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Summary 

Breast cancer is the most common malignancy in women worldwide and roughly two-

thirds of breast tumors are characterized by estrogen receptor (ER) α expression allowing for 

a targeted treatment approach by suppressing estrogen signaling. Clinically, suppression of 

estrogen signaling is achieved by Tamoxifen or Fulvestrant which prevent the receptor’s 

activation or aromatase inhibitors which prevent the formation of (peripheral) estrogen. 

Unfortunately, relapses are observed in up to 41% of cases and tumor heterogeneity has 

recently been implicated in therapeutic resistance. To analyze endocrine therapy resistance 

on a clonal level, I used a previously developed barcoded in vitro model. There, two endocrine 

therapy sensitive ER+ breast cancer cell lines had been transduced with a barcode library. 

These cells had then been rendered resistant to Tamoxifen treatment (TAMR) or long-term 

estrogen deprivation (LTED), the latter to mimic clinically used aromatase inhibitors. Barcode 

analysis of complex cell pools suggested that endocrine therapy resistance arose either due 

to the selection of pre-existing clones or the rewiring of initially treatment-persisting cells.  

In the next step, I isolated and characterized endocrine therapy sensitive and resistant 

clones from biological replicates using phenotypic assays, RNA-Sequencing and Mass 

spectrometry-based (phospho-)proteomics. Phenotypically, endocrine therapy resistant clones 

showed either weak or strong proliferative capacity. On pathway, transcription factor and 

kinase activity level, I observed heterogeneity between the cell lines utilized resembling inter-

tumor heterogeneity and between endocrine therapy resistant clones isolated from each cell 

line resembling intra-tumor heterogeneity. Activation of the unfolded protein response (UPR) 

was a private event, which was only observed in a single TAMR population, and correlated 

with sensitivity to the proteasome inhibitor Bortezomib. Conversely, TAMR and LTED 

populations shared the activation of multiple protein kinase C (PKC) isoforms, however to 

different degrees. Treatment with the pan-PKC inhibitor Sotrastaurin preferentially reduced 

cellular viability of endocrine therapy resistant populations showing stronger PKC activation.  

Finally, my in vitro findings were supported by clinical findings from the CPTAC-BRCA 

cohort. Generally, strong heterogeneity between individual patients was evident on pathway, 

transcription factor and kinase activity levels. After I had deconvoluted the cohort on a per 

patient basis, I identified patients with estrogen independent tumors showing UPR and PKC 

activation, closely resembling my in vitro models. Taken together, in the presented PhD thesis 

I could identify private and shared clonal endocrine therapy resistance drivers with clinical 

importance. 
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Zusammenfassung 

Brustkrebs ist die am häufigsten diagnostizierte Krebserkrankung bei Frauen weltweit. 

Rund zwei Drittel aller Brusttumore sind durch die Expression des Östrogenrezeptor (ER) α 

charakterisiert und können gezielt durch die Unterdrückung der Östrogen-Signalübertragung 

behandelt werden. Klinisch wird dafür die Rezeptoraktivierung durch Tamoxifen oder 

Fulvestrant blockiert, oder die Bildung von (peripherem) Östrogen wird durch 

Aromatasehemmer verhindert. Leider erleiden bis zu 41% der Patientinnen ein Rezidiv und 

Tumorheterogeneität kann die Resistenzentwicklung begünstigen. Um die endokrine 

Therapieresistenz auf klonaler Ebene zu untersuchen, habe ich zuvor entwickelte in vitro 

Modelle verwendet. Dort wurden zwei bisher unbehandelte ER+ Brustkrebszelllinien mit einer 

Barcode-Bibliothek transduziert. Diese Zellen wurden dann mit Tamoxifen oder Östrogen-

entzug behandelt, sodass die Zelllinien Resistenzen gegen die Tamoxifenbehandlung (TAMR) 

und den Östrogenentzug (LTED) entwickeln. Der Östrogenentzug in vitro spiegelte die 

Verwendung von Aromatasehemmern in der Klinik wider. Die Barcodeanalyse der komplexen 

Zellpools deutete darauf hin, dass Resistenz gegen die endokrine Therapie entweder durch 

die Selektion bereits vorhandener Klone zustande kam oder, dass Zellen, die ursprünglich die 

Therapie nur überlebt hatten, weitere Veränderungen zur Therapieresistenz erworben haben. 

Im nächsten Schritt habe ich aus den komplexen Zellpools einzelne Klone isoliert und 

charakterisiert. Hierzu habe ich phänotypische Tests, RNA-Sequenzierung und Massen-

spektrometrie basierte (Phospho-)Proteomik verwendet. Generell beobachtete ich große 

Unterschiede auf phänotypischer und molekularer Ebene zwischen den verwendeten Zelllinien 

und einzelnen Klonen, welche von der gleichen therapieresistenten Zelllinie isoliert wurden. 

Respektiver Weise spiegeln diese Unterschiede Heterogenität zwischen Patientinnen (inter-

tumor) und zwischen einzelnen Klonen von der gleichen Patientin (intra-tumor) wider.  

Lediglich eine einzige TAMR-Population wies eine signifikante Aktivierung der 

ungefalteten Protein Antwort (UPR) auf. Diese UPR-Aktivierung korrelierte mit einer besonders 

starken Sensibilität gegenüber dem Proteasom-Inhibitor Bortezomib. Somit stellte die UPR-

Aktivierung und Sensibilität gegenüber Bortezomib ein privates Ereignis dar. Andererseits 

waren mehrere TAMR und LTED-Populationen durch die signifikante Aktivierung 

verschiedener Isoformen der Proteinkinase C (PKC) charakterisiert. Allerdings war diese 

Aktivierung unterschiedlich stark ausgeprägt. Die Reduktion der zellulären Viabilität nach 

Behandlung mit dem PKC Inhibitor Sotrastaurin korrelierte hier mit der Stärke der PKC-

Aktivierung in einzelnen therapieresistenten Klonen. 
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Abschließend konnte ich meine in vitro Ergebnisse durch klinische Ergebnisse aus der 

CPTAC-BRCA Studie unterstützen. Generell konnte ich starke Unterschiede zwischen den 

einzelnen Patientinnen auf molekularer Ebene sehen. Außerdem identifizierte ich einzelne 

Patientinnen, deren Tumorwachstum nicht von Östrogen angetrieben wurde, und deren 

Tumore eine signifikante Aktivierung der UPR und einzelner PKC Isoformen aufwiesen. 

Dadurch ähnelten diese Patientinnen sehr stark meinen in vitro Resistenz-Modellen.  

Zusammengefasst konnte ich in meiner Promotion Treiber der endokrinen 

Therapieresistenz identifizieren, welche entweder privat und auf einzelne Klone beschränkt 

waren oder zwischen mehreren Klonen geteilt waren. Außerdem waren diese Veränderungen 

in einzelnen Patientinnen mit Östrogen-unabhängigen Tumoren stark ausgeprägt, was die 

klinische Relevanz meiner in vitro Ergebnisse unterstreicht. 
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1 Introduction 

1.1 Breast cancer 
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer 

death in women worldwide accounting for around 2.3 million new cancer cases and around 

700,000 cancer deaths in 2020 [1]. Survival after breast cancer diagnosis depends on the 

molecular subtype of the tumor and the amount to which the tumor has spread through the 

body. Overall, the five-year relative survival rate is around 90%. For localized disease, the five-

year relative survival rate is as high as 99% whereas only 28% of patients with distant 

metastatic disease survive past the five year mark [2].  

 

1.1.1 Molecular subtypes 
Breast cancer comprises a heterogeneous group of cancerous diseases of the breast 

with distinct subgroup-specific clinical behavior and histopathological characteristics [3, 4]. 

Subgrouping can be performed based on immunohistochemistry (IHC) stainings for three 

receptors and the proliferative marker Ki-67 [5]. Luminal tumors are characterized by expression 

of the estrogen (ER) and progesterone (PR) receptors, whereas HER2+ tumors show HER2 

protein overexpression. Tumors lacking any of the receptors as determined by IHC staining 

are defined as triple negative breast cancer (Figure 1). 

 

Figure 1: Molecular subtypes of breast cancer. Darker color denotes higher (ER/PR and HER2) 
receptor expression or higher survival rate. Adapted from Wong and Rebelo, 2012 [6] and ‘Intrinsic and 
Molecular Subtypes of Breast Cancer’ by BioRender.com (accessed: 09.05.2022). Created with 
BioRender.com. 

Up to 70% of breast tumors stain positive for ER and PR by IHC [7-9]. These tumors can 

be further divided into luminal A and luminal B tumors. The majority of ER+ tumors belong to 

the luminal A subtype accounting for 40-50% of all breast cancer diagnoses. Around 20% of 

all breast tumors belong to the luminal B subtype [10-12]. While luminal A tumors are 

characterized by high PR positivity and low Ki-67 staining, luminal B tumors are characterized 
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by low PR positivity and high Ki-67 staining. Luminal B tumors may additionally stain positive 

for HER2 [13, 14] and show a higher prevalence of TP53 mutations compared to luminal A tumors 
[15]. In line, luminal A tumors have a better prognosis with relative five-year survival rates of 

about 95% while luminal B tumors have relative five-year survival rates of about 90% [16, 17]. 

The backbone for treating either luminal subtype is endocrine therapy impinging on estrogen 

signaling. Chemotherapy is additionally given to patients with luminal B tumors because of the 

increased proliferative rate of their tumors [18-20]. 

ERRB2 gene (as determined by fluorescence in situ hybridization [FISH] [21]) and/or 

HER2 protein overexpression is characteristic for around 10-15% of breast tumors [10-12]. The 

backbone of clinically targeting HER2+ tumors has been Trastuzumab [22-25], a humanized 

monoclonal antibody. Trastuzumab may be used as single agent, in combination with 

chemotherapy or in a triple therapy containing a second humanized monoclonal antibody, 

Pertuzumab [26]. Cytotoxic payloads may additionally be coupled by a linker to Trastuzumab. 

The antibody-drug conjugates (ADCs) Trastuzumab Emtansine and Trastuzumab Deruxtecan 

combine the HER2 targeting antibody with a tubulin and topoisomerase I inhibitor, respectively. 

Both are suitable therapeutic options in patients with advanced HER2+ breast tumors showing 

activity after previous Trastuzumab treatment [27-30]. Besides monoclonal antibodies with(out) 

cytotoxic payload, HER2+ tumors can also be effectively therapeutically challenged by HER2-

targeting tyrosine kinase inhibitors (TKIs). Lapatinib [31, 32], Neratinib [33] and Tucatinib [34] are 

notable examples of HER2-targeting TKIs showing improved patient outcome in combination 

or sequence with Trastuzumab and/or chemotherapy. Overall, targeted therapeutic 

approaches translate to five-year survival rates of around 85% [16, 35]. 

Breast tumors lacking any actionable target in form of ER (and PR) or HER2 are labeled 

as triple negative (TNBC) and account for 15-20% of breast tumors [36, 37]. Further classification 

into four subtypes can be performed according to Lehmann et al. [38]. Surgery and 

chemotherapy remain the main therapeutic options [39] resulting in five-year survival rates of 

about 77% [16, 35]. Immunotherapy with PD-L1 or PD-1 targeting antibodies alone or in 

combination with standard of care chemotherapy for metastatic TNBC showed improvements 

in clinical outcome [40]. The membrane antigen TROP-2 has attracted attention in different 

tumor types including TNBC as higher expression has been shown to be significantly 

associated with worse overall survival in solid tumors [41]. Sacituzumab Govitecan, an ADC 

combining a humanized anti-Trop-2 monoclonal antibody linked with a topoisomerase I 

inhibitor showed significantly improved overall survival in patients with metastatic TNBC over 

physician’s choice of single agent chemotherapy [42]. Utilizing TROP-2 as target to deliver 

cytotoxic payloads may potentially improve treatment options for patients with TNBC. 
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1.1.2 Endocrine therapy 
Around 60-70% of breast tumors are characterized by the expression of the hormone 

receptors ER and PR. In these tumors, estrogen signaling drives the uncontrolled proliferation 

of the cells. Briefly, estrogen binds to its receptor, which then translocates into the nucleus and 

forms dimers. The ER dimers then bind to estrogen response elements (ERE) and recruit 

coactivator complexes ultimately activating the expression of estrogen target genes [43, 44]. The 

backbone of targeting estrogen signaling are aromatase inhibitors (AIs) such as Letrozole, 

selective ER modulators (SERMs) such as Tamoxifen and selective ER degraders (SERDs) 

such as Fulvestrant (Figure 2). Tamoxifen and AIs were applied as first line therapy for five 

years. Different trials have by now underlined clinical benefits when continuing Tamoxifen 

therapy for ten instead of five years [45, 46] and five years of either Tamoxifen or aromatase 

inhibitor followed by five years of aromatase inhibitor over treatment stop after five years [47]. 

 
Figure 2: Estrogen signaling and endocrine therapy. A: androgen. E2: estrogen. ERɑ: estrogen 

receptor ɑ. CoA: co-activator complex. ERE: estrogen response element. T: Tamoxifen. CoR: co-repressor 
complex. F: Fulvestrant. Adapted from Hanker, Cancer Cell 2020 [48] and ‘Estrogen Receptor Signaling’ by 
BioRender.com (accessed: 09.05.2022). Created with BioRender.com. 

The aromatase enzyme catalyzes the last and rate-limiting step in the synthesis of 

estrogens from androgens (androstenedione and testosterone) to estrogens (estrone and 

estradiol). This enzyme is expressed in the granulosa cells of the ovaries and peripheral 

tissues such as fatty tissue. The majority of estrogen is produced in the ovaries in 

premenopausal women whereas postmenopausal estrogen production exclusively relies on 

the peripheral aromatase enzyme [49-51]. Three highly specific third-generation aromatase 

inhibitors (AIs) are clinically used to treat postmenopausal patients with ER+ disease. 

Anastrozole and Letrozole are non-steroidal reversible inhibitors while Exemestane is a 
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steroidal irreversible inhibitor inducing suicide inhibition [52]. Respectively, Anastrozole [53], 

Letrozole [54] and Exemestane [55] reduce the peripheral aromatase’s enzymatic activity by 97%, 

99% and 98% thereby preventing the downstream activation of ER.  

As a SERM, Tamoxifen possesses estrogenic and anti-estrogenic effects. Tamoxifen 

has estrogenic effects in the bone where it increases bone mineral density [56, 57]. Given its anti-

estrogenic effects in the breast, Tamoxifen was approved in the 1970s for the treatment of 

ER+ breast cancer [58]. Other SERMs have been developed but Tamoxifen remains the first 

choice in the clinic [59]. Tamoxifen itself is a prodrug with limited affinity to the ER [60]. 

Cytochrome P450 enzymes metabolize Tamoxifen to biologically more active compounds such 

as 4-hydroxytamoxifen (4-OHT) [61-63] which has an 80% higher affinity for ER than estradiol 

itself [60]. Mechanistically, Tamoxifen-bound ER recruits co-repressor complexes which leads 

to the transcriptional inhibition of ER-dependent genes [64, 65].  

The only SERD with current approval for clinical use is Fulvestrant but other SERDs 

are being developed as novel therapeutics. Fulvestrant has a similar affinity for the ER as 

estradiol [66, 67]. In contrast to estradiol, treatment with Fulvestrant abrogates the expression of 

ER-regulated genes [68-72]. Fulvestrant displaces estrogen in a competitive manner from the ER 

and induces a conformation of the receptor preventing transcriptional activation [73]. Binding of 

this drug with its bulky sidechain leads to the surface exposure of a large hydrophobic patch 

from the ligand-binding domain (LBD) and prevents the association between the 

transactivation helix 12 and the rest of the LBD thereby mimicking misfolded or denatured 

proteins [74]. Another proposed mechanism of Fulvestrant’s action ascribes increased ER 

turnover as consequence of low chromatin accessibility and decreased intra-nuclear mobility 
[75]. Both proposed mechanisms result in the proteasomal degradation of ER in the nucleus [76-

78]. Fulvestrant is very effective in patients, also after progression on prior aromatase inhibitor 

or Tamoxifen treatment [79-82], but Fulvestrant’s limited bioavailability requires it to be given by 

injection. To circumvent the necessity of injection, newer generation bioavailable SERDs are 

being developed [83].  

 

1.1.3 Acquired endocrine therapy resistance 
Endocrine therapy has undoubtedly transformed and saved the lives of countless 

patients. Unfortunately, up to 41% of patients which originally presented with late stage disease 

relapse within 10 years of treatment start [84]. Therapy resistance and tumor progression remain 

a major clinical challenge. Endocrine therapy resistance may arise due to alterations in ER 

signaling, cell cycle deregulation and upregulation of other growth promoting pathways as 

shown in Figure 3 [85-92] and described in detail below. Further resistance mechanisms include 
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interactions with the tumor microenvironment, epigenetics and cancer stem cells as reviewed 

elsewhere [48].  

 

Figure 3: Examples of endocrine therapy resistance mechanisms. A ESR1 mutations (star) commonly 
affect the ligand-binding domain rendering ER active in the absence of estrogen (beige circle) and drive gene 
expression (indicated by arrow). Adapted from Katzenellenbogen, Nature Reviews Cancer 2018 [93]. B Common 
cell cycle alterations in cancer. Rb: Retinoblastoma protein. Adapted from Asghar, Nature Reviews Drug Discovery 
2015 [94] and ‘Cell Cycle Deregulation in Cancer’ by BioRender.com (accessed: 09.05.2022). C and D Upregulation 
of RTKs (C) and downstream pathways (D). Adapted from Hanker, Cancer Cell 2020 [48]. Created with 
BioRender.com. 

 

1.1.3.1 ESR1 mutations  
ER is the effector of estrogen signaling and is the main therapeutic target in most breast 

tumors as illustrated above. Mutations in the ESR1 LBD are rarely found in primary treatment-

naïve tumors (0-7%) but are strongly enriched in advanced/metastatic tumors (12-55%) [95-100], 

especially after aromatase inhibitor treatment [101]. Several hotspot mutations affecting codons 

536 to 538 stabilize helix 12 in the receptor’s active conformation without requiring the binding 

of estrogen and drive ligand-independent gene transcription [93, 102]. A recent clinical meta-study 

could highlight ESR1 mutations as predictor of resistance to aromatase inhibitor containing 

treatment regimens but failed to implicate ESR1 mutations as driver of resistance to 

Fulvestrant containing regiments [103]. 

In addition to ESR1 mutations, genetic alterations of other transcription factors such as 

MYC were found in endocrine therapy resistant tumors. These alterations were mutually 

exclusive with ESR1 and MAPK alterations pointing to an alternative route of resistance [104]. 

In accordance with the implication of different transcription factors in therapy resistance, we 

recently identified Activating Transcription Factor 3 (ATF3) as novel driver of endocrine therapy 

resistance [105].  

 

1.1.3.2 Cell cycle deregulation 
Cell cycle progression is tightly controlled in normal cells whereas abnormal cell cycle 

progression is a cancerous hallmark [106-108]. Deregulation of key players involved in regulating 

the progression through the restriction point are commonly found in (breast) cancers. In ER+ 
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disease, CCND1 (gene encoding for Cyclin D1) amplification and Cyclin D1 overexpression 

correlated with worse prognosis such as increased risk of relapse and shortened overall 

survival [109, 110]. RB1 was also frequently found to be mutated in metastatic ER+ breast tumors 
[111]. For patients receiving Tamoxifen, loss of Rb protein was additionally associated with 

worse overall survival [112]. Upregulation of either CDK6 or cyclin E2 in patients treated with 

Fulvestrant correlated with worse progression free survival [113, 114]. Further, estrogen-

independent derepression of E2F can be achieved through CDK4 upregulation and an E2F 

activation gene signature correlated with reduced response to aromatase inhibitors [115]. 

Combination of endocrine therapy, mainly the non-steroidal aromatase inhibitors Letrozole and 

Anastrozole or Fulvestrant, and CDK4/6 inhibition by Ribociclib, Abemaciclib or Palbociclib, 

respectively, has been investigated in the MONALEESA-2/3/7 [116-120], MONARCH-2/3 [121-124] 

and PALOMA-1/2/3 trials [125-131]. Combination of endocrine therapy and CDK4/6 inhibition 

showed significantly improved progression-free as well as overall survival and a longer time to 

chemotherapy in patients with advanced ER+ HER2- disease [132].  

 

1.1.3.3 Alterations in receptor tyrosine kinases 
Receptor tyrosine kinases (RTKs) translate extracellular signals in form of growth 

factors intracellularly. Aberrant RTK signaling is among common alterations observed in 

different cancers entities and can be exploited by therapeutically targeting e.g. EGFR and 

HER2 [133, 134].  

Fibroblast Growth Factor Receptor 1 (FGFR1) amplification has been demonstrated as 

predictor of poor outcome in patients with ER+ disease [135] and correlates with higher Ki-67 

staining during therapy [136, 137]. Its gene amplification further mediates resistance to endocrine 

treatment alone and/or in combination with CDK4/6 inhibition [136, 138]. In endocrine therapy 

resistant metastatic breast tumors, FGFR4, a gene encoding for another member of the FGFR 

family, was additionally found to be overexpressed or mutated [139]. An early clinical trial 

showed encouraging results using a FGFR inhibitor in combination with Anastrozole or 

Letrozole [140]. 

Acquired antiestrogen resistance has been shown to be mediated through the 

upregulation of HER2 [141-143]. ERBB2 mutations were further found in around 5% of endocrine 

therapy resistant, non-HER2 amplified tumors [104]. HER2 upregulation and mutations in the 

(transmembrane and) kinase domain(s) lead to the hyperactivity of the PI3K/AKT/mTOR axis 

or MAPK pathway and ultimately antiestrogen resistance [144, 145]. Hotspot mutations in ESR1 

and ERBB2 were mutually exclusive pointing to alternative routes of acquired resistance [104, 

145]. Dual blockage by Fulvestrant (targeting ER) and Neratinib (targeting HER2 and EGFR) 

appeared to be a suitable therapeutic option in ER+/HER2mutated disease [146]. 
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1.1.3.4 Upregulation of growth promoting pathways 
PIK3CA, PTEN and AKT1 encode for key players of the PI3K/AKT/mTOR pathway and 

are among the most frequently mutated genes in ER+ breast cancer [10, 104, 111]. Aberrant 

activation of phosphoinositide 3-kinase (PI3K) [147-149] and downstream protein kinase B (AKT) 
[150-152] induce estrogen independence and resistance towards Tamoxifen and Fulvestrant. The 

SOLAR-1 phase trial showed significantly improved progression free survival when adding 

Alpelisib, an α subunit specific PI3K inhibitor [153], to Fulvestrant for patients with PIK3CA 

mutated tumors progressing on or after a non-steroidal aromatase inhibitor [154]. According to 

the BYLieve study [155], Alpelisib is also a suitable therapeutic option for patients with PIK3CA 

mutated tumors progressing on or after endocrine therapy paired with a CDK4/6 inhibitor. In 

accordance with mammalian target of rapamycin (mTOR) activation downstream of AKT, the 

BOLERO-2 [156, 157], GINECO [158] and MANTA [159] trials showed improved progression free 

survival for the addition of the mTOR inhibitor Everolimus to the steroidal aromatase inhibitor 

Exemestane, Tamoxifen and Fulvestrant for patients progressing on or after a prior non-

steroidal aromatase inhibitor.  

Besides the PI3K/AKT/mTOR axis, the mitogen-activated protein kinase (MAPK) 

pathway is a growth promoting pathway commonly deregulated in malignant diseases [160]. 

Different alterations in this phosphorylation cascade have been identified in patients with 

endocrine therapy resistant tumors and were associated with worse outcome. Loss of 

neurofibromin 1 (NF1) activity resulted in constitutive RAS activity and was associated with 

endocrine therapy resistance [161-163]. Different members of the RAS superfamily as well as 

ERBB3, BRAF and MAP2K1 were found to be frequently mutated in patients relapsing or 

progressing on endocrine therapy [104, 164]. Mechanistically, MAP kinases phosphorylate 

Ser104, Ser106 or Ser118 in the AF-1 region of ER leading to the receptor’s ligand-

independent activation and agonistic effects of Tamoxifen [165-167]. Steroidal antiestrogens such 

as Fulvestrant also inhibit the receptor’s AF-1 region preventing Ser118 phosphorylation 

through the MAPK cascade and resulting ER activation [165]. In Tamoxifen-resistant tumors with 

sustained estrogen signaling as result of MAPK induced ER phosphorylation, Fulvestrant may 

be a suitable choice for second-line endocrine therapy. In conclusion, patients with ER+ 

disease harboring activating alterations in the MAPK axis may benefit from combining 

endocrine therapy with MAPK cascade inhibitors which are routinely used in treating other 

malignancies [168-170]. 
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1.2 Tumor heterogeneity 
Different tumor types including breast tumors demonstrate a variety of 

histopathological, genetic and epigenetic differences. This intertumor heterogeneity (Figure 4 

A), describing such variations between tumors from different patients, results in very different 

clinical outcomes [171-173]. Individual tumors may also contain genetically, epigenetically or 

phenotypically distinct tumor populations and the tumor composition may change over time 

(Figure 4 B and C). This phenomenon is described as intratumor heterogeneity [171-173]. Nowell’s 

clonal evolution and the cancer stem cell (CSC) model offer explanations for how 

heterogeneous tumors arise and progress. 

 

Figure 4: Tumor heterogeneity and evolution. A and B Inter- (A) and intra- (B) tumor heterogeneity. 
Adapted from Burrell, Nature 2013 [174]. C Tumors may evolve over time. New clones can emerge after a fitness 
advantage was gained exemplarily through a mutation (black dots). The dashed line indicates the time point at 
which the heterogeneity of the tumor in B was investigated. Adapted from Koren, Molecular Cell 2015 [175] and 
‘Cancer Evolution’ by BioRender.com (accessed: 09.05.2022). Created with BioRender.com. 

 

1.2.1 Clonal evolution and cancer stem cells 
Intra- and intertumor heterogeneity may arise due to clonal evolution, from a subset of 

cancer stem cells or a combination of clonal evolution and (de)differentiation (Figure 5). 

According to Nowell’s hypothesis [176], (pre-)cancerous cells acquire random mutations which 

are subsequently selected for increased fitness. Consequently, tumor development and 

progression are driven by Darwinian evolution. Cancer cells with similar fitness may give rise 

to populations acquiring mutations independently of each other. These populations then 

mutually form the tumor mass. The cancer stem cell model attributes tumor development, its 

progression and arising populations to a small subset of stem cell-like cells. Similar to stem 

cells, their cancerous equivalents are postulated to be capable of self-renewal and 

differentiation whereby both, cancer and normal stem cells, utilize similar signaling pathways 
[177, 178]. These models are not mutually exclusive. Depending on the tumor entity, stronger 

influence of one mechanism over the other however is likely [179]. 

Evidence for clonal evolution as driver of tumor heterogeneity comes from regional 

sequencing of tumors. Intratumor heterogeneity in non-small-cell lung cancer (NSCLC) was 

discovered in copy number alterations, translocations and APOBEC-associated mutations [180]. 

Mutations were additionally found to be present in all clones or only detected in a subset of 
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clones. Exemplarily, mutations in EGFR were almost exclusively early and detected in all 

clones whereas mutations in PIK3CA were detected in a subset of clones and occurred later 

during tumor progression [181].  

Besides clonal evolution, heterogeneity may be explained by the stem cell hypothesis. 

This model proposes CSCs on top of a cellular hierarchy which gives rise to different 

populations forming the final tumor mass [182-184]. Breast cancer stem cells (BCSCs) can be 

characterized by a CD44+/CD24-/low/Lin- phenotype. As little as 100 CD44+/CD24-/low/Lin- cells 

were able to form tumors in immunodeficient mice whereas 10,000 cells with reciprocal 

markers failed to do so. The tumors formed by the CD44+/CD24-/low/Lin- cells contained BCSCs 

and other phenotypic populations [185]. The cancer stem cell model however does not imply an 

exclusively unidirectional differentiation of CSCs since various findings show that CSCs can 

arise from non-CSCs through epithelial-mesenchymal transition [186, 187] or spontaneous 

conversion of non-CSCs to CSCs [188, 189].  

 

Figure 5: Clonal evolution and cancer stem cell model. A Adapted from Nowell, Science 1976 [176] and 
‘Cancer Evolution with Treatment’ by BioRender.com (accessed: 09.05.2022). B Adapted from Wang, EMBO 
Reports 2015 [190] and ‘Stochastic vs Cancer Stem Cell Models’ by BioRender.com (accessed: 09.05.2022). Created 
with BioRender.com. 

 

1.2.2 Selection of pre-existing clones and resistance acquisition 
Tumor heterogeneity has been associated with worse disease outcome [172] and allows 

for treatment resistance by two general routes. In the initial treatment sensitive tumor bulk, a 

pre-existing minor clone may be intrinsically resistant to treatment. Upon treatment, most 

treatment sensitive tumor cells are eliminated, resulting in a drastic overall response. The 

treatment resistant clone is not affected by the therapy and may grow out to eventually form a 

treatment resistant refractory tumor (Figure 6 A). Alternatively, some clones in the tumor bulk 

may survive/persist the initial treatment in the absence of evident proliferation. These cells 

then acquire de novo genetic or epigenetic alterations mediating treatment resistance and 

finally the outgrowth of a refractory tumor (Figure 6 B). These two phenomena appear to not 

be mutually exclusive but can be (to some extend) implicated in response to the same 



Introduction 

 14 

treatment. An illustrative example comes from a study investigating resistance against the 

EGFR inhibitor Gefitinib in a NSCLC model [191]. Resistance either arose quickly due to the 

selection of a population harboring the EGFR p.T790M gatekeeper mutation or later due to 

resistance acquisition after a drug-induced dormant state. In the later stage, only 5 out of 16 

clones harbored the EGFR p.T790M gatekeeper mutation [191]. 

 

Figure 6: Selection of pre-existing clones and acquired changes by persisting cells. Adapted from 
Dagogo-Jack and Shaw, Nature Reviews Clinical Oncology 2018 [172] and ‘Intrinsic and Acquired Drug Resistance’ 
by BioRender.com (accessed: 09.05.2022). Created with BioRender.com. 

Two case reports of NSCLC patients have explicitly tied tumor relapse to the selection 

of a minor treatment-resistant population already present in the treatment-naïve tumor. Shaw 

et al. [192] presented a patient relapsing on the ALK/ROS1 inhibitor Crizotinib due to the 

selection of a minor clone present in the treatment-naïve tumor harboring the ALK p.C1156Y 

Crizotinib resistance mutation [193]. In a second case report by Li et al. [194], relapsed disease 

was due to selection of a clone with BRAF p.V600E mutation. In vitro, populations emerging 

from as little as a single cell can be traced by cellular barcoding approaches. Barcoding 

generally refers to the lentiviral integration of a cassette containing a unique DNA-sequence 

(‘barcode’), a marker to select for successful integration events and can contain additional 

elements such as fluorescent labels. An in vitro barcoding study revealed that resistance to 

EGFR inhibition in NSCLC cells and resistance to ABL1 inhibition in chronic myeloid leukemia 

(CML) cells was largely resulting from the selection of resistant pre-existent clones [195].  

