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INTRODUCTION

1 INTRODUCTION

Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are muco-
obstructive lung diseases with pathological alterations of the respiratory tract, resulting in
cough, sputum production, and shortness of breath for the patient (Boucher 2019). These
symptoms are caused by airflow limitations, inflammation, and infections, which is especially
critical in the small airways where the mucus cannot be cleared by cough. Furthermore, in
patients with lung emphysema the tissue degradation leads to lung vessel remodelling and
obliteration (Voelkel et al. 2011). Occurring pathological alterations are often heterogeneously
distributed across the lungs in CF and COPD, which means that some parts of the lungs can be
severely affected while other parts of the lungs show little or no alterations. Although both
diseases have different aetiologies and progression, they constitute a high burden for the patient

and can lead to death.

CF is a lethal genetic disease caused by a mutation of the gene that encodes the cystic fibrosis
transmembrane conductance regulator (CFTR) protein with an autosomal recessive inheritance
(Riordan et al. 1989). Several hypotheses about the consequences of CFTR dysfunction exist,
which all point to mucus hyper-concentration and decreased mucociliary clearance (O’Sullivan
and Freedman 2009). The resulting muco-obstructive alterations of the lungs are the main
course of morbidity and mortality in CF, but other organs are also affected by the disease. CF
is classified as a rare disease, with a predicted life expectancy of only 46 years for patients born
between 2015 and 2019, without CFTR modulator therapies included in the prediction (Cystic

Fibrosis Foundation 2019).

COPD is the third leading cause of death worldwide and a prevalent chronic disease of middle

and older age (Lozano et al. 2013). COPD is usually caused by considerable exposure to
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INTRODUCTION

noxious particles or gases, like tobacco smoke or air pollution, leading to inflammation with
increased mucus production, decreased mucociliary clearance and tissue degradation in the
lungs. Airflow limitation can often severely limit the patient's quality of life, but mortality in
COPD patients is also driven by concomitant chronic diseases, such as cardiovascular

comorbidities.

Pulmonary Function Testing (PFT) is the most frequently used procedure in pulmonology,
evaluating several parameters of lung volume and airflow velocity to assess a patient’s lung
function. Spirometry and full body plethysmography are the most important and the most
common types of PFT and available at most hospitals. PFT is required for the diagnosis of
COPD assessing the degree of airflow limitations (Vogelmeier et al. 2017). Furthermore, in CF
and COPD, PFT is used as a non-invasive assessment for therapeutic decisions, prognosis, and
disease monitoring. In clinical studies aiming to investigate new medicinal products for the
treatment of CF or COPD, PFT is used for patient selection/characterisation and as an efficacy
endpoint (CHMP 2012a; CMPH 2009). Although PFT is an important procedure in
pulmonology, it has major limitations (CHMP 2012b). For example, PFT provides only global
values for the entire lung, and some of the PFT parameters take large/medium airways more
into account than small airways, rendering it difficult to assess the heterogeneously distributed

pathological alterations of muco-obstructive lung diseases.

In contrast, medical imaging, enables the regional assessment of structural and functional
abnormalities. Morphological imaging can provide information about pathological changes in
the lung tissue structure, e.g. bronchiectasis or lung density changes. Functional imaging of the
lungs can help to examine pathological abnormalities in the ventilation and perfusion of the

lungs, which can be regionally altered in CF and COPD up to complete regional deterioration.
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INTRODUCTION

Functional imaging is complementary to morphological imaging and offers the opportunity to
evaluate the physiology of an organ or the pathophysiology of a disease in more detail.
Furthermore, it is hypothesised that functional lung imaging can detect pathologies earlier in

the disease course than morphological imaging (Alford et al. 2010).

Functional imaging of pulmonary ventilation and perfusion can be performed using different
imaging modalities, including computed tomography (CT), magnetic resonance imaging
(MRI), and scintigraphy. However, CT and scintigraphy examinations expose patients to
ionising radiation, which limits the use of both procedures for monitoring purposes, especially
in children with CF. In contrast, MRI does not require ionising radiation and can therefore be
widely used in a clinical context. However, MRI in the lungs has several challenges and
limitations, which are described in section 1.3.6. The potential of MRI in the lungs lies

primarily in functional imaging.

The assessment of pulmonary perfusion using MRI is possible with and without contrast agent
(CA) application. Dynamic contrast-enhanced MRI (DCE-MRI) is the most common
method for functional lung MRI. In DCE-MRI, a gadolinium-based CA is injected
intravenously as bolus, and time-resolved MRI is used to track the first passage of the CA
through the lungs to derive information about the regional haemodynamics of the lungs (Fink

et al. 2005c¢). This process is called bolus tracking.

Morphological and functional abnormalities on image data can be assessed visually by a
radiologist, automatically by computer algorithms, or by a combination of both with different
degrees of refinement. The following classifications are often used in medical imaging:

qualitative (present or not present), semi-quantitative (in the form of categories, e.g. category
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INTRODUCTION

1 = less than 50% of the lungs affected and category 2 = more than 50% of the lungs affected),
and quantitative (in the form of continuous values, e.g. the exact percentage of the extent of

an abnormality).

In previous clinical studies, a semi-quantitative, morpho-functional MRI scoring system,
including a sub-score for assessing pulmonary perfusion abnormalities (= MRI perfusion
score) was established. This visual score has already been validated by comparisons with CT,
multiple breath washout, and PFT parameters. Furthermore, its reproducibility was examined,
and the score was successfully used as a response-to-treatment parameter in CF (Eichinger et
al. 2012; Michael Puderbach et al. 2007; Sileo et al. 2014; Stahl et al. 2017; Wielpiitz et al.

2014; Wielpiitz et al. 2018).

Especially quantitative assessments are often computerised. Computer-aided quantitative
assessments of pulmonary perfusion limit human interaction, are time efficient, and
potentially produce more objective results compared to visual score, e.g. no inter- and intra-
reader variabilities. In clinical studies, pulmonary blood flow (PBF) and pulmonary blood
volume (PBV) based on the indicator dilution theory were used to assess pulmonary perfusion
from DCE-MRI data (Hatabu et al. 1999b; Hueper et al. 2015; Ohno et al. 2004). The clinical
meaningfulness of PBF and PBV was evaluated in previous studies against CT parameters,
PFT parameters, and therapy response (Hueper et al. 2015; B. J. Jobst et al. 2015; Kaireit et al.
2019; Ley-Zaporozhan et al. 2007; Vogel-Claussen et al. 2019). However, one problem with
quantifying PBF and PBV from DCE-MRI data is the high variability of the parameters. DCE-
MRI data of the lungs are adversely affected by low contrast-to-noise ratio (CNR), non-
linearity of the CA-signal relationship and pronounced MR imaging artefacts, which impair

the reproducibility and robustness of PBF and PBV (Ley-Zaporozhan et al. 2011; Neeb et al.
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2009; Puderbach et al. 2008; Ter-Karapetyan et al. 2018). Quantifying the extent of
abnormalities, using unsupervised clustering algorithms would introduce an intrinsic
normalisation and could help to reduce the variability of pulmonary perfusion quantification
from DCE-MRI data. In previous studies, the extent of ventilation and/or perfusion defects
appeared to be sensitive markers for disease severity based on the observed correlations with
PFT parameters, multiple breath washout parameters, and morphological changes (Capaldi et

al. 2018; Couch et al. 2019; Kaireit et al. 2019; Mathew et al. 2011; Woodhouse et al. 2005).

Especially quantitative parameters can be used as biomarkers, with various objectives and
questions being possible. The term biomarker is used in medicine for a characteristic that can
be used as an indicator for normal biological processes, pathogenic processes, or biological
responses to an intervention, including therapeutic interventions. Biomarkers can be classified
into the following categories, depending on their application/properties:
e Susceptibility/risk biomarker: A biomarker to identify patients with the potential for
developing a disease.
e Diagnostic biomarker: A biomarker to detect or confirm the presence of a disease.
e Monitoring biomarker: A biomarker measured repeatedly to assess disease status.
e Prognostic biomarker: A biomarker to identify patients with a likelihood of a clinical
event, disease recurrence or disease progression.
e Predictive biomarker: A biomarker to identify patients with the potential to experience
a favourable or unfavourable effect to a medical product.
e Pharmacodynamic/response biomarker: A biomarker to show that a biological response
has occurred to a medical product.

e Safety biomarker: A biomarker to measure adverse events to a medical product.

(BEST (Biomarkers, EndpointS, and other Tools) Resource - NCBI Bookshelf 2016).
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INTRODUCTION

In addition, biomarkers can be categorised based on their data source. For example, imaging
biomarkers are measured using medical imaging data or molecular biomarkers are measured
using biological samples, e.g. plasma, serum, cerebrospinal fluid, biopsy. Consequently, the
pulmonary perfusion parameters measured using DCE-MRI data in this work are imaging-

based biomarkers.

Sufficient method validation is particularly important for computerised assessments, to verify
that the biomarker is suitable for its intended use. Validation of an imaging biomarker includes
technical validation (e.g. precision and accuracy) and clinical validation (e.g. relationship with
disease status/clinical endpoint) (Alberich-Bayarri et al. 2020). An important point of technical
validation of an imaging biomarker is the determination of its precision, including the
assessment of its reproducibility. Clinical validation focuses on evaluating the potential of the
imaging biomarker for diagnosis, monitoring disease progression, or determining response to
treatment (Alberich-Bayarri et al. 2020). Therefore, clinical validation of an imaging biomarker
in muco-obstructive lung diseases should include comparisons with clinical parameters such

as PFT.

The aim of this work was to develop, implement, evaluate, and validate novel imaging
biomarkers for the computer-aided quantitative analysis of pulmonary perfusion using DCE-
MRI data. Pulmonary perfusion parameters were evaluated to improve the understanding of
the pathophysiology of muco-obstructive lung diseases and for potential use as biomarkers in
clinical studies investigating new treatments for CF and COPD. The following sections of the

introduction describe the relevant clinical background and the technical basics of the MRI
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INTRODUCTION

sequences used, including their known limitations. The section concludes with the objectives

of this work.

1.1 Respiratory system

A network of organs and structures used for breathing, air conduction, and gas exchange forms
the respiratory system. The main components are the lungs with their surrounding pleura, the
vascular system, the airway system, the diaphragm, and the respiratory muscles. In the lung
parenchyma, which is ventilated with air by the airway system and perfused with blood via the

vascular system, the gas exchange of oxygen and carbon dioxide between air and blood occurs.

The lung is divided into a left and a right lung, occupying most of the intrathoracic space. The
mediastinum, a connective tissue space containing the heart, major blood vessels, the trachea
with the stem bronchi, the oesophagus, and the thymus gland, fills the space between both
lungs. The left and right lungs are subdivided into lobes by fissures, which are double folds of
the pleura. In human anatomy, the right lung is classically divided into an upper, middle, and
lower lobe, while the left lung has only one upper and one lower lobe (Figure 1A). In medical
imaging, the lingula of the left lung is sometimes considered the equivalent of the right middle

lobe, enabling better side-to-side comparability.

The airway system is differentiated into upper and lower airways. The upper airways consist
of the nasal cavity, the pharynx, and the larynx, whit the main functions of transporting and
conditioning the breathing air. The lower airways begin with the trachea, which splits up into
the right and left stem bronchi, which enter the lungs at the pulmonary hilum. The human
airways have a dichotomous branching pattern where each branch adds another generation to

the airway tree, commonly resulting in about 23 airway generations (1% = trachea,
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2Md4%h = bronchi, 5"-15" =bronchioles, 16" = terminal bronchioles, 17%-19% = respiratory
bronchioles, 20""-22" = alveolar ductuli and 23™ = alveolar sacs) (Figure 1 A, B, C). The lower
airways can be divided into the conducting and the respiratory zone, with the transition zone
being the terminal bronchioles. The conducting zone of the lower airways has the same
functions as the upper airways, while the respiratory zone is involved in the gas exchange. In
scientific and medical practice, airways with a diameter smaller than 2mm are defined as small
airways, usually corresponding to airways below the 8" generation (Weibel and Gomez 1962).
Small airways are considered to play a special role in the development and progression of

various chronic lung diseases (Hogg et al. 2004; McDonough et al. 2011; Tiddens et al. 2010).

Figure 1: lllustration of the human lung with A) the trachea and the airway tree of the left lung
visible. The lung lobes are separated by fissures, which are illustrated by dark blue lines. B)
Terminal bronchioles, alveolar ducts and sacs of the airway tree. C) The primary lobules
showing alveolar ducts and sacs covered by the pulmonary capillary network (blue: pulmonary
arteries = oxygen-poor blood; red: pulmonary veins = oxygen-rich blood)
[https://upload.wikimedia.org/wikipedia/commons/5/58/202008 lung detailed.svg; DataBase
Center for Life Science (DBCLS), CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>,
via Wikimedia Commons].

The vascular system allows for systemic and pulmonary circulation. The pulmonary
circulation transports deoxygenated blood from the right atrium/ventricle of the heart through
the pulmonary arteries to the pulmonary capillary bed, where gas exchange takes place. From

there, the oxygenated blood is transported through the pulmonary veins into the left
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atrium/ventricle, where the systemic circulation begins. The stroke volume, heart rate, and thus

cardiac output (stroke volume heart rate) of the right and left heart are equal.

Gas exchange occurs in the lung parenchyma. The lung parenchyma comprises a network of
small vessels surrounding the alveoli, forming the pulmonary capillary bed and the so-called
respiratory surface area, which consists of about 300 million alveoli with a surface of
approximately 100 to 140 square meters (Figure 1). The exchange of carbon dioxide and
oxygen between the alveolar air and the capillaries takes place through a thin membrane, the
blood-gas-barrier, which influences the gas exchange by its surface area and thickness. Gas
exchange is controlled by partial gas pressure gradients between the capillary and alveolar
compartments. The net diffusion of oxygen into the capillary blood is positive because the
oxygen gas pressure in pulmonary arterial blood is much lower than in the alveoli. Conversely,
the carbon dioxide pressure in the pulmonary arterial blood is much higher, leading to the
elimination of carbon dioxide from the capillary blood. The gas pressures are homeostatically

controlled, and changes in gas pressures affect the breathing sequence.

