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A B S T R A C T

Recently, a kinetic field theory for ensembles of point-like classical particles in or out
of equilibrium has been applied to cosmic structure formation. This theory encodes
the dynamics of a classical particle ensemble by a generating functional which is com-
pletely specified by the initial probability distribution of particles in phase space and
their equations of motion. In this work, we apply kinetic field theory to planetesimal
formation.

The initial probability distribution of dust particles in phase space is obtained by
Gaussianizing the density and momentum fields of a three-dimensional local streaming-
instability shearing box simulation. The particle trajectories are calculated by consid-
ering their interaction by friction with the constant background gas field and the self
gravitational interaction with each other.

We calculate the non-linearly evolved density and momentum-density power spec-
tra of dust particles and find that their power spectra develop a universal k−3 tail at
small scales independent of the form of the initial spectrum, suggesting scale-invariant
structure formation and particle kinetic energy accumulation below a characteristic
and time-dependent length scale in the protoplanetary disk. Furthermore, the analysis
of the amplitude for the small-scale k−3 tails shows a critical particle size τs ≈ 3.03
which corresponds to the strongest structure formation and the maximal kinetic en-
ergy accumulation at small scales of a system when considering only the friction be-
tween dust particles and the constant background gas field. Finally, we discuss the
”meter-size barrier” problem. And for particles as small as Stokes number τs ≈ 10−5,
we provide evidence that accumulated self-gravitational interaction among the dust
particles over a long evolution time is strong enough for them to successfully ”jump
the barrier” and lead to a final gravitational collapse.

Z U S A M M E N FA S S U N G

Vor kurzem wurde eine kinetische Feldtheorie für Ensembles punktförmiger klassis-
cher Teilchen, die sich im oder außerhalb des Gleichgewichts befinden, auf die kosmis-
che Strukturbildung angewandt. Diese Theorie kodiert die Dynamik eines klassischen
Teilchenensembles durch ein erzeugendes Funktional, das vollständig durch die an-
fängliche Wahrscheinlichkeitsverteilung der Teilchen im Phasenraum und ihre Bewe-
gungsgleichungen spezifiziert ist. In dieser Arbeit wenden wir die kinetische Feldthe-
orie auf die Bildung von Planetesimalen an.
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Die anfängliche Wahrscheinlichkeitsverteilung der Staubteilchen im Phasenraum
wird durch Gaussianisierung der Dichte- und Impulsfelder einer dreidimensionalen
lokalen Shearing-Box-Simulation der Streaming-Instabilität erhalten. Die Trajektorien
der Teilchen werden unter Berücksichtigung ihrer Wechselwirkung durch Reibung
mit dem konstanten Hintergrundgasfeld und der selbstgravitativen Wechselwirkung
untereinander berechnet.

Wir berechnen die nichtlinear entwickelten Dichte- und Impulsdichte-Leistungsspektren
der Staubteilchen und stellen fest, dass ihre Leistungsspektren ein universelles k−3-
Verhalten auf kleinen Skalen entwickeln, das unabhängig von der Form des Anfangsspek-
trums ist, was auf skaleninvariante Strukturbildung und kinetische Energieakkumula-
tion der Teilchen unterhalb einer charakteristischen und zeitabhängigen Längenskala
in der protoplanetaren Scheibe hinweist. Darüber hinaus zeigt die Analyse der Am-
plitude der kleinskaligen k−3-Verläufe eine kritische Teilchengröße τs ≈ 3.03, die der
ausgeprägtesten Strukturbildung und der maximalen kinetischen Energieakkumula-
tion auf kleinen Skalen eines Systems entspricht, wenn man nur die Reibung zwischen
Staubteilchen und dem konstanten Hintergrundgasfeld berücksichtigt. Schließlich disku-
tieren wir das Problem der “Meter-Size Barrier”. Für Teilchen mit einer Stokes-Zahl
von τs ≈ 10−5 weisen wir nach, dass die akkumulierte selbstgravitative Wechsel-
wirkung zwischen den Staubteilchen über eine lange Entwicklungszeit stark genug
ist, um die ”Meter-Size-Barrier” erfolgreich zu überwinden und zu einem endgülti-
gen gravitativen Kollaps zu führen.

vi



For the endless love, support, and encouragement from my parents





A C K N O W L E D G E M E N T S

First and foremost, my greatest thanks goes to my supervisor and teacher Matthias
Bartelmann. Without his fantastic ideas, his guidance, his warm character, and his
patience, this work would not have been possible. Whenever I felt stuck, he had an idea
for how to proceed. His brilliant and unique way of viewing the physics framework
deeply impresses me and drives me to becoming a better physicist every single day.
Additionally, I have to mention that his most effective working style has influenced
me to become healthier and more organized through life, and for that, I’m eternally
grateful.

Next, I would like to thank my second supervisors Cornelis Dullemond and Hubert
Klahr for the numerous extended and enlightening conversations about the founda-
tions of planetary formation and teaching me that seemingly simple things in physics
are often much more complex and exciting.

I also want to thank all my fellow field workers for the great and inspiring discus-
sions about KFT. I thank Dr. Sara Konrad and Leif Seute for the fruitful discussions on
the novel asymptotic analysis and calculations. I thank Dr. Carsten Littek for the devel-
opment of the momentum-density power spectra. Furthermore, a special thanks goes
to my old office mates Dr. Johannes Schwinn and Dr. Martin Feix for tossing inspiring
ideas at the beginning of this work. I also thank my current office mate Christophe
Pixus for the mean field discussions and for providing the template and the title page
of this thesis.

A warm thanks goes to Joanna Cichecka, Nadja Weigel and Dr. May-Britt Becker
from the excellence cluster STRUCTURES for taking care of all the administrative
problems.

I am most grateful for my parents and my family who always saw the scientist in me
and love and support me in every life situation. Three years away from home during
the pandemic, their constant warm and caring words have always reminded me that
home is never far away.

Furthermore, I sincerely thank my best friend Song Wei for the numerous phone
calls and messages from China to help pick me up from the deep doubting hell I put
myself through, and for reminding me of who I was and who I want to be in this great
life journey.

A special thanks goes to my cat Xiaoqi, for being the warmest and cutest little
creature who takes away my daily ups and downs and always puts a big smile on my
face.

ix



Finally, I would like to express my genuine thanks to my husband Andrzej Chrobak
for loving, caring and supporting me every step of the way, and for reminding me that
there is as well beautiful life outside of the appealing physics world worth living for.

x



C O N T E N T S

1 introduction 1

i foundations 5

2 dust dynamics in protoplanetary disks 7

2.1 Gas Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Keplerian rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Gas disk pressure scale-height . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Global pressure gradient . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Particle Friction and Stokes Number . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 The streaming instability . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Dust Equation of motion in the shearing sheet approximation . . . . . . 14

2.3.1 Shearing Box Approximation . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Shearing Periodic Condition . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Hill Stability of A Particle Cloud . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 kinetic field theory in a nutshell 25

3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Generating Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 The Generating Functional . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Similarities to Equilibrium Statistical Physics . . . . . . . . . . . . 30

3.3 Simplified Dust Particle Trajectories . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Complications with the Full Equation of Motion . . . . . . . . . . 31

3.3.2 Dust Particles Trajectory . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Density Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Momentum-Density Operator . . . . . . . . . . . . . . . . . . . . 37

3.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ii results 41

4 initial probability distribution function in phase space 43

4.1 Simulation Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Initial Probability Distribution Function . . . . . . . . . . . . . . . . . . . 45

4.2.1 Density and Momentum Distribution . . . . . . . . . . . . . . . . 46

4.2.2 Gaussianization of the Density Field . . . . . . . . . . . . . . . . . 48

4.2.3 Inverse Density Transformation . . . . . . . . . . . . . . . . . . . 49

xi



xii contents

4.2.4 The Final Expression . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Initial Power Spectra and Correlation Functions . . . . . . . . . . 58

4.3.2 The Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 The Final Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.4 Approximating The Correlation Operator . . . . . . . . . . . . . . 68

4.3.5 Rotate Momentum Covariance Matrix . . . . . . . . . . . . . . . 69

4.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 dust density power spectrum by kft 75

5.1 Analytical Derivation of Density Power Spectrum . . . . . . . . . . . . . 76

5.1.1 KFT Nonlinear Density Power Spectrum . . . . . . . . . . . . . . 76

5.1.2 Average The Gravitational Interaction . . . . . . . . . . . . . . . . 79

5.2 Freely Streaming Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Linear Density Power Spectrum . . . . . . . . . . . . . . . . . . . 83

5.2.2 Free Density Power Spectrum . . . . . . . . . . . . . . . . . . . . . 85

5.2.3 Time Dependence of Small Scale Behaviours . . . . . . . . . . . . 88

5.3 Friction Density Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Linear Power Spectrum At Small τs . . . . . . . . . . . . . . . . . 91

5.3.2 Non Linear Power Spectrum At Large τs . . . . . . . . . . . . . . 93

5.3.3 Time and Particle-Size Dependence At Small Scales . . . . . . . . 94

5.4 Gravitational Density Power Spectrum . . . . . . . . . . . . . . . . . . . . 100

5.4.1 Proper Approximation for P(k, t) . . . . . . . . . . . . . . . . . . . 101

5.4.2 Linear Power Spectrum at Small τs . . . . . . . . . . . . . . . . . 104

5.4.3 Non Linear Power Spectrum at Large τs . . . . . . . . . . . . . . 110

5.4.4 Determine Gravitational Collapse at Small τs . . . . . . . . . . . 115

5.5 Further Discussion of k−3 Behaviour . . . . . . . . . . . . . . . . . . . . . 123

5.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 dust momentum-density power spectra by kft 127

6.1 Analytical Derivation of Momentum-Density Power Spectra . . . . . . 128

6.1.1 Factorize Generating Functional . . . . . . . . . . . . . . . . . . . 128

6.1.2 Three Scalar Momentum-Density Power Spectra . . . . . . . . . . 133

6.2 Interlude: Asymptotics Of Certain Types of Integrals . . . . . . . . . . . 137

6.3 Free Streaming Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3.1 Linear Momentum-Density Power Spectra . . . . . . . . . . . . . 147

6.3.2 Nonlinear Momentum-Density Power Spectra . . . . . . . . . . . 149

6.4 Friction Momentum-Density Power Spectra . . . . . . . . . . . . . . . . . 157

6.4.1 Linear Momentum-Density Power Spectra at Small τs . . . . . . 158

6.4.2 Nonlinear Momentum-Density Power Spectra at Large τs . . . . 160

6.5 Gravitational Momentum-Density Power Spectra . . . . . . . . . . . . . 175

6.5.1 Linear Momentum-Density Power Spectra at Small τs . . . . . . 177

6.5.2 Nonlinear Momentum-Density Power Spectra at Large τs . . . . 183



contents xiii

6.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7 conclusions and discussions 195

iii appendix 201

a more discussions over kft power spectra 203

a.1 Small-Scale Asymptotics of Linear Power Spectra . . . . . . . . . . . . . 203

a.1.1 Linear Density Power spectrum . . . . . . . . . . . . . . . . . . . 203

a.1.2 Linear Free Momentum-Density Power Spectra Elements . . . . 204

a.2 Verify Modified Nonlinear Density Power Spectrum . . . . . . . . . . . . 207

b small-scale asymptotics of momentum-density trace power spec-
trum 211

b.1 Time and Particle Size Dependence of P̄lin1
(k1, t) . . . . . . . . . . . . . 211

b.2 Time and Particle Size Dependence of P̄ftr(k1, t) . . . . . . . . . . . . . . 214

bibliography 219



L I S T O F F I G U R E S

Figure 2.1 In this drawing the shearing box coordinate system is the primed
system with coordinates x ′ and y ′ . It is a coordinate system that
orbits around the star with the Keplerian velocity at its origin.
Hence, unity vectors in ϕ̂ transform into ŷ of the primed sys-
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1
I N T R O D U C T I O N

The formation of the Earth and the other 7 planets in the Solar System has puzzled
humans throughout history. By enhancing our capacity to glimpse into the dark night
sky, we know from the many detections of extrasolar planets that planetary systems
are common in the universe. Apparently, nature finds it easy to form planets out of
micrometer-sized cosmic dust. But how nature manages to accomplish this is not yet
fully understood. Solving this problem has turned out to be extremely challenging
due to the enormous dynamic ranges in space, time and mass scales involved. Plan-
ets form in so-called protoplanetary disks, the dusty gaseous disks rotating around
newly formed stars. This structure formation process starts from micrometer-sized
cosmic dust particles, which coagulate to form ever larger dust aggregates. Small ag-
gregates are held together by cohesive forces, in particular the Van der Waals force.
Once these aggregates grow above a kilometer, it is primarily the force of gravity that
keeps them together and leads to further agglomeration and growth, eventually form-
ing full-grown planets. This path of growth covers 13 orders of magnitude in size and
correspondingly 40 orders of magnitude in mass.

However, as dusty aggregates grow beyond centimeter size, but have not yet reached
kilometer scales, they become very fragile and non-cohesive, and it is not clear how
growth proceeds in this regime. Such intermediate-size aggregates also tend to rapidly
drift towards the star, and thus get lost in the planet-formation process. There are two
main scenarios how these problems (together often summarized as the “meter size
barrier”) may be overcome. The more popular scenario involves dust particle cluster-
ing and/or trapping. This can occur in large-scale pressure maxima or zonal flows as
well as in vortices. Dust particles can also be clustered in turbulent flows, see Hogan
and Cuzzi [17], such as those triggered by the streaming instability, see Johansen and
Youdin [21]. The formation of dense particle clouds can subsequently lead to their
gravitational collapse and the formation of ≳ 100 km size planetesimals, see Johansen,
Klahr, and Henning [20]. The alternative scenario involves fractal/fluffy icy aggregate
growth up to sizes of hundreds of meters, followed by gravitational compression, see
Kataoka, Akimasa et al. [23], eventually forming ∼ 10 km planetesimals. Neither of
these scenarios has definitively been proven or disproven yet, because they are ex-
tremely hard to model, involving turbulent cascades covering many orders of magni-
tude in eddy size, and complex-shaped dust aggregates consisting of up to ∼ 1020 dust
particles.

1



2 introduction

Kinetic Field Theory for Structure Formation

This thesis follows the first path. Given the challenges of the traditional approach, it
is worthwhile to explore new analytic means for studying particle clustering. Recently
a statistical, kinetic theory for classical particle ensembles in or out of equilibrium
called kinetic field theory (KFT) is developed, see Bartelmann et al. [4] based on Das
and Mazenko [9]. This theory encodes the dynamics of a classical particle ensemble by
a generating functional completely specified by the initial probability distribution of
particles in phase space and their equation of motion. It describes how the phase-space
distribution of the particle ensemble evolves with time. From the evolved generating
functional, density and momentum-density power spectra of the particles can be ex-
tracted by functional derivatives. This theory has initially been developed for studying
the formation and evolution of cosmic structures in the non-linear regime. The power
spectrum of cosmic structures even deeply in this regime can be reproduced very well
already at low orders in the particle interactions, see Bartelmann et al. [4], Viermann et
al. [40], even further, the asymptotic study over the small-scale limit of the free power
spectrum in Konrad [25] shows the necessity of the development of a universal k−3

tail below a characteristic scale.
Here we shall adapt KFT to the problem of turbulent particle clustering, aiming at

bridging the vast dynamical range by analytic methods.
The two problems have several similarities, such as the (initial) collisionlessness

and the (eventual) mutual gravitational forces between the particles. There are, how-
ever, two essential differences that will require attention. The first difference is that
dust particles in a turbulent medium experience friction with the gas. A conventional
Hamiltonian system cannot handle dissipative forces. KFT does, however, not depend
on the equations of motion being Hamiltonian. The loss of their symplectic structure
just implies that we will need to include the functional determinant of the phase-space
flow of the particles into the generating functional. On the other hand, the friction of
the dust particles with the turbulent gas is what drives the particle clustering. This
means that we have to provide a description of the turbulent background. To keep
this feasible, we will limit ourselves to finding a prescribed turbulent background
field that excludes the feedback of the dust onto the gas. The second difference is
more technical. To study cosmic structure formation, one of the crucial pieces of evi-
dence is the cosmic microwave background (CMB), which can provide the initial matter
distribution in the universe. Combining it with the cosmology principle of the uni-
verse being isotropic and homogeneous, the initial probability distribution function
in phase space (iPDF) for particles can be derived analytically by assuming density
and momenta fields being Gaussian. However, in planetary formation, for the gener-
ality of the protoplanetary disk (PPD), the iPDF for dust particles in KFT needs to come
from an evolved 3-dimensional numerical simulation, which does not necessarily have
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Gaussian fields in the system. Therefore the development of a new feasible method to
extract the mathematical challenging iPDF from simulation data is necessary.

Outline of the Thesis

To eventually obtain analytical and numerical results for the planetesimal formation
from KFT, we pursue three major goals with this work.

(i) The development of a new scheme for computing the iPDF of dust particles by
Gaussianizing their density and momenta fields in Chapter 4.

(ii) The derivation of the KFT density and momentum-density power spectra con-
sidering friction and self-gravitational interactions in the system, and the application
of novel asymptotic methods to analyze their small-scale behavior in Chapter 5 and
Chapter 6.

(iii) The discussion of the criteria for dust particles to overcome the ”meter-size
barrier” and achieve final gravitational collapse by determining the averaged density
growth in Chapter 5.

This thesis is organized as follows.
Chapter 2 first briefly summarizes the gas and dust dynamics within a PPD. A shear-

ing box simulation method is introduced next and the equation of motion in its corre-
sponding coordinates for dust particles is derived. Then the Hill stability criteria for
self-gravitating particle clouds in PPDs is discussed in detail and the corresponding
Hill density is given.

Chapter 3 provides the theoretical groundwork for kinetic field theory (KFT). Here,
the generating functional is derived in the case ofN classical particles, withN≫ 1. The
dust dynamics appropriate for planetary structure formation in KFT by considering
only friction interaction with an averaged background gas field and gravitational inter-
actions between dust particles is specified. Then the density and momentum-density
operators are defined for computing KFT power spectra in Chapter 5 and Chapter 6.

Chapter 4 develops the new scheme of modelling the iPDF for dust particles after a
specific simulation. By Gaussianizing the density field, we obtain the final expression
of the iPDF using a multivariable Gaussian distribute. Then a pipeline is developed to
extract the covariance matrix in the iPDF from simulation data. Finally, the momentum
covariance matrix is isotropized and rotated to the position and wave vector space for
the convenience of Chapter 5 and Chapter 6.

Chapter 5 starts with factorizing the generating functional and introducing the
mean-field approach for gravitational interaction to derive the general expression of
the KFT nonlinear density power spectrum. Next, the linear and nonlinear free, friction,
and gravitational density power spectra are analyzed and their large and small asymp-
totic behaviors are calculated. Then, the universality of a k−3 asymptotic tail for all the
nonlinear density power spectra above is concluded, suggesting a scale-invariant struc-
ture formation below a characteristic and time-dependent length scale. Furthermore,
the analysis of the amplitude for the k−3 small-scale asymptotic behavior shows a
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critical particle size τs ≈ 3.03 which corresponds to the strongest small-scale structure
formation when considering only the friction between dust particles and the constant
background gas field. In the end, the averaged density growth is calculated and the
criteria for overcoming the ”meter-size barrier” is given as τs ≈ 2.96 · 10−5, which is
far smaller than the lower limit given by simulations and well possible to achieve by a
dust coagulation process.

Chapter 6 starts with the derivation of the general expressions for the three KFT

scalar momentum-density power spectra. Next, the linear and nonlinear free, friction,
and gravitational momentum-density power spectra are analyzed and their large and
small-scale asymptotic behavior is calculated. In the end, the universality of a k−3 tail
for all the nonlinear trace momentum-density power spectra and a k−1 tail for all the
nonlinear divergence and curl momentum-density power spectra are concluded, sug-
gesting a scale-invariant total kinetic energy accumulation, and momentum-density
power accumulation parallel and perpendicular to k⃗ space below a characteristic length
scale. The further analysis of the amplitude for the k−3 small-scale asymptotic behav-
ior of trace power spectra shows a critical particle size τs ≈ 3.03 which corresponds
to the maximal small-scale kinetic energy accumulation when considering only the
friction between dust particles and the constant background gas field.

Chapter 7 summarizes our results and discusses the outlook for future work.
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F O U N D AT I O N S





2
D U S T D Y N A M I C S I N P R O T O P L A N E TA RY D I S K S

It has just been less than twenty years since the first planet outside our Solar System
was detected by Mayor, Michel and Queloz, Didier [29] and confirmed by Marcy et
al. [28]. Since then, the study of planet formation has been revolutionized by many
observational breakthroughs, which have allowed the detection and characterization
of extrasolar planets, the imaging of protoplanetary disks, and the discovery of the
Solar System’s Kuiper Belt.

Much work has been done to try to understand how extrasolar planets may form.
Modern studies of planet formation include comparing exoplanetary systems, the iden-
tification of protoplanetary disks around newborn stars, and computer models to trace
the creation of planets from their origins in interstellar dust and gas. This Chapter in-
troduces three main parts of this story. In the first part, the main players in the context
of planetary formation in PPDs, gas and dust, are introduced. Starting with gas dynam-
ics, one of its distinguishing properties is the internal pressure P caused by the gas
temperature T , which slightly compensates for the centripetal force and directly pro-
vides a change in its Keplerian velocity. In the meantime, this change of gas velocity
affects the dust dynamics by slowing down the dust particles via friction and causing
their radial drifts toward the central star. The second part of this Chapter introduces
one of the particular simulation methods for studying planetary formation and focuses
on the derivation of the equation of motion for dust particles in a local frame of refer-
ence. This coordinate system is set to orbit with Keplerian velocity around the central
star. It is called a shearing box since the Keplerian shear is linearised around the ori-
gin of the box. In the third part, the Hill stability criteria for self-gravitating particle
clouds in PPDs is discussed in detail and the corresponding Hill density is derived as a
key parameter which will be of paramount importance for determining gravitational
collapse in Chapter 5. Finally, in the end, we summarize these insights and discuss the
need for an alternative analytical approach to planetary structure formation that helps
us to understand dust aggregation and the emergence of kilometer-size planetesimals.

2.1 gas dynamics

The gas in a PPD has internal properties that the dust is lacking, such as a pressure P
that caused by the gas temperature T . Since the internal dust particle density is much
larger than the gas density, the resulting force from the gas pressure is negligible. From
the inner part, close to the star, the temperature decreases towards the outer part of
the disk. Hence, a gradient in pressure is acting in a radially inward direction. The

7
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pressure is supporting the gas radially against stellar gravity, together with the cen-
trifugal force from the circular orbit motion. The structure of this section follows this
line of thought. In between, we will define some important parameters (i.e. Keplerian
rotation frequency, gas scale height) for later application.

2.1.1 Keplerian rotation

In the PPDs, we suppose the mass of the central star is M∗. Consider a particle on the
mid-plane, in the absence of other force. The gravitational pull from the star g∗ on this
particle at a distance r is then:

g∗ =
GM∗
r2

(2.1)

From the balance of its centrifugal force, we can get the Keplerian angular fre-
quency([35]):

GM∗
r2

= Ω2r → Ω =

√
GM∗
r3

(2.2)

and Keplerian orbital velocity:

vK := vϕ = Ωr (2.3)

Throughout this thesis, if an object’s orbit is referenced to as Keplerian (Kepler [24]),
it obeys Equation 2.2 and has an azimuthal velocity of vK.

2.1.2 Gas disk pressure scale-height

PPDs cool significantly fast via their large surface area. This makes them rather small
in their vertical extent (D’Alessio et al. [8]). Still, they are vertically stabilized by a
pressure gradient on a pressure scale height H, which arises from the increasing gas
density towards the disk mid-plane. In a steady state, the vertical gravity must then
be equal to the vertical pressure gradient. The vertical gravity comes mainly from the
central star, as typical PPD models use disk masses of mdisk ≈ 0.01M∗, see Andrews
et al. [1] for further reading, as they suggest a typical disk mass to be 0.6% of the stellar
mass. So the disk self-gravity contribution is negligible in first-order approximation.

Following the scenario in Section 2.1.1, the gravitational pull in the z direction from
the star on a gas parcel at a distance r from the star and height z over the mid-plane,
with z≪ r, then is:
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g∗,z = g∗ sin θ =
GM∗
r2 + z2

· z√
r2 + z2

≃ GM∗z

r3
= Ω2z (2.4)

where tan θ = z
r . Now mark the internal gas pressure as P and the local gas density

as ρg. The vertical gas pressure gradient can be decomposed as:

∂P

∂z
=
∂P

∂ρg

∂ρg

∂z
(2.5)

In this thesis, we focus on local approximations of a PPD, thus we can assume the
gas to be isothermal locally, meaning the gas has a constant temperature T = const.
The equation of state is obtained from the ideal gas equation:

P = P(ρg) =
kBT

µ
ρg (2.6)

with kB being the Boltzmann constant and µ being the molecular mass of the gas.
Hence the sound speed

c2s =
∂P

∂ρg
=
kBT

µ
(2.7)

is also a constant. By using the ideal gas equation 2.6, we can rewrite the vertical
gas pressure gradient as

∂P

∂z
=
P

ρg

∂ρg

∂z
= c2s

∂ρg

∂z
(2.8)

Now by setting the pressure gradient equal to the vertical gravitational force, we
get:

∂P

∂z
= −ρgg∗,z → c2s

∂ρg

∂z
= −ρgΩ

2z (2.9)

This can be solved by simple integration to

ρg(z, r) = ρg,0(r) exp(−
z2

H(r)2
) (2.10)

where the vertical gas disk scale height is introduced by defining
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H(r) :=
cs(r)

Ω
(2.11)

Furthermore, we can also define the disk aspect ratio h as

h(r) =
H(r)

r
(2.12)

Parametrizing the sound speed via cs ∼ r−βs , one gets a disk aspect ratio of h(r) ∼
r−βs+1/2. A disk with a constant aspect ratio has βs = 1

2 , while a flared disk has a
larger outer disk aspect ratio, thus βs <

1
2 . Simple PPD models assume no disk flaring,

hence a fixed ratio between gas disk scale-height H(r) and radius r. Consequently,
a disk with a typical aspect ratio of h ≈ 0.04 (Hayashi [16]) has a circumference of
U = 2π

h H ≈ 157H, a value that will later be used as a reference, when a local coordinate
system for the numerical experiments is introduced.

2.1.3 Global pressure gradient

A main feature of a protoplanetary disk now is its high gas content, leading to a dif-
ferent equilibrium state in which the gas is not traveling with Keplerian orbital speed
but instead slower. This comes from its intrinsic, radially inward-pointing gradient in
the gas density and hence the existing gas pressure gradient. The change in orbital
velocity then depends on the strength of this additional pressure-gradient force, as it
is stabilizing now the gas together with the orbital centrifugal force.

In a gas-free 1-dimensional case, in the radial direction, the gravitational acceleration
g∗ is represented by Equation 2.1. The additional acceleration g ′ due to the force from
the gas pressure gradient, adds to the gas velocity via:

g ′ = −
1

ρg

∂P

∂r
(2.13)

Consequently, the gas is in hydrostatic equilibrium under the condition of

u(r)2

r
=
v2k
r

+ g ′ · r → u(r) = vk

√
1+

g ′ · r
v2k

≈ vk +
g ′ · r
2v2k

vk (2.14)

Here u(r) represents the azimuthal gas velocity and we already use the approxima-
tion where g ′ ≪ g∗. This can be expressed as a deviation from the original Keplerian
orbital velocity via
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∆u = vk − u = −
g ′

2g∗
vk (2.15)

Using the conditions for an isothermal disk, of P = c2sρg and H = cs/Ω, this can be
well parametrized in the often used beta-parameter βln(ρ) via

g ′ = −
1

ρg

∂P

∂r
= −

c2s
ρg

∂ρg

∂r
= −

HcsΩ

r

∂ ln ρg
∂ ln r

:= βln(ρ)csΩ (2.16)

One can also use the disk aspect ratio h in order to arrive at an even shorter expres-
sion for βln(ρ)

βln(ρ) = −h
∂ ln ρg
∂ ln r

(2.17)

Now, defining the sub-Keplerianness η of the gas velocity u as a factor between
Keplerian velocity and its deviation from it, via

u(r) = vk(1− η) (2.18)

Consequently, it can be expressed via the beta-parameter

η = −
g ′

2g∗
=
1

2

H

r
βln(ρ) (2.19)

or with vk = Ωr and cs = HΩ, we have

η =
1

2
βln(ρ)

cs

vk
(2.20)

Typically, the orbital velocity at a distance of r = 1AU around a star with mass
M∗ = Msun is about 32km/s. With a PPD typical value for η ≈ 10−3, the gas orbits at
1AU with a velocity of

u = (1− η)vk ≈ 31.968km/s (2.21)

This velocity difference might look insignificant, but the resulting radial particle
drift due to friction with the gas has challenged the planet formation community now
for decades, which also plays a crucial role in the rest of the thesis.
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2.2 particle friction and stokes number

In this section, dust is introduced into the coupled system, which changes the dynam-
ics of both components tremendously. Friction couples two systems that have differ-
ent natural azimuthal velocities. The dust wants to orbit with Keplerian velocity vk
whereas the pressure-supported gas tries to orbit with (1 − η)vk. The section intro-
duces the friction timescale τs, with its canonical representation by the dimensionless
Stokes number St, and briefly discusses the effect of the streaming instability (SI) for
planetesimal formation.

2.2.1 Friction

Generally describing the interaction between dust particles and an underlying gas
flow could be complicated considering the different shapes and properties of dust.
Visit Dominik and Tielens [11], Paszun, D. and Dominik, C. [33], Seizinger, A., Speith,
R., and Kley, W. [37] and Wada, Koji et al. [41] for further reading. Here we can use
the physical description of a particle interacting with a gas flow via a friction force
to represent the interaction. In the scope of this thesis, we only consider one kind of
simple friction force, which is proportional to the velocity difference of gas and dust
particles, times a constant:

f⃗ = −
1

τs
(⃗v− u⃗) (2.22)

where τs is called the friction time parametrizing strength of the frictional coupling,
v⃗ represents the dust-particle velocity, and u⃗ represents the velocity of the underlying
gas flow. The friction time is often also called stopping time, since it resembles the
time a particle needs to adjust to the underlying flow.

A picture to have in mind is throwing a ball while being underwater. If the ball is
small, i.e. a tennis ball, the ball will within a few seconds lose its initial velocity due
to friction with the water and instead will follow the flow of the water current. If the
ball is large, i.e. a bowling ball, the ball will not be affected much by the water current
and instead follow its trajectory until gravity takes over and it sinks to the ground.
This Gedanken experiment can also be done in PPDs, where tiny dust particles might
couple to the sub-Keplerian gas flow within a fraction of an orbital timescale, while a
planetesimal will basically never adjust to the gas flow.

For the dust within a PPD the friction time in the two extreme cases of the Gedanken
experiment has to be calculated differently. In the first case, the particle with mass m
has a radius a smaller than the mean-free-path λfree and the particle is in the Epstein
drag regime, which is the regime where particle and gas can both be treated as parti-
cles. If the particle size is larger than the mean free path, the particle is in the Stokes
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drag regime, which is the fluid regime where a large particle is embedded into the gas,
described as a fluid, see Epstein [12] and Okuzumi et al. [32]. The friction times are

τs =

τ
(Ep)
s = 3m

4ρgvthAp
, for a ⩽ 9

4λfree (Epstein)

τ
(St)
s = 4a

9λfree
· τ(Ep)

s , for a > 9
4λfree (Stokes)

where Ap is the projected particle surface area, and vth =
√
8/πcs is the mean ther-

mal velocity of the gas molecules. The mean-free-path in a PPD can be approximated
via

λfree ≃
mg

σmolρg
(2.23)

following Okuzumi et al. [32], which is valid as long as the gas particle back-
ground is not moving. With the geometrical collisional cross-section of the hydrogen
gas molecules of σmol ≈ 2 · 10−15cm3, this leads to a mean-free-path of the order of
meters in the mid-plane, and consequently, most of the dust particles will be in the
Epstein regime. Further, assuming the particles can be described as being spherical,
the stopping time in the Epstein regime can be expressed via

τ
(Ep)
s =

ρsa

ρgvth
(2.24)

where ρs is the internal density of a dust particle.
Typically, the stopping time is normalized by the characteristic timescale 1

Ω , i.e.
normalized on orbital timescales. The emerging dimensionless quantity is called the
Stokes number

St = τsΩ (2.25)

The Stokes number will be used throughout this thesis. Note that it is defined inde-
pendently of the underlying drag regime, i.e. it is a valid quantity in both, Epstein and
Stokes drag regimes, or any other drag regime. Hence the Stokes number is a descrip-
tion of how long a particle takes to couple to the gas, in terms of orbits. The Stokes
number actually can be very intuitive, if τs ≫ Ω−1, then St ≫ 1 and the particle is
decoupled from the gas, i.e. not significantly affected by gas drag as its stopping time
is much longer than the disk’s dynamical timescale. On the other hand, if τs ≪ Ω−1,
then St≪ 1, the particle is well coupled to the gas as its motion is strongly affected by
the drag force. Particles with St ≈ 1 are called marginally coupled. In Chapter 4, the
Stokes number of the simulation we analyzed is given as St = 0.01, which means the
particles are tightly coupled to the gas.
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2.2.2 The streaming instability

A second consequence of the difference in particle and gas velocities arises once inho-
mogeneities in the dust-to-gas ratio are considered. Define this ratio as:

ε =
ρd
ρg

(2.26)

where ρd is the dust density. In the PPDs, the Nakagawa solution for the gas and
the dust, see Nakagawa, Sekiya, and Hayashi [31], shows that a patch with a slightly
higher dust concentration is less affected by the friction with the background gas, thus
will drift more slowly to the central star, and dust from underdense regions can fall
into this patch from the radially outward direction. This is then even further enhancing
the locally higher dust concentration making this patch even drift less and would be a
run-away process if not non-linearities came into play. The linear instability was first
endeavored in Youdin and Goodman [44] and a simplified version of the equations
can be found in Jacquet, Balbus, and Latter [19]. These authors named it the stream-
ing instability (SI), and found it by solving the dispersion relation for this problem
in r− z direction, i.e. assuming azimuthal symmetry. This instability does not require
self-gravity to act. Already in pure hydrodynamical dust-gas calculations, see Youdin
and Johansen [43], the instability can act quite strongly. The growth timescales of this
instability are found to be faster than the radial drift timescales. Thus, Youdin and
Goodman [44] suggested that the SI might be the trigger for planetesimal formation,
as it can significantly concentrate dust locally, and maybe even up to values that trig-
ger collapse, however, the latter has never been fully proven, though claims are out
there, i.e. from text[39] and Johansen et al. [22]. The open question in their work is
whether the collapse comes from SI alone or is assisted by stellar gravity together with
extremely high dust-to-gas ratios, in Chapter 5, we will provide our own answer to
this question with the new analytical method.

2.3 dust equation of motion in the shearing sheet approximation

This section starts with describing one of the popular simulation methods, the shear-
ing box coordinate system, to study planetary formation. This local frame of reference
is co-moving on a Keplerian orbit, which allows to follow the gas and dust dynam-
ics without taking care of the central star and large scale, i.e. global, disk dynamics.
Furthermore, the boundary conditions of this simulation box are discussed, especially
the shear periodic boundary condition in the radial direction. In the end, a detailed
transformation for the dust dynamical equations to this local coordinate system is pro-
vided to help understand the nature of planetesimal formation using this particular
simulation method, which also makes up the theoretical foundation for finding the
proper dust trajectories in Chapter 3.
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2.3.1 Shearing Box Approximation

In this thesis, for studying the ”meter-size barrier” and the emergence of planetesimals,
scales L≪ H are of interest, where H is the gas pressure scale height of Equation 2.11.
These scales L are so small that a numerical computation in the form of a global disk,
covering the whole PPD is not feasible. Moreover, since we are interested in investigat-
ing the local micro-physics of dust, a local approximation is needed. This is done by
changing from the global Cartesian coordinate system into a local Cartesian coordi-
nate system at a distance R0 from the central star that itself orbits around the central
star with Keplerian velocity vk(R0). This type of coordinate system is called shearing
sheet, or shearing box coordinate system. See Figure 2.1.

Figure 2.1: In this drawing the shearing box coordinate system is the primed system with
coordinates x ′ and y ′ . It is a coordinate system that orbits around the star with
the Keplerian velocity at its origin. Hence, unity vectors in ϕ̂ transform into ŷ of
the primed system. Consequently, the Keplerian shear has to be linearised in the
shearing sheet coordinate system. In order to have the radial boundary condition
periodic, we include a shear periodic boundary condition that adjusts the azimuthal
velocity when surpassing the radial boundary.

2.3.2 Shearing Periodic Condition

In this part, we briefly discuss the boundary conditions of the shearing box simula-
tions. In the y and z directions, we have the normal periodical boundary conditions,
yet in the x direction, we adopted the shear periodic boundary condition. Figure 2.2
illustrates how the shear periodic boundary for a shearing sheet domain L works. At
the initial time step t = t0 (top), the radial periodicity is similar to a classical peri-
odic boundary condition. But, with evolving time, the linear shear moves this periodic
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boundary in an azimuthal direction. The azimuthal velocity of the radially next inner
domain is given via the linearised Keplerian shear velocity by Equation 2.33 as

vR−∆r = −
3

2
Ω0(−L) =

3

2
Ω0L (2.27)

In order to correct for this shearing boundary condition, a particle that leaves the
radial inner boundary at an azimuthal position of yp,−L, re-enters the simulation do-
main on the outer boundary at a position yp,+L. This new azimuthal position has to
be shifted by the shear offset of the radially inner box, i.e.

yp,+L = yp,−L + mod
(
3

2
Ω0L · t,L

)
(2.28)

The particle azimuthal velocity also has to change by the velocity offset from the
inner to the outer boundary, which is also

v−L = v+L −
3

2
Ω0L (2.29)

Of course, the same, but with a different sign, happens to a particle that crosses the
outer radial boundary.

2.3.3 Euler Equations

The dynamics of dust particles in a PPD are described by the momentum equation,
which is an Euler equation with different terms for the individual physical processes
that induce momentum:

dv⃗

dt
+ (⃗v · ∇⃗)⃗v = −

1

τs
(⃗v− u⃗) − ∇⃗Φ+ other forces (2.30)

This equation describes the change over time of the velocity field of a fluid(dv⃗dt ): It
changes due to advection ((⃗v · ∇⃗)⃗v), and other physical processes that are described on
the right-hand side. These are friction with gas of velocity u⃗ and a friction coefficient
of τs, and gravity (−∇⃗Φ). But, many other terms could enter this equation.

The goal of this part is to derive the equations of motion for such a shearing sheet
coordinate system. The derivation starts from Equation 2.30, but the coordinate trans-
formations will only affect the left-hand side terms, i.e. the time derivative and the
advection term. This is only partly true, since also the gravitational potential will
change, as shown later in this section, since a PPD is a rotating system such that the
transformation will introduce Coriolis forces.
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Figure 2.2: Example for the shear periodic boundary condition for a shearing box of size L. At
the initial time step t0 (top), the radial periodicity is similar to a normal periodic
boundary condition. But, with evolving time, the linear shear moves this periodic
boundary in azimuthal direction. A particle leaving the radial inner boundary re-
enters the simulation domain shifted by the shear-offset, see orange arrow, and its
azimuthal velocity is shear corrected.

Linearising the Keplerian shear

First, the Keplerian shear needs to be linearised around R0. For this, a Taylor expansion
of Equation 2.2 around R0 at the point r = R0 +∆r can be done, which leads to

Ω(r) = Ω0(1−
3

2

∆r

R0
) (2.31)

where Ω0 = Ω(R0). Using the primed radial coordinate, ∆r becomes x ′, and the
orbital velocity attains its linearised form:
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v = Ω0(1−
3

2

x ′

R0
)R0 = Ω0R0 −

3

2
Ω0x

′ (2.32)

Thus, the linearised Keplerian shear velocity is approximated in the co-rotation
frame as

vshear = −
3

2
Ω0x

′ (2.33)

Transforming the advection term into the shearing sheet coordinate system

Here we start with the advection term as this is easier to transform. In the following
the Einstein index notation is used, where there is an unwritten but existing sum over
all indices that appear twice. Hence, (⃗v · ∇⃗)⃗v = vi∂ivj. This is getting transformed into
the primed Cartesian coordinate system via

v⃗ → v⃗ ′ + v⃗0
′ = v⃗ ′ −

3

2
Ω0x

′ŷ ′ (2.34)

where ∇⃗ ′ ≡ ∇⃗ since x ′ ≪ R0 and y ′ ≪ R0. Thus, the advection term becomes

vi∂ivj = [(⃗v ′ + v⃗0
′) · ∇⃗ ′](⃗v ′ + v⃗0

′) = [(⃗v ′ + v⃗0
′) · ∇⃗ ′ ]⃗v ′ + [(⃗v ′ + v⃗0

′) · ∇⃗ ′]v⃗0
′ (2.35)

with

[(⃗v ′ + v⃗0
′) · ∇⃗ ′ ]⃗v ′ = (vi + v0)∂ivj = vi∂ivj + v0i∂ivj = (v⃗ ′ · ∇⃗ ′)v⃗ ′ + v ′0y

∂v⃗ ′

∂y ′ (2.36)

[(⃗v ′ + v⃗0
′) · ∇⃗ ′]v⃗0

′ = (vi + v0yδiy)∂iv0y = (−
3

2
Ω0v

′
x)ŷ

′ (2.37)

Reassembling both terms, the advection term from Equation 2.30 becomes:

(⃗v · ∇⃗)⃗v = (v⃗ ′ · ∇⃗ ′)v⃗ ′ + v ′0y
∂v⃗ ′

∂y ′ + (−
3

2
Ω0v

′
x)ŷ

′ (2.38)

Transforming velocity time derivative into the shearing sheet coordinate system

In order to rewrite the velocity time derivative term of the momentum equation, we
need to express dv⃗

dt in cylindrical coordinates. In contrast to the Nabla operator, now
the time derivative of the velocity field introduces on one hand the shear advection
and on the other hand the Coriolis forces. In cylindrical coordinates, we have:
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dv⃗

dt
=
d

dt
(ṙr̂+ rϕ̇ϕ̂+ żẑ) = r̈r̂+ ṙϕ̇ϕ̂+ ṙϕ̇ϕ̂+ rϕ̈ϕ̂− rϕ̇2r̂+ z̈ẑ (2.39)

Then velocity time derivative term becomes:

dv⃗

dt
= (r̈r̂+ rϕ̈ϕ̂+ z̈ẑ) + 2ṙϕ̇ϕ̂− rϕ̇2r̂

=
∂v⃗

∂t
+∆

(2.40)

Where ∆ = 2ṙϕ̇ϕ̂− rϕ̇2r̂. Now we have to transform ∆ into the primed coordinate
system via

x ′ = r− R0, y ′ = R0(ϕ−ϕ0 −Ω0t), z ′ = z, t ′ = t. (2.41)

Using this transformation, we get the following table that translates the expressions
within ∆:

r̂ = x̂ ′ ϕ̂ = ŷ ′

r = R0 + x
′ ϕ = y ′

R0
+ϕ0 +Ω0t

ṙ = ẋ ′ = v ′x ϕ̇ = ẏ ′

R0
+Ω0 = 1

R0
v ′y +Ω0

Hence the ∆ term becomes:

∆ = 2v ′x(
1

R0
v ′y +Ω0)ŷ

′ − (R0 + x
′)(
1

R0
v ′y +Ω0)

2x̂ ′

= 2Ω0v
′
xŷ

′ −Ω2
0R0x̂

′ − 2Ω0v
′
yx̂

′
(2.42)

Here to get the final result in Equation 2.42, we neglect the terms with x ′ and v ′iv
′
j.

Transformed momentum equation

Now we put everything together, and rename the primed system to unprimed. The
momentum equation becomes

∂v⃗

∂t
+ (⃗v · ∇⃗)⃗v+ v0y

∂v⃗

∂y
− f⃗(⃗v) −Ω2

0R0x̂ = −
1

τs
(⃗v− u⃗) − ∇⃗Φ+ ... (2.43)

where f⃗(⃗v) is the Coriolis forces:

f⃗(⃗v) =

 2Ω0vy

−1
2Ω0vx

0

 (2.44)
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Here we cancel Ω2
0R0 with part of the gravitation force in −∇⃗Φ and get the final

momentum equation of the fluid in the shearing sheet coordinate system as:

∂v⃗

∂t
+ (⃗v · ∇⃗)⃗v+ v0y

∂v⃗

∂y
− f⃗(⃗v) = −

1

τs
(⃗v− u⃗) − ∇⃗Φ+ ... with v0y = −

3

2
Ω0x (2.45)

where Φ now is the change in the gravitational potential from the potential of the
central star.

2.4 hill stability of a particle cloud

In the following section, the stability of self-gravitating particle clouds in PPDs is an-
alytically investigated. There are two canonically used instability criteria, the Roche
stability, and the Hill stability criterion. The first was calculated in the 19th century by
Edouard Roche, who investigated the stability of loosely bound material in the vicinity
of larger bodies, such as the breakup of comets close to the Sun. Based on his work,
George William Hill calculated the dynamical stability of a test mass around a smaller
body in a rotating frame. This is typically interpreted as a spherical volume around
a minor body, e.g. around Earth, in which a small body, e.g. the Moon, stays bound
to it. Being outside of this sphere of influence, the gravitational attraction onto the
small body is dominated by a major body, i.e. the Sun. Points on the surface of this
sphere show little net acceleration forces. Both criteria state that stability is granted
as long as mutual gravitational interaction within a particle cloud is stronger than the
gravitational gradient, exerted by a larger mass outside of the body of interest, which
is in our case a particle cloud. The Hill stability differs from the Roche criterion by de-
manding an orbital motion of the particle cloud around a central mass. The additional
centrifugal force induced thereby further stabilizes the particle cloud by reducing the
gravitational gradient across the cloud. In this thesis, we are more interested in the
Hill stability criterion since we will be dealing with simulation data from a local shear-
ing box, thus in the following, we present the derivation of its dynamic equations in
detail.

The Hill stability criterion is a dynamical criterion not based on perturbation theory,
but on force equilibrium, see Figure 2.3. The Hill sphere is a ’zero-acceleration’ spher-
ical surface on which a rigidly bound test mass µ will not get accelerated. Rigidly
bound means the centrifugal forces of m and µ are set to be equal. One can write that
centrifugal forces on m are in equilibrium with the gravitational pull from M:

mΩ2
mD =

G0Mm

D2
→ Ωm =

G0M

D3
≈ Ωµ (2.46)

with G0 being the gravitational constant. The forces acting on µ satisfy
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Figure 2.3: The Hill criterion is a criterion for internal stability. It looks for the boundedness
of a test mass µ to a smaller mass m, in the vicinity of a larger mass M. The Hill
analysis assumes the smaller mass to orbit around the larger mass. The Hill analysis
leads to a Hill sphere, which is the sphere of zero acceleration around the mass m.
Everything inside this sphere is bound, under the assumption of not having escape
velocity or other perturbations occurring.

0 =
∑
i

Fi = −FM + Fm + Fc

= −
GMµ

(D− a)2
+
Gmµ

a2
+ µΩ2

µ(D− a)

= −1+
(D− a)2

a2
m

M
+

(D− a)3

D3

(2.47)

In the limit of D≫ a, the above equation becomes

3a3

D3
=
m

M
(2.48)

Solving for the minimal stable distance of the µ−m-system to M gives

Dcrit = a

(
3M

m

) 1
3

(2.49)

For the critical density of a particle cloud, we assume m to be the center mass of the
cloud, i. e. a sphere of particles with m = ρ4

3πa
3. The critical density of the particle

cloud m is then

ρH =
m

4
3πa

3
=
9

4π

M

D3
(2.50)

This density of a particle sphere can now be used as a first approximation for the
stability of the system. It is derived in a 1−d case and clearly some effects are missing,
such as friction with the underlying gas disk. But still, we consider this approximation
to be sufficient within this work.
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2.5 summary and discussion

Planetary formation has been puzzling us together with the question of where we are
from since day one. In this Chapter, we reviewed the basic gas and dust dynamics in
the protoplanetary disk (PPD) related to this work, and realized that the distinguish-
ing feature of gas that dust particles are lacking, i.e. an internal pressure, plays an
essential role in initiating the planetesimal formation through the friction interaction
and streaming instability (SI) between the two systems. Furthermore, the Hill stability
criterion for self-gravitating particle clouds has been investigated in detail. The result-
ing gravitational instability of a PPD from surpassing the local Hill density provides
another important source for planetesimal formation.

One key point to recognize is that the process of planet formation is highly nonlin-
ear. Therefore it is rather difficult to develop any perturbation and linear theories to
thoroughly study the problem as in lots of other areas. For example, in cosmology, the
cosmological principle of the universe being homogeneous and isotropic allows us to
use linear theory to quantify the growth of density perturbations on large scales. This
has been very successful and provides some critical insights even until today.

Still, there are considerably different analytical theories have been developed to un-
derstand this problem, for example, predicting the behavior of the small-scale grain–grain
correlation function using simple models of Gaussian random-field turbulence, see
Sigurgeirsson and Stuart [38], and predicting quantities such as the grain density dis-
tribution, the density fluctuation power spectrum, maximum grain densities, and cor-
relation functions, as a function of grain stopping/friction time, grain-to-gas volume
density ratio, and properties of the turbulence using grain clustering models in tur-
bulence, see Hopkins [18]. However, they either estimate much smaller fluctuations
or mostly focus on the inertial-range turbulence, with large Reynolds numbers and
Stokes numbers. Rigorous analytical descriptions of how the nonlinear power spectra
emerge for different sizes of particles and particularly their small-scale analysis are
still missing.

Another more direct and popular approach to this problem has been through differ-
ent schemes of simulation methods, one of which has been reviewed in this Chapter.
Admittedly, there have been plenty of great successes in this area, yet the issues with
simulations such as limited resolution, the formation of spurious features, the imple-
mentation of initial conditions, or the limited box size, get in the way, let alone the
time and energy consumption, especially when one wishes to repeat the simulation
for different parameters.

Therefore, in this work, we make use of a recently-developed analytical approach
to study planetary structure formation, which circumvents the aforementioned prob-
lems: kinetic field theory (KFT) is an analytical approach to structure formation that
operates in the particle picture. The dynamics of the particles’ phase space trajectories
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are governed by their equation of motion in 6N-dimensional phase space. In the next
chapter, we review the most important aspects of KFT, relevant to this work.





