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Abstract

Star formation is one of the most fundamental subjects in astronomy where astronomers

have been seeking answers to key questions: how efficiently stars form and how newly born stars

affect their surroundings. Our understanding of star formation relies mostly on the observations

of star-forming regions. However, it is a non-trivial task to interpret the observations because

diverse physical processes are non-linearly coupled so the observational data are highly degener-

ate. Additionally, the ever-expanding volume of observational data in recent days necessitates a

new method that analyses large amounts of data more quickly and effectively.

In this thesis, we introduce deep learning-based tools we have developed to efficiently and

effectively interpret massive data of observed star-forming regions. We adopt the conditional

invertible neural network (cINN) architecture specialised in solving the inverse problem of de-

generate systems. We introduce the cINNs developed for cloud-scale observations and cINNs for

individual star-scale observations. Our networks are very useful tools that can consistently and

quickly analyse large amounts of data. We evaluate the performance of the networks, demon-

strating that our networks predict physical properties accurately and precisely.
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Zusammenfassung

Die Sternentstehung ist eines der grundlegendsten Themen in der Astronomie, bei dem As-

tronomen nach Antworten auf Schlüsselfragen gesucht haben: wie effizient Sterne entstehen und

wie neugeborene Sterne ihre Umgebung beeinflussen. Unser Verständnis der Sternentstehung

stützt sich hauptsächlich auf die Beobachtungen von Sternentstehungsgebieten. Es ist jedoch

eine nicht triviale Aufgabe, die Beobachtungen zu interpretieren, da verschiedene physikalische

Prozesse nichtlinear gekoppelt sind, sodass die Beobachtungsdaten stark entartet sind. Darüber

hinaus erfordert die ständig wachsende Menge an Beobachtungsdaten in den letzten Tagen eine

neue Methode, die große Datenmengen schneller und effektiver analysiert.

In dieser Doktorarbeit stellen wir Deep-Learning-basierte Tools vor, die wir entwickelt haben,

um massive Daten von beobachteten Sternentstehungsregionen effizient und effektiv zu inter-

pretieren. Wir übernehmen die Architektur des bedingt invertierbaren neuronalen Netzwerks

(cINN), die auf die Lösung des inversen Problems degenerierter Systeme spezialisiert ist. Wir

stellen die cINNs vor, die für Beobachtungen im Wolkenmaßstab entwickelt wurden, und cINNs

für einzelne Beobachtungen im Sternenmaßstab. Unsere Netzwerke sind sehr nützliche Werkzeuge,

die große Datenmengen konsistent und schnell analysieren können. Wir bewerten die Leistung

der Netzwerke und zeigen, dass unsere Netzwerke physikalische Eigenschaften genau und präzise

vorhersagen.
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1
Introduction

1.1 About this Thesis

The key questions in astronomy that astronomers have been trying to answer over a long period

of time are in fact not very different in essence from the questions that the general public can

think of when looking at the night sky or images of the universe observed via a telescope. How

did those things we’re looking at form? Why are those in so many diverse shapes and colours?

How many of those things are there in the universe? Are galaxies or stars constantly forming?

Even if it does not start out of the curiosity about the universe, people often ask questions similar

to what astronomers do, starting from philosophical questions about their origin. Where do we

come from, where did the materials that make up our body come from, how did our planet form

and what will happen in the future?

For a long time, astronomers have been trying to solve many of these questions and astronomy

has been divided into many fields in detail. The questions that astronomers focus on in modern

astronomy have deepened enough for the public to feel distant from astronomy, but "star forma-

tion", the seemingly simple theme, still holds many questions that we have not fully answered

yet and is one of the most fundamental subjects of astronomy. From studies of planets, stars

and galaxies to cosmology, star formation has been treated as a key astronomical phenomenon

because the formation, evolution and death of stars are the most basic set of processes that

drive the overall evolution of the universe. The key questions about star formation in modern

astronomy are: how efficiently stars are formed, how this efficiency is determined, how newly

born stars affect the surrounding environment, etc.

The only information we can get from the universe is light that has reached Earth, emitted

from celestial objects. As observation technology has developed remarkably in the past century,

these days, we can collect light not only in the optical wavelength range but also in all wavelengths

spanning from gamma rays to radios by using telescopes mounted either on Earth or in space.
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However, there are inevitable and inherent difficulties in analysing and interpreting the observed

light. When we receive 3D information about the object in the form of light, all of the line-of-sight

direction information accumulates and is lost. In addition, phenomena in different scales occur

simultaneously in astronomical objects but it is very difficult to disentangle them because we can

only observe the final output of those phenomena. The different time scale between the universe

and human beings is also one of the unsolvable difficulties. We rarely observe the immediate

evolution of astronomical objects. Therefore, we understand the evolution of astronomical objects

by analysing and comparing different objects in different evolutionary stages, which is not such

a strict method because we cannot guarantee that different objects always undergo the same

evolution.

To overcome the limitations of the scale of space-time, astronomers have begun theoretically

modelling the universe. It has been possible to create virtual galaxies and universes and to inves-

tigate the evolution within the human time scale by including as many of the physical processes

we know as possible in the theoretical model. Since the time scale that can be implemented

through theoretical models depends on computational power, the field of theoretical simulation

has also developed significantly with the development of computer technology. Because of the

limited computation time and memory, it is not possible to include all the physics in the theoret-

ical model, but theoretical studies play an important role in constraining the physical conditions

required to explain the observed universe by examining how each physical process affects the

evolution of the object or the universe. Furthermore, a model-fitting method, finding a model (a

set of physical parameters) that best mimics the observation, is also widely used to analyse the

observations.

Unlike in the past when it was difficult to obtain observational data of good quality, we can

now rapidly obtain a large amount of high-quality observational data thanks to the advance in

telescopes and instruments. Large observational surveys over the past decades such as Sloan

Digital Sky Survey (SDSS) and Gaia mission have provided astronomers with vast amounts of

data, which have led to many innovative discoveries. With the expanding volume of accumulated

observations, finding the method of analysing observational data faster and in a consistent way

has become a new important task in astronomy. This has made astronomers interested in machine

learning, especially the deep learning technique.

Machine learning that can quickly solve tasks that humans cannot easily solve has been

applied to many fields in astronomy and used as a new breakthrough. Astronomers are using

machine learning for various tasks such as classifying numerous images quickly (Wu et al. 2019;

Walmsley et al. 2021; Whitmore et al. 2021) or predicting physical properties from observational

data (Fabbro et al. 2018; Ksoll et al. 2020; Olney et al. 2020a; Sharma et al. 2020a; Shen et al.

2022). In this thesis, we aim to develop machine-learning tools that help study star formation.

Deep learning, often referred to as an artificial neural network, is the subfield of machine
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learning, inspired by the behaviour of the human brain. Among various types of network ar-

chitectures, we apply one of the deep learning architectures called conditional invertible neural

network (cINN) developed by Ardizzone et al. (2019a, 2021) in this thesis. The cINN is spe-

cialised in solving the ambiguous inverse problem. The translation of the physical system to

the observation is often called the forward process while inferring the physical properties from

the observations is referred to as an inverse process. The ambiguous inverse problem occurs

in a degenerate system, which means the observations obtained from two different systems are

almost similar or identical due to the information loss in the forward process. Given the men-

tioned inherent difficulties of analysing astronomical observations, many astronomical tasks are

ambiguous inverse problems where cINN would be applicable.

We have developed cINN-based tools that can effectively and efficiently analyse large amounts

of observed star-forming regions to understand star formation. Here in this thesis, we introduce

and carefully evaluate our networks. We focus on spectral observation in the optical wavelength

range which is easily observable on Earth and can be obtained from many instruments and

telescopes. We developed two types of networks: one for the cloud-scale observations of star-

forming regions and the other for observations of individual stars. The former case is designed to

analyse clusters and star-forming clouds where it is not possible to resolve individual stars. The

latter case aims to study stars with a mass similar to solar mass or smaller, targeting star-forming

regions within the Milky Way where individual stars can be resolved.
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1.2 Star formation

1.2.1 Birth of stars

Giant molecular clouds (GMCs), gravitationally bound massive and dense accumulations of

molecules, are the birthplaces of stars. The most common component of the GMC is molec-

ular hydrogen (H2). As the molecule is the coldest phase of the interstellar medium (ISM), the

temperature of GMC is also very low around 10–20 K (see Table 1 of Girichidis et al. 2020).

GMCs range greatly in size and density. The characteristic density of GMC is ∼100 cm−3 though

the density varies from 30 to 1000 cm−3. Their sizes range from 20 to hundreds of pc and they

cover a wide range of mass between 103 to 107 M⊙ with a typical cloud mass of 104 M⊙ (Goodwin

2013; Klessen & Glover 2016).

Hydrogen is the most abundant molecule in GMCs that contains other molecules as well (CO,

NH3, HCN, CS, etc.). However, hydrogen molecules are hardly visible when observing GMCs

because H2 lacks electric dipole-driven rotational- and vibrational transitions due to its symmetric

homonuclear diatomic structure. The lowest transition of H2 corresponds to the temperature

of 510 K (Goldsmith et al. 2010) which is too hot to be emitted from GMCs with a typical

temperature of ∼10 K. Instead, GMCs are bright in CO, the second most abundant molecule in

GMCs. The temperature of J = 1→ 0 transition of CO is 5.5 K (Draine 2011), therefore, CO is

used as a primary tracer of GMCs. In most cases, the amount of molecular hydrogen in the GMC

is obtained using a conversion factor between CO emissions and H2 column density (NH2), so-

called X-factor, assuming a constant conversion factor. However, measuring the accurate amount

of hydrogen in GMCs remains a challenging task because the conversion factor can highly vary

depending on the environment (Wolfire et al. 2010; Glover & Mac Low 2011).

The density inside the GMC is not uniform. Overdense regions within GMCs where nH2 ≳

1000 cm−3 are called clumps and even denser regions (nH2
≳ 105 cm−3) are referred to as cores

or prestellar cores. Clumps are associated with star cluster formation and have sizes of ∼1 pc

and masses of a few hundred M⊙, while individual stellar systems are formed in the cores that

have sizes of ∼0.1 pc and masses of a few solar masses (Goodwin 2013).

The prestellar core is supported by forces opposing gravity such as the thermal pressure of

the gas, turbulence, or magnetic field. The prestellar core collapses if its mass exceeds the critical

mass MJ , the local Jeans mass (Jeans 1902)

MJ =
π

6

c3s
G3/2ρ1/2

≈ 2 M⊙

( cs
0.2 km s−1

)3 ( n

1000 cm−3

)−1/2
(1.1)

where cs is the sound speed and n is the number density of the gas. For a typical molecular cloud
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with a temperature of ∼10 K, the sound speed is ∼0.2 km s−1. Thus, a prestellar core with a

density of 1000 cm−3 collapses once it gathers a mass around a solar mass. Once the prestellar

core collapses, a protostar with a size of ∼1 AU is formed in the contracting core. Due to the

continuing mass accretion, the temperature of the protostar rises until it reaches the condition

of hydrogen fusion at the centre, entering the main sequence.

Depending on the size of the protostellar core and the accretion environment of the protostar,

newly formed stars have a wide range of masses. The distribution of the stellar masses that just

entered the main sequence is called the initial mass function (IMF). The shape of the IMF plays a

crucial role in the evolution and fate of the GMC and star cluster. The observed IMFs appear in

similar shapes in diverse environments (Bastian et al. 2010; Klessen & Glover 2016). One of the

widely accepted parameterizations of the observed IMF is the combination of three power-law

segments, proposed by Kroupa (2001, 2002):

dN
d log(M∗)

= ξ(M) ∝


M0.7, 0.01 M⊙ ≤M < 0.08 M⊙

M−0.3, 0.08 M⊙ ≤M < 0.5 M⊙

M−1.3, M ≥ 0.5 M⊙.

(1.2)

The upper mass limit of the IMF is still debated observationally. There are two important

implications from the form of the observed IMF. Firstly, the formation of low-mass stars is highly

preferred. The 50 % of the total mass is in stars with M ≲ 1 M⊙ (Kroupa 2001). Secondly,

massive stars are not only short-lived but also are rarely born.

How much gas in the GMC is converted into stars is one of the key questions in star formation.

To quantify this, we define two representative quantities: star formation efficiency (ε) meaning

the ratio of newly born stellar mass over gas mass and the star formation rate (SFR), the mass

of stars created per unit of time. Instantaneous star formation efficiency at any moment in time

(t) can be defined as,

ε(t) =
M∗(t)

M∗(t) +MGMC(t)
, (1.3)

but it is useful to use star formation efficiency integrated over a certain time scale. We usu-

ally adopt a free-fall time (tff) as a unit time, which is a time for the material to collapse by

gravitational force. A free-fall time is determined only by the density of the gas,

tff =

√
3

32Gρ
∼ 3 Myr

( n

100 cm−3

)− 1
2

, (1.4)

where n is the number density of the gas. We use star formation efficiency over a free-fall time

(εff) and SFR per free-fall time (SFRff), i.e., the average star formation during the free-fall time.

Assuming that the entire gas in the GMC is consumed to form stars, the lifetime of the cloud

is determined by the depletion time (tdep) i.e., the amount of the gas in the GMC divided by the
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star formation rate. If stars are formed simply in a free-fall timescale, then the star formation

efficiency per free-fall time (εff) is 100% (tdep = tff). Considering the free-fall time and mass of the

molecular gas in the Milky Way, the SFRff of the Milky Way should be ∼100 M⊙/yr. However,

the observed SFRff of the Milky Way and nearby spiral galaxies is around a factor of 100 smaller,

i.e., 1 M⊙/yr (Leroy et al. 2012), meaning εff of ∼ 1 %. From various studies (Lada et al. 2010;

Murray 2011), the observed star formation efficiency per free-fall time is ∼1 % and the integrated

star formation efficiency during the lifetime of massive stars is about 2−10 % (Chevance et al.

2020a). Due to the low star formation rate, the estimated depletion time for nearby spiral

galaxies is around 2 Gyr (Leroy et al. 2008). This means that a simple gravitational collapse

does not explain star formation and that there exist mechanisms that suppress star formation.

The stellar feedback by massive stars is regarded as one of the most important mechanisms to

explain the inefficiency of the observed star formation.

1.2.2 Young stellar objects

Young stellar objects (YSOs) refer to stars in their early evolutionary stage before entering the

main sequence. YSOs are commonly classified into Classes 0, I, II, and III according to the

characteristics of the observed spectral energy distributions (SEDs). The last stage, Class III, is

also called the pre-main sequence phase.

Once the prestellar core meets the Jeans criteria, the molecular gases in the core gravita-

tionally collapse, forming a protostar in the centre. The molecular gas of the core encloses the

protostar (i.e., envelope) and the protostar continues to accrete matter from the infalling enve-

lope. As the accretion luminosity is completely absorbed by the optically thick envelope, the

re-emitted emissions from the envelope are the dominant source of the observed SED that falls

primarily in the sub-mm wavelength range (Goodwin 2013; Klessen & Glover 2016). In the Class

0 phase, most of the mass is still in the envelope.

Due to the conservation of angular momentum, most of the infalling materials do not accrete

directly to the protostar but form a rotationally supported accretion disk. The protostar contin-

ues to accrete matters from the accretion disk. This stage is called Class I. Due to the magnetised

molecular core, the accretion disk can launch the magnetically driven outflow along the polar

axis of the system (Pudritz et al. 2006; Klessen & Glover 2016). The outflow starts to disperse

the remaining envelope surrounding the protostar. Starting from the polar direction, the area

affected by the outflow gradually widens, and the inner disk region becomes to be visible. This

changes the observed SED, shifting the peak of the SED from the sub-mm regime towards the

infrared wavelength. The period of Class 0 + I, usually referred to as protostellar lifetime, is

∼0.5 Myr (Dunham et al. 2014).

Once most of the remaining envelope is dispersed, the central protostar and disk become

directly visible, entering the Class II phase. The YSOs in the Class II phase are classified into
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T-Tauri stars (≲ 2 M⊙) and Herbig Ae/Be stars (2 ≲ M ≲ 8 M⊙) according to their masses.

The T-Tauri stars have a surface temperature of 3000 – 7000 K (Appenzeller & Mundt 1989),

corresponding to the spectral type of M – F type, while the surface temperature of Herbig Ae/B

stars ranges from 8000 to 20000 K which corresponds to the F – B0 type. Their observed SEDs

peaking in the infrared regime indicate the presence of the accretion disk. However, most of the

mass is already accreted to the central star and the remaining accretion disk contributes only a

few per cent of the overall mass budget (Klessen & Glover 2016). Planets begin to form in this

evolutionary phase.

The Class III phase (also known as the pre-main sequence phase) starts once the remaining

envelope is completely removed and the central star becomes fully visible. The circumstellar disk

is also exhausted leaving only the debris disk where planet formation continues. The central star

loses energy due to radiative cooling but the energy is compensated by gravitational contraction.

The central star continues to contract until its core becomes hot enough for nuclear fusion. This

period is determined by the Kelvin Helmholtz time scale, where the time scale for solar-type

stars is ∼20 Myr (Kippenhahn et al. 2012; Klessen & Glover 2016). Finally, the star enters the

main sequence, where nuclear fusion energy supports gravity. The lifetime of the main sequence

is determined by the nuclear burning time,

τMS ≈ 1010 years
(

M

M⊙

)−2.5

. (1.5)

The lifetime of the main sequence for stars with a solar mass is around 10 billion years.

In the case of low-mass stars, when the envelope dissipates and accretion halts, the star in

pre-main-sequence contracts to reach the temperature for hydrogen fusion. However, in massive

cores where massive stars are formed, the accretion rate is very high that hydrogen fusion begins

before the envelope completely disappears and accretion finishes. So, when the star becomes

fully visible after removing the envelope, massive stars have already entered the main sequence

stage and are evolving. For this reason, unlike low-mass stars, it is difficult to observe when

massive stars have just entered the main sequence stage (Kippenhahn et al. 2012).

1.2.3 Stellar feedback

Massive stars stay on the main sequence for a very short period (∼ a few Myr). During the

early evolutionary stages of the low-mass stars, massive stars have already died out due to their

short lifetime. Therefore, massive stars are indicators of ongoing star formation. Although

they are very short-lived and account for a small mass fraction of the cluster mass (see IMF in

Section 1.2.1), massive stars have a great influence on the star-forming region during their short

lifespan via stellar feedback.

Stellar feedback is the energetic interaction between young massive stars and their birth-
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place (for a review about stellar feedback, see Krumholz et al. 2014; Dale 2015; Klessen & Glover

2016), playing an important role in the evolution of the interstellar medium. Massive stars inject

lots of energy and momentum into the surrounding environment through various mechanisms,

blowing away and dispersing the gas, which finally can destroy the star-forming region (Dale et al.

2012; Kim et al. 2021; Grudić et al. 2022). Stellar feedback complicates the star-forming region

morphologically and dynamically and changes the surrounding environment being unfavourable

to star formation (e.g., low gas or hot temperature), suppressing further star formation. There-

fore, stellar feedback is regarded as one of the key phenomena that can explain the observed low

star formation rate (Krumholz & Tan 2007; Murray 2011).

Mechanisms of stellar feedback

Massive stars affect their surroundings through various mechanisms on different scales. There

are three major stellar feedback mechanisms: radiations, stellar winds, and supernovae.

Young massive stars have a high surface temperature that is enough to emit significant

amounts of ionising photons (E > 13.6 eV). These ionise the surrounding ISM, producing a

H ii region filled with fully ionised hydrogen. Assuming a spherical H ii region with uniform

density, the radius of the H ii region

Rs =

(
3Q

4παBn2

)1/3

∼ 3.17 pc
(

Q

1049 s−1

)1/3 ( n

100 cm−3

)−2/3
(

T

104 K

)0.28

,

for αB ≈ 2.56× 10−13 cm3 s−1

(
T

104 K

)−0.83

(1.6)

is determined by the density (n), recombination coefficient αB, and Q, the rate of emission of

hydrogen-ionising photons. This radius is called Strömgren (1939) radius. Taking the typical

values of density and Q, the radius of H ii region is ∼3 pc (Draine 2011). Due to its hot

temperature of ∼10000 K, the H ii region is highly overpressurised compared to the ambient gas,

leading to the expansion (Oort & Spitzer 1955). This produces a dense shell composed of swept-

up materials, surrounding the inner low-density cavity. The strong radiation field generated by

massive stars not only ionises matter but also directly contributes to the expansion of the shell

by its radiation pressure (Mathews 1967). Non-ionising photons mostly interact with the dust

grains in the shell, transferring momentum and exerting radiation pressure (Krumholz et al.

2014).

Additionally, the radiation of massive stars drives strong stellar winds, the ejection of material

from the surface of the star. There are a few types of stellar wind, but the stellar wind of a massive

star is driven by line scattering between photons and ionised metals in the stellar atmosphere.

The stellar wind of massive stars is very fast with a velocity of ∼1000 to ∼3000 km s−1 (Crowther
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et al. 2016) and the mass loss rate of stars by the stellar wind is ∼ 10−5 – 10−4 M⊙/yr, meaning

that massive stars lose about a solar mass per 1 Myr. The mass loss rate increases even more if a

massive star becomes the Wolf–Rayet star or luminous blue variable, the evolutionary phase after

the main sequence. Stellar wind ejects a large amount of material into the surrounding ISM. This

shocks the ambient material and pushes them away, forming an expanding wind-driven bubble.

The first two feedback mechanisms (radiation and stellar wind) are early-type of feedback

which are dominant when the stars are young. At the last moment of death, massive stars

deliver enormous energy to surrounding ISM through supernovae. In the last evolutionary stage

of a massive star, once the star cannot sustain gravity anymore, it explodes violently, leaving a

neutron star or black hole behind. Supernovae of this type are called core-collapse supernovae

and they produce ∼ 1051 erg of energy and eject several solar masses of materials through the

explosion, shocking the ambient ISM, heating and blowing away them. Supernovae are a late

type of feedback. Stars with M > 100 M⊙ reach supernovae after ∼3 Myr. After about 4.5 Myr,

stars with M > 40 M⊙ all die out, and it takes about 30 Myr for all stars above 9 M⊙ to end

up supernovae (Ekström et al. 2012).

Impact of stellar feedback

Massive stars eject enormous energy via various mechanisms, but gravity counteracts stellar

feedback and can lower their power. The actual impact of the stellar feedback on the star-forming

region depends on the balance between gravity and stellar feedback. If the power of feedback is

strong enough against gravity, it will push away the surrounding ISM, destroying the molecular

cloud and suppressing further star formation. On the other hand, if the feedback is not strong

enough, the gas in the cloud may disperse and be heated by the feedback, but the molecular

cloud will still be gravitationally bound. Since massive stars are short-lived (< 30 Myr), after

the death of massive stars, the gas will gravitationally gather and collapse again and be able

to form the star. This type of inefficient stellar feedback can slightly lower the star formation

rate but will not fully suppress the star formation. If the molecular cloud is very dense and the

initial star formation rate is low, stellar feedback may have an almost negligible effect on the

star formation rate.

There are many observational and theoretical studies on the impact of stellar feedback. Recent

theoretical studies (e.g., Dale et al. 2012, 2014; Kim et al. 2016, 2018; Rahner et al. 2017, 2019;

Geen et al. 2020) have shown that stellar feedback can disperse the molecular cloud via various

mechanisms and observational studies also supported the negative stellar feedback (e.g., Chevance

et al. 2020b; Barnes et al. 2021; Kim et al. 2021; McLeod et al. 2021). For example, Chevance

et al. (2020b) and Kim et al. (2021) measured the lifetime of GMCs in nearby galaxies and

found that molecular clouds disperse within 1 – 7 Myr after the birth of massive stars. Rahner

et al. (2019) theoretically showed that star formation efficiency of 1–6 % is sufficient to destroy

9



1.2. Star formation

a molecular cloud. However, stellar feedback is not always efficient in all star-forming regions.

For instance, Dale et al. (2012) theoretically demonstrated that the impact of feedback can

vary depending on the density of the molecular cloud, and Watkins et al. (2019) presented an

example of the star-forming region where the feedback is inefficient due to the high density of the

molecular cloud. Some studies suggest the possibility of positive feedback. For example, Shetty

& Ostriker (2008) and Hobbs et al. (2015) explain that stellar feedback reduces star formation

efficiency overall, but can induce star formation locally by compressing the gas. However, many

studies have shown that stellar feedback plays an important role in suppressing star formation.
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1.3 Deep Learning

1.3.1 Motivation for using deep learning

Our understanding of star formation relies heavily on the interpretation of the observed star-

forming region. This starts with determining several physical properties of the object from the

observation: stellar parameters (temperature, gravity) of individual stars, mass and age of the

star cluster, star formation rate, etc. The translation from the physical system to the observation

is often called the forward process, while the opposite process, inferring the physical properties

from observations, is referred to as the inverse process. Most of the tasks in astronomy including

the field of star formation are to solve the inverse problem.

The forward process is complicated but is usually obvious and well-known. However, the

inverse process is often vague because of the information loss during the forward process. For

example, because of the inevitable projection effect, we only obtain 2-dimensional information

and 3D information is lost. Moreover, observation of astronomical objects is limited to the

present time and line of sight direction. The information we finally obtain through observation

is limited due to various information loss. This causes different physical objects to be mapped

onto similar or almost identical observations, which makes the inverse problem more difficult to

solve. We refer to such a system as a degenerate system.

The development of the theoretical models has helped solve the inverse problem. Recent

theoretical models not only well describe the overall evolution of astronomical objects but also

succeed to produce synthetic observations that are very similar to what we really observe. It

became possible to interpret the observations by finding the best-fit model that corresponds to

the observation. For example, the age of the cluster can be estimated by finding the best-fit

isochrone model on the observed colour-magnitude diagram (CMD) of the cluster, and by fitting

the observed SED with the synthetic SEDs, it is possible to estimate the stellar mass of the

cluster.

However, finding the best-fit model using the classical fitting methods is a non-trivial task

because the overall forward process is very complicated. To find the best-fit model, it is essential

to choose a reasonable mathematical function that describes the link between physical parameters

and observations. However, the overall forward process is usually non-linear and complex so most

of the forward process is described through numerical simulations. It is almost impossible to find

the analytic model that describes this overall process. In addition, the forward process is still

highly dimensional that entails many free parameters, although some parameters can be fixed by

simplifying the models through physical assumptions. Even if it is possible to find the function

that describes the forward process, finding the best-fit model (i.e., a set of parameters) would be

a computationally very expensive task due to the high dimensionality.
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Furthermore, in the case of the degenerate inverse problem, there could be multiple solutions

that satisfy the observation. Therefore, it is necessary to find a full posterior distribution of phys-

ical systems conditioned on the observation, which is usually a computationally expensive task.

For these reasons, fitting the theoretical model to the observations using general fitting methods

may require oversimplification of the theoretical model or result in an incomplete solution by

finding only one possible system.

The deep learning method, which is also called an artificial neural network, can help solve

these difficulties. Artificial neural networks (NNs; Goodfellow et al. 2016) link physical parame-

ters to observable quantities through a statistical model rather than depending on a preselected

mathematical model. By deepening the network, NN is able to solve high-dimensional problems

as well. If we choose the deep learning architecture that provides the posterior distribution, we

can also find the full solution to the degenerate inverse problem.

As the volume of accumulated observations ever-expand in recent days, it is important to

develop time-efficient methods to analyse large amounts of data in a faster and more consistent

way. Although training the neural network usually takes time, once trained, NN is able to analyse

numerous data very quickly and consistently. In this thesis, we aim to develop deep learning

tools that help analyse the observed star-forming regions effectively and efficiently.

1.3.2 General Concept

Artificial intelligence (AI) is the concept of creating intelligent machines, especially intelligent

computer programs. Machine learning is a subset of AI, where a system automatically learns

and improves from experience. Deep learning (artificial neural network), a subset of machine

learning, is based on a collection of connected units called artificial neurons, that mimic the

behaviour of the human brain.

Structure of a neural network

A neuron (or a node), the basic unit of a neural network, is composed of input, weight, bias,

activation function, and output. Given an N-dimensional input x = (x1, x2, . . . , xN ), the first

computation that occurs in the neuron is the linear combination of input:

a =

N∑
i=1

wixi + w0 (1.7)

where parameters wi are called weights and parameter w0 is called a bias (Bishop 2006). Then

the first output (a), known as activation, is passed to the differentiable, non-linear activation

function, Φ, to give the final output of the neuron, z = Φ(a). A neural network consisting of

multiple layers composed of multiple neurons inside is often called a deep neural network.

Designing a network involves choosing many design features such as the number of layers,
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the number of neurons in one layer (width of the network), the input and output dimensions,

etc. A fully connected network is a commonly used network design where every input neuron is

connected to every output neuron.

Learning of the network

In the field of machine learning including deep learning, there are three main algorithms for how

a machine learns: supervised learning, unsupervised learning, and reinforcement learning. In

this thesis, we only apply supervised learning.

Supervised learning is a method of learning from large amounts of data where both inputs and

outputs are well labelled. The network learns the output corresponding to the input, understands

the relationship between them, and can predict the output of new input data based on past

experience. In this thesis, we aim to develop machines that predict the physical properties of

new observational data. Therefore, we apply a supervised learning approach in our networks.

Unsupervised learning finds patterns from unlabelled data. Given a set of input data without

any corresponding target values, the machine has to identify hidden features from the input data.

Unsupervised learning is used in clustering tasks. Reinforcement learning aims to train a system

to complete a task within an uncertain environment. The system learns from receiving new

environments and corresponding rewards, the measurement of the successfulness of the system

output.

Training a network means finding proper values for the network components: the weights

and biases. Here we only explain the general training method used in the supervised learning

approach. Given a set of training data, a set of input (x) and output (y), a network aims to

describe y through a function f(x; θ) → y, where θ indicates a set of all trainable parameters

(weights and biases). To find the f where f(x; θ) best approximates y, we define the loss

L(y, f(x; θ)), the difference between f(x; θ) and y, to be optimised during the training. Loss can

be defined in various ways depending on the task. The commonly used losses are mean square

loss (L2 loss), mean absolute loss (L1 loss), and cross-entropy loss.

1.3.3 Conditional Invertible Neural Network

Invertible neural network (INN) is a novel deep learning architecture developed by Ardizzone

et al. (2019b). Due to the invertibility of INN architecture, it can automatically learn the inverse

process by learning the forward process. In this thesis, we utilise a conditional invertible neural

network (cINN; Ardizzone et al. 2021) which is the extension of the INN architecture. Both

INN and cINN are able to solve inverse problems and provide a posterior distribution of desired

physical parameters on a given observation.

To apply the cINN or INN in a given inverse problem, we assume that information loss occurs

during the forward process that causes the degeneracy in the system. This means that different
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sets of physical parameters (x; physical properties of the object) are mapped onto identical

observations (y; observable quantities such as luminosity). In such a system, the degenerate y

cannot uniquely explain the corresponding x. INN solves the problem by introducing the latent

variables (z), which capture the information loss during the forward process, and by making a

bijective mapping that could not be achieved with x and y alone. The original INN architecture

links x and a unique pair of [y, z], making a bijective forward mapping f(x) = [y, z] and a

inverse mapping x = f−1(y, z) = g(y, z).

However, there are a couple of limitations in the INN architecture: the forward process has

to be deterministic and there are some requirements towards the intrinsic dimensionalities of

x and y. On the other hand, the cINN architecture avoids these problems by slightly shifting

its structure. While it also introduces latent variables for the same purpose, it uses a different

mapping system by inputting the observations y in both the forward and inverse process as a

condition c: f(x; c = y) = z, x = g(z; c = y) (Ardizzone et al. 2021). The cINN has the

advantage of being free to choose the dimensions of x and y. In the case of the INN which

links x and a pair of [y, z], zero padding is necessary if the dimension of x is smaller than the

dimension of [y, z] (Ardizzone et al. 2019b). However, in the cINN, y can have an arbitrarily

large dimension regardless of the dimension of x.

During training, we prescribe the latent variables to follow a standard normal probability

distribution p(z) = N(z, 0, I) with zero mean and unit width, where I is the identity matrix

with a dimension of dim(z) × dim(z). The posterior distribution of physical parameters, p(x|y),

is estimated on the basis of the inverse mapping f−1 = g. Following the inverse process x =

g(z; c), the posterior distribution is a transformation of the known distribution p(z) to x-space,

conditioned on the observation. So, the posterior distribution for a given observation p(x|y) is

determined by sampling the latent variable following the prior distribution and using the inverse

process g.
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Chapter 1. Introduction

1.4 Structure of the thesis

The main body of this thesis is structured with the following four main chapters. In Chapter 2,

we introduce our first cINN-based tool for the analysis of cloud-scale star-forming region obser-

vations. In this study, we train the cINN using synthetic H ii region models produced by using

WARPFIELD-EMP pipeline (Pellegrini et al. 2020). The network introduced in this chapter

provides a full posterior distribution of seven physical parameters of star-forming regions by us-

ing the luminosity of 12 optical emission lines which are commonly observable in star-forming

regions. We evaluate the performance of the network using WARPFIELD-EMP models not used

for the training.

In Chapter 3, we present an upgraded version of a cINN for the analysis of cloud-scale

observations (Noise-Net), as a follow-up study of the first work (Chapter 2). Noise-Net uses the

observation errors as an additional input of the network and learns the influence of errors on the

parameter prediction, providing a posterior distribution of parameters reflecting the observational

errors. We compare the performance of the new version with the first version and show that the

Noise-Net can predict accurately even when the error is large.

In the next chapter (Chapter 4), we present the cINN that diagnoses the individual stellar

spectrum of young low-mass stars and provides posterior distributions of three stellar parameters.

In this work, we train the networks using Phoenix stellar atmosphere models. We evaluate the

performance of the networks in various ways by applying them to the real stellar spectrum of

Class III stars as well as the synthetic models. Additionally, we analyse the spectral part which

the network relies mostly upon to estimate each parameter. We investigate the gap between the

synthetic models and reality and how this gap affects the network performance.

In the last chapter, Chapter 5, we summarise our findings and discuss the strengths and

limitations of the application of cINN to astrophysical problems. We conclude by introducing

the future studies planned.
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2
Emission-line diagnostics of H ii regions using
conditional invertible neural networks

This chapter is based on the paper Kang et al. (2022) published in Monthly Notices of the Royal

Astronomical Society (MNRAS) in 2022. I am the first author and carried out network construc-

tion and training, all of the data analysis and writing of the paper. Eric W. Pellegrini, the second

author, produced the database of WARPFIELD-EMP synthetic H ii region models used in this

work. To construct the network based on the cINN architecture, we used the FREIA (Framework

for Easily Invertible Architectures; Ardizzone et al. 2019b) developed by Lynton Ardizzone, the

third author of this paper, which is based on the ‘PYTORCH’ library (Paszke et al. 2019). The

co-authors provided valuable comments and helped improve the manuscript.

Abstract

Young massive stars play an important role in the evolution of the interstellar medium (ISM)

and the self-regulation of star formation in giant molecular clouds (GMCs) by injecting en-

ergy, momentum, and radiation (stellar feedback) into surrounding environments, disrupting the

parental clouds, and regulating further star formation. Information of the stellar feedback in-

heres in the emission we observe, however inferring the physical properties from photometric

and spectroscopic measurements is difficult, because stellar feedback is a highly complex and

non-linear process so that the observational data are highly degenerate. On this account, we

introduce a novel method that couples a conditional invertible neural network (cINN) with the

WARPFIELD-emission predictor (WARPFIELD-EMP) to estimate the physical properties of

star-forming regions from spectral observations. We present a cINN that predicts the posterior

distribution of seven physical parameters (cloud mass, star formation efficiency, cloud density,

cloud age which means the age of the first generation stars, the age of the youngest cluster, the

number of clusters, and the evolutionary phase of the cloud) from the luminosity of 12 optical

emission lines, and test our network with synthetic models that are not used during training.

16



Kang et al. 2022

Our network is a powerful and time-efficient tool that can accurately predict each parameter,

although degeneracy sometimes remains in the posterior estimates of the number of clusters.

We validate the posteriors estimated by the network and confirm that they are consistent with

the input observations. We also evaluate the influence of observational uncertainties on network

performance.

2.1 Motivation

Stellar feedback, the interaction between young massive stars and their birthplace, plays a crucial

role in the evolution of the interstellar medium (ISM) in galaxies. Once massive stars are formed

in giant molecular clouds (GMCs), they inject a large amount of energy and momentum into the

surrounding environment, which leads to the destruction of their birthplace and suppression of

further star formation in the molecular cloud (for a review about stellar feedback, see Krumholz

et al. 2014; Klessen & Glover 2016).

There are diverse stellar feedback mechanisms that can act against gravity such as supernovae,

stellar winds, radiation pressure, or photoionisation. Different feedback modes are coupled non-

linearly and complicate feedback-influenced regions like H ii regions and photodissociation regions

(PDRs) morphologically and dynamically. Recent studies theoretically describe stellar feedback

models including several different feedback mechanisms (e.g., Dale et al. 2014; Rahner et al.

2017, 2019; Kim et al. 2018; Ali & Harries 2019; Geen et al. 2020; Grudić et al. 2022) and apply

their models to characterise observed star-forming regions (e.g., Pellegrini et al. 2011; Rahner

et al. 2018; Rugel et al. 2019). However, finding a best-fitting model for observations using

classical forward modelling methods is difficult and limited in parameter space due to the high

dimensionality, nonlinearity, and degeneracy of the complex stellar feedback process.

Artificial neural networks (NNs; Goodfellow et al. 2016) link physical parameters to observa-

tional measurements through a statistical model rather than depending on a preselected physical

model. NNs have been applied in various astronomical studies, e.g., to predict physical param-

eters (e.g., Fabbro et al. 2018; Ksoll et al. 2020; Olney et al. 2020a), for classification (e.g., Wu

et al. 2019; Sharma et al. 2020a; Wei et al. 2020), and to identify structures in maps and im-

ages (Abraham et al. 2018). In this study, we apply NNs to estimate the physical properties of

stellar feedback and star-forming regions from observations.

We adopt a supervised learning approach that trains the NNs based on a large database,

which contains both the target physical parameters and corresponding observables, and is built

from synthetic models or well-determined observations. The forward process that translates

parameters into observations is well-defined but involves a loss of information, such that different

parameter sets are mapped onto identical observations, rendering the inverse process ambiguous

and degenerate. For inverse inference, we need a full posterior distribution conditioned on the
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observed measurements to fully characterise the ambiguity.

The invertible Neural Network (INN; Ardizzone et al. 2019b) is an architecture introduced

to solve ambiguous inverse problems. Unlike classical neural networks which solve the inverse

problem directly, INNs learn the forward process, using additional latent output variables to

capture the information otherwise lost. Leveraging their invertible architecture, INNs then derive

a solution for the inverse process for free. Conditioned on the observations and the latent variable

distribution, INNs can predict full posterior distributions, which is advantageous to study multi-

modality or correlations between parameters. In this paper, we use conditional invertible neural

networks (cINNs; Ardizzone et al. 2019a, 2021), an extended class of INN, which has been applied

in Ksoll et al. (2020) to predict stellar parameters from photometric observations. cINN has also

been applied in several studies outside of the astronomical field such as particle physics or medical

science (e.g., Bellagente et al. 2020; Trofimova et al. 2020).

We present an application of a cINN to estimate the physical properties of star clusters

and star-forming clouds from spectral observations of H ii regions. For simplicity, we regularly

use the term H ii region as a synonym for the entire star-forming complex. This is justified

because we focus in this study on optical emission lines that mostly trace the ionised gas in

the feedback-generated hot bubble and the surrounding dense expanding shell. As mentioned

above, supervised learning requires a large amount of well-interpreted data to train the net-

work. In this paper, we build a training database by using the WARPFIELD emission predic-

tor (WARPFIELD-EMP; Pellegrini et al. 2020) which allows us to collect both cloud properties

and corresponding observable quantities (i.e., line luminosity). WARPFIELD-EMP describes the

evolution of a cluster, expanding bubble, and the surrounding cloud using the 1D stellar feedback

code WARPFIELD (Rahner et al. 2017, 2019) and calculates detailed emission predictions based

on the output from WARPFIELD with the help of CLOUDY, a photoionisation code (see Ferland

et al. 2017), and the radiative transfer code POLARIS (see Reissl et al. 2016). WARPFIELD

takes into account several feedback mechanisms (i.e., stellar winds, radiation pressure, thermal

gas pressure, supernovae, and gravity) self-consistently. Although 1D models cannot describe

detailed structures as much as 3D simulations, they typically do provide very good approxima-

tions to the H ii region properties of interest here, and due to the reduced dimensionality, they

are well suited for building large numbers of models required for training the cINN.

In this study, we focus on examining how accurately the network understands the hidden rules

in the given training data and how accurately it can estimate the parameters of test synthetic

models, which share the same physical system as the training data. In this study, we do not

yet apply our network to real observations, but in the latter part of the paper, we discuss how

observational uncertainties affect the network performance using a statistical approach and show

the change of individual posterior distributions with increasing observational errors.

This chapter is structured as follows. First, in Section 2.2, we introduce a new WARPFIELD-
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EMP database used for network training. We also review the physics of our synthetic models

and present details of the new database. In Section 2.3, we introduce the structure of the cINN,

our network setup, and the performance evaluation methods for the trained network. We present

the prediction performance of our network in Section 2.4 and validate the predicted posteriors in

Section 2.5. Section 2.6 discusses the degeneracy in the posterior distributions. We explore the

influence of observational uncertainties on the network performance in Section 2.7. In Section 2.8,

we discuss the physical assumptions inherent in the training data, and training methods to

improve the network prediction. Finally, we summarise our main results in Section 2.9.

2.2 Training data

We need a large data set containing both the physical parameters we want to predict and the

observable quantities of H ii regions that they give rise to in order to train the neural network.

However, it is difficult to collect such a large amount of well-analysed H ii regions from obser-

vations. Instead, we use a database of numerous synthetic H ii region models created through

a pipeline known as the WARPFIELD emission predictor (WARPFIELD-EMP; Pellegrini et al.

