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Zusammenfassung 
 

Enzyme weisen aufgrund ihres natürlichen Ursprungs eine hohe Anpassung an die 

physiologischen Bedingungen in lebenden Systemen auf. Folglich steht ihrer Anwendung 

in industriellen Prozessen häufig eine zu geringe Stabilität entgegen. Neben der gezielten 

Modifikation der Enzymstruktur, Immobilisation an Oberflächen, oder Einkapselung, kann 

die gezielte Anpassung des umgebenden Mediums zu einer erhöhten Enzymstabilität 

beitragen. Dementsprechend werden Flüssigformulierungen nach der Fermentation, im 

Downstream Processing oder vor der Lagerung, Additive wie Polyole zugesetzt. Dadurch 

soll eine möglichst hohe Stabilität und langanhaltende Aktivität sichergestellt werden.  

Die Lagerstabilität wird durch die Bestimmung des aktiven Enzymgehaltes zu mehreren 

Zeitpunkten überprüft. Dadurch lässt sich der Effekt verschiedener Additive untereinander 

vergleichen. Als Alternative zu herkömmlichen photometrischen Assays und analytischen 

Methoden galt es in diesem Zusammenhang das MIRA-Infrarot-Spektrometer zur 

Bestimmung der Enzym-/Lösungsmittelkonzentration zu validieren. MIRA vereint 

klassische IR-Spektroskopie und KI-gestützte Ansätze zur reproduzierbaren 

Quantifizierung von Analyten in wässrigen Umgebungen. Durch die Verwendung 

multivariater Datenanalyse und des entwickelten Arbeitsablaufs zur Reduzierung des 

Einflusses des Lösungsmittelsignals durch die Verwendung von Differenzspektren und 

External Parameter Orthogonalization (EPO), konnten auf Basis verschiedener Subtilisin- 

Protease/Endocellulase-Formulierungen mit 1,2-Propandiol, PCR/PLS-Modelle mit einer 

bislang unerreichten Genauigkeit generiert werden. Bei der Bestimmung der Enzym-

/Lösungsmittelkonzentration in Flüssigformulierungen mittels IR-Spektroskopie handelt es 

sich um einen vollständig neuen Ansatz, der im Vergleich zu herkömmlichen Methoden 

mehrere Vorteile aufweist. Dazu gehören eine fehlende Notwendigkeit der 

Probenverarbeitung, die Schnelligkeit der Methode und der hohe Informationsgehalt einer 

Messung, der in Kombination mit moderner Datenverarbeitung weitere Messmethoden 

überflüssig macht. 

Da Unterschiede in Lagertests, je nach Enzym und Formulierung, erst nach Tagen, 

Wochen oder Monaten ersichtlich werden, hat sich die Bestimmung der thermischen 

Stabilität mittels dynamischer Differenzkalorimetrie (DSC) als Alternative etabliert. 

Allerdings ist die thermische Stabilität in Formulierungen, insbesondere bei Proteasen, nur 

bedingt mit Lagertestergebnissen in Einklang zu bringen. Die Ursache für die Diskrepanz 

galt es anhand von DSC-Messungen, Molekulardynamik (MD)-Simulationen und 
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Langzeitlagertest-Studien näher zu untersuchen. In diesem Zusammenhang wurde der 

Einfluss von Polyolen (u.a. Glycerin, Sorbitol und 1,2-Propandiol) und deren 

Konzentration (10-50 wt%) auf die thermische sowie Langzeitstabilität einer Subtilisin 

Protease bestimmt. Die ermittelten Tm-Werte der DSC-Messungen zeigten eine starke 

lineare Korrelation mit molekularen Deskriptoren der MD-Simulationen. Zwischen DSC- 

und Lagertest-Ergebnissen konnte hingegen kein Zusammenhang ermittelt werden. 

Während sich ein möglicher Einfluss der Polyole auf die Anzahl der gebundenen Calcium-

Ionen und damit auf Enzymstabilität/-aktivität nicht festgestellt werden konnte, konnte 

über Enzymkinetiken eine inhibitorische Wirkung von kleineren/hydrophoberen Polyolen 

auf Km und Vmax in Gegenwart des künstlichen Protease-Substrats Suc-AAPF-pNA 

nachgewiesen werden. SDS-PAGE-Analysen ermöglichten es zudem den Anteil der 

Autoproteolyse am Gesamtverlust aktiven Enzyms in den Lagertestproben zu bestimmen 

und damit die Wechselwirkung zwischen thermischer Entfaltung und Autoproteolyse 

nachzuweisen. Anhand der MD-Trajektorien konnte ein Umklappen der katalytischen 

Histidin-Seitenkette und eine damit verbundene Vergrößerung des Abstandes zwischen 

dem katalytischen Histidin-Nε2 und Serin-Oγ in Abhängigkeit der Größe und 

Hydrophilie/Phobie der Polyole als mögliche Ursache bestimmt werden. Folglich konnte 

erstmals der Nachweis erbracht werden, dass Polyole - neben ihrer teilweise 

stabilisierenden Wirkung auf die Enzymstruktur - einen Einfluss auf die katalytische 

Aktivität bzw. Autolyse von Proteasen haben können. Da dieser Effekt in DSC-Messungen 

nicht ersichtlich wird, liefern die erzielten Ergebnisse neue Erkenntnisse bezüglich der 

Diskrepanz zwischen DSC- und Lagertestergebnissen. Darauf aufbauend ergeben sich neue 

Ansätze im Bereich der Enzymstabilisierung und darüber hinaus neue Ideen für die 

gezielte Anpassung der Enzymstruktur an verschiedene Formulierungsumgebungen. 
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Abstract 
 

Due to their natural origin, enzymes are highly adapted to the physiological conditions in 

living systems. Thus, their application in industrial processes is often hindered by 

insufficient stability. In addition to the targeted modification of the enzyme structure, 

immobilization on surfaces, or encapsulation, targeted adjustment of the surrounding 

medium can contribute to increased enzyme stability. Consequently, osmolytes such as 

polyols are added to liquid formulations after fermentation, in downstream processing or 

before storage. This is to ensure the highest level of stability and prolonged activity. 

Storage stability is monitored by determining the active enzyme content at several points in 

time. This allows the effect of different additives to be compared with each other. In this 

context, the MIRA infrared spectrometer was validated as an alternative to conventional 

photometric assays and analytical methods for determining the enzyme/solvent 

concentration. MIRA combines classical IR spectroscopy and AI-based approaches for the 

reproducible quantification of analytes in aqueous environments. By using multivariate 

data analysis and the developed workflow to reduce the influence of the solvent signal by 

using difference spectra and external parameter orthogonalization (EPO), PCR/PLS models 

with a so far unmatched accuracy could be generated based on different subtilisin 

protease/endocellulase formulations with 1,2-propanediol. The determination of 

enzyme/solvent concentration in liquid formulations by means of IR spectroscopy is a 

completely new approach that has several advantages over conventional methods. These 

include a missing need for sample processing, the speed of the method and the high 

information content of a measurement, which in combination with modern data processing 

makes additional analytical methods obsolete. 

Since differences in storage tests, dependent on the enzyme and formulation, only become 

apparent after days, weeks or months, the determination of thermal stability by differential 

scanning calorimetry (DSC) has established itself as an alternative. However, the thermal 

stability in formulations, especially for proteases, can only be partially matched with 

storage test results. The reason for this discrepancy was to be investigated further using 

DSC measurements, molecular dynamic (MD) simulations and long-term storage test 

studies. In this context, the influence of polyols (including glycerol, sorbitol and 1,2-

propanediol) and their concentration (10-50 wt%) on the thermal and long-term stability of 

a subtilisin protease was evaluated. The determined Tm values of the DSC measurements 
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showed a strong linear correlation with molecular descriptors of the MD simulations. In 

contrast, no correlation could be determined between DSC and storage test results. 

While a possible influence of the polyols on the number of bound calcium ions and thus on 

enzyme stability/activity was not confirmed, an inhibitory effect of smaller/hydrophobic 

polyols on Km and Vmax in the presence of the artificial protease substrate Suc-AAPF-pNA 

could be demonstrated by the characterization of enzyme kinetics. SDS-PAGE analyses 

further allowed to determine the contribution of autoproteolysis to the total loss of active 

enzyme in the storage test samples and thus to demonstrate the interaction between thermal 

unfolding and autoproteolysis. Based on the MD trajectories, a flipping of the catalytic 

histidine side chain and an associated increase in the distance between the catalytic 

histidine Nε2 and serine Oγ depending on the size and hydrophilicity/hydrophobicity of the 

polyols could be determined as a possible cause. Consequently, it could be demonstrated, 

for the first time, that polyols, in addition to their partial stabilizing effect on the enzyme 

structure, can have an influence on the catalytic activity or autolysis of proteases. Since 

this effect is not evident in DSC measurements, the results obtained provide new insights 

into the discrepancy between DSC and storage test results. Based on this, new approaches 

in the field of enzyme stabilization and furthermore new ideas for the targeted adaptation 

of the enzyme structure to different formulation environments arise.
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Introduction 

 

Current global crises such as the COVID-19 pandemic and the war in Ukraine, have once 

again made us painfully aware of how depend modern society is on chemicals and 

associated products. From the food we eat, to household products or home and personal 

care, chemicals accompany us wherever we go. However, the production of such, 

consumes a large number of raw materials and energy. In addition, a large amount of waste 

is generated, which not only pollutes the environment but also affects our quality of life. In 

the future, the situation is likely to be exacerbated by a steadily increasing global 

population and the hunger for resources of emerging markets. As a result, industries 

around the world are looking for possible alternatives to conventional approaches, that will 

allow them to produce more products, while using fewer resources and minimizing the 

influence on the environment [1].  

Industrial biotechnology is considered to play a key role in this context, due to the use of 

bio-based materials and natural production processes [2, 3]. These could be used to either 

replace or supplement conventional technologies, towards cleaner production processes 

and sustainable products. In this regard, the use of enzymes in industrial processes and 

products is seen as one of the promising and sustainable alternatives to conventional 

approaches [4, 5].  

 

1.1 Enzymes 
 

Albeit unknowingly, the first use of enzymes by humankind dates to the earliest time of 

civilization. Numerous activities in the first primitive communities such as the production 

of certain types of foods and beverages, and the tanning of hides and skins to produce 

leather for garments, were based on the use of enzymes [6, 7]. But only in the late 19th 
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century enzyme directed research and, subsequently, understanding of enzymes started to 

develop.  

At the beginning of the 19th century the digestion of meat by stomach secretes and the 

conversion of starch to sugars by plant extracts and saliva were already known, but the 

mechanism had not been identified [8, 9]. In 1833 the first enzyme, diastase, was 

discovered by Anselme Payen [10]. In the years after, additional enzymes as pepsin and 

invertase followed [8, 11]. At the same time (1836) Berzelius first postulated the concept 

of catalysts which are released unchanged from reactions [10]. A few decades later, Louis 

Pasteur concluded that the alcoholic fermentation of glucose to ethanol was caused by a 

vital force within the yeast cells, which he called “ferments” [12]. These, however, were 

thought to function only in living organisms, which lead to the term enzyme (Greek: 

ἔνζυμον “in yeast”) being introduced by Wilhelm Kühne in 1877 [13]. This, however, was 

contradicted by Hans and Eduard Buchner in 1897, who discovered that glucose was 

fermented by yeast extracts even though living cells were absent in the mixture. Following, 

the term enzyme was used to refer to nonliving substances [14]. 

As knowledge about enzymes, expanded in the 19th century, the first industrial applications 

emerged. In the 1870’s the Danish chemist Christian Hansen isolated pure rennet from 

calves’ stomachs [7, 15]. The use of this, in the production of cheese, lead to considerable 

improvements in product quantity and quality. This paved the way for the industrial 

production of rennet and thus the first enzyme-producing industry ever. The industrial use 

of enzymes as we know it today started in 1913 when Otto Röhm discovered the efficacy 

of pancreatic trypsin for the removal of proteinaceous stains from clothing [16].  

The development of fermentation processes in the 20th century by James B. Sumner and 

Kaj Lindstrøm-Lang further boosted this development [17, 18]. Together with the 

introduction of suitable purification and analysis methods, enzymes could be expressed and 

purified on a larger scale. Consequently, enzymes advanced into industrial products and 

processes in detergent, textile, and starch industry in the 1960s [19, 20]. The use of 

recombinant gene technology in the eighties further improved the manufacturing processes 

and commercialization of new enzymes. Furthermore, breakthroughs within modern 

biotechnology, as protein engineering and directed evolution, have further accelerated the 

development of industrial relevant enzymes [21, 22]. These advances, led to the 

development of enzymes with improved adaptation to novel process environments and 

previously non-existent substrate affinity and activity. As a result, enzymatic processes and 
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products are not only expanding into new areas of application in the detergent, food, 

animal nutrition, cosmetics, chemical and pharmaceutical industries, but are also 

advancing into other areas of our everyday lives. 

 

1.1.1 Protein/Enzyme Structure 
 

The ability of enzymes to catalyze chemical reactions is primarily a result of their 

molecular structure. As proteins, this is characterized by several levels of organization, 

with an amino acid sequence as their basis. 

 

Primary Structure 

The number and type of the amino acids is determined by the sequence of bases, which 

code for the protein in the desoxyribonucleic acid (DNA). Consequently, each protein is 

defined by an individual sequence of amino acids, referred to as primary structure. Based 

on the 22 proteinaceous amino acids a huge variety of different proteins can be expressed 

[23]. The individual amino acids are linked by peptide bonds, which consist of acid amide 

bonds. In this regard, an α-carboxyl group of the preceding amino acid is linked with the α-

amino group of the following amino acid. As part of this process, a water molecule is 

released. The resulting sequence of nitrogen atoms, from the amino groups, Cα atoms, from 

which the side chains branch off, and C atoms, from the carbonyl groups, forms the protein 

backbone, which has a high potential for hydrogen bond formation [23, 24]. 

