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Abstract 
 
Molecular descriptions of human disease have relied on transcriptomics, the genome-wide 

measurement of gene expression. In the last years the emergence of capture-based technologies 

have enabled the transcriptomic profiling of single cells both from dissociated and intact 

tissues, providing a spatial and cell type specific context that complements the catalog of gene 

expression changes reported from bulk technologies. In the context of cardiovascular disease, 

these technologies open the opportunity to study the inter and intra-cellular mechanisms that 

regulate myocardial remodeling. In this thesis I present comprehensive descriptions of the 

transcriptional changes in acute and chronic human heart failure using bulk, single cell, and 

spatial technologies. First, I describe the creation of the Reference of the Heart Failure 

Transcriptome, a resource built from the meta-analysis of 16 independent studies of human 

heart failure transcriptomics. Then, I report the first spatial and single cell atlas of human 

myocardial infarction, and propose a computational strategy to identify compositional, 

organizational, and molecular tissue differences across distinct time points and physiological 

zones of damaged myocardium. Finally, I outline a methodology for the multicellular analysis 

of single cell data that allows for a better understanding of tissue responses and cell type 

coordination events in cardiovascular disease and that links the knowledge of independent 

studies at multiple scales. Overall my work demonstrates the importance of the generation of 

reliable molecular references of disease across scales. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Zusammenfassung 

 
Die Beschreibung menschlicher Krankheiten auf molekularer Ebene beruht auf der 

genomweiten Messung der Genexpression - dem Transkriptom. In den letzten Jahren hat das 

Aufkommen von capture-based Technologien die Erstellung von Transkriptom-Profilen 

einzelner Zellen sowohl aus dissoziiertem als auch aus intaktem Gewebe ermöglicht, wodurch 

eine räumliche und zelltypspezifische Einordnung geschaffen wurde, welche die erfassten 

Veränderungen der Genexpression von Bulk-Technologien zusätzlich ergänzt. Im 

Zusammenhang mit Herz-Kreislauf-Erkrankungen eröffnen diese Technologien die 

Möglichkeit, die inter- und intrazellulären Mechanismen zu untersuchen, die den Umbau des 

Herzmuskels steuern. In dieser Arbeit präsentiere ich umfassende Beschreibungen von 

Transkriptionsveränderungen bei akuter und chronischer menschlicher Herzinsuffizienz unter 

Verwendung von Bulk-, Einzelzell- und räumlichen Technologien. Zunächst beschreibe ich 

die Erstellung einer Referenz des Transkriptoms bei Herzinsuffizienz, die aus einer Meta-

Analyse von 16 unabhängigen Transkriptom-Studien bei menschlicher Herzinsuffizienz 

resultiert. Anschließend beschreibe ich den ersten räumlichen und einzelligen Atlas des 

menschlichen Myokardinfarkts und schlage eine Berechnungsstrategie vor, um Unterschiede 

in der Zusammensetzung, der Organisation und den molekularen Geweben über verschiedene 

Zeitpunkte und physiologische Zonen des geschädigten Myokards hinweg zu identifizieren. 

Schließlich skizziere ich eine Methodik für die multizelluläre Analyse von Einzelzelldaten, die 

ein besseres Verständnis von Gewebereaktionen und zellulären Koordinationsereignissen bei 

Herz-Kreislauf-Erkrankungen ermöglicht und Erkenntnisse aus unabhängigen Studien auf 

verschiedenen Ebenen miteinander verknüpft. Insgesamt demonstriert meine Arbeit die 

Wichtigkeit, zuverlässige molekulare Anhaltspunkte für Krankheiten auf mehreren Ebenen zu 

erhalten. 
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Chapter 1 
 

Introduction 
 

1.1 Introduction to the molecular biology of heart failure 

The prevalence of heart failure in the world is around 38 million people, representing 1-2% of 

the adult population in developed countries [1]. Although there is a constant debate in the 

clinical community of what defines heart failure [2]-[3], in general terms, heart failure 

represents a complex clinical syndrome caused by structural and/or functional cardiac 

dysfunctions. These dysfunctions lead to low cardiac output, reduced blood flow and death. 

Known causes of heart failure are related to ischemic heart disease (e.g. coronary artery disease 

and myocardial infarction), hypertensive disease and/or valvular dysfunctions. Moreover, 

genetic, clinical, and environmental interactions contribute to the development of heart failure. 

Heart failure is an increased public health problem and while preventive actions have the 

biggest impact in reducing the affected population, poor prognosis is observed in affected 

individuals [1]. 

 

During the initial phases of heart failure, for example after myocardial infarction, widespread 

cardiac remodeling events are observed because of inflammatory and compensatory responses. 

Compensatory responses coordinate tissue level processes that maintain intact the heart’s 

function despite structural dysfunctions caused by ischemic lesions, changes in blood pressure 

or congenital structural dysfunctions. These responses are tightly regulated, however they can 

become maladaptive and drive cardiac remodeling that impairs the heart’s function. At the 

cellular level these compensatory events are mainly reflected in changes in the calcium kinetics 

that control cardiac muscle contraction, cytoskeleton deregulations that affect the sarcomere in 

cardiomyocytes, neurohormonal and adrenergic responses, reactivation of fetal programs, and 

fibrosis [4]–[6]. Changes in energy substrates are observed in early and late stages of heart 

failure from a slight increase of fatty acid oxidation to glucose use [7], demonstrating that 

different layers of biological information are linked during cardiac remodeling.  
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Some of the previously mentioned pathophysiological mechanisms are the usual target of 

current therapies in the clinic, such as Angiotensin-converting enzyme (ACE) inhibitors and β-

adrenergic blocking agents, that antagonize the maladaptive effects of neurohormones and 

increased adrenergic drive [8]. Among other therapies, calcineurin and histone deacetylase 

inhibitors target hypertrophic growth [4] and stem-cell therapies aim to deal with the effects of 

apoptosis (eg. after myocardial infarction) [9]. Important circulating biomarkers for diagnosis 

and prognosis such as the N-terminal pro-B-type natriuretic peptide are also consequences of 

these mechanisms [2]. However, treatment response varies between individuals and a high 

number of heart failure patients need assist devices followed by heart transplantation [5].   

 

The varied clinical profiles of the increased aging population, together with complex 

comorbidity and genetic interactions explain partially why some of the treatments are not 

universally effective [10]. An underlooked importance of heart failure patients with preserved 

ejection fraction (in other words, with no changes in blood pumping from the heart’s left 

ventricle) [11], as well as a clear underrepresentation of studies of patients of underdeveloped 

countries or from black or hispanic communities [12], contribute to the missing pieces of the 

pathophysiology of heart failure. As I will discuss later in this chapter, the increased generation 

of knowledge requires community efforts to integrate and distribute knowledge to be able to 

prioritize, in the context of global health, studies that complete the profiling of heart failure’s 

molecular biology. 

 

To fully characterize the processes that regulate compensatory responses within the heart is 

necessary to understand the intra- and intercellular mechanisms that regulate cardiac 

remodeling. While cardiomyocytes comprise the largest volume of the heart, and thus the focus 

of heart failure research, they represent only one third of the cellular constituents of the organ. 

Other cell types such as fibroblasts, endothelial cells, pericytes, smooth muscle cells, and 

immune cells have major roles in heart’s function and are involved in cardiac remodeling. 

Together, these cell-types maintain the tissue’s function with homo- and heterotypic 

interactions via mechanical, chemical, and electrical processes both in short and long distances. 

Direct interactions through cell surface receptors or gap junctions combine with autocrine or 

paracrine signaling mechanisms where growth factors, hormones, cytokines and other ligands 

influence gene and protein expression ultimately coordinating cell’s behaviors in the tissue 

(Figure CH1-1) [13]–[17]. 
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In healthy hearts, cardiomyocytes are organized in sheets that attach to the extracellular matrix, 

a complex network of proteins including collagens, proteoglycans, glycoproteins, periostin, 

fibronectin, fibrillin, and hyaluronan [16]. The regulated contraction of cardiomyocytes is 

necessary for the blood pump and this is achieved by specialized cell-to-cell interactions called 

intercalated disks. Cardiomyocyte cross talk is achieved mainly through gap junctions, 

channels that allow the crossing of small molecules, including ions and small peptides. Cardiac 

fibroblasts are the cell-types responsible for maintaining the integrity of the extracellular matrix 

by regulating the production and secretion of the matrix components. This process ensures the 

integrity of the heart's structure by properly distributing the mechanical force in the 

myocardium. Fibroblasts are located throughout the matrix and have direct interactions with 

cardiomyocytes and cells from the vasculature network, that include endothelial cells, pericytes 

and smooth muscle cells [16]. Endothelial cells are located in the inner layer of blood vessels 

and represent roughly 60% of the non-myocyte population, outnumbering cardiomyocytes by 

a three to one ratio [15]. Cardiomyocytes are surrounded by a dense capillary network that 

ensures that their energetic demands are fulfilled, by facilitating the distribution of metabolic 

substrates and oxygen. Vascular smooth muscle cells form the wall of blood vessels and they 

regulate blood pressure and flow with contraction and relaxation mechanisms. Pericytes are 

located between endothelial and smooth muscle cells in larger vessels and regulate the 

homeostasis and permeability of the vasculature [15], [18]. Cross-talk between cells in the 

vasculature is necessary for angiogenesis and the deposition of the basal membrane, an 

extracellular matrix support of endothelial cells. Finally, immune cells including myeloid and 

lymphoid cells regulate inflammatory and reparative responses by communicating and 

interacting with vascular and muscle cells, and activating fibroblasts [19]. Despite the apparent 

specialized and compartmentalized functions of  individual cell types in the heart, a 

multicellular organization is required for the organ’s function and homeostasis. For the same 

reason, compensatory and maladaptive responses should be understood in that specific context. 
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Figure CH1-1. Multicellular organization of the heart’s tissue.  

Homo- and heterotypic intercellular interactions regulate heart’s function through cell surface receptors or gap 
junctions combined with autocrine or paracrine signaling mechanisms. Figure is adapted from [16]

 
 

During cardiac remodeling, cardiomyocyte autocrine signaling regulates hypertrophy, and 

paracrine signaling via cytokines and growth factors aids immune response and the 

reorganization of the vascular network [17]. Moreover, upon myocardial damage, fibroblasts 

transition to an activated state called myofibroblasts that increase the production of 

extracellular matrix and regulate the repair of cardiac tissue after the cardiomyocytes’ death 

[20]-[21]. Nevertheless, impaired regulation of these multicellular processes lead to 

maladaptive responses that lead to heart failure. For example, uncontrolled responses of 

fibroblasts lead to fibrosis, impairing the electrical coupling of cardiomyocytes and generating 

mechanical stiffness that affect cardiac output [20], [21]. Pro-inflammatory and pro-fibrotic 

responses mediated by immune cells have an important role in maladaptive responses too [19], 

[22], [23]. Additionally, defective angiogenesis or deregulated vasodilation ultimately affects 

the cardiac metabolic homeostasis, since not enough resources can be provided to 

cardiomyocytes [24]. 

 

The main objective of this brief overview is to insist that a multicellular perspective is required 

to understand the molecular processes of heart failure. With this perspective, the 

pathophysiology of heart failure is described in terms of generic tissue responses and cell type 

specific responses, both coordinated by complex communication events between the same or 

different cell types. For the same reason, multiscale molecular profiling of bulk tissues and 
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single cells together with their spatial coordinates, becomes essential to understand the 

multicellular molecular mechanisms that ensure the function of organs. In the next section I 

will present some of the technological developments that allow for a multicellular 

understanding of tissues. 

1.2 Multiscale profiling of disease 

For the last 20 years, genome-scale data has been generated for different human diseases. Full 

transcriptomes, epigenetic marks, metabolic fluxes, signaling signatures, protein repertoires, 

chromosomal arrangements, among other molecular readouts of tissues, provide a catalog of 

individual processes that occur simultaneously in a time or spatial snapshot of a tissue [25]–

[27]. Historically, technological developments were focused in generating -omics 

measurements in whole tissues (bulk profiling), however recent advances have been able to 

profile individual cells in dissociated or intact tissues [28]–[30]. Biomedical research has 

leveraged these technologies in combination with case-control experimental designs to 

describe differential processes from distinct biological layers. To link these apparently 

disjointed lists of processes, the field of systems biology has proposed distinct solutions that 

integrate them using mechanistic assumptions with prior knowledge [31]–[33], statistical 

multitable methods [34] or a combination of them [35].  

 

Naturally, with the emergence of multiscale profiles, the integrative challenges of -omics data 

are not only limited to the connection of average signals of a single measurement across 

biological layers (eg. epigenomics, transcriptomics, and proteomics), but also focused at 

decomposing those signals as a complex interplay of single cells in space, where variable cell 

intrinsic processes are coordinated to maintain tissue’s identity and function. Throughout this 

thesis I will provide an intuitive notion of how I approached this challenge in the context of 

cell-type specific gene expression deregulation during heart failure. A description of multiscale 

transcriptomics follows. 

1.2.1 Bulk transcriptomics 

Ribonucleic acid (RNA) transcription is one of the most profiled molecular readouts to 

understand genomic function. In case-control experimental designs, changes in the 

transcription of genes are usually understood as a consequence of the activation of signaling 

pathways and the effects of transcription factors. However, the transcriptional state of a tissue 
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does not completely correspond to its functional state given the low correlation between 

transcript and protein abundance [36] and other epigenetic [37]–[39], post-transcriptional [40], 

and post-translational mechanisms [41]. Nevertheless, when the transcriptional pathological 

state of a tissue is contrasted with its healthy counterpart, a potential set of differential cellular 

processes associated with a disease of interest still can be listed.  

 

The initial steps of the experimental protocol for bulk transcriptomics requires the extraction 

of RNA from a tissue specimen, the enrichment of messenger RNA and synthesis of 

complementary DNA (cDNA) [42].  In DNA chips or microarrays [43], the transcriptome is 

then quantified as the level of hybridization that the cDNA of a sample has with fixed probes 

in the chip. The abundance of a transcript is quantified as light intensity with a dynamic range 

constrained by hybridization saturation levels. Even though microarrays required a reference 

transcriptome in order to be able to probe gene expression, their high throughput and low cost 

made them essential in the description of gene expression deregulation during disease [44]. 

With reduced costs and increased accessibility of sequencing technologies, microarrays were 

replaced with direct sequencing of short or long reads of the enriched library of cDNA from 

the sample (RNA-seq) [45]. This change in technologies allowed for the possibilities of de 

novo transcriptome assembly and isoform quantification. Technical details of microarrays and 

RNA-seq are out of the scope of this work and I refer to comprehensive descriptions by other 

authors [42], [44]. 

 

Typical computational workflows that follow transcriptome quantification in biomedicine are 

centered in the identification of differentially expressed genes between two or more distinct 

clinical groups. Sample normalization and batch effect correction usually precede the modeling 

of transcript abundance with variations of generalized linear models or non-parametric 

population comparison methods [46]–[48]. Gene level statistics from these models are used 

then to rank and identify potential biomarkers.  

 

This analysis strategy is used routinely in almost every transcriptomics study, however a 

conceptual flaw in this approach is to treat each gene independently. Even in the most simplistic 

scenario of reducing gene expression regulation to the interplay of transcription factors, these 

factors cooperatively regulate the expression of more than a single gene. Thus, a better 

approach is to quantify regulatory events.  
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Enrichment analysis are statistical methods that group gene level statistics based on prior 

knowledge to estimate the likelihood of observing a coordinated gene expression regulatory 

event. Their main objective is to transform a disjointed list of differentially expressed genes 

into a collection of potential cellular processes that are being activated or repressed in the 

pathological state of the tissue [49]. Most of these methods are based on hypergeometric tests, 

rank statistics or empirical estimations of likelihoods based on permutations [50]–[52]. 

Regardless of the statistical method used, their hypothesis tests can be divided in two main 

classes: competitive or self-contained. Competitive hypothesis testing is used to compare if the 

expression coordination of a single gene set is greater or lower than the one observed from 

random collections of gene sets (usually of the same size). Self-contained hypotheses test if the 

observed coordination of a single gene set is associated with the variability of samples. To 

compute empirical p-values for self-contained hypothesis testing, a null distribution of the 

scores is created by repeatedly estimating the enrichment of gene sets from random population 

comparisons generated by shuffling sample group labels (eg. healthy and disease). Competitive 

hypotheses are the most used in enrichment analysis because they depend solely on a single 

vector of gene-level statistics compared to self-contained methods which are limited by the 

number of observations [51]. Since enrichment methods rely on prior knowledge coming from 

distinct sources with varied levels of quality, hypothesis weighting can be used to prioritize 

high confidence gene sets without losing the statistical power [53].  

 

Enrichment methods can also be applied directly to gene expression data with the main 

objective to reduce highly dimensional expression data into a collection of interpretable latent 

variables. This dimensionality reduction increases the power of population comparisons, while 

keeping biological significance. Compared to other data-driven dimensionality reduction 

methods like principal component analysis or factor analysis, the estimated latent variables 

estimated from enrichment methods are not necessarily independent.  

 

Usual gene sets used in enrichment analyses come from databases like KEGG or Reactome 

that curate gene sets associated with signaling pathways or cellular processes. However, these 

collections mainly group genes that are functionally relevant whenever they are translated to 

proteins as members of a pathway. As mentioned in the beginning of this section, the agreement 

between the functional state and the transcriptional state of a tissue is not true, and although 

these gene sets are useful to interpret transcriptomics data, this is mainly because genes 

belonging to a given cellular process are regulated collectively [54]. Under the assumption that 
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the quantified gene expression in a sample is a consequence of an usually unobserved collection 

of cellular high-order processes, gene set enrichment analysis can be used to trace these 

processes back. Gene sets used in these analyses are called functional footprints, because they 

capture direct transcriptomic responses upon “activities” of cellular processes [55]. For 

example, the functional footprint of a signaling pathway X is the collection of genes that 

consistently change upon perturbation of the pathway, rather than the members of the pathway 

itself [56]. Another example is the interpretation of transcription factor activities, where the 

transcriptomic levels of genes belonging to the regulon of a given transcription factor Y provide 

greater evidence of its functional relevance, compared to the expression of the transcription 

factor alone [57]. This change in perspective allows us to interpret transcriptomics data 

functionally and build the bases of more complex mechanistic models. Several efforts to collect 

functional footprints of pathway and cytokine activities [56], [58], transcription factors [59] 

and perturbations [60] are currently available. 

 

Bulk transcriptomics has been essential in the description of the general heart tissue processes 

and their changes during disease, particularly because bulk technologies are of low cost and 

allow for the profiling of large patient cohorts possible. Nevertheless the transcriptomic 

profiles obtained from these studies are convoluted signals reflecting cell type composition and 

general and cell type specific molecular responses to the environment. Naturally, technological 

advancements evolved to profile single cells from tissues as I will describe in the next section. 

1.2.2 Single cell transcriptomics 

For the last 10 years, the emergence of plate-based and droplet-based methods to sequence the 

transcriptome of single cells has allowed the community to massively survey the human cell 

types in different organs [61]. Based on the idea that the transcriptional profile captures the 

lineage history of cells after development together with their functional variability, single cell 

transcriptomic sequencing complements histological and pathological tissue descriptions and 

expands the work of massive endeavors like the Human Protein Atlas [62]. Compared to bulk 

technologies, however, single cell profiling costs are considerably higher which limits the 

amount of independent samples in a single study. Additionally, transcriptome coverage is 

limited in most of the current technologies [63]. All of this together creates a trade-off that is 

characteristic of this type of data: increased number of measurements (cells), with increased 
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sparsity (low number of genes), in a nested structure of variability (patient, location, lineage, 

and function). 

 

The experimental protocol of plate-based and droplet-based methods share the same objective 

of isolating cells and creating individual libraries for sequencing. However, what differentiates 

droplet methods is that they rely on microfluidics technologies that allow to isolate thousands 

of cells in individual barcoded droplets [63]. In my work I focused on data generated by the 

10x Genomics Chromium droplet-based platform. For technical details I refer to the work by 

[64]. A limitation of droplet-based isolation is the size of the cells that can be captured and the 

amount of starting material needed. Thus as an alternative, single nuclei can be isolated and 

sequenced instead of single cells, with similar detection levels but with an overestimation of 

cell compositions of multinucleated cells and loss of sub localized transcripts [65], [66]. 

 

The computational challenges of single cell transcriptomics are different from the ones 

described for bulk transcriptomics because of the nested structure of the data. In the following 

sections I will describe the most current workflow for analyzing a single sample, multiple 

samples and case-control complex experimental designs. These descriptions follow read 

alignment to a reference genome or transcriptome and gene expression quantification. This task 

is more complicated than in bulk experiments because it involves cell calling, amplification 

error correction and read to gene and read to cell assignment [67].  

 

Single sample analysis 

Count matrices obtained after gene quantification still carry technical noise mainly from three 

sources: ambient noise, non-viable cells and doublets. The diluted suspension of cells required 

by droplet-based technologies adds cell-free mRNA to every droplet coming from ruptured or 

degraded cells, adding an off-target gene expression in cell types. This ambient noise can be 

corrected with computational methods that rely on the transcriptomic profiles of empty droplets 

at the expense of modifying the count matrix before any other downstream computational 

analysis [68], [69]. Additionally, non-viable cells are filtered out based on empirical thresholds 

of gene coverage, counts, mitochondrial gene expression (since they serve as markers of cell-

death), and dissociation stress [70], [71]. Although the dilution of cell suspension aims at 

lowering the rate in which more than a single cell or nuclei is captured in a single droplet, a 

proportion of quantified droplets contain doublets, with abnormally high number of reads. 

Similarly as ambient correction, computational methodologies exist to identify potential 
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doublets and filter out those measurements [72]-[73]. These initial quality control metrics are 

tissue and context dependent and usually are confounded by biological signals. For the same 

reason, multiple iterations of these steps are performed to the data based on the “quality” of 

downstream analysis. Sequencing depth correction and count transformations to handle data 

heteroskedasticity are later performed to ensure proper variance stabilization and gene 

expression comparison [74]. 

 

Identification of highly variable genes followed by dimensionality reduction with principal 

component analysis precedes community detection and (graph-based) clustering analysis to 

identify groups of cells coming from similar lineages or functions [70]. Marker genes are 

identified with differential expression analysis with parametric or non-parametric tests. 

Corroboration with literature and prior knowledge allows to classify clusters of cells as “cell 

types” or  “cell states”, a coined term to refer to cells coming from an identical lineage, albeit 

with different functions. Clustering analysis is at the core of the definition of cell types and cell 

states in single cell transcriptomics, for the same reason, computational methods that assess the 

“quality” of a given clustering granularity have emerged recently [75]. The definition of cell 

states is an open debate that resembles the one in the field of evolutionary microbiology 

regarding the definition of species. The loose definition of cell states based solely on gene 

expression suffers from the previously discussed gap between the transcriptional and functional 

state of cells and the amplified technical effects of single cell sequencing. In general, the quality 

control steps mentioned in the first part of this section are adjusted based on the “biological” 

relevance of the definition of cell types and cell states from the filtered and adjusted atlas.  

 

Functional transcriptomics tools to infer activities of transcription factors and signaling 

pathways (described in the “Bulk transcriptomics section”) can also be applied robustly to 

single cell transcriptomics data [76]. Inference of gene regulatory networks is also possible 

when prior knowledge of regulons is not available [77]. Additionally, some computational tools 

exist to explore the gene expression dynamics of groups of cells that follow developmental or 

functional trajectories [78]-[79]. Methods to infer cell communication events between different 

populations of cells are also available. These methods use the co-expression of ligand-receptor 

pairs between two cell types or states as a proxy of likelihood of communication [80]-[81].  

 

In summary, the main objective of the computational analysis of single cell transcriptomics 

data of a single sample consists in calling viable cells, classifying them based on cellular 
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ontologies and characterizing their functional variability. It is important to notice that the 

variability explored at this level only reflects a single sample and it does not necessarily reflect 

the variability observed in a complete population. Biomedical studies leveraging single cell 

technologies are increasing the number of profiled samples simultaneously which bring 

additional computational challenges. 

 

Multiple sample analysis 

The nested structure of single cell studies with multiple samples coming from a single condition 

requires the use of computational methods that match the observed variability between and 

within cell types. The main assumption is that sample specific effects in transcriptomics 

profiles (either technical or biological) can be corrected because there is a core covariance 

structure of lineage and functional gene expression markers. In other words, when profiling 

single cell expression profiles of a sample cohort, the main objective is to identify the cell types 

and their functional diversity that are consistent across samples [82]-[83].  

 

The objective of integration and batch-correction methods is to project single cell data from 

multiple sources in a unified space where it is possible to estimate distances or create 

community graphs for clustering analysis. Some methods identify collections of mutual nearest 

neighbors between samples, either using the whole expression profile or reduced features, to 

reconstruct the shared space. Other methods regress out the effects of batches in a reduced 

space (eg. principal components) while maximizing the diversity of them in a given location 

of the shared space [84]. Additionally, deep learning methods leverage known or suggested 

cell type labels to facilitate the alignment and transfer of information between data sets [85]. 

Regardless of the core methodology used in integration, these methods provide a corrected 

shared space for all the cells coming from all samples or a mutual nearest neighbor graph, 

and/or an adjusted expression matrix [83]. Ultimately, this correction allows to define globally 

the different cell types and states in a patient cohort. 

 

An important aspect of this integration task is the selection of shared highly variable genes. In 

low quality samples it is likely that the highly variable genes are associated with technical 

rather than biological variation. When this variability is handled improperly, wrong 

assignments of cell states or cell types are expected. Although integration methods have 

matured in the last years, proper balance of technical and biological correction is still a 

challenge. Proper integration is the basis of the analysis of single cell data in case-control or 
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other more complex experimental designs, since integration allows to define the processes that 

can be compared between patient conditions.  

