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Abstract
Interatomic or intermolecular Coulombic decay (ICD) is an efficient relaxation pathway on the
femtosecond timescale, where after inner-valence ionization of an atom or molecule, the initial
vacancy is filled by an outer-valence electron and the excess energy is transferred radiationlessly
to its neighbor, leading to its ionization. In this thesis, ICD-related phenomena are studied.
Therefore, the work is divided into two main parts. Part I treats the new decay channel double
ICD (dICD), where after the relaxation of the system, the excess energy exceeds the double
ionization threshold of the neighboring species, resulting in its double ionization. We derive an
asymptotic and perturbative expression for the dICD decay width as an indicator of efficiency.
In Part II, nuclear dynamics during ICD and pre-ICD in NeKr and Ar2 dimers are investigated
focusing on different aspects. In pre-ICD, the excess energy is only sufficient for the excitation
of the neighboring atom or molecule and additional energy has to be provided for its ionization.
While the study about NeKr dimers undergoing ICD mostly concentrates on interference effects,
the main goal of the pre-ICD in Ar2 dimers study is to understand the nuclear motions and
their appearance in the corresponding spectrum.

Kurzfassung
Der interatomare oder intermolekulare Coulomb-Zerfall (ICD) ist ein effizienter Zerfallskanal
auf der Femtosekunden-Zeitskala, bei dem nach der inneren Valenzschalen-Ionisation eines
Atoms oder Moleküls die entstandene Fehlstelle durch ein Elektron der äußeren Valenzschale
gefüllt und die dabei frei werdende Energie strahlungslos auf den Nachbarn übertragen wird, was
zu seiner Ionisation führt. In dieser Doktorarbeit werden ICD-bezogene Phänomene untersucht.
Daher gliedert sich die Arbeit in zwei Hauptteile. Teil I behandelt den neuen Zerfallskanal
Doppel-ICD (dICD), bei dem nach der Abregung des Systems die überschüssige Energie die
Doppelionisationsschwelle der benachbarten Spezies übersteigt, was zu derer Doppelionisation
führt. Wir leiten einen asymptotischen und störungstheoretischen Ausdruck für die dICD-
Zerfallsbreite als Indikator für die Effizienz her. In Teil II wird die Kerndynamik während ICD
und Prä-ICD in NeKr- und Ar2-Dimeren auf verschiedene Aspekte untersucht. Bei Prä-ICD
reicht die überschüssige Energie nur zur Anregung des benachbarten Atoms oder Moleküls aus
und es muss zusätzliche Energie für dessen Ionisation aufgebracht werden. Während sich die
Studie über ICD im NeKr-Dimere hauptsächlich auf Interferenzeffekte konzentriert, ist das
Hauptziel der Studie über Prä-ICD in Ar2-Dimeren die Kernbewegungen und ihr Auftreten im
dazugehörigen Spektrum zu verstehen.
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Chapter 1

Introduction

Interatomic or intermolecular Coulombic decay (ICD) was originally predicted in 1997, see
Ref. [1], as a highly efficient electronic energy-transfer mechanism in weakly bound systems on
a femtosecond timescale, where after inner-valence ionization of an atom or molecule, the initial
vacancy of the ion is filled by an outer-valence electron and the emerging excess energy is trans-
ferred radiationlessly by dipole-dipole coupling to a neighboring atom or molecule resulting in
its ionization. After the ICD process, two positively charged ions with outer-valence vacancies
remain. As they repel each other, the system usually disintegrates in a Coulomb explosion. A
few years after its theoretical prediction, ICD was also experimentally confirmed in neon dimers
and clusters [2–4]. Since then, the process has been intensively studied, establishing ICD over
the last two decades as an important relaxation pathway in atomic and molecular clusters, see
Refs. [5–8]. Thereby, the work interests ranged from ICD in weakly bound systems like the
He dimer [9, 10], to other van der Waals clusters like Nen [2–4, 11–14], NeAr [15–19], ArKr
[20] and NeHe [21–23], hydrogen-bonded clusters of H2O and HF [1, 24–27], biological relevant
systems [28–30], as well as quantum dots [31–34] and cavities [35]. Additionally, ICD inspired
the investigations of further related mechanisms as resonant ICD (rICD) [36–38], ICD from
electronic to vibrational states [39], ICD after Auger decay [40–46], electron transfer mediated
decay (ETMD) [15, 45, 47–50] and interatomic Coulomb electron capture (ICEC) [51–57]. It
was also demonstrated that the process can be initiated by ion [58–60] and electron impact
[61–63]. In this thesis, we add to this body of work the theory development of double ICD [64]
as well as studies regarding nuclear dynamics in the NeKr and the Ar2 dimers undergoing ICD
[65] and pre-ICD [66], respectively.

These further investigations of ICD-related phenomena divide the work into two parts. Part I
is about double ionization by ICD (dICD) [64, 67–70], where if the excess energy of the initially
ionized atom or molecule exceeds the double ionization threshold of its neighbor, the latter emits
two electrons. We developed a theory to describe and investigate this new decay channel by
deriving an asymptotic and perturbative expression for the dICD decay width. The here shown
results are taken from Ref. [64]. In Part II, nuclear dynamics of dimers, which undergo ICD and
pre-ICD, are studied. Therefore, photoelectron (PE), ICD-electron, and kinetic-energy-release
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(KER) spectra were computed and analyzed. The presented methods and the discussion about
nuclear dynamics during ICD and pre-ICD in NeKr and Ar2 are reported in Refs. [65] and [66].

Beginning with Part I, among the processes which lead to correlated emission of two elec-
trons after absorption of one photon single-photon double-ionization (SPDI) [71–75] and dou-
ble Auger (dA) decay [76–80] are the best known. In the former, the two electrons escape
directly following the photon absorption; in the latter, they escape in the decay of a metastable
core-ionized state. The concerted double electron emission is primarily due to the electron
correlation in the final ionized state [72]. It is common to describe the effect of correlation in
terms of shake-off and knock-out mechanisms [72, 73, 81]. In the shake-off mechanism, the first
electron is emitted rapidly. The sudden change in the potential is felt by the remaining elec-
trons, and their subsequent relaxation leads to the ejection of the second electron. Accordingly,
the signature of the shake-off process in the electron kinetic-energy spectrum appears as peaks
at high (first electron) and low (second electron) electron energies [80, 82]. In contrast, the
knock-out mechanism can be seen as an impact ionization, whereby the first emitted electron
collides inelastically with a bound electron as it exits the collision region, with the result that
both electrons are ejected into the continuum. Its signature in the electron spectrum is flatter,
although it shows a preference for one slow and one fast electron peak.

In single-photon double-ionization, the knock-out dominates at photon energies near the double-
ionization threshold [71, 81, 83], while the shake-off mechanism becomes dominant for high
photon energies. Both mechanisms also appear in the double Auger decay, and it has been
shown that the knock-out mechanism dominates [77–79]. The effectiveness of the process can
be gauged by comparing it to the single ionization analogue. The ratios of the single-photon
double-ionization to single-ionization cross sections usually amount to a few percentage points
near the double-ionization threshold [75, 81, 84–86]. The branching ratios of the double to the
normal Auger decay [77, 78, 83, 87, 88] are comparable to the typical SPDI to single ionization
ratios. For large photon energies over 200 eV, these ratios can reach values up to 80% in some
systems [83, 89].

In both of these processes, electron emission occurs at the atom or molecule which absorbs
the photon. However, a non-local process was suggested [67], whereby the absorption of a
photon and emission of two electrons occur on different weakly interacting species, specifically
a guest atom and a C60 cage of an endohedral fullerene. For example, removing a 2p electron
of Mg in Mg@C60 creates an electronically unstable state. As a result, C60 can be ionized in an
electronic-energy transfer between the excited Mg+(2p−1) ion and the carbon cage. For single
ionization, this process is known as interatomic Coulombic decay (ICD) [1, 5–8]. However,
since the transferred energy in this example is larger than the double-ionization threshold of
C60, two electrons can also be emitted into the continuum in a process, which was named double
interatomic (intermolecular) Coulombic decay (dICD) [67].
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CHAPTER 1. INTRODUCTION

The dICD process is formally related to both the double Auger decay and the single-photon
double-ionization processes. As in the double Auger decay, the initial state of the ICD process
is a resonance state, whose decay leads to double-electron emission. In the above example
of Mg@C60, the magnesium atom is initially ionized, forming the metastable Mg+(2p−1). In
the presence of C60, this ion can transfer its excess energy (by relaxing to Mg+(3s−1)) to the
fullerene cage and doubly ionize it. ICD involves radiationless energy transfer between the
excited species and its neighbor, which at large distances between them can be described as the
transfer of a virtual photon [90–93]. Since the absorption of the virtual photon by the neighbor
leads to the emission of two electrons, dICD is related to SDPI. As a result, the discussion
of the dICD process can also be carried out in terms of the knock-out, shake-off, and the less
efficient ground-state-correlation mechanisms.

The dICD process was recently demonstrated in experiments on He droplets doped with alkali
dimers [68]. The droplets were irradiated by XUV photons, which led to the photoexcitation
of the He atoms. The energy released in the subsequent relaxation of He was transferred to
the dimers attached to the droplet’s surface, resulting in their ionization. The electron spec-
tra display peaks at lower and higher electron energy, which have the characteristic U-shape
profile and indicate that two electrons are emitted in concert in the interatomic decay step.
Apart from demonstrating the existence of dICD, the experiment indicates that its efficiency
is comparable to that of ICD so that the dICD to ICD branching ratio is much larger than the
branching ratios commonly seen for the double Auger or SPDI processes.

Recently, resonant dICD in Li2+He was investigated theoretically [69]. Resonant photoexci-
tation of Li2+ (1s Ï 2p) leads to the radiationless transfer of its excess energy (91.8 eV) to
the neighboring atomic He, which is doubly ionized. dICD was shown to be more efficient
than SPDI, and for random interatomic orientation, it was found that the averaged angular
distribution of resonant dICD qualitatively differs from the one of SPDI.

Recently, triple ionization of benzene trimers by dICD, and their subsequent fragmentation
were tracked using triple-coincidence ion momentum spectroscopy, see Ref. [70]. After electron
collision, one of the benzene molecules is C2s ionized C6H+∗6 (C2s−1)(C6H6)2. Afterward, the
inner-valence vacancy is filled by an outer-valence electron, and the excess energy is utilized
to singly ionize the two neighboring benzene molecules. Because the three benzene molecules
repel each other, the system undergoes Coulomb explosion, resulting in the fragmentation of
the benzene trimer C6H+6 C6H+6 C6H+6 . Ab-initio calculations of the ionization cross sections
after electron impact demonstrated that the dICD decay channel is an important one.

Motivated by these results of [67–70], we investigate, in the present work, the general the-
ory of the dICD process and put it in relation to the common ICD process. For this purpose,
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we derive the expression for the decay width of dICD, ΓdICD. In Chap. 3, we develop an
asymptotic formula, assuming that the system which initially carryies the excess energy and
its neighbor, which is doubly ionized in the energy transfer process, are spatially well separated
and can be treated as independent entities. Afterward, in Chap. 4, we discuss the dICD width
and its ratio to the ICD width for a palette of atomic and molecular systems, making explicit
use of the derived asymptotic formula. Beyond this approximation, we also derive in Chap. 5 a
general analytical expression for the decay width of the dICD process employing perturbation
theory in second order. The numerical evaluation of the resulting expression is rather involved
and beyond the scope of the present work. Nevertheless, one can identify in this expression
several mechanisms which constitute dICD and explicitly recover the asymptotic expression.
In Chap. 6, we finally discuss our findings and further research potential. We complete our
studies by Chap. 7. Throughout Part I electrostatic units are used.

Returning to Part II, typical lifetimes of inner valence states which undergo ICD are of the
order of femtoseconds. Although the characteristic timescales of nuclear motion are usually
longer than the ICD lifetime, in cases where they are comparable, the nuclear dynamics have
to be considered when ICD is investigated. The coherent population of vibrational states, their
broadening due to the partial decay widths, and the quantum superposition in their decay also
give rise to interference effects, which have to be considered. Experimentally and thus also the-
oretically preferred systems for such studies are noble gas dimers such as the homoatomic Ne2
[2, 3, 11, 13, 94–96] and He2 [9, 10, 97, 98], as well as the heteroatomic NeAr [19, 99] and NeKr
[100], where the impact of nuclear dynamics on ICD-electron and kinetic-energy-release (KER)
ionic spectra were investigated. Periodic structures were observed which can be related to the
nodal structures of the corresponding vibrational ground-state wave functions. If experimental
and theoretical data are available, a satisfying agreement between the measured and computed
ICD-electron spectra will be achieved.

Recently, the nuclear dynamics during ICD initiated by Ne2s ionization of a NeKr dimer
were tracked experimentally [100]. The measuring method applied in Ref. [100] is based on the
post-collision interaction technique [101, 102], using the deceleration of the slow photoelectron
e−PE when it gets overtaken by the fast ICD electron e−ICD. The two singly charged cations
and the electron produced in the ICD process, as well as the photoelectron, were detected in
coincidence using a COLTRIMS reaction microscope [103]. Time-resolved photoelectron (PE)
and KER spectra, as well as the survival probability of the decaying state, were measured and
compared to theoretical simulations, which provided insight into the evolution of the vibrational
wave packet during the ICD process. Although a good agreement between the theoretical and
experimental spectra was obtained, the theoretical methodology used in Ref. [100] does not
account for the interference effects in the PE and ICD spectra.

In the present work [65], we concentrate on the interference effects during ICD in NeKr, and

4



CHAPTER 1. INTRODUCTION

how they appear in the spectra of the emitted particles. Furthermore, we investigate the impact
of vibrationally selected ICD, where the electronic ground state is vibrationally excited, on the
ICD-electron spectra. Although related, the sources of interference effects are different in the
PE, ICD-electron, and KER spectra and reflect different aspects of the decay dynamics. As the
decay width of the Ne+(2s−1)Kr state depends on the distance between neon and krypton, the
photoelectron spectrum is not simply a sum of Lorentzians [104], reflecting the decay width of
every populated vibrational state of the cation, but contains an additional interference-like term
[105]. Moreover, if the decay is fast, the broadening of the vibrational states can be so large
that the states overlap, causing interferences. Therefore, the PE spectrum is highly sensitive to
changes in the potential energy curve (PEC) of the 2s ionized state. An ab initio computation
of the respective resonance PEC, accurate enough to describe well the nuclear dynamics in the
inner-valence ionized state, is beyond the means of existing numerical methods. Therefore, we
fitted this PEC by a Morse potential and determined its parameters in a way that the com-
puted PE spectrum and the experimental one [100] coincide satisfyingly well. The resulting
PEC is used for all the following calculations. Finally, the wave-packet dynamics during the
ICD process and the follow-up Coulomb explosion are additional sources of interference effects.
The ICD-electron and KER spectra reflect the dynamics on the PECs of the final and of the
decaying state, respectively, where different portions of the wave packet can interfere with one
another while propagating in the corresponding potentials. Besides the observed interference
effects, we were motivated by the previous results, see Refs. [13, 96, 99], regarding the vibra-
tionally excited electronic ground state. Consequently, the vibrationally selected ICD-electron
spectra for NeKr are computed, and their structures are interpreted. Furthermore, the impact
of different temperatures on the ICD-electron spectrum is discussed. To complete our studies,
the KER spectra are directly calculated and compared to the mirror image of the corresponding
vibrationally selected ICD-electron spectrum.

Recently, the ultrafast energy transfer in argon dimers was experimentally observed by a time-
resolved pump-probe experiment [106]. In the XUV-pump step, one of the monomers is 3s
ionized. The system deexcite and the energy is transferred to the neighboring argon atom,
resulting in its 4s or 4p excitation. The subsequent nuclear dissociation dynamics were tracked
by a time-delayed IR-probe pulse, which causes the ionization of the excited argon atom. The
measured pump-probe delay-dependent KER spectrum provided insight into the relaxation
dynamics, and an energy-transfer time of about 824 fs could be subtracted. Because the inves-
tigated fast relaxation pathway energetically lies below the ICD threshold, it is called pre-ICD.
Furthermore, a pump-probe delay-dependent KER spectrum was semi-classically computed us-
ing Monte-Carlo simulations, which gives great agreement with the experimental one but does
not feature all the observed phenomena.

In our work [66], we perform a quantum-mechanical computation of the pump-probe delay-
dependent KER spectrum to reproduce the experimental spectrum. As expected, the structures
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in the experimental spectrum are caused by nuclear dynamics. We analyze the occurrence of
these quantum effects by separately computing the distributions of the gerade and ungerade
transitions of the total spectrum. Furthermore, we show the impact of form and position of
the PECs on the spectrum and use this knowledge to optimize the PEC of the 3s-hole state to
achieve good agreement between theory and experiment.

Part II is structured as follows. In Chap. 8, we present the derivations of the time-independently
computed PE spectrum and of the time-dependently computed ICD-electron and KER spectra
based on Refs. [104, 105, 107–112]. We continue showing, in Chap. 9, the numerical tools
needed to implement the previous-derived equations. Finally, we compute PE, ICD-electron,
and the KER spectra of the NeKr dimer and time-delay dependent KER spectra of the Ar2
dimer in Chaps. 10 and 11. The spectra are analyzed for the aspects introduced and motivated
above, see Refs. [65] and [66]. Chap. 12 completes our studies with a conclusion. Throughout
Part II atomic units are used.
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Part I

On the Theory of double ICD





Chapter 2

Motivation

Interatomic Coulombic decay (ICD) was established over the last decades as a well-known
decay mechanism due to several experimental and theoretical studies, Refs. [1, 5–8]. Double
interatomic Coulombic decay (dICD) is related to ICD, but represents a significant extension to
the original decay process. We investigated this new decay mechanism in Ref. [64] and present
our results here. How ICD and dICD differ from each other is schematically shown in Fig. 2.1.

Figure 2.1: Simplified scheme of interatomic and double interatomic Coulombic decay (ICD
and dICD). While in ICD after relaxation of the initially ionized species A, one electron of
species B is emitted, in dICD two electrons of species B are simultaneously rejected.

For simplicity, we consider a system consisting of two species A and B separated by an in-
ternuclear distance R, where A and B can be atoms or molecules. The initial ionization on
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species A results in removing an electron from an inner-valence orbital. If the energy of the
excited ionic state is larger than the ionization threshold of B, the system can undergo ICD,
where after the relaxation of species A, the energy is transferred radiationlessly to species B,
which is ionized and emits one outer-valence electron. If the excess energy even exceeds the
double-ionization threshold of the combined system, the resulting excited ion can decay via the
new dICD mechanism, in which relaxation of the initial excitation is accompanied by radia-
tionless energy transfer and simultaneous ejection of two electrons from the outer-valence shell
of species B into the continuum. Thus, the considered dICD mechanism reads

A+∗ + BÏ A+ + B++ + e + e′, (2.1)

where e and e′ are the two ICD electrons. Inner-valence ionization of a neutral species is not the
only mechanism for producing electronically excited states, which might decay in an interatomic
process. Electronically excited neutral or multiply ionized atoms or molecules were shown to
undergo ICD [1, 2, 4, 7, 21, 26, 27, 45, 113–115]. However, to keep the presentation simple, we
will continue the discussion in terms of the inner-valence ionized states. The generalization to
other types of excitations is usually straightforward.

Figure 2.2: Simplified scheme of dICD in an alkali dimer attached to a helium droplet. After
excitation and subsequent relaxation, the excited He∗(1s2s) decays. The excess energy of 20.6 eV
is transferred to the attached alkali dimer, which simultaneously emits two electrons to the
continuum. The corresponding measurements were reported in Ref. [68].

A few years ago, dICD was experimentally demonstrated in alkali dimers attached to helium
droplets [68]. The He droplet absorbes a photon of 21.6 eV resulitng in the excitation of a He
atom. Subsequently, the excited He∗(1s2p) relaxes to the metastable 1s2s state and decays.
The excess energy of 20.6 eV is transferred radiationlessly to the attached alkali dimer, leading
to the emission of two electrons in the continuum. The above-described process is schematically
visualized in Fig. 2.2.
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CHAPTER 2. MOTIVATION

Figure 2.3: Electron spectra for Li (a), Na (b), K (c), and Rb (d) dimers attached to helium
droplets taken from Ref. [68]. After the excited He∗(1s2s) atoms decay, the systems undergo ICD
and dICD, respectively. The red-filled lines are measured in triple coincidence (e−, Ak+, Ak+)
and give only the contribution of dICD. The black-filled lines are taken in double coincidence
(e−, Ak+) and exhibit both ICD and dICD. e− is the ejected electron, and Ak+ denotes the
ionized alkali dimer.

The corresponding electron spectra for Li, Na, K, and Rb dimers attached to helium droplets
are given in Fig. 2.3, which is taken from Ref. [68]. The red-filled curves were measured in
double-ion coincidence, and therefore, one can only observe dICD. The black-filled curves were
taken in single-ion coincidence and, consequently, present both ICD and dICD, which are sep-
arated in kinetic energy. The ICD peaks are between 14 eV and 16 eV depending on the alkali
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dimer. The heavier the alkali dimer, the lower the ionization threshold, and consequently, the
ICD peak is shifted to higher electron energies. The same applies to the two dICD peaks,
where one appears between 0 eV and 2 eV and the other between 6 eV and 8 eV. The resulting
U-shape profiles are characteristic for correlated emission mechanisms such as shake off and in
a flatter form knock out [72, 73, 81], which are known from the local processes such as double
Auger (dA) decay [76–80] and single-photon double-ionization (SPDI) [71–75].

After emission of the first electron in the shake-off mechanism, the system relaxes and the
sudden change in the potential triggers the ejection of the second electron. Because the first
electron is high in energy and the energy of the second electron barely exceeds the ionization
threshold, the shake off leads to a distinct U-shape profile in the electron kinetic-energy spec-
trum, where one peak is close to the threshold and the other peak is located at higher energies.
In contrast, the knock-out mechanism is comparable to impact ionization, where the first emit-
ted electron knocks out another electron while leaving the atom. The two ejected electrons
are closer in energy than the emitted electrons in the shake-off process, but still separated in
kinetic energy.

In dA, an atom or molecule is initially core ionized. The vacancy is filled by a valence electron,
and the corresponding excess energy is utilized to eject two electrons in the continuum. In
SPDI, the investigated species is directly doubly ionized. In these two local processes, the ra-
tios of the double- to the corresponding single-ionization process usually amount only to several
percents for energies close to threshold, see Refs. [75, 77, 78, 81, 83–88]. Remarkable is now
that the efficiency of dICD appears to be comparable to that of ICD and even exceeds it, as
seen in Fig. 2.3. So, the question arises why dICD is so efficient.

The efficiency of dICD is determined by its decay rate, and we present in the following chap-
ters some approaches for its computation. We start with the asymptotic approach, where we
assume that the two species are well separated so that we can treat them as independent. Ex-
perimentally measurable quantities are used to put the asymptotic decay width into a practical
form, which is subsequently applied to several atomic and molecular systems known from the
literature. To complete our studies, we also show the perturbative approach, where the two
species are no longer far away from each other. Due to perturbation theory, which considers
the orbital overlap between the two species, we obtain further insight into the different intra-
and interatomic mechanisms resulting in dICD.
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Chapter 3

Asymptotic Approach

In this chapter, we derive the asymptotic partial decay width ΓdICD(ω) expressed by experi-
mentally measurable quantities of isolated monomers, where ~ω is the transferred energy or
the energy of the virtual photon. The derivation shown below is based on Ref. [64]. We assume
that the two species are well separated so that we can make two crucial assumptions. First, we
will write the states of the combined system as products of the states of the isolated subsystems
A and B, and second, we will represent the Coulomb operator, which describes the interaction
between the electrons of A and B, as the multipole expansion. In Sec. 3.1, we introduce the
corresponding states, the electronic Hamiltonian, and the expansion of the interaction Hamil-
tonian in multipole terms. Subsequently, the expression of the transition amplitude in terms
of dipole operators is derived in Sec. 3.2. Averaging of the transition amplitude over the initial
states and summing over the final states is done in Sec. 3.3. Finally, in Sec. 3.4, the expres-
sion of the decay width expressed in terms of experimentally measurable quantities is derived.
Electrostatic units are used, as is seen from the form of the Coulomb term (see Eq. (3.3)).

3.1 States and Hamiltonians

We assume that the interatomic distance R is fixed. Following the excitation step, the system
A-B is found in a decaying electronic state |ΨD〉, which comprises the excited inner-valence
ionized species A+∗ and the neighbor B. This decaying state lies energetically in the double-
continuum corresponding to the relaxed ion A+ and a doubly ionized state of B. We denote the
energies of the two electrons in the continuum as εk and εk′ . The final state of the system, can
be written as |ΨEγ ,ε,εk′ 〉, where Eγ is the energy of the remaining ion (A+B2+) in the state γ,
which is accessible in the decay, and ε = εk +εk′ . The electronic part of the final state at fixed
R is energy-normalized in ε and εk′ , i.e., 〈Ψ∗E′γ ,ε′,ε′k′ |ΨEγ ,ε,εk′ 〉 = δγγ′ δ(ε − ε′)δ(εk′ − ε′k′). Due
to the large separation of A and B, the subsystems can be seen as isolated, which allows us to
approximate the states of interest as direct products of the states of A and B. The resulting
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expressions read

|ΨD〉 = |Ψ(A)
D 〉 |Ψ(B)0 〉 , (3.1a)

|ΨEγ ,ε,εk′ 〉 = |Ψ(A)
EγA
〉 |Ψ(B)

EγB ,ε,εk′
〉 , (3.1b)

where |Ψ(A)
D 〉 represents species A in an inner-valence ionized state, while we assume that |Ψ(B)0 〉

is the ground state of species B. The double ionization of species B by radiationless energy
transfer can then be conceptualized as proceeding via absorbing a single virtual photon emit-
ted in deexcitation of A+∗. A final state of the system is a product of the energetically accessible
low-lying state of the ion A+, |Ψ(A)

EγA
〉, and a state |Ψ(B)

EγB ,ε,εk′
〉 which describes the doubly charged

ion of B2+ with two emitted electrons in the continuum.

Let us continue with the electronic Hamiltonian, which can be written as

Ĥ = ĤA + ĤB + ŴAB + V̂AB, (3.2)

where ĤA and ĤB are the full electronic Hamiltonians of isolated A and B, respectively, ŴAB

is the interaction of the electrons of A with the nuclei of B and vice versa, and V̂AB is the
Coulomb interaction between the electrons of A and B. The states of the isolated subsystems
of A and B are eigenstates of the Hamiltonians ĤA and ĤB, respectively. The transition from
|ΨD〉 to |ΨEγ ,ε,εk′ 〉 is effected already in second-order perturbation theory due to the interatomic
(intermolecular) two-electron term V̂AB, while the coupling of the excited state to the double-
continuum of the neighbor via the one-particle operator ŴAB arises only in higher orders and
can be neglected.

Before we evaluate the transition amplitude in Eq. (3.8) in the asymptotic limit, we focus
on the Coulomb operator V̂AB, which is given as

V̂AB =∑
i∈A

∑
j∈B

e2
|r(B)
j − r

(A)
i |
. (3.3)

The corresponding system is schematically depicted in Fig. 3.1, where the center of species A
is placed at the origin, and the vector R = R eR connects the centers of the species A and B.

12
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R = ReR

ξ

A B

r(B)
e

e
r(A)

r

e′

Figure 3.1: Schematical configuration of species A and species B at distance R. The coordinates
r(A) and r(B) describe the positions of electrons localized on A or B with respect to the species A,
while r and ξ are the corresponding coordinates to A and B, respectively. Electron e recieves
the energy following the relaxation of A and shares it with e′ by correlations.

The electron coordinates in A and B relative to the origin are r(A)
i and r(B)

j , where i enumerates
the electrons of A and j labels the electrons of B. The vectors ri and ξj are the electron coor-
dinates relative to the centers of A and B, respectively. We assume that in the case of atoms,
their centers coincide with the nuclei, while for molecules they are located at the respective
centers of electronic charge.

At large internuclear distances R, where |r(A)
i | << |r

(B)
j | holds and the Coulomb term can

be represented as multipole expansion, whereby only the leading terms are retained. Inserting,
r

(B)
j =R + ξj into Eq. (3.3) (see Fig. 3.1), and carrying out the multipole expansion in powers

of 1/R, gives
V̂AB =∑

i∈A

∑
j∈B

e2
|(R+ ξj)− ri|

= e2
R − e

2∑
i∈A

∑
j∈B

(ξj − ri)
R2 eR + e22 ∑

i∈A

∑
j∈B

[
−

(ξj − ri)2
R3 + 3((ξj − ri)R)2

R5
]+ O

( 1
R4
)
.

(3.4)

Because only terms containing both the coordinates of A (ri) and B (ξj) can couple electrons
of A and B, the first surviving term in Eq. (3.4) is the third term, where only contributions,
which behave as 1/R3, remain. Neglecting higher orders, gives the following approximation for
the interaction Coulomb operator

V̂AB ≈
e2
R3 ∑

i∈A

∑
j∈B

[
ξjri − 3(ξjeR)(rieR)]. (3.5)
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3.2 Transition Amplitude and Decay Width

The differential partial decay width ΓEγ (ε, εk′) [73, 76], which corresponds to the decay of the
state |ΨD〉 to the state |ΨEγ ,ε,εk′ 〉 is given by the following equation

ΓEγ (ε, εk′) = 2π| 〈ΨEγ ,ε,εk′ |Ĥ|ΨD〉 |2, (3.6)

where Ĥ denotes the full electronic Hamiltonian, and neither |ΨD〉 nor |ΨEγ ,ε,εk′ 〉 is an eigen-
state of Ĥ. Eq. (3.6) is related to Fermi’s golden rule, which gives the probability per unit time

P for transitions caused by time-independent perturbations, by P = ΓEγ (ε, εk′)
~

, see Ref. [116].
Because the final states are energy-normalized, see Sec. 3.1, the corresponding prefactors of the
continuum states cancel the density of the final states, which reduces to ρ(EEγ ,ε,εk′ ) = 1.

By integrating ΓEγ (ε, εk′) over εk′ , we get an expression for the decay width which corresponds
to one specific decay on A accompanied by the emission of two electrons with the combined
energy ε from specific orbitals of B. We call this expression partial decay width for a given
channel

ΓEγ (ε) = ∫ ε

0 ΓEγ (ε, εk′)dεk′. (3.7)

As discussed before, if the interatomic distance R between the two centers A and B is considered
at the limit RÏ∞, several simplifying assumptions will become valid, and we will be able to
derive an analytical expression for the asymptotic decay width [90–93]. This allows us to expand
the Coulomb interaction, which is the only contributing operator of the electronic Hamiltonian.
Consequently, the differential partial decay width reads

ΓEγ (ε, εk′) = 2π| 〈Ψ(A)
EγA
| 〈Ψ(B)

EγB ,ε,εk′
| V̂AB |Ψ(A)

D 〉 |Ψ(B)0 〉 |2, (3.8)

where the approximated Coulomb interaction in Eq. (3.5) can be used for evaluating the dICD
transition amplitude

MFI = 〈Ψ(A)
EγA
| 〈Ψ(B)

EγB ,ε,εk′
| V̂AB |Ψ(A)

D 〉 |Ψ(B)0 〉
≈ e2
R3 ∑

i∈A

∑
j∈B

[
〈Ψ(A)

EγA
|ri|Ψ(A)

D 〉 〈Ψ(B)
EγB ,ε,εk′

|ξj |Ψ(B)0 〉
− 3 〈Ψ(A)

EγA
|rieR|Ψ(A)

D 〉 〈Ψ(B)
EγB ,ε,εk′

|ξjeR|Ψ(B)0 〉]. (3.9)

By introducing the dipole operators

D̂A = −∑
i∈A

e ri, (3.10a)

D̂B = −∑
j∈B

e ξj , (3.10b)
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CHAPTER 3. ASYMPTOTIC APPROACH

which act only on the electron coordinates of either A or B, we can write the interaction in a
form that emphasizes the dipole-dipole coupling between A and B clearly

MFI = 1
R3 [D(A)D(B) − 3(eRD(A))(eRD(B))], (3.11)

where the transition dipole amplitudes D(A) and D(B) are
D(A) = 〈Ψ(A)

EγA
|D̂A|Ψ(A)

D 〉 , (3.12a)

D(B) = 〈Ψ(B)
EγB ,ε,εk′

|D̂B|Ψ(B)0 〉 . (3.12b)

Choosing the z-axis along eR, we obtain the following expression for the absolute value squared
of the transition amplitude

|MFI |2 = 1
R6 |D(A)

x D(B)
x +D(A)

y D(B)
y − 2D(A)

z D(B)
z |2, (3.13)

where Dx, Dy, Dz denote the transition matrix elements belonging to the corresponding com-
ponent of the dipole operator.

3.3 Isotropic Transition Amplitude

In the following, we consider the isotropic transition amplitude by averaging over the initial
states and summing over the final states, which is required to compute the total decay widthΓdICD. Due to the absence of an external field, we assume that no direction in space is favored
and that the atoms can be with equal probability in any angular momentum substates char-
acterized by MA and MB. For a diatomic system A-B the states of interest can be written in
terms of atomic quantum numbers

|ΨD〉 = |γAEAJAMA〉 |γBEBJBMB〉 , (3.14a)

|ΨEγεεk′ 〉 = |γ ′AE′AJ ′AM ′
A〉 |γ ′BE′BJ ′BM ′

B〉 , (3.14b)

where E is the energy of the respective atomic state, J is the total angular momentum, M is
its projection, and γ denotes all other quantum numbers. It follows for the transition matrix
elements

D(A)
k = 〈γ ′AE′AJ ′AM ′

A|D̂
(A)
k |γAEAJAMA〉 ,

D(B)
k = 〈γ ′BE′BJ ′BM ′

B|D̂
(B)
k |γBEBJBMB〉 , (3.15)

where k = x, y, z. We average over the projections of the total angular momentum of A and B
in the initial state, MA andMB, and sum over the final states, M ′

A andM ′
B, to get the isotropic

transition amplitude [39, 117]
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|MFI |2 = 12JA + 1 12JB + 1 ∑
MAM ′A

∑
MBM ′B

|MFI |2. (3.16)

The expressions above can be simplified by using the concept of reduced matrix elements [117]

∑
MA,M ′A

| 〈γ ′AE′AJ ′AM ′
A|D̂

(A)
k |γAEAJAMA〉 |2 = 13 |(γ ′AE′AJ ′A||D̂A||γAEAJA)|2,

∑
MB,M ′B

| 〈γ ′BE′BJ ′BM ′
B|D̂

(B)
k |γBEBJBMB〉 |2 = 13 |(γ ′BE′BJ ′B||D̂B||γBEBJB)|2, (3.17)

where (γ ′AE′AJ ′A||D̂A||γAEAJA) and (γ ′BE′BJ ′B||D̂B||γBEBJB) denote the reduced matrix elements.
Note that the terms of different dipole matrix components arising in the absolute square give
no contribution, see Ref. [117]. Finally, the isotropic transition amplitude is given by

|MFI |2 = 12JA + 1 12JB + 1 23R6 |(γ ′AE′AJ ′A||D̂A||γAEAJA)(γ ′BE′BJ ′B||D̂B||γBEBJB)|2. (3.18)

In our case, we assume that atom B initially in its non-degenerate ground state with JB = 0, thus12JB + 1 reduces to 1. Finally, the differential partial decay width averaged over the projections
of the angular momentum becomes

ΓEβ (ε, εk′) = 4π3R6 12JA + 1 |(γ ′AE′AJ ′A||D̂A||γAEAJA)(γ ′BE′BJ ′B||D̂B||γBEB 0)|2. (3.19)

We use Eq. (3.19) to obtain the partial decay width ΓEγ (ε) (see Eq. (3.7)). By summing the
latter over all final states, we obtain the total decay width of dICD,

ΓdICD = 4π3R6 ∑
FAFB

∫ ε

0 dεk′
12JA + 1 |(γ ′AE′AJ ′A||D̂A||γAEAJA)(γ ′BE′BJ ′B||D̂B||γBEB 0)|2, (3.20)

whereby FA (FB) enumerates the energetically accessible final states of A (B).

3.4 Experimentally Measurable Quantities

In the special case where there is only one suitable transition on A, we can express the partial
decay width ΓdICD(ω) through experimentally measurable quantities of the isolated subsystems
A and B. To do that, we write for the radiative decay rate on atom A [117]

wA = 4ω33~c3 12JA + 1 |(γ ′AE′AJ ′A||D̂A||γAEAJA)|2, (3.21)

where the transition energy ~ω is the energy of the virtual photon,

~ω = E′A − EA = E′B − EB. (3.22)
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The radiative lifetime corresponding to the transition (γAEAJA)Ï (γ ′AE′AJ ′A) on A reads

τA = 1
wA

. (3.23)

Furthermore, the transition moment |(γ ′BE′BJ ′B||D̂B||γBEBJB)|2 can be replaced by the single-

differential one-photon double-ionization cross section of atom B, dσ
++
B (ω)
dεk′

, in the length gauge
with photons of energy ~ω [72–74],

dσ++
B (ω)
dεk′

= 4π23 ω
c
∑
FB

|(γ ′BE′BJ ′B||D̂B||γBEBJB)|2, (3.24)

where FB denotes all energetically possible final states on B, which is initially in its non-
degenerate ground state. The resulting formula for the partial decay width ΓdICD (ω) of dICD
in a system of two atoms defined by measurable quantities for one specific virtual photon energy
~ω, finally reads

ΓdICD (ω) = 3~4π( cω)4τ−1
A σ++

B (ω)
R6 . (3.25)

Note that the partial decay width ΓdICD (ω) considers different transitions on species B for
one specific virtual photon energy, while the partial decay width for a given channel ΓEγ (ε)
considers only one transition on B for a given decay on A.