Accumulating evidence highlights that a different population of tumor cells may enter a 

dormant or persistent cell state escaping treatment stress [196]. This dormant state is 

characterized by negligible growth and has been associated with stem cell-like features in 

different cancer entities, such as gastric [197], breast [198], colorectal [199], ovarian [200] and lung 

cancer [201]. A pool of dormant cells may represent a reservoir for the emergence of 

heterogeneous acquired resistance mechanisms. A dormant cell state with >100-fold reduced 

sensitivity to Erlotinib has been shown to be maintained by insulin-like growth factor 1 receptor 

signaling and an altered chromatin state induced by the histone demethylase KDM5A [202]. 
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Under prolonged treatment, initially persisting cells developed full resistance via 

heterogeneous routes, including the acquisition of the EGFR p.T790M mutation in some cases 
[203]. Drug persisting cells have not only been identified in NSCLC but in a multitude of cancer 

entities, exemplarily melanoma [204-206], breast [204, 206] and ovarian cancer [204].  

 

1.2.3 Tumor heterogeneity in breast cancer and endocrine therapy resistance 
Breast cancer is a heterogeneous disease and clinical subtyping is performed 

according to the ER, PR, ERRB2 (by FISH)/HER2 and Ki-67 status by IHC as described above. 

More in-depth analyses of intra- and inter-tumor heterogeneity has recently been enabled by 

the broad-based adoption of next-generation sequencing (NGS). A series of analyses revealed 

complex genetic intra- and inter-tumor heterogeneity in primary breast tumors [207-210] as well 

as between primary tumors and disseminated cells in form of circulating tumor cells (CTCs) 
[211, 212] and metastases [213, 214]. 

Tumor heterogeneity has been shown to be involved in the progression of premalignant 

to malignant conditions as well [215]. Ductal carcinoma in situ (DCIS) is considered a pre-

cancerous condition of the breast, in which the basal membrane surrounding the milk ducts 

has not yet been penetrated. According to a study by Casasent et al. [210], most mutations and 

copy number alterations (CNA) were already present prior to invasion in the pre-cancerous 

DCIS part and in at least half of all cases, two or more clones co-migrated into adjacent tissue 

establishing the invasive carcinomas. Invasion of the basal membrane is a very early form of 

cancerous progression, whereas in later stages tumor cells disseminate also to other parts of 

the body. Disseminated tumor cells or CTCs embody a further step in tumor progression and 

showed clear differences to their primary matched tumors on CNA [212] and mutational level 
[211]. The final and deadliest stage of tumor evolution is metastatic disease [216]. Two studies 

involving patients with metastatic ER+ [213] and triple negative disease [214], respectively, found 

individual mutational allele frequencies to be decreased, constant, enriched or newly detected 

in the metastatic sample compared to the primary tumor pointing to large changes in clonal 

tumor makeup with tumor progression. Multiple metastases could be seeded either by a single 

common metastatic precursor or arise from different clones present within the primary tumor 
[217]. Individual metastatic sites within the same patient were additionally shown to contain a 

different makeup of genetically defined clones and single metastatic lesions were not able to 

capture the breadth of the disease [218, 219]. A study by De Mattos-Arruda et al. [220] further 

pointed to the propagation and evolution of metastases as communities of different clones. 

One patient with ER+ disease relapsed within three years after diagnosis on subsequent 

chemo- and endocrine therapy with all metastases sharing ESR1 hotspot activating and PTEN 

truncating mutations. The metastases further differentiated into more diverse subgroups, two 

of which were characterized by BRCA2 and PIK3CA mutations, respectively. In a second 
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patient with ER+ positive disease initially treated with subsequent chemo- and endocrine 

therapy, coexisting clusters of ER+ and ER- lesions were detected. The ER+ subgroup of 

metastases was characterized by an ESR1 activating hotspot mutation. Metastases from these 

two patients clearly highlight the genomic heterogeneity of endocrine therapy resistant 

disease. Genomic heterogeneity may further be accompanied by transcriptional heterogeneity. 

Within a single patient with TNBC disease, over 50 pathologically diverse cell clusters from the 

primary tumor and lymph node metastasis have been identified by laser capture 

microdissection and subsequent DNA- and RNA-seq [221]. This study further highlighted 

transcriptionally defined clones to be more complex than genomically defined clones.  

Formation of metastases generally is a lengthy process and tumor heterogeneity may 

change during the process. Previous studies have already highlighted profound changes to 

also be induced by short-term neoadjuvant endocrine therapy [222-224] but considered the bulk 

of tumor masses without assessing the tumors’ clonal makeup. Miller et al. [225] utilized WGS 

to interfere this clonal heterogeneity in response to four months neoadjuvant aromatase 

inhibitor treatment in 18 patients. Overall, four genomic patterns were observed: (i) ‘collision’ 

tumors consisting of two intermingled but genomically separate tumors, treatment stable 

tumors with (ii) simple or (iii) complex genomic makeup and (iv) treatment dynamic tumors with 

complex clonal makeup. Most tumors were treatment dynamic with a complex clonal makeup 

(15/19, 79%). The tumors in this group were clonally heterogeneous and their clonal makeup 

changed during the four months treatment period.  

Lower genetic tumor heterogeneity before applied chemotherapy has further been 

shown to be significantly associated with pathological clinical response across ER+, HER2+ 

and TNBC breast tumors. Conversely, intra-tumor genetic diversity did not change by the 

applied therapy in tumors showing only partial or no response [226]. Transcriptional 

heterogeneity in treatment-naïve ER+ breast tumors [227] may additionally prime the tumor for 

therapy resistance. Mechanistically, transcriptional tumor heterogeneity may induce 

fluctuations in gene expression and accordingly protein levels as well as phenotypes on 

population level [228]. It has been postulated that this gene expression ‘noise’ prepares the 

cancer population but not individual cells to defend against therapies [229, 230]. Exemplarily, 

Griffiths et al. [231] analyzed the evolutionary trajectories of early-stage breast tumors receiving 

Letrozole alone or in combination with the CDK4/6 inhibitor Ribociclib utilizing scRNA-Seq. 

Across patients and treatments, differences in clonal diversity were evident. However, also 

similarities between different patients were observed, such as estrogen-independent growth 

mediated through increased JNK signaling in patients treated with Letrozole and Ribociclib.  

In concordance with findings for resistance acquisition of NSCLC to EGFR inhibitor 

treatment presented above, in vitro models for breast cancer also suggest involvement of pre-

existing clones [232] and re-wiring of persisting cells [233] in endocrine therapy resistance. 
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Utilizing a barcoding approach, Hinohara et al. [232] on the one hand highlighted endocrine 

therapy resistance to arise from selecting pre-existing clones. Hong et al. [233] on the other hand 

identified a rare population of pre-adapted treatment-naïve cells mimicking a cellular state 

generally observed during short-term estrogen deprivation. These pre-adapted cells were 

poised to survive short-term estrogen deprivation and required further genetic and epigenetic 

alterations to become fully resistant.  

Taken together, these findings suggest that different mechanisms drive endocrine 

therapy resistance and that resistant clones can either be initially present in the treatment naïve 

populations or that resistance is acquired by clones during the course of the applied therapy. 

Common genetic determinants of endocrine therapy resistance such as ESR1 mutations can 

be found in individual tumor clones.  

Studies focusing on transcriptional clonal alterations are increasing while 

phosphoproteomic analysis of whole tumor samples is gaining strong attention and may help 

to improve precision cancer therapy [234, 235]. Further studies are required to improve our 

understanding of how transcriptional and phosphoproteomic alterations drive clonal endocrine 

therapy resistance and how these alterations can be therapeutically exploited. 
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2 Aims of the thesis 

Endocrine therapy resistance remains an urgent clinical problem affecting up to 41% 

of patients diagnosed with late stage disease [84]. Recent findings highlighted the importance 

of tumor heterogeneity in therapy resistance. To disentangle clonal endocrine therapy 

resistance in vitro, Dr. Simone Borgoni, a former PhD student in our lab, generated barcoded 

endocrine therapy resistant cell line models. Therefore, the ER+ breast cancer cell lines T47D 

and MCF7 were transduced with the ClonTracer [195] library to mark individual cells with a 

barcode. The cells were then rendered resistant to Tamoxifen treatment (TAMR) and long-

term estrogen deprivation (LTED), the latter mimicking clinically used aromatase inhibitors. As 

comparison, cells were also kept under normal growth condition (+E2). Barcode analysis of 

the bulk treatment sensitive and resistant replicates highlighted that Tamoxifen resistance was 

achieved either through the selection of pre-existing populations (T47D) or through resistance 

acquisition of initially treatment persisting cells (MCF7) [236]. 

Based on these initial findings, the aims of my PhD thesis were: 

(i) to illustrate the intra- and inter-tumor heterogeneity in endocrine therapy resistant 

breast cancer cells on a clonal level and  

(ii) to validate private and shared clonal endocrine therapy resistance drivers with 

clinical importance. 

Given the breadth of scientific literature on genetically defined heterogeneity and 

resistance mechanisms, the focus of this thesis was on non-genetically defined resistance 

mechanisms. To (i) illustrate tumor heterogeneity and (ii) unravel resistance drivers, I applied 

the following approaches: 

- Isolation of multiple single cell clones from the +E2, TAMR and LTED replicates 

with distinct barcodes as foundation for further experiments 

- Profiling of isolated clones for stable lineages or potential lineage change 

- Analysis of phenotypes (mainly by proliferation assays), gene expression profiles 

and activation of kinases (through phospho-proteomics analysis) 

- Identification of private (only for a single clone) and shared (across multiple clones) 

potential resistance drivers 

- Experimental testing of candidates for their potential to drive endocrine therapy 

resistance 

- Assessment of molecular mechanisms (proliferation, cell viability, percentage of 

cycling and dying/dead cells) after gene knockdown and inhibitor treatment 

- Correlation of in vitro data with data from the CPTAC-BRCA cohort to add clinical 

relevance to the in vitro findings 
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3 Materials and Methods 

3.1 Materials 
3.1.1 Instruments 

Instrument Company 
2200 TapeStation System Agilent Technologies 

Axiovert 40 CFL Zeiss 
Bacterial incubator (37°C) Memmert 

Bacterial shaking incubator (37°C) INFORS HAT 
Biohit Proline multichannel pipette Sartorius 

Cell culture hood HERA Safe Thermo Fisher Scientific 
Cell culture incubator Heraeus 

cellenONE X1 Cellenion 
Centrifuges Eppendorf 

F.SIGHT Cytena 
Freezer (-20°C) Liebherr 
Freezer (-80°C) Sanyo 

Fridge (4°C) Liebherr 
Gel documentation Herolab 

GloMax Discover System Promega 
ImageXpress Micro XLS Molecular Devices 

ImageXpress Micro Confocal Molecular Devices 
Nanodrop ND-1000 spectrophotometer Thermo Fisher Scientific 

Neubauer cell counting chamber BRAND 
NYONE SYNENTEC 

Odyssey Infrared Imaging System LI-COR Biosciences 
Pipetboy acu pipette INTEGRA Biosciences 

Protein Gel Apparatus MiniProtean II Bio-Rad 
QuantStudio 5 real-time PCR machine Thermo Fisher Scientific 

Thermocycler Applied Biosystems 
Titramax 100 rocking platform Heidolph 

Trans-Blot Turbo Transfer System Bio-Rad 
Vacuboy aspiration device INTEGRA Biosciences 

VIPS Solentim 
Vortex mixer Heideloph 
Water bath JULABO 

 

3.1.2 Consumables 

Consumable Company 
384-well plates for TaqMan Applied Biosystems 

4-15% Mini-PROTEAN TGX™ Precast Protein Gels 
(10, 12 and 15-well) Bio-Rad 

96-well plate (black) Greiner Bio-one 
Adhesive Optically Clear Plate Seal Thermo Fisher Scientific 

Canonical tubes (15 and 50 ml) BD Falcon 
Cell culture dishes (100 mm and 150 mm) Greiner Bio-one 

Cell scraper Corning 
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Cryogenic vials Thermo Fisher Scientific 
Disposable filtertips for micropipettes Starlab 

Disposable tips for micropipettes Steinbrenner 
Microcentrifuge tubes (1.5, 2 and 5 ml) Eppendorf AG 
Mini-PROTEAN TGX Stain-FreeTM Gels Bio-Rad 

Multi-well cell culture plates (6, 12, 24, 48, 96-well) Greiner Bio-one 
PCR strips Steinbrenner Laborsysteme 

PVDF blotting membrane Merck 
Reservoirs (50 ml) Corning 

Serological pipettes (5 ml, 10 ml, 25 ml, 50 ml) BD Falcon 
Syringes Sigma-Aldrich 

Syringe filters (0.22 µm) Sigma-Aldrich 
Trans-Blot Turbo™ Mini PVDF Transfer Packs Bio-Rad 

Whatman 3 MM filter paper GE Healthcare 
 

3.1.3 Chemicals and reagents 

Chemical/reagent Company 
0.25% Trypsin EDTA Solution Gibco 

17-ß-estradiol Sigma-Aldrich 
5xHF buffer Thermo Fisher Scientific 

6x Orange Loading Dye Fermentas 
Agarose Carl Roth 

Benzonase Merck 
Bortezomib MedChemExpress 

Bovine serum albumin (BSA) Sigma-Aldrich 
Charcoal stripped fetal bovine serum (CSFBS) Sigma-Aldrich 

cOmplete EDTA-free protease inhibitor Roche 
DAPI Thermo Fisher Scientific 

DMEM Gibco 
DMSO Sigma-Aldrich 
dNTPs Thermo Fisher Scientific 

Essential 8 TM media Thermo Fisher Scientific 
Ethanol Sigma-Aldrich 

Ethidium bromide Sigma-Aldrich 
Fetal Bovine Serum (FBS) Gibco 

Glycine Sigma-Aldrich 
Hoechst 33258 Sigma-Aldrich 

Isopropanol Greiner Bio-one 
L-glutamine Gibco 

Lipofectamine RNAiMAX Thermo Fischer Scientific 
MassRuler DNA Ladder Low Range Fermentas 

Methanol Sigma-Aldrich 
MgCl2 Thermo Fisher Scientific 

MK-2206 dihydrochloride MedChemExpress 
Nuclease-free H2O Thermo Fisher Scientific 

Opti-MEM Gibco 
PageRulerTM Prestained Protein Ladder Thermo Fisher Scientific 
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Paraformaldehyde 16% Thermo Fisher Scientific 
Penicillin/Streptomycin (P/S) Gibco 

Phosphate-Buffered Saline (PBS) Gibco 
PhosSTOP Phosphatase Inhibitor Cocktail Roche 

Phusion Hot Start II DNA-Polymerase (2 U/µl) Thermo Fisher Scientific 
Power SYBR Green PCR Master Mix (2x) Thermo Fisher Scientific 

Proteinase K Thermo Fisher Scientific 
Puromycin dihydrochloride Sigma-Aldrich 

RIPA Lysis and Extraction buffer Thermo Fischer Scientific 
RNase A Qiagen 

RNase-free DNase Qiagen 
Rockland Blocking Buffer Rockland Immunochemicals 

Roti-Load 1, 4x sample loading buffer Carl Roth 
Ruxolitinib MedChemExpress 

Sodium dodecyl sulfate (SDS) Carl Roth 
Sodium fluoride (NaF) Bernd Kraft 

Sodium orthovanadate (Na3VO4) Sigma-Aldrich 
Sodium pyruvate Gibco 

Sotrastaurin MedChemExpress 
TPA Sigma-Aldrich 

Tris-base Sigma-Aldrich 
Triton X-100 Sigma-Aldrich 

Trypsin 0.05%/EDTA 0.1% in PBS, w/o: Ca and Mg PAN-Biotech GmbH 
Tween 20 Sigma-Aldrich 

(Z)-4-hydroxyTamoxifen ≥98% Sigma-Aldrich 
 

3.1.4 Solutions 

Barcode amplification 

50x TAE (Tris-acetate-EDTA) 

242 g Tris-base 
57.1 ml Acetic acid 
100 ml 0.5 M EDTA 
Add 1 l with ddH2O 

pH 8.0 

Lysis buffer  

per 200 µl: 
40 µl 5x HF buffer 
10 µl Proteinase K 

1 µl RNase A 
149 µl Nuclease-free H2O 

Western Blotting 

10x TBS 
1.37 M NaCl 
200 mM Tris 

pH 7.6 

Blocking buffer  
1:1 Rockland blocking buffer:TBS  

10 mM NaF 
1 mM Na3VO4  



Materials and Methods 

 24 

Lysis buffer  

10 ml RIPA buffer 
1x cOmplete EDTA-free protease inhibitor 

1x PhosSTOP phosphatase inhibitor 
 

Additionally for Mass Spectrometry: 
10 mM NaF 

1 mM Na3VO4 
250 U/ml Benzonase 

10 U/ml RNase-Free DNase 

SDS running buffer 
192 mM glycine 

25 mM Tris 
0.1% SDS 

Transfer buffer  
20% Trans-Blot Turbo™ 5x Transfer Buffer  

20% EtOH  
60% H2O  

 

3.1.5 Commercial kits 

Kit Company 
AllPrep DNA/RNA Micro Kit Qiagen 

CellTiter-Glo® Luminescent Cell Viability Assay Promega 
Click-iT™ EdU Cell Proliferation Kit for Imaging, Alexa 

Fluor™ 594 dye Thermo Fisher Scientific 

DNeasy Blood & Tissue Kit Qiagen 
PierceTM BCA Protein Assay Kit Thermo Fisher Scientific 

RevertAid™ H Minus First Strand cDNA synthesis kit Thermo Fisher Scientific 
RNeasy Mini Kit Qiagen 

Trans-Blot Turbo mini PVDF Transfer Kit Bio-Rad 
Wizard SV Gel and PCR Clean-up System Promega 

 

3.1.6 siRNAs 
Four individual siRNAs for RELA, STAT1 and STAT2 were each ordered from 

Dharmacon. The individual siRNAs were pooled for each target. 

Gene Catalogue number Annotation Target sequences 

ON-TARGET 
control D-001810-10-20 siONT+ 

1 – UGGUUUACAUGUCGACUAA 
2 – UGGUUUACAUGUUGUGUGA 
3 – UGGUUUACAUGUUUUCUGA 
4 – UGGUUUACAUGUUUUCCUA 

RELA LQ-003533-00-0002 siRELA 

1 – GGAUUGAGGAGAAACGUAA 
2 – CCCACGAGCUUGUAGGAAA 
3 – GGCUAUAACUCGCCUAGUG 
4 – CCACACAACUGAGCCCAUG 

STAT1 LQ-003543-00-0002 siSTAT1 

1 – GCACGAUGGGCUCAGCUUU 
2 – CUACGAACAUGACCCUAUC 
3 – GAACCUGACUUCCAUGCGG 
4 – AGAAAGAGCUUGACAGUAA 

STAT2 LQ-012064-00-0002 siSTAT2 

1 – GGACUGAGUUGCCUGGUUA 
2 – GGACUGAGGAUCCAUUAUU 
3 – GACCCCUCCUGGCAAGUUA 
4 – GAUUUGCCCUGUGAUCUGA 
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3.1.7 RT-qPCR primers 

Gene Primer left Primer right 
ACTB ATTGGCAATGAGCGGTTC GGATGCCACAGGACTCCA 

GAPDH GAGTCCACTGGCGTCTTCAC GTTCACACCCATGACGAACA 
RELA GCTTGTAGGAAAGGACTGCC GCTGCTCTTCTATAGGAACTTGG 
STAT1 GAAGTTCACCCTTCTAGACTTCAG AGAGCCCACTATCCGAGAC 
STAT2 GCTAGGCCGATTAACTACCC CAGCTGTGAACCATGTCTCC 

 

3.1.8 Antibodies 

Primary antibodies 

Target Antibody ID Company Species Dilution 

ß-Actin 69100 MP Biologicals Mouse 1:1,250 

p(Ser) PKC Substrate CST2261 Cell Signaling Technology Rabbit 1:1,000 

p65 CST8242 Cell Signaling Technology Rabbit 1:1,000 

PRAS40 CST2691 Cell Signaling Technology Rabbit 1:1,000 

PRAS40 (Thr246p) CST2997 Cell Signaling Technology Rabbit 1:1,000 

STAT1 CST9172 Cell Signaling Technology Rabbit 1:1,000 

STAT2 CST72604 Cell Signaling Technology Rabbit 1:1,000 

Secondary antibodies 

Antibody Antibody ID Company Species Dilution 

F(ab')2-Goat anti-Rabbit IgG (H+L) 
Cross-Adsorbed Secondary Antibody, 

Alexa Fluor™ 680 
A-21077 Thermo Fisher Scientific  Goat 1:10,000 

Goat anti-Mouse IgG (H+L) Secondary 
Antibody, DyLight 800 4X PEG SA5-35521 Thermo Fisher Scientific  Goat 1:10,000 

 

3.1.9 Software 

Software Company 
Image Studio Lite v5.2 LI-COR Biosciences 

Molecular Devices Analysis Software Molecular Devices 
Odyssey 2.1 LI-COR Biosciences 
Prism 9.4.1 GraphPad Software, Inc. 

QuantSudio Analysis and Design v1.5.1 Thermo Fisher Scientific 
SnapGene software 6.1.2 Insightful Science 
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3.2 Methods 
3.2.1 Cell culture 
3.2.1.1 Cultivation of luminal A breast cancer cell lines 

Parental T47D and MCF7 breast cancer cell lines were obtained from ATCC. These 

cell lines had been used by Dr. Simone Borgoni to generate barcoded treatment naïve as well 

as TAMR and LTED cell lines [236]. Cell lines were regularly authenticated by Multiplexion 

GmbH and tested for potential mycoplasma contamination. All cells were cultured in the 

appropriate growth media as in Table 1 within a humified incubator at 37°C and 5% CO2. Cells 

were subcultured when they reached a confluency of 70-80%. Therefore, the growth media 

was aspirated, the cells washed once with PBS and detached from the surface with 0.25% 

Trypsin-EDTA. Fresh growth media was added to neutralize the trypsin and cells were 

reseeded in an appropriate dilution. To eliminate estrogenic effects of the pH-indicator phenol 

red [237], LTED cells were trypsinized in phenol red-free Trypsin and resuspended in phenol 

red-free growth media. T47D and MCF7 cells transduced with the ClonTracer library were 

additionally cultured in the presence of 1 µg/ml Puromycin. 

Table 1: Description of used human breast cancer cell lines and culture media. 

Cell line Description Medium 

T47D wildtype (WT) 
MCF7 wildtype (WT) 

Luminal A 
breast cancer 
cell lines and 

clones 

‘+E2’ 

DMEM supplemented with 
10% FBS, 1% P/S, 10-8 M E2  

 
1 µg/ml Puromycin was 

added for barcoded cell line 
pools and clones only 

T47D +E2_5 pool and clones 
 

Clones: 
B5, B8, C12, D3, D11, E2, F6, H9 

 
MCF7 +E2_1, +E2_3, +E2_5 pools 

T47D TAMR_2 and TAMR_4 pools and clones 
 

Clones: 
TAMR_2: B3, B5, C4, D8, D12, H2 

TAMR_4: B2, C3, D8, E2 
 

MCF7 TAMR_A pool and clones 
 

Clones: B3, B6, E10 

Luminal A 
breast cancer 
cell lines and 

clones resistant 
to treatment with 
100 nM 4-OHT 

’+4-OHT’ 

DMEM supplemented with 
10% FBS, 1% P/S, 100 nM 

4-OHT  
 

1 µg/ml Puromycin was 
added for barcoded cell line 

pools and clones only 

T47D LTED_1 and LTED_2 pools and clones 
 

Clones 
LTED_1: B10, C4, C6, F10 

LTED_2: C2, C11, F5 
 

MCF7 LTED_2 and LTED_5 pools and clones 
 

Clones: 
LTED_2: B5, C4, D6, E11, G2 

LTED_5: A9, C9, E4 

Luminal A 
breast cancer 
cell lines and 

clones resistant 
to estrogen 
deprivation, 
mimicking 
aromatase 
inhibition 

‘-E2’ 

DMEM phenol red free 
supplemented with 10% 

CSFBS, 1% P/S 1% sodium 
pyruvate, 1% L-glutamine  

 
1 µg/ml Puromycin was 

added for barcoded cell line 
pools and clones only 

 

Frozen cell stocks were generated by pelleting the cells (1,200 rpm for 5 min) and 

resuspending the cell pellet in freeze media consisting of 70% +E2 media, 20% FBS and 10% 

DMSO. 1x106 cells in 1 ml freeze media were transferred to cryogenic vials and cooled down 

in an isopropanol bath at -80°C. Frozen cells were kept in liquid nitrogen for long-term storage. 
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Recovery of frozen cell vials was performed by thawing at 37°C, pelleting and aspiration of the 

DMSO containing media. Cells were resuspended and seeded in their respective growth 

media. The next day, the media was changed to remove dead cells. 

 

3.2.1.2 Generation and deconvolution of barcoded T47D control cells 
T47D cells were transduced with individual barcodes obtained from the ClonTracer 

library [195] (Addgene #67267) and deconvoluted utilizing the F.SIGHTTM dispenser in 

collaboration with the DKFZ Cellular Tools Core Facility as described in the corresponding 

Application Note [238]. In brief, Escherichia coli cells were transformed with the ClonTracer 

library and single colonies obtained. From individual colonies, plasmids were isolated and the 

barcode sequences analyzed. Lentiviral barcode plasmids were produced in HEK293FT cells 

and T47D cells were transduced with eight different barcode plasmids. 1 µg/ml Puromycin was 

then used to select for successful integration events. Afterwards, single cells were spotted with 

the F.SIGHTTM dispenser in poly-L-lysine coated 96-well plates and grown out for five weeks 

in +E2 media. Clonal outgrowth was monitored with the automated cell culture microscope 

NYONE. Media was aspirated and the cells lysed as described below. The barcode region was 

PCR-amplified and subjected to Sanger sequencing as described below. Generation of stable 

cells, cell spotting, monitoring of clonal outgrowth and sequence analysis were performed by 

the Cellular Tools Core Facility. 

 

3.2.1.3 Generation of barcoded endocrine therapy resistant in vitro models 
The barcoded T47D and MCF7 resistance models were generated by Dr. Simone 

Borgoni as previously explained [236]. In brief, 1x105 treatment-naïve T47D and MCF7 cells 

were each lentivirally transduced with the ClonTracer library [195] at an MOI of 0.05 to likely 

ensure the delivery of a single barcode per cell. Successfully transduced cells were selected 

and grown out in the presence of 1 µg/ml Puromycin. Once enough cells were obtained, the 

cells were split into 20 replicates of 5x106 cells each. Five replicates were immediately frozen 

down (‘Initial’). Five biological replicates were each treated for 8 months with either 100 nM 

4-OHT to generate Tamoxifen resistant (TAMR) cell lines or deprived of estrogen (-E2) 

mimicking clinically used aromatase inhibitors to generate long-term estrogen deprived (LTED) 

cell lines. Finally, five biological replicates were kept for 8 months under control conditions with 

E2 supplementation (+E2). 

To determine the barcode and therefore cell composition of the initial, +E2, TAMR and 

LTED cell pools, all replicates were subjected to NGS of the barcode region by Dr. Simone 

Borgoni [236]. Barcode composition analysis was then performed by Dr. Luca Penso Dolfin as 
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described previously (https://github.com/luca8651/Barcode_analyses-python, accessed: 

11.11.20). 

 

3.2.1.4 Generation of single cell clones 
To delineate clonal endocrine therapy resistance drivers, the previously established 

barcoded replicates were deconvoluted. Single cell suspensions were plated manually or by 

using a cell printer with the help of the DKFZ single-cell Open Lab, the DKFZ Cellular Tools 

Core Facility, Solentim and Cytena. 

Table 2 shows an overview of all generated single cell clones including the spotting 

method and outgrow conditions. For better attachment of single cells, some 96 well plates used 

for cell spotting were coated with poly-L-lysine. Single cells were grown out for four weeks in 

100 µl +E2 media, preconditioned +4-OHT, +4-OHT media without drug (‘TAM media without 

4-OHT’) or Essential 8TM media. Wells were topped up with fresh media on a weekly basis. For 

T47D TAMR_2 and TAMR_4 clones, pre-conditioned media was used. Therefore, TAMR_2 

and TAMR_4 cell pools were kept in +4-OHT media for 3-4 days. Afterwards, the media was 

sterile filtered and diluted with freshly prepared +4-OHT media before the media was added to 

the single cell clones. No individual clones from the T47D LTED_1 cell pool could be 

established using spotting in 96 well format. Therefore, 100 single cells were plated in poly-L-

lysine coated 6 well plates and individual cell clones were grown out.  

Table 2: Generation of single cell clones used for this thesis. 

Cell line Clones Printer Initial (4 weeks) growth 
media (without Puromycin) Coating 

T47D +E2_5 B5, B8, C12, D3, 
D11, E2, F6, H9 

Cellenion 
cellenONE X1 +E2 none 

T47D 
TAMR_2 

C4 Cellenion 
cellenONE X1 

Pre-conditioned +4-OHT 
media poly-L-lysine 

B3, B5, D8, D12, 
H2 Solentim VIPS TAM media without 4-OHT none 

T47D 
TAMR_4 B2, C3, D8, E2 Cellenion 

cellenONE X1 
Pre-conditioned +4-OHT 

media poly-L-lysine 

T47D 
LTED_1 B10, C4, C6, F10 manually plated in 

6 well plates TAM media without 4-OHT poly-L-lysine 

T47D 
LTED_2 C2, C11, F5 Solentim VIPS Essential 8™ Medium  none 

MCF7 
LTED_2 

B5, E11, G2 Cellenion 
cellenONE X1 TAM media without 4-OHT poly-L-lysine 

C4, D6 Cytena F.SIGHT TAM media without 4-OHT poly-L-lysine 

MCF7 
LTED_5 A9, C9, E4 Cytena F.SIGHT TAM media without 4-OHT poly-L-lysine 
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3.2.1.5 Cell plating conditions 
Isolated T47D and MCF7 clones, T47D and MCF7 WT cells without barcode, and 

MCF7 +E2_1, +E2_3 and +E2_5 pools were used for all further experiments and assays as 

described in detail below. All plating conditions are summarized in Table 3. Cell counting was 

performed manually using a Neubauer chamber. 

Table 3: Plated cell numbers. 