  

Case-control or other complex experimental designs 

So far I have described the general quality control analysis that is usually performed to single 

cell transcriptomics samples and the workflow to identify cell types and their molecular 

variability in one or multiple samples. The challenge in complex experimental designs where 

multiple disease time points or conditions are profiled is to extract from all the observed 

variability across multiple cell-types, which processes are associated with clinical features. 

Even though it is possible to contrast every feature of each defined cell type between 

conditions, I advocate for a tissue-centric perspective [86] in which single cell data can be used 

to estimate in tissues: 1) cell type compositional changes and 2) transcriptional shifts within 

cell types.  

 

The pathological state of a tissue can be described by changes in the compositions of cell types 

usually observed in its healthy counterpart. For example, upon ischemic injury in any tissue, it 

is expected an increased number of immune and stromal cells. With single cell data it is 

possible to contrast relative compositions between patient groups. However, two technical 

aspects are important to consider in this task. The first aspect is that measured cell type 

compositions of each sample are affected by the microfluidics technologies and tissue 

sampling. Proper experimental design allows to reduce the influence of these technical effects 

in population comparisons. The second aspect is that cell compositions are not independent 

(given the multicellular nature of tissues and the mathematical properties of proportions) and 

data transformations are needed before applying any type of statistical analysis. In 

compositional data analysis, to deal with dependencies between features, relative compositions 

are usually transformed to log ratios. Univariate or multivariate statistical methods are later 

applied to compare populations [86]. Alternative methods with a Bayesian perspective have 

been reported that ensure applicability in underpowered studies [87].  

 

Complementary to compositional changes, cross-condition general transcriptional shifts can be 

observed across all cell types (eg. upon hypoxia or inflammation) together with cell type 

specific molecular responses (eg. fibroblast activation upon ischemic injury in tissues). To infer 

disease molecular signatures observed within each cell type, differential expression analysis 

between patient conditions is commonly used. However compared to bulk transcriptomics, 
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statistical tests are not applied directly to single cell observations. As I have continuously 

presented in this section, in complex experimental designs there is a nested structure of the 

data, in which it is assumed that the clinical condition is the factor with the major influence, 

followed by the individual (patient), the tissue sample, cell types and cell states. Since there is 

a bias in cell capture in independent samples, by simply comparing the profiles of single cells, 

there is a risk of capturing trends of single samples that contribute a higher number of cells in 

the whole dataset. Thus, to properly compare the distributions of gene expression between 

different conditions, the distribution of each condition should capture the variability across all 

individuals belonging to that class, rather than single cells. Although mixed-effects models are 

suitable for this type of experimental design, these models do not computationally scale well, 

and studies have reported that simpler strategies are more effective. One of these strategies is 

called pseudobulking in which the gene counts of all cells belonging to a given cell type or cell 

state of an individual are combined into a single profile. This strategy creates as many 

individual profiles as cell types or states in the data set. Once this process is done for all 

individuals, classic bulk transcriptomics models for differential expression analysis can be 

used. I refer to the work of [88] and [89], for a more comprehensive description of cross-

condition analyses.  

 

Alternative statistical methods to calculate transcriptional shifts specific to cell types across 

conditions, test the difference between the observed divergences of samples within a condition, 

compared to the ones observed between conditions. These methods assume that cell types with 

the greatest between-condition versus within-condition divergence ratio are the ones with the 

greatest functional change in a pathological state. This strategy allows to prioritize the 

characterization of cell states in a reduced number of cell types [86]. 

 

The emergence of cell states in a pathological condition is also a common cross-condition 

analysis. The assumption is that an observed functional profile of a cell type is mostly observed 

in a pathological process. For example, activated fibroblasts that have an increased production 

of extracellular matrix are expected to be in higher abundance in “tissue contexts” where this 

function is required. Even though this functional cell state may be traceable in healthy tissues, 

its relevance increases upon ischemic injury or fibrosis. In this situation, cross-condition 

compositional and transcriptional comparisons may converge. When contrasting the 

pseudobulked gene expression of a cell type of healthy and pathological contexts, it may be 

the case that the estimated differentially expressed genes associate with the cell state with the 
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greatest change in abundance between conditions. Nevertheless, this relationship is tissue 

dependent and is part of the discussion of cell state definitions. 

 

A limitation of the analyses described above is that they treat each cell type as an independent 

entity of the tissue, disregarding the expected multicellular organization of molecular changes 

and tissue remodeling. Multi-view and multi-task learning approaches have been proposed 

recently to estimate multicellular programs, a “higher-order functional unit” that is composed 

of the combination of multiple cell type expression changes [90], [91]. These methods learn a 

latent space that simultaneously captures the variability structure of multiple cell types. Since 

these methods can be fully unsupervised, they also provide ways to evaluate different patient 

classifications. Additionally, cell type loadings of each latent space can be used to profile 

multicellular functions associated with specific disease processes. Similar ideas are applied to 

communication score matrices that capture ligand-receptor coexpression patterns between 

different pairs of cell types across samples [92]. The objective of the latter method is to 

associate the variability of gene expression across samples to cell communication events. 

 

Despite the increased molecular resolution that single cell transcriptomics provide to the 

understanding of disease processes, one of its limitations is that the spatial context of each 

single cell is lost after tissue dissociation. Profiling the location of individual cells together 

with their gene expression can help to relate the observed variability of single cells to tissue 

structures. Additionally, coordinated multicellular responses can be explored either in terms of 

cell communications or general cell type responses. 

1.2.3 Spatial transcriptomics 

Initial efforts to profile the spatial organization of gene expression can be traced back to the 

1980’s with applications of single molecule fluorescence in situ hybridization on mRNAs. 

However, during the last 6 years, a series of technologies that profile highly multiplexed 

(almost genome-wide) spatially resolved gene expression data have emerged. All of these 

technologies balance three aspects: 1) the resolution of the measurements (from tissue regions 

to intra-cellular locations), 2) the number of measured features (from dozens to thousands) and 

3) the effective profiled area.  
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Lundeberg, et al. classify spatial transcriptomics technologies in five different classes: i) 

technologies based on microdissected gene expression, ii) in situ hybridization  technologies, 

iii) in situ sequencing technologies, iv) in situ capturing technologies, and v) in silico 

reconstruction of spatial data [93]. A complete revision of these technologies is out of the scope 

of this introduction and I refer to the works of [30], [93], [94] for detailed comparisons of the 

different technologies.  

 

In this thesis I will focus on the description and analysis of one of the most recent in situ 

capturing technologies that was commercialized by 10x Genomics: the Visium platform. The 

experimental principle of Visium is to perform cDNA synthesis in situ followed by library 

preparation and sequencing ex situ. First, tissues are placed on slides with printed barcoded 

locations specifying the spatial coordinates. Then, tissues are fixed, stained, and imaged in 

these glass slides. A tissue permeabilization process allows mRNA to diffuse to the barcoded 

“spots” where reverse transcription happens before library preparation and sequencing. Post 

processing requires barcoded reads to be aligned to a reference transcriptome and assigned to 

spots, similarly as in single cell sequencing. Additionally, barcoded reads have to be aligned 

to the tissue images [95]. Each barcoded spot is 55 µm in diameter, with a distance of 100 µm 

between the center of two spots. The current capture area is 6.5 x 6.5 mm, with a total of 4992 

total spots per capture area. It is reported that each spot can profile approximately 10 cells, 

however this is tissue dependent. The computational analysis of highly multiplexed spatial 

transcriptomics data is at its infancy, however most of the available tools and frameworks are 

motivated by two main objectives: 1) describe the tissue organization at the cellular and 

functional level and 2) associate those tissue descriptions to clinical covariates. 

 

Describing the tissue architecture with spatial transcriptomics 

Quality control of an individual slide requires calling viable spots with empirical filters based 

on the number of recovered genes and total gene counts. These filters can be adjusted based on 

the count metrics of spots that are not covered by tissues or complementary single cell datasets. 

Spot swapping, a technical artifact where mRNAs from neighboring spots contaminate the 

observed signal of each location, can additionally be corrected [96]. Compared to single cell 

data, in spatial transcriptomics, the relationship of mitochondrial gene expression with low 

quality locations is not clear, since functional areas with high metabolic rate (eg. muscle) can 

express mitochondrial genes. Spot gene expression is transformed to stabilize the variance and 

allow for within sample gene expression comparisons, similarly as in single cell 
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transcriptomics. Downstream computational analyses are focused on deconvoluting cell type 

compositional and functional signals of each individual location or leverage spatial information 

to identify organization patterns.  

 

In Visium, each spot represents a mini bulk sample of multiple cells that belong to the same or 

different lineage. An important task in Visium data analysis is to determine the cellular 

composition of each spot to better describe the structural features of the tissue. Cell type 

deconvolution methods infer cell compositions of each location using a reference single cell 

transcriptomics data set. The most popular deconvolution methods available rely on negative 

binomial models [97], [98], matrix factorization [99], variational inference [100] and deep 

learning [101]. Moreover, functional transcriptomics approaches can be used to deconvolute 

cellular processes, such as pathway or transcription factor activities as presented in the bulk 

transcriptomics section. In combination, these methods allow linking structural and functional 

features in a single location.  

 

Methods that leverage the spatial coordinates of the data have as main objectives the 

identification of spatial patterns and the inference of spatial relationships in different contexts. 

Spatially variable features are mainly identified with Moran’s I, Laplacian scores, and gaussian 

process regression [94], [102]. These methods associate the expression of features to locations 

in single slides. Alternatively, community detection algorithms recover the most recurrent 

neighbors of a given categorical feature in space, usually a cell type label [103]. Expansions of 

this idea for continuous features focus on the definition of multi view predictive models where 

each view corresponds to the “estimated influence of predictors” in a given spatial, functional 

or cellular context [104], [105], [106]. The most general framework to estimate spatial 

relationships combines the predictions of different contextualized views in a late fusion 

explainable step. This allows to simultaneously estimate the contribution of each view and each 

predictor in the explanation of the variability of a given marker in space. The estimated 

interactions in each view then can be used as descriptive features of the spatial organization of 

multiple markers, expressions or activities within a single slide. Methods that specifically 

model ligand-receptor interactions are also available [107]-[108], however these represent a 

subtask of identifying spatial interactions of markers. Overall, these computational methods 

generate comprehensive descriptions of individual tissue samples and represent a structural and 

functional roadmap of the processes happening within a region of interest. 
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Cross-condition comparative analysis 

Similarly as in single cell transcriptomics, cross-condition analysis in spatial transcriptomics 

depends on the definition of anchoring features that allow for a direct comparison of multiple 

samples that in principle can not be aligned. A collection of tissue samples coming from distinct 

individuals and/or conditions contains by design different “tissue architectures” even if these 

samples are collected from the same region of an organ of interest. The elements of the tissue 

architecture can be divided into compositional features and organizational features.  

 

Compositional features of a tissue capture the relationships in abundance of cell types, tissue 

structures or cell functions. For example, when comparing ischemic tissue samples with 

healthy samples of any type of tissue, ischemic specimens will contain a “visible” increase in 

immune cells, cell death and scars (relative to intact tissue), compared to healthy tissues. Cell 

type compositions can be estimated from deconvolution methods and their comparisons 

resemble the cross-condition compositional analysis in single cell transcriptomics. Spot 

integration and clustering analysis (repurposed from single cell data analysis) can be used to 

define tissue structures without the need of dissection. These clusters of spots or “niches” 

represent the basic shared building blocks of the analyzed tissues and are characterized by 

similar functions or cell communities. Compositions of these niches can be compared 

following the same principles of compositional data analysis afterwards. Finally, effective 

areas of cellular functions within a tissue can be estimated using functional transcriptomic tools 

with self-contained hypothesis testing, similarly as what can be defined with bulk 

transcriptomics, followed by differential composition analysis. The limitation of compositional 

features is that they disregard the spatial arrangement of the elements which may encode 

biological relevant information. 

 

Organizational features capture the spatial dependencies that exist between different cell types 

and/or cell functions in the whole tissue or in regions of interest, under the assumption that 

specific arrangements of cell types and functions define the hallmarks of the tissue. These 

features are estimated for each slide using community detection methods or multi-view spatial 

models, as described previously. When contrasting organizational features, the main objective 

is to identify in which condition is more likely to observe a spatial dependency between two or 

more features in the tissue. These differential interactions may occur because of remodeling 

events in large areas of the tissues, being tightly linked to compositional features. Additionally, 
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in situations where the overall cell-type composition of the tissue did not change but the 

arrangement of the cells did, differential interactions can also be traced with these methods. 

1.2.4 Summary 

Technological advances in molecular biology currently allow for a multiscale profiling of the 

transcriptome of tissues in healthy and pathological contexts. Bulk technologies provide 

descriptions of general transcriptional processes that relate to the emergence of cell-type-

specific functional programs and compositional changes in tissues. Single cell technologies 

allow to deconvolute those general signals but reducing the size of patient cohorts. Finally, 

spatial technologies contextualize cell type expression variability in tissue structures and 

represent the anchoring data for bulk and single cell technologies.  

1.3 On the necessity of molecular references 

The promise of the technologies presented in the last section is the generation of immense 

volumes of data that allows to characterize molecular processes in tissues and their 

deregulations during disease. This promise carries the hopes of better patient stratification and 

personalized medicine. An important element for the success of multiscale molecular profiling 

of disease is the careful design of patient cohorts since it helps to correctly calculate the 

uncertainty of a given observation (eg. differential expression of a gene X in a cross-condition 

comparison) [109]. In the context of heart failure, variability in the disease presentation and 

progression, and the response to therapies can be explained by the complex interactions of 

comorbidities, clinical profiles, sex, and ethnic origins.  

 

Unexpectedly, however, clinical and molecular characterization of heart failure has been 

focused in male patient populations of European descent, even though women and diverse 

ethnic groups compose a representative proportion of the people affected by heart failure. As 

a consequence, estimates on the prevalence and mortality of heart failure in “developing 

nations'' are limited or unreliable. Additionally, with limited data from “heterogeneous” 

populations, it is unfeasible to assess the generalizability of treatments even if they are broadly 

used in the clinic [12], [21], [110].  

 

Although this uneven progress in clinical and molecular profiling in underrepresented 

communities can be understood as another consequence of the social structure and the 
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disparities in health and technological services across the world, it is in the hands of current 

researchers (in privileged institutions) to change this. As properly stated by Bentley, et. Al., 

diversity and inclusion in clinical and -omics research is important for two reasons: 1) To avoid 

genomic medicine to only benefit a privileged few and 2) to contribute in the understanding of 

the different genetic, social, and clinical factors that significantly impact the understanding of 

biology of diseases [111]. 

 

Among other actions, the creation of disease molecular references based on meta-analysis or 

systematic reviews, in my opinion, is a valuable step towards building an incremental 

knowledge bank that allows the fair and responsible use of high throughput technologies in 

diverse patient cohorts. I define a disease molecular reference as any effort that compiles the 

knowledge of independent omics studies of a disease of interest in a data-driven manner and 

that is accessible to the community. The main objective of molecular references is to unify the 

analysis of independent research groups, report the consistencies and differences in findings 

and provide a common ground to evaluate the diversity, both clinical and ethnic, of the profiled 

patients. Ideally, the objective of this strategy is not to monopolize knowledge, but rather to 

democratize it in a way that the community can easily access the data and results of 

complementary “apparently” similar studies and evaluate the necessity of generating a new 

omics dataset.  

 

I consider it necessary to prioritize the collective effort of knowledge integration, if we want 

to fulfill the promises of personalized medicine, even at the expense of the so demanded 

novelty in academia. My hopes are that highly-qualified laboratories with access to advanced 

and costly technologies can take responsible actions when defining which patient populations 

to profile based on the available collective knowledge. This is considerably important in 

diseases like heart failure, where access to patient tissue specimens is limited given the 

impracticality of getting biopsies from healthy persons or heart failure patients.  

 

In this PhD thesis I sought to present the most comprehensive molecular reference of heart 

failure bulk transcriptomics up to date that I compiled together with Dr. Jan D. Lanzer. 

Moreover, I describe the first detailed spatial and single cell transcriptomics reference of the 

cardiac remodeling events following myocardial infarction, one of the leading causes of heart 

failure. Altogether my research represents an initial multiscale description of heart failure 

transcriptomics that is easily accessible and expandable. 
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In Chapter 2, I describe the creation of ReHeaT (Reference of the Heart failure Transcriptome), 

a compilation of the last 15 years of human heart failure bulk transcriptomics. I discuss a simple 

but effective meta-analysis methodology based on coordinated gene expression events that 

demonstrate that despite clinical and technical diversity in independent patient cohorts, a 

consensus transcriptional response across all cohorts can be recovered. 

 

In Chapter 3, I present the first spatial and single cell multi-omics map of human myocardial 

infarction. I discuss the technical aspects of the creation of this multiscale reference and 

propose a framework to perform cross-condition comparisons of the molecular, compositional, 

and organizational features of tissues. Furthermore, I describe the relationships between cell 

type heterogeneity and tissue organization during myocardium remodeling. 

 

In Chapter 4, I propose a tissue-centric computational framework to analyze single cell 

transcriptomics data using multi view factor analysis. In this framework I compute 

multicellular gene expression programs that can be used in the unsupervised analysis of single 

cell data of patient cohorts. I apply this framework to multiple public single cell atlases of acute 

and chronic heart failure, including the spatial and single cell atlas of human myocardial 

infarction described in Chapter 3. I show how this approach allows us to infer the multicellular 

coordination of transcriptional responses in disease contexts and facilitates the integration of 

multiple studies across scales, including spatial and bulk transcriptomics.   

 

Finally, I summarize this thesis and discuss future perspectives in the section “Concluding 

remarks”. 
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Chapter 2 
 

Consensus transcriptional landscape of 
human end-stage heart failure 

 
In this Chapter I describe the generation of a consensus bulk transcriptomics disease signature 

of heart failure associated with dilated and ischemic cardiomyopathies. In this work we 

compiled the information of 16 public studies that were available up to 2020. First, I justify the 

creation of this resource in the context of biomarker disparities across studies. Then I discuss 

a methodology that measures between studies the conservation of regulatory events that 

encompass more than a single gene. Finally, I present a meta-analysis performed with all these 

independent datasets and showcase the usefulness of its results to generate insights on the 

reactivation of fetal programs during heart failure and the cardiac origin of plasma biomarkers. 

 

This Chapter is the product of the collaborative work with Jan D. Lanzer in the group of Julio 

Saez-Rodriguez. An edited version of this chapter has been peer-reviewed and published in 

[112], after being rejected by the editors of both the European Heart Journal and Circulation 

with the justification of not reaching priority despite positive peer reviews. Jan D. Lanzer 

guided the data curation, clinical interpretation of the patient cohorts, and biological relevance 

of the findings. I conceived and implemented most of the data analysis discussed in this chapter. 

Christian H. Holland implemented the web app that gives access to the results. Whenever I 

refer to collaborative efforts with Jan D. Lanzer, I will use the “we” pronoun. Julio Saez-

Rodriguez and Rebecca Levinson supervised the project. The article was jointly written by Jan 

D. Lanzer and me, with style input from supervisors. 
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2.1 Human heart failure transcriptomics 

The adverse cardiac remodeling events associated with heart failure are tightly coordinated by 

inter and intra-cellular signaling mechanisms across the organ. As discussed in the first chapter 

of this thesis, the consequences of these signaling mechanisms can be observed in the 

transcriptional state of a tissue. Thus, for the last 22 years the cardiovascular community has 

used high-throughput transcriptomics technologies to measure the changes in gene expression 

of the heart at the end-stage of heart failure, particularly of the left ventricle, whose objective 

is to pump blood rich in oxygen to the body. The first high-throughput transcriptomic study on 

failing human myocardial tissue, published in 2000, compared two non-failing and two failing 

hearts with microarrays and reported the expression of ~7,000 genes [113]. In subsequent 

years, additional studies exploring the transcriptional landscape of the failing heart followed, 

with RNA sequencing studies emerging in the mid-2010s increasing coverage to >20,000 

genes. Large scale transcriptomic studies have helped elucidate the complexity of gene 

regulation in heart failure, notably in processes influencing cardiac hypertrophy [114], reverse 

remodeling [115]  and cardiac metabolism [7]. 

 

However, most transcriptomic studies lack functional interpretations, discussing only a few 

differentially expressed genes as potential biomarkers, and disregarding subtle changes in 

patterns of variation and coexpression of multiple genes. Low sample sizes, selection bias and 

non-probabilistic sampling add uncertainty to measured transcriptional changes in single 

studies which difficult the knowledge transfer to larger patient populations. Additionally, lack 

of standards in transcriptomics studies in the community to report the clinical characteristics 

of patients, tissue protocols and data analysis add additionally confounding factors. Thus, an 

integrated analysis of multiple studies can allow us to quantitatively assess the robustness of 

the gene expression changes reported by individual studies and to prioritize molecular 

hallmarks less influenced by confounding factors. Several reports have attempted to compare 

heart failure gene expression studies [116]–[119] but, to my knowledge, a comprehensive 

analysis with employment of functional tools including transcription factor and pathway 

activity analysis has been lacking. These previous studies are limited to the meta-analysis of a 

small collection of studies of a single technology and do not compare the clinical characteristics 

of the distinct patient cohorts. Additionally, these studies do not provide easy access to their 

joint analysis or processed data sets. 
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In the following sections I will describe the creation of the most updated and comprehensive 

transcriptional signature of human end-stage heart failure based on bulk transcriptomics. First, 

I focus on the selection of studies and the initial comparisons of clinical and transcriptional 

data across patient cohorts. Later I demonstrate that disease footprints are more powerful than 

single biomarkers in identifying conserved regulatory events across heterogeneous patient 

cohorts. Then I describe the procedure used to generate a prioritized list of deregulation events 

with a meta-analysis and its characterization with functional transcriptomics tools. Finally, I 

showcase the usage of this consensus signature to validate the known reactivation of fetal 

transcriptional programs during heart failure and to explore the potential cardiac origin of 

plasma biomarkers measured with proteomics. 

2.2 Study selection and global comparisons 

We curated a collection of microarray and RNA-seq studies profiling human heart failure 

available in NCBI’s Gene Expression Omnibus (GEO) database, the European Nucleotide 

Archive (ENA) and ArrayExpress. We used the following search terms: “heart failure”, 

“ischemic cardiomyopathy”, “dilated cardiomyopathy”, “cardiac failure” and “heart disease”. 

Studies were included in our analysis if: 

(i) Case samples came from biopsies of the heart’s left ventricle of heart failure patients with 

either ischemic cardiomyopathy (ICM) or dilated cardiomyopathy (DCM) that were acquired 

during heart transplantation, left ventricular assist device implantation or surgical ventricular 

restoration. 

(ii) Control samples were obtained from patients with non-failing hearts. 

(iii) At least five samples were profiled (controls + heart failure patients). 

(iv) Microarray data came from single channel chips and could be processed through automatic 

annotation pipelines. 

(v) A publication or preprint with a detailed methodology was available.  

The 16 studies we selected are presented in Table CH2-1. We found one additional study 

(vanHeesch19) from literature review. Studies from the database query results that did not 

match inclusion criteria due to differences in heart failure etiology, biopsy location or profiling 
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platform were used for further exploration of the disease score classifier (GSE10161, 

GSE4172, GSE76701, GSE84796, GSE9800, GSE52601) (Table CH2-2). 

2.2.1 Variability in clinical reports and patient cohorts 

The selected 16 studies consist of 263 control, 372 DCM and 281 ICM patient specimens and 

were published between 2005 and 2019. Studies profiled from 5 to 313 samples (Figure CH2-

1B). Most of the studies lacked complete descriptions of the clinical and demographic 

characteristics of the patients included in their publications (Figure CH2-1A). This 

demonstrates the lack of transparency of the study design that impedes reproducibility of their 

findings and limits comparability. The minimum reports in 10 of 16 studies included age and 

sex information (Figure CH2-2A). Five studies included New York Heart Association (NYHA) 

classifications for heart failure patients.  

 

 

 

Figure CH2-1. Infographic of study information.  

A, Sample information availability per study. yes, information per sample; no* = incomplete information or 
only summary statistics (i.e. information not applicable for modeling); no, no information available;  EF, (left 
ventricular) ejection fraction; NYHA, New York Heart Association-Classification. B, Sample size comparison 
of studies. CT, Control; DCM, dilated cardiomyopathy; ICM, ischemic cardiomyopathy. Reprinted from [112]. 
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Study ID GEO ID Samples 
(CT + HF) 

Technology Year Country Citation 

Liu15_M GSE57345 313 Microarray 2015 USA [120] 

Hannenhalli06 GSE5406 210 Microarray 2006 USA [121] 

vanHeesch19 not in GEO 77 RNAseq 2019 Germany [122] 

Sweet18 GSE116250 64 RNAseq 2018 USA [123] 

Kittleson05 GSE1869 37 Microarray 2005 USA [124] 

Tarazon14 GSE55296 35 RNAseq 2014 Spain [125] 

Spurrell19 GSE126573 33 RNAseq 2019 USA [126] 

Kong10 GSE16499 30 Microarray 2010 USA [127] 

Molina-Navarro13 GSE42955 29 Microarray 2013 Spain [128] 

Greco12 GSE26887 24 Microarray 2012 Italy [129] 

Yang14 GSE46224 24 RNAseq 2014 USA [130] 

Barth06 GSE3585 12 Microarray 2006 Germany [131] 

Pepin19 GSE123976 9 RNAseq 2019 USA [132] 

Kim16 GSE76701 8 Microarray 2016 USA [133] 

Schiano17 GSE71613 6 RNAseq 2017 Italy [134] 

Liu15_R GSE57344 5 RNAseq 2015 USA [120] 

 
Table CH2-1. Collection of compiled studies.  

