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• AD: Aggregate data

• b: Baseline treatment

• β: Regression coefficient

• BM+: Biomarker-positive

• BM−: Biomarker-negative
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• d: Treatment effect
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• DGM: Data generation model
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2 Chapter 1. Introduction

Comment: Parts of the following Chapter have already been published in the article "In-
tegrated evaluation of targeted and non-targeted therapies in a network meta-analysis"
(Proctor et al., 2020) and in the article "A comparison of methods for enriching network
meta-analyses in the absence of individual patient data" (Proctor et al., 2022).

1.1 Background

Recent development in clinical research is showing a shift from a generalised medical
approach to more personalized medicine, where genetic or other biomarker information
is used to make treatment decisions. The FDA (Food and Drug Administration) defines
a biomarker as a "characteristic that is measured as an indicator of normal biological
processes, pathogenic processes, or responses to an exposure or intervention, including
therapeutic interventions" (FDA-NIH Biomarker Working Group, 2016). During drug
development clinical research accordingly focuses on the question if a drug seems to
be more promising in a specific subgroup of patients (i.e., in patients with a particular
biomarker) compared to an originally defined population (Renfro et al., 2016). Some-
times this specific subgroup of patients is only identified retrospectively in subgroup
analyses because the molecular characteristics that drives a patient’s response to a spe-
cific treatment are unknown during drug development and might only be discovered
later. The advent of personalized medicine also has implications for clinical trial de-
signs. These designs need to be adapted in order to optimize the usage of new therapies
in biomarker-defined subgroup of patients (Buyse et al., 2011). To adapt clinical studies
to this situation of personalized medicine in clinical development several clinical trial
designs, such as the (partial) enrichment design, the biomarker-stratified design, the
biomarker strategy-design, or more recently, specific basket designs have been devel-
oped (Freidlin et al., 2010; Yin et al., 2021). These new designs are readily applied in
today’s research.
In this work the focus is on synthesizing evidence from non-targeted studies together
with evidence from targeted or enriched designs. In the latter designs patients are tested
for a specific biomarker before they enter the trial. Only patients who are tested positive
for this respective biomarker are randomized to an experimental or control treatment
(Maitournam & Simon, 2005; Simon & Maitournam, 2004).
One very prominent field of individualized medicine is cancer research. The application
example, which is introduced in detail in Chapter 2 in this work also stems from this
area of medical research. In this example the focus is on non-targeted treatments and
targeted treatments with tyrosine kinase inhibitors (TKI) for tumors harboring the epi-
dermal growth factor receptor (EGFR) mutation in non-small-cell lung cancer (NSCLC).
When there are multiple treatment options available for a specific disease, the difficulty
for clinicians is to make a considered decision which therapy option is the best with
regards to specific endpoints (e.g.: survival, response). In this case a systematic review,
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with at best a (network) meta-analysis is needed in order to combine all evidence avail-
able and calculate a pooled treatment estimate of all studies. Network meta-analyses,
which combine direct and indirect evidence, provide useful evidence for judiciously se-
lecting the best treatment if more than one therapy option is available but each included
trial only compares a subset of these treatment options (Dias et al., 2018; Hoaglin et al.,
2011). This pooling of studies with different study populations where targeted and non-
targeted therapies are investigated however is not trivial. For the situation described
above, specific network meta-analysis methods are needed to synthesize evidence for
targeted therapies on patient subgroups (patients with a specific biomarker) and non-
targeted therapies on a mixed patient population with regard to a special biomarker
status. With other words network meta-analysis (NMA) methods need to be inves-
tigated as to whether the integrated evaluation of new targeted therapies is feasible.
In broader context, these NMA methods could then also be applied for synthesizing
studies with an overall population and studies with a subpopulation regarding a certain
covariate. The main aim in this work is to evaluate different approaches on how to best
conduct these network meta-analyses
The classical approach for conducting a NMA in the situation of different study pop-
ulation only includes studies with this specific subpopulation. This can be studies on
this subpopulation or targeted studies only (e.g. the EGFR positive patients in Liang
et al. (2014) and Lin et al. (2018)) or studies where retrospective subgroup results on
this subpopulation are available (e.g. the EGFR example by Greenhalgh et al. (2021)).
However, this classical approach results in a huge loss of information (and therefore
statistical power) as the information from the subpopulation that is included in studies
with the overall population will be ignored when no subgroup results are available and
the studies are therefore excluded from the analysis. Lumping the studies together ir-
respective of the distribution of the effect modifier (e.g. the biomarker status) though,
results in a systematically increased between-trial heterogeneity and, regarding the pop-
ulation, a non-conclusive treatment effect.
There is therefore the need for a network meta-analysis model which includes all evi-
dence available but also accounts for the fact that the studies consist of heterogeneous
patient populations. Recent publications, (Ishak & Benedict, 2015; Petto et al., 2019;
Phillippo et al., 2020; Remiro-Azócar et al., 2021; Weber et al., 2020) evaluated the per-
formance of methods to combine evidence of studies with different population groups
in one network meta-analysis model and adjusting for population heterogeneity. These
methods such as the matching-adjusted comparison approach (Signorovitch et al., 2012)
or the simulated treatment comparison approach (Caro & Ishak, 2010) however rely
on the availability of individual patient data (IPD) when synthesizing evidence from
mixed populations and targeted populations. In this present work the focus lies on the
situation where only aggregated data (AD) for all studies, especially the studies with
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mixed patient population is available, because IPD is usually not easy to obtain and
most study data is available only as AD. Up to now a detailed evaluation of methods
for network meta-analyses including studies on AD with overall and subpopulations re-
garding a specific attribute or biomarker covariate is missing, and this work will provide
such an evaluation.

1.2 Aim and structure of the thesis

The aim of this thesis is to evaluate the performance of different methods to synthesise
all evidence available in a network meta-analysis and taking at the same time into ac-
count that the patient population of the included studies differs.
In the following, the focus lies on the setting for targeted and non-targeted therapies,
which is also the situation of the motivational example in this work. However, as dis-
cussed above, the methods could also be applied in other settings where the overall
patient population as well as subpopulations are available. In this work, it is assumed
that there are three different treatment options available for a certain medical condi-
tion and the particular interest is in comparing a newly developed targeted treatment
E+ for patients with a certain biomarker (biomarker-positive (BM+) patients) with the
standard treatment S. Treatment S is assumed to be initially developed for the whole
patient population. For simplification it is further assumed that a patient population
can be divided in biomarker-positive (BM+) and biomarker-negative (BM−) patients
and that the group of BM− patients is the complement of BM+ patients. No further
differentiation with regards to the biomarker status are made and it is further assumed
that there are no patients in the study population with an unclear biomarker status.
Furthermore it is assumed that there is only little direct evidence, one study, available
for comparing treatment E+ versus treatment S (see Figure 1.1). For the indirect com-
parison via a control treatment C there a varying number of non-targeted studies for C

versus S (CS) available from very little evidence (n = 2) to a relatively high evidence (n
= 20). Additionally three studies for C versus E+ (CE+) are assumed to be available.
The number of available studies for CE+ and S versus E+ (SE+) are based on the
real world example introduced in Section 2.8. Regarding the percentage of biomarker-
positive patients included in the studies comparing treatment S and treatment C, two
different scenarios, ’A’ and ’B’, displayed in Figure 1.1 will be evaluated.
In setting ’A’ it is assumed that no CS studies with 100 % biomarker-positive patients
exist but only studies with a mixed patient population. The percentage x of biomarker-
positive patients per study is assumed to be known and for all studies smaller than
100%. Setting ’B’ is a further development from setting ’A’ which is based on real world
example. Here it is assumed that for CS there are additionally two studies with 100%
biomarker-positive patients available (x ≤ 100).
The aim in this work is to use all evidence available (direct and indirect) to determine a
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treatment effect estimate for biomarker-positive patients comparing the targeted treat-
ment E+ and non-targeted therapies S based on treatment comparisons in the targeted
as well as in the whole patient population. To arrive at the treatment effect estimate
SE+, the evidence of non-targeted CS studies need to be integrated where a varying
proportion of biomarker-positive patients is assumed to be part of the mixed patient
population, with the biomarker-positive population in the CE+ studies. The network
model in this work is assumed to include only two-arm trials and to be consistent, i.e.
direct evidence agrees with indirect evidence on each treatment comparison (Salanti,
2012). The network setting described above is displayed in Figure 1.1. The focus of
the evaluation of network meta-analysis methods lies in the following on this specific
network.

C 

𝐸+ S 
n = 1 

n = 3 

n = 2, 5, 10, 20 

standard 
treatment 

new targeted 
treatment 

control 
treatment 

x = 100 % 

n: number of studies 
x: proportion of biomarker-positive patients in study population 

x = 100 % 

     x < 100 %  

             x ≤ 100 %  

    n = 4, 7, 12, 22 

A 

B 

Figure 1.1: Network model displaying the number of studies available and the proportion
of biomarker patients depending on the setting.

This work is structured as follows: In Chapter 2, different network meta-analysis models
are outlined in the subsequent sections of the chapter to determine a treatment effect
estimate for biomarker-positive patients. These methods range from a naive network
meta-analysis model and a stand-alone network meta-analysis model (Section 2.3) over a
missing data approach (Section 2.4) and a network meta-regression model (Section 2.5)
to models adapted from Efthimiou et al. (2017) such as the enriching-through-weighting
model (Section 2.6) and the informative prior model (Section 2.7). A motivational
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example is introduced in Section 2.8, which will be used for an application in the results.
To evaluate the performance of the varying approaches, a simulation study is conducted
(Section 2.9) focusing on binary outcomes. Methods will be compared with respect to
bias, Root-Mean-Squared Error (RMSE), coverage, precision, and power of the estimate
for SE+ and the results will be displayed in Chapter 3. The different models will be
exemplified using a data set from a real clinical example (Section 3.1). A discussion is
given in Chapter 4 and the thesis ends with a summary in Chapter 5.
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Comment: Parts of the following Chapter have already been published in the article "In-
tegrated evaluation of targeted and non-targeted therapies in a network meta-analysis"
(Proctor et al., 2020) and in the article "A comparison of methods for enriching network
meta-analyses in the absence of individual patient data" Proctor et al. (2022). The
original manuscripts were written by myself, but contain also comments and corrections
from the co-authors.

2.1 General methodological aspects

Systematic reviews are positioned at the top of the evidence-based practice hierarchy
(Tonin et al., 2017) and become increasingly more important. In the Cochrane hand-
book the benefit of systematic reviews are described as follows (Chandler et al., 2021):
"Systematic reviews seek to collate evidence that fits pre-specified eligibility criteria in
order to answer a specific research question. They aim to minimize bias by using explicit,
systematic methods documented in advance with a protocol." The statistical synthesis
of the data, the meta-analysis, is a key element in most systematic reviews. Systematic
reviews and meta-analyses are of great importance for medicine when it needs to be
decided which treatments are best based on the available study data (Borenstein et al.,
2021). In a meta-analysis, the estimated treatment effects of two or more studies are
combined with statistical methods in order to form a pooled estimate. The decision if
studies can be pooled or not depends also on other criteria, e.g. the quality of studies
or the reported measure of estimates, strongly on the study population of interest. The
study population in the different studies needs to be considered homogeneous enough
in order to be pooled. If the study population is considered to be too heterogeneous it
cannot be pooled without adjusting for this heterogeneity. In this thesis methods are
evaluated on how to adjust for potentially heterogeneous study populations and still use
all evidence available.
The advantage of conducting a meta-analysis as part of a systematic review is that it
provides a transparent, objective, and replicable framework on how to pool the single
studies. Weights are assigned to each study based on mathematical criteria that are
specified in advance (Borenstein et al., 2021) and then a pooled estimate is calculated.
Since the publication of the first meta-analysis model by DerSimonian and Laird (1986),
methods and models have been further developed. One particular advancement is the
extension of the pairwise meta-analysis to an analysis of a network of treatments, a
network meta-analysis (NMA). In a NMA, three or more treatments for a given medical
condition are compared, based on combining information from multiple existing com-
parisons among subsets of the treatments (Bucher et al., 1997; Higgings & Whitehead,
1996; Lu & Ades, 2006, 2009; Lu et al., 2011; Lumley, 2002; Salanti, 2012). Caldwell
et al. (2005) first introduced a NMA model in order to perform a simultaneous analysis
of multiple treatments. The use of a NMA has since become more and more popular
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because it allows to compare more than two treatments simultaneously and to use all
evidence available in order to make a treatment recommendation. As discussed in the
introduction, Chapter 1, the focus in this current work lies on the evaluation of NMA
methods for the setting illustrated in Figure 1.1.
In general, a (network) meta-analysis can be performed as a fixed-effect or a random-
effect analysis. For a fixed-effect (network) meta-analysis, it is assumed that the partic-
ipants in the included studies are similar and that the same true effect size underlies the
different studies. In the case of this work however, it is assumed that the participants
in studies differ and that therefore different true effects exist withon the different stud-
ies, which are assumed to have been sampled from a distribution of these true effects
(Borenstein et al., 2021). This so called random-effect model takes, with other words,
two sources of variance into account, the within-study error in estimating the effect in
each study, and the between-study error (Borenstein et al., 2021). This between-study
error or heterogeneity τ , quantifies the variance of true effects across the studies (Harrer
et al., 2021). If the heterogeneity is too high, the trust in the pooled estimate can be
challenged.
(Network) meta-analysis models are based on either a frequentist or a Bayesian frame-
work. One well known frequentist NMA framework is described in detail in Rücker
et al. (2020). For the NMA model which is applied in this present work, a Bayesian
framework is used to synthesize the data using Markov Chain Monte Carlo (MCMC)
methods (Lunn et al., 2013) implemented in the software JAGS (Just Another Gibbs
Sampler) (Plummer, 2003). In this work, the Bayesian approach is preferable to the
frequentist approach because it offers more flexibility in the modification of the model
and can therefore be used for e.g. network meta-regression or models where prior in-
formation is implemented. Another advantage is that the MCMC implementation of
the Bayesian approach automatically takes into account uncertainty about the between-
study heterogeneity parameter τ (Dias et al., 2018), and therefore better reflects the
overall uncertainty in the treatment effect estimates compared to the frequentist ap-
proach.
In the following, the properties of this Bayesian approach, also including the so-called
’core model’ of this approach (see Dias et al. (2018)) are explained in more detail. In
Bayesian statistics, probability distributions are attached to the parameters of interest.
To each unknown quantity, a prior probability distribution is assigned to. This prior
then describes an a priori uncertainty about the quantity before seeing the data. The
Bayesian analysis itself combines the prior distribution with the data, turning it into
a posterior probability distribution for the unknown quantity. One widely discussed
aspect of Bayesian (network) meta-analysis is the choice of the prior distribution for the
mean treatment effect, the standard deviation and the heterogeneity. The choice needs
to be made between "informative priors" who can contribute information from external
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sources, e.g. historical trials, and so called "non-informative" or "vague" priors which are
chosen such that they do not impact to the posterior probability distribution. In the
present work, mainly non-informative or vague priors were chosen in order to keep the
setting as generic as possible. These priors are specified in the following sections for the
different models. According to Röver et al. (2021) even a so-called non-informative prior
for heterogeneity could become informative, i.e. the prior could be influential, when the
data provided is insufficient (e.g.: a small number of studies) and therefore the result of
the (network) meta-analysis has to be interpreted with caution. This is why the choice
of the heterogeneity prior is to be evaluated in the simulation study as well.
In contrast to frequentist approaches, a Bayesian analysis produces credible intervals
instead of confidence intervals. A 95%-credible interval from a Bayesian analysis is a
summary of the posterior distribution, such that the probability is equal to 95% that the
true (unobserved) estimate is contained within the interval, given the observed evidence
(Borenstein et al., 2021). The precision measures in this work are therefore based on
credible intervals.
For different endpoints in a clinical study there are different scale levels (e.g.: nominal
or interval scale). Dependent on the effect size of interest there are a number of different
methods to perform a (network) meta-analysis (Borenstein et al., 2021). In this current
work, only methods on binary outcome data are considered, and the odds ratio as an
effect measure is accordingly used as suggested in Borenstein et al. (2021).
In the following, different approaches are introduced to synthesize the study data, al-
ways assuming that some studies are enriched in their design and exclusively include a
targeted population while others are not (see study availability in Figure 1.1).
All study data is assumed to be available as binary aggregated data contributing to
the network introduced in Figure 1.1 in Chapter 1 and is analysed with a Bayesian
random-effect network meta-analysis model. Vague priors are used for the treatment
effect estimate and the heterogeneity unless explicitly otherwise stated. The treatment
effect estimate of main interest it the comparison of SE+.

2.2 Standard pairwise meta-analysis model

The setting used in all following approaches is a network of treatments as displayed in
Figure 1.1. In order to introduce the baseline model for synthesizing study data, a meta-
analysis model is described, which is also relevant for the informative prior approach
(see Section 2.7). This standard meta-analysis random effects model used in this work
is based on the Bayesian MCMC approach for pairwise meta-analysis on binomial data
as introduced first in (Smith et al., 1995). The notation used in the following is based
on the notation in the Technical Support Document 2 in Dias et al. (2011). For a
better illustration, the treatments in this model are explicitly stated as the comparison
of C versus S in Figure 1.1. This also holds for other comparisons such as C versus
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E+ or E+ versus S. In a random-effects meta-analysis model, it is assumed that each
jth study provides an estimate of the study-specific treatment effect δjCS (Dias et al.,
2018). These study-specific estimates δjCS are assumed not as equal but exchangeable,
therefore not dependent on the single study j. With other words, this assumption of
exchangeability, also called heterogeneity, is equivalent to stating that the trial-specific
treatment effects originate from a common distribution with mean dCS and variance
τ2

CS (Dias et al., 2018). This common distribution is chosen to be a normal distribution,
with δjCS ∼ N

(
dCS , τ2

CS

)
. It is further assumed that the data generation process

follows a Binomial likelihood with the logit link function that maps the probabilities
into a continuous measure between plus and minus infinity:

rjC ∼ Bin (pjC , njC) , rjS ∼ Bin (pjS , njS)

logit(pjk) =

µjC for k = C,

µjC + δjCS for k = S,

δjCS ∼ N
(
dCS , τ2

CS

)
(2.1)

Treatment k with k ∈ {C, S} and study j are denoted by their respective indices.
The expression rjk denotes the number of observed events and njk the total number
of individuals per study-arm. The event probabilities are represented by pjk. µjC is
the log odds of an event for the baseline treatment C. The log odds ratio δjCS for the
treatment S relative to the baseline treatment C is assumed to be normally distributed
with a common mean dCS and between-study heterogeneity variance τ2

CS .
Prior distributions need to be specified for µjC , dCS and τ2

CS . As recommended in
Dias et al. (2011) flat or vague priors are chosen for µjC ∼ N(0, 106), dCS ∼ N(0, 106)
and τCS ∼ U (0, 2). These normal density priors have an extremely large variance and
give similar prior values over a large range of parameter values. Therefore they are
considered as flat. This prior distribution for τ assigns equal likelihood on all possible
values of the parameter and is therefore regarded as non-informative. For τ , the upper
limit of 2 represents a large range of trial-specific treatment effects. In the simulation
study, the use of a half-normal prior (τ ∼ HN (0.5)) was therefore investigated as well
as suggested in Röver et al. (2021) (see Section 2.9). The half-normal distribution is a
zero-mean normal distribution that is restricted to take only positive values: HN (σ) =√

2
πσ2 exp(− x2

2σ2 ) for x ∈ R≥0 Using the half-normal distribution as heterogeneity prior
leads to a monotonically decaying tail when the heterogeneity increases and therefore
implies decreasing probability for increasing τ values, whereas a uniform distribution
implies the same probability for increasing τ values.
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2.3 Network meta-analysis

The meta-analysis model as introduced above can be regarded as a special case of a
NMA where there are only studies available for one arm of the network. Regarding
the situation displayed in the network in Figure 1.1, three pairwise comparisons could
be possible, C versus S, C versus E+, and E+ versus S. The situation of interest in
this present work lies in the comparison of treatment E+ compared to treatment S for
a subgroup of patients. When there are studies available comparing C with S and C

with E+, but no study is available comparing directly treatment S with E+ then an
indirect comparison could be performed as illustrated in more detail in Bucher et al.
(1997). However when the availability of studies form a closed loop as in Figure 1.1,
i.e. study data for S versus E+ are available as well, then two sources of evidence
exist for the comparison of S versus E+, namely direct evidence from the trials E+

versus S and indirect evidence from trials C versus S and C versus E+. As before
with the random-effect meta-analysis, exchangeability of the treatment effects δjCS for
the trials comparing C and S, δjCE+ for trials comparing C and E+, and δjSE+ for
trials comparing S and E+ is assumed. Now, it is further assumed that the within-trial
transitivity relation for δjSE+ = δjCE+ − δjCS is valid. Then the exchangeability of all
treatment effects δjbk is implied (see Dias et al. (2018)) and according to Lu and Ades
(2006, 2009), the consistency of the mean of the treatment effects is fulfilled as well
with dSE+ = dCE+ − dCS . According to Dias et al. (2018), exchangeability is the only
assumption for NMA and exchangeability implies consistency. However, one must be
aware that a higher degree of patient population heterogeneity might make it difficult to
know what relevance the pooled estimate of the trial data has to a certain population,
and therefore methods to adjust for the heterogeneity are investigated in this work.
The terms exchangeability and consistency are not always defined in a consistent way.
For example in Salanti (2012), the term transitivity as an alternative to consistency has
been introduced. But according to Salanti (2012) both terms are equivalent and here
the notation as in Dias et al. (2018) is used. With this assumption of exchangeability,
the NMA model generalizes the indirect comparison approach of Bucher et al. (1997).
The assumption of exchangeability of all true trial-specific treatment effects needs to
hold for the entire set of trials. For the setting in this work, only studies with two-arm
trials are considered where three treatments are compared in total. Here it needs to be
assumed that some of the treatment arms are missing at random (MAR), i.e. "that the
missingness is without regard for the presence of effect modifier" (Dias et al., 2018) or the
missingness needs to be unrelated to relative efficacy. In this work, it is assumed that all
effect modifiers apart from the biomarker status are distributed equally across the trials
and that the MAR assumption does not depend on other effect modifiers. This MAR
assumption concerning the postulation that the biomarker status is an effect modifier
however depends on the specific treatments which are compared in a study (targeted
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or non-targeted studies for biomarker) as well as on the type of the included studies
(mixed studies or only targeted studies) dependent on the methods discussed below.
This is why, in the following sections, the validity of the exchangeability assumption is
discussed separately for each method.

