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Abstract

In recent years the parallel progress in high-throughput microscopy and deep learning dras-
tically widened the landscape of possible research avenues in life sciences. In particular,
combining high-resolution microscopic images and automated imaging pipelines powered
by deep learning dramatically reduced the manual annotation work required for quantitative
analysis. In this work, we will present two deep learning frameworks tailored to the needs
of life scientists in the context of plant biology.

First, we will introduce PlantSeg, a software for 2D and 3D instance segmentation. The
PlantSeg pipeline contains several pre-trained models for different microscopy modalities
and multiple popular graph-based instance segmentation algorithms.

In the second part, we will present CellTypeGraph, a benchmark for quantitatively eval-
uating graph neural networks. The benchmark is designed to test the ability of machine
learning methods to classify the types of cells in an Arabidopsis thaliana ovules. CellType-
Graph’s prime aim is to give a valuable tool to the geometric learning community, but at the
same time it also offers a framework for plant biologists to perform fast and accurate cell
type inference on new data.
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Zusammenfassung

In den letzten Jahren haben die parallelen Fortschritte in der Hochdurchsatzmikroskopie
und im Deep Learning die Landschaft der möglichen Forschungsrichtungen in den Biowis-
senschaften drastisch erweitert.

Insbesondere die Kombination von hochauflösenden mikroskopischen Bildern und au-
tomatisierten Bildgebungspipelines, die durch Deep Learning unterstützt werden, hat die
manuelle Annotationsarbeit, die für die quantitative Analyse erforderlich ist, drastisch re-
duziert. In dieser Arbeit werden wir zwei Deep-Learning-Frameworks vorstellen, die auf
die Bedürfnisse von Biowissenschaftlern im Kontext der Pflanzenbiologie zugeschnitten
sind.

Zunächst stellen wir PlantSeg vor, eine Software für die Segmentierung von 2D- und 3D-
Instanzen. Die PlantSeg-Pipeline enthält mehrere vortrainierte Modelle für verschiedene
Mikroskopie-Modalitäten und mehrere populäre graphbasierte Algorithmen zur Instanzseg-
mentierung.

Im zweiten Teil stellen wir CellTypeGraph vor, einen Benchmark-Datensatz zur quan-
titativen Bewertung von graphischen neuronalen Netzen. Der Datensatz wurde entwickelt,
um die Güte von Methoden des maschinellen Lernens zu testen, die Zelltypen in den Same-
nanlagen von Arabidopsis thaliana klassifizieren. Das Hauptziel von CellTypeGraph ist
es, der Gemeinschaft des geometrischen Lernens ein wertvolles Werkzeug an die Hand zu
geben, gleichzeitig bietet es aber auch einen Rahmen für Pflanzenbiologen zur schnellen
und genauen Bestimmung von Zelltypen in neuer Datensätzen.
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Chapter 1

Introduction

1.1 Background

In just a few years, machine learning has progressed from a niche tool, relegated to a handful
of applications, to an unavoidable instrument deeply embedded in countless modern tech-
nologies, industries, and academic research.

This exponential growth is, on the one hand, due to technological advancements. Hard-
ware progress has made massive parallelism readily accessible, first with Graphic Process-
ing Units (GPUs) [1,2] and later with dedicated Ai accelerators like Google Tensor Process-
ing Units (TPUs) [3]. In parallel, the massive availability of data allowed for the assembly
of larger and more diverse datasets. In the span of two decades, we progressed from: the 70
thousand handwritten digits of the MNIST [4] dataset in 1998 to the 1.3 million images in
2012 for the ImageNet [5] classifications challenge for us to arrive at 3 billion images in [6]
and other similarly sized datasets [7–9] used today to train staggering computer vision mod-
els [6, 9, 10].

On the other hand, the modern renaissance of machine learning is synonymous with
the rise of Artificial Neural Networks (ANNs). While the concept has been known since
1958 [11], in recent years, we have pushed further and further the capability of ANNs. This
advancement is the result of a frantic research effort to improve training techniques [12–14],
find new computational tricks [15–18], and introduce deeper and more effective architec-
tures [19–22].

Computer vision has been one of the first fields to profit from these machine learning
advancements. In particular, Convolutional Neural Networks (CNNs) have revolutionized
this field by outclassing any other machine learning model in several applications such as
image classification [4,19,23], semantic segmentation [24–26], and video tracking [27,28].
Only in recent years, transformer based [22] architectures such as [23] are challenging this
supremacy.

1



2 Image segmentation

Raw Image

Semantic Segmentation

A C

DB

Instance Segmentation

Figure 1.1. Segmentation tasks samples in a light sheet microscopy. In (A) and (B), one
can see two examples of semantic segmentation, where the task is to classify each pixel into
one of three different semantic classes: cell boundary, nucleus, and background. In (C) and
(D), one can see two examples of instance segmentation, where the task is to assign a unique
identifier to each categorical object in the scene, such as cells in (C) and nuclei in (D).

Today, the cumulative outcomes of all those innovations fall under the umbrella term of
Deep Learning. The unreasonable effectiveness of this sub-field of machine learning has
periodically shocked the scientific community and the general public with massive leaps in
a wide spectrum of fields. From the superhuman performance in the game of Go [29], which
recently lead to a breakthrough in protein folding [30] and matrix multiplication algorithms
[31], and to the improvement in text and image generation [32–34] that are becoming less
and less distinguishable from the creative works of humans minds.

1.2 Image segmentation

The term “image segmentation” is sometimes improperly used to describe the task of clas-
sifying pixels in a digital image and the task of grouping pixels in a digital image indiscrim-
inately. These two tasks, although similar on the surface, are profoundly different. In this
section, we will characterize their differences and cover the current state of research on this
topic.

1.2.1 Semantic segmentation

We define semantic segmentation as the task of assigning each pixel in a digital image to a
categorical class. An example from life sciences is distinguishing which pixels belongs to
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the cell boundaries, which to the nuclei, and which to the background, Fig. 1.1 (A-B).
Early neural network approaches to semantic segmentation focused on generating dense

pixel predictions by sliding a classification CNN over the image [35]. While these ap-
proaches were accurate, they were also computationally and memory inefficient. The intro-
duction of fully convolutional networks [36] addressed these issues, and this style of neural
networks has become the most prominent class of architecture for semantic segmentation.

A fully convolutional network generally consists of two parts: an encoder and a de-
coder. The encoder takes the source image as input and processes it by using a series of
convolutional blocks and spatial pooling layers. Each block spatially condenses the low-
level semantic information present in the image such as textures, boundaries, shapes etc.
The decoder, instead, reverses this process and is tasked to upsample the encoder’s output
back to the original image resolution. A linear classifier usually maps the decoder’s output
to class probabilities.

Since its introduction, the most successful encoder-decoder style in life sciences appli-
cations has been the U-Net [24]. The U-Net distinguishes itself from other architectures
by using skip-connections, that connect the hidden states at different resolution between
the encoder and the decoder. See Fig. 1.2 for a characterization of the U-Net salient archi-
tectural components. Since its inception, several works have been built upon its original
concept [37–40]. Moreover, similar encoder-decoder CNNs also found wide popularity in
natural image and self-driving benchmarks [25, 41].

In chapter 2, we will see a practical application of the U-Net as a boundary predictor for
plant tissue applications.

1.2.2 Instance segmentation

Instance segmentation is defined as the task of discriminating and segmenting each object
(or instance in this context) in a digital image. An example of instance segmentation is
shown in Fig. 1.1 (C-D), where each cell and nucleus is segmented with a unique identifier.

Instance segmentation is a fundamentally more challenging task compared to semantic
segmentation. In particular, it presents two additional major obstacles: any permutation
of the assignments is an equally optimal solution, and the number of instances present is
not known a priori. Therefore, unlike semantic segmentation where one can use an end-
to-end deep learning approach (as shown in subsection 1.2.1), for Instance segmentation
a more complex pipeline is required. In recent years, we can distinguish three prominent
approaches to this task.

Object detection: Object detection pipelines can be decomposed in two main steps: iden-
tify a region of interest for each object, usually a bounding box, and then complete the in-



4 Image segmentation

1x1 conv. (linear classifier)

Skip connection:
- sum
- concatenation

Up-sampling:
- interpolation
- transpose conv.

Down-sampling: 
- max pool
- strided conv.

Input - output

Conv. block: combination of: 
convs.,  non-lin. , norm. layers, 
res. connection.

Encoder Decoder

Figure 1.2. During the years since its introduction in [24], the implementation details of the
U-Net style architecture have varied following the progress of deep learning research. Here
is shown a diagram of a generic U-Net style architecture.

stance segmentation by computing a background-foreground mask for each detected object.
This approach is the most common one for natural image applications. Among the most
prolific neural network architectures belonging to this group of approaches, we can find
region-based convolutional network (R-CNN) [42–44], and YOLO based models [45, 46].

For cell instance segmentation, a popular model is StartDist [47,48]. In StarDist, instead
of predicting an axis-aligned bounding box for every pixel like in YOLO, we predict a star
convex polygon that circumscribes the cell at that location. This approach is particularly
well suited for convex cells of a regular shape. Moreover, using a polygon instead of a
squared bounding box negates the need to compute a background-foreground mask, further
simplifying the pipeline.

All the approaches above predict multiple detections for each instance and then refine
the selection using non-maximum suppression. More recently, DETR [49], which is a
transformers-based method, is emerging as an alternative joint detection and segmentation
model. In DETR, the model learns implicitly to detect each instance once, thus avoiding
non-maximum suppression and other computationally expensive heuristics.

Pixel embedding: The core idea is to produce a feature vector for each pixel, such that this
vector embeds some relevant information for the segmentation task. A popular paradigm
to produce such embedding is contrastive learning [50–52]. Where a deep learning model
is trained with two goals, maximize the embedding similarity for pixels belonging to the
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same instance and, at the same time, push apart embedding of pixels belonging to different
instances. One can find several successful applications of contrastive learning to instance
segmentation in the literature [53–56].

Another paradigm to train pixel embeddings is to regress to a handcrafted target embed-
ding. A very successful instance segmentation pipeline is Cellpose [57], which is based on
this approach. In Cellpose, the goal is to predict a diffusion flow direction to the center of
the instance for each pixel. At inference time, a reverse-diffusion model is used to cluster
pixels. Cellpose has a less strict shape prior compared to other models like StarDist. Thus
it can work better on highly irregular and jagged cells.

Graph clustering: Modeling an image as a regular square lattice graph has been an essen-
tial fruitful paradigm in computer vision.

In Instance Segmentation, one can model each pixel in an image as a node in a square
lattice and every two adjacent pixels as an edge. Moreover, one can describe the confidence
that two pixels belong to the same instance by a scalar weight associated with each edge.

In this setup, the instance segmentation task is reduced to finding a robust and accu-
rate estimator for our edge weights (usually a neural network [35, 58]) and finding a graph
clustering algorithm robust to the inevitable flaws of the predicted weights. Which graph
clustering algorithm should be selected depends on the quality of the predicted edge weights.
If the weights are accurate, simpler clustering heuristics like hierarchical clustering [59,60]
or the Mutex Watershed [61,62] can be used. In contrast, more complex clustering methods
such asMultiCut [63–65] can be more robust to gaps in the detected boundaries. Solving the
MultiCut problem is NP-hard [66], thus infeasible for evenmoderately small images. A com-
mon solution to mitigate this issue is to reduce the graph size by pre-computing superpixels
(usually an over-segmentation of the image performed by Watershed-based pipeline [67])
and to solve the MultiCut problem approximately [68, 69].

This paradigm is particularly well suited for densely packed instance segmentation. The
most prominent examples are the densely packed cells in some biological tissue, such as
brain tissues or cells in plant tissues.

1.3 Geometric deep learning

So far, we have predominantly discussed computer vision applications of deep learning
where the input domain is generally represented as a regular two- or three-dimensional ten-
sor.

However, deep learning applies to a wider variety of applications and data domains such
as graphs, sets, point clouds, and meshes. Geometric deep learning [70] proposes a common
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framework to unify the independent development of machine learning in these domains and
systematically derive the most popular neural network building blocks from first principles.

In this section, we will use the lens of geometric deep learning to introduce graph neural
networks.

1.3.1 Invariance and equivariance

It is hard to overstate how robust and versatile human vision is. For example, if we are
tasked to classify the subject of an image, we would all agree that shifting the image some
pixels to the left or the right will not affect our ability to solve the task. Similarly, our vision
is robust against many other transformations like reasonably changing the image resolution,
flipping it horizontally, or slightly distorting it. These inductive biases are so intuitive to us
but, at the same time, extremely hard to transfer to the digital world. In deep learning, this
problem can be divided into two steps, finding the most fitting domain to represent our data
and finding a suitable model that conforms to our inductive biases.

Before proceeding further, it is necessary to formalize our intuitive understanding of
what it means to be robust to certain transformations of the input data. Let us define a
function f as f : Ω → Ω′, where Ω and Ω′ are the domains of our model input/output, and
let us also consider a group of transformations G whose elements g ∈ G are also functions
in g : Ω→ Ω.

We define f to be invariant with respect to the grout of transforms G if

f(g(x)) = f(x) ∀g ∈ G. (1.1)

In other words, we define invariance as the property of a function to remain unchanged
under the action of a certain group of transforms on its input . For example, if we chose f
as the euclidean distance between a point in R2 and the origin, we can see that f is invariant
with respect to the rotation group SO(2).

Similarly, we define f to be equivariant with respect to a group of transforms G if

f(g(x)) = g(f(x)) ∀g ∈ G. (1.2)

For example, if f is a function that multiplies a point in R2 by a scalar, then f is equivariant
with respect to the rotation group SO(2).

For completeness of notation, equivariance is a special case of a more general property,
covariance, where the elements of the transformation group act predictably on the input and
output of a function, but not necessarily in the same way. More formally:

f(g(x)) = g′(f(x)) (1.3)

where g and g′ are two different actions of the same element of G.
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1.3.2 From image to graph data

In deep learning, inductive biases such as invariance and equivariance are crucial for a
model’s success. Let us, for instance, consider the task of image segmentation. In this
task, the prediction of our model should be equivariant with respect to translation. There-
fore, knowing that convolutions are shift equivariant [4,71], it should not be surprising that
CNNs are so successful in this task.

In recent years, several works have shown promising results in incorporating more and
more inductive biases in their architecture [72–75]. Although the results are encouraging,
particularly in parameter efficiency, those architectures have yet to become mainstream
for computer vision applications. This slow adoption is partially due to other heuristic ap-
proaches often times being a practical and effective way to introduce inductive biases into
a model without increasing the complexity of the architecture.

Simple strategies like data augmentation have shown to be very effective, particularly
in image data. But, “learning” inductive biases from data requires paying a higher cost for
the model size. Indeed, we need a significantly increase in number of parameters to include
more and more inductive biases.

However, these heuristics are not feasible for all data domains. For example, in a graph,
it is not possible to impose any intrinsic ordering of the nodes, regardless of the chosen
representation. All permutations of the nodes are homeomorphic to each other. Therefore,
in a graph G(N,E) (where N is a set of nodes and E a set of edges between the nodes),
there can be |N |! equivalent permutations. The factorial growth of this problem makes it
untractable even for a neural network with many parameters. Thus, for data domains like
graphs, imposing strict geometric priors is necessary.

1.3.3 Graph neural networks

Graph neural networks (GNNs) are machine learningmodels that operate on graphs. Typical
applications of these models vary from predicting molecular properties from the molecular
graph [76–79], to various transductive tasks like label propagation in social network graphs
or classifications in citation graphs [80–82]. For all the tasks mentioned above, the input
data is represented as a graph G(N,E) in which every node is associated with a feature
vector x. The core assumption is that the graph structure itself stores essential information
for solving the task. Thus, each GNN layer must extract not only information from the
features but also from the graph structure itself.

Following the success of CNNs on image data, there have been several attempts to gen-
eralize convolutional layers for graph structures, either by using the graph laplacian spec-
trum [83–85] or spatial convolutions [86–88].
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As shown in [89], the formalism of message passing can describe most of the proposed
GNN layers. The message passing for GNNs can be formally written as:

xk
i = α(k−1)

(
x
(k−1)
i ,Λ

(k−1)
j∈N (i)β

(k−1)
(
x
(k−1)
i , x

(k−1)
j

))
(1.4)

where xk
i represents the feature vector of the node i at the layer k, β represents the message

and can be any differentiable function, Λ can be any permutation invariant aggregation func-
tion over the neighbourhoodN (i), and α can be any differentiable features update function.

As an example, the Graph Convolutional Network (GCN) [83] has been one of the most
successful GNN architectures. A GCN layer is defined as

xk
i = Relu

 ∑
j∈N (i)

W · x(k−1)
j√

deg(i) · deg(j)
+ b

 (1.5)

where the message function is a linear transformation W of the source node features xj

(symmetrically normalized by the square root of the degrees deg(i)·deg(j)), the aggregation
function is simply the sum operation, and the update function adds a learned bias b and
applies the Relu non-linearity.

Inspired by the success of the GCN, several variations of graph convolutions layer have
been proposed [86, 87, 90–95]. However, compared to other deep learning domains, GNN
architecture search is still a very active research field. This is because current GNNs per-
formance is hindered by a series of theoretical and experimental issues like over-smoothing
[96–98], the bottleneck effect [99, 100], and more [101–103].

1.4 Deep learning applications for plant biology

Microscopy has played a foundational role in biology. Since the pioneering works of An-
tonie van Leeuwenhoek in the 18th century, the evolution of microscopy has been closely
related to the scientific progress of biology. Today state-of-the-art light-sheet and confocal
microscopes are engineering marvels that allow researchers to acquire terabytes of volumet-
ric images of larger and larger plant and animal tissues.

Among many other areas of research, this microscopy progress immensely contributes
to the study of plant morphogenesis [104–107] where biologists are interested in unveiling
the underlying mechanism of how plant tissues and organs form.

However, this massive stream of raw imaging data requires complex processing before
being analyzed and used for quantitative research. In this work, we will show how deep
learning impacted two of these processing steps: cell instance segmentation and cell type
classification.
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1.4.1 Cell instance segmentation in plant tissues

Fluorescence light microscopy is widely used for the imaging of plant tissues. In this type
of microscopy, the tissue undergoes a staining process, which targets specific locations (for
example, cell membranes or nuclei) or specific molecules.

