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Non-linear Dynamics of Two-Level Systems

in Non-equilibrium

The dielectric loss of amorphous materials along with noise and decoherence are the

major limiting factors for many applications at low temperatures like superconduct-

ing circuits, Josephson junctions and quantum computing. These effects are nowa-

days understood as the consequence of an ensemble of quantum mechanical two-level

systems (TLSs), which are described as additional broadly distributed low-energy ex-

citations in the sample. In this context, the thesis at hand presents a unique property

of an amorphous material when two pump-tones are applied. In this limit the utilized

LC-resonator is emitting at the intermediate frequency of the two off-resonant driving

fields. The underlying mechanism can be explained by a non-linear interaction of the

rf-field with the TLSs and the resonator, which creates additional lines in the frequency

spectrum and thereby a self-biasing effect. The corresponding measurements also de-

fine a specific set of parameters for the occurrence of this emission limit, which is well

described by a phenomenological approach in the context of the Landau-Zener-Stück-

elberg formalism. The obtained results thus complement the bigger picture of TLSs

and open up a new approach for further investigations.

Nichtlineare Dynamik von Zwei-Niveau-Systemen

im Nichtgleichgewicht

Der dielektrische Verlust von amorphen Materialien ist zusammen mit Rauschen und

Dekohärenz einer der größten limitierenden Faktoren für viele Tieftemperaturanwen-

dungen wie supraleitenden Schaltungen, Josephson-Kontakte und Quantencomputing.

Diese Effekte sind heutzutage erklärbar als das Resultat eines Ensembles von quan-

tenmechanischen Zwei-Niveau-Systemen, die als zusätzliche und breitverteilte Niedri-

genergieanregungen beschreibbar sind. In diesem Kontext stellt die vorliegende Ar-

beit eine einzigartige Eigenschaft eines amorphen Materials vor, die auftritt, wenn an

dieses zwei Pumptöne angelegt werden. In diesem Limit emittiert der verwendete LC-

Resonator auf der Mittelfrequenz der zwei Felder. Der zugrundeliegende Mechanismus

kann durch eine nichtlineare Wechselwirkung des Hochfrequenzfeldes mit den Zwei-

Niveau-Systemen und dem Resonator erklärt werden, was zusätliche Linien im Fre-

quenzspektrum bildet und somit zu einem Selbst-Bias Effekt führt. Die entsprechenden

Messungen zeigen außerdem, dass das Emissionslimit in einem bestimmten Systempa-

rameterraum auftrit, welcher gut mit einem phänomenologischen Ansatz im Kontext

des Landau-Zener-Stückelberg Formalismus beschrieben werden konnte. Die Ergeb-

nisse ergänzen somit die Erkenntnisse von Zwei-Niveau-Systemen und eröffnen einen

neuen Ansatz für weitere Untersuchungen.
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1. Introduction

The presence or absence of order in many-particle systems significantly determines

the observed physical properties of the corresponding material because of its direct

connection to the symmetry of the system. The distinction between crystalline and

amorphous structures therefore follows naturally from the missing long-range order

of the latter. Crystals are thus by definition highly ordered systems with a lat-

tice structure on the basis of a unit cell, whereas amorphous materials only posses

a short-range order and lack a periodic arrangement of their constituents. The

emergence of disorder, however, also correlates with the occurrence of additional

two-level systems (TLSs), which play a significant role for the material properties,

in particular at low temperatures.

This discrepancy between a crystalline structure and its amorphous counterpart was

observed for the first time by Zeller and Pohl [Zel71]. Their measurements showed

an anomalous behaviour for the thermal properties of a quartz glass at low temper-

atures, which could not be explained by the Debye model [Deb12] as for the case

of crystalline quartz. Measurements in the following years confirmed these findings

also for other amorphous samples and the observed effects could be understood by

the presence of additional low-energy excitations in these materials. A phenomeno-

logical model, which was proposed by Anderson et al. [And72] and simultaneously

by Phillips [Phi72], assumed these systems as a particle in a double-well potential.

For low temperatures the energy barrier between the individual wells can thereby

only be overcome by quantum mechanical tunneling, which is why this formalism

is generally referred to as the standard tunneling model (STM). It has proven to

be a successful tool to describe the low temperature properties of many amorphous

samples by the impact of these intrinsic systems. Measurements in subsequent years

on further samples, however, showed more and more deviations from the predictions

of the STM and hence required several extensions to the model. These extension

consist of different approaches to include, for example, a change in the underlying

distribution function [Dou80, Ens89] or the interactions between individual tunnel-

ing systems [Bla77, Bur95, Ens97]. Further measurements also revealed a significant

dependency of the dielectric function [Str98, Woh01] and the polarisation echo am-

plitude [Lud02, Lud03] on magnetic field excitations. This effect could be attributed

to constituents carrying a nuclear electric quadrupole moment, which modifies the

behaviour of the associated TLS [Wür02, Nag04, Baz08, Bar13]. In recent years

TLSs were also identified as the main source of noise [Gao07, Nei13, Bur14b, Pal14]

and decoherence [Mar05, Ku05, Mül19] in superconducting quantum devices. Due

to their appearance in metal oxide films, in isolation layer materials or as defects

1



2 1. Introduction

[Lis19], they are almost unavoidable in modern day micro-electronic fabrication.

This shed new light on the investigation, especially for the interaction of individual

systems with each other [Lis15] or with the micro-electronic setup [Sar16, Bre17]. Ex-

periments on superconducting high-quality LC-resonators with additionally applied

bias fields furthermore allowed to control the dielectric loss of the sample material

[Kha14, Ros16, Mat19, Fre21] and for the case of [Ros16] even produce a gain.

This thesis ties in with these measurements and presents the investigation of a thin

film amorphous material by means of a superconducting LC-resonator with a bridge-

type capacitor design. This geometry is well established and provides an additional

electronic branch, which is separated from the readout chain of the resonator and

is therefore suitable for bias or pump signals. Of particular interest thereby is the

response of the TLS-ensemble to the application of two pump-tones. With regard to

other measurements on quantum devices, it would be favourable to reduce the TLS-

loss contribution as much as possible or even use their properties to enhance the

corresponding quantity. Having said this, the investigated device shows a limit un-

der certain conditions, in which the resonator emits a peak with a narrow bandwidth

at resonance frequency. These observations raised the need to study the non-linear

behaviour of the system in more detail and to characterise the observed limit. The

final goal would thereby be a theoretical description of the occurring effect to further

understand the behaviour of the TLSs in amorphous materials.

This thesis is structured as follows: Chapter 2 presents an overview of the funda-

mental theory necessary to understand the physical context. It begins with a general

introduction of amorphous structures and their low temperature properties, followed

by a section dedicated to explain all relevant properties of two-level systems. Sub-

sequently, different mechanisms for relaxation are discussed, which are necessary to

derive relations for the entire system. Afterwards, a short section is devoted to the ef-

fect of stimulated emission in disordered media and the chapter closes with the treat-

ment of different resonator types under multiple field excitations. The 3rd chapter

shows the employed experimental setup from the micro-structured resonator over the

measurement electronics to the creation of temperatures in the millikelvin regime.

Chapter 4 presents the experimental results and starts with some standard measure-

ments to characterise the sample. These sections are followed by various pump-tone

measurements and the characterisation of the non-linear behaviour of the resonator.

The last section is dedicated to evaluate and describe the observed emission limit.

In the end, the thesis closes with a summary in chapter 5 of the obtained results.



2. Theoretical background

This chapter presents the theoretical foundation to understand the utilized physical

concepts for the evaluation of the experimental and simulated results in this thesis.

The subsequent first section gives a short introduction to the structure of amorphous

materials followed by the description of their thermal properties in section 2.2. The

theory to explain the low temperature properties of these substances is introduced

in section 2.3 with the standard tunneling model. It continues with the description of

the therein defined tunneling systems and their behaviour under external electric field

excitations. The next section 2.4 introduces relaxation time scales for the intrinsic

systems, followed by section 2.5, which derives relations to describe the properties of

the entire ensemble. Section 2.7 introduces the idea of stimulated emission effects on

disordered media and afterwards the chapter closes with the discussion of different

types of resonators.

2.1 Structure of amorphous materials

The very basic definition of an amorphous material is that of a solid without long

range order. This criteria distinguishes these compounds from the highly ordered

material class of crystals. The term amorphous material was in the past often used

synonymously with glass and partially still is, but other structures exist that fulfil

the conditions for example amorphous polymers.

A glass is manufactured from a rapidly cooled liquid melt of the raw materials. The

cooling rate is thereby crucial for the formation of the microscopic structure. If the

melt is cooled below the melting point very slowly, the system can form the thermody-

namically favoured crystalline state by nucleation and crystallisation. This occurs via

a first order phase transition. For faster cooling rates, on the other hand, atoms have

no time to arrange and thus solidify in a highly disordered structure. Amorphous ma-

terials are also often referenced as ”frozen liquids” or ”super-cooled liquids”, partly

because first x-ray diffraction experiments showed similar results to measurements

on liquid samples. These terms can, however, be misleading, since amorphous mate-

rials exhibit with an infinite viscosity and rigidity the properties of a normal solid.

Typical areas for applications are nowadays diverse, from glass as a construction ma-

terial, as an additive in cosmetic, food or pharmaceutical industry to the utilisation

for microelectronics as an isolation or dielectric layer. Amorphous silicon dioxide

(SiO2) thereby belongs to a large group of silicate glasses and is used in the following

sections as a basic example to explain the fundamental properties of these materials.

3



4 2. Theoretical background

in
te

ns
ity

 [a
.u

.] amorphous SiO2
calculation

5 10 15 20 25
incident angle 

in
te

ns
ity

 [a
.u

.] crystalline SiO2

Figure 2.1: X-ray diffraction mea-

surement of amorphous (top) and

crystalline (bottom) SiO2 in depen-

dence of the incident angle θ. While

the crystal shows distinct peaks, the

diffraction pattern of the amorphous

sample is broadly distributed. The

data is adapted from [War34] for the

amorphous material and from [Laf15]1

for the crystalline.

As already mentioned, x-ray diffraction measurements of an amorphous material

showed a broad distribution of the intensity over the incident angle θ. In figure 2.1

an exemplary measurement of amorphous SiO2 by Warren [War34] is compared to

the results obtained from the crystalline counterpart [Laf15]1. Although both sam-

ples contain the same nuclear components, the measurements differ significantly from

one another. The theoretical description of the intensities of the amorphous SiO2

utilized the same method as for the diffraction in liquids [Zer27]. The atoms are

thereby allowed to occupy all available orientations for the calculation of the scatter-

ing amplitude. This description showed good agreement with the obtained data and

led to the conclusion that the atomic constituents form a random network. Silicon

atoms, which are tetrahedrally surrounded by four oxygen atoms, serve as the build-

ing blocks of this structure [War33]. The corresponding average atomic distance for

the silicon-oxygen bond can thereby be calculated to 1.60�A [War34]. In the crys-

talline counterpart the tetrahedrons are arranged in a regular lattice and fulfil the

condition for diffraction only for discrete incident angles. The corresponding mea-

surement shows vanishing intensities apart from the expected reflexes indicating a

highly ordered underlying structure.

The ideas to interpret this data partly originate from the considerations of Zachari-

asen [Zac32], which is why this concept is sometimes referred to as the Zachariasen-

Warren network hypothesis. In his work he compared the energy content of a glass

structure with that of the corresponding crystal network. Since the potential ener-

gies are comparable, he concluded that both materials are structured by the same

polyhedral components. The amorphous network is arranged in random orientations

and hence misses the periodicity and symmetry, which are essential for the crystal

1x-ray powder diffraction data from W.W. Pinch. RRUFF ID:R100134
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oxygen
silicon

Figure 2.2: Schematic illustration of crystalline (left) and amorphous (right) structure.

The picture is inspired by [Zac32] and shows a simplified two-dimensional representation

of the complex structure.

lattice. The resulting isotropy is accompanied by the absence of a long-range order

in the amorphous material. Correspondingly the binding angles and binding lengths

are broadly distributed over the parameter space. A schematic illustration of the

crystalline and the amorphous structure of SiO2 is depicted in figure 2.2 as a sim-

plified two-dimensional representation. For the real structure every silicon atom is

additionally connected to a fourth oxygen atom, which is either in- or out-of-plane

in this schematic. The left illustration in figure 2.2 shows the periodicity and the

symmetry of the crystalline structure with the tetrahedral building block (red). The

picture on the right hand side represents the amorphous solid with its highly disor-

dered structure, but with the same atomic components. Both illustrations should

provide a general understanding on the structural difference for this simple example,

however, the actual composition is often much more complex and depends strongly

on the manufacturing process.

The random network hypothesis was confirmed for two-dimensional systems by the

investigation of vitreous and crystalline SiO2 thin films through noncontact atomic

force microscopy and scanning tunneling microscopy [Lic12]. The samples were pre-

pared on a Ru(0001) single crystal, but similar results were found for SiO2 on a

graphene support by scanning transmission electron microscopy [Hua12]. The re-

sults show astonishing agreements with the illustration of Zachariasen from figure

2.2. The scanning tunneling microscopy measurement of an interface from the crys-

talline to the amorphous phase [Fre17] is depicted on the left in figure 2.3. The

picture on the right shows a visualisation of the obtained data with colourized atoms

for silicon (red) and oxygen (green). The crystalline phase shows the expected peri-

odicity and symmetry with exclusively hexagonal surfaces (magenta). Deeper in the
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Figure 2.3: Interface from the crystalline to the amorphous structure. Left: scanning

tunneling microscope picture of a silica thin film on a Ru(0001) single crystal surface.

Right: visualisation of the analysed structure with colour coded polygons for different

ring sizes. Adapted from [Fre17].

section of the amorphous phase pentagonal (yellow) and heptagonal (purple) sur-

faces start to form, until all kinds of polygonal shapes arise in the vitreous structure.

Similar measurements have been conducted for other two-dimensional systems on

surface layers of ice [Mai16] and copper oxide [Yan11].

Most glasses usually consist of more than a single oxide component. The different

building blocks are grouped by their network developing properties into three cate-

gories. Some compounds weaken the amorphous network when inserted in the struc-

ture. Instead of covalent bonds, they develop ionic bonds to the negatively charged

oxygen atoms. Glass containing these compounds usually exhibits a reduced melting

point and a higher electric conductivity, which can be attributed to the weakened

bonding and the therefore increased mobility of the constituents. They are classified

as network modifiers and have mostly coordinate numbers of six or higher. Net-

work formers, like SiO2, lead to the emergence of an amorphous network and have

usually coordinate numbers of three or four. Some compounds can act as either

network modifiers or as network formers and are therefore defined as intermediate

oxides. They normally carry coordinate numbers from four to six. This description is

known as the network theory, which has many additions and extensions. A detailed

discussion of this topic can be found in [Vog92].
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2.2 Low temperature properties of glasses

This section discusses the consequence of the above described structural differences,

which are not only relevant for the microscopic understanding of amorphous materi-

als. Moreover, order and disorder are fundamental properties of a many-body system

and heavily influence the observed macroscopic quantities. The first measurements,

which revealed clear deviations from the crystalline behaviour and led to an indepen-

dent phenomenological description for amorphous materials, are therefore presented

in this section. It starts with the temperature dependent experiments conducted

on the specific heat and the thermal conductivity, followed by the observations for

saturation and absorption experiments.

2.2.1 Specific heat capacity and thermal conductivity

A crystalline material is well described by the definition of a unit cell due to its

periodic structure. The arising long-range order allows the quantisation of the vi-

brational excitations in the crystal lattice as phonon modes. The derived phononic

density of states forms the basis for the Debye model proposed in 1912 [Deb12], which

predicts the low temperature properties of insulating crystalline solids very well. The

specific heat capacity Cv is thereby expected to follow a cubic temperature depen-

dence. Amorphous materials on the other hand lack the necessary long-range order

to use the same formalism. The definition of phonons would only be sensible for

larger wavelengths, for which the underlying disordered structure can be approxi-

mated as a continuum. Amorphous materials were therefore expected to follow the

Debye model only for very low temperatures.

The measurements of Zeller and Pohl [Zel71] in 1971 showed, however, that these

considerations could not describe the observed behaviour. Their results contained

comparative measurements for the specific heat capacity and the thermal conductiv-

ity of amorphous and crystalline quartz (SiO2), which are shown on the left and right

hand side of figure 2.4 with complementary data from [Las75]. While the crystalline

sample follows the T 3-dependency predicted by the Debye model, the specific heat of

the amorphous material is orders of magnitude higher and is better described below

∼0.5 K using a T 1.3-dependency. In contrast to that, the thermal conductivity κ of

vitreous quartz is orders of magnitude smaller than for its crystalline counterpart.

Due to the definition of the thermal conductivity in the low temperature limit

κ =
1

3
Cvvl, (2.1)

the quartz crystal follows a T 3-dependency. Here v describes the Debye sound ve-

locity and l the mean free path of the phonons, which can be approximated by a
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Figure 2.4: Measurements of Zeller and Pohl [Zel71] with complementary data from

Lasjaunias et al. [Las75]. Left: specific heat capacity Cv of amorphous and crystalline

quartz. Below ∼0.5 K the amorphous material follows a T 1.3-dependency instead of the

predicted T 3-dependency as shown by the crystalline sample. Right: thermal conductivity

κ of amorphous and crystalline quartz. The glass is approximated with a T 2-dependency,

while the crystalline counterpart can be described by the low temperature limit given by

the Debye model.

constant in the order of the sample size (Casimir regime). For the amorphous quartz,

a T 2-dependency can be found in this temperature regime. The measurements indi-

cates the existence of additional low energy excitations arising from the amorphous

structure. Such systems act as scattering sites for phonons and therefore decrease

the thermal conductivity according to the reduced mean free path. The specific heat

of the sample is increased, since additional energy excitations correspond to an en-

hanced capacity for storing heat. These aspects inspired Anderson et al. [And72]

and Phillips [Phi72] to independently come up with a phenomenological description

for these intrinsic systems, called the standard tunneling model .

2.2.2 Saturation and absorption

The newly revealed deviations from the expected behaviour opened an unexplored

field for the investigation of these low energy excitations. Their strong coupling to

phonons was further affirmed by many experiments [Hun72, Hun73, Gol73]. Some

measurements observed a saturation effect of the ultrasonic absorption, which led to

the conclusion that the underlying systems can be understood as highly anharmonic

oscillators or respectively as two-level systems (TLS). Additionally, experiments with

electric field excitations showed an analogous coupling to the photon field via exter-
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Figure 2.5: Dielectric saturation mea-

surement conducted on Suprasil I. The

dielectric absorption coefficient decreases

with increasing intensity. The light-blue

line describes the theoretical model from

[Hun76]. The experimental data is adapted

from [vS77].

nal electric excitations. A saturation measurement [vS77] of the dielectric absorp-

tion coefficient α is depicted in figure 2.5 in dependence of the field intensity J .

The investigated material was a vitreous silica sample containing 1200 ppm of OH−

(Suprasil I). It displays the decrease of the dielectric absorption with an increase of

the applied intensity, which is well described by the theory (light-blue line) derived

in [Hun76]. The measurements can be interpreted by the influence of the intrinsic

two-level systems. For low intensities they cause an additional dielectric absorption

through their corresponding energy scale. For very high intensities nearly all of these

two-level systems are saturated and therefore can not contribute to the absorption,

which results in an increased transparency of the sample.

Another important observation was made by the so called hole burning experiments.

Since the two-level systems are assumed to be broadly distributed over their energy

scale, excitations with different frequencies of the external field should be possible.

The measurements thereby revealed a broad ”saturation hole” in the distribution

function of the two-level systems for the application of a strong excitation pulse. A

corresponding measurement [Arn78] on vitreous silica is shown in figure 2.6. The

experiment used a variable frequency for the strong saturation pulse and a fixed

frequency for the weak probing pulse of 780 MHz in order to measure the varia-

tion of the resonant absorption coefficient [Hun82]. The pulse duration was changed

for the two separate measurements in figure 2.6 from 0.7 µs to 1.2 µs. The results

show a large spectral width over several MHz, which was rather surprising since

the frequency uncertainty of the saturation pulse was orders of magnitude smaller.

The broadening was linked to the interaction of the two-level systems with random

fluctuations of the surrounding strain field as described by the theory of spectral dif-

fusion [Bla77]. The energy of the saturation pulse can thereby diffuse in frequency

space over time through interactions with the ensemble of two-level systems. The
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Figure 2.6: Variation of the resonant ab-

sorption for a weak probe pulse with a

frequency of 780 MHz and a variable fre-

quency for the strong saturation pulse. The

plot shows two measurements for pulse du-

rations of 0.7 µs and 1.2 µs. The data is

adapted from [Arn78].

two measurements in figure 2.6 were the first evidence to show this broadening over

time. Similar measurement were made with a variation of the field intensity of the

saturation pulse [Arn75]. Their results showed a deeper hole for higher intensities,

which is reasonable when compared to the relation plotted in figure 2.5.

Generally it should be noted, that an understanding of the intrinsic two-level sys-

tems, which are characteristic for amorphous materials, is essential for a description

of the microscopic processes. The following section is therefore dedicated to give a

detailed overview of the theoretical definition and possible interactions.
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2.3 Two level systems

A two-level system is defined as a quantum mechanical object consisting of two in-

dependent quantum states. The coupling between these two states yields a set of

eigenstates as a superposition of the initial single state solutions. The system can

absorb a quantum of energy to perform a transition between its energy levels via

resonant absorption, stimulated or spontaneous emission. In general, such a system

is connected to a measurable physical property for example spin 1/2-particles like

electrons. The underlying formalism to describe a two-level system is important for

many fields in physics like quantum optics, quantum computing, (nuclear) magnetic

resonance and condensed matter.

The additional low energy excitations which are characteristic for amorphous ma-

terials can also be attributed to two-level systems. This section outlines how these

systems can be described, how they are distributed over their characterizing param-

eters and how they interact with external field excitations.

2.3.1 Standard tunneling model

The measurements of Zeller and Pohl [Zel71] revealed an additional low temperature

contribution to the specific heat and the thermal conductivity. These measurements

prompted Anderson et al. [And72] and Phillips [Phi72] to come up with a phe-

nomenological model, the standard tunneling model (STM), without any specific

microscopic assumptions. The basic idea is that the amorphous structure of the ma-

terial, more than the atomic composition, is the crucial factor responsible for the low

temperature properties of these materials. Due to their inherent property of a broad

distribution of binding length and binding angles, the disordered structure contains

sites where single atoms or groups of atoms can occupy two positions very similar in

energy. This characteristic can be modelled by a double-well potential separated by

a potential barrier of hight V as pictured in figure 2.7. The parameter d describes an

abstract distance in configuration space, which combines possible translations as well

as rotations. The asymmetry energy ∆ quantifies the energy difference between the

two minima. The two sites a and b can each be approximated by a single harmonic

potential with a corresponding ground state wave function [Nol13] of

Ψa/b =

(
mΩ

π~

) 1
4

exp

(
−mΩ

2~

(
x± d

2

)2
)
. (2.2)

The participating atoms can thereby be described as a quasiparticle of mass m. The

frequency of oscillation Ω in a single well yields a ground state energy of

E0 =
~Ω

2
. (2.3)
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Ea

Eb

Ψa

Ψb

hΩ
2

Figure 2.7: Schematic illustration of the tunneling sites. Left: structural rearrangement

of atoms or groups of atoms from position a (yellow) to position b (orange). The illustration

is based on a 2D-version of a Si2O3-lattice. Right: potential well of a tunneling system.

The two sites can be described by a harmonic potential with the corresponding ground

states Ψa (yellow) and Ψb (orange).

A typical value for the excitation frequency of such a single well is of the order of

~Ω/kB ∼ 100 K. For the description of these systems below 1 K it is sufficient to

neglect higher excitations of the single wells. The only possibility for the particle

to change position is therefore to tunnel between the two sites trough the potential

barrier.

In order to establish a Hamiltonian for the double-well potential, the overlap of

the single wave functions Eab and Eba respectively is estimated with the WKB2

approximation. This method uses a given potential but since the specific microscopic

picture of the tunneling process is unclear, the energy overlap is described by a

simplified expression with an exponential dependency

Eab = Eba = −~Ω0

2
exp(−λ). (2.4)

The energy ~Ω0

2
is of the order of the zero-point energy and the tunneling parameter

is approximated as

λ ≈
√

2mV

~2
d. (2.5)

The coupling of the two states can then be described by a Hamiltonian [Phi87] for

the double-well potential of the form

H0 =

(
Ea + ~Ω

2
Eab

Eba Eb + ~Ω
2

)
. (2.6)

2named after G. Wentzel, H. A. Kramers and L. Brillouin [Wen26, Kra26, Bri26]
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Here Ea and Eb are the local minimal energies of the double-well potential as depicted

in figure 2.7. The above defined tunneling parameter λ has limits for which the STM

meets its assumptions. The lower limit for the tunneling parameter λmin can be

understood as a measure so that only photon-assisted tunneling occurs [And72]. In

this case the next available level of the single well is not accessible for the system in

this energy range and the wells are sufficiently separated by the tunneling barrier.