 

Secondary Structure 

The potential of hydrogen bond formation is driven by the interaction of amino groups and 

carbonyl groups. Structures that emerge from such interactions are described as secondary 

structures. Among these α-helices and β-sheets were the first ones to be discovered by 

Linus Pauling and Robert Corey in 1951 [25, 26]. Later, additional structures as the β-turn 

and the Ω-loop were identified [27-29]. 

α-Helices are composed of a tightly coiled backbone, which results in a rod like shaped 

inner structure. The side chains face outward in a helical arrangement. Hydrogen bonds 

between the amino and carbonyl groups of the main chain stabilize the helix. Each 

carbonyl group of one amino acid forms a hydrogen bond with the amino group of the 



Introduction 

 
 8 

amino acid four residues away in the primary structure [30, 31]. Consequently, every 

amino and carbonyl group of the main chain, except the one at the beginning and end, are 

involved in the formation of H-bonds. In this formation, each residue is shifted against the 

next by 0.15 nm and rotated by 100° along the helix axis. Therefore, each helical turn is 

composed of 3.6 amino acid residues [32]. Due to this arrangement, amino acids that are 

three or four residues apart in the primary sequence are in close proximity within the α-

helix. The direction of rotation of an α-helix can be clockwise or counterclockwise. 

However, clockwise helices are energetically more favorable, because they tend to produce 

fewer steric collisions between the side chains and the backbone [33]. 

The β-sheet structure is composed of β-strands. In contrast to the tightly coiled polypeptide 

chain in an α-helix they are almost completely stretched out. Consequently, the distance 

between neighboring amino acids is 0.35 nm compared with 0.15 nm in α-helices [34]. The 

orientation of amino acid side chains away from each other in β-strands, leads to the 

formation of β-sheets, which result from the formation of H-bonds between one or more β-

strands. Such β-sheets can have purely the same direction (parallel) or can run in purely 

opposite directions (antiparallel), or they can be mixed [31]. In the case of the antiparallel 

orientation amino and carbonyl group of the amino acid in one strand are equally linked to 

the amino and carbonyl group of a partner in the opposing strand. However, in a parallel 

orientation the amino group of the amino acid on one strand is linked to a carbonyl group 

of an amino acid two residues away on the neighboring strand, whereas the carbonyl group 

is linked to an amino group [35]. In schematic drawings β-strands are commonly depicted 

as broad arrows. These are orientated towards the carboxyl terminus, to depict the 

orientation of the β-sheet. In general, ß-sheets have a bigger structural diversity than α-

helices and can be relatively flat or they can have a slightly twisted orientation [36]. 

Since many proteins form a globular structure, turns and loops are required as part of the 

secondary structure. β-turns for example are formed by the interaction of an amino acid 

side chain carbonyl group with an amino acid side chain amino group two residues away. 

In other cases, more sophisticated structures, like Ω-loops are formed [29]. In contrast to α-

helices and β-sheets, these are characterized by non-repeating periodic structures. 

Nevertheless, in many cases they are rigid and well defined. Loops and turns, are not only 

important secondary structure elements. Far more, they are often involved in interactions 

between proteins and other molecules. Consequently, they are commonly located on the 

protein surface. 
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Tertiary Structure 

The tertiary structure of a protein refers to its three-dimensional structure. It may be 

composed of one or several domains. Respective secondary structure elements, as α-helices 

and β-sheets, are folded into a compact globular structure [31]. The formation of the 

tertiary structure is driven by non-specific hydrophobic interactions, in order to bury 

hydrophobic residues from water [35]. In consequence, polar residues are orientated 

towards the protein surface. This distinct distribution of polar and nonpolar residues 

highlights the fundamental aspect of protein architecture [37, 38]. In an aqueous 

environment, protein folding is driven by the tendency of hydrophobic residues to escape 

water. The reason for this is that a system is thermodynamically more stable, when the 

hydrophobic side groups are in close proximity and not exposed to the aqueous 

environment. Therefore, the formation of the tertiary structure is a spontaneous reaction to 

hide the hydrophobic side chains in the core of the protein and present polar groups on the 

surface. The tertiary structure is stabilized by tertiary interactions. These comprise salt 

bridges, H-bonds, tight packing of side chains, and disulfide bridges. Some polypeptides 

fold into two or more compact domains, connected by a flexible polypeptide segment. 

Such separated compact globular units are referred to as domains [35]. 

 

Quaternary Structure 

For proteins consisting of more than one polypeptide chain, a fourth and highest structural 

level is considered, the quaternary structure [31, 35]. The quaternary structure is the three-

dimensional structure consisting of the aggregation of two or more individual polypeptide 

chains that operate as a single functional unit. The individual polypeptide chains inside this 

multimer are often referred to as subunit. The quaternary structure describes the spatial 

arrangement of these subunits and the nature of their interactions. The simplest case of a 

quaternary structure is a dimer consisting of two identical subunits. However, a more 

complex quaternary structure with a different and variable numbers of subunits is possible. 

The resulting multimer is stabilized by similar non-covalent interactions and disulfide 

bonds as the tertiary structure. In contrast to the first three structural levels, however, not 

all proteins have a quaternary structure since some proteins function as a single unit.  
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1.1.2 Thermodynamics of Enzyme Catalysis 
 

Many chemical reactions can occur spontaneously, others need to be catalyzed to proceed 

at a significant rate. This is especially important in the case of reactions, which are relevant 

to sustain live. In this context, the catalyst has to significantly increase the reactivity and 

velocity of the substance turnover without changing the reaction equilibrium [39]. 

Enzymes are such proteins, whose catalytic action, referred to as enzyme activity, lead to 

an increase of the reaction rate by a factor of up to 1017 [40]. It is characteristic to such 

processes, that the catalyst is not consumed or modified. In principle, it can therefore be 

used without limit. However, the lifetime of a catalyst is limited by its stability under the 

given reaction conditions. 

To ensure a successful reaction, it is mandatory for participating molecules to meet in a 

certain spatial orientation. Following, the precursor substance is transferred into an 

activated reactive transition state before it is converted into the reaction product. The 

energy barrier that has to be overcome in this regard, is referred to as free activation 

enthalpy (ΔG+), respectively activation energy. The amount of ΔG+ required, influences 

the reaction rate, while the free enthalpy (ΔG) of the reaction, determines whether the 

reaction takes place spontaneously or not [41]. Enzymes increase the reaction rate, by 

lowering the necessary activation energy to form the transition state. The binding of the 

enzyme to its substrate, results in the formation and stabilization of a transition state, so 

that less energy is required compared to the uncatalyzed reaction. This leads to the product 

formation upon dissociation of the enzyme-product complex. The energy necessary to 

decrease the activation energy, derives from the interactions between the substrate and 

enzyme, which results in free enthalpy, also referred to as binding energy [35, 39]. 

 

1.1.3 Enzyme-Substrate Binding 
 

Enzymes are highly specific with regard to the catalyzed reaction, but also in choosing 

their substrate. Therefore, only a single reaction or a group of related reactions is catalyzed 

by a specific enzyme. The high specificity of enzymes is mediated by the active site [35, 

42]. A region of the enzyme which binds the substrate and catalyzes the formation and 

release of the product by the formation and dissolution of bonds. Residues in this region 

are referred to as catalytic group and consist of amino acids, which are often positioned far 

away from each other in the primary structure of the enzyme. However, upon protein 
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folding they reach spatial proximity. In general, active sites are often located in cleft-like 

cavities or cavity-like folds on the surface of enzymes [43].  

The binding of the substrate in the active site is induced by the formation of non-covalent 

interactions (H-bonds, ionic interactions, hydrophobic interactions, and van der Waals 

interactions). The specificity of the enzyme-substrate interaction is mediated by directed 

hydrogen bridges and the shape of the active site [44]. In this way, molecules are excluded 

that are not sufficiently complementary in structure. According to a model developed by 

Emil Fischer (1894), enzymes have a structure complementary to that of their substrate 

(lock-and-key principle) [45]. However, some enzymes have shown to undergo a substrate 

induced conformation change to achieve an optimal positioning of substrate and enzyme. 

This mechanism was described by Daniel Koshland as “induced fit” and describes the 

dynamic adaptation of enzyme and substrate based on the conformational flexibility of the 

enzyme [46]. The interaction between the active site and the substrate facilitates the 

formation of a transition state in a dynamic process, which is preferentially bound by the 

enzyme. During this process, water is excluded from the active site and the substrate is 

bound. The binding is accompanied by conformational changes in the active site, resulting 

in catalysis.  

Substrate specificity ensures that even small differences between substrates are detected, 

and the right substrate is bound. This can either relate to the substrate as a whole molecule 

or to specific structural elements of the substrate [41]. Substrates of low molecular weight 

can be recognized and bound by an enzyme as such. Large molecular substrates as 

proteins, polysaccharides, and nucleic acids in contrast have defined substructures, which 

interact with the enzyme. Besides, enzymes are reaction specific, which ensures that only 

one of many thermodynamically possible reaction types is used for a substrate [47, 48]. If 

needed, however, enzymes can generate alternating products from one substrate. Further, 

enzymes are stereo specific, due to which differentiation between mirror-image isomeric 

substrates is possible [49-51]. At last enzymes can be highly regulated, which enables 

precise dosing of the enzyme activity in a variety of processes [52-54]. 

 

1.1.4 Cofactors 
 

Apart from the catalytic activity of the active site, some enzymes depend on the presence 

of small molecules, the so-called cofactors. An enzyme without a cofactor is called 
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apoenzyme [55-57]. The fully activated, catalytic enzyme is referred to as holoenzyme. 

Cofactors are relevant for chemical reactions, which cannot be catalyzed by the amino acid 

residues in the active site alone. These include inorganic ions, but also low molecular 

weight non-proteinaceous organic molecules, which are referred to as coenzymes [58, 59]. 

Cosubstrates in turn are coenzymes [60], which bind to the enzyme and are released in an 

altered form after catalysis. The modified cosubstrates are consequently returned to their 

original state and can be reused in the next catalytic reaction. In many cases, the binding of 

a cofactor is considered as an inevitable step to obtain an active enzyme or to enlarge its 

catalytic spectrum. Besides the majority of the enzymes using vitamins as cosubstrates [61-

63], two thirds rely on metal ions as cofactors [41, 64, 65]. Metalloenzymes contain metal 

ions, which are bound to the apoenzyme in a stoichiometric ratio. In contrast, metal 

activated enzymes bind metal ions specifically, but reversibly. Common metal ion 

cofactors primarily derive from the group of alkali and alkaline earth metals (Na+, K+, 

Mg2+, Ca2+). 

 

1.1.5 Enzyme Kinetics 
 

Enzyme activity describes the ability of enzymes to increase the velocity of a chemical 

reaction. All units associated with the enzyme activity are therefore related to the reaction 

velocity [41]. In general, enzyme activity is determined by measuring the decreasing 

concentration of the substrate or the increasing product concentration. This is most 

commonly done by using spectroscopic methods which are based on the Lambert-Beer’ 

law [39, 66, 67]. This means, that the decrease of substrate, respectively the increase in 

product, is followed by a proportional change in the absorption of monochromatic light 

(extinction) in the solute (eq. 1). Consequently, a prerequisite for this is application is the 

absorption of monochromatic light by substrate or product. The enzyme activity can then 

be calculated based on the measured absorbance change per unit time.  

( 1 ) 

𝐸𝜆 = 𝑙𝑜𝑔10 (
𝐼0

𝐼
) = 𝑐 ∗ 𝜀𝜆 ∗ 𝑑 

 

In this regard, the extinction Eλ is a dimensionless unit. I0 and I represent the intensity of 

the light entering (I0) the measuring cell respectively leaving it (I) on the other side. ελ is 

the extinction coefficient of the light absorbing substance at the respective wavelength and 
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d is the path length of the light travelling through the analyte. The variable c refers to the 

concentration of the light absorbing analyte. 

The reaction velocity (V) (eq. 2) is defined to be the change of the substrate respectively 

product concentration over a defined period of time.  

( 2 ) 

𝑉 =  
𝑑[𝑃]

𝑑𝑡
=  −

𝑑[𝑆]

𝑑𝑡
 

 

In enzymatic reactions, the reaction velocity often shows a hyperbola dependence on 

substrate concentration. To describe this behavior Michaelis and Maud Leonora Menten 

(1912) developed a simplified mathematical model to describe the hyperbola kinetic of 

enzymes, the Michaelis-Menten model [68]. In a first reversible step, described as pre-

steady state, the enzyme (E) and substrate (S) form an enzyme substrate complex (ES) 

(eq. 3). The concentration of such remains almost constant in the following steady state. 

The concentration of ES depends on the substrate concentration and corresponds to the 

total enzyme concentration at high levels of substrate. 

( 3 ) 

𝐸 + 𝑆 

𝑘𝑓1

⇌
𝑘𝑟1

 𝐸𝑆 

𝑘𝑓2

⇌
𝑘𝑟2

𝐸 + 𝑃   

 

The enzyme substrate complex finally decomposes releasing the product. This leads to a 

linear increase of the product concentration in the steady state. The release of the product is 

accompanied by the regeneration of the enzyme, whereby it can repeatedly take part in 

catalysis. 

Kinetics of enzyme catalyzed reactions are most often monitored under so called initial 

conditions. Under this condition substrate conversion and product release are very small, 

whereby the velocity of the enzyme substrate complex formation out of enzyme and 

product is neglectable. Thereby, the reaction velocity (V) is proportional to the 

enzyme-substrate complex ([ES]) concentration (eq. 4).  

( 4 ) 

𝑉 =  𝑘𝑓2 ∗ [𝐸𝑆] 
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However, the concentration of the enzyme-substrate complex is not directly measurable. 