The consistency implied through exchangeability can be formally noted as: δjbk ∼
N
(
dbk, τ2) ∼ N

(
dCk − dCb, τ2). As in Dias et al. (2018), equal between-study vari-

ances in all models are assumed with τ2
CK = τ2

Cb · · · = τ2. This leads to the following
base network meta-analysis model which is based on the model in Equation 2.1 and
following the notation of Dias et al. (2018). The difference to the meta-analysis model
above is that the baseline treatment is now denoted with b ∈ {C, S} dependent on the
single study. k ∈ {C, S, E+} denotes the comparator treatment.

rjk ∼ Bin (pjk, njk) ,

logit(pjk) =

µjb for k = b,

µjb + δjbk for k ̸= b,

δjbk ∼ N
(
dbk, τ2

)
(2.2)

All parameters and their priors are specified as above in Equation 2.1.
As discussed before, the aim of this work is to evaluate models for using all evidence
available and to conduct a network meta-analysis even when the study populations of
the single studies to be included are heterogeneous. A first option for pooling such data
as introduced in Figure 1.1 would be using this classical random-effects network meta-
analysis (Equation 2.2). This model includes between-trial heterogeneity by employing
a random-effect but does not further adjust for the presence of possible heterogeneous
study populations (see Figure 1.1). Two different specifications of the patient population
could now be used for estimation: all studies (irrespective of the biomarker status of
the patient population of the study) or the studies including solely biomarker-positive
patients. The second specification only works for setting "B" (see Chapter 1), when for
all treatment comparisons there are study arms available with only biomarker-positive
patients or at least subgroup results of biomarker-positive patients. Both approaches are
evaluated and refer to the estimation ignoring biomarker status as ’naive analysis’ and
to the estimation concentrating on the biomarker status as ’stand-alone analysis’. A
naive analysis can be justified if it is assumed that biomarker-positive patients perform
similarly to biomarker-negative patients when treated with treatment S compared to
treatment C, i.e. the population is not truly separated by the suggested biomarker or
the biomarker status is no effect modifier. However, if this assumption is wrong and the
patient population was truly separated by the biomarker, this approach potentially in-
creases the between-trial heterogeneity through the heterogeneous study population and
results in a treatment effect estimate for the mixed population (mix of biomarker-positive
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and -negative patients) instead of the treatment effect estimate for a biomarker-positive
population. Another limitation of the naive analysis is that it might also violate the
exchangeability assumption, e.g. in the situation where the biomarker status is an effect
modifier and the MAR assumption is not independent of the effect modifier anymore.
Assuming the biomarker status is an effect modifier for BM+ but not BM− patients
then the treatment E+ would not be included in a trial with BM− patients because of
lower relative efficacy in this population. E+ can then not be considered to be missing
at random in the CS trials with a mixed patient population because it was excluded due
to lower relative efficacy. Additionally, if the effect modifier is not distributed equally
in both arms because of inclusion criteria, it is unclear how to interprete the pooled
effect estimate Dias et al. (2018), as its target population is unclear. With the stand-
alone approach it is assumed that biomarker-positive patients have outcomes different
to biomarker-negative patients, implying that the biomarker truly separates the popu-
lation. Using only studies with 100%-biomarker-positive patients avoids to pool a too
heterogeneous population and delivers an estimate for the targeted patient population.
But this approach can only be applied if there are studies with 100% biomarker-positive
patients comparing the treatments C versus S available (setting B). The advantage of
the stand-alone approach is that the MAR assumption holds, since it can be assumed
that the missingness is unrelated to the relative effectiveness and that the effect modi-
fier biomarker status across the different treatments does not differ because all studies
include 100% biomarker-positive patients. A disadvantage of the stand-alone analysis is
that the information from studies with mixed population cannot be used for treatment
S and therefore it might result in a loss in precision if only few or in an extreme case
no biomarker-positive studies are available for comparing C versus S (setting A).
Conducting both, the naive analysis and the stand-alone analysis, can help to evaluate
the agreement of treatment effects for biomarker-positive and -negative patients, as the
analyses are both extreme in their assumptions.
All estimation approaches that are included in the following are based upon the model
introduced in Eq. 2.2 and will modify different aspects and assumptions to take the
heterogeneity of patient populations into account more explicitly.

2.4 Missing data approach

In the presented network in Figure 1.1, it is assumed that the patient population can
differ between the comparisons C versus S and C versus E+ when the biomarker status
acts as an effect modifier, because studies comparing the treatment C versus S included
different proportions of biomarker-positive patients. If all data available should be used
and the stand-alone analysis is not feasible because there a no studies with x = 100%
(e.g. setting "A"), one first "crude" and alternative analysis approach to the naive ap-
proach could be a kind of a "missing data approach". Here the missing information on



2.4. Missing data approach 15

the biomarker status for ’mixed’ studies comparing C and S is treated as a missing data
problem and imputes the biomarker status by allocating the response rates in different
ways to the biomarker-positive patients. It is assumed that only the treatment effect
for the entire study population as well as the percentage of biomarker-positive patients
is known but not the treatment effect for the subgroup of biomarker-positive patients.
With the following different specifications of missing data approaches, the response rates
of the subgroup of biomarker-positive patients in both treatment groups are determined.
Then these response rates for the treatments C and S are used to estimate treatment
effects for CS, CE+, E+S with the network meta-analysis model introduced in Section
2.3, Eq.2.2. For studies including 100 % biomarker-positive patients, i.e. the studies
comparing C versus E+ and E+ versus S, the response rates of the biomarker-positive
patients are not missing and can be directly implemented in the network meta-analysis
model.
Five different scenarios for a synthesis model based on the missing data approach are
described in the following:

1. Best-case scenario: In this scenario, the maximum possible number of biomarker-
positive patients are assigned as having a response in the control treatment group C as
well as in the standard group S given the overall success rate and the proportion of the
biomarker-positive patients.

2. Best-case scenario only for biomarker-positive patients in the standard treatment
group: The best-case scenario is only applied to the biomarker-positive patients in the
treatment group S. For the biomarker-positive patients in the control group C, it is
assumed that the response rate is equal to the response rate of the overall population
in the control group, with other words, that there is no difference in the performance
between the biomarker-positive subgroup and the biomarker-negative subgroup in the
control group.

3. Worst-case scenario: In contrast to the best-case scenario, the worst-case scenario
assumes that the minimum possible number of biomarker-positive patients show a re-
sponse in the both treatment groups C and S.

4. Worst-case scenario only for biomarker-positive patients in the standard treatment
group: In this scenario, only the biomarker-positive patients in the treatment group S

perform in the worst possible way, whereas biomarker-positive patients in the control
group C perform equivalently to the overall population. With other words, biomarker-
positive patients in the control group have the same response rate as the overall popu-
lation in the control group.
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5. Biomarker status not predictive for response rate: This scenario assumes that the
biomarker status of patients is not predictive for the treatment effect, i.e. the overall re-
sponse rate in the subgroup of the biomarker-positive patients is the same as the overall
response rate of the overall population for both treatment groups.
In contrast to the naive approach only the subgroup of biomarker-positive patients is
used in the analysis.
The aim of these different scenarios introduced above is to define the limits of the
best and worst possible treatment effect of the biomarker-positive subgroup, to use all
evidence available and to compare the performance of these simple approaches with
the other approaches, especially the naive approach. One limitation here is that ex-
changeability assumption needed to conduct a NMA could be violated in this approach
dependent on the assumption of the biomarker-status as effect modifier. This needs to
be discussed when evaluating the results using the missing data approach.

2.5 Network meta-regression

The aforementioned missing data approach is a first crude approach in order to com-
bine evidence of possible heterogeneous population in a network meta-analysis and to
define the crude limits of the treatment effect estimate. As a second approach a net-
work meta-regression model is introduced at this point as an attempt to take the
heterogeneity of the population into account by explicitly modeling it. The network
meta-regression allows to investigate the effect of continuous as well as categorical char-
acteristics, and in principle allows the effects of multiple factors to be investigated si-
multaneously (although this is rarely possible due to an inadequate numbers of studies)
(Thompson & Higgins, 2002). The network meta-analysis model of Eq. 2.2 is extended
to a network meta-regression model by including a covariate that codes the proportion
of biomarker-positive patients per study, xj , and is denoted following the notation of
Saramago et al. (2012). The motivation for this network meta-regression model can
be derived from the assumption that the treatment effect estimate for a mixed patient
population in study j comparing k with b (θjbk) is composed of the sum of the treat-
ment effect estimate for BM+ patients (θ+

j ) times the proportion of BM+ patients (xj)
and the treatment effect estimate of BM− patients (θ−

j ) times the proportion of BM−

patients (1 − xj). It is further assumed that: θ−
jbk = δjbk and θ+

jbk = δjbk + β.
Then it follows:

θjbk = (1 − xj) · θ−
jbk + xj · θ+

jbk

= θ−
jbk + xj · (θ+

jbk − θ−
jbk)

= δjbk + xj · βbk.
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So βbk is equivalent to the difference in the treatment effect for the biomarker-positive
and negative population (βbk = θ+

jbk − θ−
jbk). In the model below, binary endpoints with

the logit link function are considered and therefore θjbk is given as logit(pjk).

rjk ∼ Bin (pjk, njk)

logit(pjk) =

µjb for k = b

µjb + δjbk + βbk · xj for k ̸= b,

δjbk ∼ N
(
dbk, τ2

)
∼ N

(
dCk − dCb + βbk · xj , τ2

)
,

βbk regression coefficient,

xj study-level specific covariate.

(2.3)

Here the term βbk · xj represents a study-level specific covariate regression term for
k relative to b for each study j. The covariate xj represents the mean proportion of
biomarker-positive patients of study j, while all other parameters are specified as in
Equation 2.2. Consistency now requires the additional assumption that β is expressed
as βbk ∼ N

(
βCk − βCb, τ2

B

)
where βbk is assumed to be different but exchangeable and

τ2
B denotes the variance for the regression parameter.
Prior distributions are chosen for β ∼ N

(
0, 106) and τB ∼ U (0, 2) following Saramago

et al. (2012). The prior for β is deliberately specified with a wide variance in order
to arrive at a vague prior. The heterogeneity prior is chosen as a vague prior with a
relatively high upper limit of 2.

As with the naive and missing data approach, the exchangeability assumption within
the network meta-regression approach is not easy to argue for. In this specific setting it
could be assumed that treatment C and S are available to biomarker-positive as well as
biomarker-negative patients because these treatments are not targeted, but E+ might
only be available for the targeted group (the biomarker-positive patients). Therefore,
the treatment arm E+ might not be missing at random and, most importantly, the
biomarker status is taken into consideration as effect modifier in the network meta-
regression. On the other hand however network meta-regression has been discussed as a
way to adjust for differences in the patient population and therefore to take into account
the underlying heterogeneity (Salanti, 2012). According to Dias et al. (2018), limiting
the degree of heterogeneity is one approach to make the assumption of exchangeability
more valid. This limitation will be discussed later in the results section.

2.6 Enriching-through-weighting model

Another limitation of the network meta-regression model is that ecological bias could be
introduced due to regression based on aggregated patient-level data. With other words
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results from making a causal inference about a covariate on patient-level data based
on aggregated data could lead to bias in the effect estimation (Morgenstern, 1982).
Additionally, according to Higgins and Green (2011), a regression approach is in general
not recommended when the number of data points, studies in the present case, is lower
than 10. In this current section, an alternative approach to the network meta-regression
is therefore introduced.

This model is a modification of the ’design-adjusted’ approach presented in Efthimiou
et al. (2017) for the integration of randomized and non-randomized evidence in network
meta-analysis. This approach translates to the presented setting as a random-effects
network meta-analysis model where studies with mixed patient populations are given
less weight compared to studies which only included the targeted population. The aim is
to estimate a treatment effect for biomarker-positive patients and therefore studies with
mixed patient-population might be biased in giving a treatment effect estimate for only
biomarker-positive patients. However, since they contain information about biomarker-
positive patients they should not be completely ignored. This down-weighting of the
mixed population studies is achieved in inflating the variance of the mean effect of these
studies. The degree of the down-weighting can be chosen according to the confidence in
the mixed population studies and is given by the down-weighting factor wj .
The general network meta-analysis model (Eq. 2.2) is now extended in the following by
including wj in the variance of the estimated treatment effect of study j.

rjk ∼ Bin (pjk, njk) ,

logit(pjk) =

µjb for k = b,

µjb + δjbk for k ̸= b,

δjbk ∼ N
(

dbk,
τ2

wj

)
∼ N

(
dCk − dCb,

τ2

wj

) (2.4)

For 0 < wj < 1, the variance of the treatment effect is inflated so that the weight of the
jth study in the network meta-analysis is decreased.
Two different choices for wj are investigated:

1. The proportion of biomarker-positive patients per study, xj , is assigned to wj . By
doing so, studies with a higher proportion of biomarker-positive patients are con-
tributing more evidence than studies with only a few biomarker-positive patients
and targeted studies (xj =1) are included without down-weighting (wj = 1).

2. The weight of studies with xj < 1 is decreased in assigning wj a hyper-prior in form
of a prior uniform distribution which depends on the assumed "general trust" in
the evidence of the mixed population studies. In this current work, three different
distributions were investigated to evaluate the different levels of trust in the mixed
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population data:
1. wj ∼ U(0, 0.3); 2. wj ∼ U(0.3, 0.7); 3. wj ∼ U(0.7, 1).

One limitation of the enriching-through-weighting approach is the possible violation of
the missing at random assumption for the exchangeability assumption because all studies
are included with an assumed different distribution of effect modifiers. As discussed
before, a network meta-analysis could still be legitimate because the down-weighting
of mixed-population studies can be seen as an adjustment for the heterogeneous study
population.

2.7 Informative prior model

So far the naive approach, the missing data approach, the network meta-regression
approach, and the enriching through-weighting approach included all studies available
comparing C versus S in the network meta-analysis model independent of the biomarker-
status of the population, i.e. all available evidence was used. The disadvantage here
is that the possibly heterogeneous study populations included in network meta-analysis
might lead to a biased estimate, despite the efforts to adjust for it. Furthermore, the
exchangeability assumption might be violated when conducting a network meta-analysis
with mixed population where the biomarker status is seen as an effect modifier. With
the stand-alone approach however, only 100% biomarker-positive studies are included
and the evidence of the mixed studies is not considered at all which comes at the price
of precision because the number of available studies to be included in the network meta-
analysis might be lower. Therefore as a last alternative approach to conduct a network
meta-analysis with the data in the introduced network (Fig. 1.1) in this current work,
an adaption of the informative prior approach of Efthimiou et al. (2017) is introduced
here. This model is an extension of the stand-alone network meta-analysis model and
allows to include the evidence available from the studies with a mixed patient population
as a prior.
The informative prior approach consists of two steps:

1. A meta-analysis of studies with a mixed patient-population (xj ∈ (0, 1)) is con-
ducted in order to calculate a mean relative treatment effect dmix

CS with variance
τmix

Ck
2. This meta-analysis here only includes studies comparing C and S, because

for C versus E+ and E+ versus S no mixed studies are assumed to exist. The
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meta-analysis model is defined analogue to Equation 2.1:

rjk ∼ Bin (pjk, njk)

logit(pjk) =

µjC for k = C

µjC + δmix
jCk for k = S

δmix
jCk ∼ N

(
dmix

Ck , τmix
Ck

2)
(2.5)

The distribution of δmix
jCk is defined analogously to δjCk before. Vague prior distri-

butions are again used for µjC , d, τ .

2. The mean treatment effect and the related variance from the first step is used to
define a prior distribution for the treatment effect dCS in a network meta-analysis
with only biomarker-positive patients. Here a network meta-analysis of studies
with 100% biomarker-positive patients is conducted. The resulting posterior from
step 1, N

(
dmix

CS , σmix
CS

2), is used as informative prior for the comparison S vs. C

in this model. To account for the fact that the populations from step 1 and step 2
can differ systematically, the variance of this prior distribution can be additionally
inflated by a pre-defined factor w, such that the variance of the prior is wider than
the posterior from step 1 if systematically differing populations are expected.
The network meta-analysis model is then defined as:

rjk ∼ Bin (pjk, njk)

logit(pjk) =

µjb for k = b

µjb + δjbk for k ̸= b

δjbk ∼ N
(
dbk, σ2

)
∼ N

(
dCk − dCb, σ2

)
dCS ∼ N

(
dmix

CS ,
σmix2

wCS

)
(2.6)

The important difference in this network meta-analysis model to the models before
is that the prior distribution for dCS is now informative, i.e. defined by the prior
distribution calculated before and down-weighted by an inflation factor 0 < wCS <

1. This down-weighting is conducted to incorporate the confidence placed in the
estimated treatment effect dmix

CS . With other words the choice of wCS depends on
the assumed agreement between evidence from only biomarker-positive studies and
evidence from studies with mixed population comparing the treatments C and S.
In this current work it was assumed that there was moderate agreement between
the available evidence, with wCS ∼ U(0.3, 0.7). All other prior distributions are
chosen as before.
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As with the stand-alone analysis, the exchangeability assumption is assumed to be valid
here with regards to the effect modifier biomarker status, because only studies with
100% biomarker-positive patients are included in the NMA and so the missing at random
assumption can be considered as valid.



22 Chapter 2. Methods

2.8 Application

The application of the methods introduced above will be illustrated by a clinical exam-
ple for targeted therapies in non-small cell lung cancer, which has been applied as well
in Proctor et al., 2020 and Proctor et al., 2022.
The category non-small-cell lung carcinoma (NSCLC), which includes adenocarcinoma
and squamous cell carcinoma according to classification of tumors in the lung of the
World Health Organization (WHO) account for 85% of all lung cancer cases (Didkowska
et al., 2016; Inamura, 2017). EGFR (Epidermal Growth Factor Receptor) mutations
have a 48% incidence in Asian patients with lung adenocarcinoma (compared to 19% in
Western patients) and the mutations appear predominantly in nonsmokers, women and
patients of a younger age (Chapman et al., 2016; Dearden et al., 2013). The treatment
of EGFR-mutated lung cancers with TKIs (tyrosine kinase inhibitors) achieves an in-
creased tumor response rate, longer progression-free survival and less toxicity compared
to chemotherapy (Greenhalgh et al., 2021).
Two examples for these TKIs are the treatments Gefitinib and Erlotinib (Cheng et al.,
2012). The efficacy of Gefitinib compared to a chemotherapeutical treatment was first
tested in a mixed patient population where patients where included in the study inde-
pendently of their biomarker status (see e.g. Fukuoka et al., 2003; Han et al., 2012; Kim
et al., 2008; Mok et al., 2009; Vansteenkiste, 2004; J.-H. Yang et al., 2014; Q. Zhou et al.,
2014). With other words, non-targeted trial designs were used. One well-known study
of the efficacy of the treatment Gefitinib is the non-targeted study IPASS (Mok et al.,
2009) which also included patients independently of their respective biomarker status
at first. In this study however, planned subgroup analyses showed that the presence of
an activating EGFR mutation provides the best response for the EGFR TKI therapy,
Gefinitib in this case (Mok et al., 2009; Vansteenkiste, 2018). Based on the results of
this trial among others, targeted or enriched studies such as Maemondo et al., 2010; Mit-
sudomi et al., 2010 were conducted which only included EGFR-positive patients. For
the drug Gefitinib as a therapy for NSCLC patients, studies including a mixed patient
population exist alongside studies with a solely biomarker-positive patient population.
Furthermore another EGFR TKI, namely Erlotinib, is used for the treatment of NSCLC.
The efficacy of Erlotinib compared to a chemotherapeutical agent was only investigated
in targeted studies for the biomarker EGFR (e.g. Rosell et al., 2012; Wu et al., 2015; C.
Zhou et al., 2011). In further trials, targeted and non-targeted studies approaches were
pursued such as in Urata et al., 2016; Xie et al., 2015; J.-J. Yang et al., 2017, where the
treatments Erlotinib and Gefitinib were compared directly with each other.
The main interest in this example lies in estimating the contrast between the targeted-
therapy Erlotinib to the standard therapy Gefitinib. Therefore direct and indirect evi-
dence via the chemotherapeutical control treatments is used analogously to the scenario
displayed in Fig.1.1.
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In order to be able to synthesize direct and indirect evidence, the exchangeability as-
sumption needs to hold as discussed above in Section 2.3. The validity of the exchange-
ability assumption for the different methods is one aspect explained above. For methods
only including studies with 100% biomarker-positive patients, the exchangeability as-
sumption is assumed to be fulfilled. For methods including mixed patient population
as well as only biomarker-positive patients, the exchangeability assumption might be
challenged. The chemotherapeutical treatments C are not assumed to differ systemat-
ically between the trials of targeted E+ and non-targeted S treatments and therefore
treatment C can be represented by a single node. Thus this aspect of exchangeability is
given so that within-trial transitivity can be assumed. It needs to be further assumed
that trials with the treatment Gefitinib are missing at random in studies comparing
Erlotinib with the chemotherapeutical agent or the other way round. With other words
the assumption that Erlotinib would also be given to BM− patients and that these
studies are not missing systematically linked to the presence or non-presence of effect
modifier needs to hold. One could assume that the treatment Gefitinib would have
been included in studies on biomarker-positive patients comparing a chemotherapeuti-
cal treatment with Erlotinib, because biomarker-positive patients have been included in
Gefitinib studies. Also earlier phase II studies, such as Giaccone et al., 2006 or Jackman
et al., 2007 show that Erlotinib could also in principle be given to biomarker-negative
patients. So it could be argued that the missing at random assumption is also valid for
the treatment Erlotinib in studies comparing Gefitinib to a chemotherapeutical agent
for a mixed patient population. However this assumption could be challenged if one
considers the fact that Erlotinib has later on only been given to biomarker-positive pa-
tients due to a higher efficacy in this patient group. This aspect needs to be considered
when interpreting the results later.
The binary outcome used to exemplify the evaluation is the overall response rate (ORR).
Biomarker-positive and biomarker-negative patients are in the following defined accord-
ing to the original publications. In general, however, several (inconsistent) definitions of
the EGFR-status exist, which might result in a slightly varying assignment of patients
that is not considered here. As noted above, some studies such as e.g. the IPASS study
(Mok et al., 2009) and the WJTOG study (Mitsudomi et al., 2010) included the patients
independently of the biomarker status and only retrospectively assessed the biomarker
status for some patients. In this current work the analysis is restricted to studies which
report patients with biomarker re-assessment for these trials in order to be able to eval-
uate the performance of the methods compared to a gold standard, ’the retrospective
analysis’. For simplicity, different chemotherapeutical agents are summarized in multi-
arm trials into one control arm, which increases its sample size and precision but could
also lead to an increased heterogeneity in the conducted analysis.
The response rates and the proportion of biomarker-positive patients out of the patients
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analyzed for biomarker status in each study used for this motivating clinical example
are listed in Table 2.1 along with the citation of the original publications.
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Table 2.1: Studies used in the motivational example

Study Intervention ORR∗ Control ORR∗ Prop.
BM∗∗

+

ENSURE (Wu et al., 2015) Erlotinib (E+) 62.7% Gemcitabine + Cisplatin (C) 33.6% 100%
EURTAC (Rosell et al., 2012) Erlotinib (E+) 58.1% Cisplatin + Docetaxel/Gemcitabine (C) 14.9% 100%
OPTIMAL (C. Zhou et al., 2011) Erlotinib (E+) 82.9% Gemcitabine + Carboplatin (C) 36.1% 100%
IPASS (Mok et al., 2009) Gefitinib (S) 42.6% Carboplatin + Paclitaxel (C) 37.9% 59.7%∗∗

NEJGSG (Maemondo et al., 2010) Gefitinib (S) 73.7% Carboplatin + Paclitaxel (C) 30.7% 100%
First Signal (Han et al., 2012) Gefitinib (S) 54.7% Gemcitabine + Cisplatin (C) 47.6% 44%∗∗

WJTOG (Mitsudomi et al., 2010) Gefitinib (S) 62.1% Cisplatin + Docetaxel (C) 32.2% 100%
Yang (J.-H. Yang et al., 2014) Gefitinib (S) 48.6% Pemetrexed+Cisplatin (C) 51.3% 67.7 %
V-15-32† (Maruyama et al., 2008) Gefitinib (S) 66.7% Docetaxel (C) 45.5% 100%
INTEREST† (Kim et al., 2008) Gefitinib (S) 12.0% Docetaxel (C) 11.3% 14.23%
Zhou† (Q. Zhou et al., 2014) Gefitinib (S) 11.1% Pemetrexed (C) 11.1% 71%
Yang† (J.-J. Yang et al., 2017) Erlotinib (E+) 59.4% Gefitinib (S) 52.3% 100%
Xie (Xie et al., 2015) Erlotinib (E+) 60.9% Gefitinib (S) 55.6% 100%
WJOG5108L† (Urata et al., 2016) Erlotinib (E+) 46.3% Gefitinib (S) 47.7% 71.7%

*ORR denotes the overall response rate of the patients analyzed for biomarker status
**Prop. BM+ denotes the proportion of biomarker-positive patients of the patients analyzed for biomarker status.
† this studies only included previously treated patients (2nd line studies)
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The application of the network meta-analysis methods to these real data examples was
conducted with the software R (Version 4.1.1) (R Core Team, 2022) and JAGS Plum-
mer, 2003. The R-code for reproducing the results of the application example and the
simulation study is available in the Appendix B.
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2.9 Simulation study

The models outlined above were implemented in the software R (Version 4.1.1) (R Core
Team, 2022) and the software JAGS in order to be evaluated in a simulation study.
The associated R-code is printed in the Appendix B. The main interest of the sim-
ulation study was to determine which parameter settings in combination with which
approaches delivered the best estimate of the treatment effect comparing E+ with S

for biomarker-positive patients (Figure 1.1). Throughout the whole simulation study, it
was assumed that studies comparing treatment C with treatment S provided only the
number of proportion of biomarker-positive patients and the overall response rate. In all
simulation scenarios, the models described in the sections above (2.3, 2.4, 2.5, 2.6 and
2.7) were used in order to perform a network meta-analysis or -regression and estimate
a treatment effect for E+ versus S for biomarker-positive patients. For the simulation
of the studies to be included in the NMA model, a modification of the data-generating
mechanism (DGM) published in Seide et al. (2019) was used. In Seide et al. (2019)
the DGM is used to simulate data in the setting of multi-arm trials in a random-effects
network meta-analysis. For the simulation of the data for the treatment arm S, the arm
needs to be split in biomarker-positive and biomarker-negative patients. Therefore, it is
assumed here that the network analysis model consists of n three-arm studies, where one
arm for treatment S only includes biomarker-positive patients, the second arm considers
the same treatment S but only includes biomarker-negative patients, and the control
arm C, the third arm, includes both populations. Additionally, it is assumed that there
exist three two-arm studies in the network comparing the control treatment C with the
treatment for the targeted therapy E+. A third comparison is included in the network
model with one study comparing E+ with S. The network model is assumed to be
consistent and the single response rates in this DGM are chosen in a way to support
this assumption. For the missing data approach described in Section 2.4, the numbers
of positive responses (success) for the biomarker-positive subgroup are then calculated
according to the assumptions outlined in Section 2.4 using the previously generated re-
sponse rate for the single studies.
The combined response rates generated by the DGM for biomarker-positive (and -
negative patients) for treatments C, E+ and S as well as the information of the propor-
tion of BM+ patients were used to investigate the performance of the approaches for
biomarker-positive and biomarker-negative patients in the different treatment arms for
different settings. These settings varied for given treatment effects, proportion of BM+

patients in a study, number of studies, and values of between-trial heterogeneity.