Otherwise the single well can not be approximated by a ground state of a harmonic

potential since higher orders in the double well polynomial would become relevant.

The STM picture can then be supplemented by anharmonic oscillations in a so-

called soft potential. In this case there are additional localized modes, which are

responsible for the higher temperature properties of glasses. The soft-potential model

[Kar83, Kar87, Par93] is only relevant at several Kelvin and therefore not further

discussed here.

The upper limit for the tunneling parameter λmax corresponds to the maximum

barrier height, mass of the tunneling particle or distance between the tunneling

sites, for which the coupling of the two single wells is not strong enough to form a

tunneling system. In most cases the duration of the experiment is the limiting factor

for the minimal accessible tunneling parameter since the tunneling relaxation time

of such systems is longer than the experimental time scale.

The Hamiltonian in equation 2.6 can be simplified by redefining the zero point of the

energy as the mean of the two ground state energies of the single harmonic potentials

H0 =
1

2

(
∆ −∆0

−∆0 −∆

)
. (2.7)

The hereby defined tunneling splitting

∆0 = ~Ω0 exp(−λ) (2.8)

depends on the tunneling parameter λ and is therefore also restricted by the same

limits as mentioned above. The obtained Hamiltonian can now be transformed into

the eigenbasis of the coupled system resulting in

Ĥ0 =
1

2

(
E 0

0 −E

)
(2.9)

with an energy splitting of the eigenstates

E =
√

∆2 + ∆2
0. (2.10)

The transformation from the single well basis into the eigenbasis of the coupled states

is achieved via the rotation by an angle φ through

Ĥ0 = TφHT −1
φ (2.11)
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Ψg

Ψe

E

Figure 2.8: Schematic illustra-

tion for the wave function of the

ground state Ψg (dark blue) and

the excited state Ψe (light blue).

The two states are separated by

the energy splitting E and the lo-

cal minima of the double well po-

tential differ by the asymmetry

energy ∆.

with the rotation matrices

Tφ =

(
cos(φ) −sin(φ)

sin(φ) cos(φ)

)
and T −1

φ =

(
cos(φ) sin(φ)

−sin(φ) cos(φ)

)
(2.12)

and the rotation angle φ = 1
2
arctan(∆0

∆
). The corresponding wave functions of the

eigenstates can be derived by the inverse rotation of the ground state Ψg and the

excited state Ψe into the basis of the single wells

Ψg = cos(φ)Ψa + sin(φ)Ψb (2.13)

Ψe = −sin(φ)Ψa + cos(φ)Ψb. (2.14)

The obtained wave functions are schematically depicted in figure 2.8 with a sym-

metric ground state Ψg and an asymmetric excited state Ψe. A tunneling particle is

therefore delocalized in both of the coupled states. Higher values of the asymmetry

energy ∆ only increase the probability to find a tunneling particle in the lower well

in its ground state. The regime where ∆0/∆ � 1 is referred to as weak coupling.

In this case the eigenstates Ψg and Ψe become nearly localized except for a phase

factor and correspond to the single well solutions Ψa and Ψb. When the condition

∆0/∆� 1 is fulfilled on the other hand, complete mixing of the single well solutions

respectively a delocalisation of the states is achieved.

2.3.2 Distribution function

With the obtained description for a single TLS, the macroscopic properties of the

amorphous material can be derived by an integration over all contributing systems.
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Figure 2.9: Graphical

illustration of the distri-

bution function P (∆,∆0)

as a function of the

asymmetry energy ∆ and

the tunneling splitting

∆0. Since P0 was chosen

as ∆0,min the distribution

function is not normalized

and plotted in arbitrary

units. A constant energy

of E/h =1000 MHz was

drawn on the surface plot

for reference.

This requires a distribution function of the two defining parameters, the asymme-

try energy ∆ and the tunneling parameter λ. The inherent disorder causes a broad

distribution over the parameter space. For the standard tunneling model the as-

sumption was made that the distribution function P (∆, λ) varies only slightly over

∆ and λ. The distribution function can therefore be written as

P (∆, λ) d∆ dλ = P0 d∆ dλ (2.15)

with the constant parameter P0. This value is dependent on the investigated material

and has to be determined by the experiment. Further discussion will mostly use ∆

and ∆0 as the set of parameters to describe the TLS properties. The distribution

function can therefore be transformed with relation 2.8 to read

P (∆,∆0) d∆ d∆0 = P0

∣∣∣∣ ∂λ∂∆0

∣∣∣∣ d∆ d∆0 =
P0

∆0

d∆ d∆0. (2.16)

The corresponding plot can be seen in figure 2.9. A constant energy of 1000 MHz·h for

reference is drawn as a red line. According to equation 2.10 constant energies take the

form of half-circles in this representation. For further calculations, especially when

integrating over the distribution function, it is convenient to express the asymmetry

energy ∆ in terms of the energy splitting E. Equation 2.16 therefore takes the form
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of

P (E,∆0) dE d∆0 = P (∆,∆0)

∣∣∣∣∂∆

∂E

∣∣∣∣ dE d∆0 = P0
E

∆0

1√
E2 −∆2

0

dE d∆0. (2.17)

In order to avoid the divergence of the integration it is necessary to choose a lower

limit for the tunneling splitting ∆0,min. Similar to the argument for the tunnel

parameter λ a minimal tunneling splitting can be understood as the limit for the

minimal coupling between the two single wells. Below this value the system is more

likely to act as two isolated wells instead of a double well potential since the tunneling

probability is vanishingly small. The second divergence of equation 2.17 at E = ∆0

can be integrated and therefore does not need an upper limit for the integration.

2.3.3 Thermal equilibrium and occupation difference

At finite temperatures an ensemble of N non-interacting two-level systems aims

towards thermal equilibrium. The accessible thermal energy at a specific temperature

thereby saturates matching energy states. The occupation difference ∆N of the

ground state (Eg ≡ 0) and the excited state (Ee ≡ E) can be derived with methods

from statistical physics. The partition function at a certain temperature T of the

micro states can be expressed by

Z =
∑
i=g,e

exp

(
− Ei
kBT

)
= 1 + exp

(
− E

kBT

)
(2.18)

with the Boltzmann constant kB. The occupation probabilities for the ground state

pg =
1

Z
exp

(
− Eg

kBT

)
=

1

1 + exp
(
− E
kBT

) (2.19)

and the exited state

pe =
1

Z
exp

(
− Ee

kBT

)
=

exp
(
− E
kBT

)
1 + exp

(
− E
kBT

) (2.20)

follow directly from equation 2.18 and the Boltzmann factor of the corresponding

micro state. The difference in occupation probability in thermal equilibrium

∆p = pg − pe = tanh

(
E

2kBT

)
(2.21)

is connected to the occupation difference by the number of systems N and therefore

simply reads

∆N = N ∆p = N tanh

(
E

2kBT

)
. (2.22)
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Figure 2.10: Illustration of the difference in occupation probability as a function over the

asymmetry energy ∆ and the tunneling splitting ∆0 for 10 mK (left) and 35 mK (right).

A constant energy of E/h =1000 MHz is drawn as a red line for reference.

Figure 2.10 shows equation 2.21 and therefore the functional relation of the occupa-

tion difference over the two defining parameters ∆ and ∆0 at temperatures of 10 mK

and 35 mK. Since the equation is solely dependent on E, the plot shows radial sym-

metry. For an increased temperature less systems are in the ground state and the

occupation difference converges towards zero.

2.3.4 Polarisation and the dielectric function

A dielectric material contains intrinsic dipole moments pi, which can be reoriented

under the influence of an external electric field F (t). The resulting macroscopic

polarisation P (t) can be described by a sum over all microscopic dipole moments in

the given volume V as

P (t) =
1

V

∑
i

pi. (2.23)

For the most general case, the polarisation is expressed in dependence of the electric

field [Boy20] by

P (t) = P (0) + ε0χ
(1)F (t) + ε0χ

(2)F 2(t) + ε0χ
(3)F 3(t) + ... (2.24)
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where ε0 is the permittivity of free space. The constant polarisation P (0) can be

understood as a built in polarisation and is only non-zero for ferroelectric materials.

The second term contains the linear susceptibility χ(1) for which the induced polari-

sation is directly proportional to the external electric field. The parameters χ(2) and

χ(3) represent the second- and third order non-linear susceptibilities. Second order

effects only occur in systems without centrosymmetry. Since gases, liquids, amor-

phous materials and some crystals show inversion symmetry due to their isotropy

the second order effects disappear in these systems. Third order non-linear effects

on the other hand can be present in both types of media. For disordered solids like

glasses linear and third order effects are therefore mostly relevant. Generally, F and

P are vectors with susceptibilities as different ranked tensors. Due to the isotropy,

it is sufficient for simplicity to treat both quantities as scalars.

The entire field in the material caused by free and bound charges can be expressed

by the electric displacement field

D = ε0E + P = ε0(1 + χ)F = εF. (2.25)

The here defined dielectric function ε = ε0(1 + χ) can be generalized for alternating

electric fields of frequency ω as a complex function of the form

ε(ω) = ε′(ω) + iε′′(ω). (2.26)

In this representation the real part ε′ can be understood as the energy conserving

mechanisms, which are in phase with the external fields and the imaginary part ε′′

as the out-of-phase dissipative processes. An often used definition is the dielectric

loss

tan(δ) =
ε′′

ε′
(2.27)

as the ratio of imaginary and real part of the dielectric function. Generally, there

are other mechanisms that cause additional effects like ionic, electronic or atomic

contributions to the polarisation of a material, but the discussion will focus on TLS

as the most relevant contribution at low temperatures.

2.3.5 Interaction of TLS with electric fields

In section 2.3.1 the standard tunneling model gave the basic description of a single

TLS present in an amorphous material. In order to describe the interaction of

the associated dipole moments p of these systems with an external field and to

derive the individual contributions to the macroscopically measurable quantities, the

Hamiltonian from equation 2.7 has to be extended by a perturbation Hamiltonian

H = H0 +Hper =
1

2

(
∆ −∆0

−∆0 −∆

)
+

1

2

(
δ∆ δ∆0

δ∆0 −δ∆

)
. (2.28)
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Usually the variation in tunneling splitting δ∆0 can be neglected [Ens05]. In [Phi81]

Phillips stated that the wavelength of an external field is much larger than the

dimension of a tunneling site. The local variation of potential energy therefore

does not influence the tunneling barrier drastically. Different orientations of the

dipoles in their individual wells and the related change in asymmetry energy is much

more significant. Experiments with strain fields [Lis15, Bre17] and electric fields

[Sar16] show good agreement with a theory based on this assumption. The change

in asymmetry energy under the influence of an electric field then reads

δ∆(t) = 2peffF (t) = 2peffFaccos(ωt) (2.29)

with the amplitude of the external electric field Fac and the corresponding angular

frequency ω. Note that not the full dipole moment contributes to the variation

in energy since only the difference in the vector components parallel to the field

vector add to the effective dipole moment peff . For acoustic measurements the dipole

moment is replaced with the deformation potential γ and the electric field by the

mechanical strain e [Ens05].

The full Hamiltonian of equation 2.28 can be transformed into the eigenbasis of Ψg

and Ψe with the relation 2.12 of the rotation matrices. The perturbed Hamiltonian

can be expressed as

Ĥ = Ĥ0 + Ĥper =
1

2

(
E 0

0 −E

)
+

1

E

(
∆ ∆0

∆0 −∆

)
peffFaccos(ωt). (2.30)

An external electric field therefore modifies the diagonal terms of the Hamiltonian

and accordingly the energy splitting of the two-level system by

δEdia = 2
∆

E
peffF (t). (2.31)

The off-diagonal terms

δEoff =
∆0

E
peffF (t) (2.32)

on the other hand are responsible for additionally induced transitions between the

ground state Ψg and the excited state Ψe. This equation is directly linked to the

Rabi frequency as will be discussed later in section 2.3.6.

In order to describe the behaviour of the tunneling systems under the influence of

the electric field, the density matrix formalism is used in the following. This method

is a powerful tool to understand individual systems as well as an entire ensemble.

The density operator hereby is a generalization of the description of pure quantum

states by their eigenvectors and wave functions. It uses a statistical mixture of pure

states (mixed state) to characterize the observed ensemble by probabilities pi to find

an arbitrarily selected system in the corresponding pure state Ψi. This formalism is
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crucial in order to include relaxation and decoherence times of the tunneling systems

since their quantities are defined as an average value of the ensemble. The density

operator is generally expressed by

ρ̂ =
∑
i

pi |Ψi〉 〈Ψi| (2.33)

as a sum over all possible pure states. For the tunneling system the pure states can

be written as a linear combination of the ground and the excited state

|Ψi〉 = ai |Ψe〉+ bi |Ψg〉 (2.34)

weighted with the corresponding probability amplitudes. The density matrix is a

positive semi-definite matrix, which in the basis of the ground state Ψg and the

excited state Ψe takes the form of

ρ̂ =

(
ρee ρeg

ρge ρgg

)
. (2.35)

The diagonal matrix elements ρgg and ρee represent the probability to find the system

in the ground state, respectively in the excited state. Since the trace of the density

matrix is one, the relation ρee + ρgg = 1 holds, which is reasonable for identifying

both terms as probabilities. The off-diagonal matrix elements describe the mixing of

states. By definition, the density operator can be used to calculate the expectation

value of an observable Ô as 〈Ô〉 = tr(ρ̂Ô), where tr() denotes the trace.

To obtain the time evolution of the density operator for a given tunneling system,

the von Neumann equation

i~
∂ρ̂

∂t
= Ĥρ̂− ρ̂Ĥ (2.36)

has to be solved with the perturbation Hamilton from equation 2.30. This yields

a system of four linear first order differential equations for the components of the

density matrix, which read

ρ̇ee =
∆0

i~E
peffF (t) (ρge − ρeg)− 1

2τ1

(
(ρee − ρgg) + tanh

(
E

2kBT

))
(2.37)

ρ̇gg =
∆0

i~E
peffF (t) (ρeg − ρge) +

1

2τ1

(
(ρee − ρgg) + tanh

(
E

2kBT

))
(2.38)

ρ̇ge =
∆0

i~E
peffF (t) (ρee − ρgg)− 1

i~

(
E +

2∆

E
peffF (t)

)
ρge −

ρge

τ2

(2.39)

ρ̇eg =
∆0

i~E
peffF (t) (ρgg − ρee) +

1

i~

(
E +

2∆

E
peffF (t)

)
ρeg −

ρeg

τ2

. (2.40)

Additionally, the equations were expanded by two relaxation time scales τ1 and τ2.

The longitudinal relaxation time τ1 accounts for a possible decay of the systems state
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to the thermal equilibrium value of the ensemble, which can be defined as

∆ρ0 = tanh

(
E

2kBT

)
. (2.41)

The transversal relaxation time τ2 represents the tendency of an ensemble of systems

to dephase due to random fluctuations in the local fields. A deeper description for

these quantities will be given in section 2.4.1 and section 2.4.2 respectively. The

description with the density matrix formalism is analogous to the Bloch equations

[Blo46]. In this case pure states are represented by vectors pointing on the Bloch

sphere and mixed states are depicted as vectors in the interior. This connection can

be seen when calculating the expectation values for the Pauli matrices

〈σ̂x〉 = ρeg + ρge (2.42)

〈σ̂y〉 = i(ρeg − ρge) (2.43)

〈σ̂z〉 = ρee − ρgg, (2.44)

since these quantities correspond to the entries of the Bloch vector. The further cal-

culation is therefore based on the solutions of the Bloch equations done by Hunklinger

et al. [Hun76] for the case of acoustic attenuation, respectively on [Car94, Bur98]

for electric field excitations. With the definition of the occupation difference ∆ρ =

ρgg − ρee equations 2.37 and 2.38 can be combined into one equation

∆̇ρ = 2
∆0

i~E
peffF (t) (ρeg − ρge)−

∆ρ−∆ρ

τ1

. (2.45)

The electric field also induces variations in the thermal equilibrium value ∆ρ due

to the perturbation in the energy splitting E + δEdia. The relation between an

excitation and the consequently time dependent thermal equilibrium value can be

approximated by a Taylor expansion of equation 2.41, which reads

∆ρ ≈ ∆ρ0 + ∆ρ1cos(ωt) = ∆ρ0 +

(
∆

E

)
peffFac

kBT
sech2

(
E

2kBT

)
cos(ωt). (2.46)

The set of equations to solve the tunneling system problem can thus be rewritten as

ρ̇ge = − ∆0

i~E
peffFaccos(ωt) ∆ρ− 1

i~

(
E +

2∆

E
peffFaccos(ωt)

)
ρge −

ρge

τ2

(2.47)

ρ̇eg =
∆0

i~E
peffFaccos(ωt) ∆ρ+

1

i~

(
E +

2∆

E
peffFaccos(ωt)

)
ρeg −

ρeg

τ2

(2.48)

∆̇ρ = 2
∆0

i~E
peffFaccos(ωt) (ρeg − ρge)−

∆ρ− (∆ρ0 + ∆ρ1cos(ωt))

τ1

. (2.49)
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The measurable quantity of the tunneling system is its contribution to the macro-

scopic polarisation of the sample. The corresponding polarisation operator is an

observable and can be derived from equation 2.30 as

π̂ = −
(

∆

E
σ̂z +

∆0

E
σ̂x

)
peff (2.50)

with an expectation value of

〈π̂〉 =

((
∆

E

)
∆ρ−

(
∆0

E

)
(ρeg + ρge)

)
peff . (2.51)

The two terms are later identified by distinct contributing processes. The first term is

proportional to the occupation difference and is therefore determined by relaxation.

The second term on the other hand is proportional to the transition elements of the

density matrix and can hence be understood as a consequence of resonant interactions

of the two-level system with the field.

An ansatz to solve the above equations for a steady state is made by

R(t) =

ρge(t)

ρeg(t)

∆ρ(t)

 =

 0

0

R0

+
∞∑

n=−∞

R
(n)
+

R
(n)
−

R
(n)
z

 e−i ωnt. (2.52)

with R0 = ∆ρ0 and ωn = nω. Inserting this ansatz into equations 2.47, 2.48 and

2.49 yields 3n relations for the prefactors of the sum in equation 2.52. A good ap-

proximation is to focus on tunneling systems with frequencies close to the excitation

frequency ω ≈ ω0 = E/~ and with transversal relaxation rates, which are much

smaller than the frequency of the electric field, thus ωτ2 � 1. Therefore coefficients

with higher order are less relevant3 and the most important equations can be written

as (
1

τ2

∓ i(ω ± ω0)

)
R

(±1)
+ =− peffFac

2i~

(
∆0

E

)
(R0 +R(0)

z ) (2.53)(
1

τ2

∓ i(ω ∓ ω0)

)
R

(±1)
− =

peffFac

2i~

(
∆0

E

)
(R0 +R(0)

z ) (2.54)

1

τ1

R(0)
z =

peffFac

i~

(
∆0

E

)
(R

(1)
− +R

(−1)
− −R(1)

+ −R
(−1)
+ ) (2.55)(

1

τ1

∓ iω
)
R(±1)
z =

1

2τ1

∆ρ1. (2.56)

The next step is to solve the obtained equations for the prefactors in order to calculate

the contribution for the resonant and relaxation processes.

3the approximation assumes that R
(0)
± , R

(±2)
+ , R

(±2)
− , R

(±2)
z and higher order terms vanish
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Saturation

Inserting the terms from equations 2.53 and 2.54 into equation 2.55 yields the solution

for R
(0)
z . Together with the unperturbed thermal equilibrium value R0 this yields a

relation to describe the saturation behaviour of the observed systems by

RSat = R0 +R(0)
z = tanh

(
E

2kBT

)(
1− (Fac/Fc)

2

1 + (Fac/Fc)
2 fSat(ω)

)
(2.57)

with the line shape function

fSat(ω) =
1

1 + τ̃2
2(ω − ω0)2

+
1

1 + τ̃2
2(ω + ω0)2

(2.58)

and the additionally defined parameters

τ̃2 =
τ2√

1 + (Fac/Fc)
2

and F−1
c =

∆0

E

peff

~
√
τ1τ2. (2.59)

From the expression above, it can be deduced that terms, which contain RSat con-

verge towards zero, if the electric field Fac increases above the critical field limit

Fc. Otherwise the contribution can be described by the value of the unperturbed

equilibrium value R0. Furthermore, the differential equations automatically lead to

a Lorentzian line shape function fSat(ω). This theoretical prediction was experimen-

tally confirmed by so called hole burning experiments in [Arn75, Arn78]. Higher

field intensities broaden the thereby emerging hole in the distribution function of the

tunneling systems.

The functional dependency of the saturation factor RSat is depicted in figure 2.11 as

a function of the asymmetry energy ∆ and the tunneling splitting ∆0. It is thereby

normalized on the unperturbed thermal equilibrium value R0. For field strengths

smaller than the critical field Fc the saturation effect is insignificant and RSat/R0

can be approximated as one. If the field strength reaches the critical value, tun-

neling systems around the excitation frequency ω start to saturate, as illustrated in

figure 2.11 (left). For higher field strengths the band of saturated tunneling systems

around the excitation frequency ω gets even wider since the modified relaxation time

scale τ̃2 is also dependent on the field strength ratio. It is also worth to notice that

the width of the saturated band of tunneling systems is increasing, because the criti-

cal field Fc is dependent on the ratio of ∆0/E. Symmetric tunneling systems (∆ = 0)

are therefore saturated by smaller field excitations, as can be seen from the above

defined relation 2.59 of the critical field strength.
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Figure 2.11: Illustration of the normalized saturation factor RSat/R0 as a function of the

asymmetry energy ∆ and the tunneling splitting ∆0. A constant energy of E/h =1000 MHz

is drawn in red as a reference. The saturation is depicted for a field ratio Fac/Fc of 1 (left)

and 10 (right). The relaxation time scale was chosen rather small as τ2 = 50/ω with

ω =1000 MHz for a better visualisation.

Relaxation contribution

The contribution for the relaxation processes can be derived from equation 2.56 and

the ansatz 2.52, which yields

R(±1)
z =

∆ρ1

2

(
1

1 + τ 2
1ω

2
± i τ1ω

1 + τ 2
1ω

2

)
(2.60)

as the relevant terms for the calculation of the polarisation

〈π̂〉rel = peff

(
∆

E

)(
R(+1)
z e−iωt +R(−1)

z eiωt
)
. (2.61)

The constant terms of the thermal equilibrium value were neglected, since only com-

ponents in or out-of-phase with the external electric field are relevant for the measur-

able change in polarisation. The definition of the linear susceptibility from equation

2.24 gives a relation to express the contribution of the tunneling systems to the
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Figure 2.12: Frequency dependence of the relaxation contribution to the linear suscepti-

bility as a function of ωτ1. Left: in-phase component. Right: out-of-phase component.

material properties as

χ′rel =

(
∆

E

)2
p2

eff

ε0kBT
sech2

(
E

2kBT

)
a′(ω) (2.62)

with a′(ω) =

(
1

1 + τ 2
1ω

2

)
(2.63)

for the contribution in phase with the cosine excitation and the terms, which are 90◦

phase shifted as

χ′′rel =

(
∆

E

)2
p2

eff

ε0kBT
sech2

(
E

2kBT

)
a′′(ω) (2.64)

with a′′(ω) =

(
τ1ω

1 + τ 2
1ω

2

)
. (2.65)

The relaxation mechanism can be understood as the tendency of the dipoles to fol-

low the orientation of the external electric field since the energy splitting E of the

tunneling system is constantly modulated by the excitation. It can follow the pertur-

bation by exchanging energy with the surrounding on the characteristic relaxation

time scale τ1. This behaviour is analogous to the description of a classical Debye

relaxation process [Deb13].

The frequency dependencies of both quantities are depicted in figure 2.12. If the

frequency of the electric field is smaller than the relaxation rate, thus ωτ1 � 1, the

dipoles and therefore the polarisation can follow the excitation. The contribution to

the component in phase a′(ω) is maximal and to the component out-of-phase a′′(ω) is
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vanishingly small. For increasing excitation frequencies the dipoles start to dephase

due to the comparatively lower relaxation rates. In this regime the tunneling systems

are lagging behind the external excitation, which leads to a decrease of the in-phase

component a′(ω) and the emergence of a maximum in the out-of-phase component

a′′(ω). For even higher frequencies ωτ1 � 1 the dipoles are not able to follow the

electric field with the relaxation process. Both contribution therefore vanish in this

frequency regime.