3
K I N E T I C F I E L D T H E O RY I N A N U T S H E L L

kinetic field theory (KFT) is a statistical field theory for ensembles of classical particles
in or out of equilibrium. The central object in KFT is the generating functional Z. Similar
to the partition function in classical thermodynamics, it contains all information about
the probability distribution P(ϕ) of system states ϕ

Z =

∫
DϕP(ϕ). (3.1)

In general, the system states ϕ are continuous fields of time, which requires the
use of a path integral. In this chapter, we review the foundations of KFT for planetary
structure formation. Since KFT became a very diverse theory with various formulations
and applications in cosmology, astrophysics and beyond, we restrict this review to
those results that are relevant to this work. We recommend the recent review on KFT

by Bartelmann et al. [6] to the interested reader.
In the first section, we introduce the tensor notation that is used throughout this

work. In the second section, we derive the generating functional Z for N particles and
compare it with the canonical partition function in equilibrium statistical physics to
help understand how classical mechanics can be formulated with path integrals. In
the third section, inspired by the equation of motion for dust particles in the shearing
box approximation by Equation 2.45, we specify the dust dynamics appropriate for
planetary structure formation in KFT by considering only friction interaction with an
averaged background gas field and gravitational interactions between dust particles.
In the end, we introduce the density and momentum operators which provide the
most powerful tools for studying structure formation in Chapter 5 and Chapter 6.

3.1 notations

We consider a set of N point particles in the classical 6N dimensional phase space Γ .
The trajectory of each particle 1 ⩽ j ⩽ N in phase space is the tuple of position q⃗j and
momentum p⃗j which we denote

xj :=

(
q⃗j

p⃗j

)
. (3.2)

Note that the following notations are equivalent q⃗j ≡ x⃗qj
, p⃗j ≡ x⃗pj

.

25
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To compactify notation, we collect the trajectories of all particles in the tensorial
object

x := xj ⊗ ej, (3.3)

where summation over j is implied, and ej ∈ RN with (ej)i = δij, 1 ⩽ j ⩽ N.
Furthermore, when we consider the collection of all particle positions or momenta
separately, we write

xq := q⃗j ⊗ ej
xp := p⃗j ⊗ ej

(3.4)

respectively. Unless otherwise stated, we use bold letters without index (e. g. J, x)
to denote 6N-dimensional tensors. We can split these vectors into the 3N dimensional
position component (e. g. Jq, xq) and a 3N-dimensional momentum component (e. g.
Jp, xp). When we use the same letter non-bold with an integer index (e. g. Jj, xj), we
mean the 6-dimensional phase space tuple of one specific particle. In order to indicate
the 3-dimensional position/momentum component of an individual particle, we use
non-bold symbols with vector arrow, position/momentum label and integer particle
index (e. g. J⃗qj

, J⃗pj
, x⃗qj

, x⃗pj
).

With these conventions, any bold tensor J can be written as

J =

(⃗
Jqj

J⃗pj

)
⊗ ej. (3.5)

We introduce the scalar product

⟨J, x⟩ := (Jj ⊗ ej) · (xi ⊗ ei) = Jj · xj ≡ ⟨Jq, xq⟩+ ⟨Jp, xp⟩, (3.6)

and define the symplectic two-form

J :=

(
0 I3

−I3 0

)
⊗ IN. (3.7)

We define the gradient with respect to the phase space coordinates of all particles

∇x :=

(
∇⃗qj

∇⃗pj

)
⊗ ej, (3.8)
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such that the application to any scalar function f of the particles’ phase space coor-
dinates can be written as

∇xf(x) =
N∑
j=1


∂

∂qj,x

∂
∂qj,y

∂
∂qj,z

 f(x) +
N∑
j=1


∂

∂pj,x

∂
∂pj,y

∂
∂pj,z

 f(x). (3.9)

To write equations more compactly, we introduce the following notation for integrals
over q in real space and over k in Fourier space, respectively,

∫
q

=

∫
R3

d3q,
∫
k

=

∫
R3

d3k

(2π)3
. (3.10)

3.2 generating functional

A path-integral formulation for classical Hamiltonian dynamics of a particle ensem-
ble called kinetic field theory (KFT) was developed and applied to cosmic structure
formation in Bartelmann et al. [4], Bartelmann et al. [5] and [6]. In this section, we
review the foundations of KFT which are essential to this work, and show that the
central object, the generating functional, is completely determined by the equation of
motion of particle ensembles and their initial probability distribution function in phase
space (iPDF). In the end, a comparison with equilibrium statistical physics is given to
help understand the concepts of this theory.

3.2.1 The Generating Functional

For classical (canonical) ensembles consisting of N point particles, the system states
ϕ are described by the trajectories x in the classical 6N-dimensional phase space Γ , as
defined in Equation 3.3. The generating functional defined in Equation 3.1 then turns
into

Z =

∫
DxP(x). (3.11)

Note that P(x) is the probability distribution for trajectories in classical phase space,
and not the probability distribution to find the system in a specific configuration at a
given time. We further split the probability P(x) for the state x to be occupied into a
probability P(x(i)) for the particle ensemble to occupy an initial state x(i) (iPDF) at time
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t = 0, times the conditional probability P(x|x(i)) for the ensemble to move from there
to the time-evolved state x,

P(x) =
∫
dx(i) P

(
x|x(i)

)
P
(

x(i)
)

. (3.12)

For particles on classical trajectories, the transition probability P(x|x(i)) must be a
functional delta distribution of the classical particle trajectories,

P
(

x|x(i)
)
= δD

[
x − xcl

(
x(i)

)]
, (3.13)

where xcl(x(i)) denotes the formal solution to the equation of motion of the entire
particle ensemble on phase space, with the specified initial phase-space conditions
x(i), as illustrated in Figure 3.1.

Figure 3.1: Illustration of the main idea of KFT. An initial probability distribution on the phase
space is mapped to any later time by classical particle trajectories. Since phase-space
trajectories do not cross, this approach avoids the notorious shell-crossing problem
by construction.

In classical phase space, trajectories do not cross and are uniquely constrained by
the initial conditions because they follow the Hamiltonian flow. Here we write the
equation of motion in a more general form as

E(x) = ẋ − f(x) = 0 (3.14)



3.2 generating functional 29

where f(x) encodes all physical processes that change the particle dynamics in it,
which are not necessarily Hamiltonian. The functional Dirac delta distribution can be
written in terms of the equation of motion as

δD

[
x − xcl

(
x(i)

)]
= δD [ẋ − f(x)]det [∂tδab − ∂bf

a] (3.15)

where the determinant cannot be taken to be equal to unity as in Liouville’s the-
orem anymore. Thus we preserve the expression for the determinant and write the
generating functional in Equation 3.11 in terms of the equation of motion,

Z =

∫
Dx

∫
dx(i)P

(
x(i)

)
det [∂tδab − ∂bf

a] δD [ẋ − f(x)]

=

∫
Dx

∫
dx(i)P

(
x(i)

)
det [∂tδab − ∂bf

a]

∫
Dχ exp

[
i
∫∞
0

dt (⟨χ, ẋ − f(x)⟩)
] (3.16)

In the last step, the Dirac delta distribution is expressed as a functional Fourier
integral with respect to an auxiliary field χ.

In order to generate moments of phase space coordinates from the generating func-
tional, we introduce two source fields, which are conjugate to the phase space trajecto-
ries x(t) and the auxiliary field χ,

J :=

(⃗
Jqj

J⃗pj

)
⊗ ej and K :=

(
K⃗qj

K⃗pj

)
⊗ ej (3.17)

and turn the generating functional into the expression

Z[J, K] =

∫
Dx

∫
dx(i)P

(
x(i)

)
det [∂tδab − ∂bf

a]

∫
Dχ exp

[
i
∫∞
0

dt (⟨χ, ẋ − f(x)⟩+ ⟨J, x⟩+ ⟨K,χ⟩)
]

(3.18)

On the other hand, if we are able to analytically solve the equation of motion for
the particle ensemble beginning at x(i) and denote the solution as x̄(t), the generating
functional in Equation 3.16 becomes

Z =

∫
Dx

∫
dx(i)P

(
x(i)

)
δD [x − x̄(t)] (3.19)

Now we still introduce the conjugate generator field J and get a simpler expression
for the generating functional as
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Z[J] =
∫
Dx

∫
dx(i)P

(
x(i)

)
δD [x − x̄(t)] exp

[
i
∫∞
0

dt⟨J, x⟩
]

=

∫
dΓ exp

[
i
∫∞
0

dt⟨J, x̄(t)⟩
] (3.20)

where we have introduced the initial phase-space measure

dΓ := dx(i)P
(

x(i)
)

. (3.21)

3.2.2 Similarities to Equilibrium Statistical Physics

Conceptually, KFT is largely different from equilibrium statistical physics, because the
former describes a system that may be far from equilibrium.

In equilibrium thermodynamics, the partition sum Z contains all macroscopic infor-
mation on a particle ensemble. Taking derivatives of Z, expectation values for macro-
scopic state variables can be retrieved. For example, the (negative) derivative of Z
with respect to the inverse temperature β returns the mean internal energy U, and
the derivative of Z with respect to the chemical potential µ returns the mean particle
number ⟨N⟩ in a grand-canonical ensemble.

The kinetic field theory (KFT) proceeds in an analogous way: it is based on an equiv-
alent to the partition sum for a classical particle ensemble, from which macroscopic,
statistical information is retrieved via derivatives. There is one important extension,
though: Since KFT is a theory for systems possibly out of equilibrium, its equivalent to
the partition sum needs to depend on time. It therefore needs to be a functional of en-
semble properties, which are themselves functions of time. For this reason, Z is called
a generating functional in KFT. Likewise, derivatives need to return functions rather
than numbers, and therefore need to be functional derivatives. In KFT, time-dependent,
macroscopic, statistical information on classical particle ensembles is thus obtained by
taking functional derivatives of the generating functional Z, conceptually similar to
thermodynamics.

In equilibrium thermodynamics, the partition sum is an integral over a probability
distribution for microstates. In KFT, the generating functional is an integral over the
probability with which phase-space positions at any time twill be reached by particles.
This probability is determined by the probability for an initial phase-space position to
be occupied by a particle, times the conditional transition probability for this particle
from its initial to a later phase-space position.

Any initial position in phase space is the starting point of a classical particle tra-
jectory, which solves the equation of motion with the initial phase-space point taken
as initial condition. For classical particles, the transition probability from initial to fi-
nal states takes the form of a (functional) Dirac delta distribution: it vanishes almost
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everywhere, except along the actual particle trajectory. This is the main difference to
quantum mechanics or quantum field theory, where the transition probability is a path
integral over a phase factor containing the action functional.

The canonical partition function Z and the generating functional Z[J] ensure the
formal analogy between statistical physics and KFT. Although one describes an equi-
librium and the other a non-equilibrium system both contain the initial phase space
distribution and the dynamics of the microscopic degrees of freedom. Macroscopic
quantities are calculated from partial derivatives of the partition function or the gener-
ating functional.

3.3 simplified dust particle trajectories

In the last section, we reviewed how classical mechanics can generally be formulated
in the path integral formalism, and come to understand that the equation of motion
for particle ensembles plays an essential role in the generating functional. In this
section, first we show the difficulties of finding the generating functional Z [J, K] in
Equation 3.18 using the full equation of motion for dust particles in the shearing box
approximation by Equation 2.45, then review how simplified and more ideal dust par-
ticle trajectories are specified by reducing the interactions considered strictly to only
friction and gravity.

3.3.1 Complications with the Full Equation of Motion

For one dust particle, if we set its mass to unity, we can describe its dynamics by
borrowing the equation of motion from Equation 2.45 and rewrite it in phase space as

∂tq⃗ = p⃗

∂tp⃗ = −
1

τs
p⃗+ f(p⃗) +

3

2
Ω0qx

∂p⃗

∂qy
− (p⃗ · ∇⃗q)p⃗+

(
u⃗

τs
− ∇⃗qΦ

)
,

(3.22)

thus its trajectory x in phase space satisfies

∂tx− J
1x−

1

2

(
xTJ2

)
x−K1 = 0 (3.23)

where

J1 =

0 I3

0
(
− 1

τs
+ 3

2Ω0qx
∂

∂qy

)
I3 + J

1
4

 with J14 =

 0 2Ω0 0

−1
2Ω0 0 0

0 0 0

 ,

(3.24)
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J2 =

(
0

−2∇⃗q

)
, and K1 =

(
0

u⃗
τs

− ∇⃗qΦ

)
. (3.25)

Note that here 1 and 2 are superscripts, not exponents. There are various difficulties
when plugging Equation 3.23 in the generating functional Z[J, K] in Equation 3.18, one
of which lies in finding the determinant of matrix

[
∂tδ

a
b − ∂bf

a
]

where in this case
fa = J1acxc +

1
2xcJ

2cxa + Ka
1 . Furthermore, Equation 3.23 shows non-linearly depen-

dence of particle trajectory x, meaning that the determinant will be a function of x
and its derivatives, instead of unity or any other constants. This extra function would
make the integral in the generating function too difficult to proceed with. More fun-
damentally, it could cause the resulting phase space trajectories to intersect. Therefore,
it’s more feasible and appropriate to modify the equation of motion for dust particles
slightly and preserve the most essential interactions and plug it in KFT.

3.3.2 Dust Particles Trajectory

To simplify the equation of motion for dust particles, first, we omit the advection term
(p⃗ · ∇⃗q)p⃗ in Equation 3.22 which brings the nonlinearity −1

2

(
xTJ2

)
x to Equation 3.23,

then to retain the overall isotropic feature of the system, we leave out both the Coriolis
force f(p⃗) and the Keplerian shear term 3

2Ω0qx
∂p⃗
∂qy

, which is caused by the coordinate
transformation. In the end, for one dust particle, keeping the friction interaction with
the gas and the gravitational interaction with each other, we can write its equation of
motion in phase space as

∂tx− J1x−K1 = 0 (3.26)

with the new J1 being

J1 =

(
0 I3

0 − 1
τs

I3

)
(3.27)

and K1 stays the same as in Equation 3.25.
Since J1 now becomes a constant matrix, we realize the analytical expression for

dust particle trajectory can be easily calculated and we can plug the N-particle result
into the simpler expression of generating functional Z[J] in Equation 3.20. In order to
solve Equation 3.26, first we have to find its homogeneous solution,

∂tx− J1x = 0 (3.28)
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The solution of Equation 3.28 is:

x = exp
(∫t

0

J1dt̄

)
x0 (3.29)

where x0 is the integral constant. When we add the inhomogeneous term on the
right hand of the equation, we need the variation of constants to get the solution,
setting:

x = exp
(∫t

0

J1dt̄

)
x0(t) (3.30)

We insert this into Equation 3.26,

exp
(∫t

0

J1dt̄

)
∂tx0 + J1x0 exp

(∫t
0

J1dt̄

)
− J1x = K1(t) (3.31)

which leads to:

x0(t) = x
(i) +

∫t
0

exp

(
−

∫t ′

0

J1dt̄

)
K1(t

′)dt ′ (3.32)

where x(i) is an integral constant representing the initial dust particle coordinates
in phase space. Combining Equation 3.29 and Equation 3.32, we have the solution for
one dust particle trajectory in phase space x as:

x(t) = exp
(∫t

0

J1dt ′
)
x(i) +

∫t
0

exp
(∫t

t ′
J1dt̄

)
K1(t

′)dt ′ (t > t ′) (3.33)

By the definition of the Green’s function, we can read off the Green’s function G of
the differential Equation 3.26 as:

G(t, t ′) = exp
(∫t

t ′
J1dt̄

)
= exp

(
J1(t− t ′)

)
, (3.34)

then we perform a Taylor expansion in order to obtain the Green’s function in matrix
form,

exp
(
J1(t− t ′)

)
=

∞∑
i=0

(
J1(t− t ′)

)i
i!

, (3.35)
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for matrix J1, we find that i-th power is related to itself by:

(
J1
)i

= J1 ·
(
−
1

τs

)i−1

, (3.36)

thus the power series in Equation 3.35 becomes:

∞∑
i=0

(
J1(t− t ′)

)i
i!

= I6 +

∞∑
i=1

J1
(
− 1

τs

)i−1
(t− t ′)i

i!

= I6 − J1τs

 ∞∑
i=0

(
−t−t ′

τs

)i
i!

− 1


= I6 + J1τs

(
1− exp

(
−
t− t ′

τs

))
.

(3.37)

This result leads to the final expression of the Green’s function in matrix form as:

G(t, t ′) =

I3 τs

(
1− e−

t−t ′
τs

)
I3

0 e−
t−t ′
τs I3

 (3.38)

With component functions

gqq(t, t ′) = 1,

gqp(t, t ′) = τs
(
1− e−

t−t ′
τs

)
,

gpp(t, t ′) = e−
t−t ′
τs .

(3.39)

For simplicity, we abbreviate gqp(t, 0) := gqp(t) and gpp(t, 0) := gpp(t). Now that
we have the Green’s function, we can immediately write down the phase space trajec-
tories x̄ for an N point dust ensemble as:

x̄ = G(t, 0)x(i) +
∫t
0

dt ′G(t, t ′)K1(t
′) (3.40)

with the 6N× 6N dimensional Green’s function

G(t, t ′) = G(t, t ′)⊗ IN (3.41)
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and the 6N dimensional vector being

K1 =

(
0

u⃗
τs

− ∇⃗qj
Φj

)
⊗ ej. (3.42)

K1 represents all the external forces and interactions with dust particles, in this case
specifically friction with the gas and gravity sourced by the fluctuations of the local
matter density ρ around its time-dependent mean density ρ̄ via the Poisson equation

∇2Φ = 4πG0(ρ− ρ̄). (3.43)

Now concerning the friction term, we can further simplify the trajectories of the
dust ensemble in phase space by remembering that after a short time evolution, small-
size dust particles tend to flow with the background gas field with a slower than
Keplerian azimuthal velocity due to the friction between the two systems. If we neglect
the feedback of the dust onto the gas and assume the lower azimuthal velocity of the
gas due to its internal pressure gradient is locally stable, then we can limit ourselves
to a prescribed constant background gas velocity field u⃗ ≡ u⃗0, instead of a more
challenging functional form.

3.4 operators

So far we only considered the microscopic degrees of freedom of the particle ensemble,
since those are the dynamical fields of KFT. For our discussion of structure formation,
the standard application of KFT in this thesis will concern the calculation of density
and momentum power spectra. We shall thus proceed to define different operators
and study their action on the generating functional in Equation 3.20.

Generally, by applying differential operators to the generating functional and setting
the source fields to zero afterwards, functions of the phase space trajectories can be
generated. In the simplest case, applying a functional derivative with respect to the
component Jj(t) of the generator field generates the average phase space trajectories
of particle j at time t,

−i
δ

δJj(t)
Z[J]

∣∣∣
J=0

= ⟨x̄j(t)⟩ (3.44)

More generally, we apply operators in form of functional derivatives with respect to
the field components, to generate functions of the phase space trajectories.

f(xj) = f

(
−i

δ

δJj(t)

)
Z[J]

∣∣∣
J=0

(3.45)
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3.4.1 Density Operator

One important operator is the particle density operator in Fourier space. The number
density of the particles at any time t1 is

ρ(q⃗, t1) =
N∑
j=1

ρj(q⃗, t1) =
N∑
j=1

δD(q⃗− q⃗j(t1)) (3.46)

In a Fourier representation, the density mode with the wave number k⃗1 becomes

ρ̃(k⃗1, t1) =: ρ̃(1) =

N∑
j=1

e−ik⃗1·q⃗j(t1) (3.47)

where we have introduced the conventional short-hand notation (k⃗j, tj) =: (j). Replac-
ing the particle position q⃗j(t1) by a functional derivative with respect to the generator-
field component J⃗qj

(t1), we find the density operator

ρ̂(1) =

N∑
j=1

ρ̂j(1) (3.48)

composed of the one-particle density operators

ρ̂j(1) := exp(−k⃗1 ·
δ

δ⃗Jqj
(t1)

) (3.49)

For indistinguishable particles, which we shall henceforth assume, we can set the
particle index j to an arbitrary value without loss of generality. Since the operator in
Equation 3.49 is an exponential of a derivative with respect to the generator field, it
corresponds to a finite translation of the generator field. After applying r ⩾ 1 of these
operators, the generator field is translated by

J → J −
r∑

j=1

δ(t ′ − tj)k⃗j ·

(
1

0

)
⊗ e⃗j (3.50)

Setting the generator field J to zero after application of the density operator turns
the generating functional Z[J] by Equation 3.20 into

Zd[L] =
∫
dΓei⟨Lq,q⟩+i⟨Lp,p⟩+iSI (3.51)
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with the components

Lq = −

r∑
j=1

k⃗j ⊗ e⃗j (3.52)

Lp = −

r∑
j=1

gqp(tj)k⃗j ⊗ e⃗j (3.53)

of the translations and the interaction term

SI = −

r∑
j=1

k⃗j

∫tj
0

dt ′gqp(tj, t ′)
(
u⃗0
τs

− ∇⃗qj
Φ

)
(3.54)

In Equation 3.51, q and p are the 3N vectors representing the initial positions and
momenta of the particle ensemble in phase space,

(
q

p

)
:= x(i) (3.55)

3.4.2 Momentum-Density Operator

Another important and conceptually straightforward application of KFT is to calculate
the momentum power spectra, see Littek [27], which is related to the definition of a
momentum operator. The momentum field could naively be constructed as

p⃗(t1) =

N∑
j=1

p⃗j(t1) (3.56)

with p⃗j(t1) being the momentum of particles j. Notice this momentum field lacks
any spatial dependence since has no information on the position of the particle. In
order to retain any spatial information, we have to impose that each particle can con-
tribute to the momentum at a position q⃗ if and only if it is at this position,

Π(q⃗, t1) =
N∑
j=1

p⃗j(t1)δD(q⃗− q⃗j(t1))

=

N∑
j=1

p⃗j(t1)ρj(q⃗, t1)

(3.57)
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In the last step, we have identified the Dirac delta distribution with the density of
the jth particle at position q⃗ and time t1. Thus, the new field Π(q⃗, t) is a momentum-
density field.

Fourier-transforming Π(q⃗, t1) and replacing the phase-space coordinates of particle
j by functional derivatives with respect to the corresponding source fields, we find the
momentum-density operator

Π̂(1) =

N∑
j=1

Π̂j(1) (3.58)

composed of the one-particle momentum-density operators

Π̂j(1) =
δ

iδ⃗Jpj
(t1)

ρ̂j(1) (3.59)

with ρ̂j(1) being the one-particle density operator from Equation 3.49. And the com-
ponents of the momentum-density field are available by specifying the operator to

Π̂α
j (1) :=

δ

iδJαpj
(t1)

ρ̂j(1) (3.60)

where α = (1, 2, 3) enumerates the Cartesian vector components. The application
of r ⩾ 1 momentum-density operators by Equation 3.59 to the generating functional
Z[J] translates the generator field J, as shown in Equation 3.50, and pulls down the
momentum trajectories from the phase factor in Equation 3.40. Having applied these
operators and setting the generator field J to zero afterwards, we arrive at the final
expression of the generating functional

Zm[L] =
∫
dΓ

r∏
j=1

[
gpp(tj)p⃗j +

∫tj
0

dt ′gpp(tj, t ′)
(
u⃗0
τs

− ∇⃗qj
Φ

)]
· ei⟨Lq,q⟩+i⟨Lp,p⟩+iSI

(3.61)

where the momentum propagator gpp(t, t ′) is defined in Equation 3.39.

3.5 summary and discussion

In this chapter, we summarized the basic foundations of KFT that apply to planetary
structure formation. We started with a review on how classical mechanics can be for-
mulated in the framework of path integrals, and showed that this theory encodes the
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dynamics of a classical particle ensemble by a central object, the generating functional
Z[J, K] or Z[J], which is completely specified by the equation of motion for particle
ensembles and their initial probability distribution function in phase space.

Building on that, we reviewed the difficulties of plugging the exact dust dynamics
into the generating functional, and managed to find a simpler and more feasible dust
particle trajectory by retaining only the friction interaction with a constant background
gas distribution and the gravitational interaction among dust particles themselves. It’s
worth mentioning that if we want to go beyond the scope of this thesis and study a
more complicated form of protoplanetary disk (PPD), KFT could still be a rather useful
tool once we come up with a solution for the functional determinant introduced to
the generating functional. And this question itself would be of great interest to the
development of KFT since this solution could vastly expand its applications to many
more areas.

In the end, considering the standard application of KFT in this thesis will concern the
analysis of density and momentum-density power spectra in Chapter 5 and Chapter 6,
we reviewed how functions of the phase space coordinates at arbitrary times can be
generated by applying operators to the generating functional. More specifically, we
introduced the density and momentum-density operators, and studied their actions
on the generating functional.

At this moment, if we stay close to the story of KFT, we immediately realize there
is still one more essential element in the generating functional remains unknown, and
we will need to deal with that before diving right into applying KFT to planetary for-
mation. The initial probability distribution function in phase space (iPDF) describes the
particle ensemble’s initial state in phase space. It was beautifully derived analytically
in Bartelmann et al. [4] by assuming the density and momentum fields are all Gaus-
sian random fields, which is a perfectly valid assumption concerning the application
to cosmology. While it is a little more complicated when it comes to planetary forma-
tion. First of all, there is no "cosmological principle" in planetary formation, the vast
dynamic ranges in space, time and mass scales and the continuous structure forma-
tion make it extremely difficult to find a distribution function for dust particles. Even
though it is the initial state that we are interested in, we still wish to choose a rela-
tively well-evolved state to represent the protoplanetary disk (PPD) in general, which
can currently be best achieved by using simulation data. Therefore, in Chapter 4, we
will derive the iPDF by constructing a suitable model from one specific simulation snap-
shot, after that, we will finally apply KFT to studying planetary formation in Chapter 5

and Chapter 6.
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I N I T I A L P R O B A B I L I T Y D I S T R I B U T I O N F U N C T I O N I N P H A S E
S PA C E

Having introduced the basics of kinetic field theory (KFT), in this Chapter, without
losing the generality of the protoplanetary disk (PPD), we derive the other essential
element for the generating functional, the initial probability distribution function in
phase space (iPDF) P

(
x(i)

)
for particle ensembles, from a 3-dimensional local streaming

instability (SI) simulation. For the sake of readability, we omit the upper index (i) and
understand that we construct the probability distribution for the initial phase-space
coordinates.

Mathematically speaking, the probability distribution function we are looking for is
a multivariate probability density function whose variants describe particle positions
and momenta in phase space. Generally, for different variants following their respec-
tive probability distributions, there is no universal method to obtain the combined
probability density function easily. Inspired by Regős and Szalay [34] and Bartelmann
et al. [4], in this Chapter, we develop an effective and rather simple method to calculate
the iPDF for dust particles as long as certain criteria are satisfied.

This Chapter is constructed as follows: in the first section, we specify the key pa-
rameters of the simulation snapshot that is used throughout this entire thesis. In the
second section, to derive the expression of the iPDF, first, we calculate the individual
density and momentum probability distribution functions of the dust ensemble, then
by Gaussianizing their density field, we obtain the final expression of the iPDF using
the multivariate Gaussian distribute. In the end, we extract from the simulation the
crucial component of the iPDF, the covariance matrix, by analyzing the initial spatial
power spectra and correlation functions of the dust ensemble from a pipeline we de-
veloped. Furthermore, the momentum covariance matrix is isotropized and rotated to
the position and wavenumber space for the convenience of Chapter 5 and Chapter 6.

4.1 simulation specification

The three-dimensional streaming instability (SI) simulation by the Pencil code is per-
formed in the shearing-sheet approximation. The is a Cartesian coordinate system
co-rotating with the Keplerian orbital frequency Ω, at an arbitrary distance R0 from
the central star, see Section 2.3.1. Arbitrary means that the simulation results are valid
independent of the distance from the star, and thus the simulation time and length
scales are set in PPD units of H and Ω. In the following, all derived quantities, e.g.
distance and friction coefficients, are thus given in disk units as well. The coordinate

43
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system (x,y, z) of the shearing box can be identified as (r,ϕ, z) for small r and ϕ, see
Figure 2.1 and Figure 4.1. The boundary conditions of the shearing sheet are periodic
in the y− and z−directions, and shear-periodic in the x−direction. The latter means
that the velocities and positions have to be readjusted for a quantity or particle that
is transported over the radial boundary condition, see Section 2.3.2. For further detail
on the simulation method, we refer to the original code papers by Brandenburg and
Dobler [7] and code implementation paper by Youdin and Johansen [43].

Figure 4.1: The shearing sheet approximation allows to simulate a patch (blue box) out of a
protoplanetary disk (black grid). The center of the shearing box has a distance R0
from the star and moves with Keplerian velocity vK = ΩR0 around it. This motion
is translated by the coordinate transformation and shear linearisation into a linear
shearing motion, see Section 2.3. In this shearing box coordinate system, the center
of the domain is at rest. Everything closer to the star (x < 0) moves forward in
an azimuthal direction, and everything towards the outside of the domain (x > 0)

moves backward.

The snapshot of the SI simulation has been provided to us by Andreas Schreiber from
his doctoral work in the Max Planck Institute for Astronomy (MPIA), see Schreiber
[36]. This snapshot, deliberately taken at tsnap ̸= 0, will already contain some structure
caused by streaming instability (SI), which gives us a more accurate description of
the initial state for dust particles in a general PPD. We aim at studying what KFT
predicts for the further evolution of the power spectrum of these structures. The main
parameters are listed below:

1. The friction coefficient between dust particles and gas, τs, as represented by the
Stokes number St = τsΩ = 0.01;

2. The domain size Lx = Ly = Lz = L = 0.1 of the simulation in terms of the disk
scale height H = csΩ

−1, where the isothermal sound speed cs is taken to be con-
stant. Note that L is chosen large enough for assuming that the structures studied
later are statistically homogeneous and isotropic in the simulation domain, see
Figure 4.2;
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3. The initial dust-to-gas mass ratio, ε0 = ρd/ρg = 1.0, where the initial mean gas
density ρ̄g is set to 1.0 for simplicity. This sets the total dust mass toMd = ρ̄gL

3 =

10−3;

4. The particle number is N ≈ 2.1 · 107, thus the mass of each particle is given by
md =Md/N;

5. The time of the snapshot is tsnap = 4.25, which means that this snapshot is taken
after the simulation box has orbited the central star 4.25

2π times and has already
well developed over time.

Figure 4.2: This plot shows the dust particles’ density distribution ρ in an x−y slice of the sim-
ulation snapshot discussed in this paper. The overall density distribution through-
out the whole plot is more or less equal, suggesting a nearly homogeneous and
isotropic simulation domain.

4.2 initial probability distribution function

Calculating the iPDF from simulation data for dust particles is one of the major and
most difficult tasks when applying KFT to planetary formation. As mentioned before,
the iPDF we are looking for is a joint probability density function for three position
and three momentum components. From the simulation data, it is straightforward to
estimate the probability density function for each component, but it is quite unfeasible
to accurately determine the complete iPDF for all the components. Therefore, We rather
choose a different approach: we determine the second-order moments of the distribu-
tions and transform the variables such that we can model their joint distribution by a
multivariate Gaussian distribution.
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The joint probability density function for a k-dimensional multivariate Gaussian
distribution with average µ and covariance Σ can be written as

P(x) =
exp

(
−1

2(x − µ)⊤Σ−1(x − µ)
)√

(2π)k detΣ
, (4.1)

where x and µ are real, k-dimensional column vectors.
Since we assume the particles to be sampled from the density field, we can reduce

the number of variants from six to four, viz. one for the density and three for the
momentum components. If the density and momentum components had themselves
Gaussian distributions, we could immediately write down their joint probability dis-
tribution as above.

4.2.1 Density and Momentum Distribution

In this section, we present an examination of the probability distribution of each vari-
ant. By adapting suitable fitting functions, we can then decide if they are Gaussian
distributions.

The results for all three momentum components are shown in Figure 4.3. Their
distributions can individually be fit by Gaussians with amplitudes Ai, mean values
pic, and standard deviations σi,

fp(pi) = Ai exp

(
−
1

2

(
pi − pic
σi

)2
)

i = 1, 2, 3 . (4.2)

Here we use the subscript i = 1, 2, 3 to represent the x,y, z directions. The values of
the fit parameters for all momentum components are listed in Table 4.1.

Figure 4.3: Momentum distributions in the x,y, z directions with double-logarithmic scaling.
The purple dotted lines represent actual data, the red lines are the curves of the
Gaussian fitting functions described by Equation 4.2. The curves show that the
momentum distributions can individually be well described by Gaussians. Notice
that the mean values p1c and p2c are set to zero here.

Notice that the mean values pic for momentum in x and y direction are nonzero.
This is the exact reflection of the azimuthal drag and the radial drift in Section 2.1 and
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Ai pic σi

1 238.44 −2.359× 10−4 0.00167

2 355.40 −0.0249 0.00112

3 413.54 0.0 9.61× 10−4

Table 4.1: Best-fitting parameters of the momentum distributions in all spatial directions. No-
tice that the mean values for the momenta in the x and y directions do not vanish
due to drift motion. We set them to zero for the calculations later.

Section 5.3. The friction force between gas and dust is slowing down the velocity of
dust particles in the y ′ direction, this directly leads to the drift of dust particles in the
−x ′ direction, see Figure 2.1. Since in KFT, we are exclusively interested in the statistical
behavior of the system, in the following calculations of this Chapter, we neglect any
bulk motion and set them back to zero.

However, there is still one important usage for the mean velocity p2c in y direction.
At the end of Section 3.3, we concluded that for small-size dust particles that are well
coupled to the gas field, we can ignore the feedback effect from the dust, and assume
the background gas is locally stable and can be approximated by a constant velocity
field. Since the simulation snapshot represents a well-evolved system and it contains
very small dust particles (St = 0.01), we can set the averaged constant background gas
velocity field as

u⃗0 = −0.0249ŷ, (4.3)

and this information will be particularly important in Chapter 6.

Figure 4.4: Density distribution function in double-logarithm scaling. The data points in the
plot are represented by the purple dots, and the orange curve shows the fit function
by Equation 4.4.
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Now we move on to the density distribution, which is unfortunately not a Gaussian,
see Figure 4.4. Rather, it can be approximated by

fρ(ρ) =
3

2

(b+ ρ3/2) exp(−ρ3/2)
bΓ(2/3) + Γ(5/3)

(4.4)

with b = 0.025, which is normalized to unity in [0,∞]. This result reflects some struc-
ture formation in the simulation as expected.

4.2.2 Gaussianization of the Density Field

Since all momentum components have Gaussian distributions, while the density has
not, we transform to a new density variable ρ̄ which is also distributed in a Gaussian
way. Let ρ̄ satisfy the mathematical criteria of variable transformation and be a strictly
monotonic, real-valued function of ρ, ρ̄ = h(ρ), then the probability densities fρ of ρ
and fρ̄ of ρ̄ are related by

fρ(ρ) = fρ̄(h(ρ))h
′(ρ) , (4.5)

where the prime denotes the derivative of h with respect to ρ, while their cumulative
probability distributions (CDF) must be related by

Fρ(ρ) = Fρ̄(ρ̄) . (4.6)

Since fρ̄ is supposed to be a Gaussian with mean value µ and standard deviation σ,
its CDF is the error function

Fρ̄(ρ̄) =
1

2

[
1+ erf

(
ρ̄− µ

σ

)]
(4.7)

The centred and normalized density variable ρ̃ = (ρ̄− µ)/σ is related to the density ρ
by

ρ̃ = erf−1 [2Fρ(ρ) − 1] , (4.8)

with the CDF of ρ, see Figure 4.5, given by

Fρ(ρ) =

∫ρ
0

fρ(ρ)dρ =
bγ(2/3, ρ3/2) + γ(5/3, ρ3/2)

bΓ(2/3) + Γ(5/3)
(4.9)

Here, erf−1 is the inverse error function and γ(a, x) the incomplete Gamma function.
Since Fρ(ρ) and the inverse error function are both monotonically increasing, we

can verify that ρ̃ is a real-valued, strictly monotonic function of ρ. To illustrate that
the new density variable ρ̃ does indeed follow a Gaussian distribution, its probability
distribution function and the fitting result are given in Figure 4.6.
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Figure 4.5: This figure shows how the cumulative distribution function (CDF) of the original
density variable Fρ(ρ) changes from 0 to 1. The purple dots come from the nu-
merical counts for particle number density in phase space, while the orange line
represents the curve of Equation 4.9 which is the analytical integration of the origi-
nal density distribution by Equation 4.4.

Figure 4.6: Probability distribution of the centred and normalized density variable ρ̃ in double-
logarithmic scaling. The purple dots show the data points transformed as in Equa-
tion 4.8. The orange curve shows a Gaussian fit to these points. Their agreement
illustrates that ρ̃ does indeed follow a Gaussian distribution.

4.2.3 Inverse Density Transformation

Now that we have successfully acquired the relation ρ̃(ρ) in Equation 4.8, for the
convenience of future calculations, we are also interested in its inverse function ρ(ρ̃).
Due to the complicated form of Fρ(ρ) in Equation 4.9, it is quite difficult to derive the
inverse function ρ = h−1

1 (ρ̃) = g(ρ̃) analytically. Even we could, it would enormously
complicate the further computations in KFT. Therefore, we decide to find this inverse
function numerically through polynomial fittings.
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It turns out that even a simple quadratic function can already represent the inverse
density function ρ = g(ρ̃) due to the rather narrow domain of the function to be
inverted. Figure 4.7 shows the result of the quadratic polynomial fitting function where

ρ = a1(ρ̃+ a2)
2, (4.10)

with a1 = 0.1823± 0.0005 and a2 = 2.569± 0.006. We can see the fitting function
matches the actual inverse density data very well, especially in the range ρ̃ ⩾ ρ̃0 = −a2.
In the case of ρ̃ < ρ̃0, the fitting function no longer satisfies the only mathematical
criteria of being monotonically increasing, however, since their corresponding values
of ρ and Fρ(ρ) are both very small, it is justified to neglect such insignificant values of
ρ̃ altogether.

Figure 4.7: This plot shows the quadratic polynomial fitting result of the inverse density rela-
tion ρ = g(ρ̃). The purple dots are obtained by switching the axis of Equation 4.8.
The orange line represents the quadratic fitting function by Equation 4.10.

We can thus choose

σ =
√
a1, µ =

√
a1a2 (4.11)

in Equation 4.7 to relate the density ρ to the density variable ρ̄ simply by

ρ = ρ̄2 . (4.12)

with

ρ̄ =
√
a1

(
erf−1 [2Fρ(ρ) − 1] + a2

)
(4.13)
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representing the inverse of the original relation. Thus, the density variable ρ̄, which
follows by the construction of a Gaussian distribution with mean µ and standard
deviation σ, is well approximated by the square root of the density ρ.

To further confirm the approximation we introduced above, Figure 4.8 shows the
relative difference between the original density variable ρdata and the density variable
ρaprx obtained by numerical approximation Equation 4.12. Notice that its values lie
mostly within the ±2% range except at very small ρdata, which further supports our
approximation. In the meantime, since we will be working with a more ideal dust
particle model adapted from the simulation data from Section 4.3.5, this small relative
difference seems even more harmless for our further calculation.
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Figure 4.8: This is the relative difference plot between original density field ρdata and the ap-
proximate original density field ρaprx obtained by Equation 4.12.

4.2.4 The Final Expression

Having assured that the momentum components and the density variable ρ̄ are Gaus-
sian variates to sufficient approximation, we adopt the same method as in Appendix
A of Bartelmann et al. [4] to find the initial probability distribution function in phase
space for dust particles. First, we introduce a data tensor d composed of all variables
as,

d :=

(
ρ̄

p⃗

)
j

⊗ ej (4.14)

and its Fourier-conjugate t can be expressed as
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t :=

(
tρ̄

t⃗p

)
j

⊗ ej (4.15)

where (tρ̄, t⃗p)j is Fourier-conjugate to (ρ̄, p⃗)j of particle j. The joint probability dis-
tribution function thus can be written as

P(d) =
1√

(2π)4NdetC̄
exp(−

1

2
(d− µ)T C̄−1(d− µ)) (4.16)

where µ holds the mean values of the Gaussian random variables, C̄−1 is the inverse
of the covariance matrix C̄ of N particles which can be decomposed as

C̄ = ⟨d⊗d⟩ =

(
⟨ρ̄jρ̄k⟩ ⟨ρ̄jp⃗k⟩⊤

⟨p⃗jρ̄k⟩ ⟨p⃗jp⃗k⟩

)
⊗ Ejk (4.17)

with Ejk = ej ⊗ ek.
Since the positions q⃗j of theN particles in configuration space are required to sample

the density distribution, we have

P(q⃗j|ρ̄j) =

∫
dρjP(q⃗j|ρj)P(ρj|ρ̄j) (4.18)

assuming Poisson sampling. Since the new density field is nothing but a point-to-
point transformation from the old density field, the conditional probability P(ρj|ρ̄) can
be expressed by a Dirac delta distribution, thus the conditional probability P(q⃗j|ρ̄j)
can be written as

P(q⃗j|ρ̄j) =

∫
dρjP(q⃗j|ρj)P(ρj|ρ̄j) =

∫
dρj

ρj

N
δ(ρj − ρj(ρ̄j)) =

ρj(ρ̄j)

N
(4.19)

The probability for finding a particle at position q⃗j with momentum p⃗j can thus be
expressed by

P(q⃗j, p⃗j) =
∫
dρ̄jP(q⃗j|ρ̄j)P(ρ̄j, p⃗j) =

1

N

∫
dρ̄jρj(ρ̄j)P(ρ̄j, p⃗j) (4.20)

and the probability distribution for the complete set {q⃗j, p⃗j} of N phase-space coor-
dinates is
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P({q⃗j, p⃗j}) = N−N

∫
dNρ̄

j=N∏
j=1

ρj(ρ̄j)P({ρ̄j, p⃗j}) = N−N

∫
dNρ̄

j=N∏
j=1

ρ̄2j P(d), (4.21)

with P(d) defined in equation 4.16. Here we already used the relation ρ(ρ̄) of Equa-
tion 4.12. For evaluating P(d), we turn to its characteristic function,

ϕ(t) = exp
(
−
1

2
t⊤C̄t+ it⊤µ

)
(4.22)

The probability distribution for the data tensor is then given by the inverse Fourier
transformation of the characteristic function

P(d) =

∫
dtp

(2π)3N
exp

(
−
1

2
t⊤p C̄pptp + it⊤pµp + i⟨tp,p⟩

)
·
∫
dtρ̄

(2π)N
exp

(
−
1

2
t⊤ρ̄ C̄ρ̄ρ̄tρ̄ − t⊤ρ̄ C̄ρ̄ptp + it⊤ρ̄ µρ̄ + i⟨tρ̄, ρ̄⟩

)
(4.23)

where we have defined the tensors

tρ̄ := tρ̄j
⊗ ej, tp := t⃗pj

⊗ ej, ρ̄ := ρ̄j ⊗ ej, p := p⃗j ⊗ ej (4.24)

and the covariance matrices

C̄pp := C̄pjpk
⊗ Ejk, C̄ρ̄ρ̄ := C̄ρ̄jρ̄k

⊗ Ejk, C̄ρ̄p := C̄ρ̄jpk
⊗ Ejk (4.25)

Therefore the full probability distribution for N particles in phase space will be
given by

P(q,p) = P({q⃗j, p⃗j})

= N−N

∫
dρ̄

N∏
j=1

ρ̄2j

∫
dtp

(2π)3N
exp

(
−
1

2
t⊤p C̄pptp + it⊤pµp + i ⟨tp,p⟩

)

·
∫
dtρ̄

(2π)N
exp

(
−
1

2
t⊤ρ̄ C̄ρ̄ρ̄tρ̄ − t⊤ρ̄ C̄ρ̄ptp + it⊤ρ̄ µρ̄ + i ⟨tρ̄, ρ̄⟩

)
(4.26)

Now to calculate the above expression, we first integrate over ρ̄ and evaluate

I1(tρ̄) :=

∫
dρ̄

N∏
j=1

ρ̄2j exp (i ⟨tρ̄, ρ̄⟩) =
N∏
j=1

(∫
dρ̄jρ̄

2
j exp(itρ̄j

ρ̄j)

)
(4.27)
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The factors under the product are

∫
dρ̄jρ̄

2
j exp(itρ̄j

ρ̄j) = −
∂2

∂t2ρ̄j

∫
dρ̄j exp(itρ̄j

ρ̄j) = −2π
∂2

∂t2ρ̄j

δD(tρ̄j
) (4.28)

where δD is the Dirac delta distribution. This leads us to

I1(tρ̄) = (−2π)N
N∏
j=1

∂2

∂t2ρ̄j

δD(tρ̄) = (−2π)N
( N∏

j=1

∂

∂tρ̄j

)2

δD(tρ̄) (4.29)

Notice that the validation of the integral I1j(tρ̄j
) =

∫
dρ̄j exp(itρ̄j

ρ̄j) = 2πδD(tρ̄j
)

requires the integration range to extend to infinity. While this is not the case for the
density variable ρ̄ from the simulation data, however, since it follows Gaussian dis-
tribution in general, considering the entire PPD area, the integration range is wide
enough compared to 1

tρ̄j
for the integral to approximate the delta distribution well,

see Figure 4.9.
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Figure 4.9: This plot shows the numerical results of the integration I1j(tρ̄j
) =∫ρ̄max

ρ̄min
dρ̄j exp(itρ̄j

ρ̄j) within the range −0.3 < tρ̄j
< 0.3, where ρ̄min ≈ 0, we choose

ρ̄max ≈ 107 according to the initial particle number N. The fact that the nonzero
values of this curve are all occur near tρ̄ ≈ 0 satisfies the definition of a Dirac Delta
distribution, which validates our integration result in Equation 4.28.

Next, we integrate over tρ̄, applying two partial integrations and we have
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I2(tp) : =

∫
dtρ̄

(2π)N
exp

(
−
1

2
t⊤ρ̄ C̄ρ̄ρ̄tρ̄ − t⊤ρ̄ C̄ρ̄ptp + itTρ̄µρ̄

)
I1(tρ̄)

= −(−1)N
∫
dtρ̄

 N∏
j=1

∂

∂tρ̄j

exp
(
−
1

2
t⊤ρ̄ C̄ρ̄ρ̄tρ̄ − t⊤ρ̄ C̄ρ̄ptp + it⊤ρ̄ µρ̄

) N∏
j=1

∂

∂tρ̄j

δD(tρ̄)


= (−1)N

∫
dtρ̄

(
N∏
j=1

∂2

∂t2ρ̄j

exp
(
−
1

2
t⊤ρ̄ C̄ρ̄ρ̄tρ̄ − t⊤ρ̄ C̄ρ̄ptp + it⊤ρ̄ µρ̄

))
δD(tρ̄)

= (−1)N
( N∏

j=1

∂2

∂t2ρ̄j

)
exp

(
−
1

2
tTρ̄C̄ρ̄ρ̄tρ̄ − tTρ̄C̄ρ̄ptp + itTρ̄µρ̄

) ∣∣∣∣
tρ̄=0

= C(tp)

(4.30)

where C(tp) is a correlation operator to be evaluated. Notice that to get to the final
result in Equation 4.30, we have used the fact that an integration of a complete deriva-
tive is zero except for boundary terms. To evaluate the operator C(tp), first, we apply
the second derivative operator ∂2

∂t2ρ̄j
to the exponential expression in C(tp),

Cj(tp) =
∂2

∂t2ρ̄j

(
exp

(
−
1

2
t⊤ρ̄ C̄ρ̄ρ̄tρ̄ − t⊤ρ̄ C̄ρ̄ptp + it⊤ρ̄ µρ̄

))∣∣∣∣
tρ̄=0

=
(
−C̄ρ̄jρ̄j

+
(
−C̄ρ̄jρ̄tρ̄ − C̄ρ̄jptp + iµρ̄j

)2) exp
(
−
1

2
t⊤ρ̄ C̄ρ̄ρ̄tρ̄ − t⊤ρ̄ C̄ρ̄ptp + it⊤ρ̄ µρ̄

) ∣∣∣∣
tρ̄=0

= −C̄ρ̄jρ̄j
+
(
−C̄ρ̄jptp + iµρ̄j

)2
(4.31)

Then we apply the second derivative operator ∂2

∂t2ρ̄k

∂2

∂t2ρ̄j
twice to the same exponen-

tial expression,

Cjk(tp) =
∂2

∂t2ρ̄k

∂2

∂t2ρ̄j

(
exp

(
−
1

2
t⊤ρ̄ C̄ρ̄ρ̄tρ̄ − t⊤ρ̄ C̄ρ̄ptp + it⊤ρ̄ µρ̄

))∣∣∣∣
tρ̄=0

=
(
−C̄ρ̄jρ̄j

+
(
−C̄ρ̄jptp + iµρ̄j

)2)(
−C̄ρ̄kρ̄k

+
(
−C̄ρ̄kptp + iµρ̄k

)2)
+ 2C̄2

ρ̄jρ̄k

− 4C̄ρ̄jρ̄k

(
− C̄ρ̄jptp + iµρ̄j

)(
− C̄ρ̄kptp + iµρ̄k

)
(4.32)

After applying the second derivative operator ∂2

∂t2ρ̄k

∂2

∂t2ρ̄j

∂2

∂t2ρ̄i
three times to the expo-

nential expression in C(tp),
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Cijk(tp) =
∂2

∂t2ρ̄k

∂2

∂t2ρ̄j

∂2

∂t2ρ̄i

(
exp

(
−
1

2
t⊤ρ̄ C̄ρ̄ρ̄tρ̄ − t⊤ρ̄ C̄ρ̄ptp + it⊤ρ̄ µρ̄

))∣∣∣∣
tρ̄=0

=

(
− C̄ρ̄iρ̄i

+
(
−C̄ρ̄iptp + iµρ̄i

)2)(
− C̄ρ̄jρ̄j

+
(
−C̄ρ̄jptp + iµρ̄j

)2)
·
(
− C̄ρ̄kρ̄k

+
(
−C̄ρ̄kptp + iµρ̄k

)2)
+ 2C̄2

ρ̄jρ̄k

(
− C̄ρ̄iρ̄i

+
(
−C̄ρ̄iptp + iµρ̄i

)2)
+ 2C̄2

ρ̄kρ̄i

(
− C̄ρ̄jρ̄j

+
(
−C̄ρ̄jptp + iµρ̄j

)2)
+ 2C̄2

ρ̄iρ̄j

(
− C̄ρ̄kρ̄k

+
(
−C̄ρ̄kptp + iµρ̄k

)2)
− 4C̄ρ̄jρ̄i

(
− C̄ρ̄jptp + iµρ̄j

)(
− C̄ρ̄iptp + iµρ̄i

)(
− C̄ρ̄kρ̄k

+
(
−C̄ρ̄kptp + iµρ̄k

)2)
− 4C̄ρ̄kρ̄i

(
− C̄ρ̄kptp + iµρ̄k

)(
− C̄ρ̄iptp + iµρ̄i

)(
− C̄ρ̄jρ̄j

+
(
−C̄ρ̄jptp + iµρ̄j

)2)
− 4C̄ρ̄jρ̄k

(
− C̄ρ̄jptp + iµρ̄j

)(
− C̄ρ̄kptp + iµρ̄k

)(
− C̄ρ̄iρ̄i

+
(
−C̄ρ̄iptp + iµρ̄i

)2)
+ 8C̄ρ̄jρ̄i

C̄ρ̄kρ̄i

(
− C̄ρ̄jptp + iµρ̄j

)(
− C̄ρ̄kptp + iµρ̄k

)
+ 8C̄ρ̄jρ̄k

C̄ρ̄kρ̄i

(
− C̄ρ̄jptp + iµρ̄j

)(
− C̄ρ̄iptp + iµρ̄i

)
+ 8C̄ρ̄jρ̄k

C̄ρ̄jρ̄i

(
− C̄ρ̄kptp + iµρ̄k

)(
− C̄ρ̄iptp + iµρ̄i

)
− 8C̄ρ̄jρ̄i

C̄ρ̄kρ̄i
C̄ρ̄jρ̄k

(4.33)

We can obtain the hierarchy
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C(tp)

(−1)N
=

N∏
j=1

(
− C̄ρ̄jρ̄j

+
(
−C̄ρ̄jptp + iµρ̄j

)2)

+
∑
(j,k)

2C̄ρ̄jρ̄k

(
C̄ρ̄jρ̄k

− 2
(
− C̄ρ̄jptp + iµρ̄j

)(
− C̄ρ̄kptp + iµρ̄k

))
·

∏
{l}

(
− C̄ρ̄lρ̄l

+
(
−C̄ρ̄lptp + iµρ̄l

)2)

+
∑
(j,k)

2C̄ρ̄jρ̄k

(
C̄ρ̄jρ̄k

− 2
(
− C̄ρ̄jptp + iµρ̄j

)(
− C̄ρ̄kptp + iµρ̄k

))
·

∑
(a,b) ′

2C̄ρ̄aρ̄b

(
C̄ρ̄aρ̄b

− 2
(
− C̄ρ̄aptp + iµρ̄a

)(
− C̄ρ̄bptp + iµρ̄b

))
·

∏
{l}

(
− C̄ρ̄lρ̄l

+
(
−C̄ρ̄lptp + iµρ̄l

)2)

+
∑

(i,j,k)

2C̄ρ̄jρ̄k
C̄ρ̄jρ̄i

(
4
(
− C̄ρ̄kptp + iµρ̄k

)(
− C̄ρ̄iptp + iµρ̄i

)
− C̄ρ̄kρ̄i

)
·

∏
{l}

(
− C̄ρ̄lρ̄l

+
(
−C̄ρ̄lptp + iµρ̄l

)2)
+ ...

