulting publications. Moreover, ideally, challenge algorithms would be publicly available as
source codes. As this is not always possible, challenge organizers and participants should make
sure that all relevant information is provided, especially for the more complex design choices
such as data augmentation and model selection.
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4.5 Conclusion related to flaws of biomedical challenges
Throughout this part, we have revealed multiple critical flaws related to several aspects of
biomedical image analysis challenges. We found that challenge design is susceptible to manipu-
lation and that weaknesses can be easily exploited by challenge organizers and participants.
Challenge metrics form an integral part of the validation of challenge participants’ performances
and can be misleading if the limitations of metrics are not considered while designing a challenge.
In addition,the choice of metrics and aggregation operators, as well as other challenge design
aspects, have a major impact on challenge rankings. Finally, we showed that challenge results
and participants’ algorithms are often not reproducible, decreasing challenge interpretability.

As a result of those issues, we founded the Medical Image Computing and Computer Assisted
Interventions (MICCAI) Board Challenge Working Group (which is now the MICCAI Special Interest
Group (SIG) for Challenges) and the Biomedical Image Analysis ChallengeS (BIAS) initiative, both
aiming for enhancing the quality of biomedical challenges. We worked on solutions for all of
the above-mentioned issues and beyond, which will be presented in the following part of this
thesis.
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5.1 Improving common practice of challenge design

Disclosure

This work has been supervised by Lena Maier-Hein. It has been conducted together
with several co-authors, especially Sinan Onogur and Matthias Eisenmann. Please
refer to Chapter A.1 for full disclosure.

5.1.1 Introduction
We discovered that the challenge design appears to be ill-conceived in the different sections of
Chapter 4. Challenges have a high impact on biomedical image analysis research and often drive
future research, given the published data sets or winning algorithms. We should therefore make
sure that the results are meaningful, transparent, and of high quality. For this purpose, the focus
of this section is on how we may improve challenge design security.

Specific findings in Part 4

Security holes in challenge design can be easily exploited.

Research question investigated in this chapter

How can a challenge design be made more secure?

In the past, challenges were often accepted at conferences based on a very brief description that
only included high-level parameters like an abstract, a description of the data collection, and
performance metrics. As a result, conference chairs were unable to identify problematic design
choices or questionable practices, which may have led to the acceptance of poorly designed
challenges. Furthermore, individual researchers, e.g. challenge participants, could not provide
additional feedback on the design, as details were not accessible.

As a consequence, we introduce a structured challenge submission system for conferences
that was first used in 2018 for the largest conference in the biomedical image analysis domain,
the Medical Image Computing and Computer Assisted Interventions (MICCAI) conference. This
submission system included all parameters that were found to be important for a challenge (see
Table 4.5) as a comprehensive form.
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5.1.2 Methods

We introduced a structured challenge submission process for conferences hosting challenges
in the biomedical image analysis domain. For the implementation of this structured chal-
lenge submission system [Reinke et al., 2018b], we employed the web development framework
Vaadin1 (version 8). Vaadin comes with an integrated Java backend and Java Graphical User
Interface (GUI). The framework provided several GUI components, especially useful to imple-
ment forms (for example the components ComboBox, TextArea, and ProgressBar), which were
connected to the data source and reacted to user events. Since the GUI was run on a Java
Virtual Machine (JVM), it did not require Representational State Transfer (REST) services or other
methods to access data. In 2020, we updated Vaadin to version 10 (Vaadin Flow) to provide a
more modern GUI.

40 out of 53 parameters of the challenge parameter list (see parameters in Table 4.5 that are
marked with an asterisk) were implemented in the structured challenge submission system. The
selection was based on the parameter ratings of the survey described in Section 4.4.2. Moreover,
we added additional parameters that were specific to the concrete planning of the associated
conference, asking for the challenge duration (full or half day), whether the challenge would
be part of another conference workshop, the expected number of participants, publication and
future plans as well as space and hardware requirements. Each parameter was supplemented
with a definition and examples to ensure the clarity of the parameter. In 2019, we updated the
form according to the newly designed reporting guideline, which is presented in Section 5.4 of
this thesis. The Java objects were bound to the parameter forms using data binding either with
Bean Validation or custom validators. The collected data was stored in an Object Database (ODB)
management system and backups were stored multiple times a day on the server. In the first
iteration of the submission system, most parameters were provided as a list of enumerations
to ensure a standardized challenge collection. However, challenge organizers chose the ’Other’
option for most of the parameters, preferring to write a more comprehensive description to avoid
ambiguities over a predefined value. Therefore, in later iterations of the submission system,
we implemented more free-text areas to give challenge organizers the chance to provide more
detailed descriptions.

We implemented two types of user roles for the structured challenge submission system, namely
challenge organizers and administrators. The administrator view provided an overview of all
challenges and challenge creators, independent of their status (draft (submitted), accepted,
revision required or submitted, rejected, declined, registered (and modified)), including the
opportunity to download either a single or multiple challenge design PDF document(s) including
all parameters of the respective challenge(s). In addition, we allowed the administrators to
change the deadlines, news and updates text paragraphs, and to send emails to all users.

The standard challenge organizer user role mainly featured the creation of challenge proposals.
A challenge proposal consisted of a form including all parameters presented above. Parameters
needed to be inserted for each challenge task. For the submission of a challenge to a conference,
we required challenge organizers to fill in at least 90% of the parameters. We further offered the
opportunity for challenge organizer users to duplicate challenge proposals and to download
an overview PDF file. In the next step, we extended the website to contain useful information

1vaadin.com

https://vaadin.com/
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for users, including an overview of previously accepted challenges, statistics of those, and best
practices for organizing and designing challenges based on community feedback (Section 3.1.3).

In addition to the general standardized submission, we introduced a review process for biomedical
challenges. Submitted challenge proposals were reviewed by two to three independent reviewers.
Since 2021, we required to have each proposal reviewed by an additional clinical reviewer,
assessing the clinical relevance of the design. Challenge proposals requiring a revision were
updated by the organizers within the submission system and re-submitted for a follow-up review.

5.1.3 Results
To overcome the lack of reporting, the developed structured challenge submission system
[Reinke et al., 2018b] was implemented for the MICCAI 2018 conference. In this system, we
collected 138 challenges and 255 challenge tasks so far2. Since 2018, it has been used primarily
for MICCAI challenges, which account for 88% of all challenges. Furthermore, the submission
system was used for IEEE International Symposium on Biomedical Imaging (ISBI) challenges in
2020 and 2021 (9%) and Medical Imaging with Deep Learning conference (MIDL) 2020 challenges
(3%), which was the first year this conference hosted challenges.

In Figure 5.1, we compare the challenges captured from 2004–2016, as described in Chapter 3, with
the recent trends from challenges that were collected via the structured challenge submission
system. It can be seen that some continue, however, some changes can be observed, as we
highlight in the following paragraphs.

Compared to the retrospective analysis, the number of challenges per year has been rising with
the exception of 2015, in which two challenges with an extremely high amount of tasks were
organized (cf. Figure 5.1(a)), with a median of 26 challenges (Interquartile Range (IQR): (22, 35);
maximum: 40) and 47 tasks (IQR: (36, 63); maximum: 73). Recent challenges show the same
lifecycle type trend compared to previous years, such that they were primarily organized as
one-time events with a fixed submission deadline (39%), followed by repeated events with a
deadline (21%). Challenges opening for new submissions after the conference deadline were less
common, with 21% being repeated and 19% organized as one-time events.

Semantic or instance segmentation remained the most commonly used problem category for
challenge tasks (37%), although the percentage halved in recent years. Segmentation is followed
by image-level classification (17%) and object detection (11%). The further focus of recent
challenges changed to registration and prediction problems rather than retrieval and tracking
(cf. Figure 5.1(b)).

Magnetic Resonance Imaging (MRI) (37%) and Computed Tomography (CT) (22%) remained the
most commonly applied imaging techniques. However, the fields of application shifted towards
research (15%), diagnosis (14%), and decision support (9%) purposes rather than assistance, as
prominently during the 2004–2016 challenges. In recent years, the submission method changed
to most challenge organizers operating on a specific challenge web platform (37%) or using
docker containers (35%), which were less common in the past.

2As of September 2022.
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Figure 5.1: Overview and statistics of biomedical image analysis challenges from 2004–2016 (left; inclusion
criteria as described in Chapter 3) and from 2018–2022 (right; challenges from the structured challenge
submission system as described in Section 4.4). (a) Number of challenges and tasks per year. (b) Percentage
of problem categories assessed in challenge tasks. (d) Dots- and boxplots of the number of training and
test cases used in challenge data sets.
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Challenge data was usually acquired from a median of one center and two devices, in contrast
to only one device in the past. Much more challenges reported the ethical approval ID since
the challenge submission system required organizers to fill out at least 90% of the parameters.
Therefore, a total of 66% of tasks reported the ethical approval ID or mentioned that it will be
available at the time of challenge execution. For 34% of recent tasks, no ethical approval was
needed.

The size of training data sets increased in recent years, as shown in Figure 3.1(c), with a median
of 229 cases, an IQR of (60, 730), and a maximum number of cases of 463,424. The number of test
cases was usually lower in present years, with a median of 100 cases, an IQR of (20, 300), and a
maximum number of cases of 48,914 from 2018–2022. The overall median ratio of training and
test cases raised from 0.75 to 2.33. The data has been annotated by a median of two annotators
(IQR: (2, 4); maximum: 20) and an additional 23% of tasks reported that more than one annotator
generated the reference data without further specifying the concrete number.

The trend of heterogeneous challenge validation continued in recent years, where the Dice
Similarity Coefficient (DSC) (50% of all tasks; 79% of the segmentation tasks) and the Hausdorff
Distance (HD)/Hausdorff Distance 95 Percentile (HD95) (26% of tasks; 48% of segmentation tasks)
were the most frequently used metrics from a total of 105 metrics. 58% of the metrics were only
used in a single task in the past. In recent years, only 16% of challenge tasks did not justify the
metric choice at all. Notably 24% justified their choice by stating that the metric was commonly
used without providing further context for the metric choice.

A challenge winner was announced in all recent tasks. 45% of tasks calculated the ranking
only based on a single metric. Similar to past challenges, we identified ten different ranking
schemes and metric-based aggregation was the most frequently used ranking scheme, although
the frequency is much lower in comparison (35% vs. 76%). Statistical testing increased from 6%
of tasks to 48% in recent years. Nonetheless, the t-test (22%) and Wilcoxon signed rank test (18%)
remained the most frequently used test strategies.

5.1.4 Discussion
While challenge acceptance in the past relied on only a very brief summary of the design, the
structured challenge submission system introduced a comprehensive online tool to collect
challenge information and to make challenges more secure. It enables a direct and complete
comparison of recent challenges with the retrospective analysis presented in Chapter 3.

We could observe that the number of challenges organized per year is still increasing. Constraints
by conferences, such as limited space, could be the reason that the number of challenges
decreased in 2016. Similar to previous years, segmentation problems were still the most frequent
category, but the number of segmentation problems nearly halved. This enabled other, less
common, problem categories, to be assessed. Recent challenges further use larger data sets and
more devices, with a trend towards more realistic data sets. Finally, the number of tasks using
statistical tests for their analysis has increased by a factor of eight, implying that more and more
challenge organizers put emphasis on the analysis of challenge results.
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The introduction of the structured challenge submission system allowed us to overcome some
of the security holes we presented in Section 4.1. Forcing challenge organizers to provide
information for at least 90% of challenge parameters yielded comprehensive design documents.
Those were especially helpful for the challenge reviews, in which reviewers were able to comment
on all facets of the proposed designs, capturing problems that may not have been visible before
introducing the peer review process. Furthermore, the organizers’ awareness of certain problems
of the challenge design could already have been raised at an early stage. In addition, the
submission system also served the purpose of educating organizers on the importance of specific
parameters and how they were defined to avoid ambiguities.

However, although the complete challenge design documents were provided to the challenge
organizers, we did not have control over the actual execution of the challenges. Thus, we further
analyze the concrete implementation of challenges compared to their accepted design documents
in Section 5.4.

5.1.5 Conclusion
The structured challenge submission system and review process introduced a specific quality
control mechanism for challenges. The process makes sure that only challenges whose complete
design is sound are accepted for conferences. This represents a novel, long-lasting structural
investment, which, through its introduction of true standardization and peer review, can elevate
the scientific quality of challenges. Nevertheless, this practice is still not sufficient to ensure
transparent reporting and may need further refinement, as we demonstrate in Section 5.4.



5.2 Improving common practice of metrics

Disclosure

This work has been supervised by Lena Maier-Hein. It has been conducted together
with several co-authors, especially Paul Jäger. The work has been submitted to
Nature Methods [Maier-Hein et al., 2022] and accepted as short papers/abstracts
at the Medical Imaging with Deep Learning conference (MIDL) conference [Reinke
et al., 2022a] and for the Medical Imaging Meets Neural Information Processing
Systems (NeurIPS) workshop [Reinke et al., 2022b]. Please refer to Chapter A.1 for
full disclosure.

5.2.1 Introduction
The choice of validation metrics is crucial for designing a biomedical image analysis challenge
and validating algorithm performance in general. The metric values provide the researchers
with information on how well or poorly the algorithms performed on particular images or the
entire data set. As a result, metrics are expected to represent the application-specific validation
goal. However, 24% of the challenges captured in the structured challenge submission system
(see Section 5.1.3) justified their metric selection by utilizing widely recognized and prominent
standard metrics. Yet, in Section 4.2, we demonstrated that most metrics come with several
limitations.

Metric selection is one of the most important steps in the validation pipeline. The ranking
scheme is largely irrelevant if the metric is flawed because the wrong properties are assessed. If
metrics are inadequate, an algorithm could win a challenge for the wrong reasons. Moreover,
challenges are often seen as a role model for benchmarking a specific research question. Thus,
researchers tend to use the same metrics and validation strategies proposed by a challenge
to be able to compare against the original challenge participants. We should therefore make
sure that challenges choose metrics in the right way to avoid mistakes being propagated and
integrated into research practice.

Therefore, choosing a performance metric because of its frequency or popularity is not valid
reasoning. In this section, we thus aim to answer the following research question.

Specific findings in Part 4

Information on metric pitfalls is currently inaccessible.

Metrics are widely chosen based on popularity rather than their clinical suit-
ability, ignoring their pitfalls.

Research question investigated in this chapter

How can we ensure that researchers choose metrics that reflect biomedical
needs?

161
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In this section, we propose a problem-aware metric recommendation framework. The recom-
mendations are based on a consensus decision of an international expert consortium. According
to Lennerz et al. [2022], we "lack (...) a common language between Artificial Intelligence (AI) and
medicine", this is why we the consortium consists of experts from varying domains, including
biomedical image analysis AI practitioners, clinicians, biologists, statistitians, and others. The
recommendation framework relies on the generation of a problem fingerprint, which systemati-
cally captures the properties of the underlying research question and objective of a problem
statement. Based on this characterization, metrics can be selected from several metric mappings
for different metric families, such as counting or boundary-based metrics. Finally, we present
recommendations for common biomedical use cases and show that several popular challenges
did not fulfill our requirements of a complete and problem-aware metric selection.

5.2.2 Methods
We once more opted for a multi-stage Delphi process [Brown, 1968], in which the knowledge of
multiple experts was merged to create a consensus on the recommendations through a series of
surveys, and develop a problem-aware metric recommendation framework. We built upon the
consortium presented in Section 4.2.2. The expert consortium was initialized with members from
the Medical Image Computing and Computer Assisted Interventions (MICCAI) Board Challenge
Working Group, the Biomedical Image Analysis ChallengeS (BIAS) initiative, and the Medical Open
Network for Artificial Intelligence (MONAI) Working Group for Evaluation, Reproducibility, and
Benchmarks. In addition, we invited experts from the fields of validation, metrics, challenges,
and other related meta-research topics. Thus, the consortium evolved over time. The final expert
consortium comprised 75 experts (20 female, 55 male). Most of the experts were active in Europe
(73%; most of them from Germany (35%) or the UK (12%)), followed by researchers from North
America (21%; mostly from the USA (13%) or Canada (8%)), South America (3%), Australia (2%),
and Asia (1%). Within the consortium, we defined different groups:

The core team comprised of myself and two others, coordinated the Delphi process, devised
the framework based on the expert feedback, prepared and evaluated the surveys, and
organized the workshops. The core team generally did not participate in the voting process.

The extended core team assisted the core team in the Delphi process coordination, the prepa-
ration of the surveys, and the workshop organization.

The experts participated provided feedback in the surveys. They were further divided into
several expert groups, working on dedicated parts of the framework:
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The image-level classification expert group worked on the recommendations for image-
level classification problems.

The semantic segmentation expert group worked on the recommendations for semantic
segmentation problems.

The object detection and instance segmentation expert group worked on the recommen-
dations for object detection and instance segmentation problems.

The biomedical expert group provided input from the application-specific perspective and
was composed of medical, clinical, and biological experts.

The cross-cutting concerns expert group worked on recommendations beyond the actual
metric selection, such as metric aggregation.

The Delphi process was initialized with a kick-off workshop, in which the scope of the recommen-
dation framework was discussed. The first round of surveys served the purpose of defining the
problem categories for which the recommendations should be provided, and the first selection
of metrics which should be added as candidates. The initial list of metrics was based on the
metrics that were used in challenges (see Chapter 3), complemented by those found in previous
work, such as those listed in Taha and Hanbury [2015], Nai et al. [2021], and Hicks et al. [2022]. In
this first round, 23 experts participated in the voting process.

The second round aimed for defining inclusion criteria of image analysis problems for the
framework. In addition, the experts voted on the first suggestion of the general mapping strategy
and the first iteration of the problem category mapping. The round was completed by 26 experts.
The refinement of the inclusion criteria and the problem category-specific metric pools were
the topics of the third round. They were complemented by defining the framework-specific
terminology and the definition of the problem fingerprint. 30 experts participated in round three.
After the evaluation of round three, we organized a second workshop, in which the expert groups
were presented and group members were assigned for topic-specific discussions.

Round four was divided among the five expert groups, which voted on the problem-specific
metric mappings and fingerprints or on questions for their respective topic. Furthermore, we
collected relevant biomedical use cases, for which we aimed to instantiate the framework. A total
of 37 experts responded to the surveys. Three follow-up workshops were organized after this
round to discuss and build the metric mappings. In addition, the pre-final metric mappings were
tested several times by researchers in the labs of the experts for a range of different problems
and applications. Before the final Delphi round started, we asked the general community to
provide feedback on the metric mappings and problem fingerprints. The mappings were refined
based on the feedback of 53 participants that were not part of the expert consortium. The final
round five aimed for the final consensus building on the problem fingerprints, metric mappings,
and decision guides. 32 experts voted in this round.

5.2.3 Results
Our problem-aware metric recommendation framework was built for problems that can be
interpreted as classification tasks at various levels. We therefore focused on the four problems of
image-level classification, semantic segmentation, object detection, and instance segmentation.
Their common validation metrics can be categorized into counting metrics, multi-threshold
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metrics, calibration metrics, and distance-based metrics. An overview of the recommendation
framework is provided in Figure 5.2.

Prerequisites

Handling of intermediate tasks The framework is intended to suggest metrics for one specific
biomedical question. However, many biomedical questions can be split into several intermediate
tasks and we recommend using the framework for all of them individually. For example, a
clinician may be interested in diagnosing whether a patient suffers from cancer. The task itself is
often accompanied by the delineation of the tumor, which would be an intermediate task. The
framework would be applied separately for the segmentation of the tumor and the classification
of the image. This also holds true for challenges with multiple tasks, which might focus on
different aspects. Each task would then be composed of different properties, objectives, and
perhaps even different data. Metrics should be chosen separately based on task-specific proper-
ties. In addition, metric selection is typically done for every class (of interest3) to ensure easily
interpretable results. If desired, class-wise results may be aggregated (see metric application).

Handling of multiple classes While some biomedical questions are binary (e.g. cancer versus no
cancer), many problems deal with multiple classes with different properties. In this case, some
of the metric mappings should be repeated for every class ensuring to reflect the class-specific
properties. Below, we indicate which processes should be repeated for every class. Furthermore,
we emphasize that the metric selection is solely based on the driving biomedical research
question and is independent of the actual algorithm. In our framework, we only focus on the
algorithm outputs and we neglect the training process and other model-specific subjects.

Metric pool The metric pool used for the recommendation framework is based on the consensus
from the Delphi expert consortium. It includes both popular standard metrics (such as Dice
Similarity Coefficient (DSC) and Accuracy) and rather uncommon metrics (such as Expected
Cost (EC) or Net Benefit (NB)). Generally, all recommendations address the metric pitfalls
presented in Section 4.2. Overall, we recommend the usage of multiple performance metrics
to validate algorithm predictions for different properties, thus compensating for limitations
of single metrics. Decisions on metric selection are typically application-specific.In situations
when the trade-offs between several metric candidates must be taken into account, we provide
decision guides that assist in the metric selection while respecting individual preferences. A list
of metrics used in the framework is provided in Appendix A.3.

Inderpendency of application domain and imaging modality Finally, it should be noted that the frame-
work is independent from the application domain and imaging modality. The problem fingerprint
(see next paragraph) was designed in a way such that it can be used for any biomedical image
analysis question related to image-level classification, semantic and instance segmentation, or
object detection.

3In segmentation problems, for example, the background class may not be of interest and may thus be excluded from
the metric selection.
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Figure 5.2: Overview of the metrics recommendation framework. In the first step, the problem fingerprint is
generated for the appropriate problem category (image-level classification (ImLC), semantic segmentation
(SemS), object detection (ObD), or instance segmentation(InS)) based on mapping M1 in Figure 5.3. Based
on the fingerprint, the metric selection is achieved via the mappings M2 - M9 (see Figures 5.4 - 5.12). Finally,
the selected metrics are applied to the data set.
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Problem fingerprint

The creation of a problem fingerprint, i.e. the structured collection of problem characteristics
unique to the underlying biomedical question or problem, is the most crucial stage of the
recommendation framework. The problem fingerprint differs across tasks and data sets, this is
the reason why it is important to instantiate the fingerprint for every intermediate problem or
challenge task. The problem fingerprint is composed of five categories, which were built from
the metric pitfall taxonomy presented in Section 4.2. In the first step, the problem category
(fingerprint F1.1) for the driving biomedical question is observed. The problem category mapping
M1 can be found in Figure 5.3. This mapping, which is assembled as a decision tree, asks for
global or local interest, where global interest refers to reference annotations on image level and
local interest refers to reference annotations on object or pixel level.

The domain interest problem characteristics cover the actual interest behind the underlying
biomedical question. Target structure problem characteristics capture the appearance of the
objects or structures in an image and are especially important for object detection and semantic
and instance segmentation problems independent from the interest. The data set problem
characteristics describe the data set on which the metrics should be calculated, i.e. the test
data set in a challenge. Finally, the algorithm output problem characteristics describe which
algorithm output is expected. The complete fingerprint is provided in Tables 5.1 - 5.5. The tables
indicate for which problem category the problem fingerprint is relevant. In addition, they provide
a description and illustration of every fingerprint.

Table 5.1: Problem fingerprint for the general problem category (Image-level Classification (ImLC), Semantic
Segmentation (SemS), Object Detection (ObD), Instance Segmentation (InS)). Each problem fingerprint
comes with an identifier (ID), an illustration, and a description. Table adapted from Maier-Hein et al. [2022].

ID Fingerprint Illustration Description

F1.1

Image processing
category

identified by
category mapping

The driving biomedical problem is assigned to one of the following problem cate-
gories via the category mapping.
Image level classification (ImLC): assignment of one or multiple category labels to
the entire image.
Example: disease screening; deciding on the presence or absence of a certain
condition/pathology without localizing the phenomenon.

Semantic segmentation (SemS): assignment of one or multiple category labels to
each pixel.
Example: surgical scene segmentation for autonomous robotics; assigning each
pixel the corresponding structure/organ/pathology label.

Object detection (ObD): detection and localization of structures of one or multiple
categories.
Example: detection and bounding box-based localization of polyps in colonoscopy
sequences.

Instance segmentation (InS): detection and delineation of each distinct object
of a particular class. It can be viewed as simultaneously performing the tasks
of semantic segmentation and object detection. In contrast to object detection,
instance segmentation also involves the accurate marking of the object boundary.
In contrast to semantic segmentation, it distinguishes different instances of the
same class.
Example: cell segmentation with a subsequent goal of cell counting. Detection and
localization of structures of one or multiple categories.
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Figure 5.3: Mapping M1: Problem category mapping to identify the problem fingerprint F1.1. The mapping
starts with the driving biomedical question and moves through multiple questions before arriving at the
appropriate problem category (image-level classification, semantic segmentation, object detection, or
instance segmentation).
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Table 5.2: Problem fingerprint for domain interest problem characteristics. Each problem fingerprint comes
with an identifier (ID), an illustration, and a description. In addition, every fingerprint is assigned to one
or multiple problem categories (Image-level Classification (ImLC), Semantic Segmentation (SemS), Object
Detection (ObD), Instance Segmentation (InS)). Table adapted from Maier-Hein et al. [2022].

ID Fingerprint ImLC SemS ObD InS Illustration Description

F2.1
Particular

importance of
structure

boundaries
✓ ✓

The biomedical application requires exact structure
boundaries.
Example: segmentation for radiotherapy planning; knowl-
edge of exact structure boundaries is crucial to destroy
the tumor while sparing healthy tissue.
Important: Overlap-based metrics do not measure
shape agreement. In the cases of complex shapes
(high boundary-to-volume ratio), it is therefore typically
advisable to set this property to true.

F2.2
Particular

importance of
structure
volume

✓ ✓
The biomedical application requires accurate knowledge
of structure volumes.
Example: liver segmentation as the basis for remnant liver
volume computation in surgical resection planning.

F2.3

Particular
importance of

structure
center (e.g. in
cells, vessels)

✓ ✓ ✓

The biomedical application requires accurate knowledge
of structure centers.
Example: cell centers are subsequently used for cell track-
ing and cell motion characterization, so false center move-
ment should be suppressed.

F2.4
Desired

granularity of
localization

✓

The granularity of required localization can vary in object
detection tasks. We distinguish two main categories:
Only position: given an n-dimensional image, the object
is represented by its position, encoded in n degrees of
freedom (e.g. xy/xyz coordinates of the center point)
Rough outline: a rough outline of the object is provided,
typically given by simple geometric approximations such
as bounding boxes or ellipsoids.

It should be noted that if a substantial fraction of objects
is tiny (F3.1), any outline-based localization becomes very
noisy. In such cases, users might want to consider alterna-
tive localization strategies, such as a center-point-based
localization.

F2.5.1
Penalization of
errors: Unequal
interest across

classes
✓ ✓ ✓ ✓

There is a preference for one or several of the classes.
This has implications for both the metric selection and the
metric aggregation.
Example 1: In cell classification scenarios, it may be more
important to correctly classify tumor cells compared to
correctly classifying muscle cells or connective tissue.
Example 2: in full surgical scene segmentation for au-
tonomous robotics, critical structures, such as nerves or
vessels, should be localized more accurately compared to
fatty tissue
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ID Fingerprint ImLC SemS ObD InS Illustration Description

F2.5.2

Penalization of
errors: Unequal

severity of
class

confusions

✓ ✓ ✓ ✓

Any class can be confused with another, but certain mis-
matches are more severe than others, from a domain point
of view.
Example 1 (binary, ObD): polyp detection; a False Negative
(FN) (missed polyp) is clinically much more severe than a
False Positive (FP).
Example 2 (multi-class): Depending on the application,
confusing different kinds of immune cells is more problem-
atic compared to confusing an immune cell with a tumor
epithelial cell.
Example 3 (multi-class, ImLC): lung tumor categorization
T1-T5 depends largely on structure size, implying an ordinal
scale of classes. Thus, penalization of class confusions
should reflect this ordinal scale.
Specifically, in InS problems, the property needs to be
set separately for the validation of the (a) detection
(relevant decision guide: 3.5) and (b) segmentation
performance (relevant mapping: M6. At object level,
FNs (missed instances) are sometimes more severe than
FPs, while FNs (e.g. undersegmentation) and FPs (e.g.
oversegmentation) may be equally important at pixel level.

F2.5.3

Penalization of
errors:

Mismatch
between class
prevalences

and class
importance

✓

The class prevalences do not reflect the class importance.
There are three scenarios for mismatches between class
prevalences and class importance:
Class prevalences are balanced (F4.1 = FALSE), but there is
an unequal interest across classes (F2.5.1 = TRUE).
Class imbalance is present (F4.1 = TRUE), but there is an
equal interest across classes (F2.5.1 = TRUE).
Class imbalance is present (F4.1 = TRUE) and there is an
unequal interest across classes (F2.5.1 = TRUE), but the
way in which classes are balanced does not match the
"imbalance of interest".
Importantly, while scenarios 1 and 2 can be expressed
with other fingerprints, scenario 3 represents a new set of
use cases.

F2.5.4

Penalization of
errors: Costs

for class
confusions
available

✓

In the case of an unequal severity of class confusions
(F2.5.2 = TRUE), these unequal severities might be explicitly
defined in the form of costs values associated with each
confusion. For example, a cost analysis may lead to the
result that FP errors are five times more costly than FN
errors. In case such costs are defined or can be estimated
with adequate accuracy for the use case, it is possible
to apply certain metrics which explicitly consider these
costs in validation (e.g. Weighted Cohen’s Kappa (WCK) and
Expected Cost (EC)). If costs are not provided and cannot
be estimated, we recommend to proceed with validation
separately for individual classes.
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ID Fingerprint ImLC SemS ObD InS Illustration Description

F2.5.5

Penalization of
errors:

Compensation
for class

imbalances
requested

✓ ✓ ✓ ✓

Severe class imbalances might impede interpretability and
objective assessment of method validation and e.g. lead to
overly optimistic conclusions. Some metrics compensate
for such effects.
Example 1 (ImLC; multi-class classification with one
dominant class): Accuracy would reflect this imbalance
and allow for high scores of an uninformed classifier,
which impedes the interpretability of scores. Balanced
Accuracy (BA) and Matthews Correlation Coefficient (MCC),
on the other hand, compensate for this effect as an
uninformed classifier would have a known fixed metric
value (BA: 1 divided by the number of classes, MCC: 0)
irrespective of the class imbalance.

Example 2 (ObD, InS, ImLC; binary classification with
the negative class being overrepresented in the form of
easy-to-classify TN): Metric scores considering balanced
discrimination of two classes (e.g. LR+ or AUROC) might
be dominated by TN and thus give an overly optimistic
picture of the performance, especially if practical inter-
est lies with the positive class. This is especially true
in screening tasks (e.g. cancer detection in a cohort
of mostly healthy patients). Metrics not considering
TN (e.g. Fβ Score or AP) compensate for this effect and
enable focusing on the discrimination of the positive class.

F2.5.6
Penalization of

errors:
Handling of

spatial outliers
✓ ✓

Spatial outliers are FP predictions that feature a large
distance to the reference. They can be handled in three
different ways:
Distance-based penalization with outlier focus: Outliers
should be heavily penalized as a function of the distance
to the reference contour.
Distance-based penalization with contour focus: Outliers
should be penalized as a function of the distance to the
reference, but the assessment should focus on the general
contour agreement rather than individual outliers.
Existence-based penalization: The existence of spatial
outliers should be penalized irrespective of their distance
to the reference contour.

Note that distance-based penalization is not possible
when either the reference or the prediction is empty. In
applications in which many of such cases potentially occur,
we therefore recommend an existence-based penalization.

F2.5.7

Penalization of
errors:

Compensation
for annotation
imprecisions

requested

✓ ✓

The reference annotation is typically only an approxima-
tion of the (forever unknown) ground truth. It may be
desirable to compensate for known uncertainties, such
as intra-rater or inter-rater variability, by configuring the
metric accordingly. This is only possible for some metrics.

F2.5.8

Penalization of
errors:

Penalization of
multiple

predictions
assigned to the
same reference

object
requested

✓ ✓

ObD and InS algorithms involve the step of assigning
predicted objects to reference objects. This may result
in more than one prediction being assigned to the same
reference. This fingerprint property should be set to true
if all but one prediction of such an assignment should be
penalized as FP, and set to false if these spare predictions
should be ignored during validation.
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ID Fingerprint ImLC SemS ObD InS Illustration Description

F2.6
Cutoff on

predicted class
scores

✓ ✓ ✓

Modern algorithms output continuous class scores. Mak-
ing a classification decision requires setting a cutoff value
on the scores, thereby generating a (cutoff-specific) confu-
sion matrix. This matrix enables the computation of popu-
lar single-threshold counting metrics, such as sensitivity,
Positive Predictive Value (PPV) and F1 Score. Depending
on domain interest the cutoff can be set in multiple ways:
Target value-based cutoff: The cutoff represents the
threshold for which a specific target metric value (e.g. Sen-
sitivity = 0.95) is achieved. Other metric values (e.g. Speci-
ficity) are then reported for this specific threshold. We use
the notation Metric1@Metric2 (e.g. Specificity@Sensitivity
= 0.95) in this case.
Optimization-based cutoff: The cutoff is inferred by opti-
mizing a target metric, such as the F1 Score, on a validation
data set.
Argmax-based cutoff: If no target value is defined, no
separate data split for optimization is available, or there
are concerns w.r.t generalization of data-based cutoff op-
timization, a common option is to follow the principle
of a Bayes classifier and pick the class with the highest
predicted class score.
Benefit-cost-based cutoff: In case the predicted class
scores express the risk associated with a case belong-
ing to a certain class (see F2.7), and there is a task-related
risk-threshold provided (e.g., only treat patients with can-
cer risk >10%), one can apply this threshold directly to
the scores without data-driven optimization. Notably, pro-
vided risk thresholds correspond to a cost ratio of TP ver-
sus FP (e.g., not more than 10 FP per 1 TP should be treated).
The Net Benefit metric considers this cost ratio as an in-
herent part of performance measure.
No cutoff: Examples for no interest in validating a method
at a certain cutoff are (1) focus on general methodological
performance across many tasks and data sets without
application interest, or (2) concerns regarding the
comparability of results based on a single cutoff that is
fixed across varying study cohorts (see also F4.2).

F2.7.1

Calibration of
predicted class

scores :
Calibration
assessment
requested

✓ ✓ ✓

This property should be set to true if the predicted
class scores should match the true probability of cases
belonging to the predicted class (e.g. the probability
of a patient to develop a certain disease in prediction
problems). Methods subject to validation in this context
are either classification models (testing their inherent
calibration quality) or so called re-calibration methods,
i.e. accuracy-preserving (bijective) transformation on
the classifier outputs aiming to improve calibration quality.
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ID Fingerprint ImLC SemS ObD InS Illustration Description

F2.7.2

Calibration of
predicted class

scores:
Comparative
calibration
assessment
requested

✓ ✓ ✓

Comparison of re-calibration methods on the same classi-
fier: The potential benefit of one or more re-calibration
methods is to be assessed and compared. The desired
validation output is a ranking of re-calibration methods
(including the performance of "no re-calibration") from
which the best method can be selected.
Comparison of calibration performance across classifiers:
This comparison of classification models potentially in-
cludes (re-) calibration methods applied on their outputs.
The desired validation output is a ranking of methods
according to calibration quality.
Comparison of overall performance across classifiers:
Overall performance refers to the joint assessment of dis-
crimination performance and calibration quality. This com-
parison of classification models potentially includes re-
calibration methods applied on their outputs. The desired
validation output is a single ranking naturally weighting
both aspects.
No comparative assessment: If the interest lies in under-
standing the reliability of predicted class scores for one
given model, no metrics for comparative assessment are
required.

F2.7.3

Calibration of
predicted class

scores:
Interpretable
estimate of
calibration

error
requested

✓ ✓ ✓

There is an interest in understanding the
reliability of predicted class scores for a
given model as a basis for interpreting and
communicating results. The desired validation
output is a single score which provides an
insight into how well the model is calibrated.
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Table 5.3: Problem fingerprint for target structure problem characteristics. Each problem fingerprint comes
with an identifier (ID), an illustration and a description. In addition, every fingerprint is assigned to one
or multiple problem categories (Image-level Classification (ImLC), Semantic Segmentation (SemS), Object
Detection (ObD), Instance Segmentation (InS)). Table adapted from Maier-Hein et al. [2022].

ID Fingerprint ImLC SemS ObD InS Illustration Description

F3.1
Small size of

structures
relative to pixel

size
✓ ✓ ✓

Structures of the provided class are only a few pixels in
size.
Example: multiple sclerosis lesions in magnetic resonance
imaging (MRI) scans.

F3.2

High variability
of structure
sizes (within
one image,

across images)

✓ ✓ ✓

The target structures vary substantially in size, such that
some structures are several times the size of others.
Example: polyps in colonoscopy screening, where some
polys are several times the size of others.
Counterexample: large organs, such as the liver or the
kidneys, which are relatively comparable in size across
individuals.

F3.3

Target
structures

feature tubular
shape

✓ ✓ ✓
The target structures feature a tubular shape.
Examples: vessels, fibers.

F3.4
Possibility of

multiple labels
per unit (pixel

or image)
✓ ✓ ✓

ImLC: Multiple categories may be assigned to one image.
Example: image classified with multiple pathologies
during a screening process.

SemS/InS: Multiple categories may be assigned to one
pixel.
Example: labels ’tumor core’ and ’tumor’ assigned to the
same pixel.

F3.5

Possibility of
overlapping or
touching target
structures (e.g.

medical
instruments or

cells)

✓ ✓ ✓

Different instances of a class can overlap or touch each
other.
Examples: overlapping cells or organisms, such as
BBBC010 (worms in a dish); overlapping medical instru-
ments in laparoscopy.

F3.6
Possibility of
disconnected

target
structure(s)

✓ ✓
A given structure appears disconnected in the given image.
Examples: single tomographic image slice depicting com-
plex vessel, partially occluded by a medical instrument.
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Table 5.4: Problem fingerprint for data set problem characteristics. Each problem fingerprint comes with
an identifier (ID), an illustration, and a description. In addition, every fingerprint is assigned to one or
multiple problem categories (Image-level Classification (ImLC), Semantic Segmentation (SemS), Object
Detection (ObD), Instance Segmentation (InS)). Table adapted from Maier-Hein et al. [2022].

ID Fingerprint ImLC SemS ObD InS Illustration Description

F4.1
Presence of

class
imbalance

✓ ✓ ✓ ✓ The class prevalences differ substantially. Further reading
Mahani and Ali [2019].

F4.2

Provided class
prevalences
reflect the

population of
interest

✓

The class prevalences are representative of the preva-
lences to be expected in the population of interest.
This property should be set to true if either the validation
interest is constrained to the data set at hand or no varia-
tion of prevalences is expected in other cohorts and upon
application of the method.
The property should be set to false if the variation of
prevalences is expected to occur beyond the current
data set and, at the same time, comparability across
study cohorts or estimation of method performance
upon future application are requested. In this case, only
prevalence-independent metrics will be recommended.

F4.3.1

Uncertainties
in the

reference: High
inter-rater
variability

✓ ✓ ✓
The reference can be assumed to be noisy due to high
inter-rater variability.

F4.3.2

Uncertainties
in the

reference:
Possibility of

spatial outliers
in reference
annotation

✓ ✓
The reference may feature spatial outliers that are distant
from the (unknown) ground truth.

F4.4
Granularity of

provided
reference

annotations
✓

The granularity of the reference can vary in object detec-
tion problems. We distinguish three main categories:
Only position: Given an n-dimensional image, the object
is represented by its position, encoded in n degrees of
freedom (e.g. xy/xyz coordinates of the center point)
Rough outline: A rough outline of the object is provided,
typically given by simple geometric objects such as bound-
ing boxes or ellipsoids.
Exact outline: The object is outlined exactly.

F4.5
Non-

independence
of test cases

✓ ✓ ✓ ✓
The test cases are hierarchically structured, indicating non-
independence of test cases.
Examples: multiple images of the same patient, hospital,
or video.

F4.6
Possibility of

reference
without target

structure(s)
✓ ✓ ✓

There are test cases in which the reference for at least one
class is empty.
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Table 5.5: Problem fingerprint for algorithm output problem characteristics. Each problem fingerprint
comes with an identifier (ID), an illustration, and a description. In addition, every fingerprint is assigned
to one or multiple problem categories (Image-level Classification (ImLC), Semantic Segmentation (SemS),
Object Detection (ObD), Instance Segmentation (InS)). Table adapted from Maier-Hein et al. [2022].

ID Fingerprint ImLC SemS ObD InS Illustration Description

F5.1
Availability of

predicted class
scores

✓ ✓ ✓

Modern algorithms output continuous class scores, which
are often interpreted as predicted class probabilities.
These scores contain relevant information about the per-
formance of a model and are thus crucial for comprehen-
sive and meaningful validation.
ObD: In object detection, predicted class probabilities are
typically available for each detected object.
InS: Instance segmentation problems in the biomedical
domain are often approached by adding a post-processing
step (e.g. connected component analysis) to a semantic
segmentation algorithm. In this process, predicted class
probabilities often get lost.
If no predicted class probabilities are available, this
property is set to false.

F5.2

Possibility of
algorithm
output not

containing the
target

structure(s)

✓ ✓ ✓
The algorithm may yield output images in which not all
classes are present.

F5.3

Possibility of
invalid

algorithm
output (e.g.

Prediction is
NaN)

✓ ✓ ✓ ✓
The files representing the algorithm output can contain
invalid output.

F5.4
Possibility of
overlapping
predictions ✓ ✓ Predictions of the algorithm can potentially overlap.

Metric selection

Based on the appropriate problem category and the problem fingerprint, metrics are selected
from a problem category-specific metric pool. The selection is made via several metric mappings,
as shown in Figure 5.2.

For image-level classification problems, we recommend selecting a multi-class counting metric
(mapping M2; Figure 5.4), but only if one is interested in a cutoff on the predicted class scores, and
therefore in building a confusion matrix. If a metric of this family should be used, the researcher
is guided through several questions based on the problem fingerprint. Potential candidates are
Accuracy, BA, Expected Cost (EC), MCC, and Weighted Cohen’s Kappa (WCK). In the case of a node
requesting to select between two metrics (e.g. "Select from EC, WCK"), a decision guide helps in
the decision making process. It should be noted that the EC can be adjusted by specific choice of
the costs and priors to serve as a generalization of BA and Accuracy (see respective information
boxes in Figure 5.4 and Equation 2.40).

To measure the performance per class, a per-class counting metric (mapping M3; Figure 5.5) should
be selected if a confusion matrix should be created, based on which the metric is calculated.
We suggest different candidates depending on the kind of cutoff for the predicted class scores.
For a cutoff based on a pre-defined target value, the confusion matrix and respective metric
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scores should be chosen according to the pre-defined target value (e.g. Sensitivity@Specificity).
In this case, the metric should be only selected for the class with the target value. In the case
of optimization- or argmax-based cutoff value and based on the class prevalences, we suggest
the Positive Likelihood Ratio (LR+), Sensitivity, and Fβ Score as candidates. If a risk-based cutoff
is preferred, our recommended metrics are the NB or EC. The metric candidate(s) should be
selected for each class.

If predicted class scores are available, we further recommend selecting a multi-threshold
metric (mapping M4; Figure 5.7). For image-level classification problems, we suggest the Area
under the Receiver Operating Characteristic Curve (AUROC) and Average Precision (AP) as candi-
dates, which are chosen based on whether the class prevalences reflect the population of interest.

If calibration assessment is required, we further recommend selecting a calibration metric
(mapping M5; Figure 5.8). For comparative calibration assessment, we recommend selecting an
overall performance measure (Brier Score (BS) or Negative Log Likelihood (NLL)) capturing both
discrimination and calibration for the comparison of (re-) calibration methods of a fixed classifier
(use case U1 in Figure 2.23) or for comparison of the overall performance of multiple classifiers
(use case U3 in Figure 2.23). For the comparison of the calibration performance across classifiers
(use case U2 in Figure 2.23), we recommend either the Class-wise Calibration Error (CWCE) if there
is no mismatch between the class prevalences and class importances, and Kernel Calibration
Error (KCE) (canonical calibration) otherwise. For an interpretable estimate of the calibration (use
case U4 in Figure 2.23), we recommend reporting the CWCE per class in the case of a mismatch
between class prevalences and class importances. Otherwise, we recommend selecting between
either top-label calibration (Expected Calibration Error (ECE)) or canonical calibration (Expected
Calibration Error Kernel Density Estimate (ECEKDE)), the latter with additionally reporting the
CWCE per class. The decision between both strategies is facilitated by the respective decision
guide. Since ECE, ECEKDE, and CWCE are known to potentially underestimate the true calibration
error [Gruber and Buettner, 2022], we advise reporting the Root Brier Score (RBS) in addition to
either metrics as a guaranteed lower bound of the true calibration error [Gruber and Buettner,
2022]. This guarantee provides additional information, especially in safety-critical applications
where the calibration error must not be underestimate.

For semantic segmentation problems, we recommend selecting an overlap-based and a boundary-
based metric. An overlap-based metric (mapping M6; Figure 5.9) should always be chosen unless
the target structures are all consistently small and the reference annotation is very noisy. In this
case, we recommend reformulating the problem as an object detection task. We recommend
the Centerline Dice Similarity Coefficient (clDice) if the centerline of structures is the exclusive
interest. If not, based on potentially unequal penalization of over- and undersegmentation, we
recommend either selecting the Fβ Score or the DSC or Intersection over Union (IoU) based on
the respective decision guide. The mapping should be repeated for every class.

