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Summary

Single-cell multimodal genomics involves simultaneous measurement of multiple types

of molecular data, such as gene expression, epigenetic marks and protein abundance, in

individual cells. This allows for a comprehensive and nuanced understanding of the molecular

basis of cellular identity and function. The large volume of data generated by single-cell

multimodal genomics experiments requires specialised methods and tools for handling,

storing, and analysing it.

This work provides contributions on multiple levels. First, it introduces a single-cell

multimodal data standard — MuData — designed to facilitate the handling, storage and

exchange of multimodal data. MuData provides interfaces that enable transparent access to

multimodal annotations as well as data from individual modalities. This data structure has

formed the foundation for the multimodal integration framework, which enables complex and

composable workflows that can be naturally integrated with existing omics-specific analysis

approaches.

Joint analysis of multimodal data can be performed using integration methods. In order

to enable integration of single-cell data, an improved multi-omics factor analysis model

(MOFA+) has been designed and implemented building on the canonical dimensionality

reduction approach for multi-omics integration. Inferring later factors that explain variation

across multiple modalities of the data, MOFA+ enables the modelling of latent factors with

cell group-specific patterns of activity. MOFA+ model has been implemented as part of the

respective multi-omics integration framework, and its utility has been extended by software

solutions that facilitate interactive model exploration and interpretation.

The newly improved model for multi-omics integration of single cells has been applied to

the study of gene expression signatures upon targeted gene activation. In a dataset featuring

targeted activation of candidate regulators of zygotic genome activation (ZGA) — a crucial

transcriptional event in early embryonic development, — modelling expression of both

coding and non-coding loci with MOFA+ allowed to rank genes by their potency to activate
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a ZGA-like transcriptional response. With identification of Patz1, Dppa2 and Smarca5 as

potent inducers of ZGA-like transcription in mouse embryonic stem cells, these findings

have contributed to the understanding of molecular mechanisms behind ZGA and laid the

foundation for future research of ZGA in vivo.

In summary, this work’s contributions include the development of data handling and

integration methods as well as new biological insights that arose from applying these methods

to studying gene expression regulation in early development. This highlights how single-cell

multimodal genomics can aid to generate valuable insights into complex biological systems.



Zusammenfassung

Die multimodale Einzelzellgenomik umfasst die gleichzeitige Messung mehrerer Arten

molekularer Daten, wie z. B. Genexpression, epigenetische Markierungen und Proteinhäu-

figkeit, in einzelnen Zellen. Dies ermöglicht ein umfassendes und nuanciertes Verständnis

der molekularen Grundlagen von Zellidentität und -funktion. Die großen Datenmengen, die

bei multimodalen Einzelzellgenomikexperimenten anfallen, erfordern spezielle Methoden

und Werkzeuge für ihre Verarbeitung, Speicherung und Analyse.

Diese Arbeit liefert Beiträge auf mehreren Ebenen. Erstens wird ein Standard für multi-

modale Einzelzelldaten - MuData - eingeführt, der die Handhabung, die Speicherung und

den Austausch von multimodalen Daten erleichtern soll. MuData bietet Schnittstellen, die

einen transparenten Zugriff auf multimodale Annotationen sowie auf Daten aus einzelnen

Modalitäten ermöglichen. Diese Datenstruktur bildet die Grundlage für das multimodale

Integrationsframework, das komplexe und zusammengestellte Arbeitsabläufe ermöglicht, die

einfach in bestehende omics-spezifische Analyseansätze integriert werden können.

Die gemeinsame Analyse multimodaler Daten kann mithilfe von Integrationsmethoden

durchgeführt werden. Um die Integration von Einzelzelldaten zu ermöglichen, wurde ein

verbessertes Multi-omics-Faktoranalysemodell (MOFA+) entwickelt und implementiert, das

auf dem Ansatz der kanonischen Dimensionalitätsreduktion für die Multi-omics-Integration

aufbaut. MOFA+ ermöglicht die Modellierung latenter Faktoren mit zellgruppenspezifischen

Aktivitätsmustern, indem es spätere Faktoren ableitet, welche die Variation über mehrere

Modalitäten der Daten erklären. Das MOFA+-Modell wurde als Teil des entsprechenden

Multi-omics-Integrationsframework implementiert, und sein Nutzwert wurde durch Soft-

warelösungen erweitert, welche interaktive Modellexploration und -interpretation erleichtern.

Das neu verbesserte Modell für die Multi-omics-Integration einzelner Zellen wurde auf

die Untersuchung von Genexpressionssignaturen bei gezielter Genaktivierung angewendet. In

einem Datensatz mit gezielter Aktivierung von potenziellen Regulatoren für die Aktivierung

des zygotischen Genoms (ZGA) - ein entscheidendes Transkriptionsereignis in der frühen
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Embryonalentwicklung - ermöglichte die Modellierung der Expression sowohl kodierender

als auch nicht kodierender Loci mit MOFA+ die Einstufung von Genen nach ihrer Fähigkeit,

eine ZGA-ähnliche Transkriptionsreaktion zu aktivieren. Mit der Identifizierung von Patz1,

Dppa2 und Smarca5 als starke Auslöser der ZGA-ähnlichen Transkription in embryonalen

Stammzellen der Maus haben diese Ergebnisse zum Verständnis der molekularen Mechanis-

men hinter der ZGA beigetragen und die Grundlage für die künftige Erforschung der ZGA in

vivo gelegt.

Zusammenfassend lässt sich sagen, dass der Beitrag dieser Arbeit in der Entwicklung von

Methoden zur Datenverarbeitung und -integration sowie in neuen biologischen Erkenntnissen

besteht, die sich aus der Anwendung dieser Methoden zur Untersuchung der Genexpres-

sionsregulation in der frühen Entwicklung ergeben haben. Dies zeigt, wie die multimodale

Einzelzellgenomik dazu beitragen kann, wertvolle Einblicke in komplexe biologische Sys-

teme zu gewinnen.
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Chapter 1

Introduction

From measuring RNA abundance in tissues to quantifying information across multiple

layers of gene regulation in individual cells, a rapid progress of experimental and analytical

techniques has deepened our understanding of cell and systems biology. This chapter provides

an overview of the key experimental and computational advances behind single-cell omics

data acquisition, storage, analysis and interpretation. The figures in this chapter were created

by myself unless stated otherwise.



22 Introduction

1.1 A brief history of single-cell genomics

By no means comprehensive, this section aims to provide a concise introduction into single-

cell RNA sequencing and single-cell multimodal omics.

1.1.1 Single-cell transcriptomics

1.1.1.1 RNA sequencing

Under the modern model of transcription — DNA-dependent RNA synthesis — gene ex-

pression is stochastic in nature, i.e. gene expression does fluctuate in constant environmental

conditions (Kærn et al., 2005; Marinov et al., 2014). The key steps of transcription are

orchestrated by several biochemical reactions including transitions between repressed and

active promoter states, mRNA synthesis, splicing and degradation (Kærn et al., 2005).

Single-stranded copies of genes are produced in the process of transcription at the scale

of thousands to hundreds thousands molecules per cell (Marinov et al., 2014). Quantifying

the relative abundance of different transcripts can serve as a description of cell’s identity as

well as its future activity and has become a major phenotyping method to describe biological

systems with molecular resolution (Mortazavi et al., 2008; Zhong Wang et al., 2009). For

instance, gene expression regulation and its relation to phenotype has been extensively

studied in development, with perturbations such as RNA interference (RNAi) (Spitz and

Furlong, 2006) or lately with single-cell RNA sequencing (Griffiths et al., 2018).

Differences in RNA abundance have been shown to be mediators of genetic variants

located in expression quantitative trait loci (eQTLs) — genomic regions carrying variation

that influences gene expression (Albert and Kruglyak, 2015). These differences can then

propagate to the variation at the protein level. In addition to genetic variation by which protein

product is altered, gene expression regulation changes can also lead to phenotypic change and

phenotypic evolution (Harrison et al., 2012). Beyond changes in RNA abundance, phenotypic

traits depend on RNA processing (splicing, polyadenylation) as well as its stability, translation

and structure (Manning and Cooper, 2017).

RNA sequencing (RNA-seq) is the technology that enables quantitative transcriptome-

wide gene expression profiling, which became an indispensable way to study biological

systems (Stark et al., 2019; Zhong Wang et al., 2009). During RNA-seq, a pool of RNAs

is converted to complementary DNA (cDNA) molecules, which are then sequenced in a

high-throughput manner (Zhong Wang et al., 2009). As a methodological approach, RNA-seq
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has combined a few important advancements that arguably predetermined its success over

the predating techniques. Unlike microarray methods, which are based on the hybridisation

of oligonucleotide probes targeting specific genes, adaptor-based approach makes RNA-seq

unbiased; the latter also has a higher dynamic range. In contrast to Sanger sequencing

of cDNA libraries, high-throughput DNA sequencing technologies have provided a way

to quantify individual transcripts at scale. Overall, as an approach which is more generic

and scalable — both vertically (transcriptome-wide) and horizontally (more samples), —

combined with numerous methodological and technical improvements (Stark et al., 2019),

RNA-seq has defined the landscape of genome-wide scale molecular biology in the beginning

of the XXI century.

1.1.1.2 Single-cell RNA-sequencing

While RNA-seq has historically been used to profile mixtures of cells («in bulk»), semi-

nal work by F. Tang et al., 2009 has demonstrated that it can also be applied to a single

mouse blastomere. Since then, single-cell RNA sequencing (scRNA-seq) has witnessed an

exponential growth in terms of the number of studies and publications (Svensson, da Veiga

Beltrame, et al., 2020) as well as in terms of the scale of the experimental design (Svensson,

Vento-Tormo, et al., 2018).

The key to scRNA-seq technological advances combines ability to deal with small

quantities of RNA with increased throughput. While the general idea of transcriptome

profiling on the level of single-cell holds for different experimental techniques, there’s value

in discussing similarities and major differences across commonly used approaches and

platforms. With these approaches trying to achieve untargeted amplification of the whole

transcriptome in individual cells, they start with converting RNA to cDNA, which is then

amplified via in vitro transcription (IVT) or polymerase chain reaction (PCR) (Svensson,

Vento-Tormo, et al., 2018). Notably, for the latter, an oligo(dT) primer targeting poly(A)-tail

is frequently used to generate the first cDNA strand (Kolodziejczyk et al., 2015).

Cells are typically isolated in individual wells on a plate or droplets on a microfluidic

chip (Klein et al., 2015; Kolodziejczyk et al., 2015). Each well or droplet contains necessary

components such as sequencing adapters, cell barcodes, primers. In order to pull and

analyse material from multiple cells and samples, molecular barcodes are added to cDNA.

Strategies like combinatorial indexing allow for multiplex barcoding of thousands of cells

per experiment (Cusanovich et al., 2015).
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One of the challenges of early single-cell assays has been an amplification bias that arises

during the PCR, which affects RNA quantification (Ziegenhain et al., 2017). A key solution

to address this has been the introduction of unique molecular identifiers (UMIs) (Islam et al.,

2014; Kivioja et al., 2012). Their addition makes it possible to distinguish PCR duplicates

from biological variation and computationally remove the former by collapsing reads that

map to the same place in the transcriptome and share their UMI. Computational correction

for PCR duplicates using UMIs has proven to improve the power and false discovery rate of

differential gene expression analyses (Parekh et al., 2016).

Arising from low amount of starting material, another challenge of single-cell assays

is low capture efficiency (Islam et al., 2014) resulting in high data sparsity. Addressing it

requires experimental advances leading to improved capture efficiency (Hagemann-Jensen,

Ziegenhain, P. Chen, et al., 2020) as well as specific computational approaches (see Section

1.2.2.1).

Overall, single-cell transcriptome sequencing has been shown to provide accurate quanti-

tative measurements of RNA abundance in individual cells and to recapitulate bulk transcrip-

tome complexity when large amounts of cells are sequenced (A. R. Wu et al., 2014). Taken

together, the discussed advances of transcriptome-wide profiling have opened the door to

applying scRNA-seq to various biological systems, and in the past decade we witnessed a

rapid growth of the scale of scRNA-seq experiments (Svensson, Vento-Tormo, et al., 2018).

Using the database with information about single-cell studies (Svensson, da Veiga Beltrame,

et al., 2020), I visualised the reported number of cells in them in the figure ~1.1. Highlighted

are some key technologies such as CEL-Seq (Hashimshony et al., 2012), Smart-seq2 (Pi-

celli, Björklund, et al., 2013), inDrop (Klein et al., 2015), Drop-seq (Macosko et al., 2015),

Perturb-Seq (Dixit et al., 2016), Microwell-Seq (Han, R. Wang, et al., 2018), Slide-seq

(Rodriques et al., 2019), Smart-seq3xpress (Hagemann-Jensen, Ziegenhain, and Sandberg,

2022) as well as largest studies such as the ones on mouse brain (Saunders et al., 2018; Zeisel

et al., 2018), mouse organogenesis (J. Cao, Spielmann, et al., 2019) and human development

(J. Cao, O’Day, et al., 2020).

Two widely established (Svensson, da Veiga Beltrame, et al., 2020) technologies for

single-cell transcriptomics are Chromium by 10x Genomics (Zheng et al., 2017) and Smart-

seq2 (Picelli, Faridani, et al., 2014). With each technology providing its own set of advantages

(Kashima et al., 2020; X. Wang et al., 2021), the preference of one over another is dictated

by the research question and the respective aims of the study.
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Fig. 1.1 Increasingly large-scale transcriptome profiling enabled by scRNA-seq
technological advances
Reported number of cells in each study is plotted against the publication date.

Smart-seq2 (Picelli, Faridani, et al., 2014), an updated version of the Smart-seq protocol

(Ramsköld et al., 2012), provides full-length RNA sequencing. This is achieved by taking

advantage of the template-switching activity of Moloney murine leukemia virus (MMLV)

reverse transcriptase (Y. Y. Zhu et al., 2001), as I illustrate with Figure 1.2. As it is a

plate-based method, its applications are limited to hundreds of cells (dictated by being

based on 96-well plates). The full-length nature of Smart-seq2 data enables applications

like detecting allele-specific expression at stages of mouse preimplantation development

(Q. Deng et al., 2014) or identifying splicing events (Arzalluz-Luque and Conesa, 2018;

Huang and Sanguinetti, 2021). The most recent improvements to the Smart-seq2 protocol

such as Smart-seq3 (Hagemann-Jensen, Ziegenhain, P. Chen, et al., 2020), Smart-seq3xpress

(Hagemann-Jensen, Ziegenhain, and Sandberg, 2022) and FLASH-seq (Hahaut et al., 2022)

also incorporate UMIs as part of the workflow and provide greater scalability.

Microdroplet-based Chromium system by 10x Genomics (Zheng et al., 2017) offers

scalability to many cells (thousands) at the expense of the amount of information per cell:

only 3′- or 5′-ends of mRNA are targeted with a few dozen thousand reads per cell (Figure

1.2). With its low cost and high throughput, this technology enabled complex experiments at

scale, as discussed further in section 1.1.2.

Higher scale and lower cost for single-cell RNA methods has also been achieved by

targeted sequencing, which includes enrichment of transcripts of interest (Mercer et al., 2014;

Pokhilko et al., 2021). Such targeted approaches have recently enabled selective amplification

of genes of interest in screens coupling single-cell transcriptomics with genetic perturbations

(Schraivogel et al., 2020).

Illumina short-read sequencing is typically used to effectively convert the library to the

digital information that can be analysed (Picelli, Faridani, et al., 2014; Zheng et al., 2017).
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Fig. 1.2 Schematic illustration of plate-based and microdroplet-based approaches
a: Plate-based full-length scRNA-seq. Reactions happen in wells. Depicted are re-
verse transcription, first strand synthesis with template switching and cDNA amplification.
b: Microdroplet-based 3′ scRNA-seq. Barcoded beads are combined with cells in droplets.

The libraries generated by either RNA sequencing method can also be used in conjunction

with long-read sequencing technologies such as Nanopore (Lebrigand et al., 2020) or PacBio

(Gupta et al., 2018) as well as for sequencing with the most recently developed techniques

such as mostly-natural sequencing by synthesis by Ultima Genomics (Simmons et al., 2022).

Moreover, direct RNA sequencing is also possible on an array of nanopores. This holds

potential to enable the collection of more information (RNA modifications) as well as to

remove the PCR bias from the sequencing data (Garalde et al., 2018).

1.1.2 Applications of single-cell transcriptomics

Single-cell transcriptomics has become widely adopted for basic and translational biomedical

research. Across these use cases, single-cell technologies have increased resolution and

enabled the characterisation of molecular changes at new dimensions ranging from qualitative

changes (cell type composition) to quantitative variation (gene expression) to dynamic

insights into biological processes (cell lineages).

1.1.2.1 Immunology

Immunology has seen great advances driven by scRNA-seq in studying the cellular het-

erogeneity of the immune system as well as its development and disease (H. Chen et al.,

2019; Domínguez Conde et al., 2022; Giladi and Amit, 2018; Papalexi and Satija, 2018).

Static picture of leukocyte composition and their transcriptional landscape constructed with

scRNA-seq have allowed to propose updated cell type classifications, such as the one for

monocytes and dendritic cells (Villani et al., 2017). Undoubtedly, the fact that peripheral
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blood is easier to obtain than many other (human) tissue samples without requiring complex

tissue dissociation protocols has contributed to the emergence of single-cell studies of periph-

eral blood mononuclear cells (PBMCs). Furthermore, constructing an atlas of tissue-resident

immune cells across multiple donors and organs offered unique opportunities to dissect cell

types and cell states in myeloid, B cell and T cell compartments (Domínguez Conde et al.,

2022). As part of that atlas, the study of the heterogeneity of lymphocyte populations has

been complemented with VDJ sequencing of their T- and B-cell receptors (TCRs and BCRs).

As information about the TCR repertoire being crucial for health and disease (Attaf et al.,

2015), there has been focus on targeted single-cell TCR sequencing (T. D. Wu et al., 2020).

For a system that spans across the whole organism, the emergence of cross-organ studies

(Han, R. Wang, et al., 2018) as well as cross-tissue immune cell atlases (Domínguez Conde

et al., 2022) is important.

Single-cell transcriptomics has also allowed to profile cell type composition and expres-

sion changes in autoimmune diseases such as multiple sclerosis, which targets the central

nervous system (Schafflick et al., 2020), or systemic lupus erythematosus (Nehar-Belaid et al.,

2020). Notably, single-cell resolution allows to query how genetics affects expression in cell

type-specific manner (expression quantitative trait loci, eQTLs) (Perez et al., 2022), and for

complex diseases like that, immune cells across tissues such as blood and cerebrospinal fluid

have to be studies (Schafflick et al., 2020).

Another direction of immunological single-cell studies has been concerned with the

development of the immune system (H. Chen et al., 2019). The goal of such studies

devoted to cell differentiation is to reconstruct hematopoietic lineage and to identify cell

fate decisions during hematopoietic stem cell differentiation (Paul et al., 2015). Combining

single-cell transcriptomics with other assays allowed to reconstruct the whole immune system

in development, from yolk sac to primary hematopoietic sites to peripheral organs (Suo et al.,

2022).

1.1.2.2 Developmental biology

With global changes to the transcriptional landscape in early development, early embryo-

genesis in model organisms such as mice has been studied through the lens of single-cell

transcriptomics (Pijuan-Sala et al., 2019). Dissection of major cell types in developing

mouse embryos with particularly large amounts of cells profiled (2 million cells) was made
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possible by newly advanced techniques such as combinatorial indexing (sci-RNA-seq3) (J.

Cao, Spielmann, et al., 2019).

Beyond model organisms, whole-animal single-cell transcriptomics has made it possible

to dissect complex animals such as a flatworm Schmidteamediterranea (Plass et al., 2018) or

a hydrozoan medusa Clytia hemisphaerica (Chari, Weissbourd, et al., 2021) with single-cell

resolution.

1.1.2.3 Neurobiology

Single-cell genomics aided advances in understanding identities of brain cells with the

transcriptomes of the murine neocortical areas (Tasic et al., 2018) and developing mouse

brain and spinal cord (Rosenberg et al., 2018) being just a few examples. Combined

with epigenomics measurements as well as physiological, anatomical and morphological

properties (Gouwens et al., 2020; Scala et al., 2021; Z. Zhang et al., 2021), gene expression

measurements with single-cell resolution now allow for comprehensive evaluation of neural

circuits (Armand et al., 2021). More, these techniques have contributed to our understanding

of the evolutionary relationships between neuronal cell types and brain regions such as

mammalian cerebellum (Sepp et al., 2021) and enabled comparative transcriptomics on

cerebral organoids, e.g. comparing the ones from chimpanzee, macaque and human (Kanton

et al., 2019).

1.1.2.4 Atlases

Last but not least, cross-tissue and cross organ atlases allow to create a map of transcriptional

activity of most of the cell types in complex organisms such as humans and mice. This

scale has been achieved thanks to global initiatives and consortia such as Human Cell Atlas

(Rozenblatt-Rosen et al., 2017), Tabula Sapiens (Consortium* et al., 2022) and Human

Developmental Cell Atlas (Haniffa et al., 2021). Analogous scale has been achieved on mice

with 20 mouse organs profiled as part of the Tabula Muris Consortium (Schaum et al., 2018),

later extended to mice of different age (Almanzar et al., 2020). Such efforts inevitably come

with technological challenges, both experimental and analytical, driving new advancements

such as Microwell-seq for high-throughput and low-cost scRNA-seq, which has been used

to describe mouse (Han, R. Wang, et al., 2018) and human (Han, Zhou, et al., 2020) cell

landscapes. There also have been more focused efforts to profile complex systems such as the

immune system, developing (Suo et al., 2022) or adolescent (Domínguez Conde et al., 2022),
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or the nervous system, also developing (La Manno, Siletti, et al., 2021) or adolescent (Ortiz

et al., 2020; Zeisel et al., 2018), in order to produce atlases with high cell type resolution.

1.1.3 Single-cell multimodal omics

With high-throughput techniques providing insights to all three cornerstones of the central

dogma of molecular biology, DNA, RNA and protein (Crick, 1970), at the level of individual

cells, combining these layers of information (Figure 1.3) brings new opportunities for gaining

a holistic view of a cell (Efremova and Teichmann, 2020).

Described in the previous section, scRNA-seq is destructive by the nature of the tech-

niques. While in bulk studies there is an option of making measurements in another modality

on the part of the same sample, e.g. adjacent tissue, single-cell resolution requires involvement

of non-destructive techniques and/or ingenious separation of cell compartments, e.g. nucleus

from the cytoplasm, in order to be able to perform multiple destructive measurements on

the same cell. An alternative is to first apply a non-destructive technique such as cytometry

before sequencing (Efremova and Teichmann, 2020).

There are a few key challenges in obtaining mutlimodal measurements (Efremova and

Teichmann, 2020). Depending on the type of the omics measurements, the scalability and

sensitivity of assays might be limited, and combining destructive assays requires further

developments and innovations for signal amplification from more molecular layers. Further-

more, the data coverage in multimodal omics assays is typically sparse, and the resulting

data provides further analysis challenges with its high sparsity and noise levels.

Importantly, single-cell multimodal omics disentangles stochastic processes from cell-

to-cell heterogeneity (C. Zhu et al., 2020). This multimodal techniques allows to define

relations between molecular layers from the data as opposed to inferring them from unimodal

measurements (C. Zhu et al., 2020), and coupling between data modalities is regarded to

be one of the key challenges in multimodal integration (Argelaguet, Cuomo, et al., 2021;

Lähnemann et al., 2020). Simultaneously capturing different molecular layers in an omics-

wide manner is a serious technical challenge, and the progress at resolving it will allow to

better understand generative processes behind different molecular layers as well as their

interactions.
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1.1.3.1 Single-cell transcriptomics combined with epigenomics

ScRNA-seq has been increasingly frequently combined with other techniques such as genome

sequencing (Macaulay, Haerty, et al., 2015) and, more prominently, epigenomics including

bisulphite sequencing to assess DNA methylation (Smallwood et al., 2014) or assay for

transposase-accessible chromatin followed by sequencing (ATAC-seq) to quantify accessibil-

ity of chromatin (Buenrostro et al., 2015).

The idea behind ATAC-seq and similar protocols is to preserve chromatin structure

and DNA-binding proteins and to then expose chromatin to a transposase enzyme Tn5,

which fragments DNA and inserts sequencing adapters — oligonucleotides later used for

amplification and sequencing (Grandi et al., 2022). ATAC-seq allows to generate data similar

to DNase-seq or MNase-seq with reduced cost, resources and time consumption and with a

lower input material requirements (less cells) (Grandi et al., 2022). Genomic loci enriched

for transposition events are then views as more accessible and can correspond to promoters,

enhancers and other functional elements.

As transcription is driven by cis- and trans-regulatory elements, being able to access

the state of the chromatin state in addition to the gene expression profile in the same cell is

pivotal for modelling and understanding gene expression (J. Cao, Cusanovich, et al., 2018; S.

Chen et al., 2019; S. Ma et al., 2020). For instance, it makes it possible to link cis-regulatory

sites in the genome to their target genes on the basis of the chromatin-expression covariance

across large numbers of cells and cell populations and conditions (J. Cao, Cusanovich, et al.,

2018).

An important observation is there’s a good congruence between cell types defined based

on their chromatin accessibility and the ones defined based on their gene expression (S. Ma

et al., 2020). Such data can then be used to infer gene regulatory modules, e.g. by quantifying

the interactions between transcription factors (TFs) and their targets (Fiers et al., 2018).

Digging deeper into these gene regulatory networks, the activity of transcription factors and

how they regulate expression of the downstream genes can be then studied (Schep et al.,

2017). Importance of TFs makes sense in the light of evolution: core regulatory complexes

of transcription factors seem to define cell type identity (Arendt et al., 2016).

DNA modifications such as cytosine methylation in DNA (5mC) also play a crucial role

in gene expression regulation and transcriptional programs maintenance and can be profiled

with single-nucleotide resolution assays such as scBS-seq (Smallwood et al., 2014). DNA

methylation is commonly measured using the bisulfite conversion — only unmethylated
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cytosine residues are deaminated into uracils, which can be then identified in sequencing

reads. Bisulfite conversion has also been effectively combined with other assays to produce

multiple levels of information from one experiment such as chromatin conformation in

Methyl-HiC (G. Li et al., 2019) or gene expression in scM&T-seq (Angermueller, S. J. Clark,

et al., 2016). Building on the latter, labelling accessible chromatin with a methyltransferase

before bisulfite conversion and sequencing enables trimodal measurements for each cell in

scNMT-seq (S. J. Clark et al., 2018).

1.1.3.2 Single-cell transcriptomics combined with protein measurements

Combining measurements of RNA with measuring protein abundance allows to better resolve

cell populations and, more broadly, cell phenotypes with subtle differences at the level

of transcripts. As such, transcriptomics measurements were combined with measuring

abundance of surface protein markers (epitopes) in CITE-seq (Stoeckius et al., 2017) and

REAP-seq (Peterson et al., 2017), intracellular (phospho-)proteins in RAID (Gerlach et al.,

2019) or intracellular protein activity in INs-seq (Katzenelenbogen et al., 2020).

The rapid progress in making it possible to profile more modalities per cell has been

lately demonstrated by the emergence of trimodal assays such as TEA-seq (Swanson et al.,

2021) and DOGMA-seq (Mimitou et al., 2020), that combine gene expression with chromatin

accessibility and protein epitope measurements, NEAT-seq (A. F. Chen et al., 2022), in which

intranuclear proteins are measured.

1.1.3.3 Novel opportunities offered by single-cell multimodal omics

Naturally, high-throughput (unimodal) single-cell methods applied to variety of biological

contexts as described above have been further extended to include multiple modalities. These

multimodal methods can provide a higher cell state resolution and enable exploring rela-

tionships between modalities and mechanisms behind them. For instance, links between the

transcriptome, DNA methylation and DNA accessibility have been studied in differentiating

mouse embryonic stem cells, a multi-view perspective enabled by scNMT-seq (S. J. Clark

et al., 2018), which was later applied to mouse gastrulation (Argelaguet, S. J. Clark, et al.,

2019). Similarly, scM&T-seq has been used to study age-related changes in heterogene-

ity of murine stem cells, measured at the level of DNA methylation and gene expression

(Hernando-Herraez et al., 2019).
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Fig. 1.3 Single-cell assays allow to capture information across multiple molecular layers
Molecular structures are labelled in blue, molecular processes in orange, unimodal single-cell
assays in red, multimodal single-cell assays in turquoise. Assays depicted here are not
exhaustive and have been chosen for illustrative purposes.
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More detailed molecular understanding of chromatin state changes and genomic regions

crucial to corticogenesis has been derived using with chromatin accessibility measurements

combined with RNA profiling of developing human neocortex (16 to 24 post-conception

weeks) (Trevino et al., 2021). Joint ATAC and RNA profiles from mouse skin have shed light

on how changes in chromatin accessibility drive lineage commitment (S. Ma et al., 2020).

High-throughput nature of such screens (that study profiled almost 35 thousand cells from

more than 20 cell types) allows to define regulatory chromatin regions that are important for

cis-regulatory interactions.