In chapter 2, we will introduce PlantSeg, a software framework developed to perform
instance segmentation from cell membrane staining images. The tools follow the paradigm
introduced in subsection 1.2.2 of the instance segmentation as graph clustering. The pipeline
comprises two steps: a U-Net [24] boundaries classifier and multiple popular graph-based
image clustering algorithms.

PlantSeg comes with several pre-trained models. These have been trained on datasets
from different modalities (light-sheet and confocal) and at different voxels resolutions. Fi-
nally, in subsection 2.2.2, we will show the effectiveness of the PlantSeg models on a wide
variety of external biological benchmarks.

1.4.2 Semantic segmentation as graph labeling

Cell type classification is a widely used analysis tool in several biological research areas.
Cells can be grouped into different types depending on their properties. Cells of the same
type can share a number of characteristics which are either morphological, positional, func-
tional, and/or phenotypical.

In the context of plant morphogenesis, researchers are interested in the automatic classi-
fication of tissues for plant organs. This task, on the surface, is a straightforward semantic
segmentation problem. But, approaching the problem from this perspective is extremely
challenging, see Fig. 1.3.

In chapter 3, we will show howwe tackled the problem from an alternative point of view.
We mapped the semantic segmentation task to a geo-referenced graph labeling task. Every
node in the graph represents a cell, and every neighboring cell is connected with an edge.
Moreover, out of this task, we built an open benchmark for the geometric deep learning
community and evaluated the performance of several state-of-the-art GNNs models on it.
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Raw Input

Ground Truth UNet Semantic Seg.

Segmentation Cell Adj. Graph

GNN Node Class.

D E F

A B C

Figure 1.3. Celltype graph benchmark overview. In the top row, we can see a raw image of
an Arabidopsis thaliana ovule (A), a cell instance segmentation for this organ is performed
using PlantSeg (B), and lastly, we compute the cell adjacency graph from the segmentation
(C). In the bottom row, one can see qualitatively how a U-Net model (E) struggles to predict
certain cell types annotations from an expert biologist (D). Meanwhile, the GNN model (F)
is able to learn the layering structure of the biological cell type.
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1.5 List of publications

This thesis is based on the following publications:

• Accurate and versatile 3D segmentation of plant tissues at cellular resolution. Adrian
Wolny1, Lorenzo Cerrone 1, Athul Vijayan, Rachele Tofanelli, Amaya Vilches Barro,
Marion Louveaux, ChristianWenzl, Sören Strauss, DavidWilson-Sánchez, Rena Lym-
bouridou, Susanne S. Steigleder, Constantin Pape, Alberto Bailoni, SalvaDuran-Nebreda,
GeorgeW.Bassel, JanU. Lohmann,Miltos Tsiantis, FredA.Hamprecht, Kay Schneitz,
Alexis Maizel, Anna Kreshuk (2020). Elife [108].

• CellTypeGraph: A New Geometric Computer Vision Benchmark. Lorenzo Cerrone,
Athul Vijayan, Tejasvinee Mody, Kay Schneitz, Fred A. Hamprecht (2022). Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition [109].

Complete list of publications to which the author contributed:

• End-to-end learned random walker for seeded image segmentation. Lorenzo Cerrone,
Alexander Zeilmann, Fred A. Hamprecht (2019). Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition [110].

• A digital 3D reference atlas reveals cellular growth patterns shaping the Arabidopsis
ovule. Athul Vijayan, Rachele Tofanelli, Sören Strauss, Lorenzo Cerrone, Adrian
Wolny, Joanna Strohmeier, Anna Kreshuk, Fred A. Hamprecht, Richard S. Smith,
Kay Schneitz (2021), Elife [111].

• Microscopy-based assay for semi-quantitative detection of SARS-CoV-2 specific an-
tibodies in human sera. Constantin Pape, Roman Remme, Adrian Wolny, Sylvia Ol-
berg, Steffen Wolf, Lorenzo Cerrone, Mirko Cortese, Severina Klaus, Bojana Lucic,
Stephanie Ullrich, Maria Anders-Össwein, Stefanie Wolf, Berati Cerikan, Christo-
pher J. Neufeldt, Markus Ganter, Paul Schnitzler, Uta Merle, Marina Lusic, Steeve
Boulant, Megan Stanifer, Ralf Bartenschlager, Fred A. Hamprecht, Anna Kreshuk,
Christian Tischer, Hans-Georg Kräusslich, Barbara Mueller, Vibor Laketa (2021).
Bioessays [112].

• Integration of Cell Growth and Asymmetric Division during Lateral Root Initiation
in Arabidopsis thaliana. Lilli Marie Schütz, Marion Louveaux, Amaya Vilches Barro,
Sami Bouziri, Lorenzo Cerrone, Adrian Wolny, Anna Kreshuk, Fred A. Hamprecht,
Alexis Maizel (2021). Plant and Cell Physiology [113].

1Equal contribution.
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1.5.1 Detailed list of contributions

This section will provide a detailed account of the author’s original contributions.
Chapter 2 is derived from the publication Accurate and versatile 3D segmentation of

plant tissues at cellular resolution [108]. I contributed equally with AdrianWolny to the con-
ceptualization, writing, computational experiments, and the analysis of the results described
in [108]. I am responsible for the data curation, CNN training, and segmentation benchmark-
ing of the Arabidopsis thaliana ovules dataset and responsible for the experiments described
in section subsection 2.2.2. AdrianWolny is responsible for the data curation, CNN training,
and segmentation benchmarking of the Arabidopsis thaliana lateral root primordia dataset
and responsible for the experiments described in subsection 2.2.3 and subsection 2.2.4.

The main contribution of chapter 2 is the software PlantSeg. Me and Adrian Wolny
jointly implemented and designed the core workflow handler, the evaluation code, and the
project packaging and deployment. Moreover, both authors have provided improvements,
new features, and bug fixes across the entire code base. I am the main contributor to the
segmentation workflows (DT-Watershed, GASP, MutexWS, MultiCut), data pre-processing
and post-processing, command line interface, graphical user interface, automated and man-
ual segmentation proofreading tools, integration with the Napari viewer, and the dynamic
headless workflows. Adrian Wolny mainly contributed to the CNN implementation, train-
ing infrastructure, automated testing, and Lifted MultiCut workflow. For a more atom-
ized breakdown of the contributions, the project’s GitHub page (https://github.com/
hci-unihd/plant-seg) contains a line-by-line history of edits.

Chapter 3 is derived from the publication CellTypeGraph: A New Geometric Computer
Vision Benchmark [109]. My contributions lie in conceptualizing the project and methodol-
ogy, dataset curation, developing all software (the benchmark, training, validation, evalua-
tion, and additional experiments), formal analysis of the results, generating figures, writing,
and supervising the co-authors in the ground truth label creation.

https://github.com/hci-unihd/plant-seg
https://github.com/hci-unihd/plant-seg


Chapter 2

PlantSeg: a tool for cell instance
segmentation

Quantitative analysis of plant and animal morphogenesis requires accurate segmentation of
individual cells in volumetric images of growing organs. In the last years, deep learning has
provided robust automated algorithms that approach human performance, with applications
to bio-image analysis now starting to emerge. Here, we present PlantSeg, a pipeline for
volumetric segmentation of plant tissues into cells. PlantSeg employs a convolutional neural
network to predict cell boundaries and graph partitioning to segment cells based on the
neural network predictions. PlantSeg was trained on fixed and live plant organs imaged with
confocal and light sheet microscopes. PlantSeg delivers accurate results and generalizes
well across different tissues, scales, acquisition settings even on non plant samples. We
present results of PlantSeg applications in diverse developmental contexts. PlantSeg is free
and open-source, with both a command line and a user-friendly graphical interface (https:
//github.com/hci-unihd/plant-seg).

2.1 Introduction

Large-scale quantitative study of morphogenesis in a multicellular organism entails an ac-
curate estimation of the shape of all cells across multiple specimen. State-of-the-art light
microscopes allow for such analysis by capturing the anatomy and development of plants
and animals in terabytes of high-resolution volumetric images. With such microscopes now
in routine use, segmentation of the resulting images has become a major bottleneck in the
downstream analysis of large-scale imaging experiments.

Here, we present PlantSeg, a deep learning-based pipeline for volumetric instance seg-
mentation of dense plant tissues at single-cell resolution. PlantSeg processes the output from
the microscope with a CNN to produce an accurate prediction of cell boundaries. Building
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on the insights from previous work on cell segmentation in electron microscopy volumes
of neural tissue [65, 114], the second step of the pipeline delivers an accurate segmentation
by solving a graph partitioning problem. We trained PlantSeg on 3D confocal images of
fixed Arabidopsis thaliana ovules and 3D+t light sheet microscope images of developing
lateral roots, two standard imaging modalities in the studies of plant morphogenesis. We in-
vestigated a range of network architectures and graph partitioning algorithms and selected
the ones which performed best with regard to extensive manually annotated ground truth.
We benchmarked PlantSeg on a variety of datasets covering a range of samples and image
resolutions. Overall, PlantSeg delivers excellent results on unseen data and, as we show
through quantitative and qualitative evaluation, even non-plant datasets do not necessarily
require network retraining. Combining the repository of accurate neural networks trained
on the two commonmicroscope modalities and going beyond just thresholding or watershed
with robust graph partitioning strategies is the main strength of our package. PlantSeg is an
open-source tool which contains the complete pipeline for segmenting large volumes. Each
step of the pipeline can be adjusted via a convenient graphical user interface while expert
users can modify configuration files and run PlantSeg from the command line. Users can
also provide their own pre-trained networks for the first step of the pipeline using a popular
3D U-Net implementation (https://github.com/wolny/pytorch-3dunet), which was
developed as a part of this project. Although PlantSeg was designed to segment 3D images,
one can directly use it to segment 2D stacks. Besides the tool itself, we provide all the net-
works we trained for the confocal and light sheet modalities at different resolution levels
and make all our training and validation data publicly available 1.

2.1.1 Related works

A few segmentation pipelines have been proposed [115,116], but these either do not leverage
recent developments in the field of computer vision or are difficult to use for non-experts.

With a few notable exceptions, such as the Brainbow experiments [117], imaging cell
shape during morphogenesis relies on staining of the plasma membrane with a fluorescent
marker. Segmentation of cells is then performed based on their boundary prediction. In
the early days of computer vision, boundaries were usually found by edge detection algo-
rithms [118]. More recently, a combination of edge detectors and other image filters was
commonly used as input for a machine learning algorithm, trained to detect boundaries [119].
Currently, the most powerful boundary detectors are based on Convolutional Neural Net-
works (CNNs) [36, 120, 121]. In particular, the U-Net architecture [24] has demonstrated
excellent performance on 2D biomedical images and has later been further extended to pro-

1All datasets used to support the findings of this study have been deposited in https://osf.io/uzq3w

https://github.com/wolny/pytorch-3dunet
https://osf.io/uzq3w
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cess volumetric data [37].

Once the boundaries are found, other pixels need to be grouped into objects delineated
by the detected boundaries. For noisy, real-world microscopy data, this post-processing step
still represents a challenge and has attracted a fair amount of attention from the computer
vision community [61, 65, 114, 122, 123]. If centroids (”seeds”) of the objects are known
or can be learned, the problem can be solved by the watershed algorithm [110, 124]. For
example, in [125] a 3D U-Net was trained to predict cell contours together with cell cen-
troids as seeds for watershed in 3D confocal microscopy images. This method, however,
suffers from the usual drawback of the watershed algorithm: misclassification of a single
cell centroid results in sub-optimal seeding and leads to segmentation errors.

Recently an approach combining the output of two neural networks and watershed to
detect individual cells showed promising results on segmentation of cells in 2D [126]. Al-
though this method can in principle be generalized to 3D images, the necessity to train two
separate networks poses additional difficulty for non-experts.

While deep learning-based methods define the state-of-the-art for all image segmenta-
tion problems, only a handful of software packages strives to make them accessible to non-
expert users in biology (reviewed in [127]). Notably, the U-Net segmentation plugin for
ImageJ [128] conveniently exposes U-Net predictions and computes the final segmentation
from simple thresholding of the probability maps. CDeep3M [129] and DeepCell [130] en-
able, via the command-line, the thresholding of the probability maps given by the network,
and DeepCell allows instance segmentation as described in [126]. More advanced post-
processing methods are provided by the ilastik Multicut workflow [131], however, these
are not integrated with CNN-based prediction.

2.2 PlantSeg

2.2.1 A pipeline for segmentation of plant tissues into cells

The segmentation algorithm we propose contains two major steps. In the first step, a fully
convolutional neural network (a variant of U-Net) is trained to predict cell boundaries. After-
wards, a region adjacency graph is constructed from the pixels with edge weights computed
from the boundary predictions. In the second step, the final segmentation is computed as
a partitioning of this graph into an unknown number of objects (see Fig. 2.1). Our choice
of graph partitioning as the second step is inspired by a body of work on segmentation for
nanoscale connectomics (segmentation of cells in electron microscopy images of neural tis-
sue), where such methods have been shown to outperform more simple post-processing of
the boundary maps [65, 114, 132].
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Neural Network Graph Partitioning

Input Boundary Predictions Segmentation

Figure 2.1. Segmentation of plant tissues into cells using PlantSeg. First, PlantSeg uses a
3D UNet neural network to predict the boundaries between cells. Second, a volume parti-
tioning algorithm is applied to segment each cell based on the predicted boundaries. The
neural networks were trained on ovules (top, confocal laser scanningmicroscopy) and lateral
root primordia (bottom, light sheet microscopy) of Arabidopsis thaliana.

Step 1: cell boundary detection

Being the current state of the art in bioimage segmentation, U-Net [24] was chosen as the
base model architecture for predicting the boundaries between cells. Aiming for the best
performance across different microscope modalities, we explored various components of
neural network design critical for improved generalization and robustness to noise, namely:
the network architecture, loss function, normalization layers and size of patches used for
training. For the final PlantSeg package we trained one set of CNNs for each dataset as the
ovule and lateral root datasets are substantially different.

In more detail, with regard to the network architecture we compared the regular 3D U-
Net as described in [37] with a Residual U-Net from [38]. We tested two loss functions
commonly used for the semantic segmentation task: binary cross-entropy (BCE) (LBCE)
[24] and Dice loss (LDice) [133], as well as their linear combination (αLBCE + βLDice)
termed BCE-Dice. The patch size and normalization layers were investigated jointly by
comparing training on a single large patch, versus training on multiple smaller patches per
network iteration. For single patch we used group normalization [134] whereas standard
batch normalization [135] was used for the multiple patches.

In the ovule dataset, 39 stacks were randomly selected for training, two for validation
and seven for testing. In the LRP dataset, 27 time points were randomly selected from the
three videos for training, two time points were used for validation and four for testing.

The best performing CNN architectures and training procedures is illustrated by the pre-
cision/recall curves evaluated at different threshold levels of the predicted boundary proba-
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Figure 2.2. Precision-recall curves for different CNN variants on the ovule (A) and lateral
root primordia (LRP) (B) datasets. Six training procedures that sample different type of
architecture (3D U-Net vs. 3D Residual U-Net), loss function (BCE vs. Dice vs. BCE-
Dice) and normalization (Group-Norm vs. Batch-Norm) are shown. Those variants were
chosen based on the accuracy of boundary prediction task: 3 best performing models on the
ovule and 3 best performing models on the lateral root datasets (see Appendix 5, Table 1 for
a detailed summary). Points correspond to averages of seven (ovules) and four (LRP) values
and the shaded area represent the standard error. For a detailed overview of precision-recall
curves on individual stacks we refer to Appendix 4, Figure 1. Source files used to generate
the plot are available in the Figure 2-source data 1.

bility maps (see Fig. 2.2). Training with a combination of binary cross-entropy and Dice loss
(Lbce +Ldice) performed best on average across the two datasets in question contributing to
3 out of 6 best performing network variants. BCE-Dice loss also generalized well on the out
of sample data described in Sec. 2.2.2. Due to the regularity of cell shapes, the networks do
not benefit from broader spatial context when only cell membrane signal is present in input
images. Indeed, training the networks with bigger patch sizes does not noticeably increase
the performance as compared to training with smaller patches. 4 out of 6 best performing
networks use smaller patches and batch normalization (Batch-Norm) whereas only 2 out of
6 use bigger patches and group normalization (Group-Norm). Residual U-Net architecture
(3D-ResUnet) performed best on the LRP dataset (Fig. 2.2 (B)), whereas standard U-Net ar-
chitecture (3D-Unet) was better on the ovule datasets (Fig. 2.2 (A)). For a complete overview
of the performance of investigated models see also Fig. A.1 and Tab. A.2. In conclusion,
choosing the right loss function and normalization layers increased the final performance
on the task of boundary prediction on both microscope modalities.
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Step 2: segmentation of tissues into cells using graph partitioning

After the cell boundaries are predicted, segmentation of the cells can be formulated as a
generic graph partitioning problem, where the graph is built as the region adjacency graph
of the image voxels. However, solving the partitioning problem directly at voxel-level is
computationally expensive for volumes of biologically relevant size. To make the computa-
tion tractable, we first cluster the voxels into so-called supervoxels by running a watershed
algorithm on the distance transform of the boundary map, seeded by all local maxima of the
distance transform smoothed by a Gaussian blur. The region adjacency graph is then built
directly on supervoxels and partitioned into an unknown number of segments to deliver a
segmentation. We tested four different partitioning strategies: Multicut [63], hierarchical ag-
glomeration as implemented in GASP average (GASP) [60], Mutex watershed (Mutex) [61]
as well as the distance transform (DT) watershed [67] as a baseline since similar methods
have been proposed previously [125,126].

To quantify the accuracy of the four segmentation strategies we use Adapted Rand error
(ARand) for the overall segmentation quality and two other metrics based on the variation of
information [136] (see section Sec. 2.3.3), measuring the tendency to over-split (VOIsplit) or
over-merge (VOImerge). GASP, Multicut and Mutex watershed consistently produced accu-
rate segmentation on both datasets with low ARand errors and low rates of merge and split
errors (Fig. 2.3A-C and Tab. A.1). As expected DT watershed tends to over-segment with
higher split error and resulting higher ARand error. Multicut solves the graph partitioning
problem in a globally optimal way and is therefore expected to perform better compared to
greedy algorithms such as GASP and Mutex watershed. However, in our case the gain was
marginal, probably due to the high quality of the boundary predictions.