In most cases, the overlap-based metrics should be accompanied by a boundary-based metric
(mapping M7; Figure 5.10). More specifically, a boundary-based metric should be selected if one
is particularly interested in the structure boundary, if a specific handling strategy for outliers is
requested, if imprecisions in the annotation should be compensated or if the target structures
are of variable sizes. If the compensation for imprecisions in the annotation is required, we
recommend selecting the Normalized Surface Distance (NSD). If not, based on the outlier
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strategy, we suggest the Average Symmetric Surface Distance (ASSD), Boundary Intersection over
Union (Boundary IoU), Hausdorff Distance (HD), Mean Absolute Surface Distance (MASD), NSD, or
the Xth Percentile HD (e.g. HD95) as candidates. Boundary-based metrics should not be used if
overlapping or touching structures are possible to avoid comparing a structure to the wrong
boundary. The mapping should be repeated for every class.

For object detection problems, we first recommend choosing an appropriate localization criterion
(mapping M8; Figure 5.11). The recommendation is based on the granularity of the localization and
the reference annotation. Potential candidates include the Center Distance (if only the position
is of importance), the Point inside the Mask/Box/Approximation or the Mask Intersection over
Union (Mask IoU) that is greater than 0 (if only the position is of importance although an exact
or rough outline is available), or the Box or Approximation IoU for interest in the rough outline.
The mapping should be repeated for every class.

Afterwards, the assignment strategy (mapping M9; Figure 5.12) is selected. Based on the availabil-
ity of the predicted class scores, we recommend either selecting the Greedy (by Score) Matching
(if available), or choosing between the Greedy (by "localization criterion"4) Matching, the Optimal
(Hungarian) Matching and the Matching via the "localization criterion"4 > 0.5. In addition, one
should decide whether multiple predictions assigned to the same reference structure should be
penalized as FPs or not. The mapping should be repeated for every class.

Moreover, metrics for assessing the detection performance should be selected. Here, we
recommend following a similar branch compared to the image-level classification metrics,
namely in choosing a per-class counting metric (mapping M3; Figure 5.6) and a multi-threshold
metric (mapping M4; Figure 5.7). For the per-class counting metrics, the decision is once more
dependent on the interest in a cutoff value. If so, along with a pre-defined target, we recommend
choosing a metric at a specific target value, e.g. PPV@Sensitivity. If there is no pre-defined
target value, we recommend the Fβ Score. For the multi-threshold metric, we suggest the AP
and Free-Response Receiver Operating Characteristic (FROC) Score as candidates. The decision
should be based on the respective decision guide. If the predicted class scores should be
interpretable, we recommend selecting a calibration metric (mapping M5; Figure 5.8), such as
the BS or the ECE. In object detection problems, we do not recommend the NLL (see Section 2.4.5).

For instance segmentation problems, we recommend combining the object detection and seman-
tic segmentation pipeline. In order to assess the detection quality, we suggest selecting the local-
ization criterion (mapping M8; Figure 5.11; here we recommend selecting between Boundary IoU,
Mask IoU and Intersection over Reference (IoR)), and the assignment strategy (mapping M9;
Figure 5.12). As detection metrics, we analogously select a per-class counting metric (mapping M3;
Figure 5.6), and a multi-threshold metric (mapping M4; Figure 5.7). For the latter, we further add
the Panoptic Quality (PQ) to the candidates. If the predicted class scores should be interpretable,
we recommend selecting a calibration metric (mapping M5; Figure 5.8). In instance segmentation
problems, we do not recommend the NLL (see Section 2.4.5). Finally, to assess the segmenta-
tion quality, we recommend selecting an overlap-based metric (mapping M6; Figure 5.9) and a
boundary-based metric (mapping M7; Figure 5.10). Note that the segmentation metrics are only
applied to the identified True Positive (TP) instances and are computed per instance.

4"Localization criterion" refers to the overlap-based localization criterion selected in mapping M8 (Figure 5.11).
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Metric mappings
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Figure 5.4: Mapping M2: Multi-class counting metrics. The mapping is based on the generated problem
fingerprint, which is referred to as "FX.Y" for image-level classification problems. The decision guides can be
found in Tables 5.6 - 5.8. An overview of relevant limitations of the metric candidates is provided in Table 4.1.
Used abbreviations: Balanced Accuracy (BA), Expected Cost (EC), and Matthews Correlation Coefficient (MCC).
Figure adapted from [Maier-Hein et al., 2022].
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Figure 5.5: Mapping M3 (Part 1): Per-class counting metrics. The mapping is based on the generated problem
fingerprint, which is referred to as "FX.Y" for image-level classification (ImLC), object detection (ObD), and
instance segmentation (InS) problems. The path through M5 for ObD and InS problems is shown in Figure 5.6
to enhance the readability. The decision guides can be found in Tables 5.9 - 5.13. An overview of relevant
limitations of the metric candidates is provided in Table 4.1. Further abbreviation: Positive Likelihood
Ratio (LR+). Figure adapted from [Maier-Hein et al., 2022].
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Figure 5.6: Mapping M3 (Part 2): Per-class counting metrics. The mapping is based on the generated
problem fingerprint, which is referred to as "FX.Y" for image-level classification (ImLC), object detection
(ObD), and instance segmentation (InS) problems. The path through M5 for ImLC problems is shown in
Figure 5.5 to enhance the readability. The decision guides can be found in Tables 5.10 - 5.13. An overview of
relevant limitations of the metric candidates is provided in Tables 4.1 and 4.3. Further abbreviation: Panoptic
Quality (PQ). Figure adapted from [Maier-Hein et al., 2022].
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Figure 5.7: Mapping M4: Multi-threshold metrics. The mapping is based on the generated problem fingerprint,
which is referred to as "FX.Y" for image-level classification (ImLC), object detection (ObD), and instance
segmentation (InS) problems. The decision guide can be found in Table 5.14. An overview of relevant
limitations of the metric candidates is provided in Tables 4.1 and 4.3. Further abbreviations: Area under
the Receiver Operating Characteristic Curve (AUROC), Average Precision (AP), and Free-Response Receiver
Operating Characteristic (FROC) Score. Figure adapted from [Maier-Hein et al., 2022].
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Figure 5.8: Mapping M5: Calibration metrics. The mapping is based on the generated problem fingerprint,
which is referred to as "FX.Y" for image-level classification (ImLC), object detection (ObD), and instance
segmentation (InS) problems. The decision guide can be found in Tables 5.16 - 5.17. An overview of relevant
limitations of the metric candidates is provided in Table 4.1. Further abbreviation: Expected Calibration
Error (ECE). Figure adapted from [Maier-Hein et al., 2022].
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Figure 5.9: Mapping M6: Overlap-based metrics. The mapping is based on the generated problem fingerprint,
which is referred to as "FX.Y" for semantic segmentation (SemS) and instance segmentation (InS) problems.
The decision guides can be found in Tables 5.18 - 5.19. An overview of relevant limitations of the metric
candidates is provided in Tables 4.2 and 4.3. Further abbreviations: Centerline Dice Similarity Coefficient
(clDice), Dice Similarity Coefficient (DSC) and Intersection over Union (IoU). Figure adapted from [Maier-Hein
et al., 2022].
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Figure 5.10: Mapping M7: Boundary-based metrics. The mapping is based on the generated problem
fingerprint, which is referred to as "FX.Y" for semantic segmentation (SemS) and instance segmentation
(InS) problems. The decision guides can be found in Tables 5.20 - 5.22. An overview of relevant limitations of
the metric candidates is provided in Tables 4.2 and 4.3. Further abbreviations: Average Symmetric Surface
Distance (ASSD), Boundary Intersection over Union (Boundary IoU), Hausdorff Distance (HD), Mean Absolute
Surface Distance (MASD), Normalized Surface Distance (NSD), and Intersection over Union (IoU). Figure
adapted from [Maier-Hein et al., 2022].
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Figure 5.11: Mapping M8: Localization criteria. The mapping is based on the generated problem fingerprint,
which is referred to as "FX.Y" for object detection (ObD) and instance segmentation (InS) problems. The
decision guides can be found in Tables 5.23 - 5.25. An overview of relevant limitations of the metric
candidates is provided in Table 4.3. Further abbreviations: Boundary Intersection over Union (Boundary IoU),
Box/Approximation Intersection over Union (Box/Approx IoU), Intersection over Reference (IoR), and Mask
Intersection over Union (Mask IoU). Figure adapted from [Maier-Hein et al., 2022].
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Figure 5.12: Mapping M9: Assignment strategies. The mapping is based on the generated problem fingerprint,
which is referred to as "FX.Y" for object detection (ObD) and instance segmentation (InS) problems. The
decision guide can be found in Table 5.26. Figure adapted from [Maier-Hein et al., 2022].

Decision guides

In the following, we present the decision guides, which should be used for the final step of the
problem-aware metric selection. Most of the metric mappings end in selection nodes, in which a
decision between two or more metrics is required. The decision guides list the advantages and
disadvantages of the metrics. Only the conditions mentioned in the relevant mappings should be
used to make the decision, i.e. the decision guides should not be used for a standalone decision;
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they already incorporate the traversal through the mappings and therefore, the decisions based
on the problem fingerprint. It should be noted that some properties of the metric candidates
can be both an advantage and a disadvantage based on the actual interest and problem.

Decision guides for selecting multi-class counting metrics (M2)

Decision guide 2.1 This decision guide refers to mapping M2 (Figure 5.4) for choosing between the
WCK and the EC as a multi-class counting metric. Table 5.6 lists the advantages and disadvantages
of both metrics.

Table 5.6: Decision guide 2.1 for choosing between Weighted Cohen’s Kappa (WCK) and the Expected Cost (EC)
as a multi-class counting metric (mapping M2 in Figure 5.4). Context: unequal interest across classes
(F2.5.1 Ë) and/or unequal severity of class confusions (F2.5.2 Ë) and provided class prevalences reflect the
population of interest (F4.2 Ë). Advantages of a metric are indicated by , while disadvantages are shown
by . Table adapted from Maier-Hein et al. [2022].

WCK EC

 Allows for problem-specific penalties
 Commonly used in the biomedical com-

munity
 Difficult to interpret
 Symmetric measure for an asymmetric sit-

uation (comparing reference and predic-
tion rather than multiple raters)

 Quadratic weighted version may yield
"paradoxical results" [Warrens, 2012]

 Allows for problem-specific penalties
 Thorough theoretical grounding
 Intuitive interpretation
 Asymmetric measure
 Simultaneous assessment of discrimina-

tion and calibration
 Uncommon in the biomedical community

Decision guide 2.2 This decision guide refers to mapping M2 (Figure 5.4) for choosing between the
BA and the EC as a multi-class counting metric. Table 5.7 lists the advantages and disadvantages
of both metrics.

Table 5.7: Decision guide 2.2 for choosing between the Balanced Accuracy (BA) and the Expected Cost (EC)
as a per-class counting metric (mapping M2 in Figure 5.4). Context: Equal interest across classes (F2.5.1 é),
equal severity of class confusions (F2.5.2 é), and provided class prevalences do not reflect the population
of interest (F4.2 é). Advantages of a metric are indicated by , while disadvantages are shown by . Table
adapted from Maier-Hein et al. [2022].

BA EC

 Intuitive interpretation
 Assumes that class priors are uniform and

not modifiable

 Enables modification of the class priors
for the intended use

 Difficult to interpret; may require usage of
the normalized variant of the metric
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Decision guide 2.3 This decision guide refers to mapping M2 (Figure 5.4) for choosing between
the BA, the MCC, and the normalized variant of the EC as a multi-class counting metric. In class-
balanced scenarios, Accuracy is the default metric (see M2; Figure 5.4). However, class imbalance
introduces three effects on this metric that can be compensated: (1) lost random reference, (2)
lost equal importance of classes, and (3) lost consideration of predictive values. BA, MCC, and
the normalized variant of the EC can compensate for them in different aspects, as indicated in
Table 5.8.

Table 5.8: Decision guide 2.3 for choosing between Balanced Accuracy (BA), Matthews Correlation Coefficient
(MCC), and the normalized variant of the Expected Cost (EC) (ECnorm) as a multi-class counting metric
(mapping M2 in Figure 5.4). Context: class prevalences reflect the population of interest (F4.2 Ë) but
compensation for imbalanced classes is required (F4.1 Ë and F2.5.5 Ë). Advantages of a metric are indicated
by , while disadvantages are shown by . Further abbreviations: Negative Predictive Value (NPV), Positive
Predictive Value (PPV). Table adapted from Maier-Hein et al. [2022].

BA MCC ECnorm

 Restores random refer-
ence (1/nclasses)

 Restores equal impor-
tance of classes: errors
are penalized with re-
spect to respective class
Sensitivities, thus en-
suring equal importance
across class Sensitivities

 Intuitive interpretation
 Does not restore lost

considerations of pre-
dictive values, i.e. BA
can yield near-perfect
scores for predictions
with low predictive
value

 Restores random refer-
ence (0)

 Restores equal impor-
tance of classes: er-
rors are penalized in
reference to respective
Sensitivities and predic-
tive values giving equal
weight across Sensitivi-
ties and across predic-
tive values irrespective
of prevalence

 Restores consideration
of predictive values (all
four basic rates need to
be high to get a high MCC
score)

 No interpretable scale
for non-random values,
which makes it harder to
interpret

 Restores random reference (1)
 Simple rescaling of Accu-

racy, but ranking remains
unchanged

 Rescaling ensures that above-
random performance implies
good predictive values

 Does not restore equal im-
portance of classes: even er-
rors in the dominant class are
counted as if they occurred in
the rare classes, thereby not
giving equal weight to individ-
ual class Sensitivities (anal-
ogously to Accuracy). This
makes ECnorm the strictest of
the three metrics in terms of
interpreting systems to per-
form better than random (the
total number of errors, ir-
respective of the associated
class, needs to be lower than
the number of events in the
rare class)
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It should be noted that in the specific case of this decision, BA and EC are equivalent if the
costs should compensate for class imbalance, i.e. the costs of EC are chosen as wii = 0 and
wij =

1
NPi

with N referring to the number of classes and Pi being the class prevalence of class i

(see Equation 2.45). However, for this decision guide, we explicitly use the normalized variant of
EC as an additional metric candidate.

Decision guides for selecting per-class counting metrics (M3)

Decision guide 3.1 This decision guide refers to mapping M3 (Figures 5.5 and 5.6) for choosing a
metric according to a specified target value (Metric1@Metric2). In such a situation, the cutoff is
the threshold at which a particular pre-defined target metric value is attained. For example, an
application might require a Sensitivity of 0.98. The chosen thresholds are then optimized for
this target value and other metrics can be reported for this target value. By drawing the AUROC,
for example, the corresponding Specificity value can be easily obtained. Based on the general
situation, the exact metrics can be chosen. The following points help to select a suitable metric:

Image-level classification: If class prevalences do not reflect the population of interest (F4.2 é),
prevalence-dependent metrics should be avoided. Instead, the Sensitivity@Specificity and
Specificity@Sensitivity are proper metrics, depending on the metric for which a target-value
was defined. If prevalences reflect the population of interest (F4.2 Ë), and class imbalances
should be compensated (F4.1 Ë and F2.5.5 Ë), PPV/NPV@Sensitivity (or vice versa) can be
selected instead.

Object detection/instance segmentation: Since True Negative (TN) are typically undefined in
object detection and instance segmentation tasks, Specificity and NPV should usually not
be selected. Instead, metrics that can be derived from the Precision-Recall (PR) or FROC
curves should be prioritized (ideally, according to the selected multi-threshold metric in M4),
namely PPV/False Positives per Image (FPPI)@Sensitivity or vice versa. While the AP metric
(PPV@Sensitivity/Sensitivity@PPV) is broadly known in the computer vision community
and has a standardized definition, the FROC Score (FPPI@Sensitivity/Sensitivity@FPPI) is
more commonly used by clinicians given its easy interpretation. However, the range of the
FPPI is not standardized. Popular benchmarks [Van Ginneken et al., 2010; Setio et al., 2017]
used the following values: 1/8, 1/4, 1/2, 1, 2, 4, 8..
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Decision guide 3.2 This decision guide refers to mapping M3 (Figure 5.5) for choosing between the
NB and the EC as a per-class counting metric. Both metrics are linked to cost-benefit analysis
and are technically very similar since both are computed by multiplying costs and (variations of)
error rates. Table 5.9 lists the advantages and disadvantages of both metrics.

Table 5.9: Decision guide 3.2 for choosing between theNet Benefit (NB) and the Expected Cost (EC) as a
per-class counting metric (mapping M3 in Figure 5.5). Context: benefit-cost-based cutoff on predicted class
scores requested (F2.6). Advantages of a metric are indicated by , disadvantages are shown by , and
refers to neutral comments. Table adapted from Maier-Hein et al. [2022].

NB EC

 Costs are implicitly defined via a risk ex-
pressing all cost-benefit considerations
in one intuitive notion

 Comes with individually definable ex-
change rate parameter for benefit-cost
tradeoff

 Allow to determine a cutoff on predicted
class scores based on risks

 Intuitive interpretation
/ Should be assessed for a range of clini-

cally relevant threshold
 Assumes that class priors are uniform

and not modifiable
 Rather unknown in the computer vi-

sion community, while popular in clinical
studies

 Costs are explicitly defined
 Comes with individually definable cost

parameters
 Allows to determine a cutoff on predicted

class scores based on costs or to alterna-
tively determine an empirical cutoff by
being minimized based on a dedicated
data split

 Enables modification of the class priors
for the intended use and can thus be
made prevalence-independent

/ Can be assessed at a single threshold
/ Normalized variant enables good inter-

pretability
 Rather unknown in the computer vision

community
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Decision guide 3.3 This decision guide refers to mapping M3 (Figures 5.5 and 5.6) for choosing
between the LR+ and Sensitivity as a per-class counting metric. Table 5.10 lists the advantages
and disadvantages of both metrics.

Table 5.10: Decision guide 3.3 for choosing between the LR+ and Sensitivity as a per-class counting metric
(mapping M3 in Figures 5.5 and 5.6). Context: Optimization- or argmax-based cutoff on predicted class
scores (F2.6) and provided class prevalences not reflecting the population of interest (F4.2 é). Advantages
of a metric are indicated by , while disadvantages are shown by . Table adapted from Maier-Hein et al.
[2022].

Sensitivity LR+
 Sensitivity and LR+ convey similar information when reported for all classes individually

 Easy to interpret in multi-class settings (e.g. “one ver-
sus rest”)

 If the cutoff is to be determined based on optimiza-
tion on the target class of a dedicated data split (F2.6),
special consideration is required when selecting Sen-
sitivities per class: The cutoff can not be optimized
based on a single Sensitivity in the target class. Pos-
sible workarounds include re-considering F2.6 to opt
for an argmax-based cutoff or optimizing a weighted
average over sensitivity for all classes instead. The
latter option should only be considered if meaningful
weights across classes can be defined (e.g. based on
class importance)

 Binary classification: LR+ of
the target class conveys Sen-
sitivities of both classes in a
single score and is often re-
ported in clinical studies due
to its intuitive interpretation

Decision guide 3.4 This decision guide refers to mapping M3 (Figures 5.5 and 5.6) for choosing
between the LR+, Sensitivity, and the Fβ as a per-class counting metric. For this decision guide, it
should be noted that per-class validation is commonly performed in a “one versus rest” fashion
that naturally introduces class imbalance in the validation. Exceptions are binary scenarios
with two balanced classes. For this exception, no compensation for class imbalance is needed
(F2.5.5 é) and the choice between the three metrics becomes less relevant, i.e. no relevant
pitfalls occur for either of the three. Thus, the decision can be made based on which metric is
easier to interpret in a given task.

If deciding whether compensation for class imbalance is required (F2.5.5 Ë), it should be noted
that – because metrics are reported individually per class – effects of restoring a random reference
and equal class balance are not relevant in this context. Table 5.11 lists the advantages and
disadvantages of the three metrics.
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Table 5.11: Decision guide 3.4 for choosing between the LR+, Sensitivity, and the Fβ as a per-class counting
metric (mapping M3 in Figures 5.5 and 5.6). Context: Optimization- or argmax-based cutoff on predicted
class scores (F2.6) and provided class prevalences reflecting the population of interest (F4.2 Ë). Advantages
of a metric are indicated by , while disadvantages are shown by . Table adapted from Maier-Hein et al.
[2022].

Sensitivity LR+ Fβ Score

 Straightforward interpre-
tation

 Issue with data-driven op-
timization of the cutoff
(see decision guide 3.3 in
Table 5.10)

 Does not restore lost
considerations of predic-
tive values. Pitfall: BA
(averaged Sensitivities
per class) may yield near-
perfect scores for systems
with low predictive value

 Binary classification: LR+
of the target class con-
veys Sensitivities of both
classes in a single score
and is often reported in
clinical studies due to its
intuitive interpretation

 More complex interpreta-
tion in multi-class settings

 Does not restore lost con-
siderations of predictive
values. Pitfall: BA can
yield near-perfect scores
for systems with low pre-
dictive value

 Restores consideration
of predictive values, pro-
tecting against associ-
ated failure modes

/ Compared to Sensitivi-
ties per class, this adds
a new layer of complex-
ity w.r.t interpretation, al-
though the score can be
interpreted as the har-
monic mean of sensitiv-
ity and positive predic-
tive value per class

Decision guide 3.5 This decision guide refers to mapping M3 (Figures 5.5 and 5.6) for determining
the hyperparameter β of the Fβ Score. Table 5.12 lists the implications of different values.

Table 5.12: Decision guide 3.5 for determining the hyperparameter β of the Fβ Score as a per-class counting
metric (mapping M3 in Figures 5.5 and 5.6). Context (Image-level Classification (ImLC)): Optimization- or
argmax-based cutoff on predicted class scores (F2.6) and provided prevalences reflect the population of
interest (F4.2 Ë). Context (Object Detection (ObD)/Instance Segmentation (InS)): Either no predicted class
scores available (F5.1 é) or optimization- or argmax-based cutoff (F2.6). Advantages of a metric are indicated
by , while disadvantages are shown by . Used abbreviations: False Positive (FP), False Negative (FN),
Positive Predictive Value (PPV). Table adapted from Maier-Hein et al. [2022].

β < 1 (e.g. 0.5) β = 1 β > 1 (e.g. 2)
Higher penalization of PPV, i.e.
FP

Equal treatment of PPV and
Sensitivity, i.e. FP and FN

Higher penalization of Sensi-
tivity, i.e. FN
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Decision guide 3.6 This decision guide refers to mapping M3 (Figures 5.5 and 5.6) for choosing
between the Fβ Score and the PQ as a per-class counting metric. Table 5.13 lists the advantages
and disadvantages of both metrics.

Table 5.13: Decision guide 3.6 for choosing between the Fβ Score and the Panoptic Quality (PQ) as a per-class
counting metric (mapping M3 in Figures 5.5 and 5.6). Context: Either no predicted class scores available
(F5.1 é) or optimization- or argmax-based cutoff on predicted class scores (F2.6) and instance segmentation
(F1.1 = IS). Table adapted from Maier-Hein et al. [2022].

Fβ Score PQ
 /  Pure detection metric  /  Simultaneous assessment of detection

and segmentation performance in one score

Decision guides for selecting multi-threshold metrics (M4)

Decision guide 4.1 This decision guide refers to mapping M4 (Figure 5.7) for choosing between the
AP and the AUROC as a multi-threshold metric. Table 5.14 lists the advantages and disadvantages
of both metrics.

Table 5.14: Decision guide 4.1 for choosing between Average Precision (AP) and the Area under the Receiver
Operating Characteristic Curve (AUROC) as a multi-threshold metric (mapping M4 in Figure 5.7). Context:
availability of predicted class scores (F5.1 Ë), Image-level Classification (ImLC) (F1.1), and provided class
prevalences reflect the population of interest (F4.2). Advantages of a metric are indicated by , while
disadvantages are shown by . Used abbreviations: False Positive (FP), True Negative (TN). Table adapted
from Maier-Hein et al. [2022].

AP AUROC

 In the case of class imbal-
ance, AP restores the consid-
eration of predictive values
and prevents associated fail-
ure cases of AUROC

 Features no similar interpre-
tation to AUROC

 Features interpretability as the probability of a
randomly sampled positive case having a higher
score than a randomly sampled negative case
and a fixed random reference score at 0.5

 Class imbalance: may produce overly optimistic
scores, since FP penalization is suppressed by a
large number of TN
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Decision guide 4.2 This decision guide refers to mapping M4 (Figure 5.7) for choosing between
the AP and the FROC Score as a multi-threshold metric. Table 5.15 lists the advantages and
disadvantages of both metrics.

Table 5.15: Decision guide 4.2 for choosing between Average Precision (AP) and the Free-Response Receiver
Operating Characteristic (FROC) Score as a multi-threshold metric (mapping M4 in Figure 5.7). Context:
availability of predicted class scores (F5.1 Ë) and Object Detection (ObD) or Instance Segmentation (InS)
(F1.1). Further abbreviations: False Positives per Image (FPPI). Advantages of a metric are indicated by ,
while disadvantages are shown by . Table adapted from Maier-Hein et al. [2022].

AP FROC Score

 Commonly used in computer vision com-
munity

 Standardized definition
 Rejecting predictions of low confidence

requires setting a cutoff value for the con-
fidence scores

 Neglects the number of images

 Commonly used in the clinical context
 Incorporates the number of images
 Rejecting predictions of low confidence is

naturally given
 Definition of FPPI not standardized. Pop-

ular benchmarks (Van Ginneken et al.
[2010]; Setio et al. [2017]) used the follow-
ing values: 1/8, 1/4, 1/2, 1, 2, 4, 8.
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Decision guides for selecting calibration metrics (M5)

Decision guide 5.1 This decision guide refers to mapping M5 (Figure 5.8) for choosing between the
BS and the NLL) as a calibration measure. Table 5.16 lists the advantages and disadvantages of
both metrics.

Table 5.16: Decision guide 5.1 for choosing between Brier Score (BS) and Negative Log Likelihood (NLL) as a
calibration measure (mapping M5 in Figure 5.8). Context: Comparison of re-calibration methods for the same
classifier or comparison of overall performance across classifiers requested (F2.7.2). Advantages of a metric
are indicated by , while disadvantages are shown by . Further abbreviation: Brier Skill Score (BSS). Table
adapted from Maier-Hein et al. [2022].

BS NLL

 Treats errors of all events the same irrespective
of the class prevalence, i.e. scores may drasti-
cally change when the prevalence changes and
thus makes it highly prevalence-dependent

/ Prevalence dependency can be compensated
by normalizing using BSS instead (normalized
variant of BS). Using BSS instead is a rescal-
ing of scores for interpretability, for which er-
rors are still treated equally (missing a frequent
event is as bad as missing a rare event) result-
ing in a strict interpretation of above-random
performance where the total number of errors
has to be lower than the number of events in
the rare class

 The logarithm introduces a
stronger penalization of tail
probabilities

/ Naturally higher penalization of
naive systems. More conserva-
tive predictions are favored. For
instance, in class imbalanced sce-
narios, naive systems are prone
to missing rare events which re-
sults in strong penalization

Decision guide 5.2 This decision guide refers to mapping M5 (Figure 5.8) for choosing between
two sets of metrics as interpretable calibration measures: (1) top-label ECE and RBS and (2)
canonical ECEKDE, per-class CWCE, and RBS. The decision between these two sets of metrics boils
down to determining whether predicted class scores should be tested for top-label calibration,
i.e. whether the interest is limited to the predicted scores that lead to the classification decision,
or a more comprehensive calibration condition, i.e. requesting that all predicted scores to be
calibrated.

In both cases, we recommend to additionally report RBS as a guaranteed upper bound on the
calibration error. Since calibration error estimates such as ECE, CWCE, or ECEKDE are know to
over- or underestimate the error [Gruber and Buettner, 2022], this guarantee provides additional
information, especially in safety-critical applications where the calibration error must not be
underestimate. Table 5.17 lists the reasons for selecting either selecting top-label assessment
(ECE) or focus on all predicted class scores (CWCE and ECEKDE).
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Table 5.17: Decision guide 5.2 for choosing between top-label assessment (Expected Calibration Error (ECE)) or
focus on all predicted class scores (Class-wise Calibration Error (CWCE) and Expected Calibration Error Kernel
Density Estimate (ECEKDE)) for calibration assessment (mapping M5 in Figure 5.8). Context: Interpretable
estimate of calibration error requested (F2.7.3 Ë) and no mismatch between class prevalences and class
importance (F2.5.3 é). Table adapted from Maier-Hein et al. [2022].

Top-label assessment (ECE) Focus on all predicted class scores (CWCE and ECEKDE)

 The defined problem is
linked to one particular de-
cision process (predicting
the correct class). If the un-
derlying biomedical ques-
tion refers to validating this
exact decision process, top-
label error might be the
right choice, because it di-
rectly reflects a focus on the
decisions made by the clas-
sifier. Conflating the calibra-
tion of decisions with other
probabilities might be inter-
preted as washing out the
task focus in this case

 Often, the interest of a problem goes beyond the
core decision process of the classifier (predicting the
correct class). In clinical context, for instance, sev-
eral potential outcomes might trigger their individual
treatment decisions given a certain probability for the
outcome. In such scenarios, calibration of all prob-
abilities (i.e. marginal and or canonical calibration)
might be of interest

 Another reason might be manual correction of deci-
sion making: In multi-class settings, cutoffs are often
based on a simple argmax operation, but in the case
of unequal severity of class confusions (F2.5.2 Ë), the
default cutoff might not perfectly reflect the task inter-
est. Consider, for instance, a multi-way classification
of tumor categories, where some are more aggressive
and thus relevant than others. It might be desired to
lower the probability thresholds at which the worst-
case scenarios are considered. For such interventions,
calibrated probabilities across all classes are required

Decision guides for selecting overlap-based metrics (M6)

Decision guide 6.1 This decision guide refers to mapping M6 (Figure 5.9) for choosing between the
DSC and IoU as an overlap-based metric. Table 5.18 lists the advantages and disadvantages of
both metrics.

Table 5.18: Decision guide 6.1 for choosing between the Dice Similarity Coefficient (DSC) and Intersection
over Union (IoU) as an overlap-based metric (mapping M6 in Figure 5.9). Context: no exclusive interest in
the centerline of structures (F2.3 é, F3.3 é) and equal severity of class confusions (F2.5.2 é). Advantages of
a metric are indicated by , while  refers to neutral comments. Table adapted from Maier-Hein et al.
[2022].

DSC IoU

 Closely related to IoU, see Equation 2.50
 Commonly used in the medical community

 Closely related to DSC, see Equation 2.50
 Commonly used in the biological and com-

puter vision communities
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Decision guide 6.2 This decision guide refers to mapping M6 (Figure 5.9) for determining the
hyperparameter β of the Fβ Score. Table 5.19 lists the implications of different values.

Table 5.19: Decision guide 6.2 for determining the hyperparameter β of the Fβ Score as an overlap-based
metric (mapping M6 (Figure 5.9)). Used abbreviations: False Positive (FP), False Negative (FN), Positive
Predictive Value (PPV). Context: no exclusive interest in the centerline of structures (F2.3 é, F3.3 é) and
unequal severity of class confusions (F2.5.2 Ë). Table adapted from Maier-Hein et al. [2022].

β < 1 (e.g. 0.5) β = 1 β > 1 (e.g. 2)
Higher penalization of PPV, i.e.
FP (oversegmentation)

Equal treatment of PPV and
Sensitivity, i.e. FP and FN
(over- and undersegmenta-
tion)

Higher penalization of Sensi-
tivity, i.e. FN (undersegmenta-
tion)

Decision guides for selecting boundary-based metrics (M7)

Decision guide 7.1 This decision guide refers to mapping M7 (Figure 5.10) for choosing between
the Boundary IoU and NSD as a boundary-based metric. Table 5.20 lists the advantages and
disadvantages of both metrics.

Table 5.20: Decision guide 7.1 for choosing between the Boundary Intersection over Union (Boundary IoU)
and Normalized Surface Distance (NSD) as a boundary-based metric (mapping M7 in Figure 5.10). Context:
possibility of spatial outliers in the reference annotation (F4.3.2 Ë) or, if no possibility of spatial outliers, in
the case of existence-based penalization of outliers (F2.5.6). Advantages of a metric are indicated by ,
while disadvantages are shown by .  refers to neutral comments. Table adapted from Maier-Hein et al.
[2022].

Boundary IoU NSD
 Hyperparameter can be selected based
on inter-rater variability to capture noise and
imprecisions

 Hyperparameter can be selected based
on inter-rater variability to capture severe
inconsistencies

 Able to compensate for annotation impre-
cisions

 Assesses errors in the boundary as severe
inconsistencies

 Selection of hyperparameter influences
the metric scores

 Selection of hyperparameter influences
the metric scores
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Decision guide 7.2 This decision guide refers to mapping M7 (Figure 5.10) for choosing between the
ASSD and MASD as a boundary-based metric. Table 5.21 lists the advantages and disadvantages
of both metrics.

Table 5.21: Decision guide 7.2 for choosing between the Average Symmetric Surface Distance (ASSD) and
Mean Absolute Surface Distance (MASD) as a boundary-based metric (mapping M7 in Figure 5.10). Context:
distance-based outlier penalization with contour focus (F2.5.6). Advantages of a metric are indicated by ,
while disadvantages are shown by . Table adapted from Maier-Hein et al. [2022].

ASSD MASD
 If one object is much larger than the other,
its boundary affects the score much more

 Both boundaries are equally considered

Decision guide 7.3 This decision guide refers to mapping M7 (Figure 5.10) for choosing between the
HD and the Xth Percentile Hausdorff Distance (Xth Percentile HD) (e.g. the 95% Percentile (HD95))
as a boundary-based metric. Table 5.22 lists the advantages and disadvantages of both metrics.

Table 5.22: Decision guide 7.3 for choosing between the Hausdorff Distance (HD) and the Xth Percentile HD
as a boundary-based metric (mapping M7 in Figure 5.10). Context: distance-based outlier penalization with
outlier focus (F2.5.6). Advantages of a metric are indicated by , while disadvantages are shown by .
Table adapted from Maier-Hein et al. [2022].

HD Xth Percentile HD
 Spatial outliers substantially affect the
metric score

 Spatial outliers are compensated for
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Decision guides for selecting localization criteria (M8)

Decision guide 8.1 This decision guide refers to mapping M8 (Figure 5.11) for choosing between
the Boundary IoU, Mask IoU, and IoR as a localization criterion. Table 5.23 lists the advantages
and disadvantages of the metrics.

Table 5.23: Decision guide 8.1 for choosing between the Boundary IoU, Mask IoU, and IoR as a localization
criterion (mapping M8 in Figure 5.11). Context: Instance Segmentation (InS) (F1.1). Advantages of a metric are
indicated by , while disadvantages are shown by . Table adapted from Maier-Hein et al. [2022].

Boundary IoU Mask IoU IoR

 Less strict penalization of
small structures, depending
on hyperparameter d

/ Focus on object boundaries
 Selection of hyperparameter

influences the metric scores
 Newly proposed metric, thus

not (yet) established
 Might over-penalize scenarios

with touching structures, in
which several predictions may
overlap a single reference

 Established and com-
monly used criterion

/ No focus on object
boundaries

/ No hyperparameter
 Over-penalization of

small structures
 Might over-penalize

scenarios with touching
structures, in which
several predictions may
overlap a single refer-
ence

 Less strict penalization
of scenarios with touch-
ing structures, in which
several predictions may
overlap a single refer-
ence

/ No focus on object
boundaries

/ No hyperparameter
 Very uncommon crite-

rion
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Decision guide 8.2 This decision guide refers to mapping M8 (Figure 5.11) for choosing between
the Center Distance, the Point inside Mask/Box/Approximation, and the Mask IoU > 0.5 as a
localization criterion. Table 5.24 lists the advantages and disadvantages of the metrics.

Table 5.24: Decision guide 8.2 for choosing between the Center Distance, the Point inside Mask/Box/Ap-
proximation (Approx), and the Mask Intersection over Union (Mask IoU) > 0.5. as a localization criterion
(mapping M8 in Figure 5.11). Context: Object Detection (ObD) problems (F1.1) in the case of either (1) reference
annotations provided as exact outline (F4.4) and a desired localization as only position (F2.4) or (2) reference
annotations provided as rough outline (F4.4) and a desired localization as only position (F2.4). Advantages
of a metric are indicated by , while disadvantages are shown by . Table adapted from Maier-Hein et al.
[2022].

Center Distance Point inside Mask/Box/Ap-
prox

Mask IoU > 0.5

 Adjustment of localiza-
tion strictness possible
(by adjusting the thresh-
old value for the distance
to the center)

/ Rough estimate of object
location

 Bad approximation of
tubular or disconnected
structures

 Better approximation of
tubular or disconnected
structures

/ Rough estimate of ob-
ject location

 No adjustment of local-
ization strictness possi-
ble

 Adjustment of localiza-
tion strictness possible
(by adjusting the thresh-
old value for an overlap of
0.5)

 More precise estimate of
object location than point-
based estimates

 Very loose criterion (e.g.
Mask IoU > 0) may favor
very large predictions irre-
spective of the location
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Decision guide 8.3 This decision guide refers to the choice of a localization threshold, which is
needed for most of the suggested localization criteria (only for the Point inside Mask/Box/Ap-
proximation, no threshold is needed). For the other localization metrics, the threshold decides
whether a predicted object is considered a hit or not. Thus, the choice of the threshold is highly
important and impacts the final metric scores. In the general computer vision domain, it is
common to compute several thresholds and average the metric scores for all thresholds. The
higher the threshold, the more restrictive is the choice of TP objects. Under certain conditions, a
lower threshold may be considered:

Table 5.25: Decision guide 8.3 for determining the localization threshold (mapping M8 in Figures 5.11).
refers to neutral comments. Table adapted from Maier-Hein et al. [2022].

Conditions for low threshold Conditions for high threshold

 No interest in localizing objects precisely
 3D images since the overlap ratio may need to be re-

fined given the cubical increasing volume
 High variability of structure sizes across or within im-

ages (F3.2)
 High inter-rater variability (F4.3.1)
 Consistently small structure sizes (F3.1)

 Interest in localizing objects
precisely

 Possibility of overlapping or
touching structures (F3.5)

Decision guides for selecting assignment strategies (M9)

Decision guide 9.1 This decision guide refers to mapping M9 (Figure 5.12) for choosing between the
Greedy (by "localization criterion"5) Matching, the Optimal (Hungarian) Matching and the Matching
via "localization criterion"5 > 0.5 as an assignment strategy. Table 5.26 lists the advantages and
disadvantages of the strategies.

Table 5.26: Decision guide 9.1 for choosing between the Greedy (by "localization criterion"5 Matching, the
Optimal (Hungarian) Matching and the Matching via "localization criterion"5 > 0.5 as an assignment strategy
(mapping M9 in Figure 5.12). Context: lack of predicted class scores (F5.1 é). Advantages of a metric are
indicated by , while disadvantages are shown by . Table adapted from Maier-Hein et al. [2022].

Greedy (by "localization crite-
rion") Matching

Optimal (Hungarian) Matching Matching via "localization crite-
rion" > 0.5

/ Avoids elaborate matching
strategies

 Only usable if predictions
are not overlapping

/ Elaborated matching strat-
egy

 Tends to overly optimistic
validation of ambiguous
predictions

 Alternative to the Greedy
(by Score) Matching if pre-
dicted class scores are un-
available

/ Elaborated matching strat-
egy

5"Localization criterion" refers to the localization criterion selected in mapping M8 (Figure 5.11).
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Addressing metric pitfalls

In Section 4.2, we presented a comprehensive overview of metric pitfalls, which were cate-
gorized into a pitfall taxonomy. In Table 5.27, we show how we addressed the pitfalls in the
recommendation framework.

Table 5.27: Overview of how the pitfalls described in Section 4.2 were addressed in metrics recommendation
framework. Table adapted from Maier-Hein et al. [2022].

Pitfall Addressed by

Incorrect problem categorization

Wrong choice of
problem category

Introduction of problem category mapping M1 (Figure 5.3), which is traversed in the first step
of the framework.

Disregard of the domain interest

Importance of
benefit-cost-
analysis

Introduction of fingerprint item F2.6 (cutoff on predicted class scores), which includes a
benefit-cost-based cutoff analysis. In addition, we recommend the NB and EC metrics for
such a situation.

Importance of struc-
ture boundaries

Introduction of fingerprint item F2.1 (particular importance of structure boundaries). In addi-
tion, we recommend complementing overlap-based metrics (M6, Figure 5.9) with boundary-
based metrics (M7, Figure 5.10).

Importance of struc-
ture volume

Introduction of fingerprint item F2.2 (particular importance of structure volume). In addition,
we recommend complementing the metric selection with application-specific volume-based
metrics.

Importance of struc-
ture center(line)

Introduction of fingerprint item F2.3 (particular importance of structure center(line)). In
addition, we recommend selecting the clDice metric as an overlap-based metric for semantic
or instance segmentation problems. In object detection problems, we recommend using the
Center Distance as a localization criterion.

Importance of confi-
dence awareness

Introduction of fingerprint item F2.7.1 (calibration assessment requested; dedicated recom-
mendations on calibration) and introduce a calibration metric mapping (M5, Figure 5.8).

Unequal severity of
class confusions

Introduction of fingerprint item F2.5 (penalization of errors). In addition, we recommend
selecting the EC metric for image-level classification problems and adjusting the hyperpa-
rameter of the Fβ Score for penalizing either oversegmentation or undersegmentation (see
Table 5.19).

Importance of com-
parability across
data sets

Introduction of fingerprint item F4.2 (provided class prevalences reflect the population of
interest). In addition, we make sure to recommend only prevalence-independent metrics in
cases of prevalences not reflecting the population of interest.

Disregard of the properties of the target structure

Small structure
sizes

Introduction of fingerprint item F3.1 (small size of structures relative to pixel size). In addition,
we recommend to rephrase the problem as object detection (see M1, Figure 5.3). In object
detection problems, we recommend using a lower localization threshold (see Table 5.25).

High variability of
structure sizes

Introduction of fingerprint item F3.2 (high variability of structure sizes). In addition, we
recommend using a lower localization threshold in object detection problems (see Table 5.25).
We further recommend applying size stratification (see next paragraph).

Complex structure
shapes

Introduction of fingerprint item F3.3 (target structures feature tubular shape). In addition, we
recommend selecting the clDice in segmentation problems with objects of tubular shapes.
In object detection problems, we recommend using approximations instead of bounding
boxes, and using a Point inside Approximation localization criterion.

Occurrence of over-
lapping or touching
structures

Introduction of fingerprint item F3.5 (possibility of overlapping or touching target structures).
In addition, we recommend phrasing the problem as an instance rather than semantic
segmentation problem (see M1, Figure 5.3). In object detection problems, we recommend
using a higher localization threshold in object detection problems (see Table 5.25).
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Pitfall Addressed by

Occurrence of
disconnected
structures

Introduction of fingerprint item F3.6 (possibility of disconnected target structure(s)). In
addition, we recommend using approximations instead of bounding boxes. Furthermore, as
localization criterion, we recommend the Point inside Mask/Approximation criterion.

Disregard of the properties of the data set

High class imbal-
ance

Introduction of fingerprint items F4.1 (presence of class imbalance) and F2.5.5 (compensation
for class imbalances requested). In addition, we recommend compensation of high class
imbalance by selecting metrics that are independent from the prevalence (e.g. BA).

Small test set size We recommend reporting confidence intervals for all metrics (see Metric Application).
Noisy reference
standard

Introduction of fingerprint items F4.3.1 (high inter-rater variability) and F2.5.7 (compensation
for annotation imprecisions requested). In addition, we recommend selecting the NSD as
a boundary-based metric and selecting its hyperparameter according to the inter-rater
variability.

Spatial outliers in
reference

Introduction of fingerprint items F4.3.2 (possibility of spatial outliers in reference annotation)
and F2.5.6 (handling of spatial outliers). In addition, we recommend selecting metrics that
are not sensitive to outliers, such as NSD or Hausdorff Distance 95 Percentile (HD95).

Occurrence of cases
with an empty refer-
ence

Introduction of fingerprint item F4.6 (possibility of reference without target structure(s)). In
addition, we introduce further aggregation-related recommendations in the next paragraph.

Disregard of the properties of the algorithm output

Possibility of empty
prediction

Introduction of fingerprint item F5.2 (possibility of algorithm output not containing the target
structure(s)). In addition, we introduce further aggregation-related recommendations in the
next paragraph.

Possibility of over-
lapping predictions

We recommend phrasing the problem as an instance rather than semantic segmentation
problem. In addition, we recommend an assignment strategy based on IoU > 0.5 if overlapping
predictions are not possible and no predicted class scores are available (F5.1).

Lack of predicted
class scores

Introduction of fingerprint item F5.1 (availability of predicted class scores). In addition, we
recommend using predicted class scores and selecting an appropriate cutoff strategy (F2.6)
in addition to calibration assessment (F2.7.1).

Metric application

Finally, after the metric selection based on the mappings M2 to M9, the metric candidates need to
be applied to the data set. First, in the case of multiple classes, a global decision threshold should
be determined that can be used for all classes. To ensure wide applicability and prevent an
overestimation of particular classes, this step is crucial. Table 5.28 contains our recommendations
related to the metric implementation, aggregation, ranking, and reporting.
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Table 5.28: Overview of metric application recommendations. Table adapted from Maier-Hein et al. [2022].

Pitfall Recommendation

Metric implementation

Non-standardized met-
ric definition

Publicly available metric libraries should be carefully inspected before using. Ideally,
reference implementations should be used.

Discretization issues For metrics like the ECE, unbiased estimates should be used whenever possible. An
example is the ECEKDE (see Section 2.4.5).

Metric aggregation

Presence of multiple
classes

The generation of metric results should be done per class. While multi-class counting
metrics directly measure the performance over all classes, a per-class validation is
typically beneficial. For example, some classes might be more important than others
(F2.5.1) or the algorithm may perform much worse on one class compared to others (see
Figure 4.13(b)).

Non-independence of
test data (F4.5)

Biomedical data is often hierarchically. structured. This structure should be respected.
For example, as shown in Figure 4.14(a), the metric scores should first be aggregated
per patient to avoid biases towards one patient. Afterwards, the aggregates should be
aggregated into a single score.