Resonant contribution

The relevant terms for the resonant contribution can directly be derived from equa-

tions 2.53 and 2.54 as

R
(±1)
+ =

(
∆0

E

)
peffFac

2~
τ2RSat

(
∓ τ2(ω ± ω0)

1 + τ 2
2 (ω ± ω0)2

+ i
1

1 + τ 2
2 (ω ± ω0)2

)
(2.66)

R
(±1)
− =

(
∆0

E

)
peffFac

2~
τ2RSat

(
± τ2(ω ∓ ω0)

1 + τ 2
2 (ω ∓ ω0)2

− i 1

1 + τ 2
2 (ω ∓ ω0)2

)
. (2.67)

The total contribution can be derived from the second term in equation 2.51 and the

used ansatz from 2.52 by

〈π〉res = −peff

(
∆0

E

)(
R

(+1)
+ e−iωt +R

(−1)
+ eiωt +R

(+1)
− e−iωt +R

(−1)
− eiωt

)
. (2.68)

This expression can be rearranged in order to separate terms which are in phase

with the cosine excitation of the external electric field and terms 90 degree phase

shifted. With the definition of the polarisation in equation 2.24 the contribution

of the resonant process can be expressed by the linear electric susceptibility as the

in-phase component

χ′res =

(
∆0

E

)2
p2

eff

ε0~
τ2RSat b

′(ω, ω0) (2.69)

with b′(ω, ω0) =

(
− τ2(ω − ω0)

1 + τ 2
2 (ω − ω0)2

+
τ2(ω + ω0)

1 + τ 2
2 (ω + ω0)2

)
(2.70)

and the out-of-phase component

χ′′res =

(
∆0

E

)2
p2

eff

ε0~
τ2RSat b

′′(ω, ω0) (2.71)

with b′′(ω, ω0) =

(
1

1 + τ 2
2 (ω − ω0)2

− 1

1 + τ 2
2 (ω + ω0)2

)
. (2.72)
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Figure 2.13: Frequency dependence of the resonant contribution to the linear suscepti-

bility as a function of the normalized field frequency ω/ω0. The relaxation time scale was

chosen to be τ2 = 50/ω0. Left: in-phase component. Right: out-of-phase component.

The resonant contribution can be explained similar to a classical oscillator with

external periodic excitation. If a photon of the electric field with energy ~ω is reso-

nantly absorbed by a tunneling system in the ground state with an energy splitting of

E = ~ω0 the system transitions into the excited state. In the case that the tunneling

system was already in the excited state stimulated emission causes it to de-excite

into the ground state by emitting a photon.

The frequency dependency of the linear susceptibility thereby follows a typical reso-

nant behaviour as depicted in figure 2.13. For frequencies smaller than the resonance

frequency of the energy transition the system can follow the electric field in phase

only weakly. When the frequency is increased to ω = ω0 the out-of-phase contribu-

tion b′′(ω, ω0) reaches its maximal value, since the polarisation is 90◦ out of phase.

Hence the in-phase contribution b′(ω, ω0) is vanishingly small when the field fre-

quency exactly matches the resonance condition. For higher frequencies ω > ω0 the

phase difference increases even more which leads to a change of sign in the in-phase

component of the frequency dependency and the corresponding decrease in the out-

of-phase component. The position of the two extremes in b′(ω, ω0) and respectively

the width of b′′(ω, ω0) is directly related to the relaxation time scale τ2.

It can also be seen that effects due to saturation mainly influence the out-of-phase

contributions to the electric susceptibility. For a distribution of tunneling systems

the responsible factor RSat would diminish positive and negative contributions of

b′(ω, ω0) equally, whereas b′′(ω, ω0) would effectively be decreased.
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2.3.6 Rabi oscillations

A two-level system which interacts with an external periodic driving field can be

described by Rabi oscillations. For two states with H0,Rabi |Ψ1〉 = E1 |Ψ1〉 (lower

state) and H0,Rabi |Ψ2〉 = E2 |Ψ2〉 (upper state) the commonly used Hamiltonian can

be expressed by

HRabi = H0,Rabi +Hper,Rabi =

(
E1 0

0 E2

)
+

(
0 −~ΩR

−~ΩR 0

)
cos(ωt) (2.73)

where ΩR denotes the Rabi frequency. By solving the time dependent Schrödinger

equation for this problem the prefactors c1(t) and c2(t) for an ansatz of

|ΨRabi〉 = c1(t)e−i
E1t
~ |Ψ1〉+ c2(t)e−i

E2t
~ |Ψ2〉 (2.74)

become

c1(t) =

(
cos

(
Ω′Rt

2

)
+ i

δω

Ω′R
sin

(
Ω′Rt

2

))
e−i

δωt
~ (2.75)

c2(t) = i
Ω

Ω′R
sin

(
Ω′Rt

2

)
ei
δωt
~ (2.76)

with the detuning frequency δω = |E2−E1|
~ − ω and the generalized Rabi frequency

Ω′R =
√

Ω2
R + δω2. The corresponding probabilities to find the system in a specific

state for an initial ground state can easily be derived from this by

p1(t) = |c1(t)|2 =
δω2

|Ω2
R + δω2|

+
Ω2

R

|Ω2
R + δω2|

cos2

(
Ω′Rt

2

)
(2.77)

respectively

p2(t) = |c2(t)|2 =
Ω2

R

|Ω2
R + δω2|

sin2

(
Ω′Rt

2

)
. (2.78)

The probability p2(t) for the two-level system to be in the upper state is depicted in

figure 2.14 as a function of time. The probability only reaches unity for a vanishingly

small detuning, otherwise its value is lowered due to the Lorentzian shape of the

prefactor in equation 2.78. The Rabi frequency thereby describes the transition rate

of the two states. For non-zero detuning frequencies ΩR increases according to the

definition of the modified Rabi frequency Ω′R.

In comparison to the perturbation Hamiltonian of a tunneling system in equation

2.30 the Rabi formalism lacks the energy modulation of the diagonal matrix elements.

Only symmetric tunneling systems (∆ = 0) are fully described by the equations

above. For the case of asymmetric tunneling systems (∆ 6= 0) the additional term

can be attributed to an additional intrinsic non-linearity of the TLS which can be

demonstrated by simulations [Mün21]. The Rabi frequency of the tunneling system

is therefore generally defined as

ΩR =
∆0

E

peffFac

~
. (2.79)
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Figure 2.14: Solutions of the Rabi differential equations. The colours represent different

detuning with δω = 0 (blue), δω = ΩR (orange) and δω = 2ΩR (green). Left: probability

to find the two-level system in the excited state plotted over an arbitrary time trace for

different detuning. Right: line shape function of the maximal probability amplitude for

p2. The higher the detuning from the resonance frequency of the system the smaller is the

maximal amplitude of the transition.

2.3.7 Landau-Zener transitions

In contrast to the description of a two-level system as in section 2.3.6, tunneling sys-

tems possess additional diagonal matrix elements, which modify the energy splitting

according to equation 2.30 as

Ẽ(t) = E + δEdia,b(t) = E + 2
∆

E
peffFb(t). (2.80)

This leads to a different non-equilibrium phenomenon responsible for an enhanced

dielectric loss, whenever an additional electric field bias Fb(t) is applied to the tun-

neling system. It can be described by an avoided level crossing of the systems ground

and excited state, for which Landau-Zener transitions [Lan32, Zen32] can occur. The

effect was observed for amorphous thin film resonators in bias ramp measurements

[Kha14] as well as for continuous periodic bias excitations [Mat19]. Both experiments

showed good agreement with the theoretical predictions made by the Landau-Zener-

model. Simulations of the tunneling systems Hamiltonian under the influence of

different excitation and bias fields [Mün21, Fre21] also coincide with the Landau-

Zener formalism.

In order to describe a tunneling system under the influence of a driving field F (t)

and an additional bias field Fb(t), the time-dependent Schrödinger equation has to be

solved for the Hamiltonian in 2.30 and a general state |ΨLZ〉 = cg(t) |Ψg〉+ ce(t) |Ψe〉.
For simplicity the change in energy splitting due to the influence of the driving field
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can be neglected since Ẽ(t) � 2∆
E
peffFac holds for most cases. The potential Rabi

terms in the case of a continuous bias field can also be ignored, as long as the bias

frequency ωb is much smaller than the driving frequency ω. Consequently, the cor-

responding amplitude of the transition probability as in relation 2.78 would vanish

at frequencies of the order of the driving frequency. The differential equations can

hence be expressed by

i~ċe(t) =
Ẽ(t)

2
ce(t) + ~ΩRcos(ωt)cg(t) (2.81)

i~ċg(t) =− Ẽ(t)

2
cg(t) + ~ΩRcos(ωt)ce(t), (2.82)

which are analogous to the equations in the Landau-Zener problem. An often used

definition is hereby the change in energy splitting over time as a bias rate

ν =
1

~
dẼ(t)

dt
= 2

peffḞb(t)

~

√
1−

(
∆0

E

)2

≡ ν0

√
1−

(
∆0

E

)2

. (2.83)

An illustration of the occurring avoided level crossing is depicted in figure 2.15 for

an exemplary tunneling system. The energy of the ground and the excited state is

thereby modified by the applied bias field. For zero bias the difference between the

two states is simply E. The levels also contain the energies for the n photons of the

driving field as a constant offset. If the system is in the ground state |Ψg, n〉 and

absorbs a photon of energy ~ω it ends up in the excited state |Ψe, n− 1〉, which is

shown as the dotted line in figure 2.15 (left). At the points where the two states

intersect the tunneling system experiences an avoided level crossing with an energy

gap in the order of the Rabi frequency ΩR. This is shown in the right illustration of

figure 2.15.

For the case of the Landau-Zener problem, there are two possibilities with a different

outcome, depending on the biasing rate ν. If the energy is varied slowly in comparison

to the frequency of the transition ν � Ω2
R, a system in the ground state |Ψg, n〉 will

undergo an adiabatic transition into the excited state |Ψe, n− 1〉 via the absorption

of a photon. The opposite process from |Ψe, n− 1〉 into |Ψg, n〉 takes place under

the emission of a photon. For very high biasing rates ν � Ω2
R, on the other hand,

the system can not exchange energy with the photon field since the change in energy

splitting is too fast. This passage without energy exchange is called a Landau-Zener

transition.

The solution of the Landau-Zener problem yields the probability for an adiabatic

transition from the ground state into the excited state as

Pg→e = 1− exp

(
−πΩ2

R

ν

)
. (2.84)
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Figure 2.15: Illustration of the Landau-Zener problem. Left: energy diagram of a

tunneling system together with the n photons of the driving field. If the system absorbs

or emits a photon, the energy lines differ by ~ω. For Fb = 0 the energy splitting between

the ground and the excited state is simply E. The minimal energy splitting Emin = ∆0 is

reached, when the bias field fully compensates the asymmetry energy ∆. Right: enlarged

version of the red rectangle on the left. The avoided level crossing gives rise to adiabatic

and non-adiabatic passages of the tunneling system dependent on the bias rate ν.

If off-resonant tunneling systems, which are mostly in their ground state, perform

this transition via a bias field sweep, the photons of the driving field can be dissipated

when out of resonance. This yields a contribution to the dielectric loss, which will

be derived in section 2.5.3 for the entire ensemble of tunneling systems.
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2.4 Relaxation mechanisms

Similar to the resonant interaction with the photon field, tunneling systems can

interact with thermal phonons in the material. This introduces the relaxation time

scales τ1 and τ2, which are characteristic quantities for dielectric measurement. They

are distinguished by the order of their interaction. The longitudinal time scale τ1

thereby represents the direct interactions with phonons, whereas the transversal time

scale τ2 corresponds to a dephasing of the tunneling systems state due to variations

in the environment.

2.4.1 Longitudinal relaxation

Tunneling systems directly interact with the phonon bath via resonant absorption

and spontaneous emission. The corresponding transitions are performed by single or

multi-phonon processes dependent on the abundance of phonons and thus temper-

ature. Since the number of phonons is small below 1 K, it is sufficient to describe

the occurring interactions by one phonon processes. Two phonon processes are also

discussed below for completeness, but are only relevant at temperatures above a few

Kelvin.

One-phonon process

The derivation of the one-phonon relaxation time scale τ1P uses the perturbation

Hamiltonian Ĥ(ph)
per of the phononic interaction with the tunneling system [Esq98]

to calculate the transition rates between the energy levels via Fermi‘s golden rule

[Dir27]. The transition from an initial state |Ψg,1〉 (TLS in ground state, one

phonon) into the final state 〈Ψe, 0| (TLS in excited state, no phonon) can there-

fore be expressed by the rate

Γg→e =

∫
2π

~
| 〈Ψe, 0| Ĥ(ph)

per |Ψg,1〉 |2D(E) f(E) δ(E − ~ωph) dE, (2.85)

where D(E) denotes the density of phononic states and f(E) the Bose-Einstein

distribution. An analogous expression can be found for the rate Γe→g corresponding

to the creation of a phonon via the transition from the excited state into the ground

state. Therewith, the one-phonon relaxation rate can be calculated by summing

Γg→e − Γe→g over all possible phonon modes [Jäc72, Phi87], which yields

τ−1
1P =

(
γ2

l

v5
l

+ 2
γ2

t

v5
t

)
E3

2πρ~4

(
∆0

E

)2

coth

(
E

2kBT

)
(2.86)
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with density ρ of the material. The longitudinal (index l) and the two transversal

(index t) phonon branches are described by the elastic deformation potential pa-

rameter γ and the sound velocity v. The material specific parameters are often

summarized into a factor

K1 =
1

2πρ~4

(
γ2

l

v5
l

+ 2
γ2

t

v5
t

)
. (2.87)

A detailed derivation of this formula can also be found in [Ang07]. For a constant

energy splitting the relaxation time τ1P increases with the asymmetry of the tunnel-

ing system. The minimal value τ1,min is therefore obtained by perfectly symmetric

tunneling systems (∆ = 0) and can be used to rewrite equation 2.86 as

τ−1
1P = τ−1

1,min

(
∆0

E

)2

. (2.88)

Two Phonon process

At higher temperatures the phonon number is increased, which allows the tunneling

systems to interact with two phonons simultaneously via a virtual or real third energy

level. The corresponding relaxation rate can be expressed as

τ−1
2P = K2

(
∆0

E

)2

T 7f2P

(
E

2kBT

)
coth

(
E

2kBT

)
, (2.89)

where K2, similar to the one-phonon process, represents a material dependent pa-

rameter and f2P a phenomenologically chosen function [Dou80]. At temperatures

below 1 K it is sufficient to approximate the longitudinal relaxation time scale τ1

with one-phonon processes. At higher temperatures two-phonon processes have to

be taken into account and the total relaxation rate is described by

τ−1
1 = τ−1

1P + τ−1
2P . (2.90)

2.4.2 Transversal relaxation

Besides the already discussed direct process, tunneling systems can indirectly ex-

change energy with their environment via strain or dipole field interactions. The

basic idea behind this mechanism is described by the theory of spectral diffusion.

The model was originally developed to describe the decay rates of spin echoes [Kla62]

and later polarisation echoes [Bla77] from experiments on amorphous materials. A

tunneling system, which interacts with an electric or strain field, is surrounded by

many off-resonant tunneling systems not affected by the excitation. This assumption
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is reasonable since the total number of tunneling systems is many orders of magni-

tude larger than the number of tunneling systems, which are resonantly excited by

the field. These off-resonant systems continue to perform thermal transitions ac-

cording to their longitudinal relaxation rate τ1. This induces slight changes in the

local strain field, respectively in the dipole orientation. The transitions of the sur-

rounding tunneling systems can therefore alter the field at the site of the resonant

system. Similar to the bias interaction, a single transition changes the asymmetry

energy ∆ and thereby the energy splitting E of a tunneling system i. The change in

energy can hence be expressed by a sum over all interacting tunneling systems j in

the surrounding environment as

δEi =
∆i

Ei

∑
j

∆j

Ej
UijRz,j, (2.91)

where Rz,j represents the z-components from the Bloch vectors and Uij the factor for

the interaction strength between the two systems. The often used interaction con-

stant U0 is thereby defined as an average value of the interaction strength. Multiple

transitions in the surrounding environment lead to a random-walk-like broadening

for the expectation value of the tunneling systems energy over time. This property

is expressed in [Bla77] by the diffusion kernel

D(ω − ω0, t) =
1

π

∆ω(t)

(ω − ω0)2 + ∆ω(t)2
, (2.92)

which represents the probability to find a tunneling system with energy ~ω0 at a

different frequency ω after the time t. The width of the Lorentzian distribution is

increased with time and thus defines a time scale for the loss of phase coherence.

In the short time limit t < τ1,min < τ1 the dephasing rate [Bur18] of the tunneling

system can be expressed by

τ−1
φ =

√
π

24

P0U0kBT

~τ1P

. (2.93)

For later times, the dephasing rate is expected to decrease in a crossover region and

again in a long-time limit [Bla77]. Detailed descriptions of this quantity often depend

strongly on the time interval and the experimental setup itself. The total transversal

relaxation rate can be written as

τ−1
2 = 2τ−1

1 + τ−1
φ . (2.94)
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2.5 Relations for the entire ensemble

Section 2.3 introduced the formal definition of a single tunneling system, described

its properties for the interaction with an external field excitation and derived equa-

tions in order to characterize its response in the context of a macroscopic quantity

in a dielectric measurement. This section will utilize these relations to deduce a

description for the temperature dependency and the saturation effects of the entire

ensemble.

2.5.1 Temperature dependency

In order to derive the dielectric function for the entire ensemble, the contributions

for the individual tunneling systems have to be integrated over their defining pa-

rameters with the distribution function from section 2.3.2. This yields the real and

the imaginary parts, which consist of their relaxation and resonant contributions as

derived in section 2.3.5.

The relations also contain the effective dipole moment peff of the tunneling system.

To include different orientations of the total dipole moment p to the direction of the

applied electrical field, the average value of p2
eff can be calculated as an integration

over the polar angles

〈p2
eff〉 =

∫ 2π

0

∫ π
0
p2 cos(θ)2sin(θ)dθdϕ∫ 2π

0

∫ π
0

sin(θ)dθdϕ
=

1

3
p2. (2.95)

Total contribution to the real part

The real part of the dielectric function is often described by the relative change of

permittivity. This quantity is useful since the total permittivity consists of different

contributions, of which the tunneling systems make up only a small fraction. The

other contributions can be assumed as constants in the observed temperature regime

below 1 K. The relative change of permittivity can therefore be expressed by the

susceptibility as
δε′

ε′
=

δχ′

1 + χ′
. (2.96)

This change in susceptibility can thereby be derived by an integration over the single

tunneling system contributions from equations 2.62 and 2.69 as

δε′

ε′
=

1

1 + χ′

∫ Emax

∆0,min

∫ E

∆0,min

(χ′rel + χ′res)P (E,∆0) d∆0 dE, (2.97)

where the change of the total relative permittivity εr = 1+χ is assumed to be insignif-

icant under the variation of the parameters and can hence be treated as constant.
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Figure 2.16: Individual contributions to the relative change in permittivity in dependency

of the temperature are plotted for different excitation frequencies ω of the applied field.

Left: the resonant contribution increases for low temperatures as more tunneling systems

are in the ground state. Right: the relaxation contribution decreases for low temperatures

since less phonons are available for this process.

The temperature dependency can now be calculated by a numerical integration of

the expression above. The relative change in permittivity can be divided into a

relaxation component

δε′rel

ε′
=
p2P0

3ε0εr

1

kBT

∫ Emax

∆0,min

∫ E

∆0,min

√
E2 −∆2

0

E∆0

sech2

(
E

2kBT

)
a′(ω) d∆0 dE (2.98)

and a resonant component

δε′res

ε′
=
p2P0

3ε0εr

1

~

∫ Emax

∆0,min

∫ E

∆0,min

∆0

E

1√
E2 −∆2

0

τ2RSat(E, T ) b′(ω, ω0) d∆0 dE (2.99)

with ω0 = E/~. The dependence over temperature is shown in figure 2.16 for the indi-

vidual contributions of the relaxation and resonant processes. At high temperatures,

the thermal phonon number is large and the relaxation time scale τ1 is short. This

allows systems to follow the external field and to contribute via relaxation processes.

For higher frequencies of the applied excitation, however, tunneling systems start to

dephase when ωτ1 . 1 according to a′(ω) and the contribution to the permittivity is

therefore reduced. The occupation difference on the other hand vanishes for systems

with E � kBT , which suppresses resonant processes according to the dependency of

the saturation parameter RSat(E, T ). With decreasing temperature tunneling sys-

tems with an energy of E > kBT are primarily in their ground state and therefore
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positively contribute to the resonant permittivity according to b′(ω, ω0). When the

temperature reaches the energy scale of the excitation frequency T ≈ ~ω/kB, tun-

neling systems with a negative contribution to the permittivity contribute as well.

For tunneling systems with even lower energy splitting, the contributions are vanish-

ingly small and thus level off into a plateau. The permittivity caused by relaxation

processes dies out for decreasing temperatures since the phonon number is reduced

and the relaxation time scale τ1 increases.

Total contribution to the loss

The out-of-phase components responsible for dissipation are usually described by the

dielectric loss. This quantity can be expressed by the dielectric susceptibility as

tanδ =
ε′′

ε′
=

χ′′

1 + χ′
. (2.100)

The loss can thereby be derived analogous to the real part by an integration over

the individual tunneling system contributions from equations 2.64 and 2.71 as

tanδ =
1

1 + χ′

∫ Emax

∆0,min

∫ E

∆0,min

(χ′′rel + χ′′res)P (E,∆0) d∆0 dE. (2.101)

A numerical integration yields the temperature dependency of the dielectric loss with

the relaxation component

tanδrel =
p2P0

3ε0εr

1

kBT

∫ Emax

∆0,min

∫ E

∆0,min

√
E2 −∆2

0

E∆0

sech2

(
E

2kBT

)
a′′(ω) d∆0 dE

(2.102)

and the resonant component

tanδres =
p2P0

3ε0εr

1

~

∫ Emax

∆0,min

∫ E

∆0,min

∆0

E

1√
E2 −∆2

0

τ2RSat(E, T ) b′′(ω, ω0) d∆0 dE

(2.103)

The obtained results of these calculations are shown in figure 2.17 for the individ-

ual contributions. At low temperatures the dielectric loss is mainly determined by

resonant processes. Due to b′′(ω, ω0) the small energy bandwidth of the order of

τ2 defines a subset of contributing tunneling systems with E ∼ ~ω. If the relation

kBT � E holds, these systems are in their ground state and contribute to the res-

onant component of the loss. This also defines the height of the emerging plateau.

For higher temperatures tunneling systems with small energy splitting are thermally

saturated first, which decreases the resonant contribution when kBT ∼ E.

The relaxation becomes relevant if tunneling systems fulfil the relation ωτ1 ∼ 1 due

to the Lorentzian shape of a′′(ω). At lower temperatures the relaxation time scale



38 2. Theoretical background

10-3 10-2 10-1 100 101

temperature T [K]

0.0

0.2

0.4

0.6

0.8

1.0

ta
n
(δ

) r
es

 [a
.u

.]
1 kHz
1 MHz
0.1 GHz
1 GHz
10 GHz

10-3 10-2 10-1 100 101

temperature T [K]

0.0

0.2

0.4

0.6

0.8

1.0

ta
n
(δ

) r
el

 [a
.u

.]

1 kHz
1 MHz
0.1 GHz
1 GHz
10 GHz

Figure 2.17: Individual contributions to the dielectric loss in dependency of the tem-

perature are plotted for different excitation frequencies ω of the applied field. Left: the

resonant contribution decreases for higher temperatures as less tunneling systems are in

their ground state. Right: the relaxation contribution increases for high temperatures

due to the increased relaxation rate.

τ1 is too long and the term of the hyperbolic secant suppresses any contribution to

the numeric integral. Hence, the relaxation first becomes apparent for low excitation

frequencies of the external field. For even higher temperatures the dielectric loss

evens out in a plateau independent of the applied frequency.

2.5.2 Saturation of TLS

The calculations in section 2.5.1 all assume a negligible influence of saturation ef-

fects as derived by equation 2.57 for the resonant contributions, so Fac � Fc. Since

the mechanism of resonant absorption is noticeably affected by the strength of the

external field, this section will derive an expression to describe the saturation for an

ensemble of tunneling systems in a dielectric material.

