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Abstract

Motivated by results from heavy-ion collisions we investigate the lower particle number
limit of the applicability of fluid dynamics. We model the expansion of ultracold atoms
in two dimensions suited to study this question experimentally and successfully predict
the qualitative scaling of the elliptic flow with the particle number. For a fluid released
from a harmonic trap with fluid static initial conditions, the dynamics can be reduced
to ordinary differential equations by using Lagrange coordinates and solved for specific
cases. Finding discrepancies between these results and experiments, we simulate the
ideal fluid evolution of initial conditions fitted to experimental data, which shows that
a system of ten strongly interacting 6Li atoms behaves like a fluid at early times of
the expansion.
The second problem addressed in this thesis is the non-perturbative prediction of shear
viscosity for a real scalar quantum field theory with quartic interaction. We formulate
the shear viscosity as a derivative of the quantum effective action and employ functional
renormalization group methods to go beyond the perturbative regime. We construct
a minimal ansatz and formulate flow equations for all free parameters. In the current
form this leads to a trivial prediction for the shear viscosity which can be remedied by
small changes to the interaction.

Zusammenfassung

Erkenntnissen aus Schwerionenkollisionen folgend untersuchen wir, bis zu welchen
Teilchenzahlen Fluiddynamik noch anwendbar ist. Wir modellieren die Expansion
von ultrakalten Atomen in zwei Dimensionen, die geeignet sind, diese Frage zu unter-
suchen, und schätzen erfolgreich die qualitative Abhängigkeit des elliptischen Flusses
von der Teilchenzahl ab. Für ein Fluid, das aus einer harmonischen Falle mit fluid-
statischen Anfangsbedingungen freigelassen wird, kann die Dynamik auf gewöhnliche
Differentialgleichungen reduziert und in speziellen Fällen gelöst werden. Wir finden
Diskrepanzen zwischen diesen Resultaten und Experimenten und simulieren die En-
twicklung eines idealen Fluids mit an experimentelle Daten angepassten Anfangsbe-
dingungen. Diese zeigt, dass ein System von zehn stark wechselwirkenden 6Li-Atomen
sich in der Frühphase der Expansion wie ein Fluid verhält.
Das zweite Problem mit dem sich diese Arbeit auseinandersetzt, ist die nicht-perturbative
Vorhersage der Scherviskosität für die Quantenfeldtheorie eines reellen Skalarfelds
mit quartischer Wechselwirkung. Wir formulieren die Scherviskosität in Form von
Ableitungen der effektiven Wirkung und benutzen Methoden der funktionalen Renor-
mierungsgruppe, um Vorhersagen jenseits von Störungstheorie treffen zu können. Dazu
konstruieren wir einen minimalen Ansatz und formulieren Flussgleichungen für alle
darin enthaltenen freien Parameter. In der jetzigen Form resultiert dies in einer triv-
ialen Scherviskosität. Dieses Problem kann durch kleine Änderungen der effektiven
Wechselwirkungsstärke behoben werden.
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Acronyms

BBGKY Bogoliubov, Born, Green, Kirkwood, Yvon
BCS Bardeen, Cooper, Schrieffer
BEC Bose-Einstein condensate
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KMS Kubo, Martin, Schwinger
QFT quantum field theory
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Units

Unless explicitly stated otherwise, units are assumed to be chosen such that c = 1,
ℏ = 1, kB = 1. In some cases, these constants will still be written out for purposes of
clarity.

Metric signature

This thesis uses a mostly-plus signature, (−,+,+,+), for all occurrences of the space-
time metric gµν .





Introduction

In classical physics, the one particle problem without any external forces is trivial.
The problem of two particles interacting via newtonian gravitational force is also easy
to solve. But already at three gravitationally interacting particles a closed form solu-
tion in terms of elementary functions is not possible [1], although for systems without
net angular momentum there is a solution by Sundman that is a slowly converging
infinite series in powers of t1/3 [2]. In general the problem gets more difficult for higher
numbers of particles and when taking into account quantum and relativistic effects.
Yet physics is able to consistently describe certain classes of large systems with plenty
of substructure on the microscopic level. Instead of predicting individual particle tra-
jectories these effective descriptions focus on the dynamics of macroscopic properties
that capture statistical properties of the system. The resulting concepts like temper-
ature remain meaningful across a wide range of systems which might require vastly
different descriptions in the microscopic regime. Equilibrium thermodynamics formu-
lates relations between these macroscopic quantities and requires only knowledge of a
single thermodynamic potential [3], and thereby the equation of state, as input from
the underlying system. The dynamics in reaction to slight deviations from equilibrium
can be encoded in transport coefficients. Overall, the macroscopic description only de-
pends on the microscopic details in an indirect fashion as it usually determined more
by the present symmetries and breakings thereof than the precise couplings [4].

One very successful macroscopic theory of out-of-equilibrium matter is fluid dy-
namics which can be derived as a consequence of conservation laws for the long time
and large scale behavior of many-particle systems [5]. Its applications span many or-
ders of magnitude in temperature and size, reaching from the classical flow of everyday
liquids and gases to astrophysical phenomena and processes on much smaller scales
like superfluidity in cold atomic gases [6] and the expansion of a quark gluon plasma in
a collision of heavy ions at high energies [7]. In the collisional systems the litmus test
of fluidlike behavior are the elliptic flow v2 and higher order momentum anisotropies
of the final state particles [8–10]. The fraction of the initial spatial anisotropy εn
that translates into the momentum profile can be compared to predictions from fluid
dynamic simulations. In recent years, specifically small systems like proton-proton
collisions have gained a lot of attention due to the surprising stability of the fluid
dynamic description down to very low particle numbers [11, 12]. These results call
into question whether the separation of scales and local thermal equilibrium assumed
to be necessary for fluidlike behavior can even be achieved [13].

In this thesis I will focus on two central questions. First, what is the lower
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particle number limit of the applicability of fluid dynamics? We define flu-
idlike behavior as mass density, local velocity and energy density following their fluid
dynamic equations of motion for some equation of state and transport coefficients re-
sulting from the interactions between particles. The two edge cases are very clear. A
single isolated particle cannot interact and thus fails to qualify while a macroscopic
liquid with N ∼ 1023 particles fulfills the criteria. The data from small collisional
systems suggests that the transition already happens at a small number (N ≤ 100)
of particles [14] that are still very strongly interacting. This multiplicity region is dif-
ficult to precisely probe in heavy-ion collisions, but can be investigated in expanding
clouds of ultracold atoms. These systems allow for precise tuning of the interaction
strength by using Feshbach resonances [15]. Elliptic flow in ultracold atoms has al-
ready been studied for different atoms and interaction strengths [16–25]. However,
the particle numbers in these experiments are still comparatively large (N ∼ 105 in
[16]). Recent developments in experimental techniques allow for the preparation of
very few (N ≤ 14) fermionic particles in a harmonic oscillator ground state with high
fidelity [26–28]. This opens up the possibility for a comparison between fluid dynamic
predictions and experimental results in the mesoscopic regime which is already too
large to be solved exactly, but also small enough that the applicability of a statistical
description is highly questionable.

The second question of this thesis is: How can we understand, and possibly
predict, transport properties of a fluid in terms of an underlying quantum
field theory? In this thesis I will discuss specifically the prediction of shear viscosity
for a real scalar field theory with a quartic interaction term. This problem has been
investigated before [29, 30], but only in a perturbative fashion which cannot capture
the strongly interacting systems one would intuitively expect fluid dynamic behavior
from on a macroscopic scale. Considering shear viscosity as a static susceptibility, it
is possible to relate it to a two-point function of the energy momentum tensor [31,
32] which in turn can be expressed as a functional derivative of the quantum effective
action. This enables an approach using functional renormalization group methods that
are valid beyond the perturbative regime [33].

Outline

Chapter 1 gives a brief overview over fluid dynamics and its application in the systems
we will work with. The equations of motion of fluid dynamics are derived both as a
special case of kinetic theory and from conservations laws with a focus on the difference
in the assumptions between the two approaches. Lagrange coordinates are introduced
as a comoving coordinate system that has a direct interpretation as a description of
test particle trajectories. I shortly outline the role of fluid dynamics in heavy-ion colli-
sions and its primary indicator, the elliptic flow v2. Due to systematic uncertainties in
the limit of small multiplicities, I move to a system of ultracold atoms, summarizing
the phenomena of superfluidity and Feshbach resonances. I explore the special case
of diverging scattering length and make predictions about isotropic expansion and os-
cillation behavior. The chapter concludes with the experimental techniques used to
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achieve the well-controlled few particle systems needed for probing the lower particle
number limit of fluid dynamics. In chapter 2, I present both analytical and numer-
ical predictions for fluid behavior in few particle systems. I discuss the appropriate
equation of state to be used in the description of the cold atom system and settle with
a fit to data obtained from quantum Monte Carlo simulations in the many particle
limit. This equation of state, together with a fluid static initial condition, makes it
possible to reduce the continuity and Euler equation to a set of ordinary differential
equation in Lagrange coordinates. Observing a mismatch between experimental data
and fluid static initial conditions, I compare numerical simulations starting from fitted
initial conditions to results from experiments. From the agreement between the data
and a simulation with rescaled pressure I conclude that fluidlike behavior is present
at early times in a system of N = 10 strongly interacting 6Li atoms. Chapter 3 for-
mulates functional renormalization group flow equations for the shear viscosity of a
real scalar field theory with quartic interaction. I give an introduction to quantum
field theory in thermal equilibrium as well as linear response theory. The Green-Kubo
relations make it possible to formulate the shear viscosity in terms of a two-point
correlation function of the energy momentum tensor or, equivalently, a second metric
derivative of the quantum effective action. I explore a non-relativistic limit of the
real scalar theory that could simplify calculations, but choose not to use it due to its
complex metric dependency. Functional renormalization group methods allow for a
non-perturbative approach to obtaining the quantum effective action using the Wet-
terich equation starting from a minimalist ansatz I present. From the results of the
previous sections I derive flow equations for the free parameters of the ansatz as well
as the shear viscosity. While the given approximation of the effective action is found to
be at a fixed point in parameter space and thus produces trivial results, small changes
to the ansatz can remedy this issue. The last chapter is a summary of the obtained
results and a short outlook over some future avenues of research.
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Chapter 1

Fluid dynamics

Fluid dynamics is a robust framework that gives a macroscopic description of systems
that one would intuitively call a fluid or gas and also some that one might not identify
as such. In the following discussion of the basics, I will focus on the assumptions that
are made in order to arrive at the well-known equations that govern fluid motion. I will
approach this in two different ways, the first being a derivation of continuity and Euler
equations from kinetic theory. The second ansatz is centered around conservation laws
and identifications independent of the assumptions already contained in kinetic theory.

1.1 Derivation from kinetic theory

With the first discussions of what is known today as kinetic theory going back more
than two centuries, kinetic theory has a long history as a successful description linking
microscopic and macroscopic understanding of collisional systems. I will introduce
the basic concepts of kinetic theory starting from analytical mechanics following the
discussions in [3] and [34]. Fluid dynamics is derived as a special case, describing the
dynamics of certain moments of the phase space distribution. Lastly, I will discuss the
involved assumptions and scales associated with this ansatz.

1.1.1 Basics of kinetic theory

In order to derive fluid dynamics from kinetic theory, we need to first consider the basic
rules of that theory. Kinetic theory starts from a system of N classical particles whose
motion is described by a Hamiltonian H. For the sake of simplicity, from this point on
I will assume that there is only one species of particles, all particles are affected in the
same way by external forces and interactions only involve two particles, even though
that is not necessary for the derivation to work. Such a system is uniquely identified
by its position in 6N -dimensional phase space at any point in time. The Hamiltonian
gives a clear prescription of what trajectory through phase space the system will take.
In a statistical setting, in which we only work with a distribution function fN in phase
space, this can be formulated as the Liouville equation,

∂tfN + {fN , H} = 0 , (1.1)
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where {·, ·} denote the Poisson brackets with respect to all 6N generalized coordinates
and momenta. In terms of potentials this is

∂tfN +
N∑
i=0

p⃗i
m

· ∇⃗qifN −
N∑
i=0

∇⃗qi

(
V (ext) +

N∑
j=1,j ̸=i

V
(int)
ij

)
· ∇⃗pifN = 0 . (1.2)

The potential V (ext) sums up all external forces and V
(int)
ij denotes the interaction po-

tential between particles i and j and depends on both of their positions. By considering
a statistical setting we also made another assumption about the system, which is that
the number of particles is sufficiently large that a statistical treatment is justified.
However, in a macroscopic setting complete knowledge of the full N -particle phase
space distribution is unrealistic to assume.

One can marginalise the distribution by integrating out all particles but a certain
number n, reducing it to

fn =

∫
fN d3qn+1 d

3pn+1 · · · d3qN d3pN . (1.3)

This object no longer follows a homogeneous differential equation since the effects of
the marginalised particles on the still present ones has to be considered,

∂tfn +
n∑
i=0

p⃗i
m

· ∇⃗qifn −
n∑
i=0

∇⃗qi

(
V (ext) +

n∑
j=1,j ̸=i

V
(int)
ij

)
· ∇⃗pifn

= (N − n)
n∑
i=1

∫
∇⃗qiV

(int)
i,n+1 · ∇⃗pifn+1 d

3qn+1 d
3pn+1 .

(1.4)

This is not a closed equation. In order to determine the dynamics of fn, knowledge
of fn+1 is necessary which in turn relies on the next higher order, recursively back to
the closed full N -body case described by the Liouville equation. This is the Bogoli-
ubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy.

In order to get to a predictive theory, kinetic theory makes two decisions. First,
it works with the one particle phase space density f1 = f(t, q⃗, p⃗). Second, it makes
the assumption of molecular chaos. On the mathematical side, molecular chaos means
that the two particle phase space density f2 can be expressed as a function of the one-
particle distribution f . With this, the lowest order equation of the BBGKY hierarchy
becomes closed and can be expressed as the Boltzmann equation,

∂tf +
p⃗

m
· ∇⃗qf − ∇⃗qV

(ext) · ∇⃗pf = C[f ] . (1.5)

The collision kernel C[f ] is a functional of the distribution encoding the interactions
between particles. The physical interpretation of the molecular chaos hypothesis is
that the correlations between the phase space positions of particles participating in
a collision can be neglected, both before and after the collision. Since the scattering
necessarily introduces some correlation between the particles which is discarded, this
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introduces a time direction into an otherwise reversible process. This makes it possible
to derive Boltzmann’s H-theorem [34], the kinetic theory version of the second law of
thermodynamics, from the unitary dynamics of the Liouville equation.

A commonly chosen form of the collision kernel is

C[f ](t, q⃗, p⃗) =
∫
W (p⃗1, p⃗2, p⃗3, p⃗)[f(t, q⃗, p⃗1)f(t, q⃗, p⃗2)− f(t, q⃗, p⃗3)f(t, q⃗, p⃗)] d

3p1 d
3p2 d

3p3

(1.6)
with a probability measure W of two particles colliding to go from momenta (p⃗1, p⃗2)
to (p⃗3, p⃗) [3]. We can add different assumptions about the collisions in the system
into this weight function. Momentum conservation can be enforced by making the
probability of any process violating it vanish,

W (p⃗1, p⃗2, p⃗3, p⃗) ∼ δ ((p⃗1 + p⃗2)− (p⃗3 + p⃗)) , (1.7)

which represents three constraints and reduces the weight to a function of only three
momenta. In general, conserved quantities within the collision are identified or con-
versely enforced via ∫

g(p⃗) C[f ](t, q⃗, p⃗) d3p = 0 (1.8)

for some function of the momentum g(p⃗). The corresponding functions for conservation
of particle number, momentum and non-relativistic kinetic energy are g(p⃗) = 1, p⃗
and p⃗2/2m respectively. Together with the assumption of rotational invariance of
the interaction potential and the invariance of the scattering process under Galilean
boosts, the probability distribution can be made to only depend on the center of mass
energy and scattering angle. A linearized version of the Boltzmann equation can be
obtained by using the relaxation time approach,

C[f ](t, q⃗, p⃗) = f(t, q⃗, p⃗)− fleq(t, q⃗, p⃗)

τ
, (1.9)

where fleq is a local equilibrium distribution, which solves the collisionless Boltzmann
equation, that the system approaches on the time scale τ .

1.1.2 Free streaming

An important special case is the one in which the collision terms vanish. This is most
commonly the case when the system in question becomes so dilute that interactions be-
tween the particles can reasonably be neglected. In that case the Boltzmann equation
in the absence of external forces becomes

∂tf +
p

m
· ∇f = 0 . (1.10)

This is in general solved by

f(t, x, p) = f0

(
x− p

m
t, p
)
, (1.11)
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for some initial phase space distribution f0 = f(t = 0). This behavior is called free
streaming. If we were to translate this back into a description of individual particles,
it would mean that every particle moves with a constant velocity since there are no
collisions which could redistribute momenta. In particular, this contains the conser-
vation of momentum expectation values, since the time dependence can be integrated
out.

1.1.3 Fluid dynamics as a special case of kinetic theory

The step towards fluid dynamics from this point is not very large. The quantities that
we are interested in are formulated much in the language of equilibrium thermody-
namics. When in equilibrium we have a constant particle number N and energy E in a
fixed volume V . In fluid dynamics we promote these global variables to local ones. We
consider volume densities of extensive variables, like number, entropy and energy den-
sity, while intensive properties, like pressure and temperature, remain. This contains
the assumption that the concepts that we know from equilibrium still carry meaning.
Usually, this is considered acceptable as long as deviations from the equilibrium within
a neighborhood of any point are sufficiently small. A system that fulfills this criterion
is said to be in local thermodynamic equilibrium.

Fluid dynamic variables can be expressed as momentum space expectation values
of the phase space distribution. The two main ones we are going to discuss are the
local fluid density ρ(t, x⃗) and the local fluid velocity u⃗(t, x⃗). The fluid velocity is not
directly related to an equilibrium variable, but instead quantifies the local motion,
and thus departure from global equilibrium, of an infinitesimal volume of matter. The
local density and velocity are defined as

ρ(t, x⃗) =

∫
mf(t, x⃗, p⃗) d3p ,

u⃗(t, x⃗) =
1

ρ(t, x⃗)

∫
p⃗f(t, x⃗, p⃗) d3p .

(1.12)

If the scattering processes between particles are reversible, the momentum integral of
the collision kernel vanishes and we can formulate the continuity equation directly as
a consequence of the Boltzmann equation,

∂tρ+ ∇⃗ · (ρu⃗) = 0 . (1.13)

We can do a similar thing for the fluid velocity by first multiplying with the momentum
vector and subsequent integration,

∂t(ρu⃗) + ∇⃗ · T − ρ∇V (ext) =

∫
p⃗ C[f ] d3p ,

Tij :=

∫
pipj
m

f d3p .

(1.14)

The right-hand-side of equation (1.14) vanishes if we demand momentum conservation.
The object Tij is the momentum flux density tensor, or stress tensor, and at this point
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still a dynamical quantity. Its equation of motion would depend on the third order
moment of the phase space distribution. Such a hierarchy again arises since only the
set of all moments fully encodes the information of the full phase space distribution.
The fluid velocity equation is commonly simplified by replacing the momentum flux
density by

Tij = ρuiuj + Tij , (1.15)

with the tensor T which transforms as a scalar under Galilean boosts. With this, we
come to the better known form (neglecting external forces)

ρ(∂t + u⃗ · ∇⃗)u⃗+ ∇⃗ · T = 0 . (1.16)

In order to arrive at a closed set of equations, a truncation is chosen. A very common
choice is to assume that the stress tensor consists only of a pressure contribution,
which leads to the Euler equation,

Tij = ρuiuj + Pδij ,

ρ(∂t + u⃗ · ∇⃗)u⃗+ ∇⃗P = 0 .
(1.17)

This and the continuity equation do not form a closed set of equations yet since the
pressure P is not fixed. For that, one usually uses a thermodynamic equation of state
appropriate to the system in question and expresses the pressure as some function of
the density. The choice of stress tensor (1.17) is also motivated by the fact that it is
the lowest order expansion in derivatives of velocity with the correct symmetries and
index structure. Notably, such an approximation of the full dynamic momentum flux
density tensor does not necessarily converge, although it can be very robust in some
specific cases [35]. In general, it can only serve as an asymptotic series in the case of
small gradients in velocity. The next higher order in derivatives introduces dissipative
terms that are associated with bulk (ζ) and shear viscosity (η). Including these effects
leads to the Navier-Stokes equation for fluid velocity (neglecting external forces for
simplicity),

Tij = ρuiuj + Pδij − ζ(∇⃗ · u⃗)δij − ησij ,

σij = ∂iuj + ∂jui −
2

3
(∇⃗ · u⃗)δij ,

ρ(∂t + u⃗ · ∇⃗)u⃗+ ∇⃗P − η∆u⃗−
(
ζ +

η

3

)
∇⃗(∇⃗ · u⃗) = 0 .

(1.18)

Like the pressure, the viscosities cannot be obtained from within the framework of
fluid dynamics, but instead have to be supplied externally.

The last central fluid dynamic quantity is the local energy density e. It encodes
the kinetic energy of the particles,

e(t, x⃗) :=

∫
p⃗2

2m
f(t, x⃗, p⃗) d3p =

∑
i

Tii(t, x⃗) . (1.19)
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As before, we can use the Boltzmann equation and the conservation of kinetic energy
in collisions to find the evolution of this quantity,

∂te+ ∇⃗ · (eu⃗) + ∇⃗ · (T u⃗) + ∇⃗ · q⃗ = 0

qi =
1

2m2

∫
(pi −mui)(p⃗−mu⃗)2f d3p .

(1.20)

This introduces the heat flux q⃗ as a third order momentum moment of the phase space
distribution. Its dynamics depends again on a combination of higher order moments.
We can expand the heat flux as

q⃗ = −κ∇⃗T , (1.21)

introducing the heat conductivity κ as a new transport coefficient and expressing the
temperature in terms of the fluid dynamic variables e and ρ by using the thermody-
namic equation of state. As this ansatz contains a gradient, it is part of the same
derivative expansion as the stress tensor. At zeroth order, neglecting dissipative pro-
cesses altogether, it makes sense to also neglect any dissipation of heat, hence the heat
flux vanishes. In relativistic hydrodynamics the connection between viscosities and
heat flux becomes even more apparent since the latter can be added to the relativistic
energy momentum tensor in a manner consistent with the equations [5].

We end up with five equations, the continuity equation, the three components of
the velocity equation and the energy equation, for 2 + 2d+ (d2 + d)/2 = 14 unknowns
(ρ, u⃗, e, T , q⃗). In a relativistic setting this series of equations for the momentum mo-
ments of the phase space distribution can be closed at any finite order for specific
collision kernels [36]. In our non-relativistic context we eliminate the 9 degrees of
freedom associated with the momentum flux density and the heat flux by making
a derivative expansion. This, however, adds four more unknown quantities in the
pressure P and the transport coefficients η, ζ and κ. The pressure is fixed by the
thermodynamic equation of state while the expressions for the transport coefficients
have to be obtained from a deeper understanding of the microscopic theory, through
e.g. linear response theory in section 3.2). This leaves us with the five fluid dynamic
variables and their associated equations.

1.1.4 Assumptions of this ansatz

In summary, the kinetic theory approach to fluid dynamics makes several assump-
tions. These can be grouped as the ones needed for the basic applicability of kinetic
theory and the ones made within the fluid dynamic context. Among the latter the
assumption of the symmetries of the scattering process are fairly restrictive in terms
of the symmetries they imply, but also fairly generic in that they are applicable to
a wide range of underlying microscopic theories. The assumptions about the form of
the energy momentum tensor are based on the derivative expansion. This necessitates
some properties of the macroscopic situation that fluid dynamics might be applied to.
Specifically, it asks that the spatial gradients in fluid velocity as well as the expansion
coefficients are small. Since the viscosities are dimensionful expansion parameters,
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their smallness can only be formulated in relation to other quantities. The ratio of
shear viscosity to entropy density η/s is conjectured and in some cases proven to be
bounded from below [37]. This allows it to function as an indicator of the “ideal-
ness” of fluids. The closer a fluid is to saturating the boundary, the better the ideal
fluid approximation should work. The smallness of gradients is also important for the
presence of local thermal equilibrium.

