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1.1 Physiological structure of the brain. (a) The human brain can be divided
into four lobes: frontal, parietal, occipital and temporal, depending on
one of their main functions: reasoning, touch sensory, visual and auditory
respectively. (b) Spreading Depolarizations (SDs) are a phenomenon oc-
curring on the brain cortex that causes massive hyperactivity of neurons
followed by inhibition. This phenomenon manifests itself as a wave of
depolarized neurons expanding through the cortex. . . . . . . . . . . . . . 5

1.2 The human skin is the largest organ and is structured in a multi-layered

fashion. The human skin is composed of three main layers: epidermis,
dermis and subcutaneous layer (subcutis). The thickness and precise com-
position of each varies across the surface of the human body. However,
several components can be generally found through the body: hair follicles,
nerves, blood vessels, fat, sweat glands, etc. Image from Madhero88 and

M.Komorniczak, CC BY-SA 3.0, via Wikimedia Commons. . . . . . . . . . . . . 8

1.3 Human kidney is perfused through renal artery emanating from the ab-

dominal aorta. (a) General anatomy of the human kidney. The kidney is
covered by the fibrous renal capsule that is composed mainly of fibrous
tissue. The adrenal gland sits on top of the kidney and produce a variety of
hormones such as adrenaline and cortisol. (b) Kidney perfusion through ac-
cessory renal arteries branching from the abdominal aorta. Before reaching
the renal hilum, arteries usually branch out. One or two accessory arteries
are frequently found in humans, while other variations of arterial structures
can also be found. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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1.4 Assessing tissue perfusion from visual inspection of Red-Green-Blue

(RGB) images is challenging. Exemplary laparoscopic images of the kid-
ney surface from different patients under different perfusion conditions.
Figures (a), (c) and (e) correspond to perfused kidneys, while figures (b),
(d) and (f) represent ischemic kidneys. The induction of ischemia was
performed by applying a clamp to the renal artery. . . . . . . . . . . . . . . 11

1.5 Hemoglobin is the chromophore with the highest absorption in the vis-

ible range for internal organs. (a) Light-tissue interactions in a tissue
structure with characteristic layers (e.g. colon). Light is mainly reflected,
scattered or absorbed, while luminescence can also occur. Light in the
red optical region can penetrate the tissue deeper than light in the blue
region. (b) Oxyhemoglobin and deoxyhemoglobin, have similar absorption
coefficients while other chromophores like water and lipids absorb much
less light in the visible and near infrared (NIR) wavelength range. (c) Spec-
tral images are composed of several bands with narrow light transmission
profiles, while Red-Green-Blue (RGB) images are only composed of three
bands with wide transmission profiles. Combining the three bands of an
RGB image generates a color image that is generally used by medical staff
for various procedures. Image taken from Clancy et al. (2020) . . . . . . . . . 13

1.6 The presence of fluorescent signal is an indicator of perfusion, while its

absence indicates ischemia. Images of a kidney from a female patient
after clamping the renal artery and intravenous injection of Indocyanine
Green (ICG). The Red-Green-Blue (RGB) image in (a) depicts the presence
of an abnormality in the surface of the kidney (Leiomayoma). The absence
of fluorescence signal on the kidney (regions without green color in (b))
indicates that the kidney is no longer perfused. . . . . . . . . . . . . . . . . 18

1.7 Spectral Imaging (SI) features a wide range of scanning techniques and

detection mechanisms. Scanning can be achieved with a (a) rotating filter
wheel, (b) a tunable light source, (c) a spatial line-scan sensor, (d) or a
snapshot sensor. These scanning techniques can be coupled with optical
parts, depending on the application, such as (e) laparoscopes, (f) flexible
endoscopes, (g) microscopes or (h) externally mounted lenses with ring
illumination for open surgery. Image taken from Clancy et al. (2020) . . . . . 20
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1.8 Invertible Neural Networks (INNs) can learn the inverse process in an

ill-posed setting. (a) Standard neural networks require a supervised loss
(SL) that causes problems when the mapping between underlying system
properties x and measurable parameters y is not bijective. (b) INNs use a
supervised loss only for the well-defined forward process x 7→ y, while an
unsupervised loss (USL) is used for the inverse process, and to ensure that
the latent variables z follow a Gaussian distribution. Figure from Ardizzone

et al. (2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.9 The core of Invertible Neural Networks (INNs) are affine coupling layers.
(a) Affine coupling layers split their input into two parts (u1, u2) before being
transformed in an alternating manner by functions si and ti. (b) The map-
ping from output to input is done in a similar fashion by rearranging of the
computational block. Here, ⊙ and ⊘ represent element-wise multiplication
and division, respectively. Figure from (CVL, 2022). . . . . . . . . . . . . . . 24

1.10 Convolutional operations are in practice applied as matrix multiplica-

tions. Exemplary diagram of a two-dimensional convolutional operation
in two channels of an image with two spatial dimensions. . . . . . . . . . . 26

1.11 Oxygenation estimation is possible in vivo with random forests. Small
bowel oxygenation estimation (a) before applying a clamp, (b) after apply-
ing four clamps, and (c) nine minutes after applying the first clamp. Image
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in an iterative process that relies on the Beer-Lambert law. Spectral data
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structed Red-Green-Blue (RGB) image and oxygenation estimation of hu-
man esophagus. Due to the sequential nature of the recording process (line
scan), motion artifacts can be visualized in the image, even under controlled
conditions. Image from (Köhler et al., 2019). . . . . . . . . . . . . . . . . . . . 41

vii



List of Figures

1.14 Perfusion estimation in skin is done by pairing a pulse oximeter with

an Red-Green-Blue (RGB) camera. This method extracts the perfusion
signal from RGB data after performing video stabilization with an optical
flow approach. The extracted signal is optimized using the data collected
from a pulse oximeter and an outlier weighting estimator. The green box
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3.2 Using the penetration depth for multi-layer model labeling assigns prop-
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ence between three-layer tissue models and re-simulated one-layer models
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1
Introduction

The scariest moment is always just before you start.

— STEPHEN KING

On Writing: A Memoir of the Craft

1.1 Motivation

With the increase in population and the discovery of new treatments, the number of
medical interventions is increasing worldwide. According to the statistics reported by
Eurostat (2022), the median number of surgical procedures performed in Europe per
hundred thousand inhabitants (PHTH) has increased by ∼70% between 2009 and 2019.
This, according to the World Health Organization (WHO) (WHO, 2022), is accompanied
by only a ∼16% increase in the median number of medical doctors in Europe between
2009 (315 doctors PHTH) and 2019 (367 doctors PHTH). This, together with the millions
of examinations performed by medical imaging techniques, stresses the need for computer
assistance in the medical field.

Imaging technologies are one of the most common tools used in many medical ap-
plications to assist and improve clinical decision-making (e.g. oncology, ophthalmology,
neurosurgery, etc.). Some of the most widely adopted imaging modalities are Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound and Positron Emission
Tomography (PET). Despite the success that all those imaging modalities have demon-
strated, and the great benefit that their usage brings to patients, their main intended usage
is the analysis of tissue morphology. This, unfortunately, ignores a significant amount of
physiological information that could be leveraged by medical staff. Functional imaging
(Crosson et al., 2010; Zhu et al., 2022; Bozovic et al., 2022; Deffieux et al., 2021), in contrast,
focuses on detecting and measuring changes in metabolism, blood flow and chemical com-
position of biological tissue. This technique has the potential to provide medical staff with
rich information that can aid decision-making in applications where functional tissue prop-
erties are the main subject of interest, e.g.: organ transplant (perfusion), anesthesiology
(water content), partial nephrectomy (perfusion), etc.

Perfusion monitoring is an area of functional imaging that has been extensively ex-
plored due to its relevance in medical practice. Assessment of perfusion is a vital part of
most medical procedures that involve stopping the blood supply to an organ or part of a
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tissue structure. To name a few, perfusion monitoring is linked to medical applications
such as kidney partial nephrectomy, myocardial ischemia, brain stroke, brain trauma,
spreading depolarizations, mesenteric ischemia, etc. Current clinical practice relies on
injection of Indocyanine Green (ICG) into the patient’s bloodstream to assess perfusion of
different organs or tissue structures. For several decades, ICG has been deemed safe as
a contrast agent to be used in various surgical applications such as minimally invasive
surgery, although there have been reports of patients undergoing severe complications
after ICG injection, such as anaphylactic shock (Chu et al., 2017). Furthermore, ICG suffers
from long washout periods because the human body required about 30 min to dispose of
the injected ICG. This means that perfusion assessment via ICG can only be done once
per surgery. Even more, open surgical procedures might not benefit from ICG injection at
all. For example, during open partial nephrectomy, the injection of ICG might be avoided
altogether to reduce patient burden.

Within the wide range of functional imaging modalities, Spectral Imaging (SI) plays
a special role, as it does not require a contrast agent and can offer direct visual feedback
to the surgeon (Red-Green-Blue (RGB) images). The amount of light reflected from
biological tissue, which is collected by SI devices, depends on the intrinsic molecular
and structural composition of each tissue type, as such, SI records data that is directly
linked to functional tissue properties, such as blood content and oxygen concentration.
Over the past years, our community has seen several studies in preclinical or proof of
concept studies leveraging SI data (Wirkert et al., 2017; Holmer et al., 2018; Dietrich
et al., 2021b; Köhler et al., 2019; Köhler et al., 2020). All of these contributions aimed to
analyze a functional property in the context of different medical applications (perfusion
monitoring, sepsis classification, etc.). Most of these previous approaches have some
common characteristics, mainly: a) they employ SI devices that are too big or suffer
from slow recording and processing times (Holmer et al., 2018; Dietrich et al., 2021b;
Köhler et al., 2019; Kumar et al., 2020), b) all of them ignore the high complexity that is
characteristic of open surgical scenarios in comparison to minimally invasive surgery, c)

they overlook inter-patient tissue heterogeneity, and d) they generally lack validation in
clinical trials within the context of surgery.

The usage of big and slow devices could be attributed to the lack of commercially
available SI devices that are medically approved. Hence, this limitation leads to the emer-
gence of several in-house devices and methods that might not fulfill clinical translational
requirements. For example, most approaches proposed until now ignore challenges arising
during open surgical procedures. One of such challenges pertains to light source spectrum
estimation. Minimally invasive surgery benefits from a highly controlled environment
where the illumination is generally well known. In contrast, open surgical procedures
face a highly dynamic environment, where the surgical site can be illuminated by a wide
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range of light sources, e.g. ceiling lights, overhead lamps, forehead torches, etc. Given
that optical functional imaging techniques rely on accurate knowledge of the light source
spectrum, the ambiguity introduced in open procedures hinders their translation to clinics.
The lack of medically approved SI devices is also related to the lack of spectral data, which
accentuates the lack of clinical validation of many approaches, and drives the need for
synthetic data and more sophisticated data analysis. Within this context, all previous
approaches have overlooked a critical aspect of translational research. That is, inter-patient
tissue heterogeneity. Since most approaches are only validated in studies involving a few
patients, tissue differences across participants are generally not addressed. In turn, this
hinders the generalizability potential of such approaches.

In this thesis, I aim to fill the gaps in knowledge that I have outlined here. Mainly, I
address the issues of slow recording and processing times in SI, I propose a method for
automatic light source estimation for open surgery, and explicitly address the issue of
high inter-patient tissue heterogeneity with a personalized approach to video-rate and
label-free perfusion monitoring. I demonstrate the benefits of these methods in several
in silico, pre-clinical and clinical trials in a wide range of relevant domains: rat head and
neck tumor models, pig brain, human skin and kidney. In the following section, I detail
the main objectives and contributions of this thesis, as well as outline its backbone.

1.2 Background

This chapter elaborates on the knowledge fundamentals that are relevant for the devel-
opment of this thesis. More in detail, Sec. 1.2.1 describes the different anatomies and
molecular compositions of the different tissue structures that are the subject of study in
this thesis. Sec. 1.2.2 describes different biomedical imaging modalities relevant to the
topic of functional imaging. Finally, machine and deep learning fundamentals relevant for
image analysis throughout this thesis are described in Sec. 1.2.3.

1.2.1 Medical fundamentals

Functional imaging occupies a relevant position in biomedical applications. Mainly
because its main subject of study are properties that play a crucial role in many diseases
that affect a large portion of the population. Its reach expands from ophthalmology,
where Optical Coherence Tomography (OCT) can help detect vessel blockage (Rebolleda
et al., 2015), to SI, where diffuse reflectance measurements aid in sepsis classification
(Dietrich et al., 2021b). In particular, perfusion assessment has become substantially
relevant because it is related to many clinical diseases and conditions, such as myocardial
ischemia (Bamberg et al., 2014), Spreading Depolarizations (SDs) (Santos et al., 2014),
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and renal hypoxia (Legrand et al., 2008). Tissue perfusion and oxygenation are essential
for all metabolic processes in cells and are the primary factors involved in tissue repair
(Gottrup, 1994). Poor perfusion (ischemia), leads to medical complications like the ones
mentioned previously. Given that the circulatory system is the main responsible for blood
and oxygen delivery to different tissue structures in the human body, it becomes relevant
to understand the physiology of such tissue structures to understand how perfusion is
affected by different factors. In this section, three tissue structures are described (brain,
skin and kidney), which cement the background for the medical applications that are
presented in this thesis.

Brain anatomy and function

Proper brain perfusion is essential for the survival of any species, including humans.
Many brain diseases and conditions are directly tied to changes in perfusion, for example:
SDs, stroke, Alzheimer’s disease, etc. In particular, a method for monitoring SDs in vivo

and at video-rate is proposed in this thesis. Therefore, the physiological background
relevant for this application is presented in this section.

The brain is considered one of the most complex organs in the human body. It is the
center of the nervous system in all vertebrate and almost all invertebrate animals. Most
of the complexity associated to the brain does not arise from its physiology, but from the
cognitive function that it is responsible for. Humanity has developed many great tools
and methodologies to study the function of different organs, however, the study of brain
function has remained a challenging task until now. The brain cerebrum is divided in two
hemispheres (right and left) which account for ∼ 85% of the brain mass. Each hemisphere
comprises two main components: gray and white matter. The outer part of the cerebrum
(cortex) is made up from gray mater, which in itself is mainly composed of billions of
neurons and unmyelinated axons arranged in six layers across the section of the cortex.
Even though the cortex is only two to four millimeters thick, it accounts for approximately
40 % of the brain mass. The inner part of the cerebrum is composed of white matter,
which is mainly made from myelinated long axons. The cerebrum can also be divided by
function into four lobes: frontal, parietal, occipital and temporal (Fig. 1.1 a)). The frontal
lobe is located beneath the frontal bone, and it contains the primary motor cortex and is
involved in complex conscious thinking. The parietal lobe is a region of the cerebrum
that is located beneath the parietal bone, and it contains the primary sensory cortex and is
involved in language acquisition. The occipital lobe is located beneath the occipital bone,
and it processes visual information and is related to the understanding of written words.
Finally, the temporal lobe is the region of the cerebrum underneath the temporal bone,
and it is associated with regions of the brain mainly processing information regarding
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(a) (b)

Figure 1.1: Physiological structure of the brain. (a) The human brain can be divided
into four lobes: frontal, parietal, occipital and temporal, depending on one of their main
functions: reasoning, touch sensory, visual and auditory respectively. (b) Spreading
Depolarizations (SDs) are a phenomenon occurring on the brain cortex that causes massive
hyperactivity of neurons followed by inhibition. This phenomenon manifests itself as a
wave of depolarized neurons expanding through the cortex.

hearing and equilibrium.

The brain cortex is covered by the pia mater, a delicate fibrous layer that allows blood
vessels to pass through and nourish the brain. The arachnoid mater rests on top of the
pia and houses cerebrospinal fluid. The dura mater is a thick membrane made of dense
connective tissue that surrounds the arachnoid and spinal cord. It is the outermost layer of
the meninges that protects the central nervous system.

There are many medical diseases and conditions associated with the nervous system,
and particularly the brain, such as SDs (Santos et al., 2014), Alzheimer’s disease, and
dementia. SD is a phenomenon occurring in the brain cortex of many species (mammals,
reptiles, etc.) that manifests itself as a wave of neuronal hyperactivity followed by inhi-
bition (Dreier et al., 2018; Santos et al., 2014; Ayata and Lauritzen, 2015). The wave of
neuronal hyperactivity leads to an accelerated rate of oxygen consumption, thus mani-
festing itself as a wave of deoxygenated tissue that expands across the cortex (Fig. 1.1 b)).
SDs cause arterial dilation accompanied by a red shift (i.e. arterialization) in the color
of venous blood, thus indicating changes in oxygenation and perfusion. Although SDs
propagate at slow speeds (a few millimeters per minute), they can cause neuronal death,
thus leading to deadly consequences. Furthermore, they can worsen existing injuries
and detriment patient recovery. The spread of SDs in gray matter does not depend on
action potentials, physiological synaptic transmission or long-range axonal connections
(Ayata and Lauritzen, 2015). They are, however, dependent on transmembrane ionic
and water shifts that locally flood neighboring tissue with depolarizing ions that trigger
neuron depolarization in adjacent cells. SDs are triggered when a sufficient stimulus
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depolarizes a minimum volume of cortex tissue (∼1 mm3) in rodents. The stimulus floods
the extracellular clearance mechanisms with potassium ions (K+), causing it to surpass
a critical threshold concentration of ∼12 mM (Ayata and Lauritzen, 2015). SDs are gen-
erally detected and monitored with Electrocorticography (ECoG) strips, recently more
modern imaging modalities have been proposed to monitor the spread of SDs (Santos
et al., 2013, 2014). However, these modalities focus on the morphology and spread of
SDs, while leaving the analysis of functional properties unaddressed (e.g. oxygenation).
The development of a method capable of monitoring functional properties could help the
development of new treatments to mitigate the effects of SDs or to prevent them from
happening in the first place.

Skin anatomy and function

The study of skin functional properties, such as perfusion or water content, is relevant
for many diseases and conditions where they play a major role: wound healing, psoriasis,
sepsis, etc. Therefore, the development of a method to monitor such functional properties
in skin could aid in monitoring and treating such diseases and conditions. In the context
of this thesis, a method for perfusion monitoring was developed and validated in a clinical
trial of human skin. In this section, the physiological background of skin is presented to
put the methodology proposed in this work into context.

The human skin is the largest organ in the human body and covers it almost in its
entirety. The skin is composed of up to seven layers that guard muscles, bones, ligaments,
internal organs, etc. Although almost all the skin is covered with hair follicles, it can seem
as hairless, there are two main types of skin: hairy and glabrous skin (hairless). Given
that the skin is the main organ interfacing with the outer environment, it plays a major
immunity role by protecting the body from pathogens and water loss. It also serves as a
thermal insulator, sensory interface, vitamin synthesizer, etc.

Human skin can be separated into three main layers, the epidermis (outer layer), the
dermis (beneath the epidermis) and the subcutaneous layer (beneath the dermis) (Fig. 1.2).
The epidermis is the outermost layer of the skin, which has direct contact with the outer
environment. It is made from squamous epithelium (compactly packed cells) that forms
a protective barrier against pathogens. Surprisingly, in contrast to the majority of tissue
in the human body, the epidermis contains no blood vessels, and cells in this layer are
mainly nourished by oxygen diffusion from the surrounding air. The epidermis is mainly
composed of Merkel cells, keratinocytes, melanocytes, etc. It can also be subdivided into
different regions: corneum, lucidum (only in palm hands and bottom of feet), granulosum,
spinosum and basale. Cells in the epidermis are generated by mitosis, at the basale layer,
and they slowly move up toward the corneum while changing composition and shape.
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Eventually, the cells die at the corneum as they isolate from the blood source. As cells in
the epidermis die, the cytoplasm is released and keratin is inserted as they move towards
the top of the skin, where they peel off. Interestingly, the lucidum is composed of about
five layers of dead and flattened keratinocytes, and it is found only in regions of thick
skin (hand palms and bottom of the feet). Under the microscope, the lucidum appears
translucent, hence the naming.

The dermis is a layer of skin that lies between the epidermis, and contains connective
tissue that acts as a stress and strain dampener. It contains many nerve endings that give
the sense of touch and heat as well as other structures: hair follicles, sweat glands, blood
vessels, etc. The dermis can also be subdivided into two main structural regions: papillary
and reticular. The papillary region is composed mainly of loose connective tissue and is
connected to the epidermis. On the other hand, the reticular region is composed of dense
irregular connective tissue and is usually much thicker than the papillary. It also contains
relatively high concentrations of collagenous, elastic and reticular fibers, as well as the
roots of the hair and blood vessels. Blood supply to the skin is achieved by two plexuses,
one of them is located at the bottom of the reticular region while the other is located in
the papillary region. The later one regulates body temperature by increasing or reducing
blood flow. Finally, the subcutaneous layer lies below the dermis and is composed mainly
of loose connective and adipose tissue. Its main function is the attachment of the dermis
to the underlying bone and muscles, as well as blood vessels and nerves. In addition,
approximately 50 % of body fat is contained in this layer, and acts as padding and thermal
insulation for the body.

The color of the skin is regulated by pigments like melanin, carotene and hemoglobin;
melanin being the main one. They can be found in different concentrations and in different
locations of the skin. The main purpose of skin pigmentation is the regulation of the
amount of ultraviolet radiation that penetrates the skin. Exposure to high amount of
radiation can lead to different types of skin cancer such as basal cell carcinoma and
melanoma. All of these types of cancer usually feature an increased level of vasculature
and blood supply. In particular, melanoma is a type of cancer that originates from
melanocytes and is mainly caused by ultraviolet light exposure. The most effective
treatment for melanoma is surgical removal if it has not yet spread to other organs.
Otherwise, it may require immunotherapy, radiotherapy or chemotherapy, which is why
early detection and prevention is so important to improve patient care. Another disease
that heavily involves the skin is sepsis. Sepsis is a life-threatening disease that arises when
the body overreacts to an infection, causing damage to its own tissue and organs (Hajj
et al., 2018; Dietrich et al., 2021b). This overreaction of the body is commonly manifested
in the skin by inflammation and is affected by changes in the circulatory system (heart
rate and respiration). As such, being able to monitor functional properties in the skin
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Figure 1.2: The human skin is the largest organ and is structured in a multi-layered

fashion. The human skin is composed of three main layers: epidermis, dermis and
subcutaneous layer (subcutis). The thickness and precise composition of each varies across
the surface of the human body. However, several components can be generally found
through the body: hair follicles, nerves, blood vessels, fat, sweat glands, etc. Image from
Madhero88 and M.Komorniczak, CC BY-SA 3.0, via Wikimedia Commons.

(water content, perfusion, etc.) could lead to early detection of sepsis and better patient
treatment.

Kidney anatomy and function

Many surgical procedures require accurate perfusion assessment of an organ, or part of
it. Among such procedures are partial nephrectomy, esophagectomy, colorectal resection,
hepatectomy, etc. When the blood supply to any biological tissue structure is restricted
(ischemia), a shortage of oxygen needed for cellular metabolism is exacerbated over time.
Prolonged ischemia can have severe consequences on patients and may even be a cause
of death. In this thesis, an approach for label-free ischemia monitoring is proposed and
validated in the context of partial nephrectomy. Hence, this section elaborates on the
medical background of kidney anatomy, disease and treatment.
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1.2. Background

The kidneys are organs in the shape of beans that can be found behind the peritoneum.
The size of the organ depends on the species, in human adults that is approximately
12 cm. The main function of kidneys is the filtration and removal of wastes, extra water
and toxins from the bloodstream in the form of urine. The urine is transported from the
kidneys via two thin muscular tubes called ureters, one on each side of the bladder. The
kidneys play a crucial role in maintaining a balanced concentration of water, salts and
minerals in the bloodstream. Furthermore, kidneys also make hormones that help control
blood pressure, make red blood cells.

The functional part of each kidney can be divided into two structures: the renal cortex
(Fig. 1.3 a)) and the inner renal medulla. The later one is composed of several cone-
shaped renal lobes separated by renal columns. Blood filtering takes place in thousands of
structures called Nephrones, which span the medulla and the cortex. The filtering process
starts in a portion of the Nephrones located in the renal cortex and called renal corpuscle.
A renal tubule connects the cortex with the medullary pyramids (on each renal lobe). The
tip (papilla) of each pyramid drains the urine into the renal calyxes, which in turn empty
into the renal pelvis (Fig. 1.3 a)) and later into the ureter. At the renal hilum, the ureter and
renal vein exit the kidney, while the renal artery enters. Generally, fatty tissue surrounds
these structures and most of the kidney (adipose capsule) (Manski, 2020).

Each kidney’s blood supply emanates from the renal arteries, which branch from the
abdominal aorta. Even though the kidneys are relatively small, they receive approximately
20 % of the cardiac output. The renal artery branches into smaller segmental arteries, which
also branch into interlobar arteries that penetrate the renal capsule and extend between
the renal pyramids. After filtration, the blood exist from the kidney through the renal vein.
The supply of blood to the kidneys through the renal artery can have several variants,
depending on each person. There might be more than one renal artery that supply each
kidney (Listmann and Tubbs, 2020) (Fig. 1.3 b)). Supernumerary renal arteries (two or
more) are the most common endovascular anomaly, amounting to 25 % to 40 % of kidneys
(Coello-Torà et al., 2020).

Kidneys can suffer from many diseases and conditions such as renal tumors, hy-
dronephrosis, and adrenal tumor. Kidney tumors can be classified in many categories
depending on if they are malignant or benign as well as the stage of each. Among the
malignant tumors are papillary renal cell carcinoma (PRCC), chromophobe renal cell
carcinoma (ChRCC), oncocytoma, clear cell renal cell carcinoma (CCRCC). Many of these
tumors are treated by performing partial or total nephrectomy, that is, the partial or com-
plete removal of the kidney. Generally, The RENAL Nephrometry Scoring System (Liu
et al., 2020a) can be used to determine the complexity of kidney tumors and decide if par-
tial or radical nephrectomy is more appropriate. The nephrometry score considers the size
of the tumor (Radius), how much of the tumor is inside or outside the kidney (Endophyt-
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(a) (b)

Figure 1.3: Human kidney is perfused through renal artery emanating from the ab-

dominal aorta. (a) General anatomy of the human kidney. The kidney is covered by the
fibrous renal capsule that is composed mainly of fibrous tissue. The adrenal gland sits on
top of the kidney and produce a variety of hormones such as adrenaline and cortisol. (b)

Kidney perfusion through accessory renal arteries branching from the abdominal aorta.
Before reaching the renal hilum, arteries usually branch out. One or two accessory arteries
are frequently found in humans, while other variations of arterial structures can also be
found.

ic/Exophytic), how close the tumor is to the urinary collecting system (Nearness), whether
the mass is on the anterior or posterior surface of the kidney (Anterior), location relative
to polar lines (Lines), and whether it is touching the renal artery or vein. In particular,
during partial nephrectomy, the blood supply to the kidney is temporarily suppressed
by clamping the renal artery before the tumorous region of the kidney is removed. The
assessment of kidney perfusion thus becomes crucial to prevent major bleeding during
the operation. Unfortunately, assessing perfusion by simple visual inspection has proven
to be a challenging task. To illustrate this point, Fig. 1.4 present images of kidneys under
different perfusion conditions. A simple visual inspection of these images reveals that it
is very difficult to assess the perfusion state of the kidney based only on RGB images. In
fact, images in a), c) and e) correspond to perfused kidneys, while images in b), d) and f)
represent ischemic kidneys.

Current clinical practice to assess kidney perfusion, thus preventing major bleeding, is
performed by ICG injection into the patient’s bloodstream (Kaplan-Marans et al., 2019).
ICG is a fluorescent molecule that binds to plasma proteins, of which albumin is the
main carrier, and accumulates in internal organs (mainly kidney and liver). As such,
a fluorescent signal indicates a perfused kidney, while no signal indicates an ischemic
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(a) (b) (c)

(d) (e) (f)

Figure 1.4: Assessing tissue perfusion from visual inspection of Red-Green-Blue

(RGB) images is challenging. Exemplary laparoscopic images of the kidney surface
from different patients under different perfusion conditions. Figures (a), (c) and (e) corre-
spond to perfused kidneys, while figures (b), (d) and (f) represent ischemic kidneys. The
induction of ischemia was performed by applying a clamp to the renal artery.

kidney. While this method has been the gold standard for many years, it requires the
injection of a contrast agent and can only be performed once per surgery because the
human body needs up to 30 minutes to dispose of it. Moreover, deathly complications
such as anaphylactic shock has been reported to follow from ICG injection (Chu et al.,
2017). Therefore, the development of new imaging techniques for perfusion monitoring
that does not require the injection of contrast agents and that can be performed multiple
times would improve treatment and patient care.
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1.2.2 Imaging fundamentals

Functional imaging is a technique used mainly in the biomedical domain to monitor
and measure changes in metabolism, blood flow, chemical composition, etc. Over the
years, it has become the subjects of study of different imaging modalities, where most of
them are based on the interaction of light with biological tissue. Among these modali-
ties are: SI, Photoacoustic Imaging (PAI), OCT, Diffuse Correlation Spectroscopy (DCS),
Fluorescence Lifetime Imaging (FLIM), Polarization Spectroscopy (POS), Laser Speckle
Imaging (LSI), Diffuse Reflectance Spectroscopy (DRS), Spatial Frequency Domain Imag-
ing (SFDI), functional Magnetic Resonance Imaging (fMRI). All of these modalities, except
for fMRI, study the interaction of light (typically in the visible or near infrared region)
with biological tissue. Therefore, the fundamentals of light-tissue interactions are first
presented in Sec. 1.2.2, and fundamentals of functional imaging modalities (with a focus
on SI) are presented in Sec. 1.2.2.

Light-tissue interaction

Among the wide range of imaging modalities for functional imaging, optical imaging is
particularly interesting. Optical imaging deals with light-tissue interactions to derive the
underlying functional properties, mainly blood flow, blood concentration or oxygenation.
The type and strength of interactions between light and biological tissue are governed
by the intrinsic optical properties of the tissue (scattering, anisotropy, absorption, etc.
Fig. 1.5 a)). At the same time, optical properties of the tissue are defined by its molecular
composition, e.g. high concentration of blood leads to large absorption in the visible
spectrum (400nm . λ . 700nm). During surgery, the main tissue structure of interest are
organs. Although the precise molecular composition of different organs can vary substan-
tially, a general trend can be observed. In the human body, molecules like hemoglobin,
melanin, water, bilirubin or lipids are commonly found, and among them, hemoglobin
features the strongest interaction with light in the visible range (the highest absorption,
Fig. 1.5 b)). These molecules are commonly known as chromophores.

Light-tissue interactions can be described in a mathematical form using the diffusion
theory. However, an analytical solution for the photon diffusion equation is difficult to
find for complex tissue and light source geometries. To alleviate these challenges, the
interactions between light and tissue can be approximated using a Monte Carlo (MC)
method that leverages random sampling.

The light-tissue interactions can be modeled as a sequence of scattering events where
the photons are scattered at different tissue locations. After each scattering/event, photons
loose part of their energy and travel a certain distance (step size) before a new event may
occur. Considering a random variable χ. In this case, it represents the step size of a photon
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Figure 1.5: Hemoglobin is the chromophore with the highest absorption in the vis-

ible range for internal organs. (a) Light-tissue interactions in a tissue structure with
characteristic layers (e.g. colon). Light is mainly reflected, scattered or absorbed, while
luminescence can also occur. Light in the red optical region can penetrate the tissue deeper
than light in the blue region. (b) Oxyhemoglobin and deoxyhemoglobin, have similar
absorption coefficients while other chromophores like water and lipids absorb much less
light in the visible and near infrared (NIR) wavelength range. (c) Spectral images are
composed of several bands with narrow light transmission profiles, while Red-Green-
Blue (RGB) images are only composed of three bands with wide transmission profiles.
Combining the three bands of an RGB image generates a color image that is generally
used by medical staff for various procedures. Image taken from Clancy et al. (2020)

when it propagates inside a tissue sample, or the scattering angle of photons. A probability
distribution p : R 7→ R

+ with support [a, b] fulfills:

∫ b

a
p(χ) dχ = 1 (1.1)

The propagation of photons is simulated by sampling χ within the range [a, b] multi-
ple times to approximate the probability density function. Given a computer-generated
pseudo-random variable ξ that is uniformly distributed in the interval (0, 1), the cumula-
tive distribution function F : R 7→ [0, 1] of this uniformly distributed variable is:

Fξ(x) =







0; if x ≤ 0

x; if 0 < x ≤ 1

1; if x > 1

(1.2)

To sample a non-uniformly distributed function, the assumption is taken that there is a
non-decreasing function f that maps ξ 7→ χ for ξ ∈ (0, 1) and χ ∈ (a, b). That is, χ = f (ξ),
therefore both variables have a bijective mapping, which leads to the following (Wang
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and Jacques, 1992a):

∫ χ1

a
p(χ)dχ = ξ1 s.t. ξ1 ∈ (0, 1) ; χ1 = f (ξ1) (1.3)

Based on this, photon step size and scattering angles can be computed in the following
manner.