2020) to train the network. WARPFIELD-EMP follows the evolution of massive star-forming

clouds using a 1D stellar feedback model (WARPFIELD; Rahner et al. 2017, 2019) and pre-

dicts the time-dependent continuum and line emission radiated from the evolving clouds by

using CLOUDY and POLARIS. Pellegrini et al. (2020) presented the first WARPFIELD-EMP

database composed of synthetic H ii region models evolved from 180 initial clouds with different

combinations of cloud mass (Mcl), star formation efficiency (SFE), and density (nH,0). This first

database is sufficient to reproduce the BPT diagram of observed H ii regions in NGC628, but

the sampling of initial parameters (i.e., Mcl SFE, and nH,0) is not dense enough to be used for

our network training. Therefore, in this paper, we present a new, extended database of syn-

thetic models evolved from 10,000 initial WARPFIELD clouds, which is suitable for our network

training. We will first explain about the WARPFIELD-EMP pipeline and the inherent physical

mechanisms of the synthetic model, and introduce the new database.

2.2.1 WARPFIELD and WARPFIELD-EMP

WARPFIELD-EMP (Pellegrini et al. 2020) is a pipeline that predicts continuum and line emis-

sions of evolving star-forming clouds by coupling these three codes: WARPFIELD, CLOUDY,

and POLARIS. First, WARPFIELD (Rahner et al. 2017, 2019) is a 1D spherical symmetric

stellar feedback model which explains the evolution of the isolated massive star-forming cloud.

The initial star-forming cloud, which we call WARPFIELD cloud in this paper, is determined

by four initial parameters: Mcl, star formation efficiency, nH,0, and metallicity (Z).

The evolution of a WARPFIELD cloud begins (at t = 0) with the formation of the first
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star cluster at the centre with a mass of M∗ = SFEMcl, where SFE is the star formation

efficiency. The cluster ionises a large area called the Strömgren sphere and the stellar winds

freely expand outwards from the centre. This initial expansion phase is very short and essentially

covered in the first time step of the WARPFIELD evolution. Quickly, the cloud can be separated

into distinct regions around the cluster: an inner wind zone (i.e., diffuse central bubble) and

the surrounding dense shell which consists of swept-up material affected by stellar feedback.

WARPFIELD describes the evolution of this system by solving the equation of motion of the

dense shell, considering the effects of the stellar wind, radiation pressure, thermal gas pressure,

supernovae, and gravity. We assume that the ionised and neutral/molecular phases of the shell

are in quasi-hydrostatic equilibrium and that the evolution of the cloud can be characterised by

four distinct evolutionary phases depending on the dynamics of the shell.

In the earliest stage, Phase 1, the shocked wind material reaches a very hot temperature,

resulting in a fast adiabatic expansion. The influence of gravity and radiation pressure on the

shell is negligible in this phase. It ends when the bubble loses the hot gas either because the

gas cools by radiative cooling (tcool) or because the bubble bursts and the hot gas escapes. In

the latter case, we assume that the bubble bursts only when the shell sweeps up the whole

material in the cloud (tsweep, i.e., when Rshell = Rinitial cloud), because we do not consider the

three-dimensional structures such as inhomogeneity or asymmetries. Therefore, Phase 1 ends

after t = min(tcool, tsweep).

If the hot gas has cooled before the shell has swept away all of the cloud material (tcool <

tsweep), the cloud evolution enters Phase 2. After Phase 1 or Phase 2, when the shell eventually

sweeps up all of the cloud material (t > tsweep), the shell enters Phase 3, expanding into a low-

density warm neutral medium outside the cloud. The shell expansion in Phase 2 or Phase 3 is

dominated by the ram pressure exerted on the shell by stellar winds and supernovae, and by

radiation pressure. The counteracting effect of gravity is now not negligible anymore. To take

this into account, WARPFIELD includes at each time step both the gravity from the central

cluster and the self-gravity of the shell in the calculation of shell dynamics.

The fate of the evolving cloud is divided into two cases depending on the effect of stellar

feedback against gravity. When gravity becomes dominant, the shell stops expanding and begins

to recollapse. Please note that, in this paper, we designate this recollapsing evolutionary phase

as Phase 0 to conveniently feed it into the neural network. In Rahner et al. (2017), the evolution

terminated when the shell recollapsed to a radius of 1 pc, but in Pellegrini et al. (2020) and this

study, we assume that recollapse triggers the birth of a new star cluster followed by a second

expansion, and that the star formation efficiency of the new burst of star formation is the same as

for the original burst (i.e., M∗,second = SFE(Mcl−M∗,first)). If gravity never becomes dominant,

the shell continues to expand into the low-density ambient ISM without a recollapse. The density

of the shell gradually decreases and it eventually becomes indistinguishable from the ambient
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ISM. We terminate the calculation if the maximum density of the shell is smaller than 1 cm−3

for a period of 1 Myr or more.

WARPFIELD accounts for the time-dependent stellar feedback effect exerted on the shell

during the whole evolution period. We assume that stellar mass within the star cluster follows

a Kroupa initial mass function (Kroupa 2001). The evolution of the star cluster as a function

of time is calculated with STARBURST99 (Leitherer et al. 1999, 2014) by using Geneva stellar

evolution tracks for rotating stars (Ekström et al. 2012; Georgy et al. 2012, 2013). The spectral

energy distribution (SED) of the cluster and surrounding cloud in the WARPFIELD model are

time-dependent due to the evolving physical conditions and complicated because we may be

looking at the combination of multiple clusters of different ages if recollapse occurred.

The information on the time-dependent physical conditions is then passed on to CLOUDY,

a spectral synthesis code developed by Ferland et al. (2017). WARPFIELD-EMP uses the most

recent version of CLOUDY, C17. It calculates both continuum emission and a large set of line

emissions as well as the corresponding opacities as a function of position within the shell and

surrounding natal cloud. If the shell swept up the entire natal cloud, we run CLOUDY only

once to determine the emission from the shell, whereas if the natal cloud remains, we need to

run CLOUDY twice; first for the shell and second for the static natal cloud. The output of the

first CLOUDY run for the shell is used as the incident flux on the static cloud in the second

CLOUDY run.

In the last step, we use POLARIS (Reissl et al. 2016, 2019) to solve the radiative transfer

equation for rays passing through a 3D grid of the shell and the natal cloud. Based on the

CLOUDY output, POLARIS calculates the absorption and emission from the dust so that we

obtain the luminosity information about the continuum and the lines, taking into account the

overall attenuation inside the shell and the cloud. As WARPFIELD is a 1D spherical symmetric

model, we select a 3D spherical grid for POLARIS calculations. The output containing the three-

dimensional attenuated luminosity information is then projected onto a 2D space. This process

provides a 2D map of the velocity-integrated luminosity of any given line and the continuum,

which is similar to spatially resolved observations. Finally, we spatially integrate the 2D map

and obtain the 1D integrated luminosity of a series of emission lines that correspond to a given

WARPFIELD model at a certain age.

WARPFIELD-EMP provides us with a vast amount of information on a H ii region from

the fundamental physical parameters such as mass or age to the final observable quantities like

emission-line luminosity. Although our synthetic model does not account for the 3D structures

and small-scale instabilities, because WARPFIELD is a 1D spherical symmetric model, it has

been confirmed that WARPFIELD well describes the observations of feedback-affected regions

around the star clusters (Rahner et al. 2018; Rugel et al. 2019). Moreover, Pellegrini et al. (2020)

demonstrates that a WARPFIELD-EMP model is close to mimic the real observations, finding a
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good agreement between the BPT diagram of WARPFIELD-EMP models and that of observed

H ii regions in NGC628.

2.2.2 Database

In this section, we introduce the new database of WARPFIELD-EMP synthetic H ii region mod-

els, which provides a considerable extension of the first database presented in Pellegrini et al.

(2020). As mentioned in Section 2.2.1, the main initial parameters of WARPFIELD models

are cloud mass Mcl, star formation efficiency SFE, initial cloud density nH,0, and metallicity

Z. However, we fix the metallicity at solar metallicity so that the initial WARPFIELD cloud

in our database is determined only by a combination of the other three parameters. There are

several parameters that control the physical condition of the cloud but we constrain all the other

parameters to be fixed in the database. For example, we can add the effect of magnetic field

or turbulent pressure in WARPFIELD, but in this database, we turn off both of them. As the

cloud begins its evolution, age t becomes the fourth independent parameter. So, each synthetic

model, describing a certain evolution state of the cloud, is determined by the four parameters:

Mcl, SFE, nH,0, and t.

To create an evenly and densely populated database, we follow a total of 10,000 initial WARP-

FIELD clouds and randomly sample Mcl, star formation efficiency, and nH,0 within the range

of 105−7M⊙, 2-10%, and 100-500 cm−3, respectively. The ranges of the three parameters are

similar or slightly narrower than those of the previous database. Then we evolve these uniformly

distributed 10,000 initial clouds until an age of 30 Myr. Depending on the evolutionary con-

dition, WARPFIELD may terminate the calculation earlier if the cloud already dissolved into

the ambient ISM. We constrain the maximum age of the cloud to be 30 Myr to prevent infinite

expansion, and also because we expect some of the base assumptions of the model (that the

cloud is isolated, or that it is unaffected by external feedback and large-scale galactic dynamics)

to break down for very old clouds.

WARPFIELD saves the evolution of the cloud in prescribed time intervals. For the new

database, we adopt an interval of 0.1 Myr. However, we do not run CLOUDY and POLARIS

for all of the saved models because of the limitations of data volume and computational time.

Instead, as mentioned in Pellegrini et al. (2020), we run CLOUDY and POLARIS whenever the

physical properties of the cloud or star cluster have changed sufficiently to result in a considerable

change in the emission. For example, we calculate the model whenever the shell density at the

boundary of the inner shell, shell radius, shell mass, or the ionising photon flux changes by 10%.

We also calculate the model if the evolutionary phase of WARPFIELD changes. Therefore, the

cloud age and the youngest cluster age are not sampled in constant intervals. Especially, the time

interval of the old cloud is sometimes wider because the physical properties mentioned above do

not change as rapidly as during the early phases of evolution. This wide time interval is exhibited
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Figure 2.1: Distribution of seven physical parameters in the database used for the network training and
evaluation. The database consists of 505,748 synthetic H ii region models simulated by WARPFIELD-
EMP (Pellegrini et al. 2020), which are evolved from 10,000 initial clouds. The first three parameters
(cloud mass, star formation efficiency, and density) are initial conditions provided to WARPFIELD. The
fourth, fifth and sixth panels correspond to the cloud age (as measured from the onset of star formation),
the age of the youngest cluster in the cloud, and the number of clusters in the cloud, respectively. Phase
is classified by the evolutionary state of the WARPFIELD cloud depending on its dynamics: Phase 1 is
the energy-dominated phase, Phase 2 is momentum-dominated, Phase 3 is free-expansion, and Phase 0
denotes a recollapsing cloud (see the more detailed explanation in Section 2.2.1 or in Rahner et al. 2017;
Pellegrini et al. 2020).
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Table 2.1: List of seven physical parameters of H ii region that our network predicts from the observation.

Parameter Symbol

initial mass of star-forming cloud Mcl [M⊙]
initial star formation efficiency SFE [%]
initial cloud density nH,0 [cm−3]
age of the cloud t [Myr]
age of the youngest cluster tyoungest [Myr]
number of star clusters Ncluster

evolutionary phase of the cloud Phase

as periodic patterns at t > 10 Myr in Figure 2.1. For the new database, we sample the time

adaptively but, if needed, we can sample intermediate times by interpolating the evolution track

of each WARPFIELD cloud. Our final sample consists of 505,748 synthetic H ii region models

in total with different values of Mcl, SFE, nH,0, and t.

Although the initial WARPFIELD clouds were uniformly distributed in our parameter space,

the final database has a non-uniform parameter distribution because each cloud evolves differ-

ently. Figure 2.1 shows the non-uniform distributions of the seven physical parameters listed in

Table 2.1 that we aim to predict with the cINN. As seen in Figure 2.1, our database includes

more H ii region models corresponding to massive clouds or to clouds with smaller star formation

efficiencies. This reflects the fact that in these models the power of stellar feedback against grav-

ity is often not large enough to immediately disrupt the cloud, leading to one or more episodes

of recollapse and hence a greater number of total output snapshots. On the other hand, more

than 70% of our H ii region models have only one stellar cluster, since in the majority of cases,

the initial burst of feedback is enough to destroy the cloud and recollapse does not occur. In the

case of the phase distribution, about 60% of the outputs correspond to clouds in Phase 3. The

reason for this is that clouds typically remain in Phase 3 for a long period of time until the H ii

region dissolves into the ambient ISM, whereas clouds in the other evolutionary phases usually

evolve rapidly and change into different phases.

In terms of training the network, we need to construct the training data to be as evenly

distributed as possible, because over- or less-populated regions may introduce a bias to the

trained network. In this case, the network might provide poor predictions for clouds with less

popular characteristics in Figure 2.1. To remedy this problem, one could potentially post-process

the database and augment it where needed to even out the parameter distributions. However, in

this study, there are some difficulties in applying such an approach. First, the evolution of each

cloud is a complex result as a function of four independent parameters. So, if we oversample

less populated characteristics to achieve an even distribution for one parameter, this can lead

in turn to a more biased distribution in the other parameters. For the same reason, it is also
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Table 2.2: List of 12 emission lines whose luminosities are used as a condition for our network to predict
the physical parameters listed in Table 2.1.

Line Wavelength

[O ii] 3726Å
[O ii] (blend) 3727Å
[O ii] 3729Å
Hβ 4861Å
[O iii] 5007Å
[O i] 6300Å
Hα 6563Å
[N ii] 6583Å
[S ii] 6716Å
[S ii] (blend) 6720Å
[S ii] 6731Å
[S iii] 9531Å

difficult to plan additional sampling measures, because it is not easy to predict the evolution of

the cloud from a given initial condition. Moreover, WARPFIELD-EMP is not able to interpolate

between different Mcl, star formation efficiency, or nH,0, so it is not easy to fill less-populated

regions by interpolation from the given database. Although the parameter distributions in the

current database are not entirely optimal for training, we decide to train the network without

any further processing. We discuss the influence of the bias in the training data on the network

performance in Section 2.4.3 and 2.5.

We divide the database into two parts: a training set and a test set. 80% of the database

is used to train the network (training set) and the remaining 20% is a set of held-out models

(test set), which is used to evaluate the network training and the performance of the trained

network. Training and test set have the same distribution because they are randomly selected.

To sum up, our training set includes 404,599 H ii region models. Each synthetic model has

information about 7 physical parameters (i.e., Mcl, SFE, nH,0, age, age of the youngest cluster,

Ncluster, and phase) as well as the luminosity of 10 optical emission lines within the wavelength

range 3700Å – 9600Å. These lines are [O ii] 3726Å, [O ii] 3729Å, Hβ 4861Å, [O iii] 5007Å, [O i]

6300Å, Hα 6563Å, [N ii] 6583Å, [S ii] 6716Å, [S ii] 6731Å, and [S iii] 9531Å). We also store the

total strength of the [O ii] and [S ii] doublets, referred to hereafter as [O ii] 3727Å (blend) and

[S ii] 6720Å (blend), since at low spectral resolution these lines will not always be separately

resolved. Our choice of emission lines is motivated by their strength and the fact that they will

be targeted in the forthcoming SDSS-V LVM survey of ionized gas in the Milky Way and other

Local Group galaxies (Kollmeier et al. 2017). Most of these lines are also included in the recent
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PHANGS-MUSE survey1 of H ii regions in nearby spiral galaxies (Emsellem et al. 2022) or the

SIGNALS survey using the SITELLE spectrograph at the CFHT (Rousseau-Nepton et al. 2019).

Please note that WARPFIELD-EMP provides information on many additional emission lines at

frequencies ranging from the optical to the radio (see Table D1 and D2 in Pellegrini et al. 2020),

but we restrict ourselves here to the optical emission lines most relevant for the above-mentioned

surveys.

2.3 Neural Network

2.3.1 cINN

In this study, we apply a conditional invertible neural network (cINN; Ardizzone et al. 2021)

to predict physical parameters of H ii regions from their spectral observations. The cINN is

an extension of the INN architecture described in Ardizzone et al. (2019b). Both INN and

cINN are able to solve inverse problems and provide posterior distribution of desired physical

parameters on a given observation. Ksoll et al. (2020) used the same cINN architecture and

demonstrated that the cINN is able to successfully estimate stellar parameters such as stellar

age and mass from HST photometry observations for individual stars. The advantage of these

invertible architectures is that the network can automatically learn the inverse process when it

is trained to approximate a known forward process.

To apply the cINN or INN in a given inverse problem we assume that information loss

occurs during the forward process such that different sets of physical parameters (x) are mapped

onto identical observations (y). Consequently, the degenerate y cannot uniquely explain the

corresponding x. By introducing the latent variables (z), which capture the information loss

during the forward process, we can make a bijective mapping that could not be achieved with x

and y alone. The original INN architecture links x and a unique pair of [y, z], making a bijective

forward mapping f(x) = [y, z] and a inverse mapping x = f−1(y, z) = g(y, z). A schematic

overview of INN architecture is described in Ardizzone et al. (2019b) and Ksoll et al. (2020).

However, this method does not apply to all types of inverse problems: the forward process has

to be deterministic and there are some requirements towards the intrinsic dimensionalities of x

and y. On the other hand, the cINN, used in this paper, avoids these problems. While it also

introduces latent variables for the same purpose, it uses a different mapping system by inputting

the observations y in both the forward and inverse process as a condition c: f(x; c = y) = z,

x = g(z; c = y) (Ardizzone et al. 2021). This has the advantage that there are no assumptions or

restrictions about the intrinsic dimensionalities of x and y, meaning that effects such as stochastic

modelling noise or measurement noise can also be accounted for.

1The exception is the [O ii] doublet, which lies outside of the frequency range of ESO’s MUSE integral field
unit.
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[OII] 3726Å, [OII] 3727Å blend, [OII] 3729Å, Hβ 4861Å, [OIII] 5007Å, [OI] 6300Å, 
Hɑ 6563Å, [NII] 6583Å, [SII] 6716Å, [SII] 6720Å blend, [SII] 6731Å, and [SIII] 9531Å
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Figure 2.2: Schematic overview of our cINN architecture with the information of input parameters
and observations for a condition. Our network consists of 8 affine coupling blocks interchanged with
permutation layers. The zoom-in panel of the conditional affine coupling block shows how the information
is passed through the block in the forward direction. For each affine coupling block, we use the GLOW
configuration where the internal transformations si() and ti() are described by a single sub-network.

The posterior distribution of physical parameters, p(x|y), is estimated on the basis of the

inverse mapping f−1 = g. During training, we prescribe the latent variables to have a standard

normal probability distribution p(z) = N(z, 0, I) with zero mean and unit width, where I is the

identity matrix with a dimension of dim(z)×dim(z). Following the inverse process x = g(z; c), the

posterior distribution is a transformation of the known distribution p(z) to x-space, conditioned

on the observation. So, the posterior distribution for a given observation p(x|y) is determined

by sampling the latent variable following the prior distribution and using the inverse process g.

The INN and cINN are very similar overall, but unlike the INN, the cINN has the advantage

of being free to choose the dimensions of x and y. In the case of the INN which links x and a

pair of [y, z], zero padding is necessary if the dimension of x is smaller than the dimension of

[y, z] (Ardizzone et al. 2019b). However, in the cINN, y can have an arbitrarily large dimension

regardless of the dimension of x because the cINN uses observation y as a condition and connects

x and z, matching the dimension of each other.

According to Ardizzone et al. (2019b, 2021), cINNs and INNs consist of a series of affine

coupling blocks following an architecture proposed by Dinh et al. (2016a). The schematic struc-

ture of our conditional affine coupling block is described in Figure 2.2. Each coupling block

splits the input u into two parts [u1,u2] and passes them through two invertible affine transfor-

27



2.3. Neural Network

mations. The output of the coupling block v is the concatenation of outputs from each affine

transformation v1 and v2. The invertibility of the cINN and INN architecture is based on each

reversible affine coupling block. The difference between cINN and INN is that the cINN uses the

observation as an additional input in each affine transformation as follows:

v1 = u1 ⊙ exp(s2(u2, c)) + t2(u2, c),

v2 = u2 ⊙ exp(s1(v1, c)) + t1(v1, c).
(2.1)

The internal transformations si and ti are only evaluated in the forward direction even when the

network implements the inverse process:

u2 = (v2 − t1(v1, c))⊙ exp(−s1(v1, c)),

u1 = (v1 − t2(u2, c))⊙ exp(−s2(u2, c)).
(2.2)

Therefore, an arbitrary neural network that does not need to be invertible itself can represent

the internal transformations si and ti. In this study, we use a single sub-network for the inter-

nal transformations in each coupling block, adapting the GLOW (Generative Flow; Kingma &

Dhariwal 2018b) configuration.

2.3.2 Network setup

Architecture

To construct our network with a cINN architecture we use the ‘Framework for Easily Invertible

Architectures’ (FrEIA) for Python (Ardizzone et al. 2019b, 2021) which is based on the ‘pytorch’

library (Paszke et al. 2019), just as Ksoll et al. (2020) did in their study. As described in

Figure 2.2, seven physical parameters of the H ii region are the input x for our network, while the

condition y is given by the twelve emission line luminosities that we can obtain from observations.

Following the structure of the cINN architecture, the dimension of z matches that of x and we

have seven latent variables in our network.

We build our network with 8 conditional affine coupling blocks, and for the sub-networks

in the affine coupling blocks, we adopt a simple three-layer, fully-connected architecture with

a width of 256, using rectified linear units (ReLU) as the activation functions. Additionally,

we apply soft clamping on the sub-network output si(), which is introduced in Ardizzone et al.

(2021) to prevent instability from the exponential component in Eq. 2.1.

To mix the information stream u1 and u2, we add permutation layers with a random orthog-

onal matrix after each coupling layer. The permutation layer is invertible and fixed during the

training. Therefore, the final network is made up of 8 invertible blocks where each block is the

combination of an affine coupling block and a permutation layer.

We train the network to minimize the maximum likelihood loss, as described in Ardizzone
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et al. (2021) and Ksoll et al. (2020). The cINN model is trained until both the train-loss curve

calculated by the training set and the test-loss curve calculated by the test set converge and

deviation between the two curves is small enough. The training time varies depending on the

batch size and the number of training epochs, even in the same network setting. Training our

network for 300 epochs took about 2 hours with a batch size of 1024 and about 6 hours with

a batch size of 256 when we used an NVIDIA GeForce RTX 2080 Ti graphic card. The GPU

memory used for each case was 892 MB and 976 MB respectively.

Data Pre-processing

When training a network or using the network in practice, we apply pre-processed physical

parameters and observations based on the procedure described by Ksoll et al. (2020). First, we

transform the variables that have a relatively broad range of values in linear space to logarithmic

space. In our case, we transform the emission line luminosities (yi) into log-scale. We retain most

of the physical parameters (xi) in linear space because when generating the WARPFIELD-EMP

database, we sampled each physical parameter within reasonable ranges. The exception is the

cloud mass (Mcl), which we sampled in logarithmic space in the beginning.

Next, we add artificial noise to relatively discretized parameters such as the Ncluster and

phase, which have a sampling interval of 1 (see Figure 2.1). According to Ardizzone et al.

(2021), smoothing out the distribution using a small amount of Gaussian noise helps the network

converge in training. We smooth out the distribution of Ncluster and phase by adding Gaussian

noise with a standard deviation of 0.05. The noise augmentation also improves the prediction

performance of our network. A more detailed explanation of the effect of this smoothing process

on the network performance is given in Section 2.8.2, where we compare the performance of our

network with and without noise augmentation.

Last, we re-scale the distribution of physical parameters and observations by using linear

transformations. We transform the physical parameter, xi, following

x̂i = (xi − µxi) ·
1

σxi

, (2.3)

where µxi
and σxi

are the mean and standard deviation of the physical parameter xi in the

database so that the re-scaled distribution of each parameter has zero mean and unit standard

deviation. In the case of yi, we first centre the observable (ỹi = yi − µyi
) and whiten the

observable matrix (Ŷ = WỸỸ), following Equation 35 in Hyvärinen & Oja (2000), so that the

variance of each emission line is unity and the covariance of the matrix Ŷ is an identity matrix.

The values of µ, σ, and W used in the linear transformations are calculated based on the whole

database including both the training set and test set. We use the same values when training the

network and utilising the trained network. When we predict physical parameters through the
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inverse process of the cINN model, we transform yi to ŷi for the condition of the network and

transform the output x̂i to xi.

2.3.3 Network evaluation methods

In this section, we describe how we evaluate the trained network using the held-out 101,149

models of the test set. As mentioned in Section 2.2.2, we split the original database and only

use 80% of it for training and retain the rest for network evaluation.

We evaluate the network in the following five ways. First, we need to verify the network by

using the latent variables of the test set, Ztest. If the network is converged to a good solution,

latent variables should follow the prescribed Gaussian normal distribution. This can be confirmed

by checking whether the covariance matrix of Ztest is close to an identity matrix and whether

the distribution of each latent variable follows the standard normal distribution.

The next three measures allow us to evaluate how accurately and precisely the network

predicts each physical parameter with respect to the true value. To quantify the accuracy and

precision, we compute the median calibration error (emed
cal ), median uncertainty at 68% confidence

interval (umed
68 ), and the root mean square error (RMSE). The calibration error, our second

criterion, evaluates the shape of the posterior distribution. At a given confidence interval q it is

defined as

ecal = qinliers − q, (2.4)

where qinliers is the fraction of test models where the true value falls within the given confidence

interval of the posterior distribution. The calibration error is an important evaluation index of the

network because it represents the correctness of the shape of the posterior distribution (Ardizzone

et al. 2019b). A negative calibration error indicates an overconfident network, which means that

the predicted posterior distribution is too narrow, whereas a positive value means the opposite

(under-confident network). We calculate emed
cal , the median of the absolute value of calibration

error over the confidence range from 0.01 to 0.99 in 0.01 confidence level interval for each physical

parameter.

The third quantity is a median uncertainty interval at a 68% confidence level. The uncertainty

interval is the width of the posterior distribution corresponding to the given confidence interval.

We chose a confidence level of 68%, close to the width of ±1σ, and take a median value over the

whole test set.

Fourth, we determine the root mean square error (RMSE) of the maximum a posteriori (MAP)

point estimates, with respect to the ground true value (x∗). The RMSE of each parameter,

RMSE =

√
ΣN

i=1(x
MAP
i − x∗

i )
2

N
, (2.5)

indicates how accurately our network can predict the true value.
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We use a similar method as Ksoll et al. (2020) did to determine the MAP value from each

posterior distribution. We perform a Gaussian kernel density estimation on a posterior distribu-

tion and find the point where the probability density becomes maximum. To find the suitable

bandwidth of the kernel, we generally apply Silverman’s rule of thumb (Silverman 1986) but,

we also apply the Improved Sheather-Jones (ISJ) algorithm (Botev et al. 2010) which works

better for a multi-modal distribution in some cases. For simplicity, we did not check the multi-

modality of the distribution for all seven parameters, and only investigate the multi-modality

in the Ncluster posterior distribution. The reason is that the multi-modality of the posteriors

in our network usually results from the degeneracy in the Ncluster prediction, as we explain in

Section 2.6. When the posterior distribution of Ncluster shows multi-modality, we apply a factor

of five narrower width than that of Silverman’s rule of thumb except for the posterior distribution

of age. We apply the ISJ algorithm to the age posterior distribution which needs more careful

kernel density estimation because it usually has both very narrow mode and wide mode in one

distribution.

The final method we use to validate the network is to examine whether or not our cINN model

constrains the physical parameters correctly. This is different from the previous three approaches

of evaluating how accurately or precisely the network predicts the true values. Different H ii

regions can have similar emission line strengths, so our cINN model is designed to find all possible

physical models x′ conditioned on a given observation y (= c). Therefore, even if the predicted

value of parameters is different from the true value, it does not demonstrate the incapacity of

our network. What we need to examine is whether the predicted model has the same emission

line luminosity as the conditioned observation. Observational properties y cannot be obtained

through the forward process of the cINN because y is used as a condition in both the forward

and backward process. For that reason, we resimulate the emission line strengths of predicted

models using WARPFIELD-EMP in the same way as we created the database.

As explained in Section 2.2.2, one synthetic H ii region is determined by four independent

physical parameters (Mcl, star formation efficiency, nH,0, and the age of the cloud). We first

evolve the cloud using WARPFIELD, taking as initial conditions the values of Mcl, the star

formation efficiency, and nH,0 predicted by the network. We stop the evolution of the cloud at

the age predicted by the network and then use CLOUDY and POLARIS to compute the line

emission produced at this time. In practice, we generally cannot collect the cloud information at

the very age that we want because WARPFIELD records the evolution with a finite time interval.

In this re-simulation process for network validation, we adopt a time interval of 0.05 Myr so that

the age difference between the re-simulated model and the predicted model is certain to be less

than 0.025 Myr.
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2.4 Training Results

Once trained, the network is able to sample posterior distributions very efficiently. It takes less

than 10 minutes to generate posterior distributions for the whole 101,149 observations in our test

set, sampling 4096 times for each observation with an NVIDIA GeForce RTX 2080 Ti graphic

card (the same graphic card used to measure training time in Section 2.3.2). On average, we can

obtain posterior distributions of 170 observations per second through our network.

2.4.1 Training evaluation

In this section, we evaluate our trained network by using four of the five methods presented in

Section 2.3.3: Ztest, emed
cal , umed

68 , and RMSE of MAP estimates. First, we confirm whether the

latent variables follow the prescribed Gaussian normal distribution on the test set (Ztest) or not.

In Figure A.1, we present the covariance matrix of Ztest and the probability distribution of each

latent variable. The covariance matrix is close to the unit matrix and distributions of latent

variables are almost following the Gaussian normal distribution with a residual of less than 0.03.

These results confirm that our network is trained well.

The other three evaluation indices (emed
cal , umed

68 , and RMSE) are presented in Table 2.3. The

median calibration errors of our cINN model are very low, around 1% or less in most cases. This

means that the expected accuracy of our model is well calibrated to the confidence. The largest

value is 2.34% for Ncluster. This means that the network is the least calibrated for the Ncluster

prediction among the seven parameters, but the error value of 2.34% is still very low and highly

acceptable (Guo et al. 2017).

The second and third rows in Table 2.3 show the median uncertainty at 68% confidence

interval (i.e., umed
68 ) for each parameter in the re-scaled parameter space (x̂-space) and original

parameter space (x-space), respectively. For the original parameter space, umed
68 has the same

units as the physical parameter, whereas for the re-scaled parameter space umed
68 is dimensionless

since it is the width of the posterior distribution with respect to the range of the parameter in

the database. According to the umed
68 for the x̂-space, nH,0 and Ncluster have on average wider

predicted posterior distributions compared to the other parameters. Nevertheless, when it is

transformed to real physical space, the uncertainty interval of nH,0 is around 20 cm−3 and that

of Ncluster is 0.11 which is small compared to its sampling size of 1.

The RMSE of each parameter is also calculated for both the re-scaled parameter space and the

physical parameter space (the fourth and fifth rows in Table 2.3). Age and Ncluster have relatively

large RMSEs in the re-scaled space, implying again that the age of the cloud and Ncluster are

difficult to predict. On the other hand, Mcl has a low RMSE in both x-space and x̂-space; in

x-space, the RMSE for the cloud mass is around 0.04 dex, corresponding to an uncertainty of

less than 10%.
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Table 2.3: Overview of our network performance using all of the 101,149 H ii region models in the test
set. For each parameter, we present median calibration error, median width of posterior distributions
(uncertainty at 68% confidence interval), and mean accuracy of the MAP estimates (RMSE). We divide
median width and mean accuracy into two types depending on whether we use re-scaled parameters (x̂i)
or original parameters (xi). The one using the re-scaled parameters is dimensionless whereas the one
using the original parameters has the same unit as the parameters.

Performance measure log Mcl SFE nH,0 t tyoungest Ncluster Phase
log [M⊙] [%] [cm−3] [Myr] [Myr]

Median calibration error [%] 0.44 0.26 0.87 1.27 1.05 2.34 0.12
Median uncertainty at 68% confidence (x̂) 0.0284 0.0945 0.1694 0.0176 0.0097 0.1512 0.0855
Median uncertainty at 68% confidence (x) 0.0154 0.2173 19.0633 0.1491 0.0637 0.1108 0.0995
RMSE (x̂) 0.0823 0.2506 0.2846 0.5589 0.1210 0.6385 0.1724
RMSE (x) 0.0448 0.5760 32.0280 4.7285 0.7918 0.4681 0.2006

Considering the overall results in Table 2.3, our cINN model is well-calibrated and is able to

predict each parameter accurately and precisely in general. However, some parameters such as

Ncluster and the age of the cloud are relatively difficult to predict. On the other hand, Mcl and

phase have small values in all three indices, meaning that our network predicts Mcl and phase

stably.

2.4.2 Posterior probability distribution

In this section, we show representative posterior distributions conditioned on individual obser-

vations. We select three H ii region models from the test set that exhibit typical shapes of

the posterior distribution. Figure 2.3 shows the one-dimensional posterior distributions of each

parameter for these examples.

The first model (left column) represents extremely well-predicted cases. As shown in the

figure, the posteriors of this model have a clear unimodal distribution with narrow width, and

the MAP estimate is very close to the true value marked by red vertical lines or red-edged bars for

Ncluster and phase. In the case of age, for which our cINN model showed a less good performance

in the previous section, the difference between the MAP estimate and the true value is less than

0.01 Myr, and the width of the posterior distribution represented by u68 is about 0.05 Myr.

Though this model is one of the best examples, the accurate and precise unimodal posterior

distribution is the most common characteristic found in our test set.

The other two models are examples of degenerate cases, for which posterior distributions

usually have two or more peaks as shown in Figure 2.3. The second case in the middle column

shows two different solutions, one with a higher probability and the other with a lower probability,

whereas the last example has two solutions with similar probabilities. In the second example,

Mcl, star formation efficiency, and phase have a unimodal distribution (grey histograms) and

the other four parameters have a bimodal distribution where true values always fall within the

first mode with a higher probability density. The posterior distribution of the youngest cluster
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Figure 2.3: Posterior probability distributions (grey) of seven physical parameters. Each column corre-
sponds to a different model selected from the test set. Red vertical lines (or red edges for bar-shaped
histograms) denote the true parameter values of the model. The true value, the MAP estimate, and
uncertainty at 68% confidence interval of the posterior distribution are presented in the upper right
corner of each panel except for Ncluster and phase. The left column shows an example of an extremely
well-predicted case. The other columns represent degenerate cases where the posterior of some param-
eters have multi-modal distribution. The middle column has a bi-modal distribution where one mode
has a higher probability than the other, whereas the model in the right column represents a degenerate
case where different solutions have similar probabilities. For the two degenerate cases, we divide the
posteriors into two groups depending on the Ncluster posterior: blue distributions indicate posteriors that
predict Ncluster as 1, and red distributions indicate posteriors that predict Ncluster as 2.
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age has an overlapping area between the first mode and the secondary mode, suggesting that

the unimodal distribution such as in Mcl could be decomposed into two different modes that are

considerably overlapped with each other. The third case shows two distinct peaks with similar

amplitudes without overlap in all parameters excluding Mcl and phase. The true value lies on the

first mode in the case of cloud age and the youngest cluster age but in the case of star formation

efficiency and nH,0, the true value falls in the secondary mode. Nevertheless, it is clear that the

true value is within the range of the posterior distribution.

Degeneracy

For these degenerate examples, we divide the posteriors into two groups based on the Ncluster

prediction: the first group predicting Ncluster as 1 and the second group predicting Ncluster as

2. Then we decompose the posterior distribution of the remaining parameters except for the

phase into each group and present them in Figure 2.3 using different colours: blue for the first

group (Ncluster=1) and red for the second group (Ncluster=2). The red and blue histograms in

Figure 2.3 clearly show that the two groups classified by the Ncluster prediction correspond to the

two different modes exhibited in the posterior distributions. Moreover, in the second example,

the unimodal posterior distribution for Mcl and star formation efficiency is divided into two

modes albeit with a wide range of overlap. As shown in these cases, most of the degeneracy

revealed in the posterior distribution reflects the degeneracy in the Ncluster prediction. In other

words, this kind of degeneracy suggests how other parameters should change to produce the same

amount of emission line luminosity with more or fewer star clusters.

Both degenerate examples actually have only one cluster, or more precisely one stellar genera-

tion in the central cluster, so the red mode in Figure 2.3 suggests another solution with one more

star cluster (stellar generation) which generates the same emission. In the case of the second

example, the initial clouds of the red mode are on average more massive and denser but have

smaller star formation efficiency compared to those of the blue mode (i.e., true model). The red

mode shows that to emit the same amount of emissions as the true model, the cloud of the red

mode should live longer till the second-star cluster is a bit younger than that of the blue mode.

In the third example, the second solution requires a similar mass of cloud but with smaller star

formation efficiency, smaller density, older cloud age, and younger age for the youngest cluster.

The degenerate solution demonstrates that our network understands the correlation between

parameters that affect the emission line luminosity. Based on the posterior of cloud mass, star

formation efficiency, and the number of clusters, we additionally calculate the total stellar mass

of clusters in the cloud because stellar mass is a more direct index of the ionising power. As the

youngest cluster dominates the ionising luminosity, we also calculate the mass of the youngest

cluster. In Figure 2.4, we present the posterior distribution of these two parameters for the

second example and the third example and divide the distribution into two groups based on the
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Figure 2.4: Posterior distributions (grey) of total cluster mass and the youngest cluster mass. The first
and second columns correspond to the second example and the third example in Figure 2.3 respectively.
Lines and legends are the same as in Figure 2.3. Posteriors are divided into two groups depending on
the Ncluster posterior as shown in Figure 2.3: the blue mode whose Ncluster prediction is 1 and the red
mode whose Ncluster prediction is 2.

Ncluster prediction in the same way as in Figure 2.3. In the case of the second example, the total

stellar mass of the red mode with two clusters is a factor of two larger than that of the blue

mode, whereas the youngest cluster mass is almost identical with only a 0.015 dex difference. The

second cluster of the red mode and the cluster of the blue mode, which are the main luminosity

sources of each mode, may have similar luminosity because they have similar mass and similar

age around 3.8∼4 Myr. The small difference in the cluster age offsets the small difference in the

cluster mass. The first cluster of the red mode is less luminous than the others in spite of its

similar stellar mass because it is older than the others ( ∼20 Myr) so that all of its bright O-type

stars and many of its brightest B-type stars are already dead. However, the first cluster slightly

increases the total luminosity of the red mode. This additional luminosity is cancelled out by

the larger amount of dust attenuation due to the higher cloud density of the red mode.

In Figure 2.3, the red mode of the third example shows a similar trend to the red mode

of the second example, except for the density. However, Figure 2.4 shows that the situation is

different from the second example. The total mass of the clusters in the red and blue modes
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are almost the same, but the mass of each of the two clusters in the red mode is half of that

in the blue mode. The age of the clusters is also different from the second example. All three

clusters are older than 20 Myr, so they have already lost their brightest stars. In this case, the

age difference between the individual clusters is not significant. The total luminosity of the blue

and red mode is similar because it is determined by their total stellar mass. However, the stellar

feedback of the red mode is weaker than that of the blue mode because the mass of the individual

cluster is about a factor of two smaller. In order for the red mode to have two clusters and to

evolve to a phase similar to that of the blue mode, the gravitational potential must be smaller

to balance the weak stellar feedback. As the two modes have similar cloud mass, the red mode

has a smaller density to reduce the gravitational potential. The results of these two degenerate

examples reveal that our cINN model successfully learned the hidden rules in the training data

and provides physically reasonable alternatives as well as the posteriors close to the true solution.

Re-simulating posterior models

We now investigate the emission line luminosity of the predicted posteriors to validate our network

performance. As explained in Section 2.3.3, we reproduce the synthetic H ii region model of the

posterior and calculate the luminosity of 12 emission lines through WARPFIELD-EMP based

on the four parameters that determine a unique star-forming cloud: Mcl SFE, nH,0, and age.

The posterior distribution of each example model in Figure 2.3 consists of 4096 posteriors, but

we only simulate 1024 posteriors of them.

In the middle panel of Figure 2.5, we present a 2D comparison of the [O iii]/Hβ and [N ii]/Hα

line ratios – an example of a so-called BPT diagram (Baldwin et al. 1981) – for the entire 101,149

test set models. Here the colour indicates the number of different models at each point in this 2D

histogram. The true locations of our three example models are represented by yellow stars. In

each zoom-in panel of Figure 2.5, we compare the [N ii]/Hα and [O iii]/Hβ line ratios produced

by the models sampled from the predicted posteriors with the true line ratio values (red lines) of

each example model. The green circles show the area in which 68% of the posteriors are included

from the centre of the distribution. The left panel corresponds to the first example model. We

find that the line ratio distribution of the posterior samples is very narrow and lies close to the

true values. The peak of the distribution is just shifted by about 0.002 dex from the expected

point and the overall width of the distribution is around 0.01 dex. The green circle shows that 1σ

of the distribution is within the 0.003 dex radius. Even though we only present two line ratios in

the figure, we have confirmed that the re-simulated luminosity of all 12 emission lines also shows

a good agreement with the true values with an average error of 0.013 dex in the logarithmic

scale.

The second example (upper right panel in Figure 2.5) also indicates a good result. The

reproduced line ratios are very narrowly distributed within a box of size 0.01 dex. The centre
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Figure 2.5: Middle panel: 2D histogram showing the [N ii]/Hα and [O iii]/Hβ line ratios for all of the
models in the test set, where brighter colour indicates a higher number of models. Overlaid as yellow
stars are the corresponding values of the models presented in Figure 2.3. Also shown are demarcation
curves distinguishing star-forming galaxies and AGN, taken from Kauffmann et al. (2003) (blue solid
line) and Kewley et al. (2001) (orange dotted line) as well as the mean line of star-forming galaxies from
Kewley et al. (2013) (green dashed line). Star-forming galaxies are expected to sit below and to the left
of the Kauffmann et al. and Kewley et al. lines. Zoom-in panels show the distribution of the line ratios
that we recover if we sample the posterior distribution for each example model 1024 times and use the
resulting values as input for new WARPFIELD-EMP calculations, as described in Section 2.3.3. The
true line ratio values for each example model are represented by red lines in these zoom-in panels. The
left panel corresponds to the first model, whereas the upper right and lower right panels correspond to
the second and third models, respectively. Green circles in each zoom-in panel indicate the area in which
68% of the models are included from the centre of the distribution.

of the distribution is shifted by 0.0025 dex from the true values and 68% of the entire models

are located within a radius of 0.002 dex. On the other hand, the last example (lower right panel

in Figure 2.5) exhibits a wider distribution and a larger offset compared to the other two. The

line ratio distribution is elongated along the y-axis over a range of 0.2 dex and its peak is shifted

by about 0.04 dex. Although the overall results are worse than for the other two examples, still

68% of the posterior samples are within a 0.05 dex radius of the true values. We have verified

that the luminosities of the 12 emission lines are in good agreement with the true values with an

average error of 0.12 dex in log units, or around 30%.