Ability to simultaneously record complementary types of information for each cells is

bearing the potential to provide unprecedented insights into the function of the immune

system across different ages and physiological conditions (Giladi and Amit, 2018). This has

been notable with the relevant progress in generating reference maps of human blood and

bone marrow (Triana et al., 2021) (effectively a proteo-genomic hematopoiesis atlas) and

with applications to immuno-oncology (Leader et al., 2021; A. Ma et al., 2022).
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1.2 Single-cell omics data analysis

1.2.1 From sequencing reads to count matrices

Computational processing of the data is an indispensable part of contemporary biology.

For scRNA-seq and sequencing-based assays in general, it starts with raw reads in FASTQ

format. These reads are then mapped to the reference genome or transcriptome, and the reads

mapped to specified genomic locations (e.g. genes) are counted to generate a cell-by-feature

matrix (Stark et al., 2019). Protocols incorporating UMIs allow to account for duplicates that

arose during amplification by counting molecules rather than individual reads. In addition to

methods that are designed to align non-contiguous sequences to the reference genome such

as STAR (Dobin et al., 2013) and STARsolo (Kaminow et al., 2021) or transcriptome such as

BWA (Heng Li and Durbin, 2009), there are computationally efficient (Brüning et al., 2022;

Vieth et al., 2019) tools that perform alignment and quantification in one step by directly

relating reads to the transcriptome: kallisto bustools (Melsted et al., 2021), alevin-fry (He

et al., 2022). The latter enable workflows with substantially reduced computational time

(Everaert et al., 2017; He et al., 2022; Melsted et al., 2021).

1.2.2 Processing and modelling considerations

1.2.2.1 Modelling RNA counts

Transcript or gene abundance estimates in the form of count matrices are the canonical input

for the vast majority of downstream analysis tools. Prior to modelling, these count matrices

are typically normalised to account for factors such as sequencing depth per cell, with a

variance-stabilising transformation applied afterwards (Luecken and Theis, 2019; Vallejos

et al., 2017) although there are also workflows that operate on original counts (Lopez et al.,

2018). The best way to conduct normalisation steps so that it’s also computationally feasible

is a point of discussions (Ahlmann-Eltze and Huber, 2021; Hafemeister and Satija, 2019;

L. Lun et al., 2016; Lause et al., 2021; Townes, Hicks, et al., 2019). In addition to that,

some tools like Salmon also allow to estimate abundance uncertainty (Patro et al., 2017). For

full-length protocols, it might be relevant to normalise for gene length and GC content.

With the high sparsity of scRNA-seq count matrices, particularly pronounced for droplet-

based methods, models that account for this sparsity with zero inflation have been proposed

(Risso et al., 2018). However it has recently been argued that counts in droplet-based
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scRNA-seq data are consistent with Gamma-Poisson (negative binomial) distribution while

residual zero inflation can be explained by biological differences in cell types and cell states

(Svensson, 2020). Also, the extent of zero inflation is severely affected by the choice of

protocols, with the ones having no UMIs retaining substantial zero inflation (Jiang et al.,

2022).

1.2.2.2 Note on the quantification resolution

Expression of genes rather than transcripts has been the predominant focus of single-cell

transcriptomics. This is in part due to not having access to full-length transcripts to then

reconstruct isoforms (Hagemann-Jensen, Ziegenhain, and Sandberg, 2022) in many of the

popular platforms. In this scenario, a read often maps to multiple isoforms leading to high

isoform quantification uncertainty. However, when there is sufficient evidence for one or

another isoform, such transcripts can be quantified separately as parts of different transcript

groups with low uncertainty (Sarkar et al., 2020). Such data-driven approach to flexibly

define the resolution of quantification might provide a notable improvement over rigid

gene-level analysis while allowing transcript-level information where possible. Moreover,

transcript-level data has also been shown to increase sensitivity and accuracy of gene-level

differential analysis (Yi et al., 2018).

1.2.2.3 Note on measuring accessibility and counting proteins

Count values in different modalities arise from different latent generative processes and

feature different noise sources and technical biases. This motivates the application of tailored

solutions for generating and modelling feature counts in each modality.

For scATAC-seq data, it seems appropriate to model fragment counts (Martens et al.,

2022) with Poisson distribution, which also follows best practices for bulk ATAC-seq (F. Yan

et al., 2020) and ChIP-seq data (Y. Zhang et al., 2008).

Protein measurements readout using DNA-barcoded antibodies in approaches like CITE-

seq (Stoeckius et al., 2017) have specific properties such as added background noise and

relatively small fraction of unique features measured (dozens and hundreds of proteins). To

tackle those challenges, there have been approaches proposed such as denoising and scaling

by background (dsb) (Mulè et al., 2022). This addresses ambient antibody capture as a major

source of noise in protein abundance measurements, and empty droplets — based on their

RNA content — provide an estimate of the ambient background.
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Fig. 1.4 Data processing workflow
a: Consecutive steps of a canonical scRNA-seq processing workflow. Data matrix or its
derivations at each step is shown as white rectangles of specified dimensions. b: Analyses
of scRNA-seq data tailored to specific tasks such as trajectory inference, cell aggregation,
differential expression or differential cell type composition analysis.

1.2.3 Downstream processing of count matrices

The best practices for single-cell transcriptomics (Luecken and Theis, 2019) include quality

control at cell (barcode) and feature (gene) level, with possible control of signal from ambient

RNA and of doublet rate, normalisation, removing unwanted variation, feature selection,

dimensionality reduction and guidance for downstream analyses such as clustering and

differential expression.

1.2.3.1 Quality control

A distribution over the number of counts across cells is a typical way of representing

sequencing depth of a dataset, with outliers being filtered out by a data-dependent threshold

(Luecken and Theis, 2019). Apart from low count per cell, cells can also feature high fraction

of counts from mitochondrial genes, which can indicate that cytoplasmic RNA has leaked

through a broken membrane and put such cells on a list of barcodes to remove. Cell outliers

with high counts can signify doublets.

Accounting for doublets and multiplets is particularly important in droplet-based high-

throughput experiments as the multiplet rate depends on the amount of input cells (Bloom,
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2018). Multiplet detection and removal has been addressed in specific methods (Xi and

J. J. Li, 2021). One of the ways that these methods tackle the doublet identification is

computationally constructing artificial doublets from the data and then trying to identify

similar droplets in the dataset (McGinnis et al., 2019).

1.2.3.2 Count normalisation

An mRNA molecule is counted after it has been successfully captured, reverse transcribed

and sequenced, and due to sampling effects, the resulting sequencing depth varies from cell

to cell (Luecken and Theis, 2019). It is frequently corrected for during the normalisation

step. The recent comparison of normalisation strategies argues that a simple and commonly

strategy to log-transform library size-normalised values with a pseudocount combined with

principal component analysis perform well in many situations:

yi = log(
xi

∑ j x j
+1),

where xi is a raw count of gene i in a cell and ∑ j x j is total sum of counts for this cell.

1.2.3.3 Covariates

Covariates can either be known or unknown (hidden). If they are unknown, they need to be

estimated from the data first. Technical or unwanted biological covariates might be removed

with a simple linear regression or with more complex models (Buettner, Natarajan, et al.,

2015; Buettner, Pratanwanich, et al., 2017). Specific covariates such as the signal arising

from ambient RNA can be removed with specially developed methods (Young and Behjati,

2020).

One typical covariate is a batch effect, and consequently, linear models (Johnson et al.,

2007) and linear mixed models (Tung et al., 2017) to separate the batch effect have been

developed as well as approaches building on the detection of mutual nearest cell neighbours

(Haghverdi, Lun, et al., 2018).

1.2.3.4 Feature selection

With dozens of thousands of features (about 25000 genes in human or mouse studies), the

unfiltered feature space is inevitably tainted by the «curse of dimensionality» (Bellman,

2015). In order to reduce the noise in the data (e.g. by filtering the most sparse genes out) and
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to make downstream computations computationally feasible, informative genes are selected.

The choice of such genes is dictated by the complexity of the dataset but a typical strategy

suggests selecting highly variable genes for the downstream analysis (Luecken and Theis,

2019).

1.2.3.5 Dimensionality reduction

Dimensionality reduction is a first-line processing step in a vast number of workflows. An

important notion behind applying dimensionality reduction methods to omics datasets is

the «low dimensional» nature of gene expression data, i.e. there is a low-dimensional space

where the biological signals can be accurately represented by a small number of basis vectors

(Heimberg et al., 2016). Indeed, if most genes can be grouped into modules with correlated

expression levels across cell populations, we can reduce the data representation from the gene

level to the module level (Trapnell, 2015). It has been shown that transcriptional states in

single-cell data can be reconstructed with a small fraction (less than a thousand) of transcripts

per cell (Heimberg et al., 2016). This tolerance to noise is arguably due to the gene expression

covariance structure.

Principal component analysis (PCA) is a cornerstone method for such analyses, with

well-defined theory behind it, its accessibility via efficient implementations, linearity and

hence interpretability (Alter et al., 2000; Ringnér, 2008). PCA is also at the basis of many

other unsupervised methods such as kernel PCA, which extends PCA with kernel methods

(Ham et al., 2004; Mika et al., 1998).

Principal components effectively define a new coordinate system maximising variation

along them, with the first principal component being the direction of the largest variation

in samples. While the full singular value decomposition (SVD), which is typically used to

calculate principal components, of the original matrix is lossless, in practice, only a few

components of interest, signifying the largest variation, are computed and used to represent

the dataset (Luecken and Theis, 2019). Each principal component is a linear combination of

original features, which makes it possible to gauge the importance of each feature (e.g. gene)

for each axis of the embedding and identify the most information-rich features.

While PCA provides a convenient linear reduced space to work with the data, which is

still interpretable, it can be challenging to represent main variation in the data with principal

components when plotting the data in two dimensions. More generally, high-dimensional

data visualisation is a challenging problems across different domains.
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For data representation it is desired that some of the properties in high-dimensional space

are preserved in the embedding. One of such properties can be local similarity that methods

such as t-Distributed Stochastic Neighbour Embedding (t-SNE) attempt to preserve (Van der

Maaten L and Hinton G, 2008). More recently introduced methods provide alternatives that

argue to preserve more global structure with superior run time performance, e.g. Uniform

Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) or viSNE (Amir

et al., 2013). Their further developments also try to preserve local density of data points

building on top of the state-of-the-art methods such as t-SNE and UMAP (Narayan et al.,

2021). The idea of taking density into account echoes diffusion maps (Farrell et al., 2018;

Haghverdi, Buettner, et al., 2015; Haghverdi, Maren Büttner, et al., 2016) that were developed

to visualise differentiation trajectories and establish pseudotemporal ordering of single cells.

While methods like t-SNE and UMAP provide immense value for representing high-

dimensional data, they can also be misleading and sensitive to hyperparameter choice

(Wattenberg et al., 2016). It has also been argued that non-linear embeddings of the data to

two or three dimensions should be used with care when drawing conclusions based on them

(Bergen, R. A. Soldatov, et al., 2021; Chari, Banerjee, et al., 2021), which is of particular

importance for the omics analyses, where biological insights are attempted to be generated

from the data.

Another family of methods to visualise high-dimensional data has arisen thanks to the

progress of deep neural networks and their combination with Bayesian models in models

such as Variational Autoencoders (VAEs) (Kingma and Welling, 2014; Lopez et al., 2018).

Parallels to PCA have also been drawn as VAEs have been reported to use differences in

variance in order to generate latent data representation and to collapse to PCA in the linear

case (Rolinek et al., 2019).

1.2.3.6 Definition of cell neighbourhoods and clustering

Another pivotal step is constructing a distance matrix. Commonly, Euclidean distances are

calculated in the principal component (PC) space (Luecken and Theis, 2019). Alternatives

like cosine similarity are also used (Haghverdi, Lun, et al., 2018). The resulting cell-cell

distance matrix can be utilised for a variety of downstream analyses including UMAP

(McInnes et al., 2018) and clustering.

Clustering is used for discovering the natural groupings of cells based on their features:

in the case of scRNA-seq, relying on their transcriptional profiles. In most of the relevant
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applications this clustering is unsupervised, i.e. without any labels providing the group truth

(Kiselev et al., 2019). Typically, a cell distance matrix is used for defining cell similarity,

which a clustering algorithms is applied on (Kiselev et al., 2019): the widely used ones

include k-means, hierarchical clustering and more scalable graph-based community detection

such as Louvain (Blondel et al., 2008) and Leiden (Traag et al., 2019), named after a

Belgian and a Dutch city. For the latter family of clustering algorithms, densely connected

components in the k-nearest-neighbours graph are identified (Lancichinetti and Fortunato,

2009). Irrespective of the clustering method, it is usually applied on principal components

rather than on individual features, and methods that integrate PCA and hierarchical clustering

more tightly have also been developer (žurauskienė and Yau, 2016).

1.2.3.7 Differential expression

Differential expression analysis in the context of single-cell transcriptomics is typically

concerned with identifying genes that vary their expression level between states or conditions.

When these condition represent phenotypic change, we would be then concerned with

identifying the ones responsible for that change between these conditions (Trapnell, 2015).

For the method performance, it has been argued that accounting for biological replicates is

important, with a failure to do so leading to false discoveries (Squair et al., 2021). The best

performance was achieved by aggregating cells within a biological replicate («pseudobulk»)

(Crowell et al., 2020; Soneson and Robinson, 2018; Squair et al., 2021) and with the methods

originally developed for bulk sequencing (edgeR (Robinson et al., 2010) - DESeq2 (Love et

al., 2014), both based on Gamma-Poisson mixture, or negative binomial distribution). More

tailored methods have been proposed with such as MAST based on generalised linear model

(Finak et al., 2015), a Bayesian approach to single-cell differential expression (Kharchenko

et al., 2014), where the observed abundance of each gene in a cell was modelled as a mixture

of Poisson («drop-out») and negative binomial («amplification»), or a trajectory-based

differential expression analysis (Van den Berge et al., 2020).

1.2.3.8 Temporal modelling

For the data where the dynamic processes such as differentiation are of interest, the focus is

on trajectory inference, or pseudo-time analysis, methods that allow to order cells along a

trajectory based on their similarity (Ding et al., 2022; Saelens et al., 2019; Trapnell et al.,

2014). Such methods have also been extended to be incorporate auxiliary information for
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cell fate mapping such as RNA velocity (Ding et al., 2022; Lange et al., 2022) or metabolic

labelling (X. Qiu et al., 2022).

1.2.3.9 Cell composition

Single-cell data have naturally encouraged the development of methods for compositional

analysis. An applied motivation for such methods is modelling cell type proportions and com-

paring them between conditions such as individuals with and without the disease. Methods

like that account for uncertainty in cell type proportions estimations and enable differential

abundance testing and are frequently formulated as generalised linear models (M. Büttner

et al., 2021; Y. Cao et al., 2019) or graph-based models (Dann et al., 2022).

1.2.3.10 Cell aggregation

In single-cell datasets, multiple observations are obtained from the same biological entity,

which leads to a fundamental challenge of designing appropriate models to account for

biological replicates (Squair et al., 2021). Aggregation of the data in disjoint groups fre-

quently referred to as pseudobulk allows to address at least some of these challenges (Lun

and Marioni, 2017; Squair et al., 2021). A more fine-grained resolution of the aggregated

data is offered by metacells — groups of scRNA-seq profiles that represent distinct cell states

in the data such that original cells in a group represent repeated sparse sampling, and various

algorithms to construct metacells have been proposed (Baran et al., 2019; Ben-Kiki et al.,

2022; Bilous et al., 2022; Persad et al., 2022).

1.2.4 Integration of multimodal single-cell data

The ever increasing variety of experimental multimodal omics techniques motivates the

exploration and development of corresponding analytical approaches. First of all, multimodal

omics data analysis is based on understanding and choosing appropriate models for individual

modalities, and the lessons learned for single-cell transcriptomics remain relevant. Then,

multimodal-specific challenges come into play.

First and foremost, there are statistical challenges for multimodal data integration and

interpretation (Argelaguet, Cuomo, et al., 2021). With the increase in the number of modali-

ties, the number of features increases hence the need for appropriate regularisation strategies

as well as for the methods that can scale to the ever growing feature space. Underlying
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different molecular layers, there are different generative processes, and combining different

likelihoods in one model is not a trivial task. Sparsity structure, the nature of missing values

and the sources of noise can also be different for various data-generating methods.

Many integration methods for multimodal omis are following the original idea of matrix

factorisation and extend it to multiple modalities, or views (Argelaguet, Cuomo, et al., 2021;

Xu et al., 2013). Methods based on joint factorisation include, but not limited to, multiple

co-inertia analysis (Meng et al., 2014), joint non-negative matrix factorisation (Z. Yang and

Michailidis, 2016; S. Zhang et al., 2012), joint and individual variation explained (Lock et al.,

2013), multi-omics factor analysis (MOFA) (Argelaguet, Velten, et al., 2018). Other family

of methods extend nearest neighbour search to work across multiple modalities (Hao et al.,

2021) or integrate neighbour graphs of individual modalities (Bo Wang et al., 2014). Other

approaches like LIGER (C. Gao et al., 2021; Welch et al., 2019) and canonical correlation

analysis (CCA) (Stuart, Butler, et al., 2019) first require modalities to be defined in the

same feature space, e.g. epigenomics signal is to be aggregated for genes to be integrated

with gene expression. Multi-view clustering methods has been proposed in the form of a

Dirichlet process mixture model (Bachireddy et al., 2021; Burdziak et al., 2019) or multiplex

community detection (Mucha et al., 2010; Traag et al., 2019).

Corresponding models based on variational autoencoders have also been proposed for

multimodal integration such as the ones for CITE-seq data (Gayoso, Steier, et al., 2021) as

well as for chromatin and transcription (Ashuach et al., 2021).

1.2.5 Analysis ecosystems and workflows

As illustrated by a rich variety of computational approaches to model, process and interpret

single-cell data, there’s a notably complexity in analysis workflows for such data. This

motivates abstractions that would allow to handle original data and derived information such

as embeddings and annotations with minimal overhead. At the same time, with a wide range

of experimental techniques, methods and their applications, the choice of programming

language typically dictates the choice of analytical tools and, currently, the choice of the data

storage model (Luecken and Theis, 2019).

1.2.5.1 Data storage within R ecosystem

A widely popular ecosystem of packages for the R programming language with a focus

on biology is Bioconductor. Its motivating principles include streamlined user experience
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Fig. 1.5 Data standards for single-cell genomics
a: Data storage standards adopted for scRNA-seq datasets. SingleCellExperiment and Seurat
are R packages, AnnData is a Python package. For illustrative purposes, only abstractions for
matrices derived from a single modality are shown. N and D denote dimensions in terms of
the number of cells and genes, respectively. b: Data storage standards adopted for multimodal
storage. MultiAssayExperiment extends SingleCellExperiment in a modular fashion while
Seurat, in its most recent versions, provides a single object for unimodal or multimodal data
storage. N, N1, N2 refer to the number of cells; D, D1, D2 refer to the number of features.
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and support of an open scientific community (Amezquita et al., 2020). such abstraction is

an object structure (SingleCellExperiment) that contains primary and transformed counts

matrices (assays) as well as provides slots to store feature and cell annotations and cell

embeddings (Huber et al., 2015). SingleCellExperiment object sticks to the convention of

storing features in rows and allows to incorporate matrices and metadata such as experimental

covariates or derived cell labels. Following the modularity principle of Bioconductor, analysis

and methods packages such as scran (L. Lun et al., 2016), scater (McCarthy et al., 2017) and

DropletUtils (Lun, Riesenfeld, et al., 2019) can operate on the Bioconductor data standards.

Another commonly used toolkit for single-cell analysis is Seurat (Satija et al., 2015).

Together with defining the in-memory Seurat object structure to store data, it provides a set

of tools for loading, processing, integrating and visualising single-cell transcriptomics data.

Lately this format and framework have been extended to chromatin assays (Stuart, Srivastava,

et al., 2021).

1.2.5.2 Data storage within Python ecosystem

Scientific Python ecosystem has been constructed with NumPy — a library for multidimen-

sional array programming — as its foundation (Harris et al., 2020). Briefly, it provides a

multidimensional array data structure as well as functions to perform vectorised calculations

on arrays. With its central position in the ecosystem, NumPy effectively specifies a well

defined API that other specialised array implementations can rely on. Lately, JAX library for

high-performance numerical computing and machine learning has been introduced featuring,

among other things, an API that largely follows NumPy (Bradbury et al., 2018).

Built on top of NumPy, there are software packages to deal with in-memory tabular data

(McKinney, 2011). On top of that, another layer of abstraction has been build in order to

present annotated datasets (AnnData) (Virshup et al., 2021) or N-dimensional labeled arrays

(xarray) (Hoyer and Hamman, 2017).

1.2.5.3 Data processing workflows

On top of the data standards such as MultiAssayExperiment, Seurat object and AnnData,

analysis workflows are built (Zappia et al., 2018). These workflows collate individual tools

and provide a convenient interface making these tools interoperable through a data standard.

Part of the Bioconductor ecosystem, scran (L. Lun et al., 2016) and scater (McCarthy et al.,

2017) operate on SingleCellExperiment objects. Seurat framework is not separated from the
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data standard it ships with and defines operations on a stateful Seurat object that cover many

types of analysis for single-cell transcriptomics (Butler et al., 2018; Hao et al., 2021; Satija

et al., 2015; Stuart, Butler, et al., 2019) as well as, lately, chromatin accessibility (Stuart,

Srivastava, et al., 2021). In Python, Scanpy (single-cell analysis in Python) (Wolf et al.,

2018) provides improved scalability, better separation of individual processing steps, which

increases modularity, and easier access to interfaces with machine learning toolboxes such as

PyTorch (Paszke et al., 2019).

1.2.5.4 Multimodal omics data storage

With multimodal omics becoming a more widely used data type at single-cell scale, new

computational and analytical solutions are required to handle such data (Argelaguet, Cuomo,

et al., 2021). Such experiments pose considerable challenges for data management, pro-

cessing, integration, visualisation and exchange (Conesa and Beck, 2019; Wilkinson et al.,

2016).

Existing open-source solutions for comprehensive multimodal omics data storage have

been implemented exclusively for the R language ecosystem in libraries such as MultiAssay-

Experiment (Ramos et al., 2017) and Seurat (Hao et al., 2021). While providing the necessary

functionality and supporting arbitrary numbers of modalities, these libraries have their own

limitations showing that their design might not be generic enough for modern single-cell

multimodal omics applications. As such, Seurat requires a common set of cells to be profiled

for all the modalities and lacks separation of multimodal annotations from the ones based

on individual modalities. MultiAssayExperiment lacks multimodal annotations whatsoever.

In practice, the analysis results obtained by these libraries are saved in a binary file that is

interfaced only with the R language.

MultiAssayExperiment provides a generic solution to manage multi-omics data in the

R programming language as part of the Bioconductor ecosystem (Ramos et al., 2017). In

particular, it introduced a data structure to represent and manipulate multi-omics datasets,

with three main components of it being (1) sample-level table, (2) list of experiments (assays),

(3) sample map to relate samples to individual observations in assays. This makes it possible,

for instance, to store multiple observations per sample in an assay, which has been relevant

for replicates in patient-level measurements.
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1.2.5.5 Multimodal data processing workflows

The development and abundance of multimodal techniques have posed grand challenges to

the analytical tools and computational approaches to handle and interpret such data.

While individual multimodal integration techniques were discussed above, the only

popular framework that natively handles multimodal omics data is Seurat (Hao et al., 2021).

In addition to its data format that allows to store multiple arbitrary-sized feature sets profiled

across a single set of cells, it implements an integration method to calculate weighted nearest

neighbours (WNN) across modalities.

It is worth pointing out that individual modalities of multimodal datasets can be used

to guide decisions and analyses. For instance cell type composition can be explored in

an unbiased manner with scRNA-seq and cell types can be selected to perform further

experiments and profile alternative modalities. Another example is clustering cells based

on their gene expression profiles to then guide peak calling in the scATAC-seq modality

in individual cell populations (Granja et al., 2021). For such strategies to be seamlessly

integrated into user workflows, multimodal frameworks have to cooperate with analysis

toolboxes for individual modalities.
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1.3 Discussion and new perspectives

Single-cell multimodal omics is a powerful tool for studying the molecular properties of

biological systems. Complex multimodal datasets enable the analysis of multiple molecular

layers within individual cells as well as the characterisation of their relationships. These

approaches typically do not capture, however, cell interactions or their spatial context, which

can have significant impacts on cell state and function. Another challenge is to study

biological processed at the single-cell level in time. This can be particularly important for

understanding how different molecular layers interact and influence one another as correlated

or consequential patterns may occur across different layers with different temporal resolution

or delay. Addressing these challenges is necessary in order to fully leverage the potential

of single-cell multimodal omics. Some of the recent developments in these directions are

discussed below.

1.3.1 Transcriptomics and multimodal omics across time and space

1.3.1.1 Transcriptional dynamics

Beyond a static picture of RNA content in a cell, its dynamics can be profiled as well (Stark

et al., 2019). For instance, in scNT-seq (Q. Qiu et al., 2020) and scSLAM-seq (Erhard et al.,

2019), nascent transcription is measured using metabolic labelling of newly transcribed RNA

molecules with 4-thiouridine (4sU) and consequent conversion of 4sU to cytidine analogues.

Availability of such data has also required and triggered the development of new analytical

methods (X. Qiu et al., 2022). More than transcription, translation of RNA molecules in

individual cells has also been profiled with single-cell Ribo-seq, which achieves close to

single-codon resolution (VanInsberghe et al., 2021). Furthermore, longitudinal profiling of

living cells has been recently made possible with non-disruptive spatiotemporal imaging with

immunofluorescence (J. Ko et al., 2022).

1.3.1.2 Spatial omics

In multicellular organisms, the position of their building blocks — cells — in space in relation

to other cells can determine its state and function (Bodenmiller, 2016). The importance

of studying cells in their spatial environment has been highlighted in various contexts, for

instance for linking connectivity networks of the nervous system to the transcriptomics

(Lein et al., 2017), spatial bone marrow niche organisation (Baccin et al., 2020) or due
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the recognised role of tumour microenvironment for cancer development and progression

(Hanahan and Coussens, 2012). And while many studies are performed on isolated cells with

their tissue context being destroyed, there has been significant progress in developing and

performing high-throughput studies while preserving spatial information (Burgess, 2019).

Spatial location for individual genes (thousands) can be measured simultaneously with

their expression using imaging techniques such as in situ hybridisation (Eng et al., 2019;

Moffitt et al., 2016; Shah et al., 2016). Transcriptome-wide spatial quantification has become

possible with technologies that transfer mRNAs to an array with oligonucleotides for spatial

barcoding (Efremova and Teichmann, 2020; Ståhl et al., 2016; Sanja Vickovic et al., 2019).

The latter currently comes at the cost of resolution, albeit special computational approaches

have been developed to resolve cell types in spatial transcriptomics data (Kleshchevnikov

et al., 2022).

Imaging techniques have also been extended with other modalities such as with mi-

croscopy techniques as has recently been done in the STcEM, which combined scanning

electron microscopy with fluorescent in situ hybridisation (Androvic et al., 2022), or with

neuronal activity to track functional maturation of neurons (Wan et al., 2019).

Following spatial transcriptomics, spatially-resolved epigenomics assays are being devel-

oped such as spatially resolved ATAC-seq (Y. Deng et al., 2021; Thornton et al., 2021). Such

assays have been applied to provide a new, spatial dimension to the sequencing of human and

mouse cortex tissues (Thornton et al., 2021) and of mouse embryos (Y. Deng et al., 2021).

With advances in spatial information acquisition, it will be increasingly common to

multimodal omics sequencing techniques to be spatial as well (L. Tang, 2021). Now,

platforms like DBiT-seq (Y. Liu et al., 2020) and SM-Omics (S. Vickovic et al., 2022)

provide high-throughput spatially resolved transcriptomics combined with antibody-based

protein measurements with 10–100 µm spot size.

1.3.2 RNA velocity

As common scRNA-seq protocols generate reads from both spliced and unspliced mRNA, it

has also been generally possible to estimate a time derivative of gene expression for each

gene, which has been termed «RNA velocity» (La Manno, R. Soldatov, et al., 2018). The

balance of unspliced and spliced mRNA abundances indicates the future state of mature

mRNA abundance making it possible to effectively make a prediction about the future state of

the cell. RNA velocity improvements have been proposed with a likelihood-based dynamical
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model (Bergen, Lange, et al., 2020) and unified latent time across the transcriptome (M. Gao

et al., 2022). RNA velocity can be further combined with cell similarity to model cell-cell

transition probabilities (Lange et al., 2022).

Moreover, the kinetic model of RNA velocity has been expanded to proteins (Gorin,

Svensson, et al., 2020) and multi-omics, the latter incorporating chromatin accessibility in

the velocity estimates (C. Li et al., 2021). The current approaches to RNA velocity, however,

require rigour when applying the method and can be sensitive to parameter choices and have

behaviour dependent on the underlying biology of the system (Bergen, R. A. Soldatov, et al.,

2021; Gorin, Fang, et al., 2022).

1.3.3 Modular workflows and emerging languages

The complexity of multimodal data calls for appropriate data structures and integration

methods. In order to accommodate the diversity of molecular assays and their combinations,

data standards should be generic and extensible. Modularity and composability of analytical

workflows, designed around these data standards, is their important feature, as demonstrated

by the workflows in Python and R described above. This can allow for more diversification

of programming languages, frameworks and tools while keeping workflows practical and

accessible.