On the side of the assumptions necessary for the standard formulation of kinetic
theory, the more relevant one is the molecular chaos hypothesis. Neglecting the corre-
lation of two particles after a collision can be justified if there is no observer particle
which would interact with both and thus probe their correlation. In other words, a
dilute system, in which particles spend most of their time flying freely and only very
little scattering with others, is favored when it comes to molecular chaos. It also favors
systems which have a large total number of particles where correlations are spread out
far and hence less relevant. This is also in line with the assumption that statistical
methods are applicable.

1.1.5 Scales in fluid dynamics

For the validity of the kinetic theory ansatz multiple quantities are demanded to be
“small” or “large”. For dimensionless quantities like the total particle number that is
not necessarily consistently defined, but is mostly a matter of convention independent
of the choice of units. For dimensionful quantities, however, there needs to be some
point of reference in order for these statements to have any meaning. This effectively
transforms the statements into ones about dimensionless quantities again. In this
section, I will introduce the common scales used in fluid dynamics and express the
conditions from the previous section as statements about dimensionless combinations.

In order to identify scales in our system, we first need to look at the system itself.
While in theory a fluid system can be arbitrarily large, in practice any realization will
have a finite size which we associate with a length scale L. The first internal scale we
introduce is the typical interparticle distance

dn =
( ρ
m

)−1/3

. (1.22)

In a system with only short range forces between the particles, the interparticle dis-
tance is the lower limit for any length scales that involve effects between particles. The
most well-known of those is the mean free path,

λmfp =
m

σρ
, (1.23)

which is defined as the average length that a test particle can move in a given density
between two scatterings in a system with scattering cross section σ. With this we can
construct the Knudsen number,

Kn =
λmfp

L
, (1.24)
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which is a dimensionless quantity that scales inversely with the average number of
collisions that a particle undergoes when moving across the entire system. If the
Knudsen number is large the particles will barely scatter at all and the system is
effectively free streaming. On the other hand, a small value implies many scatterings
which bring the system closer to the local equilibrium that favors a fluid description. In
that sense, the Knudsen number quantifies how much a system deviates from strongly
interacting fluid dynamics towards free streaming.

If we are in the fluid regime, we can find a typical fluid velocity v of the system. It
can be compared to the speed of sound cs that is determined by the thermodynamic
equation of state as c2s = ∂p/∂ρ|s/n. This leads to the Mach number,

Ma = v/cs , (1.25)

which quantifies the compressibility of the fluid in question. Lastly, in order to quantify
the importance of viscous corrections, we put their contribution to the momentum flux
density (∼ ηv/L) in relation to that of the kinetic energy term (∼ ρv2) in form of the
Reynolds number,

Re =
ρvL

η
. (1.26)

Taking into account that bulk viscous corrections depend on the compressibility of
the system, the derivative expansion can be considered to be controlled by Ma2Re−1

[38, 39]. The smaller this parameter is, the smaller the influence of the derivative
corrections to the stress tensor. It can be argued that in some cases this expansion
is equivalent to one for small Knudsen number [40]. However, all these dimension-
less scales rely on a microscopic picture of colliding particles and might thus not be
applicable to non-collisional fluid dynamics.

1.2 Derivation from conservation principles

For situations involving fluids in which kinetic theory also naturally applies, the ansatz
described above is a great choice as it allows treating objects like the stress tensor or the
heat flux as dynamical if one wants to make the truncation at a later point. However,
experiments observe fluid dynamic behavior in systems like ultracold helium [41, 42]
which do not have a clear underlying picture of colliding particles. This implies that
fluid dynamics can be applied outside the range of applicability of kinetic theory and
not just to a subset of it. In this section, I will look into a different ansatz to derive
the same equations of motions for the hydrodynamic variables based on a different set
of assumptions, following along the lines of [5].

Since we want to arrive at equations for the same fluid dynamic variables, we again
assume that the system we want to describe is in local thermal equilibrium. In order to
find equations of motion, this time we make use of the global version of the conserva-
tion laws we applied to the individual collisions in the previous section. The conserved
quantities we are considering are the total mass, momentum and energy of the system.
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In terms of the microscopic Hamiltonian, the latter two correspond to global symme-
tries with respect to translations in both space and time. The conservation of mass
and, without particles decaying or combining, equivalently particle number is less easy
to pin to a specific symmetry. In quantum mechanics it corresponds to the hermiticity
of the Hamilton operator while in a quantum field theory of a complex scalar field it
is the result of a global U(1) symmetry. For each of the conserved quantities we can
define a corresponding density (ρm, ρ⃗p, ρe) and claim that the time derivative of the
spatial integral over each of these quantities vanishes, e.g.

∂t

∫
R3

d3x ρm = ∂tmtot = 0 . (1.27)

With no possibility of creating new mass, and motion of mass being continuous, one
can argue that any change of total mass within a finite volume can only come from
matter flowing across the boundary of said volume,∫

V

d3x ∂tρm +

∫
∂V

dA⃗ · J⃗m = 0 . (1.28)

We can make similar arguments for energy and momentum to find a vector and a
(0,2)-tensor field Jp, J⃗e, which we will call flux densities, that fulfill an equation of
the same type. As opposed to mass, however, it is possible to violate conservation of
total momentum in a finite volume by means of forces exerted by sources outside the
volume. We summarize these as an external force density f⃗ext that, when integrated
over a finite volume, gives the sum of all external forces acting on a that volume.
These statements hold for an arbitrarily chosen connected volume. Taking all this into
consideration and making use of Gauss’ law, we can reformulate the conservation laws
in a differential form,

∂tρm + ∇⃗ · J⃗m = 0 ,

∂tρ⃗p + ∇⃗ · Jp = f⃗ext ,

∂tρe + ∇⃗ · J⃗e = 0 .

(1.29)

For simplicity, we will neglect external forces in the following. What remains is to
identify the densities and flux densities with the local thermodynamic variables. For
the mass density that is easily done as the product of the thermodynamic particle
number density n and the single particle mass m. For the momentum density and
the mass flux density one can argue by the momentum flux’s behavior under Galilean
boosts that they must be identical. Momentum determines the change of position of
any masses and thus their flow. We can introduce the local fluid velocity to formulate
this as a hydrodynamic variable,

ρ⃗p = J⃗m =: ρu⃗ . (1.30)

This allows us to express the first equation of (1.29) in the well-known form of the
continuity equation,

∂tρ+ ∇⃗ · (ρu⃗) = 0 . (1.31)

12



The next object to identify is the momentum flux density. While from our intuition
from kinetic theory this should be the momentum flux density tensor as defined in
(1.14), this is not immediately clear just from conservation laws. The specific form
of the stress tensor in the previous section was, however, only an expansion of some
a priori independent dynamic variable in a series of derivatives of the fluid velocity.
Under the same assumptions about the smallness of gradients we can identify terms
in the same way as before. The difference is that we have no link to a momentum
space expectation value. Therefore, we will also call the momentum flux density a
stress tensor and use the same symbol Tij because as long as it is not considered an
independent dynamic variable it is defined via the same terms. This also carries the
implication that the momentum flux density is symmetric in its two indices. In kinetic
theory that directly follows from the definition. In this framework that property
is guaranteed if the system in question is rotationally invariant, i.e. there are no
internal torques. For convenience of notation we again split Tij = ρuiuj + Tij. This,
in combination with the continuity equation (1.31), allows us to write

ρ(∂t + u⃗ · ∇⃗)u⃗+ ∇⃗ · T = 0 . (1.32)

We can again obtain the Euler and Navier-Stokes equations for the corresponding
choices of the stress tensor. As for the energy equation, the energy density is just a
quantity that we will continue to use within the fluid dynamic framework as e = ρe.
Energy flowing into a volume can come from multiple sources. The first is particles
physically moving across the boundary, carrying both energy itself and interacting
with the particles already in the volume. From a thermodynamic perspective this can
be viewed as a particle moving against pre-existing pressure, performing work to enter
the volume. In addition, work can also be done by particles moving along the surface
of the volume exerting shear forces on it. Another contribution is random scattering
processes at the boundary which transport energy into the volume without net particle
motion. This part is what we associate with the thermodynamic concept of heat which
we will add as a heat flux q⃗. Including these aspects, the total energy flux density
takes the form

(Je)i = (eδij + Tij)uj + qi . (1.33)

This lets us write down the energy equation of fluid dynamics,

∂te+ ∇⃗ · (eu⃗) + ∇⃗ · (T u⃗) + ∇⃗ · q⃗ = 0 . (1.34)

However, the heat flux remains undefined in this approach. It needs to be determined
by additional assumptions in the same way that the truncation of the stress tensor is
decided in a way appropriate to the problem at hand. We can use the same approxima-
tion as before in equation (1.21) reintroducing the heat conductivity. In this way, we
end up with the same 5 equations and 14 unknowns as we should. This is reduced to
the 5 fluid dynamic variables and equations by the derivative expansion complemented
by three transport coefficients and one thermodynamic equation of state.
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1.2.1 Assumptions of the ansatz

The difference in getting to the equations of fluid dynamics compared to the previous
ansatz is mostly an exchange of microscopic and macroscopic assumptions. We no
longer require the molecular chaos hypothesis or make statements about conserved
quantities in individual particle collisions. Instead we demand macroscopic conserva-
tion laws for mass, momentum, energy and angular momentum to be in place. In their
differential form these formulate relations between densities and fluxes. The former
are identified with the thermodynamic variables. The identification between mass flux
and momentum density is fixed by symmetry. However, both momentum and energy
flux density are introduced as new quantities that are not understood on the micro-
scopic level to the degree that stress tensor and heat flux are by equations (1.14) and
(1.20). We associate them with the same derivative expansion in the same transport
coefficients, but these are to be understood purely as a macroscopic material properties
of the fluid.

With this ansatz we trade assumptions about the underlying microscopic theory
against understanding the microscopic implications of the fluid description. But this
also allows to be a bit more free in the interpretation of the fluid dynamic variables.
Since it follows a similar conservation law, it is possible to formulate a continuity equa-
tion for the probability distribution of a quantum-mechanical wave function (see also
section 1.5.1). We also still make use of thermodynamic quantities and the derivative
expansion and are thus reliant on the assumption of local thermal equilibrium. There
is, however, evidence that suggests close to fluidlike behavior of systems for which local
equilibrium is very unlikely to be reached [13].

1.3 Lagrange coordinates

Finding a simple solution to a physical problem often requires using a suitable set of
coordinates for its description. In fluid dynamics one such choice that is commonly
used in numerical calculations in e.g. biophysics [43] are the Lagrange coordinates,
discussed here roughly following [44, 45]. Their basic idea is to describe a trajectory
for every infinitesimally small fluid parcel in order to encode the motion of the entire
fluid. In that sense it can be called a comoving coordinate system. This corresponds
to a non-linear change in coordinates. The central object of that description is the
quantity r⃗(t, R⃗) that determines the position of the fluid parcel at some time t that

was at position R⃗ at a fixed initial time t0. By this definition, we can connect the
parcel position to the local fluid velocity via its time derivative,

u⃗(t, r⃗(t, R⃗)) = ∂tr⃗(t, R⃗) . (1.35)

For the density we simply replace its spatial dependence by one on the parcel position.
This allows us to write

(∂t + u⃗ · ∇⃗)ρ(t, r⃗) =
d

dt
ρ(t, r⃗(t, R⃗)) . (1.36)
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The last ingredient that we need in order to rewrite the continuity and Euler equations
is the divergence of the fluid velocity,

∇⃗ · u⃗(t, r⃗) = ∂

∂rk

∂

∂t
rk(t, R⃗) =

[
∂

∂rk
Rj(t, r⃗)

]
∂

∂t

∂

∂Rj

rk(t, R⃗) . (1.37)

For shortness of notation we introduce symbols for the Jacobi matrix, its inverse and
its determinant,

Jjk(t, R⃗) =
∂

∂Rj

rk(t, R⃗)

Ikj(t, r⃗) =
∂

∂rk
Rj(t, r⃗)

J(t, R⃗) = det(Jjk(t, R⃗)) .

(1.38)

With this and the Jacobi identity, we can write

∇⃗ · u⃗(t, r⃗) = Ikj(t, r⃗)
∂

∂t
Jjk(t, R⃗) =

1

J(t, R⃗)
∂tJ(t, R⃗) . (1.39)

The continuity equation (1.31) takes the form

d

dt
ρ(t, r⃗(t, R⃗)) +

ρ(t, r⃗(t, R⃗))

J(t, R⃗)

d

dt
J(t, R⃗) = 0 , (1.40)

which can be reformulated as

d

dt
ln[ρ(t, r⃗(t, R⃗))J(t, R⃗)] = 0 . (1.41)

Considering that at initial time the fluid parcel has not had any opportunity to move,
i.e. r⃗(t, R⃗) = R⃗ and hence J(t0, R⃗) = 1, we can express the density at any point in
time as a rescaling of the initial density,

ρ(t, r⃗(t, R⃗)) =
ρ(t0, R⃗)

J(t, R⃗)
. (1.42)

Thus the density is completely determined by its initial configuration and the Jacobian
of the change of coordinates. That Jacobian and the fluid velocity are themselves fully
determined by the exact form of the parcel position. The dynamics of the fluid parcels
are governed by the equivalent to the velocity equation. In this discussion, we choose
to neglect the energy equation and dissipative effects. The Euler equation can then be
formulated as a differential equation of the parcel position,

ρ(t, r⃗)
d2

dt2
rk(t, R⃗) +

∂

∂rk
P (t, r⃗) = 0 . (1.43)
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The derivative with respect to rk can again be rewritten as a combination of inverse
Jacobi matrix and initial parcel position derivative. On top of that, we replace the
pressure by the chemical potential µ by using n = ∂P/∂µ. This leaves us with

Jjk(t, R⃗)
d2

dt2
rk(t, R⃗) +

1

m

∂

∂Rj

µ(t, r⃗(t, R⃗)) = 0 . (1.44)

The initial conditions are given by

r⃗(t0, R⃗) = R⃗ ,

d

dt
r⃗(t0, R⃗) = u⃗(t0, R⃗) .

(1.45)

The equation of state relates µ to the density which closes the equations in a way
whose time dependence is given by the transformation Jacobian.

Formulating expectation values in Lagrange coordinates shows another advantage
of the comoving picture. The time evolution of the density scales with the inverse
transformation Jacobian. This lets us change the integration variable from the current
parcel position to the initial one in order to absorb that time dependence. As long as
we can express the current parcel position in terms its initial value, we can therefore
formulate every spatial expectation value with respect to the initial density,

⟨f(x⃗)⟩ρ(t,x⃗) =
1

mtot

∫
ddr f(r⃗)ρ(t, r⃗) =

1

mtot

∫
ddr f(r⃗)

ρ(t0, R⃗(t, r⃗))

J(t, R⃗(t, r⃗))

=
1

mtot

∫
ddRf(r⃗(t, R⃗))ρ(t0, R⃗) =

〈
f(r⃗(t, R⃗))

〉
ρ(t0,R⃗)

.

(1.46)

The time dependence of the expectation value is entirely contained in the transforma-
tion.

The main differences to the standard formulation of hydrodynamics are that the
dynamics are entirely contained in the Euler equation (1.44) and that the initial density
configuration explicitly enters the equations. In some special cases (see section 2.2.2)
one can argue that the partial differential equation reduces to an ordinary one due to
properties of the equation of state and the initial conditions. This makes the dynamics
much easier to solve in the Lagrangian formulation than the standard Eulerian one
that can only indirectly make use of symmetries in its initial density.

1.4 Fluid dynamics in heavy ion collisions

An important point in the history of collider experiments is the discovery of fluidlike
behavior in high-energy collisions between heavy nuclei [7]. In this section I will shortly
summarize the role and indicators of fluid dynamics in these collisions and lead to the
central question of the lower particle number limit of these descriptions. More detailed
discussions of fluid dynamics in collisional systems can be found in [38, 46] which this
section is in part based on.
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In the course of a collision of heavy ions, shortly after the atoms hit each other,
their constituents form a quark gluon plasma (QGP). While this state of matter is a
strongly interacting phenomenon, it is not immediately clear whether it also behaves
fluidlike at least during a part of its expansion. In order to determine whether the
fluid description is viable, one can make use of a qualitative feature of fluid dynamics.
In the absence of external forces, the local velocities of the fluid system are mostly
driven by pressure gradient forces. Assuming that the equation of state of the system
is such that the pressure increases with increasing density, this means that matter is
pushed away from dense clumps with an acceleration proportional to the gradient in
density. Specifically, for a fluid with an elliptic density profile and no or isotropic initial
fluid velocity that means that acceleration will be larger in the more strongly squeezed
direction. At later times at which we assume interactions between the constituents
of the fluid to be sparse, the shape of the fluid density will be fully determined by
its widths in momentum space. Therefore, for any fluid with a strictly monotonously
increasing equation of state, any initial elliptic shape will invert in the course of a free
expansion. This anisotropy in the final state can be used as an indicator of collective
flow as pointed out in the context of heavy-ion collisions by Ollitrault [10]. It can be
put into a quantitative variable by identifying it as the second order term of a Fourier
decomposition of the distribution in momentum space angles [8, 9]. It is usually labeled
V2 and in two dimensions, e.g. a reaction plane, defined as

V2 =

∫
d2p f(p⃗)e2iϕp , (1.47)

where ϕp is the polar angle in momentum space and f(p⃗) is the observed distribution
of particles in momentum space normalized to one. In the case of a heavy ion collision
the latter reduces to an angular distribution of detected particles,

V2 =
1

2πN

∫ 2π

0

dϕp
dN

dϕp
e2iϕp . (1.48)

The resulting complex Fourier factor can be decomposed into a magnitude v2 = |V2|
and an angle Φ2 = arg(V2). The variable v2 determines the ellipticity of the shape
in momentum space and will be called elliptic flow from here on. The angular degree
of freedom Φ2 contains information about the orientation of the ellipse. For a system
of non-interacting expanding particles the cloud shape becomes circular in the long
time limit and the elliptic flow vanishes. As such the magnitude of the elliptic flow
indicates how much the system differs from a non-interacting one. This has to be put
into perspective with respect to the initial cloud shape. The more spatially anisotropic
the fluid is initially, the larger will v2 be in general. In order to account for this, one can
introduce a measure for the spatial anisotropy via the normalized quadrupole moment
of the spatial density [47],

E2 = −
∫
d2xn(x⃗)|x⃗|2e2iϕx∫
d2xn(x⃗)|x⃗|2 , (1.49)
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where n is the energy density which in a non-relativistic setting becomes the particle
number density. This quantity can again be decomposed into what we will simply call
the spatial ellipticity ε2 = |E2| and the angular information about the orientation of
the cloud shape Ψ2 = arg(E2).

Neglecting the orientation of the shapes, the natural choice for a quantity that
might be comparable across different geometries is therefore v2/ε2. Using this ratio as
an identifying feature of fluidlike behavior has many advantages. It is observable in
convergent asymptotic behavior which makes it resilient to uncertainties in the time
of the measurement, it is comparable between different initial geometries and it has
few requirements to the equation of state. It does, however, also require knowledge of
the initial state to some degree. In order to determine whether a shape inversion has
occurred, one needs to have some information about the initial shape of the potential
fluid. In general, this is not possible for high energy collisions. There are successful
models to generate initial conditions for the fluid part of the expansion dynamics
like TRENTo [48], but the impact parameter of any single collision is still random.
This means that it is not possible to gain information by calculating v2 as an average
over all shots since it would vanish due to symmetry. This problem can be avoided by
using correlations between the momenta of different final state particles within a single
event [8] and calculating a quantity similar to the elliptic flow from e.g. a two-particle
distribution function in momentum space,

v2{2} =
〈
⟨cos(2(ϕp,1 − ϕp,2))⟩f2(ϕp,1,ϕp,2)

〉
events

. (1.50)

This concept can be generalized to N -particle correlations giving access to v2{N}.
Measurements of these observables can be performed for different types of collisions.
In recent years, investigations of proton-proton (p-p) and proton-lead (p-Pb) collisions
have gained interest since the elliptic flow generated in these small systems is com-
parable to that found in the collision of much heavier nuclei, like lead-lead (Pb-Pb)
collisions, at the same multiplicity [11, 12, 14]. Notably, this stays true in the low
multiplicity regime (Nch < 100). It is well-established that QGPs from Pb-Pb colli-
sions can be reasonably treated as fluids. This tells us two things. First, the good
agreement between the different collisions confirms that the observable v2{2} as an
indicator is robust to changes in the underlying system. Second, the agreement with
the p-p collisions in the low multiplicity regime implies that the small system shows
very similar behavior to the heavier ones and is therefore at least in contention for
fluidlike behavior. This is especially curious since the proton-proton system seemingly
violates two of the basic requirements postulated earlier. Even down to a multiplicity
of ∼ 20− 30 the hydrodynamic features seem to remain. Assuming that the effective
number of particles in the fluid phase of the QGP is on the same order of magnitude
as the final state leaves us with about fifty particles at the most. The smallness of
this number calls into question whether a description in terms of local thermodynamic
variables is viable. There are also good arguments that it is not possible to attain
local equilibrium in these small systems since the time scales required for that are too
long [13].
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While using multiparticle correlations solves the problem of the unknown orien-
tation of the impact parameter, it also introduces new issues. Final state particles
that originate from the same decay process have inherently correlated momenta. This
does not require any fluidlike behavior to be present in the system and introduces
therefore systematic uncertainties to the elliptic flow. There are also other potential
ways to build up these correlations without fluid dynamics [49]. The entirety of these
contributions is commonly referred to as non-flow effects and introduces uncertainty
to the measurements. The signal-to-noise ratio can be improved by using combina-
tions of Fourier coefficients obtained from different orders of correlations [50], but still
decreases with decreasing number of final state particles detected in a collision. This
makes it very hard to obtain precise information about low-multiplicity events and
by that a more robust understanding of smaller systems like proton-proton collisions.
Therefore, in order to learn more about the applicability of fluid dynamics in very
small systems, we cannot make use of the multiparticle correlations alone. This means
we have to move the problem to a different experimental setup which allows us to
control the initial state of the system so we can use one-particle expectation values.

1.5 Fluid dynamics in cold atomic systems

On the other end of the accessible temperature spectrum, 17 orders of magnitude
lower [32, 51], one finds systems comprised of trapped cold atoms. In this section I
will introduce the basic concepts of these systems that make them a good candidate
for studying the limits of fluid dynamics.