Overall, the results of the reproduced emission lines of the posterior samples shown in Fig-

ure 2.5 demonstrate that our network is understanding the hidden rules in the training data and

is able to provide reliable posteriors, especially in that the secondary solutions in two degenerate

examples also match the observation successfully.
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2.4.3 Overall performance

Now we extend the target to all 101,149 test models to probe the overall predictive performance

of our network. We sample sets of latent variables 4096 times for each test model and measure

the MAP estimates as the representative of each posterior distribution. We compare the true

values of the seven parameters with all the obtained posterior estimates in Figure 2.6 or only

with the MAP estimates in Figure 2.7. Please note that colours representing the number of

models in the 2D histogram in Figures 2.6 and 2.7 are in logarithmic scale. For Ncluster and

phase, we additionally present the confusion matrix of the 2D histogram, showing the per cent of

the number of models in each point to the number of all models in the same column, to visualise

the prediction performance depending on the true values. Most of the predictions are in excellent

agreement with the true values albeit with large scatters around the one-to-one correspondence,

and the scatter is much smaller when we compare MAP estimates with the true values.

Both figures indicate that it is difficult to predict the cloud age and the number of clusters,

especially when the number of clusters is larger than three. In the age prediction in Figure 2.6, we

find two characteristic features. The first one is that the older the true age, the wider the scatter

around the one-to-one correspondence. We can find a similar feature in the age MAP estimates

in Figure 2.7 and the result of the youngest cluster age in both Figures as well. Analysing the

posterior distribution of various models, we notice that young H ii regions, less than a few million

years old, usually have very narrow age posterior distributions compared to old H ii regions. The

u68 values of the first model and the third model in Figure 2.3 clearly show this feature. A larger

scatter around the true value for old H ii regions reflects this general feature exhibited in most

posterior distributions. The second feature in the age prediction is two parallel lines shifted by

about 6 Myr above and below the one-to-one correspondence line. These parallel lines reflect

solutions that are younger or older than the true age values due to the degenerate prediction of

the number of clusters as shown in Figure 2.3.

In Figure 2.7, the MAP estimates of the cloud age are usually distributed around the true

values or at younger ages, which is different to the case in Figure 2.6 using all posteriors estimates

where outliers are scattered in both older and younger age range. The parallel lines shown in

Figure 2.6 using all posterior estimates remain in Figure 2.7 using MAP estimates, but only the

bottom line is clear in Figure 2.7. This is related to the first characteristic mentioned above

that the age posterior distributions of young H ii regions are narrower than those of old H ii

regions. When the posterior distribution has multi-modality, the width of the younger mode is

by and large narrower than that of the older mode. This is because the probability density of

the younger mode is higher even if the number of posteriors corresponding to the younger mode

is similar to that of the older mode. Sometimes, even if most of the posterior samples belong

to the older mode, the peak of the younger mode is determined as a MAP estimate because of
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Figure 2.6: 2D-histogram comparing all posterior estimates predicted by our network with the true
values of each parameter for all 101,149 models in the test set. We sampled 4096 posteriors for each test
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its extremely narrow width compared to that of the older mode. Numerous outliers below the

one-to-one line in Figure 2.7 originate from this feature.

The reason why our network predicts the cloud age more precisely for younger H ii regions

is related to the training data. For both cloud age and the youngest cluster age, the fraction

of young models in the database is larger as shown in Figure 2.1 so that the network may have

learned better about younger models. Moreover, as explained in Section 2.2.1, cloud age and

the youngest cluster age are not sampled in a constant interval, unlike the other five parameters.

Age intervals are sometimes wider in the old period of the cloud because the cloud does not

evolve as dramatically as in the younger period.

In the case of Ncluster, the more star clusters (more precisely stellar generations) contribute

to the observed luminosity, the harder it is for the cINN to predict the correct number of clusters

(generations). When this number is one or two, the network predicts the posterior accurately

close to the true value but it shows poor performance when the number is larger than three. The

poor performance for models with many clusters is also attributed to the distribution of Ncluster

in the training data. Our network is trained mostly on the single cluster H ii regions which

occupy more than 70% of the training set as shown in Figure 2.1. Apart from the bias of the

training data, it is difficult to accurately predict the number of clusters because of the intrinsic

physical degeneracy of the H ii region models with respect to the twelve optical emission lines

that we use to predict the parameters. The strengths of these lines are dominated mostly by the

ionising luminosity of the youngest stellar generation of the H ii region model. So adding one or

more old clusters with low ionising power does not have much impact on the overall strength of

most of the lines, making it hard for our network to identify the accurate number of clusters.

In the star formation efficiency case, we discover an arrow-shaped structure pointing towards

the lower left side in both Figures 2.6 and 2.7. These are similar to a one-to-two line and two-

to-one line respectively, which implies the degeneracy revealed in the posterior distribution. As

most of the degeneracy occurring in our network is because of the degenerate Ncluster prediction,

this feature is more distinct in the range of low star formation efficiency. As shown in the Ncluster

predictions, the degeneracy occurs more frequently for H ii regions with many clusters. These

H ii region models usually have small star formation efficiencies, which makes star-forming clouds

easily collapse again as stellar feedback is too weak to destroy the cloud.

Prediction of the cloud initial density and the cloud mass is well constrained to the true values.

The scatter in the cloud mass distribution is larger for higher cloud masses. We consider that this

feature is also related to the degeneracy of Ncluster because the massive clouds are more likely to

recollapse. Phase prediction is accurate and less degenerate compared to the other parameters.

We notice that even when the Ncluster prediction is degenerate and the other parameters have

multi-modal posterior distributions, the posteriors of the phase are usually accurate and have

unimodal distributions, as shown in Figure 2.3.

41



2.5. Validation of the network

2.5 Validation of the network

In Section 2.4.2, we validated our network prediction for three example models based on the

re-simulation method described in Section 2.3.3. Now we assess the general performance of our

tool with more test models by comparing the luminosity of all twelve emission lines used in the

network with the true values. To complete the validation of our tool, we have to check two things.

First, we need to confirm whether the network correctly learned the physical rules hidden in the

training data. Second, we need to examine how well the database used for training reproduces

real nature. In this paper, we focus on the first validation step, evaluating the machine learning

aspects of the problem, since the underlying physical input models from WARPFIELD-EMP have

already been probed by previous studies (e.g., Rahner et al. 2018; Rugel et al. 2019; Pellegrini

et al. 2020). Nevertheless, we will address some of the limitations of the WARPFIELD-EMP

synthetic model and our training data in Section 2.8.1.

Altogether, we select 100 models from the test set for the network validation and draw 100

samples for the posterior of each model. We randomly select these 100 models, subject to the

following criteria. First, we only use models with [N ii]/Hα≥ -3 and [O iii]/Hβ≥ -2 because the

line ratios of most of the observed star-forming galaxies (Kauffmann et al. 2003; Kewley et al.

2006) or H ii regions (Sánchez et al. 2015) are larger than these minimum values. Second, four

of the 100 models are randomly selected among extreme cases, which are located in the BPT

diagram beyond the revised demarcation curve between starburst galaxies and active galactic

nuclei (AGNs) of Kauffmann et al. (2003). One of our four extreme cases is located even beyond

the demarcation curve of Kewley et al. (2001). Third, for the other 96 models, we set the fractions

of models with relatively uncommon characteristics in order to prevent too many models from

being selected close to the mean of the distribution. Considering the parameter distribution of

our database (Figure 2.1), we limited the fraction of single cluster models to 60% and the fraction

of Phase 3 models to 40%. The former is to ensure a sufficient number of multicluster models

in the validation-test sample and the latter is to prevent too many Phase 3 models from being

selected.

We present the location of the 100 selected models in the BPT diagram in Figure 2.8. As

shown in the figure, test models are selected from both high-density and low-density regions with

respect to the BPT locations of all held-out models. In Figure 2.9, grey histograms represent

the distribution of parameters for the selected test sample, whereas the red dashed lines show

the distributions of our entire database, which are the same as in Figure 2.1. As we set selection

criteria, some parameters have slightly different distributions to those of the database.

As indicated above, for our 100 test models, we draw 100 posterior samples per model, giving

us a total of 10,000 sets of parameters (Mcl, SFE, nH,0, and age). We then re-run WARPFIELD-

EMP for each set of values, giving us 100 sets of emission line luminosities for each of our test
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Figure 2.8: BPT diagram showing the locations of the 100 test models (yellow circles) used for the
network validation in Section 2.5 and all of the models in the test set. The three demarcation lines and
the colour code of the 2D histogram are the same as in Figure 2.5.
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Figure 2.9: Distribution of the seven physical parameters of the 100 randomly selected test models for
the network validation in Section 2.5. The grey histogram shows the distribution of the 100 models
and the dashed red line shows the distribution of the whole database shown in Figure 2.1, where the
amplitudes of the distributions are re-scaled.
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models. For each test model, we then investigate whether the luminosities derived from the

posterior samples are equal to the input-condition luminosity (i.e., the true luminosity of each

model). In Figure 2.10, we present a density histogram of the logarithmic difference between

the luminosities from the posterior samples and the true luminosity values. All twelve emission

lines used in our network reveal similar distributions in Figure 2.10. We quantify the accuracy

and precision of the luminosities derived from the posterior samples with respect to the true

luminosity values by calculating the first and the second moment of each distribution. In each

panel in Figure 2.10, the vertical dashed orange line and the horizontal green bar represent the

first moment and twice the second moment respectively, the legend indicating their corresponding

values. All 12 emission lines have very small first-moment values. The smallest absolute value is

∼ 2.65× 10−5 dex for the [S ii] 6716Å distribution and the largest one is around 3× 10−3 dex in

[O iii]. The width of the distribution is denoted by the green bar, twice the second moments, and

all twelve distributions have a similar width within the range of 0.2 dex ∼ 0.22 dex. As shown in

Figure 2.10, the posterior samples predicted by the network have emission line luminosities very

close to the true luminosities of the test models, although there is a ±0.11 dex error, which is

equivalent to a factor of 1.3. This demonstrates that the posteriors predicted by our network are

reliable and correctly conditioned on the given observation apart from the result of parameter

prediction.

The performance of the network varies depending on the characteristic of the observed target

that we want to analyse. For example, there is a large scatter or degeneracy in parameter

predictions especially when the target H ii region is very old or has many star clusters in the

cloud. Since we confirmed in Figure 2.10 that the distribution of the luminosity difference is

similar regardless of the emission line, we now select the Hα as the representative emission

line and investigate how the luminosity distribution shifted with respect to the true luminosity

differs according to the characteristics of the conditioned test models. First, we compare the

case when the selected test object actually has only one star cluster (i.e., a single-cluster model)

with the case when the object has two or more star clusters (i.e., a multicluster model). As

mentioned above, 40 of our 100 validation test models are single-cluster models, whereas the

remaining 60 are multicluster models. Figure 2.11 shows the distribution of the Hα luminosity

difference between the predicted posterior samples and conditioned test models of each case. The

distribution of single-cluster models (left panel) exhibits a better result considering the smaller

offset and width compared to the multicluster models (right panel). The offset of multicluster

models (∼ 0.005 dex) is slightly larger than that of single-cluster models or that of all models

combined in Figure 2.10, but it is still a very small value. Compared to the Hα distribution

of entire models in Figure 2.10, the width of the single-cluster case is narrower by 0.06 dex,

whereas the width of the multicluster case is wider by ∼0.16 dex. It is expected that our

network performs better for single-cluster models because, in the previous section, we find more
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Figure 2.10: Density histograms of the logarithmic difference between the re-simulated emission-line
luminosity of the posterior samples and true emission-line luminosity values of the test models. Twelve
panels show the distribution of different emission lines required for our cINN model. For our 100 test
models given in Figure 2.8, we draw 100 posterior samples per test model, so histograms are based on
the luminosity of 10,000 posterior samples in total. We calculate the density-weighted first moment
and second moment of each distribution. The vertical dashed orange line indicates the first moment
and the horizontal green bar denotes twice the second moment, representing the offset and width of the
distribution respectively. The corresponding values are presented by the legend in each panel.
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Figure 2.11: Density histograms of the logarithmic difference between the Hα re-simulated luminosity
from the posterior samples and the true Hα luminosity of the test models. We divide the 100 test models
into two groups depending on the true value of Ncluster. The left panel shows the result of 6,000 posterior
samples from the 60 test models, which have only one cluster and the right panel shows the result of
4,000 posterior samples from the 40 test models that contain more than one cluster. The colours and
lines are the same as in Figure 2.10.

accurate parameter predictions for single-cluster models. Figure 2.11 reflects that even when

our network shows relatively poor performance for multi-clusters, our network provides reliable

predictions with the luminosity difference of -0.0048±0.1842 dex on average with respect to the

conditioned observations.

Additionally, we divide the test samples according to various other features and compare the

distribution of the Hα luminosity difference. For example, we split the samples according to

the cloud age, where the cloud age of the first group is less than 10 Myr and that of the other

group is older than 10 Myr. We confirm that the distribution of the Hα luminosity difference

for the younger group has a better result than that of the older group. When the observed H ii

region is older than 10 Myr, the luminosity difference of the posterior samples with respect to

the true luminosity value is -0.0001±0.157 dex on average. On the other hand, we divide samples

into bright and dark models, where bright models have luminosities larger than 1034 erg/s in all

twelve emission lines. This criterion serves to probe the influence of uncommon characteristics in

the observation space because more than 60% of our training data is classified as bright models.

We confirm that bright models have a luminosity error of 0.003±0.086 dex, while dark models

have an average luminosity difference of -0.01±0.183. In conclusion, the performance of our

network varies depending on the characteristics of the target we want to analyse. However, even

in the poorly performing cases, the re-simulated emission line luminosity of the posterior samples

predicted by our network is very similar to the conditioned luminosity with an average error of

less than ±0.2 dex.
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2.6 Degenerate Prediction

The shapes of the 1D posterior distributions as shown in Figure 2.3 mainly have the following

three characteristics. First, a unimodal distribution is common but some posterior distributions

have two or more distinguishable modes. Second, for a given observation, the number of modes

in the posterior distribution is different for each parameter. Third, as mentioned in Section 2.4.2,

the multi-modality in the posterior distribution of Mcl, star formation efficiency, nH,0, cloud age,

or the age of the youngest cluster is often due to the degeneracy in the Ncluster prediction. In this

section, we perform a statistical analysis of the modality of the posterior distribution. Rather

than interpreting physical meanings of the degeneracy of the network prediction, we focus on the

shape of the 1D posterior distributions from a statistical point of view, such as how many modes

are in the posterior distribution in general, and how the number of modes differs depending on

the parameters.

2.6.1 Method of counting the number of modes

For discretized parameters such as Ncluster and phase, we simply measure the number of modes

in the posterior distribution by rounding the posteriors and count the number of unique values.

For non-discretized parameters, we analyse the number of modes in the posterior distribution

in 3 steps. First, we bin the posteriors of each parameter to make a probability distribution.

Next, we fit the posterior distribution with multiple Gaussians and in the last step, we measure

the number of modes by counting the number of peaks in the posterior distribution according to

three different definitions of peaks. The reasoning behind the binning method in the first step is

that different binning can affect the fitting result.

We sample the posterior 2048 times per model in the test set and divide the predicted pos-

teriors into bins with regular intervals to obtain a posterior probability distribution for the

non-discretized parameters. We first bin with a number equal to the square root of the number

of posterior samples. If it fails to fit the posterior distribution, we bin again according to the

Freedman-Diaconis rule (i.e., FD rule: Freedman & Diaconis 1981) and retry the fitting. The FD

rule takes into account the interquartile range (IQR) of the data (x) to determine the binning

width (h):

h = 2
IQR(x)
3
√
n

,

nbin =
max(x)−min(x)

h
,

(2.6)

where n is the number of data.

We start to fit the posterior distribution with one Gaussian model and increase the number

of Gaussian components if the integral of the root mean square of the residual is larger than 3%
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of the full integral of the posterior distribution. The maximum number of Gaussian components

per posterior distribution is limited to six. For each model, we fit the posterior distribution for

the five parameters (Mcl, SFE, nH,0, t, and tyoungest) independently.

In order to determine the number of modes in one posterior distribution, we employ three

different definitions for the peak of the mode and count the number of peaks according to each

definition. First, we treat the number of Gaussian components fitted in the posterior distribution

as the number of fitted peaks. In the second definition, we determine the number of visible

peaks, which are defined as the local maxima of the fitted function. We use the fitted curve

and the first derivative of it to find visible peaks. For the third one, we compute the number of

separated peaks, where "separated" means that the distance between the centres of two Gaussian

components is larger than the L2 norm of the two dispersions. If the distance between the centres

is smaller than the L2 norm, we regard the pair of Gaussian components as part of one extended

peak. In the previous two definitions, the position of the peak is accurately identified on the

fitted posterior distribution, whereas the extended peak does not indicate a certain position but

provides the range of possible peak positions.

2.6.2 Visible modes in posterior distributions

For the entire 101,149 test models, we count the number of peaks in the posterior distribution

following the above steps and according to the three different definitions. As mentioned, we

simply count the number of peaks for Ncluster and phase, so the number of peaks for these two

parameters does not depend on the definition of the peak. In this section, we only discuss the

number of visible peaks (i.e., nvpeak), which is the most conservative and straightforward among

the three definitions. We provide an investigation of the other two approaches in Appendix B.2.

The blue histogram in Figure 2.12 represents the distribution of the number of visible peaks

in the posterior distributions. In the previous section (Section 2.4.2), we have mentioned that

degenerate predictions (i.e., multi-modality in the posterior distribution) in the non-discretized

five parameters are attributed to the degeneracy in the Ncluster prediction. So, we divide the test

set into two groups: one with a unimodal Ncluster posterior distribution (orange histogram in

Figure 2.12) and the other one with multimodal Ncluster posterior distribution (green histogram).

Please note that the criterion for dividing models into two groups is not based on the true Ncluster

value or the posterior value of Ncluster, but on the number of modes in the posterior distribution

of Ncluster.

From Figure 2.12, we find that the distribution of nvpeak differs for each parameter. However,

in all parameters, about 95% of models have one visible peak if the posterior distribution of

Ncluster is not degenerate. This shows that the multi-modality in the posterior distribution

of Ncluster obviously affects the number of visible peaks in the posterior distribution of other

parameters. However, the remaining 5% of the models whose posterior distribution is non-
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Figure 2.12: Density histograms of the number of visible peaks in the posterior distributions for six
parameters. The blue histogram shows the results for all models in the test set. The orange histogram
represents models whose posterior distribution of Ncluster are unimodal (61.4% of test set), whereas the
green histogram represents the rest of models with multimodal posterior distribution in Ncluster.

degenerate for Ncluster but degenerate for other parameters implies that the number of clusters

is not the only cause of degeneracy. As expected from the results in the previous section, the

posterior distribution of the phase is unimodal in most cases. The fraction of models with only

one visible peak slightly decreases if the Ncluster posterior distribution is degenerate but it is still

larger than 90%. We confirm that degeneracy rarely occurs in phase posteriors so we focus more

on the result of the other five parameters.

Among the five parameters, the fraction of models with one visible peak is the highest in

Mcl and the lowest in age. First, in the case of Mcl, more than 90% of all models have only

one visible peak. When the posterior distribution of Ncluster is degenerate, about 20% of models

have two or more visible peaks, which is smaller compared to those of the other parameters. In

the case of age, about 70% of the models have unimodal posterior distributions. If the Ncluster

posterior distribution is not degenerate, more than 90% of models have one visible peak. On

the other hand, if the Ncluster prediction is degenerate, 70% of models have two or more visible

peaks, which implies that multi-modality of the age posterior distribution based on the visible

peak is significantly influenced by the degeneracy in the Ncluster posterior distribution.

For all parameters, it is more probable to have multiple visible peaks in the posterior distri-

bution if the posterior distribution of Ncluster is degenerate. Even when the Ncluster prediction

is degenerate, the number of visible peaks is two in most cases. However, in the case of age,
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half of the models with multiple visible peaks have three or more peaks. This means that, when

the Ncluster prediction is degenerate, the age posterior distributions have more distinct and not

blended multi-modes compared to other parameters.

In conclusion, the Ncluster prediction is not the only source of degeneracy in the posterior but

it is the most influential one. As mentioned in the previous section (Section 2.4.3), it is difficult

to break out the degeneracy remaining in the Ncluster posterior because the information on the

number of clusters is not well reflected in the selected 12 emission lines used for the input. The

amounts of emissions of these lines are contributed mostly by the youngest cluster with bright

O- and B-types stars and they do not depend much on the other old stellar generations. These

results suggest that we need an additional observable which is sensitive to the number of clusters

such as the high-resolution photometry observations obtained with the Hubble Space Telescope

(HST) to enhance the performance of our network by breaking out the degeneracy aroused from

Ncluster prediction.

2.7 Posterior distributions considering luminosity errors

So far, we presented posteriors conditioned on the luminosity of 12 emission lines, but we did not

take into account the fact that in real observations, these luminosities cannot be measured with

arbitrarily high precision. Here, we explain how to obtain the posterior distribution by taking

into account the luminosity error, and how the posterior distribution changes depending on the

amount of the error of observations.

In this study, we use a Monte Carlo approach to sample posteriors while accounting for

luminosity errors arising from different signal-to-noise levels of the observations. Suppose that

one set of luminosities (y) has a 1σ error in per cent unit for each of the 12 emission lines we

consider (σ1, ..., σ12). The first step is to generate a sufficient number NMC of mock luminosity

sets (y′
1, ...,y′

NMC
) by adding a small amount of random noise to each emission line luminosity

considering the corresponding error. The second step is to sample the posterior NcINN times

conditioned on each mock luminosity set so that we draw NMC × NcINN posterior samples in

total. We found that producing a sufficient number of mock luminosity sets (NMC) at least

around 3000∼5000 is important to obtain a smooth posterior distribution. In this study, we

decided to sample the posterior 300,000 times in total for one observation by making 3000

mock luminosity sets and sampling the posterior 100 times per mock luminosity set. However,

our network sometimes returns extremely extrapolated posterior samples that are physically

incorrect (e.g., negative age or negative star formation efficiency) especially when the luminosity

errors are large, and so we exclude all physically unrealistic posterior samples.

As we use synthetic H ii region models, which by definition are fully accurate, we add a simple

noise model to make mock errors of the emission line luminosity. In real observations, we have
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to consider errors from diverse sources such as the Poisson error, calibration error, or systematic

errors, e.g., arising from incomplete sky subtraction. However, in this study, we ignore error

sources other than Poisson noise. We also ignore any covariances between different emission

lines including the physical relations between blended lines and their individual components.

When the 1σ per cent error of the brightest emission line of one observation is given, the errors

of the other 11 emission lines are automatically determined according to

σline = σmin ×
√

Lbrightest

Lline
, (2.7)

where σmin is the error of the brightest emission line, which is the smallest among the luminosity

errors of the 12 emission lines. In real observations, this is typically the Hα line.

2.7.1 Statistical analysis

We expect the posterior distribution to change depending on the characteristics of the observed

target as well as the magnitude of the luminosity error. So, we utilise the same test sample of

100 models used for network validation in Section 2.5. For each model, we obtain 16 posterior

distributions for each parameter by varying the luminosity error of the brightest emission line

in a logarithmic scale from 0.01% to 10% with 0.2 dex intervals. As mentioned above, we draw

300,000 posterior samples to construct the full posterior distribution for each of these 1600 cases.

To evaluate the accuracy and precision of the posterior, we use the MAP estimate and un-

certainty at a 68% confidence interval (u68) in the same way as we did to evaluate the posterior

without considering luminosity errors (i.e., p0(x)). In this section, we take the logarithm of the

ratio between the posterior estimate and the true value (i.e., log deviation, log X
X∗ ) as a proxy of

the network accuracy. We define accuracy in two ways either by using only the MAP estimate

as a representative value of the posterior distribution (i.e., MAP accuracy), or by using all of

the posterior estimates. However, in the case of the Ncluster and phase, we use a linear deviation

(i.e., X −X∗) instead. The precision of the posterior distribution is represented by u68.

Using the 1600 posterior distributions, we first examine how the accuracy of the posterior

depends on the luminosity error. The violin plots in Figure 2.13 show how the accuracy dis-

tribution changes with increasing minimum luminosity error. We present the accuracy using

only MAP estimates in the first row of Figure 2.13 and accuracy using all posterior estimates

in the second row. Blue histograms in the panel show the accuracy of the posterior distribution

for 100 models with the same minimum luminosity error. Please note that we apply the same

luminosity error only for the brightest emission line so each model has different luminosity errors

for the other emission lines. The yellow histogram located at the bottom of each panel represents

the accuracy of posterior distributions without luminosity errors (p0(x)). In order to maintain

the same sampling size, we draw 300,000 posterior samples per test model to make a posterior
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Figure 2.13: Using 1600 posterior distributions (100 test models and 16 different luminosity errors of
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of MAP estimates.
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Figure 2.14: Accuracy and precision of our network as a function of the luminosity error of the brightest
emission line (σmin) using 100 test models. Please note that the luminosity error is given in per cent. We
use the RMS of MAP accuracy in the first row and the RMS of accuracy using all posterior estimates
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left corner in each panel indicate the value obtained from posterior distributions without luminosity error
(σlines = 0).
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distribution without luminosity errors. The average of each distribution in the figure is denoted

by a cross symbol.

From Figure 2.13, we find that the accuracy distribution using all posterior estimates and

that using only MAP estimates are significantly different. First, in the upper panels, the MAP

accuracy distributions are on average shifted to negative values, except for Mcl, and the magni-

tude of the shift increases with increasing luminosity error. This feature is especially evident in

the distribution of nH,0, cloud age, and the youngest cluster age. The star formation efficiency

exhibits a similar trend, but when the luminosity error (σmin) is within a range of 1∼10% the

distributions become less biased in comparison to those with smaller luminosity error. On the

other hand, when using all posterior estimates, the accuracy distributions show different trends.

In the case of Mcl, the distribution gradually shifts to the positive direction on average as the

luminosity error increases (∼0.1 dex). The distributions of star formation efficiency, nH,0, cloud

age, and the youngest cluster age become wider but do not shift to one side even when the

luminosity error is large. The density distribution shows a negative shift around 0.2 dex but

this is smaller than the amount of shift found in the MAP accuracy distributions. This implies

that the posterior distributions of these four parameters are skewed towards the range below the

true values, but have a long tail-like distribution with a lower probability in the range above

the true values so that the distributions are not shifted on average. In particular, it is expected

that density, cloud age, and the youngest cluster age will clearly show this characteristic when

the minimum luminosity error is 1% or more. In the case of Mcl showing the opposite trend,

it is expected that a large number of posterior estimates have larger values than the true one

from the positive shifts in accuracy distributions. From the distribution of MAP accuracy, we

infer that the posteriors of Mcl have multi-modal or spiky distributions so that the peak of the

distribution does not have a systematic bias to a certain direction on average.

To measure the average accuracy as a function of the minimum luminosity error, we calculate

the root mean square (RMS) value of the accuracy shown in Figure 2.13. The first and second

rows in Figure 2.14 present the RMS of the MAP accuracy and the RMS of the accuracy using

all posteriors estimates, respectively. Additionally, in the third row, we examine the median of

the u68 values from 100 models as a function of the minimum luminosity error to quantify the

average width of the posterior distribution. The red horizontal line in each panel represents the

values from the posterior without luminosity errors (p0(x)). Figure 2.14 quantitatively shows

how much our network performance decreases with increasing luminosity error. In the case of

Mcl, star formation efficiency, and nH,0, the RMS of MAP accuracy gradually increases up to

0.4∼0.6 dex. The RMS value of the star formation efficiency slightly decreases when the minimum

luminosity error is larger than 1%, which is also confirmed in Figure 2.13. In the case of cloud

age and the youngest cluster age, the slope of the RMS curve becomes larger around a luminosity

error of 1%. The RMS value of the youngest cluster age is smaller than other parameters when
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the minimum luminosity error is smaller than 1%, but thereafter the RMS value rapidly increases

to 1 dex. This indicates that the network has more difficulty in finding accurate MAP estimates

of the age and age of the youngest cluster than other parameters when the minimum luminosity

error is larger than 1%. In the case of the number of clusters, the RMS value increases steadily

up to the minimum luminosity error of 1%, and thereafter, it is almost constant. In the case of

phase, on the contrary, there is no change up to the minimum luminosity error of 0.1%, but after

that, the RMS value increases significantly.

There is no significant difference in the RMS curve when the whole posterior estimates are

considered (second row in Figure 2.14) or when only the MAP estimates are used (first row

in Figure 2.14). Although the increment is different, the RMS values of the seven parameters

gradually increase with increasing luminosity error. This represents the increase in the overall

width of the distribution shown in Figure 2.13. The median of u68 also shows the change in the

width of the posterior distribution. The unit of the u68 in the third row of Figure 2.14 is the same

as the physical unit of the corresponding parameter. Compared to the width of the posterior

distribution without luminosity errors, p0(x), represented by red lines, the posterior distributions

become much wider with increasing luminosity error. When the minimum luminosity error is

around 10% the average width of the posterior distribution is almost the same as the entire

parameter range of the training data (see Figure 2.1 to compare with the parameter ranges of

the training data).

2.7.2 Change of the posterior distribution for individual models

In order to investigate the characteristics of the posterior distribution expected from Figure 2.13

and to examine the change of the posterior distribution depending on the luminosity error in

detail, we select three from the 100 test models as examples. For these three models, we show

the posterior distribution of each parameter for five different minimum luminosity errors (0.01,

0.1, 10−0.4, 1, and 10%, respectively) as well as the posterior distribution without luminosity

error in Figures 2.15, 2.16, and 2.17 respectively.

In Figure 2.15, we show the posterior distributions of the first model which is the same model

shown in the first column of Figure 2.3. When we do not apply luminosity errors (i.e., p0(x)),

this model has a common unimodal posterior distribution which is accurate and precise to the

true value (the first column in Figure 2.3 and 2.15). The brightest emission line of this model

is Hα and the faintest line is [O i] 6300Å with a factor of 12.7 larger uncertainty. The posterior

distributions do not change much at a minimum luminosity error of 0.01%. From the u68 values

of each distribution, we notice that the width of the distribution is 2-3 times wider than that of

p0(x), but the width is still narrow enough. Even when the minimum luminosity error increases

to 0.1%, the MAP value is close to the true value although the width of the posterior distribution

considerably widens. However, if the minimum luminosity error is larger than 0.1%, the peak of
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Figure 2.15: Posterior probability distributions (grey) of the first example model. This model is the
same as the model in the first column of Figure 2.3. The first column shows the posterior distribution
when no luminosity error is applied. From the second column to the last column, we present the
posterior distribution with luminosity errors of the brightest emission-line of 0.01, 0.1, 10−0.4, 1, and
10% respectively. The luminosity errors of the brightest and faintest emission lines are indicated at the
top of each column. Red vertical lines or red edges in the bar-shaped histograms indicate the true values
of the model. On the upper right corner of each panel, we present true values, MAP estimates and their
1σ uncertainties, and u68 values of each posterior distribution.
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2.7. Posterior distributions considering luminosity errors

the distribution moves further away from the true value and the width widens.

In the case of density, cloud age, and the youngest cluster age, the posterior distributions at

σmin of 1% and 10% show a skewed shape. As we expected from Figure 2.13, the distributions

have MAP estimates smaller than the true value but exhibit a tail-like shape toward values larger

than the true values. For cloud age and the youngest cluster age, the posterior distributions show

blended multi-modality at a value of 0.1% σmin because they begin to have a number of younger

age estimates. As σmin increases the level of skewness of the posterior distribution increases

as well. Similarly, in the case of Ncluster and phase, the posterior distributions become more

degenerate with increasing luminosity error. But, unlike Ncluster, which maintains an accurate

prediction even when the luminosity error increases to 10%, the accuracy of the phase deteriorates

as the luminosity error increases.

The second example model is the one in the third column of Figure 2.3. For this model,

the luminosity error of the faintest emission line, [O i] 6300Å, is a factor of 10.4 larger than

that of the brightest line, Hα. Even without luminosity error, the posterior of this model has

a bimodal distribution arising from the degeneracy in the Ncluster prediction. The two modes

widen as the luminosity error increases and merge at σmin ≲ 1%. In the case of star formation

efficiency and nH,0, the MAP estimate does not change significantly even when the minimum

luminosity error increases by 1%. However, in the case of cloud age and the youngest cluster

age, the MAP estimates at a σmin of 1% or larger are significantly different from those at smaller

luminosity errors. As the two degenerate modes in p0 merge together, the MAP moves to the

middle position between the two modes. But as the minimum luminosity error increases by 1%,

the MAP moves to the peak of the newly formed mode located at a significantly younger age

range. As the minimum luminosity error increases by 10%, the MAP is shifted again toward a

much younger range. The result that the posterior distribution changes to a skewed distribution

is consistent with the result of the first example and the trend revealed in Figure 2.13.

For the third example, we select a model that undergoes one recollapse phase and consequently

contains two generations of stars, or in our terminology has two clusters. Before applying lu-

minosity errors (the first column in Figure 2.17), the posterior distribution of this model has

similar characteristics to the first example, which has a unimodal distribution and is very close

to the true value. The differences are that the third model has two clusters and older age than

the first model. The overall change of posterior distributions with increasing luminosity error is

similar to that of the other models as well. Especially at a minimum luminosity error of 10%,

the shape of the posterior distribution of cloud age and the youngest cluster age is similar in

all three models. On the other hand, the posterior of Mcl and star formation efficiency shows a

degenerate bimodal distribution at a σmin of 0.1∼1%.

The interesting point of this model in Figure 2.17 is the change of the Ncluster posterior

distribution. From the minimum luminosity error of 0.1%, the degeneracy appears in the Ncluster
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Figure 2.16: Posterior distributions of the second example model corresponding to the model in the third
column of Figure 2.3. Colour codes and lines are the same as in Figure 2.15.
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2.7. Posterior distributions considering luminosity errors
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Figure 2.17: Posterior distributions of the third example model. Colour codes and lines are the same as
in Figure 2.15.
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prediction and the fraction of posterior samples that predict an Ncluster of 1 increases with

increasing luminosity error. Finally, the posterior distribution at the largest luminosity error

is almost the same as that of the other two models. However, this means that the network

performed poorly compared to the other two cases because this model actually has two clusters.

Thus, we examine the change of the posterior distribution of Ncluster for other test models that

have two or more clusters like this model. We notice that when the minimum luminosity error is

large, around 1∼10%, the posteriors samples that estimate Ncluster as 1 are dominant regardless

of the intrinsic characteristics of the target. The MAP estimates of Ncluster with a minimum

luminosity error larger than 1% are always 1 for all 100 test models. This means that in the

previous two cases, the network seemed to predict the number of clusters reliably, but in fact, it

just always provides a similar posterior distribution.

We can interpret the change of the posterior distributions of the cloud age, the youngest

cluster age, and the phase in the same manner. For example, the posterior distribution of phase

at a 10% minimum luminosity error is similar in all three models in that the fraction of phase

1 predictions is the highest. We check the MAP estimate of phase for 100 models and find that

when the minimum luminosity error is larger than ∼ 3%, more than 85% of models have a phase

MAP value of 1. Even for models whose true phase is not 1, still more than 85% of models have a

phase MAP estimate of 1. This means that at least the peak of the phase posterior distribution is

always similar regardless of the conditioned observations if the luminosity error is large enough.

We infer that the consistent posterior distribution when the luminosity error is large is in-

fluenced by the bias in our training data. As mentioned in Section 2.4.3, even when we do not

consider luminosity errors, posterior distributions are frequently degenerate and inaccurate in

the case of H ii regions that either are old or have more than one cluster. This is because the

fraction of single clusters or young H ii regions is high in our training data so our network is

well-trained and performs well for these kinds of models. We suppose that the bias of the train-

ing data also affects the posteriors with luminosity errors as well. Our network delivers good

predictions for young and single cluster H ii regions but frequently provides degenerate solutions

for old, multi-cluster H ii regions which include young, single cluster posterior samples. If the

luminosity errors are large, mock luminosity sets are more likely to encompass the luminosity of

diverse H ii regions with various characteristics. Therefore the posteriors with a large luminosity

error eventually have a higher proportion of younger and single-cluster posterior samples. For

this reason, we consider that the skewed posterior distributions in the cloud age, the youngest

cluster age, and the Ncluster are influenced by the characteristics of the training data.

On the other hand, the posterior distribution of phase at a minimum luminosity error of 10%

is not similar to the phase distribution of our training data which has the highest fraction at

phase 3. Phase posteriors without luminosity errors were not significantly influenced by the bias

of the training data and were accurate most times regardless of the conditioned model. The
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reason why the fraction of phase 1 in the posterior distribution is high when the luminosity error

is large is that very young H ii regions, younger than 1 Myr, are mostly in phase 1. As the

fraction of posterior samples with a very young age increases when the luminosity error is large,

the fraction of phase 1 predictions also increases.

To summarise, the posterior distribution gradually widens and shows a skewed shape with

inaccurate MAP estimates as the luminosity error increases. However, the network guarantees the

reliable MAP prediction at a σmin ≲ 0.1% or < 1% depending on the parameters. This suggests

an approximate minimum signal-to-noise level for the brightest emission line, which is typically

the Hα line, to obtain reliable posterior samples when we apply our tool to the real observations.

In this study, we ignore any covariance between different lines, e.g., a relation between a blended

line and individual components, and produce mock luminosities as randomised as possible. We

expect that our network will perform even better despite the same amount of uncertainties if we

consider the covariances between lines because it reduces the randomness in mock luminosities.

2.8 Discussion

2.8.1 Major assumptions inherent in the training data

The WARPFIELD-EMP models we used as training data make several simplifying assumptions.

In the previous sections, we demonstrated that the network learned the hidden rules in the

training data well, but we did not validate our network using real observations beyond the

comparisons already published in Pellegrini et al. (2020). As our synthetic models are not a

perfect representation of nature, we should consider the main assumptions of the WARPFIELD-

EMP model in interpreting the posterior distribution if we apply the network to real observations.

One of the main approximations made within WARPFIELD is the assumption of spherical

symmetry. The effects of small structures such as pillars, or larger three-dimensional inhomo-

geneities in the cloud are not taken into account in WARPFIELD’s model for the evolution of

the H ii region. Though it has limitations, this approximation dramatically reduces the compu-

tational cost of the calculation compared to a correspondingly detailed 3D simulation, allowing

us to produce a large number of synthetic models applicable for machine learning techniques.

Another important assumption is that the clouds are isolated. In reality, some star-forming

regions are close enough that their evolution may affect each other. In addition, even if nearby

regions evolve independently, they may be blended together in observations that have limited

spatial resolution. This is particularly an issue in optical surveys of H ii regions in nearby galaxies,

as even the highest resolution examples of such surveys struggle to reach spatial resolutions better

than ∼ 50 pc in all but the closest galaxies. Our assumption that the clouds are isolated also

implies that we do not account for external effects such as the influence of the large-scale galactic

potential or contamination of the observations by emission from diffuse ionised gas.
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The WARPFIELD models also make use of a highly idealised treatment of star formation.

All of the stars in each cluster are assumed to form instantaneously, i.e., there is no gradual star

formation. Moreover, in cases where the cloud re-collapses and forms a new cluster, we assume

that the star formation efficiency is the same as for the original cluster. This assumption is made

purely on the grounds of simplicity and it is unclear how well it matches what happens in reality.

WARPFIELD also makes several assumptions that are commonly used in other feedback mod-

els. For example, we assume that the shell surrounding the inner bubble is in quasi-hydrostatic

equilibrium. The WARPFIELD cloud is in virial equilibrium so that there is no partial gravita-

tional collapse in the cloud. We also apply photoionisation and chemical equilibrium to model

the cluster and cloud evolution. The mass of stars in the cluster follows the Kroupa initial mass

function (Kroupa 2001) with an upper stellar mass limit of 120 M⊙. As the time-dependent

evolution of the cluster is calculated from STARBURST99 (Leitherer et al. 1999, 2014), we

accordingly accepted the physical assumptions used in it.

In addition to the above, we also made assumptions about several parameters when con-

structing the WARPFIELD-EMP database, resulting in additional constraints. As shown in

Figure 2.1, the range of each parameter in the training data is restricted. We confined the range

of Mcl, SFE, and nH,0 when we randomly sampled the initial clouds and limited the maximum

age of the cloud to 30 Myr. On top of these, we assumed a constant radial profile for the initial

cloud density and did not account for the effects of the magnetic field and turbulent pressure.

As the network is trained on the models within the database, care must be taken when applying

our network to objects whose conditions are significantly different from our database models.

2.8.2 Effect of noise augmentation on the network performance

We mentioned in Section 2.3.2 that smoothing out the discretized parameter distribution by

adding a small amount of artificial noise not only helps the network converge in training, but

also improves the prediction performance of the network. For this reason, we added Gaussian

noise with a standard deviation of 0.05 to smooth out the distribution of Ncluster and phase to

train the main network introduced so far in this paper. To assess the effect of the smoothing

process on network performance, we compare the network used in this study with the network

trained without smoothing the distribution of Ncluster and phase. For convenience, we refer to

the former network as Network 1 and refer to the latter network as Network 2. We trained

Network 2 with the exact same settings as Network 1 except for smoothing.

To compare the performance of the two networks, we evaluate Network 2 in the same way as

described in Section 2.4.1. We sample posteriors for the entire test set by using Network 2 and

measure MAP values for each posterior distribution. We first plot the predicted posteriors or

MAP estimates against the true values in Figures A.2 and A.3. The direct comparison with the

results of Network 1 (Figures 2.6 and 2.7) confirms that the prediction performance is improved by
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Table 2.4: Comparison of the network performance between two networks: the main network introduced
in the paper to which we applied noise augmentation on Ncluster and phase (Network 1), and the network
trained without any noise augmentation (Network 2). The first value in each item shows the performance
of Network 2 and the second value shows the performance of Network 1 which is the same value shown
in Table 2.3.