Cell line(s) or 
clone(s) Assay Media Culture dish Cell number 

plated 

T47D WT 

14 d pre-treatment +4-OHT or -E2 100 mm 3x105 

Cell viability +E2 + DMSO or 100 nM 
MK-2206 96 well plate 2,500 

Proliferation, EdU, 
DAPI +E2 96 well plate 500 

T47D WT pre-
treated 

Cell viability -E2 + DMSO or 100 nM 
MK-2206 96 well plate 5,000 

Proliferation +4-OHT 96 well plate 500 

Proliferation, EdU, 
DAPI -E2 96 well plate 2,000 

T47D +E2_5 B8, 
C12, E2, F6, H9 

14 d pre-treatment +4-OHT or -E2 100 mm 2x105 

Cell viability +E2 + DMSO or 100 nM 
MK-2206 96 well plate 2,500 

Proliferation, EdU, 
DAPI +E2 96 well plate 500 

Proliferation +4-OHT 96 well plate 500 

T47D +E2_5 E2 AKT inhibition +E2 + DMSO or MK-2206 6 well plate 2x105  

T47D +E2_5 B5, 
D3, D11 

14 d pre-treatment +4-OHT 100 mm 2x105 

14 d pre-treatment -E2 100 mm 1.2x105 

Proliferation +E2 or +4-OHT 96 well plate 500 

T47D +E2_5 B5, 
D3, D11 pre-treated 

Proliferation +4-OHT 96 well plate 500 

Proliferation -E2 96 well plate 2,000 

T47D LTED_1 B10, 
C4, C6, F10 

 
T47D LTED_2 C2, 

C11, F5 

14 d pre-treatment +E2 100 mm 5x104 

Cell viability -E2 + DMSO or 100 nM 
MK-2206 96 well plate 5,000 

Proliferation, EdU, 
DAPI -E2 96 well plate 2,000 

T47D LTED_1 C6 AKT inhibition +E2 + DMSO or MK-2206 6 well plate 4x105  

T47D LTED clones 
pre-treated 

Proliferation, EdU, 
DAPI +E2 96 well plate 500 

T47D TAMR_2 B3, 
B5, C4, D8, D12, 

H2 
 

T47D TAMR_4 B2, 
C3, D8, E2 

Proliferation +4-OHT 96 well plate 500 

MCF7 WT 14 d pre-treatment +4-OHT or -E2 100 mm 5x104 
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Proliferation +E2 96 well plate 500 

MCF7 WT pre-
treated Proliferation +4-OHT or -E2 96 well plate 500 

MCF7 +E2_1, 
+E2_3, +E2_5 

14 d pre-treatment +4-OHT or -E2 100 mm 6x104 

Proliferation +E2 96 well plate 500 

MCF7 +E2_5 

Proliferation, cell 
viability, EdU, 

DAPI 

+E2 + DMSO or 
Bortezomib, Ruxolitinib, 

Sotrastaurin 
96 well plate 500 

Inhibitor treatment +E2 + DMSO or 
Sotrastaurin 6 well plate 1.5x105 

Transfection +E2 96 well plate 800 

Transfection +E2 6 well plate 3x104 

MCF7 +E2_1, 
+E2_3, +E2_5 pre-

treated 
Proliferation +4-OHT or -E2 96 well plate 500 

MCF7 TAMR_1 B3, 
B6, E10 Proliferation +4-OHT 96 well plate 500 

MCF7 TAMR_1 B6 

Proliferation, cell 
viability, EdU, 

DAPI 

+4-OHT + DMSO or 
Bortezomib, Ruxolitinib, 

Sotrastaurin 
96 well plate 500 

Inhibitor treatment +4-OHT + DMSO or 
Sotrastaurin 6 well plate 1.25x105 

Transfection +4-OHT 96 well plate 600 

Transfection +4-OHT 6 well plate 2x104 

MCF7 LTED_2 B5, 
C4, D6, E11, G2 Proliferation -E2 96 well plate 500 

MCF7 LTED_2 C4, 
E11 

Proliferation, cell 
viability, EdU, 

DAPI 

-E2 + DMSO or 
Bortezomib, Ruxolitinib, 

Sotrastaurin 
96 well plate 750 

Inhibitor treatment -E2 + DMSO or 
Sotrastaurin 6 well plate 2x105 

Transfection -E2 96 well plate 1,600 

Transfection -E2 6 well plate 6x104 

MCF7 LTED_5 A9, 
C9, E4 Proliferation -E2 96 well plate 500 

MCF7 LTED_5 C9 

Proliferation, cell 
viability, EdU, 

DAPI 

-E2 + DMSO or 
Bortezomib, Ruxolitinib, 

Sotrastaurin 
96 well plate 750 

Inhibitor treatment -E2 + DMSO or 
Sotrastaurin 6 well plate 2x105 

Transfection -E2 96 well plate 1,200 

Transfection -E2 6 well plate 6x104 
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3.2.1.6 Pretreatment of cells 
Besides the long-term adaptations, also short-term responses of WT and control (+E2) 

cell lines and clones to 4-OHT treatment and estrogen deprivation (-E2) were assessed. 

Further, isolated T47D LTED clones were grown in +E2 media to assess their short-term 

adaptation to the drug removal. Cells were plated as in Table 3 in their respective growth media 

and allowed to attach overnight. The next day, the media was aspirated, the cells were washed 

with PBS and the pre-treatment media was added to the cells. Cells pre-treated for 14 days 

with +E2, +4-OHT or -E2 media are designated with an additional apostrophe to their name.  

 

3.2.1.7 Cell proliferation assay 
Cells were plated in 100 µl +E2, +4-OHT or -E2 media per well into 96 well plates 

according to Table 3. To assess the proliferation of cells normally kept in +E2 media under 

4-OHT treatment, cells were detached, resuspended in +E2 media and pelleted. The cell pellet 

was washed once with PBS before reconstitution, counting and plating in +4-OHT media. Pre-

treated cells were detached and resuspended in the respective pre-treatment media. Cells pre-

treated by estrogen deprivation were additionally detached using phenol-red free trypsin. Cells 

were allowed to attach overnight, grown for another 7 days and stained with 20 mM Hoechst 

33342 (final dilution: 1:5,000) for 30 min. Cell numbers were determined by microscopy-based 

nuclei counting using the ImageXpress Micro XLS or ImageXpress Micro Confocal microscope 

and the Molecular Devices Software. Final cell numbers were normalized to the seeding 

controls. 

 

3.2.1.8 Cell viability assay 
Cell viability was estimated from adenosine triphosphate (ATP) levels [239-241]. On the 

assays’ final day, total cell numbers were first determined by Hoechst staining and the cell 

viability was determined with the CellTiter-Glo Luminescent Cell Viability Assay according to 

the manufacturer’s instructions. In short, freshly prepared CellTiter-Glo Reagent was added to 

the cells, the plate briefly placed on an orbital shaker and the luminescence signal measured 

after 10 min using the GloMax Explorer Multimode Microplate Reader. 

 

3.2.1.9 Determination of cells in S-phase 
Cells progressing through the cell cycle’s S-phase were detected by 5-ethynyl-2'-

deoxyuridine (EdU) incorporation and microscopic detection of the attached Alexa Fluor using 

the Click-iT™ EdU Cell Proliferation Kit for Imaging, Alexa Fluor™ 594 dye. 72 hours after 

measuring the plating controls by Hoechst staining, cells were pulsed with EdU for 21 h by 

replacing half of the media with fresh media containing 20 µM EdU (final concentration: 10 µM 
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EdU). The next day, media was aspirated and the cells were fixed with 4% paraformaldehyde 

(PFA) for 15 min. PFA was removed, cells were washed twice with 3% bovine serum albumin 

(BSA) in PBS and permeabilized with 0.5% Triton X-100 in PBS for 30 min. Afterwards, cells 

were washed twice with 3% BSA in PBS and freshly prepared Click-iT reaction mix (Table 4) 

was added to the cells. After 30 min incubation, cells were washed once with 3% BSA in PBS 

and once with PBS. Then, 100 µl Hoechst-33258 (1:5,000 diluted in PBS) was added. The 

cells were incubated for 30 min protected from light and cells were imaged with the 

ImageXpress Micro XLS or ImageXpress Micro Confocal microscope and the Molecular 

Devices Software. Cells going through S-phase were determined as Alexa Fluor 594 positive 

whereas total cell numbers were determined by Hoechst 33342 staining. The percentage of 

cells going through S-phase was calculated as ratio of Alexa Fluor 594 to Hoechst 33342 

positive cells.  

Table 4: Click-iT reaction mix. 

Component Per reaction 
Click-iT EdU reaction buffer 43 µl 

CuSO4 2 µl 
Alexa Fluor azide 0.12 µl 

Click-iT EdU buffer additive 5 µl 

Total volume 50.12 µl 
 

3.2.1.10 Determination of dying/dead cells 
Dying/dead cells were determined by using the exclusion dye 4′,6-diamidino-2-

phenylindole (DAPI) [242] and Hoechst 33342 for total cell quantification. 96 h after measuring 

the plating controls with Hoechst staining, DAPI diluted in PBS was added to the cells with a 

final concentration of 1 µg/ml and after a 5 min incubation period, plates were imaged with the 

ImageXpress Micro XLS or ImageXpress Micro Confocal microscope and the Molecular 

Devices Software. Afterwards, Hoechst 33342 (final dilution: 1:1,000) was added to the cells 

and after 30 min incubation, the cells were imaged again. The percentage of dying/dead cells 

was determined as ratio of DAPI positive to Hoechst positive cells. 

 

3.2.1.11 Inhibitor treatments 
AKT signaling was inhibited in T47D WT and T47D orange clones with the pan-AKT 

inhibitor MK-2206 [243]. Cells were plated according to Table 3 in poly-L-lysine coated black 96 

well plates. The next day, media was aspirated and replaced with media containing 100 nM 

MK-2206 or the corresponding volume of DMSO. 72 h after treatment start, total cell numbers 

and cell viability were determined. 100 nM MK-2260 was determined by a dilution experiment 

as previously described [244]. T47D +E2_5 E2 and LTED_1 C6 cells were plated in poly-L-lysine 
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coated 6 well plates. 48 h later, media was replaced with media containing increasing 

concentrations of MK-2206. After 1 h, protein lysates were prepared and subjected to Western 

Blotting. 

MCF7 +E2_5, TAMR_1 B6, LTED_2 C4 and E11, and LTED_5 C9 cells were treated 

with Bortezomib (proteasome inhibitor [245]), Ruxolitinib (JAK1/2 inhibitor [246]) or Sotrastaurin 

(pan-PKC inhibitor [247]). Cells were plated in black 96 well plates. The next day, media was 

aspirated and the cells treated with increasing concentrations of either inhibitor. Total cell 

numbers were determined after 7 days.  

For the assessment of PKC inhibition by Sotrastaurin, cells were plated in 6 well plates 

and allowed to attach overnight. Cells were then pre-treated for 24 h with 2.50 µM Sotrastaurin 

before being stimulated for 30 min with 200 nM 2-O-Tetra-decanoylphorbol 13-acetate (TPA) 
[248, 249]. Phosphorylation of PKC substrates was then assessed by Western Blotting. 

 

3.2.1.12 Transfections 
MCF7 +E2_5, TAMR_1 B6, LTED_2 C4 and E11, and LTED_5 C9 cells were 

transfected with siRNA targeting RELA, STAT1 and STAT2. Cells were plated in 96 well plates 

in P/S-free media and transfected the next day using Lipofectamine RNAimax and siRNAs 

were used at a final concentration of 30 nM. Briefly, siRNAs and the RNAimax were diluted in 

Opti-MEM, the transfection mix vortexed and incubated for 5 min. The transfection mix was 

then added dropwise to the cells. In parallel, cells were each plated in 6 well plates in P/S-free 

media and transfected the next day in the same manner. Media was changed 6 h after the 

transfection. 

 

3.2.2 Sanger sequencing-based barcode analysis 
3.2.2.1 Cell lysis for barcode amplification 

During the outgrowth of single cell clones, residual cells were replated in 96 well plates 

and the media was aspirated when wells reached a confluency of at least 10%. 60 µl lysis 

buffer were added to each well, the lysates transferred to 1.5 ml Eppendorf tubes and 

afterwards, samples were incubated at 56 °C for 30 min and then at 96°C for 5 min. Samples 

were stored at 4°C until further processing. 

 

3.2.2.2 DNA and RNA isolation 
DNA and RNA were simultaneously isolated using the AllPrep DNA/RNA Micro Kit 

according to manufacturer’s instructions. For the isolation of either DNA or RNA alone, the 

DNeasy Blood & Tissue Kit or RNeasy Mini Kit were used according to the manufacturer’s 
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instructions, respectively. DNA and RNA were eluted in nuclease-free H2O. Additionally, DNA 

digestion was performed for isolated RNA using RNase-Free DNase. Concentrations were 

determined with the NanoDrop ND-1000 UV-Vis Spectrophotometer. 

 

3.2.2.3 Amplification of barcode region and visualization of PCR products 
To identify the barcodes in the generated single cell clones, the lentivirally integrated 

region containing the barcode sequence was amplified using Phusion Hot Start II DNA 

Polymerase and the primer pair: Fw: GCTGTGCCTTGGAATGCTAGTTGG, Rev: TCTGCTG-

TCCCTGTAATAAACCCG. 10 µl lysis or 200 ng DNA were used as input and the PCR 

reactions were run as described in Table 5 and Table 6, respectively. PCR products were run 

in 1% Agarose gels in 1x TAE buffer at 100 V for 1 h and visualized after ethidium bromide 

staining using the Herolab Gel documentation system. 5 µl MassRuler DNA Ladder Low Range 

were used as size standard. 

Table 5: PCR Master mix. 

Component Amount 
5xHF buffer 10 µl 

dNTP Mix (10mM each) 1 µl 
Forward primer (10 µM) 2 µl 
Reverse primer (10 µM) 2 µl 

MgCl2 0.5 µl 
Polymerase 0.5 µl 
Lysis/DNA 10 µl/200 ng 

H2O up to 50 µl 
 

Table 6: Thermocycler program for barcode amplification. 
98°C 2 min  
98°C 10 s 

     32x 71°C 20 s 
72°C 1 min 10 s 
72°C 10 min  
4°C ∞  

 

3.2.2.4 PCR purification 
The PCR reactions were purified using the Wizard SV Gel and PCR Clean-up System 

according to manufacturer’s instructions. PCR products were eluted in nuclease-free H2O and 

concentrations were determined with the NanoDrop ND-1000 UV-Vis Spectrophotometer. 

 



Materials and Methods 

 35 

3.2.2.5 Sanger sequencing 
Purified PCR products were subjected to Sanger sequencing [250] performed by Eurofins 

Genomics with the Fw primer utilized as sequencing primer and the barcode sequences were 

analyzed with the SnapGene software. 

 

3.2.3 NGS-based barcode analysis 
3.2.3.1 PCR amplification and sequencing 

The Sanger chromatograms for isolated MCF7 TAMR_1 and LTED_2 clones were too 

complex to be deconvoluted. Hence, Illumina indices modified from Bhang et al. 2015 [195] 

(https://www.addgene.org/pooled-library/clontracer/, assessed: 06/01/2023) were added by 

PCR and 48 clones selected for sequencing. 200 ng DNA were used as input and a PCR 

reaction with Rev_Index_049 and Rev_Index_050 primers without DNA input were each run 

as non-template controls. The PCR was performed according to Table 5 and Table 7 with the 

utilized primers listed in Table 8. 

 

Table 7: Thermocycler program for barcode amplification to be sequenced on MiSeq. 
98°C 2 min  
98°C 10 sec 

     32x 69°C 20 sec 
72°C 12 sec 
72°C 10 min  
4°C ∞  

 

Table 8: Utilized NGS primers adapted from Bhang et al. 2015 [195]. The three bases CTG were added 
to each reverse primer and can be distinguished from the original primers by small letters. 

WS PCR Forward 
Primer AATGATACGGCGACCACCGAGATCTACACACTGACTGCAGTCTGAGTCTGACAG 

WS_Rev_Index_001 CAAGCAGAAGACGGCATACGAGATACGATCGTGAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_002 CAAGCAGAAGACGGCATACGAGATCTAGATCGTGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_003 CAAGCAGAAGACGGCATACGAGATGACTCGATCAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_004 CAAGCAGAAGACGGCATACGAGATTGACTAGCTCGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_005 CAAGCAGAAGACGGCATACGAGATATGCTCAGCAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_006 CAAGCAGAAGACGGCATACGAGATCGATCTGCATGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_007 CAAGCAGAAGACGGCATACGAGATGATAGCTGACGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_008 CAAGCAGAAGACGGCATACGAGATTCAGCTACGTGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_009 CAAGCAGAAGACGGCATACGAGATAGTACGCATGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_010 CAAGCAGAAGACGGCATACGAGATCACGTCGATAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 
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WS_Rev_Index_011 CAAGCAGAAGACGGCATACGAGATGTATCACGACGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_012 CAAGCAGAAGACGGCATACGAGATTCGCAGTACTGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_013 CAAGCAGAAGACGGCATACGAGATAGCGTCTGATGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_014 CAAGCAGAAGACGGCATACGAGATCAGCATGTCTGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_015 CAAGCAGAAGACGGCATACGAGATGTACTCATCGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_016 CAAGCAGAAGACGGCATACGAGATTCTGCAGCTAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_017 CAAGCAGAAGACGGCATACGAGATACTGTACTCGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_018 CAAGCAGAAGACGGCATACGAGATCGACAGCTATGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_019 CAAGCAGAAGACGGCATACGAGATGTCATGCGTAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_020 CAAGCAGAAGACGGCATACGAGATTAGTCGCATGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_021 CAAGCAGAAGACGGCATACGAGATATCGATGACGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_022 CAAGCAGAAGACGGCATACGAGATCGATAGTCGTGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_023 CAAGCAGAAGACGGCATACGAGATGAGCTGTATCGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_024 CAAGCAGAAGACGGCATACGAGATTCTGATCGCAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_025 CAAGCAGAAGACGGCATACGAGATAGCATCGTCTGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_026 CAAGCAGAAGACGGCATACGAGATCTACGTCTAGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_027 CAAGCAGAAGACGGCATACGAGATGCTAGATGCTGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_028 CAAGCAGAAGACGGCATACGAGATTCGAGTGCATGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_029 CAAGCAGAAGACGGCATACGAGATACGCTGACATGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_030 CAAGCAGAAGACGGCATACGAGATCATACAGTGCGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_031 CAAGCAGAAGACGGCATACGAGATGAGCACTAGTGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_032 CAAGCAGAAGACGGCATACGAGATTGCATGTAGCGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_033 CAAGCAGAAGACGGCATACGAGATAGTGATCGACGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_034 CAAGCAGAAGACGGCATACGAGATCTGACATGCAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_035 CAAGCAGAAGACGGCATACGAGATGTAGCAGATCGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_036 CAAGCAGAAGACGGCATACGAGATTCACTATGCGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_037 CAAGCAGAAGACGGCATACGAGATACTCGATACGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_038 CAAGCAGAAGACGGCATACGAGATCGCATGATCAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_039 CAAGCAGAAGACGGCATACGAGATGCAGATCACTGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_040 CAAGCAGAAGACGGCATACGAGATTCGACTAGTGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 
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WS_Rev_Index_041 CAAGCAGAAGACGGCATACGAGATATCAGCGATGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_042 CAAGCAGAAGACGGCATACGAGATCTGTATGAGCGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_043 CAAGCAGAAGACGGCATACGAGATGTGACTGTCAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_044 CAAGCAGAAGACGGCATACGAGATTACGCTGCATGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_045 CAAGCAGAAGACGGCATACGAGATAGCTGATGCAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_046 CAAGCAGAAGACGGCATACGAGATCTATGCACTGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_047 CAAGCAGAAGACGGCATACGAGATGCTCATGTCAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_048 CAAGCAGAAGACGGCATACGAGATTAGCGATCTGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_049 CAAGCAGAAGACGGCATACGAGATACGTACTGCTGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

WS_Rev_Index_050 CAAGCAGAAGACGGCATACGAGATCATAGCATCGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCTctg 

 

PCR products were cleaned and the final concentration and size of the PCR products 

were evaluated with the 2200 TapeStation System. All samples were pooled and sequenced 

in the NGS Core Facility at the DKFZ on a MiSeq V2 300 Nano. A custom sequencing primer 

with the following sequence was used: TCTACACACTGACTGCAGTCTGAGTCTGACAG. 

 

3.2.3.2 Barcode composition analysis 
Fastq files from the NGS of the barcode region were analyzed for individual barcode 

sequences using a custom script. The ShortRead package [251] was used in R (version 4.0.3) 
[252] and R studio [253] to read fastq files individually. In the next step, the respective barcodes 

were counted using the ‘grepl’ command. Analysis was performed by Dr. Birgitta Michels. 

 

3.2.4 Barcode integration site analysis 
Integration site analysis of barcoded complex cell pools was performed by Genewerk 

GmbH (Heidelberg, Germany) to rule out disruption of coding or regulatory elements as drivers 

of therapy resistance in the in vitro models as previously described by Dr. Simone Borgoni [236]. 

To verify that isolated T47D and MCF7 clones indeed came from the outgrowth of the same 

initially barcoded cell, the integration sites for all isolated T47D TAMR and LTED, and the 

MCF7 LTED_5 clones were verified by a PCR assay based on the integration site analysis of 

complex barcoded cell pools [236]. A specific primer upstream or downstream of each integration 

site to be investigated (Table 9) was combined with a primer specific for the viral 3’ long term 

repeat (LTR) with the following sequence: CCCAACGAAGATAAGATCTGC. Amplification was 

performed using Phusion Hot Start II DNA Polymerase as described above and the 

thermocycling program is shown in Table 10. PCR product visualization and sequencing with 
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the respective Fw primer of each reaction was performed as described above. For the MCF7 

TAMR_1 and LTED_2 clones, no additional integration site validation was performed by this 

PCR-based assay given the multitude of barcodes integrated and lacking pool integration site 

analysis data. 

Table 9: Primers used for integration site validation. 

Integration locus Strand Mainly found in (cell pools) Primer sequence 

Chr3:189,684,206 + T47D TAMR_2 TCCCTTGACATCACTAATAGGC 
Chr4:110,457,931 + MCF7 LTED_5 GTTACCTCTGCTTGGCGAAC 
Chr4:112,000,728 + T47D +E2_2 and LTED_2 ACTCACATTGAGGCTAAAGGG 
Chr6:120,131,260 - T47D TAMR_2 CTTGCTGAAATTAAGGAGAGACG 

Chr7:110,418,502 + T47D +E2_2 and LTED_2 ACCAAAATCCTCTCGGGCTG 
Chr8:66,103,520 - T47D TAMR_2 CTGAGGCCACAATATTAACAGC 
Chr8:91,606,636 + T47D TAMR_2 GAGATTCAGCAGCAATAATCAGG 
Chr11:31,426,888 + T47D +E2_2 and LTED_2 GCTTGTGACCCACGTCTTAG 
 

Table 10: Thermocycler program for integration site validation. 
98°C 2 min  
98°C 10 sec 

     32x 65°C 20 sec 
72°C 60 sec 
72°C 10 min  
4°C ∞  

 

3.2.5 Sequencing of ESR1 hotspot mutation codons 
The genomic region covering the ESR1 hotspot codons 536 to 538 was amplified using 

Phusion Hot Start II DNA Polymerase as described above and the primer pair: Fw: 

AATACCCACTCCTGCTTGGC, Rev: TATCTGAACCGTGTGGGAGC. The thermocycling 

program is shown in Table 11. PCR product visualization and sequencing with the Fw primer 

were performed as described above. 

Table 11: Thermocycler program for ESR1 amplification. 
98°C 2 min  
98°C 10 sec 

     32x 66°C 20 sec 
72°C 60 sec 
72°C 10 min  
4°C ∞  

 

3.2.6 Analysis of RNA expression 
3.2.6.1 RNA Sequencing 

RNA sequencing (RNA-Seq) was performed in the NGS Core Facility at the DKFZ 

using the NovaSeq 6K PE 50 S1 for T47D samples or the NovaSeq 6K PE 50 SP for MCF7 

samples. Further downstream processing and data analysis (3.2.6.2 to 3.2.6.4) was performed 

by Dr. Efstathios-Iason Vlachavas.  
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Bioinformatic analyses were generally performed using R (version 4.1.0) and the 

Bioconductor software [254]. To determine the read quality of the raw gene expression data, the 

FASTQC tool (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed: 

07.04.22) was used. Next, the Rsubread R package [255] (version 2.6.4) was used to align the 

raw paired-end reads to the selected human reference genome version “GRCh38.p13. 

primary_assembly_gencode” (https://www.gencodegenes.org/human/release_39.html). Gene 

expression counts were then determined using the featureCounts pipeline [256] run with default 

settings. Processing, alignment and quantification were performed on the Omics IT and Data 

Management Core Facility (ODCF) DKFZ Compute Cluster, running under CentOS Linux 7 

(Core) (https://odcf.dkfz.de/, accessed: 07.04.22) [257]. 

 

3.2.6.2 Pathway activity estimation 
Downstream analysis was performed for each cell line individually. Genes with limited 

evidence of expression were removed by a non-specific intensity procedure (function 

filterByExpr::edgeR R package). Here, genes that did not have at least ten counts in at least 

one of the biological barcoding conditions were removed. Next, Trimmed Mean of M-values 

(TMM) normalization from edgeR R package (version 3.36.0) [258] along with the voom function 

from the limma R package (version 3.50.0) [259] was applied. These allowed to adjust for library 

composition bias, to compensate for non-biological variability and to increase statistical power 

for biological discoveries [260]. The limma R package was then used to perform differential 

expression analysis between the different cell lines and respective clones. 

Next, Pathway RespOnsive GENes (PROGENy) [261, 262] was used to estimate the 

activity of 14 major pathways. Pathway activity estimation was based on previous high-

throughput perturbation experiments and a consensus gene signature for each pathway. The 

tool (R package, version 1.16.0) was run using default settings and gene-level statistics such 

as limma t-values were used as input since these represent the respective differential 

expression comparisons between the distinct clonal conditions. 

 

3.2.6.3 Transcription factor activity estimation 
Transcription factor activities were determined using the DoRothEA-decouple R 

framework [263]. DoRothEA (R package, version 1.6.0) contains information about interactions 

between TFs and their targets which were obtained from different types of evidence resources 

(A to C confidence levels). Simplified, the TF activity was estimated from the (deregulated) 

expression of its target genes (molecular footprint). The decouple R package (version 2.1.6, 

weighted mean as selected statistic) [264] was then used for the statistical evaluation of the TF 

activity significance. 
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3.2.6.4 Gene Set Enrichment Analysis (GSEA) 
The GSEA module implemented in the R package clusterProfiler (version 4.2.2, fgsea 

algorithm) [265] and the Hallmarks(H) gene sets from the msigdbr R package (version 7.5.1) 

(https://github.com/DavisLaboratory/msigdb, accessed: 07.11.22) were used for functional 

enrichment analysis. 

 

3.2.6.5 Reverse transcription 
Isolated mRNA was reverse transcribed using the RevertAid RT Reverse Transcription 

Kit according to the manufacturer’s instructions. Briefly, a 12 µl mix of 1 µg RNA, 1 µl oligo-dT 

primer and nuclease-free H2O was incubated at 70°C for 5 min. Afterwards, the reverse 

transcription mix (Table 12) was added and the reaction incubated according to Table 13. 

Table 12: Reverse transcription reaction mix. 

Reagent Volume/reaction 
5x Reaction Buffer 4 µl 
10 mM dNTP Mix 2 µl 

RiboLock RNase Inhibitor (20 U/µl) 1 µl 
RevertAid Reverse Transcriptase (200 U/µl) 1 µl 

 

Table 13: Reverse transcription thermocycler program. 
37°C 5 min 
42°C 1 h 
70°C 10 min 
4°C ∞ 

 

3.2.6.6 Quantitative reverse transcription polymerase chain reaction (RT-qPCR) 
10 ng of total cDNA in 5 µl were added per well in a 384-well plate. Afterwards, 6 µl 

qPCR master mix as in Table 14 were added and the reaction incubated as in Table 10 on a 

QuantStudio 5. The QuantStudioTM Design & Analysis Software v1.5.0 was used for the 

analysis. ACTB and GAPDH were used as reference genes [266]. Relative changes were 

calculated by the comparative Ct method (ΔΔCt method) [267] and relative abundances were 

visualized as 2-ΔΔCt.  

Table 14: RT-qPCR master mix. 

Reagent Volume/reaction 
SYBR Green PCR Master Mix 5.5 µL 

Left primer (20 µM) 0.2 µl 
Right primer (20 µM) 0.2 µl 
Nuclease-free H2O 0.1 µl 
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Table 15: RT-qPCR thermocycler program. 
50°C 2 min  
95°C 15 min  
95°C 15 s      45x 60°C 1 min 
95°C 15 s  
60°C 1 min  

       0.075°C/s 95°C 15 s 
 

3.2.7 Analysis of protein expression and phosphorylation 
3.2.7.1 Protein isolation 

Cell culture plates were taken from the incubator and immediately placed on ice. Cells 

were washed twice with ice-cold PBS and lysis buffer was added to the cells (6 well plate: 

40 μl, 10 cm dishes: 200 μl, 15 cm dishes: 400 μl). Cells were then detached using a cell 

scraper. The cell lysates were incubated on ice for 30 min and centrifuged for 20 min at 

15,000xg and 4°C. Subsequently, the supernatant was transferred to a fresh tube. The protein 

content was determined by BCA assay and the lysates were stored at -80°C. 

 

3.2.7.2 BCA assay 
Protein concentrations were determined by the PierceTM BCA Protein Assay Kit 

according to the manufacturer’s instructions. A serial dilution of BSA in PBS was used as 

reference and the colorimetric readout at 562 nm was performed using the GloMax Discover 

System.  

 

3.2.7.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 
Proteins were electrophoretically separated according to their molecular weight by 

discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) [268]. 

Proteins lysates were diluted with H2O and 4x Roti®-Load 1, and incubated at 95°C for 5 min. 

5 µl of the size marker PageRulerTM Prestained Protein Ladder or up to 25 µg of total protein 

were loaded per lane onto Mini-PROTEAN TGX Stain-FreeTM Gels. Electrophoresis was 

performed in 1x Running buffer at 140 V for 1 h.  

 

3.2.7.4 Western Blotting 
After electrophoretic separation, proteins were transferred onto polyvinylidene fluoride 

(PVDF) membranes using the Trans-Blot Turbo™ Mini PVDF Transfer Packs and the Trans-

Blot Turbo™ Transfer System according to the manufacturer’s instructions. Unspecific binding 

sites were blocked in blocking buffer for 1 h. Subsequently, the membrane was incubated with 

the primary antibody diluted in blocking buffer overnight at 4°C. The membrane was washed 

three times for 5 min each with TBS containing 0.1% Tween 20 (TBS-T) and then incubated 
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with the corresponding secondary antibody for 1 h diluted in TBS-T. After three washing steps 

as before with TBS-T, the membrane was imaged using the Odyssey Infrared Imaging System 

and quantification was performed using Image Studio Lite.  

 

3.2.8 Mass Spectrometry-based phospho-proteomics 
Protein lysates were prepared as described above. Consecutive sample preparation, 

mass spectrometry measurement and data analysis (3.2.8.1-3.2.8.4) were performed by Luisa 

Schwarzmüller.  