1.5.1 Superfluidity

A system of bosonic atoms at sufficiently low temperatures and high densities will
undergo Bose-Einstein condensation [52–54]. The ground state is macroscopically oc-
cupied and the dynamics of the system are mostly determined by an effective macro-
scopic wave function Ψ, called order parameter, and small perturbations on top of
it. We neglect the perturbations for now and focus on the dynamics of the bulk of
the Bose-Einstein condensate (BEC). In a BEC with interaction strength g in an ex-
ternal potential Vext the dynamics of the order parameter can be described by the
Gross-Pitaevskii equation [6],

i∂tΨ = −∇2

2m
Ψ+ VextΨ+ g|Ψ|2Ψ . (1.51)

This non-linear Schrödinger type equation is the result of treating the bulk of the field
operator as a classical field and only considering the perturbations as an operator,
Ψ̂ = Ψ + δΨ̂. This treatment can be justified by the aforementioned macroscopic
ground state occupation [6]. We can split the order parameter into its absolute value
and its complex phase and identify the former with the square root of the particle
number density,

Ψ(t, x) =
√
n(t, x)eiS(t,x) . (1.52)
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We can further identify the gradient of the phase with a velocity

u⃗(t, x) =
1

m
∇⃗S(t, x) . (1.53)

In terms of the new variables the Gross-Pitaevskii equation takes the form

∂tn+ ∇⃗ · (nu⃗) = 0 ,

(∂t + u⃗ · ∇⃗)u⃗+ ∇⃗
(
Vext + gn2 − 1

m2

∇⃗2
√
n√
n

)
= 0 ,

(1.54)

which resemble the continuity and Euler equation. The acceleration in this system
consists of three contributions: the external forces, the pressure term from interac-
tions and a pressure term dependent on density gradients which we will call quantum
pressure. The quantum pressure is often neglected under the assumption that it is of
higher order in gradients which are assumed to be small. Notably, this is a case of
inviscous and, up to quantised vortices, irrotational fluid dynamics. These are both
defining features of superfluidity at zero temperature. Such behavior, however, is not
limited to BECs and was originally discovered in helium [41, 42]. The theory of su-
perfluidity was formulated by Landau in 1941 [55]. This description encompasses two
additional key features. At finite temperatures the system can be described as a mix-
ture of a superfluid and a normal one. The fraction of superfluid density decreases
with increasing temperature down to zero at the critical temperature. The second
feature is that superfluidity also breaks down if relative velocities become too large. If
the relative velocity between the fluid and the boundary it flows along, e.g. a capillary,
crosses a critical velocity vc, this can create excitations which destabilize the superfluid
behavior. This is usually formulated in terms of the Landau criterion,

v < vc = min
ε(p⃗)

|p⃗| , (1.55)

where ε(p⃗) is the dispersion relation of the excitations [6]. Reintroducing the pertur-
bations up to linear order into the Gross-Pitaevskii equation one finds the Bogoliubov
dispersion law [6],

ε(p⃗) =

√
p⃗2

2m

(
p⃗2

2m
+ 2gn

)
. (1.56)

From this directly follows that the critical velocity vc =
√
gn/m depends on the

presence of interactions. A non-interacting Bose gas has a vanishing critical velocity
and thus cannot form a superfluid in the presence of any motion. This result also tells
us that superfluidity can break down if the fluid becomes too dilute, similar to how a
classical fluid would tend towards free streaming in the dilute limit.

Notably, condensation and thereby superfluid behavior can also be found in some
fermionic systems [56, 57]. The principle is similar to that of the related phenomenon of
superconductivity in Bardeen-Cooper-Schriefer (BCS) theory [58]. Interacting fermions
can form pairs that behave like effective bosons, allowing them to condense.
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1.5.2 Feshbach resonances

The mechanism that allows these fermionic pairs to form at experimentally accessible
temperatures is the so-called Feshbach resonance. In order to formulate how the
interaction strength can be modified, I will first introduce basic concepts of scattering
theory following [59]. In a system of two particles interacting via a potential that only
depends on the distance between them, r⃗ = x⃗1 − x⃗2, the quantum-mechanical wave
function can be split into two factors. One is a trivial center of mass part, the other
encapsulates the relative motion and is a solution of the Schrödinger equation

i∂tΨ(t, r⃗) =

(
−∇⃗2

r

2µ
+ V (r⃗)

)
Ψ(t, r⃗) , (1.57)

with the reduced mass µ. Far away from the ”collision” at r⃗ = 0, we can approximate
the incoming particles as a linear combination of the plane wave solutions of the free
equation labeled by their momentum k⃗. The outgoing particles are modeled as a
spherical wave modified by an angle dependent scattering amplitude f(|⃗k|, θ). The
complete ansatz for the individual momentum modes away from the center of the
collision is thus

ψk⃗(r⃗) ∝ eik⃗·r⃗ + f(|⃗k|, θ)e
i|⃗k||r⃗|

|r⃗| . (1.58)

If the potential additionally only depends on the magnitude of the relative position
and not its orientation, V = V (|r⃗|), the angular dependence of the momentum modes
can be expressed in terms of Legendre polynomials. In this way, the mode can be
decomposed into in- and outgoing spherical waves for the different angular momentum
modes where the scattering amplitude just introduces phase shifts δl,

f(|⃗k|, θ) = 1

k

∞∑
l=0

(2l + 1)eiδl(|⃗k|) sin
(
δl(|⃗k|)

)
Pl(cos(θ)) . (1.59)

It can be shown that for short range potentials, as are typical for interactions between
neutral atoms, the isotropic part (l = 0) of the scattering amplitude dominates for
small momenta [60]. The s-wave scattering length a is defined via the low momentum
behavior of the isotropic phase shift as

a = − lim
|⃗k|→0

tan
(
δ0(|⃗k|)

)
|⃗k|

, (1.60)

and is sufficient to describe all the atomic scattering processes at near zero temperature
we are interested in.

Following the discussion in [15], we will consider two scattering lithium atoms
(6Li) in their atomic ground states, meaning no angular momentum from the unpaired
electron orbit (L = 0). The interaction potential between them can be estimated using
the Born-Oppenheimer approximation. This potential depends strongly on whether
the atoms’ unpaired electrons are considered in a singlet (Stot = 0) or triplet state
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(Stot = 1) in the joint description of the two atoms. Of these two, the singlet state
typically has the lower energy at large distances which we will call E = 0. The ingoing
particles of a collision at low temperatures will have energies only slightly above zero.
If the triplet potential has a bound state with energy close to zero, mixing occurs and
can cause a phase shift depending on the difference in energy. In the case of 6Li, the
difference between triplet bound state and ingoing particle energy can be controlled
by an external magnetic field B. The resulting modification of the s-wave scattering
length can be expressed as [61]

a(B) = abg

(
1− ∆

B −B0

)
, (1.61)

where ∆ is the width of the resonance, B0 the magnetic field at which resonance occurs
and abg the scattering length off-resonance. This is a magnetic Feshbach resonance.
The parameters in (1.61) differ depending on the hyperfine quantum numbers of the
atoms participating in the collision. For a given mixture of states, the use of a Feshbach
resonance thus makes it possible to tune the scattering length to the value desired in the
experiment. This includes both positive and negative scattering lengths, corresponding
to attractive and repulsive effective interactions respectively. The atoms can form both
tightly bound molecule states for 1/a ≫ 0, which in larger systems can behave like a
BEC, and much more loosely bound pairs of BCS type for 1/a ≪ 0. The transition
between these two regimes is a smooth crossover (also called the BEC-BCS crossover)
through a region of strong interactions [15].

1.5.3 Unitarity and non-relativistic conformal field theory

A special type of behavior of the cold atomic gas is found at exactly the point of
resonance, at which the scattering length diverges (1/|a| → 0), also called the unitary
limit. This removes an external scale from the system which thereby recovers addi-
tional symmetry. In this section I will follow the discussion of Maki and Zhou [62]
about properties of the emerging non-relativistic conformal field theory and present
results obtained for isotropic expansion and oscillation behavior on that basis. The
work discussed in this section was done in cooperation with Nils Becker and Stefan
Floerchinger.

We start from a description similar to the Gross-Pitaevskii equation, but adapted
for fermion fields,

H(g) =
∑
σ

∫
d3xψ†

σ(x)

(
−∇2

2m
+ Vext(x)

)
ψσ(x)

+ g(Λ)
∑
σ,σ′

∫
d3xψ†

σ(x)ψ
†
σ′(x)ψσ′(x)ψσ(x) ,

(1.62)

where the summations are over all possible spin states and the field ψσ obeys a canoni-
cal equal time anticommutation relation. For our given problem we choose Vext(x) = 0
at first. However, the scale invariance of the system can still be broken by a possible
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scale dependence in the effective coupling g(Λ) (discussed for the two-dimensional case
in [63, 64]). The unitary case is only achieved when the interaction strength has a spe-
cific value g∗ from which it no longer flows away during renormalisation. In a general
dimension d this is fulfilled either by the trivial value g∗ = 0 or by g∗ = 2 − d [65].
One can also define operators associated with non-relativistic scale (D) and conformal
(C) transformations

D =
∑
σ

∫
d3xψ†

σ(x)

(
−i3

2
+ x⃗ · p⃗

)
ψσ(x) (1.63)

C =
∑
σ

∫
d3xψ†

σ(x)
x⃗2

2
ψσ(x) . (1.64)

These operators form a closed algebra with the scale invariant HamiltonianHs = H(g∗)

[Hs, C] = −iD
[D,Hs] = 2iHs

[D,C] = −2iC .

(1.65)

On field operators that have been evolving according to Hs,

ψs(r, t) = eiHstψs(r)e
−iHst , (1.66)

these operators act as

e−iDλψs(r, t)e
iDλ = e−λ

3
2ψs

(
r′ = re−λ, t′ = te−2λ

)
e−iCλψs(r, t)e

iCλ =
1

(1− λt)
3
2

exp

(
−ir

2

2

λ

1− λt

)
ψs

(
r′ =

r

1− λt
, t′ =

t

1− λt

)
.

(1.67)

These transformations can be embedded into a larger group containing also spatial and
time translations, spatial rotations and Galileian boosts, called the Schrödinger group
[66]. The Hamiltonian of the fermions at unitarity forms a closed algebra with all
of the associated generators (being invariant under the space-time transformations).
For a system of harmonically trapped fermions, the external potential term Vext(x) =
mω2x⃗2/2 can also be expressed as the generator of conformal transformations. For
simplicity of notation, we choose units such that the trapped Hamiltonian can be
written simply as

H = Hs + C . (1.68)

This makes it possible to express the eigenstates of the system as a tower of states
labeled with an integer energy quantum number l and a superindex n for all other
quantum numbers that determines which tower the state is part of [62],

H |On
l ⟩ = En

l |On
l ⟩

En
l = 2l + En

0 .
(1.69)
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We will refer to these as conformal tower states in the following. All states of a tower
can be constructed from any one state within the tower using ladder operators L±

L± = Hs − C ± iD

|On
l ⟩ =

1

cl
(L+)

l |On
0 ⟩

|cl|2 =
l∏

k=1

[
k2 + (En

0 − 1)k
]
.

(1.70)

By formulating the set of operators (Hs, D, C) in terms of (H,L+, L−) it is also possible
to use this structure for expansion dynamics.

In order to make predictions about the behavior of observables, we formulate the
state of the system, following Maki and Zhou [62], via the one-particle density matrix
expressed in terms of the tower states. For simplicity, we assume that the system
initially is in a pure state, ρ = |Ψ0⟩⟨Ψ0|, and do not explicitly write out the spin sums.
The one-particle density matrix then decomposes as

P1(x1, x2, t) = ⟨Ψ0|ψ†(x2, t)ψ(x1, t)|Ψ0⟩
= ⟨On

l |Ψ0⟩
〈
Ψ0

∣∣∣On′

l′

〉 〈
On′

l′

∣∣∣ψ†(x2, t)ψ(x1, t)
∣∣∣On

l

〉
=: Γn,n

′

l,l′ ρ
n,n′

l,l′ (x1, x2, t)

(1.71)

where the initial conditions are entirely absorbed into Γn,n
′

l,l′ while the dynamics are

entirely contained in ρn,n
′

l,l′ . For the dynamical part, they found[
(1 + t2)∂t + t(x⃗1 · ∇⃗1 + x⃗2 · ∇⃗2 + 3) + i

x⃗21 − x⃗22
2

− i(En
l − En′

l′ )

]
ρn,n

′

l,l′ (x⃗1, x⃗2, t) = 0 .

(1.72)
The observable we are going to focus on is the moment of inertia,

Iij(t) = ⟨xixj⟩ =
∫

d3x xixjP1(x⃗, x⃗, t) , (1.73)

for which the differential equation (1.72) takes the form

[
(1 + t2)− 2t

]
Iij(t) = i

∑
l,l′,n,n′

(En
l − En′

l′ )

∫
d3x xixjρ

n,n′

l,l′ (x⃗, x⃗, t)Γ
n,n′

l,l′ . (1.74)

While Maki and Zhou continued to work out the late time behavior of this quantity
and made perturbative out-of-unitarity, Nils Becker, Stefan Floerchinger, and I solved
a special case of this equation exactly.

The assumption we make is that Γn,n
′

l,l′ ∼ δn,n
′
, which implies no interference between

different towers. Accordingly, we will drop the n indices in further calculations. In
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order to solve the equations, we split the moment of inertia, similarly to the density
matrix, into a static initial and generic dynamical part,

Iij(t) =
∑
n

∑
l,l′

Rn,l,l′

ij (t)Γn,nl,l′

Rn,l,l′

ij (t) :=

∫
d3x xixjρ

n,n
l,l′ (x⃗, x⃗, t)

(1.75)

Inserting this into equation (1.74) and comparing coefficients gives us an ordinary
differential equation, [

(1 + t2)∂t − 2t− 2i(l − l′)
]
Rn,l,l′

ij = 0 , (1.76)

which is solved by

Rn,l,l′

ij (t) = Cn,l,l′

ij (t2 + 1) exp
(
2i(l − l′) tan−1(t)

)
. (1.77)

While the Cn,l,l′

ij are infinitely many unknown constants, they are independent of the

initial conditions in Γn,nl,l′ and thus the same for all systems. In general, Rn,l,l′

ij can be
interpreted as a matrix element of a symmetric operator with two spatial indices with
respect to the tower states. For our chosen action these states can be interpreted as
eigenstates to the angular momentum operators Lz and L

2 of the Schrödinger algebra.
This implies that for a given choice of (n, l, l′), as a consequence of the Wigner-Eckardt

theorem, Rn,l,l′

ij has not six degrees of freedom, but two.
There are special cases that we can solve completely. One such case is the isotropic

free expansion of a cloud of fermions. By identifying∑
i

Iii(t) =
〈
x⃗2
〉
(t) =

∑
n

Γn,nl,l′ ⟨On
l′ |C(t)|On

l ⟩ , (1.78)

with C(t) = eiHStCe−iHSt = C + tD + t2Hs we can express the trace of the moment
of inertia in terms of the algebra operators. Rewriting this in terms of the ladder
operators and trapped Hamiltonian yields∑

i

Rn,l,l′

ii = ⟨On
l |C(t)|On

l′⟩ =
1

2

[
δl,l′E

n
l − cnL

2cnL−1

(δl,l′+1 + δl+1,l′)

]
+

t

2i

cnL
cnL−1

(δl,l′+1 − δl+1,l′)

+
t2

2

[
δl,l′E

n
l +

cnL
2cnL−1

(δl,l′+1 + δl+1,l′)

]
,

(1.79)

where L = max(l, l′). The expansion (without interference between towers) is thus
only affected by mixing between neighboring tower states,〈
x⃗2
〉
(t) =

∑
n

(1 + t2)
∑
l=0

Γn,nl,l E
n
l +

cnL
cnL−1

∑
L=1

[
(t2 − 1)Re(Γn,nL,L−1) + 2t Im(Γn,nL,L−1)

]
.

(1.80)
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This result also nicely agrees with Zhou and Maki’s prediction for initial conditions
diagonal in (l, l′) [62] which is ⟨x⃗2⟩ (t) = ⟨x⃗2⟩ (t = 0)(1+ω2t2). In a similar fashion we
can calculate the isotropic part of the oscillation of an atomic cloud while still trapped
by evolving the tower states trivially with the trapped Hamiltonian instead,

⟨On
l |eiHtCe−iHt|On

l′⟩ = ei(E
n
l −E

n
l′ )t ⟨On

l |C|On
l′⟩

=
ei(E

n
l −E

n
l′ )t

2

[
δl,l′E

n
l − cnL

2cnL−1

(δl,l′+1 + δl+1,l′)

]
.

(1.81)

which translates into oscillatory behavior of the cloud as well〈
x⃗2
〉
osc

=
∑
n

∑
l=0

Γn,nl,l E
n
l −

∑
L=1

cnL
cnL−1

Re(e2itΓn,nL,L−1)

=
∑
n

∑
l=0

Γn,nl,l E
n
l + sin(2t)

∑
L=1

cnL
cnL−1

Im(Γn,nL,L−1)− cos(2t)
∑
L=1

cnL
cnL−1

Re(Γn,nL,L−1) .

(1.82)

Again, we find that this quantity only depends on neighboring energy states in the
initial condition. Non-relativistic conformal field theory is a powerful tool for analytical
predictions in isotropically trapped ultracold gases. It is however limited by requiring
knowledge about the ground states of each tower as well as how the initial condition
projects onto the tower state basis. It also fails to capture behavior of two-dimensional
systems due to the aforementioned existence of a quantum anomaly breaking the
symmetry in that case [63, 64].

1.5.4 Experimental realization

In order to investigate fluidlike behavior in systems with few particles, I worked as part
of a collaboration with the group led by Selim Jochim at the Physikalisches Institut of
Heidelberg University. In this section I will roughly lay out the experimental techniques
they use in the realization of ultracold atomic gases with N ≤ 14 particles and their
consequences for the theoretical considerations.

The cold atoms used in the experiments are specifically 6Li atoms in the hy-
perfine states |F = 1/2,mF = −1/2⟩ and |F = 3/2,mF = −3/2⟩ which have a broad
(∆ ≈ 170G) Feshbach resonance at B0 ≈ 690G [67]. The particles are trapped in
the superposition of a single layer of an optical lattice, which effectively renders the
problem two-dimensional, and an optical tweezer imposes an approximately harmonic
potential on the particles within the plane [27, 28]. The desired small atom numbers
are achieved by, following the method of [26], applying a magnetic field gradient and
weakening the radial confinement until all but the lowest harmonic oscillator states are
expelled from the trap. That means that the resulting few particle state is a ground
state of the optical tweezer trap that has an equal number of atoms in either hyper-
fine state (usually written as e.g. 5 + 5 particles for ten total atoms). Interactions
between the particles can be controlled with the Feshbach resonance and quenched off
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rapidly by exciting the atoms in the |F = 3/2,mF = −3/2⟩ state to the off-resonance
|F = 3/2,mF = −1/2⟩ by means of a two-photon Raman transition [28]. Measure-
ments in this system are performed by switching off the optical tweezer and imaging
the positions of the atoms (discussed in [68]) after a fixed time of flight.

The most important implication of this for the theoretical calculations is the fact
that we should not consider the system three dimensional but instead work with a two-
dimensional description. Due to the fact that the system is only quasi two-dimensional,
we need to consider appropriate corrections to the scattering length [69]. Instead of
1/a the correct parameter to indicate the transition between the BEC and BCS sides
of the resonance becomes ln(kFa2d) [70] (≪ 0 for BEC, ≫ 0 for BCS side) where
kF is the Fermi momentum. Notably, in the quasi-2d system the effective scattering
length is always positive such that stable two-particle bound states can exist on both
sides of the crossover [70]. Beyond that, the change in dimensionality also affects
thermodynamics which means that we need to consider different equations of state
for our eventual fluid dynamic comparison to this system. These effects need to be
considered, but do not change the nature of our calculations fundamentally. All in all
this means that we have an effectively two-dimensional system of few fermionic atoms
with controllable interaction via the Feshbach resonance and known initial geometry
through the shape of the potential induced by the optical tweezer.
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Chapter 2

Testing the low particle number
limit

At this point we have established that there is evidence supporting the claim of fluid
dynamic behavior in very small systems and that cold atomic systems are suited to
study this due to their good control over the initial state geometry and particle inter-
action. This chapter lays out the concept of an experimental procedure, a theoretical
approach to the prediction of the system’s behavior in both real and momentum space
and a comparison between numerical results and the experimental data measured and
processed by the Ultracold Quantum Gases group at the Physikalisches Institut of
Heidelberg University.

2.1 Qualitative expectations

In this section, I will introduce the general concept of a cold atom experiment that
investigates the elliptic flow for a small number of particles as well as give a qualitative
prediction of the scaling of v2 with the particle number. I explore the non-interacting
case and its non-flow contributions to the results and reason that effects due to particle
interaction will come to dominate as the particle number increases. The work presented
here was done in cooperation with Stefan Floerchinger, Giuliano Giacalone and Leena
Tharwat and published in [71]. This section follows along the line of thought of that
publication.

2.1.1 Experimental observable and schematic setup

As discussed before, the preferred indicator for potential fluid dynamic behavior is the
ratio of initial spatial and late-time momentum anisotropy v2/ε2. The initial geometry
and thereby ε2 of the cold atom cloud is determined by the interaction strength and
the trapping potential both of which are part of the experimental setup. Assuming
we can always prepare the exact same N particle ground state, this means the initial
anisotropy of the system will always be the same, at least statistically over all suffi-
ciently large subsets of the measurements. In the following, we will assume a harmonic
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two-dimensional trapping potential. It is fully determined by the trapping frequencies
in each spatial direction, ωx and ωy and gives us an angular frame of reference for the
expansion process. A fluid at rest in this trap would align the orientation of its shape
with the axes of the ellipse defined by the equipotential lines. This lets us drop the
angular information that would inherently be contained in E2 and V2. At this point,
the initial ellipticity could depend on up to four scalar degrees of freedom. While it
would be possible to determine ε2(N, a, ωx, ωy) experimentally for each set of these, we
consider only the spatial ellipticity of a one-particle, and thus non-interacting, ground
state in the trap. In that case we find that the result only depends on the ratio of the
trapping frequencies,

ε2 =
1− ωy/ωx
1 + ωy/ωx

. (2.1)

In general, this will not be the exact initial ellipticity of any given N particle ground
state. It does, however, give us a reference point close enough to an exact result which
we can use to normalize any measurement of v2. Also, this definition is independent
of the internal physics of the cold atom system. The fact that ε2 can be negative
is a remainder of the original angular information that indicates along which of the
coordinate axes the long axis of ellipse is oriented, reduced from a U(1) to a Z2 degree
of freedom.

The elliptic flow, on the other hand, will be determined from the time-of-flight
measurement. That data provides us with a histogram of the particle positions that will
approximate the complete one-particle distribution in space n(x, y). Using the common
assumption that, after a sufficiently long time of flight, the real space distribution will
mirror the momentum distribution scaled with time, we can calculate the elliptic flow
as

v2 = ⟨cos(2ϕp)⟩f(p⃗), t→∞ ≈ ⟨cos(2ϕ)⟩n(x,y), t→∞

=

∫
dx dy n(x, y)

x2 − y2

x2 + y2
.

(2.2)

Here, again, the sign encodes the orientation of the anisotropy in relation to the
axes of the trapping potential. We make use of the remaining angular information
to distinguish between the inversion of shape (v2/ε2 > 0) and the for ideal fluids
unexpected conservation of shape (v2/ε2 < 0). While in a large sample of particles
the transition from the measured position histogram to the continuous distribution
is reasonable, that becomes less certain if we only have a small number of particles
in each image. This is not a problem as long as the same microscopic wave function
ψ(x) can be prepared within the trap initially. In that case, each shot samples the
probability distribution given by |ψ(x)|2 = n(x) and we can combine the results of
many measurements into one histogram in order to reproduce it.

This leaves us with a straightforward measurement procedure for the qualitative
study of potential fluid dynamic behavior. A ground state of N particles is prepared
for a fixed known scattering length a in a trap with known frequencies ωx and ωy. The
trapping potential is turned off instantaneously and the particle cloud expands. After a
sufficiently long fixed time of flight, the positions of the atoms are imaged, destroying
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the state in the process. This measurement is repeated many times with the same
initial conditions in order to reproduce the probability distribution as accurately as
possible. From the initial trap configuration and the particle distribution at final time,
we can construct v2/ε2 for this set of experimental parameters. This procedure can
be performed for different numbers of particles in the initial state in order to get an
understanding of the dependence of the normalized elliptic flow. Such a measurement,
in fact, was already done for N ∼ 105 atoms by O’Hara et al. [16] where they found
an inversion of the atomic cloud’s aspect ratio as it expanded. Following this, other
experiments investigated elliptic flow under different aspects, for bosonic atoms [18,
19, 22] and mixes of different isotopes [23], for different interactions [20–22] and as a
probe of viscosity [17, 24, 25]. However, all these previous studies were performed on
systems with a macroscopic number of particles. In the following, we will explore the
mesoscopic regime that is too complex for a full analytical treatment, but does not yet
fall clearly into the range of collective descriptions.