Therefore, the equation can be converted, under consideration of steady state conditions 

(no major changes in enzyme-substrate concentration), to rely on the enzyme and substrate 

concentration (eq. 5).  

( 5 ) 

𝑑[𝐸𝑆]

𝑑𝑡
= (𝑘𝑓1 ∗ [𝐸] ∗ [𝑆] − (𝑘𝑟1 + 𝑘𝑓2) ∗ [𝐸𝑆]) = 0 

 

In this cause, the free substrate concentration is described by [S], whereas [E] is related to 

the free enzyme concentration. The total enzyme concentration [ET] is thereby given by the 

sum of [E] and [ES] (eq. 6). 

( 6 ) 

[𝐸𝑇] = [𝐸] + [𝐸𝑆] 

 

If the total enzyme concentration is considerably smaller than the total substrate 

concentration, the free substrate concentration is more or less equal to the total substrate 

concentration. Consequently, equation 5 and 6 can be combined to determine the enzyme- 

substrate complex concentration under steady state conditions (eq. 7). 

( 7 ) 

[𝐸𝑆] = [𝐸𝑇] ∗
[𝑆]

(
𝑘𝑟1 + 𝑘𝑓2

𝑘𝑓1
+ [𝑆])

 

 

Further, by taking equation 4 into account, the Michaelis-Menten equation is obtained. 

This describes the dependency between the reaction velocity and the substrate 

concentration of an enzyme catalyzed reaction under initial reaction conditions (eq. 8). 

( 8 ) 

𝑉 =  𝑘+2 ∗ [𝐸𝑇] ∗
[𝑆]

(
𝑘𝑟1 + 𝑘𝑓2

𝑘𝑓1
+ [𝑆])

= 𝑉𝑚𝑎𝑥 ∗
[𝑆]

(𝐾𝑀 + [𝑆])
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The parameter Vmax describes the maximum velocity possible and is dependent on the type 

of enzyme and substrate. With increasing substrate concentrations [S], the reaction velocity 

(V) gets close to the maximum velocity (Vmax). Therefore, based on the dependency 

between reaction velocity and substrate concentration a hyperbolic dependency 

respectively functional relationship can be observed. In general, enzyme activity is 

described by the unit U, which is defined to be the turnover (µmol) of substrate to product 

in one minute [69]. In some cases, however, the unit katal (kat) is used, which is related to 

the enzyme activity, necessary to turnover one mol of substrate in one second [70]. If the 

enzyme activity is related to the sample volume, one speaks of the catalytic activity 

concentration or volume activity. In this regard Unit per milliliter (U/mL) or katal per liter 

(kat/L) are commonly used [67]. The use of catalytic activity concentrations, is however, 

highly impracticable when characterizing or comparing different enzymes, since it is not 

directly associated with the respective enzyme. Therefore, the quotient of the catalytic 

activity concentration and the protein concentration of the enzyme in solution is used, 

which is referred to as specific activity. The unit of the specific activity is Unit per 

milligram (U/mg) respectively katal per kilogram (kat/kg) [67]. 

The Michaelis-Menten constant Km refers to the substrate concentration at which the 

reaction velocity is half Vmax. In contrast to Vmax, however, the obtained Km value is 

independent of the enzyme concentration. Besides, Km can be specified using the 

dissociation constant (KD) of the enzyme substrate complex (eq. 9). 

( 9 ) 

𝐾𝑚 =  
(𝑘𝑟1 + 𝑘𝑓2)

𝑘𝑓1
=  𝐾𝐷 +

𝑘𝑓2

𝑘𝑓1
 

 

If the dissociation of the enzyme substrate complex is faster than the release of the product, 

the Michaelis constant is similar to the dissociation constant. In this case, the Km value can 

be regarded as a measure of the affinity of the enzyme for its substrate [41]. Accordingly, 

an enzyme with high substrate affinity is characterized by a low Michaelis-Menten 

constant respectively an enzyme with low affinity with a high value. 
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1.1.6 Enzyme Inhibition 
 

Enzyme activity can be negatively influenced by small molecules or ions. Inhibition of 

enzymatic processes can play an import role in biologic systems or industrial products and 

is often utilized in pharmacological applications. In this regard two major inhibition types, 

reversible and irreversible inhibition, can be distinguished. 

An irreversible inhibitor is characterized by a strong binding, either covalent or non-

covalent, to the enzyme [71, 72]. Therefore, dissociation of the inhibitor from the enzyme 

is very slow and the binding of the actual substrate is prevented. Subsequently, binding of 

an irreversible inhibitor can lead to partial or permanent loss of enzyme activity. 

Reversible inhibitors, in contrast, are characterized by the fast dissociation of the enzyme 

inhibitor complex [73]. In this regard, several different mechanisms can be distinguished. 

Competitive inhibition e.g., is mediated by inhibitors, which are structurally very similar to 

the enzyme substrate. Consequently, inhibitor and substrate compete for the active site of 

the enzyme. Depending on the inhibitor concentration, this leads to different levels of 

enzyme inhibitor and enzyme substrate complexes. This results in a diminished catalytic 

rate, since not all enzymes can take part in the reaction. However, by significantly 

increasing the substrate concentration, inhibitor molecules can be displaced, and the 

turnover is again increased. Under these conditions Vmax remains unchanged, while the 

Michaelis constant Km is increased [39]. 

Uncompetitive inhibitors in turn, are characterized by the binding of the reversible 

inhibitor to the enzyme substrate complex, rather than the lone enzyme [73, 74]. This is 

mediated by the formation of an inhibitor binding pocket upon substrate binding. In 

contrast to competitive inhibition, this state cannot be counteracted by increasing the 

substrate concentration. As before, this leads to a diminished catalytic rate characterized by 

a decrease of Vmax and Km [39]. 

In the case of non-competitive inhibition, substrate and inhibitor can simultaneously bind 

to distinct positions of the enzyme [75]. Therefore, non-competitive inhibitors are free to 

bind the enzyme or the enzyme substrate complex. The inhibitory effect is mediated by the 

inactivation of the enzyme, rather than preventing the substrate binding or enzyme 

substrate formation. This achieved by a conformational change of the active site upon 

inhibitor binding. Since the amount of catalytic enzyme is changed, Vmax is reduced, while 

Km remains unchanged [39]. As in the case of the uncompetitive inhibition the effect 
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cannot be reverted by an increased substrate concentration since the inhibitor binding site 

is not influenced by such. 

 

1.1.7 Enzyme Nomenclature 
 

Enzymes can be classified by two main criteria. Either the amino acid sequence similarity 

and thus their evolutionary relationship or their enzymatic activity. In biochemistry, a 

hierarchical nomenclature and classification system by the International Union of 

Biochemistry and Molecular Biology (IUBMB) is applied, based on the reaction catalyzed 

by the enzyme [76]. The systematic name of an enzyme consists of two parts. The first part 

of the name specifies the catalyzed substrate, the second specifies the type of reaction 

catalyzed and ends in “-ase” [77]. Due to this, enzymes that cleave peptide bonds are 

referred to as proteases or peptidases. 

Besides the systematic naming of the enzymes, they are further assigned an Enzyme 

Commission (EC) -number, which consists of four digits [77]. The first number classifies 

the enzyme according to seven different main classes. The following numbers refer to the 

catalyzed reaction and are used for sequential numbering. In the case of the alkaline 

subtilisin protease, classified as serine protease, this leads to the EC-number 3.4.21.62: 

• EC 3:   Hydrolases, enzymes that use water to break peptide bonds 

• EC 3.4:  Hydrolases that act on peptide bonds 

• EC 3.4.21:  Serine endopeptidases 

• EC 3.4.21.62:  Subtilisin  

 

1.2 Proteases 
 

Proteases are ubiquitous in biological systems, having multiple functions in the 

biochemical, physiological, and regulatory aspects of cells and organisms. This is due to 

their ability to break down proteins by hydrolyzing peptide bonds of the polypeptide chain 

[78]. Furthermore, proteases represent the largest segment of the industrial enzyme market, 

as they are used in detergents, food, leather, and fabric processing, as catalysts in organic 

synthesis, and therapeutics [79-82]. With annual sales of US$1.5-1.8 billion, proteases 

account for 60 % of the total enzyme market [83].  
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According to their mode of action, proteases are classified by the IUBMB in the third 

group (EC3) of Hydrolases [76]. Based on the type of bond that is hydrolyzed they are 

further subdivided into subgroups from 1 to 13. These subgroups, include hydrolases 

which e.g., act on ester bonds (3.1), ether bonds (3.3), or among others, peptide bonds 

(3.4). Based on the site of protease action, they can be further subdivided into 

exopeptidases or endopeptidases. Exopeptidases catalyze the hydrolysis of peptide bonds 

near the N- and C-terminal tails of the substrate [84, 85]. In contrast, endopeptidases break 

the peptide bonds by hydrolysis within the polypeptide chain. Based on the IUBMB 

nomenclature, exopeptidases can be further subclassified into aminopeptidases, 

dipeptidases, dipeptidyl-peptidases, tripeptidyl-peptidases, carboxypeptidases, and omega 

peptidases [86].  

Besides the IUBMB enzyme classification, Rawlings et al. have introduced a classification 

scheme, which is based on statistical similarities in sequence and structure of all known 

proteolytic enzymes [87]. The database behind this classification system has been termed 

MEROPS. It separates proteases into clans, based on the catalytic mechanism, and 

families, based on common ancestry. A clan comprises all proteases that share a single 

evolutionary origin. Therefore, clans can include more than one family of peptidases. Each 

clan has been assigned a unique identifier consisting of two letters. The first letter 

represents the catalytic type of the family members, such as aspartic acid (A), cysteine (C), 

glutamine (G), asparagine (N), serine (S), threonine (T), metal (M), or mixed residues (P). 

Further, families are defined to group proteases with homologies on the amino acid 

sequence level. The different families are termed by a single letter, which refers to the 

catalytic mechanism in the clan identification. In addition, the letter is followed by a 

unique number. 

 

1.2.1 Serine/Subtilisin Proteases 
 

Out of many proteases, serine proteases, a group of endopeptidases, are one of the well-

established types of proteases. More than a third of all known proteolytic enzymes are 

serine proteases [88]. According to MEROPS they can be classified into 13 clans and 40 

families [87]. The classification as serine protease derives from the nucleophilic serine in 

the enzyme active site, which attacks the carbonyl moiety of the substrate peptide bond to 

form an acyl-enzyme intermediate [89]. Serine proteases are widely distributed in nature 

and are found in all kingdoms of cellular life as well as many viral genomes [88]. Among 
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others the serine protease family comprises proteases such as chymotrypsin, kexin, 

carboxypeptidase, and subtilisin [90]. 

Due to their characteristics, proteases of the subtilisin family, have evolved to one of the 

most well-known classes of proteases, due to their wide range of thermostability and pH 

compatibility. The name subtilisin is, originally derived from the species, Bacillus subtilis, 

from which the protease was first isolated [91]. The first enzyme of the subtilisin family, 

however, subtilisin Carlsberg (subtilisin A), from B. licheniformes, was discovered by 

Linderstrøm-Lang and Ottensen [92], while they were studying the conversion of 

ovalbumin to plakalbumin. Till today, several species variants have been isolated, 

including those from B. amyloliquefaciens (subtilisin BPN’) [93], B. lentus (subtilisin 147 

or esperase) [94], B. alcalophilus (maxacal, savinase (N85S)) [94], and B. subtilis 

(subtilisin, subtilisin E) [95]. Furthermore, subtilisin proteases have also been identified in 

eukaryotic and other prokaryotic genii [96, 97]. 

The first sequence of a subtilisin protease was determined in 1966 when Smith published 

the full amino acid sequence of subtilisin BPN’ and Carlsberg [98]. Followed by X-ray 

crystallographic structure elucidation by Wright et al. of subtilisin BPN’ in 1969 [93]. 

Based on this, subtilisins were classified as separate family of proteases. Before, it had 

been suggested that subtilisin’s were homologous to the pancreatic serine protease, 

chymotrypsin [99]. However, based on sequential and structural information, it could be 

shown that subtilisin’s are serine proteases with a catalytic triad composed off aspartic 

acid, histidine, and serine residues rather than the chymotrypsin, respectively trypsin 

characteristic order, histidine, aspartic acid, and serine.  

When expressed, subtilisin proteases are secreted in a precursor state, which is referred to 

as preprosubtilisin [100]. This is characterized by a significantly larger size (up to 381 

amino acids) than the active enzyme. The preprosubtilisin is composed of the 29 residue 

signal peptide, relevant for secretion, followed by the 77 residue propeptide, and the 

mature subtilisin of varying size. The propeptide has shown to play a vital role for the 

activity and the regulation of subtilisin [54]. By mutating the aspartic acid residue at 

position 32 to asparagine, it could be shown that the mutated prosubtilisin was not further 

processed and therefore remained inactive [101]. This suggests, that the propeptide acts as 

an intramolecular regulator for the activation of subtilisin. Furthermore, the propeptide was 

shown to act as intramolecular chaperone [102], mediating the folding of the enzyme in its 

active state. 
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Signal peptide and propeptide are both not part of the active enzyme. Subtilisin proteases 

are in general monomeric proteins, which are composed of 268-275 amino acid residues 

[103]. Consequently, masses range from 26.8 to 27.5 kDa. The resulting structural 

differences lead to a large variation of the pI from 7.8 (subtilisin BPN’) to ≈11 (B. lentus). 

Still, structural differences between the members of the subtilisin family are small and their 

structures are highly superimposable.  