While standards haven’t been established for the newer programming languages, it is

worth noting a few of them seem to attract a growing interest from the community. That

includes Julia, a language that is focused on performant numerical computations (Perkel,

2019), and Rust, a more low-level language, which increasingly frequently underlies high-

performant tools (Perkel, 2020).





Chapter 2

Multimodal data abstractions and
operations

With multimodal datasets becoming more widely used and larger in size, there has been

a pronounced need for tailored computational solutions to store, manage and exchange

such data. Some existing solutions have been described in the section 1.2.5, which also

highlighted a glaring need for standardising multimodal data handling in Python. To address

this, I designed and implemented multimodal data (MuData) objects alongside a suite of

analysis methods that build on it. In this chapter, I describe the design of this multimodal

data abstraction that is naturally integrated into the existing single-cell genomics workflows.

To handle MuData objects and perform data integration, I created MUON — a multimodal

omics analysis Python framework. Last but not least, I provide an outlook on a scalable

multi-dataset multimodal data storage.

The contents of this chapter concerning MuData and MUON have been published in

Bredikhin et al., 2022. The concept and the design of MuData and MUON as well as their

primary reference implementations are my own contribution.
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2.1 Multimodal Data (MuData)

Here, I introduce MuData as a standard to operate multimodal datasets that features a seamless

interface with the existing de facto standards for single-cell transcriptomics. MuData is a data

abstraction around a collection of two-dimensional datasets: it offers an interface to access

data properties and to apply transformations while not exposing implementation details to its

user. Notably, it is a generic data structure around observations (e.g. samples, individuals

or cells) and features (e.g. genes, proteins or genomic locations). For the purposes of this

chapter, its description below will be tailored to single-cell multimodal datasets.

2.1.1 Data standard for multimodal omics

2.1.1.1 Design considerations

Experiments generating data with multiple modalities observed for the same cells pose novel

analysis and data management challenges. In order to address them in a principled manner,

data abstractions are required. The result of a multimodal experiment is a collection of

datasets for the respective modalities but also cross-modality information that is relevant

beyond individual modalities. Moreover, analysis and derived annotations can be either

modality-specific or connected to several modalities or to the whole dataset.

Other considerations include efficient unimodal access and providing interfaces similar to

unimodal omics. Unimodal access implies that there should be a transparent way of working

with just one modality of the few ones in the multimodal experiment. It also means that

existing software solutions should be able to access individual modalities within a multimodal

dataset using established interfaces. This way the tools developed for certain data types such

as scRNA-seq are ensured to be readily available when such data types are combined with

other data types in a multimodal experiment. Moreover, this also means individual modalities

are stored on disk in a way they would have been stored for unimodal experiments.

The outputs of the processing steps for individual modalities are confined within them

thus providing separation of concerns and reflecting the input structure. With integrative

analysis of multimodal data, multiple input modalities give rise to outputs that are to be

stored at the multimodal level. As analysis outputs for multimodal integration do frequently

resemble the analysis results for individual modalities (e.g. embeddings or neighbourhood

graphs), it is also desirable they are to be stored in the same way providing similar interfaces

to access similar outputs.
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A multimodal omics dataset will be defined below as one with cells profiled across several

sets of features (e.g. transcript abundance, gene expression, protein abundance, genomic

locus accessibility, methylation state of individual nucleotides). These features come from

distinctive groups so that each feature d comes from a single modality md , i.e.

∀d : ∃m,m ∈ {1, ...,M} : 1m(d) =

1, m = md ,

0, m ̸= md ,

where 1m(d) is an indicator of a feature d belonging to the modality m from all the

modalities in the dataset {1, ...,M}.

A typical property of a multimodal experiment is to have most or all cells sampled across

all modalities. More formally, if N is a total number of cells in the experiment, each cell i

profiled at least for one modality of M, we would expect

∑i,m 1i
m

M
≈ N,

where 1i
m is an indicator of a cell i having been profiled for modality m. Another way

to formulate this would be to consider a sorted set of cells in a dataset so that first k cells

are profiled for all the modalities and cells from k+ 1 to N are profiled for 1, ...,M′ < M

modalities. We then expect N − k ≪ N.

With the generic design of MuData, this is, however, not enforced or required, which

becomes important in practice, especially when managing derived data where filtering has

been performed.

2.1.1.2 Hierarchical design of MuData

MuData provides a level of abstraction on top of the ones offered by the unimodal data

standards. This hierarchical model allows to generalise existing data formats for single

omics, mainly transcriptomics, which revolve around a two-dimensional matrix with counts,

while preserving compatibility with existing toolchains and standards. In particular, the

structured format of MuData leverages and builds upon the AnnData standard for annotated

data (Virshup et al., 2021) adopted by the single-cell community.

Nested structure enables storage of both modality-specific and dataset-specific infor-

mation in a uniform manner. In detail, cell- and feature-specific annotations, including

multidimensional and pairwise annotations, are available at the level of individual modalities
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and the whole dataset (Figure 2.1). Thus MuData can store both original and derived data

and analysis outputs, for instance cell type labels or embeddings of cells (Figure 2.1b).

Fig. 2.1 MuData object structure
a: Schematic representation of a MuData object with RNA (blue) and ATAC (red) modalities
as an example. Matrices with original and transformed counts and associated and derived
metadata are represented as arrays and tables. Green denotes multimodal information.
b: Example contents in a MuData object. Count matrices, embeddings, neighbourhood
graphs and cell annotations for individual modalities (blue and red) as well as for the
multimodal level are shown. c: Schematic representation of MuData object on disk in
the HDF5 format (left) and in memory in Python (right). Plates denote different levels of
hierarchy.

MuData offers multiple serialisation options. In-memory MuData objects are typically

serialised to HDF5 (The HDF Group, 2000–2010) files on disk, hereinafter referred to as

H5MU files. HDF5 (Hierarchical Data Format 5) was designed for organised storage of

large volumes of data and has been widely used across many applications and domains
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(Blanas et al., 2014; De Carlo et al., 2014; Dougherty et al., 2009; M. M. Hoffman et al.,

2010; S. Lee et al., 2022). This is also the format that AnnData takes advantage of by

default and is thus a natural default serialisation option for MuData due to their hierarchical

relationship. The schema of the on-disk MuData storage is reminiscent of the AnnData’s one

(Figure 1.5) and can serve as a generalisation to multimodal data (Figure 2.1c). By serialising

individual modalities using the AnnData serialisation mechanism, such MuData design thus

permits direct access to individual modalities and makes them usable with existing (unimodal)

analysis toolchains.

MuData functionality includes, but is not limited to: object instantiation from a map of

modality names and AnnData objects; access to individual modalities as AnnData objects;

subsetting cells and/or features. Subsetting cells works across modalities, i.e. cell selection

is applied across all the modalities as well as to the multimodal annotations (Figure 2.2).

Feature relations across modalities can be stored in the MuData object as a sparse multimodal

graph (Figure 2.2b).

The interface of a MuData object offers access to its properties through a set of predefined

attributes discussed below together with their respective functionality.

2.1.1.3 Annotation of cells and features

The data container makes sure that annotations of cells and features are unambiguous by

validating the dimensions of the respective annotation tables. Following terminology of

AnnData, annotations for cells and features are accessible via .obs (observations) and .var

(variables) attributes, respectively (Figure 2.2a).

Multimodal annotations for cells and features are accessible via .obsm and .varm at-

tributes, respectively. MOFA factors or a UMAP space are examples of multimodal em-

beddings (Figure 1.4), and MOFA factors loadings are essentially a multimodal feature

annotation.

2.1.1.4 Cell and feature relations

Cell neighbours and analogous structures of cell relations can be represented as graphs. In

practice, these graphs are typically sparse and are stored in a sparse format as for each cell,

only distances or relations to its k neighbours are recorded. Multimodal cell neighbours

computed, for instance, based multimodal latent factors (Argelaguet, Arnol, et al., 2020) or
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Fig. 2.2 MuData schema visualisation
a: Representation of the schema for MuData. Matrices and tables are shown as rectangles
with their dimensions and access attributes denoted. Corresponding dimensions are shown
to be aligned. Individual modalities are AnnData objects. In addition to that, there’s data
at the multimodal level, both for cells and features. b: Illustration of intra- (solid colours)
and inter-modality (stripes) feature relations using genes (RNA, in blue) and peaks (ATAC,
in red) as an example. Global feature dimensions are the sum of the feature dimensions of
individual modalities.
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with multimodal graph methods (Hao et al., 2021; Bo Wang et al., 2014) are accessible via

.obsp attributes following the way unimodal relations are stored in AnnData (Figure 2.2a).

Feature relations in .varp can be viewed in a similar way. With the multimodal .varp

attribute, such relations are stored for features across modalities. This is particularly valuable

for cross-modality relations such as feature correlation structure, and MuData format allows to

store information such as peak-gene binary correspondence, peak-gene distance, correlation

between accessibility and expression, etc. (Figure 2.2b).

2.1.1.5 Auxiliary information

Auxiliary unstructured data can be stored in the .uns slot following AnnData’s design

(Virshup et al., 2021). This feature is practically useful for storing which parameters were

used to compute derived annotations, software or genome assembly and annotation versions

as well as additional statistics of performed computations such as variance explained by each

principal component or, for the multimodal .uns attribute, each MOFA factor.

2.1.1.6 Synchronising MuData container

By design, MuData stores pointers to AnnData objects that contain data from individual

modalities. It also contains information derived from individual modalities such as cell

and feature names in order to store higher-level (multimodal) information. This means the

container needs to be synchronised with the individual modalities.

To keep the information in the container up-to-date, the identities of cells or features have

to be collated across modalities, which equates to the union operation on sets. Analogously,

the intersection of cell sets across modalities can be performed in order to derive a dataset

with all the cells profiled across all modalities. In order to handle the use case of multimodal

datasets, the same identifier (e.g. molecular barcode) in different modalities is considered

to point to a single cell in the dataset. Features are, however, considered to always be

disjoint. Having the global cells and feature sets collated identifies correspondence between

annotations for the experiment and for individual modalities (Figure 2.4a).

A natural way to collate items when dealing with tabular data are join operations. In

some typical scenarios, however, this operation can be performed faster than a join operation.

Below, a few scenarios are outlined that I have identified in the common analysis workflows

and optimised the procedure to collate data for. First one concerns count matrices that are

generated for multimodal omics experiments in a way that a set of cells with unique barcodes
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is used across all the modalities. That means when the equality of the sets of cell barcodes

and their order for all modalities is verified, there’s a one-to-one correspondence between

global cell identities and cell identities of individual modalities. Second, when user-defined

feature names can be used as respective identities, i.e. names in each modality are unique as

well as names across modalities, the items can be collated faster as no new identity has to be

generated that would ensure a stable join operation.

2.1.2 MuData implementation and serialisation

2.1.2.1 MuData implementation

I wrote the reference implementation of MuData1 in the Python programming language

(Van Rossum and Drake Jr, 1995). Following AnnData (Virshup et al., 2021), MuData

relies on the numerical Python stack with NumPy for arrays (Harris et al., 2020), Pandas

for tabular data (data frames) (Wes McKinney, 2010). Importantly, MuData does not bring

more dependencies to the dependency tree of AnnData, making it a lean library to build

infrastructure or analysis tools on.

Cross-language and cross-platform support of the MuData standard is achieved through

serialisation and corresponding libraries. To demonstrate the practical efficiency of this

approach, in addition to the Python software, I implemented the MuDataSeurat library2 for

the R programming language (R Core Team, 2013) for read and write operations for Seurat

objects (Satija et al., 2015) in memory and H5MU or H5AD files on disk. Together with

Ilia Kats, we have also implemented the MuData R library3 for the Bioconductor ecosystem

(Huber et al., 2015) and the Muon.jl4 package for Julia (Bezanson et al., 2017).

2.1.2.2 MuData serialisation

Serialisation is concerned about transmitting object as a series of bytes, e.g. writing it to a file

or directory on a local hard drive or a remote machine. Importantly, individual modalities are

serialised natively with AnnData, and multimodal annotations largely follow the serialisation

strategies of annotations in individual modalities (Figure 2.1c). I implemented MuData

serialisation to HDF5 files (The HDF Group, 2000–2010) and also outlined and implemented

1https://pypi.org/project/mudata/
2https://github.com/pmbio/MuDataSeurat
3https://www.bioconductor.org/packages/MuData/
4https://github.com/scverse/Muon.jl



Multimodal Data (MuData) 59

Fig. 2.3 Different serialisation
formats for MuData and their size on
disk

MuData serialisation using Parquet
files allows to achieve notable file
size reduction. Here, I simulated
3 datasets of variable size, where
M is a number of modalities, N is
the number of cells (rows) and D
is the number of features (columns).
For each dataset, three matrices were
generated and stored: a sparse ma-
trix from the Poisson(λ = 1) distri-
bution (1), which was then library
size-normalised and log-transformed
(2) and scaled to zero mean and unit
variance (3).

a new serialisation strategy for AnnData, MuData and similar file formats using Parquet files

(Apache Parquet 2022).

With HDF5 programming interfaces available across many languages, H5MU files are

accessible in different programming environments – as apposed to e.g. R-specific RDS files

(Huber et al., 2015; Satija et al., 2015) – solidifying the standard and allowing data exchange

and consistent format definition across platforms. HDF5 made it possible to implement

disk backing in order to access data in MuData files without loading count matrices from

individual modalities. The latter are stored on disk inside an H5MU file following AnnData’s

native H5AD schema, and that makes it possible to directly read individual modalities.

Apache Parquet is an open-source data file format that offers efficiency storage for column-

oriented data (Apache Parquet 2022). Taking advantage of the format and its optimisations, I

implemented serialisation strategy for MuData using such files to store matrices and tables

of data while keeping them in directories with structure matching in-memory object structure

(Figure 2.1c). This proved to be beneficial with regard to storage optimisation achieving

70% – 75% reduction in file size with the naïve serialisation implementation (Figure 2.3).

Another key advantage of this serialisation is accessibility of original data and its annotation

as individual files to the user and to the external tools. For instance, Parquet files can be

efficiently queried with DuckDB (Raasveldt and Mühleisen, 2019).
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2.1.2.3 Comparison of MuData with alternative data standards

MuData builds on AnnData’s concepts and code and incorporates and extends its ideas in a

modular fashion akin to the modular infrastructure of Bioconductor (Huber et al., 2015). In

fact, MuData strives to be the most general solution for multimodal omics data storage to

date (Table 2.1).

2.1.2.4 Versatile use of MuData objects

MuData finds its primary use in multimodal omics data handling. Its flexible design allowed

me however to extend its potential use cases and take advantange of MuData objects in

diverse applications. I outline a few of those usage scenarios below.

Linear epigenomics features such as chromatin accessibility are frequently split per

chromosome for efficient storage and access (Granja et al., 2021; Stovner and Sætrom, 2020).

As this satisfies the original idea of multimodality (Figure 2.4a), such datasets can be split

e.g. per chromosome, with each chromosome represented by an AnnData object, and used to

create a MuData object.

MuData’s design and implementation allow to specify an axis that is shared among

the contained AnnData objects. This enables its configuration for datasets with the shared

features space, e.g. data from multiple scRNA-seq experiments (Figure 2.4b).

Subsets of the data naturally arise in processing workflows. For instance, for many

downstream applications, only selected features (e.g. highly variable genes) are kept. Other

analyses, however, demand original data for the profiled features. This and similar use cases

can also be addressed with MuData by denoting all the axes as shared. As such, this is also

applicable to subsets of observations (cells) allowing to store e.g. subsampled data with a

subset of cells in the same object (Figure 2.4c).
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Table 2.1 MuData comparison to other data standards

MuData AnnData Seurat
Multi-
Assay-

Experiment

Main programming language Python R R R

Object can contain data on disk (out of

memory)

Yes Yes No5 Yes6

Default serialisation format H5MU H5AD RDS RDS

Default serialisation accessible in another

programming language

Yes Yes No7 No8

Support for multiple modalities Yes No Yes Yes

Support for data missing in some modali-

ties

Yes NA No Yes

Support for multimodal embeddings Yes NA No No

Support for inter-modality feature rela-

tions

Yes NA No No

5With SeuratDisk library, in-memory Seurat objects can be constructed from parts of the data stored in
HDF5 files.

6Only possible with HDF5Array library for matrices stored in external HDF5 files.
7With SeuratDisk library, in-memory Seurat objects can be exported to HDF5 files.
8Only matrices stored in external HDF5 files, exported with HDF5Array library, can be accessed.
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Fig. 2.4 Advanced use of MuData containers
a: Schematic representation of collating global sets of cells (observations) and features
(variables) for a multimodal dataset with RNA (blue) and ATAC (red) modalities. Global set
of features is a combination of feature sets of individual modalities. Global set of cells is a
union of cells present in individual modalities (some modalities can have some cells missing).
b: Schematic representation of collating global sets of cells and features for a collection of
two scRNA-seq datasets, both in blue showing the same modality for both datasets. Global
set of features is a union of genes (some datasets can have some genes missing). Global
set of cells is a combination of cells of individual datasets. c: Schematic representation of
collating global sets of cells and features for subsets of the same dataset. Both cells and
features axes are shared in this case. Global set of features and global set of cells correspond
to features and cells of the full dataset.
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2.2 Multimodal omics analysis framework (MUON)

MuData enables interoperability through data standardisation. When analysing the data,

most of the time one interacts with layers of abstraction on top of the data format — tools

and frameworks. Here, I present a framework for multimodal data integration (MUON) that

has been designed around MuData and enables multimodal data processing and integration,

extending current best practices for scRNA-seq analysis to multimodal omics.

2.2.1 MUON: a framework for multimodal omics data

The MUON framework has been designed around MuData containers to manage, process,

and visualise multimodal omics data. For the analysis of individual modalities stored in the

container, existing workflows can be reused. For instance, in a multimodal dataset with gene

expression and chromatin accessibility information from the same cell, gene expression can

be processed and analysed with scanpy (Wolf et al., 2018). This way canonical processing

steps, which include quality assessment, filtering cells, count normalisation and feature

selection, are reused in MUON workflows (Figure 2.5a).

One of the key features of the MUON workflows is their modularity, which allows to

define and combine alternative data processing strategies. With the major focus of MUON

on multimodal integration, this means that the necessary components for this integration

(e.g. embeddings of individual modalities) can be computed in independent ways as well as

an integration strategy of choice can be applied.

For instance, matrix decomposition methods such as principal component analysis (PCA)

or factor analysis (see Section 3.1) can be applied individually on gene expression and

chromatin accessibility count matrices. Alternatively, joint matrix factorisation methods such

as multi-omics factor analysis (MOFA) (Argelaguet, Arnol, et al., 2020; Argelaguet, Velten,

et al., 2018) allow to perform decomposition on count matrices from multiple modalities

simultaneously. Both approaches allow to obtain low-dimensional data embeddings. These

embeddings can be then used for efficiently constructing a cell neighbour graph, either for

individual modalities or for multiple modalities. The latter can be achieved via various

strategies such as estimating cell neighbour graph based on MOFA factors, which capture

information across modalities, calculating multimodal neighbours based on individual em-

beddings (Hao et al., 2021) or fusing multiple neighbour graphs derived for individual

modalities (Bo Wang et al., 2014). These neighbourhood representations can be used directly
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Fig. 2.5 Examples of joint scRNA-seq and scATAC-seq workflows that can be implemented
end-to-end in MUON
Schematic representation of analytical workflows for multimodal data using joint RNA and
ATAC profiling as an example. Here, features are represented by genes (in blue) and peaks
(in red) in the two respective modalities. Matrices with counts or derived annotations are
represented with rectangles, all stored in the MuData container. From left to right, processing
steps for individual omics are followed by multimodal integration where information from
multiple modalities is combined (in green). For processing individual omics, existing
methods and frameworks can be reused. For multimodal integration, MUON enables tailored
integration by making it possible to combine alternative analysis and integration steps. The
outputs depicted here, from top to bottom, are UMAP space and cell cluster labels computed
based on RNA (I and II, respectively) or ATAC (III and IV, respectively), cell cluster labels
based on modality-specific neighbour graphs (V), UMAP space and cell cluster labels based
on WNN (VI, VII) or MOFA (VIII, IX) output.
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for downstream methods to construct non-linear embeddings for visualisation (McInnes et al.,

2018) or to perform clustering of cells.

I have implemented the respective modular architecture of MUON as well as the interfaces

to the aforementioned methods. Importantly, these interfaces extend and generalise the ones

applicable for individual modalities in tools such as SCANPY (Wolf et al., 2018). For

instance, the multiplex community detection (Mucha et al., 2010) interface has been exposed

at muon.tl.leiden mimicking scanpy.tl.leiden for community detection algorithms

for individual neighbour graphs (Traag et al., 2019).

2.2.2 Example applications of MUON

To illustrate the functionality of MUON, I have used it to analyse the latest single-cell

multimodal datasets. In particular, in conjunction with SCANPY and AnnData and MuData

as data structures, MUON interface was used to handle all the operations from loading

counts matrices to performing quality control, data filtering, feature selection, cross-modality

integration, visualisation and to storing the processed data and analysis results.

2.2.2.1 Single-cell RNA + ATAC sequencing

Simultaneous scRNA-seq and scATAC-seq profiling as performed using the Chromium Single

Cell Multiome ATAC + Gene Expression protocol by 10x Genomics (Single Cell Multiome

ATAC + Gene Expression, 10x Genomics 2022) allows to gather both gene expression and

chromatin accessibility information from individual cells cell. Integrative analysis of such

data can be performed with some of the existing toolchains such as the R-based Seurat

framework (Hao et al., 2021), which implements a nearest neighbours-based integration

strategy. Below I will highlight how analytical multimodal workflows for joint scRNA-seq

and scATAC-seq profiling, including the ones implemented elsewhere, can be encoded in

MUON end-to-end.

First, I processed and applied alternative integration strategies to the dataset of about ten

thousand human peripheral blood mononuclear cells (PBMCs) (PBMC Granulocyte Sorted

10k, 10x Genomics 2022). For instance, MOFA yields a factor space, which we can use to

visualise the dataset (Figure 2.6a), interpret it on the level of individual features (see Section

3.2.4) or use for downstream analyses (Figure 2.6b). The first MOFA factors, which explain

the largest proportion of variance, capture biological variation along the myeloid-lymphoid

and cytotoxicity axes (Figure 2.6a).
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Fig. 2.6 Integration of RNA and ATAC modalities with MUON
a: MOFA factors for ten thousand human PBMCs. Cells are colours by coarse-grained cell
type on the left and, on the right, by gene expression (in blue) or peak accessibility (in red).
Illustrated genes and peaks have been chosen to reflect cell type-specific variability in the
factor space. b: UMAP space for the same dataset constructed from principal components
for individual modalities (left) or from MOFA factors (top right) or from cell WNN graph
(bottom right). Same coarse-grained cell type annotation was used to colour the cells.
c: UMAP space for the three thousand human brain cells constructed from MOFA factors
(left) or from cell WNN graph (right). Cells are colours by coarse-grained cell type (top)
and gene expression and peak accessibility in blue and red, respectively (bottom). d: Gene
expression (left, in blue) for the cell type markers in the same dataset. Accessibility (right, in
red) is shown for all the peaks that correspond to the respective marker genes.
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Alternative strategies illustrated in Figure 2.5 can be successfully applied here, and

UMAP space can be computed to visualise the information from individual modalities or

from both modalities, for instance, either through MOFA factors or the weighted nearest

neighbours graph (Figure 2.6b).

As these workflows do not make assumptions about the biological nature of the data,

they are portable across different collections of cell types, tissues and species. In order

to showcase the utility of MUON in a different setting, I also applied analogous MUON

workflows to the exploration of another dataset — three thousand human brain cells (Flash-

Frozen Human Healthy Brain Tissue (3k), 10x Genomics 2022) (Figure 2.6c). Leveraging

visualisation capabilities of SCANPY and MUON, I generated a map of gene markers for

different cell types in this dataset (Figure 2.6d). For this data representation, MUON can

aggregate accessibility across defined genomic loci such as genes.

2.2.2.2 CITE-seq, human blood cells

I then designed, implemented and applied a MUON workflow to analyse CITE-seq data, in

which features in two modalities are represented by gene and protein counts (Stoeckius et al.,

2017).

To process protein counts, special strategies to denoise and scale them have been de-

veloped such as dsb originally implemented in R (Mulè et al., 2022). Together with Ilia

Kats, I reimplemented this method in Python providing MUON with a native Python so-

lution to process CITE-seq data. These protein counts can then be used for defining cell

types using pairwise plots (Figure 2.7a) as visualisation resembling gating in flow cytometry

(Mattanovich and Borth, 2006).

Integrative CITE-seq data analysis can be performed with some of the existing frame-

works such as Seurat (Hao et al., 2021) as well as with the packages exclusively focused on

CITE-seq data such as CiteFuse (H. J. Kim et al., 2020), both featuring custom protein count

normalisation approaches and implemented in R. MUON enables CITE-seq data handling

in Python and allows to implement analogous workflows, mimicking the processing and

analysis steps discussed in the previous section. To demonstrate it, I used MUON to load,

preprocess, annotate and visualise the CITE-seq PBMC dataset (Figure 2.7b).
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Fig. 2.7 Integration of CITE-seq data with MUON
a: Protein abundance values for some of the features in the CITE-seq PBMC dataset. Colours
correspond to relative local density of cells, red denotes higher density, blue denotes lower
density. Values after the dsb normalisation are plotted. b: UMAP latent space for the same
dataset from MOFA factors (top) or WNN graph (bottom). Cells are coloured by coarse-
grained cell type (left) and features values (gene expression in blue, protein abundance in
yellow).
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Fig. 2.8 Integration of a trimodal dataset with MUON
UMAP latent space for the TEA-seq profiling of PBMCs. Left and right parts of the figure
show the latent space constructed on MOFA factors or WNN graph, respectively. Colour
corresponds to coarse-grained cell types (top) or protein counts for CD45RA and CD45RO
proteins.

2.2.2.3 Trimodal assays

As MUON as well as MuData is designed to handle an arbitrary number of modalities,

trimodal assays can also be analysed with this workflow. For instance, transcriptome (T)

with epitopes (E) and chromatin accessibility (A) were rofiled with TEA-seq for peripheral

mononuclear blood cells (PBMCs) (Swanson et al., 2021).

This example essentially combines the Multiome and CITE-seq processing, and the

analysis results allow to distinguish basic cell populations based on a few protein markers as

well as on molecular features across modalities (Figure 2.8).

2.2.3 Methods

2.2.3.1 MUON implementation

I implemented MUON9 in the Python programming language (Van Rossum and Drake

Jr, 1995). MUON builds on the software stack for numerical and scientific computing,

9https://pypi.org/project/muon/
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in particular NumPy (Harris et al., 2020), SciPy (P. Virtanen et al., 2020), Scikit-learn

(Pedregosa et al., 2011), Pandas (McKinney et al., 2011), h5py (Collette, 2013), AnnData

(Virshup et al., 2021), SCANPY (Wolf et al., 2018). MUON interfaces MOFA+ (Argelaguet,

Arnol, et al., 2020) for the corresponding multimodal integration and comes with a Python

reimplementation of WNN following (Hao et al., 2021) and its generalisation to arbitrary

number of modalities from (Swanson et al., 2021). For data visualisation, MUON relies on

matplotlib (Hunter, 2007) and seaborn (Waskom, 2021).

I exposed the functionality of MUON via interfaces that resemble the ones in SCANPY

(Wolf et al., 2018). Briefly, functions are organised in modules by their purpose, e.g. muon.pp

for preprocessing, muon.tl for computational methods, muon.pl for plotting. Operations

and methods that are specific to individual modalities are provided in corresponding modules

such as muon.atac and muon.prot for chromatin accessibility and protein abundance,

respective.

2.2.3.2 Processing RNA + ATAC datasets

Chromium Single Cell Multiome ATAC + Gene Expression data was provided by 10x

Genomics (Single Cell Multiome ATAC + Gene Expression, 10x Genomics 2022). Data

for PBMCs from a healthy donor with granulocytes removed through cell sorting had been

processed with the ARC 1.0.0 pipeline (PBMC Granulocyte Sorted 10k, 10x Genomics

2022). The dataset was loaded with MUON. SCANPY and MUON were used to normalise

and log-transform counts for both gene expression and chromatin accessibility, to identify

highly variable features, and then to centre them to zero mean and unit variance. Principal

components for each modality were computed with PCA as implemented in Scikit-learn and

SCANPY. MOFA factors and WNN graph were computed with MUON.

I used the same workflow to process data from the frozen human healthy brain tissue

(Flash-Frozen Human Healthy Brain Tissue (3k), 10x Genomics 2022) and I relied on (Hodge

et al., 2019) to identify coarse-grained cell types (Figure 2.6d).

2.2.3.3 Processing CITE-seq data

CITE-seq data for PBMCs from a healthy donor were provided by 10x Genomics (PBMC

Protein 5k v3, 10x Genomics 2022). Protein counts were denoised and scaled using the

dsb procedure (Mulè et al., 2022) as implemented in MUON. Gene expression counts were
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library size-normalised and log-transformed prior to scaling and identification of highly

variable genes. MOFA factors and WNN graph were computed with MUON.