Performance measure log Mcl SFE nH,0 t tyoungest Ncluster Phase
(Network 2 / Network 1) log [M⊙] [%] [cm−3] [Myr] [Myr]

emed
cal 4.7 / 0.44 4.9 / 0.26 6.7 / 0.87 6.2 / 1.3 7.4 / 1.1 18 / 2.3 29 / 0.12
umed
68 (x̂) 0.056 / 0.028 0.32 / 0.095 0.48 / 0.17 0.58 / 0.018 0.035 / 0.0097 0.00088 / 0.15 0.00035 / 0.086

umed
68 (x) 0.031 / 0.015 0.74 / 0.22 54 / 19 4.9 / 0.15 0.23 / 0.064 0.00065 / 0.11 0.0004 / 0.1

RMSE (x̂) 0.093 / 0.082 0.35 / 0.25 0.46 / 0.28 0.81 / 0.56 0.16 / 0.12 0.98 / 0.64 0.22 / 0.17
RMSE (x) 0.051 / 0.045 0.8 / 0.58 51 / 32 6.8 / 4.7 1.1 / 0.79 0.72 / 0.47 0.25 / 0.2

applying smoothing. This holds not only for the two parameters to which we applied smoothing,

but also for the other five parameters. Especially for the star formation efficiency, we find that

the arrow-shaped structure is more prominent in Figure A.2 than in Figure 2.6. We interpret

this structure as the degeneracy revealed in the posterior distribution. The more conspicuous

V-shaped structure shown in Figure A.2 reflects that degeneracy is more frequently observed

in the posterior distributions of Network 2 and it is also common in the overall star formation

efficiency range.

To compare the two networks more quantitatively, we evaluate the performance of Network 2

in the same way as Network 1 and provide the result in Table 2.4. The first entry in each column

is the evaluation result of Network 2 and the second value after the slash is the result of Network

1, note that this last entry to the number provided in Table 2.3. This clearly shows that Network

1 with smoothing applied has significantly improved performance compared to Network 2 without

smoothing. Network 2 has larger median calibration errors in all parameters. Specifically, the

calibration errors of Ncluster and phase reach 18% and 29%, respectively, which are significantly

larger than those of Network 1. Although the error of Ncluster is the largest in Network 1 as well,

it is less than 2.5%. From the umed
68 representing the average width of posterior distributions,

the smoothing process decreases the width of the posterior distribution for five parameters (Mcl,

SFE, nH,0, cloud age, and the youngest cluster age). The posterior distributions of Ncluster and

phase widen by smoothing but this is an expected result. By changing the quantised values to a

continuous, wider distribution in training, the network learns to avoid narrow and delta-function-

like distributions and chooses wider but less degenerate posterior distributions. In addition, the

increased width is still sufficiently small compared to the sampling interval of 1. Last, the RMSE

values also demonstrate that the accuracy of Network 2 is inferior to that of Network 1.

These results prove that augmenting discontinuous parameter distributions with artificial

noise can improve the overall performance of the network. By smoothing out the distribution of

Ncluster and phase, the accuracy of Ncluster is improved, reducing the frequency of degeneracy in

the predicted posterior distributions.
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2.9 Summary

In this paper, we introduce the novel method of applying a conditional invertible neural network

(cINN) to predict the fundamental physical parameters of H ii regions from spectral observa-

tions. When solving the inverse problem to infer the underlying physical parameters (x) from

observational data (y), intrinsic degeneracies make the solution ambiguous. During the forward

process, which translates the parameters into observations, inevitable information loss occurs

so that different physical systems are mapped onto identical observations. By introducing the

latent variables (z) which capture the information loss, a cINN learns the bijective forward map-

ping between x and z conditioned on y, z = f(x;y). The invertibility of the cINN architecture

automatically provides the inverse mapping x = f−1(z;y). Once the network is trained through

the forward process, we can produce the posterior distributions of x conditioned on y (p(x|y))

by sampling the latent variables.

As it is difficult to collect the enormous amount of data required for network training, we used

a database of synthetic H ii region models produced by the WARPFIELD-EMP pipeline (Pelle-

grini et al. 2020). WARPFIELD-EMP evolves an isolated massive star-forming cloud using the

1D stellar feedback modelling code WARPFIELD (Rahner et al. 2017) and calculates several

observable quantities for the evolving H ii region, such as the luminosities of various emission

lines, by processing the WARPFIELD output with CLOUDY (Ferland et al. 2017) and PO-

LARIS (Reissl et al. 2016). The first WARPFIELD-EMP database introduced in Pellegrini et al.

(2020) successfully mimicked the BPT diagram of H ii regions observed in NGC628 (Rousseau-

Nepton et al. 2018) but the number of models in that database and the sampling interval of each

parameter was not enough to train a network. In this paper, we introduced a new, extended

database that consists of 505,748 H ii region models evolved from 10,000 randomly sampled initial

clouds and used this new database to train and evaluate the network.

The network introduced in this paper is originally designed for the SDSS-V LVM survey, but

it can easily be adapted to data from other instruments or telescopes. Using the luminosity

of 12 optical emission lines (Table 2.2) observable within the wavelength coverage of LVM, our

network predicts seven physical parameters of the H ii region: initial mass of the star-forming

cloud Mcl, star formation efficiency, initial cloud density nH,0, age of the cloud t which means the

age of the first generation stars, age of the youngest cluster (i.e., age of the youngest generation

of stars in the system) tyoungest, number of clusters (i.e., distinct stellar populations) Ncluster,

and evolutionary phase of the cloud (see also Table 2.1). We trained the network using 80% of

the database and used the remaining 20% to evaluate the trained network with various methods.

We validated the network performance with WARPFIELD-EMP synthetic models, focusing on

the learning ability of the cINN architecture. An application of our newly developed tool to

the analysis of real observational data of H ii regions from various large-scale surveys will be
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presented in follow-up studies. Our main results of testing the network performance are the

following:

1. The trained network is able to predict the posterior distribution very fast and efficiently.

On average, the cINN can predict posterior distributions for 170 observations per second,

sampling each posterior 4096 times with an NVIDIA GeForce RTX 2080 Ti graphic card.

With the same graphic card, training of the network takes only a few hours (2–6 hours in

most cases) depending on the adopted hyperparameters of the network configuration.

2. Our network predicts each physical parameter very accurately and precisely. The posteriors

commonly show a clear, unimodal distribution with narrow width around the true value.

We evaluated the overall performance using three different methods (median calibration

error, uncertainty at 68% confidence interval, and the RMSE between the MAP estimate

and the true value) and confirmed that our network typically predicts the physical param-

eters of H ii regions very well and accurately. The most difficult properties to determine

precisely are the number of clusters and the age of the cloud.

3. In some cases, the posteriors are degenerate, showing a multimodal posterior distribution.

This degeneracy worsens the performance in terms of parameter prediction. However,

degenerate posteriors are not incorrect or wrong, instead, they are physically valid alterna-

tives that satisfy the same observational constraints. The network understands the hidden

rules in the training data and suggests physically reasonable possibilities. Distinguishing

between these possibilities may require additional data currently not considered in our

network (e.g. broad-band optical or infrared luminosities).

4. The main source of degeneracy that occurs in our network is caused by multiple star clusters

(stellar generations) in a cloud leading to similar emission properties. If the posteriors of

Ncluster are degenerate and exhibit multiple peaks, the other parameters are prone to have

degenerate posterior distributions as well. In particular, the cloud age is highly sensitive

to variations in Ncluster. We confirm that more than 90% of the test models have non-

degenerate posterior distributions for other parameters if the Ncluster prediction is not

degenerate.

5. The performance of the network varies with the characteristics of the observed target. As

mentioned above, for clusters with multiple stellar populations (Ncluster> 1) it is more

difficult to get the right value of Ncluster and the correct cloud age t. Also, our network

performs better for young H ii regions than for old H ii regions. This is because multicluster

or old H ii regions are more likely to have degenerate posterior distributions. Even if the

posterior provides an accurate estimate of the cloud age, the posterior distribution is wider if

the estimated age is older. When the posterior distribution of the cloud age is multimodal,
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the younger mode is usually narrower than the older mode. So the MAP estimate is

frequently dominated by the peak of the younger mode even if the fraction of posteriors

in the older mode is higher. The poorer performance for multicluster H ii regions or old

H ii regions can in part be attributed to the biased parameter distributions in our training

data.

6. We validated the network performance by comparing the luminosity of the predicted

posteriors with the corresponding true luminosity. To get this luminosity information,

we selected 100 test models, sampled the posterior 100 times per model, and re-run

WARPFIELD-EMP for the corresponding 10,000 posterior samples. This final test con-

firmed that the re-simulated luminosity of the posterior samples is close to the true lumi-

nosity with an average offset less than 3× 10−3dex and scatter of 0.11 dex.

The initial evaluation of the network did not take into account the non-negligible uncertainties

present in observations of real H ii regions. Therefore, in the latter part of the paper, we intro-

duced a Monte Carlo-based method of sampling the posterior distributions that takes luminosity

errors into account, and tested the performance of the network for a wide range signal-to-noise

levels, i.e., for different luminosity errors. For this, we added a simple Poisson noise model to

the original training data generated from WARPFIELD-EMP. And we normalize our approach

to the adopted uncertainty in the brightest emission line, which is typically Hα in real data. The

influence of observational errors on posterior distributions can be summarized as followed.

7 The width of the posterior distribution gradually increases as a function of the luminosity

error. However, the MAP estimates remain accurate until the error of the brightest emission

line (i.e., minimum luminosity error, σmin) increases up to 0.1%.

8 If the minimum luminosity error is 1% or more, the posterior distributions show a skewed

shape with a MAP estimate smaller than the true value and a long tail stretched to larger

values than the true value. The skewness of the posterior distribution becomes more

pronounced with increasing luminosity error.

9 If the luminosity error is too large (σmin ∼ 10%), the network provides similar posterior

distributions regardless of the input observations. Specifically, the posterior distributions

for five non-discretized parameters (Mcl, SFE, nH,0, t, and tyoungest) are significantly skewed

and as wide as the entire parameter ranges in the training data. For discretized two

parameters (Ncluster and phase), the MAP estimates are determined as the same value

with Ncluster as 1 and Phase as 1 in most cases.

Overall the results of this study demonstrate that the cINN is a time-efficient and powerful

tool to predict the fundamental parameters from the observations. We confirmed that with

enough training data, the cINN learns the hidden rules within the training data well and can
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provide accurate predictions of the physical parameters of H ii regions from observations of key

diagnostic emission lines.
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3
Noise-Net: determining physical properties of H ii
regions reflecting observational uncertainties

This chapter is based on the paper Kang et al. (2023) published in Monthly Notices of the

Royal Astronomical Society (MNRAS) in 2023. I am the first author and carried out all of

the data analysis and writing of this paper. In the same manner, as in Chapter 2, we used

the FREIA (Framework for Easily Invertible Architectures; Ardizzone et al. 2019b) to construct

networks based on the cINN architecture.

Abstract

Stellar feedback, the energetic interaction between young stars and their birthplace, plays an

important role in the star formation history of the universe and the evolution of the interstellar

medium (ISM). Correctly interpreting the observations of star-forming regions is essential to

understand stellar feedback, but it is a non-trivial task due to the complexity of the feedback

processes and the degeneracy in observations. In our recent paper, we introduced a conditional

invertible neural network (cINN) that predicts seven physical properties of star-forming regions

from the luminosity of 12 optical emission lines as a novel method to analyse degenerate obser-

vations. We demonstrated that our network, trained on synthetic star-forming region models

produced by the WARPFIELD-Emission predictor (WARPFIELD-EMP), could predict physi-

cal properties accurately and precisely. In this paper, we present a new updated version of the

cINN that takes into account the observational uncertainties during network training. Our new

network named Noise-Net reflects the influence of the uncertainty on the parameter prediction

by using both emission-line luminosity and corresponding uncertainties as the necessary input

information of the network. We examine the performance of the Noise-Net as a function of the

uncertainty and compare it with the previous version of the cINN, which does not learn uncer-

tainties during the training. We confirm that the Noise-Net outperforms the previous network
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for the typical observational uncertainty range and maintains high accuracy even when subject

to large uncertainties.

3.1 Motivation

Newly-formed stars and Giant Molecular Clouds (GMCs), the stellar birthplace, interact with

each other via stellar feedback. Young massive stars born in a GMC inject a large amount of

energy and momentum into the surrounding environment via stellar winds, radiation, thermal

pressure from photoionised gas or supernovae (Krumholz et al. 2014; Klessen & Glover 2016).

The feedback from young stars can disrupt further star formation by destroying the GMC or

can locally promote new star formation (Shetty & Ostriker 2008; Dale et al. 2013; Rahner et al.

2019; Chevance et al. 2020b; Kim et al. 2021; Grudić et al. 2022).

To understand the influence of stellar feedback and the physical properties of the star-forming

region on star formation, it is essential to correctly interpret the observed star-forming regions.

However, the overall physical process occurring in the star-forming region is very complicated

because the multiple feedback mechanisms are non-linearly coupled together and act simultane-

ously. Moreover, observations of star-forming regions are usually degenerate which means that

different physical systems look similar in the observational space. Observational uncertainties as

well as the degeneracy and complex physics make it even more difficult to describe the observation

with theoretical models by using a classical fitting method.

We apply artificial neural networks (NNs; Goodfellow et al. 2016) to solve this complicated

problem in star-forming regions. NNs can connect physical parameters and observational mea-

surements through a statistical model, without designating a specific physical model. Recently,

various machine learning techniques including NNs have been utilised in many astronomical fields

e.g., to classify observations (Wu et al. 2019; Walmsley et al. 2021; Whitmore et al. 2021), to

identify structures or exoplanets (Abraham et al. 2018; de Beurs et al. 2022), and to predict

physical parameters (Fabbro et al. 2018; Ksoll et al. 2020; Olney et al. 2020a; Sharma et al.

2020a; Shen et al. 2022). In this study, we adopt the supervised learning approach, a type of

machine learning that trains the network using labelled data sets, as we want to estimate specific

physical parameters we want from quantities we can measure from observed star-forming regions.

In degenerate systems, the forward process that translates the physical parameters to obser-

vations is usually well-defined but involves information loss, from which the degeneracy arises.

Due to the lost information, it is difficult to solve the inverse problem using a classical neural

network trained through the inverse process. Therefore, we need a neural network that pro-

vides a full posterior probability distribution of the physical system conditioned on the given

observation.

A conditional invertible neural network (cINN; Ardizzone et al. 2019a, 2021), a type of invert-
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ible neural network (INN; Ardizzone et al. 2019b), is a deep learning architecture specialised for

the inverse inference of degenerate systems. Unlike classical neural networks, a cINN is trained

through the forward process of the system but also learns about the inverse process for free due

to its invertibility. By using the additional latent variables in the network, the cINN captures

the information otherwise lost during the forward process training and provides a full posterior

distribution of physical parameters through the inverse process.

In Kang et al. (2022, hereafter Paper 1), we introduced a cINN that predicts seven phys-

ical parameters of H ii regions using 12 optical emission-line luminosities. In this first study,

we trained our network using synthetic H ii region models produced by WARPFIELD-Emission

predictor (WARPFIELD-EMP; Pellegrini et al. 2020), the pipeline modelling the synthetic ob-

servation based on the 1-dimensional stellar feedback code WARPFIELD (Rahner et al. 2017,

2018). We confirmed that our network predicts each parameter very accurately and precisely

and validated the network predictions by re-simulating the emission-line luminosity of predicted

models. Although the cINN presented in Paper 1 did not consider observational error in its

prediction by definition, we introduced a way to obtain the posterior distribution reflecting the

observational errors by modifying the posterior sampling method. Large observational errors

worsened the overall performance, but we confirmed that our network was accurate in most

cases unless the smallest error among 12 lines was larger than 0.1%.

In this study, we introduce a new type of cINN, which we term Noise-Net, that always reflects

observational uncertainties in the prediction. Unlike our first cINN in Paper 1, Noise-Net learns

not only about the relationship between physical parameters and luminosities, but also about the

influence of luminosity errors during the network training. In this paper, we focus on comparing

the performance of Noise-Net with the type of cINN used in Paper 1.

The paper is structured as follows. In Section 3.2, we explain the overall methodology used in

this paper, including the structure and training of the cINNs and synthetic H ii region database.

In Section 3.3, we compare the performance of two cINNs as a function of the observational

error using a statistical approach and individual models. We discuss the implication of our main

results on the physical aspects and machine learning aspects in Section 3.4 and summarise the

results of this paper in Section 3.5.

3.2 Methodology

3.2.1 cINN and Normal-Net

The cINN architecture (Ardizzone et al. 2019a, 2021) is an inverse problem solver specialised in

degenerate systems. We assume that, in a degenerate system, different sets of physical parameters

(x) can be mapped onto an identical observation (y) because of the information loss during the

forward process. To capture the lost information, the cINN introduces the third component,
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the latent variables (z), and builds a bijective mapping between x and z. The observation y is

applied as a condition c to this mapping in both the forward (f) and inverse process:

z = f(x; c = y),

x = g(z; c = y),
(3.1)

where g = f−1 (Ardizzone et al. 2021). Due to the bijective mapping, the dimension of z is the

same as the dimension of x.

We train the network through the forward process to learn f and prescribe the latent variables

to follow a standard multivariate normal probability distribution p(z) = N(0, I) with zero mean

and unit covariance matrix, where I is the identity matrix with a dimension of dim(z)× dim(z).

As the cINN consists of invertible affine coupling blocks, the cINN automatically learns the

inverse process g from the forward training. Following the inverse process g and sampling the

latent variables from the prescribed distribution p(z), we can obtain the posterior distribution

of x for the given condition (c), p(x|c = y).

In Paper 1, we introduced a cINN that predicts seven physical parameters from the luminosity

of 12 optical emission lines. The seven parameters are initial cloud mass Mcl, star formation

efficiency ϵ, cloud density nH,0, age of the first generation cluster (i.e., the oldest cluster), age

of the youngest cluster, the number of clusters and the evolutionary phase of the cloud. The

network presented in Paper 1, which we will refer to as Normal-Net in the following, used a basic

cINN structure and training method predicting physical parameters from the given observations

without considering the observational errors, p(x|y). Although the Normal-Net does not learn

about observational errors (σ) during the training, in Paper 1, we introduced a method to account

for the observational uncertainties, p(x|y,σ), through a modification of the posterior sampling

procedure and analysed the performance of the network as a function of the observational error

(see Section 7 of Paper 1).

In this paper, we introduce Noise-Net, a variant of the cINN architecture and training

method that can predict posterior distributions accounting for the observation errors, p(x|y,σ),

without the additional steps required for the Normal-Net by learning the influence of errors

during the training. In the following (Section 3.2.2), we describe the structure and training

procedure of the Noise-Net in order to predict the parameters considering both observations and

corresponding errors.

3.2.2 Noise-Net and noise training

Noise-Net and its training method are based on SoftFlow introduced by Kim et al. (2020).

Kim et al. (2020) used the following ideas in their training to improve the performance of the

network that reconstructs a two-dimensional pattern such as a spiral line from the latent variables
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prescribed to an isotropic 2D Gaussian distribution. Firstly, Kim et al. (2020) randomly sampled

the error (i.e., 1-σ width of the Gaussian distribution) and perturbed the original pattern (X)

by adding the Gaussian noise based on the sampled error. Then they trained the network with

the perturbed data (X’) and use the sampled error as a condition. Kim et al. (2020) found that

the pattern restoration accuracy of the network depended on the amount of error given by the

condition. The network successfully reconstructed a clean pattern given the small error, and

this result was better than those of the other networks trained without error. The situation in

our study is slightly different to Kim et al. (2020) in that we use the cINN that already has a

condition y and that we want to deal with the error of y, not the error of x. However, the idea

of SoftFlow allowed us to design the Noise-Net that takes into account observation errors during

the training.

We want the Noise-Net to predict physical parameters considering the given observation

(luminosity) and the uncertainty of the observations (i.e., luminosity error). Thus, the Noise-

Net, by definition, uses both y and the error of y, σ, as a condition of the network: c = [y,σ].

In this study, we define the luminosity error σ as a fractional 1-sigma unitless uncertainty which

is normalised by the corresponding luminosity value. Because of the additional condition, the

dimension of c in the Noise-Net is twice as large as in the Normal-Net. As we use the information

on 12 emission lines, the dimension of c of the Noise-Net in this paper is 24.

For the Noise-Net to learn the influence of the observational uncertainties, introducing the

error as an additional condition of the network alone is not enough. We also need to modify the

training strategy of the network. In this paper, we refer to the method of training Noise-Nets

as noise training. The differences between noise training and normal training are two additional

steps processed during the training on the fly.

The first step is to randomly sample the luminosity errors for each training model. For

the network to learn about various σ values, the σ is not included in the training data but is

randomly sampled from a given distribution at every training epoch and for every training model

during the training. In this paper, we sample the errors in a logarithmic scale because the range

of error values we want to train is wide. For each training model, the luminosity error of the

i−th emission line, σi, is sampled from the uniform distribution,

p(log σi) = U(a, b). (3.2)

We sample the luminosity error of all 12 emission lines from one probability distribution (Eq. 3.2)

with the same minimum (a) and maximum value (b) to simplify the training setup but it is also

possible to use a different probability distribution for each emission line. In this study, we use

the minimum error of -5 and maximum error of -0.5 which are equivalent to 0.001 and 31.6%

error respectively.
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The second step is to perturb the luminosity of the training model by adding random Gaussian

noise to the true luminosity values (y∗) based on the σ sampled in the first step. The perturbed

luminosity of the i−th emission line (y′i) is calculated by

y′i = y∗i (1 + ri),where ri ∈ N(0, σ2
i ). (3.3)

In order to prevent the perturbed luminosity value from being negative because of a large amount

of noise, we clip the perturbed luminosity to the minimum value of 1.

After these two steps, we train the network by using the true parameter values (x∗) as an

input and the group of perturbed luminosity and randomly sampled luminosity error ([y′, σ]) as

a condition to the forward process. In Paper 1, we trained the network (Normal-Net) by using the

true parameters values and true luminosity values (x∗ and y∗) as an input and a condition (i.e.,

normal training method), so that the Normal-Net learned about the same values for each training

epoch repeatably during the training. On the other hand, during the noise training, the Noise-

Net learns about various luminosity and error values from an identical training model because

errors and perturbation noises are randomly sampled at every training epoch. Consequently, the

prediction power of the trained Noise-Net varies as a function of the luminosity error.

3.2.3 Training data: WARPFIELD-EMP

To train the cINN, which adopts a supervised learning approach, we need numerous sets of data

containing both the observable quantities (y) and physical parameters that we want to predict

(x). However, it is difficult to collect a sufficient number of well-analysed H ii regions from real

observations. Hence, to train and test the networks, we use the same database used in our

first paper (Paper 1), which consists of 505,748 synthetic H ii region models that we produced

by using the WARPFIELD-EMP pipeline (Pellegrini et al. 2020). Based on the evolution of

a massive star-forming cloud described by the 1D stellar feedback code WARPFIELD (Rahner

et al. 2017, 2018), WARPFIELD-EMP produces the continuum and line emission of the model

cloud at a large series of output times by using CLOUDY (Ferland et al. 2017) to calculate the

continuum and line emissivities and POLARIS (Reissl et al. 2016) to compute the transfer of the

resulting radiation through the cloud. In this section, we briefly summarise our synthetic H ii

region models and database that is described in detail in Paper 1.

Synthetic H ii regions

WARPFIELD (Rahner et al. 2017), which is the basis of our synthetic model, simulates the

evolution of an isolated massive cloud acted on by stellar feedback. At the beginning of the

evolution (t = 0), a star cluster with mass M∗ is formed at the centre of the cloud. The cluster

mass is determined by two initial conditions, the initial cloud mass (Mcl) and the star formation
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efficiency (ϵ): M∗ = ϵMcl. WARPFIELD treats star formation in a highly idealised way and

assumes that all stars in the cluster form instantaneously. Due to the stellar feedback produced

by the cluster, the cloud is separated into distinct zones: a diffuse central bubble (i.e., inner

free wind zone), a dense shell surrounding the bubble with hot shocked wind materials, and a

static cloud region outside of the shell. The evolution of the cloud is described by solving the

equation of motion of the dense shell considering several feedback mechanisms such as stellar

winds, supernovae, thermal gas pressure, radiation pressure, and gravity. WARPFIELD assumes

that within the shell the gas is in quasi-hydrostatic equilibrium and that the evolution of the

cloud can be distinguished into four distinct evolutionary phases according to the dynamics of

the shell: Phase 1, 2, 3, and 0.

In the first evolutionary phase, Phase 1, the shell expands rapidly, driven by the thermal

pressure of the hot shocked wind material. During this phase, the evolution of this hot gas is

adiabatic and the influence of gravity and radiation pressure can be ignored. Phase 1 ends once

the inner bubble loses its hot gas, either because the hot gas radiatively cools (which occurs after

a time tcool) or because the bubble bursts and the hot gas leaks out. In WARPFIELD (Rahner

et al. 2017), it is assumed for simplification that the bubble bursts only when the shell sweeps up

the entire natal cloud (tsweep, i.e., when Rshell > Rcloud, initial). If the bubble cools down before

the shell sweeps up the whole materials in the cloud (tcool < tsweep), the evolutionary phase

turns into Phase 2, otherwise it turns into Phase 3 directly. After Phase 1, the shell expansion is

dominated by radiation pressure and the ongoing ram pressure exerted by supernovae and stellar

winds. The counteracting effects of the gravity of the star cluster and the self-gravity of the shell

are now no longer negligible.

The fate of the clouds is divided into two options, depending on the balance between stellar

feedback and gravity. If the feedback is more dominant than gravity, the shell continues to expand

into the low-density interstellar medium after sweeping up the whole material in the cloud (Phase

3). The density of the shell gradually decreases and the shell finally dissolves into the ambient

ISM. The evolution ends when the maximum number density of the shell is smaller than 1 cm−3

for more than 1 Myr. On the other hand, if gravity becomes more dominant than the feedback,

the shell stops expanding and recollapses to the centre. This collapse triggers the formation of a

new star cluster when the shell radius becomes smaller than 1 pc. The recollapsing phase until

the birth of the new cluster is labelled as Phase 0. For simplicity, it is assumed that the star

formation efficiency of the new birth is the same as the first burst (M∗,2 = ϵ(Mcl −M∗,1)). The

evolution continues with the new shell formed by the stellar feedback dominated by the new

cluster.

In the WARPFIELD model, stars within the cluster follow a Kroupa initial mass func-

tion (Kroupa 2001) and the time-dependent effect of the stellar feedback from the evolving

star cluster is calculated with STARBURST99 (Leitherer et al. 1999, 2014) by using the Geneva
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evolution tracks (Ekström et al. 2012; Georgy et al. 2012, 2013). Hence, the spectral energy dis-

tribution (SED) of the WARPFIELD model is time-dependent due to the evolving cluster and

cloud and especially complex if the SED of multiple clusters with different ages are combined

within one cloud due to the recollapse.

Based on the time-dependent evolution information of the WARPFIELD model, WARPFIELD-

EMP uses CLOUDY (C17, Ferland et al. 2017), a spectral synthesis code, to calculate emissivities

of various lines and continuum processes. We first run CLOUDY for the dense shell to obtain

the emissivities as a function of radial position within the shell. If the natal cloud surrounding

the shell still remains, we run CLOUDY a second time to calculate the emissivities from the

static cloud by using the output of the first CLOUDY run for the shell as an incident flux.

Lastly, the radial information on the emissivities is passed on to POLARIS (Reissl et al. 2016,

2019) to calculate the final luminosity information considering the attenuation within the shell

and the natal cloud. In WARPFIELD-EMP, POLARIS is used in ray-tracing mode to solve

the radiative transfer equation for the rays passing through a 3D grid of the shell and cloud.

We use a 3D spherical grid for POLARIS because the WARPFIELD model is a 1D spherical

symmetric model. Finally, the output of POLARIS is projected onto a 2D space and the 2D map

is spatially integrated to obtain the velocity-integrated 1D luminosity of lines and continuum of

a given WARPFIELD model at a certain time.

Our synthetic model contains information on many fundamental physical parameters to-

gether with the corresponding continuum emission and a series of lines for a given WARPFIELD

model at a given time. We only use seven parameters and 12 emission lines in this study, but

WARPFIELD-EMP originally provides many other lines within a wide frequency range from

optical to radio listed in Table D1 and D2 in Pellegrini et al. (2020).

Training set and test set

In our first study (Paper 1), we built and introduced a new database that consists of 505,748

WARPFIELD-EMP synthetic H ii region models evolved from 10,000 initial WARPFIELD clouds.

In this study, we use the same database to train and evaluate our networks.

A WARPFIELD-EMP model in our database is uniquely determined by four independent

physical parameters: initial mass of the WARPFIELD cloud (Mcl), star formation efficiency

(SFE), initial cloud density (nH,0), and the age of the cloud (t). The first three parameters are

the initial conditions of the WARPFIELD calculation. As the evolution of the WARPFIELD

cloud begins, the age becomes the fourth independent parameter, which is equivalent to the

age of the first cluster, because the evolution of WARPFIELD starts with the formation of the

first cluster. There are several other parameters that can be varied in the initial conditions of a

WARPFIELD cloud (e.g., metallicity), but we fixed all of these parameters at constant values.

In particular, we use solar metallicity and a constant radial profile of the initial density and turn
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off the effects of turbulence and the magnetic field for all models in our database.

For the initial 10,000 WARPFIELD clouds, we randomly sampled Mcl, SFE, and nH,0 of the

clouds within the range of 105−7 M⊙, 2–10 %, and 100–500 cm−3, respectively. We evolve the

clouds until they reach an age of 30 Myr, although depending on the physical conditions of the

cloud, the evolution can end earlier if the shell dissolves into the ambient ISM. WARPFIELD

stores the time-dependent evolution in the prescribed time interval and we adopt a 0.1 Myr

interval for our clouds. However, for computational efficiency reasons, we do not calculate the

emission for all saved models, but instead run CLOUDY and POLARIS only when the physical

conditions of the cloud (e.g., shell density, shell mass, shell radius, and ionising photon flux)

change by a large enough amount to cause a significant change in the emission or when the

evolutionary phase of the cloud changes. Therefore, the time interval of the database is not

constant due to the adoptive time sampling method. In particular, the time intervals tend to

grow longer as the cloud ages, because the emission changes more rapidly in the early evolutionary

phase. For more details of the time distribution of the outputs, we refer the reader to Figure 1

in Paper 1.

Although the initial cloud parameters are uniformly distributed, the physical parameters of

the models in the database are not evenly distributed (see both Figure 3.1 in this work and Figure

1 in Paper 1), because each cloud evolves differently and terminates its evolution at different ages.

For example, if the gravity of the cloud is more dominant than the stellar feedback and the cloud

recollapses repeatedly, this cloud survives longer and saves more models than clouds with strong

stellar feedback. Hence, the distribution of Mcl and SFE are biased toward a large mass and

small SFE, respectively. Additionally, the proportion of models with only one cluster (single

cluster model) and the proportion of models in Phase 3 is much higher than in the other cases.

The distribution of training data affects network performance. In the previous study, we

demonstrated that the network trained with this database performs better for H ii regions with

more common characteristics in the database. Specifically, the posterior distribution was usually

more accurate and narrower for young and single-cluster models rather than old models with

multiple clusters. For this reason, it is better to sample the training data as evenly as possible

or to make the distributions even through post-processing. However, it is also not easy, because

the evolution of a cloud is a very complex function of the four independent parameters so it

is difficult to predict the evolution from the given initial conditions. If we additionally sample

more clouds with less populated characteristics in the current distributions, this could in turn

introduce new biases in the other parameters. Therefore, we use the current database without

additional modification, although the current distribution is not entirely optimal in terms of

training.

We randomly divide the database with 505,748 models into a training set and a test set, using

the former to train the network, while the latter serves to evaluate the trained network. In this
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Table 3.1: List of the seven physical parameters (i.e., x of the network) and list of the twelve emission
lines whose luminosities are used as y. The information listed in this table is the same as Tables 1 and
2 in Paper 1.

Parameter Symbol

initial mass of star-forming cloud Mcl [M⊙]
initial star formation efficiency SFE [%]
initial cloud number density nH,0 [cm−3]
age of the first cluster t [Myr]
age of the youngest cluster tyoungest [Myr]
number of star clusters Ncluster

evolutionary phase of the cloud Phase

Line Wavelength

[O ii] 3726Å
[O ii] (blend) 3727Å
[O ii] 3729Å
Hβ 4861Å
[O iii] 5007Å
[O i] 6300Å
Hα 6563Å
[N ii] 6583Å
[S ii] 6716Å
[S ii] (blend) 6720Å
[S ii] 6731Å
[S iii] 9531Å

study, we use 90% of the database (455,174 models) to train the network and use the remaining

10% (50,574 models) to evaluate the performance of the networks.

Our database contains various physical parameters and luminosity of several lines and con-

tinuum for each WARPFIELD-EMP model but we only use 12 optical emission lines and seven

physical parameters in our study (Table 3.1), which are the same choices as in Paper 1. The

seven target parameters consist of initial cloud mass (Mcl), star formation efficiency (SFE), ini-

tial cloud density (nH,0), age of the first cluster (t), age of the youngest cluster (tyoungest), the

number of the clusters (Ncluster), and the evolutionary phase of the cloud. We choose 10 optical

lines within the range of 3700–9000 Å: [O ii] 3726Å, [O ii] 3729Å, Hβ 4861Å, [O iii] 5007Å, [O i]

6300Å, Hα 6563Å, [N ii] 6583Å, [S ii] 6716Å, [S ii] 6731Å, and [S iii] 9531Å. We also add the

total strength of the [O ii] and [S ii] doublets, referred to as [O ii] 3727Å (blend) and [S ii] 6720Å

(blend).
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3.2.4 Network setup

The goal of this study is to introduce the new Noise-Net together with the noise training and

to compare the performance of the Noise-Net and Normal-Net. Thus we train one Normal-Net

and one Noise-Net using the same network setup except for the intrinsic differences between the

Normal-Net and the Noise-Net described in the previous section (e.g., the dimension of c). In

this section, we explain the network architecture of our two networks and the data pre-processing

steps required to train or use the network. Most of the setup used in this study is the same as

in Paper 1, except for some hyperparameters.

Network construction

To construct the cINN architecture, we use the FrEIA (Framework for Easily Invertible Archi-

tectures; Ardizzone et al. 2019b, 2021) which is based on the ‘PyTorch’ library (Paszke et al.

2019) as in Paper 1.

The cINN consists of a series of affine coupling blocks that follow the architecture proposed

by Dinh et al. (2016a). In this study, we use 16 affine coupling blocks to build a network, two

times more than that of the network in Paper 1. Each affine coupling block splits the input u

into two parts (i.e., u1 and u2) and passes each part through affine transformations following

v1 = u1 ⊙ exp(s2(u2, c)) + t2(u2, c),

v2 = u2 ⊙ exp(s1(v1, c)) + t1(v1, c).
(3.4)

The outputs of the two affine transformations (i.e., v1 and v2) are coupled into the final output

v.

The invertibility of the cINN architecture comes from the invertibility of each affine coupling

block. After training the cINN through the forward process, we can use the inverse process of

the trained network following

u2 = (v2 − t1(v1, c))⊙ exp(−s1(v1, c)),

u1 = (v1 − t2(u2, c))⊙ exp(−s2(u2, c)).
(3.5)

The internal transformations si and ti do not need to be invertible themselves, because they

are only evaluated in the forward direction in both the forward and inverse process of the cINN. In

this paper, we adopt a single sub-network as an internal transformation of each affine coupling

block (i.e., the GLOW configuration; Kingma & Dhariwal 2018b). For each sub-network, we

apply a simple fully connected architecture with 6 layers and a width of 256, using the rectified

linear units (ReLU) as the activation functions. After each affine coupling block, we add an

invertible permutation layer to mix the information stream. The permutation layer is a random
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orthogonal matrix and is fixed during the training.

As shown in Eq. 3.4 and 3.5, the condition (c) of the cINN architecture is always used as an

additional input for each transformation in both the forward and inverse processes. However,

before applying the condition to the affine coupling blocks, we pass the condition through an

additional feed-forward network, the conditioning network, to extract higher-level features. Ac-

cording to Ardizzone et al. (2019a), using a conditioning network in complex systems helps the

efficient conditioning of the cINN by reducing the burden of the main network (i.e., a series of

invertible blocks) to re-learn higher-level features in each affine coupling block. The conditioning

network can be either pretrained or trained together with the main network (Ardizzone et al.

2019a). In this study, we jointly train the main network and the conditioning network because

the latter method helps extract features that are more relevant to x. For the conditioning net-

work, we adopt a simple fully connected feed-forward network with three layers and a width of

512.

Compared to Paper 1, we double the number of affine coupling blocks and the number of layers

of each internal sub-network, because deepening the network into the current setup improves the

performance, especially for the Noise-Net. In Appendix B.2, we will cover the influence of network

depth on the prediction power of Noise-Nets and Normal-Nets in detail.

After constructing the network with the above setup, we train the network to minimize the

maximum log-likelihood loss,

L = Ei

[∥f(xi; ci, θ)∥22
2

− log |Ji|
]
, (3.6)

as described in Ardizzone et al. (2019a) and Ksoll et al. (2020), where |Ji| denotes the determinant

of the Jacobian matrix |Ji| = det
(

∂f
∂x |xi

)
and xi is the physical parameters of some training

sample with the corresponding condition ci. During the training, we calculate the test loss, that

is the loss calculated with the test set, as well as the training loss calculated with the training

set. The network is trained until the deviation between the training loss and test loss is small

and both losses converge. The training time of the network depends on the batch size and the

number of training epochs. Training one network for 100 epochs using a batch size of 256 took

about 4 hours with NVIDIA GeForce RTX 2080 Ti graphic card and used about 1500 MB GPU

memory and the size of the trained network is about 130MB. Training time and the size of the

network also depend on the depth of the network (i.e., the number of affine coupling blocks and

the number of layers of internal sub-network). By doubling both the number of layers and blocks

compared to Paper 1, training time and the network size have increased by about 2 and 4 times,

respectively.
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Data pre-proccessing

When training the cINN or using the trained cINN, we use pre-processed physical parameters,

observations and observation errors as described in Paper 1. For Ncluster and phase that have

discretized distributions with a sampling interval of 1, we smooth out the distributions by adding

a small Gaussian noise with a standard deviation of 0.05. In Paper 1, we demonstrated that

smoothing out the discretized distribution improves the prediction power of the network (see

Section 8.2. of Paper 1 for details). Please note that we smooth out these parameters only when

we train the network.

For variables with a relatively broad range of values in linear space such as emission line

luminosity (y), we convert them into logarithmic scale. In the case of the noise training, we

convert the luminosity after perturbation (y′ from Eq. 3.3). As we sample the luminosity error

σ from the wide distribution (Eq. 3.2), we transform σ in log-scale as well. Next, we re-scale

the distribution of x, y, and σ by using linear transformations. For physical parameters, xi, we

transform xi to x̂i that has zero mean and unit standard deviation following

x̂i = (xi − µxi
) · 1

sxi

, (3.7)

where µxi and sxi are the mean and the standard deviation of the physical parameter xi calculated

using the entire database. In the case of observation (yi), we first centre them (ỹi = yi−µyi
) and

whiten the observation matrix following Equation 35 in Hyvärinen & Oja (2000) (Ŷ = WỸỸ) to

have distributions with unit variance for each emission line and identity matrix for the covariance

matrix of observations. To calculate µyi and WỸ, we use true values (y∗) of the entire database,

not using the perturbed values, even for the Noise-Net.

For the observation error σi, we apply the same linear transformation used for physical

parameters following

σ̂i = (σi − µσi) ·
1

sσi

(3.8)

and change the mean and standard deviation of the distribution to zero and unity. As the errors

are randomly sampled during the noise training from p(log σ) of Eq. 3.2 unlike the physical

parameters and observations, we use the mean and the standard deviation of Eq. 3.2 for µσi
and

sσi
. We transform xi, yi and σi to x̂i, ŷi, and σ̂i, respectively, when training the network. When

using the inverse process to obtain a posterior distribution, we transform yi and σi to ŷi, and σ̂i

and transform x̂i calculated by the network to xi.

3.2.5 How to sample posterior estimates from the network

As explained in Section 3.2.1, the inverse process of the cINN calculates x from the corresponding

condition c and latent variable z, following Eq. 3.1. We obtain the posterior distribution p(x|c) by
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sampling the latent variables Nz times from the prescribed probability distribution p(z) = N(0, I)

and then calculating the corresponding x using the inverse process g in Eq 3.1. Thus, the number

of obtained posterior estimates is Nz. In this way, we obtain p(x|y) from the Normal-Net and

p(x|y,σ) from the Noise-Net. The standard Normal-Net provides a posterior distribution without

considering the error as it does not learn the error during the training. However, in Paper 1, we

introduced a Monte Carlo-based marginalisation method that allows us to obtain p(x|y,σ) from

the Normal-Net. In this study, we only use the posterior distribution considering the observation

error to compare the performance of the Noise-Net and the Normal-Net as a function of the

error. Here, we summarise the marginalisation method introduced in Paper 1 to obtain posterior

distributions that account for the errors from the Normal-Net.

The overall process of the marginalisation method for the Normal-Net is described by

p(x|y,σ) =
∫

p(x|y′) q(y′|y,σ) dy′, (3.9)

where q is a profile of a luminosity error, which is a Gaussian distribution in our paper, i.e.,

N(y,σ2). Given a set of 12 emission line luminosities (y) and the corresponding 1-sigma unitless

errors (σ) measured from observation, the first step is to perturb the luminosity in the same way

that we do in the noise training, i.e. following Eq 3.3. In both cases, we assume that the perturbed

luminosity follows a Gaussian distribution centred on the value y with a standard deviation of

σ. By sampling Gaussian noise for each emission line Np times, we obtain Np sets of perturbed

luminosity (y′
1, ...,y′

Np
) from a given observation. Then, for the i−th perturbed luminosity set

y′
i, we sample the latent variables Nz,normal times to get a posterior distribution p(x|y′

i). By

superimposing the posterior distributions of all perturbed luminosity sets, we finally obtain the

p(x|y,σ) that consists of Np ×Nz,normal posterior samples from the Normal-Net.