2.9.1 Simulation scenarios

The investigated scenarios are displayed in Table 2.2 and are all based on binary outcome
data.
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Table 2.2: Different settings used in the simulation study

Parameter Scenario Arms compared

CS (CE+)+ (SE+)+

J
(number of trials)

A 2; 5; 10; 20 3 1

B 4; 7; 12; 22 3 1

xj

(proportion of
biomarker-positive

patients in
study j)

A
xj ∈ [x1, .., xJ ]; x1 = 0.3, xJ = 0.7

1 1
xj ∈ [x1, ..., xJ ]; x1=0.4, xJ=0.5

B
xj ∈ [x1, xJ−2, 1, 1]; x1=0.3, xJ−2=0.7

1 1
xj ∈ [x1, xJ−2, 1, 1]; x1=0.4, xJ−2=0.5

d
(treatment effect) A & B BM+ :

-0.21

BM−:

0.2 1.79 2

0.2 0.2 1.79 1.59

0.4 0.2 1.79 1.39

1.25 0.2 1.79 0.54

n
(sample size) A & B 400

τ
(heterogeneity) A & B 0.001; 0.5; 1; 2

prior for τ
A τ ∼ U(0, 2)

B τ ∼ U(0, 2), τ ∼ HN (0, 0.5)

Contrasts with (...)+ only included studies with biomarker-positive patients.
Setting A has a varying number of trials and the proportion of biomarker-positive patients xj ∈ (0, 1). In setting B (xj ∈ (0, 1])
there are additionally 2 trials with xj = 1 included. xj is set to J equidistant values for 2 ranges of xj with minimum x1 and
maximum xJ . The treatment effects d are given as log odds ratios and the sample size n is equally distributed between the
two treatments. For setting B two different prior distributions are chosen.
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As mentioned before, two different settings were assumed for the availability of trials
comparing C versus S.
In setting ’A’, it is assumed that only studies with a mixed patient population x <
100% are available for C versus S. For the comparison CS in setting ’B’, it is assumed,
inspired by the application example, that in each scenario there are two studies available
comparing C versus S with 100% biomarker-positive patients and a varying number of
studies with mixed patient population. The number of trials for the comparisons CE+

and SE+ remained the same in both settings and were chosen according to a real world
data example, which is later used for the application as well.
The range of the study specific proportion of biomarker-positive patients, noted as xj ,
varies in the mixed patient population between a wide and low range and is set to J

equidistant values as displayed in Table 2.2. In setting B, there are additionally two
studies with 100 % biomarker-positive patients added to the number of studies in setting
A.
The treatment effects are given as log odds ratios (LORs). The theoretical LORs for
CE+ are based on the estimated LORs of the applicational data. For the comparison
CS, the LORs for biomarker-positive patients varies whereas the LORs for biomarker-
negative patients remains fixed. The varying log odds ratios illustrate low (same or dif-
ferent direction of treatment effect), moderate, and high agreement with the biomarker-
negative patients. The treatment effect values originate from assumed response rates
for the standard treatment pS

+ = (0.2, 0.4, 0.5, 0.7) for biomarker-positive patients and
pS

− = 0.45 for biomarker-negative patients. The response rate in the control treatment
is set to pC = 0.4. In order to keep the network consistent, the treatment effect SE+

varies accordingly. The sample size n is the same for every study and equally distributed
between the two treatments. Different heterogeneity values τ were chosen corresponding
to values reflecting a range of relatively low to massive between-trial heterogeneity on a
log-odds-ratio scale. For programming reasons, the lowest value for τ was chosen to be
0.0001 instead of 0.

Two different between-study heterogeneity priors were considered in the simulation
study. As stated in the models above, the non-informative prior for the between-study
heterogeneity, τ ∼ U(0, 2), was used. However, if the number of studies is small, it is
suggested by Friede et al. (2017) to use weakly informative priors such as e.g. half normal
priors. This might help to capture heterogeneity values typically seen in meta-analyses
of heterogeneous studies. The use of a second prior was only investigated in setting
’B’. Here, a vague prior τ ∼ U(0, 2) as well as a weakly informative half-normal prior
τ ∼ HN(0.5) was applied for the between-trial heterogeneity as suggested in Friede et
al. (2017). This second specification still includes relatively high values of heterogeneity
and includes the range of values used in the simulation study by Spiegelhalter et al.
(2004).
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Table 2.3: Overview of different performance measures used in the evaluation of the
simulation study

Performance measure Definition

Mean Bias 1
m

∑m
i=1((dSE+,i)+ − ̂(dSE+,i)+)

Root-Mean-Squared-Error
√

1
m

∑m
i=1((dSE+,i)+ − ̂(dSE+,i)+)2

Coverage 1
m

∑m
i=1 I( ̂(dSE+,lowi

)+ ≤ (dSE+,i)+ ≤ ( ̂dSE+,uppi
)+)

Mean Precision 1
m

∑m
i=1( ̂(dSE+,uppi

)+ − ̂(dSE+,lowi
)+)

Power 1
m

∑m
i=1 I( ̂(dSE+,uppi

)+ < 0 | ̂(dSE+,lowi
)+ > 0)

m: number of iterations, dSE+,lowi
: lower credible interval limit,

dSE+,uppi
: upper credible interval limit.

All together, 2560 different scenarios (512 for setting A and 2048 for setting B) were eval-
uated. (4 different values of J (A&B), 2 different values for xj (A&B), 4 different values
for dCS, 4 different values for τ (A&B), 2 different heterogeneity prior (B), 4 different
methods for setting A and 8 for setting B (naive (A&B), network meta-regression(A&B),
enriching-through-weighting with x (A&B), missing data (A), stand-alone (B), 3 times
enriching-through-weighting with prior weights (B), informative prior(B)).
Each scenario was simulated 1000 times. All simulations were performed in R version
4.1.1 (R Core Team, 2022). The program codes are provided in the Appendix B. The R

package R2jags (Su & Yajima, 2015) was used in order to conduct the Bayesian anal-
ysis in JAGS (Plummer, 2003). The number of burn-ins in JAGS was set to 20.000 with
50.000 iterations using 3 chains and a thinning interval of 2. Convergence checks were
conducted using Gelman and Rubins diagnostics.

2.9.2 Evaluation of results using performance measures

The focus in this evaluation lies on the treatment effect estimate for biomarker-positive
patients comparing the treatments E+ with S, denoted by ̂(dSE+)+, calculated by the
models. The treatment effect estimate obtained by the network meta-regression ap-
proach is obtained as a sum of the estimated regression parameter β̂SE+ and the ’in-
tercept’ ̂(dSE+)− which is the treatment effect for biomarker-negative patients. The
estimated treatment effect ̂(dSE+)+ which has been derived from data of the mixed pop-
ulation as well as the data from biomarker-positive population is compared to the true
treatment effect (dSE+)+ (see Table 2.2).
Five different performance measures, displayed in Table 2.3 were used to evaluate the
different models.
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The first performance measure to evaluate the different models was the mean bias,
which was calculated as the mean difference between the true treatment (dSE+)+ and
the estimated treatment effect for biomarker-positive patients ̂(dSE+)+ over 1000 sim-
ulations per scenario. Secondly, the Root-Mean-Squared-Error (RMSE) was used as a
performance measure, which represents the square root of the quadratic mean of the
differences, per scenario, between (dSE+)+ and ̂(dSE+)+. Thirdly, the coverage of the
different models was calculated as the percentage of the simulated credible intervals
which included the true treatment effect. Fourthly, the average length of the credible
intervals of the simulated treatment effect estimate was applied to evaluate the preci-
sion. As the last performance measure the resulting power of the different models was
evaluated by calculating the percentage of iterations, with a significant estimated treat-
ment effect. In other words, it is the percentage of simulations where either the upper
bounds of the credible intervals (dSE+,uppi

) were smaller than zero or the lower bounds
of the credible intervals (dSE+,lowi

) were greater than zero.
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Comment: The application results presented below differ in some instances slightly
from those already published in Proctor et al., 2022 (mainly regarding the informative
prior and enriching-through-weighting approach). This is due to recently optimized
calculations implemented in the programming code as well as a correction of the used
down-weighting factor w. However these changes in the application do not affect the
general conclusions made in this publication.

3.1 Application

The different approaches introduced in the chapter above were applied to the data ex-
ample illustrated in Section 2.8 in order to conduct a network meta-analysis with these
14 studies. Eight studies were available for the comparison of the standard therapy Gefi-
tinib S with the control therapy C, thereof two studies which included 100%-biomarker-
positive patients and six studies with a mixed patient population. This application
example corresponds thus to setting ’B’ described in the Introduction (Figure 1.1).
Three studies with 100%-biomarker-positive patients were available for the comparison
of the targeted therapy Erlotinib E+ with the control therapy C. Further three studies
comparing E+ versus S were available. Two of those studies included 100%-biomarker-
positive patients, while one study investigated a mixed patient population with 72%
biomarker-positive patients.
The given treatment effect estimates (TEEs) were derived from the single publications
using the reported response rates for the overall population, the responses rate for
the subpopulation as well as the number of patients in the overall population and the
subpopulation. For some studies, information on the subpopulation were only avail-
able from retrospective analyses and therefore these numbers were used. In Table 3.1,
the treatment effects for the overall population, which are denoted as d, and for the
biomarker-positive patients, which are denoted as (d)+ of the single studies are given
as log odds ratios. Additionally the table displays the proportions of biomarker-positive
patients per study x.



3.1.
A

pplication
35

Table 3.1: Listing of the treatment effect estimates of the single studies based on the reported overall response rates in the publications.

Study n Treatment Control x d d+

dCE+ (dCE+)+

1 ENSURE (Wu et al., 2015) 217 Erlotinib Chemo 1.00 1.20 1.20
2 EURTAC (Rosell et al., 2012) 173 Erlotinib Chemo 1.00 2.07 2.07
3 OPTIMAL (C. Zhou et al., 2011) 154 Erlotinib Chemo 1.00 2.15 2.15

dCS (dCS)+

4 IPASS (Mok et al., 2009) 437 Gefitinib Chemo 0.60 0.20 1.01
5 NEJGSG (Maemondo et al., 2010) 228 Gefitinib Chemo 1.00 1.84 1.84
6 First Signal (Han et al., 2012) 95 Gefitinib Chemo 0.44 0.28 2.22
7 WJTOG (Mitsudomi et al., 2010) 117 Gefitinib Chemo 1.00 1.24 1.24
8 Yang14 (J.-H. Yang et al., 2014) 74 Gefitinib Chemo 0.68 -0.11 0.25
9 V-15-32† (Maruyama et al., 2008) 20 Gefitinib Chemo 1.00 0.88 0.88

10 INTEREST† (Kim et al., 2008) 267 Gefitinib Chemo 0.14 0.07 1.00
11 Zhou† (Q. Zhou et al., 2014) 108 Gefitinib Chemo 0.71 0.00 1.67

dSE+ (dSE+)+

12 Yang17† (J.-J. Yang et al., 2017) 256 Erlotinib Gefitinib 1.00 0.29 0.29
13 Xie (Xie et al., 2015) 50 Erlotinib Gefitinib 1.00 0.22 0.22
14 WJOG5108L† (Urata et al., 2016) 419 Erlotinib Gefitinib 0.72 -0.06 -0.16

†2nd line study
The study size "n" is given, which denotes the number of patients (retrospectively) assessed for their biomarker (EGFR)
status. "x" is given as proportion of biomarker-positive patients in the respective the study population. "d" is the respective
TEE (LOR) per study obtained by using the reported overall response rates (ORR) for the whole population analysed for
their EGFR status. "d+" is the respective TEE (LOR) per study of the biomarker-positive patients, obtained by using the
reported ORR of the respective study (partly from a retrospective analysis).
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In the evaluation of this application, it was first assumed that the treatment effect esti-
mates obtained with the subgroup analyses were unknown and that only the treatment
effect estimates of the overall population for the respective single studies (d) in Tab.
2.1 were available. This data was used in a network meta-analysis using the differ-
ent methods (naive, regression, enriching-through-weighting, informative prior, stand-
alone) introduced above in order to calculate a pooled treatment effect estimate for
the biomarker-positive patients comparing Erlotinib versus Gefitinib. Additionally, a
standard network meta-analysis was performed using the single study results of the
aforementioned (retrospective) conducted subgroup analyses (d+). The results of this
network meta-analysis with data from retrospective analyses was used as a ’gold - stan-
dard’ to compare the TEEs resulting from the different methods with the overall popu-
lation.

Figure 3.1 displays the resulting pooled treatment effect estimate for Erlotinib versus
Gefitinib for different network meta-analysis methods used on the data of the application
example.
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Log odds ratio greater 0 favours Erlotinib compared to Gefitinib

Figure 3.1: Mean treatment effect estimates for Erlotinib vs. Gefitinib for biomarker-positive patients given as log odds ratios with their
corresponding 95% - credible intervals.
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Overall it can be seen that all TEEs showed a treatment benefit for Erlotinib compared
to Gefitinib. In this example, the biomarker status seemed to be an effect modifier for
the treatment Gefitinib as well. This can be seen in Table 3.1 where the TEEs are
higher for the BM+ population compared to the overall population analysed for EGFR.
Therefore the treatment effect estimate for Erlotinib versus Gefitinib was higher when
using evidence on the whole population, compared to the retrospective analysis.
The treatment effect estimate for Erlotinib versus Gefitinib was closest to the one of the
retrospective analysis (the ’gold-standard’) when the stand-alone model was used. But
this comparatively low deviation of the TEE from the retrospective analysis comes at
the price of a higher variance. The TEE obtained using the regression model as well
the enriching-through-weighting model with w ∼ U(0, 0.3) result in a slightly higher
deviation from the retrospective analysis compared to the stand-alone approach but less
variance. Using the informative prior approach, the enriching-through-weighting model
with w ∼ U(0.3, 0.7) or with the respective study covariate xj as down-weighting factor
results in an even higher deviation from the retrospective result. Especially the informa-
tive prior approach has also a high variance. Nevertheless, the aforementioned models
are still preferable to the models including all evidence with little (enriching-through-
weighting with w ∼ U(0.7, 1)) or no adjusting (naive analysis).
For all approaches it can be seen that the treatment effect estimate of the retrospec-
tive analysis was included in the respective 95% - credible intervals. In general it can
be noticed that the stand-alone approach in the network meta-analysis seems to result
in the least deviation from the retrospective approach but comes at the price of low
precision. The informative prior approach, which does not pool the mixed studies di-
rectly, seems also to result in a huge variance for the TEE when there is not much
evidence available. The approaches which performs best considering deviation from as-
sumed gold-standard and variance in this example seems to be the regression approach
and the enriching-through-weighting model with w ∼ U(0, 0.3). Both have a relatively
low deviation but also an acceptable precision. When using the regression approach,
caution has to be taken, because regressing on a patient-level covariate on a study-level
can introduce the risk of ecological bias. Therefore this approach is only recommended
as a sensitivity analysis to the enriching-through-weighting approach with w ∼ U(0, 0.3).
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Comment: Part of the results below have been already published in Proctor et al.
(2020) (setting ’A’) and in Proctor et al. (2022) (setting ’B’). For setting ’A’, the results
presented below differ slightly from those already published. This is due to an improved
simulation algorithm and the calculation of the bias. For the bias, the results of the
estimated treatment effect are in this work compared to the theoretical values and not
to the retrospective subgroup values as in the publication. However, this does not affect
the conclusions made in this respective publication.

3.2 Simulation study: general remarks

In the following, the results of the simulation study are presented in detail. In the
first part, results from the simulation study with setting ’A’ are illustrated. In this
setting, it is assumed that only studies with a mixed patient population (biomarker
proportion x ∈ (0, 1)) comparing treatment C with treatment S were available for the
network meta-analysis (see Figure 1.1). For this setting, the naive analysis, (Section 2.3)
network meta-regression (Section 2.5), missing data (Section 2.4) and enriching-through-
weighting (Section 2.6) approaches were applied to perform a network meta-analysis for
the simulated studies as explained in Section 2.9 and the results are evaluated.
In the second part of this section the results from the simulation study with setting ’B’
are reported. Setting ’B’ is an extension of setting ’A’ in assuming that for the com-
parison of the treatments S vs. C, two studies additional are existing which included
only biomarker-positive patients (x ∈ (0, 1]). In this setting, the simulated studies were
analysed in a network meta-analysis with the naive analysis, the stand-alone analysis
(Section 2.3), the network meta-regression (Section 2.5), the enriching-through-weighting
model (Section 2.6) and the informative prior model (Section 2.7) and the results are
evaluated. For this latter setting, the missing data approach was not included in the
simulation study. When there are studies available with 100%-biomarker-positive pa-
tients, more methods to compare the network meta-regression approach against exist,
and the missing data approach, a relatively crude approach, was not considered in the
comparison as an alternative to the naive approach.

3.3 Simulation study: proportion of biomarker-positive
patients x ∈ (0, 1) (Setting A)

3.3.1 Bias

The mean bias of the treatment effect estimates given different scenarios and models
was calculated as illustrated in Table 2.3 in Section 2.9. In the simulation study the
use of different ranges of BM+-patient proportions, [0.3,0.7] and [0.4,0.5] was evaluated.
For the missing data approach, it can be noticed that, in general, a smaller range [0.4,
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0.5] leads to an increased bias when the ’worst-case’ and ’worst-case only for S+’ (worst-
case only for biomarker-positive patients in the standard treatment group) approach are
applied. For the other scenarios and approaches the range of BM+ proportion does not
seem to have an effect on the mean bias of the estimated treatment effect. This is why,
in the following, only the results of the wider range (xj ∈ [0.3, 0.7]) displayed in Figure
3.2 are evaluated in more detail. The simulation study results using the range xj ∈ [0.4,
0.5] are displayed in Figure A.1 in the Appendix. The different methods are illustrated
in the following with different shapes. The columns of the trellis plot show the variation
of the theoretical treatment effect estimates (dCS)+, while and the rows illustrate the
variation in the theoretical heterogeneity values τ (see Table 2.2). Underestimating the
treatment effect for E+ versus S for BM+ patients ((dSE+)+) results in mean bias > 0,
whereas overestimating the treatment effect results in a mean bias < 0.
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Overall it can be noticed that the ’worst case only for S+’ approach (worst case only for
BM+ patients in the treatment group S) quite substantially underestimates the treat-
ment effect E+ versus S for all scenarios.
When the ’worst-case’ approach (worst-case for BM+ patients in both treatment groups
C and S) is applied, the TEE results in a mean bias close to zero in the setting when
a treatment disadvantage is assumed for biomarker-positive patients in treatment S

compared to C ((dCS)+ = −0.21) and low heterogeneity (τ ∈ {0.001, 0.5}). The TEE
obtained by the ’worst-case’ approach has a higher mean bias in all other settings, which
increases with an increasing number of studies, i.e. an increasing proportion of mixed
patient-population studies. The estimation based on the ’best-case for S+’ approach
(best case only for biomarker-positive patients in the standard treatment group (S))
results in larger mean bias compared to the ’best-case’ approach when no large treat-
ment benefit or a treatment disadvantage for biomarker-positive patients is assumed for
treatment S compared to C ((dCS)+ ∈ {−0.21, 0.2, 0.4}). When a treatment benefit for
biomarker-positive patients in treatment S compared to C is assumed ((dCS)+ = 1.25),
the ’best-case for S+’ approach results in a mean bias close to zero and especially a
lower bias compared to all other approaches.
The naive, regression, ’biomarker not predictive’ (Biomarker status not predictive for
response rate) approaches, and enriching-through-weighting with x, in the following re-
ferred to as "enriching approach", perform comparably well for (dCS)+ ∈ {−0.21, 0.2, 0.4}
and low heterogeneity (τ ∈ {0.001, 0.5}). For (dCS)+ = −0.21, the treatment effect
seems to be slightly underestimated by these approach whereas for (dCS)+ = 0.4 the
treatment effect seems to be slightly overestimated. With higher heterogeneity, the
missing data approaches result in a higher bias compared to the naive, regression, and
enriching approaches. When biomarker-positive patients are assumed to have a treat-
ment effect benefit for S compared to C) ((dCS)+ = 1.25), the ’best-case only for S+’
and regression approaches result in a mean bias close to zero, whereas the naive, the
’biomarker not predictive’, enriching, and ’best-case’ approaches overestimate the treat-
ment effect for E+ compared to S.
In general, it can be observed that the mean bias increases with an increasing assumed
heterogeneity value and that the regression approach leads overall to the least mean
bias.