16 data sets fulfilled the inclusion criteria. Sample size is displayed after processing. GEO, gene expression 
omnibus; CT, control; HF, heart failure. Reprinted from [112]. 
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GEO ID n (total) HF etiology 
Reason for 
exclusion Technology Citation Year Country 

GSE10161 27 Aortic stenosis HF etiology Microarray [135] 2008 Netherlands 

 GSE4172 12 
Inflammatory DCM due to PVB19 

infection 

HF etiology & 

samples from right 

ventricle 

Microarray [136] 2006 Germany 

GSE84796 17 Chagas disease HF etiology Microarray [137] 2016 France 

GSE9800 30 

Eosinophilic myocarditis, alcoholic 

cardiomyopathy, hypertrophic 

cardiomyopathy, sarcoidosis, 
peripartal cardiomyopathy, ICM, 

DCM 

HF etiology Microarray - 2007 Japan 

GSE52601 20 
ICM, DCM (additional 4 fetal 

samples) 
Technical 

oligonucleotide 

beads 
[138] 2013 USA 

GSE3586 28 DCM Technical Microarray [131] 2013 Germany 

GSE76701 8 ICM Technical Microarray [133] 2016 USA 

 
Table CH2-2. Collection of additional studies.  

7 data sets were excluded from the main analysis. Sample size is displayed after processing. GEO, gene expression omnibus; CT, control; HF, heart failure. Reprinted from 
[112]. 
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Despite these reporting problems, we assumed that given the circumstances of biopsy 

acquisition all heart failure biopsies came from patients who suffered a (close to) 

decompensated failing heart with reduced ejection fraction, justifying their inter-study 

comparability. As control samples, all studies included biopsies from donor hearts deemed 

unsuitable for transplant due to size disparities, blood (ABO) mismatch or other factors. The 

age of heart failure patients is noticeably younger than what would be expected, since heart 

failure prevalence increases with age (Figure CH2-2A). This might suggest that especially 

rapidly progressing heart failure cases which clinically justified early left ventricular assist 

device treatment or heart transplantation were recruited. In studies with NYHA class, the 

patients were either in class III or IV. 

 
Figure CH2-2. Age and gender distribution per study.  

A, Age distribution in years of control (CT) and heart failure samples (HF) per study. Displayed is mean and 
standard deviation. B, Gender of patients in % per study. Reprinted from [112]. 

 

 

Without clinical and demographic information it is impossible to estimate the uncertainty in 

the estimations of differential gene expression that are not solely confounded by other technical 

factors, but also confounded by biased sampling that decreases the effective sample size. For 

the same reason, a direct comparison of the molecular signatures of heart failure is timely and 

became the focus of my research. 
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2.2.2 Technical variability between studies 

As mentioned in Chapter 1 there are fundamental differences between RNA sequencing and 

microarray data, particularly in the scale of the measured gene expression and gene coverage 

[139]. Additionally, data processing confounding factors can be added via gene expression 

transformations and models for differential expression analysis, thus overestimating the 

differences from the compiled data sets. To avoid increasing the already numerous missing and 

confounding factors in the comparison of the insights of the collected studies, I proposed an 

homogeneous processing framework for microarrays and RNA-Seq data. 

 

Processing transcriptomic data sets 

For microarray studies, I read CEL files with R’s oligo package and normalized them using 

Robust Multi-array Average (RMA) [140]. Probes were annotated to their corresponding 

HUGO Gene Nomenclature Committee (HGNC) gene symbols using platform specific 

annotations. For duplicated measurements I summarized them with the mean. The 

measurements in microarrays are continuous, since they measure light intensity (See Chapter 

1, section 1.2.1).  

 

For RNA-Seq studies, we aligned reads using BioJupies [141]. BioJupies works with the 

ARCHS4 pipeline utilizing Kallisto to map reads onto the human GRCh38 cDNA reference. 

All studies were processed by Illumina platforms except for Tarazon14, which utilized AB 

5500xl Genetic Analyzer. Here the nucleotide sequence is coded in color space that could not 

be handled by the BioJupies pipeline and the alignment of Tarazon14 was therefore performed 

with R’s Rsubread package [142], TMM normalization factors were calculated with R’s edgeR 

package [47]. All RNAseq datasets were transformed using voom from R’s limma package to 

obtain continuous measurements comparable to microarrays [46]. 

 

Hannenhalli06 only provided processed data, but followed identical normalization methods. In 

the case of Kittleson05, processed data was used since raw available data was incomplete. 

Identical normalization procedures were followed. Read alignment was not performed for 

vanHeesch19 since they only provided raw transcript counts, but identical normalization 

procedures were followed. One sample from Liu15_R was excluded due to technical reasons. 
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For each experiment, sample quality was assessed by visually comparing the distribution of 

gene expression values. Multidimensional scaling was performed to visualize the separation of 

heart failure and control samples. No samples were excluded based on these metrics and no 

additional quality control was performed. Gene coverage after processing was comparable for 

all studies (mean jaccard index of ~0.67). A  total of 14,041 genes were reported by at least 10 

studies (Figure CH2-3). 

 
Figure CH2-3. Overview of gene coverage of studies included in meta-analysis.  

A, Absolute gene coverage per study after processing. B, Pairwise comparison of covered genes measured with 
Jaccard Index. Reprinted from [112]. 

 
 

Gene expression global differences across studies 

As I expected to observe study specific effects in gene expression despite consistent data 

handling for all datasets, first I quantified the global variation of gene expression on the union 

of all pre-processed datasets associated with study labels and heart failure etiology. I used 

principal component analysis (PCA) on different transformations of the unified expression 

matrices with the genes that were shared among all the studies to reduce the highly dimensional 

gene feature space and to be able to quantify the amount of explained variance associated with 

covariates of interest. Each principal component was tested for association with the study labels 

or heart failure using Analyses of Variance (ANOVAs) (p-value < 0.05). 

 

Three types of data unification (with shared genes) were performed here: 
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i) All samples across all studies were collected in a single matrix after processing. 

 

ii) z-transformed gene expression of heart failure patients across all studies were collected in a 

single matrix: For each gene in each heart failure patient, I subtracted from its gene expression 

the mean value of that gene in healthy patients within the patient cohort and then divided the 

result by the standard deviation of the healthy patients. I did this for each study individually 

before merging. 

 

iii) Standardized gene expression of all samples in a single matrix after processing: I first 

standardized (mean = 0, sd = 1) all genes independently for each study including all samples 

and then merged them into a single matrix. 

 

In a PCA of all unified gene expression values after processing (i), 85% of the variance of the 

samples was explained by the first two components representing study of origin and applied 

technology. In z-transformed heart failure samples (ii), 74% of the variance captured by the 

principal components associated with the study labels (ANOVA p-value <0.05). The difference 

of samples by study was better visualized when a t-SNE was performed to this data (Figure 

CH2-4). However, in gene standardized data (iii), the proportion of variance explained by study 

labels decreased to 0, suggesting that study or technical specific effects are associated with 

gene expression scales (Figure CH2-5). 
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Figure CH2-4. Differences in samples included in the study.  

A, First two components from a Principal Component Analysis (PCA) done to all samples, B, First two 
components from a PCA done to all z-transformed heart failure samples. C, t-distributed stochastic neighbor 
embedding of all z-transformed heart failure samples Reprinted from [112]. 
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Figure CH2-5. Principal Component Analysis of all samples analyzed after gene standardization.  

The scatter plot shows the first two principal components and the percentage of variance explained by them. 
Boxplots show the distribution of failing (red) and non-failing (purple) hearts. Reprinted from [112]. 

 

2.2.3 Gene expression variability associated with clinical covariates 

To quantify how much of the variability of the samples within a study can be explained by the 

clinical covariates used in their differential expression analysis, I fitted linear models to a 

reduced data representation. For each study, first, I standardized its gene expression and 

performed dimensionality reduction using PCA. Then I tested each principal component for 

association with each covariate using linear models. If a covariate was associated with a 

principal component (p-value < 0.05), then I assigned the proportion of explained variance to 

it. I also applied the same methodology for heart failure patients only. Underestimations of 

proportion of explained variance are expected in small studies, since the number of evaluated 

principal components equals the number of samples. However this is a fair approximation for 

most of the studies. 

 

Analysis of individual studies revealed that most of the variability of the patients can not be 

assigned to reported covariates (Figure CH2-6). Unmeasured variability may come from 

clinical, demographic, or genetic differences between patients, but also from differences in 



49 

tissue biopsies mostly associated with location and cell-composition. In studies with reported 

age and sex differences I observed different contributions of these covariates to the variability 

of patients, which highlighted the diversity in experimental designs. In the case of heart failure 

patients (Figure CH2-6B), compared to age (mean = 0.09, std.deviation = 0.08), or difference 

in sample acquisition (mean = 0.34, std.deviation = 0.04), etiology had a lower mean proportion 

of explained variance (mean = 0.0698, std.deviation = 0.0624). The variability in gene 

expression in heart failure patients may be explained by other clinically relevant features, but 

given the lack of patient information this could not be tested. 

 

 
Figure CH2-6. Contribution of the covariates to the variability of individual studies. 

Estimated proportion of explained variance associated with the different covariates used in the differential 
expression analysis in A, all patients and B, only heart failure  patients. Gray tiles represent missing reported data. 
HTx, heart transplantation. Reprinted from [112]. 

 

2.2.4 Comparison of differentially expressed genes in heart failure across samples 

To identify differentially expressed genes within each study, gene expression of the samples 

of control individuals and heart failure patients were compared using linear models with limma 

[46]. Gender, age, comorbidities, etiology, occasion of sample acquisition and technical 

batches were used as covariates for experiments that provided this information. Samples with 

incomplete clinical information from vanHeesch19 were excluded from the analysis to be able 

to account for the clinical information of the remaining samples in the differential expression 

analysis. I excluded the age information in the differential expression analysis of the samples 
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from Kim16. Here, excluding samples with unknown age information would have reduced the 

sample size drastically. 

 

I evaluated the consistency in gene differential expression across the studies by comparing their 

transcriptional signatures using multiple metrics:  

 

To explore how technical and sample variability affected gene level statistics of the differential 

expression analysis, I compared the distributions of p-values, t-values, and log fold changes 

associated with the coefficient capturing the difference between control and heart failure 

patients in the linear model. A strong difference in the distributions of t-values and p-values of 

the genes compared was visible in the largest study in our analysis (Liu15_M) (Figure CH2-

7). This difference in distributions persisted after adjustment for all available clinical 

covariates, though it was consistent with expectations based on study sample size. These results 

together establish expected bias among datasets, likely dependent on technical differences 

rather than biology. 

 

Then, I calculated the pairwise overlap of the top 500 differentially expressed genes of each 

study with Jaccard indexes. The mean Jaccard index of pairwise comparisons was 0.05, 

representing an almost null concordance at the gene level (Figure CH2-8A). This demonstrated 

the instability of gene expression biomarkers when put in context of different patient cohorts. 

 

The lack of generalization of gene expression markers could be a consequence of the 

differences in patient sampling and technical procedures of individual studies, however,  these 

markers may also capture to some extent a disease transcriptional footprint that could be 

effectively mapped in independent datasets. For this reason, I evaluated if the list of the 

differentially expressed genes of one study could be used as a predictor of heart failure in each 

other study, using sample classifications based on a disease score. 

 



51 

 
Figure CH2-7. Distributions of -log10(p-values), t-values and log2(fold-changes) [LFC] from the 

differential expression analysis of all genes measured in each study.  

Reprinted from [112]. 
 

 

The disease score is an expression footprint based approach, inspired by “probability of 

expression” [143] and PROGENy [56], that compares the observed expression patterns in the 

samples of one experiment (B) with the expected disease patterns observed in an independent 

sample from another experiment (A). First, for an experiment A, k differentially expressed 

genes between the healthy and disease condition are defined using linear models. The t-values 

of these k genes are used as the expected disease pattern to be used for transfer learning. Then, 

for each sample i in experiment B, I calculate its disease score by making a linear combination 

of the t-values from these k genes with their expression values in sample i, for genes present in 

both the reference signature and the expression values (Figure CH2-9). Then, Standardized 

disease scores were used to classify heart failure patients in individual studies using as 

reference the disease patterns of all of the other studies. My assumption is that if two studies 

derive similar heart failure transcriptional signatures, then the disease score should effectively 

differentiate heart failure and healthy patients. In total, 16 disease classifiers were built 

corresponding to the t-values of the top 500 differentially expressed genes of each study 

included in the analysis. The area of the receiver operating characteristic curve (AUROC), 

where heart failure was used as a response variable, was used to test the accuracy of 
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classification of heart failure patients and used as a measurement of conservation of gene 

regulation patterns and similarity between studies. 

 

When the top 500 differentially expressed genes of each study were used to build the disease 

score, the median AUROC of the classifications was 0.94, showing that despite technical 

differences, each study contained meaningful and complementary information (Figure CH2-

8B). Studies that profiled only patients with ischemic forms of heart failure (eg. Kong10) 

effectively classified studies that profiled only dilated cardiomyopathy patients (eg. Spurrell19) 

(AUROC = 1) and vice versa (AUROC = 0.95). I observed no association between each study’s 

mean AUROC and their technology (Wilcoxon test p-value =  0.72, Figure CH2-10A-left), 

sample size or estimated proportion of variance captured by heart failure (Pearson correlation 

= 0.17, 0.18, respectively; p-value > 0.4, Figure CH2-10B). The effectiveness of transcriptional 

footprints to transfer knowledge of independent cohorts can be explained by the fact that this 

approach focuses on differential trends of the direction of transcriptional regulation rather than 

differential levels of expression of a set of gene markers.  

 

To confirm that the coordination of molecular responses is conserved among studies, I tested 

if the direction of deregulation of the top differentially expressed genes of each study were 

consistent with their direction in the rest of the studies. I separated the top differentially 

expressed genes of each study into up and downregulated genes, and enriched them into the 

sorted gene-level statistics of each of the other studies using Gene Set Enrichment Analysis 

(GSEA) [144]. Gene-level statistics of each study were sorted by their t-value. 

 

The top 500 differentially up-regulated and down-regulated genes had a median enrichment 

score of 0.55 (Figure CH2-8C, upper panel) and -0.56 (Figure CH2-8C, lower panel), 

respectively. I observed a correlation between the AUROCs of the disease score classifications 

and the enrichment scores of differentially expressed genes (Pearson correlations 0.48 and -

0.59; p-value<10e-15, for up and downregulated genes, respectively), supporting the idea that 

even though the size effects of heart failure relevant genes are dependent on the study (Figure 

CH2-8A), their direction of regulation is generally consistent (Figure CH2-8C), allowing their 

direct comparison.  

 

I observed similar results when I selected different numbers of top genes (50, 100, 200,  500, 

and 1000) for both the disease score classifier and the enrichment analysis (Figure CH2-11) 
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These results suggest that the proper way to combine the evidence of the curated studies is by 

looking at the consistency of deregulation of collections genes and not at the dimension of the 

change in expression of a single one. I provided evidence to support the combination of 

evidence from multiple studies with various clinical and technical profiles. Finally, I propose 

a simple but effective framework to compare molecular signatures of transcriptomics profiles 

that can be used in different contexts. 

 

 

 

Figure CH2-8. Consistency of the transcriptional signal of end-stage HF among studies.  

A, Pairwise comparison of the top 500 differentially expressed genes of each study using the Jaccard index. B, 
area under the receiver operating characteristic curve (AUC) of pairwise predictions using a disease score with 
the top 500 differentially expressed genes of each study. C, Enrichment score (ES) of the top 500 differentially 
expressed of each study in sorted gene-level statistics lists.  Reprinted from  [112]. 
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Figure CH2-9. Schematic representation of the disease score.  

AUROC, area under the receiver operating characteristic. HF, heart failure. Reprinted from  [112]. 
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Figure CH2-10. Comparison of the studies included in the meta-analysis.  

A, Distributions of study mean predictor performances using the disease score and enrichment of the differentially 
expressed genes of each study in the heart failure consensus signature (HF-CS) grouped by technology. In the left 
panel each dot represents the mean area under the receiver operating characteristic curve (AUROC) of the disease 
score classifier trained in a study and tested in the rest. In the right panel each dot represents  the enrichment 
scores of the top 500 differentially expressed genes of the study in the HF-CS. B, Relationship between the 
predictive performance of  each study and its proportion of explained variance associated with heart failure and 
sample size.  Reprinted from  [112]. 
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Figure CH2-11. Test of robustness of the replicability measures used to compare the studies included in the 

meta-analysis. 

Each dot represents a pairwise comparison using: 
A,  Jaccard Index 
B,  Disease Score 
C,  Enrichment Score  
Reprinted from  [112].
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2.3 Consensus signature of heart failure 

I then performed an integrated meta-analysis of the transcriptional signatures of  all the studies 

using the gene-level statistics of 14,041 genes. I combined the Benjamini-Hochberg (BH) 

corrected p-values of the differential expression analysis for all genes that were measured in at 

least 10 datasets using a Fisher’s combined probability test. The degrees of freedom for the 

significance test of each gene were defined by the number of datasets that included it.  I 

assumed that non-probabilistic sampling procedures happened in each study (which affects the 

effective sample size [109]), so no additional study weighting based on the number of profiled 

samples was used. This flexible hypothesis setting detects genes that have non-zero effect size 

in one or more studies and allows the comparison of heterogeneous datasets [145]. I ranked all 

genes by their meta-analysis BH corrected p-values to create a consensus signature (Figure 

CH2-12) that captures a gradient of consistently differentially regulated genes in end-stage 

heart failure across multiple studies regardless of their direction. 

Figure CH2-12. Meta analysis of heart failure gene expression signatures. 

A, Sorted −log10 (meta analysis BH p-values) of the 14 041 genes included in the Fisher combined test, 
representing the heart failure consensus signature (HF-CS). B, Top 500 genes sorted by their mean log fold change 
across all studies; black lines represent genes that were not measured in specific studies. A selection of heart 
failure marker genes are highlighted. BH indicates Benjamini–Hochberg. Reprinted from [112]. 
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Among the top 500 genes in the heart failure consensus signature (Figure CH2-12B) we 

observed known heart failure markers such as MYH6, MME, CNN1, NPPA, KCNH2 and 

ATP2A2; extracellular associated proteins such as COL21A1, COL15A1, ECM2 and 

MXRA5; fibroblast associated protein FGF14; mast cells associated protein KIT; proteins 

mapped to force transmission defects like FNDC1, LAMA4, SSPN, or related to ion channels 

like KCNN3. 

 

To test the relevance of the ranking, I evaluated the importance of the top genes of the meta-

analysis ranking in the description of heart failure patients by repeating the classifications made 

with the disease score described before. Samples of each study were classified using a disease 

score using the first n or total-n genes in the meta-ranking and study-specific t-values. 

AUROCs were averaged for each predicted study and n ranged from 50 to the total number of 

genes in the meta-ranking I observed a constant decrease in the mean AUROCs of classifiers 

that excluded genes at the top of the consensus signature or included genes at the bottom 

(Figure CH2-13), confirming that a gradient of meaningful information is present in this 

ranking. 

 

 
Figure CH2-13. Relevance of the genes of the consensus signature.  

Mean area under the receiver operating characteristic curve (meanAUC) of predictions using the disease score 
with n (left panel) or total-n (right panel) genes of the consensus signature from the meta-analysis and gene-level 
statistics of all studies except the one being predicted to avoid overfitting. The line shows where I defined the cut-
off for the rest of the tests (500). A general decrease of the meanAUC is observed as top genes of the meta-analysis 
are excluded from the calculation of the disease score. Reprinted from [112]. 

 
 

The contribution of each study to the meta-analysis was estimated with the enrichment score 

of its top 500 differentially expressed genes in the meta-ranking as calculated by Gene Set 
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Enrichment Analysis [144]. I found no correlation between the sample size of a study and the 

enrichment of its differentially expressed genes in the top of the heart failure consensus 

signature  (Spearman correlation 0.24, p-value = 0.37), suggesting that proper experimental 

design and representative sampling could compensate for study size. Similarly, I found no 

association between the enrichment of differentially expressed genes of individual studies in 

the top of the heart failure consensus signature and the technology used (Wilcoxon test p-value 

= 0.4418, Figure CH2-10A-right), reflecting consistency for all studies. 

 

To test the effect of each study in the final ranking of the heart failure consensus signature, I 

performed a leave-one-out (LOU) procedure. I repeated the meta-analysis 16 times, each time 

ignoring the values of one study at a time. Then I compared the similarity of the top 1000 genes 

of each LOU experiment and the original  top 1000 genes of the heart failure consensus 

signature using a Jaccard Index. The LOU procedure demonstrated robustness of the signature 

(mean Jaccard index of the top 1000 genes = 0.91), although larger discrepancies were 

observed when the top 4 largest studies where ignored, as expected (mean Jaccard index of the 

top 1000 genes = 0.76). 

 

To evaluate the added value of the meta-analysis, I tested if the selection of the top 500 genes 

from the heart failure consensus signature defined a better transcriptional signature of heart 

failure than signatures obtained from individual experiments of the same size. I tested if the 

AUROCs obtained from classifying heart failure samples using the top 500 genes from the 

heart failure consensus signature were greater than the ones coming from classifications made 

by the top 500 genes from individual studies using a Wilcoxon paired test. To show that the 

top genes of the consensus signature shared a more consistent direction of differential 

regulation than signatures coming from individual studies, I separated the 500 top genes from 

the consensus signature into up and downregulated independently for each dataset, and 

enriched them into the sorted gene-level statistics of each of the other studies using Gene Set 

Enrichment Analysis as in the previous section. I compared the enrichment scores of these 

pairwise comparisons to the ones obtained using the top 500 differentially expressed genes of 

individual experiments using a Wilcoxon paired test. An improvement in the AUROCs of 

classifiers based on the disease score was obtained (Wilcoxon paired test, p-value < 1x10e-16), 

and the top genes of the heart failure consensus signature were consistently more enriched in 

individual lists of differentially expressed genes than gene signatures from individual 

experiments (Wilcoxon paired test, p-value < 1x10e-16). 
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From a gene perspective, I measured how much of the variance of gene expression was 

associated with heart failure and other reported technical covariates for genes in the top of the 

ranking. First, I merged studies after processing and gene standardization. Independent two-

way ANOVAs were fitted to each gene using disease status as a first factor, and for samples 

with available information, sample’s study, transcriptional profiling technology, gender, age 

or occasion of sample acquisition, as a second factor. Each extra covariate was fitted in an 

independent model. The proportion of variability in gene expression explained by heart failure, 

controlled for other clinical and technical covariates, was greater for the top genes than for 

genes in a lower ranking in the heart failure consensus signature (Figure CH2-14). Gene 

standardization cancels the effect that the study of origin and technology have on gene 

expression (Figure CH2-5) and can be confirmed by the low eta-squared values in all genes 

(Figure CH2-14 upper panels).  

 

Additionally, to evaluate the bias of the heart failure consensus signature towards dilated 

cardiomyopathy, I performed independent two-way analysis of variance (ANOVAs) to 

quantify the amount of explained variance in gene expression that could be accounted for by 

differences in heart failure etiology (Figure CH2-15). First, I selected 8 studies in our curation 

that profiled sufficient ICM and DCM patients (at least 3 patients of each etiology). Then, for 

each selected study I fitted to each gene an ANOVA with heart failure and etiology as 

covariates. Eta-squared values of each covariate were used as a proxy of the proportion 

explained variance. In all studies reporting expression of ICM and DCM patients, I observed a 

greater amount of explained variance associated with heart failure than to the etiology in the 

top 500 genes of the heart failure consensus signature.  
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Figure CH2-14. Proportion of gene expression variance explained by heart failure (HF) and additional 

clinical and confounding factors.   

Each vertical panel shows the results of an independent 2-way analysis of variance with HF and another clinical 
or technical covariate, from an integrated gene standardized data set that only included samples with available 
information. Upper panels show the proportion of explained variance from each factor as shown by their eta-
squared values. Lower panels show the difference in the proportion of variance explained by HF between the top 
500 genes of our consensus signatures and the rest. Reprinted from [112]. 
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Figure CH2-15. Proportion of gene expression variance explained by heart failure (HF) and etiology (DCM 

[dilated cardiomyopathy] or ICM [ischemic cardiomyopathy]). 

Each panel shows the results of independent 2-way ANOVAs fitted to the top 500 genes from the heart failure 
consensus signature with HF and DCM as covariates. Each dot represents a different gene and the y-axis is the 
eta-squared value of each covariate in the ANOVA model. Reprinted from [112]. 

 

2.3.1 Functional characterization of the heart failure consensus signature 

Once determined that the consensus signature provides robust ranking, I functionally 

characterized it to identify biological processes that were consistently associated with end-

stage heart failure among studies.  

 

The -log10(meta-analysis p-value) of each gene was weighted by its mean direction of change 

in all studies to create a directed heart failure consensus signature. Gene Ontology (GO) terms, 

canonical and hallmark pathways from MSigDB (data downloaded in December 2019) [146] 

were tested for enrichment in the directed heart failure consensus signature with GSEA [144] 

using fgsea [147]. Gene sets with less than 15 or more than 300 genes were excluded from the 

GSEA analysis. Transcription factor and miRNA activities were estimated with viper [148] for 

human regulons obtained from DoRothEA [149] and the miRNA collection of targets from 

MSigDB [146], respectively. A, B, C and D regulons from DoRothEA with less than 20 genes 

were excluded from the viper analysis. The activity of signaling pathways was calculated with 

the top 100 footprint genes from PROGENy [56], [149]. Empirical p-values for PROGENy 

scores were calculated from pathways’ null distributions calculated after permuting 1000 times 

the labels of the directed-meta-ranking. BH corrected p-values were calculated for each test. In 
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the case of MSigDB’s gene sets, multiple test correction was performed to each analyzed 

collection (collection BH p-value) and to the union of all collections (global BH p-value). 