(4.34)

being the expression for the correlation operator. In the second line, the sum extends
over all pairs (j,k ̸= j), and the product includes all indices l except (j,k). In the fourth
line, the sum extends over products of pairs (j,k ̸= j) and (a,b ̸= a), where (a,b) ′

excludes the indices j and k, and the product includes all indices l except (j,k,a,b).
Analogous terms with products over three, four and more pairs have to be added.
The last two lines give the sum over products of three particles (i, j,k|i ̸= j ̸= k),
and analogous terms with products over two, three and more triaparticles have to be
added.

Having evaluated the correlation operator C(tp), we insert I2(tp) = C(tp) in the last
integration

I3(p) :=

∫
dtp

(2π)3N
C(tp) exp

(
−
1

2
t⊤p C̄pptp + i ⟨tp,p⟩

)
(4.35)

Notice that except for the correlation operator C(tp), the rest of the above integral
is a general Fourier transformation of a Gaussian. We can thus convert C(tp) into
an operator of the momentum p by replacing tp → −i∂p, pull it out of the integral
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by Equation 4.35 and carry out the final Gaussian integration to arrive at the final
expression for the iPDF for N particles

P(q,p) =
N−NC (−i∂p)√
(2π)3NdetC̄pp

exp
(
−
1

2
pT C̄−1

ppp

)
(4.36)

4.3 covariance matrix

At the end of the last section, the final expression of the iPDF is derived, yet there is
one more item in Equation 4.36 that remains unknown. In this section, we thus sum-
marize how we estimate the covariance matrix from simulation data. Notice not only
the momenta covariance matrix C̄pp is of interest, hidden in the correlation operator
C (−i∂p), we also need the density covariance matrix C̄ρ̄ρ̄ and the cross covariance
matrix between density and momenta C̄ρ̄p. Naturally, we wish to compute the covari-
ance matrices by directly calculating their spatial correlation functions, which, unfortu-
nately, is not efficiently achievable due to the enormous number of particles. Therefore,
in the following, we develop a different and more efficient scheme to first calculate the
spatial power spectra of particles and further compute their corresponding correlation
functions and covariance matrices from the SI simulation data. In the end, for the con-
venience of Chapter 5 and Chapter 6, we isotropize the momentum covariance matrix
and rotate it to the position and wavenumber space.

4.3.1 Initial Power Spectra and Correlation Functions

We will begin with a comprehensible definition of the spatial correlation functions.
Corresponding to the three types of covariance matrices C̄pp, C̄ρ̄ρ̄ and C̄ρ̄p, there are
three types of spatial correlation functions, which respectively are density, momentum
and density-momentum correlation functions. Denoting density as ρ̄ and momentum
as pi for i = {1, 2, 3}, the density correlation function is defined as

ζ00(⃗r) = ⟨ρ̄(q⃗)ρ̄(q⃗+ r⃗)⟩ =
∫
q ρ̄(q⃗)ρ̄(q⃗+ r⃗)∫

d3q⃗
=
1

L3

∫
q

ρ̄(q⃗)ρ̄(q⃗+ r⃗) (4.37)

Where L in the N-body simulation is the size of the simulation box. The spatial
correlation functions of the momenta follow the identical concept, but the momenta
are three-dimensional. We define

ζij(⃗r) =
〈
p⃗i(q⃗)p⃗j(q⃗+ r⃗)

〉
=

∫
q p⃗i(q⃗)p⃗j(q⃗+ r⃗)∫

d3q⃗
=
1

L3

∫
q

p⃗i(q⃗)p⃗j(q⃗+ r⃗) i, j = 1, 2, 3
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(4.38)

They describe how each of the momentum components relates to each other at
different positions. Since covariance matrices are all symmetrical, then in three di-
mensions, there are npp = 6 spatial momentum correlation functions. The spatial
cross-correlation functions between density and momentum components are similarly
defined by

ζ0i(⃗r) = ⟨ρ̄(q⃗)p⃗i(q⃗+ r⃗)⟩ =
∫
q ρ̄(q⃗)p⃗i(q⃗+ r⃗)∫

d3q⃗
=
1

L3

∫
q

ρ̄(q⃗)p⃗i(q⃗+ r⃗) i = 1, 2, 3 (4.39)

They describe how the density relates to each of the momentum components at
different positions. In three dimensions, there are nρ̄p = 3 spatial density-momentum
cross correlation functions.

Thus we have defined nρ̄ +npp +nρ̄p = 1+ 6+ 3 = 10 spatial correlation functions
for a symmetrical covariance matrix, for N particles, it can be generated by

C̄ = Cij ⊗ Eij =


ζ00(⃗rij) ζ01(⃗rij) ζ02(⃗rij) ζ03(⃗rij)

ζ10(⃗rij) ζ11(⃗rij) ζ12(⃗rij) ζ13(⃗rij)

ζ20(⃗rij) ζ21(⃗rij) ζ22(⃗rij) ζ23(⃗rij)

ζ30(⃗rij) ζ31(⃗rij) ζ32(⃗rij) ζ33(⃗rij)

⊗ Eij (4.40)

with r⃗ij = q⃗i − q⃗j measuring the relative position of particle i and j.
The spatial power spectrum is merely the Fourier transform of the spatial correlation

functions defined as P(⃗r) =
∫
r ζ(⃗r)e

−ik⃗·⃗r. Thus the spatial power spectra respectively
for Equation 4.37-4.39 are

P00(k⃗) =

∫
r

ζ00(⃗r)e
−ik⃗·⃗r =

1

L3
ρ̄k(k⃗)ρ̄k(−k⃗)

Pij(k⃗) =

∫
r

ζij(⃗r)e
−ik⃗·⃗r =

1

L3
pkj(k⃗)pki(−k⃗)

P0i(k⃗) =

∫
r

ζ0i(⃗r)e
−ik⃗·⃗r =

1

L3
pki(k⃗)ρ̄k(−k⃗)

(4.41)

4.3.2 The Pipeline

Due to the enormous number of dust particles, instead of computing the spatial corre-
lation functions directly, we have chosen a different path. The essential concept is that
by transforming the density and momentum fields into Fourier space, we will initially
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calculate their spatial power spectra defined in Equation 4.41, then by looking for fit-
ting functions for the numerical power spectra, we can obtain our spatial correlation
functions and thus the components of the covariance matrices by performing simple
analytical integrations.

4.3.2.1 Fast Fourier Transform

To implement this method, the first step is to transform the density and momentum
fields into Fourier space. Here we employ the Fast Fourier Transform (FFT) by adapting
the FFTW code to the algorithm. Suppose we have a sequence of N complex numbers
{xk} := x0, x1, ..., xN−1, the discrete Fourier transform {Xk} := X0,X1, ...,XN−1 is:

Xk =

N−1∑
n=0

xne
−i 2πknN =

N−1∑
n=0

xn[cos
2πkn

N
− i sin

2πkn

N
] (4.42)

For more details on the algorithm underlying, we refer to the tutorial paper by Frigo
and Johnson [13].

4.3.2.2 Clouds in Cells

Implied by Equation 4.42, in order to exploit FFT to our density and momentum fields,
it is essential to first place the particle positions on a grid. Taking both computation
time and accuracy into account, we introduce the clouds in cells (CIC) method to our
algorithm, the basic idea of which is to assign the mass of each particle in the simu-
lation box to the masses of all the grid cells next to it (in the three-dimensional case,
the number of neighboring cells is 23 = 8). The illustration of the CIC method in two-
dimensional space is shown in Figure 4.10.

In the following, we will demonstrate in the simplest case how to allocate the mass
of particles to the grids in three-dimensional space by the CIC method. Suppose we
have a three-dimensional grid, where each cell has unit length. Now we consider the
density assignment for a particle with coordinates {xp,yp, zp}. The smallest indices of
the cells related to this particle are given as:

i = [xp]; j = [yp]; k = [zp] (4.43)

where [x] is the integer floor function. For convenience, we can assume the cell’s
center is at {xc,yc, zc} = {i, j,k}. In three dimensions, a particle at {xp,yp, zp} may
contribute to densities in the parent cell {i, j,k} and seven neighboring cells. We define:

dx = xp − xc; dy = yp − yc; dz = zp − zc (4.44)
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Figure 4.10: This picture is given to illustrate the concept of the CIC code. Suppose we have a
two-dimensional grid, the black grid points represent the center of cells and the
small red dots mimic particles, the side length of each cell is set to be unity, the
mass of each particle is one unit mass, for a particle at p = (xp,yp), we can assign
its mass to the four grid points next to it, which are the points (i, j), (i+ 1, j), (i, j+
1), (i + 1, j + 1). The weight assigned to each point depends only on its relative
position to this particle. For example, for grid point (i, j), the mass it gains from
particle p is: ∆mi,j = txty.

tx = 1− dx; ty = 1− dy; tz = 1− dz (4.45)

The contributions to the eight cells are then linear interpolations in 3 dimensions as:

ρi,j,k = ρi,j,k +mptxtytz; ρi+1,j,k = ρi+1,j,k +mpdxtytz; (4.46)

ρi,j+1,k = ρi,j+1,k +mptxdytz; ρi,j,k+1 = ρi,j,k+1 +mptxtydz; (4.47)

ρi+1,j+1,k = ρi+1,j+1,k +mpdxdytz; (4.48)

ρi+1,j,k+1 = ρi+1,j,k+1 +mpdxtydz; (4.49)

ρi,j+1,k+1 = ρi,j+1,k+1 +mptxdydz; (4.50)

ρi+1,j+1,k+1 = ρi+1,j+1,k+1 +mpdxdydz; (4.51)
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Now to transform momentum fields to Fourier space, it is also essential to acquire
the momentum information for each grid cell. Here we decide to approximate the
momentum of each cell by adopting the momentum of the particle closest to the center
of that cell. With this approximation, a side effect could appear when the number of
particles in each cell is too large. In such case we could lose too much information.

Since the particle number in the simulation is relatively large, considering both the
algorithm’s efficiency and the resolution of the simulation, the grid size for each di-
mension is set to be 256, so on average, there is N

2563 = 1.25 ≈ 1 particle in each cell. For
this reason, we consider our method of extracting momenta information to be reliable.

4.3.2.3 Initial Power Spectra

Now that the density and momentum fields are transformed to Fourier space, we
could already calculate their spatial power spectra based on Equation 4.41. To further
simplify the algorithm, if we assume that the size of the simulation box is significantly
larger than the correlation scales, then the short-time SI simulation (see Section 4.1)
will not alter the isotropic property of the system. Thus the spatial power spectra we
are looking for will no longer depend on the direction of the wave vector k⃗, only the
absolute length of it, for that we can rewrite the density spatial power spectrum as:

P̄00(k) = P00(k⃗) =
1

L3
ρ̄k(k⃗)ρ̄k(−k⃗) =

1

L3
|ρ̄k(k⃗)|

2 (4.52)

With regard to the spatial momentum power spectra Pij(k⃗), since the covariance
matrices is symmetric, we define

P̄ij(k) =
1

2

(
Pij(k⃗) + Pji(k⃗)

)
=
1

L3

∣∣∣ℜ(pkj(k⃗))ℜ(pki(k⃗))+ ℑ
(
pkj(k⃗)

)
ℑ
(
pki(k⃗)

)∣∣∣
(4.53)

Where ℜ(z) and ℑ(z) respectively give the real and imaginary part of a complex
number z. In analogy to the above calculation, we can immediately find the expression
for the new density-momenta spatial power spectra as

P̄0i(k) =
1

2

(
P0i(k⃗) + Pi0(k⃗)

)
=
1

L3

∣∣∣ℜ(pki(k⃗))ℜ(ρ̄k(k⃗))+ ℑ
(
pki(k⃗)

)
ℑ
(
ρ̄k(k⃗)

)∣∣∣
(4.54)

Thus the combined spatial correlation functions ζµν(r) of density, momenta and
density-momenta are then obtained by Fourier transform as

ζµν(r) =

∫
k

P̄µν(k)e
2πik⃗·⃗r =

∫∞
0

dk

2π2
k2P̄µν(k)j0(2πkr) (4.55)
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where j0(2πkr) =
sin(2πkr)

2πkr is the first order of spherical Bessel function, and µ,ν =

0, 1, 2, 3.
In summary, the pipeline for obtaining the covariance matrices has 5 important

steps:

1. Place particles on grids, using the clouds in cells (CIC) algorithm;

2. Obtain density and momentum fields in Fourier space, using Fast Fourier Trans-
form (FFT);

3. Calculate spatial power spectra P̄µν(k) in Equation 4.52-4.54 and find appropri-
ate fitting functions;

4. Obtain spatial correlation functions ζµν(r) in Equation 4.55 by reverse Fourier
transforms;

5. Generate covariance matrix C̄ in Equation 4.40 by calculating ζµν(r) of each pair
of particles.

4.3.3 The Final Results

We start with the momentum power spectra Pij(k) shown in Figure 4.11. Note that all
the k axis from here now on are scaled by 2π

L .

Figure 4.11: The six independent components of the momentum power spectrum are shown
here. The red vertical line at k = 17.5 represents the dissipation scale ld and the
grey vertical line at k = 42 represents the correlation scale lc.

They are all of similar shapes, characterized by a first (larger) scale at k ≈ 17.5
and a second (smaller) scale at k ≈ 42. These two scales represent respectively the
dissipation scale ld and the correlation scale lc. On scales smaller than lc, the particles
are significantly less correlated due to their random thermal motion. Moreover, since
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the simulated density field is resolved into a finite number of particles, shot noise
becomes visible at small scales, preventing the power spectra from falling to zero. On
scales larger than ld, the curves approach power laws reflecting the turbulence. In
between these two scales, the dissipation process becomes visible, where the turbulent
kinetic energy is converted to heat.

The shape of the momentum power spectra are well described by the function

Pij(k) = c1ij +
c2ij

kαij
exp

(
−
k2

2σ2ij

)
(4.56)

with c1ij, c2ij and σij being used as fit parameters. The exponents αij are close
enough to 2/3 for keeping them fixed at this value. Best-fitting values for the remaining
coefficients are listed in Table 4.2, and the individual fits are shown in Figure 4.12.

c1ij · 10−10 c2ij · 10−6 σij

P11 9.12 33.8 9.74

P12 6.62 12.3 10.12

P13 2.72 9.98 10.37

P22 18.3 12.2 10.56

P23 3.93 5.18 10.49

P33 3.42 8.51 10.37

Table 4.2: Best-fitting parameters for all six independent momentum power spectra. The small
but nonzero first value for all curves reflects the shot noise.

Even though the data become noisier towards small wave numbers, the fit function
follows the data accurately, and the common exponent αij = 2/3 well describes the
slope of the power spectra at large scales.

The density power spectrum P00(k) shown in Figure 4.13 suggests a fit function of
the form

P00(k) =
c200
k

exp
(
−
k2

2σ200

)
, (4.57)

with best-fitting values for the parameters c100, c200 and σ00 shown in Table 4.3.

c200 σ00

P00 8.70× 10−2 65.64

Table 4.3: This table shows the fitting coefficient for the density spatial power spectrum P00(k).

Unlike the momentum power spectra shown in Figure 4.11, the density power spec-
trum keeps decreasing for increasing wave numbers k. At small wave numbers, the
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Figure 4.12: Momentum power spectra measured from the simulation (purple dots) together
with the individual fit functions of the form of Equation 4.56 (orange lines). The
blue dashed lines illustrate the k−2/3 slope for reference.

data becomes noisy, but the fit function still follows the data points reasonably well.
Since we do not want to model one simulation precisely, but to extract appropriate
model functions from it, we believe that our fit function of Equation 4.57 is acceptable.

Figure 4.13: Density power spectra extracted from the simulation (purple points) and modeled
by the fit function Equation 4.57 (orange line). Left: complete k range allowed by
the simulation data; right: small scales, i. e. large wave numbers. The blue dashed
line represents the k−3 slope.

The right panel of Figure 4.13 enlarges the density power spectrum at smaller scales.
Notice that the power spectrum changes shape at around k ≈ 85. At smaller scales, i.e.
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larger wave numbers, the power spectrum turns into a k−3 slope, indicating structure
formation at small scales.

Figure 4.14: Cross power spectra between the density and the momentum components. Similar
to the momentum power spectra shown in Figure 4.11, the orange vertical line at
k = 17.5 represents the dissipation scale ld, and the yellow vertical line at k = 42

the correlation scale lc.

Finally, we turn to the cross power spectra between density and momenta, illustrated
in Figure 4.14. The shape of these three cross power spectra closely resembles that of
the individual momentum and density spectra shown in Figure 4.11 and Figure 4.13,
with similar parameter values. A suitable fit function is

P0i(k) =
c10i
kβ0i

+
c20i
kα0i

exp
(
−
k2

2σ20i

)
. (4.58)

The extra exponent β0i is introduced to follow the small-scale tails in Figure 4.14.
Fitting this function to the simulation data, we find universal exponents α0i = 1/3 and
β0i = 4/3. The remaining fit parameters are listed in Table 4.4. As Figure 4.15 shows,
the fit function follows the data points very closely.

c10i · 10−4 c20i · 10−4 σ0i

P01 1.04 2.58 11.93

P02 1.47 1.28 12.28

P03 0.61 1.03 12.73

Table 4.4: Fit parameters for all density-momentum cross power spectra.
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Figure 4.15: Density-momentum cross power spectra overlaid with the fit function Equa-
tion 4.58, with exponents β0i = 4/3 and α0i = 1/3. The purple dots are the
data points, the green lines show the fits with parameters listed in Table 4.4.

From the density, momentum, and density-momentum power spectra deduced and
modeled above, we can now calculate the correlation functions ζµν(r) via the Fourier
transform in Equation 4.55, thereby dropping delta distributions originating from shot-
noise terms. The results are

ζµν(r) =



1√
2π2

c200σ00

r F
(
σ00√

2
r
)

for µ,ν = 0

1
25/6π2 c2ijσ

7/3
ij Γ

(
7
6

)
1F1

(
7
6 , 3

2 ,−1
2σ

2
ijr

2
)

for µ,ν = 1, 2, 3

√
3c10i

4π2r5/3
Γ
(
2
3

)
+ 1

22/3π2 c20iσ
8/3
0i Γ

(
4
3

)
1F1

(
4
3 , 3

2 ,−1
2σ

2
0ir

2
)

for µ = 0 , ν = 1, 2, 3

.

(4.59)

Here, F is the Dawson integral, Γ the Gamma function, and 1F1[z] the Kummer con-
fluent hypergeometric function. These correlation functions are shown in Figure 4.16.
We note the similarity of the curves in the three panels of this Figure. In particular,
they all change shape at a relatively small scale rd, above which they fall off more
steeply.
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Figure 4.16: The density, momentum, and density-momentum correlation functions of Equa-
tion 4.59 are shown here in the left, center, and right panels, respectively. The
horizontal axes are scaled in L = 0.1H, i.e. with the same length scale as the simu-
lation boxes.
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For any pair (i, j) or particles, the complete correlation matrix can now be written
in the form

C̄ij(rij) =

(
ζ00(rij) ζ⊤0k(rij)

ζ0k(rij) ζkl(rij)

)
(4.60)

with k, l ∈ 1, 2, 3 and rij = |q⃗i − q⃗j|. The covariance matrix for the entire particle
ensemble defined in Equation 4.17 is then C̄ = C̄ij ⊗ Eij.

4.3.4 Approximating The Correlation Operator

Now that the density covariance matrix C̄ρ̄ρ̄ and the cross covariance matrix between
density and momenta C̄ρ̄p are generated from simulation data, we make use of their
amplitude difference and try to simplify the correlation operator C(−i∂p) = C(p).

The values and coefficients of the spatial correlation functions shown in Figure 4.16

and Table 4.3, Table 4.4 imply the following relations where

C̄ρ̄jρ̄j
> C̄ρ̄jpk

≫ C̄2
ρ̄jpk

, C̄ρ̄jρ̄j
= ζ00(0) > C̄ρ̄jρ̄k

= ζ00(rjk > 0) (4.61)

with the indices j and k indicating an arbitrary pair of distinct particles and ζ00(r) is
given in Equation 4.59. In the meantime, the initial momentum power spectra shown
in Figure 4.11 and their coefficients given in Table 4.2 further indicate that the value of
tp satisfies

∣∣tpk

∣∣ ⩽ 5.81 · 10−3. (4.62)

Given the above relations, since the correlation operator C(p) has the hierarchical
structure given in Equation 4.34, we can ignore the terms including C̄ρ̄jpk

tpk
and

C̄ρ̄jρ̄k
in Equation 4.34 and approximate the correlation operator C(p) by the constant

only involving the density auto-correlations

C(p) = C =
(
ζ00(0) + µ

2
ρ̄

)N
. (4.63)

with the mean value of the density field ρ̄ as µρ̄ =
√
a1a2 given in Equation 4.11.

Therefore we can write down the much simpler, but accurately approximated iPDF

for the ensemble of N dust particles as

P(q,p) =
CN−N√

(2π)3NdetC̄pp

exp
(
−
1

2
pT C̄−1

ppp

)
(4.64)
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4.3.5 Rotate Momentum Covariance Matrix

To this point, employing the pipeline we developed in Section 4.3.2, the full initial
covariance matrix C̄ has been recovered from a 3-dimensional N-particle SI simulation
for the iPDF we derived in Equation 4.36 and simplified in Equation 4.64. Due to the
significance of the momentum covariance matrix, in this section, we isotropize it for
the convenience of further calculations in Chapter 5 and Chapter 6.

Since all momenta correlation functions ζij(r) share the same format, see Equa-
tion 4.55, and the fitting coefficients σij shown in Table 4.2 have very similar values,
we can take the average of the σij and define a new universal fitting coefficient σ̄ as,

σ̄ =
1

6

i,j=3∑
i,j=1,i⩽j

σij, (4.65)

then a new universal correlation function ζpp(r) can be specified as

ζpp(r) =
1

2
5
6π2

σ̄
7
3 Γ

(
7

6

)
1F1

(
7

6
,
3

2
,−
1

2
σ̄2r2

)
. (4.66)

with its Fourier transform defined as the averaged initial momentum power spec-
trum P0(k)

P0(k) =

∫
r

ζpp(r)e
−ik⃗·⃗r =

1

k2/3
exp

(
−
k2

2σ̄2

)
. (4.67)

The only difference between each of the momentum correlation functions now lies in
the fitting coefficient c2ij. As shown in Figure 4.2, since the spatial scales we are consid-
ering are small compared to the scale height H of the protoplanetary disk, the density
distribution of the particles in the simulation box should be rather homogeneous and
isotropic, which implies the same for the momentum distribution. By calculating the
eigenvalues and eigenvectors of the sampled momentum covariance matrices C̄pipj

, it
appears that all eigenvectors of them are very close to be aligned with the coordinate
axis and all eigenvalues are quite similar or at least have the same order of magnitude,
which indicate that the three axes could easily be treated equally, or we can say that
the system is indeed very close to being isotropic. Thus we can average the modified
momentum covariance matrix C̄pipj

to read

C̄pipj
=

b0 b1 b1

b1 b0 b1

b1 b1 b0

 ζpp(rij) (4.68)
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with prefactors

b0 =
1

3
(c211 + c222 + c233) ; b1 =

1

3
(c212 + c213 + c223) (4.69)

For calculating future KFT nonlinear density power spectra, we now rotate from the
coordinate frame of the simulation box into a coordinate frame in which the relative
position vector r⃗ij = q⃗i − q⃗j between the particles is the polar axis. We first define the
projectors

π∥ = q̂⊗ q̂ π⊥ = 13 − π∥ (4.70)

parallel and perpendicular to q̂ = r⃗ij/|⃗rij|. There, C̄pipj
is of the form

C̄pipj
= −m113 −m2q̂⊗ q̂ = −(m1 +m2)π∥ −m1π⊥ (4.71)

Since matrix rotations do not change their trace and determinant, we first calculate
the eigenvalues of the matrix in Equation 4.68 being

λ1,2 = (b0 − b1)ζpp(rij), λ3 = (b0 + 2b1)ζpp(rij), (4.72)

thus its trace and determinant are

trC̄pipj
= 3b0ζpp(rij), det C̄pipj

= (b0 − b1)
2(b0 + 2b1)ζ

3
pp(rij) . (4.73)

On the other hand, the eigenvalues of the momenta covariance matrix in Equa-
tion 4.71 are

l1,2 = −m1 , l3 = −(m1 +m2) . (4.74)

Identifying these with the eigenvalues in Equation 4.72, we have

m1(rij) = (b1 − b0)ζpp(rij) , m2(rij) = −3b1ζpp(rij) , (4.75)

which ensures that the trace and determinant of the matrix to remain unchanged.
Therefore, by setting m1 and m2 as above, we are able to rotate the momentum covari-
ance matrix C̄pipj

in the q̂ space.
Due to the complicated analytic form of ζpp(r), a simpler approximation will help

better understand its asymptotic behavior and further help with the KFT power spectra
analysis in Chapter 5 and Chapter 6. Define ζ(r) as

ζpp(r) ∼ ζ(r) =
0.04

(0.0075+ r2)7/6
. (4.76)
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Further define a1(r) and a2(r) as

|m1(r)| = −m1(r) ∼ a1(r) = (b0 − b1)ζ(r) =
3.5× 10−7

(0.0075+ r2)7/6
(4.77)

|m2(r)| = −m2(r) ∼ a2(r) = 3b1ζ(r) =
1.1× 10−6

(0.0075+ r2)7/6
(4.78)

They are compared with the original functions ζpp(r), |m1(r)| and |m2(r)| in Fig-
ure 4.17. Notice at both small and large r, the asymptotic behavior of the approximate
functions match the original ones very well.

Figure 4.17: The function of ζpp(r) (blue line), |m1(r)| (green line) and |m2(r)| (purple line) are
shown together with their approximations ζ(r) (yellow line), a1(r) (red line) and
a2(r) (orange line) given by Equation 4.76-4.78.

Furthermore, Figure 4.18 also shows the shape of the averaged initial momenta
power spectrum P0(k) and its asymptotic behavior k−

2
3 at large scales.

Now for calculating future KFT nonlinear momentum power spectra, we need to
rotate to the wavenumber k̂ space, in which the relative wavenumber vector k⃗ij =

k⃗i − k⃗j between the particles is the polar axis. Define projectors

π̃∥ = k̂⊗ k̂ π̃⊥ = 13 − π̃∥ (4.79)

parallel and perpendicular to k̂ = k⃗ij/|⃗kij| and wave number k⃗i is the fourier conju-
gate of particle position q⃗i. C̄pipj

has the same form in this space as

C̄pipj
= −m313 −m4k̂⊗ k̂ = −(m3 +m4)π̃∥ −m3π̃⊥ (4.80)

Comparing Equation 4.71 with Equation 4.80, we have
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Figure 4.18: The function of P0(k) (orange line) given by Equation 4.67 is shown together with
its asymptotic behavior k−

2
3 (blue dashed line).

(m1 +m2)π∥ +m1π⊥ = (m3 +m4)π̃∥ +m3π̃⊥ (4.81)

respectively. Multiply this equation by π̃∥ and π̃⊥ and take the trace of the resulting
two equations to find

m3 +m4 = µ2(m1 +m2) + (1− µ2)m1 (4.82)

2m3 = (1− µ2)(m1 +m2) + (1+ µ2)m1 (4.83)

We introduce the cosine µ := k̂ · q̂ of the angle between k⃗ij and r⃗ij,and apply the
following matrix trace equations

tr(π̃∥π̃∥) = 1, tr(π̃∥π̃⊥) = 0, tr(π̃∥π∥) = µ
2, tr(π̃∥π⊥) = 1− µ

2, (4.84)

tr(π̃⊥π̃⊥) = 2, tr(π̃⊥π∥) = 1− µ
2, tr(π̃⊥π⊥) = 1+ µ2 (4.85)

Thus by setting m3 and m4 as

m3(rij) = m1(rij) +
1

2

(
1− µ2)m2(rij

)
=

(
3µ2 − 1

2
b1 − b0

)
ζpp(rij, (4.86)

m4(rij) =
3µ2 − 1

2
m2(rij) =

3

2

(
1− 3µ2

)
b1ζpp(rij), (4.87)

we can rotate the momenta covariance matrix to the wave number k̂ space.
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4.4 summary and discussion

In this chapter, we provided the last piece of the puzzle of applying KFT to planetary
formation and derived the initial probability distribution function in phase space (iPDF)
forN-point dust particles from a 3-dimensional streaming instability (SI) local shearing
sheet simulation. We started with listing the key parameters of the simulation and
realized two important points, one of which is that the time of the snapshot is chosen
to be nonzero which leads to potential structure formation in the system, the other one
is that the size of the simulation box is large enough for us to assume homogeneity
and isotropy yet small enough compared to the scale height of the protoplanetary
disk (PPD) to be able to represent anywhere of the disk.

Next, we related the particle positions with their density field and found out that
the momentum fields of dust particles are all Gaussian while the density field is not.
By Gaussianizing the density field and numerically approximating the inverse density
function, we made use of the multivariate Gaussian distribution in Equation 4.1 and
derived the final expression for the iPDF in Equation 4.36. It is worth mentioning here
that although in this thesis the data only shows the necessity of Gaussianizing the
density field, for other types of simulation data that show non-gaussian momentum
distributions, we can still employ the same method and Gaussianize them in a similar
manner as long as the new Gaussianized fields relate with the original ones by mono-
tonically increasing functions. And even better, since there will only be extra delta
function distribution, the final expression of the iPDF in Equation 4.36 stays in the very
same form.

We then reviewed the numerical method developed to extract the missing element,
the covariance matrices in the iPDF, from simulation data. Due to the enormous num-
ber of dust particles, we chose to recover the covariance matrices from their corre-
sponding spatial correlation functions, which were calculated from the inverse Fourier
transformation of their spatial power spectra. A total five-step pipeline was developed
in Section 4.3.2 to achieve this goal, among which, the most crucial was to find fitting
functions for the initial spatial power spectra of the dust particles. The final fitting and
inverse Fourier transform results were shown in Section 4.3.3. For momentum and
density-momentum power spectra, we saw two characteristic scales which represent
the correlation and dissipation scales of the system. And for the density power spec-
trum, it is interesting to see a k−3 slope showing up at small scales. Building on these
results, we further made use of the value difference between the density covariance
matrix C̄ρ̄ρ̄ and the momentum density cross covariance matrix C̄ρ̄p, and managed to
simplify the complicated correlation operator C(p) to a constant C in Equation 4.63 by
only preserving the density auto correlations.

In the end, we discussed the near-isotropic nature of the momentum distribution in
the system and isotropized the momentum covariance matrix for the convenience of
further computations. Furthermore, using the fact that matrix rotations do not change
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their trace and determinant, we managed to rotate the momentum covariance ma-
trix into the relative position and wave number space in the form of Equation 4.71 and
Equation 4.80 for calculating future KFT nonlinear density and momentum power spec-
tra in Chapter 5 and Chapter 6. Moreover, a simpler approximation of the universal
correlation function ζpp(r) in Equation 4.76 is given for a better understanding of its
asymptotic behavior at large and small scales, which will come in handy for the later
KFT power spectra analysis.



5
D U S T D E N S I T Y P O W E R S P E C T R U M B Y K F T

In this Chapter, we focus on extracting the planetary structure formation information
by analyzing the KFT density power spectrum for dust particles derived from the gen-
erating functional in Equation 3.51,

Zd[L] =
∫
dqdpP(q, p)ei⟨Lq,q⟩+i⟨Lp,p⟩+iSI (5.1)

which is obtained by applying two density operators to Equation 3.20 and setting
the generator field J to zero afterwards, with

P(q, p) =
CN−N√

(2π)3NdetC̄pp

exp
(
−
1

2
pT C̄−1

ppp

)
, (5.2)

Lq = −

2∑
j=1

k⃗j ⊗ e⃗j, Lp = −

2∑
j=1

gqp(tj)k⃗j ⊗ e⃗j, (5.3)

SI = −

2∑
j=1

k⃗j

∫tj
0

dt ′gqp(tj, t ′)
(
u⃗0
τs

− ∇⃗qj
Φ

)
. (5.4)

This chapter is structured as follows. In the first section, we factorize the generat-
ing functional and introduce the mean field approach for gravitational interaction to
derive the general expression of the KFT nonlinear density power spectrum. In the sec-
ond section, we first ignore the friction and gravitational interactions. In the limit of
τs → ∞, the freely streaming particles’ linear and nonlinear density power spectra are
derived and their small-scale asymptotic behavior is analyzed. In the third section, we
add friction interaction back to the picture. For different values of τs, we calculate the
linear and nonlinear density power spectra and analyze their asymptotic behavior at
small scales. In the fourth section, we welcome the gravitational interaction back into
the play. For different values of τs, we compute the gravitational density power spec-
trum and further determine the possibility of gravitational collapse and planetesimal
formation. In the end, the universality of a k−3 tail for all the density power spectra
calculated above is concluded, suggesting scale-invariant structure formation below
a characteristic and time-dependent length scale, which is typically way below the
resolution limit of numerical simulations at early times.

On a side note, since the KFT calculations are based on the simulation results derived
in Chapter 4, whose time and lengths are scaled in the unit of H and Ω, we would like

75
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to specify the dimensionless quantities will be used in Chapter 5 and Chapter 6 up
front. In the following, the length scale is set in the unit of L = 0.1H, the wavenumber
scale is set by 2π

L , the time scale is set in the unit of Ω−1, which immediately means
that the friction coefficient τs in Equation 5.2-5.4 is actually the dimensionless quantity
Stokes number St = τsΩ in Equation 2.25. Furthermore, since the gas density ρg and
the speed of sound cs remain constants in our simulation and further calculations,
the Stokes number actually measures the size of dust particles. To keep its physical
meaning clearer, we will keep the mark τs for the actual meaning of the Stokes number
St throughout all calculations in this thesis.

5.1 analytical derivation of density power spectrum

In this section, we start with the factorized generating functional in Equation 5.1, to
perform the integration. Notice if we ignore the interaction term SI, the rest of the
integral becomes a complete Fourier transformation of the iPDF. Therefore, in the fol-
lowing, we aim to average the interaction term over the phase space coordinates and
pull it in front of the integral. Eventually, we wish to write the density factorized
generating functional as

Zd[L] = ei⟨SI⟩
∫
dqdpP(q, p)ei⟨Lq,q⟩+i⟨Lp,p⟩ ≈ ei⟨SI⟩Zd

0 [L], (5.5)

with the gravity-free generating function Zd
0 [L] defined above. By performing the

integration in Zd
0 [L] and combing the averaged interaction results, we derive the final

expression for the KFT nonlinear density power spectrum.
Since the power spectrum only involves 2 particles, without losing generality, in the

following, for any two indistinguishable particles, we mark them with subscripts 1 and
2, while we mark the rest N− 2 particles with subscripts 3, ..., N.

5.1.1 KFT Nonlinear Density Power Spectrum

First, we focus on solving the gravity-free generating functional Zd
0 [L] in Equation 5.5.

Integrating it over p gives

Zd
0 [L] = CN−N

∫
dqei⟨Lq,q⟩

∫
dp

1√
(2π)3NdetC̄pp

exp
(
−
1

2
pT C̄−1

ppp+ i⟨Lp, p⟩
)

= CN−N

∫
dq exp (i⟨Lq, q⟩) exp

(
−
1

2
L⊤
p C̄ppLp

)
.

(5.6)

Since the translation components Lq, Lp given in Equation 5.3 only involve particles
1 and 2, We can split the integral above by particle index as
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Zd
0 [L] = CN−NQ(k⃗1, k⃗2, t)

∫
dq3...dqN (5.7)

with the integration over all other particle positions q⃗i with i = 3, ..,N being

∫
dq3...dqN = VN−2 (5.8)

where the factor V ≡
∫
qi

is the volume of the 3-dimensional space. The integral over
q⃗1 and q⃗2 becomes

Q(k⃗1, k⃗2, t) =
∫
q1

∫
q2

exp
(
−i
(
k⃗1 · q⃗1 + k⃗2 · q⃗2

))
·

exp
(
−
1

2
L⃗p1

C̄p1p1
L⃗p1

−
1

2
L⃗p2

C̄p2p2
L⃗p2

− L⃗p1
C̄p1p2

L⃗p2

)
(5.9)

Since the momentum covariance matrix C̄pp is generated from momenta correlation
functions in terms of the absolute distance between two particles, we further define
the relative position r⃗ = q⃗1 − q⃗2 and its absolute value r = |⃗r|, then rewrite

Q(k⃗1, k⃗2, t) =
∫
q1

exp
(
−i
(
k⃗1 + k⃗2

)
· q⃗1
)
·∫

r

exp
(
−
1

2
L⃗p1

C̄p1p1
(0)L⃗p1

−
1

2
L⃗p2

C̄p2p2
(0)L⃗p2

− L⃗p1
C̄p1p2

(r)L⃗p2
+ i⃗k2 · r⃗

)
= (2π)3δ(k⃗1 + k⃗2)P(k1, t),

(5.10)

which leads to the final expression of the gravity-free generating functional

Zd
0 [L] = CN−NVN−2(2π)3δ(k⃗1 + k⃗2)P(k1, t), (5.11)

with the gravity-free KFT nonlinear density power spectrum being

P(k1, t) =
∫
r

e−g2
qp(t)k

2
1((m1(r)−m1(0))+µ2(m2(r)−m2(0)))e−ik1rµ , (5.12)

where µ is the cosine of the angle enclosed by k⃗ and r⃗. m1(r) and m2(r) are given
in Equation 4.75. Here we have applied the expression of C̄pp in position space given
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in Equation 4.71 and Equation 4.75 to the result, and we have also used here that
k⃗1 + k⃗2 = 0 as required by the delta distribution in Equation 5.10.

Before moving on, we would like to discuss more about the gravity-free density
power spectrum P(k1, t). Denote its integrand as

Ic(k1, r) = exp
(
−g2qp(t)k

2
1

(
(m1(r) −m1(0)) + µ

2 (m2(r) −m2(0))
))

, (5.13)

given the shape of m1(r) and m2(r) in Figure 4.17, we realize at the limit of r→ ∞,
the integrand satisfies

lim
r→∞ Ic(k1, r) = exp

(
g2qp(t)k

2
1

(
m1(0) + µ

2m2(0)
))

̸= 0 (5.14)

suggesting the result of the integral in Equation 5.12 is divergent. To guarantee a
convergent density power spectrum, we split P(k1, t) from Equation 5.12 into

P(k1, t) =
∫
r

(
e−g2

qp(t)k
2
1(m1(r)+µ2m2(r)) − 1

)
ey−ik1rµ +

∫
r

ey−ik1rµ (5.15)

with

y(t,µ) = g2qp(t)k
2
1(m1(0) + µ

2m2(0)) (5.16)

denoting the first term on the right-hand side of Equation 5.15 as Pf(k1, t), we have

Pf(k1, t) = 2π
∫∞
0

dr r2l(r) = 2π

∫∞
0

dr r2·∫1
−1

dµ
(
e−g2

qp(t)k
2
1(m1(r)+µ2m2(r)) − 1

)
ey−ik1rµ . (5.17)

At finite time t and wave number k1, using the asymptotic approximations of m1(r)

and m2(r) in Equation 4.77 and Equation 4.78, the expression in parentheses satisfies

lim
r→∞

(
e−g2

qp(t)k
2
1(m1(r)+µ2m2(r)) − 1

)
= lim

r→∞g2qp(t)k21(b0 − b1 + 3b1µ2) 0.04r7/3
= 0 ,

(5.18)

In the limit of r→ ∞, the integrand r2l(r) of Equation 5.17 becomes

lim
r→∞ r2l(r) = lim

r→∞ 0.04 g2qp(t)k21 r2

r7/3

∫1
−1

dµ(b0 − b1 + 3b1µ
2)ey(t,µ)k2

1 cos(k1rµ)

< 0.08 g2qp(t)k
2
1(b0 + 2b1)e

y(t,0)k2
1 lim
r→∞ 1

r1/3
sin(k1r)
k1r

= 0 , (5.19)
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which guarantees that Pf(k1, t) converges at large r. We have used here that y(t,µ)
is a negative, monotonically decreasing function of µ2 with a maximum at y(t, 0). The
more detailed discussion in Section A.2 shows that we can safely ignore the second
integral on the right hand side of Equation 5.15 and write down the final expression
for the non-linearly evolved density power spectrum

Pf(k1, t) =
∫
r

(
e−g2

qp(t)k
2
1(m1(r)+µ2m2(r)) − 1

)
ey−ik1rµ . (5.20)

5.1.2 Average The Gravitational Interaction

Now that the gravity-free KFT nonlinear density power spectrum is found in Equa-
tion 5.20, we analyze in this section the interaction term SI in Equation 5.4 and present
the mean field approach for averaging the gravitational interactions between dust par-
ticles, which is a great simplification compared to other perturbation approaches and
will be massively used throughout Chapter 5 and Chapter 6.

Notice the interaction term SI has two important parts. One marked as SI1 in Equa-
tion 5.21 comes from the friction between dust and a constant background gas field,
the other one marked as SI2 represents the self gravitational interaction among dust
particles,

SI1 = −

2∑
j=1

k⃗j

∫tj
0

dt ′gqp(tj, t ′)
u⃗0
τs

=
k⃗1 · u⃗0
τs

(∫t2
0

dt ′gqp(t2, t ′) −
∫t1
0

dt ′gqp(t1, t ′)
)

,

SI2 =

2∑
j=1

k⃗j

∫tj
0

dt ′gqp(tj, t ′)∇⃗qj
Φ = k⃗1

(∫t1
0

dt ′gqp(t1, t ′)∇⃗q1
Φ−

∫t2
0

dt ′gqp(t2, t ′)∇⃗q2
Φ

)
.

(5.21)

Here we have used the relation k⃗1 + k⃗2 = 0 given by the Dirac delta function in
Equation 5.10. Since we are interested in the density power spectrum of two different
particles at the same evolution time t1 = t2 = t, the above expressions instantly
simplify to

SI1 = 0,

SI2 = k⃗1 ·
∫t
0

dt ′gqp(t, t ′)
(
∇⃗q1

Φ− ∇⃗q2
Φ
)

,
(5.22)

which means the friction with the constant background gas field only contributes to
the nonlinear density power spectrum through its propagator gqp(t) in Equation 3.39.
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Therefore, the only expression left in the interaction term SI is the gravitational inter-
action, thus we can rewrite

SI = SI2 = k⃗1 ·
∫t
0

dt ′gqp(t, t ′)
(
∇⃗q1

Φ− ∇⃗q2
Φ
)

. (5.23)

To investigate the effect of the interaction term on the density power spectrum, more
generally, we set the initial time of switching on the self-gravity of dust particles as t0,
thus the expression of the interaction term SI in Equation 5.23 becomes

SI = −k⃗1 ·
∫t
t0

dt ′gqp(t, t ′)(f⃗1(t ′) − f⃗2(t ′)) with f⃗i(t
′) = −∇⃗qi

Φ, (5.24)

where f⃗i(t) is the gravitational force acting on particle i. Dropping the time argu-
ment for brevity, we bring the force terms into the form

f⃗1 − f⃗2 = 2f⃗12 +

N∑
j=3

(f⃗1j − f⃗2j) (5.25)

where f⃗ij is the force on particle i due to particle j, and we have used f⃗12− f⃗21 = 2f⃗12
by Newton’s third law. If we can neglect three-point correlations for now, the second
term on the right-hand side of Equation 5.25 can be neglected in an isotropic random
field since the forces exerted by particles j with j ⩾ 3 on particles 1 and 2 will vanish
on average because there is no preferred direction they could point to. We can then
simplify the interaction term to

SI = 2k⃗1 ·
∫t
t0

dt ′gqp(t, t ′)∇⃗1Φ2(t
′) (5.26)

containing the projection of the force f⃗12 between particles 1 and 2 on the wave
vector k⃗1.

To average the force term ∇⃗1Φ2, first consider the Poisson equation

∇2Φ = 4πG0ρ, (5.27)

Where ρ(q⃗, t1) is the particles’ number density at position q⃗ and time t1 given in
Equation 3.46. Now we write the gravitational potential Φ(q⃗) in the Fourier mode as

Φ(q⃗) =

N∑
j=1

∫
k

Φ̃je
ik⃗·(q⃗−q⃗j) (5.28)
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with Φ̃j being the Fourier mode of the gravitational potential of particle j. The
Fourier transformation of Equation 5.27 on particle j thus becomes

−k2Φ̃j = 4πG0, (5.29)

and the gradient of the potential of particle 2 at the position of particle 1 is

∇⃗1Φ2(t) = −i4πG0

∫
k

k⃗

k2
eik⃗·(q⃗1(t)−q⃗2(t)) (5.30)

A seemingly radical approximation of the interaction term Equation 5.26 consists
in replacing the potential gradient ∇⃗1Φ2 between the particles 1 and 2 by a suitable
average. Simply averaging ∇⃗1Φ2 over all particle pairs would return zero because of
the statistical isotropy of the particle distribution. It is thus important to realize that
the interaction term in Equation 5.26 contains the projection of the potential gradient
on the wave vector k⃗1 of the density mode considered. We thus need to calculate
the projection k̂1 · ∇⃗1Φ2 in a suitable average which does not vanish for particles
correlated with the density mode k⃗1.

For uncorrelated particles in a homogeneous random field, the direction of ∇⃗1Φ2 is
random with respect to k⃗1, thus its contribution to the average must vanish, while the
correlated part remains. We thus weigh the potential gradient ∇⃗1Φ2 with the density
correlation function ξρ(|q⃗1 − q⃗2|) at time t and take the Fourier transform of the result
to obtain the average Fourier component of the potential gradient at wave number k⃗1,

⟨∇⃗1Φ2⟩(k1, t) =
∫
q12

ξρ(q12, t)∇⃗1Φ2e
−ik⃗1·q⃗12 (5.31)

with q⃗12 = q⃗1 − q⃗2 and q12 = |q⃗12|. Let us further write the Fourier representations
of ξρ(q12, t) and ∇⃗1Φ2 as

ξρ(q12, t) =
∫
k

P(k, t)eik⃗·q⃗12 , ∇⃗1Φ2 = −i4πG0

∫
k2

k⃗2

k22
eik⃗2·q⃗12 , (5.32)

where P(k) represents the dust density power spectrum at evolution time t. Plugging
them into Equation 5.31 we obtain

⟨∇⃗1Φ2⟩(k1, t) = −i4πG0

∫
k

∫
k2

P(k, t)
k⃗2

k22

∫
q12

ei(k⃗+k⃗2−k⃗1)·q⃗12

= −i4πG0

∫
k

k⃗1 − k⃗

(k⃗1 − k⃗)2
P(k, t).