Hierarchical label struc-
ture (F4.5)

Similarly, correlation between individual classes should be respected and results should
be aggregated hierarchically.

High variability of struc-
ture sizes (F3.2)

The results should be stratified by structure size.

Possibility of invalid al-
gorithm output (F5.3)

In the case of challenges, an invalid submission may occur, for example, if the results
for some data points were not submitted. If such a setting is possible, one should
define a strategy on how to handle these missing values. For instance, they could be
set to the worst possible metric value or handled via a case-based ranking scheme (see
Section 2.1.2). The missing value strategy may highly impact the aggregated results, as
demonstrated in Figures 4.14(b) and (c).

Availability of meta-
information

If meta-information is available, the information should be used for performance valida-
tion. This could reveal important information. For example, the prediction in Figure 4.15(b)
performs differently for men and women.

Rankings (if any)

Metric relationships In the case of highly related metrics (e.g. DSC and IoU), only one of them should be
selected for a ranking, since the other would not add any additional information. However,
reporting related metrics may still be chosen to provide a value comparable across
communities.

Ranking uncertainties As we show in Section 5.3, reporting rankings should go beyond simple ranking tables.
In that Section, we propose several advanced analysis and visualization techniques for
addressing ranking uncertainty.
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Pitfall Recommendation

Metric reporting and interpretation of values

Raw metric values The raw metric values should be visualized in addition to reporting the aggregated
scores. For example, violin plots or color-coded dots- and boxplots could be used
for visualization (see Figure 4.21(b)). Moreover, we recommend reporting confidence
intervals for all metric values in addition to descriptive statistics such as mean, median,
Interquartile Range (IQR) and similar.

Multiple test runs Deep Learning (DL) algorithms are subject to non-determinism, i.e. the results slightly
differ for different runs. To account for this problem, multiple runs can be performed and
the respective variance could be reported or ensembling techniques could be leveraged
[Pham et al., 2020; Summers and Dinneen, 2021].

Number of decimal
places

The number of reported decimal places of the (aggregated) metric scores should reflect
the inter-rater variability (uncertainty) and the relevance of the reference.

Reporting guidelines The general reporting should ideally follow respective reporting guidelines. In the case of
challenges, we present the specified BIAS guideline [Maier-Hein et al., 2020] in Section 5.4.
Depending on the application, the respective guideline can be found via the Enhancing
the QUAlity and Transparency Of health Research (EQUATOR) network [Altman et al.,
2008].

Recommendations for popular biomedical challenges

We applied the recommendation framework to prominent biomedical image analysis challenges
to analyze their metric choices. One of the most well-known MICCAI challenges is the repeated
Multimodal Brain Tumor Image Segmentation (BRATS) challenge [Menze et al., 2014], aiming for
the segmentation of glioma from the human brain. The semantic segmentation is performed for
the tumor regions whole tumor, tumor core, and active tumor. The challenge uses the DSC and
HD as primary metrics and the Sensitivity and Specificity as additional metrics. The metrics were
individually calculated for every tumor region. Based on the problem-specific fingerprint and
metric mappings M6 (Figure 5.9) and M7 (Figure 5.10), we agree with the per-region validation
and with the DSC metric. However, we would not recommend using Sensitivity and Specificity
for segmentation tasks. Sensitivity is already assessed with the DSC score. Specificity relies on
the TN. For pixel-level validation, the TN would refer to the background of the image. As the
background may be very large, we do not recommend using metrics like Specificity, as the actual
interest may be overruled by a high amount of background pixels. Given the inter-rater variability
described in their work [Menze et al., 2014], we would recommend using NSD rather than HD
as a boundary-based metric, since NSD is able to compensate for annotation imprecisions.
Furthermore, HD is very sensitive to spatial outliers and the actual value may be misleading if
only a few outliers were obtained in the reference annotations. However, it should be noted
that NSD had not yet been introduced in literature at the time of the first BRATS challenge.
Nevertheless, it was repeated every year and the metrics could have been adjusted to better
choices.

The International Skin Imaging Collaboration (ISIC) challenge [Codella et al., 2018] is a popular
competition aiming for the segmentation of skin lesions and the classification of skin diseases.
The challenge used the DSC, IoU, and pixel-wise Accuracy metrics for the validation of the skin
lesion segmentation task. Given that DSC and IoU are mathematically closely related, we would
highly recommend not using them together (see Table 5.18 and Figure 4.16(a)). In addition, the
Accuracy is dependent on the TN. Similar to the Specificity used in the BRATS challenge, we would
not recommend using Accuracy for the ISIC segmentation challenge. Moreover, the challenge did
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not assess the quality of the structure boundaries. Given that the DSC and IoU come with several
limitations and given the high variability of structure sizes in the skin lesion data set, we would
recommend using a boundary metric. From the challenge publication, it is unclear whether to
expect a high inter-rater variability. Based on mapping M7 (Figure 5.10), we would thus either
recommend using the NSD to compensate for a potentially noisy reference or the MASD if focus
on contours is of greater interest. For the disease classification task, the challenge proposed the
AUROC and the Specificity at several Sensitivity target values as validation metrics. Based on the
problem description, both metrics are in line with our recommendation framework. We would
additionally suggest BA as a multi-class counting metric (mapping M2, Figure 5.4) and a Proper
Scoring Rule such as BS to assess the interpretability of the predicted class scores (mapping M5,
Figure 5.8).

The Cancer Metastases in Lymph Nodes Challenge (CAMELYON) [Bejnordi et al., 2017] was com-
posed of two tasks, the detection of lymph node metastasis from Whole Slide Imaging (WSI)
and the classification of images into cancer versus no cancer. They used the FROC Score for the
lymph node detection task, which is in line with the recommendation framework (mapping M4,
Figure 5.7). However, this was the only metric for this task and neither the localization criterion
(mapping M8, Figure 5.11) nor the assignment strategy (mapping M9, Figure 5.12) was defined.
Based on their description of the data, we would recommend the Box/Approx IoU localization
criterion and the Greedy (by Score) matching strategy. In addition, we would suggest using the
Fβ Score to assess the overall detection quality at an argmax-based cutoff value (mapping M3,
Figure 5.6). Similarly, the binary metastasis classification task only used the AUROC as a metric.
We would again complement it with a per-class counting metric for a default cutoff value. Given
the rather imbalanced data set, we would suggest the Fβ Score.

Finally, the Gland Segmentation (GlaS) challenge [Sirinukunwattana et al., 2017] was organized
with the purpose of instance segmentation of glands in colon histology images. The challenge
suggested the pixel-wise F1 Score to assess the detection quality of algorithms. This measure
was further used as a localization criterion with at least 50% of overlap necessary for being
counted as TP. In addition, they proposed the per-instance DSC, Adjusted Rand Index, and HD
for assessing the segmentation quality. Based on the problem description, we agree with the
pixel-wise F1 Score being used as the localization criterion (mapping M8, Figure 5.11). However, we
would not recommend using the pixel-wise F1 Score version also to assess the detection quality,
since this may cause problem category-metric mismatch problems (see Figure 4.3). Instead,
we would recommend calculating the object-level F1 Score instead (mapping M3, Figure 5.6).
In addition, there are no details present on whether predicted class scores are available, but
we assume that they were available based on the description of the individual algorithms.
We therefore would suggest using the Greedy (by Score) assignment strategy (mapping M9,
Figure 5.12) and adding a multi-threshold metric (mapping M4, Figure 5.7) to the metrics. Based
on the clinical importance of the objective, we would recommend using the FROC Score. We
further agree with the DSC as an overlap-based metric (mapping M6, Figure 5.9). The Adjusted
Rand Index is not part of the framework but may be added as a complement to the DSC score.
No information with respect to inter-rater variability or spatial outliers was provided, we could
therefore not estimate whether the HD is an appropriate boundary metric. If spatial outliers
were present, we would rather recommend the HD95 (mapping M7, Figure 5.10).

The framework can not only be applied to challenges, but to any classification-related biomedical
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image analysis scenario. From the resulting recommendations for common biomedical use cases,
we could observe that scenarios concerned with assessing similar properties yield the same
metric recommendations. For example, the semantic segmentation of large objects, such as use
cases "lung cancer cell segmentation from microscopy images" [Castilla et al., 2018] and "liver
segmentation in Computed Tomography (CT) images" [Antonelli/Reinke et al., 2022; Simpson
et al., 2019] yield a similar problem fingerprint for very different problems from different domains
and modalities. In Appendix A.4, we present the metric recommendations for four common
biomedical use cases per problem category.

5.2.4 Discussion

In previous sections, we showed that rankings in challenges and benchmarking experiments
heavily rely on the choice of validation metrics. Every metric assesses different properties of a
prediction. For example, an algorithm that perfectly predicts the boundary of a structure receives
a perfect boundary-based metric score and is thus ranked highly. However, this prediction may
have only predicted the outline, meaning that it could have missed a huge hole inside of the
object. In this case, the overlap-based metric scores would thus be very low, yielding a low rank.
To sum up, the choice of the metric is extremely relevant, not only in challenge rankings but also
in decision-making in clinical practice.

One of the most important steps in a challenge is to establish a meaningful, precise, and feasible
objective. The problem category and metric selection should be solely based on this biomedical
objective and research problem, not based on popularity. Nonetheless, 24% of recent challenges
select metrics for their eminence, not for their suitability.

With our metric recommendation framework, we offer resources to researchers such that they
can choose metrics while being cognizant of potential problems. The framework was created
based on the agreement of multiple specialists with various levels of experience. While we
invited multiple technical experts from the image analysis domain, we made sure to include a
substantial amount of clinical and biological experts, as well as experts from other domains
such as statistics. Based on their specific expertise, they made sure that the recommendations
are suitable for a range of different applications in the medical, clinical, and biological domains.
The framework and metric candidates were tested several times and iteratively refined.

Although we included popular metrics like the DSC in the metric candidate list, we also made
sure that those metrics would only be selected under the correct circumstances and would be
complemented with other metrics that can compensate for their limitations. The focus of the
framework was the suitability and correctness of the metric selection, which also may yield
recommendations beyond common practice. Metrics are often historically motivated and remain
as an unquestioned default although they may not be suitable for recent developments in
models or applications. To show that common practice does not always follow principles of
best practices, we revisited four popular biomedical image analysis challenges and reviewed
their metric choices. While most of them select some suitable candidates, none performed a
comprehensive selection of appropriate metrics. This is especially critical given the fact that
researchers often rely on challenges and use the same validation methods for a comparison of
their own algorithms to those of challenge participants.
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A limitation of the framework is certainly that we only cover four problem categories. However,
as we have shown in Chapter 3 of this thesis, they represent the largest part of biomedical
challenges (87% in the period from 2004 to 2016 and 65% in recent years). We are therefore
already covering a large range of problems. Nonetheless, we are planning an extension to further
problems and applications in the future.

The complexity of the framework is another limitation of the recommendations. To make the
recommendations more easily accessible and to avoid biased decisions, we further plan to
implement a web-based metric recommendation toolkit. The presented problem fingerprint and
metric mappings will serve as a basis for the implementation. Only relevant fingerprints will be
answered by the user, thus, the complexity of the framework will be substantially reduced. The
toolkit will be written in Python and will be constructed as an interactive form, which guides the
user through the different mappings. We plan to hire a designer to optimize the user experience.

Finally, we present metric profiles of all metric candidates in Appendix A.3 of this thesis. They
summarize relevant information about each metric, including a description, relevant limitations,
and recommendations. Furthermore, it should be noted that metric implementation is not
standardized. Even for common metrics, the concrete implementations often differ across frame-
works and packages. This is why we are currently working on a dedicated package including the
implementation of all metrics that we are recommending in our metric framework. Specifically,
we also address common shortcomings in standard implementation, for example, by adding
the prevalence as a parameter for the implementation of PPV and NPV to ensure prevalence
correction. We plan to integrate this repository as a side package in the MONAI framework.

5.2.5 Conclusion
Problem-aware metric selection is a crucial step in the validation pipeline. An inappropriate
metric choice is carried through the entire assessment of an algorithm, impacting the final
rankings, challenge winners, and possibly the decision on which algorithm may be translated
into clinical practice.

Our metric recommendation framework can be used for several biological, medical, and clinical
use cases, even beyond challenges. Metric choice is also of utmost importance for the individual
validation of a new algorithm, and can even be used for general computer vision problems. A
problem-aware metric selection should be the foundation for every challenge and algorithm
validation procedure, upon which all subsequent steps, such as the ranking analysis, the reporting,
and other further analyses stand. With our metric recommendation framework, we hope to guide
the research community toward a more problem-aware validation.



5.3 Improving common practice of rankings

Disclosure

This work has been supervised by Lena Maier-Hein. It has been conducted together
with several co-authors, especially Manuel Wiesenfarth, Matthias Eisenmann, and
Annette Kopp-Schneider. Parts of the work have been published in Nature scien-
tific reports [Wiesenfarth et al., 2021], Nature communications [Antonelli/Reinke
et al., 2022] and Medical Image Analysis [Roß/Reinke et al., 2020]. Please refer to
Chapter A.1 for full disclosure.

5.3.1 Introduction
Challenge rankings are an important step to determine the best-performing algorithms for a
dedicated research problem. However, in Chapter 4 of this thesis, we showed that the concrete
ranking schemes are often not transparently reported. Theoretically, it would be simple to
manipulate challenge rankings by exploiting this bad practice.

This is due to the fact that challenge rankings are extremely sensitive to their design and
the underlying data. In Section 4.3, we demonstrated that challenge rankings may change
substantially when altering the ranking method, aggregation, annotator, or data set. Thus,
challenge winners are frequently unstable, and it may be unfair to choose one algorithm if a
small adjustment to the ranking scheme would have caused another participant to win.

In this section, we first analyze how rankings are presented in challenge reports. We hypothesize
that many challenges base their analysis of results solely on ranking tables without further
visualization. We then explore ranking uncertainty analysis methods and present advanced
visualization techniques that may help interpret the performances of the challenge participants.

Specific findings in Part 4

Rankings are highly sensitive to various design parameters.

Research questions investigated in this chapter

Is the interpretability of challenge results enhanced by advanced result
visualization techniques?

Can advanced visualization techniques easily be applied to several chal-
lenges?

We apply those visualization techniques to three different challenges to explore whether they
increase the interpretability over ranking tables and whether they are easy to apply. The first
challenge simulates extreme cases to illustrate the advantages of the visualization methods. In
addition, we present the results for the Robust Medical Instrument Segmentation (RobustMIS)
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and the Medical Segmentation Decathlon (MSD) challenges. While both challenges focus on
segmentation, they have different goals and assessment methods. Given their differences, we
show that the ranking uncertainty analyses and visualization techniques can be easily applied to
challenges, independent of their manifestation.

5.3.2 Methods
Analysis of common practice

For the analysis of common visualization practice, we utilized the same challenge database
that was introduced in Chapter 3. Our analysis was based on all challenges whose results were
published in journals or conference proceedings, yielding 82 challenges in the period 2004 to
2016 [Maier-Hein et al., 2018]. We analyzed all 82 challenge reports and their result visualization
techniques, which were grouped into one or multiple of the following categories:

- No visualization
- Visualization of metric values (e.g. as scatterplots or curve visualization such as plotting

the Receiver Operating Characteristic (ROC) curve)
- Boxplots
- Visualization of qualitative results of algorithms (e.g. segmentation on top of an image)
- Visualization of ranking variability
- Other visualization

Visualization techniques

In the following, we explain the employed visualization and analyzing techniques. An overview
of all plots with examples is provided in Figure 5.13.

Visualization of raw assessment data: While challenge results are often directly provided in
aggregated ranking tables (see Section 5.3.3), the visualization of the raw assessment data helps
to reveal the underlying distribution of performance results per algorithm. An easy way to
visualize the metrics per challenge participant are dots- and boxplots (see Figure 5.13, assessment
data, left). The boxplots include information on the first and third quartile as lower and upper
borders of the box, the median as a horizontal line within the boxes, and the 1.5 Interquartile
Range (IQR) range illustrated by vertical lines. The individual metric scores are shown jittered
on top to visualize the distribution of values. Dots- and boxplots are easy to interpret and
directly visualize descriptive statistics such as the median and quantiles of the data distribution.
They further help to identify implausible values or inconsistencies in the assessment data. For
settings, in which algorithms are easily distinguishable, the rankings can be directly deviated
from dots- and boxplots. This is more complicated for situations, in which performances
are more diverse (as for the RobustMIS challenge introduced below). However, there is no
connection between the individual metric values corresponding to the same test cases, there-
fore not revealing cases that were especially easy or hard to process across challenge participants.

An alternative visualization technique are podium plots (see Figure 5.13, assessment data, middle).
Podium plots are also known as benchmark experiment plots and were first presented in Eugster
et al. [2008]. In contrast to dots- and boxplots, podium plots connect the individual metric
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Figure 5.13: Overview of the employed visualization techniques. The raw assessment data is visualized with
dots- and boxplots, podium plots, or ranking heatmaps. The ranking stability for a selected ranking method
can be visualized by blob plots, violin plots of Kendall’s τ or significance maps. For the characterization of
algorithms, stacked frequency plots or blob plots per algorithm can be utilized. To visualize the ranking
robustness with respect to the ranking method, lineplots are employed. For multi-task challenges, the
characterization of tasks can be achieved via cluster dendrograms.
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scores from the same test case for the different participating teams. In that way, one may
easily spot influential test cases from the data set. The upper part of a podium plot contains
dots representing the metric values color-coded by the algorithms that produced this score.
A line connects metric values that represent the same cases. The plot is split into podiums
representing possible ranks. The dots, i.e. the metric values, are assigned a rank (podium)
based on the rank that the respective participating team would achieve for the particular test
case. Per podium, dots are presented in columns representing every algorithm. The lower part
of the podium plot shows a frequency plot of how often a challenge participant achieves a
specific podium rank over all test cases. Although podium plots help to overcome problems
of dots- and boxplots, there are relatively complex and hard to read for many test cases and
algorithms. It is important to note that the podium plot assigns random ranks in the event of a tie.

Ranking heatmaps (see Figure 5.13, assessment data, right) do not visualize the metric distribution
per algorithm but rather show how often a challenge participant receives a specific rank when
ranked per test case, i.e. the cell (i, Aj) corresponds to the absolute frequency of cases where
the algorithm Aj achieved the rank i. Heatmaps with high contrast indicate better separation of
participating teams. In particular, a high count on the diagonal of the heatmap implies a high
degree of concordance in the ranking. Ranking heatmaps are especially useful in the case of
many algorithms or test cases, which would lead to low readability of podium plots.

Ranking stability for a selected ranking method: As described in Section 4.3, bootstrapping
approaches can be used to investigate ranking stability for a given ranking method. The results
of the bootstrapping analysis can be visualized by blob plots, in which blobs indicate the
relative frequency of an algorithm achieving a particular rank. The radius of the blobs increases
proportionally with the relative frequency of ranks. The median rank is provided by a black cross
while 95% of the distribution of bootstrap ranks is shown by a black line (2.5th-97.5th percentile).

To directly visualize the ranking variability across bootstrap samples, Kendall’s τ can be computed
for a comparison between the original ranking and the bootstrap rankings. The distribution of
Kendall’s τ scores is then visualized in form of a violin plot. Violin plots combine a boxplot and a
density plot to visualize the distribution of Kendall’s τ values.

In contrast to bootstrapping, a test-based approach can be employed to investigate ranking
stability. A significance map visualizes whether a specific algorithm is significantly superior to
others. We visualize the pairwise significant test results as an incidence matrix. An algorithm on
the abscissa that significantly performed better than another algorithm on the ordinate is shown
by a yellow cell. In contrast, blue cells indicate that the algorithm is not significantly superior.
As a default, we use a Wilcoxon signed rank test with an alpha level of 5% with adjustment for
multiple testing according to Holm [Holm, 1979].

Characterization of algorithms: For challenges with multiple tasks, further plots can be used to
characterize the performance of algorithms across tasks. Please note that these visualization
techniques can only be used if the same algorithms compete for all tasks. The ordering of
algorithms in the plots is based on a consensus ranking which refers to an aggregated ranking
over all tasks. We compute the consensus ranking as the average of ranks across tasks [Lin,
2010; Hornik and Meyer, 2007]. For every participating team, blob plots can again be utilized to
visualize the frequency of achieved ranks over the bootstrap samples. In this case, we won’t show
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the participating teams on the x-axis but replace them with the tasks. A blob plot is shown for ev-
ery participating algorithm. This allows us to directly spot ranking differences between algorithms.

We provide an alternative representation in the form of stacked frequency plots of the observed
ranks across bootstrap samples. The proportion of achieved ranks, given on the x-axis, for all
bootstrap samples is provided on the y-axis. The plot is color-coded by the task and one plot is
shown for every algorithm. In the case of algorithms that achieved the same ranking in multiple
tasks for the whole assessment set, vertical lines appear on top of each other. By plotting vertical
lines, we can compare each algorithm’s performance over the different tasks.

Characterization of tasks: Similarly, it may be interesting to characterize the tasks of a challenge
and check for similarities. Blob plots can be generated for every task to compare the ranking
stability across tasks. Another way of analyzing results is to investigate similarities between
tasks. For this approach, we propose a cluster dendrogram (see also [Eugster et al., 2008]),
clustering tasks in which the rankings of participating teams are similar. The cluster dendrogram
is based on hierarchical clustering [Hastie et al., 2009]. Clusters are generated based on the
distance measure Spearman’s footrule (see Section 2.2) and complete agglomeration [Landau
et al., 2011].

Robustness of the ranking based on the ranking method: As shown in Section 4.3, challenge
results heavily depend on the chosen ranking method. An easy way to visualize the ranks of
challenge participants across different ranking methods are lineplots. The rank of a challenge
participant is indicated by a point on the line so that changes across ranking methods can be
easily spotted.

Open-source ranking toolkit

We implemented all of the described visualization and analysis techniques in an R framework
called challengeR [Wiesenfarth et al., 2019]. In the toolkit, the user can generate a full PDF report
including all of the presented figures and analyses. The challengeR package offers the user to
easily calculate the rankings and perform bootstrapping. Based on the results, the report is
automatically generated. The user only needs to load the package and the challenge assessment
data as a table containing the following columns:

- A test case identifier specifies the test image for which the results are calculated
- An algorithm identifier specifies the algorithm for which the results are calculated
- A metric value is provided for every test case and algorithm
- For multi-task challenges, a task identifier specifies the given tasks

Currently, only one metric at a time can be processed in challengeR. Challenges with multiple
metrics can be interpreted as multi-task challenges, with the metric name being the task identifier.

In the readme of challengeR, we provide several examples on how to use the toolkit in addition
to a troubleshooting section. The toolkit has so far been employed by a number of users for
algorithm benchmarking and challenge validation. challengeR offers a customizable challenge
analysis. Users may, for example, change color schemes or the ranking correlation coefficient.
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Challenges used for application of visualization techniques

We applied the visualization techniques presented above to one simulated challenge and two
challenges organized by ourselves: the RobustMIS challenge and the MSD challenge, which will
be presented in the following paragraphs.

Simulated challenge
We applied the visualization techniques presented above to one simulated challenge and two
challenges organized by ourselves: the RobustMIS challenge and the MSD challenge (see below).
The simulated challenge was designed such that it best shows the benefits of the presented
visualization and analysis techniques. The challenge utilizes a metric bounded between 0 and 1
with 1 referring to a perfect agreement with the reference annotation and 0 meaning no agreement
with the reference annotation (such as the Dice Similarity Coefficient (DSC) metric). Synthetically,
we generated challenge results for five algorithms Algorithm 1 to Algorithm 5. The challenge
comprised three tasks with 120 simulated test cases each:

- For the worst-case simulation, we obtained and assigned all permutations of {0.80, 0.85,
0.90, 0.95, 1.00} to Algorithm 1 to Algorithm 5, such that every algorithm received the same
amount of the exact same metric values. In this task, the algorithm performances were
indistinguishable by design.

- For the best-case simulation, we randomly draw the metric scores from a uniform distribu-
tion in the range of [0.9, 1.0) for Algorithm 1, [0.8, 0.9) for Algorithm 2, ..., and [0.6, 7) for
Algorithm 5. In this task, the algorithm performances were perfectly distinguishable and
introduced a natural ranking by design.

- For the random simulation, we randomly assigned metric scores to Algorithm 1 to Algorithm
5 ranging between 0 and 1. This task introduced differences between the algorithms due to
chance alone.

A metric-based aggregation with the mean was chosen as the primary ranking scheme. We
used the presented visualization techniques and the challengeR toolkit to investigate ranking
uncertainty.

The Robust Medical Instrument Segmentation Challenge
The RobustMIS challenge was part of the Medical Image Computing and Computer Assisted
Interventions (MICCAI) conference 2019 [Roß/Reinke et al., 2020]. The comprehensive challenge
design document is provided in Appendix A.6 and an overview is provided in Figure 5.14. Our
goal was the benchmarking of methods designed for the segmentation and detection of medical
instruments in videos of minimally invasive surgery, specifically, for laparoscopic videos. In
this challenge, we assessed two primary goals: (1) finding robust algorithms and (2) finding
algorithms that generalize across different degrees of difficulty. The challenge was organized
into three tasks, binary instrument segmentation, instrument detection, and instrument instance
segmentation. For the binary segmentation task, the requested output was a binary mask of
medical instruments with 1 indicating pixels of the instrument class and 0 indicating pixels of
the background. Similarly, for the instrument instance segmentation task, the requested output
were image masks with numbers 1, 2, etc. representing pixels of instrument instances and 0
representing the background. For the instrument detection task, only a rough localization was
required in the form of bounding boxes.
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Figure 5.14: Overview of the Robust Medical Instrument Segmentation (RobustMIS) challenge. (a) Overview
of challenge tasks. The challenge was organized in three tasks: Binary segmentation, instrument instance
detection, and instrument instance segmentation. (b) Hierarchical scheme of the challenge data. The
challenge data was taken from three surgery types, from which images were taken from ten different
patients each. Images contained a different number of instruments.
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For the challenge data, we used the segmentation data of the Heidelberg Colorectal (HeiCo) data
set [Maier-Hein et al., 2021]. The data comprised image frames from 30 video procedures from
proctocolectomy, rectal resection, and sigmoid resection (ten videos/patients for each type of
surgery). A total of 10,040 frames were extracted. At the time of challenge organization, this
was the largest annotated data set in the field. For the training data, we only used data from
proctocolectomy (2,943 frames) and rectal resection (3,040 frames), with a total of 5,983 training
cases. To assess the generalization capabilities of the participating algorithms, we split our test
data set (4,057 cases) into three stages with increasing difficulty:

Stage 1: We chose the test data for Stage 1 from patients from proctocolectomy (325 cases)
or rectal resection (338 cases) surgeries that were visible in the training data. Stage 1
comprised 663 image frames.

Stage 2: We chose the test data for Stage 2 from the same types of surgery (proctocolectomy
with 225 cases or rectal resection with 289 cases) that were visible in the training data, but
from patients that did not show up in the training data set. Stage 2 comprised 415 image
frames.

Stage 3: We chose the test data for Stage 3 from a different (but similar) type of surgery
that was not part of the training data set, namely sigma resection. Challenge participants
did not know which kind of surgery was used for this stage. Stage 3 comprised 2,880 image
frames.

We defined a training case as a ten-second video snippet in the form of 250 consecutive image
frames as well as a reference annotation for the last frame of each video. Participants could
choose whether they wanted to incorporate the temporal information of the video snippet in
their methods. The test cases were similarly defined but without a reference annotation. The
test data was kept hidden from the challenge participants. We required challenge participants to
submit their methods as docker containers [Docker, 2022] to avoid cheating.

The data set was initially annotated by the company UnderstandAI. In a follow-up step, we
identified inconsistencies in the annotation and agreed on a labeling instruction, which can be
found in the complete challenge design document in Appendix A.6. The annotations were then
refined by 14 engineers and four medical students following the labeling instructions. In the case
of disagreement or ambiguities, a team of one medical student and two engineers agreed on a
consensus decision. In the final step, a medical expert reviewed all annotations and potential
errors were discussed and refined by an engineer and a medical expert.

The DSC and Normalized Surface Distance (NSD) metrics (see Section 2.4) were used for the
performance assessment of the binary segmentation task. A threshold of τ = 13 was chosen for
the NSD based on inter-rater variability. For the instrument detection and instance segmentation
tasks, we used the Intersection over Union (IoU) as a localization criterion with a threshold of 0.3
and the Optimal Hungarian Matching (see Section 2.4) to assign predicted instances to reference
instances. We calculated the DSC and NSD metrics for every instance for the instrument instance
segmentation task and aggregated the results with the mean to calculate the Multi-Instance Dice
Similarity Coefficient (MI DSC) and Multi-Instance Normalized Surface Distance (MI NSD), which
we used as performance metrics. The object-level F1 Score served as the per-class counting metric
for the instrument detection task. Since we did not request the predicted class scores of the
submitted algorithms, we did not calculate a multi-threshold metric for performance assessment.
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To assess the robustness and accuracy of algorithms, we defined two ranking schemes for the
binary and instance segmentation tasks. We used a test-based ranking scheme (see Section 2.1.2)
based on a Wilcoxon signed rank test with a significance level of α = 0.05 as our accuracy
ranking. As we were particularly interested in the robustness of algorithms, we focused on the
worst-case performance in our robustness ranking, for which we applied a metric-based ranking
(see Section 2.1.2) with the 5% percentile serving as aggregation operator. The rankings were
computed separately for the DSC/MI DSC and the NSD/MI NSD. The object-level F1 Score was
calculated over the whole data set and yielded a single score per participant, which naturally
defined the ranking for the instrument detection task. Potentially missing values were set to 0
for all metrics. We used the presented visualization techniques and the challengeR toolkit to
investigate ranking uncertainty.

The Medical Segmentation Decathlon
We organized the MSD challenge as part of the MICCAI conference 2018 [Antonelli/Reinke et al.,
2022]. The complete challenge design document can be found in Appendix A.7. The major goal of
the challenge was to find a semantic segmentation algorithm that worked for a wide range of
various tasks and data without requiring the model to be changed or any human interaction to
accomplish the specific task. For this purpose, the challenge included ten separate data sets,
each representing a distinct anatomical structure, with a total of 17 Region of Interests (ROIs).
Data was collected by several institutions worldwide, each following its own data acquisition
and labeling standards. Seven data sets were used for the training phase, referred to as the
development phase, with the goal of developing the general-purpose algorithms:

- Brain: 750 4D Multiparametric Magnetic Resonance Imaging (mp-MRI) volumes (484 training
cases, 266 test cases), three ROIs (edema, enhancing and non-enhancing tumor)

- Heart: 30 3D Magnetic Resonance Imaging (MRI) volumes (20 training cases, 10 test cases),
one ROI (left atrium)

- Hippocampus: 394 3D MRI volumes (263 training cases, 131 test cases), two ROIs (anterior
and posterior of hippocampus)

- Liver: 210 3D Computed Tomography (CT) volumes (131 training cases, 70 test cases), two
ROIs (liver and liver tumor)

- Lung: 96 3D CT volumes (64 training cases, 32 test cases), one ROI (lung tumor)
- Pancreas: 420 3D CT volumes (282 training cases, 139 test cases), two ROIs (pancreas and

pancreatic tumor mass)
- Prostate: 48 4D mp-MRI volumes (48 training cases, 32 test cases), two ROIs (prostate

Peripheral Zone (PZ) and Transition Zone (TZ))

The algorithms were evaluated on the hidden test sets and participants could follow their scores
on a daily basis to avoid model overfitting. The second phase of the challenge, referred to as the
mystery phase, served as the actual validation and ranking of algorithms. Three additional data
sets were used for this phase, only being made accessible to teams who successfully participated
in the first phase:

- Colon: 190 3D CT volumes (126 training cases, 64 test cases), one ROI (colon cancer primaries)
- Hepatic vessels: 443 3D CT volumes (303 training cases, 140 test cases), two ROIs (hepatic

vessels and hepatic tumor)



218 CHAPTER 5. IMPROVING COMMON PRACTICE

�������������

��� ������������������������

�������������������
���������


��� 	������������� �����

	�������
�����

	�������
������

������� ������� ��� ���

��� ������ ��� ��� ������������

����������������

���� 	���� 	���������� �����

��� ������� ��������

�	���

��������

���� � ��
�������

�����

����������������������������

������������������

���� 	���� 	��� 
����� ����� ���

��
���� �� ����� 
 �  	�����
������� �����

Figure 5.15: Overview of the Medical Segmentation Decathlon (MSD) challenge. (a) Overview of challenge
data. The challenge was composed of ten data sets. Example images are from Simpson et al. [2019]. (b)
Hierarchical scheme of the challenge data. Each of the ten data sets was composed of a varying number of
regions of interest and for every region, a different number of images was used for the challenge.
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- Spleen: 61 3D CT volumes (41 training cases, 20 test cases), one ROI (spleen)

Algorithms could be trained on those three additional data sets but could only be submitted
once for the final validation.

For performance assessment, we decided to use two validation metrics for all data sets, although
they might not be well suited for each of the data sets. However, choosing specific metrics for
every data set and ROI would have hindered a statistical comparison across tasks. We therefore
picked the DSC and NSD metric, similar to the metrics used for the binary segmentation task of
the RobustMIS challenge. For the NSD, the threshold was chosen per data set based on feedback
from the clinicians working on the annotations. We chose the following thresholds: 5mm for the
brain data, 4mm for the heart, 1mm for the hippocampus, 7mm for the liver, 2mm for the lung,
4mm for the prostate, 4mm for the colon, 3mm for the hepatic vessel and 3mm for the spleen
data set.

We chose a test-based ranking scheme with a Wilcoxon signed rank test (α = 0.05) as our basic
ranking method which was calculated per target ROI. Two final rankings were computed, one for
the development and one for the mystery phase. For all data sets and ROIs of each phase, the
individual rankings were averaged to achieve the final ranks for every participating algorithm.
This procedure was chosen to compensate that every data set had a substantially different
sample size. By computing the rankings per ROI and aggregating them in a second step, we made
sure that the larger data sets did not overrule the smaller data sets (e.g. heart). We used the
presented visualization techniques and the challengeR toolkit to investigate ranking uncertainty.
Results are mainly shown for the per-ROI or per-data set rankings.

5.3.3 Results
Common practice related to challenge visualization

We analyzed 82 challenges organized in the period 2004 to 2016 that published their results in
journals [Maier-Hein et al., 2018]. 27% of those challenge reports were solely based on ranking
tables on final ranks without any further visualization. 44% of challenges further employed a
visualization of raw metric values in the form of bar- or scatterplots or plotting multi-threshold
curves such as the ROC curve and an additional 9% provide a visualization of metric scores
plotted against each other. Boxplots without plotting the individual metric values on top were
used by 39% of challenges. 40% provided a visualization of qualitative results of participants
and 11% used other visualization techniques such as Bland-Altman plots [Cleveland, 1993].
Only a single challenge visualized ranking variability by comparing different ranking methods
[Arganda-Carreras et al., 2015].

Since the challengeR toolkit for ranking uncertainty analysis was published in 2019, it was used as
an analysis tool since then for multiple challenges and benchmarking experiments (e.g. [Oreiller
et al., 2022; Roth et al., 2022; Huaulmé et al., 2021]), or algorithm validation in general (e.g. [Baur
et al., 2021; Daza et al., 2020; Ayala et al., 2022]), implying that the community was willing to
expand their challenge analysis techniques towards ranking uncertainty analysis. The open-
source repository was marked with 23 stars on GitHub. Since its first release, we resolved two
external and twelve internal issues in four patch releases thanks to community feedback6.

6As of September 2022.
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Simulated Challenge

We simulated a challenge with different conditions to emphasize the advantages of the chal-
lengeR toolkit. The challenge comprised three tasks, a best-case, a worst-case, and a fully
random situation. The best-case and fully random simulation yielded the same ranking tables,
as shown in Table 5.29, although they were constructed in very different ways. The best-case
simulation task was designed as a perfectly distinguishable ranking, while the ranking of the
fully random simulation was given by chance. The worst-case scenario yielded the same scores
and ranks for all algorithms.

The information of how close algorithms were apart was hidden in the ranking tables but can be
seen when inspecting the dots- and boxplots in Figure 5.16, the podium plots in Figure 5.17, or the
ranking heatmaps in Figure 5.18. The podium plots and heatmaps reveal a clear rank distribution
for every case for the best-case simulation. For the worst-case simulation, it is visible that all
algorithms achieve the same ranks for all cases, while the situation is extremely fuzzy for the
fully random scenario.

Table 5.29: Rankings for the three tasks of the simulated challenge. Rankings are provided for a generic
metric bounded between 0 and 1 for a metric-based aggregation with the mean.

Algorithm Rank

Algorithm 1 1
Algorithm 2 2
Algorithm 3 3
Algorithm 4 4
Algorithm 5 5

(a) Best-case simulation

Algorithm Rank

Algorithm 1 1
Algorithm 2 2
Algorithm 3 3
Algorithm 4 4
Algorithm 5 5

(b) Fully random simulation

Algorithm Rank

Algorithm 1 1
Algorithm 2 1
Algorithm 3 1
Algorithm 4 1
Algorithm 5 1

(c) Worst-case simulation
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Figure 5.16: Dots- and boxplots illustrating the individual algorithm performances for the simulated challenge
for the best-case (left), fully random (middle), and worst-case (right) simulations. Rankings are provided for
a generic metric bounded between 0 and 1 for a metric-based aggregation with the mean. Figure adapted
from [Wiesenfarth et al., 2021].
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Figure 5.17: Podium plots illustrating the individual algorithm performances for the simulated challenge for
the best-case (left), fully random (middle), and worst-case (right) simulations. Rankings are provided for a
generic metric bounded between 0 and 1 for a metric-based aggregation with the mean. Top: Dots represent
the metric values color-coded by the algorithms that produced this score. Metric values corresponding
to identical cases are connected by a line. Bottom: Frequency plot of how often an algorithm achieved
a specific rank (podium) over all cases. Per podium, dots are presented in columns representing every
algorithm. Figure adapted from [Wiesenfarth et al., 2021].
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Figure 5.18: Ranking heatmaps for the simulated challenge for the best-case (left), fully random (middle),
and worst-case (right) simulations. Rankings are provided for a generic metric bounded between 0 and 1
for a metric-based aggregation with the mean. Each cell (i, Aj) corresponds to the absolute frequency of
cases where the algorithm Aj achieved the rank i. Figure adapted from [Wiesenfarth et al., 2021].

This trend is also visible in the blob plots (Figure 5.19), which show the results of the boot-
strapping analysis for investigating the ranking stability. The rankings were extremely stable
against small perturbations of the data set for the best-case simulation. For the fully random
simulation, the ranking was very unstable, meaning that every algorithm appeared at every
rank at some point. While Algorithm 1 and Algorithm 2 were more similar than the others and
slightly superior, the remaining three algorithms were very close together and exchanged ranks
at the same frequency. It was even more critical for the worst-case simulation task. Here, all
algorithms achieved all ranks with nearly the exact same frequency across bootstrap samples.
In this case, a ranking did not make any sense since all algorithms showed the same performance.

The violin plots of Kendall’s τ values over the bootstrap rankings (Figure 5.20) further show that
there was no ranking variability in the best-case simulation. The mean, median, and IQR were
equal to 1.0, implying identical rankings. On the other hand, we could observe very low values
for the fully random simulation, yielding a mean Kendall’s τ of 0.57 (median: 0.6, IQR: (0.4, 0.8)).
For the worst-case simulation, we could not compute Kendall’s τ between the rankings, given
that all algorithms yielded the same rank for every bootstrap sample.
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Figure 5.19: Blob plots visualizing ranking uncertainty over 1,000 bootstrap samples for the simulated
challenge for the best-case (left), fully random (middle), and worst-case (right) simulations. Rankings are
provided for a generic metric bounded between 0 and 1 for a metric-based aggregation with the mean. The
radius of the blobs increases with an increasing relative frequency of ranks. The median rank is provided
by a black cross while 95% of the distribution of bootstrap ranks is shown by a black line (2.5th-97.5th
percentile). Figure adapted from [Wiesenfarth et al., 2021].
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Figure 5.20: Violin plots visualizing Kendall’s τ values over 1,000 bootstrap samples for the simulated
challenge for the best-case (left), fully random (middle), and worst-case (right) simulations. Rankings are
provided for a generic metric bounded between 0 and 1 for a metric-based aggregation with the mean.
Figure adapted from [Wiesenfarth et al., 2021].

While the significance maps (Figure 5.21) show that every algorithm was significantly superior
to its successors for the best-case simulation, no significance could be found for the other
two tasks. When changing the ranking scheme, the rankings for the best-case and worst-case
simulations remained stable, while changing completely across ranking schemes for the fully
random simulation (Figure 5.22).

Figure 5.21: Significance maps visualizing pairwise significant test results for a Wilcoxon signed rank test for
the simulated challenge for the best-case (left), fully random (middle), and worst-case (right) simulations.
Rankings are provided for a generic metric bounded between 0 and 1 for a metric-based aggregation with
the mean. Yellow cells indicate that the metric values of the algorithm on the x-axis are significantly superior
to those of the algorithm on the y-axis, while blue cells show algorithms that are not significantly superior.
Figure adapted from [Wiesenfarth et al., 2021].
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Figure 5.22: Lineplots illustrating the ranking robustness across four different ranking methods for the
simulated challenge for the best-case (left), fully random (middle), and worst-case (right) simulations.
Figure adapted from [Wiesenfarth et al., 2021].

The Robust Medical Instrument Segmentation Challenge

A total of twelve teams submitted their methods to the RobustMIS challenge, from which ten
participated in the binary segmentation task and seven in the instrument detection and instance
segmentation tasks. The submitted algorithms were mainly based on Mask R-CNN and U-Net
architectures (see Section 2.3). A detailed description of the participating algorithms of the
detection and instance segmentation tasks is provided in Section 4.4.

The rankings for Stage 3 for all tasks and metrics are provided in Tables 5.30-5.32. The ranking
Table 5.30 shows that the teams nnU-Net and haoyun seem to have generated the best methods
for the binary segmentation problem. For the detection task, team Uniandes succeeds over
the other teams but only with an increase of 0.01 in the F1 Score, indicating that the submitted
algorithms are quite close in their detection performances (see Table 5.31). For the instrument
instance segmentation task, no clear winner for all four rankings can be seen. For example,
while team nnU-Net was on rank 1 for the MI DSC accuracy ranking, it only achieved rank 5 for
the robustness ranking for the same metric. Generally, it can be seen that the chosen ranking
scheme and metric had a large influence on the resulting algorithm order.
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Table 5.30: Rankings for Stage 3 of the binary segmentation task of the Robust Medical Instrument Segmen-
tation (RobustMIS) challenge. Rankings are provided for the Dice Similarity Coefficient (DSC) (top) and the
Normalized Surface Distance (NSD) (bottom) metrics. Accuracy rankings are shown on the left and are based
on the proportion of significant tests divided by the number of algorithms (Prop. Sign). The robustness
rankings are shown on the right and are based on the 5% quantile (Q5) of the DSC/NSD.

DSC: ACCURACY RANKING DSC: ROBUSTNESS RANKING

Team identifier Prop. Sign. Rank Team identifier Q5 DSC Rank

fisensee 1.00 1 haoyun 0.52 1
haoyun 0.89 2 CASIA_SRL 0.50 2
CASIA_SRL 0.78 3 www 0.49 3
Uniandes 0.67 4 fisensee 0.34 4
caresyntax 0.56 5 Uniandes 0.28 5
SQUASH 0.44 6 SQUASH 0.22 6
www 0.33 7 caresyntax 0.00 7
Djh 0.22 8 Djh 0.00 7
VIE 0.11 9 NCT 0.00 7
NCT 0.00 10 VIE 0.00 7

NSD: ACCURACY RANKING NSD: ROBUSTNESS RANKING

Team identifier Prop. Sign. Rank Team identifier Q5 NSD Rank

haoyun 0.89 1 haoyun 0.63 1
fisensee 0.89 1 CASIA_SRL 0.62 2
CASIA_SRL 0.67 3 www 0.57 3
Uniandes 0.67 3 fisensee 0.45 4
caresyntax 0.56 5 Uniandes 0.32 5
www 0.44 6 SQUASH 0.26 6
SQUASH 0.33 7 caresyntax 0.00 7
VIE 0.22 8 Djh 0.00 7
NCT 0.11 9 NCT 0.00 7
Djh 0.00 10 VIE 0.00 7
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Table 5.31: Ranking for Stage 3 of the instrument detection task of the Robust Medical Instrument Segmen-
tation (RobustMIS) challenge for the F1 Score.

Team identifier F1 Score Rank
Uniandes 0.91 1
www 0.90 2
caresyntax 0.89 3
SQUASH 0.86 4
fisensee 0.86 5
VIE 0.82 6

Table 5.32: Rankings for Stage 3 of the instrument instance segmentation task of the Robust Medical Instru-
ment Segmentation (RobustMIS) challenge. Rankings are provided for the Multi-Instance Dice Similarity
Coefficient (MI DSC) (top) and the Multi-Instance Normalized Surface Distance (MI NSD) (bottom) metrics.
Accuracy rankings are shown on the left and are based on the proportion of significant tests divided by the
number of algorithms (Prop. Sign). The robustness rankings are shown on the right and are based on the
5% quantile (Q5) of the MI DSC/MI NSD.