 

I tested a total of 5998 gene sets of which 77 yielded an enrichment in the heart failure 

consensus signature (global BH, P<0.25). When each collection of gene sets was analyzed 

separately, 148 gene sets yielded an enrichment (collection BH, P<0.25). Top 50 results are 

displayed in Figure CH2-16A. Positively enriched gene sets predominantly relate to processes 

around the matrisome, while negatively enriched sets are associated with diverse processes 

many of which involve inflammation. From 343 tested transcription factors, 65 were 

differentially active or inactive (Figure CH2-16B, BH p-value<0.25). Among active TFs in 

heart failure are NANOG, SOX2, POU5F as well as MEF2C, MEF2A and MEIS2. Decreased 

TF activity was observed in MYNN, MTA2, ZEB2, and FOXP1. The estimated activities of 

TNFα, NFKB and Androgen receptor signaling were consistently reduced in the consensus 

signature (BH p-value<0.25, Figure CH2-16D). JAK-STAT was the only pathway from which 

I observed a consistent high activity (BH p-value<0.25, Figure CH2-16D). Out of 211 tested 

miRNA sets, 15 miRNA were enriched in the consensus signature (BH p-value <0.25) (Figure 

CH2-16C). Active miRNAs include mir-137, mir-513, mir-105, and mir-3805P while inactive 

miRNAs include mir125 and mir296. Taken together, these results help us to interpret the 

consensus signature by characterizing the biological function of the higher ranked genes as 

well as their upstream regulation by pathways, transcription factors and  miRNAs.  

2.3.2 Leveraging the consensus signature to create insights 

Generalization of the consensus transcriptional signature to other etiologies or 

technologies 

 

I have shown throughout the last sections that the consensus heart failure molecular reference, 

created by identically processing and compiling different studies profiling diverse patient 

cohorts of ICM and DCM patients, captures conserved gene co-expression patterns associated 

to functional processes regulated by transcription factors and signaling activities.  

 

To investigate if the genes of the consensus signature are participating in the pathological 

profile of heart failure due to other etiologies that are not ICM and DCM, and other technical 

variations, I leveraged the public heart failure transcriptome studies that did not match 
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inclusion criteria for the meta-analysis (Table CH2-2). I calculated the mean disease score of 

each sample of these excluded studies using the top 500 genes of the meta-ranking and the gene 

level statistics of the studies included in the meta-analysis. AUROCs were used to evaluate the 

ability of the disease score to differentiate between healthy and heart failure patients in each 

data set. I found that classification of heart failure was highly accurate in these studies as well 

(Figure CH2-17) suggesting that the top 500 genes still have discriminative power in those 

selected technical and clinical variations. Moreover, this hints that at the end-stage of heart 

failure the remodeled status of the heart converges regardless of the initial causes. 

Nevertheless, early disease molecular processes may be different across etiologies. 

2.4 The heart failure consensus signature as a reference 

The purpose of compiling the information of multiple patient cohorts is not solely to report the 

level of consistency in the knowledge generated, but also to serve as a molecular reference that 

can be easily used by the community to complement other studies. Thus, we propose a 

framework to use the generated heart failure consensus signature as a resource to build and 

confirm hypotheses associated with cardiovascular diseases. First, dysregulated features are 

identified in an independent -omics study. Next, a test for enrichment of these features is 

performed in the heart failure consensus signature using GSEA. Finally, highly consistent 

features between the study and consensus signature can be filtered by dysregulation direction 

and significance levels (Figure CH2-18A). 

 

To showcase this strategy, we analyzed the plasma proteome of early and manifest heart failure 

patients from Egerstedt, et al [150] to trace their potential myocardial origin. We observed a 

clear enrichment of manifest heart failure proteins (GSEA p-value = 0.0001) and a modest 

enrichment of early heart failure proteins (GSEA p-value = 0.13) in the top of the heart failure 

consensus signature (Figure CH2-18B).  64 plasma proteins from manifest heart failure were 

part of the enrichment leading edge and agreed with the direction of transcriptional regulation 

(Figure CH2-18C). Candidate markers include the established heart failure marker NPPA and 

novel potential markers including CCDC80, BID, MAP2K1, MRC2, JAK2 and LTBP4. 
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Figure CH2-16. Functional characterization of the HF-CS. 

−log10 (BH P-values) coloured by direction of enrichment (A and C) or by direction of activation (B and D) of 
the top 50 (A) most enriched canonical and hallmark gene sets, (B) transcription factor activities, (C) miRNAs’ 
targets, and (D) all signaling pathway activities. Dashed line indicates BH P=0.25. BH indicates Benjamini-
Hochberg; HF-CS, heart failure consensus signature; and miRNA, micro RNA. Reprinted from [112]. 

 
 

 
Figure CH2-17. Disease score calculation based on the top 500 genes from the consensus signature for 

diverse heart failure (HF) studies. 

A, HF with diverse etiologies: aortic stenosis (GSE10161); PVB19 infection  (GSE4172); chagas disease 
(GSE84796); eosinophilic myocarditis, alcoholic cardiomyopathy, hypertrophic cardiomyopathy, sarcoidosis, 
peripartum cardiomyopathy, ischemic cardiomyopathy (ICM) , dilatative cardiomyopathy (DCM) (GSE84796). 
B, HF studies with ICM and DCM samples but processed with different bioinformatic pipelines (GSE3586, 
GSE52601). Reprinted from [112]. 
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Molecular remodeling processes in heart failure have been linked to the reactivation of fetal 

transcriptional responses [4]. For this reason, additionally, we tested if the consensus signature 

could be used to dissect the reactivation of fetal gene programs in heart failure by analyzing 

two public fetal cardiac transcriptomes (GSE52601, Spurrell19) and their estimated 

transcription factor activities (Figure CH2-18). Differential expression analysis and estimation 

of transcription factor activities of these two studies were performed as described before. Genes 

with a BH corrected p-value < 0.05 were tested for enrichment in the consensus signature and 

transcription factor activities with a p-value < 0.05 were compared to the ones estimated from 

the heart failure consensus signature. Fetal transcriptional signatures of both studies were 

enriched in the top rankings of the heart failure consensus signature (GSEA p-value < 0.01)  

(Figure CH2-18B). 221 of the top 500 genes from the consensus signature correlated with fetal 

genes reported by Spurrell19 (Figure CH2-18D) while 32 transcription factors correlated 

between the fetus heart and the heart failure consensus signature (Figure CH2-18E). Similar 

results were observed for GSE5260. 
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Figure CH2-18. Heart failure consensus signature (HF-CS) as a reference that complements independent 
studies. 

A, Schematic of a suggested framework. Marker features from independent studies are enriched in the heart failure 
consensus signature (HF-CS) with gene set enrichment analysis (GSEA). Features that belong to the leading edge 
are further filtered, for example, by correlation or ranking in the HF-CS. B, Enrichment results of marker features 
from 4 individual studies. C, Plasma proteome of patients with HF mapped to the HF-CS. D, Fetal cardiac 
transcriptome (Spurrell19) mapped to HF-CS on gene level and (E) transcription factor (TF) level. Black dots in 
(C and D) indicate correlated features in the enrichment leading edge; labeled features in (C and D) indicate genes 
with a rank <500 in HF-CS. Black dots in (E) indicate overlap with significantly dysregulated TFs derived from 
the HF-CS. Reprinted from [112]. 

 
 

2.4.1 Creation of ReHeaT: The reference of the heart failure transcriptome 

An important aspect of this work is that we made all the analysis and processed data public 

through GitHub (https://github.com/saezlab/HF_meta-analysis) and Zenodo 

(https://zenodo.org/record/3797044#.YwdrWexBy-a), to allow the community to re-use or 

expand our analysis and compilation easily. Moreover, we created an R shiny app called 
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ReHeaT (The reference of the heart failure transcriptome) hosted in 

https://saezlab.shinyapps.io/reheat/. This web service provides, for the first time, the immediate 

access of most of the results of the last 15 years of human heart failure bulk transcriptomics. 

There are five main functionalities in ReHeat: 

 

1. Gene query: Assess the consistency of the deregulation in heart failure of a gene of 

interest in all 16 studies and explore its ranking in the consensus signature. 

2. Gene set enrichment analysis:  Assess whether a gene set of interest is enriched in the 

consensus signature. 

3. Explore and download the heart failure consensus signature. 

4. Explore the functional interpretation (transcription factor and signaling pathway 

activities, enriched functional gene sets, and miRNA regulation) of the consensus 

signature. 

5. Study overview. Get an overview of the included studies from different perspectives. 

With this effort we aimed to provide a molecular reference of human end-stage heart failure 

that is modular, accessible, transparent, and expandable. 

2.5 Discussion and future perspectives 

In this study I presented a comprehensive meta-analysis of heart failure, comparing 16 datasets 

and a total of 916 samples. Heart failure is known to be a complex disorder both on the clinical 

and genetic levels. As such, the published work in myocardial transcriptomics represents a 

heterogeneous picture of transcriptional regulation in the heart. In the studies included in this 

meta-analysis, clinical heterogeneity is compounded by wide variability in analysis pipelines, 

study design, tissue protocol, and patient selection. My work shows that despite these 

difficulties, combining these studies provides not only an opportunity to robustly evaluate their 

reproducibility, but to gain a more complete picture of transcriptional regulation.  

 

The presented study combines gene expression data from microarray and sequencing 

technologies. While the measurements of both technologies differ fundamentally, I 

demonstrated that similar biological profiles can be captured. I focused on comparing and 

combining differential expression results across studies, as opposed to integrating all samples 

in a single dataset. This framework prioritized molecular differences between phenotypes that 

are similar in independent patient cohorts and allowed me to reuse and review a large patient 
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cohort to create the heart failure consensus signature. However, a simplification of the 

transcriptome was necessary. I could not regard transcript isoforms nor non-coding transcripts 

in this analysis, since I focused on ~14.000 protein coding genes that were measured to similar 

extent by both technologies. 

  

My results suggest that the magnitude of changes in mean expression of marker genes depends 

highly on the study. I observed a 5% of agreement of the top 500 differentially expressed genes 

between studies. This disagreement cannot be explained by differences in gene coverage or 

technologies, since the intersection of profiled genes in all studies is ~70%. However, patterns 

of gene coexpression are stable and comparable among cohorts, regardless of their sample size, 

technology, and variability, allowing for their integration. Unexpectedly, studies with less than 

10 patients were still able to effectively capture similar patterns of gene deregulation as studies 

with more than 200 patients. This highlights the importance of representative patient sampling, 

since it may compensate for sample size. Moreover, I observed that consistent coexpression 

patterns were shared among etiologies, suggesting that conserved disease mechanisms 

converge in end-stage heart failure. 

 

This study has several strengths and limitations. One strength is the added robustness to the 

gene dysregulation associations found in end-stage heart failure, that comes from integrating 

equally the evidence of a diverse collection of patient cohorts and technologies. In this meta-

analysis I balanced the bias of the experimental design and the non-probabilistic sampling of 

each individual dataset, and increased the sample size. I reduced technical variance by 

standardizing the bioinformatics processing and analysis of each dataset, although reducing the 

number of genes that can be confidently reported. Another strength is that the estimation of 

transcription factor and signaling activities provides a functional catalog of new hypotheses 

that facilitates the interpretation of individual and disjointed gene associations with heart 

failure. In addition, these features are likely to be more robust than individual genes, as they 

integrate the information of multiple genes.  

 

Important limitations of our study relate to the data used. In this meta-analysis, we only 

included public datasets that may under-represent the population of heart failure patients. A 

second limitation is the lack of reported demographic and clinical data in most of the collected 

datasets that didn’t allow us to estimate the impact of known comorbidities, drugs and genetic 

backgrounds in the transcriptional responses analyzed. Another important limitation of the 
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study, and of all studies using bulk RNA measurements, is that they do not allow the capture 

of cell-type specific contributions to the disease processes. Despite these limitations, I believe 

that the size of our meta-analysis and the novel application of transcription factor and signaling 

activity estimation tools provide important new information to the study of heart failure using 

transcriptomics. Furthermore, my methodology is general and, as more data becomes available, 

the meta-analysis can be expanded.  

 

This study also highlights the importance of data sharing and reproducibility. In recent years 

studies that address curation, sharing, replication and comparability of experimental data sets 

have gained importance. Despite this movement, and the presence of data sharing platforms 

like ArrayExpress [151], the Gene Expression Omnibus [152], the European Nucleotide 

Archive [153], recount2 [154] , and BioJupies [141] since 2002, many heart failure gene 

expression studies conducted by the research community were not publicly available. 

Furthermore, many of those available studies lack sufficiently detailed clinical information of 

studied patients to robustly characterize disease phenotype and relate it to molecular 

perturbations. In the case of heart failure, the necessity of studying clinically ramified 

subgroups of the syndrome is becoming evident [10].  

 

The investigation of differential gene expression between ICM and DCM samples did not yield 

any significant results, in contrast to reports of single studies, suggesting that myocardial 

remodeling in heart failure concludes in a final, molecular indistinguishable phenotype. As 

such, I provide a depiction of the common molecular perturbations in the failing myocardium 

and propose that our results reflect fundamental gene expression changes in heart failure of 

various etiologies and can serve as a resource for biomarker detection and hypothesis building 

or confirmation. For this purpose, we made our results available at 

https://saezlab.shinyapps.io/hgex_app. In this portal it is possible to query genes in the meta-

ranking, obtain gene-level statistics coming from the 16 studies, enriched gene sets in the meta-

ranking and calculate the disease score for new samples given an expression profile. With this 

resource we want to facilitate the collaborative crowdsourcing of the functional 

characterization of the transcriptional landscape of heart failure.  

 

In summary, I demonstrated the feasibility of combining gene expression data sets from 

different technologies, years and centers in a biologically meaningful way. To my knowledge, 

this report represents the largest comprehensive meta-analysis of human heart failure gene 
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expression studies to date. As single cell and spatial profiles become widely available the 

obvious continuation of this work is to identify multi cellular gene regulation processes that 

explain the tissue remodeling effects associated with heart failure. For the same reason, this 

reference becomes essential to evaluate the translation of these findings in data with higher 

resolution. 
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Chapter 3 
 

Dissecting the multicellular processes of 
human myocardial infarction with single cell 

and spatial transcriptomics 
 
In this Chapter I describe the generation of the first multi-omics and multi-scale analysis of 

single cells together with spatial transcriptomics of human myocardial infarction. In this work 

I analyzed 31 specimens of 23 patients encompassing distinct physiological areas and time 

points after myocardial infarction and control myocardium. For a subset of 28 specimens, I 

present an integrated analysis of single cell and spatial transcriptomics. First, I discuss in 

greater detail the challenges of case-control multiscale analysis initially presented in Chapter 

1. Then I describe methodological frameworks to properly integrate single cell and spatial 

transcriptomics data. Finally, I present the application of these frameworks to the heart 

specimens and discuss gained biological insights from the multi-scale analysis. 

 

This chapter highlights the conceptual contributions that shaped the research paper peer-

reviewed and published in [155]. The research paper from which this chapter is based was co-

led by me, Christoph Kuppe, and Zhijian Li. Data generation and experimental work was 

organized by Christoph Kuppe, Rafael Kramann, and Hendrik Milting. Zhijian Li, supervised 

by Ivan Costa, performed the computational analysis focused on the integration of chromatin 

accessibility data with gene expression data that is not covered in this chapter. I conceived and 

implemented most of the data analysis presented in this text. Whenever I use the pronoun we, 

I refer to analyses that were done in collaboration with Zhijian Li or biological interpretations 

guided by Christoph Kuppe. Julio Saez-Rodriguez, Rafael Kramann, and Ivan Costa supervised 

this project.  
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3.1 Multi-scale analysis for the understanding of cardiac remodeling 

3.1.1 Bridging the gap between tissue organization and functions with spatial 

transcriptomics 

Spatially resolved genome-wide transcriptomes of intact tissue allow the study of gene 

regulation at unprecedented resolution. Emerging spatial barcoding-based technologies, such 

as 10x Visium, overcome the limitations of cell capture of single nucleus or single cell RNA-

seq methods and increase the levels of multiplexing from immunofluorescence-based methods. 

In 10x Visium slides, the size of the captured area (55 µm) enables it to profile thousands of 

genes of up to 10 cells, creating collections of microenvironments that can be analyzed 

separately. Thus, in combination with single-cell profiling technologies, 10x Visium data is 

suitable to map single cell molecular processes in space and to study tissue function and 

organization at different levels of resolution.  

 

The availability of paired single cell and spatial transcriptomics data allows to generate multi-

scale molecular descriptions of the tissue architecture. On the one hand, it is possible to 

describe the organization of cell types in space, on the other, it is possible to assess to what 

extent the organization of cells is associated with their molecular variability. The inferred 

relationships of these two aspects of the tissue, organization and molecular variability, 

summarize partly the architecture of tissues.  

 

Multi-scale molecular descriptions of tissues in disease contexts aim to contrast structural and 

organizational aspects of the tissue and associate them with clinical descriptions. Similarly as 

with digital pathology, the main objective is to identify tissue centric features that allow for 

better patient stratification or disease development estimations. Nevertheless, in comparison to 

histology based pathology only a limited set of patients can be currently profiled molecularly 

at multiple scales thus these technologies are used mainly to increase the resolution of the 

description of multicellular disease processes. 

 

The generation of multi-scale descriptions also requires the proposal of new computational 

frameworks that: 1) Increase the resolution of spatial capture-based technologies, both at the 

compositional and functional level, 2) identify spatial patterns, 3) relate spatial variability with 
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cellular organization, and 4) define features that describe the spatial components of tissues to 

5) perform cross-condition comparisons. 

3.1.2 Multi-omic spatial map of human myocardial infarction  

Cardiovascular diseases are the leading cause of mortality worldwide and myocardial 

infarction is the largest contributor to the number of deaths. Primary percutaneous coronary 

interventions and adjunctive therapies have increased patient survivability after myocardial 

infarction, nevertheless it is still the most common cause of heart failure. The understanding of 

the precise intra- and intercellular signaling mechanisms regulating cardiac remodeling 

processes associated with myocardial infarction can lead to better strategies to develop novel 

therapeutics. The role of the distinct cellular processes and tissue structures involved in the 

inflammatory and reparative responses following a heart attack are likely to be heterogeneous 

across patient groups, thus the necessity of a high resolution spatial map of distinct time points 

and regions of myocardial infarction patients and control myocardium [156]. 

 

To complement the work of several research groups describing the molecular diversity of the 

cells that conform the healthy heart [157] and distinct etiologies of heart failure [158]–[160], 

we combined the profiling of single nucleus gene expression (snRNA-seq), chromatin 

accessibility (snATAC-seq) and spatial transcriptomics (10x Visium) to study the events of 

cardiac tissue reorganization following myocardial infarction. In total we profiled 23 patients, 

encompassing 4 distinct physiological zones of myocardial infarction together with control 

myocardium from non-transplanted donor hearts. Myocardial infarction (MI) samples were 

taken from specimens of patients with acute myocardial infarction with necrotic tissue areas 

(ischemic zone, IZ), from the border zone (BZ), and the non-affected left ventricular 

myocardium (remote zone, RZ). We additionally profiled specimens of patients with ischemic 

heart failure that capture fibrotic zones and a later stage after myocardial infarction. This 

represented to our knowledge the largest multi-modal and multi-scale profiling of human 

myocardial infarction tissue, focused in distinct disease progression stages (Figure CH3-1). For 

details on the experimental protocols, tissue handling and processing, I refer to [155]. 
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Figure CH3-1. Spatial multi-omic profiling of human myocardial infarction.  

a, Schematic representation of the multi-omic human myocardial infarction atlas study design. The infarcted 
human heart is characterized by remote zone (RZ), border zone (BZ), ischemic zone (IZ) and fibrotic zone (FZ). 
The total number of samples (n) of each zone is shown. b, Sampling time point scheme showing time of analysis 
after initial onset of myocardial infarction symptoms of all samples divided into acute (day 1-15) and chronic 
(>day 30). * indicates snRNA-seq samples used for validation only (P21-23). Colors indicate sampling regions.  
Reprinted from [155] 

 

3.2 Computational strategy to integrate multi-scale data 

I devised a multi-omics and multi-scale integrative analysis spanning all scales (Figure CH3-

2-3) motivated by three main objectives:  

 

A) Featurize the molecular and spatial components of tissues. 

 

As mentioned in Chapter 1, the first step of multi-scale modeling requires enumerating 

the distinct molecular, structural, and organizational features of the tissue. Structural 

features relate to compositions of cell types or cell neighborhoods (here proposed as 

basic building blocks of tissues). Organizational features refer to the way cell-types or 

neighborhoods are distributed in space (quantified as spatial variance) or the way they 

relate to each other in space (quantified as spatial dependencies). Molecular features 

refer to population level distributions of gene expression or functional activities 

estimated from single nucleus, single cell data or spatial locations. A second 

requirement for multi-scale descriptions is that the enumerated features are 

representative of a collection of samples. In other words, multi-scale features should be 

shared across samples and scales in a given cohort, and ideally in any collection of 

samples.  

 

In this work I propose to define features that describe the molecular and spatial 

components of tissues as follows: 
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1. Major cell types: Usually defined with snRNA-seq data, these features refer to 

the identification of the major lineages of cell types that conform a profiled 

tissue. Each major cell type is a population of single nuclei or cells from which 

gene expression distributions can be estimated. Cell ontologies are usually 

predefined from prior knowledge (see Chapter 1). 

 

2. Functional cell states: These features represent populations of single nuclei or 

cells of a given cell lineage (as defined above) with distinct functional profiles. 

Compared to cell types, a clear ontology of cell states can not be defined and 

usually these features are context and cohort specific (see Chapter 1). 

 

3. Cell type or cell state compositions: Compositions can be directly quantified 

from single cell technologies or estimated from spatial transcriptomics data 

using deconvolution methods. Each sample is assigned a compositional vector 

with as many cell types or cell states as defined previously. 

 

4. Spatially variable genes and functional processes: Gene level statistics obtained 

from the hypothesis test of spatially organized expression [161]. Functional 

enrichment can be assessed using overrepresentation analysis. 

 

5. Cell type niches: Given that 10x Visium profiles spatially resolved mini-bulk 

samples, it is reasonable to assume that each spot represents a sample of a 

cellular neighborhood. A cellular neighborhood within a spot can be defined 

from the compositions of cell types estimated from deconvolution methods. 

Then, groups of spots with similar cellular compositions are defined as niches 

and represent building blocks that appear repeatedly in multiple samples and in 

distinct contexts. 

 

6. Molecular niches: Similarly as cell type niches, molecular niches are groups of 

locations or spots in spatial transcriptomics data that share a specific function. 

These features complement the structural niches based on cell type 

compositions since they allow to differentiate locations in spatial 

transcriptomics with identical organizations but distinct functions. For both the 
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cell type and molecular niches, the definition of the number of niches is 

completely empirical. 

 

7. Spatial interactions: In spatial transcriptomics for every measured feature (eg. 

gene expression, cell type composition, cellular function) it is possible to 

estimate its spatial relationship with the rest. One example of this type of feature 

is the correlation of the expression of 2 genes across a slide or region of interest. 

However, this type of interactions are limited to spatial dependencies within a 

spot, ignoring the whole tissue organization. Definition of spatial interactions 

in distinct spatial contexts have been presented in the work of [104] and 

extended in [105]. In the latter research paper I explored the estimation of spatial 

interactions between signaling pathway activities and ligand or receptor 

expressions, demonstrating that tissue organization is not limited to its structural 

characteristics, but also is reflected in the spatial distributions of distinct cellular 

functions.  

 

B) Link molecular variability and cellular functions to tissue structures 

 

One of the advantages of spatial transcriptomics is the possibility to contextualize 

expression variability of locations in terms of the organization of cells. The assumption 

is that cellular phenotypes and responses to stimuli (approximated from gene 

expression) are influenced by intrinsic and extrinsic processes with distinct importances 

[162]–[165]. Intrinsic processes relate to the intracellular relations (eg. dependency of 

signaling pathways, volume of the cell, etc.), while extrinsic processes capture 

intercellular dependencies and environmental effects. An interplay between the effects 

of the surroundings and the current cell state allows cells to process information and 

maintain the functions of tissues.  

 

In this work I leveraged the methodology developed by [105] and spatial 

transcriptomics data to create spatially contextualized models of signaling pathway 

activities and cell state function. For both tasks, I evaluated the importance that the 

cellular composition had on the spatial distribution of signaling pathway activities and 

cellular states inferred from gene expression. The results of these models provide 

distributions of spatial relationships (see previous section) that allow to evaluate if 
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cellular functions are constrained to a specific “cellular layout”, or if emergent cellular 

functions converge in distinct contexts. 

 

C) Contrasting the molecular and structural components of tissues 

 

The final objective of the proposed computational strategy focuses on contrasting the 

distributions of the collection of the tissue features between the distinct sample groups 

to identify conserved disease mechanisms associated with clinical covariates. I applied 

mainly classic non-parametric statistical population comparison hypothesis tests. 