3.3.2 RMSE

As a second performance measure, the Root-Mean-Square Error (RMSE) of the esti-
mated treatment effects was calculated. Compared to the mean bias, it gives more
weight to larger deviations from the true treatment effect in the different simulation
runs. When the proportion of biomarker-positive patients lies in the range between 0.4
and 0.5 (see Figure A.2 in the Appendix), it can be noticed that the RMSE is increased
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for the ’worst-case’ and the ’worst-case only for S+’ approach compared to the wider
range of x (xj ∈ [0.3, 0.7]). When the assumed heterogeneity is high (τ = 2), then the
’worst-case’ combined with a small range of xj leads to an even higher RMSE than the
’worst-case only for S+’ approach. For the regression approach it can also be seen that
a higher heterogeneity (τ ∈ {1, 2}) combined with smaller range of xj seems to lead to
higher RMSEs. In the following, the focus lies on the proportion range of xj ∈ [0.3,
0.7] and the results of the RMSE by the different models (shapes) and scenarios are
displayed in 3.3.
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For all values of (dCS)+, the estimation of τ with the ’worst-case only for S+’ approach
leads to a noticeably higher RMSE compared to all other approaches.

Figure 3.3 illustrates that, for most scenarios apart from (dCS)+ = −0.21 and τ = 0.001,
the application of the ’worst-case’ model leads to the highest RMSE compared to all
other models apart from the ’worst-case for S+’ approach. Comparing these other
approaches for the scenarios (dCS)+ ∈ {−0.21, 0.2, 0.4} and low to medium heterogeneity
(τ ∈ {0.001, 0.5, 1}), it can be seen that the ’best-case only for S+’ approach leads to
a higher RMSE compared to the naive, best-case, biomarker not predictive, regression
and enriching approaches. When there is medium to high heterogeneity assumed (τ ∈
{1, 2}), using the regression approach results in a higher RMSE compared to the naive,
’best-case’, ’best-case only for S+’, biomarker not predictive, and enriching models.
For (dCS)+ = 1.25, the estimation with the ’best-case only for S+’ approach leads
to the lowest RMSE. In general (apart from the ’worst-case’ and ’worst-case only for
S+’approaches) it can be noticed that the RMSE decreases with an increasing number
of studies and increases with an increasing value of heterogeneity, resulting for τ = 2 in
a lower bound of the RMSE close to 1.

3.3.3 Coverage

Comparing the results of the wider proportion range (xj ∈ [0.3, 0.7]) illustrated in Figure
3.4 to the smaller range (xj ∈ [0.4, 0.5]) (see Figure A.3 in the appendix), it can be seen
that the coverage of the approaches ’worst-case’, ’worst-case only S+’, ’best-case only
for S+’ is lower for a small proportion range compared to a wider proportion range. For
the ’worst-case only for S+’ and ’best-case only for S+’ approaches with the range of
xj ∈ [0.4, 0.5], low heterogeneity (τ ∈ {0.001, 0.5}, and n ≥ 5, the coverage is close to
zero. Looking at the coverage of the other models, the covariate range does not seem to
make a difference in the performance. The focus in the following is therefore lies on the
wider proportion range (xj ∈ [0.3, 0.7]).

In general, it can be seen that the ’worst-case only for S+’ and the ’best-case only for
S+ approach result in the lowest coverage compared to the other approaches.
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Figure 3.4: Coverage of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the simulation study for
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In the situation of a very low heterogeneity (τ = 0.001) and (dCS)+ ∈ {−0.21, 0.2, 0.4},
almost all models, apart from the ’best-case only for S+’ and the ’worst-case only for
S+’ approaches, have a coverage around 0.95. Throughout all scenarios, the regression
approach results in a consistently high coverage close to 0.95. For (dCS)+ = 1.25, the
coverage of the biomarker not predictive, best-case, naive, and enriching approaches
decreases when the number of studies increases, but their coverage increases with in-
creasing heterogeneity. For (dCS)+ ∈ {−0.21, 0.2, 0.4}, the coverage of the ’best-case’
approach increases with an increasing heterogeneity whereas the coverage of the other
approaches slightly decreases. When the number of study increases, the coverage of the
missing data approaches decreases. In case of high heterogeneity (τ = 2), no approach
results in a coverage over 0.95, but the lowest coverage is at 0.55 for all approaches apart
from the ’worst-case only for S+’ approach.
Overall it can be noted, that the coverage decreases with increasing (dCS)+, increasing
τ and an increasing number of studies. The regression approach has overall the highest
coverage.

3.3.4 Precision

The precision of the estimated treatment effect, given as the mean credible interval width
is displayed in Figure 3.5 for a proportion range of [0.3, 0.7]. The results of the mean
credible interval widths for the wider proportion range of [0.4, 0.5] are only displayed in
the appendix in Figure A.4.
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For the approaches ’worst-case’, ’worst-case only for S+’ and regression, the mean pre-
cision with xj ∈ [0.4, 0.5] is lower compared to the mean precision of the respective
approaches when a wider range for xj (xj ∈ [0.3, 0.7]) is given. For the other mod-
els, the proportion of BM+ patients per study (xj) does not visibly impact the mean
credible interval widths. Therefore, the following evaluation focuses on xj ∈ [0.3, 0.7].

The network meta-analyses using the worst-case or the ’worst-case only for S+’ ap-
proaches result in a low precision throughout all scenarios. When the heterogeneity
value is low to medium (τ ∈ {0.001, 0.5, 1}) the precision is lower compared to the other
approaches. The network meta-regression approach has the lowest precision compared
to the other approaches when the heterogeneity is very high (τ = 2). Conducting a
network meta-analysis with the naive, best-case, best-case only for S+, biomarker not
predictive, and enriching approaches results in similar precision values which are higher
compared to the regression, worst-case and ’worst-case only for +’ approaches. In gen-
eral the precision increases with an increasing number of studies and decreases with
increasing heterogeneity.

3.3.5 Power

The power of the different approaches and scenarios has been evaluated in the simulation
study based on the mean treatment effect significance measured as the percentage of
treatment effect estimates not including zero in the respective credible intervals. The
results are displayed in Figure 3.6 for xj ∈ [0.3, 0.7].
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In the setting of an assumed treatment effect with (dCS)+ ∈ {−0.21, 0.2, 0.4} and a low
heterogeneity τ ∈ {0.001, 0.5}, the proportion of BM+ patients per study does not seem
to influence the power of most methods (see Figure A.5 in the Appendix). Only for the
worst-case and regression approaches it can be noticed that a smaller proportion range
(xj ∈ [0.4, 0.5]) leads to an increased power. For (dCS)+ = 1.25, a smaller proportion
range leads to a decreased power for the regression approach, and an increased power
for the other approaches compared to a wider range (xj ∈ [0.4, 0.5]). With an increasing
heterogeneity, the different proportion ranges lead to more similar power results. The
results discussed in the following are based on the proportion range of BM+ 0.3 to 0.7
as displayed in Figure 3.6.

Given the situation of a very low heterogeneity (τ = 0.001) and (dCS)+ ∈ {−0.21, 0.2, 0.4}
or a slightly increased heterogeneity (τ = 0.5) and more than five studies, the power
is over 80% for nearly all approaches apart from the worst-case approach. When
(dCS)+ = 1.25 and n > 5, the naive, worst-case only for S+, the biomarker not pre-
dictive, the best-case, and the enriching approach lead to a power of over 80%. The
worst-case approach leads to the lowest power throughout all scenarios. The regression
approach results in better power as the worst-case approach but lower power than the
other approaches. The highest power throughout all settings is reached with the worst-
case only for S+ approach. The power increases with the number of studies increasing
and decreases with increasing heterogeneity.

3.4 Simulation study: proportion of biomarker-positive
patients x ∈ (0, 1] (setting B)

The results evaluated in this section are based on the assumptions of setting B, as in-
troduced in Chapter 1. The main difference to setting A is that for the comparison
of C versus S two studies with only 100% biomarker-positive patients where included
additionally (see Table 2.2). In this setting the missing data approach was not eval-
uated, because there was no great advantage compared to other methods available to
be expected. Instead, the enriching-through-weighting approach with different weights,
as well as the informative prior approach and the stand-alone approach were evaluated
as alternative approaches to the naive, network meta-regression and enriching-through-
weighting with x approach. The same performance measures as above (Table 2.3) were
applied.
Using different ranges for the proportion of biomarker-positive studies in the simulation
study did for a small proportion range not result in notable differences in the perfor-
mance measures for this setting. This is why only results for xj ∈ [0.3, 0.7] are evaluated
in the following. For the sake of completeness the results of the smaller range [0.4, 0.5]
in the different simulation settings are presented in the appendix (Chapter A, Figures
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A.6, A.7, A.8, A.9, A.10).
In this present setting, a weakly informative heterogeneity prior τ ∼ HN (0.5) was eval-
uated additionally to the non-informative prior τ ∼ U (0, 2) as already discussed in
Chapter 2. For both, the results of the simulation study are discussed in the following.
The Figures for the results of the half-normal prior are displayed in the Appendix A.2.

As above, the columns vary with the assumed theoretic treatment effects for C versus S,
while the rows display different levels of between-trial heterogeneity. The x-axis displays
the number of studies included in the comparison of S versus C whereas the y-axis
displays the performance measures. The different shapes mark the different methods
used to estimate the treatment effect of comparing E+ with S.

3.4.1 Bias

Figure 3.7 displays the mean bias of the estimated treatment effect (dCS)+ for biomarker-
positive patients using the different models described in the chapter above and different
simulation scenarios.
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It can be seen that the treatment effect estimates obtained with regression as well as with
the stand-alone approach have the lowest absolute mean bias throughout all investigated
parameter settings. For (dCS)+ = −0.21, assuming that BM+ - patients perform worse
than BM− - patients, the estimation of the treatment effect leads to an overestimation of
the true treatment effect for most approaches except for the regression and stand-alone
analysis, which seem to underestimate the true treatment effect. The mean bias increases
with an increasing number of studies i.e., an increasing proportion of mixed studies
comparing S versus C and an increasing heterogeneity. For (dCS)+ = 0.2, assuming
that BM+-patients have the same treatment effect as BM−-patients, a mean bias close
to 0 can be noted independently of the number of studies in CS. This mean bias increases
slightly with an increasing heterogeneity. For the treatment effect estimate (dCS)+ = 0.4
which corresponds to the assumption of a slightly better treatment advantage for BM+-
patients compared to BM− - patients, all models lead to an underestimation of the
true treatment effect. Assuming a greater treatment advantage in BM+ - patients
compared to BM− - patients, (dCS)+ = 1.25, leads to an underestimation of the true
treatment effect for BM+ patients which is more pronounced for increasing proportion of
mixed studies (higher n) for most approaches. Comparing specification of the enriching-
through-weighting approaches, it can be seen that the approach with w ∼ U(0, 0.3),
and therefore the approach with the least trust in the mixed data, leads to a slightly
decreased bias compared to the other enriching-through-weighting approaches.
The estimated treatment effects using a half-normal heterogeneity prior (see Figure
A.11) instead of a uniform prior result in a similar mean bias compared to the use of a
uniform prior.

3.4.2 RMSE

Figure 3.8 displays the Root-Mean-Squared-Error (RMSE) of estimated treatment ef-
fects comparing E+ with S for the above-discussed scenarios. Care has to be taken
when interpreting the plot because the scales on the y-axis are expanding with increas-
ing heterogeneity to allow the illustration of the differences with increasing between-trial
heterogeneity.
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When a treatment effect of (dCS)+ ∈ {−0.21, 0.2, 0.4} and a heterogeneity of τ = 0.001
is given, there is only a slight difference visible between the different models. For
(dCS)+ ∈ {−0.21, 0.2, 0.4} and at least a moderate heterogeneity, i.e., τ = 0.5, it can
be seen that the regression and the stand-alone approaches perform worse than the
other approaches and even more so for increasing study numbers and increasing het-
erogeneity. In the setting where the treatment effect for biomarker-positive patients is
higher than the treatment effect for biomarker-negative patients (dCS)+ = 1.25, the
performance of the regression and stand-alone approach is dependent on the hetero-
geneity. For low heterogeneity (τ ∈ {0.001, 0.5}), these approaches perform better than
the naive, informative, or enriching-through-weighting models. With increasing hetero-
geneity (τ ∈ {1, 2}) however the RMSE of these approaches is higher compared to the
RMSE of the other approaches.
The estimated treatment effects using a half-normal heterogeneity prior result in similar
RMSE compared to the use of a uniform prior (see Figure A.12).

3.4.3 Coverage

Figure 3.9 displays the coverage for the TEE of the comparison E+ versus S in biomarker-
positive patients. A grey line indicates the nominal level of 95% in each panel.
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Figure 3.9: Coverage of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the simulation study for
different methods (setting B)
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In general, it can be noticed that the coverage of all models are equal to or above
95% for τ = 0.001 under the treatment effect (dCS)+ ∈ {−0.21, 0.2, 0.4}. For τ = 0.5,
the informative prior, stand-alone, and regression approach result in a coverage close
to 95%. The other approaches result for n ≥ 7 in a coverage smaller than 95% and
the coverage decreases with an increasing number of studies. For (dCS)+ = 1.25 and
τ ∈ {0.001, 0.5, 1}, the informative prior, regression, and stand-alone approaches still
result in a coverage close to 95%. The enriching-through-weighting approaches only
leads to the desired coverage of 95% for n ∈ {4, 7}. For n > 7 these models lead
to coverage well below the 95%. The coverage of these approaches decreases with an
increasing number of mixed studies to a coverage below 65% for n = 22 when the
heterogeneity is low. For τ = 1 and (dCS)+ ∈ {−0.21, 0.2, 0.4}, the coverage for the
approaches informative prior, stand-alone regression, and enriching-through-weighting
with w ∼ U(0.7, 1) is still >90%. For (dCS)+ = 1.25 and n ≥ 12 it can be seen that
the enriching-through-weighting approaches and the naive approaches have clearly lower
coverages. The enriching-through-weighting approach with w ∼ U(0, 0.3) leads to the
lowest coverage for moderate and higher heterogeneity (τ ∈ {0.5, 1, 2}). For a high
between-trial heterogeneity (τ = 2), the coverage of all approaches is below 95%.
The resulting coverage when using a half-normal prior τ ∼ HN (0.5) (see Figure A.13 in
the Appendix) is lower when τ = 0.001 and (dCS)+ = 1.25 for most models compared to
the usage of the uniform prior. For the regression and stand-alone approach there is no
difference visible. For the same low τ and (dCS)+ ∈ {−0.21, 0.2, 0.4}, there is no consid-
erable difference when using these respective heterogeneity priors. For intermediate to
high heterogeneity values, τ ∈ {0.5, 1, 2} the coverage is lower for all treatment effects
for all settings when a half-normal heterogeneity prior (HN (0.5)) is used compared to
the uniform prior. It can be noted that for τ = 0.5 the stand-alone and regression
approach still reach a coverage close to 95% when using the half-normal prior.

3.4.4 Precision

The mean precision displayed in Figure 3.10 is measured as the mean 95% credible inter-
val width of the estimated treatment effects. Care has to be taken, when interpreting the
illustrated results, because the y-axis scale increases with an increasing heterogeneity
for a clearer visualization of results.
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Figure 3.10: Mean 95% credible width of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the
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Using the stand-alone analysis leads to a low precision throughout all parameter settings.
This was to be expected, because only two studies were included in the contrast C versus
S. When the informative prior model is used to estimate the treatment effects, the
resulting precision is still quite low but increases with a rising number of studies apart
from the setting (dCS)+ = 1.25, and τ = 0.001. The highest precision for the treatment
effect estimate was achieved with the enriching-through-weighting approaches, especially
with w ∼ U(0, 0.3). An increase in the heterogeneity parameter τ leads to a decrease
in precision, which can especially be seen in the increase of the scaling parameter on
the y-axis. The regression approach results in a decreased precision compared to the
enriching-through-weighting and the stand-alone models especially for higher between-
trial heterogeneity values. It can also be noticed that the enriching-through-weighting
models and the naive approach lead to the highest precision values for all settings.
The use of a half-normal prior in the setting of a very low heterogeneity τ = 0.001 results
in higher precision for the naive and informative prior model compared to the uniform
prior. When the network meta-analysis is conducted with the other methods, there is
no visible difference when different heterogeneity priors are used (see Figure A.14 in the
Appendix). The resulting precision for τ ∈ {0.5, 1, 2} in all settings is higher when a
half-normal heterogeneity prior was used instead of a uniform heterogeneity prior.

3.4.5 Power

The power of the single approaches, measured as the percentage of the estimated credible
interval not including zero, is displayed in Figure 3.11. The grey line indicates the desired
power of 80%.
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The power is close to 100% for most approaches with low and moderate heterogeneity
(τ ∈ {0.001, 0.5}) and (dCS)+ ∈ {−0.21, 0.2, 0.4}. Only the stand-alone approach has
a lower power for (dCS)+ ∈ {0.2, 0.4} and τ = 0.5 The enriching-through-weighting
approaches perform better or equal to the other approaches through all parameter set-
tings with regards to the power. The power decreases with increasing heterogeneity and
decreasing (d+

CS) and increases with the number of studies, i.e. proportion of mixed
studies for CS. For τ = 1 and (dCS)+= 2 or τ = 2, the power of 80% is not achieved
by any of the models.
The use of the half-normal heterogeneity prior does not lead to a difference in the result-
ing power of all models when τ = 0.001 and (dCS)+ ∈ {−0.21, 0.2, 0.4} (see Appendix
Figure A.15). For (dCS)+ = 1.25, the power for all given heterogeneity values τ is
higher when using a half-normal prior compared to a uniform prior. For the stand-alone
model with τ = 0.5 and (dCS)+ ∈ {0.2, 0.4}, it can be noted that the resulting power
is higher when a half-normal prior is used compared to a uniform prior. Especially for
the treatment effect (dCS)+ = 0.4, the difference is considerable. A power of over 80%
is still reached when using a half-normal prior compared to less than 80% power when
using a uniform prior. For intermediate or high heterogeneity values τ ∈ {1, 2}, the
resulting power is slightly lower for all models when using a uniform prior compared to
the resulting power using a half-normal heterogeneity prior.

3.5 Setting A versus setting B

In the two sections above, the results of the different methods given different scenarios
for the two respective settings (A and B) have been evaluated. In the following the per-
formances of the naive, regression and enriching - through - weighting with x approaches
are compared in more detail between setting A and setting B, because only these three
approaches have been used in both settings. The proportion of BM+ patients for this
comparison is chosen to be between 0.3 and 0.7, and the heterogeneity prior is chosen
to be uniform (τ ∼ U(0, 2)).
For the evaluated settings of the simulation study, it can be noted that adding two
studies with 100% biomarker-positive patients results in a less biased estimation for the
treatment effect comparing E+ versus S. The RMSE is also smaller when these two
studies are added in a NMA. It leads to better coverage, precision, and higher power. In
the following, the results of the comparison of setting A versus setting B are illustrated
and explained in more detail with the focus of this evaluation on the comparison of the
performance of the models in these different settings.



3.5. Setting A versus setting B 63

3.5.1 Bias

In Figure 3.12, the mean bias of the estimated treatment effects are displayed for the
setting A and setting B marked in black and grey and the different models marked with
different shapes.
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In almost all scenarios (apart from (dCS)+ = 0.4, n < 5 and τ = 2) the absolute
value of the mean bias is smaller when two studies with 100% biomarker-positive pa-
tients are added for the comparison of S versus C (setting B) compared to having only
mixed patient-population studies (setting A). The difference is more pronounced for the
enriching-through-weighting approach and the naive approach compared to the regres-
sion approach. For (dCS)+ = 1.25, the difference in the mean bias between the two
settings is especially distinct for a small number of studies n < 5. When comparing
the mean bias between the two settings for a different number of studies, it can be
noticed that adding two 100% biomarker-positive studies results in a lower mean bias
than simply adding two mixed population studies.

3.5.2 RMSE

The mean RMSE of the estimated treatment effects by different methods is displayed
in Figure 3.13 for the two settings marked in black and grey. For clarity, the y-scales
differ for different values of τ .
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For the regression approach, the mean RMSE of the estimated treatment effects through-
out all scenarios is higher when there are no 100-% biomarker-positive studies included
compared to the inclusion of two 100-% biomarker positive studies. It can also be seen
that, with an increasing number of studies, the RMSE is decreasing. For the naive and
the enriching-through-weighting with x approach, there is no big difference between the
two settings visible when (dCS)+ ∈ {−0.21, 0.2, 0.4} and the number of studies is larger
than 2 or 4. A treatment effect of (dCS)+ = 1.25 results in a clearly higher RMSE for
all models in setting A compared to setting B.

3.5.3 Coverage

The coverage of the estimated treatment effect by using different methods is displayed in
Figure 3.14 for different methods and settings. The y-scales are changing with varying
τ .
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When the heterogeneity is low (τ ∈ {0.001, 0.5}) and the true treatment effects (dCS)+

are ∈ {−0.21, 0.2, 0.4} there is no visible difference between the different settings. For
(dCS)+ = 1.25 and τ ∈ {0.001, 0.5, 1}, the resulting coverage of the approaches enriching-
through-weighting with x and naive is clearly lower for n > 2 in setting A compared
to setting B. For a very high heterogeneity value (τ = 2), setting A leads to a higher
coverage compared to setting B but all methods and settings result in a coverage below
the desired 95%-level.

3.5.4 Precision

The resulting mean precision given by the mean credible interval widths of the different
methods is displayed in Figure 3.15. The scale of the y-axis changes with varying values
of τ .
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Overall, it can be noticed that the precision is lower, i.e. the mean credible interval
width higher in setting A compared to setting B. The difference is especially distinct for
the regression approach and a low number of studies. When the proportion of 100%-
biomarker-positive studies decreases, the difference in precision between the settings
decreases as well.

3.5.5 Power

Figure 3.16 displays the resulting power of the different methods in estimating a treat-
ment effect comparing E+ versus S. The power is given as the percentage of significant
treatment effects.
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Figure 3.16: Power of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the simulation study for
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The regression approach has a higher power when there are studies with 100% - biomarker-
positive patients included in the comparison S versus C for τ ∈ {0.001, 0.5, 1}) and the
true treatment effects (dCS)+ ∈ {−0.21, 0.2, 0.4}. For the treatment effect (dCS)+ =
1.25, all three models result in a higher power for setting A compared to setting B.
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This chapter summarizes the contributions of this thesis to research. Moreover, limita-
tions and directions for future research are presented.

