
DISSERTATION

submitted to the

Combined Faculty of Mathematics, Engineering and Natural Sciences

of the

Ruprecht–Karls University
Heidelberg

for the degree of

Doctor of Natural Sciences

put forward by

M.Sc. Dennis Sebastian Rieber

born in
Balingen, Baden-Württemberg

Heidelberg, 2022

Deployment of Deep Neural
Networks on Dedicated Hardware

Accelerators

Advisor: Professor Dr. Holger Fröning

Oral Examination:

I dedicate this dissertation to my loving wife
Tina Rieber

Without her, I could have never walked this long and winding path.

Abstract

Deep Neural Networks (DNNs) have established themselves as powerful tools for
a wide range of complex tasks, for example computer vision or natural language
processing. DNNs are notoriously demanding on compute resources and as a
result, dedicated hardware accelerators for all use cases are developed. Different
accelerators provide solutions from hyper scaling cloud environments for the
training of DNNs to inference devices in embedded systems. They implement
intrinsics for complex operations directly in hardware. A common example
are intrinsics for matrix multiplication. However, there exists a gap between
the ecosystems of applications for deep learning practitioners and hardware
accelerators. How DNNs can efficiently utilize the specialized hardware intrinsics
is still mainly defined by human hardware and software experts.

Methods to automatically utilize hardware intrinsics in DNN operators are a
subject of active research. Existing literature often works with transformation-
driven approaches, which aim to establish a sequence of program rewrites and
data-layout transformations such that the hardware intrinsic can be used to
compute the operator. However, the complexity this of task has not yet been
explored, especially for less frequently used operators like Capsule Routing. And
not only the implementation of DNN operators with intrinsics is challenging,
also their optimization on the target device is difficult. Hardware-in-the-loop
tools are often used for this problem. They use latency measurements of imple-
mentations candidates to find the fastest one. However, specialized accelerators
can have memory and programming limitations, so that not every arithmetically
correct implementation is a valid program for the accelerator. These invalid
implementations can lead to unnecessary long the optimization time.

This work investigates the complexity of transformation-driven processes to
automatically embed hardware intrinsics into DNN operators. It is explored
with a custom, graph-based intermediate representation (IR). While operators
like Fully Connected Layers can be handled with reasonable effort, increasing
operator complexity or advanced data-layout transformation can lead to scaling

issues. Building on these insights, this work proposes a novel method to embed
hardware intrinsics into DNN operators. It is based on a dataflow analysis.
The dataflow embedding method allows the exploration of how intrinsics and
operators match without explicit transformations. From the results it can derive
the data layout and program structure necessary to compute the operator with
the intrinsic. A prototype implementation for a dedicated hardware accelerator
demonstrates state-of-the art performance for a wide range of convolutions, while
being agnostic to the data layout. For some operators in the benchmark, the
presented method can also generate alternative implementation strategies to
improve hardware utilization, resulting in a geo-mean speed-up of ×2.813 while
reducing the memory footprint. Lastly, by curating the initial set of possible
implementations for the hardware-in-the-loop optimization, the median time-
to-solution is reduced by a factor of ×2.40. At the same time, the possibility to
have prolonged searches due a bad initial set of implementations is reduced,
improving the optimization’s robustness by ×2.35.

Zusammenfassung

Tiefe Neuronale Netzwerke (Deep Neural Networks, DNNs) haben sich als
mächtiges Werkzeug für eine Vielzahl an komplexen Aufgaben, wie Objekterken-
nung oder Sprachverarbeitung etabliert. Ihr Bedarf an Rechenressourcen ist
enorm, weshalb dedizierte Beschleuniger für alle Einsatzzwecke entwickelt wer-
den, von ultrahoch skalierenden Rechenzentren bis zu eingebetteten Systemen.
Die Beschleuniger implementieren Instruktionen für komplexe Operationen
direkt in der Hardware. Ein verbreitetes Beispiel sind Instruktionen für Ma-
trixmultiplikationen. Aber es gibt eine Lücke zwischen dem Ökosystemen für
die Anwender von Deep Learning und Hardwarebeschleunigern. Die effektive
Nutzung von spezialisierter Hardware wird immer noch von Hardware- und
Softwareexperten definiert.

Methoden, um solche Instruktionen in die Berechnung von DNNs einzubetten
werden aktiv erforscht. Bisherige Veröffentlichungen setzen oft auf Transforma-
tionsgetriebene Ansätze, mit dem Ziel eine Transformationssequenz zu finden,
die es ermöglicht einen Teil der DNN Berechnung mit der spezialisierten In-
struktion zu ersetzen. Allerdings wurde die Komplexität dieser Aufgabe noch
nicht erforscht, insbesondere für weniger übliche DNN Operatoren, wie zum
Beispiel Capsule Routing. Nicht nur das Implementieren von DNN Operatoren
mit spezialisierten Instruktionen ist eine Herausforderung, auch deren Opti-
mierung auf der Zielhardware ist schwierig. Systeme, die mit Hardwarefeedback
arbeiten werden hier oft genutzt. Die Latenz von verschiedenen Implemen-
tierungskandidaten wird gemessen, um den schnellsten Kandidaten zu finden.
Aber da Hardwarebeschleuniger oft Programmierungs- und Speicherlimitierun-
gen haben kann nicht jede arithmetisch korrekte Implementierung auch auf dem
Beschleuniger genutzt werden. Diese ungültigen Implementierungen können
den Optimierungsprozess unnötig Verlängern.

Diese Arbeit untersucht die Komplexität von Transformationsgetriebenen
Prozessen, um spezialisierte Instruktionen in DNN Operationen einzubetten.
Dabei wird eine eigens Implementierte Zwischendarstellung (Intermediate Rep-

resentation, IR) verwendet, welche auf Graphen basiert. Während sich Operatio-
nen wie Fully Connected Layer mit annehmabarem Aufwand verarbeiten lassen,
führen komplexere Operatoren und Transformationen zu Skalierungsproblemen.
Basierend auf diesen Erkenntnissen wird eine neue Methode zum Einbetten von
spezialisierten Instruktionen vorstellt. Diese basiert auf Dataflussgraphen. Die
Dataflow Embedding Methode erlaubt das Erforschen von Abbildungen zwischen
DNN Operatoren und Hardware ohne explizite Transformationen. Aus den
Ergebnissen können die Transformationen für die Datenanordnung und die
Programmstruktur abgleitet werden. Eine Prototypenimplementierung für einen
dedizierten Hardwarebeschleuniger kann alternative Implementierungsstrate-
gien erzeugen, welche die Auslastung der Hardware verbessern. Diese sind
um einen Faktor 2.813 schneller, während sie weniger Speicher belegen. Zu
guter Letzt wird durch das sorgfältige Auswählen von Implementierungen für
den Ausgangspunkt der Optimierung mit Hardwarefeedback die mittlere Zeit
zur Lösungsfindung um den Faktor 2.40 reduziert. Zur selben Zeit wird die
Wahrscheinlichkeit eines langen Optimierungsprozesses wegen eines schlechten
Ausganspunkts reduziert, was die Robustheit der Optimierung um den Faktor
2.35 erhöht.

Table of contents

1 Introduction 1

2 Background 7
2.1 Deep Neural Networks . 7
2.2 Hardware for Deep Learning . 10
2.3 Software for DNNs . 13
2.4 Related Work . 19

3 Complexity Analysis of Iteration-Domain Embedding 25
3.1 Tensor Compute Graphs . 27
3.2 Intrinsic Embedding . 33
3.3 Transformations . 37
3.4 Evaluation . 42
3.5 Discussion . 49

4 Joint Program and Data-Layout Transformation through Dataflow Em-
bedding 55
4.1 Solving the Embedding Problem on the Dataflow Level 56
4.2 Polyhedral Representation of Dataflow Graphs 60
4.3 Embedding as a Constraint Satisfaction Problem 65
4.4 Experiment Setup . 76
4.5 Evaluation . 85
4.6 Search Robustness and Branching Strategy Optimization 94
4.7 Discussion . 97

5 Hardware-Aware Initialization of Auto-Tuning on Hardware Accelera-
tors 103
5.1 Auto-Tuning Space Analysis . 104
5.2 Validity Driven Model Initialization 114
5.3 Evaluation . 118

5.4 Discussion . 127

6 Discussion and Outlook 133
6.1 Top-Down and Bottom-Up Embedding 133
6.2 Outlook . 136

7 Conclusion 141

References 145

Notational Conventions

In this work we will use the following notational conventions:

• Multidimensional arrays, also called tensors, are denoted as boldface
lower case alphabetical symbols and comma separated subscripts for
each dimension, e.g. xi,j. Note that vectors are considered tensors of
dimensionality 1.

• Sets are denoted by calligraphic upper case alphabetical symbols, such A,
B, S. Subscripts and superscripts are sused to discern between different
sets, such as S1 and S2 or Ain and Aout.

• The % sign denotes a remainder division, also known as modulo operation

• ⌊ ⌋ and ⌈ ⌉ denote rounding down and up to the closest integer, respectively.

1

C
h

a
pt

er

Introduction

Deep Neural Networks (DNNs) established themselves as a key technology
in the Machine Learning (ML) community for tasks like computer vision or
language processing. From medical, over industrial to automotive applications,
DNNs are used for tasks like object classification, image segmentation, physics
simulation, path projection or hazard detection. The ability to extract complex,
non-linear functions from the training data while maintaining the ability to
generalize is a main driver of their success. A downside is their enormous
computational demand for both training and inference. While the initial training
can be scaled to thousands of machines, deployment is constrained by energy,
time and financial factors for all application domains, ranging from embedded,
automotive, industrial or mobile devices to hyper-scaling could environments.

This sparked the development of specialized hardware accelerators for DNN
workloads. By offering complex hardware intrinsics, performing hundreds or
thousands of arithmetic operations, both sequentially and in parallel, they are
more energy and time efficient than general purpose hardware. Translating a
DNN, built from operators like convolutions or pooling, down to executable
instructions of an accelerator can be complex and multiple deployment routes
are possible, as shown in Figure 1.1. The following paragraphs will explain the
different concepts in detail.

The central problem for the deployment of DNN operators on hardware
accelerators is to find embeddings. An embedding is the replacement of a full or
partial DNN operator’s computation with a hardware intrinsic. This is possible
if the replaced part and hardware intrinsic are computationally equivalent. To
find an embedding means to find such equivalent parts. To do this, it might be

1

Introduction

Figure 1.1 Possible deployment routes for DNNs.

necessary to transform the operator’s data layout, data access function and order
of computations to find the computation matching an intrinsic.

Target specific libraries directly implement the operators of a neural network,
specifically, to improve throughput, latency or energy consumption through
efficient usage of the hardware’s memory hierarchy and processing elements.
While this achieves best-in-class performance, the engineering effort for new
operators or hardware architectures is high. Another downside is potentially
poor hardware utilization for specific operator parametrizations. Prime examples
for this problem are convolutions and matrix multiplications, which appear in
many shapes and sizes, making library design challenging.

The second route is manual embedding. Recently, modular approaches are
researched, where the operator is described by a set of a basic linear algebra
functions like dot-product or functions like sigmoid. Individual functions are then
optimized either manually, with auto-tuning tools or realized directly in hardware
as intrinsics. This allows portable implementations of each operator and reduces
the effort of supporting new hardware targets, since only the intrinsics need
to be provided. However, describing how to realize a DNN operator with the
available functions is still done manually. This manual implementation process
limits the exploration of new operators. And like libraries, a fixed strategy of how
the intrinsics are used in the operators can result in low hardware utilization.
Also, in scenarios of hardware-software co-design, the mapping of high-level
operators to intrinsics can change depending on the hardware configuration.

The last option is the automatic embedding. Automatically realizing the DNN
operators as a sequence of accelerator intrinsics is challenging. Code generation
for CPUs or GPUs gradually lowers application logic down to fine-granular
machine instructions, executing scalar or vectorized arithmetic and memory
instructions. In contrast, DNN accelerators perform more complex computations

2

like matrix multiplication in a single step, often fused with data parallel activation
functions on the results. To utilize accelerators, the DNN operator needs to be
expressed as a sequence of one or more of these complex hardware intrinsics.
Methods used in compilers for general purpose hardware are not designed to
handle the comparatively coarse intrinsics of DNN accelerators.

Most existing solutions to solve this automatic embedding problem automatically
rely on abstract program representations and exploration of possible implemen-
tations through transformations. In such representations, loops, sum operations
and multi-dimensional arrays are first-class members, on which transformations
perform specific manipulations. For example, the ordering of loops or manipula-
tion of an array’s shape can be changed. This is combined with pattern matching
algorithms to determine if an embedding is possible. In some tools, only some
parts of this are automated, while other parts have to be determined by a human
expert. The efficiency of this approach is determined by the set of available
transformations and how they are applied. An embedding can fail if a necessary
transformation is not available, or a specific sequence of rewrites not applied.
As a result, the transformation and pattern matching process requires careful
tailoring towards both, hardware intrinsics and operators.

Unlike libraries, after the embedding the schedule of each operator needs
to be optimized. A schedule describes the specific order of load, store and
compute instructions for a given workload and has a significant impact on how
effective the hardware resources are utilized. This is challenging, especially
for commutative workloads like matrix multiplications or convolutions, with
millions of potential schedules for the same workload. As exhaustively trying
out all solutions is not feasible, auto-tuning became a popular approach to solve
this scheduling problem. Aided by different methods, like genetic algorithms or
statistical models, promising schedule candidates for evaluation on hardware
are proposed. After a fixed number of iterations, the auto-tuning stops and
selects the best-performing implementations from the set of candidates executed
in hardware. As hardware accelerators often have less flexible programming
models, the schedules need not only provide good performance, but also need to
be valid in terms of code generation. This validity issue adds a second dimension
to the scheduling problem.

This work studies the deployment of DNNs on dedicated inference accel-
erators, specifically automatic embedding and scheduling. Existing solutions to
bring DNNs to such accelerators require engineering effort, often on the level
of individual operators. Paired with long-running optimizations, this can lead

3

Introduction

application experts to resort to tried and true solutions like libraries on general
purpose hardware, instead of exploring novel ideas. The motivation is to enable
applications experts and researchers to use a wider range of hardware accelera-
tors and novel operators without the overhead of expensive implementations.
First, this work evaluates existing methodologies to automate accelerator code
generation, which often focus on transformation-driven processes. Then, dataflow
embedding is presented. It is a novel method to find embeddings, which builds
on the insights from the analysis of transformation-driven processes. It works on
dataflow graphs and produces detailed mappings between operator and intrin-
sics on a scalar operation level. From such mappings, the data layout, data access
functions and computation order transformations that enable an embedding can
be inferred. It is evaluated on the Versatile Tensor Accelerator (VTA), a custom
hardware accelerator and the results match and even outperform the existing
deployment solution. Finally, the scheduling problem is investigated, with special
attention to the needs of accelerators, where issues with the robustness and
time to solution are reported. Therefore, an improved auto-tuning initialization
method is proposed which outperforms existing random and machine-learning
based initialization.

Contributions

1. Complexity analysis of iteration-domain embedding: Transformation-driven
instruction embedding on the iteration-domain level is so far the most
widespread method attempting to solve the embedding problem. By
designing and implementing a lightweight, graph-based intermediate
representation (IR) that lends itself well to pattern matching and transfor-
mation, the advantages and limits of this Top-Down approach are explored.
The results indicate limitations of this approach with respect to scalability
for complex workloads. This contribution was published: [76].

2. Dataflow Embedding — Methods and Constraints: Motivated by the insights
from the Top-Down approach, a method based on solving the problem on
a lower level, without transformations is created. Based on the polyhedral
program representation and constraint programming it enables embedding
scalar dataflows. The results are then used to determine the necessary
data layout and program transformations. For this purpose, several new
constraints are developed and implemented.

4

A prototypical implementation for the VTA architecture has been imple-
mented. Evaluation on the DeepBench Benchmark Suite shows equivalent
performance to handcrafted strategies. Significant improvements are re-
alized for convolution variations and edge cases, for which no efficient
implementation strategy was specified. A geo-mean speed-up of ×2.813
was achieved, while simultaneously having a smaller memory footprint.
Portability is demonstrated on a modified configuration of the VTA ac-
celerator, outperforming the manual embedding by ×4.99 on the tested
operators. Method and results were published: [75].

3. Hardware Aware Auto-Tuning Initialization: While the embedding process is
one challenge, auto-tuning for specialized hardware also contains significant
challenges. Especially the sparsity of the optimization space, with many
invalid schedules, creates robustness issues in the tuning process. On
the example of VTA an auto-tuning tool called AutoTVM, the problem is
analyzed and a solution is presented. With a hardware aware initialization
of the tuning, robustness and optimization time respectively improve by
factors of ×2.35 and ×2.40 over existing solutions. Method and results
were published: [77].

Organization of this Work

Chapter 2 provides context and basic information about the subjects of this work:
deep learning workloads, their description and training as well as an overview
of available hardware system and optimization methods. Then, a deeper dive
into existing work for deploying DNNs on dedicated hardware is provided,
giving insights to the research gap motivating this work. Chapter 3 looks at the
general complexity of the embedding problem, with the help of a graph-based
IR, designed for lightweight program transformation and pattern matching. The
results, based on a set of deep-learning operators, demonstrate a difficulty cliff in
the current state of the art and motivates new approaches. Chapter 4 proposes a
new concept to solve the embedding problem. It introduces embedding on the
dataflow level, enabling exploration of computation and data access patterns
without transformations. This is evaluated on the VTA hardware, demonstrating
significant performance improvements for specific convolution parametrizations
and portability is evaluated on different VTA configurations. Chapter 5 dives
deeper into the automatic optimization of DNN operators on accelerators, where

5

Introduction

robustness issues are observed. With simple and hardware-aware initialization
methods for the auto-tuning process, these issues can be mitigated, improving
both optimization time and robustness. Chapter 6 discusses the benefits and
issues of the methods presented in Chapters 3 and 4 before an outlook on possible
future research directions is given. Lastly, Chapter 7 summarizes and concludes
this work.

6

2

C
h

a
pt

er

Background

The purpose of this chapter is to set this work into context with Deep Neural
Networks and their hardware and software ecosystem. This field of research is
almost impossible to represent exhaustively. Therefore, the following chapter
focusses on the works deemed most influential to the field or this work. While
all presented concepts are important and represent their own research field,
emphasis is on the inference optimization for dedicated accelerators, as it is the
focus of this dissertation.

2.1 Deep Neural Networks

Deep Neural Networks (DNNs) are constructed from linear transformation and
non-linear activation operators, arranged in sequential and parallel order. They
operate on tensors, multi-dimensional arrays of data. An individual operator is
denoted as

xl = φ(wl ⊕ xl−1 + bl) (2.1)

where xl is the computed activation of layer l, φ is the selected non-linearity and
wl the parameter tensor that is linearly combined with input xl−1 through linear
operation ⊕. To this, the bias vector bl is added. The most common activations
functions in DNN are the rectified linear unit (ReLU) and variations of it, as well
as the sigmoid and tanh functions.

Training of DNNs aims to adjust the values of weights in all layers so
that the network solves a specific task. The most common method for this is

7

Background

supervised learning on labelled training data, where a loss function is computing
the difference between the correct solution and the network’s result for a given
input. Backpropagation [82] computes the gradient for each input-target pair,
minimizing the loss function in the process. The most common method for is
Stochastic Gradient Descent [78]. Several hyper-parameters, like learning rate or
regularization, govern the training process, for example to prevent overfitting.

2.1.1 Convolutions

The dominant linear operators in modern neural networks are convolutions and
variations of the dense operator. Convolutions are used on spatial data, like
two-dimensional images with multiple channels, e.g. for red, green, blue and
transparency. The most common form is the 2D-Convolution, or Conv2D, defined
as:

xl
n,c,h,w =

KH∑
kh

KW∑
kw

IC∑
ic

wl
c,ic,kh,kw

· xl−1
n,ic,fh(h,kh),fw(w,kw) (2.2)

Functions fh() and fw() describe how dimensions h, w of the input feature map
xl−1 are accessed:

fh(h, kh) = (h · sh) + (kh · dh)− ⌊KH · dh

2 ⌋ (2.3)

fw(w, kw) = (w · sw) + (kw · dw)− ⌊KW · dw

2 ⌋ (2.4)

For the input tensor indexed by n, ic, h and w, parameters sh, sw ∈ Z+ are
constant integer strides in the respective dimensions and dh, dw ∈ Z+ are constant
dilation factors, enlarging the receptive field of the convolution. In essence, a
three-dimensional stencil, indexed by kh, kw and ic is computed for every output
element. The height, width and depth of the result tensor are indexed by h, w and
c. When activations are processed in batches, each individual input activation
is indexed by n. The operation has many opportunities for data reuse and
parallelization.

Convolutions are compute intensive and can carry up-to millions of weight
parameters. Different variations of the same workload are used to reduce the
computational load or number of parameters, especially for embedded use
cases. Depthwise convolutions reduce the number of multiply-accumulate (MAC)
operations by applying only a single convolutional filter KH ×KW to each input
channel. Depthwise-separable [23] convolutions then follow up with a pointwise
filtering over the channels. Strided convolutions process the image dimension

8

2.1 Deep Neural Networks

with fixed strides sh, sw to reduce the number of MACs while simultaneously
compressing the output feature maps by the stride factor in each dimension.
Dilated convolutions [117] reduce the number of weights and MACs by upscaling
up the stencil with dilation factor dh, dw. They are commonly used in image
segmentation applications. Grouped convolutions [55] were introduced to enable
model-parallelism across devices during training by splitting the input and
output channels into multiple groups. The results are stacked together, resulting
in the same number of channels as without grouping. An effect of this split
is a reduction of model parameters by the factor of the split and a significant
reduction of MACs. Groups can be shuffled [122], which aims to benefit the
overall application performance.

Variations for application classes beyond computer vision include Conv1D
with only a single spatial dimension w, or Conv3D which adds another feature
map dimension d. In practice, all modification for 2D can also be applied to the
1D and 3D variations.

2.1.2 Dense Operators

The second important DNN operator class are dense-like operations:

yd1,...,di,j =
K∑

k=0
xd1,..,di,k ·w

T
j,k (2.5)

Algorithmically they are less complex than convolutions, due to the strictly linear
data access pattern of both, the output and the reduction over a single dimension
of size K. A common variations are the fully-connected layer with i = 0, with
single input and output dimensions k and j, respectively. In convolutional neural
networks they are often used as the final layers in image classification tasks, like
in ResNet [42] or VGG [88]. With i = 1, it becomes a matrix multiply used in
wide variety of operators like Attention [104] or Capsule Routing [83]. Operators
like batch-reduce GEMM [36] with i > 1 have also been proposed, as they offer
significant parallelization opportunities.

2.1.3 Tensor Expressions

A shared property of the presented DNN operators, as well as other operators,
is that each output element is computed by the same operations, but with a
different input interval. This kind of computation will be referred to as tensor
expression, a terminology adapted from TVM [17].

9

Background

Tensor expressions describe the computation of a tensor, using its dimensions
as indices for access to the input tensors. Additional indices can be introduced
by reduction operations, for example sums or products. They natively translate
to loop nests with static control flow, meaning there are no if-statements and the
iteration domains only depend on known parameters. An example is Equation
2.6:

ci =
∑

k

ai,k · bk (2.6)

Only two indices are used to access input tensors ai,k and bk, namely i and k.
Index i is defined by ci and k by the sum operation. Every element in ci is then
computed as the dot product between vector bk and row i of matrix ai,k. Instead
of a mathematical notation, a codelike shorthand notation is also used:

1 c[i] =
∑

k
a[i,k] · b[k]

and both can be described in a loop nest like this:
1 for i in I:
2 for k in K:
3 c[i] += a[i,k] · b[k]

These properties allow a compact, hierarchical compute description of a tensor,
based on the number of dimensions, arithmetic operations and memory access
functions. Several modern compilation frameworks for DNNs rely on this
representation to express their operators [17, 101, 93].

2.2 Hardware for Deep Learning

2.2.1 General Purpose Hardware

The most widespread general purpose accelerator for deep learning and scientific
workloads are (General Purpose) Graphics Processing Units ((GP)GPUs). With
massively parallel, lightweight compute units, large memory bandwidth and
structured programming model they fit well to the computational demand of
DNNs. The memory hierarchy with a programmable scratchpad and extensive
register files enable heavy data reuse, if possible, in the workload. The Bulk-
Synchronous-Parallel [98] (BSP) processing model can hide memory latencies
through efficient suspension and resuming of thread workgroups. Features for
DNN processing include Tensor Cores, half-precision 4× 4 matrix multiplication
units, accessible with hardware intrinsics on the level of thread workgroups.

10

2.2 Hardware for Deep Learning

Support for quantized processing, such as 4bit integers1 or 16bit floating point 2
formats were added in newer generations to further support deep learning
use cases. This results in high efficiency in terms of operations per watt.
However, their high structural demand in the application reduce the efficiency
of sparse workloads. Utilizing the massive performance potential requires deep
understanding of both the workload and the hardware architecture, which is why
libraries like cuDNN [21] are a popular solution among application specialists.

General purpose CPUs are designed for low-latency, single-threaded oper-
ations. Their process- and data-parallelism is limited, compared to the tens of
thousands of threads and thousands compute units in GPUs. With the com-
paratively short SIMD units, high hardware utilization in sparse applications is
achievable. Support for 8bit integer and extreme low-bit quantization is possible
due to extensive instruction sets for bit-wise operations. Especially in embedded
devices, for example from ARM, these features are utilized [84]. Paired with the
high processing frequency, CPUs are still viable many DNN use cases.

2.2.2 Domain Specific Accelerators

The computational demand of DNNs sparked research into dedicated hardware
accelerators, especially for convolutional operators. Conv2D’s data reuse and
parallelism gives ample opportunity to design different hardware architectures.
Improved throughput and energy efficiency are the main drivers for dedicated
accelerators. Eyeriss [20] is a massively parallel accelerator with a grid of
processing units and a freely programmable dataflow. A main benefit is the
reduced data movement cost, as data flows from one processing unit to the next,
avoiding memory accesses. A similar architecture is DianNao [15]. Different
dataflow schemes have been proposed for these kinds of accelerators, extensively
reviewing the differences between weight and activation static flows. However,
among experts it is still discussed which influence hardware architecture and
technology have on energy efficiency, compared to the dataflow [115].

Instead of manipulating the dataflow, other accelerators offer a fixed set of
hardware intrinsics. Data is moved between the specialized processing unit
and the memory subsystem, which often has one or more layers of local buffers
to mitigate the memory access cost. This hardware class is sometimes called
loop-back architectures. Efficiently using the intrinsics, optimizing the order of

1https://developer.nvidia.com/blog/int4-for-ai-inference, accessed 04.2022
2https://developer.nvidia.com/blog/mixed-precision-programming-cuda-8, accessed

04.2022

11

Background

computations and avoiding low utilization is crucial to achieve good performance
in these systems. A popular example is Google’s Tensor Processing Unit (TPU) [50],
which has a 256× 256 matrix-multiplication unit. It is implemented in a systolic
array, a form of massively parallel processing grid through which the data flows
in a predetermined pattern and well suited for linear algebra problems. Similarly,
VTA [67] is a deep-learning accelerator offering load, store and processing
operations for 2D matrices. Its design features a reconfigurable processing
element and buffers, enabling HW/SW-Codesign for each use case. Another
example for embedded devices is PULP [25], a RISC-V based accelerator. More
specialized processing units implement full convolutions and even fuse them
with further pooling operations [109]. By replacing the single, high-performance
processing unit with smaller, lightweight compute units with SIMD intrinsics a
hybrid of dataflow and loop-back is created. In this work, we regard them closer
to loop-back than dataflow. For example, VIP [46] has an extensive scratchpad
memory in each processing unit, allowing for more complex sequences of
intrinsics. Cambricon [61] offers a similar ISA to VIP. What they all have in
common are intrinsics to load, process and store matrices or even full tensors
in a single command. This enables better efficiency compared to vector or
scalar instructions, if they can be mapped to the workload. Here we want to
emphasize the last sentence, as mappings between complex instructions and
DNNs workloads is a topic of ongoing research, including this work.

Intrinsics for VTA, PULP, VIP, Cambricon and TPU offer matrix-matrix or
matrix-vector operations. Intrinsics for full convolutions, like in [109] are used
rarely. However, direct implementations for convolutions are often used when
generating hardware architectures directly from DNN for Field Programmable
Gate Arrays (FPGAs). The reconfigurable nature of these devices allows custom
hardware for every DNN. Examples are AutoSA [110], which is a continuation
of PolySA [24], using the polyhedral model to generate custom systolic arrays
and the spatial and temporal schedules at the same time. Another example is
Tabla [87], which generates FPGA accelerators for 2D and 3D DNNs based on
the hardware templates for the Winograd convolution method. Performance
optimization, especially memory accesses, use analytical models in an exhaustive
search space sweep.

12

2.3 Software for DNNs

2.3 Software for DNNs

2.3.1 Network Description and Training

Frameworks such as TensorFlow [2], Pytorch [72] or Caffe [47] focus on application-
level interfaces. They provide descriptive interface to build computational
flows from parametrizable operator building blocks like convolutions, pooling,
activations or dense-like operations. Tensors are first class concepts and data-
layout transformation like transpose or reshape are available. A key feature is the
gradient based optimization (training) of the described DNNs. From the network
description and loss function specification the tools automatically compute the
gradient. Network training is automated and can be scaled from single devices
to large clusters.

The abstract descriptions are executable on a wide range of back-ends, from
GPU clusters to personal computer CPU by mapping the operators to highly
optimized libraries. Two widespread choices are cuDNN [22] for NVIDIA GPUs
or NNPack 3 for x86 architectures. The specificity of libraries provides near
optimal performance on specific hardware, but increases the engineering effort
when exploring new operators or hardware architectures.

2.3.2 Inference Optimizations

Describing and training a DNN is the first half of its life cycle, the second part
is using the DNN. This is typically called inference. There, DNNs are used
to classify or make predictions on real-world inputs, based on their training.
Efficiency in time, throughput and energy usage are important for all production
environments, but especially for edge and embedded devices. Tools and methods
to optimize inference performance are an active topic of research, focussing on
optimizing the different stages of deployment: graph, strategy and schedule
level. The main goal is lowering the general DNN description into target specific
code, fully utilizing the target’s memory hierarchy and computing capabilities.
Choices on one level influence the available optimization paths on the levels
below.

Several compilation stacks have been presented for deep learning inference and
vary by a wide range of parameters. TensorComprehesions [101] is only targeting
GPUs. It uses genetic algorithms to iteratively improve operator implementations,

3https://github.com/Maratyszcza/NNPACK, accessed 05.2022

13

Background

focussing on tiling and other loop optimizations. Graph Lowering (GLOW) [81]
has a multi-level IR, where the high-level representation performs graph-level
optimizations like operator fusion. High-level constructs are defined as a series
of low-level intrinsics like matrix-multiply. This way, different hardware targets
only have to implement the low-level building-blocks without looking at high-
level operators. However, the high-level to low-level mapping is a manual task.
Similarly, Tensor Processing Primitives (TPP) [37] defines a set of hardware-agnostic
intrinsics to compose high-level operators. The implementation of each intrinsic is
then target-specific. It is embedded into the PlaidML [121] compiler. TVM [17] is
also a multi-level system, with an emphasis on portability for different back-ends.
Contrary to GLOW or TPP, high-level operators are implemented directly in
a tensor expression programming language, while providing an optimization
tool to fine-tune operators individually for every hardware target. This allows
target-specific, high-level implementations of an operator.

2.3.2.1 Graph-Level Optimization

The first optimization level is the graph level, where operator fusion is one of
available concepts at this level. For example, the convolution, bias, activation
operators in Equation 2.1 are often fused into single computational kernel. While
a convolution is expensive to compute, the bias and activation are computationally
cheap, injective operations. A driving performance factor in modern computer
architectures are memory accesses. Thus it is more efficient to directly apply
the bias and activation after the linear operation computes an individual result
instead of storing the results in memory and then loading them again.

Modern DNN architectures like Inception Networks [95], ResNet varia-
tions [42, 113], NASNet [126] or ultimately randomly connected networks [114]
have more complex wiring between operators, offering fusion opportunities
beyond linear layers. The general problem of finding the best operator fusion for
a specific hardware target and network is NP-hard [29] but practical solutions for
this problem have been proposed [48], exploring an optimization space bounded
by rules exhaustively. An alternative approach, using equality saturation [112, 69]
is also explored [116], yielding promising results. Need or support of specific
fusions can be determined or limited by the hardware architecture.

14

2.3 Software for DNNs

Figure 2.1 Example for the im2col process for a Conv2D. Matrices wl
m and xl

m are formed
from the tensors wl and xl. A matrix multiplication between wl

m and xl
m computes the

output tensor xl+1, which can directly be reshaped into its original layout.

2.3.2.2 Strategies

The strategy is concerned with data layout and hardware intrinsics used to
implement a computational kernel. It is also the point where the implementations
of individual operators become hardware aware. On the application level the
most common data layouts for activation tensor in Conv2D are NCHW and
NHWC, image major and channel major respectively. The right-most, or inner-
most, dimensions are consecutive in memory. The former is used by PyTorch,
while the latter is native to Keras. However, for inference, more specialized
data layouts are common. In Intel’s x86 devices the NCHWxc data format is
preferred [35]. The channel dimension c is tiled by a factor of x to enabled efficient
loading of x values into the SIMD unit. For 512bit SIMD width and 32bit floating
point values x is 16. Further x86 layout and performance questions are explored
in [44, 62] and the oneDNN library4.

On GPUs, several memory-layouts are used, but im2col is the most interesting.
Based on a method to perform Conv2D as a general matrix-multiply [103]
(GEMM), several frameworks and libraries adopted the approach. The process is
exemplified in Figure 2.1 By repeating segments of the image’s rows or columns
according to the stencil size to form a matrix xl

m of size ic · kh · kw × n · h · w and
reshaping the weights to wl

m of shape oc × ic · kh · kw, Conv2D is expressed as

4https://github.com/oneapi-src/oneDNN, accessed 04.2022

15

Background

GEMM. The total number of operations remains the same, however the memory
footprint increases. The larger a matrix is, the more efficient its computation
becomes, in terms of moved bytes per operation. The matrices are constructed
from the product of multiple convolution dimensions, consistently creating large
matrices. This ensures, performance robustness over a wide range of convolution
parametrizations. Further, GPUs can hide the construction of xl

m by only creating
smaller sub-matrices on the fly when loading them into the scratch-pad. This
reduces the global memory footprint and avoids the latency of constructing the
full matrix before processing. The approach is the base of cuDNN [21] and
PyTorch’s Conv2D implementation [72].

While im2col is known to a wider audience, other GEMM-based algorithms
are known. Their design space is explored in [6] and experimental evaluation
revealed several promising alternatives to im2col. Using additional processing
after the GEMM operation, or breaking the operation into several smaller GEMM
calls reduces the memory footprint compared to im2col.

Moving away from matrix multiplications, other strategies include convolu-
tions using Winograd filtering algorithms [58] or FFT [99]. Winograd reduces
the number of necessary multiplications and is relatively memory efficient, while
FFT reduces the total number of operations necessary to compute the convolution
but can potentially increase the memory footprint. Both hardware and workload
influence which method has the lowest latency [125].

General purpose CPUs can leverage their high degree of freedom in pro-
gramming, allowing highly specialized implementations, like indirect convolu-
tions [27]. By using an indirection buffer that contains pointers to pixel-rows, a
GEMM-based convolution can be performed without the memory overhead of
im2col. Since dedicated accelerators often have limited or no pointer-arithmetic
capabilities, such implementations are harder to realize. The memory indirection
also makes compiler-based optimizations more challenging, as the data accesses
is not strictly determined by loop iteration variables.

For CPUs and GPUs, the data layout is only of interest with respect to
performance. Correct code could be generated for any layout. For dedicated
accelerators, data layout and program structure must match precisely to allow the
use of intrinsics. Often, this is specified by a human expert and the deployment
toolchain ensures the required data layout is generated. Similarly, hardware
intrinsics are mostly still placed manually for each operator. This limits the
exploration of new operators or kernels created from graph-level operator fusion
on a specific accelerator.

16

2.3 Software for DNNs

Table 2.1 AutoTVM parametrized schedule template. Each knob defines the values a
template parameter can take. Picking a value for each knob specifies one configuration.