2.1.2 Addressing non-flow contributions

The measurement we proposed is based purely on one-particle distributions with a
known initial orientation and thereby avoids many of the difficulties and uncertainties
that come with multiparticle correlations. In systems as small as the ones we are
considering, however, we cannot neglect that on a microscopic level we are working
with a marginalized N -particle wave function ψ(t, x). Heisenberg’s uncertainty tells
us that even if the cloud of atoms is at zero temperature and at rest, there will be
some variance of the momentum around zero. This is true even in a setting without
interactions. Since we state fluid dynamics to be a result of interactions, any anisotropy
in that initial momentum spread would give a contribution to the elliptic flow that is
similar to the non-flow contributions in the high energy measurements. In a setting
with many fermionic atoms like the system of O’Hara et al., this is not a significant
problem because the fermions will fill up energy levels from the bottom up and form
a Fermi sphere in momentum space that is isotropic regardless of the trap geometry
and thus does not contribute to the elliptic flow. For the few-particle system we will
first analyse the non-interacting case.

Without interactions, the system we are dealing with is that of a fixed number N of
fermionic particles in an external potential. It is well-described by quantum mechanics
as a state |Ψ⟩ whose evolution is determined by the Schrödinger equation

i∂t |Ψ⟩ = H |Ψ⟩ , (2.3)

with a Hamiltonian comprised of a kinetic and potential term for each particle,

H =
N∑
i=1

p⃗2i
2m

+ V (x⃗i) . (2.4)

Since this Hamiltonian separates additively into the same terms for each particle, we
can construct an N particle solution from a product of one particle solutions |ψn,m⟩.
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Taking into account the necessary antisymmetrisation, we find

|Ψ⟩ = 1√
N !

∑
σ∈SN

sign(σ)
N⊗
i=1

|ψni,mi
(σ(i)) ⟩ , (2.5)

where SN is the symmetric group containing all permutations of the numbers from one
to N . This construction is also called the Slater determinant [72].

The first step is thus to solve the problem for only one particle. The potential we
use is

V (x⃗) =
mω2

x

2
x2 +

mω2
y

2
y2 . (2.6)

The solution to the resulting eigenstate problem of the one-particle Hamiltonian is
well-known to be

ψn1,n2(x⃗) = ⟨x⃗|ψn1,n2⟩ =
√

m
√
ωxωy

2n+mn1!n2!π
Hn1(

√
mωxx)Hn2(

√
mωyy)e

−mω2
x

2
x2−

mω2
y

2
y2 ,

H |ψn1,n2⟩ = En1,n2 |ψn1,n2⟩ ,
En1,n2 = (n1 + 1/2)ωx + (n2 + 1/2)ωy ,

(2.7)

with the Hermite polynomials Hn. The representation in momentum space is very
similar,

ψn1,n2(p⃗) = ⟨p⃗|ψn1,n2⟩

=
1√

2n+mn1!n2! πm
√
ωxωy

Hn1

(
px√
mωx

)
Hn2

(
py√
mωy

)
e
− p2x

2mωx
−

p2y
2mωy .

(2.8)

In the non-interacting scenario we are currently considering, expectation values of
momentum quantities do not change over time, hence we can determine v2 from the
above representation via its standard definition (2.2). For the one-particle ground
state that amounts to

v2 = ⟨cos(2ϕp)⟩ψ0,0
=

〈
p2x − p2y
p2x + p2y

〉
ψ0,0

=
1−

√
ωy/ωx

1 +
√
ωy/ωx

, (2.9)

which leads to the ratio v2/ε2 varying between 0.5 and 1 which is noticably larger
than the results from high energy physics (v2/ε2 ≈ 0.3, [73]) or the many particle limit
(v2/ε2 ≈ 0.43, from the data of [16]).

Returning to the case ofN particles, there is another important thing to note. Since
the particles are all indistiguishable from one another, we can formulate one-particle
expectation values as observables in terms of position and momentum operators re-
ferring to just one particle. For any such operator A = A(x⃗i, p⃗i) we can formulate its
expectation value as

⟨A⟩Ψ =
1

N

N∑
i=1

⟨A⟩ψni,mi
, (2.10)
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which is nothing but the average over all individual one particle expectation values for
all sets of quantum numbers in the full state. We can also apply this to the elliptic
flow and the total energy. The ground state for N particles at fixed trap aspect ratio
will hence be the antisymmetric combination of the N lowest energy states of the one-
particle system. In what order the quantum numbers increase will in general depend
on the chosen trap ellipticity. With this, it is also possible to see the buildup of a
Fermi sphere for large particle numbers. The ratio of the momentum variances in the
two spatial dimensions,

⟨p2x⟩Ψ〈
p2y
〉
Ψ

=
ωx
ωy

(
1
2
+ 1

N

∑N
i=1 ni

)
(

1
2
+ 1

N

∑N
i=1mi

) , (2.11)

depends on the aspect ratio of the trap and the ratio of average quantum numbers in
the corresponding directions. We expect the latter to scale inversely proportional to
the trap aspect ratio for ground states at larger particle numbers, which leads to an
aspect ratio converging to unity, regardless of the trap geometry. This also manifests
in the predictions of the elliptic flow shown in figure 2.1. The elliptic flow starts at
very large values for a single particle but from there decreases roughly as the inverse
of the particle number. The jumps around this trend are due to the discreteness of
the particle number and quantum numbers.

Figure 2.1: Predictions for the normalized elliptic flow v2/ε2 (disregarding the sign)
of a non-interacting quantum harmonic oscillator ground state as a function of the
particle number. The solid lines are all proportional to 1/N (blue: 2.8/N , green:
0.8/N , red: 0.5/N) and are shown to illustrate the general trend of the data points.
Adapted from [71].

One dimension of our system that we have consistently neglected so far is tempera-
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ture. We can make use of the non-interacting scenario to test whether that is justified.
At finite temperature, we can no longer work with a wave function, but instead formu-
late the state of the system as a density operator. In thermal equilibrium, the system
is a mixture of all possible states weighted by their energy compared to the thermal
energy scale kBT = β−1. For a system with just a single particle that can be expressed
as

ρ =
e−βH

tr(e−βH)
=

1

Z

∞∑
n=0

∞∑
m=0

|ψn,m⟩ ⟨ψn,m| e−β(nωx+mωy) ,

Z =
∞∑
n=0

e−βnωx

∞∑
m=0

e−βmωy =
1

(1− e−βωx)(1− e−βωy)
.

(2.12)

Expectation values with respect to this density operator are calculated by

⟨A⟩ρ = tr(ρA) . (2.13)

For the single particle case we can calculate the variance of momentum explicity,〈
p2x
〉
= mωx

(
1

2
+

1

eβωx − 1

)
. (2.14)

From there, we can make a very similar argument as before since the ratio of momen-
tum variances, 〈

p2y
〉

⟨p2x⟩
=
ωy
ωx

tanh(βωx/2)

tanh(βωy/2)
, (2.15)

becomes unity in the limit of infinite temperature, β → 0, which implies that the
elliptic flow should also vanish. This is confirmed by the numerical results shown in
figure 2.2 in which for numerical practicality we only considered the 100 lowest energy
states for a given ellipticity. It is also consistent with the low temperature limit,
β → ∞, calculated before in (2.11) which simply becomes the trap frequency ratio
for a single particle. For more than one particle this becomes much more complicated
to express because even with a limited range of quantum numbers, the number of
possible states grows rapidly with the particle number. We checked systems with
up to N = 4 atoms numerically and found the same results of v2 decreasing with
increasing temperature. It is possible to make an analytical argument that the infinite
temperature limit for any fixed number of particles is identical to the limit of infinite
particle number at zero temperature. In both cases the elliptic flow is averaged over the
entire spectrum of eigenstates with equal weights (see also appendix of [71]). Therefore,
we can expect the asymptotic behavior

lim
β→0

v2 = 0 , (2.16)

for non-interacting particles, regardless of particle number.
In summary, this means that non-flow contributions due to the quantum nature of

the system are very relevant in the limit of few particles, but decrease in importance
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Figure 2.2: Predictions for the normalized elliptic flow v2/ε2 of a single particle har-
monic oscillator ground state as a function of the dimensionless temperature scale
T/

√
ωxωy. Adapted from [71].

as the number of particles rises. Any deviation in temperature from the expected
T ≈ 0 would suppress these non-flow effects. Therefore, we will continue to neglect
any effects from non-zero temperature as they would only decrease contributions of
the initial state momentum variance that are present without interactions.

2.1.3 Qualitative prediction of elliptic flow

We have now studied the non-interacting case and its influence on the elliptic flow in
much detail. In order to understand how this is modified by the presence of interac-
tions, we start in the many particle limit in which fluid dynamics has already been
proven to be applicable [16]. In that limit we also expect a kinetic theory description
to be viable. That means we can make use of the the scales introduced in section 1.1.5
to determine how the applicability of fluid dynamics scales with the particle number
from that point of view. The relevant dimensionless scale to answer that question is
the Knudsen number Kn. Using a hard sphere model as the basis, we can see that
the only quantity in the definition of the Knudsen number (1.24) that scales with the
particle number in an equilibrium situation is the system size. In the two-dimensional
case we are considering, the system length would scale like the square root of the
particle number, L ∝

√
N . Under these simplifying assumptions, we obtain for the

scaling of the Knudsen number with the particle number,

Kn ∝ 1/
√
N . (2.17)
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While this specific result is a product of drastic simplifications, it shows the general
trend that the Knudsen number decreases with increasing particle number in a fast
manner, compared to e.g. a logarithmic scaling of the cross section with the interaction
strength [70]. Fluid dynamics is expected to be applicable only if the Knudsen number
is very small, Kn ≪ 1. For larger values individual particle dynamics are expected to
play too big a role to simplify them as just a density in space. A phase space description
for e.g. free streaming can however still be viable. This also tells us that as the cloud of
atoms expands, it will eventually lose any fluid dynamic properties it might have, since
the product of particle density, contained in the mean free path, and system diameter
in equation (1.24) will decrease as the cloud expands. A similar prediction can be
made on the basis of a superfluid with a Bogoliubov dispersion relation (1.56). As the
density decreases during expansion, so does the critical velocity. When the velocity of
the expanding particles crosses this continuously decreasing limit, superfluidity breaks
down.

In a fluid dynamic modeling of the system the elliptic flow is clearly non-vanishing.
We expect that contribution to come only from interactions since the non-flow con-
tributions are negligible in the many particle limit. This means that the elliptic flow
will converge to its fluid dynamic value for large N . On the few particle side of the
problem, we expect interactions to contribute less to the value of v2 since there are
fewer potential participants for any scattering event. In the extreme case of just one
particle, we expect interactions not to contribute at all such that the elliptic flow is
fully determined by non-flow effects. Combining this expectation of an interaction
contribution converging to a macroscopic value from below with the non-flow contri-
butions scaling roughly inversely with the particle number leads us to the qualitative
prediction in figure 2.3. Depending on the balance between non-flow and collective
parts we would expect either a monotonously decreasing curve converging to the fluid
dynamic limit or a curve with a minimum after which the system goes back up to
again the fluid dynamic prediction. This has been investigated experimentally by the
Ultracold Quantum Gases group at Heidelberg University [74]. They found the second
type of behavior with a minimum at N = 2+ 2 particles for their configuration of the
interaction strength.

2.2 Quantitative theoretical predictions

After confirming qualitatively the presence of fluidlike behavior in these small atomic
systems, we want to convince ourselves fully by making quantitative comparisons as
well. In this section, I present methods to model the flow of the cold atom cloud.
First, I establish a suitable approximation for the thermodynamic equation of state of
the system based on experimental results from the many body case. Based on this, I
make predictions for the evolution of the Thomas-Fermi type density profile predicted
by fluid statics. By making further assumptions, the fluid dynamic predictions can
be expanded to include global momentum space expectation values. These theoretical
considerations lay the groundwork for the following numerical calculations. This was,
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v2/ε2

Non-interacting QM
Classical interacting
Combined effects

Fluid dynamic limit

Figure 2.3: Qualitative sketch of the scaling of the elliptic flow with the particle
number for an interacting system that expands after being released from an anisotropic
harmonic trap. At low particle numbers we expect the influence of quantum effects
(red dashed curve) to dominate while for larger numbers interactions (blue dot-dashed
curve) play a more central role. The behavior of the combined system (solid black
curve) could therefore have a minimum and will most likely converge to a macroscopic
value (dotted purple line) in the many-particle limit. Adapted from [71].

again, done in cooperation with Stefan Floerchinger and Giuliano Giacalone.

2.2.1 Finding the right equation of state

The only external ingredient needed for a description of the cold atom system as an
ideal fluid is its thermodynamic equation of state. Depending on which side of and
how close to the Feshbach resonance the external magnetic field is set, the system
can behave anywhere between weakly or strongly interacting Bose gas and strongly
interacting or ideal Fermi gas. In general these types of behavior and the corresponding
equations of state are descriptions of many-particle situations which clearly fall into
the range of thermodynamics. Since we are trying to expand the boundaries of what
we can reasonably describe with this kind of macroscopic language, we will make use
of these concepts even in the few-particle case we are considering. We start with one
of these edge cases. The thermodynamic properties of ideal Fermi gases have been
studied extensively. From the constant density of states we know the equation of state
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in the two-dimensional case with two possible hyperfine states to be [3]

n(µ) = 2λ−2
T ln(1 + eβµ) (2.18)

with the thermal wavelength

λT =

(
2π

mkBT

)1/2

. (2.19)

In the low temperature limit β → 0, this equation of state simplifies to

n(µ) ≈ 2λ−2
T βµ =

m

π
µ (2.20)

The pressure can be calculated from that particle density as

P (µ, T → 0)− P0 =
m

2π
µ2 =

π

2m
n2 =

π

2m3
ρ2 (2.21)

Ignoring the constant shift, this is a polytropic equation of state, meaning it is mono-
mial in density, P = cρκ, with exponent κ = 2. From here on we will refer to this as
the ideal Fermi pressure PF .

Finding the equation of state for an interacting system is much more complicated
from a theoretical point of view. There have however already been studies on this,
both experimental and numerical [75–78], in the many-particle limit. These usually
put the pressure in relation to the ideal Fermi one, so we will do the same. The relevant
dimensionless scale as shortly discussed in section 1.5.4 is

η = ln(kFa2d) ,

kF =
√
2πn ,

(2.22)

which puts the two-dimensional scattering length and the Fermi momentum, and
thereby density, of the system into relation. The limit η → ∞ captures the behavior of
the cold atoms like an ideal Fermi gas, while the ideal Bose gas behavior is recovered
for η → −∞. The strongly interacting case is expected when the scattering length
and the interparticle spacing are comparable, at η ≈ 0. Multiple approximations for
different ranges of η have been compared to both experimental data and quantum
Monte Carlo simulations covering the strongly interacting region [77]. Since we are
considering a system that starts off dense enough to be near η ≈ 1 at its peak density
and only dilutes from there on, we matched an equation of state to the quantum Monte
Carlo data from [76] of the region η < 2 as shown in figure 2.4. We approximated the
multiplicative correction to the ideal Fermi pressure with an exponential function,

P

PF
≈ α1e

α2η . (2.23)

For the calculations and simulations in the following sections we will use

α1 ≈ 0.27 , α2 ≈ 0.55 . (2.24)
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Therefore, the equation of state modified by interactions that we will be using is

Pfit = α1

(
2πa22d
m

)α2/2 π

2m3
ρ2+α2/2 , (2.25)

rewriting η in terms of density and scattering length. Notably, this is also a polytropic
equation of state which is beneficial for both numerical and analytical calculations.

Figure 2.4: Exponential fit (solid black curve) of the multiplicative correction to the
equation of state compared to the interpolated results of a quantum Monte Carlo
simulation (dashed red curve) and experimental data (blue dots). For η > 1.3 the fit
starts to diverge from the data as it does not capture the convergence towards the
ideal Fermi gas pressure. Experimental and quantum Monte Carlo data taken from
[76].

2.2.2 Real space prediction

With this approximate equation of state, we can return to the fluid dynamic equa-
tions of motions and try to solve them. However, we also need to know the initial
configuration of system in order to predict its evolution. For the velocity, this is an
easy problem to solve. The system is at rest initially and as such cannot have any
macroscopic motion, i.e. fluid velocity. In order to arrive at a form for the initial
density, we make use of the hydrostatic situation before the expansion of the atom
cloud. At that point in time, there are still the external forces of the trap acting
on the fluid. Inserting those into the Euler equation and rewriting the pressure as a
chemical potential as in section 1.3, we get

ρ(∂t + u⃗ · ∇⃗)u⃗+
ρ

m
∇⃗µ = − ρ

m
∇⃗Vtrap . (2.26)
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However, considering that the fluid is completely at rest before and at the very start
(t = t0) of the expansion, the fluid velocity must vanish. This leaves a very simple
solution for the chemical potential at initial time,

ρ∇⃗µ = −ρ∇⃗Vtrap
µ(t0, x⃗) = µ0 − Vtrap(x⃗) ,

(2.27)

where µ0 is just an integration constant for now. Since arriving at this equation
required dividing by the mass density, it is only valid where the mass density is non-
vanishing. Starting from a polytropic equation of state,

P = cnκ , (2.28)

we can express the chemical potential via dp = n dµ = cκnκ−1 dn as a function of the
density,

µ =
cκ

κ− 1
nκ−1 . (2.29)

Inverting this gives us the particle number density and hence the mass density in terms
of the chemical potential,

ρ = m

(
κ− 1

cκ

) 1
κ−1

µ
1

κ−1 . (2.30)

With that we can use equation (2.27) to define the initial fluid density. The integra-
tion constant µ0 is fixed by the normalisation of ρ to the total mass in the system.
Since for κ > 1 the chemical potential cannot be negative, according to (2.29), the
density must vanish at all points at which Vtrap(x⃗) > µ0. This usually leads to a non-
smooth behavior of both density and chemical potential at the boundaries defined by
Vtrap(x⃗b) = µ0. While this is fine in a classical context and in areas of high density, in a
quantum-mechanical context one can consider contributions like the quantum pressure
in equation (1.54). This makes the dependence of the particle density on the chemical
potential in general very complicated, but alleviates some of the problems at the edges
of the density [79].

We will stick with the classical approach for now and combine it with the Lagrange
coordinates discussed in section 1.3. The first thing to notice is that due to the
polytropic equation of state and the scaling of the comoving density, the chemical
potential inherits a very similar scaling behavior,

µ(t, r⃗(t, R⃗)) =
µ(t0, R⃗)

J(t, R⃗)κ−1
=
µ0 − Vtrap(R⃗)

J(t, R⃗)κ−1
. (2.31)

Specifying the trapping potential to be harmonic,

Vtrap(R⃗) =
m

2
ω2
jkRjRk , (2.32)

we can see that the initial chemical potential is invariant under parity transformations
R⃗ → −R⃗. The initial fluid velocity field is zero everywhere and thus trivially has both
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odd and even parity. Considering that the gradient of the chemical potential is the
driving force of any movement in the system, this symmetry translates to the parcel
position as

r⃗(t,−R⃗) = −r⃗(t, R⃗) . (2.33)

Contributions breaking this symmetry cannot be generated without being present in
the initial conditions. In order to solve the Euler equation, we make the assumption
that the position of a fluid parcel is linearly related to its initial position, equivalent
to the assumption in [80],

rk(t, R⃗) = ζjk(t)Rj . (2.34)

While this is just an ansatz, if it solves the differential equations for the given condi-
tions, we can infer the uniqueness of that solution from the physicality of the situation
and the local version of Picard-Lindelöf, if we restrict ourselves to analytical depen-
dence on R⃗. As a consequence of this form of the parcel position we find

Jjk(t) = ζjk(t) ,

J(t) = det(ζjk(t)) = ζ11ζ22 − ζ12ζ21 .
(2.35)

The fact that the Jacobian no longer depends on the initial parcel position also lets us
express the gradient of the chemical potential in equation (1.44) in terms of a gradient
of the trapping potential. Assuming the Jacobian does not vanish, which it should not
for a physically viable solution, we can derive

det(ζ(t))κ−1ζjk(t)
d2

dt2
ζlk(t) = ω2

(jl) , (2.36)

with initial conditions inherited from the parcel position,

r⃗(t0, R⃗) = R⃗ ⇔ ζjk(t0) = δjk ,

u⃗(t0, R⃗) = 0 ⇔ ζ̇jk(t0) = 0 .
(2.37)

Since the trap frequency matrix ω2
(jl) is symmetric, we diagonalise it only by applying

rotations of or coordinate system,

ω2
(jl) = diag(ω2

x, ω
2
y)jl . (2.38)

Expanding the differential equation (2.36) into its four components,

(ζ11ζ22 − ζ12ζ21)
κ−1(ζ11ζ̈11 + ζ12ζ̈12) = ω2

x ,

(ζ11ζ22 − ζ12ζ21)
κ−1(ζ11ζ̈21 + ζ12ζ̈22) = 0 ,

(ζ11ζ22 − ζ12ζ21)
κ−1(ζ21ζ̈11 + ζ22ζ̈12) = 0 ,

(ζ11ζ22 − ζ12ζ21)
κ−1(ζ21ζ̈21 + ζ22ζ̈22) = ω2

y ,

(2.39)

we can see that their solution for our given initial conditions is compatible with ζjk(t)
also being diagonal, ζ12(t) = ζ21(t) = 0. With the notation ζ11 = ζx and ζ22 = ζy we
can thus formulate the differential equations as

ζ̈x = ω2
xζ

−κ
x ζ1−κy ,

ζ̈y = ω2
yζ

−κ
y ζ1−κx .

(2.40)
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These equations differ only by the exchange (x↔ y). One of them can be equivalently
replaced by

1

ω2
x

ζxζ̈x =
1

ω2
y

ζy ζ̈y . (2.41)

Specifically for the isotropic case ωx = ωy = ω, with isotropic initial conditions,
equation (2.41) implies ζx = ζy = ζiso. For the remaining one independent function
the differential equation is

ζ̈iso = ω2ζ1−2κ
iso . (2.42)

For an ideal Fermi gas with κ = 2, this is easily solved as

ζiso(t) =
√
1 + ω2(t− t0)2 , (2.43)

which asymptotically approaches a linear time depedence as would be expected for a
freely streaming fluid. For our modified equation of state (κ = 2+α2/2), the solution
can be written implicitly as

ζiso(t)
2
2F1

(
1

2
,− 1

2 + α2

; 1− 1

2 + α2

; ζiso(t)
−2−α2

)2

=
2ω2

2 + α2

(
t− t0 +

√
2 + α2cF√

2ω

)2

,

(2.44)
where 2F1 is a hypergeometric function and cF its value for ζiso = 1. While it is hard
to obtain to an explicit form for ζiso from this, we can draw some conclusions about its
asymptotic behavior. The second time derivate of the function is strictly positive as
long as the function itself is strictly positive according to equation (2.42). Therefore,
the initial conditions imply that ζiso is strictly monotonously increasing in time. As
such, the last argument of the hypergeometric function will vanish at late times if ζiso
is not bounded from above. We make use of the identity 2F1(a, b; c; 0) = 1 to find the
asymptotic behavior

lim
t→∞

ζiso(t)

t
=

√
2

2 + α2

ω . (2.45)

We again see the asymptotically linear scaling that we associate with free streaming
at late times.