In the asymptotic derivation of the partial decay width, the dipole operators appear natu-
rally in the length gauge, since they arise through the expansion of the Coulomb interaction.
Therefore, whenever ab initio radiative lifetimes and single-photon double-ionization cross sec-
tions are used in Eq. (3.25), the length gauge should be preferred if the respective transition
moments depend on the gauge chosen.

Furthermore, Eq. (3.25) is not only valid for atomic systems. It is also valid for systems,
which consist of a decaying atomic species and a molecular species as neighbor, if we average
over the orientation of the molecule in space [118, 119].
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Chapter 4

Atomic and Molecular Systems

In this chapter, we apply the asymptotic expression, see Eq. (3.25), to investigate dICD and
compare its efficiency to that of ICD and other decay processes. The results presented here
are taken from Ref. [64]. For ICD, it has been shown that at shorter distances R, where the
respective asymptotic expression loses its validity, the ICD rates obtained by this expression
can be much smaller than the true rates due to orbital overlap and can be seen as a lower
bound to the latter [90]. Since two electrons are emitted in dICD and at least two orbitals of
the neighbor are involved in the process, one can expect that orbital overlap may have an even
larger impact on the rate than found for ICD. Thus, at smaller R, the rates obtained by the
asymptotic expression are also to be seen as lower bounds to the true, but yet unknown, rates.

4.1 Asymptotic ICD and dICD Rates in Comparison

Following the first observation that dICD is possible in Mg@C60 [67], we start the discussion
with the fullerene C60 as a neighbor. It is well known that C60 and other fullerenes accom-
modate foreign atoms and molecules [120–122]. Here, we shall concentrate on the endohedral
fullerenes Ne@C60, Mg@C60 and He@C60.
We start with Ne@C60 after 2s ionization of Ne. The excess energy (see Tab. 4.1) is 26.9 eV
and, of course, suffices to ionize via ICD the C60 cage. However, due to the large Coulomb
repulsion of 8.4 eV between Ne+ and the resulting C++60 , dICD is just not possible. Here, the
ICD rate was computed by ab initio methods [67] and we use this fact to compare the result
with that of the asymptotic expression. The asymptotic expression for the ICD rate reads [90]

ΓICD = 3~4π( cω)4τ−1
A σ+

B
R6 . (4.1)

As can be seen from Tab. 4.1, the lifetime of the Ne+(2s−1) ion decreases from the lifetime of
the isolated ion of 0.2 ns to only 7 fs due to ICD. The reported ab initio value is smaller and
amounts to 2 fs [67].
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Ne@C60 R = 3.4 Å [120]

Ne+(2s12p6 Ï 2s22p5) Evp = 26.9 eV [123] wA = 5.5 · 109 1
s [123] τA = 1.9 · 10−10 s

C60 [124–126] DIP = 19 eV σ+
B (26.9 eV) = 5.7 · 102 Mb

ICD ΓICD = 9.3 · 10−2 eV ΓICD = 1.4 · 1014 1
s τICD = 7.1 · 10−15 s

Mg@C60 R = 3.5 Å [127]

Mg+(2p53s2 Ï 2p63s) Evp = 50.2ẽV [123] wA = 4.7 · 109 1
s τA = 2.1 · 10−10 s [128]

C60 [124–126] DIP = 19 eV σ++
B = 2.2 · 101 Mb σ+

B = 8.9 · 101 Mb
ICD ΓICD = 8.6 · 10−4 eV ΓICD = 1.3 · 1012 1

s τICD = 7.7 · 10−13 s
dICD ΓdICD = 2.1 · 10−4 eV ΓdICD = 3.2 · 1011 1

s τdICD = 3.1 · 10−12 s

He@C60 R = 3.3 Å [120]

He∗(1s2p Ï 1s2) Evp = 21.2 eV [123] wA = 1.8 · 109 1
s [123] τA = 5.6 · 10−10 s

C60 [124–126] DIP = 19 eV σ++
B = 1.4 Mb σ+

B = 1.2 · 103 Mb
ICD ΓICD = 2.0 · 10−1 eV ΓICD = 2.9 · 1014 1

s τICD = 3.5 · 10−15 s
dICD ΓdICD = 2.3 · 10−4 eV ΓdICD = 3.5 · 1011 1

s τdICD = 2.9 · 10−12 s

Table 4.1: ICD and dICD rates for endohedral fullerenes. For each system the first row shows
the data of the guest atom and the second row the data of C60 at the respective virtual photon
energy. The third row reports the desired rates for the respective endohedral fullerene. Note
that the dICD channel is not open for Ne@C60 due to the Coulomb repulsion in the final state.
Evp is the excess energy (virtual photon energy), wA is the radiative rate, τA is the respective
radiative lifetime of the isolated guest atom, DIP is the double-ionization potential of C60,
σ++
B and σ+

B are the double- and single-ionization cross sections at the corresponding virtual
photon energies, ΓICD and ΓdICD are the ICD and dICD decay rates, and τICD and τdICD are
the resulting lifetimes due to the process indicated.

As noted in Ref. [67], the dICD channel is open in Mg@C60 after 2p ionization of Mg. As
indicated in Tab. 4.1, the excess energy of Mg+(2p−1) is above 50 eV and by far suffices for
dICD to take place. To be able to easily compute the ICD and dICD rates, we express the
decay width in practical units

ΓdICD[eV ] = 2.38 · 10−5 1(Evp[eV ])4 (τA[s])−1σ++
B [Mb](R[Å])6 , (4.2)

as well as the relationship between lifetime and width

τ[s] = 6.58 · 10−16 1Γ[eV ] . (4.3)

The radiative lifetime of Mg+(2p−1) is 0.2 ns , while due to ICD alone the lifetime of this ion
inside C60 becomes 770 fs. Even dICD alone, would reduce the lifetime of Mg+(2p−1)@C60 to
the ps time regime (3.1 ps). Clearly, dICD is a relevant process in Mg@C60 after 2p ionization.
For completeness, we mention that the ion Mg+(2p−1), unlike Ne+(2s−1), can also decay by
autoionization [129, 130].

Having seen that dICD can be an efficient decay pathway in Mg@C60, we now turn to He@C60
where after the lowest excitation 1sÏ 2p of He, ICD as well as dICD are open decay channels.
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Since there is no Coulomb repulsion in the final state, the excess energy of 21.2 eV is sufficient
to trigger the double ionization of C60 by energy transfer. Here, except for radiative decay,
there is no competition to ICD and dICD by other decay mechanisms. ICD is very efficient
for this system; its lifetime is only 3.5 fs as compared to the radiative lifetime of 0.56 ns in the
isolated excited He atom. Keeping in mind that the asymptotic expression overestimates ICD
lifetimes, the correct value might be sub fs. dICD is also efficient and would by itself lead the
short lifetime of 0.29 ps, more than two orders of magnitude shorter than the radiative lifetime.

4.2 Ratios of the dICD to ICD Rates
Having seen that dICD, depending on the system and neighbor chosen, can be an efficient
process, orders of magnitude faster than radiative decay, we concentrate in the following on the
ratio of the dICD and ICD rates. From the asymptotic expressions for these rates, it is obvious
that their ratio is simply provided by the ratio of the double- to single-ionization cross sections
at the respective excess energy

ΓdICDΓICD
= σ++

B
σ+
B
. (4.4)

Consequently, the dICD to ICD ratio is determined by the cross sections of the neighbor alone,
while the state of the decaying system determines the photon energy at which these cross
sections have to be taken. Keeping this in mind, we discuss in the following further simple
examples of systems with high dICD to ICD ratios.

Tab. 4.2 gives an overview of doubly ionized species, their double-ionization potential (DIP),
their single-photon double-ionization (SPDI) to photoionization (PI) ratio at a specific photon
energy and lists the corresponding publications from which the data was taken. The SPDI to
PI ratio can be either the ratio of cross sections σ++

B /σ+
B or the ratio of doubly to singly ionized

ions M2+/M+. For C60 the respective cross sections are available, but not for the hydrocarbons
listed in Tab. 4.2. In the absence of autoionization, the amount of singly and doubly charged
ions is proportional to their respective cross sections, and thus, the ratio of doubly to singly
charged ions is equivalent to the ratio of the SPDI to PI cross sections and we will not dis-
tinguish between them in the following [81, 89, 134–137]. The photon energy of 68.3 eV used
in most of the entries of the table, is the excess energy of Xe+(4d−1) and just chosen as an
example. Many more values are available in the literature cited. Before proceeding with the
discussion, a brief comment on the ratios of Mg and Ca in the table is in order. Both ratios are
the highest ones in the measured or calculated photon energy range. The SPDI cross section
of Mg is measured and calculated from threshold to about 54 eV [75, 84–86, 125, 138], and the
ratio reaches its highest point of 0.9% at 36.5 eV. The ratio for Ca is calculated up to 43 eV
and has its highest value of 4% at 28.5 eV [84, 138].

As seen in Tab. 4.2, aromatic hydrocarbons: benzene, naphthalene, anthracene, pentacene,
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Species DIP [eV] σ++
B (ω)
σ+
B (ω) · 100 [%] a) References

Na 52.4 eV 0.9 % (68.3 eV) [131–133]
K 36.0 eV 40 % (68.3 eV) [132]
Be 27.5 eV 2.4 % (47.5 eV) [84, 85]
Mg 22.7 eV 0.9 % (36.5 eV) [75, 84–86]
Ca 18.0+eV 4.0 % (28.5 eV) [84]
C6 H6 26.1 eV 23 % (68.3 eV) a) [89]
C6 H3 D3 26.0 eV 5 % (68.3+eV) a) [83, 89]
selenophene 24.2 eV 80 % (275 eV) a) [83, 89]
pyrrole 24.2 eV 11.2 % (68.3 eV) a) [83, 89]
furan 25.2 eV 7.8 % (68.3 eV) a) [83, 89]
naphthalene 21.4 eV 9 % (68.3 eV) a) [83, 89]
anthracene 20.1 eV 13 % (68.3 eV) a) [83, 89]
pentacene 18.6 eV 31 % (68.3 eV) a) [83, 89]
coronene 18.8 eV 27.5 % (68.3 eV) a) [83, 89, 125]
pyrene 19.3 eV 19 % (68.3 eV) a) [83, 89, 125]
C60 19.0 eV 49 % (68.3 eV) [124, 126]

Table 4.2: Ratio of the photoionization to single-photon double-ionization cross sections for
selected atoms and molecules. In the first column are the atomic or molecular species listed,
in the second are their double-ionization potentials (DIP), in the third are the single-photon
double-ionization (SPDI) to photoionization (PI) ratios at specific photon energies and the
last contains the corresponding references. Data at other photon energies can be found in the
respective references. The single-photon double-ionization to photoionization ratios are ratios
of the respective cross sections or, if not available, ratios of the respective doubly to singly
charged ions, whereby the second case is marked with an a).
pyrene, coronene, pyrrole, furan, and selenophene are suitable neighbors and offer rather low-
lying double-ionization thresholds, ranging from 18.6 eV to 26.1 eV. These molecules play an
important role in astrophysics [139–141]. Experimental investigations, as in Refs. [83, 89],
show that the ratios of doubly charged to singly charged ions can reach values up to nearly
80% (selenophene) for photon energies above 200 eV. For a photon energy of 68.3 eV, which is
the excess energy of the 4d−1 vacancy of Xe, the ratio is distinctly smaller, but still reaches
23% for benzene, 31% for pentacene and even 49% for C60.
For even smaller excess energies, the SPDI to PI ratio typically further decreases. Never-
theless, dICD can still be efficient. In the following, we discuss briefly two sets of examples.

In the first, the decaying system is Ne+ in the state 2s22p4(1D)3s which has an excess en-
ergy of 30.5 eV [123] and its radiative rate is wA = 1.4 · 109 1

s [142]. This state is populated by
Auger decay [143–145]. We focus on the systems Ne+-coronene, Ne+-pyrene and Ne+-pentacene.
Intermolecular distances between Ne+ and aromatic hydrocarbons typically range from 3Å to
3.5Å [146–148]. Coronene has a double-ionization threshold of 18.8 eV, while that of pyrene is
19.3 eV. Their ratios of SPDI to PI or the dICD to ICD ratios at 30.5 eV are about 5.9% and
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9%, respectively [83, 89, 125]. The double-ionization threshold of pentacene lies at 18.6 eV and
the SPDI to PI ratio at 30.5 eV reaches 10% [83, 89, 125]. Even for photon energies near the
threshold, the dICD to ICD ratios are sizable for aromatic hydrocarbons. We would like to
stress that Ne+ in the state 2s22p4(1D)3s cannot undergo autoionization and hence there are
no competitive processes.

In the second set of examples, we combine the excited (1s Ï 2p) helium ion He+ [149] with
coronene, pyrene and pentacene. This ion was utilized to investigate ICD in the extreme He
dimer [9, 10]. The 2p Ï 1s transition provides an excess energy of 40.8 eV. The dICD to ICD
ratios for this virtual photon energy become: 13.7% for coronene, 12.1% for pyrene and even
19% for pentacene [83, 89, 125].

These high ratios make clear that dICD can be a significant percentage of ICD for photon
energies not too close to the double-ionization threshold. Since SPDI compared to photoion-
ization can be more dominant at larger photon energies (see, e.g., selenophene in Tab. 4.2), the
dICD to ICD ratio can become large for these energies. However, as the excess energy enters
the asymptotic expression to the fourth power in the denominator of Eq. (3.25), the absolute
impact of dICD is still expected to be small at high values of the energy.
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Chapter 5

Perturbative Approach

After showing the derivation of the asymptotic dICD decay width under the assumption that
the two species are well separated by an approximated internuclear distance R Ï ∞, in the
following chapter, we assume that the decay occurs in a weakly bound cluster A-B, where the
characteristic values of R are a few Ångströms, and where A and B mostly retain the character
of isolated species. The here presented results are taken from Ref. [64]. In contrast to the
derivation of the asymptotic dICD width, we have to use now time-dependent perturbation
theory to obtain an expression for the decay width ΓdICD. Therefore, we introduce in Sec. 5.1
the states and Hamiltonians in the Hartree Fock approximation using second quantization.
In Sec. 5.2, the derivation of the differential partial dICD decay width using second-order
perturbation theory is shown. Subsequently, in Sec. 5.3, the corresponding transition amplitude
and its computation are explained and discussed. In Sec. 5.4, the transition amplitude is used
to derive the partial and total dICD decay width. To complete our studies, we finally show in
Sec. 5.5 how the perturbatively derived transition amplitude reduces to the asymptotic one at
the limit RÏ∞.

5.1 States and Hamiltonians in the Hartree Fock Approxima-
tion

The electronic Hamiltonian is divided into an unperturbed Hamiltonian Ĥ0 and an interaction
Hamiltonian Ĥint , which describes the perturbation,

Ĥ = Ĥ0 + Ĥint. (5.1)

We select Ĥ0 as the Hartree-Fock (HF) Hamiltonian and Ĥint = V̂ − v̂HF is the interaction
Hamiltonian, which contains the Coulomb Operator V̂ and the average Hartree-Fock potential
v̂HF . The Hartree-Fock Hamiltonian is given as Ĥ0 =∑i f̂ (ri), where f̂ stands for a one-electron
Fock operator and the sum runs over all electrons in the system. The eigenfunctions φn and
eigenvalues εn of the Fock operator are the spin-orbitals and the orbital energies.
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In the following, we consider N-electron systems with a closed-shell electronic ground state.
The decaying state is produced by removing an inner-valence electron, while the final states
consist of the triply ionized system with two electrons in the continuum. To describe these
states using the perturbation theory, one needs one-hole (1h), one-particle-two-hole (1p2h),
and two-particle-three-hole (2p3h) unperturbed states. They are constructed by acting with
the physical excitation operators on the HF ground state |Φ0〉:

|Φi〉 = ci |Φ0〉 , (5.2a)

|Φa
ij〉 = c†acicj |Φ0〉 , (5.2b)

|Φab
ijk〉 = c†ac

†
bcicjck |Φ0〉 , (5.2c)

where cn and c†n are annihilation and creation operators for an electron in the orbital φn.
Thereby, the indices a and b enumerate the particle orbitals and i, j, and k the hole orbitals.
Note that the indices refer to spin-orbitals.

The unperturbed states are eigenstates of the unperturbed Hamiltonian Ĥ0, according to

Ĥ0 |Φi〉 = (E(0)0 − εi) |Φi〉 = E(0)
i |Φi〉 , (5.3a)

Ĥ0 |Φa
ij〉 = (E(0)0 + εa − εi − εj) |Φa

ij〉 = E(0)
aij |Φa

ij〉 , (5.3b)

Ĥ0 |Φab
ijk〉 = (E(0)0 + εa + εb − εi − εj − εk) |Φab

ijk〉 = E(0)
abijk |Φab

ijk〉 , (5.3c)

where E(0)0 is the zeroth-order energy of the ground state: Ĥ0 |Φ0〉 = E(0)0 |Φ0〉.
We derive the expression for the dICD width for a cluster consisting of two weakly bound
components A and B, which we assume initially to be in their closed-shell ground state. Be-
cause the bonding is weak for the R of interest, the hole orbitals are just weakly perturbed
orbitals of isolated A and B. Therefore, we will retain the indices A and B in denoting the
orbitals, to indicate that they are mostly localized on the respective species. The decaying
state has a hole in an inner-valence orbital ivA ≡ ivAη (η = ± 1/2 is the spin projection).
In the final state, there are three holes that occupy the outer-valence orbitals ovA ≡ ovAλ,
ovB ≡ ovBµ, and ov ′B ≡ ov ′Bσ , while the two particles occupy the continuum orbitals εk ≡ εkδ
and εk′ ≡ εk′ν. We denote the initial state as |ΦivA〉 and the final state as |Φεkεk′

ovAovBov′B
〉, where

the spin indices are suppressed for clarity. The total spin of the decaying state is S = 1/2, and
it is conserved in the decay, since Ĥint is spin-free.

5.2 Second-order Perturbation Theory

In contrast to the asymptotic approach, where the approximation of two well-separated species
allows us the expansion of the interaction Coulomb operator and, consequently, the use of
experimentally measurable quantities to describe the processes on A and B, we now have to
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CHAPTER 5. PERTURBATIVE APPROACH

adjust Fermi’s Golden to compute the dICD rate without these assumptions. Fermi’s Golden
rule is nothing else than the time-dependent first-order perturbation theory at its limit tÏ∞,
which removes the time dependency. Since the transition between the unperturbed decaying
and final state is forbidden in first order, we use the time-dependent second-order expansion to
obtain the differential partial dICD decay width. The general derivation of the time-dependent
second-order perturbation theory is presented below, see also Refs. [116, 150].

The eigenstates |ΦN〉 of the unperturbed Hamiltonian, Ĥ0 |ΦN〉 = E(0)
N |ΦN〉, form a complete

basis, which expands the time-dependent wave function as

Ψ(t) =∑
N
cN(t) exp(− i

~
E(0)
N t) |ΦN〉 . (5.4)

Here, cN(t) is the time-dependent expansion coefficient. At the time t0 the system is in the
eigenstate |ΦI〉 of Ĥ0 resulting in the initial condition cN(t0) = δNI . At later time t the
probability of finding the system in the eigenstate |ΦF〉 of Ĥ0 is given by wFÎI(t) = |cF (t)|2. To
determine the coefficients cN(t), the expansion of the wave function is inserted into the time-

dependent Schrödinger equation, Ĥ |Ψ(t)〉 = i~d |Ψ(t)〉
dt , where Ĥ is the full Hamiltonian as

defined in Eq. (5.1). Multiplying from the left 〈ΨM | and integrating over
∫ t
t0 , gives the implicit

solution for the expansion coefficient

cM(t) = cM(t0) + 1
i~

∫ t

t0
∑
N
H int
MN exp [ i

~
(E(0)

M − E
(0)
N )t ′]cN(t ′) dt ′

= cM(t0) + 1
i~

∫ t

t0 dt
′
∑
N
H int
MN exp [ i

~
(E(0)

M − E
(0)
N )t ′]cN(t0)

+ 1(i~)2
∫ t

t0 dt
′
∑
N
H int
MN exp [ i

~
(E(0)

M − E
(0)
N )t ′]∫ t ′

t0 dt ′′
∑
L
H int
NL exp [ i

~
(E(0)

N − E
(0)
L )t ′]cL(t ′′) + ..., (5.5)

where H int
MN = 〈ΦM |Ĥint|ΦN〉 is the corresponding matrix element of the interaction Hamilto-

nian. Here, the expression for the transition amplitude cF (t) to the final state |ΦF〉 is given by
the second order and is obtained by inserting cL(t ′′) and applying the initial condition, which
cancels the sum over L

cF (t) = 1(i~)2 ∑
N
H int
FNH int

NI

∫ t

t0 dt
′ exp [ i

~
(E(0)

F − E
(0)
N )t ′] ∫ t ′

t0 dt ′′ exp [ i
~
(E(0)

N − E
(0)
I )t ′′]. (5.6)

In the following, we compute the transition amplitude at its limits. Therefore, we define t =∞
and t0 = −∞. The integration over t ′′ can be immediately performed, while the relation∫ T/2
−T/2 dt exp [ i

~
(E(0)

F − E
(0)
I )t] = 2π~δ(E(0)

F − E
(0)
I ) [150] is used for the second integral resulting

in
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5.3. TRANSITION AMPLITUDE

cF (t Ï∞) = i2π∑
N

H int
FNH int

NI(E(0)
N − E

(0)
I )δ(E(0)

F − E
(0)
I ) (5.7)

The probabilty to find the system at infinite times in the eigenstate |ΦF〉 is obtained by using[2π~δ(E(0)
F −E

(0)
I )]2 = 2π~δ(E(0)

F −E
(0)
I )T [150]. The square of the absolute value can be written

as

|cF (t Ï∞)|2 = wFÎI(t Ï∞) = 2π
~

∣∣∣∑
N

H int
FNH int

NI(E(0)
N − E

(0)
I )
∣∣∣2δ(E(0)

F − E
(0)
I )t (5.8)

To determine the probability per unit time, wFÎI(t Ï∞)
t is integrated over an infinitesimal

energy range around the initial energy E(0)
I

PFÎI = lim
ηÏ0

∫ E(0)
I +η

E(0)
I −η

2π
~

∣∣∣∑
N

H int
FNH int

NI(E(0)
N − E

(0)
I )
∣∣∣2δ(E(0)

F − E
(0)
I )ρ(E(0)

F ) dE(0)
F

= 2π
~

∣∣∣∑
N

H int
FNH int

NI(E(0)
N − E

(0)
I )
∣∣∣2ρ(E(0)

F = E(0)
I ), (5.9)

where for energy-normalized final states, the density of the final states becomes ρ(E(0)
F ) = 1.

The relation between the probability per unit time and the decay width is given by Γ = ~P.
After showing the general derivaiton, we return to dICD, where the initial state is the 1h-state
|ΦivA〉 and the final state is the 2p3h-state |Φεkεk′

ovAovBov′B
〉 as defined in Sec. 5.1. Finally, the

differential partial dICD decay width reads

ΓovAovBov′B(ε, εk′) = 2π∣∣∣∑
N

〈Φεkεk′
ovAovBov′B

|Ĥint|ΦN〉 〈ΦN |Ĥint|ΦivA〉(E(0)
N − E

(0)
ivA)

∣∣∣2. (5.10)

Note that due to energy conservation the initial energy equals the final energy, E(0)
ivA = E(0)

εkεk′ovAovBov′B
(see Eq. (5.9)). Furthermore, E(0)

N 6= E(0)
ivA and E(0)

N 6= E(0)
εkεk′ovAovBov′B

because the first order gives
no contribution, 〈Φεkεk′

ovAovBov′B
|Ĥint|ΦN〉 = 0. Alternatively to expanding the Hamiltonian by

using time-dependent perturbation theory, we can also adjust Fermi’s golden rule (Eq. (3.6))
by expanding directly the initial and final state in the framework of many-body perturbation
theory [151] resulting in the same expression for the differential partial dICD decay width as
Eq. (5.10), see App. A.

5.3 Transition Amplitude

To evaluate the second-order transition amplitude in Eq. (5.10),

T (2)
εkεk′ovAovBov′B :ivA =∑

N

〈Φεkεk′
ovAovBov′B

|Ĥint|ΦN〉 〈ΦN |Ĥint|ΦivA〉(E(0)
N − E

(0)
ivA) , (5.11)
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the summation over the eigenstates |ΦN〉 of the unperturbed Hamiltonian and the correspond-
ing eigenenergies E(0)

N is performed, where only 1p2h- and 2p3h-states give a contribution, see
App. A. The resulting expression for the transition amplitude 5.11 consists of eighteen terms,
which can be interpreted in terms of known physical processes. The complete list of the terms
and the details of their derivation can be found in App. A. In the following, we discuss the
structure and the physical meaning of four characteristic terms.

We begin with the term, which arises when the coupling proceeds via the unperturbed vir-
tual state

∑
pB |ΦpB

ovAovB〉 〈ΦpB
ovAovB | (see Tab. A.1 combination 1 in App. A). The sum

∑
pB runs

overall particle orbitals of B including bound and continuum states. The term reads

∑
pB

+ Vεkεk′ [ov′BpB](
εk + εk′ − εov′B − εpB + i0+)VpBivAovBovA . (5.12)

After the electron transition from the outer-valence orbital ovA to the inner-valence orbital ivA,
an electron of B is ejected from the outer-valence orbital ovB. The emitted electron pB inter-
acts with another bound electron of B in the outer-valence orbital ov ′B knocking it out, which
leads to two electrons εk and ε′k in the continuum. This process encoded in the amplitude in
Eq. (5.12) (see Fig. 5.1(a)) can be interpreted as an ICD step followed by knock-out ionization
of B. The energy denominator has a singularity for the limiting case, if one of the emitted
electrons takes the whole excess energy: εpB = εk + εk′ − εov′B . Therefore, an infinitesimal
imaginary part +i0+ has to be added to the energy denominator. The process is analogous to
that describing knock-out mechanism in double Auger decay or SPDI, where it is the dominant
mechanism for photon energies near the double-ionization threshold [72–80].

Next, we consider the term (see Fig. 5.1(b)), obtained by inserting the unperturbed virtual
state

∑
hB |Φεk

ovAhB〉 〈Φεk
ovAhB | into the dICD transition amplitude in Eq. (5.11) (see Tab. A.1

combination 1 in App. A). The result reads

∑
hB

−VivAεkovAhB
VhBεk′ [ovBov′B](

εhB + εk′ − εovB − εov′B
) , (5.13)

where the summation runs over all hole orbitals on B. The first matrix element is the ICD am-
plitude, which corresponds to the relaxation of the initial vacancy on A and the first ionization
of B. The second matrix element describes the relaxation of B accompanied by the emission of
the second electron. In other words, following the energy transfer in ICD, the electron of B is
ejected from hB to the continuum with the energy εk. Because of this sudden ionization, the
potential on B changes rapidly, and the orbital relaxation leads to the emission of another elec-
tron from ov ′B, which has the kinetic energy εk′ , see Fig. 5.1(b). This mechanism is analogous
to shake-off processes, which appear in double Auger decay and SPDI.

In the last two examples, we focus on the unperturbed virtual 2p3h-states,
∑

p1p2h1h2h3 |Φp1p2
h1h2h3〉 〈Φp1p2

h1h2h3 |.
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The presented terms arise by inserting the unperturbed states |ΦpBεk′
ovBov′BivA

〉 and |Φεkεk′
ov′BhBivA

〉 (see
Tab. A.2 configuration 5 and 3 in App. A) into the dICD transition amplitude (see Eq. (5.11))

ovA ovB εk εk′ ov′B

(a)

ivA

pB

ovA εk ovB εk′ ov′B

(b)

ivA

hB

Figure 5.1: Diagrammatic representation of the dICD transition amplitudes which correspond
to the knock-out (a) and the shake-off (b) mechanisms. The horizontal lines represent the
initial and the final states. The dots describe the interaction. The arrows pointed downwards
denote occupied (hole) orbitals, while the arrows pointed upwards denote unoccupied (particles)
orbitals.

∑
pB

−VivAεkovApB
VpBεk′ [ovBov′B](

εpB + εk′ − εovB − εov′B
) , (5.14)

∑
hB

+ Vεkεk′ [ov′BhB](
εk + εk′ − εov′B − εhB

)VhBivAovBovA . (5.15)

Both terms include the electron transition from ovA to ivA and the direct double ionization
of B, where the coupling between the two species proceeds in Eq. (5.14) via particle and in
Eq. (5.15) via hole orbitals. These two mechanisms can be understood as stemming from the
ground-state correlations of the two species participating in dICD (see Fig. 5.2). These double-
ionization pathways due to ground-state correlations are known from SPDI, where they arise
from the perturbative expansion of the ground state of an atom or a molecule being ionized.
Similar mechanisms also appear in double Auger decay when unperturbed 2p3h-states are used
in the first-order expansion of the core-hole state.
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ovA εk ovB εk′ ov′B

(a)

ivA

pB

ovA ovB εk εk′ ov′B

(b)

ivA

hB

Figure 5.2: Diagrammatic representation of the dICD transition amplitude which corresponds
to the initial state correlations: initial state correlation via a particle pB (a) and initial state
correlation via a hole hB (b). The horizontal lines represent the initial and the final states. The
dots describe the interaction. The arrows pointed downwards denote occupied (hole) orbitals
and The arrows pointed upwards denote unoccupied (particles) orbitals.

5.4 Total dICD Decay Width
The transition amplitude T (2)

εkεk′ovAovBov′B;ivA (see App. A) refers to a specific set of spin-orbitals.
To construct the differential partial decay width ΓovAovBov′B(ε, εk′) for a state-to-state transition
according to Eq. (5.10), one has to deal with both spin and spatial degeneracies of the involving
orbitals. This means that for a final state characterized by spatial orbitals ovA, ovB, and ov ′B
one has to average over initial state and to sum over final state degeneracies [117]. In the
case of an atomic system the orbitals ivA ovA ovB and ov ′B are described by orbital angular
momenta l and the respective degeneracies are given by the magnetic quantum numbers ml.
Consequently, the absolute value squared reads

|T (2)
εkεk′ovAovBov′B;ivA |2 = 12 livA + 1 12 sivA + 1 ∑

mlivA
mlovA

mlovBmlov′B

∑
ηλδνµσ

|T (2)
εkεk′ovAovBov′B;ivA |2. (5.16)

It follows for the differential partial decay width according to Eq. (5.10):

ΓovAovBov′B(ε, εk′) = 2π |T (2)
εkεk′ovAovBov′B;ivA |2. (5.17)
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By integrating the differential partial decay width over the energy of one of the emitted electrons
and by summing over different degenerate final states of B we obtain the partial decay width
which corresponds to some virtual photon energy ~ω (see also Eq. (3.25))

ΓdICD(ω) = ∑
ovBov′B

∫ ε

0 ΓovAovBov′B(ε, εk′)dεk′. (5.18)

For the total decay width of dICD, the summation over the spin-orbital ovA is added. The
sum

∑
ovAovBov′B

includes different relaxation pathways of A and thus different virtual photon
energies. Consequently, it contains all energetically possible transitions on B for the given
virtual photon energies. The total decay width of dICD reads

ΓdICD = ∑
ovAovBov′B

∫ ε

0 ΓovAovBov′B(ε, εk′)dεk′. (5.19)

Once the values of the two-electron integrals and the orbital energies are known, the various
widths can be computed numerically.

5.5 Derivation of the asymptotic expression from the
perturbatively derived transition amplitude

In this subsection, we show that the expression ΓdICD in Eq. (5.19) correctly reduces to
Eq. (3.25) for RÏ∞. The total Coulomb operator V̂ is rewritten as

V̂ = V̂A + V̂B + V̂AB. (5.20)

V̂A and V̂B are the electron repulsion operators of A and B, which are responsible for local
processes, while V̂AB represents the interaction between the electrons of A and B. The ampli-
tudes, which involve electron transfer, decay exponentially with R and can be neglected [15].
Furthermore, the interaction Coulomb operator V̂AB is expanded (see Eq. (3.5)). The effect of
these two approximations is to reduce the number of terms in the transition amplitude from
eighteen to eight, see App. B, which represents the four different mechanisms: knock-out (KO),
shake-off (SO) and the two types of ground-state correlations (GSCp and GSCh) as described
above.

After the multipole expansion of the interaction Coulomb operator V̂AB the Coulomb integrals
of the surviving eight terms of the form VpBivAhBovA read

VpBivAhBovA ≈
1
R3
[
〈φivA |d̂A|φovA〉 〈φpB |d̂B|φhB〉 − 3 · 〈φivA |d̂AeR|φovA〉 〈φpB |d̂BeR|φhB〉]. (5.21)

Inserting this expansion into the surviving eight terms of the transition amplitude (see Eq. (B.1)
in App. B) and averaging its absolute value squared over the degeneracies, allows us to represent
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the width via quantities related to isolated A and B. The dICD transition amplitude becomes
a product of the dipole transition amplitude on A, 〈φivA |d̂A|φovA〉, and of the double-ionization
amplitude of B, (T (KO) + T (SO) + T (GSCp) + T (GSCh)). For details of the derivation,
see App. B. The total decay width ΓdICD of dICD (see Eq. (5.19)) expressed by the various
individual transition amplitudes reads

ΓdICD = 2π 23R6 ∑
ovA

∣∣〈φivA |d̂A|φovA〉∣∣2 ∑
ovBov′B

∫ ε

0 dεk′
∣∣(T (KO) + T (SO) + T (GSCp) + T (GSCh))∣∣2,

(5.22)

where the overlines denote that the absolute values squared of the corresponding transition
amplitudes are averaged over degeneracies. T(KO) and T(SO) are respectively the knock-out
and the shake-off amplitudes, while T(GSCp) and T(GSCh) appear due to the ground-state
correlations. The sum of these transition amplitudes equals the total amplitude of the SPDI
cross section [72, 73]. Employing Eq. (3.24), we rewrite the single-differential SPDI cross section
to be in our nomenclature [72–74]:

dσ++
B (ω)
dεk′

= 4π23 ω
c
∑
ovBov′B

∣∣(T(KO) + T(SO) + T(GSCp) + T(GSCh))∣∣2. (5.23)

The explicit SPDI amplitudes in our nomenclature can be found in App. C.

As in Chap. 3, the lifetime τA (see Eq. (3.23)) and the single-differential single-photon double-

ionization cross section dσ++
B (ω)
dεk′

(see Eq. (5.23)) can be identified in the expression for the

dICD rate (see Eq. (5.22)). As dσ
++
B (ω)
dεk′

takes only one virtual photon energy into account,
one can consider a single relaxation pathway of A and finally arrive at the asymptotic partial
decay width

ΓdICD(ω) = 3~4π( cω)4τ−1
A σ++

B (ω)
R6 , (5.24)

which coincides with the expression for the dICD rate derived above directly from Fermi’s
Golden rule [116] at large R (see Eq. (3.25) in Chap. 3).
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Chapter 6

Discussion and Outlook

The discussed ideas and future prospects are based on Ref. [64].

As shown in Chap. 4, the asymptotic dICD decay width in Eq. (3.25) builts the lower bound of
the actual decay width, which is confirmed by Ref. [90], where is shown that the decay width
increases for decreasing internuclear distances. Furthermore, due to the fact that it is expressed
by experimentally measurable quantities, the asymptotic dICD decay width is a useful equa-
tion, providing a quick estimate of the dICD decay width. Although the ratio of the asymptotic
dICD to the asymptotic ICD decay width reduces to the ratio of double to single ionization, the
ratio can be significantly large depending on the system, which also demonstrates the relevance
of dICD.

While the asymptotic dICD width accounts only for processes like knock-out, shake-off, and
ground-state correlations, which are familiar from the discussion of the single-photon double-
ionization, the perturbative dICD width covers further mechanisms which are important at
shorter interatomic distances. To finally answer our question, we asked at the beginning, of
why dICD is so efficient in comparison to the local processes such as SPDI and dA, perturbation
theory has to be implemented. We need to understand, if these further mechanisms are the
reason for the efficiency of dICD, seen in Ref. [68], but the computation is a large effort by
itself because of the two electrons in the continuum of a non-spherical system.