Gas exchange in the lungs is optimised by matching ventilation and perfusion, which can be
assessed using the ventilation/perfusion ratio (V/Q ratio). The V/Q ratio is defined as the
ratio of air to blood volume reaching the alveoli per minute, with an ideal ratio of 1.0. The
actual V/Q ratio for the whole lung is approximately 0.8 due to different oxygenation levels
and volumes of air and blood entering the lungs per minute. The V/Q ratio is also not
homogenous throughout the lungs and is altered by gravity and body position. The pathological
inequality of ventilation and perfusion is described by the ventilation/perfusion mismatch (V/Q

mismatch).
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1.2 Clinical background

1.2.1 Muco-obstructive lung diseases

Muco-obstructive lung diseases comprises a spectrum of diseases whose clinical presentation
includes cough, sputum production, and episodic exacerbations. Pathological features of muco-
obstructive diseases include diffuse mucus obstruction, airway-wall ectasia, chronic
inflammation, and bacterial infections. CF and COPD can be both classified as muco-
obstructive lung diseases since both diseases are associated with the typical muco-obstructive

features (Boucher 2019).

CF is a rare autosomal recessive disease, affecting the respiratory tract, the digestive system,
sweat glands, and the reproductive tract. CF is caused by mutations in the CFTR protein-
encoding gene, which is expressed in epithelial and blood cells. The CFTR protein works as an
anion channel that facilitates the passage of chloride and bicarbonate through the cell
membrane to the airway lumen in the respiratory tract. Mutations in the CFTR gene in humans
result in the absence or impaired function of the channel, leading to reduced and highly viscous
airway surface fluid that impairs mucociliary clearance and results in excessive mucus
production. Consequences include mucus plugging, airway wall thickening, progressive
dysfunctional airway dilatation (bronchiectasis) and emphysematous tissue destruction (Mets
et al. 2015; Wielpiitz et al. 2013). Patients with CF suffer from sterile inflammation, but also
from recurrent and chronically persisting pulmonary infections, which cause clinical symptoms
such as chronic productive cough and shortness of breath. Currently, several CFTR mutation
classes are known, creating a heterogeneous disease pattern with differences in disease severity
and progression. The primary cause of death in CF is respiratory disease (Cystic Fibrosis

Foundation Patient Registry 2019). The first signs of the disease may appear in the first weeks
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INTRODUCTION

of life with detectable abnormalities of lung ventilation and perfusion, but also air-trapping in

later stages (Hoo et al. 2012; Mall 2016; Stahl et al. 2014; Wielplitz et al. 2014).

COPD is triggered by an immune response of the lungs when inhaling toxic particles and gases,
such as tobacco smoke or polluted air. The immune response causes chronic inflammation in
the smaller airways, leading to remodelling/narrowing and mucus production, which in turn
can cause hyperinflation. These pathological changes in small airways are often summarised
as functional small airway disease (fSAD). fSAD is thought to occur prior to the
emphysematous destruction of the lung parenchyma leading to severe air trapping due to loss
of elastic recoil pressure (Aarli et al. 2015; Hogg et al. 1968; Hogg et al. 2004; Thomas et al.
2013). Therefore, fSAD might serve as potentially reversible precursor lesion to irreversible
emphysema (Galban et al. 2012; McDonough et al. 2011). Airflow limitations and recurrent
pulmonary infections characterise the clinical presentation of COPD, while fSAD is considered
the main reason for airflow limitations (Brabandt et al. 1983; Hogg et al. 1968; Macklem and
Mead 1967). A frequent clinical feature in advanced COPD is pulmonary hypertension, which
is caused by pulmonary arterial remodelling, with a high predominance in smaller arteries
(Wrobel et al. 2013). The resulting high blood pressure in pulmonary arteries is the main cause
of right ventricular failure (cor pulmonale). Different COPD phenotypes were defined by using
PFT and/or radiologic assessments, as COPD is a heterogeneous disease that differs in severity
and progression (Han et al. 2010; Subramanian et al. 2016). It is known that smoking can impair
CFTR protein activity, which represents pathophysiological commonalities between CF and

COPD (Dransfield et al. 2013; Knowles et al. 1981).
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1.2.2 Pulmonary perfusion abnormalities

Pulmonary perfusion abnormalities, such as delay, reduction or complete omission, manifest
in muco-obstructive lung diseases in response to airflow limitation, inflammation, or

emphysematous destruction of the lung parenchyma.

Airflow limitation results in regional alveolar hypoxia, triggering the mechanism of the
hypoxic pulmonary vasoconstriction (HPV), also known as the Euler-Liljestrand mechanism
(Euler and Liljestrand 1946). The HPV leads to a constriction of intrapulmonary arteries,
diverting blood from poorly to better-ventilated lung areas. Altered pulmonary perfusion due
to HPV is not only observed in the context of disease, but also in physiological processes
required to optimise gas exchange during a change in body position or under physical stress.
The HPV matches perfusion and ventilation, increasing the gas exchange efficiency and, by
this, the V/Q ratio of the lungs. In the presence of inflammation, the alveoli are often flooded
with debris, leading to regional hypoxia. Thus, the lung's normal response to HPV should be
reduced regional perfusion. However, using imaging it could be demonstrated that the HPV
can be blocked regionally in the presence of inflammation (Barbera et al. 1990; Gust et al. 1998;
Hoffman et al. 2006). It has been hypothesised that if the inherent mechanisms fail to block
HPV in the presence of inflammation, the inflammatory response may not be self-limiting
through the normal cascade of events and repair mechanisms. This would in turn lead to chronic
inflammation and emphysema (Alford et al. 2010; Hoffman et al. 2006; Ishizawa et al. 2004;
Peinado et al. 2006). The emphysematous destruction in combination with remodelling of
the pulmonary microvascular structures increase pulmonary arterial pressure and the vascular

resistance in patients with chronic lung diseases (Hogg and Timens 2009).
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Pulmonary perfusion abnormalities have the potential to play an increasingly important role in
routine clinical monitoring of the health status of patients with muco-obstructive lung diseases.
Furthermore, pulmonary perfusion abnormalities may fulfil the prerequisites to be used as
prognostic or response-to-treatment biomarker. In this context, it was hypothesised, that
perfusion abnormalities can be detected earlier by functional imaging than structural changes
by morphological imaging, such as CT, as it is assumed that the spatial resolution of CT does
not allow the detection of early structural abnormalities (Alford et al. 2010). Changes in
pulmonary perfusion may also serve as response-to-treatment biomarker, since pulmonary
perfusion abnormalities are a partially reversible component of muco-obstructive lung diseases,
especially in lung regions where tissue degradation has not yet manifested (Hueper et al. 2015;

Vogel-Claussen et al. 2019; Wielpiitz et al. 2014).

1.3 Basics of MR

The following sections introduce the basics of the MRI sequences used in this work, with a
special focus on DCE-MRI. A comprehensive description of the basics and theory of MRI can
be found elsewhere (Brown et al. 2014; Reiser and Semmler 1992; Vlaardingerbroek and Boer
2013). In the following, only classical MRI physics is descried without details of quantum

mechanics.

1.3.1 Nuclear spin and nuclear magnetisation

The nuclear magnetic moment /i is the basis of MRI. All atomic nuclei with an odd number

of protons or neutrons have a net nuclear spin. The nuclear magnetic moment i is produced by

the nuclear spin I, which is a basic property of elementary particles and thus cannot be changed.

The gyromagnetic ratio vy is a characteristic constant of the atomic nucleus and describes the
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proportionality factor between the nuclear spin of a particle and the associated magnetic

moment.

In this work, only proton MRI is considered, in which the magnetic properties of hydrogen
atom nuclei (protons) are exploited. Hydrogen nuclei consist of only one proton and have the
largest gyromagnetic ratio y. In the following, the term "proton density" only includes the
fraction of tissue protons that contribute to the MRI signal within a volume, i.e., the water and
methylene protons of the mobile fatty acids. Protons incorporated into cell membranes, proteins
or other relatively immobile macromolecular structures do not normally contribute to the signal.
Proton MRI is particularly suitable for medical imaging because the human body consists of
approximately 60% water. In principle, MRI is possible with all atomic nuclei with a net
magnetic moment, but different technical components are required for image acquisition, e.g.
adapted radiofrequency coils. For example, pulmonary fluorine-19-, hyperpolarised helium- or
hyperpolarised xenon- gas can be used for functional lung MRI (Capaldi et al. 2018; Kaireit et

al. 2018; Mathew et al. 2011; Schreiber et al. 2001).

In a static homogeneous magnetic field, the protons receive the additional potential energy E.

The Zeeman effect describes the maximum energy difference AE that protons can have in this

field

where 7 is Planck's constant and Bo the field strength of the external static magnetic field.

For protons, the maximum energy difference produced by the static magnetic field corresponds

to the difference between parallel and anti-parallel alignment. The quantity of magnetic
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moments in thermal equilibrium taking a certain orientation is governed by Boltzmann
statistics. Due to the large number of spins, forming a spin ensemble, and since more protons
align parallel (energetically favourable state) than anti-parallel (energetically less favourable

state), a measurable magnetisation forms in the direction of the static magnetic field Bo. The

measurable macroscopic nuclear magnetisation is described by the magnetisation M. 1t is
defined as the vector sum of the nuclear magnetic moments in the sample related to the volume
V of the sample. However, the energy difference between these two orientations is very small
for protons. In a magnetic field with a magnetic flux density of 1 Tesla (T) and at body
temperature, the difference in relation to the total number of spins is only about 0.000007. To
create such a strong magnetic field, which also needs to be as homogeneous as possible, the
MRI scanner is equipped with a superconducting solenoid. This static homogeneous magnetic
field is called Bo and the direction of By is by convention labelled as z with a x,y-plane

perpendicular to it, according to a cartesian coordinate system.

1.3.2 Resonance excitation

Due to the nuclear spin, the magnetic moment ji, and thus also the macroscopic magnetisation

M precesses around the direction of the By field with the Larmor frequency w;. The Larmor

frequency wy, 1s proportional to the strength of the Bo magnetic field Eq. 1. Using MRI, only
the portion of the magnetisation M, which is rotated into the x,y-plane (or flipped in other

words), can be measured. The part of magnetisation M parallel to the axis of the static By field
is called longitudinal magnetisation M, and the part of the magnetisation in the x,y-plane

transverse magnetisation Myy.
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In the equilibrium state, the magnetisation M is predominantly aligned in the z-direction (Mxy

=0, Mz =Moy). The flipping of the magnetisation M away from the direction of the Bo magnetic
field is performed through high-frequency/radio-frequency (RF) pulses of a rotating magnetic
high-frequency field B1, whose frequency corresponds to the Larmor frequency. This process
is called resonance excitation, because only if the high-frequency magnetic field B has the
same frequency as the spins (Larmor frequency), the spins can be excited in the energetically
less favourable state (anti-parallel to Bo), i.e. only nuclei, which fulfil the resonance condition
are excited. The high-frequency B field is perpendicular to the By field, and the RF pulses used
for the excitation of spins are emitted by transmitting coils. The RF pulse leads to a phase
synchronisation (phase coherence) of the magnetic moments fi, forming a macroscopic
transverse magnetisation Mxy. The magnetisation in the x,y-plane Myy still precesses around
the Bo-direction, which thus appears as a rotating magnetic field. The rotating magnetic field
induces voltage in resonant coils, which enables the measurement in the first place. For this

purpose, receiving coils are used in MRI that are placed near the parts of the body to be
examined. How far the magnetisation M is flipped by the excitation is indicated by the flip

angle a. The flip angle describes the excitation time and the strength of the high-frequency

field B1.

1.3.3 Relaxation

By applying RF pulses of the high-frequency field Bi, the nuclear spin ensemble absorbs
energy, followed by a relaxation of the magnetisation, when the spin ensemble returns to the
equilibrium state (Mxy = 0, M, = My). The relaxation of the magnetisation can be divided into

a longitudinal part in the z-direction and a transverse part in the x,y-plane.
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The relaxation of the longitudinal magnetisation M, is called T1 relaxation (or spin-lattice
relaxation) and is a measure for the release of energy to the environment. The relaxation
process can be described by an exponential function with the time constant T1. The flipped
magnetisation in the x,y-plane returns exponentially to its initial maximum valued My parallel
to Bo, i.e. M;=My., as the spins return to the energetically favourable state parallel to Bo.
Consequently, the T1 relaxation is responsible for the rebuild of the magnetisation M,. The
magnetisation M, available for excitation determines the signal for a measurement. Therefore,

the faster the T1 relaxation, the more magnetisation is available for excitation.

The relaxation of the transverse magnetisation Myy called T2* relaxation (or spin-spin
relaxation) arises from the loss of phase coherence of the spins in the x,y-plane after the
excitation by an RF pulse. Directly after flipping the magnetisation in the x,y- plane, the
magnetic moments are phase coherent. Shortly afterwards, however, some spins precess faster,
others more slowly around the direction of the By field, resulting in a loss of the phase
coherence. The dephasing of the spins in the x,y-plane is caused by spin-spin interactions and
magnetic field inhomogeneities. As a result, the spins diverge until evenly distributed in the
X,y-plane. Since oppositely aligned magnetisation cancels each other out, the measurable signal
decays exponentially. The resulting signal decay is called T2* relaxation, where T2* is the

time constant of the decay.

1.3.4 Spatial encoding and k-space

MRI is a tomographic imaging procedure with the ability of a spatial encoding in three
directions (x- ,y-, z-directions), i.e. the internal spatial structures of an object can be determined
and depicted in three-dimensions (3D). For this purpose, the object is divided into small

cuboidal volume elements (acronym: "volume element", voxel). For the image reconstruction,
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the exact information about the respective point of origin for each voxel is required. The spatial
information is obtained through additional magnetic gradient fields emitted by gradient coils
in the three spatial directions, allowing the frequency or the phase angle to be set differently in
each voxel. The field strength of these gradient fields varies along the respective location
coordinate (location-dependent superimposition of Bo). The gradient fields have only a z
component (point in the same direction as Bo) and are switched on and off during the
measurement with variable amplitudes. In frequency encoding, the signal is sampled in
equidistant time steps during the signal acquisition phase. The precession Larmor frequency
changes along the frequency encoding gradient, giving the spin packages individual, location-
dependent frequencies. In contrast, phase encoding gradients are applied before the signal is
sampled. The strength of the gradient is changed with each excitation. While the gradient field
is on, spins located at different locations precess at different frequencies, resulting in a phase

difference between the voxels.