MI DSC: ACCURACY RANKING MI DSC: ROBUSTNESS RANKING

Team identifier Prop. Sign. Rank Team identifier Q5 MI DSC Rank
fisensee 1.00 1 www 0.31 1
Uniandes 0.83 2 Uniandes 0.26 2
caresyntax 0.67 3 SQUASH 0.22 3
SQUASH 0.33 4 CASIA_SRL 0.19 4
www 0.33 4 fisensee 0.17 5
VIE 0.17 6 caresyntax 0.00 6
CASIA_SRL 0.00 7 VIE 0.00 6

MI NSD: ACCURACY RANKING MI NSD: ROBUSTNESS RANKING

Team identifier Prop. Sign. Rank Team identifier Q5 MI NSD Rank
Uniandes 1.00 1 www 0.35 1
caresyntax 0.67 2 Uniandes 0.29 2
fisensee 0.50 3 CASIA_SRL 0.27 3
www 0.50 3 SQUASH 0.26 4
SQUASH 0.33 5 fisensee 0.16 5
VIE 0.17 6 caresyntax 0.00 6
CASIA_SRL 0.00 7 VIE 0.00 6
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To provide deeper insights in the challenge results, we utilized the visualization techniques
implemented in the challengeR package. We provide the analysis for the segmentation tasks only,
as it is mainly developed for validation per case, not per data set (as done for the instrument
detection task). In addition, we provide results for the most difficult test data set (Stage 3) only.
This stage was the most complex, but most realistic one. A comparison across stages is provided
below in Figures 5.27 and 5.28.

First, we visualized the raw metric value distribution of the segmentation tasks with dots- and
boxplots as shown in Figure 5.23. It can be seen that the IQR was much smaller for the binary
compared to the instance segmentation task. Overall, the metric values were higher for the
binary segmentation with the first algorithms being quite close together, especially for the NSD
metric. The dots- and boxplots were accompanied by ranking heatmaps in Figure 5.24, which
show how often a challenge participant received a specific rank when ranked per test case. A
trend of a ranking is visible for the DSC/MI DSC, being more fuzzy for the instrument instance
segmentation task. Similar trends could be observed for the NSD/MI NSD metrics. Given the
large data set of 2,880 cases for Stage 3, the podium plots were not readable and are omitted for
this example.
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Figure 5.23: Dots- and boxplots illustrating the individual algorithm performances for Stage 3 of the Robust
Medical Instrument Segmentation (RobustMIS) challenge for the binary (left) and instrument instance
segmentation (right) tasks. Metric values are shown for the Dice Similarity Coefficient (DSC), Multi-Instance
Dice Similarity Coefficient (MI DSC), Normalized Surface Distance (NSD), and Multi-Instance Normalized
Surface Distance (MI NSD). Figure adapted from [Roß/Reinke et al., 2020].
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Figure 5.24: Ranking heatmaps for Stage 3 of the Robust Medical Instrument Segmentation (RobustMIS)
challenge for the binary (left) and instrument instance segmentation (right) tasks. Metric values are shown
for the Dice Similarity Coefficient (DSC) and Multi-Instance Dice Similarity Coefficient (MI DSC). Each cell
(i, Aj) corresponds to the absolute frequency of cases where the algorithm Aj achieved the rank i. Figure
adapted from [Roß/Reinke et al., 2020].

We performed bootstrap analysis to investigate ranking uncertainty. Descriptive statistics of
Kendall’s τ values are provided in Table 5.33. In addition, the variability of ranks across tasks is
shown in the form of blob plots for the rankings computed with the (MI) DSC in Figure 5.25. It can
be easily seen that the accuracy rankings for both the binary and instance segmentation tasks
were very stable against small perturbations. Contrarily, the robustness rankings were quite
unstable, allowing for many variations in the achieved ranks. The same trends were observed for
the rankings based on the (MI) NSD.
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Table 5.33: Descriptive statistics of Kendall’s τ for comparing the original ranking with 1,000 bootstrapped
rankings for Stage 3 of the Robust Medical Instrument Segmentation (RobustMIS) challenge. Mean, Median,
25% Quartile (Q25) and 75% Quartile (Q75) of Kendall’s τ are provided for different ranking schemes for
the Dice Similarity Coefficient (DSC), Multi-Instance Dice Similarity Coefficient (MI DSC), Normalized Surface
Distance (NSD) and Multi-Instance Dice Similarity Coefficient (MI DSC) metrics.

Ranking scheme Mean Median Q25 Q75

Binary instrument segmentation, DSC Accuracy 0.99 1.00 1.00 1.00
Binary instrument segmentation, NSD Accuracy 0.95 0.95 0.95 0.96
Binary instrument segmentation, DSC Robustness 0.68 0.69 0.60 0.78
Binary instrument segmentation, NSD Robustness 0.73 0.73 0.64 0.82
Instrument instance segmentation, MI DSC Accuracy 0.99 1.00 1.00 1.00
Instrument instance segmentation, MI NSD Accuracy 0.99 1.00 1.00 1.00
Instrument instance segmentation, MI DSC Robustness 0.77 0.81 0.62 0.90
Instrument instance segmentation, MI NSD Robustness 0.71 0.81 0.52 0.90

Figure 5.26 illustrates the significance maps for the participating teams. They support the results
from above that the rankings were quite clear for the accuracy ranking schemes. In most cases,
an algorithm was significantly superior to its successors. The robustness rankings were not
obvious in terms of statistical significance. For example, the winning algorithm for the MI DSC
robustness ranking (team www) was only significantly superior to two other methods (at ranks 4
and 7) and no statistical superiority could be measured for the other teams. Similar trends could
be observed for the (MI) NSD,
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Figure 5.25: Blob plots visualizing ranking uncertainty over 1,000 bootstrap samples for Stage 3 of the
Robust Medical Instrument Segmentation (RobustMIS) challenge for the binary (left) and instrument instance
segmentation (right) tasks and the accuracy (top) and robustness (bottom) rankings. Metric values are
shown for the Dice Similarity Coefficient (DSC) and Multi-Instance Dice Similarity Coefficient (MI DSC). The
radius of the blobs increases with an increasing relative frequency of ranks. The median rank is provided
by a black cross while 95% of the distribution of bootstrap ranks is shown by a black line (2.5th-97.5th
percentile). Figure adapted from [Roß/Reinke et al., 2020].
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Figure 5.26: Significance maps visualizing pairwise significant test results for a Wilcoxon signed rank
test for Stage 3 of the Robust Medical Instrument Segmentation (RobustMIS) challenge for the binary
(left) and instrument instance segmentation (right) tasks. Metric values are shown for the Dice Similarity
Coefficient (DSC) and Multi-Instance Dice Similarity Coefficient (MI DSC). Yellow cells indicate that the metric
values of the algorithm on the x-axis are significantly superior to those of the algorithm on the y-axis.

Figure 5.27 illustrates the rising difficulty of the different stages through the decreasing (MI)
DSC values, indicating that generalizing from the training domain was a difficult task for the
participating algorithms. The results were comparable for the (MI) NSD scores. The achieved
rankings of all teams under bootstrap variability across stages are shown in Figure 5.28 exemplarily
for the MI DSC instrument instance segmentation rankings. The ranks for the accuracy rankings
were relatively stable across tasks (also for the other ranking schemes), only resulting in lower
performance scores for all teams (see Figure 5.27). However, the robustness rankings varied
substantially across stages for all ranking schemes.
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Figure 5.27: Dots- and boxplots for all stages of the mean performance of every participating team of
the Robust Medical Instrument Segmentation (RobustMIS) challenge for the binary (left) and instrument
instance segmentation (right) tasks. Metric values are shown for the Dice Similarity Coefficient (DSC) and
Multi-Instance Dice Similarity Coefficient (MI DSC). Figure adapted from [Roß/Reinke et al., 2020].
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Figure 5.28: Blob plots visualizing ranking uncertainty over 1,000 bootstrap samples for all stages separately
for every participating team of the Robust Medical Instrument Segmentation (RobustMIS) challenge for the
instrument instance segmentation task. Results are shown for the accuracy (left) and robustness (right)
rankings for the Multi-Instance Dice Similarity Coefficient (MI DSC) metric. The radius of the blobs increases
with an increasing relative frequency of ranks. The median rank is provided by a black cross while 95% of
the distribution of bootstrap ranks is shown by a black line (2.5th-97.5th percentile).
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The Medical Segmentation Decathlon

A total of 19 teams submitted their algorithms for the mystery phase. All methods were based on
Convolutional Neural Networks (CNNs). The U-Net [Ronneberger et al., 2015] (see Section 2.3)
was the most frequently used base architecture and was employed by 64% of the teams. The
remaining teams utilized V-Net [Milletari et al., 2016], ResNet [He et al., 2016], QuickNAT [Roy
et al., 2019], and DeepMedic [Kamnitsas et al., 2016] basic architectures or a combination of
them. Adaptive Moment Estimation (Adam) was the most commonly applied optimizer (61%),
followed by Stochastic Gradient Descent (SGD) (33%). Most of the teams used a DSC (29%) or
Cross Entropy (CE) (21%) loss function.

The rankings for both the development and mystery phases are provided in Table 5.34. The
median and IQR of DSC values are provided to give further insights. In addition, we show the
performance of the raw metric values for all data sets and ROIs in Figures 5.29 (development
phase) and 5.30 (mystery phase). For the development phase, the lowest median of the mean
DSC performance across algorithms was achieved for the pancreatic tumor mass region (0.21).
On the other hand, liver segmentation yielded the highest scores (0.94). For the mystery phase,
the colon cancer ROI was the most difficult task with a median of mean DSC of only 0.16. The
spleen was the data set with the highest median of mean DSC (0.94).

Table 5.34: Test-based rankings for the development and mystery phases of the Medical Segmentation
Decathlon (MSD) challenge. For every algorithm, the median and Interquartile Range (IQR) of the Dice
Similarity Coefficient (DSC) values of all 19 participating teams are provided.

The development phase The mystery phase

Rank Team identifier Median DSC IQR DSC Rank Team identifier Median DSC IQR DSC

1 nnU-Net 0.79 (0.61,0.88) 1 nnU-Net 0.71 (0.58,0.82)
2 K.A.V.athlon 0.77 (0.58,0.87) 2 NVDLMED 0.69 (0.55,0.79)
3 NVDLMED 0.78 (0.57,0.87) 3 K.A.V.athlon 0.67 (0.49,0.80)
4 Lupin 0.75 (0.52,0.86) 4 LS Wang’s Group 0.64 (0.46,0.78)
5 CerebriuDIKU 0.76 (0.51,0.88) 5 MIMI 0.65 (0.45,0.75)
6 LS Wang’s Group 0.75 (0.51,0.88) 6 CerebriuDIKU 0.56 (0.15,0.71)
7 MIMI 0.73 (0.51,0.86) 7 Whale 0.55 (0.20,0.68)
8 Whale 0.65 (0.28,0.83) 8 UBIlearn 0.55 (0.05,0.69)
9 VST 0.69 (0.39,0.84) 9 Jiafucang 0.48 (0.04,0.67)
10 UBIlearn 0.72 (0.40,0.85) 10 Lupin 0.57 (0.19,0.69)
11 A-REUMI01 0.70 (0.42,0.85) 11 LfB 0.49 (0.16,0.64)
12 BCVuniandes 0.70 (0.42,0.86) 12 A-REUMI01 0.51 (0.14,0.65)
13 BUT 0.72 (0.40,0.84) 13 VST 0.41 (0.00,0.64)
14 LfB 0.68 (0.43,0.82) 14 AI-Med 0.33 (0.01,0.52)
15 Jiafucang 0.49 (0.11,0.81) 15.5 Lesswire1 0.40 (0.08,0.52)
16 AI-Med 0.63 (0.30,0.79) 15.5 BUT 0.38 (0.01,0.60)
17 Lesswire1 0.65 (0.33,0.79) 17 RegionTec 0.29 (0.00,0.50)
18 EdwardMa12593 0.31 (0.01,0.69) 18 BCVuniandes 0.10 (0.01,0.38)
19 RegionTec 0.57 (0.19,0.73) 19 EdwardMa12593 0.08 (0.01,0.17)
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Figure 5.29: Dots- and boxplots illustrating the individual algorithm performances for the development
phase of the Medical Segmentation Decathlon (MSD) challenge. Metric values are shown for the Dice
Similarity Coefficient (DSC). Results are grouped by data set and target Region of Interest (ROI). Figure
adapted from [Antonelli/Reinke et al., 2022].
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Figure 5.30: Dots- and boxplots illustrating the individual algorithm performances for the mystery phase
of the Medical Segmentation Decathlon (MSD) challenge. Metric values are shown for the Dice Similarity
Coefficient (DSC). Results are grouped by data set and target Region of Interest (ROI). Figure adapted from
[Antonelli/Reinke et al., 2022].
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We analyzed the ranking uncertainty by utilizing bootstrapping techniques. Kendall’s τ was
computed between the original and all bootstrapped rankings, resulting in a median (IQR)
Kendall’s τ was 0.94 (0.91,0.95) for the colon data set, 0.99 (0.98, 0.99) for the hepatic vessel
data set and 0.92 (0.89, 0.94) for the spleen data set. This means that the mystery phase ranks
remained relatively constant even when subjected to minor changes. Kendall’s τ distribution was
comparable to the development phase rankings. The results of the ranking uncertainty analysis
are summarized in Figure 5.32 in form of a stacked frequency plot. It can directly be seen that the
winning team nnU-Net was extremely stable against small perturbations and was the winner for
nearly all of the seventeen ROIs, while the remaining teams exhibited higher variability of ranks.
This was similar when applying different ranking schemes, as exemplarily shown in Figure 5.31 for
the hepatic vessel task. The winning team was superior to the others in most of the cases, the
algorithms in the middle of the leaderboard interchanged a lot. This trend could be observed for
the remaining ROIs as well.

Figure 5.31: Lineplots illustrating the ranking robustness across four different ranking methods for the
hepatic vessel data set for the Medical Segmentation Decathlon (MSD) challenge. The height of the line
represents the associated rank for each ranking scheme encoded on the x-axis. Each of the 19 algorithms is
represented by a differently colored line. Figure adapted from [Antonelli/Reinke et al., 2022].
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Figure 5.32: Stacked frequency plot illustrating the ranking uncertainty for all data sets of the Medical
Segmentation Decathlon (MSD) challenge. Rankings were based on the Dice Similarity Coefficient (DSC).
The proportion of achieved ranks (x-axis) for all bootstrap samples is provided on the y-axis. The plot is
color-coded by the task and one plot is shown for every participating algorithm. In the case of algorithms
that achieved the same ranking in multiple tasks for the whole assessment set, vertical lines appear on top
of each other. Figure adapted from [Antonelli/Reinke et al., 2022].
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To investigate similarities between the ten data sets based on the performances and ranks, a
cluster dendrogram was generated as shown in Figure 5.33. Based on this hierarchical clustering,
similarities between several data sets were found. For instance, the lung and hepatic vessel
data set were found to be very similar. Both of them share a relatively low median of mean DSC
performances (0.51 for the lung tumor, 0.55 for the hepatic vessel, and 0.38 for the hepatic tumor
ROI). The liver and pancreas data sets were also found to be very similar. However, they may
be similar in terms of rankings, but the performances were much lower for the pancreas task
(median of mean DSC of 0.69 for the pancreas and 0.21 for the pancreatic tumor mass) compared
to the liver (median of mean DSC of 0.94 for liver and 0.54 for the liver tumor). Although the
colon and spleen data sets are very similar, their median of mean performances comes with a
substantial difference from 0.16 for the colon data set and 0.94 for the spleen data set.
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Figure 5.33: Dendrogram illustrating the similarity of data sets for the Medical Segmentation Decathlon (MSD)
challenge. It is based on hierarchical clustering and depicts clusters according to Spearman’s footrule for
the average agglomeration.

5.3.4 Discussion
Challenge rankings are very sensitive to several design choices, as we showed in Section 4.3. This
results in a high ranking uncertainty in many cases. In this section, we presented several analysis
and visualization techniques that can help to overcome the problem of ranking sensitivity.
After revisiting our challenge database, we found that only a limited amount of challenges
used advanced visualization techniques beyond simple ranking tables and boxplots. Although
boxplots are very suitable for visualizing the raw metric values, they do not help in quantifying
ranking uncertainty. We applied the visualization techniques presented in Section 5.3.2 to one
simulated and two biomedical image analysis challenges: the RobustMIS and the MSD challenges.
The purpose of the simulated challenge was to show the advantages of advanced visualization
techniques. They were designed to highlight different and extreme use cases, in which rankings
were completely stable and distinguishable (best-case simulation), due to chance (fully random
simulation), or yielded the same score and rank for every algorithm (worst-case simulation). As
we showed at the beginning of the results of this section, nearly a third of previous challenges
presented their results only in the form of a ranking table. The rankings for the best-case and
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the fully random simulation would have been exactly the same. Without further visualization
and analysis, one would not have observed the differences between the tasks or algorithms.
While the dots- and boxplots already reveal the differences in the tasks, the ranking robustness,
and uncertainty analysis plots are highly important to show that the rankings of the fully random
simulation are completely unstable compared to the best-case simulation.

Both biomedical challenges focus on segmentation problems and are composed of multiple tasks.
While the RobustMIS challenge is composed of three tasks for three stages and two metrics, the
rankings for the MSD were computed for 17 target ROIs and two distinct metrics. For the MSD, we
decided to compute one aggregated ranking over all ROIs and data sets for the development
and the mystery phase. However, the ranking uncertainty analysis was still performed on ROI
and data set level to reveal insights from the diverse data sets. For this challenge, the winning
team nnU-Net was extremely distinct from all other teams and significantly superior for almost
all tasks. Rankings varied substantially, especially in the middle of the leaderboard. However,
the winner and its two successors were stable, although the latter two often interchanged their
(second and third) ranks. Given a large number of tasks, the across-task analysis was especially
interesting. It not only revealed the superiority of the winning methods for most data sets, but
also showed task similarities based on the rankings. These, however, should be interpreted with
care, as they do not reflect the raw performance scores. For example, although the colon task
was the most difficult and the spleen task was the easiest, the clustering analysis showed them
to be very similar.

On the other hand, two ranking schemes were defined for the RobustMIS challenge, for which
the results were presented separately. The accuracy ranking was very stable in contrast to the
robustness ranking, which showed a high level of variability. The original robustness rankings
should therefore be interpreted with care, keeping in mind that the winner was not stable.
Especially for the binary segmentation task, teams haoyun, CASIA SRL, and www all were on ranks
1 to 3 at similar frequencies throughout the bootstrap rankings. For the instrument instance
segmentation task, one team yielded a rank variation of 5 ranks for the robustness ranking. In
the accuracy rankings, most algorithms were significantly superior to their successors. This was
not the case for the robustness rankings. This indicates that many algorithms showed poor
results in terms of robustness with many teams yielding a 5% percentile of 0.00.

Not all of the presented analysis techniques should be applied to all challenges. The podium
plots, for instance, were very complex to read for both RobustMIS and MSD challenges. This is
because they either have too many participants, as for the MSD, or too many individual data
points, as for the RobustMIS challenge. However, they can be very insightful for small numbers
of cases and algorithms, as for example shown in Schellenberg et al. [2022].

The two example challenges chosen for this section are very large in terms of validation: a large
number of tasks, multiple metrics, and large data sets. This results in very long reports produced
by the challengeR toolkit. In such cases, researchers need to carefully review all visualizations
so as not to miss important information when selecting figures for their publications. The
plots provided for the characterization of algorithms and tasks are especially helpful for large
challenges (see Figures 5.28 and 5.32). It should further be noted that the presented visualization
techniques are mainly designed for validation per image, not per data set. Thus, in many cases,
they can not directly be applied to image-level classification or object detection tasks. However,
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the bootstrapping analysis, for example, is still applicable to examine variations in the rankings
when the data set is slightly modified. Furthermore, segmentation remains the most frequently
applied problem in challenges (see Section 3.1.3). The analysis can therefore still be applied to
numerous competitions.

5.3.5 Conclusion
All in all, the insights provided by the advanced visualization techniques, which would not
have been obtainable with pure ranking tables, substantially increased the interpretability of
challenge results. They show details of algorithm performances that are very important for
the practitioner when choosing a specific algorithm for a new problem. For example, based
on the analysis, a researcher could be confident that the winning algorithm of the MSD, team
nnU-Net, would solve a range of different semantic segmentation approaches. However, the
same researcher would know to be careful when choosing an algorithm from the RobustMIS
challenge if the focus is algorithm robustness, since many teams yielded similarly (low) results.

It should be noted that the usage of the suggested visualization techniques is far from being
restricted to challenge results. Indeed, they can be applied to most of the currently published
papers. Many journals nowadays require the comparison of the new method or approach
to baseline or state-of-the-art methods. Those benchmarking experiments can therefore be
interpreted as "mini-challenges", for which all of the presented analysis methods can easily be
applied. Similarly, they can be used for hyperparameter tuning or model selection, and beyond
biomedical applications. The insights provided by uncertainty analyses are very helpful for future
algorithm development and add tremendous value over simple ranking tables. Finally, they help
to avoid inadequate algorithms that might only have been superior to others by chance being
spread across the community or even translated into clinical practice.
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5.4 Improving common practice of reporting and analyses

Disclosure

This work has been supervised by Lena Maier-Hein. It has been conducted together
with several co-authors, especially Matthias Eisenmann, Tobias Roß, and Annette
Kopp-Schneider. The work has been published in Medical Image Analysis [Maier-
Hein et al., 2020] and submitted to Medical Image Analysis [Roß et al., 2021]. Please
refer to Chapter A.1 for full disclosure.

5.4.1 Introduction
Biomedical challenges are typically organized to gain insights or to find algorithms that best
solve a particular research question [Mendrik and Aylward, 2019]. With this reasoning in mind,
challenges, their winners, and their results have a substantial impact on future scientific work.
Thus, a high-quality challenge design is key for ensuring that we can trust challenge results.
Eddy et al. [2012] argue that transparency and validation are the most important aspects to
consider when establishing confidence and trust in biomedical models. While we have presented
strategies for improving the validation of challenges (Sections 5.2 and 5.3), here, we focus on
further advancing the transparency of challenge results.

’The one ‘practice’ that can be universally commended is the
transparent and complete reporting of all facets of a study,
allowing a critical reader to evaluate the work and fully
understand its strengths and limitations.’

— [Nichols et al., 2017]

The structured challenge submission system was the first step toward increased challenge
transparency. However, we demonstrate in this section that this step alone was insufficient.
Although organizers could easily use the information provided in the challenge applications,
most of them did not make use of it in challenge reports. Since transparency and reproducibility
of results are crucial for ensuring high-quality research [Baker, 2016; McNutt, 2014; Schulz et al.,
2010], we went a step further by introducing a reporting guideline for challenges, similar to
popular guidelines and checklists for reporting clinical trials, as presented in Section 2.5. The
reporting guideline for biomedical challenges included a refined version of the parameter list that
was initially used for the structured challenge submission system in Section 5.1. We registered
the guideline with the Enhancing the QUAlity and Transparency Of health Research (EQUATOR)
network [Altman et al., 2008] and present the individual parameters in this section.

Challenge reports should ideally not only present the raw results of a challenge. One parameter
of the reporting guideline is further analyses of challenge results (see Section 5.4.3). This includes
all kinds of analyses helpful to draw meaningful conclusions from the results besides the ranking
analysis. As challenges play a major role in driving scientific research, we should ask ourselves
how we can leverage more from challenge results. For example, one intriguing subject is what
distinguishes difficult-to-process challenge images for the algorithms. Identifying characteristics
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of the worst-case images can be extremely useful for future algorithm development [Roß et al.,
2021]. While this question was sometimes investigated manually [Roß/Reinke et al., 2020;
Allan et al., 2021, 2020], this process is time-consuming and may be biased and subjective.
Therefore, we propose a statistical approach using Linear Mixed Models (LMMs) to identify
image characteristics that positively or negatively influenced the performances of challenge
participants. We demonstrate the value of such an analysis for the Robust Medical Instrument
Segmentation (RobustMIS) challenge.

To summarize, the contribution of this section is twofold. First, we present the newly designed
challenge reporting guideline and show how we can further apply other strategies from clinical
trials to challenges. Second, we show how we can better learn from challenges.

Specific findings in Part 4

Challenges are not reported comprehensively.

Challenge algorithms are not reproducible.

Research questions investigated in this chapter

Can we apply clinical trial concepts to challenge reporting?

How can we gain more insights from challenge results?

5.4.2 Methods
In this section, we review the influence of our structured challenge submission system on
challenge reporting. As an additional step, we introduce the concept of challenge registration. To
formalize our challenge parameter list, we converted a refined version into a challenge reporting
guideline. We conclude with a mixed model-based strength- and weakness analysis of challenge
results. All methodological details are provided in the following paragraphs.

Structured challenge submission system

In Section 5.1, we introduced a structured challenge submission system for biomedical challenges.
In this section, we show the improved reporting practice based on the parameters captured within
the Object Database (ODB) of the submission system. For the Medical Image Computing and
Computer Assisted Interventions (MICCAI) 2018 conference, we further compared the parameters
stored in the system – as accepted by the MICCAI 2018 challenge chairs – with the information
actually reported on the websites for discrepancies.

Challenge registration

We leveraged best practices from clinical trials by reviewing the concept of clinical trial registra-
tion. The International Committee of Medical Journal Editors (ICMJE) "requires, and recommends
that all medical journal editors require registration of clinical trials in a public trials registry at or
before the time of first patient enrollment as a condition of consideration for publication" [ICMJE,
2013]. The purposes and benefits of clinical trial registration are described in Zarin and Keselman



244 CHAPTER 5. IMPROVING COMMON PRACTICE

[2007] and summarized in Table 5.35. The concept was translated to biomedical challenges and
is presented in Section 5.4.3.

Table 5.35: Clinical trial registry purposes and benefits for various groups. Table courtesy of Zarin and
Keselman [2007].

Registry purpose Group that benefits

Fulfill ethical obligations to participants and the research
community

Patients, the general public, the
research community

Provide information to potential participants and referring
clinicians

Patients, clinicians

Reduce publication bias Users of the medical literature
Help editors and others understand the context of study
results

Journal editors, users of the
medical literature

Promote more efficient allocation of research funds Granting agencies, the research
community

Help institutional review boards (IRB) determine the ap-
propriateness of a research study

IRB, ethicists

Reporting guideline

Based on the feedback after the first year of challenge submissions using the structured challenge
submission system, the MICCAI Board challenge working group refined the challenge parameter
list. We especially clarified the parameter descriptions that were misunderstood by the users,
namely the challenge organizers, and removed redundant information by merging the parameters
that were individually listed for the training and test data sets. We then provided the refined list
of 48 parameters to all members of the Biomedical Image Analysis ChallengeS (BIAS) initiative
in form of a survey asking for agreement with the name and explanation of each parameter as
well as constructive feedback in case of disagreement, similar to the first survey mentioned in
the previous sections. Furthermore, we asked the survey respondents to rate every parameter
by its importance (absolutely essential for challenge result interpretation and/or challenge
participation, should be included, may be omitted) and whether it is essential for challenge
review. We, as the MICCAI Board challenge working group, addressed all the comments and
organized a final meeting with all members to address conflicts. In the end, we created a final
list of 42 main parameters with 79 sub-parameters. For example, the main parameter challenge
name comes with two sub-parameters ’provide a representative name of the challenge’ and
’provide the acronym of the challenge (if any)’.
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Figure 5.34: Workflow diagram for applying the suggested mixed model analysis to challenge results. Based
on the outcome variable, a Linear Mixed Model (LMM) or Generalized Linear Mixed Model (GLMM) can be
applied. In the case of a complex situation, we recommend consulting a biostatistician.
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Mixed model-based strength-weakness analysis

Biomedical data is often subject to hierarchy and correlation between subjects, e.g. patients from
the same hospital or scanner. Thus, results should be analyzed by a mixed model rather than
regular linear models. To determine how widespread this analysis technique is, we investigated
how many challenges used mixed models. We reviewed all 5,390 papers that were published
in the proceedings of the MICCAI conferences in the period of 2004 to 2021. All papers were
searched for 44 terms related to mixed model analysis (see Appendix A.9) to find out how many
papers are actually utilizing those models.

To investigate the question of how to leverage more from challenge results, we suggest studying
which image characteristics made an image particularly hard to process for challenge participants.
We propose the following procedure using mixed models. We instantiated this procedure for
the instrument instance segmentation task of the RobustMIS challenge (see Sections 4.4 and
5.3 as well as Appendix A.6 for a detailed overview of the challenge). An overview of the mixed
model-based challenge result analysis is provided in Figure 5.34.

1. Identification of potential failure sources: First, potential failure sources of algorithms
should be identified. Based on the challenge and data set, failure sources may, for instance,
relate to the imaging protocol (e.g. yielding underexposure), the imaging devices (e.g.
yielding dirty lenses), or the actual target structure (e.g. yielding overlapping objects). The
identification of failure cases and image characteristics should rely on extensive literature
research, expert knowledge, and personal experience.

2. Metadata annotation: The identified error sources should be semantically annotated among
the challenge test cases (or parts of the test data).

3. Mixed model analysis: LMMs (or GLMMs) can be used to quantify the impact of the identi-
fied image characteristics on algorithm performance. For this purpose, the performance
of challenge algorithms for an image is modeled as a function of the annotated image
characteristics that were identified as potential failure sources.

5.4.3 Results
Recent reporting practice and challenge registration

To overcome the lack of reporting, we implemented the structured challenge submission system,
which was used for multiple conferences, as detailed in Section 5.1.3. For the 138 challenges and
255 corresponding tasks that were accepted through the system, a median percentage of 100%
(Interquartile Range (IQR): (100%, 100%); minimum: 93%) was reported, given the requirement to
fill at least 90% of parameters. A median percentage of 100% was achieved for all conferences.
The lowest numbers of parameters were reported at the MICCAI 2020 conference with a minimum
of 93% parameters reported. For the IEEE International Symposium on Biomedical Imaging (ISBI)
2021 conference, all challenges reported all parameters.

Exemplarily for MICCAI 2018, we revisited the challenge websites five months after their accep-
tance and compared the reported information to the parameters given at the point of acceptance
(see Figure 5.35 for an overview). A median of 40% (IQR: (31%, 57%); minimum: 9%; maximum:
89%) of parameters was reported as stated in the respective challenge designs submitted to the
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structured submission system and accepted by the reviewers. However, a median of 49% (IQR:
(29%, 57%); minimum: 9%; maximum: 83%) of parameters were not provided on the websites
although all information was available in the challenge designs they submitted earlier. Finally,
a median of 9% (IQR: (6%, 17%); minimum: 3%; maximum: 29%) of parameters on the websites
differed from the accepted challenge designs.

Figure 5.35: Percentage of parameters reported on the challenge websites as stated in the accepted challenge
proposal (left), not reported on the challenge websites (middle), and reported differently from the proposal
(right). One data point corresponds to one of the accepted MICCAI 2018 challenges.

Challenge registration

Given these findings, which were contrary to our recommendations that challenge organizers
should publish the complete challenge design before the challenge takes place, the BIAS initiative
examined best practices in the field of clinical trials. We introduced the concept of challenge
registration for MICCAI challenges. After acceptance, the complete challenge design documents
that were produced by the structured challenge submission system were uploaded to Zenodo
[Peters et al., 2017], a platform for open science, that additionally assigns a Digital Object
Identifier (DOI) to every challenge design document. The DOIs were subsequently added to the
website of the MICCAI Board challenge working group (which is now the MICCAI Special Interest
Group (SIG) for Challenges) [MICCAI_SIG_for_Challenges, 2018]. Thus, even if the information
was missing from the challenge websites, details were still publicly available and visible to all
potential challenge participants. Challenge organizers further agreed that all changes to the
challenge design should be reported back to the respective MICCAI challenges team. This process
was handled via the structured challenge submission system and yielded a new challenge design
document that highlighted all changes. If accepted by the MICCAI challenges team, the updated
document was added as a new version to Zenodo. As a consequence, 88 MICCAI challenges were
registered in the period from 2020 to 2022, from which 19 reported changes to their challenge
design documents.
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Reporting guideline

To enhance the transparency of reporting, we designed a reporting guideline for biomedical
image analysis challenges by the BIAS initiative based on the challenge parameter list (cf.
Table 4.5). The guideline was not intended to force authors to report results in the presented
order, but rather proposed to write a challenge report in the typical way research papers are
written. Authors could choose a different ordering or renaming of sections as long as the relevant
items were reported. The proposed structure intersects the methods section into challenge
organization, mission of the challenge, challenge data sets, and assessment methods. The
concrete checklist is given in Appendix A.8. It contains a column, in which challenge organizers
or reviewers could insert the page number at which the respective information is provided to
allow for easy and quick information transfer. Before presenting the structure and checklist
items, we specify the changes with respect to the previous challenge parameter list.

The reporting guideline described the items that should be addressed in a full challenge
report. Therefore, checklist items for the title, abstract, keywords, introduction, discussion,
and conclusion were added. The method sections ’challenge organization’, ’mission of the
challenge’, ’challenge data sets’, and ’assessment method’ were kept in the BIAS reporting
guideline. ’Participation conditions’ were merged with the ’challenge organization’, similar to the
’study conditions’, from which parameters were moved either to the mission of the challenge
(study cohort, context information, and imaging modality(ies)) or challenge data sets (center(s),
acquisition device(s) and protocol(s), and operator(s)).

The BIAS reporting guideline was redesigned to group several checklist items into one parameter.
For example, the new parameter data source(s) contained the parameters acquisition device(s),
details on the data acquisition, center(s)/institute(s), and characteristics of the subjects involved
in the data acquisition (former: operator(s)). In some cases, parameters of the previous challenge
parameter list were merged into one checklist item, such as all parameters separately listed for
training and test data, which were combined into one item, as information was often found to be
redundant. In the case of different specifications for training and test sets, organizers were asked
to highlight them. Finally, several parameters were renamed or provided with a more detailed
description to ensure clarity. For example, the parameter study cohort was misunderstood by
many users of the challenge submission system and was therefore renamed to challenge cohort.

In the following, all parameters and checklist items listed in the BIAS reporting guideline are
presented:

Title, abstract, and keywords The title of the challenge report emphasizes the challenge mission.
It should name the imaging modality, problem category, and state that the report is about a
biomedical image analysis challenge organized in a specific year. In the report’s abstract, a
summary of the challenge goal, the results, and conclusions should be given. The main challenge
characteristics (e.g. problem category and imaging modalities) should be provided as keywords.

Introduction The challenge report introduction motivates the topic of the challenge from a
technical as well as a biomedical point of view and highlights the envisioned biomedical/technical
impact. The primary challenge objective should be provided based on the motivation including
concrete statements of the challenge’s task(s).
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Methods – Challenge organization A substantial portion of a challenge is about challenge planning.
Many necessary parameters belong to the overall challenge organization and may be of less
interest to the report reader. We therefore suggest moving this information to the appendix.
Regardless of where the information is given, the challenge organization section should comprise
the representative challenge name and acronym, if any. Names and affiliations of all members
of the organizing team should be provided. The intended challenge submission cycle (or: life
cycle type) provides the reader with information on whether the challenge is a one-time or
repeated event with a fixed submission deadline or whether it is open for submissions after the
conference. The event, for example, the conference, associated with the challenge should be
named, as well as the platform, such as grand-challenge.org or Kaggle, which was used for the
challenge should be reported along with its URL.

Several participation policies should be defined, starting with the allowed user interaction of the
submitted methods. A challenge may for example only accept automatic methods, or also allow
for semi-automated algorithms. If so, a strategy to handle different method types in the challenge
ranking(s) (if any) should be provided, for example providing separate leaderboards. A training
data policy defines whether challenge participants are allowed to utilize other data than the
challenge training data for optimizing their methods, such as private data or publicly available
data sets. In addition, a particular participation policy for members of the organizer’s institutes
implies whether or not members of the organizer’s institutions are listed in a ranking in case of
participation or whether they are not allowed to participate at all. The award policy and results
announcement policy define the challenge prizes and how results are revealed, for example, only
the top three methods could be announced or participants may choose whether or not to be
listed online. Finally, the publication policy provides details on which members of a participating
team are listed as co-authors of a publication, or whether they are allowed to publish their
methods based on the challenge results before the challenge publication is accepted by a journal.

Challenge organizers should describe in detail how challenge participants should submit their
results, for example by providing Docker containers or uploading the outputs of their methods
to an evaluation platform. In addition, submission instructions should be provided, indicating
the concrete output format and instructions to upload/generate the desired submission outputs.
Furthermore, participants need to know whether a pre-evaluation is possible before they submit
their final results, for example, if participants are allowed to submit their results several times
to check their current scores.

The challenge schedule should be provided as a timetable, including the most important dates for
challenge participants, i.e. release date(s) of training, validation, and test data, the registration
period, submission deadlines, workshop day (if any), and the release date(s) of the final results.
Furthermore, organizers should indicate whether ethics approval was needed (e.g. not necessary
for fully anonymized data), and if so, link to the approval’s document or provide the ID (if
available). In addition, the data usage agreement including the concrete license clearly states
how the challenge data can be used and distributed by challenge participants, and general
researchers. Authors should include the code availability of the organizer’s validation software
and participating methods’ code. Finally, conflicts of interest should be provided, especially
giving information to organizers who had access to the test data annotations, along with author
contributions.
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Methods – Mission of the challenge This section should provide deeper insights into the concrete
challenge mission. First, the field(s) of application that the challenge is targeting should be
mentioned. This may be the diagnosis of patients, intervention planning, or similar. The problem
category indicates whether algorithms target semantic segmentation, object detection, or other
image processing tasks.

The challenge and target cohort should be described. The cohorts may differ from each other,
since the target cohort is focusing on patients (more general: subjects/objects) who should be
targeted in the final biomedical application (e.g. patients with specific criteria undergoing a
specific surgery), whereas the challenge cohort means the subjects/objects from whom/which
the challenge data was acquired (e.g. healthy volunteers). It is important to differentiate both
cohorts since there may be a domain gap between the challenge results and the real application
given model training on the challenge cohort data.

Authors should describe the imaging modality/-(ies) used for the challenge data and pro-
vide context information along with the images corresponding to the image data (e.g. tumor
volume), the patients (subjects/objects) (e.g. gender, age) and the acquisition process (e.g.
calibration for an image modality). This information may differ for the challenge and target cohort.

Similarly to the differentiation between challenge and target cohort, one should differentiate
between the data origin, i.e. the region(s) of the subjects/objects in the final biomedical
application (for example a liver tumor in a Computed Tomography (CT) image), and the algorithm
target, i.e. the region(s) of the subjects/objects the participating methods were designed to
focus on.

Finally, the assessment aim should be mentioned, which refers to the properties that should
be optimized by the participating methods. This may be the accurate segmentation of a tumor
or the short computing time of the algorithms. The assessment aim should be reflected in the
performance metrics.

Methods – Challenge data sets This section describes the challenge data in detail. It should start
with a concrete explanation of the data sources, involving a description of the device(s) used
for data acquisition as well as relevant details on the data acquisition process, including an
acquisition protocol, if any. The center(s) in which the data was acquired or the platform from
which the data was taken should be described. Finally, relevant characteristics of the subjects
involved in the data acquisition process should be given, such as the level of expertise of the
surgeon.

The training and test case characteristics first define what the challenge defines as one case (see
Section 2.1.2), followed by the number of training, validation, and test cases as well as the total
number of cases. A justification of why these numbers were chosen and how they were split into
the training, validation, and test sets should be included in the section. This should be followed
by further important characteristics of the training, validation, and test sets, such as the class
distribution in comparison to the real-world distribution.
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The annotation characteristics describe the method used to determine the reference annotation,
for example, manual annotation or annotation done by automatic methods. The information
should be complemented by providing the instructions given to the annotators (if any). This
should include the complete annotation protocol, explaining how to annotate common and corner
cases of the data. Details on the subjects/objects/algorithms generating the annotations should
be given, such as the level of expertise in the domain and annotation for every annotator. In the
case of multiple annotators, the method used to merge multiple annotations for a single case
should be specified, such as a majority vote or consulting another observer in case of ambiguities.

Data pre-processing methods should be described as well as potential error sources related
to the image annotation, for example by providing inter- and intra-rater variability, and other
relevant sources of error.

Methods – Assessment method This section focuses on the validation of participating methods.
First, the metric(s) used to assess a property of an algorithm should be described in detail and
should be chosen according to the assessment aim described above. The metric choice should
be justified. The metrics should be followed by methods used to compute a performance rank for
the participating teams. For example, the ranking scheme may be metric-, case-, or test-based
(cf. Section 2.1.2). Specifically, authors should indicate how to deal with submissions with empty
results and different user interaction methods. The ranking method should be well justified.
Finally, the statistical analyses should be described in detail. It should include details on missing
data handling, ranking variability, and the used software products. Similar to the above, the
statistical methods need to be justified.

Results – Challenge outcome The results section focuses on the concrete challenge outcome.
Specifically, this includes information on the participating methods and their results. The section
should start with providing information on the challenge submissions, including the number
of registrations, number of participating teams with valid submissions, and the number of
participating teams mentioned in the paper. The last two numbers may be similar but a challenge
with many submissions may choose to only report the top-ranked methods, such as the top ten.
For those teams, a team identifier and a method description, including the choice of hyperparam-
eters and concrete architecture should be given. If possible, a link to the team’s code is preferable.

Aggregated metric values for every participating team including a measure of variability, such as
the standard deviation or IQR should be reported. In the case of per-image validation, ideally, the
distribution of metric values should be visualized, for example in the form of dots- and boxplots.
Metric values should be followed or reported along with the rankings including the number of
submissions per participating team. The statistical analysis of the rankings should be provided.
Finally, potential further analyses can be reported, such as inter-algorithm variability, ranking
uncertainty analyses, common problems of the submitted algorithms, or the performance of a
combination of algorithms via ensembling.

Discussion The discussion section summarizes the results of the challenge. The section should
describe the biomedical and technical impact of the challenge according to the challenge motiva-
tion described in the introduction. The concrete challenge results should be discussed, indicating
whether the problem is solved with the challenge results and providing advantages and dis-
advantages of the submitted algorithms. An analysis of individual cases would be beneficial
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for readers, stating for which cases the algorithms performed poorly, arguing that future work
should focus on those cases. Limitations of the challenge related to the challenge design and
execution should be described as well as recommendations for future work. The challenge report
should end with a concise conclusion based on the challenge results.

Mixed model-based strength-weakness analysis

As introduced in the previous section, a challenge report could encompass further analyses,
going beyond ranking tables and analyses. We present an analysis of image characteristics
that were identified as particularly challenging for the challenge participants of the RobustMIS
challenge. Before the results are presented, we give an overview of the usage of mixed model
analyses in current publications. We found that only 1.7% of the MICCAI 2004 to 2021 conferences
papers utilized mixed models although non-independent data is very widespread in biomedical
use cases. Most of those publications use hierarchical or mixed models to explore the variability
of groups or differences between them (e.g. [Swee and Grbić, 2014; Kim et al., 2015; Kutra et al.,
2012]).
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Figure 5.36: Overview of significant positive and negative effects of image characteristics for the Positive
Predictive Value (PPV) and Sensitivity for the top five algorithms of the Robust Medical Instrument Segmen-
tation (RobustMIS) challenge simultaneously. The effects are shown in the form of the logarithm of the
Odds Ratio (OR), log(OR). Positive effects are shown in blue, negative effects in red with asterisks indicating
significant effects (*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001). The confidence intervals are shown by horizontal
lines.
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Identification of failure cases In the case of the RobustMIS challenge, we combined our personal
knowledge gathered during the data set annotation and generation [Roß/Reinke et al., 2020;
Maier-Hein et al., 2021] with the results from analyzing the literature related to artifacts in endo-
scopic imaging [Ali et al., 2020, 2021a; Funke et al., 2018; Soberanis-Mukul et al., 2020], endoscopy
applications in image analysis [Maier-Hein et al., 2014; Ali et al., 2021b], and challenges in the
context of endoscopy (e.g. [Bodenstedt et al., 2018; Allan et al., 2020]). Based on this analysis,
we identified potential sources of errors, from which three characterize the whole image, and
nine characterize the background (five image characteristics) and/or the surgical instrument(s)
(nine image characteristics) visible in the image. Thus, a total of 17 image characteristics were
considered potential error sources. They are presented in Tables 5.36 - 5.38.

Table 5.36: List of instrument-related image characteristics that were identified as failure sources in the
Robust Medical Instrument Segmentation (RobustMIS) challenge.

Image characteristic Example images

Instrument covered by another instru-
ment

Instrument covered by blood

Instrument covered by other object

Instrument covered by reflections
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Instrument covered by smoke

Instrument covered by tissue

Instrument overexposed

Instrument subject to motion artifacts

Instrument underexposed
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Table 5.37: List of background-related image characteristics that were identified as failure sources in the
Robust Medical Instrument Segmentation (RobustMIS) challenge.

Image characteristic Example images

Background covered by blood

Background covered by other object

Background covered by reflections

Background covered by smoke

Background subject to motion artifacts
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Table 5.38: List of global image characteristics that were identified as failure sources in the Robust Medical
Instrument Segmentation (RobustMIS) challenge.

Image characteristic Example images

Image overexposed

Image underexposed

Dirty lens

Metadata annotation A trained engineer annotated the image characteristics given in Tables 5.36 -
5.38 for the test cases of the RobustMIS challenge. The annotation was performed per instrument
instance, resulting in a total of 29,718 annotations for all instrument instances of the data set.

Mixed model analysis Given the hierarchical data structure of the RobustMIS challenge, which
is illustrated in Figure 5.14(b), we explored a LMM to represent the performance of challenge
algorithms for an image as a function of the annotated image characteristics that were identified
as potential failure sources. The model then aimed to predict the effect of the image charac-
teristics on the algorithm performance. For the RobustMIS challenge, we chose to model the
Multi-Instance Dice Similarity Coefficient (MI DSC) performance of algorithms, which was one
of the primary challenge metrics. However, the value range of the MI DSC, [0, 1], violated the
necessary assumption that the outcome variable (here: the aggregated MI DSC scores) should
follow a normal distribution. Any transformation, such as the logit function, did not yield the
desired approximate normal distribution of the residuals. We thus reformulated the problem to
a binary pixel-level classification problem, for which we could use a GLMM instead.
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The MI DSC metric is equal to the per-instance DSC, which can be reformulated in terms of PPV
and Sensitivity (see Equation 2.48). We performed our analysis per instrument instance with
the new target metrics PPV and Sensitivity. For every pixel, we checked whether it was correctly
classified as an instrument based on two perspectives: The True Positive (TP) instances were
either related to the reference mask (Sensitivity) or the prediction mask (PPV). More precisely,
PPV and Sensitivity were computed for every image i ∈ I , every instrument instance j ∈ J , and
every challenge participant p ∈ P , with I , J , and P referring to the total number of images,
instrument instances, and challenge participants.