Within the linear ansatz we find that the transformation back to Euler coordinates
becomes particularly simple. The density can be expressed in terms of the scaling
function,

ρ(t, x⃗) =
ρ(t0, R⃗(t, x⃗))

J(t)
=
ρ(t0, ζ

−1(t) · x⃗)
ζx(t)ζy(t)

, (2.46)

with the notation ζ−1 = diag(ζ−1
x , ζ−1

y ). The functional form of the fluid velocity is
similarly straightforward,

uk(t, x⃗) = ζ̇jk(t)Rj(t, x⃗) = ζ̇jkζ
−1
jl xl = diag

(
ζ̇x
ζx
,
ζ̇y
ζy

)
jk

xj . (2.47)
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Another advantage of the linear ansatz is that it makes some expectation values very
easy to calculate, e.g.〈

x2
〉
ρ(t,x⃗)

=
1

mtot

∫
d2R x2(t, R⃗)ρ(t0, R⃗) = ζ2x(t)

〈
x2
〉
ρ(t0,x⃗)

. (2.48)

Notably, the ratio between expectation values like this and their initial value only de-
pends indirectly on the initial density profile. For the given example, ⟨x2⟩ (t)/ ⟨x2⟩ (t0)
only depends on ζjk. The differential equations determining ζjk directly contain the
derivative of the initial chemical potential and thus of the initial density, but is not
sensitive to µ0 and thereby also insensitive to the number of particles in the fluid. With
our knowledge about the initial chemical potential and its relation to the density, we
can go one step further. At initial time the width in x-direction is

〈
x2
〉
ρ(t0,x⃗)

=
1

mtot

∫
d2x x2m

(
κ− 1

cκ

) 1
κ−1

(µ0 − V (x⃗))
1

κ−1Θ(µ0 − V (x⃗)) . (2.49)

We can introduce a coordinate transformation that accounts for the elliptical symmetry
of the trapping potential,

x =
r̃

ωx
cos(φ̃)

y =
r̃

ωy
sin(φ̃)∣∣∣∣det ∂(x, y)∂(r̃, φ̃)

∣∣∣∣ = r̃

ωxωy
.

(2.50)

With this transformation, we find that the integral decomposes into the product of a
radial and an angular integral,

〈
x2
〉
ρ(t0,x⃗)

=
1

mtot

1

ω2
x

∫ 2π

0

dφ̃ cos2 φ̃

∫ √
2µ0/m

0

dr̃
r̃

ωxωy
r̃2m

(
κ− 1

cκ

) 1
κ−1

(µ0 −
m

2
r̃2)

1
κ−1 .

(2.51)
Looking at the aspect ratio at initial time, we find that the radial part is identical for
⟨x2⟩ and ⟨y2⟩ and the angular part integrates to the same value. Therefore, the initial
aspect ratio is entirely determined by the ratio of the trap frequencies,√

⟨x2⟩ρ(t0,x⃗)
⟨y2⟩ρ(t0,x⃗)

=

√√√√ω2
y

ω2
x

∫ 2π

0
dφ̃ cos2 φ̃∫ 2π

0
dφ̃ sin2 φ̃

=
ωy
ωx

. (2.52)

This calculation of the initial aspect ratio does not require the equation of state to
be polytropic. The separation works as soon as the initial density can be expressed a
function of only (µ0 − V (x⃗)). In the polytropic case, however, the time evolution of
the aspect ratio is also easy to formulate,√

⟨x2⟩ρ(t,x⃗)
⟨y2⟩ρ(t,x⃗)

=
ζx(t)ωy
ζy(t)ωx

. (2.53)
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Since the scaling functions ζx and ζy are independent of the integration constant µ0

which fixes the number of particles in the system, this result is valid for an arbitrary
number of particles.

The representation in Lagrange coordinates gives us a powerful tool for the solution
of the problem specifically for the Thomas-Fermi density profile with a polytropic
equation of state. For other initial density profiles it fails to reduce the fluid dynamic
equations from partial to ordinary differential equations. We can also use this to our
advantage. A violation of the very general prediction of the fluid’s aspect ratio in a
harmonic trap can be seen as an indicator for the relevance of effects like quantum
pressure.

2.2.3 Momentum space prediction

If the real space dynamics of the system are well-described by hydrodynamics, we
can go one step further by making predictions for momentum space observables as
well, in our case specifically the root mean square of momentum in a certain spatial
direction ⟨p2i ⟩. While hydrodynamics by itself does not include this quantity, we can
still make predictions based on the information we already have by employing three
assumptions.

The first one is that there is an underlying one-particle phase space distribu-
tion f(t, x, p) that describes the real and momentum space moments of the system.
This is a given for kinetic theory which, uses this as the central object of interest (see
section 1.1). But non-collisional systems can have something similar as well. For a
quantum-mechanical system one can define the Wigner pseudodistribution, introduced
by Wigner in [81], which does not fulfill all of the criteria for a probability distribution,
but still generates all the moments of the system. In general, we require an object
f(t, x, p) that allows us to define expectation values as

〈
p2i
〉
=

∫
d2x d2p

(2π)2
p2i f(t,x,p)∫

d2x d2p
(2π)2

f(t,x,p)
. (2.54)

We choose the distribution function to be normalized such that∫
d2p

(2π)2
f(t,x,p) = n(t, x) (2.55)

where n(t, x) is the particle number density of the system.
The second assumption is the identification of the momentum flux tensor for this

distribution as in (1.14) or equivalently as an object like the relativistic energy mo-
mentum tensor,

Tµν =

∫
d2p

(2π)2
pµpν
p0

f(x, p) , (2.56)

in a relativistic setting. If this identification can be made for the given system and
distribution function, the expectation value can be rewritten as〈

p2i
〉
= m2

∫
d2xTii(t, x)∫
d2x ρ(t,x)

. (2.57)
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This reduces the momentum space expectation value to an integral over spatial quan-
tities and leads to a definition of momentum anisotropy as presented in [47, 82].

The third and final assumption is, as in the derivative expansions introduced before,
the specific choice of the stress tensor in terms of the hydrodynamic variables, which
is necessarily already contained in the fluid dynamic simulations. For our purposes we
use the ideal fluid stress tensor from equation (1.17), which leaves us with

〈
p2i /m

2
〉
=

1

Nm

∫
d2x ρ

(
u2i +

P

ρ

)
:=
〈
u2i
〉
ρ
+ ⟨P/ρ⟩ρ .

(2.58)

Given the equation of state, fluid density and velocity of a system, this allows us to
determine the momentum space width in either spatial direction. This method is not
restricted to ideal fluids. If the first two assumptions hold, viscous corrections can be
added to formula (2.58) without issue.

The reality of experimental measurement procedures, however, can add some com-
plications to this. If the momentum variance measurement requires quenching off the
interactions (as in [28]), this causes a sudden and hard to predict change in the equa-
tion of state of the system. In that case, the momentum variance in each individual
direction is no longer a robustly predictable quantity. Instead, we consider the trace-
less part of the stress tensor, which is insensitive to the pressure and only depends on
the fluid dynamic quantities ρ and u⃗ that are guaranteed to be continuous due to their
evolution equations. The observable to be compared to experiments then becomes the
difference between momentum variances,

1

m2

〈
p2x − p2y

〉
=

1

Nm

∫
d2x ρ

(
u2x − u2y

)
=
〈
u2x
〉
ρ
−
〈
u2y
〉
ρ
.

(2.59)

At higher orders of the derivative expansion, this acquires corrections due to shear
viscosity. These would be discontinuous over the interaction quench, but are expected
to be small corrections so that the prediction in (2.59) can still be fairly robust.

2.3 Numerical results

The theoretical predictions made in the previous section all still rely on a set of differ-
ential equations being solved in order to obtain predictions comparable to experiments.
First, I will present a numerical solution to the inhomogeneous setting with the initial
conditions predicted by hydrostatics. Noticing discrepancies in the initial condition
compared to the experiment, this is complemented by a fluid dynamic simulation with
an initial density profile fitted to experimental data in the second part. This pre-
diction will be compared to experimental data for both real and momentum space.
For this purpose, all numerical results will be calculated with ωx = 2π · 1.280kHz,
ωy = 2π · 3.384kHz and a2d = 1.17µm. The number of particles in the system is
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N = 10 = 5 + 5 unless explicitly stated otherwise. The numerical simulations were
done in cooperation with Giuliano Giacalone and the experimental results were ob-
tained and statistically evaluated by Philipp Lunt, Sandra Brandstetter, Carl Heintze
and Selim Jochim (paper in preparation [74]).

2.3.1 Thomas-Fermi type density profile

In order to solve the dynamics of the Thomas-Fermi type initial condition, we need
to solve the differential equations (2.40) with the initial conditions ζx(t0) = ζy(t0) = 1
and ζ̇x(t0) = ζ̇y(t0) = 0. Since this is a set of coupled ordinary differential equations
without any singular behavior, this can be easily achieved numerically. Setting t0 = 0
for simplicity, the solutions obtained from Mathematica’s NDSolve method (which
uses the method of lines [83, 84]) are shown in figure 2.5. As expected, we find that
the expansion along the x-axis is slower in comparison to the initially more strongly
confined y-direction. Both scaling functions become approximately linear in the long-
time limit with expansion speeds,

lim
t→∞

ζ̇x ≈ 4.64ms−1 ,

lim
t→∞

ζ̇y ≈ 23.6ms−1 .
(2.60)

This solution leads to the time evolution of the aspect ratio as shown in the blue curve
of figure 2.6. By design, it starts at the theoretically predicted ratio ⟨x2⟩ / ⟨y2⟩|t=0 =
ωy/ωx and decreases from there. The cloud is round, ⟨x2⟩ / ⟨y2⟩ = 1, at t ≈ 0.172ms
and for late times approaches the aspect ratio

lim
t→∞

⟨x2⟩
⟨y2⟩ ≈ 0.52 . (2.61)

The evolution of the aspect ratio for different ratios of the trap frequency, but the
same geometric average

√
ωxωy is shown in the other curves of figure 2.6. Overall, the

time at which the ratio of the cloud’s width becomes unity only weakly depends on
the aspect ratio.

This ansatz does have some problems however. It predicts a non-smooth behavior
of the initial density and does not feature tails, which we see in the experimental
data [74]. The Thomas-Fermi profile is also overall narrower and has a larger peak
density (cf. figure 2.7). Due to this, the fluid builds up more velocity and thereby
elliptic flow in the long time limit.

2.3.2 Initial density from experimental data

In order to remedy the issues of the fluid static initial conditions, we instead make use
of an initial density profile that is a fit to experimental data. For our simulations we
use a distribution remotely similar to a Fermi-Dirac distribution,

ρ(t0, x⃗) = ρ0

[
1 + exp

( |x|ax − bx
cx

)]−dx [
1 + exp

( |y|ay − by
cy

)]−dy
, (2.62)
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Figure 2.5: Numerical solution for the scaling functions ζx (orange) and ζy (blue) and
their time derivatives (inset; same colors) for trap frequencies ωx = 2π · 1.280kHz and
ωy = 2π · 3.384kHz. This can also be interpreted as the position and velocity of a test
particle starting at the point (1, 1) in arbitrary units. The velocity converges towards
a constant value after ∼ 0.15ms which indicates a transition to free streaming.

which allows for a flatter peak compared to a gaussian ansatz that would work well
for the one particle states. This model has nine fit parameters. The normalization
ρ0 is fixed such that the integratal over the initial density becomes the total mass in
the system (mtot = 10mLi). The other parameters are determined as the best fit to
the two-dimensional histogram obtained from position measurements of the particles
in the initial state (cf. figure 2.7), performed using a magnification technique instead
of purely time of flight [74]. The values obtained for the fit parameters, obtained with
scipy.optimize curve fit, which uses a non-linear least squares method [85], are

ax = 1.11643445 , bx = 3.14663841 , cx = 0.90498455 , dx = 2.14615622 ,

ay = 0.34480747 , by = 0.92854198 , cy = 0.11874637 , dy = 0.88257451 .
(2.63)

The initial cloud is almost Gaussian, but with a slightly flatter plateau towards the
trap center. Naturally, this fit compares much better to the experimental data than
the fluid static initial conditions as shown in figure 2.7. The assumption of vanishing
fluid velocity at initial time does not change. With this and the equation of state
(2.25), we have all we need in order to numerically solve the continuity and Euler
equation.

We chose not to implement a new numerical solver for the fluid dynamic equations
ourselves, but instead modified a preexisting code. This code, named pyro [86], was
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Figure 2.6: Time evolution of the aspect ratio for different trap frequency ratios at√
ωxωy = 2π · 2.081kHz. The aspect ratio becomes unity for all anisotropic cases

at similar times close to ∼ 0.175ms. The initial shape inverts in all these, but not
completely to the inverse of its initial aspect ratio.

used to run simulations for our initial conditions and equation of state. The compress-
ible hydrodynamics solver contained within uses a piecewise linear reconstruction to
solve the Euler equations with an upwind algorithm based on [87]. Running the code
with our initial conditions, we get snapshots at different simulation times for both the
density and fluid velocities in each spatial direction. From this data we calculate the
three quantities we want to compare quantitatively which are

√
⟨x2⟩(t),

√
⟨y2⟩(t) and〈

p2x − p2y
〉
(t).

The comparisons of the real space widths (figure 2.8) and the difference of squared
momenta (figure 2.9) strongly suggest that the pressure predicted by our fitted equa-
tion of state (2.25) is an underestimate. This leaves our predictions for both real and
momentum space consistently below the measured values. Considering that we used
a macroscopic equation of state for the few-particle case, that is expected. We do not
include finite size corrections. Considering that interparticle spacing, scattering length
and overall system size are on the same order of magnitude in the initial state, we would
have to consider the atoms not as distinct particles, but as overlapping wave packets or
even a full multiparticle wave functions. These quantum contributions could increase
the pressure (cf. quantum pressure in section 1.5.1). Another possible reason for the
discrepancy might be that the experimental system is not exactly at zero temperature
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and the resulting contributions are not negligible. In the macroscopic case, we can
account for this by a temperature dependent correction to the equation of state. If we
assume that there are no other scales in the system besides the scattering length, we
can argue that the finite temperature correction can be modeled by multiplication with
a function that only depends on the dimensionless quantity βµ or, equivalently, the
ratio of entropy and particle number density s/n which is conserved along flowlines for
ideal fluids [5]. Therefore, we choose to approximate the finite size and temperature
corrections by multiplying the pressure (2.25) by a constant factor, equivalent to a
spatially constant non-vanishing entropy per particle, which is an additional free pa-
rameter. As shown in figures 2.8 and 2.9 this leads to a fairly good agreement with the
experimental data. We conclude that for N = 5 + 5 6Li atoms with a2d = 1.17µm we
have strong evidence for fluid dynamic behavior in the early stages of the expansion,
albeit with a modified equation of state. The influence of finite size and temperature
has to be investigated further in order to properly understand this modification. Ex-
perimental results and numerical simulations for other particle numbers show that this
behavior breaks down below a certain number of particles (for fixed scattering length)
and below a certain interaction strength (for fixed particle number) [74].
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(a) Cross section of the initial density along the plane y = 0

(b) Cross section of the initial density along the plane x = 0

Figure 2.7: Comparison of cross sections of the initial density profile along the y = 0
(a) and the x = 0 plane (b). The Thomas-Fermi type profile (orange) is much narrower
than the experimentally observed one (blue). The fit of the form (2.62) (green) captures
the tails and central height of the distribution much better.The experimental data
is obtained as a two-dimensional histogram of the particle positions with bin size
(0.4µm × 0.4µm). All density profiles were normalized to a total mass equal to the
mass of 10 6Li atoms. The experimental data shown here was measured and analyzed
by Sandra Brandstetter, Philipp Lunt and Carl Heintze, supervised by Selim Jochim.
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Figure 2.8: Comparison of the early time evolution of the real space widths from
experiments (dots, boxes) and simulations (curves). Simulations were made with pres-
sure both as in (2.25) (dashed curves) and at twice that value (solid curves). The
simulations with increased pressure match the experimental data well and predict sign
change of ellipticity at ∼ 0.21ms while the curves with just the fitted pressure predict
a slower expansion than observed. The experimental data shown here was measured
and analyzed by Sandra Brandstetter, Philipp Lunt and Carl Heintze, supervised by
Selim Jochim. Adapted from [74].
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Figure 2.9: Comparison of the early time evolution of the momentum variance differ-
ence from experiments (dots) and simulations (curves). Simulations were made with
pressure both as in (2.25) (dashed curve) and at twice that value (solid curve). Both
curves flatten at around ∼ 0.15ms in agreement with experimental results, marking
the end of the acceleration of the fluid. The magnitude is much better predicted by
the simulation with increased pressure. The first experimental values are negative
which cannot be captured by the fluid dynamic simulations and should be investi-
gated further. The experimental data shown here was measured and analyzed by
Sandra Brandstetter, Philipp Lunt and Carl Heintze, supervised by Selim Jochim.
Adapted from [74].
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Chapter 3

Prediction of transport coefficients
from microscopic theory

Now we approach the problem from the other side. Instead of asking what properties a
microscopic system needs to have in order to qualify for a macroscopic description with
fluid dynamics, we come from a macroscopic fluid and study how we can determine its
transport coefficients, specifically in our case shear viscosity, from knowledge of its mi-
croscopic properties. The goal we will try to achieve is to specifically predict the shear
viscosity of a scalar λϕ4 toy model that is comparatively easy to explore. This has
been studied before in a perturbative expansion scheme [29, 30] which involves com-
plex resummations of ladder diagrams. We will instead make use of non-perturbative
functional renormalization group flow methods in order to obtain our results.

I start by introducing the elements of quantum field theory (QFT) at finite tem-
perature that are needed for the description of the microscopic system. The next step
towards the prediction of the viscosity is the idea of linear response. Utilizing the
Green-Kubo relations and reformulating them in terms of functional derivatives of the
1PI effective action, it is possible to express the shear viscosity in a way that allows us
to make use of functional renormalization group methods. We construct a minimalist
ansatz for the effective action that can still produce non-trivial results. The last sec-
tion formulates flow equations for the free parameters of our approximation and finally
also for the shear viscosity. The work presented in this chapter was done together with
Stefan Floerchinger and Tim Stötzel [88].

3.1 Basic objects of quantum field theory

In order to investigate the underlying microscopic theories of the macroscopic fluid
systems discussed in the previous chapter, in general one needs to make use of QFT
at non-zero temperature for a proper description. As such I will shortly (re)introduce
in this section the mathematical objects and notations that I will work with, following
along the lines of [89, 90].

In QFT, a theory is defined by knowledge of its microscopic action S which in
general is a functional of a set of field operators. Observables are formulated as free
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vacuum expectation values of correlation functions of these fields. They can be ob-
tained from the generating functional (for simplicity only with one field),

Z[J ] =

∫
Dϕ exp

(
−iS[ϕ]− i

∫
d4x J(x)ϕ(x)

)
, (3.1)

by taking the functional derivative with respect to their corresponding source, e.g.

⟨ϕ(x1)ϕ(x2)⟩ =
1

Z[0]

δ2Z[J ]

(−i)2 δJ(x2)δJ(x1)

∣∣∣∣
J=0

. (3.2)

The individual terms that contribute to this can be noted in the form of Feynman
diagrams which encode them graphically. From the Lehmann-Symanzik-Zimmermann
(LSZ) reduction formula [91] we can conclude that we need to consider amputated
diagrams. Also, for the cases we are interested in only connected diagrams are relevant
for physical results. The Schwinger functional can be introduced to address this,

W [J ] = ln(Z[J ]) ,

⟨ϕ(x1)ϕ(x2)⟩c =
δ2W [J ]

(−i)2 δJ(x2)δJ(x1)

∣∣∣∣
J=0

.
(3.3)

One can go even further to define a generating functional for only one-particle ir-
reducible (1PI) diagrams by considering the Legendre-Fenchel transformation of the
Schwinger functional,

Γ[Φ] = sup
J

∫
d4x J(x)Φ(x)−W [J [Φ]] ,

Φ(x) =
δW [J ]

δJ
= ⟨ϕ⟩J .

(3.4)

Γ[Φ] is called the 1PI or quantum effective action since for vanishing source it provides
an exact equation of motion for the one point expectation value (here for vanishing
source J = 0)

δΓ[Φ]

δΦ
= 0 . (3.5)

Since this can be considered like a classical action, but for Φ instead of ϕ, and Γ[Φ]
also generates one-particle irreducible correlation functions of ϕ, we can consider most
problems solved if we have exact knowledge of the form of the quantum effective action.
In the following, we will assume that we are in the symmetric phase, i.e. that a possible
solution to (3.5) is Φ = 0 and that Γ[Φ] has a global minimum at this point as well.

3.1.1 Finite temperature field theory

One thermodynamic degree of freedom that we have so far neglected is the tempera-
ture. While the absence of any disordered motion in a classical picture is a reasonable
assumption for the cold atom system discussed in the last chapter, it is not a good one
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to make if we want to calculate a finite shear viscosity. For this purpose we need to
look into how to calculate equilibrium expectation values at non-zero temperatures.

When dealing with finite temperature we can no longer treat our system as just
being in any one definitive state |ϕ⟩, but instead need to use a density operator ρ,
also called density matrix, to describe it. It can be imagined as a probability weighted
projection to different states in an orthonormal basis {|ϕi⟩} of the Hilbert space,

ρ =
∑
i

pi |ϕi⟩⟨ϕi| . (3.6)

It is hermitian, positive semidefinite and its trace is normalized to one. This simply
reflects natural properties of the probability distribution {pi},

pi ∈ R ,
pi ≥ 0 ,∑

i

pi = 1 .
(3.7)

Expectation values of an operator O with respect to the density matrix are defined as
the weighted average of expectation values with respect to the basis states,

⟨O⟩ρ = tr(ρO) =
∑
i

pi ⟨ϕi|O|ϕi⟩ . (3.8)

For a thermal system we go back to a description originating from classical statistical
physics, the canonical ensemble. It describes an equilibrium system that has a fixed
temperature and particle number within a fixed volume. The probability of being
occupied for a discrete set of states with energies {Ei} is

pi =
e−βEi∑
j e

−βEj
, (3.9)

where β = T−1 is the inverse temperature. For a quantum system this translates into
an equilibrium density matrix

ρeq =
e−βH

tr(e−βH)
, (3.10)

which reproduces exactly that distribution for an eigenstate basis of the Hamiltonian
[3]. Neglecting the normalization Z = tr

(
e−βH

)
, this density operator has a very simi-

lar structure to the time evolution operator U(t) = e−iHt known from zero-temperature
QFT. Matsubara connected this to an evolution in an imaginary time coordinate τ = it
[92]. With this Wick rotation we can express the density operator instead as a time
evolution,

ρeq = U(t = −iβ) = U(τ = β) . (3.11)

54



We can confirm this interpretation by looking at a thermal expectation value of a
two-point correlation function,

⟨ϕ(it, x)ϕ(0, y)⟩ρ =
1

Z
tr
(
e−βHϕ(it, x)ϕ(0, y)

)
=

1

Z
tr
(
ϕ(it, x)e−βHϕ(−iβ, y)

)
= ⟨ϕ(−iβ, y)ϕ(it, x)⟩ρ

= ⟨ϕ(τ = β, y)ϕ(τ, x)⟩ρ .

(3.12)

At t = 0 we directly find the Kubo-Martin-Schwinger (KMS) boundary condition (here
with bosonic sign),

ϕ(τ = 0, x) = ϕ(τ = β, x) , (3.13)

implying that bosonic fields must be periodic with respect to the imaginary time
(fermions would be antiperiodic). The KMS condition and Wick rotation transform
our generating functional to

ZE[J ] =

∫
Dϕ e−SE [ϕ]−J ·ϕ , (3.14)

where we now have a structure very similar to the one we find in classical statistical
field theory [89] with a euclidean action and Lagragian,

SE[ϕ] =

∫ β

0

dτ

∫
d3xLE[ϕ] . (3.15)

Like before in the zero-temperature case, derivatives of this thermal generating func-
tional will lead to expectation values of correlation functions with respect to a thermal
equilibrium state instead of a vacuum. In the same way as before we can also construct
a euclidean Schwinger functional WE and 1PI effective action ΓE.

3.1.2 Matsubara formalism

All these changes in the construction of the path integral can be implemented into cal-
culations in a straightforward manner. Due to the periodicity condition, the frequency
space of the theory is discrete with the bosonic Matsubara frequencies,

ωn = 2πnT . (3.16)

The first step in the transition from a calculation at zero temperature to a thermal
one is thus the replacement of any frequency integral by the corresponding Matsubara
sum, ∫

dp0
2π

f(p0) → T
∑
n

f(iωn) , (3.17)

where the i in the righthand side argument automatically takes into account the change
to a euclidean action. We can interpret the Matsubara sum as a sum over the poles
of the function g(z) = (1+ 2nB(z))/2, where nB(z) is the Bose distribution. Provided
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that f(z) is meromorphic, does not have any poles on the imaginary axis and converges
to zero fast enough as |z| → ∞, the residue theorem lets us replace this by the sum
over residues of the combined function at the poles of f , here called {zf},

T
∑
n

f(iωn) = −
∑
{zf}

Res(f, zf )
1 + 2nB(zf )

2
. (3.18)

For most objects, this turns the infinite Matsubara sum into a finite one over e.g. the
poles of a zero temperature propagator. In some cases however we need to chose a
more complex contour to integrate along. As discussed in more detail in section 3.6,
this can happen if the function in question has e.g. branch cuts.