With frequency encoding, the location of spins along the encoding direction can be captured
with a single excitation. With phase encoding, the excitation must be repeated N times. In 3D
imaging methods, the entire volume of the nuclei is excited by an RF pulse and the location
information is obtained by one frequency-encoding gradient and two phase-encoding
gradients. To record a matrix of MR signals with NxNxM data points, the pulse sequence must
be repeated N x M times. (N=number of repetitions of the first phase encoding gradient and
M=number of repetitions of the second phase encoding gradient). The spatial resolution is
determined by the strength of the gradients: in frequency encoding the strength while the

gradient is on, in phase encoding the maximum strength of the gradient.
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However, the measured raw data set of MR signals, the hologram, is not yet a usable 3D image.
The mathematical data space in which the complex values of the measured hologram are saved
is called k-space. The measured MR signal observes the spin precession over time and not the
frequencies directly. Therefore, every data point in the k-space contains also spatial frequency
and phase information. The measured MR signals in the k-space are processed with 3D Fourier
transformations to reconstruct a 3D image. In most clinical applications, only the absolute value
is used, and the local phase is discarded after Fourier transformation, since only the weighted
proton density p is considered. The centre of the k-space (low spatial frequencies) contains
information about the contrast/rough shapes of the image and the periphery of the k-space (high
spatial frequencies) contains information about the details or edges of the image. The sampling
of the k-space can be performed with different sampling schemes, whereby the path through k-
space, is called trajectory. The most common trajectory is the cartesian sampling scheme,

which fills the k-space line by line.

Different pulse sequences and techniques exist, which, for example, aim to generate different
image contrasts, e.g. T1-or T2*-weighted images, to accelerate the acquisition, and/or to reduce
image artefacts. An MRI pulse sequence consists of a particular series of RF pulses and
magnetic field gradients that provide a complete image. The repetition time (TR) and the echo
time (TE) are basic pulse sequence parameters. TR describes the time between two RF-pulses.
TE describes the time between the RF pulse and the time at which the centre of the k-space is
acquired. The MR signal intensity is determined by the proton density p, the used sequence
(incl. sequence parameter like TR and TE), and the relaxation times of the different tissue types
(but the pulse sequence determines the weighting, i.e. the contribution of the relaxation times

to the signal).
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1.3.5 Gradient-echo sequences

The MRI pulse sequences utilised in this work are gradient-echo (GRE) sequences. GRE
sequences utilise small flip angles <30° in order to flip only a fraction of the longitudinal
magnetisation M; into the x,y-plane. A gradient echo is defined as the signal generated by a
gradient inversion. As depicted in Figure 2, first the transverse magnetisation Myy, i.e. the
signal, is generated by an RF excitation. Second, the signal is manipulated by a dephasing
gradient causing an accelerated loss of the phase relationship of the spins to each other, i.e.
accelerated dephasing of the transverse magnetisation Myy. Third the echo is generated by a
rephasing gradient (readout gradient) that rebuilds the phase relationship, i.e. rebuilding of the
transverse magnetisation Myy. The rephasing gradient reverses the phase shifts induced by the
dephasing gradient and re-establishes the MR signal as an echo. During the dephasing gradient
a whole k-space line can be sampled with sufficient signal. The k-space centre is located at the

centre of the echo.

JAN JAN
RF NAVERVAS >

Signal

Dephasing

Gradient \Rephasing / >

Figure 2: Diagram depicting the generation of a gradient echo using a dephasing and a
rephasing gradient.

[https://upload.wikimedia.org/wikipedia/commons/3/3e/Gradient_echo MRI.svq;
IngFrancesco, translation by Mikael Haggstrom, CcC BY-SA 2.5
<https://creativecommons.org/licenses/by-sa/2.5>, via Wikimedia Commons]
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The sequences used in this work are based on the so-called Fast Low Angle SHot (FLASH)
sequence (Haase et al. 1986), which is a spoiled GRE sequence. In a GRE sequence, spoiling
destroys the transverse magnetisation Myy after each signal acquisition, i.e. before each RF-
pulse. As a result, no transverse steady-state is established which allows the sequence to be
used for the acquisition of T1-weighted images. In this sequence, the T1 relaxation between
the excitation pulses builds up exactly as much magnetisation as was redirected by the
excitation from the z-direction into the x,y-plane to establish a constant longitudinal
equilibrium, i.e. a longitudinal steady state magnetisation occurs in which excitation and
relaxation are in equilibrium. This can be achieved, when TR is chosen much shorter than usual
T1 relaxation times and when the longitudinal magnetisation M; is only slightly reduced by
using small flip angles (<30°). The constant longitudinal equilibrium magnetisation is
maintained over any length of measurement time, which enable time resolved acquisitions with
a high temporal resolution. In addition, very high-resolution three-dimensional images can be

taken in a short measuring time.

The signal S from a spoiled-GRE sequence in the equilibrium is determined by TR, TE and

the flip angle o as well as by the three intrinsic tissue parameters T1, T2* and proton density

p:

—TR
sina-(1—eT1) -TE
S=p- —g eT? 2

1—cosa-eT1

The strength of the T1-weighting, i.e. how much the MR signal depends on the different T1
relaxation times of tissues, can be chosen with a suitable setting of the flip angle a and TR. The

larger the flip angle a and shorter TR, the stronger the T1-weighting. The minimum TR is
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mainly restricted by the possible strength of the gradients and gradient switching times incl.
“dead time”. The echo time TE determines the T2* weighting of the signal in a GRE image.
For a strong T1-weighted image with a minimal possible T2* weighting, TE must be chosen
as short as possible. In a strong T1-weighted image, the contrast and brightness of the image

are predominately determined by the T1 properties of tissue.

The optimum flip angle, which produces the maximum signal, is the so-called "Ernst angle"

A prnst

-TR
Qprnst = arccos e 11 3

However, the flip angle a can be chosen bigger than the optimal signal in order to increase the
contrast. The image acquisition in spoiled GRE sequences can be accelerated by techniques
like parallel-imaging or asymmetric echo. Parallel imaging techniques, such as GRAPPA,
reduce spatial encoding steps, as the known placement and sensitivities of multiple receiver
coils are utilised to complete the spatial allocation of the MR signal (Griswold et al. 2002).
With an asymmetric echo, the dephasing is only incompletely performed, because a shorter
dephasing gradient is used. As a result, the k-space is sampled only partially, but the k-space
centre can be reached earlier, i.e. TE is shorter. An incomplete sampling of the k-space can be
done because a Fourier transformation of a real function is symmetrical and thus the missing

parts of the k-space can be calculated from the measured parts of the k-space.

1.3.6 Implications of lung characteristics on MRI

In lung MRI, the water in the lungs provides the primary MR signal, which is present in the

lung parenchyma (blood and surrounding tissue). However, a large part of the lung volume
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consists of air, which results in a low proton density and thus low signal-to-noise ratio (SNR).
Consequently, the balance in lung MRI between resolution, SNR, and acquisition time is more
difficult than in many other organs due to the low SNR. The longitudinal and the transverse
relaxation depend strongly on the thermal mobility of molecules (physical state) and their
surroundings. The average T1 of lung parenchyma in healthy lungs is approximately 1200ms,
which mainly depends on the blood fraction and their environment (Jakob et al. 2001). The
lungs are comprised of many interfaces of different compartments to perform their primary
task of gas exchange, as described in section 1.1. Since air and tissue have different
susceptibilities, local field gradients arise at these interfaces, which lead to a T2* shortening.
This means that protons near these interfaces precess with strongly varying Larmor frequencies
and thus quickly lose their phase coherence. As a result, T2* of the lung parenchyma is
extremely short with approximately 1-2ms at 1.5T scanners (Hatabu et al. 1999a) and
susceptibility artefacts occur in the surroundings of air-tissue interfaces. Therefore, fast scan
techniques, such as GRE, with short TE are preferable for lung MRI. However, even with a
short TE, the SNR 1in the lung is low, particularly relative to the surrounding tissue. The latter
is problematic as artifacts affecting the lungs may contain signal components from outside the

lungs, which can be strong relative to the lung signal itself.

Respiratory motion during inspiration and expiration must be considered for the acquisition
of MR images. The two sequences used in this work were configured for an acquisition in
breath-hold. If the breath-hold is performed incorrectly, artefacts are produced, and
compartments are shifted between voxels. Unfortunately, the CA application and thus the
acquisition of a DCE-MRI sequence cannot be easily repeated, which is why an incorrectly
executed breath-hold can lead to the exclusion of the examination from further analyses or

images have to be corrected for respiratory motion.
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1.3.7 MRI pulse sequence utilised for lung segmentation

The segmentation of the lungs, which is necessary for the computer-aided automated
quantification of pulmonary perfusion (cf. section 1.4.4), was performed in this work using MR
images acquired with an ultra-fast GRE sequence. The utilised MR pulse sequence was
optimised to deliver the best possible spatial resolution and SNR in one single breath-hold of
several seconds. For this purpose, 3D images were acquired with a relatively short TE and a
flip angle o, which delivers the optimal signal in the lung parenchyma. In addition, several
techniques were employed to accelerate the acquisition (single breath-hold) while still
achieving the required spatial resolution. For example, padding the acquired k-space with zeros
before the data are transformed into image space results in an image interpolated to a higher
resolution. This process is called zero-filling and makes use of the information contained in the

phase of the complex raw data that is lost after the image reconstruction.

1.3.8 Gadolinium-based contrast agent

MRI CA are used in medical imaging to increase the sensitivity and specificity of a test and
to determine the perfusion of an organ. In this work, a CA containing extracellular
paramagnetic gadolinium (Gd) chelates was used to assess pulmonary perfusion. Paramagnetic
atoms contain unpaired electrons and thus have a net electronic spin, with the magnetic field
induced by electron spins being much stronger than that of proton spins. Gd can be used as its
electron spin relaxation time matches reasonably well the Larmor frequency of protons in water
or fat molecules at field strengths around 1T. Due to its toxicity, Gd must be attached to a
chelate molecule in order to be used as a CA in humans. For example,
diethylenetriaminepentaacetic acid (DTPA) is highly stable and can be used to bond Gd
(forming Gd-DPTA). The paramagnetic interaction between gadolinium chelate-containing

CA and a proton is stronger by a factor of ~500 000 than the interactions between two protons.

Page | 24



INTRODUCTION

The precession of the hydrogen atoms in the tissue and thus also the signal intensity of the MR
image is influenced by the strong interactions between the CA and the protons. The particles
of the paramagnetic CA act as T1 relaxation centres. These relaxation centres cause temporally
rapidly fluctuating fields, which, in turn, lead to an acceleration of the T1 relaxation and thus

to a signal increase in T1-weighted images where CA is locally present.

In the lungs, the extracellular CA resides within the pulmonary vascular bed, as the system is
assumed to be a closed system without extravasation of the CA in healthy tissue regions during
the first pass of the CA, i.e. no leakage of the intravenously injected CA from the normal
intravascular compartment into surrounding tissues. The local signal increase caused by the
CA improves the measurement conditions inside the lungs as it leads to an increase in

SNR/CNR.

The relaxation rate R1 (1/T1) is directly linearly proportional to the concentration of the CA,
but the signal intensity change is not linearly proportional to the concentration of the CA.
However, at low CA concentrations, the signal intensity is approximately linearly
proportional to the CA concentration, but not at high CA concentrations. Therefore, the
dose of the intravenously injected CA must be carefully chosen if signal changes are to be
quantified. Too low dosage can lead to an insufficient signal amplification (low CNR) in the
lung parenchyma, but too high dosage would lead to a non-linear relationship, especially in
areas with a high percentage of CA per voxel, such as large vessels. A particular challenge for
pulmonary perfusion quantification is the high percentage of CA occurring in the main
pulmonary artery where the AIF for the perfusion quantification is measured (cf. section 1.4.2).
A non-linear relationship in the AIF can lead to a variable underestimation of the AIF, which

in turn can lead to errors in the perfusion quantification. The CA concentration-to-signal
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intensity relationship with special focus on DCE-MRI of the lungs was investigated previously.
The study showed that even low doses of CA can exceed the range of linearity in the main
pulmonary artery (Puderbach et al. 2008). Several methods exist to account for the non-
linearity in the main pulmonary artery for quantitative computer-aided perfusion computations

(Neeb et al. 2009; Risse et al. 2006), which are described in more detail in section 2.3.1.

1.3.9 DCE-MRI of the lung

DCE-MRI data of the lung is commonly acquired with a spoiled 3D GRE sequence for time-
resolved angiography (Fink et al. 2005¢). For the assessment of pulmonary perfusion, the
contrast enhancement of the administered CA bolus in the small vessels (smaller than a voxel)
of the lung parenchyma is of particular interest. A dynamic, i.e. temporally resolved,
acquisition is used, which measures the same scan region several times successively at short
intervals. In the lungs, a sufficient temporal resolution for perfusion assessments is preferably
approximately 1.5 s or below to enable a quantitative assessment of the perfusion or to
differentiate phases of perfusion (Ley and Ley-Zaporozhan 2011). Usually the complete
DCE-MRI dataset is acquired in a single breath-hold. Consequently, only the first passage of
the CA through the lung parenchyma can be observed during the first 20-30s without breathing

artefacts.

The spoiled 3D GRE sequence was optimised for the contrast enhancement of the CA in
the lungs. TE had to be chosen extremely short, due to the short T2* in the lung parenchyma
(cf. section 1.3.6), preferably less than 1ms. In the DCE-MRI pulse sequence, the flip angle o
is chosen to deliver the optimal signal from the CA, which is therefore larger than the flip
angle o of the GRE sequence used to generate the MR images for lung segmentation.