→ The Sensitivity per image, instrument, and participant would then determine the probability
that a pixel of the reference mask is present in the prediction mask.

→ The PPV per image, instrument, and participant corresponds to the probability of a pixel of
the predicted mask being present in the reference mask.

This binary pixel-level classification per instrument instance can be viewed as a Bernoulli
experiment, being feasible for GLMMs (see Section 2.2.3 for a detailed description of GLMMs).

Strength-weakness analysis For this model, we used the 17 identified image characteristics as
fixed effects. The patient, image, instrument instance, and challenge participant were modeled
as random effects. With this setup, we assessed the effect of image characteristics on the global
algorithm performance. However, the analysis could similarly be performed for every algorithm
individually to analyze the effects of image characteristics on the performance of the single
participants. In this case, the MI DSC scores would only be used from the respective participant
and the algorithm would be removed from the random effects. Please note that we implemented
this model for the top five challenge participants only (teams fisensee, Uniandes, caresyntax,
SQUASH and www). With this subset of algorithms, we aimed to only focus on the most successful
algorithms and their failure cases.

To interpret the model outcome, the regression coefficients for the fixed effects, β, can be
regarded as the log OR [McCulloch and Searle, 2004], which measures the logarithm of the ratio
of odds of the occurrence of the outcome when the image characteristics are present and absent
(OR). A positive log OR refers to an increase in the chance that a good performance score is
achieved for the respective image characteristics, which can be interpreted as a positive effect
on the algorithm performance. On the other hand, a negative log OR refers to a negative effect
on the metric value, i.e. the chance is decreased.
This analysis was performed from two perspectives: First, we analyzed the effects of image
characteristics globally over the top five challenge participants. In the second step, we repeated
the experiment for the individual algorithms to check whether the same trends were observed
for individual participants. Figure 5.36 shows the effect of image characteristics on the MI DSC
scores in form of the log OR globally for the top five challenge participants. According to the
results of the analysis, the following image characteristics yielded a significant negative effect
on the algorithm performances (sorted by decreasing order of magnitude of negative effects):

1. Instrument covered by another instrument
2. Instrument subject to motion artifacts
3. Underexposed instruments
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4. Backgrounds covered by smoke
5. Underexposed images

Significantly positive effects were observed in the case of overexposed instruments or instru-
ments covered by tissue. We found similar effects for the analysis of individual algorithms, as
shown in Table 5.39 and described in the following paragraph.

Team fisensee was the only challenge participant for which no significant negative effect was found
for instruments covered by another instrument and underexposed instruments, but additionally
suffered from images in which the background was covered by smoke. On the other hand, this
team profited from a background covered with blood. While the background did not yield any
significant effects on the global performance, team Uniandes was negatively affected if the
background was covered by reflections, smoke, or if it was subject to motion artifacts. It was
the only team for which a background covered by other objects had a positive effect on the
Sensitivity. Images covered by blood, other objects, and smoke in addition to a background
that was subject to motion artifacts negatively influenced the results of team caresyntax. But
similarly to team fisensee, this team was positively affected by a background covered by blood.
Team SQUASH was the only team showing a positive effect from instruments covered by smoke,
while team www suffered from a background in which smoke was visible.

5.4.4 Discussion
In previous sections, we showed that the lack of reporting is a huge issue for challenges. While
the introduction of the challenge submission system and review process (see Section 5.1) was
already an important step, we showed in this section that the challenge organizers in practice
did not make use of this information source. With the introduction of challenge registration,
we followed quality measures from clinical trials to make sure the relevant information on
challenge designs was publicly available. Even if challenge organizers decide to publish only a
fraction of the parameters on their websites and in the challenge reports, the full information is
still accessible to the public. In addition, it is easy to track the changes of a challenge design,
similar to a versioning control in software engineering. Changes that were not reasonable will be
discussed with the challenge organizers to ensure the high quality of the challenge. Although this
process is currently only implemented for MICCAI challenges, we hope to introduce this concept
to other conferences and challenge hosts, as well as to enhance the quality of challenges in
general. As MICCAI is currently the largest conference in the field of medical image analysis, most
of the biomedical image analysis challenges since 2020 have been registered, thus increasing
transparency and mitigating the potential danger of challenge manipulation (see Section 4.1).

Challenges are often published in high-ranked journals, thus, it is required that they provide a
transparent and complete overview of all facets of their design and results. Reporting guidelines
have been used in the context of clinical trials for many years and substantially increased the
quality and interpretability of reports [Schulz et al., 2010]. Creating such a guideline for challenges
comes with several advantages: First, for the authors of a challenge report, the writing process
is facilitated by the guidance of the checklist. In addition, the guideline helps verify whether
the included information is complete. This step is useful for both authors and reviewers of the
report. Finally, a completed checklist including information on where to find respective details
facilitates the retrieval of relevant information and improves the reproducibility of the challenge
results.
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Table 5.39: Overview of significant positive and negative effects of image characteristics for the Positive
Predictive Value (PPV) and Sensitivity. Values are shown for the global mixed model analysis and the
analysis for the top five algorithms of the Robust Medical Instrument Segmentation (RobustMIS) challenge
(fisensee, Uniandes, caresyntax, SQUASH and www). Positive effects are indicated by a blue cell and a +
symbol (+: p ≤ 0.05, ++: p ≤ 0.01, +++: p ≤ 0.001). Negative effects are analogously shown by red cells and a
- symbol.

Instrument-related image characteristics

Image PPV Sensitivity
characteristic Global fisensee Uniandes caresyntax SQUASH www Global fisensee Uniandes caresyntax SQUASH www

Instrument
covered by
another in-
strument

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Instrument
covered by
blood

-

Instrument
covered by
other object

- -

Instrument
covered by
reflections
Instrument
covered by
smoke

- +

Instrument
covered by
tissue

+++ ++ ++ +++ ++ +++ + + +

Instrument
overexposed

+ +++ +++ ++ +++ +

Instrument
subject to
motion arti-
facts

- - - - - - - - - - - - - - - -

Instrument
underex-
posed

- - - - - - - - - - - - - - - - - - - - - - - - - - -

Background-related image characteristics

Image PPV Sensitivity
characteristic Global fisensee Uniandes caresyntax SQUASH www Global fisensee Uniandes caresyntax SQUASH www

Background
covered by
blood

+ + +

Background
covered by
other object

+

Background
covered by
reflections

- - -

Background
covered by
smoke

- - - - -

Background
subject to
motion arti-
facts

- -

Global image-related image characteristics

Image PPV Sensitivity
characteristic Global fisensee Uniandes caresyntax SQUASH www Global fisensee Uniandes caresyntax SQUASH www

Image overex-
posed
Image under-
exposed

- - - -

Dirty lens
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The guideline has been used by several challenge organizers so far (e.g. [Oreiller et al., 2022;
Timmins et al., 2021; Antonelli/Reinke et al., 2022; Roß/Reinke et al., 2020]). Furthermore, the
journal Medical Image Analysis requires challenge reports to complete the BIAS checklist along
with the submission of the publication. This journal is therefore following the same best practices
as done for clinical trials.

Moreover, the guideline encourages challenge organizers to perform an in-depth analysis of
the challenge results, which may even go beyond ranking uncertainty analysis (see Section 5.3).
Challenges are typically organized for a specific purpose and to solve a research question. An
analysis of failure cases informs the research community which problems are already (nearly)
solved and which types of problems would need further investigation. We performed such a
statistical analysis for the RobustMIS challenge in the form of GLMMs, addressing the hierarchical
data structure of the challenge. Although this technique is rather new to many researchers
from the Machine Learning (ML) community – less than 2% of MICCAI publications utilized mixed
models in the past 18 years – it comes with several advantages over traditional analysis methods.
A random forest, for example, would give a ranking of the failure cases without quantifying
whether they had a positive or negative effect on the algorithm performance.

A limitation of the failure analysis study is the additional manual annotation effort. Creating
high-quality annotations is typically cost- and time-consuming. However, we argue that such an
effort substantially helps in driving the research on tackling common failure cases of challenges.
By using quality-controlled crowdsourcing [Maier-Hein et al., 2014] or automatic techniques of
image characteristic annotation, the annotation effort could be further compensated.

Previous literature in the field of minimally invasive surgery has investigated efforts to manually
review failure cases [Maier-Hein et al., 2014; Ali et al., 2021b, 2020, 2021a; Funke et al., 2018;
Soberanis-Mukul et al., 2020; Bodenstedt et al., 2018; Allan et al., 2020; Roß/Reinke et al., 2020].
However, our statistical analysis revealed that some of the suggested failure cases actually do
not have a statistically significant negative effect on the challenge participants. For example, the
mentioned studies disclose the presence of blood and reflections as harmful to the algorithm
performance. In contrast, our study showed that blood present in the background of images can
even increase the algorithm performance for some of the challenge participants. Our analysis
further reveals strong positive effects of instruments that are overexposed or covered by tissue.
This is probably due to the fact that instruments better stand out against the background and
are more easily recognizable for a ML algorithm.

The strongest negative effect was found for instruments covered by other instruments. Indeed,
in those cases, many algorithms interpreted the disconnected instrument as two individual
instruments, decreasing the performance. This might be a result of the algorithms’ widespread
use of the Mask R-CNN architecture (see Section 4.4). As the backbone of the network suggests
bounding boxes for relevant regions in an image, overlapping instrument instances may yield
multiple suggested bounding boxes. This could further explain why team fisensee was the only
participant not suffering from this image characteristic, as this team used a different network
architecture. To sum up, such a failure analysis could be used for further algorithm development,
specifically tailored to the image characteristics that were hard to interpret, as done in Roß et al.
[2021].



5.4. IMPROVING COMMON PRACTICE OF REPORTING AND ANALYSES 261

5.4.5 Conclusion
In this section, we presented the concept of challenge registration in addition to a challenge
reporting guideline. Both approaches successfully compensate for problems related to the lack of
transparency and manipulation of challenges. In addition, the reporting guideline includes items
reflecting our solutions proposed in this part of the thesis. For example, we advice challenge
organizers to justify the choice of metrics and rankings, and to apply techniques for ranking
uncertainty analyses. Moreover, we introduce a further analysis technique of challenge results by
making use of mixed models for failure analysis of challenge algorithms. This kind of investigation
can be extremely useful for future algorithm development and is not restricted to challenges
only. As we showed, the technique can also be applied to the results of a single algorithm and
can thus be used for individual strength-weakness analysis.



6 | Discussion

The three main parts of this thesis contain a detailed discussion of their respective results in
each section. The discussions can be found in Section 3.1.4 for Chapter 3 for a review of the
status quo. Sections 4.1.4, 4.2.4, 4.3.4, and 4.4.4 discuss the results for Chapter 4 related to flaws
of biomedical image analysis validation. Sections 5.1.4, 5.2.4, 5.3.4, and 5.4.4 discuss the findings
of Chapter 5 related to improving common practice. In this section, we provide an overarching
discussion of the work presented in this thesis and and put the results into a broader context.

Challenge design
Biomedical image analysis challenges have led to a tremendous increase in the comparability of
algorithms. However, challenges are very heterogeneous in their design, raising the question
of whether challenge results are actually meaningful for practical applications. Moreover, the
community agrees that challenges should undergo more quality control. We demonstrated
that challenges can easily be manipulated if the design has severe issues. Since their imple-
mentation, our structured challenge submission system and suggested peer-review process
have therefore ensured that only high-quality challenges were accepted for prominent con-
ferences. Of note, although researchers openly welcomed our findings, as indicated by the
invitations to multiple talks and respective feedback, the research practice did not directly
improve substantially. As shown in Section 5.4, simply raising awareness of the problems and
even implementing a structured challenge submission system were not enough to break standard
practices, suggesting that even more quality-control measures were required. Indeed, only
through combining all the contributions presented in this thesis could improvements be enforced.

Metrics
In Section 4.2, we provided evidence that validation metrics come with severe limitations. We
showed that the meaningfulness of challenge results and validation in general suffers from the
common practice of not taking these limitations into account, and, indeed, selecting metrics
based on their popularity rather than their suitability to the underlying clinical or biological
problem. In a recent study [Tran et al., 2022], we further demonstrated that even conventional
hyperparameter settings, such as the selection of localization thresholds for the computation of
the Average Precision (AP) metric, should not indiscriminately be transferred to any problem since
they may not always result in clinically useful outcomes. Obtaining a comprehensive overview of
metric-related pitfalls is very difficult, which may be one of the reasons why many researchers
pick metrics based on related literature rather than considering their own specific problems and
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data sets. The complexity of metric selection and its dependence on many variables may be an-
other reason for the current poor selection practice. To empower researchers to select adequate
metrics, we first presented an extensive overview of metric-related pitfalls, which served as the
basis for the subsequent problem-aware metric recommendation framework. With our frame-
work, we hope to steer the research community toward a more problem-aware validation practice.

It must be noted that the vast amount of knowledge incorporated in the framework resulted in
a complex structure of the recommendations that may not be easy to follow. Before finalizing
the framework, we gathered feedback from the general public, and its complexity garnered
the most criticism. However, given the complexity of the problem, we could not reduce it
substantially, since this would have implied an incomplete view to the problem. To reduce
the complexity for the end users and ensure that it can easily be adopted by the research
community, we are currently working on a web-based toolkit. The toolkit could also overcome
another potential limitation of the framework: The individual metric mappings directly show
all metric candidates at a glance. This may potentially bias researchers towards answering the
questions of the problem fingerprint such that a certain, desired metric is selected, rather than
answering them impartially. The toolkit will present questions in the context of the biomedical re-
search question, without explicitly showing which choices lead to which metrics at the first glance.

Rankings
We demonstrated how the choice of metrics can substantially impact challenge rankings. Rank-
ings are also influenced by the strategy of aggregation, aggregation operator as well as the
underlying data and annotators. Their high sensitivity to the chosen ranking scheme makes
them particularly susceptible to manipulation. A sophisticated ranking scheme and analysis are
extremely important to obtain meaningful results and thus ensure that the winning algorithm
is truly superior. These conclusions are also important for general algorithm validation and
benchmarking. Researchers are typically expected to compare the results of their methods
against state-of-the-art algorithms. If rankings can easily be tuned and no further analysis is
provided, both meaning and fairness of the results are endangered. We therefore recommended
using advanced visualization and analysis tools to better understand the distribution of algo-
rithm performance and the stability of rankings, and created an open-source toolkit to this end.
Future work may include considerations of how to define a ranking scheme for a given prob-
lem to reflect the domain interest., for example by searching for a pareto-optimal ranking scheme.

A limitation of the presented toolkit lies in the fact that it was designed for a per-case- or per-
patient validation, meaning that at least one metric value is expected for every case or patient.
This means that per-data set validation, such as typically done in image-level classification or
object detection, is not directly supported. However, for such validation schemes, a ranking per
class is directly implied from the metric calculation since it yields a single score per data set
per metric. For multiple classes, the tool could be adjusted to generate a ranking over classes.
Furthermore, the bootstrapping and uncertainty techniques implemented in the toolkit can be
used also for per-data set validation problems. It should be noted that the toolkit is currently
implemented in the R language, which is more prominent in the statistical research community,
but rather unpopular among biomedical image analysis data scientists. We are therefore planning
to also extend it to the Python programming language in the future.
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Reporting and analyses
A transparent reporting of the challenge design and results is one of the most important steps
for good scientific practice [Altman et al., 2008]. However, neither the challenge design nor
the participating algorithms are typically reported in sufficient detail, with parameters that are
important for meaningful interpretation of the challenge often missing. If important parameters,
such as the inter-rater variability, are not provided, it is difficult to assess whether the chosen
metrics or ranking schemes are appropriate. Moreover, we demonstrated that it is often not
possible to reimplement the challenge algorithms, although the purpose of challenges is to find
a methodology that succeeds in solving a specific research question. The scientific community is
naturally interested in adopting the new state of the art for future research, and understandably
frustrated if models cannot be reproduced. To overcome this problem, we proposed a reporting
guideline and the concept of challenge registration, following best practice principles from
clinical trials. This step facilitates the information exchange between the challenge organizers
and other researchers and also helps in reporting general algorithm validation. In addition,
we showed that we can learn even more from challenges by performing a statistics-based
strength-weakness analysis of algorithms. We think that this step further increases the im-
pact of challenges as it becomes immediately evident which aspects of a research problem are
sufficiently solved and which aspects should be further analyzed in future algorithm development.

Of note, while the proposed solutions substantially improved the overall quality of challenges,
we still cannot fully enforce their usage. The concept of challenge registration, for example, is cur-
rently only enforced for Medical Image Computing and Computer Assisted Interventions (MICCAI)
challenges. While MICCAI typically comprises the largest amount of challenges in the biomedical
image analysis domain, other communities did not adopt this concept yet. Although we are
actively working towards broadening the scope of this concept to include other well-known
stakeholders like IEEE International Symposium on Biomedical Imaging (ISBI) and Dialogue on
Reverse Engineering Assessment and Methods (DREAM), we have not yet reached all potential
challenge hosts. This is especially difficult for large platforms like Kaggle, which do yet not have
a comprehensive quality control process for challenges. Additionally, although it was made
clear to challenge organizers that modifications to their challenge design must be submitted
again and discussed with the respective challenge chairs so that the changes are reflected in
the versioning of the uploaded design papers, very few researchers actually adhered to this
restriction. We are currently lacking staff resources to enforce the new practices in a strict
manner. However, since researchers are becoming more and more aware of the aforementioned
issues, the MICCAI Special Interest Group for Challenges is currently discussing possibilities to
address this issue, for example by gathering funding for specifically working towards a stricter
and monitored quality control mechanism.

Data and annotations
One of the key conclusions of the presented work is the formulation of a meaningful, precise,
and feasible challenge objective. Challenge results are only interpretable and useful for further
research if the challenge goal and design are clear and sound. Our work focused on the design,
validation, reporting, and analysis of challenge results. However, we would also like to draw
attention to the importance of challenge data. As mentioned before, the data impacts the
metrics and challenge rankings. Therefore, data sets need to be created carefully. For example, a
data set should be realistic and ideally drawn from several institutions and different scanners
to reflect a broad range of imaging situations. However, determining the optimal sample size
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for a data set [Jain and Chandrasekaran, 1982; Raudys et al., 1991; Kalayeh and Landgrebe, 1983;
Bonett, 2002; Shoukri et al., 2004; Sim and Wright, 2005] or avoiding biases [Torralba and Efros,
2011; Zendel et al., 2017; Deng et al., 2009; Everingham et al., 2015] is often not straightforward.

Related to data is the quality of the reference annotations. The algorithms can only be as good
as the data they are learning from. We should therefore make sure that the annotations are
generated from multiple annotators to decrease the effects of inter-rater variability [Joskowicz
et al., 2019]. Furthermore, in Rädsch et al. [2022], we showed that the annotation protocol
should be thoroughly designed, should explain edge cases, and contain several illustrative
examples. We notably showed that annotation protocols only containing little information
yield low-quality annotations since ambiguities are not resolved for annotators. Annotations
should be generated by domain experts or professional annotators [Rädsch et al., 2022; Wang
et al., 2015; Bernard et al., 2015]. However, the creation of high-quality labels is costly, both in
terms of money and resources. Offering incentives for high-quality data creation and acquisition
could be one possible approach [Von Ahn and Dabbish, 2004]. Another approach to enhance
the data set quality was chosen by the MICCAI Kidney Tumor Segmentation (KiTS) challenge
[Heller et al., 2019]. After the organizers released the training data set, they specifically asked
participants and the community for feedback on the data. The raised issues were then resolved
in a second iteration of the training data and incorporated into the test set as well. This
practice could even be used for other parts of the challenge design, such as metrics or ranking
schemes. Furthermore, researchers are becoming more and more aware of the importance of
high quality data. Journals have followed this trend by specifically accepting the submission of
data set publications. For example, we published the data set related to the Robust Medical
Instrument Segmentation (RobustMIS) challenge in the Nature Scientific Data journal [Maier-Hein
et al., 2021], which specifically asked for concrete quality measures such as a technical valida-
tion of the data set. With this approach, published data sets can be assured to be of higher quality.

Collaborative challenges
The reasoning behind organizing challenges is to examine a specific research problem. This
raises the question of whether we should continue to put focus on winning challenges and
presenting rankings. Collaborative challenges pose an alternative, in which teams work together
by combining their methods and expertise to find a solution. This practice has been successfully
used in the mathematical community [Išgum et al., 2015; Barnes et al., 2017]. At MICCAI, the Cardiac
Resynchronization Therapy Electrophysiological (CRT-EPiggy) challenge [Camara, 2019] began
as a competitive challenge, but the organizers soon realized that collaboration between teams
yielded better results. However, the incentives for participating in a challenge may decrease if no
winner is announced. A future research direction may be searching for incentives to participate
in collaborative challenges [Barnes et al., 2017; Peng et al., 2015]. In their analysis of Kaggle
competitions, Tauchert et al. [2020] have shown that the award money from featured challenges
is seven times higher than award money from research. Increasing funding and sponsoring
possibilities for challenges could thus be a viable future direction to enhance scientific progress.

Future work
Although we presented several methods that already heavily improved the impact and quality of
biomedical image analysis challenges, there is still the potential for more improvements and
intriguing research questions remain unanswered. One such question of importance for future
research is that of why a challenge participant won a challenge. Isensee et al. [2021], for instance,
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reviewed the roughly one hundred algorithms that participated in the KiTS challenge. The U-Net
architecture was used among the top teams but was also spread across the entire leaderboard.
The authors could not determine whether a specific modification of the network architecture
succeeded over others. This raises the question of whether the network architecture is the most
important factor for winning a challenge or whether other aspects such as the data augmentation
strategy or ensembling are more relevant. In a recent study1, we initiated an international survey
that was distributed to all MICCAI and ISBI challenges, asking participants about their methods,
incentives, key design choices, and general challenge strategies. In this way, we hope to analyse
the differences between winning and non-winning challenge participants. So far, for example,
we found that challenge winners rated analyzing failure cases and knowing the state-of-the-art
methods in the field as crucially important to win a challenge.

Another future direction lies in the adaptation of the concept of clinical trial certification to
challenges. For example, accepted randomized and double-blinded prospective trials promise a
high quality due to the study design. Translated to challenge design, a certified challenge would
imply a specific degree of quality, such as complete reporting, metrics chosen according to our
recommendation framework, or data sets reviewed for their quality.

Finally, in this thesis, we adopted many concepts from clinical trials, but we could also analyze
practices from other communities. For example, in the Natural Language Processing (NLP)
domain, a recently published dynamic benchmarking website [Kiela et al., 2021] offers a dynamic
collection of data applied to the models. The aim is working towards the question of “how
well (...) Artificial Intelligence (AI) systems perform when interacting with humans” [Kiela et al.,
2021]. This research question would also be relevant for biomedical challenges to assess the
performance of algorithms in a simulation of real-world usage in clinical practice.

1work in progress, thus not yet published



7 | Summary of Contributions and Conclu-

sion

In this thesis, several aspects of biomedical image analysis challenges and the validation of
Artificial Intelligence (AI) algorithms were analyzed. Overall, this thesis resulted in

- 10 first-author publications (2 in peer-reviewed journals; 1 full paper at a peer-reviewed
conference; 3 abstracts/short papers at conference proceedings or conference workshops;
2 preprints submitted to peer-reviewed journals; 2 invited commentaries/mini reviews),

- 5 second-author publications (3 in peer-reviewed journals; 2 submitted to peer-reviewed
conference proceedings),

- 15 invited talks at major international events,
- 5 awards,
- 3 memberships of recognized international consortia, and
- 3 invitations for being a challenges (co-) chair at internationally recognized conferences,

as detailed in the following Section 7.1. I subsequently give an overview of my publications in
Section 7.2 and end with a conclusion to the thesis in Section 7.3.

7.1 Summary of Contributions
Contribution 1: Comprehensive and structured analysis of challenges
In this thesis, the first comprehensive and structured analysis of more than 500 challenge
tasks was performed. During our analysis, it was found that challenges are the state-of-the-art
technique for the assessment of AI algorithms in the biomedical image analysis community and
that challenges are available for a variety of problem categories and applications. However, it
was also discovered that the design of challenges was heterogeneous and not standardized. In
addition, the general community was concerned about challenge quality and asked for more
quality control and recommendations.

Contribution 1 has led to three publications [Maier-Hein et al., 2018; Reinke et al., 2021c; Bron
et al., 2021]. Furthermore, two colleagues and I were invited to give talks at the Endoscopic Vision
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Challenge and the Tutorial on Designing Benchmarks and Challenges for Measuring Algorithm
Performance in Biomedical Image Analysis at the Medical Image Computing and Computer
Assisted Interventions (MICCAI) 2017 conference.

Hypothesis 1: Current biomedical challenge design is heavily flawed

Specific findings

Specific Finding 1.1: Security holes in challenge design can easily be exploited.

Proposed solutions

Solution 1.1: Structured challenge submission system and introduction of
challenge peer review process.

Solution 1.2: New challenge design and reporting guideline.

Contribution 2: Revelation of flaws in challenge design
It was shown that weaknesses in the challenge design may, in theory, easily be exploited by
researchers. Due to ranking sensitivity and poor reporting practices, rankings could be manipu-
lated by challenge organizers to change the challenge winners. On the other hand, security flaws
could also be exploited by challenge participants via selective test case submission.

Contribution 3: Structured challenge submission system
A structured challenge submission system was proposed, forcing challenge organizers to enter
complete information about their challenge designs prior to submitting their challenges to a
conference. In addition, a standard peer review process for challenge design was introduced to
ensure that only high-quality challenges are accepted to large conferences, such as MICCAI.

Contributions 2 and 3 have led to a publication that I presented as an oral at the MICCAI conference
in 2018 [Reinke et al., 2018a], which was highlighted in the Computer Vision News for MICCAI
20181, and several publications of challenge reports based on this structured submission system
[Antonelli/Reinke et al., 2022; Roß/Reinke et al., 2020; Zimmerer et al., 2022; Pati et al., 2021;
Wagner et al., 2021]. Furthermore, I was invited to write a review of an epilepsy challenge [Reinke,
2021], give a keynote at the MICCAI 2019 Workshop on Large-Scale Annotation of Biomedical
Data and Expert Label Synthesis, and give a talk at the seminar on challenges of the African
Network for Artificial Intelligence in Biomedical Imaging (AFRICAI) in 2022. Moreover, I won the
third place in the MICCAI 2020 Educational Challenge together with colleagues on how to organize
a challenge. Since 2019, I am a member of the organizing committee of the MICCAI Endoscopic
Vision Challenge. In addition, at MICCAI 2020, I was one of the conference challenge co-chairs and
the challenges chair for MICCAI 2021 and Medical Imaging with Deep Learning conference (MIDL)
2020.

1https://www.rsipvision.com/ComputerVisionNews-2018October/45/

https://www.rsipvision.com/ComputerVisionNews-2018October/45/


7.1. SUMMARY OF CONTRIBUTIONS 269

Hypothesis 2: Common image analysis metrics do not reflect the biomedical
domain interest

Specific findings

Specific Finding 2.1: Information on metric pitfalls is currently inaccessible.

Specific Finding 2.2: Metrics are widely chosen based on popularity rather
than their clinical suitability, ignoring their pitfalls.

Proposed solutions

Solution 2.1: Metric recommendation framework.

Contribution 4: Revelation of metric-related pitfalls in biomedical image analysis
We were the first to comprehensively present metric-related pitfalls in the context of image-level
classification, semantic segmentation, object detection, and instance segmentation problems.
Knowing about metric limitations is crucial for adequate metric selection and meaningful
validation of algorithm performance. However, many researchers do not select suitable metrics
for their specific research problems.

Contribution 5: Problem-aware metric recommendation framework
We therefore proposed our metric recommendation framework that suggests appropriate metric
candidates for the specific research problem based on a problem fingerprint that abstracts from
the underlying domain. Problem-aware decision guides assist researchers in the process. We
believe that this framework will improve the overall quality of overall image analysis in the
community by ensuring that only appropriate metrics are applied.

Contributions 4 and 5 resulted in the acceptance of an abstract submitted to the Medical Imaging
Meets Neural Information Processing Systems (NeurIPS) workshop 2022 and two short papers at
the MIDL conference [Reinke et al., 2021b, 2022a], one of which was highlighted in MIDL Vision
20222. For the 2021 short paper, I won the best short oral presentation award and was asked to
moderate the MIDL 2021 workshop on "how to write an award-winning paper". In addition, we
submitted two papers to Nature Methods [Reinke et al., 2021a; Maier-Hein et al., 2022]. Reinke
et al. [2021a] was presented as a picture story and already received 60 citations in roughly 1.5
years. We have written a blogpost on metric-related pitfalls3 for the MICCAI 2021 Educational
Challenge, for which I won the first prize. Furthermore, based on this work, I was invited to
give several talks, namely for the Medical Open Network for Artificial Intelligence (MONAI) 2021
bootcamp, the 2022 International Conference on Medical Imaging and Case Reports (MICR), the
2022 annual meeting of the Society for Imaging Informatics in Medicine (SIIM), the 2022 workshop
on Responsible Machine Learning in Healthcare, the 2022 Deutsches Krebsforschungszentrum
(German Cancer Research Center) (DKFZ) data science seminar. Finally, I was invited to give
keynotes and talks for the Informatics for Life event 2022, an AFRICAI event, and the Workshop
for Effectively Communicating Bioimage Analysis 2024.

2https://www.rsipvision.com/MIDL2022/16/
3https://medium.com/miccai-educational-initiative/a-discovery-dive-into-the-world-of-evaluation

-dos-don-ts-and-other-considerations-4189ab46fe06

https://www.rsipvision.com/MIDL2022/16/
https://medium.com/miccai-educational-initiative/a-discovery-dive-into-the-world-of-evaluation-dos-don-ts-and-other-considerations-4189ab46fe06
https://medium.com/miccai-educational-initiative/a-discovery-dive-into-the-world-of-evaluation-dos-don-ts-and-other-considerations-4189ab46fe06
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Hypothesis 3: Challenge rankings are highly unstable

Specific findings

Specific Finding 3.1: Rankings are highly sensitive to various design parame-
ters.

Proposed solutions

Solution 3.1: Methods and toolkit for analyzing and visualizing benchmarking
results.

Contribution 6: Revelation of ranking uncertainty in challenges
It was demonstrated that a variety of distinct design choices, such as the selected metric, the
aggregation method, or the annotator, had a substantial impact on challenge ranks. Thus,
rankings are often very unstable, yielding inconsistent winners.

Contribution 7: Open-source toolkit for advanced ranking analysis and visualization
To compensate for this issue, several advanced visualization techniques and methods for analyz-
ing the ranking uncertainty were presented, which were implemented in an open-source toolkit
for analyzing challenges and benchmarking results. We further showed how these techniques
enhance the interpretability and the value of challenges.

Contribution 6 finding was part of the previously mentioned study [Maier-Hein et al., 2018]. In
addition, we published Contribution 7 [Wiesenfarth et al., 2021]. Based on our findings, I was
invited to give two talks, at the 2020 European Lab for Learning & Intelligent Systems (ELLIS)
Health Workshop and at the weiss AI in Surgery mini symposium. I furthermore was awarded the
best Ph.D. talk presentation at the Ph.D. retreat 2021 of the DKFZ International Ph.D. Program in
Heidelberg (Helmholtz International Graduate School for Cancer Research).

Hypothesis 4: Challenge results are not reproducible

Specific findings

Specific Finding 4.1: Challenges are not reported comprehensively and are
not reproducible.

Specific Finding 4.2: Challenge algorithms are not reproducible.
Proposed solutions

Solution 4.1: New challenge reporting guideline.

Solution 4.2: Challenge registration.

Solution 4.3: Challenge algorithm strength-weakness analysis.



7.2. OWN PUBLICATIONS 271

Contribution 8: Revelation of non-reproducibility of challenge results
Finally, we uncovered that both challenge design and participating algorithms are often not
reproducible. Challenge design is often not reported comprehensively. In addition, method
descriptions provided by challenge participants are frequently insufficient to reproduce the
results without the actual source code being publicly available. This constitutes extremely poor
research practice and may lead to severe consequences because it facilitates cheating.

Contribution 9: Challenge reporting guideline and registration
We thus implemented a reporting guideline for biomedical image analysis challenges to enhance
the transparency of challenge reports. It was complemented by introducing the concept of chal-
lenge registration, for which the complete challenge design that was inserted in the structured
challenge submission system was made publicly available. This step ensures that the respective
information of the challenge design is already disposable upon and prior to challenge execution.

Contribution 10: Algorithm strength-weakness analysis
Finally, we showed that challenge result analysis can be enhanced by strength-weakness analyses
of the participating algorithms. Such an analysis could subsequently be used for future algorithm
development to specifically address problematic image characteristics in new or adapted models.

Contribution 8 was part of the previously mentioned study [Maier-Hein et al., 2018]. Our reporting
guideline from Contribution 9 was published [Maier-Hein et al., 2020] and registered with the
Enhancing the QUAlity and Transparency Of health Research (EQUATOR) network4 [Altman et al.,
2008]. We further submitted our statistical strength-weakness analysis from Contribution 10 to
Medical Image Analysis [Roß et al., 2021]. Based on our work, a colleague and I were invited to give
a talk at the 2020 Workshop on Data Curation, Standardisation, and Algorithm Benchmarking. In
addition, I was one of the founding members of the Biomedical Image Analysis ChallengeS (BIAS)
initiative and currently serve as an active member of the MONAI Working Group Evaluation,
Reproducibility, Benchmarks, and its benchmarking task force lead. Furthermore, I was an active
member of the MICCAI Board Challenge Working Group and was elected as the secretary of the
MICCAI Special Interest Group (SIG) for Challenges. Finally, together with a colleague, I won the
3rd price of the 2022 Women in MICCAI Inspirational Leadership Legacy interview award.

7.2 Own publications

This section lists all papers I (co-)authored. The first part of the list contains first authorships,
including peer-reviewed journal publications and conference proceedings (including short papers
and abstracts, as indicated in the respective publication), and other types of publication (preprints
and invited mini reviews). In addition, co-authorships are listed, containing peer-reviewed journal
publications, and other types of publication (preprints). The first author(s) for every paper is/are
underlined, while my name is emphasized by using bold face font. In some of the publications,
the first authorship was shared, indicated by two authors being underlined and being marked
with an asterisk. In the case of preprints, the journal to which it was submitted to is mentioned.

4https://www.equator-network.org/reporting-guidelines/bias-transparent-reporting-of-biomedical-im
age-analysis-challenges/

https://www.equator-network.org/reporting-guidelines/bias-transparent-reporting-of-biomedical-image-analysis-challenges/
https://www.equator-network.org/reporting-guidelines/bias-transparent-reporting-of-biomedical-image-analysis-challenges/
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First authorships – peer-reviewed journal publications and conference proceedings

Annika Reinke*/Michela Antonelli* et al. The Medical Segmentation Decathlon. Nature
Communications 13(1): 1–13, 2022.

Annika Reinke*/Tobias Ross* et al. Comparative validation of multi-instance instrument
segmentation in endoscopy: results of the ROBUST-MIS 2019 challenge. Medical Image
Analysis, 101920, 2020.

Annika Reinke*/Matthias Eisenmann* et al. How to exploit weaknesses in biomedical chal-
lenge design and organization. In International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI), 388–395. Springer, 2018.

Annika Reinke*/Lena Maier-Hein* et al. Metrics Reloaded. In Medical Imaging meets
NeurIPS, 2022.

Annika Reinke*/Lena Maier-Hein* et al. Metrics Reloaded – A new recommendation frame-
work for biomedical image analysis validation. In Medical Imaging with Deep Learning
(MIDL, Short paper), 2022.

Annika Reinke* et al. Common limitations of performance metrics in biomedical image
analysis. In Medical Imaging with Deep Learning (MIDL, Short paper), 2021.

First authorships – other

Annika Reinke*/Lena Maier-Hein* et al. Metrics Reloaded: Pitfalls and recommendations
for image analysis validation. arXiv preprint arXiv:2104.05642, 2022. Submitted to Nature
Methods with a positive Pre-submission Request.

Annika Reinke et al. Common limitations of image processing metrics: A picture story. arXiv
preprint arXiv:2104.05642, 2021. Submitted to Nature Methods.

Annika Reinke. Bring the model to the data: The Deep Learning Epilepsy Detection Challenge.
EBioMedicine, 66, 2021.

Annika Reinke et al. Common Pitfalls and Recommendations for Grand Challenges in Medi-
cal Artificial Intelligence. European Urology Focus, 2021.
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Lena Maier-Hein*, Martin Wagner*, Tobias Ross, Annika Reinke et al. Heidelberg Colorectal
Data Set for Surgical Data Science in the Sensor Operating Room. Nature Scientific Data
8(1):1–11, 2021.

Lena Maier-Hein*, Matthias Eisenmann*, Annika Reinke et al. Why rankings of biomedical
image analysis competitions should be interpreted with care. Nature Communications,
9(1):1–13, 2018.

Co-Authorships – other

Tim Rädsch, Annika Reinke et al. Labeling instructions matter in biomedical image anal-
ysis. arXiv preprint arXiv:2207.09899, 2022. Submitted major revision to Nature Machine
Intelligence.

Thuy Nuong Tran, Tim Adler, Amine Yamlahi, Evangelia Christodoulou, Patrick Godau, Annika
Reinke et al. Sources of performance variability in deep learning-based polyp detection.
arXiv preprint arXiv:2211.09708, 2022. Submitted to the Information Processing in Computer-
Assisted Interventions (IPCAI) 2023 conference.

Tobias Roß*, Pierangela Bruno*, Annika Reinke et al. How can we learn (more) from chal-
lenges? A statistical approach to driving future algorithm development. arXiv preprint
arXiv:2106.09302, 2021. Submitted major revision to Medical Image Analysis.

Martin Wagner, Beat-Peter Müller-Stich, Anna Kisilenko, Duc Tran, Patrick Heger, Lars Mün-
dermann, David M Lubotsky, Benjamin Müller, Tornike Davitashvili, Manuela Capek, Annika
Reinke et al. Comparative Validation of Machine Learning Algorithms for Surgical Work-
flow and Skill Analysis with the HeiChole Benchmark. arXiv preprint arXiv:2109.14956, 2021.
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7.3 Conclusion
By systematically assessing the suitability of AI algorithms in solving a particular research
problem in a comparative manner as well as providing new data sets for benchmarking and
biomedical image analysis challenges can offer a powerful tool that drives future research.
However, as we uncovered in this thesis, their potential is substantially diminished by numerous
fundamental flaws in challenge design, metrics, rankings, and reporting. Importantly, these flaws
also crucially impact benchmarking and validation in biomedical image analysis and even in
computer vision in general. To address these issues, we introduced a range of solutions that have
already begun to improve the interpretability and quality of challenges conducted within the
scope of major conferences in the field. These include a structured challenge submission system,
which was used for MICCAI, IEEE International Symposium on Biomedical Imaging (ISBI), and MIDL
challenges since 2018, a challenge reporting guideline, which the Medical Image Analysis journal
requires to be followed for the publication of challenge reports, and the concept of challenge
registration, applied to MICCAI challenges since 2020. Furthermore, our uncertainty-aware
ranking analysis toolkit was already used by several challenges and benchmarking studies
and substantially increased interpretability of results. Finally, we introduced a problem-aware
metrics recommendation framework, which is currently transferred into an online toolkit to
ensure wide applicability of the framework towards high-quality and problem-driven metric
selection.

Armato et al. [2020] argue that a biomedical challenge "is an academic exercise that, although
undeniably important, does not directly advance the field." This assessment may be true in the
case of low-quality challenges with severe flaws in the design. However, if organized with a
clear, transparent, and meaningful objective based on which the entire design, validation, and
reporting pipeline is built, challenges do have the potential to generate substantial scientific
progress in the research field and lead to tangible practical advancements. They present unique
opportunities for us to gauge the abilities, strengths, and weaknesses of the current state of the
art, and use these findings to tailor future algorithm development. In uncovering and solving
critical issues regarding their transparency, reliability, and robustness, the work presented in
this thesis ultimately enables a higher level of trust to be placed into challenges, and thus
advances their significance in the comprehensive validation of AI algorithms to be used for
clinical practice.
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A | Appendix

A.1 Contributions

The goal of this section is to emphasize my contributions and set them apart from those of the broader
team or consortia. For every section of Chapters 3 - 5, this section provides a disclosure with the acknowl-
edgements of the main team members working on the respective results.

Most of my work was carried out together with large international consortia to reflect the general opinion
of the research community. Large parts of the presented work would not have been possible without the
consensus agreement from the broad community. Those consortia were primarily led by myself, Prof. Dr.
Lena Maier-Hein, and other core team members of the respective research. Furthermore, I was assisted
by several team membres of the Division of Intelligent Medical Systems (IMSY) headed by Prof. Dr. Lena
Maier-Hein. Below, I list my concrete contributions of the results presented in Chapter 3 and Sections 4.1 - 5.4.

A.1.1 Descriptive analysis of common practice

A large group of researchers from more than 30 institutions throughout the world collaborated on this
project, which finally resulted in the publication [Maier-Hein et al., 2018]. The organization of the work and
the conception of the challenge parameter list was done by Prof. Dr. Lena Maier-Hein, Matthias Eisenmann,
myself, Sinan Onogur, and Patrick Scholz. Matthias Eisenmann, myself, and Sinan Onogur implemented
the Eclipse Meta Model for the structured challenge capturing and analysis, which was mainly performed
by the three of us, given the large amount of challenges analyzed and the multi-observer nature of the
experiments. I organized, prepared, and evaluated the community survey described in this section.

A.1.2 Revealing flaws of common practice

Challenge design (Section 4.1) This part of the work was initiated and organized by myself and Prof.
Dr. Lena Maier-Hein, with support from Matthias Eisenmann, and Prof. Dr. Annette Kopp-Schneider, and
was published in [Reinke et al., 2018a]. The data collection was based on the MICCAI 2015 segmentation
challenges and mainly carried out by Matthias Eisenmann. The descriptive analysis of all MICCAI challenges
from the data described in the above paragraph was implemented by myself. I, Prof. Annette Kopp-Schneider,
and Prof. Lena Maier-Hein worked on the conception of the statistical analysis as well as its design and
implementation. The conception of the experiments was done by myself and Prof. Dr. Lena Maier-Hein,
while I focused on analysing the rankings.
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Metrics (Section 4.2) The work was initiated, coordinated, and designed by myself, Prof. Dr. Lena Maier-Hein,
and Dr. Paul F. Jäger. The three of us formed the core team of the international Delphi expert consortium
comprising more than 40 international researchers. The work was submitted to Nature Methods and is
available as a dynamically updated preprint [Reinke et al., 2021a], submitted to Nature Methods as well,
and a MIDL short paper [Reinke et al., 2021b]. The primary literature research was designed by myself, Dr.
Minu D. Tizabi, and Prof. Dr. Lena Maier-Hein and was mainly carried out by me and Dr. Minu D. Tizabi.
The Delphi process was led by myself, Dr. Paul F. Jäger, and Prof. Dr. Lena Maier-Hein, while the analysis
and evaluation of the results was done by myself. Furthermore, I created the examples from the pitfall
suggestions, computed all metric values, and designed all figures by myself. The metric values in the figures
were reviewed by Tim Rädsch and Dr. Carole H. Sudre.

Rankings (Section 4.3) Similarly, a large group of researchers from more than 30 institutions throughout the
world collaborated on this project, which finally resulted in the publication [Maier-Hein et al., 2018].Similar
to the paragraphs above, the data collection was based on the MICCAI 2015 segmentation challenges and
mainly carried out by Matthias Eisenmann, assisted by mayself. The conception of the statistical analysis
was designed and implemented by Prof. Dr. Annette Kopp-Schneider, myself, Matthias Eisenmann, and Prof.
Dr. Lena Maier-Hein.

Reporting and analyses (Section 4.4) Similarly, a large group of researchers from more than 30 institutions
throughout the world collaborated on the first part of the section, which finally resulted in the publication
[Maier-Hein et al., 2018]. All captured challenges served as the basis for the descriptive analysis of challenge
design reporting. The results were analyzed by myself, Matthias Eisenmann, and Sinan Onogur, as described
above. The second part of the section (reporting of algorithms) was based on the internship results of Georg
Grab, whom I supervised. The project was designed by myself and we worked together on the methodology
and the conception of the experiments. The implementation itself was done by Georg Grab, given the fact
I was one of the primary challenge organizers. I was therefore biased in favor of the implementations
because I was familiar with some of the specifics of the participating methods. The final decision on how to
deal with ambiguities in the method description was done by myself.

A.1.3 Improving common practice
Challenge design (Section 5.1) The structured challenge submission system was mainly implemented by
myself as lead developer, together with Sinan Onogur and Matthias Eisenmann. The experiments based
on the challenges captured within the submission system were planned and conducted by myself. The
challenge review process was introduced in the same step by the MICCAI Board Challenge Working Group, of
which I am a working member. The Working Group is now known as the MICCAI SIG for Challenges and I was
elected as its secretary. I managed the challenge review process for MICCAI 2018 and 2020 as challenges
co-chair, and for MICCAI 2021 and MIDL 2020 as challenges chair, with help from the respective challenges
teams.