The secondary structure of subtilisin consists of a central seven-stranded parallel β-sheet 

surrounded by nine α-helices, with two additional strands of antiparallel β-sheet near the 

C-terminus (structure and numbering refers to subtilisin BPN’) [103]. The catalytic triad is 

located near the protein surface with Ser221 and His64 at the end of two nearby α-helices, 

and Asp32 at the end of a strand of the central β-sheet [89, 104]. The oxyanion hole, which 

is essential for the stabilization of the negative charge of the tetrahedral intermediate state 

is comprised of the Asn155 side chain amide group, the backbone amide of Ser221, and 

the Thr220 side chain hydroxyl group [105]. Substrate binding occurs up on the interaction 

of a nine residue stretch of the substrate backbone with the subsites S6 to S3’ [103]. The 

subsite S1 is a large open cleft that has residues 125-127 on one side, 153-156 on the other, 

and the 165-170 loop at the base. Residues 125-127 play an important role during substrate 

binding as the N-terminal part (P4-P1) of the substrate backbone is bound in between 

residues 125-127 and 100 and 102, and thereby kept in place.  

Further, the enzyme has one low affinity and one high affinity calcium binding site. The 

high affinity binding site consists of a surface loop opposite the active site. It is formed by 

three backbone carbonyls (residue 75, 79, and 81), and the side-chain oxygen of Asn77, 

and is coordinated on either side by side-chain oxygens from Gln2 and Asp41 [106, 107]. 

The low affinity binding site is formed by backbone carbonyls from Gly169, Tyr171, 

Val174, the side chain of Glu195, and two water molecules [108]. 

 

1.2.2 Mechanisms of Subtilisin Protease Catalysis 
 

Enzyme catalysis is mediated by the interactions between reactive side groups of amino 

acids in the active site with the substrate. In some cases, additional cofactors are involved. 

During this process, H-bonds, ionic, hydrophobic, van der Waals interactions and 

temporary covalent bonds are formed. The variety of interactions can significantly 

influence the possible number of catalytic mechanisms. In general, three principal 
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mechanisms can be distinguished [41]: metal ion catalysis, acid base catalysis, and 

covalent catalysis. 

In metal ion catalysis, metal ions are utilized to cover up negative charges, activate water 

molecules, reversibly take up electrons during redox reactions, and/or they can induce an 

improved conformation of the substrate towards the enzyme [41]. In acid base catalysis, 

the side chains of amino acids in the active site function as Brønsted acid or base. 

Consequently, they can reversibly take up or release protons [41]. Common amino acids in 

this regard, are histidine, cysteine, tyrosine and lysine. For covalent catalysis, temporary 

covalent bonds between the functional group of the enzyme and the substrate are formed 

[41]. The structural basis of covalent catalysis are nucleophilic groups, as serine residues, 

in the active site of the enzyme. This type of mechanism is especially common in the case 

of serine proteases. 

The protease EC 3.4.21.62 is an extracellular alkaline serine endopeptidase/subtilisin 

protease, which is expressed by various Bacillus strains and especially Bacillus subtilis on 

an industrial scale. The catalytic mechanism of this serine protease combines acid base 

catalysis and covalent catalysis [35, 109, 110]. The active site forms a catalytic triad, 

which is composed of serine (residue 215), histidine (residue 62), and asparagine (residue 

32). Upon substrate binding the catalyzed reaction is initiated by the nucleophilic attack of 

the Ser32 residue towards the targeted peptide bond. Thereby, a tetrahedral intermediate 

state is formed at the C-atom of the peptide bond. This intrinsically unstable tetrahedral 

intermediate contains a negative charge on the oxygen atom, originating from the carbonyl 

group. The charge is stabilized by interactions with the NH-groups of an enzyme region, 

referred to as oxyanion pocket. This results in the release of the peptide fragment with the 

amino group of the cleaved peptide bond. This process is mediated by the transfer of a 

proton from the positively charged His62 imidazole ring onto the respective amino group. 

At the same time the C-terminal substrate fragment is covalently bound to the Ser32 

residue, which leads to the formation of an acyl enzyme intermediate. The function of the 

β-carboxylate group of Asp215 is to stabilize the imidazolium group of His62 by a 

hydrogen bond. In the next step, a water molecule is attracted by the His62 residue, 

whereby a proton is extracted from the water molecule. The generated OH- ion in turn 

attacks the carbonyl carbon atom of the acyl group, forming a second tetrahedral 

intermediate, which is stabilized by the oxyanion pocket. However, this structure 

disintegrates, which leads to the release of the carboxylic acid ending peptide. As a result, 

the enzyme is regenerated. 
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1.3 Enzyme Stabilization 
 

Enzymes are highly adapted to the physiological conditions they originate from. These are, 

however, considerably different from the conditions used for enzymes in industrial 

applications, as e.g. in detergents, food processing, animal nutrition, cosmetics, 

pharmaceuticals, and the production of chemicals [111, 112]. The use of enzymes as 

efficient catalysts is therefore only feasible and productive if the catalysts are stable under 

the present temperature, extreme pH, or other detrimental influences. Therefore, the need 

to stabilize enzymes is inevitable. Subsequently, different measures are applied to stabilize 

enzymes for their intended use. These measures are supposed to counteract the denaturing 

factors and prevent the loss of enzyme during production, storage, and application.  

Denaturation refers to the loss of the tertiary structure of the enzyme, whereby the ordered 

structure of the protein gives way to an arbitrary structure [113]. Consequently, functional 

important residues are no longer in proximity, which leads to a loss of activity and/or 

stability. In some cases, this effect is reversible, if the denaturating influence is removed. 

In others, it leads to an irreversible loss of active enzyme. 

 

1.3.1 Enzyme Replacement 
 

One simple way to obtain a stable and active enzyme for an industrial process, is to replace 

a mesophilic enzyme with an extremophile alternative [114, 115]. Extremophiles are 

organisms that have evolved under extreme conditions and thereby adapted themselves and 

their metabolisms to the harsh conditions they originate from. Due to this, they produce 

unique biocatalysts that remain active under conditions that their mesophilic counterpart 

could not endure. Among other, extremophiles can endure at high and low temperatures (-

40 to >130 °C), extreme pH (0-13), high salt concentrations (rainwater to 5 M NaCl), and 

high pressure (0.3-1200 atm) [116]. Consequently, the use of extremophile biocatalysts 

have enabled the development of processes in food, paper, detergent, pharmaceutical, and 

chemical industries, which had been limited or impossible before. 

 

1.3.2 Enzyme Engineering 
 

Instead of exchanging the whole enzyme, another option is to alter parts of the primary 

structure, to change and optimize its characteristic towards its intended use. In this regard 
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two general strategies are used for protein engineering: rational protein design and directed 

evolution.  

Rational protein design utilizes detailed knowledge of the enzyme structure and the 

underlying function, to make targeted changes [117, 118]. Together with sophisticated 

methods, as molecular modelling, this enables to predict the outcome of changes to the 

protein structure, and thereby to obtain the desired result. This has the advantage of being 

relatively inexpensive and technically easy, since site directed mutagenesis methods are 

well established. However, a major drawback of this approach is the necessity for detailed 

structural knowledge, which is not always available especially at an early development 

stage. 

Directed evolution in turn, uses mutant libraries which are generated by introducing 

random changes in the protein structure [119, 120]. This is achieved by random 

mutagenesis, e.g., by error-prone polymerase chain reaction (EP-PCR) or sequence 

saturation mutagenesis. Afterwards, mutants with desired properties are selected and 

exposed to further rounds of evolution. Thereby, natural evolution is mimicked, which can 

lead to superior mutants compared to rational protein design. With additional methods, as 

DNA shuffling, the obtained results can be even further improved by combining different 

parts of superior mutants. Compared to rational protein design, directed evolution needs 

only very limited amounts of information about the structural identity of an enzyme, nor is 

it necessary to predict the influence of the different mutations on the enzyme function 

beforehand. A clear disadvantage, however, is the need for high throughput methods to 

achieve the desired goal in a reasonable amount of time, which due to high costs for 

equipment and testing is not feasible for all applications. 

 

1.3.3 Enzyme Functionalization 
 

Besides changing parts of the enzyme to achieve the wanted result, it has been shown that 

adding covalent chemical modifications to the protein can be beneficial for activity and 

stability [121, 122]. A large number of available chemical moieties, in combination with 

different amino acid side chains, provide a multiplicity of possible modifications that can 

be introduced into the enzyme structure. In this regard, amino acids have been 

phosphorylated, hydrophilic/-phobic groups have been introduced, or enzymes have been 

crosslinked with glutaraldehyde to increase stability. However, the chemical modification 
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of an enzyme comes with the risk of destroying, inactivating, or creating inhomogeneous 

enzyme populations, due to poor discrimination or insufficient chemistry. 

 

1.3.4 Enzyme Immobilization 
 

Enzyme Immobilization in turn comprises methods that chemically or physically confine 

enzymes onto or within a support or matrix. By doing so, their full or at least most of their 

activity is retained. In such a way, product contaminations and the necessity to recover and 

reuse the enzyme can be neglected. The binding mechanism can either be physical, 

involving weak interactions, or chemical with covalent bonds [123, 124]. Available 

approaches, include different groups of methodologies like entrapment with nanofibrous 

polymers, nanoparticles, cross-linked enzyme aggregates, crystals, covalent binding to 

carrier surfaces or adsorption [125]. 

Although adsorption to carrier materials is one of the simplest and gentlest methods for 

enzyme immobilization it is not suitable for all enzymes and applications, since the weak 

interactions as Van der Waals forces, ionic interactions, and hydrogen bonds are prone to 

enzyme leakage [123, 126]. The major advantage of such an approach is, that neither 

additional coupling reagents nor modifications of the protein or carrier is required. 

Nitrocellulose membranes [127] or polylysine coated slides [128] are e.g., widely used in 

this regard. However, besides leakage, it occurs that the absorption of proteins to surfaces 

results in conformational changes and denaturation, which can lead to activity and protein 

loss. 

For more stable attachment, the formation of covalent bonds is mandatory [129, 130]. In 

most cases, these are formed by the reaction with functional groups on the protein surface. 

In this regard, additional modifications are not necessary since the naturally present 

functional groups, as lysine side groups, are readily available and reactions partners as N-

hydroxysuccinimide (NHS), aldehyde groups, cysteine residues or epoxide-functionalized 

materials can be used.  

If the binding of a protein to a carrier material is associated with an adverse effect on the 

enzyme structure, encapsulation offers a structure preserving alternative. In addition, the 

shell acts as a barrier that shields the enzyme from other detrimental influences. Well 

established techniques to encapsulate biological species, such as enzymes, antibodies, and 

other proteins, are the use of sol-gels respectively silica particles [131], liposomes [132] 
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and biodegradable polymer nano systems as poly lactic acid (PLA) and poly(-lactic-co-

glycolic acid) (PLGA) [133, 134]. 

 

1.3.5 Liquide Enzyme Formulations 
 

Beside the active alteration or binding of protective carriers to/or surrounding the enzyme, 

modifying its environment in the liquid state can be an approach to minimize the rate of 

activity loss. Especially industrially relevant enzymes are often sold with the promise of 

being long lived and thus active over a long period of time. Even though manufacturers 

will recommend optimal storage conditions in many cases, some enzymes will retain their 

activity for weeks while others diminish in days. Therefore, certain additives are needed 

following fermentation, downs stream processing and storage. Among others, the addition 

of inorganic salts, polyols, and sugars to liquid enzyme formulations has shown to be 

beneficial. 

Particularly in liquid formulations, the interaction of enzymes with their environment plays 

a crucial role, as structural stability is particularly dependent on the interaction between the 

protein and the solvent molecules. Changes in the environment can not only facilitate 

changes in the activity and stability, but also selectivity can be altered. Especially the water 

content can significantly influence the stability of the enzyme [135], by influencing the 

chemical equilibrium or acting as a reaction substrate. Further does water increase the 

solvation of polar residues of the enzyme, whereby conformational changes can be 

facilitated, with a positive or negative effect on activity and stability [136].  

The effect of polar and unipolar solvents can be quite diverse with respect to enzyme 

activity and stability. Polar solvents tend to displace water molecules from the protein 

surface and take their place, whereby a stiffening of the protein structure is induced. Based 

on the enzyme, this can have diverse overall effects. A more rigid structure e.g., can lead to 

an increased structural stability, however, it can also negatively affect the turnover, due to 

the inhibition of the movement of catalytic residues. Furthermore, polar solvents can 

interfere with the ionic interactions of the protein, which promote its unfolding [137]. 

It has been shown that polyols and sugars have a positive effect on protein stability in 

liquid formulations [138-141]. This effect is mediated by multiple factors, like an increase 

of interactions, a change in the microenvironment of the protein, or a reduction of the 

active water content. Especially polyols have shown to increase the interactions between 
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non-polar amino acid residues [142-144]. This in turn, leads to an increased 

thermostability, due to a more rigid structure. Furthermore, sugars are known to replace 

water molecules from the hydration shell of the protein, whereby a protective layer is 

formed, which acts as a stabilizing shield [145, 146]. 

In addition, salts can positively, but also negatively, influence the stability of proteins by 

increasing the ionic strength of the environment [147, 148]. Salts tend to bind to charged 

groups and dipoles. Consequently, water molecules are pulled away from the enzyme, 

causing hydrophobic moieties to interact with each other, increasing thermal resistance. 

However, the loss of local water patterns and the interaction of charged ions with the 

surface, can also lead to a disruption of the protein structure. The nature of the interactions 

of different ions with proteins is defined by the Hofmeister series, which describes the 

adverse effects of salts on the solubility of proteins [149]. Some ions, such as sulfate, 

phosphate, and ammonium, promote the folding of proteins, intermolecular association and 

even aggregation, while others, as iodide and guanidinium, promote dissociation and 

unfolding of the protein chain. 
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1.4 Aims and Objectives 
 

Enzymes are very efficient catalysts of biological respectively chemical processes and in 

many cases, they are superior to artificial catalysts. Consequently, it seems attractive to 

transfer them to industrial applications. However, due to their adaption to their original 

environment and its conditions, enzymes are very often not well suitable for industrial 

processes or product applications. This can be counteracted by specific modifications in 

the enzyme structure or by creating a formulation that provides an enzyme friendly 

environment. Depending on the application, the enzyme can be stabilized for the desired 

approach by various methods, such as the development of liquid formulations, 

encapsulation, or immobilization. 