Photon step size: The probability distribution of the photon’s free path is sampled
s ∈ [0, ∝). The probability of interaction per unit path length in the interval (s ′, s ′ + ds ′)
is:

µt =
−dP{s ≥ s ′}
P{s ≥ s ′}ds ′

, (1.4)

where µt = µa + µs is the total scattering coefficient

d(ln(P{s ≥ s ′})) = −µtds ′ (1.5)

This is then integrated in the range (0, s1) which leads to an exponential distribution,
where P{s ≥ 0} = 1 is used:

P{s ≥ s1} = exp(−µts1) (1.6)

p(s1) =
dP{s < s1}

ds1
= µt exp(−µts1) (1.7)

Which can be integrated:
∫ s1

0
p(s)ds = ξ (1.8)

This can then be used to choose a step size:

s1 =
− ln(ξ)

µt
(1.9)

Photon scattering angle: The probability distribution for the cosine of the deflection
angle during scattering events is described by the scattering function that Greenstein
proposed in 1994:

p(cos θ) =
1− g2

2(1 + g2 − 2g cos θ)3/2 , (1.10)

where θ ∈ [0, π) is the scattered angle, g =< cos θ > is the anisotropy of the tissue and
has a value between -1 and 1. g = 0 means isotropic scattering and g = 1 means forward
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scattering. The choice of cos θ can now be interpreted using a random number ξ:

∫ cos θ

0
p(α)dα = ξ s.t. ξ ∈ [0, 1] (1.11)

cos θ =







1
2g

{

1 + g2 −
[

1−g2

1−g+2gξ

]2
}

; if g > 0

2ξ − 1; if g = 0
(1.12)

It is worth mentioning that these equations serve as a description of the majority of
light-tissue interaction, however, many other interactions are not covered here and depend
on the particular application.

Functional imaging modalities

Imaging modalities are generally developed to meet a wide range of different requirements
for different applications. A comparison of some of the most relevant features in the
medical domain across imaging modalities is presented in Tab. 1.1. Here, some imaging
modalities only feature some characteristics under restrictive conditions or only on some
applications (indicated by ✔). Most modalities feature high-resolution sensors, except for
DCS (Sutin et al., 2016) and DRS (Kleshnin, 2019; Guo et al., 2022), which are until now
point-measurement techniques. On the other hand, fMRI could be considered to have high
resolution when imaging large body regions. However, smaller tissue structures usually
suffer from low contrast. Moreover, small vessel structures could potentially be visualized
via fMRI but only with the use of contrast agents. Recording speed is a characteristic
that has particularly eluded the majority of modalities. The imaging modalities that have
achieved high recording and processing speed (video-rate) are generally the ones based
on sensors that are also employed in photography (Charge-Coupled Device (CCD) and
Complementary Metal-Oxide Semiconductor (CMOS)). This could be attributed to the fact
that the development of such sensors has benefited from great advances in the last decades,
from more sensitive semiconductors to faster read-out techniques. Although medical
devices exist for many of these imaging modalities, they suffer from many limitations that
hinder their general usability in clinics (except for fMRI). Although fMRI is a widely used
preoperative imaging technique, it requires big and expensive equipment that cannot be
used to assess functional properties of tissue structures during surgery. Other imaging
modalities, such as OCT (Choi et al., 2019; Liu et al., 2019), DCS (Sutin et al., 2016), LSI
(Mangraviti et al., 2020) and SFDI (Chen and Durr, 2020) are limited to extracorporeal
assessments such as skin perfusion analysis, and devices that can be used during surgery
are yet not available. Although there are no medical devices for POS, some proof of concept
studies involving a few patients have been published Vasefi et al. (2015). Moreover, OCT
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Table 1.1: Comparison of different functional imaging modalities: Spectral Imaging (SI),
Photoacoustic Imaging (PAI), Optical Coherence Tomography (OCT), Diffuse Correlation
Spectroscopy (DCS), Fluorescence Lifetime Imaging (FLIM), Polarization Spectroscopy
(POS), Laser Speckle Imaging (LSI), Diffuse Reflectance Spectroscopy (DRS), Spatial
Frequency Domain Imaging (SFDI), functional Magnetic Resonance Imaging (fMRI).

Name High-resolution High-speed Wide FOV Med. device 3D Intraoperative
SI ✔ ✔ ✔ ✔ ✗ ✔

PAI ✔ ✔ ✔ ✔ ✔ ✗

OCT ✔ ✗ ✔ ✔ ✔ ✔

DCS ✗ ✗ ✗ ✔ ✗ ✗

FLIM ✔ ✗ ✔ ✗ ✔ ✗

POS ✔ ✔ ✔ ✗ ✗ ✔

LSI ✔ ✗ ✔ ✔ ✗ ✗

DRS ✗ ✗ ✗ ✗ ✗ ✗

SFDI ✔ ✔ ✔ ✔ ✗ ✗

fMRI ✔ ✗ ✔ ✔ ✔ ✗

✔: indicates that the imaging modality meets the corresponding feature (columns).
✔: indicates that the feature is met only in particular applications.
✗: indicates that the imaging modality does not possess the feature.

is a modality that offers a wide range of medically approved devices, although they are
limited to the analysis of eyes. Although this technique has the potential to be used during
eye surgery, it has not been translated to surgical applications, potentially due to speed
requirements and that it is currently limited to big devices.

PAI is a particular imaging modality that has seen many advances recently (Gröhl
et al., 2021; Tzoumas et al., 2016; Zhu et al., 2022). This technique can feature high speed
and resolution, as well as 3D functional maps of tissue under particular conditions, such
as a limited number of recorded spectral regions (bands). Even though medical devices
exist that capable of recording photoacoustic images, they are generally big and feature
large imaging probes*. This, paired with the need for a controlled laser light source, limits
its applicability in surgical scenarios, which have until now been restricted to a few clinical
trials (Gröhl et al., 2021). Only recently, there have been attempts to construct promising
small endoscopic PAI probes (Ansari et al., 2020) which could in the future be used for
clinical applications. However, these devices are still in the development phase.

Among these imaging modalities, SI stands out among them, mainly because it lever-
ages fast and high-resolution sensors (both CCD and CMOS) that are commercially avail-
able. In addition, medically approved devices have recently become available that are

*Similar to ultrasound probes.
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also capable of being used in surgical applications. Another advantage of SI over other
modalities is related to the possibility to record standard RGB images at the same time as
spectral data. This reduces the number of devices required during surgery and enhances
the surgeon’s surgical perception. One of the main disadvantages of SI in comparison to
other modalities, such as PAI, is the fact that SI can only image the surface of the tissue.
This limitation is introduced by the limited penetration depth of light (usually in the
visible range) into biological tissue (a few hundred micrometers). Despite this, SI is one
of the imaging modalities that show most promise to be translated into clinical use. For
these reasons, this thesis focuses on the translation of SI. Even more, given that perfusion
is a functional property with great interest in the medical domain, due to its relevant role
in several procedures, and diseases (e.g. organ transplant, myocardial ischemia, brain
stroke, etc.), the methods presented in this thesis are validated in perfusion monitoring
applications. However, they can be extended to the estimation of other functional prop-
erties. Furthermore, since current clinical practice for perfusion assessment of tissue is
based on fluorescence imaging, the rest of this section is dedicated to detail fluorescence
and spectral imaging in a medical context.

Fluorescence imaging

Fluorescence is a type of interaction between light and matter (e.g. biological tissue),
which involves the absorption of light by a molecule and its re-emission at a different
wavelength. Certain molecules, called fluorophores, absorb light by changing their internal
energy state. This excited molecular state, however, only lasts a few nanoseconds before
the molecule attempts to return to its initial state through a series of mechanisms that
generate photons at a different wavelength as the incident light (fluorescence). The
emission of fluorescence is influenced by many parameters that are mainly related to the
environment where the fluorophore resides: polarity, pH, pressure, viscosity, etc. (Dip
et al., 2015). Even more, fluorescent molecules have the capacity to bind to specific targets
depending on their molecular composition. Some biomolecules contain fluorophores
like amino acid tryptophan, however, they are not used because of poor image contrast.
In general, external fluorophores are preferred due to their enhanced optical properties:
higher brightness, higher quantum efficiency, and enhanced photostability. Among this,
organic molecules are preferred due to their small size in comparison to other fluorophores
like genetically encoded proteins or nanoparticles (Quantum dots). Ideally, fluorescent
molecules should offer a high contrast compared to other intrinsic molecules to facilitate
image-guided surgery. For this reason, fluorophores that emit light in the NIR region
650–900 nm are favored. One of the main advantages that working on such optical region
offers is that the autofluorescence signal from intrinsic biological molecules is avoided.
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(a) (b)

Figure 1.6: The presence of fluorescent signal is an indicator of perfusion, while its

absence indicates ischemia. Images of a kidney from a female patient after clamping
the renal artery and intravenous injection of Indocyanine Green (ICG). The Red-Green-
Blue (RGB) image in (a) depicts the presence of an abnormality in the surface of the kidney
(Leiomayoma). The absence of fluorescence signal on the kidney (regions without green
color in (b)) indicates that the kidney is no longer perfused.

In addition, light scattering is reduced in comparison to the visible spectrum. ICG is
a fluorophore that fulfills all such requirements, which explains its adoption in many
medical applications: renal surgery, cardiac surgery, lymph node biopsy, etc. When
injected into patients, ICG binds to plasma and accumulates in internal organs, mainly in
liver and kidney. As such, a fluorescent signal is an indicator of perfused organs, while the
lack of it refers to ischemic organs. Fig. 1.6 depicts the usage of intravenous ICG during
laparoscopic partial nephrectomy to assess the perfusion state of the kidney.

Although ICG has been deemed safe for most patients, there have been reports of
deathly complications in some of them, such as anaphylactic shock (Chu et al., 2017).
Another drawback of ICG is that it can only be used once per surgery because the human
body requires several minutes to dispose of it. Even more, open surgical procedures might
not benefit from ICG injection at all. For example, during open partial nephrectomy, the
injection of ICG might be avoided altogether to reduce patient burden. Finally, the fluores-
cent signal emanating from ICG molecules is a relative measure, even low concentrations
of ICG could lead to misinterpretation as “perfused” if a gain factor is applied to the signal.
Thus, the development of non-invasive and contrast agent-free approaches would remove
these limitations, and would also increase usability during open procedures.
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Spectral Imaging (SI)

SI is an imaging modality, which originally designed for aerial imaging, has gained a
lot of popularity in the medical domain recently (Clancy et al., 2020; Zhu et al., 2022;
Holmer et al., 2018; Dietrich et al., 2021b; Seidlitz et al., 2021). This is mainly due to
the ability of SI to acquire images within a wide field of view with high contrast, and
to its ability to provide human-interpretable RGB images. SI, in contrast to traditional
RGB imaging, records the light reflected from the target object in more and narrower
wavelength regions, hereon referred to as “bands” (Fig. 1.5 c)). SI in itself, can be classified
in two large categories: a) Multispectral Imaging (MSI), which records images up to tens
of bands, and b) Hyperspectral Imaging (HSI), which records images up to hundreds of
bands. HSI systems tend to be slower than systems that rely on MSI, mainly because more
data needs to be recorded for HSI applications. From here on, the term SI will be used to
encompass both MSI and HSI systems, unless particular details of each technique should
be highlighted.

SI systems embody a myriad of technical devices, all of them aiming to record multiple
spectral bands. Clancy et al. (2020) did an outstanding job at summarizing the existing
spectral devices and their features. Among them, rotating filter wheels (Fig. 1.7 a)) have
been featured in several applications (Clancy et al., 2015; Wirkert et al., 2016b). Their
popularity can be attributed mainly to the fact that they are easy to manufacture and
that they feature glass filters that have a narrow transmission profile. One of the main
disadvantages of this technique is that the filter wheel introduces mechanical parts that
induce motion artifacts during recording. Even more, due to its sequential recording
nature, blurring effects can be observed while recording scenes where organ motion is
substantial. Another type of technique used in SI involves the usage of tunable light
sources (Fig. 1.7 b)), where the scene of interest is illuminated with one wavelength at
a time. This can be achieved by using a monochromator or a Liquid Crystal Tunable
Filter (LCTF). Although these devices can generate very narrow spectral bands, they
can be too big or slow, which hinders heir usage in clinical applications. Line scan
sensors, in contrast, collect light at all spectral bands simultaneously, but only at specific
spatial regions. This is generally achieved by imposing a collimator and an entrance slit
between the scene and the sensor, and scanning the spatial scene with a mechanical mirror
(Fig. 1.7 c)). Although these devices can be faster than others based on the filter wheels and
tunable light sources, they still suffer from blurring effects and could introduce spatially
localized bias because different regions of each image are recorded at different time points
and may have different focus if the surface of the object of interest is not flat. Finally, one
of the promising imaging techniques involves the usage of mosaic sensors (Fig. 1.7 d)).
This technique is of particular interest because it can record all spectral bands and spatial
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Figure 1.7: Spectral Imaging (SI) features a wide range of scanning techniques and

detection mechanisms. Scanning can be achieved with a (a) rotating filter wheel, (b) a
tunable light source, (c) a spatial line-scan sensor, (d) or a snapshot sensor. These scanning
techniques can be coupled with optical parts, depending on the application, such as (e)

laparoscopes, (f) flexible endoscopes, (g) microscopes or (h) externally mounted lenses
with ring illumination for open surgery. Image taken from Clancy et al. (2020)

locations simultaneously. This is achieved by integrating the light filters as a repeating
pattern directly into the design of the sensor. In this manner, extremely fast recordings can
be achieved while eliminating the risk of motion blur across spectral bands because all of
them are recorded at once. This, however, comes at the cost of lower spatial resolution
because each different spectral filter occupies a different spatial location within the sensor.
Nonetheless, the advances in sensor designs tend to generate smaller pixel sizes, thus
increasing spatial resolution with each new camera generation.

Imaging sensors are only half of the story pertaining to SI systems. Such sensors are
generally coupled with optical components that aid the image formation process. Depend-
ing on the specific application, these optical components can encompass laparoscopes,
flexible endoscopes, microscopes or externally mounted lenses (Fig. 1.7 e)-h)). On the one
hand, laparoscopes and flexible endoscopes are mostly featured in minimally invasive
applications such as abdominal surgery or colonoscopy. On the other hand, microscope
arrangements and externally mounted lenses are more common for usage in research.
Independently of their application, the main objective of such optical components is to
both illuminate the scene and to deliver the reflected light to the sensor.

20



1.2. Background

1.2.3 Machine Learning fundamentals

The wonder of whether programmable computers could eventually “think” on their own
has been in the minds of many people for centuries. Even though the word “think” carries
a lot of philosophical discussion, the question on itself has captivated a lot of interest
and has many repercussions in humanity. Nowadays, this is referred to as Artificial
Intelligence (AI). Recently, AI has benefited from many successes in the fields of medicine,
economics, climate change, etc. More specifically, AI has offered potential improvement
in drug discovery and delivery (Jumper et al., 2021; Yang et al., 2022), sepsis classification
(Seidlitz et al., 2021), survival prediction (Bello et al., 2019), etc.

AI is an umbrella term that encompasses other fields dedicated to study how pro-
grammable computers could “think” on their own. In this field, the most complicated
challenge resides on how to communicate to a computer the high-level information that
we have gathered from the world, e.g. how do you realize that a friend or partner is angry at

you?. Someone might notice a raised eyebrow, tension on the lips, or just by gut feeling.
Even more, the way we represent this knowledge in our minds differs from individual
to individual. Not surprisingly, hard-coding knowledge into a computer has proven
many times to be unsuccessful, and the field of AI has moved on to try to design sys-
tems that can acquire such high-level knowledge on its own from raw data, this is now
known as Machine Learning (ML). Simple machine learning algorithms, such as logistic
regression or naive Bayes, are particularly good at certain tasks like classifying spam
e-mail or analyzing market share values. The performance of these type of AI depends
considerably on how the data that they exploit is represented. Intuitively, this makes
sense, it is much easier to remember that some apples are red than to remember that some
apples reflect light mainly in the wavelength region around 650 nm. Logistic regression
can correlate data to different possible outcomes (e.g. whether a patient receives treatment
A or B). Unfortunately, logistic regression cannot influence how the data is defined in any
way. If the data was to be presented to logistic regression in a slightly different way, the
performance would likely drop.

Deep Learning (DL) mitigates the representation problem by introducing representa-
tions that are expressed in terms of a conglomerate of smaller and simpler representations.
Llamas and alpacas have four legs and fur, but alpacas do not spit. Examples of DL models are
Multilayer Perceptron (MLP), autoencoder, and Convolutional Neural Network (CNN).
An MLP is something that translates input values to a different set of output values via
the composition of many simple mathematical functions, where each function provides a
different representation of the input. One interpretation of DL models is that the represen-
tations that are built at different layers of the models can represent hierarchical knowledge
at different levels, thus making them suitable for learning concepts that are too complex
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to describe as a linear set of rules. DL models generally break apart the raw data into a
series of nested representations of the same data (edges, colors, background, etc.), and
store those representations in different layers of the model. The data input that DL models
leverage during the learning process is generally known as input/visible layer because it
is the data that is readily visible to humans. The higher level representation of the input
data are stored in hidden layers, while the outcome prediction/estimation of a model is
stored in the output layer. Over the last decade, a myriad of different types of DL models
have emerged, many of them designed to perform well on very particular tasks. In this
section, the general concept of different types of neural networks is presented together
with an ML algorithm called random forests. Both of these types of AI are relevant for the
work developed in this thesis.

Deep Learning regression

There are many neural network architectures with regression capabilities. The implementa-
tion of the methods presented in this thesis usually favored accurate and computationally
efficient architectures. In this section, the concepts of the recently proposed Invertible
Neural Networks (INNs) and the commonly known CNNs are presented. These networks
are the basis for the functional parameter estimation methods proposed in this thesis.

Invertible Neural Networks (INNs)

The analysis of complex physical environments is usually tied to the restriction that the
underlying properties of such systems cannot be directly measured. For example, there is
no gold standard to measure blood concentration in biological tissue. To overcome this
problem, several models have been proposed to create a relationship that explains how
measurable parameters y arise from the underlying properties x. The mapping x 7→ y is
generally called the forward process, while the inference of the underlying properties y 7→ x

is called the inverse process. Unfortunately, the inverse process is in numerous instances
ill-posed, meaning that different measurable parameters {yi, yi+1, ...} could map to the
same underlying property xi. Invertible Neural Networks (INNs) are a category of neural
networks that attempt to solve these issues with an architecture that features particular
characteristics (Ardizzone et al., 2018):

Bijective: The mapping from inputs to outputs is bijective.

Efficient: Both forward and inverse mappings can be computed efficiently.

Tractable: Both forward and inverse mappings have a tractable Jacobian that allows the
explicit computation of posterior probabilities.
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(a) (b)

Figure 1.8: Invertible Neural Networks (INNs) can learn the inverse process in an ill-

posed setting. (a) Standard neural networks require a supervised loss (SL) that causes
problems when the mapping between underlying system properties x and measurable
parameters y is not bijective. (b) INNs use a supervised loss only for the well-defined
forward process x 7→ y, while an unsupervised loss (USL) is used for the inverse process, and
to ensure that the latent variables z follow a Gaussian distribution. Figure from Ardizzone
et al. (2018).

To mitigate the information that is lost during the forward process, a latent output
variable z is introduced. This variable z attempts to capture the information that might
be lost during the mapping x 7→ y. During training, INNs learn to create a relationship
between underlying properties x and unique pairs of measurable parameters and latent
variables (y, z) = f (x). This means that INNs also implicitly learn the inverse process

x = f−1(y, z) = g(y, z). During training, it is generally ensured that the density of the
latent variable z is Gaussian distributed. The distribution of z does not need to be strictly
Gaussian, it is, however, required that z follows a known distribution that can be sampled.

In comparison to standard neural networks (Fig. 1.8 a)), “INNs circumvent a fun-
damental difficulty of learning inverse problems: Defining a sensible supervised loss
for direct posterior learning is problematic since it requires prior knowledge about that
posterior’s behavior, constituting a kind of hen-and-egg problem.” –Ardizzone et al.
(2018)–.

At the core of INNs are the so-called affine coupling layers, which were introduced by
Dinh et al. (2016). These layers split their input into two main parts,† (u1, u2) which are
then transformed by functions si and ti in an alternating manner (Fig. 1.9 a)).

In the forward process, the output is recovered by concatenating the inputs after trans-
formation (v1, v2). The inverse process is learned by minor rearrangements, in which case
the output is split into two parts and further transformed by the same functions si and
ti (Fig. 1.9 b)). It is important to notice that the transformation functions si and ti do

†In Spectral Imaging (SI), the split is done across bands (channels).
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(a)

(b)

Figure 1.9: The core of Invertible Neural Networks (INNs) are affine coupling layers.
(a) Affine coupling layers split their input into two parts (u1, u2) before being transformed
in an alternating manner by functions si and ti. (b) The mapping from output to input
is done in a similar fashion by rearranging of the computational block. Here, ⊙ and ⊘
represent element-wise multiplication and division, respectively. Figure from (CVL, 2022).

not necessarily need to be invertible themselves, and can be substituted by any neural
network that is trained by backpropagation. The element-wise division introduced in
these affine coupling layers can lead to numerical problems. This is mitigated by utilizing an
exponential function and clipping extreme values after the transformation si(·) (Eq. 1.13).
The construction of an INN is then completed by chaining several of these affine coupling

layers. During INN construction, it is common practice to introduce random channel
permutations on each coupling layer to avoid that the first split u1 always operates on the
second one u2 across layers.

v1 = u1 ⊙ exp (s2(u2)) + t2(u2)

v2 = u2 ⊙ exp (s1(v1)) + t1(v1)

u2 = (v2 − t1(v1))⊙ exp (−s1(v1))

u1 = (v1 − t2(u2))⊙ exp (−s2(u2))

(1.13)
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Convolutional Neural Networks (CNN)

The term Convolutional Neural Network (CNN) (LeCun, 1989) refers to a category of
DL models that utilize a type of linear operation called convolution in at least one of their
layers. Convolutional operations offer several benefits to DL systems: sparse interactions,
parameter sharing and equivariant representations (Goodfellow et al., 2016). Other types
of neural networks such as MLP process the input data by computing interactions between
each element in the input with every element of the output. In contrast, CNNs leverage
sparse interactions by computing interactions between local neighborhoods of the input.
In general, different layers of a CNN would compute interactions on neighborhoods of
different sizes, thus allowing it to analyze the input data at different scales and learn both
local and global features. This also implies a reduced number of operations because the
number of interactions is only computed locally. Furthermore, the possibility to share
parameters from each convolutional operation across the entire DL model allows CNNs
reducing dramatically the amount of memory required to store it.

Given two functions f and g, the convolution of both, denoted by f ∗ g is defined as
the integral of the product of the two:

( f ∗ g)(t) :=
∫ ∝

−∝
f (τ)g(t− τ)dτ, (1.14)

where g is sometimes referred to as the kernel function. This operation can be interpreted
as the area under the function f weighted by g. Theoretically, both f and g can be real
value functions, however, in practice, sensors may only record data in discrete values.
Furthermore, the input t may also be a multidimensional array representing different
types of data, e.g. images. In addition, this convolutional operation can be applied in more
than one dimension at the same time. For a two-dimensional image with pixel intensities
I, and a two-dimensional kernel K, the convolutional operation can be described as:

S(i, j) = (I ∗ K)(i, j) =
Nx

∑
a=1

Ny

∑
b=1

I(a, b)K(i− a, j− b) (1.15)

This operation is applied across the entire image similarly to how a sliding window would
be used (Fig. 1.10).

The way in which CNNs learn the representation of the input data (training process),
equally to other DL models, is through a reward system. Every time that the CNN makes
a prediction/estimation, a measure between the output and the expected outcome (labels)
is computed and used to update the parameters of the model. Such measure is commonly
known as loss, performance or reward. The way in which the parameters of the model
are updated can be performed in many ways, one of the most common algorithms is
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Figure 1.10: Convolutional operations are in practice applied as matrix multiplications.
Exemplary diagram of a two-dimensional convolutional operation in two channels of an
image with two spatial dimensions.

called backpropagation. Backpropagation computes the gradient of the loss relative to
the input by leveraging the chain rule and updates the parameters of each model layer
in the process. In this way, the model adjusts itself after processing each sample and
improves its performance over time. For more details in model training and a more
rigorous mathematical description of CNNs please refer to the work of Goodfellow et al.
(2016).

Random forest regression

Random forest (Breiman, 2001), also known as random decision forest, represent a group
of ensemble learning methods generally used for classification and regression tasks. Each
tree in a random forest is built from a sample drawn with replacement from the training
data. When splitting each node of a tree, the best split is estimated either by selecting all
the input features or by selecting a random subset of features. This injection of randomness
in the construction of each tree decreases the variance of the forest estimator and avoids
overfitting on the training data.

Given the training sample xi ∈ Rn, where i ∈ 1, 2, ..., l, and a label vector y ∈ Rl ,
a decision tree partitions the features in a way that samples with the same or similar
labels are grouped together. Considering the data Qm at node m with Nm samples, each
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candidate split κ = (j, tm) consisting of a feature j and a threshold tm splits the data as:

Q
le f t
m (κ) = {(x, y) ∈ Qm | xj ≤ tm}

Q
right
m (κ) = {(x, y) ∈ Qm | (x, y) /∈ Q

le f t
m (κ)}

(1.16)

A traditional decision tree leverages all features j while a random forest tree samples a
random subset of features. The quality of each candidate κ is then computed based on
a loss function H(·). If the target is a continuous value (e.g. oxygenation), the loss can
be any of Mean Squared Error (MSE), Mean Absolute Error (MAE), L2 error, etc. Many
applications use the MSE, which yields:

ȳm =
1

Nm
∑

y∈Qm

y

H(Qm) =
1

Nm
∑

y∈Qm

(y− ȳm)
2

(1.17)

The loss H(·) yields the quality metric G(Qm, κ):

G(Qm, κ) =
N

le f t
m

Nm
H(Q

le f t
m (κ)) +

N
right
m

nm
H(Q

right
m (κ)) (1.18)

Finally, the best split candidate is selected such that:

κ∗ = arg min
κ

G(Qm, κ) (1.19)

This process is repeated until a maximum depth of each tree is reached or the data on the
node m cannot be divided.

Given the input data X, a random forest F estimates the outcome ŷ as the average
estimation ŷi from each of its decision trees i. In particular, for the task of oxygenation
estimation, the input data X can represent either measurements or MC simulations of
diffuse reflectances.
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1.3 Related Work

This chapter elaborates on the related work regarding functional imaging, with a focus on
medical applications. Band selection is an important topic in functional imaging, mainly
because it allows to speed up recording and processing time by reducing the amount of
data that needs to be collected. Hence, a method for band selection is proposed in Sec. 2.2.3
and its related work in Sec. 1.3.1. Processing the collected data in functional imaging
is not always straightforward, for example, open surgical scenarios feature a highly
dynamic environment where illumination is not known and can even change during
surgery. This is a challenge for surgical translation because many methods require a
controlled illumination or ground truth information about the light source. This limitation
is addressed in this thesis with a method for automatic light source estimation in Sec. 2.3
and the corresponding related work is discussed in Sec. 1.3.2. Finally, estimation of
functional properties is particularly challenging under the restriction of scarce data and
high inter-patient tissue heterogeneity and lack of gold standard. Methods to address
these challenges in the context of ischemia monitoring and perfusion monitoring are
presented in Sec. 2.4.2 and Sec. 2.2, its related work is discussed in Sec. 1.3.3.

1.3.1 Band selection in spectral imaging

Band selection, or feature selection as it is known in the remote sensing community,
generally refers to a wide variety of methods that aim to reduce the number of bands
in an image to reduce computational costs while maintaining acceptable performance
in a particular task. Even though several biomedical imaging modalities have shown
great potential, like SI, their adoption in clinical practice is many times hindered by
slow recording and processing speeds. For this reason, band selection related work is
presented in this section, and acts as ground base for the method proposed in Sec. 2.2.3.
Given that this thesis is mainly concerned with work in the biomedical domain, the
methods presented in this section are for the most part related to interventional imaging,
as summarized in Tab. 1.2.

Band selection (here on referred to as feature selection) algorithms can be grouped
roughly in filter, wrapper and embedded categories (Guyon and Elisseeff, 2003). Filter

methods determine the best features as a preprocessing step that is independent of the
target task (e.g. oxygenation estimation). Wrapper methods use the downstream processing
pipeline to search for feature combinations that maximize the target performance metric for
a given task (e.g. accuracy of tumor detection). Finally, embedded methods are incorporated
into the training process of a machine learning algorithm, where feature selection becomes
part of the model construction. While filter methods can rely on unsupervised analysis,
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wrapper and embedded methods usually need labeled data to estimate performance on each
set of features.

State-of-the-art methods shown in Tab. 1.2 can be classified into three categories
depending on the task being addressed: a) Cancer localization, b) Tissue visualization and
c) Functional imaging.

a) Cancer localization: The methods in this category focus on selecting bands that maxi-
mize the performance of a classifier. In this context, Wood et al. (2008) proposed to select
the bands which maximize the Area Under the Curve (AUC) of a Naïve Bayesian classi-
fier’s Receiver Operating Characteristic (ROC). In more detail, they used an algorithm
to remove the bands which contribute the least to the AUC while featuring a low AUC
if evaluated alone. The algorithm was evaluated on phantoms and stained lung cancer
biopsies, and the authors concluded that the use of three wavelengths provides essentially
as much information as the use of all sixteen. The contribution of Han et al. (2016) fo-
cuses on gastric tumor localization. They selected bands which maximized the symmetric
class-conditional Kullback-Leibler (KL) divergence between disease and normal tissue
reflectance spectra. A suboptimal, greedy search algorithm (Du et al., 2007) was used
for this purpose because the possible number of band subsets grows exponentially with
the number of bands. This algorithm iteratively adds bands to a selection set based on
the largest incremental increase in the KL measure. The algorithm was evaluated on 12
patients and a total of 21 colorectal tumors, and the authors concluded that five out of 28
bands are useful for outlining tissue disease regions.

b) Tissue visualization: Improving the contrast between normal and abnormal tissue
has been the target of several approaches. Among these, Gu et al. (2016) selected three
bands to discriminate gastric abnormalities from benign tissue. They aimed to replace RGB
images with a different set of bands. Their algorithm first selects the band with the highest
variance in the visible range from a set of 27 bands. The algorithm then adds subsequent
bands iteratively with the criterion of minimizing mutual information between the current
set of bands and the previous selection. The set of bands was optimized using 29 images
from 12 patients with gastric abnormalities. The authors concluded that the three selected
bands increase contrast compared to RGB images. In a similar approach, Nouri et al. (2014,
2016) inspected a number of unsupervised band selection algorithms within the context
of hyperspectral ureter surgery. The authors aimed to identify three bands for better
visualization (instead of RGB) to present to the surgeon. They evaluated the competing
algorithms by several contrast and entropy metrics and assessed how different sets of
bands can differentiate structures such as the ureter and adipose tissue. They found that
the three best wavelengths to discriminate ureter tissue are situated in the near infrared
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Table 1.2: Overview of relevant band selection methods. Selected bands represent the optimal number of bands reported
by the authors. Our proposed method suggests a subset of ten out of 101 bands for the in-silico oxygenation experiments,
but can be applied to a wide range of tasks.

Reference Modality Label-free Method Data Application Selected bands
Proposed HSI yes wrapper in vivo functional imaging 10/101

Preece and Claridge (2004) MSI yes wrapper in silico functional imaging 3
Marois et al. (2018) MSI yes wrapper in silico functional imaging 6
Asfour et al. (2018) HSI yes wrapper ex vivo tissue visualization 4/151
Wood et al. (2008) MSI no wrapper ex vivo cancer localization 3/16

Wirkert et al. (2014b) MSI yes filter in vivo functional imaging 8/20
Han et al. (2016) HSI no filter in vivo cancer localization 5/28
Gu et al. (2016) MSI yes filter in vivo tissue visualization 6/16

Nouri et al. (2014, 2016) HSI yes filter in vivo tissue visualization 3/141
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region. In another work, Guennadi and Andrei (2020) studied the optimal number of
bands to increase the contrast of tissue structures. They created a link between image
contrast ratio and optical tissue parameters based on the two-flux Kubelka-Munk model.
They reported that bands around 550 nm maximize visualization contrast. Furthermore,
Asfour et al. (2018) investigated the optimal bands to improve the visualization of atrial
ablation lesions. They evaluated the performance of their algorithm in subsets of two,
three and four bands based on supersets containing 151 and 31 equidistant bands in the
wavelength range between 420 nm and 720 nm. The authors concluded that four bands
can be used to enhance the contrast of ablated atrial tissue.

c) Functional imaging: In this context, band selection methods aim to select a subset of
bands while maintaining good performance in at least one of such tasks (e.g. oxygenation
estimation). Wirkert et al. (2014b) proposed to select bands in an unsupervised fashion
by maximizing the differential entropy contained in the selected subset of bands. More
specifically, the algorithm selects the subset of bands with the highest determinant of the
bands’ covariance matrix. Assuming an underlying normal distribution, this determinant
is proportional to the differential entropy, and thus also to the information contained in
the subset of bands. They tested this method in an in vivo porcine setting and concluded
that a selection of eight bands leads to blood oxygenation values close to the baseline
generated with 20 bands. In another work, Marois et al. (2018) selected bands by analyzing
the absorption spectra and computing tissue oxygenation with the Beer-Lambert’s law
while leveraging a wavelength-dependent path length factor. They chose bands that
maximize the product of the singular values of the absorption matrix, arguing that this
maximizes the orthogonality of the fitted spectra. They evaluated the quality of the
chosen bands in an in silico setting in the visible and infrared regions and used the
root mean squared error of different molecular concentrations as a quality measure.
Ultimately, they reported six optimal wavelengths for estimating the concentration of
water, lipids, oxyhemoglobin and deoxyhemoglobin. A different idea was proposed by
Preece and Claridge (2004). First, they generated Kubelka-Munk light transport theory-
based simulations for assessing pigmentation of human skin. A genetic algorithm was
then employed to find the best subset for estimating papillary dermis thickness and
blood/melanin content. The authors ensured that the bands could invert the parameters
uniquely by differential-geometric reasoning. By incorporating the ground truth from
simulations allowed them to circumvent problems related to references from real data, as
mentioned in Lu et al. (2015). The authors concluded that three bands selected according
to their method lead to better results than RGB, but that RGB leads to reasonable results
in the investigated context.
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In summary, although several method for band selection have been proposed,
several of them require labeled data that can be difficult to acquire (Wood et al.,
2008; Han et al., 2016; Nouri et al., 2014). In addition, some methods are based
on the maximization of a non-specific measure such as amount of information
(Nouri et al., 2016; Gu et al., 2016; Wirkert et al., 2016b), which is unrelated to
the specific task at hand (e.g. oxygneation estimation). Finally, some methods
(Preece and Claridge, 2004) were designed for in silico data because they require
knowledge of the tissue molecular composition and can not be adapted to real
data.