Name Type Possible values
c_nthread Threading 1, 2, 4
h_nthread Threading 1, 2, 4
reorder_h_c Reordering 1, 2
tile_h Split 1, 2, 4, 7, 8, 14, 16, 28, 56, 112
tile_w Split 1, 2, 4, 7, 8, 14, 16, 28, 56, 112
tile_ic Split 1, 3
tile_c Split 1, 2, 4, 8, 16, 32, 64

Figure 2.2 Auto-tuning system as used in AutoTVM

2.3.2.3 Schedule Optimization

When not relying on library implementations, the last optimization step is finding
an ideal execution schedule for every individual workload on the used hardware.
In the design of a single DNN, a wide range convolution parametrization can
appear. For example, the first convolution in ResNet18 [42] defines c, h, w as
[64, 224, 224] with ic = 3, however the last residual block c, h, w as [512, 7, 7] with
ic = 256. Optimizing data-reuse, data movement and parallelization creates very
different implementations for each layer. Of course, the hardware architecture
also influence the implementation.

Since manual optimization is infeasible at scale, hardware-in-the-loop systems,
searching for the best implementation by evaluating different candidates in
hardware gained attention in recent years. Possible optimization targets are
throughput (GOP/s), latency or energy per inference. The concept of these
so called auto-tuning systems existed long before the recent surge of machine
learning applications, but attention towards them was renewed due to the sheer
size and complexity of the optimization problem. From loop transformations
like tiling, reordering, unrolling, vectorization, fission or fusion a search-space is
generated.

17

Background

A widely used tool in this space is AutoTVM [18]. As shown in Figure 2.2, the
tuning process is constructed from the following components: i) the search-space
template and its parameters, ii) a tuner; the method to select the candidate
for hardware evaluation, iii) a model aiding the tuner and iv) a measurement
cycle, executing candidates on the hardware and providing measurements to
the tuner. AutoTVM constructs the search space from parametrized workload
implementations, where transformations like loop ordering, tiling scheme or the
used hardware intrinsics are declared. For any given workload, the Cartesian
product of options values for each declared transformations forms the search
space. The indices over all knobs form a structured grid, such that every
configuration is has a unique identifier. An example space for layer 1 in ResNet18
is in Table 2.1. In the example, a split operation on dimension h with value
16 creates an inner loop hi of length 16 and outer loop ho of length 224

16 = 14.
The reorder specifies in which order loops h and c processed, and the threading
determines the parallelization of these loops.

AutoTVM uses Simulated Annealing [52] (SA) in combination with a machine
learning model to select candidates for evaluation in the measurement cycle.
Gradient Boosted Trees [33, 16] are used to learn how different candidates
perform on hardware, specifically a ranking-loss function is used to learn the
relative performance of candidates, instead of regression to determine the
absolute performance. SA traverses the search-space for a fixed number of steps,
selecting candidates to evaluate based on the ranking provided by the model and
which have not been evaluated in hardware, yet. Exploitation and exploration
are balanced by adding random samples to the selected candidates. The resulting
measurement batch is then evaluated in hardware and the gathered data used to
further train the performance model. The process is repeated until a pre-defined
number of steps is reached or no more candidates are available in the search
space.

Different features can be used as input to the model. The simplest are values
or indices of the tuning parameters themselves, which shows good performance
for individual operators. However, the model is then specific for a given
operator/hardware combination and cannot be used to tune a different operator.
More complex feature sets are provided to enable transfer learning. Memory
accesses, loop trip counts and other metrics are aggregated into a more extensive
feature vector. Training the model on tuning runs from different operators on
the same hardware improves the initial ranking quality and ultimately produces

18

2.4 Related Work

ri,j = ∑
k qi,kpk,j

(a) Workload as a tensor expression

1 for j in J:
2 for k in K:
3 r[i,j] += q[i,k] · p[k,j]

(b) Workload in (one possible) loop repre-
sentation

ci = ∑
k ai,kbk

(c) GEMV instruction as a tensor expres-
sion

4 for k in K:
5 b[i] += a[i,k] · b[k]

(d) Instruction in (one possible) loop rep-
resentation

6 r[:,j] += GEMV(q · pT [j ,:])

(e) A possible embedding strategy

Figure 2.3 Examples for tensor expressions, the equivalent loop programs and a possible
instruction embedding.

better implementations faster. The trade-off between specificity and portability
is often search space and hardware specific.

Recently, tools like Ansor [124] are developed. Instead of specifying a template
per workload, templates are specified on a per-hardware basis, giving more
scheduling freedom. As of this writing, only templates for general-purpose
architectures (CPU and GPGPUs) have been presented.

2.4 Related Work

Code generation for accelerators presents a set of unique challenges, like detecting
where and how hardware intrinsics can be utilized. First a motivating example
of this embedding problem is presented, before diving deeper into the material.
The workload is a matrix multiply and it should be mapped to a hardware
intrinsic performing a matrix vector product. Figures 2.3a, 2.3b, 2.3c and 2.3d
show workload and instruction as tensor expressions, as well as possible loop
implementations. The resulting implementation requires j calls to the scaled
matrix vector product and a transpose on matrix p to match the access pattern of
the instruction, as shown by Figure 2.3e.

For a human expert, such a transformation sequence can be very intuitive. To
automate this, existing work mostly focussed on joint process of transformation
and pattern matching [93, 17]. Different implementations of the workload are
generated and checked if the loop nest and access functions match one of the
instructions.

19

Background

Unless the intrinsic can compute the full workload in a single call, schedule
optimizations are necessary to generate well performing implementations. The
embedding dictates which loops are mapped to the intrinsic, their ordering and
whether they need to be split. That leaves the remaining loops as degrees of
freedom for scheduling decisions. Thus, scheduling choices can only be made
after an embedding is selected and therefore this work views them as sequential
problems in the deployment.

A large body of publications concerning the deployment for DNN oper-
ators on hardware accelerators has been published in past years. To bring more
structure into this discussion, it is split into the two already presented accelerator
groups. The first group targets DNN accelerator with an ISA containing complex
intrinsics, like matrix multiply. This group is closest to this work and the
motivating problem. Second are tools to explore data and operation mapping
in dataflow and CGRA architectures. This group is more specialized towards
convolutional workloads and has a less general programming interface than the
loop-back type.

This discussion will not include MLIR [57], which is aimed to serve as
platform of interaction and optimization for different front ends, intermediate
representations and back ends. It is not restricted to deep learning applications,
or any other class program as integrations of different tools into the ecosystem
demonstrate, for example like RISE [41] and XLA.HLO [1] in [64]. Many of the
methods discussed in the following paragraphs could be implemented as a MLIR
dialects or optimization passes for a specific target.

Tools targeting ISA accelerators Table 2.2 presents a selection of tools used to
bring CNNs to loop-back style hardware accelerators, for example TensorCores
in NVIDIA GPUs 5, Intel’s VNNI instructions, VTA [67] or more specialized
hardware like [109]. Data-Layout Transform describes if and what changes
the tool can make to the data layout and Embedding marks if the tool can
automatically rewrite the program as necessary to place the hardware intrinsic
in the workload. Lastly, Optimization describes how the implementation is
optimized before deployment.

TVM [17] is an open-source compiler stack for DNNs, describing networks
in a functional language called relay [79]. Individual operators for execution
are lowered to a scheduling language inspired by Halide [74]. Feedback-based

5https://www.nvidia.com/en-us/data-center/tensor-cores, accessed 12.2021

20

https://www.nvidia.com/en-us/data-center/tensor-cores

2.4 Related Work

Table 2.2 Comparison of DNN deployment tools for ISA based hardware accelerators

Data-Layout
Name Workloads IR Transform Embedding Optimization
TVM [17] CNN, MLP Loops × × AutoTVM [18]

LSTM Ansor [124]
DORY [12] CNN, MLP Loops × × CP

MLP Caches
ISAMIR [93] CNN, MLP Loops, transpose X computed at

LSTM Registers compile time
UNIT [111] CNN Loops, × X AutoTVM

MLP Registers
Lift [94, 65] CNN, MLP Functional × X auto-tuning

Lang.
AKG [123] CNN Polyhedral × X auto-tuning
Glenside [89] CNN Access Patterns, X X ×

Equality Graphs

performance optimization, or auto-tuning, is then used to find good schedules
for individual operators [18, 124]. Code for accelerators can be generated
by embedding hardware intrinsics into the AST. This embedding is only semi-
automatic. For every operator an expert has to specify an embedding strategy
which statically defines the data layout and binds the instruction’s loops to
workload loops. Based on this, code for individual operators can be generated
and optimized. Pre-determined strategies are limited in their ability to adjust to
different operator layouts or parametrizations and are not part of AutoTVM’s
optimization space. Especially if a dimension in the instruction is larger than the
dimension in this specific operator instance, workarounds like zero-padding are
necessary, but reduce hardware utilization.

DORY [12] is on the same level of embedding automation as TVM and is a tool
to automate the deployment of workloads to PULP-NN intrinsics [34]. Both data
layout and the calls to accelerating functions are specified manually. Performance
optimization is done by a Constraint Programming (CP) based process, searching
for the best memory hierarchy utilization.

ISAMIR [93] automates the embedding problem at loop level by matching
tensor dimensions and arithmetic operations in the loop nest to the ISA, striving
to derive loop orderings and data layout from the embedding attempts. If this
is not possible, a non-deterministic program transformation is performed. The
resulting program is then matched against the ISA, again. How the tool deals
with too-small dimensions on for the embedding, specific exploration strategies
and a full set of rewrites are not reported.

21

Background

Similar to ISAMIR, UNIT [111], which builds on TVM, automates the
embedding process based on arithmetic operations and register addressing. It
verifies that the addressed data and loop iterators mapped between workloads
and instruction strictly overlaps. Program rewrites are limited to embedding.
If no possible embedding is present in the workload, the deployment will fail.
For example, in order to embed NVIDIA’s Tensor Core intrinsic the workload
needs to be specified in the im2col format by a human expert. UNIT is a first step
towards unifying the embedding and scheduling problem by adding the space
of different embeddings strategies as a dimension to the scheduling problem.
It then relies on the tuner for the final choice. While this integrates the two
steps, fundamentally different implementation strategies, like im2col vs. direct
convolution, cannot be explored.

Rewrite systems to create different implementations for same computation are
also used by LIFT [94, 41], for scheduling and exploration of possible embeddings
of specialized hardware intrinsics into DNN operators [65].

Similarly, Glenside [89] is based on transformations of functional workload
descriptions. It focusses on the representation and transformations of access
patterns in pure tensor functions. Transformations include transpose, slicing,
flatten or reshape. Glenside is using a equality saturation [112] solver on this
representation to find solutions different kinds of problems, among other how to
embed a GEMM intrinsic into a convolution via im2col. In their description, the
authors of Glenside focus on the representation aspect. Performance optimization
results are not discussed or presented.

AKG builds on TVM, but the back end is swapped for polyhedral scheduling
and code generation facilities. Using im2col, convolutions are processed as
matrices, of which subsequent fractal decompositions are mapped to a GEMM
intrinsic. Similar to VTA or CPU targets, the input channel of the activation
is packed and lowered to the innermost dimension. The powerful tiling and
operator fusion of the polyhedral IR are used for aggressive memory access
optimizations in the auto-tuning process.

Tools targeting dataflow accelerators The second group is about tools targeting
dataflow architectures. This class of accelerators enables dynamic data routing in
the hardware. Determining the temporal and spatial data movement through the
accelerator is the main objective of this group. Global data-layout transformations
are not explored, as they are mainly concerned with data locality in the processing
elements, not outside it. Timeloop [71] has a focus on on loop-level program

22

2.4 Related Work

rewrites for dataflow based accelerators such as Eyeriss [20] and DianNao [15].
Workload and hardware are abstracted over the 7 loops of a 2D convolution
and user-defined annotations specify which hardware and instruction loops are
possible mapping candidates. Timeloop then attempts to map the operator to
the available buffer memories and processing units through successive tiling
and reordering. Similarly, dMazeRunner [26] targets the same class of hardware
and workload. Through the use of search space restrictions, they can reduce
the search time to a few minutes. Both, Timeloop and dMazeRunner build on
analytical models of energy, execution and latency to sweep the optimization
space exhaustively. The embedding problem is not discussed, as they receive it
as part of the problem definition.

While Timeloop and dMazeRunner focus on DNN workloads, Novatzki et.
al. [70] propose a more general approach, solving an Integer Linear Programming
(ILP) problem to find the ideal spatial placement. Similar is the work by
Chaudhuri et. al. [13], with a SAT-based compiler for the dataflow in CGRA
devices. It uses a flow-graph abstraction and SAT solving. The goal is to fully
compile an application with a static schedule for a CGRA hardware target. Their
main contribution is the static scheduling in time and space for a CGRA with a
flexible dataflow architecture.

Only ISAMIR and Glenside concern themselves with automatic transfor-
mation of the data layout to make a deployment possible. UNIT, TVM for
VTA and AKG rely on static, predetermined layouts. However, this is an
important factor for DNN workloads, where different application frameworks
offer various, layouts, like NCHW in PyTorch and NHWC in Keras. Likewise,
specific hardware accelerator libraries and interface expect specific layouts, like
NHWC in the MLI library6 or NCHWnc for VTA. Manually translating these
layouts for every operator and front-end creates overheads for describing the
exact same computations. Similarly, manual effort is necessary for the compiler
stacks presented in Section 2.3.2. The translation from high-level constructs to
low-level intrinsics is done by a human expert and is not automated. Exploring
and determining how high-level operators can be expressed as a sequence of
low-level intrinsics is an open research question and motivates this thesis.

6https://github.com/foss-for-synopsys-dwc-arc-processors/embarc_mli, accessed 04.2022

23

3

C
h

a
pt

er

Complexity Analysis of Iteration-Domain Em-
bedding

The following chapter will focus on the complexity analysis of transformation-
driven embedding processes, operating on the loop level of DNN operators. We
will call this the Top-Down approach. The fundamental problem to solve is finding
a sequence of program rewrites that allows a pattern matching process to find a
possible embedding location. The goal is to express the operator as a sequence
of intrinsics, without manually specifying a sequence of transformations for
a specific operator and intrinsic pairing. The implementation should be the
result of an embedding process, which in itself should be easily adjustable and
extendable for different hardware targets. This, of course is not trivial to achieve
and this chapter will explore how current, transformation-driven processes are
suited for this problem. Workload representation and embedding on the level of
tensors, loops and tensor indices level reflects the abstraction level of existing
publications in this field. As discussed in Chapter 2, the scheduling problem is
not bound directly to the embedding problem and thus will be discussed in later
chapters.

In general, embedding complex instructions into tensor computations has
two main challenges. First, not every opportunity to embed an instruction is
immediately visible in the original formulation of the kernel. There can be many
reasons why an intrinsic cannot be embedded immediately. A first example
is a possible mismatch between the dimension ordering of a tensor. This was
already demonstrated in Figure 2.3. A transpose on one of the input matrices

The content of this chapter was published at the ITEM 2020 Workshop [76]

25

Complexity Analysis of Iteration-Domain Embedding

is necessary to enable an embedding. While for matrix-vector or matrix-matrix
multiplication operations the number of possible orderings is limited, the seven
different dimensions Conv2D make it more challenging to align the dimensions
correctly between workload and intrinsic.

Another, trivial example is the order in which the input data tensors are
specified in the computation. In the following two snippets only the ordering of
inputs a and b are different.

1 for i in I:
2 for k in K:
3 c[i] += a[i,k] · b[k]

1 for i in I:
2 for k in K:
3 c[i] += b[k] · a[i,k]

At some point in the embedding process, either through pattern matching or
transformations, this needs to be accounted for.

A last example is the distance, or pairing, of computations in a workload. For
example, a scaled matrix-vector product multiplies each output element with a
scalar value. It can be implemented as in the following snippet:

1 for i in I:
2 for k in K:
3 c[i] += a[i,k] * b[k]
4 c[i] *= s

Assuming the same matrix-vector intrinsic as in Figure 2.3, a direct mapping
between workload and intrinsic is not possible. If the matrix-vector operation
were replaced by a similar intrinsic, the scaling operation in line 4 would be
dangling. A solution would be to move the scaling into a separate loop. Such a
transformation is called loop fission.

1 for i in I:
2 for k in K:
3 c[i] += a[i,k] · b[k]
4 for i in I:
5 c[i] ·= s

As the examples showed, transformations are a possible path to enable the
embedding of intrinsics. Different combinations of transformations lead to a
space of computationally equivalent candidates.

The second challenge is searching this space for candidates that can be realized
with a given set of intrinsic. In each created candidate, an instruction selection
algorithm needs to find possible compositions of matching intrinsics. A pattern
matching process needs to determine when loops and access functions overlap

26

3.1 Tensor Compute Graphs

in a way that allow an embedding, while also preventing matches that would
break the correctness, as in the previous example.

To handle these challenges, this chapter presents a graph-based intermediate
representation (IR) to capture the computational sequence and hierarchy as well
as memory access functions of both, workloads and intrinsics. Specifically, this
chapter presents:

• A graph-based IR to describe tensor computations and specialized ten-
sor intrinsics. The IR represents the performed computation and data
dependencies, allowing transformations and pattern matching.

• Algorithms for pattern matching and instruction selection in this IR.

• A method to generate a search space of legal kernels variants through graph
transformations.

Section 3.1 describes the IR and Section 3.2 discusses the pattern matching
algorithm. Section 3.3 presents a set of computational transformation of a deep-
learning kernel to expose patterns for the mapping. The resulting complexity of
transformations, pattern matching and search spaces is evaluated in Section 3.4.

3.1 Tensor Compute Graphs

First, the graph-based IR for tensor expressions is presented. It will be used to
discuss the embedding problem in the following sections. The IR captures the
computational properties of tensor expressions, together with data dependency
and loop structure information in Tensor Compute Graphs (TCG). A TCG has nodes
of several types: tensor, reduction, compute, input and access nodes. The nodes
form a directed graph and each node has multiple children and one parent node.
Data dependencies and index variable definitions are represented by additional
edges. Formally, the graph is defined as:

Definition 3.1. A TCG is a labeled, directed graph G = (N , E ,D, I), where N is a set
of nodes and E the set of directed edges connecting N to form a rooted tree describing
the computation. D is a set of directed Read-After-Write (RAW) data dependency edges.
I is a set of memory access edges I : nin ↦→ nit, (nin, nit ∈ N) mapping each input
dimension nin to a node defining an iterator nit.

Nodes representing different parts of a tensor expression have different
semantic meanings:

27

Complexity Analysis of Iteration-Domain Embedding

(a) Two Graphs for the same computation, but with a different formulation. The right-
hand graph corresponds to equations, 3.2 and 3.3, while the left-hand graph expresses
equation 3.1. For brevity, we left out the child-to-parent edges. Nodes with a capital
letter followed by an interval (t[i]) are tensor nodes. Nodes with bold letter ("t") represent
tensor Inputs, lower case letters are scalar Inputs. Algebraic symbols (+,*) are compute
nodes, nodes with a

∑
symbol are reductions. Lower case letters and symbols in brackets

([i]) are access nodes.

1 for i in ri:
2 for j in rj :
3 for k in

∑
l
K:

4 r[i,j] = q[i,l] · k[j,l]
5 r[i,j] ·= s

(b) Loop-nest for left-hand side TCG

1 for i in ti:
2 for j in tj :
3 for k in

∑
l
:

4 t[i,j] = q[i,l] · k[j,l]
5 for i in ri:
6 for j in rj :
7 r[i,j] = t[i,j] · s

(c) Loop-nest for right-hand side TCG

Figure 3.1 Examples of how TCGs represent loop-based computations.

• Tensor nodes describe the formation of an output tensor dimension and
the compute flow. The child to the right of each tensor node describes how
each of the dimension’s elements is computed. The child to the left of a
tensor node is the preceding computation in the program flow, the parent is
the succeeding one. This does not reflect data dependencies, only the order
of computations. Tensor nodes also define iterators over inputs. Similar to
Static Single Assignment (SSA) IRs [80], the values in tensor nodes cannot
be manipulated.

• Reduction nodes describe reductions of an input dimension over an op-
eration. The child to the right is the initial value, the left-hand child

28

3.1 Tensor Compute Graphs

the input. Reduction nodes also define iterators over inputs. Reduction
nodes compute a scalar value that can be used by the parent for further
computation or storing the result.

• Compute nodes represent element-wise unary or binary functions. Chil-
dren are inputs or preceding computations. They are ordered according to
the function. For example, a subtraction has a strict operand ordering (right-
to-left), while an addition has a relaxed ordering due to its commutative
nature.

• Input nodes represent an input tensor with n children of type access, one
for each tensor dimension. The children are ordered right-to-left, with the
rightmost representing the innermost dimension. If a dependency exists,
an edge points to the tensor node computing the dimension.

• Access nodes form an expression tree to describe memory access functions
for a tensor dimension. They either carry a reference to a node defining
an iterator, a constant scalar value or an arithmetic operation. Iterators are
defined by either tensor or reduction nodes and describe the traversal of the
dimension.

The graph construction rules are defined in Figure 3.2. The left-hand side graph
in Figure 3.1a is used to explain the fundamental concepts. It shows the TCG
representation of the following equation:

ri,j = s ·
∑

l

qi,l · kT
l,j (3.1)

Further, Figures 3.1b and 3.1c are loop nests corresponding to the respective
graphs in Figure 3.1a. This demonstrates how close the TCG is to the loop
representation.

A graph is always connected and rooted in a tensor node with no parent,
in this case r[i]. The nodes r[i] and r[j] are tensor nodes defining the shape
of the computed tensor, which is two-dimensional here. Generally, the shape
can be inferred by recursively following the path of right-hand side children,
until a non-tensor node is encountered. Each additional tensor node adds an
inner dimension to the tensor. This nesting creates a rectangular iteration space.
Assuming a linear memory address space, the innermost dimension is continuous
in memory. Following the parent-to-child connection, the next node is a compute
node, multiplying the result of the reduction and the static input s. The reduction

29

Complexity Analysis of Iteration-Domain Embedding

1 node = tensor
2 | reduction
3 | compute
4 | input
5 | access
6

7 iterator = reference to: tensor | reduction
8 operator = Arith / Logic op
9 interval = {

10 upper : <integer >,
11 lower : <integer >
12 }
13

14 tensor = { parent : tensor | NULL
15 left child : tensor | NULL
16 right child : tensor | reduction | compute | input
17 data -user : input | NULL
18 size: interval
19 }
20

21 reduction = {
22 parent : tensor | reduction | compute
23 left child : compute | reduction | input
24 right child : input
25 size : interval
26 stride : <integer >
27 }
28

29 compute = {
30 parent = tensor | reduction | compute
31 left child = compute | reduction | input
32 right child = compute | reduction | input
33 op = operator
34 }
35

36 input = {
37 parent = tensor | reduction | compute
38 dependency = tensor | NULL
39 children = [access]
40 }
41

42 access ={
43 parent = input | access
44 val = iterator | operation | scalar constant
45 children = [access] | NULL
46 }

Figure 3.2 Tensor Compute Graph construction rules

30

3.1 Tensor Compute Graphs

sums up the result of the scalar multiplication of different values in q and kT .
Which input values are used is determined by the access nodes and the iterators
represented by edges connecting to the defining node.

Note that a different notation of the problem leads to a different TCG repre-
sentation. The right-hand side graph in Figure 3.1a corresponds to Equations 3.2
and 3.3:

ti,j =
∑

l

qi,l · kT
l,j (3.2)

ri,j = s · ti,j (3.3)

In this case, Equation 3.2 computes a temporary matrix t, which is then used in
Equation 3.3 to compute the final output. Multiple computations in the same
kernel form a sequence of compute subgraphs along the left-hand children of
tensor nodes. Because t[i] is the left-hand child of r[i], it is the predecessor r[i]
and computed first. In this case, there is also data dependency, which is defined
by the edge between the computation of tensor t[i] and input t. This edge enforces
the ordering between t[i] and r[i].

In general terms, every graph and subgraph represents the shape of a
computed tensor, followed by the compute and reduction nodes describing how
each element is calculated. Therefore, only tensor nodes can have other tensor
nodes their children. This is also specified in Figure 3.2. Because every element of
a tensor node can be computed independently by the same subgraph, each element
implicitly exposes computational parallelism. Further, a node is dominating all
nodes in the subgraphs formed by their children. This means a node is dominated
by all nodes following the parent connection until the root is encountered.

The presented IR is designed to represent strict loop programs with no
branches, neither static nor data dependent. Programs can only consist of
sequences of loop nests. Scalar operators can be wrapped in 1D tensors and
loops of length one. This restricts the class of problems that can be described,
but fits well to DNN operators and allows for easy program manipulation.

3.1.1 Data Dependencies and Memory Access

So far, the explanation covered the structural description of a computation. This
sections details how memory access and data dependencies are represented and
which kind of analysis this enables. Tensor access functions are described with
three types of nodes. The first is the iterator defined by the data consumers,

31

Complexity Analysis of Iteration-Domain Embedding

1 r[i] =
∑1

j=−1 n[i + j]

Figure 3.3 Tensor expression and simple graph of 1D sliding window

meaning that tensor and reduction nodes define indices used to access input
dimensions. Second are constant values, like strides or offsets. The third are
arithmetic operations, combining iterators and constant values. To express the
access function computation, TCGs use an expression tree for each dimension. This
expression tree forms naturally from the original tensor expression, as shown in
Figure 3.3. The term n[i + j] becomes the subgraph under n, which consist of
node [+], combining the values of the iterators [i] and [j]. The values of [i]
and [j] are defined by the tensor node r and the reduction node Σ+.

Every tensor and reduction node defines an iteration domain as an integer
interval I = (l, n) with l und n being the lower and upper bounds. The iteration
domain can have a regular stride s > 1. Interval analysis [66] can compute the
read interval of every input dimension at each point of a computation. The tensor
or reduction node at the "point of interest", and all dominators, contribute point
intervals with a range of 1 from their currently computed elements, whereas
each child node contributes its full interval to the access function calculation.
Similar to the tensor nodes forming a tensor, the combination of read intervals
forms a rectangular slice of the input tensor. The example in Figure 3.3 shows a
simple 1D sliding window, where each output value in r is a sum of the pixel
itself and its neighbors. To calculate which values are required for one value of
r, one has to compute the intervals according to the access function i + j of n.
Iterator value i = 5 creates the input interval [5, 5] + [−1, 1] = [4, 6].

Interval-based computation leads to an over-approximation of the accessed
data for strided memory access functions. However, this only affects the com-
putation of the access interval, not the index calculation. This conservative

32

3.2 Intrinsic Embedding

approximation is often used in the DNN and image processing domain, for
example by TVM or Halide. UNIT [111] uses a different method to evaluate the
accessed memory but achieves a comparable analysis granularity. It decouples
the computation matching from memory access analysis, verifying the former
before the latter.

The last component in the TCG are data dependencies. Transformations
of operations with sequential computations need to maintain correct ordering.
Because tensor values cannot be modified in place, tracking read-after-write
dependencies is sufficient to preserve the original program formulation. They
are represented as edges between the producer and consumer of a tensor.

3.1.2 Intrinsic Representation

The hardware’s intrinsics are also modelled as TCGs. It can be differentiated
between intrinsics with variable size and intrinsics with a fixed size. A fixed
intrinsic size has static input and output array dimensions. Since some architec-
tures have instructions that perform the same computation, but with different
input and output dimensions, we allow multiple iteration intervals for tensor and
reduction nodes in the TCGs of intrinsics. For intrinsics with variable size, the
dimensions of input and output tensors are part of the intrinsic’s parameters. For
this type of instructions, only the upper and lower bound of each argument are
needed. Intrinsics are always rooted in a tensor node, and the computed results
are always continuous in memory.

3.2 Intrinsic Embedding

Intrinsics and operators are described by the same structure, which makes
instruction selection a pattern-matching problem. Intrinsic embedding is split
into three steps: preprocessing, pattern matching and selection, each of these
detailed in the following sections. After a preprocessing step, a modified version
of the top-down tree matching algorithm [45] finds matching intrinsics in a
kernel. Due to the TCG’s semantics, customizations for pattern matching and
instruction selection are necessary.

3.2.1 Preprocessing

The preprocessing takes a graph in the presented TCG IR and transforms it into
one with strict tree property, meaning there exists only one path connecting

33

Complexity Analysis of Iteration-Domain Embedding

Figure 3.4 Example how a TCG is made a tree before pattern matching. In the right-hand
side graph input a’s dependency becomes the path to the tensor node. P is for a move
to the parent and L for a move to the left child node. Iterators only have moves in P
direction. Thus, they are reduced to their distance.

any node pair in the graph. The parent and child connections already have
this property. But edges formed by data dependencies and iterators introduce
additional paths in the TCG. The edges created by iterator and data dependencies
are resolved to paths from the input to referenced node by only traversing the
parent and child edges. This is shown in Figure 3.4. The result is a graph with
tree properties and a set of unique paths. Because the node defining an iterator
is always dominating the input using it, the path only heads in the direction of
the parent node, and thus, is reduced to an integer of the respective path’s length.
The path length then replaces the actual references in the access node for pattern
matching. The data dependency paths are stored at the respective leafs of the
tree. This process is the same for intrinsics and operators.

The last step during preprocessing is the creation of a data structure for the
pattern matching from all available intrinsic graphs. In essence, the pattern
matching algorithm reduces the problem of tree matching to a series of string
matchings. To do this, the root-to-leaf path of every intrinsic’s TCG is described
as a string of labels. A label contains type information of a node, or a right-to-left
enumeration of child nodes to encode the direction. The label information is
gathered from the algebraic data types in Figure 3.2. Using the Aho-Corasick
Algorithm [5] a finite-state machine (FSM) for root-leaf-path matching is gener-
ated. This FSM is the pattern-matching machine used to find embeddings in a
workload.

34

3.2 Intrinsic Embedding

Figure 3.5 Example for a false match. The graph on the left is the pattern, the graph
on the right is the kernel. Without the second matching condition, we would match
the pattern root a[i:10] with kernel root x[x : 10]. This would cut off t[y : 20] from the
computation.

3.2.2 Pattern Matching

During pattern matching a workload TCG is traversed in right-to-left pre-order
and each node is passed to the patter- matching FSM, which matches the operator
against all previously inserted intrinsic in parallel. The result of this step is a set
of nodes and the intrinsic matching at this point.

During matching the algorithm searches for identical root-leaf paths (label
string sequences) between instructions and kernel. After a root-leaf path matched,
a counter at the pattern’s root node in the workload, associated with the matched
instruction, is incremented. If the FSM state indicating a match has a data
dependency path stored, then it is compared to the paths in the kernel. There
are two conditions for a full match of an instruction: first, the counter associated
with an instruction needs to match the number of leaf nodes in the instruction.
This means that the same root-to-leaf paths exist in the kernel and the instruction
and therefore the pattern matches. Second, the counter needs to match the leaf
count of the right-hand side subgraph. This is a necessity of the execution model
and IR semantic. The right-hand side subgraph of a tensor node describes how
each tensor node element is computed. If the subgraph matches a pattern, the
subgraph can be computed by this intrinsic.

As discussed in the beginning of this chapter, the pattern matching also needs
to make sure, that a computation is not left dangling after a match. If a subgraph
is not fully covered by a pattern, it means that not all required computations
can be performed by the intrinsic. And since intrinsics cannot issue intrinsics
themselves, there is no possibility to fill the gap with another intrinsic. This
does not limit the ability to compose a kernel from several instructions, it only

35

Complexity Analysis of Iteration-Domain Embedding

prevents the generation of artefacts that cannot be executed in hardware. See
Figure 3.5 for an example. The TCG on the left describes a matrix-multiply
intrinsic. The graph on the right contains a computation, where the pattern of
matrix multiplication is present but is only a part of full computation. Without
the second condition, the matrix-multiply intrinsic would be matched without
representing the computation correctly.

Since an intrinsic might support less input dimensions than an operator
has, which affects the total leaf count, output dimensions can be masked out
selectively to find matches.

3.2.3 Selection Algorithm

Pattern matching can produce multiple, conflicting ways of implementing an
operator with intrinsics. A conflict exists if two matched instructions share one
or more nodes in the tree. The selection is driven by a global cost optimization.
Each intrinsic has an associated cost function that contributes to the global cost.
For this work, coverage is used as a heuristic metric. Coverage is defined as:

Cnodes = sum of nodes covered

total nodes in tree
(3.4)

Maximizing coverage globally maps the highest number of nodes in the kernel
to an instruction. The selection algorithm is agnostic to the exact cost function
and can be used with other metrics.

Algorithm 1 is used to find the best combination of instructions recursively.
Branches are bound if they offer no improvement over the best local selection.
The bounding decision is made by analyzing the next possible match in the tree.
For every intrinsic matched at the local node, the next intrinsic not overlapping
with the local selection is selected. This next node is called continuation. Only
the local selection with the best cost properties for each continuation is stored.
The function returns the best candidate, which is a combination of the local
selection and continuation. The algorithm locally selects the best instruction for
the current node using the MaxInstr function, Next calculates the continuation.
Best selects the candidate with the best global cost function property. If the next
node in the match list is not a possible continuation, a null pattern is used to
allow exploration of search paths not selecting any match at this location.

36

3.3 Transformations

Algorithm 1 Selection Algorithm
1: function Selection(matches[], index)
2: if index == matches.size then
3: return MaxInstr(matches[index])
4: end if
5: for instr : matches[index] do
6: node,nextIndex = Next(instr, matches, index)
7: maxCont = MaxInstr(continuation[nextIndex], instr)
8: continuation[nextIndex] = maxCont
9: end for

10: if continuation[index+1].empty then
11: continuation[index+1] = Nullpattern
12: end if
13: for (index,node) : continuation do
14: candidate = Selection(matches, index)
15: candidate = candidate ∪ node
16: candidateList.insert(candidate)
17: end for
18: return Best(candidateList);
19: end function

3.3 Transformations

This section introduces how the transformations driving the search for possible
operator implementations are handled. Transformations are necessary because
the original implementations might not expose all matchable patterns to embed
available intrinsics. The reason for this is the composable nature of workloads
and the freedom provided by commutative and data independent operations.
Computational correctness is maintained by only performing transformations
that do not violate data dependencies.

Transformations are implemented as graph rewrites: G ft(m)−−−→ H is a transfor-
mation where G is a source graph and H the result graph. Function ft(m) is a
transformation, applied on domain m. This domain describes a specific subgraph
of G and is the working set of nodes and edges of transformation ft.

For this chapter, two transformation properties are important: independence
and monotony. The former describes if and when two different rewrite operations
can be reordered but still create the same result graph. Two rewrites f1 and
f2 are independent when the resulting graph of the transformation sequences
G f1(m1)−−−−→ H1

f2(m2)−−−−→ H2 and G f2(m2)−−−−→ H2
f1(m1)−−−−→ H1 are equal. For this to be

possible, the domains need to be conflict-free:

37

Complexity Analysis of Iteration-Domain Embedding

Definition 3.2. Two transformations G f1(m1)−−−−→ H1 and G f2(m2)−−−−→ H2, are conflict-free
if m1 ∩m2 = ∅.

For this property, f1 and f2 can either be the same or two different transfor-
mations. The second condition, monotony, is defined as follows:

Definition 3.3. A rewrite is monotonic, if for any number of n ∈ Z+ applications
of G f1(m1)−−−−→ H1...

f1(mn)−−−−→ Hn of transformation f1 over domains m0, ..., mn, the next
applicationHn

f1(mn+1)−−−−−→ Hn+1 /∈ {G,H1, ...,Hn}.

It means that the repeated application of transformation f1 never generates
a graph that was already produced by a previous application or is the original
graph G. Monotonic behaviour is important for the ordering of transformations.
It prevents cyclic behaviour if a single transformation is repeatedly applied on a
graph, allowing an exhaustive exploration of this transformation’s space without
additional measures to prevent cycles. The condition only applies to single
transformations. Combinations of different rewrites can still create cycles in
specific application sequences. Therefore, global transformation ordering is an
important consideration during the design of a search space.

3.3.1 Set of Transformations

Graph rewrites, or transformations, are the central component of the embedding
process presented in this chapter. The selected set of transformations is mainly
concerned with structural rewrites, i.e. the arrangement of loops and individual
computations or input ordering. An exception is the masking transformation, as
it is necessary to generate matching patterns for any compute kernel with the
used pattern matcher.