Development of liquid enzyme formulations can be thought of as adding one or more 

additives to an enzyme. Depending on the number of additives and their concentrations, 

this will result in n different formulations. Subsequently, these are stored for a defined 

period, at a defined temperature for later use. To check the extent of enzyme stabilization, 

the residual enzyme activity is used as an evaluation criterion. Therefore, samples are 

withdrawn from the storage test at different times and the remaining enzyme activity after 

x days is determined relative to the initial value. 

In the past various methods have been proposed to accelerate this process by determining 

the enzyme stability using a single measurement. In this context, differential scanning 

calorimetry (DSC) has shown to significantly speed up the development process by 

determining the thermal stability of an enzyme. However, thermal stability measures, 

depending on the enzyme and especially for proteases, are rarely transferable to results of 

long-term storage tests.  

Therefore, the aim of this work was, to increase the understanding about the missing 

correlation in between thermal stability and long-term storage test results. For this, the 

thermal and long-term stability of a subtilisin protease in different formulation 

environments in the presence of different polyols and concentrations should be 

investigated. This should broaden the understanding of the influence of polyols on the 

enzyme structure beyond thermal stability. 

To do so, the thermal stability of a subtilisin protease in different polyol formulations, of 

varying type and concentration, was to be determined by DSC and compared to long-term 

storage results of the same formulation stored at different temperatures. Furthermore, the 
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stability of the subtilisin protease was to be assessed on an atomistic scale using MD 

simulations. Thereby, possible correlations between computational stability studies and 

laboratory results were to be identified. In the event of a missing correlation in between 

DSC/MD simulation data, the reasons and mechanisms leading to this observation were to 

be identified, to improve the future development of liquid formulations in the context of 

enzyme stabilization. 

Besides, another objective of this work was to evaluate the use of the MIRA mid infrared 

spectrometer in the context of enzyme stability testing. In the majority of the cases the 

extent of enzyme stabilization is determined based on the content of active enzyme, by 

photometric or turnover based assays. However, besides requiring a high degree of sample 

preparation and thus being time consuming, they are also based on a variety of buffers and 

substrates, which can be costly. Subsequently, in the context of the conducted subtilisin 

protease stability studies, the use of the MIRA mid infrared spectrometer for the prediction 

of the active enzyme and solvent concentration was to be evaluated. The twin solution 

comprised by MIRA, combining classical IR spectroscopy with AI driven approaches to 

correct the spectral data, was expected to be a promising approach to determine enzyme- 

related quantities in the context of liquid formulations. 
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Materials & Methods 
 

2.1 Materials 
 

2.1.1 Chemicals 
 

Chemicals Supplier Other 
   

1,2-Propanediol BASF SE ≥99 %; MPG 

3-(N-morpholino)propanesulfonic acid Sigma-Aldrich MOPS 

4-Nitroaniline TCI >98 % 

4-Nitrophenol Sigma-Aldrich pNP 

4-ntrophenyl-β-D-lactopyranoisde Goldbio pNPL 

Acetic acid Bernd Kraft 100 % 

Calcium chloride dihydrate Honeywell  

Coomassie brilliant blue Sigma-Aldrich  

Dimethyl sulfoxide Sigma-Aldrich DMSO 

Disodium ethylenediaminetetraacetate 

dihydrate 

Bernd Kraft EDTA 

Erythritol Borcher  

Ethylene glycol BASF SE ≥99 % 

Ethylenediamine-N,N'-disuccinic acid BASF SE EDDS 

Glycerol Honeywell  

Hydrochloric acid Carl Roth  

Methanol Sigma  

Methylglycinediacetic acid trisodium salt BASF SE MGDA 
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Polyoxyethylene(23)lauryl ether Sigma-Aldrich Brij® L23 

SeeBlue™ Plus2 Prestained Standard Invitrogen  

Sodium carbonate Honeywell  

Sodium hydroxide  Sigma-Aldrich Concentrated 

Sorbitol Fisher Scientific ≥ 99.5% 

Suc-Ala-Ala-Pro-Phe-para-nitroaniline Bachem Suc-AAPF-pNA 

Sulfuric acid Bernd Kraft Concentrated 

Tris(hydroxymethyl) aminomethane Sigma-Aldrich ≥ 99.5%; TRIS 

Xylitol Sigma-Aldrich ≥99 % 

 

 

2.1.2 Enzymes 
 

Subtilisin Protease 

Genus Serine endopeptidase 

Family Subtilisin 

Origin Bacillus lentus 

Amino acid count 269 

Molecular weight 26.80 kDa 

Catalytic triad Aspartate (Asp32) 

Histidine (His64) 

Serine (Ser221) 

Metal Ion Binding Sites 2 x Ca2+ 

EC-Number 3.4.21.62 

MEROPS-Identifier S08.009 

PDB-Structure 1ST3 
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Endocellulase 

Genus Hydrolase 

Family Endocellulase 

Origin Humicola insolens 

Amino acid count 398 

Molecular weight 44.99 kDa 

Active Site Alanine (Met198) 

Glutamic acid 

(Glu202) 

Metal Ion Binding Sites - 

EC-Number 3.2.1.4 

PDB-Structure 1DYM 

 

 

2.1.3 Buffers and Solutions 
 

Protease Assay 

Buffer / Solution Ingredients 

 

10x Stabi buffer (TRIS buffer) 
 

In deionized water: 

1 M TRIS 

1 % Brij® L23 

pH adjusted to 8.6 at 30 °C with HCl 
 

 

Substrate solution 
 

 

60 mg/mL Suc-AAPF-pNA in DMSO 
 

 

Starter solution  
 

Gallery: 

9.86 mL 1x Stabi buffer 

139.1 µL substrate solution 

(Final Suc-AAPF-pNA concentration 0.8 

mg/mL) 
 

 

 

Cellulase Assay 

Buffer / Solution Ingredients 

 

MOPS buffer (assay buffer) 

 

 

In deionized water: 

50 mM MOPS  

pH adjusted to 7.1 at 30 °C with diluted NaOH 
 

 

Substrate solution 

 

 

1 mg/mL pNPL in assay buffer 
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Stop solution  

 

In deionized water: 

500 mM Sodium carbonate 
 

 

 

SDS-PAGE 

Buffer / Solution Ingredients 

 

NuPAGE MES SDS Running Buffer (pH 7.3) 

Invitrogen (20x) 

 

1 M MES 

1 M Tris Base 

2% SDS 

20 mM EDTA 
 

 

Coomassie Staining Solution (0.5 L) 
 

 

250 mg Coomassie blue (final 0.5 g/L) 

250 mL Methanol (final 50 %) 

50 mL Acetic acid (final 10 %) 

200 mL Deionized water 

 
 

 

Distaining Solution (0.5 L) 
 

 

 

25 mL Methanol 

35 mL Acetic acid 

440 mL deionized water 
 

 

 

2.1.4 Instruments 
 

Instrument Manufacturer 
  

Äkta pure™ Chromatography System Cytiva 

ChemiDoc™ MP Imaging System Bio-Rad 

CLARIOstar Plus (Plate Reader) BMG Labtech 

Degassing Station TA Instruments 

Fraction Collector Cytiva 

Gallery Analyzer (Automated Photometric Analyzer) ThermoFisher Scientific 

MIRA mid infrared spectrometer CLADE 

nanoDSC TA Instruments 

SH-642, Bench-top Type, Temperature & Humidity 

Chamber 

ESPEC 

ThermoMixer/Shaker® C Eppendorf 
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XCell Sure Lock™ Gel Chamber Invitrogen 

 

 

2.1.5 Consumable Materials 
 

Consumables Manufacturer 
  

Stericup®, Millipore Express® PLUS, 0.22 µm Merck KGaA 

NuPAGE™ 4-12% Bis-Tris Gel (1.0 mm x 10 well) Invitrogen 

Steriflip®, Millipore Express® PLUS, 0.22 µm  Merck KGaA 

50 mL Tube Sarstedt 

5 mL Eppendorf Tube® Eppendorf 

1.5 mL Safe-Lock Tubes Eppendorf 

Spectra/Por 3 RC molecularporous membrance tubing 

/ Dialysis Membrane 

Spectrum™ 

HiLoad® 16/600 Superdex® 75 pg Cytiva 

96-Well Deep Well Plate Brand 

UV-STAR® Microplate 96 Well, F-Bottom Greiner Bio-One 

2 mL Glass Crimp Top HPLC Vials Thermo Fisher Scientific 

Syringe Filters Millex® 0.22 µm Merck KgaA 

 

 

2.1.6 Software 
 

Software / Programming Language Company/Publisher 
  

  

nanoAnalyze software suite (Version 3.10.0) TA Instruments 

Python 3.9.12 

• LMFIT 1.1.0 

• Pandas 1.5.2 

• Matplotlib 3.6.2 

• Scipy 1.9.3 

• Sklearn 1.2.0 

• Numpy 1.23.5 

- 

  

ImageLab 6.1 BioRad 



Materials & Methods 

 
 34 

Packmol 20.0.0 University of Campinas/São Paulo 

[150] 

Propka 3.4.0 Søndergaard & Olsson [151, 152] 

Visual Molecular Dynamics (VMD) 

• Autoionize Plugin (Balabin et al.) 

University of Illinois at Urbana-

Champaign / Theoretical and 

Computational Biophysics Group [153] 

Nanoscale Molecular Dynamics (NAMD) v2.11 University of Illinois at Urbana-

Champaign / Theoretical and 

Computational Biophysics Group [154] 
 

 

2.2 Methods 
 

2.2.1 Formulation Preparation, Storage, and Sampling 
 

Formulations were prepared, if not stated differently, by adding appropriate amounts of 

solvent and CaCl2 to a 50 mL reaction tube. Subsequently, the enzyme in water was added 

and if necessary, the pH was adjusted using hydrochloric acid (HCl) or sodium hydroxide 

(NaOH). Before use, samples were sterile filtrated (Steriflip®, Millipore Express® PLUS 

Membrane (0.22 µm)).  

For storage, samples were split into 5 mL Eppendorf reaction tubes under sterile conditions 

and transferred into temperature and humidity chambers with the desired temperature (4-45 

°C) and ambient humidity. 

At certain times during storage, samples were withdrawn (200 µL) under sterile conditions 

and transferred into a 1.5 mL Eppendorf reaction tube. Until further use samples were 

stored at -80 °C 

 

2.2.2 Enzyme Activity Assays 
 

Background 

The enzyme activity respectively the active enzyme concentration of different enzymes 

was determined using photometric activity assays. In this regard, ultraviolet/visible 

(UV/Vis) spectroscopy was used to determine the activity of an endocellulase and 

subtilisin protease. Both approaches utilize the presence of a light absorbing moiety, which 

is released during the turnover of an artificial substrate in the presence of the enzyme.  

The amount of the released moiety is determined by using electromagnetic waves in the 

range of ultraviolet and visible light. These are guided through the samples by mirrors and 
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the remaining radiation is analyzed by a detector. As the waves pass through, energy is 

transferred to the sample. The effect is mediated by the band structure of the samples, 

where photons of certain energy excite atoms or molecules that have quantum transitions 

with the same energy difference in the electron shell or their molecular vibrations (e.g. 

infrared light). As a result, the intensity of the UV or visible light after the sample is 

decreased, when compared to the primary beam. Following, the intensity of the light before 

(I0) and after (I) the sample respectively transmittance (T) can be used to determine the 

absorbance (A) (eq. 10)  [155, 156]. 

( 10 ) 

𝐴 =  𝑙𝑜𝑔10

𝐼0

𝐼
=  −𝑙𝑜𝑔10𝑇 

 

The determined absorbance, in turn, correlates with the amount of released moieties, which 

is further dependent on the amount of enzyme present in the samples. 

 

Protease Assay 

The protease activity/active enzyme concentration was determined with an assay based on 

the cleavage of an artificial peptide substrate from DelMar et al. [157]. The artificial 

substrate is composed of a short peptide sequence (Ala-Ala-Pro-Phe), which is linked to a 

succinyl residue (Suc) at the N-terminus and a para-nitroaniline molecule (pNA) at the C-

terminus. Upon cleavage of Suc-AAPF-pNA by a protease pNA is released and absorption 

can be measured at 405 nm. Consequently, absorption increases with the activity/active 

enzyme concentration of the protease present in the sample. 

Prior to the measurement, 10 x Stabi-buffer was prepared according to chapter 2.1.3. The 

used ingredients were dissolved in deionized water and the pH was adjusted to 8.6 at 30°C, 

using concentrated hydrochloric acid (HCl). Thereafter, the buffer was sterile filtrated 

(Stericup®, Millipore Express® PLUS, 0.22 µm PES) and diluted to onefold buffer with 

deionized water.  

Using onefold reaction buffer, the standard, with a known enzyme concentration (50 g/L), 

and samples were diluted. In this regard 200 µL of the standard were filled up to 25 g with 

1x reaction buffer. Following, the standard was diluted 1:20 once and samples twice in a 

ratio of 1:10. The first dilution was done gravimetrically and the second volumetrically. 
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Further, assay substrate was prepared according to chapter 2.1.3. Afterwards, standard, 

samples, buffer, and starter solution were transferred into the Gallery™ automated 

photometer system and the analysis was started according to Table 1. 