4.1 Contributions to research and discussion

The aim of this thesis was to evaluate methods to estimate a pooled treatment effect
for a specific patient subgroup in a network meta-analysis based on direct and indirect
evidence. In this setting, targeted as well as non-targeted therapies where included. Ev-
idence on non-targeted therapies was characterized by the response rates for an overall
population consisting of biomarker-positive and -negative patients and the percentage
of biomarker-positive patients. Two settings were evaluated in a simulation study. In
setting ’A’, it was assumed that no studies with 100% biomarker-positive patients ex-
isted for the comparison of a standard treatment S with a control treatment C. For
setting ’B’ as an extension to setting ’A’, it was assumed that additionally two studies
with 100% biomarker-positive patients existed for the comparison of S versus C. This
setting corresponds to the application example.
In setting ’A’, the performance of four approaches, namely the missing data, the network
meta-regression, the enriching-through-weighting model with the proportion of BM+-
patients x, and the naive model were investigated.
The performance of the missing data approach is linked to the underlying true treatment
effect. With other words, an assumption of the performance of BM+-patients is needed.
The performance of the ’best-case’ and ’worst-case’ approach are favorable in any of the
scenarios. It can be seen that the ’worst-case only for S+’ approach highly overestimates
the treatment effect of S for biomarker-positive patients in all scenarios. It seems to be
a too crude approach to use and also suffers from the problem of rare events because
the minimum of events are assigned to biomarker-positive patients. When it is assumed
that the biomarker-positive patients benefit from the standard treatment compared to
the control treatment, the ’best-case only for S+’ approach performs equally well as
the enriching-through-weighting with x approach in terms of mean bias and RMSE and
outperforms this approach in terms of coverage and precision. However, for a small
number of studies, it has less power compared to the enriching-through-weighting ap-
proach. If there is the assumption that the biomarker is no effect modifier and therefore
the treatment effect of biomarker-positive patients is equal to the treatment effect of the
biomarker-negative patients in the standard treatment S, then either the ’biomarker not
predictive’ or the ’naive’ approach can be used. The advantage of using the ’biomarker
not predictive’ approach is that it reflects the size of the patients in the biomarker-
positive subgroup more adequatly. In general the missing data approach does not seem
to outperform the other methods and, as a really crude approach, would only be rec-
ommended if there substantial reason to believe that the assumptions are fulfilled. The
’best-case for only S+’ approach could then be used as a sensitivity analysis.
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Using the enriching-through-weighting approach as well as the network meta-regression
approach lead to low mean bias and low RMSE. When higher between-study heterogene-
ity is present, the network meta-regression approach leads to lower precision compared
to the analysis with the enriching-through-weighting approach. However the estimation
with the network meta-regression approach results in a coverage close to 90% throughout
all scenarios. The enriching-through-weighting approach suffers from low coverage in the
setting which assumes that the biomarker-positive patients have a significant treatment
effect advantage compared to the biomarker-negative patients undergoing non-targeted
therapies. In terms of power, the enriching-through weighting approach has a higher
power in the aforementioned scenario compared to the meta-regression approach.
The advantage of the network meta-regression and the ’enriching-through-weighting
with x’ approaches compared to the missing data approach is that no assumption of the
treatment performance on biomarker-positive or biomarker-negative patients is needed.
It can be seen that the network meta-regression with only a few studies shows less preci-
sion and, in the presence of heterogeneity, a slightly increased RMSE. According to the
Cochrane Handbook 9.6.4 (Higgins & Green, 2011), a network meta-regression should
not be considered when the number of studies included is smaller than ten. According
to Borenstein et al. (2021), small studies, few studies, or a small covariate effect could
also lead to problems with low power in network meta-regression. For only two studies
in one arm and a small covariate effect, this can be seen in the simulation results of the
network meta-regression displayed in the Appendix (Figure A.1). Another limitation of
conducting a (network) meta-regression based on patient specific data on a study-level is
the risk of ecological bias. Ecological bias means that causal inference about a covariate
on patient-level data based on aggregated data of this covariate could lead to a biased
effect estimation (Morgenstern, 1982; Thompson & Higgins, 2002). However, in the
simulation study of this work, the mean bias of the network meta-regression model was
relatively small throughout all scenarios. Because of this aforementioned limitation of
the network meta-regression approach, the enriching-through-weighting approach with
x seems to be favorable to use, especially for small study numbers. This approach per-
forms similar to the naive approach in most scenarios but results in less bias when a
treatment effect benefit for biomarker-positive patients compared to biomarker-negative
patients in treatment S versus C is assumed or when high between-study heterogeneity
is present. Therefore it seems to be a good choice if the effect of a covariate e.g. the
biomarker status, is unknown.

The inclusion of studies with only biomarker-positive patients for the comparison of C

versus S in the network as in setting ’B’ offers more choices for network meta-analysis
methods. In this situation, also a stand-alone network meta-analysis including only
studies with biomarker-positive patients and an informative prior approach using the
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treatment effect of the mixed patient population as prior are feasible. Another option
is using the enriching-through weighting approach not only with the value ’proportion
of BM+ patients’ as a weighting factor but with specific weights for the trust in the
evidence from a mixed patient population compared to the 100% biomarker-positive
patient population. These additional methods were compared in a simulation study to
the network meta-regression approach, the naive approach, and the enriching-through-
weighting approach with x. The missing data approach was not evaluated in setting
’B’ because the assumption of knowing the performance of biomarker-positive patients
seemed too strong and none of the approaches seemed to perform exceptionally well com-
pared to the enriching-through-weighting and the network meta-regression approaches.
The network meta-regression and stand-alone approaches lead throughout all scenarios
to the lowest bias and high coverage. The enriching-through-weighting approaches result
in a decreased RMSE and higher precision, especially when there is some between-study
heterogeneity. In general, it can be noticed that adding two studies with 100%-biomarker
positive patients leads to a decreased mean bias, decreased RMSE, more precision and
better coverage in most scenarios for the methods used already in setting ’A’. The im-
proved performance of the methods is not only caused by the fact that the number of
studies included is always increased by two, but also by the fact that more weight is given
to studies with 100-% biomarker-positive patients in the enriching-through-weighting ap-
proach with x and the network meta-regression approach. As discussed before, using
the network meta-regression approach implies the potential risk of ecological bias, be-
cause the regression covariate biomarker status is based on patient-level data. If studies
of 100% biomarker-positive patients are available, the informative approach could be
advisable to use because it does not have the risk of ecological bias. Especially if there
is some heterogeneity assumed to be present, it can lead to less variance and a more
precise estimate without loss of coverage and is therefore favorable to the stand-alone
approach. The enriching-through weighting approaches are recommended to be used
for sensitivity analyses. These results might give hints on how the studies with overall
populations differ from studies with only biomarker-positive patients.
In this thesis, the use of a half-normal prior for the between-study heterogeneity com-
pared to a uniform prior was also investigated. The half-normal prior (HN (0.5)) resulted
in higher precision values compared to the uniform prior (U(0, 2)) especially in the pres-
ence of low between study-heterogeneity. This was to be expected because the prior has
more weight in low heterogeneity values (Röver et al., 2021). For intermediate or high
heterogeneity values, the resulting power increased when using a half-normal prior.
Another parameter investigated in this thesis is the impact of the proportion range of
BM+ patients on the results. This range influences especially the results of the network
meta-regression approach. The resulting RMSEs in the simulation study are always
higher for smaller proportion ranges compared to larger proportion ranges in the net-
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work meta-regression. This was to be expected because variance increases with a smaller
range of independent values and is inversely related to the spread of covariate variables,
in this case the proportion of BM+ patients.
The least biased estimate in the application was generated using the stand-alone ap-
proach. However, this small bias comes at the cost of a high variability or wider credible
intervals. The enriching-through-weighting approach with weight w ∼ U(0, 0.3) and the
network meta-regression approach both resulted in a tolerable bias and better preci-
sion. In general, it can be noticed that the treatment effect estimates of the approaches
which give more weight to mixed studies shift towards a higher treatment effect for
Erlotinib. This might be caused by the fact that the treatment effect for Gefitinib is
decreased in a mixed patient populations compared to the Gefitinib studies where ex-
clusively biomarker-positive patients were included (see Table 3.1). In this example, all
approaches indicate a treatment effect advantage for Erlotinib compared to Gefitinib
with regards to the response rate.

4.2 Limitations and directions for future research

The limitation of the missing data approach, with possibly too crude assumptions or
the possibility of introducing ecological bias in the network meta-regression have already
been discussed above.
The ranges of respective weights chosen for the enriching-through-weighting approach
were based on the work of (Efthimiou et al., 2017). In further research, the choice of
these weights could be changed and the trust in the evidence of mixed patient population
(weights) could, for example, be based on some historical evidence. The performance
of an analysis with stand-alone approach is quite good. This might be caused by the
fact that the two single biomarker studies have been simulated from the same true mean
treatment effect as the part of the population which is biomarker-positive. A variation
on this part might also change the performance of this approach.
As in every work, the assumptions chosen for specific setting restrict the extent of sce-
narios to be evaluated. One limitation in this work is the very specific setting of a
network meta-analysis with targeted and non-targeted therapies. In order to choose the
evaluation scenarios, the situation for given parameters had to be restricted. But despite
of this very specific scenario chosen in the simulation study, an indication can be given
based on the simulation results on how the aforementioned methods would perform in a
more general setting in a network with certain subpopulations and overall populations.
In this work, it was assumed that only aggregate data was available for the studies with
an overall population. In Proctor et al. (2020), it was assumed that IPD was available
for the targeted arm but, in this specific setting with binary endpoints, no advantage
of the IPD could be seen compared to AD. This is why here all available study data
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was assumed to be on only aggregated data due to reasons of simplicity. If individual
patient data were available for some studies investigating an overall population, another
choice of methods would be available. These could be compared to the ones discussed in
this work in further research. In Ishak and Benedict (2015) the MAIC or STC approach
were discussed which rely on AD and IPD availiability and seem to address a similar
problem. In the situation of this thesis however, these approaches would not work, be-
cause it was considered that only studies with 100% biomarker-positive patients were
available for one arm of the network and this TEE could not be adjusted for a propor-
tion of biomarker patients in the other arm which is less than 100%. (Phillippo et al.,
2020) suggested another method for analysing IPD and AD together and conducting
a network meta-regression with the multilevel network meta-regression approach. This
approach also requires to have IPD available in all arms of the network which is not the
case in the setting of this work. These aforementioned approaches show as well that
methods for network meta-analyses for heterogeneous populations are a current field of
research.
As mentioned before, the endpoint regarded in this work was chosen to be binary and
all methods were compared for binary data. In further research, the models could be
extended for continuous and time-to-event data, and might also include multi-arm trials.
Another rather strong assumption in this work was the assumption of consistency of the
network. Consistency follows according to Dias et al. (2018) from the exchangeability
assumption. This assumption might be challenged depending on the specific setting as
explained in the chapters before. Therefore the consistency assumption might not be
always fulfilled. Further research is needed on how to address this issue adequately.
One other limiting factor is the assumption that the percentage of biomarker-positive
patients is the same in both treatment groups which implies a perfectly balanced ran-
domization. In real clinical trials, this might not always be given.
Some of the used methods rely on the fact that the percentage of biomarker-positive
patients is known. In a real clinical trial, it could be the case that this percentage is un-
known, e.g. when studies are conducted without considering the biomarker status in the
analyses. On the other side however, if biomarker tests are conducted, then subgroup
analyses are performed quite often (see e.g. Mok et al. (2009) and Han et al. (2012)). In
this case, the subgroup specific treatment effect is known and the adjustment methods
are not needed. However often only a small amount of patients are tested retrospectively
and using only the subgroup results might lead to loss of information.
All approaches used were based on Bayesian methods and required the choice of priors
for certain parameters. In the simulation study, most priors were chosen to be vague.
But especially the choice of the heterogeneity prior needs to be discussed in more detail.
According to Röver et al. (2021), it might be the case that, when only few studies are
considered, the data have little information to add and therefore the analysis results



4.3. Conclusion 81

are largely determined by the prior settings, even if the prior is chosen to be vague.
According to Lambert et al. (2005), precision can vary additionally with the choice of
the prior distribution leading to varying coverage intervals and, potentially, to different
statistical inferences. The width of credible intervals might be increased when using a
flatter prior for between-trial heterogeneity (Seide et al., 2020), especially when only a
few studies are included in the network meta-analysis. A between-study heterogeneity
close to zero might lead to an upward biased variance estimate. This is why sensitivity
analyses are recommended with different priors (Lambert et al., 2005). In this work,
only the use of a half-normal prior HN (0.5) was evaluated as sensitivity analysis. In
further research, the use of other vague, weakly informative, or even informative priors
in justified settings could be investigated.
The values chosen for the theoretical treatment effects in the simulation studies were
based on specific response rates of the application example. In other settings, it might
be interesting to evaluate how other theoretical treatment effects would influence the
performance of the methods. One might e.g. decide for a proportional distance between
the chosen treatment effects.
The results in this work could only be calculated using simulation studies due to the
complexity of the models. Given the limited computing capacity, only a small number
of repetitions (1000) could be performed and thus there may be random variations in
the results.

4.3 Conclusion

In this thesis, different methods were evaluated to conduct a network meta-analysis
including evidence for targeted and non-targeted therapies. In the simulation study,
it was shown that in the case of only non-targeted studies in one arm of the network,
the enriching-through-weighting approach with x (setting A) leads in most settings to
less bias and an acceptable variance compared to the other methods. The network
meta-regression could be used for sensitivity analysis. If there are targeted studies for
all arms of the network available (setting B), the informative prior approach might be
advisable. Sensitivity analyses with the enriching-through-weighting approaches with
different weights and the network meta-regression approach are recommended. These
aforementioned methods give the possibility to obtain a treatment effect estimate for
a specific population in the network using all evidence available and therefore help to
come to a treatment recommendation for this specific subpopulation.
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5.1 Summary (English)

The aim of this thesis is to evaluate network meta-analysis methods including studies
with an overall patient population and as well as studies on only subpopulations regard-
ing a specific covariate.
In this thesis the situation is motivated by an actual network meta-analysis problem.
Here a biomarker is identified as separating a patient population into patients with a
higher and a lesser expected benefit from evaluated treatments. Consequently, later
studies might be conducted in a targeted way, while earlier ones are performed in mixed
patient populations. Additionally, it is assumed that there are only targeted studies of
a newer treatment available. In order to compare these different treatments with each
other and use all evidence available, a network meta-analysis needs to be conducted. Be-
cause the patient population is heterogeneous with regard to this biomarker, conducting
a network meta-analysis of all available treatments (targeted and non-targeted) poses a
challenge in evidence synthesis, especially if only aggregated study data are available.
Currently existing methods are either assuming that individual patient data is available
or do not include all evidence available. Therefore in this work, methods are discussed
and evaluated regarding the following setting:
The network meta-analysis setting is a "triangular" network involving (little) direct and
(more) indirect evidence on a particular comparison. Two settings (A and B), which
differ regarding the proportion of biomarker-positive patients in the single studies, are
evaluated. The first setting (A) assumes that in the non-targeted therapy arm only stud-
ies with mixed patient population regarding a specific biomarker are available. Setting
B is an extension of setting A which assumes that additionally two studies with only
biomarker-positive patients populations in the non-targeted study arm are available.
Based on these two scenarios, three commonly used network meta-analytic estimation
methods, the naive estimation approach where the heterogeneity in the patient popu-
lation is ignored, the stand-alone analysis which includes studies with only biomarker-
positive patients, and the network meta-regression are investigated for the analysis of
this "triangular network". For setting A, a missing data approach is introduced as a
further solution. Additionally, the enriching through weighting approach, a method
developed in evidence synthesis for combining randomized and non-randomized data,
is modified and adapted for the setting of this triangular network. For setting B, fur-
ther modification of the enriching-through-weighting approach as well as an informative
prior approach, where the results of the mixed patient population are used as a prior,
are investigated additionally to the naive, stand-alone, and network meta-regression ap-
proach.
The performance of these different methods is evaluated in a simulation study in cal-
culating the mean bias, Root-Mean-Squared Error, precision, coverage and the power
with regards to the estimated treatment effect comparing the targeted and non-targeted
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therapies. Additionally, an actual clinical data set including targeted and non-targeted
therapies is analysed and discussed.
The results of the simulation study for setting A as well as for setting B show that
none of the methods are observed to be clearly favorable over all investigated scenarios.
However, the missing data approach, the stand-alone analysis, and the naive estimation
perform comparably or worse than the other methods in all evaluated performance mea-
sures and simulation scenarios and are therefore not recommended. While substantial
between-trial heterogeneity is challenging for all estimation approaches, the performance
of the network meta-regression, the enriching-through-weighting approach, and the in-
formative prior approach are dependent on the simulation scenario and the performance
measure of interest. Furthermore, as these estimation methods are based on slightly
different assumptions, some of which require the presence of additional information for
estimation, sensitivity-analyses are recommended wherever possible.
For setting A, the enriching-through weighting approach is recommended as the most
favorable method, while the network meta-regression can additionally be recommended
as a sensitivity analysis. If biomarker-positive studies are available for the non-targeted
study arm (setting B) the informative prior or the enriching-through-weighting approach
are recommended. The network meta-regression approach is additionally recommended
as a sensitivity analysis for setting B.
All approaches are based on Bayesian Models. In this work one alternative heterogeneity
prior, a half-normal prior with scale 0.5, was additionally analysed in setting B alongside
the standard uniform heterogeneity prior. Using this more informative prior does not
change the performance of the single approaches in terms of bias or root-mean-squared
error but leads for most approaches to lower coverage and higher precision and for some
scenarios to an even higher power. Therefore a sensitivity analysis with this heterogene-
ity prior is recommended, when conducting a Bayesian network meta-analysis.
This work provides an overview of methods to conduct a network meta-analysis with dif-
ferent patient populations and makes a contribution to the field of population-adjusted
network meta-analyses. Although no method clearly performed best in all investigated
scenarios, the enriching-through-weighting model, the network meta-regression model
and informative prior model are recommendations to conduct a network meta-analysis
and use all evidence available.

5.2 Zusammenfassung (Deutsch)

Das Ziel dieser Arbeit ist es, Methoden der Netzwerk-Metaanalyse zu evaluieren, die
sowohl Studien mit einer allgemeinen Patientenpopulation sowie Studien, die nur eine
Subpopulation, die anhand eines Biomarker identifiziert wird, einschließen.
In dieser Arbeit wird die betrachtete Situation durch ein reales Netzwerk-Metaanalyse-
Problem motiviert. Bei diesem Beispiel wird ein Biomarker identifiziert, der eine Pa-
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tientenpopulation in Patienten mit größerem und solche mit geringerem Nutzen von
speziellen Behandlungen unterteilt. In späteren Studien wurden daher nur Teilpop-
ulationen eingeschlossen, die von einer solchen zielgerichteten Behandlung profitieren,
während in früheren Studien gemischte Patientenpopulationen, ungeachtet des Biomark-
erstatus eingeschlossen wurden. Zudem wird davon ausgegangen, dass nur zielgerichtete
Studien zu einer weiteren neueren Behandlung vorliegen. Um diese verschiedenen Ther-
apien miteinander zu vergleichen und alle verfügbaren Studien miteinzuschließen, sollte
eine Netzwerk-Metaanalyse durchgeführt werden. Da die Patientenpopulationen der
Studien in Bezug auf diesen Biomarker heterogen sind, stellt die Durchführung einer
Netzwerk-Metaanalyse aller verfügbaren Studien und Therapien (zielgerichtet und nicht
zielgerichtet) eine Herausforderung bei der Evidenzsynthese dar, insbesondere wenn nur
aggregierte Studiendaten verfügbar sind. Derzeit existierende Methoden gehen entweder
davon aus, dass individuelle Patientendaten der Studien verfügbar sind, oder beinhal-
ten nicht alle verfügbaren Studien. Daher werden in dieser Arbeit Methoden disku-
tiert, um solch eine Netzwerk-Metaanalyse durchzuführen und diese im Hinblick auf
das im Folgenden dargestellte Setting bewertet. Das Netzwerk-Metaanalyse-Setting ist
ein "Dreiecks-" Netzwerk, das (wenige) direkte und (viele) indirekte Beweise für einen
bestimmten Vergleich enthält. Zwei Settings (A und B) werden untersucht, die sich
hinsichtlich des Anteils an biomarker-positiven Patienten in den einzelnen Studien un-
terscheiden. Das erste Setting (A) geht davon aus, dass im nicht zielgerichteten Thera-
piearm nur Studien mit einem gemischtem Patientenkollektiv im Hinblick zu einem bes-
timmten Biomarker vorliegen. Für Setting B wird Setting A erweitert, indem angenom-
men wird, dass zusätzlich zwei Studien mit ausschließlich biomarker-positiven Patien-
tenpopulationen im nicht zielgerichteten Studienarm verfügbar sind.
Basierend auf diesen beiden Szenarien werden drei häufig verwendete netzwerkmetaana-
lytische Methoden, der naive Ansatz, bei dem die Heterogenität in der Patientenpopula-
tion ignoriert wird, die "Stand-alone-" Analyse, die Studien mit nur biomarker-positiven
Patienten umfasst, und die Netzwerk Meta-regression zur Analyse dieses "Dreiecksnet-
zwerks" untersucht. Für Setting A wird auch als mögliche Lösung eine Art "Missing-
data"-Ansatz eingeführt. Zusätzlich wird der "Enriching-through weighting" Ansatz,
eine in der Evidenzsynthese entwickelte Methode zur Kombination randomisierter und
nicht-randomisierter Daten, modifiziert und für das Setting dieses Dreiecksnetzwerks
angepasst. Für Setting B werden zusätzlich zu den naiven, Stand-alone- und Netzw-
erk Meta-Regression-Ansätzen weitere Modifikationen des Enriching-through-weighting-
Ansatzes, sowie ein "Informative-Prior"-Ansatz untersucht, bei dem die Ergebnisse der
gemischten Patientenpopulation als Priorinformation verwendet werden.
Die Performance dieser verschiedenen Methoden wird in einer Simulationsstudie bei
der Berechnung des mittleren Bias, des Root-Mean-Squared Error, der Präzision, der
Abdeckungswahrscheinlichkeit und der Aussagekraft in Bezug auf den geschätzten Be-
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handlungseffekt im Vergleich zwischen zielgerichteten und nicht zielgerichteten Thera-
pien bewertet. Zusätzlich wird ein aktueller klinischer Datensatz mit zielgerichteten und
nicht zielgerichteten Therapien analysiert und diskutiert.
Die Ergebnisse der Simulationsstudie sowohl für Setting A als auch für Setting B zeigen,
dass keine der Methoden über alle untersuchten Szenarien als eindeutig günstig zu
beobachten ist. Der Missing-data-Ansatz, die Stand-alone-Analyse und die naive Schätz-
ung schneiden jedoch in allen bewerteten Leistungskennzahlen und Simulationsszenarien
vergleichbar oder schlechter ab als die anderen Methoden und werden daher nicht emp-
fohlen. Während eine erhebliche Heterogenität zwischen den Studien für alle Ansätze
eine Herausforderung darstellt, hängen die Leistung der Netzwerk Meta-Regression,
der Enriching-through-weighting-Ansatz und der Informative-Prior-Ansatz vor allem
Simulationsszenario und des einzelnen Bewertungsmaßes ab. Da diesen Schätzmeth-
oden außerdem leicht unterschiedliche Annahmen zugrunde legen, von denen einige das
Vorhandensein zusätzlicher Informationen für die Schätzung erfordern, werden Sensitiv-
itätsanalysen empfohlen, wo immer dies möglich ist.
Für Setting A empfiehlt sich der Enriching-through-weighting-Ansatz als günstigste Lö-
sung und zusätzlich empfiehlt sich der Netzwerk Meta-Regressions-Ansatz als Sensitiv-
itätsanalyse. Liegen biomarker-positive Studien für den nicht zielgerichteten Studien-
arm (Setting B) vor, sind der Informative-prior- oder der Enriching-through-weighting-
Ansatz im Vorteil. Als Sensitivitätsanalyse wird zusätzlich der Ansatz der Netzwerk-
Meta-Regression empfohlen.
Alle Ansätze basieren auf Bayesianischen Modellen. In dieser Arbeit wurde ein alterna-
tiver Heterogenitätsprior, ein halbnormaler Prior mit Skala 0.5, für das Setting B zusät-
zlich zum Heterogenitätsprior mit Gleichverteilung analysiert. Die Verwendung dieses
informativeren Priors ändert nichts am Abschneiden der einzelnen Ansätze in Bezug auf
Bias oder Root-Mean-Square Error, führt jedoch für die meisten Ansätze zu einer gerin-
geren Abdeckungswahrscheinlichkeit und höherer Präzision und für einige Szenarien zu
einer noch höheren Power. Daher wird eine Sensitivitätsanalyse mit diesem Hetero-
genitätsprior empfohlen, wenn eine Bayesianische Netzwerk-Metaanalyse durchgeführt
wird.
Diese Arbeit gibt einen Überblick über Methoden zur Durchführung einer Netzwerk-
Metaanalyse mit unterschiedlichen Patientenpopulationen und leistet einen Beitrag auf
dem Gebiet der populationsadjustierten Netzwerk-Metaanalysen. Obwohl keine Meth-
ode in allen untersuchten Szenarien eindeutig die beste Leistung erbrachte, sind der
Enriching-through-weighting-Ansatz, das Netzwerk-Meta-Regressionsmodell und das Informative-
Prior-Modell zu empfehlen, um eine Netzwerk-Metaanalyse durchzuführen und alle ver-
fügbare Evidenz zu nutzen.
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Appendix A

Additional simulation results

A.1 Results setting A

The results for the simulation study for setting A and covariate xj ∈ [0.4, 0.5] are
displayed in the following.
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Figure A.1: Mean bias of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the simulation study
for different methods (setting A, xj ∈ [0.4, 0.5])



A
.1.