Although exhaustive, this strategy has the limitation of evaluating each feature 

independently, disregarding the dependencies between them. 

 

 

 

 

 

 

 

 

 

 

Figure CH3-2. Schematic of the methodology used to analyze single cell nuclei data. 

Reprinted from [155] 
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Figure CH3-3. Schematic of the methodology to analyze spatial transcriptomics in this work.   

Reprinted and adapted from [155]. 
 

3.2.1 Challenges in multi-scale data analysis and integration 

My proposed computational strategy was also constrained by multiple technical challenges that 

are described below: 

 

1. Multi-omics and multi-scale molecular profiles acquired from distinct samples are 

heterogeneous in multiple levels: 

 

Spatial and single nuclei transcriptomics data obtained from distinct regions and patients come 

from 10µm cryo-sections of each cardiac specimen and adjacent regions. By experimental 

design, single nucleus profiles only approximate the molecular profiles of spatial 

transcriptomics of adjacent regions. For the same reason, while it is expected to observe similar 

cellular compositions in single cell data, the level of mismatch is unknown.   

 

Sample acquisition occurred in distinct tissue banks and sequencing was performed in distinct 

locations which adds a known technical confounder. Additionally, samples in distinct 

physiological zones acquired from the same patient are confounded by the individual. While 
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technical effects are expected to affect all samples, individual effects are limited to acute 

myocardial infarction samples, since they are the only type of heart specimens where distinct 

physiological areas can be located. 

 

Finally, the fact that tissue selection can not be ensured to contain comparable cellular 

compositions and tissue structures across patients and conditions adds variability that may be 

greater than the one expected from the disease.  

 

2. No common coordinate system can be defined before data sampling: 

 

As mentioned in the last point, tissue sampling is expected to be heterogeneous at the 

compositional and organizational level, not only because of the diversity in clinical profiles, 

but also because of the selection of sampling areas guided by pathologists and clinicians. Even 

though morphological zones can be defined to limit the sampling area of tissues (eg. left 

ventricle or apex), the final captured area used to generate single cell and spatial data can not 

be aligned given the distinct distribution of tissue structures such as vasculature, scars, etc. 

This non-trivial registration challenge constrains the type of comparisons between different 

samples to general changes in the tissues rather than changes in exact locations.   

 

3. Non-probabilistic sampling: 

 

Our study characterizes rare specimens of acute myocardial infarction that are not routinely 

sampled in the clinic. For the same reason, experimental design is limited to tissue banks with 

selective bias towards specific clinical profiles and populations. This in practice affects the 

effective “sample size” and the statistical power. 

3.2.2 Implementation of the computational strategy 

The methodology used to analyze the single nuclei multi-omics and spatial transcriptomics 

data is described in detail below. I have omitted the computational work related to the inference 

of transcriptional regulatory processes based on the integration of snRNAseq and snATACseq 

data that was led by Zhijian Li. The text below was entirely written by me and it is taken from 

[155], with some necessary adaptations where Zhijian Li and Christoph Kuppe contributed. 

Code is available in the following repository: https://github.com/saezlab/visium_heart. 
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snRNA-seq data processing 

To identify the major lineages representative of all of our specimens, I created a single nuclei 

atlas analyzing and integrating each snRNA-seq dataset obtained from the CellRanger software 

(v6.0.2) using Seurat (v4.0.1) [166].  

Each single data set went through identical quality control processing. I discarded nuclei (i)  in 

the top 1% in terms of the number of genes, (ii), with less than 300 genes and less than 500 

UMIs, (iii) or more than 5% of mitochondrial gene expression, and (iv) doublets as estimated  

using scDblFinder (v1.4.0) [73] with default parameters. Count matrices were log normalized 

for downstream analyses using a scaling factor of 10,000. I calculated a dissociation score for 

each cell using Seurat’s module score functions with a gene set provided by O’Flanagan, et. al. 

[71] and discarded the nuclei that belonged to the top 1%. To generate an integrated atlas of all 

samples, log normalized expression matrices were merged and dimensionality reduction was 

performed on the collection of the top 3,000 most variable genes that were shared with most 

of the samples using principal component analysis (PCA). To select the collection of shared 

variable genes between samples, first I estimated the top 3,000 most variable genes per sample 

and then selected the top 3,000 most recurrent genes from them across all samples. PCA 

correction was performed with harmony [84] (v1.0) using as covariates the patient, sample, 

and batch labels. A shared nearest neighbor (SNN) graph was built with the first 30 principal 

components (PCs) using Seurat’s FindNeighbors, and the cells were clustered with a Louvain 

algorithm with FindClusters. A high resolution (1) was selected to generate a large collection 

of nuclei clusters to capture representative major cell lineages, even if present in low 

proportions. Cluster markers were identified with Wilcoxon tests as implemented in Seurat’s 

FindAllMarkers function. Final assignment of cells to major cell lineages was based on 

literature marker genes. I filtered out small clusters (median number of nuclei across filtered 

clusters = 269) with low gene count distributions (median counts across filtered clusters = 756) 

or feature recovery (median number of genes across filtered clusters = 695), with marker genes 

that couldn’t be assigned to known cell-types of the heart. To visualize all nuclei in a two 

dimensional embedding, an Uniform Manifold Approximation and Projection (UMAP) was 

created with Seurat’s RunUMAP function using the first 30 principal components of harmony’s 

PCA correction embedding. 

Major cell-type markers were estimated by performing differential expression analysis of cell-

type and patient-specific pseudo bulk profiles. Pseudo bulk profiles were calculated by 
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summing up the counts of all cells belonging to the same cell-type and patient. Profiles coming 

from less than 10 cells or profiles from which the maximum gene expression was of less than 

1,000 counts per library were discarded. Differentially expressed genes were calculated by 

fitting a quasi-likelihood negative binomial generalized log-linear model as implemented in 

edgeR (v3.32.1) [47] (FDR < 0.15). Each cell type was compared against the rest.  

Comparison with independent healthy and ischemic human heart cell atlases 

I compared our generated atlas with another reference human single nuclei RNA-seq atlas at 

the molecular and compositional level. The counts matrix was downloaded directly from 

https://www.heartcellatlas.org and I selected the data coming from single nuclei or left-

ventricle samples. Nuclei with less than 200 genes, and genes expressed in less than 3 nuclei 

were excluded. Log normalization with a scaling factor of 10,000 was performed with scanpy’s 

[167] (v1.7.0) normalize_total function. 

 

To evaluate our major cell-type annotation, I calculated the enrichment of the top 200 marker 

genes based on log fold change of each cell-type defined in the reference atlas in the list of the 

top 200 marker genes of each of our defined cell-types with hypergeometric tests. Marker genes 

of the reference atlas were calculated with Wilcoxon tests as implemented in scanpy’s  [167] 

(v1.7.0) rank_genes_groups (adj. p-value < 0.01). Each cell type was compared against the 

rest. To evaluate the compositional stability of our control samples, I calculated the Pearson 

correlation between the median proportion of each shared cell-type of the reference atlas and 

our control, border zone, and remote zone samples.  

 

Similarly, I compared our atlas to an independent collection of human heart nuclei derived 

from three ischemic specimens. First, I analyzed and integrated the smaller collection of 

samples using identical procedures as the ones used in our provided atlas. After nuclei 

clustering, I assigned each cluster to a cell-type using literature markers. Cell-type markers 

were calculated with Wilcoxon tests (adj. p-value < 0.01) and the top 200 genes based on log 

fold change were selected. Marker overlap and compositional stability comparison with 

ischemic specimens from our atlas were performed as described previously. 

 

Cell-type-specific transcription factor binding and regulon activity 

To estimate transcription factor (TF) binding activity for each major cell type identified from 

snATAC-seq data, Zhijian Li generated a naive gene regulatory network by linking 
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transcription factor binding sites to nearest genes and estimated transcription factor binding 

activities using footprinting methods (see [155]). The number of ATAC-seq reads in the region 

with 100 base pairs up-stream and down-stream of the the TF binding site were used to indicate 

how strong the interaction was: each TF-gene interaction was weighted as the ratio between 

the number of ATAC-seq reads around the TF binding site associated with that gene and the 

maximum number of reads observed in any binding site of the transcription factor. All 

interactions with a weight larger than 0.3 were considered in downstream analysis. This 

generated weighted and filtered cell-type specific regulons. To infer a transcription factor 

regulon activity score, I estimated the mean expression of the target genes in each cell-type-

specific regulon. Cell-type pseudo bulk profiles were filtered to contain only genes with at least 

10 counts in 5% of the samples, before the estimation of normalized weighted means using 

decoupleR’s [52] (v1.1.0) wmean function with 1000 permutations. Regulon activities were 

standardized and correlated with TF binding activities using Spearman correlations. The 

minimum correlation of 0.5 was used as threshold and the top 5 TFs per cell type were selected 

for visualization. 

 

Cell-state definitions 

Cell-state definition of major cell-types was done by integrating cell-type specific snRNA-seq 

and snATAC-seq data. For each major cell-type, Zhijian Li first transformed single nuclei 

chromatin accessibility data into gene scores that allowed for a diagonal integration procedure. 

Details can be consulted in  [155]. 

 

Characterization of spatial transcriptomics data sets 

Single-slide processing 

Filtered feature-barcode expression matrices from SpaceRanger (v1.3.2) were used as initial 

input for the spatial transcriptomics analysis using Seurat (v4.0.1).  Spots with less than 300 

measured genes and less than 500 unique molecular identifiers (UMIs) were filtered out. 

Ribosomal and mitochondrial genes were excluded from this analysis. Individual count 

matrices were normalized with sctransform [168], and additional log normalized (size factor = 

10, 000) and scaled matrices were calculated for comparative analyses using default settings.  

Cell-type compositions were calculated for each spot using cell2location [98] (v0.05). 

Reference expression signatures of major cell-types were estimated using regularized negative 

binomial regressions and our integrated snRNA-seq atlas. I fitted a model in six downsampled 



85 

iterations of our snRNA-seq atlas (30%) and generated a final reference matrix by taking the 

mean estimation. Each slide was later deconvoluted using hierarchical bayesian models as 

implemented in run_cell2location. I provided the following hyperparameters: 8 cells per spot, 

4 factors per spot, and 2 combinations per spot. Additionally, for each spot I calculated cell-

type proportions using the cell-type specific abundance estimations. Cell-type compositions of 

the complete slide were calculated adding the estimated number of cells of each type across all 

spots. 

To compare the stability of estimated cell compositions between our different data modalities, 

I calculated Spearman correlations between the estimated cell type proportions of each slide 

and the observed cell type proportions in its corresponding snRNA-seq and snATAC-seq 

dataset. 

Estimation of functional information from spatial data 

For each spot, I estimated signaling pathway activities with PROGENy’s [56] [149] (v1.12.0) 

model matrix using the top 1,000 genes of each transcriptional footprint and the sctransform 

normalized data. Spatially variable genes were calculated with SPARKX [161] (v1.1.1) using 

log normalized data (FDR < 0.001). To obtain overrepresented biological processes from each 

list of spatially variable genes, I performed hypergeometric tests using the set of canonical 

pathways provided by MSigDB [146] (FDR < 0.05).  

 

Estimation of cell-death molecular footprints from spatial data 

To associate the differences in nucleus capture in snRNA-seq between the different samples to 

cell-death processes, I leveraged the information from spatial transcriptomics to estimate the 

general expression of genes associated to cell death for each sample. For each unfiltered slide 

I estimated per spot the normalized gene expression of BioCarta’s [146]  “Death Pathway” and 

Reactome’s [169] “Regulated Necrosis Pathway” using decoupleR’s (v1.1.0) wmean method 

and the sctransform normalized data. To have a final pathway score per slide, I calculated for 

each slide the mean “pathway expression” across all spots. 

Cell-state spatial mapping 

To map the functional states of each cell type into spatial locations, I leveraged the 

deconvolution results of each slide and the set of differentially expressed genes of each 

recovered cell state. Given the continuous nature of cell-states, I assumed that the collection of 
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up and downregulated genes of a cell-state represented its transcriptional fingerprint and could 

be summarized in a continuous score in locations where I could reliably identify the major cell-

type from which the state was derived. For a given major cell type of interest k, I identified 

spots where its inferred abundance was of at least 10%. To estimate state scores associated 

with cell-type k, I used decoupleR’s (v1.1.0) normalized weighted mean method (wmean) and 

the set of the up-regulated genes of each state defined with snRNA-seq and snATAC-seq (log 

fold change > 0; Wilcoxon tests, FDR < 0.05). The log fold change of each selected gene was 

used as the weight in the wmean function. 

Analysis of ion channel related genes 

I related the expression of ion channel related gene sets to the different cardiomyocyte cell 

states and their location in spatial transcriptomics. First I selected two different gene sets 

containing ion channel related genes: 1) Reactome’s [169]  “Ion Channel Transport'' and a 

curated list of transmural ion channels from Grant et al. [170].  I calculated gene set scores for 

each spatial transcriptomics spot using decoupleR’s wmean function. Then I correlated these 

gene set scores to the spatial mapping of cardiomyocyte cell-states in regions where I observed 

at least 10% of cardiomyocytes. Additionally, I evaluated if any of the genes belonging to these 

gene sets were differentially expressed between the vCM1 and failing vCM3 population using 

Wilcoxon tests as implemented in scran’s (v1.18.5) findMarkers function (AUC < 0.4, AUC > 

0.6, FDR < 0.05). 

 

Spatial map of cell dependencies 

I used MISTy’s [105] implementation in mistyR (v1.2.1) to estimate the importance of the 

abundance of each major cell-type in explaining the abundance of the other major cell-types. 

Cell-type cell2location estimations of all slides were modeled in a multiview model using three 

different spatial contexts: 1) An intrinsic view that measures the relationships between the 

deconvolution estimations within a spot, 2) a juxta view that sums the observed deconvolution 

estimations of immediate neighbors (largest distance threshold = 5), and 3) a para view that 

weights the deconvolution estimations of more distant neighbors of each cell-type (effective 

radius = 15 spots). The aggregated estimated importances (median) of each view of all slides 

were interpreted as cell-type dependencies in different spatial contexts, such as colocalization 

or mutual exclusion. Nevertheless, the reported interactions don’t imply any causal relation. 

Before aggregation, I excluded the importances of all predictors of target cell-types whose R2 

was less than 10% for each slide. 
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To associate tissue structures with tissue functions, I fitted a MISTy model to explain the 

distribution of PROGENy’s pathway activities standardized scores. The multi view model 

consisted of the following predictors: 1) An intrinsic view to model pathway crosstalk within 

a spot, 2) a juxta view to model pathway crosstalk between neighboring spots (largest distance 

threshold = 5), 3) a para view estimating pathway relations in larger tissue structures (effective 

radius = 15), and 4) an intrinsic view and 5) a paraview containing cell2location estimations 

(effective radius = 15). These last two views model explicitly the relations between cell-type 

compositions of spots and pathway activities. Cycling cells and TNFa were not included in the 

described analyses. Before aggregation, I excluded the importances of all predictors of target 

pathway activities whose R2 was less than 10% for each slide. 

Niche definitions from spatial transcriptomics data 

To identify groups of spots in the different samples that shared similar cell-type compositions, 

I transformed the estimated cell-type proportions of each spatial transcriptomics spot and slide 

into isometric log ratios (ILR) [171], and clustered spots into groups. These niches represent 

groups of spots that are similar in cell composition and represent potential shared structural 

building blocks of our different slides; I refer to these groups of spots as cell-type niches. 

Louvain clustering of spots was performed by first creating a shared nearest neighbor graph 

with k different number of neighbors (10, 20, 50) using scran’s [172] (v1.18.5) buildSNNGraph 

function. Then, I estimated the clustering resolution that maximized the mean silhouette score 

of each cluster. I assigned overrepresented cell-types in each structure by comparing the 

distribution of cell-type compositions within a cell-type niche versus the rest using Wilcoxon 

tests (FDR < 0.05). I tested if a given cell-state was more representative of a cell-type niche by 

performing Wilcoxon tests between each niche and the rest  (FDR < 0.05). Only positive state 

scores were considered in this analysis. 

Additionally, to complement the repertoire of niches identified with cell-type compositions, I 

integrated and clustered the Visium spots of all slides using their gene expression. I called these 

clusters molecular niches. Integration and clustering of spots was performed with the same 

methodology as the one I used to create the snRNA-Seq atlas. A low resolution was used (0.2) 

to have a similar number of molecular niches as cell-type niches. Cell-type and cell-state 

enrichment was performed as mentioned before. 
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Differential expression analysis of molecular niches enriched with cardiomyocytes 

Differential expression analysis between molecular niches enriched in cardiomyocytes (niche-

0, niche-1, niche-3) was performed using the log-transformed expression of all spots belonging 

to a given niche. Wilcoxon tests were performed with scran’s [172] (v1.18.5) findMarkers 

function. Genes with a summary area under the curve (AUC) > 0.55 and FDR < 0.05 were 

considered upregulated genes. 

 

Differential molecular profiles of the molecular niche 10 enriched with capillary 

endothelial cells 

Differential expression analysis between ischemic, fibrotic and myogenic enriched spatial 

transcriptomic spots was performed with Wilcoxon tests as implemented in scran’s [172] 

(v1.18.5) findMarkers function. To obtain overrepresented biological processes from 

upregulated genes, I performed hypergeometric tests using the set of hallmark pathways 

provided by MSigDB [146]. Normalized PROGENy’s pathway activities for each spot were 

calculated using decoupleR’s wsum method with 100 permutations on log-transformed data. 

Mean normalized pathway scores were calculated per slide and comparisons between groups 

were performed with Wilcoxon tests. Reported p-values were adjusted for multiple testing 

using the Benjamini-Hochberg procedure.  

General differences in tissue organization 

I annotated the different spatial transcriptomic slides into three groups based on histological 

differences with the help of pathologists: myogenic-enriched, fibrotic-enriched, and ischemic 

enriched. A general comparison of the sampled patient specimens was performed at the 

compositional and molecular level.  

 

Hierarchical clustering, with euclidean distances and Ward’s algorithm, was used to cluster the 

pseudo bulk profiles of the spatial transcriptomics datasets (replicates where merged, n = 27). 

Genes with less than 100 counts in 85% of the sample size were excluded for this analysis. 

Log-normalization (scale factor = 10, 000) was performed. To visualize the general molecular 

differences between our samples, log normalized pseudo bulk profiles of the spatial 

transcriptomics datasets were projected in an UMAP embedding.  
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To identify compositional differences between our sample groups, I compared cell-type and 

niche compositions. To identify cell-type composition changes associated to the sample 

groups, mean cell-type compositions across single cell and spatial datasets were compared with 

Kruskal-Wallis tests (FDR < 0.1). Pairwise comparisons of sample groups were performed 

with the Wilcoxon test. Additionally, to test which cell-type and molecular niches had different 

distributions between our group samples, I performed Kruskal-Wallis tests over the 

compositions of cell-type or molecular niches (FDR < 0.1). Additional pairwise comparisons 

were performed with Wilcoxon tests. For this, I only consider slides where no single niche 

represents more than 80% of the spots. Also, I only considered niches  representing more than 

1% of the composition of  at least 5 slides. 

To identify differences between the structurally similar tissues captured in the myogenic 

enriched group, I separated the samples into remote, border, and control zones and repeated 

the niche composition comparison described previously.  

To identify patterns of tissue organization associated with a sample group, I tested if  

differential cell dependencies were captured by the MISTy models used to predict cell-type 

abundances (see methods section “Spatial map of cell dependencies”). First, I filtered the 

standardized importance matrices of each sample’s MISTy model fitted to predict major cell-

type abundances to contain only the values of target cell-types predicted with an R2 greater 

than 0.05. Then, for each slide I created a spatial dependency vector where each element 

contains the importance of each possible pair of target and predicted cell-types.  Finally, I tested 

which cell interactions had higher importances in one of the sample groups compared to the 

rest using Wilcoxon tests (FDR < 0.25). To prioritize interactions, I only performed pairwise 

comparisons between sample groups for cell-type dependencies from which the maximum 

median importance across all groups was greater than 0.  

Estimation of the impacts of the spatial context in gene expression 

I used mistyR (v1.2.1) to find the associations between the tissue organization and the spatial 

distribution of failing cardiomyocytes and the different endothelial, myeloid, and fibroblasts 

cell-states. I hypothesized that the distribution of specific cell-states in the spatial 

transcriptomics slides could be modeled by the cell-type composition or cell-state presence of 

individual spots and their neighborhood.  
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For a given collection of cell-states of interest, I first defined regions of interest in every single 

slide as the collection of spots where the inferred abundance of the cell-type from which the 

cell-state was derived was at least 10%. These regions limit the target spots used in the MISTy 

model, however the whole slide is used to spatially contextualize the predictors. I used as 

predictors the abundances of cell-types estimated with cell2location or cell-states scores. To 

account only for the effects of the activation of a cell-state, the state scores of predictor cell-

states were masked to 0 whenever their score was lower than 0. In all models I included two 

classes of spatially contextualized predictive views: an intrinsic (intra) and a local 

neighborhood view (para, effective radius = 5). 

Specifically I fitted the following models to answer four questions: 

 

1) What are the main cell-types whose abundance within a spot or in the local neighborhood 

predict the “stressed” vCM3? 

 

vCM3 ~ intra(cell-type abundance) + para(cell-type abundance) 

 

2) What are the main cell-types whose abundance within a spot or in the local neighborhood 

predict the endothelial subtypes? How do the different subtypes relate to each other? 

 

ECsubtypes ~ intra(ECsubtypes) + para(ECsubtypes) + intra(cell-type abundance) + 

para(cell-type abundance) 

 

3) What are the myeloid cell-states within a spot or in the local neighborhood that better 

predict fibroblasts cell-states? How do fibroblasts cell-states relate to each other? 

 

FibroblastStates ~ intra(FibroblastStates) + para(FibroblastStates) + intra(MyeloidStates) + 

para(MyeloidStates) 

4) What are the main cell-types whose abundance within a spot or in the local neighborhood 

predict the myeloid cell-states? How do the different states relate to each other? 

 

MyeloidStates ~ intra(MyeloidStates) + para(MyeloidStates) + intra(cell-type abundance) + 

para(cell-type abundance) 
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Specific view importances were compared between patient groups as described previously with 

an R2 filter of 0.1. 

3.3 Single cell atlas creation and cellular mapping 

We obtained 10µm cryo-sections of each cardiac specimen and isolated nuclei from the 

remaining specimen directly adjacent to the cryo-section with subsequent fluorescent activated 

nuclei sorting (FANS) for snRNA-seq and snATAC-seq. For details on the analysis of 

snATAC-seq data consult [155]. After filtering low-quality nuclei, I obtained in total 191,497 

nuclei from all samples for snRNA-seq, with an average of 2020.543 genes per nucleus. The 

spatial transcriptomics datasets contained an average of 3389.519 spots per specimen and 

2001.694 genes per spot with a large variability mainly due to the underlying biological process 

with cell-death. On average, I quantified 4.48 nuclei per spot (standard deviation = 3.24). 

Moreover, IZ samples demonstrated the lowest abundance in nuclei and an enriched cell death 

and regulated necrosis gene set enrichment hinting towards necrotic cell death particularly in 

this area. 

 
I first independently established a map of human heart cell types using the snRNA-seq data. I 

clustered the cells based on the integrated snRNA-seq data from all samples after batch 

correction and I annotated the clusters with curated marker genes from literature [157], [173], 

[174]. In total, 11 cell types were identified: vCMs (cardiomyocytes), Fibs (fibroblasts), 

vSMCs (vascular smooth muscle cells), PCs (pericytes), Endos (endothelial), Adipos 

(adipocytes), neuronal, mast, lymphoid, myeloid, and cycling cells (Figure CH3-4a). This 

annotation is largely in line with the recent literature on healthy human hearts [157] and an 

independent dataset of ischemic hearts in terms of molecular and cellular composition. Similar 

procedures were done to the snATAC-seq data. To explore regulatory information provided by 

the snATAC-seq, we performed transcription factor (TF) footprinting analysis using cell-type-

specific pseudo-bulk ATAC-seq profiles. This revealed footprinting-based TF binding activity 

events confirmed by expression of their target genes in snRNA-seq data (Figure CH3-4b). 

 
I next investigated whether our spatial transcriptomics datasets reflected known biological 

processes of human myocardial infarction. To this end,I identified spatially variable gene 

expression across samples with SPARKX [161] and identified overrepresented biological 

processes using hypergeometric tests (Figure CH3-4c). This analysis revealed functional and 

organizational differences consistent with the underlying biological conditions. In the acute 
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myocardial infarction ischemic zone, I observed an enrichment of spatially variable gene 

expression associated with the innate immune system, neutrophil degranulation and 

programmed cell-death, and a depletion of fibrotic and muscle contraction processes. 

Consistently, the chronic remodeled heart (late stage after myocardial infarction) showed 

enrichment of spatially variable genes associated with extracellular matrix (ECM) 

proteoglycans, glycoproteins and other matrisome components in line with the expected 

fibrotic processes captured in these specimens. The borderzone specimens showed an 

enrichment of genes associated with mitochondrial complex I biogenesis and pyruvate 

metabolism/citric acid TCA cycle, both confirming the response to injury and potentially 

altered redox state and metabolism of this area. In the control and remote zone specimens, I 

observed an enrichment of spatially variable genes associated with muscle contraction linked 

to an overrepresentation of healthy cardiomyocytes in these samples. Overall, this analysis 

confirms that the spatial data clearly reflects known zones of biological processes after 

myocardial infarction.  