1.3.2 Automatic light source estimation

In the context of optical functional imaging, light source estimation refers to the estimation
of the spectrum of a light source within the field of view of a camera. It is important
to notice that the term “light source estimation” is strongly related to “color constancy”
methods (Khan et al., 2017). Color constancy aims to represent images in a color space that
is independent of the type of illumination. Most of the color constancy methods proposed
up until now have emanated from the computer vision community, and can be classified
in two main groups: machine learning approaches (Sec. 1.3.2) and model-based (Sec. 1.3.2).
Tab. 1.3 presents a comparison of the most relevant approaches to light source estimation
and color constancy. Although other methods have been proposed in this context, here
only the ones with the most potential for clinical translation are discussed. Davi (2011)
did an excellent work comparing earlier (less promising) approaches to color constancy.

Machine learning light source estimation

Among the machine learning approaches to light source estimation, CNNs are the domi-
nant building block (Hu et al., 2017; Bianco et al., 2015; Hernandez-Juarez et al., 2020; Afifi
and Brown, 2019; Laakom et al., 2019). Bianco et al. (2015) proposed a CNN to estimate the
light source in a patch-wise manner by training it in natural scenes. Given an RGB image,
they sampled non-overlapping patches from it and performed contrast normalization
before estimating the light source from each patch. They then aggregated the estimated
light sources from each patch to generate a global approximate. Similarly, Hu et al. (2017)
paired a convolutional network architecture with a confidence metric that assigns a confi-
dence value for each light source estimation on each analyzed patch of the image. Based
on these weights, they generated a global estimate of the illumination to correct each
image. In another work, Lo et al. (2021) proposed to learn general feature representations
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Table 1.3: Comparison of light source spectrum estimation methods. Most of these
methods are designed for Red-Green-Blue (RGB) images of natural scenes, only some
of them have been extended to Spectral Imaging (SI) and none of them to the medical
domain.

Reference Domain Modality Method
Proposed Human lips, pig liver SI Machine learning

Yoon et al. (2020) Chicken tissue SI Model-based
Imai et al. (2011) Real-world objects SI Model-based

Yoo and Kim (2019) Real-world objects RGB Model-based
Kato et al. (2012) Real-world objects RGB Model-based

Koscevic et al. (2021) Natural scenes RGB Machine learning
Afifi et al. (2021) Natural scenes RGB Machine learning
Lo et al. (2021) Natural scenes RGB Machine learning

Laakom et al. (2021) Natural scenes RGB Machine learning
Hernandez-Juarez et al. (2020) Natural scenes RGB Machine learning

Laakom et al. (2020) Natural scenes RGB Machine learning
Xiao et al. (2020) Natural scenes RGB Machine learning

Laakom et al. (2019) Natural scenes RGB Machine learning
Georgoulis et al. (2018) Natural scenes RGB Machine learning

Hu et al. (2017) Natural scenes RGB Machine learning
Bianco et al. (2015) Natural scenes RGB Machine learning

Gu et al. (2014) Natural scenes RGB Machine learning

by comparing similar and dissimilar image pairs (contrastive learning). Given a pair of
two random images (Ii, Ij) from the training set, they created the similar pair by augment-
ing one of them with a label-preserving augmentation strategy (t(Ii), t ′(Ii)), where t(·)
and t ′(·) represent two random augmentations. The dissimilar pair was generated by
augmenting two samples with different scene content (t(Ii), t ′(Ij)). While the authors
claim that their method is more robust to the state of the art, evidence of this is not yet clear.
In a different approach, Laakom et al. (2020) proposed the Bag of Color Features (BoCF),
which is a particular case of Bag-of-Features Pooling (BoFP) (Passalis and Tefas, 2017). In
this approach, the authors paired the BoFP with a self-attention mechanism to discard
irrelevant spatial information and thus learn only color-related information from regions
like reflective surfaces. The idea of using attention mechanisms is very similar to the
weighting approach implemented by Hu et al. (2017). Although attention mechanisms
could aid the network to focus on regions that contain the most information about the
light source, it cannot be guaranteed that the network will always focus on relevant loca-
tions. Indeed, Laakom et al. (2020) showed that the network sometimes focused on poorly
illuminated regions, thus putting the reliability of this approach into question.
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A challenge related to all machine learning algorithms is that their training requires
ground truth knowledge on the illuminant, usually obtained by placing a color checker
on each scene. This, however, can be seen as a disruptive process for intraoperative
procedures. Moreover, the spectral mixing of different light sources can change during the
procedure, rendering accurate calibration of the light source based on pre-operative or
post-operative data unfeasible.

Model-based light source estimation

These methods use basic assumptions about the image formation process to obtain the
light source spectrum from single images. Khan et al. (2017) identified the four most
commonly used methods for light source estimation in RGB images, and discussed how to
apply them to multispectral images: Max-RGB, Gray-world, Shades-of-gray and Grey-

edges. The first three methods work on the assumption that the p-norm of each band is
proportional to the light source spectrum. Gray-edges assumes that the average band
derivative in any scene is achromatic, therefore containing only information about the
light source. The mathematical formulations for these methods are presented in detail in
Sec. 2.3.3.

Several widely used methods leverage the dichromatic reflection model (Imai et al., 2011)
which states that the light reflected from an object can be separated into a specular and a
diffuse reflection component:

I(i, j, k) =

di f f use
︷ ︸︸ ︷

S(i, j, k)Lk +

specular
︷ ︸︸ ︷

c · Lk , (1.20)

where I(i, j, k) is the intensity of image band k at position (i, j), S(i, j, k) is the surface
spectral reflectance, c ∈ [0, 1] is a constant and Lk is the illuminant spectrum in band k.
According to this model, reflections from objects are projected into a two-dimensional
space via Principal Component Analysis (PCA) assuming that specular and diffuse reflec-
tions form different clusters in such low dimensional space. A linear fit is then applied to
each cluster and the light source spectrum derived from it. Although distinctive clusters
might form from reflections in materials like metal and plastic, it is not true for biological
tissue. Moreover, the assignment of a cluster to either specular or diffuse reflections is
ambiguous, thus making it inapplicable in the biomedical domain.

Other model-based approaches are either only applicable to RGB images (Finlayson
and Schaefer, 2001) or rely on restrictions not fulfilled by images in the medical domain.
For example, Kato et al. (2012) assumes that the object surface is composed of a dielectric
material such as plastic or paint. Kaneko et al. (2016) requires materials to be uniform
and relies on a statistical daylight model, which is not available for surgical scenarios.
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Furthermore, most of the methods in Khan et al. (2017) assume that the average color of a
scene is achromatic, which is a strong restriction for surgical scenarios.

In summary, no prior work on illuminant estimation based on SI in surgery has
been proposed to date. Methods proposed outside the field of medicine typically
suffer either from unrealistic model assumptions (model-based approaches) or
the need to acquire labeled training data that is difficult to acquire (machine
learning-based approaches).
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1.3.3 Perfusion monitoring

With the rise of more commercially available SI devices, more studies involving this tech-
nology have started to emerge. Clancy et al. (2020) did an astonishing work summarizing
and comparing such devices. This review revealed that even though there are nonmedical
devices capable of recording spectral data at video-rate, they have not been implemented
in clinical settings. The vast majority of devices featured in medical scenarios are big
and/or suffer from slow recording times (Dietrich et al., 2021a,b; Köhler et al., 2020; Hu
et al., 2020; Takamatsu et al., 2021; Kumar et al., 2020). The only laparoscopic spectral
device proposed for clinical use so far (Köhler et al., 2020) takes around five seconds
to record one hyperspectral image, which prevents real-time application. This section
contains a comparison of different studies performed with a wide range of functional
imaging modalities, with a focus on SI. It is important to notice that study types marked
as “human” refer to studies performed in humans but where no evidence of a structured
clinical trial was found, usually one or two subjects were involved in this proof of concept
studies. The analysis of these studies revealed that the majority of them are performed
in animals with a limited number of individuals (biological replicates). Even more, the
number of clinical studies involving these technologies is scarce. This could be attributed
to the general lack of medically approved devices that can be used in large cohort studies
involving different institutions.

The related work, presented in Tab. 1.4 that leverages SI and RGB data can be roughly
classified into two broad categories based on the underlying method that supports them:
a) Machine learning (Sec. 1.3.3) and b) Model-based (Sec. 1.3.3).

The literature presented in this section is the result of a thorough search involv-
ing each imaging modality. Although more literature could exist that involves
functional imaging in biomedical settings, the studies presented in this section
represents the ones that reported clearly the characteristics depicted in Tab. 1.4.
In spite of this, the general trend described here holds true for the rest of the
literature: lack of structured clinical trials and small population sizes. Furthermore,
given that the methods presented in this thesis are mainly concerned with the
translation of SI, special focus is placed in this modality. A comparison of different
imaging modalities for functional imaging can be found in Sec. 1.2.2.
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Table 1.4: Comparison of functional imaging studies performed over the last decade with a focus on Spectral Imaging
(SI). The following imaging modalities are compared Spectral Imaging (SI), Red-Green-Blue (RGB), Photoacoustic
Imaging (PAI), Diffuse Reflectance Spectroscopy (DRS), Spatial Frequency Domain Imaging (SFDI), functional Magnetic
Resonance Imaging (fMRI), Laser Speckle Imaging (LSI), Polarization Spectroscopy (POS), Polarization Spectroscopy
(POS) and Optical Coherence Tomography (OCT). Notice that the population size (biological replicates) was not reported
for some studies, and that “human” studies refer to studies performed in humans but where no evidence of a structured
clinical trial was found. Clinical studies are highlighted in gray and the methodology proposed in this thesis in this
thesis in green. BVF refers to blood volume fraction and sO2 to oxygenation.

Reference Domain Modality Method Population Study type Parameter
Proposed in silico, rat neck,

pig brain, human
skin & kidney

SI Machine learning 5× 105, 8, 1, 12, 10 clinical sO2, BVF

Wirkert et al. (2016a) Pig bowel SI Machine learning 1 animal sO2, BVF
Mori et al. (2014) Human brain SI Beer-Lambert 1 human sO2

Soares et al. (2021) Pig bowel SI Beer-Lambert 1 animal sO2
Clancy et al. (2015) Pig bowel SI Beer-Lambert 1 animal sO2

Bouchard et al. (2009) Rat brain SI Beer-Lambert 1 animal sO2, BVF
Suh et al. (2006) Human brain SI Beer-Lambert 8 clinical sO2, BVF

Holmer et al. (2018) Human hand SI Spectral derivatives 10 clinical sO2, BVF
Felli et al. (2020) Pig liver SI Spectral derivatives 6 animal sO2, BVF

Bedard and Tkaczyk (2012) Human lips SI Linear unmixing 1 human sO2
Jones et al. (2017) Pig bowel RGB Beer-Lambert 1 animal sO2, BVF

Kumar et al. (2020) Human hand RGB Oximeter-based 12 clinical BVF
Gröhl et al. (2021) Human forearm PAI Machine learning 3 clinical sO2

Tzoumas et al. (2016) Pig muscle PAI Linear unmixing 8 animal sO2
Kleshnin (2019) Simulations DRS Machine learning 5× 103 in silico sO2
Guo et al. (2022) Pig kidney DRS Beer-Lambert 1 animal sO2

Chen and Durr (2020) Human feet SFDI Beer-Lambert 4 clinical sO2
De Vis et al. (2013) Human brain fMRI Pulsed ASL 4 clinical BVF

Mangraviti et al. (2020) Rat brain LSI Laser speckle 5 animal BVF
Vasefi et al. (2015) Human skin POS Beer-Lambert 2 human sO2, BVF
Choi et al. (2019) Rat brain OCT Doppler shift 5 animal BVF
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Machine learning perfusion monitoring

One of the most promising approaches to perfusion estimation, and the only one based
on machine learning and SI, was proposed by Wirkert et al. (2016b). One of the most
challenging aspects of perfusion estimation is the lack of a gold standard method to
measure oxygenation in vivo. To overcome this, they proposed to use random forests
paired with MC simulations of light transport to estimate tissue oxygenation. In this work,
they proposed to optimize and train random forests by transforming the MC simulations
to the space of an 8-band multispectral camera. They demonstrated in a pig model that in

vivo oxygenation estimation is possible without the need of labeled data (Fig. 1.11).

(a) (b) (c)

Figure 1.11: Oxygenation estimation is possible in vivo with random forests. Small
bowel oxygenation estimation (a) before applying a clamp, (b) after applying four clamps,
and (c) nine minutes after applying the first clamp. Image from Wirkert et al. (2016b).

Although this method removes the need for labeled data, the relatively low estimation
speed of random forests paired with the slow sequential recordings of the multispectral
camera leads to low translational potential. Furthermore, the data utilized in this approach
was only augmented by introducing Gaussian noise during training, this could lead to
misrepresentations of real data that contains artifacts such as specular reflections. Despite
these limitations, this work paves the road for other methods that aim to leverage synthetic
data in functional imaging.

Model-based perfusion monitoring

Among the methods relying on the Beer-Lambert law, Jones et al. (2017) proposed an
interesting approach. They estimated tissue blood content and oxygenation in an iterative
process while relying solely on RGB images. They achieved this by reconstructing multi-
spectral data based on RGB images by using a Bayesian maximum a posterior estimate‡. In
this scenario, the prior is the previous concentration estimations of oxyhemoglobin and

‡That is, an estimate of an unknown quantity that equals the mode of the posterior distribution.
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Figure 1.12: Functional properties are computed from Red-Green-Blue (RGB) images

in an iterative process that relies on the Beer-Lambert law. Spectral data is recovered
from RGB images and the spectral power distribution by using a linear square fit, and the
concentrations of hemoglobin and oxygen are computed based on a Bayesian estimator.
The spectral estimations are then optimized in an iterative process based on such molecular
concentrations. Image from Jones et al. (2017).

deoxyhemoglobin. Based on these multispectral image estimations, the concentrations of
hemoglobin are computed via linear least squares fit. The process is then repeated until
convergence is reached. With this approach, they were able to compute oxygenation and
blood tissue content at a speed of 2.5 Hz. Although this approach leverages RGB cameras
that are already part of clinical routine, the relatively slow processing speed hinders its
applicability during surgery. As indicated by Jones et al. (2017), the processing speed
could be increased to 30 Hz if a look up table (LUT) was precomputed for a specific RGB
sensor with 24 bit colors. Even though this increase in speed could allow to image surgical
scenes under relatively high organ motion, it requires the computation of a LUT for each
camera sensor, thus hindering the translation of this method.

Furthermore, the majority of studies presented in Tab. 1.4 rely on the Beer-Lambert
law to estimate functional properties, mainly tissue blood content (BVF) and oxygenation
(sO2). The Beer-Lambert law (Baker et al., 2014; Jones et al., 2017) states that the intensity
of light traveling inside a medium decreases exponentially while increasing the depth of
such medium. Even though many studies have developed methods relaying in this law
(Mori et al., 2014; Soares et al., 2021; Clancy et al., 2015; Bouchard et al., 2009; Suh et al.,
2006; Jones et al., 2017), the conditions required to rely on this law are generally not met in
clinical applications:

Absorbers must act independently of each other: This is a requirement that cannot be
guaranteed, especially when fluorescent molecules might be present (e.g. ICG).
Fluorescent molecules could emit light that is then partially absorbed by other
molecules in the tissue.
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Concentration of absorbers should be homogeneous in the interacting volume: Different
parts of tissue structures can have different concentrations of absorbers. For example,
the content of blood can vary within the tissue depending on how it is perfused (e.g.
skin).

The incident light must traverse the same path length inside the medium: By nature,
light can travel different path lengths within the tissue, this can be attributed to
tissue heterogeneity (e.g. molecular concentrations, organelles, etc.).

For these reasons, methods that rely on the Beer-Lambert law to compute molecular
concentration of biological tissue are not a well-fitted for clinical translation.

In another recent work, Holmer et al. (2018) proposed using a spectral sequential
scanning approach (line scan) coupled with spectral derivatives to estimate functional
tissue properties (oxygenation, blood volume fraction and water content). Given that
changes in molecular composition of biological tissue would lead to peak intensity changes
in the reflectance spectrum, but not in the spectral location of such peaks, they proposed to
leverage the first and second derivatives of the reflectance spectrum to quantify molecular
concentrations. For this purpose, they computed the first and second derivatives of
the reflectance spectrum in wavelength regions that are most affected by changes in
concentration of different molecules. For example, hemoglobin features a characteristic
peaks between 570 nm and 590 nm, which change intensity depending on the amount of
oxygen that it contains. Although this method is simple enough to implement, it requires
highly detailed spectral data to reliably compute the first and second spectral derivatives.
This, coupled with sequential recordings, leads to slow recording speeds (a few seconds
per spectral image). The effect of such slow recordings can be appreciated in Fig. 1.13,
where the “wavy” pattern of the surgical instrument is a result of motion artifacts. Such
artifacts would only be increased during minimally invasive surgery, where organ motion
can be a more influential factor.

Recently, Kumar et al. (2020) proposed to pair an RGB camera with an oximeter to
estimate blood perfusion in skin. In this contribution, Kumar et al. (2020) estimated a
perfusion-related signal from RGB images by applying a band pass filter between the
frequencies of 0.5 Hz and 5 Hz to extract the cardiac-related signal. They then normalized
this cardiac-related signal with the same RGB data after applying a filter with cutoff
frequency of 0.3 Hz. They computed the final perfusion estimation by pairing the filtered
and normalized RGB data with data from the pulse oximeter (Fig. 1.14).

To consider possible outliers, Kumar et al. (2020) employed an M-estimator§ that
assigns lower weights to outlier samples. Similarly to the work by Jones et al. (2017),
this method could leverage existing equipment available in the clinics. However, they

§This can be interpreted as a weighted least square approach.
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Figure 1.13: Slow sequential spectral recordings can lead to motion artifacts. Recon-
structed Red-Green-Blue (RGB) image and oxygenation estimation of human esophagus.
Due to the sequential nature of the recording process (line scan), motion artifacts can be
visualized in the image, even under controlled conditions. Image from (Köhler et al., 2019).

require video stabilization across all recorded images with an optical flow approach, which
can considerably reduce the perfusion estimation speed. Moreover, the final perfusion
estimation for each image is performed with an optimizer in an iterative fashion, which
is not guaranteed to converge. Finally, the signals between the pulse oximeter and
the RGB camera need to be aligned, which only needs to be done once during each
procedure, however, a method to guarantee the success of this step is missing. In turn,
these limitations make this method difficult to be adopted in clinical practice.

The computation of functional properties in the medical domain is generally paired
with the analysis of Regions of Interest (ROIs) to reduce the effect of unwanted complica-
tions, such as organ bleeding, burned tissue, scaring, etc. Moreover, surgical applications
are generally focused towards estimating functional properties in specific regions of the
surgical scene like organs or parts of them during selective clamping Porpiglia et al. (2018).
For applications where recording speed is a limiting factor (Holmer et al., 2018; Köhler
et al., 2019), the analysis of individual images is generally preferred. In such cases, tracking
ROIs across multiple images is not needed, although slow frame rates hinder translation.
On the other hand, in more promising approaches that are video-rate capable, the need for
automatic ROIs tracking becomes evident. Unfortunately, until recently, the focus of ROI
tracking has been in the domain of natural scenes rather than the medical domain. Tab. 1.5
presents recent work on ROI tracking developed for both natural scenes and medical
domains.

Tracking biological ROIs is challenging in many surgical domains, this is due to several
factors: a) organs can have very homogeneous surface textures that reduce the available
contrast for tracking (e.g. liver), b) the presence of outliers (specular reflections, smoke,
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Figure 1.14: Perfusion estimation in skin is done by pairing a pulse oximeter with an

Red-Green-Blue (RGB) camera. This method extracts the perfusion signal from RGB data
after performing video stabilization with an optical flow approach. The extracted signal
is optimized using the data collected from a pulse oximeter and an outlier weighting
estimator. The green box underlines the different steps performed by the estimator. (a)

depicts the overall strategy employed to leverage data from an RGB camera and a pulse
oximeter, and (b) illustrates the effect of outlier weighting on the perfusion estimation
approach. Image from Kumar et al. (2020).

scaring, etc.) can throw off tracking estimations, and c) the number of datasets with ground
truth labels is very scarce in the medical domain. Most of the ROI tracking methods in
the medical domain are limited to tracking surgical tools (Speidel et al., 2015; Nwoye
et al., 2019; Liu et al., 2005) based on RGB data. Until now, there is still a need for a robust
tissue ROI tracker in the medical domain that can be utilized not only in RGB data but on
spectral data as well.
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Table 1.5: Comparison of Region of Interest (ROI) tracking methods. Most ROI racking
algorithms are implemented for natural scenes, which feature a strong contrast between
the target and background.

Reference Domain Modality Method
Proposed Human skin, human kidney SI Machine learning

Du et al. (2015) Human prostate RGB Model based
Nwoye et al. (2019) Surgical tools RGB Machine learning

Liu et al. (2005) Surgical tools RGB Edge detection
Speidel et al. (2015) Surgical tools RGB Model based

Boltz et al. (2009) Natural scenes RGB Machine learning
Lukezic et al. (2018) Natural scenes RGB Correlation filters

Zhao et al. (2018) Natural scenes RGB Correlation filters

All in all, despite the potential that previously proposed methods have shown,
they lack certain characteristics that prevent their translation into clinics:

Low recording/processing speed: All the literature presented in his chapter, as
well as a result of the review by Clancy et al. (2020), confirm that video-
rate perfusion imaging remains an unsolved challenge, mainly due to slow
recording devices and slow data processing methods.

Large devices: Several of the approaches presented in this chapter require large
devices (Holmer et al., 2018; Takamatsu et al., 2021; Dietrich et al., 2021a,b;
Kumar et al., 2020) that are difficult to handle for long periods of time during
surgery.

Domain gap: The overwhelming majority of method for perfusion estimation
validate their approach in specific domains (human skin, pig bowel, etc.),
while generalizability to other domains is overlooked.

High inter-patient variability is ignored: All studies presented in this section
have been validated in small population sizes, thus raising the question of
inter-patient variability and the potential generalization of such methods to
unseen patients.
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Figure 1.15: This thesis proposes a concept for translational functional imaging in

surgery that is validated in a wide range of domains. This concept addresses com-
mon roadblocks in the path to translation of functional imaging technologies: a) the lack
of labeled in vivo data, b) the slow recording and processing speed of Spectral Imaging (SI)
systems, c) the estimation error introduced by the dynamic illumination environment of
open procedures, and d) the high inter-patient tissue heterogeneity, for example in the
presence of pathologies.

1.4 Objectives and Contributions

The main objective of this thesis was to address challenges relevant to the clinical transla-
tion of functional imaging. More specifically, the translation of SI in surgical applications.
To overcome such challenges, a concept for translational functional imaging in surgery
was developed (Fig. 1.15). One of the most common roadblocks in clinical translation of
perfusion monitoring methods is the lack of ground truth labels for in vivo data. This was
addressed in this thesis by leveraging highly accurate synthetic data. The lack of clinical
data is also related to devices being too big or too slow to be used in large clinical trials.
This was addressed by combining a fast and compact SI device with advanced image
processing modules that reduce the amount of data that needs to be recorded, increase
accuracy, and speed up data processing via deep learning components. Challenges related
to translation to open surgical scenarios were also addressed by introducing a dedicated
light source estimation module that reduces potential perfusion estimation errors. In
contrast to other related work in the field of functional imaging in surgery, the concept
proposed in this thesis was validated in a wide range of domains: in silico, rat head and
neck, pig brain, and human skin and kidney. Based on these concepts, the following
contributions were developed in the context of this thesis.

Spectral imaging: This thesis pioneers video-rate perfusion monitoring with SI by modi-
fying existing devices to enable their application during minimally invasive surgery.
Furthermore, the first module in the framework proposed in this work aims to speed
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up data recording and acquisition by reducing the amount of data required for
specific medical tasks and domains. This method increases the speed of SI devices
by reducing the amount of spectral bands that they need to record. Even more,
it improves accuracy of oxygenation estimation by leveraging large amounts of
synthetic data, which resembles real-world conditions, and unlabeled real data to
adapt to specific target domains. This approach was validated in vivo by studying
the oxygenation of normal and tumorous tissue in a rat head and neck model. The
results of this analysis were worthy of a publication in the journal Biomedical Optics

Express (BOE).

Automatic light source estimation: In contrast to minimally invasive surgery, open sur-
gical procedures feature changing illumination conditions that lead to functional
parameter estimation errors when the incorrect illumination is assumed. Therefore,
an automatic light source estimation module was implemented, which leverages
information from specular reflections. Specular reflections are usually undesired
and unavoidable artifacts that possess the unique characteristic that the informa-
tion contained within them originates mainly from the light source that generated
them. Given that such reflections appear as over-exposed regions, the light source
estimation module leverages low exposure images where such reflections do not
appear as over-exposed. By estimating the light source spectrum of the light source,
this method is capable of reducing the error produced during functional parameter
estimations under changing illumination conditions. The benefits of this approach
were demonstrated both in silico and in vivo human skin, and merited a publication
in the International Journal of Computer Assisted Radiology and Surgery (IJCARS).

Perfusion monitoring: The computation of functional properties takes place in two sep-
arate modules designed to address different challenges (here on referred to as
functional modules).

• Perfusion monitoring via regression: The first of the functional modules fea-
tures a deep learning model designed to leverage highly accurate physics-based
simulations of light-tissue interactions to regress functional properties (regres-
sion module). By leveraging synthetic data, this module addresses the lack of
ground truth in vivo functional labels. This method was validated in different
species (e.g. rats, pigs, and humans) and domains (e.g. head and neck, brain
and skin) to test its generalizability. In particular, the potential of this approach
was demonstrated by monitoring the harmful SDs (deoxygenation waves) at
video-rate on the surface of the brain. Even more, part of this contribution was
published in the Medical Image Computing and Computer Assisted Intervention
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Society (MICCAI) workshop OR 2.0 and was awarded the bench to bedside

award. Part of this contribution was also awarded the young scientist award

by the international Society for Minimally Invasive Therapy (iSMIT).

• Perfusion monitoring via Out-of-Distribution (OoD) detection: The second
functional module features a deep learning model that is designed to deal
with samples that are not within the domain of the light-tissue simulations
that the regression module exploits. In particular, this module rephrases the
task of ischemia monitoring as an OoD detection task. By training this OoD
module solely on data from individual patients, it is capable of detecting
perfusion changes as outliers. This approach addresses the challenge of scarce
clinical data by implementing a personalized approach that requires data from
individual patients. Furthermore, this module was validated in the first clinical
trial employing MSI in minimally invasive surgery (partial nephrectomy) for
video-rate ischemia monitoring with deep learning. Part of this contribution
was introduced as an oral presentation at the 13th International Conference on

Information Processing in Computer Assisted Interventions (IPCAI).

In summary, this thesis contributes methods for video-rate perfusion monitoring
during surgery that are validated in a wide range of domains: in silico, rat head and
neck, pig brain, and human skin and kidney. Translation to open procedures of video-rate
perfusion monitoring is aided by a dedicated module for automatic light source estimation.
Finally, it presents the first clinical trial employing video-rate MSI in laparoscopic partial
nephrectomy for ischemia monitoring.

Disclosures to this work:

The work presented in this thesis was developed in a highly interdisciplinary
environment, where many team members conributed with fruitfull discussions
and analysis. Although I have written this thesis independently, in order to
reflect and aknowledge the various team efforts done by the groups that I have
collaborated with over the years, the rest of the this thesis is written in first person
plural (“We”) instead of first person singular (“I”). For clarity, details about my
contributions on each topic presented in this thesis are provided in the “Own

contributions” chapter at the end of this document.
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1.5 Outline

In the context of this thesis, the methodology used throughout this thesis is presented in
Chap. 2. First, the concept for translational functional imaging is described in Sec. 2.1.
Then, the measurement hardware utilized for spectral recording in various medical appli-
cations as well as the generation of synthetic data, and domain- and task-specific band
selection are presented in Sec. 2.2. Our approach and baseline methods for automatic
light source estimation for open surgical applications is presented in Sec. 2.3. Later on,
the methodology for perfusion monitoring in various domains, and the first ever clinical
trial with SI for ischemia monitoring are presented in Sec. 2.4.2. The experiments and
results that back up the claims in this thesis are laid out in Ch. 3. The technical validation
of several components of the concept for translational functional imaging (Sec. 2.1), such
as the synthetic data generation, and domain and task-specific band selection method are
presented in Sec. 3.1.1. The results of the proposed approach for automatic light source
estimation in ex vivo and in vivo experiments are described in Sec. 3.2. The approaches
for functional imaging (perfusion monitoring) are then validated in several medically
relevant domains, the results of this validation are presented in Sec. 3.3.1, Sec. 3.3.1, and
Sec. 3.3.2. Finally, Ch. 4 discussed the methodology and results presented in previous
chapters and offers insights into future research directions as well as pinpoints knowledge
voids that the biomedical community needs to address to translate functional imaging
methodologies into clinical practice. A summary of this thesis is also provided in Ch. 5.
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2
Materials and Methodology

You are never wrong to do the right thing.

— MARK TWAIN

In this chapter, we present in Sec. 2.1 our general concept for functional imaging in
surgical procedures by leveraging several machine and deep learning methodologies.
We then elaborate on the hardware used to achieve video-rate perfusion monitoring
in surgery and our approach to domain- and task-specific band selection in Sec. 2.2 by
exploiting highly accurate Monte Carlo (MC) simulations. We address the challenge
of light source estimation in open surgical procedures in Sec. 2.3, and we present our
methods for perfusion monitoring in a wide range of domains in Sec. 2.4.

2.1 Framework for intraoperative functional imaging

While previous approaches to functional imaging in medicine have focused on specific
processing components or medical applications (Clancy et al., 2015; Holmer et al., 2018;
Kumar et al., 2020), we introduce a concept that combines several modules to overcome
common challenges in translational imaging (Fig. 2.1). The advantage of our method-
ology is reflected in the success we demonstrate in very different medical applications:
partial nephrectomy (Sec. 2.4.2), neurosurgery (Sec. 2.4.1) and skin perfusion monitoring
(Sec. 2.4.1). This is also demonstrated through the wide range of biological specimens in
which our methodology can be successfully applied: rats (Sec. 2.2.3), pigs (Sec. 2.4.1) and
humans (Sec. 2.4.2).

Our concept for translational Spectral Imaging (SI) in surgery comprises four intercon-
nected modules that address the following challenges: a) slow recording and processing
speed of SI devices, b) low perfusion monitoring accuracy under changing illumination
conditions (open surgery), c) perfusion monitoring under the lack of labeled in vivo data,
and d) perfusion monitoring in outlier domains (not represented by simulations). One of
the biggest challenges related to the translation of optical functional imaging technologies
is the low recording and processing speed of imaging devices. For this reason, we propose
a method for domain- and task-specific band selection to reduce the amount of data
that such devices need to acquire, all of this while maintaining a good performance in
specific tasks (Sec. 2.2.3). The second challenge addressed with our concept is related
to minimizing the estimation errors hat optical imaging modalities might suffer from
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Figure 2.1: Our concept for functional imaging during surgical procedures can handle

both minimally invasive and open surgery. The pipeline for functional imaging that
we propose is capable of optimizing the spectral bands to specific tasks, it can handle
open surgical scenarios via a dedicated light source estimation module, and is capable of
dealing with data that is out of domain, such as tissue in the presence of pathologies.

when the surgical scene illumination changes over time. To overcome this drawback,
we propose a dedicated automatic light source estimation module capable of estimating
the light source spectrum during open procedures (Sec. 2.3). The third challenge that
we address refers to perfusion monitoring during surgery. We approach this challenge
with two separate modules. The first of them leverages a deep learning approach and
highly accurate physics-based simulations of light-tissue interactions to regress functional
properties (e.g. oxygenation and blood content). As such, this method overcomes the lack
of in vivo labelled data in functional imaging (Sec. 2.4.1). The second perfusion monitoring
module addresses the challenge of estimating functional properties in domains that are not
well represented by the light-tissue simulations (outlier domains). We propose to achieve
this by rephrasing the ischemia monitoring task as an Out-of-Distribution (OoD) detec-
tion task. By doing so, our deep learning-based method offers a personalized approach
that only requires perfused data from individual patients to detect perfusion changes as
outliers (Sec. 2.4.2).

2.2 Spectral imaging

The task of functional imaging in an in vivo setting is a hard problem, mainly due to
the lack of a gold standard method to validate the estimations that any algorithm might
produce. Furthermore, the hardware that is required to acquire validation data for such
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algorithms is big, heavy or suffers from slow recording times (Kumar et al., 2020; Holmer
et al., 2018; Clancy et al., 2015). This makes current hardware usage impractical in surgical
settings, and in turn renders acquisition of validation data unfeasible. Despite these
limitations, a few methods have been proposed over the last decade with the aim of
producing reliable oxygenation estimations in biological tissue. In this section, we present
a compact imaging system with the aim of recording spectral data during laparoscopic
surgery (Sec. 2.2.1). We then present our approach to generate and label multi-layer tissue
models with a MC method (Sec. 2.2.2). Finally, we present our approach to domain and
task-specific band selection for the task of oxygenation estimation (Sec. 2.2.3).