At the moment, there are no approaches to simultaneously overcome both of these difficul-
ties, but methods to describe the double ionization of an atom or the single ionization of
a molecule are already known. The single-center expansion can be used to approximate a
non-spherical system in the case of involved molecules, see Refs. [152, 153]. The easiest way
to define double-continuum states is the use of 2C wave functions [154], which are antisym-
metrized products of two Coulomb wave functions. They are easy to construct but not very
precise because the interaction between the two emitted electrons is not considered, leading
to the preference that both electrons are emitted in the same direction. If the two ejected
electrons are close in energy, as in the knock-out mechanism, the interaction can be approx-
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imated by the Gamov factor as in Refs. [69, 155, 156], where less numerical effort is needed
than for the computation of 3C wave functions [157–159] or other model wave functions, which
take the interactions in the three-body Coulomb problem into account, for an overview see
[160]. In these models, the two electrons moving in the double continuum of the nucleus are
represented by three non-interacting two-body subsystems. Widely applied numerical methods
to compute the SPDI and dA cross sections are based on the close-coupling approximation as
convergence close coupling (CCC) [161, 162], time-dependent close coupling (TDCC) [163] and
the R-Matrix formalism [164, 165]. In general, dealing with electron correlations remains diffi-
cult. Therefore, the double ionization process is often approximated as single ionization with
subsequent electron-impact ionization. All introduced methods to describe double continua are
only applied in small systems including hydrogen or helium [53, 157–159, 166–168] and heli-
umlike atoms [169] as alkaline-earth metals [84–86, 170, 171], which can be approximated as
two-electron systems. Furthermore, some promising numerical approaches exist, which might
have the potential to compute the dICD decay width in the future. The Fano-ADC method,
which belongs to a family of ab initio techniques for computing electronic decay widths, was
successfully applied to various ICD processes [172–175]. Furthermore, an ADC(2,2) approxi-
mation was introduced which has the potential to describe dICD of singly ionized states [176].
Recently, a new method was developed to compute double- and single-ionization cross sections
using a fully correlated close-coupling approach and a Dyson orbital analysis [166]. The new
approach was tested in antiproton-helium and even antiproton–molecular hydrogen collisions
in the keV range. Further development and implementation of these numerical techniques are
necessary to investigate the qualitative and quantitative influence of these additional processes.
It is beyond the scope of the present work and is left for the future.

To complete our dICD studies and finally answer the question of the beginning regarding the
efficiency of dICD, the electron spectra in Ref. [68] have to be computed. After implementing
the transition amplitude, which is a large effort for the reasons explained above, the differential
partial decay width (see Eq. (5.17)) can be used to determine the dICD spectra. To compare
with experiment, one has also to take into account the impact of the nuclear motion in the
system undergoing dICD as done before for ICD. This requires additional method development.
However, in many cases, a comparison can be done without the inclusion of the nuclear motion,
if we assume instantaneous decay and small energy broadening due to the distribution of the
interatomic distances in the vibrational wave packet compared to the total energy of the two
emitted electrons. Both assumptions hold for the systems we considered. The total decay width
is of the order of several meV and is larger than the characteristic frequencies in the decaying
state, while the total energy of the emitted electrons is larger than several eV. Under these
assumptions, we may resort to Eq. (5.17) as such. We briefly mention that beyond the dICD
electron spectra, triply differential cross sections can be computed as well from the absolute
value squared of the dICD amplitude (see Eq. (5.16)) analogously to the case of one-photon
double-ionization process as shown in [177–179].
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Once these technical difficulties are resolved, one can think about studying dICD in bigger
systems and about new processes related to dICD. The three examples below are taken from
Ref. [64].

After having demonstrated that dICD can be a significant decay channel depending on the
system and its neighbor, we discuss the influence of several neighbors. For ICD it has been
shown that the decay width of the system increases with increasing number N of the surround-
ing neighbors [4, 12, 180, 181]. A linear behavior with N was found in NeHeN and CaHeN

clusters [180], while in Na+(H2O)N and Mg2+(H2O)N it was shown that the decay width devi-
ates from a linear behavior [181], due to the polarization of water by the charged ions. Each
water molecule becomes polarized by the alkali ion and shields the ion’s charge from the other
water molecules. Every additional water molecule becomes less polarized due to the shielding
of the charge and gives a smaller contribution to the total ICD width. Consequently, further
water molecules get less and less polarized and their contributions decrease with increasing N.
The effect increases for higher-charged ions. However, for a small number of neighbors, a linear
increase of the ICD width scaling with N can be assumed [180, 181]. From the asymptotic
equation, one obtains a linear growth with the number N of equivalent neighbors of the rate of
dICD as well as long as the neighbors do not interact with each other. Once the neighbors do
interact with each other and/or the intermolecular distances are too short for the asymptotic
expression to be valid, the dICD rate grows with N, but the behavior as a function of N will
depend on the situation at hand and has still to be investigated.

Large virtual photon energies are present in core ionization and excitation processes, which
preferentially decay by Auger. In clusters and condensed phases, however, core-ICD competes
with Auger decay. In rare gas clusters, the ICD to Auger decay ratio has recently been found
to nevertheless amount to around 1% in Ar and to a few percent in Xe clusters [149, 182].
The timescale of the core level ICD was determined to be 33 fs for the 2p core hole of aqueous
Ca2+ implying that the ICD to Auger decay ratio can be around 10% [183]. All of this gives
hope that dICD may be a relevant process in core ionization and excitation in extended systems.

For completeness, we finally briefly mention other interatomic/intermolecular processes where
two electrons can be emitted. As explained above for Ne@C60, the excess energy of Ne after
2s ionization is insufficient for dICD to take place. However, another process can take place
which has been termed dETMD [67] (ETMD stands for electron transfer mediated decay [15]).
The process Ne+(2s−1)@C60 Ï Ne@C 3+

60 + 2e− gives rise to a neutral Ne and a triply charged
C60 cage, whereby two electrons have been emitted in concert [67]. Doubly excited states,
for instance of He [184, 185], possess sufficient excess energy to undergo dICD with various
neighbors. Since two electrons are excited, the process is expected to be sequential rather
than non-sequential in this case. Another interesting two-step process can also take place with
doubly excited species. The doubly excited species can first autoionize and the resulting ion
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can then undergo ETMD with a neighbor [186]. As a consequence, two electrons have been
emitted, one from the species carrying the excess energy and one from the neighbor.

Besides the fact that dICD is due to its efficiency an interesting topic by itself - especially
as long as the question if the additional mechanisms contribute significantly to the dICD de-
cay width stays unanswered - dICD opens a field to a variety of new applications and related
processes.
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Chapter 7

Conclusion

The double-ionization mechanism by interatomic or intermolecular Coulombic decay, briefly
called dICD, is investigated, where the presented results are reported in Ref. [64]. Motivated
by the findings of Ref. [68] that the efficiency of dICD is comparable to the one of ICD although
in the case of competing local processes the ratios of the double- to the single-ionization chan-
nel amount only to a few percent, we derived the dICD decay width in different ways as an
indicator for the efficiency of the new decay channel.

For large separations between the ionized atom or molecule and its neighbor, an explicit asymp-
totic expression for the decay rate of dICD was derived, which solely depends on experimentally
measurable quantities. Within the asymptotic expressions, the dICD to ICD ratio equals the
ratio of the cross sections of single-photon double- and single-ionization. Therefore, the decay
width provides a lower bound to the full dICD width and is a useful estimate of the exact total
dICD width. The asymptotic expression was applied to several examples showing, that dICD
depending on the system is a relevant decay channel. Furthermore, the knowledge of these
ratios for various photon energies can thus help to choose atoms and molecules for which the
ratio of dICD to ICD is favorable. The probability that an atom absorbs a resonant photon and
emits a virtual photon is much higher than that to directly doubly ionize an atom or molecule
by the same photon. Consequently, doubly ionizing a system in an environment via dICD
can become a more relevant process than SPDI. As for ICD, it is argued that the dICD rate
grows substantially with the number of neighbors which can be doubly ionized by the available
excess energy. This fact can make dICD important in true environments, where the number of
available neighbors is usually high.

Apart from the analysis of the asymptotic expression, we developed an analytical expression
for the dICD decay width which is valid for smaller distances between the species by using
perturbation theory. This results in a comprehensive expression for the total decay width of
dICD, allowing one to distinguish various intra- and interatomic and molecular processes. To
further analyze the resulting perturbative decay width, we considered it at the limit of sepa-
rated subsystems, which reduces the expression to the asymptotic formula. The asymptotic
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decay width only contains the terms reflecting the processes, which are already known from
SPDI. This confirms the suspicion that the additional terms arising in the perturbative dICD
expression are also responsible for the efficiency of the dICD channel, besides the higher prob-
ability of absorbing a photon and emitting a virtual photon in comparison to the direct double
ionization. The numerical computation of the perturbative dICD decay is still an effort by itself
due to the double continuum of a non-spherical system, but it is needed to finally answer the
question regarding the dICD efficiency, which makes further investigations necessary.

In general, dICD is an interesting decay channel due to its efficiency in comparison to competing
local processes. Even the asymptotic decay width shows that, depending on the system, dICD
is a relevant decay channel, although its real decay width is estimated to be higher. Further-
more, deriving the perturbative dICD decay width provides an insight into the corresponding
intra- and interatomic and molecular mechanisms leading to dICD. Finally, as a new decay
mechanism, dICD opens a field to further investigations regarding dICD itself or applications
and related processes.
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Part II

Applications of ICD





Chapter 8

Theoretical Framework

In this chapter, the analytical expressions of the photoelectron (PE), the interatomic Coulombic
decay (ICD)-electron, as well as the kinetic-energy-release (KER) spectrum for dimers under-
going ICD after ionization are derived. The underlying theory is based on Refs. [104, 105,
107–112], which can be consulted for more detailed explanations. Furthermore, parts of the
derivations were published in Refs. [65] and [66] .

This chapter is divided into three sections. In Sec. 8.1, the investigated ICD mechanism is
described. Sec. 8.2 deals with the computation of the time-independently derived PE spec-
trum, where scattering theory is applied. In Sec. 8.2, a time-dependent formalism for the
ICD-electron and KER spectra is developed. This approach is also based on scattering the-
ory, but the expressions derived before are now extended by a time-dependent treatment and
combined with wave-packet dynamics. Throughout Part II atomic units are used.

8.1 Interatomic Coulombic Decay in Dimers

After one of the atoms has been inner-valence ionized, the vacancy is filled by an outer-valence
electron and the excess energy is transferred radiationlessly to the neighboring atom, which is
ionized and emits an outer-valence electron. Two singly charged ions remain, and due to the
repelling force, the system undergoes Coulomb explosion. In the framework of nuclear motion,
ICD can be described as a population (probability density) transfer between potential-energy
curves (PEC) of the involved states. Initially, the population is transferred from the ground-
state PEC Vgs to the PEC Vd of the singly ionized dimer. This state is metastable and decays.
Thus, the propagation on the decaying-state PEC is accompanied by the simultaneous transfer
of population to the final-state PEC Vf due to the decay. The final state corresponds to the two
ions formed after the dimer has undergone ICD. Because these ions repel each other, the final
state is dissociative. This simplified ICD mechanism for dimers in the framework of nuclear
dynamics is shown in Fig. 8.1.
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Figure 8.1: Schematic representation of ICD in a dimer. The gray, blue, and black curves
are the PECs of the ground state Vgs, the decaying state Vd, and the final state Vf , which are
associated with the initial |I〉, the decaying |D〉 and the final state |F〉. The red arrows mark the
transfer of population between the states and the propagation on the PECs. Initially, one of the
dimer species is ionized. The ionization denoted by the transition operator V̂DÎI is accompanied
by the transfer of population from the PEC of the electronic ground state Vgs (gray) to the
PEC of the ionized state Vd (blue), which is metastable and decays. Consequently, besides
wave-packet propagation on the PEC of the decaying state, the population is transferred to the
PEC of the final state Vf (black) described by the transition operator ŴFÎD. The decay and
transfer of the population to the final state pertain to the deexcitation of the ionized species
and the ionization of its neighbor. The repellency of the remaining two ions leads to the final
state being dissociative.

The corresponding Hamiltonian, describing the process, can be written as a sum of an unper-
turbed part Ĥ0 and a perturbation denoted by the interaction Hamiltonian Ĥint

Ĥ = Ĥ0 + Ĥint. (8.1)

The unperturbed Hamiltonian Ĥ0 consists of the Hamiltonians of the initial ĤI , the decaying
ĤD and the final ĤF state

Ĥ0 = ĤI + ĤD + ĤF , (8.2)

which represent the molecular motion (electronic and nuclear) in the initial |I〉, the decaying
|D〉 and the final |F〉 state, respectively, compare Fig. 8.1.

The interaction Hamiltonian Ĥint causing the transitions between the electronic states is defined
as
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Ĥint = V̂DÎI + ŴFÎD + V̂ †DÎI + Ŵ †
FÎD, (8.3)

where the transition operators V̂DÎI and ŴFÎD denote the transitions from the initial to the
decaying and from the decaying to the final state, respectively. The adjoint transition operators
V̂ †DÎI and Ŵ

†
FÎD correspond to the inverse transitions, see Fig. 8.1. These transitions between

the three involved states read

V̂DÎI |I〉 = |D〉 , V̂ †DÎI |D〉 = |I〉 , (8.4a)

ŴFÎD |D〉 = |F〉 , Ŵ †
FÎD |F〉 = |D〉 , (8.4b)

where the backward transition from the decaying to the initial state is excluded due to the
weak-field approximation. All other combinations of transition operators and states vanish
by definition: V̂DÎI |D〉 = V̂DÎI |F〉 = V̂ †DÎI |I〉 = V̂ †DÎI |F〉 = ŴFÎD |I〉 = ŴFÎD |F〉 =
Ŵ †

FÎD |I〉 = Ŵ †
FÎD |D〉 = 0.

8.2 Photoelectron Spectrum

In this section, the time-independent derivation of the cross section for the PE spectrum based
on scattering theory is shown. A time-independent approach is used because in Chap. 10, where
we apply the formulas derived here, we focus only on time-independent quantum effects such
as interferences resulting from the overlap between vibrational states. The section is struc-
tured as follows. After presenting the states and the Hamiltonians in the Born-Oppenheimer
approximation describing the investigated system, see Fig. 8.1, the basics of scattering theory
are introduced. By developing the corresponding T-matrix element, the probability per unit
time is computed, which is used to finally derive the cross section of the PE spectrum. The
time-independent formalism explained in more detail can be found in Refs. [104, 107, 110, 112].

8.2.1 States and Hamiltonians in the Born-Oppenheimer Approximation

Here, the general molecular states and Hamiltonians introduced in Sec. 8.1 are worked out and
presented in Born-Oppenheimer approximation [187], which is valid, if the electronic states
are energetically well separated and the electrons move relatively quickly in comparison to
the nuclei. Since the electrons are lighter than the nuclei by three orders of magnitude, the
nuclear motion is much slower than the electronic motion. We can therefore assume that the
electrons follow the nuclear motion instantaneously. Consequently, the nuclei are fixed from
the electrons’ perspective and the electronic wave functions depend only parametrically on the
nuclear positions but not on their velocities. Due to the strong separation of timescales between
the electronic and the nuclear motion, the initial |I〉, the decaying |D〉 and the final |F〉 state
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involved in the ICD mechanism can be written in product form

|I〉 = |p〉 |φi〉 |ni〉 , (8.5a)

|D〉 = |vac〉 |φd, Ek0〉 |nd〉 , (8.5b)

|F〉 = |vac〉 |φf , Ek0 , Ek′0〉 |Enf 〉 , (8.5c)

where each total state is a product of the photonic, the electronic, and the nuclear state. The
initial state |I〉 is the ground state with one incoming photon |p〉 causing the ionization. |φi〉
and |ni〉 denote the electronic and the vibrational ground state, respectively. In the decaying
state |D〉 and the final state |F〉, only the photon vacuum |vac〉 is left. Due to ionization and
ICD, the electronic states not only comprise the ionic contributions |φd〉 and |φf〉, but also
those of the emitted photoelectron |Ek0〉 and the emitted ICD electron |Ek′0〉. |Ek0〉 and |Ek′0〉
will also be referred to as the first and second ejected electron, respectively. |nd〉 denotes the
vibrational states of the electronically decaying state. As the final state is dissociative, |Enf 〉 is
chosen to mark the final vibrational states. The normalizations of the electronic and nuclear
states introduced above are given by

〈φ′i|φi〉 = δi′i, (8.6a)

〈φ′d, E′k0 |φd, Ek0〉 = δd′dδ(E′k0 − Ek0), (8.6b)

〈φ′f , E′k0 , E′k′0 |φf , Ek0 , Ek′0〉 = δf ′fδ(E′k0 − Ek0)δ(E′k′0 − Ek′0), (8.6c)

〈n′i|ni〉 = δn′ini , (8.7a)

〈n′d|nd〉 = δn′dnd , (8.7b)

〈E′nf |Enf 〉 = δ(E′nf − Enf ), (8.7c)

where the normalization of bound states is given by Kronecker deltas and the normalization of
continuum states involves delta functions. The continuum functions are energy-normalized.

Within the assumption of the Born-Oppenheimer approximation, the nuclei are not directly
affected by the instantaneous position of the electrons, but they move in the electron poten-
tial. Therefore, the total unperturbed Hamiltonians ĤI , ĤD and ĤF are represented in the
photonic-electronic basis {|p〉 |φi〉 , |vac〉 |φd, Ek0〉 , |vac〉 |φf , Ek0 , Ek′0〉}

〈p| 〈φi| ĤI |φi〉 |p〉 = ωp + Ĥi, (8.8a)

〈φd, Ek0 | ĤD |φd, Ek0〉 = Ek0 + Ĥd, (8.8b)

〈φf , Ek0 , Ek′0 | ĤF |φf , Ek0 , Ek′0〉 = Ek0 + Ek′0 + Ĥf , (8.8c)
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where the photon vacuum states reduce to 〈vac|vac〉 = 1 and are therefore immediately left
out. Ĥi, Ĥd and Ĥf are the nuclear Hamiltonians of the corresponding electronic states, ωp
denotes the photon energy, and Ek0 and Ek′0 are the energies of the first and second emitted
electron, respectively.

The actions of the unperturbed Hamiltonians in Born-Oppenheimer approximation (see Eqs. (8.8))
on the vibrational states |ni〉, |nd〉 and |Enf 〉 read

(ωp + Ĥi) |ni〉 = (ωp + Eni) |ni〉 = EI |ni〉 , (8.9a)(Ek0 + Ĥd) |nd〉 = (Ek0 + End ) |nd〉 = ED |nd〉 , (8.9b)(Ek0 + Ek′0 + Ĥf ) |Enf 〉 = (Ek0 + Ek′0 + Enf ) |Enf 〉 = EF |Enf 〉 . (8.9c)

Here, EI , ED, and EF depict the total energies of the initial |I〉, decaying |D〉 and final |F〉 state
in the Born-Oppenheimer approximation, respectively, which consist of the vibrational energies
Eni , End and Enf , and depending on the state of the photon energy ωp or the energies of the
first Ek0 and second Ek′0 emitted electron.

Turning to the interaction Hamiltonian Ĥint , the representations of the transition operators
in the photonic-electronic basis {|p〉 |φi〉 , |vac〉 |φd, Ek0〉 , |vac〉 |φf , Ek0 , Ek′0〉} read

V̂dÎi(Ek0) = 〈vac| 〈φd, Ek0 |V̂DÎI |φi〉 |p〉 , (8.10a)

ŴfÎd(Ek′0) = 〈φf , Ek′0 |ŴFÎD|φd〉 . (8.10b)

For ŴfÎd(Ek′0), the photonic part including only the photon vacuum 〈vac|vac〉 = 1 is left
out. Note that there is no non-adiabatic coupling due to the different amounts of electrons
associated with the electronic states. However, the decaying and final state are coupled by the
decay, whose theoretical formalism is introduced in the next section.

8.2.2 Transition Probability and T-Matrix

To derive the PE spectrum in the framework of scattering theory, see Ref. [105], we computed
the transition from the initial state |I〉 to the final |F〉 state (see Eqs. (8.5)) by the transition
probability per unit time PFI , which is given by

PFI = 2π ∣∣ 〈F |T̂|I〉 ∣∣2 δ(EI − EF ). (8.11)

Here, EI and EF are the energies of the initial and final state, respectively (see Eqs. 8.9), and
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the matrix element

TFI = 〈F |T̂|I〉 , (8.12)

is called the T-matrix element. T̂ is the transition operator, which is defined by the Lippmann-
Schwinger equation, see Ref. [188],

T̂(EI) = Ĥint + ĤintĜ0(EI)T̂(EI), (8.13)

where Ĝ0(EI) is the free Green’s operator, Ĝ0(EI) = limηÏ0[EI − Ĥ0 + iη]−1. Ĥ0 and Ĥint

are the unperturbed and interaction Hamiltonian, respectively, as introduced in Sec. 8.1, see
Eqs. (8.2) and (8.3), and represented in the Born-Oppenheimer approximation in Sec. 8.2,
compare Eqs. (8.8) and (8.10). The expansion of the transition operator can be rewritten as

T̂(EI) = Ĥint + ĤintĜ0(EI)Ĥint + ĤintĜ0(EI)ĤintĜ0(EI)Ĥint + ...,

= ∞∑
n=0(ĤintĜ0(EI))nĤint. (8.14)

Inserting the general interaction Hamiltonian Ĥint as defined in Eq. (8.3) into Eq. (8.14) shows
that only every second term including an equal number of interaction Hamiltonians contributes
to the T-matrix element (see Eq. (8.12))

TFI = 〈F | ŴFÎDĜ0(EI)V̂DÎI |I〉+ 〈F | ŴFÎDĜ0(EI)Ŵ †
FÎDĜ0(EI)ŴFÎDĜ0(EI)V̂DÎI |I〉+ ...,

(8.15)

where the choice of transition operators is unambiguous. V̂DÎI |I〉 and 〈F | ŴFÎD are the only
options giving a non-zero contribution and, therefore, defining the first contributing term,
which describes the direct population transfer from the initial to the decaying to the final
state. Since the backward transition from the decaying to the initial state is excluded, higher
contributing terms are associated with the backward transfer of population from the final to the
decaying state followed by an additional decay as the second contributing term shows, compare
Eq. (8.15). By introducing a sum over the operators effecting the forward and subsequent
backward population transfer between the final and decaying state, the T-matrix element can
be rewritten as

TFI = 〈F | ŴFÎD

∞∑
m=0(Ĝ0(EI)Ŵ †

FÎDĜ0(EI)ŴFÎD)mĜ0(EI)V̂DÎI |I〉 . (8.16)

Note that the sum now runs over the index m, which only accounts for the contributing terms
of the expansion of the transition operator Eq. (4.2).
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The resolution of identity

1 =∑
ni

|I〉 〈I|+∑
nd

∫
dEk |D〉 〈D|+ ∫ dEnf

∫
dEk

∫
dEk′ |F〉 〈F | (8.17)

is inserted. Due to the decay, the energy is conserved but not well defined between the initial
and final state, as can be seen in Eq. (8.11). Consequently, the intermediate states inserted
with the resolution of identity also cover off-resonant energies. Therefore, the states are used
as defined in Eqs. (8.5), but the energies of the first and second emitted electrons are renamed
Ek and Ek′ .

The resolution of identity is inserted in front and behind the free Green’s operator Ĝ0(EI),
where only the decaying states contribute and the definitions of the transition operators in the
photonic-electronic basis, V̂dÎi(Ek) and ŴfÎd(Ek′), are applied, see Eqs. (8.10). The T-matrix
element for m = 0 finally reads

T (m=0)
FI = 〈F |ŴFÎDĜ0(EI)V̂DÎI |I〉= ∫ dE′k

∫
dE′′k

∑
n′d,n′′d

〈Enf | ŴfÎd(Ek′0) 〈Ek0 |E′k〉 |n′d〉 〈n′d| 〈φd| 〈E′k|

Ĝ0(EI) |E′′k〉 |φd〉 |n′′d〉 〈n′′d|V̂dÎi(E′′k)|ni〉 , (8.18)

where the integration over the photon-vacuum states is immediately performed. After the sum
over the vibrational states has been executed, the free Green’s operator is inserted and the
unperturbed Hamiltonian Ĥ0 acts on the remaining states, see Eqs. (8.8). The temporary
expression for the first contributing term to the T-matrix element becomes

T (m=0)
FI = lim

ηÏ0
∫
dE′k

∫
dE′′k 〈Enf | ŴfÎd(Ek′0) 〈Ek0 |E′k〉 〈E′k| [EI − E′′k − Ĥd + iη]−1 |E′′k〉 V̂dÎi(E′′k) |ni〉 ,

(8.19)

where the integration over the electronic decaying state has already been performed, 〈φd|φd〉 = 1.
The normalization conditions for the continuum electrons (see Eqs. (8.6)) are used and the inte-
grations over the emitted photoelectrons are executed, where only Ek0 contributes. As a result,
the final expression of the first term of the T-matrix element reads

T (m=0)
FI = lim

ηÏ0 〈Enf | ŴfÎd(Ek′0)[EI − Ek0 − Ĥd + iη]−1V̂dÎi(Ek0) |ni〉 . (8.20)

After inserting the time-independent states, the resolutions of identity, the definitions of the
transition operators, the summations over the vibrational decaying states and the integration
over the vibrational final states are performed. Subsequently, the free Green’s operator is
applied and the normalization conditions (see Eqs. (8.6)) for the emitted electrons are used.
The second term of the T-matrix element is given by
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T (m=1)
FI = lim

ηÏ0 〈Enf | ŴfÎd(Ek′0)[EI − Ek0 − Ĥd + iη]−1(∫
dEk′ Ŵ †

fÎd(Ek′)[EI − Ek0 − Ek′ − Ĥf + iη]−1ŴfÎd(Ek′))
[EI − Ek0 − Ĥd + iη]−1V̂dÎi(Ek0) |ni〉 , (8.21)

where all but one integral over the energy of the second emitted electron are carried out using
the normalization condition for continuum states. The remaining one is set in parentheses.

The same procedure is applied to all terms, TFI = T (m=0)
FI + T (m=1)

FI + T (m=2)
FI + ....., resulting in

the following expression for the T-matrix element

TFI = lim
ηÏ0 〈Enf | ŴfÎd(Ek′0) ∞∑

m=0
([EI − Ek0 − Ĥd + iη]−1 ∫ dEk′ Ŵ †

fÎd(Ek′)[EI − Ek0 − Ek′ − Ĥf + iη]−1
ŴfÎd(Ek′))m[EI − Ek0 − Ĥd + iη]−1V̂dÎi(Ek0) |ni〉 , (8.22)

where the sum is a converging geometric series. After some algebraic operations, the final
expression for the T-matrix element reads

TFI = lim
ηÏ0 〈Enf | ŴfÎd(Ek′0)[EI − Ek0 − Ĥd −

∫
dEk′ Ŵ †

fÎd(Ek′)[EI − Ek0 − Ek′ − Ĥf + iη]−1
ŴfÎd(Ek′) + iη

]−1V̂dÎi(Ek0) |ni〉 . (8.23)

In the following, an effective Hamiltonian for the decaying state,

Ĥd = Ĥd + ∫ dEk′ Ŵ †
fÎd(Ek′)[EI − Ek0 − Ek′ − Ĥf + iη]−1ŴfÎd(Ek′), (8.24)

is introduced. For definiteness of the integration, the energy denominatorD is augmented by an
infinitesimally small factor D+ iη. Principal value integration can now be executed according
to (D + iη)−1 = PD−1 − iπδ(D), which gives

Ĥd = Ĥd + ∆d − i
Γ̂d2 . (8.25)

The energy shift ∆d and the total decay width of the decaying state Γ̂d are defined as

∆d = P ∫ dEk′ Ŵ †
fÎd(Ek′)[EI − Ek0 − Ek′ − Ĥf ]−1ŴfÎd(Ek′), (8.26a)

Γ̂d = 2π ∫ dEk′ Ŵ †
fÎd(Ek′)δ(EI − Ek0 − Ek′ − Ĥf )ŴfÎd(Ek′). (8.26b)

Now, the local approximation is applied [189–191], where the decay width does not depend
on the energy E but only on the internuclear distance R, Γ̂d(E = EI − Ek0 − Ĥf ) = Γ̂d(R).
Note that the decay width as shown above also depends explicitly on R due to the transition
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operator ŴfÎd(Ek′). The local approximation typically works well when the decaying state is
well above threshold, which means that the decaying and final state energetically are far away
from each other so that no further interactions between the particles besides the decay and the
subsequent ionization of the neighbor have to be considered. In the present case, this condition
is satisfied as the ICD process emits electrons of more than 8 eV. This allows to freeze the
movement of the nuclei and to introduce a local energy E′, which depends on the internuclear
distance R and replaces the original energy dependency. Furthermore, the decay width has
to vary rather slowly in the range of the potential-well width in order for the original decay
width, depending on the energy, to be approximated sufficiently well. In general, interactions
involving highly vibrational levels are hard to describe because the states may overlap with the
continuum due to the decay width introduced broadening. For more details, see Ref. [191]. For
notational simplicity, we refer to the decay width Γ̂d(R) in the following as Γ̂d. Applying the
local approximation, the R-dependent decay width reads

Γ̂d = 2πŴ †
fÎd(Ek′)ŴfÎd(Ek′) ≈ 2π|ŴfÎd|2. (8.27)

Finally, the effective Hamiltonian Ĥd of the decaying state in local approximation takes on the
form

Ĥd = Ĥd − i
Γ̂d2 , (8.28)

where the energy shift ∆d is incorporated into the real Hamiltonian Ĥd. Ĥd is a complex
symmetric non-Hermitian Hamiltonian and its eigenvalues εnd and eigenstates |ñd〉 are both
complex. For more details on non-Hermitian quantum mechanics, see Ref. [192]. The corre-
sponding time-independent Schrödinger equation reads

Ĥd |ñd〉 = εnd |ñd〉 . (8.29)

Usually, the complex nuclear eigenstates |ñd〉 are written in round brackets |nd) to denote that
they are complex and differently normalized. Here, when using angular brackets, we add ˜ to
mark that these states have a complex component. As the left and the right eigenvector of a
complex symmetric matrix are not adjoints but just transposes of each other, the orthogonality
relation is now a c-product, 〈ñ∗d|ñ

′
d〉 = (nd|n′d) = δndn′d , and the resolution of identity reads∑

nd |nd)(nd| = 1 (for a detailed discussion, see Ref. [192]). The corresponding eigenvalues εnd
are given by

εnd = end − i
Γnd2 , (8.30)

where Γnd is the partial decay width of the nuclear state nd and can be imagined as a broad-
ening of the energy level end , which also includes the contribution of the energy shift and,
consequently, differs from the solution of the time-independent Schrödinger equation of the real
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Hamiltonian of the decaying state

Ĥd |nd〉 = End |nd〉 . (8.31)

8.2.3 Time-independently computed Photoelectron Spectrum

Returning to the transition probability per unit time Eq. (8.11) and inserting the final T-matrix
element (8.23), gives

PFI = 2π| 〈Enf |ŴfÎd(Ek′0)[EI − Ek0 − Ĥd]−1V̂dÎi(Ek0)|ni〉 |2δ(EI − EF ), (8.32)

where the initial energy EI is similar to the photon energy ωp neglecting the vibrational energy
of the ground state (see. Eqs. (8.9)) and the final energy is EF = Enf + Ek0 + Ek′0 . While Ek′0
is the energy of the ICD electron associated with a real transition and thereby fulfilling the
energy conservation, Ek′ denotes the energy of the ICD electron from a virtual transition, and
is off-resonant. EkICD is introduced to combine Ek′0 and Ek′ . Integrating Eq. (8.32) over the final
vibrational states |Enf 〉 as well as over the energy of the second emitted electron Ek′0 gives the
following expression for the photoelectron spectrum σPE(EI − Ek0):
σPE(EI − Ek0) = 2π ∫ dEk′0

∫
dEnf | 〈Enf |ŴfÎd[EI − Ek0 − Ĥd]−1V̂dÎi(Ek0)|ni〉 |2δ(EI − EF ).

(8.33)

After the integration has been performed and the square of the absolute value was written out,
the total decay width (8.27) can be inserted. Furthermore, EI −Ek0 is replaced by the binding
energy ωb. The resulting expression for the PE spectrum reads

σPE(ωb) = 〈ni|V̂ †dÎi(Ek0)[EI − Ek0 − Ĥ†d]−1Γ̂d[EI − Ek0 − Ĥd]−1V̂dÎi(Ek0)|ni〉 . (8.34)

The resolution of identity 1 = ∑
nd |nd)(nd| is inserted in front of and behind the total decay

width. Additionally, the double sum is split into the sums
∑

nd=n′d and
∑

nd 6=n′d so that the
expression of the PE spectrum contains two separate terms

σPE(ωb) =∑
nd

| 〈ni| V̂ †dÎi(Ek0)|n∗d)|2(n∗d|Γ̂d|nd)(ωb − end )2 + (Γ̂nd/2)2 + ∑
nd 6=n′d

〈ni| V̂ †dÎi(Ek0)|n∗d)(n∗d|Γ̂d|n′d)(n′d|V̂dÎi(Ek0) |ni〉(ωb − ε∗nd )(ωb − εn′d ) .

(8.35)

The second sum
∑

nd 6=n′d can be further simplified because the imaginary part vanishes, if the
summation is performed. The imaginary parts of cross terms of the form, nd = 0, nd′ = 1
and nd = 1, nd′ = 0, cancel each other, while the real parts of the cross terms give the same
contributions. Consequently, only half of the calculations have to be performed, which also
lowers the computational costs. The final expression for the PE spectrum reads
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σPE(ωb) =∑
nd

| 〈ni| V̂ †dÎi(Ek0)|n∗d)|2(n∗d|Γ̂d|nd)(ωb − End )2 + (Γnd/2)2
+ 2Re ∑

nd>n
′
d

〈ni| V̂ †dÎi(Ek0)|n∗d)(n∗d|Γ̂d|n
′
d)(n′d|V̂dÎi(Ek0) |ni〉(ωb − ε∗nd )(ωb − εn′d ) , (8.36)

where the first sum describes the PE spectrum without interference effects, while the second
sum is associated with interference effects. These interference effects are caused by the huge
partial decay widths Γnd , which broaden the energy levels and lead to overlaps. Consequently,
the vibrational levels of the decaying state interfere with each other, which affects the PE
spectrum.

8.3 Interatomic-Coulombic-Decay-Electron Spectrum and
Kinetic-Energy-Release Spectrum

In the following section, phenomena stemming from nuclear motions are investigated, and
therefore, the application of a time-dependent approach is required. These phenomena can be
observed in the ICD-electron and KER spectra in Chaps. 10 and 11. Before we start with
the derivation of the time-dependently computed ICD-electron and KER spectrum, we want
to show the relation between the time-dependent and the time-independent formalism. The
time-dependent nuclear wave functions are expanded in sets of the time-independent eigenstates

|ψd(Ek0 , t)〉 =∑
ñd

cnd (Ek0 , t) |ñd〉 =∑
ñd

cnd (t)e−i(Ek0+εnd )t |ñd〉 , (8.37)

|ψf (Ek0 , Ek′0 , t)〉 =∫ ∞0 dEnf cEnf (Ek0 , Ek′0 , t) |Enf 〉
=∫ ∞0 dEnf cEnf (t)e−i(Ek0+Ek′0+Enf )t |Enf 〉 , (8.38)

where |ñd〉 and |Enf 〉 are the eigenstates of the time-independent nuclear Hamiltonians Ĥd and
Ĥf . εnd and Enf are the corresponding eigenenergies, and Ek0 and Ek′0 are the energies of the
first and second ejected electrons. For a detailed explanation regarding the time-independent
states, see Sec. 8.2. The time-dependent coefficients cnd (t) and cEnf (t) equal the total coefficients
cnd (Ek0 , t) = 〈ñd|ψd(Ek0 , t)〉 and cEnf (Ek0 , Ek′0 , t) = 〈Enf |ψf (Ek0 , Ek′0 , t)〉 reduced by the energy
contribution, respectively.

8.3.1 Wave-packet Dynamics

To derive the ICD-electron and KER spectrum, we start with nuclear wave-packet dynamics
to get the time evolution of the states. Therefore, we have to define the time-dependent
Hamiltonian, which is separated into an electronic, a nuclear, and an external-field contribution
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Ĥ(t) = T̂nuc + Ĥel + V̂nuc + D̂ ·E(t), (8.39)

where T̂nuc is the kinetic-energy operator of the nuclei, Ĥel is the electronic Hamiltonian and
V̂nuc is the potential of the nuclei. These three operators are time-independent and describe
the molecular system, while the last part of the Hamiltonian is time-dependent and denotes
the interaction with an external field, which leads to the ionization of the system. D̂ is the
dipole operator and E(t) is the external electric field.
The total time-dependent wave function consists of the electronic |φ〉 as well as the nuclear
|ψ(t)〉 wave functions and can be written as a product of them. Consequently, the total wave
function is a sum of the product states involved in the ICD process and reads

|Ψ(t)〉 = |φi〉 |ψi(t)〉+∫ ∞0 dEk0 |φd, Ek0〉 |ψd(Ek0 , t)〉
+∫ ∞0 dEk0

∫ ∞
0 dEk′0 |φf , Ek0 , Ek′0〉 |ψf (Ek0 , Ek′0 , t)〉 . (8.40)

The electronic wave functions |φi〉, |φd, Ek0〉 and |φf , Ek0 , Ek′0〉 are associated with the electronic
ground state, the decaying state of the ionized system with the first emitted electron and the
final state with the two remaining ions as well as the first and second emitted electron, respec-
tively. The time-dependent nuclear wave functions are |ψi(t)〉, |ψd(Ek0 , t)〉 and |ψf (Ek0 , Ek′0 , t)〉
describing the nuclear dynamics in the corresponding electronic state. Because the decaying
state and the final state are associated with one electron and two electrons in the continuum,
respectively, it has to be integrated over the energies of the corresponding ejected electrons Ek0
and Ek′0 .