From Paper 1, we found that it is important to produce a sufficient number of perturbed

luminosity sets (i.e., Np) to get a smooth posterior distribution. In the previous study, we used

Np = 3000 and Nz,normal = 100, which are large enough to ensure a smooth distribution even

when the σ is large. However, in the case of small σ, a smaller Np is enough to produce a

smooth distribution because the range of the perturbation is narrow. To reduce the computation

time required for the posterior sampling and analysis, we flexibly adjust Np and Nz,normal values

depending on the network performance and the magnitude of the error. Considering the range

of error values used in this study, we keep Nz,normal fixed at 50 and vary Np between 1000 and

2500 depending on the error. If the luminosity error is too large, the posterior sometimes shows a

very spiky distribution despite large Np and Nz,normal. We confirm that in such cases, the spiky

shape is not due to the lack of Np or Nz,normal but an inevitable result of the large errors. In the

case of the Noise-Net, we only need to decide the number of latent variable samples, Nz,noise. In

this study, we use Nz,noise of 20,000 when we use the Noise-Net.
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3.3 Noise-Net vs. Normal-Net

In this section, we compare the performance of the Normal-Net and the Noise-Net as a function

of the observation error. As mentioned in Section 3.2.4, we trained both networks with the same

setup except for the fundamental differences between the Normal-Net and the Noise-Net. We

use the synthetic H ii region models of the test set instead of real observations to concentrate on

the validation of the cINN rather than the validation of the synthetic training data.

3.3.1 Experiment setup

Sample selection

To reduce the computation time for the evaluations, we only use 100 models among the 50,574

models in the test set as a representative subset. We randomly select these 100 test models based

on the following criteria. Please note that we use the same selection criteria used in Paper 1

but select a new set of 100 test models. We present the parameter distributions of the selected

models as well as their locations in the BPT diagram (Baldwin et al. 1981) in Figure 3.1.

First, we exclude models with [N ii]/Hα < 10−3 or [O iii]/Hβ < 10−2, considering the typical

line-ratio values of observed star-forming galaxies (Kauffmann et al. 2003; Kewley et al. 2006)

and H ii regions (Sánchez et al. 2015; Rousseau-Nepton et al. 2018). Next, we select 4 of the

100 models from the extreme area on the BPT diagram beyond the revised demarcation curve

between active galactic nuclei (AGNs) and starburst galaxies proposed by Kauffmann et al.

(2003). As shown in Figure 3.1, one of the four models is beyond the more extreme demarcation

curve of Kewley et al. (2001). For the other 96 models, we set a maximum fraction for Ncluster

and phase to prevent too many similar models from being selected. The distributions of the

entire training data (red line in the left panel of Figure 3.1) for these two parameters have biases

toward the single cluster and Phase 3 models, respectively. We limit the fraction of single cluster

models to 60% and the fraction of Phase 3 models to 40% to reduce this bias.

Noise model and error selection

Our synthetic test models are, by definition, fully accurate without any uncertainty measure-

ments. Thus, we assume a simple noise model, the same method used in Paper 1, to assign mock

luminosity errors for our experiments. Although diverse sources affect errors measured in real

observations, we adopt a noise model that only considers Poisson noise. We assume that the

error of each emission line is an independent random variable and ignore any covariance between

physically related lines such as blended lines and their components. In our noise model, given

the 1-sigma error of the brightest emission line, the errors of the remaining 11 emission lines are
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Figure 3.1: Distribution of seven physical parameters of the selected 100 test models (left) and their
locations in the BPT diagram (right). In the left figure, the grey histogram and left y-axis of each panel
show the distribution of the selected sample, and the red line and right y-axis show the distribution of
455,174 models of the training set. In the right figure, the background two-dimensional colour histogram
shows the number density of the entire training set and yellow dots indicate the locations of 100 test
models.

automatically determined following

σline = σb ×
√

Lbrightest

Lline
, (3.10)

where σb is the error of the brightest emission line of the observation, which is the smallest error

among 12 emission lines.

Using the error of the brightest emission line (σb) as the representative error of one obser-

vation, we investigate the influence of the error on the posterior distribution by increasing σb.

We select 16 values from 0.01% to 10% in 0.2 dex intervals on a logarithmic scale. For each

network, we sample the posterior distributions of each parameter for the 100 test models with

varying σb. As mentioned in Section 3.2.5, the number of posterior samples for one observation

varies depending on the network and the size of the error. In Table 3.2, we list the numbers of

sampling used in this experiment depending on the σb value. Especially when the given error

is large, our network sometimes returns physically incorrect or extremely extrapolated posterior

estimates such as negative star formation efficiencies or cluster ages larger than 100 Myr. We

exclude all of these unrealistic posterior estimates before our analysis.

Although we use σb as the representative error of one observation, the errors of the other 11

emission lines of the 100 test models with the same σb value are all different, because these errors

are determined by the luminosity ratio between the line and the brightest emission line, which

is typically the Hα line. The error of the faintest emission line, usually the [O i] 6300Å, is on

average 17 times larger than the error of the brightest emission line. The error of the remaining

11 lines excluding the brightest emission line is on average 3.8 times larger than σb.
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Table 3.2: List of the numbers used to sample a posterior distribution depending on the error of the
brightest emission line (σb).

σb [%] Np
1 Nz,normal

2 Nz,noise
3

σb ≤ 0.1 1000 50 20000
0.1 < σb ≤ 1 2000 50 20000
1 < σb ≤ 10 2500 50 20000

1 the number of perturbed mock luminosity sets for
the Normal-Net
2 the number of latent variable sampling for each
mock luminosity set for the Normal-Net
3 the number of latent variable sampling for the
Noise-Net

Evaluation methods

To evaluate the prediction power of the network, we introduce two evaluation indices used in

this study that describe the accuracy and precision of the network prediction, respectively.

The first index, which represents the accuracy of the network, is given by the deviation be-

tween the posterior estimate and the ground truth value of the test model. For Ncluster and

phase, we use the linear deviation (X −X∗) and for the other five parameters, we use the loga-

rithmic deviation
(
log X

X∗

)
. To calculate the accuracy index we either use all posterior samples

or only one representative estimate from the posterior distribution. For the representative value,

we measure the maximum a posteriori (MAP) point estimates by performing a Gaussian kernel

density estimation on the 1D posterior distribution of each parameter and finding the maximum

of the derived probability density.

The second index, the precision index, is the uncertainty interval at the 68% confidence level

(i.e., u68). The u68 value represents the width of the 1D posterior distribution similar to the

width of ±1 standard deviation.

For the 3200 posterior distributions obtained from the two networks for our 100 test models

with 16 different σb values, we measure the accuracy and precision indices of each parameter.

In the following sections, we compare the Normal-Net and the Noise-Net by using the measured

performance indices.

3.3.2 Statistical comparison

Figure 3.2 shows the histograms of the two accuracy indices for the 16 different σb values for the

Normal-Net (red) and the Noise-Net (blue). We use the MAP accuracy in the upper panels and

the accuracy using the entire posterior estimates in the lower panels. In the upper panels, the

MAP accuracy distribution of the Normal-Net becomes wider and shifted with increasing error.

The shift of the distribution is well described by the median value of the distribution denoted

by the red x-shape mark. In particular, in the case of the first cluster age (t) and the youngest

83



3.3. Noise-Net vs. Normal-Net

0 2
log (XMAP/XTrue)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

lo
g 

br
ig

ht
es

t [
%

]

Mcl [M ]

Noise
Normal

1 0
log (XMAP/XTrue)

SFE [%]

1 0
log (XMAP/XTrue)

nH, 0 [cm 3]

2 0
log (XMAP/XTrue)

t [Myr]

2 1 0 1
log (XMAP/XTrue)

tyoungest [Myr]

2 0
XMAP - XTrue

Ncluster

2.5 0.0 2.5
XMAP - XTrue

Phase

0 2
log (X/XTrue)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

lo
g 

br
ig

ht
es

t [
%

]

Mcl [M ]

Noise
Normal

1 0 1
log (X/XTrue)

SFE [%]

1 0 1
log (X/XTrue)

nH, 0 [cm 3]

2 0 2
log (X/XTrue)

t [Myr]

2 0 2
log (X/XTrue)

tyoungest [Myr]

2 0 2
X - XTrue

Ncluster

2.5 0.0 2.5
X - XTrue

Phase

Figure 3.2: Histograms of two accuracy measures using 3200 posterior distributions (100 test models, 16
luminosity errors of the brightest emission line) obtained from the Noise-Net (blue histograms) and the
Normal-Net (red histograms). We use the MAP estimates in the first row and use the entire posterior
estimates in the second row. The blue plus marks (Noise-Net) and the red cross marks (Normal-Net)
indicate the median values of the histograms. We use the logarithmic deviation between the posterior
estimates and the ground truth values of the test models except for Ncluster and phase where we use the
linear deviation.

cluster age (tyoungest), the median value is shifted by more than 1 dex toward negative value

when the error is larger than 2.5% (log σb > 0.4). This trend was already revealed in Paper 1,

where we found the Normal-Net usually returned a very young age estimate with a single cluster

when the error is large.

On the other hand, the prediction of the Noise-Net is on average more accurate than the

Normal-Net for all seven parameters. The blue histogram is overall much narrower than the red

histogram and the difference in width becomes more clear when the error is larger than 1%. The

accuracy distributions for Mcl and the youngest cluster age clearly show this trend. Contrary to

the Normal-Net, the median value of the Noise-Net is always close to 0 without an offset even

for the largest error of 10%. The age of the first cluster is the only parameter that shows a shift

of the median value for a large error, but the offset of around 0.2 dex is still small compared to

the Normal-Net where the median value is shifted by about 1.3 dex at σb of 10%. Unlike for

the age of the first cluster, the Noise-Net shows an overwhelmingly accurate prediction for the

youngest cluster age, even at an error of 10% compared to the Normal-Net.

The difference in the width between the blue and red histograms is noticeable as well when

we evaluate the accuracy of the entire posterior estimates (lower panels in Figure 3.2). The

difference in the width is distinct when the error is large, especially in the case of Mcl, the

oldest cluster age and the youngest cluster age. However, in the case of the density, the width

of the Noise-Net and the Normal-Net appears fairly similar. The median value of the histogram
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Figure 3.3: Accuracy and precision of the Noise-Net (blue lines) and the Normal-Net (red lines) as a
function of the luminosity error of the brightest emission line (σbrightest) using 100 test models. We
present the RMS of two accuracy measures: MAP accuracy in the first row and accuracy using all
posterior estimates in the second row. The last row shows the median of the uncertainty at a 68%
confidence interval (u68) which represents the precision of our network. Vertical green dashed lines show
the error values at the turning points where the Noise-Net begins to perform better than the Normal-Net.

mostly exhibits no offset for both Noise-Net and Normal-Net, except for the distributions of the

youngest cluster age and phase of the Normal-Net. Based on the two violin plots in Figure 3.2,

we discover that the predicted posterior distributions from both networks widen with increasing

error, but the Noise-Net results remain much narrower than the Normal-Net. Furthermore, the

Noise-Net maintains the accurate MAP prediction at large error, whereas the Normal-Net does

not.

Figure 3.2 reveals that the Noise-Net performs better than the Normal-Net overall, especially

for large errors, and resolves the offset issues of the Normal-Net. In Figure 3.3, we demonstrate

how the accuracy and precision indices on average change with increasing error in a more quan-

titative way. The first two rows show the root mean square (RMS) value of the two accuracy

indices, respectively, and the third row presents the median value of the precision index (u68).

As already indicated by Figure 3.2, Figure 3.3 reveals that the Normal-Net performs better

than the Noise-Net for small errors up until a critical error value is reached, where the Noise-Net

then surpasses the Normal-Net. In each panel, we present the turning point, from which the

Noise-Net predicts better than the Normal-Net, with the green vertical dashed line and in the

legend. The turning point falls mostly around a value of 0.025% – 0.04% (log σb: -1.6 – -1.4).

In the case of phase accuracy, the turning point is larger than the other parameters. However,

the RMS value of the Noise-Net at the error smaller than the turning point is around 0.5 which

is still acceptable.

The larger the error after the turning point, the larger the performance gap between the two

networks. This is because the performance of the Normal-Net deteriorates significantly as the
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error increases, whereas the performance change of the Noise-Net is small. In the second row,

the curves for Mcl and the youngest cluster age show the clear gap between the two networks

where the accuracy differences between the two networks at the error of 10% are 1.4 and 0.8 dex,

respectively.

We measure the error when the performance of the Normal-Net is comparable to the per-

formance of the Noise-Net at σb of 10%. In most cases, the performance of the Noise-Net at a

10% error is similar to the performance of the Normal-Net at an error of 0.4%. In the previous

paper, we demonstrated that the Normal-Net provides reliable prediction when the error of the

brightest line is smaller than 0.1∼1%. This result shows that the Noise-Net works reliably even

with large errors of around 10%.

Figures 3.2 and 3.3 demonstrate that the Noise-Net works significantly better than the

Normal-Net after the turning point located at a small error of around 0.04%. It is also notewor-

thy that the offset issues and the difficulty of predicting ages at large errors in the Normal-Net

improves a lot in the Noise-Net.

3.3.3 Individual posterior distribution

In this section, we compare the one-dimensional posterior distributions of the Normal-Net and

the Noise-Net on two test models, which have a typical shape of posterior distributions.

The first example is a model at the age of 1.4 Myr in Phase 3, meaning that the expanding

shell swept away all of the gas in the natal cloud. As there is only one cluster inside, the age (t)

and the age of the youngest cluster (tyoungest) are the same. In Figure 3.4, we select four σb values

(0.01, 0.1, 1 and 10%) and present the corresponding predicted posterior distributions in each

column. Each panel shows the posterior distribution of the Noise-Net in the upper sub-panel

and the posterior distribution of the Normal-Net in the lower one.

The first column clearly shows that when the error is small (around 0.01%) the posterior

distribution of the Normal-Net is narrower than the Noise-Net. The difference is especially

apparent in the case of Mcl and the star formation efficiency. Both networks predict accurately

but the Normal-Net performs slightly better for some parameters like Mcl and SFE. However,

the situation is already reversed at an error of 0.1%. The posteriors predicted by the Normal-Net

are wider than the Noise-Net for all five continuous parameters. The posterior distributions of

the Normal-Net become less smooth but the corresponding MAP estimates are still accurate

except for the two age parameters now showing bimodal distributions. On the other hand, the

posterior of the Noise-Net shows a unimodal distribution similar to the case at 0.01% error and

maintains accuracy although the width of the distribution does slightly increase.

As the error increases to 1 and 10%, the posterior distributions predicted by the Normal-Net

for all parameters except Ncluster and phase change significantly. The posterior distributions are

spiky and irregular and for the ages, they now exhibit an offset towards lower values similar to
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Figure 3.4: Posterior probability distributions (grey histograms) of the seven physical parameters of
the first example model estimated by the Noise-Net and the Normal-Net for four different errors of the
brightest emission line values (0.01, 0.1, 1 and 10%). Each column corresponds to the result for each
error. Please note that the range of the x-axis is different in all columns. Each panel is divided into two:
the posterior distribution from the Noise-Net (upper sub-panel) and the posterior distribution from the
Normal-Net (lower sub-panel). The red vertical lines indicate the true value of the example model. In
the upper left corner, we present the u68 value, the width of the distribution.
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the one in the violin plots (Figure 3.2). While the network still predicts Ncluster well, the phase

estimation becomes degenerate, especially when the error is 10%. In contrast, the posterior

distribution of the Noise-Net appears almost completely unaffected even when the error increases

to 10%. Only the width gradually increases but the MAP estimate remains accurate. At the

largest error, the phase prediction does become degenerate but the MAP estimate is still accurate

with a 90% probability.

For the second example, we pick a model in a different evolutionary stage. The second model

is in Phase 2 and has two clusters due to the stellar feedback of the first-generation cluster

being weaker than gravity, resulting in a recollapse. The age of the older generation cluster is

9 Myr and that of the younger one is 1.3 Myr. At the lowest error (0.01%, the first column in

Figure 3.5), the posterior distributions are similar to those of the first example. The Noise-Net

shows slightly wider and less accurate distributions than the Normal-Net. The difference to the

first example is that both networks have a weak degeneracy in the Ncluster estimation despite

the small error. This behaviour is expected because in Paper 1 we showed that Ncluster is the

most degenerate parameter and induces degeneracies in the other parameters as well. Moreover,

degeneracy is more likely to occur when the target object has more than one cluster. As shown

in the age posterior distribution of the Noise-Net, the degeneracy in the Ncluster leads to a

degenerate prediction in the age of the first cluster.

If the error increases to 0.1%, the posterior estimates of the Normal-Net show wide distri-

butions and the fraction of degenerate predictions increases in Ncluster and age, whereas the

posterior distributions of the Noise-Net are almost identical to the result for the 0.01% error.

From an error of 1% onwards, most of the posterior estimates of the Normal-Net show a wide

and skewed distribution similar to the first example, losing accuracy in most parameters. In the

previous paper, we demonstrated that the Normal-Net tends to predict extremely young age with

a single cluster regardless of the target objects if the error is large (around 10%). This means

that the prediction of the Normal-Net at a large error is unreliable and cannot be explained as

physically valid alternatives to the target system. Contrary to the Normal-Net, the posterior

distributions predicted by the Noise-Net remain accurate and narrow despite the large error.

Although the fraction of the degenerate estimates (i.e., Ncluster of 1) increases in Ncluster and the

age if the error is large (10%), the other five parameters still have very accurate predictions with

a unimodal distribution.

In many test models including these two examples, we confirmed that the performance of the

Noise-Net is inferior to the Normal-Net for errors between 0.01 and 0.1%, which is consistent

with the turning point of 0.04% found in the statistical evaluation (Figure 3.3). Additionally,

the accuracy and precision of both networks deteriorate with increasing error, but the degree

of deterioration is significantly different and the posterior distributions change differently. The

Noise-Net does not return extremely wide or skewed posterior distributions like the Normal-Net
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Figure 3.5: The posterior distributions of the second example model. Colour codes and lines are the
same as in Figure 3.4.
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and maintains an accurate prediction even at the largest error although the fraction of degenerate

predictions increases slightly.

3.4 Discussion

3.4.1 Skewness and degeneracy

If network prediction is degenerate, the posterior distribution shows multiple modes, one of which

indicates the true value of the test model. In Paper 1, we demonstrated the modes other than

the true mode in a degenerate posterior distribution are not wrong but are physically valid alter-

natives satisfying the same luminosity by re-simulating the posterior models via WARPFIELD-

EMP and comparing the re-simulated luminosity with the true luminosity. In this study, we do

not re-simulate the posterior estimates. However, based on the results of Paper 1, we regard

that a multimodal posterior distribution reflects physically valid degeneracy remaining in the

prediction, especially when the multimodality is due to the Ncluster.

In Paper 1, we showed that the most difficult parameters for our network to predict, even

without considering errors, are the number of clusters (Ncluster) and the age of the first generation

cluster (t). We also found that more than 90% of the degeneracy in the posterior distribution was

caused by the degeneracy in Ncluster. If the posterior of Ncluster has a multimodal distribution,

the posterior distribution of the age also has multiple modes in most of the cases, which lowers

the (point estimate) accuracy. In particular, a degenerate Ncluster prediction was more common

if the target H ii region had multiple clusters, so the prediction was usually more accurate for

single cluster models than multicluster models.

There are two main reasons why it is difficult to break the degeneracy in the Ncluster predic-

tion. One is the biased distribution of our training data. More than 70% of our synthetic H ii

region models have only one cluster and the age distribution is also biased towards a young age,

so that our network usually learns better about young and single cluster models. The second

reason is the selection of the emission lines. We use 12 optical emission lines that are tracers of

ionized gas and that therefore are mostly influenced by the youngest cluster. The contribution

of older clusters to the luminosity of these lines is often insignificant (see Figure 4 in Pellegrini

et al. 2020) so it is hard for the network to identify how many old clusters are in the H ii region

based only on these 12 lines.1

As the networks in this study use the same database and the same emission lines, they

essentially have the same difficulties. Therefore, we further examine the results presented in

Section 3.3 by separating the sample into two groups, single cluster models and multicluster

1Supplementing these diagnostics with additional observables sensitive to the older clusters (e.g., broad-band
optical or near-IR colours) may allow many of these degeneracies to be broken, but is outside of the scope of our
current study.
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Figure 3.6: We divide the MAP accuracy violin plot in Figure 3.2 into two depending on the true Ncluster

value of test models: single cluster models (upper panels) and multicluster models (lower panels). 60
models have only one cluster and the other 40 models have more than one cluster. Colour codes and
symbols are the same as in Figure 3.2.

models, according to the true Ncluster value of each model. In particular, we focus on the large

error range (σb ≥ 1%), where the Normal-Net and the Noise-Net begin to show a significant

difference in average performance and individual predicted posterior distributions. According to

the selection criteria in Section 3.3.1, 60 out of our 100 models have only one cluster, whereas

the other 40 models have more than one cluster. In Figure 3.6, we subdivide the violin plot of

MAP accuracy from Figure 3.2 into single cluster models (upper panels) and multicluster models

(lower panels), revealing a clear difference between the predictions of the Normal-Net and the

Noise-Net at large error.

Firstly, the prediction results of the Normal-Net are similar between the two groups regardless

of the true Ncluster value except for the histograms of the Ncluster estimation. When the error

is larger than 1%, the MAP estimates of the age of the oldest cluster, the age of the youngest

cluster, and the phase are always notably offset towards smaller values in both groups. This

feature is well revealed in the example posterior distributions (Figures 3.4 and 3.5) by the notable

skewness. The difference in the Ncluster histograms occurs, because the MAP estimates of the

Normal-Net for Ncluster are always 1 when the error is large. Consequently, the histogram is close

to 0 for single cluster models, because the true value is 1, but for the multicluster models, the

MAP estimates are always smaller than the true value. In Paper 1, we also confirmed that the

Normal-Net returns similar posterior distributions regardless of the target objects if the error is

large, meaning that the Normal-Net returns wrong estimates when subject to large errors. This
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is different to a true degeneracy in the prediction that shows the physically valid alternatives

satisfying the same observation.

On the other hand, the Noise-Net shows different performance for Ncluster and the age of the

first cluster depending on the true Ncluster value. The Noise-Net performs very well for all seven

parameters in the case of single cluster models even at the large error of 10%. The Noise-Net

predicts the age of the youngest and oldest cluster and the phase well unlike the Normal-Net

which shows systematic offsets. In the case of multicluster models, however, the Noise-Net also

exhibits an offset towards lower values in the oldest cluster age and Ncluster, but it recovers the

age of the youngest cluster and phase well. In the case of the Ncluster prediction, the Noise-Net

also determines the MAP value as 1 in most cases regardless of the target model when the error

is large (σb > 1%). While the estimates of the oldest cluster age are also shifted towards lower

values for the multicluster models even for the smaller error range, the magnitude of the shift

is smaller than that of the Normal-Net. When the error is small, both networks exhibit a shift

of less than 0.5 dex, but when the error is large the Normal-Net offset increases to about 2 dex,

whereas the Noise-Net shift remains at around 0.5 dex.

Based on Figure 3.6 and the examples of the predicted posterior distributions (Figures 3.4

and 3.5), the likelihood of the Noise-Net to return degenerate predictions increases with the error.

However, unlike the Normal-Net the Noise-Net does not return wrong predictions. As previously

mentioned, due to the intrinsic difficulty in predicting Ncluster in our cINNs, the degeneracy

in the Noise-Net is mostly caused by degenerate Ncluster predictions. As the prediction of the

Noise-Net is degenerate unlike the Normal-Net, the estimation of the oldest cluster age by the

Noise-Net is not extremely offset towards younger models but shifted close to the true value of

tyoungest. In addition, the Noise-Net always returns the correct information about the youngest

cluster and its evolutionary phase for both single cluster models and multicluster models.

While degenerate predictions are less accurate in terms of finding the unique true value,

they are still meaningful in that they suggest other possible solutions that satisfy the same

observation. As most of the degeneracy lies within the Ncluster prediction, we can filter out the

correct posterior estimates if we can constrain the Ncluster by another method or observation. We

expect that by using more unbiased training data or including emission lines that are contributed

by old clusters, we can improve the degeneracy in our networks.

3.4.2 Pros and cons of Noise-Net and Normal-Net

In Section 3.3, we directly compared the performance of the Noise-Net and the Normal-Net. In

this section, we compare the methodological differences between the two networks and discuss

which network is more practical when applied to real observational data based on the results

we presented. The two networks differ in the method of training the network and sampling the

posterior estimates. The advantages and disadvantages of the two networks that arise from the
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methodological aspect can be summarised as follows.

In the case of the Normal-Net, we train the network using pure training data. To consider

the observational error in the posterior distribution, p(x|y,σ), we have to introduce the addi-

tional Monte Carlo-based marginalisation method (Eq. 3.9). We generate a sufficient number

of perturbed luminosity sets by adding random Gaussian noise, assuming that the luminosity

errors follow a Gaussian profile. As this method uses a trained network, we are free to choose

the error profile to marginalise in this method. It is relatively easy to apply different profiles

such as an asymmetric error profile or consider physical relationships between emission lines if

needed depending on the object of interest. However, the disadvantage of this method is that

it requires a lot of posterior estimates to fully sample the posterior distribution. Generating

perturbed luminosity sets (Np) and sampling the latent variables for each luminosity set (Nz),

we generate Np ×Nz posterior estimates to make one posterior distribution. As it is important

to use a sufficiently large Np, we sample about 100,000 posterior estimates per one test model

in this paper. This increases the overall computation time for posterior prediction and data

analysis when using the Normal-Net.

On the other hand, the methodological advantages and disadvantages of the Noise-Net are

opposite to the case of the Normal-Net. We can obtain a full posterior distribution with only

a small number of posterior estimates because the Noise-Net does not require a marginalisation

process (see Table 3.2). In other words, the Noise-Net is advantageous in terms of the computa-

tion time for sampling the posterior estimates and processing the data. The disadvantage of the

Noise-Net is that we have to set the range of the luminosity error and the error profile in advance

when training the network. Consequently, if we want to apply error values that are smaller or

larger than the trained ranges or use a different error profile, we have to train a new network. In

this paper, for simplicity, we assume that the errors of all 12 emission lines are independent to

each other when using both Noise-Net and Normal-Net. If we want to consider any covariance

between the lines, then we need to train a new Noise-Net that applies the relations between the

lines during the training.

Methodologically, Noise-Net and Normal-Net have advantages and disadvantages that are

opposite to each other. However, based on the results in Section 3.3, which network has better

performance depends on the amount of error. According to Figure 3.3, the Noise-Net begins to

perform better than the Normal-Net on average when the error of the brightest emission line

(σb) is larger than 0.04%. At σb of 0.1%, the performance difference between the two networks

is already noticeable and this performance gap widens as the error increases. This means that,

if we apply our cINNs to real observations, the Noise-Net is a more suitable method in terms of

performance when the observation error corresponding to the σb in our experiment is not less

than 0.04%.

To determine which network is more practical considering the error of real observations,
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Table 3.3: The average performance of the Noise-Net and the Normal-Net for 100 test models when σb

is 0.1%. The first value in each entry shows the performance of the Noise-Net whereas the second value
is that of the Normal-Net. The MAP accuracy denotes the deviation between the MAP estimates and
the true value, while the accuracy in the second row refers to the deviation of all posterior estimates
from the true value. We use a linear deviation for Ncluster and phase and use a logarithmic deviation for
the other five parameters. The last row indicates the average width of the posterior distribution. The
listed values are the same as the data points in Figure 3.3 at σb of 0.1%.

Performance index at σb = 0.1% log Mcl SFE nH,0 t tyoungest Ncluster Phase
(Noise-Net / Normal-Net)

RMS of MAP accuracy 0.04 / 0.14 0.055 / 0.15 0.073 / 0.14 0.41 / 0.54 0.05 / 0.16 0.46 / 0.77 0.52 / 0.1
RMS of accuracy 0.058 / 0.19 0.085 / 0.19 0.11 / 0.19 0.32 / 0.45 0.074 / 0.17 0.55 / 0.71 0.52 / 0.6
Median of u68 0.076 / 0.18 1 / 2.2 78 / 180 3.5 / 5.3 0.22 / 0.49 0.11 / 0.14 0.098 / 0.1

we refer to the H ii region catalogue of Santoro et al. (2022) based on the PHANGS-MUSE

survey (Emsellem et al. 2022). In this catalogue, Santoro et al. (2022) lists observations for about

23000 H ii regions in 19 nearby spiral galaxies including the fluxes and corresponding errors for

a set of strong lines observable within the wavelength range 4850–7000Å. In our experiment in

Section 3.3, we use the error of the brightest line, i.e., the smallest error among the 12 emission

lines by definition following Eq. 3.10. We confirm that, in the H ii region catalogue, both the

brightest line and the line with the smallest flux error in per cent unit is always the Hα emission

line. This is because the nebulae with emission lines brighter than the Hα were usually located

outside of the H ii region area in the BPT diagram and excluded in the catalogue. The error

of the Hα line in the catalogue is 0.302 ± 0.294% on average and the minimum and maximum

values are 0.011 and 3.08%, respectively. 98% of the H ii regions have an Hα error larger than

0.04% and 87% of them have an Hα error larger than 0.1%. In other words, for most of the H ii

regions in this survey, we expect the Noise-Net to perform better than the Normal-Net.

Based on the typical error of the real observations, we list the average performance (two

accuracy indices and the precision index) at a σb of 0.1% presented in Figure 3.3, in Table 3.3

to quantitatively examine the performance gap between the two networks. The first entry de-

notes the performance of the Noise-Net while the second lists that of the Normal-Net. This

demonstrates that the Noise-Net performs better than the Normal-Net in all indices for all seven

parameters. Excluding the phase and Ncluster, the accuracy gap between the two networks is

about 0.1 dex in each parameter. This suggests that for the 85 per cent of H ii regions in Santoro

et al. (2022)’s catalogue, the Noise-Net will at least give better results within this performance

gap. As the average Hα error of the catalogue is 0.3%, the average performance gap will be

larger than Table 3.3 based on Figure 3.3.

In conclusion, Normal-Net and Noise-Net have opposite advantages and disadvantages in

terms of methodology, but considering the range of the luminosity errors in practice, we expect

that the Noise-Net is a better choice than the Normal-Net. We only gave one survey example

but as we have the fiducial error to determine which method performs better, users can choose

their best option considering their observational data. If it is reasonable to use identical error
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profiles for different H ii regions of interest and the error of the brightest line (usually the Hα) is

sufficiently larger than 0.04 per cent, we propose that Noise-Net would be a more robust method.

3.4.3 Error larger than the training range

The Noise-Net learns about the observation error within the fixed range during the training. As

mentioned in Section 3.2.2, we trained the Noise-Nets in this paper on errors ranging from 0.001

to 31.6 % and applied the same error range for all 12 emission lines. However, in our experiment

in Section 3.3, there are many cases where the luminosity error exceeds the maximum training

error (i.e., σmax) of 31.6%, especially when the σb is larger than 1%. When σb is 1%, 28 of 100

test models have an emission line whose luminosity error is larger than σmax. When σb is 10%,

at least one emission line has an error larger than σmax in all test models. While the Noise-Net

can somehow handle errors larger than the maximum it has learned, we need to examine if the

Noise-Net processes the error properly.

We hypothesise that the Noise-Net either handles the large errors that it has never learned

properly or simply self-clips large errors to the training limit (σmax). To investigate this hypoth-

esis, we re-sample the posterior estimates for the 100 test models for 16 different σb values as we

did in Section 3.3, but clip the luminosity error to σmax if it is larger than the maximum error.

We analyse the newly obtained posterior distributions in the same manner as in Section 3.3.1

and compare the result with the original outcome without error clipping from Section 3.3.

Figure B.1 shows the difference between the unclipped original result (i.e., blue curve in

Figure 3.3) and the new result with error-clipping. Differences begin to appear around a σb

value of 1%, but the deviation is very small. Even when σb is 10%, the deviation of the two

results is less than 0.02 dex in accuracy indices. The difference in median u68 value is also

very small considering the physical unit of the parameter. The difference between the original

result without clipping and the result after clipping large errors to the maximum value is almost

negligible.

In addition to the average performance differences, we present one example to investigate if

there is any noticeable difference in the posterior distributions for individual test models. In

Figure 3.7, we present the predicted posterior distributions for one test model at a σb of 10%.

In this case, 5 of 12 emission lines have a luminosity error larger than the maximum value

([O ii] 3726Å, [O i] 6300Å, [S ii] 6716Å, [S ii] 6731Å and [S ii] blend 6720Å). For the posterior

distributions in the left panels, we use the large errors without clipping and for the right panels,

we clip the 5 large error values to the maximum error of 31.6%. As shown in Figure 3.7, the

two distributions are almost the same. While the left distributions without clipping appear a bit

wider based on the u68 values, the magnitude of the deviation is negligible.

Figures B.1 and 3.7 demonstrate that the Noise-Net handles errors larger than its training

range by self-clipping the large errors close to the upper limit of the training range. Accordingly,
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Figure 3.7: Predicted posterior probability distributions (grey histograms) for the seven physical param-
eters for one test model estimated by the Noise-Net at σb of 10%. For this model, the luminosity errors
of 5 emission lines are larger than the maximum error of the training range (31.6%). The left panels
show the posterior distribution using the luminosity errors without clipping, whereas the right panels
present the posterior distribution after clipping the large errors to the maximum error. The red vertical
lines indicate the true value of the model. In the upper right corner the true value, the MAP estimate,
and the u68 value of the posterior distribution are listed.
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the direct comparison between the Noise-Net and the Normal-Net may not be fair because

the Noise-Net treats large errors as a smaller value by itself, while the Normal-Net does not.

Therefore, we also re-sample the posterior estimates using the Normal-Net after clipping the

large errors to the maximum error value and re-compare the new result of the Normal-Net with

the result of the Noise-Net. We confirm that there is no change in the overall results presented

in Section 3.3. This is because the new result from the Normal-Net as well is almost the same

as the original result of the Normal-Net without clipping. In Figure B.2, we compare two results

from the Normal-Net: unlcipped original result (red curve in Figure 3.3) and the new result

after clipping the large errors. Similar to the case of the Noise-Net shown in Figure B.1, the

recognizable difference begins to appear around a σb of 1%. The differences between unclipped

and clipped results are less than 0.03 dex in most cases except for the Mcl where the maximum

difference is around 0.07 dex, which is still small enough. This implies that there is no significant

difference in the posterior distribution from the Normal-Net at large error range (i.e., larger than

few tens per cent).

We propose the following reasons to explain the small differences in the results of the Normal-

Net. Firstly, at large errors, the Normal-Net always returns a wide and skewed posterior distri-

bution as shown in Figures 3.4 and 3.5. As mentioned in Section 3.4.1, the Normal-Net tends

to predict similar posterior distributions at the largest error, regardless of the characteristics of

the target model. The distribution is already as wide as the entire training range in Figure 3.1,

so even if we use a larger error, the posterior distribution does not widen any further or become

more skewed. Secondly, in the marginalisation process for the Normal-Net, we randomly perturb

the luminosity by sampling from a Gaussian noise profile following Eq. 3.3. However, we clip the

perturbed luminosity to a minimum value of 1 to avoid unrealistic estimations.

Thirdly, when using the posterior distribution for the analysis, we exclude all unrealistic pos-

terior estimates such as negative densities or ages larger than 100 Myr. We define the acceptance

rate (fphysical) as the fraction of posterior estimates that are not regarded as unrealistic over the

total number of the posterior samples. In Figure 3.8, we compare the median acceptance rate

for 100 test models of the two networks as a function of the luminosity error (σb). Figure 3.8

clearly shows that the acceptance rate of the Normal-Net significantly decreases with increasing

error whereas the Noise-Net maintains an acceptance rate close to 100%. The acceptance rate of

the Normal-Net begins to decrease at an error of 0.25% (log σb = -0.6) and decreases to 34% for

an error of 10%. The acceptance rate of the Noise-Net is always larger than 99.5%. This result

explains why the posterior distribution of the Normal-Net does not change much at large error.

Moreover, this demonstrates that the Noise-Net provides physical estimates even when the error

is large, although degeneracy remains in the posterior distribution, as discussed in Section 3.4.1.

In summary, we find that the Noise-Net clips large errors outside the training range by itself

but this does not change the overall trend between the Noise-Net and the Normal-Net shown in
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Figure 3.8: Median acceptance rate for 100 test models of the Noise-Net and the Normal-Net as a
function of the luminosity error of the brightest emission line. The acceptance rate is the fraction of
the posterior estimates that are not excluded as physically incorrect or extremely extrapolated values
(e.g., negative age or star formation efficiency or age larger than 100 Myr) over the total number of the
sampled posterior estimates.

Section 3.3. Because the posterior distributions of the Normal-Net do not change significantly

at large error range. Considering the behaviour of the Noise-Net and Normal-Net at the large

error range, it is better not to use our cINNs to analyze objects with too large luminosity errors

above a few tens per cent.

3.4.4 Outperformance and saturation of the Noise-Net

In Figure 3.3, we showed that the performance of the Noise-Net and Normal-Net change differ-

ently as a function of the observational error. For example, the RMS deviation of the Normal-Net

steadily increases from the minimum error of 0.01% to the maximum error of 10%. In contrast,

the RMS deviation of the Noise-Net gradually increases after 0.1%, maintaining a small value

in the small error range. Therefore, there is a turning point in which the performance of the

Noise-Net overtakes the Normal-Net.

The turning point varies slightly depending on the parameter and performance index, but

as mentioned in Section 3.3.2, it mainly falls around a value of 0.025% ∼ 0.04% (log σb: -1.6

∼ -1.4). The performance of the two networks is similar at the turning point, but according to

Table 3.3 and Figure 3.3, the performance difference between the two networks is evident even

at the error of 0.1%. The larger the error, the larger the gap between the two networks.
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We speculate that the reason why the Noise-Net outperforms the Normal-Net at large error is

because of the differences in training methods. In the case of the Normal-Net, the network learns

from the same training data for each training epoch repeatedly during the training. On the other

hand, the Noise-Net learns about various luminosity and error values from the identical training

models because the perturbations are randomly sampled at every epoch. This implicitly increases

the number of training examples for the Noise-Net even if the number of actual training models

is the same as in the normal training. Furthermore, as the luminosity of the training model is

perturbed by the randomly sampled noise during the noise training, the Noise-Net learns more

diverse cases of degeneracy and wider training distributions. For these reasons, the Noise-Net

performance deteriorates less than that of the Normal-Net at a larger error.

On the other hand, the performance of the Noise-Net does not change as much as the Normal-

Net when the observational error decreases. In Figure 3.3, the performance of the Noise-Net

appears to almost saturate at around 0.1% and does not decrease much further with decreasing

error. This also can be partly explained by the difference in the training methods. No matter

how small the errors sampled during the noise training become, the Noise-Net has never seen

a version of the data as precise as the pure training data. Therefore, the predicted posterior

distributions may have a basic degeneracy even at the minimum error, showing the saturation

in Figure 3.3. However, the Noise-Net starts to saturate at around 0.1%, which is a fairly large

value considering the minimum training error of 0.001%. The reason for the early saturation

has not become clear within the scope of this study, but we will examine this trend in further

experiments such as changing the profile of the error in the noise training in future works.

3.5 Summary

In this paper, we introduce a new type of cINN, the Noise-Net, that predicts physical parameters

(x) of H ii regions from the emission-line luminosities (y), considering the uncertainty of the ob-

servations (σ, emission-line luminosity error). In our recent paper (Paper 1), we first introduced

a cINN that predicts the seven physical parameters of the H ii region from the luminosity of 12

optical emission lines. The type of cINN used in Paper 1 is Normal-Net which estimates posterior

distributions of the physical parameters conditioned only on the luminosities (p(x|y)), but we

presented a method of considering luminosity errors in the Normal-Net through a modification of

the posterior sampling procedure (Section 3.2.5) and showed the performance of the Normal-Net

as a function of the luminosity error. The Noise-Net, newly introduced in this paper, always

reflects the luminosity error in the prediction of the parameters by using both luminosities and

corresponding errors as an input of the network (p(x|y,σ)). In this paper, we introduce the

Noise-Net and its training method (i.e., noise training) and compare the performance of the

Noise-Net with the Normal-Net.
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For the Noise-Net to learn the influence of observational errors, the training method of the

Noise-Net is slightly different to the Normal-Net. At each training epoch, we first randomly

sample the errors of each emission-line luminosity from the prescribed probability distribution.

In this paper, we sample the error in the logarithmic scale from the uniform distribution (Eq. 3.2)

with minimum and maximum errors of 0.001% and 31.6%, respectively. Next, we perturb the

luminosities of the training data by adding the random Gaussian noises based on the sampled

errors. Due to these two steps processed on the fly during the training, the Noise-Net learns

about the different training data every epoch whereas the Normal-Net learns about the pure

training data repeatedly.

We use synthetic H ii region models produced by WARPFIELD-EMP (Pellegrini et al. 2020)

to train the cINNs because it is hard to collect lots of well-interpreted real data required for

the training. WARPFIELD-EMP is a pipeline that calculates emission from isolated massive

star-forming clouds using CLOUDY (Ferland et al. 2017) and POLARIS (Reissl et al. 2016,

2019), based on the one-dimensional semi-analytic stellar feedback code WARPFIELD (Rahner

et al. 2017). The database of WARPFIELD-EMP models used in this paper is the same as the

database introduced in Paper 1. The database consists of 505,748 synthetic H ii region models

evolved from 10,000 initial star-forming clouds. We use 90% of the models to train the network

and use the rest (test set) to evaluate the network performance.

In this paper, we present two cINNs, one Noise-Net and one Normal-Net, that predict seven

physical parameters from the information on 12 emission lines (see Table 3.1) trained on the

WARPFIELD-EMP models. To compare the performance of the Noise-Net and the Normal-

Net as a function of the luminosity error, we evaluate the accuracy and precision of two cINNs

at 16 different levels of luminosity error using the error of the brightest emission line (σb) as

a representative error. Our main results of the comparison between the Noise-Net and the

Normal-Net are the following:

1. As the error increases, the performance of both networks gradually deteriorates, but the two

networks show different trends as a function of the error. The Normal-Net predicts more

accurately and precisely than the Noise-Net when the error is very small (σb ∼ 0.01%).