The performance of PlantSeg was also assessed qualitatively by expert biologists. The
segmentation quality for both datasets is very satisfactory. For example in the lateral root
dataset, even in cases where the boundary appeared masked by the high brightness of the
nuclear signal, the network correctly detected it and separated the two cells (Fig. 2.3D, green
box). On the ovule dataset, the network is able to detect weak boundaries and correctly
separate cells in regions where the human expert fails (Fig. 2.3E , green box). The main
mode of error identified in the lateral root dataset is due to the ability of the network to
remove the nuclear signal which can weaken or remove part of the adjacent boundary signal
leading to missing or blurry cell contour. For example, the weak signal of a newly formed
cell wall close to two nuclei was not detected by the network and the cells were merged
(Fig. 2.3D, red box). For the ovule dataset, in rare cases of very weak boundary signal,
failure to correctly separate cells could also be observed (Fig. 2.3E, red box).

Taken together, our analysis shows that segmentation of plant tissue using graph parti-
tioning handles robustly boundary discontinuities present in plant tissue segmentation prob-
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Figure 2.3. Segmentation using graph partitioning. (A-C) Quantification of segmentation
produced by Multicut, GASP, Mutex watershed (Mutex) and DT watershed (DT WS) par-
titioning strategies. The Adapted Rand error (A) assesses the overall segmentation quality
whereas VOImerge (B) and VOIsplit (C) assess erroneous merge and splitting events (lower is
better). Box plots represent the distribution of values for seven (ovule, magenta) and four
(LRP, green) samples. (D, E) Examples of segmentation obtained with PlantSeg on the lat-
eral root (D) and ovule (E) datasets. Green boxes highlight cases where PlantSeg resolves
difficult cases whereas red ones highlight errors. We obtained the boundary predictions us-
ing the generic-confocal-3d-unet for the ovules dataset and the generic-lightsheet-3d-unet
for the root. All agglomerations have been performed with default parameters. 3D super-
pixels instead of 2D superpixels were used. Source files used to create quantitative results
shown in (A-C) are available in the Figure 3-source data 1.

lems.

Datasets

Tomake our tool as generic as possible, we used both fixed and live samples as core datasets
for design, validation and testing. Two microscope modalities common in studies of mor-
phogenesis were employed, followed by manual and semi-automated annotation of ground
truth segmentation.

The first dataset consists of fixed Arabidopsis thaliana ovules at all developmental
stages acquired by confocal laser scanning microscopy with a voxel size of 0.075×0.075×
0.235 µm. 48 volumetric stacks with hand-curated ground truth segmentation were used. A
complete description of the image acquisition settings and the ground truth creation protocol
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is reported in [137].

The second dataset consists of three time-lapse videos showing the development of
Arabidopsis thaliana lateral root primordia (LRP). Each recording was obtained by imag-
ing wild-type Arabidopsis plants expressing markers for the plasma membrane and the nu-
clei [138] using a light sheet fluorescence microscope (LSFM). Stacks of images were ac-
quired every 30 minutes with constant settings across movies and time points, with a voxel
size of 0.1625× 0.1625× 0.250 µm. The first movie consists of 52 time points of size 2048
× 1050 × 486 voxels. The second movie consists of 90 time points of size 1940 × 1396
× 403 voxels and the third one of 92 time points of size 2048 × 1195 × 566 voxels. The
ground truth was generated for 27 images depicting different developmental stages of LRP
coming from the three movies (see Sec. 2.3.4).

The two datasets were acquired on different types of microscopes and differ in image
quality. To quantify the differences we used the peak signal-to-noise (PSNR) and the struc-
tural similarity index measure (SSIM) [139]. We computed both metrics using the input
images and their ground truth boundary masks; higher values show better quality. The av-
erage PSNR measured on the light sheet dataset was 22.5 ± 6.5 dB (average ± SD), 3.4 dB
lower than the average PSNR computed on the confocal dataset (25.9 ± 5.7). Similarly, the
average SSIM is 0.53 ± 0.12 for the light sheet, 0.1 lower than 0.63 ± 0.13 value measured
on the confocal images. Both datasets thus contain a significant amount of noise. LSFM
images are noisier and more difficult to segment, not only because of the noise, but also due
to part of nuclear labels being in the same channel as membrane staining.

In the following we describe in detail the design and performance of each of the two
steps of the pipeline.

2.2.2 Performance on external plant datasets

To test the generalization capacity of PlantSeg, we assessed its performance on data for
which no network training was performed. To this end, we took advantage of the two pub-
licly available datasets: Arabidopsis 3D Digital Tissue Atlas (https://osf.io/fzr56)
composed of eight stacks of eight different Arabidopsis thaliana organs with hand-curated
ground truth [140], as well as the developing leaf of the Arabidopsis [141] with 3D segmen-
tation given by the SimpleITK package [142]. The input images from the digital tissue atlas
are confocal stacks of fixed tissue with stained cell contours and thus similar to the images
of the Arabidopsis ovules, whereas the images of the leaf were acquired through the use of
live confocal imaging. It’s important to note that the latter image stacks contain highly lobed
epidermal cells, which are difficult to segment with classical watershed-based algorithms.
We fed the confocal stacks to PlantSeg and qualitatively assessed the resulting segmentation.

https://osf.io/fzr56
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Dataset
PlantSeg (default parameters) PlantSeg (tuned parameters)
ARand VOIsplit VOImerge ARand VOIsplit VOImerge

Anther 0.328 0.778 0.688 0.167 0.787 0.399
Filament 0.576 1.001 1.378 0.171 0.687 0.487
Leaf 0.075 0.353 0.322 0.080 0.308 0.220
Pedicel 0.400 0.787 0.869 0.314 0.845 0.604
Root 0.248 0.634 0.882 0.101 0.356 0.412
Sepal 0.527 0.746 1.032 0.257 0.690 0.966
Valve 0.572 0.821 1.315 0.300 0.494 0.875

Table 2.1. Quantification of PlantSeg performance on the 3D Digital Tissue Atlas, using
PlantSeg . The Adapted Rand error (ARand) assesses the overall segmentation quality
whereas VOImerge and VOIsplit assess erroneous merge and splitting events. The petal images
were not included in our analysis as they are very similar to the leaf and the ground truth
is fragmented, making it difficult to evaluate the results from the pipeline in a reproducible
way. Segmented images are computed using GASP partitioning with default parameters
(left table) and fine-tuned parameters described in Appendix Appendix A.4 (right table).

Quantitative assessment was performed only for the digital tissue atlas, where the ground
truth labels are available.

Qualitatively, PlantSeg performedwell on both datasets, giving satisfactory results on all
organs from the 3D Digital Tissue Atlas, correctly segmenting even the oval non-touching
cells of the anther and leaf: a cell shape not present in the training data (Fig. 2.4). Our
pipeline yielded especially good segmentation results when applied to the complex epi-
dermal cells, visibly outperforming the results obtained using the SimpleITK framework
(Fig. 2.5).

Quantitatively, the performance of PlantSeg out of the box (default parameters) on the
3D Digital Tissue Atlas is on par with the scores reported on the LRP and ovules datasets
on the anther, leaf, and the root, but lower for the other tissues (Tab. 2.1, left). Default
parameters have been chosen to deliver good results on most type of data, however we
show that a substantial improvement can be obtained by parameter tuning (see Appendix
Appendix A.3 for an overview of the pipeline’s hyperparameters and Appendix A.4 for
a detailed guide on empirical parameter tuning), in case of the tissue 3D Digital Tissue
Atlas tuning improved segmentation by a factor of two as measured with the ARand error
(Tab. 2.1, right). It should be noted that the ground truth included in the dataset was created
for analysis of the cellular connectivity network, with portions of the volumes missing or
having low quality ground truth (see e.g filament and sepal in Fig. 2.4). For this reason, the
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Figure 2.4. PlantSeg segmentation of different plant organs of the 3D Digital Tissue Atlas
dataset, not seen in training. The input image, ground truth and segmentation results using
PlantSeg are presented for each indicated organ.
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Input Segmentation Fox et al. PlantSeg

Input PlatSeg Boundary Predictions PlantSeg

Figure 2.5. Qualitative results on the highly lobed epidermal cells from [141]. First two
rows show the visual comparison between the SimpleITK (middle) and PlantSeg (right)
segmentation on two different image stacks. PlantSeg’s results on another sample is shown
in the third row. In order to show pre-trained networks’ ability to generalized to external data,
we additionally depict PlantSeg’s boundary predictions (third row, middle). We obtained the
boundary predictions using the generic-confocal-3d-unet and segmented using GASP with
default values. A value of 0.7 was choosen for the under/over segmentation factor.

performance of PlantSeg on these datasets may be underestimated.

Altogether, PlantSeg performedwell qualitatively and quantitatively on datasets acquired
by different groups, on different microscopes, and at different resolutions than the train-
ing data. This demonstrates the generalization capacity of the pre-trained models from the
PlantSeg package.

2.2.3 Performance on a non-plant benchmark

For completeness, we compared PlantSeg performance with state-of-the-art methods on a
non-plant open benchmark consisting of epithelial cells of the Drosophila wing disc [143].
Visually, the benchmark images are quite similar to the ovules dataset: membrane staining
is used along with a confocal microscope, and the cell shapes are compact and relatively
regular. Although we did not train the neural networks on the benchmark datasets and used
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only the ovule pre-trained models provided with the PlantSeg package.

The dataset consists of 2D+t videos of membrane-stained developingDrosophila epithe-
lial cells [144]. The benchmark dataset and the results of four state-of-the-art segmentation
pipelines are reported in [143]. Treating the movie sequence as 3D volumetric images not
only resembles the plant cell images shown in our study, but also allows to pose the 2D+t
segmentation as a standard 3D segmentation problem.

We compared the performance of PlantSeg on the 8 movies of this dataset to the four
reported pipelines: MALA [145], Flood Filling Networks (FFN) [146], Moral Lineage
Tracing (MLT) [147, 148] and Tissue Analyzer (TA) [143]. On our side, we evaluate two
PlantSeg predictions: for the first one, we use the boundary detection network trained on the
Arabidopsis thaliana ovules. This experiment gives an estimate of how well our pre-trained
networks generalize to non-plant tissues. For the second evaluation, we retrain the network
on the training data of the benchmark and obtain an estimate of the overall PlantSeg approach
accuracy on non-plant data. Note that unlike other methods reported in the benchmark, we
do not introduce any changes to account for the data being 2D+t rather than 3D, i.e. we
do not enforce the lineages to be moral as the authors of [143] did with their segmentation
methods.

For the first experiment, peripodial cells were segmented using the 3D U-Net trained
on the ovule dataset together with GASP segmentation, whereas proper disc cells were seg-
mented with 2D U-Net trained on the ovule dataset in combination with Multicut algorithm.
Both networks are part of the PlantSeg package. Qualitative results of our pipeline are shown
in Fig. 2.6: PlantSeg produces very good segmentations on both the peripodial and proper
imaginal disc cells. A few over-segmentation (peripodial cells) and under-segmentation
(proper disc) errors are marked in the figure. This impression is confirmed by quantitative
benchmark results in Tab. 2.2.

For the second experiment, we trained the network on the ground truth labels included
in the benchmark (PlantSeg (trained)). Here, our pipeline is comparable to state-of-the-
art. The difference in SEG metric between ’vanilla’ PlantSeg and PlantSeg (trained) is 6.9
percent points on average, which suggests that for datasets sufficiently different from the
ones PlantSeg networks were trained on, re-training themodelsmight be necessary. Looking
at the average run-times of the methods reported in the benchmark shows that PlantSeg
pipeline is clearly the fastest approach with the average run-time of 3 min per movie when
run on a server with a modern GPU versus 35 min (MALA), 42 min (MLT) and 90 min
(FFN).

Thus, PlantSeg achieves results which are competitive with other proven methods in
terms of accuracy, without explicitly training the boundary detection networks on the ep-
ithelial cell ground truth or accounting for the 2d+t nature of the data. PlantSeg outperforms
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Method PERIPODIAL PROPER DISC

MALA 0.907 ± 0.029 0.817 ± 0.009
FFN 0.879 ± 0.035 0.796 ± 0.013

MLT-GLA 0.904 ± 0.026 0.818 ± 0.010
TA - 0.758 ± 0.009

PlantSeg 0.787 ± 0.063 0.761 ± 0.035
PlantSeg (trained) 0.885 ± 0.056 0.800 ± 0.015

Table 2.2. Epithelial Cell Benchmark results. We compare PlantSeg to four other methods
using the standard SEG metric [149] calculated as the mean of the Jaccard indices between
the reference and the segmented cells in a given movie (higher is better). Mean and standard
deviation of the SEG score are reported for peripodial (3 movies) and proper disc (5 movies)
cells. Additionally we report the scores of PlantSeg pipeline executed with a network trained
explicitly on the epithelial cell dataset (last row).

all methods in term of computing time. We argue that the large selection of pre-trained net-
works and graph partitioning algorithms make PlantSeg versatile enough to work well on
wide variety of membrane stained tissues, beyond plant samples.

2.2.4 Exploiting nuclei staining to improve cells segmentation

The lateral root dataset contains a nuclei marker in a separate channel. In such cases we can
take advantage of the fact that a cell contains only one nucleus and use this information as
an additional clue during segmentation.

For this, we first segmented the nuclei using a simple and accurate segmentation pipeline
that consists of a 3D U-Net trained to predict the binary nuclei mask followed by threshold-
ing of the probability maps and connected components. We then incorporated this additional
information into the multicut formulation, called lifted multicut [150,151], where additional
repulsive edges are introduced between the nodes in the graph corresponding to the different
nuclei segmented from the second channel.

We compared the scores of this liftedmulticut algorithm to the scores for GASP, multicut
and mutex watershed (see Tab. A.1). We see that lifted multicut performs competitively not
only the standard multicut, but also all the other algorithms. This is because lifted multicut is
able to separate two cells incorrectly merged into one region by the segmentation algorithm,
as long as the region contains the two different nuclei instances corresponding to the merged
cells.

A 3D U-Net trained to predict nuclei mask is available in the PlantSeg package. Lifted
multicut segmentation can be executed via the PlantSeg’s command line interface. We refer
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Figure 2.6. Qualitative results on the Epithelial Cell Benchmark. From top to bottom:
Peripodial cells (A), Proper disc cells (B). From left to right: raw data, groundtruth seg-
mentation, PlantSeg segmentation results. PlantSeg provides accurate segmentation of both
tissue types using only the networks pre-trained on the Arabidopsis ovules dataset. Red rect-
angles show sample over-segmentation (A) and under-segmentation (B) errors. Boundaries
between segmented regions are introduced for clarity and they are not present in the pipeline
output.

to the project’s GitHub page for instructions.

2.2.5 Automating proofreading from nuclei segmentation

Similarly to the lifted multicut workflow discussed in Sec. 2.2.4, PlantSeg implements an al-
ternative workflow for automatically correcting the cell segmentation from a trusted nuclei
segmentation. The workflow will adjust the cell segmentation to resolve conflicts with the
respective nuclei segmentation. Therefore for this workflow, the accuracy of the nuclei is
extremely important. Mistakes in the nuclei segmentation will propagate in the cell segmen-
tation. The workflow comprises two subroutines: one for fixing the split mistakes in the cell
segmentation and one for fixing the merge mistakes. The split routine checks for every cell
if two or more nuclei respectively overlap (measured in percentage over the total cell vol-
ume) with the cell segmentation for more than a user-defined threshold-split. If the overlap
exceeds the threshold, the script will use the nuclei segmentation as a seed and split the cell
using the seeded watershed algorithm. The merge routine checks for every nucleus if two
or more cells respectively overlap (measured in percentage over the total nucleus volume) a
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Figure 2.7. Overview of the automated proofreading from nuclei widget. This widget is
particularly useful when the user poses a trusted nuclei segmentation and wants to use it
to fix segmentation errors automatically. In (A), one can see how the tool can fix under-
segmentation mistakes using the nuclei prior, while in (B), the tool fixes a case of over-
segmentation.

single nucleus segmentation for more than a user-defined threshold-merge. The script will
merge the cells if the overlap is above the threshold. The default thresholds provided are
66% for the threshold-split and 33% for the threshold-merge.

2.2.6 A package for segmentation and benchmarking

We release PlantSeg as an open-source software for the 2D and 3D segmentation of cells with
cell contour staining. PlantSeg allows for data pre-processing, boundary prediction with
neural networks and segmentation of the network output with a choice of four partitioning
methods: Multicut, GASP, Mutex watershed and DT watershed.

PlantSeg can be executed via a simple graphical user interface, via a Napari plugin [152],
or via the command line. The critical parameters of the pipeline are specified in a config-
uration file. Running PlantSeg from the graphical user interface or from the Napari plugin
is well suited for the processing of single experiments, while the use of the command line
utility enables large scale batch processing and remote execution. Our software can export
both the segmentation results and the boundary probability maps in Hierarchical Data For-
mat (HDF5) or Tagged Image File Format (TIFF). Both file formats are widely supported,
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and other bioimage analysis tools, such as ilastik, MorphographX, or Fiji can further process
the results. In particular: the final segmentation is exported as a labeled volume where all
pixels of each segmented cell is assigned the same integer value. It is best viewed with a
random lookup table, such as ”glasbey” in Fiji. In exported boundary probability maps each
pixel has a floating point number between 0 and 1, reflecting the probability of that pixel
belonging to a cell boundary. PlantSeg comes with several 2D and 3D networks pre-trained
on different voxel sizes of the Arabidopsis ovule and LRP datasets. Users can select from
the available set of pre-trained networks the one with features most similar to their datasets.
Alternatively, users can let PlantSeg select the pre-trained network based on the microscope
modality (light sheet or confocal) and voxel size. PlantSeg also provides a command-line
tool for training the network on new data when none of the pre-trained networks is suitable
to the user’s needs.

PlantSeg is publicly available https://github.com/hci-unihd/plant-seg. The
repository includes a complete user guide and the evaluation scripts used for quantitative
analysis. Besides the source code, we provide a multiplatform conda package. The soft-
ware is written in Python, the neural networks use the PyTorch framework [153]. We also
make available the raw microscopic images and the ground truth used for training, valida-
tion, and testing.