(5.33)
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The mean interaction term then can be written as

⟨SI⟩(k⃗1, t) = 2k⃗1 ·
∫t
t0

dt ′gqp(t, t ′)⟨∇⃗1Φ2⟩(k1, t ′), (5.34)

with the averaged potential gradient in the direction of the wave vector k⃗1 as

k̂1 · ⟨∇⃗1Φ2⟩(k1, t ′) = −
iG0

πk1

∫∞
0

dkk2P(k, t ′)J
(
k

k1

)
, (5.35)

where

J(y) = 1+
1− y2

2y
ln
1+ y

|1− y|
. (5.36)

Thus we have averaged the gravitational interaction term over the phase space coor-
dinates and left it a function of wavenumber k1 and evolution time t. Pulling it out of
the factorized generating functional in Equation 5.1 and combing with the results in
Section 5.1.1 gives the final expression of Zd[L] as

Zd[L] = CN−NVN−2(2π)3δ(k⃗1 + k⃗2)e
i⟨SI⟩Pf(k1, t) (5.37)

with the full KFT nonlinearly evolved density power spectrum being

Pg(k1, t) = ei⟨SI⟩Pf(k1, t). (5.38)

Due to the complicated form of Pg(k1, t), in the following sections, we will analyze
the full KFT nonlinear density power spectrum step by step. In Section 5.2, we calcu-
late the linear and nonlinear free density power spectrum for freely streaming dust
particles and introduce the new asymptotic method to analyze its small-scale asymp-
totic behavior. In Section 5.3, we further consider adding the friction with the constant
background gas field to the system and compute the friction density power spectrum
using the same method developed in the last section. In Section 5.4, we finally present
the analysis of the full KFT density power spectrum considering both friction and grav-
itational interactions and extract the information on gravitational collapse for different
strengths of friction in the system.
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5.2 freely streaming particles

We start with the propagator gqp(t, t ′) defined in Equation 3.39. Since the friction
coefficient τs measures the time a particle needs to adjust to the underlying flow, in
the limit of τs → ∞, a particle needs forever to adjust to the underlying flow. The
friction force in Equation 2.22 thus becomes

lim
τs→∞ f⃗ = lim

τs→∞−
p⃗− u⃗0
τs

= 0, (5.39)

meaning there is then no friction between dust particles and the background gas.
The corresponding free propagator becomes

lim
τs→∞gqp(t, t ′) = g0(t, t ′) = lim

τs→∞ τs
(
1− exp

(
−
t− t ′

τs

))
= lim

τs→∞ τs t− t
′

τs
= t− t ′

(5.40)

Now if we further ignore the gravitational interaction embedded in the interaction
term SI and require

SIfree = 0, (5.41)

then we get the exact dynamic setup of freely streaming particles. Their KFT nonlin-
ear density power spectrum becomes

Pfree(k1, t) =
∫
r

(
e−g2

0(t)k
2
1(m1(r)+µ2m2(r)) − 1

)
eg

2
0(t)k

2
1(m1(0)+µ2m2(0))−ik1rµ . (5.42)

In this section, we first derive the expression of the linear free density power spec-
trum Plin(k1, t) for the freely streaming particles at a very early evolution time and
analyze its k−1 small-scale asymptotic behavior. Then we return to the nonlinear free
density power spectrum Pfree(k1, t) by employing a new analytical asymptotic method
developed by Dr. Sara Konrad in Konrad [25]. Furthermore, for the nonlinear density
power spectrum, we analyze the time dependence of its k−3 small-scale asymptotic be-
havior and conclude that the structure in a system filled by freely streaming particles
first accumulates until it reaches its maximum and then dissipates at small scales.

5.2.1 Linear Density Power Spectrum

At very early times, the free propagator satisfies g0(t) = t → 0. The exponential in
Equation 5.42 can thus be Taylor approximated to first order,
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Pfree(k1, t) ≈ Plin(k1, t) = −g20(t)k
2
1

∫
r

(
m1(r) + µ

2m2(r)
)
e−ik1rµ. (5.43)

Integrating it over the spherical coordinates µ and φ gives

Plin(k1, t) = −4πg20(t)

∫∞
0

dr

[(
6b1 sin(k1r)

k1r
− 6b1 cos(k1r)

)
ζpp(r)

−(b0 + 2b1)k1r sin(k1r)ζpp(r)︸ ︷︷ ︸
(1)

]
. (5.44)

The integral over (1) can be carried out to give

4πg20(t)

∫∞
0

dr (b0 + 2b1)k1r sin(k1r)ζpp(r) = g20k
2
1(b0 + 2b1)P0(k1) (5.45)

with the averaged initial momentum power spectrum P0(k1) defined in Equation 4.67.
Since P0(k1) ∝ k−2/3 at small wave numbers, i.e. at large scales, the integral (1) is

proportional to k4/31 when k1 is small. On the other hand, substituting r → r1/k1 in
Equation 5.44 gives

Plin(k1, t) = −
4πg20(t)

k1

∫∞
0

dr1ζpp

(
r1
k1

)
·(

6b1 sin(r1)
r1

− 6b1 cos(r1) − (b0 + 2b1)r1 sin(r1)
)

. (5.46)

When k1 → 0, according to Equation 4.76, we have ζpp (r1/k1) ∝ (k1/r1)
7/3, thus

the linear density power spectrum satisfies Plin(k1, t) ∝ k
4/3
1 , which coincides with

the conclusion on the integral over (1). For k1 → ∞, the result of the integral in
Equation 5.46 can be shown to be independent of k1 in Section A.1.1, thus the density
power spectrum satisfies Plin(k1, t) ∝ k−1

1 for small scales.
Figure 5.1 shows the linear free density power spectrum Plin(k1, t) defined in Equa-

tion 5.44 at t = 0.4π together with its asymptotic behavior at both small and large k1,
which verifies our asymptotic analysis for both small and large scales. Note that the
radical change of the curve around scale k1 ≈ 10 is due to a sign shift of computing
Equation 5.44. Though the power spectrum is expected to be positive, the integral over
the linear Taylor expansion of the modified density power spectrum in Equation 5.20

could as well become negative.
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Figure 5.1: Illustration of the shape of the linear density power spectrum Plin(k1, t) (blue line)
and its asymptotic behavior at small (yellow dashed line) and large scales (green
dashed line).

5.2.2 Free Density Power Spectrum

We now return to the non-linear free density power spectrum in Equation 5.42 and
integrate over the angular coordinates φ and µ to write

Pfree(k1, t) = 2π
∫∞
0

dr r2l(r) (5.47)

as in Equation 5.17 with the function l(r) being

l(r) =

√
π

2

exp
(
g20(t)k

2
1 (m1(r) −m1(0)) +

k2
1r

2

4g2
0(t)k

2
1(m2(0)−m2(r))

)
√
g20(t)k

2
1 (m2(0) −m2(r))

·

−erf

k1r− 2ig20(t)k21 (m2(0) −m2(r))

2
√
g20(t)k

2
1 (m2(0) −m2(r))

+ erf

k1r+ 2ig20(t)k21 (m2(0) −m2(r))

2
√
g20(t)k

2
1 (m2(0) −m2(r))

+

√
π

2

exp
(
g20(t)k

2
1m1(0) +

k2
1r

2

4g2
0(t)k

2
1m2(0)

)
√
g20(t)k

2
1m2(0)

·

erf

k1r− 2ig20(t)k21m2(0)

2
√
g20(t)k

2
1m2(0)

− erf

k1r+ 2ig20(t)k21m2(0)

2
√
g20(t)k

2
1m2(0)

 ,

(5.48)

where erf(z) represents the error function. Figure 5.2 shows the function r2l(r) and
its large-scale asymptotic behavior at three different scales at time t = 4π. With in-
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creasing wave number, r2l(r) more and more resembles a delta distribution. In all
the plots, the function decreases to negligibly small values with an envelope propor-
tional to r−4/3, confirming that our results for the non-linear density power spectrum
Pfree(k1, t) as shown in Equation 5.19 converge.

Figure 5.2: The radial integrand of the free power spectrum, r2l(r), is shown here for k1 = 1.0,
k1 = 25.0 and k1 = 80.0 (blue lines) at time t = 4π. The yellow dashed lines indicate
the r−4/3 slope.

Figure 5.3 shows the directly integrated function Pfree(k1, t) and compares it to the
density power spectrum Plin(k1, t) linearly evolved to t = 4π. At large scales, it re-
produces the k4/3 slope of Plin(k1, t). At small scales, however, nonlinear evolution
causes the spectrum to fall off like k−3. This asymptotic slope sets in near k ≈ 25,
which coincides with the scale where r2l(r) in Figure 5.2 changes shape.
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Figure 5.3: The linearly evolved density power spectrum Plin(k1, t) (blue line) compared to the
free non-linear density power spectrum Pfree(k1, t) (yellow line). The asymptotic
behaviour at large (green dashed line) and small scales is also indicated. At small
scales, the linear power spectrum falls off like k−1 (red dashed line), while the free
non-linear power spectrum develops a k−3 slope (purple dashed line).

To better understand the k−3 behaviour at small scales, we adopt an asymptotic
analysis developed by Konrad [25]. Consider integrals of the form

P(k) =

∫
D

e−|k|sf(x)g(x)eik⃗·x⃗dx , s ⩾ 2 (5.49)
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over a possibly unbounded domain D ⊂ R3. Following Konrad [25], if the function
f(x) satisfies the three criteria that

1. f(x) has an isolated global minimum at x⃗ = 0;

2. f(x) is quadratically integrable on R3; and

3. the Hessian matrix A = ∂i∂jf(x) exists at the origin and is positive definite,

then its asymptotic expansion in the limit k→ ∞ can be expressed by

P(k) ∼ g(0)e−|k|sf(0)

√
(2π)3

|k|3s detA
exp

(
−
k⊤A−1k

2|k|s

)
as |k| → ∞ . (5.50)

We rewrite the non-linear density power spectrum in equation 5.42 as

Pfree(k1, t) =
∫
r

e−g2
0(t)k

2
1((m1(r)−m1(0))+µ2(m2(r)−m2(0)))e−ik1rµ

−

∫
r

eg
2
0(t)k

2
1(m1(0)+µ2m2(0))e−ik1rµ . (5.51)

As will be shown in Equation A.24, the second term drops to zero exponentially for
k1 → ∞, allowing us to restrict the asymptotic analysis to the first of these integrals.
The functions f(x) and g(x) from Equation 5.49 become

f(r) = g20(t)
(
(m1(r) −m1(0)) + (m2(r) −m2(0))µ

2
)

, g(r) = 1 . (5.52)

Requirements 1 and 2 are obviously satisfied based on the analysis of m1(r) and
m2(r) in Equation 4.77, Equation 4.78 and Figure 4.17. To examine requirement 3, we
expand f(r) into a Taylor series around r = 0,

f(r) =
(
b1 − b0 − 3µ

2b1
) g20(t)
25/6π2

σ̄7/3Γ

(
3

2

) ∞∑
n=1

Γ
(
7
6 +n

)
Γ
(
3
2 +n

)
(
− σ̄2r2

2

)n
n!

, (5.53)

where we have used the Taylor series of a hypergeometric function as

1F1(a,b, z) =
∞∑

n=0

a(a+ 1) · · · (a+n− 1)

b(b+ 1) · · · (b+n− 1)

zn

n!
=
Γ
(
3
2

)
Γ
(
7
6

) ∞∑
n=0

Γ
(
7
6 +n

)
Γ
(
3
2 +n

) zn
n!

. (5.54)

Thus the Hessian A at the origin reduces to the matrix

A = ∂i∂jf(r)
∣∣
r=0

= g20σ
2
1

[
(b0 − b1)13 + 3b1k̂1 ⊗ k̂1

]
, σ21 =

σ̄13/3

25/6π2
Γ
(
3
2

)
Γ
(
13
6

)
Γ
(
5
2

) ,
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(5.55)

with b0 > b1 > 0. This shows that requirement 3 is fulfilled.
The nonlinear free density power spectrum Pfree(k1, t) in Equation 5.42 thus meets

all three requirements. Since f(0) = 0 and g(0) = 1, its asymptotic expansion for
k1 → ∞ reads

Pfree(k1) ∼
1

|k1|3

√
(2π)3

detA
exp

(
−
k⊤1 A

−1k1

2|k1|2

)
=

P(0)(t)

|k1|3
. (5.56)

This k−3 asymptotic behavior only depends on the number of spatial dimensions
(d = 3) and the shape of the function f(r). Since f(r) solely depends on the initial
momentum correlation functions of dust particles, the small-scale tail proportional
to k−3 is entirely fixed by the initial conditions of the particle ensemble. As time
passes, the non-linear free density power spectrum will thus always approach the k−3

asymptotic behavior. Let us now explore its time dependence.

5.2.3 Time Dependence of Small Scale Behaviours

Figure 5.11 shows the non-linear density power spectrum Pfree(k1, t) at four different
times. All these spectra develop the universal k−3 slope at small scales. At larger
scales, the spectrum grows with time, while it first increases then decreases at small
scales. This reflects that structures form by correlated, freely streaming particles. Their
collective streaming builds up structures at all scales first, but then destroys them later
on scales small enough for particle streams to cross.

To better understand how the amplitude of the k−3 asymptotic tail depends on time,
the left panel of Figure 5.5 shows the power k31Pfree(k1, t) with the wave numbers k0
marked by points where the k−3 asymptotic slope is reached. As time proceeds, k0
moves towards larger scales (smaller k), while the amplitude of the k−3 tail first in-
creases, then decreases. The relation between k0 and time t is given in the right panel
of Figure 5.5. Its decreasing slope shows that structure formation rapidly proceeds to-
wards small scales first and then slows down. Additionally, we mention that since the
free propagator has the form g0(t) = t, the right panel of Figure 5.5 furthermore repre-
sents the relation between the starting scale k0 and the general propagator. Therefore,
in the following sections, if we replace g0(t) by gqp(t), the relation between k0 and
gqp(t) remains the same as shown in this plot.

We further evaluate the amplitude P(0) of the asymptotic tail defined in Equa-
tion 5.56. The Hessian A in Equation 5.55 has the determinant

detA = (b0 − b1)
2 (b0 + 2b1)g

6
0(t)σ

6
1 (5.57)

and the inverse

A−1 =
1

g20(t)σ
2
1

1

b0 − b1

(
13 −

3b1
(b0 + 2b1)

k̂1 ⊗ k̂1
)

, (5.58)
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Figure 5.4: Non-linear density power spectra Pfree(k1, t) together with their small scale asymp-
totic behavior (orange dash-dotted lines) at the four different times t = 0.6π (purple
line), t = 1π (yellow line), t = 2.5π (green line) and t = 4π (blue line).

Figure 5.5: Left: Power k31Pfree(k1, t) as a function of k1 at the four different times t = 0.6π
(purple line), t = 1π (yellow line), t = 2.5π (green line) and t = 4π (blue line). The
red dots mark the wave number k0 where the k−3 slope is reached. Dependence of
k0 on time, with the points indicating k0 for the four different times given.

thus the amplitude P(0)(t) becomes

P(0)(t) =
1

g30(t)σ
3
1 (b0 − b1)

√
(2π)3

b0 + 2b1
exp

(
−

1

2g20(t)σ
2
1 (b0 + 2b1)

)
. (5.59)

It reaches a maximum with height

P
(0)
max =

(
6π

e

)3/2
b0 + 2b1
b0 − b1

≈ 75.53 at tmax = σ−1
1

√
1

3 (b0 + 2b1)
≈ 0.97π . (5.60)



90 dust density power spectrum by kft

Figure 5.6: Amplitude P(0)(t) for the asymptotic k−3 tail of the free, non-linear power spec-
trum as a function of time t. The blue point indicates its maximum P

(0)
max at time

tmax according to Equation 5.60. The yellow points are obtained by direct integra-
tion of Equation 5.20. The four red points mark the amplitudes at the times t = 0.6π,
t = 1.0π, t = 2.5π, and t = 4.0π.

Figure 5.16 shows the amplitude P(0)(t) for the k−3 asymptotic tail as a function of
time, calculated analytically by Equation 5.59 and numerically by direct integration of
Equation 5.42. Their perfect match confirms the asymptotic result. The rapid increase
at early times shows that small-scale structures form rapidly. After tmax, the amplitude
of the k−3 slope decreases, showing that small-scale structures are destroyed after
formerly convergent particle streams cross and begin diverging.

5.3 friction density power spectrum

In Section 5.1.2, we conclude that the effect of the friction interaction to the density
power spectrum only shows up in the propagator gqp(t, t ′) by Equation 3.39. Thus to
evaluate Pf(k1, t) in Equation 5.20, we first study the value of the friction coefficient τs
in gqp(t).

Figure 5.7 shows the shape of gqp(t) with five different friction coefficients τs =

0.25, τs = 0.5, τs = 1.0, τs = 5.0, τs = 10.0 and the shape of the free propagator g0(t) =
t. Compared to the free propagator, the friction coefficient τs sets an upper limit for
gqp(t). The larger τs becomes, the more similar gqp(t) and g0(t) become. This result
makes perfect sense since τs defined in Equation 2.23 and Equation 2.25 directly relates
to the size of the particles. The larger the particles become, the less coupled they are
to the gas and the weaker friction drag they feel. At the limit of τs → ∞, the friction
disappears and it recovers the free propagator g0(t).
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Figure 5.7: This plot compares the propagator gqp(t) in Equation 3.39 respectively at τs = 0.25
(blue line), τs = 0.5 (yellow line), τs = 1.0 (green line), τs = 5.0 (red line) and
τs = 10.0 (purple line) together with the freely streaming propagator g0(t) = t

(brown line).

In this section, we still ignore the gravitational interaction among dust particles,
yet return to the full expression of the propagator gqp(t, t ′) in Equation 3.39 and the
nonlinear density power spectrum Pf(k1, t) in Equation 5.20 to reconsider the friction
interaction between dust and the constant background gas field in the system. We
start with deriving the expression of the linear density power spectrum Pflin(k1, t)
for very small dust particles and conclude the development of the k−1 tail at small
scales. Next, for larger dust particles at finite evolution time, we compute the non-
linear density power spectrum Pf(k1, t) by employing the same asymptotic analysis
shown in Section 5.2.2. In the end, we analyze the time and particle-size dependence
for the small-scale k−3 asymptotic behaviors of Pf(k1, t) and find a critical particle
size τcs pure mathematically which corresponds to the maximum small scale structure
formation.

5.3.1 Linear Power Spectrum At Small τs

We start with very small particles, since the propagator always satisfies gqp(t, t ′) ⩽ τs,
at the limit of τs → 0, the exponential in Equation 5.20 can be Taylor approximated to
the first order,

Pf(k1, t) ≈ Pflin(k1, t) = −g2qp(t)k
2
1

∫
r

(
m1(r) + µ

2m2(r)
)
e−ik1rµ (5.61)

after integrating over the spherical coordinates µ and ϕ, it becomes
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Pflin(k1, t) = −4πg2qp(t)

∫∞
0

dr

[(
6b1 sin(k1r)

k1r
− 6b1 cos(k1r)

)
ζpp(r)

− (b0 + 2b1)k1r sin(k1r)ζpp(r)
]

, (5.62)

which has the identical expression as Equation 5.44 just with a different propaga-
tor gqp(t). Thus we conclude that the linear density power spectrum also satisfies

Pflin(k1, t) ∝ k
4
3

1 at large scales, and at small scales, it follows Pflin(k1, t) ∝ k−1
1 .

Figure 5.8 shows the linear density power spectrum Pflin(k1, t) defined in Equa-
tion 5.62 with parameter τs = 0.01 at t = 0.001 and t = 10.0 together with their
asymptotic behaviors at both small and large k1, which verifies our previous conclu-
sions at both small and large scales. The fact that the value of Pflin(k1, t) becomes
larger at later times implies that there is continuous structure formation at all scales as
time proceeds, while the shape of the propagator gqp(t) in Figure 5.7 further indicates
that the structure formation for small size particles already rapidly occurs at a very
early stage of evolution.

0.01 0.10 1 10 100 1000 104
10-14

10-12

10-10

10-8

k1

Li
ne
ar
D
en
si
ty
P
ow
er
S
pe
ct
ru
m
(τ
s
=
0.
01

)

k-1 Slope

k
4
3 Slope

Plin (t=10.0)

Plin (t=0.001)

Figure 5.8: This plot illustrates the shape of linear density power spectrum Pflin(k1, t) with
τs = 0.01 at evolution time t = 0.001 (blue line) and and t = 10.0 (yellow line).
Their asymptotic behavior at small and large scales are represented by the green
and red dashed lines.

Figure 5.9 shows the shape of the linear density power spectrum Pflin(k1, t) at evolu-
tion time t = 10.0 with friction coefficients τs = 0.1, τs = 0.01 and τs = 0.001 together
with their asymptotic behaviour at small and large k1. For all three values of τs we
consider here, the propagator satisfies gqp(t = 10.0) ≈ τs. The comparison of the
three curves suggests that at the range of small τs, relatively larger dust particles that
experience weaker friction actually bring more power to the KFT linear density power
spectrum, meaning it stimulates more structure formation when the dust particles
have more time to evolve and interact with the background gas.
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Figure 5.9: This plot illustrates the shape of linear density power spectrum Plin(k1, t) at evolu-
tion time t = 10.0with friction coefficient τs = 0.1 (blue line), τs = 0.01 (yellow line)
and τs = 0.001 (green line). Their asymptotic behavior at small and large scales are
represented by the red and purple dashed lines.

5.3.2 Non Linear Power Spectrum At Large τs

When the friction coefficient τs gets larger, the linear approximation of the density
power spectrum Pf(k1, t) only remains true at a very early stage of evolution. In the
limit of t→ 0, the propagator satisfies

lim
t→0

gqp(t) = g0(t) = t→ 0, (5.63)

thus we return to the linear free density power spectrum Plin(k1, t) in Equation 5.61.
All analyses and asymptotic behavior we deduced in Section 5.2.1 remain true in this
case.

While when the evolution time t gets larger, the linear approximation no longer
holds, we need to return to the nonlinear density power spectrum Pf(k1, t) given in
Equation 5.20. Integrating it over spherical coordinates φ and µ to write

Pf(k1, t) = 2π
∫∞
0

drr2l(r) (5.64)

as in Equation 5.17 where l(r) has the same expression with Equation 5.48 with a
different propagator gqp(t).

Figure 5.10 shows the direct integration of function Pf(k1, t) with friction coefficient
τs = 5.0 and compares it to the linear density power spectrum Pflin(k1, t) in Equa-
tion 5.62 at evolution time t = 10.0. At large scales, it develops a k

4
3 slope same as

Pflin(k1, t), while at smaller scales, the nonlinear growth becomes more important and
the power spectrum develops a k−3 slope just as the nonlinear free power spectrum in
Figure 5.3.
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Figure 5.10: This plot compares the linear density power spectrum Pflin(k1, t) (blue line) with
the nonlinear density power spectrum Pf(k1, t) (yellow line) together with their
asymptotic behavior at large (green dashed line) and small scales. At small scales,
the asymptotic behavior of the linear power spectrum is proportional to k−1 (red
dashed line), while the nonlinear power spectrum develops a different k−3 slope
(purple dashed line).

We can employ the same asymptotic analysis shown in Section 5.2.2 to explain the
k−3 behavior at small scales. Given that the only difference between Pfree(k1, t) and
Pf(k1, t) lies in the propagator gqp(t), we can immediately write down its asymptotic
expansion for k1 → ∞ as

Pf(k1) ∼
1

|k1|3

√
(2π)3

detAf
exp

(
−
k⊤1 A

−1
f k1

2|k1|2

)
=

P
(0)
f (t)

|k1|3
, (5.65)

where the new Hessian matrix Af at the origin reads

Af = g
2
qp(t)σ

2
1

[
(b0 − b1)13 + 3b1k̂1 ⊗ k̂1

]
, (5.66)

and the new amplitude for the k−3 slope becomes

P
(0)
f (t) =

1

g3qp(t)σ
3
1 (b0 − b1)

√
(2π)3

b0 + 2b1
exp

(
−

1

2g2qp(t)σ
2
1 (b0 + 2b1)

)
. (5.67)

5.3.3 Time and Particle-Size Dependence At Small Scales

To investigate the time dependence of the nonlinear density power spectrum, Fig-
ure 5.11 shows the direct integration of function Pf(k1, t) with friction coefficient
τs = 5.0 at different evolution time t = 2.0, t = 10.0 and t = 100.0. We can see once
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more that the k−3 asymptotic behavior at small scales is universal. The comparison of
the three curves at different times shows that at larger scales, the power of the density
field grows over time, while at smaller scales, the amplitude of the k−3 slope first in-
creases then decreases, which indicates that structures formed by correlated particles
interacting by friction build up at all scales during an earlier periods of evolution, yet
as time proceeds, structures at small scales start being destroyed.
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Figure 5.11: This plot shows the density power spectrum Pf(k1, t) with friction at evolution
times t = 2.0 (blue line), t = 10.0 (yellow line) and t = 100.0 (green line) with
the friction coefficient τs = 5.0. At small scales, they all develop k−3 slopes (red
dashed lines).

To investigate how the size of particles affects the shape of the nonlinear density
power spectrum, Figure 5.12 shows Pf(k1, t) at evolution times t = 2.0 (left panel) and
t = 10.0 (right panel) with friction coefficients τs = 5.0, τs = 10.0 and τs = 20.0. In
the left panel, the power of the density field grows with the friction coefficient τs for
almost all the k1 concerned, which suggests that with the size of the particles becoming
large and the corresponding friction between dust particles and the background gas
becoming less effective, more structure formation occurs at all scales during a relatively
earlier period of evolution. However, in the right panel, that is no longer the case. The
nonlinear density power spectrum still becomes stronger with larger τs on large scales,
however, at small scales, the amplitude of the k−3 slope decreases with τs getting
larger, indicating more structure is being destroyed at small scales during a relatively
later period of evolution for larger size particles that experience less friction drag from
the background gas.

Notice in Figure 5.10, Figure 5.11 and Figure 5.12, the nonlinear density power spec-
trum Pf(k1, t) always gets stronger at large scales with larger friction coefficient τs
and longer evolution time t, while at small scales, it behaves in a more complicated
manner.
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Figure 5.12: These two plots show the shape of the nonlinear density power spectrum Pf(k1, t)
at evolution times t = 2.0 (left panel) and t = 10.0 (right panel) with the friction
coefficients τs = 5.0 (blue line), τs = 10.0 (yellow line) and τs = 20.0 (green line)
together with their small scale k−3 asymptotic behavior (red dashed lines).

To quantify the time and particle-size dependency of the small-scale asymptotic be-

haviors, we first require the amplitude of the k−3 slope satisfies dP
(0)
f (t)

dt =
dP

(0)
f

dgqp

dgqp

dt =

0, its maximal P(0)
fm at time tm can be obtained as follows

P
(0)
fm = P

(0)
max =

(
6π

e

)3/2
b0 + 2b1
b0 − b1

, tm = −τs ln
(
1−

gqpm

τs

)
(5.68)

where

gqpm = tmax =

√
1

3σ21 (b0 + 2b1)
≈ 3.04 (5.69)

In Equation 5.60, notice that the maximal value of the amplitude P
(0)
f (t) remains

the same constant for all friction coefficients τs even in the case of τs → ∞ (P(0)
max).

While the expression for time tm sets a limit for τs. In the case of τs > gqpm, tm exists
and monotonously decreases with τs getting larger, see Figure 5.13, meaning that the
starting time of structure being destroyed at small scales becomes earlier as particles
are getting larger, which would result in less small-scale and more large-scale structure
formation to occur in systems with larger particles at the end stage of evolution with
friction, which agrees with the simulation results in Johansen and Youdin [21]. In the
limit of τs → ∞,

lim
τs→∞ tm = τs

gqpm

τs
= gqpm (5.70)
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sets a lower limit for tm, suggesting that in the case of relatively large τs, the max-
imal amplitude P

(0)
fm will not show up at least after evolution time t = gqpm = tmax.

While in the case of τs < gqpm, tm does not exist, meaning that the amplitude P
(0)
f (t)

of the k−3 slope will monotonously increase until the propagator gqp(t) reaches its
maximum.

Figure 5.13: This plot shows the value of tm as a function of the friction coefficient τs.

Figure 5.14: This plot illustrates the evolution of the amplitude P
(0)
f (t) for the k−3 slope as a

function of time t with friction coefficients τs = 1.0 (purple line), τs = 2.0 (yellow
line) and τs = 3.0 (burgundy line).

Figure 5.14 shows the shape of P
(0)
f (t) with relatively small friction coefficients

τs = 1.0, τs = 2.0 and τs = 3.0. They all indeed share the same monotonously in-
creasing pattern, which suggests the structure in the system continuously builds up
at small scales until the velocity of the dust particles becomes the same as that of
the background gas. On the other hand, since the power of the density field always
increases at large scales for larger τs and longer t, we can say that for smaller-size par-
ticles experiencing relatively stronger dust-gas friction, there is continuous structure
formation at all scales until the system reaches its stable state, see Figure 5.15. Also
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Figure 5.15: This plot shows the density power spectrum Pf(k1, t) with friction at evolution
times t = 2.0 (blue line), t = 3.0 (yellow line) and t = 10.0 (green line) with
the friction coefficient τs = 3.0. At small scales, they all develop k−3 slopes (red
dashed lines). As time proceeds, the power spectrum grows at both large and
small scales.

notice with τs growing while still in the range of τs < gqpm, the value of the am-
plitude P

(0)
f (t) increases significantly, indicating that more power and more structure

formation occurs when the dust particles are larger and have more time to evolve and
interact with the background gas, which coincides with our conclusions of Figure 5.9.

Figure 5.16: This plot illustrates the shape of the amplitude P
(0)
f (t) for the k−3 slope as a

function of time t with friction coefficient τs = 5.0 (purple line), τs = 10.0 (yellow
line) and τs = 20.0 (light blue line). The crosses of the same color on each curve
represent their maximum value P

(0)
fm at time tm by Equation 5.60.

Figure 5.16 shows how the amplitude P
(0)
f (t) for the k−3 slope changes over time

with relatively large friction coefficients τs = 5.0, τs = 10.0 and τs = 20.0. They all
show the same maximal amplitude P

(0)
fm as expected. With τs getting larger, tm be-
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comes smaller, as shown in Figure 5.13. The fast-increasing value for the amplitudes
at the earlier time suggests rapid structure formation occurs at small scales during
the very early stage of the evolution, while as time proceeds, the amplitude for the
k−3 slope starts decreasing, meaning the structure will continuously be destroyed at
smaller scales during the later stage of evolution until the propagator gqp(t) reaches
its maximum, then the dust particles freeze in. This change of behavior for the am-
plitude P

(0)
f (t) at small scales compared to the continuous power increase at large

scales suggests that there exists a special particle size τcs = gqpm corresponding to the
strongest small scale structure formation in the system due to the friction.

Figure 5.17: This plot illustrates the shape of the amplitude P
(0)
f (t) for the k−3 slope as a

function of friction coefficient τs at two different time t = 2.0 (purple line)and
t = 100.0 (burgundy line). The same color dot on the burgundy curve represents
its maximal P(0)

fm at friction coefficient τsm calculated by Equation 5.71.

Further, we want to determine the relation between the small-scale asymptotic be-

havior and particle size τs. By requiring dP
(0)
f (t)

dt =
dP

(0)
f

dgqp

dgqp

dτs
= 0, we get the same

maximal amplitude P
(0)
fm as in Equation 5.68, while the corresponding τsm satisfies

τsm

(
1− e−

t
τsm

)
= gqpm. (5.71)

Figure 5.17 shows the shape of the amplitude P
(0)
f (t) for the k−3 slope as a func-

tion of the friction coefficient τs at times t = 2.0 and t = 100.0. At relatively earlier
evolution time t = 2.0, the amplitude for k−3 slope monotonously increases with τs
getting larger, meaning that at earlier times, there is always more structure formation
at small scales for larger size particles, however, the amplitude never reaches its maxi-
mum value P

(0)
m at t = 2.0 < gqpm, which agrees with the conclusion in Equation 5.70.

At later evolution time t = 100.0, the amplitude rapidly increases until reaches its
maximum at τsm before it starts decreasing, indicating that at a later time, there is
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structure formation at small scales for small size particles, while for larger size parti-
cles, the structures at small scales are being destroyed. Notice with τs getting larger,
at a given evolution time t, due to the asymptotic behavior of the propagator gqp(t)
in Equation 5.40, the amplitude always reaches a constant, which indicates that when
the particle size is large enough, the small scale structures in the system are always
destroyed in a similar manner at given evolution time t.

5.4 gravitational density power spectrum

With the gravity-free KFT nonlinear density power spectrum Pf(k1, t) in Equation 5.20

and its linear form Pflin(k1, t) in Equation 5.62 obtained, we successfully include fric-
tion between the dust particles and the constant background gas field to the KFT frame-
work. In this section, we further switch on the self-gravity among dust particles in the
system at time t0 and compute the full nonlinear KFT density power spectrum Pg(k1, t)
in Equation 5.38 by calculating the averaged interaction term i⟨SI⟩ in Equation 5.34

where

i⟨SI⟩ =
2Ĝ

π

∫t
t0

dt ′gqp(t, t ′)
∫∞
0

dkk2P(k, t ′)J
(
k

k1

)
, (5.72)

with J(y) defined in Equation 5.36 and the notation Ĝ adopted to represent the
gravitational constant in the dimensionless code units. Since the density of a particle
cloud has to be larger than the critical Hill density ρH in Equation 2.50 to allow the
cloud to withstand the tidal shear while in orbit around a star of mass M at distance
D, we therefore wish to alter the dimensionless gravitational constant Ĝ0 in order for
it to represent a value that sets the total system density in relation to its Hill density.

By looking at the Poisson equation in code units

∇2Φ

Ω2
=
4πG0ρd
Ω2

=
4πG0ρ̄g

Ω2

ρd
ρ̄g

, (5.73)

we can read off the gravitational constant and the dust density in code units as

Ĝ =
G0ρ̄g

Ω2
, ρ̂ =

ρd
ρ̄g

, (5.74)

with the mean gas density in the simulation satisfying ρ̄g = 1.0. Now introduce a
scaling parameter f and we can express the dust density in terms of Hill density by

ρd = f · ρH =
9f

4π

M

D3
, (5.75)
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Using G0M = Ω2D3, we obtain the final expression for the dimensionless gravita-
tional constant as

Ĝ =
9f

4πε
= f · Ĝ0, (5.76)

which now expresses densities in terms of the Hill density, with ε being the dust-
to-gas ratio defined in Equation 2.26 and Ĝ0 = 0.71 is just the condition for a 3-
dimensional simulation to be at Hill density.

The following section is structured as follows. With Ĝ0 solved for the interaction
term SI, we start with looking for a proper approximation for P(k, t ′) in Equation 5.72

to simplify the integrations. Next, we calculate the full linear KFT density power spec-
trum Pglin(k1, t) for small-size dust particles by calculating the corresponding aver-
aged interaction term i⟨SI⟩ and combing it with the gravity-free linear KFT density
power spectrum Pflin(k1, t) in Equation 5.62. We then calculate i⟨SI⟩ for large-size
particles and combine it with the gravity-free nonlinear KFT density power spectrum
Pf(k1, t) to compute the full nonlinear KFT density power spectrum Pg(k1, t). We fur-
ther discuss the relation between i⟨SI⟩ and the particle size τs, and study how the
gravitational interaction affects the critical particle size τcs discovered in Section 5.3.3.
In the end, by calculating the averaged dust density growth for the small-size-particle
system and comparing it to reasonable collapse criteria, we find the minimum particle
size τgs that assures a final gravitational collapse, which also turns out small enough
for successfully overcome the ”meter-size barrier”.

5.4.1 Proper Approximation for P(k, t)

Due to the difficulties to acquire and further integrate the density power spectrum
P(k, t ′) at evolution time t ′, we therefore look for some sort of approximation in this
section. In Section 5.3, various figures have shown that the value of the gravity-free
density power spectrum Pf(k1, t) is far smaller than unity, which leads to a negligible
mean interaction term i⟨SI⟩ at early times t ≳ t0. Thus we assume it is reasonable to
approximate P(k, t ′) by its initial power spectrum P(k, t ′ = t0) = Pini(k, t0), where
t0 represents the time of switching on the self-gravity among dust particles. we can
thus adopt the gravity-free density power spectrum Pf(k, t0) as Pini(k, t0) and carry
out the integral in Equation 5.72 without the time element. Furthermore, to avoid the
complicated form of Equation 5.20, we exploit the asymptotic behavior of Pf(k, t0) at
both large and small scales and apply the numerical fitting method to find the proper
approximation for Pini(k, t0).

In view of the small friction coefficient τs, we employ the linear density power
spectrum Pflin(k, t) in Equation 5.62 which is proportional to g2qp(t), define
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Pinis(k, t0) = c0g2qp(t0)k
4
3

(
1− exp

(
−
c1

k
7
3

))
(5.77)

so that it satisfies Pinis(k, t0) ∝ k
4
3 at the limit of k → 0 and Pinis(k, t0) ∝ k−1 at the

limit of k→ ∞ as Pflin(k, t). The fitting coefficient c0 can be calculated by

c0 =
Pflin(k1, t)

g2qp(t)k
4
3

1

= 1.29× 10−5 (5.78)

at wave number k1 = 0.1, and the fitting coefficient c1 can be calculated by

c1 =
k1Pflin(k1, t)
g2qp(t)

= 1015.5 (5.79)

at wave number k1 = 1000.0. For very large time t0 ⩾ 10.0, the propagator gqp(t0)
can be approximated as τs, thus we have

Pinis(k, t0) = c0τ2sk
4
3

(
1− exp

(
−
c1

k
7
3

))
, for t0 ⩾ 10.0 (5.80)
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Figure 5.18: This plot compares the linear friction density power spectrum Plin(k, t0) (solid
lines) and the initial density power spectrum Pini(k, t0) (dashed lines) at evolution
time t0 = 10.0 with two different friction coefficient τs = 0.01 (blue, green) and
τs = 0.001 (yellow, red).

Figure 5.18 compares the shape of Pflin(k, t0) and Pinis(k, t0) at initial time t0 = 10.0
with two different friction coefficients τs = 0.01 and τs = 0.001. Here the extremely
small friction coefficients are chosen to help study the ”meter-size barrier”. Note that
except for some small difference at intermediate wave numbers k, the overall shape of
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two sets of curves matches each other very well, especially the asymptotic behavior at
the small and large scales, suggesting that the function Pinis(k, t0) is a good approxi-
mation to Pflin(k, t). Notice though that the asymptotic study on the nonlinear density
power spectrum Pf(k, t) in Section 5.3.2 states that there exists a k−3 tail instead of
k−1 at very small scales for density power spectrum, due to the extremely small value
of gqp(t0), its starting scales k0 becomes exceedingly large which we can easily ignore
for the small-size-particle system.

However, with a relatively larger friction coefficient τs, define

Pini(k, t0) = c0g2qp(t0)k
4
3

(
1− exp

(
−
c2

k
13
3

))
(5.81)

so that it satisfies Pini(k, t0) ∝ k
4
3 at the limit of k → 0 and Pini(k, t0) ∝ k−3 at

the limit of k → ∞ as the nonlinear density power spectrum Pf(k, t), here we already
use the fact that at large scales the nonlinear density power spectrum Pf(k1, t) is iden-
tical with the linear one Pflin(k1, t), see Figure 5.10. The fitting coefficient c2 can be
calculated by comparing the small-scale asymptotic behavior of Equation 5.81 and
Equation 5.65. By setting Pini(k, t0) = Pf(k, t0) in the limit of k→ ∞, we have

c2 =
P
(0)
f (t0)

c0g2qp(t0)
(5.82)

with P
(0)
f (t) being the analytic expression of the amplitude for the k−3 tail in Equa-

tion 5.67.
Table 5.1 gives the fitting coefficients c0g2qp(t0) and c2 for τs = 3.0 respectively at

the initial time t0 = 2.0 and at t0 = 10.0. Note that the friction coefficient is chosen to
be compliant with the condition of τs < τcs, where the structure of the system is stably
building up at all scales due to the friction between gas and dust.

t0 = 2.0 t0 = 10.0

c0g
2
qp(t0) 2.75× 10−5 1.08× 10−4

c2 1.69× 105 6.83× 105

Table 5.1: This table gives the values for the fitting coefficients c0g2qp(t0) and c2 in Equa-
tion 5.81 for τs = 3.0 at the initial time t0 = 2.0 and at t0 = 10.0.

Figure 5.19 compares the shape of Pf(k, t0) and Pini(k, t0) at initial time t0 = 2.0
and at t = 10.0 with the friction coefficient τs = 3.0. Though there are some offsets at
the middle range of wave number k, note that the overall shape of two sets of curves
matches each other pretty well, especially at the small and large scales, which validates
our choice of the function Pini(k, t0).
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Figure 5.19: This plot compares the density power spectrum Pf(k, t0) with friction (solid lines)
and the initial density power spectrum Pini(k, t0) (dashed lines) at evolution time
t0 = 2.0 (blue, green) and at t0 = 10.0 (yellow, red) with the friction coefficient
τs = 3.0.

Concluding, it is worth mentioning that the numerical functions we find above to
approximate Pflin(k1, t0) and Pf(k1, t0) are suitable for any time arguments, therefore,
we can also use these expressions to replace the density power spectrum Pf(k1, t)
in Equation 5.38 when computing the full KFT density power spectrum Pg(k1, t) to
further simplify our calculations.

5.4.2 Linear Power Spectrum at Small τs

In this section, we first study the full linear KFT density power spectrum Pglin(k1, t) for
small size particles with small friction coefficients τs. Since we will only consider the
initial time t0 = 10.0 ≫ τs in the following, we can directly plug Equation 5.80 into
Equation 5.72 and obtain the final expression for the mean interaction term as

i⟨SI⟩(k1, t) =
2c0Ĝ

π

(
τ3s(t− t0) + τ

4
s

(
e−

t−t0
τs − 1

))
∫∞
0

dkk
10
3

(
1+

k21 − k
2

2kk1
ln
k+ k1
|k− k1|

)(
1− exp

(
−
c1

k
7
3

))
. (5.83)

For large arguments, the integrand of the mean interaction term becomes

lim
k→∞k

10
3

(
1+

k21 − k
2

2kk1
ln
k+ k1
|k− k1|

)(
1− exp

(
−
c1

k
7
3

))
= lim

k→∞ c1k J
(
k

k1

)
(5.84)

To determine whether this integrand is convergent, first we have to determine the
asymptotic behavior of J

(
k
k1

)
, see Figure 5.20. In the limit of k→ 0 we have
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lim
k→0

J

(
k

k1

)
= J(0) = lim

k1→∞ 2− 23
k2

k21
= 2 (5.85)

as a constant, while in the limit of k→ ∞, its asymptotic behavior becomes

lim
k→∞ J

(
k

k1

)
= lim

k→∞
2k21
3k2

(5.86)

which increase proportionally to k21 and decreases proportionally to k2.
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Figure 5.20: This plot shows the shape of J(y) in Equation 5.36 together with its asymptotic
constant J(0) = 2 at small y from Equation 5.85 and the y−2 slope at larger y from
Equation 5.86.

Returning to the integrand in Equation 5.84, it is obviously not converging when
integrating to infinity. Thus a cutoff for the integral in Equation 5.83 needs to be in-
troduced. The analysis of the dust initial power spectrum from simulation data in
Section 4.3.3 shows that the wave number corresponding to the minimal inter dust
particle distance has the magnitude of km0

∼ 102, since each dust particle in the sim-
ulation is composed by about 1011 pebbles on average, thus it is reasonable to set an
upper limit for the wave number as

km = 102+
11
3 = 1017/3 (5.87)

to suppress modes on scales smaller than the minimal distance between pebbles.
Figure 5.21 shows the shape of the mean interaction term i⟨SI⟩ in Equation 5.83 with

cutoff scale km as a function of wave number k1 with the initial time t0 = 10.0 and the
friction coefficients τs = 0.01 and τs = 0.001 respectively at evolution times t = 11.0,
t = 20.0 and t = 100.0 when the gravitational parameter is set to f = 1. At large and
small scales, their k21 asymptotic slope and the asymptotic constants also are given in
the plot. The comparison of curves at different evolution time t with the same friction
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Figure 5.21: This plot illustrates the shape of the mean interaction term i⟨SI⟩(k1, t) as a function
of wave number k1 (solid lines) with gravitational parameter f = 1 at initial time
t0 = 10.0 and evolution time t = 11.0 (blue, red), t = 20.0 (yellow, purple) and t =
100.0 (green, brown) with two different friction coefficients τs = 0.01 (blue, yellow,
green) and τs = 0.001 (red, purple, brown). Their k2 asymptotic behaviors at large
scales are represented by the purple dashed lines. The asymptotic constants at
small scales are illustrated in green dashed lines.

coefficient τs shows that the value of the mean interaction term grows large over time,
which means that as time proceeds, its contribution to the nonlinear density power
spectrum will become more and more important. While the difference between the
curves have the same evolution time twith different friction coefficient τs suggests that
the effect of the self-gravity interaction will become significantly stronger with larger
size dust particles, meaning that larger dust particles are much easier to aggregate to
even larger particles due to their much stronger gravitational interaction with each
other, which agrees with our intuition. On the other hand, for smaller particles, their
stronger friction with the background gas slows down the gravitational collapse, yet
potentially provides more time for further planetesimal evolution.

Furthermore, we explore how the evolution time t and the friction coefficient τs
affect the value of i⟨SI⟩(k1, t). First consider the limit of t→ ∞,

lim
t→∞ i⟨SI⟩(k1, t) ∝ lim

t→∞
(
τ3s(t− t0) + τ

4
s

(
e−

t−t0
τs − 1

))
= τ3s(t− t0) → ∞ (5.88)

thus as time proceeds, the value of the mean interaction term will continually in-
crease proportional to the evolution time t, see the left panel of Figure 5.22, suggesting
more power and more structure would build up in the system if the gravitational inter-
action persists, which eventually would lead to collapse, then, however, the mean-field
approximation is likely to break down.

On the other hand, since we are interested in small values of τs, in the limit of
τs → 0, we have
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Figure 5.22: These two plots show the shape of the mean interaction term i⟨SI⟩(k1, t) in Equa-
tion 5.83 as a function of evolution time t (left panel) and small valued friction
coefficient τs (right panel). The red dashed line in the left panel represents the
t1 asymptotic slope from Equation 5.88. The red dashed line in the right panel
represents the τ3s asymptotic slope from Equation 5.89. The upper limit for τs in
the right panel plot is roughly chosen to be 1 for studying small valued τs.

lim
τs→0

i⟨SI⟩(k1, t) ∝ lim
τs→0

τ4s

(
e−

t−t0
τs − 1+

t

τs
−
t0
τs

)
= τ3s(t− t0), (5.89)

thus when the friction between dust and gas is relatively strong where the particle
size is correspondingly small, the value of the mean interaction term would increase
proportional to τ3s , see the right panel of Figure 5.22, meaning that when particles are
relatively small, with increasing particle size, the gravitational interaction between par-
ticles gets much stronger, which would effectively speed up the gravitational collapse.

Now we evaluate how the mean interaction term contributes to the full linear density
power spectrum Pglin(k1, t) = ei⟨SI⟩Pflin(k1, t).

Figure 5.23 shows the shape of Pglin(k1, t) at three different evolution times t = 11.0,
t = 20.0 and t = 100.0 with the initial time t0 = 10.0 and two different friction
coefficients τs = 0.01 and τs = 0.001 while the density of the dust particles is set to be
Hill density (f = 1). In the left panel, notice the value of the density power spectrum
already shows a great increase even at the very early stage of gravitational evolution,
and the increase become much more significant from small to intermediate scales over
time. While in the right panel, the power of the density field increases much more
slowly over time, as time proceeds, structure starts building up much faster at small
scales, which potentially could still lead to gravitational collapse. The comparison of
the two plots suggests that if dust particles are relatively larger, then the gravitational
interaction will increase the power of the density field significantly, which leads to a
much faster gravitational collapse.

In both Figure 5.23 and Figure 5.24, notice no matter how significant the density
power spectrum Pglin(k1, t) changes, at very small scales, it always develops the same
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Figure 5.23: These two plots illustrate the shape of the full linear density power spectrum
Pglin(k1, t) as a function of wave number k1 with the initial time t0 = 10.0 and
the friction coefficients τs = 0.01 (left panel) and τs = 0.001 (right panel) at three
evolution time t = 11.0 (orange), t = 20.0 (green) and t = 100.0 (red) with the
parameter f = 1. The blue lines represent the corresponding initial linear friction
density power spectrum Pflin(k1, t0) in both plots. And the yellow dashed lines
illustrate the small scale k−1 asymptotic behavior.
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Figure 5.24: These plots zoom in to the very small scales of Figure 5.23 and illustrate their small
scale k−1 asymptotic behaviors (yellow dashed line). The linear density power
spectrum Pglin(k1, t) at evolution time t = 20.0 with τs = 0.01 (green line) is given
in the left panel, Pg(k1, t) at evolution time t = 100.0 with τs = 0.001 (red line) is
given in the right panel.

k−1 tail as the initial linear friction power spectrum Equation 5.44 due to the asymp-
totic constant of i⟨SI⟩(k1, t), suggesting that the gravitational interaction among dust
particles does not alter the small scale structure hierarchy of the system.

Now to investigate how the value of dust density affects the shape of the density
power spectrum, Figure 5.25 shows the shape of Pglin(k1, t) as a function of wave
number k1 with friction coefficient τs = 0.001 at the initial time t0 = 10.0 and three
evolution times t = 11.0, t = 20.0 and t = 100.0 respectively with f = 1 and f = 8.
The large increase of the density power spectrum at small scales with larger gravi-
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tational parameter f suggests that the self-gravity among smaller size dust particles
becomes much stronger with larger dust density. Despite their stronger friction with
the background gas, it still leads to faster gravitational collapse.
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Figure 5.25: This plot illustrates the shape of the full nonlinear density power spectrum
Pglin(k1, t) as a function of wave number k1 with the friction coefficients τs = 0.001
and initial time t0 = 10.0 at three different evolution times t = 11.0 (yellow, pur-
ple lines), t = 20.0 (green, brown lines) and t = 100 (red, light blue lines) with
two different gravitational parameters f = 8 (yellow, green, red lines) and f = 1

(purple, brown, light blue lines). The initial friction power spectrum Pflin(k1, t) is
represented by the blue line.

In both Figure 5.23 and Figure 5.25, notice the difference between Pglin(k1, t) and
Pflin(k1, t) becomes significantly larger at small scales over time, which suggests that
the approximation of P(k, t ′) ≈ Pini(k, t0) in Section 5.4.1 to be quite inappropriate.
However, the results we obtain are still considered valuable for providing a useful
lower limit for the mean interaction term and further an upper limit for the time scale
for gravitational collapse.

To further illustrate how the evolution time t, the friction coefficient τs, and the
value of dust density affect the full density power spectrum, Figure 5.26 shows the

shape of
Pglin(k1,t)
Pflin(k1,t) as a function of evolution time t at small scale k1 = 1000 and

initial time t0 = 10.0 with different friction coefficients τs = 0.01 and τs = 0.001, and
different gravitational parameters f = 1 and f = 8. We can see that as time proceeds
while still within the averaged lifetime 106 of a PPD, at scales that are typically smaller
than the simulation resolution, the value of the density power spectrum increases
significantly, meaning that the gravitational interaction indeed accelerates the dust
aggregation process at least at small scales even for extremely small particles. The
comparison between different curves further confirms that larger and denser particle
ensembles experience much stronger gravitational interaction, which would lead to
faster gravitational collapse.