2.2.1 Real world spectral imaging

Over the past decades, our community has seen many advances in the field of spectral
imaging, from higher spatial and spectral resolution sensors to smaller camera housings.
The most prominent available spectral systems have been listed and described by Clancy
et al. (2020). Given that there is no commercially available spectral system capable of
recording spectral images at video-rate during surgery, we decided to build our own.
More specifically, we designed two spectral systems, a laparoscopic video-rate capable SI
system (ideal for minimally invasive surgery), and an open system featuring high spatial
resolution and narrower spectral bands (ideal for open static operations). In the following,
we describe our customized spectral systems.

Video-rate multispectral imaging We propose a multispectral system that enables us
to pioneer video-rate Multispectral Imaging (MSI) in laparoscopy. Due to its compact
(26× 26× 31 mm) design, the camera does not add hardware complexity to the Operating
Room (OR) (Fig. 2.2 a). In addition, the camera is lightweight (32 g), it enables easy
handling over long periods of time, and it operates at a frame rate of 25 Hz. As shown
in Fig. 2.2 b), it comprises (1) a snapshot multispectral camera, (2) a 335–610 nm band
pass filter, (3) a C-Mount adapter with adjustable focal length, (4) a standard surgical
laparoscope, (5) a surgical light cable, (6) a Xenon light source, and (7) a USB cable to
connect the MSI camera to the (8) processing unit.

Multispectral camera One of the main component of our system is a multispectral
camera (MQ022HG-IM-SM4x4-VIS, XIMEA GmbH, Münster, Germany), which is small
(26× 26× 31 mm) and light (32 g). This camera takes advantage of a mosaic snapshot
sensor (imec, Leuven, Belgium), which acquires 16 spectral bands at the same time in
the wavelength range 450–650 nm. This is achieved by using a 4× 4 repeating mosaic
pattern of filters (see Fig. 2.3 b)); the spectral response of each filter is shown in Fig. 2.3 c).
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Figure 2.2: Our multispectral imaging (MSI) system for ischemia monitoring is compa-

rable to current standard equipment in terms of size and weight. (a) Proposed spectral
imaging-based laparoscope (left) compared to standard Red, Green, and Blue (RGB) la-
paroscope (right). (b) Schematic representation of the system developed for spectral tissue
analysis in laparoscopic surgery. The dimensions of the laptop and the light source have
been scaled down for visualization purposes.

Multiple bands of the camera show two peaks in the spectral response. These are caused
by the Fabry-Pérot cavities (Poirson et al., 1997) that each filter forms, which generates the
so-called “second order” peaks. The intensity of such second order peaks depends on the
height of the optical cavity of the filters, the refractive index of the sensor material and
the cosine of the light incidence angle (Koonen, 2006). The total spatial resolution of the
snapshot sensor is 1088× 512 px, thus yielding a resolution per band of 272× 512 px.

Surgery-specific components Due to intrinsic optical properties of biological tissue, the
diffuse reflectance of human tissue in the red region (above ≈ 620 nm) is higher than that
in the blue region (below ≈ 490 nm) *. To ensure more balanced camera counts across
spectral bands, and thus similar signal-to-noise levels across different camera filters, a
335–610 nm band-pass filter (FGB37, Thorlabs Inc., Newton, New Jersey, United States)
was placed between the C-Mount adapter and the multispectral camera. The C-Mount
adapter (20200043, KARL STORZ SE & Co. KG, Tuttlingen, Germany) has an adjustable
focal length, with a maximum of 38 mm. To facilitate the usage of our system during
minimally invasive surgery, the camera was connected to standard 30° laparoscopes
(26003BA, KARL STORZ SE & Co. KG, Tuttlingen, Germany and Panoview, Richard Wolf,
Knittlingen, Germany) via the C-Mount adapter. The ℓ1-normalized transmission spectra
of the band-pass filter, the laparoscope and the C-Mount adapter are shown in Fig. 2.3 a).

*Internal organs tend to have a red color.
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The extinction coefficients of HbO2 and Hb are also shown as a reference (Prahl, 1999). We
chose a Xenon light source (IP20, Richard Wolf GmbH, Knittlingen, Germany) because, in
contrast to Light-Emitting Diodes (LEDs) and halogen lights, it provides more uniformly
distributed spectral power across the visible wavelength range. All optical transmission
profiles shown in Fig. 2.3 a) were measured with a spectrometer (HR2000+, Ocean Insight,
Orlando, USA). 100 transmission measurements of each optical component were averaged
and then smoothed across wavelengths by rolling window averaging with a window of
≈ 19 nm width. The values in the ranges 400–419 nm and 681–700 nm were ignored after
smoothing to avoid undesired border effects.

Image recording and storing We paired our optical system with a standard laptop
for video recording (Msi GE75 Raider 85G, Intel i7, NVIDIA RTX 2080). A custom C++
software (not publicly available) based on the XIMEA Application Program Interface
(XiAPI, XIMEA, Münster, Germany) was implemented as an interface to the multispectral
camera, and it was used to record the multispectral images.

Even though a spectral system with video-rate recording capabilities has many ap-
plications in minimally invasive surgery, other medical fields could benefit from higher
spatial resolution at the cost of slower recordings. One of such fields is neurosurgery,
where a highly controlled surgical environment reduces organ motion, thus opening the
doors to the possibility of a more detailed spatial analysis. With this in mind, we built a
system that features higher spatial resolution and narrower spectral bands in comparison
to the laparoscopic system (Fig. 2.2), in the following paragraphs we describe such new
system.

High resolution spectral imaging in neurosurgery To be able to record spectral images
at a relatively fast speed at increased spatial resolution we use a 5 Mpx camera (Spectrocam,
Pixelteq, Largo, FL, United States) which records multispectral images at a frame rate of
approximately 2 Hz. The central wavelengths of the eight filters were determined with
the method described by Wirkert et al. (2014a) and set to 465, 480, 511, 560, 580, 600, 660
and 700 nm. This method relies on the endoscopic Sheffield Index (Sheffield, 1985) to
select the bands with the most information. All selected bands have a Full Width at Half
Maximum (FWHM) of 20 nm except for the 480 nm band which has a FWHM of 25 nm (by
camera design). Recording of one multispectral image at resolution 2058× 2456 px takes
approximately 400 ms. For illumination, we use a standard surgical Xenon light source
(SCB 300, KARL STORZ SE & Co. KG, Tuttlingen, Germany). The spectral response of
each camera filter is presented in Fig. 2.4. In contrast to the filter response of the snapshot
camera presented in Fig. 2.3 c), the Spectrocam does not have second order peaks. This
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Figure 2.3: Optical properties of our multispectral system. (a) ℓ1 normalized transmis-
sion spectra of the laparoscopes, band-pass filter and C-Mount adapter are shown in the
left axis. Extinction coefficients of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) are
shown on the right axis. (b) Representation of the 4× 4 mosaic pattern of the multispectral
camera sensor. Each colored square represents a different filter; these filters form a 4× 4
pattern that extends over the whole image. (c) The filter responses of the multispectral
camera bands. Some bands, such as 5 to 12, show two extra peaks in the spectral response,
which are referred to as “second order” peaks.
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2.2. Spectral imaging

Figure 2.4: Sequential spectral recordings with glass filters eliminate second order

peaks. Spectral response of the Spectrocam camera filters, no second order peaks are
observed. The Spectrocam camera uses a filter wheel, which trades slower recording
speed for higher spatial resolution and narrower spectral bands.

is because the Spectrocam uses glass filters integrated in a filter wheel instead of the
Fabry-Pérot cavities. Using a filter wheel camera trades the speed of a snapshot sensor for
higher spatial resolution and narrower spectral bands, which are features more beneficial
for neuroimaging applications.

2.2.2 Synthetic spectral imaging

Translational functional imaging requires validation in real-world scenarios where real
data is collected in specific medical domains. Nonetheless, the development of new meth-
ods for functional imaging can benefit greatly with the introduction of digital replicates
that imitate the behavior of real devices (digital twins). This holds specially true in ap-
plications where real data is scarce or difficult to obtain. In this section, we present the
physics-based approach that we have adopted to simulate highly accurate light-tissue
interactions. In turn, these simulations are part of the foundation for many of the methods
presented in this thesis.

Monte Carlo simulations of light transport The generation of simulated diffuse re-
flectance spectra of biological tissue was performed based on previous work (Wirkert et al.,
2017). The light transport across three tissue layers was simulated with a MC method
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Table 2.1: The simulated ranges of physiological parameters, and their usage in the
simulation setup. The properties of each layer of the three-layered issue models were
assigned by uniformly sampling within the ranges specified in this table. Here vHbT
represents the blood volume fraction, s the blood oxygen saturation, amie the reduced
scattering coefficient at 500 nm, bmie the scattering power, g the tissue anisotropy, n the
refractive index, d the tissue thickness and ǫ the extinction coefficients of oxyhemoglobin
(HbO2) and deoxyhemoglobin (HbO). Notice that all parameters were uniformly sampled
within the specified range for each layer independently, which leads to different values
across layers.

vHbT [%] s [%] amie [cm−1] bmie [a.u.] g [a.u.] n [a.u.] d [cm]
0–30 0–100 5–50 0.3–3 0.80–0.95 1.33–1.54 0.002–0.2

simulation framework: GPU-MCML (Alerstam et al., 2010), 106 photons per simulation
simulated samples: 5.5× 105

sample wavelength range [λmin − λmax]: 300–1000 nm, step size 2 nm

and a model composed of infinitely wide slabs. Each of these slabs was defined by its
optical and physiological properties: blood volume fraction vHbT, blood oxygen saturation
s, reduced scattering coefficient at 500 nm amie, scattering power bmie, anisotropy g, refrac-
tive index n and layer thickness d. These parameters were computed based on literature
values (Jacques, 2013) that comprise: extinction coefficients of deoxyhemoglobin ǫHb and
oxyhemoglobin ǫHbO2. The absorption µa and scattering µs coefficients were computed
using Eq. 2.2. The ranges from which each parameter was uniformly sampled as well
as general simulation parameters are summarized in Table 2.1. A Graphics Processing
Unit (GPU) accelerated version (Alerstam et al., 2010) of the Monte Carlo Multi-Layered
(MCML) simulation framework (Wang and Jacques, 1992b) was chosen to generate the
diffuse spectral reflectances.

After simulating the diffuse reflectances r(λ) at wavelength λ on the biological tissue,
they were transformed into the MSI camera measurement space at band k, thus yielding
the measurement rk according to:

rk =

∫ λmax

λmin
T (λ) · I(λ) · Fk,MSI(λ) · r(λ)dλ

∫ λmax

λmin
T (λ) · I(λ) · Fk,MSI(λ)dλ

(2.1)

Here, T (λ) represents the optical transmission profile of the optical components of
the hardware setup (e.g. Fig. 2.3 a)), I(λ) is the relative irradiance of the light source,
and Fk,MSI(λ) characterizes the kth optical filter response of the camera. The transformed
simulated spectra rk were used to train the models for oxygenation regression (Sec. 2.4.1)
and to pre-train the deep learning-based approach to ischemia monitoring (Sec. 2.4.2).
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2.2. Spectral imaging

µa(vHbT, s, λ) = vHbT(s · ǫHbO2(λ) + (1− s) · ǫHb(λ)) ·
ln(10) · 150 g

L

6.45× 104 g
mol

µs(amie, bmie, λ, g) =
amie

1− g
(

λ

500 nm
)−bmie

(2.2)

Multi-layer tissue model labeling Spectral imaging collects the light that is reflected
from the surface of the target object. In medical applications, the target object is biological
tissue. As such, the total light collected by a spectral imaging system is composed of
photons that have traveled inside the tissue, generally up to a few hundred micrometers
for light in the visible range. Deeper tissue locations are accompanied by lower light
intensities (fewer photons), as depicted in the light intensity profile in Fig. 2.5. This is
an effect arising from the fact that the more distance a photon travels inside the tissue,
the more likely it is for that photon to be absorbed. The precise penetration depth p(λ)

of a photon depends on the photon wavelength, as well as the tissue composition, and
is defined as the depth within the tissue at which the intensity of the incident light I(λ)

drops to a ratio of 1/e (Fig. 2.5).
Given that a spectral camera can only assign reflectance values to the tissue surface,

any algorithm that aims to leverage this spectral information requires a mechanism to
assign tissue properties to the surface of the tissue (e.g. oxygenation). Modelling biological
tissue as a multi-layer structure, as opposed to a single layer, benefits from the capability
to simulate a wider variety of tissue types. A multi-layer tissue model features stacks
of infinite wide slabs, each one with different tissue properties vi (Tab. 2.1). Wirkert
(2018) proposed to label the entire multi-layer tissue model by assigning one value V

(oxygenation, blood volume fraction, etc.) that is representative across layers. According
to Wirkert (2018), V can be computed with a weighted average to each property up to a
depth z of 250µm:

V =
1

250µm

∫ 250µm

0
v(z) dz (2.3)

We hypothesize that a more accurate representation of the tissue parameters of a
multi-layer tissue model can be obtained by leveraging the penetration depth of photons
at each wavelength p(λ). As such, the tissue properties V can be obtained by applying a
weighted average across wavelengths in the range [λmin, λmax]:

V =
1

λmax − λmin

∫ λmax

λmin

(
1

p(λ)

∫ p(λ)

0
v(z) dz

)

dλ (2.4)

Here, the wavelength range [λmin, λmax] is defined by the range where the imaging
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Figure 2.5: Labelling multi-layer tissue models by using penetration depth can gener-

ate more accurate results. In contrast to a traditional approach that averages each tissue
property up to a depth of 250µm, we propose to use a wavelength-dependent penetration
depth to assign properties to the entire model.

system collects light. This process allows computing each property more precisely by
considering how much depth photons travel, in average, inside each tissue model.

2.2.3 Task-specific band selection

We propose a method that optimizes a generic model regarding a specific task (e.g. oxy-
genation monitoring) and domain (e.g. head and neck tumor) without the need for
annotated reference measurements. This method features a generic dataset of physics-
based simulations, which is leveraged by the proposed domain adaptation technique and
thus serves as foundation for the actual band selection algorithms. Fig. 2.6 summarizes
our proposed method. In the following paragraphs, we detail the domain adaptation
methodology as well as the band selection algorithms that we explored for the task of
oxygenation estimation. Note that our concept is not restricted to these specific algorithms,
here we exemplify its usability for the task of oxygenation estimation.

Adaptation to target domain The simulations presented in the previous paragraph
describe a generic tissue, which encompasses a wide variety of tissue types that have
hemoglobin as the main light absorber (e.g. brain, kidney, etc.). However, much of the
generated data might have little relevance for a specific task, such as cancer localization.
This means that bands selected on these generic simulations might be suboptimal for
specific domains. Domain adaptation techniques are generally capable of matching
simulations with the target domain more closely (Pan and Yang, 2010). We propose
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2.2. Spectral imaging

Figure 2.6: Domain and target-specific simulations can be generated by leveraging

unlabeled real spectral data. Generic simulations are adapted using unlabeled spectral
measurements from the target domain. The resulting domain-specific simulations are the
basis for the subsequent task-specific band selection.

to use Kernel Mean Matching (KMM) (Huang et al., 2007), as a state-of-the-art domain
adaptation technique, to automatically assign a weight to each simulated sample according
to how similar they are in comparison to real measurements taken from a target domain.
KMM estimates the density ratios between two probability density functions β(x) = ρ(x)

ρ ′(x)

by minimizing their Maximum Mean Discrepancy (MMD) (Gretton et al., 2009) in a
Reproducing Kernel Hilbert Space (RKHS) φ(x) : x→ F.

MMD2(F, β, ρ, ρ ′) =
∥
∥
∥Ex∼ρ(x)[β(x)φ(x)]− Ex∼ρ ′(x)[φ(x)]

∥
∥
∥

2
(2.5)

In the particular application of oxygenation estimation, ρ(x) represents the distribution of
diffuse reflectance simulations ri and ρ ′(x) the distribution of real measurements Ii. Thus,
the problem of computing the density ratios of these two distributions can be rewritten
as follows. For a more complete deduction of this expression, please refer to the work of
Miao et al. (2016).

arg min
βi

∥
∥
∥
∥
∥

1
n

n

∑
i=1

βiφ(ri)−
1
n ′

n ′

∑
i=1

φ(Ii)

∥
∥
∥
∥
∥

2

s.t. βi ∈ [0, B] and

∣
∣
∣
∣
∣

n

∑
i=1

βi − n

∣
∣
∣
∣
∣
≤ n

B√
n

(2.6)

This function correlates the means of simulations ri with real data Ii in a RKHS induced by
the kernel K. We set this function to the Gaussian radial basis function kernel: φ(ri, rj) =

e−γ(‖ri−rj‖2
)2

. Intuitively, the objective of KMM is to assign weights to Gaussian functions
associated with each simulated sample to emulate the distribution of the measurements
as closely as possible. The first boundary condition (βi ∈ [0, B]) limits the maximum
influence of individual training samples, while the second condition ensures that the term
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1
n ∑

n
i=1 βiφ(ri) is close to a probability distribution (Gretton et al., 2009). Unfortunately,

Eq. 2.6 cannot be solved directly due to the possible infinite dimensions of φ. To tackle this
problem, we use the random kitchen sinks method (Rahimi et al., 2007), which generates
a space ω(ri) that approximates φ(ri) by sampling from the Fourier transformation of a
shift invariant kernel. This method enables using a standard optimizer to solve Eq. 2.6 in
its nonkernelized form. The output of this process are the weights βi, which are used to
generate a dataset that resembles the real data Ii by sampling with replacement from the
original simulated dataset ri.

Task-specific band selection The objective of band selection is to select a number of
bands required to maintain high performance on a desired task while reducing the amount
of data that is needed. We exemplify this procedure in the task of oxygenation estimation.
Unless otherwise specified, the metric we employ to assess the performance of different
band selection algorithms is Mean Absolute Error (MAE).

For the task of oxygenation estimation, we use the random forest-based method
developed by Wirkert et al. (2016b). This method exploits MC simulations to learn the
mapping from diffuse reflectances to oxygenation values. Note that for consistency with
the feature selection literature, we use the term feature rather than band in this section,
but they are equivalent in this context. We studied and compared several popular filter- as
well as wrapper-based approaches, we summarize them in the following paragraphs.

On one hand, filter methods generally estimate the amount of information that features
provide by computing a specific metric, such as mutual information or conditional mutual
information between features and between features and targets. On the other hand,
wrapper methods select the features that maximize the performance of a model, usually a
machine learning model.

For filter feature selection, we employ several mutual information-based selection crite-
ria: Minimum Redundancy Maximum Relevance (mRMR) (Peng et al., 2005), Conditional
Mutual Information Maximization (CMIM) (Fleuret, 2004), Mutual Information based
Feature Selection (MIFS) (Battiti, 1994), Interaction Capping (ICAP) (Jakulin, 2005),
Conditional Infomax Feature Extraction (CIFE) (Lin and Tang, 2006) and Joint Mutual
Information (JMI) (Yang and Moody, 2000). These methods were originally developed for
classification tasks; however, they can be extended to regression by providing a mutual
information estimator. For a regression task (oxygenation estimation), such an estimator
must compute the conditional mutual information between two feature subsets, even
when the target is not categorical. For this purpose, Kraskov’s nearest neighbor mutual
information estimator (Kraskov et al., 2004) is used to compute the mutual information
between subsets. Furthermore, feature subsets are optimized by constructing them in a
greedy step-wise manner, as described by Brown et al. (2012). It is worth noting that the
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2.2. Spectral imaging

optimal number of features cannot be provided by filter feature selection. Instead, these
algorithms provide the order with which features should be added to a particular subset.
Hence, we report the results for all generated feature set sizes.

As wrapper feature selection algorithms, we use Sequential Forward Selection (SFS)
and Best First Search (BFS) (Kohavi and John, 1997). Both algorithms generate feature
subsets sequentially by optimizing a fitness criterion. SFS iteratively adds single features
to a given subset by keeping the feature that most improves the fitness criterion (MAE).
Features are added until the criterion has not improved in the last three additions. In
contrast, BFS is capable of also removing features from an existing subset and improves
the feature search by keeping track of all explored subsets. When BFS is stuck in a local
minimum, it returns to a previous feature subset with high performance and resumes
the search from that state. We employ the task of oxygenation estimation in all band
selection experiments, and leverage the random forest regressor as described by Wirkert
et al. (2016b) for this purpose.

arg min
si⊂S

(lMAE(y, f (xsi
))) (2.7)

Here, S denotes the complete set of possible features, si are the selected features
(a subset of S), lMAE(yi, f (xsi

)) is the MAE achieved with the subset si. f represents a
regressor that estimates the target variable y (e.g. oxygenation) based on the features si of
sample x, that is xsi

. lMAE(yi, f (xsi
)) is computed by running a threefold cross-validation

on the training data while using only the selected subset of features si. The final subset
of features (and thus feature set size) is determined by evaluating the performance of
multiple regressors f , each trained on different feature subsets, on a test dataset and
selecting the subset with the minimum MAE.

Data normalization for band selection The intensity of the measured diffuse re-
flectances in real settings is generally affected by multiplicative factors that arise from
different measurement settings: e.g. camera angle, camera distance, light source intensity,
etc. To mitigate these effects, band normalization is performed. We follow the recommen-
dations from Wirkert et al. (2016b) to normalize each reflectance spectrum by dividing it
by its mean, followed by a negative logarithmic transformation (− log) and a further ℓ2

normalization. Given a spectral image I ∈ R
Nx×Ny×Ns of spatial dimensions Nx × Ny and

number of bands Ns, and I(i, j, k) ∈ R represents the intensity value at the pixel position
(i, j) (i ∈ {1, ..., Nx}, j ∈ {1, ..., Ny}) and on image band k (k ∈ {1, ..., Ns}). The normalized
spectra Ī(i, j, k) can be computed as follows:
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Ilog(i, j, k) = − log

(

I(i, j, k)

∑
Ns

k=1 I(i, j, k)/Ns

)

Ī(i, j, k) =
Ilog(i, j, k)

√

∑
Ns

k=1(Ilog(i, j, k))2

(2.8)

The logarithmic transformation and ℓ2 normalization are not strictly necessary from a
theoretical standpoint, but empirically improved results for the task of oxygenation esti-
mation in our band selection experiments. In addition, the data needs to be re-normalized
whenever a different set of bands is used because the normalization method works on
a per-sample basis and uses all the available bands for normalization. As such, this
normalization step theoretically allows our approach to jointly optimize bands and their
normalization.

2.3 Automatic light source estimation

Estimating the spectrum of the light source (LS) illuminating a surgical scene is one of the
key challenges related to translating functional imaging methods to clinical practice. In
open surgery, the presence of multiple LSes (e.g. overhead lamps, ceiling lights, etc.) as
well as their dynamic nature makes this a challenging problem. In this section, we present
our approach to automatic LS estimation during open surgical procedures.

2.3.1 Concept overview

Optical functional imaging involves the recording and analysis of relatively high exposure
images, which are then processed by an algorithm to estimate a functional property of
interest (e.g. oxygenation). Such high exposure images benefit from rich information
of light-tissue interactions, which enables the estimation of functional parameters. This
type of images also generally features the presence of specular reflections, that is, regions
of the tissue that mainly reflect the light originating from the LS without entering the
tissue. As such, specular reflections contain mainly information about the spectrum of the
LS. Unfortunately, specular reflections are usually present as over saturated regions in
high exposure images. We propose to leverage specular reflections, hereon referred to as
specular highlights, by recording low exposure images and segmenting specular highlight
regions from them (Fig. 2.7).
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Figure 2.7: Our method leverages low exposure images to estimate the spectrum of the

light source (LS). Based on low exposure multispectral images, specular highlight masks
are computed, which represent regions in the image that are not over- or underexposed
and are assumed to contain a dominant specular component. A pre-trained machine
learning algorithm tailored to the estimated light source is then applied to high exposure
multispectral images to compute functional tissue parameters.

2.3.2 Implementation details

Our approach to automatic LS estimation comprises three main steps: a) the recording
of low exposure images, b) the segmentation of specular highlight regions based on low
exposure recordings and c) the estimation of the LS spectrum based on specular highlight
masks.

Calibration data acquisition Specular reflections in standard spectral images (i.e. high
exposure time) typically saturate the detector, leading to “invalid” pixels. On the other
hand, other regions are not well suited to recover the LS spectrum because reflections in
those regions are greatly influenced by underlying tissue properties (e.g. oxygenation).
We propose to tackle this problem by acquiring dedicated LS calibration images, which
are images acquired with a lower exposure time compared to that used for the spectral
images that serve as a basis for functional parameter estimation. Even though these
images (low exposure) are generally associated with a low Signal-to-Noise Ratio (SNR),
they are acquired in a way that “valid” specular highlight pixels (not overexposed and
not underexposed) mostly contain the information about the light source. The optimal
exposure time for these images is determined based on sequential recordings detailed in
Sec. 3.2. To validate our approach, we used five different light sources. The spectra of
these are shown in Fig. 2.8 a) and represent some common illumination conditions in the
OR. The reference (gold standard) illuminant spectra of all LSes were obtained with a
scientific grade spectrometer (HR2000+, Ocean Insight®, Largo, USA) over a Spectralon®
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(a) (b)

Figure 2.8: We use five commonly used types of light sources to validate our method.

Reference light sources (LSes). LS 1: Xenon (D-light P 201337 20 endoscopic light source,
Karl Storz GmbH, Tuttlingen, Germany); LS 2: Halogen (Halopar 16 GU10 light bulb,
Osram®, Munich, Germany); LS 3: Fluorescent light (FLS 11W 2700K fluorescent lamp,
Paulmann®, Springe Völksen, Germany); LS 4: Xenon (Auto LP 5131 endoscopic light
source, Richard Wolf GmbH, Knittlingen, Germany); LS 5: LED (Endolight LED 2.2 endo-
scopic light source, Richard Wolf GmbH, Knittlingen, Germany). (a) Relative irradiance of
LS 1-5 ℓ1-normalized. (b) Angular distance matrix between the different LSes.

diffuse reflectance standard (SRT-99-050, Labsphere®, North Sutton, USA) (Robles-Kelly
and Huynh, 2013). We consider the Euclidean angle between two LSes (a, b) (or estimated
LSes) as a measure of their similarity, as proposed by Khan et al. (2017), which we refer to
as angular error or angular distance:

θab = arccos (La · Lb), (2.9)

where L corresponds to the spectra of each light source under study, and θ the Euclidean
angle between them. The angular distance for the five LSes used in this study ranges from
1.0◦ (LS1 and LS4; both Xenon) to 25.9◦ (LS1 and LS3; Xenon and fluorescent) as depicted
in Fig. 2.8 b).

Specular highlight segmentation Our approach comprises the removal of overexposed
and underexposed pixels by selecting pixels with intensities I in a specific range Imin <

I < Imax. The minimum intensity Imin is set to the level of dark current for a given
exposure time, determined once for each camera. The maximum intensity Imax is set to
remove effects arising from the non-linearity in the camera response at high intensities,
and is determined according to the camera manufacturer specifications (here: Imax = 950).
Excluding underexposed and overexposed pixels results in a set of pixel indices V ⊂ N

2

corresponding to “valid” pixels. Then, specular highlight pixels are determined by first
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2.3. Automatic light source estimation

computing the lightness L(i, j) = ∑
Ns

k=1
I(i,j,k)

Ns
, where Ns is the number of camera bands and

I(i, j, k) is the image intensity corresponding to camera band k at pixel location (i, j) ∈ V.
From this “lightness image”, a number NP of highlight pixels with the highest values of
lightness L(i, j) are selected. The corresponding indices are represented by H ⊂ V. Based
on an empirical analysis (Sec. 3.2), we set NP = 100.

Light source spectrum estimation The light source spectrum is computed assuming that
the light that is diffusely reflected from the tissue can be neglected in specular highlight
pixels. This is a reasonable assumption because specular reflections inherently contain
mainly information from the light source. For each (i, j) ∈ H, an estimate of the light
source spectrum is computed by ℓ1-normalizing the intensities across camera bands:

L(i, j, k) =
I(i, j, k)

∑
Ns

k=1 I(i, j, k)
s.t. (i, j) ∈ H, (2.10)

where I(i, j) is the vector of all camera bands at pixel location (i, j), and L(i, j, k) represents
the estimated light source spectrum corresponding to the camera band k. The final
illuminant estimation Lk in band k is computed as the mean of all estimations from Np

individual pixels:

Lk =
1

NP
∑
(i,j)

L(i, j, k) s.t. (i, j) ∈ H. (2.11)

2.3.3 Hyperparameter settings and baseline

We empirically determined the appropriate values for the two hyperparameters: 1) ex-
posure time Texp (for the calibration images), and 2) the number of highlight pixels NP

per image. We performed initial experiments using LS 1-3 (Fig. 2.8). We refer to these
LSes as validation LSes while we refer to LS 4-5 as test LSes. We observed that varying the
number of pixels NP in the range of 75− 200 had a negligible influence on performance
and thus set NP = 100. Furthermore, we found a quality metric Q, for which the angular
error of illuminant estimations decreases as Q increases. This analysis was performed on
low exposure images in the validation set (exposure times between 5 ms and 150 ms). We
define the quality metric as follows:

Q(Texp) = median((i,j)∈H(Texp))

(

L(i, j, Texp)

Ld(Texp)

)

, (2.12)
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where Ld(Texp) corresponding to the mean lightness value obtained for dark current
images (lights turned off), and H(Texp) representing the indices of the highlight pixels for
exposure time Texp. Note that Q is positive, as Ld(Texp) is small, and does not necessarily
increase with exposure time due to overexposed specular highlight pixels. We then
propose recording multiple exposure images (5–150 ms, every 5 ms) and selecting the low
exposure time Texp that maximizes Q:

T̂exp = arg max
Texp

Q(Texp) (2.13)

Note that we also investigated acquiring multiple images of the same Texp and averag-
ing the corresponding results, but did not find an improvement with this approach.

Baseline methods For comparison to the state-of-the-art methods, we compared the
performance of our method with four model-based approaches. Model-based methods
use basic assumptions on the image formation process to extract the spectrum of the light
source directly from (single) images. Khan et al. (2017) identified the four most widely
used light source estimation methods on Red-Green-Blue (RGB) images and described
how to extend them to spectral images. M1: Max-RGB is based on Land’s white patch
algorithm (Land, 1977), which states that there is at least one pixel in each image band that
produces maximum reflection of the light source. Therefore, combining the maximum
reflection from each band, the light source spectrum could be recovered. M2: Gray-world

assumes that the average value of each band computed over the entire image is achromatic
and contains only information about the light source. As such, the light source spectrum
can be recovered by combining the average from each band. M3: Shades-of-gray is a
generalization of M1 and M2, where M1 is equivalent to using ℓ∝ normalization on each
band, while M2 is equivalent to using ℓ1 normalization. Given a spectral image, with p

being the order of the p-norm, the estimated light source spectrum Lk, at camera band k,
can be derived as follows:

(∫ ∫ |Ik|pdxdy
∫ ∫

dxdy

)1/p

≈



∑

Nx ,Ny

(i,j) |I(i, j, k)|p

Nx · Ny





1/p

∝ Lk, (2.14)

where Ik represents the band k of a spectral image of spatial dimensions Nx ×Ny. Here,
p is set to six for M3, as suggested by Finlayson and Trezzi (2004). M4: Gray-edge is
assumes that the average of the reflectance derivative in a scene is achromatic. This can be
expressed as follows
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(∫ ∫ |I′σk |pdxdy
∫ ∫

dxdy

)1/p

≈



∑

Nx ,Ny

(i,j) |I′σ(i, j, k)|p

Nx · Ny





1/p

∝ Lk (2.15)

I′σk =
√

(∂i I
σ
k )

2 + (∂j I
σ
k )

2, (2.16)

where (I′σk ) represents the smoothed derivative of image band k with a Gaussian filter of
standard deviation σ. Following the recommendation of Finlayson and Trezzi (2004), p is
set to six.

2.4 Perfusion monitoring

We address the task of perfusion monitoring in two separate modules that deal with
different challenges. The first module aims to regress functional properties by exploiting
physics based light-tissue interactions generated with a MC method (Sec. 2.4.1). As such,
this approach overcomes the lack of labeled in vivo data. The second module deals with
the task of perfusion monitoring in domains that are not well represented by the MC
simulations that the first module requires. This is exacerbated, for example, in domains
that feature pathologies such as partial nephrectomy (Sec. 2.4.2).

2.4.1 Perfusion monitoring via regression

This section presents the methods corresponding to quantitative oxygenation estimations.
First, we present oxygenation estimation via the modified Beer-Lambert law, followed by
an approach that relies on oximeter baseline measurements (Kumar et al., 2020). Further-
more, a classical machine learning approach to estimate oxygenation from MC simulations
is described, and finally our Convolutional Neural Network (CNN)-based approach to
oxygenation estimation is provided.