Metrics (Section 5.2) The work was initiated, coordinated and designed by myself, Dr. Paul F. Jäger, and
Prof. Dr. Lena Maier-Hein as the core team of the international Delphi expert consortium comprising
more than 70 international researchers. The work was submitted to Nature Methods and is available as
a preprint [Maier-Hein et al., 2022]. It was further accepted as a MIDL short paper [Reinke et al., 2022a]
and as an abstract for the Medical Imaging Meets NeurIPS workshop [Reinke et al., 2022b]. We organized
the workshops and the surveys, while I led the results evaluation of the questionnaires. We coordinated
the work of the expert groups and designed and refined the metric mappings, problem fingerprints, and
decision guides based on suggestions from the expert teams and feedback from the surveys. The visual
conception of the mappings was done by myself, with support from Matthias Eisenmann. Lead by myself,
we instantiated several biomedical use cases. This analysis was mainly done together with Dr. Paul F. Jäger,
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Patrick Scholz, and Michael Baumgartner. I analyzed the metric selection of four biomedical image analysis
challenges by myself.

Rankings (Section 5.3) The work was initiated, coordinated and designed by Dr. Manuel Wiesenfarth,
myself, Matthias Eisenmann,Prof. Dr. Lena Maier-Hein, and Prof. Dr. Annette Kopp-Schneider and was
published in [Wiesenfarth et al., 2021]. I designed and implemented the analysis of common practice
in challenge result visualization. The open-source toolkit, including the visualization techniques, was
implemented by Dr. Manuel Wiesenfarth as lead developer, Matthias Eisenmann, myself, Emre Kavur, and
Laura Aguilera Saiz. The RobustMIS challenge was mainly organized by myself, Dr. Tobias Roß, and Prof. Dr.
Lena Maier-Hein. I performed the ranking uncertainty analysis of the challenge. The work was published
in [Roß/Reinke et al., 2020]. The MSD challenge was mainly organized by myself, Michela Antonelli, Prof.
Dr. Lena Maier-Hein, and Prof. Dr. M. Jorge Cardoso. Again, I performed the ranking uncertainty analysis,
supported by Dr. Manuel Wiesenfarth. The work was published in [Antonelli/Reinke et al., 2022].

Reporting and analyses (Section 5.4) As described above, the structured challenge submission system was
mainly implemented by myself as lead developer, together with Sinan Onogur and Matthias Eisenmann. The
descriptive analysis of the captured challenges was done by myself. The MICCAI Board Challenge Working
Group introduced the process of challenge registration. The concrete process of putting the challenge
design documents online and reviewing changes in challenge design was done by myself since 2020*. The
BIAS reporting guideline (published in [Maier-Hein et al., 2020]) was designed by the BIAS initiative, founded
by the MICCAI Board challenge working group. The guideline was based on the challenge parameter list,
which was mainly designed by Prof. Dr. Lena Maier-Hein, myself, Matthias Eisenmann, and Sinan Onogur.
The refinement of the list was achieved via a survey, implemented and evaluated by myself. Dr. Tobias
Roß, myself, Prof. Dr. Lena Maier-Hein, and Prof. Dr. Annette Kopp-Schneider initiated, designed and
implemented the mixed model analysis of challenge results. I reviewed all MICCAI 2004-2021 papers for
their usage of mixed models.

*http://www.miccai.org/special-interest-groups/challenges/miccai-registered-challenges/
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A.2 Ranking schemes used in this thesis
In this section, we formally present the three ranking schemes investigated in this thesis. Algorithm 1
presents the metric-based ranking, Algorithm the case-based ranking, and Algorithm the test-based
ranking.

Algorithm 1 Metric-based ranking scheme [Maier-Hein et al., 2018]
1: for each participating team pi, i = 1, . . . , Np do
2: Calculate the performance mk(pi, cj) for every case cj , j = 1, . . . , Nc and every

metric, mk, k = 1, . . . , Nm.
3: In case of a missing value, i.e. mk(pi, cj) = NaN, decide on a missing value strategy,

for example by penalizing this case with the worst possible metric value.
4:
5: Option 1 (aggregate over cases first) :
6: For each metricmk, determine a metric-specific score sk(pi) by aggregatingmk(pi, cj)

over all cases cj , j = 1, . . . , Nc, for example using the mean, median or a specific
percentile.

7: if Nm > 1 (multiple metrics) then
8: Aggregate sk(pi) over all metrics mk, k = 1, . . . , Nm to achieve one score s(pi) per

participating team pi.
9: else if Nm = 1 (single metric) then

10: The score s(pi) is equal to sk(pi) for every participating team pi.
11: end if
12:
13: Option 2 (aggregate over metric values first) :
14: For each case cj , determine a case-specific score sj(pi) by aggregating mk(pi, cj)

over all metrics mk, k = 1, . . . , Nm, for example using the mean, median or a specific
percentile.

15: if Nc > 1 (multiple cases) then
16: Aggregate sj(pi) over all cases cj , j = 1, . . . , Nc to achieve one score s(pi) per

participating team pi.
17: else if Nc = 1 (single case) then
18: The score s(pi) is equal to mk(pi, cj) for every participating team pi.
19: end if
20:
21: end for
22: Compute final the rank r(pi) for each participating team based on the scores s(pi), i =

1, . . . , Np.
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Algorithm 2 Case-based ranking scheme [Maier-Hein et al., 2018]
1: for each case cj , j = 1, . . . , Nc do
2: Calculate the performance mk(pi, cj) for every participating team pi, i = 1, . . . , Np

and every metric, mk, k = 1, . . . , Nm.
3: Determine a metric- and case-specific rank rj,k(pi) for every participating team

pi, i = 1, . . . , Np based on the performance mk(pi, cj).
4: In case of a missing value, i.e. mk(pi, cj) = NaN, assign the worst possible rank to

rj,k(pi).
5:
6: Option 1 (aggregate over cases first) :
7: Determine an overall rank rk(pi) over all cases cj , j = 1, . . . , Nc for each metric

mk by aggregating over rj,k(pi), for example using the mean, median or a specific
percentile.

8: Compute the final rank r(pi) for each participating team by aggregating the overall
ranks rk(pi) over all metrics mk, k = 1, . . . , Nm, for example using the mean, median
or a specific percentile.

9:
10: Option 2 (aggregate over metric values first) :
11: Determine an overall rank rj(pi) over all metrics mk, k = 1, . . . , Nm for each case

cj by aggregating over rj,k(pi), for example using the mean, median or a specific
percentile.

12: Compute the final rank r(pi) for each participating team by aggregating the overall
ranks rj(pi) over all cases cj , j = 1, . . . , Nc, for example using the mean, median or
a specific percentile.

13:
14: end for

Algorithm 3 Test-based ranking scheme [Maier-Hein et al., 2018]

1: Select the significance level α (e.g. 5%).
2: for each metric mk, k = 1, . . . , Nk do
3: Calculate the performance mk(pi, cj) for every participating team pi, i = 1, . . . , Np

and every case, cj , j = 1, . . . , Nc.
4: Use a Wilcoxon signed rank test with level α to perform all pairwise comparisons

between the participating teams (pi, pi′) based on the performances mk(pi, cj) and
mk(pi′ , cj).

5: Determine a significance score sk(pi), i = 1, . . . , Np which is equal to the number
of significant test results, i.e. the number of participating teams that perform
significantly worse compared to team pi.

6: Compute the ranking rk(pi) based on the significance scores sk(pi), ordering by the
highest significant score (descending).

7: end for
8: Compute final the ranking r(pi) for each participating team by aggregating the metric-specific

ranks rk(pi) for every metric mk, k = 1, . . . , Nk.
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A.3 Profile of common validation metrics
In this section, we present validation metrics for image-level classification (Chapter 2.4.1), semantic segmen-
tation (Chapter 2.4.2), object detection (Chapter 2.4.3), and instance segmentation (Chapter 2.4.4). For every
metric, we provide a concrete profile including relevant information, limitations, and recommendations.
The following metrics are presented:

Per-class counting metrics
Sensitivity [Tharwat, 2020]: Figure A.1
Specificity [Tharwat, 2020]: Figure A.2
Positive Predictive Value (PPV) [Tharwat, 2020]: Figure A.3
Negative Predictive Value (NPV) [Tharwat, 2020]: Figure A.4
Positive Likelihood Ratio (LR+) [Attia, 2003]: Figure A.5
Fβ Score [Chinchor, 1992]: Figure A.6
Net Benefit (NB) [Vickers and Elkin, 2006]: Figure A.7
Panoptic Quality (PQ) [Kirillov et al., 2019]: Figure A.8
False Positives per Image (FPPI) [Van Ginneken et al., 2010]: Figure A.9

Multi-class counting metrics
Accuracy [Tharwat, 2020]: Figure A.10
Balanced Accuracy (BA) [Tharwat, 2020]: Figure A.11
Matthews Correlation Coefficient (MCC) [Matthews, 1975]: Figure A.12
Weighted Cohen’s Kappa (WCK) [Cohen, 1960]: Figure A.13
Expected Cost (EC) [Bishop and Nasrabadi, 2006; Hastie et al., 2009; Ferrer, 2022]: Figure A.14

Multi-threshold metrics
Area under the Receiver Operating Characteristic Curve (AUROC) [Hanley and McNeil, 1982]: Figure A.15
Average Precision (AP) [Lin et al., 2014; Everingham et al., 2015]: Figure A.16
Free-Response Receiver Operating Characteristic (FROC) Score [Van Ginneken et al., 2010; Bandos
et al., 2009]: Figure A.17

Overlap-based metrics
Dice Similarity Coefficient (DSC) [Dice, 1945]: Figure A.18
Intersection over Union (IoU) [Jaccard, 1912]: Figure A.19
Centerline Dice Similarity Coefficient (clDice) [Shit et al., 2021]: Figure A.20
Intersection over Reference (IoR) [Maška et al., 2014]: Figure A.21



A.3. PROFILE OF COMMON VALIDATION METRICS 313

Distance-based metrics
Hausdorff Distance (HD) [Huttenlocher et al., 1993]: Figure A.22
Hausdorff Distance 95 Percentile (HD95) [Huttenlocher et al., 1993]: Figure A.23
Average Symmetric Surface Distance (ASSD) [Yeghiazaryan and Voiculescu, 2015]: Figure A.24
Mean Absolute Surface Distance (MASD) [Beneš and Zitová, 2015]: Figure A.25
Normalized Surface Distance (NSD) [Nikolov et al., 2021]: Figure A.26
Boundary Intersection over Union (Boundary IoU) [Cheng et al., 2021]: Figure A.27
Center Distance [Gurcan et al., 2010]: Figure A.28

Point-based metric: Point inside Mask/ Box/ Approximation criterion (Figure A.29).

Calibration metrics
Brier Score (BS) [Yeghiazaryan and Voiculescu, 2015]: Figure A.30
Negative Log Likelihood (NLL) [Cybenko et al., 1998]: Figure A.31
Root Brier Score (RBS) [Gruber and Buettner, 2022]: Figure A.32
Expected Calibration Error (ECE) [Naeini et al., 2015]: Figure A.33
Class-wise Calibration Error (CWCE) [Kumar et al., 2019]: Figure A.34
Kernel Calibration Error (KCE) [Widmann, 2020; Gruber and Buettner, 2022]: Figure A.35
Expected Calibration Error Kernel Density Estimate (ECEKDE) [Popordanoska et al., 2022]: Figure A.36
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A.3.1 Per-class counting metrics
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Figure A.1: Profile of the Sensitivity [Tharwat, 2020]. This per-class counting metric relies on the True
Positive (TP) and False Negative (FN) cardinalities of the confusion matrix (see Figure 2.6) and ranges
between 0 and 1. It is recommended to be used for Image-level Classification (ImLC), Object Detection (ObD),
and Instance Segmentation (InS) problems. Further abbreviations: False Positive (FP), True Negative (TN),
and Semantic Segmentation (SemS).
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Figure A.2: Profile of the Specificity [Tharwat, 2020]. This per-class counting metric relies on the True
Negative (TN) and False Positive (FP) cardinalities of the confusion matrix (see Figure 2.6) and ranges
between 0 and 1. It is recommended to be used for Image-level Classification (ImLC) problems only as
it relies on the definition of TN. Further abbreviations: True Positive (TP), False Positive (FP), Semantic
Segmentation (SemS), Object Detection (ObD), and Instance Segmentation (InS).
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Figure A.3: Profile of the Positive Predictive Value (PPV) [Tharwat, 2020]. This per-class counting metric
relies on the True Positive (TP) and False Positive (FP) cardinalities of the confusion matrix (see Figure 2.6)
and ranges between 0 and 1. It is recommended to be used for Image-level Classification (ImLC), Object
Detection (ObD) and Instance Segmentation (InS) problems. Further abbreviations: False Negative (FN),
True Negative (TN), and Semantic Segmentation (SemS).
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Figure A.4: Profile of the Negative Predictive Value (NPV) [Tharwat, 2020]. This per-class counting metric
relies on the True Negative (TN) and False Negative (FN) cardinalities of the confusion matrix (see Figure 2.6)
and ranges between 0 and 1. It is recommended to be used for Image-level Classification (ImLC) problems
only as it relies on the definition of TN. Further abbreviation: True Positive (TP), False Positive (FP), Semantic
Segmentation (SemS), Object Detection (ObD), and InS.
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Figure A.5: Profile of the Positive Likelihood Ratio (LR+) [Attia, 2003]. This per-class counting metric relies
on the Sensitivity and Specificity, therefore on all entries of the confusion matrix (True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN); see Figure 2.6) and ranges between 0 and
∞. It is recommended to be used for Image-level Classification (ImLC) problems only as it relies on the
definition of TN. Further abbreviations: Semantic Segmentation (SemS), Object Detection (ObD), Instance
Segmentation (InS).



A.3. PROFILE OF COMMON VALIDATION METRICS 319

���������������������
� �β��������������������������������������������������������
�	��������������������������
� �β����������������������������
����������������������������������������������������
�������������������������

� �β��������������������������������������������������������������
�	������������������
� �β����������������������������������������������������������
�	�������������������
� �β������������� ����������
�����������������������
��������������������������
����
���������������������������������������������������������

� �β��������������������� ���������������������������������������������

������������
����β���������������������������������������
������������������������β��

�������������������β ��������������������
������������������������������������������
��������������������������������������
���������������������������

����������
���������������

�β������

�β������

��

�

•���β���

� β��•���β��� �•

���β���
����• �����������

β��• �����������������

β�� �������
• ����β���

• ������β��� •

��������������
����↑

���������������
� �β��������������������������������������������������������������������
�������������
������������������������������������������

� 	��	�����������
��β����������������������������������������������������������������
���������������������������������������������

�������������
�� ����

���������������������


���������������
���� 	�����	���

�������������
������

��������
������

���������
����
������

��������
������

Figure A.6: Profile of the Fβ Score [Chinchor, 1992]. This per-class counting metric relies on the True
Positive (TP), False Positive (FP) and False Negative (FN) cardinalities of the confusion matrix (see Figure 2.6)
and ranges between 0 and 1. It is recommended to be used for Image-level Classification (ImLC), Semantic
Segmentation (SemS), Object Detection (ObD) and InS problems. Further abbreviation: True Negative (TN).
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Figure A.7: Profile of the Net Benefit (NB) [Vickers and Elkin, 2006]. This per-class counting metric relies on
all cardinalities of the confusion matrix (True Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN); see Figure 2.6) and ranges between -1 and 1. It is recommended to be used for Image-level
Classification (ImLC) problems only.
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Figure A.8: Profile of the Panoptic Quality (PQ) [Kirillov et al., 2019]. This per-class counting metric measures
the segmentation and detection quality simultaneously based on the True Positive (TP), False Positive (FP)
and False Negative (FN) cardinalities of the confusion matrix (see Figure 2.6) and ranges between 0 and 1. It
is recommended to be used for Instance Segmentation (InS) problems. Further abbreviations: Image-level
Classification (ImLC), Object Detection (ObD), Semantic Segmentation (SemS), and True Negative (TN).
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Figure A.9: Profile of the False Positives per Image (FPPI). This per-class counting metric relies on the
False Positive (FP) cardinality of the confusion matrix (see Figure 2.6) and ranges between 0 and ∞. It is
recommended to be used for Object Detection (ObD) and Instance Segmentation (InS) problems. Further
abbreviations: Image-level Classification (ImLC), Semantic Segmentation (SemS), True Positive (TP), True
Negative (TN), and False Negative (FN).
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A.3.2 Multi-class counting metrics
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Figure A.10: Profile of the Accuracy [Tharwat, 2020]. This multi-class counting metric relies on all cardinalities
of the confusion matrix (True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN);
see Figure 2.6) and ranges between 0 and 1. For the multi-class definition, please refer to Figure 2.11 for
the illustration of the C × C confusion matrix. nii refers to its diagonal entries and N to the total number
of samples. It is recommended to be used for Image-level Classification (ImLC) problems only as it relies
on the definition of TN. Further abbreviations: Semantic Segmentation (SemS), Object Detection (ObD),
Instance Segmentation (InS).
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Figure A.11: Profile of the Balanced Accuracy (BA) [Tharwat, 2020]. This multi-class counting metric relies on
all cardinalities of the confusion matrix (True Positive (TP), False Positive (FP), False Negative (FN), and True
Negative (TN); see Figure 2.6) and ranges between 0 and 1. For the multi-class definition, please refer to
Figure 2.11 for the illustration of the multi-class C × C confusion matrix. nii refers to its diagonal entries,
ni· to the sum of entries per row i, and N to the total number of samples. It is recommended to be used for
Image-level Classification (ImLC) problems only as it relies on the definition of TN. Further abbreviations:
Semantic Segmentation (SemS), Object Detection (ObD), Instance Segmentation (InS).
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Figure A.12: Profile of the Matthews Correlation Coefficient (MCC) [Matthews, 1975]. This multi-class counting
metric relies on all cardinalities of the confusion matrix (True Positive (TP), False Positive (FP), False
Negative (FN), and True Negative (TN); see Figure 2.6) and ranges between -1 and 1. For the multi-class
definition, please refer to Figure 2.11 for the illustration of the multi-class C ×C confusion matrix. nij refers
to its entries for row i and column j. It is recommended to be used for Image-level Classification (ImLC)
problems only as it relies on the definition of TN. Further abbreviation: Semantic Segmentation (SemS),
Object Detection (ObD), InS. Further abbreviations: Semantic Segmentation (SemS), Object Detection (ObD),
Instance Segmentation (InS).
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Figure A.13: Profile of Weighted Cohen’s Kappa (WCK) [Cohen, 1960]. This multi-class counting metric relies
on all cardinalities of the confusion matrix (True Positive (TP), False Positive (FP), False Negative (FN), and
True Negative (TN); see Figure 2.6) and ranges between -1 and 1. For the multi-class definition, please refer
to Figure 2.11 for the illustration of the multi-class C × C confusion matrix. nij refers to its entries for row
i and column j, ni· to the sum of entries per row i, n·j to the sum of entries per column j, and N to the
total number of samples. It is recommended to be used for Image-level Classification (ImLC) problems
only as it relies on the definition of TN. Further abbreviations: Semantic Segmentation (SemS), Object
Detection (ObD), Instance Segmentation (InS).
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Figure A.14: Profile of the Expected Cost (EC) [Bishop and Nasrabadi, 2006; Hastie et al., 2009; Ferrer, 2022].
This multi-class counting metric relies on all cardinalities of the confusion matrix (True Positive (TP), False
Positive (FP), False Negative (FN), and True Negative (TN); see Figure 2.6) and ranges between 0 and ∞, given
their problem-specific weights. For the multi-class definition, please refer to Figure 2.11 for the illustration
of the multi-class C × C confusion matrix. nij refers to its entries for row i and column j, ni· to the sum of
entries per row i, and Pi to the priors/prevalences per class i. It is recommended to be used for Image-level
Classification (ImLC) problems only as it relies on the definition of TN. Further abbreviations: Semantic
Segmentation (SemS), Object Detection (ObD), Instance Segmentation (InS).
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A.3.3 Multi-threshold metrics
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Figure A.15: Profile of AUROC. This multi-threshold counting metric relies on all cardinalities of the dynamic
confusion matrix based on multiple thresholds (True Positive (TP), False Positive (FP), False Negative (FN),
and True Negative (TN); see Figures 2.6 and 2.7) and ranges between 0 and 1. It is recommended to be used
for Image-level Classification (ImLC) problems only as it relies on the definition of TN. Further abbreviations:
Semantic Segmentation (SemS), Object Detection (ObD), Instance Segmentation (InS).
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Figure A.16: Profile of AP [Lin et al., 2014; Everingham et al., 2015]. This multi-threshold counting metric
relies on the True Positive (TP), False Positive (FP) and False Negative (FN) cardinalities of the dynamic
confusion matrix based on multiple thresholds (see Figures 2.6 and 2.7) and ranges between 0 and 1. It is
recommended to be used for Image-level Classification (ImLC), Object Detection (ObD) and InS problems.
Further abbreviations: Positive Predictive Value (PPV), Semantic Segmentation (SemS), True Negative (TN).
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Figure A.17: Profile of FROC Score [Van Ginneken et al., 2010; Bandos et al., 2009]. This multi-threshold
counting metric relies on the True Positive (TP), False Positive (FP) and False Negative (FN) cardinalities of
the dynamic confusion matrix based on multiple thresholds (see Figures 2.6 and 2.7) and ranges between
0 and 1. In contrast to AUROC, it operates on object-level. It is recommended to be used for Image-
level Classification (ImLC), Object Detection (ObD) and InS problems. Further abbreviation: Semantic
Segmentation (SemS).
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A.3.4 Overlap-based metrics
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Figure A.18: Profile of the Dice Similarity Coefficient (DSC) [Dice, 1945]. This overlap-based or per-class
counting metric measures the overlap between structures based on the True Positive (TP), False Positive (FP)
and False Negative (FN) cardinalities of the confusion matrix (see Figure 2.6) and ranges between 0 and 1. It
is recommended to be used for Semantic Segmentation (SemS), Object Detection (ObD) and InS problems.
Further abbreviations: Image-level Classification (ImLC), True Negative (TN).
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Figure A.19: Profile of the Intersection over Union (IoU) [Jaccard, 1912]. This overlap-based or per-class
counting metric measures the overlap between structures based on the True Positive (TP), False Positive (FP)
and False Negative (FN) cardinalities of the confusion matrix (see Figure 2.6) and ranges between 0 and 1. It
is recommended to be used for Semantic Segmentation (SemS), Object Detection (ObD) and InS problems.
Further abbreviations: Image-level Classification (ImLC), True Negative (TN).
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Figure A.20: Profile of the Centerline Dice Similarity Coefficient (clDice) [Shit et al., 2021]. This overlap-
based or per-class counting metric measures the overlap between tubular structures based on the True
Positive (TP), False Positive (FP) and False Negative (FN) cardinalities of the confusion matrix (see Figure 2.6)
and ranges between 0 and 1. It is recommended to be used for Semantic Segmentation (SemS) and
InS problems. Further abbreviations: Image-level Classification (ImLC), Object Detection (ObD), and True
Negative (TN).
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Figure A.21: Profile of the Intersection over Reference (IoR) [Maška et al., 2014]. This overlap-based or
per-class counting metric measures the overlap between structures based on the True Positive (TP) and
False Negative (FN) cardinalities of the confusion matrix (see Figure 2.6) and ranges between 0 and 1. It is
recommended to be used as a localization criterion for Object Detection (ObD) and InS problems. Further
abbreviations: Image-level Classification (ImLC), Semantic Segmentation (SemS), and True Negative (TN).
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A.3.5 Distance-based metrics
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Figure A.22: Profile of the Hausdorff Distance (HD) [Huttenlocher et al., 1993]. This distance-based metric and
ranges between 0 and ∞, where a value of 0 corresponds to a perfect prediction. It is recommended to be
used for Semantic Segmentation (SemS) and Instance Segmentation (InS) problems. Further abbreviations:
Image-level Classification (ImLC), Object Detection (ObD).
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Figure A.23: Profile of the Hausdorff Distance 95 Percentile (HD95) [Huttenlocher et al., 1993]. This distance-
based metric ranges between 0 and ∞, where a value of 0 corresponds to a perfect prediction. It can be
generalized to all percentiles by replacing the 95th percentile with any other. It is recommended to be
used for Semantic Segmentation (SemS) and Instance Segmentation (InS) problems. Further abbreviations:
Image-level Classification (ImLC), Object Detection (ObD).
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Figure A.24: Profile of the Average Symmetric Surface Distance (ASSD) [Yeghiazaryan and Voiculescu, 2015].
This distance-based metric ranges between 0 and ∞, where a value of 0 corresponds to a perfect prediction.
It is recommended to be used for Semantic Segmentation (SemS) and Instance Segmentation (InS) problems.
Further abbreviations: Image-level Classification (ImLC), Object Detection (ObD).
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Figure A.25: Profile of the Mean Absolute Surface Distance (MASD) [Beneš and Zitová, 2015]. This distance-
based metric ranges between 0 and ∞, where a value of 0 corresponds to a perfect prediction. It is
recommended to be used for Semantic Segmentation (SemS) and Instance Segmentation (InS) problems.
Further abbreviations: Image-level Classification (ImLC), Object Detection (ObD).
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Figure A.26: Profile of the Normalized Surface Distance (NSD) [Tharwat, 2020]. This distance-based metric
relies on the True Positive (TP), False Positive (FP), False Negative (FN) cardinalities of the confusion matrix
(see Figure 2.6) and ranges between 0 and 1. It features a hyperparameter, specifying the maximum tolerated
distance. It is recommended to be used for Semantic Segmentation (SemS) and Instance Segmentation (InS)
problems. Further abbreviations: True Negative (TN), Image-level Classification (ImLC), Object Detection
(ObD).
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Figure A.27: Profile of the Boundary Intersection over Union (Boundary IoU) [Cheng et al., 2021]. This distance-
based metric relies on the True Positive (TP), False Positive (FP), False Negative (FN) cardinalities of the
confusion matrix (see Figure 2.6) and ranges between 0 and 1. It features a hyperparameter, specifying
the width to the boundaries. It is recommended to be used for Semantic Segmentation (SemS), Object
Detection (ObD) and Instance Segmentation (InS) problems. Further abbreviations: True Negative (TN),
Image-level Classification (ImLC).
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Figure A.28: Profile of the Center Distance [Gurcan et al., 2010]. This distance-based metric ranges between
0 and ∞. It is recommended to be used as a localization criterion for Object Detection (ObD) and Instance
Segmentation (InS) problems. Further abbreviations: Image-level Classification (ImLC), Semantic Segmenta-
tion (SemS).



342 APPENDIX A. APPENDIX

A.3.6 Point-based metrics
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Figure A.29: Profile of the Point inside Mask/ Box/ Approximation criterion. This point-based metric does
not rely on the cardinalities of the confusion matrix and is a binary decision. It is recommended to be used
as a localization criterion for Object Detection (ObD) and Instance Segmentation (InS) problems. Further
abbreviations: True Positive (TP), False Positive (FP), False Negative (FN), True Negative (TN), Image-level
Classification (ImLC), Semantic Segmentation (SemS).
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A.3.7 Calibration metrics
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Figure A.30: Profile of the Brier Score (BS) [Yeghiazaryan and Voiculescu, 2015]. It is recommended to be used
for Image-level Classification (ImLC), Object Detection (ObD) and Instance Segmentation (InS) problems.
Further abbreviations: Semantic Segmentation (SemS).
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Figure A.31: Profile of the Negative Log Likelihood (NLL) [Cybenko et al., 1998]. It is recommended to be used
for Image-level Classification (ImLC) problems. Further abbreviations: Instance Segmentation (InS), Object
Detection (ObD), Semantic Segmentation (SemS).
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Figure A.32: Profile of the Root Brier Score (RBS) [Gruber and Buettner, 2022]. This calibration metric ranges
between 0 and 1, where a value of 0 corresponds to a perfectly calibrated prediction. It is recommended
to be used for Image-level Classification (ImLC), Object Detection (ObD), and Instance Segmentation (InS)
problems. Further abbreviations: Semantic Segmentation (SemS).
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Figure A.33: Profile of the Expected Calibration Error (ECE) [Naeini et al., 2015]. It is recommended to be used
for Image-level Classification (ImLC), Object Detection (ObD), and Instance Segmentation (InS) problems.
Further abbreviations: Semantic Segmentation (SemS).
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Figure A.34: Profile of the Class-wise Calibration Error (CWCE) [Kumar et al., 2019]. It is recommended to
be used for Image-level Classification (ImLC), Object Detection (ObD), and Instance Segmentation (InS)
problems. Further abbreviations: Semantic Segmentation (SemS).
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Figure A.35: Profile of the Kernel Calibration Error (KCE) [Widmann, 2020; Gruber and Buettner, 2022]. It
is recommended to be used for Image-level Classification (ImLC), Object Detection (ObD), and Instance
Segmentation (InS) problems. Further abbreviations: Semantic Segmentation (SemS).
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Figure A.36: Profile of the Expected Calibration Error Kernel Density Estimate (ECEKDE) [Popordanoska et al.,
2022]. This calibration metric ranges between 0 and 1, where a value of 1 corresponds to a perfectly calibrated
prediction. It is recommended to be used for Image-level Classification (ImLC), Object Detection (ObD), and
Instance Segmentation (InS) problems. Further abbreviations: Semantic Segmentation (SemS).
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A.4 Metric recommendations for common biomedical use cases
The framework can not only be applied to challenges, but to any classification-related biomedical image
analysis scenario. In Figures A.37-A.40, we present four common use cases for each of the considered
problem categories†. It can be seen that use cases that are concerned with assessing similar properties
yield the same metric recommendations. For example, the semantic segmentation of large objects, such
as use cases (a) "lung cancer cell segmentation from microscopy images" [Castilla et al., 2018] and (b)
"liver segmentation in Computed Tomography (CT) images" [Antonelli/Reinke et al., 2022; Simpson et al.,
2019] in Figure A.38, yield a similar problem fingerprint for very different problems from different domains
and modalities. Still, the assessed properties are similar, yielding the same metric recommendations. We
present the following biomedical use cases:

Image-level classification (Figure A.37)
(a) Frame-based sperm motility classification based on microscopy time-lapse video containing human

spermatozoa [Haugen et al., 2019]
(b) Disease classification in dermoscopic images [Codella et al., 2019]
(c) Classification of the overall autophagy stage for a collection of cells [Zhang et al., 2020; Nagao et al.,

2020]
(d) Identification of new lesions in brain multi-modal Magnetic Resonance Imaging (MRI) images of

patients with Multiple Sclerosis (MS) [Kofler et al., 2022; Commowick et al., 2018]

Semantic segmentation (Figure A.38)
(a) Lung cancer cell segmentation from microscopy images [Castilla et al., 2018]
(b) Liver segmentation in CT images [Antonelli/Reinke et al., 2022; Simpson et al., 2019]
(c) Aneurysm segmentation in Time of Flight Magnetic Resonance Angiographs (TOF-MRA) images [Tim-

mins et al., 2021]
(d) Labeling of invasive/ non-invasive/ benign lesions on breast Whole Slide Imaging (WSI) [Aresta et al.,

2019]

Object detection (Figure A.39)
(a) Cell detection and tracking during the autophagy process in time-lapse microscopy [Zhang et al.,

2020; Nagao et al., 2020]
(b) MS lesion detection in multi-modal brain MRI images [Kofler et al., 2022; Commowick et al., 2018]
(c) Polyp detection in colonoscopy videos with predefined sensitivity of 0.9 [Sánchez-Montes et al., 2019;

Bernal et al., 2019]
(d) Mitosis detection in histopathology images [Aubreville et al., 2022]

Instance segmentation (Figure A.40)
(a) Instance segmentation of neurons from the fruit fly in 3D multi-color light microscopy images [Tirian

and Dickson, 2017; Mais et al., 2020; Meissner et al., 2022]
(b) Surgical instrument instance segmentation in colonoscopy videos [Maier-Hein et al., 2021]
(c) Cell nuclei instance segmentation in time-lapse light microscopy with a subsequent goal of cell

tracking [Ulman et al., 2017]
(d) MS lesion segmentation in multi-modal brain MRI images [Kofler et al., 2022; Commowick et al., 2018]
†For better readability, we omitted all fingerprints that led to a negative instantiation (FALSE) in all use cases. Images

in the figure were taken from the references provided on this page.
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A.5 Overview of the descriptions from the RobustMIS teams
In Section 4.4, we reimplemented the participants of the Robust Medical Instrument Segmentation
(RobustMIS) 2019 challenge. In this section, we provide a detailed overview of the submitted methods
along with assumptions that were taken for the reimplementation.

Team caresyntax The overall description of team caresyntax’ method was very short and did not contain
lots of details, therefore leaving some room for interpretation‡. The team described that they utilized a
Mask R-CNN [He et al., 2017] architecture with a ResNet-50 [He et al., 2016] backbone. From their description,
it could be assumed that the team used the reference Mask R-CNN implementation [FacebookResearch,
2019] for their model, written in PyTorch [Paszke et al., 2019]. We therefore filled in missing information
with the defaults from this reference.

For data pre-processing, team caresyntax cropped the images to remove black parts of the images and
used a minimum size of 800 and maximum size of 1,333 similar to the sizes described in the reference
implementation, resulting in upscaling the images by a factor of roughly 1.5. Finally, they applied a
normalization of the channel mean and standard deviations similar to the one used in the popular
ImageNet competition [Deng et al., 2009]. The team stated that they pre-trained the network on the
Microsoft-Common Objects in COntext (COCO) 2017 challenge training data set [Lin et al., 2014]. However,
the actual weights in the reference implementations were only available as pre-trained on the ImageNet
data set. As team caresyntax also used the ImageNet normalization and did not describe that they actually
did the pre-training on Microsoft-COCO by themselves, we followed the reference implementation with a
pre-training on ImageNet. The ResNet-50 backbone used in the reference implementation was labeled
as "COCO-InstanceSegmentation", which might have confused. Yet, this naming referred to an example
use-case, not to the actual weights of the ResNet-50.

For training, team caresyntax split the provided challenge training data set into 4,884 training (80%) and 103
validation cases (20%). The team described a large manual effort to ensure a similar distribution of cases,
such as smoke, in the training and validation data sets. This step was not described in detail, we therefore
chose the same amount of cases in both data sets and made sure to have a representable split, however,
we could not fully reproduce the split procedure. The team described a data augmentation with random
horizontal flips with a probability of 50%. Batch sizes of 2 (training data set) and 1 (validation data set)
were specified as well as an initial learning rate of 5e-3, which was halved every five epochs and a minimum
learning rate of 5e-4. Team caresyntax described 15 epochs for training and model selection based on the
mean Dice Similarity Coefficient (DSC) score over instruments on the validation set. During our training
process for the reimplementation, we found that the model was not converged after 15 epochs. We therefore
extended the training to 30 epochs. The team used an Stochastic Gradient Descent (SGD) optimizer with a
momentum of 0.9 and weight decay of 5e-4. In our follow-up survey, the team described that they used the
smooth L1 loss, the Cross Entropy (CE) loss, and the Binary Cross Entropy (BCE) loss. Finally, although the
team underlined the importance of tuning the confidence thresholds for their predictions, they did not
specify their actual threshold values. We therefore defined confidence thresholds of 0.8. We picked the
best model for team caresyntax at iteration 63.7k, which achieved an Average Precision (AP) score of 34.66%.

Team Casia SRL Although the description of team Casia SRL was longer than the one from team caresyntax,
many details were missing or misleading. In fact, we were not able to identify the concrete network architec-
ture. Throughout their method description, the team utilized three different names for the used architecture:
Dense Pyramid Attention Network (DPANet), Residual attention U-Net (RAUNet) [Ni et al., 2019], and Bilinear
Attention Network (BARNet) [Ni et al., 2020], from which RAUNet and BARNet refer to architectures de-
veloped by this team. We did not find any matching architecture for the DPANet in secondary literature,

‡It should be noted that this team was from industry and purposefully withheld information.
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therefore assuming that this specific architecture was newly developed for the challenge participation.
From the method description, we could clearly identify the basic architecture of a U-Net [Ronneberger
et al., 2015] with additional components. The team mentioned the usage of attention modules [Vaswani
et al., 2017], bilinear pooling [Lin et al., 2015], and an ImageNet-pre-trained ResNet-34 as an encoder for the
U-Net. However, exact details for those components that were necessary for our reimplementation were
missing in the description. In addition, the concrete upsampling scheme for the U-Net was not provided.
We therefore needed to rely on secondary literature to implement this method. We could complement
the missing information from the BARNet paper and a paper on bilinear pooling cited by the team in
their method description [Lin et al., 2015]. As specified by the team, we implemented the network in PyTorch.

For data pre-processing, team Casia SRL described a manual split of the provided challenge training data
set of 3,643 training and 532 validation cases. To increase the diversity of the data, the team reported the
application of data augmentation (random rotation, shifting, and flipping) to get an additional 1,680 cases.
Data augmentation was applied based on the number of instruments visible in the image frames to account
for underrepresented cases with many instrument instances. While the number of augmentations per
instrument count was provided by the team, details were missing regarding the concrete augmentations.
We thus chose to sequentially apply horizontal and vertical flips with a probability of 50%, horizontal and
vertical shifts in the range of [-20%, 20%], and rotation in the range of [-25◦, 25◦]. It should be noted that
the reported instrument count was not correct. For instance, the team mentioned 4,175 cases with at least
one instrument instance, but the real number was 4,988. However, as we agreed to stick with the method
description, we truncated the data set to match 4,175 cases with at least one visible instrument. The team
did not describe any resizing or cropping operation, although their network architecture implied that the
dimension of cases should be evenly divisible at least five times. We therefore cropped and padded the
images to a size of 544×928.

The team did neither report the training duration nor the model selection criterion. We therefore used 120
epochs for training based on the convergence of the reimplemented model. The team described batch sizes
of 16 and the usage of the Adaptive Moment Estimation (Adam) optimizer. For the latter, a momentum of 0.9
and weight decay of 1e-4 were given. The initial learning rate of 2e-5 was described to be multiplied by 0.8
every 30 iterations. A hybrid loss consisting of the CE and the Jaccard loss was applied, with the parameter
α set to 0.5:

L = CE − α log(Jaccard) (A.1)
Finally, given our chosen resizing of the images, we applied a sliding window approach to match the defined
output size of 540×960. This was not described by the team, although this step was necessary to run
the described network architecture and match the required output image size. The network architecture
provided only binary segmentation masks. The team did not mention how the instance segmentation was
approached. We therefore chose to apply connected component analyses [Chen et al., 2006] to transfer the
binary masks into instance segmentations. We picked the best model for team Casia SRL at epoch 14, which
achieved the lowest validation loss of 0.13.

Team fisensee Team fisensee carefully described their network architecture in sufficient detail with only
minor ambiguities. They used a U-Net, whose outputs were post-processed via a connected component
analysis to achieve instance segmentation outputs. The U-Net-typical downsampling was described
such that spatial dimensions were exactly halved and convolutional operations were padded to match
the input spatial dimensions. The padding procedure was not described in sufficient detail for repro-
duction. We therefore used the default zero padding from the PyTorch library, which was used by the
team for the general model implementation. This step also impacted the skip connections of the U-Net,
for which the feature map retrieved from the encoder and the upsampled output are concatenated.
Given that the dimensions of the decoder blocks were not provided by the team, the first convolution
of each decoder block was assumed, similar to the original publication, to keep the number of output
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channels as the one of input channels. In addition, for upsampling, we assumed that the output of the
transposed convolution has the same number of channels as the feature map from the corresponding
resolution level of the U-Net. The team described the usage of the sum of the DSC and CE as the loss function.

For data pre-processing, the team processed all images at half resolution to ensure faster training. They
reported scaling, rotation, mirroring, additive Gaussian noise, brightness, contrast, gamma, and elastic
deformations as data augmentations. We used the described package in Isensee et al. [2020] for the
reimplementation of the data augmentation step. The training procedure was described in sufficient detail.
Team fisensee reported the use of the SGD optimizer with a momentum of 0.9 and a continuous PolyLr
learning rate scheduler [Liu et al., 2015]. However, the hyperparameter controlling the polynomial degree of
the learning rate decay was not provided. We set this parameter to 0.9, similar to how it was introduced
in the original publication. The team described an initial learning rate of 1, for which we could not reach
convergence in the reimplementation. As the PolyLr publication described learning rates in the range of
1e-4 and 1e-9, we assumed a typo and decreased the learning rate to a standard value of 1e-2.

The team reported an 8-fold cross-validation of an ensemble of networks. The data split into eight
validation folds was described such that one surgery per surgery type was reserved for validation, while
the others were used for training. In this challenge, three surgery types were used: proctocolectomy, rectal
resection, and sigma resection (see Section 5.3 for details). While reproducing this procedure, we noticed a
large imbalance in the training and validation proportions. This is because some surgeries had far fewer
examples than to others, as most images were reserved for the challenge test data set. As an imbalanced
proportion across splits contradicted the consensus on how to conduct k-fold cross-validation [Kohavi
et al., 1995], we made sure the sizes of each split were approximately equal by either removing some
samples or loading images several times. No details were provided concerning the connected component
analysis for the instance segmentation because U-Nets only provide binary masks as outputs. We assumed
that a 1-connected component analysis was employed, which suppressed predictions in the black border
regions, in which no medical instruments were to be expected. In addition, we assumed a minimum size of
2,048 connected pixels for the final image, as the ensembles sometimes resulted in many tiny false positive
instances.

We trained all ensembles for a maximum of 2,000 epochs, as specified by the team. The exact model
selection criteria were not described by the team, we thus selected the final models based on the loss
on the respective validation fold. The final models were selected between epochs 139 and 1,456 and on
average in epoch 552.

Team Squash Team Squash carefully described their network architecture in sufficient detail. They
employed a Mask R-CNN in combination with a classification network, implemented as ResNet-50. The
purpose of the latter was to train the network to identify whether an image frame contained instrument
instances or not. More specifically, the team used the provided video data to estimate the probability that
the last frame contained an instrument. Based on their description, we derived that the team used the
PyTorch ResNet implementation for the classification network [Torch, 2017]. The classification network
was first trained alone without training the other parts of the Mask R-CNN network and the convolutional
layers were then used for the Mask R-CNN backbone. Only if a case contained at least one instrument, this
frame was considered for producing a segmentation output. From their detailed description, we could
clearly identify the architecture as the reference PyTorch implementation [FacebookResearch, 2019], as
most of the hyperparameters exactly matched. The team only reported two major changes: First, they used
a focal loss instead of the BCE loss for the classification network, and second, they considered the 2,000
best candidates produced by the Region Proposal Network (RPN) instead of the default value of 1,000
candidates. Although the team provided many details in their description, inconsistencies were present
throughout the document. It was, for example, not entirely clear, how the training set was composed for
the classification network.
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For the split of the training data into training and validation, the team sorted the data by the number of
instrument instances. They then randomly sampled from the data pool to achieve a 70%/30% split for all
numbers of instruments. For example, from the total amount of images with one instrument instance, 70%
were used for training, and 30% were used for validation. Data augmentation was applied to 35% in the
classification network and 25% in the segmentation part of the network only for the cases that contained
instrument instances for every epoch. The team described the usage of Gaussian blur with σ ∈ [0.0, 3.0],
gamma contrast enhancement [Poynton, 2012] in the range of [0.5, 2.0], and sharpening in the range of [0.0,
1.0]. Another 35% of those images with data augmentation were mirrored along both axes. In addition, the
team described that the minority class was upsampled by horizontal translation with 5% of image width in
combination with an upscaling with a factor of 1.5.

Team Squash reported the usage of an SGD optimizer with learning rates of 0.2 for the classification and
0.02 for the segmentation networks. As our reimplemented models did not converge when utilizing those
learning rates, we reduced them to 0.02 and 0.002 respectively. The team described a decay in the learning
rate of 50% after 40 epochs, but it was not entirely clear whether they were referring to a steady decrease in
every epoch or a hard decrease at epoch 40. Based on their phrasing, we decided to implement a step-wise
decrease at every epoch. While the team mentioned the usage of the DSC and AP validation metrics for
picking the final model, it did not become clear if and how the metrics were weighted. The team did not
specify the total number of epochs trained. We therefore chose to train for a maximum of 120 epochs. We
picked the best model at epoch 68, yielding an AP of 46.54%.

Team Uniandes Team Uniandes clearly specified that they used the official reference implementation
of the Mask R-CNN [FacebookResearch, 2019] and the method description did not leave much room for
interpretation. Similar to the reference implementation, they used a ResNet-101 with a Feature Pyramid
Network (FPN) as the backbone.

For data preprocessing, the team split the provided challenge training data set into training and validation
sets. This was achieved by assigning all cases from one patient to one of the two splits. In particular,
patients 3 and 5 from the proctocolectomy and patients 3 and 6 from the rectal resection surgery were
assigned to the validation set, other patients were used for training. Furthermore, the team reported that
they tried to incorporate the temporal data from the provided videos for data augmentation. However,
along the same lines, the team described that this approach was not sufficient and was not used in the
final submission. We thus also skipped this step in our reimplementation.

Team Uniandes trained for 30 epochs, by applying the SGD optimizer with a learning rate of 0.075 and a
weight decay of 1e-4. In particular, they reported a 500-step linear warm-up with a factor of 0.33. Specifically,
the reported additional steps at epochs 15 and 22.5. The standard Mask R-CNN losses were used by the team
[He et al., 2017] (see Section 2.3). The team stated that the final model was chosen based on a combination
of the metrics from both, the RobustMIS and the Microsoft-COCO, challenges. Thus, we decided to train
the reimplementation until the algorithm clearly converged. We picked the best model at iteration 72,120,
which achieved an AP score of 61.76%.

Team VIE Team VIE was the only participating team who extensively used the provided video data in
their method. It was used for an optimal flow calculation in combination with a Mask R-CNN. Although this
approach would have benefited from a detailed description, the team only provided a very brief overview
with some incorrect assumptions, requiring many interpretations to be taken for our reimplementation.