The photon number is increased by the strength of the excitation field Fac, which

in turn enhances the interaction rate of the tunneling systems with photons. If this

rate exceeds the relaxation rate of the two-level system, states created by resonant

absorption can be de-excited by stimulated emission before they decay through a

relaxation process. The occupation difference therefore becomes zero and both coun-

teracting processes occur equally often. The dielectric material can be understood

as transparent in the energy band, where the resonant condition is fulfilled. This

effect was already depicted in figure 2.11 for high field excitations. The real part and
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the loss of the dielectric function are differently influenced by the saturation. Since

the integral for the real part consists of positive and negative components due to

the line shape function b′(ω, ω0), saturation effects cancel both contributions almost

equally. A deviation can only be observed for very high field excitations. The loss,

on the other hand, is significantly influenced by saturation effects. It is reduced via

equation 2.57 for a single tunneling system. The total contribution of the ensemble

to the dielectric loss can be derived identically to equation 2.103, but as a function

of the excitation field Fac for an arbitrary temperature T . This yields the expression

tanδres =
πP0p

2

3ε0εr

tanh
(

~ω
2kBT

)
√

1 +
(
Fac

F̄c

)2
, (2.104)

in which the low power limit for the dielectric loss can be defined as

tanδ0 =
πP0p

2

3ε0εr

tanh

(
~ω

2kBT

)
(2.105)

and the critical field limit as

F̄c =
3~
2p

1
√
τ1,minτ2

. (2.106)

The equation includes an average over all possible dipole angles θ and provides a

good description for the entire ensemble. The dependency of the resonant loss is

depicted in figure 2.18 as a function of the applied external field strength Fac. For

small field excitations Fac � F̄c the resonant loss can be approximated with the low

power limit from equation 2.105. For values in the order of the critical field limit F̄c
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the dielectric loss starts to decrease due to saturation effects. For even higher field

strengths Fac � F̄c, the dependency of the resonant loss becomes approximately

tanδres ∼ F−1
ac with a convergence towards zero.

Since this effect is especially important for the resonant dielectric loss, a measure-

ment of the temperature dependence as described in section 2.5.1 is also dependent

on the of the applied field strength Fac. Figure 2.19 shows the total dielectric loss

for different ratios of the applied field strength Fac and the corresponding critical

field Fc. According to figure 2.18 the resonant loss is reduced above the critical field

Fc due to the saturation of the tunneling systems. The relaxation contribution is

thereby not affected, as well as the contributions to the real part of the dielectric

function.
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Figure 2.19: Total dielectric loss

in dependence on temperature.

The plot shows the effect of a

strong field excitation on the low

temperature resonant loss for dif-

ferent ratios of the field strength

Fac to the critical field Fc. The

contribution is reduced due to the

saturation effects of the tunneling

systems.

2.5.3 Landau-Zener loss contribution

Section 2.3.7 introduced Landau-Zener transitions as a possible contribution to the

dielectric loss, which will be derived in the following for the entire ensemble following

[Kha13]. The total dissipated energy dE can thereby be expressed by an integral

over the dielectric sample V and the number of tunneling systems N that perform

an adiabatic passage during the time interval dt. The term reads

dE =

∫
dV

∫
dN~ωPg→e, (2.107)

where Pg→e is the transition probability from equation 2.84. All systems are hereby

assumed to be in the ground state, which corresponds to a vanishingly small tem-
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Figure 2.20: Numerical integration for

the total dielectric loss in relation to the

low power limit tan(δ)0 in dependence of

the dimensionless bias rate ξ. The low

power limit is restored if the bias rate is

increased, even if the systems would be sat-

urated in their steady state limit without a

bias field.

perature. The dielectric loss is connected to the dissipated power Pdis via the total

energy stored in the capacitor Wtot = ε0εrF
2
acV as

tanδ =
Pdis

ωWtot

=
dE/dt
ωWtot

. (2.108)

Following this approach leads to an expression for the dielectric loss

tanδ =
πP0p

2

ε0εr

ξ

∫ 1

0

cos θ

∫ 1

0

(
1− exp

(
−cos θ

ξ

x2

√
1− x2

))
dx

x
d(cos θ), (2.109)

which can be evaluated numerically. The dimensionless bias rate ξ is thereby defined

as

ξ =
2ν0~2

πp2F 2
ac

. (2.110)

The calculation also includes an integration over the dipole angles θ which takes

into account their orientation with respect to the direction of the electric field by

peff = p cos θ. For very high bias rates ν � ΩR the loss matches the low power limit

for vanishing temperatures

tanδ0,T→0 =
πP0p

2

3ε0εr

, (2.111)

which matches the relation derived in section 2.5.2 for the fully unsaturated ensemble.

The emergence of a plateau can be explained by the sheer number of tunneling system

that are swept through the resonance at high bias rates. This compensates the steady

decrease in transition probability to a constant value of the integral. The dependency

of the Landau-Zener dielectric loss is depicted in figure 2.20 over the dimensionless

bias rate ξ. Since these calculations neglect relaxation processes equation 2.109 can

not describe the dielectric loss for ξ � (ΩR
√
τ1τ2)−1. In this regime the bias rate

plays a minor role and the dielectric loss is better approximated with the steady
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state limit from equation 2.104. The transition between both limits can be described

by the crossover rate

ξ1 =
2

πΩR0τ
(2.112)

with ΩR0 = peff Fac

~ and τ =
√
τ1,minτ2. In summary, this means that a single low

power driving field would only see the low power loss of the dielectric sample. For

increasing field strength, the tunneling systems become saturated, which decreases

the resonant contribution to the steady state limit according to equation 2.104. The

additional application of a bias field would then restore the low power loss limit with

increasing values of the corresponding bias rate. This behaviour was experimentally

verified by measurements for example in [Kha14, Fre21].

For the case of a periodic bias sweep instead of a single ramp the corresponding

systems traverse the region of the avoided crossing several times. They interact mul-

tiple times with the excitation field while additionally accumulating a phase, also

known as the dynamic phase in between transitions [Stü32], which results in con-

structive or destructive interference between the individual states. The possibility

of a population inversion is thereby restricted due to the associated interference pat-

tern and dependent on the defining system parameters. The effect is referenced as

Landau-Zener-Stückelberg (LZS) interferometry [She10, Iva22], which will be intro-

duced in the following section.

2.5.4 Continuous biasing effects

A continuous bias field can be understood as a periodic modulation of the TLS‘s

asymmetry energy and therefore its energy splitting. In principle every periodic

function can be used to bias the TLS-ensemble but an obvious choice would be a

sinusoidal function to create a discrete bias frequency fb or a triangular signal in order

to achieve a constant bias rate. During this modulation a subset of TLSs cross the

frequency region of the driving field multiple times and the corresponding systems

are therefore repeatedly interacting with the excitation field. The bias frequency

fb and the relaxation time scale τ1 are hereby the two defining parameters that

divide this scenario into two different cases. For 1/fb � τ1 the TLS can relax

to the ground state after each interaction. Each transition can hence be treated

individually with the formalism presented above. For 1/fb � τ1, which will be

referred to later as the coherent regime, consecutive crossings are dependent on

each other. The acquired phase becomes important and leads to interference effects

between multiple transitions. As a result constructive or destructive interference

can excite off-resonant TLS or respectively hold them in their ground state during

multiple passages. Figure 2.21 shows a simulation of this effect from [Bli22] for two



2.5. Relations for the entire ensemble 43

5.0    
∆0 [MHz]

10.0

9.5

9.0

8.5

8.0

7.5

7.0

∆
[M

H
z]

(d)

   5.0

(c)

0 100 200 300
time t [ s]

50

0

50

F
b [

V
/m

]

0.0

0.2

0.4

0.6

0.8

1.0
ρ

ee
(a)

0 100 200 300
time t [ s]

(b)

Figure 2.21: Numerical calculation from [Bli22] of the excitation probability ρee for two

continuously biased TLS. Both systems have ∆0 = 5 MHz but differ slightly in asymmetry

energy with ∆(Fb = 0) = −8.718 MHz (blue) respectively ∆(Fb = 0) = −8.523 MHz

(green). The illustrations in (a) and (b) show the occurring constructive, respectively

destructive, interference, whereas (c) and (d) clarify their position in the ∆-∆0-plane with

the corresponding maximal bias shift. Adapted from [Bli22].

systems both with ∆0 = 5 MHz and ∆(Fb = 0) = −8.718 MHz (blue) respectively

∆(Fb = 0) = −8.523 MHz (green), which are biased by a sinusoidal field Fb(t) =

Fb cos(2πfbt) of amplitude Fb = 50 V/m and frequency fb = 50 kHz. This shows

that a slight variation of the systems parameters drastically change the behaviour of

individual TLSs under the continuous bias field. The dark blue system experiences

a stepwise Rabi-like oscillation due to the constructive interference from multiple

passages of the excitation field. The green system, on the other hand, stays in

the ground state since destructive interference prevents an excitation during the

crossings. This exemplary scenario does not include relaxation processes for the

individual systems. A more detailed discussion can be found in [Bli22].

In literature this effect is referred to as LZS interferometry [She10, Iva22]. The

calculations thereby yield the condition for photon absorption of TLSs in the non-

adiabatic limit as

δE0 = |
√

∆2
0 + ∆2(Fb = 0)− ~ω| = k · hfb, k ∈ Z. (2.113)

This condition can be interpreted as a k-photon resonance of the TLSs with the

specific set of defining parameters ∆0 and ∆(Fb = 0). The interaction involves k

bias photons together with the driving field to perform the transition according to

ω = ω0 + k · ωb. For a better understanding figure 2.22 shows the time averaged oc-

cupation probability ρ̄ee to find the corresponding systems in the excited state after
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Figure 2.22: Time averaged oc-

cupation probability ρ̄ee for various

TLS with ∆0 = 5 MHz but differ-

ent values for ∆(Fb = 0). The

vertical blue lines illustrate the ex-

pected positions for the k-photon

resonances. The horizontal red ar-

row indicates the maximal modula-

tion δ∆. Adapted from [Bli22].

multiple passages, which in this case include relaxation processes. The k-photon res-

onances (vertical lines) can be observed according to equation 2.113 in dependence

of the initial asymmetry energy ∆(Fb = 0) and for a constant tunneling splitting ∆0.

The constructive interference effect can only occur in the frequency band of width

δ∆ around the excitation frequency (vertical red line). The horizontal red arrow

thereby indicates the maximal modulation δ∆ = 2peff Fb in dependence on the bias

field strength. For systems outside of this range the interaction probability is reduced

since the shift in asymmetry energy is not large enough to reach the resonance of

the excitation field. Some of these peaks are very small k = {0,±5}. This effect

is often referred to as the coherent destruction of interference, which is caused by

very slow frequencies of the Rabi-like oscillations. This prevents an excitation of the

corresponding systems in a sensible amount of time and therefore the occurrence of

a resonance. These k-photon resonance peaks can also be linked to the non-linear

behaviour of TLSs with the appearance of intermodulation products in the frequency

band, which were already observed in numerical simulations in [Mün21].

A treatment including relaxation processes was also done in [Mat19] for the coher-

ent evolution of n resonant passages. Their calculations assumed relaxation after

m = τ1fb coherent transitions. The thereby derived second critical bias rate

ξ2 =
8 pFb

π~Ω2
R0τ1

(2.114)

defines the limit, in which the ensemble transitions from the picture of the single

sweep formalism to the coherent regime.

From figure 2.22 it can also be understood that a significant difference exists between

the increase of bias field strength and bias frequency. With higher values of Fb the
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area of interacting systems is broadened with δ∆, which increases the total contri-

bution of the ensemble, for example to the dielectric loss. Higher bias frequencies,

on the other hand, widen the distance between individual k-photon resonances. The

total contribution to the loss is therefore even reduced for an increase of the bias

frequency in the coherent regime as shown in [Bli22]. This condition (hfb > pFb)

can be translated into the third critical bias rate

ξ3 =
F 2

b

F 2
ac

, (2.115)

which indicates the return of the dielectric loss from the coherent regime back to

the saturation limit. A full evaluation can be found in [Bli22] with a numerical

simulation of the TLS dynamics and the corresponding experimental observations.
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2.6 Resonators

Resonant systems are applied to almost every field of physics for either the reali-

sation of experimental setups or the theoretical description of the thereby observed

phenomena. This section provides a theoretical description of a transmission line

resonator and an introduction in the formalism of a non-linear Duffing oscillator,

which are essential for the understanding of the following chapters.

2.6.1 Equation of motion for microwave resonators

The experimental setup of this thesis uses microelectronic absorption-type resonators

inductively coupled to a transmission line. In the simplest case such a system consists

of a capacitance C and an inductance L as schematically illustrated in figure 2.23.

They can be described by the formalism of a quantum mechanical harmonic oscillator

with a Hamiltonian of

Hr = ~ωr

(
â†(t)â(t) +

1

2

)
, (2.116)

where ωr defines the resonance frequency of the system. The creation â†(t) and

annihilation operator â(t) are thereby the characterising quantum mechanical system

operators, which can be used to derive the classical properties associated with the

resonator system. The electric and magnetic fields for example are related to the

system operators via

E(t) ∼ (â(t) + â†(t)) and B(t) ∼ i (â(t)− â†(t)). (2.117)

The resonator can be described by the linear Heisenberg equation of motion

i~
∂

∂t
â(t) = [â(t),Hr], (2.118)

which can be rewritten as
∂

∂t
â(t) = iωrâ(t) (2.119)

using the canonical commutation relations of the system operators. An analogous

equation follows for the adjoint creation operator â†(t). The coupling to the envi-

ronment via the transmission line and the implementation of a channel for intrinsic

losses adds additional terms to equation 2.119 resulting in

˙̂a(t) = iωr â(t)− (κi + κc) â(t) +
√
κc b̂in(t). (2.120)

The quantity b̂in(t) thereby represents an external excitation via the transmission

line. A similar equation is found for the creation operator â†, but since it describes the

same system properties it is sufficient to focus on equation 2.120 for the derivation.
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bin bout Figure 2.23: Schematic illustra-

tion of an absorption type LC-

resonator inductively coupled to a

transmission line. The systems pos-

sess a loss rate due to coupling κc

and to internal losses κi. The res-

onator is excited with a drive tone

b̂in, which is reduced through the

resonators coupling to the output

field b̂out.

The photons of the signal couple into the inductor with the corresponding loss rate

κc. While inside the resonator, the amplitude of the system operator is reduced via

internal losses κi and the coupling of photons to the transmission line κc. These

parameters are also used to define the coupling coefficient

ηc =
κc

κi + κc

, (2.121)

which can be used to quantify the distribution between internal and external losses.

If ηc < 0.5, the total loss is mostly dominated by the internal properties, which is

why the resonator is called undercoupled. For an over-coupled system ηc > 0.5 the

losses are mainly determined by the coupling to the transmission line and the internal

losses are not as important. A steady state solution for equation 2.120 can be found

by an ansatz of â(t) = âeiωt, â ∈ R, for the applied drive tone of b̂in(t) = b̂ine
iωt,

b̂in ∈ C [Nat17]. The substitution into equation 2.120 yields the expression

˙̂a = −(i(ω − ωr) + (κi + κc))â+
√
κc b̂in, (2.122)

for which ˙̂a = 0 can be assumed to obtain a steady state solution. The amplitude is

thereby derived as

â(ω) =

√
κc

(κi + κc) + i(ω − ωr)
(2.123)

and the corresponding phase shift between the input signal and the resonator field

as

ϕa(ω) = −arctan

(
(ω − ωr)

(κi + κc)

)
. (2.124)

In a measurement setup as in figure 2.23, the resonator is often described by the

transmission parameter S21, which compares the input field of the external excitation

b̂in with the output field b̂out. The corresponding value can be calculated using

b̂out(ω) = b̂in(ω)−
√
κc â(ω) (2.125)
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Figure 2.24: Transmission response of an absorption type resonator. Power transmission

|S21|2 (left) and phase shift ϕt (rigth) as a function of the absolute change in resonance

frequency normalized to the total loss.

and the expression for â(ω) from equation 2.123, which yields

S21(ω) =
b̂out(ω)

b̂in(ω)
= 1− κc

(κi + κc) + i(ω − ωr)
. (2.126)

The phase shift between the output and the input field can be expressed as

ϕt(ω) = arctan

(
κc(ω − ωr)

κi(κi + κc) + (ω − ωr)2

)
. (2.127)

This is a result of the resonator field coupling back into the transmission line ac-

cording to equation 2.125 and interfering with the external field excitation b̂out. The

associated behaviour is depicted in figure 2.24 for the power transmission |S21|2 and

the phase shift ϕt of an absorption type resonator. For strongly detuned excitation

frequencies the external field passes through the transmission line without any signif-

icant absorption of the resonator. The transmission parameter is thereby negligibly

reduced and the phase is shifted only slightly. Near the resonance frequency the field

amplitude of the outgoing component is decreased by the absorption of the associ-

ated loss mechanisms of the system. The phase shift is determined by the overlap

of the initial excitation with the resonator field coupled back into the transmission

line. At resonance the absorption is maximal and the phase shift vanishes.

2.6.2 Non-linear Duffing oscillator

The harmonic oscillator potential is a valuable approximation for most resonant

systems at sufficiently small excitations. Above a certain threshold, however, many
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Figure 2.25: Solutions for the Duffing response equation for different system param-

eter sets. The dependence of the oscillation amplitude z is plotted over frequency

for different values of the non-linearity factor β (left), the amplitude of the external

field excitation γ (middle) and the damping parameter δ (right). If the corresponding

quantity is not otherwise indicated in the plots, the remaining parameters were chosen

as β = 0.01, γ = 1 and δ = 0.1.

of these systems show anharmonicities in their potential, which are responsible for

occurring non-linear effects. This section therefore describes the properties of the

Duffing oscillator [Duf18] as an exemplary system. This type of resonator can be

described by a non-linear second-order differential equation, which reads

ẍ+ δẋ+ ω2
rx+ βx3 = γ cos(ωt). (2.128)

The quantity δ thereby describes the damping of the system, ωr its resonance fre-

quency in the harmonic limit, β the non-linearity factor and γ the amplitude of

the external driving field. The solution for the frequency response of a steady state

can be found by applying the harmonic balance method [Jor07], which leads to an

implicit function for the oscillation amplitude z in the form of((
ω2 − ω2

r −
3

4
βz2

)2

+ (δ ω)2

)
z2 = γ2. (2.129)

The functional dependency of this equation is depicted in figure 2.25 for an arbi-

trary set of system parameters. Each picture shows the behaviour for a variation

for a specific quantity. The non-linearity factor β changes the prefactor of the an-

harmonic potential. Contrary to the case of the harmonic oscillator (β = 0) the

Duffing response equation has multiple solutions for a single excitation frequency ω

with stable (solid lines) and unstable (dashed lines) equilibrium states. Sweeping
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the frequency in the resonator window results in a discontinuous dependence of the

amplitude response with a characteristic jump phenomenon, when the two stable

solution collapse into a single value. The obtained curve is different for increasing

or decreasing values of the excitation field. This behaviour is a consequence of the

anharmonic potential and the associated non-linear restoring force. With a non-

vanishing value for β the potential transitions from harmonic to anharmonic via a

spontaneous symmetry breaking. As a result, the dynamical system of the Duffing

resonator displays bifurcation and chaos for a complex evaluation of the systems

equation of motion [Guc86]. A more detailed description and further reading on this

topic can also be found in [Guc86, Nay95, Pea06, Jor07].

It is worth mentioning that the description of the Duffing resonator shows many

parallels to the theoretical formalism used for the two-level system. The Duffing

resonators potential is likewise formed by two separate wells. The occurring bifur-

cation can thereby be linked to the appearance of two separate states with different

amplitudes.

2.6.3 Duffing oscillator with two excitation fields

The conducted experiments in this thesis show characteristics similar to the be-

haviour of a non-linear resonator. In order to understand the obtained data in the

following chapters, the theoretical description of the Duffing oscillator is extended

by an additional excitation field. The corresponding differential equation reads

ẍ+ δẋ+ ω2
rx+ βx3 = γ1 cos(ω1t) + γ2 cos(ω2t). (2.130)

The analysis of the equation above is thereby intended to describe the case of a strong

excitation field represented by the parameters γ1, ω1 and a weak probe field with γ2,

ω2. Similar to the single excitation case, the corresponding implicit functions of the

system can be obtained by the harmonic balance method, which yields

γ2
1 = z2

1

(
(δω1)2 +

(
3

2
βz2

2 − (ω2
1 − ω2

r ) +
3

4
βz2

1

)2
)

(2.131)

and

γ2
2 = z2

2

(
(δω2)2 +

(
3

2
βz2

1 − (ω2
2 − ω2

r ) +
3

4
βz2

2

)2
)
. (2.132)

The oscillation amplitudes z1 and z2 thereby represent the response to the individ-

ual excitation fields at the associated frequency ω1 respectively ω2. A more detailed

derivation of these equations can be found in [Din22]. The scenario of interest in this

thesis is the application of a fixed frequency for the strong excitation together with
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Figure 2.26: Numerical solutions for the oscillation amplitude z2 in dependence of the

probe field frequency ω2 for different values of the strong excitation field frequency ω1

(green dotted line). The other parameters were chosen as ωr = 1, β = 0.005, γ1 = 1,

γ2 = 0.01 and δ = 0.05. The grey dotted line describes the approximation of the modified

resonance frequency ω̃r in accordance with equation 2.134.

the variation of the weak probe field to measure the systems transmission response.

This can be achieved by a numerical solution of the implicit functions given above.

Figure 2.26 shows the response of the resonator in dependence of the probe field

frequency ω2 for various frequencies of the strong excitation field ω1, which is repre-

sented by the dotted green line. For values of ω1 close to the resonance frequency ωr

the resonator response is shifted towards higher frequencies. Increasing ω1 further re-

veals three separate Lorentzian shaped response functions for the dependence of the

probe field. This effect results from the multiple solutions of a Duffing type oscillator

under a strong excitation field with the frequency ω1. The three possible solutions

correspond to three different values of z1, which leads to the emergences of individual

response functions. The middle peak thereby arises from the unstable solution as

depicted by the dotted line in figure 2.25 and the two side peaks from the stable
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solutions. After ω1 passes the jump frequency, the resonator response restores its

original position at approximately ωr according to the single solution. With a strong

excitation field compared to a weak probe field (γ1 � γ2) it can be assumed, that

the corresponding oscillation amplitudes fulfil a similar relation z1 � z2. Therewith,

equation 2.131 takes the same form as the response function of a Duffing oscillator

with a single strong excitation field

γ2
1 = z2

1

(
(δω1)2 +

(
3

4
βz2

1 + ω2
r − ω2

1

)2
)

(2.133)

equivalent to equation 2.129. This relation can be used to calculate z1(ω1, γ1) nu-

merically independent of parameters wit index 2. Hence, the strong excitation field

drives the resonator in the non-linear regime with nearly no disturbance of the weak

probe field. The resonance response in dependence of ω2, on the other hand, is

altered by z1 according to equation 2.132. The corresponding modified resonance

frequency ω̃r can then be approximated with equation 2.132 as

ω̃r =

√
ω2

r +
3

2
βz2

1(ω1, γ1). (2.134)

The obtained values can be used to describe the position of the response peaks as

plotted in figure 2.26. Here the position of the upper resonance according to equation

2.134 is depicted by a grey dotted line. In this limit (γ1 � γ2) the approximation

yields a good description for the resonance frequency.
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2.7 Stimulated emission in disordered media

This section provides a brief introduction for the possible collective effect of stimu-

lated emission for an ensemble of broadly distributed two-level states. In order to

generate a measurable field contribution in a certain bandwidth of frequency, the

intrinsic loss of the entire system has to be not only compensated, but exceeded.

This can theoretically be realized for a population inversion (∆ρ < 0) of the TLS

ensemble, which -if maintained- compensates the loss through the contributions from

the stimulated emission of the excited TLS. The basic condition for this effect can

therefore be written as

(κi + κc) < 0, (2.135)

where κi is negative for an arising gain. The difficulty hereby lies in the creation

and preservation of the population inversion in at least a certain range of frequency.

A theoretical description for this was given in [Bur14a] utilizing the Landau-Zener

formalism. The calculations provide a model to explain the mechanisms to produce

a population inversion, a coherent gain and beyond that a possible regime for lasing

to occur. A schematic illustration of this process is depicted in figure 2.27. The

population inversion is thereby achieved by Landau-Zener transitions of TLS in the

frequency domain of a strong pump field via an external bias sweep. Thereafter the

pumpa) b)

probe
c)

bias

stimulated 
emission

d)

energy energy

energy energy

Figure 2.27: Schematic illustration of a process for stimulated emission. a) A pump field

inverts systems from the ground (grey) to the excited state (blue). b) The systems are

swept to a different frequency via a bias field. c) A weak probe tone is applied in order to

induce stimulated emission for the excited systems, which is created in d).
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systems traverse the energy domain of a weak probe field under which stimulated

emission can produce a coherent gain. If this signal is produced in the frequency

window of a resonator setup, it can be picked up and read out via a transmission

measurement.

The occurring effect is similar to lasing but the term has to be used with some cau-

tion here, since the active medium in this case is an ensemble of energetically random

distributed two-level states instead of the normally utilized narrow line width transi-

tions. Additionally, the minimal amount of energy levels for a classical laser system

is three in order to realize a population inversion. Fewer levels can only saturate

the associated states since stimulated emission is compensated by the absorption

process. The mechanism, which is illustrated in figure 2.27, uses a separation in

the frequency domain in order to isolate the region of pumping from the stimulated

emission to realise the arising gain.