 

3.2.8.1 Sample preparation workflow for phospho-proteomics 
320 µg protein were precipitated according to Wessel and Flügge [269]. Four volumes of 

methanol and one volume of chloroform were added to the protein extract. In the next step, 

three volumes of H2O were added and the mixture centrifuged for 2 min at 18,000xg leading 

to the formation of three phase-separated layers. Here, the protein containing phase was 

between a chloroform phase and a H2O/methanol phase. The upper phase was discarded and 

the protein pellet was washed with three volumes of methanol and centrifuged. The 

supernatant was discarded and the protein pellet was dried and stored at -20°C. 

Tryptic digestion was performed next. Therefore, the protein pellet was reconstituted in 

8 M urea which was supplemented with 100 mM NaCl, 50 mM Tetraethylammonium bromide, 

cOmplete EDTA-free protease inhibitor and PhosSTOP phosphatase inhibitor. For the 

reduction of disulfide bridges, 10 mM Dithiothreitol (DTT) was added and the samples were 

incubated for 1 h at 27°C before alkylation with 30 mM iodoacetamide was performed for 

30 min. The reaction was quenched with 10 mM DTT for 15 min. Proteins were then digested 

with lysyl endopeptidase (Fujifilm, #125-05061) (enzyme-protein ratio: 1:100) for 4 h at 30°C. 

Afterwards, the urea concentration was diluted to 1.6 M and the proteins were digested with 

trypsin (enzyme-protein ratio: 1:50) for 16 h at 37°C. Formic acid with a final concentration of 

2% (v/v) was added to stop the digestion. 

The peptides were afterwards desalted using Sep-Pak C18 cartridges (Waters, 

#WAT054955). Previously, the cartridges had been conditioned with 100% acetonitrile. These 

were then washed with 0.6% acetic acid in 80% acetonitrile and equilibrated twice with 2.5% 

formic acid. Proteins were loaded onto the cartridges and the flow-through was collected. 

Loading and collection of flow-through was performed twice. Peptides were then washed four 

times with 2.5% formic acid before being eluted in two steps using 0.6% acetic acid in 80% 

acetonitrile. The eluate was vacuum centrifuged to dryness. 

Phosphorylated peptides contain a negative charge and were enriched using an 

Immobilized Metal Affinity Chromatography (IMAC) column (Thermo Fisher Scientific, 
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#063276). The column was prepared as follows: Iron Chloride (FeCl3) from previous 

enrichments was removed with 50 mM EDTA (pH 8) at a flow rate of 1 ml/min for 24 min and 

the column was flushed with H2O. Charging with 25 mM FeCl3 in 100 mM acetic acid was 

performed at a flow rate of 0.2 ml/min for 30 min. The column was then rinsed with 0.1% formic 

acid at a flow rate of 4 ml/min for 4 h and stored at 4°C until further use. 

To load the peptides onto the IMAC column, dried peptides were first reconstituted in 

30% acetonitrile with 0.07% trifluoroacetic acid (TFA). Loading onto the IMAC column was 

performed with a flow rate of 0.2 ml/min and elution was achieved using an ammonium 

gradient. The collected phospho-fraction was vacuum centrifuged to dryness. 

Self-made Stop and Go Extraction (STAGE) tips were used to desalt the enriched 

phospho-peptides. Therefore, three layers of C18 material (Supelco, #66883-U) were placed 

in a pipette tip. The C18 material was then pre-wetted with methanol and washed with 80% 

acetonitrile in 0.1% TFA. Equilibration was done with 0.1% TFA. Dried phospho-peptides were 

reconstituted in 0.1% TFA and loaded onto the STAGE tips. Peptides were then washed with 

0.1% TFA and eluted in two steps using 60% and 80% acetonitrile, respectively. The eluate 

was vacuum centrifuged to dryness and stored at -20°C until further analysis. 

 

3.2.8.2 Liquid Chromatography 
Peptides were dissolved in ULC/MS grade H2O containing 0.1% TFA and 2.5% 

1,1,1,3,3,3-Hexafluoro-2-propanol, sonicated for 5 min and transferred to autosamplers vials. 

Autosamplers vials were then placed in the autosampler module of the Ultimate 3000 liquid 

chromatography system. The LC was operated at a flow rate of 300 nl/min and the columns 

were heated to 35°C. First, peptides were loaded onto a trapping column (Thermo Fisher 

Scientific, 160454) using a mixture of 98% loading buffer A (0.1% TFA in H2O) and 2% loading 

buffer B (0.1% TFA in acetonitrile). Peptides were then eluted from the trapping column and 

loaded onto the analytical column (Waters, 186008795, BEH C18 130Å 1.7 µm 75x250 mm). 

Using a linear gradient of 2-28% acetonitrile, peptides were separated according to their 

hydrophobicity. Separated peptides were ionized by electrospray ionization with an applied 

voltage of 2,200 V. 

 

3.2.8.3 Mass Spectrometry in DIA mode 
Mass spectrometry was performed in data-independent acquisition (DIA) mode. MS1 

scans were acquired at a resolution of 120K covering the range from 350-1400 m/z. Maximum 

injection time was 45 ms and the automated gain control (AGC) target was set to 3e6. MS2 

scans were acquired in 48 precursor isolation windows of variable width and 1 m/z overlap that 

covered the range from 400-1200 m/z. The orbitrap was operated at a resolution of 30K and a 
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normalized collision energy of 26% was applied. Maximum injection time was 54 ms and the 

AGC target was set to 1e6. The total cycle time equaled 3.6 s. 

 

3.2.8.4 Data analysis 
Biognosys software Spectronaut (version 15) was used for protein identification and 

quantification form the obtained DIA raw data. For phosphopeptides, the newly developed 

identification and localization algorithm implemented in Spectronaut was used [270]. Identified 

phosphorylated peptides were site-collapsed using the Perseus [271] (version 1.6.2.3) plug-in 

PeptideCollapse [270] with a localization cut-off at 0.95. 

 

3.2.9 Estimation of kinase activities 
From the phospho-proteomics data, kinase activities were estimated by Dr. Efstathios-

Iason Vlachavas. The downstream analysis was performed using R/Bioconductor software (R 

version 4.1.0). Raw measurements were processed with the PhosR R package [272] (version 

1.4.0) and the intensities were normalized using the VSN R package (version 3.62.0) [273]. 

Phosphosites with limited evidence of quantification were excluded. Limited evidence of 

quantification was defined as not quantified in at least 2/3 samples in at least one biological 

condition. Differential analysis of phosphosites was performed with the limma R package 

(version 3.50.0). Kinase activities were determined in the next step. Simplified, the kinase 

activity was estimated from the phosphorylation of its substrates. The Omnipath R package 

(version 3.2.5) was used as database for prior knowledge as it contains information about 

signaling network interactions, enzyme-post translation modifications relationships, protein 

complexes, protein annotations and intracellular communication roles [274]. Normalized 

weighted mean was selected as statistical method for the decouple R package. 

 

3.2.10 Analysis of CPTAC-BRCA dataset 
The CPTAC-BRCA [234] dataset was analyzed to correlate in vitro and clinical findings. 

This dataset comprises 122 treatment-naïve breast cancer patients and contains clinical, 

genomic aberrations, gene expression, protein abundance and (phospho-)proteomics data. 

Two patients were removed because no information about their ER status was available. The 

cohort was initially classified into patients with ER+ (81 patients) and ER- disease (39 patients). 

Raw data from the patient dataset was obtained from the cBioPortal [275, 276]. Analysis of gene 

expression data and phospho-proteomics data were performed as described above by Dr. 

Efstathios-Iason Vlachavas. In the next step, the cohort was analyzed again on a per patient 

basis by Dr. Efstathios-Iason Vlachavas. Gene expression data was z-score transformed to 

compare per patient expression data to the rest of the profiled cohort. Pathway and 
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transcriptional factor activities were estimated using the scaled and normalized gene 

expression values as input. Single sample gene set enrichment analysis (ssGSEA) [277] was 

performed using the available script “ssgsea-gui.R” (https://github.com/broadinstitute/ 

ssGSEA2.0, accessed: 20.12.22) with default settings (sample.norm.type: none, weight: 0.75, 

statistic: area.under.RES, nperm: 1000, output.score.type: NES and correl.type: z.score). The 

hallmark signatures gmt file (version 7.5.0) (https://github.com/broadinstitute/ssGSEA2.0/tree/ 

master/db/msigdb, accessed: 20.12.22) and the scaled gene expression matrix were used as 

input. 

 

3.2.11 Statistical analysis 
Statistical analysis was performed using GraphPad Prism 9.4.1 as individually 

indicated. P values <0.05 were considered statistically significant and p values <0.05, <0.01, 

<0.001 and <0.0001 are indicated in figures with one, two, three and four asterisks 

respectively. 
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4 Results 

4.1 Cellular barcoding reveals distinct clonal complexities in endocrine therapy 
resistance 

In a previous PhD project [236], barcoded endocrine therapy resistant ER+ breast cancer 

cell lines were generated to study the clonal complexity of endocrine therapy resistance. There, 

Dr. Simone Borgoni had lentivirally transduced treatment-naïve T47D and MCF7 cell lines with 

the ClonTracer library [236]. Following an initial expansion, four different conditions were 

generated from the starting population with five biological replicates each. One set of replicates 

was immediately frozen down (‘Initial’) to assess the complexity of the transduced library. Of 

the other three sets of replicates, one set was kept under normal growth conditions (+E2), one 

set was treated with 4-OHT, the active metabolite of Tamoxifen, and one set was deprived of 

estrogen (-E2) to mimic clinically used aromatase inhibitors. Cells were chronically exposed to 

either growth condition for eight months (Figure 7).  

 

Figure 7: Schematic overview of cellular barcoding and resistance acquisition. T47D and MCF7 cells 
were transduced with the ClonTracer barcode library at a very low MOI and selected for successful integration 
events by Puromycin. For eight months, one set of replicates each was kept under normal growth conditions (+E2) 
or treated with either 4-OHT or estrogen deprivation (-E2) yielding TAMR and LTED cell lines (see below). RFP: 
red fluorescent protein. PuroR: Puromycin resistance gene. ori: origin of replication. Amp: Ampicillin resistance 
gene. LTRs: Long terminal repeats. Adapted from Dr. Simone Borgoni [236] and Bhang, Nature Medicine 2015 [195]. 
Created with BioRender.com. 

After eight months, cells chronically treated with 4-OHT or estrogen deprivation (-E2) 

had regained a proliferative phenotype indicative of endocrine therapy resistance. It should be 

noted however, that T47D LTED cells showed only slightly increased proliferation compared 
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to control (+E2) cells treated by estrogen deprivation (-E2). The cells rendered resistant to 

4-OHT and estrogen deprivation (-E2) are accordingly referred to as TAMR and LTED cells, 

respectively (Figure 8). 

 

Figure 8: Proliferation of barcoded cell pools. Cells (+E2, TAMR, LTED) were kept in or treated with 
the indicated media (+E2, +4-OHT, -E2). Control cells (+E2) were pre-treated for 14 days by estrogen deprivation 
(-E2). Cell numbers were determined by microscopy-based nuclei counting at day 0 (d0) and day 7 (d7). Individual 
barcoded replicates were combined and the average (mean) ± SEM is shown. n = 1. * represents p<0.05 and ** 
represents p<0.01 as determined by unpaired two-tailed t-tests. Data generated by and figure adapted from Dr. 
Simone Borgoni [236].  

After having confirmed the resistance of the TAMR and LTED cell lines, the barcode 

complexity of all initial, +E2, TAMR and LTED cell line pools was assessed by Dr. Simone 

Borgoni [236]. In brief, barcode regions of complex cell pools were deeply sequenced by Dr. 

Simone Borgoni and deconvoluted by Dr. Luca Penso Dolfin. Figure 9 highlights the number 

of reads per sample and the detected barcodes in the T47D and MCF7 cell line models.  

 

Figure 9: Number of reads and identified barcodes. Number of total reads for T47D (A) and MCF7 (B) 
as well as number of identified barcodes for T47D (C) and MCF7 (D) are shown. C and D * represents p<0.05, *** 
represents p<0.001 and **** represents p<0.0001 as determined by ordinary one-way ANOVA with Tukey multiple 
comparisons test. Initial cell populations were not included in the statistical comparisons. Data generated by and 
figure adapted from Dr. Simone Borgoni [236].  

Sequencing of individual samples generated on average 9-16x106 reads for T47D and 

13-18x106 reads for MCF7 replicates. Additionally, no sample dropped out during the 

sequencing pointing to similar coverage across all replicates assessed (Figure 9 A and B). For 
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T47D and MCF7, in the initial cell populations a median of 38.6*103 and 115.8*103 individual 

barcodes were detected, respectively. For MCF7, the obtained number of detected barcodes 

was close to the theoretically delivered 100.0*103 individual barcodes, whereby only half of the 

expected barcodes were detected for the T47D. Continuous subculturing under control (+E2) 

conditions led to a strong decrease in the amount of detected barcode for both cell lines. A 

further reduction in detected barcodes was evident in the TAMR and LTED conditions (Figure 

9 C and D). These findings point to a random dropout of clones during subculturing and further 

enrichment of clones in response to the applied endocrine therapies. 

 

4.2 Barcode composition analysis of final cell pools 
Dr. Simone Borgoni was then further interested in the frequency and distribution of 

specific barcodes across replicates to see if different or recurrent barcodes would be enriched 

under control (+E2) or treatment (TAMR, LTED) conditions [236]. The overall barcode 

distribution is shown in Figure 10. 

 

Figure 10: Barcode composition analysis of final cell pools. The detected barcodes in the control 
(+E2), 4-OHT treated (TAMR) and estrogen deprived (LTED) cell pools are shown for T47D (A) and MCF7 (B). For 
T47D TAMR and LTED (A): the overall top 25 barcodes are differentially color-coded. An additional clonal 
population is highlighted in the +E2 replicates in green. For MCF7 TAMR and LTED replicates (B): the top five 
detected barcodes in each TAMR and LTED replicate are differentially color-coded. Data generated by and figure 
adapted from Dr. Simone Borgoni [236]. 

For T47D TAMR replicates, the dark red and blue barcodes were strongly enriched in 

four out of five replicates pointing to the selection of pre-existing clones. Conversely, the 

detection of multiple and distinct barcodes in the MCF7 TAMR replicates pointed to resistance 

acquisition. It should be highlighted as well that under LTED conditions, in one T47D and MCF7 

replicate each, a single barcoded clonal population almost exclusively dominated the 

respective replicates (T47D LTED_2 and MCF7 LTED_5), pointing to a strong selective 

advantage of these clonal populations. In the T47D model, the orange clonal population was 
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of key interest as it was enriched under control (+E2) and treatment (LTED) conditions pointing 

to selective advantages under normal growth as well as treatment conditions. The frequency 

of the orange clonal populations in individual +E2 and LTED replicates ranged from less than 

5% (+E2_2, LTED_2) to up to 50% (+E2_5, LTED_1, Figure 10 A) pointing to a recessive or 

dominant character compared other barcoded clonal populations, respectively.  

Dr. Borgoni next wanted to identify chromosomal loci where the lentivirus had 

integrated, to rule out that viral integration into gene coding or regulatory regions could have 

been drivers of the clonal selection. To this end, five barcoded replicates were analyzed by 

LAM-PCR at Genewerk GmbH followed by Illumina sequencing [236]. Dr. Simone Borgoni then 

correlated the barcode read data (as analyzed by Dr. Luca Penso Dolfin) with the integration 

site data to match individual barcodes and their likely integration sites. Exemplarily, the brown 

clonal population made up >90% of the T47D LTED_2 replicate (Figure 10 A). >99% of viral 

DNA for this replicate were found to be integrated into Chr4:112,000,728 (GRCh38/hg38) 

suggesting that the brown barcode had been integrated into this genomic region encoding for 

intron 2 of LINC02945, a gene with unknown significance. Based on these findings, Dr. Simone 

Borgoni concluded for selected individual replicates that the respective viral integration sites 

did not disrupt any coding or regulatory regions and, therefore, were not drivers of clonal 

selection per se.  
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4.3 Project overview 
The results I have described so far were generated by Dr. Simone Borgoni and are 

described in more detail in his PhD thesis [236]. Based on these tools and findings, I took over 

the project starting with the barcoded complex control (+E2) and endocrine therapy resistant 

(TAMR and LTED) cell pools. The focus of my PhD project was then to identify and perturb 

individual clonal resistance drivers in selected replicates of interest. To tackle this challenge, I 

subdivided my project into three major parts (Figure 11).  

Initially, I performed single cell plating to deconvolute complex cell pools and obtain 

clones originating from a single cell. Multiple clones coming from the same progenitor cell as 

determined by the same barcode were isolated for selected complex cell pools. Afterwards, I 

expanded the clones and characterized them on phenotypic level mainly by proliferation 

assays, on transcriptomic level by RNA-Seq, and by Mass spectrometry-based (phospho-) 

proteomics. Based on the gene expression and phospho-proteomics data, the activities of 

pathway, transcription factors and kinases were determined. Treatment- and clone-specific 

alterations and similarities between different endocrine therapy resistant clones were identified 

and highlighted. I then perturbed individual private (limited to a single clonal population) as well 

as shared (by different clones) resistance drivers by knockdown or inhibitor treatments. Finally, 

I highlighted the clinical significance of individual in vitro resistance drivers. 

 

Figure 11: Project overview. 1) Deconvolution of complex cell pools to obtain clonal populations 
originating from a single cell with known barcode. Green frame indicates the detection window for a single cell to 
be dispersed 2) Characterization by proliferation assays, expression analysis by RNA-Seq and (phospho-) 
proteomics (left to middle right). Based on the obtained data, activities of signaling pathways, transcription factors 
and kinases were determined (right). 3) Targeting of potential resistance drivers with siRNA (left) or inhibitors 
(middle). Correlation of in in vitro identified resistance drivers with clinical findings (right). Created with 
BioRender.com. 
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4.4 Deconvoluting the clonal complexity of barcoded cell pools 
Deconvolution of complex cell pools had not been established in the lab. Therefore, I 

first did a proof-of-principle experiment to validate the applicability of the available experimental 

setup. This work was done with help of Dr. Rainer Will (Cellular Tools Core Facility, DKFZ). 

T47D cells were initially transduced with eight different lentiviral particles containing known 

barcodes from the ClonTracer library [195]. Cells were then grown out, mixed in equimolar ratios 

and spotted using the Cytena’s F.SIGHT spotter. Clones originating from single cells were 

grown out and the outgrowth monitored with the NYONE microscope. Barcodes were then 

analyzed by Sanger sequencing (Figure 12). 

 

Figure 12: Deconvolution overview. Figure adapted from our Application Note [238]. Created with 
BioRender.com. 

After five weeks, 279 clones were obtained with at least 20 cells resulting in a clonal 

outgrowth rate of 15% (279 clones obtained/20*94 cells spotted) under control (+E2) growth 

conditions. PCR products were generated and analyzed by Sanger sequencing for 94 clones 

as exemplarily shown in Figure 13 A and B. Each barcode was on average detected 11.75 

times (12.50%), which represents the expected absolute frequency of 94 analyzed clones 

characterized by eight different barcodes as indicated by the dotted line in Figure 13 C. The 

details of this experiment have been published in an Application Note [238]. 
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Figure 13: Barcode PCR and distribution of identified barcodes. A and B EtBR stained agarose gel and Sanger 
chromatogram of amplified barcode sequence. A F5 represents T47D LTED_2 F5 clone (see below) and ‘WTs w/o 
BC’ refers to non-barcoded T47D and MCF7 cell pools used as additional controls. B Barcode 
(AGACTCTCTGTGACAGAGACTCTGTGTGAG) sequence represents orange barcode. C 94 clones were analyzed 
by sequencing. Expected frequency per barcode: 12.50 (dotted line). Measured mean: 12.49. Subfigure C was 
adapted from our Application Note [238]. 
 

4.5 Deconvoluting endocrine therapy resistant cell pools 
Having proven the reliability of the deconvolution protocol and technology, I next 

wanted to go ahead with the deconvolution of individual therapy-resistant clones. I selected 

different replicates for deconvolution as I next wanted to identify and then validate clonal 

resistance drivers (Figure 14). In the T47D cell line model, clones characterized by the orange 

barcode were of strong interest since cells carrying the same barcode had been enriched under 

+E2 conditions and also under estrogen deprivation. I decided for the +E2_5 and LTED_1 

pools since both contained the recurrently enriched orange clonal population with a share of 

roughly 50%. The LTED_2 pool was chosen for deconvolution as well since the brown clonal 

population dominated this replicate pointing to a strong selective advantage of this clonal 

population. Given a temporary shift in the clonal makeup of this pool (Supplementary Figure 

1), I was not able to isolate brown clones but rather obtained orange clones also from the 

LTED_2 replicate. Besides the +E2 and LTED replicates, two TAMR replicates were 

additionally chosen for deconvolution. Four out of five replicates (TAMR_1, 3, 4 and 5) were 

mainly dominated by two clonal populations characterized by a dark red or blue barcode 

indicative of selection of pre-existing clones. These two clonal populations were also present 

in the fifth replicate (TAMR_2), however seemed to have a selective disadvantage compared 

to two other clonal populations indicated by the olive and turquoise colors (Figure 10 A). In 

line, I chose the TAMR_2 and TAMR_4 replicates for further deconvolution. Sanger 

sequencing the barcode region of single cell clones obtained from the T47D TAMR_2 and 

TAMR_4 replicates revealed the integration of both (dark red and dark blue) barcode into the 

same cell of origin. Accordingly, the dark blue and dark red barcodes represented the same 

clonal population and not two distinct clonal populations as originally assumed. Accordingly, 

they are described as purple TAMR henceforth and shaded colors in Figure 14 highlight clones 

that are characterized by more than one barcode.  
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For MCF7, TAMR clones had shown up more heterogeneous compared to their T47D 

counterparts in the initial sequencing experiment (compare Figure 10), as more and different 

barcodes were enriched in the final cell pools. This pointed to a rewiring of persisting cells as 

predominant resistance mechanism. I selected only one TAMR replicate, namely TAMR_1, for 

deconvolution as I did not expect to recover several clones sharing the same barcodes from 

any replicate. In the LTED setting, I chose the LTED_2 and LTED_5 replicates as the LTED_2 

replicate was made up of different clonal populations while the LTED_5 replicate was 

dominated by a single red clonal population pointing to a strong selective advantage of this 

clonal population.  

 

Figure 14: Overview of isolated clones from selected T47D and MCF7 replicates. Single cell clones 
are color coded according to the clonal population of the complex T47D (A) and MCF7 (B) cell pools they originated 
from. Color description as in Figure 10. Dashes: Clones characterized by at least two distinct barcodes. ‘WT w/o 
BC’ indicates non-barcoded T47D and MCF7 WT cell lines that were used as additional controls throughout the 
study. Barcode sequences, clone names and the color coding of all isolated clones presented here are shown in 
Supplementary Table 1. Cancer cells were created with BioRender.com. 

From the original barcode analysis, MCF7 TAMR_1 was thought to be made up of at 

least 15 different clonal populations (Figure 10 B). After deconvolution and isolating single 

cells, the Sanger chromatograms were too complex to be analyzed and single clones likely 

contained multiple different barcode sequences (data not shown). Also, the Sanger 

chromatograms of MCF7 LTED_2 clones were too complex to be analyzed by Sanger 

sequencing, which again pointed to the presence of multiple barcodes having integrated into 

single cells as indicated by the shaded color coding in Figure 14. To determine the barcode 

composition of the individual MCF7 TAMR_1 and LTED_2 clones, I deeply sequenced their 

barcode region. To this end, I adjusted the NGS primers used by Bhang et al. [195] and PCR-

amplified the barcode region to be sequenced on the MiSeq V2 300 Nano. In total, I subjected 

41 MCF7 TAMR_1 and seven MCF7 LTED_2 clones for NGS of the barcode region. 37 of the 

isolated MCF7 TAMR_1 clones were characterized by the same 17 barcodes (Figure 15) and 
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three clones were randomly chosen for further analysis. The two clonal populations isolated 

from the LTED_2 replicate were characterized by five and six integrated barcodes, respectively 

(data not shown). The isolated clones are accordingly referred to as blue TAMR_1 as well as 

yellow and pink LTED_2, in line with their color coding in Figure 14 B. 

 

Figure 15: Barcode composition analysis of MCF7 blue TAMR_1 clones. A and B show a picture from 
the cell spotting and the attachment, respectively, highlighting the single cell origin of the B6 clone. C The percentual 
reads in the 37 individual clones included in the analysis are depicted for each detected barcode (BC) as violin 
plots. * Clustered reads of highly similar reads. ** One outlier was identified by the ROUT method (Q = 0.1%) and 
removed from the data. Barcode reads were determined from the sequencing data by Dr. Birgitta Michels. 

In total, I established 28 resistant (T47D: 17, MCF7: 11) and 8 control (all T47D) clonal 

cell lines. Barcode sequences and color coding for all isolated clones are shown in 

Supplementary Table 1. MCF7 +E2 pools were by far more heterogeneous than T47D +E2 

pools as evident from the barcode sequencing (Figure 10) and therefore I did not try to 

deconvolute the MCF7 +E2 pools but included the barcoded cell pools +E2_1, +E2_3 and 

+E2_5 as controls. Besides barcoded cell pools which had undergone clonal restriction during 

frequent passaging in limited culture for eight months (compare Figure 9 C and D), I included 

non-barcoded T47D and MCF7 WT cell pools as their cellular complexity was presumably 

larger compared to the barcoded control cell lines. Non-barcoded WT cell lines are indicated 

by ‘WT w/o BC’ (Figure 14).  

In the next step, I was interested whether the enrichment of the isolated clones in the 

cell pools (Figure 14) was driven by biology or by an artifact. Specifically, enrichment of clones 

in the initial cell pools would have given individual clones a higher probability of survival 

compared to lowly abundant clones. To assess the potential enrichment of individual clones 

characterized by their barcodes, we plotted all barcode reads and specifically highlighted 

barcodes representing clones isolated from the individual replicates (Figure 16). Here, 

enrichment of isolated clones in the final T47D and MCF7 TAMR and LTED pools was not 

arbitrarily due to their enrichment during the initial expansion of untreated cells as neither of 

the barcodes characterizing the isolated clones was among the top enriched barcodes in the 
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initial replicates. Exemplarily for T47D clones, the turquoise barcode characterizing a clonal 

population from the TAMR_2 replicate was among less abundant barcodes (exemplified by 

barcode ‘c’ in Initial cell pools in Figure 16 A). For MCF7, barcodes integrated into the blue 

TAMR_1 clones were among the least abundant barcodes (exemplified by barcode ‘m’ in 

Initial_1 and barcode ‘a’ in Initial_3 in Figure 16 B). 

 

Figure 16: Frequency of barcode reads in T47D and MCF7 replicates. Barcodes whose sum were at 
least 5x105 for all T47D (A) or MCF7 (B) replicates were log2 normalized and are depicted as violin plots using 
ggplot2 in R [252, 278]. Barcodes from isolated TAMR and LTED clones are labelled alphabetically. Barcode labeling 
for T47D (A): a: orange +E2_5 and LTED barcode; b: green +E2_5 barcode; c: turquoise TAMR_2 barcode; d: dark 
red TAMR_2 and TAMR_4 barcode; e: dark blue TAMR_2 and TAMR_4 barcode. Barcode labeling for MCF7 (B): 
a-q: blue TAMR_1 barcodes; r-v: yellow LTED_2 barcodes; w-ö: pink LTED_2 barcodes; ü: red LTED_5 barcode. 
Analyses were performed by Dr. Birgitta Michels. The sequences of barcodes denoted here by letter coding are 
shown in Supplementary Table 1. 

Next, I investigated if the integration of the viral sequences had disrupted gene coding 

or regulatory regions in the isolated clones. Therefore, I utilized the integration site analysis 

data from the T47D +E2_2, TAMR_2 and LTED_2, and MCF7 +E2_3 and LTED_5 cell line 

pools which was generated by Genewerk GmbH on behalf of Dr. Simone Borgoni [236]. Here, I 

correlated barcode frequencies in individual replicates, which were generated by Dr. Luca 

Penso Dolfin, and the frequency of individual integration sites in the respective cell lines as 

provided by Genewerk GmbH. Predicted integration sites were then validated by a PCR-based 

assay for isolated clones if possible. Specifically, I could show for the isolated MCF7 red 

LTED_5 clones that all clones were represented by the same barcode (Supplementary Table 

1) and that they contained the same viral integration side in Chr4:110,457,931 (Supplementary 

Figure 2 B). Similarly, I could show that all clones isolated from T47D turquoise TAMR, purple 

TAMR, orange +E2_5 as well as orange LTED_1 and LTED_2 clonal populations contained 

the same barcodes (Supplementary Table 1) and the same viral integration sites characteristic 

for their respective clonal populations (Supplementary Figure 2 C and D). Two barcodes each 

integrated into intergenic sequences (> 15 kb distance to nearest gene) and two barcodes 

integrated into intronic genomic regions of unknown significance (ENSG00000226965 and 

ENSG00000253901). To rule out potential effects of viral integrations on ENSG00000226965 
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and ENSG00000253901 expression, I utilized our RNA-Seq data. Here, no evidence of 

expression was found for either gene. One barcode characterizing the T47D purple TAMR 

clones integrated into intron 1 of TP63. Gene expression analysis showed no significant 

deregulation of TP63 expression in T47D purple TAMR clones compared to the orange and 

green +E2_5 control cells. One viral particle carrying the orange barcode integrated into intron 

4 of DNAJC24. The gene expression data showed significantly higher expression in orange 

LTED clones compared to orange +E2_5 clones. Since both clonal populations are 

characterized by the same integration site, DNAJC24 upregulation appeared to be a treatment 

(-E2) specific effect. Taken together, these findings strongly suggest that a potential role of the 

viral integration sites in the selection of specific clones and in resistance acquisition at least 

for these clones can be ruled out (Supplementary Table 2). 

 

4.6 Endocrine therapy resistance is not driven by ESR1 hotspot mutations 
After having isolated single clones and verified their clonality, I was interested whether 

resistance to Tamoxifen and/or estrogen deprivation was the result of a commonly observed 

resistance mechanism, namely ESR1 hotspot mutations affecting codons 536 to 538 (RefSeq 

ID: NM_000125.4). I PCR-amplified and sequenced the genomic region covering these 

mutational hotspots in a representative clone from every barcode, replicate and condition. 

Additionally, I included non-barcoded T47D and MCF7 WT in the analysis. All utilized cell lines 

and clones showed wildtype sequence for this ESR1 hotspot region and no mutations (Figure 

17). Accordingly, endocrine therapy resistance in isolated clones was not driven by ESR1 

hotspot mutations covering codons 536 to 538. 

 

Figure 17: Sequencing of ESR1. PCR amplification (A) and sequence alignment using Snapgene (B) of 
genomic ESR1 region covering the hotspot codons 536 to 538 for non-barcoded control cell lines (WT) as well as 
endocrine therapy sensitive and resistant cell lines and clones. A single representative clone was used for each cell 
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line or isolated clonal population. T_2: TAMR_2. T_4: TAMR_4. L_1: LTED_1. T_1: TAMR_1. L_2: LTED_2. L_5: 
LTED_5. Reference sequence was obtained from RefSeq ID: NM_000125.4 (accessed 13.12.22). 