2.2.3.4 Processing TEA-seq data

I used MUON to load, process and visualise a sample from the trimodal dataset (Swanson et

al., 2021). Individual modalities were processed as discussed in previous sections essentially

making this processing workflow a combination of RNA + ATAC and CITE-seq processing

workflows described above for other datasets.
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2.3 Discussion

Analytical tasks discussed in Section 1.2 dictate the requirements for efficient data represen-

tations and storage. I formulated the following considerations that are to be met by such data

standards:

• defined data structure permitting automation;

• efficient storage with respect to file sizes providing reasonable read and write speed;

• shareable files accessible from different programming environments;

• data access without loading it all into memory (scalability concern);

• possible to read in a few years’ time (stability and legacy concern);

• adopted by data providers and users in the field;

• expandable to new modalities such as spatial and temporal domain, and to cross-

modality interactions.

In the previous sections I demonstrated how these challenges are addressed by MuData

(Section 2.1), which implements efficient and extensible approach to multimodal data han-

dling. MuData builds on the existing ecosystem for representing individual modalities, and

this continuity has also been realised in MUON (Section 2.2) — a multimodal omics analysis

framework built around MuData.

While many current analysis workflows are focusing on either horizontal (e.g. different

datasets) or vertical (different modalities) integration, the complexity and the scale of multi-

modal single-cell datasets dictate the necessity of designing new instruments for generalised

multi-dataset multimodal data storage. I will provide my considerations for the key points

behind potential solutions to that below.

2.3.1 Considerations for multimodal multi-dataset collections

This section is aimed to provide a collection of ideas and solutions to some of the challenges in

representing and handling collections of multiple multimodal single-cell genomics datasets.

Existing data abstractions for single-cell and multimodal genomics, including MuData,

tackle the issue of handling individual datasets comprised of numerical data such as gene

abundance estimates and of annotations, from clinical information to experimental summary

and quality control to derived data such as cell labels. Multi-dataset analysis scenarios

currently lack an abstraction layer however they have been arising with increasing frequency,
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for instance when comparing individual experiments with large annotated datasets (atlases)

such as the one by Consortium* et al., 2022, performing benchmarks for new methods or

generating new insight using an aggregation of multiple available datasets. Here, I outline

some considerations for new data abstractions that focus on such scenarios as well as propose

the design of the respective solutions.

2.3.1.1 Generalising aligned axes

AnnData and MuData feature a concept of aligned axes: core components of those objects

have explicit constraints on their dimensions, e.g. the matrix with reduced dimensions should

have the number of rows equal to the number of cells in the dataset.

AnnData, and consequently MuData, are inherently two-dimensional: designed around

a count matrix, there are only dimensions of observations (cells) and of variables (features,

e.g. genes). Complex analysis workflows motivate going beyond two dimensions. For

instance, when analysing chromatin accessibility, one deals with multiple dimensions such as

cells, peaks, genes, transcription factors and their motifs. Then, during the analysis, there’s a

matrix of peaks by transcription factors generated as well as peaks by motifs and motifs by

transcription factors.

The solution is to allow the user to configure named axes, which will then constrain their

dimensions upon defining them, and allow an arbitrary number of those. Data retrieval can

then be implemented using these names:

data["cells","peaks"]

data["peaks","tf_motifs"]

In practice, it is important to preserve data at each step of the data transformations

workflow, for instance to store original gene counts prior to normalisation as they are

typically used as input for count-based models and analyses such as differential expression

with generalised linear models (Robinson et al., 2010) or autoencoders (Lopez et al., 2018).

This can be addressed by extending data retrieval to the layered storage for the matching

dimensions, e.g. original, normalised and scaled counts:

data["cells","genes","scaled"]

This can be further extrapolated to nested structured storage, for instance for organising

spliced and unspliced count matrices (see Section 1.3.2), each of which can also have original,

normalised and scaled variants:
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data["cells","genes","unspliced","normalised"]

This provides a practical improvement over existing solutions that only provide access to

count matrices via predefined or user-defined labels. Such solution also contributes to the

ongoing research of improving clarity and reliability in tensor manipulation expanding it to

annotated datasets (Rogozhnikov, 2022).

2.3.1.2 Metadata groups

Metadata can be derived at different stages of data analysis workflows. For instance, there

can be patient information available in the beginning of the workflow, statistical properties

calculated and added at the quality control stage and annotated biological entities as one of

the analysis results. Semantic separation of these metadata groups can be beneficial both for

structuring analysis workflows and for data sharing purposes. Current solutions, however, do

not make such distinctions.

As a consequence of the generalisation of aligned axes, metadata groups can be repre-

sented by respective tables with corresponding dimensions and axes. Some of such tables

such as with quality control information can be defined across datasets. Importantly for

multi-dataset workflows, this allows storing and querying data statistics across datasets and

modalities, for example for multiple scRNA-seq datasets (Figure 2.4b):

data["dataset1","qc_table"]

data["dataset2","qc_table"]

2.3.1.3 Multi-dataset multimodal storage

Generalised aligned axes enable multi-dataset infrastructure so that multiple datasets can be

stored and then queried across multiple feature spaces. Figure 2.9 provides an example of

such storage.

data["reference","genes"]

data["reference","peaks"]

data["query","peaks"]

Querying across datasets and modalities can be useful for data integration methods as

allows to get latent representations of all the datasets and modalities in the uniform fashion
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Fig. 2.9 Multi-dataset multimodal storage structure
Structured storage for two-dimensional data including numerical objects (counts) and tables
(annotations) is demonstrated on two datasets, one of multimodal ATAC + RNA profiling and
another of ATAC profiling. RNA- and ATAC-specific information is colour-coded in blue
and red, respectively. Multimodal annotation for the first dataset is shown in green. Matrices
and tables are depicted with rectangles and are aligned according to their dimensions.
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and then store the integrated representation in the same object. Such joint representation

would then have a union of the original axes as one its dimensions permitting it to be queried

with original axes as well to return dataset-specific parts of the joint matrix.

data["reference","umap"]

data["query","umap"]

data[("reference","query"),"umap"] # integrated

2.3.1.4 Data immutability

Count matrices and their downstream derivatives are frequently treated as immutable in

analysis workflows, e.g. individual values in the data are not modified and the derived

multimodal annotations are produced by algorithms for the whole dataset.

Hash functions can be used to derive unique identifiers for the matrices so that different

matrices will be mapped to different values (Bakhtiari et al., 1995). Derived outputs such

as embeddings can then refer to the hash values uniquely identifying the data that they

originated from as well as carry a uniquely identifying hash value themselves.

Treating matrices and tables as objects identified by their hash values allows to define

computationally efficient workflows as well as to then devise object merging operations so

that the resulting data container would include all the objects with unique hash values. To

implement this, an additional data structures can be employed such as conflict-free replicated

data types (CRDTs) (Shapiro et al., 2011). The utility of such functionality is especially

notable for incrementally updating data on disk rather than loading it all into memory to

then write the whole dataset to disk. More so, CRDTs can be employed in multi-dataset

and multimodal settings where different people can work on different parts – datasets or

modalities — of the data.

2.3.1.5 Delayed operations

Dataset collections and even individual single-cell datasets have been growing larger in size so

that their size is larger than random access memory available on personal computing devices.

Thus efficient data abstractions should make sure individual tables are only read into memory

when required — and can be easily discarded after the computation. Moreover, analytical

solutions for querying databases and files can further reduce the memory requirements for

computational workflows (Raasveldt and Mühleisen, 2019).
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2.3.1.6 Idempotent operations

In analysis workflows, operations are frequently chained, e.g. a UMAP representation

(see Section 1.2.3.5) requires computing cell neighbourhoods (Section 1.2.3.6), which are

frequently computed on principal components (Section 3.1.1.1). In practice these operations

represent a graph rather than a linear sequence as analytical tasks can be solved with

multiple alternative operations. Thus it is natural to build the analysis graph with idempotent

operations, i.e. operations f () such that

f ( f (x)) = f (x).

Current analytical interfaces such as in SCANPY (Wolf et al., 2018) are not based on

idempotent operations thus limiting alternative multi-dataset computations. This can be

addressed for instance by specifying the expected outputs of the computation:

f(data, in_layer="counts", out_layer="lognorm")

More broadly, such operations can be bound to data objects. This idea can be illustrated

with principal component analysis applied to a scaled count matrix:

data.bind(

f=pca,

in_axes=("cells","genes","scaled"),

out_axes=("cells","components"),

)

Such binding operations can then be applied across multiple datasets stored in the object

thus offering a transparent interface for horizontal scalability.

2.3.1.7 Interoperability with relational databases

Storing individual tables with known dimensions means that analytics can be generalised to

any n-dimensional objects, most importantly tables that can be stored in relational databases.

Relational databases typically store data as collections of rows (or columns) and feature

various optimisations. This is particularly relevant for data that is not dataset-specific,

e.g. gene annotations such as names, intervals and sequences. For example, the computational

model to calculate GC content for each gene in the annotation that also contains gene sequence

in this case could be represented as follows:
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SELECT

GCcontent(sequence)

FROM

data["GRCH38_genes","genes_metadata"]

Such approach to handling tabular data can also increase the accessibility of annotations

and cross-dataset statistical properties that are readily available on local or remote servers.



Chapter 3

Factor analysis for single-cell multi-omics

Multi-omics factor analysis (MOFA) is a Bayesian framework that has been previously

proposed for multimodal data integration, which can be viewed as a generalisation of PCA

to multi-omics data. Based on group factor analysis, MOFA uses automatic relevance

determinations (ARD) and spike-and-slab priors to address data sparsity and facilitate factor

interpretability.

Single-cell datasets feature increasingly large numbers of cells but also increasingly

sophisticated structure of the data with cells coming from different experimental batches,

samples or donors, etc. To address this, I proposed and implemented ARD and spike-and-slab

priors for factors complementing the respective priors on weights and making the model

symmetrical. This enables integration of multiple modalities (views) across multiple groups

of cells where factor activity can vary from group to group. To make such models more

accessible across a range of platforms, I also improved existing and implemented new

functionality for the MOFA R package, implemented an interactive web-based platform for

model interrogation as well as conceived, designed and implemented a Python package for

downstream analysis and visualisation of MOFA models. The results in this chapter represent

my own work unless stated otherwise, and most of them have been published in Argelaguet,

Arnol, et al., 2020, which describes our joint work together with Ricard Argelaguet, Damien

Arnol and others.
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3.1 Introduction to latent variable models

3.1.1 Basic latent variable models

Many datasets can be described with a manifold of lower dimensionality than the original

data, and that also applies to gene expression data (Heimberg et al., 2016, ? ]). This

motivates latent variable models (LVMs) with continuous latent variables. Many of those

models assume Gaussian distribution for both observed and latent variables and use a linear

dependence of observed variables on the latent ones (Bishop, 2006). Such models are

frequently formulated as matrix factorisation problems, with principal component analysis

(PCA) being the cornerstone technique. PCA and other linear as well as nonlinear latent

variable models are used across different domains for dimensionality reduction and lossy

data compression («latent space») as well as for data visualisation.

Notably, as demonstrated in the section 1.2.3, a lot of downstream analysis tasks use

linear manifolds as their input, which highlights their utter importance for high-dimensional

genomics data analysis. Moreover, while latent variable models such as PCA or factor

analysis fall under the category of unsupervised methods, they have been extended to

incorporate knowledge via structured sparse priors in models such as f-scLVM (Buettner,

Pratanwanich, et al., 2017) or MuVI (Qoku and Buettner, 2022).

3.1.1.1 Principal component analysis

PCA is a linear model that transforms the data into a set of orthogonal components that explain

the largest amount of variance. The data matrix Y is factorised into a product of loadings

W and components Z: Y ∼WZT . The former makes it possible to interpret the transformed

axes: features (e.g. genes) with high loadings strongly influence respective components. In

practice, full decomposition is not necessary and too computationally intensive to compute,

and only some of the components are calculated, e.g. relying on truncated SVD (Halko et al.,

2010). Numerous extensions of PCA have been developed that enable better modelling of

more complex data. As such, Bayesian formulation as shown below in the section 3.1.2

allows to incorporate sparsity. It is also important to note that efficient and open-source

implementations are available and are widely used such as sklearn.decomposition.PCA

in Python (Pedregosa et al., 2011) and stats::prcomp in R (R Core Team, 2013).
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3.1.1.2 Nonnegative matrix factorisation

Nonnegative matrix factorisation (NMF) has been proposed as a method for multivariate data

decomposition under the constraint of non-negativity of components (D. Lee and H. S. Seung,

2000; D. Lee and S. Seung, 1999). As this limits the combinations of components to be

additive (no subtractions), it can provide improved interpretability (D. Lee and H. S. Seung,

2000). As a testament to this, widely used characterisation of mutational processes signatures

in human cancers was established with NMF (Alexandrov et al., 2013). NMF has also

been extended by being combined with sparsity conditions (Eggert and Korner, 2004) and

Bayesian inference (Ali Taylan Cemgil, 2009) and served as a foundation for other methods

such as nonnegative spatial factorisation (Townes and Engelhardt, 2021).

NMF can be used for dimensionality reduction of Gaussian- or Poisson-distributed data

(Févotte and A. Taylan Cemgil, 2009). Sparse Poisson-distributed data y ∼ Poisson(λ ) can

be handled with models such as hierarchical Poisson matrix factorisation (HPF) (Gopalan

et al., 2014). HPF has also been adopted for dimensionality reduction of scRNA-seq data

avoiding the requirement of prior normalisation (Levitin et al., 2019).

3.1.1.3 Independent component analysis

When the latent distribution is not Gaussian and factorises so that

p(z) =
K

∏
k=1

p(zk),

this gives rise to the family of models known as independent component analysis (Bishop,

2006; Comon and Jutten, 2010; Hyvärinen and Oja, 2000). Such models were applied in vari-

ous context including scRNA-seq (Biton et al., 2014; Francesconi et al., 2019; Liebermeister,

2002; Macaulay, Svensson, et al., 2016; Sastry et al., 2021; Sompairac et al., 2019; Trapnell

et al., 2014; W. Wang et al., 2021), and there’s been progress in defining generalisations of

ICA including independent vector analysis (Hyvarinen and Morioka, 2016; T. Kim et al.,

2006; Winther and Petersen, 2007).
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3.1.2 Probabilistic formulation of factor analysis

3.1.2.1 Principal component analysis

Briefly, PCA is an orthogonal projection of data onto a lower dimensional space so that the

variance of the projection is maximised (Figure 3.1). While various alternative formulations

of PCA can be proposed (Bishop, 2006), probabilistic formulation allows to define it in

a Bayesian fashion that can be transparently extended later. In this formulation, the prior

distribution over the continuous latent variable z is given by a standard Gaussian distribution:

p(z) = N (z | 0,I).

Observed variable x conditioned on the values of x is also Gaussian:

p(x | z) = N (x | Wz+µ,σ2I).

The observed counts are thus defined by a linear transformation of the latent variable z
with an additive Gaussian noise:

x = Wz+µ + ε.

Fig. 3.1 Demonstration of PCA of simulated data
PCA was applied on simulated data (left) and identified the first component as the axis of the
largest variance in the data (right).
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PCA can be also interpreted as a Gaussian process that maps embedding to the data space

giving rise to Gaussian Process LVM (GPLVM) formulation (Lawrence, 2003). Such models

have been adopted and adapted for omics data for instance with scLVM (Buettner, Natarajan,

et al., 2015) and tGPLVM (Verma and Engelhardt, 2020).

3.1.2.2 Sparsity

So-called automatic relevance determination (ARD) can be used for pruning out extra

components (S. Virtanen et al., 2012). For that, an additional prior can be defined:

p(wdk | αk) = N (wdk | 0,α−1
k ),

i.e.

p(W | α) =
K

∏
i=1

(
αi

2π
)K/2 exp(−1

2
αiwT

i wi),

p(ak) = G (ak | aα
0 ,b

α
0 )

Biological processes would be expected to stem from the activity of a fraction of all the

genes, and this notion can be incorporated in the model as a sparsity assumption. In order

to accommodate sparsity at the level of individual features, suitable prior formulations for

sparse data can be used. One way to accommodate sparsity is to add a Bernoulli-Gaussian

prior commonly referred to as spike-and-slab model.

p(ŵdk,sdk | αk,θk) = N (ŵm
dk | 0,α−1

k )Ber(skd | θk), i.e.

p(ŵdk,sdk | αk,θk) = (1−θk)10(ŵdk)+θkN (ŵdk | 0,α−1
k )

p(θk) = B(θk | α
θ
0 ,b

θ
0 )

In this model, parameter θk for each factor k will reflect the level of sparsity per factor,

with the value close to zero corresponding to a sparser factor (most weights are close to 0).
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3.1.2.3 Factor analysis

Stemming from probabilistic PCA, factor analysis defines conditional distribution of the

observed variable x given the latent variable z as a Gaussian with a diagonal covariance Ψ:

p(x|z) = N (x|Wz+µ,Ψ).

3.1.2.4 Group factor analysis

When variable groups (views of the same data) are to be considered, the factors should

provide weights Wm across the views m. This has been formulated in group factor analysis

that also incorporates view-wise ARD prior (Klami et al., 2014; S. Virtanen et al., 2012):

p(wm
d,k | αm,k) = N (wm

d,k | 0,α−1
m,k).

In the case of omics data, data views are different omics modalities. Multi-omics factor

analysis (MOFA) model advances group factor analysis with both group-wise and feature-

wise sparsity and comes with an accessible interface for model interpretation in R (Argelaguet,

Velten, et al., 2018).

3.1.3 Variational inference

Inference in group factor analysis models such as MOFA is performed using mean-field

variational Bayes (David M. Blei et al., 2017; Saul et al., 1996). In variational inference (VI),

the intractable posterior distribution p(z | y) is approximated by a variational distribution

q(z) from a predefined family of distributions. The mean-field assumption states that this

distribution factorises as

q(z) =
J

∏
j=1

q j(z j).

The difference between the true and the approximate posterior distributions is calculated

as Kullback–Leibler (KL) divergence:

KL(q(z) || p(z|x)) =−
∫

z
q(z) log

p(z|x)
q(z)

.
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The goal is thus to find q(Z) that minimises the KL divergence, which is equivalent to

maximising the Evidence Lower Bound (ELBO) L (z):

KL(q(z) || p(z|x)) = E[logq(z)]−E[log p(z | x)]

= log p(x)−L (z),

L (z) = E[log p(z,x)]−E[logq(z)].

Maximising ELBO thus means maximising a lower bound on the true marginal log-likelihood

log p(x) with the difference between the true posterior log p(z | x) and the variational distri-

bution logq(z) being given by the KL divergence.
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3.2 MOFA+

MOFA+ is a group factor analysis model suited for integrating multi-omics data via a common

sample space with features coming from distinct modalities. It infers a low-dimensional

representation of the data in terms of a small number of latent factors that capture the source

of variability. MOFA+ benefits from ARD to disentangle variation shared across modalities

from modality-specific variability as well as from sparsity assumptions on weights, which

facilitate factor interpretation. Joint modelling of multiple groups of cells profiled across

multiple modalities is enabled in MOFA+ by ARD priors on factors.

3.2.1 MOFA+ overview

MOFA+ builds on the group factor analysis framework MOFA (Argelaguet, Velten, et al.,

2018) with view-wise and feature-wise sparsity. In order to apply group factor analysis

models to multimodal single-cell data, I devised and implemented structured sparsity for

groups of cells (ARD) and individual cells (spike-and-slab) thus defining the MOFA+ model.

Consequently, I implemented the storage of MOFA+ models with new sparsity options based

on MOFA model serialisation.

The input of MOFA+ is a collection of matrices with cells and features grouped in cell

groups and modalities, or views, respectively. In practice, cell groups can correspond to

different experiments, experimental conditions or sequencing batches. A trained MOFA+

model contains K latent factors that explain the major axes of variation in the dataset with

associated feature weight matrices (Figure 3.2). The latter can be inspected and visualised in

order to provide interpretation to the inferred factors (Figure 3.2b).

Moreover, MOFA+ also inherits features from the first version of the method including

inference with non-Gaussian likelihoods such as Poisson for count data or Bernoulli for

binary data (Seeger and Bouchard, 2012).

To facilitate the use and the adoption of the method, I also implemented a Python package1

as well as an open-source web-based resource2 to inspect and interrogate MOFA+ models

with the Shiny R package (Wickham, 2021).

1https://pypi.org/project/mofax/
2https://www.ebi.ac.uk/shiny/mofa/
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Fig. 3.2 MOFA+ framework for single-cell data integration across modalities and groups of
cells
a: MOFA+ overview as a matrix factorisation problem. Data input consists of multiple matri-
ces with features grouped into M views and cells grouped into G groups. Low-dimensional
representation of the data is given by the inferred factors Z. Feature importance for each of
the K factors is provided by the weight matrices W . b: Some of the downstream analyses
to interpret the trained MOFA+ model include (from left to right) variance decomposition,
factor values inspection and feature weights inspection.
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3.2.1.1 MOFA+ illustration using simulated data

In order to assess if the formulation of group-wise sparsity in MOFA+ enables the detection

of factors with differential activity in groups of cells, I simulated a dataset with differential

factor activity and used MOFA models with and without respective sparsity to factorise it.

For data simulations, I considered M = 2 views with D = 800 features in each of them and

G = 2 groups with N = 400 cells in each of them. From K = 8 factors with differential

activity, only the first two were simulated to be active in both views and groups, and overall,

their activity pattern was simulated as outlined by the binary mask in Figure 3.3a. The results

demonstrate that MOFA+ was able to reconstruct the true factor activity in different groups

(Figure 3.3b).

Fig. 3.3 MOFA+ recovers group-specific factor activity is simulated data
a: Representation of binary activity of factors in the simulated data with 2 views, 2 groups
and 8 factors with differential activity. First column of each heatmap corresponds to the
first group of cells and the second one corresponds to the second group of cells. Heatmaps
correspond to respective views. b: Variance explained by each of the 10 factors in respective
groups and views. Each heatmap corresponds to a respective view, with the first and the
second columns corresponding to the first and the second group of cells, respectively. The
colour denotes the percentage of variance explained by a given factor in a given view and
group.

3.2.1.2 MOFA+ scalability

MOFA+ also provides two major technical advances that focus on performance and scalability

as a result of work performed by Damien Arnol and Ricard Argelaguet. First, MOFA+

implementation comes with accelerated training on graphics processing units (GPU). Second,

it comes with stochastic variational inference (SVI) that enables scalability to datasets with
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the number of cells significantly larger than the number of features (M. D. Hoffman et al.,

2013). The SVI framework uses a subset of the data (a batch of pre-defined size) to calculate

an approximation of the ELBO gradient. The step size ρ(t) at each iteration t is adjusted

according to the hyperparameters of learning rate τ and forgetting rate κ:

ρ
(t) =

τ

(1+κt)3/4 .

3.2.2 Model definition

MOFA+ can be defined as a following latent variable model:

Ygm = WmT Zg + ε
gm,

where Wm ∈ RDm×K is a weight matrix relating the original features in the view m to the

latent representation and Zg ∈ RNg×K is a factor matrix. The noise term εgm contains the

unexplained variance for each feature in each group, with residuals assumed to be normally

distributed and heteroskedastic:

p(εgm
d ) = N (εm

d | 0,1/τ
m
d ).

Here and below, the following notation is used:

• k for a factor, with K factors in total,

• g for a group of cells, with G groups in total,

• n for a cell, with Ng cells in the group g,

• m for a view (modality), with M views in total,

• d for a feature, with Dm features in the view m.

Formulating the model in a Bayesian fashion, we introduce prior distributions on the

unobserved variables. The two-level regularisation used on the prior distribution of the

weights is similar to the MOFA model and can be expressed as a combination of ARD prior

and spike-and-slab prior reparametrised as a product of a Gaussian and a Bernoulli random

variables:

p(ŵm
kd,s

m
kd) = N (ŵm

kd | 0,1/α
m
k )Ber(sm

kd | θ
m
k ).
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Finally, hierarchical priors for θ and α are the following uninformative priors:

p(θ m
k ) = B(θ m

k | aθ
0 ,b

θ
0 )

p(αm
k ) = G (αm

k | aα
0 ,b

α
0 ).

In MOFA+, the sparsity priors are also defined on factors, which makes the model

symmetrical and accommodates the group structure:

p(ẑg
nk,s

g
nk) = N (ẑg

nk | 0,1/α
g
k )Ber(sg

nk | θ
g
k )

p(θ g
k ) = B(θ g

k | aθ
0 ,b

θ
0 )

p(αg
k ) = B(αg

k | aα
0 ,b

α
0 ).

In addition to that, the noise level is also not just feature- and view- but also group-

dependent:

p(εm,g
d ) = N (εm,g

d | 0,1/τ
m,g
d )

p(τm,g
d ) = G (τm,g

d | aτ
0,b

τ
0).

These modifications make the graphical model for MOFA+ symmetrical (Figure 3.4).

3.2.3 Inference

3.2.3.1 Update equations

Following the model definition, the update equations that are applied at every iteration of the

variational inference algorithm match the ones for the original version of MOFA. Making

the model symmetrical, I have derived update equations for factors (group sparsity). These

equations are listed below while the equations for all the parts of the model are listed in

Appendix A.1.

Sparse factors Prior distribution:

p(ẑg
nk,s

g
nk) = N (ẑg

nk |0, 1/α
g
k )Ber(sg

nk |θ
g
k )

Variational distribution:
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yg,m
n,d

zg
n,k

wm
k,d

τ
g,m
d

×

ẑg
n,k

α
g
k

sg
n,k

θ
g
k

×

ŵm
k,d

αm
k
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k
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Fig. 3.4 MOFA+ graphical model
The grey circles represent observed variables. The white and coloured circles represent
hidden variables inferred by the model. Elements added in MOFA+ are shown in light blue.
Elements changed in MOFA+ compared to MOFA are shown in light purple. The plates
represent dimensions of the model: M views, G groups, K factors, Dm features in view m
and Ng samples in group g. Adopted from Argelaguet, Arnol, et al., 2020.
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q(sg
nk) = Ber(sg

nk|γ
g
nk)

q(ẑg
nk|s

g
nk = 0) = N

(
ẑg

nk

∣∣0,1/α
g
k

)
q(ẑg

nk|s
g
nk = 1) = N

(
ẑg

nk

∣∣∣µzg
nk
,σ2

zg
nk

)
,

where

γ
g
nk =

1
1+exp(−λ

g
nk)

λ
g
nk = ⟨ln θ

1−θ
⟩+0.5ln ⟨αg

k ⟩
⟨τgm

d ⟩ −0.5ln
(

∑
M
m=1 ∑

Dm
d=1⟨(w

m
kd)

2⟩+ ⟨αg
k ⟩

⟨τgm
d ⟩

)
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2
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gk, b̂

α
gk),

where



MOFA+ 93

âα
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3.2.3.2 Evidence Lower Bound

Evidence lower bound (ELBO) is used to track the algorithm convergence. ELBO can

be decomposed into a sum of the expected log-likelihood and the Kullback-Leibler (KL)

divergence between the prior and the variational distributions:

L (X) = Eq log p(Y |X)−KL(q(X)||p(X | Y ))

Log-likelihood term for Gaussian likelihood can be written as
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KL divergence between the true posterior distribution and an approximate posterior

distribution can be expressed as

KL(q(X) || p(X | Y )) =−
∫

x
q(X) ln

p(X | Y )
q(X)

= Eq[lnq(X)]−Eq[ln p(X | Y )]

Below are the analytical forms of these expectations for factors while the equations for all

the parts of the model are listed in Appendix A.2
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Eq[ln p(Ẑ,S)] =−
G

∑
g=1

NgK
2

ln(2π)+
G

∑
g=1

Ng

2

K

∑
k=1

ln(αg
k )−

G

∑
g=1

α
g
k

2

Ng

∑
n=1

K

∑
k=1

⟨(ẑg
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Eq[lnq(Ẑ,S)] =−
G

∑
g=1

NgK
2

ln(2π)+
1
2

G

∑
g=1

Ng

∑
n=1

K

∑
k=1

ln(⟨sg
nk⟩σ

2
zg

nk
+(1−⟨sg

nk⟩)/α
g
k )

+
G

∑
g=1

Ng

∑
n=1

K

∑
k=1

(1−⟨sg
nk⟩) ln(1−⟨sg

nk⟩)−⟨sg
nk⟩ ln⟨sg

nk⟩

ARD for the factors:

Eq[ln p(α)] = ∑
G
g=1 ∑

K
k=1

(
aα

0 lnbα
0 + (aα

0 −1)⟨lnαk⟩−bα
0 ⟨αk⟩− lnΓ(aα

0 )
)

Eq[lnq(α)] = ∑
G
g=1 ∑

K
k=1

(
âα
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Factor sparsity priors:
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3.2.4 Model interpretation

3.2.4.1 Interpretation of the factors

Factors capture the sources of variability in the data and are analogous to the principal

components in PCA. Each factor defines the location of cells along a one-dimensional axis.

Higher absolute factor values correspond to a stronger effect. Different signs of factor

values are expected to correspond to opposite properties along the inferred axis of variation,

e.g. cell’s phenotype such as cell cycle stage. Because of the zero-mean prior, cells with

intermediate phenotype are expected to be located around zero along this axis (Figure 3.2b).