Beer-Lambert regression

The modified Beer-Lambert law (Baker et al., 2014) has been used in many state-of-the-art
methods (Clancy et al., 2015; Baker et al., 2014; Jones et al., 2017). In this work, we use it
as a baseline to estimate the total blood volume concentration (vHbT) and oxygenation (s)
from spectral data. This law states that a linear relationship exists between the absorption
a(λ) of a media, its attenuation coefficient µa(λ) and the optical path length l of photons
within such media:

a(λ) ∼ − log(r(λ)) = µa(λ)l + g (2.17)
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where r represents diffuse reflectance, and g accounts for scattering losses. Consider-
ing that blood is the main absorber in internal organs, we can replace the attenuation
coefficients by the extinction coefficients of blood

a(λ) = vHbO2 · ǫHbO2(λ) · l + vHb · ǫHb(λ) · l + g, (2.18)

where vHbO2 and vHb are the concentrations of oxyhemoglobin (HbO2) and deoxyhe-
moglobin (Hb), and ǫ represents their corresponding extinction coefficients. Given mea-
surements at multiple wavelengths, equation (2.18) describes a system of linear equations,
which can be solved for vHbO2 · l and vHb · l using ordinary least squares regression.
Considering multiple measurements X, this equation can be transformed into a matrix
multiplication:

H =






ǫHbO2(λ1) ǫHb(λ1) 1
ǫHbO2(λ2) ǫHb(λ2) 1

...
...

...






X =






v1,HbO2 · l v2,HbO2 · l . . .
v1,Hb · l v2,Hb · l . . .

g1 g2 . . .






A =






a1(λ1) a2(λ1) . . .
a1(λ2) a2(λ2) . . .

...
...




 = HX,

(2.19)

where {λ1, λ2, ...} represents the wavelengths of an imaging system (e.g. a spectral camera),
H is the matrix composed of the extinction coefficients, X is composed of the concentra-
tions vi,HbO2 and vi,Hb for each sample i, and A is the matrix of absorptions for each sample
and wavelength. By leveraging linear least square regression, the optimal solution X̂ can
be obtained by:

X̂ = (HT H)−1HT A (2.20)

X̂ thus enables estimating oxygenation s and total hemoglobin concentration vHbT for each
sample i as follows:

si =
vi,HbO2 · l

vi,Hb · l + vi,HbO2 · l
=

x̂i,1

x̂i,1 + x̂i,2

vi,HbT · l = vi,HbO2 · l + vi,Hb · l = x̂i,1 + x̂i,2

(2.21)
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Note that estimations of vHbT can only be computed up to a constant factor l, which is the
optical path length. Since all extinction coefficients are given at a high spectral resolution,
but we use a multispectral sensor with a relatively low number of bands, we adapted the
high-resolution extinction coefficients by averaging them over the filter response function
of each band. Given that we only have access to camera reflectance measurements rk,
we approximated ǫHb and ǫHbO2 at each camera band wavelength by integrating over
the wavelength range where the camera captures light [λmin, λmax] = 400–700 nm, thus
yielding:

ǫHb(λk) ∼
1

λmax − λmin

∫ λmax

λmin

Fk,MSI(λ) · ǫHb(λ)dλ | k ∈ {1, 2, ..., Ns} (2.22)

ǫHbO2(λk) ∼
1

λmax − λmin

∫ λmax

λmin

Fk,MSI(λ) · ǫHbO2(λ)dλ | k ∈ {1, 2, ..., Ns}, (2.23)

where Fk,MSI represents the kth filter response of a spectral camera.

Oximeter-based regression

We use the method proposed by Kumar et al. (2020) for baseline comparison. This method
leverages sequences of single band images with high temporal resolution coupled with a
pulse oximeter to analyze perfusion dynamic in living tissue. It is worth mentioning that
this method was designed to monitor perfusion changes in human skin. Following the
notation introduced in Eq. 2.8, the perfusion-related signal P at each image location (i, j)

and time point t is extracted by averaging the sequence of images over a (2K + 1)× (2K +

1) spatial region:

P(i, j, t) =
1

(2K + 1)2

K

∑
l2=−K

K

∑
l1=−K

I(i + l1, j + l2, t) (2.24)

Then, the cardiac-related changes in the signal I are extracted by applying a band-pass filter
that eliminates the signal outside the frequency range 0.5–5 Hz†. To make the perfusion
signal invariant to the intensity of the incident light, the band-passed signal is normalized
with the original signal I after applying a low-pass filter with a cutoff frequency of 0.3 Hz:

P̃(i, j, t) =
Ω0.3−5[P(i, j, t)]

Ω0.3−∝[P(i, j, t)]
, (2.25)

†This is the frequency range of the heart beat.
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where P̃ is the normalized signal and Ω f 1− f 2 represents a filtering operation that elim-
inates signals outside the frequency range between f 1 and f 2. It is then assumed that
the normalized perfusion signal can be separated into two components: a) the ratio of
pulsatile perfusion amplitude q to the averaged surface reflectance ι and b) a camera noise
model n(i, j, t):

P̃(i, j, t) = Q(i, j, t)ϕ(t) + ñ(i, j, t); Q(i, j, t) =
q(i, j, t)

ι(i, j, t)
, (2.26)

where ϕ(t) corresponds to the pulse signal, and ñ is the camera noise after applying the
same normalization step presented in Eq.2.25. Based on this model, the term Q can be
computed based on a sequence of images spanning on the time frame [t− δ, t + δ]:

Q(i, j, t) = arg min
q

t+δ

∑
τ=t−δ

̺(P̃(i, j, τ)− qϕ(τ)), (2.27)

where ̺ is the Tukey’s bi-square loss function with a k-value of 4.685, which assigns zero
weights to outlier samples such as motion artifacts and illumination changes. The pulse
signal ϕ is then obtained by using a pulse oximeter. For more details on the deduction of
Eq. 2.27 please refer to the original publication from Kumar et al. (2020), who proposed
to use the signal Q(i, j, t) as a measure to monitor perfusion changes from single-band
images.

Random forest regression

The task of oxygenation estimation via machine learning based on MC simulations was
successfully applied by Wirkert et al. (2016b). We adopted this methodology as a baseline
and for validation of several of our experiments. As proposed by Wirkert et al. (2016b),
we train a random forest regressor on physics-based simulations of light transport in
biological tissue (Tab. 2.1). In accordance with Wirkert et al. (2016b), we set the number of
trees to ten, the maximum depth per tree to nine, and the minimum number of samples
per leaf to ten. In addition, the maximum number of features was set to the number of
features of the input samples. As an objective function during training, we use the mean
squared error. All random forests presented in our methodology are trained on datasets
composed of MC simulations of light transport.

CNN-based regression

We build upon the work of Wirkert (2018) to generate an end-to-end deep learning pipeline
for oxygenation estimation. Our work is based on the hypothesis that (1) deep learning-
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(a) (b)

Figure 2.9: Our CNN-based model integrates data preprocessing (e.g. normalization)

in the network architecture. (a) The network used for training, whose model parameters
are re-used for the live validation network. (b) The live validation network used during
the intervention, yielding the functional parameters and Red-Green-Blue (RGB) estimates.
The estimated RGB image is only used for visualization.

based algorithms are better suited than model-based approaches (e.g. Beer-Lambert
approaches) for solving the inverse problem of relating diffuse reflectance spectra to the
underlying tissue functional parameters, (2) Deep learning approaches can exhibit high
accuracy and speed. As shown in Fig. 2.9, the training network learns the functional
property estimation based on simulated training data. The weights and biases of the
training network are then transferred to the live validation network, which runs in a
highly accelerated environment. One advantage of this network design over other state-
of-the-art methods is that the necessary data preprocessing steps are integrated into
the network architecture and can efficiently be performed on the Graphics Processing
Unit (GPU).

We leverage the physics-based simulations presented in Tab. 2.1 to train our network.
The diffuse reflectance is an intrinsic property of biological tissue, independent of the
imaging system employed during measurements. Nonetheless, recorded reflectances are
heavily influenced by imaging parts such as camera filter responses, camera quantum
efficiency, and relative irradiance of light source. Thus, transforming the simulated data
into a space that resembles the measurement conditions is an important step in our
processing pipeline. To achieve this, we use the transformation presented in Eq. 2.1.
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In a real scenario, recordings can be affected by changes in illumination, such as illumi-
nation intensity and distance of light source to the imaged region. A light normalization
step is introduced in the network design to partially reduce this effect (Fig. 2.9). This step
is computed on the GPU and comprises normalizing the spectra with its ℓ1 norm, the same
normalization is then implemented in the in vivo network (Fig. 2.9 b)). To consider possible
tissue spatial heterogeneity that can arise in a real scenario, every reflectance training
sample is augmented to match a region of 3× 3 px and Gaussian multiplicative noise at
a level of 20% SNR is added to each pixel independently. Both the training and in vivo

validation network consist of a fully convolutional network architecture. All convolutional
layers (1 to 4) are identical, except for the kernel size: the first two convolutional layers
have a kernel size of two while the other two have a kernel size of one. The Parameter

Estimate layer is a sigmoid transformation to scale each physiological parameter to the
range [0, 1] before computing the loss.

For in vivo applications (measurements), the adaptation to the optical system is not
needed. Instead, images are normalized with measurements of a white reference standard
and a dark measurement. Each multispectral recording is then normalized as follows:
R = I−D

W−D where I represents the raw multispectral image and R the normalized image.
This step is required only once at the beginning of the recordings. Furthermore, the ℓ1

normalization is implemented as part of the deep learning framework. Both the white and
dark as well as the ℓ1 normalization steps are integrated in the network architecture to
speed up the regression estimation (Fig. 2.9 b)).

2.4.2 Perfusion monitoring via Out-of-Distribution detection (Clinical study)

Laparoscopic surgery presents many challenges regarding ischemia monitoring, mainly
high organ motion and tissue heterogeneity. To counteract the effect of organ motion, we
present our deep learning-based approach to automatic Region of Interest (ROI) tracking
from spectral videos. We then propose a new methodology based on OoD detection for
ischemia monitoring in laparoscopic surgery that relies solely on data from individual
patients, thus removing the challenges imposed by inter-patient tissue heterogeneity.

Region of interest (ROI) tracking

Intraoperative image sequences generally depict highly dynamic scenes with a lot of organ
motion. Reliable tracking of ROIs is highly desired in such scenarios. We developed an
automated method to track ROIs in spectral image sequences. In this section, we first
describe the process of reconstructing RGB images from spectral data, the RGB data then
serves as input for our deep learning-based tracker. Finally, we present the post-processing
steps we followed to ensure a fair comparison across different ROIs.
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RGB image reconstruction The reconstruction of RGB images from spectral data was
required for (1) automatic ROI tracking, (2) comparison between our approaches that
leverage spectral data and the ones using RGB data, and (3) illustration purposes. Such
transformation was obtained by computing a transformation matrix T. A linear regressor
was used to compute T based on the filter response of the multispectral camera (Fig. 2.3),
the transmission of each optical component (Fig. 2.3) and the filter responses of an artificial
RGB camera. The artificial RGB camera was simulated by three Gaussian filters centered
at 460 nm, 550 nm and 640 nm, each with a standard deviation of 42 nm. The spectral
response of the multispectral camera was adjusted by multiplying the transmission T of
each optical component by the matrix FMSI of filter responses of the multispectral camera.

F
′
= FMSIT (2.28)

By considering the filter response of the artificial camera FRGB and the spectral response
of the multispectral camera F

′
, after correcting for the optical components integrated in

the system, the transformation matrix can be computed with:

Tmin = arg min
T
′

(‖ FRGB − F
′
T
′ ‖2)

T = Tmin ⊘N
(2.29)

where T represents the coefficients of the linear regressor, ⊘ corresponds to component-
wise division, and N is a normalization vector with three elements, which can be com-
puted as:

Nα =
Ns

∑
k=1

(F
′
Tmin)α,k s.t. α ∈ {1, 2, 3} (2.30)

Deep learning-based tracker Our tracker leverages spectral images, which are trans-
formed to RGB space as described in the previous paragraph. To enhance the robustness
of the tracker, the RGB images are first transformed to Hue-Saturation-Value (HSV) color
space, the V channel is then normalized with Contrast Limited Adaptive Histogram Equal-
izaiton (CLAHE), and the resulting image is transformed back to RGB. CLAHE enhances
the contrast of an image by dividing it into smaller contextual rectangular regions and
normalizing the histogram corresponding to each of these regions. Bilinear interpolation is
used in the border of each contextual region to avoid visible boundary effects. In contrast
to Adaptive Histogram Equalizaiton (AHE), CLAHE clips the histogram at a certain limit
and the exceeding pixels are distributed uniformly over the entire histogram. Our tracker
sets the kernel size used by CLAHE to 1/8 of the image height by 1/8 of its width, thus
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Figure 2.10: We track tissue Regions of Interest (ROIs) with high accuracy in spectral

videos. Our tracker analyzes two consecutive images of a spectral video. The RGB images
are transformed to HSV color space and each V channel is normalized using Contrast
Limited Adaptive Histogram Equalizaiton (CLAHE), the result is then transformed back
to RGB space. The normalized images are fed to a VGG19 and features are extracted
from its seventh convolutional layer. These features are then used by the Discriminative
Correlation Filter with Channel and Spatial Reliability (DCF-CSR) tracker to generate the
new ROI position, which in turn is used to locate the ROI position in subsequent images.
Icons by FreePik from flaticon.com

resulting in 64 rectangular contextual regions. The number of bins used for histogram
normalization is set to 256 and the clipping limit to 0.01.

The reconstructed and normalized RGB images are then fed into a pre-trained VGG19
neural network (Karen and Andrew (2015)) and deep features are extracted from its
seventh convolutional layer. The extracted features are further processed by the tracker
Discriminative Correlation Filter with Channel and Spatial Reliability (DCF-CSR) (Lukezic
et al. (2018))

This process thus generates a sequence of automatically tracked ROIs across a sequence
of spectral images. Fig. 2.10 illustrates the different steps of the proposed tracker.

ROI data post-processing The data from each ROI was first normalized with a white
(W) and dark (D) reference recording taken with a highly reflective target (Spectralon®,
Edmund Optics, Barrington, USA). Given an ROI of dimensions Nx × Ny × Ns, where
(Nx, Ny) are the spatial dimensions and Ns is the number of spectral bands, the intensity I

of each pixel at spatial location (i, j) and spectral band k was normalized according to:

In(i, j, k) =
I(i, j, k)− D(i, j, k)

W(i, j, k)− D(i, j, k)
(2.31)

In addition, an ℓ2 normalization across different bands was performed to compensate for
the influence of light source intensity changes due to changes in the distance of the camera
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to the surface of the kidney.

Ī(i, j, k) =
In(i, j, k)

√

∑
Ns

k I2
n(i, j, k)

(2.32)

The resulting spectra Ī(i, j, k) can then be compared between different image sequences,
and were used to train our deep learning model for ischemia monitoring. The median
normalized spectra within each ROI were used for the rest of our analysis.

Statistical analysis of tissue heterogeneity

For 2D visualization of the high-dimensional spectral data, the data from each ROI was
first normalized according to the procedure described in Sec. 2.4.2 yielding a median
spectrum per ROI, image, tissue state (perfused vs. ischemic) and subject. For each
image, we averaged the median spectra across all ROIs, computed the first two principal
components based on the data from all subjects and projected the data points onto these
new axes (Hotelling, 1933).

We further computed the proportion of explained variability in reflectance by different
components using linear mixed models, as suggested by Schreck (2019). Given a patient
index m ∈ {1, 2, . . . , Np}, and an image index n ∈ {1, 2, . . . , Ni}, we fitted the following
model for each wavelength separately:

rmn = Γ + ΛSmn + ∆m + Ψmn (2.33)

where r represents the averaged median reflectance across tracked ROIs for a given
wavelength. Smn is a variable that indicates the perfusion state of the kidney (1 for ischemic
or 0 for perfused). Furthermore, Γ represents an intercept for each linear model, Λ is
a fixed state effect, ∆m ∼ N (0, σ2

∆) is a random patient effect and Ψmn ∼ N (0, σ2
Ψ) are

residuals, with respective variances σ2
∆ and σ2

Ψ that are assumed to be independently
normally distributed. We computed the proportions of explained variability following the
recommendations of Schreck (2019).

Deep learning-based ischemia monitoring via OoD

We re-phrase the task of ischemia monitoring as an OoD detection problem to leverage
data from individual patients. This removes the need for large amounts of annotated
training data and avoids the problem of limited robustness, which traditional machine and
deep learning approaches suffer from. In particular, our algorithm is trained to compute
the likelihood of perfused tissue based on an image sequence acquired at the beginning of
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each surgery. In the following paragraphs, we review the principle of Widely Applicable
Information Criterion (WAIC) (Watanabe, 2013), explain how to leverage Invertible Neural
Networks (INNs) to compute it in real time and present our OoD-based ischemia index.

Widely Applicable Information Criterion (WAIC) The topic of OoD has benefited from
increasing interest in the machine and deep learning community over the last years.
However, we are not aware of any previous work in OoD detection in the field of optical
imaging. We build our ischemia monitoring method upon the work by Choi et al. (2018)
who proposed WAIC as a means to measure the closeness of a new data sample to the
distribution of the training data. Watanabe (2013) defined WAIC as:

WAIC(x) = VarΘ[log ν(x | Θ)]−EΘ[log ν(x | Θ)], (2.34)

where Θ in general represents the parameters of the model that parametrize p. The
variance and expectation are computed over such parameters Θ ∼ ν(Θ | Xtr), where Xtr

is the training data. Thus, WAIC(x) approximates the distance of any sample x to the
training data Xtr. The variance term VarΘ[log ν(x | Θ)] in Eq. (2.34) implies that the WAIC
measure indicates more certainty of a sample x being in-distribution the closer the sample
is to the training distribution. On the other hand, the expectation term EΘ[log ν(x | Θ)]

implies that if the sample x lies in a low density region, then it is expected to be OoD.
One of the biggest challenges associated with the implementation of WAIC is the efficient
computation of log ν(x | Θ). We propose applying INNs to be able to compute log ν(x | Θ)

efficiently and thus leverage WAIC(x) in real time during surgical procedures.

Invertible Neural Networks (INNs) for computing WAIC We propose to compute
log ν(x | Θ) is two steps: (1) use INNs to convert samples x into a space that allows
the analytical computation of the log-likelihood and then (2) apply the change of variable
formula to obtain log ν(x | Θ). In more detail, we use INNs (Ardizzone et al., 2018) to
transform the spectra (that lies in image space X) to a latent space Z. The latent space Z is
constructed in a way that samples are distributed according to a multivariate standard
Gaussian. By denoting the neural network with fΘ : X ⊂ R

n → Z ⊂ R
n (with parameters

Θ), we can use the change of variable formula to compute the log-likelihood log ν(x | Θ)

for a sample x as

log ν(x | Θ) = −1
2
‖ fΘ(x)‖2

2 −
n

2
log(2π) + log |det J fΘ(x)|, (2.35)

where J fΘ denotes the network’s Jacobian.
To compute the WAIC variance and expectation terms from Eq. (2.34), we generate an
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ensemble of networks (default: n = 5) with identical architecture but different random
seeds. The INNs were implemented using the PyTorch framework and the FrEIA package
for the architecture of each INN. Following up on previous work with INNs (Ardizzone
et al., 2018; Adler et al., 2019b,a), we applied the normalizing flow architecture originally
introduced by Dinh et al. (2016) and used the following network default settings: 20
affine coupling blocks (Dinh et al., 2016) with three layer fully connected subnetworks
with 256 hidden dimensions, rectified linear unit (ReLU) activations and fixed channel
permutations. The INNs were trained by minimizing the Maximum-Likelihood loss
L(x) = − log ν(x | Θ)(Eq. 2.35) with the Adam optimizer (Kingma and Ba, 2014b), a
learning rate of 1 · 10−4 and weight decay of 1 · 10−4. The training data was first z-score
normalized, and Gaussian noise was subsequently added with a standard deviation of
0.05.

Ischemia index We envision our approach to be applied in clinical practice, which
implies that not only the inference but also the training needs to be performed during
the actual surgical procedure. Thus, the requirement of fast training time had to be met
(seconds rather than minutes or hours). To facilitate fast network convergence based on
the patient data, we pre-trained our INN ensemble on simulated data. We leveraged the
MC method presented in 2.2.2 to compute high-resolution spectra covering a large space
of optical properties that resemble a wide range of physiological states (Tab. 2.1). These
high-resolution spectra were then adapted to the imaging system shown in Fig. 2.2. Our
proposed approach can leverage spectral information from multiple ROIs. To compute
our ischemia index from this information, we first aggregate WAIC values belonging to the
same ROI in the multispectral image at time point t,

WAIC(ROI(t)) := median WAIC( Ī(i, j, t)) s.t. i ∈ {1, ..., N} ; j ∈ {1, ..., M}, (2.36)

where Ī(i, j) is the image intensity after normalization (Eq. 2.32) at spatial location (i, j)

within the dimensions of the ROI of shape N ×M. Then, we aggregate all ROIs per image
via the mean to obtain the final ischemia index:

ischemia index(t) :=
1

Nr

Nr

∑
k=1

WAIC(ROIk(t)), (2.37)

where Nr represents the number of ROIs. For ease of visualization, we min-max-
normalized the ischemia index for each patient individually. As this is a strictly mono-
tonic transformation, this has no influence on the Area Under the Receiver Operating
Curve (AU-ROC) metric.
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3
Results

To be yourself in a world that is constantly trying to make you

something else is the greatest accomplishment.

— RALPH WALDO EMERSON

This chapter contains the experiments designed to test the concept of functional
imaging in surgery that was presented in Fig. 2.1. This mainly covers the topic of synthetic
data generation and task-specific band selection (Sec. 3.1). The experiments and results
corresponding to the dedicated automatic light source estimation module are presented in
Sec. 3.2. Finally, the task of functional parameter estimation (here perfusion monitoring) is
divided into two modules, one dealing with the lack of labeled in vivo data (Sec. 3.3.1),
and the other with domains that feature a high inter-patient tissue variability and are not
well represented by the simulations of light-tissue interactions (Sec. 3.3.2).

3.1 Spectral imaging

The first module in our concept for translational functional imaging (Fig. 2.1) aims to
increase the recording and processing speed of optical imaging systems by reducing the
amount of data that they need to acquire. We approached this challenge with a domain-
and task-specific band selection method capable of leveraging unlabeled in vivo data and
simulations of light-tissue interactions. In this section, we first present the results of our
proposed method for multi-layer tissue model labeling (Sec. 3.1.1) followed by our band
selection approach (Sec. 3.1.2).

3.1.1 Synthetic spectral imaging

Research question : What is the effect of different labeling strategies of a multi-layered
tissue model on oxygenation estimation?

In Eq. 2.3 and Eq. 2.4 we presented two approaches to multi-layer tissue model labeling.
The first one assigns labels by averaging the parameter values (e.g. oxygenation) across
layers up to a depth of 250µm, the later one leverages the penetration depth of photons to
average each parameter. We computed the penetration depth at simulation time with a
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(a) (b)

Figure 3.1: The mean penetration depth is smaller than the total penetration depth

of each multi-layer tissue model. (a) Two-dimensional representation computed via
Principal Component Analysis (PCA) of the complete set of 5× 106 simulations of light-
tissue interactions. Each dot represents one simulation and its color represents the tissue
oxygenation. (b) Distribution of multi-layer tissue model depth and mean light penetration
depth (across wavelengths). The mean light penetration depth is usually smaller than the
tissue depth.

modified version of the GPU-MCML framework (Alerstam et al., 2010). The penetration
depth during Monte Carlo (MC) simulations was obtained by tracking the absorption
of photons within each tissue model. Thus, the penetration depth p(λ) was computed
as the depth at which the number of photons (not absorbed) dropped to 1/e of its value
at the air-tissue interface. The two-dimensional representation, computed via Principal
Component Analysis (PCA), of the simulated diffuse reflectances corresponding to 5× 106

multi-layer tissue models is shown in Fig. 3.1 a). The simulated diffuse reflectances were
normalized before the computation of the PCA analysis according to Eq. 2.32. Each point
represents one multi-layer tissue model and its color corresponds to the tissue oxygenation
computed based on Eq. 2.4. Fig. 3.1 b) depicts the distributions of each tissue depth and
its corresponding light penetration depth. This indicates that the light penetration depth,
for the majority of tissue models, is smaller than its total depth.

To evaluate our approach, we created one-layer tissue models and assigned them
the tissue properties extracted from the three-layer models (Tab. 2.1) while using our
approach (penetration depth) and the reference method (Eq. 2.3 and Eq. 2.4). The one-
layer models were then re-simulated and the resulting diffuse reflectances were compared
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(a) (b)

Figure 3.2: Using the penetration depth for multi-layer model labeling assigns proper-

ties that are more characteristic of each tissue model. (a) Relative difference between
three-layer tissue models and re-simulated one-layer models for which tissue properties
were assigned by averaging each parameter up to 250 µm (orange line) and using the pen-
etration depth for averaging each parameter (green line). (b) Mean Squared Error (MSE)
validation loss during training of our Convolutional Neural Network (CNN) model while
using the two labeling strategies. Using the penetration depth for model labeling helps
during model training by producing a lower validation loss. Model training was done
based on the three-layer tissue models.

to the ones obtained with the three-layer model. The objective of each labeling strategy is
to assign properties that accurately represent the multi-layer tissue models. Therefore, a
more appropriate labeling strategy would generate reflectances (from a one-layer model)
more similar to the reflectances from the three-layer model. Due to the computational
complexity of re-simulating all 500,000 tissue models described in Tab. 2.1, we selected
1,000 random samples to perform this analysis. Fig. 3.2 a) shows the relative difference
between the reflectances from the three-layer models and the reflectances from the one-
layer models while using each of the labeling strategies. The translucent band around each
line corresponds to the standard deviation across all 1,000 re-simulated tissue models. In
the wavelength range 450–600 nm we observed that the relative distance is considerably
lower while using the penetration depth as labeling strategy. Above 600 nm, the relative
distance is slightly higher when using the penetration depth.

Fig. 3.2 b) shows the MSE validation loss during training of our CNN model for
oxygenation estimation (Fig. 2.9) while using both labeling strategies. The gray lines
correspond to the raw validation losses, and the colored lines correspond to the validation
losses after smoothing them with a rolling window of size 20. We observed a slightly
lower validation loss for the model trained while using the penetration depth as a labeling
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strategy for each tissue model. However, comparison of these two models is challenging
because they were trained on different labels: same underlying reflectances but different
labeling strategies.

3.1.2 Task-specific band selection

Research question : How can unlabeled data be leveraged to generate domain-specific
MC simulations?

Research question : How do different feature selection algorithms perform in the
task of oxygenation estimation?

To validate the domain and task-specific band selection method proposed in Sec. 2.2.3,
generic MC reflectance simulations Xg were created from the tissue model described in
Tab. 2.1. These generic simulations were randomly separated into a training dataset Xtrain

g

(450,000 simulations) and a test dataset Xtest
g (15,000 simulations). Bands were selected

on a validation subset of 15,000 simulations, selected randomly from the training dataset.
The band selections were evaluated by training the random forest regressor described in
Sec. 2.4.1 on the entire training dataset and evaluating its performance on the test set.

The camera used for the in vivo evaluation was mimicked by transforming the generic
simulations with Eq. 2.1. The camera was simulated with spectral bands every 2 nm from
500 nm to 700 nm, each band represented by a Gaussian transmissions profile with a Full
Width at Half Maximum (FWHM) of 20 nm. The quantum efficiency of the spectral camera
and the transmission spectra of the optical system were assumed constant within the
relatively narrow filter bands. The camera noise was emulated by including multiplicative
Gaussian noise at a level of 5%. The wavelength range 500–700 nm was chosen because
the simulations and measurements did not match below 500 nm and above 700 nm. Fur-
thermore, a 14 nm shift in the absorption spectrum was detected between the simulations
and the measurements. This misalignment was corrected by shifting the simulations.
The in vivo measurements were further normalized with a dark and white correction, as
presented in Eq. 2.31. Measurements were also denoised by blurring them with a Gaussian
kernel with a standard deviation of one pixel in the spatial domain.

In the following experiments, we used the random forest regressor described in
Sec. 2.4.1. We evaluated the performance of such regressor on several popular filter

and wrapper methods. The Mean Absolute Error (MAE) on the validation set of the generic
simulations for all evaluated methods can be visualized in Fig. 3.3 a). A systematic robust-
ness analysis, shown in Fig. 3.3 b), demonstrates that the best method across different
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(a) (b)

Figure 3.3: Best First Search (BFS) outperforms other band selection algorithms, fol-

lowed by Sequential Forward Selection (SFS) (a) Mean Absolute Error (MAE) of various
band selection methods applied on the generic training set Xg and evaluated on the test set
Xtest

g . Wrapper methods (W) outperform filter methods (F). The horizontal line represents
the result when training and testing on all 101 bands. (b) Ranking stability of different
band selection methods across different number of bands. Here, the rank of a method
(1: best to 5: worst) is based on the MAE. Each method is color-coded, and the area
of each blob at position (Ai, rank j) is proportional to the relative frequency (Ai) each
method achieved rank j for 1000 bootstrap samples. The median rank of each algorithm
is indicated by a black cross, and 95% bootstrap confidence intervals across bootstrap
samples are indicated by black lines.

numbers of bands is Best First Search (BFS). The robustness analysis was performed with
the ChallengeR tool developed by Wiesenfarth et al. (2021). Given that wrapper methods
performed better than filter methods and BFS ranks in first place for all different num-
bers of bands, it was selected as the standard band selection technique for the following
experiments.

We investigated how well a regressor trained on bands selected from a set of domain-
specific simulations can estimate oxygenation on in vivo data. For this purpose, a dataset
composed of eight hyperspectral images of head and neck tumors in a rat model were
used (Lu et al., 2015). Each tumor image was recorded by a spectral camera (Maestro,
PerkinElmer Inc., Waltham, Massachusetts). This system records hyperspectral images in
the wavelength range 450–900 nm with a FWHM of 20 nm. Green Fluorescence Protein
(GFP) was used to identify tumorous tissue on each image. More details on the image
acquisition process can be found in the original dataset provided by Lu et al. (2015). From
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(a) (b) (c)

Figure 3.4: We can adapt generic simulations to a specific domain and use them to

estimate oxygenation in real data. (a) Two dimensional representation, computed via
Principal Component Analysis (PCA), of generic Monte Carlo (MC) simulations before
and after adapting them to real data from rat head and neck tumor models. (b) Oxygena-
tion map using 20 bands selected with Best First Search (BFS) the tumorous region was
identified via Green Fluorescence Protein (GFP) and is indicated by the blue outline. (c)

Oxygenation distribution, as estimated by the random forest regressor, for the healthy
and tumorous regions identified in (b). The distributions are shown when a regressor is
trained on all 101 bands and when training only on 20 selected by BFS.

the eight rat tumor images, five were used for algorithm fine-tuning and three were
reserved for the final validation of the band selection results. Our domain adaptation
approach (Sec. 2.2.3) was evaluated by adapting the generic simulations (Tab. 2.1) to
the hyperspectral in vivo rat data. Two subsets (train and test set) of 15,000 simulations
(each) were generated by sampling, without repetition, using the weights provided by our
method. Here, the Kernel Mean Matching (KMM) parameter B (see Eq. 2.6) was set to 10,
and the kernel function’s parameter γ was set to the median pairwise Euclidean sample
distance determined on the training data. The two-dimensional representation, computed
by PCA, of the generic simulations, rat measurements and domain-adapted simulations is
presented in Fig. 3.4 a). This shows that the distribution of the simulations after domain
adaptation resembles the in vivo rat data more closely.

Bands were then selected with the top-ranking algorithm BFS in the domain-adapted
train dataset. The random forest regressor was then trained on the selected bands and
evaluated on the domain-adapted test dataset. This analysis revealed that selecting 13
out of the 101 bands was sufficient to reproduce the baseline MAE (usign all bands).
Furthermore, selecting 20 bands achieved the lowest MAE while still reducing the number
of required bands by approximately 80 %. Note that in this setup the band selection
algorithm is agnostic to the real measurements as it is presented only domain-specific
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generic simulations. This approach allows us to select bands that are specific to some
domain without having ground truth oxygenation values for the measurements. The
random forest regressor trained on the selected 20 bands was then evaluated on the in vivo

rat data. We observed that the tumorous regions exhibit lower oxygenation values than
the healthy tissue (outside the blue outline). Fig. 3.4 b) exemplifies this observation for one
of the eight mice, similar results were observed for the other mice. Fig. 3.4 c) depicts the
oxygenation value distribution of the tumorous and the healthy tissue when all 101 bands
are used and when only 20 bands are selected with BFS. Based on this, the separation of
the healthy from the tumorous tissue is more clear when using only the selected 20 bands.

3.2 Automatic light source estimation

In order to facilitate the translation of optical functional imaging to open surgical scenarios,
we designed a method for automatic light source (LS) estimation. We evaluated the
performance of our proposed method to LS estimation (Sec. 2.3) in different settings: in

silico, ex vivo and in vivo. We studied the performance of our method in silico and ex vivo,
as well as the performance comparison to other state-of-the-art approaches (Sec. 3.2.1). We
further analyzed the effect that an automatic approach to LS estimation can have in the
task of oxygenation estimation in vivo (Sec. 3.2.2).

3.2.1 Light source estimation ex vivo

Research question : How does the proposed approach to light source estimation
perform in comparison to state-of-the-art methods?

Research question : What is the effect of automatic light source estimations on the
task of oxygenation estimation in silico?