Input Masking Hiding outer input dimensions for pattern matching is neces-
sary, because a pattern needs to cover all leafs of a subtree. This is displayed in
Figure 3.6. If the number of dimensions in the operator is higher than the number
of input dimension of an instruction, the patterns would not match. The missing
dimensions are bridged by loops surrounding the instruction. This rewrite has
non-monotonic behaviour.

Operand Swap This transformation swaps the two child nodes of a compute
node, see Figure 3.7. In pattern matching, the ordering of child nodes is relevant
for matches. To perform a swap, the operation performed by the compute node

38

3.3 Transformations

1 r[i,j] = n[i,j] · a[j]

2
Mask−−−−→

3 r[i,j] =* n[j] · a[j]

Figure 3.6 Input Masking Transformation

needs to be commutative. This transformation is non-monotonic. Therefore, if
possible, the inputs of compute-nodes are ordered into a canonical form, reducing
the number of required transformations.

1 r[i,j] = n[i,j] · a[j]

2
Swap−−−−→

3 r[i,j] = a[j] · n[i,j]

Figure 3.7 Operand Swap Transformation

Input Transpose Reordering the dimensions in input tensors. In the TCG, this
changes the children edge order of the input node. An example for this shown in
Figure 3.8. This rewrite has non-monotonic behaviour.

1 r[i,j] = n[i,j] · a[j]

2
T ranspose(n,[1,0])

−−−−−−−−−−−−−→
3 r[i,j] = n[j,i] · a[j]

Figure 3.8 Input Transpose

Output Transpose Reordering the dimensions of the output tensor. In the TCG,
this changes the order of tensor nodes. An example for this shown in Figure 3.9.
This rewrite has non-monotonic behaviour.

1 r[i,j] = n[i,j] · a[z,y]

2
T ranspose(r,[1,0])

−−−−−−−−−−−−−→
3 r[j,i] = n[i,j] · a[z,y]

Figure 3.9 Output Transpose

39

Complexity Analysis of Iteration-Domain Embedding

Compute Fission Moves a compute node into a new subgraph, which only
performs the computation described by the moved node. How this changes the
graph is shown in Figure 3.10. All data dependencies of the original computation
are now linked to the new subtree and a new dependency to the old subgraph is
introduced. Only possible if there is more than one compute or reduce statement
in the source graph. This transformation is monotonic.

1 r[x,y] = (n[x,y] · a[x,y]) + s

2
F ission−−−−−−→

3 t[x,y] = n[x,y] · a[x,y]
4 r[x,y] = t[x,y] + s

Figure 3.10 Compute Fission Transformation

Reduction Fission Moves a reduction into a new subgraph that only performs
the reduction described by the moved node, as shown in Figure 3.11. The
reduction in the source tree is replaced with an additional tensor dimension that
is removed by the subsequent reduction. All data dependencies of the original
computation are now linked to the new subtree and a new dependency to the
old subgraph is introduced. Only possible if there is more than one compute or
reduce statement in the source graph. This transformation is monotonic.

1 r[x,y] =
∑

z
n[x,z] · a[z,y]

2
F ission−−−−−−→

3 t[x,y,z] = n[x,z] · a[z,y]
4 r[x,y] =

∑
z

t[x,y,z]

Figure 3.11 Reduction Fission Transformation

Fusion Reduces the distance between two computations, by fusing the left child
of a tensor node into the parent. This is illustrated in Figure 3.12. This is similar
to the fusion of loop nests. It allows the use of results before all dimensions of
a tensor are computed. The fusion is only possible if the iteration interval is

40

3.3 Transformations

identical and no data is consumed before it is computed. This transformation is
monotonic.

1 for x:
2 for y:
3 t[x,y] = n[x,y] * a[x,y]
4 for x:
5 for y:
6 r[x,y] = t[x,y] + s

7
F usion−−−−−→

8 for x:
9 for y:

10 t[x,y] = n[x,y] * a[x,y]
11 for y:
12 r[x,y] = t[x,y] + s

Figure 3.12 Fusion Transformation

Inlining Replace an input with the preceding computation. The source graph
for reduction (Figure 3.14) and compute (Figure 3.13) nodes looks different, but
the target graph has the same structure. Because multiple inputs could use
this computation, the inlining is performed at every input node consuming the
computation selected for inlining. This transformation is monotonic.

1 for x:
2 for y:
3 t[x,y] = n[x,y] · a[x,y]
4 for y:
5 r[x,y] = t[x,y] + s

6
Inline−−−−−→

7 for x:
8 for y:
9 t[x,y] = n[x,y] · a[x,y] +

s

Figure 3.13 Compute Inlining Transformation

1 for x:
2 for y:
3 for z:
4 t[x,y,z] = n[x,z] · a[z,

y]
5 for z:
6 r[x,y] += t[x,y,z]

7
Inline−−−−−→

8 for x:
9 for y:

10 for z:
11 r[x,y] = n[x,z] · a[z,y]

Figure 3.14 Reduction Inlining Transformation

41

Complexity Analysis of Iteration-Domain Embedding

3.3.2 Loop Tiling and Padding

Hardware intrinsics sometimes operate on a fixed width [67, 50, 46]. Deployment
tools therefore need measures to handle loops that don’t exactly fit the intrinsic.
Primary tools for this are tiling and padding. Loop tiling splits a loop it into a
sequence of individual iteration intervals. The inner loop iterates over the content
of an interval, while the outer loop selects the interval. The goal is either to better
utilize spatial and temporal locality in memory accesses or to modify the overall
program structure to fit a specific hardware requirement. For the embedding,
the focus is on tiling parameters necessary to match the intrinsics in an operator,
as the general search for ideal tiling parameters is an orthogonal optimization
problem in and of itself. Tiling is done by annotating the tensor node with the
outer tiling factor, that is used during the code generation to create appropriate
loops and instruction calls. This allows the search for good parameters globally,
after the instructions have been matched.

tiling =

⎧⎪⎨⎪⎩ dimloop/diminstr if (dimloop + padding) > diminstr

0 else
(3.5)

The second measure is the extension of tensor dimensions through padding.
This extension either happens with zeros or ones, depending on the affected
algebraic operations.

padding =

⎧⎪⎨⎪⎩ diminstr ∗ (⌈dimloop/diminstr⌉)− dimloop if dimloop%diminstr ̸= 0

0 else
(3.6)

Both measures can be applied after the instruction selection, reducing complexity.
First, the padding is determined for each tensor and reduction node in the graph
mapped to an instruction by Equation 3.6. A second annotation contains the
outer tiling interval by Equation 3.5.

3.4 Evaluation

Using the presented IR and instruction selection, the mapping of typical neural
network layers to intrinsics similar to existing architectures like VIP [46] or
Cambricon [61] is investigated. The evaluation architecture provides different
classes of scalar, vector and matrix operands. When V is a vector, M is matrix
and S a scalar value, Table 3.1 defines the instructions. Dot and matrix-vector

42

3.4 Evaluation

Table 3.1 List of available instrinsics.

Type Operands Result Operations
Vector-Scalar V, S V [add,mul,sub,div,max,exp]
Vector-Vector V, V V [add,mul,sub,div,max,exp]
Reduction V S [add, mul, max]
Dot V, V S [add,mul,sub,div,max,exp][add,mul,max]
Matrix-Vector M, V V [add,mul,sub,div,max,exp][add,mul,max]

Table 3.2 Canonicalization Table. Rules how different inputs are ordered to reduce the
number of necessary instruction and transformation patterns.

OpType Order Canonical Form Description
non-commutative [a, b] [a, b] No change
commutative [a, b] [a, b] No change
commutative [aconst, b] [b, aconst] Constant values to the right
commutative [a, bdep] [bdep, a] Intermediate values to the left

each perform two operations. The first is for the element-wise operation, the
second for the reduction. The choice for this set of intrinsics was motivated by
its flexibility, in order to support a wide range of different operators.

On the application side, six operators from neural networks are under
investigation. They range from operators like a fully-connected layer, a variation
of the dense operator from Chapter 2, to kernels with more complex operation
sequences, like Capsule Routing [83]. The Attention workload is implemented
according to Equations 3.2 and 3.3 in Section 3.1. Table 3.3 shows a complete list.

Since padding and tiling can be applied after the embedding, they don’t
contribute to the complexity of the embedding problem. Therefore, the di-
mensioning of workloads and instructions aren’t considered in this evaluation.
This decision was made in the full awareness of the reduced utilization and
performance introduced by padding. However, it is in line with existing work
such as TVM [17].

3.4.1 Transformation and Selection Process

Starting from the original kernel G, sequences of transformations presented
in Section 3.3 lead to many possible implementations. The creation process is
structured to successively generate every possible implementation. Individually,
the fusion and fission operations are monotone. However, their complementary
nature can introduce loops into the search. Therefore, this work uses a fixed
order of transformations:

43

Complexity Analysis of Iteration-Domain Embedding

1. The search starts with the canonicalization of inputs using the swap transfor-
mation, if possible. The rules of canonicalization are specified in Table 3.2.
The goal is to remove variations created by commutative operations that
still have other possible ordering criteria. Constant values are pushed to the
right, while inputs with a dependency are pushed to the left. This helps
reduce the number of necessary matching patterns for instructions and
transformations for the workload. The case of two constant values is not
considered under the assumption that operations on two constant values
are computed ahead of the embedding.

2. The results of the canonicalization process is then split through iterative fis-
sion, until no further decomposition is possible. This is shown in Algorithm
2, where the two parts of the graph rewriting system are demonstrated,
as well. First, in line 2 all possible fissions locations in a given graph are
determined and put into a queue. Then, each operation is performed subse-
quently, modifying the original graph (line 6). On this new graph, the new
fission options are evaluated and the previous step repeated (line 7). This
process monotonously constructs a graph with more individual loop nests,
until no further fission is possible. The result is a graph F , representing a
workload where each algebraic operation exists in an individual loop nest.

3. The graph resulting from fission is now subsequently fused together in every
possible permutation. The inline transformation is then applied, as well.
First, every individual option for a fusion is determined (line 5). From the
available options, a fusion set is created. This set contains all conflict-free
combinations of fusion options. Conflicts are determined as in Definition
3.2. All graphs from the possible options are generated (line 7) and then
put into operation queue and solution set (lines 9, 10). Multiple sequences
of fusions can lead to the same graph. To prevent duplicate entries in the
result set S , each candidate is filtered against already existing solutions (line
8). This is done with the same pattern-matching algorithm as used intrinsic
selection. This process is repeated until no more options for fusions are
available. The monotonous behaviour of the fusion operation guarantees a
stopping point.

4. The resulting set of graphs is then matched against the instructions, with
updating masking transformations in each iteration, until all possible input
mappings are applied. Since the highest number of input dimensions in

44

3.4 Evaluation

Algorithm 2 Algorithm for finest fission
1: procedure Full Fission(G)
2: O ← FindFissionOptions(G)
3: while O ≠ ∅ do
4: while option← O.pop() ̸= ∅ do
5: G′ ← ApplyFission(G′, option)
6: end while
7: O ← FindFissionOptions(G′)
8: end while
9: return G′

10: end procedure

Algorithm 3 Algorithm for full fusion
1: procedure Fusions(G)
2: Q.push(G)
3: while Q ≠ ∅ do
4: G′ ← Q.pop()
5: O ← FindFusionOptions(G′)
6: for option ∈ fusion_set(O) do
7: F ← ApplyFusion(g, option)
8: if F /∈ S then
9: Q.push(F)

10: S ← S ∪ F
11: end if
12: end for
13: end while
14: return S
15: end procedure

our instruction set is two, every higher dimension is masked out by default,
reducing the number of masking combinations. The mapping results are
then stored for further processing.

3.4.2 Solution Space

Table 3.3 shows the evaluated operators, together with characteristics of the
search and solution space. The number of generated candidates varies immensely,
especially between Attention and Conv2D. Although they have the same number
of nodes, the number of resulting candidates differs by two orders of magnitude.
This is rooted in the structural differences of the graphs. Conv2D generates a
4-dimensional tensor, using reductions and multiplications over a stencil memory
access pattern. The second step in the search space creates a subgraph for each
algebraic operation in the kernel. This leads to multiple subgraphs, each with at

45

Complexity Analysis of Iteration-Domain Embedding

Table 3.3 List of evaluated operators. Hit rate is the ratio of solutions to candidates.
Number of transformations (#trans) is reported as median. Search configuration 4 in
Table 3.4 is used.

Operators #nodes #candidates #solutions Hit rate #trans
FC + Bias 16 24 4 16.6% 7
FC + Bias + Sigmoid 29 144 4 2.7% 12
GEMM 11 35 4 11.4% 8
Attention 26 289 9 3.1% 11
Conv2D (NHWC) 26 59,503 682 1.1% 25
Conv2D + ReLU (NHWC) 56 440,428 1,428 0.3% 33
Capsule Routing 127 1,023,516 12 0.001% 32

1 2 3 4
configuration

101

3 × 100
4 × 100
6 × 100

2 × 101

#c
an

di
da

te
s

FC

1 2 3 4
configuration

2 × 100

3 × 100

4 × 100

fu
ll

al
g.

 c
ov

er
ed

FC

1 2 3 4
configuration

101

102

FC-Sigmoid

1 2 3 4
configuration

2 × 100

3 × 100

4 × 100
FC-Sigmoid

1 2 3 4
configuration

101

6 × 100

2 × 101
3 × 101

GEMM

1 2 3 4
configuration

100

2 × 100

3 × 100
4 × 100

GEMM

1 2 3 4
configuration

102

Attention

1 2 3 4
configuration

100

101
Attention

1 2 3 4
configuration

102

104

Conv2D

1 2 3 4
configuration

100

101

102

Conv2D

1 2 3 4
configuration

102

104

Conv2D-ReLU

1 2 3 4
configuration

101

103
Conv2D-ReLU

1 2 3 4
configuration

104

106
Capsule

1 2 3 4
configuration

100

101

Capsule

Figure 3.15 Impact of four different transformation configurations on finding full algebraic
coverage. The configurations are detailed in Table 3.4. The top row shows the number of
generated candidates, the bottom row the number of candidates with full coverage.

least four tensor nodes, which increases the number of possible combinations of
fusions. In the Attention kernel, the fission only creates three subgraphs with a
maximum of three tensor nodes. The same explanation holds for FC + Bias and
FC + Bias + Sigmoid, as they are a sequence on vector operations, instead of
complex, high-dimensional computations. By far the most candidates are created
by the CapsuleRouting algorithm, as its sequential nature creates many possible
opportunities for transformations.

The fifth column in Table 3.3 shows the number of solutions, which are
candidates that have 100% algebraic coverage. Algebraic coverage is the mapping
of compute and reduction nodes to an instruction. In other words, the evaluation
ignores the parts of the graph that represents loops and focus on the computational
part. If an operator can be computed by a sequence of available instructions and
possibly outer loops to cover tiling and outer dimensions of the tensor, it has
100% algebraic coverage. Only a fraction of the generated candidates can actually

46

3.4 Evaluation

Table 3.4 Configurations in the transformation study

Config. No. Swap Mask Fission Fusion + Inline
1 X X x x
2 X X X x
3 X X x X
4 X X X X

be fully mapped onto the hardware. While the total number of solutions mostly
increases with the search space, the sixth column shows that the relative number
of solutions shrinks with an increased number of candidates. An exception to
this is Capsule Routing. Compared to the other workloads, the number of possible
combinations in the masking operation explodes due to the higher number of
sequential computations, and resulting in more of input nodes consuming the
result of previous computations. At the same time, the possible number of fusions
is lower, due to the lower dimension count and less regular output layout.

The median number of transformations required to achieve full algebraic
coverage shows only a modest growth compared to the absolute number of
generated candidates, which can grow exponentially. This suggests that the
combination of transformations is more important than their total amount. One
consequence is the need for careful pruning of the search space. Cutting a branch
too early could potentially discard a whole class of candidates.

3.4.3 Transformation Impact

Different configurations of transformations were used to study the impact
of transformations on the search space and the resulting candidates. The
configurations are described in Table 3.4. Swap and Mask (Config. No. 1)
are always included because they are necessary to generate any match. The
data in the top row of Figure 3.15 shows that the configuration with the most
transformations creates the most operators. The relative differences between the
configurations remain similar across kernels, regardless of the absolute number
of candidates. Except for GEMM and Attention , no workload can produce
a solution with full algebraic coverage only relying on configuration 1. This
is explained by how GEMM natively matches the matrix-vector product and
Attention natively contains the matrix-vector and scalar-vector operators.

Adding fission (Config. No. 2) creates solutions for all operators with a
convolution as part of the workload because the standard convolution can be
separated into a sequence of vector and reduction operations. This increases the

47

Complexity Analysis of Iteration-Domain Embedding

number of intermediate results, which in turn increases the number of inputs
dimensions in intermediate computations. Thus, more candidates are generated
because each input dimension leads to a higher number of masking options.

The number of candidates by Config. No. 3 depends on the number
of compute statements in the original operators, as it only performs fusion
and inlining operations. Conv2D and GEMM create the same number of
candidates as the first configuration. They have only one subgraph in the original
specification and therefore no option for fusion. Conv2D + Relu, Capsule and
FC + Sigmoid offer some options for fusions, but for neither it is helpful to
actually find a full-covering solution.

Config. No. 4 uses the full search space design as proposed in 3.4.1, leading
with fission, then subsequent fusion. The high number of candidates for this
config across all workloads is explained by the dynamic between these two
transformations. Each fission creates additional computation subgraphs, which
in turn creates opportunity for fusion. More interesting is the fact that for all
original operators, most candidates with full algebraic coverage are found by
this configuration. This suggests that finding the right composition of algebraic
operations is important to generate valid solutions. From the original formulation,
the workload must be transformed, such that the granularity of the individual
computations match the operations available in the intrinsics set. Generating a
set of transformation that creates the required granularity is an important goal
during search space design. While the exhaustive approach eventually reaches a
solution, it does not scale, neither with more transformations nor with workload
complexity.

3.4.4 Data-Layout Transformations

In addition to changing the structure of a computation, the data layout is also
a crucial part of the search space. For example, TVM and TCG try to match
innermost tensor to the instructions. Therefore, not only the loop structure, but
also the memory layout is relevant for an embedding. This section studies the
effects of memory layout transposition on the search space and solutions using
transpose on Conv2D and GEMM as an example.

Conv2D has one output and two input tensors, with four dimensions each.
The search space from Section 3.4.1 is extended by preceding the fission step
with a transpose of the input and output dimensions. This way, no transposition
of intermediate results is necessary. In the case of Conv2D, many deep learning

48

3.5 Discussion

Table 3.5 Effect of tensor transpose operations on the search space. Hit rate is the ratio of
solutions to candidates.

candidates rel solutions rel.
Kernel #candidates #solutions Hit rate to Table 3.3 to Table 3.3
GEMM 73 5 6.8% 2.08 1.25
Conv2D 1,372,653 3,810 0.27% 23.06 5.5

frameworks offer predesigned tensor layouts, mostly image major (NCHW) and
channel major (NHWC), for all tensors in the operator. However, to explore
the more general case of matching any workload to an arbitrary instruction,
knowledge about the semantics of tensor dimensions cannot be assumed. This
means we must explore all possible layout permutations of the four dimensions.
All inputs and outputs are transposed in the same way, since there are 24 different
permutations of four dimensions. Transposing them individually would create
13824 base cases for the rest of the search space evaluation. Considering the
already expansive search space, this would be computationally intractable.

Table 3.5 shows the number of candidates in the extended search space, the
found solutions, and the percentage of solutions creating full coverage. The
number of candidates increased roughly linear with the number of possible
tensor permutations, with a factor of 23.06 for Conv2D and 2.08 for GEMM .
The rightmost column shows the factor of how the absolute number of solutions
changes compared to Table 3.3. The increase of solutions is much lower than the
increase of candidates. This adds to the observation that for an increase in the
complexity of the problem, the number of viable solutions to the embedding
problem increases in absolute numbers but shrinks in relative terms.

3.5 Discussion

The main goal of this chapter was the evaluation of the complexity to embed
accelerator intrinsics into workloads. An important factor in the design was to
solely rely on an algorithmic application description, without any knowledge
about the hardware embedded into it. The hardware knowledge should purely
reside in the intrinsics and embedding process, both of which should be relatively
easy to describe and adaptable to other hardware targets. Creating a solution
with low overhead, that allows the efficient deployment of new operators on
existing hardware or existing operators on new accelerators was a motivating
factor in the experiment design. This stands in contrast to the existing deep
learning deployment research, where for established operators a plethora of

49

Complexity Analysis of Iteration-Domain Embedding

work on performance improvements exists for general purpose hardware targets
but support for more exotic operators or hardware targets is often lacking.

The embedding problem was approached with a custom, graph-based IR
for deep learning workloads and methods to automatically map these to one or
more intrinsic available in an accelerator. Through graph rewrites and pattern
matching, multiple valid solutions for common ML operators can be produced
with this method. The choice to implement a new data structure instead of relying
on existing ones comes from limited support of some rewrite operations and
embedding features in TVM [17] and the TVM-based UNIT [111] implementation,
as well as no publicly available source code of ISAMIR [93]. Specifically, TVM has
no direct support to embed multiple instructions into the same tensor expression
and no support for arbitrary operation fusion and fission. This work focussed on
the complexity of the embedding problem, investigating how a transformation
driven process scales and which issues occur from such an approach.

3.5.1 Experimental Results

The evaluation in Section 3.4.2 showed that a relatively small number of transfor-
mations is enough to find an embedding, but selecting the right combination
of transformations is important. The naive approach presented in this chapter,
without any sophisticated methods to select possible transformation sequences,
shows sufficient ability to find possible embedding for small operators, like
Dense and its variations like Attention or FC. Even with further complexity
like memory layout permutations, multiple legal solutions are produced with
reasonable effort.

With increasing kernel complexity, the process becomes more expensive,
as demonstrated by Table 3.3. At the same time, diminishing returns on the
results are observed. Especially Conv2D variations or sequential kernels like
CapsuleRouting show this effect. While the latter can be broken down into se-
quences of simpler operations, complex kernels like Conv2D cannot be simplified
further. It is to assume that this problem is amplified by more complex memory
access patterns and transformations.

50

3.5 Discussion

3.5.2 Limitations of Transformation-Driven Embedding Meth-
ods

The exploration shows major challenges in the search space design. Even the
limited set of transformations presented in this chapter can enlarge the search
space to intractable sizes. This goes hand-in-hand with a shrinking relative
number of solutions, visible in Tables 3.3 and 3.5. Operands with sequential
computations, like Con2D + ReLU or CapsuleRouting, are especially affected
by this. Additionally, transformations like fission can introduce such sequences
even in simpler operators.

Another difficulty is the top-down decision making for the transformations,
without knowledge about how this will affect the search space and produced
solutions. Using more transformations can ultimately not help to solve the
embedding problem due to the growing complexity.

Solving this decision problem is vital to make any embedding process feasible.
Glenside, and ISAMIR partially, present possible solutions to this problem.
Glenside is based on equality saturation, a powerful tool to handle rewrite
problems and ISAMIR can infer some rewrites, mainly transpose and loop
ordering, from the embedding result. On the other hand, UNIT is restricted to
the provided data layout. For Conv2D on GPU, im2col must be performed before
the deployment is presented to the embedding process. TVM as no facilities for
embedding through automated program transformations, at all.

For Glenside, as well as ISAMIR, it is not described how to integrate different
hardware architectural considerations into the transformation process. For
example, how to treat dimensions that could be mapped between intrinsic and
operator, but aren’t even divisors or too small to fit the intrinsic. TVM and UNIT
will fail if the workload dimensions are too small. The post-embedding padding
used in this work enables embeddings in such cases, but it is also potentially
limiting to the performance. None of the existing frameworks, including the one
presented in this chapter, can fully capture loop and data-layout transformations,
as well as hardware architecture details. An example for this are embeddings
where multiple workload dimensions could be fused into a single dimension
that matches a single intrinsic dimension. They need to be explicitly created
before the pattern matching, since existing solutions always evaluate a one-to-one
mapping between intrinsic and workload dimensions.

A last practical problem in the presented approach is detecting the possibility
for a specific rewrite. When reusing the same matching algorithm than the one

51

Complexity Analysis of Iteration-Domain Embedding

used during the intrinsic embedding, different patterns for the same rewrite are
necessary, since this mapping algorithm only looks for exact matches. This can
be especially difficult when it comes to the analysis of access functions. When
aiming to be as workload agnostic as possible, subtle differences can create
missed rewrite opportunities. While this issue was not specifically investigated
in the experiments, it can pose a potential issue when industrializing such a
method. A possible solution would be a more powerful algorithm detecting
variations, for example fuzzy matching.

The IR presented in this chapter, as well as TVM, ISAMIR, UNIT or Glenside
approach embedding on a level that is easy to reason about for a human, in
a tensor or loop-based representation. They operate more or less directly on
the handmade specification of a workload, by applying loop rewrites like split
or unroll. The languages to program the workloads enable freedom in the
expression for users, which can lead to multiple different specifications for the
exact same task. Further, they usually express the task in an inherently sequential
way, as nested sequences of linear loops where one computation is done after
another. Parallelism or reductions are then extracted from context and language
constructs, i.e. by assuming that loops created by the output tensor are inherently
parallel or using specifically annotated reduction loops. All this makes it easier
for humans to express themselves, but the embedding process now has to account
for all of this to detect similar computations.

3.5.3 Outlook

The insights from this chapter lead to the conclusion that transformation driven
processes on high-level, human-readable representations have limitations when
it comes to finding embeddings. Dense-like operators are often simple enough
to find solutions with reasonable effort. For complex operators like Conv2D
scalability is limited, especially when a wide range of transformations is available.

Instead of more powerful transformations processes, a detailed analysis
between prospect instructions and the workloads could be an alternative path
forward. From such an analysis, the necessary transformations are then derived,
with an emphasis on loop structure and data layout. This is supported by
the low, actual number of transformations necessary to create a kernel where
an embedding is possible. Another aspect of limiting the complexity is to
find an embedding locally and only for a limited number of instructions. For
example, only between operators and instructions that share the same arithmetic

52

3.5 Discussion

operations embeddings are attempted. And instead of operating on human-
readable representation, a solution should directly model arithmetic and logic
operations, their dependencies, and which subset of data is accessed to compute
a result without indirections over loops, access functions and iterators. The next
chapter will discuss such an approach by representing the problem as a scalar
dataflow graph and using constraints to describe the solution space.

53

4

C
h

a
pt

er

Joint Program and Data-Layout Transforma-
tion through Dataflow Embedding

The previous chapter discussed issues with the existing practice of instruction
embedding on the iteration domain level through program transformation. Three
issues were observed during the analysis, the first of which is the opaque search
space. Whether a graph rewrite leads to an implementation is not known before
the transformation is performed and an embedding is attempted. The second
issue is the combinatorial complexity of the problem. Each new transformation
increases the search space of potential solutions. The third issue is the mapping
of data layouts and tensor access functions. While transpose operations can
be handled gracefully [93], more complex operations like im2col are harder to
enable [89]. And dilated or depthwise convolutions require additional rewrite
strategies to create embeddings. A top-down process, as discussed in the previous
chapter, requires checks to handle each of these cases individually, increasing
the complexity of the search space design.

This chapter will introduce a novel method to compute possible mappings
between hardware intrinsics and workloads, specifically addressing these issues.
Principally, the problem is solved on scalar operations instead of loops. This
removes arbitrary implementation variations like loop ordering, data layout
or access functions from the embedding problem. Further, the representation
contains all possible loop and tensor permutations for the problem in a single
dataflow graph, without the need for transformations. Also, the approach in

The content of this chapter was published in ACM’s Transactions on Architecture and Code
Optimization [75]

55

Joint Program and Data-Layout Transformation through Dataflow Embedding

Chapter 3, as well as existing work like ISAMIR or TVM [93, 17] directly transform
their IR structure to produce novel implementations. The approach presented
in this chapter will use features of a found embedding to directly generate or
manipulate code, without modifying the underlying DFG based IR and thus,
decoupling these issues.

Section 4.1 will introduce the method on a theoretical and conceptual level,
mainly how dataflow graphs (DFGs) are utilized to solve the embedding prob-
lem. It introduces the construction rules and properties of a DFG, defines the
instruction embedding problem and identifies the challenges of this method.
The subsequent Sections 4.2 and 4.3 describe the specific implementation to
overcome these challenges. Specifically, how polyhedral program representation
and constraint programming can be used to define a search space containing all
possible solutions to the embedding problem, without explicit transformations.
After that, Sections 4.4 and 4.5 demonstrate how the embedding results are
combined with program and data transformation rules to generate code for the
Versatile Tensor Accelerator (VTA) [67] hardware.

4.1 Solving the Embedding Problem on the
Dataflow Level

This section will introduce the DFG-based embedding problem on the concep-
tual level. Implementation details are discussed in Sections 4.2 and 4.3. The
fundamental challenges of going from a high-level workload representation, like
Figure 4.2a, to an implementation executable with available hardware intrinsics
remain. However, the approach in this chapter reverses the order of Chapter 3.
First pattern matching determines the embedding and then the final program
and data layout is derived from it. This is enabled by a fine-granular program
representation working on scalar operations, namely dataflow graphs. In a DFG
there are no dimensions, access functions or other implementation details. This
reduces the complexity of the underlying matching algorithm and the IR itself.

This chapter implements a three-layer deployment stack. First, the network
is partitioned into individual operators. To do this, each operator is checked,
if an embedding attempt is feasible. This is done by comparing the arithmetic
operations and operator arity of the kernel to the instruction. If they do not
match, an embedding attempt is futile. If the operator matches the intrinsic
on this superficial level, an embedding is attempted, which is the second step

56

4.1 Solving the Embedding Problem on the Dataflow Level

of the deployment. Lastly, after a successful embedding, a target specific
code generation performs data layout and program transformation to enable
deployment. The result is the deployment strategy. Strategies are meta-patterns
for deploying an operator on a specific hardware, containing both data layout
and algorithm information. It is not as generic as the algorithm, but also
lacks the details of a specific schedule. A popular example for this is im2col
for convolution processing, but even simpler processing variations like the
transposition of operands can be seen as a strategy. What they all have in
common is combined transformation of both data layout and operator in one
way or another, while maintaining the same computational properties, except for
floating point associativity. This is handled with a rule-based process. The found
embedding is matched with a set of transformations, which are then applied.
Section 4.4 shows how a set of transformation rules defined over computational
patterns like parallelism, reductions or stencils can generate code.

This chapter will focus on the second and third step, embedding and code
generation. The second step is the main contribution of this chapter, describing a
new approach to the problem. Code generation is always hardware specific, and
an example for the third step is given on the VTA hardware. Research towards
the first step, the general problem of ideal network decomposition, is covered
by TASO [48] on the practical side, as well as an extensive theoretical analysis
in [29]. Therefore, we choose not to further pursue this research direction and
instead rely on the existing partitioning tools of TVM.

4.1.1 Data Flow Graph and Subgraph-Embedding

The basic workload and intrinsic representation are dataflow graphs. A DFG
represents every scalar operation necessary to perform a computation as a
directed graph. Nodes represent operations and edges the data dependency
from a producing to a consuming operation, also called dataflow. Formally:

Definition 4.1. A DFG is a labelled, directed graph, defined as G = (N , E , l), where N is
the set of nodes, the set of directed edges is E ⊆ NxN and l() is a function assigning labels
from the set LN ∪ LE . LN = {{Operation}, {Data}} is the set of node label classes,
holding tensor shapes, data types and arithmetic operations. LE = {spatial, sequential}
is the set of edge labels.

Further, a DFG has the following properties:

57

Joint Program and Data-Layout Transformation through Dataflow Embedding

• Nodes only carrying data labels generate outgoing sequential edges for
each operation consuming the data. They have no incoming edges. They
represent the input values of the computation modelled by the DFG.

• Nodes with operation labels perform a scalar operation, consuming the
data of the incoming sequential edges and produce one or more outgoing
sequential edges.

• Commutative reduction operations are modelled by a sequential self-edge.
This optimization can reduce the number of nodes and edges in a DFG
significantly.

• Nodes with operation labels and only an outgoing self-edge, or no outgoing
edges, represent the computation result.

• Nodes labelled operation can have bidirectional spatial connections to other
nodes, performing the same computation, but for a different output element
in the original tensor expression. These connections indicate parallelism in
the computation. Potentially, spatial edges lead to a set of k fully connected
nodes. The number of edges can be reduced by pruning the connections to
create a graph with one internal node and k−1 leaves. In this star subgraph,
the transitive property maintains the parallelism information.

Embedding an intrinsic DFG Gi into an operator DFG Go is the subgraph isomor-
phism problem:

Definition 4.2. An intrinsic graph Gi = (Ni, Ei, li) is an isomorph subgraph of
operator graph Go = (No, Eo, lo) if there exists and injective function f : Gi → Go

where ∀(s, t) ∈ Ei ↦→ (f(s), f(t)) ∈ Eo while maintaining the node labelling, such that
∀s ∈ Ni : li(s) ≡ lo(f(s))

Thus, solving the embedding is to find a mapping between Gi and Go that
describes a distinct subset of nodes and edges in Go which exactly match Gi.

Figure 4.1 shows multiple examples of DFGs created from the respective
tensor expression. In the first row Figures 4.1a, 4.1b and 4.1c are examples for
tensor expressions performing a single operation, while Figure 4.1d demonstrates
how multiple operations are linked together. Figures 4.1a, 4.1b and 4.1e are
examples for tensor expression with multiple output elements, while 4.1c and
4.1d show how inputs can be reduced to a single result. Example 4.1e also
demonstrates how access patterns from stencils are represented in DFGs. One

58

4.1 Solving the Embedding Problem on the Dataflow Level

ci = σ(ai)

(a) Example DFG of injec-
tive functions.

ci = ai + bi

(b) Example DFG of a vec-
tor add operation.

c =
∏

ai

(c) Example DFG of a re-
duction operation.

c = ai · bi

(d) Example DFG of a dot product. There
are no spatial edges, because only a single
output element is computed.

cj = maxk(ai+k)

(e) Example DFG of a maxpool operation.

Figure 4.1 Examples for dataflow graphs for common operations in DNN operators. The
solid lines render the sequential edges, the dashed lines render the spatial edges. Input
nodes are denoted with a1, b1 and so forth. Operation nodes are described by their
respective operation, such as +, σ or max.

input element is consumed by multiple operations, which is an example for the
non-functional relations that can exist between subsets of nodes.

A property of all DFGs derived from tensor expressions is that each subgraph
computing one output element shares a set of input nodes with its neighbours but
no operations or intermediate results. This property removes the need to cover the
full operator DFG with a sequence of instructions, but instead allows solving the
problem for a single intrinsic instance and then use further analysis to compute
the structure and data layout of the full program. This reduces the embedding
problem complexity. For large operators, embedding a comparatively small
intrinsic becomes increasingly difficult, because after the first embedding has
been found, a decision of where to continue the embedding would be necessary.
This would then implicitly define an execution order through the embedding
process, and thus, introduce scheduling decisions into the embedding. But for
the commutative workloads in DNNs, the number of possible schedules is nearly
endless. By extrapolating from a single embedding, the execution order problem

59

Joint Program and Data-Layout Transformation through Dataflow Embedding

can be handed to a scheduling tool, like AutoTVM. The drawback is the need to
specify additional rules what kind of embeddings are possible. More constraints
shrink the solution space down further. This is the opposite to iteration domain
embedding, where additional transformations increased the search space.

In this approach the matching problem itself is not hindered by implicit
implementation decisions like loop ordering, data layout of tensors or access
functions. This removes the need for transformations in the search space design to
account for these decisions. From the result of a found isomorphism, a new data
layout and program structures can be derived. For this new strategy, code can be
generated. The exact code generation process is hardware and programming
interface specific. The intermediate representation, program structure and data-
layout transformation are decoupled from the code generation and individual
components can be reused. A demonstration of this is found in Chapter 4.4,
where an existing code generation infrastructure is used to program a hardware
accelerator with novel strategies.

The presented method is generally not bound to a specific representation
of the DFG or algorithm to solve the subgraph isomorphism problem. The
following two issues need to be solved in order to make the method applicable
in practice:

1. With a space complexity of O(|N |2) and O(|N |+ |E|), adjacency matrices
and lists are not suited to represent a full DFG for operators like Conv2D
with billions of operations.