However, the performance of the Normal-Net steadily degrades significantly compared to

the Noise-Net. On the other hand, the Noise-Net maintains good performance with increas-

ing error at a small error range. The performance of the Noise-Net slowly and gradually

degrades at large errors.

2. From a certain point (i.e., turning point), the Noise-Net outperforms the Normal-Net and

the larger the error, the larger the gap between the Noise-Net and the Normal-Net. The

turning point occurs at an error of around 0.025–0.04%.

3. The Noise-Net estimates parameters with sufficient accuracy and precision even when the
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luminosity error is large. The performance of the Noise-Net when the error of the brightest

line is 10% is similar to that of the Normal-Net when the error of the brightest line is only

0.4%.

4. The Noise-Net predicts parameters much better than the Normal-Net even when the error

of the brightest line is 0.1%. Considering the luminosity error of the observed H ii regions

from the PHANGS-MUSE survey (Emsellem et al. 2022) as an example, the Hα luminosity

error of 0.1% is a small enough value because 89% of the H ii regions had the Hα luminosity

error larger than 0.1%. This means that the Noise-Net is a more appropriate tool when

applied to real observations that have a similar level of uncertainty to the PHANGS-MUSE

survey.

5. As the error increases, degeneracy becomes common in the posterior distribution of the

Noise-Net. In the case of the Normal-Net, the posterior estimates at a large error are

not degenerate like the Noise-Net but are unphysical. The fraction of the unphysical

posterior estimates increases significantly as a function of the luminosity error in the case

of the Normal-Net, whereas the fraction for the Noise-Net is almost zero even at the large

error, meaning that the Noise-Net always provides physically valid estimates although the

degeneracy remains.

6. The Noise-Net learns about errors within a given training range (i.e., 0.001 – 31.6 %). If the

Noise-Net receives an error larger than the training range, the Noise-Net self-clips the large

errors close to the maximum of the training range and provides a posterior distribution

using the clipped error.

The Noise-Net, newly presented in this paper, predicts parameters accurately and precisely

even when the observation error is large. Our results of comparison between the Noise-Net

and the Normal-Net will help select an appropriate network type according to the observed

luminosity errors. Based on our results, we suggest utilising the Noise-Net if the error of the

brightest emission line (e.g., the Hα line) is 0.1% or more.
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4
Spectral classification of young stars using
conditional invertible neural networks - I.
Introducing and validating the method

This chapter is based on the paper Kang et al. (2023, submitted) submitted to Astronomy &

Astrophysics in 2023. I carried out network construction and training and most of the data anal-

ysis. The text is majorly written by me but some sections are written by co-authors. Leonardo

Testi developed the interpolation pipeline to easily generate numerous Phoenix models and wrote

Section 4.3.1. Victor F. Ksoll produced the databases of Phoenix models using three different

Phoenix grids: Settl, NextGen, and Dusty and carried out resimulations of posterior models and

wrote Sections 4.2 and 4.3.2 and resimulation parts in Section 4.5. Dominika Itrich prepared the

catalogue of Class III template stars and wrote Section 4.4.

Abstract

We introduce a new deep learning tool that estimates stellar parameters (such as effective tem-

perature, surface gravity, and extinction) of young low-mass stars by coupling the Phoenix stellar

atmosphere model with a conditional invertible neural network (cINN). Here we discuss cINNs

trained on three different Phoenix grids: Settl, NextGen, and Dusty. They allow us to infer the

posterior distribution of each stellar parameter from the optical spectrum. Our networks are

time-efficient tools applicable to large amounts of observations. Evaluating the performance of

these cINNs on unlearned Phoenix synthetic spectra, we confirm that the cINNs estimate the

considered stellar parameters almost perfectly. We validate our approach further by applying

the cINNs to the spectra of 36 Class III template stars with well-characterised stellar parameters

and find good agreement with deviations of at most 5–10 per cent. The cINNs perform slightly

better for earlier-type stars than for later-type stars like late M-type stars, but we conclude that

estimations of effective temperature and surface gravity are reliable for all spectral types within

the network’s training range. Among the three networks, we recommend using the cINN trained
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on the Settl library (Settl-Net), as it provides the best performance across the largest range of

temperature and gravity.

4.1 Motivation

In star-forming regions, it is massive stars that influence the surrounding environment energeti-

cally and dynamically during their short lifetime, but the majority of stars formed in star-forming

regions are low-mass stars similar to or less than the solar mass. These low-mass stars are not

only the most numerous in the star-forming region (Bochanski et al. 2010) but also account for

about half of the total stellar mass (Kroupa 2002; Chabrier 2003). Living longer than massive

stars, these low-mass stars still remain in the pre-main-sequence phase even when the massive

stars are dead. These young low-mass stars provide important information for studying stellar

evolution and planet formation.

Stellar parameters (e.g., effective temperature, surface gravity, luminosity, etc.) are estimated

from photometric or spectroscopic data by various methods. These methods are usually based

on characteristic spectral features that vary depending on the type of stars. Therefore, it is

important to adopt the appropriate method to the star under consideration and to the observed

wavelength range.

As the volume of accumulated observations ever-expand in recent days, it has become im-

portant to develop time-efficient tools that analyse large amounts of data in a faster and more

consistent way. This is why artificial neural networks (NNs; Goodfellow et al. 2016) have been

utilised in many astronomical fields these days. For instance, NNs have been used to predict

physical parameters (e.g., Fabbro et al. 2018; Ksoll et al. 2020; Olney et al. 2020b; Kang et al.

2022) or to efficiently analyse images such as identifying structures (e.g., Abraham et al. 2018)

and exoplanets (e.g., de Beurs et al. 2022) or classifying observations (e.g., Wu et al. 2019;

Walmsley et al. 2021; Whitmore et al. 2021). In this study, we develop NNs that can efficiently

analyse numerous spectra in the optical wavelength range of young low-mass stars. We prepare

our networks to analyse VLT/MUSE observations adopting the wavelength coverage and spectral

resolution of MUSE. In the follow-up paper, we will apply our tool to the spectra of young stars

in the Carina Nebula observed with VLT/MUSE.

We adopt conditional invertible neural network (cINN) architecture developed by Ardizzone

et al. (2021). Estimating physical parameters from observed measurements is a non-trivial task.

As the information we obtain from observation is limited due to the information loss during

the forward process (i.e., translation from physical systems to observations), different physical

systems can be observed similarly or almost identically, which we call a degenerate system.

cINN architecture is specialised in solving the inverse problem of the degenerate system (i.e.,

from observations to physical systems). In particular, cINN has its own advantage in that
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cINN always provides a full posterior distribution of the physical system without any additional

computations. In astronomy, the cINN approach has been used so far to characterise the internal

properties of planets (Haldemann et al. 2022), analyse photometric data of young stars (Ksoll

et al. 2020), study emission lines in H ii regions (Kang et al. 2022), or infer the merger history

of galaxies (Eisert et al. 2023).

The cINN architecture adopts a supervised learning approach that learns the hidden rules

from a number of well-labelled data sets of physical parameters and observations. As it is difficult

to collect a sufficient number of well-interpreted real observations, synthetic observations have

been usually used instead to generate enough training data. In this study, we utilise Phoenix

stellar atmosphere libraries (e.g., Allard et al. 2012; Husser et al. 2013; Baraffe et al. 2015) to

train cINNs. Selecting Settl, NextGen, and Dusty Phoenix libraries, we introduce three cINNs

(Settl-Net, NextGen-Net, and Dusty-Net) trained on each library.

A few studies have developed NNs to analyse low-mass stars from photometric or spectro-

scopic data (e.g., Ksoll et al. 2020; Olney et al. 2020b; Sharma et al. 2020b). For example, Ksoll

et al. (2020) developed a network using cINN architecture to estimate the physical parameters of

individual stars from HST photometric data and Olney et al. (2020b) used a convolutional neu-

ral network (CNN) to estimate physical parameters (e.g., effective temperature, surface gravity,

and metallicity) from near-infrared spectra observed with Apache Point Observatory Galactic

Evolution Experiment (APOGEE) spectrograph. Sharma et al. (2020b) used CNN as well to

diagnose the optical spectra of stars in a wide range of spectral types but their network only

estimates the spectral type of the stars, not the other physical parameters. On the other hand,

in this paper, our networks directly estimate the stellar parameters from the optical spectrum

of low-mass stars, including the stars in both the main sequence and pre-main sequence phases.

Moreover, our network provides a posterior distribution by adopting cINN architecture, which is

useful to study the degeneracy between parameters.

In this paper, we focus on validating the performance of three cINNs. We evaluate our

networks not only on Phoenix synthetic observations but also on real spectra of 36 young low-

mass stars to investigate how well our cINNs work on real observations. These stars are template

stars in the Class III phase, well-interpreted by literature (e.g., Manara et al. 2013, 2017; Stelzer

et al. 2013).

The paper is structured as follows. In Section 4.2, we describe the structure and principles

of cINN and explain implementation detail on the machine learning side. In Section 4.3, we

introduce our three networks and three training databases. In the following section (Section 4.4),

we describe the Class III template stars used in this paper. Our main results are in Section 4.5.

We validate our networks using synthetic Phoenix spectra and 36 template stars. We not only

evaluate the parameter prediction power of the cINN but also check whether the predicted

parameters do explain the input observations. Section 4.6 present which parts of the spectrum
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cINN relies mostly upon. In Section 4.7, we investigate the gap between Phoenix synthetic

spectra and real observations. We summarise the results in Section 4.8.

4.2 Conditional invertible neural network

The conditional invertible neural network (cINN; Ardizzone et al. 2019c,d) is a deep learning

architecture that is well suited for solving inverse problems, i.e. tasks where the underlying

physical properties x of a system are to be recovered from a set of observable quantities y. In

nature, recovering the inverse mapping x ← y is often challenging and subject to degeneracy

due to an inherent loss of information in the forward mapping x→ y, such that multiple sets of

physical properties may appear similar or even entirely the same in observations.

To tackle these difficulties, the cINN approach introduces a set of unobservable, latent vari-

ables z with a known, prescribed prior distribution P (z) to the problem in order to encode the

information that is otherwise lost in the forward mapping. The cINN achieves this by learn-

ing a mapping f from the physical parameters x to the latent variables z conditioned on the

observations y, i.e.

f (x; c = y) = z, (4.1)

capturing all the variance of x not explained by y in z, while enforcing that z follows the

prescribed prior P (z). Given a new observation y′ at prediction time, the cINN can then query

the encoded variance by sampling the latent space according to the known prior distribution

and by making use of its invertible architecture run in reverse to estimate the full posterior

distribution p (x|y′) as

p (x|y′) ∼ g (z; c = y′) , with z ∝ P (z) , (4.2)

where f−1(·, c) = g(·, c) represents the inverse of the learned forward mapping for fixed condition

c. In practice, P (z) is usually prescribed to be a multivariate normal distribution with zero mean

and unit covariance, and the dimension of the latent space is chosen to be equal to that of the

target parameter space, i.e. dim(z) = dim(x).

The invertibility of the cINN architecture is achieved by chaining so-called (conditional) affine

coupling blocks (Dinh et al. 2016b). Each of these blocks performs two complementary affine

transformations on the halves u1 and u2 of the block input vector u, following

v1 = u1 ⊙ exp (s2(u2, c))⊕ t2(u2, c)

v2 = u2 ⊙ exp (s1(v1, c))⊕ t1(v1, c).
(4.3)

As the equation shows, these two transformations are easily inverted given the halves v1, v2 of

105



4.2. Conditional invertible neural network

the output vector v according to

u2 = (v2 ⊖ t1(v1, c))⊙ exp (−s1(v1, c))

u1 = (v1 ⊖ t2(u2, c))⊙ exp (−s2(u2, c)) .
(4.4)

In both sets of Equations (4.3) and (4.4), si and ti (i ∈ {1, 2}) denote arbitrarily complex

transformations, which need not themselves be invertible (as they are only ever evaluated in the

forward direction) and can also be learned by the cINN itself when realised as small sub-networks

(Ardizzone et al. 2019c,d).

Another advantage of the cINN architecture is that, as the observations are treated as a

condition and simply concatenated to the input of the subnetworks si and ti in each affine

coupling layer, it allows for a) an arbitrarily large dimension of the input y and b) the introduction

of a conditioning network h (trained together with the cINN itself), which transforms the input

observation into a more helpful, learned representation ỹ = h(y) for the cINN (Ardizzone et al.

2019d).

4.2.1 Implementation Details

In this paper, we employ a cINN consisting of 11–16 conditional affine coupling layers in the

GLOW (Generative Flow; Kingma & Dhariwal 2018a) configuration, where the transformation

outputs si(·) and ti(·) are estimated by a single subnetwork ri(·) = (si(·), ti(·)). The latter choice,

reduces the number of sub-networks per affine layer from four to two, reducing network complex-

ity and computation time. As sub-networks ri we employ simple fully-connected architectures

consisting of 5–7 layers of size 256 using the rectified linear unit (ReLU, ReLU(x) = max(0, x))

as activation function.

The affine coupling layers are, furthermore, alternated with random permutation layers, which

randomly (but in a fixed and, thus, invertible way) permute the output vector in between coupling

layers to improve the mixing of information between the two streams u1 and u2 (Ardizzone

et al. 2019c,d). For the conditioning network h, we also employ a three-layer fully-connected

architecture with layer size 512 and ReLU activation, extracting 256 features in the final layer.

Prior to training, we perform a linear scaling transformation on both the target parameters

x = {x1, . . . , xN} and input observations y = {y1, . . . , yM}, where each target property xi and

input feature yi is modified according to

x̂i =
xi − µxi

σxi

,

ŷi =
yi − µyi

σyi

,
(4.5)

where µxi , µyi and σxi , σyi , denote the means and standard deviations of the respective param-
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eter/feature across the training data set. These transformations ensure that the distributions of

individual target parameters/input features have zero mean and unit standard deviation, and

are trivially inverted at prediction time. The transformation coefficients µxi , µyi and σxi , σyi

are determined from the training set and applied in the same way to new query data.

We train the cINN approach for this problem by minimisation of the maximum likelihood

loss as described in (Ardizzone et al. 2019d) using the Adam (Kingma & Ba 2014) optimiser for

stochastic gradient descent with a step-wise learning rate adjustment.

4.3 Training data

4.3.1 Stellar photosphere models

The approach used to train the cINN is to use libraries of theoretical models for stellar photo-

spheres. Our goal is to use the cINN to be able to classify and derive photospheric parameters

from medium to low-resolution optical spectroscopy. To this purpose, we selected the most ex-

tensive set of available models that offer a spectral resolution better than R∼10000. The most

extensive, homogeneous, tested, and readily available1 library of theoretical photospheric spec-

tra, including different treatments of dust and molecules formation and opacities, applicable in

the range of effective temperatures covering the range from ∼2000 to ∼7000 K and gravities

appropriate for pre-main sequence stars and brown dwarfs are the Phoenix spectral libraries

(e.g., Allard et al. 2012; Husser et al. 2013; Baraffe et al. 2015). In this study, we have used

the NextGen, Dusty, and Settl models, the latter is expected to provide the best description of

the atmospheric characteristics in most cases of interest (Allard et al. 2012). We have included

the older NextGen models as a comparison set, and the Dusty models as they seem to more

accurately describe photospheres in the range of 2000 K ≤ Teff ≤ 3000 K (e.g. Testi 2009). For

a more detailed description and comparison of the physical assumption in the models, see the

discussion and references in Allard et al. (2012).

The grid of synthetic spectra is available for regularly spaced values of Teff and log g, with

steps of 100 K in Teff and 0.5 in log g. To compute a synthetic spectrum for a given set of

(arbitrary but within the grid ranges) values of (Teff , log g, and AV) we set up the following

procedure: first, we identify the values of Teff and log g in the grid that bracket the requested

values, then we interpolate linearly in log g at the values of the two bracketing Teff values, then

we interpolate linearly the two resulting spectra at the requested Teff value, finally we compute

and apply the extinction following the Cardelli et al. (1989) prescription, with RV as a user

selectable parameter (in this study we use RV=4.4, see Section 4.3.2). The resulting spectrum is

then convolved at the MUSE resolution, using a Gaussian kernel, and resampled on the MUSE

1We downloaded the theoretical spectra from the websites: https://osubdd.ens-lyon.fr/phoenix/ and
http://svo2.cab.inta-csic.es/theory/newov2/
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wavelength grid.

4.3.2 Databases and networks

In this study, we analyse the cINN performance based on each of the three spectral libraries

described in the previous section. Accordingly, we construct a training data set for each spectral

library using the interpolation scheme we have outlined. For the target parameter space, we

adopt the following limits:

For NextGen and Settl we limit Teff to a range of 2600 to 7000K and log(g/cm s−2) from 2.5

to 5. The Dusty library has an overall smaller scope, therefore we can only probe from 2600 to

4000K in Teff and from 3 to 5 in log(g/cm s−2) here. For AV we select the same range of 0 to 10

mag for all three libraries, where we use the Cardelli et al. (1989) extinction law with RV = 4.4

to artificially redden the model spectra. We choose RV = 4.4 considering the application of

our networks to the Carina Nebula (Hur et al. 2012) in the follow-up study. As some of the

template stars used in this paper (Section 4.4) are dereddend assuming RV = 3.1, we have also

experimented with training data sets using RV = 3.1. We have not found a significant difference

in our main results, therefore we keep using RV = 4.4 in this study.

In terms of wavelength coverage, we match the range of the template spectra described in

Section 4.4, i.e. ∼ 5687 to ∼ 9350Å, and adopt the MUSE spectral resolution subdividing the

wavelength interval into a total of 2930 bins with a width of 1.25Å. Additionally, we normalise

the spectra to the sum of the total flux across all bins.

To generate the training data we opt for a uniform random sampling approach, where we

sample both Teff and g in log-space and only AV in linear space within the above-specified limits

for the three libraries. We generate a total of 65,536 synthetic spectra models for each library.

Note that we have also experimented with larger training sets, but have not found a significant

increase in the predictive performance of our method, such that we deemed this training set size

sufficient.

Finally, we randomly split each of these three initial databases 80:20 into the respective train-

ing and test sets for the cINN. The former subsets mark the data that the cINN is actually trained

on, whereas the latter are withheld during training and serve to quantify the performance of the

trained cINN on previously unseen data with a known ground truth of the target parameters.

We first train 50 networks for each library with randomised hyper-parameters of cINN and we

select the best network based on the performance on the test set and template stars. We train the

network until both training loss and test loss converge or either of them diverges, where the latter

cases are discarded. It takes about 50 min to train one network (6 hours for 50 networks using

7 processes in parallel) with an NVIDIA GeForce RTX 2080 Ti graphic card. Once trained, our

networks can sample posterior estimates very efficiently. Using the same graphic card (NVIDIA

GeForce RTX 2080 Ti graphic card) and sampling 4096 posterior estimates per observation, it
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takes about 1.1 sec to sample posterior distributions for 100 observations (91 observations per

second). When tested with M1 pro CPU with 8 cores, it takes about 13 sec for 100 observations

(7.6 observation/sec).

4.4 Class III templates

The set of observations on which we validate our networks contains 36 spectra of well-known

Class III stars observed with VLT/X-Shooter (Manara et al. 2013, 2017). We refer the reader for

details of observations and data reduction to original papers. Templates come from different star-

forming regions (Taurus, Lupus, Upper Scorpius, σ Orionis, TW Hydrae Association, Chameleon

I) and span a broad range of effective temperatures (2300 – 5800 K), as well as spectral types

(M9.5 - G5.0). In this work we use their properties provided by Manara et al. (2013, 2017);

Stelzer et al. (2013).

Spectral types for stars later than K5 were obtained based on the depth of molecular absorp-

tion bands (TiO, VO and CaH) and a few photospheric lines (e.g., Na i, Ca i, Mg i, etc.) present

in the optical part of the spectra (Manara et al. 2013). Earlier K-type stars were identified

using the spectral indices introduced by Herczeg & Hillenbrand (2014), while G-type stars were

identified based on the difference at 5150 Å of continuum estimated between 4600 and 5400 Å,

and 4900 and 5150 Å (Herczeg & Hillenbrand 2014). Effective temperatures (Teff) were derived

from spectral types using relations from Luhman et al. (2003) for M-type objects and Kenyon

& Hartmann (1995) for K- and G-type stars. Most of the templates have none or negligible

extinction (AV < 0.5 mag, Manara et al. 2017); those with AV > 0.3 were dereddened before

analysis assuming the extinction law from Cardelli et al. (1989) and RV = 3.1.

Surface gravity (log g) of Class III sources was estimated using the ROTFIT tool (Frasca

et al. 2003). It compares the observed spectrum with the grid of referenced spectra and finds

a best-fit minimising the χ2 of difference between the spectra in specific wavelength ranges.

Stelzer et al. (2013) and Manara et al. (2017) used BT-Settl spectra in a log g range of 0.5 –

5.5 dex as reference. The tool also provides Teff , radial and rotational velocities; but we use Teff

derived from spectral types in the subsequent analysis. Table 4.1 provides a summary of the

Class III stars and their stellar parameters. We exclude from the original paper sources, which

are suspected to be unresolved binaries or their youth is doubtful due to the lack of lithium

absorption line at 6708 Å (Manara et al. 2013).

X-Shooter has higher spectral resolution than MUSE, thus template spectra were degraded

to MUSE resolution (R∼4000) using a Gaussian kernel and re-sample on MUSE spectra within

the range of 5687.66 – 9348.91 Å (the common spectral range of MUSE and optical arm of

X-Shooter). Subsequently, spectra are normalised to the sum of the total flux of the stellar

spectrum within the analysed spectral range.
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Table 4.1: Stellar parameters of Class III template stars. The last column indicates the literature source
of the log(g) values, where "fixed" indicates that no measurement was available in the literature and we
assumed a fixed value of log(g/cm s−2) = 4.0 instead.

Object Name Region Spectral Type Teff(K) log(g/cm s−2) Reference log(g)

RXJ0445.8+1556 Taurus G5.0 5770 3.93 Manara et al. (2017)
RXJ1508.6-4423 Lupus G8.0 5520 4.06 Manara et al. (2017)
RXJ1526.0-4501 Lupus G9.0 5410 4.38 Manara et al. (2017)
HBC407 Taurus K0.0 5110 4.33 Manara et al. (2017)
PZ99J160843.4-260216 Upper Scorpius K0.5 5050 3.48 Manara et al. (2017)
RXJ1515.8-3331 Lupus K0.5 5050 3.86 Manara et al. (2017)
PZ99J160550.5-253313 Upper Scorpius K1.0 5000 3.81 Manara et al. (2017)
RXJ0457.5+2014 Taurus K1.0 5000 4.51 Manara et al. (2017)
RXJ0438.6+1546 Taurus K2.0 4900 4.12 Manara et al. (2017)
RXJ1547.7-4018 Lupus K3.0 4730 4.22 Manara et al. (2017)
RXJ1538.6-3916 Lupus K4.0 4590 4.21 Manara et al. (2017)
RXJ1540.7-3756 Lupus K6.0 4205 4.42 Manara et al. (2017)
RXJ1543.1-3920 Lupus K6.0 4205 4.12 Manara et al. (2017)
SO879 σ Orionis K7.0 4060 3.90 Stelzer et al. (2013)
Tyc7760283_1 TW Hydrae M0.0 3850 4.70 Stelzer et al. (2013)
TWA14 TW Hydrae M0.5 3780 4.70 Stelzer et al. (2013)
RXJ1121.3-3447_app2 TW Hydrae M1.0 3705 4.60 Stelzer et al. (2013)
RXJ1121.3-3447_app1 TW Hydrae M1.0 3705 4.80 Stelzer et al. (2013)
CD_29_8887A TW Hydrae M2.0 3560 4.40 Stelzer et al. (2013)
CD_36_7429B TW Hydrae M3.0 3415 4.50 Stelzer et al. (2013)
TWA15_app2 TW Hydrae M3.0 3415 4.60 Stelzer et al. (2013)
TWA7 TW Hydrae M3.0 3415 4.40 Stelzer et al. (2013)
TWA15_app1 TW Hydrae M3.5 3340 4.50 Stelzer et al. (2013)
SO797 σ Orionis M4.5 3200 3.90 Stelzer et al. (2013)
SO641 σ Orionis M5.0 3125 3.80 Stelzer et al. (2013)
Par_Lup3_2 Lupus M5.0 3125 3.70 Stelzer et al. (2013)
SO925 σ Orionis M5.5 3060 3.80 Stelzer et al. (2013)
SO999 σ Orionis M5.5 3060 3.80 Stelzer et al. (2013)
Sz107 Lupus M5.5 3060 3.70 Stelzer et al. (2013)
Par_Lup3_1 Lupus M6.5 2935 3.60 Stelzer et al. (2013)
LM717 Chameleon I M6.5 2935 3.50 Stelzer et al. (2013)
J11195652-7504529 Chameleon I M7.0 2880 3.09 Manara et al. (2017)
LM601 Chameleon I M7.5 2795 4.00 fixed
CHSM17173 Chameleon I M8.0 2710 4.00 fixed
TWA26 TW Hydrae M9.0 2400 3.60 Stelzer et al. (2013)
DENIS1245 TW Hydrae M9.5 2330 3.60 Stelzer et al. (2013)
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4.5 Validation

4.5.1 Validations with synthetic spectra

In this section, we validate whether the trained networks well learned the physical rules hidden

in the synthetic Phoenix models or not. We use the test set of each database, the synthetic

models that are not used for the training but share the same physics as the training data. As

mentioned in Section 4.3.2, we only used 80% of the database for training and remained the rest

for validation. Each test set consists of 13,107 test models.

Prediction performance

We introduce an accuracy index for evaluating the parameter prediction performance of the

network. The accuracy of the prediction is defined as the deviation between the posterior estimate

of the parameter and the ground true value (x∗) of the test model. In this section, we calculate the

accuracy in the same physical scales we used to build the databases in Section 4.3.2, meaning that

we use the logarithmic scales for the effective temperature and surface gravity and use the linear

scale for the extinction magnitude. We use either all posterior estimates sampled for one test

model or the maximum a posteriori (MAP) point estimate as a representative. To determine the

MAP estimate from the posterior distribution, we perform a Gaussian kernel density estimation

on a 1D posterior distribution and find the point where the probability density maximises, similar

to the method used in Ksoll et al. (2020) and Kang et al. (2022). In most parts of this paper,

we use the MAP estimate to quantify the accuracy of the prediction.

We evaluate the three networks (Settl-Net, NextGen-Net, and Dusty-Net) by using all 13,107

test models in the corresponding test set. For each test model, we sample 4096 posterior estimates

and measure the MAP estimates for three parameters from the 1D posterior distributions. In

Figure 4.1, we present 2D histograms comparing the MAP values estimated by the Settl-Net with

the true values of the entire test models. The Settl-Net predicts all three parameters extremely

well so the data points are all lying on the 1-to-1 correspondence line. The NextGen-Net and

Dusty-Net as well show extremely good results on the test set. The results of the other two

networks are presented in Figures C.1 and C.2.

To quantify the average accuracy of the network for multiple test models, we measure the

root mean square error (RMSE) following,

RMSE =

√
ΣN

i=1(x
MAP
i − x∗

i )
2

N
. (4.6)

In the case of the Dusty-Net, the training ranges of the effective temperature and surface gravity

are narrower than that of the other two networks. As the total number of models is the same
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Figure 4.1: 2-dimensional histograms comparing the MAP values estimated by the Settl-Net and the
true values for the entire test models of the Settl database. The colours indicate the number of models
at each point in the 2D histograms. In the lower right corner, we present the root mean square error
(RMSE) and the number of test models used (Ntest).

Table 4.2: Average prediction performance of three networks (Settl-Net, NextGen-Net, and Dusty-Net)
on 13,107 Phoenix synthetic models in the test set. For each parameter and each network, we present
the RMSE, the mean accuracy of the MAP estimates, and the RMSE normalised by the parameter range
covered in the training data (NRMSE). The test set of each network is drawn from the corresponding
synthetic database.

RMSE NRMSE

Network log Teff log(g) AV log Teff log(g) AV

Settl 4.260× 10−4 1.211× 10−2 7.893× 10−3 9.904× 10−4 4.846× 10−3 7.893× 10−4

NextGen 3.064× 10−4 6.742× 10−3 6.499× 10−3 7.123× 10−4 2.697× 10−3 6.499× 10−4

Dusty 7.274× 10−5 1.573× 10−3 2.517× 10−3 3.888× 10−4 7.863× 10−4 2.517× 10−4
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for all three databases (i.e., 65,536 models), the number density of the model for the effective

temperature and surface gravity in the Dusty database is higher than the other two. On this

account, we define the normalised RMSE (NRMSE),

NRMSE =
RMSE

xtraining
max − xtraining

min

, (4.7)

by dividing the RMSE by the training range.

In Table 4.2, we list the RMSE and NRMSE of each parameter for three networks. As

already shown in the comparisons between the MAP values and true values (Figures 4.1, C.1,

and C.2), the RMSE and NRMSE for all three networks are very small around 10−4 ∼ 10−2.

The Dusty-Net has the smallest RMSE and NRMSE for all three parameters among the three

networks. In the case of the effective temperature and extinction, the differences in NRMSE

between the networks are very small, whereas the difference in the NRMSE in the case of surface

gravity is relatively noticeable among the three parameters. Although the Dusty-Net has the

best results, small values in Table 4.2 demonstrate that all three networks perfectly learned about

the synthetic spectra.

Resimulation

To further validate the prediction results of the cINN on the synthetic test data, we verify if the

spectra that correspond to the MAP estimates match the respective input spectrum of each test

example. We do so by feeding the MAP predictions for the stellar parameters of the 13,107 test

examples as an input to our spectra interpolation routine, which we introduced for the training

set generation in Section 4.3.1, in order to resimulate the corresponding spectra. Afterwards, we

compute the residuals, RMSEs and R2 scores of the resimulated spectra in comparison to the

corresponding input spectra. The latter serves as a goodness-of-fit measure and is defined as

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
(4.8)

for a set of N observations yi with corresponding predictions ŷi, where ȳ = 1
N

∑N
i yi denotes

the mean of the observations. It takes on values between 0 and 1, with the latter indicating a

perfect match (James et al. 2017).

Figure 4.2 summarises the results for Settl-Net, showing the median relative residual against

the wavelength in the left panel and the distribution of RMSEs in the right one. The corre-

sponding plots for NextGen-Net and Dusty-Net can be found in Figures C.3 and C.4 in the

Appendix. Out of the 13,107 test cases, we could not resimulate spectra for only 52, 32 and

9 MAP predictions for the Settl-Net, NextGen-Net and Dusty-Net, respectively. Only in these

few instances either the predicted temperature or gravity (or both) fall outside the interpolation
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Figure 4.2: Left: Median relative error across the wavelength range of the resimulated spectra based on
the MAP predictions of the cINN trained on the Settl models averaged over the 13,107 synthetic spectra
in the test set. Here the grey envelope indicates the interquantile range between the 25% and 75%
quantiles. Right: Histogram of the RMSEs of the 13,107 resimulated spectra. The mean resimulation
RMSE across the test set is 3.01± 4.35× 10−7.

limits of the respective spectra library, such that the spectrum cannot be resimulated. Notably

all of these cases are extreme edge cases, i.e. right at the training boundaries of either Teff or

log(g) such that the cINN MAP estimates fall ever so slightly outside the limits while still being

an excellent match to the ground truth.

Figure 4.2 confirms the excellent precision of the MAP predictions demonstrated in the ground

truth comparison in Figure 4.1. With a median RMSE of the resimulated spectra of 1.57+1.81
−0.77 ×

10−7 (and median R2 score of 1), we find that the resimulated spectra are practically spot-on to

the corresponding input. In the left panel of Figure 4.2 we can also see that, while the overall

median residual is very small, there is a systematic trend towards a larger discrepancy between

resimulation and input within a shorter wavelength regime (< 7250 Å). This is likely an effect of

the overall low flux in the short wavelength regime for the colder stars (< 4000 K), such that even

a small deviation in flux results in a comparably larger value of the relative residual. Although,

it has to be noted again that with most relative deviations falling below 0.2% the discrepancy is

overall marginal even in the short wavelength regime.

As Figures C.3 and C.4 show, NextGen-Net and Dusty-Net exhibit similar behaviour in the

resimulation test, although we find slightly lower mean RMSEs with 2.28 ± 2.48 × 10−7 and

9.01± 7.34× 10−8, respectively. Given that the mean RMSEs across the three different spectral

libraries agree within one σ, however, it is safe to say that all three networks achieve equally

excellent performance in the resimulation test.

4.5.2 Validations with Class III template stars

In this section, we investigate how well our cINNs predict each parameter when applied to real

observations by analysing Class III template stars introduced in Section 4.4. Stellar param-

eter values (i.e., effective temperature, surface gravity, and extinction) provided by previous
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Table 4.3: Summary of cINN MAP predictions for the Class III template spectra for the cINN models
based on the three different spectral libraries. For Teff and log(g) the value in parenthesis indicates the
difference xlit−xMAP to the literature stellar parameters listed in Table 4.1. Since all Class III templates
are assumed to be at zero extinction, for AV the value itself is identical to the difference.

MAP estimate

Teff (K) [∆lit] log(g/cm s−2) [∆lit] AV (mag)

Object Name Settl NextGen Dusty Settl NextGen Dusty Settl NextGen Dusty

RXJ0445.8+1556 5391 [379] 5692 [78] 4161 [1609] 4.28 [-0.35] 4.13 [-0.20] 4.14 [-0.21] 0.21 0.38 -0.02
RXJ1508.6-4423 5069 [451] 5434 [86] 4141 [1379] 4.10 [-0.04] 4.16 [-0.10] 4.13 [-0.07] -0.31 -0.04 -0.13
RXJ1526.0-4501 5150 [260] 5443 [-33] 4170 [1240] 4.25 [0.13] 4.21 [0.17] 4.13 [0.25] -0.02 0.19 0.14
HBC407 5129 [-19] 5497 [-387] 4165 [945] 4.71 [-0.38] 4.64 [-0.31] 4.26 [0.07] 0.17 0.37 0.02
PZ99J160843.4-260216 5006 [44] 5366 [-316] 4154 [896] 4.43 [-0.95] 4.42 [-0.94] 4.28 [-0.80] 0.15 0.38 -0.09
RXJ1515.8-3331 4895 [155] 5248 [-198] 4177 [873] 4.25 [-0.39] 4.32 [-0.46] 4.31 [-0.45] 0.00 0.32 0.27
PZ99J160550.5-253313 4759 [241] 5168 [-168] 4192 [808] 4.02 [-0.21] 4.19 [-0.38] 4.34 [-0.53] 0.09 0.40 0.21
RXJ0457.5+2014 4644 [356] 5105 [-105] 4123 [877] 4.37 [0.14] 4.63 [-0.12] 4.47 [0.04] -0.13 0.34 -0.17
RXJ0438.6+1546 4588 [312] 4992 [-92] 4177 [723] 4.01 [0.11] 4.20 [-0.08] 4.50 [-0.38] 0.01 0.44 0.20
RXJ1547.7-4018 4615 [115] 5015 [-285] 4185 [545] 4.15 [0.07] 4.40 [-0.18] 4.52 [-0.30] -0.02 0.26 0.13
RXJ1538.6-3916 4464 [126] 4830 [-240] 4180 [410] 4.17 [0.04] 4.38 [-0.17] 4.69 [-0.48] 0.01 0.30 0.21
RXJ1540.7-3756 4225 [-20] 4260 [-55] 4115 [90] 4.22 [0.20] 4.17 [0.25] 4.92 [-0.50] -0.11 0.12 0.22
RXJ1543.1-3920 4269 [-64] 4299 [-94] 4132 [73] 4.34 [-0.22] 4.32 [-0.20] 5.00 [-0.88] 0.03 0.28 0.39
SO879 4106 [-46] 4027 [33] 3909 [151] 3.96 [-0.06] 4.09 [-0.19] 4.78 [-0.88] 0.22 0.29 -0.12
Tyc7760283_1 3881 [-31] 3748 [102] 3742 [108] 5.00 [-0.30] 4.99 [-0.29] 5.23 [-0.53] -0.17 -0.34 -0.52
TWA14 3819 [-39] 3739 [41] 3677 [103] 5.07 [-0.37] 4.87 [-0.17] 5.09 [-0.39] -0.32 0.19 -0.30
RXJ1121.3-3447_app2 3797 [-92] 3622 [83] 3635 [70] 4.78 [-0.18] 4.68 [-0.08] 5.13 [-0.53] 0.38 0.30 0.02
RXJ1121.3-3447_app1 3719 [-14] 3559 [146] 3564 [141] 4.90 [-0.10] 4.77 [0.03] 5.16 [-0.36] 0.01 0.04 -0.07
CD_29_8887A 3670 [-110] 3483 [77] 3491 [69] 4.79 [-0.39] 4.57 [-0.17] 5.05 [-0.65] 0.56 0.51 0.07
CD_36_7429B 3423 [-8] 3264 [151] 3262 [153] 4.70 [-0.20] 4.44 [0.06] 4.82 [-0.32] 0.52 0.50 0.13
TWA15_app2 3467 [-52] 3289 [126] 3306 [109] 4.93 [-0.53] 4.71 [-0.31] 5.02 [-0.62] 0.17 0.31 0.09
TWA7 3519 [-104] 3321 [94] 3316 [99] 4.83 [-0.23] 4.45 [0.15] 4.80 [-0.20] 0.41 0.94 0.14
TWA15_app1 3469 [-129] 3285 [55] 3310 [30] 5.01 [-0.51] 4.79 [-0.29] 5.08 [-0.58] 0.06 0.20 0.10
SO797 3248 [-48] 3225 [-25] 3078 [122] 3.93 [-0.03] 3.47 [0.43] 4.03 [-0.13] 1.07 1.48 0.73
SO641 3129 [-4] 3237 [-112] 2997 [128] 3.86 [-0.06] 3.20 [0.60] 3.81 [-0.01] 0.68 1.46 0.43
Par_Lup3_2 3181 [-56] 3245 [-120] 3048 [77] 3.96 [-0.26] 3.29 [0.41] 4.00 [-0.30] 0.72 1.29 0.40
SO925 3008 [52] 3277 [-217] 2961 [99] 3.76 [-0.06] 2.92 [0.78] 3.61 [0.09] 0.97 2.01 0.76
SO999 3079 [-19] 3294 [-234] 2979 [81] 3.68 [0.12] 2.85 [0.95] 3.58 [0.22] 0.69 1.60 0.54
Sz107 2981 [79] 3272 [-212] 2935 [125] 3.69 [0.11] 2.85 [0.95] 3.50 [0.30] 0.56 1.67 0.35
Par_Lup3_1 2739 [196] 3170 [-235] 2868 [67] 3.53 [-0.03] 2.37 [1.13] 3.04 [0.46] 2.74 3.62 2.47
LM717 2714 [221] 3218 [-283] 2903 [32] 3.46 [0.14] 2.37 [1.23] 2.84 [0.76] 1.83 3.08 1.82
J11195652-7504529 2629 [251] 3165 [-285] 2864 [16] 3.50 [-0.41] 2.27 [0.82] 2.75 [0.34] 2.11 3.43 2.24
LM601 2601 [194] 3137 [-342] 2807 [-12] 3.62 [-] 2.28 [-] 2.98 [-] 1.79 3.16 2.00
CHSM17173 2539 [171] 3096 [-386] 2773 [-63] 3.50 [-] 2.18 [-] 2.61 [-] 1.66 3.45 2.31
TWA26 2477 [-77] 2959 [-559] 2625 [-225] 3.46 [0.14] 1.83 [1.77] 2.56 [1.04] 2.64 3.92 2.92
DENIS1245 2453 [-123] 2924 [-594] 2590 [-260] 3.45 [0.15] 1.71 [1.89] 2.58 [1.02] 2.34 3.74 2.82
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papers (Manara et al. 2013, 2017; Stelzer et al. 2013) are listed in Table 4.1. Among the 36

template stars, there are cases where the literature value of effective temperature is out of the

training range of the cINNs, or where the literature value of gravity is missing. Two out of 36

stars have temperatures below 2600 K, outside the temperature range of all three databases.

Also, 14 stars with temperatures between 4000 K and 7000 K are out of the training range of

the Dusty-Net. These stars will be excluded from some analyses in the following sections.

Using each network, we sample 4096 posterior estimates per star and measure MAP estimation

for three parameters. We list the MAP values predicted by three networks in Table 4.3.

Parameter comparison between literature and cINN

In Figure 4.3, we compare the stellar parameter values from literature (xlit) with MAP predictions

(xMAP). Each row shows the result of different cINNs. The first two columns are the results of

effective temperature and surface gravity. As the extinction value of template stars is negligible,

we compare the literature value of the temperature with the MAP estimation of extinction. We

calculate the uncertainty of the MAP estimate based on the width of the posterior distribution,

but as the uncertainties are all very small, we did not present the uncertainty of the MAP estimate

in the figure. For the uncertainty of the literature values, we adopt a 1-subclass temperature

interval as the uncertainty of temperature and use the surface gravity uncertainty provided by

the literature (Stelzer et al. 2013; Manara et al. 2017). According to the literature, the 1-σ

uncertainty of extinction is ∼ 0.1–0.2 mag, so we indicate from −0.2 to 0.2 mag range in grey to

show the uncertainty range.

In this section, we do not use some stars in our analyses where the stellar parameter value from

literature is out of the training range or where any stellar parameter value is missing, although

they are presented in Figure 4.3 by triangle symbol. We use 34, 34, and 20 stars for Settl-Net,

NextGen-Net, and Dusty-Net, respectively when analysing temperatures or extinction, and use

32, 32, and 18 stars respectively when analysing gravity.

Comparing the temperature MAP estimates with the literature values, we confirm that the

majority of stars are lying close to the 1-to-1 correspondence line. We calculate the RMSE for

each network by only using stars whose temperature literature values are within the training range

(i.e., circle markers in Figure 4.3). Considering that the average of the 1-subclass temperature

interval of these stars is about 140 K, the RMSE values of 175.3 K, 192.3 K, and 94.02 K for

Settl-Net, NextGen-Net, and Dusty-Net, respectively, are well within 1 to 2 subclasses interval.