Consequently, spatial resolution and the SNR of the lung parenchyma and chest wall is
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substantially lower compared to the GRE sequence used to generate the MR images for lung
segmentation, which is why the DCE-MRI pulse sequence is not appropriate for lung
segmentation. Nevertheless, relative to the size of the functional units regulating lung perfusion,
the spatial resolution of DCE-MRI data is high. In this work the voxel size was 1.8x1.8 mm
and the slice thickness 5.0 mm and the secondary pulmonary lobule as smallest functional unit

regulating lung perfusion has a size of 1-2.5 cm in diameter (Heitzman et al. 1969; Webb 2006).

The spatio-temporal resolution of the DCE-MRI pulse sequence was improved by applying
keyhole-imaging techniques (Fink et al. 2005a; Hennig et al. 1997; Laub and Kroeker 2006;
Vaals et al. 1993). The keyhole imaging technique samples only the central k-space (low spatial
frequency information) at each time point completely, but the peripheral k-space (high spatial
frequency information) is only partially sampled in a stochastic manner at each time point. To
fill the missing points of the peripheral k-space, data from previous and later acquired time
points are copied into the k-space by the keyhole technique. This is done, because the CA
changes only the signal intensity (contrast), i.e. the dynamic information, which can be
obtained from the centre of the k-space, but not the actual structure of the tissue imaged
(peripheral k-space). The partial sampling of the k-space enables the use of shorter dephasing

gradients, resulting in a possible shorter TE.

However, due to the keyhole technique, respiratory motion by incorrectly executed
breath-holds results in image artefacts at all shared time points, due to the temporal sharing of
the high frequency k-space data. Furthermore, the movement of the heart leads to artefacts due
to the keyhole concept in the shared phases, especially in the temporal vicinity of the CA
passage through the left heart. In general, the keyhole concept introduces large-scale artefacts

beyond pure noise to achieve the time resolution necessary for perfusion assessments. In this
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case, these artefacts can be determined by the signal outside the lungs, which leads to the strong
artifacts relative to the lung signal. Respiratory motion negatively influences DCE-MRI data
of the lungs further. A change in lung volume leads to a change in lung density/proton density
and, therefore, in the MR signal. In addition, respiratory motion moves tissue structures, such
as vessels, between voxels and thus changes the MR signal between time points for individual
voxels. For these reasons, patients must hold their breath during the image acquisition to enable
the tracking of the complete first CA passage through the lungs. Typical breath-hold times are
up to 35 s, which is difficult for many seriously ill CF or COPD patients (Maxien et al. 2013;

Ter-Karapetyan et al. 2018).

Overall, DCE-MRI data of the lungs are adversely affected by pronounced artefacts and low
CNR. Artefacts arise due to the keyhole concept, which is needed to achieve the necessary
spatio-temporal resolution for the pulmonary perfusion assessment and the low proton density
in the lungs. The low contrast enhancement in the lung parenchyma is mainly caused by the
limitation in the dosing of the CA. The dose of the CA is chosen small enough to ensure a

linear relationship between CA concentration and MR signal in the lung parenchyma.

1.4 Computer-aided perfusion assessment

Pulmonary perfusion abnormalities in DCE-MRI data are characterised by absent or delayed
contrast enhancement. Computer algorithms can quantitatively assess pulmonary perfusion
by calculating parameters like PBF and PBV or alternatively by calculating the extent of
perfusion abnormalities in relation to the total lung volume as a more relative measure. In most
cases, pharmacological models are applied to assess pulmonary perfusion quantitatively with
computer algorithms (Ohno et al. 2007; Ravesh et al. 2013; Sourbron and Buckley 2011).

Thereby, the contrast enhancement in the lung parenchyma during the first pass of an
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intravenously injected CA bolus is exploited. Abnormal perfusion leads to local changes in
PBF and PBV, which can be depicted voxel-wise as color-coded maps. In addition, also the

extent of perfusion abnormalities can be depicted in color-coded maps.

1.4.1 Signal to concentration conversion

As described in section 1.3.8, DCE-MRI measures the temporal change in MR signal intensity
caused by the CA, but not the CA concentration directly. To quantify pulmonary perfusion, the
signal intensity time course S(t) measured by DCE-MRI must be converted into a CA
concentration time course C(t). The most frequently used methods assume a linear
relationship between the CA concentration and the measured MR signal intensity for the
conversion (Ohno et al. 2004; Ostergaard et al. 1996; Ravesh et al. 2013; Sourbron et al. 2006).

Thus C(t) can be approximated by the relative signal change over time Si(t).

C(t) x Sret(t) 4

1.4.2 Indicator dilution theory and lung perfusion

The most frequently used DCE-MRI perfusion quantification method in the lungs makes use
of the theory of the indicator dilution, which is based on the principles of tracer kinetics for
non-diffusible tracers (Fink et al. 2005¢; Meier and Zierler 1954; Ohno et al. 2004). The model
consists of a closed flow system with one single inflow, one single outflow, one single tissue
compartment and no extravasation of the CA. The theory assumes a constant volume of the CA
and a constant flow rate when the CA enters and exits the system (Meier and Zierler 1954). As
depicted in Figure 3, the CA enters the tissue from an arterial inflow at a concentration Ca(t)
and leaves the tissue through the venous outflow at a concentration C(t). The tissue impulse

response function IRF describes the observed response of the tissue after the injection of the

Page | 29



INTRODUCTION

CA and is also called transport function. The IRF is a probability density function of the transit
times t of the CA through the tissue, which depends on the vessel structure and flow. The
model/theory requires an infinitely small bolus of unit volume as input, i.e. Dirac delta function
(o-function). Therefore, the CA is injected as a bolus (the shorter the injection time of the CA,
the better the impulse condition of the theory is fulfilled). In the following, Ca(t) is also referred

to as arterial input function (AIF) and C(t) as the output concentration function.

Tissue = Lung capillaries
IRF

Figure 3: Principle of the indicator dilution theory for pulmonary perfusion quantification. The
model is also referred to as a one-compartment-model or in signal processing as a ‘linear
time-invariant system’ or ‘black-box system’. The name ‘black box system’ comes from the
fact that no assumptions on the distribution of the CA in the tissue are made.

According to the definitions of the indicator dilution theory for linear time-invariant systems,

C(t) can be calculated by the convolution of Ca(t) with IRF

t

C(t) =C,(t) ® IRF(t) = j C,(t) - IRF(t — 1)dt 5
0

where & denotes mathematical convolution.

For the quantification of pulmonary perfusion parameters, such as PBF and PBV, the IRF must
be determined. PBF is defined as the maximum height of IRF and PBV as time-integral of IRF
(Ohno et al. 2004; Sourbron et al. 2006). A widely used approach in bolus tracking to solve
Eq. 5 for IRF is the model independent (nonparametric) deconvolution of C(t) with Ca(t).

However, as the measured bolus tracking data contain noise, the algebraic deconvolution is
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an ill-posed problem, i.c. even a small amount of noise in the data may result in
physiologically meaningless solutions. The noise-sensitivity can be reduced by employing a
process called “regularisation” (cf. section 2.3.2). Many studies already investigated
regularisation approaches for algebraic deconvolution in bolus-tracking using real and

simulated MRI data (Calamante et al. 1999; Ravesh et al. 2013; Sourbron et al. 2004).

In general, perfusion (more precisely hemoperfusion) is the supply of blood to organs or parts

of organs. Perfusion in the sense of a quantity is defined as blood flow BF. BF is the volume

of blood that flows through an organ per unit of time with the unit mllln

AVBlood

BF =
At

where AVBiood is the blood volume in vessels that flow through an organ and At is the time unit.
The blood volume is usually set in relation to the mass of a reference volume or to a reference
volume Vrung to calculate the regional blood flow rBF. In MRI it is only possible to measure

the relative flow related to a reference volume.

AV,
rBF = Blood 7
VLung " At

In the following, rBF is named PBF with the unit L, which was established in DCE-

100ml-min

MRI experiments to reflect how much blood flows through 100 ml of lung tissue per minute.
For a healthy young man with a AVBiood/At of 6 I/min and a total lung volume of 7 I, PBF for

the entire lung is approximately 85 ml/100ml/min (Larsen and Ziegenful3 2004).
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The regional pulmonary blood volume (rBV) used in this work is defined as the volume of

blood in a reference volume with the unit ml
100ml
AV,
rBV = PBV = —20%¢ 8
Lung

PBV measures the amount of blood in 100 ml of lung tissue. In the main pulmonary arteries,
the blood volume in a region of interest (ROI) should be approximately 100 ml/100ml, i.e.
100 %. Therefore, the blood volume in the main pulmonary arteries can be used to control the

PBYV calculation.

1.4.3 Perfusion defects in percent

In addition to the quantification of the absolute flow and volume values using PBF and PBV,
further analysis strategies have been developed in this work to evaluate the extent of perfusion
abnormalities. For this purpose, unsupervised image clustering algorithms were used to
quantify the extent of perfusion abnormalities in the lungs relative to the lung volume, which
will be abbreviated in the following as perfusion defects in percent (QDP). The basic idea is
to classify voxels as defective if their value is low compared to the other lung voxels. By putting
the extent of defective voxels in relation to the lung volume, the calculation in percent is

achieved.
Unsupervised clustering algorithms belong to the group of unsupervised machine learning

tasks. They were already applied in clinical studies to Fourier decomposition- (FD),

hyperpolarised helium-, and xenon-MR images to quantify ventilation or perfusion defects. In

Page | 32



INTRODUCTION

addition, unsupervised clustering algorithms are often used in image processing for various

tasks, such as image segmentation (=distinguishing between object and background).

Image acquisition Pre-processing Segmentation Feature extraction Classification

Figure 4: Image processing chain depicting the single steps needed to use clustering
algorithms.

In general, 5 main steps are used in an image processing chain to enable feature classification

with unsupervised clustering algorithms, as shown in Figure 4.

1.

2.

Images must be acquired and uploaded to the analysis platform

Image pre-processing steps are usually required before clustering algorithms can be
used, e.g. the application of a filter to emphasise edges or the compensation of
inhomogeneities in the image. DCE-MRI data offer the possibility to use mathematical
models, such as the indicator dilution theory, during the pre-processing.

Image segmentation may be required to limit the area of the image to an ROI. For
example, in this work, an automatic segmentation of the lungs was performed.

Feature extraction is the first step where the clustering algorithm itself is used. The
clustering algorithm extracts features of interest from the image, e.g. signal intensities,
and automatically groups them into clusters. Usually, the number of clusters is pre-
specified.

The final step is the classification of the identified clusters, which determines the

consequence of each cluster, e.g. defect or no defect.
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In this work, pixel-based (or voxel-based) unsupervised clustering of signal intensities was

evaluated:

Otsu’s method:
For the separation of voxels into clusters, Otsu’s method identifies thresholds from
intensity histograms by minimising the inter-class intensity variance. For two clusters,

Otsu’s method searches for one threshold in the histogram (Otsu 1979).
05 (t) = wo () - 03 (£) + w1 (1) - 07 (£) 9
where t is the threshold of interest, 62 is the weighted sum of variances of the two

classes, w, and w; are the probabilities of the two clusters, and ¢¢ and o are the

variances of the two clusters.
k-means clustering:
k-means clustering utilises the within-cluster variances (squared Euclidean distances)

to separate voxels into clusters. The aim is to minimise the within-cluster sum of

squares, i.e. the variance of each cluster.

K
argminZICiI Varc; 10
c 4
=1

where C is the cluster and k is the number of clusters.
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e Percentile threshold:
A method based on one percentile threshold clusters the voxels in the lungs into two
clusters. The percentile threshold is usually empirically determined and must be
multiplied with a factor. The percentile must be above the median to reflect normal
perfused lung parenchyma and the factor must be less than 1. The factor is needed to
enable detection of different percentages of defects. In previous studies, the 75
percentile threshold multiplied by 0.5 or the 80 percentile threshold multiplied by 0.6
was determined as a robust threshold to differentiate between healthy and pathologic

tissue (Heimann et al. 2012; Kaireit et al. 2019).

1.4.4 Automatic lung segmentation

Lung segmentation is defined as a process of identifying the lung contours that separate the
lungs from the surrounding thoracic tissue, such as the chest wall and the heart. The
segmentation of the lungs is a prerequisite for the assessment of pulmonary perfusion by
computer algorithms and can be performed automatically or manually by plotting ROIs. The
aim of this work was to perform an automatic lung segmentation without manual correction.
In comparison with DCE-MRI data, non-dynamical sequences of the lungs can have
substantially higher spatial resolution, better contrast between the lungs and the thorax wall,
higher SNR in the lung parenchyma, and require shorter breath-holds as described in section
1.3.7. Therefore, in a previous study, the lungs were segmented from non-dynamical image
data acquired prior CA application and the segmented lung mask was transferred to the DCE-
MRI dataset using image registration (Kohlmann et al. 2015). The shorter breath-hold duration
for the non-dynamical image acquisition compared to DCE-MRI reduces errors in the breath-

holding manoeuvre.
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In this work, region growing techniques are used for lung segmentation, including the
identification of seed points for each lung. The basic principle of the region growing algorithm
is to include all neighbouring voxels with similar intensities starting from a seed point.
However, in the lungs, region-growing algorithms tend to include the trachea and to combine
both lungs in the area of the lung apices. The trachea is connected to the lungs and filled with
air, which prevents the region growing algorithm from identifying a border between the trachea
and the lung tissue. Therefore, the trachea must be identified and excluded separately. In the
area of the lung apices, the two lungs are only separated by a thin layer of tissue, which means
that the signal increase of the tissue layer is relatively low compared to the lung parenchyma
due to the small amount of tissue. In case the region growing algorithm cannot detect the border
between the two lungs, further image processing steps are needed to accurately separate the
two lungs. Watershed transformations, which were developed in image processing to segment
continuous regions into distinct objects, are useful to separate the two lungs. The basic principle
of watershed transformation is to identify watershed ridges, assuming that the image resembles
a topographic relief and is flooded with water from below. When the floods of two different
catchments start to mix, a dam is built to prevent the mixing of the floods, i.e. it is separated
into two objects. A grey scaled image is transformed into a topographic relief by converting
light pixels to high elevations and dark pixels to low elevations (Meyer 1994). However, the
watershed transformation tends to lead to an over-segmentation, especially in images with low

SNR.
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1.5 Objectives

The overall purpose of this work was to develop a robust and clinically meaningful method
to quantify pulmonary perfusion using DCE-MRI data in patients with muco-obstructive lung
disease. As outlined in the previous sections of the introduction, DCE-MRI in the lungs is
challenging and has its limitations, which negatively affect the reproducibility of PBF and PBV,
i.e. absolute flow and volume quantification. For this reason, an algorithm was developed to
automatically quantify the extent of pulmonary perfusion in percent (QDP) using unsupervised
clustering algorithms, i.e. relative quantification. The use of unsupervised clustering algorithms
leads to intrinsic normalisation and can reduce variability compared to absolute perfusion
quantification. For the development of QDP as a new imaging-based biomarker, several

technical validation steps were performed followed by several clinical validation steps.