 

Since 10x Visium profiles the transcriptome of spatially resolved mini-bulk samples of cell 

communities rather than single cells, I aimed to increase its resolution by estimating the cellular 

compositions of each spot and describing cellular processes occurring in specific locations. To 

estimate the abundance and location of cell-types in each slide, I deconvoluted each spatial 

transcriptomics spot using as reference the integrated and annotated snRNA-seq data [98] 

(Figure CH3-4d). The estimated cell-compositions from spatial transcriptomics of each patient 

generally agreed with their respective observed compositions in snRNA-seq and snATAC-seq 

data (median Spearman correlation = 0.891 and 0.817, respectively). To extract mechanistic 

knowledge from each spot I estimated signaling pathway activities from gene expression data 

(Figure CH3-4d). In combination, my analyses allowed us to link structural information of 

spatial transcriptomics to cellular functions for each slide, e.g. I observed in areas with an 

abundance of fibroblasts an increased activity of TGFb and in necrotic regions the location of 

immune cells coupled to a higher activity of NFkB.   
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Figure CH3-4. Generation of single cell atlas and spatial mapping of processes and structures.  

a, UMAP embedding of snRNA-seq data from all samples (n=191,795) including 11 major cell-types. Number 
of cells per cell-type (x1000). b, Transcription factor (TF) binding and TF target expression per major cell-type 
based on the snATAC- seq and snRNA-seq data. c, Overrepresented spatially variable biological processes 
(myocardium related, immune related and fibrosis related) across regions. Each cell contains the mean adjusted 
p-value of a hypergeometric test across all spatial transcriptomics samples belonging to each region. d, 
Representative characterisation of spatial transcriptomics data using cell-type deconvolution (cell2location) and 
pathway activity (PROGENy). Cell-type deconvolution and histology of these slides confirm the presence of 
vCMs, fibroblasts and myeloid cells (arrows). Pathway activity in these areas was enriched for TGFβ and NFκB. 
Reprinted and adapted from [155] 

 

3.4 Modeling global tissue structure with spatial transcriptomics 

To explore the general organization principles of the tissues I analyzed, I estimated spatial 

dependencies between cell-types and molecular processes using spatial transcriptomics. First, 
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I classified spatial transcriptomics spots from all samples into nine different classes of tissue 

structures based on their cell-type compositions using the deconvolution results and clustering 

analysis (Figure CH3-5a). I hypothesized that these tissue structures represent repetitive classes 

of cell communities or niches and describe in a low resolution the general structural building 

blocks shared between different specimens (Figure CH3-5b). To describe the recovered tissue 

structures, I identified the differentially abundant cell-types in each one of them. I observed 

that four tissue structures, niche 1, niche 7, niche 8, and niche 9 were enriched with 

cardiomyocytes, endothelial cells, and pericytes (Wilcoxon test, adj. p-value < 0.05, Figure 

CH3-5c). While these niches recovered the myogenic enriched regions of the tissues, they also 

contained differential compositions of fibroblasts and immune cells. Additionally, I recovered 

a fibrogenesis and an inflammatory niche that contained differential compositions of 

fibroblasts and immune cells (niche 5 and 4 respectively). Finally, I observed niches associated 

with the lowly abundant cells such as vSMCs (niche 3 and 6), adipocytes, immune and 

proliferating cells (niche 2). My results align with expected morphological features of the heart 

and provide a description of cellular colocalization events.  

To estimate the dependencies between the abundances of cell-types in each spatial 

transcriptomics spot as well as their relationships in the immediate or distant neighborhood I 

fitted spatially contextualized models to the deconvolution scores of all spots and slides.  First, 

I calculated the cell-type dependencies within spots (Figure CH3-5d), representing strong 

colocalization or mutual exclusion events. Endothelial cells were the most predictive of the 

abundance of vSMCs, pericytes, adipocytes, and cardiomyocytes, likely reflecting vasculature 

dependencies. Lymphoid and myeloid cells showed strong dependencies between them, as well 

as myeloid and fibroblasts, representing the inflammatory and fibrogenesis tissue structure 

recovered previously. Cardiomyocytes and pericytes showed strong dependencies capturing 

similar compositional trends as the ones observed in myogenic enriched tissue structures. Then, 

I calculated the cell-type dependencies occurring between immediate neighboring spots (Figure 

CH3-5e). Abundance dependencies were similar as the ones observed within spots, suggesting 

that tissue structures expand in larger areas of the tissue. By looking at immediate neighbors I 

captured mostly vasculature related interactions that included vSMCs, endothelial cells, 

pericytes, cardiomyocytes and fibroblasts. Finally, I explored cell dependencies in the distant 

neighborhood focused in a radius of 15 spots (Figure CH3-5e). The strongest differential 

interaction that I observed compared to the other descriptions was between vSMCs and 

endothelial cells. My different spatially contextualized descriptions estimated from spatial 
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transcriptomics provide a structural reference that aligns with the expected morphological 

organization of these specimens and demonstrate that proper integration was achieved. 

Finally, I identified dependencies between signaling pathways and cell-types in space to link 

tissue organization to function (Figure CH3-6). Local and extended neighborhood model 

importances captured relationships between PI3K and p53 signaling which showed a mutually 

exclusive spatial distribution while both pathways are predicted by cardiomyocytes (Figure 

CH3-6a,c). PI3K signaling in cardiomyocytes controls the hypertrophic response to preserve 

cardiac functions [175], while p53 is known to act as a master regulator in cardiac homeostasis 

[176]. Spatial segregation of these CM-related pathways points towards functional CM 

heterogeneity. I observed colocalized and extended neighborhood relationships of known key 

pathways in fibrosis including TGFβ and NFkB predicted by fibroblasts (Figure CH3-6). 

Overall, CMs were the best predictor cell-types of the activities of the estimated pathways from 

PROGENy. Hypoxia and WNT pathway showed a stronger colocalization to CMs in ischemic 

specimens (Figure CH3-6) highly consistent with the cardiomyocyte differentiation events 

occurring after myocardial infarction [177], [178]. My results compile tissue organization 

principles of the human heart that relate to coordinated cellular processes and provide a basis 

for comparative analysis in this atlas. 

3.5 Patient comparison between conditions with spatial transcriptomics 

 

To identify general tissue differences during remodeling after myocardial infarction, I 

compared the specimens of the distinct regions and patients at the molecular and compositional 

level in different scales. First, I regrouped our samples in three major classes based on structural 

and histological differences: myogenic-enriched, fibrotic-enriched, and ischemic-enriched. I 

evaluated the extent in which the molecular information of the visium slides could recover the 

histological differences. I generated pseudobulk expression profiles of each Visium slide and 

projected them in low-dimensional UMAP space (Figure CH3-7A). I observed that samples 

grouped mainly by histological differences, as expected. To unbiasedly group samples, I 

performed hierarchical clustering of the pseudobulk profiles and observed that except from one 

ischemic sample, all slides of the same group clustered together. These results suggest that 

molecular information captured the histological differences of our samples. 
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Figure CH3-5. Structural hallmarks of cardiac tissue.  

a, Schematic of cell-type niche definition, UMAP embedding and clustering of spatial transcriptomics (ST) spots 
based on major cell-type compositions transformed into isometric log ratios. b, Spatial mapping of cell-type niches 
in a control and an ischemic (IZ) sample. Arrows show niche 8 areas in the control slide. Arrows in the IZ sample 
show niche 4 and how it surrounds niche 5. c, Scaled median cell-type compositions within each niche. *= reflects 
increased composition of a cell-type in a niche compared to other niches (one-sided Wilcoxon Rank Sum test, adj. 
p-value < 0.05). d, Median standardized importances (> 0) of cell-type abundances in the prediction of other cell-
types within a spot inferred from spatially contextualized models. e, Median standardized importances (> 0) of 
cell-type abundances in the prediction of other cell-types within the immediate neighborhood (upper part) and the 
extended neighborhood (effective radius of 15 spots) (lower part) inferred from spatially contextualized models. 
Cell-type abundances of the immediate (upper panels) and extended neighborhood of cardiomyocytes, fibroblasts 
and myeloid cells. Reprinted and adapted from [155] 
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Extended Data Fig. 6. Cell-type niches and spatially contextualized views analysis. a-b, UMAP embedding of 
spatial transcriptomics (ST) spots based on major cell-type compositions colored by the patient (a) or region (b). 
c, Cell-type niche compositions across patient sample. d, UMAP embedding of ST spots based on major cell-type 
compositions colored by the compositions of cycling cells, pericytes, adipocytes, endothelial cells and myeloid 
cells and their respective marker genes (MKI67 cycling cells, ABCC9 pericytes, FASN adipocytes, VWF 
endothelial cells, IL7R myeloid cells, and MYH11 vSMCs). e, Standardized mean PROGENy pathway activities 
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Figure CH3-6. Links between structures and functions.  

a, Median standardized importances (> 0) of cell-type abundances (left) and pathway activities (right) in the 
prediction of signaling pathway activities within a spot inferred from spatially contextualized models. b, Spatial 
distribution of cardiomyocytes and hypoxia, p53 and PI3K signaling pathway activities in ischemic tissue slides.  
c, Median standardized importances (> 0) of cell-type abundances in the extended neighborhood (effective radius 
= 15), and PROGENy pathway activities in the immediate or extended neighborhood on the prediction of pathway 
activities inferred from spatially contextualized models. Reprinted and adapted from [155]. 

 

 

Since the pseudobulk profile of each Visium slide summarizes the information of many cell-

types, I then evaluated to what extent the differences in cellular composition explained the 

observed molecular and histological differences (Figure CH3-7B). I estimated for each multi-

omic sample a mean composition of all major cell-types and identified that the distributions of 

compositions of eight cell-types were different between patient groups (Kruskall-Wallis test 

adj-p < 0.10). Cardiomyocytes were the most abundant cells in myogenic-enriched samples, 

while fibroblasts and vSMCs were more representative in fibrotic-enriched samples. Ischemic-

enriched samples showed a larger composition of myeloid, lymphoid and cell-cycling cells, 
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with low proportions of cardiomyocytes representing the events expected after myocardial 

infarction. My comparisons of cell-compositions across multiple modalities aligned with the 

structural differences observed in histology. 

 

Given the observed differences in cellular compositions, I then investigated if these 

compositional changes were also reflected on how the tissue organized (Figure CH3-7C). I 

leveraged the spatial information of Visium and compared the cell-type spatial dependencies 

of each slide estimated with MISTy. For each slide, I concatenated the standardized 

importances of each spatially contextualized model to create a cell-type spatial dependency 

signature. UMAP projection of cell dependencies in all spatial contexts showed that in general, 

samples were distributed based on their histological group. Hierarchical clustering of model 

importances showed similar results. To identify specific cell-type dependencies that change 

between the different patient groups, I made pairwise comparisons of the distribution of 

importances of each pair of cell-types using Wilcoxon tests. The largest differences between 

myogenic and fibrotic enriched groups were observed between the dependencies that vSMCs 

and pericytes had with other cells. I identified differential dependencies between vSMCs and 

fibroblasts cells, both in the immediate and larger neighborhood, and between cardiomyocytes 

and pericytes, within the same spot as well as in the larger spatial context. These observations 

align with the compositional analysis, where I observed slight enrichment of vSMCs and 

depletion of pericytes in the fibrotic group.  

 

Similarly, observed differences between ischemic and myogenic enriched groups related to 

endothelial cells, vSMCs, pericytes and cardiomyocytes. I observed changes in dependencies 

between myeloid and lymphoid cells in the immediate neighborhood, and between fibroblasts 

and myeloid cells within a spot, which could be associated with immediate inflammatory and 

fibrotic responses after myocardial infarction. Aligned with my compositional analysis, 

differential interactions between cardiomyocytes and endothelial cells were observed. 

Differences between ischemic and fibrotic enriched samples included interactions with 

pericytes, cardiomyocytes, endothelial and neuronal cells. My analysis showed that cell-

dependencies within a histologically defined group are stable and are related to changes in 

abundance of cell-types. 
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Figure CH3-7. Sample differences at the molecular, compositional and organizational levels. 

a, UMAP embedding of the pseudobulk transcriptional profile of all patient samples from spatial transcriptomics 
(ST)  and visualization of major cell-type abundance in three predefined groups; myogenic group (control, RZ, 
BZ), ischemic group (IZ) and fibrotic group (FZ). Each dot represents a ST patient sample. In the ST slides each 
spot was labeled by the cell-type with the largest proportion. b, Comparisons of patients mean major cell-type 
proportions (inferred from snRNA-seq, snATAC-seq, and ST data) between myogenic, ischemic and fibrotic 
groups. P-values are estimated by Wilcoxon rank sum test (unpaired, two-sided). Each dot represents a patient 
sample (n=13 for myogenic group, n=9 for ischemic group, n=5 for fibrotic group). c, Pairwise comparison 
between patient groups (one vs rest) of the standardized importances of cell-type abundances within the same spot 
(intra), and in the immediate (juxta) or extended neighborhood (para) to predict other cell-types’ abundances 
(Wilcoxon rank sum test, testing for greater values as alternative hypothesis). * = adj. p-value <= 0.15. Reprinted 
and adapted from [155]. 
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Figure 2. Characteristic tissue organization inferred from spatial transcriptomics data. a, Schematic of cell-type niche 
definition, UMAP embedding and clustering of spatial transcriptomics (ST) spots based on major cell-type compositions 
transformed into isometric log ratios. b, Spatial mapping of cell-type niches in a control and an ischemic (IZ) sample. Arrows 
show niche 8 areas in the control slide. Arrows in the IZ sample show niche 4 and how it surrounds niche 5. c, Scaled median 
cell-type compositions within each niche. *= reflects increased composition of a cell-type in a niche compared to other niches 
(one-sided Wilcoxon Rank Sum test, adj. p-value < 0.05). d, UMAP embedding of ST spots based on major cell-type 
compositions colored by the compositions of cardiomyocytes and fibroblasts and their respective marker genes (RYR2 for 
cardiomyocytes and PDGFRA for fibroblasts). e, Median standardized importances (> 0) of cell-type abundances in the 
prediction of other cell-types within a spot inferred from spatially contextualized models. f, Median standardized importances 
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I hypothesized that the differences in cell composition and organization observed between the 

samples could be also represented as changes in major tissue structures or cell communities. 

To identify changes in abundance of tissue structures between our different samples, I tested if 

there were differences in the compositions of the cellular niches that I found by clustering the 

Visium spots of all of the samples. Principal component analysis and hierarchical clustering of 

the isometric log ratio-transformed compositions of cellular niches showed that most of the 

samples grouped based on their histological groups (Figure CH3-8a). In six out of nine niches 

I observed differences in compositions of niches (Kruskal-Wallis test, adj. p-value < 0.1). 

Niche-4 mainly associated with fibrotic structures was observed in higher proportions in 

fibrotic-enriched slides, while niche-5 associated with pre-fibrotic structures was mainly 

present in ischemic-slides (Figure CH3-8b). These results agree with the differences in 

dependencies between myeloid and Fib cells described previously. Niche-8 and niche-9, 

mostly representing muscle structures, were more present in myogenic and fibrotic enriched 

samples compared to ischemic samples (Figure CH3-8b). vSMCs-rich niche-6 showed similar 

patterns. My results suggest that changes in high-level tissue structures are associated with the 

molecular and compositional differences of the profiled samples. 

 

To fully exploit the molecular resolution of spatial transcriptomics I assessed if I was able to 

capture tissue structures that couldn’t be captured by histology alone and were different 

between sample groups. I separated myogenic-enriched samples into three groups based on the 

region and patient condition (CTRL, BZ, and RZ). These tissues, as previously described, share 

similar cellular compositions and organization in general, however given their origin sampling 

site may capture distinct molecular patterns, specially given their interaction with ischemic 

regions. I performed pairwise comparisons of changes in compositions of cellular niches and 

observed no clear difference between niches (Wilcoxon test, adj. p-value < 0.1). A subtle 

increase in proportions of niche-1 and niche-7 were observed in RZs. These niches represent 

muscular structures, but have an overrepresentation of the stressed CM phenotype. Similarly, 

a subtle increase of proportions of the fibrotic niche-4 were observed in the RZs (Figure CH3-

8c). To circumvent the limitations of summarizing the molecular profile of Visium spots with 

cell-type compositions and complement the catalog of tissue structures, I generated a set of 

molecular niches based on the integration and clustering of Visium spots using gene expression 

(Figure CH3-9a). This data representation could allow us to identify molecular differences of 

structurally similar tissue structures with a better definition. The compositions of the 12 new 

molecular niches were able to separate the ischemic-enriched samples from the rest, however 
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differences between fibrotic and myogenic enriched samples were not captured based on 

hierarchical clustering and principal component analysis (Figure CH3-9b). Molecular niches 

capturing muscle and myeloid-rich structures showed compositional differences across 

conditions (Kruskal-Wallis test, adj p < 0.1). I observed molecular niches that were able to 

differentiate samples within the myogenic-enriched group. Niche-1 and niche-2 both represent 

muscle-rich structures, but the latter contains an enrichment of stressed-CM phenotype 

markers. I observed an enrichment of niche-2 and a depletion of niche-1 in BZs compared to 

controls, suggesting that differences in cell-type phenotypes are also relevant to differentiate 

the sample groups (Figure CH3-9c). 

 

Finally, I compared the molecular profiles of the major cell-types between the different 

histological groups. I calculated pseudobulk expression profiles of each combination of cell-

types and samples from the snRNAseq data. Then, for each cell-type, I calculated sample 

distances using modified Jensen-Shannon divergences. A full sample divergence matrix was 

computed by summing all cell-type specific sample divergences. Samples grouped mainly by 

histological group in an multidimensional scaling projection suggesting that cell-type specific 

molecular differences are also associated with tissue organization and composition  (Figure 

CH3-9d). In summary, my analyses highlight that specimens of similar histological groups 

share a stable composition of tissue structures that impact the expression profile of specific 

cell-types. Moreover, I demonstrated that spatial transcriptomics can help to identify molecular 

differences in tissues with similar cell-type compositions or structures such as the distinch 

fibrotic processes in ischemic and fibrotic samples, or the cardiomyocyte phenotypes in the RZ 

and BZ. 
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Figure CH3-8. Sample differences using compositional niches.  
a, Principal component analysis of the isometric log ratio compositions of cell-type based niches. b, Distribution 
of the compositions of the niches 4, 5 and 8 in distinct patient groups. c, Distribution of the compositions of the 
niches 1, 4 and 7 in distinct groups of myogenic enriched samples. Reprinted and adapted from [155]. 
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Figure 3. Characteristic tissue structures inferred from spatial transcriptomics data. a, Schematic of the definition of 
molecular niches (groups of spots with similar transcriptional profiles), UMAP embedding and clustering of spatial 
transcriptomics (ST) spots based on log normalized gene expression. b. Gene expression of RYR2, ABCC9, MYH11, PDGFRa, 
CD8A and IL7R. Colors refer to gene-weighted kernel density as estimated by using R package Nebulosa. c, Spatial mapping of 
molecular niches in a control sampe. Arrows highlight molecular niche 11 (MYH11+ vSMCs enriched) surrounded by molecular 
niche 3 (PDFRa+ fibroblasts enriched). d, Scaled median cell-type compositions within each molecular niche. *= reflect 
increased compositions of a cell-type in a niche compared to other niches (one-sided Wilcoxon rank sum test, adj. p-value < 0.05 
). e, Visualization examples of the spatial distribution of molecular niches in three different patient groups. Note the differential 
abundance of molecular niche 1 and 6. f, Comparison between patient groups of the proportions of molecular niches 5, 6, and 1 
(two-sided Wilcoxon rank sum test, Box-Whisker plots showing median and IQR. Maximum and minimum values as described 
previously). Each dot represents a patient sample (n for myogenic group = 13, n for ischemic group = 9, n for fibrotic group = 
5). g, Top 5 differentially upregulated genes between spots belonging to molecular niches enriched with cardiomyocytes. 
Summary area under the curve (AUC) is used as a size effect of comparing the expression of one molecular niche against the 
rest. * = reflect FDR < 0.05 and summary AUC > 0.55 (n for mol. niche 0 = 30,058, n for mol. niche 1 = 19,958, n for mol. niche 
3 = 7,360). h-i, H&E, visualization of molecular niches 1,2, and 4 and gene expression (MYBPC3, ANKRD2, and MYLK3) of a 
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Figure CH3-9. Sample differences using molecular niches and single cell gene expression.  

a, UMAP embedding and clustering of spatial transcriptomics (ST) spots based on log normalized gene 
expression. Scaled median cell-type compositions within each molecular niche. *= reflect increased compositions 
of a cell-type in a niche compared to other niches (one-sided Wilcoxon rank sum test, adj. p-value < 0.05 ). b, 
Principal component analysis of the isometric log ratio compositions of molecular niches. c, H&E, visualization 
of molecular niches 1,2, and 4 and gene expression (MYBPC3, ANKRD2, and MYLK3) of a control slide (upper) 
and a border zone (lower). Note that molecular niche 2 (blue), is present in both the control and borderzone slide, 
however an increased abundance in the borderzone is observed in the lower part of the slide. d, Multidimensional 
scaling calculated from the molecular distances of samples across cell-types. Reprinted and adapted from [155]. 
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3.5 Spatial contextualization of cell-states 

In this section I will describe the analyses I performed to estimate the influence that the tissue 

structure and organization had in explaining the spatial distribution and variance of cell-states 

of particular importance in myocardial infarction. The text was written by me and adapted from 

[155] when neccessary. 

3.5.1 Cardiomyocytes 

To further investigate distinct cardiomyocyte (CM) states, we aimed to understand the 

molecular heterogeneity of cardiomyocytes after myocardial infarction (Figure CH3-9). 

Zhijian Li co-embedded the snRNA-seq and snATAC-seq data from cardiomyocytes into a 

common low-dimensional space and clustered the cells. This uncovered five cell-states of 

cardiomyocytes (vCM1-5), spanning multiple samples and modalities. Molecular differences 

between the distinct clusters revealed that CM states represent distinct cellular stress states 

within the acute myocardial infarction phase. (i.e., vCM1; “non-stressed”, vCM2 “pre-

stressed” and “stressed” vCM3) (Figure CH3-10a,b). For details consult  [155]. 

I next estimated the cell dependencies of the stressed cardiomyocyte state (vCM3) with other 

cell types within each spatial spot and its local neighborhood (radius of 5 spots) between sample 

groups (Figure CH3-10c). I observed that the importance of vSMCs in predicting vCM3 within 

a spot was higher in myogenic and ischemic samples, while the importance of fibroblasts and 

myeloid cells increased in fibrotic samples (Figure CH3-10c-e). The local neighborhood 

modeling of vCM3 revealed that the abundance of fibroblasts better explained vCM3 in 

myogenic enriched samples compared to fibrotic samples. Overall, this demonstrates that the 

“stressed” CM-state vCM3 occurs in the perivascular niche of larger blood vessels, 

highlighting the interaction of mesenchymal cells of the perivascular niche with stressed 

cardiomyocytes in this tissue area. Furthermore, I noticed that when comparing RZ with control 

samples, stressed vCM3s are best predicted by myeloid cells (Figure CH3-10f). This underlines 

the importance of immune-CM interactions that could additionally explain the increased 

arrhythmia susceptibility in the remote regions of the post-infarct heart, since it has been shown 

that cardiac macrophages influence normal and aberrant cardiac conduction. My results 

showed that the “stressed”-CM-vCM3 can be found in distinct spatial cell-type neighborhoods 

enriched by different compositions of vSMCs, fibroblasts, adipocytes or myeloid cells.  
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Figure CH3-10. Characterization of cardiomyocyte states.  

a, UMAP embedding of sub-clusters of human cardiomyocytes using integrated snATAC-seq and snRNA-seq 
data. Colors refer to different CM-states. b, Gene expression of ANKRD1 and NPPB. Colors refer to gene-
weighted kernel density as estimated by using R package Nebulosa. c, Mean standardized importances of the 
abundances of major cell-types within a spot and the local neighborhood (effective radius of 5 spots) in the 
prediction of vCM3 in spatial transcriptomics. d, Comparison of standardized importances of vSMCs’ abundances 
within a spot to predict vCM3 between myogenic, ischemic, and fibrotic groups (two-sided Wilcoxon rank sum 
test, Box-Whisker plots showing median and IQR. Maximum and minimum values as described previously). Each 
dot represents a sample (n = 9 for myogenic group, n = 7 for ischemic group, n = 4 for fibrotic group). e, 

Visualization examples of the abundances of vSMCs or fibroblasts and vCM3 state scores in a BZ (left) and a 
control human heart slide (right). f, Comparison of standardized importances of Myeloid cells’ abundances in the 
local neighborhood to predict vCM3 between control and remote zone samples (two-sided t-test, Box-Whisker 
plots showing median and IQR. Maximum and minimum values as described previously). Each dot represents a 
sample (n = 3 for controls, n = 3 for remote zones). BZ: border zone, RZ: remote zone. Reprinted and adapted 
from [155]. 

 

3.5.1 Endothelial cells 

Co-embedding of snRNA- and snATAC-seq data identified five subtypes of endothelial cells 

from all major vascular beds, namely capillary endothelial cells, arterial endothelial cells, 

venous endothelial cells, lymphatic and endocardial endothelial cells (Figure CH3-11a,b).  I 

modeled the association of the different endothelial cell subtypes with the abundances of the 

other major cell-types in spatial transcriptomics (Figure CH3-11c). I observed that the markers 

of arterial endothelial cells were best predicted by vSMCs within a spot and in the local 

neighborhood (radius of 5 spots) reflecting the anatomy of arterioles in the heart. Moreover, 

the expression of markers of capillary endothelial cells were best predicted by the presence of 

pericytes in the tissue in line with the known presence and role of pericytes in direct contact to 

d e f
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capillary endothelium (Figure CH3-11d). The rest of the endothelial sub-types were mainly 

predicted by the presence of fibroblasts within a spot and in the local neighborhood. 