2. Solving the embedding only with subgraph isomorphism is no sufficient
solution condition. Often, there are additional restrictions to the available
hardware and its software interface. A possible implementation needs to
be inside this restricted space in order to be valid.

These challenges are addressed in the following sections. Section 4.2 explains
how a polyhedral program representation is used to abstract the workload
while maintaining the detailed information of the basic dataflow graph. Section
4.3 explains how constraint programming is leveraged to model additional
restrictions in the problem.

4.2 Polyhedral Representation of Dataflow Graphs

The first challenge is addressed with a more concise DFG representation, inspired
by the polyhedral model, a powerful compiler methodology capable of expressing

60

4.2 Polyhedral Representation of Dataflow Graphs

computations in quasi-affine loop nests. At its core, it is a mathematical abstraction
of the original algorithm, enabling program analysis and manipulation. The
polyhedral model was first presented by Karp et. al. in 1967 [51] and is mostly
used to optimize numerical programs operating over loop nest. Specialized tools
for various domains and problems, such as scheduling [30, 31, 107], vectorization
[100, 32, 53] or loop tiling [85, 68, 11] are available. Also, solutions for hardware
targets like GPUs [108, 40] or FPGAs [110, 24] have been developed over years.
Several tools in the deep learning community leverage this representation to
generate efficient DNN kernels. For example, Tensor Comprehensions (TC) [102],
which is based on [108] uses the polyhedral representation for performance
improvements on GPUs and MLIR [57] provides a polyhedral dialect for loop
optimization passes.

Polyhedral program representation is an abstraction of loop programs, based
on integer sets and relations, modelled with Z-polyhedra. Each nested loop
defines the bounds of one polyhedra dimension. Thus, n loops form an n-
dimensional Z-polyhedra and each iteration of the loop nest maps to a point in
the Z-polyhedra. Loop iterations are represented as an ordered integer n-tuple.
Data dependencies between operations and array access functions are modelled
as set relations [105].

In the context of this work, sets are described in Presburger notation [105].
Instead of explicitly enumerating every element in a set, the set content is
described symbolically through the combination of conditions. For example, the
set

A = {1, 2, 3, 6, 7, 8} (4.1)

will be described as

{A[i] : 0 < i < 4 ∨ 5 < i < 9}. (4.2)

Each n-tuple element in the set, as well as the name of each dimensions, is
described by list [i]. Since dimensions are identified by their list index, different
names do not alter the content of the set. Therefore,

{A[i, j] : i = 1 ∧ j = 2} = {A[a, b] : a = 1 ∧ b = 2}. (4.3)

Following the colon is the collection of conditions for each of the dimensions
in the n-tuple. Parameters for conditions are declared in a list before the set

61

Joint Program and Data-Layout Transformation through Dataflow Embedding

expression:

[x, y]→ {A[i] : 0 < i < x ∧ (i%y) = 0}. (4.4)

So, the parameters x = 10 and y = 2 create the set

A = {2, 4, 6, 8}. (4.5)

The order of parameters is irrelevant.
Code snippet 4.2b shows the tensor expression in Figure 4.2a as a loop nest. The

statement inside the loop is split into individual two-operand instructions. This
is unusual for a polyhedral representation. Typically, the content of a statement
is of secondary concern, as most targets are general purpose architectures and
the statement can be broken down into individual operations. Here, the split
is performed to match the definition of the dataflow graph, where each node
is a single operation, like add or multiply. The split exposes the individual
dependencies of the scalar multiply and subsequent sum operation in the
representation. This order of statements is treated as an additional dimension
in polyhedral representation. Each execution of a statement is called dynamic
instance. All executions of a statement form the dynamic instance set. The sets

[I, J, K]→ {S1[i, j, k, t] : 0 ≤ i < I ∧ 0 ≤ j < J ∧ 0 ≤ k < K, t = 0} (4.6)

[I, J, K]→ {S2[i, j, k, t] : 0 ≤ i < I ∧ 0 ≤ j < J ∧ 0 ≤ k < K, t = 1} (4.7)

describe the dynamic execution instances of S1 and S2 in Figure 4.2b. Basic set
operations can be applied to polyhedral sets as well. Thus, all operations in the
program are contained in the set

S1 ∪ S2 = [I, J, K, T]→ {S[i, j, k, t] : 0 ≤ i < I ∧ 0 ≤ j < J ∧ 0 ≤ k < K ∧ 0 ≤ t < T}
(4.8)

where t is the textual ordering of the two statements, in ascending order. This
example shows how the semantics of tensor expressions or loop programs can
be transformed into a concise, mathematically sound description that has scalar
resolution without enumerating every operation individually.

In Program 4.2b, statement S2 consumes the result of S1, creating a read-after-
write (RAW) dependency, denoted as S2 ⇒ S1. The instance sets themselves do
not contain any order of execution or dependency information. This is modelled
by binary relations between the sets, which are also expressed in a symbolic

62

4.2 Polyhedral Representation of Dataflow Graphs

T : ai,j = ∑
k xi,k · yk,j

(a) Tensor Expression for a matrix mul-
tiplication

1 for i in I:
2 for j in J:
3 for k in K:
4 tmp = x[i,k] · y[k,j] # S1
5 a[i,j] += tmp # S2

(b) Tensor Expression (a) as a naive loop
nest

(c) Partial DFG for a single output ele-
ment with a contracted add operation

(d) Dependence graph in set and relation
based representation

Figure 4.2 A more detailed example how a matrix multiplication, breaks down into
several different representations. A loop nest, a part of it’s dataflow graph and the used
representation with polyhedral sets and relations

notation. The relation S2 ⇒ S1 is modelled by

R1 = [I, J, K]→ {S2[i, j, k]⇒ S1[i′, j′, k′] : i = i′ ∧ j = j′ ∧ k = k′}, (4.9)

where the ′ marks the indices of the right-hand set in the relation (S1). In an
arbitrary instance set S , there is a dataflow between two instances (s1, s2) ∈ S if
there exists a relation for which s1→ s2 ̸= ∅. The second relation in the program
is created by the sum operation of S2. Each dynamic instance reads the value in
A, stored by the previous dynamic instance. This creates a cyclic dependence:

R2 = [I, J, K]→ {S2[i, j, k]⇒ S2[i′, j′, k′] : i = i′ ∧ j = j′ ∧ k′ = k + 1}, (4.10)

It dictates how instances of the sum operation modelled by S2 need to be ordered
to prevent a violation of the data dependency. Since sums are commutative
operation it is possible to relax this constraint to k ̸= k′, allowing an arbitrary
order of S2 instances.

63

Joint Program and Data-Layout Transformation through Dataflow Embedding

Memory access functions are modelled in the same way. The example
program accesses matrices X ,Y and A, defined by the parametric sets

[I, K]→ {X [i, k] : 0 ≤ i < I ∧ 0 ≤ k < K} (4.11)

[K, J]→ {Y[k, j] : 0 ≤ k < K ∧ 0 ≤ j < J} (4.12)

[I, J]→ {A[i, j] : 0 ≤ i < I ∧ 0 ≤ j < J}. (4.13)

A read or write operation from a specific dynamic instance to the array is then
defined by a relation. In the matrix multiplication example, the read accesses to
X and Y are described by the following equations:

AX : S1 ⇒ X = [I, K]→ {S1[i, j, k]⇒ X [i′, k′] : i = i′ ∧ k = k′} (4.14)

AY : S1 ⇒ Y = [J, K]→ {S1[i, j, k]⇒ Y[j′, k′] : k = k′ ∧ j = j′} (4.15)

AA : S2 ⇒ A = [I, J]→ {S2[i, j, k]⇒ A[i′, j′] : i = i′ ∧ j = j′} (4.16)

Notice how not every index from the S1 or S2 is used by the access functions. For
changes to these unused indices, another access to the same memory element is
performed.

With the presented polyhedral sets and relations, any tensor expression can
be expressed as a program in polyhedral form by the tuple P = ⟨S,D⟩:

• The instance set S is the union of all dynamic execution instances and
tensor elements. S is described by a set of integer tuples. Each tuple s ∈ S
describes exactly one dynamic execution instance.

• The data dependence relationD is the union of all binary relations between
pairs of instances in S.

Reflecting this on the DFG representation, the node set No of Go is contained
in S = S1 ∪ S2 ∪ X ∪ Y ∪ A, while the sequential edge set Eo is contained in
D = AX ∪ AY ∪ AA ∪ R1 ∪ R2. Not all the relations in this representation are
symmetric, which means they are the same in both directions. The relationS1 → X
is surjective and functional, meaning that every multiplication can exactly map to
the one tensor element inX it consumes. However, the inverse relationX → S1 is
non-functional. Every input element in X is used by multiple multiplications, but
not all of them. The relation of AX and AY reflects this, as they contain no term
with properties for i′ or j′, respectively. As a result, for one specific input value
in X , the relation describes the subset of all multiplications using this value.

All this information is stored in a structured way by a coarse-grained dependence
graph, as displayed in Figure 4.2d. A node is an expression of the original tensor

64

4.3 Embedding as a Constraint Satisfaction Problem

algorithm, like an arithmetic operation or a memory read. Each dependence
graph node contains the polyhedral description for all DFG nodes with the same
label as the dependence graph node. Edges describe the access and dependency
relations between the individual sets. Such graphs are a known concept in
polyhedral representations [9]

Unlike graph representations based on adjacency matrices or lists, the rep-
resentation is of constant size and does not scale with number of nodes in the
graph, but only with number of dimensions and statements in the original tensor
expressions. Further, it enables a detailed analysis of the program, among others:

• Determine the input scope of specific output elements i.e., computing
the bounds of array accesses for a single or set of output elements. In a
graph representation this would require expensive graph traversal. In the
polyhedral analysis this can be achieved with a set operation sequence.

• Effective manipulation of the individual sets and relations with basic set
operations, for example to remove elements not interesting for a given
analysis with an intersection.

• Computing convex hull shapes for tensor slicing and nesting. This enables
the deconstruction of high-dimensional computations into regular, lower-
dimensional convex hulls. Through piece-wise affine constructs, regularly
strided input sets can be modelled in detail.

While the polyhedral model is a powerful abstraction, some restrictions apply.
Foremost, the representation is aimed at loop programs with bounds known, or
computable, at compile time. Further, bounds and relations need to be expressible
as quasi-affine functions, only depending on iteration variables and constant
values [106]. Data-dependent accesses and branches are not supported. However,
none of these restrictions pose a problem for the workloads targeted in this work.
While other methodologies with similar capabilities exist, they are often less
detailed, like interval analysis [66, 38], or require more extensive correctness
proofs [73].

4.3 Embedding as a Constraint Satisfaction Problem

Based on the concise yet detailed program representation from Section 4.2,
this section will now discuss how constraint programming (CP) solves the
second challenge presented in Section 4.1. CP is a method of solving constraint

65

Joint Program and Data-Layout Transformation through Dataflow Embedding

satisfaction problems (CSPs). By describing the space of legal embeddings in
terms of constraints, a solver can automatically generate solutions belonging
to this space, if any exist. Modifying the constraint setup also allows different
degrees of exploration in a solution space. For example, at first only solutions
that require a few, simple transformations are allowed by using a tight constraint
setup. If this fails, a different constraint setup allows solutions that require
more expensive transformations. The choice of CP over techniques like SAT is
motivated by its expressiveness in the program formulation and customizable
propagation and search algorithms.

Definition 4.3. A CSP is formally defined as triple ⟨X ,D, C⟩, where

• X = {xj|0 ≤ j ≤ n} is a set of variables, for which a value needs to be found.

• D = {dj|0 ≤ j ≤ n} is the set of value domains, from which a value is assigned to
the respective variables. An assignment Asn(dj, xj) : xj = v selects value v ∈ dj

for xj to take. Variable xj can only ever receive values from domain dj , not from
any other domain in D.

• C = {ci|0 ≤ i ≤ m} is the set of constraints. A constraint ci is formed over
a subset of variables gx ⊂ X and evaluates if all assignments Asn(gd, gx) with
gd ⊂ D are valid.

The CSP is satisfied when all assignments are performed, and no assignments violates
the conjunction of C.

Once the problem is modelled with variables, domains and constraints, a
solver begins the process of assigning values and evaluating the constraints.
Evaluating every possible assignment is infeasible in most practical applications.
Instead, every CP constraint comes with a propagator, which removes values
from the domain that cannot be part of a valid solution. The propagator is a
monotonic filtering algorithm: it only removes values from a domain, but never
adds any. It is specific for each constraint. The propagator infers which values to
remove from a domain, based on the domains and assignments of other variables
under the same constraint. To find a solution, the solver uses a search algorithm to
systematically perform assignments and propagate the assignments through the
domains. A backtracking-based search algorithm can find all possible solutions
in a given problem. Variable selection determines which x ∈ X is assigned a
value next. Value selection is the specific implementation of Asn(d, x). Variable
and value selection impact the time-to-solution and need careful consideration
when designing the constraint program.

66

4.3 Embedding as a Constraint Satisfaction Problem

4.3.1 Embedding Problem Definition

This section will discuss how to represent the embedding as a CSP in GeCode1,
the solver used for this work.

Definition 4.4. The full space of the embedding problem is:

• X = {x|∀x ∈ Ni} For every node of the instruction DFG a variable is created.
This means every scalar operation and data element in the instruction is represented
by a variable.

• The set of domains is defined asD = {d|d ⊆ Soperator}. Every domain is a subset of
the operators instance set in the polyhedral representation. The subset is determined
by the node type. The domains of nodes labelled data are the polyhedra bounded
by the respective tensor shapes. The domain of nodes labelled operation is the
instance set.

Definition 4.4 describes an embedding on the scalar level. Since every
potential assignment between nodes in the instruction and nodes in the workload
is described by this formulation, it also contains every possible solution to the
embedding problem between this specific workload and instruction.

Constraints specifying solution properties can be imposed over this space.
The most important constraint is matching the dataflow between operator and
instruction. Additional constraints further narrow the solution space.

The next sections present the constraints imposed upon the problem space.
First an introduction to the used general-purpose constraints, mainly graph
isomorphism and hyper-rectangle detection. Section 4.3.5 focusses on more
specialized constraints, modelling memory access behaviour.

4.3.2 Subgraph Isomorphism

Solving the subgraph isomorphism problem with CP is a well-researched prob-
lem [119, 120, 56] and solutions range from direct formulations to highly optimized
implementations. This work directly models of the instruction DFG Gi we want to
discover in the operator’s target graph Go, as shown in Figure 4.3a. As described
in Definition 4.4, every node of Gi is a variable. Every edge (s, t) ∈ Ei is then
modelled with a pairwise constraint. The combination of all pairwise constraints
describes the dataflow (line 3). For better propagation, the spatial edges (line 5)
are modelled as well. To fully express isomorphism, a global AllDiff constraint

1https://github.com/Gecode/gecode

67

Joint Program and Data-Layout Transformation through Dataflow Embedding

1 for (s,t) in Ei:
2 if label (s,t) ∈ sequential :
3 edge(s,t, etype ⇐ sequential)
4 else :
5 edge(s,t, etype ⇐ spatial)
6

7 AllDiff (Ni)

(a) Describing the instruction graph as
pairwise edge constraints.

1 if l(s) ̸= l(s.val)
2 return Failed
3 # evaluate data dependence
4 rel ⇐ eval (l(s)→l(t), s.val)
5 if rel = ∅:
6 return Failed
7 t. domain ⇐ t. domain ∩ rel
8

9 if t.size = 1:
10 t.val ⇐ t[0] # assign solution
11 return Finished
12 return # value of t selected by

solver

(b) Propagation of edge constraints using
the data dependence relation

Figure 4.3 Algorithms for describing subgraph isomorphism and computing the propa-
gation based on the polyhedral data dependence relations

is used, such that every node can only occur once in the solution (line 7). The
AllDiff constraint enforces that each value assigned to the variables under the
constraint must be pairwise different.

Now that the problem is described, the solving process can begin. During
this, the solver eventually assigns a variable a value from its domain. Assigning
a value means to select one node ofNo as a possible candidate to match a node in
Ni. The propagation algorithm in Figure 4.3b then checks the label of the variable
against the node assigned from the domain (lines 1-2) and if possible, also filters
the other node’s domain (lines 4-9). The propagator is filtering values directly
based on the data dependence relations in the dependence graph. It evaluates
the relation (line 4) and removes values from the partner node’s domain, where
no connection exists (line 7). If the relation between the pair is functional, it can
directly assign a solution (line 9-11). Even if this is not the case, the propagation
is powerful enough to subsume the domain. This means that only valid solutions
for this constraint remain in the domains and no further propagation is necessary.
The remaining domain values are evaluated with respect to the other constraints
over their variable. If evaluating the relation leads to an empty domain, the
assignment fails (line 6). Finally, when values are assigned to both s and t, the
constraint checks for correctness by verifying there is an edge in Go connecting
the pair, or formally Asn((s, t), (ds, dt)) ∈ Eo.

To further aid the propagation, the constraint also models the parallel edges in
the dataflow graph (line 5 in Figure 4.3a). Since fully expressing this would result
in a large number constraints, the transitive property of pairwise constraints is
leveraged by picking an arbitrary node in the DFG and adding a constraint to

68

4.3 Embedding as a Constraint Satisfaction Problem

1 mk ⇐ v1 − v0 # base step for every move in the hyper rectangle
2 if mk

|mk| /∈ VB : return Failed # see if base step is axis aligned
3 VB ⇐ VB ∩ mk

|mk| # remove mk from vector base set VB . Each direction is only
allowed once.

4

5 V ⇐ V ∩ v0 # remove first element from list
6 # Initialze counter tables
7 dimT able ⇐ ∅ # table keeping track of already determined dimenision sizes
8 liveT able[mk] ⇐ 1 # table with active counters
9 strideT able[mk] ⇐ |mk| # stride along each axis

10 for vn ∈ V:
11 move ⇐ vn − vn−1 # compute current step
12 if move ∈ liveT able:
13 # increment table counters in liveTable
14 liveTable [move] ⇐ liveTable [move] + 1
15 # verify counter states in dimTable and reset them , if necessary
16 verify (dimTable , liveTable)
17 # check if this is a dimension jump
18 else if vn−v0

|vn−v0| ∈ VB ∧ move = (vn − v0) + (v0 − vn−1):
19 # Add the current outermost dimension size to the dimTable
20 dimTable [mk] ⇐ LiveTable [mk] # size of dk−1
21 # Add new counter for new outermost dimension dk

22 liveTable [move] ⇐ 1
23 # track latest diagonal move as
24 mk ⇐ move
25 # remove the directional vector from the vector base VB

26 VB ⇐ VB ∩ vn−v0
|vn−v0|

27 else :
28 return Failure # if the move is not a jump or already known
29 Store latest mk in dimtable
30 dimTable [mk] ⇐ liveTable [mk]
31 bounding_box ⇐ bbox(DimTable) # compute bounding box from dim table
32 return bounding_box

Figure 4.4 Algorithm for hyper rectangle inference. V is the list of variables, each variable
holding a point and VB is the vector base of the domain’s shape (e.g. shape of the input
tensor).

every parallel node it has. If now any node parallel to the first node gets assigned
a value, the domain of first node is pruned to only contain nodes parallel to the
assignee. This, in turn, propagates to all other nodes parallel to the first node.
While this introduces a degree of indirection in the propagation, the number of
pruned values remains the same.

4.3.3 Axis-Aligned Hyper-Rectangle Constraint

For this work, but also for DNN workloads and accelerators in general, regular
memory access patterns are a sensible restriction on the solution space. Many
DNN workloads operate in high-dimensional, rectangular spaces, also called
hyper-rectangles. Selecting an axis-parallel subset of this domain enables common
data-layout transformations, like transposing, fusing or tiling. At the same time,
this helps reducing the size of the solution space. This is enabled by a constraint
to detect, verify and propagate the shape of a rectangle with any number of

69

Joint Program and Data-Layout Transformation through Dataflow Embedding

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(a) Assignment of first and
second variables

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(b) Assignment third vari-
able

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(c) Assignment of fourth
variable

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(d) Assignment of fifth variable and prop-
agation of constraint

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(e) Full assignment of all variables after
propagation

Figure 4.5 The plots above show how propagation and assignment happens in the
rectangle constraint. Blue dots represent domain values, green dots assigned variables
and white dots with blue outlines are ones the values removed by propagation.

dimensions n > 0 from an ordered tuple of points V = [v0, ..., vm]. After only a
few decisions, the propagator can infer a bounding box from the selected points
and the total number of points in V . Intersecting this bounding box with the
domain efficiently removes values that can never lie within the rectangle. The
constraint supports regular strides in any dimension.

Algorithm 4.4 works by iterating over the variables, tabulating the distance
between two elements in the strideTable, the size of a dimension in dimTable and
tracks the current location in a liveTable. Using the values of these counters, the
algorithm determines if V forms an axis aligned rectangle with regular strides.

The following example explains the process shown in Figure 4.5. The
blue points represent the domain in two-dimensional tensor ay,x with shape
sA = (X, Y), represented as the following set:

[X, Y]→ {A[y, x] : 0 ≤ x < X ∧ 0 ≤ y < Y } (4.17)

During a search, the constraint solver assigns values to one of M = 16
variables, which are represented by the green points. Each step in the example

70

4.3 Embedding as a Constraint Satisfaction Problem

corresponds to one assignment of a point in the domain to a variable and the
resulting call of the hyper-rectangle constraint.

Assignments 1,2 Corresponding to Figure 4.5a: The initial value assignments are v0 = a0,0

and v1 = a0,1. Lines 1-9 in Algorithm 4.4 determine the innermost dimension
of the rectangle and its stride. The innermost step of the hyper-rectangle
search is mk = v1−v0 = [0, 1]T and the stride is stridex = |v1−v0| = 1. Since
no further variables are assigned, the algorithm is done and skips to line 28.
The bounding box in this two-dimensional space is set to [Y, M · stridex].
The values for the x-axis can be bounded to the number of variables M ,
multiplied by the stride between the first two elements, since the stride for
every dimension needs to be regular. The constraint now removes values
from the search domain according to this new bound:

[Y, M, stride0]→ {A[y, x] : 0 ≤ x < M · stridex ∧ 0 ≤ y < Y } (4.18)

Assignment 3 Corresponding to Figure 4.5b: Assignment v2 = a0,2 is checked if the step
from v1 to v2 matches the initial step v0 to v1. This happens in lines 10-17
of the Alg. 4.4, where the counter tables keep track of the steps in each
dimension. After computing the bounding box, no further possibilities
for propagation present themselves here. The next selections could either
continue along the x-axis which has already been constrained or skip to
the y-axis with any stride. Thus, no more values can be pruned safely.

Assignment 4 Corresponding to Figure 4.5c: Assignments v3 = a0,3 is checked if the step
from, v2 to v3 matches the initial step v0 to v1. Again, the bounding box
offers no new opportunity for propagation.

If an element from another dimension had been selected, the algorithm
would have failed as it would have meant a side of length 3 in the rectangle.
Since 3 is no even divisor 16, a legal rectangle could not have been formed.

Assignment 5 Corresponding to Figure 4.5d: The next significant step happens with
assignment v4 = a1,0. Moving from v3 to v4 is not a step along the innermost
dimension, but a jump adding a second dimension in the rectangle. A jump
is a diagonal move between the last element in previous dimension and the
first element in the following one. In this case, from a0,3 to a1,0. Whether a
move is actually a jump is determined by computing if it is the hypotenuse

71

Joint Program and Data-Layout Transformation through Dataflow Embedding

of a triangle formed by v0, vn−1 and vn:

move = (vn − v0) + (v0 − vn−1) (4.19)

Further, we need to ensure the jump does not violate the axis alignment by
checking if its normal vector is part of the vector base VB:

vn − v0
|vn − v0|

∈ VB (4.20)

For the bounding box, the following new pieces of information can be
inferred: First, for the solution to remain a valid rectangle, the innermost
dimension needs to always have dx = 4 elements. Second, the y dimension
of ay,x with stridey = |vn − v0| can be bounded to M

d4
· stridey. Together this

leads to a two-dimensional bounding box

[M, dx, stridey]→ {A[y, x] : 0 ≤ x < dx ∧ 0 ≤ y <
M

dx
· stridey} (4.21)

Since |A| = 16 and steps and jumps recorded so far dictate the ordering,
only one legal variable-value selection remains, meaning the constraint is
resolved after only five steps. See Figure 4.5e.

For an abitrary number of k dimensions, the verification in line 13 checks if
for a jump into dimension dk, all counters of the inner dimensions dk−1...d0 are
zero. If one counter is non-zero, the jump breaks the regular structure of the
hyper-rectangle.

The sequential assignment can lead to situations where multiple valid as-
signments are performed, but a full assignment would not result in a correct
hyper-rectangle. Correctness can be assured early-on by computing the integer
factorization of M and see if all dimensions fit one of the solutions. For example,
with M = 12 dimensions of size 2 and 4 would be legal by themselves, however,
they can never appear together.

The example mentioned bounding box computations multiple times. The
process to compute bounding box shape sbox is detailed in Equation 4.22.

sbox =
b∑

VB

b ·

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
strideTable[b] · dimTable[b] if b ∈ dimTable

strideTable[b] · M∏
dimT able

else if b ∈ liveTable

domain[b] else

(4.22)

72

4.3 Embedding as a Constraint Satisfaction Problem

bh,w = ∑kw
0 ah,w+kw · bk,w

(a) Stencil Workload

zi = ∑k
0 xi,k · yk

(b) GEMV intrinsic

(c) Graphical representation of the stencil workload and the GEMV instruction.

Each base vector b is multiplied by the smallest possible domain extend. The sum
of these vectors is the shape of the bounding box. For example, in Assignment 5
of the above example:

sbox =

⎛⎝1
0

⎞⎠ · dy +

⎛⎝0
1

⎞⎠ · dx =

⎛⎝4
4

⎞⎠ (4.23)

If the size of a dimension is known, meaning Algorithm 4.4 already found a
jump to an outer dimension, the size is multiplied by the stride. If a dimension’s
size is not yet known, but it is known to be a part of the rectangle, the largest
still possible extend is multiplied with the already known stride. Otherwise, the
original domain size is used.

4.3.4 Padding

To support a wider range of workloads, zero-padding can be added to individual
dimensions of the iteration domain. This happens when either a) an individual
dimension is below a specified threshold or b) the dimension is not an even
divisor of dimensions in the hardware intrinsic. This gives the CSP solver more
freedom in terms of the search and possible candidates. By penalizing padding in
the later candidate selection, solutions with unnecessary padding are discarded
early.

4.3.5 Memory Access Constraints

Subgraph isomorphism alone is not sufficient to ensure computational correctness.
Memory access patterns that match for each individual output element of a
workload can be unsuitable for code generation. This creates the necessity
for constraints that ensure correct output element selection, given the graph
isomorphism present in the instruction. This can be resolved by analysing the
properties of accessed memory elements between the workload and the hardware

73

Joint Program and Data-Layout Transformation through Dataflow Embedding

intrinsic. By comparing how the accessed data overlaps between the computation
of two output elements, it is possible to determine whether a mapping holds, or
not. To do this, the concepts of access sets and overlap sets are introduced.

Definition 4.5. An access set Az1
x is defined as the union of data elements from input

tensor x necessary to compute the output element z1.

Definition 4.6. An overlap set is defined as union of pairwise intersections

Oz
N =

N⋃
n=1
Azn−1

x ∩ Azn
x

over a collection of access sets Azn
x over indices in N .

For tensor expressions, the access sets and resulting overlap sets can be
computed conveniently through the polyhedral representation. Each tensor
expression output element location also determines the loop iterators for the
non-reducing loops. And to compute a full output element value, every reduction-
loop needs to be fully iterated. Thus, the access set for one output element is
determined by a polyhedral set containing all input elements. The example in
Figure 4.6c illustrates this when matching a GEMV instruction 4.6b to a stencil
workload 4.6a. The workload accesses three elements to compute one output
element. For the next output, two of the inputs overlap with the one from the
previous output element while one is new. For simplicity, the example focusses
on the relation between xi,k and ah,w. For the workload, all access sets are
described the function

Abh,w
ah′,w′ = [h, w, K]→ {a[h′, w′] : h′ = h ∧ w′ = w + k ∧ k = 0 < k < K}. (4.24)

When the mapping function f() behaves such as f(z1) = b1,1 and f(z2) = b1,2,
the workload access set is

Ab1,1
ah′,w′ = {a1,1, a1,2, a1,3} (4.25)

Ab1,2
ah′,w′ = {a1,2, a1,3, a1,4} (4.26)

and the resulting overlap set is

Oa
h=1,w=1..2 = {a1,2, a1,3} (4.27)

in our example. Using the following function for the instruction,

Wzi,j
xi′,k

= [i, K]→ {x[i′, k] : i′ = i ∧ k = 0 < k < K}. (4.28)

74

4.3 Embedding as a Constraint Satisfaction Problem

1 for i in zi:
2 no_overlap (xi,k , z0 , zi)
3 no_overlap (xi,k , zi , zi+1)
4 full_overlap (yi , z0 , zi)
5 full_overlap (yk , zi , zi+1)

Figure 4.7 Defining the memory access behaviour through pairs of overlap set rules

the access sets are

Az1,1
xi′,k

= {x1,1, x1,2, x1,3} (4.29)

Az1,2
xi′,k

= {x2,1, x2,2, x2,3} (4.30)

with an intersection of

Oz
i=1..2,j=1 = ∅. (4.31)

This makes the assignment f(z1, z2) = (b1,1, b1,2) infeasible, at least without
memory layout transformations. The alternative assignment f(z1, z2) = (b1,1, b2,1)
is correct, since the access sets

Ab1,1
ah′,w′ = {a1,1, a1,2, a1,3} (4.32)

Ab2,1
ah′,w′ = {a2,1, a2,2, a2,3} (4.33)

create the overlap set,

Ob
h=1..2,w=1 = ∅. (4.34)

The assignments for the right-hand side operands yk and wkw are valid for either
choice, since they do not change for different output elements.

With these concepts, the polyhedral models helps creating pairwise, con-
straints describing memory access behaviour between pairs of inputs for the
hardware intrinsics. Generalizing the example above for arbitrary large GEMV
instructions leads to a chain of pairwise constraints, similar to the used subgraph
isomorphism constraint. In Figure 4.7, no_overlap describes an empty overlap
set and full_overlap an identical overlap set. By posting another constraint
from the first to any other input element in the same column takes care of the
non-transitive property of the constraints.

Similar to the hyper-rectangle constraint from Section 4.3.3, the formulation
is invariant to the dimension ordering of the domain. In a scenario where the
sliding window w would be applied in vertical, instead of horizontal direction of

75

Joint Program and Data-Layout Transformation through Dataflow Embedding

the workload, the posted constraints would still produce the correct behaviour
for this hardware intrinsic.

4.3.6 Candidate Selection

Padding and other data transformations necessary for an embedding can create
an overhead in the number of multiply-accumulate operations (MAC) and data
movement. To handle this, an optimization term to the constraint problem is
added to the CSP. It minimizes the MAC and data movement overhead OMAC

and OData, compared to the theoretical minimum:

OMAC = MACT otal −MACmin

OData = Data movementT otal −Data movementmin

When treating OMAC and OData as elements of a vector on = [OMAC , OData]T with
n = 2, the CSP optimizes the term min(||on ·wn||), where wn is a user-defined
weight vector. It can be used to shift the impact of the overheads on the candidate
selection, depending on the used hardware and technology. This eliminates
solutions with padding or other overheads, when possible.

4.4 Experiment Setup

This section describes the experimental setup to evaluate the method described in
the previous sections. Section 4.4.1 contains an overview of the used accelerator
hardware, followed by Section 4.4.2 describing how the original TVM compilation
flow was modified to integrate the methods introduced in this chapter. After this,
the target-specific parts of the method are presented. A detailed description of
the constraint setup is given by Section 4.4.3 and the rule-based code generation
is described in Section 4.4.4.

4.4.1 Hardware Setup

The evaluation is performed on the Versatile Tensor Accelerator (VTA) [67], a
hardware accelerator providing a matrix-multiply (GEMM) intrinsic, as well
as a vector unit for activation and scaling tasks. The hardware is instantiated
on a Zynq UltraScale+ FPGA. It uses the default configuration provided by the
authors with a 256kbyte weight buffer, a 128kbyte data buffer and a GEMM core
with 8bit multiplications and 32bit accumulation. The GEMM unit computes

76

4.4 Experiment Setup

cx,y = ∑
z ax,z · bz,y

T with (x, y, z) = (1, 16, 16) and its result can be processed by
a vector unit for element wise activation and quantization operations. Notice that
matrix operand bzy is transposed. The hardware has a load/store direct-memory
access (DMA) unit for independent memory accesses of matrix operands. It can
read and write full 2D operand matrices stored consecutively in memory. The
architecture and programming model follows the Decoupled-Access-Execute
model [90]. Other than traditional von-Neumann architectures, data access and
operations are handled by independent hardware units. In the case of VTA,
interactions between the two are handled by a queue system. The whole process
is software-managed i.e., a full program consists of load, store, execute and queue
management operations. This principle simplifies the hardware while shifting
complexity into software.

4.4.2 TVM Compilation Flow Extension

As shown by Figure 4.9a, code generation for VTA is handled by TVM and
interfacing on the relay level, as well as the algorithm and schedule level of each
offloadable operator. First, the relay graph representing the DNN is manipulated
to perform additional data transformations on both the parameters and the
activations of the DNN to accustom deployment to VTA. For each operator
a specialized schedule template is provided, where loop transformations and
tensorization are performed, replacing part of the loop nest with a specialized
hardware intrinsic.

The Conv2D reference embedding of TVM maps the three axes x, y, z of the
GEMM unit statically to the batch n = x, output channel oc = y and input
channel ic = z dimensions of the convolution. Each of these dimensions is
split and moved to be the innermost dimensions of the input, weight and out
tensors. This process is specified in a static template, applying the necessary
transformations during code generation. Figure 4.8 shows the loop and data-
layout transformations for a convolution with a 2D memory tiling, where each
tile is a matrix operand that can be loaded/stored by the DMA. Step 1 is the
baseline Conv2D. The loops and tensor are tiled as explained before (Figure 4.8,
step 2). The resulting implementation reorders the new loops ni, oci, ici to be
the innermost parts of the loop nest. These loops are then replaced by a call to
the GEMM instruction. The DMA load and store operations are then placed
around the operation to continuously load values until an output segment is
complete (Figure 4.8 step 3). Implementing other workloads follows a similar

77

Joint Program and Data-Layout Transformation through Dataflow Embedding

Figure 4.8 2D Convolution and the reference GEMM implementation

(a) Existing VTA compila-
tion stack.

(b) Extended VTA compilation stack.

Figure 4.9 Original and modified deployment stack of VTA accelerator.

pattern; input and output dimensions are tiled into matrices and moved to the
inside. In the original TVM version (see Figure 4.9a), every transformation
necessary for deployment is determined by a human expert. Strategy variations
require new relay transformations, as well as new schedule implementations,
each specifying layout transformations, loop orderings and tensorization. As of
this date, only Conv2D in NCHW layout with no dilation, Conv2D-Transposed
as well as dense-like operations are supported.

To utilize the VTA accelerator in the experiments, its compilation flow is
extended with the dataflow embedding. This allows reuse of all software
components not affected by the embedding, as seen in Figure 4.9b. Mainly,
the auto-tuning and JIT code generation facilities can be used as before. In
relay, the restrictions for specific operators and their memory layout are lifted.
Instead, operators with multiply-accumulate operations are marked as potential
candidates for an embedding. After a successful embedding, a deployment
strategy is extracted from the result. This strategy is then used to a) generate

78

4.4 Experiment Setup

the appropriate data layout rewrites and b) generate a schedule/kernel for
auto-tuning and code generation. Sections 4.4.3 and 4.4.4 provide details on how
the solver finds embeddings for VTA and how the code is generated.

4.4.3 Constraint Program for VTA

The space of legal embeddings for a hardware target is defined by a specific
combination of constraints. Important to note is that each program is constructed
from constraints, which are by themselves hardware independent. Conceptually
this comparable to auto-tuning tools, where different combinations of elemental
rewrite operations can form many different implementations of the same program.

The instruction DFG Gi is generated from the hardware configuration. Cur-
rently, this is still manual step. From there, a constraint program as explained in
Section 4.3 is generated. The nodes of Gi become the variables and the workload’s
dynamic instance sets the domain. For VTA, the following constraints are used
to generate mappings:

Subgraph Isomorphism: Match the dataflow of the GEMM instruction. This
is the central constraint of the embedding problem. It is used as described in
Section 4.3.