Strength of factor k in group g is controlled with ARD, with small posterior α
g
k values

corresponding to active factors. Large α
g
k , in contrast, correspond to smaller variance around

0 and inactive factors. The fraction of non-zero factor values in a factor k is controlled by

θ
g
k : as it is a parameter of the Bernoulli distribution, its posterior values close to 0 imply the

shrinkage of most factor k values to 0 (sparse factor), while for dense factors, posterior θ
g
k

values are close to 1.

3.2.4.2 Interpretation of the weights

The weights provide scores for feature importance for each factor. Features that are associated

with the factor stronger have higher absolute weight values, and the sign corresponds to the

direction of effect. For instance, positive weights for a gene means that this gene has higher

expression in cells with positive factor values. When weights are compared between views,
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they are to be scaled to [−1,1] in order to account for different data distributions in different

modalities (Figure 3.2b).

For ARD, large posterior αm
k values correspond to low variance around 0 and and

inactivity of factor k in view m. Conversely, small αm
k implies an active factor. Posterior

values of the Bernoulli parameter θ m
k control the fraction of active weights in factor k, with

values close to 0 or 1 indicating sparser or denser factors, respectively.

3.2.4.3 Variance decomposition

Variance explained factor k in each group g and view m can be calculated for a trained model

as a coefficient of determination:

R2
gmk = 1−

(
∑

Ng
n=1 ∑

Dm
d=1(Ygm −WmZg)

)2

(
∑

Ng
n=1 ∑

Dm
d=1Ygm

) .

Respective R2 values can then be visualised in order to assess the activity of factors across

groups of cells and views (Figure 3.3b, 3.2b).

3.2.5 Implementation

3.2.5.1 R and Python packages

The model described above has been implemented in Python3 and has also been made

accessible from R using the corresponding interface between the languages (Ushey et al.,

2022).

The Python core has been built using the numerical stack including NumPy (Harris et al.,

2020), Pandas (McKinney et al., 2011) and h5py (Collette, 2013). As part of this work, I have

also implemented an interface for MOFA+ to be readily applied on data stored in AnnData

(Virshup et al., 2021) as well as MuData (Bredikhin et al., 2022) objects and an interface to

make MOFA+ models readily trained on Seurat objects (Satija et al., 2015).

3https://pypi.org/project/mofapy2/
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3.2.5.2 Model storage

Practically, a MOFA+ factor model is trained on a dataset — a collection of matrices with

feature values in views (modalities) and cell groups. The trained MOFA model is stored in an

HDF5 file. The main result of the training are weight and factor matrices. As a file with the

model frequently serves as an input for the downstream model interpretation, cell and feature

names in corresponding groups and views are also stored in the model, alongside the original

data and training parameters and statistics. To extend this, I implemented the storage of

additional information for cells and features, which enables richer model interpretation, for

instance by correlating factor values with additional cell covariates. Moreover, I generalised

expectations storage so that not only E(Z) and E(W) but also expectations of all the other

parameters of the model can be stored after the training.

3.2.5.3 Interactive model interrogation

The primary way to explore MOFA models has been through the MOFA R package4, which

is also distributed through the Bioconductor ecosystem (Huber et al., 2015). I improved

this package in multiple ways so that MOFA2 R package allows to load, interrogate and

visualise MOFA+ models with the group structure for cells. Leveraging this package, I then

implemented web dashboards to allow interactive model interrogation for the user-provided

models using Shiny5 (Figure 3.5).

In order to integrate model interpretation into the Python ecosystem, I also implemented

functionality6 to read and inspect MOFA models in Python as well as generate plots for

model interpretation.

4https://www.bioconductor.org/packages/release/bioc/html/MOFA2.html
5http://www.ebi.ac.uk/shiny/mofa/
6https://pypi.org/project/mofax/
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Fig. 3.5 Demonstration of interactive MOFA+ model exploration
The interface of the interactive model exploration includes (on the left) model file input fields
as well as fields to select views, groups and factors of interest and a covariate to use for
colouring cells on the corresponding plots. Here, cells are coloured by the cluster identity
computed on the RNA modality. The major part of the interface is dedicated to plots with
additional options to choose parameters and variables to display. A table with data including
cell barcodes is displayed below the plot upon cell selection.
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3.3 Discussion

3.3.1 Multimodal integration of single-cell data

Multimodal single-cell datasets have the potential to bring new biological insights, but they

also present significant challenges in how the joint analysis of multiple modalities should be

conducted and interpreted. New methods are required to address them, and as the size and

the diversity of modalities in these datasets increases, such methods should be scalable and

generalisable to combinations of various modalities.

Joint analysis of multimodal single-cell data can be approached from different directions.

One of them described above formulates the integration problem as a latent variable model

such that latent factors can act on multiple modalities. For instance, MOFA+ is a group factor

analysis model that allows to infer a set of multimodal latent factors. The factors are defined

by weight matrices, one per modality, which allow to describe the correspondence between

factors and individual features such as genes, proteins or genomic loci, highlighting the

interpretability of such models. Moreover, inferred latent factors can be conveniently used as

input for other analytical methods such as computing cell neighbours and cell clustering.

Other approaches rely on latent factors computed for individual modalities and perform

integration at the level of cell neighbours. For example, the weighted nearest neighbours

(Hao et al., 2021) are computed based on the principal components for each modality. Cell

neighbours can also be computed for each modality and then be fused together with methods

like similarity network fusion (Bo Wang et al., 2014).

3.3.2 Challenges and perspectives

Integrating independent datasets across experiments and samples has been one of the major

challenges in single-cell genomics (Lähnemann et al., 2020). Availability of multiple

molecular layers adds a new dimension of complexity to it. Some methods such as NMF-

based LIGER (Welch et al., 2019) and CCA-based Seurat (v3) (Stuart, Butler, et al., 2019)

have been designed to integrate independent populations of cells by constructing a shared

feature space (genes). MOFA+ is designed to integrate data with a shared sample space,

i.e. with the same cells, while the features may come from different molecular layers. Using

the terminology from Argelaguet, Cuomo, et al., 2021, this can be described as vertical

integration.
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Complex experimental designs that consist of unimodal and multimodal measurements

motivate the development of mosaic integration strategies, which would combine vertical

and horizontal integration approaches (Argelaguet, Cuomo, et al., 2021). Moreover, such

methods would potentially be able to account for known dependencies in the data both in the

cell and feature dimensions. Below, I outline some recent progress in these directions.

3.3.3 New models

3.3.3.1 MEFISTO

The increasing availability of omics datasets with spatial or temporal resolution (section ??)

motivates new computational methods to analyse them. In fact, factor analysis framework

described in section 3.2 can be extended to infer smooth patterns of variation (Velten et al.,

2022). Such a model named MEFISTO provides a toolbox for dimensionality reduction

that also accounts for spatio-temporal dependencies in the data. To achieve this, MEFISTO

combines MOFA+ framework with Gaussian processes by modelling each factor value as a

realisation of a Gaussian process.

3.3.3.2 Encoding prior knowledge

Features such as genes can be viewed as parts of regulatory networks with complex inter-

actions between them. While current models like MOFA+ assume independence between

features, which is encoded in its prior distributions, more elaborate feature covariance struc-

tures can be incorporated to account for feature interactions. That would include interactions

between features from different modalities such as promoters with their accessibility mea-

sured, respective genes with their expression profiled and respective proteins with their

abundance quantified.

Prior domain information has been incorporated in factor analysis-based models (Qoku

and Buettner, 2022) as well as in autoencoder-based frameworks in the form of curated gene

sets (Lotfollahi et al., 2022).

3.3.4 Automatic differentiation variational inference

One of the large advances that arguably enabled the development of many of the aforemen-

tioned methods has been automatic differentiation variational inference (Kucukelbir et al.,

2016). It greatly simplified probabilistic modelling by automatically deriving, as the name
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suggests, a variational inference algorithm for the provided model and data. Importantly, it

has been implemented and interfaced in commonly used numerical ecosystems including

TensorFlow (Abadi et al., 2015), PyTorch (Paszke et al., 2019) and JAX (Bradbury et al.,

2018).

New inferences schemes has also been recently proposed such as linear response varia-

tional inference for accurate covariate estimates from mean-field variational Bayes (Giordano

et al., 2015) and Stein variational inference (Q. Liu and D. Wang, 2016).

3.3.5 Variational autoencoders

With explosive progress in deep neural networks, deep learning models have also found

applications for computational biology (Angermueller, Pärnamaa, et al., 2016; Lopez et al.,

2018). Deep neural networks provide a lot of benefits such as ability to learn directly on DNA

sequences instead of pre-defining features based on prior knowledge, such as presence of

variants, k-mer frequences, or conservation scores; ability to capture nonlinear dependencies

and interaction effects, sequence context at multiple genomic scales (Avsec et al., 2021).

However these models are still difficult to train, with overfitting as one of the key challenges:

the model is too complex relative to the size of the training data. The benefits of such models

often come at the cost of their limited interpretability, particularly when compared to linear

methods such as PCA.

While PCA is constrained to a linear transformation, variational autoencodes (VAEs) can

be viewed as a generalisation of the PCA approach (Rolinek et al., 2019) however allow to

use non-linear functions. VAEs (Kingma and Welling, 2014) combined the ideas behind

autoencoders and variational Bayes, were extended by beta-VAEs (Higgins et al., 2016) and

later by VQ-VAEs (Razavi et al., 2019; van den Oord et al., 2017) and achieved state-of-the-

art performance across different domains. The latest progress in VAEs for single-cell data

has been largely incorporated in a framework for single-cell variational inference (Lopez

et al., 2018).

Deep neural networks-based approaches such as single-cell variational inference (scVI)

have recently made probabilistic models for single-cell genomics more accessible to a larger

community of researchers (Gayoso, Lopez, et al., 2022; Lopez et al., 2018). Notably, such

frameworks seem to provide necessary flexibility to implement strategies for integrating

various modalities (Ashuach et al., 2021; Gayoso, Steier, et al., 2021) as well as to implement

new methods on top of them. For instance, linearly decoded VAE replaces the neural network
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that maps the latent dimensions back to the original space with a linear function providing

greater interpretability (Svensson, Gayoso, et al., 2020).



Chapter 4

MOFA+ applications

MOFA+ has proved to be a useful matrix factorisation method to produce lower-dimensional

representations of multi-omics dataset as shown in Chapters 2 and 3. In this chapter, I

will reference a few applications of MOFA and will show how single-cell datasets can

be visualised and interpreted with MOFA+. Such latent representations can also guide

downstream analysis and further experiments as I will demonstrate in this chapter.
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4.1 Introduction

The problems that have been addressed by multi-omics factor analysis can illustrate the utility

of MOFA+ as a versatile method that can be applied to different questions. As a generic

method for unsupervised data integration, multi-omics factor analysis can be used to gain

insights in different biological contexts. MOFA has enabled identification of clinical markers

of diseases in datasets with complex experimental designs such as multiple modalities

combining continuous and discrete variables and missing data with samples profiled with

some but not all the modalities. For instance, the original MOFA model was used to integrate

and characterise multi-omics profiles in an application to chronic lymphocytic leukaemia

(CLL) leveraging information across gene expression, methylation, mutation profiles as well

as drug response data as described in the original publication (Argelaguet, Velten, et al., 2018).

This has been followed by using MOFA to uncover an axis of heterogeneity associated with

the disease outcome in CLL (Lu et al., 2021) as well as to show an enrichment of suppressive

immune cells in IL4I1-high tumours (Sadik et al., 2020).

Besides disease markers in cancer, MOFA enabled integration of multimodal biomedical

data such as the studies of SARS-CoV-2 infection (Rodriguez et al., 2020), cerebrospinal

fluid to identify alterations in Alzheimer’s disease (C. Clark et al., 2021), sepsis (Kwok et al.,

2022), rheumatoid arthritis mouse model (L. Li et al., 2022) as well as of the microbiome

co-variation patterns (Pattaroni et al., 2022).

The symmetric structure of MOFA+ and its improved scalability have enabled integration

of single-cell multimodal omics datasets, which typically feature group structure on the

cells. For instance, its utility has been demonstrated for learning factors based on gene

expression, DNA methylation and chromatin accessibility in human oocytes and ovarian

somatic cells (R. Yan et al., 2021). Most recently, MOFA+ has been used to integrate

gene expression and chromatin accessibility in mouse embryos across multiple time points

(Argelaguet, Lohoff, et al., 2022) extending MOFA’s previous applications to studying mouse

gastrulation (Argelaguet, S. J. Clark, et al., 2019). MOFA+ was also used to combine

proteomic measurements with molecular and phenotypic datasets in a pan-cancer study of

almost a thousand of human cell lines (Gonçalves et al., 2022).
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4.2 MOFA+ model for CRISPRa screens

This section describes how MOFA+ can be particularly suited for a high-throughput screen

analysis to quantify transcriptome-wide response to gene overexpression. In particular, I

used MOFA+ to integrate expression of coding and non-coding transcriptomic changes in

individual cells across hundreds of groups leveraging the MOFA+ advances described in

Chapter 3. This allowed to identify new positive regulators of zygotic genome activation —

a major developmental program.

The contents of this section represent the analysis that was performed by me and has been

published as part of the publication A Single-Cell Transcriptomics CRISPR-Activation Screen

Identifies Epigenetic Regulators of the Zygotic Genome Activation Program (Alda-Catalinas

et al., 2020). The experiments described in this section were lead by Celia Alda-Catalinas

while I performed all the described analyses and created the figures unless stated otherwise.

4.2.1 Primer on zygotic genome activation

Zygotic genome activation (ZGA) describes transcriptional changes that happen in the early

embryogenesis. Initially, the development of embryos is driven by maternal gene products

— RNAs and proteins, — however during the maternal-to-zygotic transition, the genome

of the zygote (one-cell stage embryo) is being activated to produce functional transcripts

(Vastenhouw et al., 2019). As part of this process, maternal RNAs undergo clearance. The

timing of ZGA varies across species, and in mice, it starts with a minor wave of activation

in the late zygote and then continues with the major wave in mid-two-cell and late-two-cell

embryos (Melanie A. Eckersley-Maslin et al., 2018).

During the two waves of ZGA, global transcriptional and chromatin landscape changes

occur. Chromatin remodellers seem to play a role at regulating these changes, together with

transcription factors, histone modifiers and non-coding transcripts (Melanie A. Eckersley-

Maslin et al., 2018). Notably, early two-cell embryos feature accessible chromatin in regions

of repeat elements in the genome such as MERVL (mouse endogenous retrovirus with leucine

tRNA primer) repeats. For instance, DUX (double homeobox), one of the ZGA-linked tran-

scription factors, activates cleavage stage-specific genes as well as MERVL retrotransposons

(Hendrickson et al., 2017). Zscan4 (zinc finger and SCAN domain-containing 4) has been

identified as a gene cluster specific to late two-cell stage embryos and mouse embryonic

stem cells (Falco et al., 2007; M. S. H. Ko, 2016). Together with MERVL, it can be thus
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considered as a marker of the transcriptional landscape of preimplantation embryos at the

two-cell stage (Mélanie A. Eckersley-Maslin et al., 2016).

Notably, activation of the MERVL/Zscan4 network also occurs in mouse embryonic

stem cells (mESCs), which cycle in and out this 2C-like state. Such cells resemble two-cell

stage embryos both transcriptionally and epigenetically with global DNA demethylation and

chromatin decondensation (Mélanie A. Eckersley-Maslin et al., 2016). Using mESCs as a

model for studying ZGA enabled the identification of Dppa2 (developmental pluripotency-

associated 2) and Dppa4 as positive regulators of ZGA genes transcription. Moreover, these

genes were also shown to directly regulate Dux in order to initiate the 2C-like transcriptional

signature while Zscan4 reinforces this activation (De Iaco et al., 2019; M. Eckersley-Maslin

et al., 2019).

4.2.2 Primer on CRISPR activation screening

Combination of single-cell RNA sequencing described in section 1.1.1.2 and clustered

regularly interspaced short palindromic repeats (CRISPR)-based perturbations enables inter-

rogation of gene regulation at scale (Datlinger et al., 2017; Dixit et al., 2016). In CRISPR

screens, targeting a DNA endonuclease Cad9 to a specific genomic locus is achieved with

single guide RNAs (sgRNAs) that contain a 5
′
-terminal 20 nucleotides-long spacer sequence

complementary to the DNA locus of interest (Jinek et al., 2012). Such screens can focus

on loss-of-function perturbations through gene knockout (Datlinger et al., 2017; Dixit et

al., 2016) or interference (CRISPRi) (Adamson et al., 2016; Gilbert et al., 2013). In con-

trast, CRISPR activation (CRISPRa) can be employed to selectively induce gene expression

upregulation. This is achieved by using an engineered CRISPR-Cas9 complex where a

catalytically inactive Cas9 (dCas9) protein fused to transcription activation domains is used

as an RNA-guided transcription activator (Konermann et al., 2015).

One of the potent CRISPRa systems includes synergistic activation mediator (SAM)

comprised of multiple components (Konermann et al., 2015). As part of SAM, dCas9-

VP64, dCas9 fusion with a VP64 transcriptional activation domain (Maeder et al., 2013),

is complemented with p65 and heat shock factor 1 (HSF1) that recruit distinct subsets of

transcription factors and chromatin remodellers thus increasing the potential transcriptional

activation. Both p65 and HSF1 are part of the MS2–p65–HSF1 fusion protein, in which the

bacteriophage MS2 coat protein provides an RNA-binding function (Peabody, 1993). Single
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guide RNAs (sgRNAs) in SAM are modified to include hairpin aptamers recruiting MS2

fusion.

While the use of preimplantation mouse embryos in high-throughput screens is limited

due to the scarcity of raw material and experimental complexity, mESCs were shown to

exhibit a ZGA-like state and provide a system for scalable in vitro screening (Mélanie A.

Eckersley-Maslin et al., 2016). These cells were previously used to identify and to study

ZGA regulators (M. Eckersley-Maslin et al., 2019; Mélanie A. Eckersley-Maslin et al.,

2016). Combining CRISPRa with scRNA-seq in mESCs thus provides a setup to interrogate

inducers and regulators of ZGA in a high-throughput manner.

A more detailed review of ZGA and its regulation has been provided in M. S. H. Ko,

2016 and Melanie A. Eckersley-Maslin et al., 2018.

4.2.3 CRISPRa screen for the regulators of zygotic genome activation

In order to systematically interrogate potential regulators of ZGA, a high-throughput screen-

ing method was developed combining CRISPRa with scRNA-seq. For the transcriptional

activation, this method builds on the SAM CRISPRa described above with the screening

performed in mESCs constitutively expressing dCas9-VP64 and MS2-p65-HSF1. The tran-

scriptome of these mESCs is largely unchanged when compared to the parental ESC line E14

(Figure 4.2.3). A ZGA-like transcriptional response potentially induced by the upregulation

of expression of ZGA regulators candidates is then captured with scRNA-seq.

Fig. 4.1 Gene expression comparison for
mESCs with SAM and parental line E14

Scatterplot shows normalised expression

values of mESCs with SAM (constitutively

expressing dCas9-VP64 and MS2-p65-HSF1)

against their parental cell line E14.

Highlighted are dCas9-VP64 and

MS2-p65-HSF1 transcripts (in black) and

screening candidates (in blue).
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4.2.3.1 Pilot screen

To validate this screening system and optimise the approach, a pilot experiment was conducted

with sgRNAs designed to target ZGA-linked MERVL long terminal repeats (LTRs) or Zscan4

promoters (Table B.1). Both targets show the upregulation of their transcription upon

CRISPR activation, which can be quantified using the proportion of cells expressing MERVL

or Zscan4 when compared to mESCs cells with a non-targeting sgRNA control (Figure

4.2). This also provides evidence for synergistic regulation in the MERVL/Zscan4 network

(Mélanie A. Eckersley-Maslin et al., 2016) as Zscan4 activation led to MERVL upregulation

and vice versa. In order to assess global transcriptomic response to MERVL or Zscan4

upregulation, I computed aggregated expression of 2115 genes (see Appendix B.2) described

to be expressed during ZGA or in ZGA-like mESCs (Mélanie A. Eckersley-Maslin et al.,

2016; Hendrickson et al., 2017). Such signature has been upregulated in cells with MERVL

or Zscan4 sgRNAs (Figure 4.2c). Overall, these results demonstrate that scRNA-seq can

be used as a readout of ZGA-like transcriptional changes following CRISPR activation of

relevant regulators.

Fig. 4.2 Gene expression upon activation in the pilot screen
a: MERVL repeats expression in untransduced E14 ESCs (in grey) and SAM ESCs transduced
with a non-targeting sgRNA (in blue), with sgRNAs targeting MERVL repeats (pink) or
Zscan4 gene promoters (orange). Upper panel displays log-normalised counts in individual
cells, lower panel provides density representation as a summary. Reported percentages were
calculated for the cells with larger expression values than the denoted percentile in E14
ESCs ( 2%) marked the vertical black line with 100% corresponding to the total number of
cells in each sample. Using this metric, MERVL activation resulted in a 3-fold increase of
the number of cells expressing it from 3.49% to 10.43%. b: Same as a but for aggregated
Zscan4b/c/d/e/f gene expression. Zscan4 activation led to a 2.8-fold increase of the number
of cells expressing it from 18.63% to 52.84%. c: Same as a but for aggregated ZGA genes
expression. The number of cells with high ZGA gene expression increased 4.28-fold and
3.34-fold upon MERVL and Zscan4 activation, respectively.
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4.2.3.2 Main screen

Next, an extensive list of potential ZGA regulators was devised from a collection of proteins

with nucleic acid binding and transcription factors activities detected in mouse oocytes

and zygotes (see Section 4.2.5.1 below). As a result, pooled sgRNA library contained

two sgRNAs per each of the 230 candidate regulators targeting the 180 nucleotide window

upstream of these genes’ transcriptional start sites in addition to 15 non-targeting sgRNA

controls (Table B.1).

These 475 sgRNAs cloned into a lentiviral vector akin CRISPR droplet sequencing

(CROP-seq) (Datlinger et al., 2017) were used to transduce mESCs at a <0.1 multiplicity of

infection within three transduction replicates.

Transcriptome profiles of 341103 individual cells were obtained with scRNA-seq. I

performed scRNA-seq quality control of the data (Figure 4.3a-c) and assigned sgRNAs

to individual cells (see section 4.2.5.5 below). This resulted in 203894 cells that express

unique sgRNAs (Figure 4.3d). In the dataset combined across three transduction replicates,

each sgRNA is present on average in 437 cells, with sgRNAs captured consistently across

replicates (Figure 4.3e).

I employed principal component analysis (PCA, see Section 3.1.1.1) to investigate the

main sources of variation in the data. When components are sorted by the proportion of

variance they explain, the second component is notably driven by the genes highly expressed

in mid-to-late two-cell embryos during ZGA such as Zscan4, Zscan4d, Gm8300 and Tmem92

(Figure 4.4a-b). This is consistent between replicates highlighting the robustness of the screen

(Figure 4.4c). Overall, this shows that a substantial proportion of cells exhibit ZGA-like

transcriptional changes in response to activation.

4.2.3.3 Identification of zygotic genome activation-like signature with MOFA+

To characterise the ZGA-like transcriptional response with greater detail, I considered

transposable or repeat elements expression in individual cells as an additional source of

information (4.2.5.4) (Figure 4.5b-c). I then used MOFA+ (see Chapter 3) to combine the

signal from the expression of coding genes and of repeat elements in a single model. I

treated gene and repeat element expression as distinct views to disentangle sgRNA-specific

activation of ZGA-like response while also accounting for different groups of cells defined

by the sgRNA they bear (Figure 4.5a). With this joint model, I identified sources of variation

(latent factors) the explain transcriptional variability across cells in both views. Having sorted
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Fig. 4.3 Quality control for scRNA-seq and sgRNA assignment
a: Number of unique molecular identifiers (UMIs) for each transduction replicate. Cells with
>4,000 UMIs and <20,000 UMIs were retained. b: Same as a for the number of detected
genes. Cells with >1,600 and <5,000 genes were retained c: Same as a for the percentage
of counts for mitochondrial genes. Cells with <5d: Number of cells with a unique sgRNA
assigned (in blue), with two sgRNAs assigned (dark gray), with more than two sgRNAs
assigned (in light gray), or no sgRNA assigned (in pink) in each of the three transduction
replicates. For each replicate, the number of cells with a unique sgRNA assigned is shown.
e: Number of cells that a corresponding sgRNA is uniquely assigned to for the 475 sgRNAs
across three transduction replicates and in total. On average, there are 437 cells per sgRNA
in the dataset.
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Fig. 4.4 Main sources of variation in gene expression
a,b: Scatterplot of the first two principal components (PC1 and PC2). Cells are coloured by
the expression of ZGA markers Zscan4c, Zscan4d, Gm8300, Tmem92. Marginal distributions
for principal components are displayed as rug plots along the respective axes. c: Scatterplots
of the first two principal components with the cells in each of the three transduction replicates.
d: Genes ranked by their PC1 (left) and PC2 (right) loadings. Previously know ZGA genes
are highlighted in red. e: Aggregated expression (log2 reads per million) for the top 50 PC1
(left) and PC2 (right) loadings during preimplantation development (Q. Deng et al., 2014).
PC2 loadings peak at mid and late two-cell embryo, identifying this component as ZGA-like.
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the factors by the proportion of variance they explain, I noted the factor 3 captured a ZGA-like

signature (Figure 4.5d-f). In the coding genes view, the highest loadings for this factor are

enriched in genes that are linked to ZGA (Figure 4.5d,f) and are highly expressed in mid-to-

late two-cell embryos (Figure 4.5e). In the repeat elements view, MERVL repeats, which

were linked to ZGA (Melanie A. Eckersley-Maslin et al., 2018; Mélanie A. Eckersley-Maslin

et al., 2016), are the most prominent driver of factor 3 (Figure 4.5d). They are followed

by major satellites notably linked to two-cell embryos where their active transcription is

required for chromatin reorganisation and heterochromatin establishment (Casanova et al.,

2013; M. S. H. Ko, 2016; Probst and Almouzni, 2011). I will use this interpretation of the

factor 3 to refer to it as a ZGA-like MOFA+ factor below. Other factors captured technical

and biological variability associated with mESCs rather than any gene expression programs

in preimplantation development (Figure 4.6c).

I also applied MOFA+ to identify a ZGA-like signature in an in vivo mouse preimplanta-

tion dataset (Q. Deng et al., 2014). This dataset provides necessary temporal resolution to

assess transcriptional changes during ZGA as it includes cells from various stages including

zygotes, early, mid and late two-cell and four-cell embryos. The first MOFA+ factor ordered

the cells according to their developmental stage, from zygotes to four-cell embryo while the

second factor distinctively separates ZGA stages (mid and late two-cell embryos) from the

rest (Figure 4.7a,b). I then compared that in vivo ZGA factor to the in vitro ZGA-like factor

described above to note that both of them capture ZGA-linked genes among the top gene

loadings (Figure 4.7c). Overall, these results point to the presence of ZGA-like transcriptional

changes upon CRISPRa in mESCs detected using the robust screening strategy and MOFA+,

which enabled unsupervised signature identification across multiple data views.

4.2.3.4 Identification of activators of zygotic genome activation-like signature

A pooled screening strategy combined with multi-group functionality of MOFA+ provides

opportunity to assess the association of each sgRNA with the identified ZGA-like transcrip-

tional changes. For this, I confined the analysis to 228 sgRNA that provided evidence of

target gene upregulation and fitted a linear model for each sgRNA considering MOFA+ factor

3 activity for each cell as a function of presence or absence (non-targeting controls) of a

targeting guide (see section 4.2.5.8). The regression coefficient δ in this model corresponds

to the effect size of each sgRNA. This way I identified 25 sgRNAs that induce ZGA-like
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Fig. 4.5 Identification of a ZGA-like transcriptional signature with MOFA+
a: Schematic representation of the MOFA+ used for joint dimentionality reduction of expres-
sion matrices with coding genes and repeat elements. Data matrices with values across two
respective views and 475 groups of cells (according to their sgRNAs) are decomposed into
the product of weights (or loadings) and factors. Factor 3 of the trained model was interpreted
as a ZGA-like factor and is highlighted in green. b: Average number of UMIs per cell after
quality control. c: Total number of cells, after quality control, for which each repeat family
is detected (number of UMIs > 0), out of 203,894 cells. d: Coding genes (left) and repeat
element familites (right) ranked by their loadings of MOFA+ factor 3. Previously known
ZGA genes are highlighted in red and indicate this factor captures a ZGA-like response.
e: Aggregated expression (log2 reads per million) for the top 50 MOFA+ factor 3 loadings
during preimplantation development (Q. Deng et al., 2014). Factor 3 loadings peak at mid
and late two-cell embryo, identifying this factor as ZGA-like. f: Log-transformed normalised
expression levels for the ZGA markers Zscan4d, Gm8300 and Tmem92 (in blue) and the
unrelated gene Nanog (in grey), for different quantiles of MOFA+ factor 3 values. This
shows ZGA markers contribute to the variance explained by MOFA+ factor 3.



114 MOFA+ applications

Fig. 4.6 MOFA+ factors that don’t capture a ZGA-like response
a: Coding genes ranked by their loadings of MOFA+ factors 1, 2, 4 and 5. Previously know
ZGA genes are highlighted in red. b: Repeat element families ranked by their loadings of
MOFA+ factors 1, 2, 4 and 5. c: Normalised expression levels for the top 50 gene loadings
of MOFA+ factors 1, 2, 4 and 5 during preimplantation development (Q. Deng et al., 2014).