To address these research questions, we recorded multispectral images of an ex vivo pig
liver illuminated with the five different LSes described in Fig. 2.8. To study the robustness
of our method to LS estimation, we recorded images of eight different camera poses at
different exposure times in the range 5–150 ms. One pose corresponds to a fixed camera
distance to the tissue surface, and a corresponding angle between the camera and the
surface of the tissue. To quantitatively assess the performance of our method for LS
estimation, we applied our method to a total of 5× 8 = 40 images (number of LS ×
number of poses per LS). We then computed descriptive statistics for the angle between
the reference spectrum (Fig. 2.8) and the estimated spectrum.
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(a) (b)

Figure 3.5: Our method is capable of accurately estimating the light source spectra.

(a) Reference spectra (large circles) and corresponding estimates (crosses) for the light
sources (LSes) described in Fig. 2.8. All light source spectra were projected onto the
first two principal components of the five reference spectra, determined with Principal
Component Analysis (PCA). Crosses of the same color represent different poses of the
multispectral camera relative to the same LS. (b) Box plots of the angle between the
reference spectrum and the estimated spectrum for each LS. The purple lines represent
the mean angular distance for each LS, and the boxes extend between the 25th to the 75th

percentile.

The two-dimensional representation of the reference LSes (large blobs) and our es-
timations (crosses) (Fig. 3.5) shows that the true illuminant is consistently the nearest
neighbor to the estimates, except LS 1 and LS 4, which are both Xenon LS from different
manufacturers and have an angular error of only 1°. This two-dimensional representation
was computed via PCA. The performance of our LS estimation method is summarized in
Fig. 3.5 b). It can be seen that the angle between our estimate and the reference is mostly
below 3◦ (only one outlier). The performance for the test LS (LS 4-5) is similar to those of
the validation LS (LS 1-3), which were used to tune the two hyperparameters (Texp and Np),
as described in Sec. 2.3.3.

To quantify the impact of the error in LS estimation on oxygenation estimation, we
used the physics-based simulations presented in Tab. 2.1 to simulate a set of 15,000 tissue
models, which was divided into a training data set Xtrain with |Xtrain| = 10, 000 and a
testing data set Xtest with |Xtest| = 5, 000. Xtrain was used to generate 5 + 40 = 45 training

sets following the camera space transformation presented in Eq. 2.1, each corresponding to
one of the five ground truth LS (LSi ∀i ∈ {1, 2, 3, 4, 5}) or their estimates L̂Si (n = 5× 8;
one for each LS and each of the eight camera poses). In total, each of these 45 training
sets was composed of 10,000 tuples of tissue properties and corresponding measurements.
Note that the training sets for the different illuminants correspond to the same ground truth
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tissue parameters (including oxygenation, which is the parameter we wish to recover). We
then trained an oxygenation regressor using the random forest proposed by Wirkert et al.
(2016a) and presented in Sec. 2.4.1. To test the performance of all 45 regressors, we used
Xtest to generate a test set for each of the five reference LSes, following the transformation
presented in Eq.2.1. Similarly, as for Xtrain, each test set comprised of 5,000 tuples of tissue
properties and corresponding measurements. We then computed descriptive statistics for
the quality of oxygenation estimation in three different scenarios :

1. Using the reference illuminant for training the random forest (LStrain = LStest; n = 5).

2. Selecting randomly one of the other illuminants for training (LStrain 6= LStest; n = 20).
For each ground truth LS, one of the other four LSes was used for independently
training a regressor. This process was repeated for each ground truth LS, thus
resulting in 20 different regressors.

3. Using our approach to illuminant estimation to estimate the LS (LStrain = L̂Stest; n =

5× 8)).

As shown in Fig. 3.6, the mean absolute error in oxygenation estimation when using
the ground truth LS for training ranges from 10.5 p.p. (percentage points for LS 1) to
12.5 p.p. (LS 3) with a mean of 11.3 p.p. (averaged over all five LSes). The mean, median
and max value of the mean oxygenation error was 11.6 p.p., 11.3 p.p. and 13.1 p.p. when
applying our approach (n = 5× 8). The results were similar for the validation LS (mean:
11.3 p.p.) and the test LS (mean: 12.0 p.p.). We reduced the mean oxygenation error by an
average of 47%, compared to using an arbitrary LS (no calibration performed).

To evaluate the performance of our method in comparison to state-of-the-art ap-
proaches, we picked four related methods that fit our requirements: 1) no supervised
training is needed and 2) no assumption about homogeneity or composition of the surface
is needed. Following the terminology introduced in Sec. 2.3.3, we refer to these methods
as (M1-M4). M1-M4 were applied to the ex vivo recordings described before such that
their performance could be compared with our approach on identical datasets.

Fig. 3.7 a) shows the performance of all methods, quantified by the angular error
introduced in Sec. 2.3, for three different exposure times (low: 20 ms, normal: 40 ms, high:
60 ms) and averaged over all poses of all LS (LS 1 - LS 5) (n = 8). While our method
outperformed all the competitors and yielded relatively consistent performance over the
three exposure times, the performance of M1-M4 was more sensitive to the exposure time
of the recordings. This result is consistently supported by a systematic robustness analysis
using the ChallengeR tool developed by Wiesenfarth et al. (2021) (Fig. 3.7 b).
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Figure 3.6: Automatic light source estimation can reduce the estimation error of

oxygenation in silico. Error in oxygenation estimation when (1) using the reference
light source (LS) for training (LStrain = LStest) (2) using a random LS for training
(LStrain 6= LStest) and (3) using our approach to illuminant estimation to estimate the
LS (LStrain = L̂Stest).

3.2.2 Light source estimation in vivo

Research question : What effect does automatic light source (LS) estimation have on
the task of oxygenation estimation in vivo?

For qualitative validation, we recorded a sequence of multispectral images from the
lips of a human subject and switched the LS from LS 1 (Xenon) to LS 5 (Light-Emitting
Diode (LED)) in the middle of the recording. These recordings were performed with the
compact spectral system presented in Fig. 2.2. We applied our approach to automatic light
source calibration to continuously update the regressor to one tailored to the (estimated)
light source. As a baseline method, we applied a regressor trained on LS 1 (the first LS
used) throughout the whole acquisition process. Qualitative analysis was performed by
plotting the mean oxygenation in an Region of Interest (ROI) (Fig. 3.8). The ROI, of size
30× 30 px, was located in a region of tissue that was not underexposed or overexposed.
Given that the recordings lasted only a couple of seconds and the experimental setup
was highly controlled, there was no need to automatically track the ROI, as there was no
visible tissue motion across the entire image sequence. Given that the recordings only
lasted a few seconds and only the LS was modified during recordings, it is reasonable to
assume that an ideal regressor would estimate the same oxygenation value for the entire
image sequence. Fig. 3.8 shows that the oxygenation estimation error is reduced when
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(a)

(b)

Figure 3.7: Our method outperforms all state-of-the-art approaches for different expo-

sure times. (a) Angular error of baseline methods and our proposed method (Specular
highlights) for different exposure times. Box plots of the same color correspond to the
same method. (b) Ranking stability of different methods when applied to different ex-
posure times. Here, the rank of a method on each data set (1: best to 5: worst) is based
on the angular error. Each method is color-coded, and the area of each blob at position
(Ai, rank j) is proportional to the relative frequency (Ai) each method achieved rank j for
1000 bootstrap samples across the different tasks, where one task represents one exposure
time. The median rank of each algorithm is indicated by a black cross, and 95% bootstrap
confidence intervals across bootstrap samples are indicated by black lines.
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Figure 3.8: Automatic light source estimation can reduce the estimation error of oxy-

genation from spectral images of in vivo tissue. When assuming a constant LS, the
estimated blood oxygenation in an Region of Interest (ROI) on the human lips (yellow
rectangle) changes when illumination conditions alter (and no longer match the training
conditions). Our approach compensates for this by automatic LS calibration. The gap
between index 85 and 100 represents the transition phase in which light sources were
switched on and off, respectively.

utilizing our approach to estimate the LS spectra and therefore use the correct regressor.

3.3 Perfusion monitoring

We tackle the challenge of perfusion monitoring in two modules. The first module
leverages simulations of light-tissue interactions generated with a MC method to regress
functional properties (e.g. oxygenation). We validated this approach in different domains:
pig brain and human skin (Sec. 3.3.1). The second module deals with domains that
feature a high inter-patient tissue heterogeneity and are not well represented by the MC
simulations that the first module exploits. We validated this approach in the first clinical
trial involving video-rate spectral imaging in laparoscopy (Sec. 3.3.2).

3.3.1 Perfusion monitoring via regression

We approached the task of regressing functional properties in biological tissue by exploit-
ing large amounts of light-tissue simulations that were generated with a MC method. We
employed a deep learning model, which is based on a CNN architecture, and trained it
with the physics-based MC simulations (Sec. 3.1) to overcome the lack of in vivo labeled
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data. Before validating our approach in the domains of pig brain and human skin, we
performed an extensive hyperparameter search to optimize our CNN-based method.

CNN-based perfusion monitoring hyperparameter tuning It is well known in the deep
learning community that hyperparameter selection as well as model architecture search
plays a big role in the performance of any given model. We performed a random search
for several hyperparameters and network architecture choices to find the parameters
that are better suited for the task of oxygenation estimation. Here, we leveraged the
physics-based MC simulations presented in Tab. 2.1 for model training. The simulated
data was randomly divided into training, validation and test sets; each composed of
450,000, 50,000 and 50,000 samples respectively. Before training, each sample was trans-
formed to the target camera and optical system space with the method introduced in
Eq. 2.1. Only the training and validation sets were used for hyperparameter tuning. Each
sample (multi-layer tissue model) was assigned a blood volume fraction and oxygena-
tion value based on the weighted average by using our approach to multi-layer tissue
model labeling (using penetration depth), as introduced in Eq. 2.4. The MSE loss between
network estimations and the labels assigned to each simulated sample was computed
during training. Performing an exhaustive hyperparameter search can be computationally
expensive. Thus, we performed half-precision training to speed up this process. By doing
so, we did not observe substantial differences in the results when training at full-precision.
Furthermore, we used the Adam optimizer (Kingma and Ba, 2014a) paired with a reduce

on plateau learning rate scheduler to aid the convergence of each model. This scheduler
reduces the learning rate by a factor of ten, when the validation loss has not decreased in
ten consecutive epochs by as much as 10−4.

Traditional data augmentation techniques used in the deep learning community are
generally not well suited for the task of oxygenation estimation. For example, random
reordering of bands (wavelengths) would get rid of valuable spectral information, such as
the characteristic double absorption peaks of hemoglobin (Fig. 3.2). With this in mind, we
augmented each sample with a custom strategy. At the beginning of each epoch, the entire
training dataset was augmented by: a) random sample shuffling, b) multiplicative Gaus-
sian noise with a Signal-to-Noise Ratio (SNR) of 20, c) brightness variation to randomly
selected samples, and d) specular component addition to randomly selected samples.
Brightness variation was performed by randomly selecting approximately 10% of the
training samples and multiplying them by a normal distribution with mean µ = 1 and
standard deviation of σ = 0.1. Specular reflections are very common in real case scenarios,
so we augmented our simulations by introducing specular reflections. To achieve this,
we based our augmentation strategy on the dichromatic model, which states that every
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reflection can be modeled as the sum of a specular and a diffuse reflection:

X
aug
s = (1− κ)Xs + κw, (3.1)

where Xs represents 10% of the training samples (randomly selected), X
aug
s are the aug-

mented samples, κ represents the ratio of specular component that is desired, and w is the
spectra of a light source.

The hyperparameter space explored during this analysis was defined by the following
sampling strategy:

• learning rate: sampled from a logarithmic uniform distribution Ulog(10−4, 10−1).

• batch size: randomly sampled from {10, 100, 500, 1000}.

• activation: randomly selected Rectified Linear Unit (ReLU) or Leaky Rectified Linear
Unit (LeakyReLU).

• weight decay: randomly sampled from {10−12, 10−9, 10−6, 10−3}

• # filters (per hidden layer): sampled integers from U (10, 500)

The hyperparameter space was explored using the Asynchronous Successive Halving
Algorithm (ASHA) scheduler (Li et al., 2018) to parallelize the computations. Fig. 3.9 a)
shows a parallel plot of the explored hyperparameter space, each line corresponds to
one choice of hyperparameters (one model) and the color of each line corresponds to
the validation loss on the last epoch during training. The learning rate was one of the
most influential hyperparameters, lower learning rate generally produced models with
lower validation loss. In particular, relatively high learning rates paired with low batch size

(≤ 200) lead to models that either did not converge or that converged to relatively high
validation losses. The rest of the hyperparameters did not seem to considerably influence
the final trained model. However, higher batch sizes lead to quicker model training, and
an intermediate value of weight decay generally generated the models with the lowest
validation loss. Based on this analysis, we selected the model with the lowest average
MSE validation loss on the last ten epochs. The best performing model is highlighted
as a blue line in Fig. 3.9 b), the gray lines correspond to all other trained models. The
hyperparameters corresponding to this model are the following: learning rate: 1.3 ×
10−3, batch size: 500, activation: LeakyReLU, weight decay: 10−9, # filters: 353. These
hyperparameters were used for the rest of the analysis involving our CNN-based approach
to oxygenation estimation.
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Figure 3.9: Generally, lower learning rates produced models with the lowest Mean

Squared Error (MSE) loss. (a) Parallel plot of the hyperparameter space explored for
hyperparameter tuning. The learning rate and the batch size are the hyperparameters that
mainly influence the training results of our CNN network. (b) Validation loss curves for
all trained models, the blue line corresponds to the validation loss of the model with the
lowest average MSE loss in the last ten training epochs.

Medical application in brain perfusion

Research question : How can perfusion changes be monitored in the brain with a
deep learning model?

The validation of our proposed CNN-based approach to oxygenation estimation for
neuroimaging is composed of an in silico and an in vivo study. In the in silico study, we
compare the performance of our CNN-based oxygenation estimation to the state-of-the-art
random forest proposed by Wirkert et al. (2016b) (Sec. 2.4.1). We used the median absolute
error of oxygenation (sO2), the interquartile range of sO2 absolute error and the regression
speed as our target metrics. The purpose of the in vivo experiments was to investigate if
our method is capable of monitoring perfusion changes in porcine brain.

For the in silico validation, we compared the random forest baseline to our deep
learning (CNN-based) approach. The hyperparameters used for our deep learning model
were the ones obtained from our hyperparameter tuning experiment presented in Fig. 3.9.
Fig. 3.10 a) shows that the absolute sO2 estimation error of our proposed deep learning
approach is smaller than the random forest. Furthermore, our CNN model is capable of
processing 5.2× 106 spectra per second with a median absolute sO2 estimation error of
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(a) (b)

Figure 3.10: Our deep learning method estimates oxygenation (sO2) in silico with lower

estimation error compared to the state-of-the-art random forest. (a) Oxygenation estima-
tion absolute error for the state-of-the-art random forest and our deep learning approach.
(b) Experimental setup for monitoring Spreading Depolarizations (SDs) with a spectral
camera, Electrocorticography (ECoG) electrodes were placed at the margins of the craniec-
tomy to monitor SDs.

5.8%. While the random forest only achieves a speed of 2.7× 106 spectra per second with
a median absolute sO2 estimation error of 9.1%.

To investigate if our deep learning model is capable of monitoring perfusion changes
in the brain, we chose the monitoring of Spreading Depolarizations (SDs) as the target
medical application. SD is a phenomenon in the brain that is usually related to brain
trauma and manifests itself as an abrupt depolarization of the neurons in the gray matter.
The depolarization of neurons acts as a cascade effect that travels through the gray matter
in the form of a wave (Dreier and Reiffurth, 2015). It is well known to be coupled to
hemodynamic responses with hypoxic components (Takano et al., 2007), making it a prime
target for the qualitative validation of our method for functional Multispectral Imaging
(MSI). All experiments were performed in accordance with the relevant guidelines and
regulations. Protocols for all experiments were approved by the institutional animal
care and use committee in Karlsruhe, Baden-Württemberg, Germany (Protocol No. 35-
9185.81/G-174/16). The procedure for inducing and measuring SDs was as follows:
As shown in Fig. 3.10 a), a craniectomy exposed the parietal cortex, and spreading
depolarizations were induced using 2-5 µL Potassium Chloride (KCl) drops placed with a
Hamilton syringe in regions selected by visual inspection in the parietal cortex (Santos
et al., 2014, 2013).

We recorded images of a porcine brain with the high resolution spectral system pre-
sented in Sec. 2.2.1. Since the high resolution spectral camera (Spectrocam, Pixelteq, Largo,
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FL, United States) records images sequentially through a filter wheel, tissue motion caused
by respiration, heart beat or surgical manipulation, for example, could potentially lead
to misalignment across the recorded images. To mitigate this problem, we performed
elastic registration to compensate for motion across multispectral images. The images
corresponding to individual bands of a whole spectral image were registered with the
algorithm bUnwarpJ (Arganda-Carreras et al., 2006) incorporated in the software FIJI
(Rueden et al., 2017), which is based on elastic deformations. The band with the highest
contrast (560 nm) was used as reference for the registration algorithm, and registration
of one complete multispectral image took ∼ 12 s. The implementation of such an elastic
transformation to compensate brain movement was inspired by the work of Schöll et al.
(2017). This registration was implemented only with the purpose of obtaining a better
visualization of hemodynamic changes; it is not a requirement of our proposed network
model and motion compensation across images is not necessary when applying a snap-
shot camera for image acquisition (Fig. 2.2). As demonstrated in Fig. 3.11 c), our method
is capable of video-rate visualization of blood oxygenation in the porcine cortex. Two
ROIs were defined on the surface of the brain based on the criteria that a) there were
no visible vessels within each ROI and b) the ROIs did not cover regions with specular
reflection or blood leakage. After SD induction with KCl, SDs can be clearly visualized, as
illustrated by the repeated mean oxygenation value drops within each ROI (Fig. 3.11 a)).
To ensure that the oxygenation changes that we observed were indeed due to SDs, they
were continuously monitored with two ECoG recording strips that were placed on the
lateral margins of the craniectomy. Fig. 3.11 b) shows the recordings from both strips,
these recordings are typical for SDs.

Medical application in human skin perfusion (A clinical trial)

Research question : How effective is our deep learning model in monitoring perfu-
sion changes in human skin?

We studied the capabilities of our deep learning approach to oxygenation estimation
in the domain of human skin. Building on the work of Kumar et al. (2020), we designed a
clinical trial involving 12 healthy patients. All participants were recruited at the German
Cancer Research Center (Heidelberg, Germany). The inclusion criteria for all patients were:
a) patients were adults (≥ 18 years) and b) patients were healthy (no known conditions).
All experiments in this study were performed in accordance with the Declaration of
Helsinki and all protocols were approved by the “Ethikkommission der Medizinischen
Fakultät Heidelberg” (DE/EKBW03, study reference number: S-530/2020). The study is
registered with the German Clinical Trials Register (DRKS00023246).
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(a) (b)

(c)

Figure 3.11: Our deep learning method is capable of video-rate visualization of blood

oxygenation in the porcine cortex. (a) Mean oxygenation (sO2) value within each of
the defined Regions of Interest (ROIs). The star symbol indicates the spatial location
and time point when the Spreading Depolarizations (SDs) were induced by Potassium
Chloride (KCl) injection. (b) Electrocorticography (ECoG) electrode measurements typical
for SDs. (c) Oxygenation maps of the brain cortex for three different time points (1)-(3),
which correspond to the three time points highlighted in a). A deoxygenation wave can
be observed traveling from left to right of the brain.

Recordings were taken from healthy patients at the German Cancer Research Center.
We recorded multispectral images of the surface of the participants’ right hand with the
spectral system presented in Fig. 2.2. As validation data, we recorded spectrometer diffuse
reflectances from four different locations (1)-(4) of the hand, as depicted in Fig. 3.12.

1. perfused: Spectral images of the surface of the patients’ right-hand palm were
recorded for approximately two minutes as a reference measurement at the begin-
ning of each recording session.

2. ischemic: After performing the reference measurements (perfused), pressure was
applied to the upper-right arm with a manual pressure cuff. The pressure was then
increased between 20 mmHg and 160 mmHg in steps of 20 mmHg every minute.
Spectral recordings for one minute followed the application of each pressure, after
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Figure 3.12: Spectral recording procedure of human skin. We recorded spectral images
as well as spectrometer and oximeter data for each patient of our clinical trial. The
spectral and oximeter recordings span across the entire experiment, while the spectrometer
measurements were only performed before pressure was applied to the patient’s upper
arm and after applying a pressure of 160 mmHg.

which the pressure was released to reduce the stress to the patient’s arm. The spectral
recordings were performed continuously during these experiments to study the
re-perfusion behavior of each patient. A diagram depicting the measurement process
is presented in Fig. 3.12.

3. spectrometer recordings: Spectrometer measurements were performed with a sci-
entific grade spectrometer (HR2000+, Ocean Insight, Orlando, USA) and calibrated
with white and dark measurements as described in Eq.2.31 using a Spectralon®

target (SRT-99-050, Labsphere®, North Sutton, USA). 100 diffuse reflectance measure-
ments were recorded at each ROI (Fig. 3.12) and at the beginning of each recording
session before any pressure was applied to the patients’ arm. Another recording
of 100 measurements was done while applying a pressure of 160 mmHg with the
manual pressure cuff.

4. oximeter recordings: To compare the performance of our method to the baseline
approach proposed by Kumar et al. (2020), we recorded the pulsatile signal from an
oximeter (MightySat Rx, Masimo, California, USA) placed at the tip of the ring finger
of each patient. Continuous oximeter measurements were recorded throughout the
entire experiment.

We annotated four ROIs (Fig. 3.12) of size 30× 30 px on the surface of the palm and
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tracked each one across the entire recording sequence using our deep learning-based
tracker described in Sec. 2.4.2. We selected each ROI based on the criteria that in each
region a) there was no scar, b) there was no visible pigmentation (melanocytic nevi, stains,
etc.), and c) pixels were not over saturated or under saturated. Furthermore, we aimed to
place each ROI in similar locations of the hand across patients. The data from each ROI
was subsequently normalized with a white and dark recording, as well as an ℓ2 norm
according to Eq. 2.31 and Eq. 2.32. These normalized ROIs served as input to our deep
learning model for oxygenation estimation.

The normalized spectrometer measurements of perfused and ischemic (160 mmHg)
skin tissue for all patients is presented in Fig. 3.13. To reduce the amount of noise,
each measurement was smoothed with a rolling window of size 5, which corresponds
approximately to 2 nm. We only show the data for two of the four annotated ROIs for
clarity of visualization, however, a similar behavior was observed in the other ROIs.
The spectra for all ROIs is provided in Sec. A.3. Slight differences between the spectra
of perfused and ischemic tissue were observed for most patients. In particular, the
differences for patients 3, 4 and 6 were considerable compared to the rest of the patients.
The perfused measurements depict the characteristic double peak of HbO2 while the
ischemic measurements show less pronounced peaks in accordance to the extinction
coefficient of Hb (Fig.2.3). An interesting finding is that for some patients (7 and 10) the
reflectance of ischemic tissue is smaller than the one from perfused tissue for λ . 600 nm
and the opposite is true for wavelength λ & 600 nm. The opposite behavior was observed
for other patients (4, 5 and 12).

The oxygenation estimations (sO2) of our deep learning method (Fig. 2.9) are presented
in Fig. 3.14 a). We observed that our method is capable to detect even small changes
in perfusion in all ROIs in comparison to the method proposed by Kumar et al. (2020).
For example, our method starts to detect a gradual decrease in oxygenation after ap-
plying a pressure of 40 mmHg. After one minute of applying a pressure of 40 mmHg,
the oxygenation decreases by approximately 1%. The oxygenation decreased more for
higher pressures, by as much as 2%. Interestingly, higher pressures (140 mmHg and
160 mmHg) produced a smaller decrease in oxygenation. A sudden re-oxygenation effect
was observed each time the pressure was released (vertical dashed lines). We observed
that the re-oxygenation at each ROI occurred more abruptly for higher pressures. Here,
we only exemplified the results for one patient; however, similar results were observed
for the rest of the patients. It is important to notice that, as expected, the oxygenation
estimations differ across different ROIs. Moreover, the relative decrease in oxygenation
after applying each pressure to the upper arm differs across ROIs. This occurred even
though the reference oxygenation values for each ROI were very similar, as can be seen
below 200 s in Fig. 3.14 a).
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Figure 3.13: Slight spectral differences can be detected with diffuse reflectance mea-

surements performed with a spectrometer. ℓ2-normalized reflectance spectra for all 12
patients of our clinical study, corresponding to two exemplary Regions of Interest (ROIs)
annotated in perfused and ischemic tissue (160 mmHg). The solid lines correspond to
the median reflectance spectra across all 100 measurements, while the translucent bands
around each line correspond to the standard deviation.

In contrast to our method, perfusion estimations computed with the method proposed
by Kumar et al. (2020) (Sec. 2.4.1) do not show a clear change in the perfusion signal after
each pressure is applied (Fig. 3.14 b)). However, a slight decrease in the perfusion signal
was observed for high pressures. The amount of noise in this perfusion signal is also
considerably higher than the one present in our estimations. The perfusion signal also did
not show the characteristic re-oxygenation behavior that our method was able to detect.
Here, we exemplified the results of the method from Kumar et al. (2020) on patient 2 of
our clinical study; however, similar results were observed for the other patients.
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(a)

(b)

Figure 3.14: Our deep learning method is capable of monitoring perfusion changes in

skin. (a) Representative oxygenation estimations of our deep learning method for patient
2 of our clinical trial. Solid vertical lines represent the time points at which each pressure
was applied, while dashed vertical lines represent the moment at which the pressure was
released. (b) Perfusion estimations generated with the method proposed by Kumar et al.
(2020) for each ROI annotated on patient 2.

3.3.2 Perfusion monitoring via Out-of-Distribution detection (Clinical study)

Ischemia monitoring in surgical applications is usually met with a hard challenge: the

presence of pathologies. This challenge arises from the intrinsic nature of many surgical
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Figure 3.15: The Monte Carlo (MC) simulations of light transport do not represent

pathological tissue in human kidney. Kernel Density Estimation (KDE) of the two-
dimensional representation computed with Uniform Manifold Approximation and Pro-
jection (UMAP) of the MC simulations and measurements of kidney tissue of patients
undergoing partial nephrectomy.

procedures that aim to treat such pathologies: partial nephrectomy, lymph node resection,
etc. This implies that any synthetic data (e.g. MC simulations) need to be re-designed to
reflect the optical properties of such pathologies. The general lack of knowledge about the
optical properties of pathological tissue makes this a hard problem. Even one of the most
influential literature sources for optical properties of biological tissue (Jacques, 2013) lacks
information about pathologies.

The effect of this lack of information can be visualized in Fig. 3.15, it shows the Kernel
Density Estimation (KDE) of the two-dimensional representation computed with Uniform
Manifold Approximation and Projection (UMAP) of the MC simulations and the mea-
surements from this clinical trial. Here, the simulations described in Sec. 2.2.2 were
transformed to the measurement hardware presented in Sec. 2.2.1 by the method de-
scribed in Eq. 2.1. Both the simulations and the measurements were ℓ1-normalized before
computing the low dimensionality representation with UMAP. This shows that most of
the density from the measurements lies either in the border or outside the distribution of
our MC simulations, and it supports the hypothesis that our simulations do not represent
pathological tissue in human kidney.

This hindered the application of our proposed method for oxygenation estimation
based on MC simulations presented in Sec. 2.2.2, and motivated us to develop a method
that does not require knowledge of the optical properties of pathologies. In Sec. 3.3.2 we
present the clinical study design used to validate our method for ischemia monitoring.
Sec. 3.3.2 presents the Deep Learning (DL)-based method for automatic tissue ROI tracking.
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Table 3.1: Patients recruited in our clinical study. ccRCC: Clear Cell Renal Cell Carcinoma,
PRCC: Papillary Renal Cell Carcinoma, ChRCC: Chromophobe Renal Cell Carcinoma

Patient ID Age BMI Sex Tumor type Smoker Diabetic
1 80 25 male PRCC No No
2 70 22 female Benign Oncocytoma No No
3 49 40 male ccRCC No No
4 56 30 male Benign Oncocytoma No No
5 49 49 female Leiomyoma No Yes
6 82 22 male ccRCC No No
7 67 29 male ccRCC Yes No
8 56 43 male PRCC No No
9 53 31 male ChRCC No No
10 40 24 female Angiomiolypoma No No

Sec. 3.3.2 presents the results of our approach to contrast-free and video-rate ischemia
monitoring.

Study design

The aim of this study was to investigate the feasibility of our approach to contrast agent-
free video-rate ischemia monitoring. In this section, we describe the patient recruitment,
the in-vivo recording procedure and the study cohorts defined for our validation strategy.

Ethic declaration All experiments involving humans were performed in accordance with
the Declaration of Helsinki and all protocols were approved by the Landesärztekammer
Baden-Württemberg (DE/EKBW01, study reference number: B-F-2019-101). The study is
registered with the German Clinical Trials Register (DRKS00020996).

Patient recruitment All participants of this clinical trial were recruited in the Städtisches
Klinikum Karlsruhe (Karlsruhe, Germany). The inclusion criteria for all subjects were: a)
subjects were undergoing partial nephrectomy, and b) subjects were adults (≥ 18 years
old). This resulted in a total of 10 subjects with an age range between 40 and 82 years
old, seven of which were male and three female. Tab. 3.1 shows the patient ID, age, Body
Mass Index (BMI), sex, tumor type, smoker/non-smoker and diabetic/non-diabetic. Tab.
3.2 shows the patient ID, patient comorbidities and the cohort (data split) to which each
patient belongs.

Study cohorts We designed the study to obtain a reliable reference for our measure-
ments, we only included patients in which the ischemia induction of the kidney was
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Table 3.2: Patient comorbidities and data splits for the participants in our clinical study.

Patient ID Comorbidities Data split
1 Prostate cancer retrospective
2 Psychiatric illness retrospective
3 retrospective
4 retrospective
5 Depression retrospective
6 Sigma Carcinoma prospective
7 prospective
8 prospective
9 Rheumatism prospective
10 Migraine prospective

successfully confirmed by Indocyanine Green (ICG) injection as part of the traditional
laparoscopic surgical procedure. We also omitted patients for which image recordings
were underexposed due to a faulty surgical light guide. Many machine learning-based
algorithms suffer from overfitting on the test data (Ball et al., 2020). Even if an algorithm
is strictly trained on the training data, a common erroneous procedure involves testing
multiple different models or hyperparameter configurations on the test set and then re-
porting the best model. To avoid the performance overestimation issue that these practices
would cause, we finalized the complete algorithm based on existing data sets before
conducting the patient study. The only exception was the number of spectral images used
for training the networks used to compute the ischemia index. To fix this hyperparameter,
we separated the recruited patients into a retrospective and prospective split (c.f. Tab. 3.2).
The retrospective data split was composed of the first half of the patients (patients 1 to 5)
and the prospective split of the second half of the patients (patients 6 to 10). The number
of spectral images was determined using only the retrospective data set (Tab. 3.2).

In vivo image acquisition Recordings were taken from subjects undergoing partial
nephrectomy at the Städtisches Klinikum Karlsruhe. The standard procedure for partial
nephrectomy involves the generation of six surgical ports in the abdominal cavity, three
of which were dedicated to the da Vinci® robotic arms (Intuitive Surgical Deutschland
GmbH, Freiburg, Germany), one was used for the da Vinci® RGB surgical camera and the
remaining two as assisting ports for other instruments (e.g. scissors, clip appliers, etc.).

We adapted the conventional surgical workflow as follows to record the spectral image
sequences that our method leverages. After removing the fatty tissue from the surface of
the kidney and locating the renal artery, the laparoscope, attached to our multispectral
camera, was inserted through one of the assisting ports and three measurements were
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performed to enable training and validation of our ischemia monitoring algorithm. We
recorded spectral image sequences for 45 s, which yielded≈ 1200 recorded spectral images
(see Fig. 3.16):

1. First recording of perfused kidney (training sequence: perfused1): spectral images
of the surface of the kidney were recorded before a clamp was applied to the renal
artery. Part of this data was used for training the personalized ischemia index, as
detailed in Sec. 3.3.2.

2. Second recording of perfused kidney (testing sequence: perfused2): To simulate
an unsuccessful clamping, an additional image sequence was recorded before the
clamp was applied to the renal artery. For this purpose, the laparoscope attached
to our multispectral camera was removed from the surgical port and re-inserted
through the same port. This process simulates the actions performed when the
renal artery is clamped. Then, spectral images of the surface of the kidney were
recorded. The re-insertion of the laparoscope was performed to obtain slightly
different acquisition conditions. This is also the case when actual clamping is
performed, as the laparoscope needs to be removed before the renal artery can be
clamped through the same surgical port (see next paragraph).

3. Recording of ischemic kidney (testing sequence: ischemic): The laparoscope, at-
tached to our multispectral camera, was removed from the abdominal cavity, such
that the surgical team could perform the clamping procedure through the same
port. The renal artery was then clamped, and the laparoscope was re-inserted in the
abdominal cavity for recording the spectral images. Afterwards, the success of the
clamping procedure was confirmed by ICG injection into the subject’s bloodstream
and subsequent visualization of the fluorescence signal with the Firefly system of the
da Vinci® robot. The ICG injection was prepared by mixing 50 mg of ICG powder
(PULSION Medical Systems SE, Feldkirchen, Germany) with 10 ml of distilled water.
This injection was only administered to each patient after all the spectral recordings
had finished.