110 dust density power spectrum by kft

10 100 1000 104 105 106
1

10

100

1000

104

105

106

t

P
g

P
lin

(k
1
=
1
0
0
0,
t 0

=
1
0) τs=0.001, f=8

τs=0.001, f=1

τs=0.01, f=1

Figure 5.26: This plot illustrates the ratio between the full linear density power spectrum
Pglin(k1, t) and the initial linear density power spectrum Pflin(k1, t) as a function of
evolution time t with initial time t0 = 10.0 and the friction coefficients τs = 0.01
(blue) and τs = 0.001 (yellow, green) at two different gravitational parameters
f = 1 (blue, yellow) and f = 8 (green). The upper limit of the t axis tmax = 106 is
chosen according to the dynamic lifetime of an average PPD.

5.4.3 Non Linear Power Spectrum at Large τs

Now we proceed with the nonlinear KFT density power spectrum with larger τs. Plug-
ging Equation 5.81 and Equation 5.82 into Equation 5.72 and Equation 5.34, the final
expression for the mean interaction term with larger τs is given by

i⟨SI⟩(k1, t) =
2c0g

2
qp(t0)fĜ0

π

(
τs(t− t0) + τ

2
s

(
e−

t−t0
τs − 1

))
∫∞
0

dkk
10
3

(
1+

k21 − k
2

2kk1
ln
k+ k1
|k− k1|

)(
1− exp
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−

P(0)(t0)

c0g2qp(t0)k
13
3

))
. (5.90)

For large arguments, the integrand of the mean interaction term becomes

lim
k→∞k

10
3

(
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2
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ln
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|k− k1|

)(
1− exp

(
−

P(0)(t0)
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))
=

P(0)(t0)J
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k1

)
c0g2qp(t0)k

,

(5.91)

this integral only converges at large k if we set the value of k
k1

to be large enough

so that J
(

k
k1

)
follows its asymptotic behavior in Equation 5.85. Figure 5.20 shows that

the minimal value for k
k1

to satisfy this condition is k
k1

= 1, thus we need to ensure the
integral’s upper limit satisfies k > k1 for it to be convergent. However, to preserve all
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small-scale contributions to the density power spectrum, especially at smaller k1 and
leave out the extremely small scale fluctuations at very large k1, we still implement
the cutoff scale km in Equation 5.87 for the above integral.
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Figure 5.27: This plot illustrates the shape of the mean interaction term i⟨SI⟩(k1, t) as a function
of wave number k1 (solid lines) with the friction coefficient τs = 3.0 at four sets
of initial times t0 and evolution times t, which respectively are: t0 = 2.0, t = 3.0
(blue); t0 = 10.0, t = 11.0 (yellow); t0 = 2.0, t = 7.0 (green); t0 = 10.0, t = 15.0
(red). Their k2 asymptotic behavior at large scales is represented by the purple
dashed lines. Their asymptotic constant at small scales is represented by the green
dashed lines.

Figure 5.27 shows the shape of the mean interaction term i⟨SI⟩(k1, t) in Equation 5.90

as a function of wave number k1 with the friction coefficient τs = 3.0 respectively at
evolution times t− t0 = 1.0 and t− t0 = 5.0 with two different initial times t0 = 2.0
and t0 = 10.0. At large and small scales, their k2 and k0 asymptotic behavior is also
given in the plot. The comparison of curves at different evolution times twith the same
initial time t0 shows the value of i⟨SI⟩(k1, t) grows larger over time, which means that
as time proceeds, the contribution of the gravitational interaction should get more
and more important to the nonlinear density power spectrum. While the difference
between the curves for the same evolution time difference t− t0 with different initial
time t0 suggests that the effect of the self-gravity interaction among dust particles will
become significantly stronger at the end stage of the friction evolution where the dust
particles more or less flow with the background gas and the friction becomes much
weaker.

To explore further how the evolution time t and the friction coefficient τs affect the
value of i⟨SI⟩(k1, t), first consider the limit of t → ∞, since the t dependence of Equa-
tion 5.90 remains the same as Equation 5.83, the mean interaction term continually
increases proportionally to the evolution time t as Equation 5.88. On the other hand,
at the limit of τs → ∞, the dust particles are so large that they no longer feel the
friction of the background gas, and the mean interaction term
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lim
τs→∞ i⟨SI⟩(k1, t) ∝ lim

τs→∞g2qp(t0)τ2s
(
e−

t−t0
τs − 1+

t

τs
−
t0
τs

)
=

(t− t0)
2t20

2
(5.92)

becomes a constant consisting of time t and t0. Here we already use the asymptotic
behavior of gqp(t) and P

(0)
f (t) in Equation 5.67 and Figure 5.17 at the limit of τs → ∞.

This behavior suggests that when the particles’ size gets much larger, the gravitational
attraction dominates the system, then the intensity of the gravitational interaction re-
duces to a function of time only, since no system would collapse instantly even without
friction slowing down the gravitational attraction between the particles. This asymp-
totic result makes perfect sense.
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Figure 5.28: These two plots show the shape of the mean interaction term i⟨SI⟩(k1, t) in Equa-
tion 5.90 as a function of evolution time t (left panel) and large valued friction
coefficient τs (right panel). The red dashed line in the left panel represents the
t1 asymptotic slope from Equation 5.88. The red dashed line in the right panel
represents the asymptotic constant from Equation 5.92.

Notice the right panel in Figure 5.28 shows a maximal value of the mean interac-
tion term i⟨SI⟩(k1, t) in term of the friction coefficient τs, suggesting a most-effective
particle size τse corresponding to the gravitational interaction.

To study this behavior further, Figure 5.29 shows the mean interaction term i⟨SI⟩(k1, t)
in Equation 5.90 as a function of τs with parameter f = 1 and initial time t0 = 10.0 and
evolution time t = 11.0 at six different scales. Notice each of the curves has a different
peak point, and with decreasing scale(larger k1), the value of τse decreases until it
reaches a certain constant roughly at τse ≈ 3.31, while in the meantime the maximal
i⟨SI⟩(k1, t) grows larger, meaning that at larger scales, the most effective particle size
is larger than at small scales, however, the gravitational interaction gets much stronger
overall at smaller scales. At very small scales, the most effective particle size stays the
same suggesting that there exists one particle size that contributes to the strongest
small-scale structure formation due to the gravitational interaction at earlier evolution
time. This behavior corresponds to the very similar behavior of τcs in Section 5.3.3,
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though the original limit is τcs = 3.04 in Equation 5.69, the self-gravity among dust par-
ticles traps larger size dust particles at small scales, which shifts the separation point
to the new τse ≈ 3.31.
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Figure 5.29: This plot shows the mean interaction term i⟨SI⟩(k1, t) in Equation 5.90 as a func-
tion of τs with gravitational parameter f = 1 and initial time t0 = 10.0 and evo-
lution time t = 11.0 at six different scales respectively are k1 = 10.0 (blue line),
k1 = 30.0 (orange line), k1 = 100.0 (green line), k1 = 1000.0 (red line), k1 = 10000.0
(purple line) and k1 = 100000.0 (brown line).

Furthermore, Figure 5.30 shows the mean interaction term i⟨SI⟩(k1, t) in Equation 5.90

as a function of τs at scale k1 = 1000.0 with parameter f = 1 and initial time t0 = 10.0
at five different evolution time. As time proceeds, the most effective particle size and
the maximal gravitational effect both increase, meaning that gravitational interaction
grows stronger with time and therefore traps larger size dust particles at small scales
which eventually leads to gravitational collapse starting from small scales.
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Figure 5.30: This plot shows the mean interaction term i⟨SI⟩(k1, t) in Equation 5.90 as a func-
tion of τs at scale k1 = 1000.0 with parameter f = 1 and initial time t0 = 10.0 at
five different evolution time respectively are t = 11, t = 15, t = 20, t = 30 and
t = 40.
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Now we evaluate how the mean interaction term contributes to the final nonlinear
density power spectrum Pg(k1, t) in Equation 5.38. Since we are more interested in
the scenario where the self-gravitational interaction sets in as soon as possible, we will
limit ourselves to the initial time t0 = 2.0 in the following discussions.

Figure 5.31 shows the shape of Pg(k1, t) at two different evolution times t = 3.0 and
t = 7.0 with the initial time t0 = 2.0 and the friction coefficient τs = 3.0 while the
density of the dust particles is set to be the Hill density (f = 1). Their small-scale k−3

asymptotic behavior is also marked in the plot. The comparison of the three curves
suggests that if the self-gravity among dust particles is switched on at the early stage
of friction evolution (t0 = 2.0), where the friction between dust and gas is still relatively
strong, the density power spectrum increases relatively little at small scales when the
evolution time t is small, while as time proceeds, the gravitational interaction starts to
affect the nonlinear density power spectrum much more from small to intermediate
scales which leads to gravitational collapse at a later time.
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Figure 5.31: These two plots show the shape of Pg(k1, t) as a function of k1 at two different
evolution times t = 3.0 (orange line) and t = 7.0 (green lines) with the initial time
t0 = 2.0 (blue line) and the friction coefficient τs = 3.0 while the density of the
dust particles is set to be the Hill density (f = 1). Their small-scale k−3 asymptotic
behavior is illustrated by the yellow dashed lines. The right panel zoom-in plot
shows the small scale k−3 tail of Pg(k1, t) at t = 7.0.

Notice that in Figure 5.31, the nonlinear density power spectrum Pg(k1, t) always
develops a k−3 tail at small scales like the density power spectrum Pf(k1, t) with
friction due to the asymptotically constant i⟨SI⟩(k1, t) at small scales, meaning that the
gravitational interaction among dust particles does not change the small scale structure
hierarchy of the system, which agrees with our previous conclusions. However, it is
worth mentioning that the universal k−3 slope is solely decided by the cutoff scale km,
if we choose km to be proportional to k1 instead of a constant, then this k−3 slope will
likely not preserve, which will lead to a stronger and faster gravitational collapse.



5.4 gravitational density power spectrum 115

0.1 10 1000 105 107 109
10-29

10-19

10-9

10

1011

1021

k1

P
g

Non Linear Density Power Spectrum (τs=3, t0=2)

k1
-3 Slope

t=7.0 (f=5)

t=3.0 (f=5)

t=7.0 (f=1)

t=3.0 (f=1)

Pf (t0=2.0)

Figure 5.32: This plot illustrates the shape of the full nonlinear density power spectrum
Pg(k1, t) as a function of wave number k1 with the friction coefficients τs = 3.0
and initial time t0 = 2.0 at two different evolution times t = 3.0 (yellow, red
lines) and t = 7.0 (green, purple lines) with two different gravitational parameters
f = 1 (yellow, green lines) and f = 5 (red, purple lines). The initial friction power
spectrum Pf(k1, t) is represented by the blue line. The k−3 tail at small scales is
illustrated by the yellow dashed lines.

While to illustrate how the weaker friction/stronger gravitational interaction affects
the shape of the density power spectrum, we increase the value of the gravitational
parameter by setting the density of the dust particles to be five times the Hill density
(f = 5). Figure 5.32 shows the shape of Pg(k1, t) as a function of wave number k1 with
the initial time t0 = 2.0 and the friction coefficient τs = 3.0 at two evolution times t =
3.0 and t = 7.0 and two different gravitational constants f = 1 and f = 5. The different
shapes of the curves with different gravitational parameters f suggest that when the
friction between dust particles and the background gas becomes weaker compared
to the self-gravity among dust particles, the value of the nonlinear density power
spectrum increases much stronger given the same evolution time t, which further
supports our conclusion above that weaker friction between dust and gas could speed
up the gravitational collapse.

5.4.4 Determine Gravitational Collapse at Small τs

As the dust particles start aggregating due to the self-gravitational interaction, at the
end of this section, to determine the gravitational collapse conditions for small par-
ticles and further study the ”meter-size barrier”, we adopt a more feasible however
rather adventurous method based on the mean field approach to directly calculate the
averaged value of the density field.

Define the averaged density field for a system of small particles as
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ρ̄2 =

∫
k1

Pglin(k1, t)eik⃗1·q⃗
∣∣∣
q⃗=0

=
1

2π2

∫km

0

k21Pglin(k1, t)dk

=
1

2π2

∫km

0

k21e
i⟨SI(k1,t)⟩Pflin(k1, t)dk1. (5.93)

To determine the gravitational collapse, rather than the absolute values, we are more
interested in its ratio with the initial averaged density field, thus define

δ2 =
ρ̄2

ρ̄20
with (5.94)

ρ̄20 =

∫
k1

Pflin(k1, t0)eik⃗1·q⃗
∣∣∣
q⃗=0

=
1

2π2

∫km

0

k21Pflin(k1, t0)dk1 (5.95)

Due to the complicated form of Pflin(k, t) in Equation 5.62, here we adopt the nu-
merical fitting function Pinis(k, t) for large time arguments in Equation 5.80 as a proper
approximation.

However, the rather lengthy expression for the mean interaction term i⟨SI(k1, t)⟩
in Equation 5.83 still implies difficulties with the numerical implementation, thus we
exploit the asymptotic behavior of i⟨SI(k1, t)⟩ at large and small scales, further combine
with Equation 5.88, Equation 5.89 to retain its time and friction coefficient dependence,
and define the numerical fitting function for the mean interaction term as

i⟨SI(k1, t)⟩ ≈ Sfit(k1, t) = fβk21

(
1− exp

(
−
α

k21

))
τ3s(t− t0), (5.96)

The fitting coefficient β can be calculated directly by comparing the small-scale
asymptotic behavior of Equation 5.83 at large evolution time t and Equation 5.96 as

lim
k1→0

i⟨SI(k1, t)⟩ = lim
k1→0

Sfit(k1, t) → (5.97)

2c0fĜ0

π
τ3s(t− t0)

∫km

0

k
10
3
2k21
3k2

(
1− exp

(
−
c1

k
7
3

))
= fβk21τ

3
s(t− t0) (5.98)

here we already use the asymptotic behavior of J
(

k
k1

)
in Equation 5.86, thus the

final value for β becomes

β =
4c0Ĝ0

3π

∫km

0

k
4
3

(
1− exp

(
−
c1

k
7
3

))
= 4.05× 10−2 (5.99)
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In a similar manner, the fitting coefficient α can be calculated by comparing the large
scales asymptotic behavior of Equation 5.83 at large evolution time t and Equation 5.96

as

lim
k1→∞ i⟨SI(k1, t)⟩ = lim

k1→∞Sfit(k1, t) → (5.100)

4c0fĜ0

π
τ3s(t− t0)

∫km

0

k
10
3

(
1− exp

(
−
c1

k
7
3

))
= fβατ3s(t− t0) (5.101)

here we also use the asymptotic behaviour of J
(

k
k1

)
in Equation 5.85. The final value

for α becomes

α =
4c0Ĝ0

βπ

∫km

0

k
10
3

(
1− exp

(
−
c1

k
7
3

))
= 3.15× 1010 (5.102)
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Figure 5.33: This plot compares the mean interaction term i⟨SI⟩(k⃗1, t) in Equation 5.83 with
its numerical fitting function Sfit(k1, t) in Equation 5.96 (gray dashed lines) as a
function of wave number k1 (solid lines) with gravitational parameter f = 1 at
initial time t0 = 10.0 and evolution times t = 11.0 (blue, red), t = 20.0 (yellow,
purple) and t = 100.0 (green, brown) with two different friction coefficients τs =

0.01 (blue, yellow, green) and τs = 0.001 (red, purple, brown).

Figure 5.33 compares the mean interaction term i⟨SI⟩(k⃗1, t) in Equation 5.83 with its
numerical fitting function Sfit(k1, t) in Equation 5.96 as a function of wave number k1
with gravitational parameter f = 1 at initial time t0 = 10.0 and evolution times t = 11.0,
t = 20.0 and t = 100.0 with two different friction coefficients τs = 0.01 and τs = 0.001.
At both large and small scales, notice their asymptotic behavior matches very well

with each other. To be precise, we calculate the relative difference |i⟨SI⟩(k⃗1,t)−Sfit(k1,t)|
i⟨SI⟩(k⃗1,t)

for each set of curves, at large scales, the relative difference is always smaller than 2.5%,
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Figure 5.34: These two plots show the shape of the mean interaction term i⟨SI⟩(k1, t) in Equa-
tion 5.83 and its fitting function Sfit(k1, t) (gray dashed lines) in Equation 5.96 as a
function of evolution time t at small (left panel) and large (right panel) scales with
gravitational parameter f = 1 and initial time t0 = 10.0 and two different friction
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Figure 5.35: These two plots show the shape of the mean interaction term i⟨SI⟩(k1, t) in Equa-
tion 5.83 and its fitting function Sfit(k1, t) (gray dashed lines) in Equation 5.96 as a
function of friction coefficient τs at small (left panel) and large (right panel) scales
with gravitational parameter f = 1 and initial time t0 = 10.0 and two different
evolution times t = 11.0 (blue lines) and t = 100.0 (red lines).

while the small scale behavior is more precise with a relative difference not exceeding
0.1%.

Furthermore, Figure 5.34 shows the comparison of i⟨SI⟩(k1, t) and Sfit(k1, t) as a
function of evolution time t at both small (k1 = 106) and large (k1 = 10) scales with
f = 1 and t0 = 10.0 at two different friction coefficients τs = 0.01 and τs = 0.001.
Figure 5.35 show the comparison of i⟨SI⟩(k1, t) and Sfit(k1, t) as a function of friction
coefficient τs at the same small and large scales with f = 1 and t0 = 10.0 at two
different evolution time t = 11.0 and t = 100.0. Notice the eight sets of curves in the
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four plots all agree with each other extremely well, which further justifies our choice
of the fitting function Sfit(k1, t).

Now plugging the expression of Equation 5.96 and Equation 5.80 into Equation 5.94,
we have

δ2(t, τs, f) =

∫km
0 c0τ

2
sk

10
3

1 exp (Sfit(k1, t))

(
1− exp

(
− c1

k
7
3
1

))
∫km
0 c0τ2sk

10
3

1

(
1− exp

(
− c1

k
7
3
1

)) . (5.103)

To determine if the system is experiencing gravitational collapse, according to the
initial particle number N ≈ 2.1 · 107 in the simulation, we roughly set a lower limit for
the density ratio as

δ2− = 1014, (5.104)

as long as δ2(t, τs, f) > δ2−, we say that the dust particles in the system are collapsing
due to their self-gravitational interactions.

Figure 5.36 shows the shape of the density ratio δ2(t, τs, f) in Equation 5.103 as a
function of the evolution time t, together with its numerical fitting function δ2(t, τs, f) ≈
xt−t0
0 at parameters f = 1, τs = 0.01 and t0 = 10.0. The zoom-in plot in the right panel

at a smaller evolution time is provided for locating the crossing point δ2(tc, τs, f) = δ2−
more easily. In both plots, the two sets of curves match pretty well with each other, sug-
gesting despite the complicated integral in Equation 5.103, we can roughly claim the
relation between the density ratio and the evolution time to be as simple as

δ2(t, τs, f) ≈ xt−t0
0 , (5.105)

thus the crossing point tc can be approximated as

tc − t0 =
ln δ2−
ln x0

= 2.58× 10−2 (5.106)

Figure 5.37 similarly shows the shape of the density ratio δ2(t, τs, f) in Equation 5.103

as a function of the friction coefficient τs, together with its numerical fitting function

δ2(t, τs, f) ≈ x
τ3
s

1 at parameters f = 1, t0 = 10.0 and t = 20.0. The zoom-in plot in the
right panel at a smaller friction coefficient is provided for the same reason. In both
plots, the two sets of curves also match very well with each other, meaning that we
also can use a much simpler equation to represent the relation between the density
ratio and the friction coefficient as
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Figure 5.36: These two plots show the shape of the density ration δ2(t, τs, f) in Equation 5.103

as a function of evolution time t at parameters f = 1, τs = 0.01 and t0 = 10.0 (blue
line), together with its numerical fitting function δ2 ≈ x

t−t0
0 (yellow dashed line).

The gray dashed lines in both plots represent the lower limit δ2− in Equation 5.104.

δ2(t, τs, f) ≈ xτ
3
s

1 , (5.107)

with the crossing point τsc being approximated as

τsc =

(
ln δ2−
ln x1

) 1
3

= 1.38× 10−3 (5.108)
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Figure 5.37: These two plots show the shape of the density ration δ2(t, τs, f) in Equation 5.103

as a function of friction coefficient τs at parameters f = 1, t0 = 10.0 and t = 20.0

(blue line), together with its numerical fitting function δ2 ≈ x
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1 (yellow dashed
line). The gray dashed lines in both plots represent the lower limit δ2− in Equa-
tion 5.104.
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Figure 5.38: These two plots show the shape of the density ratio δ2(t, τs, f) in Equation 5.103

as a function of gravitational parameter f at parameters t0 = 10.0, τs = 0.001 and
t = 20.0 (blue line), together with its numerical fitting function δ2 ≈ xf2 (yellow
dashed line). The gray dashed lines in both plots represent the lower limit δ2− in
Equation 5.104.

In the end, Figure 5.38 shows the shape of the density ratio δ2(t, τs, f) in Equa-
tion 5.103 as a function of the gravitational parameter f, together with its numerical
fitting function δ2(t, τs, f) ≈ xf2 at parameters t0 = 10.0, τs = 0.001 and t = 20.0. The
right panel plot is also zoomed in to the curve with smaller gravitational parameters
to show the crossing point fc more clearly. In both plots, the fact that the two sets of
curves match pretty well with each other means that the relation between the density
ratio and the gravitational parameter can be represented by the simple function

δ2(t, τs, f) ≈ xf2, (5.109)

and the crossing point fc can be approximated as

fc =
ln δ2−
ln x2

= 2.60. (5.110)

Furthermore, combining the conclusions in Equation 5.105, Equation 5.107 and Equa-
tion 5.109 gives us the final fitting function for the density ratio as

δ2(t, τs, f) ≈ y(t−t0)τ
3
sf

0 (5.111)

here y0 is the fitting coefficient determined by the k integration in Equation 5.103.
This approximation can also be seen roughly from the original expression of the den-
sity ratio in Equation 5.103, if we write Sfit(k1, t) = (t− t0)τ

3
sf s(k1), then we have
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δ2(t, τ, f) =
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)) . (5.112)

If the value of (2) exceeds the value of (1), then the t, τs and f dependence of
the density ratio should stay more or less the same with (2), which is exactly the
same with our fitting function Equation 5.111. To further confirm this relation, we
compute the value of (t− t0)τ3sf for δ2(t, τs, f) = δ2− using the three crossing points in
Equation 5.106, Equation 5.108 and Equation 5.110,

(tc − t0)τ
3
sf = 2.58× 10−8

(t− t0)τ
3
sc
f = 2.61× 10−8

(t− t0)τ
3
sfc = 2.60× 10−8

(5.113)

The fact that the three values are very similar to each other further verifies our
fitting function in Equation 5.111, now if we take the average and define the index
value l− = (t − t0)τ

3
sf for δ2(t, τs, f) = δ2−, we have the condition for gravitational

collapse as

l− = (t− t0)τ
3
sf = 2.60× 10−8 (5.114)

For the averaged lifetime of a protoplanetary disk, we have t− t0 ≈ t = 106, thus
for a last-minute gravitational collapse, we have the minimal value

(
τ3sf
)

min = 2.60× 10−14 (5.115)

for a stable particle cloud with a minimal density being the Hill density f = 1, the
corresponding friction coefficient τgs = 2.96× 10−5 gives the minimal particle size to
assure a final gravitational collapse. Notice the value of l− = 2.60× 10−8 sensitively
depends on the initial simulation setup. With different values of the initial momentum
covariance matrix in Section 4.3.5, this number could be very different. Nevertheless,
this is still a very interesting and important result that comes from a general simulation
setup, the value of τgs significantly lowers the limit for the size of dust particles that can
lead to a gravitational collapse compared to the limit 10−3 given by streaming instabil-
ity (SI) simulations, which is much closer to the lower end of the ”meter-size barrier”
and proves that accumulated self-gravitational interaction among particles over a long
term is strong enough for smaller particles to successfully ”jump the barrier”.
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5.5 further discussion of k−3
behaviour

At the end of this Chapter, we would like to further discuss the universal k−3 small-
scale asymptotic behavior shown in all the KFT nonlinear density power spectra.

In Section 5.2.2 and Section 5.3.2, we employ the recently developed asymptotic anal-
ysis method in Konrad [25] and conclude that the gravity-free nonlinear KFT density
power spectrum has the asymptotic expansion at the limit of k1 → ∞ as

Pf(k1) ∼
1

|k1|3

√
(2π)3

detAf
exp

(
−
k⊤1 A

−1
f k1

2|k1|2

)
=

P
(0)
f (t)

|k1|3
, with lim

τs→∞P
(0)
f (t) = P(0)(t),

(5.116)

where P
(0)
f (t) is given in Equation 5.67 and P(0)(t) is given in Equation 5.59. Further-

more, in Section 5.4.3, by introducing a constant cutoff scale km which corresponds to
the minimal distance between pebbles, we find the asymptotic constant for the mean
interaction term i⟨SI⟩(k1, t) at very small scales which further leads to the same k−3

tail for the full nonlinear density power spectrum as

lim
k1→∞Pg(k1, t) = lim

k1→∞ exp (i⟨SI⟩)
P
(0)
f (t)

|k1|3
= Constant ·

P
(0)
f (t)

|k1|3
. (5.117)

These two equations suggest that the universal k−3 tail at small scales of the non-
linear density power spectrum always persists in a system with both friction and self-
gravitational interactions, and its very presence is solely decided by the number of
dimensions of the system of interests and the mathematical constraints set by crite-
ria 1-3 for the form of its initial correlation functions. This conclusion is particularly
significant for implying a scale-invariant density power increase at small scales by
k3P = constant even in a system considering friction and self-gravity. Though we dis-
cussed in Section 5.4.3 that changing the form of the cutoff scale km will alter this
slope for the gravitational case, however, these results still provide a lower limit for
the gravitational aggregation and suggest that the total density power caused by the
self-gravitational interaction will always increase at smaller scales.

5.6 summary and discussion

In this Chapter, building on the simplified dust trajectory in Chapter 3 and their initial
probability distribution function in phase space (iPDF) in Chapter 4, we finally apply
the KFT method to planetary structure formation and give a full analysis of the dust
particles’ density power spectrum.
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In the first section, we reviewed the derivation of the full nonlinear KFT density
power spectrum for dust particles considering both the friction with the constant back-
ground gas field and their self-gravitational interaction with each other. We started
with the factorized generating functional Zd[L] in Equation 5.1, by adopting the mean-
field approach and averaging the self-gravitational interaction over the phase space
coordinates with their density correlation functions, we pulled the interaction term in
front of the integral and wrote the factorized generating functional as Equation 5.5.
With the newly defined gravity-free generating functional Zd

0 [L] being a complete
Fourier transform of the iPDF, we completed the analytical integral and obtained the
full KFT density power spectrum by combining the averaged interaction results. In
the end, we modified the gravity-free KFT density power spectrum from P(k1, t) to
Pf(k1, t) to guarantee its convergence.

In the second section, we ignored the friction (τs → ∞) and the self-gravitational in-
teraction in the system and reviewed the linear and nonlinear free KFT density power
spectra for dust particles. First, we derived the expression of the linear free density
power spectrum Plin(k1, t) for the freely streaming particles at a very early evolution
time (t → 0) and analyzed its k−1 small-scale asymptotic behavior. Then we intro-
duced the new analytical asymptotic method developed by Konrad [25] to analyze the
nonlinear free density power spectrum Pfree(k1, t) and concluded that the nonlinear
structure in the system changed the k−1 small scale asymptotic behavior to a k−3 tail.
Furthermore, the constant power k31Pfree(k1, t) indicated that for freely streaming par-
ticles, there is scale-invariant structure formation below a characteristic length scale,
which is typically way below the resolution limit of numerical simulations at early
times. This is a significant and mathematically rigorous conclusion that depends on
the number of spatial dimensions and the form of the initial correlation functions. In
the end, we analyzed the time-dependence of the small-scale k−3 asymptotic behavior
and found an evolution time tmax corresponding to the maximal small-scale structure
formation. The wave number k0 where the asymptotic behavior sets in decreases with
time, first rapidly, then slowly, showing that small-scale structure formation proceeds
quickly initially and then slows down. Furthermore, we discussed the relation between
k0 and evolution time actually representing its relation with the general propagator
gqp(t), due to the special form of the propagator g0(t) = t.

In the third section, we still ignored the self-gravitational interaction among dust
particles and reviewed the linear and nonlinear KFT density power spectra for dust
particles undergoing friction with the constant background gas field. First, we derived
the expression of the linear density power spectrum Pflin(k1, t) for very small dust
particles τs → 0 and concluded on the development of the k−1 tail at small scales. Then
the analysis of how this small-scale behavior depends on time and particle size further
suggests that more small-scale structure formation occurs for very small particles as
the evolution time gets longer and the particle size gets larger. Next, we computed the
nonlinear density power spectrum Pf(k1, t) for larger dust particles at finite evolution
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time by employing the same asymptotic analysis as in Section 5.2.2 and found the
same k−3 small-scale nonlinear asymptotic behavior, which implies the same scale-
invariant structure formation at very small scales. In the end, we analyzed the time and
particle-size dependence for the small-scale k−3 asymptotic behavior of Pf(k1, t), and
found a minimal evolution time gqpm, before which the small scale structure never
reaches to its maximum, and a critical particle size τcs, at which the system shows
the maximal small scale structure formation. More specifically, when the particle size
τs < τcs, the small-scale structure continuously forms yet is always smaller than its
maximum until the propagator gqp(t) reaches its maximum and the system freezes,
while if the particle size τs > τcs, then the small-scale structure initially grows until it
reaches its maximum, then dissipates over time until the system freezes.

In the fourth section, we further considered both friction and gravitational interac-
tions in the system to calculate the full linear and nonlinear KFT density power spectra
and determine the conditions for gravitational collapses. We started with specifying
the dimensionless gravitational constant Ĝ = fĜ0 in which the dust density is scaled
by the critical Hill density that can withstand the tidal shear in the particle cloud. Next,
we found the fitting functions for the gravity-free density power spectra Pflin(k1, t0)
and Pf(k1, t0) at evolution time t0 to approximate the density power spectrum P(k, t ′)
at time t ′ occurring in the mean interaction term i⟨SI⟩(k1, t), which provided the grav-
itational growth to the full density power spectrum. Then, for smaller particles, we
calculated their corresponding mean interaction term by setting the cutoff scale km to
the minimal pebble separation and computed the linear full density power spectrum
Pglin(k1, t). The results further concluded that larger particle sizes and denser parti-
cle clouds would lead to faster gravitational aggregation and potentially faster grav-
itational collapse in the system. We then calculate i⟨SI⟩(k1, t) and the full nonlinear
KFT density power spectrum Pg(k1, t) for large-size particles by employing the same
constant cutoff scale km. The analysis showed that increasing the density of the dust
particles leads to stronger gravitational interaction/weaker friction interaction, which
speeds up the gravitational evolution and collapses significantly. Moreover, due to the
attractive nature of gravity, we found the presence of self-gravitational interaction in
the system helps trap larger dust particles at small scales and changed the particle size
τcs = 3.04 that corresponds to the strongest small-scale structure formation to larger
values as evolution time proceeds. Lastly, we replaced i⟨SI⟩(k1, t) by its fitting function
Sfit(k1, t, τs, f) to calculate the averaged density growth δ2 from initial time t0 to later
evolution time t. By setting the collapse criteria to δ2 = 1014, we found the relation
τ3s(t− t0)f = 2.60× 10−8 for smaller particles to determine the collapse moment in a
PPD with the initial setup as the simulation. Furthermore, by setting the dust density
as the critical Hill density (f = 1) and the evolution time as the averaged lifetime of a
PPD (t = 106), we found the minimal particle size τgs = 2.96× 10−5 to ensure a final
gravitational collapse in the system, which greatly lowered the limit 10−3 set by sim-
ulations and provided evidence that accumulated self-gravitational interaction over a
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long evolution time could be sufficient for smaller particles to successfully ”jump the
barrier” and achieve gravitational collapse.

In the end, we summarized the universal k−3 asymptotic behavior at small scales
for all nonlinear KFT density power spectra and concluded its necessary development
for a 3-dimensional system considering both friction and self-gravity with its initial
correlation functions satisfying the mathematical criteria 1-3. Though the small-scale
k−3 asymptotic behavior for Pg(k1, t) highly depended on the choice of the constant
cutoff scale km, these results still provided a lower limit for the gravitational aggre-
gation and evidence that the total density structure bought by the self-gravitational
interaction will always increase at the scale getting smaller.



6
D U S T M O M E N T U M - D E N S I T Y P O W E R S P E C T R A B Y K F T

In this Chapter, we focus on extracting the kinetic information of a general proto-
planetary disk (PPD) with the initial setup as the simulation by analyzing the 2-point
KFT momentum-density power spectra for dust particles derived from the momentum
factorized generating functional in Equation 3.61 where we’ve rewritten as

Zm[L] =

∫
dΓ

2∏
j=1

[
gpp(tj)p⃗j +

∫tj
0

dt ′gpp(tj, t ′)
(
u⃗0
τs

− ∇⃗qj
Φ

)]
· ei⟨Lq,q⟩+i⟨Lp,p⟩+iSI

=

2∏
j=1

[
−igpp(tj)

∂

∂L⃗pj

+

∫tj
0

dt ′gpp(tj, t ′)
(
u⃗0
τs

− f⃗j(t
′)

)]
Zd[L],

(6.1)

with the momentum propagator gpp(t) given in Equation 3.39, the averaged force
term f⃗j(t

′) = ⟨∇⃗qj
Φ⟩(k1, t) given in Equation 5.33, and the density factorized gen-

erating functional Zd[L] given in Equation 5.5. Here we’ve applied the mean field
approach to average all gravitational terms over the phase space coordinates to pull
the momentum density operators in the front.

There are three scalar momentum-density power spectra will be calculated in this
Chapter that are derived from the following quantities

tr
(
Π̂1(1)Π̂2(2)Z[J]

∣∣
J=0

)
= tr (Zm[L]) , (6.2)(

∇⃗q · Π̂1(1)
)(

∇⃗q · Π̂2(2)
)
Z[J]

∣∣
J=0

= k⃗1 ·Zm[L]⃗k1, (6.3)(
∇⃗q × Π̂1(1)

)
·
(
∇⃗q × Π̂2(2)

)
Z[J]

∣∣
J=0

= k21tr (Zm[L]) − k⃗1 ·Zm[L]⃗k1, (6.4)

with the momentum-density operator Π̂j(1) defined in Equation 3.59, and we’ve
used the condition k⃗1+ k⃗2 = 0 in Equation 5.10 ensured by the statistical homogeneity
in the system.

This chapter is structured as follows. In the first section, we derive the general ex-
pressions for the three KFT scalar momentum-density power spectra by calculating in
detail the factorized generating functional Zm[L] and the quantities defined in Equa-
tion 6.2-6.4. In the second section, we introduce a new asymptotic method to help
analyze certain types of integrals shown in the three momentum-density power spec-
tra. In the third section, we ignore the friction and self-gravitational interaction in the

127



128 dust momentum-density power spectra by kft

system. For freely streaming particles at different evolution times, their linear and
nonlinear momentum-density power spectra are derived and their small-scale kinetic
information is analyzed. In the fourth section, we add friction interaction back to the
system. For different sizes of particles with different values of τs, we calculate the cor-
responding linear and nonlinear momentum-density power spectra and analyze their
asymptotic behaviors at small scales. In the end, we welcome the self-gravitational in-
teraction among dust particles back into the play, for different values of τs, we compute
the gravitational momentum-density power spectra and further discuss their effects on
the kinetic information.

6.1 analytical derivation of momentum-density power spectra

In this section, we start with the factorized generating functional in Equation 6.1, since
the averaged interaction term i⟨SI⟩(k1, t) hidden in Zd[L] only relies on the evolution
time and the wavenumber k1, the momentum-density operator doesn’t apply to them,
we can thus pull them in the front and rewrite

Zm[L] = ei⟨SI⟩Z̄12[L], (6.5)

with the definition of a new "free" generating functional Z̄12[L] as

Z̄12[L] =

2∏
j=1

[
−igpp(tj)

∂

∂L⃗pj

+

∫tj
0

dt ′gpp(tj, t ′)
(
u⃗0
τs

− f⃗j(t
′)

)]
Zd
0 [L]. (6.6)

By analyzing the matrix components of Z̄12[L] and calculating the quantities in
Equation 6.2-6.4, we derive the final expressions for the three KFT scalar momentum-
density power spectra. Here "free" is in quotes for the reason that though we split the
interaction term from the new generating functional, the friction and self-gravitational
interactions are still embedded in the momentum-density operators.

6.1.1 Factorize Generating Functional

First, we focus on solving the "free" generating functional in Equation 6.6, at the evo-
lution time t = t1 = t2, write its matrix components as

Z̄
ηρ
12 [L] = Z̄

ηρ(1)
12 [L]+ Z̄

ηρ(2)
12 [L]+ Z̄

ηρ(3)
12 [L] =

[
− igpp(t)

∂

∂L
η
p1

+uη0(1−gpp(t))−F
η
1(t)

]
·
[
− igpp(t)

∂

∂L
ρ
p2

+ uρ0(1− gpp(t)) − F
ρ
2(t)

]
Zd
0 [L], (6.7)
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with

Z̄
ηρ(1)
12 [L] = −g2pp(t)

∂2

∂L
η
p1
∂L

ρ
p2

Zd
0 [L], (6.8)

Z̄
ηρ(2)
12 [L] =

[(
F
ρ
2(t) − u

ρ
0(1− gpp(t))

) ∂

∂L
η
p1

+
(
F
η
1(t) − u

η
0(1− gpp(t))

) ∂

∂L
ρ
p2

]
· igpp(t)Zd

0 [L],
(6.9)

Z̄
ηρ(3)
12 [L] =

[
u
η
0(1− gpp(t)) − F

η
1(t)

] [
u
ρ
0(1− gpp(t)) − F

ρ
2(t)

]
Zd
0 [L], (6.10)

where we’ve performed the integral
∫t
0 dt

′gpp(t, t ′) = gqp(t) = τs(1− gpp(t)) and
defined time-averaged force F⃗j(t) as

F⃗j(t) =

∫t
t0

dt ′gpp(t, t ′)f⃗j(t ′), (6.11)

with Newton’s third law assures f⃗1(t ′) + f⃗2(t ′) = 0 and further F⃗1(t) + F⃗2(t) = 0.
For the convenience of calculations in this Chapter, we rewrite the gravity-free gen-

erating functional Zd
0 [L] in Equation 5.11 as

Zd
0 [L] = CN−NVN−2(2π)3δ(k⃗1 + k⃗2)D̄ (6.12)

where the new integral D̄ is defined as

D̄ =

∫
r

exp
(
−
1

2
L⃗p1

C̄p1p1
(0)L⃗p1

−
1

2
L⃗p2

C̄p2p2
(0)L⃗p2

− L⃗p1
C̄p1p2

(r)L⃗p2
+ i⃗k2 · r⃗

)
= D̄1

∫
r

D̄2,
(6.13)

with components

D̄1 = exp
(
1

2
m3(0)(L

2
p1

+ L2p2
)

)
, (6.14)

D̄2 = exp
(1
2
m4(0)

(
L⃗p1

π̃∥L⃗p1
+ L⃗p2

π̃∥L⃗p2

)
+m3(r)L⃗p1

· L⃗p2
+m4(r)L⃗p1

π̃∥L⃗p2
+ i⃗k2 · r⃗

)
.

(6.15)

Here the momentum covariance matrix C̄pp is rotated to the wavenumber k̂ space
by Equation 4.80 instead of the q̂ space in Section 5.1.1, and m3(r) and m4(r) are given
in Equation 4.86 and Equation 4.87.
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We start solving Equation 6.7 by looking into the derivatives of integral D̄ in the
equation Equation 6.13. First apply one momentum density operator ∂

∂L
ρ
pj

in front of

D̄ to obtain

∂

∂L
ρ
pj

D̄ =
∂D̄1

∂L
ρ
pj

∫
r

D̄2 + D̄1

∫
r

∂D̄2

∂L
ρ
pj

, (6.16)

with the first derivatives of D̄1 and D̄2 being

∂D̄1

∂L
ρ
pj

= m3(0)
(
δ1jL

ρ
p1

+ δ2jL
ρ
p2

)
D̄1, (6.17)

∂D̄2

∂L
ρ
pj

= D̄2

(
1

2
m4(0)

(
(π̃∥L⃗p1

+ L⃗p1
π̃∥)

ρδ1j + (π̃∥L⃗p2
+ L⃗p2

π̃∥)
ρδ2j

)
+m3(r)

(
Lρp1

δ2j + L
ρ
p2
δ1j

)
+m4(r)

(
(π̃∥L⃗p2

)ρδ1j + (L⃗p1
π̃∥)

ρδ2j

))
.

(6.18)

Then apply another momentum density operator ∂
∂L

η
pk

in front of D̄ to obtain

∂

∂L
η
pk

∂

L
ρ
pj

D̄ =
∂2D̄1

∂L
η
pk
∂L

ρ
pj

∫
r

D̄2+
∂D̄1

∂L
ρ
pj

∫
r

∂D̄2

∂L
η
pk

+
∂D̄1

∂L
η
pk

∫
r

∂D̄2

∂L
ρ
pj

+ D̄1

∫
r

∂2D̄2

∂L
η
pk
∂L

ρ
pj

, (6.19)

with the second derivatives of D̄1 and D̄2 being

∂2D̄1

∂L
η
pk
∂L

ρ
pj

= m2
3(0)(δ1jL

ρ
p1

+ δ2jL
ρ
p2
)(δ1kL

η
p1

+ δ2kL
η
p2
)D̄1+

m3(0)(δ1jδ1kδ
ηρ + δ2jδ2kδ

ηρ)D̄1

if j ̸=k
= m2

3(0)(δ1jL
ρ
p1

+ δ2jL
ρ
p2
)(δ1kL

η
p1

+ δ2kL
η
p2
)D̄1,

(6.20)

∂2D̄2

∂L
η
pk
∂L

ρ
pj

=

(
m4(0)π̃

ηρ
∥

(
δ1jδ1k + δ2jδ2k

)
+
(
m3(r)δ

ηρ +m4(r)π̃
ηρ
∥

)(
δ1kδ2j + δ2kδ1j

))
︸ ︷︷ ︸

part−1

· D̄2 +
∂D̄2

∂L
η
pk

(
1

2
m4(0)

(
(π̃∥L⃗p1

+ L⃗p1
π̃∥)

ρδ1j + (π̃∥L⃗p2
+ L⃗p2

π̃∥)
ρδ2j

)
+m3(r)

(
Lρp1

δ2j + L
ρ
p2
δ1j

)
+m4(r)

(
(π̃∥L⃗p2

)ρδ1j + (L⃗p1
π̃∥)

ρδ2j

))
.

(6.21)
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We can thus write the expression for Z̄ηρ(1)
12 [L] as

Z̄
ηρ(1)
12 [L] = −CN−NVN−2(2π)3δ(k⃗1 + k⃗2)g

2
pp(t)

[
m2

3(0)L
ρ
p2
Lηp1

D̄︸ ︷︷ ︸
∂2D̄1

∂L
η
p1

∂L
ρ
p2

∫
r D̄2

+

∫
r

(
m3(0)L

ρ
p2
D̄1︸ ︷︷ ︸

∂D̄1
∂L

ρ
p2

· D̄2

(1
2
m4(0)(π̃∥L⃗p1

+ L⃗p1
π̃∥)

η +m3(r)L
η
p2

+m4(r)(π̃∥L⃗p2
)η
)

︸ ︷︷ ︸
∂D̄2
∂L

η
p1

)

+

∫
r

(
m3(0)L

η
p1
D̄1︸ ︷︷ ︸

∂D̄1
∂L

η
p1

· D̄2

(1
2
m4(0)(π̃∥L⃗p2

+ L⃗p2
π̃∥)

ρ +m3(r)L
ρ
p1

+m4(r)(L⃗p1
π̃∥)

ρ
)

︸ ︷︷ ︸
∂D̄2
∂L

ρ
p2

)

+ D̄1

∫
r

D̄2

((1
2
m4(0)(π̃∥L⃗p1

+ L⃗p1
π̃∥)

η +m3(r)L
η
p2

+m4(r)(π̃∥L⃗p2
)η
)

︸ ︷︷ ︸
∂D̄2
∂L

η
p1

·
(1
2
m4(0)(π̃∥L⃗p2

+ L⃗p2
π̃∥)

ρ +m3(r)L
ρ
p1

+m4(r)(L⃗p1
π̃∥)

ρ
)

︸ ︷︷ ︸
∂D̄2
∂L

ρ
p2

+m3(r)δ
ηρ +m4(r)π̃

ηρ
∥︸ ︷︷ ︸

∂2D̄2
∂L

η
p1

∂L
ρ
p2

part−1

)]

(6.22)

With the shift vectors L⃗p1
= −k⃗1gqp(t) and L⃗p2

= k⃗1gqp(t), the above expression
has a much simpler form as

Z̄
ηρ(1)
12 [L] = CN−NVN−2(2π)3δ(k⃗1 + k⃗2)g

2
pp(t)D̄1

∫
r

D̄2

[
−
(
m3(r)δ

ηρ +m4(r)π̃
ηρ
∥
)
+

g2qp(t)k
η
1k

ρ
1

(
m3(0) +m4(0) −m3(r) −m4(r)

)2]
,

(6.23)

where the components become

D̄1 = exp
(
g2qp(t)k

2
1m3(0)

)
(6.24)

D̄2 = exp
(
g2qp(t)k

2
1

(
m4(0) −m3(r) −m4(r)

)
− i⃗k1 · r⃗

)
(6.25)

Next, the expression for Z̄ηρ(2)
12 [L] becomes
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Z̄
ηρ(2)
12 [L] = iCN−NVN−2(2π)3δ(k⃗1 + k⃗2)gpp(t)

[(
F
η
1(t) − u

η
0(1− gpp(t))

)
·(

D̄1 ·
∫
r

D̄2

(1
2
m4(0)(π̃∥L⃗p2

+ L⃗p2
π̃∥)

ρ +m3(r)L
ρ
p1

+m4(r)(L⃗p1
π̃∥)

ρ
)

︸ ︷︷ ︸∫
r

∂D̄2
∂L

ρ
p2

+

m3(0)L
ρ
p2
D̄︸ ︷︷ ︸

∂D̄1
∂L

ρ
p2

∫
r D̄2

)
+
(
F
ρ
2(t) − u

ρ
0(1− gpp(t))

)
·
(
m3(0)L

η
p1
D̄︸ ︷︷ ︸

∂D̄1
∂L

η
p1

∫
r D̄2

+

D̄1 ·
∫
r

D̄2

(1
2
m4(0)(π̃∥L⃗p1

+ L⃗p1
π̃∥)

η +m3(r)L
η
p2

+m4(r)(π̃∥L⃗p2
)η
)

︸ ︷︷ ︸∫
r

∂D̄2
∂L

η
p1

)]
(6.26)

with the same shift vectors plugging in the above equation, it becomes

Z̄
ηρ(2)
12 [L] = iCN−NVN−2(2π)3δ(k⃗1 + k⃗2)gpp(t)gqp(t)

·
((
F
η
1(t) − u

η
0(1− gpp(t))

)
k
ρ
1 −

(
F
ρ
2(t) − u

ρ
0(1− gpp(t))

)
k
η
1

)
· D̄1

∫
r

D̄2

(
m3(0) +m4(0) −m3(r) −m4(r)

)
.

(6.27)

With Z̄ηρ(3)
12 merely being a simple multiplication, define a new function

m(r) = m3(r) +m4(r) =
(
(1− 3µ2)b1 − b0

)
ζpp(r), (6.28)

then we can write down the final expression for the "free" generating functional

Z̄
ηρ
12 = CN−NVN−2(2π)3δ(k⃗1 + k⃗2)D̄1

∫
r

D̄2

[
− g2pp(t)

(
m3(r)δ

ηρ +m4(r)π̃
ηρ
∥
)

+ g2pp(t)g
2
qp(t)k

η
1k

ρ
1

(
m(0) −m(r)

)2
+ igpp(t)gqp(t)D̄1

∫
r

D̄2

(
m(0) −m(r)

)
·((

F
η
1(t) − u

η
0(1− gpp(t))

)
k
ρ
1 +

(
F
ρ
1(t) + u

ρ
0(1− gpp(t))

)
k
η
1

)
+

[
u
η
0(1− gpp(t)) − F

η
1(t)

] [
u
ρ
0(1− gpp(t)) + F

ρ
1(t)

] ]
.

(6.29)

Here we’ve used the relation F⃗1(t) + F⃗2(t) = 0 ensured by Newton’s third law.
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6.1.2 Three Scalar Momentum-Density Power Spectra

In this section, we derive the final expressions for the three scalar momentum-density
power spectra by calculating the three quantities in Equation 6.2-6.4 with the factorized
generating functional Zm[L] = ei⟨SI⟩Z̄12.