R
esults

setting
A

103

(dCS)+ = −0.21 (dCS)+ = 0.2 (dCS)+ = 0.4 (dCS)+ = 1.25

τ = 0.001
τ = 0.5

τ = 1
τ = 2

2 5 10 20 2 5 10 20 2 5 10 20 2 5 10 20

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Number of studies

R
M

S
E

Models
regression

enriching−through−weighting with x

biomarker not predictive

best−case

best−case only for S+

worst−case

worst−case only for S+

naive

Figure A.2: RMSE of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the simulation study for
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Figure A.3: Coverage of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the simulation study
for different methods (setting A, xj ∈ [0.4, 0.5])
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Figure A.4: Mean 95% credible width of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the
simulation study for different methods (setting A, xj ∈ [0.4, 0.5])
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Figure A.5: Power of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the simulation study for
different methods (setting A, xj ∈ [0.4, 0.5])
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A.2 Results setting B

A.2.1 Results of the simulation study with a uniform heterogeneity
prior

The results for the simulation study for setting B and covariate xj ∈ [0.4, 0.5] are
displayed in the following.
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Figure A.6: Mean bias of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the simulation study
for different methods (setting B, xj ∈ [0.4, 0.5]).
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Figure A.7: RMSE of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the simulation study for
different methods (setting B, xj ∈ [0.4, 0.5]).
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Figure A.8: Coverage of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the simulation study
for different methods (setting B, xj ∈ [0.4, 0.5]).
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Figure A.9: Mean 95% credible width of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the
simulation study for different methods (setting B, xj ∈ [0.4, 0.5]).
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Figure A.10: Power of the estimated treatment effect comparing treatment E+ with S in a network meta-analysis in the simulation study for
different methods (setting B, xj ∈ [0.4, 0.5]).
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A.2.2 Results of the simulation study using a half-normal heterogene-
ity prior

The results for the simulation study for setting B and covariate xj ∈ [0.3, 0.7] are
displayed in the following.
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Figure A.11: Mean bias of the estimated treatment effect with a half-normal heterogeneity prior comparing treatment E+ with S in a network
meta-analysis in the simulation study for different methods (setting B, half-normal prior)
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Figure A.12: RMSE of the estimated treatment effect with a half-normal heterogeneity prior comparing treatment E+ with S in a network
meta-analysis in the simulation study for different methods (setting B, half-normal prior)
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Figure A.13: Coverage of the estimated treatment effect with a half-normal heterogeneity prior comparing treatment E+ with S in a network
meta-analysis in the simulation study for different methods (setting B, half-normal prior)
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Figure A.14: Mean 95% credible width of the estimated treatment effect with a half-normal heterogeneity prior comparing treatment E+ with
S in a network meta-analysis in the simulation study for different methods (setting B, half-normal prior).
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Figure A.15: Power of the estimated treatment effect with a half-normal heterogeneity prior comparing treatment E+ with S in a network
meta-analysis in the simulation study for different methods (setting B, half-normal prior)
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ode

study treatment n response cov n_BM+ resp_BM+ n_all resp_all
ENSURE Erlotinib 110 69 1 110 69 110 69
ENSURE Chemo 107 36 1 107 36 107 36
EURTAC Erlotinib 86 50 1 86 50 86 50
EURTAC Chemo 87 13 1 87 13 87 13
OPTIMAL Erlotinib 82 68 1 82 68 82 68
OPTIMAL Chemo 72 26 1 72 26 72 26
IPASS Gefitinib 223 95 0.597 132 94 609 262
IPASS Chemo 214 81 0.597 129 61 608 196
NEJGSG Gefitinib 114 84 1 114 84 114 84
NEJGSG Chemo 114 35 1 114 35 114 35
First_Signal Gefitinib 53 29 0.44 26 22 159 88
First_Signal Chemo 42 20 0.44 16 6 150 69
WJTOG Gefitinib 58 36 1 58 36 58 36
WJTOG Chemo 59 19 1 59 19 59 19
Yang14 Gefitinib 35 17 0.677 24 17 118 56
Yang15 Chemo 39 20 0.677 26 17 118 49
V1532 Gefitinib 9 6 1 9 6 9 6
V1533 Chemo 11 5 1 11 5 11 5
INTEREST Gefitinib 125 15 0.1423 19 8 659 60
INTEREST Chemo 142 16 0.1423 19 4 657 50
Zhou Gefitinib 54 6 0.71 13 5 81 11
Zhou Chemo 54 6 0.71 19 2 76 10
Yang17 Erlotinib 128 76 1 128 76 128 76
Yang18 Chemo 128 67 1 128 67 128 67
Xie Erlotinib 23 14 1 23 14 23 14
Xie Chemo 27 15 1 27 15 27 15
WJOG5108L Erlotinib 201 93 0.717 160 88 227 100
WJOG5108L Chemo 218 104 0.717 175 103 244 112

Figure B.1: Raw application data
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Code for application

# Ca lcu l a t e data f o r a p p l i c a t i o n s tudy

# Packages
l ibrary ( r j a g s )
l ibrary ( p ly r )
l ibrary ( R2jags )
l ibrary ( t i dyv e r s e )
l ibrary ( r eadx l )

data <− read_ex c e l ( " Daten_Be i s p i e l . x l sx " )

# prepare data f o r model
# subgroup − r e t r o s p e c t i v e approach
n . agg . arms <− 28
n . agg . t r i a l s <− 14
a . study <− c ( rep ( 1 : 1 4 , t imes = 1 , each = 2) )
a . t r e a t 1 <− c (data$ treatment )
a . t r e a t <− as .numeric ( r eva lue ( a . t reat1 , c ( "Chemo" = 1 ,

" E r l o t i n i b " = 3 ,
" Ge f i t i n i b " = 2) ) )

#Number o f o b j e c t i v e responses biomarker−p o s i t i v e p a t i e n t s
outcome . ad <− c (data$ re sp_bmpos )

#Number o f biomarker−p o s i t i v e p a t i e n t s
n <− c (data$n_bmpos )
a . base <− c ( rep (1 , 22 ) , rep ( 2 , 6 ) )

data . s <− l i s t (max. t r e a t = 3 ,
n . agg . t r i a l s = n . agg . t r i a l s ,
n . agg . arms = n . agg . arms ,
a . study = a . study ,
a . t r e a t = a . t reat ,
outcome . ad = outcome . ad ,
n = n ,
a . base = a . base )

# s e t seed
s eeds <− sample . i n t (4 , n = .Machine$integer .max)
i n i t s . s <− l i s t (

l i s t ( .RNG. name=" base : : Wichmann−H i l l " , .RNG. seed = seeds [ 1 ] ) ,
l i s t ( .RNG. name=" base : : Marsagl ia−Mult icarry " , .RNG. seed = seeds [ 2 ] ) ,
l i s t ( .RNG. name=" base : : Super−Duper " , .RNG. seed = seeds [ 3 ] ) ,
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l i s t ( .RNG. name=" base : : Mersenne−Twister " , .RNG. seed = seeds [ 4 ] ) )

parameters <− c ( "d [ 2 ] " , "d [ 3 ] " , " l o r [ 2 , 3 ] " , " tau " )
t rue . j a g s <− j a g s (data . sim . s ,

i n i t s . s ,
parameters ,
model . f i l e = "app_naive_U02 . txt " ,
n . cha ins = 4 ,
n . i t e r = 50000 ,
n . burnin = 10000 ,
n . th in = 1 , DIC = FALSE)

j ag s . t rue .sum <− t rue . j a g s$BUGSoutput$summary

LOR_frame_t rue <− data . frame ( t ( as . data . frame ( t rue . j a g s$BUGSoutput$
summary [ 3 ,

c (1 , 2 ,
3 , 4 , 5 , 6 ,
7) ] ) ) ,

s c ena r i o = " true " )

colnames (LOR_frame_t rue ) [ 1 ] <− "mean_LOR_2_3 "

# Enrichment−through−we igh t ing
## with c o v a r i a t e cov [ i ]

# Create d a t a s e t s
a . study <− c ( rep ( 1 : 1 6 , t imes = 1 , each = 2) )
a . t r e a t 1 <− c ( rbind ( as . vector (data$treament ) ,

as . vector (data$control ) ) )
a . t r e a t <− as .numeric ( r eva lue ( a . t reat1 , c ( "Chemo" = 1 ,

" E r l o t i n i b "= 3 ,
" Ge f i t i n i b " = 2) ) )

#Number o f o b j e c t i v e responses Biomarker−p o s i t i v e p a t i e n t s
outcome . ad <− c ( rbind ( as . vector (data$response_t r e a t ) ,

as . vector (data$response_cont ) ) )

#Number o f Biomarker p o s i t i v e p a t i e n t s
n <− c ( rbind ( as . vector (data$n_t r e a t ) ,

as . vector (data$n_cont ) ) )
a . base <− c ( rep (1 , 22 ) , rep ( 2 , 6 ) )
a . cov <− rep (data$cov , each=2)
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data . en r i ch <− l i s t (max. t r e a t = 3 ,
n . agg . t r i a l s = n . agg . t r i a l s ,
n . agg . arms = n . agg . arms ,
a . study = a . study ,
a . t r e a t = a . t reat ,
outcome . ad = outcome . ad ,
n = n ,
a . base = a . base ,
cov = a . cov )

parameters <− c ( "d [ 2 ] " , "d [ 3 ] " , " l o r [ 2 , 3 ] " , " tau " )
t rue . j a g s <− j a g s (data . enr ich ,

i n i t s . s ,
parameters ,
model . f i l e = "app_enr i ch_cov_U02 . txt " ,
n . cha ins = 4 ,
n . i t e r = 50000 ,
n . burnin = 10000 ,
n . th in = 1 ,
DIC = FALSE)

j ag s . en r i ch_cov <− t rue . j a g s$BUGSoutput$summary

LOR_enr i ch_cov <− data . frame ( t ( as . data . frame ( t rue . j a g s$BUGSoutput$
summary [ " l o r [ 2 , 3 ] " ,

c (1 , 2 , 3 , 4 , 5 , 6 , 7) ] ) ) , s c ena r i o = " des ign_
ad jus t_cov " )

colnames (LOR_enr i ch_cov ) [ 1 ] <− "mean_LOR_2_3 "
parameters <− c ( "d [ 2 ] " , "d [ 3 ] " , " l o r [ 2 , 3 ] " , " tau " )

## enrichment U(0 , 0 . 3 )
t rue . j a g s <− j a g s (data . enr ich ,

i n i t s . s ,
parameters ,
model . f i l e = "app_enr i ch_003_U02 . txt " ,
n . cha ins = 4 ,
n . i t e r = 50000 ,
n . burnin = 10000 ,
n . th in = 2 , DIC = FALSE)

j ag s . en r i ch_p r i o r_003 <− t rue . j a g s$BUGSoutput$summary
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LOR_enr i ch_p r i o r_003 <− data . frame ( t ( as . data . frame ( t rue . j a g s$
BUGSoutput$summary [ " l o r [ 2 , 3 ] " ,

c (1 , 2 , 3 , 4 , 5 , 6 , 7) ] ) ) , s c ena r i o = "
des ign_ad jus t_commonw003" )

colnames (LOR_enr i ch_p r i o r_003) [ 1 ] <− "mean_LOR_2_3 "

## enrichment U( 0 . 3 , 0 . 7 )
parameters <− c ( "d [ 2 ] " , "d [ 3 ] " , " l o r [ 2 , 3 ] " , " tau " )
t rue . j a g s <− j a g s (data . enr ich ,

i n i t s . s ,
parameters ,
model . f i l e = "app_enr i ch_0307_U02 . txt " ,
n . cha ins = 4 ,
n . i t e r = 50000 ,
n . burnin = 10000 ,
n . th in = 2 , DIC = FALSE)

j ag s . en r i ch_p r i o r_0307 <− t rue . j a g s$BUGSoutput$summary

LOR_enr i ch_p r i o r_0307 <− data . frame ( t ( as . data . frame ( t rue . j a g s$
BUGSoutput$summary [ " l o r [ 2 , 3 ] " ,

c (1 , 2 , 3 , 4 , 5 , 6 , 7) ] ) ) , s c ena r i o = "
des ign_ad jus t_commonw0307" )

colnames (LOR_enr i ch_p r i o r_0307) [ 1 ] <− "mean_LOR_2_3 "

## enrichment U(0 .7 , 1 )

parameters <− c ( "d [ 2 ] " , "d [ 3 ] " , " l o r [ 2 , 3 ] " , " tau " )
t rue . j a g s <− j a g s (data . enr ich ,

i n i t s . s ,
parameters ,
model . f i l e = "app_enr i ch_071_U02 . txt " ,
n . cha ins = 4 ,
n . i t e r = 50000 ,
n . burnin = 10000 ,
n . th in = 2 , DIC = FALSE)

j ag s . en r i ch_p r i o r_071 <− t rue . j a g s$BUGSoutput$summary

LOR_enr i ch_p r i o r_071 <− data . frame ( t ( as . data . frame ( t rue . j a g s$
BUGSoutput$summary [ " l o r [ 2 , 3 ] " ,
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c (1 , 2 , 3 , 4 , 5 , 6 , 7) ] ) ) , s c ena r i o = " des ign_
ad jus t_commonw071" )

colnames (LOR_enr i ch_p r i o r_071) [ 1 ] <− "mean_LOR_2_3 "

# naive approach
data . na ive <− l i s t (max. t r e a t = 3 ,

n . agg . t r i a l s = n . agg . t r i a l s ,
n . agg . arms = n . agg . arms ,
a . study = a . study ,
a . t r e a t = a . t reat ,
outcome . ad = outcome . ad ,
n = n ,
a . base = a . base )

parameters <− c ( "d [ 2 ] " , "d [ 3 ] " , " l o r [ 2 , 3 ] " , " tau " )

t rue . j a g s <− j a g s (data . naive ,
i n i t s . s ,
parameters ,
model . f i l e = "app_naive_U02 . txt " ,
n . cha ins = 4 , n . i t e r = 50000 ,
n . burnin = 20000 ,
n . th in = 1 ,
DIC = FALSE)

j ag s . na ive<− t rue . j a g s$BUGSoutput$summary

LOR_naive <− data . frame ( t ( as . data . frame ( t rue . j a g s$BUGSoutput$summary [
" l o r [ 2 , 3 ] " ,

c (1 , 2 , 3 , 4 , 5 , 6 , 7) ] ) ) , s c ena r i o = "
naive " )

colnames (LOR_naive ) [ 1 ] <− "mean_LOR_2_3 "

#F i l t e r s t u d i e s wi th on ly mixed popu la t i on
mix_pat_data <− data %>%

f i l t e r (cov != 1)
n . agg . arms <− 2∗nrow(mix_pat_data )
n . agg . t r i a l s <− nrow(mix_pat_data )
a . study <− c ( rep ( 1 :nrow(mix_pat_data ) , t imes=1, each=2) )
a . t r e a t 1 <− c ( treatment )
a . t r e a t <− as .numeric ( r eva lue ( a . t reat1 , c ( "Chemo" = 1 ,
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" E r l o t i n i b "= 3 ,
" Ge f i t i n i b " = 2) ) )

outcome . ad <− c ( as . vector (mix_pat_data$ re sp_a l l ) )
n <− c ( as . vector (mix_pat_data$n_a l l ) )
a . base <− c ( rep (1 , 10 ) , rep ( 2 , 2 ) )
studyname <− rep (mix_pat_data$study , each=2)
treatname <− a . t r e a t 1

data . mix <− l i s t (max. t r e a t = 3 ,
n . agg . t r i a l s = n . agg . t r i a l s ,
n . agg . arms = n . agg . arms ,
a . study = a . study ,
a . t r e a t = a . t reat ,
outcome . ad = outcome . ad ,
n = n ,
a . base = a . base )

parameters <− c ( "d [ 2 ] " , "d [ 3 ] " , " tau " )
t rue . j a g s <− j a g s (data . mix ,

i n i t s . s ,
parameters ,
model . f i l e = "app_mix_U02 . txt " ,
n . cha ins = 4 ,
n . i t e r = 50000 ,
n . burnin = 10000 ,
n . th in = 2 , DIC = FALSE)

j ag s . only . mixed <− t rue . j a g s$BUGSoutput$summary

# Stand−a lone approach
only_bmp_data <− data %>%

f i l t e r (cov == 1)
n . agg . arms <− 2∗nrow( only_bmp_data )
n . agg . t r i a l s <− nrow( only_bmp_data )
a . study <− c ( rep ( 1 :nrow( only_bmp_data ) , t imes = 1 , each = 2) )
a . t r e a t 1 <− c ( rbind ( as . vector ( only_bmp_data$treament ) ,

as . vector ( only_bmp_data$control ) ) )
a . t r e a t <− as .numeric ( r eva lue ( a . t reat1 , c ( "Chemo"=1,

" E r l o t i n i b "= 3 ,
" Ge f i t i n i b " = 2) ) )

outcome . ad <− c ( rbind ( as . vector ( only_bmp_data$response_t r e a t ) ,
as . vector ( only_bmp_data$response_cont ) ) )
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n <− c ( rbind ( as . vector ( only_bmp_data$n_t r e a t ) ,
as . vector ( only_bmp_data$n_cont ) ) )

a . base <− c ( rep (1 , 12 ) , rep ( 2 , 4 ) )

data .bm <− l i s t (max. t r e a t = 3 ,
n . agg . t r i a l s = n . agg . t r i a l s ,
n . agg . arms = n . agg . arms ,
a . study = a . study ,
a . t r e a t = a . t reat ,
outcome . ad = outcome . ad ,
n = n ,
a . base = a . base )

parameters <− c ( "d [ 2 ] " , "d [ 3 ] " , " l o r [ 2 , 3 ] " , " tau " )

t rue . j a g s <− j a g s (data .bm,
i n i t s . s ,
parameters ,
model . f i l e = "app_stand_a lone_U02 . txt " ,
n . cha ins = 4 , n . i t e r = 50000 ,
n . burnin = 20000 ,
n . th in = 1 ,
DIC = FALSE)

j ag s . stand_a lone <− t rue . j a g s$BUGSoutput$summary

LOR_s tanda lone <−data . frame ( t ( as . data . frame ( t rue . j a g s$BUGSoutput$
summary [ " l o r [ 2 , 3 ] " ,

c (1 , 2 , 3 , 4 , 5 , 6 , 7) ] ) ) , s c ena r i o = " stand−
a lone " )

colnames (LOR_s tanda lone ) [ 1 ] <− "mean_LOR_2_3 "

# Informat i ve p r i o r
data . i n f <− l i s t (n . agg . t r i a l s = n . agg . t r i a l s ,

n . agg . arms = n . agg . arms ,
a . study = a . study ,
a . t r e a t = a . t reat ,
outcome . ad = outcome . ad ,
n = n ,
a . base = a . base )

parameters <− c ( "d [ 2 ] " , "d [ 3 ] " , " l o r [ 2 , 3 ] " , " tau " )



128 Appendix B. R Code

t rue . j a g s <− j a g s (data . i n f ,
i n i t s . s ,
parameters ,
model . f i l e = "app_i n f_p r i o r_U02 . txt " ,
n . cha ins = 4 , n . i t e r = 50000 ,
n . burnin = 20000 ,
n . th in = 1 ,
DIC = FALSE)

j ag s . i n f <− t rue . j a g s$BUGSoutput$summary

LOR_i n f <− data . frame ( t ( as . data . frame ( t rue . j a g s$BUGSoutput$summary [ "
l o r [ 2 , 3 ] " ,

c (1 , 2 , 3 , 4 , 5 , 6 , 7) ] ) ) , s c ena r i o = " in fo rmat ive_p r i o r
" )

colnames (LOR_i n f ) [ 1 ] <− "mean_LOR_2_3 "

# Informat i ve p r i o r wi th d i f f e r e n t we igh t
data . i n f <− l i s t (n . agg . t r i a l s = n . agg . t r i a l s ,

n . agg . arms = n . agg . arms ,
a . study = a . study ,
a . t r e a t = a . t reat ,
outcome . ad = outcome . ad ,
n = n ,
a . base = a . base )

parameters <− c ( "d [ 2 ] " , "d [ 3 ] " , " l o r [ 2 , 3 ] " , " tau " )
t rue . j a g s <− j a g s (data . i n f ,

i n i t s . s ,
parameters ,
model . f i l e = "app_i n f_p r i o r_U02_ww003 . txt " ,
n . cha ins = 4 , n . i t e r = 50000 ,
n . burnin = 20000 ,
n . th in = 1 ,
DIC = FALSE)

j ag s . i n f 1 <− t rue . j a g s$BUGSoutput$summary

LOR_i n f 1 <− data . frame ( t ( as . data . frame ( t rue . j a g s$BUGSoutput$summary [ "
l o r [ 2 , 3 ] " ,

c (1 , 2 , 3 , 4 , 5 , 6 , 7) ] ) ) , s c ena r i o = " in fo rmat ive
_p r i o r_ww003" )

colnames (LOR_i n f 1 ) [ 1 ] <− "mean_LOR_2_3 "