Creating dynamical workflows

While the two-step pipeline, as described in Sec. 2.2.1 is the main workflow of PlantSeg,
this workflow can be too restrictive for a challenging dataset. To allow users to access the
full potential of our package, we allow users to create their workflows dynamically using
our PlantSeg-Napari plugin. This allows users to execute all steps available in PlantSeg
independently and in a customized order. In Fig. 2.9, we present a use case for a dynamic
workflow scenario on a difficult specimen. Here, we show how one can drastically improve
the workflow by performing multiple independent boundary predictions with different mod-
els and then merging them in a single improved boundary image.

Once the user is satisfied, the current workflow can be exported for future headless batch
processing.

Interactive segmentation proofreading

While the primary goal of PlantSeg is to ensure accurate automatic segmentation, proofread-
ing is often necessary to ensure 100% accuracy. Since version 1.5, PlantSeg has directly
incorporated a widget for manual proofreading in the PlantSeg-Napari viewer. The tool’s
functionalities are presented in Fig. 2.10. Moreover, in Sec. 2.3.4, we will further describe

https://github.com/hci-unihd/plant-seg
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Figure 2.8. Screen capture of the PlantSeg-Napari viewer. The interface allows running
independently all steps of the segmentation pipeline, such as: selecting the neural network
model and specifying hyperparameters of the partitioning algorithm. In addition to the basic
PlantSeg workflow, The interface allows for semi-automated proofreading from scribbles.
Moreover, the user can export the dynamically created workflow for headless batch process-
ing.

Figure 2.9. Example of customized Workflow. None of our pre-trained models can accu-
rately process the raw input in this example. But, one can see that one of the models excels
in some regions (Boundary predictions 1, region B), while the other performs better in a
different area (Boundary predictions 2, region A). In this challenging scenario, merging the
two models’ output allows us to obtain a higher quality segmentation.
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Figure 2.10. PlantSeg-Napari proofreading widget allows the user to perform semi-
automated proofreading from scribbles. In (A), one can see a segmentation with two notice-
able mistakes, an over-segmentation (red arrow) and an under-segmentation (blue arrow).
To fix the over-segmentation, the user can draw a single scribble connecting the two seg-
ments (B, red arrow). To fix the under-segmentation, the user can use scribbles to create
watershed seeds (B, blue arrows). In (C), one can see the widget output.

a protocol for using the PlantSeg-Napari proofreading capability for ground truth creation.

2.3 Methods

2.3.1 Neural network training and inference

Training

2D and 3D U-Nets were trained to predict the binary mask of cell boundaries. Ground
truth cell contours where obtained by taking the ground truth label volume, finding a 2
voxels-thick boundaries between labeled regions (find_boundaries(·) function from the
Scikit-image package [154]) and applying a Gaussian blur on the resulting boundary image.
Gaussian smoothing reduces the high frequency components in the boundary image, which
helps prevent over-fitting and makes the boundaries thicker, increasing the amount of fore-
ground signal during training. Transforming the label image Sx into the boundary image Ix
is depicted in Eq. (2.1).

Ix =

{
1 if Φ(Sx) ∗Gσ > 0.5

0 otherwise
(2.1)

Where Φ(·) transforms the labeled volume into the boundary image, Gσ is the isotropic
Gaussian kernel and ∗ denotes a convolution operator. We use σ = 1.0 in our experiments.
Both standard and residual U-Net architectures were trained using Adam optimizer [12] with
β1 = 0.9, β2 = 0.999, L2 penalty of 0.00001 and initial learning rate ϵ = 0.0002. Networks
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were trained until convergence for 150K iterations, using the PyTorch framework [153] on 8
NVIDIA GeForce RTX 2080 Ti GPUs. For validation during training, we used the adjusted
Rand error computed between the ground truth segmentation and segmentation obtained by
thresholding the probability maps predicted by the network and running the connected com-
ponents algorithm. The learning rate was being reduced by a factor of 2 once the learning
stagnated during training, i.e no improvements were observed on the validation set for a
given number of iterations. We choose as best network the one with lowest Arand error
values. For training with small patch sizes we used 4 patches of shape 100× 100× 80 and
batch normalization [135] per network iteration. When training with a single large patch
(size 170 × 170 × 80), we used group normalization layers [134] instead of batch normal-
ization. The reason is that batch normalization with a single patch per iteration becomes an
instance normalization [155] and makes the estimated batch statistics weaker. All networks
use the same layer ordering where the normalization layer is followed by the 3D convolution
and a rectified linear unit (ReLU) activation. This order of layers consistently performed
better than alternative orderings. During training and inference, input images were standard-
ized by subtracting mean intensity and dividing by the standard deviation. We used random
horizontal and vertical flips, random rotations in the XY-plane, elastic deformations [24] and
noise augmentations (additive Gaussian, additive Poisson) of the input image during train-
ing in order to increase network generalization on unseen data. The performance of CNNs
is sensitive to changes in voxel size and object sizes between training and test images [156].
We thus also trained the networks using the original datasets downscaled by a factor of 2
and 3 in the XY dimension.

3D U-Nets trained at different scales of our two core datasets (light-sheet lateral root,
confocal ovules) are made available as part of the PlantSeg package. All released networks
were trained according to the procedure described above using a combination of binary cross-
entropy and Dice loss:

L = αLBCE + βLDice (2.2)

(we set α = 1, β = 1 in our experiments) and follow the standard U-Net architecture [24]
with twominor modifications: batch normalization [135] is replaced by group normalization
[134] and same convolutions are used instead of valid convolutions. For completeness we
also publish 2D U-Nets trained using the Z-slices from the original 3D stacks, enabling
segmentation of 2D images with PlantSeg.

Inference

During inference we used mirror padding on the input image to improve the prediction at the
boundaries of the volume. We kept the same patch sizes as during training since increasing it
during inference might lead to lower quality of the predictions, especially on the borders of
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the patch. We also parse the volume patch-by-patchwith a 50%overlap between consecutive
tiles and average the probability maps. This strategy prevents checkerboard artifacts and
reduces noise in the final prediction.

The code used for training and inference can be found at https://github.com/wolny/
pytorch-3dunet.

2.3.2 Segmentation using graph partitioning

The boundary predictions produced by the CNN are treated as a graphG(V,E), where nodes
V are represented by the image voxels, and the edgesE connect adjacent voxels. The weight
w ∈ R+ of each edge is derived from the boundary probability maps. On this graph we first
performed an over-segmentation by running the DT watershed [67]. For this, we threshold
the boundary probability maps at a given value δ to get a binary image (δ = 0.4 was chosen
empirically in our experiments). Then we compute the distance transform from the binary
boundary image, apply a Gaussian smoothing (sigma = 2.0) and assign a seed to every
local minimum in the resulting distance transform map. Finally we remove small regions
(< 50 voxels). Standalone DT watershed already delivers accurate segmentation and can
be used as is in simple cases when, for example noise is low and/or boundaries are sharp.

For Multicut [63], GASP [60], and Mutex watershed [61] algorithms, we used the DT
watershed as an input. Although all three algorithms could be run directly on the boundary
predictions produced by the CNN (voxel level), we choose to run them on a region adjacency
graph (RAG) derived from the DT watershed to reduce the computation time. In the region
adjacency graph each node represents a region and edges connect adjacent regions. We
compute edge weights by using the mean value of the probabilities maps along the bound-
ary. We then run Multicut, GASP or Mutex watershed with a hyperparameter beta = 0.6

that balances over- and under-segmentation (with higher β tending to over-segment). As a
general guideline for choosing the partitioning strategy on a new data is to start with GASP
algorithm, which is the most generic. If needed, one may try to improve the results with
multicut or mutex watershed. If none of the three strategies give satisfactory segmentation
results we recommend to over-segment provided stack using the distance transform water-
shed and proofread the result manually using Paintera software [157].

A detailed overview of the parameters exposed via the PlantSeg’s UI can be found on
the project’s GitHub page https://github.com/hci-unihd/plant-seg as well as in
Appendix 6, Table 3.

https://github.com/wolny/pytorch-3dunet
https://github.com/wolny/pytorch-3dunet
https://github.com/hci-unihd/plant-seg
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2.3.3 Metrics used for evaluation

For the boundary predictions we used precision (number of pixels positively predicted as
boundary divided by the number of boundary pixels in the ground truth), recall (number
of positively predicted boundary pixels divided by the sum of positively and negatively
predicted boundary pixels) and F1 score

F1 = 2 · Precision · Recall
Precision+ Recall

. (2.3)

For the final segmentation, we used the inverse of the Adjusted Rand Index (AdjRand)
[158] defined as ARand error = 1 − AdjRand [159] which measures the distance between
two clustering as global measure of accuracy between PlantSeg prediction and ground truth.
AnARand error of 0means that the PlantSeg results are identical to the ground truth, whereas
1 shows no correlation between the ground truth and the segmentation results. To quantify
the rate of merge and split errors, we used the Variation of Information (VOI) which is an
entropy based measure of clustering quality [160]. It is defined as:

VOI = H (seg|GT) +H (GT|seg) , (2.4)

whereH is the conditional entropy function and the Seg and GT the predicted segmentation
and ground truth segmentation respectively. H (seg|GT) defines the split mistakes (VOIsplit)
whereas H (GT|Seg) corresponds to the merge mistakes (VOImerge).

2.3.4 Groundtruth creation

Training state-of-the-art deep neural network for semantic segmentation requires a large
amount of densely annotated samples. Groundtruth creation for the ovule dataset has been
described previously [137], we briefly describe here how the dense groundtruth labeling of
cells for the lateral root was generated.

We bootstrapped the process using the Autocontext Workflow [161] of the open-source
ilastik software [131] which is used to segment cell boundaries from sparse user input (scrib-
bles). It is followed by the ilastik’s multicut workflow [65] which takes the boundary seg-
mentation image and produces the cell instance segmentation. These initial segmentation
results were iteratively refined (see Fig. 2.11). First, the segmentation is manually proofread
in a few selected regions of interest. Second, a state-of-the-art neural network is trained for
boundary detection on the manually corrected regions. Third, PlantSeg framework con-
sisting of neural network prediction and image partitioning algorithm is applied to the en-
tire dataset resulting in a more refined segmentation. The 3-step iterative process was re-
peated until an instance segmentation of satisfactory quality was reached. A final round of
manual proofreading is performed to finalize the groundtruth. The open-source software
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Figure 2.11. Later root groundtruth creation process. Starting from the input image (1), an
initial segmentation is obtained using ilastik Autocontext followed by the ilastik multicut
workflow (2). Paintera is used to proofread the segmentation (3a) which is used for training
a 3D UNet for boundary detection (3b). A graph partitioning algorithm is used to segment
the volume (3c). Steps 3a, 3b and 3c are iterated until a final round of proofreading (4) and
the generation of satisfactory final groundtruth labels (5).

Paintera [157] has been used for the manual proofreading of the lateral root. Since version
1.5, similar proofreading capabilities are built in PlantSeg (see Sec. 2.2.6).

This protocol can be used to generate new ground truth datasets for different plant tissues
and microscopy modalities. The initial bootstrapping can be either performed with ilastik
Autocontext Workflow or using PlantSeg build-in models.

2.4 Conclusion

Taking advantage of the latest developments in machine learning and computer vision we
created PlantSeg, a simple, powerful, and versatile tool for plant cell segmentation. Inter-
nally, it implements a two-step algorithm: the images are first passed through a state-of-the-
art convolutional neural network to detect cell boundaries. In the second step, the detected
boundaries are used to over-segment the image using the distance transform watershed and
then a region adjacency graph of the image superpixels is constructed. The graph is parti-
tioned to deliver accurate segmentation even for noisy live imaging of dense plant tissue.

PlantSeg was trained on confocal images of Arabidopsis thaliana ovules and light sheet
images of the lateral root primordia and delivers high-quality segmentation on images from
these datasets never seen during training as attested by both qualitative and quantitative
benchmarks. We experimentedwith different U-Net designs and hyperparameters, as well as
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with different graph partitioning algorithms, to equip PlantSeg with the ones that generalize
the best. This is illustrated by the excellent performance of PlantSegwithout retraining of the
CNNs on a variety of plant tissues and organs imaged using confocal microscopy (3D Cell
Atlas Dataset) including the highly lobed epidermal cells [141]. This feature underlines the
versatility of our approach for images presenting similar features to the ones used in training.
In addition, PlantSeg comes with scripts to train a CNN on a new set of images and evaluate
its performance. Besides the plant data, we compared PlantSeg to the state-of-the-art on
an open benchmark for the segmentation of epithelial cells in the Drosophila wing disc.
Using only the pre-trained networks, PlantSeg performance was shown to be close to the
benchmark leaders, while additional training on challenge data has narrowed the gap even
further.

Unlike intensity-based segmentationmethods used, for example, to extract DAPI-stained
cell nuclei, our approach relies purely on boundary information derived from cell contour de-
tection. While this approach grants access to the cell morphology and cell-cell interactions,
it brings additional challenges to the segmentation problem. Blurry or barely detectable
boundaries lead to discontinuities in themembrane structure predicted by the network, which
in turn might cause cells to be under-segmented. The segmentation results produced by
PlantSeg on new datasets are not fully perfect and still require proof-reading to reach 100%
accuracy. Importantly the newly proof-read results can then be used to train a better network
that can be applied to this type of data in the future (see Sec. 2.2.6 for an overview of this
process). If nuclei are imaged along with cell contours, nuclear signal can be leveraged for
improving the segmentation as we have explored in [150] (see Sec. 2.2.4 for detailed proce-
dure). In future work, we envision developing new semi-supervised approaches that would
exploit the vast amounts of unlabeled data available in the plant imaging community.

During the development of PlantSeg, we realised that very few benchmark datasets were
available to the community for plant cell segmentation tasks, a notable exception being the
3D Tissue Atlas [140]. To address this gap, we publicly release our sets of images and the
corresponding hand-curated ground truth in the hope to catalyse future development and
evaluation of cell instance segmentation algorithms.





Chapter 3

CellTypeGraph: a geometric computer
vision benchmark

Classifying all cells in an organ is a relevant and difficult problem from plant developmen-
tal biology. We here abstract the problem into a new benchmark for node classification
in a geo-referenced graph. Solving it requires learning the spatial layout of the organ in-
cluding symmetries. To allow the convenient testing of new geometrical learning methods,
the benchmark of Arabidopsis thaliana ovules is made available as a PyTorch data loader,
along with a large number of precomputed features. Finally, we benchmark eight recent
graph neural network architectures, finding that DeeperGCN currently works best on this
problem.

3.1 Introduction

Understanding morphogenesis, the generation of form, remains a major challenge in biol-
ogy. It requires a detailed quantitative description of the molecular and cellular processes of
the underlying mechanism. 3D digital organs with cellular spatial resolution promise to help
decipher the morphogenesis of complex organs in plants [104–107]. They can be generated
by 3D microscopic imaging followed by cell instance segmentation and tissue annotation.
Plant organs lend themselves to this approach as they exhibit a relatively well-structured,
layered organization and the tissues can be identified based on their positions and morphol-
ogy. Thus, plant developmental biology is profiting from a growing body of 3D digital
organs. However, automatic annotation [104, 162, 163] of different tissue types within an
organ remains a major problem in the field, particularly for plant organs of complex cellular
architecture and shape such as ovules of Arabidopsis thaliana [111].

In medical image analysis, the analogous problem of segmenting whole-body scans has
been addressed successfully using 3D encoder-decoder CNN architectures [164, 165]. In
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the images of interest to plant morphogenesis, this straightforward approach does not work
as well: here, the semantic classes lack distinctive local and texture features helpful for
convolution based architectures [166]. Instead, the task requires very long-range spatial
awareness and good geometrical reasoning. In response, here we cast the problem as a node
classification task. To succeed, any approach requires informative input features, and indeed
we show that a cell-adjacency graph with cell-level features is a powerful representation.

That said, our primary intent is twofold: first, to create a testing ground for machine
learning on highly structured input. Indeed, it uniquely combines node classification typ-
ical of popular datasets [80–82] with the requirement to generalize across geo-referenced
graphs like in Quantum Chemistry [76–79]. Our second intent is, by allowing computer
vision and machine learning scientists to work on this problem without having to deal with
data-processing issues that actually take the most time in many applied projects, to channel
the creativity and resourcefulness of our community to help solve a fascinating biological
problem.

As a starting point, we present extensive experiments evaluating the performance of
state-of-the-art and popular models.

In summary, we make the following contributions:

1. We propose a new benchmark for node classification in a geo-referenced graph. We
release the benchmark dataset together with a ready-to-use PyTorch [167] data loader.
The source-code and usage instructions are available at:
https://github.com/hci-unihd/celltype-graph-benchmark.

2. We run comparative experiments using state-of-the-art graph neural networks (GNNs)
and offer a study of feature relevance.

3. We provide an extensive set of precomputed features and an additional set of ground
truth labels.

3.1.1 Related work

Arguably the most popular type of dataset for node predictions is the family of citation
datasets, such as Cora [80], CiteSeer [81] or PubMed [82]. Although the task is nominally
identical, the learning task is here transductive, and the underlying topologies are extremely
different. In our CellTypeGraph, the task is inductive, and nodes are geo-referenced with
a limited variance in node degrees and no shortcuts between distant nodes. This is not
typically the case in citation datasets. More closely related are other natural science datasets
such as QM9 [76, 77] or ZINC [78], MoleculeNet [79]. Nodes here represent atoms and

https://github.com/hci-unihd/celltype-graph-benchmark
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Figure 3.1. 3D surface view of a small subset of specimens from the CellTypeGraph Bench-
mark. Different developmental stages are indicated. From left to right the tissue complexity
increases with organ growth. Scale bar 50µm. Bottom: three stages are represented with
their 3D view and a 2D section displaying the internal tissue architecture. Colors show
ground truth cell types.

are geo-referenced. Nevertheless, they are, for the most part, interested in regression and
classification of global graph properties.