We start with the trace term in Equation 6.2,

tr (Zm[L]) = ei⟨SI⟩Z̄η
12η = CN−NVN−2(2π)3δ(k⃗1 + k⃗2)e

i⟨SI⟩D̄1

∫
r

D̄2·[
− g2pp(t)

(
3m3(r) +m4(r)

)
+ g2ppg

2
qpk

2
1

(
m(0) −m(r)

)2
+

2igpp(t)gqp(t)
(
m(0) −m(r)

)
k⃗1 · F⃗1 + g2qp(t)

u20
τ2s

− F⃗1 · F⃗1

]
,

(6.30)

where we obtain the full expression for the trace momentum-density power spec-
trum as

Pgtr(k1, t) = g2pp(t)e
i⟨SI⟩Pm(k1, t) + 2igpp(t)gqp(t)

(
k⃗1 · F⃗1

)
·

ei⟨SI⟩
(
T5 + T7 + T8

)
+

(
g2qp(t)

u20
τ2s

− F⃗1 · F⃗1
)
Pg(k1, t), (6.31)

with Pg(k1, t) being the full nonlinear KFT density power spectrum given in Equa-
tion 5.38. Also we’ve defined the integral Pm(k1, t) as

Pm(k1, t) =
∫
r

[
− 3m3(r) −m4(r) + g

2
qp(t)k

2
1 (m(r) −m(0))2

]
e−g2

qp(t)k
2
1(m(r)−m(0))−ik⃗1 ·⃗r

=

∫
r

3b0ζpp(r)e
−g2

qp(t)k
2
1(m(r)−m(0))−ik⃗1 ·⃗r︸ ︷︷ ︸

T1

+

∫
r

[
g2qp(t)k

2
1

(
m2(r) − 2m(r)m(0)

) ]
e−g2

qp(t)k
2
1(m(r)−m(0))−ik⃗1 ·⃗r︸ ︷︷ ︸

T2

+

∫
r

g2qp(t)k
2
1m

2(0)
[
e−g2

qp(t)k
2
1m(r) − 1

]
· eg2

qp(t)k
2
1m(0)−ik⃗1 ·⃗r︸ ︷︷ ︸

T3

+

∫
r

g2qp(t)k
2
1m

2(0)eg
2
qp(t)k

2
1m(0)−ik⃗1 ·⃗r︸ ︷︷ ︸

T4

,
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(6.32)

and the momentum-density power spectra elements as

T5 = −

∫
r

m(r)e−g2
qp(t)k

2
1(m(r)−m(0))−ik⃗1 ·⃗r, (6.33)

T7 =

∫
r

m(0)
[
e−g2

qp(t)k
2
1m(r) − 1

]
· eg2

qp(t)k
2
1m(0)−ik⃗1 ·⃗r, (6.34)

T8 =

∫
r

m(0)eg
2
qp(t)k

2
1m(0)−ik⃗1 ·⃗r. (6.35)

To guarantee the trace momentum-density power spectrum Pgtr(k1, t) being conver-
gent, we start with analyzing the elements in the integral Pm(k1, t). First, integrate T1
over spherical coordinates φ and µ to obtain

T1 = 6πb0

∫∞
0

drr2l1(r) = 6πb0

∫∞
0

drr2ζpp(r)·∫1
−1

dµe−g2
qp(t)k

2
1(m(r)−m(0))−ik1rµ, (6.36)

at finite time t and wave number k1, making use of the asymptotic behavior for
ζpp(r) in Equation 4.76, the integrand r2l1(r) satisfies

lim
r→∞ r2l1(r) = lim

r→∞ r2 0.04r 7
3

∫1
−1

dµey(t,µ) cosk1rµ < ey(t,0) 0.08| sink1r|

k1r
4
3

→ 0, (6.37)

which guarantees term T1 converges at large r. Here we already exploit the fact
that y(t,µ) = g2qp(t)k

2
1m(0) in Equation 5.16 is a negative, monotonously decreasing

function in terms of µ2. Similarly, integrate term T2 over spherical coordinates φ and
µ,

T2 = 2π

∫∞
0

drr2l2(r) = −2π

∫∞
0

drg2qp(t)k
2
1r

2ζpp(r)
(
2ζpp(0) − ζpp(r)

)
∫1
−1

dµ
(
(1− 3µ2)b1 − b0

)2
e−g2

qp(t)k
2
1(m(r)−m(0))−ik1rµ < 0 (6.38)

At finite time t and wave number k1, the integrand r2l2(r) satisfies

lim
r→∞ r2l2(r) > −g2qpk

2
1 (2b1 + b0)

2 ζpp(0)e
y(t,0) 0.16| sink1r|

k1r
4
3

→ 0 (6.39)
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which guarantees term T2 converges at large r. For term T3, again integrate over
spherical coordinates φ and µ,

T3 = 2π

∫∞
0

drr2l3(r) = 2π

∫∞
0

drg2qp(t)k
2
1r

2ζ2pp(0)·∫1
−1

dµ
(
(3µ2 − 1)b1 + b0

)2 [
e−g2

qp(t)k
2
1m(r) − 1

]
ey(t,µ)−ik1rµ (6.40)

In the limit of r→ ∞, the expression in the square brackets satisfies

lim
r→∞

[
e−g2

qp(t)k
2
1m(r) − 1

]
= g2qp(t)k

2
1

(
(3µ2 − 1)b1 + b0

) 0.04
r
7
3

→ 0 (6.41)

Thus given finite time t and wave number k1, the integrand r2l3(r) satisfies

lim
r→∞ r2l3(r) < g4qp(t)k31 (2b1 + b0)3 ζ2pp(0)ey(t,0) 0.08| sink1r|

r
4
3

→ 0 (6.42)

which guarantees term T3 converges at large r. Now we move on to term T4 and
integrate it over φ and µ,

T4 = 2π

∫∞
0

drr2l4(r) = 2π

∫∞
0

drg2qpk
2
1r

2ζ2pp(0)·∫1
−1

dµ
(
(3µ2 − 1)b1 + b0

)2
ey(t,µ)−ik1rµ. (6.43)

At the limit of r→ ∞, its integrand

lim
r→∞ r2l4(r) > 2g2qp(t)(−b1 + b0)2ζ2pp(0)ey(t,1) (k1r| sink1r|) → ∞, (6.44)

doesn’t converge, on the other hand, at very small scales where k1 → ∞, the integral

∫∞
0

drr2l4(r) < 2g
2
qp(t)(2b1+b0)

2ζ2pp(0)e
−g2

qp(t)k
2
1(b0−b1)ζpp(0)

∫∞
0

drk1r sink1r→ 0

(6.45)

converges to zero exponentially. Here we’ve plugged in the full expression of y(t, 0).
Since in the following we are mostly interested in the small-scale asymptotic behaviors
of the momentum-density power spectra, term T4 can be ignored for not contributing
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to such matter, which in the meantime also guarantees the power spectrum to be con-
vergent on all scales. Through similar analysis, we can further prove that elements T5
and T7 are convergent at the limit of r→ ∞, and T8 can be ignored for not contributing
to the small-scale analysis.

Therefore we obtain the convergent form of the trace momentum-density power
spectrum as

P̄gtr(k1, t) = g2pp(t)e
i⟨SI⟩

(
T1 + T2 + T3

)
+ 2igpp(t)gqp(t)

(
k⃗1 · F⃗1

)
·

ei⟨SI⟩
(
T5 + T7

)
+

(
g2qp(t)

u20
τ2s

− F⃗1 · F⃗1
)
Pg(k1, t), (6.46)

Now we calculate the divergence term in Equation 6.3

k⃗1 ·Zm[L]⃗k1 = ei⟨SI⟩k1ηZ̄
ηρ
12k1ρ = CN−NVN−2(2π)3δ(k⃗1 + k⃗2)k

2
1e

i⟨SI⟩

D̄1

∫
r

D̄2

[
− g2pp(t)

(
m3(r) +m4(r)

)
+ g2ppg

2
qpk

2
1

(
m(0) −m(r)

)2
+

2igpp(t)gqp(t)
(
m(0) −m(r)

)
k⃗1 · F⃗1 + g2qp(t)

(
k̂1 · u⃗0

)2
τ2s

−
(
k̂1 · F⃗1

)2],

(6.47)

with k̂1 = k⃗1

k1
being the unit vector of k⃗1. We can thus read off the convergent form

of the divergence momentum-density power spectrum as

P̄gdiv(k1, t) = g2pp(t)k
2
1e

i⟨SI⟩
(
T5 + T2 + T3

)
+ 2igpp(t)gqp(t)k21

(
k⃗1 · F⃗1

)
·

ei⟨SI⟩
(
T5 + T7

)
+

(
g2qp(t)

⟨
(
k⃗1 · u⃗0

)2⟩
τ2s

−
(
k⃗1 · F⃗

)2)
Pg(k1, t), (6.48)

where we’ve exploited the conclusions of convergent properties of different momentum-
density power spectra elements. And since the direction of wave number k⃗1 is arbi-
trary, we further modify the expression by introducing the spatial average of the term
(k⃗1 · u⃗0)2 as

⟨(k⃗1 · u⃗0)2⟩ =
∫
dφdµ(k⃗1 · u⃗0)2

4π
=
1

3
k21u

2
0. (6.49)

In the end, we compute the curl quantity in Equation 6.4 as
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k21tr (Zm[L]) − k⃗1 ·Zm[L]⃗k1 = ei⟨SI⟩
(
k21Z̄

η
12η − k1ηZ̄

ηρ
12k1ρ

)
= CN−NVN−2(2π)3δ(k⃗1 + k⃗2)k

2
1e

i⟨SI⟩D̄1

∫
r

D̄2·[
− 2g2pp(t)m3(r) + g

2
qp(t)

u20 −
(
k̂1 · u⃗0

)2
τ2s

−
(
F⃗1 · F⃗1 −

(
k̂1 · F⃗1

)2)],

(6.50)

then the convergent curl momentum-density power spectrum can be written as

P̄gcurl(k1, t) = g2pp(t)k
2
1e

i⟨SI⟩T6+

(
2g2qp(t)u

2
0

3τ2s
−
(
F⃗1 · F⃗1 −

(
k̂1 · F⃗1

)2))
k21Pg(k1, t),

(6.51)

with one more new element T6 being

T6 = −2

∫
r

m3(r)e
−g2

qp(t)k
2
1(m(r)−m(0))−ik⃗1 ·⃗r. (6.52)

Here we’ve used the result in Equation 6.49. Thus we finally obtain the three con-
vergent KFT scalar momentum-density power spectra in Equation 6.46, Equation 6.48

and Equation 6.51. Due to the complicated forms of the three equations, following the
path in Chapter 5, in the following sections, we will analyze the convergent KFT scalar
momentum-density power spectra step by step. In Section 6.3, we calculate the linear
and nonlinear free momentum-density power spectra for freely streaming dust parti-
cles and analyze their small-scale asymptotic behaviors by exploiting the new asymp-
totic method in Section 6.2. In Section 6.4, we further compute the three convergent
momentum-density power spectra for both large and small-size particles considering
the friction interaction with the constant background gas in the system. In Section 6.5,
with both friction and self-gravitational interactions present in the system, we finally
perform the analysis of the full KFT momentum-density power spectra.

6.2 interlude : asymptotics of certain types of integrals

In Section 5.2.2, we’ve introduced a new analytical method to calculate the asymptotics
at the limit k → ∞ for integrals of the form Equation 5.49 which satisfies the criteria
1-3. Though the three criteria all provide constraints on the function f(x), there is a
hidden condition for the function g(x) that demands it to be a function of the absolute
value of x⃗ rather than the direction of x⃗. In this Chapter, to calculate and analyze
the asymptotics for the three convergent scalar momentum-density power spectra in
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Equation 6.46, Equation 6.48 and Equation 6.51, inevitably we need to deal with the
momentum-density power spectra elements T1, T2, T3, T5, T6, T7. We first write them
as

T1 =

∫
r

3b0ζpp(r)e
−g2

qp(t)k
2
1(m(r)−m(0))−ik⃗1 ·⃗r, (6.53)

T2 =

∫
r

[
g2qp(t)k

2
1

(
m2(r) − 2m(r)m(0)

) ]
e−g2

qp(t)k
2
1(m(r)−m(0))−ik⃗1 ·⃗r, (6.54)

T3 + T4 =

∫
r

g2qp(t)k
2
1m

2(0)e−g2
qp(t)k

2
1(m(r)−m(0))−ik⃗1 ·⃗r, (6.55)

T5 = −

∫
r

m(r)e−g2
qp(t)k

2
1(m(r)−m(0))−ik⃗1 ·⃗r, (6.56)

T6 = −2

∫
r

m3(r)e
−g2

qp(t)k
2
1(m(r)−m(0))−ik⃗1 ·⃗r, (6.57)

T7 + T8 =

∫
r

m(0)e−g2
qp(t)k

2
1(m(r)−m(0))−ik⃗1 ·⃗r, (6.58)

since in Equation 6.45, we’ve proved elements T4 and similarly T8 both have negli-
gible small-scale asymptotics, for the convenience of further analysis, here we choose
to examine the integrals T3 + T4 and T7 + T8 as they have identical small scale asymp-
totic expansions as T3 and T7. Notice the six integrals above all have the same form as
Equation 5.49 with one identical f(x) being

fm(r) = g2qp
(
m(r) −m(0)

)
= g2qp

(
(b1 − b0) − 3b1µ

2
)
(ζpp(r) − ζpp(0)) , (6.59)

which has exactly the same expression as f(r) in Equation 5.52 just with the general
propagator gqp(t) instead of the free one g0(t). However, in each integral, the corre-
sponding function g(x) no longer only depends on the absolute value of x⃗, but also
the direction of x⃗ due to the µ-dependence of the function m(r) and m3(r), except ele-
ment T1. Therefore, for the elements T2 to (T7 + T8), we need to find a new analytical
method to analyze their small-scale asymptotic behaviors.

In this section, we wish to study the asymptotic behavior of a specific Laplace-
Fourier type integral

P(k) = 2π

∫1
−1

dµ
(
(b1 − b0) − 3b1µ

2
)2 ∫∞

0

drr2e−g2
qp(t)k

2(m(r)−m(0))−ik⃗·⃗r (6.60)

for k→ ∞. According to Konrad [25], we begin with an asymptotic expansion of the
r integral, for which we modify Erdelyi’s theorem for Laplace integrals, which states:

Theorem 1 (Erdelyi). Let I(λ) be an integral of the form

I(λ) =

∫b
a

e−λfλ(x)gλ(x)dx (6.61)
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where fλ(x) is a real function of the real variable x, while gλ(x) may be real or complex.
Then if

1. fλ(x) > fλ(a) for x ∈ (a,b) and

inf
[a+δ,b)

fλ(x) − fλ(a) > 0 (6.62)

for δ > 0;

2. f ′λ(x) and gλ(x) are continuous in a neighbourhood of a, except possibly at a;

3. fλ and gλ admit asymptotic expansions

fλ(x) ∼fλ(a) +

∞∑
k=0

ak(x− a)
k+α

gλ(x) ∼

∞∑
k=0

bk(x− a)
k+β−1

(6.63)

fλ can be term-wise differentiated,

f ′λ(x) ∼

∞∑
k=0

ak(k+α)(x− a)
k+α−1 (6.64)

for x→ a+ where α > 0 and Reβ > 0; and

4. I(λ) converges absolutely for sufficiently large λ; then

the integral I(λ) has the asymptotic expansion

I(λ) ∼ e−λfλ(a)
∞∑

n=0

Γ(ν)cn
λν

(6.65)

for λ→ ∞ where ν := n+β
α . The coefficients cn can be expressed by an and bn as

cn =
1

αaν0

n∑
m=0

bn−m

m!
dm,n with dm,n = lim

x→0

dm

dxm

1+ ∞∑
j=1

aj

a0
xj

−ν

(6.66)

For applying Erdelyi’s theorem to Equation 6.60, we set λ := g2qp(t)k
2 and identify

fλ(x), gλ(x) as

fλ(r) =
fm(r)

g2qp(t)
=
f(r)

g20(t)
= a1λ(r) + µ

2a2λ(r), gλ(r) = r
2e−ikrµ, (6.67)
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with a1λ(r) = (b1 − b0) (ζpp(r) − ζpp(0)) and a2λ(r) = −3b1 (ζpp(r) − ζpp(0)). For
r→ 0+, according to Equation 5.52, we have

fλ(r) ∼

∞∑
m=0

a2m(µ)r2m+2 . (6.68)

with

a2m(µ) =
(
b1 − b0 − 3µ

2b1
) σ̄7/3Γ (32)
25/6π2

Γ
(
13
6 +m

)
Γ
(
5
2 +m

)
(
− σ̄2

2

)m+1

(m+ 1)!
, (6.69)

and the asymptotic expansion of the function gλ(r) is

gλ(r) ∼

∞∑
m=0

bm(µ,k)rm+3−1 with bm(µ,k) =
(−ikµ)m

m!
. (6.70)

We identify α = 2 and β = 3 and find

Iµ(λ) :=

∫∞
0

e−λfλ(r)gλ(r)dr ∼

∞∑
n=0

Γ
(
n+3
2

)
cn(µ,k)

λ(n+3)/2 (6.71)

The coefficient cn are

cn =
a
−(n+3)/2
0

2

n∑
m=0

(−ikµ)n−m

m!(n−m)!
dm,n(µ) (6.72)

with

dm,n(µ) = lim
x→0

1+ ∞∑
j=1

a2j

a0
x2j

−n+3
2

= a
n+3
2

0 lim
x→0

(
a1λ + µ2a2λ

x2

)−n+3
2

(6.73)

Since fλ(r) is even in r, all odd derivatives vanish, implying d2m+1,n(µ) = 0. Thus
in the coefficients cn(µ,k), only even values of m contribute to the sum. We further
add that, due to the integration over the parameter µ, it is sufficient to consider only
the real part, which is even in µ, thus only terms for even numbers of n. This brings
us to
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ReIµ(λ) ∼
1

2

∞∑
n=0

Γ
(
n+ 3

2

)
λn+ 3

2

n∑
m=0

(−k2µ2)n−m

(2m)!(2n− 2m)!
lim
x→0

d2m

dx2m

(
a1λ + µ2a2λ

x2

)− 2n+3
2

(6.74)

Since we are interested in the expression in the order of k, after reordering n and m,
we have

ReIµ(g2qpk
2) ∼

1

2k3

∞∑
m=0

(−k2µ2)−m

(2m)!
c̃n(µ

2) (6.75)

with

c̃n(µ
2) = lim

x→0

d2m

dx2m

[
x2/g2qp

a1λ + µ2a2λ

] 3
2 ∞∑
n=0

Γ
(
n+m+ 3

2

)
(2n)!

[
−µ2x2/g2qp
a1λ + µ2a2λ

]n+m

(6.76)

We now proceed to the µ−integral

∫1
−1

dµ
[
(b1 − b0)

2 + 6b1(b0 − b1)µ
2 + 9b21µ

4
]
(−µ2)−mc̃n(µ

2), (6.77)

Due to the complicated form of the integral, also since our primary interest lies in
the expression of the highest order in terms of k, here we present the final results for
the case m = 0.

Split the above integral into three ones:

(1) = (b1 − b0)
2 lim
x→0

∞∑
n=0

Γ
(
n+ 3

2

)
(2n)!

(
x2

g2qp

)n+ 3
2

[∫1
−1

dµ
(−µ2)n

(a1λ + µ2a2λ)
n+ 3

2

]

(2) = 6b1(b1 − b0) lim
x→0

∞∑
n=0

Γ
(
n+ 3

2

)
(2n)!

(
x2

g2qp

)n+ 3
2

[∫1
−1

dµ
(−µ2)n+1

(a1λ + µ2a2λ)
n+ 3

2

]

(3) = 9b21 lim
x→0

∞∑
n=0

Γ
(
n+ 3

2

)
(2n)!

(
x2

g2qp

)n+ 3
2

[∫1
−1

dµ
(−µ2)n+2

(a1λ + µ2a2λ)
n+ 3

2

]
(6.78)

Integral (1) has the result as

(1) = (b1 − b0)
2 lim
x→0

∞∑
n=0

Γ
(
n+ 3

2

)
(2n)!

(
x2

g2qp

)n+ 3
2 2 · (−1)n

a
n+ 3

2

1λ (2n+ 1)

2F1

(
n+

1

2
,n+

3

2
,n+

3

2
,−
a2λ
a1λ

)
, (6.79)
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where 2F1(a,b, c, z) is the Hypergeometric function. Using Milton Abramowitz [30],
we find

2F1(a,b, c, z) = 2F1(b,a, c, z); 2F1(a,b,b, z) = (1− z)−a; (6.80)

Thus we can perform the sum in integral (1) as

(1) = (b1 − b0)
2 lim
x→0

∞∑
n=0

Γ
(
n+ 3

2

)
(2n+ 1)!

(
x2

g2qp

)n+ 3
2 2 · (−1)n

a
n+ 3

2

1λ

(
1+

a2λ
a1λ

)−n− 1
2

= (b1 − b0)
2
√
π lim

x→0

x2/g2qp

a1λ

(
x2/g2qp

a1λ + a2λ

) 1
2

e
−

x2/g2qp
4(a1λ+a2λ)

(6.81)

Combining Equation 6.67 and Equation 6.69, we can write a1λ and a2λ to their
primary order in the limit of x→ 0,

a1λ =
b0 − b1
2

σ21x
2; a2λ =

3b1
2
σ21x

2; (6.82)

with σ21 given in Equation 5.55, then the final expression for integral (1) becomes

(1) =
2(b0 − b1)

g3qpσ
3
1

√
2π

b0 + 2b1
exp

(
−

1

2g2qpσ
2
1(b0 + 2b1)

)
. (6.83)

Combining with coefficients in Equation 6.75 and Equation 6.60, the amplitude of
the k−3 tail at small scales for P(k) contributed from integral (1) becomes

Pa1(t) = π · (1) = (b0 − b1)
2P

(0)
f (t), (6.84)

with P
(0)
f (t) being the amplitude for the small-scale k−3

1 slope of the nonlinear den-
sity power spectrum given in Equation 5.67. This result makes perfect sense. If we only
consider the part of P(k) including integral (1), then the function would take the form
of

P1(k) = 2π

∫1
−1

dµ(b0 − b1)
2

∫∞
0

drr2e−g2
qp(t)k

2
(
m(r)−m(0)

)
−ik⃗·⃗r

= (b0 − b1)
2

∫
r

e−g2
qp(t)k

2
(
m(r)−m(0)

)
−ik⃗·⃗r,

(6.85)
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which is exactly the same as the first part of Pf(k1, t) in Equation 5.20 but with
coefficient (b0 − b1)2, since the second part of Pf(k1, t) doesn’t contribute to the small-
scale asymptotics, the amplitude for the k−3 slope at small scales for P1(k) is exactly
Equation 6.84.

Now we move on to integral (2), after integration we have

(2) = 6b1(b1 − b0)
√
π

∞∑
n=0

(−1)n+123(2n+ 1)

n! (2n+ 3)

(
1

2g2qpσ
2
1(b0 − b1)

)n+ 3
2

2F1

(
n+

3

2
,n+

3

2
,n+

5

2
,
3b1

b1 − b0

)
. (6.86)

Here we’ve already plugged Equation 6.82. Then the calculation over integral (3)
gives

(3) = 9b21
√
π

∞∑
n=0

(−1)n23(2n+ 1)

n! (2n+ 5)

(
1

2g2qpσ
2
1(b0 − b1)

)n+ 3
2

2F1

(
n+

5

2
,n+

3

2
,n+

7

2
,
3b1

b1 − b0

)
. (6.87)

Due to the complicated form of (2) and (3), Figure 6.1 illustrates the shape of integral
results (2) and (3) in Equation 6.86 and Equation 6.87 as functions of propagator gqp(t).
We can see their curves both have multiple extreme points with values being either
negative or positive. And at very large gqp(t), the values of both functions approach
to zero.
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)

Figure 6.1: Left panel: This plot shows the shape of integral (2) in Equation 6.86 as a function of
gqp(t). Right panel: This plot shows the shape of integral (3) in Equation 6.87 as a
function of gqp(t).

In the end, we obtain the amplitude for the k−3 tail at small scales for P(k) in
Equation 6.60 as
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P(k) ∼
Pa(t)

k3
=
2π

2k3
· ((1) + (2) + (3)) =

π · ((1) + (2) + (3))

k3
(6.88)

Now we return to the momentum-density power spectra elements in Equation 6.53-
6.58, rewritten them as

T1 = 2πα1

∫1
−1

dµh1(µ)

∫∞
0

drg1(r)e
−g2

qp(t)k
2
1(m(r)−m(0)), (6.89)

T2 = 2πα2

∫1
−1

dµh2(µ)

∫∞
0

drg2(r)e
−g2

qp(t)k
2
1(m(r)−m(0)), (6.90)

T3 + T4 = 2πα3

∫1
−1

dµh3(µ)

∫∞
0

drg3(r)e
−g2

qp(t)k
2
1(m(r)−m(0)), (6.91)

T5 = 2πα5

∫1
−1

dµh5(µ)

∫∞
0

drg5(r)e
−g2

qp(t)k
2
1(m(r)−m(0)), (6.92)

T6 = 2πα6

∫1
−1

dµh6(µ)

∫∞
0

drg6(r)e
−g2

qp(t)k
2
1(m(r)−m(0)), (6.93)

T7 + T8 = 2πα7

∫1
−1

dµh7(µ)

∫∞
0

drg7(r)e
−g2

qp(t)k
2
1(m(r)−m(0)), (6.94)

with the coefficients and the µ-functions being

α1 = 3b0ζpp(0),

α2 = −g2qp(t)k
2
1ζ

2
pp(0),

α3 = g2qp(t)k
2
1ζ

2
pp(0),

α5 = −ζpp(0),

α6 = ζpp(0),

α7 = ζpp(0),

h1(µ) = 1,

h2(µ) =
(
b1 − b0 − 3b1µ

2
)2,

h3(µ) =
(
b1 − b0 − 3b1µ

2
)2,

h5(µ) =
(
b1 − b0 − 3b1µ

2
)
,

h6(µ) =
(
2b0 + b1 − 3b1µ

2
)
,

h7(µ) =
(
b1 − b0 − 3b1µ

2
)
,

(6.95)

and the gλ(x) functions being

g1(r) =
ζpp(r)

ζpp(0)
r2e−ikrµ,

g2(r) =

(
2ζpp(r)

ζpp(0)
−
ζ2pp(r)

ζ2pp(0)

)
r2e−ikrµ,

g3(r) = r
2e−ikrµ,

g5(r) =
ζpp(r)

ζpp(0)
r2e−ikrµ,

g6(r) =
ζpp(r)

ζpp(0)
r2e−ikrµ,

g7(r) = r
2e−ikrµ.

(6.96)

Thus the asymptotic expansions for the gλ(x) functions above at r→ 0+ become
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g1(r) ∼

∞∑
m=0

b1m(µ,k)rm+3−1, with b1m =
ζpp(0)

ζpp(0)
bm = bm, (6.97)

g2(r) ∼

∞∑
m=0

b2m(µ,k)rm+3−1, with b2m =

(
2ζpp(0)

ζpp(0)
−
ζ2pp(0)

ζ2pp(0)

)
bm = bm,

(6.98)

g3(r) ∼

∞∑
m=0

b3m(µ,k)rm+3−1, with b3m = bm, (6.99)

g5(r) ∼

∞∑
m=0

b5m(µ,k)rm+3−1, with b5m =
ζpp(0)

ζpp(0)
bm = bm, (6.100)

g6(r) ∼

∞∑
m=0

b6m(µ,k)rm+3−1, with b6m =
ζpp(0)

ζpp(0)
bm = bm, (6.101)

g7(r) ∼

∞∑
m=0

b7m(µ,k)rm+3−1, with b7m = bm, (6.102)

which are all identical with gλ(r) in Equation 6.70. With the fλ(x) functions for
Equation 6.89-6.94 are the same with fλ(r) in Equation 6.67, we conclude all r-integrals
in Equation 6.89-6.94 give the same asymptotic result as in Equation 6.75. Furthermore,
comparing the six µ-functions in Equation 6.95 with the µ-dependence in integral
Equation 6.77-6.78, then combining with the six coefficients αi with i = 1, 2, 3, 5, 6, 7, we
can write down the small-scale asymptotic expansions for all the momentum-density
power spectra elements as
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T1 ∼
T0
1(t)

k31
=
3b0ζpp(0)

(b0 − b1)2
· P

a1(t)

k31
=
3b0ζpp(0)P

(0)
f (t)

k31
, (6.103)

T2 ∼
T0
2(t)

k
= −g2qp(t)k

2
1ζ

2
pp(0)

Pa(t)

k31
= −

πg2qp(t)ζ
2
pp(0)

k
·
(
(1) + (2) + (3)

)
,

(6.104)

T3 ∼
T0
3(t)

k
= g2qp(t)k

2
1ζ

2
pp(0)

Pa(t)

k31
=
πg2qp(t)ζ

2
pp(0)

k
·
(
(1) + (2) + (3)

)
, (6.105)

T5 ∼
T0
5(t)

k
= −

πζpp(0)

k31
·
(

(1)

b1 − b0
−

(2)

2(b0 − b1)

)
=

πζpp(0)

(b0 − b1)k
3
1

·
(
(1) +

(2)

2

)
,

(6.106)

T6
T0
6(t)

k
=
πζpp(0)

k31
·
(
2b0 + b1
(b1 − b0)2

(1) −
(2)

2(b0 − b1)

)
=

πζpp(0)

(b1 − b0)k
3
1

·
(
2b0 + b1
b1 − b0

(1) +
(2)

2

)
,

(6.107)

T7 ∼
T0
7(t)

k
=
πζpp(0)

k31
·
(

(1)

b1 − b0
−

(2)

2(b0 − b1)

)
= −

πζpp(0)

(b0 − b1)k
3
1

·
(
(1) +

(2)

2

)
,

(6.108)

With three important relations T2 + T3 = 0, T5 + T7 = 0, and T5 + T6 = T1 at small
scales. Therefore, by introducing Erdelyi’s theorem for the one-dimensional Laplace
integrals then performing the spatial angular integrals afterward, a new analytical
method is developed to calculate the small-scale asymptotics for the integrals of the
form Equation 5.49, especially for the ones with a more complicated form of g(x).

6.3 free streaming particles

In this section, we ignore the friction interaction in the system, at the limit of τs → ∞,
the free momentum propagator gm0 (t, t ′) can be derived from equation Equation 3.39

as

lim
τs→∞gpp(t, t ′) = gm0 (t, t ′) = lim

τs→∞ e− t−t ′
τs = 1, (6.109)

we further ignore the self-gravity among dust particles and obtain

f⃗j = 0 and F⃗j = 0, (6.110)

combing them with the free propagator g0(t, t ′) given in Equation 5.40 and the free
interaction term SIfree given in Equation 5.41, the three free convergent momentum-
density power spectra can be read off directly from Equation 6.46, Equation 6.48 and
Equation 6.51 as
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P̄free
tr (k1, t) = T10 + T20 + T30, (6.111)

P̄free
div (k1, t) = k21

(
T50 + T20 + T30

)
, (6.112)

P̄free
curl(k1, t) = k21T60, (6.113)

where Ti0 with i = 1, 2, 3, 5, 6 has the same expression as Ti in Equation 6.32, Equa-
tion 6.33 and Equation 6.52 but with the free propagator g0(t) instead of the general
propagator gqp(t).

In the following section, we first derive the expressions of the three linear free
momentum-density power spectra for dust particles by looking for the asymptotic
behaviors of the momentum-density power spectra elements T1 to T6 at very early
evolution time. Then we return to the nonlinear momentum-density power spectra
by employing the new asymptotic method introduced in Section 6.2. Furthermore, for
each different momentum-density power spectrum, we analyze its small-scale asymp-
totic behaviors and find evidence for scale-invariant kinetic energy at very small scales
in the system.

6.3.1 Linear Momentum-Density Power Spectra

At very early times, the free propagator satisfies g0(t) = t→ 0, the exponentials in the
momentum-density power spectra elements can thus be Taylor approximated to their
first orders,

T10 ≈ Tlin1
(k1, t) = 3b0

∫
r

ζpp(r)e
−ik1rµ, (6.114)

T20 ≈ Tlin2
(k1, t) = g20(t)k

2
1

∫
r

(
m2(r) − 2m(r)m(0)

)
e−ik1rµ, (6.115)

T30 ≈ Tlin3
(k1, t) = −g40(t)k

4
1

∫
r

m2(0)m(r)e−ik1rµ, (6.116)

T50 ≈ Tlin5
(k1, t) = −

∫
r

m(r)e−ik1rµ, (6.117)

T60 ≈ Tlin6
(k1, t) = −2

∫
r

m3(r)e
−ik1rµ, (6.118)

evidently, Tlin2
(k1, t) and Tlin3

(k1, t) instantly become negligible compared to the
other terms due to the higher orders of g0(t) in their expressions. Therefore the three
free momentum-density power spectra in Equation 6.111-6.113 can be simplified to
their linear form as
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P̄free
lin1(k1, t) = Tlin1

(k1, t), (6.119)

P̄free
lin2(k1, t) = k21Tlin5

(k1, t), (6.120)

P̄free
lin3(k1, t) = k21Tlin6

(k1, t). (6.121)

Now we integrate Tlin1
(k1, t), Tlin5

(k1, t) and Tlin6
(k1, t) over the Spherical coordi-

nates µ and φ, then replace r with r1 = k1r to obtain

Tlin1
(k1, t) =

6πb0

k31

∫∞
0

dr1r
2
1ζpp

(
r1
k1

)
2 sin r1
r1

, (6.122)

Tlin5
(k1, t) =

2π

k31

∫∞
0

dr1r
2
1ζpp

(
r1
k1

) ∫1
−1

dµ
(
(3µ2 − 1)b1 + b0

)
cos r1µ, (6.123)

Tlin6
(k1, t) =

2π

k31

∫∞
0

dr1r
2
1ζpp

(
r1
k1

) ∫1
−1

dµ
(
2b0 + (1− 3µ2)b1

)
cos r1µ, (6.124)

when k1 → 0, by employing the asymptotic behavior of ζpp(r1/k1) ∝ (k1/r1)
7/3 in

Equation 4.76, we obtain their large-scale asymptotic behaviors as

Tlin1
(k1, t) ∼

c1

k
2
3

1

, c1 = 0.975πb0, (6.125)

Tlin5
(k1, t) ∼

c5

k
2
3

1

, c5 = 0.08π
4

21
(7b0 − 4b1)Γ

(
−
4

3

)
, (6.126)

Tlin6
(k1, t) ∼

c6

k
2
3

1

, c6 = 0.08π
8

21
(7b0 + 2b1)Γ

(
−
4

3

)
. (6.127)

While at the limit of k1 → ∞, we obtain their small-scale asymptotics in Sec-
tion A.1.2 as

lim
k1→∞ Tlin1

(k1, t) ≈ 0, lim
k1→∞ Tlin5

(k1, t) = −18.85b1
2πζ0

k31
, lim

k1→∞ Tlin6
(k1, t) = 18.85b1

2πζ0

k31
.

(6.128)

where ζ0 is a constant given in Equation A.2. Therefore, using Equation 6.119-6.121,
we can immediately conclude that, for the linear free trace momentum-density power

spectrum P̄free
lin1

(k1, t), it will develop a k−
2
3

1 slope at large scales then continuously
decreases exponentially to zero at small scales, as for the linear free divergence and
curl momentum-density power spectra P̄free

lin2
(k1, t) and P̄free

lin3
(k1, t), they will develop
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k
4
3

1 slopes at large scales and k−1
1 tails at small scales. Furthermore, the fact that the

expressions in Equation 6.125-6.128 are independent of the evolution time indicates
that all asymptotic behaviors of the three linear free momentum-density power spectra
are conserved and remain the same at the very early time of evolution.

Figure 6.2 shows the shape of P̄free
lin1

(k1), P̄free
lin2

(k1) and P̄free
lin3

(k1) as functions of wave
number k1. Notice their large and small scale behaviors confirmed our asymptotic
analysis. Moreover, notice that the small scale asymptotics of Tlin5(k1) and Tlin6(k1)

in Equation 6.128 indicate the relation of P̄free
lin2

(k1) + P̄free
lin3

(k1) = 0 at very small scales,
this result could then very well explain the small scale asymptotic behavior of P̄free

lin1
(k1).

Since the trace, divergence, curl momentum-density power spectra are derived from
Equation 6.2-6.4 which satisfy (6.4)+(6.3)=k21·(6.2), thus at small scales, when the linear
free divergence momentum-density power spectrum cancel out the linear free curl
momentum-density power spectrum, the linear free trace momentum-density power
spectrum is bound to become zero as in Equation 6.128.
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Figure 6.2: This figure shows the shape of absolute values of P̄free
lin1

(k1) (left panel), P̄free
lin2

(k1)

(middle panel) and P̄free
lin3

(k1) (right panel) in terms of wavenumber k1 (blue lines),
together with their small scale asymptotic behaviors (yellow dashed lines) and the
large scale k−1 asymptotic slopes (green dashed lines) of P̄free

lin2
(k1) and P̄free

lin3
(k1).

6.3.2 Nonlinear Momentum-Density Power Spectra

In this section, we return to the full expressions of the three free convergent momentum-
density power spectra in Equation 6.111-6.113 at any given evolution time t, by analyz-
ing their corresponding power spectra elements Ti0 with i = 1, 2, 3, 5, 6, we conclude
their small and large scale asymptotic behaviors, furthermore, the time dependence of
their small scale asymptotic behaviors are examined.

6.3.2.1 Momentum-Density Trace Power Spectrum

We start with the free trace momentum-density power spectrum in Equation 6.111. At
very large scales where k1 → 0, the exponentials in the momentum-density power
spectra elements Ti0 with i = 1, 2, 3 can still be Taylor approximated to their first
orders as in Equation 6.114-6.116, with the large scale asymptotics of T10 given in
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Equation 6.125, we integrate the other two terms over the Spherical coordinates µ and
φ, then replace r with r1 = k1r to obtain

T20 ≈ Tlin2
(k1, t) =

2πg20(t)

k1

∫∞
0

dr1r
2
1ζpp

(
r1
k1

)(
ζpp

(
r1
k1

)
− 2ζpp(0)

)
·∫1

−1

dµ
(
(1− 3µ2)b1 − b0

)2
cos r1µ,

(6.129)

T30 ≈ Tlin3
(k1, t) = 2πg40(t)k1ζ

2
pp(0)

∫∞
0

dr1r
2
1ζpp

(
r1
k1

)
·∫1

−1

dµ
(
(3µ2 − 1)b1 + b0

)3
cos r1µ,

(6.130)

by employing the asymptotic behavior of ζpp(r1/k1) ∝ (k1/r1)
7/3 in Equation 4.76,

we obtain their large-scale asymptotic behaviors as

Tlin2
(k1, t) ∼ c2k

4
3

1 , c2 = 0.16πg20(t)ζpp(0)
4

117
(76b21 − 104b1b0 + 91b

2
0)Γ

(
−
7

3

)
= −5.167× 10−9g20(t),

(6.131)

Tlin3
(k1, t) ∼ c3k

10
3

1 , c3 = 0.08πg40(t)ζ
2
pp(0)

40

1539
Γ

(
−
13

3

)
·(

640b31 − 4332b
2
1b0 + 2964b1b

2
0 − 1729b

3
0

)
= 6.451× 10−13g40(t).

(6.132)

At very small scales where k1 → ∞, the asymptotic behavior of Ti0 with i = 1, 2, 3
are given in Equation 6.103-6.105, but with the general propagator gqp(t) in the ex-
pressions replaced by the free propagator g0(t).

Figure 6.3 shows the shape of the free momentum-density trace power spectrum
P̄free

tr (k1, t) = T10+ T20+ T30 and its elements T10, T20, T30 as functions of wavenumber
k1 at evolution time g0(t) = t = 2.0. We can see their large and small scale asymp-
totic behaviors match our calculations very well. Furthermore, notice the curves of
P̄free

tr (k1, t) and T10 are almost identical with each other, which can easily be explained
by looking into the asymptotic behaviors of T10, T20 and T30. At very large scales with
k1 → 0, the asymptotic behavior of T10 in Equation 6.125 is significantly larger than
the ones of T20 and T30 by Equation 6.131 and Equation 6.132, moreover, at very small
scales with k1 → ∞, the asymptotic behaviors satisfy T20 + T30 = 0 according to Equa-
tion 6.104 and Equation 6.105, combining both conclusions, we immediately realize at
both large and small scales, the value of T10 dominates and contributes the most to
the free momentum-density trace power spectrum P̄free

tr (k1, t).
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Figure 6.3: This plot shows the free momentum-density trace power spectrum P̄free
tr (k1, t) =

T10 + T20 + T30 (yellow line) and its elements T10 (purple line), T20 (green line), T30
(blue line) in terms of wave number k1 at evolution time g0(t) = t = 2.0, together
with their large scales asymptotic behaviors by Equation 6.125, Equation 6.131,
Equation 6.132 and small-scale asymptotic behaviors by Equation 6.103-6.105. The
negative values of T20 and T30 are represented by the same color dashed lines.

Therefore, we can straightforwardly write down the large-scale asymptotic behav-
iors for P̄free

tr (k1, t) as

P̄free
tr (k1, t) ∼

c1

k
2
3

1

, for k1 → 0, (6.133)

with c1 given in Equation 6.125, and its small-scale asymptotic behavior as

P̄free
tr (k1, t) ∼

P̄
(0)
frtr (t)

k31
=
3b0ζpp(0)P

(0)(t)

k31
, for k1 → ∞, (6.134)

where P̄
(0)
frtr (t) represents the amplitude for the k−3

1 tail of P̄free
tr (k1, t), and P(0)(t) is

the amplitude for the nonlinear free density power spectrum given in Equation 5.59.
At the limit of k1 → ∞, since the separation between two particles becomes negligible,
the free momentum-density trace power spectrum actually measures the kinetic energy
of dust particles in the system, with k31 · P̄free

tr (k1, t) being a constant, we conclude a
scale-invariant kinetic energy for dust particles at small scales of the system.

Furthermore, since the large scale asymptotic behavior of P̄free
tr (k1, t) in Equation 6.133

is independent of the evolution time t, concerning the time dependence of the free
momentum-density trace power spectrum at small scales, notice the amplitude P̄

(0)
frtr (t)
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is just a constant multiply P(0)(t), we can then immediately write down its maximal
amplitude and the corresponding evolution time as in Equation 5.60 being

Pfrtr
max = 3b0ζpp(0)

(
6π

e

)3/2
b0 + 2b1
b0 − b1

≈ 4.96 · 10−2 at (6.135)

tmax = σ−1
1

√
1

3 (b0 + 2b1)
≈ 3.04 . (6.136)

Therefore, at very large scales, the power spectrum P̄free
tr (k1, t) is conserved over

time, while at very small scales, the change of the amplitude for P̄free
tr (k1, t) indicates

that the kinetic energy of the dust particles in the system first increases until reaches
its maximum at time tmax then continues to decrease as time proceeds.

6.3.2.2 Momentum-Density Divergence Power Spectrum

We proceed to the nonlinear free momentum-density divergence power spectrum by
Equation 6.112 in this section. At very large scales where k1 → 0, the asymptotic behav-
iors of Ti0 with i = 5, 2, 3 are given in Equation 6.126, Equation 6.131, Equation 6.132,
while at very small scales where k1 → ∞, their asymptotic behaviors are represented
by Equation 6.104-6.106, in which the general propagator gqp(t) are replaced by the
free propagator g0(t).

The left panel of Figure 6.4 shows the shape of the free momentum-density di-
vergence power spectrum elements T50, T20, T30 and T50 + T20 + T30 as functions of
wave number k1 at evolution time g0(t) = t = 2.0. Their large and small asymp-
totic behaviors match our analysis very well as expected. Notice the values of the
sum T50 + T20 + T30 and element T50 are the same for most scales considered, which
can also be explained by the negligible large scale asymptotic values of T20, T30 in
Equation 6.131-6.132 and the small scale asymptotic relation of T20 + T30 = 0 in Equa-
tion 6.104-6.105 as Figure 6.3.

Therefore at very large scales the asymptotic behaviors for P̄free
div (k1, t) in Equa-

tion 6.112 is given by

P̄free
div (k1, t) = k21T50 ∼ c5k

4
3

1 , for k1 → 0, (6.137)

with c5 given in Equation 6.126, while at very small scales, its asymptotic behavior
becomes

P̄free
div (k1, t) = k21T50 ∼

P
(0)
frdiv(t)

k1
=

πζpp(0)

(b0 − b1)k1
·
(
(1) +

(2)

2

)
, for k1 → ∞, (6.138)
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Figure 6.4: Left panel: This plot shows the free momentum-density divergence power spectrum
elements T50 (purple line), T20 (green line), T30 (blue line) and T50 + T20 + T30 (yel-
low line) in terms of wave number k1 at evolution time g0(t) = t = 2.0, together
with their large scales asymptotic behaviors by Equation 6.126, Equation 6.131,
Equation 6.132 and small-scale asymptotic behaviors by Equation 6.104-6.106. The
negative values of T20, T30, T50 and T50 + T20 + T30 are represented by the same
color dashed lines. Right panel: This plot shows the free momentum-density diver-
gence power spectrum P̄free

div (k1, t) (yellow line) as a function of k1 at the same

evolution time g0(t) = t = 2.0, together with its large scale k4/31 asymptotic slope
(black dash-dotted line) in Equation 6.137 and its small scale k−1

1 asymptotic slope
(black dashed line) in Equation 6.138.

with (1) and (2) given in Equation 6.83 and Equation 6.86, in which the general
propagator gqp(t) is replaced by the free propagator g0(t), see the right panel of
Figure 6.4. Since the free momentum-density divergence power spectrum measures the
power spectrum for the projections of the momentum-density operator Π̂ on the wave
vector k⃗1 multiplied by k21, at the limit k1 → ∞, we have its small scale asymptotic

behavior satisfy P̄free
div (k1,t)

k2
1

·k31 = constant, which indicates a scale-invariant momentum-

density power in the k⃗1 space.
Since the large scale asymptotic behavior of P̄free

div (k1, t) in Equation 6.137 is indepen-
dent of the evolution time t, we are only interested in the time dependence of its small
scale asymptotic behaviors. Due to the complicated shape of (2) in Equation 6.86 and
Figure 6.1, instead of taking the analytical derivative of P(0)

frdiv(t), Figure 6.5 shows the
shape of it as a function of evolution time t. We can see it has two extreme points
which corresponds to two local maximal and minimal amplitude for the k−3

1 slope of
P̄free

div (k1, t). The numerical result gives the local maximal Pmax
frdiv and minimal Pmin

frdiv at
their corresponding evolution times as

Pmin
frdiv ≈ −0.020 at tmin ≈ 1.55, and Pmax

frdiv ≈ 6.18−3 at tmax ≈ 4.12. (6.139)
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Figure 6.5: This plot shows the shape of amplitude P
(0)
frdiv(t) in equation 6.138 as a function of

evolution time t. The yellow dot marks its value at evolution time t = 2.0 which
corresponds to Figure 6.4. The green cross represents the example extreme points
of the curve given in Equation 6.139.

6.3.2.3 Momentum-Density Curl Power Spectrum

In the end, we move on to the nonlinear free momentum-density curl power spectrum
by Equation 6.113. At very large scales where k1 → 0, the asymptotic behavior of T60
is given in Equation 6.127, while at very small scales where k1 → ∞, its asymptotic
behavior is represented by Equation 6.107, in which the general propagator gqp(t) is
replaced by the free propagator g0(t).

Therefore we can immediately write down the large-scale asymptotic behavior for
P̄free

curl(k1, t) in Equation 6.113 as

P̄free
curl(k1, t) = k21T60 ∼ c6k

4
3

1 , for k1 → 0, (6.140)

with c6 given in Equation 6.127, while at very small scales, its asymptotic behavior
becomes

P̄free
curl(k1, t) = k21T60 ∼

P
(0)
frcurl(t)

k1
=

πζpp(0)

(b1 − b0)k1
·
(
2b0 + b1
b1 − b0

(1) +
(2)

2

)
, for k1 → ∞,

(6.141)

with (1) and (2) given in Equation 6.83 and Equation 6.86, in which the general prop-
agator gqp(t) is replaced by the free propagator g0(t). Now that the free momentum-
density curl power spectrum measures the power spectrum for the projections of
the momentum-density operator Π̂ perpendicular to the wave vector k⃗1 multiplied
by k21, at the limit k1 → ∞, we have its small scale asymptotic behavior satisfy
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P̄free
curl(k1,t)

k2
1

· k31 = constant, which indicates a scale-invariant momentum-density power

in a space perpendicular to k⃗1.
Figure 6.6 shows the shape of the free momentum-density curl power spectrum

P̄free
curl(k1, t) (right panel) and its element T60 (left panel) as functions of wave number k1.

Their large and small asymptotic behaviors match our analysis very well as expected.
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Figure 6.6: Left panel: This plot shows the free momentum-density curl power spectrum ele-
ments T60 (yellow line) in terms of wave number k1 at evolution time g0(t) = t =

2.0, together with its large scales asymptotic behaviors by Equation 6.127 (black
dashed line) and small-scale asymptotic behaviors by Equation 6.107 (black dash-
dotted line). Right panel: This plot shows the free momentum-density curl power
spectrum P̄free

curl(k1, t) (yellow line) as a function of k1 at the same evolution time

g0(t) = t = 2.0, together with its large scale k4/31 asymptotic slope (black dashed
line) in Equation 6.140 and its small scale k−1

1 asymptotic slope (black dash-dotted
line) in Equation 6.141.
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Figure 6.7: This plot shows the shape of amplitude P
(0)
frcurl(t) in Equation 6.141 as a function of

evolution time t. The yellow dot marks its value at evolution time t = 2.0 which
corresponds to Figure 6.6. The green cross represents the example extreme point of
the curve given in Equation 6.142.
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Since the large scale asymptotic behavior of P̄free
curl(k1, t) in Equation 6.140 is also

independent of the evolution time t, we only consider the time dependence of its
small scale asymptotic behaviors. Due to the complicated shape of (2) in Equation 6.86

and Figure 6.1, Figure 6.7 shows the shape of P(0)
frcurl(t) as a function of evolution time

t. We can see it first increases over time and reaches its local maximal amplitude Pmax
frcurl

at time tmax, then decreases all along as time proceeds to zero. The numerical result
gives the local maximal Pmax

frcurl at its corresponding evolution time as

Pmax
frcurl ≈ 0.048 at tmax ≈ 2.66. (6.142)

6.3.2.4 The Relation of The Three Power Spectra

At the end of this section, we would like to discuss a bit more about the relation among
the three free nonlinear momentum-density power spectra. We mentioned in Sec-
tion 6.3.1 that the quantities in Equation 6.2-6.4 satisfy the relation k21·(6.2)=(6.3)+(6.4),
which leads to the relation between P̄free

tr (k1, t), P̄free
div (k1, t) and P̄free

curl(k1, t) as

k21P̄
free
tr (k1, t) = P̄free

div (k1, t) + P̄free
curl(k1, t), → T10 = T50 + T60. (6.143)
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Figure 6.8: This plot shows the free momentum-density power spectra elements T10 (purple
line), T50 (green line), T60 (blue line) and sum T50 + T60 (yellow line) in terms of
wave number k1 at evolution time g0(t) = t = 2.0, together with their large scales
asymptotic behaviors by Equation 6.125, Equation 6.126, Equation 6.127 and small-
scale asymptotic behaviors by Equation 6.103, Equation 6.106, Equation 6.107. The
negative values of T50 is represented by the same color dashed lines.

Figure 6.8 shows the shape of the free momentum-density power spectra elements
T10, T50, T60 and sum T50+ T60 as functions of k1 at evolution time g0(t) = t = 2.0. We
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can see the curve of sum T50 + T60 matches with the curve of element T10 very well,
which verifies the relation in Equation 6.143. This result makes perfect sense for the
reason that the sum of the power spectra for the momentum-density operator Π̂ in k⃗1
space and perpendicular to k⃗1 space should be equal to its total trace power spectrum.