A corresponding system was presented in [Ros16] as a random-defect laser and

showed the emission of a microwave resonator under off-resonant pumping. The

effect of sound amplification by the process of stimulated emission in an amorphous

compound was already shown separately in [Pri93]. With the emerging branch of

research for the creation of artificial single atoms many related systems show similar

properties. Some examples for further reading on this can be found for single-qubit

lasing [Hau08], lasing effects on voltage-biased Cooper-pair transistors [Che14] or ar-

tificial single atom lasing via voltage-biased superconducting qubits [Ast07, Ash09].
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This chapter provides an overview about the experimental methods used within the

framework of this thesis. It starts with an introduction of cryogenic measurements

in section 3.1 with all elements that enable experiments at very low temperatures.

The following section 3.2 deals with the experimental setup. It begins with the

investigated sample material in section 3.2.1 and the design and characterisation of

the microstructured resonator in section 3.2.2. Afterwards the fabrication of the

resonator chip and the sample holder are described in section 3.2.3, followed by an

explanation and characterisation of the measurement electronics in section 3.2.4.

3.1 Realising low-temperature measurements

The emphasis of this thesis is the direct resonant interaction of individual two-level

systems with the external excitation fields. According to section 2.3.5 this contri-

bution is only noticeable, if the corresponding ensemble is unsaturated or in other

words, if the occupation difference is non vanishing. Considering that the frequency

domain of the applied fields is around 1 GHz, the temperature of the experiment has

to be well below 1 K in order to realise the required conditions. The measurement

setup is therefore placed inside a 3He/4He dilution refrigerator of the type Oxford

Kelvinox 4001, which enables measurements in a temperature stabilised environment

between 10 mK and 8 K.

The working principle is based on the phase separation of a mixture of 3He and
4He below temperatures of approximately 800 mK. This creates a heavier 3He-poor

phase, in which the 3He is diluted in superfluid 4He, and a lighter 3He-rich phase,

which consists almost entirely of pure 3He. The actual concentration of 3He in the

individual phases depend on the temperature of the mixture. For normal pressure

and vanishing temperatures T → 0 the concentrated 3He phase converges towards a

pure phase, whereas the diluted phase reaches a 3He-concentration of approximately

6.5 %. Due to the difference in enthalpy of 3He in the individual phases, the sepa-

ration can be used to realise a cooling effect by the evaporation of 3He atoms from

the 3He-rich phase into the 3He-poor phase. The 3He, which is diluted in liquid 4He,

can hereby be understood as a gas due to the vanishing viscosity of the superfluid.

A more detailed description of this effect and the working principle of a 3He/4He

dilution refrigerator can be found in [Fro92, Bal96, Ens05, Pob07]. The following

section is a short overview of the experimental framework but for deeper under-

1Oxford Instruments, Tubney Woods, Abingdon, Oxon, OX13 5QX, England
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Figure 3.1: Schematic illustration of the 3He/4He dilution refrigerator. The entire dilu-

tion unit is enclosed in a vacuum pot surrounded by a liquid 4He bath. The individual

cooling stages further reduce the temperature in order to reach values below 10 mK at

the mixing chamber and the experimental platform. The schematic illustration is adapted

from [Pob07, Fre21].

standing the literature is recommended. A schematic illustration of the main part

for the 3He/4He dilution refrigerator unit is shown in figure 3.1. In order to realize

these low temperatures all sources of thermal heat transport have to be reduced

to a bare minimum. The entire setup is therefore enclosed in a vacuum pot and

the different cooling stages are shielded against thermal radiation. The mechanical

connection in between stages is thermally decoupled from the next stage through

materials with low thermal conductivity. The vacuum pot is placed in a liquid 4He

bath to precool the individual components and to improve the achieved vacuum by

the condensation of the remaining gas on the inner surface. The first cooling stage

is the 1K-pot, which is independent from the circulation of the 3He/4He-mixture. It
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consists of a reservoir for liquid 4He, which can be feed from the main bath via a

needle valve. Constantly pumping the contained 4He reduces the temperature down

to approximately 1.5 K. This stage can hence be used for the condensation of the
3He/4He-mixture. The resulting phase separation is formed in the mixing chamber

by design. During its passage the temperature of the mixture is further reduced by

thermal coupling to the individual stages and the heat exchangers (continuous and

step heat exchanger). For the generation of a constant cooling power, it is essential

to reduce the concentration of 3He in the diluted phase inside the mixing chamber.

This is achieved by the still, which creates an osmotic pressure through the evap-

oration of 3He. The 4He thereby stays liquid since the vapour pressure of 3He is

much higher than for 4He. The temperature of the still is hence adjusted to increase

the circulation flow of 3He whilst minimizing the ratio between 3He and 4He vapour.

After that, the gas goes through the pumps (rotary and roots pump) and is purified

by a nitrogen cold trap followed by a helium cold trap. The 3He is then fed back

into the condensation capillary to repeat the circulation process. Since the mixing

chamber is the coldest part of the cryostat, the experimental platform is mounted

directly underneath.

The temperature of the cryostat is controlled by an additional heater on the exper-

imental plattform. Since the circulation provides a constant cooling power, higher

temperatures are achieved by heating the experimental platform to the desired value.

The stabilisation of temperature is thereby realized by a PID controller within a

LabVIEW routine to monitor the different parameters for the refrigerator unit. The

temperature on the mixing chamber, hence also of the experimental platform, is read

out by a carbon resistor thermometer. This thermometer is calibrated by a noise

thermometer, which on the other hand was calibrated by a fixed point thermometer

[Rei17]. During the experiments, the corresponding resistivity is measured by an AC

resistance bridge2, which utilises small excitation fields to avoid parasitic heating

effects.

2LR-700, Linear Research Inc., 5231 Cushman Place, Suite 21, San Diego, CA 92110-3910, USA



58 3. Experimental methods

3.2 Experimental setup

This section is dedicated to explain the experimental setup used within the framework

of this thesis from the investigated sample in section 3.2.1 over the resonator design

and characterisation in section 3.2.2 to the fabrication of the chip and the sample

holder in section 3.2.3. Thereafter the measurement electronics for the readout of

the resonator chip are introduced in section 3.2.4 including the rf-pathway and all

utilised measurement devices.

3.2.1 Sample

The sample material in this thesis is a thin layer of sputter deposited silicon dioxide

(SiO2). Since it is one of the most prominent representatives for network formers

in glasses, it acts as a building block for many multi component glasses. With the

vapour deposition technique, by which silicon is sputter deposited in a pure oxygen

atmosphere, it became possible to microstructure thin layers of this material in all

desired shapes. Silicon dioxide is therefore used as a standard isolation layer in the

field of microelectronics. The general structure was already presented in section 2.1

for the introduction of the amorphous and crystalline networks. If no further pre-

cautions are undertaken, the disordered state is more likely to emerge, since the

formation of the crystalline lattice requires stable temperatures and a precise oxygen

concentration condition. For the utilised sample, however, the oxygen concentra-

tions are optimised for as little magnetic contamination as possible. In reality, the

term SiOx would therefore be more accurate to describe the sample composition, but

the following sections will also refer to it as SiO2. A good comparison with similar

sample materials measured with different resonator geometries can also be found in

[McR20], which summarized many measurements on thin film dielectrics.

3.2.2 Microstructured resonator

In the low frequency regime, the dielectric properties can directly be determined

with a capacitance bridge measuring a capacitor containing the sample material.

In the Megahertz-regime and for higher frequencies the capacitive reactance makes

this measurement technique difficult, which is why another approach is required to

extract the desired quantities. The most common concept is the deployment of a

resonator circuit, which is able to enhance the amplitude at its resonance frequency

and therefore simultaneously acts as a band pass filter for off-resonant frequencies.

For electrical excitation fields the most straightforward realisation is an LC-resonator

with an inductance L and a capacitance C analogous to the description presented

in section 2.6.1. Within the framework of this thesis, an LC-resonator in hanger
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Figure 3.2: Left: Schematic illustration of the Wheatstone bridge-like arrangement for

four identical capacitors loaded with a dielectric material (blue). Right: Corresponding

circuit diagram for an equivalent RLC-resonator [Kha12], which can be used to model the

LC-resonator in hanger mode.

mode is used to measure the dielectric properties of the material. In this type of

operation, the resonator is coupled inductively to a transmission line and only ab-

sorbs the applied field, if the resonance condition is fulfilled. This has the advantage

that off-resonant frequencies can be used to extract a background for the remaining

electronic setup.

In order to perform pump-probe experiments on the material, strong fields are re-

quired inside the capacitor. With the purpose of avoiding a coupling into the trans-

mission line of the resonator, which is used as the readout branch during the exper-

iment, a Wheatstone bridge-like arrangement of capacitors as in figure 3.2 (left) is

used. It consists of four identical capacitors (C1, C2, C3 and C4) each with capac-

itance C, which are arranged in a loop in order to create two decoupled branches.

The sample is thereby used as the dielectric material in each capacitor. The total

capacitance for this arrangement can be easily calculated to be C as well. Together

with the inductance, which is connected to the horizontal branch, this forms the

LC-circuit. In addition, the coil is inductively coupled to the transmission line for

readout. The applied driving field therefore generates an effective voltage across the

horizontal diagonal. Since all four capacitors are identical, the additional vertical

branch for biasing is decoupled from the readout branch. This is also beneficial for

the integrated amplifiers in the output side of the transmission line to avoid a satu-

ration and a non-linear drive.

Figure 3.2 (right) shows the corresponding circuit diagram of an equivalent RLC-

circuit. The incoming rf-field with amplitude Uin is inductively M and partially
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capacitively Cc coupled from the impedance matched Z0 = 50 Ω transmission line

into the resonator. This creates a voltage Uac across all elements inside the res-

onator. The outgoing signal Uout therefore depends on the amount of field absorbed

by the RLC-circuit, which is equivalent to the description introduced in section 2.6.1.

According to that, the LC-resonator can be described by the resonance frequency

fres =
1

2π
√
LC

(3.1)

and the loss contributions, which can be defined as dimensionless quality factors

according to

Q =
πfres

κ
, Qi =

πfres

κi

and Qc =
πfres

κc

. (3.2)

This yields the relation
1

Q
=

1

Qi

+
1

Qc

, (3.3)

for which the individual contributions can be identified as internal Qi and from

the coupling of the electric field to the transmission line Qc. The internal quality

factor can have many contributions, but in this case it mainly originates from two-

level systems and hence Qi ≈ Qi,TLS holds. In certain circumstances Qi can have

additional sources of loss, especially when the ensemble of TLS is saturated and other

mechanisms of loss dominate for example different contributions from quasiparticle

loss, vortex loss, radiative loss and parasitic modes [McR20]. The two parameters

fres and Q can consequently be used to characterise the resonator, and since they

are directly connected to the dielectric properties, also to characterise the sample

material.

According to equation 3.1, the resonance frequency is directly dependent on the

capacitance C of the LC-circuit, which is a function of the dielectric real part ε′.

It is important to take into account that the capacitance C consists of two parts,

the capacitance Cd originating from the dielectric response of the sample and the

parasitic capacitance Cp, which is caused by the electric field in vacuum outside the

capacitor. The total capacitance can therefore be expressed by

C = Cd + Cp. (3.4)

With equation 3.1 and under the assumption that the stray capacitance is constant,

the relative change of the dielectric real part can be written as

δε′

ε′
=
δCd

Cd

=
δC

C

C

Cd

=

((
f ∗res

fres

)2

− 1

)
1

F
. (3.5)

The quantity f ∗res is hereby an arbitrary reference point of the measured resonance

frequencies, which is often chosen as the minimum in the temperature dependency.
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The derivation of equation 3.5 also assumes no significant change in inductance L and

no other effects like for example a change of sample size through thermal expansion.

The corresponding modification for the dielectric loss hence is

tanδ =
1

Qi,d

=
1

Qi

√
F
. (3.6)

The parameter F is called the filling factor and is calculated by the relation

F = 1− Cp

C
. (3.7)

It can be understood as a measure for the amount of electric field lines that penetrate

the sample compared to the field lines in vacuum. Its value is mainly dependent on

the geometry of the sample and the capacitance, which will be discussed in the

following section for the resonator design in this thesis.

Design

The circuit from figure 3.2 is realised as a lumped element resonator. This type of

resonators are characterised by their small dimensions compared to the wave length

of the resonance frequency. The individual elements can therefore be treated as sep-

arate components with a capacitance C and an inductance L instead of a standing

wave formalism. For that, the electrical circuit is microstructured on a 3”-silicon wa-

ver. The silicon hereby serves only as the substrate for the design. A single resonator

chip is thereby fairly small (10 mm×10 mm), which is why the entire waver can fit 32

chips in total for the production process. One of these chips is illustrated in figure 3.3

with the schematic design for the resonator. The metal conductor layers are made

from niobium, which becomes superconducting below approximately 9.2 K [Mat63].

This property inhibits ohmic losses of the material, which enables the production

of resonators with very high quality factors. As already mentioned above, the ca-

pacitance consists of four capacitors with identical surface area of 120 µm×105 µm.

The individual capacitors are in this case realised as parallel plate capacitors with a

niobium layer for the individual plates and a 300 nm thick SiO2 isolation layer as the

dielectric material. This yields a capacitance of about 1.45 pF for each capacitor. In

comparison to a standard interdigital capacitor (IDC) the electric field is expected

to be much more homogeneous. The comparatively small distance of the capacitor

plates, which is given by the thickness of the sample material, additionally enables

high field strengths. This is also higher than what is achievable for the IDC since

the minimal spacing for the capacitor finger is approximately 1 µm.

To apply the bias voltage against ground, an additional bond pad is connected to

two capacitors (C1 and C4) as depicted in the circuit diagram of figure 3.2. The

remaining two (C2 and C3) are attached to the ground plane. The enlarged version
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Figure 3.3: Schematic illustration of the resonator chip design. The picture shows the

individual microstructured layers on the silicon waver substrate with enlarged segments of

important structures. The first zoom-in shows the entire resonator, which is coupled to

the transmission line. The other two zoom-ins show the capacitance bridge of the design

and the geometry of the inductance in more detail.

in figure 3.3 shows the alignment of the individual layers and the connections for the

desired capacitance bridge. The inductance is formed by two separate coils, which

are connected by a conductor bridge. The classical meander structure was not cho-

sen since the illustrated design reduced the asymmetry of the resonance curve in the

simulations drastically. The coil is separated from the feedline by a small stripline

of niobium, which is part of the ground plane. This isolates the resonator from the
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transmission line and hence increases the coupling quality factor. The thickness of

this ground plane stripline was adjusted to 130 µm to achieve the desired high value

for Qc. For the connection of the resonator feedline to the readout chain of the

measurement electronics, two bond pads are placed at the upper edges of the chip.

The width of the feedline and the gap distance to the surrounding ground plane is

thereby chosen to match an impedance of 50 Ω.

Characterisation and simulation

With the resonator design at hand this section gives an introduction on how to

evaluate a transmission measurement of the device and how to extract the desired

parameters from S21 data. The presented chip was designed and simulated with the

software Sonnet[Son18]. The resonator parameters can thereby be chosen as desired

and the resonance frequency can easily be adjusted according to the inductance and

capacitance. For this purpose the simulation parameters were selected as εr = 3.9

for the dielectric response, tanδ = 4 · 10−4 for the loss tangent and d = 300 nm for

the thickness of the dielectric material. The metal structure was assumed as lossless

since the niobium will become superconducting at low temperatures. The additional

bias connection was grounded for the simulations. With this, the calculation yields

the S21 parameter similar to a resonator response measurement with different exci-

tation frequencies. The resulting simulation is depicted in figure 3.4 and shows an

ideal symmetric resonance behaviour with fres = 1094.79 MHz. The coupling quality

factor according to the simulation Qc,sim can be calculated as

Qc,sim =
min(S21)

1−min(S21)
Qi,sim (3.8)
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Figure 3.4: Simulation of the resonance

frequency with the design from Sonnet soft-

ware. The curve shows the characteristic

Lorentzian shape with a minimal ampli-

tude min(S21) = 0.979 and a resonance fre-

quency of fres,sim =1094.79 MHz.
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with the intrinsic quality for the simulation Qi,sim = 1/tanδ. This yields an expected

coupling quality factor of Qc,sim = 117000 for the simulated design. As already

derived in equation 2.126, this type of resonator is describable via a Lorentzian

function. An analogous result was found by [Kha14] for the description of an LC-

resonator in hanger mode coupled to a transmission line, which is given by

S21(f) = 1− Q/Qc

1 + 2iQf−fres

fres

. (3.9)

In a realistic measurement environment a resonator usually shows deviation from this

behaviour. One of the main contributions are asymmetries of the resonance response

due to impedance mismatches. They are difficult to avoid since they originate from

many sources, for example the connectors between cables, the bonds or material

changes. Equation 3.9 can hence be extended for the non-ideal resonator case with

additional terms following [Pro15] as

S21(f) = aeiαe−2πifτ

(
1− Q/Qce

iφ

1 + 2iQf−fres

fres

)
. (3.10)

The amplification or attenuation in the measurement path lead to a scaling factor a

of the measured signal. Additionally, a possible phase shift of the outgoing signal is

represented by the factor eiα. Also the cables can cause an additional delay τ , which is

dependent on frequency and therefore results in the phase factor e−2πifτ . The effect

of imbalanced impedances is included by the factor eiφ, which effectively assumes

a complex value for the coupling quality factor Qc [Kha12]. The corresponding

algorithm described in [Pro15] can then be used to remove the non-ideal behaviour

by applying individual transformations to compensate the additional factors.

Figure 3.5 shows exemplary data from the resonator chip for 165 mK. The illustrated
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] Figure 3.5: Exemplary data (dark blue

line) for a transmission resonance mea-

surement at 165 mK. The corresponding

fit function (red line) from equation 3.10

describes the obtained S21-parameters

well. It yields a resonance frequency

of fres,exp = 1035.14 MHz and a coupling

quality factor of Qc,exp = 149000.
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fres,sim fres,exp Qc,sim Qc,exp

1094.79 MHz 1035.14 MHz 117000 149000

Table 3.1: Comparison between the simulated values and the experimentally obtained

parameters for the resonance frequency and the coupling quality factor.

fit was conducted according to equation 3.10 and is in good agreement with the

S21 data. Since the coupling quality factor was selected very large, the data at low

temperatures and low field strengths generally shows an unsatisfactory signal to noise

ratio. Measurements in this temperature regime hence depend on many averages and

a high bandwidth resolution to extract the parameters. The benefit of high Qc values

is the isolation of the resonator from the remaining measurement system. The fit of

the S21 data can be used to extract the resonance frequency and the coupling quality

factor and compare it to the simulated parameters, which were adjusted by design.

The corresponding values are depicted in table 3.1.

The experimentally obtained resonance frequency is slightly lower than the targeted

value. This could be the result of a small deviation for example in the thickness of the

isolation layer during the fabrication process. The specific source of this deviation

is not of importance as long as the resonance frequency is of the right order of

magnitude. Note that the resonance frequency also changes with temperature in a

range of 1033 MHz to 1040 MHz due to the change in dielectric permittivity.

The coupling quality factor Qc is slightly higher than the expected value from the

simulation but also matches the right order of magnitude. This value is expected

to be unchanged under variation of temperature or other system parameters. Since

its value is approximately two orders of magnitude higher than the intrinsic quality

factor of the sample, it is expected to have only a small contribution to the total

quality factor Q according to equation 3.3.

It is also important to keep in mind that equation 3.10 assumes a constant quality

factor Qi during the measurement sweep. Especially for strong driving fields this

condition is not satisfied due to the saturation of the underlying TLS-ensemble as

described in section 2.2.2. The loss of the material and therefore the quality factor of

the resonator is dependent on the applied electric field strength. Inside the resonator,

this field strength is strongly dependent on the applied frequency according to the

Lorentzian line shape. At resonance the amplitude is maximal and therefore much

stronger than for detuned frequencies. This results in a frequency dependent internal

quality factor of the material during a measurement sweep. The peak would hereby

get sharper, due to the enhanced quality factor, whereas the sides of the detuned

frequencies would be almost unchanged. This alters the shape of resonance curve

and therefore under- or overestimates the extracted parameter for the quality factor.
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This effect becomes important especially for high driving fields above the critical field

value. Furthermore, the utilised parallel plate capacitor geometry was investigated

for the field distribution and to determine the filling factor for the setup. For this

purpose a finite element simulation of the capacitor field was performed with the

software FEMM3. Figure 3.6 shows the simulation result for a vertical slice of the

resonator geometry. The individual layers are hereby modelled on top of the silicon

waver with vacuum above. The field distribution is mostly homogeneous especially
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vacuum
Figure 3.6: Simulation of the

electric field strength for an verti-

cal slice of the resonators plate ca-

pacitor geometry. The two SiO2-

layers are between the niobium

structure (grey) on top of the sil-

icon waver. The enlarged picture

shows the border region, in which

the field lines deviate from the ho-

mogeneous behaviour in the re-

maining structure. The simulation

only shows minor field leakage and

yields a filling factor of F = 0.996.

between the capacitor plates. The edges show some leakage of the electric stray

field, but only with minor effects in a restricted area. The simulation can also be

used to calculate the filling factor for the design. It can be calculated by the stored

energy inside the dielectric material compared to the entire stored energy. This

yields a filling factor of F = 0.996, which is close to the expected value for an

ideal parallel plate capacitor of 1. It can therefore be assumed that the amount of

parasitic capacitance is insignificant compared to the capacitance originating from

the dielectric.

3.2.3 Fabrication and sample holder

The fabrication of the microstructured resonator was done in-house in a cleanroom

by members of our working group. The structure was realised by a four-layer-process

consisting of the first niobium layer with 250 nm thickness, two isolation layers with

150 nm SiO2 each and the second niobium layer with 500 nm. For the first layer, the

silicon waver is fully covered with niobium. The excess material is then etched by

3Finite Element Method Magnetics
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a plasma beam to produce the desired micro-structure. Afterwards, the two isola-

tion layers are added with a standardized lift-off process. A photoresistive varnish is

therefore applied to the entire waver. The negative of the structure is then created

by the removal of the photoresist at specific sites through photolithography. The ma-

terial is then sputter deposited onto the entire waver, but only the exposed sections

add to the underlying structure. The photoresist together with the supplementary

material on top is then removed, so that only the desired structure remains. The

second isolation layer is produced analogously. The SiO2-layer is fabricated in two

separate layers to create steps for the bridge connection of the inductance and the

capacitor plate connections. This process is necessary to ensure the conductivity of

the final niobium layer, but has no significant experimental effect. Too large dif-

ferences in hight might lead to a discontinuity in the conductor path. The second

niobium layer is also applied by a lift-off process. After the production, the waver is

coated with a protective varnish and sawed into individual chips. Before the assem-

bly of the experiment the protective varnish is removed with different solvents and

an ultrasonic bath. Figure 3.7 shows a microscope picture of the critical structures

from the cleanroom directly after fabrication. The cleaned chip is then mounted

Figure 3.7: Microscope pic-

tures after the production

of the design in the clean-

room. The bottom left pic-

ture shows the schematic il-

lustration with two zoom-ins

for the conductor bridge of

the inductance and the ca-

pacitance region.

inside the sample holder, which is shown in figure 3.8 with the matching cover. The

holder is made from tempered oxygen-free copper and coated on the inside with a

layer of niobium. This additional step is applied to create a superconducting layer

at low temperatures to reduce the radiation losses of the resonator setup. The chip

is then glued with GE varnish, which functions as an adhesive and simultaneously

ensures the thermal contact to the copper body. The connection from the bond-

pads to the inner conductor of the SMA connectors is achieved directly by bonding

with aluminium wire. In order to create a smooth surface, the SMA connector is

filled with a piece of wire made from a copper-nickel-zinc alloy and soldered to the

SMA connector. Afterwards, the smooth surface is achieved by milling the created

extension of the connector to a plane surface. The ground connection is achieved

by bonding from the chip directly onto the surface of the sample holder, which is

connected to the experimental platform and therefore the cryostat’s ground.
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Figure 3.8: Rendered

picture of the sample

holder on the right with

the matching cover on the

left. The resonator chip is

glued to the sample holder

and connected via bonds

to the inner conductor of

the SMA connectors.

3.2.4 Measurement electronics

In order to read out the resonance frequency of the device a well tuned rf-measurement

setup is needed, which is schematically illustrated in figure 3.9 with all the essen-

tial parts. The core component of the measurement is the vector network analyser4

(NWA) with a frequency range from 300 kHz to 1.3 GHz. The NWA provides a source

signal at its output port, which it passes to the device under test. The input port

then compares the received signal with the initial value and captures the electrical

network parameters including the transmission, the reflection or the S-parameters.