The Open Graph Benchmark [168] contains a vast collection of datasets at different
scales and also releases easy to use data loader and evaluation tools. As pointed out in
[168], on many datasets the limited size, lack of agreed-upon train/val/test splits, and use of
different metrics make it hard to measure progress in the field. In CellTypeGraph, we also
release all tools required to ensure simple and reproducible experimentation. Moreover, we
propose cross-validation [169] rather than a simple train/val/test split to further reducing
sampling biases.

Motivated by the success of convolution neural networks, several GNN architectures
attempt to generalize the same concept to non-grid structured data [83, 170, 171]. Those
architectures and many more [86,87,90–95] can be modeled as message passing [89], where
messages built at the node level can be shared over the local neighborhood. In case of
geo-referenced or spatial graphs, the node positions can be used to model the messages
aggregations over the graph adjacency [172, 173]. Alternatively, others [174, 175], have
obtained competitive results on molecular tasks by using only node positions and ignoring
the graph adjacency.
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3.2 CellTypeGraph benchmark

3.2.1 Overview

We introduce the CellTypeGraph Benchmark, aiming to give a valuable tool to the geometric
learning community. To do so, we distilled a publicly available biological dataset [111]
into a ready-to-use machine learning benchmark. In particular, we would like to focus the
community’s attention on two primary objectives:

• Finding better GNN architectures and methodologies. In this case, we encourage
using our pre-computed features, thus allowing direct comparison with our baseline,
see Sec. 3.4.

• Finding more expressive features or, alternatively, replace hand crafted features by
end-to-end learning. We will expand on this point in Sec. 3.3.2.

Progressing in either of the two challenges is an equally valid contribution to achieving the
final goal of improving automated tools for plant-biology.

The statistics of the dataset are summarized in Tab. 3.1.

3.2.2 Raw data

The benchmark dataset is obtained from 3D confocal microscopic images of Arabidopsis
ovule [111]. Ovules are the female gametophyte in higher plants that eventually gives rise
to seeds upon successful fertilization.

The 3D digital ovule atlas is a composite of raw cell boundary images and their respective
cell segmentation which are further tissue annotated. Fig. 3.1 shows a sample ovule from
each developmental stage. Ovules at early stages (2-III to 2-V) protrude from the placental
surface as a simple three layered dome like structure. Ovules form a complex 3D tissue
structure during integument initiation and outgrowth. Four layers of integument tissues
surround the core of the organ (cell labels L1 to L4). Integument tissues undergo growth
conflicts that result in their final shape with a hood-like outer structure at maturity. Inner
tissue layers of integuments are arranged as a bent tube like shape. Overall, the organ is
moulded by complex arrangements of cells in 3D that partly follow a stratified arrangement
of cells in themedial and upper half of the organ and it also forms a partial radial and bilateral
symmetry.

The ground truth cell type labels for the benchmark dataset were obtained semi-automatically
by first using a modified detect layer stack process in MorphographX [176]; and then proof-
reading the results from these predictions manually. Essentially, the layered cells in the
upper medial half of the organ were labeled by the cell layer detection method and then
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Number of specimens 84
Number of developmental stages 9
Total number of cells/nodes 95757
Total number of edges 632443
Average number of nodes per specimen 1140
Average number of edges per specimen 7529
Number of semantic classes 9
Number of node features 78
Number of edge features 11

Table 3.1. Salient statistics of the CellTypeGraph benchmark.

manually corrected, while the rest of the cells from the organ were labeled manually. This
required extensive human input, totaling in the order of 60 human hours for the dataset in
this study.

Tissue annotations allowed in extensive biological analysis of the cellular basis of growth
in different tissues and at different developmental stages [111].

Pre-processing: The segmentation images as published in [111] have been further manu-
ally curated. We have ensured that for each specimen, cells form a single connected compo-
nent. In case of multiple specimen imaged together, they have been split in separate stacks.
Lastly, cell type annotations have been added for missing cells. Although we did our best
to hand curate the data, minor imperfections might still be present due to the variability of
the organs. Since the L5 cell type is rarely present in the later stages, we slightly simplified
the benchmark task by merging the cell types L4 and L5.

3.2.3 Evaluation

Metrics: The ovules cell types are imbalanced. This not only impacts the learning proce-
dure but also requires attention when discussing the results quantitatively. An effective way
to account for imbalance is to evaluate the model performance for each class independently
and then report as final score the average of the single class results. In this work, we use
two metrics, the simple global top-1 accuracy and the class-average accuracy.

In order to further stabilize the class-average accuracy, we ignored cell label 7, see
Fig. 3.2. Cell label 7 represents the “embryo sac”. This tissue is not a cell in itself but is
an ensemble of non-segmentable cells in the inner part of later-stage ovules. This region is
unique and distinct, being the largest and highest degree node in the cell graph. Nevertheless,
we kept the “embryo sac” in the benchmark for training purposes because of its crucial role
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Figure 3.2. 2D section view of a mature Arabidopsis ovule displaying the raw cell boundary
image and the respective CellTypeGraph ground truth labels manually annotated for the
benchmark dataset. Different colors indicate different tissue labels annotated to the 3D
instance cell segmentation. Abbreviations es: embryo sac, nu: nucellus, L1: outer layer of
outer integument, L2: inner layer of outer integument, L3: outer layer of inner integument,
L4/L5: inner layer of inner integument, fu: funiculus, a-ch: anterior chalaza, p-ch: posterior
chalaza. Scale bar 20µm.

in graph connectivity.
Moreover, if any cell type is not present in a specific specimen, that cell type will not be

counted in the class-average accuracy, i.e.,

class-average accuracy =
1

Ns

Ns∑
s=1

∑
c ac · 1s,c∑

c 1s,c

(3.1)

where Ns is the number of specimens, ac is the one-vs-all class accuracy, 1 is an indicator
function valued 1 if the class c is present in the specimen s, 0 otherwise. This is particularly
relevant in the early stages of development.

We release evaluation code for all the metrics introduced above bundled with our bench-
mark.
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Experts consensus The cell types are identified based on patterns of gene expression,
cell position in space, and context in terms of tissue layers. The consensus is strong for
layered cell types (L1 to L4); here, segmentation quality is the dominant source of ambiguity.
But variability can arise in regions where the boundaries of the tissue groups are hard to
determine from the cell position itself; for example, the boundary between fu, ch, and nu. In
order to assess this variability quantitatively and assess a reference performance for an expert
biologist, we produced an independent second set of labels. The overall results are reported
in Tab. 3.2, while an additional breakdown of expert performance at different developmental
stages and for different classes is reported in Fig. 3.3.

Training and evaluation splits: We release our CellTypeGraph data loader in two differ-
ent modes: a standardized train-validation-test split, and a five fold cross-validation split.

Although train-validation-test splits are standard practice in popular machine learning
benchmarks, this approach makes evaluations susceptible to sampling biases [177]. In our
CellTypeGraph, we have high variability between specimens both intra-stage and inter-stage,
see Fig. 3.1. This, combined with the relatively small number of specimens, makes the splits
highly susceptible to sampling bias. We address the stage variability by sampling the same
number of specimen from each stage.

However, to further unbias our experiments, we preferred to focus on a five-fold cross-
validation approach. Cross-validationmitigates the noise coming from the random sampling
at the expense of a more costly training. All presented experiments have been evaluated
using cross-validation.

3.3 Features

This section details the node and edge features included in the CellTypeGraph benchmark.
However, before motivating their choice, it is necessary to discuss the reference system used
to express position and orientation dependent features.

3.3.1 Reference systems

Global reference system: Ovule images acquired by the microscope are not always ori-
ented in the same direction. This inconsistency in specimen orientation could cause poor
generalization of trained models. Possible solutions are to systematically use rotation and
translation equivariant methods or to fix a landmark-based global reference system. The first
solution is more general and shows great potential in terms of generalization and parame-
ter efficiency [178–180]. Equivaraint methods have a clear advatage when no standardized
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Figure 3.3. Class-average accuracy obtained by an expert biologist (A). The early stages
pose the most substantial challenges, although the cause of such high variance can be at-
tributed to the smaller number of cells for each specimen. Per-class accuracy obtained by
an expert biologist (B). In late stages the highest variability sources are the cell types p-ch
and p-ch, while for early stages the highest variability is posed by the cell type L1 to L4.
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Figure 3.4. All reference systems are equally good. We trained bothGCN andDeeperGCN
on five distinct reference systems. There is no statistically significant difference in using
either reference system. The only difference we could observe was in the spread of outliers.

orientation can be formed, as in general chemical problems. In our case, an unambiguous
standard pose can be defined and so for simplicity we opt for a landmark-based approach.

More specifically, we evaluate four landmark-based approaches, both supervised (Label
Surf, Label Fu) and unsupervised (ES trivial, ES PCA). Detailed descriptions can be found in
Appendix B.1. All coordinate systems yield similar accuracy, see Sec. 3.4.2. Nevertheless,
the local reference Label Surf is slightly more consistent and less prone to outliers compared
with the others, see Fig. 3.4. Hence Label Surf was used as default orientation system for
all of our experiments.

Local reference system: Ovule cells have no distinctive anisotropy that can be used to
define a local orientation. However, preferential direction of growth and divisions along the
central curved axis of the organ result in filar arrangement of cells within integument tissue
layers (L1 to L4). This regular filar arrangement of cells can be used to identify integument
tissues and separate them from one another. Integument tissues divide anticlinally to main-
tain their sheet like structure. Cell divisions happen mainly along the transverse anticlinal
direction allowing the tissue to grow in length. Division planes can be further mapped to
faces of cell wall extracted from a 3D instance cell segmentation. This includes longitudinal
anticlinal wall, transverse anticlinal wall and periclinal wall. In order to exploit this prior,
we construct a heuristic algorithm to identify transverse anticlinal walls and define a growth
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Figure 3.5. Automatically extracted local orientation features: the growth and surface di-
rections are represented by the solid yellow lines and solid red lines respectively. Left: a 3D
surface view of a mature Arabidopsis ovule overlaid with the predicted growth directions.
The axis predictions alignwell with the filar arrangement of cells on the organ surface. Right:
surface and growth orientations from the same ovule. Although the orientation of the growth
axis follows the regular structure of the organ, the direction of the axis is arbitrary.

axis based on their connectivity.
Moreover, these tissues (L1 to L4), follow a stratified pattern as they continue dividing

anticlinally. In this case, we propose another simple heuristic to construct a surface axis, par-
allel to the stratification direction. Both algorithms are described in details in Appendix B.2.
The approximate growth axis and surface axis we find in this way have two significant lim-
itation: the axes are not guaranteed to be orthogonal, and only their orientation is defined,
but not their direction. Lastly, in order to have a complete 3D basis for our local reference
system, we simply compute a third axis orthogonal to the first two. An illustration of the
predicted growth and surface axes can be found in Fig. 3.5.

3.3.2 Feature extraction

As a first step, we compute the Cell Adjacency Graph G (N , E), where every cell is repre-
sented as node ni ∈ N and an edge ei,j ∈ E connects every pair of touching cells. Secondly,
we sample a fixed number of points from the surface of each cell. To obtain equally dis-
tributed points, we use the farthest points sampling algorithm [181] over the cell surfaces.
These sampled points are used to compute downstream features more efficiently, when nec-
essary. However, the same surface samples could potentially be used to learn features end-
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to-end, using ideas from equivariant point cloud architectures. Although this direction is
enticing, it would result in a much more complex pipeline. We also sample points from the
boundary shared by any two touching cells, using the same sampling strategy. In each case,
we sample 500 points per node/per edge.

We can divide all features into two categories: invariant and covariant features.

Invariant features are independent from the reference system, and do not change under
rotation or translation of the specimen. These features are either morphological — such as
the cell volume, surface area, lengths along the local reference axis, and the angle formed
between the surface and growth axis — or they are derived from the Cell Adjacency Graph,
such as the shortest path from each node to the ovule surface, current-flow closeness cen-
trality [182], and degree centrality. In Fig. 3.6 we show in false colour a small selection of
invariant features.

Covariant features instead transform with the reference system under rotation and trans-
lation. In this category we include: the cell center of mass, the local reference axes, and the
cell PCA axes. In addition we also include: the angles formed between the local and the
global reference system, and the angles between PCA axes and the global reference system.
Although angles are not formally covariant, they are derived from covariant features and
transform predictably under rotation and translation.

Edge features are also pre-computed in our benchmark, in particular: shared cell bound-
ary surface, the distance between adjacent centers of mass, and the angles between the local
reference axes of adjacent cells. But as discussed in Sec. 3.4.1, these brought no significant
improvement in the architectures we tested.

3.3.3 Feature homogenization

Appropriate feature processing has a great impact on the training dynamics. It is extremely
important to properly normalize and homogenize incommensurable features before concate-
nating them.

To provide the orientation of PCA and local reference system axes to the network, we
used the following transformation:

f : R3 → R6, (x, y, z)→
(
x2, y2, z2, xy, xz, yz

)
,

That is, we removed the ambiguity in choosing direction and not just orientation. This yields
an embedding of the manifold of orientations RP 2 in R6, whose existence is guaranteed by
the Whitney embedding theorem [183,184].
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Figure 3.6. Selection of invariant features. From left to right visualized in false color one
can see: The number of shortest path from each node to the ovule surface, the cell volume
and the current-flow closeness centrality (also called random walker betweenness central-
ity).

All scalar features (except angles) are normalized to zero mean and unit variance. Fur-
thermore, we encode categorical features as a one-hot vector and scale vector features to
unit norm.

This protocol has been established by testing different preprocessing and normalization
strategies for each group of features. Results are shown in Appendix B.3.

We made a best effort to ensure that the features we selected are expressive. However,
our data loader can be easily extended to add new features or change the processing of the
current features. The features discussed so far are all included in the loader by default, but
in Appendix B.3 we list additional features. All raw segmentations, annotations and pre-
computed features are available at https://zenodo.org/record/6374104.

3.4 Benchmarking graph neural networks

To show the accuracy of existing methods on this new benchmark, we experiment with a
large variety of models. We tried to represent the most prevalent GNNs paradigms. In par-
ticular, we tested graph convolutional networks, attention or transformer based architectures
as well as message-passing based architectures.

Architectures: We tested the followingGNN architectures: GCN [83],GraphSAGE, [87],
GIN [90],GCNII [92], andDeeperGCN [93,94]; all as implemented in [185]. Moreover, we
tested a two layer re-implementation of the graph attention networkGAT [86] architecture, a

https://zenodo.org/record/6374104
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variation of the same architecture GATv2 using the graph convolution operation introduced
in [95], and a further variation TransformerGCN utilizing a transformer [22] based graph
convolution from [186].

Two of the architectures tested can take into account edge features, the TransformerGCN
and the DeeperGCN. When trained with edge features we will refer to them as EdgeTrans-
formerGCN and EdgeDeeperGCN. All models used softmax as last layer activation.

Training: All models have been trained with the ADAM optimizer [187] and cross en-
tropy loss with L2 weight penalty. Learning rate, weight regularization and model specific
hyperparameters such as: number of layers, hidden features, dropout etc. have been tuned
for each model using a coarse grid search.

Every training instance uses a single GPU and less than 2GB of VRAM. A complete
five fold cross validation of the DeeperGCN completes in under one hour using a single
Nvidia RTX6000 GPU. For all experiments, source code is provided at https://github.
com/hci-unihd/plant-celltype.

Model

Node Classification top-1 acc. class-avg. acc.

GIN [90] 0.714± 0.071 0.563± 0.136

GCN [83] 0.762± 0.043 0.617± 0.077

GAT [86] 0.824± 0.033 0.705± 0.084

GATv2 [95] 0.855± 0.041 0.757± 0.087

GraphSAGE [87] 0.859± 0.048 0.765± 0.093

GCNII [92] 0.863± 0.050 0.772± 0.100

Transf. GCN [186] 0.868± 0.045 0.779± 0.098

EdgeTransf. GCN [186] 0.868± 0.044 0.777± 0.098

DeeperGCN [94] 0.877± 0.050 0.796± 0.098
EdgeDeeperGCN [94] 0.878± 0.047 0.797± 0.095

Expert Biologist 0.932± 0.025 0.909± 0.049

Table 3.2. Top-1 accuracy and class-average accuracy obtained by different architecture on
the node classification task. DeeperGCN is consistently the best performing architecture.
Nevertheless, DeeperGCN results are still weaker than human expert. EdgeDeeperGCN
and EdgeTransformerGCN have been trained with additional edge features, but their impact
on our metrics was not significant. Uncertainty is defined as the standard deviation over all
specimens and cross-validation folds.

https://github.com/hci-unihd/plant-celltype
https://github.com/hci-unihd/plant-celltype
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3.4.1 Baseline results

In Tab. 3.2, we present the best performing models over the five-fold cross-validation splits
according to the class-average accuracy. DeeperGCN is consistently the best performing
architecture, although it does not match yet the expert biologist performance.

Overall, all attention mechanism methods performed relatively well, while simpler mod-
els like GCN and GIN struggled the most. For both high- and low-end models, using edge
features did not increase accuracy. Fig. 3.8 shows the class-average accuracy broken down
by developmental stages. While DeeperGCN has a decisive advantage in the later stages
compared toGCN, we can observe a much narrower spread in the early stages (2-III to 2-V).
Fig. 3.7 shows the average accuracy by cell type. One can easily identify the categories L2,
L4 and ac to be the most challenging for both GCN and DeeperGCN.
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Figure 3.7. Top-1 accuracy divided by ground truth category. Accuracy varies drastically
across classes. In particular, the GCN accuracy plummets for L2, L4, and a-ch tissues.

3.4.2 Additional experiments

The same standardized setup was used for all our additional experiments. We limited our-
selves to two models, the GCN [83] and the DeeperGCN [94], and used optimal hyper-
parameters from Sec. 3.4, see Appendix B.4 for each.
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Importance of the global reference system

As discussed in Sec. 3.3.1, some of the features are sensitive to the orientation of the speci-
men. We tested and compared four landmark-based orientations plus the trivial orientation,
i.e., center of mass in the origin and original orientation as acquired by themicroscope. From
Fig. 3.4 we can observe no significant difference between different orientations. The only
relevant difference is that the reference system found using the labels exhibits an overall
smaller variance across specimens. On the other end, the trivial representation manifests
the most significant number of outliers. Another interesting question for practitioners is the
ability to generalize if the reference system changes. We tested that by training our pipeline
with three different orientations and always testing on the same. As shown in Tab. 3.4, at
test time, there is a significant drop in accuracy when evaluating on a different orientation.
However, the experiment also shows that this can be mitigated by training on multiple ori-
entations at the same time.