Each sample was measured in three different dilutions in between 1:1-1:15. During the 

analysis, each sample was analyzed four times, which returned the absorption change per 

minute (Abs/min). The linear range of the AAPF assay is between 0.04 and 0.25 Abs/min, 

which correlates with approximately 0.10-0.67 AAPF-Units/g. Values above or below the 

linear range were discarded. The aberration of the calculated activity of the standard and its 

index value of 6000 AAPF-Units/s were determined, and sample activities were corrected 

by the relative aberration. Following, the enzyme concentration (g/L) of the samples was 

calculated by determining the AAPF-Units/g, by considering the dilution factor of the 

samples, and by dividing the obtained value by the specific activity of the used protease.  

 

Table 1: AAPF-assay protocol for the Gallery™ automated photometer. 

 

 

 

Cellulase Assay 

The residual endocellulase concentration in the conducted experiments was determined 

using a 4-nitrophenyl-β-D-lactopyranoside (pNPL) based assay [158]. Cellulases 

hydrolyze pNPL to p-nitrophenol (pNP). The quantity of pNP liberated per unit of time is 

measured based on the mediated absorbance at 405 nm. The absorbance is used to 

calculate the activity based on a pNP calibration curve. 
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Prior to the measurement MOPS buffer was prepared according to chapter 2.1.3. The used 

ingredients were dissolved in deionized water and the pH was adjusted to 7.1 at RT, using 

diluted sodium hydroxide (NaOH). Thereafter, the buffer was sterile filtrated (Stericup®, 

Millipore Express® PLUS, 0.22 µm PES) and stored at room temperature until further use.  

Using the MOPS buffer, the standard with a concentration of 3.94 mg/mL active 

endocellulase was diluted, by adding 0.1 mL of it to a 15 mL reaction tube and filling the 

recorded weight to 10 g with assay buffer. In addition, a calibration solution was prepared 

by adding 0.2 g of pNP in a 15 mL vessel. The weight was recorded and filled up to 5 g 

using MOPS buffer. Further, samples were prepared by performing gravimetric dilutions to 

an approximate concentration of 0.04 mg/mL. 

Prior to the measurement, assay substrate and stop solution were prepared according to 

chapter 2.1.3. Subsequently, calibration, standard, samples, buffer, substrate, and stop 

solution were transferred into the Gallery™ automated photometer system and the analysis 

was started according to Table 2. 

 

Table 2: pNPL-assay protocol for the Gallery™ automated photometer. 
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Before analyzing the samples, a dilution series of the calibrator and the standard were 

conducted, to check whether absorption values were inside the linear range of the assay. 

The linear range of the pNPL assay is between 0.05 and 0.25 Abs, which corresponds to 

approximately 0.005-0.04 U/g. Values above or below the linear range were discarded. 

Subsequently, samples were measured five times and if required further diluted using the 

Gallery™ device. The Gallery™ directly calculates the enzyme units based on the 

conducted pNP calibration. The reference material can be used as a positive control to 

check, whether the correct enzyme unit number is determined. Subsequently, the active 

enzyme concentration can be calculated by considering the dilution factor and dividing the 

enzyme units by the specific activity of the endocellulase. 

 

2.2.3 Differential Scanning Calorimetry (DSC) 
 

Background 

With differential scanning calorimetry (DSC) changes of the physical properties of a 

biopolymer can be determined by monitoring the behavior along a temperature gradient. In 

this regard, the specific heat of a system is measured as a function of temperature at a 

given scan rate relative to a reference solution. Changes in the protein or enzyme structure 

throughout this process, lead to the emission or absorption of heat by the sample, when a 

certain temperature is reached. In general, two types of DSC instruments are used: heat 

flux and power compensated DSCs [159-161].  

Heat-flux DSCs, use a thermoelectric disc as a heat flow sensor. As part of a measurement, 

sample and reference are placed symmetrically on this disk, which is surrounded by a 

furnace. When the furnace is heated in a linear fashion, heat is transmitted from the disk 

onto the samples. Subsequently, temperature in sample and reference increase in the same 

manner. However, if this steady-state equilibrium is altered by a conformational change of 

the sample, the difference in temperature between sample and reference is detected as 

electrical potential [159, 160].  

In the case of power-compensated DSC two separate furnaces are used, for sample and 

reference. During the measurement, both are kept at the same temperature, while running a 

temperature gradient. In the event of sample transition, the differential power required to 

maintain the temperature in the sample is detected. Subsequently, the thermogram (fig. 1) 

can be plotted as the required power versus time. From a thermodynamic point, energy 
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values can be converted to obtain the time to temperature or molar heat capacity [159, 

160]. 

The transition midpoint (Tm) corresponds to the temperature where half of the protein is in 

its native state, while the other is denaturated. With regard to protein stability testing, the 

Tm value can be used to compare different enzymes with regard to thermal stability. In 

general, a higher Tm value corresponds with a higher stability of the enzyme. In addition, in 

different environments respectively formulations, the influence of these measures on the 

enzyme stability can be investigated and used for comparison. Further, the molar heat 

capacity (Cp) can be determined based on the observed peak height. The calorimetric 

enthalpy (ΔH), in turn, can be obtained by integration of the area under the peak [160]. 

 

 

Figure 1: DSC Thermogram with relevant measures as the transition midpoint (Tm), molar heat 

capacity (Cp), and calorimetric enthalpy (ΔH). 

 

 

Methodology 

For the conducted experiments a power compensated DSC (nanoDSC) from TA 

Instruments was used.  The samples and references were prepared and processed according 

to chapter 2.2.1. Reference (formulation environment without enzyme) and liquid samples 

(with enzyme) were degassed for 12 min prior to experiment before 300 µL of sample 

were manually added to the reference/sample cell. If not stated differently, an enzyme 

concentration of ≈50 g/L was used. Sample and reference were measured with the same 
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temperature profile up to 105 °C, with a heating rate of 1.5 K/min. The obtained results 

were analyzed with the nanoAnalyze software suite (Version 3.10.0, TA Instruments). In 

this regard, thermograms were baseline corrected and the thermal transition temperature 

(Tm) and the unfolding enthalpy ΔH was determined by fitting gaussian models to the 

observed peaks. 

 

2.2.4 Molecular Dynamics (MD) Simulations 
 

Background 

MD simulations are a powerful computational tool used to study the behavior of materials 

and bio-/molecules on an atomistic scale. In MD simulations, the position and velocities of 

individual atoms are calculated based on Newton’s equations of motion, which are 

integrated numerically over time to simulate the motion of the underlying system. By 

varying the initial conditions and parameters, it is possible to study the behavior of the 

system under varying conditions and thereby gain insights about the underlying physical 

processes [162].  

MD simulations are commonly used in chemistry and biology to study a wide range of 

phenomena, such as protein folding/unfolding and drug binding. The simulations can be 

used to predict the thermodynamic and kinetic properties of a system, such as energy, 

temperature, pressure, and diffusion coefficients. In addition, MD simulations can provide 

detailed information about the structure and dynamics of a system, such as bond length, 

angles, and dihedral angles, as well as the movement of individual atoms over time. The 

major advantage of MD simulations is the possibility to study the behavior of complex 

systems, which are difficult to study experimentally. However, these kinds of simulations 

require significant computational resources, and the accuracy of the simulations depends 

on the accuracy of the underlying physical model and force fields used to describe the 

system [163]. 

MD simulations involve several steps, that are repeated iteratively over a defined period of 

time. In the first step, the studied system has to be defined, including atomic coordinates, 

the molecular topology (e.g., bond angles, and dihedral angles), and the initial velocities of 

the atoms. Next, a potential energy function, which describes the underlying interactions 

between atoms in the system, is selected. This function can either be empirical or based on 

quantum mechanics and can be selected from existing force fields or specifically 

developed for the system being studied. In the initialization step, the simulation parameters 



Materials & Methods 

 
 41 

are defined, including temperature, pressure, and box size. In addition, the simulation time 

step is defined, which determines how frequently the positions and velocities of the atoms 

are updated. At each time step, the position and velocities of the atoms are used to 

calculate the forces acting on each atom. The forces are calculated based on the selected 

potential energy function. Subsequently, the equation of motion for each atom is integrated 

numerically using a numerical algorithm, such as the Verlet algorithm. The motion of 

atoms is calculated based on classical mechanics, which assumes that atoms follow laws of 

motion defined by Newton. The forces acting on each atom are calculated based on the 

selected potential energy function, which describes the interactions between atoms due to 

bond stretching, angle bending, and non-bonded interactions, such as van der Waals forces 

and electrostatic interactions. These forces are used to update the positions and velocities 

of the atoms. Subsequently, this process is repeated for each time step to simulate the 

motion of the system over time [162, 164]. 

 

System Setup 

Simulated systems were setup using the PACKMOL v20.0.0 software package [150], 

which is used in computational chemistry to generate initial configurations for MD 

simulations. PACKMOL works by taking as input the geometries of the molecules to be 

packed, along with their desired number and concentration, and generates an initial 

configuration that places the molecules randomly within the specified volume. By 

specifying the volume and number of molecules of the system, the density of polyol 

concentrations with 50 wt% solvent were considered and reproduced (fig. 2). The structure 

of the subtilisin protease was obtained from the protein database (https://www.rcsb.org/; 

ID code 1ST3) and solvent/metal ion structures from the Charmm Small Molecule Library 

(https://www.charmm-gui.org/?doc=archive&lib=csml). The box size for the simulations 

was set to ≈262.000 Ångström3 (Å3) resulting in a box of roughly 64 Å x 64 Å x 64 Å. 

Further, the protonation state of each enzyme residue at pH 6.0 was predicted with Propka 

v3.4.0 software tool [151, 152] and adapted in the enzyme structure using the Visual 

Molecular Dynamics (VMD) v1.9.3 software package [153]. At last, all systems were 

neutralized by adding sodium and chloride ions (conc. 0.15 mol/L), using the Autoionize 

v1.5 plugin in VMD. 

https://www.rcsb.org/
https://www.charmm-gui.org/?doc=archive&lib=csml
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Figure 2: System setup of a subtilisin protease formulation with 50 wt% glycerol. Shown is the 

transfer of a laboratory formulation in a system used for MD simulations. (A) Subtilisin protease, 

(B) glycerol, (C) water, (D) Ca2+, Cl-, and Na+, (E) final system composed of molecules A-D 

 

 

Simulation Run 

MD simulations were run with the Nanoscale Molecular Dynamics (NAMD) v2.11 

software package [154], which is suitable for simulations of large biological systems such 

as proteins, nucleic acids, and membranes. The main integration algorithm used by NAMD 

is the reversible reference system propagator algorithm (RESPA), which is a multiple step 

(MTS) integration method. In the case of the RESPA algorithm, forces on the atoms are 

split into two or more components with different time scales, and the atoms are moved 

using different time steps for each component. Typically, a shorter time step is used for the 

fast, high-frequency forces such as bond-stretching and angle bending, while a longer time 

step is used for the slower, low-frequency forces such as non-bonded interactions. 

Forces acting on the atoms were calculated based on the CHARMM36 force field files 

(Chemistry at Harvard Macromolecular Mechanics). Besides the particle mesh Ewald 

https://www.charmm.org/archive/charmm/resources/charmm-force-fields/
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(PME) method was used to compute long-range electrostatic interactions under periodic 

boundary conditions. For temperature control Langevin dynamics were applied to maintain 

a constant temperature of 373 K throughout the simulations and Nosé-Hoover Langevin 

piston pressure control to retain a constant pressure of 1.01325 bar. Simulations were run 

over a period of 200 ns with a timestep 1 fs. 

To prevent the two calcium ions from leaving the subtilisin protease structure throughout 

the simulations, extra bonds were applied from atom 20, 546, 565, 1007, 1030, 1065 and 

1088 to the first calcium ion (3752) and 2212, 2257, 2291, and 2574 to the second calcium 

ion (3752). 

 

Data Evaluation  

The obtained trajectories were analyzed by determining a variety of different molecular 

descriptors, as the solvent accessible surface (SASA), the root mean square deviation 

(RMSD), the root mean square fluctuation (RMSF), the radius of gyration (RG), and the 

Q-value. The evaluation was done using the .tcl scripting language in VMD. 

SASA is a molecular descriptor that quantifies the surface area of a biomolecule, that is 

accessible to solvent molecules. The most commonly used method for calculating the 

SASA is the Lee-Richards algorithm, which was introduced in 1971 [165]. The Lee-

Richards algorithm uses a probe sphere to represent a solvent molecule and rolls the probe 

sphere over the surface of the molecule. The surface area of the molecule, that is in contact 

with the probe sphere is then calculated and added to the total SASA. This process is 

repeated for multiple probe sphere sizes to obtain a more accurate estimate of the SASA. 

The RMSD (eq. 11) is commonly used to measure the similarity in between two structures 

of a molecule. It quantifies the average distance between the corresponding atoms in two 

structures, after the structures have been aligned with each other. For trajectory analysis 

the changed structures throughout the simulation are most often compared to the starting 

conformation of the enzyme. A low RMSD indicates that the two structures are highly 

similar, while a high RMSD indicates significant changes of the enzyme structure. 

Following, the RMSD can be used to determine the magnitude of conformation changes of 

a molecule, upon changes of the protein folding or upon ligand binding, or to identify 

regions of a molecule that are rigid or flexible [166]. 