Several measurements within this thesis required the evaluation of the spectrum

coming from the resonator. These measurements used a different NWA5, which can

additionally be operated as a spectrum analyser (SA). The source signal of the out-

put port is thereby disabled and the input port functions as the SA. In this type of

operation the device can receive an rf-signal only from other sources. The frequency

range of the HP 4396A is 100 kHz to 1.8 GHz in the NWA mode and 2 Hz to 1.8 GHz

in SA mode. Both devices have an adjustable output power ranging from −20 dBm

to 5 dBm for the source signal.

The coaxial cables are equipped with several attenuators outside the cryostat and

on the different stages down to the experimental platform. Two of them are at room

temperature (RT) outside the cryostat. The first attenuator6 is controllable via a

micro-controller7 and the associated LabVIEW software from the computer. It con-

tains six attenuator elements (1 dB, 2 dB, 4 dB, 8 dB, 16 dB, 32 dB), which can be

switched on individually. The device therefore allows a signal reduction from 0 dB

4HP 8752C, Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304-1185 USA
5HP 4396A, Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304-1185 USA
6Model 50P-1207 Serial 287346, JFW Industries INC, 84 Iron St, Johnstown, PA 15906, USA
7Arduino Pro Mini 328 - 5V/16MHz
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Figure 3.9: Schematic illustration of the individual components of the measurement

electronics. The NWA is connected via the transmission line with the resonator chip. The

additional bias line enables the application of up to two distinct frequencies to the sample

without interfering with the readout chain. Some devices are controllable via a GPIB

connection (green lines) by the computer, which runs the LabVIEW measurement routine.

to 63 dB in increments of 1 dB. The second one is a step attenuator8 with values

adjustable from 0 dB to 60 dB in steps of 10 dB. For the experiment, the second

attenuator is primarily used to roughly adjust the order of magnitude for the mea-

surement signal. The automatic attenuator can then be used to select the specific

input power within the routine of the measurement program.

Inside the cryostat on the input side of the transmission line are three additional

attenuators at different temperature stages. There are 20 dB at 1 K, 6 dB at 700 mK

and 10 dB at 10 mK. These attenuators reduce the effective noise temperature and

therefore increase the signal to noise ratio step by step starting at room temperature.

8Step Attenuator AE116-60-01-0N, Weinschel, 5305 Spectrum Drive Frederick , MD 21703 USA
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The corresponding noise temperature can be calculated by the Friis formula [Fri44]

and is approximately 180 mK at the resonator. Having said this, the experiment is

however limited by the noise temperature of the utilised amplifier, which comes to

8 K [Low13]. The different attenuators also prevent the formation of standing waves

along the coaxial cables resulting from possible impedance mismatches. For further

reading on the optimisation of the rf-setup [Kri19] is recommended.

Heat sinks (golden boxes in figure 3.9) at the individual stages of the cryostat ensure

a good thermal contact for the inner conductor of the coaxial cables. This prevents

heat leaks from a direct thermal coupling through the cables from room temperature

to the experiment. Inside the cryostat the signal is transmitted mainly by semi-rigid

coaxial cables. Only the last few centimetres from the last heat sink to the SMA

connector of the experiment are flexible stainless steel miniature coaxial cables. They

have more attenuation per meter, but are especially useful due to their flexibility for

the connection of the measurement setup.
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Figure 3.10: Measurement

of the gain from the MITEQ

room temperature amplifier from

[Fre16].

The returning signal has usually a small amplitude, which is why the outgoing mea-

surement line is equipped with two amplifiers. The first amplifier is a high-electron-

mobility transistor9 (HEMT) amplifier, which is thermally coupled to the 4K-flange

of the vacuum pot. These devices are commercially available and operate as a low

power amplifier suitable for low temperatures and high frequencies up to several GHz.

At a frequency of 1 GHz the HEMT provides an amplification of approximately 36 dB

[Low13]. The second amplifier is a low noise room temperature amplifier10 with an

amplification of approximately 42 dB as illustrated in figure 3.10. The additional

DC block11 at room temperature between the two amplifiers acts as a filter for DC-

currents and low frequencies. This applies for both directions, for signals from the

cryostat and for signals from the room temperature amplifier.

9LNF-LNC1 12A s/n 313B, Low Noise Factory AB, Nellickevägen 24, 412 63 Göteborg, Sweden
10AFS3-00100200-15-ULN, Narda-MITEQ, 435 Moreland Rd Hauppauge, NY 11788 USA
11Crystek CBLK-300-3, Crystek Corporation, 16850 Oriole Road Fort Myers, Florida 33912, USA
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Figure 3.11: Transmission measurement of the S21-parameter in the low frequency

regime from 0.3 MHz to 50 MHz (left) and in the high frequency regime from 950 MHz

to 1150 MHz.

Furthermore, a simple transmission measurement of the S21-parameter was con-

ducted to determine the attenuation of the coaxial cables. This measurement is

shown in figure 3.11 for low frequencies between 0.3 MHz and 50 MHz (left) and high

frequencies between 950 MHz and 1150 MHz. It was conducted with 0 dBm output

power of the NWA and 50 dB on the manual attenuators. The low frequency de-

crease is thereby caused by the amplifiers and the DC block. At high frequencies

in the range of the resonance frequency the additional attenuation originating from

the coaxial cables can be approximated by this measurement as 14 dB. With the

assumption of a symmetric assembly each coaxial line can be assumed to have 7 dB

of attenuation. Within this thesis, all values of excitation power therefore include

the added values of all attenuators plus one cable branch, if not stated otherwise.

This value hence corresponds to the power in the transmission line on the chip.

The bias branch consists of two signal generators12,13, which are brought together

with an rf-combiner. The corresponding coaxial cable is directly connected to the

resonator without additional attenuation. Analogous to the readout chain, the bias

line is thermally coupled to the individual stages of the cryostat through a separate

set of heat sinks. For the application of a constant voltage to the bias line to observe

single TLS dynamics it would be necessary to low-pass filter this branch, otherwise

the voltage noise disturbs the coupling of TLS to the resonator [Hun22].

All programmable measurement devices are connected to the computer via a GPIB

connection (green lines in figure 3.9). With this it is possible to use different mea-

surement routines in LabVIEW to control all important devices and change the

12RS SMH, Rohde & Schwarz, Mühldorfstrae 15, 81671, Munich
13HP 8648C, Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304-1185 USA
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system parameters during a measurement. Together with the temperature control

of the cryostat this enables a fully automated data acquisition for a given set of

parameters.



4. Experimental results

This chapter presents the experimental results of this thesis. The first section begins

with a standard measurement to ensure a sufficient thermalisation of the sample. The

following section 4.2 focuses on the saturation experiments for the TLS ensemble.

Section 4.3 thereafter shows the temperature dependency of the samples dielectric

function to compare it to the derived theory. The following section 4.4 continues with

pump probe experiments under symmetric and asymmetric pump-tones. The exper-

iment revealed the appearance of an additional non-trivial peak in the frequency

spectrum, which is characterised in subsection 4.4.3. It also provides an explanation

for the observed characteristic of the resonator’s frequency response spectrum. This

observation leads to a more detailed investigation of the non-linear properties of the

resonator setup in section 4.5. Afterwards, the phenomenon is further examined in

section 4.6, in which a theoretical approach is provided in section 4.6.2 to explain

the observed limits and behaviours.

4.1 Thermalisation

Amorphous structures and glassy compounds are well known for long thermalisation

time scales, sometimes in the order of hours or even days. Especially in the lowest

temperature range this is mainly caused by tunneling systems, which possesses very

small relaxation rates due to the statistically broad distribution of parameters and

thus release the stored heat only slowly to their surroundings. Together with the

generally high heat capacity and low thermal conductivity this can lead to an inter-

nally induced heat leak originating from these materials. For measurements at very

low temperatures it is therefore essential to ensure a sufficient thermalisation of the

sample before the actual experiment is performed. Otherwise the sample tempera-

ture decouples from the adjusted temperature of the cryostat leading to an artificially

created behaviour recognizable by a constant drift in measurement parameters.

In order to estimate the corresponding relaxation rate of the glass sample, a sim-

ple thermalisation measurement was conducted. The temperature of the cryostat is

thereby changed stepwise and held constant over a long period of time for a single

step. By doing so, the sample temperature adapts to this variation according to its

internal relaxation time scale. By measuring the real part or the dielectric loss as a

function of the measuring time the actual temperature of the sample can be observed

and an estimation for the glass relaxation time scale can be given.

73
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Figure 4.1: Thermalisation measurement for different temperature steps at the lowest

temperatures with a probe field of −91 dBm. The individual figures show the adjusted

temperature of the cryostat (left) together with the dielectric real part (middle) and the

loss (right) as a function of the measurement time. The mean value (dark grey line) and

the 1σ-range (grey shaded area) is also marked for each temperature.

A corresponding measurement is shown in figure 4.1 for a stepwise decrease in the

lowest temperature range as a function over time. The data was taken for an exci-

tation of the probe field of −91 dBm to avoid saturation effects but simultaneously

achieve a sufficient signal to noise ratio to reduce the measuring time enough to

resolve possible thermalisation effects. The temperature of the cryostat was kept

constant for a duration of approximately four hours and then automatically ad-

justed to the next temperature step as depicted in figure 4.1 (left). During this time

the transmission of the resonator was constantly measured to extract the real part

δε′/ε′ (middle) and the loss tan(δ) (right) of the dielectric function. Both quantities

thereby demonstrate an almost direct adaptation to the variation in temperature.

The single measurements scatter evenly around the calculated mean value for each

temperature step without any visible drift. The corresponding glass relaxation time

scale can therefore be approximated to be smaller than the measuring time of a sin-

gle data point, which was about 15 minutes. To ensure proper thermalisation of the

sample, all following measurements had at least 30 minutes time to thermalise after

a change in temperature before the actual measurement started. The overall increase

in the real part and the loss is the expected behaviour for the resonant contribution

at low temperatures. A closer look at the temperature dependence of the dielectric

function is given in section 2.5.1. The increasing uncertainty for lower temperatures,

which is depicted as a grey area in figure 4.1 for the 1σ-range, is a result of the weak

coupling of the resonator to the transmission line and the increasing width of the

resonance. Measurements with high attenuations and high loss values take very long

in order to reduce the signal to noise ratio to the desirable level.
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4.2 Saturation experiments

A fairly standard equilibrium measurement to perform are driving field strength de-

pendent saturation experiments of the dielectric loss. For many measurements it is

important to disturb or excite the ensemble of tunneling systems as little as possible

to extract the unperturbed parameters of the system. Of course, decreasing the am-

plitude of the driving field also decreases the obtained signal to noise ratio during a

measurement. The two extremes have to be balanced out in order to produce reliable

data. The saturation measurement thereby serves the purpose of determining the

range, in which the low power limit from equation 2.105 can be applied.

The corresponding measurement is depicted in figure 4.2 (top) for different tempera-

tures from 50 mK up to 300 mK. The expected behaviour of the dielectric loss under

increasing probe power is described by equation 2.104 beginning with the low power

limit at small field strengths and decreasing for higher values according to the given

relation. The obtained data was fitted (solid lines) using equation 2.104 with the low

power limit tanδ0 and the critical field F̄c as free parameters. For the low and inter-

mediate power regime this yields a good description for the behaviour of the dielectric

loss. Higher values of the probe power reduce the loss below the expected threshold

for all measured temperatures. This could indicate the dependency on a higher or-

der exponent in the high power regime, compared to the relation given in equation
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Figure 4.2: Driving field

strength dependency of the real

part (bottom) and dielectric

loss (top). The measurement

was performed for different

temperatures from 50 mK to

300 mK. The data shows good

agreement with the theoretical

description for the saturation

effect (solid lines) in the low and

intermediate power regime. At

higher powers the saturation is

drastically enhanced and even

displays a critical phenomenon

for temperatures below 150 mK.
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2.104. For lower temperatures this deviation from the theoretical progression sets in

for even smaller field strengths. The resonance frequency and therefore the real part

of the dielectric function remained unchanged under probe power variation, which is

expected from theory and indicates that simple heating effects can be excluded. The

corresponding plot is shown on the bottom in figure 4.2. Additionally, for decreasing

temperatures a jump arises for saturation measurements below 150 mK, for which

the loss is abruptly reduced by more than an order of magnitude. This behaviour

is highly unexpected for the dependency of the driving field strength and can not

be explained by the equations derived within the standard tunneling model. The

sudden jump thereby implies a critical phenomenon below 150 mK around a probe

power of approximately −89 dBm. For higher temperatures the jump vanishes, but

the increased saturation effect in the high power regime remains.
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4.3 Temperature dependence

This section discusses the temperature dependence of the dielectric properties for the

experimental resonator setup. Furthermore, this is an important measurement to

verify that the sputter deposited thin film layer of SiO2 contains an ensemble of TLS

and therefore follows the expected behaviour of an amorphous structure. Section 4.2

already showed the characteristic saturation effect for the dielectric material in de-

pendence on the applied probe field strength. The corresponding measurement in

figure 4.2 can be used to determine a suitable probe power for the temperature de-

pendent measurement. The field strength should thereby be adjusted large enough

in order to obtain a sufficient signal to noise ratio but small enough to disturb the

ensemble as little as possible. For this measurement the excitation power was hence

adjusted to −95 dBm.

Figure 4.3 shows the obtained data for a temperature dependent measurement from

20 mK to 6.5 K. The values below 1 K were thereby obtained in two successive mea-

surements from 20 mK to 50 mK and from 50 mK to 850 mK, whereas the high tem-

perature data was taken in a separate run without the circulating 3He/4He-mixture

from 1.5 K to 6.5 K. The curvature of the resonant contribution in the real part

hereby indicates the deviation from the logarithmic dependency predicted by the

standard tunneling model. The solid line in figure 4.3 shows the theoretical descrip-

tion of the STM with a modified distribution function according to the extension
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Figure 4.3: Temperature dependence measurement of the dielectric function from 20 mK

to 6.5 K with −95 dBm input power on the transmission line. The real part (left) and the

dielectric loss (right) show the characteristic behaviour of an amorphous material. The

solid line shows the theoretical prediction from the standard tunneling model.
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made by [Bur95] as

P̃ (E,∆0)dEd∆0 = P (E,∆0)

(
1− 2π

3
P0U0log

(
W

E + kBT

)
log

(
W

∆0,min

))
dEd∆0.

(4.1)

This modification takes into account a long-range interaction between the dipoles of

the TLS, for which U0 quantifies the interaction constant. The so called crossover

temperature W/kB is hereby a scale for a change of excitation type from tunneling

states to high excitation modes.

With the modification, the theoretical model is able to describe the real part of the

dielectric function well. Table 4.1 displays the corresponding values for the numeri-

cal integration of the STM. The loss on the other hand deviates from the expected

behaviour especially for the resonant contribution at lowest temperatures. When

compared to the saturation measurement in figure 4.2, this can be ascribed to the

fact that the measurement at −95 dBm is not fully in the low power loss limit. The

corresponding deviation could therefore originate from a saturation of the systems

by the probe field, which has its biggest contribution at lowest temperatures. A

measurement with lower probe power was not possible because of the high coupling

quality factor of the resonator. The signal to noise ratio was to low for small tem-

peratures, for which the intrinsic quality factor of the resonator would be very small.

A = P0p
2/(ε0εr) K1[J−3s−1] K2[K−7s−1] τ2[µs] P0U0 W/kB [K]

6.25 · 10−3 1.2 · 1076 10 1 0.005 5

Table 4.1: Utilized parameters for the derivation of the theory curve in figure 4.3 for

the standard tunneling model. The limits for the numerical integration were chosen as

∆0,min/kB = 10−3 K and Emax/kB =100 K.
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4.4 Pump-tone measurements

Additionally applied pump-tones can saturate tunneling systems in a specific fre-

quency band around the pump-tone frequency, similar to the simple power depen-

dency measurements. This modifies the occupation difference of the corresponding

systems and therefore their contribution to the dielectric function. The influence of

a single pump-tone on the resonator parameters were investigated in several exper-

iments, for example [Kir17, Cap20, Fre21], which also provided theoretical descrip-

tions by the off-resonant saturation of the TLS-ensemble.

This section presents measurements under the influence of two additional off-resonant

pump fields and their impact on the resonator parameters. This opens a wide param-

eter space for an investigation of the tunneling systems behaviour under the applied

fields. The following measurements were performed with symmetric or asymmetric

arrangements of the pump-tones with respect to the resonance frequency. This setup

shows interesting new limits, which are discussed in section 4.4.3.

4.4.1 Temperature dependency with symmetric pumps

The previous section showed the temperature dependence of the real part and the

dielectric loss. This measurement was repeated with the additional application of

two pump-tones of equal field strength. It is convenient to define the two pump-tones

by their centre frequency

fc =
fp1 + fp2

2
(4.2)

and their detuning

δω =
fp2 − fp1

2
with fp2 > fp1. (4.3)

The quantities fp1 and fp2 represent hereby the excitation frequencies of the pump-

tones. For this measurement they were chosen to be symmetrically around the

resonance frequency (fres = fc) and detuned by δω = ±10 MHz. Figure 4.4 shows

Figure 4.4: Schematic

illustration of the sym-

metric arrangement for

the temperature depen-

dent measurement with

two pump-tones.
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a schematic of the corresponding frequency setup with the probe field Fpr for the

NWA-sweep (green) and the two additional pump-tones of field strengths Fp1 and

Fp2 (blue). Experimentally the pump field was injected into the bias line as already

mentioned in section 3.2.2 in order to not saturate the utilized HEMT amplifier

at higher pump fields. The resonator response was read out as before through the

feedline in transmission. By the application of the symmetric configuration to the

resonator, the resonance frequency was slightly shifted to higher values until an equi-

librium value was reached. This could be caused by the asymmetry of the resonant

contribution b′(ω, ω0) to the real part of the dielectric function or simply a mismatch

of the pump-tone strengths. Tunneling systems with a larger resonance frequency

have a positive contribution to the in phase component and systems with a smaller

resonance frequency a negative one. If the corresponding systems are saturated, the

overall contribution to the real part could be reduced, which on the other hand in-

creases the resonance frequency of the resonator. Another explanation could be a

small local heating effect through the application of the pumps and thus a related

shift in resonance frequency, but since the real part is almost unchanged this scenario

alone is unlikely. The shift in resonance frequency due to temperature was compen-

sated experimentally by an algorithm of the measurement program to readjust the

pumps around fres after a change in resonance frequency to ensure the symmetry of

the pumps before the actual start of the measurement.

Figure 4.5 shows the corresponding measurement with different field strengths for

the pump-tones. The data is compared with the measurement from section 4.3 with-
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Figure 4.5: Temperature dependence of the dielectric function with additionally applied

symmetric pumps. The real part (left) is almost unchanged under the influence of the

pump fields, whereas the resonant dielectric loss (right) is reduced due to the saturation

caused by the detuned pump-tones.
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out additional pump signals. The temperature ranges from 850 mK to 20 mK to

focus on the resonant contribution of the tunneling systems to the dielectric func-

tion. The real part δε′/ε′ shows almost no dependence on the applied pump power.

All relative values are thereby normalized to the minimal value of the measurement

without pump-tones. This can be explained similar as above by the shape of the func-

tion for the resonant contribution b′(ω, ω0). For symmetrically applied pump signals

negative and positive contributions are cancelled out almost equally through satura-

tion. In addition, the value of the real part consists of contributions from different

frequencies. The in-phase component is therefore unchanged under two symmetric

pump-tones. Only at high field strength and low temperatures a small deviation

can be observed, which originates either from the slight asymmetry of b′(ω, ω0) or a

small but insignificant heating effect. The dielectric loss tan(δ), on the other hand,

is drastically reduced for increasing field strengths of the pump-tones. Similar to

the hole burning experiments, the additional fields saturate tunneling systems in a

frequency range around fp1 and fp2 respectively. For strong pump fields this effect

can grow large enough to saturate tunneling systems close to the resonance frequency

of the resonator. Since these systems contribute mainly to the imaginary part of the

dielectric function according to b′′(ω, ω0), the loss is reduced for two symmetrically

applied pump-tones.

This behaviour could be described by expanding the theoretical description of the

STM for the dielectric loss by the saturation formula from equation 2.57. This would

reduce the number of contributing tunneling systems by a factor according to the

saturation in the frequency window of the resonator. An accurate description proved

to be difficult. The main parameters for this equation, the critical power and the

transversal relaxation rate, were therefore chosen as Pc = −93 dBm and τ2 = 1 µs

respectively. The value for Pc is comparable to the approximation of the power de-

pendency measurement of figure 4.2, but the description of the saturation behaviour

is still missing the full picture. Overall, the device shows more saturation than ex-

pected for the simple assumption of two separate hole burning events at fp1 and fp2.

The following section will introduce another measurement in order to understand

this phenomenon better.
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4.4.2 Symmetric detuning measurements

Figure 4.6: Schematic

illustration of the sym-

metric arrangement for

the detuning dependent

measurement with two

pump-tones. Each shade

of blue represents the

adjustment of the two

pump-tones with differ-

ent detuning.

In order to study the influence of the detuning parameter on the resonance curve

and explicitly on the dielectric loss, an additional measurement was performed at a

constant temperature of 35 mK. A schematic illustration of the pump-tone arrange-

ment is depicted in figure 4.6. The measurement starts at a symmetric (fres = fc)

detuning of δω = 0.5 MHz, which is increased until the resonator parameters remain

unchanged. This increase of the detuning parameter δω is illustrated in figure 4.6 by

three shades of blue, which represent three different pump-tone arrangements. This

measurement is repeated for various values of the pump field strength in the range

from −50 dBm to −25 dBm. The corresponding data is depicted in figure 4.7 for

all twelve measurements as the loaded quality factor Q of the resonator in depen-

dence of the detuning δω. Its value is maximal for a small detuning and decreases

for higher values. This behaviour is expected, if the measurement is understood as

two hole burning events around the two pump frequencies. For larger detuning the

saturation in the frequency range of the resonator is decreased and thereby also the

quality factor.

A theoretical description for the saturation of two symmetric pumps can be derived

with equation 2.57, which yields the relation

RSat(δω) = R0

(
1− (Fac/Fc)

2

1 + (Fac/Fc)2

1

1 + τ̃2
2δω2

)
(4.4)

for the saturation at resonance frequency caused by a pump field detuned by δω. The

frequency dependent term stemming from the line shape function in equation 2.57

hereby neglects the second term for simplicity. This equation can be used to define

a saturation factor RSat/R0, which modifies the intrinsic quality factor Qi of the

resonator. The loaded quality factor can now be described by

Q(δω) =

(
1

Qc

+
1

Qi

(
RSat(δω)

R0

)2
)−1

. (4.5)
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Figure 4.7: Enhancement of the quality factor with symmetric pumping in comparison

to the expected behaviour for 35 mK. Qc = 70000, Qi = 1000, τ2 =5 µs and Fac/Fc was

scaled for the lowest pumping powers and then relayed according to the experimentally

used value, starting with Fac/Fc ≈ 1.8 for −50 dBm.
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For small values of the detuning, the saturation factor is minimal and the loaded

quality factor approaches the coupling constant Qc of the resonator setup. For larger

detuning the saturation effect can be neglected and the intrinsic loss Qi contributes

fully to the total value. Equation 4.5 was used to describe the measured data in

figure 4.7 (grey dotted line) for different values of the pump field strength. The

parameters were chosen as Qc = 70000, Qi = 1000 and τ2 = 5 µs for all measure-

ments. Note that the deviation of Qc from the determined values in table 3.1 can

be caused by additional sources of intrinsic loss besides TLSs [McR20], which are

not included in this description. The ratio of the pump field strength to the critical

field was selected as Fac/Fc ≈ 1.8 for the lowest pump power of −50 dBm and scaled

according to the experimentally used value for all other measurements. For small

detuning the theoretical prediction fits the experimental data, but for increasing

pump power the quality factor is enhanced over an order of magnitude compared to

the expected behaviour under two individual pump-tones. At higher detuning the

quality factor converges around the equilibrium loss limit, which corresponds to Qi in

the limit Qc � Qi. This outcome is interesting, since the TLS-ensemble seems to be

saturated over a broader frequency range than expected for the simple assumption

within the standard tunneling model. An interpretation of the broad peak as simple

hole burning would yield a relaxation time scale shorter than 0.1 µs, which does not

coincide with comparable experimental results. The observed characteristic of the

additional enhancement, especially for higher pump powers, therefore suggests the

formation of a secondary mechanism besides simple saturation. An explanation for

this effect requires a deeper understanding of the resonator’s properties, which will

be given in the following sections.
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4.4.3 Asymmetric detuning measurements (fc-sweep)

For values of the pump power above −25 dBm the symmetric detuning measure-

ment proved to be difficult. Unlike the case of smaller field strengths, for which the

real part was nearly unchanged, the resonance frequency started to shift to higher

frequencies under the symmetric pump arrangement. A rearrangement of the pump-

tones around the new resonance frequency led to a further increase of fres. In order

to understand the observed behaviour better, a different measuring technique was

used, which revealed the emergence of two new limits for the resonator response in

the regime of higher pump powers. The results of these investigations are presented

in this section.