Another thing that we need to be aware of is the fact that the Green-Kubo rela-
tion we will use to calculate the shear viscosity is formulated for real, not imaginary
time. When calculating thermal expectation values using the Matsubara formalism,
any incoming and outgoing frequencies also have to be treated as part of the discrete
spectrum given by the KMS condition. Since in thermal equilibrium there are no net
dynamics, this is usually not a problem. The slightly out of equilibrium approach of
linear response theory however forces us to treat the system as if it had a meaningful
real time evolution. Translating the Matsubara frequencies back to continuous fre-
quencies corresponding to real time requires an analytic continuation of the calculated
quantity. Given an expectation value calculated in the euclidean thermal framework
AE(ωn) depending on an external Matsubara frequency, we can invert the Wick rota-
tion to obtain a version of it in Minkowski spacetime AM(ω) by inverting the Wick
rotation [93],

AM(ω) = lim
ε↘0

AE(iωn = ω + iε) . (3.19)

The small positive parameter ε ensures that the poles of the Minkowski object on
the real frequency axis are handled correctly (which leads to e.g. causal retarded
propagators). Going back to real time correlations in this way can however lead to
some problems if one does not properly ensure validity of the underlying mathematical
statements. A more rigorous way that I will not explore here is the Schwinger-Keldysh
formalism [94].

3.2 Linear response theory

We now have a description of a microscopic QFT at finite temperature that we will
use as the basis of our investigation of transport coefficients. The next step is to
approach from the macroscopic side and identify how we can relate the shear viscosity
we want to predict to observables in the system and how to translate those back to
the functionals we want to formulate our theory in. For this we make use of linear
response theory which will be introduced following [34, 95].

As implied by the name, linear response theory deals with the leading order behav-
ior a system previously in equilibrium exhibits when subjected to an external force.
Given an observable A and an unperturbed Hamiltonian H0 with respect to which
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the system is in equilibrium, the expectation value Aeq will be constant in time. If at
some point the system is perturbed by an external force f(t), the expectation value
of A is likely to change. If we assume an analytical dependence of this change on the
perturbation, we can formulate the deviation of the non-equilibrium expectation value
from its equilibrium counterpart as

δA(t) = Aneq(t)− Aeq =

∫ t

−∞
G(t− t′)f(t′) +O(f 2) dt′ . (3.20)

For a sufficiently small external force we can drop all terms above first order. In that
case the response of the observable is governed by the weight G(t− t′) which contains
the information about the systems response to the perturbation and conversely also
how it relaxes back to its equilibrium state when the force goes away. For reasons
of causality this response function must vanish for negative arguments. We can get
access to this information loaded quantity by functional derivation

G(t− t′) =
δA(t)

δf(t′)

∣∣∣∣
f=0

. (3.21)

Notably, the response function does not depend on the external force. It is a property
already encoded in the equilibrium system. In a field theoretical context we reformulate
the external force as a perturbation to the action containing an external gauge field
Aµ that couples to the observable jµ,

S = S0 + Sint = S0[j
µ] +

∫
d4xAµ(x)j

µ(x) . (3.22)

The deviation in expectation value takes the form

δ ⟨jµ⟩ (x) =
∫

d4x′Kµν(x− x′)Aν(x
′) +O(A2) (3.23)

with a response kernel Kµν(x− x′) that vanishes for any separation between x and x′

that is spacelike or past-pointing. Seeing that our observable can be expressed as

jµ =
δS

δAµ
, (3.24)

we can construct a generating functional W [Aµ] of the external gauge field that allows
the expectation value to be formulated as (using a euclidean signature)

⟨jµ⟩ = − δW [Aµ]

δAµ

∣∣∣∣
A=0

. (3.25)

This functional also automatically contains the response kernel as the next higher
functional derivative,

Kµν(x− x′) = − δ2W [A]

δAµ(x)δAν(x′)

∣∣∣∣
A=0

. (3.26)

The object W [Aµ] has a straightforward interpretation in QFT as the Schwinger func-
tional.

57



3.2.1 Green-Kubo relations

Kubo managed to find formulas for the response of an observable A of a statistical or
quantum ensemble to an adiabatically switched on external force [96]. If that force
is proportional to some other observable B of the system, F (t) = B · f(t), the linear
response function of A to a perturbation in B becomes

GAB(t− t′) = −i tr(ρ[B,A(t− t0)]) ,

A(t) = eiHtAe−iHt ,
(3.27)

for a density matrix ρ that commutes with the unperturbed Hamiltonian. In the case
of a canonical density matrix ρ ∼ e−βH , the commutator can even be eliminated in
favor of an integration in complex time direction,

GAB(t− t′) = −
∫ β

0

dλ tr
(
ρB(−iλ)Ȧ(t− t0)

)
. (3.28)

Kubo’s method can even be applied multiple times in order to obtain higher order, i.e.
non-linear, response functions [96].

This means in order to arrive at an expression for the shear viscosity in terms of
QFT functionals, we need to first identify what type of response it quantifies. In this
thesis we will limit ourselves to the response to a static displacement, i.e. the static
susceptibility χAB of the system. For the Green-Kubo relations this translates into the
zero frequency mode of the regularized Laplace transform of the real time response
function,

GAB(ω) = lim
ε↘0

∫ ∞

0

dtGAB(t)e
−iωt−εt ,

χAB = lim
ω→0

GAB(ω) .
(3.29)

Instead of a Laplace transformation this can also be interpreted as the Fourier trans-
formation of the retarded response function GR

AB(t) = θ(t)GAB(t). In the quantum
field theoretical formulation we want to archieve, we need to make some changes that
let us express the involved quantities as field operators,

GR
AB(ω, p⃗) = lim

ε↘0

∫ ∞

0

dt

∫
d3p (−i) tr(ρ[B(0, 0), A(t, x⃗)]) e−i(ωt−p⃗·x⃗)−εt ,

χAB = lim
ω→0

lim
p⃗→0

GR
AB(ω, p⃗) .

(3.30)

What remains to be determined is the specific nature of the operators A and B. Shear
viscosity disperses gradients in the fluid velocity perpendicular to the local flow of the
fluid. In that way it can be seen as a transversal transport of momentum as a response
to the presence of transversal anisotropy of momentum. As shown in [31, 32] this can
be related to the retarded response function of the energy momentum tensor or in
QFT terms, its retarded two-point correlation function,

GR
TxyTxy(ω, p⃗→ 0) = P − iωη + . . . . (3.31)
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We can construct this function from the standard QFT functionals by introducing an
external spacetime metric gµν which is minimally coupled to the fields,

S[ϕ] =

∫
d4xL[ϕ, ηµν ] → S[ϕ, gµν ] =

∫
d4x

√−gL[ϕ, gµν ] . (3.32)

The energy momentum tensor of the matter content of the theory can be obtained as
metric derivatives of the action,

T µν(x) =
2√−g

δS[ϕ, gαβ]

δgµν(x)
, (3.33)

and its connected expectation value correspondingly as a derivative of the Schwinger
functional parametrized with the external metric,

⟨T µν⟩ (x) = 2√−g
δW [J, gαβ]

δgµν(x)

∣∣∣∣
J=0

. (3.34)

Identifying the deviations of the metric from the Minkowski metric as the force causing
the energy momentum tensor to respond, we can formulate the response function as
in (3.23),

δ ⟨T µν⟩ (x) = −
∫

d4x′
√−g Gµναβ(x− x′) δ(gαβ(x

′)− ηαβ) . (3.35)

Relating this back to a functional derivative of the Schwinger functional, we find

W (0,2)µναβ[J = 0; gµν = ηµν ](x, x
′) = −Gµναβ(x− x′) + ηαβ ⟨T µν⟩ (x′)δ(x− x′) , (3.36)

with the shorthand notation

W (i,j)α1β1···αjβj(x1, . . . , xi, y1, . . . , yj) =
i∏

ni=1

δ

δJ(xni
)

j∏
nj=1

δ

δgαnjβnj
(ynj

)
W , (3.37)

up to powers of −i or −1 depending on whether we work in a Minkowskian or euclidean
theory. The second term in equation (3.36) is a contact term that we can ignore for our
calculation since it vanishes for α ̸= β. Under the assumption that the field vacuum
expectation value Φ = ⟨ϕ⟩ is not directly dependent on the metric, it can be shown
from definition (3.4) that we can reformulate this in terms of the 1PI effective action
as [88]

W (0,2)µναβ|J=0 = −Γ(0,2)µναβ|Φ=0 . (3.38)

We can thus relate the shear viscosity η as a macroscopic transport coefficient on one
side to functional derivatives of the quantum effective action Γ on the other side. With
the right approach to the Wick rotation, we can obtain the retarded correlation func-
tion automatically from the thermal QFT formalism. The functional representation
of the shear viscosity then becomes [88]

η = lim
ω→0

lim
p⃗→0

∂ω Im lim
ε↘0

Γ
(0,2)xyxy
E (ω + iε, p⃗)|gµν=ηµν .Φ=0 . (3.39)

59



3.3 Non-relativistic limit of scalar field theory

We now have a way to express the shear viscosity using the 1PI effective action of
a relativistic QFT on a general background metric. The fluid dynamic description
that we have been working with so far is however a non-relativistic one. This can
be resolved by either going to relativistic fluid dynamics using for example the Isreal-
Stewards equations [97] or by considering the non-relativistic limit on the field theory
side. In this section I will do the latter following the paper [98] by Stefan Floerchinger
and myself.

3.3.1 Minkowskian background

In order to understand how the non-relativistic limit of a scalar field theory works for a
general spacetime metric, we first approach the problem specifically for a Minkowskian
background. A transformation from the relativistic field ϕ to a non-relativistic one ψ
that works for QFT needs to both transform the classical field theory in the desired
way and not be anomalous with respect to the path integral measure. For a complex
scalar field, a straightforward approach is to separate out the oscillation due to rest
mass energy,

ϕ =
1√
2m

e−imc
2

ψ , (3.40)

and do an expansion of the Klein-Gordon equation in terms of orders in the speed of
light and take the limit c→ ∞. The non-relativistic field obeys the free Schroedinger
equation,

iψ̇ = −∇⃗2

2m
ψ . (3.41)

This transformation however neglects the antiparticle excitations that would be con-
tained in a relativistic theory of a complex scalar. This can also be seen as equivalent
to going from the second order (in time) Klein-Gordon equation to the first order
Schroedinger equation. Further, the equivalent transformation for real scalar fields,
defined as the real part of equation (3.40) (cf. [99]), produces equations of motions
with fast-oscillating terms (∼ e±2imc2) which are usually neglected, but can in principle
backreact onto the slower modes [100]. All in all this transformation is not invertible
for complex scalars and not fit for our purposes in general.

There is however a more involved way of handling this problem. Namjoo, Guth and
Kaiser found a transformation for a real scalar field that does not lose any information
[100]. Starting from the Lagrangian of a free real scalar field,

L =
1

2
ηµν(∂µϕ)(∂νϕ)−

1

2
m2ϕ2 , (3.42)

the non-relativistic field is defined as a combination of the relativistic field and its time
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derivative,

ψ =

√
m

2
eimt

(
P 1

2ϕ+
i

m
P− 1

2 ϕ̇

)
,

ψ∗ =

√
m

2
e−imt

(
P 1

2ϕ− i

m
P− 1

2 ϕ̇

)
,

(3.43)

where P is the differential operator

P =

√
1− ∇⃗2

m2
= 1− ∇⃗2

2m2
− (∇⃗2)2

8m4
+ . . . . (3.44)

We will refer to this transformation as the NGK transformation in the following. Frac-
tional powers of the differential operator are defined via the corresponding modification
of the Taylor series. With the Fourier space identification −∇⃗2 ∼ p⃗2 this series can
also be understood as an expansion for kinetic energies small compared to the rest
mass p⃗2/m2 ≪ 1. Also, P is notably non-local in space since it contains arbitrarily
large derivatives. The Lagrangian and equation of motion for the transformed field
are

L =
i

2
(ψ∗ψ̇ − ψ̇∗ψ)− ψ∗m(P − 1)ψ ,

iψ̇ = m(P − 1)ψ ≈ −∇⃗2

2m
ψ .

(3.45)

To lowest non-trivial order in p⃗2/m2 this recovers the Schroedinger equation that we
are looking for. Instead of a second order in time differential equation for a real scalar
field, we now have a first order equation for a complex field. Thus, we do not lose
any information in the transformation. It is invertible. Relativistic corrections can be
added systematically by taking into account higher order terms in the expansion. The
NGK transformation can be also applied to an interacting λϕ4 theory [100]. At lowest
order this again reproduces a c → ∞ result for a complex scalar while higher orders
add derivative interactions.

3.3.2 General background metric

In order to apply this transformation to the generic metric case we are interested in,
we try to formulate the problem in a covariant way as opposed to specifically singling
out time as before. This more general approach will also help us understand whether
this type of transformation affects the path integral measure in general. We start from
the action of a free massive real scalar field this time on a general background metric
g with minimal coupling,

S =

∫
d4x

√−g
{
−1

2
gµν(∇µϕ)(∇νϕ)−

1

2
m2ϕ2

}
. (3.46)
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The equation of motion that governs the dynamics of ϕ is

−gµν∇µ∂νϕ+m2ϕ = 0 , (3.47)

where ∇µ denotes a metric covariant derivative. Next, we need to choose to which
observers the system appears to be non-relativistic. This is done by the choice of
a time-like vector field uµ normalized to minus unity. In essence this defines rest
frames of the observers as the ones in which all components except the zero-component
vanish. This specifies a time direction for the non-relativistic dynamics. We define the
projector to the spatial directions as

∆µν = gµν + uµuν . (3.48)

Similarly to the NGK transformation, we define the non-relativistic field as a linear
combination of the relativistic field and its time derivative with possibly different
spatial derivative operators applied to them,

ψ = α (ϕ+ iγ uµ∂µϕ) . (3.49)

If a particle has 4-momentum pµ, the non-relativistic limit from the perspective of an
observer defined by uµ can be understood as

∆µνp
µpν

(uσpσ)2
≪ 1 . (3.50)

By making use of equation (3.47) we can write down the time derivative of the non-
relativistic field as

uµ∂µψ =[uµ∂µα + iαγ(−m2 +∇µ∆
µν∂ν)]ϕ

+ [α + iuν∂ναγ − iαγ∇µu
µ](uµ∂µϕ) .

(3.51)

In order for the equation of motion of ψ to be first order in time derivatives, the
righthand side of this equation needs to be proportional to ψ itself (up to spatial
derivates). This restricts γ to solutions of the differential equation

uν∂νγ + i(m2 −∇µ∆
µν∂ν)γ

2 − (∇µu
µ)γ − i = 0 . (3.52)

Here the spatial derivatives are to be understood as a variable akin to the momentum
p⃗ ∼ −i∇⃗ in the non-relativistic case. The solutions to this equation are time dependent
series of spatial derivatives. We can formulate another restraint by demanding that
the equal time commutation relations of the relativistic and non-relativistic field differ
only by a phase factor,

[ϕ(t, x), ϕ(t, y)] = i[ψ(t, x), ψ∗(t, y)] = iδ(x− y) . (3.53)

On the side of the transformation this is equivalent to

|α|2 = (2Re(γ))−1 , (3.54)
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where the operations on α and γ are to be understood on an eigenbasis of ∇µ∆
µν∂ν .

The remaining freedom that we have is the choice of initial condition for the differ-
ential equation (3.52) and the complex argument of α. The equation of motion and
Lagrangian for the non-relativistic field are

i

[
uµ∂µψ +

1

2
(∇µu

µ)ψ

]
= −

[
uµ∂µ arg(α)− (m2 −∇µ∆

µν∂ν) Re(γ)
]
ψ ,

L =
i

2
[(uµ∂µψ)ψ

∗ − ψ(uµ∂µψ
∗)] + ψ∗ [uµ∂µ arg(α)− (m2 −∇µ∆

µν∂ν) Re(γ)
]
ψ .

(3.55)

A more detailed calculation of this can be found in [98]. We recover the NGK trans-
formation for gµν = ηµν with the choices uµ = (1, 0, 0, 0)T , uµ∂µ arg(α) = m and
uµ∂µγ|t0 = 0. In that case the solutions for (3.52) and α are

γ = (mP)−1 ,

α =

√
m

2
P1/2eimt ,

(3.56)

which agree perfectly with (3.43). In the context of a clearly defined time direction
we can also go to a Hamiltonian formulation of the problem. We find that the near-
conservation of the commutation relations is equivalent to the transformation from the
relativistic field and its conjugate momentum to the real and imaginary parts of the
non-relativistic field being a canonical transformation (cf. [98]).

3.3.3 Transformation of the path integral measure

So far, the transformation works well on a classical level. It transforms the action in
the way that we want in order to formulate a non-relativistic limit. We are, however,
working in a QFT so we also need to make sure that there are no anomalies introduced
to the theory by this transformation. Such an anomaly could manifest in a non-
unity Jacobian of the change of coordinates from the relativistic to the non-relativistic
degrees of freedom. On the relativistic side we consider the relativistic field and its
conjugate momentum field π = uµ∂µϕ as independent while on the non-relativistic
side the relevant fields are ψ and its complex conjugate ψ∗. In order to study the
transformation of the path integral measure, we make use of Fujikawa’s method [101].
We consider a complete orthonormal basis of eigenfunctions λ̂n of the generalized
Laplace-Beltrami operator −∇µ∆

µν∂ν with eigenvalues λn. We do not explicitly prove
the existence of such a basis, but instead restrict the space of fields we consider to
the span of the maximal choice of {λ̂n} that are sufficiently well-behaved for our
calculations. This allows us to decompose the involved field into (possibly infinite)
linear combinations,

ϕ =
∑
n

an(t)λ̂n , uµ∂µϕ =
∑
n

bn(t)λ̂n ,

ψ =
∑
n

a′n(t)λ̂n , ψ∗ =
∑
n

b′n(t)λ̂n .
(3.57)
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The operators α and γ can now be explicitly treated as functions of λn for each
summand. The transformation from relativistic to non-relativistic field can in this
formulation be understood as the transformation from (an, bn) to (a′n, b

′
n). It is given

by the projection onto the corresponding eigenfunction and can be inferred directly
from (3.49),

a′n(t) = λ̂†n · ψ = α(λn)[an(t) + iγ(λn)bn(t)] ,

b′n(t) = λ̂†n · ψ∗ = α∗(λn)[an(t)− iγ∗(λn)bn(t)] .
(3.58)

The Jacobian of the transformation can be understood as the determinant of a block
matrix,

J =

∣∣∣∣∣ det
(
∂a′m
∂an

∂a′m
∂bn

∂b′m
∂an

∂b′m
∂bn

)∣∣∣∣∣
=
∣∣∣ det( δmnα(λn) iδmnα(λn)γ(λn)

δmnα
∗(λn) −iδmnα∗(λn)γ

∗(λn)

) ∣∣∣
= | det

(
−iδmn|α(λn)|2(γ∗(λn) + γ(λn))

)
|

= | det(−iδmn)| = 1 ,

(3.59)

where we applied condition (3.54) in the next-to-last step. Exactly when the trans-
formation is canonical (from the Hamiltonian point of view) and conserves the equal
time commutation relations (from the point of view of canonical quantisation), it also
leaves the path integral measure invariant. Hence this transformation is a viable way
to move towards a non-relativistic limit on the QFT side of things. For interacting
theories we use the same transition to non-relativistic degrees of freedom and expand
the new terms in the equations of motion up to the desired order in p2/m2 as shown
in [100] and also section 3.3.5.

3.3.4 Further properties of the transformation

Besides the properties that make it fit for an interpretation as a non-relativistic limit,
our real scalar transformation brings with it some other features. First of all, the
transformation of the real scalar fields can naturally be expanded to cover complex
scalar fields. For that, we consider the standard decomposition of a complex scalar Φ
into two real scalar fields,

Φ =
1√
2
(ϕ1 + iϕ2) . (3.60)

Each of these real scalars can be transformed in the previously discussed way into their
non-relativistic counterparts ψ1 and ψ2. The non-relativistic equivalent of the complex
relativistic field are two complex fields defined as transformations of the effectively
independent fields Φ and Φ∗,

Ψ1 = α(Φ + iγuµ∇µΦ) =
1√
2
(ψ1 + iψ2) ,

Ψ2 = α(Φ∗ + iγuµ∇µΦ
∗) =

1√
2
(ψ1 − iψ2) .

(3.61)
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With the same conditions on α and γ as before, this transforms the action of a rela-
tivistic free complex scalar field,

Srel =

∫
d4x

√−g
{
−1

2
gµν(∇µΦ

∗)(∇νΦ)−
1

2
m2|Φ|2

}
, (3.62)

into that of two completely decoupled non-relativistic fields,

SNR =

∫
d4x

√−g
2∑

n=1

{ i
2
((uµ∂µΨn)Ψ

∗
n −Ψn(u

µ∂µΨ
∗
n))

+ Ψ∗
n

(
uµ∂µ arg(α)− (m2 −∇µ∆

µν∂ν) Re(γ)
)
Ψn

}
.

(3.63)

Here we also find the true analogon to the c → ∞ limit for the complex scalar.
That is exactly the result you obtain by truncating the expansion in Laplace-Beltrami
operators at the lowest non-trivial order and demanding that Φ2 = 0 everywhere. This
explicitly demonstrates that method’s neglect of the degrees of freedom associated
with antiparticles which are demoted from a decoupled, but still dynamical field to
a constant. Especially in interacting scenarios which mix Ψ1 and Ψ2 this would lose
terms that could contribute significantly to the dynamics of the system.

The second important property of the transformation is that it lets additional
symmetries emerge. In addition to the invariance under coordinate transformations
guaranteed by the covariant formulation, we find that there is an additional global
U(1) symmetry in the non-relativistic action,

ψ → eiφψ , ψ∗ → e−iφψ∗ , (3.64)

that is not present in the relativistic one. A look at the associated Noether charge,

Q =

∫
d3x

√−g|ψ|2 , Q̇ = 0 , (3.65)

tells us that this new symmetry can be interpreted as the conservation of total particle
number from the perspective of a quantum-mechanical wave function. This includes
any loss effects due to e.g. cosmological expansion. Correspondingly, this symmetry
can in general be broken by additional interaction terms that introduce particle num-
ber changing processes. In the expansion scheme presented by NGK, however, the
symmetry is explicitly kept and can thus never account for these processes. This is no
surprise since a change in particle number always involves at least one particle with
kinetic energy on the same scale as its rest mass and can as such never be considered
non-relativistic. We find a similar emergent symmetry for the complex scalar field
where the U(1) symmetry of the non-interacting relativistic action is promoted to a
U(2) symmetry for the non-relativistic fields which accounts for individual particle and
antiparticle number conservations as well as symmetry under rotating Ψ1 and Ψ2 into
each other. Interaction terms also break this symmetry, but if the new term conserves
the U(1) symmetry present in the relativistic action, there is a remaining U(1) on the
non-relativistic side as well,

Ψ1 → eiφΨ1, Ψ2 → e−iφΨ2 . (3.66)
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The corresponding Noether charge,

Q =

∫
d3x

√−g(|Ψ1|2 − |Ψ2|2) , Q̇ = 0 , (3.67)

is the net particle number which is also conserved in the relativistic description. This
feature is present without any expansion in non-relativistic momentum.