Fig. 4.7 MOFA+ captures ZGA response in vivo
a: Scatterplot for MOFA+ factor 1 and factor 2 values. MOFA+ model was trained on the
scRNA-seq data for zygotes, early 2-cell, mid 2-cell, late 2-cell and four-cell stage embryos
(Q. Deng et al., 2014). Cells are coloured by Zscan4c gene expression. b: MOFA+ factors
1, 2 and 3 values. Data as in a. c: Gene loadings for factor 2 from a and gene loadings
for factor 3 from the MOFA+ model trained on the CRISPRa-perturbed ESCs scRNA-seq
dataset. Genes with gene loadings for both factors are labelled. Previously known ZGA
genes are coloured in red.
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transcriptional changes upon CRISPRa of their target gene (Figure 4.8a). These 25 sgRNAs

target 24 genes with two of them targeting Dppa2 (Figure 4.8b).

As 25 sgRNAs were found to be associated with the ZGA-like MOFA+ factor, I confirmed

the cells with these guides exhibit upregulated expression of coding genes driving this factor

(Figure 4.8d). At the same time, the expression of genes linked to other factors was largely

unchanged (Figure 4.9a). This highlights the specificity of these sgRNAs in promoting a

ZGA-like response. Similarly, these sgRNAs upregulate mainly MERVL repeats (Figure

4.8d) as well as major satellites rather than other repeat families (Figure 4.9b), consistent

with these repeat families having the top loadings for the ZGA-like MOFA+ factor (Figure

4.5d).

For each of the 25 sgRNAs hits I then investigated individual genes which expression was

induced with CRISPRa and its downstream effects. With a transcriptome-wide differential

expression test comparing cells with targeting and non-targeting cells sgRNAs, only a small

set of genes was significantly differentially expressed. Ranking the top 400 upregulated genes

by statistical significance, however, helped to identify enrichment of known ZGA-associated

genes for 23 of 25 sgRNAs (Figure 4.10). As a complementary strategy, this analysis provides

additional confidence in the selected sgRNAs identified with MOFA+. Moreover, it shows

that MOFA+ allows to identify screen hits that otherwise might be missed with conventional

differential expression analysis due to the lack of power to detect the effects on individual

genes.

Some of the 24 identified genes which activation elicits ZGA-like transcriptional changes

are previously known ZGA regulators such as Dppa2 (M. Eckersley-Maslin et al., 2019;

Hernandez et al., 2018), heat-shock factor-1 Hsf1 (Christians et al., 2000) and yes-associated

protein Yap1 (Jukam et al., 2017; Yu et al., 2016).

Genes that are newly linked to ZGA include transcription factors Patz1 (PATZ1 POZ/BTB

and AT hook containing zinc finger 1), Pou2f2 (POU class 2 homeobox 2, also known as Oct-

2), Foxo3 (forkhead box O-3), Tsc22d4 (TSC22 domain family member 4), DNA demethylase

Tet3, component of histone acetyltransferase complexes Ing5 (inhibitor of growth family

member 5), histone demethylase Phf2 (PHD finger protein 2), heterochromatin component

Cbx5 (chromobox 5), components of the SWI/SNF chromatin remodelling complex Arid1b

(AT-Rich interaction domain 1B), Smarca5 (SWI/SNF related, matrix associated, actin

dependent regulator of chromatin, subfamily A, member 5; also known as Snf2h), component

of the the histone-deacetylase multiprotein complex (NuRD) Mta1 (metastasis associated
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Fig. 4.8 Identification of MOFA+ ZGA-like signature activators
a: Effect size (regression coefficient δ ) and the adjusted t-test p-value adjusted with the
Benjamini-Hochberg adjustment. 25 sgRNAs tgat were considered to be potent positive
regulators at FDR 10b: Target gene activation for the 25 sgRNAs measured as log fold change
between gene expression in cells with the corresponding sgRNA and cells with non-targeting
sgRNAs. Both sgRNAs per gene are shown (inner and outer circles) with sgRNAs identified
as screen hits marked with dots. c: Fraction of explained variance for individual sgRNAs is
consistent with the regression coefficient δ . d: Log fold change of expression of the top 50
MOFA+ factor 3 absolute loadings (top) and MERVL repeats (bottom) in cells expressing the
25 sgRNA and in cells expressing other targeting sgRNAs. Comparison was performed to
cells expressing non-targeting sgRNA controls. ∗∗∗∗p-value = 3.7 ·10−10 for coding genes
and 8.2 ·10−7 for MERVL repeats, Mann-Whitney two-tailed test.
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Fig. 4.9 Potent positive ZGA regulators and factors that don’t capture ZGA-like response
a: Log fold change of expression of the top 50 absolute gene loadings associated with MOFA+
factors 1, 2, 4 and 5 in cells expressing the 25 sgRNA hits and cells expressing other targeting
sgRNAs, compared to cells expressing non-targeting sgRNAs. ∗ : p-value < 0.05, ns: non-
significant, Mann-Whitney two-tailed t-test. b: Log fold change of expression of different
repeat families in cells expressing the 25 sgRNA hits and cells expressing other targeting
sgRNAs, compared to cells expressing non-targeting sgRNAs. ∗∗∗∗ : p-value < 0.0001,
∗ : p-value < 0.05, ns: non-significant, Mann-Whitney two-tailed t-test.
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Fig. 4.10 ZGA genes upregulation by potent positive regulators
Number of ZGA-signature genes upregulated by each of the 25 sgRNAs compared to non-
targeting sgRNA controls among the top 400 genes ranked by statistical significance of
differential gene expression test. In grey, an empirical background distribution estimated
based on differential gene expression between cells with non-targeting sgRNAs is shown
(one standard deviation around the mean). 24 potent positive regulators are labelled, with
some genes highlighted: Patz1 in green, Dppa2 in orange, Smarca5 in purple, Pou2f2 in blue,
and Tsc22d4 in pink, overlaping with the non-targeting sgRNAs in grey.
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1), DNA-repair proteins Xrcc1 (X-ray repair cross complementing 1), nuclear receptor

Nr2c2 (nuclear receptor subfamily 2 group C member 2), facilitator of chromatin modifiers

recruitment Atad2 (ATPase family AAA domain-containing), telomere-specific protein Terf1

(telomeric repeat-binding factor 1).

4.2.3.5 Patz1, Dppa2 and Smarca5 as potent inducers of ZGA-like transcription

Some of these genes were later validated to promote ZGA-like transcriptional changes upon

activation using complementary approaches. For instance, ten potential ZGA regulators

were targeted with CRISPRa followed by the bulk RNA sequencing (Alda-Catalinas et al.,

2020). This has confirmed the effectiveness of the CRISPRa screening strategy followed by

scRNA-seq and also showed that weaker regulators such as Arnt (aryl hydrocarbon receptor

nuclear translocator), Sirt1 (sirtuin 1) or Smad1 (SMAD family member 1), which were also

included in the validation screen, can be identified with methods such as bulk RNA-seq even

though they did not meet the significance criteria in the primary analysis (Figure 4.10).

I used this validation bulk RNA-seq dataset to find downstream effects of CRISPRa and

compare them to the effects of the same sgRNAs estimated with scRNA-seq data. Namely,

I compared fold changes from the differential expression analysis in bulk and single-cell

readouts. While bulk RNA-seq provided more power in calling differentially expressed genes,

the patterns of the downstream transcriptional changes were largely consistent between two

datasets (Figure 4.11). Notably, both the scRNA-seq screen and validation bulk RNA-seq

identified Patz1, Dppa2 and Smarca5 as strong positive regulators of ZGA-like transcription.

Patz1, Dppa2, and Smarca5 were later confirmed to be positive regulators of ZGA-like

transcription in mESCs using complementary experimental strategies. Alternative methods of

gene overexpression such as transfecting cDNA-eGFP (enhanced green fluorescent protein)

into mESCs and using bulk RNA-seq to quantify transcriptional response confirmed that

there three potential regulators trigger similar transcriptome-wide changes in gene expression

(Alda-Catalinas et al., 2020). This is in sharp contrast with the effects of the Carhsp1-

targeting sgRNA used as a negative control, which displayed target gene activation but

no ZGA-like response downstream. Immunofluorescence techniques confirmed that Patz1,

Dppa2 and Smarca5 are expressed in a zygote with SMARCA5 localised in the nucleus and

PATZ1 and DPPA2 localised both in the nucleus and cytoplasm. Overall, these results point

to these three genes as positive regulators of ZGA-like transcription confirming the findings

of the high-throughput screen.
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Fig. 4.11 Differentially expressed genes in scRNA-seq and in bulk
Log fold change values of differentially expressed genes estimated based on bulk CRISPRa
RNA-sequencing data (FDR 10%) (x axis) versus log fold change estimates for the corre-
sponding genes in cells expressing the same sgRNA based on the CRISPRa scRNA-seq data
(y axis) for the target genes Patz1, Dppa2, Smarca5, and Carhsp1. Genes that were also
differentially expressed in scRNA-seq data (FDR 10%) are labelled in dark grey whereas
those genes differentially expressed in bulk RNA-sequencing data but not in scRNA-seq are
labelled in light grey (not significant). For each target gene, a regression line was fitted to
highlight the trend. Dashed lines mark the y = x line.

Earlier, DPPA2 was shown to induce the ZGA gene expression network (De Iaco et al.,

2019; M. Eckersley-Maslin et al., 2019), and there’s evidence it interacts with SMARCA5 in

mESCs (Hernandez et al., 2018) and colocalises with it in two-cell embryos (Alda-Catalinas

et al., 2020). SMARCA5 is an adenosine triphosphatase (ATPase) subunit of ISWI (imitation

switch) chromatin remodelling complex, one of the four mammalian remodeller families

that orchestrate the nucleosome organisation. Smarca5 knockdown in zygotes compromises

development suggesting its importance for zygotic genome activation (Torres-Padilla and

Zernicka-Goetz, 2006), and the recent Smarca5 knockout data (Barisic et al., 2019) revealed

that SMARCA5 regulates ZGA through its ATPase activity (Alda-Catalinas et al., 2020).

Further work shows that Dppa2 is required for Smarca5-mediated ZGA regulation. In

particular, Smarca5 knockout mESCs display downregulated ZGA genes, and their expression

can be partially rescued by Dppa2 overexpresison. At the same time, Smarca5 overexpression

doesn’t induce ZGA-like gene expression in Dppa2 knockout mESCs suggesting the latter

acts downstream of Smarca5 to regulate ZGA-like transcriptional changes (Alda-Catalinas

et al., 2020).
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4.2.4 Discussion

ZGA is a major developmental transition, yet the understanding of its timing and master

regulators has remained limited (Jukam et al., 2017). This work demonstrates how a newly

developed high-throughput CRISPRa screen coupled with scRNA-seq readout and a scalable

factorisation framework can be used to identify potent ZGA regulators. I applied MOFA+ to

the dataset comprised of more than 200 thousand mESCs with 460 sgRNAs targeting potential

ZGA regulators. Joint analysis of coding gene and repeat elements expression revealed 24

genes that induced ZGA-like transcriptional response upon activation (Figure 4.8). Some of

the candidate regulators were then experimentally validated and shown to induce ZGA-like

transcription in mESCs with CRISPRa and complementary approaches (Alda-Catalinas et al.,

2020). In particular, Dppa2-dependent regulation of ZGA was uncovered for Smarca5.

This CRISPRa-based screening method enables a systematic functional interrogation of a

large number of genes and has a potential to be adapted to various biological contexts. Gene

overexpression method is of notable importance here as CRISPRa provides advantages over

traditional cDNA overexpression including physiologically relevant level of gene upregu-

lation (J. Yang et al., 2019) and ease of scaling to more genes. Of 460 sgRNAs, only 228

sgRNAs had evidence for target gene upregulation, which might be explained by lack of

activation due to sub-optimal sgRNA design or by lack of detection due to technical dropouts

and data sparsity for the remaining sgRNAs. With an unsupervised factorisation framework,

MOFA+, I inferred a ZGA-like transcriptional signature leveraging the correlation structure

across genes. This signature has been defined in terms of expression of coding gene as well

as of repeat elements. I selected the most potent positive regulators candidates by estimating

the ZGA-like signature activation effect for each sgRNA and comparing the downstream

effect of gene upregulation with list of genes in the ZGA network. Some of the 24 identified

regulators (Dppa2, Yap1, Hsf1) were previously described as ZGA regulators, which vali-

dates the screening and analytical approach. Several new regulators including Smarca5 and

Patz1 were further validated to confirm their ability to promote the ZGA-like signature upon

upregulation.

In summary, the high-throughput CRISPRa-based screening strategy together with the

unsupervised multimodal factorisation framework unraveled positive regulators of transcrip-

tional changes in mESCs that resemble ZGA in mouse embryos. The results of this work

motivate further functional studies of the potent ZGA regulators as well as investigations of
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their interdependencies. Moreover, this method can be applied in a broad range of biological

contexts for systematic transcriptional regulation understanding.

4.2.5 Methods

4.2.5.1 Candidate regulators selection

A list of potential ZGA regulators was constructed based on published data and resources.

Namely, the intersection of the following gene sets was considered. First, mouse proteins

associated with transcription factor (PC00218) and nucleic acid binding (PC00171) activities

from the PANTHER1 database (Mi et al., 2019). Second, proteins detected in metaphase II

(MII) mouse oocytes (Pfeiffer, Siatkowski, et al., 2011; Pfeiffer, Taher, et al., 2015) and both

MII oocytes and zygotes (Bingyuan Wang et al., 2016). Intersecting there four gene lists

resulted in a list of 230 candidates (Table B.1).

4.2.5.2 Experimental procedures

Detailed description of experimental procedures has been provided in Alda-Catalinas et

al., 2020. Briefly, the sgRNAs were designed according to Joung et al., 2017 to target

the 180bp region upstream of the transcription start site (TSS) of the target gene. The

lentiviral backbone included a fluorescent mCherry marker and a puromycin resistance

cassette to enable fluorescence-activated cell sorting and antibiotic selection. Cloning,

lentiviral packaging and transductions were performed as described in Alda-Catalinas et al.,

2020. Following sorting and selection, the cells were used to prepare scRNA-seq libraries

using 10x Genomics Single Cell 3′ Library & Gel Bead Kit v2 (Zheng et al., 2017). Each

library was sequenced on Illumina HiSeq 4000. For each of the full length 10x cDNA

samples, amplicon sgRNA PCRs were performed as described in Hill et al., 2018.

4.2.5.3 Analysis of scRNA-seq data

All the scRNA-seq data was processed wit the default CellRanger pipeline v2.1 (Zheng et al.,

2017) using the mm10 mouse genome assembly. Data management, filtering, quality control

and downstream analyses were performed with SCANPY (Wolf et al., 2018).

1https://pantherdb.org
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For the pilot screen, cells with less than 15000 UMI counts, more than 40000 UMI counts,

less than 4000 detected genes, more than 6500 detected genes or with more than 5% of

counts coming from mitochondrial genes were discarded.

For the main screen, cells with less than 4000 UMI counts, more than 20000 UMI counts,

less than 1600 detected genes, more than 5000 detected genes or with more than 5% of

counts coming from mitochondrial genes were discarded (Figure 4.3a-c). This resulted in

109061, 118646 and 107591 cells in each of the three transduction replicates. After a sgRNA

was assigned to each cell (see section 4.2.5.5), only cells with a unique sgRNA assignment

were retained, resulting in 71047, 71188 and 61729 cells in three replicates, 203894 cells in

total.

Genes that were detected in at least 10 cells after quality control were considered for

downstream analysis. UMI counts for each gene were normalised by the library size, scaled

by a factor of 10000 and log-transformed. Principal components were calculated with 965

highly variables genes that were selected using the SCANPY implementation (Wolf et al.,

2018) with minimum mean of 0.01, maximum mean of 5 and minimum dispersion of 0.5.

4.2.5.4 Repeat Element Quantification

Repeat sequences from 12 families (LINE-1, LINE-2, ERV1, ERVK, MERVL, Major satel-

lites, Minor satellites, SINE Alu B1, SINE B2, SINE B4, Ribosomal RNA, Telomeric repeats)

with their genomic locations were downloaded from the UCSC Table Browser (Karolchik

et al., 2004), concatenated and treated as a reference genome. Reads that had not been

mapped to the mm10 reference by the CellRanger pipeline were extracted: 253330874 reads

in replicate 1, 276401843 reads in replicate 2, 242863617 in replicate 3. These reads were

mapped to the repeat elements reference using SAMtools (H. Li et al., 2009) and BWA

v0.7.17-r1188 (Heng Li and Durbin, 2009) with default parameters. As a result, 15.31%,

13.49% and 10.64% of those reads were mapped to repeat elements. Minor satellites and

LINE-2 elements were discarded from downstream analyses due to low mapping rates (Table

4.1). To obtain counts for each repeat family in each cell, reads sharing the same UMI and

cell barcode were collapsed.
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Table 4.1 Repeat element quantification

Repeat family Number of mapped reads

LINE-1 40,490,996

LINE-2 185

ERV1 3,161,474

ERVK 36,949,603

MERVL 3,707,419

Major Satellites 798,309

Minor Satellites 9

Ribosomal RNA 2170

SINE Alu B1 1,227,023

SINE B2 14,151,376

SINE B4 1,425,154

Telomeric repeats 1348

4.2.5.5 Assignment of sgRNAs to Cells

In the sequenced amplicon sgRNA libraries, I extracted the potential sgRNA sequence, which

corresponded to nucleotides 24 to 43 of a read. When considering exact matches to the list

of sgRNAs, 16% of reads on average were not assigned to any sgRNA (15.3% – 16.8% for

different libraries). The majority of 475 sgRNAs were recovered (470 – 474 in different

libraries). In order to correct for sequencing errors, I allowed for a Levenshtein distance of
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2 edits when comparing the expected sgRNA sequence with a list of possible sgRNAs and

of 5 edits when comparing upstream and downstream 23bp-long context surrounding the

sgRNA in the CROP-sgRNA-MS2. This correction procedure reduced the number of reads

unassigned to sgRNAs to 2%. Cell barcodes that were detected in the amplicon libraries

were matches with the cell barcodes from the scRNA-seq libraries. Among the latter, out

of 317847 cells across three transduction replicates passing quality control, 249767 cell

barcodes were detected in the amplicon sgRNA libraries. An sgRNA was assigned to a cell

if more than 90% of the amplicon reads with that cell barcode shared the same sgRNA and if

the standard error of binomial proportion was less than 10% (more than 8 reads if there’s

only one potential sgRNA, more than 13 reads if there are several). Table 4.2 summarises

sgRNA assignment for each replicate.

Table 4.2 sgRNA assignment to cells across three replicates

Replicate Total number of cells Assignment Number of cells Percentage

1 85,933 No sgRNA 397 0.46

1 85,933 Unique sgRNA 71,047 82.62

1 85,933 Two sgRNAs 3,028 3.52

1 85,933 Multiple sgRNAs 11,521 13.40

2 86,671 No sgRNA 400 0.46

2 86,671 Unique sgRNA 71,118 82.14

2 86,671 Two sgRNAs 3,210 3.70

2 86,671 Multiple sgRNAs 11,873 13.70

3 77,103 No sgRNA 381 0.49
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3 77,103 Unique sgRNA 61,729 80.06

3 77,103 Two sgRNAs 3,084 4.00

3 77,103 Multiple sgRNAs 11,909 15.45

4.2.5.6 MOFA+ application to the primary screen

I trained a MOFA+ model on two views of the data corresponding to coding genes and

repeat elements. For the coding genes view, I considered a set of 965 highly variable genes

as described in 4.2.5.3. For the repeat elements, I used expression levels of eight repeat

elements (LINE-1, ERV1, ERVK, MERVL, SINE Alu B1, SINE B2, SINE B4 and Major

satellites) estimated as described in 4.2.5.4. Telomeric repeats and ribosomal RNA were

excluded due to low detection rate. Cells were grouped according to the assign sgRNA as

described in 4.2.5.5. For the model training, I used 25 factors and Gaussian likelihoods for

both view. Model training and interpretation were conducted with use of MOFA libraries in

Python and in R.

4.2.5.7 MOFA+ application to the in vivo data

Single-cell RNA-seq data from five developmental stages including zygotes, early, mid and

late two-cell and four-cell embryos (Q. Deng et al., 2014) were processed using SCANPY

(Wolf et al., 2018). I applied MOFA+ on the top 5000 highly variables genes. Using the gene

loadings for each factor, I concluded that factor 2 corresponded to a ZGA signature (Figure

4.7c). This was corroborated by high factor 2 activity during ZGA stages, i.e. mid and late

two-cell embryos (Figure 4.7a,b).

4.2.5.8 Identification of potent positive regulators

For each of the 228 sgRNAs that prompted any target gene activation, I considered the

ZGA-like MOFA+ factor values Z for the corresponding cells. In the model below, they were

compared to the ZGA-like MOFA+ factor values Z with non-targeting sgRNAs NT sgRNAs.

I fitted a linear model for each of the targeting sgRNAs T sgRNA:

Z[T sgRNA,NT sgRNAs] ∼ IT ,
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where IT is a binary indicator with IT = 1 for cells with a targeting sgRNA and IT = 0

for cells with non-targeting sgRNAs. Having fitted this model for each targeting sgRNA,

I obtained effect size δ values that characterised guides’ potency to induce the ZGA-like

gene expression program. I then used a likelihood ratio test to test that δ is different from 0,

obtained p-values and used the Benjamini-Hochberg procedure for multiple testing correction.

Positive regulators were reported (Figure 4.8a) for 10% false discovery rate (FDR). I also

demonstrated that δ values are correlated with higher expression of genes linked to ZGA

(Figure 4.8d) and with the proportion of variance explained by the ZGA-like MOFA+ factor

(Figure 4.8c).

4.2.5.9 Differential gene expression

To estimate downstream effects of the targeted gene upregulation, I compared cells with

targeting and non-targeting sgRNAs using a generalised linear model (glm) and a likelihood

ratio test as implemented in edgeR (Robinson et al., 2010). Using the top 400 genes ranked

by statistical significance for each of the targeting sgRNA, I ranked the sgRNAs based on the

proportion of ZGA-linked genes (see Appendix B.2) among them. Such cumulative ranking

highlighted Smarca5, Dppa2 and Patz1 as most potent regulators. Empirical background

distribution was estimated based on differential expression between cells with non-targeting

sgRNAs.
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A.1 Update equations

The update equations are applied at every iteration of the variational inference algorithm.

The update equations for all the parts of the MOFA+ model are listed below.

Non-sparse factors Prior distribution:
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âα
gk = aα

0 +
Ng
2

b̂α
gk = bα

0 +
∑

Ng
n=1⟨(ẑ
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Factor sparsity priors Prior distribution:
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A.2 Expectations equations
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dgm)
)



Appendix B

MOFA+ application for CRISPRa screens



166 MOFA+ application for CRISPRa screens

B.1 sgRNA sequences and target genes

Nucleotide sequence and target gene for the 475 sgRNAs used in the study are listed below.
Table B.1 Sequence and target gene for 475 sgRNAs