Furthermore, since all the scalar momentum-density power spectra analyzed in this
chapter are derived from the quantities in Equation 6.2-6.4, the very same relation will
also be satisfied in the following sections.

6.4 friction momentum-density power spectra

In this section, we still ignore the self-gravitational interaction among dust particles
with F⃗j = 0 and SIfree = 0, yet return to the general propagators gqp(t, t ′) and gpp(t, t ′)
in Equation 3.39 to reconsider the friction interaction between the dust particles and
the constant background gas field in the system. The three scalar momentum-density
power spectra in Equation 6.46, Equation 6.48 and Equation 6.51 thus can be written
as

P̄ftr(k1, t) = P̄lin1
(k1, t) + g2pp(t)

(
T1 + T2 + T3

)
, (6.144)

P̄fdiv(k1, t) = P̄lin2
(k1, t) + g2pp(t)k

2
1

(
T5 + T2 + T3

)
, (6.145)

P̄fcurl(k1, t) = P̄lin3
(k1, t) + g2pp(t)k

2
1T6, (6.146)

with

P̄lin1
(k1, t) =

(
1− gpp(t)

)2
u20Pf(k1, t), (6.147)

P̄lin2
(k1, t) =

1

3
k21P̄lin1

(k1, t), (6.148)

P̄lin2
(k1, t) = 2P̄lin2

(k1, t), (6.149)

where the gravity-free nonlinear density power spectrum Pf(k1, t) is given in Equa-
tion 5.20. Here we’ve used the relation gqp(t) = τs

(
1− gpp(t)

)
.

This section is constructed as follows. We start with deriving the expressions of
the three linear gravity-free momentum-density power spectra for very small dust
particles. By analyzing the asymptotic behaviors of the propagators at the limit of
τs → 0, we find that the three linear gravity-free momentum-density power spectra
are completely determined by the corresponding linear gravity-free density power
spectrum Pflin(k1, t) in Equation 5.62. Then we return to the three nonlinear gravity-
free momentum-density power spectra by calculating the corresponding momentum-
density power spectra elements Ti with i = 1, 2, 3, 5, 6 using the method shown in
Section 6.2. Furthermore, by analyzing the time-dependence for the small-scale asymp-
totic behaviors of the trace power spectra, we find a critical particle size τmax ≈ 3.03
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which corresponds to the maximum small-scale total kinetic energy for dust particles
in the system.

6.4.1 Linear Momentum-Density Power Spectra at Small τs

We start with very small particles at finite evolution time t, in the limit of τs → 0, the
propagators become

lim
τs→0

gpp(t) = lim
τs→0

exp
(
−
t

τs

)
→ 0, (6.150)

lim
τs→0

gqp(t) = lim
τs→0

τs

(
1− exp

(
−
t

τs

))
→ τs, (6.151)

therefore the three momentum-density power spectra in Equation 6.144-6.146 are
only left with their first terms involving the KFT density power spectrum P̄f(k1, t) as

P̄ftr(k1, t) ≈ P̄lin1
(k1, t) ≈ P̄llin1

(k1, t) =
(
1− gpp(t)

)2
u20Pflin(k1, t), (6.152)

P̄fdiv(k1, t) ≈ P̄lin2
(k1, t) ≈ P̄llin2

(k1, t) =
1

3

(
1− gpp(t)

)2
u20k

2
1Pflin(k1, t), (6.153)

P̄fcurl(k1, t) ≈ P̄lin3
(k1, t) ≈ P̄llin3

(k1, t) =
2

3

(
1− gpp(t)

)2
u20k

2
1Pflin(k1, t), (6.154)

where the gravity-free linear density power spectrum Pflin(k1, t) for very small par-
ticles is given in Equation 5.62 to replace the gravity-free nonlinear density power
spectrum Pf(k1, t) at the limit of τs → 0. Using the asymptotic behaviors of Pflin(k1, t)
concluded from in Equation 5.62, we can immediately infer that at the limit of k1 → 0,

the linear momentum-density trace power spectrum P̄llin1
(k1, t) develops a k

4
3

1 large
scale asymptotic behavior, while the linear momentum-density divergence and curl

power spectra P̄llin2
(k1, t), P̄llin3

(k1, t) develop k
10
3

1 large-scale asymptotic slopes, at the
limit of k1 → ∞, P̄llin1

(k1, t) develops a k−1
1 small-scale asymptotic behavior, while

the other two develop k11 small-scale asymptotic slope.
Figure 6.9 shows the shape of the linear momentum-density trace, divergence and

curl power spectra with very small friction coefficient τs = 0.01 and τs = 0.1 at evolu-
tion time t = 10.0. We can see their large and small-scale asymptotic behaviors match
our analysis very well as predicted. Notice at relatively later evolution time where
t ≫ τs, all linear momentum-density power spectra become larger with larger fric-
tion coefficients, which indicates that faster momentum-density power accumulation
occurs if the system is filled with larger size dust particles. Furthermore, in the lin-
ear momentum-density divergence and curl power spectra, we see both power spectra
grow proportional to the wave number k1 at very small scales in the scenario of only
averaged friction interaction present in the system, which doesn’t make any sense.
Therefore, we need to introduce the nonlinear analysis in the following.
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Figure 6.9: This plot shows the shape of the linear momentum-density trace (top panel), diver-
gence (middle panel) and curl (bottom panel) power spectra as functions of wave
number k1 with very small friction coefficient τs = 0.01 (blue lines) and τs = 0.1
(yellow lines) at evolution time t = 10.0. Their large scales asymptotic behaviors are
marked by the green dashed lines, and their small-scale asymptotic behaviors are
represented by the red dashed lines.
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6.4.2 Nonlinear Momentum-Density Power Spectra at Large τs

When the friction coefficient τs gets larger, the approximation shown above only re-
mains true at a very late stage of evolution. In the limit of t→ ∞, the propagators also
satisfy

lim
t→∞gpp(t) = lim

t→∞ exp
(
−
t

τs

)
→ 0, (6.155)

lim
t→∞gqp(t) = lim

t→∞ τs
(
1− exp

(
−
t

τs

))
→ τs. (6.156)

Therefore, all three linear momentum-density power spectra we deduce above re-
main unchanged. However, if we are interested in the momentum-density power spec-
tra at an earlier evolution time where t is finite, the above approximation no longer
holds, we need to return to the nonlinear momentum-density power spectra given in
Equation 6.144-6.146.

6.4.2.1 Momentum-Density Trace Power Spectrum

First we discuss the nonlinear momentum-density trace power spectrum P̄ftr(k1, t)
given in Equation 6.144. Since the propagators no longer satisfy Equation 6.150 and
6.151, for its first term P̄lin1

(k1, t), we need to return to the nonlinear density power
spectrum Pf(k1, t) in Equation 5.20.

Figure 6.10 gives the shape of P̄lin1
(k1, t) as a function of wavenumber k1 with

parameters: τs = 1.0, t = 2.0; τs = 2.0, t = 2.0; τs = 3.0, t = 2.0; τs = 3.0, t = 3.0.
Compared to the linear momentum-density trace power spectrum in the top panel of
Figure 6.9, notice at small scales, the nonlinear power spectra all develop the steeper
k−3
1 slopes.
Using Equation 6.147 and Equation 5.67, their small-scale asymptotic behaviors can

directly be written down as

P̄lin1
(k1, t) ∼

P
(0)
lin1

(t)

k31
, for k1 → ∞, (6.157)

with the amplitude being

P
(0)
lin1

(t) =
u20

τ2sgqp(t)σ
3
1 (b0 − b1)

√
(2π)3

b0 + 2b1
exp

(
−

1

2g2qp(t)σ
2
1 (b0 + 2b1)

)
. (6.158)

Furthermore, the analysis over the amplitude’s time and particle size dependence
in Section B.1 shows that the maximum kinetic energy accumulation for dust par-
ticles at very small scales caused by the density structure formation in the system
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Figure 6.10: This plot gives the shape of the first term in Equation 6.144 P̄lin1
(k1, t) as a function

of wave number k1 with parameters: τs = 1.0, t = 2.0 (blue line); τs = 2.0, t = 2.0
(yellow line); τs = 3.0, t = 2.0 (green line); τs = 3.0, t = 2.0 (red line). At small
scales, the k−3

1 slopes are marked by the purple dashed lines.

happens at the very late stage of evolution with the particle size being τs = τsl ≈ 3.03,
which agrees with the maximum small-scale structure formation result discussed in
Section 5.3.3.

Now we move on to the second term in Equation 6.144 and first analyze the cor-
responding momentum-density trace power spectrum elements Ti with i = 1, 2, 3. At
very small scales where k1 → ∞, their asymptotic behaviors are already given in
Equation 6.103-6.105. While at very large scales where k1 → 0, since the only differ-
ence between Ti here and Ti0 in Section 6.3 lies in the propagators, we can still use
Equation 6.125, Equation 6.131, Equation 6.132 to represent their large scale asymp-
totic behaviors, yet with the free propagator g0(t) in coefficient c2 and c3 replaced by
the general propagator gqp(t).

Figure 6.11 shows the shape of the momentum-density trace power spectrum ele-
ments T1, T2, T3 and T1 + T2 + T3 as a function of wavenumber k1 with friction co-
efficient τs = 1.0, 2.0, 3.0 at evolution time t = 2.0, 3.0. We can see their large and
small-scale asymptotic behaviors match our analytical predictions very well. In the
meantime, since the values of T2, T3 are negligible compared to T1 at very large scales
and the asymptotic behaviors satisfy T2 + T3 = 0 at very small scales, the shape of
T1+ T2+ T3 is mostly determined by the values of T1. Therefore, the large-scale asymp-
totic behavior of the second term in Equation 6.144 can be written as

g2pp(t)
(
T1 + T2 + T3

)
∼
g2pp(t)c1

k
2
3

1

, for k1 → 0, (6.159)

at small scales, its asymptotic behavior becomes
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Figure 6.11: These four plots show the momentum-density trace power spectrum elements
T1 (purple line), T2 (green line), T3 (blue line) and T1 + T2 + T3 (yellow line) as
functions of wave number k1, together with there large scales asymptotic be-
haviors by Equation 6.125, 6.131, 6.132 and small scales asymptotic behaviors
by Equation 6.103-6.105, respectively at parameters: τs = 1.0, t = 2.0 (top left);
τs = 2.0, t = 2.0 (top right); τs = 3.0, t = 2.0 (bottom left); τs = 3.0, t = 3.0 (bottom
right). The negative values of T2 and T3 are represented by the same color dashed
lines.

g2pp(t)
(
T1 + T2 + T3

)
∼
g2pp(t)T

0
1(t)

k31
, for k1 → ∞. (6.160)

with c1 given in Equation 6.125 and T0
1(t) given in Equation 6.103. Now we pro-

ceed to calculate the total momentum-density trace power spectrum P̄ftr(k1, t) in Equa-
tion 6.144. Figure 6.12 shows the shape of P̄ftr(k1, t) as a function of wave number k1
with friction coefficient τs = 1.0, 2.0, 3.0 and evolution time t = 2.0, 3.0. As expected,
at small scales, the curves developed k−3

1 slopes due to the shape of P̄lin1
(k1) and

T1 + T2 + T3, suggesting a small-scale scale-invariant particles’ kinetic energy accumu-
lation in the system.

The amplitude for the k−3
1 slope of P̄ftr(k1, t) can be expressed by Equation 6.158

and 6.160 as

Ptot(t) = P
(0)
lin1

(t) + g2pp(t)T
0
1(t), (6.161)
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Figure 6.12: This plot shows the total momentum-density trace power spectrum P̄ftr(k1, t) as
a function of wave number k1 at the parameters: τs = 1.0, t = 2.0 (blue line);
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Figure 6.13: This plot shows the amplitude Ptot(t) of P̄ftr(k1, t) at small scales as a function
of friction coefficient τs (left panel) and evolution time (right panel). The green
points in both plots mark the value of P(0)(t) corresponding to the τs and t in
Figure 6.12.

and its shape as functions of evolution time t and particle size τs are shown in Fig-
ure 6.13. Further analysis over the time and particle-size dependence of the amplitude
Ptot(t) is given in Section B.2. The final result surprisingly shows that even consid-
ering both contributions from density structure accumulation P̄lin1

(k1, t) and particle
momentum propagation g2pp(t)

(
T1 + T2 + T3

)
, within the particle size range of inter-

ests, the maximum total small-scale kinetic energy accumulation in the system still
occurs at the same particle size τs ≈ 3.03, suggesting that the largest small-scale struc-
ture formation and the maximum small scale kinetic energy accumulation happens
at the same time in a system only considering friction interaction with the constant
background gas field.
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In the end, to study how the second term in Equation 6.144 involving momentum
propagator gpp(t) affects the momentum-density trace power spectrum compared to
the contribution from its nonlinear density power spectrum, we define their ratio as

ratio1(k1, t) =
g2pp(t)(T1 + T2 + T3)

P̄lin1
(k1, t)

(6.162)

At small scales where k1 → ∞, it satisfies

R1(t) = lim
k1→∞ ratio1(k1, t) = lim

k1→∞
g2pp(t)(T1 + T2 + T3)

P̄lin1
(k1, t)

=
g2pp(t)T

0
1(t)

(1− gpp(t))2u20P
(0)
f (t)

=
3b0ζpp(0)g

2
pp(t)

(1− gpp(t))2u20
, (6.163)

with P
(0)
f (t) given in Equation 5.67 and T0

1(t) given in Equation 6.103.
Figure 6.14 shows the shape of ratio1(k1, t) as a function of k1 at different friction

coefficient τs = 1.0, 2.0, 3.0 and different evolution time t = 2.0, 3.0. We can see all
curves follow the same pattern where they start with rather large values at large scales
and then decrease all along until reach a rather small constant at small scales, meaning
the momentum propagation term contributes greatly to the momentum-density trace
power spectrum at large scales, as the scales get smaller, its effect becomes weaker.
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Figure 6.14: This plot shows the momentum-density trace power spectrum ratio ratio1(k1, t)
in Equation 6.162 as a function of wave number k1 with parameters as: τs = 1.0,
t = 2.0 (blue line); τs = 2.0, t = 2.0 (yellow line); τs = 3.0, t = 2.0 (green line);
τs = 3.0, t = 3.0 (red line). The purple dashed lines represent the asymptotic
constant R1 in Equation 6.163 at small scales.

At small scales, the value of R1 shows an interesting pattern. Define y1 = t
τs

and
rewrite Equation 6.163 as
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R1 =
3b0ζpp(0)

u20

1

(ey1 − 1)2
. (6.164)

We can see the value of R1 monotonously decrease as y1 gets larger. Thus, for the
four pairs of parameters, we are considering here, y1 = 2

1 has the smallest R1 and
y1 = 2

3 has the largest R1, the other two cases should have the same value of R1 as
their y1 is the same. This pattern implies that at the earlier time of evolution, the
momentum propagator dominates the growth of kinetic energy in the system, as time
proceeds, it dies out exponentially, and only the density propagator matters at the later
stage of evolution.

6.4.2.2 Momentum-Density Divergence Power Spectrum

Now we discuss the nonlinear momentum-density divergence power spectrum P̄fdiv(k1, t)
in Equation 6.145. For calculating its first term P̄lin2

(k1, t) at finite t and τs, we need
to return to the full expression for the nonlinear density power spectrum Pf(k1, t) in
Equation 5.20.

Figure 6.15 gives the shape of P̄lin2
(k1, t) as a function of wave number k1 with

parameters: τs = 1.0, t = 2.0; τs = 2.0, t = 2.0; τs = 3.0, t = 2.0; τs = 3.0, t = 3.0.
Compared to the linear momentum-density divergence power spectrum in the middle
panel of Figure 6.9, notice at small scales, the nonlinear power spectrum develops a
decreasing k−1

1 slope, which makes a lot more sense for a system only considering
friction interaction between dust particles and the constant background gas field, and
further proves the necessity for computing the nonlinear solution of the density power
spectrum.

Using Equation 6.148 and Equation 5.67, we can write down the small-scale asymp-
totic behavior for P̄lin2

(k1, t) as

P̄lin2
(k1, t) ∼

Pdiv
0 (t)

k1
, for k1 → ∞, (6.165)

with its amplitude expressed by

Pdiv
0 (t) =

1

3
P
(0)
lin1

(t), (6.166)

where P
(0)
lin1

(t) is given in Equation 6.158. Thus we can borrow all conclusions dis-
cussed before on P

(0)
lin1

(t) here to Pdiv
0 (t) just with one-third of its values.

Now we move on to the second term in Equation 6.145 and first discuss the corre-
sponding momentum-density power spectra elements Ti with i = 5, 2, 3. At very small
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Figure 6.15: This plot gives the shape of the first term in Equation 6.145 P̄lin2
(k1, t) as a function

of wave number k1 with parameters: τs = 1.0, t = 2.0 (blue line); τs = 2.0, t = 2.0
(yellow line); τs = 3.0, t = 2.0 (green line); τs = 3.0, t = 2.0 (red line). At small
scales, the k−1

1 slopes are marked by the purple dashed lines.

scales where k1 → ∞, their asymptotic behaviors are already given in Equation 6.106,
Equation 6.104, and Equation 6.105.

While at very large scales where k1 → 0, considering the similarities between Ti and
Ti0, we can still use Equation 6.126, Equation 6.131 and Equation 6.132 to represent
the large-scale asymptotics of T5, T2 and T3, only with the free propagator g0(t) in
coefficient c2 and c3 replace by the general propagator gqp(t).

Figure 6.16 shows momentum-density power spectra elements T5, T2, T3 and T5 +

T2 + T3 as a function of wave number k1 at three different friction coefficients τs =

1.0, 2.0, 3.0 and two different evolution time t = 2.0, 3.0. We can see their large and
small-scale asymptotic behaviors match the analytical predictions very well. In the
meantime, since the values of T2, T3 are negligible compared to T5 at very large scales
and the asymptotic behaviors satisfy T2 + T3 = 0 at very small scales, the shape of T5 +
T2 + T3 is mostly determined by the values of T5. Therefore, the large-scale asymptotic
behavior of the second term in Equation 6.145 can be written as

g2pp(t)k
2
1

(
T5 + T2 + T3

)
∼ g2pp(t)c5k

4
3

1 , for k1 → 0, (6.167)

at small scales, its asymptotic behavior becomes

g2pp(t)k
2
1

(
T5 + T2 + T3

)
∼
g2pp(t)T

0
5(t)

k1
, for k1 → ∞. (6.168)

with c5 given in Equation 6.126 and T0
5(t) given in Equation 6.106.
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Figure 6.16: These four plots show the momentum-density power spectra elements T5 (pur-
ple line), T2 (green line), T3 (blue line) and T5 + T2 + T3 (yellow line) as a func-
tion of wave number k1, together with there large scales asymptotic behaviors by
Equation 6.126, Equation 6.131, Equation 6.132 and small scales asymptotic behav-
iors by Equation 6.106, Equation 6.104, Equation 6.105 respectively at parameters:
τs = 1.0, t = 2.0 (top left); τs = 2.0, t = 2.0 (top right); τs = 3.0, t = 2.0 (bot-
tom left); τs = 3.0, t = 3.0 (bottom right). The negative values of T5, T2, T3 and
T5 + T2 + T3 are represented by the same color dashed lines.

Now we proceed to calculate the total momentum-density divergence power spec-
trum P̄ftr(k1, t) in Equation 6.145. Figure 6.17 shows the shape of P̄fdiv(k1, t) as a func-
tion of wave number k1 with friction coefficient τs = 1.0, 2.0, 3.0 and evolution time
t = 2.0, 3.0. As expected, at small scales, the curves developed k−1

1 slopes due to
the shape of P̄lin2

(k1) and k21(T5 + T2 + T3). Since the momentum-density divergence
power spectrum measures the power spectrum for the projections of the momentum-
density operator Π̂ on the wave vector k⃗1 multiplied by its absolute value squared,
with the relation P̄fdiv(k1,t)

k2
1

· k31 = constant, we conclude that the momentum-density

power spectrum in k⃗1 space is scale-invariant at very small scales.
The amplitude for the k−1

1 slope of P̄fdiv(k1, t) can be expressed by Equation 6.158

and Equation 6.168 as

Ptot
2 (t) =

1

3
P
(0)
lin1

(t) + g2pp(t)T
0
5(t), (6.169)
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Figure 6.17: This plot shows the total momentum-density divergence power spectrum
P̄fdiv(k1, t) as a function of wave number k1 at the parameters: τs = 1.0, t = 2.0
(blue line); τs = 2.0, t = 2.0 (yellow line); τs = 3.0, t = 2.0 (green line); τs = 3.0,
t = 3.0 (red line), the same color dotted-straight lines represent positive values,
otherwise are negative values. At small scales, the k−1

1 asymptotic behaviors are

marked by the purple dashed lines. At large scales, the k
4
3
1 slopes are marked by

the borrow dashed line.

and its shape as functions of evolution time t and particle size τs are shown in
Figure 6.18.
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Figure 6.18: This plot shows the amplitude Ptot
2 (t) of P̄fdiv(k1, t) at small scales as a function

of evolution time t (left panel) and friction coefficient τs (right panel). The yellow
points in both plots mark the value of Ptot

2 (t) corresponding to the τs and t in
Figure 6.17.

Now to study how the second term in Equation 6.145 which involves momentum
propagator gpp(t) affects the total momentum-density divergence power spectrum
compared to the first term with the nonlinear density power spectrum, we define their
ratio as
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ratio2(k1, t) =
g2pp(t)k

2
1(T5 + T2 + T3)

P̄lin2
(k1, t)

(6.170)

At very small scales where k1 → ∞,

R2(t) = lim
k1→∞ ratio2(k1, t) =

9b0ζpp(0)g
2
pp(t)T

0
5(t)

u20(1− gpp(t))
2T0

1(t)
(6.171)

Figure 6.19 shows the shape of ratio2(k1, t) as a function of k1 at different friction
coefficient τs = 1.0, 2.0, 3.0 and different evolution time t = 2.0, 3.0. We can see all
curves follow a very similar pattern where they start with rather large values at very
large scales and then decrease as k1 gets larger, in the end reach different constants
at very small scales, meaning the momentum propagation term contributes greatly to
the momentum-density divergence power spectrum at large scales, as the scales get
smaller, its effect becomes weaker, finally at very small scales, the effect freezes and
becomes scale-invariant.
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Figure 6.19: This plot shows the momentum-density divergence power spectrum ratio
ratio2(k1, t) in Equation 6.170 as a function of wave number k1 with parameters
as: τs = 1.0, t = 2.0 (blue line); τs = 2.0, t = 2.0 (yellow line); τs = 3.0, t = 2.0
(green line); τs = 3.0, t = 3.0 (red line). The purple dashed lines represent the
asymptotic constant R2 in Equation 6.171 at small scales.

6.4.2.3 Momentum-Density Curl Power Spectrum

In the end, we discuss the nonlinear momentum-density curl power spectrum P̄fcurl(k1, t)
in Equation 6.146. Same as before, we return to the nonlinear expression for density
power spectrum Pf(k1, t) in Equation 5.20 when calculating the first term P̄lin3

(k1, t).
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Figure 6.20: This plot gives the shape of the first term in Equation 6.146 P̄lin3
(k1, t) as a function

of wave number k1 with parameters: τs = 1.0, t = 2.0 (blue line); τs = 2.0, t = 2.0
(yellow line); τs = 3.0, t = 2.0 (green line); τs = 3.0, t = 2.0 (red line). At small
scales, the k−1

1 slopes are marked by the purple dashed lines.

Figure 6.20 gives the shape of P̄lin3
(k1, t) as a function of wave number k1 with

parameters: τs = 1.0, t = 2.0; τs = 2.0, t = 2.0; τs = 3.0, t = 2.0; τs = 3.0, t =

3.0. Compared to the linear momentum-density curl power spectrum in the bottom
panel of Figure 6.9, notice at small scales, the nonlinear power spectrum develops
a decreasing k−1

1 slope. Using Equation 6.149 and Equation 5.67, we write down its
small scale asymptotics as

P̄lin3
(k1, t) ∼

Pcurl
0 (t)

k1
, for k1 → ∞, (6.172)

with the amplitude being

Pcurl
0 (t) =

2

3
P
(0)
lin1

(t), (6.173)

where P
(0)
lin1

(t) is given in Equation 6.158. Therefore we can also borrow all conclu-
sions on P

(0)
lin1

(t) here to Pcurl
0 (t) with two-third of its values.

Now we move to the second term in Equation 6.146 and first calculate the corre-
sponding momentum-density power spectra element T6. At very small scales where
k1 → ∞, its asymptotic behavior is already given in Equation 6.107. While at very
large scales where k1 → 0, the similarities of T6 here and T60 in Section 6.3 suggest
that we can directly use Equation 6.127 to represent the large-scale asymptotics of T6.

Figure 6.21 shows the momentum-density power spectrum element T6 as a function
of wave number k1 at three different friction coefficients τs = 1.0, 2.0, 3.0 and two
different evolution time t = 2.0, 3.0. The rather perfect match between the numerical
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results and the analytical results indicates our asymptotic analysis gives quite accurate
predictions.
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Figure 6.21: This plot shows the momentum-density power spectra element T6 as a function
of wave number k1 at parameters: τs = 1.0, t = 2.0 (purple line); τs = 2.0, t = 2.0
(green line); τs = 3.0, t = 2.0 (blue line); τs = 3.0, t = 3.0 (yellow line). Their large
scale k−

2
3 asymptotic behavior is represented by the black dashed line, and their

small scale k−3 asymptotic behavior is represented by the black dash-dotted line.

Therefore the second term in Equation 6.146 has the large-scale asymptotics as

g2pp(t)k
2
1T6 ∼ g2ppc6k

4
3

1 , for k1 → 0, (6.174)

and the small-scale asymptotics as

g2pp(t)k
2
1T6 ∼

g2ppT
0
6(t)

k1
, for k1 → ∞, (6.175)

with c6 given in Equation 6.127 and T0
6(t) given in Equation 6.107.

Now we proceed to calculate the total momentum-density curl power spectrum
P̄fcurl(k1, t) in Equation 6.146. Figure 6.22 shows the shape of the total momentum-
density curl power spectrum P̄fdiv(k1, t) as a function of wave number k1 with friction
coefficient τs = 1.0, 2.0, 3.0 and evolution time t = 2.0, 3.0. As expected, at small
scales, the curves developed k−1

1 slopes due to the shape of P̄lin3
(k1) and k21T6. Since

the momentum-density curl power spectrum measures the power spectrum for the
projections of the momentum-density operator Π̂ perpendicular to the wave vector k⃗1
multiplied by its absolute value squared, with the relation P̄fcurl(k1,t)

k2
1

· k31 = constant,
we conclude that the momentum-density power spectrum in the space perpendicular
to k⃗1 is scale-invariant at very small scales.
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Figure 6.22: This plot shows the total momentum-density divergence power spectrum
P̄div(k1, t) as a function of wave number k1 at the parameters: τs = 1.0, t = 2.0
(blue line); τs = 2.0, t = 2.0 (yellow line); τs = 3.0, t = 2.0 (green line); τs = 3.0,
t = 3.0 (red line), the same color dotted-straight lines represent positive values,
otherwise are negative values. At small scales, the k−1
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marked by purple dashed lines. At large scales, the k
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borrow dashed line.
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Figure 6.23: This plot shows the amplitude Ptot
3 (t) of P̄fcurl(k1, t) at small scales as a function

of evolution time t (left panel) and friction coefficient τs (right panel). The yellow
points in both plots mark the value of Ptot

3 (t) corresponding to the τs and t in
Figure 6.22.

The amplitude for the k−1
1 slope of P̄fcurl(k1, t) can be expressed by Equation 6.158

and 6.175 as

Ptot
3 (t) =

2

3
P
(0)
lin1

(t) + g2pp(t)T
0
6(t), (6.176)

and its shape as functions of evolution time t and particle size τs are shown in
Figure 6.23.



6.4 friction momentum-density power spectra 173

Now to study how the second term in Equation 6.146 involving momentum prop-
agator gpp(t) affects the momentum-density curl power spectrum compared to the
contribution from its nonlinear density power spectrum, we define their ratio as

ratio3(k1, t) =
g2pp(t)T6

P̄lin3
(k1, t)

. (6.177)

At very small scales where k1 → ∞,

R3(t) = lim
k1→∞ ratio3(k1, t) = lim

k1→∞
g2pp(t)T6

P̄lin3
(k1, t)

=
9b0g

2
pp(t)ζpp(0)T

0
6 (t)

2(1− gpp(t))2u20T
0(t)

(6.178)
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Figure 6.24: This plot shows the momentum-density curl power spectrum ratio ratio3(k1, t) in
Equation 6.177 as a function of wave number k1 with parameters as: τs = 1.0,
t = 2.0 (blue line); τs = 2.0, t = 2.0 (yellow line); τs = 3.0, t = 2.0 (green line);
τs = 3.0, t = 3.0 (red line). The purple dashed lines represent the asymptotic
constant R3 in Equation 6.178 at small scales.

Figure 6.24 shows the shape of ratio3(k1, t) as a function of k1 at different friction
coefficient τs = 1.0, 2.0, 3.0 and different evolution time t = 2.0, 3.0. We can see all
curves follow a very similar pattern where they start with rather large values at very
large scales and then decrease as k1 gets larger, in the end reach different constants
at very small scales, meaning the momentum propagation term contributes greatly to
the momentum-density curl power spectrum at large scales, as the scales get smaller,
its effect becomes weaker, finally at very small scales, the effect freezes and becomes
scale-invariant.

6.4.2.4 The Relation of The Three Power Spectra

At the end of this section, we would like to discuss a bit more about the relation among
the three nonlinear momentum-density power spectra. We discussed in Section 6.3.2.4
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that the quantities in Equation 6.2-6.4 satisfy the relation k21·(6.2)=(6.3)+(6.4), which
leads to the relation between P̄ftr(k1, t), P̄ftr(k1, t), P̄ftr(k1, t) in Equation 6.144-6.146 as

k21P̄ftr(k1, t) = P̄fdiv(k1, t) + P̄fcurl(k1, t), (6.179)

since the expression of their first terms in Equation 6.147-6.149 satisfy

k21P̄lin1
(k1, t) = P̄lin2

(k1, t) + P̄lin3
(k1, t), (6.180)

we obtain the final relation between the momentum-density power spectra elements
as

T1 = T5 + T6. (6.181)

At very small scales, we can already confirm this relation by Equation 6.103, Equa-
tion 6.106, and Equation 6.107. While at large scales, the coefficients of c1, c5, c6 in
Equation 6.125-6.127 also satisfy

c1 = c5 + c6. (6.182)

Figure 6.25 illustrates the relation among the three scalar momentum-density power
spectra by showing the momentum-density power spectra elements T1 (purple line),
T5 (green line), T6 (blue line) and T5 + T6 (yellow line) as a function of wave number
k1 at three different friction coefficients τs = 1.0, 2.0, 3.0 and two different evolution
time t = 2.0, 3.0. The numerical results show that the relation T1 = T5 + T6 is perfectly
satisfied, which further verifies the relation of the momentum-density power spectra
k21P̄tr(k1, t) = P̄div(k1, t) + P̄curl(k1, t), suggesting that the sum of the power spectrum
for the momentum-density operator in k⃗1 space and perpendicular to k⃗1 space exactly
equals to its trace power spectrum.

We can further verify this relation by the value of ratio1(t), ratio2(t) and ratio3(t).
Rewrite Equation 6.170 and Equation 6.177 as

ratio2(t) =
g2pp(t)k

2
1(T5 + T2 + T3)

1
3k

2
1P̄lin1

(k1, t)
=
3g2pp(t)(T5 + T2 + T3)

P̄lin1
(k1, t)

ratio3(t) =
g2pp(t)k

2
1T6

2
3k

2
1P̄lin1

(k1, t)
=
3g2pp(t)T6

2P̄lin1
(k1, t)

(6.183)

if the relation Equation 6.182 exists, we can write down their relation with Equa-
tion 6.162 as
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Figure 6.25: These four plots show the momentum-density power spectrum elements T1 (pur-
ple line), T5 (green line), T6 (blue line) and T5 + T6 (yellow line) as a function of
wave number k1, together with their k−

2
3 large scales asymptotic behaviors by

Equation 6.125, Equation 6.126, Equation 6.127 and k−3 small scales asymptotic
behaviors by Equation 6.103, Equation 6.106, Equation 6.107 respectively at pa-
rameters: τs = 1.0, t = 2.0 (top left); τs = 2.0, t = 2.0 (top right); τs = 3.0, t = 2.0
(bottom left); τs = 3.0, t = 3.0 (bottom right). The negative values of T5 are repre-
sented by the same color dashed lines.

ratio1(t) =
1

3

(
ratio2(t) + 2 · ratio3(t)

)
. (6.184)

Figure 6.26 shows the shape of ratio1 and 1
3

(
ratio2(t) + 2 · ratio3(t)

)
as a function k1

with parameters: τs = 1, t = 2; τs = 2, t = 2; τs = 3, t = 2; τs = 3, t = 3. We can see
the numerical results perfectly confirmed the relation in Equation 6.184, which further
verified the relation by Equation 6.182 and Equation 6.179.

6.5 gravitational momentum-density power spectra

With the gravity-free KFT nonlinear momentum-density power spectra P̄ftr(k1, t), P̄fdiv(k1, t),
P̄fcurl(k1, t) in Equation 6.144-6.146 and their linear forms P̄llini with i = 1, 2, 3 in Equa-
tion 6.152-6.154 obtained, we successfully include the friction interaction between the
dust particles and the constant background gas field to the KFT framework. In this
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Figure 6.26: This plot shows the shape of ratio1 as a function k1 with parameters: τs = 1, t = 2
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(red line), together with the corresponding values of 1
3

(
Ratio2(t) + 2 · Ratio3(t)

)
.

At very small scales, the values of R1 in Equation 6.163 are marked by the purple
dashed lines.

section, we further consider to switch on the self-gravity among dust particles in the
system at time t0 and compute the full nonlinear KFT momentum-density power spec-
tra P̄gtr(k1, t), P̄gdiv(k1, t), P̄gcurl(k1, t) in Equation 6.46, Equation 6.48, Equation 6.51.
Using P̄ftr(k1, t), P̄fdiv(k1, t), P̄fcurl(k1, t), we can rewrite them as

P̄gtr(k1, t) = ei⟨SI⟩
(
P̄ftr(k1, t) + 2igpp(t)gqp(t)

(
k⃗1 · F⃗1

)(
T5 + T7

)
− F⃗1 · F⃗1Pf(k1, t)

)
,

(6.185)

P̄gdiv(k1, t) = ei⟨SI⟩
(
P̄fdiv(k1, t) + 2igpp(t)gqp(t)k21

(
k⃗1 · F⃗1

)(
T5 + T7

)
−
(
k⃗1 · F⃗1

)2
Pf(k1, t)

)
,

(6.186)

P̄gdiv(k1, t) = ei⟨SI⟩
(
P̄fcurl(k1, t) −

(
k2F⃗1 · F⃗1 −

(
k⃗1 · F⃗1

)2)
Pf(k1, t)

)
, (6.187)

with the full expressions for the force terms being

F⃗ · F⃗ = −
f2Ĝ2

0

π2

[∫t
t0

dt ′gpp(t, t ′)
∫∞
0

dk2

(
1+

k2
k1

−

∣∣∣∣1− k2k1
∣∣∣∣)k2P(k2, t ′)

]2
,

(6.188)

k⃗1 · F⃗ =
ifĜ0

π

∫t
t0

dt ′gpp(t, t ′)
∫∞
0

dkk2P(k, t ′)J
(
k

k1

)
, (6.189)
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where we’ve used the expression for f⃗1 =
〈
∇⃗1Φ2

〉
in Equation 5.33 and the defi-

nition for F⃗1 in Equation 6.11. And the linear and nonlinear expressions of the mean
interaction term i⟨SI⟩ are given in Equation 5.83 and Equation 5.90.

This section is constructed as follows. We start with deriving the expressions of
the three full linear momentum-density power spectra for very small dust particles.
By analyzing their small-scale asymptotic behaviors at the limit of k1 → ∞, we find
that these power spectra are completely determined by their corresponding full linear
density power spectrum Pglin(k1, t) in Section 5.4.2 at small scales. Then we return
to the three full nonlinear momentum-density power spectra for larger-size particles,
by calculating their small-scale asymptotic approximations at k1 → ∞, we find that
their results at very small scales only depend on the mean interaction term and three
gravity-free nonlinear momentum-density power spectra in Section 6.4.2.

6.5.1 Linear Momentum-Density Power Spectra at Small τs

We first derive the full expressions for the three linear momentum-density power spec-
tra with very small friction coefficients τs. At the limit τs → 0, the propagators satisfy
Equation 6.150 and Equation 6.151, therefore we can omit all terms with gpp(t) in
Equation 6.185-6.187, further approximate all density and momentum-density nonlin-
ear power spectra by their linear expressions to obtain

P̄gtr(k1, t) ≈ P̄glin1
(k1, t) = ei⟨SI⟩

(
P̄llin1

(k1, t) − F⃗ · F⃗ Pflin(k1, t)
)

, (6.190)

P̄gdiv(k1, t) ≈ P̄glin2
(k1, t) = ei⟨SI⟩

(
P̄llin2

(k1, t) −
(
k⃗1 · F⃗

)2
Pflin(k1, t)

)
, (6.191)

P̄gcurl(k1, t) ≈ P̄glin3
(k1, t) = ei⟨SI⟩

(
P̄llin3

(k1, t) +
((
k⃗1 · F⃗

)2
−

k21

(
F⃗ · F⃗

))
·Pflin(k1, t)

)
.

(6.192)

Using the linear expression of the mean interaction term i⟨SI⟩(k1, t) in the limit of
τs → 0 at evolution time twith initial time t0 given in Equation 5.83, Figure 6.27 shows
the shape of i⟨SI⟩(k, t) as a function of k1 at different particle sizes τs = 0.01, τs = 0.1
with different evolution time t = 11.0, t = 20.0 at the same initial time t0 = 10.0 and
the same gravitational parameter f = 1.0. As explained in Section 5.4.2, at the limit of
k1 → 0, the large scale asymptotics of i⟨SI⟩(k1, t) develops a k21 slope. At the limit of
k1 → ∞, the small scale asymptotics of i⟨SI⟩(k1, t) reaches their asymptotic constants.
In the meantime, since the value of i⟨SI⟩(k1, t) gets larger with larger τs and t− t0,
we can deduce that the three linear momentum-density power spectra become larger
with larger particle sizes and longer relative evolution time.
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Figure 6.27: This plot shows the shape of i⟨SI⟩(k1, t) in Equation 5.83 as a function of k1 at
different particle sizes τs = 0.01 (blue, yellow lines), τs = 0.1 (green, red lines)
with different evolution time t = 11.0 (blue, green lines), t = 20.0 (yellow, red
lines) at the same initial time t0 = 10.0 and the same gravitational parameter
f = 1.0. Their large scale k21 asymptotic slopes are marked by the burgundy dashed
lines, and their small scale asymptotic constants are represented by the light green
dashed lines.

To compute the numerical values of F⃗ · F⃗ and k⃗1 · F⃗, we need to implement the ap-
proximated density power spectrum Pinis(k1, t0) at the limit of τs → 0 given in Equa-
tion 5.77 to replace P(k, t ′) in Equation 6.188-6.189, thus the expressions of F⃗ · F⃗ and
k⃗1 · F⃗ becomes
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F⃗ · F⃗ = −
f2Ĝ2

0

π2

[∫t
t0

dt ′gpp(t, t ′)
∫∞
0

dk2

(
1+

k2
k1

−

∣∣∣∣1− k2k1
∣∣∣∣)k2Pinis(k2, t0)

]2
= −

c20g
2
qp(t, t0)g4qp(t0)f2Ĝ2

0

π2

[ ∫∞
0

dk2

(
1+

k2
k1

−

∣∣∣∣1− k2k1
∣∣∣∣)k 7

3

2 ·1− exp

−
c1

k
7
3

2

]2,

(6.193)

k⃗1 · F⃗ =
ifĜ0

π

∫t
t0

dt ′gpp(t, t ′)
∫∞
0

dk2k
2
2Pinis(k2, t0)J

(
k2
k1

)
=

ic0gqp(t, t0)g2qp(t0)fĜ0

π

∫∞
0

dk2k
10
3

2

(
1+

k21 − k
2
2

2k2k1
ln
k2 + k1
|k2 − k1|

)
·1− exp

−
c1

k
7
3

2

 .

(6.194)

Notice that the integrals in both terms are not convergent for k2 → ∞, therefore we
borrow the same cutoff scale km as in Equation 5.87 here and obtain their large scales
asymptotics at the limit of k1 → 0 as

F⃗ · F⃗ ≈ −
4c20g

2
qp(t, t0)g4qp(t0)f2Ĝ2

0

π2

∫km

0

dk2k
7
3

2

1− exp

−
c1

k
7
3

2

2

= −
4c20g

2
qp(t, t0)g4qp(t0)f2Ĝ2

0

π2

(
3k

10/3
m

10
−
3c

10/7
1

7
Γ

(
−
10

7
,
c1

k
7/3
m

))2

≈ −
4c20c

2
1g

2
qp(t, t0)g4qp(t0)f2Ĝ2

0k
2
m

π2
,

(6.195)

k⃗1 · F⃗ ≈
2ic0gqp(t, t0)g2qp(t0)fĜ0k

2
1

3π

∫∞
0

dk2k
4
3

2

1− exp

−
c1

k
7
3

2


=
2ic0gqp(t, t0)g2qp(t0)fĜ0k

2
1

3π

(
3k

7/3
m

7
−
3

7

(
e
−

c1

k
7/3
m k

7/3
m − c1Γ

(
0,

c1

k
7/3
m

)))

≈
2ic0c1gqp(t, t0)g2qp(t0)fĜ0k

2
1

7π

(
1− γe − ln

(
c1

k
7/3
m

))
.

(6.196)
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with γe being the Euler Gamma constant, here we already use the Taylor expansion
for the incomplete Gamma function Γ (a, z) at the limit of z → 0. And at very small
scales k1 → ∞, we have

F⃗ · F⃗ ≈ −
4c20g

2
qp(t, t0)g4qp(t0)f2Ĝ2

0

π2k21

∫km

0

dk2k
10
3

2

1− exp

−
c1

k
7
3

2

2

= −
4c20g

2
qp(t, t0)g4qp(t0)f2Ĝ2

0

π2k21

3k13/3m

13
−
3c

13/7
1 Γ

(
−13

7 , c1

k
7/3
m

)
7


2

≈ −
c20c

2
1g

2
qp(t, t0)g4qp(t0)f2Ĝ2

0k
4
m

π2k21
,

(6.197)

k⃗1 · F⃗ ≈
2ic0gqp(t, t0)g2qp(t0)fĜ0

π

∫∞
0

dk2k
10
3

2

1− exp

−
c1

k
7
3

2


≈
ic0c1gqp(t, t0)g2qp(t0)fĜ0k

2
m

π
.

(6.198)

Figure 6.28 shows the shape of F⃗ · F⃗ and k⃗1 · F⃗ as functions of wavenumber k1 at the
initial time t0 = 10.0 and gravitational parameter f = 1.0 with different particle size
τs = 0.01, τs = 0.1 and different relative evolution time t− t0 = 1.0, t− t0 = 10.0.
We can see the curves of F⃗ · F⃗ reach their asymptotic constants at very large scales as
shown in Equation 6.195, and develop the k−2

1 slopes at very small scales as shown
in Equation 6.197. While the curves of k⃗1 · F⃗ develop the large scale k21 asymptotic
behaviors at the limit of k1 → 0 and reach their small scale asymptotic constant at
the limit of k1 → ∞, which also agrees with our predictions in Equation 6.196 and
Equation 6.198.

In the meantime, the comparison between different curves shows that the values of
F⃗ · F⃗ and k⃗1 · F⃗ grow larger with larger τs, meaning that the self-gravitational interaction
becomes stronger with larger size particles present in the system. On the other hand,
notice when we switch on the self-gravity at the very late stage of friction evolution
time where t0 ≫ τs, different relative evolution times t− t0 don’t change the values
of F⃗ · F⃗ and k⃗1 · F⃗ for the same size particles.

Now we return to the full expression of linear scalar momentum-density power
spectra, at very small scales where k1 → ∞, preserving the terms with higher order
k1, we obtain the asymptotics as
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Figure 6.28: This plot shows the shape of F⃗ · F⃗ (left panel) and k⃗1 · F⃗ (right panel) in Equa-
tion 6.193 and Equation 6.194 as functions of wavenumber k1 at the initial time
t0 = 10.0 and gravitational parameter f = 1.0 with different parameters: τs = 0.1,
t− t0 = 1.0 (blue lines); τs = 0.1, t− t0 = 10.0 (green dashed lines); τs = 0.01,
t− t0 = 1.0 (yellow lines); τs = 0.01, t− t0 = 10.0 (red dashed lines). At large
scales, their asymptotic behaviors are marked by the purple dashed lines, and at
small scales, their asymptotic behaviors are marked by brown dashed lines.
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(6.199)
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(6.200)

P̄glin3
(k1, t) = ei⟨SI⟩

(
P̄llin3

(k1, t) +
((
k⃗1 · F⃗

)2
− k21

(
F⃗ · F⃗

))
Pflin(k1, t)

)
≈ 2

3

(
1− gpp(t)

)2
u20k

2
1Pglin(k1, t),

(6.201)

suggesting that the small-scale asymptotic behaviors of the full linear momentum-
density power spectra are simply given by P̄glini(k1, t) ∼ exp (i⟨SI⟩) · P̄llini(k1, t) with
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i = 1, 2, 3, which completely determined by the linear full density power spectrum
Pglin(k1, t) calculated in Section 5.4.2.
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Figure 6.29: These two plots shows the shape of the full linear momentum-density trace power
spectra P̄glin1

(k1, t) as functions of wave number k1 with parameters: τs = 0.01,
t = 11.0 (yellow line); τs = 0.01, t = 20.0 (green line); τs = 0.1, t = 11.0 (purple
line); τs = 0.1, t = 20.0 (brown line), together with their corresponding initial trace
power spectrum P̄llin1

(k1, t) in Equation 6.152 at initial time t0 = 10.0 (blue, red
lines) at the same gravitational parameter f = 1.0. The gray dashed line marks the
curve of

(
1− gpp(t)

)2
u20Pglin(k1, t). The right panel plot shows the zoom plot of

P̄glin1
(k1, t) at higher values.
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Figure 6.30: These two plots show the shape of the full linear momentum-density divergence
power spectra P̄glin2

(k1, t) as functions of wave number k1 with parameters: τs =

0.01, t = 11.0 (yellow line); τs = 0.01, t = 20.0 (green line); τs = 0.1, t = 11.0
(purple line); τs = 0.1, t = 20.0 (brown line), together with their corresponding
initial divergence power spectrum P̄llin2

(k1, t) in Equation 6.153 at initial time
t0 = 10.0 (blue, red lines) at the same gravitational parameter f = 1.0. The gray
dashed line marks the curve of 1

3

(
1 − gpp(t)

)2
u20k

2
1Pglin(k1, t). The right panel

plot shows the zoom plot of P̄glin2
(k1, t) at higher values.

Figure 6.29-6.31 show the shape of P̄glin1
(k1, t), P̄glin2

(k1, t), P̄glin3
(k1, t) as functions

of wavenumber k1 with very small particle sizes τs = 0.01, τs = 0.1 at different evo-
lution time t = 11.0, t = 20.0 with the same initial time t0 = 10.0 and the same
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Figure 6.31: This plot shows the shape of the full linear momentum-density curl power spectra
P̄glin3

(k1, t) as functions of wave number k1 with parameters: τs = 0.01, t = 11.0
(yellow line); τs = 0.01, t = 20.0 (green line); τs = 0.1, t = 11.0 (purple line);
τs = 0.1, t = 20.0 (brown line), together with their corresponding initial curl
power spectrum P̄llin3

(k1, t) in Equation 6.154 at initial time t0 = 10.0 (blue, red
lines) at the same gravitational parameter f = 1.0. The gray dashed line marks the
curve of 2
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2
1Pglin(k1, t). The right panel plot shows the zoom plot

of P̄glin3
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gravitational parameter f = 1.0. We can see that at small to middle scales, all three
power spectra increase significantly compared to their initial gravity-free linear power
spectra, even at a very early time of switching on the self-gravity among dust parti-
cles, and the power caused by the gravitational attraction grows much stronger as time
proceeds. Moreover, the perfect match between the gray dashed curves and their corre-
sponding P̄glini(k1, t) with i = 1, 2, 3 at small and middle scales in all three right-panel
plots confirms our conclusions in Equation 6.199-6.201, and further implies that as the
system going through gravitational collapse, the momentum energy in the system also
grows exponentially, which agrees with our intuition and makes perfect sense.

6.5.2 Nonlinear Momentum-Density Power Spectra at Large τs

Now we proceed to the three full nonlinear momentum-density power spectra with
larger particle size τs in Equation 6.185-6.187.

First, using the nonlinear expression of the mean interaction term i⟨SI⟩(k1, t) at evo-
lution time t with initial time t0 given in Equation 5.90, Figure 6.32 shows the shape
of i⟨SI⟩(k, t) as a function of k1 at different particle sizes τs = 1, 2, 3 with different
initial time t0 = 2.0, 3.0, at the same evolution time t = 10.0 and the same gravita-
tional parameter f = 1.0. As explained in Section 5.4.3, at the limit of k1 → 0, the large
scale asymptotics of i⟨SI⟩(k1, t) develops a k21 slope. At the limit of k1 → ∞, the small
scale asymptotics of i⟨SI⟩(k1, t) reaches their asymptotic constants. In the meantime,
since the value of i⟨SI⟩(k1, t) gets larger with larger τs, we can deduce that the three
nonlinear momentum-density power spectra become larger with larger particle sizes.
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Next, to calculate the numerical values of F⃗ · F⃗ and k⃗1 · F⃗, we implement the approxi-
mated density power spectrum Pini(k1, t0) given in Equation 5.81 to replace P(k, t ′) in
Equation 6.188-6.189, thus their full expressions become

F⃗ · F⃗ = −
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0

π2

[∫t
t0

dt ′gpp(t, t ′)
∫∞
0

dk2

(
1+

k2
k1

−

∣∣∣∣1− k2k1
∣∣∣∣)k2Pini(k2, t0)

]2
= −

c20g
2
qp(t, t0)g4qp(t0)f2Ĝ2
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(6.202)
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At very small scales where k1 → ∞, the two expressions above are not convergent,
thus here we continue to employ the cutoff scale km in Equation 5.87 as before, the
asymptotic behaviors of F⃗ · F⃗ and k⃗1 · F⃗ at small scales are given as follow,
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k⃗1 · F⃗ ≈
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(6.205)

At large scales where k1 → 0, we have their asymptotic behaviors as
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Here we’ve introduce the coefficients ff, αkf, βff and βkf to help abbreviate the
above expressions.