 

4.7 Barcoded clonal populations can be robustly distinguished  
So far, I could show that isolated clones were enriched in the final cell pools because 

of biology rather than stochasticity and that clones characterized by the same barcode were 

of clonal origin. Further, resistance to Tamoxifen and estrogen deprivation was not driven by 

ESR1 hotspot mutations covering codons 536-538, a commonly observed endocrine therapy 

resistance mechanism. I subsequently grew out the single cell clones for further analysis. 

All single cell pools had originated from an individual cell dispensed either manually or 

by a cell spotter. Therefore, the single starting cell had to undergo many cell divisions and this 

process took between three to seven months for individual clones. As described in the 

Materials and Method section (Table 2), treatment was additionally withdrawn from some 

clones for an initial four-week period since these clones had previously not formed colonies 

after singularization in the presence of the applied therapy. In total, individual clones were 

passaged for over twelve months between barcoding of cell pools and final analysis of 

individual clones. Accordingly, I was interested whether clonal cell populations with the same 

barcode behaved similarly and could be distinguished from clonal cell populations 

characterized by different barcodes or if evolution on cellular level led to lineage convergence 

of different clonal populations. To answer this question, we utilized the RNA-Seq data and a 

hierarchical clustering approach of the 200 most variable genes (Figure 18).  

 

Figure 18: Clustering of clones based on the top 200 most variable genes. The R package 
ComplexHeatmap (version 2.10.0) was used to generate heatmaps of the top 200 most variable genes in the T47D 
(A) and MCF7 (B) cell lines. For genes and columns, hierarchical clustering was applied (Euclidean distance, 
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complete linkage). The illustrated values are scaled log2-counts per million (CPM) (TMM normalized) values. 
Analyses were performed by Dr. Efstathios-Iason Vlachavas.  

Based on these most variable genes, clonal populations with the same barcode 

clustered together and could clearly be distinguished from clonal populations characterized by 

different barcodes. For the T47D cell line models, orange and green +E2_5 clones originated 

from the same parental replicate (+E2_5) but could be clearly separated. Even more 

interestingly, turquoise TAMR_2 clones clustered separately from purple clones isolated from 

TAMR_2 and TAMR_4 replicates. Accordingly, the clonal identity as defined by the respective 

barcode (in this case turquoise and purple) was more discriminatory than the complex cell pool 

(in this case TAMR_2 and TAMR_4), from which cells had been isolated. Orange clones 

formed two clusters based on the treatment (+E2, LTED) they had originated from. Of note, 

orange clones isolated from LTED_1 and LTED_2 replicates clustered together highlighting 

their similarity across biological replicates (Figure 18 A). Two distinct barcodes/clonal 

populations (yellow and pink) were also isolated from the MCF7 LTED_2 replicate and these 

clustered separately from each other (Figure 18 B). Given the separation of distinct clonal 

populations isolated from control (+E2) and treatment conditions (TAMR, LTED) in both cell 

line models, it is unlikely that the clustering approach was affected by the different media 

conditions of the clones. In conclusion, the isolated clonal populations were stable in their 

trajectories over time and no signs of lineage change were detected.  

 

4.8 Endocrine therapy resistant clones display persisting or fast proliferating 
phenotypes 

After having validated the lineage stability of the isolated clones, I assessed the 

proliferation of all 28 resistant (T47D: 17, MCF7: 11) and 13 control (T47D: 9, MCF7: 4) clones 

and cell pools. As performed previously for the barcoded +E2 pools (Figure 8), control (+E2) 

clones and pools were pre-treated for 14 days by estrogen deprivation. Additionally, these cell 

lines were also pre-treated with 4-OHT as further comparison (Figure 19). 

The barcode analysis of the T47D +E2_5 cell line pool (Figure 10 A) revealed that the 

orange clonal population made up roughly 50% of the whole replicate while the green clonal 

population made up less than 5%. Hence, a stronger proliferation of the orange clones 

compared to the green clones had been expected. However, green clones isolated from the 

T47D +E2_5 replicate proliferated significantly stronger than the orange clones originating from 

the same parental replicate. Moreover, orange clones roughly proliferated at least as much as 

non-barcoded heterogeneous T47D WT cells (Figure 19 A). These findings point to selective 

advantage of orange over green clones in the T47D +E2_5 replicate that is not based on 

cellular proliferation. 
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21 days of treatment with 4-OHT led to a complete proliferative block of non-barcoded 

T47D WT cells. Most clones isolated from the two distinct (turquoise and purple) T47D TAMR 

clonal populations proliferated stronger than the pre-treated T47D WT cells. Specifically, T47D 

turquoise TAMR_2 B3 and purple T47D TAMR_2 C4 and H2 however showed weak 

proliferation while the other two turquoise and four purple T47D TAMR clones showed 

significantly stronger proliferation compared to the pre-treated T47D WT cells (Figure 19 B).  

 

Figure 19: Proliferation of T47D and MCF7 clones. A Proliferation of T47D orange and green +E2_5 
clones. B Proliferation of T47D turquoise and purple TAMR clones. C Proliferation of T47D orange +E2_5 and 
LTED clones. Plates were coated with poly-L-lysine for the proliferation assay. D Proliferation of MCF7 blue 
TAMR_1, yellow and pink LTED_2 and red LTED_5 clones. A-D Cells were kept in or treated with the indicated 
media (+E2, +4-OHT, -E2). Cell numbers were determined by microscopy-based nuclei counting at day 0 (d0) and 
day 7 (d7). WT indicates non barcoded cells. ‘ indicates 14 day pre-treatment with estrogen supplementation (+E2), 
+4-OHT or by estrogen deprivation (-E2) and then continued treatment for the duration (7 days) of the proliferation 
assay as indicated. n ≥ 3 with ≥ 5 technical replicates for all assays. Shown are mean ± SEM. A and C Clones with 
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the same barcode originating from the same treatment were grouped and the grouped clones compared. A ** 
represents p<0.01 by unpaired two-tailed t-tests. B to D * represents p<0.05, ** represents p<0.01, *** represents 
p<0.001 and **** represents p<0.0001 as determined by one-way ANOVA with Tukey or Dunnett multiple 
comparisons test. D Statistical comparison is shown against +E2_5’ in the +4-OHT and -E2 treated comparisons. 
The trend is the same for +E2_1’, +E2_3’ and E2_5’ (data not shown). A-D Labeling such as ‘B8’ designates 
individual clones as in Supplementary Table 1. 

For the T47D cell line, orange clones deprived of estrogen for over one year (LTED) 

showed an almost non-proliferative phenotype resembling dormant/persister cells. A similar 

phenotype could be induced in T47D WT cells and orange clones isolated from the +E2_5 

replicate after a total of 21 days of estrogen deprivation (-E2). In accordance with a possible 

persister phenotype, T47D orange LTED clones regained a strong proliferative phenotype 

within 21 days of estrogen supplementation and proliferated similarly to orange clones isolated 

from the +E2_5 pool and kept with estrogen supplementation at all times (+E2, Figure 19 C).  

In the MCF7 model, pretreatment with 4-OHT or estrogen deprivation led to a strong 

and uniform reduction of proliferation in the barcoded +E2 pools. Non-barcoded MCF7 WT 

cells however were hardly affected by prolonged estrogen deprivation, which might be due to 

the much higher complexity of this cell population compared to the +E2 pools having passed 

clonal restriction during frequent passaging in limited culture. All isolated blue TAMR_1 as well 

as yellow and pink LTED_2 clones proliferated significantly stronger under the applied 

endocrine therapy compared to the respective +E2 cell pools treated with either 4-OHT or 

estrogen deprivation. Similarly, two out of three isolated red LTED_5 clones proliferated 

significantly stronger than the pre-treated +E2 cell pools, while the third clone (E4) showed a 

stronger, but statistically not significant, proliferation (Figure 19 D).  

Given the divergence in response to estrogen deprivation between non-barcoded (WT) 

and barcoded MCF7 control cell lines (+E2_1, +E2_3, +E2_5), I additionally tested all orange 

and green T47D +E2_5 clones for their respective responses to 4-OHT treatment and estrogen 

deprivation (Supplementary Figure 3). All T47D orange and green +E2_5 clones except for a 

single clone showed almost complete abrogation of cellular proliferation under short-term 

4-OHT treatment as observed also for pre-treated non-barcoded T47D WT cells (shown in 

Figure 19 B). Only T47D orange +E2_5 B8 showed minor but still significantly stronger 

proliferation under short-term 4-OHT treatment compared to non-barcoded T47D WT cells 

(Supplementary Figure 3 A). Additionally, 21 day estrogen deprivation uniformly abrogated 

cellular proliferation in orange and green T47D +E2_5 clones (Supplementary Figure 3 B). 

Given the uniform responses of T47D WT cells as well as T47D orange and green +E2_5 

clones to short-term 4-OHT treatment and estrogen deprivation (-E2), I kept T47D WT as 

control in Figure 19 B. 

Taken together, MCF7 TAMR and LTED clones showed stronger proliferation than their 

respective T47D counterparts. Moreover, individual clones showed some variation in their 

proliferative responses. Despite their variation on phenotypic levels, the unsupervised 
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hierarchical clustering approach robustly distinguished different populations based on their 

clonal origin (Figure 18). Hence, the separation did also not represent an artefact originating 

from different levels of proliferation further highlighting the biological differences of the 

individual clonal populations. In line, gene set enrichment analysis of the top 200 most variable 

genes showed no enrichment of Hallmark gene sets related to proliferation or cell cycle 

progression (Supplementary Table 3 and Supplementary Table 4). 

 

4.9 Differential pathway activation in endocrine therapy resistant clones 
After I confirmed stable clonal trajectories and highlighted the phenotypic heterogeneity 

of the T47D and MCF7 TAMR and LTED clones, I next wanted to uncover pathway-wide 

alterations. Therefore, the RNA-Seq data was further analyzed by Dr. Efstathios-Iason 

Vlachavas using PROGENy [261, 262] to elucidate differential activities of 14 major pathways in 

the TAMR and LTED clones. The pathway activation pattern of T47D and MCF7 TAMR and 

LTED clones are shown in Figure 20 and Figure 21, respectively. 

There, pathway activation or repression in each comparison does not mean an absolute 

activation or repression in either condition but rather elevated or reduced activities relative to 

the other condition in the binary comparison. Along these lines, orange and green +E2_5 

clones were used as reference to find deregulated pathways in T47D TAMR and LTED clones. 

Two reference clones (orange and green +E2_5) were employed to correct for potential clone-

specific effects. Orange LTED clones were compared also to orange +E2_5 clones since both 

clonal populations descended from the same cell of origin and this comparison might highlight 

clonal adaptations to estrogen deprivation. As stated above, the MCF7 +E2 replicates were 

considered too complex to be deconvoluted (Figure 10 B), and the three control cell lines 

+E2_1, +E2_3 and +E2_3 were used as controls. 

Turquoise and purple T47D TAMR clones showed shared activation of androgen, 

hypoxia, transforming growth factor (TGF) ß, and vascular endothelial growth factor (VEGF) 

signaling. For turquoise T47D TAMR_2 clones, their activation scores ranging from 1.69-1.87 

marginally missed statistical significance. Activation of p53 signaling was the only pathway to 

be upregulated in T47D orange LTED_1 and LTED_2 clones compared to (green and) orange 

+E2_5 clones. All T47D TAMR and LTED clones showed significant downregulation of 

estrogen, MAPK and Janus kinases-signal transducer and activator of transcription (JAK-

STAT) signaling compared to the orange and green +E2_5 clones (Figure 20). 
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Figure 20: Pathway activity analysis of T47D clones. Absolute NES scores ≥ 2 were considered 
significant as indicated by dashed lines. Significantly activated pathways in TAMR and LTED clones are highlighted 
in red whereas significantly downregulated pathways in TAMR and LTED clones are highlighted in blue. Analyses 
were performed by Dr. Efstathios-Iason Vlachavas. 

In the MCF7 LTED clones, JAK-STAT was the most prominently upregulated pathway 

while no activation was observed for MCF7 blue TAMR_1 clones. NFκB signaling on the one 

hand was among the strongest activated pathways compared to the +E2 control pools in all 

MCF7 TAMR and LTED clones. Estrogen signaling on the other hand was the only pathway 

to be significantly downregulated in all MCF7 TAMR and LTED clones (Figure 21). The 

significant repression of estrogen signaling in all T47D and MCF7 TAMR and LTED clones 

was further in accordance with the absence of ESR1 hotspot mutations covering codon 536 to 

538 (Figure 17), which are known to induce estrogen independent signaling [95-97, 279-281]. This 

limited overlap of commonly deregulated pathways highlighted the strong heterogeneity in the 

different T47D and MCF7 TAMR and LTED clones. 
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Figure 21: Pathway activity analysis of MCF7 clones. Absolute NES scores ≥ 2 were considered 
significant as indicated by dashed lines. Significantly activated pathways in TAMR and LTED clones are highlighted 
in red whereas significantly downregulated pathways in TAMR and LTED clones are highlighted in blue. Analyses 
were performed by Dr. Efstathios-Iason Vlachavas. 

 

4.10 Differential transcription factor activity in endocrine therapy resistant clones 
As PROGENy analysis [261, 262] had revealed differential pathway activations, I was next 

interested in differential activation or repression of TFs in the T47D and MCF7 TAMR and 

LTED clones. To this end, TF activities were estimated from the expression of their 

corresponding downstream targets using DoRothEA [263]. This analysis was performed by Dr. 

Efstathios-Iason Vlachavas. Tables showing the top 10 activated and repressed TFs in T47D 

and MCF7 TAMR and LTED clones compared to their respective control clones and cell lines 

are listed in the appendix (Supplementary Table 5 and Supplementary Table 6, respectively). 

Key findings from the analysis of TF activities are shown in Figure 22. 

In line with the findings for the activation of different signaling pathways, heterogeneity 

was further evident from the activity of TFs in the T47D and MCF7 TAMR and LTED clones. 

On a global scale, significantly more TFs were activated in the MCF7 TAMR and LTED clones 

compared to T47D TAMR and LTED clones while conversely, the opposite was true for 

downregulated TFs between the two cell line models (Figure 22 A). Only three TFs, namely 
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ELF3, GRHL2 and KLF5, were significantly activated in all T47D and MCF7 TAMR and LTED 

clones (Figure 22 B). No TF was significantly repressed in all T47D and MCF7 TAMR and 

LTED clones (Figure 22 C). 

 

Figure 22: Activated and repressed transcription factor activities in a comparison of T47D and 
MCF7 clones. A Absolute numbers of significantly deregulated TFs in T47D and MCF7 TAMR and LTED clones. 
‘up’ denotes activation while ‘down’ denotes repression. * represents p<0.05 and ** represents p<0.01 as 
determined by unpaired two-tailed t-tests. Commonly and specifically activated (B) and repressed (C) TFs in all 
T47D or MCF7 TAMR and LTED clones. Only significant hits (absolute activity score ≥ 2) are shown. T47D TAMR 
and LTED clones were compared to orange and green +E2_5 control clones. MCF7 TAMR and LTED clones were 
compared to the +E2 control cell lines. Analyses were performed by Dr. Efstathios-Iason Vlachavas. Cancer cells 
were created with BioRender.com. 

 

4.11 Differential kinase activity in endocrine therapy resistant clones 
RNA-Seq analysis highlighted tumor heterogeneity and allowed deep insights into 

molecular changes in the T47D and MCF7 TAMR and LTED clones on gene expression level. 

In the next step, I complemented the analysis of transcriptional changes with the analysis of 

differential activation or repression of kinases and phosphatases. Therefore, Mass 

spectrometry analysis of previously enriched phospho-proteins was performed by Luisa 

Schwarzmüller. Next, I assessed the reproducibility of detected phosphosites in the T47D and 

MCF7 replicates. Some 46-74% of all phosphosites detected were common in all biological 

replicates of clones carrying the same barcode for both cell lines (Supplementary Figure 4). 

Afterwards, we performed unsupervised hierarchical clustering as for the RNA-Seq shown 
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above, but this time for all the phosphosites detected (Figure 23). Generally, the clustering on 

phosphosite level confirmed the clustering on RNA-Seq level (Figure 18) as clones with the 

same barcode could be robustly distinguished from clones with other barcodes based on their 

phosphorylation profile. Of note, T47D purple TAMR_2 C4 and H2 clones clustered separately 

from the other T47D purple TAMR clones (Figure 23 A). 

 

Figure 23: Clustering of clones based on the consistently identified phosphosites. The R package 
Pheatmap (version 1.0.12) was used to generate heatmaps of consistently identified phosphosites in the T47D (A) 
and MCF7 (B) cell lines. For phosphosites (rows) and cell lines (columns), hierarchical clustering was applied 
(Euclidean distance). The illustrated values are z-scored peptide intensities. Analyses were performed by Luisa 
Schwarzmüller.  

After the initial quality control which highlighted the strong correlation between clones 

sharing the same barcode again, kinase activities were determined based on the 

phosphorylation of their substrates in the next step by Dr. Efstathios-Iason Vlachavas. Tables 

showing the top 10 activated and repressed kinases and phosphatases in T47D and MCF7 

TAMR and LTED clones compared to their respective control clones and cell lines are listed in 

the appendix (Supplementary Table 7 and Supplementary Table 8, respectively). 

Globally, significantly more kinases and phosphatases were activated in MCF7 TAMR 

and LTED clones compared to T47D TAMR and LTED clones (Figure 24 A). Similar to the 

results observed on transcriptional level (Figure 22 B), there was almost no overlap in 

significantly activated and repressed kinases and phosphatases between the T47D and MCF7 
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cell line models as CDK1 was the only kinase whose activity was commonly repressed in all 

T47D and MCF7 TAMR and LTED clones (Figure 24 C).  

 

Figure 24: Activated and repressed kinase and phosphatase activities in a comparison of T47D and 
MCF7 clones. A Absolute numbers of significantly deregulated kinases and phosphatases in T47D and MCF7 
TAMR and LTED clones. ‘up’ denotes activation while ‘down’ denotes repression. * represents p<0.05 as 
determined by unpaired two-tailed t-tests. Commonly and specifically activated (B) and repressed (C) kinases and 
phosphatases in all T47D or MCF7 TAMR and LTED clones. Only significant hits (absolute activity score ≥ 2) are 
shown. T47D TAMR and LTED clones were compared to orange and green +E2_5 control clones. MCF7 TAMR 
and LTED clones were compared to the +E2 control cell lines. Analyses were performed by Dr. Efstathios-Iason 
Vlachavas. Cancer cells were created with BioRender.com. 

 

4.12 T47D orange clones model cycling persister cells and depend on AKT signaling  
After I highlighted the inter- and intratumor heterogeneity on proliferation, pathway 

activation as well as TF and kinase activity level, I was interested in individual potential 

contributors to endocrine therapy resistance. In the T47D cell line model I was particularly 

interested in the orange clones. These cells were isolated from a treatment-naïve replicate 

(+E2_5) and from LTED replicates (LTED_1 and LTED_2). Since both isolated populations 

originated from the same cell of origin (Supplementary Figure 2 D), they allowed me to study 

the effect of estrogen supplementation and deprivation on the same clonal background.  

As seen above (Figure 19 C), short-term estrogen deprivation of treatment-naïve 

orange +E2_5 clones resulted in a uniform and significant reduction of proliferation. Even after 
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estrogen deprivation for months, T47D orange LTED clones still presented little proliferative 

capacity. When the therapeutic pressure was lifted however and cells were kept in estrogen 

supplemented (+E2) media, the LTED clones quickly regained a strong proliferative 

phenotype. In the next step, I was interested whether the strong reduction of total cells by 

estrogen withdrawal was the result of a decrease in cells going through S-phase or an increase 

in dying/dead cells. I therefore performed EdU and DAPI stainings to label cells going through 

S-phase and dying/dead cells, respectively (Figure 25). 

 

Figure 25: Cycling and dying/dead cells for T47D orange clones. A Percentage of cycling cells within 
21 h were determined by EdU incorporation. B Dying/dead cells were determined by DAPI staining. A and B Cells 
were kept in or treated with the indicated media (+E2, -E2). T47D WT cells without barcode were used as additional 
controls. ‘ indicates 14 day pre-treatment by estrogen deprivation (-E2) or supplementation (+E2) and then 
continued treatment for the duration (4 days) of the assays. n ≥ 3 with ≥ 5 technical replicates for both assays. 
Highlighted are mean ± SEM. Clones with the same barcode originating from the same treatment were grouped 
and the grouped clones compared. **** represents p<0.0001 as determined by one-way ANOVA with Tukey multiple 
comparisons test. 

Around 60-75% of T47D orange +E2_5 cells and non-barcoded T47D WT control cells 

went through S-phase under normal (+E2) growth conditions within the tested 21 h. Upon 

estrogen withdrawal for 14 days and further estrogen deprivation for four days during the 

assay, the percentage of cells going through S-phase was significantly reduced to around 10-

30%. Orange LTED clones showed similar levels of cycling cells compared to the short-term 

deprived WT and orange +E2_5 cells (18-30%). Upon short-term estrogen supplementation 

(+E2) for a total of 19 days, the percentage of orange LTED cells actively going through 

S-phase was significantly increased to 58-75%. Accordingly, short-term estrogen deprivation 

in T47D WT and orange +E2_5 as well as short-term estrogen supplementation of orange 

LTED clones induced the same pattern of cells going through S-phase as their long-term 
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counterparts (Figure 25 A). A similar pattern was also observed for the level of dying/dead 

cells. Under normal growth conditions with estrogen supplementation (+E2), around 1-5% of 

T47D WT and orange +E2_5 cells as well orange LTED cells supplemented with estrogen for 

a short-term period were dying/dead. Conversely, this percentage increased to 7-17% of short-

term estrogen deprived T47D WT and orange +E2_5 clones as well as the orange LTED clones 

(Figure 25 B). Taken together, these data suggest that T47D orange clones can induce a 

reversible cycling persister phenotype. Clinically and as illustrated in Figure 26, tumors may 

initially respond very well to the applied therapy as illustrated by the strong reduction in cell 

numbers. However, few cells may survive and persist the treatment. Consequently, when the 

treatment is lifted, persisting cells may regain a proliferative phenotype again. Potentially, the 

regrown tumor may be sensitive to endocrine therapy again. The concept of persisting cells is 

supported by clinical evidence as distant relapses in breast cancer patients may recur up to 

20 years after surgery [282-284]. 

 

Figure 26: Short- and long-term persister cells. Adapted from Cabanos, Cancers 2021 [285]. Created 
with BioRender.com. 

Consequently, I was interested in the differences between the short- and long-term 

estrogen deprived T47D orange clones as they may represent short- and long-term persisting 

clones as shown in Figure 26, respectively. Additionally, short-term estrogen deprived orange 

+E2_5 clones may represent the entry point of this persister phenotype. To this end, I further 

utilized the Mass spectrometry-based phospho-proteomics analysis for which I had also 

included T47D orange +E2_5 clones which were deprived of estrogen for 14 days.  

Kinase and phosphatase activity analysis as described above revealed AKT1-3 as the 

strongest activated kinases in short-term estrogen deprived T47D orange +E2_5 clones 

compared to orange LTED clones (Figure 27). AKT1-3 were not altered (Kinase activities 

between -0.22 and -0.79) in T47D orange LTED clones compared to the orange +E2_5 clones 

when both cell lines were kept in their respective media (LTED: -E2, +E2_5: +E2) (data not shown). 
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Accordingly, AKT1-3 may have been crucial only in the short-term adaptation of orange clones 

to estrogen deprivation (Figure 27).  

 

Figure 27: Activation of AKT1-3 in short-term estrogen deprived T47D orange clones. Absolute 
activity scores ≥ 2 were considered significant as indicated by dashed lines and significant activation in short-term 
estrogen deprived orange clones is highlighted in red. Analysis was performed by Dr. Efstathios-Iason Vlachavas. 

Next, I challenged T47D orange clones with MK-2206, an AKT inhibitor currently 

investigated in clinical trials [286]. T47D +E2_5 E2 and LTED_1 C6 clones were treated with 

increasing concentration of MK-2206 for 1 h as previously described [244]. Inhibition of AKT 

signaling was assessed by quantification of Thr246 phosphorylation in the AKT downstream 

target PRAS40 [287]. Treatment with 100 nM MK-2206 reduced PRAS40 pThr246 levels by 80-

90% (Supplementary Figure 5). In the next step, I treated T47D orange clones kept either with 

estrogen supplementation (+E2) or grown under short- or long-term estrogen deprivation (-E2) 

with 100 nM MK-2206, and measured cell viability and proliferation (Figure 28). 

 

Figure 28: Phenotypic effects of AKT inhibition. T47D orange clones were kept in the indicated media 
(+E2, -E2) and were treated with DMSO (no filling) or 100 nM MK-2206 (shaded filling) for 72 h and cell viability (A) 
as well as cell numbers (B) were determined. The viability per counted cell is shown in C. A-C WT cells without 
barcode were used as additional controls. ‘ indicates 14 day pre-treatment by estrogen deprivation (-E2) and then 
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continued treatment for the duration (3 days) of the assay. n ≥ 3 with ≥ 5 technical replicates for all assays. Shown 
are mean ± SEM. * represents p<0.05, ** represents p<0.01, *** represents p<0.001 and **** represents p<0.0001 
as determined by unpaired two-tailed t-tests.  

AKT inhibition resulted in a significant reduction in observed cell viability by one-third 

on average (range: 17%-48%). The reduction in observed cellular viability was consistent for 

orange clones under normal (+E2) growth condition as well as during short-term (-E2) and 

long-term estrogen deprivation (LTED). T47D WT cells without barcode integration were used 

as additional controls and showed a similar response to AKT inhibition under normal (+E2) as 

well as short-term estrogen deprived (-E2) growth conditions. In my T47D model, AKT 

inhibition seemed to be a suitable pan-treatment approach for fast-proliferating (WT, +E2_5 

clones) as well as dormant (short-term estrogen deprived WT and +E2_5 clones, LTED 

clones). It was further effective in decreasing observed cell viability on a clonal background 

(orange +E2_5 and LTED clones) as well as in a heterogeneous cell population (T47D WT). 

Despite the pronounced activation of AKT signaling in short-term estrogen deprived T47D 

orange +E2_5 clones however, AKT inhibition was not more effective in decreasing cellular 

viability under short-term estrogen deprivation (-E2) compared to normal (+E2) and LTED 

conditions (Figure 28 A). While the observed net-decrease in cellular viability was similar 

between treatment naïve (+E2), short-term (WT and +E2_5 -E2) and long-term estrogen 

deprived (LTED) cells, reduced proliferation appeared to be the driver for fast-proliferating 

T47D WT and +E2_5 clones. For short-term estrogen deprived orange +E2_5 clones and 

LTED clones, the observed reduction in cellular viability largely came as a combination of 

reduced proliferation and reduced viability per cell (Figure 28 B and C).  

 

4.13 MCF7 LTED clones upregulate JAK-STAT signaling through STAT2  
For all further validation experiments, I focused on the MCF7 TAMR and LTED models 

as they showed a more proliferative phenotype as well as more deregulated TFs and kinases 

than their T47D counterparts. Here, I used a selected control cell line (+E2_5) and a clone 

each representing the isolated clonal populations (blue TAMR_1: B6, yellow LTED_2: C4, pink 

LTED_2: E11 and red LTED_5: C9) for all experiments. I did not include non-barcoded MCF7 

WT cells for further analyses as I had done for T47D since the MCF7 +E2_5 control cell line 

represented a complex barcoded cell line and not individual clones. Conversely, orange and 

green T47D +E2_5 clones originated from two single cells of origin, and I had therefore 

included the complex non-barcoded T47D WT cells for the prior analyses. 

In the MCF7 models, JAK-STAT signaling was of keen interest as it was significantly 

upregulated in MCF7 LTED clones as inferred from the RNA-Seq data by PROGENy [261, 262] 

but not altered compared to +E2 control cell lines in the blue TAMR_1 clones (Figure 21). TF 

activity analysis by DoRothEA [263] further revealed that pathway activation was likely reflected 

by STAT2 activity and to a smaller extent by STAT1 activity (Figure 29). 
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Figure 29: Activation of STAT transcription factors in MCF7 LTED clones. Absolute activity scores ≥ 
2 were considered significant as indicated by dashed lines. Significant activation of STAT2 (A) and STAT1 (B) 
activity is highlighted in red. Analyses were performed by Dr. Efstathios-Iason Vlachavas. 

In line with the specific activation of JAK-STAT signaling as well as STAT2 and STAT1, 

I investigated if knockdown of either STAT would specifically affect MCF7 LTED clones. 

Knockdown of STAT2 and STAT1 resulted in > 80% reduced mRNA and protein levels (Figure 

30).  

 

Figure 30: STAT knockdown efficiencies. MCF7 +E2_5 (o), TAMR_1 B6 (blue T_1, n), LTED_2 C4 
(yellow L_2, n), LTED_2 E11 (pink L_2, n) and LTED_5 C9 (red L_5, n) were kept in the indicated media (+E2, 
+4-OHT, -E2) and were transfected with control siRNA (siONT+, no filling) or siRNA targeting STAT2 or STAT1 
(shaded filling). Expression on gene (A and B) and protein levels (C and D) were determined 6 days post 
transfection. A and B STAT2 (A) and STAT1 (B) abundances were normalized to ACTB and GAPDH abundances 
and to their respective siONT+ controls. n = 3 with 3 technical replicates. **** represents p<0.0001 as determined 
by unpaired two-tailed t-tests. C and D Representative Western Blots and quantification of STAT2 (C) and STAT1 
(D) knockdowns on protein level. STAT2 (C) and STAT1 (D) signals were normalized to the respective ß-Actin 
loading controls and then normalized to cells transfected with control siRNA (siONT+). Shown are mean ± SEM. n 
= 3. * represents p<0.05 and ** represents p<0.01 as determined by unpaired two-tailed t-tests. 

On phenotypic level, I investigated the effect of either STAT knockdown on cellular 

proliferation, viability, cell cycle progression and cell death utilizing nuclear cell count, ATP-
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levels, EdU and DAPI incorporation, respectively. STAT2 knockdown had highly similar effects 

on endocrine sensitive control cells (+E2_5) as well as TAMR and LTED clones irrespective of 

their STAT2 activation score. STAT2 knockdown significantly reduced cellular proliferation, 

viability, and the percentage of cycling cells, while simultaneously inducing a significant 

increase in dying/dead cells (Figure 31).  