The utilized technique is an asymmetric detuning measurement, for which the centre

frequency of the two pump-tones is swept over the resonator’s response function. A

schematic illustration for this measurement arrangement is depicted in figure 4.8. In

this case the detuning δω is kept constant and the two pump frequencies are increased

by the same amount during the measurement. For each setting of the pump-tones

a resonance curve is determined with the weak probe field Fpr of the NWA, which

is indicated by the green dashed arrow in figure 4.8. With fixed detuning the mea-

surement can therefore be described by the change in centre frequency fc, which

equals the change of a single pump frequency. The measurement will therefore also

be referred to as a centre frequency sweep or fc-sweep.

In the following, different asymmetric detuning measurements are presented as an

example for the emerging limits. If not otherwise stated, the detuning was chosen as

δω = 5 MHz and only the centre frequency fc was changed. As already mentioned,

the resonance frequency fres started to increase above a pump power of −25 dBm. An

asymmetric detuning measurement was therefore performed from fc = 1033.55 MHz

to 1033.70 MHz in steps of 2 kHz with both pump-tone powers at −23 dBm. The

corresponding measurement is shown in figure 4.9 for three selected traces of the

resonance curves. The traces show the three scenarios, in which the centre frequency

Figure 4.8: Schematic

illustration of the asym-

metric arrangement for

the detuning measure-

ment with two pump-

tones. The pump fre-

quencies are simultane-

ously increased between

the individual measure-

ments of the resonators

response.
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Figure 4.9: Three exemplary traces of the asymmetric detuning measurement with

both pump powers at −23 dBm. The resonance curves show three scenarios, for which

fc is smaller (left), approximately equal (middle) and above (right) the resonance

frequency fres. For fc ≈ fres the resonance frequency is shifted slightly and the quality

factor is increased approximately by a factor of two.

is smaller (left), approximately equal (middle) and above (right) the resonance fre-

quency fres. At the beginning of the measurement and for all centre frequencies

below 1033.60 MHz, the resonance curve remains unchanged under the variation of

fc. In the frequency range, where fc ≈ fres holds true, the resonance frequency is

slightly shifted to higher values and the quality factor is increased approximately

by a factor of two. With increasing centre frequency the resonance returns to its

previous position and restores the former quality factor.

The entire asymmetric detuning measurement is depicted in figure 4.10 in a two-

dimensional colour plot. The individual traces of the NWA are shown in dependence

of the centre frequency fc. The amplitude of the NWA signal is represented by the

colour legend on the right. Each vertical slice in figure 4.10 therefore corresponds to

a single trace of the resonators transmission signal. Three of those slices were shown

in figure 4.9. The horizontal blue area represents the notch-type resonance around a

frequency of approximately 1033.62 MHz. The green solid line illustrates the centre

frequency of the two pump signals. In the range, for which the centre frequency

is close to the resonance frequency, the narrowing of the resonance curve is visible

through the darker shade of blue and the slight constriction of the blue area. In

this form of presentation the influence of the two pump-tones on the transmission

curve can be estimated to be confined on a frequency range of approximately 10 kHz.

It is worth mentioning that the two applied pump-tones are far detuned from the

resonance frequency in comparison to the resonators width. The centre frequency is

thereby just a constructed value without a corresponding field strength to illustrate

the position and the asymmetry of the pumps. The fact that the parameters of the

resonator are changed in a small frequency range, however, demonstrates the crucial

role of the symmetric pump arrangement. The increase in resonance frequency and
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Figure 4.10: Colour plot of the asymmetric detuning measurement with a pump power

of −23 dBm. The centre frequency was varied from fc = 1033.55 MHz to 1033.70 MHz in

steps of 2 kHz for a detuning of δω = 5 MHz. A vertical slice in this style of presentation

represents a single NWA-measurement with a specific pump-tone arrangement. The colour

code quantifies the observed amplitude with a blue shade for the resonance dip. The

position of the centre frequency fc is represented by the green solid line.

in quality factor could, of course, also be related to a heating effect caused by the

applied pump powers, but a frequency selective effect in such a narrow range is quite

uncharacteristic.

For the next measurement, the pump power was increased further to −19 dBm at

the external bias line. The detuning remained unchanged at δω = 5 MHz and the

centre frequency was increased from fc = 1033.72 MHz to 1033.78 MHz in steps of

0.5 kHz. Similar to above, a selection of fifteen NWA-traces from this measurement

are shown in figure 4.11 for different values of the centre frequency fc. Starting below

the resonance frequency fc � fres the response function of the resonator is almost

unchanged under the influence of the two pump-tones. With increasing values of the

centre frequency, but still fc < fres, the resonance frequency is slightly decreased.

This behaviour is opposite to the previous measurement and hence makes simple

heating effects as the sole explanation more unlikely. The resulting convergence of

fres towards fc caused the resonance response to significantly increase in quality fac-



88 4. Experimental results

1033.73 1033.75 1033.77
70

65

60

55

50

45

40
am

pl
itu

de
 N

W
A

 [d
B

]
fc = 1033.7300 MHz

1033.73 1033.75 1033.77
70

65

60

55

50

45

40
fc = 1033.7325 MHz

1033.73 1033.75 1033.77
70

65

60

55

50

45

40
fc = 1033.7350 MHz

1033.73 1033.75 1033.77
70

65

60

55

50

45

40

am
pl

itu
de

 N
W

A
 [d

B
]

fc = 1033.7375 MHz

1033.73 1033.75 1033.77
70

65

60

55

50

45

40
fc = 1033.7400 MHz

1033.73 1033.75 1033.77
70

65

60

55

50

45

40
fc = 1033.7425 MHz

1033.73 1033.75 1033.77
70

65

60

55

50

45

40

am
pl

itu
de

 N
W

A
 [d

B
]

fc = 1033.7450 MHz

1033.73 1033.75 1033.77
70

65

60

55

50

45

40
fc = 1033.7475 MHz

1033.73 1033.75 1033.77
70

65

60

55

50

45

40
fc = 1033.7500 MHz

1033.73 1033.75 1033.77
70

65

60

55

50

45

40

am
pl

itu
de

 N
W

A
 [d

B
]

fc = 1033.7525 MHz

1033.73 1033.75 1033.77
70

65

60

55

50

45

40
fc = 1033.7550 MHz

1033.73 1033.75 1033.77
70

65

60

55

50

45

40
fc = 1033.7575 MHz

1033.73 1033.75 1033.77
frequency [MHz]

70

65

60

55

50

45

40

am
pl

itu
de

 N
W

A
 [d

B
]

fc = 1033.7600 MHz

1033.73 1033.75 1033.77
frequency [MHz]

70

65

60

55

50

45

40
fc = 1033.7625 MHz

1033.73 1033.75 1033.77
frequency [MHz]

70

65

60

55

50

45

40
fc = 1033.7650 MHz

Figure 4.11: Fifteen selected traces of the asymmetric detuning measurement with both

pump powers at −19 dBm. The individual plots show the resonators response function

under the influence of the two pump-tone arrangement. The green dotted line represents

the position of the centre frequency for each measurement.
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tor and simultaneously in asymmetry of the curve until fc ≈ fres is reached. For a

further increase of the centre frequency fc > fres the resonators response is not de-

scribable by the simple Lorentzian type model and shows multiple extrema before it

transitions back into the shape of the unperturbed resonance curve. The correspond-

ing colour plot is depicted in figure 4.12 in dependence of the centre frequency. This

representation clearly shows the increase in quality factor by the dark blue shaded

area, for which fc ≈ fres is fulfilled. Interestingly, the resonance frequency follows

the centre frequency (green solid line) slightly detuned for a while until the unper-

turbed resonance response is restored. The frequency range, in which fc influences

the asymmetric detuning measurement, is approximately 30 kHz. Compared to figure

4.10 the impact of the centre frequency on the resonance response is clearly visible,

which is presumably caused through the application of the stronger pump fields. The

resonator mode seems to interact in a specific frequency range with the two pumps,

Figure 4.12: Colour plot of the asymmetric detuning measurement with a pump power

of −19 dBm. The centre frequency was varied from fc = 1033.72 MHz to 1033.78 MHz in

steps of 0.5 kHz for a detuning of δω = 5 MHz. A vertical slice in this style of presentation

represents a single NWA-measurement with a specific pump-tone arrangement. The colour

code quantifies the observed amplitude with a blue shade for smaller signals than the

background (white) respectively a red shade for larger values. The position of the centre

frequency fc is represented by the green solid line.
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dependent on the position of the centre frequency fc. The symmetric arrangement

of the pumps around fres thereby plays an important role for the observed effect,

but there is still no full explanation on the behaviour of the resonators response to

this measurement method. The enhancement of the resonators left flank as shown in

figure 4.11 or respectively by the darker red shape in figure 4.12 could be caused by

an image frequency from the position of the centre frequency fc. This phenomenon is

induced, if a frequency response is mixed with another signal, in this case the centre

frequency, to create a mirrored version of the original response. This explanation

could only hold true, if somehow a signal with the frequency fc is produced inside

the resonator during the application of the pumps. A spectral investigation in the

corresponding frequency range revealed no additional signal at fc, but this attempt

at explanation will become clear in the following section, in which a measurement

with further increased pump-tone strength is presented.

Observation of an additional peak

For a further increase of the pump power, the behaviour of the resonators response

changed. In this measurement limit a spectral investigation of the resonators fre-

quency range showed the appearance of an additional signal during the fc-sweep.

Figure 4.13 displays the corresponding measurement for an applied pump power

of −15 dBm as ten selected traces each for the network analysers (left column) re-

spectively the spectrum analysers amplitude (right column). It is worth mentioning,

that during the measurement with the spectrum analyser only the output port of the

transmission line was investigated, while no signal was applied to the input port. At

the beginning of the measurement, the NWA-trace displays a similar behaviour when

the centre frequency approaches the resonance frequency, but in contrast to the lower

pump powers fres starts to increase so that the condition fc ≈ fres can not be fulfilled

any more. The amplitude of the NWA thereby shows an additional signal at the cen-

tre frequency fc. In this limit the sweep continues over a wider frequency range of

approximately 200 kHz until the resonance suddenly jumps back to its original posi-

tion and the additional signal disappears. This behaviour is similar to the response

of a non-linear Duffing-type resonator with an additionally applied pump-tone signal

as presented in section 2.6.3. The strong excitation modifies the resonance frequency

of the system, which can be measured with a weak probe field. An increase of the

pump-tone frequency causes the resonance frequency to be pushed to higher values

as long as the pump-tone increased according to the non-linear response function.

If the pump-tone exceeds the jumping point, the resonance frequency returns to the

unperturbed position.

The corresponding spectra draw a similar picture. If the condition fc ≈ fres is met

during the sweep, an additional very narrow line appears at the frequency value of fc.
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Figure 4.13: Ten selected traces each for the network analyser (left) respectively the spec-

trum analyser (right) of the asymmetric detuning measurement with both pump powers

at −15 dBm. The individual plots show the resonators response function and the corre-

sponding spectrum under the influence of the two pump-tone arrangement.
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This signal remains until the resonator response jumps back to its original position.

The trace of the spectrum analyser also reveals another much broader peak, which

corresponds to the position of the resonators response of the NWA-trace. Hence, the

resonator is emitting photons into the transmission line in the frequency window of

the resonance even if the only active external signals are the two far detuned pump-

tones. An illustration of the full spectrum with the excitation pulses will be shown

in a following section. Another even smaller peak arises during the fc-sweep at lower

frequencies for the NWA-traces as well as for the SA-traces. This effect will become

clear in the following paragraphs as an image of the resonators response induced by

the mixing with the strong emission signal at fc.

The entire measurement was performed from fc = 1034.00 MHz to 1034.30 MHz in

steps of 1 kHz and is depicted in figure 4.14 as a colour plot. A single vertical slice rep-

resents the individual NWA-traces exemplary shown in the left column of figure 4.13.

Figure 4.14: Colour plot of the asymmetric detuning measurement with a pump power

of −15 dBm. The centre frequency was varied from fc = 1034.00 MHz to 1034.30 MHz in

steps of 1 kHz for a detuning of δω = 5 MHz. A vertical slice in this style of presentation

represents a single NWA-measurement with a specific pump-tone arrangement. The colour

code quantifies the observed amplitude with a blue shade for smaller signals than the

background (white) respectively a red shade for larger values. The position of the centre

frequency fc is represented by the green solid line.
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The blue line shows the resonance frequency of the resonator setup and the green

solid line the centre frequency of the two pump-tones. This style of presentation

shows the decrease in resonance frequency in the beginning of the fc-sweep until the

condition fc ≈ fres is shortly fulfilled around fc = fres = 1034.08 MHz. Afterwards,

the resonance frequency is increased again and stays above the value of the centre

frequency, until it suddenly jumps back into the unperturbed position before the

measurement started. The red shape in figure 4.14 can hereby be understood as the

image frequencies of the blue frequency response line. The additional emission line

arises after the condition fc ≈ fres is fulfilled and vanishes after the response jumps

back to the unperturbed position. A more precise evaluation of the amplitude will

also be given in the following pages. The overall appearance of the additional emis-

sion peak is quite interesting since it is a very strong narrow line comparable to the

pump-tones from the individual signal generators. This is quite unexpected since the

random properties of the TLS-ensemble with the broad distribution of parameters

would give rise, if at all, to a very broad emission. This aspect will also be discussed

in the following sections, which aim to give a possible explanation for this effect.

The corresponding spectrum analyser measurement is depicted in figure 4.15 as a

colour plot. The colour scale was hereby adjusted for a better visualisation of the

side maxima, since the narrow emission peak would otherwise be to bright. It dis-

plays a similar pattern as figure 4.14, but the spectrum shows no contributions until

fc and fres align for the first time. The arising emission pattern evolves continuously

until it is abruptly terminated as soon as the response function jumps back to its

original position. The narrow emission peak is thereby always exactly in the middle

of the two pump-tone frequencies fp1 and fp2. The arising signal almost seems to

be clocked by the generator signals. If the two pump-tones are applied directly in

the frequency window, in which the emission would be expected to take place (ap-

proximately 1034.08 MHz to 1034.24 MHz for the case of the previous experiment),

without conducting a full fc-sweep, the emission would arise either randomly or when

an external source (for example the NWA-signal) triggers the effect. This is a further

indication for a stimulated emission effect inside the sample material. It is also worth

mentioning, that the generation of this intermediate frequency (fp1 + fp2)/2 is also

non-trivial for an intermodulation product of two individual rf-signals. Moreover, if

simple frequency mixing would cause this effect it should work in a wide frequency

domain and not just in a small window of about 200 kHz. The emission line therefore

seems to originate from a different mechanism involving the symmetric arrangement

of the pump-tones and the resonator setup. The amplitude of the narrow emission

peak is depicted in figure 4.16 in dependence of the centre frequency fc. It resembles

the evaluation of the maximal amplitude of the single spectra, which corresponds

to the straight line following fc in figure 4.15. The power values displayed in this

plot are the absolute quantities measured by the spectrum analyser at the output
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Figure 4.15: Colour plot of the asymmetric detuning measurement with a pump power

of −15 dBm. The centre frequency was varied from fc = 1034.00 MHz to 1034.30 MHz in

steps of 1 kHz for a detuning of δω = 5 MHz. A vertical slice in this style of presentation

represents a single SA-measurement with a specific pump-tone arrangement. The colour

code quantifies the observed amplitude of the spectrum analyser.

side of the transmission line. It is difficult to calculate a reliable value for the actual

field strength since the coupling of the fields to the transmission line (≈−50 dB),

the quality of the bond connection, the attenuation of the cables (≈−7 dB), the ad-

ditional attenuator (≈−3 dB), and the total amplification (≈ +78 dB) are mostly

approximated values. It is important to keep these quantities in mind when describ-

ing the occurring effects, but the absolute amplitude resembles a more significant

value. Figure 4.16 shows a steep incline of the amplitude during the variation of the

centre frequency of a few kHz. As already mentioned, the effect first sets in once

the condition fc ≈ fres holds true. Afterwards, the occurring emission seems to get

stabilized, while fc < fres, and its amplitude flattens towards higher values of the

centre frequency. As soon as the resonance frequency jumps back to its original po-

sition, fc < fres is fulfilled and the emission vanishes. The data can be described by

the theory presented in section 2.6.3 for the Duffing oscillator (red solid line). The

amplitude of the emission line is thereby characterized by the response amplitude of

the non-linear resonator for a strong excitation field of frequency fc. The occurring
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Figure 4.16: Maximal amplitude of

the narrow emission peak in depen-

dence of the centre frequency. The data

was taken from the individual spectra

from the asymmetrical detuning mea-

surement. The fit (red) is derived from

the Duffing model with two excitation

frequencies.

emission peak hence drives the resonator in the non-linear regime. Since the Duff-

ing model describes the behaviour of the data well, the strength of the underlying

emission, which would correspond to the excitation strength γ1 in section 2.6.3, can

be assumed to be approximately constant during the fc-sweep. The appearing ef-

fect caused by the two pump-tones is therefore stable under frequency variation and

can be understood as an additional narrow peak at the centre frequency fc. The

dependence of the emission amplitude on fc as in figure 4.16 is only the result of the

response caused by crossing the resonator window.

Under the assumption that the emission peak functions as a strong excitation field

and the NWA sweep as a weak probe field, the obtained data from figure 4.14 can

be modelled by the theory presented in section 2.6.3. The resonance frequency

is thereby shifted due to the arising emission peak following equation 2.134. The

modified resonance frequency according to the Duffing model (yellow dotted line)

is depicted in figure 4.17 with the emission peak amplitude from figure 4.16 as the

response amplitude z1(fc), which yields

f̃res =

√
f 2

res +
3

8π2
βz2

1(fc) . (4.6)

At first, the resonance frequency is unchanged, but with increasing values of z1(fc) it

shows a kink similar to the obtained resonator data visible in blue. At higher values

of fc the curves deviate, since the Duffing theory predicts an approximately linear

increase of the resonance frequency at these values. Another effect is thus affecting

the position of the resonance and is therefore important to understand the observed

behaviour.

If the emission peak is understood as an additional pump as introduced in the theo-

retical description of the Duffing resonator with two excitation tones in section 2.6.3,
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Figure 4.17: Colour plot of the asymmetric detuning measurement with a pump power

of −15 dBm. The data is equivalent to figure 4.14 with the theoretical description of the

resonance frequency according to the Duffing model (yellow) and the Duffing model with

an additional frequency shift caused by the occurring emission line (orange).

the position of the resonance frequency is additionally modified by the corresponding

saturation effects. In [Sch18, Cap20, Fre21] it was shown that a single pump-tone

can shift the resonance frequency towards the frequency of the pump. The same

effect modifies the behaviour of the resonance frequency in this case. To simulate

this effect, equation 4.6 for the position of fres from the Duffing theory was replaced

by the arbitrary relation

fres(fc) = fres,0 − a(fc − fc,i)
b (4.7)

to include the shift in resonance frequency for a pump at lower frequencies. The de-

pendence on fc hereby corresponds to the increasing frequency of the emission peak

during the measurement, which pulls the resonance more and more towards the po-

sition of the centre frequency. The parameter a is a scaling factor, b the exponential

factor, fres,0 is the unperturbed value of the resonance frequency and fc,i the start-

ing value of the fc-sweep for the measurement. With this extension, equation 4.6

describes the behaviour of the resonator rather well as depicted in figure 4.17 by the

orange dotted line. The slight decrease at the beginning of the measurement, the
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Figure 4.18: Frequency difference be-

tween the position of the upper, respec-

tively the lower, side maxima in com-

parison to the narrow emission peak in

dependence of the centre frequency. The

evaluation was done for each individual

spectrum of the asymmetric detuning

measurement

emerging kink where the emission peak arises and the curvature at higher values of

fc are in good agreement with the data. It is worth mentioning, that the applied

approximation is just an arbitrary function for the well know property of shifting

resonance frequencies due to a strong pump-tone. The derivation of a physically

more justified expression would require more knowledge of the system parameters in

order to integrate over the entire distribution of TLSs to extract the corresponding

dependence. The phenomenological approach with an arbitrary function was there-

fore more straightforward in this case for the description of the underlying behaviour.

Figure 4.14 showed an additional feature for frequencies below fc, which was visi-

ble in this style of presentation as a shadow (red) of the original resonator response

(blue). This effect also appeared in the spectral measurement shown in figure 4.15 as

a signal with smaller amplitude than the resonators emission. The appearance of this

second response can be explained by the intermodulation product of the resonators

response with the narrow emission peak. These image frequencies are visible in the

spectrum as well as in the response of the NWA measurement. In order to prove

this, figure 4.18 compares the distance of the upper and the lower position of the

broad side peaks for each spectrum in dependence of the centre frequency. The two

curves align perfectly since the lower maxima are the mirrored version of the upper

resonator response. That is also why the lower maxima are smaller and only visible

for stronger amplitudes of the emission peak. The observed effect can therefore be

understood as the direct interaction of the additionally occurring emission with the

resonator field.

All measurements so far were conducted for the same detuning of δω = 5 MHz.

Figure 4.19 shows the asymmetric detuning measurement for different values of the

detuning parameter from δω = 1 MHz up to 20 MHz. The obtained spectra were

evaluated for the amplitude of the narrow emission peak (left), the amplitude of the
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Figure 4.19: Different fc-sweeps in dependence of the detuning δω in MHz. The plot

shows the amplitude of the emission peak (left), the amplitude of the resonator peak

(middle) and the thereto related quality factor Q of the resonator (right).

resonance peak (middle) and the quality factor of the resonance peak (right) all in

dependence of the centre frequency. The amplitude of the emission peak shows a

similar behaviour for all adjusted values. Only the frequency, for which the emission

emerges, increases slightly for higher detuning. This is a consequence of the different

positions of the resonance for a changing pump-tone arrangement. For a detuning

smaller than 1 MHz or higher than 20 MHz this limit could not be found again. This

is interesting, since the amplitude of the emission peak seems to be rather inde-

pendent on the applied detuning, but the underlying mechanism occurs only in a

defined parameter space. A more detailed evaluation of the limiting parameters is

given in section 4.6. The amplitude and the quality factor of the spectral resonance

appear to be almost constant during the fc-sweep with a drop of to higher values.

The evaluation in the beginning is thereby difficult due to the fact that the emission

peak aligns with the resonance. This causes both quantities to fluctuate strongly

in the beginning. The average quality factor of about 6 · 104 is thereby compara-

ble to the values obtained in the symmetric detuning measurements from figure 4.6.

This indicates that the intrinsic loss is vanishingly small during the fc-sweep and the

remaining width of the resonance is dominated by the coupling quality factor.
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4.5 Non-linear resonator characteristic

In order to understand the mechanisms that lead to the generation of the additional

emission line, another important feature needs to be understood. By applying the

two pump-tones to the resonator system the difference frequency

∆f = |fp1 − fp2| (4.8)

can be found in the lower frequency spectrum. This behaviour substantiates the non-

linear characteristics of the resonator setup, since the mixing of frequencies is caused

by higher order terms in the amplitude response of the corresponding differential

equation. A frequency spectrum including the regions of interest is depicted in

figure 4.20 a) for the lower frequency part of ∆f and the frequency range of the

pump-tones. The two large peaks thereby correspond to the externally applied pump

fields and the smaller peak in between to the additional peak in the limit of emission.

The enlarged version of the lower frequency range (b) respectively the frequency

Figure 4.20: Frequency spectra during the emission limit. The spectrum (a) shows the

regions of interest with the lower and higher frequency window. The enlarged versions

depict the range of the difference frequency ∆f (b) and the emission peak (c) in more

detail. The measurement was conducted with a pump power of −10 dBm and a detuning

of δω = 5 MHz at a temperature of 35 mK.
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window of the resonator (c) with the emission peak and the underlying resonator

response are also shown. The difference frequency is very weak in comparison to the

pump-tones and the emission line, but since the experimental setup is optimized for

rf-fields the additional attenuation at lower frequencies mainly causes this deviation,

as presented in section 3.2.4.

The strength of the difference peak is directly dependent on the power of the applied

pump-tones. Figure 4.21 shows this dependency for a detuning of δω = 5 MHz at

a temperature of 35 mK. With higher pump power P the strength of the difference

frequency peak increases. A linear fit of the form

f(x) = a+ b · x (4.9)

for the obtained data of the difference peak amplitude reveals a relating factor of

b = 2.05, which directly corresponds to the associated exponential factor of the

non-linearity. The effect can therefore be related to a first order non-linearity. The

measurement was repeated for different values of detuning from 1 MHz to 36 MHz to

verify this observation and showed no deviation from the quadratic behaviour. Only

the offset parameter a varies slightly for different detuning, which is also a result of

the changing attenuation of the cable for the transmission of low frequency signals.

This non-linearity is unchanged under temperature variation up to a few Kelvin.