Additionally, I observed that the abundance of myeloid cells correlated with the expression of 

markers of lymphatic endothelial cells.   

 

Figure CH3-11. Characterization of endothelial states.  
a, UMAP embedding of sub-clusters of human endothelial cells using the integrated snRNA-seq and snATAC-
seq data. Colors refer to different endothelial cell populations. b, Gene expression of NRG3, FLT4, SEMA3G and 
ACKR1. Colors refer to gene-weighted kernel density as estimated by using R package Nebulosa. c, Median 
standardized importances (>0) of the abundances of major cell-types within a spot (left) and the local 
neighborhood (effective radius of 5 spots) (right) in the prediction of endothelial cell-state scores in spatial 
transcriptomics. d, Visualization of the spatial distribution of the abundances of vSMCs and the state score of 
arterial endothelial cells in an ischemic (left) and control (right) sample. Arrows point at colocalization events. 
Visualization of the spatial distribution of the abundances of pericytes and the state score of capillary endothelial 
cells sample. Arrows point at colocalization events. Reprinted and adapted from [155]. 

 

3.5.1 Fibroblasts and myeloid cells 

To dissect molecular and cellular mechanisms of fibrogenesis in the human heart, we clustered 

all fibroblasts using the integrated snRNA-seq and snATAC-seq data and identified four sub-

c

d
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clusters (Fib1-4). Molecular characterization of these clusters revealed a functional continuum 

capturing the increased expression of extracellular matrix related genes which associates with 

myofibroblast differentiation (Figure CH3-12a-b). Myeloid-derived cells have been reported 

to be key players in cardiac remodeling following myocardial infarction. To understand their 

heterogeneity, we sub-clustered them using the multiomic data and identified five sub-clusters 

across all myocardial infarction samples  (Figure CH3-12c). We observed that two clusters 

showed marker expression of resident myeloid cells (LYVE+ and FOLR+ expressing myeloid 

cluster), as well as a CCL18 and SPP1 expressing macrophage cluster and a monocyte/cDC 

cluster (Figure CH3-12d). To further gain insights about the spatial dependencies of the 

myeloid and fibroblasts states, I modeled their marker expression using the spatial 

transcriptomics data. I observed that the presence of SPP1+ macrophages better predicted all 

fibroblasts states compared to other myeloid cell states, with a higher importance for 

myofibroblasts within a spot and in the local neighborhood. Myofibroblasts marker expression 

aligned with a gradient of expression of the markers of SPP1+ macrophages (Figure CH3-12e-

f). This pattern was also recovered by our cell-type niche definition, where the inflammatory 

niche 5 was surrounded by the fibrotic-rich niche 4, which I could confirm by a higher 

expression of SPP1+ macrophages and myofibroblast marker genes in niche 5 compared to 

niche 4.   

 
 
Figure CH3-12. Characterization of fibroblast and myeloid states.  

a, UMAP embedding of sub-clusters of human cardiac fibroblasts using the integrated snRNA-seq and snATAC-
seq. Colors refer to different populations. b, Gene expression of SCARA5, COL1A1, POSTN, and FN1. Colors 
refer to gene-weighted kernel density as estimated by using R package Nebulosa. c, UMAP embedding of sub-

c d
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clusters of human cardiac myeloid cells using the integrated snRNA-seq and snATAC-seq. Colors refer to 
different populations. d, Gene expression of LYVE1, CCL18, ZBTB46, and SPP1. Colors refer to gene-weighted 
kernel density as estimated by using R package Nebulosa. e, Median standardized importances (>0) of the cell-
state scores of myeloid cells in the local neighborhood (effective radius of 5 spots) in the prediction of fibroblast 
cell-state scores in spatial transcriptomics. f, Visualisation of cell-state scores of myofibroblasts (Fib2) and SPP1+ 
MQs in a RZ sample. Arrows point to regions where there’s an observed colocalization.  Reprinted and adapted 
from [155]. 

 
 

3.6 Discussion and future perspectives 

In this chapter I described the work performed to build the first multi-omic atlas of human 

myocardial infarction and more general of a human disease, including spatial transcriptomic, 

single-cell gene expression (snRNA) and chromatin accessibility (snATAC) data. This 

represents a first step towards a multi-scale understanding of tissue function and 

transformations during disease. 

I presented the fundamental objectives of multi-scale modeling that relate to the proper 

definition of the molecular and structural characteristics of the tissue. Despite the challenges 

associated with data quality and generalization, in this work I proposed a computational 

strategy that allowed us to spatially contextualize the variability observed in single cell 

transcriptomics. My computational analysis increased the resolution of spatial transcriptomics 

by estimating for each location the major cell-type compositions and increased the 

interpretability of their molecular profiles by estimating pathway activities and mapping 

transcription factor binding activities. These different layers of biological information allowed 

me to link the organization of human heart tissue specimens of different histomorphological 

regions, time-points after myocardial infarction and different individuals to cellular functions. 

I described cardiac “niches”, representing structural building blocks that are shared between 

different slides and could facilitate patient comparison. These niches were generated by 

clustering spatial transcriptomics spots using cell-type compositions or gene expression 

profiles that capture both structural and molecular diversity in tissues. Analysis of the 

integrated snRNA- and snATAC-seq data identified different cell states and sub-types for 

cardiomyocytes, endothelial cells, fibroblasts, and myeloid cells. 

Moreover, I proposed an initial computational strategy for case-control comparisons that 

incorporate tissue- and cell-centric measurements. I contrasted the compositions of each major 

cell-type across patient groups with information provided by all omic layers, then I contrasted 

the compositions of niches from spatial transcriptomics and demonstrated consistent 
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remodeling events characteristic of fibrotic and ischemic samples. Finally, I identified 

molecular differences in myogenic regions that differentiated control samples from border 

zones and remote zones of myocardial infarction patients. 

Given the limitations of inferring cell communication events from transcriptomics data and the 

difficulties of disentangling patterning events from communication events in spatial 

transcriptomics, spatial modeling was exclusively used to study the spatial organization of cell-

types and cell-states in the spatial transcriptomics slides. I estimated the importance of the 

abundance of each major cell-type in explaining the abundance of the other major cell-types in 

different spatial contexts. This analysis explicitly focused on tissue patterning and allowed for 

the identification of differential cell-type dependencies between patient groups. I estimated the 

relationship between the tissue structure and cell functions, encoded as signaling pathway 

activities per spot estimated from gene expression. In this model, I predicted spatial 

relationships between pathway activities and the importances of cell-type abundances in 

predicting the patterns of pathway activities. Finally, I estimated associations between the 

tissue organization and the spatial distribution of failing cardiomyocytes and the different 

endothelial and fibroblast cell-states. I hypothesized that the distribution of specific cell-states 

in the spatial transcriptomics slides could be modeled by the cell-type composition or cell-state 

presence of individual spots and their neighborhood. With these models I was able to capture 

known co-localizations of venous endothelial cells, vascular smooth muscle cells, and capillary 

endothelial cells and pericytes. Moreover, I describe differential spatial correlations of the 

transcriptional signature of the “stressed” cardiomyocyte state vCM3 and the abundance of 

other cell-types between different patient groups. This analysis suggested that the location of 

this cardiomyocyte state can occur in different tissue regions depending on the time point and 

region after MI. In relation to fibroblast and myeloid cell-state populations, I observed a spatial 

gradient of myofibroblasts that aligned with a gradient of SPP1+ macrophages. 

The combination of spatial technologies with single cell data represented an opportunity to 

study how cardiac cell states are influenced by their tissue microenvironment. The inferred 

interactions between cell-types largely reflect the spatial organization of the tissue and, while 

many other factors are involved, these interactions provide hypotheses for further analysis.  My 

analyses revealed multiple novel insights into molecular and spatial biology of human 

myocardial infarction at different disease stages and scales that provide novel insights into the 

important mechanisms of cardiac injury repair and fibrosis and a valuable resource for the field 
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and future drug target discovery studies. Additionally, I devised a novel computational strategy 

for data integration across multiple experiments and modalities, which serves as a framework 

for future datasets and analyses.  
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Chapter 4 
 

Multicellular factor analysis for a tissue-
centric understanding of disease 

In this chapter I introduce a tissue-centric framework to assess the variability of samples within 

a patient cohort profiled with single cell transcriptomics. By combining the information of 

single cell, spatial, and bulk transcriptomics, I found that inflammatory and reparative 

responses associated with myocardium remodeling are dominated by global coordinated 

transcriptional responses across distinct cell lineages. The results described in this chapter 

represent a unification of the knowledge generated by my research previously presented in the 

last two chapters and support the possibility of building holistic multi-scale molecular 

descriptions of disease. 

4.1 Multicellular analysis of single cell omics data 

The availability of single cell transcriptomics atlases profiling the pathological state of 

different tissues and organs in humans has increased during the last years and will continue to 

expand in different areas of the biomedical field. In these studies a common objective is to 

generate cross-conditions comparisons of the molecular profiles of major cell lineages,  called 

cell types, by contrasting the gene expression between two or more groups of samples. The 

differentially expressed genes across sample groups of each cell type then are interpreted as a 

consequence of the emergence of cell states, groups of cells sharing a function, or as a 

consequence of a global transcriptional response of the majority of cells to a disease 

microenvironment. However, cross-condition comparisons are generally performed in each 

cell type separately, ignoring the fact that cells in tissues are organized in communities with 

shared functions. This cell-centric approach treats each transcriptional response to disease 

independent from each other, missing coordinated multicellular changes, where particular gene 

expression changes may be shared across cell types. 
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A family of novel tissue-centric methods have been proposed, such as DIALOGUE [90], scITD 

[91], and tensorcell2cell [92], in which the main objective is to approximate multicellular 

responses by inferring from a collection of “cell type views'' a latent space that captures the 

shared variability across features of distinct cell types. In these models, cell type views can 

represent various molecular readouts of a cell type of interest that are quantified across distinct 

samples. DIALOGUE and scITD model pseudobulk expression profiles of individual cell 

types, while tensorcell2cell uses communication scores between pairs of cell types. These 

methods differ in their statistical foundations (Table CH4-1), however all of them allow to 

interpret each latent variable as a multicellular higher-order transcriptional response, or 

program, that describes certain aspect of the variability of a sample cohort (eg. clinical 

condition, technical effects, etc.) facilitating exploratory and unsupervised analysis of highly 

nested and dimensional single cell data. scITD and tensorcell2cell additionally report 

reconstruction error metrics of the latent space that quantify how much of the variability of a 

specific cell type view can be recovered by the latent variables. Moreover, since all of the latent 

variables are linear combinations of the features of distinct cell type views, it is possible to 

evaluate shared and cell type specific responses associated with a technical or clinical aspect 

of the sample cohort. 

While these novel tissue-centric methods are helpful in the unsupervised analysis of cross-

condition single cell atlases, multiomics integration methods, such as Multi-Omics Factor 

Analysis (MOFA) [34], [179], can also be repurposed for the inference of multicellular 

responses, since they share modeling objectives and treat similar multi-table data 

representations. MOFA is a flexible method that overcomes the limitation of data completeness 

that multicellular integration methods enforce and provides the possibility of jointly analyzing 

independent groups of samples with various classes of cell type views, representing a 

generalization of the aforementioned recently developed methods.  

Although all of these methods have the possibility to infer coordinated gene expression events 

across cell types, no current framework has been proposed to contextualize these multicellular 

programs estimated from single cell data to other scales such as spatial and bulk omics. Spatial 

mapping of coordinated transcriptional processes across cell types in tissues could delineate to 

what extent these are the consequence of a global response to the general tissue 

microenvironment or the consequence of specific cellular interactions. Complementary, 

multicellular coordinated changes could be used to reinterpret the collection of transcriptional 

signatures derived from bulk transcriptomics studies.  
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Here I propose a cross-condition multicellular analysis from single cell transcriptomics data 

with MOFA using as case study a collection of large public atlases of human myocardial 

infarction and end-stage heart failure. I show that MOFA can be used for an unsupervised 

analysis of the variability of patients in single cell data sets and for the prioritization of 

coordinated transcriptional changes across cell types associated with clinical aspects. I dissect 

from these programs the general pathological cell type responses from expression fingerprints 

of cell state emergence. I show that upon myocardial infarction most of the cell type specific 

gene expression deregulation is the product of a global tissue level response, rather than only 

the consequence of new functional populations of cells. Moreover, I explore the expression of 

these coordinated programs in tissues by mapping their distribution in spatial transcriptomics 

data and suggest that pathological programs distribute in larger areas of diseased tissues and 

that this distribution is not constrained to the colocalization of specific cell types. Finally, I 

show how multicellular factor analysis can be used to generate a global comparison of single 

cell atlases that can facilitate the meta-analysis and integration of single cell data coming from 

multiple patient cohorts. I show that the estimated shared multicellular programs can be used 

to better deconvolute disease signals from bulk transcriptomics data that are not related to 

compositional changes of tissues. My analyses presented in this work represent a multi-scale 

and multi-cellular framework that integrates single cell, spatial and bulk transcriptomics for 

the analysis of cross-condition comparisons with the objective of understanding tissue 

responses in disease contexts (Figure CH4-1).  
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Figure CH4-1. Multicellular factor analysis using MOFA.  

Single cell omics data across conditions are generated with the objective to characterize disease processes and 
mechanisms. A tissue-centric analysis framework of cross-condition single cell atlases focuses on the inference 
of coordinated molecular events across cell types, in this chapter called multicellular programs. Here I propose to 
repurpose multiomics factor analysis (MOFA) [34], [179] to simultaneously decompose the variability of multiple 
cell types (eg. represented as gene expression matrices of pseudobulk profiles) and create a latent space that 
recovers multicellular transcriptional changes. Throughout this chapter, four applications are presented to show 
how this analysis can be used for an unsupervised analysis of single cell data of multiple samples and conditions, 
for a prioritization of disease signals using the inferred latent space, and for a combined analysis of multiple 
studies across different scales (eg. bulk or spatial transcriptomics). 
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Method Statistical 
method 

Input Output 

Latent 
variable 
scores 

per 
sample 

Multicellular 
programs 

encoded as a 
loading matrix 

Explained 
variance 

associated to 
each factor 

Explained 
variance 

associated to 
each view and 

factor 

Robust to non-
overlapping 
feature set  

Integrates 
multiple  
studies 

Input flexibility Linear 

DIALOGUE 
[90] 

Penalized matrix 
decomposition 

followed by 
multi-level 

modeling step 

Expression 
matrix or reduced 
matrix (PCA) of 

each cell 

NO YES NO NO NO NO NO YES 

scITD [91] Tucker 
decomposition 

Tensor of 
pseudobulk 
expression 

profiles per cell 
type 

YES YES YES YES NO NO NO YES 

Tensor 
cell2cell [92] 

Tensor 
Component 

Analysis 

Coexpression of 
ligand and 

receptors of pairs 
of sender and 
receiving cell 

types 

YES YES* 
(view agnostic) 

NO NO NO NO NO YES 

MOFA [179] Probabilistic 
group factor 

analysis 

Collection of 
pseudobulk 
expression 

profiles per cell 
type or any type 

YES YES YES YES YES YES YES YES 

Table CH4-1. Comparison of methods for multicellular analysis
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4.2 Results 

4.2.1 Multicellular factor analysis for an unsupervised evaluation of the variability 

of samples in single cell cohorts 

One of the main challenges of analyzing large cohorts of single cell transcriptomics data is to 

assess in an unsupervised fashion the variability in gene expression across multiple samples 

for all cell types. Data-driven approaches are required to describe the complexity of single cell 

data with a reduced number of variables and to quantify the amount of variance across cell 

types that can be associated with biological, rather than technical factors. In addition to 

evaluating the influence of technical or confounding factors, this type of analysis is particularly 

important for single cell studies designed to study disease processes in tissues where reliable 

clinical patient groupings are not obvious. 

 

A proposed solution to this task is to identify a shared latent space across cell types where the 

variability between samples is captured simultaneously. In this latent space, samples are 

defined by a reduced collection of factors usually built from a linear combination of the features 

of the original data. In the case of single cell transcriptomics data, the latent space can be 

inferred from a collection of cell type views representing, for example, the pseudobulk 

expression profile of each sample across cell types (Figure CH4-1). Ideally, each dimension or 

factor of the shared latent space is interpretable by 1) quantifying the contribution of each gene 

for each cell type in its definition and by 2) quantifying how much of the variability of a given 

view is captured by the factor. From the available methods designed explicitly to capture the 

multicellular variability of different samples in single cell experiments, scITD [91] is the only 

methodology that covers these requirements by performing Tucker decomposition [180] to a 

tensor formed by pseudobulk expression profiles of different cell types. However, one of the 

limitations of this approach is that it constrains the tensor for data completeness, in other words, 

the model requires an identical set of genes to be measured across cell types and requires all 

samples to contain complete profiles for all cell types. Given the differences in cell capture 

across samples and the expected non-overlapping set of genes expressed in different lineages, 

this modeling constraint is not always applicable to single cell data sets.  

 

The generation of a latent space that captures the variability of distinct views across samples 

is a task that has been addressed by state-of-the-art multiomics integration methods established 
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for bulk data. Hence, it is plausible that these integration methods, such as multi-omics factor 

analysis (MOFA) [34], [179], could be used for the multicellular analysis of single cell data. 

Based on probabilistic group factor analysis, MOFA aims at integrating multiple views 

measured for multiple samples in an unsupervised manner. Compared to scITD, MOFA allows 

for a more flexible definition of multi view integration, since it allows for the usage of 

incomplete data with missing values both in views and in features per view. Additionally, 

MOFA models are completely interpretable allowing to measure the contribution of each view 

in the reconstruction of the latent space and to associate the global variability of the data to 

multiple covariates of the samples.  

 

To demonstrate that MOFA can be repurposed to perform an unsupervised multicellular 

analysis of samples profiled with single cell RNA-seq, I fitted a MOFA model to a collection 

of 27 left-ventricle heart human samples profiling human myocardial infarction and control 

myocardium [155]. This data set contains samples of three major disease groups across 11 

major cell types: myogenic (n = 13), fibrotic (n = 5) and ischemic (n = 9). Pseudobulk 

expression profiles were generated for each major cell type of each sample described in the 

public atlas by summing up the gene counts of all cells belonging to the combination of sample 

and cell type. Profiles generated with less than 5 cells were excluded. Data was normalized 

using the trimmed-mean of M values (TMM) method in edgeR [47] with a scale factor of 1 

million and log-transformed. For each cell type expression matrix, highly variable genes were 

selected using scITD’s adaptation of PAGODA2’s method [91] before fitting a MOFA model 

with six factors where each cell type represented an independent view.  Feature-wise sparsity 

was not forced in the model to obtain the greatest number of genes per cell type associated with 

each factor. Lowly abundant cell types that were not captured in all samples ("Mast", 

"Neuronal", "proliferating", and "Adipocytes'') were excluded from the analysis. I associated 

the factor scores of each patient to disease group and batch labels to evaluate both biological 

and technical variability in the dataset using analysis of variance (ANOVA). P-values were 

corrected using the Benjamini-Hochberg procedure.  

 

The latent space returned by the MOFA model fitted to the single cell atlas (Figure CH4-2A) 

explained on average the 68.3% of the variability of gene expression of the highly variable 

genes across cell types. Hierarchical clustering of the samples based on their factor scores 

clearly separated ischemic and fibrotic specimens from myogenic-enriched samples, however 

I observed that only three out of five fibrotic samples were similar in their factor scores. From 
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six recovered factors, Factor 1 was the only one associated with the tissue condition labels (adj. 

p-value < 0.05, mean percentage of explained variance across cell types of 37.15%, Figure 

CH4-2B), and Factor 2 and Factor 5 were associated with the technical label (adj. p-value = 

0.051, mean percentage of explained variance across cell types of 19%). Fibroblasts (Fib), 

myeloid cells and vascular smooth muscle cells (vSMCs) were the cell types with the largest 

explained variance associated with the technical variable (> 22%). To easily visualize the 

biological variability of samples, I performed an Uniform Manifold Approximation and 

Projection (UMAP) to non-batch related factors (Figure CH4-2C). My results suggest that 

MOFA can be applied to cross-condition single cell atlases for exploratory unsupervised 

analysis that allows to detect and prioritize biological signals.  

 

I created a multicellular latent space of six dimensions with scITD to compare the performance 

of these two methods using the same collection of highly variable genes. The latent variables 

of scITD recovered in total the 57% of the variability of the expression across cell types, 11% 

less than the one recovered by the MOFA model. Two recovered factors associated with the 

tissue condition labels (Factor 2 and 4), with a mean percentage of explained variance across 

cell types of 9.5%. A single factor (Factor 3) associated with the technical label with a 

percentage of explained variance across cell types of 7.01%. The mean absolute Pearson 

correlation between the factors associated with the condition label across methods was of 0.51, 

with a maximum absolute correlation of 0.75 between MOFA’s Factor 1 and scITD’s Factor 

2. The mean Pearson absolute correlation between the loadings of these two factors across cell 

types was 0.66, suggesting a high concordance in the latent space reconstruction between the 

two methods. 

4.2.2 Multicellular coordinated programs are related to global responses during 

myocardial infarction 

To characterize the multicellular coordinated gene programs associated with cross-condition 

differences between sample groups identified with MOFA, I explored the cell type specific 

gene loadings of Factor 1. First, from the collection of 5209 highly variable genes used in the 

model, I considered genes to be associated with the factor if the Pearson correlation between 

their expression in at least one cell type and the factor score across samples was more or equal 

to 0.5. After filtering genes based on this classification, I observed that the median number of 

genes associated to the factor per cell type was 593, being lymphoid and vascular smooth 
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muscle cells the cell types with the least amount of associated genes (Figure CH4-3A). I 

observed that the majority of the genes correlated to Factor 1 (62%) were associated with more 

than a single cell type, suggesting that certain disease responses may be shared between cell 

types (Figure CH4-3B). Then, for each cell type I separated their genes associated with the 

factor into two groups based on their loadings (positive > 0 and negative < 0). Based on the 

sample scores of Factor 1, disease and healthy transcriptional programs are represented by the 

positive and negative gene sets, respectively. To quantify the overlap between these two classes 

of programs across cell-types I calculated pairwise Jaccard indexes (Figure CH4-3C). The 

mean Jaccard index across pairwise comparisons of disease and healthy signatures was of 0.33 

and 0.23, respectively, suggesting that both, in healthy and disease tissue contexts, cell types 

activate both shared and specific transcriptional programs. 

 

 

A B

C
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Figure CH4-2  Multicellular factor analysis using MOFA to a single cell atlas of myocardial infarction.  
A, The lower panel shows the hierarchical clustering of the factor scores of the 27 samples inferred by the MOFA 
model. Next to the sample name, its histological classification and technical batch labels are shown. The middle 
panel shows the -log10(adj. p-values) of testing for associations between the factor scores and the patient group 
or batch label. The upper panel shows the percentage of explained variance of each cell type expression matrix 
recovered by the factor. B, Distribution of the scores of Factor 1 across different patient groups. C, Uniform 
Manifold Approximation and Projection of the scores of factors not related to the technical batch. 

 
 

The MOFA model was fitted to a collection of pseudobulk expression matrices of major cell 

type lineages under the assumption that transcriptional signatures captured by the gene loadings 

of the model can recapitulate the emergence of functional cell states together with global 

responses within a cell lineage. Thus, I next tested for each cell type to what extent the genes 

associated with Factor 1, and thus associated with changes upon myocardial infarction, agreed 

with the proposed cell-states presented in my previous work [155], based on the analysis of 

single cells. Within each cell type, I tested for the overrepresentation of cell state markers in 

disease and healthy programs recovered from the MOFA factor loadings using hypergeometric 

tests. I observed across cell-types that disease programs had a greater overrepresentation (adj. 

p-value < 0.05) of marker genes of cell states that increased in composition in ischemic and 

fibrotic samples, whilst healthy programs were overrepresented by marker genes of cell-states 

with greater compositions in healthy samples (Figure CH4-4A, for an example in 

cardiomyocytes). These results aligned with the expected effect of pseudobulking groups of 

cells, where the gene expression signal of the most abundant cells will be prioritized. Overall, 

the gene loadings across cell types of Factor 1 captured transcriptional shifts that relate to the 

change in compositions of functional cell states as a consequence of the disease context.  

 

Next, I questioned if a global transcriptional response across cells within a lineage could be 

recovered from the model loadings of genes associated with the factor. I hypothesized that 

while the emergence of cell-states is a valid abstraction of the molecular processes related to 

disease, there may be transcriptional responses that are independent from cell-states and 

represent a global response of cells within the diseased tissue triggered by a larger 

microenvironment. To quantify the proportion of variance that could be explained by the 

disease and the cell-state classes within each major cell-type lineage, I performed independent 

analyses of variance (ANOVA) to the expression of each gene associated to Factor 1 of my 

MOFA model and by extension to responses upon myocardial infarction. The ANOVAs were 

fitted to pseudobulk expression profiles of cell-states across samples within each major lineage 

(cardiomyocytes, fibroblasts, endothelial and myeloid cells). Profiles generated with less than 
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20 cells were excluded. Normalization of data was performed as previously described. In each 

ANOVA either the cell-state class or the patient group was used in the test. Eta-squared values 

of the grouping variable per gene were used to quantify the amount of variance explained by 

cell-states or patient grouping.  

 

 
Figure CH4-3  Description of the coordinated responses upon myocardial infarction captured by Factor 1. 