As shown in the figure and RMSE values, Dusty-Net has the best agreement with the literature

value when the temperature is within its training range of 2600 – 4000 K. However, Dusty-

Net shows very poor agreement with the literature values when the temperature is outside the

training range. This implies the caution of using cINN to analyse stars far from the training

range. Comparing Settl-Net and NextGen-Net having the same training range, MAP estimates

116



Kang et al. 2023b

2000 3000 4000 5000 6000
Tlit

eff

2400

3200

4000

4800

5600

TM
AP

ef
f

RMSE(Teff)=175.3 (N=34)

Tlit  Ttrain

Tlit  Ttrain

3.0 3.6 4.2 4.8 5.4
log glit

2

3

4

5

lo
g 

gM
AP

RMSE(log g)=0.2953 (N=32)

Settl

2000 3000 4000 5000 6000
Tlit

eff

0.0

1.5

3.0

 A
V (

=A
M

AP
V

)

RMSE(AV)=0.8823 (N=34)

2000 3000 4000 5000 6000
Tlit

eff

2400

3200

4000

4800

5600

TM
AP

ef
f

RMSE(Teff)=192.3 (N=34)

Tlit  Ttrain

Tlit  Ttrain

3.0 3.6 4.2 4.8 5.4
log glit

2

3

4

5

lo
g 

gM
AP

RMSE(log g)=0.5146 (N=32)

NextGen

2000 3000 4000 5000 6000
Tlit

eff

0.0

1.5

3.0

 A
V (

=A
M

AP
V

)

RMSE(AV)=1.483 (N=34)

2000 3000 4000 5000 6000
Tlit

eff

2400

3200

4000

4800

5600

TM
AP

ef
f

RMSE(Teff)=94.02 (N=20)

Tlit  Ttrain

Tlit  Ttrain

3.0 3.6 4.2 4.8 5.4
log glit

2

3

4

5

lo
g 

gM
AP

RMSE(log g)=0.4158 (N=18)

Dusty

2000 3000 4000 5000 6000
Tlit

eff

0.0

1.5

3.0

 A
V (

=A
M

AP
V

)

RMSE(AV)=1.142 (N=20)

200

0

200

TM
AP

ef
f

 
 T

lit ef
f

200

0

200

200

0

200

TM
AP

ef
f

 
 T

lit ef
f

200

0

200

200

0

200

TM
AP

ef
f

 
 T

lit ef
f

200

0

200

Figure 4.3: Comparison of MAP predictions with literature values in Table 4.1. Stars are basically de-
noted by circle symbols but triangle symbols denote stars excluded in analyses such as RMSE calculation
either because their literature values of temperature are out of the cINN training range or because their
literature values of surface gravity are missing. The colour indicates the temperature deviation between
the MAP estimate and the literature value. We indicate the training range of each parameter with green
dotted lines. In the third column, the grey horizontal area presents the 1-σ uncertainty (i.e., 0.2 mag)
of extinction provided by literature.
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Figure 4.4: Relative temperature deviations of the template stars between the MAP estimates and the
literature values sorted by their spectral type. Different colours and symbols indicate the results of three
different cINNs. The pink area indicates the uncertainty of the literature value of temperature. We only
present template stars whose literature value of temperature is within the network training range.

of Settl-Net are closer to the literature values.

To compare the performance of the three networks on the temperature in more detail, we

present the relative temperature deviations between the MAP predictions and the literature

values sorted by their spectral type. Figure 4.4 as well shows that MAP estimates from Dusty-

Net are in good agreement with the literature value within a 5 per cent discrepancy. In the

case of Dusty-Net, all but one star have a deviation within the 1-subclass interval. In the case

of Settl-Net and NextGen-Net, 23 and 16 stars out of 34, respectively, have a deviation less

than a 1-subclass interval. MAP estimates of Settl-Net and NextGen-Net have a relatively poor

agreement with the literature values for hot stars of 4500K (e.g., K4.0 type) or higher. However,

the discrepancies are still within 10 per cent. The average absolute relative deviations when only

using the templates within the training range of each network are 3.28, 4.49, and 2.58 per cent

for Settl-Net, NextGen-Net, and Dusty-Net, respectively (Table 4.4). These average errors are

equivalent to 1.08, 1.12, and 0.601 subclasses.

In the case of surface gravity, the RMSE of Settl-Net, NextGen-Net, and Dusty-Net are

0.30, 0.51, and 0.42 dex, respectively. However, because the surface gravity value from previous

studies (Stelzer et al. 2013; Manara et al. 2017) is obtained by fitting the spectrum on the Settl

models, the MAP estimate of Settl-Net is essentially the closest to the literature value. Although

Settl-Net has the smallest RMSE value, considering the uncertainty of literature values, the other
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Figure 4.5: Average relative error of the template stars between the MAP estimates and the literature
values sorted by their spectral type. The average error is calculated as a root mean square of the relative
errors of temperature and gravity, both in log-scale (Eq. 4.9). The pink area indicates the 1-σ uncertainty
of the literature value. We only present template stars whose literature value of temperature is within
the network training range and whose literature value of gravity is presented. Colour codes are the same
as in Figure 4.4.

two networks also have good agreement with the literature value.

To combine the results of temperature and surface gravity, we define the combined error of

two parameters as,

Combined error =

√√√√1

2

((
∆Teff

log T lit
eff

)2

+

(
∆g

log glit

)2
)
,

for

∆Teff = log TMAP
eff − log T lit

eff ,

∆g = log gMAP − log glit,

(4.9)

and present the combined error of each template star. We use the effective temperature in the

logarithmic scale to match the scale with surface gravity. The overall result using combined error

presented in Figure 4.5 are not significantly different from Figure 4.4, but by adding the gravity

error, Settl-Net shows better performance than Dusty-Net even for low-temperature stars. In

the case of NextGen-Net, the combined error is larger than the other two networks because there

are cases where temperature and gravity errors are both large. The average combined errors

across the stars of Settl-Net NextGen-Net, and Dusty-Net are 3.93, 7.20, and 6.47 per cent,
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Table 4.4: Average absolute relative error between cINN predictions and literature values for template
stars. We calculate the errors by dividing the absolute difference between the MAP estimate and liter-
ature value either by literature values (i.e., errors in per cent unit) or by 1-σ uncertainty of literature
value (i.e., errors in 1-σ unit). In the case of the effective temperature, the 1-σ uncertainty corresponds
to the temperature interval of one subclass. For each network and parameter, we only use template stars
whose literature values are within the training range of the network to calculate the errors.

Average relative error [%] Average relative error [σ]

Network Teff log(g) AV Teff log(g) AV

Settl 3.28 5.5 - 1.08 0.809 2.78
NextGen 4.49 10.2 - 1.12 1.38 4.95
Dusty 2.58 9.13 - 0.601 1 3.87

respectively.

In the case of Settl-Net, all but 7 stars are in good agreement with the literature values within

1-σ uncertainty. Excluding one star with a large error, most of the stars have errors of less than

5 per cent and a maximum of 10 per cent. Dusty-Net also has small errors (<15 per cent) but

Dusty-Net has a disadvantage in that it is inherently less versatile than the other two networks

because of its training range. NextGen-Net also shows an error of less than 10 per cent for stars

with spectral type earlier than M5.0.

Lastly, in the case of extinction, the deviation between MAP estimates and literature values

varies depending on the temperature. For stars hotter than about 3400 K (i.e., M3.0 type), all

three networks predict near-zero extinction, with little deviation from literature values. In the

case of NextGen-Net, there are stars that are slightly outside the error range but their MAP

estimates are sufficiently small. On the other hand, for cool stars below 3400 K, the discrepancy

between the MAP value and the literature value gradually grows. In the case of Settl-Net and

Dusty-Net, the MAP estimate does not exceed the maximum of 3, but in the case of NextGen-

Net, the MAP estimates are slightly larger than the other two networks.

In this section, we showed that the discrepancy between the network MAP prediction and

literature value varies with the characteristics of the stars. Based on the overall results, a star of

• M6.5 – K1.0 (2935 – 5000 K) for Settl-Net,

• M4.5 – K1.0 (3200 – 5000 K) for NextGen-Net,

• M5.5 – M0.0 (3060 – 4000 K) for Dusty-Net

shows especially high agreement with the literature values. Settl-Net showed the best agreement

with the literature values overall. Dusty-Net also shows a good agreement for stars whose tem-

perature is within the Dusty database of 2600 – 4000 K. NextGen-Net has relatively large errors

compared to the other two, but it still shows reliable performance for early-type stars. Given that

Settl-Net and NextGen-Net cover a wider range of temperature (i.e., 2600 – 7000 K) and gravity

120



Kang et al. 2023b

(2.5 – 5 log(cm s−2)) than Dusty-Net, Settl-Net is the best choice among the three networks.

However, all three networks showed good agreement with the literature values considering their

uncertainty.

This result shows how well our cINN predictions are in good agreement with values obtained

with the classical methods in previous studies. Differences between literature values and network

predictions do not demonstrate that the network prediction is wrong. For example, in the case

of surface gravity, because the literature value was also obtained by fitting spectra based on

the Settl model, there is inevitably a larger discrepancy between the literature values and MAP

predictions of NextGen-Net and Dusty-Net. This means that we need to consider methods used

in the literature, and additional analysis is required to judge whether the cINN prediction is

really wrong or not. The resimulation following in the next section will provide a better clue to

determine the correctness of our cINN predictions.

Resimulation

As we have done for the synthetic test data in Section 4.5.1, we also evaluate the accuracy

of the cINN predictions on the Class III template by resimulation to quantify the agreement

between the spectra corresponding to the MAP estimates with the input spectra. In this case,

we also run a resimulation for the nominal literature stellar parameters of the Class III sources

listed in Table 4.1 for comparison. Some of the Class III template sources in our sample do

not have an estimate for log(g) in the literature. For these sources, we assume a fixed value of

log(g/cms−2) = 4.0 in our resimulation, which is a reasonable guess for the spectral types in our

sample. The sources in question are marked as "fixed" in the last column of Table 4.1. There

are a few templates (7 for Settl, 1 for NextGen and 8 for Dusty; see Table 4.3), where the cINN

extinction MAP estimate has a non-physical negative value. Since most of these are only barely

below zero, we decide to allow these negative values to be accounted for during the resimulation.

Figure 4.6 shows an example result of the resimulation for the M4-type template star SO797

for all three spectral libraries with the top panels comparing the resimulated spectra to the input

spectrum and bottom panels showing the corresponding residuals. Here the red curve indicates

the resimulation result derived from the cINN MAP estimates, whereas the blue curve marks

the literature-based outcome. In this particular example, the cINN recovers both Teff and log(g)

quite accurately for all three spectral libraries, but overestimates AV for this supposedly zero

extinction template Class III source by 1.07, 1.48 and 0.73 mag based on Settl, NextGen and

Dusty, respectively. Interestingly, however, we find that the resimulated spectrum based on the

cINN MAP prediction with the supposedly wrong AV matches the input spectrum better than

the spectrum derived from the literature value in all three examples as e.g. attested by the smaller

RMSE and better R2 score of 2.7× 10−5 and 0.98 compared to 3.77× 10−5 and 0.97 in the Settl

case. Figure C.5 in the Appendix shows another such example, where it is immediately apparent

121



4.5. Validation

0

2

4

6

8

No
rm

al
ise

d 
flu

x 
(1

0
4 ) Observation

Literature
cINN MAP

Settl

Literature cINN MAP
Teff (K)

log(g/cms 2)
AV (mag)

3200
3.90
0.00

3248
3.93
1.07

Observation
Literature
cINN MAP

NextGen

Literature cINN MAP
Teff (K)

log(g/cms 2)
AV (mag)

3200
3.90
0.00

3225
3.47
1.48

Observation
Literature
cINN MAP

Dusty

Literature cINN MAP
Teff (K)

log(g/cms 2)
AV (mag)

3200
3.90
0.00

3078
4.03
0.73

6000 6500 7000 7500 8000 8500 9000
(Å)

50

0

50

100

150

(I r
es

im
I in

)/I
in

 (%
) Literature

cINN MAP

RMSE
3.77 × 10 5

2.70 × 10 5

R2 score
0.97
0.98

6000 6500 7000 7500 8000 8500 9000
(Å)

Literature
cINN MAP

RMSE
6.35 × 10 5

2.47 × 10 5

R2 score
0.92
0.99

6000 6500 7000 7500 8000 8500 9000
(Å)

Literature
cINN MAP

RMSE
4.63 × 10 5

2.27 × 10 5

R2 score
0.96
0.99

Object ID SO797

Figure 4.6: Resimulation results for Class III star SO797. The columns show in order the results
for the three different spectral libraries Settl, NextGen and Dusty. Top: Comparison of resimulated
spectrum. The blue spectrum indicates the resimulation derived from the literature stellar parameters
from Table 4.1. The red spectrum shows the corresponding resimulation based on the cINN MAP
prediction. The respective input parameters for the resimulation are summarised in the table in the
bottom right corner. The relative residuals (Iresim − Iin)/Iin of the resimulated spectra compared to the
input spectrum are shown in the bottom panels, respectively.

that the cINN-based resimulated spectrum matches the input observation much better than the

literature-based solution, which evidently does not capture the slope of the observed spectrum

correctly.

Figures 4.7, 4.8 and Table C.1 in the Appendix summarise the resimulation results across the

entire Class III template sample, showing the median relative residuals against the wavelength,

the distributions of RMSEs and R2 scores, and a table of all RMSEs and R2 scores, respectively.

Note that the resimulation statistics vary between the libraries here. Given the lower effective

temperature limits of the libraries (i.e. 2600 K) 2 of the 36 templates, namely TWA26 and

DENIS1245, can a priori not be resimulated with Settl and NextGen. For Dusty the literature

sample is even smaller with only 20 out of 36 templates due to the low upper temperature limit of

4000 K. For the resimulation of the MAP estimates we can use 31 templates with the Settl-Net,

29 with NextGen-Net and only 17 with Dusty-Net. For more details, we refer to Table C.1. Note

that for the Dusty resimulation there are actually 7 templates, where the log(g) prediction is

above the training set limit of 5. However, since the Dusty spectral library does actually extend

to log(g/cms−2) = 5.5, we decide to run the resimulation for these 7 templates anyways, in

particular since for most of those the log(g) prediction is only barely above 5 (see Table 4.3).

Figure 4.7 shows that for all three libraries we find that our observation from Figure 4.6,

i.e. that the resimulated spectrum based on the cINN prediction fits the input spectrum better

than the literature-based resimulation, holds on average across the entire template sample. The

distributions of the RMSEs and R2 scores of the resimulated spectra in Figure 4.8 further confirm

this, as the cINN-based resimulated spectra tend towards smaller RMSEs and slightly better R2

scores compared to the literature-based spectra for all three spectral libraries.
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Figure 4.7: Comparison of the median relative error of the resimulated spectra for the Class III template
stars between the resimulations based on the literature stellar parameters (blue, see Table 4.1) and the
cINN MAP predictions (red). From top to bottom, the panels show the corresponding results for the
three tested spectral libraries Settl, NextGen and Dusty.
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Examining the 7 templates, for which the Dusty-based cINN prediction of log(g) exceeds

the learned upper limit of 5 (i.e. the cINN extrapolated), more closely, the resimulation results

show that even when the cINN extrapolates, the set of predicted parameters corresponds to a

spectrum, which matches the input observation quite well and, in particular, equally if not better

than the respective spectrum resimulated from the literature values as indicated by the R2 scores

(see Table C.1 and Figure C.6 for an example). This result shows that the cINN prediction is

actually fairly robust even in the event of slight extrapolation.

Comparing our chosen resimulation accuracy measures to the spectral types of the Class III

templates in Figure 4.9, we find that the RMSEs exhibit an increasing trend towards the M-types

for all three spectral libraries. For the R2 scores, we find a notable dip in the goodness of fit for

the intermediate spectral types, i.e. between M2 to K3, in both the resimulation of the literature

and cINN-based values for Settl and NextGen. The beginning of this dip can also be seen in the

Dusty-based results up to the temperature limit of this library at the K7 type. Interestingly,

when compared to Figure 4.5 in this spectral type range the discrepancy between the cINN

prediction and literature stellar properties is relatively low, i.e. both cINN and literature values

correspond to an equally sub-optimal fit to the observed spectra.

Overall the resimulation test shows that the cINN approach predicts parameters for the real

Class III template spectra that correspond to spectra, which not only fit the input observations

very well (as shown by the good R2 scores in Figure 4.8 and Table C.1), but also match better

than the spectra resimulated from the literature values in most instances.

4.6 Feature Importance

4.6.1 Importance calculation

In this section, we evaluate which parts of the spectra the cINN prediction relies the most upon.

To do so we measure the so-called permutation feature importance, an approach first described

by Breiman (2001) for random forest models and later generalised by Fisher et al. (2018). In this

study we implement the Fisher et al. (2018) algorithm as described in Molnar (2022), operating

as follows:

First, we compute the error on the original held-out test set

eorig = L (X, g(Y)) , (4.10)

where g represents the inverse translation (x ← y) of the trained cINN, X denotes the matrix

of the target parameters of the test set (ntest × nparameters), Y is the ntest × nfeatures feature

matrix of the test set and L represents a loss measure. In our case, L is the RMSE of the MAP

estimates.
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Next, for each feature j ∈ {1, . . . , nfeatures}, we generate a feature matrix Yperm,j via random

permutation of the j-th column in order to break the association between feature j and the target

parameters x, estimate the prediction error eperm,j = L (X, g (Yperm,j)) based on the permuted

data set, and compute the feature importance of feature j as the quotient

FIj =
eperm,j

eorig
. (4.11)

The larger FIj is, the worse the model prediction becomes if feature j is scrambled via permu-

tation, i.e. the more important feature j is to the model’s decision making. The closer FIj is

to 1, on the other hand, the less feature j affects the predictive performance and, thus, the less

relevant it is to the model’s reasoning.

In our particular case, the feature space is very high dimensional with 2930 spectral bins per

spectrum. Consequently, computing the individual per spectral bin feature importance is rather

computationally expensive as it requires generating the posteriors and determining the MAP

estimates for each of the 2930 bins. Although the computational cost alone is not prohibitive in

this case given the cINNs great efficiency, we still opt for a slightly different approach, because

the spectral bins themselves are also not necessarily independent of each other. Instead of using

the individual bins, we group them together into combined features, for which we then estimate

the importance. In practice, this means that we permute multiple columns at once (each column

with its own permutation seed though) corresponding to the spectral bins in a given group. For

the setup in this study in particular we decide to evaluate the feature importance across the

wavelength range using groups of 10 bins, which corresponds to a spectral width of 12.5 Å. We

set all groups to overlap by 5 bins (i.e., 6.25 Å) with the preceding and following groups. We

average feature importance for overlapping bins.

4.6.2 Important features for M-, K-, and G-type stars

We draw three groups from the test set according to the temperature of the test model: M-type

(2600K–3850 K) group, K-type (3900K–5110 K) group, and G-type (5150K–6000 K) group, and

evaluate the feature importance across the wavelength for each group per network. In the case

of Dusty-Net, we only evaluate for the M-type group because the maximum temperature of the

Dusty database is 4000 K.

Figure 4.10 presents the feature importance of Settl-Net for M-type stars. To compare the

important features with the locations of stellar parameter tracers existing in the real spectrum,

we plot the median flux of M-type template stars in the first row, and indicate the locations of

several tracers of stellar parameters (Table 4.5): Na i doublet 5890, 5896 Å (Teff and log g, Allen

& Strom 1995), Ca i 6122, 6162, 6439 Å (log g, Allen & Strom 1995), Ba ii, Fe i, and Ca i blend

6497 Å (Teff and log g, Allen & Strom 1995; Herczeg & Hillenbrand 2014), Hα 6563 Å (Teff ,
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Figure 4.10: Feature importance evaluation for M-type synthetic models in the test set using Settl-Net.
We present the median flux of M-type Class III template stars in the first row. The grey area indicates
the interquantile range between the 25% and 75% quantiles. The other three rows show the feature
importance across the wavelength for each stellar parameter. Vertical lines and shades indicate the
location of typical tracers of stellar parameters listed in Table 4.5.
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Luhman et al. 2003), K i doublet 7665, 7699 Å (Teff and log g, Manara et al. 2013, 2017), Na i

doublet 8183, 8195 Å (Teff and log g, Kirkpatrick et al. 1991; Allen & Strom 1995; Riddick

et al. 2007), Ca ii IR triplet 8498, 8542, 8662 Å (Teff , Kirkpatrick et al. 1991; Allen & Strom

1995; Luhman et al. 2003), Mg i 8807 Å (Teff , Manara et al. 2013; Herczeg & Hillenbrand 2014),

hydrogen Paschen series (AV, Edwards et al. 2013), CaH 6750–7050 Å (Teff and log g, Kirkpatrick

et al. 1993; Allen & Strom 1995), TiO 6080–6390, 7053–7270 Å (Teff , Kirkpatrick et al. 1991;

Henry et al. 1994; Jeffries et al. 2007), ViO 7550–7570, 7920–8000 Å (Teff , Allen & Strom 1995;

Riddick et al. 2007; Manara et al. 2013), and R1 8015–8130 Å (Teff , Riddick et al. 2007) .

To evaluate whether these observational tracers act as important features in our networks, we

check whether the feature importance value corresponding to each tracer’s wavelength is larger

than a fiducial value. We use the value of median plus one standard deviation over the entire

wavelength range as a fiducial value to determine an important tracer. For tracers with multiple

lines or molecular bands, we average the feature importance for each line or over the wavelength

range. In Table 4.5, we mark tracers whose average importance is larger than the fiducial value.

We also indicate for which parameters these lines and bands trace in real observations.

Figure 4.10 shows that Na i doublet 8183, 8195 Å lines are the most important feature for

Settl-Net to predict stellar parameters of M-type stars. In the case of extinction, there are two

wide peaks near 7500 Å, where the redder peak overlaps with the VO molecular band. However,

Na i has a similarly large importance value. In the case of temperature and gravity, K i doublet

7665, 7699 Å lines play a second important role, and in extinction, Hα does. VO and R1

molecular absorption bands as well act as important features to determine the temperature and

extinction.

We present the feature importance evaluated for NextGen-Net and Dusty-Net in Figure C.8.

The fact that Na i, K i, and Hα are important features for M-type stars is the same for all

three networks. However, for NextGen-Net, there is a large bump at 7500 Å in the case of

temperature. The results of NextGen-Net in overall are spikier than in the other two networks.

In the case of Dusty-Net, the importance value of Na i doublet 5890, 5896 Å (Na i D) is relatively

large compared to the other networks, and there is a very wide bump around Na i doublet 8183,

8195Å.

Given the fact that extinction affects the overall shape of the spectrum, it is interesting that

the Settl-Net relies a lot on a few certain lines. Broad bumps exist in the red part of the spectrum,

but there are particularly important lines and areas such as the Na i, Hα, and near VO bands.

The result of NextGen-Net is similar to Settl-Net but shows a little more spiky trend with wider

peaks. Dusty-Net shows a more wavy shape across the entire wavelength range compared to the

others.

Next, in the case of K-type stars, the results of Settl-Net and NextGen-Net are similar to

each other, unlike the case of M-type stars, so we only present the result of Settl-Net in this
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Figure 4.11: Left: Feature importance evaluation for K-type synthetic models in the test set using
Settl-Net. Right: Feature importance evaluation for G-type synthetic models in the test set using Settl-
Net. The panels in the first row show the median flux of K-type and G-type Class III template stars,
respectively. Lines and shades are the same as Figure 4.10.

paper (left panels in Figure 4.11). Compared to the results of M-type stars, it is noticeable that

important features are different for each parameter. In the case of temperature and extinction,

the overall shapes are similar, with the Hα line being the most important feature. Na i doublet

8183, 8195 Å are no longer so important to determine temperature and extinction for K-type

stars. In addition, Na i D lines and hydrogen Paschen series have relatively high importance

values. On the other hand, in the case of surface gravity, the Na i doublet 8183, 8195 Å lines still

play the most important role. The importance of Na i D in gravity becomes noticeable in K-type

stars compared to M-type stars. Additionally, there are several peaks at K i, Mg i 8807 Å used

as important features to determine gravity.

The result of G-type stars (i.e., right panels in Figure 4.11) is similar to the K-type stars.

The Hα is still the most important feature for temperature and extinction and there are several

peaks at the Paschen series as well. For gravity, Na i D becomes more important in G-type stars

and has an importance value comparable to that of Na i doublet 8183, 8195Å. These sodium lines

are the most important features to determine gravity. On the other hand, the importance of K i

lines decreases in G-type stars compared to K-type stars.

These results show that the features that our networks rely on to determine parameters

vary depending on the input object. In particular, when changing from M- to K-type, important

features change noticeably. For example, the Na i doublet 8183, 8195 Å lines are essential features

for networks to understand M-type stars, sensitive to all three stellar parameters, but for earlier

type stars (K- and G-types), it is important only to determine gravity. Similarly, the K i doublet
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Table 4.5: We mark tracers whose feature importance values are larger than the fiducial value of median
plus 1 standard deviation, meaning that marked tracers are significantly important features to determine
each stellar parameter. For tracers with multiple lines (e.g., doublets) or molecular bands, we average
the feature importance values. The results are based on the feature importance evaluation of Settl-Net
(Figures 4.10 and 4.11).

M-type K-type G-type

Tracers used in observations for Teff log(g) AV Teff log(g) AV Teff log(g) AV

Na i doublet 5890, 5896 Å Teff , log(g) - - - ✓ ✓ ✓ ✓ ✓ ✓

TiO 6080–6390, 7053–7270 Å Teff (M- and late K-type) - - - - - - - - -
Ca i 6122, 6162, 6439 Å log(g) - - - - - - - - -
Ba ii, Fe i, and Ca i blend 6497 Å Teff , log(g) - - - ✓ - ✓ ✓ - ✓

Hα 6563 Å Teff (early type) - - ✓ ✓ ✓ ✓ ✓ ✓ ✓

CaH 6750–7050 Å Teff (M-type), log(g) - - - - - - - - -
VO 7550–7570, 7920–8000 Å Teff (M-type) ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓

K i doublet 7665, 7699 Å Teff , log(g) ✓ ✓ ✓ - - - - - -
R1 8015–8130 Å Teff (M-type) ✓ ✓ ✓ - - - ✓ ✓ -
Na i doublet 8183, 8195 Å Teff (M-type), log(g) ✓ ✓ ✓ ✓ ✓ - - ✓ ✓

hydrogen Paschen series AV - - - ✓ ✓ ✓ ✓ ✓ ✓

Ca ii IR triplet 8498, 8542, 8662 Å Teff (early type) ✓ ✓ - ✓ ✓ - ✓ ✓ ✓

Mg i 8807 Å Teff - - - - ✓ - - ✓ -

lines are gravity-sensitive features for late-type stars but they are less essential for earlier types.

In the case of Na i doublet 5890, 5896 Å lines, on the other hand, they are more important for

hot stars rather than for cold stars to determine gravity.

Please note that the feature-importance tests presented in this section indicate the features

that affect the network’s judgment which is based on the Phoenix models. Some of the important

features (that are essential for the network) behave very similarly to our knowledge, but some do

not. Above all, the behaviour of the Na i doublet 8183, 8195 Å lines in the feature importance test

agrees well with our knowledge. The Na i line, tracing the gravity (Riddick et al. 2007; Herczeg &

Hillenbrand 2014; Manara et al. 2017) and the temperature of late-type stars (Kirkpatrick et al.

1991; Allen & Strom 1995; Riddick et al. 2007), is also essential for networks to determine stellar

parameters of late-type stars and gravity. Based on Table 4.5, we find that the R1 8015–8130 Å,

K i doublet 7665, 7699 Å, and Ba ii, Fe i, and Ca i blend 6497 Å as well behave similarly to our

knowledge. On the other hand, unlike our knowledge that the Ca ii IR triplet 8498, 8542, 8662 Å

and Mg i 8807 Å trace the temperature (Kirkpatrick et al. 1991; Allen & Strom 1995; Luhman

et al. 2003; Manara et al. 2013; Herczeg & Hillenbrand 2014), the networks do not rely much on

these lines to estimate the temperature.

In the feature-importance results of extinction, we showed the interesting results that there are

particularly influential features although the extinction affects the overall shape of the spectrum,

not the particular lines. One of the possible causes is the degeneracy between temperature and

extinction. In our results, the features influential in determining the temperature tend to have

high importance in extinction as well (e.g., Na i doublet 8183, 8195 Å, VO band, and Hα). Due

to the degeneracy between the two parameters, the over- or under-estimation of temperature

130



Kang et al. 2023b

can be compensated by over- or under-estimate of extinction. So, if the features important for

temperature are scrambled, it can also affect the determination of extinction. Another possible

cause is that the network determines extinction based on correlations between multiple features.

For example, if the network relies on the ratios between several features to the Hα, Hα may have

relatively higher importance than others, because scrambling the Hα affects all these ratios.

The feature importance only shows how much the error increases by scrambling a certain

feature. Therefore, it is not easy to clearly understand the reasons for the error increment.

Compared to the spectra of template stars, however, it is obvious that cINN captures important

information from the point where absorption or emission exists. There are many features used

to predict parameters besides the major features indicated in the figures or in the table, but the

important point is that the most influential features are the same as the tracers we already know.

This confirms that even though we do not exactly know how cINNs learn the hidden rules from

the training data, what cINNs learned is very close to the physical knowledge we have.

4.7 Simulation gap and the best network

In sections 4.5.1 and 4.5.2, we showed that, for the synthetic models, our cINNs predict stellar

parameters perfectly and for the template stars, network predictions are in good agreement with

literature values within a 5 to 10 per cent error. The difference between literature values and

network predictions slightly varies depending on the characteristics of the template stars. In

sections 4.5.1 and 4.5.2, we confirmed that resimulation of the spectrum based on the network

prediction well restored the original input spectrum. This means that the network successfully

finds the most suitable model that satisfies the given observational data, as the network is

designed to. In other words, the very good resimulation results indicate that cINNs provided us

with the best results within the physics it has learned.

Interestingly, the resimulated spectrum based on the network prediction is closer to the

original input spectrum than the resimulated spectrum based on the literature values for template

stars (see Figure 4.6 and Table C.1), despite the discrepancy between the network prediction and

literature value. This can be considered to be one of the following two cases. One is because

there is a simulation gap, i.e., a gap between the physics within training data (i.e., the Phoenix

atmosphere models), and the physics of the real world. The other is because of misclassification,

meaning the literature value used as a reference in this paper is inaccurate. In the former case, no

matter how perfectly trained the network is in terms of machine learning, it encounters inherent

limitations. The simulation gap can be improved if we use better training data.

The three Phoenix libraries used in this paper reflect lots of important physics and character-

istics of stellar atmosphere, but, of course, do not perfectly reflect reality. Therefore, we suspect

that it is because of the simulation gap that the parameter predictions differ from the literature
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values even though the resimulation results are almost perfect. In this section, we will introduce

how we can quantify the simulation gap using the trained cINN and determine how large the

gap is between the Phoenix models and reality. Finally, we will draw comprehensive conclusions

about the performance and usage of our cINNs.

4.7.1 Quantifying simulation gap

As explained in section 4.2, cINN consists of the main network that connects parameters (x)

and latent variables (z) and conditioning network (h) that transforms the input observation (y)

to the useful representative (i.e., condition, c). Both are trained together, and the conditioning

network in this paper compresses 2930 features (y1, . . . , y2930) included in one spectrum into

256 conditions (c1, . . . , c256). If the condition of the real observational data passed through the

conditioning network (cobs) follows the same probability distribution as the condition of the

training data (ctrain) this means there is no simulation gap. Because the conditioning network

extracts only important features from the spectrum.

However, unlike the latent variables set up to follow a prescribed distribution (i.e., a standard

normal distribution), the distribution of conditions does not follow a certain known distribution.

Therefore, we build a network (k) that transforms the distribution of conditions (p(c)) into a

prescribed probability distribution. The k network based on the cINN architecture is described

as k(c) = s, and the output s is trained to follow a standard normal distribution. By definition

of the cINN architecture, the dimensions of c and s are the same.

Using the conditioning network h and transformation network k, we check the simulation gap

between the Phoenix models and template stars by comparing the distribution of the transformed

condition of template stars k(h(ytpl)) = stpl with the distribution of transformed condition of the

training data strain which follows a known distribution. We evaluate the simulation gap based

on the R2 score between two probability distributions, p(strain) and p(stpl). The bigger the R2

value, the smaller the simulation gap.

4.7.2 Simulation gap

We trained transformation networks (k) for each cINNs (Settl-Net, NextGen-Net, and Dusty-

Net) and compare the probability distribution of the transformed conditions of the training data

and template stars. Figure 4.12 shows that the distribution of the training data (blue line) well

follows the prescribed standard normal distribution (pink line) but the distribution of template

stars (black) differs from that of the training data. There are 256 condition components for each

star, but we present all these components in one distribution. The R2 scores for all template stars

are 0.805, 0.709, and 0.425 for Settl, NextGen, and Dusty, respectively. Dusty model seems to

have the widest simulation gap, but we need to consider that Dusty-Net has a narrower training

range than the parameter space of the template stars.
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Figure 4.12: Probability distributions of transformed conditions of the training data (blue) and template
stars (black) for three networks. The gap between the blue and black lines means the gap between
the Phoenix model and the template spectrum. The R2 value between the blue and black line and the
number of template stars used are presented in the upper left corner of each panel.
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Figure 4.13: Probability distributions of transformed conditions of the training data and template stars.
Each column represents three networks (Settl-Net, NextGen-Net, and Dusty-Net) and each row repre-
sents the group of template stars depending on their temperature (T lit

eff ). Colour codes are the same as
in Figure 4.12.

As the performance of the cINN varies depending on the temperature of the template star, we

divided the stars into three groups based on the prediction performance of the networks shown

in section 4.5.2 (see Figures 4.4 and 4.5). For example, Settl-Net and NextGen-Net predicted

parameters with good agreement with literature values, especially for stars with temperatures

between ∼3000 K and ∼5000 K. So we divided the stars into 3 groups based on 3000 K and

5000 K for Settl-Net and NextGen-Net. In the case of Dusty-Net, due to the temperature upper

limit of 4000 K for the Dusty training set, we divided groups based on 3000 K and 4000 K.

In the case of Settl and NextGen libraries (Figure 4.13), the earlier the spectral type, the

smaller the gap and Settl has a smaller gap than NextGen in the overall temperature range.

While the simulation gap is small for hot stars above 3000 K, the gap is large for later-type stars

below 3000 K. In the case of NextGen, in particular, the simulation gap is very large for stars

below 3000 K. In the case of Dusty, the simulation gap for the coldest group (T < 3000 K) is

also very large and comparable to that for hot stars (T > 4000 K), out of the temperature range

of the Dusty library.

The large gap for the lowest temperature group (T < 3000 K) is an obvious result because
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perfectly implementing the atmosphere of late-type stars through the simulation is a much more

difficult task than the earlier type stars. For late-type stars, condensation of vapour is im-

portant but the relevant physical processes are complex, making it very difficult to produce a

good atmosphere model. Thus, these results demonstrate the inherent limitations of modelling

low-temperature stars. These results show that the degree of simulation gap varies with the char-

acteristics of the star, just as the difference between the prediction of cINN and the literature

value varies, as shown in section 4.5.2.

Interestingly, both Settl and NextGen have the smallest simulation gaps for the early-type

stars with temperatures above 5000 K. However, in Figures 4.4 and 4.5, the difference between

the MAP prediction and the literature value of this group is slightly larger than that of the inter-

mediate temperature group (3000–5000 K). The smallest simulation gap (Figure 4.13) and good

resimulation results better than the resimulation of literature values (Figure C.5 and Table C.1)

imply that MAP estimates of our networks for early-type stars above 5000 K are sufficiently

reliable. Therefore, we suggest that the parameter estimations by our networks may be more

accurate than the literature values for early-type stars above 5000 K.

4.7.3 Best network

It is clear that the simulation gap is large for late-type stars. Interestingly, however, our cINNs

nevertheless predict the temperature and surface gravity well. First of all, all three networks had

poor predictions of extinction for late-type stars below 3000 K. It is therefore very difficult for the

network to estimate extinction accurately for stars in this temperature range, and the estimated

extinction is not very reliable compared to the other two stellar parameters. However, Settl-Net,

NextGen-Net, and Dusty-Net estimated the temperature accurately with maximum errors of less

than 10, 5, and 15 per cent, respectively, despite the large simulation gap. This is a sufficiently

accurate prediction considering the temperature interval between 1 subclass of stellar spectral

type (see Figure 4.4). Using combined error in Figure 4.5, we demonstrated that Dusty-Net and

Settl-Net predict surface gravity and temperature accurately within 5 per cent for late-type stars

as well as early-type stars, despite the simulation gap of late-type stars. This shows that our

networks are still applicable to low-temperature stars despite the limitations of training data. In

the case of NextGen-Net, its performance was relatively poor for low-temperature stars compared

to the other two networks, which is explained by the large simulation gap shown in Figure 4.13.

On the other hand, for earlier type stars with relatively small simulation gaps, the network

performs more reliably. Except for one or two outliers, both Settl-Net and NextGen-Net accu-

rately predict temperature and gravity within a maximum error of 5 to 10 per cent. NextGen-Net

tends to estimate extinction and temperature slightly higher than Settl-Net. This seems that

NextGen-Net is adopting a degenerate solution that satisfies the same input spectrum by increas-

ing both extinction and temperature slightly. Overall, Settl-Net, with the smallest simulation
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gap, shows the best performance among the three networks.

We conclude that Settl-Net is the best network considering both parameter prediction perfor-

mance and simulation gap. Against low-temperature stars (e.g., M-type stars), Dusty-Net also

shows comparable performance to Settl-Net. However, given that the stellar parameter coverage

(i.e., temperature and gravity) of Settl-Net is wider than that of Dusty-Net, Settl-Net is more

versatile and usable. Therefore, based on our overall results, we recommend using Settl-Net when

applying the network to real observations. The only limitation to be cautious of is the estima-

tion of extinction. Regardless of the spectral type of the stars, cINN estimates temperature and

gravity accurately, but it should be cautious of using estimated extinction when the estimated

temperature is below 3000 K.

4.8 Summary

In this paper, we introduce a novel tool to estimate stellar parameters from the optical spectrum

of an individual young, low-mass star. cINN is one of the deep learning architectures specialised

in solving a degenerate inverse problem. The degenerate problem here means that, due to the

inevitable information loss during the forward process from the physical system to observation,

different physical systems are mapped onto similar or almost identical observations. Many of the

major tasks in astrophysics are solving degenerate inverse problems like estimating physical prop-

erties from observations. In this work, we develop a cINN for young low-mass stars to efficiently

diagnose their optical spectra and estimate stellar parameters such as effective temperature,

surface gravity, and extinction.

cINN adopts a supervised learning approach, meaning that the network is trained on the

database consisting of numerous well-labelled data sets of physical parameters and observations.

However, it is difficult to collect a sufficient number of well-interpreted observations in real.

Therefore, we use synthetic observations instead to generate enough training data. In this work,

we utilise three Phoenix stellar atmosphere libraries (i.e., Settl, NextGen, and Dusty) to produce

the database for training and evaluation of the network. Interpolating the spectrum on the

temperature – gravity space and adding the extinction effect on the synthetic spectra, we produce

a database for each Phoenix library consisting of 65,536 synthetic models. To produce databases,

we randomly sampled three parameters from the given parameter ranges. Settl and NextGen

databases cover the temperature range of 2600–7000 K and log(g/cm s−2) range of 2.5–5. In

the case of the Dusty database, it covers the temperature of 2600–4000 K and log(g/cm s−2)

of 3–5. All three databases have extinction values within 0–10 mag. Then, we build and train

cINNs using each database but only use 80% of the synthetic models in the database to train the

network and remain the rest for evaluation. In this paper, we present three cINNs that learned

about different Phoenix atmosphere models: Settl-Net, NextGen-Net, and Dusty-Net.
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We validated the performance of our cINNs in various methods. Our main results are the

following:

1. All three networks provide perfect predictions on the test set with the RMSE of less than

0.01 dex for all three parameters, demonstrating that the cINNs are well-trained. Addition-

ally, we resimulate the spectrum using the parameters estimated by the network using our

interpolation method and compare it with the original input spectrum. The resimulated

spectra perfectly match the input spectra of the test models with RMSE of about 10−7.

These results prove that our three cINNs perfectly learned the hidden rules in each training

data.

2. To test the performance on the real observational data, we analyse 36 Class III template

stars well-interpreted by Manara et al. (2013, 2017); Stelzer et al. (2013) with our cINNs.

We demonstrate that stellar parameters estimated by our cINNs are in good agreement

with the literature values.

3. Each network has a slightly different error depending on the temperature of the given star.

Settl-Net works especially well for M6.5 – K1.0 (2935 – 5000 K) stars and NextGen-Net

works well for M4.5 – K1.0 (3200 – 5000 K) stars. Dusty-Net works well for M5.5 – M0.0

(3060 – 4000 K) stars. Given that the temperature upper limit of Dusty training data

is 4000 K, Dusty-Net works well for stars within its training range. For stars in other

temperature ranges, three networks perform well with an error of less than 10 per cent.

4. The most difficult parameter for cINNs to predict is the extinction of cold stars with

temperatures less than 3200 K. All three networks tend to estimate extinction higher than

the literature value for cold stars. However, cINNs estimate extinction well for hot stars

with temperatures above 3200 K.

5. We resimulate spectra based on cINN estimations and literature values and compare them

with the original input spectrum. Interestingly, most of the resimulated spectra based on

cINN estimations are closer to the input spectra than the resimulated spectra derived from

literature values. This implies that our cINNs well understand the physics in each Phoenix

library and are able to find the best-fitting Phoenix model (i.e., parameters) for the given

observation.

6. Results that the resimulations are perfect even though the prediction of the network is

slightly different from the literature can be explained by a gap between the Phoenix model

and reality, so-called the simulation gap. We quantify the simulation gap between each

library and template stars using the conditioning networks included in our cINNs. We

confirm that the simulation gaps are relatively large for cold stars below 3000 K where the
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cINNs have difficulty estimating extinction. We confirm that the simulation gap is small

for hot stars where cINNs predict parameters well.

7. The overall results imply that although there is an obvious gap between the Phoenix model

and reality, especially for cold stars below 3000 K, our networks can nonetheless provide

reliable predictions for all stars within 5–10 per cent error, especially for temperature and

gravity. Extinction estimated by cINN is also reliable unless the estimated temperature is

less than 3200 K.

8. We investigate which parts of the spectrum cINN relies mostly upon to predict stellar pa-

rameters and compare the important features with typically used stellar parameter tracers.