To generate a high-quality dataset, all spectral recordings were performed on parts
of the kidney tissue where regions without blood and fatty tissue could be observed.
In addition, we ensured that before each recording, a) the camera integration time was
set to 40 ms, b) the laparoscope was positioned such that the clean surface of the kidney
was visualized in the field of view of the multispectral camera and c) the intensity of the
light source was adjusted to minimize the number of specular reflections observed on the
surface of the kidney. Furthermore, the light source of the da Vinci® Red-Green-Blue (RGB)
surgical camera was temporarily turned off during each one of our measurements. The da
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Figure 3.16: Multispectral Imaging (MSI) recording procedure in the operating room

(OR). We recorded two image sequences (perfused1 (for training) and perfused2 (for
testing)) before the clamp was applied to the renal artery, and one sequence after applying
the clamp (for testing). The laparoscope was removed and re-inserted in the patient’s
abdominal cavity before recording the perfused2. This ensured equal recording conditions
as for the ischemic sequence.

Vinci® light source was immediately turned on after each of our recordings was completed.
While the da Vinci® light source was off, the abdominal cavity was still visible thanks to
the illumination provided by our Xenon light source. This ensured that the abdominal
cavity was visible at all times during each surgery.

Region of interest (ROI) tracking

Research question : How can Regions of Interest (ROIs) of biological tissue be ro-
bustly tracked in laparoscopic surgical scenes?

Research question : What is the influence of small variations in the initial Region of
Interest (ROI) location initialization on the subsequent automatic tracking?

We analyzed the robustness of our tracker by manually initializing two non-
overlapping ROIs of size 30× 30 px on the first image of each sequence (3.3.2). This
manual initialization was done while ensuring that within each ROI a) there was no
adipose tissue, b) there was no blood leakage, c) the camera counts were not over saturated
and not under saturated, and d) there was no visible smoke. Each ROI was subsequently
tracked across consecutive images with the deep learning-based algorithm presented
in Sec. 2.4.2. As the laparoscope, attached to our multispectral camera, needed to be
retracted between each recording to introduce surgical instruments through the same
port, we were unable to ensure imaging of the same tissue region. Hence, the ROIs of the
different sequences do not correspond to the same tissue location.
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After automatic tracking, each ROI sequence was inspected to ensure that they a) did
not disappear from the camera field of view, b) at least 95 % of all tracked pixels were not
over saturated and not under saturated, and c) there was no visible drift of the ROI from
the original annotated tissue region. Alg. 1 details the complete ROI annotation process,
and a flow chart illustrating this algorithm is provided in Sec. A.1.

The reproducibility of the tracking process was evaluated by tracking each ROI ten
times with the same initial location. The location of all ROIs was the same across all ten
repetitions. Moreover, our tracking algorithm can run at 30 Hz for images with dimensions
of 272× 512px.

We also evaluated the effect that small variations of the initial ROI location have
on the subsequent automatic tracking. We tracked the same manually annotated ROIs
while shifting the initial ROI location either vertically or horizontally by 6 px, this is
equivalent to 20% of each ROI size. Each tracking (original and displaced) was repeated
five times and the distance between original and displaced ROIs was computed by dij =
√

(xi − xj)2 + (yi − yj)2, where (xi, yi) represents the location of the upper-left corner of
ROI i and each image of the sequence. Fig. 3.17 shows the distribution of the distance
between the original and displaced ROIs for all patients and image sequences (perfused1,
perfused2, ischemic) in our clinical study (Sec. 3.3.2). Here, each point corresponds to the
median distance between original and displaced ROIs across multiple spectral images
for each tuple: (patient, tissue state, ROI). This analysis shows that the distance between
original and displaced ROIs remains around its original distance (6 px), thus making
our tracking process robust to small variations of the initial manual initialization. We
exemplify this robustness in Fig. 3.17. Here, the positions of the original and displaced
(by 6 px) ROIs are shown for the perfused2 image sequence of patient 1. This illustrates
that the distance between original and displaced ROIs remains approximately constant,
similar results were observed for the rest of the patients and image sequences.

Ischemia monitoring by Out-of-Distribution (OoD)

Research question : How does the inter-patient spectral variability compare to the
variability across different tissue states (perfused vs ischemic)?

Research question : How can the scarce amount of surgical spectral data be exploited
to monitor ischemia during surgery?
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(a) (b)

Figure 3.17: Our deep learning-based tracker is robust to small variations on the initial

Region of Interest (ROI) position initialization. (a) The distance between the original
and displaced ROIs remains around 6 px for the entire tracking sequence. (b) ROI position
for both original and displaced locations exemplified on patient 1 in the perfused2 image
sequence. The distance between original and displaced ROIs remains approximately
constant during the complete image sequence.

Research question : Which are the most effective ischemia monitoring approaches
for monitoring perfusion changes during surgery?

The spectral data corresponding to our clinical trial, described in Sec. 3.3.2, was
recorded with the system presented in Fig. 2.2. To compensate for tissue and camera
motion during image acquisition, we utilized our deep learning-based algorithm (see
Sec. 2.4.2), which is capable of tracking ROIs within a spectral video. This tracking algo-
rithm was successfully applied in the spectral data collected from 10 patients undergoing
partial nephrectomy, and the results were a prerequisite for further analysis and for com-
puting our deep learning-based ischemia index. The results of our analysis are illustrated
exemplary in this video. The visualization of the normalized median reflectance spectra
within each ROI (Fig. 3.18 a)) reveals that there is a separation between the spectral data
of different tissue states (perfused vs ischemic). The Root-Mean-Square (RMS) contrast
within each ROI shows that the band with the maximum contrast is band 11 for almost all
patients and stages (Fig. 3.18 b)). Only one ROI of the perfused1 image sequence differs
from this observation, in which case band number nine possesses the highest contrast.
Furthermore, we ensured that the number of camera counts on each ROI had a SNR of at
least 20 to minimize noise effects, the plot of SNR for each camera band within each ROI
is supplied in Sec. A.2
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Algorithm 1: Region of Interest (ROI) tracking. Here n represents the number
of recorded spectral images, Ij is the jth image of the sequence, F represents the
image being visualized to the annotator, Nr is the number of tracked ROIs on each
tracking cycle, N = 15 is the maximum number of times the tracking process is
repeated before tracking failure, N f = 100 is the number of consecutive images
where the ROIs are tracked, R = 1500 is the number of images recorded in ≈ 60 s
and defines the maximum number of times the image requirements are checked
before failure.

Requires: n ≥ 100;
Input :{I1, I2, ..., In} (spectral image sequence)
j← 0, F ← I0;
Visualize F continuously;
i← 0, k← 0, r ← 0;
while r < 2 & k < R & i < N do

if F fulfills image requirements then
Annotate at least Nr ROIs;
Track ROIs for N f consecutive images;
i← i + 1;
if Tracking fulfills ROI quality requirements then

r ← r + Nr;
Exclude oversaturated and undersaturated pixels;

else

if There are unannotate regions in first image of current sequence then
Exclude previously annotated regions where tracking fails;

else
j← j + N f , F ← Ij;

end

end

else
k← k + 1, j← j + 1, F ← Ij;

end

end

Output : r tracked ROIs

High inter-patient variability for kidney tissue High inter-patient variability is, in
general, an indication of poor generalizability of supervised learning algorithms to unseen
patients. In a porcine study of healthy animals, we showed that the biggest source
of spectral variability arises from spectral images of different organs rather than the
recorded individual or specific acquisition conditions, such as different angles between
the camera viewing direction and the tissue surface (Studier-Fischer et al., 2021). However,
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(a)

(b)

Figure 3.18: A separation of the normalized spectra can be observed between perfused

and ischemic tissue. (a) ℓ2-normalized median diffuse reflectance spectra within each
Region of Interest (ROI), different colors correspond to different tissue state, while different
line styles represent the different ROIs. (b) Root-Mean-Square (RMS) contrast for each
band and each patient. Across almost all patients, the band 11 is the one with the highest
contrast, only one ROI of patient 1 deviates from this tendency. The translucent band
around each line plot corresponds to the standard deviation across all annotated spectral
images. The vertical dashed lines correspond to the camera band with the highest contrast
for the majority of patients.

a similar analysis with mixed models applied to the data of our clinical study (Sec. 2.4.2)
showed that the spectral data associated with kidney tissue of patients undergoing partial
nephrectomy is highly heterogeneous. Fig. 3.19 shows the two-dimensional representation
of the median spectra within each ROI (Sec. 3.3.2) via PCA (Hotelling, 1933). It can be seen
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that the measurements from different patients gather within clear clusters for each tissue
state (indicated by circles (perfused) or a star (ischemic) in Fig. 3.19 a), while clustering of
different tissue states across patients cannot be observed (circles and stars do not form
clear clusters). Note that the first two principal components (PCs) capture 87 % of the
variation of the spectral data.

Moreover, we performed a linear mixed model analysis (Sec. 2.4.2) where each patient
and each tissue state (perfused and ischemic) represented different components in the
model. The data used for this analysis and the two-dimensional representation shown
in Fig. 3.19 a) was the median reflectance spectra within each ROI after applying the
normalization described in Sec. 2.4.2. This analysis revealed that, in contrast to previous
porcine studies, most of the variability in the recorded data can be explained by patients
rather than the tissue states (Fig. 3.19 b)). Thus, approaching the challenge of ischemia
detection with a supervised algorithm trained on a few patients would suffer from a high
risk of poor generalization capabilities to unseen patients. Furthermore, (slight) changes in
the acquisition setup, viewing angles etc., might require complete retraining of the method
on the entire patient database. This motivated us to develop a personalized approach to
ischemia detection, illustrated in Fig. 3.20 where only the data from one individual patient
is required.

Deep learning-based ischemia index monitors tissue perfusion To overcome the limi-
tations that supervised classification approaches suffer in the context of high tissue hetero-
geneity, we developed an approach to ischemia detection that solely requires spectral data
of the individual patient undergoing surgery (see Fig. 3.20).

More in detail, we phrase the problem of ischemia detection as an OoD detection
problem and determine the perfusion state of biological tissue with an ischemia index that
relies on an ensemble of Invertible Neural Networks (INNs). As detailed in Sec. 2.4.2,
the ensemble of INNs was trained on the normalized ROI data described in Sec. 3.3.2
to approximate the density of the distribution of perfused spectral data. At inference
time (after the clamp is applied to the renal artery), the density of the new spectral data
is evaluated, and the ensemble predictions are aggregated using the Widely Applicable
Information Criterion (WAIC)(Watanabe, 2013). The ischemia index, computed for each
individual spectral image of the sequence, represents the median WAIC values within
each ROI. The data used for training the ensemble of INNs, as described in Sec. 2.4.2,
consisted of the two automatically tracked ROIs of size 30× 30 px (Sec. 3.3.2) located on
the perfused tissue (perfused1). Training our INNs on different number of spectral images
revealed that training on 70 images allowed for faster training times while still providing
network convergence. Note that this analysis was only performed on the retrospective
patient cohort (patients 1 to 5). In light of this finding, all our analysis was based on the
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Figure 3.19: High tissue heterogeneity across subjects motivated our personalized ap-

proach. Both the (a) principal component analysis (PCA) and (b) the mixed model analysis
demonstrate the high inter-patient variability of spectral tissue measurements. (a) The
fact that different tissue states cluster within a subject but do not form a uniform cluster
across subjects motivated us to phrase the challenge of ischemia detection as an out-of-
distribution (OoD) problem. Solid markers show the cluster centers, transparent markers
the raw data points, and the axis labels denote the explained variance of the corresponding
principal component (PC). (b) Explained variance for the 16 bands of the multispectral
imaging (MSI) camera, depicted in Fig. 2.3

first 70 images of each sequence (perfused1, perfused2 and ischemic) where the ROIs were
tracked. Fig. 3.21 a) exemplifies the locations where the ROIs were located for patient 2 and
the WAIC maps for both testing sequences: perfused2 and ischemic. Here, higher WAIC
values correspond to OoD samples (ischemic) while lower values represent in-distribution
samples (perfused). These maps reveal a clear difference between perfused and ischemic
tissue.

Furthermore, our patient study, composed of 10 patients undergoing partial nephrec-
tomy, revealed that our ischemia index classifies the perfusion state with high accuracy
(Fig. 3.21 b)). In fact, in all but one patient, the spectral data corresponding to ischemic
tissue could be perfectly separated from those corresponding to perfused tissue. This led
to a median Area Under the Receiver Operating Curve (AU-ROC) of 1.0 / 0.9 obtained
for the n = 10 patients. To compare our OoD-based approach to the commonly used
Beer-Lambert law, we employed the method described in Sec. 2.4.1 to estimate the blood
oxygenation in kidney tissue. The spectral data from each ROI was processed in an identi-
cal manner as for our ischemia index analysis. As depicted in Fig. 3.22, the Beer-Lambert
law is incapable of differentiating perfused from ischemic tissue for most of the patients.
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Figure 3.20: We treat ischemia monitoring based on multispectral imaging (MSI) as an

out-of-distribution (OoD) task which only needs training data from one single patient.

Traditional deep learning (DL) methods (brown) require large amounts of patient data
to train a model, while our method (green) only needs data from a single patient. Using
an ensemble of invertible neural networks (INNs) as a core component, our algorithm
computes the likelihood of ischemia based on a short (several seconds) image sequence
acquired at the beginning of each surgery. An important feature of our approach is that
the entire training and inference process can be performed during a surgical procedure.

Even more, it generates implausible oxygenation values that cannot be interpreted from
the physiological point of view.

Spectral data is generally scarce in medical applications, so we evaluated its benefit
over the more commonly available RGB-data. To this end, we transformed the spectral
recordings to RGB images (Sec. 2.4.2) and trained an ensemble of INNs, pre-trained on MC
simulations, in the same way as our ischemia index. The results of this analysis, presented
in Fig. 3.24, show that although the perfusion state could be classified for some patients, it
was not possible for most of them.

We studied the hypothesis that accurate MC simulations of light transport on biological
tissue, although not representative of pathological tissue in human kidney, could help
speed up the training process of our ensemble of INNs. To test this hypothesis, we adapted
the MC simulations presented in Sec. 2.2.2 to the imaging system shown in Fig. 2.2 by
using the method previously described in Sec. 2.4.2. Each INN was trained on the adapted
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(a)

(b)

Figure 3.21: Our approach is capable of discriminating between ischemic and perfused

kidney states. (a) Examples of the raw Widely Applicable Information Criterion (WAIC)
values for both image sequences, each annotated ROI is identified by the translucent
squares. The raw WAIC values are further processed to generate our ischemia index. (b) We
calculated the ischemia index for every image in each sequences of perfused and ischemic
kidney separately for each patient and generated corresponding dot and box plots. The
boxes show the interquartile range with the median (solid line) and mean (dashed line)
while the whiskers extend up to 1.5 of the interquartile range. Min-max-normalization
was performed for clarity of presentation.

simulations for 100 epochs using the process described in Sec. 2.4.2, and the training time
was recorded. After pre-training, fine-tuning on the patient data was done for only ten
epochs while ensuring that the validation loss converged. By doing this pre-training step,
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Figure 3.22: The Beer-Lambert law cannot monitor ischemia in the kidney. Although
Beer-Lambert regression can differentiate ischemic from perfused tissue for some patients
(1,2 and 8), a clear separation is no visible for the rest of the patients. The Beer-Lambert
law also generates implausible oxygenation values that cannot be interpreted.

Figure 3.23: Red-Green-Blue (RGB) data does not contain the information required to

classify kidney perfusion state. Although the tissue state (perfused vs ischemic) can be
separated for some patients (patients 2 and 3), this is not possible for most of the patients.
The so-called ischemia score, evaluated on RGB data, was computed in the same fashion
as the ischemia-score.

we were able to reduce the total training time by approximately 88% while still being
able to detect perfusion changes with high accuracy, as show in Fig. 3.24. While the
patient-individual training, after pre-training, took 30 s per network on average, the actual
index calculation runs at 120 Hz on the selected ROIs on the kidney, and thus in real time.
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Figure 3.24: Pre-training our ensemble of Invertible Neural Networks (INNs) reduced

training time while maintaining high accuracy. The tissue state (perfused vs ischemic)
can be clearly separated for most patients (except patient 7). Pre-training the ensemble of
INN reduces training time and distinguishes better between tissue states (e.g. patient 9).
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4
Discussion

To leave a whisper of myself in the world, my ghost,

a magna opera of words.

— BERNARDINE EVARISTO

Girl, Woman, Other

We presented a concept for the recording and analysis of spectral images in the field of
functional imaging for surgical applications (Fig. 2.1). This concept is capable of exploiting
large amounts of physics-based simulations of light transport in biological tissue as well
as unlabeled real data, which can be tailored to specific domains and tasks. We proposed
to aid translation to open surgical applications by integrating a dedicated automatic
light source estimation module. Finally, we proposed to monitor perfusion changes with
two approaches. The first approach leverages physics-based simulations of light-tissue
interactions to regress functional properties. In this way, we were able to overcome the
lack of in vivo labeled data. The second approach comprises a personalized approach that
deals with domains that are not well represented by the light-tissue simulations. In this
chapter, we discuss our approach for domain- and task-specific band selection as well
as the Spectral Imaging (SI) hardware for functional imaging (Sec. 4.1). Our method for
automatic light source estimation is discussed in Sec. 4.2. Finally, both our methods for
perfusion monitoring are discussed in Sec. 4.3.

4.1 Spectral imaging

The field of optical functional imaging in the biomedical domain has relied on methods
and devices that generally do not fit the requirements for translation to clinical practice.
Generally, previous approaches feature large devices that are difficult to handle, they are
limited to open procedures, and/or are paired with slow image processing components
(Clancy et al., 2015; Baker et al., 2014; Jones et al., 2017; Holmer et al., 2018). We proposed
to alleviate this limitations by implementing video-rate SI in surgical applications. In
addition, we proposed to increase the speed of spectral devices by reducing the amount
of data that they need to acquire. We achieved this by implementing a domain- and
task-specific band selection module.

In the following sections, we discuss the spectral hardware setup utilized for validat-
ing our approaches (Sec. 4.1.1), our approach to simulations of light-tissue interactions
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(Sec. 4.1.2), and the effect of domain and task-specific oxygenation estimations (Sec. 4.1.3).

4.1.1 Real world spectral imaging

Building upon the work of Wirkert (2018), we developed a video-rate Multispectral
Imaging (MSI) system for laparoscopic surgery, which to the best of our knowledge is
the first video-rate multispectral application in a clinical study. The key strengths of our
imaging system are the high acquisition speed (above 25 spectral images per second), the
low weight (32 g), the small size (camera cube with edge size of 26× 26× 31 mm) and the
fact that it operates with a standard clinical light source. All the changes integrated in our
system, in comparison to standard clinical setups, are attached only to the laparoscope,
thus remaining always away from the patient and reducing risks for the patient.

Although fast recording speed is a requirement in minimally invasive surgery, other
medical applications can benefit from slower systems that feature higher spatial resolu-
tion, such as the one presented in our application to brain imaging (Sec. 3.3.1). Given
that Spreading Depolarizations (SDs) is a phenomenon that spans over several minutes
(potentially hours) and that the brain cortex features a highly complex network of ves-
sels (Fig.3.11), this medical application benefits greatly from a sensor with high spatial
resolution at the cost of slower recordings. Slower sequential recordings come at the cost
of motion artifacts that can be challenging to overcome. We were able to mitigate the
effect of motion artifacts by implementing an inter-band registration process coupled with
an elastic registration across multispectral images. It is worth noting that the complex
network of vessels in the brain cortex provided many landmarks that the registration
algorithm could leverage. However, other tissue structures might feature more uniform
surfaces (e.g. liver), thus increasing the challenge of image registration when a sequential
recording strategy is used.

Previous approaches in the field of clinical spectral imaging feature big devices with
long recording times (several seconds) that are more suited for open surgery (Dietrich
et al., 2021a,b; Köhler et al., 2020; Hu et al., 2020; Takamatsu et al., 2021; Kumar et al., 2020;
Kester et al., 2011; Stoyanov et al., 2015). Spectral systems in the context of preclinical
studies have so far been based on sequential (slow) image recordings (Ayala et al., 2019;
Jones et al., 2017; Clancy et al., 2015; Holmer et al., 2018), e.g. using the filter wheel
technology (Ayala et al., 2019; Jones et al., 2017; Soares et al., 2021), thus introducing
motion artifacts. The snapshot technique applied in our approach has been explored in
parallel by other authors (Ebner et al., 2021) in the context of open surgery. Overall, we
are not aware of any video-rate spectral laparoscopic system that has so far been applied
in a clinical study during surgery. In contrast to the work by Wirkert (2018), several
modifications were made to the optical components around the multispectral camera,
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all with the aim of increasing data quality and feasibility of our clinical study on partial
nephrectomy. The band-pass filter, originally attached to the camera through an extra
C-Mount adapter, is now integrated inside the multispectral camera, thus reducing both
the size and the number of parts required for our system. Another change in our spectral
system is related to the C-Mount adapter, which we upgraded (20200043, KARL STORZ
SE & Co. KG, Tuttlingen, Germany) to increase image quality and focal length as well as
to ease the application in our clinical trial.

The snapshot technology used by our multispectral camera (Fig. 2.2) enables fast image
recordings, as it records all spectral bands at once. However, these benefits come with
multiple limitations. Mainly, the snapshot sensor integrated into our multispectral camera
(Fig. 2.2) is realized by arrays of Fabry-Pérot filters, which lead to the second order peaks
shown in Fig. 2.3. Since these second order peaks appear in the optical wavelength region
and blood absorbs light mainly in this region, they need to be considered when the target
application is functional imaging. We approached this via the camera transformation
introduced in Eq. 2.1. Even though second order peaks should be kept in mind during data
analysis, our proposed method for ischemia monitoring in laparoscopic surgery (Sec. 2.4.2)
is not influenced by these second order peaks because Invertible Neural Networks (INNs)
learn the density of the spectral data, regardless of the influence such peaks have on the
reflectance spectra. More specifically, INNs learn to estimate our ischemia index based
solely on functional changes (e.g. perfusion) and not on hardware configurations, which
remains constant across recordings of the same patient.

Currently, most spectral systems targeting the task of perfusion monitoring exploit
data in the visible spectrum. However, the spectrum of biological tissue in the infrared (IR)
region often features rich information (Trajanovski et al., 2021). As such, a sensor that
combines data from the visible spectrum and the IR region could lead to better perfusion
estimations. An additional feature required for the application of spectral systems in
clinical practice is the capability to provide at the same time: spectral data and reliable
Red-Green-Blue (RGB) images, which can be interpreted by the surgical staff. This could
be realized, for example, by integrating dedicated RGB filters in the mosaic pattern of a
snapshot sensor (Fig. 2.2) while keeping the rest of the pixels for spectral data acquisition.

4.1.2 Synthetic spectral imaging

We proposed that more representative tissue properties (e.g. oxygenation) of multi-layer
tissue models can be assigned by using the photon penetration depth, which is calculated
only once at simulation time. The visualization of the light penetration depth distribution
(Fig. 3.1 b) revealed that the majority of photons do not traverse the entire depth of
the multi-layer tissue models, thus accentuating the need for a labeling strategy that
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considers the penetration depth. Our experiments show that for most wavelengths, in
the visible range, the error generated through this new labeling strategy is lower than the
one generated by previous work, that is, up to 600 nm (Fig. 3.2 a)). Above 600 nm, our
approach yields slightly higher error compared to the baseline approach. This could be
because higher wavelengths are related to higher penetration depths. In the limit, where
the penetration depth equals the thickness of the tissue, averaging up to 250 µm yields
similar results as our approach. Despite these differences above 600 nm, our method was
able to reduce the error by 28 p.p. in average on the wavelength range 450–600 nm, while
the state of the art performed only 11 p.p. better in the wavelength range 600–650 nm.
Furthermore, training our deep learning model for oxygenation estimation based on these
two labelling strategies produced similar results (Fig. 3.2 b)), with the model trained with
our labeling strategy performing slightly better. It is particularly challenging to interpret
these model training results because both models have seen different data labels during
training. However, given that our labeling strategy generates more physically accurate
results (less error during re-simulation), we decided to use it for the rest of the regression
experiments.

Future work in this topic could focus on more accurate estimations of the penetration
depth, even more, the absorption profile along the entire 3D model could be leveraged to
assign weights to the tissue properties on each layer. Although this approach might yield
slight improvements in a model simulated with infinitely wide slabs, we hypothesize that
it becomes more relevant when simulating heterogeneous tissue with other tools such as
the SIMPA toolkit developed by Gröhl et al. (2022). Moreover, the current implementation
of the Mone Carlo Multi-Layer (MCML) framework does not consider complex cross-pixel
interactions because each pixel is modeled with homogeneous infinitely wide slabs of
tissue. Although other frameworks facilitate the computation of diffuse reflectances in
heterogeneous media (Gröhl et al., 2022; Yan and Fang, 2020), there is little knowledge of
cross-pixel interactions which might become relevant when modeling tissue with high
spatial complexity (e.g. vessels, tumor borders, etc.). Addressing this void in knowledge as
well as the lack of information of optical properties from various medically relevant tissue
structures could prove beneficial to the advance of the generation of realistic synthetic
data for biomedical applications.

4.1.3 Task-specific band selection

We investigated whether a small subset of bands can provide enough information for
specific tasks, mainly tasks related to functional imaging (e.g. oxygenation). This subset of
bands can depend on the domain of interest (e.g. type of organ), so we proposed a method
to select bands depending on the target domain without the need of labeled in vivo data.
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Our method leverages physics-based simulations of light-tissue interactions generated
with a Monte Carlo (MC) method. We then exemplified the benefits of our approach in the
task of oxygenation estimation and the domain of head and neck tumor in a rat model. It
is worth mentioning that although we showed the application of our method in a specific
task and domain, our methodology can easily be extended to other tasks and domains.
One of our main findings was that wrapper methods outperform filter methods in the
task of oxygenation estimation. Here, Best First Search (BFS) was the first ranking band
selection method (Fig. 3.3), closely followed by Sequential Forward Selection (SFS). This
finding could be explained by the fact that wrapper methods leverage the performance of
the regressor (here random forests) during band selection, while filter methods remain
agnostic to it.

The choice of data normalization that we used for this analysis is particularly in-
teresting. Since we normalize each sample by the ℓ2 norm across bands (Eq. 2.8), a
re-normalization step is required whenever a new feature is added or removed. We in-
vestigated the effect of normalization strategy by implementing the image quotient norm
proposed by Styles et al. (2006). By using the image quotient norm, the re-normalization
step is unnecessary and therefore eliminates the possibility for the band selection algo-
rithms to jointly optimize the regressor and the normalization. The in silico experiments
showed higher overall Mean Absolute Error (MAE)s, and the algorithms never surpassed
the baseline when training with all available bands. Furthermore, we did not observe any
influence of the normalization strategy on the relative performance of the different band
selection methods (ranking was the same).

We were further able to reduce the domain gap between the simulations and the in vivo

data from a head and neck tumor in a rat model (Fig. 3.4 a)). We observed that the domain-
selected simulations were in agreement with the real data and that the performance of
our regressor surpassed the performance of the baseline (101 bands) when selecting only
20 bands with BFS. This analysis revealed a stronger contrast between the oxygenation
distributions of tumorous and healthy tissue when using the subset of 20 bands (Fig. 3.4) c).
However, given the lack of a gold standard measure of oxygenation in vivo, a quantitative
comparison is not possible. Future biomedical research in the field of band selection as
well as domain adaptation could prove useful by, for example, reducing the potential
bias in many medical datasets. More particularly, domain adaptation methods could
help either sample datasets to generate a balanced number of samples across target
categories (patients, genders, ethnicities, etc.), or augmenting existing datasets to balance
underrepresented categories.
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Conclusions

We addressed the challenge of video-rate SI by implementing a system that can be used
in clinical trials. We proposed to increase the speed of spectral systems by reducing the
amount of data that they need to acquire. We achieved this by implementing a domain-
and task-specific band selection method, which is capable of leveraging unlabeled in vivo

data to adapt to specific domains. We validated this approach in an in vivo rat head and
neck tumor model. By reducing the amount of data that spectral devices need to acquire
to achieve good performance in specific tasks, we tackled one of the key challenges that
translational functional imaging requires, that is, high speed.

4.2 Automatic light source estimation

To the best of our knowledge, we are the first to propose an approach to light source (LS)
estimation that could easily be applied to spectral imaging in a surgical setting. The
methodological innovation that we have presented is mainly related to the LS estimation.
We confirmed in our experiments that specular reflections extracted from low exposure
spectral images can be processed to recover the LS spectrum with high accuracy. We
showed that by leveraging specular reflections to estimate the LS spectrum, higher quality
oxygenation estimations can be obtained in silico (lower estimation error in Fig. 3.6). This
demonstrates that the oxygenation estimations computed with our method are very close
to the ground truth. While we performed the optimization of the hyperparameters Texp

(exposure time) and NP (number of pixels to aggregate) on a subset of the LS used in our
study, we did not observe a decrease in accuracy on the test LS. This could indicate that
these hyperparameters are independent of the type of LS. Furthermore, our experiments
showed that our method outperforms all the competitor state-of-the-art approaches in-
troduced in Sec. 2.3.2 on an identical dataset. Moreover, our method is more robust to
changes in the exposure time of the multispectral camera in comparison to the state of the
art. This could be explained by the fact that our approach exploits only the information
contained in specular reflections, thus making it more robust to changes of the biological
tissue (background).

While we have shown the great potential of our methodology for automatic LS esti-
mation, there are several challenges that need to be addressed before a successful clinical
translation can be realized. Foremost, our method assumes that the LS illuminates the
surgical scene homogeneously in the entire field of view of the camera. This has proven to
be a good approximation in initial experiments in a surgical environment; however, more
accurate results could be obtained by extending our method such that the LS spectrum
could be approximated for different image patches. Depending on the patch size, this ap-
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proach could also handle multiple light sources. Secondly, we adapt the machine learning
oxygenation regressor by choosing a pre-trained model from a discrete set of regressors,
each corresponding to a different LS. A more complete approach would involve adapting a
single regressor to dynamically changing illumination conditions. This could be achieved
by training the regressor on the MC simulations presented in Tab. 2.1 while conditioning it
to the spectrum of known surgical light sources (e.g. Xenon, Light-Emitting Diode (LED),
etc.). Furthermore, while we demonstrated the potential of our approach in a wide variety
of LSes (Xenon, LED, fluorescent, etc.), clinical validation is required by using a bigger
set of light sources commonly found in the Operating Room (OR). This analysis could
include LSes of the same type but different vendors as well as new LSes such as overhead
lamps and forehead torch lamps.

Our method leverages the information provided by specular reflections in the surgical
scene under study. Although specular reflections are very common in optical imaging
of internal organs, the presence of specular reflections should be regarded as a key re-
quirement for other types of biological structures where such reflections might be scarce
(e.g. skin). A fairly simple quality assurance measure could involve analyzing the camera
counts over the entire scene, the presence of specular reflections, in most cases, would
be manifested as pixels with high number of counts (either saturated or close to satu-
rated). Finally, our method requires the analysis of low exposure images, which could be
regarded as a disruption of the surgical workflow. Although the recording of such low
exposure images only requires a few seconds, this could be compensated by implementing
a method for illumination change detection, which would trigger the acquisition of low
exposure images “on demand”. Given the high accuracy of our method compared to
related methods, along with the high processing speed (currently ∼ 50 ms), we believe
that an occasional acquisition of low exposure images (∼ 1–2 s) is acceptable.

Conclusions

Open surgery presents many challenges. Its highly dynamic nature is manifested, for
example, by the variety of light sources that are used in the OR (e.g. overhead lamps,
ceiling lights, forehead torches, etc.). This allows surgeons to use multiple types of light
sources, but hinders the translation of functional parameter estimations (e.g. oxygenation).
We presented a method for light source spectrum estimation that leverages the information
contained in specular reflections by recording low exposure images. We also demonstrated
that using this approach can reduce the oxygenation estimation error in vivo.
Clinical applicability: Our method exploits low exposure spectral recordings, which
only require ∼ 1–2 s, thus minimizing modifications to clinical routine. Furthermore, our
method is robust to different integration times, thus making it more robust than other
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related approaches.
Benefits for the patient: Reducing functional parameter estimation errors during surgical
procedures could improve surgical outcome by providing more accurate information to
the surgeon.
Benefits for the surgeon: Reducing functional estimation errors by using our approach
would provide surgeons with more accurate decision-making information that they can
leverage to improve patient treatment.
Generalization: Although we have demonstrated the benefits of our method for light
source estimation in vivo, a study cohort is required to analyze its generalization capabili-
ties to a wide range of patients.

4.3 Perfusion monitoring

We approached the challenge of perfusion monitoring with two methods. The first of
them overcomes the lack of in vivo labeled data by leveraging physics-based simulations
of light-tissue interactions (Sec. 4.3.1). However, some surgical domains feature high inter-
patient heterogeneity and might not be well represented by the light-tissue simulations.
Hence, we proposed a personalized method that utilizes data from individual patients to
monitor ischemia at video-rate during minimally invasive surgery (Sec. 4.3.2).

4.3.1 Perfusion monitoring via regression

We presented a deep learning model for perfusion monitoring (exemplified in oxygenation
estimation), based on the work by Wirkert (2018), which leverages highly detailed physics-
based simulations of light-tissue interactions (Tab. 2.1) generated with a MC method.
Compared to previous work, we introduced three key aspects: a) more physically correct
multi-layer tissue model labeling strategy, b) extensive neural architecture search and c)
custom data augmentation strategies.

While leveraging the MC simulations, our in silico experiments revealed a general
tendency of our deep learning model, based on a Convolutional Neural Network (CNN)
architecture, to perform better in the task of oxygenation estimation for smaller learning
rates and larger batch sizes and relatively intermediate values of weight decay. The
number of filters per hidden layer as well as the type of activation (Rectified Linear
Unit (ReLU) or Leaky Rectified Linear Unit (LeakyReLU)) did not play a major role in
the final performance of our models. To train our models with more realistic data, we
implemented several data augmentation strategies. Brightness variations of a random
subset of samples mimic possible changes in the hardware setup during acquisition of
real data (e.g. camera pose or light source intensity). Specular reflections were specifically
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introduced through a physics model (dichromatic model). Thus, this type of physics-
informed neural network learns (during training) about the behavior of specular regions,
which is very common in biomedical images.