Invariant vs covariant features

To evaluate the respective contribution of invariant and covariant features to the accuracy,
we trained our models using solely one of the two. Tab. 3.3 shows that the invariant features
are unquestionably what the neural networks rely on most.

To further understand the difference, in Fig. 3.8 we report our results for each devel-
opment stage separately. One can see a distinction between the two feature groups: the
invariant features have a stronger impact on the accuracy in the later stages (3-I to 3-VI),
while the covariant features have a more prominent role in the early stages (2-III to 2-V).

Local graph features alone

To emphasize the importance of the Cell Adjacency Graph structure for solving this task, we
also trained models using only the degree of a node and distribution of degrees of is neigh-
bours, the so called degree profile [188]. This is an extremely unfavorable setup since the
degrees are quite homogeneous across the ovule cell graph. The results, shown in Fig. 3.8,
reveal that even then, the networks are still able to predict systematically better than chance.
Moreover, DeeperGCN in later stages performed comparably to the same model trained
using the covariant features.

3.4.3 Data augmentation

Data augmentation is commonly used in machine learning to avoid overfitting in a small
dataset and improve generalization. We tested the impact of two simple approaches on our
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Features GCN DeeperGCN
∆ class-avg. acc. ∆ class-avg. acc.

Only invariant −0.028 −0.019
Only covariant −0.175 −0.337

Table 3.3. Contribution of each feature group to the accuracy. The table shows the difference
between the class average accuracy of the baseline model and the class average accuracy of
the perturbed model. The lower the delta, the higher is the feature importance for the neural
networks. For both architectures, the invariant features are substantially more important
than the covariant features.

Training Data GCN DeeperGCN
class-avg. acc. class-avg. acc.

ES PCA 0.578± 0.089 0.754± 0.118

All but Label Surf 0.618± 0.086 0.787± 0.103

Label Surf 0.613± 0.080 0.790± 0.100

Table 3.4. Generalization under different orientations. We tested how robust our baseline
is to changes in the global orientation axes. We trained our model in different orientations,
and we tested it on a particular one, Label Surf. From the class average accuracy, we can
observe a substantial accuracy drop when training on a single different reference system,
ES PCA. However, this can be easily compensated by augmenting the training data with
multiple orientations. Uncertainty is defined as the standard deviation over all specimens.
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CellTypeGraph Benchmark. The first augmentation is to add Gaussian distributed noise to
the node features, while the second approach is to use random dropout of edges in the cell
adjacency graph, results are reported in Fig. 3.9. Our preliminary results show a small effect
of data augmentation on the metrics, but more exhaustive experimentation is necessary to
draw more solid conclusions.

3.4.4 Inference on new specimens

In addition to the benchmark, we release a dedicated repositorywith all necessary tools to run
our trained models on new specimen. The inference can be run via command line interface.
While for visualizing results and computed features we implemented a Napari viewer plugin.
Source code is provided at https://github.com/hci-unihd/plant-celltype.

3.4.5 Limitations

The CellTypeGraph Benchmark is limited by the number of specimen. Imaging, segmenting,
and annotating large 3D volumes is very time-consuming, and thus the number of specimens
available is smaller compared to other datasets [78,79]. This limitation can be mitigated by
data augmentation. Although not exhaustive, this route did not show visible improvements
in our experiments. A description of the experiments performed and results can be found in
Sec. 3.4.3.

Nevertheless, the structural complexity of the ovules makes them a perfect candidate for
a benchmark. However, ovules are not a universal proxy for all organs in plant-biology, thus
pre-trainedmodels on our benchmark are likely to fail on different organs. Possible solutions
are: i) retraining the models when labels are available. ii) Using self-supervised methods
such as graph autoencoders [189, 190] followed by community clustering in latent space.
Such a setup has proven successful in single-cell data analysis [191, 192]. iii) Speeding up
semi-automated labeling by employing active learning.

3.5 Conclusion

In this chapter, we have introduced a new graph benchmark for node classification, exten-
sively tested several relevant GNN architectures, and released tools for quick experimenta-
tion, data handling, inference, and evaluation.

Beyond the benchmark, we established that GNNs are capable of accurately classifying
cell types in the context of plant biology and have the potential to be a strong ally for quan-
titative biology research. In particular, models like DeeperGCN [94], Transf. GCN [186],

https://github.com/hci-unihd/plant-celltype
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and GCNII [92] have been consistently good performing and are easy to train, making them
prime candidates for future experimentation for similar geo-referenced graph problems.

Although results from our baseline are encouraging, we are excited to discover how far
the geometric learning community will push this task. As discussed in Sec. 3.4.5, tissue
labeling in 3D virtual organs is a relevant and relatively unexplored domain. We also hope
to see use of the benchmark outside the strict paradigms of supervised learning, such as self-
supervised and active learning. Moreover, the two main sources of complexity in the bench-
mark are the hand-crafted features and the need to define a global orientation. End-to-end
feature learning could be achieved by applying models from the point clouds geometric deep
learning domain [181, 193, 194] to our surface sample, see Sec. 3.3.2. While new exciting
frameworks like [75] are expediting easy access to equivariant neural network architectures.
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Figure 3.8. Comparison of the class average accuracy for four different feature sets. As one
would expect, using all features consistently achieves the highest accuracy. Interestingly,
one can observe that the covariant features mostly contribute to accuracy in the early stages
(2-III to 2-V). In the later stages (3-I to 3-VI), the invariant features are themajor contributors
to the overall accuracy. Lastly, even when using only the local degree profile of a node as
its feature, the networks are still able to make better than random predictions on the task.



56 Conclusion

GCN DeeperGCN
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Data Augmentation:
Default
Adj. Dropout p = 0.1
Adj. Dropout p = 0.5
Features Gaussian Noise sigma = 0.1
Features Gaussian Noise sigma = 0.25

C
la

ss
-a

ve
ra

ge
 A

cc
ur

ac
y

Figure 3.9. Comparison of the class-average accuracy for various combinations of network
architecture, data augmentation technique, and parameters. The impact of data augmenta-
tion is negligible in all our experiments. Nevertheless, adjacency dropout (edge drop prob-
ability = 0.5) consistently improves accuracy for the DeeperGCN model.



Chapter 4

Conclusion

In this thesis, we presented two deep learning frameworks for plant biology applications
PlantSeg and CellTypeGraph.

With PlantSeg we introduced a simple to use, yet powerful, software for Instance seg-
mentation. The core pipeline comprises two main elements: a robust U-Net and multiple
graph clustering-based segmentation algorithms. Out of the box, PlantSeg contains sev-
eral pre-trained models for boundary detection for various plant tissues, microscopy modal-
ities, and voxels resolutions. Furthermore, it implements proofreading and training tools
for expanding the model pool. Four core segmentation algorithms (DT-Watershed, GASP,
MutexWS, and MultiCut) are implemented in PlantSeg, and the robustness and accuracy
of these were shown on several external benchmarks (see Sec. 2.2.2, Sec. 2.2.3) and vali-
dated by independent studies [195]. In addition, PlantSeg allows users to leverage multi-
staining imaging of boundaries and nuclei by providing pre-trained nuclei detection models,
the Lifted MultiCut workflow (see Sec. 2.2.4), and automated cell segmentation proofread-
ing from nuclei (see Sec. 2.2.5). As such, PlantSeg has contributed to several biological
findings [108,113,196–198].

In chapter 3, we introduced CellTypeGraph, a benchmark for cell type classification.
The goal of this framework is two-fold, providing a unique benchmark for developing new
GNN architectures and methodologies and simultaneously providing new tools for plant
developmental biologists to automatize the laborious manual annotation work. Tomaximize
the ease of adoption of CellTypeGraph, we release a ready-to-use PyTorch data loader and a
large set of precomputed node and edge features. Furthermore, we provide a strong baseline
using state-of-the-art GNNs and offer a study to assess the feature relevance. The positive
results presented in Sec. 3.4 have shown that this approach is a viable method for cell type
classification in plant organs. Nevertheless, further developments are still required to close
the gap with human expert performance on this task.

PlantSeg andCellTypeGraph are contributing to bridging the gap betweenmachine learn-
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ing research and life science practitioners. We strongly believe that such type of frameworks
will play a central role in future research endeavours.
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PlantSeg

A.1 Supplemental figures
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Figure A.1. Precision-recall curves on individual stacks for different CNN variants on the
ovule (A) and lateral root primordia (B) datasets. Efficiency of boundary prediction was
assessed for seven training procedures that sample different type of architecture (3D U-Net
vs. 3D Residual U-Net), loss function (BCE vs. Dice vs. BCE-Dice)) and normalization
(Group-Norm (GN) vs. Batch-Norm (BN)). The larger the area under the curve, the better
the precision. Source files used to generate the precision-recall curves are available in the
Appendix 4 Figure 1-source data 1.
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A.2 Supplemental tables

Segmentation ARand VOIsplit VOImerge

Ovules

DTWS 0.135 ± 0.036 0.585 ± 0.042 0.320 ± 0.089
GASP 0.114 ± 0.059 0.357 ± 0.066 0.354 ± 0.109
MultiCut 0.145 ± 0.080 0.418 ± 0.069 0.429 ± 0.124
Mutex 0.115 ± 0.059 0.359 ± 0.066 0.354 ± 0.108

Lateral Root Primordia

DTWS 0.550 ± 0.158 1.869 ± 0.174 0.159 ± 0.073
GASP 0.037 ± 0.029 0.183 ± 0.059 0.237 ± 0.133
MultiCut 0.037 ± 0.029 0.190 ± 0.067 0.236 ± 0.128

Lifted Multicut 0.040 ± 0.039 0.162 ± 0.068 0.287 ± 0.207
Mutex 0.105 ± 0.118 0.624 ± 0.812 0.542 ± 0.614

Table A.1. Average segmentation accuracy for different segmentation algorithms. The av-
erage is computed from a set of seven specimen for the ovules and four for the lateral root
primordia (LRP), while the error ismeasured by standard deviation. The segmentation is pro-
duced by multicut, GASP, mutex watershed (Mutex) and DT watershed (DTWS) clustering
strategies. We additionally report the scores given by the lifted multicut on the LRP dataset.
The Metrics used are the Adapted Rand error to asses the overall segmentation quality, the
VOImerge and VOIsplit respectively assessing erroneous merge and splitting events (lower is
better for all metrics). Source files used to create the table are available in the Appendix 5
Table 2-source data 1.



Supplemental tables 61

Network and Resolution Accuracy (%) Precision Recall F 1

Ovules

3D-Unet, Lbce, Group-Norm 97.9 ± 1.0 0.812 ± 0.083 0.884 ± 0.029 0.843 ± 0.044
3D-Unet, Lbce, Batch-Norm 98.0 ± 1.1 0.815 ± 0.084 0.892 ± 0.035 0.849 ± 0.047
3D-Unet, Ldice, Group-Norm 97.6 ± 1.0 0.765 ± 0.104 0.905 ± 0.023 0.824 ± 0.063
3D-Unet, Ldice, Batch-Norm 97.8 ± 1.1 0.794 ± 0.084 0.908 ± 0.030 0.844 ± 0.048
3D-Unet, Lbce + Ldice, Group-Norm 97.8 ± 1.1 0.793 ± 0.086 0.907 ± 0.026 0.843 ± 0.048
3D-Unet, Lbce + Ldice, Batch-Norm 97.9 ± 0.9 0.800 ± 0.081 0.898 ± 0.025 0.843 ± 0.041
3D-Resunet, Lbce, Group-Norm 97.9 ± 0.9 0.803 ± 0.090 0.880 ± 0.021 0.837 ± 0.050
3D-Resunet, Lbce, Batch-Norm 97.9 ± 1.0 0.811 ± 0.081 0.881 ± 0.031 0.841 ± 0.042
3D-Resunet, Ldice, Group-Norm 95.9 ± 2.6 0.652 ± 0.197 0.889 ± 0.016 0.730 ± 0.169
3D-Resunet, Ldice, Batch-Norm 97.9 ± 1.1 0.804 ± 0.087 0.894 ± 0.035 0.844 ± 0.051
3D-Resunet, Lbce + Ldice, Group-Norm 97.8 ± 1.1 0.812 ± 0.085 0.875 ± 0.026 0.839 ± 0.044
3D-Resunet, Lbce + Ldice, Batch-Norm 98.0 ± 1.0 0.815 ± 0.087 0.892 ± 0.035 0.848 ± 0.050

Lateral Root Primordia

3D-Unet, Lbce, Group-Norm 97.1 ± 1.0 0.731 ± 0.027 0.648 ± 0.105 0.684 ± 0.070
3D-Unet, Lbce, Batch-Norm 97.2 ± 1.0 0.756 ± 0.029 0.637 ± 0.114 0.688 ± 0.080
3D-Unet, Ldice, Group-Norm 96.1 ± 1.1 0.587 ± 0.116 0.729 ± 0.094 0.644 ± 0.098
3D-Unet, Ldice, Batch-Norm 97.0 ± 0.9 0.685 ± 0.013 0.722 ± 0.103 0.700 ± 0.056
3D-Unet, Lbce + Ldice, Group-Norm 96.9 ± 1.0 0.682 ± 0.029 0.718 ± 0.095 0.698 ± 0.060
3D-Unet, Lbce + Ldice, Batch-Norm 97.0 ± 0.8 0.696 ± 0.012 0.716 ± 0.101 0.703 ± 0.055
3D-Resunet, Lbce, Group-Norm 97.3 ± 1.0 0.766 ± 0.039 0.668 ± 0.089 0.712 ± 0.066
3D-Resunet, Lbce, Batch-Norm 97.0 ± 1.1 0.751 ± 0.042 0.615 ± 0.116 0.673 ± 0.086
3D-Resunet, Ldice, Group-Norm 96.5 ± 0.9 0.624 ± 0.095 0.743 ± 0.092 0.674 ± 0.083
3D-Resunet, Ldice, Batch-Norm 97.0 ± 0.9 0.694 ± 0.019 0.724 ± 0.098 0.706 ± 0.055
3D-Resunet, Lbce + Ldice, Group-Norm 97.2 ± 1.0 0.721 ± 0.048 0.735 ± 0.076 0.727 ± 0.059
3D-Resunet, Lbce + Ldice, Batch-Norm 97.0 ± 0.9 0.702 ± 0.024 0.703 ± 0.105 0.700 ± 0.063

Table A.2. Ablation study of boundary detection accuracy. Accuracy of boundary predic-
tion was assessed for twelve training procedures that sample different type of architecture
(3D U-Net vs. 3D Residual U-Net), loss function (BCE vs. Dice vs. BCE-Dice) and nor-
malization (Group-Norm vs. Batch-Norm). All entries are evaluated at a fix threshold of
0.5. Reported values are the means and standard deviations for a set of seven specimen for
the ovules and four for the lateral root primordia. Source files used to create the table are
available in the Appendix 5 Table 1-source data 1.
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A B C D

Figure A.2. PlantSeg GUI. The interface allows to configure all execution steps of the seg-
mentation pipeline, such as: selecting the neural network model and specifying hyperparam-
eters of the partitioning algorithm. Tab. A.3 describes the Pre-processing (A) parameters.
Tab. A.4 provides parameters guide for the CNN Predictions and Post-processing (B, D).
Hyperparameters for Segmentation and Post-processing (C, D) are described in Tab. A.5.

A.3 PlantSeg - parameters guide

The PlantSeg workflow can be customized and optimized by tuning the pipeline’s hyperpa-
rameters. The large number of available options can be intimidating for new user, therefore
we provide a short guide to explain them. For more detailed and up-to-date guidelines please
visit the project’s GitHub repository: https://github.com/hci-unihd/plant-seg.

https://github.com/hci-unihd/plant-seg
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Process Type Parameter Name Range Default Description

Data
Pre-processing

Save Directory text ”PreProcessing” Create a new sub folder where all re-
sults will be stored.

Rescaling (z, y, z) tuple [1.0, 1.0, 1.0] The rescaling factor can be used to
make the data resolution match the
resolution of the dataset used in train-
ing. Pressing the ”Guided” button in
the GUI a widget will help the user
setting up the right rescaling.

Interpolation menu 2 Defines order of the spline interpo-
lation. The order 0 is equivalent to
nearest neighbour interpolation, 1 is
equivalent to linear interpolation and
2 quadratic interpolation.

Filter menu Disabled Optional: perform Gaussian smooth-
ing or median filtering on the in-
put. Filter has an additional param-
eter that set the sigma (gaussian) or
disc radius (median).

Table A.3. Parameters guide for Data Pre-processing. Menu A in Fig. A.2.
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Process Type Parameter Name Range Default Description

CNN Prediction Model Name text ”generic_confocal...” Trained model name. Models
trained on confocal (model name:
”generic_confocal_3D_unet”)
and lightsheet (model name:
”generic_confocal_3D_unet”) data
as well as their multi-resolution
variants are available: More info
on available models and importing
custom models can be found in the
project repository.

Patch Size tuple [32, 128, 128] Patch size given to the network. A
bigger patches cost more memory
but can give a slight improvement in
performance. For 2D segmentation
the Patch size relative to the z axis
has to be set to 1.

Stride menu Balanced Specifies the overlap between neigh-
boring patches. The bigger the over-
lap the the better predictions at the
cost of additional computation time.
In the GUI the stride values are au-
tomatically set, the user can choose
between: Accurate (50% overlap be-
tween patches), Balanced (25% over-
lap between patches), Draft (only 5%
overlap between patches).

Device Type menu ”cpu” If a CUDA capable gpu is available
and setup correctly, ”cuda” should
be used, otherwise one can use
”cpu” for cpu only inference (much
slower).

Prediction
Post-processing

Convert to tiff bool False If True the prediction is exported as
tiff file.

Cast Predictions menu ”data_float32” Predictions stacks are generated in
”float32”. Or ”uint8” can be alter-
natively used to reduce the memory
footprint.

Table A.4. Parameters guide for CNN Predictions and Post-processing. Menu B and D in
Fig. A.2.
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Process Type Parameter Name Range Default Description

Segmentation Algorithm menu ”GASP” Defines which algorithm will be
used for segmentation.