The total Hamiltonian Eq. (8.39) and the total wave function Eq. (8.40) are inserted into

the time-dependent Schrödinger equation i ∂∂t |Ψ(t)〉 = Ĥ |Ψ(t)〉. The electronic states 〈φi|,
〈φd, Ek| and 〈φf , Ek0 , Ek′0 | are multiplied from the left, respectively, where is taken advantage
of the energy normalization Eq. (8.6) of the electronic continuums states. Note that the vi-
brational wave functions |ψ(t)〉 as well as T̂nuc and V̂nuc depend on the nuclear coordinate
R, while the electronic states |φ〉 and the electronic Hamiltonian Ĥel depend on the electronic
coordinates rn. Consequently, the nuclear operators act only on the vibrational wave functions,
and the electronic Hamiltonian acts only on the electronic states, which results in the following
set of differential equations

i |ψ̇i(t)〉 = Ĥi |ψi(t)〉+ F̂ †(Ek0 , t) |ψd(Ek0 , t)〉 , (8.41a)

i |ψ̇d(Ek0 , t)〉 = F̂ (Ek0 , t) |ψi(t)〉+ (Ek0 + Ĥd) |ψd(Ek0 , t)〉+∫ ∞0 dEk′0(Ek0 + Ŵ †
fÎd(Ek′0)) |ψf (Ek0 , Ek′0 , t)〉 , (8.41b)

i |ψ̇f (Ek0 , Ek′0 , t)〉 = (Ek0 + ŴfÎd(Ek′0)) |ψd(Ek0 , t)〉+(Ek + Ek′0 + Ĥf ) |ψf (Ek0 , Ek′0 , t)〉 , (8.41c)
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which describe the wave-packet propagation in the initial, the decaying, and the final state,
respectively. Eqs. 8.41 are our temporary working equations, which will be further simpli-
fied below. The Hamiltonians Ĥi, Ĥd and Ĥf are associated with the nuclear motion in the
corresponding electronic potential, respectively, and are consequently given by

Ĥi/d/f = T̂nuc + V̂i/d/f , (8.42a)

V̂i/d/f = 〈φi/d/f |Ĥel|φi/d/f〉+ V̂nuc, (8.42b)

where T̂nuc is the kinetic-energy operator of the nuclei and V̂i/d/f is the potential-energy operator
in the corresponding state. F̂ (Ek0 , t) and ŴfÎd(Ek′0) also represent matrix elements concerning
the electronic functions. The corresponding transition operators in the space of the nuclear
wave functions are defined as

F̂ (Ek0 , t) = 〈φd, Ek0 |D̂|φi〉 ·E(t) = V̂dÎi(Ek0) · g(t), (8.43a)

ŴfÎd(Ek′0) = 〈φf , Ek′0 |Ĥel|φd〉 , (8.43b)

where F̂ (Ek0 , t) describes the transition from the initial to the decaying state, driven by an
external electric field, and ŴfÎd(Ek′0) is responsible for the transition from the decaying to the
final state, which is due to the decay width. The time-independent contribution to F̂ (Ek0 , t)
and the time-independent transition operator ŴfÎd(Ek′0) are already known from Sec. 8.2.

In the following, dressed states are introduced, see Refs. [108, 111, 112]. By adding a phase
to the wave functions, one gets rid of the photoelectron energy Ek0 . If the photon energy just
exceeds the threshold, the photoelectron energy will be comparatively small, which only shifts
the PECs a little bit. This allows the use of dressed states

|ψ̃d(Ek0 , t)〉 = eiEk0 t |ψd(Ek0 , t)〉 , (8.44a)

|ψ̃d(Ek0 , Ek′0 , t)〉 = eiEk0 t |ψf (Ek0 , Ek′0 , t)〉 . (8.44b)

The dressed states Eq. (8.44) are inserted into the temporary working equations Eq. (8.41).
Furthermore, the weak-field approximation is applied, which forbids the backward transition
of the population from the decaying to the initial state. Consequently, F̂ †(Ek0 , t) |ψd(Ek0 , t)〉 is
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canceled. The new working equations read

i |ψ̇i(t)〉 = Ĥi |ψi(t)〉 , (8.45a)

i | ˜̇ψd(Ek0 , t)〉 = F̂ (Ek0 , t) |ψi(t)〉+ Ĥd |ψ̃d(Ek0 , t)〉+∫ ∞0 dEk′0 Ŵ †
fÎd(Ek′0) |ψ̃f (Ek0 , Ek′0 , t)〉 , (8.45b)

i | ˜̇ψf (Ek0 , Ek′0 , t)〉 = ŴfÎd(Ek′0) |ψ̃d(Ek0 , t)〉+(Ek′0 + Ĥf ) |ψ̃f (Ek0 , Ek′0 , t)〉 , (8.45c)

The initial ionization F̂ (Ek0 , t) depends on Ek0 , and consequently, the nuclear wave functions of
the decaying state |ψd(Ek0 , t)〉 and of the final state |ψf (Ek0 , Ek′0 , t)〉 do so, too. Instead of using
an external field, the transfer from the initial to the decaying state can be approximated by
broad-band ionization. Thereby, the whole population is immediately brought to the decaying-
state PEC. One can imagine this procedure as a δ-pulse Ref. [187] at propagation time t = 0 fs,
which is sharp in time and broad in the energy domain. In practice, this means that one (or
an incoherent sum) of the vibrational eigenfunctions of the ground state is taken as the initial
wave function for the decaying state. The mathematical formulation of the initial condition
at t = 0 fs reads |ψd(t = 0)〉 = V̂dÎi(Ek0) |ni〉. Consequently, the term associated with the
ionization of the ground state via the external field, is canceled. Furthermore, there is no
propagation in the initial state and the time development of the initial state can be neglected
completely. Therefore, |ψ̃d(Ek0 , t)〉 and |ψ̃f (Ek0 , Ek′0 , t)〉 do not any longer depend on Ek0 and can
be rewritten to |ψd(t)〉 and |ψf (Ek′0 , t)〉. The new coupled time-dependent Schrödinger equations
read

i |ψ̇d(t)〉 = Ĥd |ψd(t)〉+ ∫ ∞0 dEk′0 Ŵ †
fÎd(Ek′) |ψf (Ek′0 , t)〉 , (8.46a)

i |ψ̇f (Ek′0 , t)〉 = ŴfÎd(Ek′0) |ψd(t)〉+ (Ek′0 + Ĥf ) |ψf (Ek′0 , t)〉 . (8.46b)

As in Sec. 8.2, the local approximation is applied, where the transition operator ŴfÎd(Ek′0)
is assumed to be R-dependent by freezing the nuclei and separating the energy-dependency
ŴfÎd(Ek′0) Ï f (Ek′0)ŴfÎd. For more details about the local approximation, see Ref. [191].
Consequently, the effective Hamiltonian Ĥd is given by

Ĥd |ψd(t)〉 =Ĥd |ψd(t)〉 − i ∫ ∞0 dEk′0 Ŵ †
fÎd(Ek′0) ∫ t

−∞
dt ′ei(Ĥf+Ek′0 )(t ′−t)ŴfÎd(Ek′0) |ψd(t ′)〉

=Ĥd |ψd(t)〉 − i Γ̂d2 |ψd(t)〉 , (8.47)

which is the same expression for the effective Hamiltonian as in the time-independent approach,
see Eq. (8.28) in Sec. 8.2. Again, the Hamiltonian of the decaying state Ĥd is expanded by
a complex component, which includes the decay width Γ̂d and is responsible for the decay of
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the state. As explained before, the decay width in the local approximation depends on the
nuclear coordinate R. By introducing the effective Hamiltonian of the decaying state Ĥd, the
differential equations in Eq. (8.46) decouple,

i |ψ̇d(t)〉 = Ĥd |ψd(t)〉 , (8.48a)

i |ψ̇f (Ek′0 , t)〉 = ŴfÎd |ψd(t)〉+ (Ĥf + Ek′0) |ψf (Ek′0 , t)〉 . (8.48b)

The first equation describes the propagation in the decaying state, while the second equation
is associated with the nuclear motion in the final electronic state, where two contributions of
the population define the time evolution. The first contribution to the final state ŴfÎd |ψd(t)〉
describes the transfer of population from the decaying state to the final state at each time
step. The wave packet is then propagated on the final PEC by (Ĥf + Ek′0) |ψf (Ek′0 , t)〉, while
the population in the decaying state constantly decays and interferes with the already existing
population in the final state. Furthermore, in the last equation, the ICD-electron energy Ek′0
is added to the Hamiltonian of the final state Ĥf to ensure energy conservation between the
decaying and final state and to simulate the continuum for the ejected ICD electrons. The PEC
of the final state is shifted by this energy, influencing the nuclear dynamics.

In the following, the time evolutions of the wave functions are needed for the computations
of the spectra.

8.3.2 Coincidence Spectrum

To derive the expression of the coincidence spectrum, we return to the time-independent ap-
proach. The transition probability Eq. (8.32) is now integrated over the energy of the photo-
electron to generate a spectrum, which includes the information on the decay process. In the
following, we refer to this spectrum as the coincidence spectrum

σcoin = 2π ∫ dEk0 | 〈Enf |ŴfÎd[EI − Ek0 − Ĥd]−1V̂dÎi(Ek0)|ni〉 |2δ(EI − EF ). (8.49)

The integration over the δ-function, δ(EI−EF ) = δ(EI−Enf−Ek0−Ek′0) = δ
([EI−Ek0 ]− [Enf +

Ek′0 ]), is performed, and all additional arising factors are incorporated into the transition oper-
ators. Therefore, the expression for the time-independent coincidence spectrum σcoin(Enf , Ek′0)
reads

σcoin(Enf , Ek′0) = | 〈Enf |ŴfÎd[Enf + Ek′0 − Ĥd]−1V̂dÎi(Ek0)|ni〉 |2. (8.50)

The time-dependent coincidence spectrum can be developed from Eq. (8.50) by rewriting the
energy denominator as
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[Enf + Ek′0 − Ĥd]−1 = −i ∫ ∞0 ei(Enf+Ek′0−Ĥd)t dt. (8.51)

Furthermore, EkICD is inserted for the energy of the first emitted electron Ek′0 and the vibrational
energy of the final state Enf is replaced by the KER energy Enf = EKER + V∞f , where V∞f is
the final-state PEC at infinite internuclear distances. Finally, the time-dependent coincidence
spectrum reads

σcoin(EKER, EkICD , t) = | 〈Enf |ŴfÎd(−i) ∫ ∞0 dt ei(EKER+V∞f +EkICD−Ĥd)tV̂dÎi(Ek0)|ni〉 |2. (8.52)

The ICD-electron spectrum is computed by integrating the coincidence spectrum over the
energy of the final state Enf or the KER EKER and the KER spectrum is obtained by integrating
the coincidence spectrum over the energy of the ICD electron EkICD

σICD(EkICD , t) = ∫ ∞0 σcoin(EKER, EkICD , t) dEKER, (8.53a)

σKER(EKER, t) = ∫ ∞0 σcoin(EKER, EkICD , t) dEkICD . (8.53b)

8.3.3 Time-dependently computed Interatomic-Coulombic-Decay-Electron
Spectrum

Before deriving the ICD-electron spectrum by performing the integration in Eq. (8.53), the
time-dependent Schrödinger equations (Eq. (8.48)) need to be solved. As usual, the exponential
ansatz is applied. Its solutions are the wave functions associated with the decaying and final
state, which are needed later. The vibrational decaying and final state read

|ψd(t)〉 = e−iĤdtV̂dÎi(Ek0) |ni〉 , (8.54a)

|ψf (Ek′0 , t)〉 = −i ∫ t

0 dt ′ei(Ĥf+Ek′0 )(t ′−t)ŴfÎde−iĤdtV̂dÎi(Ek0) |ni〉 . (8.54b)

As explained above, to get the ICD-electron spectrum, one has to integrate the coincidence
spectrum Eq. (8.53) over the final states. Note that |Enf 〉 = |EKER〉. This leads to the following
expression for the coincidence spectrum

σcoin(EkICD , t) = ∫ dEKER 〈ni| V̂ †dÎi(Ek0)(i ∫ ∞0 dt ′e−i(EKER+V∞f +EkICD−Ĥd)t ′)Ŵ †
fÎd |Enf 〉

〈Enf | ŴfÎd
(
−i
∫ ∞

0 dt ′′ei(EKER+V∞f +EkICD−Ĥd)t ′′)V̂dÎi(Ek0) |ni〉 . (8.55)

The time-independent Schrödinger equation is applied, Enf |Enf 〉 = EKER+V∞f |Enf 〉 = Ĥf |Enf 〉,
and afterward, the integration over the vibrational final states is performed, leading to
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σcoin(EkICD , t) = 〈ni| V̂ †dÎi(Ek0)i ∫ ∞0 dt ′e−i(Ĥf+Ek′0 )t ′Ŵ †
fÎdeiĤ

†
dt ′

(−i)∫ ∞0 dt ′′ei(Ĥf+Ek′0 )t ′′ŴfÎde−iĤdt ′′V̂dÎi(Ek0) |ni〉
e−i(Ĥf+EkICD )tei(Ĥf+EkICD )t. (8.56)

By expanding Eq. (8.56) by e−i(Ĥf+EkICD )tei(Ĥf+EkICD )t the solution of the final state’s Schrödinger
equation Eq. (8.54) can be identified. Therefore, the ICD-electron spectrum finally reads

σICD(EkICD ) = lim
tÏ∞
〈ψf (EkICD , t)|ψf (EkICD , t)〉 , (8.57)

and the time-resolved ICD-electron spectrum is given by

σICD(EkICD , t) = 〈ψf (EkICD , t)|ψf (EkICD , t)〉 . (8.58)

The total ICD-electron spectrum equals the population of the final state accumulated to infinite
times, while the time-resolved ICD-electron spectrum displays the final state population at each
time step.

8.3.4 Time-dependently computed Kinetic-Energy-Release Spectrum

As explained above, the coincidence spectrum Eq. (8.52) is used to derive the KER spectrum.
Inserting the initial condition |ψd(t)〉 = e−iĤdtV̂dÎi(Ek0) |ni〉 and solving the square of the
amount results in

σcoin(EKER, EkICD , t) =∫ ∞0 dt ′e−i(EKER+V∞f +EkICD )t ′ ∫ ∞0 dt ei(EKER+V∞f +EkICD )t
〈ψd(t ′)|Ŵ †

fÎd|Enf 〉 〈Enf |ŴfÎd|ψd(t ′)〉 . (8.59)

Subsequently, the coincidence spectrum is integrated (see Eq. (8.53)) over the energy of the
ICD electron EkICD . The energy of the ICD electron is per definition positive, so we can easily
expand the integral bounds without changing the result

σKER(EKER, t) = ∫ ∞
−∞

dEkICD
∫ ∞

0 dt ′
∫ ∞

0 dt ei(EKER+V∞f +EkICD )(t−t ′) 〈ψd(t ′)|Ŵ †
fÎd|Enf 〉 〈Enf |ŴfÎd|ψd(t ′)〉 .

(8.60)

To perform the integration, the energies and the times are substituted by E = EKER+V∞f +EkICD
and T = t − t ′ resulitng in

σKER(EKER, t) = ∫ ∞
−∞

dE
∫ ∞

0 dt ′
∫ ∞
−t ′

dT eiET 〈ψd(t ′)|Ŵ †
fÎd|Enf 〉 〈Enf |ŴfÎd|ψd(T + t ′)〉 .

(8.61)
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By replacing the integration over E with a δ-function the expression above can be further
simplified. The corresponding relation

∫∞
−∞ dE eiET = 2πδ(T) is inserted, and leads to

σKER(EKER, t) = 2π ∫ ∞0 dt ′
∫ ∞
−t ′

dT δ(T) 〈ψd(t ′)|Ŵ †
fÎd|Enf 〉 〈Enf |ŴfÎd|ψd(T + t ′)〉 . (8.62)

Performing the time integration over T gives the final expression for the KER spectrum

σKER(EKER) = lim
tÏ∞

2π ∫ t

0 | 〈Enf |ŴfÎd|ψd(t ′)〉 |2 dt ′, (8.63)

whereas the time-resolved KER spectrum reads

σKER(EKER, t) = 2π ∫ t

0 | 〈Enf |ŴfÎd|ψd(t ′)〉 |2 dt ′. (8.64)

The KER spectrum can be interpreted as accumulated Franck-Condon factors between the
decaying and the final state.
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Chapter 9

Numerical Methods

In Chap. 8, the time-independent formalism of the PE spectrum and the time-dependent for-
malism of the ICD-electron as well as the KER spectrum is derived by introducing an arbi-
trary dimer, which is ionized and, subsequently undergoes ICD. The aim of the following two
Chaps. 10 and 11 is to apply these expressions determined before to real systems - namely the
NeKr and the Ar2 dimer. For their implementations, numerical tools are required, which are
the focus of this chapter. Two main tasks have to be solved in order to compute the spectra:
The solutions of the time-independent and the time-dependent Schrödinger equation have to
be found. The time-independent Schrödinger equation is an eigenvalue problem, which can be
solved by diagonalization of the Hamiltonian matrix. Therefore, we need to choose a basis, in
which the Hamiltonian and, consequently, also the eigenstates can be presented. An appropri-
ate candidate is the discrete variable representation (DVR), which allows the computation of
the potential-energy matrix directly on grid points, while a unitary transformation has to be
performed to finally get the kinetic-energy operator in grid basis. Once the eigenvalues and
eigenvectors are found, the PE spectrum can be time-independently computed, and we turn
to the time-dependent approach, which is used for the ICD-electron and the KER spectrum.
The time-dependent Schrödinger equation Eq. (8.48) is a system of first-order differential equa-
tions and is numerically solved by the Heidelberger MCTDH package, see Ref. [193], using
the complex short iterative Lanczos integrator (CSIL), see Ref. [194]. Its solutions are the
wave functions associated with the decaying and final state, necessary to compute the spectra.
Because the final state is dissociative, the wave packet propagates along the final PEC and
reaches the end of the grid after a short propagation time. To avoid reflection at the end of
the grid, complex absorbing potentials (CAPs) are introduced and set at the end of the grid,
which locally imitates the propagation of the population leaving the grid area by absorbing
it. Furthermore, the CAP is used to determine the flux of a wave function through a dividing
surface (into the CAP), which appears in the ICD-electron spectrum expressed by Eq. (8.56).

The following sections introducing the DVR (Sec. 9.1) and the CAP (Sec. 9.2) are based on
Refs. [187, 195, 196] and [197], respectively. In general, DVRs and CAPs are comprehen-
sive topics by themselves, and a detailed investigation would exceed the scope of this work.
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Therefore, we only introduce the concept and the mathematical formulation by concentrating
on the aspects required for the application in the following Chaps. 10 and 11. Studies about
DVRs and CAPs can be found in the literature, for example, see Refs. [198–201] and [202–204],
respectively. Sec. 9.3 about computational detail of the spectrum calculations completes the
chapter.

9.1 Discrete Variable Representation

In the spectral method, a complete set of orthonormal functions {φi(x)}∞i=0 is chosen as a ba-

sis. Furthermore, φi, xφi,
d
dxφi ε L

2 is demanded to guarantee the presentation of the wave
function ψ, the potential-energy V̂ and the kinetic-energy operator T̂, whose matrix element
〈φi|T̂|φj〉 has to be known analytically. By introducing the projector P̂ =∑N−1

i=0 |φi〉 〈φi|, we can
express the wave function and any operator as ψ(x) =∑N−1

i=0 ciφi(x) and Ô =∑N−1
i,j=1 |φi〉Oij 〈φj |,

where ci = 〈φi|ψ〉 is a vector element and Oij = 〈φi|Ô|φj〉 is a matrix element. Conse-
quently, the action of any operator on the wave function reduces to matrix-vector multiplica-
tion: Ôψ Ï Oc. For the numerical realization, we cannot use an infinite number of functions,
and therefore, we have to reduce the set to N functions {φi(x)}N−1

i=0 , which leads to the so-
called basis-truncation error, but as long as ||(1− P̂ |ψ〉 || is small, the error is negligible. This
representation of the wave function and operators is called the variational-basis representation
(VBR). The matrix elements of kinetic-energy and the potential-energy operator now read

TVBR
ij = 〈φi|T̂|φj〉 , (9.1a)

VVBR
ij = 〈φi|V̂ |φj〉 = ∫ φ∗i V (x) φj dx. (9.1b)

While TVBR
ij is known analytically, N(N + 1)/2 integrals have to be solved to compute the

potential energy matrix VVBR, which is numerically expensive. Instead of the spectral method,
a grid-based method can be used to overcome this problem, where a set of equidistant grid
points {xα}N−1

α=0 is taken at which the wave function is stored: ψ(x) ≈ {ψ(xα)}. Furthermore,
the operation of the potential energy operator V̂ on the wave function ψ is only given at the
grid points xα: [V̂ψ](x) ≈ (V (x1)ψ(x1), ..., V (xN)ψ(xN))T . Consequently, the matrix of the
potential energy operator can be directly constructed as a diagonal matrix with the potential
energies evaluated at the grid points xα as entries V Grid = diag(V (xα)). For the representation
of the kinetic-energy operator in the equidistant grid basis, where it is not known analytically,
the Laplacian matrix (T Grid = − 12m(∆x)2L) can be used, which is easy to compute but not

very precise. In the following, we combine the benefits of the spectral method (Tij) known
analytically and the grid-based method (V (xα)) by introducing pseudo-spectral methods with
a focus on the sine-DVR, which is used for the computations of the spectra.
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9.1.1 Pseudo-Spectral Methods

For the pseudo-spectral method, a set of orthonormal functions {φi(x)}N−1
i=0 has to be chosen as

in the spectral method, in which the wave function ψ can be expanded. The grid-based method
comes into play by the requirement that the expanded wave function ψ is exact at a number
of points {xα}. This approach is called collocation and the wave function reads

ψ(xα) =∑
i
ciφi(xα), (9.2)

where the expansion coefficients ci = 〈φi(xα)|ψ(xα)〉 are the elements of the vector c, which
is finally saved as a representation of the wave function in the above-introduced basis denoted
by b. In the following, g marks the grid representation, where the grid points {xα} built
the basis. Note that the grid points do not have to be equidistantly distributed. The above
equation of the collocation wave function Eq. (9.2) can be rewritten in matrix-vector notation
by introducing the matrix Gαi = φi(xα), which allows us to change between the grid g and
basis b representation

ψg = Gc, c = G−1ψg . (9.3)

We return to the representation of the Hamiltonian, and especially to that of the kinetic-energy
operator. While the kinetic-energy operator in the VBR is given analytically, the easily im-
plemented solution for the kinetic-energy operator in the equidistant-grid basis, the Laplacian
matrix, is not precise. It is beneficial to check if a better representation can be found us-
ing Eq. (9.3). Therefore, the action of the kinetic-energy operator on the wave function is
determined in the grid basis

(Tψ)g = G(Tψ)b = GT bc = GT bG−1ψg Ï T
g1 = GT bG−1, (9.4)

where Eq. (9.3) is used for the algebraic transformations and one finally gets the definition T g1
for the kinetic energy in the grid basis. Alternatively, the two arbitrary wave functions are used

|φ〉 =∑
i
ki |φi〉 , |ψ〉 =∑

i
ci |φi〉 , (9.5)

to compute the matrix element of the kinetic energy operator in the grid basis

〈φ|T̂|ψ〉 = k†T bc = (G−1φg )†T bG−1ψg = φg
†
G−1†T bG−1ψg Ï T

g2 = G†
−1
T bG−1.

(9.6)

One sees, apparently, the definitions of the kinetic energy in grid representation T g1 and T g2
do not coincide. This inconsistency is caused by the fact that for the derivation of Eq. (9.6)
an integration has to be performed. By examining the scalar product of two collocation wave
functions a volume element type of weight is defined, which makes the two definitions consistent
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〈φ|ψ〉 = k†c = φg
†
G−1†G−1ψg = φg

†(GG†)−1ψg (9.7)=∑
αβ
φ∗(xα)(GG†)−1

αβψ(xβ) =∑
αβ
φ∗(xα)Wαβψ(xβ),

where again Eq. (9.3) is used and Wαβ = (GG†)−1
αβ is introduced. By demanding that W is

diagonal, Eq. (9.8) becomes a Gaussian quadrature type of scalar product

Wαβ = ωαδαβ, 〈φ|ψ〉 =∑
α
ωαφ∗(xα)ψ(xα) = φg

†
Wψg . (9.8)

Gaussian quadrature is a numerical method to integrate functions of orders up to 2N − 1 with
only N points. Therefore, N quadrature weights {ωα} and points {xα} have to be determined,
respectively. As basis functions, a set of orthonormal polynomials of order N − 1 is chosen,
{ψi}N−1

i=0 . After a polynomial division by the corresponding polynomial of order N, the integral
can be rewritten and the orthonormality of the set of polynomials leads to the analytical
elimination of one part of the new integral. The quadrature weights and points are chosen in
a way that this part also numerically vanishes, which finally leads to the replacement of the
initial integral of a function of order 2N − 1 by an integral over a function of order N − 1.
The quadrature weights are given by the orthonormality relation of the set of polynomials and
the quadrature points are the roots of the polynomial of order N, which is not in the basis
{ψi}N−1

i=0 . A detailed explanation regarding Gaussian quadrature can be found in Ref. [187,
205]. For the remainder of this work, it is sufficient to know that the quadrature weights and
quadrature points are taken to diagonalizeW . Under the assumption thatW is diagonal, the
two definitions of the kinetic-energy operator in grid basis become consistent due to the extra
weight of the quadrature

〈φ|T̂|ψ〉 = 〈φ|T̂ψ〉 = φ†W GT bG−1︸ ︷︷ ︸
T
g1

ψ = φ†(GG†)−1GT bG−1ψ = φ†G†
−1
T bG−1︸ ︷︷ ︸
T
g2

ψ. (9.9)

Furthermore, only if W is diagonal the last interchange of G and W 1/2 is allowed

GG† = W −1,
W 1/2GG†W 1/2 = 1,(W 1/2G)(GW 1/2)† = (W 1/2G)(W 1/2G)† = 1, (9.10)

and one can find the matrices U and U †, which perform a unitary transformation from grid to
basis and from basis to grid representation, respectively

U † = W 1/2G, U = G†W 1/2, Uiα = ω1/2
α φi(xα), (9.11)

where Uiα describes the matrix elements. As a unitary matrix, U fulfills the relation for dis-
crete orthogonality of the basis functions (UU †)ij = ∑

α ωαφ∗i (xα)φj(xα) = δij and discrete

62



CHAPTER 9. NUMERICAL METHODS

completeness on the grid points (U †U )αβ = ∑
i(ωαωβ)1/2φi(xα)φ∗i (xβ) = δαβ, and is, therefore,

orthogonal, which means that row (discrete orthogonality) and column (discrete completeness)
vectors are orthonormal by forming the scalar products, respectively. Here, the scalar product
of the discrete completeness relation is the completeness relation of the orthonormal polyno-
mials {φi(x)}N−1

i=0 written as Gaussian quadrature. Consequently, the points {xα} and weights
{ωα} of an N-Gaussian quadrature have to be taken to get the unitary transformation matrix
U , which is the orthogonal version of the collocation matrix.

This pseudo-spectral method related to the spectral basis by an orthogonal collocation matrix
U , which is based on Gaussian quadrature points and weights, is called discrete variable repre-
sentation (DVR). In the following, the DVR functions {χα(x)} of order N − 1 are introduced.
Besides building our new basis, they are used to define the quadrature weights and to find the
quadrature points {xα}, which diagonalize W and, subsequently, give the unitary transforma-
tion U . Therefore, N linear combinations of the polynomials {φi}N−1

i=0 are constructed, which
share the same roots, except one at xα, with φN , respectively,

χα(x) =∑
i
Uiαφi(x) =∑

i
ω1/2
α φ∗i (xα)φi(x). (9.12)

Evaluating χα(xβ) at point ωβ and using the orthonormality of the polynomials, define the
quadrature weights

χα(xβ) =∑
i
ω1/2
α φ∗i (xα)φi(xβ) = ω−1/2

β

∑
i
ω1/2
α ω1/2

β φ∗i (xα)φi(xβ) = ω−1/2
β

∑
i
UiαUiβ = ω−1/2

α δαβ.

(9.13)

Furthermore, the set of the DVR functions is orthonormal as well, 〈χα|χβ〉 = δαβ, and forms a
basis. To determine the quadrature points, the following matrix elements are calculated

〈χα|x|χβ〉 =∑
γ
ωγχ∗α(xγ)xγχβ(xγ) = xαδαβ, (9.14)

whereby using Eq. (9.13) one can see that the above equation is only non-zero if α = β = γ.
Consequently, {χα} are eigenfunctions ofX in the basis {φi}N−1

i=0 with eigenvalues {xα}. Because
the eigenvalues are independent of the basis, one can construct

Xij = 〈φi|x|φi〉 . (9.15)

X is tri-diagonal because of the form of the recursion relation, which is fulfilled by the orthog-
onal polynomials {φi}N−1

i=0 . As a consequence, the eigenvalues of X are roots of φN . Diagonal-
izing X gives the eigenvalues {xα} and the eigenvectors, which can be combined to form the
transformation matrix U
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X = UDU †, D = diag(xα). (9.16)

Returning to the Hamiltonian, see Eq. (9.1), we introduce the finite-basis representation (FBR).
If the matrix element of the potential-energy operator cannot be calculated exactly and is
evaluated by using Gaussian quadrature, the corresponding potential-energy operator is no
longer expressed in the VBR but in the FBR basis due to the quadrature-induced error. T VBR =
T FBR is known analytically and can be easily expressed in the DVR basis by applying the
unitary transformation operator: T DVR = U †T FBRU . Of course, the potential-energy operator
in FBR can also be written in DVR by unitary transformation and vise verse. For the sake of
consistency, this is shown:

V FBR
ij = N−1∑

α=0 ωαφ
∗
i (xα)V (xα)φj(xα) = N−1∑

α=0 UiαV (xα)U∗jα = (UV DVRU †)ij . (9.17)

Note that the integration, see Eq. (9.1b) is performed by Gaussian quadrature and is, therefore,
expressed in FBR. Furthermore, the potential-energy operator can now be directly computed
in the DVR basis {χα}

V DVR
αβ = 〈χα|V̂ |χβ〉 = 〈χα|V̂ (x)|χβ〉 = ∫ χ∗α(x)V (x)χβ(x)dx ≈ N−1∑

γ=0 ωγχ
∗
α(xγ)V (xγ)χβ(xγ) = V (xα)δαβ.

(9.18)

Consequently, the potential-energy matrix reduces to a diagonal matrix with the potential
energy evaluated at the quadrature points, which simplifies the computation enormously. The
task of DVR is to find a unitary transformation operator, which can be used to transform the
analytically known kinetic-energy operator in FBR to DVR and - more importantly - which
diagonalizes the potential-energy operator in DVR such that the potential only needs to be
evaluated on N points instead of solving N(N + 1)/2 integrals.

9.1.2 Sine-DVR

For {φi}N−1
i=0 , different sets of orthonormal functions can be used, where the choice usually

depends on the potential-energy operator. For example, Hermite polynomials are chosen for
systems similar to the one of the harmonic oscillator. Because they are the eigenfunctions of the
Harmonic oscillator, the potential-energy operator can be well represented in the corresponding
DVR. The grid points are not equidistantly distributed, and their distribution becomes denser
at the end of the grid. Thus, fewer grid points are necessary to describe the Hamiltonian.
Because we only investigate systems with one degree of freedom, saving memory does not
restrict the computation and, therefore, allows using the sine-DVR. Our basis functions are
then eigenfunctions of the quantum mechanical 1D “Particle in a box” problem, which are sine
functions,
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φi(x) =√2
L sin(iπ(x − x0)

L

)
. (9.19)

The eigenfunctions are defined for i = 1, ..., N. The grid points are equally distributed between
the starting point x0 and x0 + L, where L denotes the box length or, here, the grid length. As
a result, compared to other DVRs more grid points are required to represent the Hamiltonian
correctly. However, the huge advantage is that not only the kinetic-energy operator in FBR,

〈φi|T̂|φj〉 = 12m 〈φi| ∂2
∂x2 |φj〉 = 12m( jπL )2

〈φi|φj〉 = j2π22mL2δij , (9.20)

but also the unitary transformation matrix U , the quadrature points {xα} and the weights
{ωα} are known analytically. As explained above, the quadrature points have to equal the
roots of φN and can be found by diagonalizing X, which has to be tri-diagonal. There is no

recursion rule for x, but for f (x) = cos(π(x − x0)
L

)
, and therefore, the corresponding matrix

F has to be diagonalized in order to find the quadrature points, which are now roots of φN+1
due to the choice of the basis functions. Since the inverse function is formed later, f (x) must
be monotonic in [x0, x0 + L]. If follows
f (x)φi(x) =√2

L
12 sin( (i − 1)π(x − x0)

L

)+√2
L

12 sin( (i + 1)π(x − x0)
L

) = 12(φi+1(x) + φi−1),
(9.21)

where the relation between the product of sine and cosine is used. Because the recursion rule is
fulfilled, one can construct the tri-diagonal matrix F , whose elements read Fij = 〈φi|f (x)|φj〉.
By diagonalizing F , the eigenvectors with the elements Uiα and the eigenvalues fα are obtained

Uiα =√ 2
N + 1 sin( iα

N + 1), (9.22)

fα = cos( απ
N + 1). (9.23)

By applying the inverse function f−1, the grid points read

xα = f−1(fα) = x0 + L
π arccos(fα) = x0 + α L

N + 1 = x0 + α∆x. (9.24)

Furthermore, the weights can be computed using the definition of Uiα,

ω1/2
α = Uiα

φ∗i (xα) =√ L
N + 1 =√∆xα. (9.25)

The equations above are used to implement the nuclear Hamiltonians, see Eq. (8.42), in DVR in
Python3, which are subsequently diagonalized. Their eigenvalues and eigenvectors are used to
time-independently compute the PE spectrum (Eq. (8.36)) and to time-dependently compute
the ICD-electron as well as the KER spectrum, see Eqs. (8.57) and (8.63).
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9.2 Complex Absorbing Potential and Flux

After the ionized dimer has undergone ICD, two cations are left, which repel each other and
form the dissociative final state together with the two emitted electrons. While slower parts
of the wave packet are still in the interaction region, faster parts of the wave packet propagate
along the grid to larger internuclear distances. When they reach the end of the grid, nonphysical
reflections occur, which do not belong to the investigated process. One solution is to increase the
grid size, but a huge grid and many grid points are numerically expensive. A more convenient
way includes the introduction of a complex absorbing potential (CAP), which extends the
considered Hamiltonian of the final state Ĥf by a complex component

ˆ̃Hf = Ĥf − iŴCAP. (9.26)

It annihilates the population at the end of the grid in the region [Rc, L], where L denotes the
length of the grid

WCAP(R) = η(R − Rc)nθ(R − Rc). (9.27)

WCAP(R) is a polynomial of order n, which is switched on at the internuclear distance Rc by
the Heaviside step function θ(R − Rc). η denotes the strength of the CAP and controls the
speed of the population annihilation. Furthermore, the CAP also causes reflections. To avoid
those, one has to choose a rather small values for η, which gives a weak CAP leading to the
transmission of the population. The length of the CAP has to be adapted by optimizing the
CAP parameters. In general, the CAP is located at the end of the grid outside the region of
physical relevance.

By adding a CAP to the Hamiltonian in Eq. (9.26) becomes non-Hermitian, which means that
the norm is no longer conserved

d
dt 〈ψf |ψf〉 = i 〈ψf | ˆ̃H†f − ˆ̃Hf |ψf〉 = −2 〈ψf |ŴCAP|ψf〉 . (9.28)

The decreasing norm in Eq. (9.28) reflects the annihilation of the final state population. Con-
sequently, the loss of population has to be considered, when computing the ICD-electron spec-
trum, and therefore, the original expression (see Eq. (8.57)) is extended. Based on Refs. [193,
197], we derived a working equation for the ICD-electron spectrum by having in mind that for
time t = ∞ the whole population has left the interaction region and has reached the CAP at
Rc,

σICD(Ek′0) = lim
tÏ∞

∫ ∞
Rc

dR |ψf (R,Ek′0 , t)|2 = ∫ ∞0 dt
∫ ∞
Rc

dR d
dt |ψf (R,Ek′0 , t)|2. (9.29)

where the limit value is replaced by a time integral and a time derivative. Eq. (9.29) can be
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further simplified by rewriting the integral over the nuclear coordinate using the step function
θ(R − Rc). Furthermore, the time derivation is performed by inserting the time-dependent
Schrödinger equation, leading to

= ∫ ∞0 dt ddt 〈ψf (R,Ek′0 , t)|θ|ψf (R,Ek′0 , t)〉 = i
∫ ∞

0 dt 〈ψf |[Ĥf , θ]|ψf〉 . (9.30)

The flux operator is introduced,

F̂ = i[Ĥf , θ] = iĤfθ − iθĤf = i ˆ̃H†f θ − iθ ˆ̃Hf + 2ŴCAP, (9.31)

where θŴCAP = ŴCAPθ = ŴCAP holds. The flux operator can now be inserted into Eq. (9.30),
which transforms the ICD-electron spectrum to

σICD(Ek′0) = ∫ ∞0 dt ddt 〈ψf (t)|θ|ψf (t)〉+
∫ ∞

0 dt 〈ψf (t)|2ŴCAP|ψf (t)〉 = ∫ ∞0 dt 〈ψf (t)|2ŴCAP|ψf (t)〉 ,
(9.32)

where the first integral vanishes because at t = 0 is no population on the PEC and at t =∞ is
the population annihilated by the CAP. However, in practice, we propagate to some fixed time
t = T, which is defined by the time of the decay and the time the final state population needs
to leave the interaction region. For clarity, Ek′0 is replaced by EkICD and our final ICD-electron
spectrum reads

σICD(EkICD ) = 〈ψf (T)|θ|ψf (T)〉+ ∫ T

0 dt 〈ψf (t)|2ŴCAP|ψf (t)〉 , (9.33)

where the first term describes the transmitted population, which is still in the CAP region[Rc, L] and the second part gives the annihilated population. Eq. (9.33) can be understood as
an extension of Eq. (8.57). Assuming that at t = T, the whole population has reached the CAP,
only the region of the CAP has to be considered. Therefore, the transmitted population is the
population on the final grid and equals Eq. (8.57), which is finally extended by the contribution
of the annihilated population.