 

Figure 31: Phenotypic effects of STAT2 knockdown. MCF7 +E2_5 (o), TAMR_1 B6 (blue T_1, n), 
LTED_2 C4 (yellow L_2, n), LTED_2 E11 (pink L_2, n) and LTED_5 C9 (red L_5, n) were kept in the indicated 
media (+E2, +4-OHT, -E2) and were transfected with control siRNA (siONT+, no filling) or siRNA targeting STAT2 
(shaded filling). Nuclear cell count (A) and ATP levels (B) were determined 6 days after transfection while EdU (C) 
and DAPI incorporation (D) were assessed 4 days after transfection. Results were normalized to non-targeting 
control (siONT+) siRNA. n = 7 with ≥ 4 technical replicates. Shown are mean ± SEM. * represents p<0.05, ** 
represents p<0.01, *** represents p<0.001 and **** represents p<0.0001 as determined by unpaired two-tailed 
t-tests or one-way ANOVA with Dunnett multiple comparisons test.  

STAT1 knockdown had similar effects as STAT2 knockdown, meaning that it affected 

endocrine sensitive +E2_5 control cells as well as TAMR and LTED clones. In contrast to 

STAT2 knockdown however, the effect of STAT1 knockdown on different phenotypes was less 

pronounced for yellow and pink MCF7 LTED_2 clones (Figure 31). 
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Figure 32: Phenotypic effects of STAT1 knockdown. MCF7 +E2_5 (o), TAMR_1 B6 (blue T_1, n), 
LTED_2 C4 (yellow L_2, n), LTED_2 E11 (pink L_2, n) and LTED_5 C9 (red L_5, n) were kept in the indicated 
media (+E2, +4-OHT, -E2) and were transfected with control siRNA (siONT+, no filling) or siRNA targeting STAT1 
(shaded filling). Nuclear cell count (A) and ATP levels (B) were determined 6 days after transfection while EdU (C) 
and DAPI incorporation (D) were assessed 4 days after transfection. Results were normalized to non-targeting 
control (siONT+) siRNA. n = 7 with ≥ 4 technical replicates. Shown are mean ± SEM. * represents p<0.05, ** 
represents p<0.01, *** represents p<0.001 and **** represents p<0.0001 as determined by unpaired two-tailed 
t-tests or one-way ANOVA with Dunnett multiple comparisons test. 

Knockdown of either STAT highlighted their important role in cellular signaling. The 

knockdowns reduced STAT2 and STAT1 protein levels by > 90% (Figure 30 C and D) thereby 

potentially masking the impact of differential STAT2/STAT1 activities and their implications in 

resistance to aromatase inhibitor treatment. To titrate potential inhibitory effects, I utilized an 

inhibitor specific to Janus kinase (JAK) 1 and JAK2, which are upstream activators of different 

STAT transcription factors. However, all utilized cell lines and clones showed similar sensitivity 

to the JAK1/2 inhibitor Ruxolitinib [246], irrespective of their (in)sensitivity to endocrine therapy 

and JAK-STAT activation (Figure 33).  

 

Figure 33: Ruxolitinib response curve. MCF7 +E2_5 (¡), TAMR_1 B6 (blue TAMR_1, l), LTED_2 C4 
(yellow LTED_2, l), LTED_2 E11 (pink LTED_2, l) and LTED_5 C9 (red LTED_5, l) were kept in the indicated 
media (+E2, +4-OHT, -E2) and were treated with increasing concentrations of Ruxolitinib. Cell numbers were 
determined by microscopy-based nuclei counting at day 6 and normalized to the DMSO controls. n = 3 with 3 
technical replicates. * represents p<0.05 and ** represents p<0.01 as determined by two-way ANOVA with Dunnett 
multiple comparisons test. 
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4.14 MCF7 TAMR and LTED clones upregulate NFκB signaling in part through p65 
Besides JAK-STAT, NFκB signaling was of strong interest to me, since all MCF7 TAMR 

and LTED clones showed significant activation of this pathway (Figure 21). The downstream 

TF p65 was significantly activated in red LTED_5 and pink LTED_2 clones, while yellow 

LTED_2 and blue TAMR_1 clones showed only a tendency of further activation over +E2 

control cell lines with NES > 1.10 (Figure 34). 

 

Figure 34: p65 activation in MCF7 LTED clones. Absolute activity scores ≥ 2 were considered significant 
as indicated by dashed lines. Significant activation in red LTED_5 and pink LTED_2 clones is highlighted in red. 
Analysis was performed by Dr. Efstathios-Iason Vlachavas. 

Next, I targeted RELA with specific siRNAs and knockdown efficiency was > 90% at 

RNA and protein levels (Figure 35).  

 

Figure 35: RELA knockdown efficiency. MCF7 +E2_5 (o), TAMR_1 B6 (blue T_1, n), LTED_2 C4 
(yellow L_2, n), LTED_2 E11 (pink L_2, n) and LTED_5 C9 (red L_5, n) were kept in the indicated media (+E2, 
+4-OHT, -E2) and were transfected with control siRNA (siONT+, no filling) or siRNA targeting RELA (shaded filling). 
Expression on gene (A) and protein levels (B) were determined 6 days post transfection. A RELA abundance was 
normalized to ACTB and GAPDH abundances and to their respective siONT+ controls. n = 3 with 3 technical 
replicates. **** represents p<0.0001 as determined by unpaired two-tailed t-tests. B Representative Western Blot 
and quantification of RELA knockdown on protein level. p65 signals were normalized to the respective ß-Actin 
loading controls and then normalized to cells transfected with control siRNA (siONT+). Shown are mean ± SEM. 
n = 3. * represents p<0.05 and ** represents p<0.01 as determined by unpaired two-tailed t-tests. 

Phenotypically, RELA knockdown induced similar phenotypes in MCF7 +E2_5 as well 

as TAMR and LTED clones. Proliferation, cell viability and the percentage of cycling cells were 

all significantly decreased while the fraction of dying/dead cells was significantly increased 

upon RELA knockdown irrespective of endocrine therapy sensitivity (Figure 36). Like STAT2 

and STAT1, p65 appeared to play an important role in cell proliferation and survival in MCF7 

TAMR and LTED clones but also in endocrine sensitive +E2_5 control cells. 
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Figure 36: Phenotypic effects of RELA knockdown. MCF7 +E2_5 (o), TAMR_1 B6 (blue T_1, n), 
LTED_2 C4 (yellow L_2, n), LTED_2 E11 (pink L_2, n) and LTED_5 C9 (red L_5, n) were kept in the indicated 
media (+E2, +4-OHT, -E2) and were transfected with control siRNA (siONT+, no filling) or siRNA targeting RELA 
(shaded filling). Nuclear cell count (A) and ATP levels (B) were determined 6 days after transfection while EdU (C) 
and DAPI incorporation (D) were assessed 4 days after transfection. Results were normalized to non-targeting 
control (siONT+) siRNA. n = 7 with ≥ 4 technical replicates. Shown are mean ± SEM. * represents p<0.05, ** 
represents p<0.01, *** represents p<0.001 and **** represents p<0.0001 as determined by unpaired two-tailed 
t-tests or one-way ANOVA with Dunnett multiple comparisons test. 

NFκB signaling is regulated and can be interfered with at different levels. In 

unstimulated conditions, NFκB dimers are sequestered in the cytosol by nuclear factor of 

kappa light polypeptide gene enhancer in B-cells inhibitor (IκB) proteins. Upon stimulation, IκB 

is phosphorylated by IκB kinases (IKKs) marking it for ubiquitination and subsequent 

degradation by the proteasome, thereby freeing the NFκB dimer [288-290]. We utilized our 

phospho-proteomic data again to determine the activity of different IKKs and to investigate 

whether IKK activity could explain overall NFκB pathway activity. Neither of the four IKKs 

(IKKα, IKKß, IKKε and TBK1) showed a significant deregulation nor did their activity correlate 

with NFκB or p65 activity (Supplementary Figure 6). Taken together, targeting NFκB signaling 

by utilizing an IKK inhibitor seemed to not be a suitable option.  

 

4.15 UPR activation reveals clonal vulnerability to Bortezomib 
NFκB signaling appeared to be involved in endocrine therapy resistance in the MCF7 

TAMR and LTED clones. However, targeting p65 signaling with specific siRNAs reduced p65 

protein levels by > 90% and thereby did not allow to titrate a potential effect on NFκB signaling. 

Clinically, NFκB-driven Multiple Myeloma are commonly treated in the first line setting with a 

protease inhibitor such as Bortezomib [291], preventing the degradation of the negative regulator 

IκB and thereby blocking NFκB signaling. Previously, Bortezomib treatment has additionally 
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been shown to induce a strong unfolded protein response (UPR) [292, 293]. Generally, the UPR 

serves to restore normal protein levels (protein homeostasis). Increases in protein secretion 

and/or disruptive protein folding in the endoplasmic reticulum can lead to the accumulation of 

un- or misfolded protein and associated stress of the endoplasmic reticulum. The UPR is then 

activated to adjust transcription and translation as well as protein modifications and secretion 

to finally restore protein homeostasis [294]. While mild UPR activation has been hypothesized 

to be protective and potentially drive proliferation in endocrine therapy treated cells [293], 

proteasome inhibitors such as Bortezomib can induce a terminal/detrimental UPR ultimately 

killing the cancer cells [292, 293]. Accordingly, we utilized the RNA-Seq data again for further 

analysis using gene set enrichment analysis (GSEA) [295-297] looking specifically for enrichment 

of the UPR in MCF7 TAMR and LTED clones. Here, exclusively MCF7 blue TAMR_1 clones 

revealed a significant enrichment of the UPR pointing to its activation (Figure 37 A). 

Accordingly, I speculated that Bortezomib might be a suitable therapeutic option, either as 

NFκB inhibitor for all TAMR and LTED clones or specifically for MCF7 blue TAMR_1 cells, 

which showed an activation of the UPR that would be potentiated detrimentally by Bortezomib. 

A titrating experiment revealed high sensitivity to treatment with 1.85 nM Bortezomib for MCF7 

blue TAMR_1 (red arrow in Figure 37 B), in accordance with the private UPR activation. I was 

next interested in how treatment would affect cell viability, cell cycle progression and cell death. 

 

Figure 37: UPR activation and sensitivity to Bortezomib. A GSEA of unfolded protein response (UPR). 
Significant enrichment in MCF7 blue TAMR_1 is highlighted in red. Adjusted p-values are shown for each 
comparison. Analysis was performed by Dr. Efstathios-Iason Vlachavas. B MCF7 +E2_5 (¡), TAMR_1 B6 (blue 
TAMR_1, l), LTED_2 C4 (yellow LTED_2, l), LTED_2 E11 (pink LTED_2, l) and LTED_5 C9 (red LTED_5, l) 
were kept in the indicated media (+E2, +4-OHT, -E2) and were treated with increasing concentrations of 
Bortezomib. Cell numbers were determined by microscopy-based nuclei counting at day 7 and normalized to the 
DMSO controls. n = 3 with 3 technical replicates. * represents p<0.05 and ** represents p<0.01 as determined by 
two-way ANOVA with Dunnett multiple comparisons test.  

Bortezomib strongly reduced proliferation, cell viability and the percentage of cycling 

cells specifically for the utilized MCF7 blue TAMR_1 B6 clone, which was highly significant 

compared to the Bortezomib-treated +E2_5 control cells. Treatment also resulted in a 

significant increase in dying/dead TAMR_1 B6 cells. Additionally, Bortezomib had a similar but 

only minimally effect on the MCF7 red LTED_5 clone, significantly reducing cellular viability 

and the percentage of cycling cells compared to DMSO-treated red LTED_5 cells. However, 

none of these phenotypic effects were statistically significant compared to Bortezomib-treated 

+E2_5 cells indicating no increased sensitivity of red LTED_5 cells over control (+E2_5) cells 
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(Figure 38). Taken together, UPR activation and sensitivity to Bortezomib emerged as a private 

event specific for MCF7 blue TAMR_1. 

 

Figure 38: Phenotypic effects of Bortezomib treatment. MCF7 +E2_5 (o), TAMR_1 B6 (blue T_1, n), 
LTED_2 C4 (yellow L_2, n), LTED_2 E11 (pink L_2, n) and LTED_5 C9 (red L_5, n) were kept in the indicated 
media (+E2, +4-OHT, -E2) and were treated with DMSO (no filling) or 1.85 nM Bortezomib (shaded filling). Nuclear 
cell count (A) and ATP levels (B) were determined 6 days after treatment start while EdU (C) and DAPI incorporation 
(D) were assessed 4 days after treatment start. Results were normalized to DMSO controls. n ≥ 4 with ≥ 4 technical 
replicates. Shown are mean ± SEM. * represents p<0.05, ** represents p<0.01, *** represents p<0.001 and **** 
represents p<0.0001 as determined by unpaired two-tailed t-tests or one-way ANOVA with Dunnett multiple 
comparisons test. 

 

4.16 PKC activation as shared clonal driver of endocrine therapy resistance 
Besides NFκB activation, PKCß and PKCδ of the protein kinase C family were also 

significantly activated in all MCF7 TAMR and LTED clones compared to the +E2 control cell 

lines as determined from the phospho-proteomics data (Figure 24 B). PKCα, PKCγ and PKCε 

were further significantly activated in MCF7 blue TAMR_1, yellow LTED_2 and red LTED_5 

clones (Figure 39 A). To investigate whether inhibition of the shared activation of different PKC 

isoforms would be a suitable therapeutic option, I performed an titration experiment using the 

pan-PKC inhibitor Sotrastaurin [247] which revealed strong inhibition of proliferation for yellow 

LTED_2 cells (Figure 39 B).  
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Figure 39: PKC activation and sensitivity to Sotrastaurin. A Activities of different PKC isoforms in 
MCF7 TAMR and LTED clones. con.: conventional. a.: atypical. Activation and repression of PKC isoforms in TAMR 
and LTED clones is indicated by red and blue, respectively. * indicates absolute kinase activity ≥ 2. Analysis was 
performed by Dr. Efstathios-Iason Vlachavas. B MCF7 +E2_5 (¡), TAMR_1 B6 (blue TAMR_1, l), LTED_2 C4 
(yellow LTED_2, l), LTED_2 E11 (pink LTED_2, l) and LTED_5 C9 (red LTED_5, l) were kept in the indicated 
media (+E2, +4-OHT, -E2) and were treated with increasing concentrations of Sotrastaurin. Cell numbers were 
determined by microscopy-based nuclei counting at day 7 and normalized to DMSO controls. n = 4 with 3 technical 
replicates. * represents p<0.05, ** represents p<0.01 and *** represents p<0.001 as determined by two-way ANOVA 
with Dunnett multiple comparisons test. 

Next, I investigated the inhibition of TPA-induced PKC activation [248, 249] by 2.50 µM 

Sotrastaurin (red arrow in Figure 39 B). Here, I pre-treated the cells either with DMSO or 

Sotrastaurin for 24 h before stimulation with TPA for 30 min. As readout and for quantification, 

I utilized an antibody that recognizes phosphorylated PKC substrates. Treatment with 

Sotrastaurin significantly and reproducibly reduced PKC activation by 65-80% in all cell lines 

tested (Figure 40).  

 

Figure 40: Quantification of PKC inhibition by Sotrastaurin. MCF7 +E2_5 (o), TAMR_1 B6 (blue T_1, 
n), LTED_2 C4 (yellow L_2, n), LTED_2 E11 (pink L_2, n) and LTED_5 C9 (red L_5, n) were treated for 24 h with 
DMSO (no filling) or 2.50 µM Sotrastaurin (shaded filling) before being stimulated with 200 nM TPA for 30 min. Cells 
were kept in the indicated media (+E2, +4-OHT, -E2). Representative Western Blot (left panel) and quantification 
of three biological replicates (right panel) of DMSO or Sotrastaurin treatment before TPA stimulation are depicted. 
p-PKC Substrate signals were normalized to the respective ß-Actin loading controls and then normalized to DMSO-
treated cells. Shown are mean ± SEM. * represents p<0.05, ** represents p<0.01 and *** represents p<0.001 as 
determined by unpaired two-tailed t-tests. 

Having confirmed significant PKC inhibition in all cell lines tested, I next assessed the 

effect of treatment with 2.50 µM Sotrastaurin on proliferation, cell viability, cycling and 

dying/dead cells (Figure 41). Fully in line with the sensitivity assay described in Figure 39 B, 

yellow LTED_2 cells showed the highest sensitivity to inhibition of PKC at the levels of cell 

numbers, viability, and cell death. In contrast, the red LTED_5 clone, which was suggested to 

be insensitive to this Sotrastaurin concentration showed a prominent reduction in proliferation 
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and viability as well, and a small yet insignificant increase in dying/dead cells (Figure 41). 

Effects of Sotrastaurin on the other clones tested were mostly mild, in accordance with the 

drug sensitivity test. Of note, blue TAMR_1 clones showed reduced viability, which showed a 

trend towards significance compared to Sotrastaurin-treated +E2_5 control cell lines. This 

observation could be explained by neither a reduction in cycling cells nor an increase in cell 

death. Taken together, the reductions in cellular viability by Sotrastaurin were largely in line 

with the activation level of different PKC isoforms in the MCF7 TAMR and LTED clones. 

 

Figure 41: Phenotypic effects of Sotrastaurin treatment. MCF7 +E2_5 (o), TAMR_1 B6 (blue T_1, n), 
LTED_2 C4 (yellow L_2, n), LTED_2 E11 (pink L_2, n) and LTED_5 C9 (red L_5, n) were kept in the indicated 
media (+E2, +4-OHT, -E2) and were treated with DMSO (no filling) or 2.50 µM Sotrastaurin (shaded filling). Nuclear 
cell count (A) and ATP levels (B) were determined 6 days after treatment start while EdU (C) and DAPI incorporation 
(D) were assessed 4 days after treatment start. Results were normalized to DMSO controls. n = 4 with ≥ 4 technical 
replicates. Shown are mean ± SEM. * represents p<0.05, ** represents p<0.01, *** represents p<0.001 and **** 
represents p<0.0001 as determined by unpaired two-tailed t-tests or one-way ANOVA with Dunnett multiple 
comparisons test. 

 

4.17 Clinical significance of in vitro findings 
After having targeted and validated clonal resistance drivers in MCF7 TAMR and LTED 

clones, I next wanted to assess whether these in vitro findings have clinical significance. 

Therefore, we utilized and analyzed the CPTAC-BRCA cohort recently published by Krug et 

al. [234]. This data set contains genetic aberrations, gene and protein expression as well as 

phospho-proteomics data of 122 treatment-naïve patients. When analyzing this cohort, I was 

particularly interested in similarities between my MCF7 TAMR and LTED clones and patients 

with ER- disease, as the applied therapies in my in vitro models strongly suppressed estrogen 

signaling (Figure 20 and Figure 21), thereby rendering the TAMR and LTED clones ‘quasi’ 
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ER-. This observation was in accordance with the lack of ESR1 hotspot mutations in any of 

the endocrine therapy resistant clones (Figure 17).  

Of note, all downstream analyses were performed by Dr. Efstathios-Iason Vlachavas. 

First, we analyzed the different activation of the 14 major pathways assessed by PROGENy 

for patients with ER- as compared to ER+ disease. In patients with ER- disease, estrogen 

signaling was the strongest downregulated pathway (Figure 42), in line with my in vitro findings. 

Hypoxia, TNFɑ, NFκB and JAK-STAT signaling were further associated with ER- disease 

(Figure 42). These four pathways were also significantly activated in at least three out of four 

MCF7 TAMR and LTED clones (Figure 21), and together with the significant repression of 

estrogen signaling in patients with ER- disease highlighted the resemblance of my in vitro 

MCF7 endocrine therapy resistance models and patients with ER- disease in the CPTAC-

BRCA cohort. 

 

Figure 42: Pathway activities in breast cancer patients. The CPTAC-BRCA cohort was subgrouped 
into patients with ER- (n = 39) or ER+ (n = 81) disease. Absolute NES scores ≥ 2 were considered significant as 
indicated by dashed lines. Significantly activated pathways in patients with ER- disease are highlighted in red 
whereas significantly downregulated pathways are highlighted in blue. Analysis was performed by Dr. Efstathios-
Iason Vlachavas. 

In the next step, I was particularly interested if alterations which I had observed in my 

MCF7 in vitro models were also evident in patients with ER- disease. Specifically, I was 

interested in STAT2, STAT1 and p65, UPR and PKC activity patterns. To this end, we 

performed TF activity analysis, GSEA and kinase activity analysis of the stratified CPTAC-

BRCA patients (Figure 43). p65 was significantly associated with ER- disease, while STAT2 

and STAT1 activity did not correlate with either disease subtype. Further, UPR activation 

showed a trend towards association with ER- disease, however this association did not reach 

statistical significance. No patterns of PKC activation and ER-(in)dependent disease were 

evident and PKCδ was the only PKC isoform that showed a significant association, particularly 

with ER+ disease.  
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Figure 43: TF, UPR and PKC activities in breast cancer patients. The CPTAC-BRCA cohort was 
subgrouped into patients with ER- (n = 39) or ER+ (n = 81) disease. A and C Absolute NES scores ≥ 2 were 
considered significant. Significant activation of p65 (A) in patients with ER- disease is highlighted in red whereas 
significant downregulation of PKCδ (C) is highlighted in blue and by the asterisk. B UPR activation and adjusted p. 
value as determined by GSEA. Analyses were performed by Dr. Efstathios-Iason Vlachavas. 

Accordingly, I speculated that specifically PKC activation of individual patients could be 

masked in a heterogenous cohort. To this end, we analyzed the cohort again, but this time on 

a per patient basis. And indeed, strong heterogeneity in the activation of the pathways 

estimated by PROGENy was evident across patients with ER- (Figure 44) and ER+ disease 

(Supplementary Figure 7 A).  

 

Figure 44: Pathway activity profiles of individual patients with ER- disease from the CPTAC cohort. 
Data from the RNA-Seq was z-scored prior to the analysis. Alphabetical ranking of the 14 major pathways assessed 
by PROGENy and their activities depicted as heatmaps. Activation and repression are visualized in red and blue, 
respectively, and significant deregulations are indicated by asterisks. Analysis was performed by Dr. Efstathios-
Iason Vlachavas. 

On one extreme, hypoxia signaling was significantly associated with ER- disease 

(Figure 43) and was significantly activated in 14 patients with ER- disease while it was 
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significantly repressed in only 3 patients with ER- disease (Figure 44). Conversely, estrogen 

signaling was significantly associated with ER+ disease (Figure 43) and accordingly 

significantly downregulated in 14 patients with ER- disease, respectively. JAK-STAT signaling 

was significantly activated and repressed in 15 and 11 patients with ER- disease, respectively 

(Figure 44), potentially reflecting the heterogeneity observed in my MCF7 in vitro models 

(Figure 21). NFκB signaling was further significantly activated in eight patients and repressed 

in two patients with ER- disease, respectively, which was expected from its significant 

association with ER- disease (Figure 42). 

Next, I was interested in deconvoluting the activity of potential endocrine therapy 

resistance drivers. Slightly more patients with ER- disease showed significant activation than 

repression of STAT2 and STAT1. For STAT2, 14 patients with ER- disease showed significant 

activation while 10 patients with ER- disease showed significant downregulation, respectively. 

For STAT1, 11 patients with ER- disease showed significant activation while 8 patients with 

ER- disease showed significant repression, respectively (Figure 45 A). These findings are in 

accordance with the observed activation of primarily STAT2 in my MCF7 LTED clones while 

no activation over the control (+E2) cell lines was observed for MCF7 blue TAMR_1 clones. 

Additionally, p65 activity was strongly and significantly associated with ER- disease on 

stratification level (Figure 43 A) and in line, more patients with ER- disease showed significant 

activation than repression of p65 activity on a per patient basis (16 vs. 2, Figure 45 A). 

Similarly, UPR activity showed a trend towards association with ER- disease on 

stratification (ER- vs ER+) level (Figure 43 B) and was significantly activated in 16 patients 

with ER- disease while it was only significantly repressed in 2 patients with ER- disease, 

respectively (Figure 45 B).  

 

Figure 45: TF, UPR and PKC activity profiles of individual patients with ER- disease from the CPTAC 
cohort. A and B The data from the RNA-Seq was z-scored before further analysis of TF (A) and UPR activities (B). 
C PKC activities are in comparison to the reference sample as described by Krug et al. [234]. A-C Activation and 
repression are visualized in red and blue, respectively, and significant deregulations are indicated by asterisks. B 
UPR activation and repression were considered significant for absolute NES ≥ 2 and adj. p values < 0.05. C For 
better visibility, one asterisk (patient #21, PKCδ) is shown in white. Analyses were performed by Dr. Efstathios-
Iason Vlachavas. 
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PKC activation in individual patients showed strong heterogeneity again. One common 

observation was the concurrent downregulation of PKCδ activity in 11 patients with ER- 

disease. Interestingly, PKCδ was hardly activated in the whole cohort as it was only 

significantly activated in 4 out of 120 analyzed patients (all ER+, #1, #28, #36, #48 and #70 in 

Supplementary Figure 7 B). In contrast, PKCß and PKCδ were significantly activated in all 

MCF7 TAMR and LTED clones (Figure 39 A), irrespective of their sensitivity to treatment with 

Sotrastaurin (Figure 41). Besides PKCß and PKCδ activation, two patients with ER- disease 

(#31 and #33) showed simultaneous activation of the other three PKC isoforms α, γ and ε 

(Figure 45 C). Accordingly, these two patients closely mimicked my MCF7 TAMR and LTED 

clones (Figure 39 A) and their tumors may be particularly sensitive to Sotrastaurin treatment. 

Of note, no kinase activity was predicted for PKCη, PKCθ, PKCι and PKCζ, but these isoforms 

did also not seem to be key players in the MCF7 TAMR and LTED clones (Figure 39 A). 

Taken together, the clinical data provided strong support for the importance of my in 

vitro findings. Exemplarily, the per patient pathway activation pattern unraveled the strong 

inter-tumor heterogeneity of breast cancer patients. It is further tempting to speculate that 

individual tumors analyzed from the CPTAC-BRCA cohort additionally represented the 

assemble average measurements of multiple different clones within a single tumor. The need 

for per patient stratification became particularly evident for the activation of PKC isoforms. On 

patient level, I identified 16 patients with significant UPR activation closely resembling MCF7 

blue TAMR_1 clones. Per patient analysis further revealed two patients with ER- disease 

whose PKC isoform activation pattern closely resembled the activation pattern of the MCF7 

TAMR and LTED clones. 
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5 Discussion 

Endocrine therapy resistance has remained an urgent clinical problem with relapse 

rates of around 20-25% within 10 years from diagnosis and treatment start [45, 298-300]. While 

ER+ patients whose tumors are diagnosed early (diameter < 2 cm and no lymph nodes 

involved) have 20-year relapse rates of as low as 13%, patients with advanced tumors (> 2 cm 

in diameter and 4-9 lymph nodes involved) experience relapses in as many as 41% of cases 
[84]. Many resistance mechanisms have been identified and for some known drivers, specific 

treatment options are routinely used in the clinics such as CDK4/6 inhibitors [85-92]. Tumor 

heterogeneity is increasingly appreciated to contribute to therapy resistance and recent years 

have shed further light on the clonal makeup of early and relapsing tumors across different 

entities [173]. The focus of my PhD thesis was to investigate the clonal heterogeneity and clonal 

drivers of endocrine therapy resistance.  

 

5.1 Endocrine therapy resistant clones display distinct phenotypes 
Dr. Simone Borgoni had established endocrine therapy sensitive and resistant 

barcoded cells lines in a previous PhD project [236]. I isolated single clones from both cell lines 

(T47D and MCF7) and both treatment arms (Tamoxifen treatment and estrogen deprivation) 

to uncover potential molecular and phenotypic heterogeneity in different clones and to identify 

individual resistance drivers. Previously, the cellular ability to change from one functional cell 

type to another type, also termed lineage plasticity, has been hypothesized to enable 

adaptation to targeted therapy and fuel intratumor heterogeneity [301, 302]. Therefore, I 

highlighted on gene expression (Figure 18) and phospho-proteomics level (Figure 23) that 

once clonal trajectories had been fixed as long-term adaptations to endocrine therapies, they 

were stable and no signs of further lineage change were detected. 

On phenotypic level, I could further highlight the differences between the established 

cell line models. On the one hand, T47D orange LTED clones displayed a phenotype 

commonly referred to as ‘proliferative persister’ state [303]. Isolated MCF7 LTED clones on the 

other hand showed sustained proliferation under estrogen deprivation (Figure 19 D). Clinically, 

MCF7 LTED clones might be representative of earlier relapses while T47D orange LTED 

clones could be representative of dormant and late-relapsing diseases that could occur up to 

20 years after surgery [282-284]. Further indication that T47D orange LTED clones may resemble 

late clinical relapses came from the fast resumption of a strong proliferative phenotype after 

short treatment withdrawal. In the clinics, patients receive endocrine therapy for ten years [45-

47]. Around 10-40% of patients do not adhere to the prescribed endocrine therapy (defined by 

a medication possession rate of <80%) [304-307] potentially leading to a steady rate of relapse 

that could be attributed to treatment withdrawal and re-awakening of dormant cell populations.  
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5.2 Divergent transcriptional re-wiring in endocrine therapy resistant clones 
After isolating and confirming the stable trajectories of +E2, TAMR and LTED clones, I 

was interested in the molecular changes underlying endocrine therapy resistance. Therefore, 

I mainly investigated differentially activated pathways, transcription factors and kinases.  

Significant repression of estrogen signaling compared to treatment-naïve cell lines and 

clones was the only shared pathway deregulation between all T47D and MCF7 TAMR and 

LTED clones, highlighting the strong inter-tumor heterogeneity (Figure 20 and Figure 21). 

Additionally, no ESR1 hotspot mutations covering codons 536 to 538 were detected (Figure 

17) which might otherwise have rendered ER active independent of its ligand in these cells [95-

97, 279-281]. Accordingly, estrogen signaling was effectively blocked in my in vitro models by 

Tamoxifen or estrogen deprivation mimicking clinically used aromatase inhibitors.  

To complement the pathway activity analysis and to further identify putative drivers, TF 

activity was determined based on the RNA-Seq data. Here, the activity of three transcription 

factors (ELF3, GRHL2 and KLF5) was significantly upregulated in all T47D and MCF7 TAMR 

and LTED clones. ELF3 activation may have been the result of HER2 protein upregulation in 

my T47D and MCF7 TAMR and LTED clones (Supplementary Figure 8) as ELF3 expression 

was previously found to be elevated in HER2+ tumors [308, 309] and associated with worse 

outcome of patients [310]. GRHL2 and KLF5 have both been implicated in therapy resistance of 

hormone dependent cancers. In the METABRIC cohort, the expression of GRHL2 target genes 

significantly correlated with worse overall patient survival only when patients were treated with 

endocrine therapy [311]. Higher GRHL2 protein expression has further been associated with 

Tamoxifen resistance [312]. KLF5 expression was elevated in a subset of prostate cancers 

resistance to androgen deprivation, the equivalent of endocrine therapy in breast cancer. 

Interestingly, KLF5 can also be activated through HER2 while HER2 inhibition was found to 

block KLF5-driven oncogenic phenotypes [313]. Taken together, these findings may point to an 

induction of ELF3 and KLF5 activities by HER2 in T47D and MCF7 TAMR and LTED clones. 