Save Directory text ”GASP” Create a new sub folder where all re-
sults will be stored.

Under/Over seg. fac. (0.0...1.0) 0.6 Define the tendency of the algo-
rithm to under of over segment the
stack. Small value bias the result to-
wards under-segmentation and large
towards over-segmentation.

Run Watersed in 2D bool True If True the initial superpixels par-
tion will be computed slice by slice,
if False in the whole 3D volume at
once. While slice by slice drastically
improve the speed and memory con-
sumption, the 3D is more accurate.

CNN Prediction Threshold (0.0...1.0) 0.5 Define the threshold used for super-
pixels extraction and Distance Trans-
form Watershed. It has a crucial
role for the watershed seeds extrac-
tion and can be used similarly to the
”Unde/Over segmentation factor” to
bias the final result. An high value
translate to less seeds being placed
(more under segmentation), while
with a low value more seeds are
placed (more over segmentation).

Watershed Seeds Sigma float 2.0 Defines the amount of smoothing
applied to the CNN predictions for
seeds extraction. If a value of 0.0
used no smoothing is applied.

Watershed Boundary Sigma float 0.0 Defines the amount of Gaussian
smoothing applied to the CNN pre-
dictions for the seeded watershed
segmentation. If a value of 0.0 used
no smoothing is applied.

Superpixels Minimum Size integer 50 Superpixels smaller than the thresh-
old (voxels) will be merged with a
the nearest neighbour segment.

Cell Minimum Size integer 50 Cells smaller than the threshold (vox-
els) will be merged with a the nearest
neighbour cell.

Segmentation
Post-processing

bool False Convert to tiff If True the segmentation is exported
as tiff file.

Table A.5. Parameters guide for Segmentation. Menu C and D in Fig. A.2.
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A.4 Empirical example of parameter tuning

PlantSeg’s default parameters have been chosen to yield the best result on our core datasets
(Ovules, LRP). Furthermore, not only segmentation performances but also resource require-
ments have been taken into account, e.g. super-pixels are extracted in 2D by default in order
to reduce the pipeline runtime and memory usage.
Nevertheless, when applying PlantSeg on a new dataset tuning parameters tuningthe default
parameters can lead to improved segmentation results. Unfortunately, image stacks can vary
in: imaging acquisition, voxels resolutions, noise, cell size and cell morphology. All those
factors make it very hard to define generic guidelines and optimal results will always require
some trial and error.

Here we present an example of empirical parameter tuning where we use a 3D Cell
Atlas as a test dataset since we can quantitatively evaluate the pipeline’s performance on it.
We will show how we can improve on top of the results presented in Table 1 of the main
manuscript. Since the number of parameters does not allow for a complete grid search we
will focus only on three key aspects: model/rescaling, over/under segmentation factor and
3D vs 2D super pixels.

• model/rescaling: As we showed in the main text, on this particular data the default
confocal CNN model already provides a solid performance. If we now take into con-
sideration the voxel resolution, we have two possible choices. Using a CNN model
trained on a more similar resolution or if this is not possible using the rescaling factor
to reduce the resolution gap further. In Tab. A.6 we can see how the results vary if
we take into consideration those two aspects. In particular we can observe that in this
case the rescaling of voxels depth of a factor 3x considerably improved the overall
scores.

• over/under segmentation factor: Now that we have tuned the network predictions
we can move to tuning the segmentation performance. The main parameter we can
use is the over/under segmentation factor, this will try to compensate the over- or
under-segmentation. From the results in Tab. A.6 we can observe a strong tendency
towards under-segmentation, this suggest that increasing the over/under segmentation
factor will balance the segmentation. In table Tab. A.7 we can see the results for three
different values, increasing the over/under segmentation factor as the desired effect
and overall improved the results.

• 3D vs 2D super pixels: Already tuning this two aspects of the pipeline drastically
improved the segmentation according to our metrics. as a final tweak we can switch
to 3D super pixels to further improve results. In Tab. A.8 we present the final results.
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Dataset
generic confocal (Default) ds3 confocal ds3 confocal + rescaling
ARand VOIsplit VOImerge ARand VOIsplit VOImerge ARand VOIsplit VOImerge

Anther 0.328 0.778 0.688 0.344 1.407 0.735 0.265 0.748 0.650
Filament 0.576 1.001 1.378 0.563 1.559 1.244 0.232 0.608 0.601
Leaf 0.075 0.353 0.322 0.118 0.718 0.384 0.149 0.361 0.342
Pedicel 0.400 0.787 0.869 0.395 1.447 1.082 0.402 0.807 1.161
Root 0.248 0.634 0.882 0.219 1.193 0.761 0.123 0.442 0.592
Sepal 0.527 0.746 1.032 0.503 1.293 1.281 0.713 0.652 1.615
Valve 0.572 0.821 1.315 0.617 1.404 1.548 0.586 0.578 1.443
Average 0.389 0.731 0.927 0.394 1.289 1.005 0.353 0.600 0.915

Table A.6. Comparison between the generic confocal CNNmodel (default in PlantSeg), the
closest confocal model in terms of xy plant voxels resolution ds3 confocal and the combina-
tion of ds3 confocal and rescaling (in order to mach the training data resolution a rescaling
factor of (3, 1, 1) zxy has been used). The later combination showed the best overall results.
To be noted that ds3 confocal was trained on almost isotropic data, while the 3D Digital
Tissue Atlas is not isotropic. Therefore poor performances without rescaling are expected.
Segmentation obtained with GASP and default parameters

Overall the final improvement is roughly a factor of ×2 in terms of ARand score
compared to PlantSeg default.

Further fine tuning could be performed on the PlantSeg parameters to further improve
the scores.
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ds3 confocal + rescaling

Dataset
over/under factor 0.5 over/under factor 0.6 (Default) over/under factor 0.7

ARand VOIsplit VOImerge ARand VOIsplit VOImerge ARand VOIsplit VOImerge
Anther 0.548 0.540 1.131 0.265 0.748 0.650 0.215 1.130 0.517
Filament 0.740 0.417 1.843 0.232 0.608 0.601 0.159 0.899 0.350
Leaf 0.326 0.281 0.825 0.149 0.361 0.342 0.117 0.502 0.247
Pedicel 0.624 0.585 2.126 0.402 0.807 1.161 0.339 1.148 0.894
Root 0.244 0.334 0.972 0.123 0.442 0.592 0.113 0.672 0.485
Sepal 0.904 0.494 2.528 0.713 0.652 1.615 0.346 0.926 1.211
Valve 0.831 0.432 2.207 0.586 0.578 1.443 0.444 0.828 1.138
Average 0.602 0.441 1.662 0.353 0.600 0.915 0.248 0.872 0.691

Table A.7. Comparison between the results obtained with three different over/under seg-
mentation factor (0.5, 0.6, 0.7). The effect of tuning this parameter is mostly reflected in
the VOIs scores. In this case the best result have been obtained by steering the segmentation
towards the over segmentation.

ds3 confocal + rescaling
over/under factor 0.7

Dataset
Super Pixels 2D (Default) Super Pixels 3D

ARand VOIsplit VOImerge time (s) ARand VOIsplit VOImerge time (s)
Anther 0.215 1.130 0.517 600 0.167 0.787 0.399 2310
Filament 0.159 0.899 0.350 120 0.171 0.687 0.487 520
Leaf 0.117 0.502 0.247 800 0.080 0.308 0.220 3650
Pedicel 0.339 1.148 0.894 450 0.314 0.845 0.604 2120
Root 0.113 0.672 0.485 210 0.101 0.356 0.412 920
Sepal 0.346 0.926 1.211 770 0.257 0.690 0.966 3420
Valve 0.444 0.828 1.138 530 0.300 0.494 0.875 2560
Average 0.248 0.872 0.691 500 0.199 0.595 0.566 2210

Table A.8. Comparison between 2D vs 3D super pixels. From out experiments, segmenta-
tion quality is almost always improved by the usage of 3D super pixels. On the other side,
the user should be aware that this improvement comes at the cost of a large slow-down of
the pipeline (roughly ×4.5 on our system Intel Xenon E5-2660, RAM 252Gb).
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A.5 Biological material and imaging

Imaging of theArabidopsis thaliana ovules was performed as described in [137]. Imaging of
the shoot apical meristem was performed as previously described [199,200] with a confocal
laser scanning microscope (Nikon A1, 25× NA=1.1) after staining cell walls with DAPI
(0.2mg/ml).

For imaging of Arabidopsis thaliana lateral root, seedlings of the line sC111 (UB10pro ::

PIP1, 4−3×GFP/GATA23pro :: H2B : 3×mCherry/DR5v2pro :: 3×Y FPnls/RPS5Apro ::

dtTomato : NLS, described in [138]) were used at 5 day post germination. Sterilized seeds were
germinated on top of 4.5 mm long Blaubrand micropipettes (Cat 708744; 100µl) that were immo-
bilised on the bottom of a petri dish and covered with 1

2MS-phytagel [201]. Before sowing, the top
of the micropipettes is exposed by removing the phytagel with a razor blade and one seed is sowed
per micropipette. Plates were stratified for two days and transfered to a growth incubator (23◦C, 16h
day light). Imaging was performed on a Luxendo MuViSPIM (https://luxendo.eu/products/
muvi-spim/) equipped with two 10× NA=0.3 for illumination and 40× NA=0.8 for detection. The
following settings were used for imaging: image size 2048 × 2048, exposure time 75ms, channel
#1 illumination 488nm 10% power, detection 497-553nm band pass filter, channel #2 illumination
561nm 10% power, detection 610-628nm band pass filter. Stacks encompassing the whole volume
of the root were acquired every 30 minutes. Images from the two cameras were fused using the Lux-
endo Image processing tool and registered to correct any 3D drift using the BigDataProcessor [202]
in Fiji [203].

https://luxendo.eu/products/muvi-spim/
https://luxendo.eu/products/muvi-spim/
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CellTypeGraph

B.1 Global reference axis

Our landmark-based global reference systems are defined by fixing an origin and an orthogonal 3D
vectors basis. A good land-mark should be retrievable from the ground truth labels at training time,
but should also be easy to identify by a human without ground truth labels at test time.

We choose the following four approaches:

Label Surf: The origin is defined as the center of mass of the L1 tissue. The main axis is found
by approximately determining the integument tissue symmetry axis. This is achieved by finding for
each tissue in the integument (L2, L3, L4, es, nu) the respective center of mass. Then, we use least-
square linear regression to find the best line interpolating the integument tissue. The second axis is
found by finding the line passing through fu tissue center of mass and perpendicular to the main axis.
The third axis is computed by taking the cross-product between the first and second axes.

Label Fu: The origin is defined as the center ofmass of the fu tissue. The global axes are computed
as in the Label Surf.

Es trivial: Here we use the Es tissue to fix an origin for the reference system. It is usually easily
identifiable by its large size and central position. We set the reference system origin to the Es center
of mass. While for the axis, we use the original orientation as acquired by the microscope.

Es PCA: The origin is the same as Es Trivial. But the system axes are set to the PCA axes of the
whole ovule.

Our python implementation can be found at: https://github.com/hci-unihd/plant-celltype/
blob/main/plantcelltype/features/cell_vector_features.py.
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https://github.com/hci-unihd/plant-celltype/blob/main/plantcelltype/features/cell_vector_features.py
https://github.com/hci-unihd/plant-celltype/blob/main/plantcelltype/features/cell_vector_features.py
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B.2 Growth and surface axis

To compute the local reference system, we designed two simple heuristics. We estimate the surface
axis of a cell by averaging over directions corresponding to the edges connecting the cell to all
neighbors which are closer to the surface. These directions are defined as the edge surface normal
direction.
The growth axes are found by looking for each cell the most co-linear pair of neighboring cells.

The algorithms used to compute the surface axis and growth axis are described in more detail
respectively in Algorithm 1 andAlgorithm 2. Our python implementation can be found at: https://
github.com/hci-unihd/plant-celltype/blob/main/plantcelltype/utils/axis_transforms.
py.

Algorithm 1 Compute Surface Axis
Require: node, edges ▷ Vectors containing: nodes ids, edges ids.
Require: hops ▷ Vectors containing: number of hops from each node to the surface.
Require: directions, bg ▷ Vector containing: edges directions (surface normal), background node
id.
N← len(node)
surface-axis← zeros(N, 3) ▷ Initialize an array full of zeros.
for (i = 0, i = N, i++) do

if hopsi = 1 then ▷ I.e. node is on the organ surface.
e← find-edge(nodei, bg, edges) ▷ Find edge id between nodei/nodej .
surface-axisi ← directionse

else
neighborsi ← find-neighbors(nodei, edges) ▷ Find all nodes neighbors of nodei.
Ni, count← len(neighborsi), 0
for j = 0, j = Ni, j++ do ▷ Loop over the neighborhood.

if hopsj < hopsi then ▷ If neighbor is closer to surface.
e← find-edge(nodei, nodej , edges) ▷ Find edge id between nodei/nodej .
surface-axisi ← surface-axisi + directionse ▷ Average edges normal.
count = count + 1

end if
surface-axisi ← surface-axisi/count

end for
end if

end for

https://github.com/hci-unihd/plant-celltype/blob/main/plantcelltype/utils/axis_transforms.py
https://github.com/hci-unihd/plant-celltype/blob/main/plantcelltype/utils/axis_transforms.py
https://github.com/hci-unihd/plant-celltype/blob/main/plantcelltype/utils/axis_transforms.py
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Algorithm 2 Compute Growth Axis
Require: node, edges ▷ Vectors containing: nodes ids, edges ids.
Require: coms, hops ▷ Vectors containing: nodes center of mass, number of hops from each node
to the surface.
N← len(node)
growth-axis← zeros(N, 3) ▷ Initialize an array full of zeros.
for (i = 0, i = N, i++) do

Θmin ← 1
neighborsi ← find-neighbors(nodei, edges) ▷ Find all nodes neighbors of nodei.
Ni ← len(neighborsi)
for j = 0, j = Ni, j++ do ▷ Loop over all tuple (nodej , nodej) of distinct neighbors of nodei.

vectorij = get-vector(nodei, nodej , coms) ▷ Find vector connecting nodei/nodej center of
masses.

for k = j + 1, k = Ni, k++ do
vectorik = get-vector(nodei, nodek, coms)
Θ = get-angle(vectorij , vectorik) ▷ Angle is measured as the normalized dot product

between the two vectors.
if Θ < Θmin and hopsi = hopsj = hopsk then ▷When the angle is minimum the

cell are the most co-linear.
Θmin ← Θ

growth-axisi ← vectorij
end if

end for
end for

end for
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Figure B.1. Class-average accuracy comparison between different vector features represen-
tations. Using the orientation instead of axis resulted in a small but consistent improvement
in performance.

B.3 Features

We here report the results of additional experiments conducted to identify the best feature homoge-
nization strategy. In Fig. B.1, we tested the difference between different vector representations. In
Fig. B.3 and Fig. B.2, we tested the normalizations for the graph features and the maximum value
to be used in our hops to surface feature. In Fig. B.4 and Fig. B.5 we tested different normaliza-
tion applied to respectively morphological and angles features. Lastly, in Fig. B.6 we tested the
impact of using lengths measured in several directions as features, similarly to [162]. An overview
of all features available in the CellTypeGraph benchmark is reported in Tab. B.1, Tab. B.2. Our
python implementation can be found at: https://github.com/hci-unihd/plant-celltype/
tree/main/plantcelltype/features

B.4 Grid search complete results

Experiment parameters setup is reported in Tab. B.3. The configuration files used to run our ex-
periments can be fount at: https://github.com/hci-unihd/plant-celltype/tree/main/
experiments/node_grid_search

https://github.com/hci-unihd/plant-celltype/tree/main/plantcelltype/features
https://github.com/hci-unihd/plant-celltype/tree/main/plantcelltype/features
https://github.com/hci-unihd/plant-celltype/tree/main/experiments/node_grid_search
https://github.com/hci-unihd/plant-celltype/tree/main/experiments/node_grid_search
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Figure B.2. Class-average accuracy with varying maximum number of hops. Hops to sur-
face are intuitively closely related to the tissue stratification L1-L4, but their relation loosen
with depth. We tested how important this feature is by clipping its value. From the results
one can see that the feature contribution saturates after three hops.
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Figure B.3. Class-average accuracy between different graph feature normalizations. One
can see a slight accuracy improvement using z-score normalization.
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Figure B.4. Class-average accuracy comparison between different morphological features
normalizations. One can see a slight accuracy improvement using z-score normalization.
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Figure B.5. Class-average accuracy between different angles normalization. Angles are
naturally normalized between -1 and 1, in our experiments the z-score had no significant
impact.
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Figure B.6. Class-average accuracy between: baseline features only, and baseline features
plus additional lengths features. In our experiments the additional lengths showed no signif-
icant contribution to the accuracy.
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Feature Name Invariant Default Size Description

Center of mass ✓ 3 Cell center of mass represented in
the global reference system, ex-
pressed in µm.

Center of mass / GRS Proj. 3 Angles between the cell center of
mass and the global reference sys-
tem.

LRS axis 9 Growth axis, surface axis and third
perpendicular axis.

LRS orientations ✓ 18 Direction invariant growth axis, sur-
face axis and third perpendicular
axis.

LRS / GRS Proj. ✓ ✓ 9 Angles between the LRS axis and the
global reference system.

Growth/Surface axis angle ✓ ✓ 1 Angle between growth and surface
axis.

Growth axis alignment ✓ ✓ 1 Angle between periclinial cell walls
along predicted growth direction,
measure how good is the fit is.

Length LRS ✓ ✓ 3 Cell length along the LRS directions.

PCA axis 9 Principal component analysis axis.
PCA orientations ✓ 18 Direction invariant principal compo-

nent analysis.
PCA / GRS Proj. ✓ ✓ 9 Angles between the PCA axis and

the global reference system.
PCA explained variance ✓ ✓ 3 PCA axis explained variance.

Surface ✓ ✓ 1 Cell surface area in µm.
Volume ✓ ✓ 1 Cell volume in µm.
Lengths uniform samples 64 Cell length in uniform directions.

Hops to Surface ✓ ✓ 1 Shortest path length on the graph be-
tween a cell and the surface. For
this measure we ignore the geo-
localization of nodes, and consider
all neighbors one hop distant.