The last property discussed here is that, in specific cases, the transformation to a
non-relativistic field can be understood as a Bogoliubov transformation, i.e. a trans-
formation of the annihilation and creation operators, which will be shortly introduced
following [102]. For this we use the standard decomposition for the relativistic field,

ϕ =

∫
d3k

(2π)3
(ak⃗fk⃗(t)e

ik⃗x⃗ + a†
k⃗
f ∗
k⃗
(t)e−ik⃗x⃗) ,

ϕ̇ =

∫
d3k

(2π)3
(ak⃗ḟk⃗(t)e

ik⃗x⃗ + a†
k⃗
ḟ ∗
k⃗
(t)e−ik⃗x⃗) ,

(3.68)

where fk⃗(t) is an appropriately chosen mode function that is (in combination with
the Fourier factor) a solution to the classical field equations and ensures that the
integral transforms properly under coordinate transformations. In order to get the
standard commutation relations for creation and annihilation operators, they must be
normalized such that

Im(f ∗
k⃗
(t)ḟk⃗(t)) = −1

2
. (3.69)

For a general background metric, the mode function might not just depend on the
non-relativistic observer time, but also the spatial position. In these scenarios the
concept of a spatial Fourier transformation also breaks down. We will neglect this
possibility in the following considerations. The non-relativistic field can be expressed
through annihilation and creation operators in a similar way,

ψ =

∫
d3k

(2π)3
bk⃗e

ik⃗x⃗ ,

ψ∗ =

∫
d3k

(2π)3
b†
k⃗
e−ik⃗x⃗ .

(3.70)

If we can represent this change of operators as a linear transformation

bk⃗ = uk⃗ak⃗ + v∗−k⃗a
†
−k⃗
,

b†
k⃗
= u∗

k⃗
a†
k⃗
+ v−k⃗a−k⃗ ,

(3.71)

and the coefficients fulfill |uk⃗|2 − |v−k⃗|2 = 1, this is a so-called Bogoliubov transfor-
mation and the commutation relations for the old and new creation and annihilation
operators remain the same. Indeed we find that the transformation is linear under the
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assumption fk⃗ = f−k⃗ with

uk⃗ = αk

(
1 + iγk

ḟk⃗
fk⃗

)
fk⃗ ,

v∗−k⃗ = αk

(
1 + iγk

ḟ ∗
k⃗

f ∗
k⃗

)
f ∗
k⃗
,

(3.72)

where αk and γk are the transformation operators with each instance of the generalized
Laplace-Beltrami operator replaced by k2. The normalization condition is also fulfilled,

|uk⃗|2 − |v−k⃗|2 = −4|αk|2Re(γk) Im(f ∗
k⃗
ḟk⃗) = 1 . (3.73)

We see that the validity of the description as a Bogoliubov transformation again hinges
on condition (3.54). In the case of a Minkowski metric with standard mode function

fk⃗ = (2
√
k⃗2 +m2)−1/2 exp

(
i
√
k⃗2 +m2t

)
we even find that vk = 0 which implies

that the relativistic and non-relativistic theory have the same vacuum state. Such a
statement is difficult to prove for more general spacetime choices since both the choice
of the mode functions and the initial condition for γ are not unique.

3.3.5 Real scalar on a cosmological background

As a specific example in this section I will discuss the non-realtivistic transformation
for the case of a Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric,

gµν = diag(−1, a2(t), a2(t), a2(t)) . (3.74)

The scale factor a(t) is in this case treated as an external parameter fixed by the content
of our chosen universe. The FLRW metric allows us to choose the observer frame
uµ = (1, 0, 0, 0)T . The concept of a Fourier transformation from real to momentum
space is however not by default valid for this spacetime anymore. The choice of frame
lets us formulate the derivative operators as

uµ∂µψ = ∂tψ ,

∇µ∆
µν∂νψ = a−2∇⃗2ψ .

(3.75)

With the further identification ∇µu
µ = 3H, introducing the Hubble function H = ȧ/a,

we have everything we need to solve (3.52) except the initial condition. We resolve that
by selecting the solution that matches the NGK transformation in the limit a(t) → 1
everywhere. For this purpose we define a slightly modified version of the differential
operator used before,

Pa =

√
1− ∇⃗2

a2m2
, (3.76)
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and expand γ in terms of this operator and orders in the quantity H/m which will be
small in the aforementioned limit (and in a standard cosmology at late times),

γ =
∞∑
n=0

fn(Pa)
(
H

m

)n
, (3.77)

where the coefficients fn are analytical (or meromorphic) functions and the expression
fn(Pa) is to be understood as a differential operator defined by the corresponding
power series. The lowest order of this is fixed by our chosen initial condition to be
f0(x) = 1/(mx). From that point we can solve equation (3.52) order by order in H/m.
At next-to-leading order the coefficient function becomes complex-valued (assuming a
real argument),

f1(x) = − i

2m
(x−4 + 2x−2) . (3.78)

Hence the solution for the transformation up to that order becomes

α =

√
m

2
P1/2
a eimt, γ =

1

m

[
P−1
a − iH

2m
(P−4

a + 2P−2
a )

]
,

ψ =

√
m

2
P1/2
a eimtϕ+ i

1√
2m

P1/2
a eimt

[
P−1
a − iH

2m

(
P−4
a + 2P−2

a

)]
ϕ̇ .

(3.79)

This transforms a free real scalar on a FLRW background to a non-relativistic field
with a very similar equation of motion to the Minkowskian case,

i

[
ψ̇ +

3

2
Hψ

]
= m(Pa − 1)ψ . (3.80)

The main difference is the modification of the spatial derivatives by a factor of a−1

each and the presence of a damping term on the lefthand side. This Hubble damping
represents the dilution of the wave function due to the expansion of the universe.

The next step is adding an interaction term to the relativistic theory. With a
standard λϕ4 interaction term the action becomes

S =

∫
d4x a3

{
1

2
(∂tϕ)

2 − 1

2
a−2(∇⃗ϕ) · (∇⃗ϕ)− 1

2
m2ϕ2 − λ

4!
ϕ4

}
. (3.81)

With the same transformation as for the non-interacting case we now find an interac-
tion term also in the non-relativistic equation of motion,

i

[
ψ̇ +

3

2
Hψ

]
= m(Pa − 1)ψ +

λ

3!
αγ(α∗γ∗ψ + αγψ∗)3 . (3.82)

If we want to expand this in orders of ∇⃗2/(a2m2), we need to split the non-relativistic
field into modes oscillating with different multiples of arg(α) = mt,

ψ =
∞∑

ν=−∞

eiνmtψν (3.83)
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similar to the decomposition discussed in [100]. Further we need to assume that,

beyond (∇⃗2ψ)/(a2m2ψ) and H/m, the variation of the field in time ψ̇/(mψ) and the
interaction strength λ can also be considered small. Identifying the zero mode ψν=0

with the bulk of the wave function and treating all other modes as corrections to
this, we can find an expression for the equation of motion up to second order in small
quantities,

i

[
ψ̇s +

3

2
Hψs

]
≈ − 1

2a2m
∇⃗2ψs +

λ

8m2
|ψs|2ψs −

1

8a4m3
∇4ψs

+
λ

32a2m4

[
ψ2
s∇⃗2ψ∗

s + 2|ψs|2∇⃗2ψs + ∇⃗2(|ψs|2ψs)
]

+ i
7λH

32a2m5

[
−ψ2

s∇⃗2ψ∗
s + 2|ψs|2∇⃗2ψs − ∇⃗2(|ψs|2ψs)

]
− 17λ2

768m5
|ψs|4ψs .

(3.84)

This is the Euler-Lagrange equation of the effective Lagrangian

Leff =
i

2
(ψ̇sψ

∗
s − ψsψ̇

∗
s)−

1

2a2m
(∇⃗ψs)(∇⃗ψ∗

s)−
λ

16m2
|ψs|4

+
1

8a4m3
(∇⃗2ψs)(∇⃗2ψ∗

s)−
λ

32a2m4
|ψs|2(ψ∗

s∇⃗2ψs + ψs∇⃗2ψ∗
s)

+
7λH

16a2m5
|ψs|2 Im(ψ∗

s∇⃗2ψs) +
17λ2

9 · 28m5
|ψs|6 .

(3.85)

A fully detailed calculation of this can be found in [98]. All the terms that are already
known from the Minkowski metric case are present in the FLRW action as well with
the only difference being the additional factors of a−1 per spatial derivative. At this
order in the expansion there is one new term other than the Hubble damping that is
proportional to the Hubble expansion rate. This term is a derivate interaction term,
i.e. it is present in neither the non-interacting theory nor at a lower order of the
momentum expansion. At higher orders in H/m the real part of the transformation
will also be modified which introduces further effects of the cosmological expansion
even in the non-interacting case. One thing of note here is that the expansion scheme
that we used preserves the U(1) symmetry that is present in the free non-relativistic
theory. This means that particle number changing processes are not captured by this
approach, leaving the particle number conserved up to dilution due to expansion. This
also removes the possibility of vacuum instabilities. The |ψ|6 term with a positive sign
in the Lagrangian causes the energy spectrum to be unbounded from below. However,
since the particle number cannot change, this can never result in the vacuum decaying
into particles. This can also be understood as a decoupling of the N -particle problem
from all higher particle number problems [103].

All in all, we found a formalism that allows us to obtain a non-relativistic formula-
tion of quantum field theories even on general curved background metrics. The limit
of small momenta from the perspective of a well-defined class of observers can be taken
to arbitrary order. This method does however require exact knowledge of the metric
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in question in order to solve equation (3.52). On top of that corrections to interacting
theories are in general limited to the perturbative regime λ≪ 1. It is also at this point
not completely clear whether the transformation could be anomalous in the quantum
theory by means other than a corresponding Jacobian of the path integral measure.
The transformation discussed in this section shows that a non-relativistic limit can
lead to a theory close to quantum mechanics and merits further investigation, possi-
bly in application to Majorana fermions, by that alone as well as the mathematical
implications of a non-relativistic QFT [103]. However, its requirements do not align
with the typical fluid picture of strong interactions. Therefore, we need to consider
relativistic fluid dynamics if we want to link its transport properties to a quantum
field theory. Fortunately, the Green-Kubo formulas require only equilibrium expecta-
tion values, which allows us to neglect terms from dynamic contributions such as bulk
viscous pressure and shear stress that appear in the Israel-Stewart equations [97].

3.4 Wetterich equation

The last problem that remains is the calculation of the 1PI effective action. This is,
however, problematic since it contains an infinite resummation of quantum corrections
that usually cannot be analytically resolved. For this reason we turn to functional
renormalization group (fRG) flow methods in order to obtain integro-differential equa-
tions that allow us to solve this issue non-perturbatively. An extensive discussion of
these methods is given in [104], following which I will outline the concepts needed for
our calculation. The method presented here is only applicable to euclidean field theo-
ries. We are working with a finite temperature Matsubara formulation, so this is not a
problem and as a consequence we will drop the subscript ·E for euclidean functionals
from here on.

The basic idea of this approach to finding the 1PI effective action is to add quantum
corrections one after another to the classical action starting from the ultraviolet regime
and moving towards infrared in a controlled way. This is done by adding a supression
term with a momentum scale k to the action,

S[ϕ] → Sk[ϕ] = S[ϕ] + ∆Sk[ϕ] ,

∆Sk[ϕ] =
1

2

∫
d4x d4y ϕ(x)Rk(x− y)ϕ(y) ,

(3.86)

where Rk is the so-called regulator. If the Fourier transform of the regulator Rk(p) is
chosen such that it fulfills the conditions,

lim
p2→0

Rk(p
2) > 0 ,

lim
k→0

Rk(p
2) = 0 ,

lim
k→∞

Rk(p
2) = ∞ ,

(3.87)

then this additional term suppresses quantum effects at momentum scales smaller
than k (meaning p2 < k2) by effectively adding a heavy artificial mass to particles
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in that momentum regime, suppressing all contributions beyond tree level. From this
modified action we can construct in the same way as before a Schwinger functionalWk

and preliminary quantum effective action Γ̃k. Instead of using Γ̃k, we will work with
Γk[Φ] = Γ̃k[Φ]−∆Sk[Φ]. That way we find the limiting behavior,

Γk→∞[Φ] = S[Φ] ,

Γk→0[Φ] = Γ[Φ] .
(3.88)

If the theory has an ultraviolet cutoff Λ, the limit of infinite k in the first formula
is replaced by the limit k → Λ. The object Γk, the 1PI effective action at scale k,
thus interpolates between the microscopic classical action and the macroscopic 1PI
effective action including all relevant quantum corrections. Wetterich [33] found that
the change of Γk with the scale k is governed by a functional differential equation,

∂tΓk =
1

2
STr

(
∂tRk

Γ
(2,0)
k +Rk

)
=

1

2
STr (Gk∂tRk) , (3.89)

where we use the short notation t = ln(k/Λ), Gk = (Γ
(2,0)
k + Rk)

−1 and STr denotes a
super trace that connects all open indices and spacetime or, equivalently, momentum
dependencies. The object Gk is the scale dependent propagator and will be represented
by a line in Feynman diagrams. Using a cross over a propagator line to indicate the
insertion of a regulator derivative ∂tRk, we can represent the Wetterich equation (3.89)
in a diagrammatic form,

∂tΓk =
1

2
. (3.90)

From this, we can construct a scale dependent shear viscosity,

ηk = lim
ω→0

lim
p⃗→0

∂ω Im lim
ϵ↘0

Γ
(0,2)xyxy
k (ω + iϵ, p⃗) . (3.91)

The variation of this object with the scale k (or flow) can be derived from the Wetterich
equation, starting at its value as can be derived from the classical action ηk→∞ = 0.

Even though we now have a differential equation and a known boundary condition
in Γk→∞ = S, we cannot simply solve this equation to obtain the full 1PI effective
action since the righthand side of the Wetterich equation depends on the second field
derivative of Γk. The flow of Γ

(2,0)
k can be derived from the Wetterich equation, but

will depend on higher order field derivatives itself. Therefore, the equation in this form
is not closed and one has to chose a sensible truncation.

3.5 Constructing the ansatz for the effective action

Γk

Our intention is to calculate the shear viscosity of a real scalar λϕ4 theory in a simple
but not trivial way. We start from the classical action

S[ϕ] =

∫
d4x

{
−1

2
ηµν(∂µϕ)(∂νϕ)−

m2

2
ϕ2 − λ

4!
ϕ4

}
. (3.92)
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This is a well-known system that has been investigated extensively in the past. An
important fact about this system for our considerations is that it in principle renor-
malizes towards triviality in more than four spacetime dimensions and likely also in
exactly four [105]. This would manifests in the flow in that, if we simply replaced the
mass and coupling strength by scale dependent ones mk and λk, we would find that
the coupling flows to zero. Therefore, we will work with a ultraviolet cutoff Λ that we
will try to remove at the end. We also leave the mass and quartic interaction constant
with respect to the flow scale. With this our ansatz is restricted to

Γk[Φ] = S[Φ] + Γdis
k [Φ] ,

Γdis
k→Λ = 0 .

(3.93)

We further choose to use the Callan-Symanzik regulator [106]

Rk(x− y) = k2
δ(x− y)√−g , (3.94)

which reproduces a Callan-Symanzik type renormalization group flow [107, 108]. This
makes its momentum space representation in Minkowski and euclidean spacetime sim-
ply Rk = k2 and also gives the typical scale derivative insertion the form ∂tRk = 2k2.
Both Rk and ∂tRk are independent of the involved momenta, aside from enforcing mo-
mentum conservation, and can thus be pulled out of any integral which simplifies the
calculations. In order to identify which dissipative terms to add in order to archieve a
non-trivial flow of the shear viscosity, we look at the flow equation of the second metric
derivative of the effective action already evaluated at a trivial euclidean metric [88],

∂tΓ
(0,2)µναβ
k [Φ, δµν ](x, y) =

∂tRk

2

[
1

4
δd(x− y)δµνδαβGk(x, x)

−1

2
δd(x− y)δµ(αδβ)νGk(x, x)

−
∫
v,w

(
1

2
δαβGk(y, v)Γ

(2,1)µν
k (v, w;x)Gk(w, y) + (αβ, y) ↔ (µν, x))

−
∫
u,v,w

Gk(u, v)Γ
(2,2)µναβ
k (v, w;x, y)Gk(w, u)

+

∫
u,v,w,r,s

(Gk(u, r)Γ
(2,1)αβ
k (r, v; y)Gk(v, w)Γ

(2,1)µν
k (w, s;x)Gk(s, u)

+(αβ, y) ↔ (µν, x))

]
,

(3.95)

where (αβ, y) ↔ (µν, x) represents the same terms as before within the the same
brackets, but with the indices and coordinates exchanged correspondingly, and

∫
x
=∫

d4x for shortness of notation. Specifically in the case of µναβ = xyxy that is relevant
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to the shear viscosity, this reduces to

∂tΓ
(0,2)xyxy
k [Φ, δµν ](x, y) =

∂tRk

2

[
−
∫
u,v,w

Gk(u, v)Γ
(2,2)xyxy
k (v, w;x, y)Gk(w, u)

+

∫
u,v,w,r,s

(Gk(u, r)Γ
(2,1)xy
k (r, v; y)Gk(v, w)Γ

(2,1)xy
k (w, s;x)Gk(s, u) + (x↔ y))

]
.

(3.96)

We can see that this only contains two types of contribution which can be diagramat-
ically represented as

∂t p p
xy xy =

1

2
·
[

p

q

p− q
p

xy xy − 2 p

q

p
xy xy

]
,

(3.97)

where the wavy lines represent the external metric. In order to generate a non-
vanishing shear viscosity, the righthand side of this needs to have an imaginary part
that is dependent on the external frequency ω = p0 (cf. equation (3.91)). The tadpole

diagram (right) can only achieve this if Γ
(2,2)xyxy
k is frequency dependent since no ex-

ternal momentum flows through its loop, while for the polarization diagram (middle)
this can be achieved by a modification of the propagator alone.

3.5.1 Källén-Lehmann spectral representation

In the 1950s, Källén [109] and Lehmann [110] found a spectral representation of the
two-point function. Feynman, retarded, advanced and Matsubara propagator can be
represented as integrations along different contours of a spectral density ρ(k, p⃗) which
contains the complete information of the two-point function and is introduced briefly
here, following the discussions in [90, 111]. For the retarded propagators that we are
interested in in our finite temperature real time description, this relation is

GR
k (ω, p⃗) = lim

ε↘0

∫ ∞

−∞

dω′

2π

ρ(ω′, p⃗)

ω′ − (ω + iε)
. (3.98)

The spectral function has to be normalized,∫ ∞

−∞

dω′

π
ω′ρ(ω′, p⃗) = 1 , (3.99)

non-negative for positive frequencies and odd in its frequency argument. We can make
use of the Sokhotski-Plemelj theorem,

1

x± iε

ε→0−→ P

(
1

x

)
∓ iπδ(x) , (3.100)
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where P (f(x)) means that an integral over f should be treated as its Cauchy principle
value, in order to invert this relation. The spectral density can be obtained from the
imaginary part of the retarded propagator,

ρ(ω, p⃗) = −2 ImGR
k (ω, p⃗) . (3.101)

Using the spectral function, we can freely transform between different forms of the
propagator as long as we know one of them. For free particles and including the
regulator term the spectral density takes the form

ρ(ω, p⃗) = 2πδ(ω2 − ω2
p⃗,k) sign(ω) ,

ω2
p⃗,k = p⃗2 +m2 + k2 .

(3.102)

We can straightforwardly introduce a dissipative term into the ansatz for the effective
action by broadening the mass peak of the density. We introduce the scale dependent
damping γk via

ρ(ω, p⃗) =
2γkω

(ω2 − ω2
p⃗,k)

2 + γ2kω
2
. (3.103)

This form of the spectral density reduces to the free one in the limit γk → 0 and fulfills
all of the required conditions. The modification to the inverse propagator that we need
to make is

Γ
(2,0)dis
k ∼ −iωγk . (3.104)

This lets us express the real part of the retarded and advanced propagators as

ReGR
k (ω, p⃗) = ReGA

k (ω, p⃗) =
ω2 − ω2

p⃗,k

(ω2 − ω2
p⃗,k)

2 + γ2kω
2
. (3.105)

From this we can directly read off the projector to the damping to be

γk = − Im ∂ω|ω=0 lim
ε↘0

Γ
(2,0)
k (ω + iε, p⃗ = 0) . (3.106)

In real space representation for a Minkowski metric background the damping term
would correspond to

Γdis,γ[Φ, ηµν ] =

∫
d4x

1

2
γkΦsR(∂t)∂tΦ (3.107)

with the differential operator sR(∂t)∂t (introduced in [112]) defined via its Fourier
representation

sR(∂t)∂tΦ(t) → −iωsI(ω)Φ(ω) ,
sI(ω) := sign(Imω) .

(3.108)

This can be generalised to an arbitrary metric background where Fourier transforma-
tions are not clearly defined as done in [112].
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3.5.2 Modification of the interaction

The initial condition for the damping is γk→Λ = 0 since no term in the microscopic
action is dissipative. From the projector to the damping factor, we can directly con-
struct its flow equation. Under the assumption that the effective action conserves the
Z2 symmetry of the microscopic action and hence Γ

(3,0)
k [Φ = 0] = 0, the diagrammatic

representation is

∂tγk =
1

2
Im ∂ω|ω=0 lim

p⃗→0
p

q

p

. (3.109)

It shows that in order to generate damping as part of the flow, there must also be
correction to the scalar four-point function. Specifically, we need an imaginary term
that is dependent on a non-trivial, meaning in this case not just s-channel, combination
of the in- and outgoing momenta. Using the same differential operator as for the γk
term, we introduce an imaginary derivative interaction with strength λk as

Γdis,λ[Φ, ηµν ] = −
∫

d4x
λk
4
Φ2sR(∂t)∂t

(
Φ2
)
. (3.110)

Due to the higher number of involved frequencies, the projector to this new flowing
quantity is slightly more complicated

λk = − Im
1

12

(∑
i

∂

∂ωi

∣∣∣
ωi=0

)
Γ
(4,0)
k [Φ = 0] . (3.111)

The diagram that determines the flow of the derivative interaction strength,

∂tλk =
1

24
Im

(
4∑
i=1

∂ωi

∣∣∣
ωi=0

) q

p+ − q
p1

p2

p3

p4

, (3.112)

can have frequency dependent imaginary parts with only the flow parameters that we
have so far. Additional terms could be added by considering non-zero contributions
from Γ(5,0) and Γ(6,0). We chose not to include these in this relatively minimalist
treatment. Thus, we have now arrived at a non-trivial ansatz for the effective action
that can generate shear viscosity.

3.5.3 Wave function renormalization

As mentioned at the beginning of this chapter, the shear viscosity of a real scalar λϕ4

theory has already been investigated perturbatively by Jeon and Yaffe [29, 30]. They
use a resummation of ladder diagrams that accounts for scaling with inverse interac-
tion strength in the thermal perturbation theory. Such ladder diagrams cannot be
generated in our ansatz so far, since they are neither contained in the propagator nor
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in the four-point function corrections. While this means giving up the minimality in
flow parameters, including these diagrams allows us to compare our theory to tested
results. In order to do so, we need to include a correction to Γ(2,1). The most straight-
forward way to do this is to add a wave function renormalization Zk to the kinetic
term,

Γdis,Z
k [Φ] = −

∫
d4x

√−g Zk − 1

2
gµν(∂µΦ)(∂νΦ) . (3.113)

The new parameter can be obtained, like γk, from derivatives of the two-point function,

Zk = ∂2ω lim
ε↘0

Γ
(2,0)
k [Φ = 0](ω + iε, p⃗ = 0) , (3.114)

and the diagram that determines its flow is the same with different derivatives applied
to it. The wave function renormalization scales the momentum term in the inverse
propagator by a factor of Zk and changes the spectral density accordingly. The damped
spectral function becomes

ρ(ω, p⃗) =
2γkω

(Zk(ω2 − p⃗2)−m2 − k2)2 + γ2kω
2
, (3.115)

which is no longer normalized to 1 but instead to 1/Zk. With this we have a closed
system of three flow coefficients, γk, λk and Zk, which account for resummations of
propagator, interaction and dependence on the external metric. For consistency, we
also have to add an in principle metric and temperature dependent vacuum energy
Uk that is necessary to capture non-zero values of the thermodynamic and transport
quantities we are interested in. While this parameter is conceptually very important,
being closely related to the thermodynamic potentials [104], it does not directly con-
tribute to the flows of the other parameters. The complete correction to the classical
action in our ansatz is

Γdis
k [Φ, gµν ] =

∫
d4x

√−g
[
Zk − 1

2
gµν(∂µΦ)(∂νΦ)− Uk[gµν ]

+
1

2
γkΦsR(∂t)∂tΦ− λk

4
Φ2sR(∂t)∂t

(
Φ2
) ]

.