SRBP1 was specifically activated in the T47D TAMR and LTED clones, while several 

TFs were significantly activated only in the MCF7 TAMR and LTED clones. SRBP1 and its 

paralog SRBP2 are required for lipid synthesis induced by oncogenic PI3K, such as in T47D 

cells harboring the activating PIK3CA p.H1047R mutation [314]. As lipogenesis and cholesterol 

synthesis have previously been implicated in resistance to aromatase inhibitor treatment [315], 

further SRBP1 activation in the T47D TAMR and LTED clones may have been a cell line 

specific adaptation to the therapeutic stress. Of note, MCF7 also carry an activating PI3KCA 

mutation [314] but SRBP1 was not significantly activated in all MCF7 TAMR and LTED clones, 

pointing to different rewiring between T47D and MCF7 endocrine therapy resistant clones. 
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Most TFs significantly activated in the MCF7 TAMR and LTED clones have previously 

been implicated in endocrine or other therapeutic resistance. Expression levels of CEBPG 

(encodes C/EBPγ) [316], GABPA (encodes GABPα) [317] and TCF4 (encodes ITF2) [318] were 

elevated in endocrine therapy resistant cell lines or xenografts. KLF6 [319], MEF2A [320] and 

TEAD4 [321] have been implicated in (breast) cancer progression, while MEF2C [322] and MEIS1 
[323] confer resistance to chemotherapeutics. NCOA3 expression further correlated with worse 

recurrence-free survival for patients with invasive breast cancer [324] and melanoma [325]. 

PRDM1 was found to be concurrently mutated with PI3KCA in a patient with endocrine therapy 

resistant breast cancer [326] and has been shown to be involved in chemoresistance of T-cell 

lymphoma [327].  

No TF activity was significantly repressed in a shared manner between all T47D and 

MCF7 TAMR and LTED clones compared to their respective controls. A significant repression 

of ER activity however was expected because of the strong repression of estrogen signaling 

and the absence of activating ESR1 mutations in the investigated hotspot region. 

Nevertheless, ER was among the top 10 most repressed TFs in MCF7 LTED clones 

(Supplementary Table 6). In the T47D TAMR and LTED clones, E2F4, FOXM1, IRF2, MYC, 

STAT1 and STAT2 were significantly less active whereas the activity of FOXA1 and FOXP1 

was concurrently downregulated in MCF7 TAMR and LTED clones (Figure 22 C). E2F4 is 

important for a stable G2 phase arrest in response to genotoxic stress in prostate cancer cells 
[328] and downregulation of E2F4 activity might thus have enabled the T47D TAMR and LTED 

clones to sustain a cycling phenotype under selective stress by the applied therapy. Reduced 

cell cycling activity as observed exemplarily in T47D orange LTED clones (Figure 25 A) may 

be reflected by the downregulation of transcriptional activity of MYC which generally promotes 

cell cycle progression [329]. FOXM1 is a transcriptional target of ER [330]. Hence, its significantly 

reduced activity may have been the result of reduced estrogen signaling in the T47D TAMR 

and LTED clones. For IRF2, tumor suppressive properties have recently been described in 

CRC [331, 332] and its downregulation may have promoted tumor progression to treatment 

resistant disease in the T47D cell line models. Reduced activity of STAT1 and STAT2 in 

isolated T47D TAMR and LTED clones likely represented the downregulation of JAK-STAT 

signaling in these clones. For the MCF7 TAMR and LTED clones, only the activity of the 

Forkhead box proteins FOXA1 and FOXP1 were repressed compared to the +E2 control cell 

lines. Clinically, dual suppression of FOXA1 and FOXP1 has been associated with worse 

relapse-free and overall survival in Tamoxifen-treated patients [333], suggesting a possible 

involvement in endocrine therapy resistance in the utilized MCF7 cell line model. 
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5.3 Kinome-wide alterations in endocrine therapy resistant clones 
The RNA-Seq analysis highlighted prominent pathway alterations and the divergent re-

wiring of important transcriptional networks in response to endocrine therapy. To complement 

this expression-based analysis, I was further interested in alterations of kinase activities in 

endocrine therapy resistant clones.  

Like the TF activity analysis, the analysis of kinase activities underlined the 

heterogeneity of endocrine therapy resistance in my T47D and MCF7 cell line models with 

CDK1 as the only commonly repressed kinase compared to the control clones and cell lines 

(Figure 24). CK1ε was the only commonly activated kinase in all T47D TAMR and LTED clones 

while its isoform CK1δ [334] was not altered in any T47D TAMR or LTED clone. Accordingly, 

CSNK1D (encoding CK1δ) expression has been associated with longer overall survival while 

higher CSNK1E (encoding CK1ε) expression has been associated with shorter overall survival 

in patients with breast tumors [335]. These clinical findings support my in vitro observation, that 

CK1ε but not CK1δ may have been involved in tumor progression and therapy resistance.  

Activation of AURKB, CaMK2δ, MAP3K8, MEK2, PKCß and of PKCδ was shared 

between all MCF7 TAMR and LTED clones. AURKB expression was previously found to be 

elevated in aromatase inhibitor-resistant MCF7 cell lines [336] and a high percentage of AURKB 

positive tumor cells was significantly associated with reduced disease-free and overall survival 

in Tamoxifen treated patients [337]. CaMK2δ is one of four calcium/calmodulin-dependent 

protein kinases II. This kinase family has been shown to modulate cell proliferation, cell cycle, 

invasion and metastasis, and therapy efficacy in different malignant diseases [338]. Suppression 

of estrogen signaling may have induced CaMK2δ activation as elevated CaMK2δ levels in 

ovariectomized rats was reduced by the addition of estrogen [339]. CaMK2δ might then have 

modulated important metabolic and signaling pathways with possible implications in resistance 
[340]. MAP3K8 and its downstream target MEK2 [341] are involved in MAPK signaling, which is 

commonly altered in endocrine therapy resistant disease. MAP3K8 has been identified as 

driver of androgen independent prostate cancer [342], the equivalent of endocrine therapy 

resistant breast cancer. In in vitro and in vivo models, combination of Anastrozole and the MEK 

specific inhibitor Selumetinib further resulted in significant growth reduction compared to 

Anastrozole treatment alone [343].  

Conversely, AURKA, CDK1, CDK2, GSK-3ß, JNK3, mTOR and p38α were 

downregulated in all T47D or MCF7 TAMR and LTED clones (Figure 24 C). Downregulation 

of the cell cycle kinases AURKA, CDK1 and CDK2 likely was the result of reduced proliferation 

compared to treatment naïve control clones and cell lines, especially in the T47D TAMR and 

LTED clones (Figure 19). GSK-3ß has been considered either a tumor promoter or suppressor, 

depending on its cellular context [344]. In breast tumors, its downregulation has been shown to 

promote endocrine therapy resistance [345]. JNK3 [346] and p38α [347] have been described as 
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tumor suppressor and promoter in HCC and ER- breast tumors, respectively. mTOR activation 

has been shown to induce endocrine therapy resistance [348], but appeared not to be a causal 

driver in my MCF7 in vitro resistance models. 

Taken together, these findings on gene expression and phospho-proteomic level 

highlighted (i) the strong heterogeneity in my clonal endocrine therapy resistance in vitro 

models and (ii) the concordance between my findings and previously described findings. In the 

next step, I interfered with individual alterations in the T47D and MCF7 cell line models. 

 

5.4 AKT signaling is important for T47D orange clones 
Estrogen deprivation induced and maintained a reversible cell state commonly referred 

to as ‘cycling persister’ state [303] in T47D orange clones (Figure 19 C). Here, short-term 

estrogen deprived T47D orange +E2_5 clones may have represented the entry point to this 

cell state which was accompanied by significant upregulation of AKT1-3 activity (Figure 27). 

AKT inhibition led to a significant and similar reduction of observed cell viability by one-third 

on average in treatment-naïve, short-term estrogen deprived and LTED T47D orange clones 

(Figure 28 A), irrespective of their AKT1-3 activation. Clinically and in line with my in vitro 

findings, MK-2206 monotherapy has achieved only limited clinical activity in heavily pre-treated 

patients with advanced breast cancer carrying activating mutations in the PI3K/AKT/mTOR 

pathway or PTEN loss [286]. According to the authors of the study, tumor heterogeneity may 

have been one of the limiting factors. In my T47D cell line model however, MK-2206 was 

effective in reducing cell viability in heterogeneous (T47D WT) and clonal (T47D orange 

clones) populations, either as monotherapy or in combination with estrogen deprivation 

representing clinically utilized aromatase inhibitors. My experimental setting moreover closely 

mimicked a phase II clinical trial [349], where MK-2206 was added to the non-steroidal 

aromatase inhibitor Anastrozole after 28 days of previous treatment with Anastrozole alone. A 

strong reduction in proliferation as measured by Ki-67 staining was observed during the initial 

Anastrozole treatment but no further reduction was found upon additional MK-2206 treatment. 

Similarly, I hardly observed a reduction in total cell numbers when MK-2206 was additionally 

added to the pre-treated cells. Anastrozole treatment/short-term estrogen deprivation already 

led to an almost complete abrogation of cellular proliferation (Figure 19 C). Both clinical trials 

further confirmed additional adverse effects of MK-2206 treatment [286, 349]. Taken together, 

MK-2206 was effective in reducing the observed cellular viability on a (non-)clonal background 

in my PI3KCA mutated T47D in vitro model (Figure 28), but so far has had limited clinical 

efficacy when added to Anastrozole in the neoadjuvant setting or as monotherapy in heavily 

pre-treated patients with advance disease. The ability to target fast-proliferating and cycling 

persisting cells may not outweigh the lack of MK-2206’s added benefits in early clinical trials 

and in the light of its toxicity.  
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5.5 STAT2 mediated JAK-STAT signaling 
The JAK-STAT pathway is an important pathway in immunity, cell division and death, 

and tumorigenesis [350]. Of the key downstream TFs, STAT2 and to a lesser extend STAT1 

emerged as potential drivers of endocrine therapy resistance specifically in MCF7 LTED 

clones. Gene knockdown of either STAT and utilization of the JAK1/2 inhibitor Ruxolitinib 

however had similar effect on endocrine therapy sensitive control cells as well as TAMR and 

LTED clones (Figure 31, Figure 32 and Figure 33). Particularly the non-discriminatory effect of 

Ruxolitinib and the almost exclusive and strong activation of STAT2 point to activation and 

upregulation of the JAK-STAT pathway on transcriptional level by STAT2. After activation 

through type I interferon such as IFN-ß, phosphorylated STAT1 and STAT2 form a trimer with 

IFN-regulatory factor 9 (IRF9), known as IFN-stimulated gene (ISG) factor 3 (ISGF3) [351] 

leading to the increased expression of ISGs. Phosphorylated STAT2 can also form 

homodimers which interact with IRF9 and activate transcription without the involvement of 

STAT1 [352]. Unfortunately, no phosphorylated STAT2 could be detected by Mass 

Spectrometry, potentially due to its low abundance. Since MCF7 LTED clones with significantly 

activated STAT2 showed no increased sensitivity to Ruxolitinib, STAT2 activation may have 

been phosphorylation independent. Unphosphorylated STAT2 and IRF9 have previously been 

shown to drive IL6 expression in the absence of STAT1 [353]. These findings highlight the 

potential of STAT2 (and IRF9) exclusive effects, irrespective of other STAT family members. I 

observed an upregulation of IRF9 expression and IRF9 protein levels in MCF7 LTED clones 

whereas no upregulation of gene or protein levels was evident in MCF7 blue TAMR_1 clones 

(Supplementary Figure 9). Accordingly, higher STAT2 activity in MCF7 LTED clones may have 

been driven by higher abundancy of IRF9. Additionally, STAT2 activity can further be regulated 

by its protein stability. Exemplarily, different viruses have been shown to induce the 

proteasome-mediated degradation of STAT2 [354-356]. In melanoma, STAT2 stability has been 

shown to play an essential role in cell proliferation and colony growth [357]. Accordingly, STAT2 

may have been more stable and therefore more active in MCF7 LTED clones compared to 

MCF7 +E2 control cell lines and blue TAMR_1 clones.  

 

5.6 Private UPR activation and vulnerability to Bortezomib 
In addition to NFκB activation that was observed in all MCF7 TAMR and LTED clones, 

MCF7 blue TAMR_1 clones showed an activation of the unfolded protein response (UPR) and 

accordingly a pronounced involvement of the proteasome (Figure 37 A). Therefore, I decided 

to use the proteasome inhibitor Bortezomib, which may (i) potentiate the UPR and/or (ii) inhibit 

NFκB signaling. Only MCF7 blue TAMR_1 cells were affected profoundly by Bortezomib 

(Figure 38), correlating with the prominent UPR activation seen in MCF7 blue TAMR (Figure 

37 A), however not with the general activation of NFκB in all MCF7 TAMR and LTED clones 
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(Figure 34 A). It is tempting to speculate that the noxious effect of Bortezomib treatment was 

not mediated by inhibition of NFκB signaling but rather through the potentiation of the UPR 

activation in MCF7 blue TAMR_1 clones to a detrimental level [293]. UPR and NFkB signaling 

have previously been described to converge in endocrine therapy resistance [358]. The UPR 

comprises sophisticated mechanisms to restore protein homeostasis and protect cells against 

un- or misfolded proteins and the associated endoplasmic reticulum stress [294]. In brief and as 

described in detail exemplarily by Hetz et al. [294], protein kinase R (PKR)-like endoplasmic 

reticulum kinase (PERK, encoded by EIF2AK3), inositol-requiring enzyme 1 α (IRE1α, 

encoded by ERN1) and ATF6 are key effectors of the UPR. PERK phosphorylates eukaryotic 

translation initiation factor 2 subunit α (eIF2α) which ultimately leads to a decrease in mRNA 

translation initiation. Additionally, the transcription of further UPR target genes is activated 

through ATF4. IRE1α activates the expression of UPR target genes involved in endoplasmic 

reticulum proteostasis through splicing of XBP1 mRNA and reduces protein load through 

cleavage of (non-coding) RNAs. ATF6 is activated by cleavage and then activates transcription 

of genes involved in protein folding homeostasis. Finally, un- or misfolded proteins are 

degraded by the endoplasmic-reticulum-associated protein degradation (ERAD) [294]. XBP1 

was shown to be activated in breast cancer and specifically in TNBC, while ablation of XBP1 

inhibited tumor growth [359]. The PERK/ATF4 arm has been shown to be involved in the 

hypoxia-induced migration of breast cancer cell lines [360]. Specifically for ER+ breast cancer, 

Fulvestrant was shown to induce pro-survival UPR in a MCF7 model [361]. Elevated expression 

of a UPR gene signature was moreover a powerful prognostic marker of resistance to 

Tamoxifen, reduced time to recurrence and poor survival in breast cancer patients with ER+ 

disease [362]. This UPR activation in endocrine therapy treated patients may also be exploited 

clinically. Here, proteasome inhibition by Bortezomib may potentiate Fulvestrant’s efficacy in 

the clinic as it enhances the aggregation of ER leading to the activation of a sustained UPR 

and ultimately apoptosis [363]. In accordance with this finding, a clinical phase II trial showed 

increased median progression free survival when adding Bortezomib to Fulvestrant for patients 

with AI-resistant metastatic breast tumors [364].  

 

5.7 PKC activation as shared clonal driver of endocrine therapy resistance 
The PKC family contains nine different isoforms which are grouped according to their 

mode of activation. ‘Conventional’ PKC isoforms α, ß and γ are activated by diacylglycerol 

(DAG) and Calcium (Ca2+), while the ‘novel’ isoforms δ, ε, η and θ only require DAG for 

activation. ‘Atypical’ PKC isoforms ι and ζ are activated neither by DAG nor Ca2+ [365-367]. PKC 

was exclusively been thought of as a tumor promoter since it was shown to be activated by 

TPA [368], the promoter in the classical two-step protocol for inducing skin cancer in mice 

utilizing 7,12-Dimethylbenz[a]anthracene (DMBA) as initiator [369]. Mechanistically, PKC binds 
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to phorbol esters such as TPA with the same domain (C1) as PKC usually binds to DAG [370]. 

Decades of research have shown that different PKC isoforms can have tumor promoter and 

suppressor functions, also depending on the cellular context as extensively reviewed 

elsewhere [365-367, 371]. While all-trans retinoic acid (ATRA) induced growth arrest in ER+ and 

ER- cells, ATRA induced and decreased PKCα expression [372, 373], respectively, indicating 

opposing roles for regulating cell growth by PKCα. PKC isoforms may also compensate for the 

loss of another isoform, as exemplarily shown for the two typical isoforms α and ß [374]. 

Targeting individual isoforms by pharmacological inhibition may be challenging given the 

similarities between PKC isoforms. Staurosporine [375] and Sotrastaurin [247] are pan-PKC 

inhibitors and in the case of Staurosporine also inhibit other kinases with similar IC50 values.  

In accordance with potentially overlapping or compensatory modes of actions, different 

PKC isoforms were among the significantly activated kinases in my MCF7 TAMR and LTED 

clones (Figure 39 A) and I targeted PKC activation in all cell lines using the pan-PKC inhibitor 

Sotrastaurin. Here, reduction in cellular viability upon Sotrastaurin treatment largely correlated 

with the PKC activation of individual MCF7 TAMR and LTED clones (Figure 41). Pink LTED_2 

clones only showed significant activation of PKCß and PKCδ and a weak response to 

Sotrastaurin treatment. PKCδ has been compared to yin and yang [371] as it may act tumor 

suppressive or promoting. In breast cancer, PKCδ is mainly considered tumor promoting [371] 

but has also been implicated in apoptosis induction and cell cycle arrest in G1 phase in other 

cancer entities [376-379]. These findings could in part explain that activation of PKCδ alone may 

not predict sensitivity to Sotrastaurin treatment. Similarly, PKCη may generally promote the 

growth of breast cancer cells [380], but has also been shown to induce growth arrest and 

differentiation in other cell types [381-383]. The additional significant activation of PKCη in MCF7 

blue TAMR_1 cells may explain their reduced sensitivity to Sotrastaurin compared to yellow 

LTED_2 and red LTED_5 clones which lacked significant activation of this isoform. 

Mechanistically, Sotrastaurin treatment had minor effects on the percentage of cycling cells 

but its growth inhibitory effect appeared to be driven at least in part through an increase in 

dying/dead cells (Figure 41 C and D). These findings are in accordance with previous studies 

indicating that PKCs predominantly affect G0/G1 and G2 phases [384, 385].  

Different PKC isoforms have previously been implicated in endocrine therapy 

resistance. In vitro, T47D and MCF7 TAMR cells expressed significantly higher levels of PKCα 

and PKCδ [386]. In patients, PKCδ expression was found to be associated with ER+ disease 

while PKCα expression was associated with ER- disease [386]. Double positivity of PKCα and 

PKCδ was associated with poor prognosis in patients receiving endocrine therapy [386]. PKCα 

expression was positively associated with TNBC [387] and HER2 overexpressing [388] tumors 

proposing a role of this PKC isoform in estrogen-independent breast cancers. In line, PKCα 

overexpression in MCF7 and T47D cell lines reduced ER expression [389, 390]. Overexpression 
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of constitutively active PKCß moreover significantly increased the growth rate of MCF7 cells 
[391]. PKCε expression levels further correlated with estrogen receptor negative breast tumors 

as well as worse overall and disease-free survival [392]. Expression of the novel isoform PRKCQ 

(encoding PKCθ) has previously been described to be inversely correlated with ER positivity 
[393] while PKCη has been shown to contribute to breast cancer growth [380]. Taken together, 

these findings highlight the potentially important role of PKC isoforms in endocrine therapy 

resistance and estrogen-independent growth.  

 

5.8 Clinical significance of in vitro findings 
After I had analyzed clonal endocrine therapy resistance on different levels and 

validated individual resistance drivers in vitro, I further set out to validate my in vitro findings in 

the CPTAC-BRCA cohort. In accordance with previous reports of treatment-naïve patients with 

ER+ disease [95-100], only one ESR1 mutation (p.R352K) in a single patient out of 89 patients 

with ER+ disease was found. Especially the stratification on per patient basis highlighted the 

strong inter-patient heterogeneity, as exemplarily illustrated on the pathway activation level 

(Figure 44). Individual patients with estrogen independent disease showed activation of in vitro 

identified drivers of endocrine therapy resistance, adding strong clinical relevance to my in vitro 

findings.  

 

5.9 Limitations of the study 
Despite the in-depth analysis and novel findings that are presented in my PhD thesis, 

the utilized barcoding approach had some limitations. In the bulk barcoding approach by Dr. 

Simone Borgoni [236], a selection of mainly three different clonal populations as indicated in 

Figure 10 A by orange, green and yellow barcodes was observed in the T47D +E2 control 

replicates. A similar neutral drift has previously been described in Escherichia coli over the 

time of 60,000 generations [394] and may have been due to selective advantages of individual 

clones even in the absence of stress. T47D orange +E2_5 clones appeared to have an 

additional selective advantage such as increased proliferation [395] over green clones in the 

+E2_5 replicate since the orange clonal population made up roughly 50% of the +E2_5 

replicate while the green clonal population made up less than 5%. When analyzing orange and 

green +E2_5 clones individually however, T47D green +E2_5 clones proliferated significantly 

more than T47D orange +E2_5 clones (Figure 19 A). Accordingly, these findings contrast each 

other, and such proliferative dynamics would have more closely resembled the T47D +E2_2 

replicate, which was dominated by the green +E2 clonal population (Figure 10 A). However, 

by isolating single clones and analyzing them separately, clonal cooperativity and competition 

which influence the cells’ behavior in the tumor bulk [396] were abrogated and could not be taken 



Discussion 

 94 

into account. To address the questions of clonal cooperativity and competition, orange and 

green +E2_5 clones could be mixed and cultivated in different ratios. Afterwards, the proportion 

of orange and green +E2_5 clones could be determined by a barcode PCR and the results 

could exemplarily be compared to the +E2_2 and +E2_5 pools. 

T47D orange clones were of particular interest as short-term estrogen deprivation of 

+E2_5 clones induced a ‘cycling persister’ phenotype that was stable for months (orange LTED 

clones). Lifting the applied pressure restored a strongly proliferative phenotype in these cells. 

AKT signaling appeared to be important for the short-term induction of the cycling persister 

phenotype but the AKT inhibitor MK-2206 showed limited efficiency, in our in vitro model and 

in patients. Orange clones of selected treatment conditions were subjected to RNA-Seq and 

(phospho-)proteomic analysis by Mass spectrometry. Subjecting the remaining samples 

(mainly LTED clones supplemented with estrogen) to RNA-Seq and Mass spectrometry may 

further reveal specific mechanisms responsible for this highly reversible phenotype that can 

be therapeutically exploited. Further RNA-Seq experiments may also be advisable to perform 

for Bortezomib treated MCF7 TAMR and LTED clones to determine the treatment’s effect on 

UPR activation and p65 transcriptional activity by GSEA and DoRothEA, respectively.  

To add clinical relevance to my in vitro findings, I utilized the recently published CPTAC-

BRCA cohort [234]. This comparison had two major limitations. First, I had to compare endocrine 

therapy resistant in vitro models with ER- patients since no cohort with endocrine therapy 

treated patients containing phospho-proteomics data is currently publicly available. Secondly, 

activation scores of individual patients unavoidably represented assemble average 

measurements of different cells and potentially of different clonal populations. The utilized 

MCF7 cell lines I used however represented clonal populations. Recent technological 

innovations may improve the analysis of clones originating from the same tumor. Exemplarily, 

scRNA-Seq allows to analyze the expression profiles of single cells and would provide such 

insight on gene expression level. This technique could be complemented with single cell 

proteomics [397]. Ultra-high-sensitivity proteomics could further be coupled with high resolution 

microscopy. A study by Mund et al. could show that by utilizing such combination they were 

able to distinguish normal, pre-cancerous and cancerous lesions from melanoma tissue [398]. 

Combining multiple techniques, such as WGS, histopathology and spatial transcriptomics 

would further help to improve our understanding of breast cancer clones’ evolutionary 

trajectories in situ as recently shown by Lomakin et al. [399]. 

My study further uncovered the need for drug development targeting TFs. I inhibited 

STAT1, STAT2 and p65 by gene knockdown. However, this knockdown reduced protein levels 

by > 90% and thereby the inhibitory effect could not be titrated. Gene knockdown results in a 

gradual reduction of protein levels, which cells might sense and counteract by activating 

salvage mechanisms. Drug effects mostly set in instantly thereby blocking protein activities 
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without much delay. Accordingly, further improvements in pharmacologically targeting the 

‘undruggable’ TFs [400] may help improve the therapeutic outcome of (breast) cancer patients. 

An example of targeting STAT TFs is Stattic, an inhibitor for STAT3 [401].  

Finally, my study was also limited by aspects I did not look into. First and except for 

ESR1 hotspot mutations covering codons 536 to 538, I only analyzed for gene expression and 

phospho-proteomic changes but did not inspect potential genetic alterations. Accordingly, my 

study systematically missed out on genetic drivers of endocrine therapy resistance. 

Additionally, I only utilized cancer cell line models in monolayer and -culture. Further studies 

should analyze cancer cells in a 3D environment or with cells from the tumor 

microenvironment, such as cancer associated fibroblasts. In vivo experiments could be 

performed to further validate my in vitro findings. The ‘initial’ cells could be injected into 

immunocompromised mice and these be treated with estrogen, Tamoxifen or an aromatase 

inhibitor such as Letrozole after successful tumor engraftment. Here, it would be of interest to 

see if the same barcodes would be enriched in vitro and in vivo. In the next step, single clones 

could be isolated from the mouse tumors and analyzed as performed for this thesis. Individual 

resistance drivers identified in vitro should also be challenged in vivo. After successful 

engraftment of different clonal tumor cells, mice could be treated with endocrine therapy alone 

or in combination, for example, with Bortezomib or Sotrastaurin. 
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6 Conclusion 

ER+ breast tumors can be effectively targeted by impinging on estrogen signaling using 

endocrine therapy. Nevertheless, treatment resistance may arise in up to 41% of patients who 

originally present with late stage disease [84]. Therapeutic failure can be driven by different 

mechanisms and tumor heterogeneity is increasingly appreciated to also contribute to therapy 

resistance [173]. Using an in vitro barcoding approach, Dr. Simone Borgoni found that Tamoxifen 

resistance can arise either by the selection of pre-existing clones or by the rewiring of initially 

treatment persisting clones [236]. In my study, I isolated and deeply characterized clonal 

endocrine therapy sensitive and resistant populations from these previously established in vitro 

models. Phenotypically, endocrine therapy resistant populations resembled either ‘cycling 

persister’ cells or fast proliferating cells. Further, endocrine therapy resistance was 

accompanied by private (specific for individual clones) and shared (between different clones) 

molecular alterations on gene expression and phospho-proteomic levels.  

T47D orange clones were of strong interest since they were enriched in the treatment-

naïve (+E2) and treated (-E2) conditions. Estrogen deprivation (-E2) induced a ‘cycling 

persister’ phenotype characterized by low proliferation and a strong reduction in cycling cells 

that was stable for months. This phenotype was reversed when the treatment was lifted, 

indicating that cells are capable to withstand therapeutic stress for a long period of time and 

quickly regain proliferative capacity once therapy is lifted. The induction of the ‘cycling 

persister’ phenotype was accompanied by significant activation of AKT. Treatment with the 

AKT inhibitor MK-2206 was effective at reducing cellular viability in ‘cycling persister’ and 

strongly proliferating cells but not specifically for short-term persisting cells, which had shown 

the strongest activation of AKT. 

MCF7 TAMR and LTED clones displayed stronger proliferative capacities than their 

respective T47D counterparts. Here, I could pinpoint UPR and PKC activation as private and 

shared endocrine therapy resistance drivers, respectively. On the one hand, MCF7 blue 

TAMR_1 clones displayed a mild UPR which was likely potentiated to a detrimental level by 

low nanomolar concentrations of Bortezomib. On the other hand, strong reduction in cellular 

viability by PKC inhibition through Sotrastaurin was evident in multiple MCF7 clones. 

Sensitivity to Sotrastaurin roughly correlated with the stronger activation of different PKC 

isoforms. 

Finally, I could highlight that the activation of individual resistance drivers can be 

masked by inter-patient heterogeneity in a clinical cohort, as was particularly evident in the 

case of PKC activation. Deconvoluting the cohort to the individual patient level revealed 

individual patients closely resembling my in vitro models adding clinical relevance to my clonal 

in vitro findings. 
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7 Supplementary Figures 

 

Supplementary Figure 1: Clonality dynamics in T47D LTED_2 cell pool. A Initial barcode analysis of 
LTED_2 after five months under estrogen deprivation revealed the brown barcode as dominating barcode in the 
cell pool (‘Freezing’). After further cultivation under estrogen deprivation two shifts in clonal dynamics were 
observed. In the initial five passages after thawing the orange clonal population outcompeted the brown clonal 
population (‘Intermediate’). After further cultivation, the brown clonal population reclaimed its dominance again 
(‘Prolonged culture’). Of note, cells were not cultivated consecutively but were frozen down, thawed and expanded 
again between the passages as shown in B. C Sanger sequencing chromatograms depicting the barcode 
sequences of LTED_2 cell pools under prolonged culture. The dominating sequence in the first two chromatograms 
represents the orange barcode whereas the dominating sequence in the third and fourth chromatograms represents 
the brown barcode. 
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Supplementary Figure 2: Integration site verification for T47D and MCF7 clones. A List of viral 
integration sites and sequence counts from the analysis of barcoded cell pools. Color coding indicates the barcode 
estimated to be represented by the viral integration site according to Figure 14. Integration sites verified in the 
corresponding barcoded cell pools that could not be identified for isolated clones are lacking a color coding. 
Exemplarily, the viral integration site in Chr4:112,000,728 could be validated for the T47D LTED_2 cell pool (‘+’) 
but not for the orange clones isolated from the T47D +E2_5, LTED_1 and LTED_2 replicates (D). Primers were 
designed for a unique part of the viral 3’LTR and regions of the host’s genome adjacent to the viral integration site. 
B-D Validated integration sites for MCF7 red LTED_5 clones (B), T47D turquoise TAMR_2 (left), T47D purple 
TAMR_2 and TAMR_4 clones (middle and right) (C), and T47D orange +E2_5, LTED_1 and LTED_2 clones (D). 
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Supplementary Figure 3: Proliferation of T47D orange and green +E2_5 clones under endocrine 
therapy. A Proliferation of orange and green +E2_5 clones under 4-OHT treatment compared to TAMR_2 and 
TAMR_4 clones. ‘Second’ set refers to data shown in Figure 19 B. B Proliferation of orange and green +E2_5 
clones under normal growth conditions (+E2) and estrogen deprivation (-E2). For WT and orange +E2_5 clones 
+E2, data from Figure 19 A and C was combined. A and B Cells were kept in or treated with the indicated media 
(+E2, +4-OHT, -E2). WT indicates non barcoded cells. ‘ indicates 14 day pre-treatment with 4-OHT or by estrogen 
deprivation (-E2) and then continued treatment for the duration (7 days) of the proliferation assay. Cell numbers 
were determined by microscopy-based nuclei counting at day 0 (d0) and day 7 (d7). A Given the different 
phenotypes depicted by the TAMR clones (non-proliferative: TAMR_2 B3, C4 and H2 vs proliferative: TAMR_2 B5, 
D12, D8, TAMR_4 B2, C3, D8 and E2), clones with the same barcode were not grouped together but rather 
compared to pre-treated non-barcoded T47D WT cells as also for Figure 19 B. B Clones with the same barcode 
and treatment (±E2) were grouped and the grouped clones compared. A and B * represents p<0.05, ** represents 
p<0.01, *** represents p<0.001 and **** represents p<0.0001 as determined by one-way ANOVA with Tukey or 
Dunnett multiple comparisons test.  
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Supplementary Figure 4: Overlap of detected phosphosites in biological replicates. Shown are the 
overlaps in detected phosphosites for biological replicates of T47D (A) and MCF7 (B) control cell lines and isolated 
clones. Particularly for T47D orange +E2_5 clones (A) only percentages are shown. Additionally, only values > 2.0% 
are highlighted for better visualization. 