Disjoint/AllDiff: Prevent the same dynamic execution instance or input value
from appearing multiple times in the same instruction call. This constraint is
imposed over all variables in the problem. To allow overlapping access patterns,
this can be relaxed for input data.

Hyper-Rectangle: Ensure all input and output elements are mapped into an
axis aligned shape. For VTA’s inputs ax,z, by,z and cx,y, this is applied to the
constraint variables subsets N ax,z

i , N by,z

i and N cx,y

i ⊂ Ni. The sets contain the
variables modelling the input and output nodes ofGi. This allows simpler memory
transformations based on transpose and reshape operations. The constraint is
posted for input and output tensors. This constraint allows additional control over
a choice of embedding parameters. These parameters are part of the constraint
program’s input and different solving strategies and workloads can vary these
parameters. The following parameters are adjustable:

• stride: How much stride is allowed in each workload dimension. Depending
on the available code generation, different strides can be possible.

79

Joint Program and Data-Layout Transformation through Dataflow Embedding

• dimensions: To how many different dimensions in the workload is the
instruction allowed to match. With this, the fusion of dimensions can be
controlled in the code generation.

Fixed Origin : The first match of all input and output tensors is fixed to the
origin of the respective domain. This helps in structuring the problem and
reducing the search effort and has no direct influence on the correctness.

Memory Access Only allow matches with the same memory consumption
pattern as the instruction. These concepts are explained in Section 4.3.5. VTA
has the following overlap set definitions

∀i, j ∈ cx,y : Oax,z

[i,j],[i,j+1] = ∅ (4.35)

∀i, j ∈ cx,y : Oby,z

[i,j],[i+1,j] = ∅ (4.36)

to prevent overlapping input sets for the rows in matrices axz and byz
T and

∀i, j ∈ cx,y : Oax,z

[i,j] = Oax,z

[i,j+1] (4.37)

∀i, j ∈ cx,y : Oby,z

[i,j] = Oby,z

[i+1,j] (4.38)

for identical inputs between the columns.

The candidate selection uses the weight vector w2 = [1, 1]T in the exper-
iments. However, future work can investigate these hyper-parameters further,
especially when optimization of specific metrics is the goal. This constraint
program and search strategy can be used to embed the VTA instruction into any
workload, not just convolutions. This removes specific program transformations
from the search space, that would only be applicable to certain workloads.
Instead, it formulates a solution space within the constraints of both the hardware
and the code generation facilities. Parametrization of the solution space, like
stride in the hyper-rectangle, enables control over the exploration degree in
the search. For example to limit the solutions to instances the following code
generation steps can handle gracefully.

4.4.4 Customized Code Generation

Code generation in the polyhedral model is usually a complex process, generating
an abstract syntax tree (AST) and then lowering this AST to a language the

80

4.4 Experiment Setup

1 diagonal = v_n - v_0
2 if n_dims (diagonal) == 1 # simple case
3 diag , l = _unit_vector (diagonal)
4 _, stride = _unit_vector (_v_sub (match_locations

[0] , match_locations [1]))
5 if stride == 1.0
6 dims = [(diag. index (1) , int(l) + 1, stride)]
7 else
8 dims = [(diag. index (1) , (l + stride) // stride

, stride)]
9 else

10 kd = {}
11 keys = []
12 for pos , point in enumerate (match_locations [1:])
13 new_p = _v_sub (match_locations [0] , point)
14 dir , l = _unit_vector (new_p)
15 if n_dims (dir) == 1 # collect all unit -dim

movements
16 if dir not in keys
17 kd[dir] = []
18 keys. append (dir)
19 kd[dir]. append (l)
20
21 for dir in keys # now create a tuple of axis ,
22 p = kd[dir]
23 dims. append ((dir. index (1.0) , len(p)+1, int(p

[0])))
24 return dims

(a) Algorithm extracting embedding dimen-
sions.

(b) Examples for different mappings.

a = [(1, 4, 1)]
b = [(2, 4, 2)]

c = [(1, 2, 1), (2, 2, 1)]

(c) Result of dimension mapping analysis.

Figure 4.10 Examples for the extraction of embedding dimensions from a match. Examples
a, b and c demonstrate different, possible mappings between workload and instruction,
supported by our framework. The black 4 × 4 block represents an instruction input
matrix, while the coloured projections are possible mappings from a workload. Note that
the embeddings are in column i are mutually exclusive and represent different solution
options. Lines 2 to 8 analyse the 1D case and is applicable to examples a and b. Example
c, mapping the instruction to multiple workload dimensions is analysed by lines 9 to 24.

compiler back-end can interpret. For example, the popular ISL library [105] can
lower code to LLVM IR. However, since VTA is programmed via TVM using
tensor expressions and loop manipulations to generate a program executable
on the VTA, a different code generation path is possible. From the result of
matching a single intrinsic in the dataflow graph, the loop splitting, ordering and
required layout transformations can be inferred, in order to generate a new tensor
expression. This new expression then uses the existing deployment path for
VTA. In addition to this process, data-layout rewrites are issued to accommodate
the new tensor expression. The following sections will explain the VTA-specific
process for relay and tensor expression generation.

4.4.4.1 Embedding Feature Extraction

For VTA, feature extraction focusses on the mappings found for the input
and output operands, since they directly determine the mandatory tiling and
reordering dimensions of the workload. By iterating over the values assigned
from the workload nodes No to the intrinsic’s input and output groups Naxz

i ,

81

Joint Program and Data-Layout Transformation through Dataflow Embedding

N
bzy
i and N

cxy
i , the mapped dimensions and their ordering is determined. Since

the solver already guarantees a hyper-rectangular, axis aligned set of values, the
extraction is reduced to iterating over one of the intrinsic’s row and column each
to determine the values in Equation 4.10c, as illustrated in Figures 4.10b and
4.10a.

The first step is computing the diagonal vn = jn − j0, the vector from the first
mapped element in the operator, to the last. In the simple case of examples a

and b, where vn is parallel to any of the operator axis, the mapping is a single,
linear dimension. The extraction of mapping properties in the workload is then
straight forward. Since the embedding only extends over a single dimensions,
vn = jn − j0 results in a vector that is zero in all positions, except one. The
non-zero element’s index is the mapped dimension in the operator. The length is
||vn|| of the same vector. The stride is determined by the distance between any
two subsequent nodes in the mapping.

For the more complex mapping c, involving multiple workload dimensions,
the analysis is slightly more challenging. By computing the vector for each vector
formed by mapping indices [(i, j) : i = 0, 0 < j < J], vectors from the origin
to each mapped element are computed. Each vector’s direction that is part of
the vector base determines one mapping set dimension. The length of each
dimension is determined by the number of vectors pointing in the same direction
and the stride is the length of the shortest vector of each direction.

4.4.4.2 Kernel Generation through Program and Memory Transformation

Using the results from the process described in Figure 4.10, a new, target
compatible strategy is generated from the original workload. This new strategy
is manipulating both the tensor expression and relay program to generate a new
implementation. In the tensor expression, the mapped axes are split according
to the embedding and a new dimension for each of the mapped instructions is
added at the innermost location, such that the tensorization can be performed.
This process is modelled after the manual embedding in Figure 4.8. Parallel to
this, the relay program is modified by injecting data-layout transformations for
the determined embedding. Both processes are rule-based and each rule is tied
to features of workloads and intrinsics.

The data-layout transformations presented in this section were selected after
running the embedding procedure on all benchmarking workloads for the used
hardware configurations. A manual analysis of the results determined the access

82

4.4 Experiment Setup

patterns found by the solver. From these, common transformations have been
derived and implemented.

First, the program rewrites on relay level are explained. After this, the tensor
expression generation is discussed. Table 4.1 has the list of all possible rewrites
derived from the mappings. Most operations are already available in relay and
only require insertion into the program. The first three are more complex and
enable more flexibility with stencil computations, the rest are standard tensor
modification routines, available in many DNN frameworks, like TensorFlow,
TVM and even numpy.

The first column in Table 4.1 contains the rewrite rule ordering. The application
of the first three rules is mutually exclusive for each workload dimension.
The column feature describes what is looked for in the embedding result and
workload to trigger this rewrite for kernel and data layout. The next two columns
contain short examples how this affects the data layout and access functions
of the workload. relay functions implement all required rewrites prior to the
workload and, if necessary, a reverse transformation to recreate the original
data layout after the operator. The functions Dilate Pack, Stencil Unroll and
Image Pack use relay.take, a gather operation copying values in an index list,
as no direct implementations are available in relay. All rewrite operations are
issued individually. Then, TVM’s operator fusion automatically creates kernels
combining the transformations into a single kernel.

Stencil Unroll This is a common practice, especially for AI workloads on GPUs
and is better known as im2col [14]. Unrolling both image and stencil dimensions
enables processing of a Conv2D as a matrix multiplication. Advantage of this
practice is the rich body of optimization targeting GEMM and generally more
robust performance for different convolution operators [22]. A drawback is the
increased data footprint. While architectures like GPUs can do this in local
memory only, the VTA accelerator has to perform this operation in its DRAM
memory before processing. Nonetheless, this stencil unrolling proved to be
useful to process convolutions with a low ic count. Figure 4.11c demonstrates
this process for a 1D convolution.

Image Packing This operation packs the data elements into individual, parallel
channels for processing. This enables greater parallelism during stencil compu-
tations, at the cost of a slight overhead to maintain the data overlapping data
areas, or halos. The cost of halos is determined by both, stencil and image size.

83

Joint Program and Data-Layout Transformation through Dataflow Embedding

Figure 4.11a demonstrates this process for the 1D case. For convolutions, these
dimensions are directly fused with the batch dimension.

Dilate Pack Dilated convolutions [117] are a primary example of simple algo-
rithm modifications creating immense embedding challenges. The image data of
the convolution is now accessed with a regular stride. One effect of the dilation
is that neighbouring output elements have no overlapping input data, thus the
data reuse of the workload is reduced. However, the missing overlap enables
the packing into multiple sub-images, each processed as a dense convolution
with no dilation factor. As demonstrated in Figure 4.11b shows the regular stride
introduced by a dilation factor in the image access function. Now the whole
operation can be decomposed into parallel computations with no data overlap.
Both, the image and dilation packing create multiple, parallel dimensions in the
workloads. For convolutions, these dimensions are directly fused with the batch
dimension.

Pad/Mask Hardware intrinsics often work with a specific input data width,
however, workloads are not always integer multiples of this value. For VTA pad
inserts the minimal padding necessary to support the embedding. Implemented
with relay.nn.pad

Split After the pad operation, each mapped dimension is split by a factor
determined during the embedding. This is implemented with relay.reshape().
For example, with split list [(1, 2, 1), (2, 2, 1)] and tensor t4,8,10, the following
transformation is created: relay.reshape(t, (4,4,2,5,2))

Reorder The dimensions prepared by the previous rewrites are now ordered
as required by the VTA hardware:

• For the workload inputs, dimensions involved in the sum (mapped to z)
are the innermost dimensions.

• Dimensions x and y are moved as the second innermost dimensions, in
order of the found mapping.

In the case of multiple workload dimensions mapped to the same intrinsic axis,
the reorder operations maintains the order of axis mappings determined by the
solver. The operation is implemented with relay.transpose

84

4.5 Evaluation

(a) Image packing for stencils to enable
parallelism in the image dimension.

(b) Memory packing for dilations to en-
able dense processing of independent sub-
images.

(c) Stencil unrolling to enable linear, data-parallel access to sliding window operations.

Figure 4.11 Data-layout transformations for convolution deployment.

Fuse Fuse multiples axes mapped to the same intrinsic dimension, imple-
mented with relay.reshape.

After the relay transformations, specialized schedules are generated. By
combining knowledge about the hardware and the embedding results, the
process is straight forward. First, the transformation on data layout and access
functions from Table 4.1 are applied to the original workload. Then, according
to the hardware specification, the loops determined in the embedding are
split and moved, forming the innermost part of the loop program. This part
is then replaced using the tvm.tensorize operation. DMA read and write
operations are placed dynamically at the outer-most reduction loop in the
program. This all is realized in a schedule template, where the transformations
necessary for tensorization are fixed, but other loop manipulations like tiling are
parametrizable for optimization with AutoTVM.

4.5 Evaluation

This section evaluates the presented method. First, it compares the new method
to existing implementations. To allow for direct comparisions, only embeddings
and program rewrites equivalent to ones used by TVM are allowed. This is also
in line with the reported abilities of UNIT [111], LIFT [94, 65] and ISAMIR [93].
After this, Section 4.5.2 demonstrates how the program transformation setup

85

Joint Program and Data-Layout Transformation through Dataflow Embedding

Table 4.1 Data-layout rewrites for dynamic convolution strategy generation. The order
and implementation of rewrites is manually defined for specific hardware targets and
workloads. Stencil unroll and image pack are mutually exclusive per mapped dimension,
which is ensured by the CSP. The hardware intrinsic dimension is d, workloads dimensions
are n, i and k. s is the extend of d in n or i. The notation de is the access to element e in d.

Order Strategy Feature Data Layout Access Function
1 Stencil Unroll dout

e ∩ dout
e+1 ̸= ∅ ∧ stride(dout

e , dout
e+1) = 1 [N, I] ⇒ [N, I, K] [n, i + k] ⇒ [n, i, k]

1 Dilate Pack dout
e ∩ dout

e+1 ̸= ∅ ∧ ||din
e − din

e+1|| > 1 [N, I] ⇒ [N · sin, I/sin] [n, i + (d · k)] ⇒ [n, i + k]
1 Image Pack dout

e ∩ dout
e+1 = ∅ ∧ stride(dout

e , dout
e+1) > 1 [N, I] ⇒ [N · s, I

s
] [n, i + k] ⇒ [n, i + k]

2 Pad d = i|i%split ̸= 0 [N, I] ⇒ [N, I + pad] [n, i] ⇒ [n, i]
3 Split d = i|i%split = 0 [N, I] ⇒ [N, I

s
, s] [n, i] ⇒ [n, iout, iin]

4 Reorder <hardware specific> [N, I] ⇒ [I, N] [n, i] ⇒ [i, n]
5 Fuse d = (i, j) [N, I] ⇒ [N · I] [n, i] ⇒ [fni]

can generate code for previously unsupported operators and gracefully handle
hardware architecture variations. Finally, in Section 4.6 the embedding effort
itself, as well as possible optimizations, are discussed and evaluated.

Evaluation workloads are from the Baidu DeepBench Inference Benchmark
Suite2, providing 108 convolution operators from a range of domains, like image
and speech processing. Twelve convolutions cannot be executed on the VTA
accelerator without additional zero padding. Section 4.5.2 will discuss possible
solutions for this problem in detail. Furthermore, 28 layers in the convolution
benchmark cannot be processed by GeCode, the solver we implemented our
approach in. It uses the default C++ int data type representation of the used
compiler, which is 32 bits in our case. Large convolutions can yield domains
substantially larger than this limit. Additional 6 layers caused various errors in
the TVM compiler, like a VTA instruction buffer overflow. This leaves 62 layers to
benchmark. Functional correctness is ensured through numerical comparisons.

4.5.1 Validation Experiments with Static Strategy Generation

The method is validated by comparing the performance of a micro-benchmark
with the TVM reference implementation. The benchmark performs tensor
packing, convolution, activation, and tensor unpacking. It is implemented as a
relay program. Packing and unpacking are performed by the ARM host CPU
on the Zynq board. For the convolution operator, the TVM reference uses an
handmade implementation template that specifies which memory and loop
transformations are necessary, as shown in Figure 4.8. This template expects
a NCHW tensor layout. The new dataflow embedding method automatically
generates TVM code based on the found embedding and a specified target

2https://github.com/baidu-research/DeepBench, accessed 05.2022

86

4.5 Evaluation

3 7 8 9 11 12 13 14 20 26 28 29 30 31 33 35 36 37 38 39 42 44 46 47 49 50 51 53 55 56 58 59 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
1

10
2

10
3

10
4

10
5

10
7

m
ea

n

0.8

1.0

1.2

1.4
Sp

ee
d-

up

Figure 4.12 Speed-up as ratio of time of the TVM reference to time of this work, for the
Conv2D layers of the Baidu DeepBench Inference Benchmark. The grey envelope and
dashed blue lines are the normalized standard deviation over the reference and this
work, respectively. Results show that the baseline of this work based on strict mapping
and standard NCHW data layout is of comparable performance to the TVM reference,
with all but two layers being inside one standard deviation of the reference.

3 7 8 9 11 12 13 14 20 26 28 29 30 31 33 35 36 37 38 39 42 44 46 47 49 50 51 53 55 56 58 59 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
1

10
2

10
3

10
4

10
5

10
7

m
ea

n

0

5

10

15

20

Sp
ee

d-
up

Figure 4.13 Speed-up as ratio of time of TVM reference (NCHW) to time for a generated
NHWC data layout, for the Conv2D layers of the Baidu DeepBench Inference Benchmark.
Except for four layers, results demonstrate consistent performance advantages and thus
indicate the potential of flexible code generation for DNN operators.

memory layout. As intended by the constraint program design, implementations
found by the solvers map the instruction dimensions to the same workload
dimensions as the reference. From this, a relay program for the tensor packing
is generated automatically. Both the reference and our generated solutions use
AutoTVM to optimize performance. To ensure comparability both versions use
the same optimization parameters found by AutoTVM.

The presented method achieved performance competitive with the TVM
reference, as demonstrated in Figure 4.12. After a warm-up, the evaluation
averaged over 200 measurements for each layer. Across the benchmark, all but
two layers perform within the reference’s standard deviation (σ) envelope. The
mean σ is 26ms for the reference as well as our solution. The absolute differences
between the two approaches range from 0.1ms to 90ms. These results show that
the automatic embedding can compete with existing, handmade implementations
for a hardware accelerator target.

87

Joint Program and Data-Layout Transformation through Dataflow Embedding

4.5.1.1 Dynamic Data Layout

Dynamically changing the tensor layout of a DNN for global performance
optimization, such as changing from NCHW to NHWC is a topic of interest and
already supported some by existing tools [124][63]. However, for accelerators
like VTA, only some of the dimensions are free to be rearranged, as only the
packed, innermost dimensions are necessary for the embedding. Since the solver
determines which dimensions are necessary, and thus which ones are free, the
memory layout of the free dimensions can be changed during code generation.

For example, this allows code generation for Conv2D with NHWC layout,
including code for tensor packing and unpacking. Figure 4.13 compares the
results of this experiment to the TVM reference, based on NCHW. Over all layers
of this benchmark, the NCHW layout outperforms the NHWC layout in only
four cases. This speed-up effect correlates with the ratio between channels
and image size, as layers with larger channels show better performance in the
NHWC layout. This can be explained with the data movement during the layout
transformation. The packing moves data from the ic and oc to be the innermost
tensor dimension. When dimensions are closer to their target position, the read
access has less stride, yielding better CPU cache utilization. Since not every layer
in a network is unpacked and then repacked after processing, the performance
gain on a full network would not be as large.

4.5.2 Case Studies on Dynamic Strategy Generation

The previous section demonstrated how dataflow embedding can achieve per-
formance competitive to the existing reference, without having to specify a data
layout manually. This section explores scenarios where static strategies can
become inefficient due to mismatches between hardware intrinsic and deploy-
ment strategy and how dynamic rewrite strategies based on embedding results
help improve latency and data movement. The first scenario explores workload
variations like dilated convolutions or convolutions with a low number of input
channels. The second scenario investigates how changes to the architecture of
VTA’s processing element influence the deployment.

To enable this in the constraint program, the following modifications are
performed:

• Hyper-Rectangle: The parameter stride is relaxed to allow arbitrary values.
This way, any stride is potentially possible. Parameter dimension is set to
the number of dimensions in the workload.

88

4.5 Evaluation

Table 4.2 All convolutions used for the evaluations in this sections. They all have one or
multiple characteristics that reduce the utilization in the VTA reference implementation.

ID N IC H W OC OH OW KW KW Pad Stride Dilation
1 1 1 700 161 32 334 78 20 5 0 2 1
2 2 1 700 161 32 334 78 20 5 0 2 1
3 4 1 700 161 32 334 78 20 5 0 2 1
4 1 1 480 48 16 480 48 3 3 1 1 1
5 1 3 108 108 64 54 54 3 3 1 2 1
6 1 3 224 224 64 224 224 3 3 1 1 1
7 2 3 224 224 64 224 224 3 3 1 1 1
8 1 3 224 224 64 112 112 7 7 3 2 1
9 2 3 224 224 64 112 112 7 7 3 2 1
10 1 1 151 40 32 73 20 20 5 8 2 1
11 1 1 700 161 64 349 79 5 5 1 2 1
12 2 1 700 161 64 349 79 5 5 1 2 1
13 1 304 18 18 448 8 8 3 3 0 1 2
14 1 208 72 72 304 16 16 3 3 0 1 3

• Memory-Access: Parallel searches with and without the memory access
constraint are posted. This way, solutions with and without im2col are
found in the same search process.

4.5.2.1 Low-Channel and Dilated Convolutions

In the previous sections, twelve convolution layers in the benchmark could not be
executed on the VTA without zero padding the ic dimension. They are referred to
as "low-channel" convolutions. Depth-wise convolutions pose a similar problem
to VTA, as they also lack the necessary number of input channels. To this set of
workloads, two dilated convolutions are added. The full collection of workloads
is listed in 4.2.

As explained in Figure 4.8, the ic dimension is split with a factor the size
of dimension z in the instruction. If ic < z, padding ic with z − ic additional
elements is necessary to generate code. However, padding results in lower
effective hardware utilization and a larger memory footprint. For the evaluation,
the five best implementations based on the selection metric in Section 4.3 were
chosen as candidates for auto-tuning.

Tables 4.3, 4.4 and 4.5 show the performance of solutions found by the
solver-based approach, optimizing for operator inference time, combined time for
operator and transformation and the memory footprint. All is reported relative
to a naive padding strategy. Memory transformations and operator speed-ups
are reported individually and combined. The tables report no variance for
dilated workloads, since only a single implementation was found, respectively.

89

Joint Program and Data-Layout Transformation through Dataflow Embedding

Table 4.3 Generated implementations with the best operator performance. All numbers
are reported relative to the TVM reference with padding.

Opa Transf.b Combined Memory

ID Sc σ S S Data Weights Tot.d
1 ×194.148 28.813 ×0.002 ×1.750 ×2.796 ×0.120 ×2.722
2 ×171.977 27.810 ×0.002 ×1.332 ×2.796 ×0.120 ×2.758
3 ×238.761 59.906 ×0.001 ×1.608 ×2.151 ×0.090 ×2.137
4 ×1.139 0.491 ×0.038 ×0.272 ×0.977 ×0.111 ×0.972
5 ×1.634 0.092 ×0.014 ×0.231 ×1.000 ×0.444 ×0.974
6 ×1.192 0.293 ×0.017 ×0.286 ×3.964 ×0.444 ×3.924
7 ×1.193 0.422 ×0.013 ×0.244 ×3.964 ×0.444 ×3.944
8 ×10.793 3.150 ×0.053 ×1.137 ×0.513 ×0.327 ×0.502
9 ×3.310 0.023 ×0.046 ×0.876 ×0.513 ×0.327 ×0.508

10 ×13.599 3.702 ×0.463 ×6.973 ×0.786 ×0.100 ×0.549
11 ×11.338 0.089 ×0.089 ×3.380 ×0.963 ×0.160 ×0.952
12 ×11.355 3.780 ×0.066 ×2.737 ×0.963 ×0.160 ×0.958
13 ×2.550 - ×0.139 ×1.829 ×1.0 ×0.360 ×0.378
14 ×23.770 - ×0.486 ×18.369 ×1.0 ×0.074 ×0.189

Geo Mean ×10.234 ×0.019 ×1.005 ×1.385 ×0.197 ×1.328
a Operator, b Transformation, c Speed-up, d Total

This overview shows that it’s possible to improve memory footprint and overall
performance, but often not at the same time. Therefore, optimizing for another
objective often leads to a different implementation. A more detailed view reveals
that the trade-offs between the implementations the solver generated versus
simple padding are complex and need detailed consideration for individual
cases.

One of the main drivers of better inference performance is an effective
hardware utilization, controlled by the padding. The largest speed-ups are
achieved in layers with ic = 1. For ic < z, only ic

z
· (h · w) elements in the input

image meaningfully contribute to the result. This drives down the effective
utilization.

However, padding in ic and the resulting change in the number of operations
alone does not give the full picture when discussing performance. Computing
the number of operations in a convolution is the product of all its loops. Since the
reference only pads the ic dimension, the maximal possible factor increasing the
number of operations is 16 with the used VTA instance. This does not explain
the extreme speed-ups in the Layers 1-3. Increasing ic does not only increase
the size of the data tensor, but also generates larger weight tensors. In Layers
1-3 and 8-12 the padding creates weight tensors that exceed the capacity of the
accelerator’s on-chip weight buffer. Implementations generated with the new
approach mainly affect the size of the data tensor, so the accelerator can hold the

90

4.5 Evaluation

Table 4.4 Generated implementations with the best combined performance, i.e. time for
transformation and operator. All numbers are reported relative to the TVM reference
with padding.

Op.a Transf.b Combined Memory

ID Sc S S σ Data Weights Tot.d
1 ×117.697 ×0.095 ×48.089 17.998 ×2.330 ×0.100 ×2.268
2 ×104.199 ×0.070 ×35.411 14.042 ×2.330 ×0.100 ×2.299
3 ×170.802 ×0.020 ×27.686 10.109 ×0.974 ×0.100 ×0.968
4 ×1.139 ×0.038 ×0.272 0.080 ×0.977 ×0.111 ×0.972
5 ×1.485 ×0.053 ×0.618 0.153 ×1.000 ×0.444 ×0.974
6 ×1.023 ×0.037 ×0.466 0.126 ×1.004 ×0.444 ×0.998
7 ×1.193 ×0.013 ×0.244 0.058 ×3.964 ×0.444 ×3.944
8 ×10.793 ×0.053 ×1.137 0.301 ×0.513 ×0.327 ×0.502
9 ×3.310 ×0.046 ×0.876 0.213 ×0.513 ×0.327 ×0.508

10 ×13.599 ×0.463 ×6.973 2.474 ×0.786 ×0.100 ×0.549
11 ×11.338 ×0.089 ×3.380 1.046 ×0.963 ×0.160 ×0.952
12 ×11.355 ×0.066 ×2.737 0.904 ×0.963 ×0.160 ×0.958
13 ×2.550 ×0.139 ×1.829 - ×1.0 ×0.360 ×0.378
14 ×23.770 ×0.486 ×18.369 - ×1.0 ×0.074 ×0.189

Geo Mean ×8.788 ×0.069 ×2.813 ×1.121 ×0.188 ×0.0882
a Operator, b Transformation, c Speed-up, d Total

full weight tensor in the on-chip buffer. This effect is less pronounced for the
input images, since except for Layer 10, they always exceed the buffer capacity.
Ultimately, this also explains why layers with memory footprints equal or larger
than the reference with padding still perform better. There is no competition
for memory bandwidth capacity by weight transfers. This means data is loaded
faster and results are written sooner, which in turn clears the partial result buffer
quicker.

Due to the effect of the weight buffer, the data memory footprint is almost
negligible as a performance proxy in the overall system. While the stencil
unrolling produces data tensors exceeding the padded tensors by factors of up
to ×2.299 or 4.6Mbyte, the same implementations can also provide a speed-up
of up to ×104, or 663ms, versus the reference. Likewise, in Layers 8 and 10,
the best operator performance is not achieved by the implementations with the
smallest data footprint. Comparing Tables 4.3, 4.4 and 4.5 shows that the size of
the weight buffer is also not directly correlated with performance of the memory
transformation operation. The implementations with the lowest footprint are
rarely the fastest ones.

Generally, the size of the data footprint does not directly relate to the operator
performance or transformation performance. It is to assume that the expanding
of the stencils causes this. For example, in Layer 1 the data footprints between

91

Joint Program and Data-Layout Transformation through Dataflow Embedding

Table 4.5 Generated implementations with the smallest memory footprint. All numbers
are reported relative to the TVM reference with padding.

Op.a Transf.b Combined Memory

ID Sc S S Data Weights Tot.d σ
1 ×116.952 ×0.049 ×30.692 ×0.974 ×0.160 ×0.952 0.650
2 ×103.393 ×0.047 ×26.665 ×0.974 ×0.160 ×0.963 0.655
3 ×170.802 ×0.020 ×27.686 ×0.974 ×0.100 ×0.968 0.622
4 ×1.139 ×0.038 ×0.272 ×0.977 ×0.111 ×0.972 0.694
5 ×1.398 ×0.046 ×0.558 ×0.509 ×0.444 ×0.506 0.774
6 ×1.023 ×0.037 ×0.466 ×1.004 ×0.444 ×0.998 1.061
7 ×0.201 ×0.037 ×0.168 ×1.004 ×0.444 ×1.001 1.181
8 ×10.793 ×0.053 ×1.137 ×0.513 ×0.327 ×0.502 1.138
9 ×3.310 ×0.046 ×0.876 ×0.513 ×0.327 ×0.508 1.098

10 ×3.041 ×0.242 ×2.191 ×0.352 ×0.160 ×0.286 1.145
11 ×11.329 ×0.023 ×1.112 ×0.963 ×0.160 ×0.952 1.127
12 ×1.816 ×0.015 ×0.569 ×0.963 ×0.160 ×0.958 1.105
13 ×2.550 ×0.139 ×1.829 ×1.0 ×0.360 ×0.378 -
14 ×23.770 ×0.486 ×18.369 ×1.0 ×0.074 ×0.189 -

Geo Mean ×6.068 ×0.053 ×1.938 ×0.765 ×0.209 ×0.643
a Operator, b Transformation, c Speed-up, d Total

different solutions found by our solver differ by factor of up to ×2.865, or by
3.2Mbyte, the inference performance difference is only ×1.672, or 2.5ms.

The dilated convolutions perform reasonably better than the original with
padded stencils, even considering the expensive preprocessing and postprocess-
ing of the data. Similar to the low-channel workloads, a main benefit of this
method the reduction in weight buffer pressure. The weights are not artificially
inflated, reducing the necessary data movement and improve the data reuse.

The memory transformations are between 1ms and 60ms for most imple-
mentations. The simple padding + tiling of the reference is usually one to two
orders of magnitude faster. There are two reasons for poor performance. First,
the relay.gather index list takes up cache space and bandwidth that could be
utilized for data in the stencil unrolling. Second, it does not consider cache
locality effects during the linear list traversal. This makes further discussion of
the memory transformation performance moot.

4.5.2.2 Hardware Intrinsic Variation

This experiment changes the VTA hardware architecture from an i, j, k = 1×16×
16 to a i, j, k = 8× 8× 8 layout. This increases the arithmetic intensity. As long as
i ≤ n, the new hardware layout is no issue for the embedding process. However,
inference with batch size n = 1 is common for many DNN use cases, so the
hardware needs to support this efficiently. Now the static VTA template needs

92

4.5 Evaluation

Table 4.6 Speedup of dynamically generated strategies relative to padding on an 8x8x8
VTA architecture.

Op.a Transf.b Combined Memory

Data, Weight , Pad, Stride Sc S S Data Weights Tot.d
(1, 32, 8, 8) (64 32, 3, 3), 1, 1 ×1.60 ×0.89 ×1.13 ×0.60 ×1.00 ×0.77
(1, 32, 16, 16)(64 32, 3, 3), 1, 1 ×6.64 ×3.31 ×4.27 ×0.19 ×1.00 ×0.33
(1, 32, 32, 32)(64 32, 3, 3), 1, 1 ×12.65 ×6.20 ×7.71 ×0.16 ×1.00 ×0.21
(1, 256, 8, 8)(256, 256, 3, 3 1, 1 ×3.85 ×1.47 ×2.47 ×0.60 ×1.00 ×0.90
(1, 128, 16, 16)(256, 128, 3, 3), 1, 1 ×12.00 ×4.42 ×8.22 ×0.19 ×1.00 ×0.57
(1, 128, 32, 32)(256, 128, 3, 3), 1, 1 ×8.04 ×11.93 ×9.47 ×0.16 ×1.00 ×0.32
(1, 72, 56, 56)(96, 72, 1, 1), 0, 1 ×5.62 ×9.10 ×8.44 ×0.14 ×1.00 ×0.14
(1, 256, 7, 7)(512, 256, 1, 1), 0, 1 ×4.60 ×4.12 ×4.32 ×0.22 ×1.00 ×0.57
(1, 8, 224, 224)(24, 8, 3, 3), 1, 2 ×10.27 ×6.39 ×6.73 ×0.13 ×1.00 ×0.13
(1, 72, 56, 56)(96, 72, 3, 3), 1, 2 ×6.95 ×5.14 ×5.46 ×0.16 ×1.00 ×0.18
Geo Mean ×6.26 ×4.21 ×4.99 ×0.21 ×1.00 ×0.33

a Operator, b Transformation, c Speed-up, d Total

padding in the batch to deploy the workload, reducing the effective hardware
utilization and increasing data movement. The next paragraphs will compare
the padded solutions to dynamically generated strategies from the rewrite rules
in Table 4.1. In this experiment, only the activation tensor is affected, and the
parameters stay untouched.

As in the previous section, the top five implementations based on the selection
metric in Section 4.3 were chosen as candidates for auto-tuning. The candidate
with the best overall performance is used for comparison to the reference. The
results are in Table 4.6. Overall improvements for an operator range from ×1.13
to ×9.47, with the operator inference alone showing improvements up to ×12.56.
Except for the first, and smallest, workload, the data transformations are now also
faster, ranging from ×0.89 to ×11.93. While the new data-layout transformations
are more expensive to perform, the increase in batch size makes the default
transformations much more expensive, due to the large memory access strides.
This is a similar effect as in the experiment in Figure 4.13. The achievable
speed-up of this work increases with the image size in the activation, as well as
the total size.

The theoretical speed-up from n = 1 to n = 8 should be limited to 8, for
the transformations as well as the execution. The geo-mean speed-ups in all
three categories are within this limit. The most probable cause for individual
workloads with faster inference is a weak auto-tuning result for the reference.
For the two transformations with a speedup > 8, the authors suspect micro-
architectural effects. The ARM core performing the layout transformation has a
total of 1MByte of L2 cache. The inputs without padding still fit into the cache,

93

Joint Program and Data-Layout Transformation through Dataflow Embedding

16 32 64 128 256 512
ic and oc size

103

104

105

106

ex
pa

nd
ed

no
de

s

HWNC
NCHW
NHWC

NCHW + A
NHWC + A
NCHW + B

NHWC + B
NCHW + AB
NHWC + AB

Figure 4.14 Search effort for different Conv2D ic and oc channel sizes with various search
strategies and domain layouts. A is asset search, B is domain size reduction. AB combines
both strategies.

while the padded version exceeds the capacity. But not only processing latency,
also, the memory footprint benefits from these measures. Over all workloads it
only uses×0.21 as much memory as the reference. The full factor of×0.125 is not
achieved, since additional padding or data replication is sometimes necessary to
enable embeddings, especially for workloads with smaller image sizes. There,
the split in the image can’t fully capture the parallelism needed for the batch
parallelism in hardware, making some padding necessary.

4.6 Search Robustness and Branching Strategy Op-
timization

The evaluation in Sections 4.5.1 and 4.5.2 showed promising results on the
functionality of the proposed method. It can reproduce existing implementations,
applies to new workload variations and completely new implementations can be
generated by relaxing the search-space constraints. However, a weak point of
this method is that the complexity scales directly with the number of operations
in both instruction and workload. This section proposes and explore possible
search space optimizations.

In constraint solving, variable and value selection strategies determine how
the problem space is explored by determining which variable is assigned which
value next. To better fit the underlying problem these strategies can be customized.
Examining the number of expanded nodes gives an indication of how successful

94

4.6 Search Robustness and Branching Strategy Optimization

the used strategies are. They are the number of value assignments to variables
that have been explored during the search.