The algorithm for the quantification of QDP was developed and optimised using data from
the ‘COSYCONET’ COPD cohort (study details are given in section 2.1.1) by comparing
different unsupervised clustering methods and image pre-processing methods. Thereafter, the
reproducibility of QDP was investigated in CF and COPD patients who underwent DCE-MRI
at baseline and one month later (reproducibility study: study details are given in section 2.1.2).
The development of QDP was primarily based on comparisons with a visual MRI perfusion
score, but also with quantitative CT parameters for emphysema and fSAD, and with PFT
parameters, since perfusion abnormalities are associated with both airflow limitations and the
destruction of lung parenchyma. Furthermore, the performance of QDP was compared to the

performance of PBF and PBV.
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2 MATERIALS AND METHODS
2.1 Study population

211 COSYCONET study

The first study in this work was based on data from the imaging sub-study of the national
COPD cohort entitled “Impact of Systemic Manifestations/Comorbidities on Clinical State,
Prognosis, Utilisation of Health Care Resources in Patients with COPD” (COSYCONET
(NCT01245933); substudy “Image-Based Structural and Functional Phenotyping of the
COSYCONET Cohort Using MRI and CT” (MR-COPD, NCT02629432)). The key inclusion
criteria were male and female subjects aged 40 years and older, diagnosis of COPD according
to the GOLD criteria (Singh et al. 2019) or chronic bronchitis. Thus, the study included subjects
of GOLD 1-4 categories and subjects with no assignable GOLD category including the former
GOLD 0. A detailed description of the in- and exclusion criteria of COSYCONET was
published by Jorres et al. (Jorres et al. 2010). Institutional ethics committee approval was
obtained (Ethik-Kommission der Medizinischen Fakultdt der Universitit Heidelberg, S-

656/2012) and all subjects gave their written informed consent prior to study conduct.

For this work, a subset of 103 subjects was selected who were examined in the same centre
(Thoraxklinik Heidelberg). Only a cross-sectional evaluation of the COSYCONET study data
was done. 20 (19.4%) subjects were excluded due to missing MRI acquisitions, substantial
respiratory artifacts, or other inadequate MRI data quality, resulting in 83 subjects remaining

in the analysis (Table 1).
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Table 1: Patient demographics of the COSYCONET study subset

Atrisk for Former
Total GOLD 1 GOLD2 GOLD3 GOLD 4
COPD GOLD 0

Demographics

n 83 5 11 4 29 24 10
Age (y) 65.7+9.0 656+6.8 69.5+7.2 628+95 66.4+95 64.7+10.2 62.7+6.6
Sex

44139 2/3 714 1/3 15/14 14/10 5/5
(female/male)
Pack years 36.9+28.8322+19.212.8+13.0 23.0+4.3 342+24239.6+33.9 744+225
BMI (kg/m?) 26.2+46 27.2+6.5 295+42 27.0+49 258145 25614.7 23.9+3.1

Information on the number of pack-years was only available for 45 patients. Body mass index (BMI) data was only
available for 80 patients. Pack years are calculated by multiplying the number of packs smoked (20 cigarettes) per

day by the number of years the patient has smoked. Data presented as mean + standard deviation (SD).

2.1.2 Reproducibility study

Data for the second study of this work were derived from a prospective observational study at
the Thoraxklinik Heidelberg, which was approved by the institutional ethics committee (S-
126/2015). Informed written consent for examination and data evaluation was obtained from
all subjects prior to study start. The study was designed to test the reproducibility of MRI-
derived parameters in clinically stable CF and COPD patients. MRI visits were performed at
baseline (MRI1) and one month (30.0 £+ 2.5days) later (MRI2). PFT was carried out on both

MRI visits. Adverse events were recorded at both visits.

The diagnosis of CF was based on clinical symptoms, confirmed by increased sweat CI°
concentrations (= 60mmol/l) and CFTR mutation analysis. In pancreatic sufficient patients with
borderline sweat test results (sweat Cl” between 30 — 60mmol/l) the assessment of CFTR
protein function was performed in rectal biopsies according to established diagnostic criteria
as previously described (Graeber et al. 2015; Hirtz et al. 2004). The diagnosis of COPD was
made according to established criteria by the GOLD consortium (Singh et al. 2019). Patients

must not have any hypersensitivity to gadolinium-based CAs. CF patients needed to be aged

Page | 39



MATERIALS AND METHODS

> 18years with a pre-bronchodilator forced expiratory volume in 1 second percent predicted
(FEV1% predicted) > 30% at baseline. COPD patients needed to be aged > 40years with post-
bronchodilator FEV1% predicted > 30% and the ratio between the forced expiratory volume in

1 second and forced vital capacity (FEV1/FVC) < 70%.

In total, 35 patients, 15 with CF and 20 with COPD (Table 2), were prospectively recruited
within one year and completed both MRI examinations in stable clinical condition. Clinically
stable was defined as constant maintenance therapy and freedom from pulmonary exacerbation
as described elsewhere (Fuchs et al. 1994; Rosenfeld et al. 2012; Singh et al. 2019). In case an
enrolled patient experienced a pulmonary exacerbation and/or a major change in symptoms or
therapy after the first MRI, the patient needed to return to baseline medication and symptoms
more than seven days prior to second MRI. Stability of PFT parameters and MRI perfusion

score of the patients in this study was confirmed by a previous work (Wielpiitz et al. 2019).

Table 2: Patient demographics in the reproducibility study. Submitted for publication.

Cystic fibrosis COPD Both groups
Demographics

n 15 20 35

Age (y) 29.3+93 66.5 £ 8.9 50.6 + 20.7
Sex 2f/13m 5f/15m 7f/28m
History of smoking, n 2 20 22
Pack years 0.7+0.2 52.3+222 47.6 +£26.8
Time since diagnosis (y) 209+ 11.7 8.1+55 13.6 £10.7
BMI (kg/m?) 21.8+2.8 25137 23.7+3.7

5 chronic

P. aeruginosa status _ _ - -
4 intermittent

S. aureus status 9 - -
4 chronic

Aspergillus ssp. status - -
perg P 4 intermittent

Data presented as mean = SD. Bacterial colonisation was not assessed in COPD.
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2.2 MR image acquisition

In both studies the same 1.5T MR scanner (Magnetom Aera, Siemens Healthineers) and a
standardised chest MRI protocol (Table 3) were used for the acquisition as previously described
(Bertram J. Jobst et al. 2015; Stahl et al. 2017; Triphan et al. 2018; Wielpiitz et al. 2014;

Wielpiitz et al. 2018).

The sequence used to generate the MR images for lung segmentation was a 3D volume-
interpolated breath-hold examination (VIBE) GRE pulse sequence in coronal and transverse
orientation (Siemens Healthineers, Erlangen, Germany). The combination of GRE sequences
with parallel imaging methods and slice interpolation techniques ensures a full lung volume
coverage at the desired spatial resolution within one breath-hold of several seconds (Wild et al.
2012). The sequences were acquired in inspiratory breath-hold with a total acquisition time of
~17s. Compared to the DCE-MRI pulse sequence, the VIBE sequence provides a higher SNR
with lower T1-weighting, due to the smaller flip angle a. This facilitates the differentiation of

the lung parenchyma from the chest wall for lung segmentation.

DCE-MRI data were acquired with a time-resolved 3D angiography with stochastic trajectories
(TWIST) spoiled T1 GRE pulse sequence (Siemens Healthineers, Erlangen, Germany). Key-
hole imaging and parallel imaging with view sharing were used to achieve the needed spatio-
temporal resolution (Fink et al. 2005¢; Laub and Kroeker 2006). The sequence was T1-
weighted with a short TR and high flip angle a. For the contrast-enhancement, either a fixed
dose of 2ml or less than 0.1mmol/kg body weight of gadolinium-based CA (Gadobutrol (Gd-
BT-DO3A), Bayer Vital GmbH, Leverkusen, Germany) was injected intravenously at a rate of
4ml/s with a power injector (Medtron, Saarbriicken, Germany) followed by a saline chaser.

The 20 time points of the DCE-MRI pulse sequence were acquired in inspiratory breath-hold,
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resulting in a total acquisition time of ~33s with a temporal resolution of ~1.6s. The DCE-MRI
acquisition started up to 5s before the CA injection and continued during the passage of the CA
through the lungs. MRI was performed in most cases after patients had taken their maintenance

medication.

Table 3: Standardised MRI protocol (Schiwek et al. 2021; Triphan et al. 2018)

TR TE ¢ T FoV Voxel size
Sequence Orientation Mode Slices Matrix
(ms) (ms) ©) (mm) (mm?) (mm)
VIBE tra 3D 361 169 5° 4.0 88 400x300 320x240 1.3x1.3
VIBE cor 3D 335 163 5° 4.0 56 400x400 288x288 1.4x1.4
TWIST cor 3D 1.80 0.74 20° 5.0 44 450x366 256x208 1.8x1.8

All three sequences were acquired in inspiratory breath-hold. For the TWIST sequence, 20 consecutive
acquisitions were made, and a gadolinium-based contrast agent was injected intravenously. tra = transverse

orientation cor = coronal orientation, ST = slice thickness, FoV = Field of view.

2.3 Pulmonary perfusion quantification

All quantitative MRI-derived perfusion parameters were calculated using an MRI analysis
pipeline developed entirely within the scope of this work and written in MATLAB (R2019a,
The MathWorks, Inc., Natick, Massachusetts.). The individual steps are described in the
following text. All image processing steps used for the final evaluation of the patient data were

performed fully automatically, unless otherwise stated.

2.3.1 Concentration maps

As described in section 1.4.1, C(t) can be approximated by the relative signal change over
time/signal enhancement Srei(t). Under the assumption that all time points of the DCE-MRI

data show the same anatomical region, the basic idea behind the approximation of the CA
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concentration with Srei(t) was the need to remove the baseline signal of tissue and blood before
the CA enters the tissue. Thus, a frequently used approach to calculate S is the subtraction of

the baseline signal So from the measured signal intensity time course S(t) (Pianykh 2012)

Srel(t) = S(t) — S 1

However, as MRI delivers signal intensities in arbitrary units (a.u.) for every voxel over time,
a normalisation of the signal change to the baseline signal So delivers more comparable values

between measurements (Ohno et al. 2004; Ostergaard et al. 1996; Ravesh et al. 2013)

S(t) — S,

Srei(t) = s 12
0

Due to the physical properties of the lung tissue, the signal and SNR in the lung parenchyma
was low before the CA arrives. Dividing by So can thus lead to artefacts and noise amplification,
especially in regions with perfusion abnormalities (= low contrast enhancement), as depicted
in Figure 5. Consequently, a normalisation to the baseline signal was not considered useful in
the specific case of parenchyma perfusion quantification, which is prone to low SNR. Therefore,

the first approach (Eq. 11) was used in this work, i.e. Srei(t)=S(t)-So.
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Figure 5: Generation of C(t) maps from S (t) maps using two different approaches. Different
scaling was applied to the images. The same slice and timepoint from the same DCE-MRI
dataset from one patient were chosen to visualise the differences in the contrast
enhancements.

So was calculated by averaging the signal of the first two time points, as suggested by Bell et
al. (Bell et al. 2015). The baseline signal So was not calculated solely from the first time point
of the DCE-MRI pulse sequence, as it has a lower image quality compared to the subsequent
time points due to the key-hole technique. So must be acquired before the CA arrives in the

main pulmonary artery where the AIF was measured. In case of mistiming of the CA- bolus
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application, i.e. in case the CA was applied too early, only the first time point was used to
calculate So. The mistiming of the CA was monitored by the gradient of the signal change in
the main pulmonary artery in every time point (how the main pulmonary artery was found, and
the ROI was created is described in section 2.4.3). If the gradient in the second time step
exceeded 15% of the maximum gradient, only the first time point was used for the So
calculation. Concentration maps (C(t) maps) were approximated by calculating Sri(t) in every

voxel.

Lack of linearity between CA concentration and MR signal intensity occurs with the used CA
protocols only in areas with a high proportion of CA per voxel, such as in the large pulmonary
arteries, as described in section 1.3.8. Thus, a non-linear relationship can be problematic in the
main pulmonary artery, in which the AIF for the perfusion quantification was determined
(Puderbach et al. 2008). Moreover, the non-linearity problem should not affect the pulmonary
vascular bed, since CA was highly dispersed over the lung volume, as opposed to the central
arteries. Two approaches were introduced to correct for non-linearities in the CA-concentration
to signal intensity relation in the AIF. On the one hand, the so-called “dual-bolus approach”
was introduced using a CA pre-bolus with a lower CA concentration to remain in the linear
range, followed by a CA bolus with higher concentration. The concentration-time course for
the AIF was constructed from the data acquired during the “pre-bolus” image acquisition (Risse
et al. 2006). On the other hand, a method was introduced by Neeb et al. correcting the signal
intensity of the AIF with a calibration curve, which requires detailed information of the used

pulse sequence parameters (Neeb et al. 2009).