Simulations in [Mün21] showed that the difference frequency can be generated by an

ensemble of tunneling systems through their intrinsic non-linearity. This frequency

mixing process is also independent of the occupation number and still active for a

fully saturated TLS-ensemble. The corresponding higher frequency mixing terms

could also be found at approximately 2 GHz as a result of mixing, which creates

frequencies at 2fp1, 2fp2 and fp1 + fp2. The appearance of the difference frequency

∆f could therefore be a result of the non-linear properties of the tunneling systems.

Figure 4.21: Dependency of the differ-

ence frequency peak power on the applied

pump-tone power. The detuning was set

to δω = 5 MHz and the temperature of the

cryostat was at 35 mK. A linear fit yielded

a corresponding exponential factor of ap-

proximately 2.05, which corresponds to a

first order non-linearity.
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Moreover, the low frequency contributions of ∆f can be understood as an additional

field in the resonator setup. With sufficient strength the difference frequency could

thus modify the energy splitting of individual tunneling systems as a bias field ac-

cording to the Landau-Zener theory. This self-induced bias effect would then cause

transitions of the TLSs into an excited state for a passage of a pump-tone. For the

right conditions, this could lead to a population inversion in the frequency window of

the resonator and a thereby associated stimulated emission effect. The presence of an

additional bias field could also explain the enhanced quality factor in the symmetric

detuning measurements of section 4.4.2. A continuously modulated energy splitting

could broaden the arising burned hole due to the constantly shifting tunneling sys-

tems. The resonator therefore experiences the effect of the saturated systems over

a wider frequency range, which leads to a higher quality factor. The idea of a self

induced bias field outlines the investigation of the observed effect for the emission

limit in the following sections.



102 4. Experimental results

4.6 Parameter space of the emission limit

In order to understand this phenomenon better, the emission limit was investigated

for a variation of measurement parameters. The detuning of the pump-tones δω

and their strength Pp thereby seemed to influence the appearance of the effect the

most. Several fc-sweep measurements were performed to determine, if the emission

limit emerged for a certain configuration of detuning δω and pump-tone strength

Pp. These measurements are depicted in figure 4.22 for different temperatures from

20 mK to 300 mK. The coloured area thereby represents the region, in which an

emission limit was found in the frequency spectrum independent of its strength. The

pump-tone strength covers values from −20 dBm to 0 dBm for the applied power

outside the cryostat. The lower temperatures showed heating effects visible in the

base temperature of the cryostat for increasing pump-tone field strengths. This

mainly concerns the measurements at 20 mK and 45 mK, which were therefore inter-

rupted as soon as the deviation was noticed. Higher temperatures showed no direct

increase during the measurement but the heat input caused by the application of

the two pump-tones remains present. The area, for which the emission limit can

be observed, opens up after a certain threshold value of the pump-tone strength Pp
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Figure 4.22: Illustration of the parameter space, for which the emission limit can be

found. Several fc-sweep measurements were performed to determine the limit borders of

the observed effect in dependence of the detuning δω, the pump-tone power Pp and the

temperature.
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for each temperature. The range of possible detuning values widens with increas-

ing power Pp. For values above −10 dBm the detuning range is reduced again up

to the highest applied pump-tone strength of 0 dBm. The largest possible detun-

ing for all measurements was approximately 25 MHz. For small detuning values the

emission vanishes mostly below 1 MHz. The area is surrounded by a small belt of

approximately 0.5 MHz respectively 1 dB, in which the resonance is altered by the

occurring interactions similar to figure 4.12, but no emission can be found in the

frequency spectrum. The parameter space of the emission limit is therefore bound

to a certain set of conditions dependent on the detuning δω and the pump-tone

strength Pp. A simple frequency mixing due to an electric non-linearity is hence

fairly unlikely, which would not be bound to a particular frequency window in order

to occur. Additionally, higher temperatures reduce the area of possible parameter

space in figure 4.22 significantly. The absolute amplitude is thereby also reduced,

which is depicted in figure 4.23 for a measurement with a detuning of δω = 5 MHz

and a pump power of −10 dBm in direct dependence on temperature. The quantity

represents the strength of the emission peak outside the cryostat measured with the

spectrum analyser. The amplitude of the emission peak decreases with increasing

temperatures until it completely vanishes above 175 mK. This suggests that the oc-

curring phenomenon might be related to the interactions of the pump-tones with the

resonator through the TLS-ensemble in the frequency domain of 1 GHz. In thermal

equilibrium (see equation 2.21) the TLSs of these frequencies would start to satu-

rate for temperatures above 50 mK. Under the assumption of a dynamical process

through the occurrence of a self biasing effect, this could additionally modify this

critical temperature value. The consequential saturation of tunneling systems with

increasing temperature would thereby reduce the occurring emission, until it van-

ishes above a few hundred mK. This dependency is therefore a further indication for

the involvement of TLSs to the observed effect.
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4.6.1 Theoretical derivation of the boundary conditions

Following the previous measurement, this section defines the basic conditions in

order to explain the set of possible parameters for the appearance of the emission

limit. This approach assumes that the effect is caused by the Landau-Zener dynamic

of an ensemble of tunneling systems interacting with the two pump-tones and the

LC-resonator field. The basic idea was already outlined in section 2.7 and requires

the contributing systems to be inverted into their excited state during the adiabatic

passage of the pump-tone field caused by a bias field sweep. Afterwards, the excited

state has to be preserved until the tunneling systems reach the frequency window of

the resonator. The ground state can then be recovered by the stimulated emission

of a photon at resonance frequency.

In order to derive the first boundary condition equation 2.84 from section 2.3.7 was

used, which expressed the probability for an adiabatic transition of the two-level

systems

Pg→e = 1− exp

(
−
πΩ2

R,p

ν

)
. (4.10)

This defines an upper limit νmax ≈ Ω2
R,p for the sweeping rate, which yields

Ḟb <
~
p

Ω2
R,p = Ḟb,max (4.11)

for the dependency of the bias rate. Otherwise, the transition from the ground state

into the excited state is suppressed due to the rapid passage of the energy levels.

The lower limit is a result of the relaxation time τ1. During the time of its transition

the system has to be unaffected by relaxation effects to remain in the excited state.

The available time to invert a TLS (tinv ∝ ΩR,p/ν) is proportional to the width of

the pump and to the inverse of the sweeping rate. This time scale consequently

needs to be shorter than the relaxation time τ1, so that the excited state does not

directly decay. In addition, the sweeping rate has to be large enough to overcome

the detuning δω to reach the resonator window in the excited state. The lower limit

can therefore be calculated by adding the two rates, which yields

Ḟb >
~
p

(ΩR,p + δω)

τ1

= Ḟb,min. (4.12)

For the case of a self induced bias effect as described above the value of the bias field

strength Fb is no longer arbitrarily selectable. The strength is in this case determined

by the pump-tone field Fp and the non-linearity of the system. The sweeping rate

can hence be expressed as

ν(Fp) = 2
pḞb(t, Fp)

~
∆

E
. (4.13)
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The bias field strength is also important for the absolute shift in energy. The reso-

nance window and at least one pump-tone have to be accessible for the corresponding

systems via the bias sweep. Otherwise, the system can not contribute to the effect

via inversion at the site of the pump and stimulated emission inside the resonator.

For a given detuning δω the approximation for an additional lower limit of the bias

field strength is therefore

δω <
pFb

~
. (4.14)

For symmetric tunneling systems the bias field strength has to be even higher since

the change in energy is much smaller compared to asymmetric TLSs. With an

approximation for the derivative of the bias field

|Ḟb(t)| ≈ ωbFb = 2δω Fb (4.15)

and the relation for the bias voltage Vb(Vp) = Fb(Vp) ·d, equation 4.14 can be written

as an additional upper limit for the case of a self induced bias effect

Ḟb < 2
p

~

(
Vb(Vp)

d

)2

= Ḟ
(nl)

b,max. (4.16)

The finite spectral width of the resonator also defines an additional lower limit due

the fact that the pump-tones can not be arranged arbitrarily close together. If the

pump-tone frequencies are near fres, the resonator can be excited directly by the

pump fields. The lower limit for an appropriate detuning is therefore defined by a

factor ∆ωres proportional to the spectral width of the resonator

∆ωres < δω (4.17)

The lower limit for the sweeping rate can hence be expressed by

Ḟb > 2 ∆ωres
Vb(Vp)

d
= Ḟ

(nl)
b,min. (4.18)

This boundary is more of an experimental limit caused by the self induced bias effect

and the thereby accessible bias rates. The emission limit can still occur for lower

values of the bias rate, but the direct excitation of the resonator by the pump fields

without the interaction through the TLS-ensemble would presumably prevail the

arising effect.
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4.6.2 Emission limit map

The derived conditions from section 4.6.1 can be used to formulate a theoretical de-

scription for the observed combination of system parameters that lead to the emission

effect as depicted by figure 4.22. This was realized by a Monte Carlo simulation on

an ensemble of 10000 TLS with random parameters of ∆ and ∆0 according to the

distribution function of the standard tunneling model from equation 2.15. The con-

ditions were checked for the individual systems and their contributions are added

for every combination of bias rate Ḟb and pump voltage Vp. This value also includes

the factors for the thermal saturation and TLS coupling to the electric field. The

lower limit, which is proportional to the spectral width of the resonator from the

relation 4.18, was hereby excluded since this condition only defines an experimental
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Ḟ
(nl)
b,max

Ḟ
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Figure 4.24: Illustration of the results from the Monte Carlo simulation for 65 mK. The

colour bar shows the sum of all TLS contributions normalized to all systems, which are

near the resonance during the bias sweep, for better comparison. Green and red lines

represent the different boundaries for an average TLS with ∆0/E ≈ 0.6 to contribute

to the stimulated emission limit. The experimentally observed borders (green area) are

depicted by converting the applied detuning to the corresponding bias rate.
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boundary. The corresponding value for the entire ensemble is afterwards normal-

ized to the number of systems, which pass the resonance frequency during the bias

sweep. The resulting quantity represents the amount of TLSs, which contribute to

the proposed mechanism instead of the total loss. The obtained value can therefore

be used as a measure for the occurrence of the emission effect. Figure 4.24 shows the

result of this simulation as a colour plot for a temperature of 65 mK. The colour bar

thereby represents the arbitrary value for the contribution to the emission effect. It

is normalized to the maximal value for better comparability. The green area is the

experimentally observed region for which the emission effect could be found and the

coloured lines represent the upper and lower limits derived in section 4.6.1 for an av-

erage TLS with ∆0/E ≈ 0.6. The non-linearity is described by equation 4.9 with an

exponential factor of b̃ = 2 to meet the determined value in section 4.5 and an offset

parameter ã =−25 dB to quantify the strength of the non-linearity on the chip in

dependence on the applied pump power. The offset parameter ã was thereby varied

to adjust the underlying theory to the experimental data. An additional parameter

Q was used to describe the attenuation of the bias line including the cables, the

bond connection and the coupling to the capacitor. The corresponding parameters

are also shown in table 4.2.

The underlying theory is in very good agreement with the experimentally observed

area of the emission limit. The shape is mainly determined by the derived limits of

section 4.6.1 but for large values of the pump voltage Vp the area is reduced due to

the small contributions of asymmetric TLSs. Large bias fields enable these systems

to contribute according to the limits but their associated coupling to the electric field

is much smaller than that of symmetric systems. The ratio of the total contribution

to the number of accessible systems is therefore reduced. Measurements for the low-

est temperatures showed heating effects with increasing pump-tone strength. This

indicates that the local temperature of the sample is presumably higher compared to

the adjusted temperature of the cryostat during the application of the pump-tones

especially for the lowest temperatures. This local temperature Tloc can hence be

decoupled from the temperature of the mixing chamber during the measurement.

p d τ1,min coth( E
2kBT

) δωres NTLS ã Q

4 D 300 nm 1 µs 0.3 MHz 10000 −25 dB −25 dB

Table 4.2: Overview of the used parameters for the Monte Carlo simulation. The quan-

tities are: dipole moment p, the distance of the capacitor plates d, the minimal relaxation

time scale τ1,min in dependence of temperature, the spectral width of the resonator δωres,

the number of simulated TLSs NTLS, the offset parameter for the non-linearity ã and the

attenuation of the bias line Q.
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The local temperature would therefore also increase for higher pump-tone strengths.

This would lead to an additional reduction of the accessible bias rates towards larger

pump voltages. Moreover, the high amount of saturation from the two pump-tones

and the dynamics of the TLS ensemble due to the active bias field makes it diffi-

cult to assign a certain temperature to the sample. In the frequency regime of fp1,

fp2 and fres the ensemble can therefore appear locally hotter due to the additional

saturation as in figure 4.7. To fully understand the dynamic behaviour of the in-

dividual systems and the entire ensemble it would be important to perform a full

analysis with the systems’ Hamiltonian. The Monte Carlo simulation at hand is just

a proof of principle that this effect can be described by the simple assumptions from

section 4.6.1 above.

The dependence on temperature, as already shown in the experimental investigation

of the parameter space of figure 4.22, is a direct result of the thermal saturation

factor and the lower limit Ḟb,min. The thermal saturation thereby decreases the total

contribution and the lower limit is increased due to the dependence of the relaxation

rate on temperature. Hence the contribution of the lower bias rates are reduced first

and the effective area is shifted to higher values of the pump-tone strength. Fig-

ure 4.25 shows this behaviour for the different temperatures. The individual plots

thereby use a local temperature Tloc to account for the decoupling of temperature

and the effective heating of the pump-tones at lowest temperatures. All other pa-

rameters were kept constant for the simulation of the data in figure 4.25 as depicted

in table 4.2. The minimal relaxation time scale τ1,min was set to 1 µs, which is a

value comparable to the observations in [Kha14, Ros16] for a Si3N4 film type setup.

The simulation thereby describes the overall behaviour of the obtained area for the

emission limit well but for higher temperatures the calculated area deviates from

the experimental values. This discrepancy can have different causes. The simulation

assumes full contribution of the systems, if the corresponding limits are fulfilled,

but for a continuous AC-bias field the individual systems additionally accumulate

a phase factor. This leads to constructive or destructive interference of different

Landau-Zener transitions [She10, Iva22]. The resulting restraint would affect the

contributions of the individual systems and only a sub-ensemble of TLSs takes part

in the effect. This aspect will be covered in the following section in more detail.

Furthermore, the pumps are presumably not equally strong due to the different

transmission of the cables for the various frequencies similar to the transmission

measurement in figure 3.11. For larger detuning δω this issue would have an even

bigger effect. This would hence influence the strength of the generated bias field in

dependence of the applied detuning. The transmission for lower frequencies would

also require different values for the offset parameter ã as already mentioned for the

non-linearity measurements of section 4.5. The offset parameter ã is therefore also

dependent on the detuning δω. The parameters ã and Q can consequently only be
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Figure 4.25: Illustration of the results from the Monte Carlo simulation for temperatures

between 20 mK and 300 mK. The corresponding parameters are shown in table 4.2.
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understood as an averaged approximation for the examined system. The simulation

also neglects the influence of a possible heating effect due to the strong pump fields

as already mentioned above. This comparatively simple extension could easily be

realized by a dependence of the local temperature on the pump voltage Vp but was

left out for simplicity. The additional thermal saturation for large pump powers

would additionally restrict the total contribution in dependence of Vp.

Overall, this simulation approach used rather simple assumptions to describe the ex-

perimental observations in the context of a self biased stimulated emission effect on

an amorphous material. The resulting theoretical model is in good agreement with

the data and the corresponding parameters are in the expected order of magnitude

for the present system. This suggests that the assumption of a self biasing effect

with the consequential occurrence of stimulation emission is a justified approach for

the description of the additional peak.

Emission limit with coherent transition boundaries

So far, the description of the emission limit assumed TLSs in the single passage limit,

in which a system carries the photon energy of the pump to the frequency window of

the resonator. For a continuous biasing, as for the suggested self-biasing effect, this

is not the full picture for the corresponding ensemble, since phases are important to

consider especially when the biasing rate exceeds the relaxation rate as described in

section 2.5.4. In this case only certain systems fulfil the resonance condition, while

the other systems can not contribute due to the destructive interference.

The obtained data is therefore compared with the derived critical bias limits ξ1, ξ2

and ξ3. The corresponding bias rate dependencies (blue lines) are shown in figure

4.26 together with the area of the emission limit (green) for a temperature of 65 mK.

The parameters from table 4.2 remained unchanged with the additional value of

τ2 = 1 µs. The emission limit is in good agreement with the critical limits and falls

into the coherent regime.

In this picture the emission limit could be understood as the first order (k = 1)

photon resonance with a bias frequency of fb = δω. This would mean that not the

difference frequency ∆f is the relevant quantity for biasing, but rather ∆f
2

, which

corresponds to the detuning δω for the symmetric pump arrangement. All bias rates

for the emission limit in figure 4.26 were therefore calculated using fb = ∆f
2

. This

coincides with the experimental observations that the emission limit could be induced

for the symmetric pump arrangement by a weak signal at resonance frequency for

example by the NWA-scan. This would create the right bias frequency (|fres−fp1| =
|fres − fp2| = δω) from the intermodulation of the individual pumps, to generate

the k-photon resonance (k = 1) and hence excited TLSs in the frequency window

of the resonator. If this excitation is then converted into an emission, the effect
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Figure 4.26: Comparison between the critical bias limits ξ1, ξ2 and ξ3 for continuous

biasing and the experimentally obtained data for the emission limit at 65 mK.

would also be self-sustaining since the corresponding frequency at fres can generate

the matching bias signal according to fb = |fres − fp1| = |fres − fp2|. This treatment

therefore suggests that the emission limit is only achievable in the coherent regime

when 1/fb � τ1 holds. A detailed simulation of the emission limit map for this

scenario would require the full evaluation of the TLS-Hamiltonian for the entire

ensemble and also each pump configuration. The evaluation within this thesis was

therefore restricted to the ensemble contributions in the single sweep limit, which

was sufficient to describe the boundaries of the observed limit and showed similar

results as the continuous treatment.
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5. Summary

Within the thesis at hand, dielectric measurements on an ensemble of two-level sys-

tems were performed at low temperatures. This included the application of two

pump-tones, which revealed an unexpected behaviour of the dielectric loss and the

appearance of an emission peak within a specific set of parameters. The response of

the resonator could thereby be attributed to a set of equations characteristic for a

Duffing oscillator and the boundaries of the novel limit were described by theoreti-

cal conditions following the Landau-Zener dynamics for the corresponding systems.

These observations are therefore a further addition to the bigger picture in under-

standing the occurring properties, when TLSs are present in an experimental setup.

The measurements were conducted in a 3He/4He dilution refrigerator on a newly

developed LC-resonator design between 20 mK and 6.5 K. The Wheatstone-bridge-

like arrangement of the capacitors thereby created an additional electrical branch,

which could be used to apply excitation fields onto the sample without interfering

with the readout chain of the experiment. Each individual capacitance was realized

as a plate capacitor to achieve an homogeneous field distribution and higher field

strengths due to the 200 nm thin film separating the plates. With this design a sam-

ple variation could easily be achieved depending on the possible materials, which

can be sputter deposited in the cleanroom. Furthermore, the experimental setup

was improved by installing a HEMT-amplifier at the 4K-stage of the cryostat. This

created the foundation to perform measurements at low temperatures with an im-

proved signal to noise ratio.

First measurements on this device were dedicated to ensure a sufficient thermalisa-

tion of the microstructured sample material. It showed an almost instant adaptation

to a temperature change of the cryostat, which is why the thermalisation time could

be approximated to be much shorter than the 15 min measurement time of a single

data point. This excluded issues in the following experiments regarding a possible

poor thermal coupling of the sample to the experimental platform or an intrinsic

heat leak.

The saturation measurement, which is usually performed in order to ascertain the

low-power limit, showed an unexpected behaviour indicating a non-linear character-

istic resulting in a deviation from the predicted F−1
ac -dependency. For temperatures

below 150 mK the measurements display a critical phenomenon with a sudden de-

crease in the dielectric loss by more than one order of magnitude. This behaviour

could not be explained by the usual description but instead points towards a collec-

113
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tive or correlated dynamic of the TLSs, which reduces the dielectric loss drastically,

comparable to a spontaneous synchronisation effect.

The temperature dependency of the sample, on the other hand, showed the char-

acteristic behaviour of an amorphous material at low temperatures. Thereby, the

real part agreed well with the prediction of the standard tunneling model including

dipole-dipole interactions of individual systems. The loss deviated especially for low

temperatures, but this effect could be attributed to a slight saturation of the TLS-

ensemble by the probe-tone. This resulted from the high coupling quality factor of

the resonator, which was intended by design but made measurements at very small

probe fields difficult. In a nutshell, the thin film SiO2 behaved as expected for the

temperature dependency of an amorphous sample.

The application of two additional symmetric pump-tones during a temperature de-

pendency measurement showed the expected saturation in the loss but no change in

the corresponding real part. This was an important result to exclude trivial heating

effects caused by the strong field of the pumps.

The following detuning measurement was dedicated to further investigate the satu-

ration behaviour of the ensemble for different detuning values at a constant tempera-

ture. This revealed the enhancement of the observed quality factor for the resonator

compared to the simple assumption of two independently burned holes in the dis-

tribution function. This enhancement seemed to grow with increasing field strength

of the pumps and resulted in the occurrence of a new limit, in which the resonator

started to emit at the intermediate frequency.

The transition to this limit was investigated by a measurement technique with asym-

metric pump-tone arrangement. The corresponding response of the resonator showed

the characteristic features of a non-linear Duffing-type oscillator driven by an addi-

tional strong field. If this field was attributed to the occurring emission peak, the

behaviour of the resonator setup agreed well with the derived equations for the Duff-

ing oscillator. This included the description of the emission amplitude in dependence

on the intermediate frequency of the pumps. The observed response of the device

could therefore be well described, but the underlying mechanism for the occurrence

of the emission peak was still missing.

This gave rise to a further investigation of the non-linear characteristics of the de-

vice and revealed the appearance of the intermediate frequency of the pumps in the

MHz-regime. For an adequate field strength this frequency can function as the bias

signal for the TLS-ensemble. The appearance of a bias field could hereby also ex-

plain the enhanced quality factor for the detuning measurements since a modulation

of the TLSs energy splitting could widen the burned holes of the individual pumps.

The corresponding effect was hence referenced as self-biasing. Moreover, previous

numerical simulations [Mün21] showed that these intermodulation frequencies can

be caused by the non-linear properties of the TLSs themselves.
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Furthermore, the emission limit was only observed in a specific set of parameters

mainly dependent on the detuning and the field strength of the pump-tones, but

also on the temperature of the cryostat. The boundaries of the effect were therefore

determined for different temperatures and compared to simple theoretical limits from

the Landau-Zener description [Ros16] of a single sweep. They were complemented

by introducing an additional boundary, which included the necessary minimal mod-

ulation for a single TLS to contribute to the emission in the resonator. A simple

Monte-Carlo simulation including these boundaries was therefore performed to add

up the individual contributions of the ensemble to a total value for a potential emis-

sion effect. This description already showed good agreement with the measured

data, even though it did not include the effect of continuous biasing. This can be

understood since the corresponding description, including the phase of the individ-

ual systems, yields similar limits for the contributions. However, the associated

picture is different since the emission limit can then be interpreted as the k-photon

(k = 1) resonance of each pump-tone with a bias frequency of fb = 1
2
|fp1− fp2|. The

corresponding frequency was also observed in the MHz-regime for the non-linearity

measurements. Assuming this formalism, the observed emission would arise in the

coherent regime, for which the bias rate exceeds the relaxation time scale. To de-

scribe this scenario in more detail similar to the Monte-Carlo approach, a full time

evolution for the individual TLSs Hamiltonians of the ensemble would be necessary

for each set of experimental parameters. This was not part of the work within this

thesis but would be an interesting addition in the understanding of the observed

effect.

To summarize, the field of low temperature physics repeatedly offers new insights in

complex many-body systems. Especially simulation approaches are thereby increas-

ingly important to understand the connections related thereto. Previous works on

this topic within our group [Fre21, Mün21, Din22, Bli22] contributed significantly

to the understanding of the observed properties of the setup. The hereby occur-

ring emission effect is an interesting feature, which can be explained in the context

of the two-level system description. This makes it a possible approach for further

investigations techniques.
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[Pri93] J. Y. Prieur, R. Höhler, J. Joffin, and M. Devaud, Sound amplification by

stimulated emission of radiation in an amorphous compound, Europhys.

Lett., 24(5), 1993.

[Pro15] S. Probst, F. B. Song, P. A. Bushev, A. V. Ustinov, and M. Weides, Efficient

and robust analysis of complex scattering data under noise in microwave

resonators, Rev. Sci. Instrum, 86(2), 17, 2015.

[Rei17] A. Reifenberger, Spezifische Wärme von supraleitenden metallischen
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der Rolle als weitere Prüfer.
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