A, Number of genes per cell type associated with Factor 1. B, Number of genes associated with Factor 1 that are 
expressed in a single or multiple cell types. C, Pairwise Jaccard index between the healthy and disease signatures 
between cell types. 

 
 
 
Within each major cell type lineage I observed genes associated with Factor 1 that were 

independent of cell-states. In Figure CH4-4B I showed an example of this type of association 

for FATC4, a gene that was part of the transcriptional shift of cardiomyocytes. FATC4 is a 

gene involved in a global response to ischemia in cardiomyocytes (adj. P-value < 0.05), 

however it is similarly expressed across cell-states. I observed that across cell types, the 

variability in expression of genes associated with factor 1 were better explained by the disease 

condition rather than cell-states with evidence at the significance level (Figure CH4-4C, for 

cardiomyocytes) and the log-ratios of explained variances (Figure CH4-4D). Altogether, my 

results demonstrate that the genes defining the multicellular latent variable associated with 



122 

disease response recovered by the MOFA model capture both, cell-state dependent and 

independent transcriptional shifts. Moreover, the high ratios between the explained variance 

associated with disease and cell-states across different lineages suggest that while certain cell-

states are more abundant during myocardial infarction, cells within a tissue and lineage partake 

in a shared global response that could be associated to adaptations to the changing tissue. 

 
Figure CH4-4 Cell-state dependent and independent transcriptional responses upon myocardial infarction.  
A, Overrepresentation of cell-state markers in healthy and disease signatures estimated by MOFA. Size of the 
dots represent -log10(adj. p-value). B, Distribution of the expression of NFATC4 in cardiomyocytes across patient 
groups or cell-states. Each dot in both panels is the pseudobulk log expression of each cell state and sample. C, 
Proportion of variance of cardiomyocyte genes associated with Factor 1 explained by the patient group or the cell 
state. Colors represent significance of the association (adj. p-value < 0.01). D, Distribution of the log ratios across 
major cell types between the proportion of variance explained by the patient group and cell-states. Each point in 
each distribution is the ratio of a gene of the cell type associated with Factor 1. 

 
 

4.2.3 Spatial mapping of multicellular coordinated programs upon myocardial 

infarction 

To better understand the multicellular coordination of the disease transcriptional programs 

identified by the MOFA model, I mapped the previously defined positive and negative gene 
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sets of each cell type to the collection of paired spatial transcriptomics samples (10X Visium) 

that were generated together with the single cell data used in the previous sections [155]. To 

map each specific gene set of each cell type, I first identified regions per slide where the major 

cell types were present. I classified each spot of each slide to contain a cell type if the proportion 

of cells within the spot was greater or equal to 0.10. Proportions were obtained from the 

deconvolution analysis of the Visium slides from my previous work [155]. I then calculated 

normalized spot level scores for each positive and negative gene set using decoupler-py’s 

weighted mean method using the absolute loading score as weights with 100 permutations [52]. 

Cell type scores were only inferred in spots where the cell type was present. I assumed that the 

normalized gene set scores capture the distribution of cells expressing a disease or healthy 

transcriptional program, based on the positive and negative gene sets, respectively. 

 

The scores of Factor 1 from the MOFA model clearly separated the three main sample groups 

(myogenic, ischemic and fibrotic) available in this dataset (Figure CH4-2B). I reasoned that 

this sample separation could be explained, among other processes, by the distribution of cell 

type disease programs in larger areas in ischemic and fibrotic tissues. To estimate the relative 

areas across cell types and samples where disease and healthy transcriptional programs were 

expressed, I first assumed that the effective area of a program for a specific cell type was 

defined by the number of spots where the cell type was present (see above). Then, for each cell 

type program I counted in how many spots the inferred gene set score was greater than 2 

(representing the number of standard deviations from the mean of the distribution of scores 

from random gene sets). Finally, the relative area of activation was calculated as the ratio 

between the spots with active programs and the effective area. 

 

I observed that across cell-types, the expression of disease programs occur in larger areas in 

ischemic and fibrotic samples compared to myogenic samples, encompassing over 50% of their 

effective location area except for pericytes and endothelial cells (Figure CH4-5A-B for 

cardiomyocytes and fibroblasts, Wilcoxon Test adj. p-value < 0.05). Ischemic samples 

contained larger relative areas of activation of disease programs of cardiomyocytes and 

fibroblasts compared to fibrotic samples (Figure CH4-5A-B, Wilcoxon Test adj. p-value < 

0.05), reflecting the gradual reparative responses of myocardium following infarction. While 

disease programs showed a clear difference in distribution across conditions, coordinated 

programs associated to healthy myocardium were expressed almost uniformly across 

conditions (Figure CH4-5A), suggesting that upon myocardial infarction, major cell type 
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lineages activate complementary transcriptional programs with the purpose of maintaining 

tissue homeostasis without losing their usual gene programs. To avoid ambiguous definitions 

of relative active areas of disease and healthy transcriptional programs, I quantified the mean 

expression of each program and cell type across the different samples. The comparison of 

expression scores across conditions confirmed the reported differences in size of relative active 

areas (Figure CH4-5C, Wilcoxon Test adj. p-value < 0.05). My analyses demonstrated that the 

scores from the main factor explaining the variability between sample groups from the MOFA 

model capture the size of the areas where the expression of  disease transcriptional programs 

are activated. The fact that in ischemic and fibrotic slides I observed the activation of disease 

programs in over 50% of the tissue area provides further evidence to suggest that upon 

myocardial infarction, global responses within each cell type dominate the molecular reparative 

responses of the myocardium. 

 

I then estimated the spatial dependencies of the cell type disease transcriptional programs 

activated in fibrotic and ischemic samples using spatially contextualized models to understand 

their multicellular coordination. I used MISTy [105] to predict the spatial distribution of all 

cell type disease programs with two different spatial contexts: 1) An intrinsic view that 

measures the relationships between the disease programs within a spot, and 2) a para view that 

weights the program estimations of more distant neighbors of each cell-type (effective radius 

= 5 spots). With this model I measure if the activation of a cell type disease program in a spot 

can be explained by the activation of other disease programs within the same spot or in an 

extended neighborhood. The results of all models were aggregated to estimate distributions of 

performance and mean spatial dependencies between programs (Figure CH4-5D). My models 

showed that the spatial distribution of the disease programs of fibroblasts (median R2 = 0.62), 

cardiomyocytes (median R2 = 0.4) and myeloid cells (median R2 = 0.4) could be explained by 

the co-localization of disease programs of other cell types. The spatial organization of more 

distant neighbors of cardiomyocytes contributed 74% to the prediction of their disease 

programs, while for fibroblasts and myeloid cells it was 40% and 43% respectively. Moreover, 

I observed a spatial dependency between the distribution of the programs of these three cell 

types, being fibroblasts the best predictors within the spot and myeloid cells the most important 

predictors in the local neighborhood (5 spots). To visualize hotspots of co-activation of the 

disease programs of cardiomyocytes, myeloid and fibroblasts across samples, I encoded the 

expression of each program in the RGB space (Figure CH4-5E). In this color space, brighter 

and darker colors represent a high and low expression of a disease program respectively and 
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the color combination differentiates different events of co-activation of programs between 

these cell types. As predicted by the MISTy model, I observed that areas activating the disease 

program of fibroblasts also co-activated programs of either myeloid cells or cardiomyocytes. 

Although I could identify areas in ischemic samples where the activation of myeloid cells and 

cardiomyocytes disease programs co-occurred, I did not observe large regions in tissues where 

the programs of all of the three cell types were activated. The distinct types of disease program 

“hotspots” suggest that the cell type disease programs identified by the MOFA model are 

activated in distinct cellular organizations. These observations indicate that while distinct cell 

type colocalization events may be reflecting tissue structures with specific tasks (eg. myeloid 

cells and fibroblasts regulate scar formation), in the disease context their molecular profile is 

coordinated with other tissue structures creating a higher order response that is characteristic 

of a tissue ecosystem. In summary, my results suggest that the coordinated disease 

transcriptional responses of cardiomyocytes, fibroblasts and myeloid cells estimated from the 

MOFA model are spatially organized in fibrotic and ischemic slides and thus likely reflect a 

multicellular response. However these coordinated responses are not constrained by a fixed 

local organization of cells within a region of the tissue but rather a global coordination of 

processes. 

4.2.4 Multicellular factor analysis for the meta analysis of single cell atlases of 

heart failure 

I have demonstrated that multicellular factor analysis using MOFA can be performed to a 

collection of single cell samples to identify coordinated global transcriptional responses in 

tissues that associate with clinical or technical covariates. I then tested if the model extension 

of MOFA+ [179], that jointly models independent groups of samples, could be used to perform 

meta-analysis across multiple case-control patient cohorts. I reasoned that the shared latent 

space would capture both conserved or specific transcriptional responses across distinct disease 

contexts. 
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Figure CH4-5 Cell-state dependent and independent transcriptional responses upon myocardial infarction.  
A, Quantification of the relative area of the expression of healthy and disease programs of cardiomyocytes (CM) 
and fibroblasts (Fib) in spatial transcriptomics slides across patient groups (n = 28). B, Spatial mapping of the 
activation of cardiomyocyte specific healthy and disease programs in three representative examples of the 
conditions analyzed. The color of each spot represents the combination of the expression of those programs 
mapped to the RGB space (blue = disease program, red = healthy program). C, Quantification of the mean 
expression of healthy and disease programs of cardiomyocytes (CM) and fibroblasts (Fib) in spatial 
transcriptomics slides across patient groups (n = 28). D, Summary statistics of the spatially contextualized models 
of the expression of disease signatures fitted to spatial transcriptomics data. Left panel shows the distribution of 
the variance captured by the model for each cell type specific signature. The rest of the panels show the spatial 
interactions between signatures within a spot (middle) or in the local neighborhood (right). E, Spatial mapping of 
the activation of cardiomyocyte, fibroblast and myeloid disease programs in two representative examples of 
fibrotic and ischemic samples. The color of each spot represents the combination of the expression of those 
programs mapped to the RGB space (red = Cardiomyocytes, green = Myeloid cells ,blue = Fibroblasts). Legend 
adapted from [181]. 

 
 

I created pseudobulk expression tensors of major cell type lineages in two different single 

nuclei studies of heart failure. The first study (Chaffin2022) encompassed 42 single nuclei 

cardiac samples profiling healthy myocardium (n = 16) and end-stage heart failure both from 

dilated (n = 11) and hypertrophic cardiomyopathies (n = 15) [158]. The second study 

(Reichart2022) profiled 79 cardiac samples of healthy myocardium (n = 18), together with 

samples of dilated (n = 52), non-compaction (n = 1), and arrhythmogenic right ventricular (n 

= 8) cardiomyopathy [159]. After homogenizing the major cell type annotations, pseudobulk 

profiles of samples and cell types with more than 25 cells were calculated and normalized as 
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previously mentioned. I identified highly variable genes per cell type using scran’s [172] 

modelGeneVar function with a biological variance threshold of 0. To perform the joint MOFA 

model between datasets, I subsetted the variable genes per cell type of Reichart2022 with the 

ones calculated from Chaffin2022. The grouped MOFA model was built as previously 

described with 6 factors, however groups were scaled before fitting the model. 

 

To establish a baseline for each study, I first fitted a MOFA model to each study independently. 

I observed a mean total amount of explained variance across cell types of 38% for Chaffin2022, 

from which 21% could be associated with differences between healthy donors and heart failure 

patients. For Reichart2022 the model captured a mean total amount of explained variance of 

37%, from which 19% associated with the distinct patient groups. In contrast, the joint MOFA 

model (Figure CH4-6A) captured a mean total amount of explained variance of 30 % and 35% 

for Chaffin2022 and Reichart2022, respectively. Despite the reduction in total explained 

variance, the joint model captured slightly higher amounts of variance explained by the clinical 

groups, with 23% for Chaffin2022 and 24% for Reichart2022. I did not find associations 

between the factors and the study labels, suggesting a proper integration of datasets. 

Additionally, I could not associate any factor with the sex of the patients (Figure CH4-6A). I 

visualized the distribution of samples across studies using the scores of the first two factors 

(Figure CH4-6B), which were associated with the distinct patient groups. I observed a clear 

distinction between non-failing and failing hearts, however etiologies formed two distinct 

groups of patients. In one group I distinguished dilated cardiomyopathy patients coming from 

different studies together with hypertrophic patients. In the other cluster, a second group of 

dilated cardiomyopathy patients exclusively from Reichart2022 clustered together with the rest 

of the failing patients. My results show that a multicellular factor analysis can be applied to 

samples coming from distinct patient cohorts for an unsupervised analysis of their variability 

and that the latent space together with the cell type specific loadings can be potentially used 

for the meta-analysis of the transcriptional coordinated responses of a tissue in distinct disease 

contexts. 

4.2.5 Deconvolution of cell type specific transcriptional shifts of heart failure from 

bulk transcriptomics 

Finally, to show that the global transcriptional responses to disease contexts estimated from 

my proposed multicellular factor analysis model could be used to deconvolute cell type 
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responses from bulk transcriptomics, I mapped cell type specific heart failure signatures 

estimated from my previously described meta-model to an independent collection of 16 bulk 

heart failure transcriptomics studies (ReHeaT) [112]. I hypothesized that a bulk expression 

profile captures the coordinated multicellular response of all cell types in the tissue and that 

the contribution of each cell type in this profile could be approximated by quantifying the 

enrichment of cell type specific signatures. My assumptions are supported by my previous 

observation that the summarized expression of a disease signature in a tissue is related to the 

size of the area where it is expressed (see Section 4.2.3).  

 

 
Figure CH4-6 Multicellular factor analysis for the meta-analysis of patient cohorts within and across scales.  
A, Summary statistics of the grouped multicellular factor analysis model. The lower panel shows the hierarchical 
clustering of the factor scores of the 121 samples inferred by the MOFA model. The patient group class, sex, and 
study labels are indicated next to the sample name. The middle panel shows the -log10(adj. p-values) of testing 
for associations between the factor scores and the patient group, sex, or the study label. The upper panel shows 
the percentage of explained variance of each cell type expression matrix recovered by the factor for each study 
separately. ARVC =  arrhythmogenic right ventricular cardiomyopathy, DCM = dilated cardiomyopathy, HCM = 
hypertrophic cardiomyopathy, NCC = non-compaction cardiomyopathy , NF = non-failing. B, Distribution of the 
patient samples across studies based on the scores of the first two factors of the MOFA model. C, Quantification 
of the mean expression of cell-type specific programs in a collection of bulk transcriptomics studies. The left 
panel shows the distribution of cell-type programs from Factor 1 across failing (HF) and non-failing (NF) hearts. 
Given that high Factor 1 scores are associated with healthy patients, high signature scores are expected in NF 
samples. The right panel shows the t-values obtained from the comparison of HF vs NF samples across 16 
independent bulk studies from ReHeaT. Stars highlight differences in the congruent direction (adj. p-value < 0.2). 
CM = cardiomyocytes, Fib = fibroblasts, Endo = Endothelial, vSMCs = vascular smooth muscle cells, PC = 
pericytes. 
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To calculate the enrichment of cell type specific disease programs in a bulk expression profile, 

I calculated directed weighted means of each signature using decoupleR’s wmean function 

[52]. As inputs for each enrichment run I provided the scaled vector of bulk gene expression 

and the gene loadings of each cell type from a factor of interest as gene sets. Given the directed 

quality of the enrichment, the sign of the enrichment scores relate to its association with 

disease, eg. if positive factor scores are associated with the disease in the multicellular factor 

analysis model, then positive enrichment scores in the bulk data reflect a higher expression of 

the disease program. I estimated the enrichment of cell type disease signatures from Factor 1 

of the meta-MOFA model fitted to Chaffin2022 and Reichart2022 in all samples available in 

ReHeaT, a compendium of 16 independent bulk transcriptomics datasets of heart failure [112]. 

Based on the distribution of the Factor 1 scores, I expected negative enrichment scores to 

associate with failing hearts samples in the bulk studies. To estimate if the enrichment scores 

of each cell type signature differentiated failing from non-failing hearts in the right direction 

across studies, I performed t-tests in which the defined alternative hypothesis was that the mean 

of enrichment scores in failing heart samples was less than the one from non-failing hearts 

(Figure CH4-6C). 

 

I observed in 13 of the 16 bulk studies a congruent difference in the expression of 

cardiomyocyte disease signatures between failing and not failing hearts (adj. p-value < 0.2, 

Figure CH4-6C). Additionally, in 10 of these studies I could differentiate failing and not failing 

hearts using the signatures of the rest of the cell types used in the MOFA model, except for 

lymphoid cells (adj. p-value < 0.2, Figure CH4-6C). These results suggest that the global 

multicellular responses associated with heart failure estimated from single cell data are 

transferable to different patient cohorts and data modalities. Moreover, the decomposition of 

gene expression in terms of cell type responses provides an alternative and complementary 

understanding of bulk data beyond cell type compositions, given that the effect of lowly 

abundant cells (eg. pericytes or vascular smooth muscle cells) was still traceable from 

expression profiles. 
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4.3 Discussion 

 
Despite the high costs of single cell technologies, it is expected that in the next few years, 

single cell datasets encompassing hundreds of patients will be generated to better characterize 

the molecular responses during disease. Consequently, there is a need for tissue-centric 

frameworks that on the one hand allow for an unsupervised analysis of samples across cell 

types and on the other provide estimations of coordinated molecular responses that better 

reflect the multicellular nature of organs. 

 

In this study, I proposed to repurpose the statistical framework of multi-omics factor analysis 

(MOFA) to estimate cross-condition multicellular responses from single cell transcriptomics 

data. I demonstrated that the application of MOFA to collections of pseudobulk expression 

matrices of major cell types can generate a latent space that captures technical and biological 

variability of whole tissue specimens independent of cell type compositional changes. The 

interpretability of the model allows it to prioritize shared coordinated transcriptional changes 

between cell types, without losing the possibility of identifying cell type specific responses. 

The reconstruction metrics provided by the model can be used to identify subsets of cell types 

whose gene expression variability associates more with specific clinical covariates of samples. 

I argued that in comparison to novel methods explicitly built for the modeling of multicellular 

responses, MOFA has two main advantages: 1) Data completeness is not enforced which 

allows to better characterize cell-type specific responses and deals with the technical 

limitations of cell capture, and 2) group modeling can be defined, which facilitates the 

integration and comparison of multiple patient cohorts. Additionally, MOFA can model a 

flexible set of cell type views that potentially could capture complex multicellular responses, 

such as cell communication via ligand-receptor co-expression. 

 

The application of multicellular factor analysis with MOFA to a collection of public single cell 

atlases of myocardial infarction and heart failure allowed me to show that tissue centric 

approaches open the door for holistic analysis of the responses of cells in tissues during disease. 

I showed cell-state independent transcriptional responses of cell types upon myocardial 

infarction, which may suggest that while certain functional states within a lineage are more 

favored in a disease context, most of the cells have a shared global response. By combining the 

results of multicellular factor analysis with spatial transcriptomics datasets, I mapped these cell 

type global responses and showed that the factor scores provided by our model, associate to 
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the  relative area where they are expressed in tissues. Moreover, I showed that the coordination 

of cell type global responses in tissues is not constrained to a specific configuration of local 

cellular interactions, but rather represented the coordinated response of various tissue 

structures. Given my observations on global responses upon myocardial infarction, I meta-

analyzed single cell samples of healthy and heart failure patients with multiple 

cardiomyopathies from two distinct studies and I showed that despite technical and clinical 

variability between patients, a conserved transcriptional response across cell types is observed 

in failing hearts. Importantly, I was able to find traces of these cell type responses in 

independent bulk data sets providing an alternative and complementary understanding of bulk 

data beyond cell type compositions. Altogether, I contributed with a framework that allows the 

community to integrate the measurements of independent single cell, spatial, and bulk datasets 

to contextualize cell type responses in disease. 

 

My proposed framework is still dependent on the summarization of gene expression per cell-

type as pseudobulk profiles, which may potentiate the technical effects of background 

expression of single cells and confound the estimated multicellular responses. Deep generative 

models have been proposed to take advantage of single cell measurements to estimate sample-

level heterogeneity [182], however my observations on the conservation of global responses 

across scales provide evidence to suggest that current pseudobulk approaches still provide a 

meaningful understanding of tissue function. Although this study was focused on the 

application of MOFA for the understanding of multicellular responses in tissues, my results 

support the application of models such as MEFISTO [183] to analyze complex time-course 

experimental designs and MuVI [184] to generate biological interpretable latent spaces. 

Nevertheless, inherent challenges of factor analysis such as the linear constraints to generate 

the latent space still need to be addressed in future work.   

 

In summary, I contributed with a framework that allows the integration of the measurements 

of independent single cell, spatial, and bulk datasets to contextualize multicellular responses in 

disease. My proposed tissue-centric analysis opens new opportunities to restudy publicly 

available datasets of precious patient samples as new technologies developed. 
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Concluding remarks 

 

High-throughput genomic technologies have been applied in biomedicine to link the 

pathophysiology of disease to molecular and cellular mechanisms in organs. In the study of 

cardiovascular disease, one of the most prevalent conditions in the human population, the 

measurement of gene expression changes through different stages of cardiac remodeling aims 

to better understand the deregulation of the compensatory mechanisms that the heart activates 

upon damage. This objective has motivated the generation of transcriptomic profiles of human 

healthy and damaged myocardium across distinct disease conditions and scales using bulk, 

single cell, and spatial technologies.  

 

This thesis aimed to provide a comprehensive description of the transcriptomic changes upon 

human myocardial infarction and heart failure. First, I demonstrated that it is possible to 

identify and prioritize generalizable gene expression changes associated with heart failure from 

a collection of independent patient cohorts profiled with bulk transcriptomics. Despite 

technical and clinical differences, I showed convergent global tissue responses that generalize 

to distinct heart failure etiologies. Moreover, motivated by the need of ever-growing molecular 

references of disease, I provided a computational framework that allowed the building of a 

consensus transcriptional signature of heart failure that is easy to update and correct. Knowing 

the limitations of bulk transcriptomics to delineate cell type specific responses in tissues, I 

presented afterwards a spatial and single cell atlas of the molecular processes happening after 

myocardial infarction focusing on distinct physiological zones and time points of cardiac 

remodeling. I described a multi-omics and multi-scale integration methodology that provided 

spatially resolved intercellular processes and facilitated the comparison of tissue samples at the 

organizational, compositional, and molecular level. My results showed that it is possible to 

identify conserved tissue structures (cellular neighborhoods) that emerge as a consequence of 

the disease context. Additionally, I demonstrated that the functional variability of cell lineages 

can be associated with these structures, nevertheless, I also showed data that suggested that the 

functional variability of cell lineages is inherent in tissues and not triggered by disease. Finally, 

I repurposed the statistical framework for multi-omics integration to generate multicellular 

descriptions of tissues from single cell data. My tissue-centric approach demonstrated to be 

useful to perform unsupervised analysis of large patient cohorts profiled with single cell data, 

to meta-analyze the cell type responses upon distinct disease contexts from multiple studies, 
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and to integrate the knowledge across the single cell, spatial, and bulk scales. The multi-scale 

integration of the transcriptional responses occurring during heart failure suggest that while 

cell type specific responses can be traced and localized in specific tissue structures, a global 

coordinated response dominates the molecular landscape of tissues during cardiac remodeling.  

 

The consequences of this observation may impact the way the community prioritizes the 

molecular readouts provided by multi-scale omics technologies for the study of heart failure. 

With this work, I aimed to show that while exploring the cell type specific responses associated 

with heart failure and its etiologies will be valuable to create a catalog of the possible and finite 

functional transformations of each cell lineage, intercellular transcriptional responses are the 

hallmarks of the molecular description of disease. These coordinated responses across cell 

types in tissues are the footprints of the metabolic and organizational state of the tissue, and 

represent the reaction towards the maintenance of homeostasis of the tissues and organs in a 

changing environment. If tissues are understood as ecosystems that are defined by the biotic 

and abiotic components and their interactions within a limited area, the description of cell type 

responses and their location is limited to the study of the biotic component, ignoring the 

interdependence between these and the environment.  

 

In my opinion for the cardiovascular field (and potentially other biomedical areas) to 

completely benefit from the generation of highly resolved and multiplexed data from single 

cell and spatial technologies, two main research objectives should be prioritized:  

 

1) Identification of the conserved global intercellular responses in tissues, which requires 

an ever-growing interest in the integration of multiple datasets of distinct patient cohorts across 

scales and anatomical regions of the heart. My work aims to suggest a possible computational 

roadmap to achieve this, nevertheless many challenges lie ahead such as the size of the capture 

area profiled with omics technologies, the lack of a common spatial coordinate system for 

unorganized tissues, the definition of a cell lineage ontology, the lack of quality standards of 

experimental protocols and clinical reports, heterogeneous patient representation and 

centralized data hosting and integration. 

 

2) Reconciliation of the single cell omics and evolutionary ecology fields, to better 

understand the functional heterogeneity of cell lineages and the interdependence of distinct 

tissue structures within a tissue or an organ. Organizational constraints should exist in tissues 
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to ensure the functions of organs from development until the death of a human, and it may be 

possible that the functional variability of cell lineages may ensure homeostasis by creating a 

pool of possible functions that can be favored in specific microenvironments. It is very likely 

that in the future more tissue-centric hypotheses will be tested with advanced dynamic profiling 

technologies of cell cultures and organoids. 

 

In summary, the multi-scale transcriptomics landscape of heart failure described in this work 

contributed to the study of the impacts of tissue organization in cell function, and vice versa, 

while integrating the knowledge generated from the analysis of multiple independent patient 

cohorts across distinct technologies.  
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