In this work, only single bolus data and no detailed information of relaxation times were

available (Ingrisch et al. 2010; Risse et al. 2006). The correction proposed by Neeb et al. using
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a calibration curve has the benefit that no detailed knowledge about the relaxation times (T1
and T2%*) are needed, but when applying Neeb's calibration method, Bell et al. did not find a
significant difference for the PBF quantification for a spoiled GRE sequence and Gd-DTPA
(Bell et al. 2015; Neeb et al. 2009). It was speculated, that the use of DCE-MRI pulse sequences
with a higher flip angle and short TR/TE, like in the present work, extent the area in which the
signal and the CA concentration have a linear relationship (Bell et al. 2015). The work by
Puderbach et al. clearly depicted a linear relationship in the range between ~0-4mM CA
concentration with an MR signal S/So in the range of ~0-40 (Puderbach et al. 2008). The study
used a spoiled GRE sequence with a flip angle similar to the DCE-MRI pulse sequence used
in this work. Furthermore, the relaxivity of the Gd-DTPA (longitudinal relaxivity in human
blood plasma (37°C) at 1.5T: r1=3.9 £ 0.2]/mmol/s) used by Puderbach et al. is similar to the
relaxivity of Gd-BT-DO3A (longitudinal relaxivity in human blood plasma (37°C) at 1.5T:
r1=4.7 £ 0.21/mmol/s), which was used in this work (Pintaske et al. 2006). The measured MR
signals in the main pulmonary artery (AIF ROIs) in this work, or more specifically the
maximum signal divided through the baseline signal Smax/So, did never exceed the value of
approximately 20, i.e. was distinctly lower than the linearity limit found by Puderbach et al.
Based on the findings from literature and measured data, no correction was performed in this
work as it was concluded that a linear relationship between MR signal and CA concentration

can be approximated.

2.3.2 Impulse response function and regularisation

The fundamental function for the quantification of pulmonary perfusion is the IRF, which were
calculated by deconvolving the AIF with each voxel of the time-resolved C(t) maps (Sourbron

et al. 2000).
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IRF(t) = C(t) * C,(t) 13

where * denotes mathematical deconvolution.

AIF was measured as C,(t) in the main pulmonary artery and C(t) was directly measured in the
lung (tissue compartment) and not at the venous outflow, which enables a regional perfusion
assessment for every image voxel. Figure 6 shows the assessment of Ca(t) and C(t) in the tissue

and the mathematical relationship to the IRF.
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Figure 6: Measurement of the AIF in the main pulmonary artery and measurement of C(t) in
the lung parenchyma (respective ROls are marked in red). The convolution of the resulting
Ca(t) (AIF) with IRF(t) to compute C(t) is depicted in the lower part of the figure.

As the algebraic deconvolution is an ill-posed problem, the calculation of IRF requires
regularisation. Common solutions include regularisation methods for singular value

decomposition (SVD). Before SVD can be applied, the deconvolution equation were first
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converted into a discrete form, which is possible because C(t) and Ca(t) can only be measured

at n discrete time points, due to the discrete sampling of the values in time-resolved MRI.

Discretisation:
t : 14
Cc(t) = f C,(t) - IRF(t — )dt =~ - Atz Ca(t;) - IRF(tj — t;)
0 i=0
Or:
J
C(t) =~ AtZIRF(t)- Ca(tj — t;) 15
i=0
Or:
C(t) Ca(ty) 0 0 IRF(t;)
C(tz) ~ At Cq(t2) Ca(ty) - 0 IRF(ty) 16
C(tn) Caty) Caltnr) = Colty)/ \IRF(tn)

where At=time between the temporal centres of two subsequent images acquired with
DCE-MRI

The equation can be written as matrix equation, where the elements of C(t;) were represented
by b, the m>n matrix of Ca(t;) represented by A and the elements of IRF(t;) represented by x

withi=1,2, ...,n:

The matrix equation can also be considered as a linear least-squares problem where the minimal

residual is sought.
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min
1A x — bl 18

SVD was used for characterising least-squares problems and to enable the inversion of the ill-

conditioned matrix A:

A=V x2UT 19

2 = diag(oy,09,...,0,) 20

where U and V are orthogonal matrices with the left and right singular vectors of A, UT is the
transposed matrix of U, X is a diagonal matrix, ¢ are the elements of the diagonal matrix X and
the diagonal elements ¢ of X are the singular values of A.

If rank(A)=k , where k<n to ignore components of the right-hand side, X can be inverted to Z-
1 and the inverse of A (A™") can be computed to determine the minimum-norm solution to the

least-quare problem (Hansen 1987).

>t di (1 ! ! 0,...,0)
= diag(—,— ,...,—,0, ...,
01 024 Ok 21

X=vzTh 22

Without regularisation, the least-squares problem would produce meaningless results in the
presence of noise causing IRF to oscillate. Noise is characterised by small values relative to
the signal and is therefore only contained in the smallest singular values. Furthermore, the
signal behaviour of CA is systematic, which means that it follows a function that is described
by a few strong singular values. As a result, the smallest singular values are only determined

by the noise without containing information about the CA signal. Regularisation approaches

Page | 49



MATERIALS AND METHODS

set negative singular values and the smallest singular values to 0. The regularisation parameter
A determines the weight of the regularisation with which the regularised inverted matrix A;*

can then be formed.

271 = diag( % n )
& A2+ 0,277 A2 + 0,2 23
At=vEtuT o4
X, =VZ;'uTB 25

where Zj tis the regularised and inverted diagonal matrix £ and X;. is the regularised solution.
With this, the solution depends to a large extent on the values of A and the solution can be
under- or overregularised leading to incorrect values in the IRF (Ravesh et al. 2013; Sourbron

et al. 2006).

Various regularisation methods exist for the SVD process to reduce the noise sensitivity. The
most common regularisation techniques in bolus tracking MRI are the truncated SVD (tSVD)
and SVD with standard form Tikhonov regularisation (SFTR) (Hansen 1987; Ravesh et al.
2013; Sourbron et al. 2004). tSVD with a fix threshold and SFTR SVD combined with L-curve
criterion (LCC) was used for the evaluation on the influence of different noise levels to the
regularisation approaches (simulated data). For the calculation of IRF from the DCE-MRI data
in every voxel (IRF maps) tSVD with a fixed threshold of 20% was used as regularisation
method (real study data). tSVD combined with LCC was not evaluated in this work as the
combination leads to problems in the regularisation, which can be resolved by combining LCC

with SFTR (Hansen 1987; Sourbron et al. 2004).

Page | 50



MATERIALS AND METHODS

The regularisation was performed as follows:

1.

2.3.3

tSVD with fix threshold

tSVD with a fix threshold cuts off the smallest values of o, corresponding to a sharp
filter. The signal below this threshold was considered as noise (Hansen 1987,
Ostergaard et al. 1996). A threshold of 15-20% of the maximum values was determined
as sufficient in bolus tracking MRI (Ostergaard et al. 1996)

SFTR SVD with LCC

The basic principle behind SFTR is adding the 2-norm of the solution X as a quadratic

constrain multiplied with the regularisation parameter A to the least square equation:

min

. [|Ax —bl13 + 22||x||3 26

LCC utilise variable thresholds for . LCC determines the optimal A with a compromise

between ||A x; — b||, and the solution norm |[x,/|» (Hansen 1998; Sourbron et al. 2004).

Simulation: influence of noise on regularisation

First, the regularisation method used for the deconvolution of the DCE-MRI data and thus for

the IRF calculation was selected by simulating the influence of noise on different regularisation

approaches. All data were simulated with a sampling rate of 1.5s and a sampling interval of

36s, 1.e. t=[0:1.5:36]. The simulations of Ca(t) and C(t) were both based on a gamma-variate

function, since this curve delivers a good approximation of the bolus injection scheme

(Calamante et al. 2000; Starmer and Clark 1970).
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Calt) =k (t—to)% e P 27

where k is a scaling factor depending on proton density, tissue type, pulse sequence, and
contrast agent used, t is the time frame, to is the time till bolus arrival, a is the curve ascending
time and 3 is the curve descending time.

Based on the data published by Calamante et al., k was set to 50, a was set to 3.0s and B was
set to 1.5s (Calamante et al. 2000). Ca(t) was converted to a Toeplitz matrix before it was
decomposed to V X UT by SVD. For tSVD a threshold of 20% was chosen and the regularised
inverse of A was formed as described in section 2.3.2 (Eq. 24). For the inversion and
regularisation of C,(t) by SFTR SVD with LCC, the MATLAB toolbox developed by Christian
Hansen was used, which determines the optimal regularisation parameter A for Eq. 23 (Hansen

2016).

C(t) was simulated by multiplying C,(t) with the simulated IRF (Eq. 14). IRF was simulated
by multiplying PBF with an exponential function defined by the mean transit time (MTT)
(Calamante et al. 2000). Since PBF was defined in the simulation, an under- or overestimation

of PBF by the different regularisation approaches can be evaluated directly.

-t

IRF(t, MTT) = PBF - ewtT 28

t
C(t) = C,(t) - PBF - ¢ MIT 29

A PBF of 90ml/min/100ml and a MTT of 3s was chosen for the simulations. As described in
section 1.3.9, DCE-MRI data of the lungs are affected by low CNR. Therefore, a CNR range
from 2 to 20 with an increment of 2 was simulated for C(t) at maximum with 1000 runs to add

randomly generated samples of noise. The noisy C(t) (C(t)™*) was simulated by adding
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Rayleigh distributed complex noise n(t) to C(t), which results in a Rice distributed signal at
low CNRs (Gudbjartsson and Patz 1995). Complex Rayleigh distributed noise n(t) was

generated out of normally distributed numbers.

n(t) = (Vn O 1V an) =n()rear + n(t)imag 30

sl -

2

where V, are normally distributed random variables, i is the imaginary unit, o, is the standard
deviation of the noise, n(t)wal is the real part of Rayleigh distributed noise, and n(t)imag is the
imaginary part of Rayleigh distributed noise.

The generated noise was added to C(t), with C(t) containing only real parts.

C(t)nOiSy = |\/(C(t) + () rea)* + (n(t)imag)zl 31

CNR of C(t) was defined as follows:

max (C(t
1 (0) -
O-Tl

Noisy IRF (IRF™*) and noisy PBF (PBF™%) were calculated by:

IRF(t)noisy — C(t)noisy . Ca(t)Il 33

PBF™Y = max (IRF (t)™°'Y) 34

where C,(t)7" is the inverted and regularised Ca(t).

The relationship between IRF and PBF is described in section 2.3.4.
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2.3.4 Pulmonary blood flow and volume

For the quantification of PBF and PBV, the residue function R(t) must be determined from the
IRF (Ostergaard et al. 1996; Ostergaard et al. 1996). IRF was defined as the product of PBF

and R(t) (Dstergaard 2005). With this relationship, Eq. 5 can be written as:

t
C(t) = PBF - Cy(t) ® R(¢) = PBFf C.(t) - R(t — 1) dr 35

0

R(t) describes the fraction of the CA present in the tissue at time t after the CA has reached the
tissue of interest. By the definitions of the indicator dilution theory for intravascular CA, i.e.

non-diffusible CA, this results in the following relationship with the IRF:

t

R(t) =1 —f IRF(7) dt 36
0

where the integral term represents the fraction of the CA that has left the tissue. Further,
[R(t = 0) = 1] and [R() = 0] was defined, which means that all CA is present at time t =0
and R(t) is a positive decreasing function of time with all CA must leave the system (Zierler
1962). With these definitions, PBF can be defined as the initial height of the IRF (Ohno et al.
2004; Sourbron et al. 2006). However, in practice the AIF cannot be measured straight in front
of the tissue of interest for pulmonary perfusion quantification with DCE-MRI due to the
spatial resolution of the DCE-MRI data in the lungs. Therefore, the AIF (Ca(t)) was measured
in the main pulmonary artery (pulmonary trunk), which is the spatially nearest point to the lung
at which the AIF can be determined for the whole lung. This results in a delay and dispersion
of the C(t) compared to Ca(t), which in turn leads to a dispersion of R(t). Therefore, the

maximum of R(t) should be used as PBF, as the initial height would result in an underestimation

Page | 54



MATERIALS AND METHODS

of PBF (Calamante et al. 1999; Ostergaard et al. 1996). The regional amount of intravascular

CA, i.e. PBV, was defined as:

et

PBV = 2———
J, Ca(®) dt

37

Alternatively, the areas under the two CA concentration curves can be replaced with the area

under the IRF curve:

PBV = j IRF(¢t) dt = f PBF - R(t) dt 38
0 0

ml

Ca(t) and C(t) are both measured in ml and At in s. Since PBF is expressed in and

100ml -min

ml
1ooml’

PBV in by convention, PBF was multiplied by 6000 and PBV was multiplied by 100.

PBF and PBV were calculated from IRF maps and summarised for the whole lung or individual

lobes by arithmetically averaging the PBF/PBV values of the voxels.

2.3.5 Perfusion defects in percent

QDP was calculated in percent representing the extent of perfusion abnormalities relative to
the lung volume, with a theoretical range between 0% and 100%. QDP was quantified from
IRF maps at the time point of maximum contrast enhancement (IRFnax maps) to take advantage
of the mathematical models of indicator dilution theory. The mean of all values in the lungs
from the IRF maps was calculated separately for each time point and the time point with the
maximum mean value was determined as the time point of maximum contrast enhancement.

The first time point of the IRFnax maps was excluded due to the large number of artifacts
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present. The IRFmax maps were median filtered (square 5x5 neighbourhood within each slice)
to compensate for noise and remove isolated voxels while preserving edges. The strong median
filter further increases the contrast between poorly perfused and well perfused areas, which
facilitates the automatic detection of perfusion defects and decrease the influence of partial
volume effects. All voxels outside of the lungs were set to zero.

In the COSYCONET study, QDP was developed and thus calculated using different
approaches. All QDP quantification methods used in the COSYCONET study were optimised
based on the data. The best results were observed for Otsu’s method, k-means clustering and
80™ percentile-threshold. In the reproducibility study, only QDP based on Otsu’s method was
further evaluated, as it showed the best results in the COSYCONET study. All perfusion
quantification approaches were performed using the entire 3D IRFmax maps and not individual

slices.