B.1. Application 129

# Regress ion model
parameters <− c ( " dz [ 2 ] " , " dz [ 3 ] " , " l o r z [ 2 , 3 ] " , " tau " )

r e g r e s s i o n . j a g s <− j a g s (data . enr ich ,
i n i t s . s ,
parameters ,
model . f i l e = "app_r e g r e s s i o n_U02 . txt " ,
n . cha ins = 4 , n . i t e r = 50000 ,
n . burnin = 20000 ,
n . th in = 1 ,
DIC = FALSE)

j ag s . r e g r e s s i o n <− r e g r e s s i o n . j a g s$BUGSoutput$summary

LOR_frame_reg <− data . frame ( t ( as . data . frame ( r e g r e s s i o n . j a g s$
BUGSoutput$summary [ " l o r z [ 2 , 3 ] " ,

c (1 , 2 , 3 , 4 , 5 , 6 , 7) ] ) ) , s c ena r i o=" r e g r e s s i o n
" )

colnames (LOR_frame_reg ) [ 1 ] <− "mean_LOR_2_3 "

## Combine a l l f o r e s t data
f o r e s t_data_8 <− rbind (LOR_frame_true ,

LOR_enr i ch_cov ,
LOR_enr i ch_p r i o r_003 ,
LOR_enr i ch_p r i o r_0307 ,
LOR_enr i ch_p r i o r_071 ,
LOR_i n f ,
LOR_i n f1 ,
LOR_naive ,
LOR_standalone ,
LOR_frame_reg )

save ( f o r e s t_data_8 , f i l e = " f o r e s t_data_d i s s . Rda" )

Code for application plot
# Set working d i r e c t o r y
setwd ( "~/ app l i c a t i o n " )

# Packages
l ibrary ( t i dyv e r s e )
l ibrary ( x tab l e )
l ibrary ( ggp lot2 )
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# Load data
load ( " f o r e s t_data_d i s s_U02 .Rda" )
l a t ex tab<−xtab l e ( f o r e s t_data_8)

f o r e s t_data_CI<−mutate ( f o r e s t_data_8 ,
P r e c i s i on=X97.5.−X2 . 5 . )

la textabCI<−xtab l e ( f o r e s t_data_CI )

f o r e s t_data <− f o r e s t_data_8 %>% mutate %>% add_column (y=0) %>%
f i l t e r ( ! s c ena r i o %in% c ( " i n f o rmat ive_p r i o r_ww003" ) )

f o r e s t_data$ s c ena r i o1 <− p lyr : : r eva lue ( f o r e s t_data$ s cenar io ,
c ( " des ign_ad jus t_cov "=" enr i ch ing−

through−weight ing ␣with␣x " ,
" des ign_ad jus t_commonw003"= "

enr i ch ing−through−weight ing ␣w
( 0 , 0 . 3 ) " ,

" des ign_ad jus t_commonw0307"= "
enr i ch ing−through−weight ing ␣w
( 0 . 3 , 0 . 7 ) " ,

" des ign_ad jus t_commonw071"= "
enr i ch ing−through−weight ing ␣w
( 0 . 7 , 1 ) " ,

" i n f o rmat ive_p r i o r "=" in f o rmat ive ␣
p r i o r ␣w( 0 . 3 , ␣ 0 . 7 ) " ,

" t rue "=" r e t r o s p e c t i v e ␣ ana l y s i s " ) )
f o r e s t_data2<−f o r e s t_data %>%

arrange ( desc (mean_LOR_2_3) ) %>%
mutate ( s c ena r i o1 = factor ( s cenar io1 , levels=scena r i o1 ) )

pd <− po s i t i o n_dodge ( 0 . 3 )

ggp lot ( f o r e s t_data2 , aes (y ,mean_LOR_2_3 , shape = sc ena r i o1 ) ,
l a b e l = s p r i n t f ( "%0.2 f " , round(mean_LOR_2_3 , d i g i t s = 2) ) )+

geom_po int ( s i z e = 5 , p o s i t i o n = po s i t i o n_dodge ( 0 . 1 ) ) +
geom_e r r o rba r ( aes (ymax = X2 . 5 . ,

ymin = X97 . 5 . ) , width = .04 , p o s i t i o n=po s i t i o n_
dodge ( 0 . 1 ) )+

geom_text ( aes ( l a b e l = paste ( s p r i n t f ( "%0.2 f " , mean_LOR_2_3) , " ␣ [ ␣ " ,
s p r i n t f ( "%0.2 f " , X2 . 5 . ) , " ␣ , ␣ " ,
s p r i n t f ( "%0.2 f " , X97 . 5 . ) , " ␣ ] ␣ " , sep = "

" ) ,
y=1.36) ,

s i z e =7,
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po s i t i o n=po s i t i o n_dodge ( 0 . 1 ) ,
h ju s t=0) +

geom_text ( aes ( l a b e l= scenar io1 ,
y=−1) ,

p o s i t i o n=po s i t i o n_dodge ( 0 . 1 ) ,
h ju s t =0,
s i z e = 7)+

coord_f l i p ( c l i p = ’ o f f ’ )+
ylab ( " Log␣odds␣ r a t i o ␣ g r e a t e r ␣0␣ favour s ␣ E r l o t i n i b ␣compared␣ to ␣

Ge f i t i n i b " )+
geom_h l i n e ( aes ( y i n t e r c ep t = 0.2108953) , l i n e t yp e=" dotted " )+ #va lue

t rue
geom_h l i n e ( aes ( y i n t e r c ep t=0) , co l ou r=" blue " )+
scale_shape_manual ( va lue s = c ( rep (16 ,9 ) ) )+
scale_x_d i s c r e t e (expand = c ( 0 , 0 ) )+
scale_y_cont inuous ( breaks=seq ( −0 . 4 , 1 . 3 , 0 . 1 ) )+
theme_bw( )+
theme ( axis . l i n e . x = element_l i n e ( c o l o r=" black " , s i z e = 1) ,

panel . grid . major = element_blank ( ) ,
panel . grid . minor = element_blank ( ) ,
panel . border = element_blank ( ) ,
panel . background = element_blank ( ) ,
axis . t i t l e . x = element_text ( s i z e = r e l ( 2 . 5 ) , ang le = 00) ,
axis . text . x = element_text ( ang le = 00 , s i z e=r e l ( 2 . 5 ) ) ,
axis . t i c k s . y=element_blank ( ) ,
axis . text . y=element_blank ( ) ,
axis . t i t l e . y = element_blank ( ) ,
legend . p o s i t i o n = " none " ,
plot .margin = margin ( 0 . 1 , 5 , 0 . 1 , 0 . 05 , "cm" ) )

ggsave ( " app l i c a t i o n_p lo t_d i s s_uniform . pdf " , width=20, he ight=10)

B.2 Simulation study

Code for data simulation:

#################################################################
# Code to s imu la t e the data f o r the network meta−ana l y s i s ,
# t h i s code i s based on the approach o f Svenja Seide e t a l (2021)
#################################################################

#########################################
# packages needed
#########################################
l ibrary ( " t i dyv e r s e " )
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l ibrary ( "mvtnorm" )

# Set working d i r e c t o r y
setwd ( "~/dgm_11052021 " )

# Create t h e o r e t i c a l network

## func t i on f o r odd r a t i o
OR <− function (x , y ) {

(x/(1−x ) )/ ( y/(1−y ) )
}

nc <− 200
nt <− 200
r e p e t i t i o n s <− 1000
# the s e are the s tudy numbers f o r the mixed p a t i e n t popu la t i on
n_study <− c (2 , 5 , 10 , 20 )
tau2 <− c ( 0 . 0 01 , 0 . 5 , 1 , 2) ^2
ptpos . th <− c ( 0 . 7 , 0 . 5 , 0 . 4 5 , 0 . 3 5 )
pc . th <− 0 .4
ptneg . th <− 0 .45
pe . th <− 0 .8

set . seed (1234)

s imulated_s c e n a r i o s_response_r a t e_long_o v e r a l l <− l i s t ( )
s imulated_s c e n a r i o s_response_r a t e_long_subgroup <− l i s t ( )

for (u in 1 : length ( ptpos . th ) ) {
s imulated_s c e n a r i o s_study_long_o v e r a l l <− l i s t ( )
s imulated_s c e n a r i o s_study_long_subgroup <− l i s t ( )

for (c in 1 : length (n_study ) ) {
#S e t t i n g A
cov03 <− c ( seq ( 0 . 3 , 0 . 7 , length = n_study [ c ] ) )
cov04 <− c ( seq ( 0 . 4 , 0 . 5 , length = n_study [ c ] ) )

#S e t t i n g B
#cov03 <− c ( seq ( 0 . 3 , 0 . 7 , l e n g t h = n_s tudy [ c ] ) ,1 ,1)
#cov04 <− c ( seq ( 0 . 4 , 0 . 5 , l e n g t h = n_s tudy [ c ] ) ,1 ,1)

cov <− c ( )

s imulated_s c e n a r i o s_cov_long_o v e r a l l <− l i s t ( )
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s imulated_s c e n a r i o s_cov_long_subgroup <− l i s t ( )

for (d in 1 : 2 ) {
i f (d == 1) {

cov <− cov03}
else {

cov <− cov04}

# Set t r e a t_1 (1 = c o n t r o l a l l ; 4 = E_+)
# Set t r e a t_2 (2 = BM_+ pa t i en t s , 3 = BM_− p a t i e n t s )
theo_network <− data . frame (

t r e a t_1 = c ( 1 , 1 , 1 , 4 ) ,
t r e a t_2 = c ( 2 , 3 , 4 , 2 ) ,
odds ra t i o = c (OR( ptpos . th [ u ] , pc . th ) ,

OR( ptneg . th , pc . th ) ,
OR( pe . th , pc . th ) ,
OR( ptpos . th [ u ] , pe . th ) ) ,

theta = c ( log (OR( ptpos . th [ u ] , pc . th ) ) ,
log (OR( ptneg . th , pc . th ) ) ,
log (OR( pe . th , pc . th ) ) ,
log (OR( ptpos . th [ u ] , pe . th ) ) ) ,

# S e t t i n g A
n_t r i a l = c (n_study [ c ] ,

n_study [ c ] , 3 , 1 ) )
# S e t t i n g B
# 2 s t u d i e s wi th on ly BM_+ p a t i e n t s are added
# to the number o f s tudy wi th mixed pat . pop .

# n_t r i a l = c (( n_s tudy [ c ]+2) ,
# (n_s tudy [ c ]+2) ,3 ,1) )

### spread in t o the network meta−a n a l y s i s
theo_nma <− theo_network %>%

rowwise ( ) %>%
s l i c e ( rep ( 1 : n ( ) , t imes = n_t r i a l ) ) %>%
data . frame ( ) %>%
s e l e c t (−n_t r i a l )

theo_nma <− theo_nma %>%
mutate (# 3−arm s t u d i e s

# S e t t i n g A
study . id = c ( rep (c ( 1 : ( n_study [ c ] ) ) , 2 ) ,
# S e t t i n g B
#study . id = c ( rep ( c ( 1 : ( n_s tudy [ c ]+2) ) ,2) ,

# 2−arm s t u d i e s
(n_study [ c ]+3) , ( n_study [ c ]+4) ,
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# 2−arm s t u d i e s
(n_study [ c ]+5) , ( n_study [ c ]+6) ) ,

narm_1 = c (
round(c ( nc∗cov , nc∗(1−cov ) ) ) , 107 ,87 ,72 ,86) ,

narm_2 = c (
round(c ( nt∗cov , nt∗(1−cov ) ) ) , 110 ,86 ,82 ,82) ,

#S e t t i n g A
cov_g iv = c (cov , cov ) ,
#S e t t i n g B
#cov_g i v = c ( cov , cov ,1 ,1 ,1 ,1 ) ,
r a t e_th_t r e a t=c (

# S e t t i n g A
rep ( ptpos . th [ u ] , ( n_study [ c ] ) ) ,
rep ( ptneg . th , ( n_study [ c ] ) ) ,
# S e t t i n g B
#rep ( ptpos . th [ u ] , ( n_s tudy [ c ]+2) ) ,
#rep ( ptneg . th , ( n_s tudy [ c ]+2) ) ,
rep ( pe . th , 3 ) , ptpos . th [ u ] ) ,

r a t e_th_cont=c (
# S e t t i n g A
rep ( pc . th , ( 2∗ (n_study [ c ] ) ) ) ,
# S e t t i n g B
# rep ( pc . th , ( 2 ∗(n_s tudy [ c ]+2) ) ) ,
rep ( pc . th , 3 ) , pe . th )

) %>%
s e l e c t ( study . id , t r e a t_1 , t r e a t_2 , theta ,

narm_1 , narm_2 , oddsrat io , cov_giv ,
r a t e_th_t r eat , r a t e_th_cont )

# narm_1=c (nc , nc ,89 ,86) ,
# 3rd pos : n_c := mean from standard in sim be f o r e ;
# 4rd pos : n_e_+ := mean from be f o r e
# narm_2=c ( nt/2 , nt/2 ,93 ,82) ,
# 3rd n_e+:= mean from e_+ in sim b e f o r e ;
# 4rd n_s :=mean from be f o r e

s imulated_s c e n a r i o s_tau_long_o v e r a l l <− l i s t ( )
s imulated_s c e n a r i o s_tau_long_subgroup <− l i s t ( )

for ( v in 1 : length ( tau2 ) ) {

s imulated_data_long_o v e r a l l <− l i s t ( )
s imulated_data_long_subgroup <− l i s t ( )

for ( l in 1 : r e p e t i t i o n s ) {
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s imulated_nma <− c ( )
for ( j in 1 : length (unique ( theo_nma$study . id ) ) ) {

cur rent . study . id <− unique ( theo_nma$study . id ) [ j ]
cu r r ent . study <− theo_nma [which(

theo_nma$study . id == current . study . id ) , ]

cu r r ent . Sigma <− matrix ( 0 . 5∗tau2 [ v ] ,
ncol = nrow( cur r ent . study ) ,
nrow = nrow( cur r ent . study ) ) +

diag ( 0 . 5∗tau2 [ v ] , nrow( cur r ent . study ) )

theta . i <− mvtnorm : : rmvnorm(n = 1 ,
mean = current . study$theta ,
sigma = current . Sigma )

cur rent . study <− cur rent . study %>%
mutate ( theta . i = as . vector ( theta . i ) )

### for DGM f i x e d modi f ied
i f (nrow( cur r ent . study ) == 1) { #2−arm s t u d i e s

f r <− function ( x ) {
( ( ( cur rent . study$ r a t e_th_t r e a t [1 ]+

cur rent . study$ r a t e_th_cont [ 1 ] ) /2) − x ) ^2 +
( ( x∗exp( cur r ent . study$ theta . i [ 1 ] ) )/

(1 − x + x∗exp( cur r ent . study$ theta . i [ 1 ] ) )
−

( ( cur r ent . study$ r a t e_th_t r e a t [1 ]+
cur rent . study$ r a t e_th_cont [ 1 ] ) /2) ) ^2

}
}

i f (nrow( cur r ent . study ) == 2) {#3−arm s t u d i e s
f r <− function ( x ) {

( ( ( cur rent . study$ r a t e_th_t r e a t [1 ]+
cur rent . study$ r a t e_th_cont [ 1 ] ) /2) − x ) ^2 +

( ( x∗exp( cur r ent . study$ theta . i [ 1 ] ) )/
(1 − x + x∗exp( cur r ent . study$ theta . i [ 1 ] ) ) −
( ( cur r ent . study$ r a t e_th_t r e a t [1 ]+

cur rent . study$ r a t e_th_cont [ 1 ] ) /2) ) ^2 +
( ( x∗exp( cur r ent . study$ theta . i [ 2 ] ) )/

(1 − x + x∗exp( cur r ent . study$ theta . i [ 2 ] ) ) −
( ( cur r ent . study$ r a t e_th_t r e a t [2 ]+
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cur rent . study$ r a t e_th_cont [ 2 ] ) /2) ) ^2
}
}
cur rent . p i . arm1 <− optimize ( f = f r , i n t e r v a l = c (0 , 1) ,

maximum = FALSE)$minimum

current . study$pi . arm1 .DGMmf <− rep ( cur r ent . p i . arm1 ,
nrow( cur r ent . study ) )

cur rent . study$pi . arm2 .DGMmf <− ( cur r ent . study$pi . arm1 .
DGMmf ∗

exp( cur r ent . study$ theta
. i ) )/

(1 − cur rent . study$pi . arm1 .DGMmf +
current . study$pi . arm1 .DGMmf ∗
exp( cur r ent . study$ theta . i ) )

s imulated_nma <− rbind ( s imulated_nma, cur rent . study )

}

s imulated_nma1 <− c ( )
for ( j in 1 : length (unique ( s imulated_nma$study . id ) ) ) {

cur rent . study . id <− unique ( s imulated_nma$study . id ) [ j ]
cu r r ent . study <− s imulated_nma [which(

s imulated_nma$study . id == current . study . id ) , ]
i f ( cur r ent . study$ t r e a t_1[1]==1){#here t r e a t 1 i s base

treatment
cur rent . p i . arm1 <− runif (n = 1 , min = 0 .3 , max = 0 . 5 )
cur rent . study$pi . arm1 .DGMf <− rep ( cur r ent . p i . arm1 ,

nrow( cur r ent . study ) )

cur rent . study$x . arm1 .DGMf <− rbinom(n = nrow( cur r ent .
study ) ,

prob = current . p i .
arm1 ,

s i z e = current . study$
narm_1)

cur rent . study$pi . arm2 .DGMf <− ( cur r ent . study$pi . arm1 .DGMf
∗

exp( cur r ent . study$ theta .
i ) )/
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(1 − cur rent . study$pi . arm1 .DGMf +
current . study$pi . arm1 .DGMf ∗
exp( cur r ent . study$ theta . i ) )

cur r ent . study$x . arm2 .DGMf <− rbinom(
n = nrow( cur r ent . study ) ,
prob = current . study$pi . arm2 .DGMf,
s i z e = current . study$narm_2)

} else { #here E_+ (4) i s base f o r comparison E_+ versus
S

cur rent . p i . arm1 <− runif (n = 1 , min = 0 .7 , max = 0 . 9 )
cur rent . study$pi . arm1 .DGMf <− rep ( cur r ent . p i . arm1 ,

nrow( cur r ent . study ) )

cur rent . study$x . arm1 .DGMf <− rbinom(n = nrow( cur r ent .
study ) ,

prob = current . p i .
arm1 ,

s i z e = cur rent .
study$narm_1)

cur rent . study$pi . arm2 .DGMf <− ( cur r ent . study$pi . arm1 .
DGMf ∗

exp( cur r ent . study$
theta . i ) )/

(1 − cur rent . study$pi . arm1 .DGMf +
current . study$pi . arm1 .DGMf ∗
exp( cur r ent . study$ theta . i ) )

cur r ent . study$x . arm2 .DGMf <− rbinom(
n = nrow( cur r ent . study ) ,
prob = current . study$pi . arm2 .

DGMf,
s i z e = current . study$narm_2)

}

s imulated_nma1 <− rbind ( s imulated_nma1 , cur rent . study )

}

s imulated_nma <− cbind ( s imulated_nma, s imulated_nma1$pi .
arm1 .DGMf,

s imulated_nma1$x . arm1 .DGMf,
s imulated_nma1$pi . arm2 .DGMf,
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s imulated_nma1$x . arm2 .DGMf)

s imulated_data_long_subgroup1 <− s imulated_nma %>%
mutate ( outcomearm_1 = simulated_nma1$x . arm1 .DGMf,

outcomearm_2 = simulated_nma1$x . arm2 .DGMf)%>%
f i l t e r ( t r e a t_2 != 3)

s imulated_data_long_subgroup [ [ l ] ] <− reshape (
as . data . frame ( s imulated_data_long_subgroup1 ) ,
vary ing = c ( " t r e a t_1 " , " t r e a t_2 " ,

"narm_1 " , "narm_2 " ,
" outcomearm_1 " , " outcomearm_2 " ) ,

d i r e c t i o n = " long " ,
idvar = " study . id " ,
sep = "_" ,

t imevar = " order " )

#Add number o f arms up in order to ge t numbers f o r o v e r a l l
popu la t i on ;

#Arm 1 number BM_+ pa t i en t s ,Arm 2 number o f BM_− p a t i e n t s
s imulated_data_long_o v e r a l l_1 <− s imulated_nma %>%

mutate (narmaddup_1 = ave (narm_1 , study . id ,FUN=sum) ,
narmaddup_2 = ave (narm_2 , study . id ,FUN=sum) ,
outcomeaddup_1 = ave ( s imulated_nma1$x . arm1 .DGMf,

study . id ,FUN=sum) ,
outcomeaddup_2 = ave ( s imulated_nma1$x . arm2 .DGMf,

study . id ,FUN=sum) )%>%
group_by( study . id ) %>%
s l i c e (1 )

s imulated_data_long_o v e r a l l [ [ l ] ] <− reshape (
as . data . frame ( s imulated_data_long_o v e r a l l_1) ,

vary ing = c ( " t r e a t_1 " ,
" t r e a t_2 " ,

"narm_1 " ,
"narm_2 " ,
" narmaddup_1 " ,
" narmaddup_2 " ,
" outcomeaddup_1 " ,
" outcomeaddup_2 " ) ,

d i r e c t i o n = " long " ,
idvar = " study . id " ,

sep = "_" ,
t imevar = " order " )
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}
s imulated_s c e n a r i o s_tau_long_o v e r a l l [ [ v ] ] <− s imulated_data_

long_o v e r a l l
s imulated_s c e n a r i o s_tau_long_subgroup [ [ v ] ] <−s imulated_data_

long_subgroup
}
s imulated_s c e n a r i o s_cov_long_o v e r a l l [ [ d ] ] <− s imulated_

s c e n a r i o s_tau_long_o v e r a l l
s imulated_s c e n a r i o s_cov_long_subgroup [ [ d ] ] <− s imulated_

s c e n a r i o s_tau_long_subgroup
}
s imulated_s c e n a r i o s_study_long_o v e r a l l [ [ c ] ] <− s imulated_

s c e n a r i o s_cov_long_o v e r a l l
s imulated_s c e n a r i o s_study_long_subgroup [ [ c ] ] <− s imulated_

s c e n a r i o s_cov_long_subgroup
}
s imulated_s c e n a r i o s_response_r a t e_long_o v e r a l l [ [ u ] ] <− s imulated_

s c e n a r i o s_study_long_o v e r a l l
s imulated_s c e n a r i o s_response_r a t e_long_subgroup [ [ u ] ] <− s imulated_

s c e n a r i o s_study_long_subgroup
}

save ( s imulated_s c e n a r i o s_response_r a t e_long_ove r a l l ,
f i l e =" s imulated_data_o v e r a l l . RData " )

save ( s imulated_s c e n a r i o s_response_r a t e_long_subgroup ,
f i l e=" s imulated_data_subgroup . RData " )

Code for simulation study

#################################
#
# Simulate network meta−a n a l y s i s
# R. Version 4 . 0 . 5 (2021−03−31) "
# " Shake and Throw"
#
######################################

# s e t working d i r e c t o r y
setwd ( "~/ s imu la t i on_study " )

# load packages
l ibrary ( dplyr )
l ibrary ( t i c t o c )
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# Get d i s t r i b u t i o n s
set . seed (1234)
pc . th <− 0 .4
ptneg . th <− 0 .45
nc <− 200
nt <− 200
r e p e t i t i o n s <− 1000
tau2 <− c ( 0 . 0 01 , 0 . 5 , 1 , 2) ^2
ptpos . th <− c ( 0 . 7 , 0 . 5 , 0 . 4 5 , 0 . 3 5 )
n_study <− c (2 , 5 , 10 , 20 )

count <−0
load ( "~/ s imulated_data . RData " )

r e s u l t s_response_r a t e<− l i s t ( )

for (u in 1 : length ( ptpos . th ) ) {

# s e t l ogodds
logodds<−function ( x ) {

log ( x/(1−x ) ) }

odds<−function ( x ) {
x/(1−x )