This experiment uses a variable selection strategy based on groups of node
types in Ni. From the example in Figure 4.2d, all multiplications are in group
N ·

i . Changing the order of groups can result in varying degrees of propagation.
When starting with a group of input nodes, less propagation is possible due to
the non-functional relations to their consuming nodes. Starting with N ·

i , every
node assigned a value automatically propagates to its inputs as well as to the
following add operation. The implementation used for all experiments in this
chapter begins with the output variables and propagates backwards through
the DFG, which proved to be a robust heuristic for short solver runtimes. The
value selection strategy implements a lexicographic search through the domain.
The performance of constraint programs for different problems is sensitive to the
used search strategy. Changing strategies for value and variable selection can
lead to exponential differences in runtime for the same problem statement. The
presented method amplifies this, as the variable count and domain sizes change
for different problems and instructions.

Exploring various operator layouts and search strategies for Conv2D demon-
strates how these parameters affect the search effort for embedding the VTA
GEMM instruction with the strict solution space from Section 4.5.1. In Figure
4.14, the number of search tree nodes expanded by the solver is a measure for
effort to find a solution. Without additional search strategies (A, B or AB) a
large difference between different operator layouts and an upwards trend for
all operator layouts is clearly visible. The ideal layout HWNC has a very low
initial search effort. This is an artefact, as for small channel sizes (16 and 32),
most initial value and variable selections in lexicographic order are correct. For
larger layers, the effect dissipates, and the upwards trend is the same as NCHW
and NHWC. While the propagation is efficient at removing large parts of search
space, not all of it can be excluded, leading to a linear search through the pruned
space. The filtering is limited by the non-functional behaviour of some data
dependence relations and the commutative nature of the convolution. However,
this behaviour is not inherently bad, as it is caused by input value reuse and
commutative operations. Without these, different implementation strategies
would not be possible in the first place.

95

Joint Program and Data-Layout Transformation through Dataflow Embedding

4.6.1 Strategies for Improved Robustness

The following paragraphs discuss two methods to improve the search robustness.
The first one is a straightforward way to reduce the domain size. A group
of constraint variables N d with the same domain, for example all variables
describing the output operation, can be assigned an unary pruning constraint.
This constraint limits the size of all dimensions in m-dimensional domain dm ⊂ S
for all variables in Gd by

∀ei ∈ dm|0 ≤ i ≤ m : ei =

⎧⎪⎨⎪⎩ei if bg · stride ≤ ei

bg · stride otherwise
(4.39)

where bg is the upper bound for all dimensions ei in g. Figure 4.14 reports how
this method (B) stabilizes the search effort for growing domains. For example, b

can be limited to the largest dimension size in the instruction. Since b removes
large parts of search space, it can also remove potential solutions. Therefore, a
more conservative or adaptive strategy for setting b can help with exploration.
Because the solver posts this constraint for every variable individually, the
domain propagation happens before the solver begins the search. Therefore, this
is equal to simply presenting a smaller problem to the solver. The drawback
of this approach is the reduced efficiency with an increasing b and stride, and
no filtering for dimensions smaller than the threshold value. The propagation
done by this constraint overlaps with some work the hyper-rectangle constraint
is performing.

The second method changes the order in which the n dimensions of the
instance set S are traversed. This is motivated by Figure 4.14, showing how
different dimension orderings for Conv2D affect the search. The operator layout
(order of dimensions) from the workload specification is traversed in lexicographic
order. The layer with an ideal layout HWNC, where the dimensions used in strict
mapping are traversed first, arrives at a solution faster. To improve the robustness,
this work proposes an increased domain exploration diversity instead of a fixed
dimension order. A portfolio search [39] uses multiple assets, each searching
through the n dimensions of S in a different order. Every asset is a copy of the
problem space, executed concurrently. Applying the portfolio search to the order
of dimension traversal in S yields a more robust search strategy. However, one
asset for every possible of the n! permutations of S would be infeasible.

The portfolio can leverage hardware intrinsic and operator properties to
reduce the number of assets. The instance set S is split into a number of spatial

96

4.7 Discussion

dimensions ns and reduction dimensions nr. For every intrinsic with ks spatial
and kr reduction dimensions, where ks < ns and kr < nr, only

#assets = ns!
(ns − ks)! ·

nr!
(nr − kr)! (4.40)

assets are necessary to create one asset with an ideal instance set layout for
a lexicographic search. This strategy also helps in relaxed search scenarios,
since it can potentially increase the exploration diversity. The fact that more
assets are created for instructions with more dimensions is not necessarily a
drawback. Since all assets can be searched in parallel, a more complex problem
could potentially be assigned more resources.

4.6.2 Results

Figure 4.14 reports how asset-based searches (A), domain bounds (B) and their
combination (AB) reduce the embedding effort. The asset-based strategy shows
a clear reduction in the total effort for both operator layouts. With increasing
channel size, the performance becomes comparable to a search with an ideal
operator layout. Also, the absolute difference between different memory layouts
is reduced. The domain bound (B) limits the effects of increasing the search
effort for growing channel sizes. Its effect is especially pronounced for large
channels, operators with small domains would not benefit as much from this
strategy. Combining both strategies (AB) ultimately leads to a stable and fast
search. The difference between data layouts in AB is solely an artefact of the asset
creation and execution order.

4.7 Discussion

This chapter presented and explored dataflow embedding, a methodology of
intrinsic embedding where program rewrites are constructed after a detailed
analysis of both workload and hardware intrinsic on dataflow graphs. This
deployment technique was developed from the previous chapter’s insights.

First and foremost, an embedding process on scalar value granularity was
introduced. The complexity of the problem was made manageable by employing
the polyhedral model and constraint programming as tools for problem represen-
tation and solving. The polyhedral model allows the concise representation of
tensor expressions, while maintaining a scalar resolution on data dependencies,
memory access and execution order. Constraint programming is a flexible tool

97

Joint Program and Data-Layout Transformation through Dataflow Embedding

to design search spaces from a set of basic, problem agnostic constraints. The
search space formulations enables embeddings without explicit program trans-
formations before the matching. The constraint-based approach then prunes the
search space in a structured manner, which is the opposite of the transformation
driven approach in Chapter 3, where the search space is a direct product of
the available program rewrite operations. The whole process to generate code
is based on an embed-and-extrapolate design, where the regularity of tensor
workloads is utilized to scale a single instruction embedding to a full workload
deployment. This is achieved by deriving the necessary data transformations,
loop orderings and intrinsic embeddings from the dataflow embedding.

Besides the process and tools used, a set of constraints for embedding
problems were presented by this work, most notably the axis-aligned hyper-
rectangle constraint, polyhedral based subgraph-isomorphism, and memory
access analysis. All three enable strong propagation properties in the CP’s domain.
The constraints are agnostic to the target hardware and specific embedding
problem and can be reused and combined as necessary for new tasks. This is
similar to the transformation from Chapter 3, where individual transformations
are independent in their application and effect.

4.7.1 Results

Evaluating the introduced method on the VTA hardware, all but two auto-
matically generated embedding strategies for workloads from the DeepBench
Benchmark achieved performance within one standard deviation to the embed-
ding strategy provided by the hardware developers. For operators that could
only be realized with additional padding by the existing deployment stack, our
solution produced multiple different implementations strategies, enabling trade-
offs between memory footprint and operator performance. In many cases, an
expensive data-layout transformation improves the processing efficiency drasti-
cally, resulting in an overall speed-up. When optimizing for overall performance,
a geo-mean speed-up of factor ×2.813 was achieved. However, some cases also
demonstrated no obvious benefit at all, or only on individual metrics like the size
of the weight tensor. Thus, even naive padding can be viable in some scenarios
and should not be completely discarded from the solution space.

Two relatively simple search optimization improved the embedding robust-
ness. An asset-based search helps to scale the search in parallel, as well towards
different strengths of diversity in the solution space. For example, multiple, fast

98

4.7 Discussion

assets in a portfolio can search for the simpler solutions in a very constrained
space, while a second group of assets can explore a wider solution space with
more complex embeddings.

By principle the method also enables the mapping of multiple workload
dimensions to a single intrinsic dimension. The resulting split and fusion of
multiples dimensions are simply derived from the matched input or output
values. This level of insight is given by solving the problem on the dataflow
level. An iteration domain-based embedding process would have to explicitly
formulate and explore such strategies.

The method enables data-layout transformations, from simple tensor trans-
positions to complex transformations like dilation packing without relying on
non-deterministic, rewrite-driven processes. Simple problems, like supporting
arbitrary tensor layouts in convolution were enabled without changing the de-
ployment process or constraint program. The only difference was the operator
description. For specialized rewrites like dilation packing, the exact conditions
for when it is possible can be specified in the constraint program.

A further benefit is the potential to explore an implementation space without
providing a set of transformations. By controlling the degree of freedom via
constraints, a wide array of solutions can be found and even potentially new
transformations could then be derived from the found embedding. On the other
hand, undesired parts of the solution space can be removed. For example, by
excluding solutions that would require an im2col style unrolling, if no such
transformation is available.

4.7.2 Potential Benefits and Limitations

Introducing new transformations is more challenging in this approach. First,
the scalar embedding has to bridge back to a coarse-grained transformation
primitives. Second, instead of just adding to the stack of transformations, like in
the Top-Down process, the constraint program has to be adjusted to make the
new transformation a valid solution, without introducing any invalid solutions.
This requires an understanding of both the CP program, the hardware and its
compiler stack.

On the other hand, this approach should be easier to industrialize. Once a
deployment stack, with a fixed set of transformations and constraints is specified,
the dataflow embedding should be more robust than the Top-Down approach.
In Top-Down, variations in the operator specification need to be accounted for

99

Joint Program and Data-Layout Transformation through Dataflow Embedding

when designing the pattern-matching and embedding system. In the dataflow
embedding, the lowering to dataflow graphs removes the need for such a more
elaborate system. This can justify the higher engineering effort.

A drawback of scalar representations is the scaling of the variable domains
with size of workload, but it can be mitigated by means of customizable branch-
and-bound strategies, like asset-based search. Loop-level representation and
embedding used in existing works, like the one in Chapter 3, TVM or ISAMIR do
not have this problem, since their representation is decoupled from the workload
dimensions sizes.

The scaling of the CP’s number of variables with the instruction size cannot
be mitigated as easily. Here, the constraints need to offer enough propagation
to remove large parts of each variable’s domain as early as possible. This is
harder to achieve in practice and while this issue did not occur in the performed
experiments, it is a potential issue for this method in practice.

With more complex data-layout transformations, more operators can be
supported. However, which strategy is the best on a given hardware and operator
is not always clear and requires the evaluation of multiple strategies to find the
best candidate. This is a challenging problem in general, since optimization
towards one aspect, say memory consumption, does not guarantee the best
improvements in other aspects as well. Ultimately, this is a system-level decision
and needs consideration in the overall application design and is a potential topic
for future research.

4.7.3 Related Work

Constraint programming and similar methods like ILP and SAT also serve as the
basis for other work in DNN and accelerator deployment, as discussed in Section
2.4. However, there they are mainly used for performance optimizations and not
for embedding problems, such as in DORY [12] or the work of Chaudhuri et.
al. [13]. Optimization frameworks for GPUs also adopted CP as a vehicle, for
example Telamon [10]. While it seems attractive to integrate the performance
optimization aspect directly into the embedding, if and how they can be included
is an open question. When adding decision variables for optimizations like
unrolling and tiling of loops to the problem formulation, an analysis would have
to determine which are free to manipulate after the embedding. This implicitly
introduces a sequential problem-solving again, instead of a unified approach.
And while tiling could be solved by directly modelling value placement in

100

4.7 Discussion

buffers with scalar variables, it is not clear how questions like the loop unrolling
or ordering can be handled on the scalar granularity without losing the local
scope of a single embedding used in this chapter.

This chapter relied on existing auto-tuning tools for each found imple-
mentation strategy. And while the candidate selection term in Section 4.3.6 helps
to filter, the final latency of an operator can only be evaluated after auto-tuning.
This leads to prolonged search times for the best strategy, since auto-tuning can
be very time-consuming. A speed-up of this process would benefit the overall
deployment process, regardless of how the embedding is solved. Therefore,
Chapter 5 will investigate auto-tuning on the VTA hardware accelerator and how
robustness and tuning time can potentially be improved.

101

5

C
h

a
pt

er

Hardware-Aware Initialization of Auto-
Tuning on Hardware Accelerators

The previous chapters were concerned with finding deployment strategies. For
any given operator, the strategy is only half of the deployment process. The
other half is finding well-performing schedules, which are hard to derive by
principle. High performance of operators, regardless of the specific target
metric, is often enabled by manually implemented libraries, written in low-
level languages like C or assembly for a specific hardware target, especially for
Conv2D [22, 84, 103]. They aim to optimally utilize the hardware architecture
and memory hierarchy of the system, often through complex rewrites, which
allow the mapping to well understood BLAS [59] operators. In essence, the
load, store and arithmetic operations of a specific operator are reordered in
such a way, that cache misses, bank conflicts, unnecessary memory transfers,
pipeline stalls, register spills or other performance issues are avoided, or at least
minimized. Such implementations are time-consuming to write and require a
deep understanding of the targeted system.

Hardware-in-the-loop systems, or auto-tuning, help automate this process.
Auto-tuning probes a search space of different implementations for the operator.
This space is generated from the combination of different, individual loop
optimizations. The combinatorial property of this search space prevents brute-
force attempts for any meaningful problem.

The content of chapter is accepted for publication on the 2022 Workshop on Accelerated
Machine Learning @ HiPEAC 2022 [77]. The data and experiments of this chapter were created
during the supervision of the Master’s Thesis by Moritz Reiber and have been submitted to
examination as part of said Thesis at the University of Tübingen.

103

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

Hardware accelerators can have tight resource budgets and more rigid code
execution mechanisms. For example, in VTA it is not possible to define a tiling
scheme that would overflow one of the local buffers. While a CPU would be
less efficient with such code, the VTA software pipeline refuses to compile such
code entirely. Many parameter configurations can cause this issue, as well as
different operator instances or deployment strategies. The consequence are
large subspaces of invalid configurations in the auto-tuning search space. Since
many auto-tuning tools have at their core a statistical model to aid in the search,
investigating these effects is of interest. The statistical models are specialized
towards performance prediction and it is not known how well they can adapt to
the task of discerning valid from invalid configurations and accurately predict the
performance at the same time. This chapter presents the following contribution:

• An analysis of occurrence and effect of such invalid configurations in a
search space for Conv2D on the VTA accelerator. First, the distribution
in different search spaces is analysed. Then, how invalid configurations
influence the performance prediction model at the core of AutoTVM, as
well as the auto-tuning process itself.

• From these findings, a procedure to prevent the negative influence of
the invalid configurations on the auto-tuning process is developed and
evaluated.

Chapter 2 already introduced auto-tuning with AutoTVM. In Section 5.1
occurrence, distribution and impact of invalid configurations are explored. This
exploration is the basis for possible improvements, which are described in Section
5.2. Evaluation of said improvement over a series of experiments is discussed in
Section 5.3.

5.1 Auto-Tuning Space Analysis

The auto-tuning process on hardware accelerators can produce configurations
for which no code can be generated. Possible reasons for this can include data- or
instruction-buffer overflows, loop ordering issues or wrong loop splitting. Their
result are invalid configurations, which distort the performance evaluation at
best, and deliver false results at worst. Thus, they waste resources that could
have been used to evaluate a valid candidate.

When faulty candidates are used to train the performance prediction model
inside the auto-tuner, multiple questions arise. Mainly, how to present these con-

104

5.1 Auto-Tuning Space Analysis

Table 5.1 Workloads set: The workload ID is the respective position in the Baidu
DeepBench benchmark suite. The search space sizes shown here are determined with
the modified template. The valid ratio is the number of valid candidates, divided by the
total number of candidates in the optimization space.

Workload ID batch out-channel image kernel in-channel stride pad search space size valid ratio
3 1 32 79× 341 10× 5 32 [2 2] [0 0] 768 0.06
5 4 32 79× 341 10× 5 32 [2 2] [0 0] 3072 0.068
8 1 64 12× 120 3× 3 32 [1 1] [1 1] 9216 0.067

17 1 256 56× 56 3× 3 128 [1 1] [1 1] 20480 0.027
42 1 64 56× 56 3× 3 64 [1 1] [1 1] 9216 0.047
48 1 1024 14× 14 1× 1 256 [2 2] [0 0] 2240 0.151
53 2 128 28× 28 3× 3 128 [1 1] [1 1] 18433 0.035
59 2 512 7× 7 1× 1 2048 [2 2] [3 3] 6145 0.008
76 1 64 112× 112 1× 1 64 [1 1] [0 0] 14400 0.088
78 1 64 56× 56 1× 1 256 [1 1] [0 0] 15361 0.099
92 2 64 112× 112 1× 1 64 [1 1] [0 0] 28800 0.082

106 2 2048 14× 14 1× 1 1024 [2 2] [0 0] 7169 0.122
107 2 512 7× 7 1× 1 2048 [1 1] [0 0] 6144 0.231

figurations towards the model? And subsequently, how does this representation
influence the model? With respect to representation, two scenarios are possible.
The first is to ignore invalid candidates and only feed back valid performance
results. This is useful to avoid a distortion of the model and focusses on the
performance prediction task. However, this poses the question if it also makes
the model blind to potential invalid configurations. AutoTVM implements a
second option, where invalid configs are fed back into the model with a heavy
performance penalty. The intention is to train the model towards avoiding the
invalid configurations. However, it is not known how the model reacts to this
additional complexity. Can the model discern valid configurations and predict
performance well enough?

To analyse this impact, a diverse subset from the Baidu DeepBench Inference
Benchmark 1 was picked for further experiments. The selected convolutions are
presented in Table 5.1. The ID in the table refers to the ID in the benchmark
suite. The original auto-tuning template was modified to include additional loop
permutations, which increases the search space. The changes added valid, as
well as invalid configurations. For these workloads, exhaustive search space
explorations were performed. The VTA hardware setup from 4.4.1 was used
to gather performance data. This dataset serves as baseline for the analysis in
Section 5.1.3 and the experiments in Section 5.3. All experiments rely on the knob
features, like presented in Table 2.1. They represent the selected configuration of
loop tiling, permutation and parallelization factors of the specific candidate in a
flattened vector.

1https://github.com/baidu-research/DeepBench, accessed 05.2022

105

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

(a) Baseline optimization grid. (b) Grid after validity classification and edge
removal.

Figure 5.1 Cluster of grid nodes. Grey nodes are not yet checked for validity. White
nodes are invalid, black nodes are valid configurations in the grid.

The right-most column in Table 5.1 shows the share of valid configurations for
each search space as ratio = v

t
, where v is the amount of valid configurations and

t is the total search space size. Across all workloads, the overwhelming majority
of configurations is invalid. The mean ratio over all workloads is 0.083, with
0.008 and 0.231 being the minimum and maximum, respectively. The largest part
of invalid configurations is generated by tiling or loop ordering issues. However,
in every evaluation a small fraction of runtime issues occurred, for example
connection interrupts between VTA and the host machine. They were not treated
differently from actually invalid configurations.

5.1.1 Spatial Organization

The indices of the search-space configurations form a regular, Cartesian grid.
In this grid, two configurations are connected if the Manhattan distance [54]
between their indices is exactly one. The Manhattan distance is computed by
Equation 5.1.

dM (an, bn) =
n∑

i=1
|ai − bi| (5.1)

Removing edges between a valid and an invalid candidate yielded the graphs in
Figure 5.1. They show how the grid is split into two independent segments. A
segment with valid configurations, and another only with invalid ones. For all
researched workloads, exactly two independent segments formed after cutting
the edges. This indicates a spatial relationship of valid configurations in the
search space.

106

5.1 Auto-Tuning Space Analysis

5.1.2 Stand-Alone Model Evaluation

The AutoTVM model learns to rank the throughput in GFLOp/s of different
candidates, invalid candidates are scored with 0.0 GFLOp/s. As AutoTVM
adds invalid configurations with this penalty to the model training set, it poses
the question, how well the model can handle this. Specifically, how treating
low-performing and invalid configurations similarly distorts the prediction ability
of the model.

AutoTVM’s performance model ranks the configuration among themselves,
instead of predicting the absolute performance. In every tuning epoch, the tuner
optimized the ranking loss over n configurations, thus predicting the relative
performance. These top-n candidates are selected for evaluation on hardware.

For the following experiments, workloads 3− 57 2 were randomly sampled
for configurations and their performance measured on hardware. Based on this
dataset, the model was evaluated in isolation. The configurations from every
workload were randomly split into training data (75%) and testing data (25%).

Experiments for the presented metrics were done with a controlled ratio of
valid configurations in the training set. A ratio of 0.3 means that 30 out of 100
samples in the training set are valid. This set was used to train the performance
model. The model’s behaviour was then evaluated on an unmodified training
set. For the experiment the default model of AutoTVM, as presented in [18] was
used. It is a gradient boosted tree [33], implemented in the XGBoost library [16] and
using the parameters of configuration space as the input data. This feature-style
is known to converge fast for individual operators, but does not transfer to other
workloads. Repeating this process for every workload and averaging over the
results yielded the data in Figures 5.2 and 5.3.

Pairwise Ranking Accuracy Function f(xi) is the predicted performance of
configuration i over features xi and measured performance ci. Invalid config-
urations are scored with ci = 0. The accuracy of pairwise comparisons is then
defined as

accuracy = 1
n2 − n/2

∑
i>j

⎧⎪⎨⎪⎩ 1 if sign(ci − cj) = sign(f(xi)− f(xj)|

0 else
(5.2)

Increasing training sample size improved the performance in both experiments.
A low ratio of valid samples in the training set improves the model’s ability to

2except workloads 6, 10, 15, 21, 27, 34 and 41, which are not executable on VTA

107

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (V
al

id
 v

s.
 In

va
lid

)

Sample Size 10
Sample Size 25
Sample Size 50
Sample Size 100
Sample Size 150
Sample Size 200

(a) Accuracy Valid-Invalid

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (V
al

id
 v

s.
 V

al
id

)

Sample Size 10
Sample Size 25
Sample Size 50
Sample Size 100
Sample Size 150
Sample Size 200

(b) Accuracy Valid-Valid

Figure 5.2 Cost-model accuracy evaluation.

distinguish between valid and invalid configurations, especially in the accuracy
of valid-invalid metric (Figure 5.2a). This is an expected behaviour, as in
search spaces with a high proportion of invalid configuration the model’s
ability to distinguish should improve with more knowledge about the invalid
configurations. This, however, comes at the cost of losing the ability to rank the
valid samples, as shown by Figure 5.2b, where valid-valid rating ability of the
model shows a monotone increase with the valid samples in the training set,
and inversely, with a low number of valid samples in the training set, the ability
to rank is diminished. Since this evaluation ignores the invalid configurations
entirely, the more the model learns about valid samples from the training set, the
better is the ability to rank them.

While Figure 5.2b shows a linear increase with a higher frequency of valids,
the valid-invalid (5.2a) performance drops significantly. When the model learns
less about invalid configurations, the harder it becomes to distinguish them from
valid configurations. Even further, the diminishing ability to separate valids
from invalids outweighs the theoretically better ranking performance in models
trained on higher ratios.

Normalized Discounted Cumulative Gain Accuracy is only a metric for the
ability of the model to distinguish between the performance of individual
configurations. It does not give indication of ranking quality in the top-n
candidates. The normalized discounted cumulative gain (nDCG) is a metric
to quantify this ranking ability. This includes the ability to only retrieve valid

108

5.1 Auto-Tuning Space Analysis

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

0.0

0.2

0.4

0.6

0.8

1.0

nD
C

G
@

10

Sample Size 10
Sample Size 25
Sample Size 50
Sample Size 100
Sample Size 150
Sample Size 200

(a) nDCG

Figure 5.3 Cost-model ranking evaluation.

configurations from the search space into the top-n ranking, since any valid
candidate is better than an invalid one. The nDCG cumulative gain is computed
by the following formula:

nDCG @n =
∑n

i=1
cri

log2(ri+1)∑n
i=1

cr∗
i

log2(r∗
i +1)

(5.3)

First, it computes the sum of measured performances cri
, discounted by their

respective position ri produced in the ranking. This true score is then normalized
by dividing it by the score of an ideal ranking r∗.

Each time a candidate among the top-n is ranked above another candidate
with better measured performance, the score decreases. This quantifies the
ranking quality. And since the invalid configurations in the top-n will always
have a worse measured performance than any valid configuration, the metric
can also be used to measure the ability of the model to discern valid and invalid
configurations. The score of nDCG should not be interpreted in same way as
precision or accuracy. A score of 0.9 does not mean, that 90% of decisions were
correct. It only allows relative comparisons in ranking ability between two nDCG
scores, where a higher score means a better overall performance.

The nDCG performance is displayed in Figure 5.3a, where across the full
ratio scale a bell-shaped curve appears. Since nDCG includes both the ability
to rank and to distinguish between valid and invalid configurations, this makes
sense. At a low ratio, the model fails at ranking the valid samples, correctly. This

109

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

3 5 8 17 42 48 53 59 76 78 92 106 107
Layer

0

100

200

300

400

500

600

700

Tr
ia

ls

Figure 5.4 Distribution of trials to find the best configuration for each workload over 20
runs with the auto-tuner.

improves until an equilibrium at a ratio of 0.5 is reached. A further increase in
valid samples then leads to a dropping score, as the ability to filter the invalids
in the ranking correctly is reduced.

The observations on accuracy and ranking ability confirm the hypothesis that
ignoring invalid configurations distorts the performance model. When treating
invalid configurations the same way as low-performance configurations, the
model’s ranking quality is affected. Further, it seems that identifying invalid
candidates has more influence on the ranking than the ability to rank among
valids (see Figures 5.2a and 5.2b). Interesting is the equilibrium reached in the
areas of balanced valid/invalid ratios, as the model seems to reach a sweet spot
that, given enough data, has satisfactory ranking ability as well as the ability to
distinguish between valid and invalid configurations.

5.1.3 Tuning Robustness

In the previous section, the performance model was analysed in isolation.
Thus, only the effects on the model were observed, but not how this affects
the full auto-tuning process. For the following experiments, we assume an
untrained performance model, as is the default in AutoTVM. As a result, the
first measurement epoch is randomly sampled from the search space. We use an
epoch size of e = 50 and a total tuning length of t = 750 trials. This means that
in total 750 candidates are measured on the actual hardware, in batches of 50.
After each epoch, the measurement data is used to further train the performance
prediction model. This improved model is then used by simulated annealing
algorithm to traverse the search space, ranking unmeasured data points. The
top-e configurations found are then selected for measurement on hardware.

110

5.1 Auto-Tuning Space Analysis

0 100 200 300 400 500 600 700
Number of Trials

 0

 25

 50

 75

 100

 125

 150
G

FL
O

P/
s

Median

(a) Layer 53

0 100 200 300 400 500 600 700
Number of Trials

 0

 10

 20

 30

 40

 50

G
FL

O
P/

s

Median

(b) Layer 92

0 100 200 300 400 500 600 700
Number of Trials

 0

 25

 50

 75

 100

 125

G
FL

O
P/

s

Median

(c) Layer 107

0 100 200 300 400 500 600 700
Number of Trials

 0

 10

 20

 30

 40

G
FL

O
P/

s
Median

(d) Layer 59

Figure 5.5 Progression of multiple auto-tuning runs: Each curve shows the best per-
formance found in tuning run so far. The median over all runs is plotted bold and the
shaded area is the space between the first and third quartile.

Additional experiments were conducted on a pre-trained performance model,
which eliminates the uniform sampling in the initial epoch. This so-called transfer
learning from different workloads on the same hardware platform can help to
reduce the randomness, especially in the beginning of the search.

5.1.3.1 Tuning from Scratch

Figure 5.4 reports the number of trails necessary to find the best-performing
configuration, aggregated over all 20 runs for each layer in Table 5.1. In this
chapter, this will be called the convergence of a tuning run. The first and most
important observation is the large spread across most workloads. This spread
determines the robustness of the search algorithm. Workloads 8, 17,42, 48, 53 and
106 have a relatively even distribution over all runs, which indicates towards low

111

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

robustness. The other workloads are unimodal with a longer tail-end. This is
an indication for higher robustness with some outliers. While most only have
slower outliers, layer 107 has both, faster and slower ones. Although workloads
59 and 107 have a narrower spread, they also have multiple outliers where it
took significantly longer to find the best configuration. Still, they are consistently
below 200 trials to find the best configuration. Layers 3 and 5 perform well when
looking that the absolute number of trials, however, with 768 and 3072 they have
relatively small search spaces and the spread to find the best configurations is
wide.

Search space size alone, however, cannot be an explanation, as layers 106
and 107 have similarly dimensioned search spaces (7169 and 6144) and differ
significantly in their robustness. A possible explanation is the 23.4% share of
valid configurations in the search space of 107, compared to 12.2%. However,
layer 59 is the polar opposite with 0.8% valid configurations and a comparable
search space size of 6145. A possible explanation for this behaviour: once the
model learned how a valid candidate looks like, they are more often included
in the top-e samples, which makes finding the best configuration a question
of time. Multiple candidates with the same top performance could be another
explanation for this, especially when the absolute performance in GFLOP/s is
low, compared to layers 107 or 53 (see Figures 5.5c and 5.5a).

Figure 5.5 shows all runs for layers 53, 92, 107 and 59, which offers additional
information on the behaviour of individual runs. For example, in layer 59 and 92
some runs did not find the best configuration during the 750 trials. It also shows
that the initial set of 50 randomly selected configurations greatly influences
how long it takes the tuner to converge towards a good solution. Bad initial
configurations can lead to plateaus in the search, which can last over multiple
epochs. It is possible, that the improvements found after several hundred trials
can be attributed to random candidate selection, rather than model quality.

5.1.3.2 Tuning on Pretrained Model

Starting with an already trained model promises to reduce the convergence
time by reducing the randomness in the search and give the model a first "lay
of the land". Transfer learning was conducted on 30 000 samples from all
workloads in Table 5.1. This relatively large amount of data is necessary due to
the more complex feature set used. However, only 63,04% of the samples are
ultimately used for training, as some, but not all, invalid samples are already
discarded during feature extraction. TVM cannot feed this information into

112

5.1 Auto-Tuning Space Analysis

3 5 8 17 42 48 53 59 76 78 92 106 107

Layer

100

200

300

400

500

600

700

T
ri
al
s

Figure 5.6 Distribution of trials to find the best configuration for each workload over 10
pre-trained runs with the auto-tuner.

Table 5.2 Tuner overhead in seconds.

Table 5.3 The left-hand side and middle show the overhead of knob and context relation
features at runtime. This includes feature extraction, simulated annealing and model
training on new measurements. The right-hand side column is the initial model training
time for transfer learning.

Layer Knob Context-Relations Features Initial Model Training
78 77.8 656.8 512.8
8 77.5 1118.7 839.9

92 88.4 1139.7 653.7

the performance model, as it could not retrieve a full set of features from these
candidates. Thus, the performance model only sees a partial representation of the
invalid candidates. The training data is sampled randomly from all workloads
under investigation. For the training of a model for a specific layer, its own data
is excluded from the training set.

The features in the previous sections were simply the knob values in the
configuration space. However, these features are specific to each workload. In
this section the auto-tuning uses input features called context relation features,
which create a detailed but abstract workload profile, enabling a degree of
portability. It represents an aggregation of memory accesses and arithmetic
operations over various loops in the program. More details can be found in [18].
The expectation is that the pre-trained model performs better initial sampling.
The experiments in Figure 5.6 however show, that this is not always the case.
For workloads 3, 8, 17, 42, 48, 53, 76, 78 and 107 performance and convergence
improved, as expected. Although the model already can filter some of the invalid
candidates through training and errors during feature extraction, workloads
5, 53, 92 and 106 performed worse than training from scratch when looking at

113

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

the median. Possibly, the latter workloads have features that cause a different
performance behaviour. For example, all have a stride > 1. Together with
the skewed training data, this can lead the model to learn the wrong things,
distorting the search. Robustness improved as most workloads now exhibit a
mostly unimodal distribution around the median.

Other issues are features and training themselves. Extracting them from a
workload is expensive, as shown in Table 5.3. Both the non-measuring related
overhead and the initial model training are time-consuming to perform. When
focussing on the trials, the model actually often finds the best solution faster than
the baseline starting with an untrained model. However, the cost of extracting the
features and initializing the model can produce longer wall-clock times. During
a single run, extracting the features can add over 20 minutes to the total time.
Training the performance model can also extend well over 10 minutes with 30.000
samples. While using less samples would reduce the training time, it would also
impact model quality.

5.2 Validity Driven Model Initialization

Following the insights from the data in Section 5.1, a better initialization process
for the performance model seems like a promising path to improve robustness
and reduce the number of necessary hardware measurements. The main problem
to address is the uniform sampling over a non-uniformly distributed solution
space, as shown by the locality analysis in Figure 5.1. Transfer learning helps
with this but can also fail when operators are too different from the learned data.
Also, the current implementation is inefficient and increases wall-clock time
spent. The new process is aiming to improve the substantial robustness issues of
auto-tuning runs by training a fresh model with a better initial data set to achieve
a balance in valid/invalid classification as well as performance prediction. Data
in Figure5.3a shows that this is achievable with a balanced data set and relatively
few samples for the model, starting from 50 to 100 training examples.

Sampling valid candidates from the search space is the first step in this process.
From the found valid and invalid configurations, a balanced initial measure batch
is created. Secondly, the valid configurations are stored and used to assist the
simulated annealing exploration when selecting later measure batches. Section
5.2.1 and 5.2.1 have details the on the former and 5.2.3 on the latter.

114

5.2 Validity Driven Model Initialization

Algorithm 4 Algorithm for locality driven search space sampling.
1: procedure Presample(n_samples, n_parallel, S)
2: N ← ∅
3: P ← randomly sample n_parallel points from the search space S
4: while |N | < n_samples do
5: C ← ∅
6: for p in P do
7: rp ← evaluate validity of p with validity check
8: N ← N ∪ {(p, rp)}
9: if is-valid(rp) then

10: C ← C ∪ { neighbors of p /∈ C ∪ N}
11: else
12: C ← C ∪ { random new point p ∈ S∧ /∈ C ∪ N}
13: end if
14: end for
15: P ← randomly sample n_parallel points from the candidates C
16: end while
17: return N
18: end procedure

5.2.1 Neighbourhood-based presampling

Instead of selecting the initial measurement batch at random, a balanced set
of valid and invalid configurations is used. This information is obtained by a
presampling algorithm which explores the search space and stores information
about the validity of individual configurations.

In search spaces with only a fraction of valid configurations, random sampling
is not sufficient to find enough valid samples in a reasonable amount of time.
Aiming for a ratio of 0.5 valid configurations in the first measure batch of size 50, a
purely random presampling would have to evaluate thousands of configurations.
By leveraging the spatial locality of valid candidates from Section 5.1.1, the
randomness is reduced and more samples are retrieved from the search space.

The first task is to identify the valid configurations. Since the compilation
process of TVM already captures a large share of invalid candidates, it can also be
utilized in the presampling phase. A drawback of this approach is the relatively
long latency of around 500ms per evaluation.

The data in Section 5.1.1 revealed that valid configurations are often spatially
adjacent. Algorithm 4 describes how this feature is used to find more valid sam-
ples in the search space. In a first step, a randomly sampled set of configurations
P0 from search space S is classified as valid or invalid (line 3). Each configuration

115

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

p ∈ P is added to output setN , together with the validity information. If p is valid,
locality is exploited by adding all its neighbours to the set of potential candidates
for the next evaluation step C (line 10). Two configurations are neighbours if
their Manhattan distance is 1. The set of neighbours has a higher chance of
containing additional valid configurations. To maintain exploration, each invalid
configuration adds a random new candidate from S to C (lines 11− 12). After
processing all members of P , a new set P is sampled from C, as shown in line
15. These steps are repeated until the limit of nsamples is reached. From N , the
valid and invalid points to generate the balanced initialization set for AutoTVM
is generated.

All evaluated workloads in Section 5.1.1 only had a single cluster. This
however, is not guaranteed. Random sampling at the beginning and during the
search ensures a degree of exploration, opposed to the exploitation of locality
once a valid sample is found.

5.2.2 Sample Selection for Distance Maximization

presampling, as described in the previous section, generates a setN of configura-
tions and information on their validity. From N , the initial measurement epoch
E0 ⊂ N is selected, such that a desired ratio of valid and invalid configurations is
achieved. To do this, N should be larger than E0, to ensure a degree of diversity
in the possible candidates for E0. A result of the presampling algorithm is thatN
can be defined as N = N valid ∪ N invalid. Therefore, E0 can be constructed from
the configurations Evalid

0 ⊂ Nvalid and E invalid
0 ⊂ N invalid as E0 = Evalid

0 ∪ E invalid
0 .