1. Otsu’s method
Otsu's method was employed to determine two thresholds from an intensity histogram,
which contains the signal values of all voxels within the segmented lung of the
IRFmax maps and zeros in the same amount as the lung size (Otsu 1979). Two thresholds
were used to separate the lungs in three clusters, which should represent poorly perfused
lung voxels, well perfused lung voxels, and blood vessels. The identified poorly
perfused lung voxels were used to calculate QDP. Otsu’s method is sensitive to
variations in the ratio between object and background (Kittler and Illingworth 1985;
Lee et al. 1990). Therefore, the background size was adjusted to the size of the object,

i.e. the lung mask.
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2. k-means clustering
k-means clustering was applied to the entire IRFmax maps, including the zeroed
background. k-means clustering was performed to separate the voxel intensities into
three clusters, which should represent poorly perfused lung voxels, well perfused lung
voxels, and blood vessels. The identified poorly perfused lung voxels were used to

calculate QDP.

3. 80 percentile threshold
The 80" percentile of the IRFmax maps’ intensities within the lung mask was multiplied
with a factor of 0.5 to separate the lung voxels into two clusters. The threshold should
represent the boundary between well and poorly perfused lung voxels (Heimann et al.

2012). The voxels classified as poorly perfused contributed to QDP.

An overview about the calculation of QDP with the three different methods is outlined in
Figure 7. The resulting QDP maps were again median filtered (square 7x7 neighbourhood
within each slice) to compensate for calculation errors before QDP was calculated from the

maps.
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The patient’s supine position in the MRI scanner introduces a physiological perfusion gradient
from anterior to posterior created by gravity (Hueper et al. 2013). As a result, the signal
intensity increases from anterior to posterior, which can lead to an overestimation of perfusion
defects anteriorly and to an underestimation posteriorly when clustering algorithms are used.
The effect of gravity can be compensated by adapting the threshold P identified by the
clustering algorithm per slice. Heimann et al. proposed to adapt the threshold P for each slice
by adding the slope of intensity increase ¢ (linear regression) multiplied with the slice number

s (centre slice s=0) (Heimann et al. 2012).

T(s)=(P+s-c)/2 39

where T(s) is the adapted threshold for each slice.

In the COSYCONET study, no correction of the perfusion gradient from anterior to posterior
was implemented to enable better comparability of the methods. In the reproducibility study, a
correction of the perfusion gradient from anterior to posterior was implemented, by adapting
the threshold determined by Otsu’s method for the whole 3D image per slice position, as
previous published by Heimann et al. (Heimann et al. 2012). The correction coefficient ¢ was
calculated by using a first-degree polynomial fit to the course of the mean lung signal intensities

of the slices.

For the comparison per lobe between QDP and the MRI perfusion score, QDP was converted
into discrete values at lobe level to allow for a direct comparison against the MRI perfusion

score (Bauman et al. 2013; Eichinger et al. 2012) (Table 4).
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Table 4: Conversion of QDP into discrete values for the comparison with the visual MRI
perfusion score per lobe (Schiwek et al. 2021) 'Reproduced with permission from Springer
Nature'.

Discrete value MRI perfusion score QDP
0 Normal <7.5%
1 <50 % 27.5 % to <50 %
2 =250 % =250 %

The discrete values 0, 1 or 2 were assigned per lobe to achieve comparability of the visual MRI perfusion score
with QDP. The threshold of <7.5% was defined for no perfusion defects in QDP to compensate errors caused

by noise and image artifacts, as described previously (Bauman et al. 2013).

24 Automatic segmentation

The lungs were automatically segmented from the VIBE images, approximately divided into
lung lobes, and registered to DCE-MRI TWIST images, as published previously (Kohlmann et
al. 2015). Furthermore, the ROI for the AIF measurement was automatically identified and
respiratory artifacts in the region of the diaphragm, which are caused when the patient starts to
breath shallowly during the DCE-MRI acquisition, were removed via cross-correlation analysis.
All resulting segmentations and registrations were reviewed individually. In the following,
several image and curve processing techniques are used several times:
1. An image processing technique called “labelling” was used to identify, and number
connected components (groups of voxels). 2D and 3D connectivities can be defined.
For example, a connectivity of 4 in 2D means that voxels are connected if their edges
or corners touch, i.e. two voxels in one slice are part of the same group if they are
connected along the horizontal, vertical, or diagonal direction (Haralick and Shapiro
1992).
2. A technique to smoothen data was used to remove noise from data curves before the
data were analysed to find peaks and minima or maxima. A smoothing method using

weighted linear least squares local regression and a 2nd degree polynomial model with

Page | 60



MATERIALS AND METHODS

a span of 8 was used. The span in this context was defined as the number of data points
used to calculate the smoothed value.

3. An image processing technique to fill holes in segmentation masks based on
morphological reconstruction was used, where a hole was defined as pixels/voxels that
cannot be reached by filling in the background from the edge.

4. Morphological image processing techniques to erode or dilate boundaries of
segmentation masks were used on binary images using structuring element, such as a
disc for processes in 2D. Elements are eroded or dilated at their boundaries if the

structuring element fits completely at this point (Haralick and Shapiro 1992).

241 Lung segmentation

The lungs were segmented from the VIBE images by region growing algorithm including seed
point identification. The segmentation of the lungs was mainly carried out on VIBE images in
coronal orientation, except for the segmentation of the trachea, which was carried out on VIBE
images in transverse orientation. The segmentation was completely self-programmed based on
the published principles of Kohlmann et al. Several modifications were made to the approach.
For example, a watershed transformation was used to ensure a clear separation of right and left
lung, the histogram thresholds were adapted, and the trachea was only excluded until the

bifurcation (Kohlmann et al. 2015).

1. Seed point identification in each lung:
The seed points are the starting points for every region growing algorithm. The seed
points were identified in the left and right lung at the central slice. First the entire chest
was segmented by excluding all voxels with an intensity below the first peak (threshold)

of the smoothed intensity histogram of the whole 3D image. As this also excluded
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voxels within the lungs, holes within the resulting chest mask were filled. A second
histogram, which only included the intensities of the voxels from the chest in the centre
slice, was used to determine the threshold for a coarse lung segmentation in 2D in the
central slice. Only voxels with an intensity below the first peak (threshold) of the
smoothed intensity histogram were classified as lung tissue in the central slice.
Watershed transformation was used in case both lungs were connected on the central
slice. The Euclidean distance to the edges of the shape was calculated separately for
both lungs and the positions of the maximum distance were determined as positions for

the seed points in order to place the seed points in the centre of the lungs (Figure 8).

Figure 8: Representative Euclidean distance map for the right and left lung with the
VIBE image superimposed. Seed points are marked by black arrows. The colour
scale of the Euclidean mask ranges from red to light yellow, with red denoting a
small distance from the edges and light-yellow denoting a far distance from the
edges of the lungs.
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2. Exclusion of the trachea:
The trachea was segmented until the bifurcation into the two primary bronchi from
VIBE images in transverse orientation. First, the entire chest was segmented using
histogram analysis on the median image, analogous to chest segmentation for the seed
point identification (described in the paragraph above). Second, all connected structures
were labelled separately for each slice (connectivity of 2 in 2D) (Figure 9). The start
slice for the trachea label identification was determined to be the first slice in which the
lungs appear, since the trachea is clearly visible and separated from other structures in
this slice. The size of the chest mask increases rapidly when the lung begins to appear
in the slices. The start slice could thus be identified by using a polynomial curve fit (1
degree) of the sum of all voxels within a slice, to determine the slice with the greatest
slope in the curve fit. The labels in the start slice were compared with the labels in the
subsequent slices. The trachea was identified by comparing the labels in the following
slices with the labels in the start slice. The trachea does not change substantially in size
across slices, but its position changes slightly from slice to slice. Therefore, labels that
belong to the trachea were identified if the labels in the following slices overlap, the
size of the labels were not smaller than 30 nor bigger than 300 voxels points, and the
size of the label did not change by more than 40%. The segmented trachea was
transformed to the coordinate system of the coronal VIBE images after the

segmentation by linear transformation.
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Figure 9: Labelled connected structures in one slice of a VIBE image in transverse
orientation. Each label is presented in a different colour, with the trachea in light
green.

3. Region growing and separation of the lungs:
Starting with the seed points, the 3D region growing algorithm included all
neighbouring voxels of the inverted median filtered 3D image by a flood-fill operation
(connectivity of 6 in 3D). The flood-fill operation is a voxel-based method, recognising
all dark areas (here: lung parenchyma), which are surrounded by lighter areas (here:
thorax wall) (Soille 1999). The signal was higher in the chest wall due to the higher
amount of tissue (higher proton density) compared to the lung parenchyma. In case the
right and left lung were connected a watershed transformation was used to separate both
lungs. As watershed transformation tends to over-segment images, shallow minima
representing irregularities in the image and noise were removed and the number of
segmented objects of interest were defined as two: one for the right lung and one for
the left lung. Regional minima are defined as connected components of pixels/voxels.
All minima with a depth less than H, where H was defined as the maximum of the
Euclidian distance to the edges of the shape, were suppressed using a transformation
with a connectivity of 26 in 3D. From the resulting segmented lung mask (Figure 10),

the previously segmented trachea mask was then excluded, followed by a 3D
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morphological erosion applied to the segmented lung mask to avoid partial volume

effects at the lung borders (Heimann et al. 2012).

Figure 10: Representative segmented lung (red) depicted on the central slice.

An approximate division of each lung into the lobes was performed, as depicted in Figure 11.
First, the lungs were divided into twelve regions of equal volume (six per lung) (Kohlmann et
al. 2015). Second, the six regions of equal size per lung were combined to approximate the
three lobes per lung as follows: upper lobe=both upper regions, middle lobe or lingula=ventral

middle region, and lower lobe=dorsal middle region and both lower regions.
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Figure 11: Color-coded 3D visualisation of the automatic lung partitioning process. A) 12 lung
regions of equal size and B) 6 approximated lobes (Schiwek et al. 2021) 'Reproduced with
permission from Springer Nature'.

24.2 Lung registration

After the segmentation of the lungs from the morphological data the segmented lung mask
were transferred to the DCE-MRI data by image registration. As the morphological and the
DCE-MRI data are acquired in succession and during different breath holds the patient position
and the inspiratory level may have changed, which creates the need for deformable (non-rigid)
image registration. Non-rigid demon registration algorithms, based on diffusion models, were
used in this work. The registration was performed on the entire 3D data, but the time-resolution
of the DCE-MRI data was removed by calculating the mean of all time points. The registration
was considered multimodal, as the morphological data and the DCE-MRI data has substantial

differences in the T1-weighting and with this in the image contrast, (Kohlmann et al. 2015).

The MATLAB toolbox “multimodality non-rigid demon algorithm image registration”
provided by Dirk-Jan Kroon was used for the registration and modality transformation. The
demon registration was introduced by Thirion and extended by Cachier et al. and Wang et al.
(Cachier et al. 1999; Thirion 1998; Wang et al. 2005). The concept behind the demon

registration can be explained by an analogy to a thermodynamic concept (analogy to Maxwell's
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demons). The object boundaries in one image (static image J) can be seen as semi-permeable
membrane, which allows the other image (moving image I) diffuse through these interfaces.
The local “demons” apply invisible “forces” to every voxel to push the voxels of I until they
match with the static image J. For grey-scale image-based registration, the optical flow

equation can be used to estimate the demon forces

(m—s)-\?s

|l75|2 + (m —s)?

—
u =

40

where 1 is the estimated displacement, m is the intensity of the moving image, s is the intensity

of the static image, and Vs is the gradient of the static image (a measure of the relationship
between neighbouring voxels). The equation was solved iteratively by a Broyden—Fletcher—
Goldfarb—Shanno optimiser in the toolbox used (Kroon 2010; Kroon and Slump 2009;
Vercauteren et al. 2009). The method was extended by adding further demons’ forces. The
additional constraint assumes that the diffusion is bi-directional, so that the demon produces
also a force allowing J to diffuse into I (Wang et al. 2005). With this, the algorithm requires
fewer iterations until it converges. To further speed up the iterative solution of the equation,
Cachier et al. introduced a normalisation factor a, which modifies the step size depending on

the extent of deformation and the convergence state of the iterative process (Cachier et al. 1999).

The modality transformation of image I into It aligned the different tissue contrasts between
the morphological image (moving image I) and the DCE-MRI image (static image J) by using
a mutual histogram H (I, J) to determine the grey value for each voxel in image J that most

frequently overlaps with the voxel grey value in image I (Kroon and Slump 2009)
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Ir(x) = argmax;(H(|I(x)N|,[jN])) 41

where x is the voxel location.
During the transformation and registration, a scale space approach can speed up the process
and avoid local minima by, first, limiting the spatial resolution and then gradually increasing

the spatial resolution of the image (Kohlmann et al. 2015; Kroon and Slump 2009).

24.3 Main pulmonary artery segmentation

The AIF, needed for the perfusion quantification based on the indicator dilution theory, was
determined in the main pulmonary artery (pulmonary trunk) shortly before the bifurcation into
right and left pulmonary artery. The AIF was determined from C(t) maps to measure the
concentration time course Ca(t) and the ROI for the AIF was automatically determined to limit

human interaction.

The ROI for the AIF measurement was identified by several image processing steps. These
steps were developed based on the publication by Kohlmann et al., but several steps were

changed or further developed (Kohlmann et al. 2011):

1. Target area was restricted to the heart:
Since the lungs were already segmented and the heart is located between the two lungs,
a vertical cylinder centred between the lungs was defined.