1 Baz2b CAACTTTCATTGTTAGAGAG

2 Baz2b GCTGATAGGTCATTTATTAT

3 Fam170a AGGAACTGTTCTTGTAAACA

4 Fam170a GAGAACTGAGTTCCTTAGAG

5 Mdc1 AGTTACCGGCGGCGGCTAGA

6 Mdc1 CAAACGCCTACCAGAGAGTC

7 Ttf2 AGACTCTCCCGCTTGATTGG

8 Ttf2 GCGCGCTCTGAAATCAAACT

9 Crebbp CGCGCTCGGGAGGCGGGCAG

10 Crebbp GGGCGCCGTCGCTGCCAGCC

11 Lin28b ACAGAGTCACGTGTGCTCAG

12 Lin28b TTCTTGCTACTAATTCACCT

13 Zfp407 AAGTGGCTCGACGGAGAGGC

14 Zfp407 GAATGTTAGGTCATTAGCCA

15 Lyg2 ACCTGATTATAGTGCTACTT

16 Lyg2 GAGGTCAATGCTTTAAAGAG

17 Arnt CCGGTGACCCGAGGAGTGCT

18 Arnt CTGACCGCGCCCATAGTTTG

19 Akap1 AGGCGGGCCCGTACAGCTCC

20 Akap1 GGAGCTCTCCGCTGACATCC

21 Zscan21 CAACGCTCGGATTCCTAGAG

22 Zscan21 GTCGCAGCCTCCGGTGAAAC

23 Bahd1 GCGGCCGGACGGGCGAGCAG

24 Bahd1 GCGTAGCGGATCCCGGAGCC

25 Nfyc GCTCTTCAGGTGCAGTCTTC

26 Nfyc GTACCACCACACCTGAATCT

27 Cbx5 CGCTGGTCCCGCCACTACGC

28 Cbx5 GCGCAGGGAAGGATCCGTTT

29 Trim33 GAAGACTTCTGTCTCACCGC

30 Trim33 TCACAGCCCTCTAGAGAACG

31 Arid1a GAGAAGACGAAGACAGGGCC

32 Arid1a GAGCGAGCGCAGCGCAGCAG

33 Foxk2 CCGGCGTCGTCGCGCGACGC

34 Foxk2 CGTGCGCCGCGCCCATTGGT

35 Arid4a AGCTGGGAAACTTCCATGAT

36 Arid4a CTCATGACGCCGAATAGCTT

37 Tsc22d2 GCCCAGAGCAGCCCGTGACT

38 Tsc22d2 GCCCTTCTCGGTTTCCGGTG

39 Pbrm1 CGGGATCACCACGACTTCTC

40 Pbrm1 GGTTCAACGTCACGCGCTCC

41 Chd2 ATGTAGAGAGTGTCAATCAA

42 Chd2 GCTCTCTTGGATGGAGAATC

43 Dux CAGAGGCAGAGGTATTTAAG

44 Dux GGTGCCAATGACGGCCTCCC

45 Ubp1 GCACTGGAGGAAGTGGTTCC

46 Ubp1 GGCCAATGAGCTCTTACTTA

47 Arid1b ACCCTCCTTGAGAGCCGCCT

48 Arid1b GCGGCCGCTCTGCGCGCTGT

49 Lin9 GAACTGCAGGCCGGTTCCCG

50 Lin9 GTGGCGCGGCGGACGAGACC

51 Fiz1 GGCTAGCGCCATCTTTGTTG

52 Fiz1 TCCTTTCCTATTTCCAGCCG

53 Sin3a GAAAGCCAATAGATACTGGG

54 Sin3a TTGGAGGCGACTCTTACTCG

55 Brd3 CGCGGACTACGACTCCCGCC

56 Brd3 GACATGTAGTCCGTGCGCCT

57 Tcf20 CTCAGCTGATGTCACCGCCC

58 Tcf20 GCAGAGGTGTGATCCGGCAG

59 Tnrc18 AAGTGTGAGGCGGCTGCGGG

60 Tnrc18 GAGCTCGGCGGGAGGAAAGC

61 Sirt2 GATTGGCTGTGGTGCAGTAC

62 Sirt2 TTGTAGTTTGATAACATGAG

63 Gmeb1 GTCCTTATTGCGGGCCGCGC

64 Gmeb1 TGCGCACAAAGCCGCCACGG

65 Trp63 GCTGAAAGGGAGGCAGAAGG

66 Trp63 TGAAATGAAGAGTGAGTTCT

67 Cecr2 GGGCCCGGCAGAAACCTGGG

68 Cecr2 GTTGTTGTTGTGGTGCGCGC

69 Max ACTACAAGTCTCAGCTACCC

70 Max AGTCTGGCGAAGCCTGTGTG
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71 Irf1 GGTGGCGCGCTGGCTCGGGA

72 Irf1 TGAGCTCGCCGGAGCTGCGC

73 Sirt1 AGGCGCCAGAGGCCGCTGAG

74 Sirt1 GAGCCGAGCCGCCCTGGGTG

75 Pou2f2 CCGGGAGGAAACCACAGGGC

76 Pou2f2 TGACTTCCGGCAGGGAGGGC

77 Satb1 CCCGCAAGCCAGCTTGTGTG

78 Satb1 CCTCCTTCCCTTCAAACTGA

79 Zfp512b AGGCGGGCTGGGCACAGGGC

80 Zfp512b TTTCTGGAGGAGGAGGCGGG

81 Hmga1 AACAGCAGGGCCGCCGTCAC

82 Hmga1 GTAGCTCGCCACTGTGCGCG

83 Phf14 CTAGTTCTTAGGCAGATGGA

84 Phf14 TACTATGGAAATCAGAGTAC

85 Zfp57 CTAAGATAAGTATTTACTCC

86 Zfp57 TTTCCGTAATTCCTTGTACT

87 Mta3 CGTCGCTCTGCCGGCGCTGG

88 Mta3 GGGTAGCACACCAGGGTCAG

89 Yap1 AAGGAAGAGCGTCGAGGAGG

90 Yap1 CGCGCTGCGTGCGCACCCAC

91 Smarca4 AGTCCTTTGAGGGCGCGAGG

92 Smarca4 CCAGAGGCTGCACAAGATCC

93 Dnmt1 AACATCTCCAATACCCTGAT

94 Dnmt1 AGCATGGCCCGCTCTGTGCC

95 Jarid2 ATTGTAGTTCTTCGCTTCCG

96 Jarid2 GTTGAGTGACAGGAGGCGTG

97 Eya1 CAATTGAGAGGAGCAGAGCT

98 Eya1 CTGTTTATTCAGATATCATG

99 Shmt2 AGCTTCAAGAAAGGACATGG

100 Shmt2 TCCCTGCGCATGCGCAGTAC

101 Mllt10 GAAAGCCTGGAGGTAGGCAG

102 Mllt10 GCGGAGTCGGCTGCTCAGCG

103 Patz1 GTGCTACGCGGGTCCGGCGG

104 Patz1 GTTAAGGGCGGCAATGTGGG

105 Tdrd3 TGACCAAGCAGCCCGGTCCC

106 Tdrd3 TTCTAAGTTGCACACACATG

107 Hdac9 AAGCAGAAAGAAGTTAATGC

108 Hdac9 GTTCTGCTCAGACAATAAGA

109 Trim24 CCCGCCGGACGCGAGGACCG

110 Trim24 CTGCAGAAGCCCGCGAGGCT

111 Chd7 CTTCCCGTCCCGCCGGGCGC

112 Chd7 GGGCGCGCCGCGGAGAGAGC

113 Terf2 AGCATTGCAGCAGACACAAG

114 Terf2 TGAAGACTACGCTGCAGACT

115 Mier1 TCTCTGTCTCTTTGCTACTG

116 Mier1 TGTGAGACTGAGTGAGCTTG

117 Nfx1 AAAGCAATTACGCAAGTTGG

118 Nfx1 CGCCATTTCACTGTGTGCTC

119 Cux1 CGTGAAAGTGACTGCGGAGC

120 Cux1 GACCCGCCACACCGGGTAGC

121 Tfdp1 CGAGAGGCGCGGGAGATGAG

122 Tfdp1 GGTGCTACCCGCCCTGGGAG

123 Hmgb3 CAACCTCCTCGCCTGGCCAT

124 Hmgb3 CATTCAAACAGAACAACCCG

125 Preb GGCAGCTTCATCGTCATTCG

126 Preb TAGGACCCGGATCCGACGCC

127 Usp3 CCCACACTAGTCAGTGGGCG

128 Usp3 CGTAACCAGCAGGGTGGGCG

129 Phf1 CAGCTAACGGATGTGGCATG

130 Phf1 GGAGCTTGGAGTGGCCACGG

131 Ing1 GCGACACAAAGGGACGATGG

132 Ing1 TCCCGGTGCTGGGTTTAGAA

133 Cic CGCAGCCAATCAGCAACGGC

134 Cic TAAACCAGAGTAGAGAAGTT

135 Ubtf GCCGCCCGGAGGAGGCGGAG

136 Ubtf GCCTTGGCGCCGCCGCCTCC

137 Csnk2b CGCGGGAAACTTGAACCTTA

138 Csnk2b GCACGCGATGCTTTACTACG

139 Cbx1 CTCCACTTTCAAGGATTGTA

140 Cbx1 TGGGCGGCGCGGGATTCGCG

141 Cbx2 GCTGCGTGCTCCGGGAATCC

142 Cbx2 GGGCGCTCTCTGCACTGTGT

143 Cbx3 CCCGCCGGGAACGCGTCCTG

144 Cbx3 GCGCGCTCCGAGACGCAGAG

145 Dhx9 CGCGCGAGATCTGCTGGCCT

146 Dhx9 GTCGGCGACTCGCGCCTGCG

147 Dnajc1 AGAGAACAGCTTTCCGTGGC

148 Dnajc1 AGCTGCACGTGTGTCAGCGC

149 E2f5 CGTTACTAGGCAACGCCGCG

150 E2f5 GGCAGTCGGGTTCCCTCAGG
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151 Ezh2 AGGCGCTTGATAGTGCTGGG

152 Ezh2 TTCGGAGCGAGCTCCAGCCC

153 Gata3 CTGCAACCCAAACCCGCTCC

154 Gata3 TGGCGCGACGCAACTTAAGG

155 Nr3c1 CTTTGTGGATGGGAGCAGGG

156 Nr3c1 GCCTATTAAATAAACCCTTT

157 Hdac2 ACGGGTAGTCACACACAGTC

158 Hdac2 AGTCCGCTTGTGCGCACCTC

159 Hmgb2 ATGTACTGCTCGGCCCTGAT

160 Hmgb2 CTCTCTAGACCGGTTCCAAC

161 Hsf1 CTCTGATTGGTGAGCAGCCC

162 Hsf1 TGGGCCGGCAAAGTAGGCAG

163 Smad1 CGCGGTGCGCGTGTGAGCGA

164 Smad1 GAAGGCGCGGGCCGGTAATT

165 Smad4 GGACACTGAGCATGCGCGCG

166 Smad4 TGGCAGCAACAACACGGCCC

167 Mybl2 AGCCCGCGCGCCAGAACCCT

168 Mybl2 CTATCTCCCGCCAAGTGCGT

169 Ncoa3 CGCCCAGCACTACGGGTCCC

170 Ncoa3 GGAGGTGAAGAGGACGTTCT

171 Rb1 GAGACAGGCCCGGGCAGGCG

172 Rb1 TCGCGGGCCGCGGGCGTCAG

173 Rbbp4 ATTGGTCGGTGTTGGCGCGA

174 Rbbp4 TGGGCGGAGCATCCGCCTCG

175 Rela GATGTCACCCTGGCCGGGAC

176 Rela TGCGGCCATTCGCCCTGCGC

177 Rfx1 GGAGCTCGGTGAAGTCGAGA

178 Rfx1 GGGCGCTTCCAGCATGCTAT

179 Smarcc1 CCGCCCAGCCAACCCTCTTC

180 Smarcc1 CGGGCAGCCTCAGTCCGTAG

181 Terf1 CGCCTGGGCTCGGATCGACA

182 Terf1 TTTAGCAGTTCTCAGCCAAT

183 Tfam CTGTGGGAAGCCCGGACTTC

184 Tfam GGCGGAGCCTGAGGCTAGGG

185 Usf1 TGGCTGGCGTTTCCCAGGCC

186 Usf1 TGGGCACGGAGCCTTTGTTT

187 Xrcc1 CGCCGGGTTCCCTTAGCAAC

188 Xrcc1 GTTGGGCCTCTCCGCGAGCG

189 Dnajc2 ACGTAGGAACTGATGCGTCT

190 Dnajc2 GCATTGGCGCGAGGCCGTGG

191 Adnp CCGAAGAGCTCTCCCTTGGG

192 Adnp GGACTCATTGTCCAGCTGGG

193 Brca1 ACAAGATCCAGACACGTCAG

194 Brca1 ACGGAAGAGAAAGAATTTCG

195 Creb1 AGCTCGGCTGTTTCCGTGAG

196 Creb1 GAAGGCCTTCGGCTACTTCC

197 Gbx2 GGAGCGCGATTTAAAGGTGC

198 Gbx2 TGGGCTACCGGCGCCACGGT

199 Lhx2 AGCCACTGGGAGAATTGAAG

200 Lhx2 GGCTCAGCTCGCAGGCTTCG

201 Smad2 GACGTTTCCCTTCCGATTCC

202 Smad2 GGGTGTGAGCACCGCGTCGG

203 Msh6 CGGCCAATCCGAAGGCGTGT

204 Msh6 TGGAGCTCGCGGTGGCTACC

205 Nfatc3 GATAGGTCGGTGAGGAGGCG

206 Nfatc3 GCCAGAGCCCTGCTCCCTCT

207 Nfya AAGGCGCCTGCGTAGGCCTT

208 Nfya GCGTGGTATATAATTCAGGG

209 Nfyb AGCCTTTCCGCGTGGAGCTC

210 Nfyb GCTCTGGATGTTCGCTCTTC

211 Uhrf1 CTATGAGGTTTACATGGTGG

212 Uhrf1 GAGGGCTCTTGATTCCTGAT

213 Nrf1 CCGCCCGGAGACCGCCATGA

214 Nrf1 GCGAGGCCAGCACGGCTCTG

215 Phf2 GGCGCAGGGCTGAGAGTGCG

216 Phf2 TTTGTGTCCCGCGCGCGGCC

217 Pou2f1 GCCTCGGGAGAGGAAGGAAC

218 Pou2f1 TGCGCACCGCGCGCGCAGGG

219 Rest GACGGCGCGGGCCGGGTGCG

220 Rest GGCGCGCGCGGACGGCGAGG

221 Sub1 AGTGAGATGCCACGCAGCTT

222 Sub1 CGTGCCATTGGGCGGAGCCA

223 Smarca2 CCCGAGTTTAGGAAGAGGAG

224 Smarca2 GCGTCTTCCGGCGCCCGTGG

225 Sox2 CTGGGCTCGGGCGCAGGAGC

226 Sox2 GGCGGCCAATCAGCGAGCGC

227 Tbx3 GAGTGATTGGGAGCTGGAGT

228 Tbx3 GCGAGGGAGGATCAAGAAGA

229 Trim28 GCCACGGCAGAGCAAAGCGC

230 Trim28 GCGGCAGCCTGGCCTATAGT
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231 Nr2c2 CCGCCGGAGCTGAGGCCCGC

232 Nr2c2 CTCGGCGCGGCGCCAGGCAA

233 Tulp3 CATGATGCTGGAGGGTTTCC

234 Tulp3 TGGGCGTCGGCGACAGTGCG

235 Ybx1 AAAGATACCAATGAGAGCGC

236 Ybx1 GCCTATTGGCTCACGCTCCG

237 Esrrb ATGTATGATTTGGCTCCTAT

238 Esrrb TTAAAGTGACAGAATCGAGC

239 Mbd3 CGTCTGCGCAGGCGTGGAGT

240 Mbd3 TGATTGGCTTCACAGCCTTG

241 Pou5f1 ATCTGCCTGTGTCTTCCAGA

242 Pou5f1 GTCTGGACAGGACAACCCTT

243 Mga GCGGTCGGCTCCAAGCTGGT

244 Mga TACGGCTTCGGCTCCGTGGG

245 Prmt5 ACAAATGGACTGGGCATTCT

246 Prmt5 ATGAGAGTCTGTCATTGGTG

247 Mtf2 GAATTAAGTCCTCTTGCTGC

248 Mtf2 GCTCACTATTGTGTCTGCAC

249 Smad3 GGCCAGCAAAGTTTGGCTGG

250 Smad3 TCTGCGCACCAAAGCCATCC

251 Ybx2 TCGGCTGAAGCGGCGCGCTC

252 Ybx2 TGGCCTCGGCTCAGGGCCCG

253 Rfx5 TCTCTAGGAGAAAGGAAGCT

254 Rfx5 TTTAGAGAAGGCAAGTGGTG

255 Smarcal1 ATCACCCACAATTTATGACC

256 Smarcal1 ATTTGAGAGGCGTAACGTTG

257 Nfat5 GGCCGCTGCTGATCCCGGGC

258 Nfat5 TCCGGGAGCCCGGAAGAGCC

259 Setdb1 AGAGTATGCATGTGTGAAGT

260 Setdb1 GCAATAAATTTGGTCCCTTC

261 Arid3b AACTCATATGGGTTGGAGGG

262 Arid3b TCATCCTGAAAGTCAGGGTT

263 Foxo3 CGCACGCACAGCAGCCCTCC

264 Foxo3 TGTGCGCCCTCGCGCCTGCG

265 Snd1 CTGGAGCTCCGCACCCGTTT

266 Snd1 TTCATAAAGAGAGTGCCTAT

267 Brd4 AGCGGCGGGCGCAACTGCCC

268 Brd4 ATGGCGGCGGCAGGAAGTGC

269 Smarce1 GAACTGTTTAAAGACAAGCG

270 Smarce1 TGAACTGGCCCTCCTGGGAA

271 Pias4 ATTGGTCAGATCCTCGGGCG

272 Pias4 CTCCCGCCTCTCAGACGCGG

273 Carm1 CGGGCGAGCGCAAGCACGAC

274 Carm1 CTCCCTCAGGCGCCAGGAGG

275 Ing3 GGCTCCACTTTGGCGCCTGA

276 Ing3 TCTGCAGCGATGACGTCAAC

277 Mphosph8 GGGAGTTCACGGGAAGTGGA

278 Mphosph8 GGGCGGGTCGACGGACTCTG

279 Mgea5 CTCCTTCCGTGGAGACGCGG

280 Mgea5 GACGAGCGAAGGCGCCTCCT

281 Phf10 CAGCGCGCTGGCGGCCATGG

282 Phf10 GTCAGCCGGCCGCAGCTGCG

283 Ing5 GCTCATGAATAGTGAGCGCG

284 Ing5 TTGCCCTGAGGGAACGCGGA

285 Hmg20a TCCTCCGCAGTACTTTATTT

286 Hmg20a TCTGTCAAGCTGTGAGACGA

287 Carhsp1 GCGCGGCCCGGACCTTGGAC

288 Carhsp1 TCCAGCCGCTGCCGAGTCCC

289 Mina AGGTTCATAGGCCAGAGCAG

290 Mina GAAGGCCTGTAGCTGTAGGC

291 Hat1 TAAGTCCTTGCGGTCACTTC

292 Hat1 TTCTCCCTCTCATTGGTTCG

293 Calcoco1 CCTGTGGAACTACATGTCCC

294 Calcoco1 GGGCGGTGATGGACTCAGCG

295 Rnmt AGGAAGCCACGCTCCCAGTC

296 Rnmt CCGGGACTTAGTCAATTCCA

297 Smyd2 GAGCGAAGGCAGGTCTGCCG

298 Smyd2 GCACGCGCGTCACGGGAGGG

299 Spata3 AATTAGACCATGGAGGAACA

300 Spata3 GTCTTTGGGCCTAAGAGAAC

301 Smyd3 CAGGTCCTGTGAGCATGCGC

302 Smyd3 TGTACGCAAGCGCAGGACGC

303 Zmynd8 GGTGGGAGAAGTGCTTGTGG

304 Zmynd8 TTTGCTGGAGCAGGTCAGGC

305 Atad2 ACCGGAGCCGACGCGAACCG

306 Atad2 CTCCTCCAATCCGAAGAGCG

307 Prdm16 GCCGCCTCGGCGCGGGATTG

308 Prdm16 GGTGAAGACCGAGAAGGCCT

309 Taf3 CTGCTCGTACTGCCTCGCCC

310 Taf3 GGCCGAGAGATAGGCGGCCC
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311 Ints12 ACGTTTCCGAGTGAGACAGC

312 Ints12 GAAACAAAGGTTCCCGCAAC

313 Setd3 CCAGGGTGCTGATCAGCCAT

314 Setd3 CTTCGGATACGGCTCCGCCC

315 Zfp655 CCACTCTCTCGACTGCCAGA

316 Zfp655 GGCGACGGAAGTCCACGGGA

317 Tdrkh CTGCGGCGGAGGAGCGCGAT

318 Tdrkh TTGGTGAGGATGCGCTGCGG

319 Trmt11 CTCCAAGTGGAGTATCCCTG

320 Trmt11 TAAGGGCAAGAGTGAGATCC

321 Dppa4 GTTGAGGGTGGGACCAGAAG

322 Dppa4 ATCACAATTTTGTTGAGGGT

323 Dppa2 ACACAGGAGGACCCTCCCTC

324 Dppa2 CCGGATGCAGAAATAGCAGC

325 Elp3 GGATGTGCACAGTGATTTAG

326 Elp3 TAGACGCTTCTCCAAGAAGC

327 Cxxc1 ACCATACGTTCCGGGAAGCA

328 Cxxc1 TCGCAACGTCGAAGCAAATG

329 Tdrd9 CCTGGACAGGCACGTGTTTA

330 Tdrd9 GGCCAGGCCCTGCATGCACG

331 Chd5 GCTGGCGTAACGATGGGATG

332 Chd5 GTTAACAGCCGAGAACAAGT

333 Ep400 CGGATGAGGCCTTTCGGAGG

334 Ep400 GCTGTATGCAGGAGGTGCGT

335 Cdyl2 ATCGCGGCGACACGCGAGCG

336 Cdyl2 TTTGCAGAATGACAGGCTTG

337 Tsc22d4 CTGGCTCCGGGCCAGCTGGC

338 Tsc22d4 GTGAGCAGGCCCGAGAAGGC

339 Stk31 GGAGCGCAGCCCTGGTCACG

340 Stk31 GTGCTGCTGCGCTATAGCGG

341 Phf23 AAGGGATTTGTAGTCTGTGC

342 Phf23 CCTCCGGAACTTCAGTTCCC

343 Brd8 AACTGCGCGCTGAGCTTGTC

344 Brd8 CTGCGCGGGTGGGTAGAAGC

345 Zcchc4 GTGGGTTCCGCGTGCCGCGG

346 Zcchc4 TCTCACTCTGGGTCTGACGG

347 Trps1 CTTTAAGGGAGCTCGGTCTG

348 Trps1 GTGCGGCCGGCCGGTCCCGC

349 Jmjd6 ACGCCAATTGGGCGCCATGT

350 Jmjd6 GCGTAGGCCAAAGCAGGGAG

351 Aff4 CTGCGGCCCTGCTGCTGCTC

352 Aff4 TGGCCGCGGCCCATGTGACC

353 Smarca5 GCGTAGGTAGCTGTCCTGGT

354 Smarca5 TGGAGAAGAGAATCCACTCC

355 Baz2a CTCAGGGACGGCTGTCGCGA

356 Baz2a GACGGCGGGTGGCGTCTCCT

357 Mta1 CGCGGCCTCGGCGGCCTCGG

358 Mta1 GGGACGGGAGGGCCGCGGCG

359 Ing4 CCTTACTAAACTATCTGCCT

360 Ing4 CGGAAGTTCAGGTACGGAAA

361 Acaca AGTAAAGCATAAACCACAAG

362 Acaca TCTTGTGTGTTCTCATCTAT

363 Prmt3 CCGAGGCGCCGGCGCTTACA

364 Prmt3 CGACTTATCGCAGCGCCCTC

365 Lbr GCCCTCCTGCGGAGCGATCT

366 Lbr GGACGCCGGACGCTCACGAG

367 Nfxl1 ACATTTCCCAGAGTGTTCCG

368 Nfxl1 GGCGGTGGGCGCCGTCGGTA

369 Psip1 GCTACAGCCGCCGAGCGTCG

370 Psip1 TGGTACGGCCCAGCGCTAGC

371 Mbtd1 CCGAGGGTCCCACGCTGGAG

372 Mbtd1 CTAATGTTGTTGATATCCTG

373 Ybx3 GCTCCCGGAGCTGGTTAGTC

374 Ybx3 GGCGCCCGCGCTACTCGGCA

375 Satb2 AAGACCGGTTCTGGAGAGAA

376 Satb2 GGAAAGGAGGACTCCTCCAA

377 Plac8 ATTTGGTAAGAGATGGCTTT

378 Plac8 TTTCCTCCTTACAATTCCAA

379 Dppa3 GAACTGGCTGGGATTGCGCA

380 Dppa3 TTAGCATTAAAGTAGCCTGG

381 Gatad2b CAGAATAAAGTTCCTCATGT

382 Gatad2b GTGAAGTGAAAGAAATGCTG

383 Cbx7 CCCAATTTGGTCAGCAGGCG

384 Cbx7 GTGCCTCTGAAAGCGCCCAG

385 Csde1 GGTGAATTTAGGCGTTCACC

386 Csde1 TAGTGACTCTGCTGCGACGC

387 Prmt7 GCGATCGCCGCTATGGAGGC

388 Prmt7 TCCATCCAGTTCAGCGGGCG

389 Ehmt2 CGCGTGCAGCCGGGAGGAGG

390 Ehmt2 GGGCGCAGCGGGCGTTGCAG
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391 Lin28a CCTCCCTTTCCCTCTGGCTC

392 Lin28a GTCAGAGACCAGAGCAGTGG

393 Chd4 GCCGGGAAATCCCACCGCAC

394 Chd4 TATTATGGGCTGTCCGTGGG

395 Chd3 CGCCGCCGAGGAGGAGGAGG

396 Chd3 GGTGGTGGTGGTAGCGGTGG

397 Tdrd7 GCGCACGCCGTCCTGACGCT

398 Tdrd7 TCACACGCGGACCTCGAAGT

399 E2f4 AGCAGCCTTGATAGCTCCGG

400 E2f4 GCTGCCCTAAGGAGTTGTTT

401 Cdc5l CTCTCGCGAGATGCCAGAGT

402 Cdc5l CTTGACCGGGAACGCAGTGA

403 Kdm5b AGAGGTTAACTGAAGCATTA

404 Kdm5b TAGACTGTTAACTTCTTGAG

405 Pms1 GAATTGTCCTGTGACCAGCC

406 Pms1 GCACCAGTAGCTCTAGCCAG

407 Smndc1 CTCGGAAGGCGGAGCGGGTG

408 Smndc1 GCAATCGCAGGCTGCTGAGA

409 Wdhd1 GGCAGCGGCAAGTCTGACTC

410 Wdhd1 GTGGGAGCCGAACCCGGAAG

411 Phf13 ATGACGAAGTCCAGTCAACC

412 Phf13 TAGTCCCTAGCGTTGCGCCC

413 Fbxl19 CCCGCCCACCGCCGGTTCCC

414 Fbxl19 CTTCCCAGCTCCAACTGCCC

415 Tox3 CCGGGACGGCCGGCGAGCTC

416 Tox3 GGTGCGCGGCGAAGCTGGGA

417 Hspbap1 AGACGCTAAGGGTGGAAGAA

418 Hspbap1 GGCGCTGGGCGTGGCCACGC

419 Arid2 GAAGGAGGGAGCGGGAGGCC

420 Arid2 GAGGCGGCGAGGCAGGGTGG

421 Zfp513 AGCGCATCACAATCACTTCC

422 Zfp513 TCCTAGTTCGTATATGGAGG

423 Mysm1 GCAGCTTTCACGCAGTCTCC

424 Mysm1 GCCTTGGCGTGGCGCACTTC

425 Ep300 CAGAGACACTCACCTCCTCC

426 Ep300 GAGGGCGGCTCTCAGGGTGG

427 Dido1 AGATGCGAACTGGCAACCAA

428 Dido1 GGGTTGGCGCGAGAGTCAAA

429 Hmgxb4 CGGAGGAGTGTATTCTCAAA

430 Hmgxb4 TCGACGCTCTTTCGCCGGCG

431 Ss18l1 CGACGGCCACCTCTTCCAAG

432 Ss18l1 TGCTGGCGTCTGGCGTCAGG

433 Sirt5 ATATAGGTACAAACATTTGC

434 Sirt5 CAGTGTTGTTACTTGTATAT

435 Ctcf CTTATCAGCACCCGCGGCCC

436 Ctcf GGGTTGGCGCAGGGCAGCAT

437 Npm2 AAGGGTCAGCTTCCCACAGC

438 Npm2 TCTGCTGTTTCCCATTGAAC

439 Ssrp1 CCCTGGTCGGCTAAAGCGAG

440 Ssrp1 CTTCAAAGACTAGATTCCGA

441 Tet3 TGCCTGGGAAGCAGCCCTTG

442 Tet3 TGCTGGGCAGGTCCTTGGCG

443 Arid4b CGCCTCTTCCAAGTTTCTAT

444 Arid4b GGCATCCGGGAAAGAGGTAG

445 Rcor1 GCCGGCCGAGGCGGCGGCTG

446 Rcor1 GGGCCCTTCTCCACCATGGC

447 Gpr6 TAAGTGAAGCAGTTAGAGCG

448 Gpr6 TCTCACCTCAGGAACACGCA

449 Sall4 GCCTTTGTCACATGTAGGGC

450 Sall4 TTAAATGATCTCTGAGGTCT

451 Tsc22d1 CGAGAAATGCCCACCTTCTT

452 Tsc22d1 GGTTGAGCTGGCTCCGGAGT

453 Stat3 TAAGGAATGGCCAGCTGGCT

454 Stat3 TTATGCATGGAGGCGTGTCT

455 Zscan29 GCTCCGCGGCGGGAGCGAGG

456 Zscan29 TCTCCTCTCCCGGTGGACTG

457 Zscan4b/c/e/f AATGGTAATCTGCCCCACCC

458 Zscan4c/f TGGTTCCCTTTTATAGCGCC

459 MERVL LTRs AATGAACTACAATCCGGAATTGG

460 MERVL LTRs GCTCAGCAGTGACCCTTATCTGG

461 - GCTTTCACGGAGGTTCGACG

462 - ATGTTGCAGTTCGGCTCGAT

463 - CCGCGCCGTTAGGGAACGAG

464 - ATTGTTCGACCGTCTACGGG

465 - ACCCATCGGGTGCGATATGG

466 - GCTTCTACTCGCAACGTATT

467 - TACAGTTATACGTCGCGGTG

468 - CCTTAGACCGGGTGTACCTC

469 - AAGTCTATGCGGGGCTCGTA

470 - TTGTCAACTTCGGCCAACGC
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471 - ATAGATGTCTACGCGCCGTT

472 - CTCGGGCTATTCAGCGATAG

473 - GCGGTTACCGCGAAAACCAT

474 - CCCTATATGCGAGATCCATA

475 - TCTCAGTTCGTAGCGAACGA
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B.2 List of ZGA signature gene names

A set of 2115 gene names was used for estimating the ZGA signature. These gene names are

listed below and are also described in (Alda-Catalinas et al., 2020).