(3.116)

3.6 Flow equations

With our ansatz for the scale dependent 1PI effective action we can now explicit write
out the flow equations for γk, λk and Zk and express the flow of the shear viscosity in
terms of these parameters.
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3.6.1 Flow of the damping γk

We start by investigating the tadpole diagram that determines the flow of the damping
and wave function renormalization,

p

q

p =: I(ω + i0+, p⃗) . (3.117)

We are interested only in the part of this amplitude that depends on the external
momentum which we will call I1,

I(ω, p⃗) = I0 + I1(ω, p⃗) . (3.118)

The imaginary part of I1 is relevant for the flow of γk while its real part determines
the flow of Zk. We express the Matsubara form of the momentum dependent part of
the amplitude as an integral,

I1(iωn, p⃗ = 0) = 2k2
∫
q⃗

T
∑
ωm

G2
k(iωm, q⃗)Γ

(4,0)dis
k (iωn,−iωn, iωm,−iωm)

= −4ik2λk

∫
q⃗

T
∑
ωm

G2
k(iωm, q⃗)[S(iωn + iωm) + S(iωm − iωn)] ,

(3.119)

with the short notation S(ω) = sI(ω)ω. If we want to express the Matsubara sum as
as contour integration over z = iωm, we find that the function inside has three branch
cuts, located at Im z = ±iωn from the sign functions and at Im z = 0, z ̸= 0 from the
branch cut of the propagators. The external frequencies iωn are Matsubara frequen-
cies and thus the corresponding branch cuts cross the poles on the imaginary axis.
We choose to integrate parallel to the real axis in positive direction an infinitesimal
displacement above and negative direction similarly below each of the branch cuts as
shown in figure 3.1 (cf. [113]). Notably, this choice of contour excludes the Matsubara
poles at the branch cuts which will be treated separately. For the integrals around the
branch cut at Im z = iωn we find, neglecting the q⃗ argument of the propagators,∫

Ciωn

dz

2πi

1 + 2nB(z)

2
G2
k(z)[S(iωn + z) + S(z − iωn)]

=

∫
R

dz

2πi
(1 + 2nB(z + iωn))zG

2
k(z + iωn) ,

(3.120)

and similarly for the path around Im z = −iωn,∫
C−iωn

dz

2πi

1 + 2nB(z)

2
G2
k(z)[S(iωn + z) + S(z − iωn)]

=

∫
R

dz

2πi
(1 + 2nB(z − iωn))zG

2
k(z − iωn) .

(3.121)
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We can now make the Wick rotation back to a real external frequency iωn → ω +
iε. This lets us express the propagator terms in their retarded and advanced form
respectively. Making use of the identity GR(−ω) = GA(ω) and symmetry properties
of the Bose distribution, we can formulate the sum of these two contributions as∫

C±iωn

dz

2πi

1 + 2nB(z)

2
G2
k(z)[S(ω + iε+ z) + S(z − ω − iε)]

= 2ω

∫
R

dz

2π
(1 + 2nB(z))ρ(z) ReG

R
k (z)

+ 2

∫
R

dz

2πi
z(1 + 2nB(z))

[
(ReGR

k (z))
2 − 1

4
ρ2(z)

]
.

(3.122)

This contribution has a linear dependence on the external frequency as desired. The
dependence on the flow parameters is entirely contained in the retarded propagator
and spectral density. Unfortunately, these integrals in general cannot be resolved an-
alytically since they contain products of rational functions with the Bose distribution.
The contour around the real axis can be simplified in a similar manner and yields∫

C0

dz

2πi

1 + 2nB(z)

2
G2
k(z)[S(ω + iε+ z) + S(ω + iε− z)]

= 2ω

∫
R

dz

2π
(1 + 2nB(z))ρ(z) ReG

R
k (z) .

(3.123)

Lastly, we need to account for the excluded terms of the Matsubara sum manually,
since they are not covered by the integrations,∑

ωm∈{0,±ωn}

TG2
k(iωm, q⃗)[S(iωn + iωm) + S(iωm − iωn)]|iωn=ω+iε

= 2ωT (ReGR
k (0, q⃗))

2 .

(3.124)

We find that the contributions of the poles at z = ±iωn exactly cancel. Notably, the
dependence of (3.117) on the external frequency is only linear. Therefore, the flow of
wave number renormalization cannot be generated,

∂tZk = 0 . (3.125)

This shows a clear weakness in our choice of the imaginary interaction term. A non-
vanishing flow of Zk can be generated by choosing an interaction correction that de-
pends on higher orders in the ingoing frequencies and momenta. However, this does
not change the calculations by much as long as the branch cuts and poles of the in-
teraction term with respect to the frequencies are known so that the Matsubara sums
can be resolved. Therefore, I will continue to work with our fairly simple definition
(3.110). For the flow of the damping following (3.109) we find

∂tγk = −4k2λk

∫
q⃗

[
T (ReGR

k (0, q⃗))
2

+ 2

∫
R

dz

2π
(1 + 2nB(z))ρ(z) ReG

R
k (z, q⃗)

]
.

(3.126)
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Re(z)

i Im(z)

iωn

−iωn

Figure 3.1: Pole structure and integration contours (blue lines) used to solve the Mat-
subara sum in (3.119). The integration paths go parallel to the real axis infinitesimally
above and below each of the branch cuts (zigzag lines) with the indicated direction of
integration. The Matsubara poles (red crosses) at the branch cuts are not included in
the shown contour. The central branch cut at Im(z) = 0 comes from the propagator,
the other two from the dissipative interaction term.

3.6.2 Flow of the interaction correction λk

The flow of the last remaining parameter λk is determined by a (1PI) one-loop two-
to-two scattering,

q

p+ − q
p1

p2

p3

p4

=: J(ω1 + i0+, p⃗1, . . . , ω4 + i0+, p⃗4, ) . (3.127)

Here we have relevant contributions from both the dissipative and the bare interac-
tion. Using again external imaginary frequencies iω̄i and defining the center of mass
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quantities ω+ = ω1 + ω2 = ω3 + ω4 and p⃗+ = p⃗1 + p⃗2, we can express J as

J(iω̄1, . . . , iω̄4) = 2k2
∫
q⃗

T
∑
ωm

G2
k(iωm, q⃗)Gk(iω̄+ − iωm, p⃗+ − q⃗)

Γ(4,0)(iω̄1, iω̄2,−iωm, iωm − iω̄+)Γ
(4,0)(−iω̄3,−iω̄4, iωm,−iωm + iω̄+)

= −2k2λ2k

∫
q⃗

T
∑
ωm

G2
k(iωm, q⃗)Gk(iω̄+ − iωm, p⃗+ − q⃗)

(
λ

iλk
+ S(iω̄+)

+ S(iω̄1 − iωm) + S(iω̄2 − iωm)

)(
λ

iλk
+ S(iω̄+) + S(iω̄3 − iωm)

+ S(iω̄4 − iωm)

)
.

(3.128)

From symmetry arguments we can see that this expression is invariant under the ex-
changes (ω1 ↔ ω2), (ω3 ↔ ω4) and (ω1, ω2 ↔ ω3, ω4). Thus, without loss of generality
we assume ω1 < ω3 < ω4 < ω2. Since S2(z) = z2 is not discontinuous, this can
also capture cases where some of the frequencies are equal. The projection to the
interaction correction we have chosen sets all external frequecies to zero in the end.
Therefore, we will handle all the calculations under the further assumption ω1 ≥ 0 for
simplicity. Interpreting the Matsubara sum as a contour integration, the integrand
now has six branch cuts, one each at Im z ∈ {0, ω̄+, ω̄1, ω̄2, ω̄3, ω̄4}. The first two of
those come from the propagators, while the other ones are caused by the discontinuity
of the sign function in the interaction. We choose integration paths in a similar way
to the previous section infinitesimally above and below each branch cut as shown in
figure 3.2. This choice excludes the Matsubara terms at the branch cut frequencies
which after analytical continuation contribute to the flow as

Σ0(ω+) = T (ReGR
k (0, q⃗))

2GR
k (ω+, p⃗+ − q⃗)

(
λ

iλk
+ 2ω+

)2

+ T (GR
k (ω1, q⃗))

2GR
k (ω2, p⃗+ − q⃗)

(
λ

iλk
+ 2ω2

)2

+ T (GR
k (ω2, q⃗))

2GR
k (ω1, p⃗+ − q⃗)

(
λ

iλk
+ 2ω2

)2

+ T (GR
k (ω3, q⃗))

2GR
k (ω4, p⃗+ − q⃗)

(
λ

iλk
+ 2ω2

)(
λ

iλk
+ 2ω4

)
+ T (GR

k (ω4, q⃗))
2GR

k (ω3, p⃗+ − q⃗)

(
λ

iλk
+ 2ω2

)(
λ

iλk
+ 2ω4

)
+ T (GR

k (ω+, q⃗))
2ReGR

k (0, p⃗+ − q⃗)

(
λ

iλk
+ 2ω+

)2

.

(3.129)

While not explicitly part of the projector, λk in our ansatz does not depend on spatial
momenta. Therefore, we will express all further contributions evaluated at p⃗+ = 0.
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This dependency can be reintroduced by changing the momentum dependency of the
non-squared propagator to p⃗+ − q⃗. For shortness of notation, dependencies on the
loop momentum q⃗ will not be not written out. With this in mind we consider the
paths around each of the branch cuts and label the terms Ci, i ∈ {0,+, 1, 2, 3, 4}
correspondingly. For the contour around the real axis we find

C0 =

∫
R±iε

dz

2πi

1 + 2nB(z)

2
G2
k(z)Gk(iω̄+ − z)

(
λ

iλk
+ S(iω̄+) + S(iω̄1 − z)

+ S(iω̄2 − z)

)(
λ

iλk
+ S(iω̄+) + S(iω̄3 − z) + S(iω̄4 − z)

)

→ −4

∫
R

dz

2π
(1 + 2nB(z)) ReG

R
k (z)ρ(z)G

R
k (ω+ − z) (ω+ − z)

(
λ

2iλk
+ ω+ − z

)2

.

(3.130)

The other propagator induced branch cut gives

C+ = −2

∫
R

dz

2π
(1 + 2nB(z))(G

R
k (z))

2ρ(z − ω+)

(
z +

λ

2iλk

)2

. (3.131)

These two terms include the contribution to λk that is generated from the presence of
the bare interaction λ and, implicitly via the spectral function, the damping γk. The
terms that come from the branch cuts of the interaction can be summarised as

4∑
i=1

Ci = 2

∫
R

dz

2πi
(1 + 2nB(z))(G

R
k (z))

2GR
k (ω+ − z)ω+(2z − ω+) . (3.132)

While the individual terms depend on the individual frequencies, their sum only de-
pends on the total frequency ω+ that goes into and out of the loop. Finally, with
equation (3.112) we can formulate the flow of the interaction correction as

∂tλk = −k2λ2k
∫
q⃗

{
T (ReGR

k (0))
2

(
3λ2

2λ2k
γk(ReG

R
k (0))

2 − 8λ

3λk
ReGR

k (0)

)

− 1

3

∫
R

dz

2π
(1 + 2nB(z))

[
2ρ(z) ReGR

k (z)

{
λ

2λk
(2ReGR

k (z)− ρ2(z))

+ 2z

(
z2 − λ2

4λ2k

)
ρ(z) ReGR

k (z)−
4λ

λk
z2(ReGR

k (z))
2

+

((
λ

γkλk
− 1

)
z − 1

2z

(
z2 − λ2

4λ2k

))
ρ(z)

}
+

(
(ReGR

k (z))
2 − 1

4
ρ2(z)− ρ(z) ReGR

k (z)

(
z2 − λ

4λ2k

))
·
(
1

z
ρ(z)− 4zρ(z) ReGR

k (z)

)
+ 2zReGR

k (z)

·
(
(ReGR

k (z))
2 +

1

4
ρ2(z)

)]}
.

(3.133)
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With this and the initial conditions at k = Λ for γk and λk we can now numerically solve
equations (3.126) and (3.133) as a coupled system of integro-differential equations.
Notably, at first look, none of the involved loop momentum integrals diverge upon
removal of the cutoff as all terms scale at least as |q⃗|−4. What remains is to translate
this into a flow of the shear viscosity.

Re(z)

i Im(z)

iω1

iω3

iω4

iω2

iω+

Figure 3.2: Pole structure and integration contours (blue lines) used to solve the Mat-
subara sum in (3.128). The integration paths go parallel to the real axis infinitesimally
above and below each of the branch cuts (zigzag lines) with the indicated direction of
integration. The Matsubara poles (red crosses) at the branch cuts are not included in
the shown contour. The two outer branch cuts at Im(z) = 0 and Im(z) = ω+ come
from the propagators, the other four from the dissipative interaction term.

3.6.3 Flow of the shear viscosity ηk

The last quantities that we have not yet explicitly written out and are needed for
the flow of ηk are the vertices that involve the metric background. In the projection
to the scale time derivative of the shear viscosity, there is a derivative with respect
to the external frequency. As mentioned before, the tadpole diagram that contains
Γ
(2,2)xyxy
k would need a dependence on the external frequency within the vertex in

order to contribute. While the vertex is modified in a frequency dependent way by our
addition of a damping term, it involves only the momenta of the scalar field, i.e. only
the loop momentum. For the Γ

(2,1)xy
k vertex only the original kinetic term contributes
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after setting the metric to a euclidean one,

Γ
(2,1)xy
k (q1, q2; p)[Φ = 0] =

1

2
(qx1q

y
1 + qx2q

y
2 − pxpy) , (3.134)

where the term that ensures momentum conservation is excluded. In the case of
vanishing metric momentum, as in the projection to ηk, this simplifies even further to
qxqy. Most importantly, the vertex does not depend on the external frequency which
means that the pole and branch cut structure of the amplitude is entirely determined
by the involved propagators. We define

p

q

p− q
p

xy xy =: K(ω + iε, p⃗) (3.135)

and can express this again with an external imaginary frequency,

K(iωn, p⃗) = 2k2
∫
q⃗

T
∑
ωm

G2
k(iωm)Gk(iωn− iωm, p⃗− q⃗)

(
Γ(2,1)(q⃗, p⃗− q⃗;−p⃗)

)2
. (3.136)

The branch cuts of the Matsubara summand lie at Im z = 0 and Im z = iωn. The
contour we choose to reexpress this is of the same type as in the two cases before.
Likewise, we have three contributions, Σ0 from the zero and external frequency Mat-
subara terms, C0 from the path around the real axis and Ciωn from the path around
R+ iωn. We define them such that

K(ω + iε, p⃗ = 0) = 2k2
∫
q⃗

(qxqy)2(Σ0(ω + iε) + C0(ω + iε) + Ciωn(ω + iε)) . (3.137)

For the zero frequency term we find

Σ0(ω + iε) = T (ReGR
k (0, q⃗))

2GR
k (ω, q⃗) + T ReGR

k (0, q⃗)(G
R
k (ω, q⃗))

2 , (3.138)

while the contour integrals give

C0(ω + iε) =

∫
R

dz

2π
(1 + 2nB(z))ρ(z, q⃗) ReG

R
k (z, q⃗)G

R
k (ω − z, q⃗) ,

Ciωn(ω + iε) =

∫
R

dz

2π

1 + 2nB(z)

2
(GR

k (z, q⃗))
2ρ(ω − z, q⃗) .

(3.139)

Inserting this into equation (3.91) gives us the final form of the flow equation for the
shear viscosity (not writing out the dependencies on the loop momentum),

∂tηk =− 2k2
∫
q⃗

(qxqy)2
[
3

2
Tγk(ReG

R
k (0))

4 +

∫
R

dz

2π

1 + 2nB(z)

2
ρ(z) ReGR

k (z)

·
(
1

z
ρ(z)− 4zρ(z) ReGR

k (z)

)]
.

(3.140)
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With the solution for γk as a function of the scale, this becomes an ordinary differential
equation in k after all the integrals are evaluated. In the limit k → 0 of the solution,
we recover a non-perturbative expression for the shear viscosity.

However, this ansatz as it is is flawed. It does not generate terms that are relevant
in the perturbative regime which manifests as a lack of scaling of Zk. This can be
fixed by assuming the presence of higher order frequency (and possibly also spatial
momentum) dependencies in the correction to the interaction. There is also another
problem. With the equations for γk and λk in their current form, the initial conditions
γk→Λ = 0 and λk→Λ = 0 imply that they stay at zero since all terms in equations (3.126)
and (3.133) are proportional to either γk or λk themselves. A small deviation from the
zero initial conditions is sufficient to generate non-vanishing flow, hence the fixed point
at (γk, λk) = (0, 0) is not a stable one. A deviation from the initial condition, however,
means starting from a different microscopic theory. This problem might instead be
solvable by choosing different projections for the flow parameters. While in principle
this should not influence the effective action we end up at following the Wetterich
equation, we break this feature by choosing an ansatz for the effective action. In that
sense, the choice of projector is comparable to perturbative calculations assigning the
meaning of a thermal decay width to the imaginary part of the self-energy evaluated
on-shell [29]. In summary, while the calculation given here does not generate a non-
trivial shear viscosity, it can be expanded to do so with only small modifications.
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Conclusions

In the first half of this thesis, we investigated the lower particle number limit of the
applicability of fluid dynamics. While this was originally motivated by results from
heavy-ion physics, we concluded that the expansion dynamics of ultracold atoms were
better suited to study this question experimentally. Therefore, we presented multiple
predictions of their dynamics for different situations. We found that, at unitarity
in a three dimensional system, the time dependency of the moment of inertia can
be separated from the initial condition and isotropic expansion and oscillation can be
described in a simple fashion. Slight deviations from the isotropic case might be within
reach by means of a perturbative treatment. In order to achieve the small particle
numbers required for our investigation, experiments work in a quasi two-dimensional
harmonic trap. We use the elliptic flow v2, adapted from heavy-ion physics, as an
indicator of fluidlike behavior in these systems. Our qualitative prediction of v2 from
basic arguments about relative contributions from effects of non-interacting quantum
mechanics and a classical image of interactions is confirmed by experiments [74]. From
there, we proceeded by using a fitted polytropic equation of state to make quantitative
predictions. For fluid static initial conditions in the trap, we reduced the expansion
dynamics to a set of two coupled ordinary differential equations by using Lagrange
coordinates and solved them numerically. For the special case of an isotropic trap, the
equations can be solved implictly for a general polytropic exponent κ and explicitly
in the case κ = 2. The aspect ratio of the fluid static trapped system was found to
be a general prediction for any equation of state without derivative contributions like
quantum pressure. The discrepancy between the predicted and experimental initial
density profile is therefore seen as an indicator that quantum effects play an important
role in the few particle system. We simulated the fluid dynamic evolution starting
from an initial condition fitted to the experimental data. The early time evolution in
simulation and experiment with N = 5 + 5 atoms matches if the equation of state is
rescaled by a constant factor. We therefore concluded that, at early times in the
expansion, a set of ten strongly interacting 6Li atoms behaves like a fluid.
This behavior is shown to break down for fewer particles in the upcoming paper [74].
Further work needs to be put into understanding the rescaling of the pressure, which
is possibly due to finite size and finite temperature effects. The next step in the study
of few fermion systems could be testing its rotational properties to determine whether
it is superfluid. Similarly, oscillatory motion might give insight into its viscosity.

The second question this thesis addressed was the prediction of transport coeffi-
cients from an underlying quantum field theory. Using the corresponding Green-Kubo
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relation, the shear viscosity can be expressed as a second derivative of the one par-
ticle irreducible effective action with respect to the metric, treated in this case as an
external field. We investigated the non-relativistic limit of real scalar quantum field
theory and generalized an existing canonical transformation to work on an arbitrary
metric background. This lets us systematically obtain relativistic corrections to both
interacting and non-interacting non-relativistic equations of motion. While their in
general complex dependency on the metric makes them less fit as a simplification for
our calculation of shear viscosity, they might be suited for the description of axionic
dark matter [98]. This type of transformation and potential equivalents for Majorana
fermions could help in the study of structure formation and thus merit further inves-
tigation. For the calculation of shear viscosity we turned to a relativistic real scalar
theory with a quartic interaction term. We employed functional renormalization group
methods, applied to a minimalist ansatz containing a broadening of the spectral func-
tion (γk), a frequency dependent correction to the interaction (λk) and a wave function
renormalization (Zk) as scale dependent parameters. We found that this simple trun-
cation still leads to a trivial result with the given initial conditions, not generating
any flow for Zk and staying at a fixed point in parameter space for vanishing γk and
λk at initial time. This problem can be solved by assuming a more complex frequency
and momentum dependence of the contribution to the four-point function. After these
issues have been resolved, a numerical solution of the integro-differential flow
equations leads directly to a non-perturbative prediction of the shear vis-
cosity.
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[32] Thomas Schäfer and Derek Teaney. “Nearly Perfect Fluidity: From Cold Atomic
Gases to Hot Quark Gluon Plasmas”. Rept. Prog. Phys. 72 (2009), p. 126001.
doi: 10.1088/0034-4885/72/12/126001. arXiv: 0904.3107 [hep-ph].

90

https://doi.org/10.1103/PhysRevA.98.011601
https://doi.org/10.1103/PhysRevA.98.011601
https://link.aps.org/doi/10.1103/PhysRevA.98.011601
https://doi.org/10.1103/PhysRevLett.106.115304
https://link.aps.org/doi/10.1103/PhysRevLett.106.115304
https://link.aps.org/doi/10.1103/PhysRevLett.106.115304
https://doi.org/10.1103/PhysRevLett.112.040405
https://link.aps.org/doi/10.1103/PhysRevLett.112.040405
https://doi.org/10.1103/PhysRevLett.113.020406
https://link.aps.org/doi/10.1103/PhysRevLett.113.020406
https://link.aps.org/doi/10.1103/PhysRevLett.113.020406
https://doi.org/10.1126/science.1201351
https://www.science.org/doi/abs/10.1126/science.1201351
https://doi.org/10.1038/s41586-020-2936-y
https://doi.org/10.1038/s41586-020-2936-y
https://doi.org/10.1038/s41586-020-2936-y
https://doi.org/10.1038/s41586-022-04678-1
https://doi.org/10.1038/s41586-022-04678-1
https://doi.org/10.1038/s41586-022-04678-1
https://doi.org/10.1103/PhysRevD.52.3591
https://doi.org/10.1103/PhysRevD.52.3591
https://link.aps.org/doi/10.1103/PhysRevD.52.3591
https://link.aps.org/doi/10.1103/PhysRevD.52.3591
https://doi.org/10.1103/PhysRevD.53.5799
https://link.aps.org/doi/10.1103/PhysRevD.53.5799
https://doi.org/10.1088/1751-8113/45/47/473001
https://dx.doi.org/10.1088/1751-8113/45/47/473001
https://dx.doi.org/10.1088/1751-8113/45/47/473001
https://doi.org/10.1088/0034-4885/72/12/126001
https://arxiv.org/abs/0904.3107


[33] Christof Wetterich. “Exact evolution equation for the effective potential”. Physics
Letters B 301.1 (1993), pp. 90–94. issn: 0370-2693. doi: https://doi.org/
10.1016/0370-2693(93)90726-X. url: https://www.sciencedirect.com/
science/article/pii/037026939390726X.

[34] R.L. Liboff. Kinetic Theory: Classical, Quantum, and Relativistic Descriptions.
Graduate Texts in Contemporary Physics. Springer New York, 2013. isbn:
9781475779103.
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