 

 

Supplementary Figure 5: Quantification of AKT inhibition by MK-2206. T47D +E2_5 E2 and LTED_1 
C6 clones were treated with DMSO (‘0’) or increasing MK-2206 concentrations for 1 h and the inhibition of 
downstream signaling was estimated from PRAS40 Thr246 phosphorylation levels. A representative Western Blot 
image for pPRAS40 (A) and PRAS40 (B) and their loading controls are shown. n = 3. (p)PRAS40 signals were 
normalized to the respective ß-Actin loading controls and then normalized to DMSO-treated (‘0’) +E2_5 E2 and 
LTED_1 C6 cells, respectively. Highlighted are mean ± SEM. *** represents p<0.001 and **** represents p<0.0001 
as determined by one-way ANOVA with Dunnett multiple comparisons test. 
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Supplementary Figure 6: IKK activities in MCF7 TAMR and LTED clones. IKKα (A), IKKß (B), IKKε 
(C) and TBK1 (D) are capable of phosphorylating IκB. Absolute activity scores ≥ 2 were considered significant as 
indicated by dashed lines. No significant deregulation of either IKK were evident from the phospho-proteomics data. 
Analyses were performed by Dr. Efstathios-Iason Vlachavas. 

 

 

Supplementary Figure 7: Pathway and PKC activity profiles of individual patients with ER+ disease 
from the CPTAC cohort. Supplementary Figure to Figure 44 and Figure 45 C. Pathway (A) and PKC activities (B) 
were determined as described above. Activation and repression are indicated by red and blue color coding, 
respectively. For better visualization extreme values were adjusted to the indicated scales. Significance of 
deregulations are not indicated. Analyses were performed by Dr. Efstathios-Iason Vlachavas. 
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Supplementary Figure 8: HER2 protein overexpression in T47D and MCF7 TAMR and LTED clones. 
Protein levels were determined by Mass spectrometry for T47D (A) and MCF7 (B). * represents p<0.05, ** 
represents p<0.01, *** represents p<0.001 and **** represents p<0.0001 as determined by one-way ANOVA with 
Dunnett multiple comparisons test. a.u.: arbitrary units. 

 

 

Supplementary Figure 9: IRF9 gene and IRF9 protein overexpression in MCF7 TAMR and LTED 
clones. A Log2FC and adjusted p-values of IRF9 compared to +E2 control cell lines. B Protein levels were 
determined by Mass spectrometry. * represents p<0.05 as determined by one-way ANOVA with Dunnett multiple 
comparisons test. T_1: TAMR_1. L_2: LTED_2. L_5: LTED_5. a.u.: arbitrary units. 
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8 Supplementary Tables 

Supplementary Table 1: Sequences and color coding of barcodes representing isolated clones. 

Barcode sequence Cell line(s) Color 
coding Individual clones Designation 

in Figure 16 

AGACTCTCTGTGACAG
AGACTCTGTGTGAG 

T47D +E2_5 and 
LTED orange 

+E2_5: B8, C12, E2, F6, 
H9 

LTED_1: B10, C4, C6, F10 
LTED_2: C2, C11, F5 

a 

AGACTCTGTGTCACAC
TGAGTCTGAGTGTG T47D +E2_5 green B5, D3, D11 b 

TGTGACTGTGAGACAC
AGAGAGTGAGTGTG T47D TAMR_2 turquoise B3, B5, D12 c 

AGAGACAGTGTGACTGTC
ACTGAGAGAGAG 

T47D TAMR_2 
and TAMR_4 

dark 
red/purple 

TAMR_2: C4, D8, H2 
TAMR_4: B2, C3, D8, E2 d 

ACTGAGACTGAGTCACAC
TGTCACAGTGAC 

T47D TAMR_2 
and TAMR_4 

dark 
blue/purple 

TAMR_2: C4, D8, H2 
TAMR_4: B2, C3, D8, E2 e 

ACAGAGTGAGAGTGTGA
GTCTGAGTCACAG 

MCF7 TAMR_1 blue B3, B6, E10 

a 

ACTGTGTGTGACAGAGAC
AGAACTCTGACA b 

AGAGACTCAGTCTGTGAG
ACTGACACAGTC c 

AGTCTGTCTGTGTCTCAC
AGAGTGTGAGAC 

d 

AGTCTGTGTGTCTCTGTC
TGTCTCTGAGTG 

e 

AGTGAGAGTGTCAGTCTG
ACTGACACACAG f 

TCAGTGAGAGTGAGTCTC
AGTCTGAGTGTG g 

TCTGTGTGTGAGTGACTG
AGTGTCAGTGTG h 

TGACACTGAGAGAGAGA
GTGACACAGTGAC 

i 

TGACAGAGTGTGTCTGAG
AGTGAGTGAGTG 

j 

TGACTGTGTGTGCAGAGA
GTGAGTGTGTCA k 

TGTCAGAGTGAGTGTGAC
TCACTCAGAGTC l 

TGTCTGTCAGACTGTGAG
AGAGAGTCAGAC m 

TGTCTGTGTGACAGTCAC
ACTGTCTCAGTC 

n 

TGTGAGTGTCACTGACTG
TCTGAGAGTGAG 

o 

TGTGTGAGACTGTCTCAC
AGTCAGAGAGAC p 

TGTGTGTCAGAGTGTCTG
ACAGAGAGTGAG q 

AGACACAGAGTGAGAGA
GAGACACAGAGTG 

MCF7 LTED_2 yellow B5, C4, D6 

r 

AGAGTGTGTCTGTGTGTG
ACTGACAGTCTG 

s 

AGTCTGTGAGTGTGTGTC
TCACTGACTGTG 

t 
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TCTGTCACACTGCGACAC
TCTCAGTCAGTC u 

TGTGTCACACACTGACTC
TGTCAGTGAGTG 

v 

ACAGTGTGTCTGAGACAC
AGTGACACAGTG 

MCF7 LTED_2 pink E11, G2 

w 

AGTCTCAGAGTGAGTCTG
AGTGTCTGTGTC x 

AGTGTCTCAGTGTCTGTC
AGTGACACTCTG y 

TGACTGAGAGTGAGACA
CACTGTCACACAC z 

TGACTGAGTCTGAGTCTG
AGAGAGTGTCTC 

ä 

TGTCTCTCAGAGTGAGTG
AGAGTGACTCAC 

ö 

AGACTCTGAGACTGTCTG
TGAGTGACTCAC MCF7 LTED_5 red A9, C9, E4 ü 

 

Supplementary Table 2: Genomic integration sites of individual barcodes. Verified clonal integration 
sites were investigated with the UCSC genome browser for potential disruption of regulatory or coding regions using 
the GRCh38/hg38 assembly (https://genome.ucsc.edu/cgi-bin/hgGateway).  

Integration locus Cell line and barcode Nearest gene 
(within 30 kb) Integration 

Chr3:189,684,206 T47D purple TAMR TP63 TP63 
Intron 1 

Chr4:110,457,931 MCF7 red LTED_5 – – 

Chr6:120,131,260 T47D turquoise TAMR_2 – – 

Chr7:110,418,502 T47D orange +E2_5 and 
LTED ENSG00000226965 ENSG00000226965 

Intron 4  

Chr8:91,606,636 T47D purple TAMR ENSG00000253901 ENSG00000253901 
Intron 2 

Chr11:31,426,888 T47D orange +E2_5 and 
LTED DNAJC24 DNAJC24 

Intron 4 
 

Supplementary Table 3: Gene set enrichment analysis of top 200 most variable genes for T47D. 
The GSEA online tool was used (http://www.gsea-msigdb.org/gsea/msigdb/human/annotate.jsp, accessed: 
26.01.23).  

Hallmark Gene Set Genes in 
Gene Set 

Genes in 
Overlap 

Overlap 
[%] p-value FDR q-

value 
EPITHELIAL_MESENCHYMAL_TRANSITION 200 11 5.50 4.89E-09 2.45E-07 

ESTROGEN_RESPONSE_EARLY 200 8 4.00 6.89E-06 1.15E-04 
ESTROGEN_RESPONSE_LATE 200 8 4.00 6.89E-06 1.15E-04 

COAGULATION 138 6 4.35 6.28E-05 7.85E-04 
INTERFERON_GAMMA_RESPONSE 200 6 3.00 4.7E-04 3.35E-03 

KRAS_SIGNALING_UP 200 6 3.00 4.7E-04 3.35E-03 
MYOGENESIS 200 6 3.00 4.7E-04 3.35E-03 

INTERFERON_ALPHA_RESPONSE 97 4 4.12 1.33E-03 8.34E-03 
KRAS_SIGNALING_DN 200 5 2.50 3.09E-03 1.72E-02 
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Supplementary Table 4: Gene set enrichment analysis of top 200 most variable genes for MCF7. 
The GSEA online tool was used (http://www.gsea-msigdb.org/gsea/msigdb/human/annotate.jsp, accessed: 
26.01.23).  

Hallmark Gene Set Genes in 
Gene Set 

Genes in 
Overlap 

Overlap 
[%] p-value FDR q-

value 
ESTROGEN_RESPONSE_EARLY 200 15 7.50 7.61E-14 3.8E-12 
ESTROGEN_RESPONSE_LATE 200 11 5.50 4.64E-09 1.16E-07 

EPITHELIAL_MESENCHYMAL_TRANSITION 200 9 4.50 6.58E-07 1.1E-05 
INTERFERON_GAMMA_RESPONSE 200 8 4.00 6.64E-06 6.64E-05 

KRAS_SIGNALING_UP 200 8 4.00 6.64E-06 6.64E-05 
INTERFERON_ALPHA_RESPONSE 97 6 6.19 8.28E-06 6.9E-05 

MYOGENESIS 200 7 3.50 5.91E-05 4.22E-04 
APOPTOSIS 161 5 3.11 1.17E-03 7.34E-03 

 

Supplementary Table 5: Transcription factor activities for T47D TAMR and LTED clones. The top 10 
activated and repressed TFs are listed with their NES. Absolute activity scores ≥ 2 were considered significant. TF 
activities in the TAMR and LTED clones were compared to the activities in orange (and green) +E2_5 clones. 
Positive values indicate higher activities in TAMR and LTED clones while negative values indicate higher activities 
in orange (and green) +E2_5 clones. Analyses were performed by Dr. Efstathios-Iason Vlachavas. For simplicity 
and unambiguity, proteins are referred to by their nonitalicized gene names as previously recommended [402]. 

turquoise TAMR vs 
orange and green 

+E2_5 
purple TAMR vs orange 

and green +E2_5 
orange LTED vs orange 

and green +E2_5 
orange LTED vs orange 

+E2_5 

TF NES TF NES TF NES TF NES 

GRHL2 4.86 KLF5 4.46 ZBT11 4.34 ZNF263 5.06 
KLF5 4.86 SIX5 3.81 MAFF 4.13 ZBTB11 3.43 

ESRRA 4.13 RFX1 3.80 GABPA 3.67 NCOA1 2.82 
RFX1 4.09 GRHL2 3.58 NCOA1 3.45 ELF5 2.59 

PRDM14 3.42 THAP1 3.13 ZNF263 3.39 BHLHE40 2.52 
SIX5 3.13 PRDM14 3.04 MEF2A 3.24 MAFF 2.43 

SREBF1 3.00 RFX2 2.90 GRHL2 3.16 GABPA 2.38 
FOXK2 2.71 ZNF639 2.76 ELF3 3.07 TBP 2.23 
CREB3 2.59 FOXP1 2.76 SREBF1 3.00 SP2 2.06 
FOXO3 2.48 HIF1A 2.52 TBP 2.66 KLF13 2.03 

ETS2 -2.54 ZNF263 -3.79 NR2F1 -3.39 EBF1 -4.13 
E2F7 -2.55 ARID2 -3.90 MYC -3.60 NR2F1 -4.16 
IRF2 -2.95 E2F1 -4.03 IRF2 -3.64 SP1 -4.67 

STAT1 -3.13 FOXM1 -4.21 SPI1 -3.71 IRF2 -4.89 
FOXM1 -3.14 IRF2 -4.23 RARA -3.74 SPI1 -4.94 

ZBTB7A -3.64 STAT1 -4.25 SP1 -3.78 STAT1 -5.09 
E2F4 -3.64 ZBTB7A -4.43 NFΚB1 -4.04 NFΚB1 -5.20 
ARID2 -3.66 MYC -4.64 LYL1 -4.46 LYL1 -5.71 
TCF7 -3.73 STAT2 -5.36 IRF1 -5.90 IRF1 -8.23 

STAT2 -7.18 E2F4 -6.58 STAT2 -7.40 STAT2 -10.53 
 

Supplementary Table 6: Transcription factor activities for MCF7 TAMR and LTED clones. The top 
10 activated and repressed TFs are listed with their NES. Absolute activity scores ≥ 2 were considered significant. 
TF activities in the TAMR and LTED clones were compared to the activities in +E2_1, +E2_3 and +E2_5 control 
cell lines. Positive values indicate higher activities in TAMR and LTED clones while negative values indicate higher 
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activities in +E2 control cell lines. Analyses were performed by Dr. Efstathios-Iason Vlachavas. For simplicity and 
unambiguity, proteins are referred to by their nonitalicized gene names as previously recommended [402]. 

blue TAMR_1 vs +E2 
pools 

yellow LTED_2 vs +E2 
pools 

pink LTED_2 vs +E2 
pools red LTED_5 vs +E2 pools 

TF NES TF NES TF NES TF NES 

TEAD1 8.47 STAT2 6.94 ZNF384 5.19 TEAD1 6.00 
MEF2A 7.09 KLF5 6.81 NCOA3 5.17 STAT2 5.07 
ARNT 5.28 KLF6 4.31 ARID2 5.03 MEF2A 4.69 
KLF6 5.04 GRHL2 4.05 MEF2A 4.70 NCOA3 3.96 

GRHL2 4.94 IRF1 3.77 FOXO3 4.66 GRHL2 3.81 
TEAD4 4.73 THAP1 3.65 STAT2 4.56 TEAD4 3.79 

NCOA3 4.70 TBP 3.57 MEF2C 4.24 ELF1 3.65 
AR 4.48 PRDM1 3.38 MAFG 4.07 SMAD4 3.61 

TCF12 4.41 TEAD1 3.31 ARNT 3.91 TBP 3.55 
RBPJ 4.37 SOX6 3.10 SIX2 3.79 ZNF263 3.38 

HBP1 -2.84 PAX5 -2.53 SP1 -2.71 LYL1 -2.61 

FOXA1 -2.96 DUX4 -2.55 MYC -3.05 MBD2 -2.90 
ZNF639 -3.28 ESR1 -3.13 MITF -3.10 E2F1 -2.90 

ATF3 -3.30 ATF3 -3.45 E2F6 -3.15 E2F4 -3.20 
IRF3 -3.40 E2F4 -3.49 HMBOX1 -3.16 MYC -3.35 
BCL6 -3.45 MITF -3.53 HBP1 -3.51 FOXM1 -3.45 
MBD2 -3.61 FOXP1 -3.71 ESR1 -4.18 FOXA1 -4.13 

CTCFL -4.11 FOXA1 -3.78 FOXA1 -4.58 ESR1 -4.15 
ZEB2 -4.19 FOXM1 -3.87 BCL6 -4.80 ZEB2 -4.51 

FOXP1 -7.22 ZBTB7A -5.65 FOXP1 -6.98 FOXP1 -6.00 
 

Supplementary Table 7: Kinase and phosphatase activities for T47D TAMR and LTED clones. The 
top 10 activated and repressed kinases and phosphatases are listed with their NES. Absolute activity scores ≥ 2 
were considered significant. Kinase and phosphatase activities in the TAMR and LTED clones were compared to 
the activities in orange (and green) +E2_5 clones. Positive values indicate higher activities in TAMR and LTED 
clones while negative values indicate higher activities in orange (and green) +E2_5 clones. Analyses were 
performed by Dr. Efstathios-Iason Vlachavas. For simplicity and unambiguity, proteins are referred to by their 
nonitalicized gene names as previously recommended [402]. 

turquoise TAMR vs 
orange and green 

+E2_5 
purple TAMR vs orange 

and green +E2_5 
orange LTED vs orange 

and green +E2_5 
orange LTED vs orange 

+E2_5 

Kinase/ 
Phosphatase NES Kinase/ 

Phosphatase NES Kinase/ 
Phosphatase NES Kinase/ 

Phosphatase NES 

HIPK2 3.22 RPS6KA2 3.27 CSNK2A2 4.30 CSNK2A2 4.04 
SRC 2.96 RPS6KA3 3.18 CSNK2A1 2.98 CSNK2A1 2.67 

PPP3CB 2.94 HIPK2 2.99 PTPN11 2.72 CSNK1E 2.64 
PPP3CC 2.94 PTK2 2.97 CSNK1E 2.55 PTPN11 2.36 
CSNK1E 2.82 CSNK1E 2.66 VRK1 2.08 PTPRG 1.96 

CSNK2B 2.17 AKT2 2.41 RPS6KA3 2.01 VRK1 1.94 
CSNK2A2 2.10 PRKD1 2.33 PRKD1 1.98 PRKD1 1.77 

PDK1 1.93 PPP2CA 2.31 STK40 1.92 PTPN1 1.76 
PPP3CA 1.81 RPS6KA5 2.30 PTPRG 1.89 STK40 1.63 

CLK3 1.63 PAK2 2.28 CSNK2B 1.82 CLK1 1.49 
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AURKA -2.68 PRKCZ -2.01 CDK20 -2.90 CDK18 -2.97 
PTPRG -2.70 MELK -2.10 SRC -2.97 STK16 -3.04 

RPS6KA1 -2.73 WEE1 -2.25 MAPK1 -2.97 MAPK3 -3.11 
LATS2 -2.79 CDC7 -2.46 STK16 -3.03 AURKB -3.15 
MAPK3 -3.27 PTPRG -2.59 MAPK3 -3.14 SRC -3.28 
CDK2 -3.30 AURKB -2.97 CDK16 -3.65 CDK5 -3.51 
CDK5 -3.77 AURKA -3.73 AURKB -4.39 CDK16 -3.56 

PRKACG -3.96 CDK4 -4.30 CDK4 -5.75 CDK4 -4.26 
CDK1 -4.41 CDK2 -4.58 CDK1 -6.89 CDK2 -7.27 

PRKACA -4.63 CDK1 -4.58 CDK2 -7.34 CDK1 -7.38 
 

Supplementary Table 8: Kinase and phosphatase activities for MCF7 TAMR and LTED clones. The 
top 10 activated and repressed kinases and phosphatases are listed with their NES. Absolute activity scores ≥ 2 
were considered significant. Kinase and phosphatase activities in the TAMR and LTED clones were compared to 
the activities in +E2_1, +E2_3 and +E2_5 control cell lines. Positive values indicate higher activities in TAMR and 
LTED clones while negative values indicate higher activities in +E2 control cell lines. Analyses were performed by 
Dr. Efstathios-Iason Vlachavas. For simplicity and unambiguity, proteins are referred to by their nonitalicized gene 
names as previously recommended [402]. 

blue TAMR_1 vs +E2 
pools 

yellow LTED_2 vs +E2 
pools 

pink LTED_2 vs +E2 
pools red LTED_5 vs +E2 pools 

Kinase/ 
Phosphatase NES Kinase/ 

Phosphatase NES Kinase/ 
Phosphatase NES Kinase/ 

Phosphatase NES 

PRKCA 7.71 PRKACA 4.88 AURKB 3.65 PRKCA 4.80 
PRKCB 5.63 PRKCB 4.75 PRKCB 3.09 PRKACA 3.56 

PRKACA 5.51 PRKCA 4.74 CAMK2D 3.06 PRKCB 3.55 

PRKCE 5.00 MAP2K2 3.78 MAP2K2 2.94 AURKB 3.43 
PRKCG 4.33 PRKCE 3.72 DYRK2 2.86 PRKACG 3.34 

CAMK2D 4.18 CAMK2D 3.59 PRKCD 2.76 CAMK2D 3.22 
PRKACG 4.02 PDK1 3.54 CDK20 2.40 PRKCE 3.07 
AURKB 3.81 PRKACG 3.23 NUAK1 2.25 PRKCD 3.07 
PRKCD 3.51 AKT2 3.14 ATM 2.23 PRKACB 2.92 

AKT1 3.27 AKT3 3.08 MAP3K8 2.14 MAP2K2 2.85 

PPP2CA -2.51 CDK5 -3.70 TTK -2.21 CDK5 -2.93 
MTOR -2.77 CDK7 -4.47 DUSP1 -2.35 DYRK1A -3.15 

MAPK11 -2.79 CDK4 -4.59 EPHA2 -2.48 CDK4 -3.30 
PPP1CB -2.82 CSNK2A1 -4.61 RPS6KA2 -2.56 MTOR -3.30 

PPP1CC -2.82 MAPK10 -4.83 RIPK2 -2.79 MAPK10 -3.60 
MAPK8 -2.84 MAPK8 -4.96 CDK1 -3.10 MAPK8 -4.46 
CDK1 -2.97 MAPK14 -7.34 ULK3 -3.98 CDK1 -5.92 

MAPK10 -3.06 GSK3B -8.05 GSK3B -4.07 MAPK14 -5.93 
CDK5 -3.16 CDK1 -8.96 MAPK10 -4.30 CDK2 -6.88 

GSK3B -3.75 CDK2 -10.21 MTOR -4.99 GSK3B -7.04 
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9 Abbreviations 

4-OHT  4-hydroxytamoxifen 
ADC  Antibody-drug conjugates 
AI  Aromatase inhibitor 
AKT  RAC-alpha serine/threonine-protein kinase 
ALK  Anaplastic lymphoma kinase 
AmpR  Ampicillin resistance gene, encodes β-lactamase 
APC  Adenomatous polyposis coli 
APOBEC Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 
ATP  Adenosine triphosphate 
AURKA  Aurora kinase A 
AURKB  Aurora kinase B 
BCA  Bicinchoninic acid  
BRCA  Breast cancer 
BRCA1  Breast cancer type 1 susceptibility protein 
BRCA2  Breast cancer type 2 susceptibility protein 
BSA  Bovine serum albumin 
Ca2+  Calcium 
C/EBPγ  CCAAT enhancer binding protein gamma 
CAF  Cancer associated fibroblast 
CaMK2δ Calcium/Calmodulin dependent protein kinase II delta 
CDK  Cycling dependent kinase 
cDNA  Complementary deoxyribonucleic acid 
CIN  Chromosomal instability 
CML  Chronic myeloid leukemia 
CNA  Copy number alteration 
CNV  Copy number variation  
CO2  Carbon dioxide 
CPTAC  Clinical Proteomic Tumor Analysis Consortium 
CSFBS  Charcoal stripped fetal bovine serum 
CSNK2A1 Casein kinase 2 alpha 1 
CSNK2A2 Casein kinase 1 alpha 2 
CSNK1E Casein kinase 1 epsilon  
CTC  Circulating tumor cell 
CTRL  Control 
CuSO4  Copper(II) sulfate 
CK1ε  Casein kinase 1 epsilon 
CYP19A1 Cytochrome P450 family 19 subfamily A member 1 
CYP2D6  Cytochrome P450 family 2 subfamily D member 6 
CYP3A4/5 Cytochrome P450 family 3 subfamily A member 4/5 
DAG  Diacylglycerol 
DAPI  4′,6-diamidino-2-phenylindole 
DCIS  Ductal carcinoma in situ 
DMBA  7,12-Dimethylbenz[a]anthracene 
DMEM  Dulbecco´s modified eagle´s medium 
DMSO  Dimethyl sulfoxide 
DNA  Deoxyribonucleic acid 
E2  Estrogen 
E2F4  E2F transcription factor 4 
EDTA  Ethylenediaminetetraacetic acid 
EGFR  Epidermal growth factor receptor 
eIF2α  Eukaryotic translation initiation factor 2 subunit α 
eIF4B  Eukaryotic translation initiation factor 4B 
ELF1  E74 Like ETS transcription factor 1 
ELF3  E74 Like ETS transcription factor 3 
ER-  Estrogen receptor negative 
ER+  Estrogen receptor positive 
ERAD  Endoplasmic-reticulum-associated protein degradation 
ERK  Extracellular signal-regulated kinase 
ERα  Estrogen receptor alpha 
ESR1  Estrogen receptor 1 
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EtBr  Ethidium bromide 
EtOH  Ethanol 
FACS  Fluorescence-activated cell sorting 
FBS  Fetal bovine serum 
FOXA1  Forkhead box A1 
FOXC1  Forkhead box C1 
FOXM1  Forkhead box M1 
FOXP1  Forkhead box P1 
GABPα  GA binding protein transcription factor subunit alpha 
GATA3  GATA-binding protein 3 
GRB2  Growth factor receptor-bound protein 2 
GRHL2  Grainyhead like transcription factor 2 
GSK-3α  Glycogen synthase kinase 3 alpha 
GSK-3ß  Glycogen synthase kinase 3 beta 
H&E staining Hematoxylin and eosin staining 
HER2  Human epidermal growth factor receptor 2 
HIFα  Hypoxia-inducible factor 1 alpha 
IDC  Invasive ductal carcinoma 
IFN  Interferon 
IRF9  IFN-regulatory factor 9 
IκB  Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor  
IKKα  IκB kinase alpha 
IKKß  IκB kinase beta 
IKKε  IκB kinase epsilon 
ISGF3  IFN-stimulated gene (ISG) factor 3 
JAK  Janus kinase 
JNK3  c-Jun N-terminal kinase 3 
KLF5  KLF transcription factor 5 
KLF6  KLF transcription factor 6 
KMT2A  Histone-lysine N methyltransferase 2A complex 
LBD  Ligand-binding domain 
LCM  Laser capture microdissection 
LTED  Long-term estrogen deprivation/deprived 
LTR  Long-terminal repeat 
MAPK/ERK Mitogen-activated protein kinase  
MAP2K/MEK Mitogen-activated protein kinase kinase  
MAP3K8 Mitogen-activated protein kinase kinase kinase 8 
MEF2A  Myocyte enhancer factor 2A 
MEF2C  Myocyte enhancer factor 2C 
MEK2  Mitogen-activated protein kinase kinase 2 
MEIS1  Meis homeobox 1 
mRNA  Messenger ribonucleic acid 
MSI  Microsatellite instability 
mTOR  Mammalian target of rapamycin kinase 
MYC  MYC proto-oncogene, BHLH transcription factor 
NaF  Sodium fluoride 
NCOA3  Nuclear receptor coactivator 3 
NES  Normalized enrichment score 
NFκB  Nuclear factor kappa-light-chain-enhancer of activated B cells 
NGS  Next-generation sequencing 
NSAI  Non-steroidal aromatase inhibitors 
NSCLC  Non-small-cell lung carcinoma 
ORF  Open reading frame 
Ori  Origin of replication 
OS  Overall survival 
p38α  p38 mitogen-activated protein kinase alpha 
p70S6K  p70 S6 kinase 
pCR  Pathological complete response 
PBS  Phosphate buffered saline 
PDPK1  Phosphoinositide-dependent kinase 1 
PERK  Protein kinase R (PKR)-like endoplasmic reticulum kinase 
PFA  Paraformaldehyde 
PFS  Progression-free survival 
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PI  Propidium iodide 
PI3K  Phosphatidylinositol-4,5-bisphosphate 3-kinase 
PIK3CA  Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 
PIP2  Phosphatidylinositol (4,5)-bisphosphate 
PIP3  Phosphatidylinositol (3,4,5)-trisphosphate 
PKCα  Protein kinase C alpha 
PKCß  Protein kinase C beta 
PKCγ  Protein kinase C gamma 
PKCδ  Protein kinase C delta 
PKCε  Protein kinase C epsilon 
PKCη  Protein kinase C eta 
PKCθ  Protein kinase C theta 
PKCι  Protein kinase C iota 
PKCζ  Protein kinase C zeta 
PLC  Phospholipase C 
PR  Progesterone receptor 
PRDM1  PR/SET domain 1 
PTEN  Phosphatase and tensin homolog 
PuroR  Puromycin resistance gene, encodes puromycin N-acetyltransferase 
PVDF  Polyvinylidene fluoride 
RFP  Red fluorescent protein 
RSK  Ribosomal S6 kinase 
RT-qPCR Quantitative reverse transcriptase polymerase chain reaction 
RIPA  Radioimmunoprecipitation  
RNA  Ribonucleic acid 
RNAi  Ribonucleic acid interference 
ROS1  C-ros oncogene 1 
RTK  Receptor tyrosine kinase 
S6K1  Ribosomal protein S6 kinase beta 1 
scRNA-Seq Single-cell RNA sequencing 
SD  Standard deviation 
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SEM  Standard error of the mean 
SERD  Selective estrogen receptor degrader 
SERM  Selective estrogen receptor modulator 
siRNA  Small interfering ribonucleic acid  
SOX6  SRY-box transcription factor 6 
SRBP1  Sterol regulatory element-binding transcription factor 1 
STAT  Signal transducer and activator of transcription 
SWI/SNF SWItch/Sucrose non-fermentable  
TAMR  Tamoxifen resistant 
TBK1  TANK-binding kinase 1 
TBS-T  Tris buffered saline with 0.1% Tween 20 
TEAD4  TEA Domain transcription factor 4 
TF  Transcription factor 
TGFß  Transforming growth factor ß 
TKI  Tyrosine kinase inhibitor 
TNBC  Triple negative breast cancer 
TNFα  Tumor necrosis factor α 
TP53  Tumor protein 53 
TPA  2-O-Tetra-decanoylphorbol 13-acetate 
Trail  TNF-related apoptosis-inducing ligand 
VEGF  Vascular endothelial growth factor 
WES  Whole exome sequencing 
WGD  Whole genome doubling 
WGS  Whole genome sequencing 
Wnt  Wingless-type MMTV integration site family 
WT  Wild type 
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