Degree Centrality ✓ ✓ 1 Degree centrality.
CFC centrality ✓ ✓ 1 Current-flow closeness centrality.

Table B.1. Complete list of node features pre-computed in the CellTypeGraph.
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Feature Name Invariant Default Size Description

Center of mass surface ✓ ✓ 3 Cell Surface (edge) center of mass
represented in the global reference
system, expressed in µm.

Center of mass distance ✓ ✓ 1 Distance between two adjacent cell
center of mass.

Center of mass /GRS Proj. ✓ 3 Angles between two adjacent cell
center of mass direction and the
global reference system.

LRS Proj. ✓ ✓ 3 Angles between local reference sys-
tem in adjacent cells.

Surface ✓ ✓ 1 Edge surface area in µm.

Table B.2. Complete list of edge features pre-computed in the CellTypeGraph.

B.5 Baseline implementation details

In our baseline, we benchmark eight different graph neural network architectures. We report here the
most salient implementation details. For GCN [83], GraphSAGE, [87], GIN [90], GCNII [92], and
DeeperGCN [93, 94]; we followed the pytorch_geometric implementation [185]. In all the afore-
mentioned architectures the convolutions block are composed as follows: Graph Convolution →
Relu activation [204]→ normalization→ Dropout [14]. The number of convolutions blocks used
is an hyper parameter. In addition in DeeperGCN and GCNII and addition linear layer is added
before the first graph convolution layer and after the last graph convolution layer. While for the
remaining architectures GAT [86], GATv2 [95], and TransformerGCN [22,186], we used graph con-
volutions as implemented in [185] but with some minor differences in the convolution block lay-
out: Graph Convolution→ normalization→ Relu activation [204]→ Dropout [14]. All source im-
plementation are released at https://github.com/hci-unihd/plant-celltype/blob/main/
plantcelltype/graphnn/graph_models.py.

https://github.com/hci-unihd/plant-celltype/blob/main/plantcelltype/graphnn/graph_models.py
https://github.com/hci-unihd/plant-celltype/blob/main/plantcelltype/graphnn/graph_models.py
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Model Optimizer Model Params. top-1 acc. class-avg. acc.

GIN [90] lr = 10−2 # feat = 64 0.714± 0.071 0.563± 0.136

wd = 10−5 # layers = 2

dropout = 0.1

GCN [83] lr = 10−2 # feat = 128 0.762± 0.043 0.617± 0.077

wd = 10−5 # layers = 2

dropout = 0.5

GAT [86] lr = 10−3 # feat = 256 0.824± 0.033 0.705± 0.084

wd = 0 # layers = 2

dropout = 0.5

heads = 3

concat. = True

GATv2 [95] lr = 10−3 # feat = 256 0.855± 0.041 0.757± 0.087

wd = 10−5 # layers = 2

dropout = 0.5

heads = 3

concat. = True

GraphSAGE [87] lr = 10−3 # feat = 128 0.859± 0.048 0.765± 0.093

wd == 10−5 # layers = 4

dropout = 0.1

GCNII [87] lr = 10−2 # feat = 128 0.863± 0.050 0.772± 0.100

wd = 10−5 # layers = 4

dropout = 0.0

share weight = False

Transf. GCN [186] lr = 10−3 # feat = 128 0.868± 0.045 0.779± 0.098

wd = 10−5 # layers = 2

dropout = 0.5

heads = 3

concat. = True

EdgeTransf. GCN [186] lr = 10−3 # feat = 128 0.868± 0.044 0.777± 0.098

wd = 0 # layers = 2

dropout = 0.5

heads = 5

concat. = True

DeeperGCN [94] lr = 10−3 # feat = 128 0.877± 0.050 0.796± 0.098
wd = 0 # layers = 32

dropout = 0.0

EdgesDeeperGCN [94] lr = 10−3 # feat = 128 0.878± 0.047 0.797± 0.095
wd = 10−5 # layers = 16

dropout = 0.0

Table B.3. Best performing optimizer and model parameters according to the class-avg.
accuracy.
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1.1 Segmentation tasks samples in a light sheet microscopy. In (A) and (B), one can see
two examples of semantic segmentation, where the task is to classify each pixel into
one of three different semantic classes: cell boundary, nucleus, and background. In
(C) and (D), one can see two examples of instance segmentation, where the task is
to assign a unique identifier to each categorical object in the scene, such as cells in
(C) and nuclei in (D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 During the years since its introduction in [24], the implementation details of the U-
Net style architecture have varied following the progress of deep learning research.
Here is shown a diagram of a generic U-Net style architecture. . . . . . . . . . . . . 4

1.3 Celltype graph benchmark overview. In the top row, we can see a raw image of
an Arabidopsis thaliana ovule (A), a cell instance segmentation for this organ is
performed using PlantSeg (B), and lastly, we compute the cell adjacency graph from
the segmentation (C). In the bottom row, one can see qualitatively how aU-Netmodel
(E) struggles to predict certain cell types annotations from an expert biologist (D).
Meanwhile, the GNNmodel (F) is able to learn the layering structure of the biological
cell type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Segmentation of plant tissues into cells using PlantSeg. First, PlantSeg uses a 3D
UNet neural network to predict the boundaries between cells. Second, a volume
partitioning algorithm is applied to segment each cell based on the predicted bound-
aries. The neural networks were trained on ovules (top, confocal laser scanning mi-
croscopy) and lateral root primordia (bottom, light sheet microscopy) of Arabidopsis
thaliana. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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2.2 Precision-recall curves for different CNN variants on the ovule (A) and lateral root
primordia (LRP) (B) datasets. Six training procedures that sample different type of
architecture (3D U-Net vs. 3D Residual U-Net), loss function (BCE vs. Dice vs.
BCE-Dice) and normalization (Group-Norm vs. Batch-Norm) are shown. Those
variants were chosen based on the accuracy of boundary prediction task: 3 best per-
formingmodels on the ovule and 3 best performingmodels on the lateral root datasets
(see Appendix 5, Table 1 for a detailed summary). Points correspond to averages of
seven (ovules) and four (LRP) values and the shaded area represent the standard er-
ror. For a detailed overview of precision-recall curves on individual stacks we refer
to Appendix 4, Figure 1. Source files used to generate the plot are available in the
Figure 2-source data 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Segmentation using graph partitioning. (A-C) Quantification of segmentation pro-
duced by Multicut, GASP, Mutex watershed (Mutex) and DT watershed (DT WS)
partitioning strategies. The Adapted Rand error (A) assesses the overall segmenta-
tion quality whereas VOImerge (B) and VOIsplit (C) assess erroneous merge and split-
ting events (lower is better). Box plots represent the distribution of values for seven
(ovule, magenta) and four (LRP, green) samples. (D, E) Examples of segmentation
obtained with PlantSeg on the lateral root (D) and ovule (E) datasets. Green boxes
highlight cases where PlantSeg resolves difficult cases whereas red ones highlight
errors. We obtained the boundary predictions using the generic-confocal-3d-unet
for the ovules dataset and the generic-lightsheet-3d-unet for the root. All agglom-
erations have been performed with default parameters. 3D superpixels instead of
2D superpixels were used. Source files used to create quantitative results shown in
(A-C) are available in the Figure 3-source data 1. . . . . . . . . . . . . . . . . . . . 19

2.4 PlantSeg segmentation of different plant organs of the 3DDigital TissueAtlas dataset,
not seen in training. The input image, ground truth and segmentation results using
PlantSeg are presented for each indicated organ. . . . . . . . . . . . . . . . . . . . . 22

2.5 Qualitative results on the highly lobed epidermal cells from [141]. First two rows
show the visual comparison between the SimpleITK (middle) and PlantSeg (right)
segmentation on two different image stacks. PlantSeg’s results on another sample is
shown in the third row. In order to show pre-trained networks’ ability to generalized
to external data, we additionally depict PlantSeg’s boundary predictions (third row,
middle). We obtained the boundary predictions using the generic-confocal-3d-unet
and segmented using GASP with default values. A value of 0.7 was choosen for the
under/over segmentation factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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2.6 Qualitative results on the Epithelial Cell Benchmark. From top to bottom: Peripo-
dial cells (A), Proper disc cells (B). From left to right: raw data, groundtruth seg-
mentation, PlantSeg segmentation results. PlantSeg provides accurate segmentation
of both tissue types using only the networks pre-trained on the Arabidopsis ovules
dataset. Red rectangles show sample over-segmentation (A) and under-segmentation
(B) errors. Boundaries between segmented regions are introduced for clarity and they
are not present in the pipeline output. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Overview of the automated proofreading from nuclei widget. This widget is particu-
larly useful when the user poses a trusted nuclei segmentation and wants to use it to
fix segmentation errors automatically. In (A), one can see how the tool can fix under-
segmentation mistakes using the nuclei prior, while in (B), the tool fixes a case of
over-segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Screen capture of the PlantSeg-Napari viewer. The interface allows running indepen-
dently all steps of the segmentation pipeline, such as: selecting the neural network
model and specifying hyperparameters of the partitioning algorithm. In addition to
the basic PlantSeg workflow, The interface allows for semi-automated proofreading
from scribbles. Moreover, the user can export the dynamically created workflow for
headless batch processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Example of customized Workflow. None of our pre-trained models can accurately
process the raw input in this example. But, one can see that one of the models excels
in some regions (Boundary predictions 1, region B), while the other performs better
in a different area (Boundary predictions 2, region A). In this challenging scenario,
merging the two models’ output allows us to obtain a higher quality segmentation. . . 29

2.10 PlantSeg-Napari proofreading widget allows the user to perform semi-automated
proofreading from scribbles. In (A), one can see a segmentation with two notice-
able mistakes, an over-segmentation (red arrow) and an under-segmentation (blue
arrow). To fix the over-segmentation, the user can draw a single scribble connecting
the two segments (B, red arrow). To fix the under-segmentation, the user can use
scribbles to create watershed seeds (B, blue arrows). In (C), one can see the widget
output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Later root groundtruth creation process. Starting from the input image (1), an initial
segmentation is obtained using ilastik Autocontext followed by the ilastik multicut
workflow (2). Paintera is used to proofread the segmentation (3a) which is used for
training a 3D UNet for boundary detection (3b). A graph partitioning algorithm is
used to segment the volume (3c). Steps 3a, 3b and 3c are iterated until a final round
of proofreading (4) and the generation of satisfactory final groundtruth labels (5). . . 34
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3.1 3D surface view of a small subset of specimens from the CellTypeGraph Benchmark.
Different developmental stages are indicated. From left to right the tissue complexity
increases with organ growth. Scale bar 50µm. Bottom: three stages are represented
with their 3D view and a 2D section displaying the internal tissue architecture. Colors
show ground truth cell types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 2D section view of a mature Arabidopsis ovule displaying the raw cell boundary
image and the respective CellTypeGraph ground truth labels manually annotated for
the benchmark dataset. Different colors indicate different tissue labels annotated to
the 3D instance cell segmentation. Abbreviations es: embryo sac, nu: nucellus, L1:
outer layer of outer integument, L2: inner layer of outer integument, L3: outer layer
of inner integument, L4/L5: inner layer of inner integument, fu: funiculus, a-ch:
anterior chalaza, p-ch: posterior chalaza. Scale bar 20µm. . . . . . . . . . . . . . . 42

3.3 Class-average accuracy obtained by an expert biologist (A). The early stages pose
the most substantial challenges, although the cause of such high variance can be
attributed to the smaller number of cells for each specimen. Per-class accuracy ob-
tained by an expert biologist (B). In late stages the highest variability sources are the
cell types p-ch and p-ch, while for early stages the highest variability is posed by the
cell type L1 to L4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 All reference systems are equally good. We trained both GCN and DeeperGCN on
five distinct reference systems. There is no statistically significant difference in using
either reference system. The only difference we could observe was in the spread of
outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Automatically extracted local orientation features: the growth and surface directions
are represented by the solid yellow lines and solid red lines respectively. Left: a 3D
surface view of a mature Arabidopsis ovule overlaid with the predicted growth direc-
tions. The axis predictions align well with the filar arrangement of cells on the organ
surface. Right: surface and growth orientations from the same ovule. Although the
orientation of the growth axis follows the regular structure of the organ, the direction
of the axis is arbitrary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Selection of invariant features. From left to right visualized in false color one can see:
The number of shortest path from each node to the ovule surface, the cell volume
and the current-flow closeness centrality (also called random walker betweenness
centrality). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Top-1 accuracy divided by ground truth category. Accuracy varies drastically across
classes. In particular, the GCN accuracy plummets for L2, L4, and a-ch tissues. . . . 50
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3.8 Comparison of the class average accuracy for four different feature sets. As one
would expect, using all features consistently achieves the highest accuracy. Interest-
ingly, one can observe that the covariant features mostly contribute to accuracy in
the early stages (2-III to 2-V). In the later stages (3-I to 3-VI), the invariant features
are the major contributors to the overall accuracy. Lastly, even when using only the
local degree profile of a node as its feature, the networks are still able to make better
than random predictions on the task. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Comparison of the class-average accuracy for various combinations of network archi-
tecture, data augmentation technique, and parameters. The impact of data augmenta-
tion is negligible in all our experiments. Nevertheless, adjacency dropout (edge drop
probability = 0.5) consistently improves accuracy for the DeeperGCN model. . . . . 56

A.1 Precision-recall curves on individual stacks for different CNN variants on the ovule
(A) and lateral root primordia (B) datasets. Efficiency of boundary prediction was
assessed for seven training procedures that sample different type of architecture (3D
U-Net vs. 3D Residual U-Net), loss function (BCE vs. Dice vs. BCE-Dice)) and
normalization (Group-Norm (GN) vs. Batch-Norm (BN)). The larger the area under
the curve, the better the precision. Source files used to generate the precision-recall
curves are available in the Appendix 4 Figure 1-source data 1. . . . . . . . . . . . . 59

A.2 PlantSeg GUI. The interface allows to configure all execution steps of the segmen-
tation pipeline, such as: selecting the neural network model and specifying hyper-
parameters of the partitioning algorithm. Tab. A.3 describes the Pre-processing (A)
parameters. Tab. A.4 provides parameters guide for the CNN Predictions and Post-
processing (B, D). Hyperparameters for Segmentation and Post-processing (C, D)
are described in Tab. A.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.1 Class-average accuracy comparison between different vector features representations.
Using the orientation instead of axis resulted in a small but consistent improvement
in performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.2 Class-average accuracy with varying maximum number of hops. Hops to surface are
intuitively closely related to the tissue stratification L1-L4, but their relation loosen
with depth. We tested how important this feature is by clipping its value. From the
results one can see that the feature contribution saturates after three hops. . . . . . . 75

B.3 Class-average accuracy between different graph feature normalizations. One can see
a slight accuracy improvement using z-score normalization. . . . . . . . . . . . . . . 75

B.4 Class-average accuracy comparison between different morphological features nor-
malizations. One can see a slight accuracy improvement using z-score normalization. 76

B.5 Class-average accuracy between different angles normalization. Angles are naturally
normalized between -1 and 1, in our experiments the z-score had no significant impact. 77
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B.6 Class-average accuracy between: baseline features only, and baseline features plus
additional lengths features. In our experiments the additional lengths showed no
significant contribution to the accuracy. . . . . . . . . . . . . . . . . . . . . . . . . 78



List of Tables

2.1 Quantification of PlantSeg performance on the 3DDigital TissueAtlas, using PlantSeg
. TheAdapted Rand error (ARand) assesses the overall segmentation quality whereas
VOImerge and VOIsplit assess erroneous merge and splitting events. The petal images
were not included in our analysis as they are very similar to the leaf and the ground
truth is fragmented, making it difficult to evaluate the results from the pipeline in a
reproducible way. Segmented images are computed using GASP partitioning with
default parameters (left table) and fine-tuned parameters described in Appendix Ap-
pendix A.4 (right table). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Epithelial Cell Benchmark results. We compare PlantSeg to four other methods using
the standard SEGmetric [149] calculated as the mean of the Jaccard indices between
the reference and the segmented cells in a given movie (higher is better). Mean
and standard deviation of the SEG score are reported for peripodial (3 movies) and
proper disc (5 movies) cells. Additionally we report the scores of PlantSeg pipeline
executed with a network trained explicitly on the epithelial cell dataset (last row). . . 25

3.1 Salient statistics of the CellTypeGraph benchmark. . . . . . . . . . . . . . . . . . . 41

3.2 Top-1 accuracy and class-average accuracy obtained by different architecture on the
node classification task. DeeperGCN is consistently the best performing architecture.
Nevertheless, DeeperGCN results are still weaker than human expert. EdgeDeep-
erGCN and EdgeTransformerGCN have been trained with additional edge features,
but their impact on our metrics was not significant. Uncertainty is defined as the
standard deviation over all specimens and cross-validation folds. . . . . . . . . . . . 49

3.3 Contribution of each feature group to the accuracy. The table shows the difference
between the class average accuracy of the baseline model and the class average ac-
curacy of the perturbed model. The lower the delta, the higher is the feature im-
portance for the neural networks. For both architectures, the invariant features are
substantially more important than the covariant features. . . . . . . . . . . . . . . . 52
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3.4 Generalization under different orientations. We tested how robust our baseline is to
changes in the global orientation axes. We trained our model in different orientations,
and we tested it on a particular one, Label Surf. From the class average accuracy, we
can observe a substantial accuracy drop when training on a single different reference
system, ES PCA. However, this can be easily compensated by augmenting the train-
ing data with multiple orientations. Uncertainty is defined as the standard deviation
over all specimens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.1 Average segmentation accuracy for different segmentation algorithms. The average
is computed from a set of seven specimen for the ovules and four for the lateral root
primordia (LRP), while the error is measured by standard deviation. The segmenta-
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the overall segmentation quality, the VOImerge and VOIsplit respectively assessing er-
roneous merge and splitting events (lower is better for all metrics). Source files used
to create the table are available in the Appendix 5 Table 2-source data 1. . . . . . . . 60

A.2 Ablation study of boundary detection accuracy. Accuracy of boundary prediction
was assessed for twelve training procedures that sample different type of architecture
(3D U-Net vs. 3D Residual U-Net), loss function (BCE vs. Dice vs. BCE-Dice)
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