0610005C13Rik, 0610009B14Rik, 0610031J06Rik, 0610040J01Rik, 1110005A03Rik,

1110006O24Rik, 1110017F19Rik, 1110018J18Rik, 1110021L09Rik, 1110032F04Rik, 1110038B12Rik,

1190002H23Rik, 1300014I06Rik, 1500010J02Rik, 1500012F01Rik, 1600002K03Rik, 1600010M07Rik,

1600012H06Rik, 1600015I10Rik, 1600020E01Rik, 1600025M17Rik, 1700001G17Rik, 1700007K13Rik,

1700009P17Rik, 1700010D01Rik, 1700012B15Rik, 1700013H16Rik, 1700016D06Rik, 1700019B21Rik,

1700019E08Rik, 1700019N12Rik, 1700024F13Rik, 1700025E21Rik, 1700029I01Rik,

1700034F02Rik, 1700034H15Rik, 1700048O20Rik, 1700060J05Rik, 1700069L16Rik, 1700080O16Rik,

1700084E18Rik, 1700086L19Rik, 1700086O06Rik, 1700093K21Rik, 1700096K18Rik, 1700112E06Rik,

1700123O20Rik, 1810019D21Rik, 1810026B05Rik, 1810032O08Rik, 1810035L17Rik, 1810044D09Rik,

1810062G17Rik, 2010001M09Rik, 2010204K13Rik, 2010317E24Rik, 2010320M18Rik, 2210016L21Rik,

2210404O07Rik, 2210414B05Rik, 2310003L22Rik, 2310011J03Rik, 2310040G24Rik, 2310045N01Rik,

2310047M10Rik, 2410002F23Rik, 2410004N09Rik, 2410016O06Rik, 2410075B13Rik, 2510002D24Rik,

2610005L07Rik, 2610019E17Rik, 2610027L16Rik, 2610028H24Rik, 2610206C17Rik, 2610306M01Rik,

2610318N02Rik, 2700023E23Rik, 2700038G22Rik, 2700078E11Rik, 2810004N23Rik, 2810006K23Rik,

2810008D09Rik, 2810021B07Rik, 2810029C07Rik, 2810055F11Rik, 2810405K02Rik, 2810417H13Rik,

2810429I04Rik, 2810459M11Rik, 2900002K06Rik, 2900079G21Rik, 3010003L10Rik, 3110056K07Rik,

3830408C21Rik, 4632427E13Rik, 4732471D19Rik, 4831440E17Rik, 4921517L17Rik, 4921531C22Rik,

4930413G21Rik, 4930427A07Rik, 4930447C04Rik, 4930455C21Rik, 4930465K10Rik, 4930479M11Rik,

4930483J18Rik, 4930515G01Rik, 4930528A17Rik, 4930547E08Rik, 4930558C23Rik, 4930578G10Rik,

4930578I07Rik, 4930579G24Rik, 4930583H14Rik, 4932411N23Rik, 4933404O12Rik, 4933406J08Rik,

4933408N05Rik, 4933411G11Rik, 4933430I17Rik, 4933430M04Rik, 4933440M02Rik, 5330411J11Rik,

5330426P16Rik, 5430402O13Rik, 5430416N02Rik, 5730408K05Rik, 5730419I09Rik, 5730455P16Rik,

5730508B09Rik, 5730590G19Rik, 5830403L16Rik, 5830433M19Rik, 6030408B16Rik, 6230400D17Rik,

6230427J02Rik, 6430573F11Rik, 9130008F23Rik, 9330020H09Rik, 9330133O14Rik, 9330159M07Rik,

9430008C03Rik, 9430015G10Rik, 9430016H08Rik, 9430021M05Rik, 9430060I03Rik, 9530077C05Rik,

A130040M12Rik, A2m, A330049M08Rik, A430035B10Rik, A430084P05Rik, A430089I19Rik,

A530032D15Rik, A530040E14Rik, A630001G21Rik, A630066F11Rik, A630072M18Rik, A730018C14Rik,

A730037C10Rik, A730085A09Rik, AA467197, Aacs, Abcb10, Abcb5, Abcc8, Abhd14b, Abhd3, Ablim1,

Abo, Abpg, AC079644.1, AC079644.2, AC079644.3, AC091683.1, AC091683.2, AC121866.1, AC121888.1,

AC122464.1, AC122464.2, AC124724.1, AC127274.2, AC127374.1, AC130840.1, AC132362.1, AC134841.1,
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AC140240.1, AC140409.1, AC153539.1, AC153998.1, AC156643.1, AC158600.1, AC158600.2, AC158600.3,

AC158600.4, AC158600.6, AC164627.1, AC165327.2, AC211878.1, AC231112.1, AC231112.2, AC238940.1,

AC238940.3, AC239617.1, AC239678.2, AC240744.3, Acaa1a, Acad8, Acap3, Acn9, Acot1, Acrbp, Acrv1,

Acss3, Actr2, Actr5, Adad1, Adam2, Adamts1, Adamts5, Adck4, Adcy2, Adh7, Adi1, Adm, Adnp, Adora2b,

Adrb3, Adrbk1, AF067061, AF067063, Aff1, Aga, Agmat, Agpat9, Agrp, Agtrap, Ahnak, Ahnak2, AI427809,

AI462493, AI464131, AI838599, Ajap1, Ak4, Akr1b7, Aldh18a1, Aldh1l1, Alg5, Alkbh4, Aloxe3, Alppl2,

Amd2, Amhr2, Amica1, Ankdd1b, Ankrd17, Ankrd22, Ankrd35, Ankrd50, Ankrd54, Ankrd9, Antxr1, Ap2a2,

Ap4m1, Apoa2, Apoc2, Apod, Apol7b, Apom, Aqp11, Aqp3, Aqr, Arap2, Arf2, Arfgap2, Arfip2, Ar-

frp1, Arg1, Arg2, Arhgap29, Arhgap36, Arhgap8, Arhgdib, Arhgdig, Arhgef26, Arid3c, Arid5a, Arid5b,

Arih2, Arl13b, Arl14, Arl15, Arl16, Arl5c, Arnt, Arrdc3, Arrdc4, Arx, Ascl1, Ascl2, Asl, Asns, Ate1,

Atf2, Atf3, Atf5, Atg4d, Atg9a, Atp5s, Atp6v1e1, Atp6v1g3, Atp8b1, Atxn7l3, AU019990, AU022252,

AU041133, Auts2, Avpi1, AW822073, Axin2, AY761184, B020004C17Rik, B020004J07Rik, B020031M17Rik,

B3gnt4, B3gntl1, B4galnt2, B4galt1, B4galt6, B930059L03Rik, Baat1, Bag3, Bambi, Bambi-ps1, BB287469,

BB287469,Gm4027, BC002230, BC003965, BC016495, BC017647, BC025920, BC027231, BC028528,

BC033916, BC037704, BC046404, BC048355, BC048507, BC049715, BC049762, BC057022, BC061212,

BC080695, BC147527, Bcdin3d, Bcl2l14, Bcor, Bcorl1, Bcs1l, Bdh1, Bdnf, Bend3, Bend6, Best2, Bex1, Bex2,

Bex6, Bhlhb9, Bicc1, Bid, Blnk, Blvrb, Bmp2, Bmyc, Bnc2, Bnip3, Bola2, Boll, Bop1, Brd2, Bre, Bri3bp,

Bst1, Btbd19, Btg1, Btg2, Bud13, C030034I22Rik, C130026I21Rik, C130060C02Rik, C130074G19Rik, C1d,

C1ql1, C1qtnf4, C230096C10Rik, C2cd2l, C2cd4b, C630043F03Rik, C86695, Cab39, Cacna1h, Cacna1s,

Calcoco2, Cald1, Calml4, Cand1, Cap1, Capn5, Capsl, Car6, Caskin2, Catsperg1, Cbx7, Ccdc106, Ccdc110,

Ccdc116, Ccdc125, Ccdc126, Ccdc134, Ccdc137, Ccdc160, Ccdc50, Ccdc60, Ccdc64b, Ccdc66, Ccdc83,

Ccdc85b, Cchcr1, Ccl3, Ccng2, Ccnjl, Ccno, Ccrn4l, Ccs, Cct8l1, Cd200r2, Cd24a, Cd52, Cd63, Cd97, Cda,

Cdan1, Cdc42ep3, Cdc42ep4, Cdk4, Cdk5r1, Cdk5rap3, Cdkn2aip, Cdkn3, Cdrt4, Cdsn, Cdyl2, Ceacam1,

Ceacam19, Cebpa, Celf4, Cep57l1, Cep97, Cetn1, Chchd4, Chchd5, Chek2, Chga, Chit1, Chkb, Chrac1,

Chrm3, Chrna10, Chrna5, Chrna9, Chst7, Chtf18, Chtf8, Churc1, Cirbp, Cited1, Cited4, Clcn5, Cldn18, Cldn3,

Cldn5, Cldn6, Clec10a, Clic1, Clip2, Clk1, Clk3, Cln8, Clp1, Clu, Cml1, Cml2, Cmtm2a, Cndp2, Cnn2,

Cnnm2, Cnnm3, Cnpy1, Cnpy3, Cntnap3, Cobl, Coch, Col12a1, Col13a1, Col28a1, Col4a1, Col4a2, Colq,

Commd7, Coq4, Cotl1, Cox19, Cox8c, Cpb2, Cpe, Cpeb2, Cpt1a, Crabp1, Crebl2, Creld1, Crip1, Crtap, Crx,

Crxos1, Csmd1, Csrnp1, Csrnp3, Cst6, Cst7, Cst9, Cstb, CT025616.1, CT030687.1, CT485612.1, CT485612.2,

CT954323.2, Ctf2, Ctla2b, Ctr9, Ctrb1, Ctsa, Ctsc, Ctsl, Ctss, Ctsz, Ctu1, Cuedc2, Cwc22, Cwc25, Cxadr,

Cxcl10, Cxcl11, Cxcl16, Cyba, Cyp2b23, Cyp2c44, Cyp2c67, Cyp2s1, Cypt1,Cypt8, Cypt12, Cypt2-ps, Cypt3,

Cypt4,Cypt9, Cypt7, D17Ertd648e, D1Pas1, D4Wsu53e, D5Ertd605e, D7Ertd143e, Dact3, Dapl1, Dars2,

Dazl, Dbc1, Dbndd2, Dbnl, Dbp, Dbr1, Dbx1, Dcbld1, Dcc, Dcdc5, Dclre1c, Dcp2, Ddhd1, Ddit4, Ddit4l,
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Ddr2, Ddx26b, Ddx31, Ddx39, Ddx43, Decr2, Dedd2, Def8, Defb13, Defb23, Defb25, Dennd4c, Depdc1b,

Depdc5, Depdc7, Dexi, Dgkk, Dhcr24, Dhcr7, Dhdds, Dhh, Dhrs7b, Dhtkd1, Dido1, Dkkl1, Dlgap2, Dlgap3,

Dlx2, Dmrt1, Dnahc7b, Dnajb14, Dnajb3, Dnajb9, Dnajc12, Dnajc28, Dnajc6, Dnlz, Dnpep, Doc2a, Dock9,

Dohh, Dolpp1, Dpagt1, Dpep1, Dpf3, Dph2, Dpp7, Dppa2, Dppa3, Dppa5a, Dpys, Dpysl3, Dpysl5, Drd3,

Drr1, Dsg1b, Dst, Dub1, Dub1a, Dub2a, Dub3, Duox2, Duoxa2, Dusp1, Dusp28, Dusp4, Dux, Dyrk3, Dyrk4,

Dzip1, E130309D02Rik, E2f7, Ears2, Ebf3, Ecel1, Echdc2, Echdc3, Ecm2, Ecsit, Efcab4b, Egflam, Egr1, Eid2,

Eif2s3y, Eif4ebp3, Eif5a2, Elovl4, Elovl6, Emp3, Endod1, Enpp3, Entpd7, Epha10, Ephb1, Epm2a, Epm2aip1,

Ercc4, Ero1l, Errfi1, Esp24, Esrrb, Esrrg, Esyt3, Etfdh, Etohd2, Etv3, Etv5, Exoc7, Exoc8, Exog, Exosc6, F11r,

Fabp9, Fadd, Fah, Fahd1, Fam102b, Fam105a, Fam109a, Fam124a, Fam134a, Fam13c, Fam150a, Fam151a,

Fam158a, Fam171b, Fam173b, Fam176a, Fam181b, Fam190a, Fam195b, Fam203a, Fam20b, Fam33a, Fam43b,

Fam53c, Fam57b, Fam73a, Fam76a, Fam81a, Fam84a, Fam84b, Fam89b, Fan1, Fancf, Fat3, Fblim1, Fbll1,

Fbxl15, Fbxo15, Fbxo31, Fbxo34, Fbxo6, Fbxw9, Fcgbp, Fcgr2b, Fcgrt, Fdxr, Fgf1, Fgf4, Filip1l, Fkbp11,

Fkbp1b, Flrt2, Flt4, Flywch2, Folr1, Folr2, Fos, Foxi3, Foxo6, Foxp1, Foxred1, Frat2, Frrs1, Fscn1, Fstl4,

Fthl17, Fundc1, Fv1, Fxyd6, Fzd4, Fzd5, Fzd7, Fzd9, G2e3, Gabarap, Gabpa, Gabra1, Gadd45g, Gal, Gal3st2,

Galns, Galnt3, Galt, Gan, Gata1, Gba2, Gcdh, Gcnt1, Gcnt2, Gdap10, Gdpd4, Gfra3, Ggn, Gja1, Gjb3,

Gla, Glipr2, Glod5, Glrx, Glrx2, Glrx3, Glt25d1, Glud1, Glul, Gm10188, Gm10264, Gm10354, Gm10394,

Gm10424, Gm10505, Gm10553, Gm10639, Gm10668, Gm10696, Gm10718, Gm10800, Gm10801, Gm11052,

Gm11232, Gm11236, Gm11237, Gm11238, Gm11239, Gm11487, Gm11517, Gm11544, Gm11564, Gm11602,

Gm11640, Gm11756, Gm11757, Gm11974, Gm12088, Gm12114, Gm12531, Gm12702, Gm12714, Gm12724,

Gm12730, Gm12789, Gm12790, Gm12794, Gm12800, Gm12823, Gm12824, Gm12953, Gm13040, Gm13043,

Gm13057, Gm13078, Gm13083, Gm13101, Gm13109, Gm13119, Gm13128, Gm13139, Gm13335, Gm13498,

Gm13693, Gm13694, Gm13695, Gm13696, Gm13698, Gm13718, Gm13871, Gm13962, Gm13964, Gm14322,

Gm14325, Gm14326, Gm14393, Gm14403, Gm14634, Gm14742, Gm14798, Gm14929, Gm15023, Gm1527,

Gm15421, Gm15455, Gm15787, Gm16008, Gm16023, Gm16028, Gm16062, Gm16119, Gm16211, Gm16239,

Gm16243, Gm16381, Gm16429, Gm16513, Gm16517, Gm17019, Gm17026, Gm17611, Gm1995, Gm2016,

Gm20199, Gm2022, Gm2027, Gm2042, Gm20431, Gm20440, Gm2046, Gm20580, Gm20625, Gm20631,

Gm20634, Gm2075, Gm281, Gm2a, Gm3139, Gm3258, Gm4027, Gm428, Gm4301, Gm4302, Gm4303,

Gm4305, Gm4307, Gm4312, Gm4340, Gm44, Gm4532, Gm4778, Gm4782, Gm4827, Gm4858, Gm4971,

Gm498, Gm4981, Gm4984, Gm5077, Gm5127, Gm5148, Gm5286, Gm5577, Gm5590, Gm5612, Gm5635,

Gm5647, Gm5662, Gm5698, Gm5699, Gm5773, Gm581, Gm6086, Gm6189, Gm6351, Gm6432, Gm6468,

Gm6502, Gm6507, Gm6509, Gm6568, Gm6654, Gm6763, Gm6880, Gm6890, Gm6902, Gm7102, Gm749,

Gm7647, Gm7682, Gm773, Gm7942, Gm7982, Gm8038, Gm8094, Gm8104, Gm8300, Gm8766, Gm8994,

Gm9, Gm9116, Gm9125, Gm973, Gm9895, Gm9958, Gmeb2, Gmpr2, Gna15, Gnat1, Gnaz, Gnb4, Gnl1,
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Gnl3l, Golga1, Gorasp1, Gpa33, Gpatch3, Gpbp1l1, Gpc5, Gpkow, Gpr126, Gpr137c, Gpr161, Gpr182, Gpr19,

Gpr50, Gpr63, Gpr75, Gpr83, Gprc5c, Gpx7, Grb7, Gria1, Grifin, Grik3, Grk4, Grk6, Grp, Grwd1, Gsta4,

Gstm1, Gstm6, Gsto1, Gt(ROSA)26Sor, Gtf2b, Gtf2i, Gtf3c4, Gtf3c5, Gtpbp3, Gtsf1l, Guca1a, Gulo, Gusb,

H1f0, H2-Bl, H2-D1, H2-DMa, H2-M10.4, H2-Q7,H2-Q9, H2-Q8, H2-T22,H2-T9, H2-T9, H2afx, H47, Hadha,

Hars2, Hba-a2, Hcrt, Hdc, Hddc3, Hdhd3, Herpud1, Hes1, Hesx1, Hexa, Hexb, Hexdc, Hexim1, Hinfp, Hip1,

Hipk1, Hist1h1a, Hist1h1c, Hist1h2aa, Hist1h2ab, Hist1h2ac, Hist1h2ad, Hist1h2ag, Hist1h2ah, Hist1h2bh,

Hist1h2bj, Hist1h2bk, Hist1h2bl, Hist1h2bp, Hist1h3c, Hist1h3d, Hist1h3e, Hist1h3g, Hist1h3h, Hist1h4b,

Hist1h4f, Hist1h4i, Hist1h4j, Hist1h4n, Hist2h3c2, Hist3h2ba, Hlx, Hmgb4, Hmgcl, Hmgn3, Hmx1, Hoxa1,

Hoxa9, Hoxb2, Hoxd10, Hoxd11, Hoxd13, Hpdl, Hrh2, Hs6st2, Hsd17b10, Hsd17b14, Hspa1a, Hspa1b,

Hspa1l, Hspa2, Hspa8, Hspb3, Hspb8, Hspbp1, Htra1, I0C0044D17Rik, Iah1, Iars, Id1, Id3, Id4, Idh2, Idh3b,

Ier2, Ier3, Ier3ip1, Ier5, Iffo1, Ifi35, Ifitm1, Ifitm3, Ifltd1, Ifng, Igf2bp1, Igfbp2, Igfbp3, Ighe, Igtp, Ikbip,

Ikzf5, Il12rb2, Il18rap, Il2rg, Il6ra, Il6st, Impa1, Impdh1, Ing4, Inpp4b, Inpp5j, Insl6, Insrr, Ints7, Ipo4, Iqcf1,

Iqch, Iqub, Irak2, Irak3, Irf2bp1, Irf3, Irf7, Irf9, Irgq, Irx1, Irx2, Irx4, Isca2, Isg15, Isg20, Isg20l2, Itfg2, Itgae,

Itpkc, Jam2, Jmjd4, Jmjd8, Jmy, Jub, Jun, Junb, Kank4, Kat2b, Katnb1, Kbtbd10, Kbtbd2, Kcna1, Kcna3,

Kcne1, Kcnj13, Kcnk6, Kcnn2, Kdelc2, Kdm4c, Kdm5a, Kif14, Kif18b, Kifc2, Kirrel, Klb, Klf3, Klf5, Klf9,

Klhl13, Klhl7, Klrg2, Kpna1, Kpna4, Kri1, Krt18, Krt28, Krtap4-13, L1td1, L2hgdh, Laptm5, Lass5, Lass6,

Lat2, Lck, Lctl, Ldhc, Lefty2, Lemd3, Leng8, Lgals1, Lgals12, Lgals2, Lgals4, Lgals9, Lhfpl1, Lias, Limch1,

Lime1, Limk1, Lin7a, Lin7b, Lmbr1l, Lmo4, Lmx1a, Lnp, LOC100503496, Lonp2, Lonrf3, Loxl1, Lpar6,

Lpcat3, Lpcat4, Lphn2, Lphn3, Lrig1, Lrp12, Lrrc2, Lrrc38, Lrrc3b, Lrrn4, Lst1, Lta, Lxn, Ly6g5b, Lyrm1,

Lyrm2, Lyrm5, Macrod1, Mad2l1bp, Mafb, Mafk, Magel2, Mak16, Malt1, Man1b1, Man2a2, Man2b1, Maneal,

Map2k3, Map3k3, Mapkapk2, March1, March3, Marcksl1, Mars2, Marveld1, Maz, Mb, Mbd4, Mbd5, Mbd6,

Mbnl3, Mccc2, Mcm6, Mcm9, Mctp2, Mcts2, Mdn1, Mdp1, Mecom, Med26, Med29, Mef2a, Mef2d, Meg3,

Meox2, Mep1b, Mesdc2, Mest, Mettl13, Mettl2, Mfap4, Mfap5, Mfsd12, Mfsd5, Mfsd7b, Mfsd7c, Mga, Mgat2,

Mgll, Micall1, Micu1, Mir17hg, Mlh1, Mlh3, Mlxip, Mmp19, Mmrn2, Mn1, Mob3a, Mob3b, Mob3c, Morc1,

Mpdu1, Mpp1, Mppe1, Mpv17, Mreg, Mrgprb1, Mrgprx2, Mrm1, Mrpl17, Mrpl33, Mrps34, Msra, Msx1, Mt1,

Mt2, Mt3, Mta2, Mtap6, Mtap7d3, Mtch2, Mterfd3, Mthfr, Mtrf1l, Mtss1, Mttp, Muc13, Mum1l1, Mvd, Mvk,

Myadml2, Myc, Mycs, Myg1, Myl3, Mylpf, Myo1e, Myof, N4bp3, N6amt2, Naalad2, Nanog, Nanos3, Nanp,

Narfl, Ncbp1, Ncf1, Ndrg1, Ndufaf1, Ndufaf3, Ndufb7, Ndufc1, Nedd4, Nedd4l, Nefl, Nek10, Neto2, Neu4,

Neurl2, Neurog2, Nfam1, Nfat5, Nfatc3, Ngfrap1, Nid1, Nid2, Ninj2, Nipsnap1, Nkapl, Nkx2-5, Nlrp4f, Nme4,

Nmnat2, Nop16, Nop2, Npc1l1, Npl, Nr2c2, Nrarp, Nrip1, Nrip3, Nrp, Nrxn3, Nsmaf, Nt5dc2, Nudt16l1,

Nudt22, Nup62cl, Nupr1, Nxf2, Oaz3, Obox1, Obox2, Obox3, Obox6, Olfm3, Olfr118, Olfr119, Olfr120,

Olfr1277, Olfr161, Olfr18, Olfr214, Olfr293, Olfr328, Olfr376, Olfr450, Olfr697, Olfr699, Olfr787, Olfr788,

Olfr815, Olfr847, Olfr881, Oog4, Oraov1, Ormdl3, Os9, Osbpl6, Osgep, Osgin2, Osm, Osr2, Otud6a, Otx1,



List of ZGA signature gene names 177

Ovol1, Ovol2, Oxsr1, P2ry1, P4ha2, Paip2b, Pank3, Papolb, Papolg, Parp10, Pax9, Pcdh10, Pcdh17, Pcdh8,

Pcdhgb7, Pcf11, Pclo, Pcyt2, Pdcd1, Pde3b, Pde6a, Pde9a, Pdgfrl, Pdk3, Pdk4, Pdlim3, Pdp2, Pdxk, Pemt, Per1,

Pgap1, Pgk2, Pgm3, Phc2, Phf11, Phf16, Phf17, Phf21b, Phldb2, Pi4k2b, Pias3, Pif1, Pigl, Pigo, Pin1, Pisd-ps1,

Pitpnb, Pitpnc1, Piwil2, Pla2g16, Pla2g1b, Plcb1, Plcd4, Plcl1, Pld4, Plekhf1, Plekhm1, Plekho2, Plk2, Plk3,

Plod3, Plp2, Plxdc2, Pmaip1, Pmm2, Pmpca, Pnp, Pnp2, Polg2, Polh, Polq, Polr2a, Pomc, Popdc3, Porcn,

Pou2f3, Pou3f1, Pou6f2, Ppat, Ppcs, Ppig, Ppil1, Ppp1r12c, Ppp1r15a, Ppp1r2-ps7, Ppp1r27, Ppp1r8, Ppp2cb,

Ppp2r3a, Pramef6, Pramef8, Pramel1, Pramel3, Pramel4, Pramel5, Pramel6, Pramel7, Prdm15, Prdm9, Prdx4,

Prex2, Prkch, Prkcz, Prkg1, Prmt10, Prmt6, Prnp, Prps1, Prr14, Prr15l, Prr19, Prrg2, Prss23, Prss8, Prtg, Prtn3,

Psat1, Psmb10, Psmd13, Psme1, Psmg2, Ptch1, Ptpmt1, Ptpn18, Ptpn4, Ptprg, Ptrf, Ptrh1, Pura, Purb, Purg,

Pusl1, Pygb, Pygm, Qpctl, Qrsl1, Qtrt1, Rab11fip4, Rab19, Rab20, Rab24, Rab30, Rab34, Rab39, Rab40c,

Rab42-ps, Rab43, Rab4b, Rab7l1, Rabep2, Rabepk, Rad9, Rad9b, Radil, Ramp1, Ranbp6, Rapgef2, Rarg,

Rasd1, Rasgef1c, Rasl11a, Rasl2-9, Rbm10, Rbm15, Rbm41, Rbms3, Rbmx, Rbp7, Rc3h2, Rccd1, Rcn3, Rdh1,

Rdh16, Rdh9, Rdm1, Recql4, Reep6, Renbp, Rfc5, Rfpl4b, Rfx4, Rg9mtd2, Rgl2, Rgn, Rgs11, Rgs16, Rgs2,

Rhbdl2, Rhox5, Ric3, Rilpl2, Rimbp2, Rimklb, Ripk4, Rln1, Rnase4, Rnaseh2a, Rnf103, Rnf113a1, Rnf121,

Rnf128, Rnf19b, Rnmtl1, Rnpc3, Robo1, Rpgrip1, Rpia, Rpl10l, Rpl39l, Rpp25, Rpp40, Rprd1b, Rps26, Rps27,

Rpusd1, Rpusd2, Rrp9, Rrs1, Rsph1, Rtn2, Rundc1, Rusc1, Rxra, Rxrg, Sall4, Sat2, Satb2, Scamp1, Sccpdh,

Scd1, Scd2, Scg5, Sco1, Sco2, Sdr39u1, Sdr9c7, Sec1, Sec61a2, Sel1l2, Sephs2, Sept1, Sept11, Sept2, Sept6,

Sept9, Sepx1, Serpinb1c, Serpinf1, Sertad1, Sesn1, Sfta2, Sfxn2, Sfxn4, Sgk3, Sh2d3c, Sh3bp4, Sh3kbp1, Shb,

Shroom1, Siah2, Sik1, Six1, Six4, Skil, Slc10a3, Slc14a2, Slc16a3, Slc16a6, Slc1a4, Slc1a5, Slc20a1, Slc22a20,

Slc22a28, Slc25a14, Slc25a43, Slc26a1, Slc27a2, Slc27a5, Slc29a2, Slc2a1, Slc2a8, Slc30a2, Slc34a2, Slc35e2,

Slc35e3, Slc38a2, Slc38a4, Slc39a1, Slc39a14, Slc39a4, Slc4a4, Slc4a5, Slc52a2, Slc5a4b, Slc5a6, Slc6a6,

Slc6a8, Slc7a3, Slc7a9, Slc9a9, Slfn10-ps, Smad7, Smg5, Smpd3, Smtn, Smyd5, Snai1, Snai2, Snai3, Snhg11,

Snhg12, Snhg3, Snhg4, Snhg7, Snhg8, Snrnp35, Snrpc, Snta1, Snw1, Snx8, Socs2, Socs3, Sord, Sowaha,

Sowahc, Sox10, Sox11, Sox2, Sox3, Sox30, Sox8, Sp110, Sp140, Sp4, Sp6, Spag9, Spdya, Specc1, Speer4c,

Speer4d, Speer4e, Speer7-ps1, Speer8-ps1, Spesp1, Spic, Spin2, Spns1, Spock3, Spp1, Sprr2d, Sprr2e, Spry2,

Spryd4, Spty2d1, Spz1, Srd5a1, Srgap3, Srl, Stac2, Stag3, Stard6, Steap1, Stim1, Stk16, Stk17b, Stk19, Stk38,

Stmn3, Ston2, Stox1, Sult2b1, Sult5a1, Sun1, Surf2, Sva, Sycp1-ps1, Syde2, Syne2, Syngr1, Synm, Synpo2,

Sytl2, Tacc3, Tacr3, Taf1d, Tagln, Tagln2, Tapbp, Tatdn3, Tbc1d12, Tbl1x, Tbl2, Tbl3, Tbrg3, Tbrg4, Tbx1,

Tbx20, Tbx3, Tbxa2r, Tceal8, Tchh, Tcirg1, Tcstv1, Tcstv3, Tdh, Tdpoz1, Tdpoz2, Tdpoz3, Tdpoz4, Tdpoz5,

Tef, Tekt2, Terc, Tex101, Tex13, Tex19.1, Tfap2a, Tfcp2, Tfcp2l1, Tfpi2, Tfrc, Thbs1, Thnsl2, Thsd7b, Thy1,

Ticam2, Tie1, Timd2, Timm22, Tktl1, Tle3, Tlk2, Tm4sf1, Tmco2, Tmed6, Tmeff1, Tmem101, Tmem106a,

Tmem119, Tmem126b, Tmem129, Tmem146, Tmem167, Tmem167b, Tmem177, Tmem189, Tmem191c,

Tmem20, Tmem208, Tmem215, Tmem229b, Tmem35, Tmem37, Tmem39a, Tmem56, Tmem79, Tmem92,
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Tmppe, Tmsb15b1, Tmsb15b2, Tmsb15l, Tmx1, Tmx2, Tnfaip6, Tnfaip8l2, Tnfrsf13b, Tnfrsf17, Tnip2, Tnnc2,

Tob1, Toe1, Tomm5, Tor1b, Tor3a, Tpo, Traf2, Trak2, Trap1a, Trh, Trib3, Trim25, Trim32, Trim43a, Trim43b,

Trim43c, Trim52, Trim8, Triml2, Trmt1, Trmt61a, Trmt61b, Trp53bp2, Trub2, Tsc22d3, Tsen2, Tsen54,

Tsga8, Tspan1, Tspan4, Tspan6, Tssk6, Tsx, Ttc30b, Ttc39d, Ttll12, Tuba1a, Tubb2b, Txnip, Uap1, Uap1l1,

Ubap1, Ubc, Ube2o, Ube2t, Ube2w, Ubtd2, Ubtfl1, Ubxn2a, Ugt1a1, Uhrf1bp1, Uhrf2, Uimc1, Unc119b,

Upk1a, Upk3a, Uqcrc1, Ush1g, Usp-ps, Usp17l5, Usp25, Usp26, Usp50, Usp9y, Utf1, Utp14b, Utp23, Uty,

Vcam1, Vcan, Vegfa, Vgll1, Vhl, Vim, Vmn1r227, Vmn1r53, Vmn1r88, Vmn2r1, Vmn2r94, Vps33a, Vps39,

Wbscr27, Wdr16, Wdr18, Wdr27, Wdr4, Wdr45, Wdr62, Wdr77, Wdtc1, Whsc2, Wipf2, Wnt5a, Wrap53, Wt1,

Wwtr1, Xab2, Xaf1, Xkr9, Xlr, Xpnpep1, Xpot, Xylb, Yars, Ydjc, Yeats2, Yif1a, Yod1, Zbed6, Zbtb17, Zbtb5,

Zbtb7a, Zbtb8a, Zc3h10, Zc3h12a, Zc3h7a, Zc3hc1, Zcchc11, Zcchc12, Zcchc13, Zcchc17, Zcchc24, Zfand2a,

Zfp1, Zfp119b, Zfp142, Zfp184, Zfp187, Zfp217, Zfp239, Zfp280c, Zfp292, Zfp296, Zfp30, Zfp317, Zfp335,

Zfp352, Zfp353, Zfp367, Zfp382, Zfp386, Zfp42, Zfp446, Zfp51, Zfp516, Zfp53, Zfp54, Zfp560, Zfp566,

Zfp57, Zfp572, Zfp574, Zfp593, Zfp599, Zfp608, Zfp622, Zfp623, Zfp637, Zfp647, Zfp689, Zfp704, Zfp706,

Zfp707, Zfp719, Zfp771, Zfp775, Zfp800, Zfp808, Zfp809, Zfp810, Zfp825, Zfp867, Zfp871, Zfp874b, Zfp882,

Zfp941, Zfp948, Zfpm2, Zfx, Zfy1, Zfy2, Zfyve26, Zgpat, Zic3, Zkscan1, Zmiz1, Zmym2, Znhit2, Znhit3,

Zrsr1, Zscan4a, Zscan4b, Zscan4c, Zscan4d, Zscan4e, Zscan4f, Zswim2, Zswim3, Zswim5, Zswim6, Zyg11a,

Zyg11b.
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