2. Labelling of connected components:
A maximum intensity projection (MIP) in 3D of the target area was generated by
selecting the maximum intensity of each voxel over time. The heart and pulmonary

arteries, 1.e. the voxels of interest, have a high intensity in the MIP due to the passage
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of the CA through these structures. Therefore, all voxels with a signal intensity within
the 95" percentile of the MIP were included into further analysis. All remaining voxels
are labelled in 3D to identify the two biggest remaining labels, which can be assumed
to be the labels of the right heart together with the pulmonary artery and the label of the
left heart.
3. Identification of the right heart and main pulmonary artery:
All small labels were removed and the centroid of the signal intensity curve over time
was calculated for every voxel, resulting in a 3D centroid map. The label of the right
heart and the pulmonary artery was discerned by using Otsu’s method on the 3D
centroid map. Since the CA flows first through the right heart and pulmonary arteries,
before it passes through the lungs and then through the left heart, the centroid values in
the right and left heart are substantial different.
4. Slice and main pulmonary artery identification:
To identify the appropriate position for the ROI in the main pulmonary artery, the
remaining voxels of the right heart and pulmonary artery were labelled on each image
slice separately to identify connected structures on individual slices. The correct label
was identified using the following assumptions:
a. The label is not connected to the edge of the image.
b. The label is circular with a circularity above 0.6.
c. The labels on the adjacent slices in the same position has also a circularity above
0.6 to ensure that the algorithm stops when the main pulmonary artery split into
the right and left pulmonary artery.
The label two slices before the bifurcation was determined as AIF ROI. The identified label
was scaled down with an erode algorithm to remove possible influence of vessel walls. If the

AIF ROI detection failed, the pipeline allowed ROIs to be drawn manually.
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24.4 Respiratory motion correction

In this work, only artifacts from shallow respiratory motion were automatically compensated.
Normal to heavy breathing during the CA passage through the lungs led to exclusion of the
entire data set. Minor respiratory motion artifacts, usually occurring near the diaphragm, are
caused when patients cannot hold their breath for the whole acquisition and resume to breath
shallowly. The concentration time courses and concentration values in voxels affected by
respiratory motion was altered, as depicted in Figure 12, leading to false values in the perfusion

quantification.

Figure 12: High values in the C(t) map in the area of the diaphragm (red circle) caused by
respiratory motion.

In affected voxels, the concentration time course has a different shape compared to the AIF,
and/or the signal maximum occurs with a large delay (long lag-time) compared to the signal

maximum of the AIF. Therefore, the identification of voxels affected by shallow respiratory
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motion was performed using normalised cross-correlation (NCC) analysis, as cross-correlation

is a measure of similarity of two curves. NCC was calculated by:

Yot — %) (vi — ¥)

1
NeC = 5= —— - 4
It = 271 (£ - 7]

where N is the number of time points, x is the discrete AIF (reference function), y is the discrete
signal of every voxel within the segmented lungs (the signals of interest) and with -1 < NCC <
1 (+1 for perfect positive correlation, —1 for perfect negative correlation and 0 for no
correlation).

The method is based on the same principles as used for suppressing the pulmonary vasculature
from DCE-MRI data, but with other conditions (Risse et al. 2009). NCC was calculated for the
whole time period to evaluate curve similarity and time-shift together, as well as for each time
point to evaluate curve similarity and time-shift separately. Voxels with low NCC coefficients
and/or a late correlation maximum, were considered as corrupted by respiratory motion and
thus excluded. In addition, since respiratory motion causes calculation errors leading to
extremely high PBV values, voxels with high PBV values above 200ml/100ml in the lungs
were excluded. PBV values over 100ml/100ml are physiologically not possible as they would
represent a volume containing more than 100% blood. However, taking into account the given
data quality of the DCE-MRI data, the PBV threshold was set to 200ml/100ml to introduce a
tolerance and prevent misclassification. After the exclusion of voxels, holes within the lung
segmentation mask were closed automatically using morphological reconstruction (Soille
1999). As a result, only voxels affected by respiratory motion at the border of the segmentation

mask were removed, which includes the diaphragm area as depicted in Figure 12.

Page | 71



MATERIALS AND METHODS

2.5 Visual MRI assessment

All MRI examinations were assessed by experienced board-certified readers (one reader per
study) using a previously validated chest MRI score (Eichinger et al. 2012; Bertram J. Jobst et
al. 2015; Stahl et al. 2017; Wielpiitz et al. 2018). From this morpho-functional scoring system,
the MRI perfusion score was used, which scored the extent of perfusion abnormalities for each
lobe as 0 (no abnormality), 1 (<50% of the lobe involved), or 2 (>50% of the lobe involved).
The scores per lobe can be summed up for the whole lung, resulting in a maximum range
between zero and twelve. The scoring of perfusion abnormalities was performed using post-
processed DCE-MRI datasets. For this purpose, the baseline timepoint without contrast was
subtracted from the timepoint with maximal contrast enhancement in the lung parenchyma,
resulting in a single 3D image dataset displaying the maximum parenchymal contrast
enhancement. In the reproducibility study, the images from both visits were compared side-by-

side to identify changes.

2.6 Quantitative CT

In the COSYCONET study, all subjects underwent standardised phantom-controlled
(Catphan600) same-day non-enhanced low-dose CT (Somatom 64, Siemens Healthineers,
Forchheim, Germany) with two paired scans in inspiratory and expiratory breath-hold at 120kV
and 35mAs. CT data were reconstructed at 1.0mm slice thickness with 0.5mm interval using a
soft filtered back-projection convolution kernel (B30f). CT data were post-processed,
segmented and analysed using the in-house software YACTA (version 2.8.7) (Konietzke et al.
2020) for parametric response mapping (PRM) (Galban et al. 2012). In detail, PRM classified
the lung in normal PRMnomal, emphysematous PRMEgmph, or functional small airways disease
PRMssap (Galban et al. 2012). PRM was calculated in percent relative to the lung volume.

PRM abnormat Wwas computed to describe the proportion of non-normal lung tissue as:
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PRMypnormar = PRMEmph + PRMfSAD 43

2.7 Pulmonary function testing

In both studies, PFT (MasterScreen Body, E. Jaeger, Hoechberg, Germany) was performed
according to the American Thoracic Society and European Respiratory Society
recommendations (Graham et al. 2019). In the COSYCONET study, FEV1/FVC (Tiffeneau-
Pinelli index), which is also used to diagnose COPD, and FEV1% predicted were used as PFT
parameters. In the reproducibility study, FEV1% predicted was used from PFT as patients with
COPD and CF were included in this study. In accordance to the guidelines, PFT was conducted
with the subject in a seated position and the best of three efforts were used (with a maximum
of eight attempts), which was defined as the highest FEV1 and the highest FVC each obtained
on any of the three blows. In both studies, the post-bronchodilator PFT values are given for
COPD patients. For CF patients, only pre-bronchodilator PFT values are available as per

standard of care.

2.8 Statistical analyses

Statistical analyses were performed using R (R 3.3.2 Foundation for Statistical Computing).
Data are presented as mean = SD. Bland-Altman analysis (including Limits of Agreement
(LoA)), linear regression, Spearman correlation, Cohen's kappa, percentage agreement,
Wilcoxon signed-rank test, Pearson and Filon's z, minimal important difference (MID) based
on standard error of measurement from repeated measures analysis of variance (rANOVA),
and scatterplots were used. A p-value<0.05 was considered statistically significant. The
correlation coefficients were rated as suggested by Karlik for radiological features: 0.0-0.2 as
very weak, 0.2-0.4 as weak, 0.4-0.7 as moderate, 0.7-0.9 as strong, and 0.9-1.0 as very strong

(Karlik 2003).The Kruskal-Wallis test was used for comparison between CF and COPD groups.
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Wilcoxon signed-rank test were used for intra-group comparisons. Due to different ranges of
values the LoA were related to the observed median and correlation analyses were performed.
Correlation coefficients were compared statistically with the R-package “cocur” (Diedenhofen
and Musch 2015) and the p-values from Pearson and Filon's z were used (Pearson and Filon
1898). The correlation coefficient comparison was performed using a one-tailed test (higher or
lower comparison). The absolute values of the correlation coefficients were used to not take

the influence of different algebraic signs of the correlations into consideration.
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3 RESULTS

3.1 Simulation: influence of noise on regularisation

The influence of noise on regularisation approaches were simulated by analysing the resulting
PBF values (start parameters were: PBF=90ml/min/100ml, MTT=3s, and CNR between 2 and
20). On the one hand, PBF was stronger underestimated by tSVD with fixed threshold at higher
CNR (e.g. 20) compared to SFTR SVD with LCC as shown in Figure 13. On the other hand,
the variability of PBF at higher CNR was smaller for tSVD with fixed threshold compared to
SFTR SVD with LLC. Furthermore, PBF values were skewed towards lower values with lower
CNRs for SFTR SVD with LCC. For tSVD with fixed threshold, the variability in the frequency

of observed PBF values increased at lower CNR.

tSVD with fixed threshold SFTR SVD with LCC

g8

Frequency

&

240 210 180 150 120 90 60 30 0 240 210 180 150 120 20 60 30 0 B
PBF PBF
ml/100ml/min ml/100mi/min

Figure 13: Surface plot visualising the influence of noise on PBF depending for tSVD with a
fix threshold of 20% and SFTR SVD with LCC. Frequency is colour coded ascending from
blue to yellow.
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3.2 COSYCONET study

Figure 14 depicts representative DCE-MRI and CT images of a 51-year-old female patient
from the COSYCONET study with COPD GOLD2 with FEV1%=53.26%, FEV1/FVC=0.53,
and an MRI perfusion score of 10 with corresponding color-coded QDP, PBF, PBV and

PRM maps.
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Figure 14: Coronal IRFmax map, corresponding QDP map (defects highlighted in blue),
PBF map and PBV map from a representative COPD patient from the COSYCONET study.
Coronal CT images and PRM maps of the same COPD patient is given in the bottom row.
PRM classification of normal lung tissue in green (28.23%), fSAD in yellow (34.96%), and
emphysema in (36.13%) (Schiwek et al. 2021) 'Reproduced with permission from Springer
Nature'.
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In the COSYCONET data set, the DCE-MRI series were refined manually in 41 out of 83
(50.6%) subjects by removing time points with minor respiratory artifacts before or after the
CA bolus passage through the lungs in this study. Lung segmentation masks were generated
automatically in all 83 (100%) cases. CT PRM data were available for 76 patients. Mean QDP
for the whole lung was 54.6+17.8% for Otsu’s method, 52.7+17.7% for k-means clustering,
and 51.749.3% for the 80th percentile method. The corresponding mean PBF was

50.6+24.8ml/100ml/min and the mean PBV was 3.8+1.7ml/100ml (Table 5).

Table 5: Quantitative imaging results of the COSYCONET study (Schiwek et al. 2021)
'Reproduced with permission from Springer Nature'.

At risk for Former
Total GOLD1 GOLD2 GOLD3 GOLD4
COPD GOLD 0

Visual score
MRI perfusion score 9.1+29 84+23 73+30 72+25 92+31 95+27 11.2+17

QDP
Otsu’s method 546+ 17.842.0+15.039.0 + 10.332.4 +23.557.3+16.260.4 + 14.465.5 £ 16.8
K-means clustering 52.7 + 17.7 40.0 £ 14.7 36.7 £+ 11.4 30.7 £ 21.7 55.2 + 15.6 58.5 + 14.264.6 + 17.2
80" percentile 51.7+93 449+9.1 43774 389+17.2 527+76 553+7.1 57.7+53
PBF/PBV
PBF (ml/100ml/min) 50.6 + 24.8 63.9 + 27.165.9 + 26.166.9 £+ 23.444.5+21.348.5+27.042.8 + 18.9
PBV (ml/100ml) 38+x17 46+17 52+17 55+x32 35+12 3517 3.0x13
CT PRM
PRMnormal (%) 514214 80.1+9.6 77.1+£21.463.2+12551.2+17.040.2+11.0 27.0+7.3
PRMemph (%) 13.7+11.7 50+46 51+84 59+64 122+103164+10.1 31.0+7.8
PRMrsap (%) 344 +13.7 146 +5.6 17.3+13.5 30.1+6.2 35.8+10.8 429+9.1 41.6+6.5

PRMabnormal (%) 48.6+21.4 199+£9.6 229+21.436.8+12.548.8+17.059.8+11.0 73.0+7.3

Data presented as mean = SD
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3.2.1 Association with MRI perfusion score

QDP calculated with both Otsu’s method or k-means clustering correlated strongly with the
semi-quantitative MRI perfusion score for the whole lung (r=0.72 and r=0.71, p<0.001,
respectively). QDP calculated with 80" percentile threshold as well as PBF and PBV correlated
moderately with the MRI perfusion score for the whole lung (1=0.67, r=-0.49 and r=-0.54,
p<0.001, respectively) (Figure 15, Table 6). QDP correlated significantly higher (Pearson and

Filon's z) with the MRI perfusion score than PBF and PBV.

QDP calculated based on Otsu’s method showed a range of values between 5.09 and 95.89%,
based on k-means clustering between 4.91 and 95.23%, and based on the 80" percentile method
between 15.17 and 68.82%, the latter being a compression of the observed value range
compared to the other QDP quantification methods (Figure 15). Thus, the value range of QDP
for the whole lung using Otsu’s method and k-means clustering covered approximately 90%
of the maximum theoretical range from 0-100%, but a smaller value range was observed for
the 80th-percentile method with a range of approximately 53%. PBF showed a range of values

between 7.30 and 147.03ml/min/100ml and PBV between 1.37 and 9.96m1/100ml.
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Figure 15: Scatterplots visualising the relationship between QDP, PBF, PBV and MRI
perfusion score in the COSYCONET study. Linear regression lines are shown as bold lines,
minimum and maximum observed values as dashed lines. Correlation coefficients and
corresponding p-values are given in each panel (Schiwek et al. 2021) 'Reproduced with

permission from Springer Nature'.
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Table 6: Comparison of quantitative DCE-MRI perfusion parameters with the MRI perfusion
score in the COSYCONET study (Schiwek et al. 2021) 'Reproduced with permission from
Springer Nature'.

QDP PBF PBV

Otsu's __ K-means (m1/100ml/min) (m1/100ml)
80t" percentile

method clustering

MRI perfusion score

whole lung
r 0.72%** 0.71** 0.67** -0.49** -0.54***
[95% Cl| 0.54,0.78 0.55,0.78 0.48,0.75 0.27, 0.61 0.31, 0.64
Mean diff -2.31+213 -250+2.13 -0.13+2.