 



Materials & Methods 

 
 44 

( 11 ) 

𝑅𝑀𝑆𝐷 =  √
1

𝑛
∑(𝑟𝑖 − 𝑟𝑖

𝑟𝑒𝑓
)2

𝑛

𝑖=1

 

𝑟𝑖 =  𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖 

     𝑟𝑖
𝑟𝑒𝑓

= 𝑥𝑖
𝑟𝑒𝑓

+ 𝑦𝑖
𝑟𝑒𝑓

+ 𝑧𝑖
𝑟𝑒𝑓

 

n= number of atoms;  𝑟𝑖
𝑟𝑒𝑓

= coordinates of the i-th atom/residue in the reference structure; 𝑟𝑖= coordinates of 

the same atom at later timepoint 

 

With regard to the protein or enzyme structure, the RMSF provides information about the 

flexibility or rigidity of individual residues. It is calculated (eq. 12) as the standard 

deviation of the residue fluctuations, measured as the deviation of the residue position from 

its average position over a MD simulation trajectory. The RMSF can be used to identify 

flexible regions in a molecule, such as loops, termini, or active sites, or to compare the 

flexibility of different regions in a molecule, such as protein domains or ligand binding 

sites. It can also be used to compare the flexibility of different conformations or mutants of 

a molecule. In general, a high RMSF indicates that the atomic or residue positions fluctuate 

significantly over the simulation or experimental ensemble, suggesting that the region is 

flexible, while a low RMSF indicates that the atomic or residue positions are relatively 

stable, suggesting that the region is rigid. 

( 12 ) 
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𝑟𝑖 =  𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖 

     𝑟𝑖
𝑟𝑒𝑓

= 𝑥𝑖
𝑟𝑒𝑓

+ 𝑦𝑖
𝑟𝑒𝑓

+ 𝑧𝑖
𝑟𝑒𝑓

 

T= number of frames; 𝑟𝑖
𝑟𝑒𝑓

= position of the i-th atom/residue in the reference structure; 𝑟𝑖= position of the i-

th atom/residue at later timepoint 
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The RG can be used to compare the size and shape of different conformations of a 

biomolecule. It is calculated (eq. 13) as the root-mean-square distance between the atoms 

or residues in a molecule and their center of mass, which represents the overall spread of 

the molecule’s mass around its center. Generally, a large RG indicates that the molecule is 

more spread out, while a small RG indicates that the molecule is more compact.  

( 13 ) 

𝑟𝑔𝑦𝑟
2 =

(∑ 𝑤𝑖(𝑟𝑖 − �̅�𝑛
𝑖=1 )2)

∑ 𝑤𝑖
𝑛
𝑖=1

 

𝑟𝑖= position of the i-th atom/residue; �̅�= is the weighted center; w= weight 

 

The Q-value provides information about the similarity between two structures or 

conformations of biomolecules. It is calculated (eq. 14) as the fraction of native contacts, 

which are defined as the contacts between pairs of residues or atoms that are in contact in 

the native, or reference structure of the e.g., enzyme. The Q-value ranges from 0 to 1, 

where a Q-value of 1 indicates that the two structures are identical in terms of their native 

contacts, while a Q-value of 0 indicates the two structures share no native contacts. The Q-

value is commonly used in the context of protein folding simulations or studies on 

conformational changes of proteins. 

( 14 ) 

𝑄(𝑑, 𝑑0) =
1

1 + 𝑒𝛽(𝑑−𝜆𝑑0)
 

d= contact distance at time t; 𝑑0= contact distances at time t= 0; β= softness of the switching function (5 Å);  

λ= reference distance tolerance (1.8) 

 

 

2.2.5 Complexation and Dialysis 
 

In the cause of different experiments, the calcium content in the subtilisin protease 

structure and related formulations was reduced by adding chelators in a concentration of 5 

wt%. To prevent the subtilisin protease from denaturating upon addition of 

ethylenediamine-N,N'-disuccinic acid (EDDS), ethylenediaminetetraacetic acid (EDTA), 

and methylglycine-diacetic acid trisodium salt (MGDA) the pH level of the chelators, 

solubilized in deionized water, was adjusted to pH 6.0. 
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In some cases, the chelator was removed after complexation, to study the stability of the 

subtilisin protease in its absence respectively after the removal of calcium in and around 

the protein structure. For this, 100 mL of treated sample were dialyzed, by placing the 

subtilisin-protease containing solution into a dialysis membrane with a molecular weight 

cut off of 3.5 kDa. Subsequently, the filled dialysis membrane was transferred into 10 L of 

deionized water at a temperature of 4 °C. Based on the resulting concentration gradient, 

chelators and calcium were to be driven out of the protein-containing solution. The dialysis 

was conducted over a period of 36 h. During this time, deionized water was exchanged 

four times. To reduce the loss of active subtilisin protease by autolysis, dialysis was 

performed in a cooling space at 4 °C and exchange water was precooled before use. 

 

2.2.6 Size Exclusion Chromatography (SEC) 
 

Background 

Size exclusion chromatography (SEC), also known as gel permeation chromatography 

(GPC), is a type of liquid chromatography used for the separation and purification of 

biological molecules based on their size. SEC is a gentle and non-destructive method that 

can be used under a variety of conditions and in both analytical and preparative modes. 

Subsequently, it is commonly used in the production of biopharmaceuticals, as well as in 

research laboratories for protein purification and characterization. In principle, a sample is 

injected into a column containing a stationary phase made up of porous beads with defined 

pore size. Smaller molecules tend to enter the pores, while larger molecules are excluded 

and pass around the beads. As a result, smaller molecules are retained in the column for a 

longer period of time, while larger molecules elute faster [167, 168]. 

 

Methodology 

In the conducted experiments a HiLoad® 16/600 Superdex® column in an Äkta pure 

chromatography device was used for the separation of different fractions in subtilisin 

protease samples. To do so 500 µL of a sample with ≈30 g/L active enzyme was applied to 

the column and eluted (H2O) with a flow rate of 1 mL/min. The released fractions were 

analyzed by absorbance readings at a wavelength of 280 nm. The SEC was conducted at 

4°C and obtained fractions were transferred into a 96 deep well plate by an automated 

fraction collector. Until further use samples were stored -80 °C. 
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2.2.7 Michalis-Menten (MM) Kinetics 
 

Background 

The Michalis-Menten (MM) kinetics is a widely used mathematical model for describing 

the rate of enzymatic reactions. The model is based on the theory of quasi-steady-state 

enzyme kinetics, which include the assumption that the rate-limiting step of the reaction is 

the formation and breakdown of the enzyme-substrate complex. Furthermore, the enzyme 

concentration is assumed to be significantly lower when compared to the substrate 

concentration. For a more in-depth description see chapter 1.1.5 [68].  

 

Methodology 

To experimentally determine the kinetic parameters of the used subtilisin protease in 

different buffer/polyol-environments, varying AAPF substrate concentrations were added 

to a defined concentration of the subtilisin protease. 

 

MM-Assay 

In this regard, prior to the experiment different buffer/polyol-environments were prepared 

to be tested. Therefore, 10x Stabi buffer was diluted to 1x with the respective amount of 

glycerol, sorbitol and 1,2-propanediol (MPG), as to achieve concentrations of 15, 45 and 

75 wt% polyol, and filling the rest with deionized water.  

Consequently, a dilution series (n= 11) of an enzyme substrate solution in a concentration 

range from 0.06-3.38 mM AAPF substrate in the different buffer/polyol-environments and 

a subtilisin protease standard with a concentration of 1 µg/mL, in 1x Stabi buffer was 

prepared. 

Following, the different substrate dilutions were added (100 µL) to a 96-well plate in 

triplicates. Besides, a blank was added as triplicate, consisting of the respective 

buffer/polyol-environment without the AAPF substrate. 50 µL of the protease standard 

were added to all wells, resulting in a total volume of 150 µL per well and a final 

concentration of polyol of 10, 30 and 50 wt%.  

Right after, plates were thoroughly mixed on a thermoshaker and transferred into a plate 

reading device. The plates were incubated for additional 3 min at 30 °C, shaken and the 

extinction was determined over a period of 10 min, every minute, at 405 nm. 
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Extinction Coefficient and Specific Activity 

Based on the measured extinction increase per minute, the specific activity of the subtilisin 

protease in the respective buffer/polyol-environment and in presence of a defined substrate 

concentration was calculated according to (eq. 15). 

( 15 ) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐴𝑐𝑡𝑣𝑖𝑡𝑖𝑦 =  
ΔE

Δ t
∗

𝑉

𝜀𝜆 ∗ 𝑑 ∗ 𝑣𝐸 ∗ 𝑐𝐸
∗ 106      ⌈

𝑈

𝑚𝑔
⌉ 

 

In this case, V (150 µL) and vE (50 µL) represent the total volume respectively the volume 

of the enzyme stock solution added to each well. Further, d (0.43 cm) represents the optical 

path length and cE (1 µg/mL) the enzyme concentration of the enzyme stock solution. The 

extinction coefficient ελ was determined prior to the experiment for the different 

buffer/polyol-environments.  

Therefore, different concentrations (n= 10) of the para-nitroaniline (pNA) moiety (0.0014-

0.18 mM) were dissolved in 10, 30 and 50 wt% of the different TRIS-buffer/polyol 

environments. Following, the extinction (ελ) of the different pNA concentrations was 

determined by calculating the slope, resulting from the linear correlation between the pNA 

concentration and the extinction values at 30 °C. The extinction-coefficients for the 

different environments were determined to be as follows: 

 

Table 3: Extinction coefficients (ελ) of different TRIS-buffer/polyol environments used to 

determine the specific activity of the subtilisin protease at 30 °C. 
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Data Evaluation and Kinetic Parameter Determination 

The experimental data was plotted as a graph of the substrate concentration versus the 

reaction rate. Following, the datapoints were fitted with the Michalis-Menten equation 

using the “LMFIT: Non-Linear Least-Squares” package in python, which utilizes the 

Levenberg-Marquardt algorithm. The resulting curve is typically hyperbolic, with the 

reaction rate increasing with substrate concentration until it reaches a maximum value 

(Vmax). The substrate at which the reaction rate is half of Vmax is known as Michalis 

constant (Km).  

 

2.2.8 SDS-PAGE to Determine Influence of Autolysis 
 

Background 

SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) is a technique 

applied to separate proteins based on their size and charge. The principle behind SDS-

PAGE is to denature and linearize the protein molecules and then utilize an electric field to 

move them through a polyacrylamide gel matrix. In this regard, SDS is added to the 

samples to coat the protein with negative charges and to denature them into linear 

polypeptide chains. The applied electric field then causes the negatively charged protein 

molecule to migrate towards the positively charged electrode. While moving through the 

gel matrix the protein fragments encounter resistance from the cross-linked acrylamide 

molecules, which slow their migration and separate them based on size and charge. 

Smaller protein fragments encounter less resistance than larger and therefore begin to 

separate. The separation results in distinct protein bands on the gel, which can be 

visualized by staining [169, 170]. 

 

Methodology 

To determine the influence of autolysis on the long-term stability of the subtilisin protease, 

SDS-PAGE experiments were conducted. For this, the intensity of the subtilisin protease 

band at ≈27 kDa was set as a criterium. The intensity of the full-length band is expected to 

decay upon the proteolytic degradation of the protease by itself. 

 

Sample preparation 

Samples were prepared by adding 50 µL (0-50 g/L active enzyme) of aliquots, collected 

throughout the long-term storage tests, to 19.95 mL of deionized water. Afterwards, 100 



Materials & Methods 

 
 50 

µL of the diluted sample were mixed with 100 µL of 0.05 M sulfuric acid (H2SO4). The 

acidification of the alkaline subtilisin protease has shown to be very effective for greatly 

inhibiting protease activity throughout sample preparation. In the last step, the 200 µL of 

the sample were mixed with 200 µL of 2x SDS sample buffer. All steps were performed 

gravimetrically to increase the reproducibility and accuracy of the results by applying 

corrections based on the gravimetrically determined dilution factor. 

 

SDS-PAGE 

SDS-PAGE was performed by adding 5 µL of standard and 10 µL of sample to an SDS-

Gel (NuPAGE™ 4-12 % Bis-Tris Gel). Therefore, 1x MES SDS running buffer was 

prepared by mixing 40 mL 20x buffer concentrate with 760 mL of deionized water, which 

was added to an XCell Sure Lock™ gel chamber. After the addition of the gel and standard 

respectively samples, SDS-PAGE analysis was started at 200 V. After ≈45 min the gel 

separation was stopped, and the gel was transferred into the Coomassie color solution for 

15 min. Thereafter, the gel was decolorized with a distaining solution until bands were 

visible and the gel turned lucid. An image (fig. 3) of the gel was acquired with the BioRad 

ChemiDoc™ MP Imaging System, and the relative band intensity was determined with 

BioRad ImageLab 6.1 software. The obtained intensity values were corrected based on the 

gravimetric dilution factor and determined relative to the intensity of the sample after 

0 days of the respective storage test. 

 

 

Figure 3: SDS-PAGE approach to determine the effect of autolysis on the storage test results of 

a subtilisin protease in different polyol formulations. 

 

 



Materials & Methods 

 
 51 

2.2.9 MIRA Infrared (IR) Spectroscopy 
 

Background 

Infrared spectroscopy is an analytical technique to identify and analyze the chemical 

composition of a sample by measuring its interaction with infrared light. Infrared radiation 

is an electromagnetic radiation located above the visible light spectrum and below 

microwave radiation in the range of 800 nm to 1 mm. From a spectroscopic point of view 

an additional distinction is made between the near infrared (800-2,500 nm), the mid 

infrared (2,500-25,000 nm) and far infrared (25,000-1,000,000 nm). Radiation in this range 

can be absorbed by molecules and converted into vibrations. In the mid- and far infrared 

spectral regions, this is the case when the frequencies of light and vibration match and 

when the molecular dipole moment changes during vibration. The position of an infrared 

absorption band is defined by the vibrating masses and the type of bond, which is 

influenced by electron withdrawing or donating effects of the intra- and intermolecular 

environment and by coupling with other vibrations [171]. 