9.3 Computational Details

For the computation of the PE spectrum, the matrices of the ground and decaying state Hamil-
tonianH i andHd have to be diagonalized to obtain the corresponding eigenvalues and eigenvec-
tors. Therefore, the Hamiltonians were represented in the DVR basis, for whose implementation
a Python3 module was used, see Ref. [196]. The diagonalization was also realized in Python3.
Most diagonalization routines use the Euclidean norm, as required for the eigenvectors of H i.
BecauseHd is non-Hermitian, its eigenvectors should fulfill the orthogonality relation for com-
plex eigenvectors, which equals a c-product, see Sec. 8.2. Consequently, we had to renormalize
the eigenvectors. After the eigenvalues and eigenvectors have been found in the DVR basis, the
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implementation of the PE spectrum including interference effects (see Eq. (8.36)) in Python3
is straightforward.

For the implementation of the ICD-electron and the KER spectrum, see Eqs. (8.57) and (8.63),
the time-dependent Schrödinger equations in Eq. (8.48) were solved by using the Heidelberger
MCTDH package, see Ref. [193], which is a Fortran-based algorithm developed to solve mul-
tidimensional nuclear-dynamic problems. Besides multidimensional dynamical calculations,
numerically exact calculations can be performed for low-dimensional systems. We investigated
dimers, which exhibit only one vibrational degree of freedom, given by the internuclear distance
R. Although the MCTDH package is a tool much more powerful than our system requires, we
decided to use the algorithm because it is well established, and we benefit from its reliability.
We applied the exact calculation option implemented in the MCTDH algorithm, where our
time-dependent wave functions are expanded in the primitive basis, to execute the propagation
in the decaying and the final state and to determine the quantum flux, which is needed for the
computation of the ICD-electron spectrum Eq. (8.57).

As already mentioned, the working equations form a set of first-order differential equations.
The corresponding time-dependent Schrödinger equation in matrix notation reads

i ·
(
|ψ̇d(t)〉
|ψ̇f (Ek′0 , t)〉

) = ( Ĥd 0
ŴfÎd (Ĥf + Ek′0)

)
·
(
|ψd(t)〉
|ψf (Ek′0 , t)〉

)
. (9.34)

The initial condition for t = 0 fs is given by(
|ψd(t0)〉
|ψf (Ek′0 , t0)〉

) = (V̂dÎi(Ek0) |ni〉
|0〉

)
, (9.35)

where the whole population of the ground state is immediately transferred to the decaying state,
and the final state is still unpopulated. Because |ni〉 is a vibrational eigenstate of the electronic
ground state, the initial condition can easily be determined by diagonalizing the matrix of the
ground state Hamiltonian H i, which is represented in sine-DVR. The wave functions |ψd(t)〉
and |ψf (Ek′0 , t)〉 are propagated on a combined grid, which is defined by the primitive basis
consisting of the vibrational degree of freedom R as well as the two electronic states |φd〉 and
|φf〉. Because the sine-DVR is used, the N = 1024 grid points are equidistantly distributed over
the grid of the internuclear distance R, which ranges from 2 to 12.23 Å. For the propagation
in time, the set of first order-differential Schrödinger equations (Eq. (9.34)) has to be solved.
Due to the non-Hermiticity of the decaying state Hamiltonian Ĥd, we have to use the complex
short iterative Lanczos (CSIL) integrator, which is based on the Lanczos-Arnoldi algorithm,
see Ref. [194].
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When the wave functions propagated in time are known, we can determine the ICD-electron
and the KER spectrum, see Eqs. (8.57) and (8.63). Of course, in practice, we cannot propagate
until infinite times. Therefore, we chose a time range, in which the whole population of the
decaying state completely decays to the final state. A higher vibrationally excited ground state
causes a more delocalized initial wave function. Since the decay width decreases with increas-
ing nuclear distance, the propagation time from different vibrationally selected ICD pathways
varies between 1500 fs (ν = 0) and 45000 fs (ν = 4). Because the final state is dissociative, the
population propagates on the corresponding PEC along the grid in the direction of higher inter-
nuclear distances. Consequently, longer propagation times also require a bigger grid. Because
practically, our grid size is limited, a complex absorbing potential (CAP) is introduced. This
third-order CAP is located at the end of the grid to simulate the propagation of the population
out of the defined grid area and to avoid reflections, see Sec. 9.2.

After performing the propagation, the wave function at each time step of the decaying state
ψd(t) is output by the analysis program showspf and can be subsequently used for the imple-
mentation of Eq. (8.63), for which we used Python3. The ICD-electron spectrum can nearly be
fully determined within the MCTDH package by using the analysis program flux. Therefore,
the third-order CAP is set at the end of the grid Rc = 18 au ≈ 9.53 Å. Note that for the
tracking of time-resolved spectra, the CAP has to be set in the interaction region. Applying
the analysis program, creates the file iwtt, which contains the accumulated population of the
final state absorbed and transmitted by the CAP for each time step, see Eq. (9.31). Plotting
the accumulated final state population against the propagation time, gives a converged curve.
The last value approximates the population at infinite times for a given energy of the ICD
electron and is, therefore, one point of the ICD-electron spectrum, see Eq. (8.57). Because the
wave function of the final state depends solely parametrically on EkICD , the propagation and
the flux analysis have to be performed separately for each ICD-electron energy to finally obtain
the ICD-electron spectrum.
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Chapter 10

ICD in NeKr

In this chapter, we study the Ne2s ionization and the subsequent ICD in the NeKr dimer. After
the ionization of the Ne atom, where the photoelectron e−PE is ejected, the 2s vacancy is filled
by a 2p electron, and the excess energy is transferred radiationlessly to the neighboring Kr
atom, which results in its 4p ionization via the emission of the ICD electron e−ICD. The photon
energy of 48.68 eV is only slightly above the threshold, and therefore, the ejected ICD-electron
is higher in kinetic energy than the previously ejected photoelectron. Besides the two electrons,
the two cations Ne+ and Kr+ remain. Due to their positive charge, they repel each other and
drift apart, which leads to a Coulomb explosion. The described mechanism is shown below

NeKr + ~ω Ï Ne+(2s−1)Kr + e−PE Ï Ne+(2p−1) + Kr+(4p−1) + e−PE + e−ICD. (10.1)

We investigate the above-explained process by computing time-independently the PE spectra
and time-dependently the ICD-electron and KER spectra. The PE spectra exhibit interferences,
which occur due to the coherently populated vibrational levels for the Ne+(2s−1)Kr state and
their partial decay widths, causing the vibrational levels to overlap. A different source of
interferences affects the ICD-electron spectrum. The population is continuously transferred
from the decaying to the final state, where it interferes with the population, which is already
in the final state and propagates. To get full insight into the nuclear dynamics during ICD,
we also investigate vibrationally selected ICD, where the population is initially prepared in one
of the excited vibrational eigenstates of the electronic ground state. The results shown in this
chapter were reported in Ref. [65].

A convenient way to describe the dynamics of the process in Eq. (10.1) is the wave-packet prop-
agation formulation of the electronic decay, see Refs. [109, 110, 112]. For this purpose, we need
to introduce the PECs of all electronic states involved in the process and their corresponding
vibrational eigenstates with their partial decay widths, see Fig. 10.1.
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Figure 10.1: PECs and decay width of the NeKr dimer and schematics of the ICD process. Panel
a shows the electronic ground state (Vgs) and its five vibrational states with the corresponding
eigenenergies and eigenfunctions. By a broad-band ionization, the population is vertically
transferred to the Ne+(2s−1)Kr electronic state (Vd), shown in panel d, that decays by ICD
and thus its potential has a complex contribution. The energies of the vibrational states and
their corresponding decay widths are given in the legend. The total decay width is shown on a
logarithmic scale in panel c. The final ICD state Ne+(2p−1)Kr+(4p−1), depicted in panel b, is
dissociative (Vf). 72
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Initially, the NeKr dimer is in its electronic ground state |φi〉. The corresponding PEC de-
noted as Vgs is an interatomic potential of the Hartree-Fock dispersion (HFD-B) form shown
in Fig. 10.1a, and taken from Ref. [206]. It has its minimum at 3.63 Å and, as can be seen
in Fig. 10.1a, supports five bound vibrational states. If absolute zero temperature is assumed,
only its vibrational ground state will be populated.

Then the dimer is ionized, leading to the population of the Ne+(2s−1)Kr state. We assume
a broad-band ionization of Ne, which is represented by a vertical transfer (red vertical arrow
in Fig. 10.1) of the ground-state vibrational wave function of NeKr to the PEC of the decaying
state Vd, which is shown in Fig. 10.1d. The latter PEC was computed using the third-order
algebraic-diagrammatic-construction scheme for approximating the one-particle Green’s func-
tion [ADC(3)] [207, 208], employing aug-cc-pCVQZ basis set on Ne and aug-cc-pVQZ basis set
on Kr. The corresponding electronic state is denoted as |φd, Ek0〉, where |φd〉 is the electronic
wave function of the singly ionized Ne+(2s−1)Kr dimer and |Ek0〉 corresponds to the emitted
photoelectron. As the state is electronically unstable, its energy as a function of the internu-
clear distance is complex with an imaginary part being half of the decay width Γd. The decay
width (Fig. 10.1c)) was computed with the Fano-ADC-Stieltjes approach [172], as described in
Ref. [100]. The decaying-state PEC supports 16 vibrational states, and each of them acquires a
partial decay width Γnd . Those widths are listed in Fig. 10.1d. The minimum of the decaying
state PEC is located at 3.01 Å, i.e., slightly shifted to smaller internuclear distances compared
to that of the ground-state PEC.

The decay width of the decaying state Γd describes the rate with which the population is
transferred to the final electronic states Ne+(2p−1)Kr+(4p−1). The latter states were computed
with the second-order two-hole propagator ADC(2) method [209] using aug-cc-pVQZ basis sets
on both atoms. In the range of internuclear distances relevant for the dynamics studied here,
the PECs of the final states differ only slightly (see Fig. 1 of Ref. [100]). Consequently, the
nuclear dynamics on the different final PECs are very similar, and the resulting electron and
KER spectra will be practically indistinguishable. For simplicity and clarity, we thus use, in
the present study, a single final PEC obtained by averaging over all final states of interest. It is
shown in Fig. 10.1b and denoted as Vf . The final state is dissociative and at large internuclear
distances, the corresponding PEC becomes purely Coulombic, as can be expected for two re-
pelling cations, Ne+ and Kr+. The electronic final state can be written as |φf , Ek0 , Ek0′ 〉, where
|φf〉 gives the contribution of the repelling cations, |Ek0〉 and |Ek0′ 〉 correspond to the emitted
photoelectron and the ICD electron, respectively.

As already shown in Ref. [100], the PE spectrum is sensitive to the form of the PEC of the
decaying state Vd. Therefore, we first fitted the ab initio PEC by a Morse potential and then
determined its parameters such that the computed spectra reproduce best the experimental
ones.
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10.1 Interference Effects in the Photoelectron Spectrum

As discussed, the decaying state is formed by ionization, where a Ne2s electron of the NeKr
dimer is ejected. As the populated state is a decaying one, it is intuitively clear that the pho-
toelectron carries also information on the decay. Therefore, the photoelectron (PE) spectrum
contains not only the total decay width of the decaying electronic state but also information
on its vibrational structure and partial decay widths, i.e., on the subsequent decay dynamics.
In this section, we will discuss the PE spectrum, focusing on the interference effects which can
occur and get imprinted within it. The interferences arise due to the different partial decay
widths of the coherently populated vibrational levels of the decaying state [105]. The different
decay widths, in turn, appear as a result of the dependence of the total decay width on the
internuclear distance, Γd = Γd(R). If Γd is constant, every vibrational state will have the
same decay width and the PE spectrum will be given by the standard formula, i.e., a sum of
Lorentzians, one for every populated vibrational state, weighted by the corresponding Franck-
Condon factors. Moreover, the decay widths can be larger than the energy spacing between the
vibrational states, and therefore, the populated states overlap in energy causing an additional
interference effect.

In general, the PE spectrum depends on the eigenstates of the decaying state and, conse-
quently, reacts very sensitively to changes in the corresponding PEC and the respective partial
decay widths. Before we start our investigation of the interference effects in the PE spectrum,
we want to make sure that our computed spectra reproduce the measured ones of Ref. [100]
well, and thus, we optimized the PEC of the decaying state as well as the decay width.

Although the PEC was obtained by the high-level ab initio method [ADC(3)], highly excited
and, moreover, decaying states of weakly bound van der Waals clusters are very difficult to com-
pute. Obtaining electronic decay widths, especially for interatomic processes, poses even larger
difficulties. Discrepancies of 20 % [210] and even larger [46] were reported for decay widths
obtained by Fano-ADC-Stieltjes method, used to compute the decay width of the Ne+(2s−1)Kr
state. These computational difficulties give us some flexibility in the choice of the PEC and
the decay width.

By comparing the experimental and theoretical survival probabilities it was already shown
in Ref. [100] that the ab initio decay width of Ne+(2s−1)Kr is overestimated. We, therefore,
scaled the ab initio decay width by the constant factor of 0.8 (sc = 0.8), which gives the best
agreement with the experimentally observed survival probability. We note that even after this
rescaling, the follow up ICD process is still ultrafast. The decay width at the equilibrium ge-
ometry is 16 meV, corresponding to a lifetime of about 41 fs. We can now use the experimental
spectra and adjust the PEC of the decaying state, assuming a scaled decay width.

We approximated the PEC of the decaying state with a Morse potential and redefined its
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parameters. Therefore, we fitted a Morse potential to the original ab initio date, which is given
as

Vd(R) = De

(1− e−α(R−Re))2
, (10.2)

where De is the depth, Re marks the equilibrium position, and α controls the width of the
potential well. The fit to the ab initio data gives the initial guess for the parameters defining
the Morse potential. Subsequently, a grid search was performed, where for each combination of
parameters (De, Re, and α), the PE spectrum is computed and compared to the experimental
one. This procedure is repeated until the difference between computed and measured data
is minimized. Because in the experiment the photon energy of 48.68 eV is slightly above the
ionization threshold, post-collision interactions (PCI) can be observed. In PCI, the fast ICD
electron overtakes the slow photoelectron, which is decelerated due to the missing shielding
from the remaining ions by the ICD electron. Simultaneously, the ICD electron is accelerated.
This PCI effect appears as a tail in the low-energy part of the PE spectrum, see App. D. In
our calculations, we do not take PCI effects into account, and therefore, we compared the com-
puted PE spectrum only to the higher photoelectron energy part starting behind the intensity
maximum of the experimental data. To achieve better agreement, our theoretical investiga-
tions consider the reported experimental resolution of ± 15meV by convolving the computed
PE spectrum with a Gaussian of 30meV width.

Due to numerous parameter combinations, many local minima exist, and consequently, sev-
eral Morse potentials lead to a satisfactory agreement with the measured data. Therefore, we
determined the Morse-potential parameters by computing the KER spectrum and comparing
it with the experimental one. A more detailed explanation of the impact of the Morse potential
shape on the PE and the KER spectrum is illustrated in App. D. The parameters corresponding
to the best agreement with the experiment are De = 0.16 eV, Re = 3.01Å, α = 1.09 au−1, and
the originally computed decay width is scaled by 0.8 (sc = 0.8). In the following, we refer to
this PEC as the working Morse potential. The PE spectra computed with the working Morse
potential with and without interference effects are shown in Fig. 10.2 together with the high-
energy part of the experimental result for a photon energy of 48.68 eV [100].

We can see that the PE spectrum, which takes interference effects into account (blue curve) and
the data points (blue dots) of the measurement satisfactorily coincide and that the standard
PE spectrum has a similar form, but is slightly shifted to lower energies. Before analyzing the
interference effects in the PE spectrum in more detail, we now briefly discuss the impact of the
nuclear mass. The mass of a dimer is usually approximated by calculating the reduced mass of
each isotope combination and, subsequently, averaging over the different isotopic compositions.
The spectra for the fit represented in Fig. 10.2 are obtained by computing a spectrum for each
isotope-mass combination and then summing these PE spectra, which are weighted by the nat-
ural abundance of the respective isotope composition. A demonstration of the impact of mass
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on the PE spectrum can be found in App. E. For our theoretical study, we use in the following
the mass of the isotopic combination, which occurs most frequently in nature (reduced mass
16.15 AMU).
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Figure 10.2: Computed PE spectra with and without interference effects in comparison to
experimental data for the NeKr dimer. The blue curve is the PE spectrum including interference
effects, while the orange curve describes the standard PE spectrum without interference effects.
The former is calculated by Eq. (8.36) and the latter is determined by the standard PE spectrum
equation, which is the first sum of Eq. (8.36). The blue dots belong to the measurements of
Ref. [100], where Ne+ and Kr+ ions and low-energy photoelectrons were measured in coincidence
after photoionization followed by ICD. The photon energy is 48.68 eV. Because of the high
kinetic energy of the ICD electron, the slow photoelectron is overtaken by it. Consequently,
the photoelectron is decelerated because the ICD electron does not shield it any longer, and
it experiences the attractive force of the positive doubly charged NeKr dimer. The potential
of the decaying state is described by a Morse potential, whose parameters are optimized so
that the PE spectrum including interferences and the experimental results satisfactory agree
(De = 0.16 eV, Re = 3.01Å, α = 1.09 au−1 and sc = 0.8). Furthermore, the PE spectrum is
convolved by a Gaussian with a full-width half-maximum of 30meV to consider the resolution
of the laser of ± 15 meV. By using only the part of the spectrum of the fast photoelectrons, the
effects of the post-collision interaction (PCI) on the PE spectrum are minimized. The spectra
are computed for all different combinations of isotopic masses and, subsequently, weighted by
their abundance in nature summed. The spectra are scaled by their maximum intensities.

After the excursion about the construction of the PEC of the decaying state, we return to the
interference effects. In Fig. 10.2, the PE spectrum including interference effects is computed
by Eq. (8.36), whereas for the standard PE spectrum without interference effects only the first
sum is taken into account. Both are scaled to make their shapes comparable. One can see
that the PE spectra with and without interference have approximately the same shape and
that the spectrum, which does not take interference effects into account, is slightly shifted to
lower photoelectron energies. But where does this difference come from? For answering this
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question, we separately compute the PE spectrum including interferences (Eq. (8.36)) and its
individual components, which are the standard PE spectrum (first sum in Eq. (8.36)), and
the interference term (second sum in Eq. (8.36)). The scaling factor is now defined by the
highest intensity of the PE spectrum without interference. The scaling shows the contribution
of the interference term to the total PE spectrum. Furthermore, we assume a photoelectron
energy of 48.68 eV, as in Ref. [100], and a reduced mass of 16.15AMU according to the most
frequently occurring NeKr isotope in nature. Because this is a theoretical investigation, we do
not convolve the PE spectra any longer with a Gaussian to take the experimental resolution
into account. Furthermore, unless described differently, we assume that the whole population
is initially only in the vibrational ground state (ν = 0).
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Figure 10.3: Computed PE spectra of the NeKr dimer with (blue) and without (orange) in-
terference effects and the contribution of the interference (green) term. The PE spectrum
including interferences is computed by Eq. (8.36), while the standard PE spectrum without
interferences is calculated by the first sum and the contribution of the interference term by the
second sum of Eq. (8.36). The spectra are computed for the NeKr dimer with a reduced mass
of 16.15 AMU (the most frequently occurring isotope-mass combination) assuming that before
ionization the system is in its vibrational ground state ν = 0. Furthermore, they are scaled by
the highest value of the PE spectrum without interference effects. A photon energy of 48.68 eV
is taken.

As seen in Fig. 10.3, the contribution of the interference term is negative and thus associated
with destructive interferences. Consequently, the total PE spectrum is of lower intensities and
slightly shifted to higher photoelectron energies compared to the standard spectrum. Since Γd

decreases for larger internuclear distances, the higher-lying vibrational states have a smaller par-
tial decay width. This favors the contributions of the lower-lying vibrational states, which occur
at lower photoelectron energies in the PE spectrum. In the present case, the R-dependence is
monotonic (at large internuclear distances Γd ∼ R−6 [90]) making that the interference term
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causes mostly a shift in the PE spectrum. A more involved dependency of the decay width
on the internal degrees of freedom of the system can lead to a more dramatic effect of the
interference term in the PE spectrum.

In the present case, the interference effects are a combination of the coherent population of
vibrational states with different partial decay widths (R-dependence of Γd) and their overlap
in energy due to the large partial decay widths Γnd and the small energy difference between
the states (shallow potential). The impact of these interferences on the PE spectrum can be
illustrated by computing the PE spectrum and its contributions again assuming a scaling factor
of sc = 0.4 and sc = 0.2, see Figs. 10.4 and 10.5.
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Figure 10.4: Computed PE spectra for the NeKr dimer with (blue) and without (orange)
interference effects and the contribution of the interference (green) term. The total decay
width is scaled by sc = 0.4. The PE spectrum including interferences is computed by Eq. (8.36),
while the standard PE spectrum without interferences is calculated by the first sum and the
contribution of the interference term by the second sum of Eq. (8.36). The spectra are computed
for the NeKr dimer with a reduced mass of 16.15 AMU (the most frequently occurring isotope-
mass combination) assuming that before ionization the system is in its vibrational ground
state ν = 0. Furthermore, they are scaled by the highest value of the PE spectrum without
interference effects. A photon energy of 48.68 eV is taken.

While in Fig. 10.3, the large total decay width and the small energy spacing between the
vibrational states suppress any structure in the PE spectrum, the smaller partial decay widths
cause less overlapping vibrational states, which leads to more structured PE spectra, where
each populated vibrational state gives one peak in the spectrum. Furthermore, the interference
terms decrease with decreasing decay width, at least when Γd monotonically decreases, and the
PE spectrum including interferences and the standard PE spectrum differ less. In situations
where the decay width has a complicated functional dependence on the system geometry and
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combinations of overlapping and non-overlapping vibrational states are populated, accounting
for the interference effects can be crucial for understanding the PE spectrum.
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Figure 10.5: Computed PE spectra with (blue) and without (orange) interference effects and the
contribution of the interference (green) term. The total decay width is scaled by sc = 0.2. The
PE spectrum including interferences is computed by Eq. (8.36), while the standard PE spectrum
without interferences is calculated by the first sum and the contribution of the interference term
by the second sum of Eq. (8.36). The spectra are computed for the NeKr dimer with a reduced
mass of 16.15 AMU (the most frequently occurring isotope-mass combination) assuming that
before ionization, the system is in its vibrational ground state ν = 0. Furthermore, they are
scaled by the highest value of the PE spectrum without interference effects. A photon energy
of 48.68 eV is taken.

In all the computations above, the initial population is assumed to be in the vibrational ground
state (ν = 0). Preparing the initial population in the excited vibrational states of the electronic
ground state shows that the impact of interferences on the PE spectra decreases with increasing
vibrational quantum number ν. The higher the vibrational excitation, the more delocalized is
the corresponding wave function. Besides the total decay width, which is lower at higher
internuclear distances, also more vibrational levels of the decaying state with smaller partial
decay widths contribute to the PE spectra. Therefore, the total decay widths decrease with
increasing vibrational excitation and fewer interferences can be observed in the vibrationally
selected PE spectra.
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10.2 Vibrationally selected Interatomic Coulombic Decay

In this section, we continue our study with the analysis of the ICD-electron spectrum. After
the Ne2s photoionization, the Ne+(2s−1)Kr state decays via emission of an ICD-electron. The
corresponding spectrum of the ejected ICD-electron is obtained using Eq. (8.57). The ICD
process assuming that the NeKr dimer is initially in its vibrational ground state was studied
already in Ref. [100]. Therefore, here we concentrate mostly on vibrationally selected ICD. We
investigate the process, assuming that the population is initially in one vibrationally excited
state of the electronic ground state. This will also allow us to study how the cluster tempera-
ture affects the ICD-electron spectrum.

As mentioned above, five bound states are associated with the electronic ground state, which
are marked by the quantum number ν. Thereby, ν = 0 stands for the vibrational ground state,
while ν = 1-4 present the vibrationally excited states. The vibrationally selected ICD-electron
spectra are computed by assuming that the whole population is initially prepared in one of the
five vibrational levels of the electronic ground state. The result is seen in Fig. 10.6.
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Figure 10.6: Computed vibrationally selected ICD-electron spectra of the NeKr dimer. The
spectra are calculated using Eq. (8.57) and assuming that the system is initially in one of the
five vibrational levels of the electronic ground state, ν = 0 to 4. The corresponding vibrational
quantum numbers ν are displayed in the legend. Because the spectrum, which corresponds to
the initially populated vibrational ground state, is the most localized one and has consequently
the highest intensity contribution, its maximum value is used for the scaling of the other spectra.
The most frequently occurring isotope-mass combination of 16.15AMU (reduced mass) is used
for the computation.

The ICD-electron spectrum of the selectively populated vibrational ground-state corresponds to
the most localized initial vibrational wave function. Therefore, it provides the highest intensity
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and is used for the scaling of the other vibrationally selected ICD-electron spectra. While the
wave function of the vibrational ground state is located at comparable lower nuclear distances,
for increasing quantum number ν, the initial wave function is more extended over the grid.
This leads to an increase of the ICD-electron energy range in the corresponding ICD-electron
spectrum.

As the ICD is fast, the wave packet created in the decaying state has practically no time
to evolve on the Vd potential and is nearly immediately transferred to the final state. This
makes the ICD-electron spectrum practically a direct image of the population of the initial
vibrational state. This can be confirmed by comparing the spectra shown in Fig. 10.6 with
the probability densities, or the modulus square of the respective vibrational wave functions,
shown in Fig. 10.7. As we see, the vibrationally selected ICD-electron spectra clearly reflect
the nodal structures of the corresponding initial vibrational wave functions.
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Figure 10.7: Probability densities of all 5 bound vibrational states of the electronic ground state
of the NeKr dimer. The blue curve belongs to the vibrational ground state and the orange,
the green, the red and the purple ones depict the vibrationally excited ones in rising order.
The eigenfunctions are normalized. The legend shows the corresponding vibrationally excited
states by the vibrational quantum numbers ν. The most frequently occurring isotope-mass
combination of 16.15AMU (reduced mass) is taken for the NeKr dimer.

Let us now return to the role of the interference effects during the ionization and the subsequent
decay in the NeKr dimer. As explained in Sec. 10.1, interferences can result from effects on the
decaying and the final state. Of course, the interference effects of the decaying state always
indirectly affect the propagation in the final state. Even without final-state interferences, the
ICD-electron spectrum would not simply display the inverse population of the decaying state.
Energy conservation applies to the initial and the final state (compare Eq. (8.11)), but as shown
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in Sec. 8.2, intermediate states can also be off-resonance, and consequently, the energy of the
decaying state is not well defined due to the decay width Γd. However, the ICD-electron spec-
trum reflects the nuclear dynamics of the final state because it is given by the population in
the final state accumulated over time, see Eq. (8.48). The interference effects in the final state
occur due to the continuous transfer of population from the decaying to the final state, which
means that portions of the wave packet arriving at later times can interfere with portions of
the wave packet already propagating on the final-state PEC. Clearly, these effects can lead to
noticeable modifications of the spectra, if the decay is slower and allows for the time evolution
of the wave packet in the decaying and the final state. The nodal structures of the vibrationally
selected ICD-electron spectra in Fig. 10.6 demonstrate that no strong interference effects can be
observed, as the lifetime of the decaying state is too short. Consequently, the whole population
of the decaying state decays nearly immediately, and there is not enough time for the different
portions of the wave function in the final state to interfere during the propagation.

Depending on the way of their preparation (usually by supersonic co-expansion), the rare
mixed gas clusters may have a different temperature. The vibrationally selected ICD provides
the possibility to analyze the dependence of the spectra on the temperature.
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Figure 10.8: Computed ICD-electron spectra of the NeKr dimer at different temperatures.
The spectra are calculated by using Eq. (8.57) in combination with the Boltzman distribution
explained in the text. The spectrum at the highest temperature exhibits the biggest maximum
and is therefore used for scaling the spectra. The different temperatures at which the spectra are
determined are given in the legend. The most frequently occurring isotope-mass combination
of 16.15AMU (reduced mass) is used for the NeKr dimer.

It is usually assumed that before ionization the dimer is in its vibrational ground state, which is
certainly the case at T = 0 K. At higher temperatures, however, the population is statistically
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distributed to higher-lying vibrational states. Therefore, we introduce the impact of tempera-
ture in our computations by weighting the vibrationally selected ICD-electron spectra by the
Boltzmann distribution wν = e−β Eν . Here, β = (kB T)−1 is the Boltzmann factor including the
Boltzmann constant kB, and Eν corresponds to the energy difference between the vibrational
ground state and the vibrationally excited state ν. Subsequently, the weighted vibrationally
selected ICD-electron spectra are incoherently summed. The ICD-electron spectra at different
temperatures are given in Fig. 10.8.

Note that the spectra are scaled by the highest intensity of the ICD-electron spectrum com-
puted at the highest temperature. The impact of the temperature starts to become noticeable
at about 10K, which is the estimated temperature of the dimers in the experiment reported
in Ref. [100], but this increase in intensity at about 9.5 eV is too small to be experimentally
resolvable. More noticeable differences start to appear at temperatures higher than 20 K, where
the main peak develops a clear shoulder and a second peak at 10.8 eV appears. We can there-
fore conclude that for the NeKr dimer, the approximation that only the vibrational ground
state is initially populated is valid for temperatures of up to about 20 K. This corresponds to
population rates of 26 % for the first vibrationally excited state, and still over 11 % and 7 %
for the second and third one. In comparison, at 10 K only 7 % of the population is in the first
excited vibrational state, and only 1 % in the second one .

We would like to conclude our study by examining the KER spectrum of the Coulomb explod-
ing dimer, again concentrating on the interference effects. While the ICD-electron spectrum
records the propagation on the final state, the KER spectrum reflects the nuclear dynam-
ics in the decaying state by projecting the decaying-state wave packet on the final state, see
Eq. (8.63). Therefore, the ICD and the KER spectrum carry complementary information [111].
In the classical picture, however, the KER and the ICD-electron spectra are mirror images of
each other (mirror-image approximation) when converting the energy of the ICD-electron to
the associated KER energy. Although this is often used in practice, it was shown [111, 112] that
due to quantum effects the mirror-image principle breaks down and is a good approximation
only in cases of a small decay width and no or negligible nuclear dynamics on the decaying
state. Due to the very shallow potential Vd, the dynamics in the decaying state of NeKr are not
fast. However, the decay width of our system is rather large. We observe interference effects in
the PE spectrum due to the massive broadening of the vibrational energy levels and their cor-
responding overlaps. Furthermore, the vibrationally selected ICD-electron spectra reflect the
nodal structures of the vibrational ground-state wave functions, which implies a short lifetime
of the decaying state and, consequently, a large decay width Γd. Can such an intermediate
situation lead to noticeable deviations from the mirror image approximation?

The KER spectra as results from vibrationally selected ICD processes, as well as the KER
spectra at various temperatures, can be found in Appendix F. They were computed using
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Eq. (8.63). The results show that the directly computed KER spectra and the mirror image of
the ICD-electron spectra show good agreement, at least if solely the vibrational ground state is
initially populated, see Fig. 10.9. The comparisons of the KER spectra and the mirror image
of the ICD-electron spectra corresponding to the higher vibrationally excited states, however,
show discrepancies at higher KER energies. An example of an ICD process initiated from
the third excited vibrational state of the electronic ground state is shown in Fig. 10.10. The
mirror image of the ICD-electron spectrum is lower in intensity than the directly computed
KER spectrum, and the deviation increases with increasing KER, which implies destructive
interferences.
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Figure 10.9: Comparison of the directly computed KER spectrum (dots) and the mirror image
of the ICD-electron spectrum (line). The spectra are determined by Eqs. (8.57) and (8.63),
where the energy of the ICD electron is transferred to the KER for the ICD mirror image.
The population is assumed initially to be in the vibrational ground state ν = 0. The spectra
are scaled by their highest values. The most frequently occurring isotope-mass combination of
16.15AMU (reduced mass) is employed for the NeKr dimer.

While the KER spectrum only reflects the dynamics and the corresponding interference effects
in the decaying state, the ICD-electron spectrum carries more information. It gives insight into
the wave-packet motion in the final state, which also depends on the dynamics in the decaying
state, see Eq. (8.48). The propagation in the final state is accompanied by leakages from the
decaying state that interfere with the final-state wave packet. Because the KER spectrum does
not display these final-state interferences, we may conclude that they need to be small to ensure
that the mirror image is a good approximation.

In the case of the initially populated vibrational ground state, this is guaranteed by the large
decay width. Due to the fast decay, the entire population of the decaying state is nearly im-
mediately transferred to the final state, leaving practically no time for the different portions of
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the wave packet to propagate and interfere in the final state. Returning to the vibrationally
selected ICD in Fig. 10.10, we see the reason for the discrepancies between the mirror image
and the directly computed KER spectrum. The third excited vibrational state is more delo-
calized compared to the ground state, and therefore, higher vibrational states of the decaying
state are populated, which have smaller partial decay widths (the total decay width decreases
with R). Therefore, for some parts of the wave packet, there is more time for the propagation
on the decaying- and, consequently, also on the final-state PEC, which leads to interferences.
We can thus conclude that final-state interferences can be suppressed by a short lifetime of the
decaying state and increased by somewhat longer decay times.
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Figure 10.10: Directly computed KER spectrum (dots) in comparison to the mirror image
of the ICD-electron spectrum (line). The spectra are determined by Eqs. (8.57) and (8.63),
where the energy of the ICD electron is transferred to the KER for the ICD mirror image.
The population is initially assumed to be in the third vibrationally excited state ν = 3 of the
electronic ground state. The spectra are scaled by their highest values. The most frequently
occurring isotope-mass combination of 16.15AMU (reduced mass) is used.
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Chapter 11

Pre-ICD in Ar2
In this chapter, we investigate the nuclear dynamics in ultrafast electronic relaxation by an en-
ergy transfer in Ar2 dimers below the threshold of ICD. After inner-valence 3s ionization of one
of the argon atoms, the relaxation dynamics of the system lead to 4s and 4p excitations of the
neighboring argon. This process is called pre-ICD (or frustrated ICD) [211, 212] because addi-
tional energy is needed to also ionize the neighboring argon atom and to create a dissociative
system consisting of two repelling cations similar to the resulting state of ICD. Time-resolved
photoion-photoion coincidence spectroscopy and classical Monte-Carlo simulations were used
to track and understand the nuclear dynamics in the Ar2 dimer during the system undergoes
pre-ICD [106] [66]. Motivated by these previous findings, we performed quantum dynamic
simulations to gain more insight into the relaxation dynamics of this ultrafast energy-transfer
mechanism. We computed the time-resolved pump-probe delay-dependent KER spectrum to
study the obtained structures in the experimental spectrum and to explain their occurrence.

The chapter is structured as follows. In Sec. 11.1, we introduce a previous study [106] re-
garding pre-ICD in the Ar2 dimer to motivate our investigations and to separate our work from
what has been done before. In the following, Sec. 11.2, the computational method based on
wave-packet propagation is explained and the corresponding KER spectrum is presented. The
chapter is completed by Sec. 11.3, with adjusting our computed spectrum to the measured one.
The results discussed here are also found in Ref. [66].

11.1 State of the Art

For all homonuclear noble-gas dimers heavier than neon, the ICD channel of the inner-valence
hole state is energetically closed. In Ar2 dimers, for example, the 3s-ionization energy is
29.24 eV, which is below the threshold for ICD at 31.52 eV [211]. However, recently, a study
[106] revealed that although the relaxation energy of the 3s hole in argon is not enough to
ionize its neighboring atom, it is sufficient to excite the electron of its neighboring atom to
some Rydberg states, creating the predissociative Ar+-Ar∗ system. This ultrafast transfer of
excitation energy, called pre-ICD, was observed in a time-resolved extreme ultraviolet (XUV)-
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pump infrared (IR)-probe experiment in Ar2 dimers. The process itself and the involved PECs
are illustrated in Fig. 11.1.

Figure 11.1: Schematic representation of the pre-ICD mechanism in Ar2 by the corresponding
PECs. The PECs are taken from Refs. [106, 213]. The red arrows mark the population transfer
between states and the propagation on the PECs. After one argon atom is 3s ionized by an
XUV pulse and the population is transferred to the PECs of the 2Σ+

g,u (Ar+∗(3s−1)-Ar) states
Vd (blue), the population propagates on the PECs and oscillates around the minima of the
PECs. Simultaneously, the 3s-ionized argon deexcites, and the excess energy is utilized to 4s or
4p excite the neighboring argon atom, 2Σ+

g,u (Ar+(3p−1)-Ar*(3p−14s)) and 2Σ+
g,u (Ar+(3p−1)-

Ar∗(3p−14p)). These pre-ICD states are pre-dissociative and the corresponding PECs are de-
noted by VpreICD (dark and light green). Afterward, the excited argon is ionized by an IR pulse
and the population is transferred to the PEC of the final state Vf (black), Ar+(3p−1)-Ar+(3p−1).
The ionization initiates a Coulomb explosion of the two remaining cations.