Although using this types of data augmentation generally led to more stable training
and lower validation losses, the lack of a gold standard to estimate oxygenation in vivo

complicates the analysis of the effect that this strategy might have in a clinical application.
We hypothesize that a new generation of physics-informed deep learning models could
help bridge the gap between deep learning and clinical applications of oxygenation
quantification.

We exemplified the benefits of our deep learning approach compared to the state of
the art in our two medical domains (pig brain and human skin). In both applications,
our model performed better than state-of-the-art approaches. More in detail, our deep
learning model for oxygenation estimation lead to lower oxygenation estimation error in

silico when compared to the random forest proposed by Wirkert et al. (2016b) (Fig. 3.10).
We were able to demonstrate that our model is capable of monitoring perfusion changes
in vivo through the visualization of SDs in pig brain (Fig. 3.11) and oxygenation changes in
an arm-clamping experiment (Fig. 3.14). The success in both of this medical applications
shows great promise for future clinical research. On one hand, being able to monitor SDs
in the human brain could lead to the development of new drugs that target their spread
and even completely counteract their harmful effects. More specifically, future research
based on our methodology could lead to automatic detection, tracking and classification
of SDs. This type of analysis would also be facilitated by leveraging a high-resolution
snapshot sensor instead of sequential band measurements, thus removing the need for
registering images across bands. On the other hand, monitoring skin perfusion changes
could prove helpful in the field of inflammatory research, where changes of functional
properties (e.g. perfusion, water content, etc.) can be associated with many diseases such
as sepsis (Dietrich et al., 2021b,a).

Future research could focus on the development of an uncertainty measure that can
be assigned to our functional parameter estimations. This could be done, for example,
by leveraging our Out-of-Distribution (OoD) approach to compare the MC simulations
to real data Sec. 2.4.2. Furthermore, future work in the field of oxygenation estimation
for medical applications could benefit from more realistic simulations of light-tissue
interactions. In this regard, simulating heterogeneous 3D tissue models instead of multi-
layer models would lead to results that are more in agreement with real data. Furthermore,
pairing 3D simulations of light transport with a physics-based rendering module would
provide a powerful tool in many areas of research. For example, it could provide a way to
alleviate the lack of spectral data that is commonly known in the spectral applications of
the biomedical community. Moreover, the clinical translation of oxygenation estimation
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approaches would benefit from a systematic clinical validation strategy. Despite the
success of many regression algorithms, the lack of a gold standard method to estimate
oxygenation in vivo has held back the progress in this area. Thus, proper clinical validation
becomes a requirement for any of these methods to be applied in clinical practice.

4.3.2 Perfusion monitoring via Out-of-Distribution detection (Clinical study)

Spectral imaging is a tool with a high potential to tackle challenging problems in the early
detection, diagnosis and monitoring of diseases ranging from cancer to cardiovascular
and inflammatory diseases. To the best of our knowledge, we have presented the first
clinical trial for video-rate ischemia monitoring in laparoscopic surgery enabled by deep
learning and MSI. Based on a compact video-rate multispectral laparoscopic imaging
system, our approach presents three key advantages over the current state of the art in
ischemia monitoring:

1. No contrast agent: Our method is completely non-invasive and does not require the
administration of Indocyanine Green (ICG) or any other contrast agent. As such, the
application of our method has the potential to enhance patient safety by reducing
complication risks (e. g. anaphylactic shock).

2. Multiple uses per surgery possible: Our method can be used multiple times during
surgery. There is no washout period.

3. Video-rate ischemia monitoring: Our proposed ischemia index can be computed in
real time, while the classical ICG approach allows for only a single measurement
per surgery.

In the following sections, we discuss the consequences of high tissue heterogeneity, our
approach to ischemia detection and a comparison between our proposed approach and
current clinical practice.

Inter-patient tissue spectral heterogeneity

The work we have presented comprises the first systematic in vivo analysis of spectral
data from diseased kidney tissue across multiple patients. Our analysis revealed a high
inter-patient variability of spectral data. One of the main findings was that the main
source of variance of spectral measurements is the patient rather than the perfusion state
of the kidney (perfused vs ischemic). This indicates that a supervised machine learning
approach could generalize poorly to unseen patients when trained on limited patient data.
In addition, the two-dimensional representation of the spectral data computed by Principal
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Component Analysis (PCA), and depicted in Fig. 3.19 a) shows that the distance between
data from perfused and ischemic tissue varies considerably across patients (distance
between circles and stars of the same color). This indicates that the spectral difference
between perfused and ischemic tissue is also heterogeneous across patients.

In contrast to recent findings by Studier-Fischer et al. (2021), where the variance arising
from different specimens was small compared to other explanatory variables. A possible
explanation for this discrepancy is that in the porcine study all organs were healthy,
whereas all the human subjects in our clinical trial had kidney cancer (Tab. 3.1). This is an
indication that diseased organs might lead to high inter-patient variability.

The lack of a commercially available spectral system for surgical applications limits
the number of patients that could be included in a clinical trial from multiple institu-
tions, thus making it hard to determine the mechanism for the change in spectra. In
particular, the combination of cancer type and comorbidities is unique for each patient.
Furthermore, the highly dynamic environment of any OR offers a significant number
of external factors that cannot be controlled. For example, the pose of the laparoscope
relative to the kidney changes between each patient due to variables such as port place-
ment, respiratory movements, different anatomy, etc. Since the laparoscope is operated
freehand, additional motion induced by the surgeon’s hand is involved. Even though we
implemented measures to reduce the effect of these factors, such as data normalization,
further analysis of these factors is required. In general, the mismatch imbalance between
number of patients and the number of possible variable factors makes the association of
spectral variability to each factor a challenging problem. Nonetheless, these factors are
included as the remaining unexplained variance in Fig. 3.19 b).

Furthermore, we observed that the explained variability of bands 5 and 10 attributed
to changes in tissue state (perfused vs. ischemic) is especially low in comparison to the
variability explained by different patients (Fig. 3.19). This could be due to two main
reasons: a) The maxima of the camera filter responses corresponding to these bands are
located at wavelengths where the extinction coefficient of Hb and HbO2 are very similar
(Fig. 2.3). Thus, this leads to lower variability between perfused (high HbO2) and ischemic
(low HbO2) tissue. b) Band 5 is affected by a second order peak with a maximum filter
response located at a wavelength where the extinction coefficients of Hb and HbO2 are
considerably smaller, thus leading to higher reflectances and a lower influence of different
tissue states (perfused vs. ischemic).

In the future, our linear mixed model would allow for a more detailed understanding
of how different factors influence spectral variability by introducing more factors such as
comorbidities. However, with the frequency of partial nephrectomies being limited, and
the lack of a commercially available medical spectral system, additional data acquisition
is challenging. These results also open the way to an in-depth band selection analysis
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with the aim of designing a clinical device that features bands with low inter-patient
variability while maintaining high variability across tissue states. Furthermore, it is worth
mentioning that we observed differences in the kidney surface structure between surgeries
performed on female and male patients. For instance, the fatty tissue was relatively easy to
remove from the surface of the kidney from female patients, while it proved to be a more
complicated task in male patients. Although we ensured in our clinical trial that we only
recorded regions of the kidney with no visible surface fatty tissue, this key difference could
be the subject of future research. For example, systematic spectrometer measurements of
human fatty tissue could help characterize its optical properties and thus elucidate where
the differences between male and female come from*.

Ischemia index

We proposed a new approach to ischemia monitoring that removes potential biases
from oversimplified models (such as those based on the Beer-Lambert law), and that
does not require large amounts of data for algorithm training. Our results demonstrate
that by rephrasing the problem of ischemia monitoring as and OoD detection problem,
difficulties introduced by the high inter-patient variability can be removed. This lead to
a personalized approach that only requires data from individual patients, thus avoiding
potential confounder effects otherwise introduced by data from other patients (Dietrich
et al., 2021b; Zhao et al., 2020). This feature is extremely relevant considering the evidence
that many research studies overestimate the performance of deep learning models, mainly
due to poor test data selection relative to the training data (Roberts et al., 2021; Shad et al.,
2021). Even more, algorithms trained on data from a specific camera may not generalize
to slightly different conditions (Dietrich et al., 2021b; Liu et al., 2020b). Give that our
method only requires data from perfused tissue for training, and that the training time
is approximately 30 s per network (for five models), application in the OR is feasible. As
such, the training procedure of our models can easily be performed at the beginning of
each surgery before the localization of the renal artery (before clamping), thus avoiding
delays in the surgical procedure. Even more, since our model is capable of evaluating
spectra at 220 kHz, which translates to an individual Region of Interest (ROI) evaluation
rate of 240 Hz, the inference can be done at video-rate.

ICG is the clinical state-of-the-art method to assess ischemia during partial nephrec-
tomy. The main advantages of our method are its non-invasiveness and video-rate capabil-
ity (Tab. 4.1). One requirement of our approach is the fact that our algorithm needs a clean
kidney surface (no fat, no burned tissue, etc.) to perform optimally. Tissue surface effects
such as excessive bleeding or scarring may hinder the application of our method, or any

*From an optical perspective.
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4.3. Perfusion monitoring

Table 4.1: Key characteristics of traditional ischemia monitoring with Indocyanine Green
(ICG) injection and our proposed non-invasive method.

Feature ICG Our method
Standard light source ✗ ✔

Standard camera ✗ ✗

Low per use cost ✗ ✔

Low investment cost ✗ ✔

Contrast agent-free ✗ ✔

Multiple use per surgery ✗ ✔

Robust to tissue surface imperfections ✔ ✗

Video-rate ✗ ✔

other approach relying on spectral data in the visible spectrum. This is because light with
wavelength in the visible spectrum has relatively low penetration depth, thus focusing on
effects that may occur on the surface of the tissue. However, this disadvantage could be
overcome by extending the wavelength range to the infrared range, which is associated
with deeper light penetration.

Many state-of-the-art approaches in preclinical studies rely on the Beer-Lambert law
to assess perfusion (Baker et al., 2014; Jones et al., 2017). In our application to ischemia
monitoring in laparoscopic surgery, this led to non-interpretable functional estimations,
such as oxygenation above 100% (Fig. 3.22). Moreover, a clear separation between perfused
and ischemic tissue was only possible for 30% of the patients based on oxygenation
estimations. We also observed that the effect of multiple ROIs was clearly visible as
separate point clusters for each patient (Fig. 3.22), thus hindering the clinical application
of methods relying solely on the Beer-Lambert law.

Other model-based methods aiming to assess tissue perfusion, such as the one applied
by the TIVITA® cameras (Diaspective Vision GmbH, Am Salzhaff-Pepelow, Germany),
require the computation of the first and second derivatives of the spectra (Holmer et al.,
2018). Unfortunately, this approach is highly sensitive to noise and requires highly
detailed spectral data (recordings from many wavelengths). Thus, it has been restricted to
hyperspectral systems that are usually associated with long recording times.

In Sec. 2.4.1, we presented a deep learning approach for oxygenation estimation based
on spectral data (Ayala et al., 2019; Wirkert et al., 2017). In this method, we leveraged
physics-based simulations of light-tissue interactions via a MC method. Analysis of the
data distribution of our clinical trial for ischemia monitoring in laparoscopic surgery
revealed that our measurements were OoD in comparison to our MC database. This
indicated that our oxygenation estimation method could not be used in this application,
and that more work is needed for fully realistic spectra generation in the presence of
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pathologies. To overcome this challenge, we decided to explore the personalized approach
presented here.

Even though we were able to monitor ischemia in human kidney, the ROI tracking is a
potential confounding factor in our clinical study. Our automatic ROI tracking approach
requires the manual localization of each ROI in the surface of the tissue, which could
lead to faulty results if the ROI is placed in a region for which our method is not well
suited, e.g. fatty tissue. This effect was mitigated by visual inspection of each ROI by
trained clinicians, thus ensuring that each ROI was placed in a clean region of the kidney.
A translation of our method to clinical practice should take this effect into account, and
could be addressed by creating a checklist as the one described in Sec. 2.4.2. Another
possible source of bias is related to the reproducibility of the ROI tracking process and
from slightly different ROI initialization. Our experiments showed that our ROI tracking
can indeed be reproduced when the same ROI location is used over multiple repetitions,
and it is robust to small displacements from the original location (Fig. 3.17). Furthermore,
future applications of our method could feature the automatic tracking of ROIs with
arbitrary shapes to maximize the amount of usable data per spectral frame. In addition,
the clinical application of our method would benefit from an uncertainty measure that
indicates the probability that changes detected by our ischemia index indeed arise from
ischemia induction and not from other confounding factors such as ROI location.

While our method worked perfectly on nine out of ten patients, it failed on patient 7.
A more in-depth analysis unveiled that the spectral difference between perfused and
ischemic tissue was very low for this patient, as shown in Fig. 4.1. A Kernel Density
Estimation (KDE) of the two-dimensional representation of the measurements (computed
via PCA) showed that there was a large overlap between the distributions of the perfused
and ischemic data. Even more, the variability of the perfused data was considerably high
for all bands, compared to the variability of the ischemic data. These two factors might
explain why ischemic spectra were erroneously detected as in domain. The similarity
between the perfused and ischemic spectra could be related to the appearance of burned
fatty tissue in the surface of the kidney, which can occur while removing fatty tissue with
the da Vinci® monopolar scissors. To alleviate problems arising from tissue surface effects
(burning, fatty tissue, etc.), we envision increasing the wavelength range of the camera
and the light source in the future. It should also be mentioned that the laparoscopic videos
of patient 7 looked unusual from a clinical perspective (see Fig. 4.1 a)).

Patient 4 posed a particular challenge in our analysis. Due to data corruption of the
white and dark reference measurements, reference measurements from another surgery
had to be used for data normalization (Eq. 2.31). Given that hardware, software and
Spectralon® target were all identical, we did not expect a major influence of this procedure
in the analysis of the data from patient 4. In fact, normalizing the data from patient 4 with
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Figure 4.1: Comparison of a representative patient with patient 7 with respect to the

algorithm input. (a) Example Red, Green and Blue (RGB) images were selected from the
perfused2 sequence to illustrate the unusual images acquired of the kidney of patient 7. (b)

The reflectances of the representative patient (patient 3) differ clearly between perfused
and ischemic tissue, while no clear separation can be observed in patient 7. (c) A kernel
density estimation (KDE) performed on the data resulting from a patient-specific principal
component analysis (PCA) provides further explanation for why our method falsely
detected the ischemic kidney data of patient 7 as inlier. The axes labels denote the
explained variance of the corresponding principal component (PC).
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Figure 4.2: Variability across different normalization strategies is insignificant com-

pared to variability across tissue states (perfused vs ischemic). Reflectance spectra of
patient 4 after normalizing the data with reference measurements from patients 1 (white 1)
and patient 3 (white 2).

reference measurements of multiple other patients showed very low variability across
different normalization approaches in comparison to the variability across different tissue
states (perfused vs ischemic). This effect can be visualized in Fig. 4.2.

Interestingly, our method is capable of adapting to virtually any type of optical system
(laparoscopes, filters, etc.), provided that sufficient light reaches the camera sensor, how-
ever, the effect of different Signal-to-Noise Ratio (SNR) levels in the training data is unclear.
While training our OoD-based ischemia monitoring algorithm, Gaussian noise was added
to the data as described in Sec. 2.4.2. Although we found that adding multiplicative noise
with a standard deviation of 0.05 led to stable training, further analysis could be performed
to study the effect of different SNR levels, as well as other data augmentation strategies,
on our final ischemia-index estimations. For example, the effect on the performance of our
model could be studied while training with a noise level of SNR1 and evaluating it in
data with a noise level of SNR2. This analysis would shine light on the generalization
capabilities of our methodology.

One of the biggest challenges in this clinical study was the need to remove the laparo-
scope attached to our multispectral camera (Fig. 2.2) between recordings of the perfused
and ischemic tissue. This was because, continuous measurements would require the
generation of an additional surgical port in the abdominal cavity of the patient, thus
greatly modifying the standard clinical procedure. To reduce stress to the patient, we used
the same port that is required for the clamping of the renal artery. This made temporary re-
traction of our camera necessary, to perform the clamping, thus complicating the ischemia
detection because analysis on the same ROI across tissue states could not be guaranteed. In
some patients, it was not even manually possible to robustly locate the same tissue region
before and after clamping the renal artery due to the lack of physiological landmarks and
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the altered pose of the laparoscope. This was a result of the necessary laparoscope removal
before clamping the renal artery. We designed our method such that it can leverage data
from two non-overlapping ROIs to mitigate the bias that different tissue regions might
introduce in our analysis. In addition, we ensured that all our image sequences (perfused1,
perfused2 and ischemic) were recorded under the same conditions (after removal and
re-insertion of the laparoscope). If our method was to classify the tissue location instead
of the perfusion state, it would have failed to correctly classify the perfused2 sequence. Of
note, the challenge of interrupted image acquisition could easily be solved in the future
with a clinically certified spectral system, thus enabling spectral recordings and clinical
interpretation at the same time.

It is worth mentioning that we investigated the effect of applying our method on
reconstructed RGB images (Fig. 3.23). Even though a clear separation between perfused
and ischemic tissue cloud be achieved for two patients (2 and 3), a clear separation could
not be observed for the other patients. This analysis also generated considerably wider
distributions for each patient compared to the results of the analysis based on spectral
data (Fig. 3.24). This result was expected because RGB images lack the rich information
across multiple wavelengths that spectral data offers.

Conclusions

We proposed to monitor perfusion with two approaches. The first approach features a
deep learning model that leverages large amounts of simulated data to overcome the lack
of in vivo labeled data. We validated this approach in different domains: pig brain and
human skin (clinical trial). The second approach deals with domains where high inter-
patient variability is dominant in comparison to variability across tissue states (perfused
vs. ischemic). We achieved this by rephrasing the task of ischemia monitoring as an OoD
detection task. As such, our personalized approach only requires data from individual
patients to detect perfusion changes as outliers. We validated this approach in the first
clinical trial involving video-rate ischemia monitoring with SI during minimally invasive
surgery.
Clinical applicability: Our proposed method could seamlessly be applied in clinical
practice, as it leverages existing hardware parts and does not drastically modify current
clinical standards. We only integrated the need for a compact multispectral camera that is
easy to handle. Furthermore, our deep learning-based ischemia monitoring approach can
be trained in under two minutes at the beginning of each surgery, thus making it possible
to be applied during surgery.
Benefits for the patient: Our method does not require the injection of any contrast agent
into the patient’s bloodstream, thus reducing burden to the patient.
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Benefits for the surgeon: The methodology that we have proposed allows for label-free
and video-rate ischemia monitoring, thus allowing for multiple repetitions during each
surgery and could facilitate surgical decision-making.
Generalization: Given that our personalized approach requires only data from individual
patients, we mitigated potential biases that might have arisen from other patients.
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5
Summary

Many clinical applications currently rely on several imaging modalities such as Positron
Emission Tomography (PET), Magnetic Resonance Imaging (MRI), Computed Tomogra-
phy (CT), etc. All such modalities provide valuable patient data to the clinical staff to aid
clinical decision-making and patient care. Despite the undeniable success of such modali-
ties, most of them are limited to preoperative scans and focus on morphology analysis, e.g.
tumor segmentation, radiation treatment planning, anomaly detection, etc. Even though
the assessment of different functional properties such as perfusion is crucial in many
surgical procedures, it remains highly challenging via simple visual inspection. Functional
imaging techniques such as Spectral Imaging (SI) link the unique optical properties of
different tissue types with metabolism changes, blood flow, chemical composition, etc.
As such, SI is capable of providing much richer information that can improve patient
treatment and care. In particular, perfusion assessment with functional imaging has be-
come more relevant due to its involvement in the treatment and development of several
diseases such as cardiovascular diseases. Current clinical practice relies on Indocyanine
Green (ICG) injection to assess perfusion. Unfortunately, this method can only be used
once per surgery and has been shown to trigger deadly complications in some patients
(e.g. anaphylactic shock).

This thesis addressed common roadblocks in the path to translating optical functional
imaging modalities to clinical practice. The main challenges that were tackled are related
to a) the slow recording and processing speed that SI devices suffer from, b) the errors
introduced in functional parameter estimations under changing illumination conditions, c)
the lack of medical data, and d) the high tissue inter-patient heterogeneity that is commonly
overlooked. This framework follows a natural path to translation that starts with hardware
optimization. To overcome the limitation that the lack of labeled clinical data and current
slow SI devices impose, a domain- and task-specific band selection component was
introduced. The implementation of such component resulted in a reduction of the amount
of data needed to monitor perfusion. Moreover, this method leverages large amounts of
synthetic data, which paired with unlabeled in vivo data is capable of generating highly
accurate simulations of a wide range of domains. This approach was validated in vivo in a
head and neck rat model, and showed higher oxygenation contrast between normal and
cancerous tissue, in comparison to a baseline using all available bands.
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The need for translation to open surgical procedures was met by the implementation of
an automatic light source estimation component. This method extracts specular reflections
from low exposure spectral images, and processes them to obtain an estimate of the light
source spectrum that generated such reflections. The benefits of light source estimation
were demonstrated in silico, in ex vivo pig liver, and in vivo human lips, where the oxy-
genation estimation error was reduced when utilizing the correct light source estimated
with this method. These experiments also showed that the performance of the approach
proposed in this thesis surpass the performance of other baseline approaches.

Video-rate functional property estimation was achieved by two main components: a
regression and an Out-of-Distribution (OoD) component. At the core of both components
is a compact SI camera that is paired with state-of-the-art deep learning models to achieve
real time functional estimations. The first of such components features a deep learning
model based on a Convolutional Neural Network (CNN) architecture that was trained
on highly accurate physics-based simulations of light-tissue interactions. By doing this,
the challenge of lack of in vivo labeled data was overcome. This approach was validated
in the task of perfusion monitoring in pig brain and in a clinical study involving human
skin. It was shown that this approach is capable of monitoring subtle perfusion changes
in human skin in an arm clamping experiment. Even more, this approach was capable of
monitoring Spreading Depolarizations (SDs) (deoxygenation waves) in the surface of a
pig brain. Even though this method is well suited for perfusion monitoring in domains
that are well represented with the physics-based simulations on which it was trained, its
performance cannot be guaranteed for outlier domains. To handle outlier domains, the
task of ischemia monitoring was rephrased as an OoD detection task. This new functional
estimation component comprises an ensemble of Invertible Neural Networks (INNs) that
only requires perfused tissue data from individual patients to detect ischemic tissue as
outliers. The first ever clinical study involving a video-rate capable SI camera in laparo-
scopic partial nephrectomy was designed to validate this approach. Such study revealed
particularly high inter-patient tissue heterogeneity under the presence of pathologies
(cancer). Moreover, it demonstrated that this personalized approach is now capable of
monitoring ischemia at video-rate with SI during laparoscopic surgery.

In conclusion, this thesis addressed challenges related to slow image recording and
processing during surgery. It also proposed a method for light source estimation to
facilitate translation to open surgical procedures. Moreover, the methodology proposed in
this thesis was validated in a wide range of domains: in silico, rat head and neck, pig liver
and brain, and human skin and kidney. In particular, the first clinical trial with spectral
imaging in minimally invasive surgery demonstrated that video-rate ischemia monitoring
is now possible with deep learning.
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6
Zusammenfassung

Viele klinische Anwendungen verlassen sich derzeit auf verschiedene Bildgebungsmodal-
itäten wie Positronen-Emissions-Tomographie (PET), Magnetresonanztomographie (MRT),
Computertomographie (CT), usw. Alle diese Modalitäten liefern dem klinischen Per-
sonal wertvolle Patientendaten, um die klinische Entscheidungsfindung und die Patien-
tenversorgung zu unterstützen. Trotz des unbestreitbaren Erfolgs solcher Modalitäten
beschränken sie sich auf präoperative Scans und konzentrieren sich auf die Analyse der
Morphologie, z.B. der Tumorsegmentierung, der Bestrahlungsplanung un der Anoma-
lieerkennung. Auch wenn die Beurteilung verschiedener funktionaler Eigenschaften wie
der Perfusion bei vielen chirurgischen Eingriffen von entscheidender Bedeutung ist, bleibt
sie bei einer einfachen visuellen Inspektion eine große Herausforderung. Funktionelle
Bildgebungstechniken wie Spektrale Bildgebung (SB) verknüpfen Gewebe spezifische
optische Eigenschaften mit Stoffwechselveränderungen, Blutfluss, chemischer Zusam-
mensetzung usw. Als solches ist SB in der Lage, viel reichhaltigere Informationen zu
liefern, und dadurch die Patientenversorgung zu verbessern. Insbesondere die Perfusions-
beurteilung mit funktionaler Bildgebung hat aufgrund ihres Einflusses auf die Behandlung
und auf die Entwicklung verschiedener Erkrankungen, wie Herz-Kreislauf-Erkrankungen
und verschiedene ischämischer Zustände, an Bedeutung gewonnen. Die derzeitige klinis-
che Praxis verlässt sich auf die Injektion von Indocyanine Green (ICG), um die Perfusion
zu beurteilen. Leider kann diese Methode nur einmal pro Operation angewendet werden
und hat nachweislich bei einigen Patienten zu tödlichen Komplikationen geführt (z.B.
anaphylaktischer Schock).

Diese Dissertation adressiert allgemeine Herausforderungen auf dem Weg zur Trans-
lation optischer funktionaler Bildgebungsmodalitäten. Die Hauptherausforderungen,
die adressiert wurden, beziehen sich auf a) die langsame Aufnahme- und Verarbeitungs-
geschwindigkeit, unter der SB-Geräte leiden, b) die Fehler, die bei der Schätzung funk-
tionaler Parameter unter wechselnden Beleuchtungsbedingungen entstehen, c) das Fehlen
klinischer Daten und d) die hohe Gewebeheterogenität zwischen Patienten, die häufig
übersehen wird. Dieser Framework folgt einem natürlichen Translationspfad, der mit
der Hardwareoptimierung beginnt. Um die Einschränkung zu überwinden, die der Man-
gel an gelabelten klinischen Daten und die derzeitigen langsamen SB-Geräte mit sich
bringen, wurde eine domänen- und aufgabenspezifische Bandauswahlkomponente einge-
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führt. Die Implementierung einer solchen Komponente führte zu einer Reduzierung der
Datenmenge, die zur Überwachung der Perfusion erforderlich ist. Darüber hinaus nutzt
diese Methode große Mengen synthetischer Daten, die gepaart mit nicht gelabelten in

vivo-Daten in der Lage sind, hochgenaue Simulationen einer Vielzahl von Domänen zu
erzeugen. Dieser Ansatz wurde in vivo in einem Kopf-Hals-Rattenmodell validiert und
zeigte einen höheren Sauerstoffkontrast zwischen normalem und tumorartigem Gewebe
im Vergleich zu einer Basislinie, die alle verfügbaren Spektralbänder verwendet.

Die Notwendigkeit einer Translation in offene chirurgische Verfahren wurde durch
die Implementierung einer Komponente zur automatischen Schätzung der Lichtquelle
erfüllt. Dieses Verfahren extrahiert Totalreflexionen aus Spektralbildern mit geringer
Belichtung und verarbeitet sie, um eine Schätzung des Lichtquellenspektrums zu erhalten,
das diese Reflexionen erzeugt hat. Die Vorteile der Lichtquellenschätzung wurden in

silico, in ex vivo Schweineleber und in vivo menschliche Lippen demonstriert. Dieser
Ansatz reduziert die Fehler bei der Schätzung der Sauerstoffsättigung, wenn die richtige
Lichtquelle verwendet wurde. Diese Experimente zeigten auch, dass die Leistung des in
dieser Arbeit vorgeschlagenen Ansatzes die Performance anderer Basisansätze übertrifft.

Die Schätzung der funktionalen Eigenschaften mit Video-Bildrate wurde durch
zwei Hauptkomponenten erreicht: eine Regression und eine Out-of-Distribution (OoD)-
Komponente. Das Herzstück beider Komponenten ist eine kompakte SB-Kamera, die
mit state-of-the-art deep learning Modellen gekoppelt ist, um funktionale Schätzungen
in Echtzeit zu erreichen. Die erste dieser Komponenten verfügt über ein deep learning
Modell, das auf einer Convolutional Neural Network (CNN)-Architektur basiert, die
auf hochgenauen, physikbasierten Simulationen von Licht-Gewebe-Wechselwirkungen
trainiert wurde. Dadurch wurde das Problem des Mangels an in vivo-gelabelten Daten
überwunden. Dieser Ansatz wurde in einer Perfusionsmonitoring-Studie im Schweine-
hirn und in einer klinischen Studie mit menschlicher Haut validiert. Es wurde gezeigt,
dass dieser Ansatz in der Lage ist, feine Durchblutungsänderungen in der menschlichen
Haut am Arm in eine Abbindungsexperiment zu überwachen. Darüber hinaus war dieser
Ansatz in der Lage, Spreading Depolarizations (SDs) (Desoxygenierungswellen) an der
Oberfläche eines Schweinehirns zu überwachen. Obwohl diese Methode für Perfusions-
monitoring in Domänen gut geeignet ist, die mit den physikbasierten Simulationen, auf
denen sie trainiert wurde, gut übereintimmen sind, kann ihre Leistung für Ausreißerdomä-
nen nicht garantiert werden. Um diese abweichenden Domänen zu handhaben, wurde die
Aufgabe der Ischämieüberwachung in eine OoD-Detektionsaufgabe umformuliert. Diese
neue funktionale Schätzungskomponente umfasst ein Ensemble von Invertible Neural
Networks (INNs), das nur perfundierte Gewebedaten von einzelnen Patienten benötigt,
um ischämisches Gewebe als Ausreißer zu erkennen. Die erste klinische Studie mit
einer video-bildfräquenzfähigen SB-Kamera wurde während laparoskopischen partiellen
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Nephrektomien durchgeführt, um diesen Ansatz zu validieren. Diese Studie ergab eine
besonders hohe Gewebeheterogenität zwischen verschiedenen Patienten bei Vorliegen von
Pathologien (Krebs). Darüber hinaus wurde gezeigt, dass dieser personalisierte Ansatz
nun in der Lage ist, Ischämie mit Videorate mit SB während einer laparoskopischen
Operation zu überwachen.

Zusammenfassend befasste sich diese Arbeit mit Herausforderungen im Zusammen-
hang mit der langsamen Bildaufnahme und -verarbeitung während der Operation. Ein
Verfahren zur Schätzung der Lichtquelle wird vorgeschlagen, um die Übertragung auf
offene chirurgische Eingriffe zu erleichtern. Darüber hinaus wurde die in dieser Arbeit
vorgeschlagene Methodik in einer Vielzahl von Bereichen validiert: in silico, Rattenkopf
und -hals, Schweineleber und -hirn sowie menschliche Haut und Niere. Insbesondere
die erste klinische Studie mit spektraler Bildgebung in der minimalinvasiven Chirurgie
hat gezeigt, dass mit deep learning jetzt eine Ischämieüberwachung mit Videofrequenz
möglich ist.
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Appendix

A.1 Region of interest (ROI) tracking

We developed an automatic Region of Interest (ROI) tracking algorithm that is enabled by
deep learning. The implementation details of such tracked were presented in Sec. 2.4.2.
We then leveraged this tracker to annotate ROIs in the surface of human kidney tissue as
part of our clinical trial on ischemia monitoring in laparoscopic surgery. In this section,
we present the details of our ROI annotation process (Fig. A.1).

A.2 Human kidney tissue Signal-to-Noise Ratio (SNR)

In Sec. 3.3.2 we presented our clinical trial on ischemia monitoring based on spectral
imaging. To demonstrate our Out-of-Distribution (OoD) approach to ischemia monitoring,
we annotated and processed several ROIs on the surface of the kidney from each patient.
In this section, we present the SNR within each ROI for all patients who took part in our
clinical trial. The SNR level across patients was ∼ 82. For this analysis, the mean SNR was
computed across camera channels, ROIs and tissue stages (perfused vs. ischemic) before
computing the mean across different patients. (Fig. A.2). The SNR was computed by
dividing the data from each ROI by a dark measurement recorded with the same camera
system (Fig. 2.2).

A.3 Human skin perfusion

The clinical trial involving healthy humans with the aim of assessing the performance
of several methods on the task of oxygenation estimation was presented in Sec.3.3.1.
For reporting completion, we present the diffuse reflectance spectra of all four locations
recorded in the surface of the right-hand palm from each patient (Fig. A.3).
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Figure A.1: We annotate ROIs in the surface of tissue and ensure high data quality.
Region of Interest (ROI) annotation flowchart based on a sequence of spectral images.
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A.3. Human skin perfusion

Figure A.2: The data within each Region of Interest (ROI) of our clinical trial had a

high level of SNR SNR for all patients of our clinical trial on ischemia monitoring. The
signal originating from light-tissue interactions is well above noise level, by a factor of
∼ 82 on average across patients.
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Figure A.3: Slight spectral differences can be detected with diffuse reflectance mea-

surements performed with a spectrometer. ℓ2-normalized reflectance spectra for all 12
patients of our clinical study, corresponding to two exemplary Regions of Interest (ROIs)
annotated in perfused and ischemic tissue (160 mmHg). The solid lines correspond to
the median reflectance spectra across all 100 measurements, while the translucent bands
around each line correspond to the standard deviation.
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