}

r e s u l t s_nstudy <− l i s t ( )
for (c in 1 : length (n_study ) ) {

# S e t t i n g A
cov03 <− c ( seq ( 0 . 3 , 0 . 7 , length = n_study [ c ] ) )
cov04 <− c ( seq ( 0 . 4 , 0 . 5 , length = n_study [ c ] ) )
# S e t t i n g B
# cov03 <− c ( seq ( 0 . 3 , 0 . 7 , l e n g t h = n_s tudy [ c ] ) ,1 ,1)
# cov04 <− c ( seq ( 0 . 4 , 0 . 5 , l e n g t h = n_s tudy [ c ] ) ,1 ,1)
cov<−c ( )

r e s u l t s_cov <− l i s t ( )

for (d in 1 : 2 ) {
i f (d==1){

cov <− cov03
} else {

cov <− cov04
}
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r e s u l t s_tau <− l i s t ( )

for ( v in 1 : length ( tau2 ) ) {

require (doSNOW)
require ( f o r each )
source ( " c l .R" )

c l 1 <− makeCluster ( c l ) # s e t c e r n e l s

registerDoSNOW( c l 1 )

r e s u l t s_data <− l i s t ( )

r e s u l t s_data <− f o r each ( j = 1 : r e p e t i t i o n s ) %dopar% {
l ibrary ( R2jags )
l ibrary ( dplyr )

df_ad <− purrr : : pluck ( s imulated_data , u , c , d , v , j )
df_ad <− df_ad_o v e r a l l %>%

mutate ( t r e a t_new = i f e l s e ( t r e a t == 4 ,3 , t r e a t ) ) #E_+ i s 3
outcome . ad <− df_ad$outcomeaddup
a . t r e a t <− df_ad$ t r e a t_new
n <− df_ad$narmaddup
a . cov <− df_ad$cov_g iv
a . study <− df_ad$study . id
# S e t t i n g A
a . base <− c ( rep (c ( rep ( 1 , ( n_study [ c ]+3) ) ,3 ) , 2 ) )
n . agg . t r i a l s <− n_study [ c ] + 4
n . agg . arms <− 2∗ (n_study [ c ] + 4)

# S e t t i n g B
a . base <− c ( rep (c ( rep ( 1 , ( ( n_study [ c ] + 2) + 3) ) ,3 ) ,2 ) )
n . agg . t r i a l s <− (n_study [ c ] + 2) + 4
n . agg . arms <− 2∗ ( ( n_study [ c ] + 2) + 4)

data . sim <− l i s t (max. t r e a t = 3 ,
n . agg . t r i a l s = n . agg . t r i a l s ,
n . agg . arms = n . agg . arms ,
a . study = a . study ,
a . t r e a t = a . t reat ,
outcome . ad = outcome . ad ,
n = n ,
a . base = a . base ,
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cov = a . cov )

i n i t s <− l i s t ( l i s t (d = c (NA, 0 , 0 ) ,
# S e t t i n g A
de l t a = c ( rep ( 0 , ( 2∗ (n_study [ c ]+4) ) ) ) ,
mu. ad = c ( rep (0 , n_study [ c ]+4) ) ,
# S e t t i n g B
#d e l t a = c ( rep (0 , (2∗(n_s tudy [ c ]+2+4) ) ) ) ,
#mu. ad = c ( rep (0 ,n_s tudy [ c ]+2+4) ) ,
tau = 1) ,
#A l t e r n a t i v e h e t e r o g e n e i t y p r i o r
# tau = 0.15) ,

l i s t (d = c (NA, 0 . 1 , 0 ) ,
# S e t t i n g A
de l t a = c ( 0 , 0 , 0 . 2 5 , rep ( 0 , ( 2∗ (n_study [ c ]+4)

)−3) ) ,
mu. ad = c ( 0 , 0 . 2 5 , rep ( 0 , ( n_study [ c ]−2+4) ) ) ,
# S e t t i n g B
# d e l t a = c (0 ,0 ,0 .25 , rep (0 , (2∗(n_s tudy [ c

]+2+4) ) −3)) ,
# mu. ad = c (0 ,0 .25 , rep (0 , ( n_s tudy [ c

]+2−2+4)) ) ,
tau = 0 . 80 ) ,
#A l t e r n a t i v e h e t e r o g e n e i t y p r i o r
#tau = 0.3) ,

l i s t (d = c (NA, 0 , 0 . 1 ) ,
#S e t t i n g A
de l t a = c ( 0 , 0 . 2 5 , rep ( 0 , ( 2∗ (n_study [ c ]+4) )

−2) ) ,
mu. ad = c ( 0 . 2 5 , rep ( 0 , ( n_study [ c ]−1+4) ) ) ,
# S e t t i n g B
# d e l t a = c (0 ,0 .25 , rep (0 , (2∗(n_s tudy [ c

]+2+4) ) −2)) ,
# mu. ad = c (0 .25 , rep (0 , ( n_s tudy [ c]+2−1+4))

) ,
tau = 0 . 90 ) )
#A l t e r n a t i v e h e t e r o g e n e i t y p r i o r
#tau = 0.45) )

# Set parameter to monitor
parameter <− c ( "d [ 2 ] " , "d [ 3 ] " , " tau . sq " ,

" l o r [ 2 , 3 ] " , " l o r [ 3 , 2 ] " ,
" l o r [ 2 , 3 ] " , " l o r [ 1 , 2 ] " ,
" l o r [ 1 , 3 ] " )
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set . seed (1234)
tryCatch ({
o v e r a l l . j a g s <− j a g s (data . sim , i n i t s , parameter ,

# rep l a c e here wi th f i t t i n g model
model . f i l e="model . txt " ,
n . cha ins = 3 , n . i t e r = 50000 ,
n . burnin = 20000 , n . th in = 2 ,
DIC = FALSE)

j ag s .sum <− o v e r a l l . j a g s$BUGSoutput$summary
j a g s .sum} , e r r o r = function ( e ) {NULL})

}

s topClus t e r ( c l 1 )

r e s u l t s_tau [ [ v ] ] <− r e s u l t s_data
}

r e s u l t s_cov [ [ d ] ] <− r e s u l t s_tau
}

r e s u l t s_nstudy [ [ c ] ] <− r e s u l t s_cov
}
save ( r e s u l t s_cov , f i l e = paste0 ( " tau2 " ,v , "_cov " ,d , "_nstudy " ,c , "

ptpos_" ,u , "_r e s u l t s . RData " ) )
r e s u l t s_response_r a t e [ [ u ] ] <− r e s u l t s_nstudy

}
save ( r e s u l t s_response_rate , f i l e = paste0 ( "u_" ,u , " v_" , v , "_c " ,c , "_d" ,d

, " r e s u l t s_re sponse_r a t e . RData " ) )

Model functions

In the following the code of the different models used in the simulation study and in the
application are displayed:

Naive, subgroup, stand-alone model

model{
for ( i in 1 : n . agg . arms ) {

outcome . ad [ i ] ~ dbin ( pa [ i ] , n [ i ] )
l o g i t ( pa [ i ] ) <− mu. ad [ a . study [ i ] ] + de l t a [ i ] ∗

(1− equa l s ( a . t r e a t [ i ] , a . base [ i ] ) )
d e l t a [ i ] ~ dnorm(md. ad [ i ] , prec )
md. ad [ i ] <− d [ a . t r e a t [ i ] ] − d [ a . base [ i ] ] }
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# Prior
for ( j in 1 : n . agg . t r i a l s ) {

mu. ad [ j ] ~ dnorm( 0 , 1 . 0E−6)}

# Vague p r i o r s f o r b a s i c paramters
d [ 1 ] <− 0
for ( k in 2 :max. t r e a t ) {

d [ k ] ~ dnorm( 0 , 1 . 0E−6)}

# pai rw i s e odds r a t i o s
for (c in 1 : 3 ) {

for ( k in 2 : 3 ) {
l o r [ c , k ] <− (d [ k ] − d [ c ] ) }}

# Heterogene i t y p r i o r
# Uniform pr i o r

tau ~ dunif ( 0 , 2 )T(0 , )
# A l t e r n a t i v e ha l f −normal p r i o r s c a l e 0 .5

#tau ~ dnorm (0 ,4)T(0 , )

tau . sq <− tau∗tau
prec <− 1/ ( tau . sq )
}

Regression model

model{
for ( i in 1 : n . agg . arms ) {

outcome . ad [ i ] ~ dbin ( pa [ i ] , n [ i ] )
l o g i t ( pa [ i ] ) <− mu. ad [ a . study [ i ] ] + de l t a [ i ] ∗

(1− equa l s ( a . t r e a t [ i ] , a . base [ i ] ) )
d e l t a [ i ] ~dnorm(md. ad [ i ] , prec )
md. ad [ i ] <− d [ a . t r e a t [ i ] ] − d [ a . base [ i ] ]+

(bb [ a . t r e a t [ i ] ]−bb [ a . base [ i ] ] ) ∗cov [ i ]

# Prior
for ( j in 1 : n . agg . t r i a l s ) {

mu. ad [ j ] ~ dnorm( 0 , 1 . 0E−6)}

# Vague p r i o r s f o r b a s i c paramters
bb [ 1 ] <− 0
d [ 1 ] <− 0

for ( k in 2 :max. t r e a t ) {
bb [ k ] ~ dnorm(m. betab , prec . betab )
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d [ k ] ~ dnorm( 0 , 1 . 0E−6) }

for ( k in 1 :max. t r e a t ) {
dz [ k ] <− d [ k ] + bb [ k ] }

# pai rw i s e odds r a t i o s
for (c in 1 : 3 ) {
for ( k in 2 : 3 ) {
l o r z [ c , k ] <− ( dz [ k]−dz [ c ] ) }}

# Vague p r i o r s f o r random e f f e c t s
m. betab ~ dnorm( 0 , 1 . 0E−2)
tau . betab ~ dunif ( 0 , 2 )
tau . sq . betab <− ( tau . betab∗tau . betab )
prec . betab <− 1/ ( tau . sq . betab )

# Uniform pr i o r
tau ~ dunif ( 0 , 2 )

# A l t e r n a t i v e h e t e r o g e n e i t y p r i o r
# Half−normal wi th s c a l e 0 .5

#tau ~ dnorm (0 ,4)T(0 , )
tau . sq <− tau∗tau
prec <− 1/ ( tau . sq ) }

Enriching-through-weighting model with covariate

model{
for ( i in 1 : n . agg . arms ) {

outcome . ad [ i ] ~ dbin ( pa [ i ] , n [ i ] )
l o g i t ( pa [ i ] ) <− mu. ad [ a . study [ i ] ] + de l t a [ i ] ∗

(1− equa l s ( a . t r e a t [ i ] , a . base [ i ] ) )
d e l t a [ i ] ~ dnorm(md. ad [ i ] , prec∗cov [ i ] )
md. ad [ i ] <− d [ a . t r e a t [ i ] ]−d [ a . base [ i ] ] }

# Prior
for ( j in 1 : n . agg . t r i a l s ) {

mu. ad [ j ] ~ dnorm( 0 , 1 . 0E−6)}

# Vague p r i o r s f o r b a s i c paramters
d [ 1 ] <− 0
for ( k in 2 :max. t r e a t ) {

d [ k ] ~ dnorm( 0 , 1 . 0E−6)}

# pai rw i s e odds r a t i o s
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for (c in 1 : 3 ) {
fo ( k in 2 : 3 ) {

l o r [ c , k ] <− (d [ k ] − d [ c ] ) }}

# Vague p r i o r s f o r random e f f e c t s
# Uniform pr i o r
tau ~ dunif ( 0 , 2 )

# A l t e r n a t i v e h e t e r o g e n e i t y p r i o r
# Half−normal wi th s c a l e 0 .5

#tau ~ dnorm (0 ,4)T(0 , )
tau . sq <− tau∗tau
prec <− 1/ ( tau . sq ) }

Enriching-through-weighting model with weights

model{
for ( i in 1 : n . agg . arms ) {

outcome . ad [ i ] ~ dbin ( pa [ i ] , n [ i ] )
l o g i t ( pa [ i ] ) <− mu. ad [ a . study [ i ] ] + de l t a [ i ] ∗

(1− equa l s ( a . t r e a t [ i ] , a . base [ i ] ) )
ind [ i ] <− i f e l s e (cov [ i ] == 1 , prec , prec∗ww)
de l t a [ i ] ~ dnorm(md. ad [ i ] , ind [ i ] )
md. ad [ i ] <− d [ a . t r e a t [ i ] ]−d [ a . base [ i ] ] }

# Prior
for ( j in 1 : n . agg . t r i a l s ) {

mu. ad [ j ] ~ dnorm( 0 , 1 . 0E−6)}

# Vague p r i o r s f o r b a s i c paramters
d [ 1 ] <− 0
for ( k in 2 :max. t r e a t ) {

d [ k ] ~ dnorm( 0 , 1 . 0E−6)}

# pai rw i s e odds r a t i o s
for (c in 1 : 3 ) {
for ( k in 2 : 3 ) {

l o r [ c , k ] <−(d [ k]−d [ c ] ) }}

# Vague p r i o r s f o r random e f f e c t s
# Uniform pr i o r
tau ~ dunif ( 0 , 2 )

# A l t e r n a t i v e h e t e r o g e n e i t y p r i o r
# Half−normal wi th s c a l e 0 .5

#tau ~ dnorm (0 ,4)T(0 , )
tau . sq <− tau∗tau
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prec <− 1/ ( tau . sq )

# Weighting f a c t o r
ww ~ dunif (0 , 0 . 3 )

#A l t e r n a t i v e we i gh t ing f a c t o r s
#ww ~ dun i f ( 0 . 3 , 0 .7 )
#ww ~ dun i f ( 0 . 7 , 1) }

Summary of simulation results
###################################################################
#
# Summarize r e s u l t s f o r d i f f e r e n t s c enar i o s compared to f i x va l u e s
#
##################################################################
# Set working d i r e c t o r y
setwd ( "~/ s imu la t i on_r e s u l t s " )

# Packages
l ibrary ( t i dyv e r s e )

# Create data frame which need to be f i l l e d wi th r e s u l t s o f 1000
r e p e t i t i o n s

x <− c ( " s c e n a r i o s " , " c ova r i a t e " , " s t ud i e s " , " tau_2 " , " pt . pos " ,
" tau " , " b i a s_d2 " , " b i a s_d3 " , " b i a s_d2d3 " ,
" r e l_b ia s_d2 " , " r e l_b ia s_d3 " , " r e l_b ia s_d2d3 " ,
" rmse_d2 " , " rmse_d3 " , " rmse_d2d3 " , " d2d3 " , " d2 " , " d3 " ,
"mae_d2 " , "mae_d3 " , "mae_d2d3 " ,
" coverage . d2 " , " coverage . d3 " , " coverage . d2d3 " ,
" width_CI . d2 " , " width_CI . d3 " , " width_CI . d2d3 " ,
"TE_s i g n i f i c a n t . d2 " , "TE_s i g n i f i c a n t . d3 " , "TE_s i g n i f i c a n t . d2d3 " )

summary_r e s u l t s<− data . frame (matrix (ncol = length ( x ) ,
nrow = 96) )

colnames (summary_r e s u l t s ) <− x
levels (summary_r e s u l t s $ c ova r i a t e ) = c ( " 0.3−0.7 " ,

" 0.4−0.5 " )

r e p e t i t i o n s <− 1000
tau2 <− c ( 0 . 0 01 , 0 . 5 , 1 , 2)
ptpos . th <− c ( 0 . 7 , 0 . 5 , 0 . 4 5 , 0 . 3 5 )
n_study <− c (2 , 5 , 10 , 20 )
pc . th <− 0 .4
ptneg . th <− 0 .45
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dSE <− c ( 0 . 5 4 , 1 . 39 , 1 . 59 , 2)
dCS <− c ( 1 . 2 5 , 0 . 41 , 0 . 2 , −0.21)
dCE <− 1 .79
i = 1

#d e f i n e Odds Ratio
OR<−function (x , y ) {

(x/(1−x ) )/ ( y/(1−y ) )
}

#### r e g r e s s i o n −−−−
load ( "~/u_4v_4_c4_d2 r e s u l t s_r e g r e s s i o n . RData " )
for (u in 1 : 4 ) {

for (c in 1 : length (n_study ) ) {
# S e t t i n g A
cov03 <− seq ( 0 . 3 , 0 . 7 , length = n_study [ c ] )
cov04 <− seq ( 0 . 4 , 0 . 5 , length = n_study [ c ] )
# S e t t i n g B
# cov03 <− c ( seq ( 0 . 3 , 0 . 7 , l e n g t h = n_s tudy [ c ] ) ,1 ,1)
# cov04 <− c ( seq ( 0 . 4 , 0 . 5 , l e n g t h = n_s tudy [ c ] ) ,1 ,1)
cov <− c ( )
for (d in 1 : 2 ) {

i f (d == 1) {
cov <− cov03}

else {
cov <− cov04}

for ( v in 1 : length ( tau2 ) ) {

r e s_d2d3 <− c ( )
r e s_tau <− c ( )

coverage_d2d3 <− c ( )
width_CI_d2d3 <− c ( )
TE. s i g n i f i c a n t . d2d3 <− c ( )

for ( l in 1 : r e p e t i t i o n s ) {
r e s_o v e r a l l <− purrr : : pluck ( r e s u l t s_response_rate , u , c , d , v , l

)

r e s_d2d3 [ l ] <− r e s_o v e r a l l [ " l o r z [ 2 , 3 ] " , 1 ]
r e s_tau [ l ] <− r e s_o v e r a l l [ " tau . sq " , 1 ]

coverage_d2d3 [ l ] <− i f e l s e ( ( dSE [ u ] < r e s_o v e r a l l [ " l o r z [ 2 , 3 ]
" , 3 ] ) |
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(dSE [ u ] > r e s_o v e r a l l [ " l o r z
[ 2 , 3 ] " , 7 ] ) , 0 , 1 )

width_CI_d2d3 [ l ] <− r e s_o v e r a l l [ " l o r z [ 2 , 3 ] " , 7 ] −
r e s_o v e r a l l [ " l o r z [ 2 , 3 ] "

, 3 ]

TE. s i g n i f i c a n t . d2d3 [ l ] <− i f e l s e ( ( r e s_o v e r a l l [ " l o r z [ 2 , 3 ] "
,3]> 0 |

r e s_o v e r a l l [ " l o r z [ 2 , 3 ] "
,]< 0) , 1 , 0 )

}

summary_r e s u l t s [ i , ]<− summary_r e s u l t s [ i , ] %>%
mutate ( s c e n a r i o s = " r e g r e s s i o n " ,

c ova r i a t e = i f e l s e (d==1, " 0.3−0.7 " ,
" 0.4−0.5 " ) ,

# S e t t i n g A
s t ud i e s = n_study [ c ] ,
# S e t t i n g B
# s t u d i e s = n_s tudy [ c ]+2 ,
tau_2 = tau2 [ v ] ,
pt . pos = ptpos . th [ u ] ,
tau = mean( r e s_tau ) ,
b i a s_d2d3 = mean(dSE [ u]− r e s_d2d3 ) ,
rmse_d2d3 = sqrt (mean( ( dSE [ u]− r e s_d2d3 ) ^2) ) ,
d2d3 = mean( r e s_d2d3 ) ,
coverage . d2d3 = mean( coverage_d2d3 ) ,
width_CI . d2d3 = mean( width_CI_d2d3 ) ,
TE_s i g n i f i c a n t . d2d3 = mean(TE. s i g n i f i c a n t . d2d3 ) )

i <− i+1
}

}
}

}

# Enriching−through we i g th ing wi th cov
load ( "u_4v_4_c4_d2 r e s u l t s_re sponse_r a t e_enr i ch_cov . RData " )
for (u in 1 : 4 ) {

for (c in 1 : length (n_study ) ) {
#S e t t i n g A
cov03 <− seq ( 0 . 3 , 0 . 7 , length = n_study [ c ] )
cov04 <− seq ( 0 . 4 , 0 . 5 , length = n_study [ c ] )
# S e t t i n g B
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# cov03 <− c ( seq ( 0 . 3 , 0 . 7 , l e n g t h = n_s tudy [ c ] ) ,1 ,1)
# cov04 <− c ( seq ( 0 . 4 , 0 . 5 , l e n g t h = n_s tudy [ c ] ) ,1 ,1)
cov <− c ( )

for (d in 1 : 2 ) {
i f (d == 1) {

cov <− cov03}
else {

cov <− cov04}
for ( v in 1 : length ( tau2 ) ) {

r e s_d2d3 <− c ( )
r e s_tau <− c ( )

coverage_d2d3 <− c ( )
width_CI_d2d3 <− c ( )
TE. s i g n i f i c a n t . d2d3 <− c ( )

for ( l in 1 : r e p e t i t i o n s ) {

r e s_o v e r a l l <− purrr : : pluck ( r e s u l t s_response_r a t e_enr i ch_
cov , u , c , d , v , l )

r e s_d2d3 [ l ] <− r e s_o v e r a l l [ 5 , 1 ] # l o r ( [ 2 , 3 ] )
r e s_tau [ l ] <− r e s_o v e r a l l [ 1 1 , 1 ]

coverage_d2d3 [ l ] <− i f e l s e ( ( dSE [ u ] < r e s_o v e r a l l [ 5 , 3 ] ) |
(dSE [ u ] > r e s_o v e r a l l [ 5 , 7 ] )

, 0 , 1 )

width_CI_d2d3 [ l ] <− r e s_o v e r a l l [ 5 , 7 ] −r e s_o v e r a l l [ 5 , 3 ]

TE. s i g n i f i c a n t . d2d3 [ l ] <− i f e l s e ( ( r e s_o v e r a l l [5 ,3 ] > 0 |
r e s_o v e r a l l [5 ,7 ] < 0)

, 1 , 0 )
}

summary_r e s u l t s [ i , ]<− summary_r e s u l t s [ i , ] %>%
mutate ( s c e n a r i o s = " enrichment−through␣weight ing ␣with␣cov " ,

c ova r i a t e = i f e l s e (d == 1 , " 0.3−0.7 " ,
" 0.4−0.5 " ) ,

s t ud i e s = n_study [ c ] ,
tau_2 = tau2 [ v ] ,
pt . pos = ptpos . th [ u ] ,

tau = mean( r e s_tau ) ,
b i a s_d2d3 = mean(dSE [ u]− r e s_d2d3 ) ,



rmse_d2d3 = sqrt (mean( ( dSE [ u]− r e s_d2d3 ) ^2) ) ,
d2d3 = mean( r e s_d2d3 ) ,
coverage . d2d3 = mean( coverage_d2d3 ) ,
width_CI . d2d3 = mean( width_CI_d2d3 ) ,
TE_s i g n i f i c a n t . d2d3 = mean(TE. s i g n i f i c a n t . d2d3 ) )

i <− i + 1
}

}
}

}

−−−−−−# e q u i v a l e n t code as above f o r a l l o ther models −−−−−−−−−

## Resu l t s −−−−

save (summary_r e s u l t s , f i l e="summary_r e s u l t s . RData " )
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