One of the argon atoms in the dimer is ionized by an XUV pulse, creating a 3s hole. Within the
picture of wave-packet propagation, this signifies the transfer of population from the ground-
state PEC to the PECs Vd of the singly ionized Ar+∗(3s−1)Ar states, see the blue curves in
Fig. 11.1. The wave packet starts to propagate along the PECs in the direction of the mini-
mum, where it passes the curve-crossing points of the 3s-hole states Vd with the PECs of the
pre-dissociative Ar+-Ar∗(3p−14s and 3p−14p) states, to which we refer in the following also as
4s- and 4p-excited states, see the dark and the light green curves VpreICD. This transfer of pop-
ulation between the PECs at these curve-crossing points corresponds to the ultrafast transfer
of excitation energy to the neighboring argon, resulting in its excitation. While a part of the
population stays close to the curve-crossing points of the 3s-hole states Vd, other parts propa-
gate along the PECs of the 4s- and 4p-excited states. A delayed IR pulse can then ionize the
excited neighboring argon atom. This ionization is accomplished by the transfer of population
from the 4s- and 4p-excited states to the final PEC Vf of the ICD state, Ar+(3p−1)Ar+(3p−1),
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see the black curve. The remaining two cations repel each other, resulting in a Coulomb ex-
plosion. Consequently, the process is dissociative and the corresponding PEC is monotonically
decreasing. The pump-probe reaction is described by

Ar2
XUV−−Ï Ar+∗(3s−1)ArÏ Ar+(3p−1)Ar∗(3p−14s/4p) IR−Ï Ar+(3p−1)Ar+(3p−1). (11.1)

To track the nuclear dynamics, a time-resolved KER spectrum, which depends on the pump-
probe delay time, was reconstructed after measuring the singly charged argon atoms in coinci-
dence, see Fig. 11.2a. Furthermore, the experimental data were confirmed by the corresponding
computed KER spectrum, which was determined by performing a Monte-Carlo simulation, see
Fig. 11.2b.

Figure 11.2: The figure is taken from Ref. [106]. Logarithmic color scales are used. (a) Mea-
sured time-resolved KER spectrum of Ar2 depending on the pump-probe delay. Time-resolved
photoion-photoion coincidence spectroscopy was used. (b) Time-resolved KER spectrum of
Ar2, depending on the pump-probe delay, computed by a classical Monte-Carlo simulation.
The black box marks the region over which is integrated to determine the energy transfer time.
(c) Blue curve: Projection onto the KER axis for pump-probe delay times between 1550 fs and
1850 fs (see blue box). Red curve: KER spectrum of another measurement using only XUV
pulses, scaled to the maximum of the blue curve for better comparison.
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The measured and the semi-classically computed time-resolved KER spectrum are in good
agreement. In Fig. 11.2c, the time delays between 1550 fs and 1850 fs (blue box) are pro-
jected on the KER axis (blue curve) to interpret the observed structures in the spectra. The
corresponding projection curve exhibits three dominant peaks, where the peaks at 0.8 eV and
1.9 eV reflect the relaxation pathway via the 4p- and 4s-excited states, respectively, and the
peak around 3.8 eV originates from the population directly probed after the transition to these
pre-dissociative states (black box). Both spectra show these three main structures. Note that
the pre-ICD itself (i.e., XUV-only case (red curve)) does not contribute to the Coulomb ex-
plosion signal in contrast to the ICD process of satellite states Ar+∗(3p−2 nl)-Ar created by
shake-up ionization [213–215]. Therefore, a time-independent background exists in the KER
range between 3.4 eV and 4.2 eV, which should be rather small due to the low cross-section
of the shake-up ICD channel in the XUV-energy regime. It could also be shown that the
relaxation of the 3s-hole state is the dominant channel. In previous studies, signals at higher
KERs were reported resulting from other satellite states below the ICD threshold [211, 212] and
double ionized states at one site, which decay via the radiative charge transfer (RCT) process,
Ar2+(3p−2)-ArÏ Ar+-Ar+ [216, 217] when the internuclear distance is decreasing, correspond-
ing to a KER peak centered at 5.2 eV. The measured KER spectrum does not exhibit structures
at higher KERs. Consequently, the population of satellite states Ar+∗(3p−2 np)-Ar and double
ionized states at one site Ar2+-Ar can be neglected in the computation. Additionally, it could
be extracted an energy transfer time τ3s of the 3s-hole to the pre-dissociative 4s- and 4p-excited
states by analyzing the theoretical and experimental data. Because the internuclear-distance
dependent IR-ionization probability is not known, the count rate of the KER range between
3.4 eV and 4.2 eV is used. The KER is restricted to this range because the corresponding KERs
belong to the parts of the population, which are at the curve-crossing points on the PECs of
the 4s- and 4p-excited states and are immediately transferred to the final state by the IR-pulse.
Therefore, the internuclear-distance dependent IR-ionization probability can be assumed to be
constant in this range. The restricted count rate is projected on the time-delay axis and an
exponential fit et/τ3s gives the energy transfer time, which can be seen as the lifetime of the
3s-hole state τ3s. Overall, a good agreement between experimental and computed data was
archived, and the lifetime was determined as τ3s = 824 ± 183 fs in Ref. [106].

Recently, time-resolved photoion-photoion coincidence spectroscopy was performed by Wörner
and co-workers to track the nuclear dynamics of Ar2 dimers undergoing pre-ICD, see Ref. [66].
The XUV-pump IR-probe experiment was realized in a COLd Target Recoil Ion Momentum
Spectroscopy (COLTRIMS) spectrometer [103, 218]. The measured time-resolved KER spec-
trum is given in Fig. 11.3. In comparison with the study [106] introduced above, the result
validates that there are two clearly visible decay channels approaching 0.8 eV and 1.9 eV at
the largest pump-probe delays, which are identified as contributions of the 4p- and 4s-excited
states, respectively.
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Figure 11.3: The figure is taken from Ref. [66]. Time-resolved KER spectrum of Ar2 de-
pending on the pump-probe delay measured by time-resolved photoion-photoion coincidence
spectroscopy.

What is observed exclusively is the periodical modulation of the main islands around 3.8 eV.
The oscillation period is about 800 fs, a typical timescale of vibrational motions in noble-
gas dimers. This is reminiscent of the nuclear dynamics in this ultrafast inter-atomic energy
transfer process. To explain these new features in the measured time-resolved KER spectrum,
quantum effects have to be considered as well. In a collaboration with Wörner and co-workers,
we quantum-mechanically computed the time-resolved pump-probe delay-time dependent KER
spectrum by using a method based on wave-packet propagation to interpret the experimental
results, see Ref. [66].

11.2 Time-resolved Kinetic-Energy-Release Spectrum
To interpret the experimental results [66], we performed quantum dynamic simulations of the
process and computed the time-dependent KER spectrum in the framework of nuclear wave-
packet propagating on the PECs of the involved states, see Fig. 11.1. The ab initio PECs
for the ground state and the final Ar+(3p−1)-Ar+(3p−1) state are taken from Ref. [213], where
for the PECs of the latter the configuration interaction method was applied, comprising all
single and double excitations from the reference configuration (CISD). The cc-pVDZ basis set
augmented with two diffuse s functions, two diffuse d functions, and two compact d functions
was used. The PECs of the 3s-hole state and the 4s- and 4p- excited states refer to Ref. [106]
and were determined by the non-Dyson ADC(3) method and the cc-pVTZ basis set augmented
with a set of 3s, 3p, and 3d functions of the KBJ-type. The electronic structure calculations
were performed using adiabatic bases. In the adiabatic picture, the energy transfer proceeds
via avoided crossings by non-adiabatic couplings. Here, the PECs in the adiabatic basis were
used to construct the PECs [106, 213] in Fig. 11.1, leading to curve crossings. Note that the
PECs are no results of electronic structure calculations assuming diabatic bases.
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The PECs of the pre-dissociative states still feature minima around 7-8 Å and 5 Å, respectively,
but their corresponding potential wells are comparatively shallow caused by the outer-valence
excitation. However, the 4s- and 4p-excited states show dissociative behavior, where the pre-
dissociative-state designation comes from. Consequently, the wave packet does not oscillate
localized in the potential well, but rather propagates along the grid. Usually, one can locate a
CAP, see Sec. 9.2, at the end of the grid, which absorbs the population and thereby imitates
the population leaving the grid area. In our case, we cannot use this numerical tool because
the interaction region includes the total grid required for the propagations on the PECs of the
4s- and 4p-excited states. We want to probe exactly these nuclear motions by reflecting the
dynamics on the final state. Applying a CAP would cut off the lower part of the time-resolved
delay-dependent KER spectrum.

Due to the long propagation time of 2000 fs, we have to extrapolate the originally computed
ab initio PECs in a range of internuclear distances between 2 Å and 90 Å, where the grid is
spanned by 4000 grid points. Note that a sufficiently high density of grid points is necessary
to map the process correctly. The bound state PECs for the ground state, the 3s-hole state,
as well as the 4s- and 4p-excited states are fitted by Morse potentials, see Eq. (10.2), where
the potential well depth De and the internuclear equilibrium position Re are determined by the
ab initio PECs. At asymptotic distances, the extrapolated PECs were adjusted to the corre-
sponding sums of atomic energies taken from NIST [123], which were averaged over the total
angular momentum components, respectively. Furthermore, to keep the nuclear dynamics of
the system, the original curve-crossing points of the ab initio PECs were used as references to
shift the PECs of the 4s- and 4p-excited states along the x-axis so that they exhibit the same
crossing points with the 3s-hole state PEC as before the extrapolation. The final state PECs
describe dissociation and, therefore, are fitted by Vf = 1/R + V∞f , where the kinetic-energy
release is approximated by EKER = 1/R, see Ref. [100]. V∞f equals the potential energy the
system has after the two cations get separated by infinite nuclear distances and stop moving.
It is also determined by the sum of the corresponding atomic energies, see Ref. [123]. The
PECs are not shifted because at an internuclear distance of 90 Å their kinetic energies are still
high enough to separate further, and we are interested in this kinetic-energy release. Because
all final-state PECs energetically lie close together and exhibit similar nuclear dynamics, we
averaged over all of them and used only one final-state PEC, which simplifies the computation
but does not affect the observed effects in the spectrum.

To simulate the energy transfer from Ar+∗(3s−1)-Ar to Ar+(3p−1)-Ar∗(4s) and Ar+(3p−1)-
Ar∗(4p), taking place at the points of curve-crossings, we introduce an effective decay width,
which corresponds to the energy transfer time taken from Ref. [106]. The corresponding decay
width of 0.8 meV is statistically distributed to the corresponding 4s- and 4p-excited states by
the multiplicity of the total angular momentum of the atomic states and approximates the
population transfer at the curve-crossing points. As explained above, the used ab initio PECs
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were calculated in an adiabatic basis and were subsequently diabatized. The computations of
the derivative coupling matrix elements for non-adiabatic coupling in the adiabatic picture are
efforts by themselves, and the Hamiltonian in the diabatic basis, where the population transfer
proceeds via potential coupling, is usually determined by a unitary transformation of the one
in the adiabatic basis. By assuming an effective decay width, which begins at the internuclear
distances of the curve crossings realized by step functions, we circumvent these difficulties and
find a suitable approach to imitate the behavior of the population transfer. Due to the de-
cay, the energy transfer does not occur only at internuclear distances of the same energy, but
also at higher ones. To mimic the original behavior, where energy transfers take place only at
the curve-crossing points, and to guarantee energy conservation, we add energy shifts to the
PECs of the 4s- and 4p-excited states. These approximations allow us to use the same coupled
set of time-dependent Schrödinger equations to describe the nuclear dynamics as for ICD, see
Eq. (8.48). Here, Ĥd describes the propagation on the 3s-hole state, ŴfÎd is the transition
operator between 3s-hole states and 4s- and 4p-excited states, Ĥf is the Hamiltonian of the 4s-
and 4p-excited states and Ek′0 marks the energy shifts.

Assuming broad-band ionization for the ionization initiated by the XUV-pump pulse, we take
the ICD-Hamiltonian (see Eq. (8.48)) and perform a propagation on the 3s-hole state (blue
PECs in Figs. 11.1) including the decay dynamics and simultaneously on the 4s- and 4p-excited

a b c

Figure 11.4: Time-resolved KER spectrum of Ar2 depending on the pump-probe delay.
Eq. (8.48) is used to perform the decay and the propagation on the 3s-hole states and the
4s- and 4p-excited states. The overlaps between time-dependent wave functions of the 4s- and
4p-excited states and the eigenstates of the final state give the time-resolved KER spectra for
the corresponding PECs, respectively, see Eq. (8.64). Afterward, the resulting delay-time re-
solved KER spectra are combined. a, b, and c mark different nuclear dynamical features in the
spectrum.
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states (dark and light green PECs in Figs. 11.1) by applying the complex short iterative Lanc-
zos (CSIL) integrator implemented in the MCTDH package [194]. The reduced mass of the
Ar2 dimer is 19.974AMU. To obtain the partial KER spectrum at each time step (∆ = 5 fs),
the time-dependent wave function of the corresponding 4s- or 4p-excited state is projected on
the final state, which corresponds to the two remaining argon ions after the ionization by the
IR-probe laser pulse. Therefore, at each time step, the overlap integrals between the time-
dependent wave function and the eigenstates of the final state Enf are computed separately,
see Eq. (8.64). This procedure is repeated for each gerade and ungerade transition between
the 3s-hole and 4s- or 4p-excited states, where the spectra originating from the same transition
but correspond to different energy shifts Ek′0 are accumulated. Finally, the contributions of the
partial KER spectra are summed incoherently. Using the method explained above, we obtained
the time-resolved XUV-IR delay-dependent KER spectrum shown in Fig. 11.4.

The computed spectrum is in good agreement with the experimental one, see Fig. 11.3. The
structures at 0.8 eV and 1.9 eV, associated with the probing from the 4p- and 4s-excited state,
respectively, the intense islands at 3.8 eV, resulting from the oscillation of the wave packet in
the 3s−1 potential well, and the lack of signal at 2.3 eV, due, as we will see, to destructive
interference, are well reproduced. Instead of three islands as in the measured data, we ob-
serve four to five, suggesting different oscillation times, see Sec. 11.3. Furthermore, we observe
that these structures exhibit the forms of parabolic curves, where all but the first decrease
with increasing pump-probe delay. This allows us to analyze the quantum dynamics during
the pre-ICD process and the various features observed in the measured KER spectrum in detail.

These islands reflect the movement of the nuclear wave packet in the 3s-hole state, and their
parabolic shapes show that the curve-crossing points are reached one after the other. This ef-
fect is further enhanced by approximating the population transfer as decay process, where the
transfer also occurs at internuclear distances larger than the ones of the curve-crossing points.
The wave packet on the 3s-hole potential is initially localized around the equilibrium internu-
clear distance of the neutral dimer at 3.8 Å (marked by a red arrow in Fig. 11.5a), propagating
towards the potential minimum due to the gradient and passing through all the curve crossings,
where the population is transferred to the 4s- and 4p-excited states, and subsequently probed
(see Fig. 11.5a). Because decreasing internuclear distances occur in the spectrum as increasing
KER, the first structure appears as an increasing parabolic curve. After the population has
passed the potential minimum, it returns and moves towards increasing internuclear distances,
see Fig. 11.5b. Therefore, the corresponding parabolic structure decreases. Furthermore, inter-
ferences in the form of layered structures can be observed in the spectrum, resulting from wave
packet portions arriving at later times and interfering with portions of the wave packet already
propagating on the 4s- and 4p-excited-state PECs, compare Fig. 11.3b. Therefore, destructive
interferences on the final-state PEC are the reason for the interruption of the signal at about
2.3 eV. Because during the run of the wave packet through the potential well, no population is
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transferred to the 4s- and 4p-excited states, resulting in no contribution to the KER spectrum,
the islands appear as separated signals in the spectrum. Besides the propagation on the PEC
and the population transfer, the wave packet expands over the grid, and therefore, the prop-
agation towards decreasing internuclear distances can no longer be identified in the spectrum.
Additionally, the signals blur out with increasing pump-probe delay-time, see Fig. 11.3c.

Figure 11.5: Schematic representation of nuclear dynamics during pre-ICD of the Ar2 dimer
in the delay-time range a, b, c, compare Fig. 11.1. The blue curve schematically represents
the 3s-hole states 2Σ+

g,u (Ar+∗(3s−1)-Ar), while the dark and light green curves denote the 4s-
and 4p-excited states, 2Σ+

g,u (Ar+(3p−1)-Ar*(3p−1 4s)) and 2Σ+
g,u (Ar+(3p−1)-Ar*(3p−1 4p)),

respectively.

By separating the gerade and ungerade contributions of the spectrum, we receive additional
insight into nuclear dynamics. Fig. 11.6 shows the contribution to the XUV-IR delay-dependent
KER spectrum from the gerade states and Fig. 11.7 from the ungerade states. Both exhibit
the structures corresponding to the relaxation pathways via the 4s- and 4p-excited states. The
islands around 3.8 eV show the most remarkable differences. The corresponding signals in the
spectrum of the ungerade states are well separated, while the signals in the spectrum of the
gerade states show a wave-like structure.
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Figure 11.6: Contribution of the gerade states to the time-resolved KER spectrum of Ar2
depending on the pump-probe delay. After the decay and the propagation on the 3s-hole states
and the 4s- and 4p-excited states are performed by using Eq. (8.48), the overlaps between time-
dependent wave functions of the 4s- and 4p-excited states and the eigenstates of the final state
are computed for each time step, where only transitions between gerade states are considered,
see Eq. (8.64). Then, the corresponding partial KER spectra are combined.

Figure 11.7: Contribution of the ungerade states to the time-resolved KER spectrum of Ar2
depending on the pump-probe delay. After the decay and the propagation on the 3s-hole states
and the 4s- and 4p-excited states are performed by using Eq. (8.48), the overlaps between
time-dependent wave functions of the 4s- and 4p-excited states and the eigenstates of the final
state are computed for each time step, where only transitions between ungerade states are
considered, see Eq. (8.64). Then, the corresponding partial KER spectra are combined.
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The reason for this lies in the shape of the 3s-hole state PEC and the positions of the curve-
crossing points, which in the case of gerade states, are closer to the potential minimum and
the turning point, compare Fig. 11.8. Consequently, the oscillation period for the gerade
contribution is shorter than for the ungerade one. The corresponding signals in the spectrum
are not clearly separated from each other, but a wave-like shape can be observed, which reflects
at least the forward and backward movement of the nuclear wave packet. Due to the long
oscillation period without population transfer, see Fig. 11.8, the signals in the KER spectrum
from the ungerade states are clearly visible.

Figure 11.8: PECs of the gerade 2Σ+
g and ungerade 2Σ+

u 3s-hole state (Ar+∗(3s−1)-Ar) in com-
parison. The red arrows mark the equilibrium position of the ground state.

We now return to the lack of signal around 2.3 eV, appearing in both gerade and ungerade
spectra, and clearly visible also in the experimental KER-trace (see Fig. 11.3). Our analysis
shows that this is a result of a destructive interference taking place between different portions
of the wave packet transferred to the 4s- and 4p-excited potentials at two consecutive passages
through the corresponding curve-crossings. In other words, during its excursion to the inner
turning point and back, the wave packet moving on the 3s−1 PEC accumulates a phase and
when transferred to 4s and 4p potentials interferes destructively with the portions of the wave
packet already propagating on these PECs (see Fig. 11.5b and c).
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11.3. ADJUSTMENT TO THE MEASURED TIME-RESOLVED
KINETIC-ENERGY-RELEASE SPECTRUM

11.3 Adjustment to the measured time-resolved Kinetic-Energy-
Release Spectrum

Comparing our time-resolved delay-dependent KER spectrum, see Fig. 11.4 with the experi-
mental one in Fig. 11.3, makes clear that the measured KER spectrum does not exhibit four
to five islands around 3.8 eV but rather three, resulting from a shorter oscillation period than
in the experiment. As has been already successfully used for the PE spectrum of the NeKr
dimer in Chap. 10, a better agreement between the measured and computed spectra can be
achieved by adjusting the corresponding PECs. Already knowing from Fig. 11.7 that the strong
separation of the islands occurs rather from ungerade transitions, we only have to model the
PEC of the ungerade 3s-hole state, see Fig. 11.9. The gradient must be decreased to slow down
the propagation of the population. Therefore, we fitted a Morse potential to the PEC of the
ungerade 3s-hole state and then optimized its parameters such that the wave-packet motion
reproduces the experimentally observed period of about 800 fs. The depth of the potential
energy well De is halved to flatten the descent of the curve and the equilibrium position Re

and the width control parameter α are also adjusted to conserve the total shape of the curve.
Consequently, the resulting PEC is less deep and has a smaller gradient to slow down the wave
packet propagating through the potential well and to increase the oscillation time.
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op imized decaying s a e: De=0.064eV, Re=3.03Å, α=0.78au−1

Figure 11.9: The original (dots) and the optimized (line) PEC of the ungerade 2Σ+
u 3s-hole

state (Ar+∗(3s−1)-Ar) in comparison.

The computation of the time-resolved delay-dependent KER spectrum with the optimized PEC
gives the result seen in Fig. 11.9. Besides the structures of the 4s- and 4p-decay channels and
the lack of signal at 2.3 eV due to destructive interference, only three islands in the KER region
of 3.8 eV can be observed, which reflect the nuclear dynamics in the 3s-hole state.
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Figure 11.10: (a) Measured (Wörner and co-workers [66]) and (b) computed time-resolved KER
spectrum of Ar2 depending on the pump-probe delay. The depth of the PEC of the decaying
state 2Σ+

u (Ar+∗(3s−1)-Ar) is halved from 0.128 eV to 0.064 eV to increase the oscillation time
of the population around the PEC minimum. The KER spectra are calculated for each time
step (Eq. (8.64)) and eventually combined.
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Chapter 12

Conclusion

After introducing the investigated process of ionization followed by ICD in dimers, we pre-
sented the derivation of the time-independent formalism used to derive the PE spectrum by
scattering theory as well as of the time-dependent formalism used to derive the ICD-electron
and KER spectrum, whose computations are based on wave-packet propagation [104, 105,
107–112]. Furthermore, we introduced the used numerical methods. The Hamiltonians were
written in sine-DVR [187, 195, 196]. Their diagonalizations equal the solving of the correspond-
ing time-independent Schrödinger equation. The eigenvalues and eigenvectors are required for
the time-independent computation of the PE spectra. For the time-dependently derived ICD-
electron and KER spectra, a system of first-order differential equations has to be solved, which
are coupled time-dependent Schrödinger equations, describing the time evolution of the popu-
lation in the corresponding PEC, respectively. This was realized by performing the wave-packet
propagation within the Heidelberger MCTDH algorithm [193]. While only the time-dependent
wave function of the decaying state is needed to compute KER spectra, a CAP [194] has to be
introduced to determine the flux for the computation of ICD-electron spectra.

Subsequently, the derived equations and numerical tools were applied to compute PE and
ICD-electron spectra of the NeKr dimer and time-resolved KER spectra of the Ar2 dimer. Fol-
lowing the 2s ionization of the NeKr dimer, the system undergoes ICD, where we concentrated
on the interference effects during the ionization and the following decay. Two different sources
of interference exist. Interference occurs as a result of coherently populated vibrational decay-
ing state levels, which are differently broadened and consequently overlap due to their partial
decay widths Γnd . Furthermore, interference can be caused by nuclear dynamics in the final
state, where the previous decayed population interferes with the propagating population in the
final state, see Ref. [111, 112]. Additionally, we studied vibrationally selected ICD, in which
the system is initially prepared in a vibrationally excited state of the electronic ground state.
The delocalization of the vibrationally excited wave functions is accompanied by the decrease
of the internuclear-distance dependent decay width, which enhanced the impact of interferences
on the spectra. We also investigated pre-ICD in the Ar2 dimer, where we could observe beside
the two above-explained sources of interference another one. Interference also arises due to the
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nuclear dynamics in the decaying state. Pre-ICD differs from ICD in that the excess energy
generated by the decay is not sufficient to ionize, but to excite the neighbor. Therefore, an
additional energy source is required for the ionization. The calculation of the pump-probe
delay-time dependent KER spectrum, gives insight into the nuclear dynamics occurring during
pre-ICD in the Ar2 dimer. Investigations of ICD in the NeKr dimer were followed by studying
pre-ICD in Ar2 dimer.

Ionization of Ne2s was investigated in the NeKr dimer. Due to the subsequent ICD and the ac-
companying internuclear-distance dependent decay width Γd(R) [105], interference effects can
be observed in the PE spectrum. The PE spectrum is only affected by interferences arising in
the decaying state. In general, the PE spectrum sensitively reacts to changes in the PEC of
the decaying state because it highly depends on the vibrational energy levels and the corre-
sponding partial decay widths. Therefore, the adjustment of the decaying state PEC proved to
be a convenient way to achieve a satisfactory agreement between the computed and measured
PE spectrum, see Ref. [100]. We fitted a Morse potential to the ab initio PEC (Ref. [100])
and optimized its parameters by minimizing the mean-distance square between the theoretical
and experimental data of the PE spectrum, see Fig. 10.2. KER spectra are often measured in
experimental setups. Because they take nuclear dynamics into account, various information can
be extracted from them. Thus, we used them to confirm the choice of the decaying state PEC.
By using this optimized PEC and computing the different contributions of the PE spectrum, we
analyzed the interference effects within the PE spectrum. We observed in Fig. 10.3 that these
interferences are destructive, and therefore, the PE spectrum including interference effects is
decreased in comparison to the standard PE spectrum without interferences. Furthermore, the
PE spectrum including interference effects is slightly shifted to higher photoelectron energies.
As explained above, the interference effects in the spectrum result from the overlaps of the co-
herently populated vibrational energy levels of the decaying state, caused by the broadening of
the levels due to their partial decay widths. To illustrate this, we also showed the contributions
to the PE spectrum computed with a halved and quartered decay width, see Figs. 10.4 and 10.5.
With decreasing decay width, the contribution of the interferences decreases as well. Conse-
quently, the PE spectra with interferences approach those without interferences. Furthermore,
the PE spectra provide more structure, which leads to the conclusion that the contributions of
the vibrational energy levels to the spectra can now be identified due to the reduction of the
overlaps.

We also focused on ICD following 2s ionization. Therefore, we computed the vibrationally
selected ICD-electron spectra, where the population is initially prepared in one of the vibra-
tional levels of the electronic ground state, see Fig. 10.6. The five corresponding ICD-electron
spectra become more delocalized the higher the initial vibrational excitation is and showe
structures, comparable to the nodal structures of the initial wave functions, see Fig. 10.7. The
similar shapes of the ICD-electron spectra and the initial wave functions result from the fast
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decay - the lifetime of Ne+(2s−1)Kr is about 41 fs. Instead of propagating on the PEC of the
decaying state, the population decays nearly immediately and as a result, the corresponding
ICD-electron spectra reflect the structure of the initial wave function. Because vibrationally
selected ICD has yet to be experimentally realized, we also computed the ICD-electron spectra
of the NeKr dimer at different temperatures, see Fig. 10.8. Therefore, the initial population is
statistically distributed to the vibrational states of the electronic ground state. Even at 10K,
as in Ref. [100], we observed a slight impact of the first vibrationally excited state. For higher
temperatures, a higher percentage of the population is in the vibrationally excited states. Con-
sequently, the impact of the vibrationally excited states grows with increasing temperatures,
and therefore, additional structures appear in the spectra. While at 10K the spectra slightly
differ, at 20K, two additional peaks appear and the impact of the temperature on the computed
spectra can no longer be neglected.

Another possibility to study ICD in the NeKr dimer is to analyze the distribution of the
kinetic-energy release of the remaining ions Ne+ and Kr+ after the decay. In the classical pic-
ture, the ICD-electron and the KER spectrum can be represented as mirror images of each
other, and even in the quantum picture, they provide complementary information. While the
KER spectrum reflects the nuclear dynamics of the decaying state, the ICD-electron spectrum
exhibits the nuclear dynamics of the final state, which are also affected by the decay [111,
112]. Consequently, the directly computed KER spectrum and the mirror image of the ICD
spectrum of NeKr only coincide, if the interference effects in the final state are negligibly small.
We showed that this is achieved only if the vibrational ground state is initially populated,
see Fig. 10.9. Due to the fast decay, the population is immediately transferred to the final
state and there is no time left for interferences to occur. For the third vibrationally excited
ground state, see Fig. 10.10, the two spectra differ at high KER energies. Because the peaks
of the mirror image of the ICD spectrum become smaller with increasing KER compared to
the directly computed KER spectrum, we concluded that the final state exhibits desctructive
interference. The vibrationally excited wave functions are more delocalized than the ground
state wave function. Because the decay width depends on the internuclear distance, parts of
the population decay slower than others and have more time to propagate in the decaying state
as well as to interfere, which leads to the differences between the two spectra.

After we had performed full dynamic simulations of the ICD process in the NeKr dimer, we
computed the time-resolved delay-time dependent KER spectrum of the Ar2 dimer, which
undergoes pre-ICD after 3s ionization. As mentioned before, our theoretical approach was mo-
tivated by pump-probe experiments, and therefore, we extracted the lifetime of the 3s-hole state
from the measured delay-dependent KER spectrum in Ref. [106]. Assuming the existence of a
corresponding decay width allowed us to use Eq. (8.48) for the propagation. By computing the
overlaps between the time-dependent wave functions of the 4s- and 4p-excited states and the
eigenstates of the final state, we determined the time-resolved delay-dependent KER spectrum,
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see Fig. 11.4. The involved PECs were taken from Ref. [106, 213] and extrapolated. Measured
and computed KER spectra are in good agreement. The contributions of the two decay chan-
nels via the 4s- or 4p-excited state and the lack of signals due to destructive interference at
2.3 eV are clearly displayed. Furthermore, in the KER region of 3.8 eV, four to five separated
signals occur. This KER region corresponds to the population, which is directly transferred
to the final state at the crossing points, and the observed structures reflect the nuclear dy-
namics in the 3s-hole state. While parts of the population constantly decay, other parts of the
population run through the potential well. During these oscillations, the corresponding pop-
ulation does not contribute to the spectrum leading to the separated signals. The blurring of
the signals is caused by the broadening of the wave functions within time and by interferences
between the oscillating and decaying parts of the population in the 3s-hole state due to the
comparable long lifetime of 824 fs. Additionally, we presented the separate contributions to the
time-resolved delay-dependent KER spectrum defined by the gerade and ungerade transitions,
see Figs. 11.6 and 11.7. While the KER spectrum of the gerade transitions is continuous, the
KER spectrum of the ungerade transitions is structured. These differences can be explained by
the PECs of the gerade and ungerade contributions of the 3s-hole state. The potential well of
the ungerade 3s-hole PEC is deeper and the minimum is shifted to lower internuclear distances
compared to the PEC of the gerade 3s-hole state. Consequently, the wave packet needs longer
for one oscillation through the potential well. Additionally, the crossing points of the gerade
3s-hole state PEC with the pre-ICD states PECs are located close to its minimum, whereby
the oscillations of the wave packet are not clearly recognizable in the spectrum, and a wave-like
structure appears. To complete our study of the nuclear dynamics during pre-ICD in the Ar2
dimer, we finally optimized the PEC of the ungerade 3s-hole state because the measured KER
spectrum shows only three islands. Therefore, the PEC of the decaying state has to be changed
so that the wave packet needs longer for the oscillation through the potential well. This goal
is achieved by decreasing the gradient of the potential well, which slows the population down.
Consequently, our optimized potential well is less deep than the ab initio one. The resulting
time-resolved delay-dependent KER spectrum gives excellent agreement with the experimental
one, see Fig. 11.10.

Lastly, we investigated ICD in the NeKr dimer, where we focused especially on the inter-
ference effects. We also considered vibrationally selected ICD, which gave additional inside
into the nuclear dynamics and interferences. Furthermore, pre-ICD in the Ar2 dimer during a
pump-probe experiment was studied and an additional source of interference was found. The
nuclear dynamics during pre-ICD were analyzed.
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Appendix A

Transition Amplitude of dICD via
Many-Body Perturbation Theory

In this appendix, we present the complete second-order transition amplitude of our system,
T (2)
εkεk′ovAovBov′B :ivA , which comprises eighteen terms, and we explain how it is structured. The

results presented here are also found in Ref. [64]. As mentioned in Chap. 5, the differential par-
tial dICD decay width, as well as the corresponding transition amplitude, can also be derived
by applying many-body perturbation theory [151], resulting also in Eq. (5.10). For reasons of
completeness, we show here this alternative to the derivation by time-dependent second-order
perturbation theory.

Since the transition between the unperturbed decaying and final state is forbidden in first
order, Fermi’s golden rule cannot be directly applied. Therefore, to obtain the dICD transition
amplitude, we expand these states in terms of many-body perturbation theory

|ΨivA〉 ≈ |ΦivA〉+ Q̂ivA

E(0)
ivA − Ĥ0 Ĥint |ΦivA〉 = |Ψ(0)

ivA〉+ |Ψ(1)
ivA〉 , (A.1a)

|Ψεkεk′ovAovBov′B〉 ≈ |Φεkεk′
ovAovBov′B

〉+ Q̂εkεk′ovAovBov′B

E(0)
εkεk′ovAovBov′B

− Ĥ0 Ĥint |Φεkεk′
ovAovBov′B

〉

= |Ψ(0)
εkεk′ovAovBov′B

〉+ |Ψ(1)
εkεk′ovAovBov′B

〉 , (A.1b)

where Q̂ivA and Q̂εkεk′ovAovBov′B are projectors in the configuration space of the form Q̂ivA =
1−|ΦivA〉 〈ΦivA | and Q̂εkεk′ovAovBov′B = 1−|Φεkεk′

ovAovBov′B
〉 〈Φεkεk′

ovAovBov′B
|, respectively. By subtracting

|ΦivA〉 and |Φεkεk′
ovAovBov′B

〉 from the resolution of identity, many-body perturbation theory prevents
vanishing energy denominators. The transition amplitude between the initial 1h-state |ΨivA〉
and the final 2p3h-state |Ψεkεk′ovAovBov′B〉 becomes

T (2)
εkεk′ovAovBov′B :ivA = 〈Φεkεk′

ovAovBov′B
|Ĥint|Ψ(1)

ivA〉+ 〈Ψ(1)
εkεk′ovAovBov′B

|Ĥint|ΦivA〉 . (A.2)
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Inserting the first-order states as well as the projector operators results in

T (2)
εkεk′ovAovBov′B :ivA =∑

N

[
〈Φεkεk′

ovAovBov′B
|Ĥint

|ΦN〉 〈ΦN | − |ΦivA〉 〈ΦivA |
E(0)
ivA − Ĥ0 Ĥint|ΦivA〉

+ 〈Φεkεk′
ovAovBov′B

|Ĥint
|ΦN〉 〈ΦN | − |Φεkεk′ovAovBov′B〉 〈Φεkεk′ovAovBov′B |

E(0)
εkεk′ovAovBov′B

− Ĥ0 Ĥint|ΦivA〉
]
.

(A.3)

The contributing virtual states |ΦN〉 are 1p2h- and 2p3h-states, listed in Tabs. A.1 and A.2.

∑
p

∑
h

1 Φp
ovAovB Φεk

ovAh
2 Φp

ovBov′B
Φεk
ovBh

3 Φp
ov′BovA

Φεk
ov′Bh

4 Φεk′
ovAh

5 Φεk′
ovBh

6 Φεk′
ov′Bh

Table A.1: Virtual 1p2h-states which couple the initial and the final state in second order. Free
index h (p) runs over all occupied (unoccupied) orbitals.

∑
p

∑
h

1 Φεkp
ovAovBivA Φεkεk′

ovAhivA
2 Φεkp

ovBov′BivA
Φεkεk′
ovBhivA

3 Φεkp
ov′BovAivA

Φεkεk′
ov′BhivA

4 Φpεk′
ovAovBivA

5 Φpεk′
ovBov′BivA

6 Φpεk′
ov′BovAivA

Table A.2: Virtual 2p3h-states which couple the initial and the final state in second order. Free
index h (p) runs over all occupied (unoccupied) orbitals.