Figure 6.33 shows the shape of F⃗ · F⃗ and k⃗1 · F⃗ in Equation 6.202 and Equation 6.203 as
functions of wavenumber k1 at the evolution time t = 10.0 and gravitational parameter
f = 1.0 with different particle size τs = 1, 2, 3 and different initial time t0 = 2.0, 3.0.
We can see the curves of F⃗ · F⃗ reach their asymptotic constants at very large scales as
shown in Equation 6.206, and develop the k−2

1 slopes at very small scales as shown
in Equation 6.204. While the curves of k⃗1 · F⃗ develop the large scale k21 asymptotic
behaviors at the limit of k1 → 0 and reach their small scale asymptotic constant at
the limit of k1 → ∞, which also agrees with our predictions in Equation 6.207 and
Equation 6.205.

In the meantime, the comparison between different curves shows that the values
of F⃗ · F⃗ and k⃗1 · F⃗ get larger with larger τs, meaning that the self-gravitational interac-
tion becomes stronger with larger size particles present in the system. On the other
hand, notice when we switch on the self-gravity between particles at the relatively
earlier stage of friction evolution time where t0 ∼ τs, relatively large t0 which corre-
sponds to relatively weaker friction interaction in the system will lead to a stronger
self-gravitational interaction even with short relative evolution time t− t0, which can
also be seen in the mean interaction plot in Figure 6.32.

In the end, we analyze the terms in Equation 6.185 and Equation 6.186 with the
momentum-density power spectra element T5 + T7. Since the behaviors of T5 are an-
alyzed before, see Section 6.4.2.2, here we focus on the other element T7 defined in
Equation 6.34. At very small scales where k1 → ∞, the asymptotic behavior of T7 is
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Figure 6.33: This plot shows the shape of F⃗ · F⃗ (left panel) and k⃗1 · F⃗ (right panel) in Equa-
tion 6.202 and Equation 6.203 as functions of wavenumber k1 at the evolution time
t = 10.0 and gravitational parameter f = 1.0 with different parameters: τs = 1.0,
t0 = 2.0 (blue lines); τs = 2.0, t0 = 2.0 (yellow lines); τs = 3.0, t0 = 2.0 (green
lines); τs = 3.0, t0 = 3.0 (red lines). Their k−2

1 and k21 asymptotic slopes are
marked by the purple dashed lines, and their asymptotic constants are marked by
brown dashed lines.

derived in Section 6.2 and given in Equation 6.108. While at very large scales where
k1 → 0, we can Taylor expands the exponential in T7 to its first order and substitute
r→ r1/k1 to obtain

T7 = −
2πg2qp(t)ζpp(0)

k1

∫∞
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with the coefficient

c7 = 0.08πg2qp(t)ζpp(0)
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)
Γ
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−
7

3

)
= −2.52× 10−9g2qp(t).

(6.209)

The left panel of Figure 6.34 shows the momentum-density power spectra element T7
as a function of wave number k1 at different particle size τs = 1, 2, 3 and different evo-
lution time t = 2.0, 3.0. We can see their larger and small-scale asymptotic behaviors
match our predictions in Equation 6.208 and Equation 6.108 very well. Furthermore,
since at small scales the relation T5 + T7 = 0 is satisfied by Equation 6.106, and at large
scales, the coefficient c5 in Equation 6.126 is far larger than c7 in Equation 6.209, we
can deduce the asymptotic behaviors of T5 + T7 satisfy
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T5 + T7 ∼
c5

k
2
3

1

, for k1 → 0, and T5 + T7 ∼ 0, for k1 → ∞. (6.210)

These behaviors are illustrated in the right panel of Figure 6.34. In this plot, the
curves of elements T5 and T7 are given at the same time with the particle size being
τs = 2.0 and evolution time being t = 2.0. We can see at small scales their asymptotic
behaviors cancel each other very well which proves the relation T5+ T7 is satisfied, and
at large scales, the values of T5 are far larger than T7, which verifies the large scales
asymptotic of T5 + T7 given in Equation 6.210.
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Figure 6.34: Left panel: This plot shows the momentum-density power spectra element T7 as a
function of wave number k1 at parameters: τs = 1.0, t = 2.0 (purple line); τs =

2.0, t = 2.0 (green line); τs = 3.0, t = 2.0 (blue line); τs = 3.0, t = 3.0 (yellow
line). The negative values of T7 at different τs and t are represented by the same
color dashed lines. Their large scale k

4
3 asymptotic behaviors are represented by

the black dash-dotted lines, and their small scale k−3 asymptotic behaviors are
represented by the black dashed lines. Right panel: This plot shows the shape of
momentum-density elements T5 (green line) and T7 (purple line) at the same time
as functions of k1 with parameters τs = 2.0 and t = 2.0. Their negative values are
represented by the same color dashed lines.

Now we return to the full expression of the three scalar momentum-density power
spectra, at very small scales where k1 → ∞, using the Equation 6.161, 6.169, 6.176,
5.67, 6.204 and 6.205, preserving only the higher order of k1 dependence, we have the
asymptotic behaviors as
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P̄gcurl(k1, t) ≈ ei⟨SI⟩
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(6.213)

suggesting that the small-scale asymptotic behaviors of the full nonlinear momentum-
density power spectra are simply given by P̄g∗(k1, t) ∼ exp (i⟨SI⟩) · P̄f∗(k1, t) with
∗ = tr, div, curl, which completely determined by the mean gravitational interac-
tion and their corresponding gravity-free nonlinear momentum-density power spec-
tra P̄f∗(k1, t) calculated in Section 6.4.2. Furthermore, since the mean interaction term
i⟨SI⟩ reaches a constant at very small scales, the asymptotic behaviors of P̄g∗(k1, t) can
finally be represented as

P̄gtr(k1, t) ∼ constant · P
tot(t)

k31
, for k1 → ∞, (6.214)

P̄gdiv(k1, t) ∼ constant ·
Ptot
2 (t)

k1
, for k1 → ∞, (6.215)

P̄gcurl(k1, t) ∼ constant ·
Ptot
3 (t)

k1
, for k1 → ∞, (6.216)

indicating that even with the self-gravitational interaction present in the system, the
total kinetic energy accumulation of dust particles still remains scale-invariant at very
small scales, the same conclusion also suits for the power spectra of the momentum-
density operators in k̂1 and perpendicular to k̂1 space.

Figure 6.35-6.37 show the shape of P̄gtr(k1, t), P̄gdiv(k1, t), P̄gcurl(k1, t) as functions
of wavenumber k1 with particle sizes τs = 1, τs = 2, τs = 3 at different initial time
t0 = 2.0, t0 = 3.0 with the same evolution time t = 10.0 and the same gravitational
parameter f = 1.0. We can see that except for the plots corresponding to particle size
τs = 1.0 which has very small mean interaction values, at small to middle scales, all
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three nonlinear momentum-density power spectra with τs = 2.0, τs = 3.0 increase
significantly compared to their initial gravity-free nonlinear power spectra. Moreover,
the rather similar shapes and values of the gray dashed curves and their correspond-
ing P̄g∗(k1, t) with ∗ = tr, div, curl at small and middle scales in all plots confirms
our conclusions in Equation 6.211-6.213, and further implies that as the system go-
ing through gravitational collapse, the accumulation of the momentum energy in the
system is also immense.
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Figure 6.35: These four plots show the full nonlinear momentum-density trace power spectra
P̄gtr(k1, t) as functions of wave number k1 at evolution time t = 10.0 (yellow lines)
with parameters τs = 1.0, t0 = 2.0; τs = 2.0, t0 = 2.0; τs = 3.0, t0 = 2.0; τs = 3.0,
t0 = 3.0 with the same gravitational parameter f = 1.0. Their corresponding initial
trace power spectrum P̄ftr(k1, t) in Equation 6.144 at initial times t0 are marked
by blue lines. The gray dashed lines mark the curve of exp (i⟨SI⟩) · P̄ftr(k1, t).

6.6 summary and discussion

In this Chapter, building on the simplified dust trajectories of Chapter 3 and their ini-
tial probability distribution function in phase space (iPDF) in Chapter 4, we apply the
KFT method to planetary formation and give a full review of the three momentum-
density power spectra of the dust particles. This chapter started with modifying the
momentum factorized generating functional Zm[L], by generalizing the mean-field
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Figure 6.36: These four plots show the full nonlinear momentum-density divergence power
spectra P̄gdiv(k1, t) as functions of wave number k1 at evolution time t = 10.0
(yellow lines) with parameters τs = 1.0, t0 = 2.0; τs = 2.0, t0 = 2.0; τs = 3.0,
t0 = 2.0; τs = 3.0, t0 = 3.0 with the same gravitational parameter f = 1.0.
Their corresponding initial trace power spectra P̄fdiv(k1, t) in Equation 6.145 at
initial times t0 are marked by blue lines. The gray dashed lines mark the curve of
exp (i⟨SI⟩) · P̄fdiv(k1, t).

approach and averaging the self-gravitational forces f⃗j(t) over the phase space co-
ordinates, we pulled the momentum-density operators in front of the integral and
expressed the factorized generating functional as in Equation 6.1. Then the three rel-
ative scalar quantities were defined in Equation 6.2-6.4 for computing trace of the
momentum-density power spectrum as well as the power spectra for the divergence
and the curl of the momentum density.

In the first section, we reviewed the derivation of the three full nonlinear momentum-
density power spectra for dust particles considering both the friction with the con-
stant background gas field and their self-gravitational interaction with each other. By
analyzing the matrix components of the new "free" generating functional Z̄12[L] in
Equation 6.6 and combing it with the mean interaction term ei⟨SI⟩, we calculated the
three scalar quantities defined in Equation 6.2-6.4. Furthermore, we defined and an-
alyzed the momentum-density power spectra elements Ti with i = 1, . . . , 8 to obtain
the final convergent momentum-density trace, divergence and curl power spectra in
Equation 6.46, Equation 6.48 and Equation 6.51.
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Figure 6.37: These four plots show the full nonlinear momentum-density curl power spec-
tra P̄gcurl(k1, t) as functions of wave number k1 at evolution time t = 10.0 (yel-
low lines) with parameters τs = 1.0, t0 = 2.0; τs = 2.0, t0 = 2.0; τs = 3.0,
t0 = 2.0; τs = 3.0, t0 = 3.0 with the same gravitational parameter f = 1.0. Their
corresponding initial trace power spectrum P̄fcurl(k1, t) in Equation 6.146 at ini-
tial times t0 are marked by blue lines. The gray dashed lines mark the curve of
exp (i⟨SI⟩) · P̄fcurl(k1, t).

In the second section, due to the complicated µ-dependence in the integrals of the
momentum-density power spectra and their elements Ti, to analyze their small-scale
asymptotic behavior, we reviewed a new method for the asymptotic analysis of a spe-
cific Laplace-Fourier type integral in three dimensions in Equation 6.60, based on a
modification of Erdelyi’s theorem for one-dimensional Laplace integrals. By applying
Erdelyi’s theorem to the r-integral of Equation 6.60, we computed its µ-dependent
small-scale asymptotic series in Equation 6.75. Next, we proceeded with the first term
of the series which has the highest order in k1, and gave the final expressions for
the three different µ-integrals involved in Equation 6.60. In the end, we compared the
momentum-density power spectra elements with integral Equation 6.60 and obtained
their small-scale asymptotic behavior in Equation 6.103-6.108.

In the third section, we ignored the friction (τs → ∞) and self-gravitational interac-
tion in the system and reviewed the linear and nonlinear free KFT momentum-density
power spectra for dust particles. First, we derived the expressions of the three linear
free momentum-density power spectra P̄free

lin1
(k1, t), P̄free

lin2
(k1, t), P̄free

lin3
(k1, t) for the freely
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streaming particles at a very early evolution time (t → 0) by Taylor approximating
the corresponding momentum-density power spectra elements Ti0 with i = 1, 2, 3, 5, 6
to first order. Further asymptotic analysis of their large and small scale behavior sug-
gested that all results on the asymptotic behavior of the three linear free momentum-
density power spectra are conserved and satisfy the relation k21P̄

free
lin1

(k1) = P̄free
lin2

(k1) +

P̄free
lin3

(k1) at very small scales. Then we applied the new analytical asymptotic method
introduced in the second section to analyze the nonlinear free momentum-density
power spectra P̄free

tr (k1, t), P̄free
div (k1, t), P̄free

curl(k1, t), and showed that the nonlinear struc-
ture in the system changed the small scale asymptotic behavior of the momentum-
density trace power spectrum to a k−3 tail, which indicated a scale-invariant kinetic
energy accumulation below a characteristic length scale for freely streaming particles.
Furthermore, we concluded that the nonlinear free power spectra of the divergence
and the curl of the momentum density both developed k−1

1 small-scale asymptotic
behavior, which also implies scale-invariant momentum-density power accumulation
in k⃗1 and perpendicular to k⃗1 space at very small scales. These are mathematically rig-
orous conclusions that depend only on the number of spatial dimensions and general
properties of the initial correlation functions. In the end, we analyzed the relation of
the three free nonlinear momentum-density power spectra and confirmed the relation
k21P̄

free
tr (k1, t) = P̄free

div (k1, t) + P̄free
curl(k1, t) at all scales considered in the system.

In the fourth section, we still ignored the self-gravitational interaction among dust
particles and reviewed the linear and nonlinear KFT momentum-density power spec-
tra for dust particles undergoing friction with the constant background gas field.
First, we derived the three linear momentum-density power spectrum P̄llin1

(k1, t),
P̄llin2

(k1, t), P̄llin3
(k1, t) for very small dust particles τs → 0 and concluded that they

are completely determined by the corresponding linear gravity-free density power
spectrum Pflin(k1, t) in Equation 5.62. The resulting k11 small-scale asymptotic behavior
of P̄llin2

(k1, t), P̄llin3
(k1, t) with only averaged friction did not make any sense and pro-

vided more evidence for the necessity of a nonlinear density power spectrum. Next, we
computed the three nonlinear momentum-density power spectra P̄ftr(k1, t), P̄fdiv(k1, t),
P̄fcurl(k1, t) for larger dust particles at finite evolution time individually and found the
same k−3 small-scale nonlinear asymptotic behavior for the trace power spectrum
and k−1

1 small-scale nonlinear asymptotic behavior for the divergence and curl power
spectrum, which implies the same scale-invariant total kinetic energy accumulation,
and momentum-density power accumulation parallel and perpendicular to k⃗1 at very
small scales. Moreover, we analyzed the dependence of the small-scale asymptotic tail
of the trace of the momentum-density power spectrum P̄ftr(k1, t) on particle size and
time within the range of particle size we care for. Mathematically rigorously, we found
a critical particle size τs ≈ 3.03, at which the system shows both the maximal small-
scale kinetic energy accumulation and the strongest small scale structure formation. At
the end of this section, we also analyzed the relation of the three nonlinear momentum-
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density power spectra and verified the relation k21P̄ftr(k1, t) = P̄fdiv(k1, t) + P̄fcurl(k1, t)
for all scales in the system.

In the end, we switched on self-gravity among dust particles at evolution time t0 and
considered both friction and gravitational interactions in the system to calculate the
full linear and nonlinear KFT momentum-density power spectra. We start with deriving
the expressions of the three full linear momentum-density power spectra P̄glin1

(k1, t),
P̄glin2

(k1, t), P̄glin3
(k1, t) for very small dust particles where τs → 0. By implementing

the approximated density power spectrum Pinis(k1, t0) in Equation 5.77 and borrow-
ing the cutoff scale km from Equation 5.87. The analysis of their small-scale asymptotic
behavior at the limit of k1 → ∞ shows that the force terms F⃗1 · F⃗1 and k⃗1 · F⃗1 are neg-
ligible and these power spectra are completely determined by their corresponding
full linear density power spectrum Pglin(k1, t) in Section 5.4.2 at small scales. Then
we return to the three full nonlinear momentum-density power spectra P̄gtr(k1, t),
P̄gdiv(k1, t), P̄gcurl(k1, t) for larger particles, by implementing the corresponding ap-
proximated density power spectrum Pini(k1, t0) in Equation 5.81 and still applying
the cutoff scale km, the calculations of their small-scale asymptotic approximations
at k1 → ∞ shows that the force terms F⃗1 · F⃗1 and k⃗1 · F⃗1 remain negligible. Com-
bining with the small-scale asymptotic relation T5 + T7 = 0 shown in Equation 6.106

and Equation 6.108, we concluded that the three nonlinear momentum-density power
spectra only depend on the mean interaction term and three gravity-free nonlinear
momentum-density power spectra in Section 6.4.2 at very small scales. In particular,
since the mean interaction term i⟨SI⟩ for large particles reaches its asymptotic constant
at very small scales, the k−3

1 asymptotic behavior for the trace power spectrum and the
k−1
1 asymptotic slope for the divergence and curl power spectra are preserved, which

further suggests that even with self-gravitational interaction considered in the system,
the total kinetic energy accumulation, and the momentum-density power accumula-
tion in parallel and perpendicular to k⃗1 remain scale invariant at very small scales.
Notice that as discussed in Chapter 5, the preserved small-scale asymptotics of the
momentum-density power spectra is completely determined by the asymptotic con-
stants of the mean interaction term i⟨SI⟩ which results from choosing a constant cutoff
scale km. Nevertheless, these results still provide a lower limit for the momentum-
density power accumulation in the system. Furthermore, the significant power increase
at small to intermediate scales for both linear and nonlinear momentum-density power
spectra with self-gravitational interaction in the system implies that as the system un-
dergoes gravitational collapse, the accumulation of the momentum-density power in
the system is also enormous.
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C O N C L U S I O N S A N D D I S C U S S I O N S

In this work, we made the first attempt to apply kinetic field theory (KFT) to planetesi-
mal formation and analytically investigated the formation of structures by collisionless
dust particles with correlated positions and momenta in protoplanetary disks (PPDs)
at the limit of large and especially small scales.

As a statistical, kinetic theory for classical particle ensembles in or out of equilibrium,
KFT encodes the dynamics of a classical particle ensemble in a generating functional
Z which is completely specified by the initial probability distribution of particles in
phase space and their equation of motion. Therefore, our first main result is to ob-
tain a suitable equation of motion for dust particles in a general PPD by considering
their friction with a constant background gas field and the self-gravitational interac-
tion among themselves. The friction caused by different azimuthal velocities of gas
and dust due to the distinguishing internal pressure of gas initiates the planetesimal
formation through the streaming instability (SI) between the two systems. For very
small particles well-coupled to the gas field, we neglect the feedback of the dust onto
the gas and assume the lower azimuthal velocity of the gas is locally stable. Therefore
we limit ourselves to a prescribed constant background gas velocity field. Furthermore,
the gravitational instability of a PPD by surpassing the local Hill density provides an-
other important mechanism for planetesimal formation.

For future work, it is well possible to go beyond the scope of this thesis and study
more complicated interactions between dust particles. KFT could still be a rather useful
tool once the additional functional determinant of the equation of motion introduced
to the generating functional is properly solved. And this question itself would be of
great interest to the development of KFT since the solution could vastly expand its
applications into more areas.

Our next important result derived by applying KFT to planetesimal formation is the
development of a new scheme to obtain the initial probability distribution function in
phase space (iPDF) for dust particles from a 3-dimensional SI local shearing sheet simu-
lation in a general PPD. By Gaussianizing the density field, we derive the final expres-
sion of the iPDF using a multivariate Gaussian distribution. Furthermore, a pipeline is
developed to extract the covariance matrices of the dust ensemble embedded in its ex-
pression, and the correlation operator of the iPDF is accordingly simplified to a constant
due to the significantly larger values of the density covariance matrix compared to the
momentum-density cross-covariance matrix. With this approximation, the expression
of the iPDF reduced to a multivariate Gaussian distribution describing solely the initial
momenta of the dust particles. We can interpret this outcome both conceptually and
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observationally. From a theoretical point of view, Gaussian random fields are ubiqui-
tous and they are a natural consequence of many processes due to the central limit
theorem. In cosmology, the vast cosmic webs consisting of cosmic sheets and filaments
provide evidence of the structure formation originating from a Gaussian random field.
Figure 7.1 shows a recent capture of the spiral galaxy IC 5332, where the visible fila-
mentary structures verify the wide-spread existence of Gaussian random fields in the
universe. Therefore, we are convinced that this work based on Gaussianized density
and momenta fields is fairly valid.

Figure 7.1: The spiral galaxy IC 5332, as captured by the James Webb Space Telescope’s Mid-
Infrared Instrument.

Although in this thesis the simulation data suggests only Gaussianizing the density
field, for other types of simulation data that show non-Gaussian momentum distribu-
tions, we can still employ the same method and Gaussianize them in a similar manner
as long as the new Gaussianized fields relate with the original ones by monotonic
functions. And even better, since there will only be additional integrations over delta
distributions, the final expression of the iPDF stays in the very same form. Furthermore,
we isotropize the momentum covariance matrix and provide a simple mathematical so-
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lution for rotating it into the position and wave vector space, which serves quite an
essential purpose for computing the final KFT power spectra.

Applying KFT to planetesimal formation, we extract important structure and kinetic
information of a general PPD with the initial setup modeled according to the simulation
by analyzing the 2-point KFT density and momentum-density power spectra for dust
particles. One of our main results rests on applying two novel asymptotic methods de-
veloped by Konrad [25] to prove, in two different scenarios, the inevitable development
of a universal k−3 small-scale asymptotic behavior for the nonlinear power spectrum
of the density and the trace of the nonlinear momentum-density power spectrum, sug-
gesting scale-invariant structure formation and kinetic energy accumulation below a
characteristic and time-dependent length scale in a PPD filled with either free dust par-
ticles or dust particles experiencing friction with a background gas of constant density
and velocity. These are significant and mathematically rigorous conclusions that de-
pend only on the number of spatial dimensions and the form of the initial correlation
functions.

We also calculate the time-dependent characteristic wave number above which the
density power spectrum converges to the k−3 slope for freely streaming particles. Its
decreasing slope in the right panel of Figure 5.5 shows that structure formation rapidly
proceeds towards small scales first and then slows down, which suggests that the k−3

tails are typically way below the resolution limit of numerical simulations at early
evolution times.

Furthermore, the analysis of the amplitude for the small-scale k−3 tails show a crit-
ical particle size of τs ≈ 3.03 which corresponds to the strongest structure formation
and the maximal kinetic energy accumulation at small scales of a system when con-
sidering only the friction between dust particles and the constant background gas.
Adding the self-gravitational interaction to such a system, the stronger attractive inter-
action would help trap larger size particles at small scales which pushes this critical
particle size to larger values.

Moreover, using the mean-field approach developed in the KFT framework, we find
that the averaged self-gravitational interaction term reaches an asymptotic constant at
very small scales, which leads to the same k−3 asymptotic tail for the power spectrum
of the density and the trace of the nonlinear momentum-density power spectrum con-
sidering both friction and self-gravitational interactions in the system. However, this
result sensitively depends on the chosen form of the cutoff scale km and the approx-
imations made for the density power spectrum at any evolution time P(k, t ′) in the
mean interaction term. Nevertheless, the results given in this work still provide a
lower limit for gravitational aggregation and suggest that the total structure forma-
tion and kinetic energy accumulation caused by the self-gravitational interaction will
always be scale-invariant or increasing at smaller scales. For further work, it is worth
exploring different and improved schemes for calculating the interaction terms within
KFT, which also lies right in the center of the development of the theory itself.
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In the end, we discuss the ”meter-size barrier” problem. By calculating the averaged
dust density growth in the system and setting the collapse criteria to δ2 = 1014, we
find the relation τ3s(t− t0)f = 2.60× 10−8 to determine the collapse moment in a PPD

with the initial setup modeled according to the simulation. Furthermore, by setting the
dust density to the critical Hill density (f = 1) and the evolution time as the averaged
lifetime of a PPD (t = 106), we obtain the minimum particle size τgs = 2.96× 10−5

to ensure a final gravitational collapse in the system, which greatly lowers the limit
10−3 set by simulations and becomes much closer to the lower end of the ”meter-size
barrier”. In Windmark, F. et al. [42], the likelihood for a few lucky winner particles
to reach planetesimal size, which benefit from the mass transfer in particle-particle
collisions, is estimated. By this work, we provide evidence that as long as the particles
grow to the minimum particle size of around 10−5 by the particle coagulation process,
the accumulated self-gravitational interaction over a long evolution time could already
be sufficient for such smaller particles to successfully ”jump the barrier” and achieve
gravitational collapse, which significantly increases the chances to find the lucky win-
ners in PPDs and helps to understand the formation of countless planets and asteroids
in nature.

There are several directions we can follow to continue this work in the future. One
of them concerns the numerical verification of the conclusions derived in this thesis.
In Chapter 4, we have already seen that the initial density power spectrum of dust
particles shows signs of developing a k−3 tail at very small scales. By developing
better simulation methods with higher resolution while still preserving the statistically
isotropic nature of a system, it is well possible to numerically verify the small-scale k−3

asymptotic behavior of the nonlinear density power spectrum for dust particles.
Furthermore, in this thesis, we have assumed a background gas distribution with

constant density and velocity that captures one of the most important features of the
gas and greatly simplifies the dust particle trajectories in a general PPD. However, one
of the limitations of this model is the lack of possible turbulence in the gas, which is
supposed to help intermediate-size dust aggregates form clusters and more efficiently
grow to larger sizes. Thus the development of a more sophisticated model of the back-
ground gas which describes eddies and their cascade processes in PPDs is a necessary
future step to obtain more realistic results comparable to simulations and conclusions
for applying KFT to planetesimal formation.

Moreover, though considering fixed gas backgrounds has the advantage of simplify-
ing the gas and dust interactions, ignoring the back reaction of dust particles onto gas
could be simplistic, especially at high densities. One possible approach to overcome
this shortcoming is to turn to resummed kinetic field theory within the framework
of KFT, which was initially developed to study both baryons and dark matter in the
cosmic picture, see Lilow et al. [26], Geiss et al. [15], Geiss et al. [14]. Generalizing and
applying this theory to planetesimal formation could provide a feasible method for
considering dynamic interactions between dust and gas in PPDs.
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In the end, we would like to briefly discuss other possible interactions that could be
included in KFT for dust particles. For example, to better understand the dust coagu-
lation process, it is possible to develop a feasible scheme to describe particle-particle
collisions in the equation of motion by sampling an additional averaged force term
from internal particle collisions that occur in various local simulations. Furthermore,
many studies have shown that the magnetorotational instability caused by the pres-
ence of a weak magnetic field and a partially ionized gaseous shear flow can lead to a
repulsive force that transfers angular momentum from the inner to outer volume ele-
ments and further to an unstable flow with turbulent motion, see Balbus and Hawley
[2], Balbus and Hawley [3] and Davis, Stone, and Pessah [10]. Therefore, concerning
the weakly ionized areas in a PPD, KFT could as well offer some analytical insight
into structure formation once the weak magnetic force is properly included into the
equation of motion for dust particles.

To summarize, in this work, we have successfully developed the full scheme of
applying KFT to planetesimal formation and extracted some important structure and
kinetic information for dust particles in PPDs. With the possible future steps to follow,
we are confident to conclude that the novel kinetic field theory (KFT) offers insights
and is becoming a new extraordinary tool for studying planetesimal formation.
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A
M O R E D I S C U S S I O N S O V E R K F T P O W E R S P E C T R A

a.1 small-scale asymptotics of linear power spectra

In this section, we provide detailed calculations for the integrals in the expressions of
the linear density power spectrum Plin(k1, t), Pflin(k1, t) and the linear free momentum-
density power spectra elements Tlini with i = 1, 5, 6 to find their rigorous small-scale
asymptotic behaviors.

a.1.1 Linear Density Power spectrum

We start with the linear free density power spectrum Plin(k1, t) in Equation 5.46,

Plin(k1, t) = −
4πg20(t)ζ0

k1
Ilin0(k1), with

Ilin0(k1) =

∫∞
0

dr1

(
6b1 sin(r1)

r1
− 6b1 cos(r1) − (b0 + 2b1)r1 sin(r1)

)
·

1F1

(
7

6
,
3

2
,−
σ̄2r21
2k21

)
,

(A.1)

where we’ve denoted the coefficient of the averaged initial momentum correlation
function ζpp(r) in Equation 4.66 as

ζ0 =
1

2
5
6π2

σ̄
7
3 Γ

(
7

6

)
, (A.2)

The analytical integration result of Ilin0(k1) can be obtained as

Ilin0(k1) = 8.67 · 10−5− 2.41 · 10−7k
7
3

1 e
−4.74·10−3k2

1 − 9.35 · 10−5Γ

(
7

6
, 4.74 · 10−3k21

)
,

(A.3)

at the limit of k1 → 0, we have its first order Taylor series as

lim
k1→0

Ilin0(k1) ≈ 8.67 · 10−5− 2.41 · 10−7k
7
3

1 − 9.35 · 10−5Γ

(
7

6

)
= −2.41 · 10−7k

7
3

1 , (A.4)
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while at the limit of k1 → ∞, its first order Taylor expansion becomes

lim
k1→∞ Ilin0(k1) ≈ 8.67 · 10−5 − e−4.74·10−3k2

1

(
2.41 · 10−7k

7
3

1 + 9.35 · 10−5
(
4.74 · 10−3k21

) 1
6

)
≈ 8.67 · 10−5.

(A.5)

Figure A.1 shows the shape of Ilin0(k1) in Equation A.3 as a function of wavenum-
ber k1. We can see at large scales where k1 is small, it develops a k7/31 slope as in
Equation A.4, and at small scales where k1 is large, the curve reaches its asymptotic
constant as in Equation A.5.
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Figure A.1: This plot shows the shape of integral Ilin0(k1) in (A.3) as a function of wavenum-
ber k1 (blue line), together with its large scale k7/31 asymptotic behavior (yellow
dashed line) and small scale asymptotic constant (green dahsed line).

Therefore, the linear free density power spectrum which takes the form of Plin(k1, t) ∝
Ilin0(k1)/k1 naturally develops a k4/31 slope at large scales and a k−1

1 slope at small
scales. As for Pflin(k1, t) in Equation 5.62, its identical k1-dependence as Plin(k1, t)
with a different propagator gqp(t) indicates that the above conclusions also apply to
it.

a.1.2 Linear Free Momentum-Density Power Spectra Elements

In this section, we analyze the asymptotic behaviors of the linear free Momentum-
Density Power Spectra Elements Tlini with i = 1, 5, 6 in Equation 6.122-6.124. First
rewrite them as
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Tlin1(k1, t) =
12πb0ζ0

k31
Ilin1(k1), (A.6)

Tlin5(k1, t) =
2πζ0

k31
Ilin5(k1), (A.7)

Tlin6(k1, t) =
2πζ0

k31
Ilin6(k1), (A.8)

with the k1 functions being
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and ψi(r1) being the µ integrations in Equation 6.123 and Equation 6.124 as

ψ5(r1) =
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(A.13)

Plugging them in Equation A.10 and Equation A.11, the final results for the k1
functions Ilini with i = 1, 5, 6 are given as

Ilin1(k1) = 6.58 · 10−3k
7/3
1 e−4.74·10−3k2

1 , (A.14)

Ilin5(k1) = k
7/3
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1
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(A.15)
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.
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At the limit of k1 → 0, the k1 functions can be approximated by their first order
Taylor expansion as

lim
k1→0

Ilin1(k1) ≈ 6.58 · 10−3k
7/3
1 , (A.17)

lim
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lim
k1→0

Ilin6(k1) ≈ 2.63 · 10−2(b0 − b1)k
7/3
1 . (A.19)

While at the limit of k1 → ∞, the Taylor approximations of the k1 functions become

lim
k1→∞ Ilin1(k1) ≈ 0, (A.20)

lim
k1→∞ Ilin5(k1) ≈ 20.32b1

(
4.74 · 10−3k21

) 1
6 e−4.74·10−3k2

1 − 18.85b1 ≈ −18.85b1,

(A.21)

lim
k1→∞ Ilin6(k1) ≈ 18.85b1. (A.22)

Figure A.2 shows the shape of absolute values of Ilin1(k1), Ilin5(k1) and Ilin6(k1)

as functions of wave number k1. At very large scales where k1 is small, we can see
all three plots show the development of k7/31 slope as expected. While at very small
scales where k1 is large, the curves in the middle and right panels reach their asymp-
totic constants as Equation A.21 and Equation A.22, while in the left panel, Ilin1(k1)
continuously decreases sharply and presumably will reach zero quickly as predicted
in Equation A.20.
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Figure A.2: This figure shows the shape of absolute values of Ilin1(k1) (left panel), Ilin5(k1)
(middle panel) and Ilin6(k1) (right panel) in terms of wavenumber k1 (blue lines),
together with their small scale k7/31 asymptotic behaviors (yellow dashed lines) and
the large scale asymptotic constants (green dashed lines) of Ilin5(k1) and Ilin6(k1).

Now we return to the linear free momentum-density power spectra elements Tlin1(k1, t),
Tlin5(k1, t) and Tlin6(k1, t) in Equation A.6-A.8. Since they all satisfy Tlini(k1, t) ∝
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Ilini(k1)/k
3
1 with i = 1, 5, 6, we can immediately conclude that, all Tlini(k1, t) develop

k
− 2

3

1 slopes at large scales, while at small scales, Tlin5(k1, t) and Tlin6(k1, t) both develop
k−3
1 slopes, and Tlin1(k1, t) continuously decreases to zero.

a.2 verify modified nonlinear density power spectrum

In this section, we further discuss in more detail the evidence of ignoring part of
P(k1, t) in Equation 5.12 and rewriting the expression of the nonlinear KFT density
power spectrum in the form of Pf(k1, t) by Equation 5.20.

Now we return to its full expression in Equation 5.15 and mark the second integral
as Pdiff(k1, t)

Pdiff(k1, t) =
∫
r

eg
2
qp(t)k

2
1(m1(0)+µ2m2(0))e−ik1rµ (A.23)

First the asymptotic behaviour of Pdiff(k1, t) at large and small k1 is analyzed. Using
the definition of y(t,µ) in Equation 5.16, when k1 → ∞, at finite evolution time t,
Pdiff(k1, t) becomes

lim
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(A.24)

where R represents the upper integrating limit. We have used here that y(t,µ) is a
negative, monotonically decreasing function of µ2 with a maximum at y(t, 0). Since
exponential function increases much faster than polynomial functions, Pdiff(k1, t) will
be 0 at large k1. On the other hand, if k1 → 0, it becomes

lim
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(A.25)

where j0(k1r) is the 0-th order Spherical Bessel function. Now that the asymptotic
behavior of Pdiff(k1, t) is clear, to further study how these behaviors change with



208 more discussions over kft power spectra

different scales and simplify the analysis, for the freely streaming particles where
limτs→∞ gqp(t, t ′) = g0(t, t ′), we perform the analytical integral

Pdiff(k1, t) = 2π
∫∞
0

drr2l0(r) (A.26)

with

l0(r) =

√
π exp

(
g20(t)k

2
1m1(0) +

k2
1r

2

4g2
0(t)k

2
1m2(0)

)
2
√
g20(t)k

2
1m2(0)erf

k1r− i2g20(t)k
2
1m2(0)

2
√
g20(t)k

2
1m2(0)

− erf

k1r+ i2g20(t)k
2
1m2(0)

2
√
g20(t)k

2
1m2(0)

 (A.27)

Figure A.3 shows the shape of r2l0(r) at evolution time t = 4π respectively at
k1 = 1.0 and k1 = 50.0. At scale k1 = 1.0, the continuously increasing shape of
r2l0(r) suggests its integral will be infinitely large, which matches the result in Equa-
tion A.25. At scale k1 = 50.0, the shape of r2l0(r) resembles a delta function, while the
extremely small absolute value of the function suggests its integral will approximately
be 0, which also agrees with the result in Equation A.24.

Figure A.3: These 2 plots illustrate the function of r2l0(r) respectively at k1 = 1.0 and k1 = 50.0
at time t = 4π (blue lines). The orange dashed lines represent the r2 slope. The
green dashed lines represent the r slope.

Now to illustrate the effect of neglecting Pdiff(k1, t) on the nonlinear free KFT density
power spectrum, we return to the expression in Equation 5.12 and define the full
nonlinear free KFT density power spectrum as

P0(k1, t) =
∫
r

e−g2
0(t)k

2
1((m1(r)−m1(0))+µ2(m2(r)−m2(0)))e−ik1rµ . (A.28)
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Figure A.4 shows the shape of P0(k1, t) and Pfree(k1, t) in Equation 5.42 at evolution
time t = 4πwith their small scale k−3 asymptotic behaviour. At smaller k1, the value of
P0(k1, t) is indeed larger than Pfree(k1, t) and shows rapidly increasing sign. However,
at large k1, there is barely any difference between the two curves and they merge very
well, which indicates Pdiff(k1, t) doesn’t contribute nor affect the shape of the KFT
density power spectrum at small scales and the k−3 result reserves.

Figure A.4: This plot compares the nonlinear density power spectrum P0(k1, t) (purple line)
with Pfree(k1, t) (green line) together with their asymptotic behaviour at large
scales (blue dashed line).

To examine the relative difference between the two curves, Figure A.5 shows the
final results of

Pdiff(k1, t)
Pfree(k1, t)

=
P0(k1, t) −Pfree(k1, t)

Pfree(k1, t)
(A.29)

Figure A.5: This plot shows the relative difference between P0(k1, t) and Pfree(k1, t) defined in
Equation A.29.

Indeed at around k1 = 50, the relative difference between the two becomes negligi-
ble, which agrees with Figure A.3. Since we are much more interested in the small-scale
behavior, we can say it’s safe to ignore Pdiff(k1, t) when calculating KFT nonlinear free
density power spectrum without compromising our main results. Furthermore, since
the free propagator takes the special form g0(t, t ′) = t− t ′, the above result further
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indicates that the effect of Pdiff(k1, t) on the gravity-free nonlinear KFT density power
spectrum Pf(k1, t) is also negligible at small scales for any random value of gqp(t).



B
S M A L L - S C A L E A S Y M P T O T I C S O F M O M E N T U M - D E N S I T Y
T R A C E P O W E R S P E C T R U M

b.1 time and particle size dependence of P̄ lin1
(k1 , t)

In this section, we analyze the time and particle-size dependence of the small-scale
asymptotic behavior for P̄lin1

(k1, t) in Equation 6.147.
We can see in Figure 6.10 that as the friction coefficient and evolution time get larger,

the amplitude P
(0)
lin1

(t) for the k−3
1 slope of P̄lin1

(k1, t) at small scales also becomes
larger. To determine the largest amplitude and its corresponding friction coefficient τs

and evolution time t, we first perform ∂P
(0)
lin1

(t)

∂gqp

∂gqp

∂t = 0 to obtain its maximal P0t (τs)
and the corresponding evolution time t0m as

P0t (τs) =
u20(2π)

3
2 e−

1
2

τ2sσ
2
1(b0 − b1)

=
0.68
τ2s

, t0m = −τs ln
(
1−

gqpt

τs

)
(B.1)

with

gqpt =

√
1

σ21(b0 + 2b1)
≈ 5.26 (B.2)

Notice the expression of t0m sets a limit for τs. In the case of τs > gqpt, t0m exists
and monotonously decrease as τs gets larger, as well as the largest amplitude P0t (τs).
While if τs < gqpt, t0m and P0t (τs) don’t exist and the amplitude for the k−3

1 tail at
small scales increases monotonously as time proceed, as shown in the right panel of
Figure B.1. This behavior shows that when the given particle size is relatively smaller,
their small-scale kinetic energy caused by structure formation will always accumulate
with time, however, when the given particle size is larger than gqpt, then their kinetic
energy at small scales will first accumulate then dissipate as time proceeds.

Now we perform ∂P
(0)
lin1

(t)

∂τs
= 0 and get the maximal amplitude for k−3

1 slope as

P0m = P
(0)
lin1

(τsm, t) (B.3)

with τsm being its corresponding friction coefficient and satisfies
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Figure B.1: This plot shows the amplitude P
(0)
lin1

(t) of P̄lin1
(k1, t) at small scales as a function

of friction coefficient τs (left panel) and evolution time (right panel). The green
points in both plots mark the value of P(0)(t) corresponding to the τs and t in
Figure 6.10. The blue point in the left panel represents the maximal point of this
curve by Equation B.3 and Equation B.4.
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(B.4)
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Figure B.2: This plot shows the shape of L1
(

t
τsm

)
(blue line) and R1

(
t

τsm

)
(yellow line) as a

function of t
τsm

. At small t
τsm

, L1 is proportional to
(

t
τsm

)−1
(green dashed line)

and R1 is proportional to
(

t
τsm

)−2
(red dashed line). At large t

τsm
, L1 reaches its

asymptotic constant at L1∞ in Equation B.5 (purple dashed line) and R1 reaches its
asymptotic constant at R1∞ in Equation B.5 (brown dashed line).
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Now we mark the LHS of Equation B.4 as L1
(

t
τsm

)
, the RHS of Equation B.4 as

R1( t
τsm

)
τ2
sm

, Figure B.2 shows the shape of L1( t
τsm

) and R1( t
τsm

) as a function of t
τsm

. We
can see the value of R1 is always larger than L1 and at the limit of t

τsm
→ ∞, they both

reach to their asymptotic constant L1∞ and R1∞ as

L1∞ = 3, R1∞ =
1

σ21(b0 + 2b1)
(B.5)

This asymptotic behavior also sets a lower limit for τs. Define

τsl =

√
R1
L1

=

√
1

3σ21(b0 + 2b1)
≈ 3.03, (B.6)

when τs < τsl, τsm doesn’t exist, and at any given time the amplitude for the k−3
1

tail monotonously increases as the size of dust particles gets larger yet still smaller
than τsl. While if τs ⩾ τsl, then τsm exists and its value depends on the evolution
time t, for example, for evolution time t = 2.0, τsm has the value of 4.47, see the left
panel of Figure B.1. In this case, P(0)

lin1
(t) first increases as the dust particles’ size gets

larger, then decreases after τs reaches τsm.
Combining both time and particle size dependence results of P

(0)
lin1

(t) above, we
conclude that for particle size τs > gqpt, the maximal amplitude of the k−3

1 slope
always decreases as τs gets larger, see Equation B.1, and for particle size τs < τsl, the
maximal amplitude for the k−3

1 occurs at evolution time t → ∞ and it monotonously
decrease as τs gets smaller, see Figure B.3.

Figure B.3: This plot shows the shape of amplitude P
(0)
lin1

(t) as a function of evolution time t at
different particle size τs.
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Thus to find the maximal small-scale kinetic energy accumulation for dust particles
and its corresponding time and particle size, we need to look for the particles at size
range τsl ⩽ τs ⩽ gqpt. For this range particles, their maximal amplitude of the k−3

1

slope always occur at the limit of t → ∞, thus return to the expression of P(0)
lin1

(t) in
Equation 6.158, we have

lim
t→∞P

(0)
lin1

(t) = Pτ0
lin1

(τs) =
u20

τ3sσ
3
1 (b0 − b1)

√
(2π)3

b0 + 2b1
exp

(
−

1

2τ2sσ
2
1 (b0 + 2b1)

)
.

(B.7)

By performing ∂Pτ0
lin1

(τs)

∂τs
= 0, we obtain its maximal amplitude and the correspond-

ing particle size as

Pτ0
max = u20

(
6π

e

) 3
2 b0 + 2b1
b0 − b1

≈ 0.046, τmax
s =

√
1

3σ21(b0 + 2b1)
≡ τsl ≈ 3.03. (B.8)

This result is further verified by Figure B.3. Therefore, we conclude the maximum
small-scale particle kinetic energy accumulation caused by the structure formation
occurs at the very late stage of evolution time with the particle size being τs = τmax

s ≈
3.03.

b.2 time and particle size dependence of P̄ftr(k1 , t)

In this section, we analyze the time and particle-size dependence of the small-scale
asymptotic behavior for P̄ftr(k1, t) in Equation 6.144.

We can see in Figure 6.12 that as the friction coefficient and evolution time get larger,
the amplitude Ptot(t) for the k−3

1 slope of P̄ftr(k1, t) at small scales also becomes larger.
To determine the largest amplitude and its corresponding friction coefficient τs and
evolution time t, we rewrite Ptot(t) as

Ptot(t) =

(
1+

3b0ζpp(0)τ
2
sg

2
pp(t)

u20g
2
qp(t)

)
P
(0)
lin1

(t). (B.9)

and define constants

a1 =
u20

σ31(b0 − b1)

√
(2π)3

b0 + 2b1
, a2 =

1

2σ21(b0 + 2b1)
, a3 =

3b0ζpp(0)

u20
a1.

(B.10)
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First require ∂Ptot(t)
∂t = 0 to find the maximum amplitude Ptot

m (tm, τs) for the k−3
1 tail

at small scales and its corresponding evolution time tm, denote y = tm
τs

, we have

2a1a2 +
2a2a3

(ey − 1)2
= τ2s

(
a1 + 2(a3 − a1)e

−y + (a1 + a3)e
−2y

)
. (B.11)

Now we mark the LHS of Equation B.11 as Ltot(y) and the RHS of Equation B.11 as
τ2sR

tot(y), at the limit of y→ ∞, both functions reach their asymptotic constants at

Ltot∞ = lim
y→∞Ltot(y) = 2a1a2, Rtot∞ = lim

y→∞Rtot(y) = a1. (B.12)
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Figure B.4: This plot shows shape of Ltot(y) (blue line) and Rtot(y) (yellow line). At large y,
both curves reach their asymptotic constant Ltot∞ (green dashed line) and Rtot∞ (red
dashed line).

Figure B.4 shows the shape of Ltot(y) and Rtot(y) and their asymptotic constant
at large y, it’s clear that Ltot(y) is always larger than Rtot(y) and their asymptotic
constants also set a limit for τs. Define

τs1 =

√
Ltot∞
Rtot∞ =

√
1

σ21(b0 + 2b1)
≡ gqpt ≈ 5.26 (B.13)

when τs < τs1, tm doesn’t exist and the amplitude Ptot(t) for the k−3
1 tail at small

scales will monotonously increase as time proceeds. While if τs > τs1, then Ptot
m (tm, τs)

and tm both exist and the amplitude Ptot(t) first increases to its maximal then de-
creases after evolution time tm.

Now we are interested in the relation between the maximum amplitude Ptot
m (t, τsm)

for k−3
1 tail and its corresponding size of the particles τsm, thus we require ∂Ptot(t)

∂τs
= 0

and get
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2a2e
2z (ez − 1− z)

(ez − 1)3

(
a1 +

a3

(ez − 1)2

)
= −τ2sm

(
a1 (z+ 3− 3e

z)

ez − 1
+
a3 (2ze

z − 3ez + z+ 3)

(ez − 1)3

)
(B.14)

with z = t
τsm

. Now we employ the same scheme as before to analyze this equation,
mark the LHS of Equation B.14 as Lτ(z) and the RHS as τ2smRτ(z). Figure B.5 show
the shape of Lτ(z) and Rτ(z). We can see at any value of z > 0, Lτ(z) is always larger
than Rτ(z), at large z, both function reach their asymptotic constants as

Lτ∞ = 2a1a2, Rτ∞ = 3a1. (B.15)
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Figure B.5: This plot shows shape of Lτ(z) (blue line) and Rτ(z) (yellow line). At large z, both
curves reach their asymptotic constant Lτ∞ (green dashed line) and Rτ∞ (red dashed
line).

And these two constants set a different limit for the friction coefficient τs. Define

τs2 =

√
Lτ∞
Rτ ∞ =

√
1

3σ21(b0 + 2b1)
≡ τsl ≈ 3.03 (B.16)

If τs < τs2, then the maximum amplitude for k−3
1 tail doesn’t exist and at any

evolution time t, the amplitude always increases as the size of the particle grows
larger while still smaller than τs2. On the other hand, if τs > τs2, then the maximal
amplitude exists, and its corresponding particle size τsm depends on the evolution
time t.

Now to find the absolute maximum amplitude of Ptot(t) and its corresponding evo-
lution time t and particle size τs, Figure B.6 shows the shape of Ptot(t) as a function of t
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Figure B.6: This plot shows shape of Ptot(t) as a function of t at different particle sizes τs.

at various particle sizes τs. We can see that when τs < τs1, the curves of Ptot(t) indeed
increase monotonously and reach their maximals at very late evolution time as pre-
dicted. Furthermore, notice at this range of particle size, the values of limt→∞ Ptot(t)

further reach their maximal at particle size τs = τs2 ≈ 3.03. This result can be better
understood by considering the behavior of Ptot(t) at the limit of t→ ∞,

lim
t→∞Ptot(t) = lim

t→∞
(
1+

3b0ζpp(0)τ
2
sg

2
pp(t)

u20g
2
qp(t)

)
P
(0)
lin1

(t) = lim
t→∞P

(0)
lin1

(t) = Pτ0
lin1

(τs), (B.17)

where we’ve used the asymptotic behavior of the propagators in Equation 6.155-
6.156. Since Pτ0

lin1
(τs) has its maximal as in Equation B.7, for the particle size τs < τs1,

the absolute maximal amplitude Pτ0
max for the k−3

1 slope at very small scales occurs at
very late evolution time with particle size τs = τs2 ≈ 3.03.

While with τs > τs1, notice the curves start increasing at an earlier evolution time
and could reach even larger amplitude than Pτ0

max at very large τs. To quantify this
result, we calculate the asymptotic behavior of Ptot(t) at the limit of τs → ∞ as

lim
τs→∞Ptot(t) = Ptot

t0(t) =
3b0ζpp(0)

t3σ31(b0 − b1)

√
(2π)3

b0 + 2b+ 1
exp

(
−

1

2t2σ21
(b0 + 2b1)

)
, (B.18)

it reaches its maximal value Pmax
t0 at time tmax as

Pmax
t0 = 3b0ζpp(0)

(
6π

e

) 3
2 b0 + 2b1
b0 − b1

≈ 4.87 · 10−2, tmax =

√
1

3σ21(b0 + 2b1)
≈ 3.03

(B.19)
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Since the values Pmax
t0 > Pτ0

max, the absolute maximal amplitude of Ptot(t) for k−3
1

slope at small scales for any particle size τs becomes Pmax
t0 corresponds to free parti-

cles at evolution time t = tmax. However, since we are more interested in a system
filled in smaller size dust particles for instance τs < 10.0 with the friction interaction
presence, we can still conclude that the maximal value of Ptot(t) is exactly Pτ0

max which
corresponds to particles at size τs ≈ 3.03 at the very late stage of evolution.
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