The neighbourhood-driven presampling fills N with a high number of valid
configurations. Due to the neighbourhood-heavy sampling, N valid ∈ N are often
very similar, with configurations that differ only in a single parameter. When
sampling from N , diversity has to be ensured. Otherwise, the model created can
struggle with generalizing in the later search [118]. Covering N as uniformly as
possible is a sensible choice.

However, previous experience with VTA also showed that particularly good
configurations usually reside on the edge of clusters, and thus on the edge to the
space of valid configurations. Origin of this phenomenon could be the loop-tiling
parameters. Configurations on the valid-cluster’s edge fill the local hardware
buffers as full as possible, before the next larger tile-size would overflow them.
Therefore, the sampling method was designed to include this observation, while
maintaining a uniform sampling strategy. Since measures like euclidean distance

116

5.2 Validity Driven Model Initialization

Algorithm 5 Sample selection with distance maximization
1: procedure distance-maximizing-sample-selection(N , num)
2: E ← { sample an initial point from N}
3: while |E| < min(num, |N |) do
4: δ*

mean ← 0 ◃ maximal average distance
5: δ*

min ← 0 ◃ maximal individual min-distance
6: knew ← None
7: for n in N \ E do
8: ∆n,E ← {d(n, k) ∀ k ∈ E}
9: if mean(∆n,E) > δ*

mean∧min(∆n,E) > δ*
min then

10: δ*
mean ←mean(∆n,E)

11: knew ← n
12: δ*

min ←min(∆n,E)
13: end if
14: end for
15: E ← E ∪ {knew}
16: end whilereturn E
17: end procedure

are hard to interpret in the search space, we use the neighbour distance used
in Section 5.1.1, which can be interpreted as the Manhattan distance between
configurations, similar to the analysis in Section 5.1.

The full procedure is defined in Algorithm 5. The first step is randomly select-
ing one configuration from N and add it to E. To select the next configurations
to add (set knew), for each n ∈ N \ E the distance to every configuration k ∈ E
is computed with equation (5.1) and added to set ∆n,E . The minimal and mean
distance of ∆n,E determine if knew ← n (lines 9 to 12). After updating E with knew,
the process is repeated until |E| reaches a predefined value or N \ E = ∅.

5.2.3 Validity Bias During Simulated Annealing

The validity data collected during presampling can also be used in other phases
of the auto-tuning process. After the initial batch was measured and model was
initialized, simulated annealing is used to select measurement batches from the
search space. The SA algorithm selects these based on a score predicted by the
performance model. However, as shown in the model evaluation, it can often
happen, that invalid samples are ranked well, albeit they could not actually be
executed in hardware.

Since the validity of a search space subset is already known at runtime, this
information can be used to bias the simulated annealing. In experiments, the value

117

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

of performance model predictions were mostly in the interval [−7, 7]. Known
invalids are set−106 to remove them from the top-n ranking. Known valids need
to be handled with more care. Since we do not know their performance, a place
in the top-n should not be guaranteed. A bias value of 1 showed good results
in empirical evaluations. It boosts the ability to place in the ranking without
overshadowing possible better implementations.

5.3 Evaluation

For the experiments, the original AutoTVM was adapted. It now uses the
presampling algorithm from Section 5.2.1 to explore the specific search space
and gather the data to replace random initialization of the first measure epoch
E0 with a set of configurations created by the process from Section 5.2.2. From
there, the existing flow of AutoTVM is used: measurements in epoch Ei are used
to train the performance model. This performance model is then used by the
simulated annealing algorithm to select the configuration for the next measure
epoch Ei+1. This new batch of configurations is then evaluated on hardware and
the cycle repeats. The original AutoTVM implementation has been altered in two
locations: 1) The simulated annealing now uses the bias information from Section
5.2.3 and 2) hardware evaluations are replaced with querying the ground-truth
data gathered once for the full search space. All experiments use an epoch size
of 50 measurements, or trials, until a total of 750 evaluations on hardware are
performed.

The performance of the auto-tuner is defined as the ability to find good
configurations fast and consistently. The following experiments use the median
and interquartile range as a measure of the former and latter criterion. The
median gives a good indication on the convergence time of the auto-tuner. It
is more robust against outliers than the mean, which can be common in the
examined problem space (see Figure 5.4). The interquartile range (IQR) describes
central half of all values and is useful to determine how robust the overall
process is i.e., how good the median does actually approximate the auto-tuners
convergence time. IQR is defined as:

IQR = Q3 −Q1 (5.4)

where Q1 and Q3 are the first and third quartile respectively.

118

5.3 Evaluation

Table 5.4 Tuning performance relative to the baseline over 20 runs each: On the left-hand
side is the median number of trials to converge to the best performing candidate is. On
the right-hand side is the IQR over all tuning runs, as a measure of robustness.

Convergence Robustness
Layer Full No SSDMa No BSAb Full No SSDMa No BSAb

3 0.305 0.223 0.308 0.345 0.282 0.452
5 0.460 0.668 0.540 0.362 0.426 0.289
8 0.433 0.548 0.412 0.375 0.453 0.288

17 0.438 0.479 0.537 0.580 0.593 0.491
42 0.319 0.312 0.455 0.177 0.157 0.408
48 0.270 0.390 0.284 0.333 0.251 0.350
53 0.480 0.491 0.571 0.333 0.367 0.599
59 0.120 0.111 0.120 0.861 1.238 0.879
76 0.460 0.530 0.493 0.251 0.364 0.325
78 0.447 0.557 0.457 0.176 0.353 0.271
92 0.492 0.518 0.604 0.269 0.453 0.194

106 0.403 0.720 0.456 0.631 0.938 0.788
107 0.786 0.735 0.857 0.815 1.164 1.178

Mean 0.416 0.483 0.469 0.424 0.541 0.501
a Sample Selection w. Distance Maximization, b Biased Simulated Annealing

5.3.1 Baseline Method

In the following Section, the effects of the improved model initializations, distance
maximizing sample selection and simulated annealing bias are investigated. Runs
with an unmodified AutoTVM serve as a baseline against a fully improved version,
one without distance maximization and one without simulated annealing bias.
For the baseline, the presampling was skipped and the first epoch E0, |E0| = 50
randomly initialized. In case there are no valid configurations in E0, random
initialization was repeated.

In all experiments with the extended auto-tuning, the presampling setN ⊂ S
of each search space S is built from min(1000, |S|) configurations. Model
initialization is then performed as described in Section 5.2, with an initial
measurement epoch of 50. Selection of Evalid and E invalid is done with sample
distance maximization.

5.3.1.1 Convergence

For all described experiments, the median search times for the best configurations
are presented in Table 5.4. All results are reported relative to the AutoTVM
baseline. The improved methods outperform the baseline for every workload,
with the mean over the median trials being×0.416,×0.438 and×0.469, relative to
the baseline. However, two results stand out: layer 59 is remarkably better than
the baseline (×0.111) and layer 107 shows weaker improvements (×0.735). These

119

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

are also the workloads with lowest (layer 59) and highest (layer 107) number of
valids in the search space. For layer 59, if there are very few valids, finding any
of these has much higher chance of being the best one. Layer 107 on the other
hand, has the highest number of valid candidates, meaning that finding valids
alone is not sufficient for good performance, making the search process harder.
Nonetheless, the initialization method improved the convergence time by ×1.36.
The effects of distance maximization and biased simulated annealing (BSA) are
visible, as the best values are most often found by the full experiment, but not
dominant towards the overall performance. Turning the additional features off
only leads to a slight decrease of convergence and IQR, but both are still in the
same order of magnitude. The common ground of all trials is the presampling
and model initialization, which gives a workload specific, validity driven head
start to the performance prediction model.

5.3.1.2 Robustness

Similar results are achieved for the robustness of the search, also presented in
Table 5.4. IQR reductions to ×0.424, ×0.541 and ×0.501 of the baseline are found
in the experiments. However, some additional observations can be made. First,
only half of the time the full setup delivers the most robust results. Especially
turning off BSA often improves the results. On the other hand, two experiments
actually performed worse than the baseline when distance maximization was
turned off during the sample selection. However, these were already stable
workloads in Figure 5.4, so improving upon the baseline is rather hard, which
also showed in the results of the full method. Only an IQR improvement of×1.22
was achieved, compared to the baseline. In other layers, like 3, 5, 8, 42, 48 or 92,
the IRQ metric was improved significantly by factors of three to six.

5.3.1.3 Individual Workload Analysis

Figure 5.7 details the experimental results in absolute numbers. It compares the
baseline and the experiments with the full improvement set. All the median
values of the presented method are consistently below 300 trials, with only layers
8, 17 and 53 requiring more than 200 trials. A first overview shows improved
robustness and convergence time for all workloads. Further, the robustness of
the proposed method roughly follows the baseline, but always improves upon
it. Except for 8, 17 and 106, all runs have unimodal or bimodal distribution,
which is a sign of higher robustness. The bimodal distribution only appears

120

5.3 Evaluation

3 5 8 17 42 48 53 59 76 78 92 106 107
layer

0

100

200

300

400

500

600

700
tri

al
s

Baseline
Full enhanced initialization

Figure 5.7 Distribution of trials to find the best configuration for each workload for the
new method and the AutoTVM baseline over 20 tuning runs.

in workloads with very low tuning times. This is caused by the separation
of tuning into batches, where the early batches often already contain the best
solution. Longer tuning runs flatten this. Also, the new method produces fewer
tails in the distributions. Meaning that a layer with narrow IQR in the baseline,
will also have a narrow IQR with the improved initialization and a wide IQR
in the baseline leads to a wider IQR in the new method. While the overall
performance improved, some runs still produced outlier performing significantly
worse than the rest, for example layers 8, 42 or 53. Interesting is layer 42, where
the IQR with presampling is narrow, but several positive and negative outliers
exist. The baseline, on the other hand spreads from 50 to 170 trials, with IQR
between 200 and 450. This hints towards a workload, that is rather difficult for
the performance model to learn and where the initial dataset has a large impact
on the rest of the search. This is the complete opposite of layer like 3, 5 or 107,
where spread is narrowed considerably and outliers are few or non-existent. The
high robustness of 59 can again be explained with extremely low number of valid
configuration in the search space.

A more detailed view on individual runs is provided by Figure 5.8, in which
every run of layers 53, 92, 107 and 59 is plotted for both baseline and enhanced
method. This reveals additional information on the convergence of individual
runs. Previous analysis focussed on finding the maximum performance, while
these plots also show the path towards these solutions. The most significant
finding here that is before the very best configuration is found, candidates in the
90th percentile of performance are found earlier in the search. For example layers
53 and 92 show very good results within the first 100 trails, while the remaining
search only improves the performance by around five to ten percent. The baseline
,however, often struggled to find good candidates, with some runs even ending

121

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

0 100 200 300 400 500 600 700
Number of Trials

 0

 25

 50

 75

 100

 125

 150

G
FL

O
P/

s

This work (complete)
Baseline

(a) Layer 53

0 100 200 300 400 500 600 700
Number of Trials

 0

 10

 20

 30

 40

 50

G
FL

O
P/

s

This work (complete)
Baseline

(b) Layer 92

0 100 200 300 400 500 600 700
Number of Trials

 0

 25

 50

 75

 100

 125

G
FL

O
P/

s

This work (complete)
Baseline

(c) Layer 107

0 100 200 300 400 500 600 700
Number of Trials

 0

 10

 20

 30

 40
G

FL
O

P/
s

This work (complete)
Baseline

(d) Layer 59

Figure 5.8 Tuning Runs: Full method against baseline.

at 750 trials without finding the best-performing candidate. A different picture
can be seen in layer 107, where the baseline and improved method track each
other closely, with the latter having a slight head start, which is kept throughout
the run. This can be attributed to the high number of valid configurations, with
diverse performance characteristics. Interesting is the outlier behaviour in this
plot, where the baseline tends to have outliers that are worse than the average,
whereas the improved method has outliers that perform better than the majority.
Lastly, layer 59 with its low number of valid candidates requires only one or two
epochs to find the best version, while the baseline struggles, only finding the first
valid candidate after more than 200 trials, up to 600 trials in the worst case.

122

5.3 Evaluation

3 5 8 17 42 48 53 59 76 78 92 106 107
layer

0

100

200

300

400

500

600

700
tri

al
s

No SSDM
Full enhanced initialization

Figure 5.9 Distribution of trials without distance maximization.

3 5 8 17 42 48 53 59 76 78 92 106 107
layer

0

100

200

300

400

500

600

700

tri
al

s

No BSA
Full enhanced initialization

Figure 5.10 Distribution of trials without the simulated annealing bias.

5.3.1.4 Effects of BSA and Distance Maximation

The differences between the full improved method and deactivated distance
maximization and BSA are displayed in Figures 5.9 and 5.10. For both, the
results confirm what was already discussed in Figure 5.7 and in the relative
comparison of Table 5.4 for median convergence time and IQR. Robustness and
trials-to-best solution show a slight performance decrease, with layers like 8, 53,
92 or 107 being exceptions from this. No direct correlation between the size of
the search space and the observed effects found. It is to be believed, that for large
search spaces the total number of candidates seen during presampling is too
small to meaningfully impact the overall tuning behaviour. And for small search
spaces, the model learns about the workload’s characteristics fast enough for the
additional methods not to matter, either.

5.3.2 Pre-Trained Performance Models

In the previous experiments, the AutoTVM model used random sampling to start
the search process and used an uninitialized model, whereas the presampling

123

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

Table 5.5 Comparison of the new initialization method and transfer learning to the
AutoTVM baseline.

Convergence Robustness
Layer New Method Pre-trained Baseline New Method Pre-trained Baseline

3 0.305 1.213 0.345 0.649
5 0.460 2.085 0.362 1.914
8 0.433 0.193 0.375 0.027

17 0.438 0.388 0.580 0.164
42 0.319 0.207 0.177 0.065
48 0.270 0.501 0.333 0.448
53 0.480 0.365 0.333 0.227
59 0.120 0.937 0.861 5.386
76 0.460 0.953 0.251 0.171
78 0.447 1.189 0.176 0.542
92 0.492 1.618 0.269 0.615

106 0.403 1.487 0.631 1.226
107 0.786 0.624 0.815 0.302

Mean 0.416 0.905 0.424 0.903

3 5 8 17 42 48 53 59 76 78 92 106 107

layer

0

100

200

300

400

500

600

700

tr
ia

ls

Tranfer Learning

Full

Figure 5.11 Distribution of trials to find the best configuration for each workload for the
new method and pre-trained AutoTVM for 10 tuning runs.

method already provided validity information for the start of the tuning process.
A third option was already presented in Section 5.1.3.2: features that offer a more
workload-agnostic representation of an individual candidate to enable transfer
learning in the tuning process. This way, the performance prediction model
can be trained on data of other workloads, with the goal to improve the search
process. In the following experiments a model trained on the same dataset as
in Section 5.1.3.2 is compared against the tuning with presampling. Due to the
large overheads during transfer learning, experiments were only repeated 10
times, instead of 20. The latter will still use the knob features, as they are cheaper
to obtain (see Table 5.6).

It is important to note that during the search with transfer learning the initial
model is specialized towards the given workload with every epoch, until only

124

5.3 Evaluation

0 100 200 300 400 500 600 700
Number of Trials

 0

 25

 50

 75

 100

 125

 150
G

FL
O

P/
s

This work (complete)
TL

(a) Layer 53

0 100 200 300 400 500 600 700
Number of Trials

 0

 20

 40

 60

 80

 100

G
FL

O
P/

s

This work (complete)
TL

(b) Layer 78

0 100 200 300 400 500 600 700
Number of Trials

 0

 20

 40

 60

 80

 100

G
FL

O
P/

s

This work (complete)
TL

(c) Layer 8

0 100 200 300 400 500 600 700
Number of Trials

 0

 10

 20

 30

 40

G
FL

O
P/

s

This work (complete)
TL

(d) Layer 59

Figure 5.12 Comparison of presampling against runs with pre-trained models.

data from the current workload is used to train the performance prediction model.
In a sense, this is a similar philosophy to the work presented in this Chapter, as
both aim to give the model a head start over random sampling.

5.3.2.1 Convergence and Robustness

Table 5.5 compares the convergence time of this work and the transfer-learned
tuner against the untrained baseline. Overall, the pre-trained model is only
needs 90.5% of the trials the baseline needs to find the best result, however, in
almost half the experiments, tuning performance decreased. Five workloads (3,

125

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

Table 5.6 The left-hand side and middle show the overhead of knob and context relation
features at runtime. This includes feature extraction, simulated annealing and model
training on new measurements. The middle and two right-most columns show the initial
overhead before the search.

Layer Knob Context-relation features presampling Sample selection Pre-training
78 77.8 656.8 416.8 13.4 512.8
8 77.5 1118.7 375.5 13.0 839.9

92 88.4 1139.7 396.0 11.7 653.7

5, 78, 92, 106) with transfer learning perform worse than the baseline, layer 5
by a factor of ×2.085. On the other hand, layers 8 or 42 performed significantly
better than the presampling based method by factors of ×2.24 and ×1.54. For
the robustness, a similar behaviour is observed. Transfer learning improves the
baseline by ×1.107, but has strong variations in both directions. Layers 8 and 42
achieve an exceptional robustness, with the IQR being only 2.7% and 6.5% of the
baseline. For layer 59, learning from other models is not successful, as the IQR
increases by a factor of ×5.386, although the convergence is slightly better.

5.3.2.2 Individual Workload Analysis

Turning to absolute numbers in Figure 5.11 confirms these observations. Overall,
the pre-trained model is consistently over 200 samples in median convergence,
with the exceptions of layers 42, 53 barely and 107. Layers 8, 42, 53 and 107 show
high robustness and no outliers, while outperforming the presampling method.
However, workloads 5, 78, 92 or 106 are the opposite of this. They need over 300,
the latter three over 500 samples to converge to the best solution. They also have
a low robustness with the outer quartiles reaching up to the sampling limit.

This is also visible in the individual experiments of Figure 5.12. Many runs in
layer 78 plateau around 150 to 300 trials, with outliers taking even longer to break
90 GFLOp/s barrier, which explains the large IQR. In layers 53 and, 73 and 8 the
initial sampling epoch E0 performs better than the untrained baseline, usually
finding at least one well-performing candidate in the first epoch. For workload
59, the convergence is better than in the untrained baseline, as the search always
finds the best candidate, even after 450 of no valids in the beginning. However,
the spread over individual runs is much wider, which also leads to the larger
IQR.

126

5.4 Discussion

5.3.3 Tuning Overhead

The previous sections compared the tuning performance by the number of trials,
not time-to-solution. This metric makes comparison of different approaches
easier and decouples the evaluation from runtime effects. However, in reality,
the time spent to find a solution is important. While hardware execution is
a major contributor to the overall tuning time, other overheads can increase
the absolute runtime. Section 5.1.3.2 already demonstrated that training the
performance model from scratch can take up a significant amount of time. Table
5.6 lists the per-run overheads of the different methods. For the baseline with
random initialization, the overhead is 0 seconds. The presampling performing
the validation of individual candidates for model initialization also creates a
significant overhead, while the sample selection process itself is negligible. For
layers 78, 8 and 92 presampling plus sample selection is still 82.6, 415.4 and
246 seconds faster than transfer learning. However, the presampling has to be
performed for every new workload, whereas the trained model can be reused for
any number of workloads.

Feature extraction is faster on knob features than the context relation features
by factors of ×8.44, ×14.42 and ×12.89 for the layers in Table 5.6. Knob features
just flatten the configuration vector. To use the context relation features, the
configuration has to be lowered into a full intermediate code representation
before the features can be extracted. This process is costly, and since it has
to happen at runtime, it cannot be avoided, like model training. Overall, the
presampling outperforms the transfer learning, as the steps prior to the actual
tuning are faster. And even if an already trained model exists, the faster feature
extraction amortizes the sampling cost.

5.4 Discussion

The experiments in this chapter confirm the hypothesis that a large number of
invalid configurations influence the auto-tuning performance and that a tuning
process starting with a curated set of initial candidates, balancing valid and
invalid configurations finds better solutions faster and more consistently. The
baseline starting with uniform sampling of a space with non-uniform solution
distribution is outperformed in every experiment. Eventually, the baseline is
able to find the best-performing candidate for all layers in the experiment, but
not in every individual tuning run. Thus, depending on the initial samples in

127

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

E0, good candidates are found either quickly, or never before the trial limit. The
presampling algorithm, on the other hand, always found the best candidate
before reaching the trial limit and was more consistent in doing so, leading to
the conclusion that the model with presampling is adapting to the search space
quicker.

5.4.1 Results

The ability to discard invalid candidates was instilled into the model, without
losing the ability to rank well enough to solve the problem, as experiments with
larger numbers of valid candidates showed, such as in Figure 5.8c.

Additional modifications to the overall method showed minor improvements
over basic presampling. Over all experiments with both distance maximization
and BSA, improvements of 6.7 and 5.3 percentage points for convergence and 11.5
and 7.7 percentage points for the IQR were possible. This pales in comparison to
the improvements of the curated model itself.

With the right feature representation, it is possible to train a model on the
data of previous tuning runs. This process of transfer learning aims to improve
the initial performance of the tuning process. Since the performance prediction
model is initialized with a rich dataset, the initial random sampling is replaced
with a simulated annealing search using this model. The data in Table 5.5 show an
overall improvement of roughly ten percentage points over the random baseline.
This mean value, however, is deceptive. Looking at individual workloads, transfer
learning outperforms even presampling in some experiments, sometimes by a
large margin. However, for other workloads convergence and IQR can degrade
drastically.

The source of the performance discrepancy can be attributes to several factors.
First, there is less control over the dataset itself. In practice, the data for the
transfer learning comes from previous tuning runs. This means the data is biased
towards valid samples, since ideally only the initial few epochs contain invalid
configurations. Further the training set only contains information about a similar
but not identical problems. The individuality of each workload with respect
to valid and invalid configurations is not yet learned at this point. In contrast,
the performance model using presampling only ever learned about the very
workload it is used to optimize for. This issue comes down to the question, how
similar the training set to the actual problem is and how well the model can
generalize. The context relation feature used for transfer learning provides a

128

5.4 Discussion

more detailed view of a candidate’s execution, at the cost of significantly larger
feature vectors, compared to the cheaper knob features. And while the knobs
are a simpler representation, they seem to accurately capture both validity and
performance information. The context relation features lose this specificity to
gain portability and the experiments showed that for this strategy works well for
a subset of the investigated workloads. But the enhanced initialization method
showed a better overall generalization ability.

Lastly, the cost of features can be dominating when focussing on the absolute
time to perform a tuning process. For real evaluations in this can be critical.
The overhead of presampling exists for every individual workload, while the
overhead for pre-training the performance model can be amortized across many
workloads. However, the extraction of features that can be used to learn across
workloads is expensive and cannot be skipped. Ignoring the actual tuning
performance, the cost of presampling and the cost of feature extraction need to
be weighed against each other.

For real world applications, the process presented in this chapter brings
several advantages. The first is more confidence in the selected tuning duration.
In practice, we do not know in advance if the solution has been found, thus the
search usually runs longer than necessary. With the improved robustness, tuning
can end sooner and give greater confidence in the result. Further, the 90th or 95th
percentile of performance is often found much earlier than the true best. Often
these candidates are sufficient for practical application, which further improves
the confidence in the quality of the results. Second, the process is not dependent
on existing training data. The presented method only requires data from its own
search space, thus it is an approach without overhead for new hardware targets.

5.4.2 General Considerations on Program Optimization

From a more general perspective, auto-tuning and performance optimization in
general are a trade-off between data costs, engineering costs and measurement
costs. For general purpose systems with an abundance of measurement data,
like GPUs in a cloud environment, fully data-driven approach can generate
impressive results quickly, at the cost of millions of training examples [43]. This
is not always feasible on more specialized devices, like embedded systems.
Here, the system is often designed for specific use cases and the measurement
campaigns to acquire the necessary data would have to be repeated for each
new system. Approaches with higher engineering cost can be a hurdle in some

129

Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators

contexts, like hardware and system design. Fitting the model to hardware
updates during development can be time intensive and prone to inaccuracies.
While feedback driven approaches are the most portable, a reduction of hardware
measurements is the key to bring optimization times to an acceptable level. In
this context, the presampling method for search-spaces with a large share of
invalid configurations demonstrated significant performance improvements over
the baseline. Improving the initialization point is not a novel concept, per se.
Algorithms like kmeans++ [8] already demonstrated the benefits of starting-point
optimizations

5.4.3 Related Work

Existing work in the tuning space shows a clear gap to handle invalid tuning
candidates. Chameleon[4] works with a reinforcement learning based agent. To
reduce hardware sampling time, a single measurement is selected to represent a
neighbourhood of similar configurations. This cluster can reduce tuning times
drastically. For the case studied in this chapter, the clustering can be difficult to
realize. Even when using the improved initialization, the validity of a majority of
candidates is not known until it is sampled. Thus, for most candidates we do not
immediately know if they represent a region of valid candidates. A candidate
could also be invalid himself or used to represent several invalid configurations.
Both cases would detriment the tuning quality.

AutoHalide [3] and Ansor [124] create larger search spaces, by not only tuning
templates based on parameters like tiling, unrolling or vectorization, but also
by dynamically transforming the loop structure during the tuning process. By
trying to gauge the performance of high-level loop structures before fully tuning
them, they are more refined than UNIT when it comes to dealing with structurally
different kernels. Results are only reported for general purpose architectures.
However, such a process could also be further developed to target accelerators by
describing the space of legal loop structures for an instruction embedding. The
necessary information could be provided by the method presented in Chapter 4.
However, as of this writing, no such solution is available.

Telamon [10] implements a completely different approach, which avoids
invalid configurations by relying on a constraint based, manually crafted hard-
ware model. The constraint program predicts the upper performance bound,
while avoiding the construction of invalid configurations. Likewise, DORY
[12] optimizes code with a constraint model of the target hardware’s memory

130

5.4 Discussion

hierarchy. This handcrafted approach delivers good performance, however,
comes at high engineering cost and requires deep hardware knowledge. This
limits the portability of this method.

5.4.4 Outlook

What remains to be explored is the generalization of this method. How well
it translates to other hardware architectures is highly dependent on both the
architecture itself and code generation. However, since the primary insight is
that a more nuanced initialization of the prediction model yields better tuning
performance, the method is agnostic to the source of the invalid configuration.
If the performance prediction model can interpret validity from the presented
features, a generalization is possible.

131

6

C
h

a
pt

er

Discussion and Outlook

This work set out to evaluate and improve the processes used to offload deep-
learning operators, Conv2D in particular but not exclusively, to loop-back style
DNN accelerators. Special attention was paid to the problem of how a workload
can be computed with sequences of complex instructions, like matrix-multiply.
An evaluation of the existing process to achieve this was done in Chapter 3. The
findings have been used to implement a novel concept called dataflow embedding,
presented in Chapter 4. Section 6.1 discusses and compares these approaches.
Future research topics are discussed in Section 6.2.

6.1 Top-Down and Bottom-Up Embedding

In Chapters 3 and 4, two philosophies for embedding have been presented and
evaluated. The first philosophy, Top-Down is driven by program transformations,
or rewrites, in order to find an equivalent version of the original computation
in which a pattern matching process can find a suitable embedding location
for a hardware intrinsic. In contrast, the dataflow embedding is Bottom-Up.
It establishes matches between the dataflow of the operator and the intrinsic.
From this match, the necessary transformations on loops and data layout can
be derived. After reviewing the benefits and drawbacks of each method, this
section will discuss how they relate to each other.

Top-Down Benefits: The evaluation in Section 3.4.2 showed how embeddings
for variations of the dense operator are produced quickly and without a lot
of overhead. One reason for this was the high similarity between available

133

Discussion and Outlook

instructions and the workload. Another reason is the relatively low complexity
with respect to the number of loops, tensor dimensions and access functions in
the workload. Also, this method has a relatively low overhead when describing
instructions and workloads, which is similar to existing tools like TVM. Lastly, the
method can also match multiple instructions in parallel, reducing the overhead
for hardware architectures where multiple instructions are potential candidates
for an embedding.

Top-Down Drawbacks: The loop-based workload representation leads to a
situation where increasingly complex workloads, like Conv2D or Capsule Routing,
the search space can grow to intractable sizes. Selecting and ordering transfor-
mations to manage this complexity is crucial to find embeddings with sensible
effort. One issue is the potential to disassemble the workloads into multiple
sequential operations. This leads to high combinatorial complexity when it
comes to generating different possible loop nesting and operation fusions. The
loop-based representation also forces implicit implementation decisions into
the problem, like tensor dimension ordering. Resolving the ordering either
requires additional transformation or a more complex pattern matching process
that accounts for this issue. Adding more transformations is not beneficial, as
the evaluation showed diminishing returns with respect to possible solutions.
Further, the exploration is only so powerful as the set of existing transformations.
This limits the ability explore new possible implementation strategies. For
example, Top-Down is limited to one-on-one matching between workload and
intrinsic dimensions unless a fusion is performed explicitly before the matching.

Bottom-Up Benefits: Chapter 4 presented a novel approach that enabled the
embedding on scalar dataflow level, circumventing the main issues of the Top-
Down approach. By embedding on a representation that is detached from loops
and access functions, embedding issues related to them are avoided. Mainly,
loop-ordering, input and output transposition, access strides or loop selection.
Since the concept is based on constraint programming, the embedding space
starts with every single possible implementation and is then reduced by applying
target-specific constraints to describe a solution space that fits the capabilities
of the deployment stack and hardware. The Bottom-Up approach enables
exploration of the embedding space without writing transformations, but instead
deriving and implementing the transformations based on the solutions provided
by the solver. From searching embeddings in a setup with few constraints beyond

134

6.1 Top-Down and Bottom-Up Embedding

dataflow matching, completely new implementation strategies can potentially be
found. By principle the method also enables the mapping of multiple workload
dimensions to a single intrinsic dimension.

Bottom-Up Drawbacks: The main drawback is the scaling with instruction
size, as it increases the number of variables for the constraint problem to solve.
Further, only a single instruction can be analysed per run. Lastly, the setup for a
specific hardware target is more complex and requires a deeper understanding
of both hardware and software, compared to the Top-Down approach.

The choice between the Top-Down and Bottom-Up approach should be
considered carefully, depending on the problem to solve. Learnings from the
former were integrated into the latter’s design, allowing Bottom-Up to focus on
the problems not yet resolved by Top-Down matching. Improvements to better
capture loop orderings or memory access issues come at the cost of a higher
effort to describe a solution space and only embedding a single instruction at
a time. This trade-off between usability and ability to solve problems makes
Top-Down approaches viable for low complexity workloads or use cases
where the transformation complexity is relatively limited. On the other hand,
workloads like Conv2D can create too many possible choices in the Top-Down
method, requiring a more powerful method to handle the details of workload
variations.

Despite their differences, both approaches also share properties. As discussed
in the introductory chapters, relieving application developers from knowledge
about the underlying system while enabling new operators and specialized
hardware targets without significant library implementation efforts was a driving
motivation for this work. In this respect, both approaches offer solutions. Top-
Down achieves this with a systematic creation of a solution space through
transformations, in which candidates must be found, while the Bottom-Up
system constrains a scalar problem space towards desirable solutions.

Navigating the space of transformation without relying on predefined di-
mension semantics like NCHW is a step forward with respect to supporting new
operators and hardware combinations. Chapter 4 demonstrated how this type
of information can be found and translated into a set of layout transformations
without relying on NCHW -like dimension semantics.

It is important to highlight that neither method can be seen as an out-of-the-box
solution. Hardware expertise is necessary to create the transformation sequences

135

Discussion and Outlook

and constraint spaces for the respective solutions and couple them with the DNN
deployment toolchain, which is by no means a trivial task. How much effort this
is depends on the hardware target. For the Top-Down approach, giving a set of
transformation that can extract subgraphs matching the available instructions is
key. Most transformations are general enough to be used across hardware targets,
while sometimes an additional set of hardware-specific transformations might be
necessary for individual use cases. While this work generated exhaustive search
spaces, this might not always be necessary or possible for practical applications.

In the Bottom-Up approach, the situation is very similar. Many constraints,
like the graph-isomorphism or access pattern analysis are reusable, with some
hardware specific constraints mixed in for better search efficiency. Section 4.5.2.2
also showed that the Bottom-Up method can generalize towards different hard-
ware configurations without changing the constraint program design. However,
a full study on a completely different hardware target was not performed, yet.
Especially for significantly larger hardware intrinsics, additional measures might
be necessary to keep the runtime manageable.

While both approaches still require hardware knowledge, effort put towards
generalizable methods for a specific application domain can be seen as more
beneficial as the recurring, manual implementation of libraries or embedding
templates for new workloads and hardware.

Like most existing methods, this work has split the problem into strategy
choice (data layout and algorithm) and schedule optimization for two reasons.
First, the runtime of operators is not necessarily the only goal for strategy selection.
As demonstrated in Section 4.5.2 memory footprint, latency, or data movement
are often conflicting and need to be addressed on the system or application
level. Second, it enables strategy coordination between adjacent operations
to enable graph-level optimizations. This flexibility is paid for with higher
auto-tuning effort. While this work presented solutions to improve this process
for hardware accelerators in Chapter 5, it still is a significant effort to tune enough
implementations for a global graph optimization.

6.2 Outlook

A key component of making specialized hardware accelerators usable is accessi-
bility through software. The application side of deep learning provides a host of
tools, like TensorFlow or PyTorch [2, 72] to democratize the technology. However,
creating efficient inference kernels from these high-level DNN descriptions for

136

6.2 Outlook

Figure 6.1 Layers of hardware-aware DNN optimization.

non-commodity hardware targets is challenging. Major contributors to solving
this problem are TVM and MLIR. Both aim to provide developers with the in-
frastructure to target their custom devices, while controlling the full deployment
stack. While TVM is fully geared towards DNN workloads, MLIR is targeting an
application space beyond machine learning. The methods presented in this work
can potentially be integrated into TVM. Both, the embedding and auto-tuning
methods are stand-alone solutions and can be used to deploy DNN kernels to
accelerators. This work mostly looked at performance aspects of deployment,
but as mentioned above, system integration to achieve usability for users is an
important step forward. An integration into one these tools, with a standardized
interface could be a next important step.

Figure 6.1 shows the different levels of optimization possible when creating a
DNN for specific task on a specific hardware target. Ideally, all decisions take the
underlying hardware into account. For any level, from network architecture to
individual operators, feed-back driven approaches proved to be very successful
in finding the best option, except for some libraries on highly available targets
like GPGPUs at the operator and strategy level. This results in multiple, nested
optimization loops, starting with network architecture search applications over
graph level optimization down to focus of this dissertation, the strategy and
operator level. Each layer then adds to the runtime of layer above, increasing
the computation effort to solve the problem at a specific layer. In turn, this
decreases the general usability and availability of such solutions. Therefore, the
deployment problem cannot be considered solved, yet. The methods presented
in this work only looked at individual operators.

DNN Architecture Recently, hardware-aware network architecture search (HW-
NAS) gained more research attention [97, 28, 49, 96, 60]. In HW-NAS, Pareto

137

Discussion and Outlook

optimal solutions between application performance, like accuracy, and hardware
metrics like latency or number of parameters are searched. The training of
networks is often time-intensive and the evaluation time for individual archi-
tectures should not be prolonged by the latency evaluation, which could be the
case with extensive auto-tuning or embedding operations. While proxy metrics
like the number of multiply-and-accumulate operations (MACs) can be used to
improve runtime, they often fall short to capture specific hardware behaviour.
Also, a reduced number of MACs does not guarantee to materialize a similar
gain in latency [97]. A solution that allows the integration of both, HW-NAS and
lower-level optimization in the context of deployment to specialized accelerators
would be a valuable step forward.

Graph-Level Optimization Graph-level optimizations that fuse multiple se-
quential or parallel operators demonstrated significant performance benefits,
especially for large DNNs [48, 29]. But, as pointed out by the authors of [48],
the time to evaluate the performance such of a subgraph is crucial to make
the process viable in practice. The relatively time-consuming embedding and
optimization processes presented in this work would prevent tools like TASO to
optimize DNN for specialized accelerators dynamically, or at least significantly
increase the runtime.