While it becomes clear that the team implemented the optical flow for additional input of the Mask R-CNN
model, they only stated that the python library OpenCV [Bradski, 2000] was used for implementation. Based
on the output format of a pixel-wise vector field, we considered the dense optical flow from the OpenCV
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library [Farnebäck, 2003]. In their overview figure, team VIE showed five frames used to calculate the
optical flow, although optical flow is typically computed over two consecutive frames. Thus, we calculated
the optical flow for five successive image frames, resulting in four vector-fields. As this resulted in a
comparatively large input, we assumed that summary statistics were calculated over the four vector-fields,
resulting in a single averaged vector field. We closely followed an example implementation of the OpenCV
library [OpenCV, 2000] for this step. The summarized optical flow was then fed into the Mask R-CNN network.
Yet, the data set contained several image frames without predecessor frames, for example, frames at the
very beginning of a procedure. The team did not specify how to handle those cases and we defined the
optical flow component to be zero for such occurrences.

Team VIE specified the model as a Mask R-CNN with a ResNet-101 backbone, but did not provide details on
the network weights. Using randomized weights in our reimplementation yielded no convergence in the
training. Consequently, we followed the Mask R-CNN reference implementation [FacebookResearch, 2019]
and used a pre-trained network on ImageNet. The team did not describe any further details, so we used
the default parameters of the reference implementation.

For data pre-processing, team VIE reported that they resized all image frames to the same size of 1024×1024.
We assumed that the team did not notice that the frames were already of the same size of 540×940. They
did not further specify how the resizing took place, so we chose to resize the longest side to match the
given pixel size of 1024 and padded the remaining pixels with zeros. The team further described that the
bounding boxes provided along the challenge data set were discarded and newly generated based on
the segmentation masks. However, no bounding boxes were provided to the participants at all. Based on
the description, we assumed that data augmentation techniques were applied but they were not further
specified. We therefore used the default augmentation of the Mask R-CNN reference.

Similarly, the team did not specify many details of the training process besides the original Mask R-CNN loss,
the learning rate (1e-4), and momentum (0.9). For the reimplementation, we were required to choose all
other parameters by ourselves. We closely followed the Mask R-CNN reference implementation. In addition,
we defined that 20% of the provided challenge data was used for validation purposes and trained the model
for a maximum of 100 epochs, following standard techniques for such networks. Given the complexity of
the optical flow, the training stopped after two days with an AP score of 14.21% at iteration 27,860.

Team www The overall description of team www’s method was very vague and did not cover many
aspects of the network architecture. The team described the usage of a Mask R-CNN combined with a
Dense Atrous Convolution (DAC) block [Gu et al., 2019]. Throughout their description, the team often
cited the general Mask R-CNN architecture [He et al., 2017]. We therefore derived missing information
from this reference. The team described the usage of a ResNet-101, pre-trained on ImageNet, as the
backbone. However, it remained unclear how the team actually integrated the DAC block. They did not
specify whether the residual backbone was integrated as an FPN or in the C4 configuration, as detailed in
He et al. [2017]. For our reimplementation and based on He et al. [2017], we assumed that the backbone
was implemented using an Feature Pyramid Network (FPN) configuration, as this was found to perform
better than the C4 configuration. DAC blocks were originally proposed for U-Nets, not in the Mask R-CNN
context, making the adaption without further details difficult to interpret. In consideration of Gu et al.
[2019]’s work, we decided to place the DAC block at the end of the final convolutional ResNet-101 block
before it was fed into the corresponding feature pyramid convolution. However, other interpretations
would have been possible, such as the DAC block being at the end of the final convolutional layer with
the ResNet-101 in C4 configuration. The team specified that the method was written in Keras [Chol-
let et al., 2015] and we assumed that they used the most popular Mask R-CNN Keras implementation
[Matterport, 2017] and derived missing information from this repository, such as the anchor scales and ratios.

For training, team www used a batch size of 2 and randomly augmented images by rotations of [0◦, 10◦] in
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addition to horizontal and vertical flips. The Adam optimizer was applied with an initial learning rate of 1e-4,
which was divided by 10 after every 10,000 iterations. A weight decay of 5e-3 was used. The team described
a mixture of the smooth L1 loss, the focal loss, and the BCE loss. The team did not reveal information on
the number of training epochs but mentioned that the training ran for one day. We therefore mimicked this
number by training for a maximum of 70 epochs, which was roughly equivalent to one day of training in our
experimental setup. We picked the best model for team www at epoch 44 with a loss of 0.68.

A.6 RobustMIS challenge design document
This section contains the complete design document for the Robust Medical Instrument Segmentation
(RobustMIS) challenge§. Updates after acceptance of the challenge are highlighted in green. To protect
personal information, we will not show the challenge organization section of the challenge.

Summary
Title Robust Medical Instrument Segmentation Challenge 2019
Acronym RobustMIS 2019
Abstract Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and

robot assisted interventions. Although previous challenges have targeted the task of detecting,
segmenting and tracking medical instruments based on endoscopic video images, key issues remain
to be addressed:

1. The methods proposed still tend to fail when applied to challenging images (e.g. in the presence
of blood, smoke or motion artifacts) and

2. algorithms trained for a specific intervention in a specific hospital typically do not generalize.

The goal of this challenge is, therefore, the benchmarking of algorithms for medical instrument
segmentation with a specific emphasis on the robustness and generalization capabilities of the
methods. The challenge is based on the biggest annotated data set made (to be made) available in
the field, comprising more than 10,000 annotated images that have been extracted from a total of 30
surgical procedures from three different surgery types.

Keywords Instrument segmentation, multiple instance segmentation, instrument detection, minimally
invasive surgery, robustness, generalization

Mission of the challenge
Field of application Intervention assistance.
Task categories 1) Binary segmentation, 2) Multiple instance segmentation, 3) Multiple instance detection
Target cohort Patients undergoing minimally invasive surgery.
Challenge cohort Patients undergoing rectal resection, proctocolectomy or UNKNOWN SURGERY (will be

made public after the docker submission deadline).
Imaging modality Laparoscopic video.
Context information corresponding to the image data A whole surgical video and information on the type

of surgery performed is provided for each training case. No additional information is given for the
test cases.

§Please refer to https://www.synapse.org/Portal/filehandle?ownerId=syn18779624&ownerType=ENTITY&fileN
ame=RobustMIS2019_Design.pdf&preview=false&wikiId=591266 for reference.

https://www.synapse.org/Portal/filehandle?ownerId=syn18779624&ownerType=ENTITY&fileName=RobustMIS2019_Design.pdf&preview=false&wikiId=591266
https://www.synapse.org/Portal/filehandle?ownerId=syn18779624&ownerType=ENTITY&fileName=RobustMIS2019_Design.pdf&preview=false&wikiId=591266
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Context information corresponding to the patient in general None.
Data origin An abdomen shown in laparoscopic video data.
Algorithm target An elongated rigid object put into the patient and then manipulated directly from outside

the patient. Examples: grasper, scalpel, trocar. Counterexamples: non-rigid tubes, bandage, needle
(not directly manipulated from outside but manipulated with an instrument). Please refer to https:
//www.synapse.org/Portal/filehandle?ownerId=syn18779624&ownerType=ENTITY&fileName=La
belingInstructions.pdf&preview=false&wikiId=592660 for further details.

Assessment aims 1) Identify robust methods for instrument detection, binary instrument segmentation
and multiple instance segmentation. 2) Assess generalization capabilities of the methods proposed.
3) Identify which image properties (e.g. smoke, bleeding, motion artifacts) makes images particularly
challenging to process.

Challenge data sets
Acquisition devices Laparoscopic camera Karl Storz Image 1 with a 30◦ optic (Karl Storz SE & Co KG). As a

light source Karl Storz Xenon 300 was used.
Acquisition protocol Data acquisition took place during daily routine procedures with the integrated oper-

ating room (Karl Storz OR1 FUSION ®). Video data was then anonymized by excluding parts of the
video displaying parts outside the abdomen. Image resolution was downscaled from 1920 × 1080
(HD) in the primary video to 960 × 540.

Center Institute: Heidelberg University Hospital, Department of Surgery
Characteristics of the subjects No characteristics available due to fully anonymized data.
Definition of cases A training cases encompasses a 10 second video snipped in form of 250 endoscopic

image frames and a reference annotation for the last frame. In the annotated frame, a "0" indicates
the absence of a medical instrument and

- (Binary segmentation) the number "1" represents a medical instrument.
- (Multiple instance segmentation and detection) numbers "1", "2", ... represent different instances

of medical instruments.

The test cases are identical in format but do not include a reference annotation. For training images,
the entire corresponding video is provided as context information along with information on the
surgery type.

Total number of cases Videos from 30 surgical procedures corresponding to three different surgery types
(10 rectal resection, 10 proctocolectomy, 10 UNKNOWN SURGERY) served as a basis for this challenge.
From these 30 procedures, a total of 10,040 training and test cases were extracted according to the
following procedure:

Algorithm 4 Frame extraction for the Robust Medical Instrument Segmentation (RobustMIS) challenge
1: for surgery type s in {rectal resection, proctocolectomy, UNKNOWN SURGERY} do
2: for procedure 1, . . . , 10 in surgery type s do
3: Extract frame
4: if the frame is blue (modified for anonymization reasons) then
5: Ignore it
6: else
7: Add its ID to the IDs of the challenge data set
8: end if
9: end for

10: end for

https://www.synapse.org/Portal/filehandle?ownerId=syn18779624&ownerType=ENTITY&fileName=LabelingInstructions.pdf&preview=false&wikiId=592660
https://www.synapse.org/Portal/filehandle?ownerId=syn18779624&ownerType=ENTITY&fileName=LabelingInstructions.pdf&preview=false&wikiId=592660
https://www.synapse.org/Portal/filehandle?ownerId=syn18779624&ownerType=ENTITY&fileName=LabelingInstructions.pdf&preview=false&wikiId=592660
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This resulted in a total of 4,456 frames (corresponding to the extracted IDs) to be annotated. To obtain
at least 10,000 annotated frames in total, additional frames in interesting parts (phase transitions)
were obtained using the following protocol:

Algorithm 5 Frame extraction (phase transition) for the Robust Medical Instrument Segmentation (RobustMIS)
challenge

1: for surgery type s in {rectal resection, proctocolectomy, UNKNOWN SURGERY} do
2: for procedure 9 and 10 in surgery type s (8, . . . , 10 if s== rectal resection) do
3: for each phase transition in the video do
4: Extract frame
5: if the frame is blue (modified for anonymization reasons) then
6: Ignore it
7: else
8: Add its ID to the IDs of the challenge data set
9: end if

10: end for
11: end for
12: end for

This procedure led to 10,040 frames in total. The extracted frames were annotated (see parameter 23)
and complemented by the 249 preceding frames to form the training and test cases for the challenge.
The performance assessment for the challenge will be performed in three stages.

- Stage 1: The test data is taken from the procedures (patients) from which the training data were
extracted.

- Stage 2: The test data is taken from the exact same type of surgery as the training data but from
procedures (patients) not included in the training data.

- Stage 3: The test data is taken from a different but similar type of surgery (and different patients)
compared to the training data.

To achieve this, the data of all 10 procedures from on surgery type (UNKNOWN SURGERY) was reserved
for testing in Stage 3. From the remaining 20 procedures, 80% were reserved for training and 20% (i.e.
two procedures from each type) for testing in Stage 2. More specifically, the two patients with the
lowest number of annotated frames were taken as test data for Stage 2 (for both, rectal resection
and proctocolectomy). For Stage 1, every 10th annotated case from the remaining 2·(10 - 2) = 16
procedures was used.

UPDATE: While all training and test cases were used for the multiple instance detection task, cases
not showing an instrument in the image were removed from training and test sets for the binary and
multiple instance segmentation tasks. No validation cases are provided by the organizers; hence, it is
up to the challenge participants to split the training and validation data. This all led to a total of:

• Training cases: 5,983 cases in total (2,943 cases for the proctocolectomy surgery and 3,040 cases
for the rectal resection surgery)

• Test data:
- Stage 1: 663 cases in total (325 cases for the proctocolectomy surgery and 338 cases for the

rectal resection surgery)
- Stage 2: 514 cases (225 cases for the proctocolectomy surgery and 289 cases for the rectal

resection surgery)
- Stage 3: 2,880 cases for the UNKNOWN SURGERY
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Explanation of total number All data from a specific surgery type was reserved for testing (Stage 3) to
test generalization capabilities of the methods. The ratio 80%/20% (Stage 2) is commonly used in
challenges.

Further important characteristics of the cases No further important characteristics.
Annotation procedure Each case was annotated according to the following procedure:

1. Initialization: The company UnderstandAI extracted video frames as described in parameter 22b
and did an initial segmentation for the extracted frames.

2. Refinement:
(a) The challenge organizers analyzed the annotations provided, identified inconsistencies

and agreed on an annotation protocol.
(b) A team of 15 engineers analyzed all annotations again and refined them according to the

annotation protocol if necessary. In ambiguous/unclear cases, a team of two engineers
and one medical student generated a consensus annotation.

3. Quality control:
(a) A medical expert went through the refined segmentations and reported potential errors.
(b) An engineer did the refinement according to the instructions of the medical expert.

4. Final check: After refinement, a medical expert checked the refined annotations together with
the engineer for possible final correction.

Annotation protocol See separate document: https://www.synapse.org/Portal/filehandle?ownerId=s
yn18779624&ownerType=ENTITY&fileName=LabelingInstructions.pdf&preview=false&wikiId=59
2660

Data pre-processing methods For each frame that had to be segmented, 249 previous frames were also
extracted. All frames were saved as .ong using the python-opencv2 library. The 249 video frames were
then compressed using .zip and must be extracted before use. The annotation masks were stored as
binary images in .png format. This process was identical for both training and test data.

Sources of error As each case was analyzed by multiple annotators, errors in annotation can mainly be
attributed to image quality (i.e. the inherent ambiguity of the problem when relying solely on the
image data).

Assessment methods
Metrics The following metrics were calculated:

- Binary segmentation: Dice Similarity Coefficient (DSC) and Normalized Surface Distance (NSD)
- Multiple instance segmentation: Multi-Instance Dice Similarity Coefficient (MI DSC) and Multi-

Instance Normalized Surface Distance (MI NSD)
- Multiple instance detection (UPDATE): The F1 Score will be computed according to the following

procedure:

https://www.synapse.org/Portal/filehandle?ownerId=syn18779624&ownerType=ENTITY&fileName=LabelingInstructions.pdf&preview=false&wikiId=592660
https://www.synapse.org/Portal/filehandle?ownerId=syn18779624&ownerType=ENTITY&fileName=LabelingInstructions.pdf&preview=false&wikiId=592660
https://www.synapse.org/Portal/filehandle?ownerId=syn18779624&ownerType=ENTITY&fileName=LabelingInstructions.pdf&preview=false&wikiId=592660
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Algorithm 6 Computation of the F1 Score for the multiple instance detection task of the Robust Medical
Instrument Segmentation (RobustMIS) challenge.

1: Compute matching matrix: For each instrument instance i in the reference output (represented
by a specific ID > 0) and each instance j in the participant’s output, mij is set to the Intersection
over Union (IoU).

2: if mij < 0.3 then
3: mij = 0 ("no match")
4: end if
5: Apply the Hungarian algorithm to assign participant’s instances to reference instances. In-

struments with matches are considered True Positive (TP). Reference instances without a
match are considered False Negative (FN). Participant’s instances without a reference match
are considered False Positive (FP).

6: Compute the F1 Score.

Justification of metrics We based our design choice regarding the metrics (MI) DSC and (MI) NSD on the
Medical Segmentation Decathlon (MSD) for the binary and multiple instance segmentation tasks.
UPDATE: We could not use standard object detection metrics such as the Average Precision (AP) for
the multiple instance detection task, as we did not require participants to submit predicted class
scores. Thus, we chose another common per-class counting metric, namely the F1 Score.

Ranking scheme UPDATE: An accuracy ranking and a robustness ranking will be computed for the (MI) DSC
and (MI) NSD metrics for the binary and multiple instance segmentation tasks. Rankings will be
computed for each metric m separately as follows:

Algorithm 7 Accuracy and robustness ranking computation for the Robust Medical Instrument Segmentation
(RobustMIS) challenge.

1: Let T={t1, . . . , tN} be the test cases for a given task.
2: for all participating teams ai for each test case tj do
3: if m(ai, tj) == Not a Number (NaN) then
4: m(ai, tj) =0
5: end if
6: Aggregate metric values m(ai, tj) with the following two aggregation methods

1. Accuracy: Compute the test-based ranking described in Section 2.1.2. This yields the accuracy rank
ra(ai).

2. Robustness: Compute the 5% percentile of all m(ai, tj) to obtain a robustness rank rr(ai) for
algorithm ai

7: end for

For the multiple instance detection task, the computation of the F1 Score is done over the complete
data set. This results in one F1 Score per participant which will determine the ranking. Please be
aware that the number of test cases as well as the number of algorithms generally differ for each
task and stage. This procedure will lead to four separate rankings for both, the binary and multiple
instance segmentation tasks (accuracy and robustness rankings for the (MI) DSC and (MI) NSD) and
one ranking for the multiple instance detection task.

Submissions with missing results Missing cases are set to the worst possible value, namely 0 for all metrics.
Justification of ranking method UPDATE: To address multiple aspects of the challenge purpose, separate

rankings for accuracy and robustness will be computed for Stage 3 of the challenge. We decided to
use a ranking scheme that tends to group algorithms in case of minor performance differences. The
computation of the F1 Score already involves an indirect ranking scheme because only one value per
participant is generated.
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Statistical analyses Stability will be investigated via bootstrapping and hypothesis testing, as it was
identified as an appropriate approach to investigate ranking variability [Maier-Hein et al., 2018].

Further analyses Performance gain based on ensembling the algorithms will be investigated. Common
problems of the submitted methods will be identified.

A.7 MSD challenge design document
This section contains the complete design document for the Medical Segmentation Decathlon (MSD) chal-
lenge. To protect personal information, we will not show the challenge organization section of the challenge.

Summary
Title Medical Segmentation Decathlon
Acronym MSD
Abstract International challenges have become the de facto standard for comparative assessment of

image analysis algorithms. Although segmentation is the most widely investigated medical image
processing task, the various challenges have been organized to focus only on specific clinical tasks.
We organize the Medical Segmentation Decathlon (MSD) – a biomedical image analysis challenge, in
which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis
that a method capable of performing well on multiple tasks will generalize well to a previously
unseen task and potentially outperform a custom-designed solution.

The challenge is composed of two tasks: the development and the mystery phase. The development
phase serves for model development and includes seven open training data sets: Brain, heart,
hippocampus, liver, lung, pancreas and prostate. The mystery phase aims to investigate whether
algorithms are able to generalize to three unseen segmentation tasks: Colon, hepatic vessel and
spleen.

Keywords Image segmentation; Medical image; Deep learning; Grand challenge

Mission of the challenge
Field of application Treatment planning, Assistance, Intervention planning, CAD, Diagnosis, Surgery, Prog-

nosis, Research.
Task categories Segmentation.
Target cohort Development phase:

- Brain: Brain tumor patients with diagnostic Magnetic Resonance Imaging (MRI) scans, including
T1-weighted 3D acquisitions, T1-weighted contrast-enhanced (gadolinium contrast) 3D acquisi-
tions and T2-weighted Fluid-attenuated Inversion Recovery (FLAIR) 3D acquisitions

- Heart: Patients undergoing heart scans
- Hippocampus: Adults with a non-affective psychotic disorder
- Liver: Liver cancer patients with visible tumors
- Lung: Patients with non-small cell lung cancer
- Pancreas: Pancreas cancer patients with visible tumors and cystic lesions
- Prostate: Prostate cancer patients

Mystery Phase:
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- Colon: Patients undergoing resection of primary colon cancer.
- Hepatic Vessel: Patients with a variety of primary and metastatic liver tumors.
- Spleen: Patients undergoing chemotherapy treatment for liver metastases.

Challenge cohort Development phase:

- Brain: Patients diagnosed with either glioblastoma or lower-grade glioma from Multiparametric
Magnetic Resonance Imaging (mp-MRI)

- Heart: Patients from MRI scans of the entire heart acquired during a single cardiac phase (free
breathing with respiratory and Electrocardiogram (ECG) gating)

- Hippocampus: Healthy adults and adults with a non-affective psychotic disorder undergoing a
T1-weighted Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE)

- Liver: Patients with primary cancers and metastatic liver disease, as a consequence of colorectal,
breast, and lung primary cancers

- Lung: Patients with non-small cell lung cancer
- Pancreas: Patients undergoing resection of pancreatic masses
- Prostate: Prostate cancer patients undergoing mp-MRI

Mystery Phase:

- Colon: Patients undergoing resection of primary colon cancer.
- Hepatic Vessel: Patients with a variety of primary and metastatic liver tumors.
- Spleen: Patients undergoing chemotherapy treatment for liver metastases.

Imaging modality Development phase: Brain, Prostate: mp-MRI, Heart, Hippocampus: MRI; Liver, Lung,
Pancreas: Computed Tomography (CT). Mystery Phase: Colon, Hepatic Vessel, Spleen: CT.

Context information corresponding to the image data None.
Context information corresponding to the patient in general None.
Data origin Development phase: Brain, Heart, Hippocampus, Liver, Lung, Pancreas, Prostate. Mystery Phase:

Colon, Hepatic Vessel, Spleen.
Algorithm target Development phase: Brain tumors, left atrium, anterior and posterior of hippocampus,

liver and liver tumor, lung tumor, pancreas and pancreatic tumor mass, prostate Peripheral Zone (PZ)
and Transition Zone (TZ). Mystery Phase: Colon cancer primaries, hepatic vessel and hepatic tumor,
spleen.

Assessment aims Generalizability.

Challenge data sets
A detailed description of the challenge data sets is available in Simpson et al. [2019].

Acquisition devices Development phase:

- Brain: Various devices have been used to acquire the data. The scanners varied from 1T to 3T
- Heart: 1.5T Achieva scanner (Philips Healthcare, Best, The Netherlands)
- Hippocampus: All images were collected on a Philips Achieva scanner (Philips Healthcare, Inc.,

Best, The Netherlands)
- Liver: Various devices have been used to acquire the data
- Lung: Various devices have been used to acquire the data
- Pancreas: Various devices have been used to acquire the data
- Prostate: Various devices have been used to acquire the data
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Mystery Phase:

- Colon: Various devices have been used to acquire the data
- Hepatic Vessel: Various devices have been used to acquire the data
- Spleen: Various devices have been used to acquire the data

Acquisition protocol Development phase:

- Brain: The MRI scans were acquired during routine clinical practice, using different equipment
and acquisition protocols, among 19 different institutions and pooled to create a publicly
available benchmark dataset for the task of segmenting brain tumour sub-regions (i.e., edema,
enhancing, and non-enhancing tumour). All scans were co-registered to a reference atlas space
using the SRI24 brain structure template [Rohlfing et al., 2010], resampled to isotropic voxel
resolution of 1mm3, and skull-stripped using various methods followed by manual refinements.

- Heart: Voxel resolution: 1.25 × 1.25 × 2.7mm3

- Hippocampus: Structural images were acquired with a 3D T1-weighted MPRAGE sequence
(Inversion Time (TI)/Repetition Time (TR)/Echo Time (TE), 860/8.0/3.7 s; 170 sagittal slices;
voxel size, 1.0mm3). Manual tracing of the head, body, and tail of the hippocampus on images
was completed following a previously published protocol. For the purposes of this dataset, the
term hippocampus includes the hippocampus proper (CA1-4 and dentate gyrus) and parts of the
subiculum, which together are more often termed the hippocampal formation. The last slice of
the head of the hippocampus was defined as the coronal slice containing the uncal apex.

- Liver: Some images contained metal artifacts, consistent with real-world clinical scenarios for
abdominal CT. The images were provided with an in-plane resolution of 0.5 to 1.0 mm, and slice
thickness of 0.45 to 6.0mm.

- Lung: Pre-operative thin-section CT scans were obtained with the following acquisition and re-
construction parameters: section thickness, <1.5mm; 120kVp; automatic tube current modulation
range, 100–700mA; tube rotation speed, 0.5s; helical pitch, 0.9-1.0; and a sharp reconstruction
kernel.

- Pancreas: Pitch/table speed 0.984–1.375/39.37–27.50mm; automatic tube current modulation
range, 220–380mA; noise index, 12.5–14; 120kVp; tube rotation speed, 0.7–0.8ms; scan delay,
80–85s; and axial slices reconstructed at 2.5mm intervals.

- Prostate: Manual segmentation of the whole prostate from transverse T2-weighted scans with
resolution 0.6 × 0.6 × 4mm and the apparent diffusion coefficient map (2 × 2 × 4mm) was used.

Mystery Phase:

- Colon: 100–140kVp; exposure time, 500–1,782ms; and tube current, 100–752mA. Reconstruction
parameters were: slice thickness, 1 to 7.5mm; and reconstruction diameter, 274–500mm.

- Hepatic Vessel: 120kVp; exposure time, 500–1,100ms; and tube current, 33–440mA. Images were
reconstructed at a section thickness varying from 2.5 to 5 mm with a standard convolutional
kernel and with a reconstruction diameter range of 360–500mm. Iodinated contrast material
(150mL, Omnipaque 300, GE Healthcare, Chicago, IL, USA) was administered intravenously for
each CT at a rate between 1 and 4cc/s.

- Spleen: 120kVp; exposure time, 500–1,100ms; and tube current, 33–440mA. Images were recon-
structed at a section thickness varying from 2.5 to 5 mm with a standard convolutional kernel
and with a reconstruction diameter range of 360–500mm. Iodinated contrast material (150mL,
Omnipaque 300, GE Healthcare, Chicago, IL, USA) was administered intravenously for each CT at
a rate between 1 and 4cc/s.

Center Development phase:
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- Brain: 1) Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylva-
nia, PA, USA, 2) University of Alabama at Birmingham, AL, USA, 3) Heidelberg University, Germany,
4) University Hospital of Bern, Switzerland, 5) University of Debrecen, Hungary, 6) Henry Ford
Hospital, MI, USA, 7) University of California, CA, USA, 8) MD Anderson Cancer Center, TX, USA, 9)
Emory University, GA, USA, 10) Mayo Clinic, MN, USA, 11) Thomas Jefferson University, PA, USA, 12)
Duke University School of Medicine, NC, USA, 13) Saint Joseph Hospital and Medical Center, AZ,
USA, 14) Case Western Reserve University, OH, USA, 15) University of North Carolina, NC, USA,
16) Fondazione IRCCS Istituto Neurologico Carlo Besta, Italy, 17) Washington University School
of Medicine in St. Louis, MO, USA, and 18) Tata Memorial Centre, Mumbai, India. Data from
institutions 6-16 describe data from http://www.cancerimagingarchive.net/.

- Heart: King’s College London.
- Hippocampus: Vanderbilt University Medical Center.
- Liver: IRCAD Hôpitaux Universitaires.
- Lung: Several centers (The Cancer Imaging Archive).
- Pancreas: Memorial Sloan Kettering Cancer Center.
- Prostate: Radboud University, Nijmegen Medical Centre.

Mystery Phase:

- Colon: Memorial Sloan Kettering Cancer Center.
- Hepatic Vessel: Memorial Sloan Kettering Cancer Center.
- Spleen: Memorial Sloan Kettering Cancer Center.

22a) Definition of cases Development phase:

- Brain and Prostate: Training and test cases both represent a 4D mp-MRI image.
- Heart and Hippocampus: Training and test cases both represent a 3D MRI image.
- Hippocampus: Vanderbilt University Medical Center.
- Liver, Lung and Pancreas: Training and test cases both represent a 3D CT image.

Mystery Phase: Colon, Hepatic Vessel and Spleen: Training and test cases both represent a 3D CT
image.

Total number of cases Development phase:

- Brain: 750 4D volumes (484 Training + 266 Testing)
- Heart: 30 3D volumes (20 Training + 10 Testing)
- Hippocampus: 394 3D volumes (263 Training + 131 Testing)
- Liver: 201 3D volumes (131 Training + 70 Testing)
- Lung: 96 3D volumes (64 Training + 32 Testing)
- Pancreas: 420 3D volumes (282 Training +139 Testing)
- Prostate: 48 4D volumes (32 Training + 16 Testing)

Mystery Phase:

- Colon: 190 3D volumes (126 Training + 64 Testing)
- Hepatic Vessel: 443 3D volumes (303 Training + 140 Testing)
- Spleen: 61 3D volumes (41 Training + 20 Testing)

Explanation of total number 70% training data and 30% test data.
Further important characteristics of the cases Full annotation (pixel level).
Annotation process Development phase:

http://www.cancerimagingarchive.net/
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- Brain: Reference annotations for all tumor sub-regions in all scans were approved by expert
board-certified neuroradiologists.

- Heart: The left atrium appendage, mitral plane, and portal vein end points were segmented by
an expert using an automated tool followed by manual correction.

- Hippocampus: Annotations were performed by expert raters.
- Liver: Annotations of the liver and tumors were performed by radiologists.
- Lung: The tumor region was denoted by an expert thoracic radiologist on a representative CT

cross section using OsiriX [Rosset et al., 2004].
- Pancreas: The pancreatic parenchyma and pancreatic mass (cyst or tumor) were manually

segmented in each slice by an expert abdominal radiologist using the Scout application [Dawant
et al., 2007].

- Prostate: Annotations were performed by expert raters.

Mystery Phase:

- Colon: The colon was manually segmented using ITK Snap [Yushkevich et al., 2016] by an expert
radiologist in body imaging.

- Hepatic Vessel: The liver vessels were semi-automatically segmented using the Scout application.
Briefly, a seed point was drawn on the region of interest and grown using a level-set based
approach. Contours were manually adjusted by an expert abdominal radiologist.

- Spleen: The spleen was semi-automatically segmented using the Scout application. A spline
was drawn on the region of interest and grown using a level-set based approach. Contours were
manually adjusted by an expert abdominal radiologist.

Annotation protocol Specific instructions from each center.
Data pre-processing methods To pre-process data we used FSL library functions. In particular, all images

were transposed (without resampling) to the most approximate right-anterior-superior coordinate
frame, ensuring the data matrix x-y-z direction was consistent using fslreorient2std. Lastly, non-
quantitative modalities (e.g., MRI) were robust min-max scaled to the same range by means of a
mixture of fsl_maths and fsl_stats.

Sources of error Data from several centers/devices and raters may cause inconsistencies.

Assessment methods
Metrics Overlap-based metric: Dice Similarity Coefficient (DSC); boundary-based metric: Normalized Surface

Distance (NSD). For the NSD, tolerance values were based on clinical feedback and consensus, and
were chosen by the clinicians segmenting each organ. NSD was defined at task level and was the
same for all the targets of each task. The value represented what they would consider an acceptable
error for the segmentation they were performing. The following values have been chosen for the
individual tasks (in mm): Brain – 5; Heart – 4; Hippocampus – 1; Liver – 7; Lung – 2; Prostate – 4;
Pancreas – 5; Colon – 4; Hepatic vessel – 3; Spleen – 3.

Justification of metrics The metrics DSC and NSD were chosen due to their popularity, rank stability, and
smooth, well-understood and well-defined behavior when Region of Interest (ROI)s do not overlap.
Having simple and rank-stable metrics also allows the statistical comparison between methods. It is
important to note that the proposed metrics are not task-specific nor task-optimal, and thus, they do
not fulfill the necessary criteria for clinical algorithmic validation of each task.

Ranking scheme A so-called significance score was determined for each algorithm a, separately for each
task/target ROI ci and metric mj ∈ {DSC,NSD} and referred to as si,j(a). The significance score was
computed according to the following four-step process:
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Algorithm 8 Significance ranking for the Medical Segmentation Decathlon (MSD) challenge.
1: Performance assessment per case: Determine performance mj(al, tik) of all algorithms al,

with l = {1, ..., NA}, for all test cases tik, with k = {1, ..., Ni}, where NA is the number of
competing algorithms and Ni is the number of test cases in competition ci. Set mj(al, tik) to
0 if its value is undefined.

2: Statistical tests: Perform a Wilcoxon signed-rank pairwise statistical test between algorithms
(al, al′), with values mj(al, tik)−mj(al′ , tik), for all k = {1, ..., Ni}.

3: Significance scoring: si,j(al) then equals the number of algorithms performing significantly
worse than al, according to the statistical test (per comparison α of 0.05, not adjusted for
multiplicity).

4: Significance ranking: The ranking is computed from the scores si,j(al), with the highest score
(rank 1) corresponding to the best algorithm. Note that shared scores/ranks are possible. If a
task has multiple target ROI, the ranking scheme is applied to each ROI separately, and the
final ranking per task is computed as the mean significance rank.

The final score for each algorithm over all tasks of the development phase (the seven development
tasks) and over all tasks of the mystery phase (the three mystery tasks) was computed as the average
of the respective task’s significance ranks. The full validation algorithm was defined and released
prior to the start of the challenge, and available on the decathlon website (http://medicaldecathl
on.com/files/MSD-Ranking-scheme.pdf).

Submissions with missing results Missing cases are set to the worst possible value, namely 0 for all metrics.
Justification of ranking method The ranking scheme was successfully applied for other well-known chal-

lenges. In addition, this ranking scheme favors groups of algorithms rather than single ones. It takes
into account the hierarchical structure of the data.

Statistical analyses To investigate ranking uncertainty and stability, bootstrapping methods will be applied
with 1,000 bootstrap samples. The statistical analysis will be performed using the open-source R
toolkit challengeR [Wiesenfarth et al., 2021, 2019] for analyzing and visualizing challenge results. The
original rankings computed for the development and mystery phases will be compared to the ranking
lists based on the individual bootstrap samples. The correlation of pairwise rankings was determined
via Kendall tau, which provides values between -1 (for reverse ranking order) and 1 (for identical
ranking order).

A.8 BIAS reporting guideline

http://medicaldecathlon.com/files/MSD-Ranking-scheme.pdf
http://medicaldecathlon.com/files/MSD-Ranking-scheme.pdf
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. c

la
ssific

a
tio

n
,

se
g

m
e

n
ta

tio
n

; se
e

 p
a

ra
m

e
te

r 1
8

) w
ith

 a
 c

o
m

m
o

n
ly

 u
se

d
 te

rm

in
 th

e
 title

.

●
…

 (o
p

tio
n

a
lly

) in
c

lu
d

e
 in

fo
rm

a
tio

n
 o

n
 th

e
 b

io
m

e
d

ic
a

l ta
rg

e
t

a
p

p
lic

a
tio

n
.

●
…

 (o
p

tio
n

a
lly

) in
c

lu
d

e
 th

e
 y

e
a

r fo
r re

p
e

a
te

d
 c

h
a

lle
n

g
e

s w
ith

fix
e

d
 c

y
c

le
.

A
b

stra
c

t 
2

 
P

ro
v

id
e

 a
 su

m
m

a
ry

 o
f th

e
 c

h
a

lle
n

g
e

 p
u

rp
o

se
, d

e
sig

n
 a

n
d

 re
su

lts a
n

d
 

re
p

o
rt th

e
 m

a
in

 c
o

n
c

lu
sio

n
(s). 

K
e

y
w

o
rd

s 
3

 
List th

e
 p

rim
a

ry
 k

e
y

w
o

rd
s th

a
t c

h
a

ra
c

te
rize

 th
e

 c
h

a
lle

n
g

e
. 

IN
TR

O
-

D
U

C
TIO

N
 

C
h

a
lle

n
g

e
 

m
o

tiv
a

tio
n

 a
n

d
 

o
b

je
c

tiv
e

 

4
a

 
P

ro
v

id
e

 a
 g

e
n

e
ra

l in
tro

d
u

c
tio

n
 to

 th
e

 to
p

ic
 fro

m
 a

 b
io

m
e

d
ic

a
l p

o
in

t o
f 

v
ie

w
. Th

is sh
o

u
ld

 in
c

lu
d

e
 th

e
 e

n
v

isio
n

e
d

 b
io

m
e

d
ic

a
l im

p
a

c
t (sh

o
rt-te

rm
 

a
n

d
/o

r lo
n

g
-te

rm
). 

4
b

 
P

ro
v

id
e

 a
 g

e
n

e
ra

l in
tro

d
u

c
tio

n
 to

 th
e

 to
p

ic
 fro

m
 a

 te
c

h
n

ic
a

l p
o

in
t o

f 

v
ie

w
. Th

is sh
o

u
ld

 in
c

lu
d

e
 a

n
 o

v
e

rv
ie

w
 o

f th
e

 sta
te

 o
f th

e
 a

rt a
lo

n
g

 th
e

 

e
n

v
isio

n
e

d
 te

c
h

n
ic

a
l/m

e
th

o
d

o
lo

g
ic

a
l im

p
a

c
t. 

4
c

 
B

a
se

d
 o

n
 th

e
 b

io
m

e
d

ic
a

l a
n

d
 te

c
h

n
ic

a
l m

o
tiv

a
tio

n
, p

ro
v

id
e

 a
 c

o
n

c
ise

 

sta
te

m
e

n
t o

f th
e

 p
rim

a
ry

 c
h

a
lle

n
g

e
 o

b
je

c
tiv

e
. Th

is sh
o

u
ld

 in
c

lu
d

e
 a

 

sta
te

m
e

n
t o

f th
e

 ta
sk

. 

M
E
TH

O
D

S
 

C
h

a
lle

n
g

e
 

o
rg

a
n

i-

za
tio

n
 

C
h

a
lle

n
g

e
 n

a
m

e
 

5
a

 
P

ro
v

id
e

 a
 re

p
re

se
n

ta
tiv

e
 n

a
m

e
 o

f th
e

 c
h

a
lle

n
g

e
. 

E
x
a

m
p

le
: M

IC
C

A
I E

n
d

o
sc

o
p

ic
 V

isio
n

 C
h

a
lle

n
g

e
 2

0
1

5
 

5
b

 
P

ro
v

id
e

 th
e

 a
c

ro
n

y
m

 o
f th

e
 c

h
a

lle
n

g
e

 (if a
n

y
). 

E
x
a

m
p

le
: E

n
d

o
V

is1
5

 

O
rg

a
n

izin
g

 te
a

m
 

6
 

P
ro

v
id

e
 in

fo
rm

a
tio

n
 o

n
 th

e
 o

rg
a

n
izin

g
 te

a
m

 (n
a

m
e

s a
n

d
 a

ffilia
tio

n
s). 

Life
 c

y
c

le
 ty

p
e

 
7

 
D

e
fin

e
 

th
e

 
in

te
n

d
e

d
 

su
b

m
issio

n
 

c
y

c
le

 
o

f 
th

e
 

c
h

a
lle

n
g

e
. 

In
c

lu
d

e
 

in
fo

rm
a

tio
n

 o
n

 w
h

e
th

e
r/h

o
w

 th
e

 c
h

a
lle

n
g

e
 h

a
s b

e
e

n
/w

ill b
e

 c
o

n
tin

u
e

d
 

a
fte

r th
e

 p
re

se
n

t stu
d

y
. 

E
x
a

m
p

le
s:  

●
O

n
e

-tim
e

 e
v

e
n

t w
ith

 fix
e

d
 su

b
m

issio
n

 d
e

a
d

lin
e

B
IA

S
 R

e
p

o
rtin

g
 G

u
id

e
lin

e
 

●
O

p
e

n
 c

a
ll

●
R

e
p

e
a

te
d

 e
v
e

n
t w

ith
 a

n
n

u
a

l fix
e

d
 su

b
m

issio
n

 d
e

a
d

lin
e

C
h

a
lle

n
g

e
 

v
e

n
u

e
 a

n
d

 

p
la

tfo
rm

 

8
a

 
R

e
p

o
rt 

th
e

 
e

v
e

n
t 

(e
.g

. 
c

o
n

fe
re

n
c

e
) 

th
a

t 
w

a
s 

a
sso

c
ia

te
d

 
w

ith
 

th
e

 

c
h

a
lle

n
g

e
 (if a

n
y
). 

8
b

 
R

e
p

o
rt 

th
e

 
p

la
tfo

rm
 

(e
.g

. 
g

ra
n

d
-c

h
a

lle
n

g
e

.o
rg

) 
u

se
d

 
to

 
ru

n
 

th
e

 

c
h

a
lle

n
g

e
. 

8
c

 
P

ro
v

id
e

 th
e

 U
R

L fo
r th

e
 c

h
a

lle
n

g
e

 w
e

b
site

 (if a
n

y
). 

P
a

rtic
ip

a
tio

n
 

p
o

lic
ie

s 

9
a

 
D

e
fin

e
 th

e
 a

llo
w

e
d

 u
se

r in
te

ra
c

tio
n

 o
f th

e
 a

lg
o

rith
m

s a
sse

sse
d

 (e
.g

. o
n

ly
 

(se
m

i-) a
u

to
m

a
tic

 m
e

th
o

d
s a

llo
w

e
d

). 

9
b

 
D

e
fin

e
 th

e
 p

o
lic

y
 o

n
 th

e
 u

sa
g

e
 o

f tra
in

in
g

 d
a

ta
. Th

e
 d

a
ta

 u
se

d
 to

 tra
in

 

a
lg

o
rith

m
s 

m
a

y
, 

fo
r 

e
x
a

m
p

le
, 

h
a

v
e

 
b

e
e

n
 

re
stric

te
d

 
to

 
th

e
 

d
a

ta
 

p
ro

v
id

e
d

 
b

y
 

th
e

 
c

h
a

lle
n

g
e

 
o

r 
to

 
p

u
b

lic
ly

 
a

v
a

ila
b

le
 

d
a

ta
 

in
c

lu
d

in
g

 

(o
p

e
n

) p
re

-tra
in

e
d

 n
e

ts. 

9
c

 
D

e
fin

e
 th

e
 p

a
rtic

ip
a

tio
n

 p
o

lic
y

 fo
r m

e
m

b
e

rs o
f th

e
 o

rg
a

n
ize

rs' in
stitu

te
s. 

F
o

r e
xa

m
p

le
, m

e
m

b
e

rs o
f th

e
 o

rg
a

n
ize

rs' in
stitu

te
s c

o
u

ld
 p

a
rtic

ip
a

te
 in

 

th
e

 c
h

a
lle

n
g

e
 b

u
t w

e
re

 n
o

t e
lig

ib
le

 fo
r a

w
a

rd
s.  

9
d

 
D

e
fin

e
 th

e
 a

w
a

rd
 p

o
lic

y
. In

 p
a

rtic
u

la
r, p

ro
v

id
e

 d
e

ta
ils w

ith
 re

sp
e

c
t to

 

c
h

a
lle

n
g

e
 p

rize
s.  

9
e

 
D

e
fin

e
 th

e
 p

o
lic

y
 fo

r re
su

lts a
n

n
o

u
n

c
e

m
e

n
t. 

E
x
a

m
p

le
s: 

●
To

p
 th

re
e

 p
e

rfo
rm

in
g

 m
e

th
o

d
s w

e
re

 a
n

n
o

u
n

c
e

d
 p

u
b

lic
ly

.

●
P

a
rtic

ip
a

tin
g

 te
a

m
s c

o
u

ld
 c

h
o

o
se

 w
h

e
th

e
r th

e
 p

e
rfo

rm
a

n
c

e

re
su

lts w
ill b

e
 m

a
d

e
 p

u
b

lic
.

9
f 

D
e

fin
e

 th
e

 p
u

b
lic

a
tio

n
 p

o
lic

y
. In

 p
a

rtic
u

la
r, p

ro
v

id
e

 d
e

ta
ils 

o
n

 ...  

●
…

 
w

h
o

 
o

f 
th

e
 
p

a
rtic

ip
a

tin
g

 
te

a
m

s/th
e

 
p

a
rtic

ip
a

tin
g

 
te

a
m

s’

m
e

m
b

e
rs q

u
a

lifie
d

 a
s a

u
th

o
r

●
…

 
w

h
e

th
e

r 
th

e
 
p

a
rtic

ip
a

tin
g

 
te

a
m

s 
c

o
u

ld
 
p

u
b

lish
 
th

e
ir 

o
w

n

re
su

lts se
p

a
ra

te
ly

, a
n

d
 (if so

)

●
…

 w
h

e
th

e
r a

n
 e

m
b

a
rg

o
 tim

e
 w

a
s d

e
fin

e
d

 (so
 th

a
t c

h
a

lle
n

g
e

o
rg

a
n

ize
rs c

a
n

 p
u

b
lish

 a
 c

h
a

lle
n

g
e

 p
a

p
e

r first).

S
u

b
m

issio
n

 

m
e

th
o

d
 

1
0

a
 

D
e

sc
rib

e
 th

e
 m

e
th

o
d

 u
se

d
 fo

r re
su

lt su
b

m
issio

n
. If a

v
a

ila
b

le
, p

ro
v

id
e

 a
 

lin
k
 to

 th
e

 su
b

m
issio

n
 in

stru
c

tio
n

s. 

E
x
a

m
p

le
s: 

●
D

o
c

k
e

r c
o

n
ta

in
e

r o
n

 th
e

 S
y
n

a
p

se
 p

la
tfo

rm
. Lin

k
 to

 su
b

m
issio

n

in
stru

c
tio

n
s: <

U
R

L>

●
A

lg
o

rith
m

 o
u

tp
u

t w
a

s se
n

t to
 o

rg
a

n
ize

rs v
ia

 e
-m

a
il. S

u
b

m
issio

n

in
stru

c
tio

n
s w

e
re

 se
n

t b
y
 e

-m
a

il.

1
0

b
 

P
ro

v
id

e
 in

fo
rm

a
tio

n
 o

n
 th

e
 p

o
ssib

ility
 fo

r p
a

rtic
ip

a
tin

g
 te

a
m

s to
 e

v
a

lu
a

te
 

th
e

ir 
a

lg
o

rith
m

s 
b

e
fo

re
 

su
b

m
ittin

g
 

fin
a

l 
re

su
lts. 