Note that one of the holes of the 2p3h-states has to be ivA, so that only four spin-orbitals
change during one transition, and the coupling to the initial 1h-state |ΦivA〉 via the two-particle
Coulomb operator is possible. 1h-states vanish because the contribution of the averaged po-
tential v̂HF and the one-particle contribution of the Coulomb operator V̂ cancel each other in
Hartree-Fock approximation[219, 220]

〈Φn|Ĥint|ΦivA〉 = vHFn ivA +∑
k
Vnk[ivA k] = 0. (A.4)

Using perturbation theory in the Hartree-Fock approximation gives an unperturbed Hamilto-
nian, which equals the Fock operator Ĥ0 = F̂ = T̂ + Ŵ + v̂HF , where T̂ is the kinetic-energy
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operator, Ŵ describes the interaction between nuclei and electrons and v̂HF is the averaged
electron potential. The interaction Hamiltonian is given by Ĥint = V̂ − v̂HF , where V̂ is the
Coulomb operator. By combining the unperturbed and the interaction Hamiltonian, we get
Ĥ = Ĥ0−V̂−v̂HF = T̂+Ŵ+V̂ . It follows for the averaged potential −v̂HF = T̂+Ŵ−Ĥ0. The
corresponding matrix elements now read 〈Φn| − v̂HF |ΦivA〉 = 〈Φn|T̂ + Ŵ |ΦivA〉−〈Φn|Ĥ0|ΦivA〉.
The Hartree-Fock equation [219] can be inserted for the matrix element of unperturbed Hamil-
tonian, which gives

−vHFnivA = TnivA +WnivA − (TnivA +WnivA +∑
k
Vnk[ivAk]) = −∑

k
Vnk[ivAk]. (A.5)

Consequently, vHFnivA = ∑
k Vnk[ivAk] and the matrix element in Eq. (A.4) vanishes. The corre-

sponding transitions do not contribute to the transition amplitude.

The expressions of the transition amplitudes resulting from time-dependent (5.10) and time-
independent many-body (A.3) perturbation theory have to be equal. Therefore, we follow the
many-body perturbation theory treatment of the double Auger and SPDI processes [72, 73,
76]. We remove all 1p2h-states (see Tab. A.1) from the expansion of the initial state and all
2p3h-states (see Tab. A.2) from the expansion of the final state. This procedure is in con-
formity with the derivation of transition amplitudes for double Auger and SPDI. In double
Auger including the corresponding 1p2h- and 2p3h-states results in negligible contributions
to transition amplitudes due to large energy denominators and small Coulomb integrals. In
the description of the SPDI process, the initial state contains no 1p2h configurations due to
Brillouin’s theorem [219], while in the final state expansion, the 2p3h configurations do not
contribute because they do not couple to the ground state via the dipole operator, see App. C.
If we consider the asymptotic dICD amplitude, see Eq. (3.25) in Chap. 5, this procedure for
constructing the SPDI states directly translates into our approach for describing the transition
amplitude of dICD.

We would also like to mention that without excluding some states from the perturbative ex-
pansions, an additional factor 2 appears in the transition amplitude because the perturbative
expansions of the initial and the final state produce the same contribution.

Returning to the derivation of the transition amplitude, we insert the resolution of unperturbed
states into Eq. (A.2), where only the states in Tabs. A.1 and A.2 give non-zero contributions.
Evaluating the Coulomb integrals finally gives the following transition amplitude
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T (2)
εkεk′ovAovBov′B;ivA

=∑
p

[+ Vεk εk′ [ov′B p]
εk + εk′ − εov′B − εp + i0+Vp ivA [ovA ovB]

+ Vεk εk′ [ovA p]
εk + εk′ − εovA − εp + i0+Vp ivA [ovB ov′B]

+ Vεk εk′ [ovB p]
εk + εk′ − εovB − εp + i0+Vp ivA [ov′B ovA]

]

+∑
h

[
− VivA εk [ovA h] Vh εk′ [ovB ov′B]

εh + εk′ − εovB − εov′B

− VivA εk [ovB h] Vh εk′ [ov′B ovA]
εh + εk′ − εov′B − εovA

− VivA εk [ov′B h] Vh εk′ [ovA ovB]
εh + εk′ − εovA − εovB+ VivA εk′ [ovA h] VhB εk [ovB ov′B]
εh + εk − εovB − εov′B+ VivA εk′ [ovB h] VhB εk [ov′B ovA]
εh + εk − εov′B − εovA

+ VivA εk′ [ov′B h] Vh εk [ovA ovB]
εh + εk − εovA − εovB

]

+∑
p

[+ VivA εk′ [ov′B p] Vp εk [ovA ovB]
εp + εk − εovA − εovB

+ VivA εk′ [ovA p] Vp εk [ovB ov′B]
εp + εk − εovB − εov′B+ VivA εk′ [ovB p] Vp εk [ov′B ovA]
εp + εk − εov′B − εovA

− VivA εk [ov′B p] Vp εk′ [ovA ovB]
εp + εk′ − εovA − εovB

− VivA εk [ovA p] Vp εk′ [ovB ov′B]
εp + εk′ − εovB − εov′B

− VivA εk [ovB p] Vp εk′ [ov′B ovA]
εp + εk′ − εov′B − εovA

]
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+∑
h

[+ Vεk εk′ [ovA h]
εk + εk′ − εovA − εh

Vh ivA [ovB ov′B]
+ Vεk εk′ [ovB h]
εk + εk′ − εovB − εh

Vh ivA [ov′B ovA]
+ Vεk εk′ [ov′B h]
εk + εk′ − εov′B − εh

Vh ivA [ovA ovB]
]
. (A.6)

The total expression for the perturbative dICD transition amplitude in Eq. (A.6) is structured
as follows. The first two sums feature the coupling of the initial-hole state to the 1p2h-states
(as in Fig. 5.1), whereby the first sum over particle orbitals in the continuum has a singularity
as explained in Chap. 5. The first sum over particle orbitals and the second over hole orbitals
are the knock-out and the shake-off amplitudes, respectively. The 3rd and 4th sums correspond
to the coupling to the unperturbed 2p3h-states with one hole in ivA (as in Fig. 5.2) and belong
to the ground-state-correlation mechanisms.
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Appendix B

The limes RÏ∞ of the perturbatively
derived expression for ΓdICD
In the following, we want to show the perturbatively derived transition amplitude in the various
processes of A and B for R Ï ∞ in more detail than in Sec. 5.5. The here shown results are
reported in Ref. [64]. Assuming a large distance R between the species makes several assump-
tions valid. All terms with a Coulomb integral corresponding to electron transfer, for example∑

p +Vεk εk′ [ovA p]( 1
εk + εk′ − εovA − εp + i0+

)
Vp ivA [ovB ov′B], can be neglected because they de-

cay exponentially with R. The second Coulomb integral describes electron transfer independent
of the localization site of p. Note that other Coulomb integrals also describe electron transfer, if
the appearing sum runs only over hole or particle states of A, like in

∑
hA −VivA εk [ovA hA]VhA εk′ [ovB ov′B]( 1

εhA + εk′ − εovB − εov′B

)
(compare Eq. (5.13)), while the sum of states on B by itself gives

a non-vanishing contribution. If electron transfer is neglected, the Coulomb-exchange terms
presenting non-local processes vanish, too. In this case, the corresponding anti-symmetrization
brackets in the 4-index integrals can be skipped. We expand the interaction Coulomb operator
V̂AB (see Eq. (5.20)) and take the leading term which behaves as R−3. Concerning B, only
matrix elements presenting local processes are left, which are independent of R. Therefore, all
leading terms are combinations of an interaction between A and B and a local process on B
and scale as R−3. In these approximations, the transition amplitude, Eq. (B.1), takes on the
form:

T (RÏ∞)
εkεk′ovAovBov′B;ivA

=∑
pB

[
−

Vεk εk′ [ov′B pB]
εk + εk′ − εov′B − εpB + i0+VpB ivA ovB ovA

+ Vεk εk′ [ovB pB]
εk + εk′ − εovB − εpB + i0+VpB ivA ov′B ovA

]
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+∑
hB

[
− VivA εk ovA hB

VhB εk′ [ovB ov′B]
εhB + εk′ − εovB − εov′B

+ VivA εk′ ovA hB
VhB εk [ovB ov′B]

εhB + εk − εovB − εov′B

]

+∑
pB

[+ VivA εk′ ovA pB
VpB εk [ovB ov′B]

εpB + εk − εovB − εov′B

− VivA εk ovA pB
VpB εk′ [ovB ov′B]

εpB + εk′ − εovB − εov′B

]

+∑
hB

[+ Vεk εk′ [ovB hB]
εk + εk′ − εovB − εhB

VhB ivA ov′B ovA

−
Vεk εk′ [ov′B hB]

εk + εk′ − εov′B − εhB
VhB ivA ovB ovA

]
. (B.1)

The Coulomb integrals describing the interaction between A and B read

VpBivAhBovA = ∫ ∫ φ∗ivA(r(A))φ∗pB(r(B)) e2
|r(B) − r(A)|

φovA(r(A))φhB(r(B))dr(A)dr(B). (B.2)

As described above, the interaction Coulomb operator can be multipole-expanded for R Ï∞
(see Eq. (3.5)), where the expansion is broken off after the dipol term, which is the first giving
a contribution. Choosing eR = ez and inserting the expansion V̂AB ≈ e2/R3[ξr−3(ξeR)(reR)]
into Eq. (B.2), gives

VpBivAhBovA ≈
1
R3
[
〈φivA |d̂x

(A)|φovA〉 〈φpB |d̂x (B)|φhB〉+ 〈φivA |d̂y (A)|φovA〉 〈φpB |d̂y (B)|φhB〉
− 2 〈φivA |d̂z(A)|φovA〉 〈φpB |d̂z(B)|φhB〉

]
,

(B.3)

where d̂x, d̂y and d̂z are the components of the one-particle dipole operator. The Coulomb
integrals of the form VpBivAhBovA in Eq. (B.1) are replaced by the approximation of Eq. (B.3).
For simplicity, we only show the transformations of the perturbative amplitude by the first
term of Eq. (B.1), P1. The procedure is analog for the other terms and thus, we can later
generalize our findings to get the total transition amplitude. After inserting the expansion of
the interaction Coulomb operator, P1 becomes

P1 = 1
R3T1 = 1

R3
[
〈φivA |d̂x

(A)|φovA〉T (B)
x + 〈φivA |d̂y (A)|φovA〉T (B)

y − 2 〈φivA |d̂z(A)|φovA〉T (B)
z

]
.

(B.4)
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APPENDIX B. THE LIMES RÏ∞ OF THE PERTURBATIVELY DERIVED
EXPRESSION FOR ΓDICD

T (B)
x , T (B)

y and T (B)
z can be identified as the components of the single-photon double-ionization

transition amplitude (see Refs. [72, 73]) describing the knock-out mechanism

T (B)
x =∑

pB

〈φpB |d̂x
(B)|φovB〉 Vεk εk′ [ov′B pB]

εk + εk′ − εpB − εov′B + i0+ , (B.5a)

T (B)
y =∑

pB

〈φpB |d̂y
(B)|φovB〉 Vεk εk′ [ov′B pB]

εk + εk′ − εpB − εov′B + i0+ , (B.5b)

T (B)
z =∑

pB

〈φpB |d̂z
(B)|φovB〉 Vεk εk′ [ov′B pB]

εk + εk′ − εpB − εov′B + i0+ . (B.5c)

For an atomic system, the absolute value squared of the transition amplitude T1 in Eq. (B.4) is
averaged and summed over the spin and spatial degeneracies of the initial and the finals state,
respectively.

|T1|2 = 12 livA + 1 12 sivA + 1 ∑
mlivA

mlovA
mlovBmlov′B

∑
ηλδνµσ

|T1|2, (B.6)

where mixed terms vanish and quadratic terms give the same contribution, which leads to an
additional factor 6 due to six quadratic terms of the transition amplitude. Therefore, we can
rewrite Eq. (B.6) in terms of the z-component as

|T1|2 = 6 | 〈φivA |d̂z(A)|φovA〉T (B)
z |2. (B.7)

Using the fact that the three components of the dipole operators give the same contribution,
allows us to rewrite | 〈φivA |d̂z

(A)|φovA〉 |2 = 1/3| 〈φivA |d̂A|φovA〉 |2 and |T (B)
z |2 = 1/3|T B|2 in terms

of the full dipole operators. Finally, the first term P1 (compare Eq. (B.4)) of Eq. (B.1) reads,
in its reduced form,

P1 = 23R6 | 〈φivA |d̂A|φovA〉T B|2. (B.8)

Returning to the complete transition amplitude and generalizing it, gives

|T (RÏ∞)
εkεk′ovAovBov′B;ivA |2 = 23R6 | 〈φivA |d̂A|φovA〉 (T (KO) + T (SO) + T (GSCp) + T (GSCh))|2. (B.9)

As shown in App. C, by using many-body perturbation theory in the present nomenclature,
T (KO), T (SO), T (GSCp) and T (GSCh) of Eq. (B.9) are transition amplitudes (see Refs. [72,
73]) of single-photon double ionization. The four transition amplitudes belong to the different
mechanisms: knock-out (KO), shake-off (SO) and ground-state correlations (GSCp/GSCh).
The transition amplitudes read
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T (KO) =∑
pB

[
〈φpB |d̂B|φovB〉

Vεk εk′ [ov′B pB]
εk + εk′ − εpB − εov′B + i0+

− 〈φpB |d̂B|φov′B〉
Vεk εk′ [ovB pB]

εk + εk′ − εpB − εovB + i0+
]
, (B.10)

T (SO) =∑
hB

[
〈φεk |d̂B|φhB〉

VhB εk′ [ovB ov′B]
εk′ + εhB − εovB − εov′B

− 〈φεk′ |d̂B|φhB〉
VhB εk [ovB ov′B]

εk + εhB − εovB − εov′B

]
, (B.11)

T (GSCp) =∑
pB

[
〈φεk′ |d̂B|φpB〉

VpB εk [ovB ov′B]
εk + εpB − εovB − εov′B

− 〈φεk |d̂B|φpB〉
VpB εk′ [ovB ov′B]

εk′ + εpB − εovB − εov′B

]
, (B.12)

T (GSCh) =∑
hB

[
〈φhB |d̂B|φov′B〉

Vεk εk′ [ovB hB]
εk + εk′ − εovB − εhB

− 〈φhB |d̂B|φov′B〉
Vεk εk′ [ov′B hB]

εk + εk′ − εovB − εhB

]
. (B.13)

The transition amplitude of SPDI consists of these four processes. The corresponding single-
differential partial SPDI cross section is given by

dσ++
B (ω)
dεk′

= 4π23 ω
c
∑
ovBov′B

∣∣(T(KO) + T(SO) + T(GSCp) + T(GSCh))∣∣2, (B.14)

and describes the single-photon double ionization of species B for photon energy ~ω.
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Appendix C

Derivation of the SPDI transition amplitude
by Many-Body Perturbation Theory

The derivation of the dICD decay width is explained in the main text Chap. 5 and the above
appendices Apps. A and B in much detail. Now, we want to derive the perturbative expression
of the SPDI transition amplitude, which is already well-known [72, 73], in our nomenclature
for the species B. The below presented derivation is also found in Ref. [64]. As usual, the
unperturbed initial and final state are Hartree-Fock ground states of B with annihilation and
creation operators acting on them

|Φ0〉 = |ΦB0 〉 , (C.1)

|Φεkεk′
ovBov′B

〉 = c†εkc
†
εk′covBcov′B |ΦB0 〉 , (C.2)

where B is initially in its ground state and finally doubly ionized, the two emitted electrons
being indicated by εk and εk′ and the resulting holes by ovB and ov ′B. Again, the Hartree-Fock
approximation is applied in the context of perturbation theory. The initial and final state in
zeroth order give no contribution. To obtain the transition amplitude T (1|1)

εkεk′ovBov′B
of SPDI, the

states have to be expanded perturbatively through first order,

T (1|1)
εkεk′ovBov′B

= 〈Φεkεk′
ovBov′B

|D̂B
Q̂0

E(0)0 − ĤB0 Ĥ
B
int|ΦB0 〉

+ 〈Φεkεk′
ovBov′B

|ĤB
int

Q̂εkεk′ovBov′B

E(0)
εkεk′ovBov′B

− ĤB0 D̂B|ΦB0 〉 . (C.3)

Note that (1|1) is used to denote the perturbative order of the transition amplitude because the
dipole operator as well as the interaction Hamiltonian involved in the expansion of the states are
applied. Here, the first term corresponds to the initial-state expansion, and the second term to
the final-state expansion. Q̂0 and Q̂εkεk′

ovBov′B
are projector operators of the form Q̂ = 1−|Φ0〉 〈Φ0|

and Q̂ = 1 − |Φεkεk′
ovBov′B

〉 〈Φεkεk′
ovBov′B

|, respectively. D̂B and Ĥint are the dipole operator and the
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interaction Hamiltonian of B, respectively. The resolution of the unperturbed states in the
form 1 = ∑

N |ΦN〉 〈ΦN |, where N denotes the different configurations, is inserted to achieve
the explicit expression of the SPDI transition amplitude. Formally, 1p1h- and 2p2h-states can
be inserted. A closer look at the initial-state expansion makes clear that only 2p2h-states give
a non-vanishing contribution. Matrix elements like 〈Φp1

h1|Ĥint|Φ0〉 vanish, because in Hartree-
Fock: 〈Φp1

h1|Ĥint|Φ0〉 = vHFp1 h1 +∑k Vp1k[h1 k] = 0, as known from Brillouin’s theorem [219]. In
the final state expansion only 1p1h-states contribute, while for 2p2h-state terms the transition
matrix elements vanish, 〈Φεkεk′

ovBov′B
|D̂B|Φ0〉 = 0, as D̂B is a one-particle-operator. Note that the

above explanation is only valid for atoms. For molecules, 〈Φ0|D̂B|Φ0〉 is not dipole-forbidden
and also contributes. This additional contribution is compensated by 〈Φεkεk′

ovBov′B
|D̂B|Φεkεk′

ovBov′B
〉 =

〈Φ0|D̂B|Φ0〉−DovBovB −Dov′Bov′B +Dεkεk +Dεk′εk′ leading to the same result for the transition
amplitude as for atoms. After inserting the resolution of unperturbed states and evaluating the
respective matrix elements, one gets the following expression for the SPDI transition amplitude:

T (1|1)
εkεk′ovBov′B

=∑
pB

[+ Vεk εk′ [ov′B pB]
εk + εk′ − εov′B − εpB + i0+DpB ovB

−
Vεk εk′ [ovB pB]

εk + εk′ − εovB − εpB + i0+DpB ov′B

]

+∑
hB

[+Dεk hB
VhB εk′ [ovB ov′B]

εhB + εk′ − εovB − εov′B

−Dεk′ hB
VhB εk [ovB ov′B]

εhB + εk − εovB − εov′B

]

+∑
pB

[
−Dεk′ pB

VpB εk [ovB ov′B]
εpB + εk − εovB − εov′B

+Dεk pB
VpB εk′ [ovB ov′B]

εpB + εk′ − εovB − εov′B

]

+∑
hB

[
−

Vεk εk′ [ovB hB]
εk + εk′ − εovB − εhB

DhB ov′B

+ Vεk εk′ [ov′B hB]
εk + εk′ − εov′B − εhB

DhB ovB

]
. (C.4)

The first two sums arise from the final-state expansions and can be identified as knock-out and
shake-off mechanisms. The knock-out terms can have singularities, because εpB = εk + εk′ −
εovB/εov′B , and therefore, +i0+ is inserted into the energy denominator. The last two sums
come from the initial-state expansion and describe the ground-state correlations. Before the
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APPENDIX C. DERIVATION OF THE SPDI TRANSITION AMPLITUDE BY
MANY-BODY PERTURBATION THEORY

single-differential partial cross section dσ++
B (ω)
dεk′

is derived, one has to average over the initial-
state degeneracies, which is omitted in the case of the non-degenerate ground state, and sum
over the final-state degeneracies, see App. B.
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Appendix D

Morse fit

The results presented here are reported in Ref. [65].

As explained in Sec. 10.1, a Morse potential is fitted to the ab initio PEC of the decaying
state, and its parameters are then adjusted such that the computed PE spectrum reproduces
best the experimentally measured one. An important characteristic of this state is its decay
width Γd(R), which was computed by the Fano-ADC-Stieltjes method but was also adjusted
by comparing it to the experimental PE spectrum. The best agreement we find for a Morse
potential with parameters De = 0.16 eV, Re = 3.01 Å, and α = 1.09 au−1, and a decay width
scaled by 0.8. Due to the huge amount of parameter combinations and the sensitivity of the PE
spectrum to changes in the decaying-state PEC, there are several different sets of parameters
that provide a good agreement with the experiment. Here, we would like to discuss, why we
chose this particular set of parameters for our working Morse potential, and how the different
parameters influence the PE and KER spectra.

Let us start with why it is necessary to scale the decay width. The Fano-ADC-Stieltjes method
usually overestimates the decay width [46, 210]. Due to the resulting large broadening of the
vibrational energy levels, they greatly overlap, which leads to stronger interference effects. In
Fig. D.1 we show a comparison between a PE spectrum computed via Eq. (8.36) for our work-
ing Morse potential, but with an unscaled decay width. To better expound the effect of the
larger decay width on the PE spectrum, we do not convolve with a Gaussian to account for
the experimental resolution. The spectrum is computed under the assumption that only the
vibrational ground state is initially populated.
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Figure D.1: Computed PE spectrum with interference effects and unscaled decay width (line)
compared to experimentally measured PE spectrum taken from Ref. [100] (dots) for a photon
energy of 48.68 eV. The PE spectrum is calculated by Eq. (8.36) for a NeKr dimer of the most
frequently occurring isotope-mass combination in nature of 16.15AMU (reduced mass) and
scaled by its highest intensity. The population is initially in the ground state.

One can observe that besides the main peak, which agrees well with the experiment, the com-
puted PE spectrum exhibits an additional smaller peak at lower energies, which is not observed
experimentally. We note that due to the PCI effect, the low-energy part of the experimental
PE spectrum exhibits a smooth tail because the faster ICD electrons overtake the slower pho-
toelectrons, which are decelerated due to the missing shielding of the ICD electrons. As in our
computations, we do not take the PCI effect into account, we use for the optimization of the
decaying-state PEC Vd only the higher-energy part of the experimental spectrum. Importantly,
the small peak at 0.2 eV appears solely due to the interference effects, which are suppressed if
the decay width is smaller. The peak disappears if we take only 80 % of the originally computed
decay width.

Now we return to the parameters, which define the Morse potential. The results of the grid
search highly depend on the initial guess and the given ranges for the parameters. For the
PEC, we finally use in this work, we define parameter ranges close to the Morse fit of the ab
initio PEC. Allowing more variation of the parameters or using a slightly different starting
parameter combination, lead to different results. However, as explained above, several parame-
ter combinations give good agreement between the theoretical and experimental PE spectrum.
In Fig. D.2, we present an interfering PE spectrum computed with a slightly shifted Morse
potential with a narrower potential well, to which we refer in the following as alternative Morse
potential (De = 0.16 eV, Re = 3.18Å, α = 1.51 au−1 and sc = 0.8).
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APPENDIX D. MORSE FIT
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Figure D.2: Computed PE spectrum with interference effects using the alternative Morse poten-
tial (De = 0.16 eV, Re = 3.18Å, α = 1.51 au−1, and sc = 0.8) compared to the experimentally
measured PE spectrum taken from Ref. [100] (dots) for a photon energy of 48.68 eV. The PE
spectrum is calculated by Eq. (8.36) for a NeKr dimer of the most frequently occurring isotope-
mass combination in nature of 16.15AMU (reduced mass) and scaled by its highest intensity.
The population is initially in the ground state. The spectrum is not convolved by a Gaussian
to preserve the good agreement between theoretical and experimental data.

Again, only the vibrational ground state of the neutral dimer is assumed to be initially pop-
ulated, and we do not convolve the resulting spectrum with a Gaussian. The spectrum shows
more structure, which, however, cannot be resolved experimentally. The agreement between
the computed and measured spectrum is even better for the alternative Morse potential than
for the working Morse potential. The PE spectrum, however, reflects only the initial step of
the dynamics triggered by the Ne2s ionization. The KER spectrum of the Coulomb explosion
following the ICD process is also very sensitive to the decaying-state potential, as it actually
reflects the nuclear dynamics in the Ne+(2s−1)Kr state (see, Eq. (8.48). We, therefore, should
also take the KER spectrum into account when determining the optimum parameters of the
decaying-state Morse potential.

Fig. D.3 shows the KER spectrum with the alternative Morse potential compared to the exper-
imental data taken from Ref. [100]. The vibrational ground state is initially populated. The
computed spectrum shows a structure at about 4.5 eV, which is not observed experimentally.
We can, therefore, conclude that the PE spectrum does not contain sufficient information to
fully reconstruct the decaying state PEC. A comparison between the KER spectrum computed
with the alternative Morse potential and the working Morse potential, see App. F, confirms
that other experimental observables such as the KER spectrum could be very useful in this
case.
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Figure D.3: Computed KER spectrum corresponding to the alternative Morse potential
(De = 0.16 eV, Re = 3.18Å, α = 1.51 au−1 and sc = 0.8) compared to experimentally measured
KER spectrum taken from Ref. [100]. The KER spectrum is calculated by Eq. (8.63) for a
NeKr dimer of the most frequently occurring isotope-mass combination in nature of 16.15AMU
(reduced mass) and scaled by its highest intensity. The population is initially in the ground
state.
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Figure D.4: PECs of the Ne+(2s−1)Kr state for the different Morse fits. The fit to the original
ab initio potential (red), the working Morse potential (dark blue), and the alternative Morse
potential (light blue). The Morse potential is given by Eq. (10.2) and the corresponding pa-
rameters are listed in the legend.
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APPENDIX D. MORSE FIT

If one compares this KER spectrum to the ones in App. F, it will seem that the spectrum is cut
off at higher KER energies. A close look at the different Morse PECs immediately provides an
explanation for this behavior. In Fig. D.4, the red curve is the ab initio PEC of the decaying
state fitted by a Morse potential. We refer to it as initial Morse fit. The dark blue PEC
corresponds to the working Morse potential. The light blue PEC represents the alternative
Morse potential. The latter PEC belongs to the calculations of the PE and KER spectra in
Fig. D.2 and Fig. D.3. Its potential-well width is only about half of that of the working Morse
potential. Consequently, the wave packet cannot propagate to as small internuclear distances
as it can in the case of the initial Morse fit and the working Morse potential. Therefore, the
decay takes place at higher internuclear distances, which correspond to smaller KER energies.
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Appendix E

Impact of isotope masses

In this appendix, we analyze the impact of the nuclear mass on the PE spectrum. The re-
sults presented here are reported in Ref. [65]. If only the vibrational ground state is initially
populated, the effect of the different isotope masses on the PE spectrum is negligibly small.
More interesting are the PE spectra obtained by ionizing already vibrationally excited neutral
dimers (vibrationally selected PE spectrum). The results for the PE spectra of a dimer being
initially in its first excited vibrational state are shown in Fig. E.1, where different isotope-mass
combinations are considered.
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Figure E.1: Computed vibrationally selected (ν = 1) PE spectra of the NeKr dimer including
interference effects for different isotope-mass combinations. The lowest (blue), the highest
(green), and the most frequently occurring (orange) isotope-mass combinations are shown.
The corresponding reduced masses are given in the legend. The PE spectra are computed by
Eq. (8.36) and scaled by their highest intensities. A photon energy of 48.68 eV is assumed.
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The spectra corresponding to the lowest possible (reduced mass of 15.91 AMU), the highest pos-
sible (reduced mass 17.51 AMU), and the most frequently occurring (reduced mass 16.15 AMU)
isotope-mass combinations are displayed. All spectra include interference effects and are scaled
by their highest intensity value. The spectra are computed by Eq. (8.36). We see that the
spectra are markedly different. One can identify three peaks, whose intensities vary depending
on the isotopic combination of Ne and Kr. While the spectra for 16.15AMU and 17.51AMU
are similar, the spectrum for the lowest isotope-mass combination of 15.91AMU is less intense
at photoelectron energies of 0.23 eV and 0.29 eV. These discrepancies demonstrate that the vi-
brationally selected PE spectrum can be sensitive to the isotope-mass composition of the dimer.

This high sensitivity shows that for vibrationally selected PE spectra, the usual way to take
the isotope effect into account, namely to average the reduced mass (being 16.26 AMU in the
present case) might not be a good approximation. Instead, one needs to compute the spectrum
(Eq. (8.36)) for every isotope combination and average afterward, weighting with the natural
abundance of the corresponding isotopes. In Fig. E.2, we compare the vibrationally selected
(ν = 1) PE spectra obtained by averaging the reduced mass (orange) and by averaging the
weighted spectra of every mass combination (blue). Both spectra take interference effects into
account and are scaled by their highest intensity value, respectively.
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Figure E.2: Computed vibrationally selected (ν = 1) PE spectra of the NeKr dimer includ-
ing interference effects, obtained by averaging the reduced mass (orange) and by averaging
the weighted spectra of every mass combination (blue). The average reduced mass used is
16.26 AMU. The PE spectra are computed by Eq. (8.36) and scaled by their highest intensi-
ties. A Photon energy of 48.68 eV is assumed.
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APPENDIX E. IMPACT OF ISOTOPE MASSES

The peaks at 0.21 eV and 0.29 eV of the spectrum corresponding to the averaged reduced mass
and the spectrum considering all isotope-mass combinations coincide, while the peak at 0.23 eV
of the spectrum approximating the mass is dominant. We see that the two averaging procedures
can lead to substantial differences in peak intensities and thus for the vibrationally selected ICD
processes, we cannot use the averaged reduced mass to calculate the spectra. We, therefore,
used in the present work the most frequently occurring isotope combination and its reduced
mass of 16.15 AMU.
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Appendix F

Kinetic-Energy-Release Spectrum

The results presented here are reported in Ref. [65].

After ICD has taken place, the NeKr dimer undergoes a Coulomb explosion, where the Ne
and Kr ions fly apart. The KER spectrum gives the distribution of kinetic energies of the
two cations. Thereby, the KER is the difference between the final-state potential at nuclear
distances of the decay and at infinity, EKER = Enf −V∞f . The KER spectrum, however, reflects
the nuclear dynamics in the decaying state by projecting the wave packet propagating in the
decaying state on the final state, see, Eq. (8.63). No interference effects in the final state appear
in the KER spectrum.

In the following, we similarly proceed for the KER as for the ICD-electron spectrum, see
Sec. 10.1. We report the KER spectra following a vibrationally selected ICD process, where
the NeKr dimer is in one of the five vibrational levels of its electronic ground state at the
moment of photoionization. The resulting KER spectra are shown in, see Fig. F.1. The KER
energies lie between 1.2 eV and 5.2 eV, depending on the vibrationally selected channel. As for
the ICD-electron spectrum, the KER spectrum associated with the vibrational ground state
gives the highest contribution due to the most localized wave function and is therefore used for
the scaling. Due to the ultrafast ICD process, the KER spectra reflect the initial vibrational
wave functions and reproduce their nodal structures.

For completeness, we also report here the dependence of the KER spectra on the tempera-
ture of the NeKr dimer. As explained in Sec. 10.1, the population is statistically distributed
within the vibrational levels depending on the temperature. The corresponding KER spectra
at different temperatures are displayed in Fig. F.2. As for the ICD-electron spectrum, a small
impact of the temperature can be observed already at 10 K. The effect increases with the in-
crease in temperature and becomes clearly visible at 20 K, where the processes initiated from
the excited vibrational states start to contribute more substantially. New peaks at 1.75 eV and
3 eV appear at higher temperatures.
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Figure F.1: Computed vibrationally selected KER spectra of the NeKr dimer. The spectra are
calculated by Eq. (8.63) assuming that before the photoionization the system is in one of the
five vibrational levels of the electronic ground state, ν = 0 to 4. Because the spectrum, which
corresponds to the initially populated vibrational ground state, is the most localized one and
has consequently the highest intensity contribution, its maximum value is used for the scaling
of the other spectra. The most frequently occurring isotope-mass combination of 16.15AMU
(reduced mass) is used for the computation.
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Figure F.2: Computed KER spectra of the NeKr dimer at different temperatures. The spectra
are calculated by using Eq. (8.63) in combination with the Boltzman distribution explained in
Sec. 10.2. The spectrum at the highest temperature has the highest maximum and is therefore
used for the scaling of the spectra. The most frequently occurring isotope-mass combination of
16.15AMU (reduced mass) is used for the computation.

130



List of Publications

Publications considered in this thesis

[a] J. Fedyk, K. Gokhberg, and L. S. Cederbaum, Phys. Rev. A 103, 022816 (2021)
[b] J. Fedyk, K. Gokhberg, T. Miteva, L. S. Cederbaum, and A. I. Kuleff, Phys. Rev. A 107,
023109 (2023)
[c] M. Han, J. Fedyk, J.-B. Ji, V. Despré, A. I. Kuleff, H. J. Wörner, arXiv:2303.04844 (2023)

Further Publications

[d] L. S. Cederbaum, J. Fedyk, arXiv:2212.07309 (2022)
[e] J. Fedyk, A. B. Voitkiv, and C. Müller, Phys. Rev. A 98, 033418 (2018)

131



132



Bibliography

[1] L. S. Cederbaum, J. Zobeley, F. Tarantelli, Phys. Rev. Lett. 1997, 79, 4778–4781.

[2] S. Marburger, O. Kugeler, U. Hergenhahn, T. Möller, Phys. Rev. Lett. 2003, 90,
203401.

[3] T. Jahnke, A. Czasch, M. S. Schöffler, S. Schössler, A. Knapp, M. Käsz, J. Titze,
C. Wimmer, K. Kreidi, R. E. Grisenti, A. Staudte, O. Jagutzki, U. Hergenhahn, H.
Schmidt-Böcking, R. Dörner, Phys. Rev. Lett. 2004, 93, 163401.

[4] G. Öhrwall, M. Tchaplyguine, M. Lundwall, R. Feifel, H. Bergersen, T. Rander, A.
Lindblad, J. Schulz, S. Peredkov, S. Barth, S. Marburger, U. Hergenhahn, S. Svensson,
O. Björneholm, Phys. Rev. Lett. 2004, 93, 173401.

[5] V. Averbukh, P. Demekhin, P. Kolorenč, S. Scheit, S. Stoychev, A. Kuleff, Y.-C.
Chiang, K. Gokhberg, S. Kopelke, N. Sisourat, L. Cederbaum, Journal of Electron
Spectroscopy and Related Phenomena 2011, 183, Electron Spectroscopy Kai Siegbahn
Memorial Volume, 36–47.

[6] U. Hergenhahn, Journal of Electron Spectroscopy and Related Phenomena 2011, 184,
78–90.

[7] T. Jahnke, Journal of Physics B: Atomic Molecular and Optical Physics 2015, 48,
082001.

[8] T. Jahnke, U. Hergenhahn, B. Winter, R. Dörner, U. Frühling, P. V. Demekhin, K.
Gokhberg, L. S. Cederbaum, A. Ehresmann, A. Knie, A. Dreuw, Chemical Reviews
2020, 120, 11295–11369.

[9] N. Sisourat, N. V. Kryzhevoi, P. Kolorenč, S. Scheit, T. Jahnke, L. S. Cederbaum,
Nature Physics 2010, 6, 508–511.

[10] T. Havermeier, T. Jahnke, K. Kreidi, R. Wallauer, S. Voss, M. Schöffler, S. Schössler,
L. Foucar, N. Neumann, J. Titze, H. Sann, M. Kühnel, J. Voigtsberger, J. H. Morilla,
W. Schöllkopf, H. Schmidt-Böcking, R. E. Grisenti, R. Dörner, Phys. Rev. Lett. 2010,
104, 133401.

[11] R. Santra, J. Zobeley, L. S. Cederbaum, N. Moiseyev, Phys. Rev. Lett. 2000, 85, 4490–
4493.

[12] R. Santra, J. Zobeley, L. S. Cederbaum, Phys. Rev. B 2001, 64, 245104.

133



BIBLIOGRAPHY

[13] S. Scheit, V. Averbukh, H.-D. Meyer, N. Moiseyev, R. Santra, T. Sommerfeld, J.
Zobeley, L. S. Cederbaum, The Journal of Chemical Physics 2004, 121, 8393–8398.

[14] A. M. Dias, Physica B: Condensed Matter 2008, 403, 3490–3494.

[15] J. Zobeley, R. Santra, L. S. Cederbaum, J. Chem. Phys. 2001, 115, 5076–5088.

[16] A. Hans, P. Schmidt, C. Ozga, C. Richter, H. Otto, X. Holzapfel, G. Hartmann, A.
Ehresmann, U. Hergenhahn, A. Knie, The Journal of Physical Chemistry Letters 2019,
10, 1078–1082.

[17] T. Ouchi, K. Sakai, H. Fukuzawa, X.-J. Liu, I. Higuchi, Y. Tamenori, K. Nagaya, H.
Iwayama, M. Yao, D. Zhang, D. Ding, A. I. Kuleff, S. D. Stoychev, P. V. Demekhin,
N. Saito, K. Ueda, Phys. Rev. Lett. 2011, 107, 053401.

[18] E. Fasshauer, M. Förstel, S. Pallmann, M. Pernpointner, U. Hergenhahn, New Journal
of Physics 2014, 16, 103026.

[19] P. O’Keeffe, A. Ciavardini, E. Ripani, P. Bolognesi, M. Coreno, L. Avaldi, M. Devetta,
M. Di Fraia, C. Callegari, K. C. Prince, R. Richter, Phys. Rev. A 2014, 90, 042508.

[20] M. Pernpointner, N. V. Kryzhevoi, S. Urbaczek, The Journal of Chemical Physics
2008, 129, 024304.

[21] F. Trinter, J. B. Williams, M. Weller, M. Waitz, M. Pitzer, J. Voigtsberger, C. Schober,
G. Kastirke, C. Müller, C. Goihl, P. Burzynski, F. Wiegandt, R. Wallauer, A. Kalinin,
L. P. H. Schmidt, M. S. Schöffler, Y.-C. Chiang, K. Gokhberg, T. Jahnke, R. Dörner,
Phys. Rev. Lett. 2013, 111, 233004.