One solution for this problem comes at larger timescales. When the same
hardware is used long enough, solutions found once can be cached and reused
on demand, which in turn makes longer, more thorough optimization runs more
beneficial. In situations where hardware-software co-design is practised and the
hardware changes frequently, this time scaling becomes less efficient. Improving
the time to solution is therefore still a desirable property for future research on
DNN deployment.

A next step could be the integration of Bottom-Up’s strong embedding
capabilities into a tuning framework. A possible candidate would be Ansor, as it
already provides optimization processes for high-level loop structure decisions.
The simplest way would be to provide Ansor with a pre-determined set of
possible strategies, which are described through a constrained set of high-level
loop structure decisions. This would avoid the necessity to select and fully tune a
set of strategies and choosing from them afterwards, but instead have the tuning
dynamically determine the best strategy for a given operator.

138

6.2 Outlook

Strategy Selection An important aspect of automatic strategy generation are
the necessary data-layout transformations. In this work, a rule-based mapping
between matched patterns and transformations was used. This approach fits
well with existing deep learning frameworks, where a set of general purpose
transformation like reorder, slice, reshape or gather are already implemented.
However, more complex rewrite operations like stencil unrolling are not yet
supported natively and implementations using gather have a severe performance
penalty. Automatically generating high-performance code for complex memory
transformations, directly from the embedding results would be a logical next
step to improve the overall system performance. The evaluation for VTA only
considered fully software-driven rewrite operations. Hardware accelerators that
allow for more complex memory access on the hardware, for example through a
DMA and a scratch-pad memory, would also benefit from dedicated load and
store routines.

Operator Optimization Automatic performance for computationally intensive
kernels will probably remain an active topic of interest for the time to come. While
a range of different techniques has been proposed, all of them are somewhere
in the triangle of engineering, data, and measurement effort. And with the
heterogeneous hardware and application environment, even inside deep learning
field, many of them have their merit. However, creating tools for users with the
same stability and usability as Tensorflow or PyTorch still requires research and
engineering effort.

Hardware Architecture Support for more heterogeneous platforms can be a
direction for future research, like the PULP platform [25]. In the current state, a
full operator is offloaded to an accelerator. How to offload different operators
that can run in parallel to different parts of a system is an open optimization
problem. Cooperative processing of one operator on multiple compute resources
in system would be interesting approach to support a wider range of workloads
and improve utilization.

Another topic not discussed in this work are emerging technologies for
accelerators. For example, in-memory compute engines are attractive for the
data-intensive computations in DNNs, as they can significantly reduce the energy
expenditure for data movements between memory hierarchies. They are based
on non-volatile memory (NVM) and can operate on analog circuits [91, 92, 86] or
digital values [7, 19]. Potentially new deployment challenges arise, since they

139

Discussion and Outlook

are fundamentally different from architectures that load values from, and store
results to a global memory.

140

7

C
h

a
pt

er

Conclusion

This work set out to investigate how neural network operators, and convolutions
in particular, can be offloaded to accelerators providing complex instructions like
matrix multiplication. It was motivated by the usability gap between specialized
hardware targets and the large number of different DNN operators. After
investigating the complexity of transformation-driven solutions, a novel approach
was suggested. By solving the embedding with dataflow matching between
workload and intrinsic, the necessary data layout and program transformation
can be derived and code generated without the need to create several different
candidates which might not match the hardware. For example, the split and fusion
of multiple workload dimensions can be determined by the dataflow embedding.
No previous approach demonstrated the ability to find such a transformation in a
deterministic way. Similarly, no speculation is necessary to determine if rewrites
like image packing or stencil unrolling will enable an embedding. After detecting
the necessary data layout and program transformations for the embedding,
efficient code generation for accelerators was investigated. Through hardware
aware initialization of the auto-tuning process, the tuning time and robustness
have been improved significantly.

The main challenges in mapping operators to hardware accelerators are the
necessary data layout, specific loop structures and memory access functions. On
the loop-level, the difficulty of this task can grow exponentially with the operator
complexity, often with diminishing returns on the solution space. Using the
right combination of transformations is crucial to the success. But the evaluation
also showed that dense-like operators can often be embedded quickly with such
an approach and do not warrant more sophisticated method. This is caused by

141

Conclusion

the relatively low complexity regarding loops and access functions, as well as
hardware intrinsics often being very close to these operations. However, for the
different variations of convolutions, the loop-level approach does not scale well.

Through analysis of the dataflow, enabled by polyhedral program represen-
tation and constraint programming, solutions for operators of the convolution
family are produced reliably. From this information, the set of transformations
necessary for an offloading is derived. While this still requires explicit program
transformations, instead of direct code generation, the transformations are now
specifically matched to the presented workloads and hardware abilities. With
respect to performance, the results on different classes of convolutions are mixed.
In some cases, the raw operator speed-up is diminished by the more complex
data-layout transformations, which are implemented inefficiently. And while
first experiments on a modified hardware configuration were promising, a full
evaluation on a different hardware architecture is an open objective. Neither
the polyhedral IR, nor the constraint programming are novel in the domain of
accelerator compilers, per se. But this work combined them in a novel way to
solve the particular problem of embedding instructions into DNN kernels.

This is complemented by a technique to reduce the optimization time in
ML-driven auto-tuning. The feedback driven algorithms used in AutoTVM and
similar optimizers that rely on ML-models for guidance either start from scratch
for each workload or with an already initialized model, trained on data from
other tuning runs. In both cases, the initial phase of the search is decisive on
how well rest of tuning process shapes up. A hardware-aware initialization of
the tuning algorithm improves the robustness of the search and reduces the
tuning time significantly. The improved initialization method curates a set of
measurement samples from both, valid and invalid candidates. This makes
the process portable to other targets, as the underlying ML-Model learns to
distinguish between the classes and then operates independently in the rest
of the search process. Evaluation on workloads beyond Conv2D is also still
open. However, in the current ML domain, convolutions are the most complex
operators. While Transformer networks are also computationally intensive, they
mainly consist of dense-like operations, where the embedding itself is not as
challenging.

The separation of strategy and scheduling has benefits and drawbacks. For
many convolutions, strategy generation is straight forward and the scheduling
is the main challenge for the deployment. In cases where the hardware and
workloads are not a direct match, the strategy generation becomes a more

142

important part of the deployment process. This comes at the cost of prolonged
deployment times due to the search for multiple strategies and their tuning.
Especially in scenarios where the workload will deploy on resource constrained
devices, the memory and runtime improvements offered by different strategies
is an argument for the prolonged compilation time. In other situations where
deployment time is of the essence, like HW-NAS, this type of code generations
can be a potential bottleneck for the rest of the application. Resolving the tension
between fast and best deployment is a challenge for future research.

This work contributes a study on code generation and optimization techniques
in the context of DL operators and their deployment on hardware that offer
complex intrinsics. As one of the first works in this area, it looks at the issue of
data layout and program structure in a unified way. By offering code generation
and optimization techniques that, by principle, are portable to different system
architectures, avenues for further work on the entire hardware and software
stack for DL have been opened. Both, vertical integration into the deployment
stack for a specific hardware and horizontal scaling towards the support for more
hardware targets provide interesting challenges for future research projects.

143

Acknowledgements

First and foremost I would like to thank my supervisor Prof. Dr. Holger Fröning.
The privilege of his guidance over last years made this dissertation possible. His
guidance helped me to grow as a researcher and as a person throughout every
stage of this process.

I would also like to thank my advisors at Bosch Research, Dr. Jo Pletinckx
and Axel Acosta. Jo was the initiator and driving mind behind this dissertation
project and without him, it would not exist. He also helped me consistently to
navigate the maze or research, engineering and bureaucracy to reach my goals.
Axel was the most critical, insightful, and honest sparring partner one can wish
for. Our spirited discussions and whiteboard sessions contributed to this work
in a fundamental way.

Of course, this gratitude extends all other Bosch colleagues and fellow PhD
candidates and students. Your support and advice greatly helped me in the
completion of this project.

Likewise, I have to thank the other PhD candidates at Holger’s Computing
Systems Group. Although we only met a few times, your were always welcoming
and supportive. I wish you all the best.

And last but not least, I have to thank my family and friends. You were my
fellowship during this journey. The moral support and patience you bless me
with is endless, and it is greatly appreciated.

144

References

[1] Xla - tensorflow, compiled, 2017. accessed: 11.2019.

[2] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R.,
Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden,
P., Wicke, M., Yu, Y., and Zheng, X. Tensorflow: A system for large-scale
machine learning. In Operating Systems Design and Implementation (OSDI’16)
(2016), USENIX Association, pp. 265–283.

[3] Adams, A., Ma, K., Anderson, L., Baghdadi, R., Li, T.-M., Gharbi, M.,
Steiner, B., Johnson, S., Fatahalian, K., Durand, F., et al. Learning to
optimize halide with tree search and random programs. ACM Transactions
on Graphics (TOG) 38, 4 (2019), 1–12.

[4] Ahn, B. H., Pilligundla, P., Yazdanbakhsh, A., and Esmaeilzadeh, H.
Chameleon: Adaptive code optimization for expedited deep neural network
compilation. In International Conference on Learning Representations (ICLR
’20) (2020).

[5] Aho, A. V., and Corasick, M. J. Efficient string matching: An aid to
bibliographic search. Commun. ACM 18, 6 (June 1975), 333–340.

[6] Anderson, A., Vasudevan, A., Keane, C., and Gregg, D. High-performance
low-memory lowering: Gemm-based algorithms for dnn convolution. In
2020 IEEE 32nd International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD) (2020), pp. 99–106.

[7] Ando, K., Ueyoshi, K., Orimo, K., Yonekawa, H., Sato, S., Nakahara, H.,
Takamaeda-Yamazaki, S., Ikebe, M., Asai, T., Kuroda, T., and Motomura, M.
Brein memory: A single-chip binary/ternary reconfigurable in-memory
deep neural network accelerator achieving 1.4 tops at 0.6 w. IEEE Journal of
Solid-State Circuits 53, 4 (2018), 983–994.

[8] Arthur, D., and Vassilvitskii, S. K-means++: The advantages of careful
seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (USA, 2007), SODA ’07, Society for Industrial and
Applied Mathematics, p. 1027–1035.

[9] Bastoul, C. Improving data locality in static control programs, 2004.

145

[10] Beaugnon, U., Pouille, A., Pouzet, M., Pienaar, J., and Cohen, A. Opti-
mization Space Pruning without Regrets. In International Conference on
Compiler Construction (CC ’17) (Feb. 2017), ACM Press, pp. 34–44.

[11] Bielecki, W., and Palkowski, M. Tiling of arbitrarily nested loops by means
of the transitive closure of dependence graphs. International Journal of
Applied Mathematics and Computer Science (AMCS) Vol. 26, 4 (December
2016).

[12] Burrello, A., Garofalo, A., Bruschi, N., Tagliavini, G., Rossi, D., and
Conti, F. Dory: Automatic end-to-end deployment of real-world dnns on
low-cost iot mcus. IEEE Transactions on Computers (2021).

[13] Chaudhuri, S., and Hetzel, A. Sat-based compilation to a non-vonneumann
processor. In 2017 IEEE/ACM International Conference on Computer-Aided
Design, (ICCAD’17) (2017), pp. 675–682.

[14] Chellapilla, K., Puri, S., and Simard, P. High Performance Convolutional
Neural Networks for Document Processing. In 10th International Workshop
on Frontiers in Handwriting Recognition (Oct. 2006).

[15] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and Temam, O.
Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning. In Architectural Support for Programming Languages and
Operating Systems, (ASPLOS ’14) (2014), pp. 269–284.

[16] Chen, T., and Guestrin, C. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (New York, NY, USA, 2016), KDD ’16, Association
for Computing Machinery, p. 785–794.

[17] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan, M., Shen, H.,
Wang, L., Hu, Y., Ceze, L., Guestrin, C., and Krishnamurthy, A. TVM: An
automated end-to-end optimizing compiler for deep learning. In Conference
on Operating Systems Design and Implementation (OSDI’18) (2018), OSDI ’18,
USENIX Association. ArXiv 1802.04799 (2018).

[18] Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze, L., Guestrin,
C., and Krishnamurthy, A. Learning to optimize tensor programs. In
32nd International Conference on Neural Information Processing Systems (2018),
NIPS’18, Curran Associates Inc., pp. 3393–3404.

[19] Chen, X., Yin, X., Niemier, M., and Hu, X. S. Design and optimization of fefet-
based crossbars for binary convolution neural networks. In 2018 Design,
Automation Test in Europe Conference Exhibition (DATE) (2018), pp. 1205–1210.

[20] Chen, Y.-H., Emer, J., and Sze, V. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. In 43rd International
Symposium on Computer Architecture (ISCA ’16) (2016), IEEE Press, pp. 367–
379.

146

[21] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro,
B., and Shelhamer, E. cudnn: Efficient primitives for deep learning. arXiv
preprint arXiv:1410.0759 (2014).

[22] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro,
B., and Shelhamer, E. cudnn: Efficient primitives for deep learning. ArXiv
1410.0759 (2014).

[23] Chollet, F. Xception: Deep learning with depthwise separable convolu-
tions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (July 2017).

[24] Cong, J., and Wang, J. Polysa: Polyhedral-based systolic array auto-
compilation. In International Conference on Computer-Aided Design (2018),
ICCAD ’18, ACM.

[25] Conti, F., Rossi, D., Pullini, A., Loi, I., and Benini, L. Pulp: A ultra-low
power parallel accelerator for energy-efficient and flexible embedded vision.
Journal of Signal Processing Systems (2016).

[26] Dave, S., Kim, Y., Avancha, S., Lee, K., and Shrivastava, A. Dmazerunner:
Executing perfectly nested loops on dataflow accelerators. ACM Trans.
Embed. Comput. Syst. 18, 5s (Oct. 2019).

[27] Dukhan, M. The indirect convolution algorithm, 2019.

[28] Elsken, T., Metzen, J. H., and Hutter, F. Efficient multi-objective neural
architecture search via lamarckian evolution. In International Conference on
Learning Representations (2019).

[29] Fang, J., Shen, Y., Wang, Y., and Chen, L. Optimizing dnn computation
graph using graph substitutions. Proceedings of the VLDB Endowment 13, 12
(2020), 2734–2746.

[30] Feautrier, P. Some efficient solutions to the affine scheduling problem:
Part i. one-dimensional time. International Journal of Parallel Programming
21, 5 (October 1992), 313–348.

[31] Feautrier, P. Some efficient solutions to the affine scheduling problem.
part ii. multidimensional time. International Journal of Parallel Programming
21 (1992), 389–420. 10.1007/BF01379404.

[32] Feld, D., Soddemann, T., Jünger, M., and Mallach, S. Facilitate SIMD-Code-
Generation in the Polyhedral Model by Hardware-aware Automatic Code-
Transformation. In Proceedings of the 3rd International Workshop on Polyhedral
Compilation Techniques (Berlin, Germany, January 2013), A. Größlinger and
L.-N. Pouchet, Eds., pp. 45–54.

[33] Friedman, J. H. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

147

[34] Garofalo, A., Rusci, M., Conti, F., Rossi, D., and Benini, L. Pulp-nn:
accelerating quantized neural networks on parallel ultra-low-power risc-v
processors. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 378, 2164 (Dec 2019), 20190155.

[35] Georganas, E., Avancha, S., Banerjee, K., Kalamkar, D., Henry, G.,
Pabst, H., and Heinecke, A. Anatomy of high-performance deep learning
convolutions on simd architectures. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis
(2018), IEEE Press.

[36] Georganas, E., Banerjee, K., Kalamkar, D., Avancha, S., Venkat, A.,
Anderson, M., Henry, G., Pabst, H., and Heinecke, A. Harnessing deep
learning via a single building block. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS) (2020), pp. 222–233.

[37] Georganas, E., Kalamkar, D., Avancha, S., Adelman, M., Anderson, C.,
Breuer, A., Bruestle, J., Chaudhary, N., Kundu, A., Kutnick, D., Laub,
F., Md, V., Misra, S., Mohanty, R., Pabst, H., Ziv, B., and Heinecke, A.
Tensor processing primitives: A programming abstraction for efficiency
and portability in deep learning workloads. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(New York, NY, USA, 2021), SC ’21, Association for Computing Machinery.

[38] Ghodrat, M. A., Givargis, T., and Nicolau, A. Equivalence checking of
arithmetic expressions using fast evaluation. In Proceedings of the 2005
International Conference on Compilers, Architectures and Synthesis for Embedded
Systems (2005), CASES ’05, Association for Computing Machinery.

[39] Gomes, C. P., and Selman, B. Algorithm portfolios. In Artificial Intelligence
(2001), vol. 126, pp. 43–62.

[40] Grosser, T., Cohen, A., Kelly, P. H., Ramanujam, J., Sadayappan, P., and
Verdoolaege, S. Split tiling for GPUs: automatic parallelization using
trapezoidal tiles. In GPGPU-6 (2013), ACM, pp. 24–31.

[41] Hagedorn, B., Lenfers, J., Kundefinedhler, T., Qin, X., Gorlatch, S., and
Steuwer, M. Achieving high-performance the functional way: A functional
pearl on expressing high-performance optimizations as rewrite strategies.
Proc. ACM Program. Lang. 4, ICFP (aug 2020).

[42] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for im-
age recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016), pp. 770–778.

[43] Hegde, K., Tsai, P.-A., Huang, S., Chandra, V., Parashar, A., and Fletcher,
C. W. Mind mappings: Enabling efficient algorithm-accelerator mapping
space search. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (New

148

York, NY, USA, 2021), ASPLOS 2021, Association for Computing Machinery,
p. 943–958.

[44] Heinecke, A., Henry, G., Hutchinson, M., and Pabst, H. Libxsmm: Ac-
celerating small matrix multiplications by runtime code generation. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (2016), SC ’16, IEEE Press.

[45] Hoffmann, C. M., and O’Donnell, M. J. Pattern matching in trees. J. ACM
29, 1 (Jan. 1982), 68–95.

[46] Hurkat, S., and Martínez, J. F. Vip: A versatile inference processor. In
IEEE International Symposium on High Performance Computer Architecture
(HPCA ’19) (2019), pp. 345–358.

[47] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., and Darrell, T. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093 (2014).

[48] Jia, Z., Padon, O., Thomas, J., Warszawski, T., Zaharia, M., and Aiken, A.
Taso: Optimizing deep learning computation with automatic generation
of graph substitutions. 47–62.

[49] Jiang, J., Han, F., Ling, Q., Wang, J., Li, T., and Han, H. Efficient network
architecture search via multiobjective particle swarm optimization based
on decomposition. Neural Networks 123 (2020), 305–316.

[50] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R.,
Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Cantin, P.-l.,
Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B.,
Ghaemmaghami, T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R.,
Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A.,
Kaplan, A., Khaitan, H., Killebrew, D., Koch, A., Kumar, N., Lacy, S.,
Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean,
G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R., Narayanaswami,
R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A.,
Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham,
M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B.,
Toma, H., Tuttle, E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., and
Yoon, D. H. In-datacenter performance analysis of a tensor processing
unit. In 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA) (2017), pp. 1–12.

[51] Karp, R. M., Miller, R. E., and Winograd, S. The organization of compu-
tations for uniform recurrence equations. Journal of the ACM 14, 3 (1967),
563–590.

[52] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by simulated
annealing. Science 220, 4598 (1983), 671–680.

149

[53] Kong, M., Veras, R., Stock, K., Franchetti, F., Pouchet, L.-N., and Sadayap-
pan, P. When polyhedral transformations meet simd code generation. In
Proceedings of the 34th ACM SIGPLAN conference on Programming language
design and implementation (2013), ACM, pp. 127–138.

[54] Krause, E. F. Taxicab geometry: An adventure in non-Euclidean geometry.
Courier Corporation, 1986.

[55] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with
deep convolutional neural networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1 (Red Hook,
NY, USA, 2012), NIPS’12, Curran Associates Inc., p. 1097–1105.

[56] Larossa, J., and Valiente, G. Constraint satisfaction algorithms for graph
pattern matching. In Mathematical Structures in Computer Science (2002),
vol. 12, Cambridge University Press, pp. 403–422.

[57] Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J.,
Riddle, R., Shpeisman, T., Vasilache, N., and Zinenko, O. Mlir: A compiler
infrastructure for the end of moore’s law. ArXiv 2002.11054 (2020).

[58] Lavin, A., and Gray, S. Fast algorithms for convolutional neural networks.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016), pp. 4013–4021.

[59] Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. Basic linear
algebra subprograms for fortran usage. ACM Trans. Math. Softw. 5, 3 (Sept.
1979), 308–323.

[60] Li, C., Yu, Z., Fu, Y., Zhang, Y., Zhao, Y., You, H., Yu, Q., Wang, Y., and Lin,
Y. Hw-nas-bench:hardware-aware neural architecture search benchmark,
2021.

[61] Liu, S., Du, Z., Tao, J., Han, D., Luo, T., Xie, Y., Chen, Y., and Chen, T.
Cambricon: An instruction set architecture for neural networks. In 43rd
International Symposium on Computer Architecture (2016), ISCA ’16, IEEE
Press, p. 393–405.

[62] Liu, Y., Wang, Y., Yu, R., Li, M., Sharma, V., and Wang, Y. Optimizing CNN
model inference on CPUs. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19) (Renton, WA, July 2019), USENIX Association, pp. 1025–
1040.

[63] Liu, Y., Wang, Y., Yu, R., Li, M., Sharma, V., and Wang, Y. Optimizing
CNN model inference on cpus. In USENIX Annual Technical Conference
(July 2019), USENIX Association, pp. 1025–1040.

[64] Lücke, M., Steuwer, M., and Smith, A. Integrating a functional pattern-
based ir into mlir. In Proceedings of the 30th ACM SIGPLAN International

150

Conference on Compiler Construction (New York, NY, USA, 2021), CC 2021,
Association for Computing Machinery, p. 12–22.

[65] Mogers, N., Smith, A., Vytiniotis, D., Steuwer, M., Dubach, C., and
Tomioka, R. Towards mapping lift to deep neural network accelerators. In
Workshop on Emerging Deep Learning Accelerators (EDLA’ 19) (2019).

[66] Moore, R. E. Interval analysis. Prentice-Hall, 1966.

[67] Moreau, T., Chen, T., Vega, L., Roesch, J., Yan, E., Zheng, L., Fromm, J.,
Jiang, Z., Ceze, L., Guestrin, C., and Krishnamurthy, A. A hardware-
software blueprint for flexible deep learning specialization. IEEE Micro 39
(2019).

[68] Mullapudi, R. T., and Bondhugula, U. Tiling for dynamic scheduling. In
Proceedings of the 4th International Workshop on Polyhedral Compilation Tech-
niques (Vienna, Austria, January 2014), S. Rajopadhye and S. Verdoolaege,
Eds.

[69] Nelson, G., and Oppen, D. C. Fast decision procedures based on congruence
closure. J. ACM 27, 2 (apr 1980), 356–364.

[70] Nowatzki, T., Sartin-Tarm, M., De Carli, L., Sankaralingam, K., Estan, C.,
and Robatmili, B. A general constraint-centric scheduling framework for
spatial architectures. In 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (2013), PLDI ’13, ACM, pp. 495–506.

[71] Parashar, A., Raina, P., Shao, Y. S., Chen, Y., Ying, V. A., Mukkara, A.,
Venkatesan, R., Khailany, B., Keckler, S. W., and Emer, J. Timeloop:
A systematic approach to dnn accelerator evaluation. In International
Symposium on Performance Analysis of Systems and Software (ISPASS ’19)
(2019), pp. 304–315.

[72] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems
32 (2019), Curran Associates, Inc., pp. 8024–8035.

[73] Pop, S., Cohen, A., and Silber, G.-A. Induction variable analysis with de-
layed abstractions. In High Performance Embedded Architectures and Compilers
(2005), T. Conte, N. Navarro, W.-m. W. Hwu, M. Valero, and T. Ungerer,
Eds., Springer Berlin Heidelberg, pp. 218–232.

[74] Ragan-Kelley, J., Adams, A., Sharlet, D., Barnes, C., Paris, S., Levoy, M.,
Amarasinghe, S., and Durand, F. Halide: Decoupling algorithms from
schedules for high-performance image processing. Commun. ACM 61, 1
(Dec. 2017), 106–115.

151

[75] Rieber, D., Acosta, A., and Fröning, H. Joint program and layout trans-
formations to enable convolutional operators on specialized hardware
based on constraint programming. ACM Transactions Architecture Code
Optimization 19, 1 (Dec 2021).

[76] Rieber, D., and Fröning, H. Search space complexity of iteration do-
main based instruction embedding for deep learning accelerators. In IoT
Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for
Embedded Machine Learning (2020), J. Gama, S. Pashami, A. Bifet, M. Sayed-
Mouchawe, H. Fröning, F. Pernkopf, G. Schiele, and M. Blott, Eds., Springer
International Publishing.

[77] Rieber, D., Reiber, M., Bringmann, O., and Fröning, H. Hw-aware initial-
ization of dnn auto-tuning to improve exploration time and robustness. In
2022 Workshop on Accelerated Machine Learning (AccML) @ HiPEAC2022.

[78] Robbins, H., and Monro, S. A Stochastic Approximation Method. The
Annals of Mathematical Statistics 22, 3 (1951), 400 – 407.

[79] Roesch, J., Lyubomirsky, S., Weber, L., Pollock, J., Kirisame, M., Chen,
T., and Tatlock, Z. Relay: A new ir for machine learning frameworks.
In International Workshop on Machine Learning and Programming Languages
(2018), MAPL ’18, ACM, pp. 58–68.

[80] Rosen, B. K., Wegman, M. N., and Zadeck, F. K. Global value numbers and
redundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (New York, NY, USA,
1988), POPL ’88, Association for Computing Machinery, p. 12–27.

[81] Rotem, N., Fix, J., Abdulrasool, S., Catron, G., Deng, S., Dzhabarov, R.,
Gibson, N., Hegeman, J., Lele, M., Levenstein, R., Montgomery, J., Maher,
B., Nadathur, S., Olesen, J., Park, J., Rakhov, A., Smelyanskiy, M., and
Wang, M. Glow: Graph lowering compiler techniques for neural networks,
2019.

[82] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representa-
tions by back-propagating errors. Nature 323, 6088 (Oct. 1986), 533–536.

[83] Sabour, S., Frosst, N., and Hinton, G. E. Dynamic routing between capsules.
In Advances in Neural Information Processing Systems (NIPS ’19) (2017),
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30, Curran Associates, Inc., pp. 3856–3866.

[84] Schindler, G., Mücke, M., and Fröning, H. Linking application description
with efficient simd code generation for low-precision signed-integer gemm.
In Euro-Par 2017: Parallel Processing Workshops (2018), Springer International
Publishing, pp. 688–699.

[85] Schreiber, R., and Dongarra, J. J. Automatic blocking of nested loops.
Tech. rep., 1990.

152

[86] Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan,
J. P., Hu, M., Williams, R. S., and Srikumar, V. Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars.
In Proceedings of the 43rd International Symposium on Computer Architecture
(2016), ISCA ’16, IEEE Press, p. 14–26.

[87] Shen, J., Huang, Y., Wang, Z., Qiao, Y., Wen, M., and Zhang, C. Towards a
uniform template-based architecture for accelerating 2d and 3d cnns on
fpga. In International Symposium on Field-Programmable Gate Arrays (2018),
FPGA ’18, ACM, pp. 97–106.

[88] Simonyan, K., and Zisserman, A. Very deep convolutional networks for
large-scale image recognition, 2014.

[89] Smith, G. H., Liu, A., Lyubomirsky, S., Davidson, S., McMahan, J., Taylor,
M., Ceze, L., and Tatlock, Z. Pure tensor program rewriting via access
patterns (representation pearl). In Proceedings of the 5th ACM SIGPLAN
International Symposium on Machine Programming (New York, NY, USA,
2021), MAPS 2021, Association for Computing Machinery, p. 21–31.

[90] Smith, J. E. Decoupled access/execute computer architectures. SIGARCH
Compututer Architecture News (1982).

[91] Soliman, T., Laleni, N., Kirchner, T., Müller, F., Shrivastava, A., Kämpfe,
T., Guntoro, A., and Wehn, N. Felix: A ferroelectric fet based low power
mixed-signal in-memory architecture for dnn acceleration. ACM Trans.
Embed. Comput. Syst. (mar 2022). Just Accepted.

[92] Song, L., Qian, X., Li, H., and Chen, Y. Pipelayer: A pipelined reram-based
accelerator for deep learning. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA) (2017), pp. 541–552.

[93] Sotoudeh, M., Venkat, A., Anderson, M., Georganas, E., Heinecke, A.,
and Knight, J. Isa mapper: A compute and hardware agnostic deep
learning compiler. In Conference on Computing Frontiers (2019), CF ’19, ACM,
pp. 164–173.

[94] Steuwer, M., Remmelg, T., and Dubach, C. Lift: A functional data-parallel
ir for high-performance gpu code generation. In Code Generation and
Optimization (2017), CGO ’17, IEEE Press, pp. 74–85.

[95] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions, 2014.

[96] Turner, J., Crowley, E. J., and O’Boyle, M. F. P. Neural architecture search
as program transformation exploration. In Proceedings of the 26th ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2021), ASPLOS 2021, Association
for Computing Machinery, p. 915–927.

153

[97] Łukasz Dudziak, Chau, T., Abdelfattah, M. S., Lee, R., Kim, H., and Lane,
N. D. Brp-nas: Prediction-based nas using gcns, 2021.

[98] Valiant, L. G. A bridging model for parallel computation. Communications
of the ACM 33, 8 (1990), 103–111.

[99] Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., and
LeCun, Y. Fast convolutional nets with fbfft: A gpu performance evaluation,
2015.

[100] Vasilache, N., Meister, B., Baskaran, M., and Lethin, R. Joint scheduling
and layout optimization to enable multi-level vectorization. In IMPACT
(Paris, France, January 2012).

[101] Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z., Moses,
W. S., Verdoolaege, S., Adams, A., and Cohen, A. Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstrac-
tions. ArXiv 1802.04730 (2018).

[102] Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z., Moses,
W. S., Verdoolaege, S., Adams, A., and Cohen, A. Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstrac-
tions. ArXiv 1802.04730 (2018).

[103] Vasudevan, A., Anderson, A., and Gregg, D. Parallel multi channel convo-
lution using general matrix multiplication. In 2017 IEEE 28th International
Conference on Application-specific Systems, Architectures and Processors (ASAP)
(2017), pp. 19–24.

[104] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. Attention is all you need, 2017.

[105] Verdoolaege, S. Presburger formulas and polyhedral compilation, 2016.

[106] Verdoolaege, S., and Grosser, T. Polyhedral extraction tool. In Second
International Workshop on Polyhedral Compilation Techniques (IMPACT’12)
(Paris, France, January 2012).

[107] Verdoolaege, S., Guelton, S., Grosser, T., and Cohen, A. Schedule trees.
In Proceedings of the 4th International Workshop on Polyhedral Compilation Tech-
niques (Vienna, Austria, January 2014), S. Rajopadhye and S. Verdoolaege,
Eds.

[108] Verdoolaege, S., Juega, J. C., Cohen, A., Gómez, J. I., Tenllado, C.,
and Catthoor, F. Polyhedral parallel code generation for CUDA. ACM
Transactions on Architecture and Code Optimization 9, 4 (January 2013), 54:1–
54:23.

154

[109] Vogel, S., Raghunath, R. B., Guntoro, A., Van Laerhoven, K., and
Ascheid, G. Bit-shift-based accelerator for cnns with selectable accuracy
and throughput. In 2019 22nd Euromicro Conference on Digital System Design
(DSD) (2019), pp. 663–667.

[110] Wang, J., Guo, L., and Cong, J. Autosa: A polyhedral compiler for
high-performance systolic arrays on fpga. 93–104.

[111] Weng, J., Jain, A., Wang, J., Wang, L., Wang, Y., and Nowatzki, T. Unit:
Unifying tensorized instruction compilation. In Code Generation and Opti-
mization (CGO’21) (2021), Association for Computing Machinery.

[112] Willsey, M., Nandi, C., Wang, Y. R., Flatt, O., Tatlock, Z., and Panchekha,
P. Egg: Fast and extensible equality saturation. Proc. ACM Program. Lang.
5, POPL (jan 2021).

[113] Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggregated residual
transformations for deep neural networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017), pp. 5987–5995.

[114] Xie, S., Kirillov, A., Girshick, R., and He, K. Exploring randomly wired
neural networks for image recognition. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (October 2019).

[115] Yang, X., Gao, M., Liu, Q., Setter, J. O., Pu, J., Nayak, A., Bell, S. E., Cao,
K., Ha, H., Raina, P., Kozyrakis, C., and Horowitz, M. Interstellar: Using
halide’s scheduling language to analyze dnn accelerators, 2020.

[116] Yang, Y., Phothilimthana, P., Wang, Y., Willsey, M., Roy, S., and Pienaar,
J. Equality saturation for tensor graph superoptimization. In Proceedings of
Machine Learning and Systems (2021), A. Smola, A. Dimakis, and I. Stoica,
Eds., vol. 3, pp. 255–268.

[117] Yu, F., and Koltun, V. Multi-scale context aggregation by dilated convolu-
tions. In 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (2016),
Y. Bengio and Y. LeCun, Eds.

[118] Zadrozny, B. Learning and evaluating classifiers under sample selection
bias. In Proceedings of the twenty-first international conference on Machine
learning (2004), p. 114.

[119] Zampelli, S., Deville, Y., and Solnon, C. Solving subgraph isomorphism
problems with constraint programming. In Constraints (July 2010), vol. 15
of 3, Springer Verlag, pp. 327–353.

[120] Zampelli, S., Deville, Y., Solnon, C., Sorlin, S., and Dupont, P. Filtering for
subgraph isomorphism. In Principles and Practice of Constraint Programming
(CP ’07) (2007), pp. 728–742.

155

[121] Zerrell, T., and Bruestle, J. Stripe: Tensor compilation via the nested
polyhedral model. CoRR abs/1903.06498 (2019).

[122] Zhang, X., Zhou, X., Lin, M., and Sun, J. Shufflenet: An extremely efficient
convolutional neural network for mobile devices, 2017.

[123] Zhao, J., Li, B., Nie, W., Geng, Z., Zhang, R., Gao, X., Cheng, B., Wu, C.,
Cheng, Y., Li, Z., Di, P., Zhang, K., and Jin, X. Akg: Automatic kernel
generation for neural processing units using polyhedral transformations.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (New York, NY, USA, 2021),
PLDI 2021, Association for Computing Machinery, p. 1233–1248.

[124] Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-Ali, A., Wang, Y., Yang,
J., Zhuo, D., Sen, K., Gonzalez, J. E., and Stoica, I. Ansor: Generating
high-performance tensor programs for deep learning. In Operating Systems
Design and Implementation (OSDI 20) (Nov. 2020), USENIX Association,
pp. 863–879.

[125] Zlateski, A., Jia, Z., Li, K., and Durand, F. The anatomy of efficient fft
and winograd convolutions on modern cpus. In Proceedings of the ACM
International Conference on Supercomputing (New York, NY, USA, 2019), ICS
’19, Association for Computing Machinery, p. 414–424.

[126] Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning transferable
architectures for scalable image recognition. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2018), pp. 8697–8710.

156

	Table of contents
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Hardware for Deep Learning
	2.3 Software for DNNs
	2.4 Related Work

	3 Complexity Analysis of Iteration-Domain Embedding
	3.1 Tensor Compute Graphs
	3.2 Intrinsic Embedding
	3.3 Transformations
	3.4 Evaluation
	3.5 Discussion

	4 Joint Program and Data-Layout Transformation through Dataflow Embedding
	4.1 Solving the Embedding Problem on the Dataflow Level
	4.2 Polyhedral Representation of Dataflow Graphs
	4.3 Embedding as a Constraint Satisfaction Problem
	4.4 Experiment Setup
	4.5 Evaluation
	4.6 Search Robustness and Branching Strategy Optimization
	4.7 Discussion

	5 Hardware-Aware Initialization of Auto-Tuning on Hardware Accelerators
	5.1 Auto-Tuning Space Analysis
	5.2 Validity Driven Model Initialization
	5.3 Evaluation
	5.4 Discussion

	6 Discussion and Outlook
	6.1 Top-Down and Bottom-Up Embedding
	6.2 Outlook

	7 Conclusion
	References