F
o

r 
e

x
a

m
p

le
, 

m
a

n
y
 



B
IA

S
 R

e
p

o
rtin

g
 G

u
id

e
lin

e
 

c
h

a
lle

n
g

e
s a

llo
w

 su
b

m
issio

n
 o

f m
u

ltip
le

 re
su

lts, a
n

d
 o

n
ly

 th
e

 la
st ru

n
 is 

o
ffic

ia
lly

 c
o

u
n

te
d

 to
 c

o
m

p
u

te
 c

h
a

lle
n

g
e

 re
su

lts. 

C
h

a
lle

n
g

e
 

sc
h

e
d

u
le

 

1
1

 
P

ro
v

id
e

 a
 tim

e
ta

b
le

 fo
r th

e
 c

h
a

lle
n

g
e

. P
re

fe
ra

b
ly

, th
is sh

o
u

ld
 in

c
lu

d
e

 

●
th

e
 re

le
a

se
 d

a
te

(s) o
f th

e
 tra

in
in

g
 c

a
se

s (if a
n

y
)

●
th

e
 re

g
istra

tio
n

 d
a

te
/p

e
rio

d

●
th

e
 re

le
a

se
 d

a
te

(s) o
f th

e
 te

st c
a

se
s a

n
d

 v
a

lid
a

tio
n

 c
a

se
s (if

a
n

y
)

●
th

e
 su

b
m

issio
n

 d
a

te
(s)

●
a

sso
c

ia
te

d
 w

o
rk

sh
o

p
 d

a
y
s (if a

n
y
)

●
th

e
 re

le
a

se
 d

a
te

(s) o
f th

e
 re

su
lts

E
th

ic
s a

p
p

ro
v

a
l 

1
2

 
In

d
ic

a
te

 w
h

e
th

e
r e

th
ic

s a
p

p
ro

v
a

l w
a

s n
e

c
e

ssa
ry

 fo
r th

e
 d

a
ta

. If y
e

s, 

p
ro

v
id

e
 d

e
ta

ils o
n

 th
e

 e
th

ic
s a

p
p

ro
v
a

l, p
re

fe
ra

b
ly

 in
stitu

tio
n

a
l re

v
ie

w
 

b
o

a
rd

, 
lo

c
a

tio
n

, 
d

a
te

 
a

n
d

 
n

u
m

b
e

r 
o

f 
th

e
 

e
th

ic
s 

a
p

p
ro

v
a

l 
(if 

a
p

p
lic

a
b

le
). A

d
d

 th
e

 U
R

L o
r a

 re
fe

re
n

c
e

 to
 th

e
 d

o
c

u
m

e
n

t o
f th

e
 e

th
ic

s 

a
p

p
ro

v
a

l (if a
v

a
ila

b
le

). 

D
a

ta
 u

sa
g

e
 

a
g

re
e

m
e

n
t 

1
3

 
C

la
rify

 h
o

w
 th

e
 d

a
ta

 c
a

n
 b

e
 u

se
d

 a
n

d
 d

istrib
u

te
d

 b
y
 th

e
 te

a
m

s th
a

t 

p
a

rtic
ip

a
te

 
in

 
th

e
 
c

h
a

lle
n

g
e

 
a

n
d

 
b

y
 
o

th
e

rs. 
Th

is 
sh

o
u

ld
 
in

c
lu

d
e

 
th

e
 

e
x
p

lic
it listin

g
 o

f th
e

 lic
e

n
se

 a
p

p
lie

d
. 

E
x
a

m
p

le
s: 

●
C

C
 B

Y
 (A

ttrib
u

tio
n

)

●
C

C
 B

Y
-S

A
 (A

ttrib
u

tio
n

-S
h

a
re

A
lik

e
)

●
C

C
 B

Y
-N

D
 (A

ttrib
u

tio
n

-N
o

D
e

riv
s)

●
C

C
 B

Y
-N

C
 (A

ttrib
u

tio
n

-N
o

n
C

o
m

m
e

rc
ia

l)

●
C

C
 B

Y
-N

C
-S

A
 (A

ttrib
u

tio
n

-N
o

n
C

o
m

m
e

rc
ia

l-S
h

a
re

A
lik

e
)

●
C

C
 B

Y
-N

C
-N

D
 (A

ttrib
u

tio
n

-N
o

n
C

o
m

m
e

rc
ia

l-N
o

D
e

riv
s)

C
o

d
e

 

a
v

a
ila

b
ility

 

1
4

a
 

P
ro

v
id

e
 in

fo
rm

a
tio

n
 o

n
 th

e
 a

c
c

e
ssib

ility
 o

f th
e

 o
rg

a
n

ize
rs' e

v
a

lu
a

tio
n

 

so
ftw

a
re

 (e
.g

. c
o

d
e

 to
 p

ro
d

u
c

e
 ra

n
k
in

g
s). P

re
fe

ra
b

ly
, p

ro
v

id
e

 a
 lin

k
 to

 

th
e

 c
o

d
e

 a
n

d
 a

d
d

 in
fo

rm
a

tio
n

 o
n

 th
e

 su
p

p
o

rte
d

 p
la

tfo
rm

s. 

1
4

b
 

In
 a

n
 a

n
a

lo
g

o
u

s m
a

n
n

e
r, p

ro
v

id
e

 in
fo

rm
a

tio
n

 o
n

 th
e

 a
c

c
e

ssib
ility

 o
f th

e
 

p
a

rtic
ip

a
tin

g
 te

a
m

s' c
o

d
e

. 

C
o

n
flic

ts o
f 

in
te

re
st 

1
5

 
P

ro
v

id
e

 in
fo

rm
a

tio
n

 re
la

te
d

 to
 c

o
n

flic
ts o

f in
te

re
st. In

 p
a

rtic
u

la
r p

ro
v

id
e

 

in
fo

rm
a

tio
n

 re
la

te
d

 to
 sp

o
n

so
rin

g
/fu

n
d

in
g

 o
f th

e
 c

h
a

lle
n

g
e

. A
lso

, sta
te

 

e
x
p

lic
itly

 w
h

o
 h

a
d

 a
c

c
e

ss to
 th

e
 te

st c
a

se
 la

b
e

ls a
n

d
 w

h
e

n
. 

A
u

th
o

r 

c
o

n
trib

u
tio

n
s 

1
6

 
List 

th
e

 
c

o
n

trib
u

tio
n

s 
o

f 
a

ll 
a

u
th

o
rs 

to
 
th

e
 
p

a
p

e
r 

(p
re

fe
ra

b
ly

 
in

 
th

e
 

a
p

p
e

n
d

ix
). 

M
E
TH

O
D

S
 

M
issio

n
 o

f 

th
e

 

c
h

a
lle

n
g

e
 

F
ie

ld
(s) o

f 

a
p

p
lic

a
tio

n
 

1
7

 
S
ta

te
 th

e
 m

a
in

 fie
ld

(s) o
f a

p
p

lic
a

tio
n

 th
a

t th
e

 p
a

rtic
ip

a
tin

g
 a

lg
o

rith
m

s 

ta
rg

e
t. 

E
x
a

m
p

le
s: 

●
D

ia
g

n
o

sis

●
E
d

u
c

a
tio

n

●
In

te
rv

e
n

tio
n

 a
ssista

n
c

e

B
IA

S
 R

e
p

o
rtin

g
 G

u
id

e
lin

e
 

●
In

te
rv

e
n

tio
n

 fo
llo

w
-u

p

●
In

te
rv

e
n

tio
n

 p
la

n
n

in
g

●
P

ro
g

n
o

sis

●
R

e
se

a
rc

h

●
S
c

re
e

n
in

g

●
Tra

in
in

g

●
C

ro
ss-p

h
a

se

Ta
sk

 

c
a

te
g

o
ry

(ie
s) 

1
8

 
S
ta

te
 th

e
 ta

sk
 c

a
te

g
o

ry
(ie

s). 

E
x
a

m
p

le
s: 

●
C

la
ssific

a
tio

n

●
D

e
te

c
tio

n

●
Lo

c
a

liza
tio

n

●
M

o
d

e
lin

g

●
P

re
d

ic
tio

n

●
R

e
c

o
n

stru
c

tio
n

●
R

e
g

istra
tio

n

●
R

e
trie

v
a

l

●
S
e

g
m

e
n

ta
tio

n

●
Tra

c
k
in

g

C
o

h
o

rts 
W

e
 d

istin
g

u
ish

 b
e

tw
e

e
n

 th
e

 ta
rg

e
t c

o
h

o
rt a

n
d

 th
e

 c
h

a
lle

n
g

e
 c

o
h

o
rt. F

o
r e

xa
m

p
le

, a
 c

h
a

lle
n

g
e

 

c
o

u
ld

 b
e

 d
e

sig
n

e
d

 a
ro

u
n

d
 th

e
 ta

sk
 o

f m
e

d
ic

a
l in

stru
m

e
n

t tra
c

k
in

g
 in

 ro
b

o
tic

 k
id

n
e

y
 su

rg
e

ry
. 

W
h

ile
 th

e
 c

h
a

lle
n

g
e

 c
o

u
ld

 b
e

 b
a

se
d

 o
n

 e
x
 v

iv
o

 d
a

ta
 o

b
ta

in
e

d
 fro

m
 a

 la
p

a
ro

sc
o

p
ic

 tra
in

in
g

 

e
n

v
iro

n
m

e
n

t 
w

ith
 
p

o
rc

in
e

 
o

rg
a

n
s 

(c
h

a
lle

n
g

e
 
c

o
h

o
rt), 

th
e

 
fin

a
l 

b
io

m
e

d
ic

a
l 

a
p

p
lic

a
tio

n
 
(i.e

. 

ro
b

o
tic

 k
id

n
e

y
 su

rg
e

ry
) w

o
u

ld
 b

e
 ta

rg
e

te
d

 o
n

 re
a

l p
a

tie
n

ts w
ith

 c
e

rta
in

 c
h

a
ra

c
te

ristic
s d

e
fin

e
d

 

b
y
 in

c
lu

sio
n

 c
rite

ria
 su

c
h

 a
s re

stric
tio

n
s re

g
a

rd
in

g
 g

e
n

d
e

r o
r a

g
e

 (ta
rg

e
t c

o
h

o
rt). 

1
9

a
 

D
e

sc
rib

e
 th

e
 ta

rg
e

t c
o

h
o

rt, i.e
. th

e
 su

b
je

c
ts/o

b
je

c
ts fro

m
 w

h
o

m
/w

h
ic

h
 

th
e

 d
a

ta
 w

o
u

ld
 b

e
 a

c
q

u
ire

d
 in

 th
e

 fin
a

l b
io

m
e

d
ic

a
l a

p
p

lic
a

tio
n

. 

1
9

b
 

D
e

sc
rib

e
 

th
e

 
c

h
a

lle
n

g
e

 
c

o
h

o
rt, 

i.e
. 

th
e

 
su

b
je

c
t(s)/o

b
je

c
t(s) 

fro
m

 

w
h

o
m

/w
h

ic
h

 th
e

 c
h

a
lle

n
g

e
 d

a
ta

 w
a

s a
c

q
u

ire
d

. 

Im
a

g
in

g
 

m
o

d
a

lity
(ie

s) 

2
0

 
S
p

e
c

ify
 th

e
 im

a
g

in
g

 te
c

h
n

iq
u

e
(s) a

p
p

lie
d

 in
 th

e
 c

h
a

lle
n

g
e

. 

C
o

n
te

x
t 

in
fo

rm
a

tio
n

 

P
ro

v
id

e
 a

d
d

itio
n

a
l in

fo
rm

a
tio

n
 g

iv
e

n
 a

lo
n

g
 w

ith
 th

e
 im

a
g

e
s. Th

e
 in

fo
rm

a
tio

n
 m

a
y
 c

o
rre

sp
o

n
d

 ... 

2
1

a
 

…
 

d
ire

c
tly

 
to

 
th

e
 

im
a

g
e

 
d

a
ta

 
(e

.g
. 

tu
m

o
r 

v
o

lu
m

e
). 

If 
n

e
c

e
ssa

ry
, 

d
iffe

re
n

tia
te

 b
e

tw
e

e
n

 ta
rg

e
t a

n
d

 c
h

a
lle

n
g

e
 c

o
h

o
rt. 

2
1

b
 

…
 to

 th
e

 p
a

tie
n

t in
 g

e
n

e
ra

l (e
.g

. g
e

n
d

e
r, m

e
d

ic
a

l h
isto

ry
). If n

e
c

e
ssa

ry
, 

d
iffe

re
n

tia
te

 b
e

tw
e

e
n

 ta
rg

e
t a

n
d

 c
h

a
lle

n
g

e
 c

o
h

o
rt. 

2
1

c
 

…
 

to
 

th
e

 
a

c
q

u
isitio

n
 

p
ro

c
e

ss 
(e

.g
. 

m
e

d
ic

a
l 

d
e

v
ic

e
 

d
a

ta
 

d
u

rin
g

 

e
n

d
o

sc
o

p
ic

 
su

rg
e

ry
, 

c
a

lib
ra

tio
n

 
d

a
ta

 
fo

r 
a

n
 

im
a

g
e

 
m

o
d

a
lity

). 
If 

n
e

c
e

ssa
ry

, d
iffe

re
n

tia
te

 b
e

tw
e

e
n

 ta
rg

e
t a

n
d

 c
h

a
lle

n
g

e
 c

o
h

o
rt. 

Ta
rg

e
t e

n
tity

(ie
s) 

2
2

a
 

D
e

sc
rib

e
 th

e
 d

a
ta

 o
rig

in
, i.e

. th
e

 re
g

io
n

(s)/p
a

rt(s) o
f su

b
je

c
t(s)/o

b
je

c
t(s) 

fro
m

 
w

h
o

m
/w

h
ic

h
 
th

e
 
im

a
g

e
 
d

a
ta

 
w

o
u

ld
 
b

e
 
a

c
q

u
ire

d
 
in

 
th

e
 
fin

a
l 



B
IA

S
 R

e
p

o
rtin

g
 G

u
id

e
lin

e
 

b
io

m
e

d
ic

a
l a

p
p

lic
a

tio
n

 (e
.g

. b
ra

in
 sh

o
w

n
 in

 c
o

m
p

u
te

d
 to

m
o

g
ra

p
h

y
 

(C
T) 

d
a

ta
, 

a
b

d
o

m
e

n
 
sh

o
w

n
 
in

 
la

p
a

ro
sc

o
p

ic
 
v

id
e

o
 
d

a
ta

, 
o

p
e

ra
tin

g
 

ro
o

m
 

sh
o

w
n

 
in

 
v

id
e

o
 

d
a

ta
, 

th
o

ra
x 

sh
o

w
n

 
in

 
flu

o
ro

sc
o

p
y
 

v
id

e
o

). 
If 

n
e

c
e

ssa
ry

, d
iffe

re
n

tia
te

 b
e

tw
e

e
n

 ta
rg

e
t a

n
d

 c
h

a
lle

n
g

e
 c

o
h

o
rt. 

2
2

b
 

D
e

sc
rib

e
 

th
e

 
a

lg
o

rith
m

 
ta

rg
e

t, 
i.e

. 
th

e
 

stru
c

tu
re

(s)/su
b

je
c

t(s)/o
b

je
c

t(s)/c
o

m
p

o
n

e
n

t(s) 
th

a
t 

th
e

 
p

a
rtic

ip
a

tin
g

 

a
lg

o
rith

m
s h

a
v

e
 b

e
e

n
 d

e
sig

n
e

d
 to

 fo
c

u
s o

n
 (e

.g
. tu

m
o

r in
 th

e
 b

ra
in

, tip
 

o
f a

 m
e

d
ic

a
l in

stru
m

e
n

t, n
u

rse
 in

 a
n

 o
p

e
ra

tin
g

 th
e

a
te

r, c
a

th
e

te
r in

 a
 

flu
o

ro
sc

o
p

y
 

sc
a

n
). 

If 
n

e
c

e
ssa

ry
, 

d
iffe

re
n

tia
te

 
b

e
tw

e
e

n
 

ta
rg

e
t 

a
n

d
 

c
h

a
lle

n
g

e
 c

o
h

o
rt. 

A
sse

ssm
e

n
t 

a
im

(s) 

2
3

 
Id

e
n

tify
 th

e
 p

ro
p

e
rty

(ie
s) o

f th
e

 a
lg

o
rith

m
s to

 b
e

 o
p

tim
ize

d
 to

 p
e

rfo
rm

 

w
e

ll in
 th

e
 c

h
a

lle
n

g
e

. If m
u

ltip
le

 p
ro

p
e

rtie
s w

e
re

 a
sse

sse
d

, p
rio

ritize
 th

e
m

 

(if a
p

p
ro

p
ria

te
). Th

e
 p

ro
p

e
rtie

s sh
o

u
ld

 th
e

n
 b

e
 re

fle
c

te
d

 in
 th

e
 m

e
tric

s 

a
p

p
lie

d
 (p

a
ra

m
e

te
r 2

9
), a

n
d

 th
e

 p
rio

ritie
s sh

o
u

ld
 b

e
 re

fle
c

te
d

 in
 th

e
 

ra
n

k
in

g
 

w
h

e
n

 
c

o
m

b
in

in
g

 
m

u
ltip

le
 

m
e

tric
s 

th
a

t 
a

sse
ss 

d
iffe

re
n

t 

p
ro

p
e

rtie
s. 

●
E
x
a

m
p

le
 1

: F
in

d
 liv

e
r se

g
m

e
n

ta
tio

n
 a

lg
o

rith
m

 fo
r C

T im
a

g
e

s th
a

t

p
ro

c
e

sse
s C

T im
a

g
e

s o
f a

 c
e

rta
in

 size
 in

 le
ss th

a
n

 a
 m

in
u

te
 o

n
 a

c
e

rta
in

 h
a

rd
w

a
re

 w
ith

 a
n

 e
rro

r th
a

t re
fle

c
ts in

te
r-ra

te
r v

a
ria

b
ility

o
f e

x
p

e
rts.

●
E
x
a

m
p

le
 

2
: 

F
in

d
 

lu
n

g
 

tu
m

o
r 

d
e

te
c

tio
n

 
a

lg
o

rith
m

 
w

ith
 

h
ig

h

se
n

sitiv
ity

 a
n

d
 sp

e
c

ific
ity

 fo
r m

a
m

m
o

g
ra

p
h

y
 im

a
g

e
s.

C
o

rre
sp

o
n

d
in

g
 m

e
tric

s a
re

 liste
d

 b
e

lo
w

 (p
a

ra
m

e
te

r 2
9

). 

M
E
TH

O
D

S
 

C
h

a
lle

n
g

e
 

d
a

ta
 se

ts 

D
a

ta
 so

u
rc

e
(s) 

2
4

a
 

S
p

e
c

ify
 th

e
 d

e
v

ic
e

(s) u
se

d
 to

 a
c

q
u

ire
 th

e
 c

h
a

lle
n

g
e

 d
a

ta
. Th

is in
c

lu
d

e
s 

d
e

ta
ils 

o
n

 
th

e
 

d
e

v
ic

e
(s) 

u
se

d
 

to
 

a
c

q
u

ire
 

th
e

 
im

a
g

in
g

 
d

a
ta

 
(e

.g
. 

m
a

n
u

fa
c

tu
re

r) a
s w

e
ll a

s in
fo

rm
a

tio
n

 o
n

 a
d

d
itio

n
a

l d
e

v
ic

e
s u

se
d

 fo
r 

p
e

rfo
rm

a
n

c
e

 
a

sse
ssm

e
n

t 
(e

.g
. 

tra
c

k
in

g
 

sy
ste

m
 

u
se

d
 

in
 

a
 

su
rg

ic
a

l 

se
ttin

g
). 

2
4

b
 

D
e

sc
rib

e
 re

le
v

a
n

t d
e

ta
ils o

n
 th

e
 im

a
g

in
g

 p
ro

c
e

ss/d
a

ta
 a

c
q

u
isitio

n
 fo

r 

e
a

c
h

 a
c

q
u

isitio
n

 d
e

v
ic

e
 (e

.g
. im

a
g

e
 a

c
q

u
isitio

n
 p

ro
to

c
o

l(s)). 

2
4

c
 

S
p

e
c

ify
 th

e
 c

e
n

te
r(s)/in

stitu
te

(s) in
 w

h
ic

h
 th

e
 d

a
ta

 w
a

s a
c

q
u

ire
d

 a
n

d
/o

r 

th
e

 
d

a
ta

 
p

ro
v

id
in

g
 
p

la
tfo

rm
/so

u
rc

e
 
(e

.g
. 

p
re

v
io

u
s 

c
h

a
lle

n
g

e
). 

If 
th

is 

in
fo

rm
a

tio
n

 is n
o

t p
ro

v
id

e
d

 (e
.g

. fo
r a

n
o

n
y
m

iza
tio

n
 re

a
so

n
s), sp

e
c

ify
 

w
h

y
. 

2
4

d
 

D
e

sc
rib

e
 re

le
v

a
n

t c
h

a
ra

c
te

ristic
s (e

.g
. le

v
e

l o
f e

x
p

e
rtise

) o
f th

e
 su

b
je

c
ts 

(e
.g

. 
su

rg
e

o
n

)/o
b

je
c

ts 
(e

.g
. 

ro
b

o
t) 

in
v

o
lv

e
d

 
in

 
th

e
 
d

a
ta

 
a

c
q

u
isitio

n
 

p
ro

c
e

ss (if a
n

y
). 

Tra
in

in
g

 a
n

d
 te

st 

c
a

se
 

c
h

a
ra

c
te

ristic
s 

2
5

a
 

S
ta

te
 w

h
a

t is m
e

a
n

t b
y
 o

n
e

 c
a

se
 in

 th
is c

h
a

lle
n

g
e

. A
 c

a
se

 e
n

c
o

m
p

a
sse

s 

a
ll d

a
ta

 th
a

t is p
ro

c
e

sse
d

 to
 p

ro
d

u
c

e
 o

n
e

 re
su

lt th
a

t is th
e

n
 c

o
m

p
a

re
d

 

to
 th

e
 c

o
rre

sp
o

n
d

in
g

 re
fe

re
n

c
e

 re
su

lt (i.e
. th

e
 d

e
sire

d
 a

lg
o

rith
m

 o
u

tp
u

t). 

B
IA

S
 R

e
p

o
rtin

g
 G

u
id

e
lin

e
 

E
x
a

m
p

le
s: 

●
Tra

in
in

g
 
a

n
d

 
te

st 
c

a
se

s 
b

o
th

 
re

p
re

se
n

te
d

 
a

 
C

T 
im

a
g

e
 
o

f 
a

h
u

m
a

n
 b

ra
in

. Tra
in

in
g

 c
a

se
s h

a
d

 a
 w

e
a

k
 a

n
n

o
ta

tio
n

 (tu
m

o
r

p
re

se
n

t o
r n

o
t a

n
d

 tu
m

o
r v

o
lu

m
e

 (if a
n

y
)) w

h
ile

 th
e

 te
st c

a
se

s

w
e

re
 a

n
n

o
ta

te
d

 w
ith

 th
e

 tu
m

o
r c

o
n

to
u

r (if a
n

y
).

●
A

 
c

a
se

 
re

fe
rs 

to
 

a
ll 

in
fo

rm
a

tio
n

 
th

a
t 

is 
a

v
a

ila
b

le
 

fo
r 

o
n

e

p
a

rtic
u

la
r p

a
tie

n
t in

 a
 sp

e
c

ific
 stu

d
y
. Th

is in
fo

rm
a

tio
n

 a
lw

a
y
s

in
c

lu
d

e
s th

e
 im

a
g

e
 in

fo
rm

a
tio

n
 a

s sp
e

c
ifie

d
 in

 d
a

ta
 so

u
rc

e
(s)

(p
a

ra
m

e
te

r 
2

4
) 

a
n

d
 

m
a

y
 

in
c

lu
d

e
 

c
o

n
te

x
t 

in
fo

rm
a

tio
n

(p
a

ra
m

e
te

r 2
1

). B
o

th
 tra

in
in

g
 a

n
d

 te
st c

a
se

s w
e

re
 a

n
n

o
ta

te
d

w
ith

 su
rv

iv
a

l (b
in

a
ry

) 5
 y

e
a

rs a
fte

r (first) im
a

g
e

 w
a

s ta
k
e

n
.

2
5

b
 

S
ta

te
 
th

e
 
to

ta
l 

n
u

m
b

e
r 

o
f 

c
a

se
s 

a
s 

w
e

ll 
a

s 
th

e
 
n

u
m

b
e

r 
o

f 
tra

in
in

g
, 

v
a

lid
a

tio
n

 a
n

d
 te

st c
a

se
s se

p
a

ra
te

ly
. 

2
5

c
 

E
x
p

la
in

 
w

h
y

 a
 
to

ta
l 

n
u

m
b

e
r 

o
f c

a
se

s a
n

d
 
th

e
 
sp

e
c

ific
 
p

ro
p

o
rtio

n
 
o

f 

tra
in

in
g

, v
a

lid
a

tio
n

 a
n

d
 te

st c
a

se
s w

a
s c

h
o

se
n

. 

2
5

d
 

M
e

n
tio

n
 fu

rth
e

r im
p

o
rta

n
t c

h
a

ra
c

te
ristic

s o
f th

e
 tra

in
in

g
, v

a
lid

a
tio

n
 a

n
d

 

te
st c

a
se

s (e
.g

. c
la

ss d
istrib

u
tio

n
 in

 c
la

ssific
a

tio
n

 ta
sk

s c
h

o
se

n
 a

c
c

o
rd

in
g

 

to
 

re
a

l-w
o

rld
 

d
istrib

u
tio

n
 

v
s. 

e
q

u
a

l 
c

la
ss 

d
istrib

u
tio

n
) 

a
n

d
 

ju
stify

 
th

e
 

c
h

o
ic

e
. 

A
n

n
o

ta
tio

n
 

c
h

a
ra

c
te

ristic
s 

2
6

a
 

D
e

sc
rib

e
 th

e
 m

e
th

o
d

 fo
r d

e
te

rm
in

in
g

 th
e

 re
fe

re
n

c
e

 a
n

n
o

ta
tio

n
, i.e

. th
e

 

d
e

sire
d

 
a

lg
o

rith
m

 
o

u
tp

u
t. 

P
ro

v
id

e
 
th

e
 
in

fo
rm

a
tio

n
 
se

p
a

ra
te

ly
 
fo

r 
th

e
 

tra
in

in
g

, 
v
a

lid
a

tio
n

 
a

n
d

 
te

st 
c

a
se

s 
if 

n
e

c
e

ssa
ry

. 
P

o
ssib

le
 

m
e

th
o

d
s 

in
c

lu
d

e
 m

a
n

u
a

l im
a

g
e

 a
n

n
o

ta
tio

n
, in

 silic
o

 g
ro

u
n

d
 tru

th
 g

e
n

e
ra

tio
n

 a
n

d
 

a
n

n
o

ta
tio

n
 b

y
 a

u
to

m
a

tic
 m

e
th

o
d

s. 

If h
u

m
a

n
 a

n
n

o
ta

tio
n

 w
a

s in
v

o
lv

e
d

, sta
te

 th
e

 n
u

m
b

e
r o

f a
n

n
o

ta
to

rs. 

2
6

b
 

P
ro

v
id

e
 
th

e
 
in

stru
c

tio
n

s 
g

iv
e

n
 
to

 
th

e
 
a

n
n

o
ta

to
rs 

(if 
a

n
y
) 

p
rio

r 
to

 
th

e
 

a
n

n
o

ta
tio

n
. Th

is m
a

y
 in

c
lu

d
e

 d
e

sc
rip

tio
n

 o
f a

 tra
in

in
g

 p
h

a
se

 w
ith

 th
e

 

so
ftw

a
re

. P
ro

v
id

e
 th

e
 in

fo
rm

a
tio

n
 se

p
a

ra
te

ly
 fo

r th
e

 tra
in

in
g

, v
a

lid
a

tio
n

 

a
n

d
 te

st c
a

se
s if n

e
c

e
ssa

ry
. P

re
fe

ra
b

ly
, p

ro
v

id
e

 a
 lin

k
 to

 th
e

 a
n

n
o

ta
tio

n
 

p
ro

to
c

o
l. 

2
6

c
 

P
ro

v
id

e
 d

e
ta

ils o
n

 th
e

 su
b

je
c

t(s)/a
lg

o
rith

m
(s) th

a
t a

n
n

o
ta

te
d

 th
e

 c
a

se
s 

(e
.g

. 
in

fo
rm

a
tio

n
 
o

n
 
le

v
e

l 
o

f 
e

x
p

e
rtise

 
su

c
h

 
a

s 
n

u
m

b
e

r 
o

f 
y
e

a
rs 

o
f 

p
ro

fe
ssio

n
a

l 
e

x
p

e
rie

n
c

e
, 

m
e

d
ic

a
lly

-tra
in

e
d

 
o

r 
n

o
t). 

P
ro

v
id

e
 

th
e

 

in
fo

rm
a

tio
n

 
se

p
a

ra
te

ly
 

fo
r 

th
e

 
tra

in
in

g
, 

v
a

lid
a

tio
n

 
a

n
d

 
te

st 
c

a
se

s 
if 

n
e

c
e

ssa
ry

.  

2
6

d
 

D
e

sc
rib

e
 th

e
 m

e
th

o
d

(s) u
se

d
 to

 m
e

rg
e

 m
u

ltip
le

 a
n

n
o

ta
tio

n
s fo

r o
n

e
 

c
a

se
 

(if 
a

n
y
). 

P
ro

v
id

e
 

th
e

 
in

fo
rm

a
tio

n
 

se
p

a
ra

te
ly

 
fo

r 
th

e
 

tra
in

in
g

, 

v
a

lid
a

tio
n

 a
n

d
 te

st c
a

se
s if n

e
c

e
ssa

ry
.  

D
a

ta
 p

re
-

p
ro

c
e

ssin
g

 

m
e

th
o

d
(s) 

2
7

 
D

e
sc

rib
e

 th
e

 m
e

th
o

d
(s) u

se
d

 fo
r p

re
-p

ro
c

e
ssin

g
 th

e
 ra

w
 tra

in
in

g
 d

a
ta

 

b
e

fo
re

 it is p
ro

v
id

e
d

 to
 th

e
 p

a
rtic

ip
a

tin
g

 te
a

m
s. P

ro
v

id
e

 th
e

 in
fo

rm
a

tio
n

 

se
p

a
ra

te
ly

 fo
r th

e
 tra

in
in

g
, v

a
lid

a
tio

n
 a

n
d

 te
st c

a
se

s if n
e

c
e

ssa
ry

.  



B
IA

S
 R

e
p

o
rtin

g
 G

u
id

e
lin

e
 

S
o

u
rc

e
s o

f e
rro

r 
2

8
a

 
D

e
sc

rib
e

 th
e

 m
o

st re
le

v
a

n
t p

o
ssib

le
 e

rro
r so

u
rc

e
s re

la
te

d
 to

 th
e

 im
a

g
e

 

a
n

n
o

ta
tio

n
. If p

o
ssib

le
, e

stim
a

te
 th

e
 m

a
g

n
itu

d
e

 (ra
n

g
e

) o
f th

e
se

 e
rro

rs, 

u
sin

g
 

in
te

r-a
n

d
 

in
tra

-a
n

n
o

ta
to

r 
v

a
ria

b
ility

, 
fo

r 
e

x
a

m
p

le
. 

P
ro

v
id

e
 

th
e

 

in
fo

rm
a

tio
n

 
se

p
a

ra
te

ly
 
fo

r 
th

e
 
tra

in
in

g
, 

v
a

lid
a

tio
n

 
a

n
d

 
te

st 
c

a
se

s, 
if 

n
e

c
e

ssa
ry

.  

2
8

b
 

In
 a

n
 a

n
a

lo
g

o
u

s m
a

n
n

e
r, d

e
sc

rib
e

 a
n

d
 q

u
a

n
tify

 o
th

e
r re

le
v

a
n

t so
u

rc
e

s 

o
f e

rro
r.  

M
E
TH

O
D

S
 

A
sse

ss-

m
e

n
t 

m
e

th
o

d
s 

M
e

tric
(s) 

2
9

a
 

D
e

fin
e

 th
e

 m
e

tric
(s) to

 a
sse

ss a
 p

ro
p

e
rty

 o
f a

n
 a

lg
o

rith
m

. Th
e

se
 m

e
tric

s 

sh
o

u
ld

 re
fle

c
t th

e
 d

e
sire

d
 a

lg
o

rith
m

 p
ro

p
e

rtie
s d

e
sc

rib
e

d
 in

 a
sse

ssm
e

n
t 

a
im

(s) (p
a

ra
m

e
te

r 2
1

). S
ta

te
 w

h
ic

h
 m

e
tric

(s) w
e

re
 u

se
d

 to
 c

o
m

p
u

te
 th

e
 

ra
n

k
in

g
(s) (if a

n
y
). 

●
E
x
a

m
p

le
 1

: D
ic

e
 S

im
ila

rity
 C

o
e

ffic
ie

n
t (D

S
C

) a
n

d
 ru

n
-tim

e

●
E
x
a

m
p

le
 2

: A
re

a
 u

n
d

e
r c

u
rv

e
 (A

U
C

)

2
9

b
 

J
u

stify
 w

h
y

 th
e

 m
e

tric
(s) w

a
s/w

e
re

 c
h

o
se

n
, p

re
fe

ra
b

ly
 w

ith
 re

fe
re

n
c

e
 to

 

th
e

 b
io

m
e

d
ic

a
l a

p
p

lic
a

tio
n

. 

R
a

n
k

in
g

 

m
e

th
o

d
(s) 

3
0

a
 

D
e

sc
rib

e
 
th

e
 
m

e
th

o
d

 
u

se
d

 
to

 
c

o
m

p
u

te
 
a

 
p

e
rfo

rm
a

n
c

e
 
ra

n
k

 
fo

r 
a

ll 

su
b

m
itte

d
 a

lg
o

rith
m

s b
a

se
d

 o
n

 th
e

 g
e

n
e

ra
te

d
 m

e
tric

 re
su

lts o
n

 th
e

 te
st 

c
a

se
s. Ty

p
ic

a
lly

 th
e

 te
x
t w

ill d
e

sc
rib

e
 h

o
w

 re
su

lts o
b

ta
in

e
d

 p
e

r c
a

se
 a

n
d

 

m
e

tric
 a

re
 a

g
g

re
g

a
te

d
 to

 a
rriv

e
 a

t a
 fin

a
l sc

o
re

/ra
n

k
in

g
. 

3
0

b
 

D
e

sc
rib

e
 

th
e

 
m

e
th

o
d

(s) 
u

se
d

 
to

 
m

a
n

a
g

e
 

su
b

m
issio

n
s 

w
ith

 
m

issin
g

 

re
su

lts o
n

 te
st c

a
se

s. 

3
0

c
 

J
u

stify
 w

h
y

 th
e

 d
e

sc
rib

e
d

 ra
n

k
in

g
 sc

h
e

m
e

(s) w
a

s/w
e

re
 u

se
d

. 

S
ta

tistic
a

l 

a
n

a
ly

se
s 

3
1

a
 

P
ro

v
id

e
 
d

e
ta

ils 
fo

r 
a

ll 
sta

tistic
a

l 
m

e
th

o
d

s 
u

se
d

 
in

 
th

e
 
sc

o
p

e
 
o

f 
th

e
 

c
h

a
lle

n
g

e
 a

n
a

ly
sis. Th

is m
a

y
 in

c
lu

d
e

 

●
d

e
sc

rip
tio

n
 o

f th
e

 m
issin

g
 d

a
ta

 h
a

n
d

lin
g

,

●
d

e
ta

ils a
b

o
u

t th
e

 a
sse

ssm
e

n
t o

f v
a

ria
b

ility
 o

f ra
n

k
in

g
s,

●
d

e
sc

rip
tio

n
 o

f a
n

y
 m

e
th

o
d

 u
se

d
 to

 a
sse

ss w
h

e
th

e
r th

e
 d

a
ta

 m
e

t

th
e

 
a

ssu
m

p
tio

n
s, 

re
q

u
ire

d
 

fo
r 

th
e

 
p

a
rtic

u
la

r 
sta

tistic
a

l

a
p

p
ro

a
c

h
, o

r

●
in

d
ic

a
tio

n
 
o

f 
a

n
y
 
so

ftw
a

re
 
p

ro
d

u
c

t 
th

a
t 

w
a

s 
u

se
d

 
fo

r 
d

a
ta

a
n

a
ly

sis.

3
1

b
 

J
u

stify
 w

h
y

 th
e

 d
e

sc
rib

e
d

 sta
tistic

a
l m

e
th

o
d

(s) w
a

s/w
e

re
 u

se
d

. 

R
E
S
U

LTS
 

C
h

a
lle

n
g

e
 

o
u

tc
o

m
e

 

C
h

a
lle

n
g

e
 

su
b

m
issio

n
s 

P
ro

v
id

e
 su

m
m

a
rizin

g
 in

fo
rm

a
tio

n
 o

n
 ... 

3
2

a
 

…
 th

e
 n

u
m

b
e

r o
f re

g
istra

tio
n

s. 

3
2

b
 

…
 th

e
 n

u
m

b
e

r o
f p

a
rtic

ip
a

tin
g

 te
a

m
s th

a
t p

ro
v

id
e

d
 v

a
lid

 su
b

m
issio

n
s (if 

a
p

p
lic

a
b

le
 in

 e
a

c
h

 p
h

a
se

). 

3
2

c
 

…
 
th

e
 
n

u
m

b
e

r 
o

f 
p

a
rtic

ip
a

tin
g

 
te

a
m

s 
th

a
t 

th
e

 
p

a
p

e
r 

re
fe

rs 
to

 
(w

ith
 

ju
stific

a
tio

n
). 

In
fo

rm
a

tio
n

 o
n

 

se
le

c
te

d
 

P
ro

v
id

e
 th

e
 fo

llo
w

in
g

 in
fo

rm
a

tio
n

 fo
r th

e
 p

a
rtic

ip
a

tin
g

 te
a

m
s th

a
t a

re
 in

c
lu

d
e

d
 in

 th
e

 p
a

p
e

r: 

3
3

a
 

Te
a

m
 id

e
n

tifie
r. 

B
IA

S
 R

e
p

o
rtin

g
 G

u
id

e
lin

e
 

p
a

rtic
ip

a
tin

g
 

te
a

m
s 

3
3

b
 

A
 

m
e

th
o

d
 

d
e

sc
rip

tio
n

 
in

c
lu

d
in

g
 

p
a

ra
m

e
te

r 
in

sta
n

tia
tio

n
 

a
n

d
/o

r 
a

 

re
fe

re
n

c
e

/U
R

L to
 a

 d
o

c
u

m
e

n
t c

o
n

ta
in

in
g

 th
is in

fo
rm

a
tio

n
. 

M
e

tric
 v

a
lu

e
s 

3
4

 
P

ro
v

id
e

 ra
w

 a
n

d
/o

r a
g

g
re

g
a

te
d

 m
e

tric
 v

a
lu

e
s (in

c
lu

d
in

g
 m

e
a

su
re

 o
f 

v
a

ria
b

ility
) fo

r a
ll p

a
rtic

ip
a

tin
g

 te
a

m
s a

n
d

 e
a

c
h

 m
e

tric
 (if a

p
p

lic
a

b
le

) a
s 

w
e

ll a
s th

e
 n

u
m

b
e

rs o
f te

st se
t su

b
m

issio
n

s (th
e

 la
st o

n
e

 w
a

s u
se

d
 to

 

c
o

m
p

u
te

 m
e

tric
(s)) fo

r e
a

c
h

 p
a

rtic
ip

a
tin

g
 te

a
m

. 

R
a

n
k

in
g

(s) 
3

5
a

 
R

e
p

o
rt 

th
e

 
ra

n
k

in
g

(s) 
(if 

a
n

y
) 

in
c

lu
d

in
g

 
th

e
 

n
u

m
b

e
r 

o
f 

te
st 

se
t 

su
b

m
issio

n
s fo

r e
a

c
h

 p
a

rtic
ip

a
tin

g
 te

a
m

. 

3
5

b
 

P
ro

v
id

e
 th

e
 re

su
lts o

f th
e

 sta
tistic

a
l a

n
a

ly
se

s. 

F
u

rth
e

r A
n

a
ly

se
s 

3
6

 
P

re
se

n
t re

su
lts o

f fu
rth

e
r a

n
a

ly
se

s (if a
p

p
lic

a
b

le
), e

.g
. re

la
te

d
 to

 

●
c

o
m

b
in

in
g

 a
lg

o
rith

m
s v

ia
 e

n
se

m
b

lin
g

,

●
in

te
r-a

lg
o

rith
m

 v
a

ria
b

ility
,

●
c

o
m

m
o

n
 p

ro
b

le
m

s/b
ia

se
s o

f th
e

 su
b

m
itte

d
 m

e
th

o
d

s, o
r

●
ra

n
k

in
g

 v
a

ria
b

ility
.

D
IS

C
U

S
-

S
IO

N
 

S
u

m
m

a
ry

 
3

7
 

S
u

m
m

a
rize

 th
e

 m
a

in
 re

su
lts o

f th
e

 c
h

a
lle

n
g

e
. 

Im
p

a
c

t 
3

8
a

 
D

e
sc

rib
e

 th
e

 (e
x
p

e
c

te
d

) b
io

m
e

d
ic

a
l im

p
a

c
t o

f th
e

 c
h

a
lle

n
g

e
 in

 th
e

 

c
o

n
te

x
t 

o
f 

th
e

 
sta

te
 

o
f 

th
e

 
a

rt 
w

ith
 

re
fe

re
n

c
e

 
to

 
th

e
 

c
h

a
lle

n
g

e
 

m
o

tiv
a

tio
n

 (p
a

ra
m

e
te

r 4
a

). 

3
8

b
 

D
e

sc
rib

e
 
th

e
 
(e

x
p

e
c

te
d

) 
te

c
h

n
ic

a
l 

im
p

a
c

t 
o

f 
th

e
 
c

h
a

lle
n

g
e

 
in

 
th

e
 

c
o

n
te

x
t 

o
f 

th
e

 
sta

te
 

o
f 

th
e

 
a

rt 
w

ith
 

re
fe

re
n

c
e

 
to

 
th

e
 

c
h

a
lle

n
g

e
 

m
o

tiv
a

tio
n

 (p
a

ra
m

e
te

r 4
b

). 

D
isc

u
ssio

n
 o

f 

c
h

a
lle

n
g

e
 re

su
lts 

3
9

a
 

P
ro

v
id

e
 a

 d
e

ta
ile

d
 d

isc
u

ssio
n

 a
n

d
 c

o
n

c
lu

sio
n

 w
h

e
th

e
r th

e
 ta

sk
 is n

o
w

 

so
lv

e
d

 in
 a

 sa
tisfa

c
to

ry
 w

a
y
 (e

.g
. th

e
 re

m
a

in
in

g
 e

rro
rs a

re
 c

o
m

p
a

ra
b

le
 

to
 in

te
r-a

n
n

o
ta

to
r v

a
ria

b
ility

). 

3
9

b
 

P
ro

v
id

e
 a

 d
e

ta
ile

d
 a

n
a

ly
sis o

f in
d

iv
id

u
a

l c
a

se
s, in

 w
h

ic
h

 th
e

 m
a

jo
rity

 o
f 

a
lg

o
rith

m
s p

e
rfo

rm
e

d
 p

o
o

rly
 (if a

n
y
). 

3
9

c
 

P
ro

v
id

e
 

a
 

d
isc

u
ssio

n
 

o
n

 
a

d
v

a
n

ta
g

e
s 

a
n

d
 

d
isa

d
v

a
n

ta
g

e
s 

o
f 

th
e

 

su
b

m
itte

d
 

m
e

th
o

d
s. 

In
c

lu
d

e
 

tim
e

 
a

n
d

 
m

e
m

o
ry

 
c
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A.9 Search terms related to mixed model analysis
Aiming for an overview of how many publications in the biomedical image analysis domain make use
of Linear Mixed Model (LMM), we reviewed all 5,390 Medical Image Computing and Computer Assisted
Interventions (MICCAI) papers in the period of 2004 to 2021. The publications were searched for 44 search
terms that are related to mixed model analysis. The search terms are presented in Table A.1 along with the
frequency with which the individual terms have been used among all publications.

Table A.1: List of mixed model analysis-related search phrases, together with how often they appeared in
the 5,390 papers that were submitted to the Medical Image Computing and Computer Assisted Interventions
(MICCAI) 2004—2021 conferences.

Search term Frequency [%] Search term Frequency [%]

hierarchical model 0.61% nonlinear mixed-effects model 0.04%
random effects 0.33% random effect test 0.04%
fixed effects 0.19% bayesian spatial generalized lin-

ear mixed model
0.02%

mixed-effects model 0.16% clustered data 0.02%
mixed effects model 0.10% generalized linear mixed model 0.02%
fixed effect 0.09% LMM 0.02%
linear mixed effects model 0.07% mixed effect 0.02%
random effect 0.07% mixed-effect 0.02%
random effect analysis 0.07% mixed-effect generative model 0.02%
linear mixed effect model 0.06% mixed-effect linear model 0.02%
mixed-effect model 0.06% mixed-effect regression 0.02%
mixed-effects analysis 0.06% mixed effects 0.02%
nonlinear mixed effects model 0.06% mixed-effects 0.02%
random-effects 0.06% mixed-effects linear model 0.02%
random effects analysis 0.06% mixed-effects regression 0.02%
fixed-effects 0.04% multilevel model 0.02%
linear mixed-effects model 0.04% nested model 0.02%
LME 0.04% random effect map 0.02%
mixed effect model 0.04% random effects model 0.02%
mixed-effect-model 0.04% random-effects regression 0.02%
NLME 0.04% random-effects statistics 0.02%

variance components model 0.02%
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