[22] A. Mhamdi, F. Trinter, C. Rauch, M. Weller, J. Rist, M. Waitz, J. Siebert, D. Metz,
C. Janke, G. Kastirke, F. Wiegandt, T. Bauer, M. Tia, B. Cunha de Miranda, M.
Pitzer, H. Sann, G. Schiwietz, M. Schöffler, M. Simon, K. Gokhberg, R. Dörner, T.
Jahnke, P. V. Demekhin, Phys. Rev. A 2018, 97, 053407.

[23] H. Sann, T. Havermeier, H.-K. Kim, F. Sturm, F. Trinter, M. Waitz, S. Zeller, B.
Ulrich, M. Meckel, S. Voss, T. Bauer, D. Schneider, H. Schmidt-Böcking, R. Wallauer,
M. Schöffler, J. Williams, R. Dörner, T. Jahnke, Chemical Physics 2017, 482, 221–225.

[24] P. Zhang, C. Perry, T. T. Luu, D. Matselyukh, H. J. Wörner, Phys. Rev. Lett. 2022,
128, 133001.

[25] I. B. Müller, L. S. Cederbaum, The Journal of Chemical Physics 2006, 125, 204305.

[26] M. Mucke, M. Braune, S. Barth, M. Förstel, T. Lischke, V. Ulrich, T. Arion, U. Becker,
A. Bradshaw, U. Hergenhahn, Nat. Phys. 2010, 6, 143–146.

[27] T. Jahnke, H. Sann, T. Havermeier, K. Kreidi, C. Stuck, M. Meckel, M. Schöffler, N.
Neumann, R. Wallauer, S. Voss, A. Czasch, O. Jagutzki, A. Malakzadeh, F. Afaneh,
T. Weber, H. Schmidt-Böcking, R. Dörner, Nat. Phys. 2010, 6, 139–142.

[28] P. H. P. Harbach, M. Schneider, S. Faraji, A. Dreuw, The Journal of Physical Chem-
istry Letters 2013, 4, 943–949.

134



BIBLIOGRAPHY

[29] E. Alizadeh, T. M. Orlando, L. Sanche, Annual Review of Physical Chemistry 2015,
66, 379–398.

[30] X. Ren, E. Wang, A. D. Skitnevskaya, A. B. Trofimov, K. Gokhberg, A. Dorn, Nature
Physics 2018, 14, 1062–1066.

[31] I. Cherkes, N. Moiseyev, Phys. Rev. B 2011, 83, 113303.

[32] A. Bande, K. Gokhberg, L. S. Cederbaum, The Journal of Chemical Physics 2011,
135, 144112.

[33] H. Agueny, M. Pesche, B. Lutet-Toti, T. Miteva, A. Molle, J. Caillat, N. Sisourat,
Phys. Rev. B 2020, 101, 195431.

[34] A. Bande, Molecular Physics 2019, 117, 2014–2028.

[35] L. S. Cederbaum, A. I. Kuleff, Nature Communications 2021, 12, 4083.

[36] B. Najjari, A. B. Voitkiv, C. Müller, Phys. Rev. Lett. 2010, 105, 153002.

[37] E. Fasshauer, L. B. Madsen, Phys. Rev. A 2020, 101, 043414.

[38] C. Hoffmeister, C. Müller, A. B. Voitkiv, Phys. Rev. A 2022, 105, 042803.

[39] L. S. Cederbaum, Phys. Rev. Lett. 2018, 121, 223001.

[40] R. Santra, L. S. Cederbaum, Phys. Rev. Lett. 2003, 90, 153401.

[41] K. Kreidi, T. Jahnke, T. Weber, T. Havermeier, X. Liu, Y. Morisita, S. Schössler,
L. P. H. Schmidt, M. Schöffler, M. Odenweller, N. Neumann, L. Foucar, J. Titze, B.
Ulrich, F. Sturm, C. Stuck, R. Wallauer, S. Voss, I. Lauter, H. K. Kim, M. Rudloff,
H. Fukuzawa, G. Prümper, N. Saito, K. Ueda, A. Czasch, O. Jagutzki, H. Schmidt-
Böcking, S. Stoychev, P. V. Demekhin, R. Dörner, Phys. Rev. A 2008, 78, 043422.

[42] P. O’Keeffe, E. Ripani, P. Bolognesi, M. Coreno, M. Devetta, C. Callegari, M. Di
Fraia, K. C. Prince, R. Richter, M. Alagia, A. Kivimäki, L. Avaldi, The Journal of
Physical Chemistry Letters 2013, 4, 1797–1801.

[43] K. Gokhberg, P. Kolorenč, A. I. Kuleff, L. S. Cederbaum, Nature 2013, 505, 661.

[44] F. Trinter, M. S. Schöffler, H.-K. Kim, F. P. Sturm, K. Cole, N. Neumann, A. Vreden-
borg, J. Williams, I. Bocharova, R. Guillemin, M. Simon, A. Belkacem, A. L. Landers,
T. Weber, H. Schmidt-Böcking, R. Dörner, T. Jahnke, Nature 2013, 505, 664.

[45] V. Stumpf, K. Gokhberg, L. S. Cederbaum, Nat. Chem. 2016, 8, 237–241.

[46] T. Ouchi, K. Sakai, H. Fukuzawa, I. Higuchi, P. V. Demekhin, Y.-C. Chiang, S. D.
Stoychev, A. I. Kuleff, T. Mazza, M. Schöffler, K. Nagaya, M. Yao, Y. Tamenori, N.
Saito, K. Ueda, Phys. Rev. A 2011, 83, 053415.

[47] I. B. Müller, L. S. Cederbaum, The Journal of Chemical Physics 2005, 122, 094305.

[48] I. Unger, R. Seidel, S. Thürmer, M. N. Pohl, E. F. Aziz, L. S. Cederbaum, E. Muchová,
P. Slavíček, B. Winter, N. V. Kryzhevoi, Nature Chemistry 2017, 9, 708–714.

135



BIBLIOGRAPHY

[49] T. Ouchi, H. Fukuzawa, K. Sakai, T. Mazza, M. Schöffler, K. Nagaya, Y. Tamenori,
N. Saito, K. Ueda, Chemical Physics 2017, 482, 244–248.

[50] M. N. Pohl, C. Richter, E. Lugovoy, R. Seidel, P. Slavíček, E. F. Aziz, B. Abel, B.
Winter, U. Hergenhahn, The Journal of Physical Chemistry B 2017, 121, 7709–7714.

[51] K. Gokhberg, L. S. Cederbaum, Journal of Physics B: Atomic Molecular and Optical
Physics 2009, 42, 231001.

[52] K. Gokhberg, L. S. Cederbaum, Phys. Rev. A 2010, 82, 052707.

[53] A. Eckey, A. Jacob, A. B. Voitkiv, C. Müller, Phys. Rev. A 2018, 98, 012710.

[54] F. M. Pont, A. Molle, E. R. Berikaa, S. Bubeck, A. Bande, Journal of Physics: Con-
densed Matter 2019, 32, 065302.

[55] A. Molle, E. R. Berikaa, F. M. Pont, A. Bande, The Journal of Chemical Physics
2019, 150, 224105.

[56] K. Gokhberg, L. S. Cederbaum, Journal of Physics B: Atomic Molecular and Optical
Physics 2009, 42, 231001.

[57] N. Sisourat, T. Miteva, J. D. Gorfinkiel, K. Gokhberg, L. S. Cederbaum, Phys. Rev.
A 2018, 98, 020701.

[58] H.-K. Kim, H. Gassert, M. S. Schöffler, J. N. Titze, M. Waitz, J. Voigtsberger, F.
Trinter, J. Becht, A. Kalinin, N. Neumann, C. Zhou, L. P. H. Schmidt, O. Jagutzki,
A. Czasch, H. Merabet, H. Schmidt-Böcking, T. Jahnke, A. Cassimi, R. Dörner, Phys.
Rev. A 2013, 88, 042707.

[59] A. Jacob, C. Müller, A. B. Voitkiv, Phys. Rev. A 2021, 103, 042804.

[60] J. Titze, M. S. Schöffler, H.-K. Kim, F. Trinter, M. Waitz, J. Voigtsberger, N. Neu-
mann, B. Ulrich, K. Kreidi, R. Wallauer, M. Odenweller, T. Havermeier, S. Schössler,
M. Meckel, L. Foucar, T. Jahnke, A. Czasch, L. P. H. Schmidt, O. Jagutzki, R. E.
Grisenti, H. Schmidt-Böcking, H. J. Lüdde, R. Dörner, Phys. Rev. Lett. 2011, 106,
033201.

[61] S. Yan, P. Zhang, X. Ma, S. Xu, B. Li, X. L. Zhu, W. T. Feng, S. F. Zhang, D. M.
Zhao, R. T. Zhang, D. L. Guo, H. P. Liu, Phys. Rev. A 2013, 88, 042712.

[62] S. Yan, P. Zhang, X. Ma, S. Xu, S. X. Tian, B. Li, X. L. Zhu, W. T. Feng, D. M. Zhao,
Phys. Rev. A 2014, 89, 062707.

[63] F. Grüll, A. B. Voitkiv, C. Müller, Phys. Rev. A 2019, 100, 032702.

[64] J. Fedyk, K. Gokhberg, L. S. Cederbaum, Phys. Rev. A 2021, 103, 022816.

[65] J. Fedyk, K. Gokhberg, T. Miteva, L. S. Cederbaum, A. I. Kuleff, Phys. Rev. A 2023,
107, 023109.

[66] M. Han, J. Fedyk, J.-B. Ji, V. Despré, A. I. Kuleff, H. J. Wörner, arXiv:2303.04844
2023.

136



BIBLIOGRAPHY

[67] V. Averbukh, L. S. Cederbaum, Phys. Rev. Lett. 2006, 96, 053401.

[68] A. C. LaForge, M. Shcherbinin, F. Stienkemeier, R. Richter, R. Moshammer, T.
Pfeifer, M. Mudrich, Nat. Phys. 2019, 15, 247–250.

[69] A. Eckey, A. B. Voitkiv, C. Müller, Journal of Physics B: Atomic Molecular and
Optical Physics 2020, 53, 055001.

[70] J. Zhou, X. Yu, S. Luo, X. Xue, S. Jia, X. Zhang, Y. Zhao, X. Hao, L. He, C. Wang,
D. Ding, X. Ren, Nature Communications 2022, 13, 5335.

[71] R. Dörner, H. Schmidt-Böcking, T. Weber, T. Jahnke, M. Schöffler, A. Knapp, M.
Hattass, A. Czasch, L. Ph. H. Schmidt, O. Jagutzki, Radiat. Phys. Chem. 2004, 70,
191–206.

[72] T. N. Chang, R. T. Poe, Phys. Rev. A 1975, 12, 1432–1439.

[73] K.-i. Hino, T. Ishihara, F. Shimizu, N. Toshima, J. H. McGuire, Phys. Rev. A 1993,
48, 1271–1276.

[74] C. Pan, H. P. Kelly, Journal of Physics B: Atomic Molecular and Optical Physics
1995, 28, 5001–5012.

[75] R. Wehlitz, P. N. Jurani ć, D. V. Luki ć, Phys. Rev. A 2008, 78, 033428.

[76] M. Y. Amusia, I. S. Lee, V. A. Kilin, Phys. Rev. A 1992, 45, 4576–4587.

[77] P. Kolorenč, V. Averbukh, R. Feifel, J. Eland, Journal of Physics B: Atomic Molecular
and Optical Physics 2016, 49, 082001.

[78] F. Zhou, Y. Ma, Y. Qu, Phys. Rev. A 2016, 93, 060501.

[79] Y. Ma, F. Zhou, L. Liu, Y. Qu, Phys. Rev. A 2017, 96, 042504.

[80] J. Viefhaus, A. Grum-Grzhimailo, N. Kabachnik, U. Becker, Journal of Electron Spec-
troscopy and Related Phenomena 2004, 141, 121–126.

[81] P. Berman, E. Arimondo, C. Lin, Advances in Atomic, Molecular, and Optical Physics,
Elsevier Science, 2010.

[82] R. Wehlitz, F. Heiser, O. Hemmers, B. Langer, A. Menzel, U. Becker, Phys. Rev. Lett.
1991, 67, 3764–3767.

[83] T. Hartman, P. N. Jurani ć, K. Collins, B. Reilly, E. Makoutz, N. Appathurai, R.
Wehlitz, Phys. Rev. A 2013, 87, 063403.

[84] A. S. Kheifets, I. Bray, Phys. Rev. A 2007, 75, 042703.

[85] M. S. Pindzola, C. P. Ballance, S. A. Abdel-Naby, F. Robicheaux, G. S. J. Armstrong,
J. Colgan, Journal of Physics B: Atomic Molecular and Optical Physics 2013, 46,
035201.

[86] F. L. Yip, T. N. Rescigno, C. W. McCurdy, Phys. Rev. A 2016, 94, 063414.

[87] J. Zeng, P. Liu, W. Xiang, J. Yuan, Phys. Rev. A 2013, 87, 033419.

137



BIBLIOGRAPHY

[88] T. Hayaishi, E. Murakami, Y. Morioka, E. Shigemasa, A. Yagishita, F. Koike, Journal
of Physics B: Atomic Molecular and Optical Physics 1995, 28, 1411–1420.

[89] R. Wehlitz, Journal of Physics B: Atomic Molecular and Optical Physics 2016, 49,
222004.

[90] V. Averbukh, I. B. Müller, L. S. Cederbaum, Phys. Rev. Lett. 2004, 93, 263002.

[91] K. Gokhberg, S. Kopelke, N. V. Kryzhevoi, P. Kolorenč, L. S. Cederbaum, Phys. Rev.
A 2010, 81, 013417.

[92] C. Müller, M. A. Macovei, A. B. Voitkiv, Phys. Rev. A 2011, 84, 055401.

[93] J. L. Hemmerich, R. Bennett, S. Y. Buhmann, Nat. Commun. 2018, 9, 2934.

[94] S. Scheit, L. S. Cederbaum, H.-D. Meyer, The Journal of Chemical Physics 2003, 118,
2092–2107.

[95] K. Schnorr, A. Senftleben, M. Kurka, A. Rudenko, L. Foucar, G. Schmid, A. Broska,
T. Pfeifer, K. Meyer, D. Anielski, R. Boll, D. Rolles, M. Kübel, M. F. Kling, Y. H.
Jiang, S. Mondal, T. Tachibana, K. Ueda, T. Marchenko, M. Simon, G. Brenner, R.
Treusch, S. Scheit, V. Averbukh, J. Ullrich, C. D. Schröter, R. Moshammer, Phys.
Rev. Lett. 2013, 111, 093402.

[96] N. Moiseyev, R. Santra, J. Zobeley, L. S. Cederbaum, The Journal of Chemical Physics
2001, 114, 7351–7360.

[97] N. Sisourat, N. V. Kryzhevoi, P. Kolorenč, S. Scheit, L. S. Cederbaum, Phys. Rev. A
2010, 82, 053401.

[98] T. Havermeier, K. Kreidi, R. Wallauer, S. Voss, M. Schöffler, S. Schössler, L. Foucar, N.
Neumann, J. Titze, H. Sann, M. Kühnel, J. Voigtsberger, N. Sisourat, W. Schöllkopf,
H. Schmidt-Böcking, R. E. Grisenti, R. Dörner, T. Jahnke, Phys. Rev. A 2010, 82,
063405.

[99] S. Scheit, V. Averbukh, H.-D. Meyer, J. Zobeley, L. S. Cederbaum, The Journal of
Chemical Physics 2006, 124, 154305.

[100] F. Trinter, T. Miteva, M. Weller, A. Hartung, M. Richter, J. B. Williams, A. Gatton,
B. Gaire, J. Sartor, A. L. Landers, B. Berry, I. Ben-Itzhak, N. Sisourat, V. Stumpf,
K. Gokhberg, R. Dörner, T. Jahnke, T. Weber, Chem. Sci. 2022, 13, 1789–1800.

[101] A. Niehaus, Journal of Physics B: Atomic and Molecular Physics 1977, 10, 1845–1857.

[102] F. Trinter, J. B. Williams, M. Weller, M. Waitz, M. Pitzer, J. Voigtsberger, C. Schober,
G. Kastirke, C. Müller, C. Goihl, P. Burzynski, F. Wiegandt, T. Bauer, R. Wallauer,
H. Sann, A. Kalinin, L. P. H. Schmidt, M. Schöffler, N. Sisourat, T. Jahnke, Phys.
Rev. Lett. 2013, 111, 093401.

[103] R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, H.
Schmidt-Böcking, Physics Reports 2000, 330, 95–192.

138



BIBLIOGRAPHY

[104] F. Kaspar, W. Domcke, L. Cederbaum, Chemical Physics 1979, 44, 33–44.

[105] S. Scheit, L. S. Cederbaum, Phys. Rev. Lett. 2006, 96, 233001.

[106] T. Mizuno, P. Cörlin, T. Miteva, K. Gokhberg, A. Kuleff, L. S. Cederbaum, T. Pfeifer,
A. Fischer, R. Moshammer, The Journal of Chemical Physics 2017, 146, 104305.

[107] S. Scheit, Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg, 2007.

[108] Y.-C. Chiang, Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg, 2012.

[109] E. Pahl, H.-D. Meyer, L. S. Cederbaum, Zeitschrift für Physik D Atoms Molecules
and Clusters 1996, 38, 215–232.

[110] L. S. Cederbaum, F. Tarantelli, The Journal of Chemical Physics 1993, 98, 9691–9706.

[111] Y.-C. Chiang, F. Otto, H.-D. Meyer, L. S. Cederbaum, Phys. Rev. Lett. 2011, 107,
173001.

[112] Y.-C. Chiang, F. Otto, H.-D. Meyer, L. S. Cederbaum, The Journal of Chemical
Physics 2012, 136, 114111.

[113] A. I. Kuleff, K. Gokhberg, S. Kopelke, L. S. Cederbaum, Phys. Rev. Lett. 2010, 105,
043004.

[114] F. Trinter, M. S. Schöffler, H.-K. Kim, F. P. Sturm, K. Cole, N. Neumann, A. Vreden-
borg, J. Williams, I. Bocharova, R. Guillemin, M. Simon, A. Belkacem, A. L. Landers,
T. Weber, H. Schmidt-Böcking, R. Dörner, T. Jahnke, Nature 2014, 505, 664–666.

[115] K. Gokhberg, P. Kolorenč, A. I. Kuleff, L. S. Cederbaum, Nature 2014, 505, 661–663.

[116] H. Friedrich, Theoretische Atomphysik, Springer, 2. Edition, 1994.

[117] I. Sobel’man, Introduction of the Theory of Atomic Spectra, Pergamon Press, 1972.

[118] F. Mertins, Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg, 1995.

[119] J. C. Tully, R. S. Berry, B. J. Dalton, Phys. Rev. 1968, 176, 95–105.

[120] M.-S. Son, Y. Kiel Sung, Chem. Phys. Lett. 1995, 245, 113–118.

[121] V. Srdanov, A. Saab, D. Margolese, E. Poolman, K. Khemani, A. Koch, F. Wudl, B.
Kirtman, G. Stucky, Chem. Phys. Lett. 1992, 192, 243–248.

[122] M. C. Böhm, T. Schedel-Niedrig, H. Werner, R. Schlögl, J. Schulte, J. Schütt, Zeitschrift
für Naturforschung A 1996, 51, 283–298.

[123] National Institute of Standards and Technology Atomic Spectra Database, https:
//www.nist.gov/pml/atomic-spectra-database, Last Update: October 2022.

[124] P. N. Jurani ć, D. Luki ć, K. Barger, R. Wehlitz, Phys. Rev. A 2006, 73, 042701.

[125] R. Wehlitz, private communication, 2019.

[126] A. Reinköster, S. Korica, G. Prümper, J. Viefhaus, K. Godehusen, O. Schwarzkopf,
M. Mast, U. Becker, Journal of Physics B: Atomic Molecular and Optical Physics
2004, 37, 2135–2144.

139

https://www.nist.gov/pml/atomic-spectra-database
https://www.nist.gov/pml/atomic-spectra-database


BIBLIOGRAPHY

[127] A. Lyras, H. Bachau, Journal of Physics B: Atomic Molecular and Optical Physics
2005, 38, 1119–1131.

[128] B. Karaçoban Usta, Can. J. Phys. 2019, 97, 828–841.

[129] A. M. Weigold, J. A. Piper, Opt. Lett. 1990, 15, 1209–1211.

[130] V. Pejcev, T. W. Ottley, D. Rassi, K. J. Ross, J. Phys. B: At. Mol. Opt. Phys. 1977,
10, 2389–2398.

[131] R. Wehlitz, J. Colgan, M. Martinez, J. Bluett, D. Lukić, S. Whitfield, J. Electron
Spectrosc. Relat. Phenom. 2005, 144-147, 59–62.

[132] P. N. Jurani ć, J. Nordberg, R. Wehlitz, Phys. Rev. A 2006, 74, 042707.

[133] B. Rouvellou, L. Journel, J. M. Bizau, D. Cubaynes, F. J. Wuilleumier, M. Richter,
K.-H. Selbmann, P. Sladeczek, P. Zimmermann, Phys. Rev. A 1994, 50, 4868–4876.

[134] J. A. R. Samson, W. C. Stolte, Z.-X. He, J. N. Cutler, Y. Lu, R. J. Bartlett, Phys.
Rev. A 1998, 57, 1906–1911.

[135] R. Wehlitz, I. A. Sellin, O. Hemmers, S. B. Whitfield, P. Glans, H. Wang, D. W.
Lindle, B. Langer, N. Berrah, J. Viefhaus, U. Becker, Journal of Physics B: Atomic
Molecular and Optical Physics 1997, 30, L51–L58.

[136] R. Dörner, T. Vogt, V. Mergel, H. Khemliche, S. Kravis, C. L. Cocke, J. Ullrich, M.
Unverzagt, L. Spielberger, M. Damrau, O. Jagutzki, I. Ali, B. Weaver, K. Ullmann,
C. C. Hsu, M. Jung, E. P. Kanter, B. Sonntag, M. H. Prior, E. Rotenberg, J. Denlinger,
T. Warwick, S. T. Manson, H. Schmidt-Böcking, Phys. Rev. Lett. 1996, 76, 2654–2657.

[137] A. S. Kheifets, I. Bray, Phys. Rev. A 1998, 58, 4501–4511.

[138] A. Kheifets, private communication, 2019.

[139] J. Bouwman, P. Castellanos, M. Bulak, J. Terwisscha van Scheltinga, J. Cami, H.
Linnartz, A. G. G. M. Tielens, A&A 2019, 621, A80.

[140] D. K. Bohme, Chem. Rev. 1992, 92, 1487–1508.

[141] Y. Xie, L. C. Ho, ApJ 2019, 884, 136.

[142] D. C. Griffin, D. M. Mitnik, N. R. Badnell, Journal of Physics B: Atomic Molecular
and Optical Physics 2001, 34, 4401–4415.

[143] A. Picón, C. Buth, G. Doumy, B. Krässig, L. Young, S. H. Southworth, Phys. Rev. A
2013, 87, 013432.

[144] N. Rohringer, R. Santra, Phys. Rev. A 2008, 77, 053404.

[145] M. Coreno, L. Avaldi, R. Camilloni, K. C. Prince, M. de Simone, J. Karvonen, R.
Colle, S. Simonucci, Phys. Rev. A 1999, 59, 2494–2497.

[146] M. Bartolomei, E. Carmona-Novillo, M. I. Hernandez, J. Campos-Martinez, F. Pirani,
J. Phys. Chem. C 2013, 117, 10512–10522.

140



BIBLIOGRAPHY

[147] O. Stauffert, S. Izadnia, F. Stienkemeier, M. Walter, J. Chem. Phys. 2019, 150, 244703.

[148] T. Brupbacher, H. Lüthi, A. Bauder, Chem. Phys. Lett. 1992, 195, 482–486.

[149] A. Hans, C. Küstner-Wetekam, P. Schmidt, C. Ozga, X. Holzapfel, H. Otto, C. Zindel,
C. Richter, L. S. Cederbaum, A. Ehresmann, U. Hergenhahn, N. V. Kryzhevoi, A.
Knie, Phys. Rev. Research 2020, 2, 012022.

[150] A. S. Davydov, Quantum Mechanics, Pergamon Press, 2nd Edition, 1976.

[151] N. March, W. Young, S. Sampanther, The Many-Body Problem in Quantum Mechan-
ics, Cambridge University Press, London, 1967.

[152] D. M. Bishop in Advances in Quantum Chemistry, Academic Press, 1967, pp. 25–59.

[153] P. V. Demekhin, A. Ehresmann, V. L. Sukhorukov, The Journal of Chemical Physics
2011, 134, 024113.

[154] C. Dal Cappello, H. Le Rouzo, Phys. Rev. A 1991, 43, 1395–1404.

[155] F. Maulbetsch, J. S. Briggs, Journal of Physics B: Atomic Molecular and Optical
Physics 1993, 26, 1679.

[156] S. Keller, B. Bapat, R. Moshammer, J. Ullrich, R. M. Dreizler, Journal of Physics B:
Atomic Molecular and Optical Physics 2000, 33, 1447.

[157] M. Brauner, J. S. Briggs, H. Klar, Journal of Physics B: Atomic Molecular and Optical
Physics 1989, 22, 2265.

[158] J. Berakdar, H. Klar, Journal of Physics B: Atomic Molecular and Optical Physics
1993, 26, 4219.

[159] J. Berakdar, Phys. Rev. A 1996, 54, 1480–1486.

[160] S. P. Lucey, J. Rasch, C. T. Whelan, Proceedings of the Royal Society of London.
Series A: Mathematical Physical and Engineering Sciences 1999, 455, 349–383.

[161] I. Bray, A. T. Stelbovics, Phys. Rev. A 1992, 46, 6995–7011.

[162] I. Bray, D. V. Fursa, A. S. Kheifets, A. T. Stelbovics, Journal of Physics B: Atomic
Molecular and Optical Physics 2002, 35, R117.

[163] M. S. Pindzola, F. Robicheaux, S. D. Loch, J. C. Berengut, T. Topcu, J. Colgan, M.
Foster, D. C. Griffin, C. P. Ballance, D. R. Schultz, T. Minami, N. R. Badnell, M. C.
Witthoeft, D. R. Plante, D. M. Mitnik, J. A. Ludlow, U. Kleiman, Journal of Physics
B: Atomic Molecular and Optical Physics 2007, 40, R39.

[164] J. Tennyson, Physics Reports 2010, 491, 29–76.

[165] A. Molle, A. Dubois, J. D. Gorfinkiel, L. S. Cederbaum, N. Sisourat, Phys. Rev. A
2021, 104, 022818.

[166] C. C. Jia, T. Kirchner, J. W. Gao, Y. Wu, J. G. Wang, N. Sisourat, Phys. Rev. A
2023, 107, 012808.

141



BIBLIOGRAPHY

[167] J. Wragg, J. S. Parker, H. W. van der Hart, Phys. Rev. A 2015, 92, 022504.

[168] A. S. Kheifets, I. Bray, Phys. Rev. A 1996, 54, R995–R997.

[169] S. Otranto, C. R. Garibotti, The European Physical Journal D - Atomic Molecular
Optical and Plasma Physics 2003, 27, 215–221.

[170] A. S. Kheifets, I. Bray, Phys. Rev. A 2001, 65, 012710.

[171] M. Foster, J. Colgan, Journal of Physics B: Atomic Molecular and Optical Physics
2006, 39, 5067.

[172] V. Averbukh, L. S. Cederbaum, The Journal of Chemical Physics 2005, 123, 204107.

[173] V. Averbukh, L. S. Cederbaum, J. Chem. Phys. 2006, 125, 094107.

[174] P. Kolorenč, N. V. Kryzhevoi, N. Sisourat, L. S. Cederbaum, Phys. Rev. A 2010, 82,
013422.

[175] S. Kopelke, K. Gokhberg, V. Averbukh, F. Tarantelli, L. S. Cederbaum, J. Chem.
Phys. 2011, 134, 094107.

[176] P. Kolorenč, V. Averbukh, J. Chem. Phys. 2020, 152, 214107.

[177] A. Y. Istomin, N. L. Manakov, A. F. Starace, Journal of Physics B: Atomic Molecular
and Optical Physics 2002, 35, L543–L552.

[178] S. P. Lucey, J. Rasch, C. T. Whelan, H. R. J. Walters, Journal of Physics B: Atomic
Molecular and Optical Physics 1998, 31, 1237–1258.

[179] F. Maulbetsch, J. S. Briggs, Journal of Physics B: Atomic Molecular and Optical
Physics 1994, 27, 4095–4104.

[180] N. V. Kryzhevoi, V. Averbukh, L. S. Cederbaum, Phys. Rev. B 2007, 76, 094513.

[181] V. Stumpf, C. Brunken, K. Gokhberg, J. Chem. Phys. 2016, 145, 104306.

[182] L. Liu, P. Kolorenč, K. Gokhberg, Phys. Rev. A 2020, 101, 033402.

[183] W. Pokapanich, N. V. Kryzhevoi, N. Ottosson, S. Svensson, L. S. Cederbaum, G.
Öhrwall, O. Björneholm, J. Am. Chem. Soc. 2011, 133, 13430–13436.

[184] R. P. Madden, K. Codling, Phys. Rev. Lett. 1963, 10, 516–518.

[185] J. M. Rost, K. Schulz, M. Domke, G. Kaindl, J. Phys. B: At. Mol. Opt. Phys. 1997,
30, 4663–4694.

[186] G. Jabbari, K. Gokhberg, L. S. Cederbaum, Chem. Phys. Lett. 2020, 754, 137571.

[187] D. J. Tannor, Introduction to Quantum Mechanics A Time-Dependent Perspective,
University Science Books, 2007.

[188] J. R. Taylor, Scattering Theory: The Quantum Theory on Nonrelativistic Collisions,
John Wiley & Sons, Inc., 1972.

[189] J. N. Bardsley, A. Herzenberg, F. Mandl, Proceedings of the Physical Society 1966,
89, 321.

142



BIBLIOGRAPHY

[190] T. F. O’Malley, Phys. Rev. 1966, 150, 14–29.

[191] L. S. Cederbaum, W. Domcke, Journal of Physics B: Atomic and Molecular Physics
1981, 14, 4665–4690.

[192] N. Moiseyev, P. Certain, F. Weinhold, Molecular Physics 1978, 36, 1613–1630.

[193] M. Beck, A. Jäckle, G. Worth, H.-D. Meyer, Physics Reports 2000, 324, 1–105.

[194] M. H. Beck, H.-D. Meyer, Zeitschrift für Physik D Atoms Molecules and Clusters 1997,
42, 113–129.

[195] H.-D. Meyer, Lecture notes in Numerical Methods of Quantum Dynamics Discrete
Variable Representation (DVR) Integrators, 2017.

[196] M. Schröder, Lecture notes in Computational Modeling in Python, 2021.

[197] H.-D. Meyer, Lecture notes in Introduction to MCTDH, 2018.

[198] J. C. Light, I. P. Hamilton, J. V. Lill, The Journal of Chemical Physics 1985, 82,
1400–1409.

[199] A. S. Dickinson, P. R. Certain, The Journal of Chemical Physics 1968, 49, 4209–4211.

[200] C. C. Marston, G. G. Balint-Kurti, The Journal of Chemical Physics 1989, 91, 3571–
3576.

[201] D. T. Colbert, W. H. Miller, The Journal of Chemical Physics 1992, 96, 1982–1991.

[202] C. Leforestier, R. E. Wyatt, The Journal of Chemical Physics 1983, 78, 2334–2344.

[203] U. V. Riss, H.-D. Meyer, Journal of Physics B: Atomic Molecular and Optical Physics
1993, 26, 4503.

[204] U. V. Riss, H.-D. Meyer, The Journal of Chemical Physics 1996, 105, 1409–1419.

[205] R. W. Hamming, Numerical Methods for Scientists and Engineers, Dover Publications
Inc, 1987.

[206] D. A. Barrow, M. J. Slaman, R. A. Aziz, The Journal of Chemical Physics 1989, 91,
6348–6358.

[207] J. Schirmer, L. S. Cederbaum, O. Walter, Phys. Rev. A 1983, 28, 1237–1259.

[208] J. Schirmer, A. B. Trofimov, G. Stelter, The Journal of Chemical Physics 1998, 109,
4734–4744.

[209] J. Schirmer, A. Barth, Zeitschrift für Physik A Atoms and Nuclei 1984, 317, 267–279.

[210] P. V. Demekhin, Y.-C. Chiang, S. D. Stoychev, P. Kolorenč, S. Scheit, A. I. Kuleff,
F. Tarantelli, L. S. Cederbaum, The Journal of Chemical Physics 2009, 131, 104303.

[211] P. Lablanquie, T. Aoto, Y. Hikosaka, Y. Morioka, F. Penent, K. Ito, The Journal of
Chemical Physics 2007, 127, 154323.

[212] R. Thissen, P. Lablanquie, R. I. Hall, M. Ukai, K. Ito, The European Physical Journal
D - Atomic Molecular Optical and Plasma Physics 1998, 4, 335–342.

143



BIBLIOGRAPHY

[213] T. Miteva, Y.-C. Chiang, P. Kolorenč, A. I. Kuleff, K. Gokhberg, L. S. Cederbaum,
The Journal of Chemical Physics 2014, 141, 064307.

[214] X. Ren, E. Jabbour Al Maalouf, A. Dorn, S. Denifl, Nature Communications 2016, 7,
11093.

[215] J. Rist, T. Miteva, B. Gaire, H. Sann, F. Trinter, M. Keiling, N. Gehrken, A. Morad-
mand, B. Berry, M. Zohrabi, M. Kunitski, I. Ben-Itzhak, A. Belkacem, T. Weber, A.
Landers, M. Schöffler, J. Williams, P. Kolorenč, K. Gokhberg, T. Jahnke, R. Dörner,
Chemical Physics 2017, 482, 185–191.

[216] N. Saito, Y. Morishita, I. Suzuki, S. Stoychev, A. Kuleff, L. Cederbaum, X.-J. Liu,
H. Fukuzawa, G. Prümper, K. Ueda, Chemical Physics Letters 2007, 441, 16–19.

[217] R. Johnsen, M. A. Biondi, Phys. Rev. A 1978, 18, 996–1003.

[218] J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L. P. H. Schmidt, H. Schmidt-Böcking,
Reports on Progress in Physics 2003, 66, 1463.

[219] A. Szabo, N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Elec-
tronic Structure Theory, Dover Publications, 2012.

[220] J. Schirmer, Many-Body Methods for Atoms, Molecules and Clusters, Springer Inter-
national Publishing, 2018.

144



Eidesstattliche Erklärung

Ich versichere hiermit die vorgelegte Dissertation selbstständig und lediglich unter Benutzung
der angegebenen Quellen und Hilfsmittel verfasst zu haben. Insbesondere habe ich wörtlich
oder sinngemäß aus anderen Werken übernommene Inhalte als solche kenntlich gemacht.

Ich erkläre weiterhin, dass ich an keiner anderen Hochschule ein Prüfungsverfahren beantragt
habe und dass ich die vorliegende Arbeit oder Teile davon nicht anderweitig als Prüfungsarbeit
verwendet oder als Dissertation eingereicht habe.

Heidelberg, April 25th, 2023

(Jacqueline Fedyk)


	Introduction 
	Motivation 
	Asymptotic Approach 
	States and Hamiltonians 
	Transition Amplitude and Decay Width 
	Isotropic Transition Amplitude 
	Experimentally Measurable Quantities 

	Atomic and Molecular Systems 
	Asymptotic ICD and dICD Rates in Comparison 
	Ratios of the dICD to ICD Rates 

	Perturbative Approach 
	States and Hamiltonians in the Hartree Fock Approximation 
	Second-order Perturbation Theory 
	Transition Amplitude 
	Total dICD Decay Width 
	Derivation of the asymptotic expression from the  perturbatively derived transition amplitude

	Discussion and Outlook 
	Conclusion 
	Theoretical Framework 
	Interatomic Coulombic Decay in Dimers
	Photoelectron Spectrum
	States and Hamiltonians in the Born-Oppenheimer Approximation
	Transition Probability and T-Matrix
	Time-independently computed Photoelectron Spectrum

	Interatomic-Coulombic-Decay-Electron Spectrum and  Kinetic-Energy-Release Spectrum 
	Wave-packet Dynamics 
	Coincidence Spectrum
	Time-dependently computed Interatomic-Coulombic-Decay-Electron  Spectrum
	Time-dependently computed Kinetic-Energy-Release Spectrum


	Numerical Methods 
	Discrete Variable Representation 
	Pseudo-Spectral Methods
	Sine-DVR

	Complex Absorbing Potential and Flux 
	Computational Details 

	ICD in NeKr 
	Interference Effects in the Photoelectron Spectrum 
	Vibrationally selected Interatomic Coulombic Decay 

	Pre-ICD in Ar2 
	State of the Art 
	Time-resolved Kinetic-Energy-Release Spectrum 
	Adjustment to the measured time-resolved Kinetic-Energy-Release Spectrum 

	Conclusion 
	Transition Amplitude of dICD via Many-Body Perturbation Theory 
	The limes R  of the perturbatively derived expression for dICD 
	Derivation of the SPDI transition amplitude by Many-Body Perturbation Theory 
	Morse fit 
	Impact of isotope masses 
	Kinetic-Energy-Release Spectrum 
	List of Publications
	Bibliography