We find that cINN relies on different features depending on the physical parameters and

on the input observations (e.g., spectral types). We confirm that the major features are

equivalent to the typically used tracers such as Hα 6563 Å and Na i doublet 8183, 8195 Å.

Our overall results show that our cINNs present reliable enough performance applicable to

real observational data. Among the three networks introduced in this paper, we recommend

Settl-Net trained on the Settl library as the best network because of its remarkable performance

and versatility on the parameter space.
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5
Conclusions

We aimed to develop deep learning tools that effectively and efficiently analyse observed star-

forming regions (i.e., physical parameters) to study star formation. Adopting the cINN archi-

tecture, we presented networks that analyse cloud-scale observations and networks that analyse

individual star-scale observations, and carefully evaluated their performance. Here, we sum-

marise three studies presented in this thesis.

5.1 Summary

cINNs for cloud-scale observations

In Chapter 2, we introduced the first version of the network that analyses cloud-scale observa-

tions of star-forming regions. We built and trained the network that provides a full posterior

distribution of seven physical parameters using the luminosity of twelve optical emission lines

commonly observable in H ii regions as the input of the network. The seven physical param-

eters are initial cloud mass, star formation efficiency, initial cloud number density, age of the

first generation cluster, age of the youngest cluster, the number of clusters and the evolutionary

phase of the cloud. To train the network, we produced a database of numerous synthetic H ii

region models by using the WARPFIELD-EMP pipeline (Pellegrini et al. 2020) that is based

on a one-dimensional stellar feedback code, WARPFIELD (Rahner et al. 2017). We split the

database into train and test sets for network training and performance evaluation. Using the

unlearned synthetic models (test set), we demonstrated that our network provides a very accu-

rate and precise posterior distribution for the seven physical parameters. We further validated

the network performance by resimulating the posterior models (i.e., sets of physical parameters

estimated by the network) through the WARPFIELD-EMP pipeline and confirming that poste-

rior models satisfied the original input luminosity. Sometimes networks provided a degenerate

posterior distribution with a multi-modal shape. We statistically analysed degenerated posterior
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distributions and found out that most of the degeneracy occurs because of the degeneracy in the

number of clusters prediction. The number of clusters and the age of the first generation cluster

(i.e., the oldest cluster) are the most difficult parameters for the network to accurately predict

because of the following two reasons. The first reason is that the contribution of the older gen-

eration clusters to the luminosity of the 12 emission lines we selected is much smaller than that

of the youngest generation cluster so it is hard to distinguish how many old generation clusters

are there. The second reason is that parameter distributions of our database are biased toward

young and single cluster H ii regions rather than old or multi-cluster models so the network

learned relatively better for young and single cluster H ii regions. Additionally, we introduced

the method of obtaining a posterior distribution considering the observational uncertainties by

modifying the posterior sampling method of the trained network and showed how the posterior

distribution changes as a function of the observational uncertainties.

In Chapter 3, we introduced Noise-Net, an updated version of the cINN for cloud-scale obser-

vations introduced in Chapter 2. The Noise-Net uses not only the luminosity of the 12 emission

lines but also the uncertainty of the luminosity measurement as the input of the network and

learns the influence of the error on the parameter prediction during the training. Consequently,

the Noise-Net always provides a posterior distribution reflecting the influence of the observa-

tional uncertainties. As we already introduced the method of sampling the posterior distribution

considering uncertainties of observation using the first version of the network, which we referred

to as Normal-Net, in Chapter 2, we mainly compared the performance of Noise-Net and Normal-

Net as a function of the luminosity error. We showed that the Normal-Net performs slightly

better when the error is very small, but after the turning point, the Noise-Net outperforms the

Normal-Net. The turning point occurs when the error of the brightest emission line (usually

the smallest error) is around 0.025–0.04 per cent and the performance gap between the two net-

works significantly widens as the error increases. Since the error value of the turning point is

sufficiently small compared to the usual amount of errors measured from the real observational

data, we concluded that Noise-Net would be a better choice when we apply our networks to

the real observational data. Through further investigations, we found that Normal-Net tends to

give unphysical posterior estimates when the error is large whereas Noise-Net provides physically

valid estimates even though the posterior distribution becomes wider or degenerate.

cINNs for individual young stars

In Chapter 4, we introduce the cINNs for individual stars that diagnose the optical spectrum of

young low-mass stars and predict three stellar parameters: effective temperature, surface gravity,

and extinction. In this work, for the network training, we adopt a Phoenix stellar atmosphere

model (Allard et al. 2012) that contains both physical parameters and spectral information,

selecting three different Phoenix libraries: Settl, NextGen, and Dusty. We produced a database
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for each library and train three networks based on different databases: Settl-Net, NextGen-Net,

and Dusty-Net. Our networks are trained on young stars with a temperature range of 2600

to 7000 K and a surface gravity (log(g/cm s−2)) range of 2.5 to 5. In the same way, as in

the previous two studies (Chapters 2 and 3), we evaluated the performance using the unlearned

synthetic models and confirmed that three networks perform perfectly without any degeneracy in

the posterior distributions. Furthermore, we applied our networks to the real observational data

of Class III stars whose stellar parameters are well-characterised by literature. By comparing the

known values of stellar parameters with our network estimations, we confirmed that our network

estimation agrees well with the literature values within the error of up to 5–10 per cent. The

performance of the networks slightly varies depending on the spectral type, and our networks

showed the best performance for stars in the temperature range of 3000 to 5000 K corresponds to

M6–K1 type. Despite a small discrepancy in the stellar parameters, the resimulated spectrum of

the posterior model was very close to the input spectrum. We found out that the resimulations

of the posterior models were even closer to the input spectrum than the resimulations based on

literature values.

In this study, we conducted two additional experiments using the trained networks. The first

one is the feature importance test that examines the influence of each spectral part (input of the

network) on the prediction of each stellar parameter. We compared the important features of the

network with stellar parameter tracers commonly used to analyse observation data and found

that most of those tracers play important roles in the network to estimate stellar parameters as

well. In the second experiment, we quantified the gap between the theoretical model (synthetic

observations, Phoenix models in this study) used to train the network and the real observations

and investigated how this gap, which we referred to as the simulation gap, affects the network

performance. Through this study, we confirmed that even though there is a clear gap between

reality and the theoretical models and the gap is related to the network performance, our networks

nevertheless are able to estimate the stellar parameters accurately.

5.2 Discussion and future works

Through these three studies, we presented a methodology and applicability of using cINN archi-

tecture (deep learning technique) to analyse observational data. We introduced two case studies,

cINNs for cloud-scale star-forming region observations by utilising WARPFIELD-EMP synthetic

H ii region models and cINNs for individual stellar spectra by using Phoenix stellar atmosphere

models. However, cINN architecture can be utilised to interpret various observations if it is

coupled with proper theoretical models. Here, we summarise the strengths and limitations of

applying cINN to astrophysics.

In this thesis, we demonstrated that cINN can understand the hidden rules within the complex
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processes of star formation and link observations with physical properties. One of the advantages

of adopting cINN is that cINN provides a full posterior distribution of physical parameters rather

than simply estimating a single value. In addition, once trained, neural networks are very time-

efficient tools that can quickly and consistently analyse large amounts of observations. For

example, our cINNs for cloud-scale H ii region observations (Chapters 2 and 3) can analyse 170

observations per second. As we train the network based on the theoretical model, it is possible to

build a network that estimates physical properties that are hardly measured by classical methods.

For instance, we can build a network predicting initial conditions (e.g., the initial density of the

star-forming region) or the age of the cluster because theoretical models describe the overall

evolution of the object. Additionally, the cINN can estimate the desired parameters even from

data with an insufficient resolution to use classical analysis methods. Our networks for individual

young stars (Chapter 4) can measure the surface gravity although the networks use the stellar

spectrum with low spectral resolution insufficient to measure the surface gravity with classical

methods. Moreover, we showed in Chapter 3 that cINN makes sufficiently good predictions even

when taking into account considerable observational error. Trained networks also can be used

for various experiments such as finding significant observables through feature importance tests

or evaluating the theoretical model by measuring the simulation gap.

However, there are some limitations to applying cINNs to solve astrophysical problems. Since

we use theoretical models to collect sufficient training data, it is not possible to avoid the lim-

itations inherent in the theoretical models just like other methods that analyse observations

through theoretical models. There is no theoretical model that perfectly mimics reality, which

inevitably results in the gap between the model and reality. Although cINN can perfectly un-

derstand the hidden rules in the theoretical model if well-trained, the network cannot overcome

the inherent limitations of the theoretical model. This gap is likely to become larger as the scale

of astronomical objects enlarges because more physical assumptions are used and the ranges of

the parameters are limited when modelling larger-scale observations. As the number of physi-

cal processes and parameters to be considered increases, the simulation of the forward process

becomes computationally expensive, making it difficult to generate enough training data.

Although there are limitations in our method but these are common difficulties experienced

in all methods of interpreting observations with theoretical models. Moreover, in Chapter 4, we

showed that cINN can play a sufficient role in estimating physical parameters even though such

a gap between the theoretical model and reality exists. Therefore, cINN is a good enough tool

applicable to interpret observational data.

We will continue working on follow-up studies with the development of relevant theoretical

models. The cINN for young stars (Chapter 4) will be applied to young stars in the Carina

Nebula observed with VLT/MUSE. In this follow-up study, we plan to update our theoretical

models (Phoenix model) by adding more physical parameters such as the influence of veiling.
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The cINNs for the cloud-scale observations introduced in Chapters 2 and 3 (both Normal-Net and

Noise-Net) were first applied to thousands of H ii regions observed from Physics at High Angular

resolution in Nearby GalaxieS–Multi Unit Spectroscopic Explorer (PHANGS) survey (Santoro

et al. 2022; Emsellem et al. 2022). We compared the stellar mass measured by Lee et al. (2022)

based on the HST observations and stellar mass estimated by our networks and found that

network estimations were on average larger by 1 dex. The reasons for the large discrepancy

we discussed were the following two. Firstly, based on the location of the training data and

observation data on the BPT diagram, the metallicity assumption used for our training data

did not match well with the real metallicity of the observations. Secondly, the clusters of the

training data were much more massive than the average stellar mass of the observed H ii regions.

We concluded that we need to update the WARPFIELD-EMP pipeline to generate the proper

training data for these observations. We expect that we can obtain better results when the

training data is updated and can implement various experiments (e.g., measuring the simulation

gap and examining feature importance) using the new networks.
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A
Appendix for Chapter 2

A.1 Supplemental materials

The following are supplementary figures of the training evaluation of our main network (Sec-

tion 2.4.1) and the performance of Network 2 without noise augmentation (Section 2.8.2). Fig-

ure A.1 shows the covariance matrix and the probability distributions of latent variables, which

are obtained from the forward process of the network for the entire test set (Ztest). As men-

tioned in Sections 2.3.3 and 2.4.1, latent variables should follow the prescribed Gaussian normal

distribution and their covariance matrix should be close to a unit matrix if the network is well-

trained. Though the covariance matrix and probability distributions are not perfectly equal to

the desired results, residuals are small enough to conclude that the network converged to a good

solution.

Figures A.2 and A.3 show the prediction performance of Network 2 introduced in Section 2.8.2.

We did not augment the distributions of Ncluster and phase with artificial noise in training

Network 2. After drawing 4096 posterior samples for each model in the entire test set, we

compare the true values of the models with all posterior estimates or with the MAP estimates

as the representative in Figure A.2 and Figure A.3, respectively. As already discussed in the

previous section, adding artificial noise to smooth out the discretized parameter distribution

improves the overall prediction performance of the network.

A.2 Fitting and determining peaks of the posterior distri-

bution

In this appendix, we provide an example of the posterior fitting result and the histogram of the

number of peaks using different definitions of the peak. We present in Figure A.4 the results of

fitting the posterior distribution of one model in the test set. As mentioned in Section 2.6, we fit
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Figure A.1: The covariance matrix of the latent variables (left) and distributions of each latent variable
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Figure A.2: Comparison of true parameter values and all posteriors obtained from the cINN model
trained without noise augmentation (Network 2), using the entire 101,149 test models. Figure 2.6 has a
similar but better result which is obtained from our main cINN model, trained with noise augmentation.
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Figure A.3: Comparison of true parameter values and MAP estimates obtained from the cINN model
trained without noise augmentation using all 101,149 test models. Figure 2.7 shows the similar result
obtained from our main cINN model. Colour code is the same as in Figure 2.7.

the distribution using up to 6 Gaussian functions, and the number of Gaussian functions used

varies even in one observation. In addition to the final fitting curve (blue solid line), individual

Gaussian components used in the fitting are shown with green dotted lines. Considering the

posterior distribution as a multimodal distribution, we provide the number of peaks according

to the three different definitions of the peak of the mode. In Figure A.4, the number of Gaussian

components (ng), the number of visible peaks (i.e., the number of red circles, nv), and the number

of separated peaks (ns) are all the same for Mcl, star formation efficiency, and the cloud age.

The case of nH,0 shows that even if the distribution is fitted with two Gaussian components,

it is considered as one visible peak or one separated peak. On the other hand, the case of the

youngest cluster age is where two Gaussian components are considered as one visible peak but

two separated peaks depending on the distance between two Gaussian components.

In Figures A.5 and A.6, we present the histogram of the number of peaks using the separated

peaks and the number of Gaussian components, respectively. We exclude the result of phase

because the number of peaks in the phase posterior distributions does not depend on the definition

of the peak so it is the same as shown in Figure 2.12. These results differ from those obtained

using the visible peaks in detail, but the overall trends are similar to Figure 2.12, including the

influence of the degenerate Ncluster prediction on the degeneracy in the posterior distribution of

other parameters.
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Figure A.4: An example of fitting posterior distributions for five parameters. The posterior distribution
(grey histogram) is fitted with multiple Gaussian functions. The blue solid line represents the fit result
and the green shades with dotted edges represent individual Gaussian components of the fitting curve.
We do not fit for Ncluster and phase. The number of modes in the posterior distribution measured
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Figure A.5: Density histograms of the number of separated peaks in the posterior distributions for five
parameters. The colour codes are the same as in Figure 2.12: results of all models in the test set (blue),
results of models whose Ncluster posterior distributions are not degenerate (orange), and results of models
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Figure A.6: Density histograms of the number of Gaussian components used in the fit of posterior
distributions for five parameters. The colour codes are the same as in Figure 2.12 and Figure A.5.
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Appendix for Chapter 3

B.1 Supplemental materials

In this appendix, we present supplementary figures for the error clipping tests for the Noise-

Net and the Normal-Net discussed in Section 3.4.3. We re-sampled the posterior estimates for

the 100 test models for 16 different σb levels after clipping the luminosity errors larger than

the maximum training error (σmax) of 31.6%. We present the average performance differences

between the original unclipped result (Figure 3.3) and the clipped result of the Noise-Net in

Figure B.1 and of the Normal-Net in Figure B.2. As mentioned in Section 3.4.3, the deviation

between unclipped and clipped results is very small for both the Noise-Net and the Normal-Net.

B.2 Deeper networks

In this appendix, we provide the results of additional experiments that investigate the influence

of network depth on prediction performance. Here the depth of the network refers to the number

of affine coupling blocks (Nblock) and the number of layers of the internal sub-network (Nlayer).

As the Noise-Net processes more information than the Normal-Net by definition, we investigate

whether network performance improves by increasing the depth of the network. The networks

used in the main paper are the best choices based on the results of this experiment.

In Paper 1, we used eight affine coupling blocks and internal sub-networks with three layers

to build the cINN (Nblock=8, Nlayer=3). Before the experiment, we confirmed that the Noise-Net

performed better than the Normal-Net in general, similar to the results in Section 3.3.2, even

when we use the setup of Paper 1. However, with the possibility of performance improvement in

mind, we investigated the influence of Nblock and Nlayer. To evaluate the network performance we

used the same 100 test models and the same methodology as in Section 3.3. For each network,

we sample posterior distributions at 16 different σb for the 100 test models and measure two
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Figure B.1: The average performance difference of the Noise-Net between the original result (blue line in
Figure 3.3) and the results after error clipping. For errors larger than the training range of the Noise-Net,
we clip the error to the maximum value (31.6%) and re-sample the posterior distributions for all test
models.
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Figure B.2: Similar to Figure B.1, we present the average performance difference of the Normal-Net
between the original result (red line in Figure 3.3) and re-sampled posterior distributions after clipping
the large errors.
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Figure B.3: We compare the two accuracy indices (the first and the second row) and precision index (the
third row) of six Noise-Nets for different numbers of layers in the internal sub-network. All six networks
have 8 affine coupling blocks. We use the same sample of 100 test models and the same 16 different
errors as used in Section 3.3.

accuracy indices and the precision index for each posterior distribution. We compare the average

performance of the network as a function of σb like the curves presented in Figure 3.3.

In the first experiment, we train and compare 6 Noise-Nets by increasing the Nlayer from

three to eight (Figure B.3). For these six networks, we fix Nblock at eight. Except for the worst

network with eight layers (brown curve), the performance of the other networks is similar overall.

It is not easy to identify the relation between the performance and the number of layers because

the performance difference between networks slightly varies depending on the parameters and

the range of the error. However, the performance gap between the network with six layers (red

curve) and the rest is noticeable in the case of the oldest cluster age (t), especially when the error

is small. For the other parameters, the red curve shows similar or slightly better results than the

others. As we discovered in our first study (Paper 1), the age of the oldest cluster is the most

difficult parameter for our network to predict, so the improvement in t prediction is meaningful.

On this account, we choose the network with 6 layers as the best result of the first experiment.

In Figure B.3, we present the results of 6 networks but we also tried to train the network with

9 layers. However, the latter experiment failed because the loss (Eq. 3.6) did not decrease at all.

In addition to the results for the networks with more than 6 layers in Figure B.3 (purple and

brown), this implies that increasing the number of layers does not always improve the prediction.

In the second experiment, we increase the number of affine coupling blocks (Nblock) and fix

the Nlayer to three. In Figure B.4, we compare the performance of three networks with Nblock of

8, 12 and 16, respectively. All three networks perform similarly, but the network with 16 blocks

(green curve) performs the best, especially in the case of the oldest cluster age (t). This network

performs better than the other two at σb smaller than 1% but performs poorly at large errors.
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B.2. Deeper networks
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Figure B.4: Comparison of the performance of 3 Noise-Nets with the different numbers of affine coupling
blocks. All three networks use 3 layers in their internal sub-network.

As in the first experiment, we focus on improving the t prediction and choose the network with

16 blocks as the best result.

Lastly, we build the deepest cINN combining the best options from the previous two experi-

ments (Nlayer = 6 and Nblock = 16) and compare the performance of the following four networks:

the network with the Paper 1 setup (Nlayer=3, Nblock=8), the best network of the first exper-

iment (Nlayer=6, Nblock=8), the best network of the second experiment (Nlayer=3, Nblock=16)

and the deepest network (Nlayer=6, Nblock=16). In Figure B.5, the deepest network (red curve)

performs the best in the case of Mcl, SFE, nH,0 and tyoungest, but the gap between the curves is

not large. However, the deepest network shows a noticeable improvement in the oldest cluster

age prediction and the accuracy of the Ncluster prediction. In the case of the phase, the network

with 3 layers and 16 blocks (green curve) performs the best, but considering the physical unit of

the phase by definition, the performance of the other networks is still acceptable. Taking into

account the overall performance, we choose the deepest network with 6 layers and 16 blocks as

the best network and use this network for the main paper. So, the red curve in Figure B.5 is the

same as the blue curve in Figure 3.3.

Comparing the various Noise-Nets with different Nlayer and Nblock, we found the following.

Firstly, deepening the network can improve the prediction power, but it does not always guarantee

improvement. Moreover, the performance does not change proportionally to the depth and

training may fail if we deepen the network too much. Secondly, in the case of parameters that

the cINN predicts relatively well (e.g., Mcl, tyoungest), there is no significant change depending

on the network depth, but deepening the network improves the performance in the case of t and

Ncluster which are relatively difficult for the cINN to accurately predict due to the degeneracy.

In Paper 1, we demonstrated that our cINN has difficulty resolving the degeneracy in Ncluster

prediction because of the biased parameter distribution of the training data and our selection of

152



Appendix B. Appendix for Chapter 3

2 1 0 1
0.05

0.10

0.15

0.20

RM
S 

of
 (X

M
AP

X
Tr

ue
)

log Mcl [M ]
(L,Nb)=(3,8)
(L,Nb)=(6,8)
(L,Nb)=(3,16)
(L,Nb)=(6,16)

2 1 0 1
0.05

0.10

0.15

0.20

0.25
RM

S 
of

 lo
g 

(X
M

AP
/X

Tr
ue

)

SFE [%]

2 1 0 1

0.10

0.15

0.20

RM
S 

of
 lo

g 
(X

M
AP

/X
Tr

ue
)

nH, 0 [cm 3]

2 1 0 1
0.40

0.45

0.50

0.55

0.60

0.65

RM
S 

of
 lo

g 
(X

M
AP

/X
Tr

ue
)

t [Myr]

2 1 0 1

0.050

0.075

0.100

0.125

0.150

RM
S 

of
 lo

g 
(X

M
AP

/X
Tr

ue
)

tyoungest [Myr]

2 1 0 1
0.4

0.6

0.8

RM
S 

of
 (X

M
AP

X
Tr

ue
)

Ncluster

2 1 0 1
0.1

0.2

0.3

0.4

0.5

0.6

RM
S 

of
 (X

M
AP

X
Tr

ue
)

Phase

2 1 0 1

0.1

0.2

0.3

0.4

0.5

RM
S 

of
 (X

X
Tr

ue
)

2 1 0 1

0.10

0.15

0.20

0.25

RM
S 

of
 lo

g 
(X

/X
Tr

ue
)

2 1 0 1
0.10

0.15

0.20

0.25
RM

S 
of

 lo
g 

(X
/X

Tr
ue

)

2 1 0 1
0.3

0.4

0.5

0.6

RM
S 

of
 lo

g 
(X

/X
Tr

ue
)

2 1 0 1

0.10

0.15

0.20

0.25

0.30

RM
S 

of
 lo

g 
(X

/X
Tr

ue
)

2 1 0 1
0.5

0.6

0.7

0.8

0.9

RM
S 

of
 (X

X
Tr

ue
)

2 1 0 1
0.4

0.6

0.8

1.0

RM
S 

of
 (X

X
Tr

ue
)

2 1 0 1
log brightest [%]

0.2

0.4

0.6

M
ed

ia
n 

of
 u

68

2 1 0 1
log brightest [%]

1

2

3

4

M
ed

ia
n 

of
 u

68

2 1 0 1
log brightest [%]

100

150

200

250

300

M
ed

ia
n 

of
 u

68

2 1 0 1
log brightest [%]

2.5

5.0

7.5

10.0

12.5

15.0

M
ed

ia
n 

of
 u

68

2 1 0 1
log brightest [%]

0.5

1.0

1.5

2.0

M
ed

ia
n 

of
 u

68

2 1 0 1
log brightest [%]

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n 

of
 u

68

2 1 0 1
log brightest [%]

0.2

0.4

0.6

M
ed

ia
n 

of
 u

68

Figure B.5: Comparison of the performance of four Noise-Nets with different combinations of the number
of affine coupling blocks and the number of layers of the internal sub-network. The red line with 6 layers
and 16 blocks is the same Noise-Net used in the main paper (i.e., the blue line in Figure 3.3).

2 1 0 1
0.0

0.2

0.4

0.6

0.8

RM
S 

of
 (X

M
AP

X
Tr

ue
)

log Mcl [M ]
Normal (3,8)
Normal (6,16)

2 1 0 1

0.1

0.2

0.3

0.4

0.5

RM
S 

of
 lo

g 
(X

M
AP

/X
Tr

ue
)

SFE [%]

2 1 0 1

0.2

0.4

0.6

RM
S 

of
 lo

g 
(X

M
AP

/X
Tr

ue
)

nH, 0 [cm 3]

2 1 0 1
0.4

0.6

0.8

1.0

1.2

1.4

RM
S 

of
 lo

g 
(X

M
AP

/X
Tr

ue
)

t [Myr]

2 1 0 1
0.00

0.25

0.50

0.75

1.00

RM
S 

of
 lo

g 
(X

M
AP

/X
Tr

ue
)

tyoungest [Myr]

2 1 0 1
0.4

0.6

0.8

1.0

RM
S 

of
 (X

M
AP

X
Tr

ue
)

Ncluster

2 1 0 1
0.0

0.5

1.0

1.5

RM
S 

of
 (X

M
AP

X
Tr

ue
)

Phase

2 1 0 1
0.0

0.5

1.0

1.5

2.0

RM
S 

of
 (X

X
Tr

ue
)

2 1 0 1

0.2

0.4

0.6

RM
S 

of
 lo

g 
(X

/X
Tr

ue
)

2 1 0 1

0.2

0.4

0.6

RM
S 

of
 lo

g 
(X

/X
Tr

ue
)

2 1 0 1

0.4

0.6

0.8

1.0

RM
S 

of
 lo

g 
(X

/X
Tr

ue
)

2 1 0 10.0

0.2

0.4

0.6

0.8

1.0

RM
S 

of
 lo

g 
(X

/X
Tr

ue
)

2 1 0 1
0.5

1.0

1.5

2.0

RM
S 

of
 (X

X
Tr

ue
)

2 1 0 1
0.25

0.50

0.75

1.00

1.25

1.50

RM
S 

of
 (X

X
Tr

ue
)

2 1 0 1
log brightest [%]

0.0

0.5

1.0

1.5

2.0

M
ed

ia
n 

of
 u

68

2 1 0 1
log brightest [%]

0

10

20

30

40

M
ed

ia
n 

of
 u

68

2 1 0 1
log brightest [%]

0

500

1000

1500

M
ed

ia
n 

of
 u

68

2 1 0 1
log brightest [%]

0

10

20

30

40

M
ed

ia
n 

of
 u

68

2 1 0 1
log brightest [%]

0

2

4

6

8

M
ed

ia
n 

of
 u

68

2 1 0 1
log brightest [%]

0.0

0.5

1.0

1.5

2.0

M
ed

ia
n 

of
 u

68

2 1 0 1
log brightest [%]

0.5

1.0

1.5

M
ed

ia
n 

of
 u

68

Figure B.6: Comparison of two Normal-Nets with different numbers of blocks and layers of the internal
sub-network. The orange line with 6 layers and 16 blocks is the same Normal-Net used in the main
contents (i.e., the red line in Figure 3.3).
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B.2. Deeper networks

optical emission lines. This result implies that we can enhance the degenerate prediction of the

Noise-Net by properly increasing the network depth.

Additionally, we investigate whether the performance of the Normal-Net changes when in-

creasing Nlayer and Nblock. We only compare two networks using the setup of Paper 1 (Nlayer=3,

Nblock=8) and the setup of the best Noise-Net (Nlayer=6, Nblock=16). Figure B.6 shows that the

overall change of the Normal-Net is different to the case of the Noise-Net. The performance gap

between the two networks becomes noticeable for Mcl, SFE and nH,0, when the error is large.

On the other hand, there is no significant change in the Ncluster and t prediction and sometimes

the deeper network performs slightly worse than the other. In conclusion, we choose the deeper

Normal-Net (orange curve) and keep the network setup the same as the Noise-Net for the main

paper because the performance of the deeper Normal-Net is not significantly worse, but rather

exhibits some improvement for some parameters.
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C
Appendix for Chapter 4

C.1 Supplemental materials

In this appendix, we present supplementary figures and table mentioned in our main results

(sections 4.5–4.6).

C.1.1 Prediction performance

We evaluate the performance of NextGen-Net and Dusty-Net on 13,107 synthetic test models by

comparing the MAP predictions from the network and the true values of the models. Figures C.1

and C.2 show that both networks estimate all three parameters perfectly with very small RMSEs.

C.1.2 Resimulation

We validate the cINN predictions on both the synthetic test data (Section 4.5.1) and real template

spectra (Section 4.5.2) by resimulating the spectra corresponding to the MAP estimates with

our spectral library interpolator (Section 4.3.1) and comparing the result to the respective input

spectra.

Analogous to Figure 4.2, Figures C.3 and C.4 show the median relative error of the resimulated

spectra (left panel) and distributions of the RMSEs (right panel) for the 13,107 synthetic test

spectra when evaluated with the cINN models trained on NextGen and Dusty, respectively.

Table C.1 provides a summary of the resimulation results for the cINN predictions on the

Class III template spectra (see Section 4.5.2 and also Tables 4.1 and 4.3). Here we list the

RMSEs and R2 scores of the resimulated spectra with respect to the corresponding input spectra

for the resimulation based on the literature and cINN-predicted parameters for all three spectral

libraries.

Figures C.5 and C.6 provide additional examples of the resimulation results, comparing the

resimulated spectra to the input spectra and the outcomes between the three libraries, anal-
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Figure C.1: 2-dimensional histograms comparing the MAP predictions by NextGen-Net and the true
values for the entire test models of the NextGen database. The colours indicate the number of models
at each point in the 2D histograms. In the lower right corner, we present the root mean square error
(RMSE) and the number of test models used (Ntest).
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Figure C.2: 2-dimensional histograms comparing the MAP predictions by Dusty-Net and the true values
for the entire test models of the Dusty database. The colours indicate the number of models at each
point in the 2D histograms. In the lower right corner, we present the root mean square error (RMSE)
and the number of test models used (Ntest).

6000 6500 7000 7500 8000 8500 9000
(Å)

0.10

0.05

0.00

0.05

0.10

(I r
es

im
I in

)/I
in

 (%
)

75% 25%
median

0.5 1.0 1.5 2.0
RMSE (10 6)

0

1

2

3

4

Pr
ob

ab
ilit

y 
De

ns
ity

 (1
06 )

Median RMSE = 1.49+1.29
0.69 × 10 7

Figure C.3: Left: Median relative error across the wavelength range of the resimulated spectra based on
the MAP predictions of the cINN trained on the NextGen models averaged over the 13,107 synthetic
spectra in the test set. Here the grey envelope indicates the interquantile range between the 25% and 75%
quantiles. Right: Histogram of the RMSEs of the 13,107 resimulated spectra. The mean resimulation
RMSE across the test set is 2.28± 2.48× 10−7.
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Figure C.4: Left: Median relative error across the wavelength range of the resimulated spectra based
on the MAP predictions of the cINN trained on the Dusty models averaged over the 13,107 synthetic
spectra in the test set. Here the grey envelope indicates the interquantile range between the 25% and 75%
quantiles. Right: Histogram of the RMSEs of the 13,107 resimulated spectra. The mean resimulation
RMSE across the test set is 9.01± 7.34× 10−8.
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Figure C.5: Resimulation results for Class III star RXJ0445.8+1556. Same as Figure 4.6.
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Figure C.6: Resimulation results for Class III star CD_29_8887A. Same as Figure 4.6.
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Table C.1: Summary of the resimulation test for the literature values and cINN MAP predictions for
the three different spectral libraries, listing the RMSEs and R2 scores of the resimulated spectra. The
comment column indicates the reason why the cINN prediction could not be resimulated. Note that for
SO879 the cINN prediction can be resimulated with the Dusty library despite the literature temperature
being above 4000 K, because the cINN underestimates Teff by 151 K here, thus falling into the Dusty
temperature boundaries.

Resimulation RMSE (×10−5) / R2 Score

Settl NextGen Dusty

Object Name Literature cINN Comment Literature cINN Comment Literature cINN Comment

RXJ0445.8+1556 2.15 / 0.88 0.61 / 0.99 - 2.18 / 0.88 0.77 / 0.98 - - / - - / - Teff > 4000 K
RXJ1508.6-4423 0.95 / 0.98 0.93 / 0.98 - 1.08 / 0.98 1.05 / 0.98 - - / - - / - Teff > 4000 K
RXJ1526.0-4501 1.14 / 0.97 0.66 / 0.99 - 1.20 / 0.96 0.77 / 0.98 - - / - - / - Teff > 4000 K
HBC407 1.00 / 0.97 0.68 / 0.99 - 1.16 / 0.96 0.91 / 0.97 - - / - - / - Teff > 4000 K
PZ99J160843.4-260216 1.08 / 0.96 0.82 / 0.98 - 1.19 / 0.95 0.93 / 0.97 - - / - - / - Teff > 4000 K
RXJ1515.8-3331 1.28 / 0.94 0.85 / 0.97 - 1.41 / 0.92 0.92 / 0.97 - - / - - / - Teff > 4000 K
PZ99J160550.5-253313 1.50 / 0.90 0.73 / 0.98 - 1.64 / 0.88 0.93 / 0.96 - - / - - / - Teff > 4000 K
RXJ0457.5+2014 1.98 / 0.78 1.23 / 0.92 - 2.07 / 0.76 1.25 / 0.91 - - / - - / - Teff > 4000 K
RXJ0438.6+1546 2.09 / 0.70 0.89 / 0.95 - 2.19 / 0.67 1.02 / 0.93 - - / - - / - Teff > 4000 K
RXJ1547.7-4018 0.90 / 0.97 0.95 / 0.96 - 1.08 / 0.95 1.11 / 0.95 - - / - - / - Teff > 4000 K
RXJ1538.6-3916 1.05 / 0.93 0.92 / 0.94 - 1.24 / 0.90 1.20 / 0.91 - - / - - / - Teff > 4000 K
RXJ1540.7-3756 1.42 / 0.56 1.61 / 0.44 - 1.56 / 0.48 1.54 / 0.49 - - / - - / - Teff > 4000 K
RXJ1543.1-3920 1.48 / 0.42 1.63 / 0.30 - 1.72 / 0.22 1.48 / 0.42 - - / - - / - Teff > 4000 K
SO879 2.66 / 0.53 2.44 / 0.61 - 3.02 / 0.39 2.18 / 0.68 - - / - 2.08 / 0.71 -
Tyc7760283_1 2.56 / 0.73 1.88 / 0.85 - 1.99 / 0.84 1.95 / 0.84 - 1.93 / 0.85 1.89 / 0.85 5 < log(g) < 5.5

TWA14 3.04 / 0.83 - / - log(g) > 5 3.28 / 0.80 2.74 / 0.86 - 2.96 / 0.84 3.07 / 0.82 5 < log(g) < 5.5

RXJ1121.3-3447_app2 2.19 / 0.93 1.88 / 0.95 - 2.45 / 0.91 2.15 / 0.93 - 1.86 / 0.95 1.80 / 0.95 5 < log(g) < 5.5

RXJ1121.3-3447_app1 2.69 / 0.92 2.84 / 0.91 - 3.60 / 0.85 2.44 / 0.93 - 2.87 / 0.91 2.42 / 0.93 5 < log(g) < 5.5

CD_29_8887A 2.55 / 0.95 1.91 / 0.97 - 2.57 / 0.95 2.48 / 0.95 - 1.92 / 0.97 1.85 / 0.97 5 < log(g) < 5.5

CD_36_7429B 2.70 / 0.97 2.30 / 0.98 - 4.90 / 0.91 2.57 / 0.97 - 3.26 / 0.96 2.26 / 0.98 -
TWA15_app2 2.98 / 0.96 3.04 / 0.96 - 4.04 / 0.92 2.59 / 0.97 - 2.93 / 0.96 2.57 / 0.97 5 < log(g) < 5.5

TWA7 3.45 / 0.95 3.62 / 0.94 - 4.53 / 0.91 2.66 / 0.97 - 3.36 / 0.95 2.76 / 0.97 -
TWA15_app1 3.95 / 0.93 - / - log(g) > 5 3.26 / 0.95 2.95 / 0.96 - 3.01 / 0.96 2.96 / 0.96 5 < log(g) < 5.5

SO797 3.77 / 0.97 2.70 / 0.98 - 6.35 / 0.92 2.47 / 0.99 - 4.63 / 0.96 2.27 / 0.99 -
SO641 3.83 / 0.97 3.15 / 0.98 - 6.37 / 0.92 2.62 / 0.99 - 4.76 / 0.96 2.63 / 0.99 -
Par_Lup3_2 3.68 / 0.97 3.03 / 0.98 - 4.74 / 0.95 2.86 / 0.98 - 3.31 / 0.98 2.76 / 0.98 -
SO925 4.55 / 0.97 4.42 / 0.97 - 7.28 / 0.91 3.06 / 0.98 - 5.91 / 0.94 3.17 / 0.98 -
SO999 4.20 / 0.97 3.90 / 0.97 - 6.27 / 0.93 2.99 / 0.98 - 5.00 / 0.96 3.10 / 0.98 -
Sz107 4.44 / 0.97 4.85 / 0.96 - 6.58 / 0.93 2.83 / 0.99 - 5.32 / 0.95 3.11 / 0.98 -
Par_Lup3_1 8.90 / 0.92 5.64 / 0.97 - 12.4 / 0.85 - / - log(g) < 2.5 11.5 / 0.87 4.05 / 0.98 -
LM717 7.08 / 0.95 5.77 / 0.96 - 10.1 / 0.88 - / - log(g) < 2.5 9.80 / 0.90 - / - log(g) < 3.0

J11195652-7504529 7.49 / 0.95 6.73 / 0.96 - 10.9 / 0.89 - / - log(g) < 2.5 10.1 / 0.89 - / - log(g) < 3.0

LM601 7.76 / 0.94 7.26 / 0.95 - 9.97 / 0.91 - / - log(g) < 2.5 9.06 / 0.92 - / - log(g) < 3.0

CHSM17173 8.65 / 0.94 - / - Teff < 2700 K 10.1 / 0.90 - / - log(g) < 2.5 9.63 / 0.92 - / - log(g) < 3.0

TWA26 - / - - / - Teff < 2700 K - / - - / - log(g) < 2.5 - / - - / - Teff < 2700 K
DENIS1245 - / - - / - Teff < 2700 K - / - - / - log(g) < 2.5 - / - - / - Teff < 2700 K

Resimulated Spectra 34 31 - 34 29 - 20 17 -
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Figure C.7: Resimulation results for all Class III templates for the cINN trained on the Settl library. In
each panel, the black curve indicates the observed spectrum, while the red and blue curves correspond
to the spectra resimulated based on the cINN MAP estimates and literature properties, respectively.
The latter values are summarised in the table in each panel. Note that if either the red or blue or both
curves are missing that the corresponding set of parameters could not be resimulated. For the RMSEs
and R2 scores of the resimulated spectra see Table C.1.
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6000 6500 7000 7500 8000 8500 9000
0.00000

0.00025

0.00050

0.00075

0.00100

No
rm

al
ize

d 
flu

x

N
aI

 D

C
aI K
I

H N
aI

C
aI

I I
RT

Pa
sc

he
n 

Se
rie

s

M
gI

B
aI

I, 
Fe

I, 
C

aI

TiOCaH R1VO

Template spectra

75%  25%
median

6000 6500 7000 7500 8000 8500 9000

2

4

6

8

10

FI
 (l

og
 T

ef
f) N

aI
 D

C
aI K
I

H N
aI

C
aI

I I
RT

Pa
sc

he
n 

Se
rie

s

M
gI

B
aI

I, 
Fe

I, 
C

aI

TiOCaH R1VO

log Teff

6000 6500 7000 7500 8000 8500 9000
0

20

40

60

FI
 (l

og
 g

) N
aI

 D

C
aI K
I

H N
aI

C
aI

I I
RT

Pa
sc

he
n 

Se
rie

s

M
gI

B
aI

I, 
Fe

I, 
C

aI

TiOCaH R1VO

log g

6000 6500 7000 7500 8000 8500 9000
Wavelength [Å]

2.5

5.0

7.5

10.0

12.5

FI
 (A

V)

N
aI

 D

C
aI K
I

H N
aI

C
aI

I I
RT

Pa
sc

he
n 

Se
rie

s

M
gI

B
aI

I, 
Fe

I, 
C

aI

TiOCaH R1VO

AV

  M type: 2600K  Teff  3850K (NextGen)

6000 6500 7000 7500 8000 8500 9000
0.00000

0.00025

0.00050

0.00075

0.00100

No
rm

al
ize

d 
flu

x

N
aI

 D

C
aI K
I

H N
aI

C
aI

I I
RT

Pa
sc

he
n 

Se
rie

s

M
gI

B
aI

I, 
Fe

I, 
C

aI

TiOCaH R1VO

Template spectra

75%  25%
median

6000 6500 7000 7500 8000 8500 9000

10

20

30

FI
 (l

og
 T

ef
f) N

aI
 D

C
aI K
I

H N
aI

C
aI

I I
RT

Pa
sc

he
n 

Se
rie

s

M
gI

B
aI

I, 
Fe

I, 
C

aI

TiOCaH R1VO

log Teff

6000 6500 7000 7500 8000 8500 9000
0

25

50

75

100

125

FI
 (l

og
 g

) N
aI

 D

C
aI K
I

H N
aI

C
aI

I I
RT

Pa
sc

he
n 

Se
rie

s

M
gI

B
aI

I, 
Fe

I, 
C

aI

TiOCaH R1VO

log g

6000 6500 7000 7500 8000 8500 9000
Wavelength [Å]

5

10

15

20

FI
 (A

V)

N
aI

 D

C
aI K
I

H N
aI

C
aI

I I
RT

Pa
sc

he
n 

Se
rie

s

M
gI

B
aI

I, 
Fe

I, 
C

aI

TiOCaH R1VO

AV

  M type: 2600K  Teff  3850K (Dusty)

Figure C.8: Feature importance evaluation for M-type synthetic models in the test set using NextGen-
Net (left) and Dusty-Net (right), respectively. The first row shows the median flux of M-type Class III
template stars. Lines and shades are the same as Figure 4.10.

ogous to Figure 4.6. In particular, these two Figures show examples, where the resimulated

spectra based on the cINN MAP estimates seem to match the input spectra notably better than

the respective resimulation outcome based on the literature properties of the given Class III

templates.

Lastly, Figure C.7 provides an overview of the resimulation results for all Class III tem-

plate spectra for the cINN trained on the Settl library, corresponding to the top left panels in

Figures 4.6, C.5 and C.6.

C.1.3 Feature importance

We investigate the important feature where NextGen-Net and Dusty-Net rely mostly upon. We

divided the synthetic observations into three groups depending on their spectral types (e.g., M-,

K-, and G-types). We present the results of NextGen-Net and Dusty-Net for M-type stars in

Figure C.8. We do not present the results of NextGen-Net for K- and G-type stars because

overall results are similar to that of Settl-Net presented in Figure 4.11.
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