Modern infrared spectrometers are usually Fourier transform infrared (FTIR) 

spectrometers. The core of such, is composed of an interferometer, which is composed of a 

fixed and a moveable mirror. Further, most interferometers employ a beam splitter, which 

takes the incoming infrared beam from a source and divides it into two optical beams. One 

beam is reflected from the mirror fixed in place. The other is reflected from the moving 

second mirror. This mirror constantly moves back and forth and depending on its position 

the second beam travels a longer or shorter distance. When the two beams recombine, at 

the beam splitter, they exhibit an interference pattern reflecting the constructive and 

destructive interference of the recombination. The interference pattern is guided onto the 

sample, and the transmitted proportion of the resulting interferogram is sent to the detector. 

The interferogram is mathematically transformed using a Fourier transform algorithm to 

obtain the infrared spectrum of a sample. The spectrum is a plot of the intensity of the 

infrared radiation absorbed or transmitted by the sample as a function of wavelength. It has 

become common practice to indicate the wavenumber (cm-1) rather than the wavelength on 

the abscissa, which is the reciprocal value of the wavelength [172]. 

 

Methodology 

The MIRA mid infrared spectrometer was developed for the analysis of samples in an 

aqueous environment. In this context, it combines advanced approaches of an ultra-thin 
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flow cell with 7-10 µm and AI assisted processing of the measured spectra. This is to 

reduce the influence of water on the measurement and thus ensure a high accuracy and 

reproducibility of the results. Measurements in aqueous solution can be performed in the 

range of 930-3050 cm-1.  

Analyzed samples were prepared according to chapter 2.2.1. Before transferring samples 

(1 mL) into HPCL vails, samples were sterile filtered using syringe filters with a pore size 

of 0.22 µm. Subsequently, sample veils were sealed and transferred into the MIRA device. 

If not directly measured, samples were stored at 4 °C until further use. 

Spectra were processed using the python programming language. In this context, a variety 

of packages were used for the multivariate data analysis: 

 

Table 4: Python packages used for multivariate data analysis. 

Analysis Package 
 

Preprocessing: 

• Savitzky Golay Filter 

• Autoscale and Mean Center 

• External Parameter Orthogonalization 

 

 

Scipy / savgol_filter 

Sklearn / StandardScaler 

“Scripted” 
  

 

Multivariate analysis: 

• Dendrogram/Cluster Analysis 

• Principle Component Analysis (PCA) 

• Principle Component Regression (PCR) 

• Partial Least Squares (PLS) 
 

 

 

Scipy / Dendrogram + Linkage 

Sklearn / PCA 

Sklearn / PCA 

Sklearn / PLSRegression 
 

 

 

2.2.10 Data Analysis and Visualization  
 

Data organization and analysis was conducted in Python using the pandas and numpy 

package for data analysis and manipulation. The shown plots were generated with the 

matplotlib package for data visualization. 
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Results & Discussion 
 

3.1 Subtilisin Protease Characterization  
 

In a first step, the used subtilisin protease was to be characterized according to its general 

stability and robustness in a non-stabilized environment. Therefore, the enzyme was stored 

in water at different temperatures to determine the long-term stability over period of 60 

days. Subsequently, the stability of the protease in water at different pH levels should be 

investigated to determine an optimal pH for maximum stability and reproducibility.  

 

3.1.1 Long-Term Stability of a Subtilisin Protease in Water 
 

At first, the general stability of the used subtilisin protease was to be determined in water 

at four different temperatures. In this context, the enzyme concentration was adjusted to 

≈50 g/L using deionized water. Besides, 0.3 percent by mass (wt%) calcium chloride was 

added to improve solubility as well as the general stability of the enzyme. Subsequently, 

samples were stored at 4, 22, 37 and 45 °C for 60 days, whereby samples were withdrawn 

after 0, 3, 7, 14, 21, 28, and 60 days. The residual active enzyme concentration was 

determined with the AAPF assay on the Gallery™ system and the results were normalized 

[%] with respect to the starting concentration (0 days). 

The obtained results show a strong correlation between elevated temperatures and the 

decrease of protease stability. At the lowest temperature, of 4 °C (fig. 4; blue), an activity 

loss of ≈12 % could be determined after 60 days. The loss increases to ≈55 % at 22 °C and 

88 % at 37 °C (fig. 4; yellow & orange). The most significant loss, however, could be 

determined for the samples stored at 45 °C, which show a total loss of activity already after 

21 d (fig. 4; red). 
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Figure 4: Residual enzyme activity [%] of the subtilisin protease in deionized water at 4, 22, 37 

and 45 °C (n=2) over 60 days. Samples were withdrawn after 0, 3, 7, 14, 21, 28, and 60 days. The 

determined active enzyme concentration is illustrated relative to the starting concentration of ≈50 

g/L. 

 

The obtained results provide a general stability profile of the used subtilisin protease in an 

unstabilized state, in water. Further, a strong negative correlation between temperature and 

the subtilisin protease stability could be observed. While the enzyme was generally found 

to be stable at 4 °C, the residual enzyme activity was already largely lost after 3 days at 

45 °C. 

 

3.1.2. Long-Term Stability of a Subtilisin Protease at Different pH 

Values   
 

In order to specify a pH value for following experiments, the stability of the subtilisin 

protease was determined at different pH levels. This should ensure maximum stability of 

the enzyme as well as reproducibility and comparability of the results obtained. Therefore, 

the enzyme concentration was adjusted to ≈50 g/L with deionized water and 0.3 wt% 

CaCl2. Different samples with pH values of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 were 

generated based on the enzyme solution, using diluted hydrochloric acid (HCl) respectively 

sodium hydroxide (NaOH). Subsequently, samples were stored at 4 °C, 22 °C, and 37 °C 

for 60 days, whereby samples were withdrawn after 0, 14, 28 and 60 days. The pH-level 

and residual enzyme activity of each sample was determined using a pH-meter and the 

AAPF-assay on the Gallery™ system. 

The results demonstrate a high stability of the used subtilisin protease (fig. 5A), especially 

in the range of pH 4-11, across the different temperatures. In general, as already described 
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in chapter 3.1.1, protease stability significantly decreased at elevated temperatures. 

Consequently, all samples, independent of their pH level, had lower residual enzyme 

activity in presence of higher temperatures. Besides pH levels below 4 and above 11 

showed to have a detrimental effect on the enzyme activity. At pH 2 and 12 almost no 

residual enzyme activity could be determined after 60 days of storage. Similarly, the 

protease stability appeared to be significantly reduced at pH 3. In the range of pH 4-11 the 

enzyme remained stable, however, at different levels. The highest content of active enzyme 

after storage, could be determined in the samples stored at pH 4 and 5.  

 

 

Figure 5: Residual subtilisin protease activity [%] and formulation pH after storage. (A) Active 

enzyme content after 60 days at pH 2-12 at 4, 22, and 37 °C. (B-D) pH drift of the formulations 

over 60 days at 4, 22 and 37 °C. 

 

In addition, monitoring the pH levels at different temperatures (fig. 5B-D), showed that pH 

levels fluctuate during storage depending on the underlying temperature. Especially, pH 

maxima and minima exhibited significant changes of the pH levels, within the first 14-28 

days of storage. The pH plots at different temperatures further illustrate a constant drift of 

the pH-values towards pH 6. Consequently, formulations with pH levels with/close to pH 

6, remained constant throughout the 60 days of storage. 
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The experiment conducted shows, that in addition to temperature, pH values can 

significantly influence the stability of an enzyme in an unstabilized environment. Overall, 

the subtilisin protease appears to be stable in a broad pH spectrum from 4-11. Furthermore, 

the pH level has shown to vary throughout storage, with a tendency towards pH 6. 

Thereby, it can be assumed that the pH value is changed by dynamic processes in the 

aqueous environment. 

 

3.1.3 Discussion  
 

The stability of an enzyme is defined by its ability to retain its active structural 

conformation despite of disruptive forces, as temperature and pH [173]. High thermal 

stability is considered an essential criterion for many industrial relevant enzymes [174, 

175]. Besides, they have to be stable in a pH range, relevant for their intendent use [176]. 

In this regard the used subtilisin protease is stable in a broad range of different 

temperatures and pH levels. 

In general, elevated temperatures are known to be very effective at denaturating proteins, 

as they can alter the protein structure. These changes are mediated by an increase of the 

available kinetic energy, which is reflected by an increased vibration and fluctuation of the 

protein structure. In the end, extensive vibrations can lead to a disruption of H-bonds, 

hydrophobic interactions, and van der Waals forces, which are essential to maintain the 

secondary and tertiary structure motifs [35, 177]. Subsequently, the enzyme can be 

inactivated or irreversibly denaturated. 

Similarly, the pH level of the enzyme’s environment can significantly influence its 

stability. Enzymes are composed of a great number of charged amino acid residues, on and 

inside their three-dimensional structure. In some cases, the interactions mediated by these 

charged groups can be essential for the enzyme to maintain its structure. Varying pH levels 

can affect the charge of these residues, disrupting stabilizing interactions and thereby 

altering the protein structure [178-180]. 

In addition, temperature and pH can have a significant influence on enzyme activity [67, 

181, 182]. With regard to subtilisin proteases this has a significant influence on the long-

term stability of the enzyme. As proteases are capable of hydrolyzing peptide bonds, they 

do not differentiate between their own and foreign proteins. Subsequently, the rate of 

autolysis is directly affected by temperature and pH. 
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Similar to the turnover of a classical substrate, the process of autolysis is strongly 

temperature dependent. As for chemical reactions, enzyme activity constantly increases 

with temperature. According to the van’t Hoff rule or the Arrhenius equation there is 

basically no limit to this increase [183, 184]. However, above a certain temperature, the 

reaction rate approaches zero, as the effect is counteracted by the irreversible thermal 

denaturation of the enzyme. The optimal temperature for enzymes is subsequently not the 

one with the highest activity, rather than the one, which retains the optimal ratio between 

activity and stability.  

Besides, higher temperatures increase the number of collisions between molecules in 

solution [185]. This is due to an increase in velocity and kinetic energy that is mediated by 

elevated temperatures. Thereby, the contact time between subtilisin proteases and their 

substrate is further decreased. Consequently, elevated temperatures not only result in more 

enzymes reaching the activation energy to hydrolyze peptide bonds, but also the number of 

contacts with substrate or other proteases in solution is increased. 

The enzyme activity is further dependent on the pH of the environment. Especially, if 

charged residues are involved in the catalytic process. The catalytic rate of serine proteases 

and consecutively subtilisin proteases are therefore significantly influenced by the 

protonation state of the residues in the catalytic triad. This comprises, the hydroxy group of 

serine, the imidazole group of histidine, and the carboxy group of aspartate, which are 

essential for the transfer of a proton from the serine hydroxy group to the imidazole 

nitrogen [31, 35]. In the past, it was shown that especially alkaline proteases as the 

subtilisin protease used, can be efficiently inhibited at lower pH [176, 186]. Consequently, 

pH levels above the detrimental level of 2 and above the transition region of 3 seem to 

minimize the proteolytic activity and therefore result in an increased protease stability at 

pH values of 4 to 5 after 60 days. 

The proteolytic activity appears to further affect the pH level of the different samples. The 

effect is assumed to be caused by the continuous release of peptide fragments and protons 

into the environment mediated by the hydrolysis reaction in the catalytic triad [35]. The 

catalytic activity of the subtilisin protease appears to significantly alter the pH throughout 

storage, especially at alkaline pH levels, where a high activity of the subtilisin protease is 

expected. The observed trend of most samples towards pH 6 is assumed to be mediated by 

the increased availability of N/C-terminal amino acid residues and side chains.  
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To minimize the effects of pH fluctuations and to maintain a constant pH throughout 

storage, the pH was set at 6.0 for the following experiments. This should maintain and 

improve reproducibility and comparability between different formulation environments. 
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3.2. Subtilisin Protease Stabilization with Polyols 
 

In addition to the general characterization, the effect of different polyols on the subtilisin 

protease stability was determined. In this context, differential scanning calorimetry (DSC) 

was used to determine the thermal stability of the protease in presence of glycerol, sorbitol 

and 1,2-propandiol (MPG). Subsequently, the stability of the subtilisin protease was to be 

evaluated on an atomistic scale, in different alcohol/polyol environments, by using 

molecular dynamic (MD) simulations. In this context, a correlation with DSC results was 

to be assessed. In addition, the long-term stability of the enzyme was determined in 

different subtilisin protease/polyol formulations by conducting long-term storage tests. 

Following, results from DSC and activity measurements were to be compared, in order to 

evaluate the predictive power of DSC measurements in the context of long-term stability 

testing.  

 

3.2.1 Thermal Stability of a Subtilisin Protease in Presence of Polyols 

determined by DSC 
 

To determine the thermal stability of the used subtilisin protease in different polyol 

formulations, DSC measurements were conducted. In this way, the influence of glycerol, 

sorbitol and MPG on the thermal stability should be determined. DSC allows the 

simultaneous acquisition of the unfolding temperature (Tm) and unfolding enthalpy (ΔH), in 

a single experiment. These variables can be used to characterize an analyte in different 

molecular environments. With regard to enzyme formulation development, DSC 

measurements have shown to significantly accelerate the development process [187, 188]. 

Subsequently, DSC has established itself as a powerful and versatile tool for determining 

optimal conditions for stabilizing proteins in liquid and solid formulations. 

The thermal stability of the subtilisin protease was determined in the presence of three 

different solvents and five different solvent concentrations. Therefore, formulations with 

an enzyme concentration of ≈50 g/L and an inherent solvent concentration of 10-50 wt% 

(n=5; interval= 10 wt%) glycerol, sorbitol or MPG were prepared. Further, 0.3 wt% CaCl2 

were added to each formulation to increase the general stability and solubility of the 

enzyme. The rest of the formulation was filled with deionized water. When not directly 

analyzed samples were stored at -80 °C until further use. 
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The thermograms of the DSC measurements illustrate a positive effect of glycerol and 

sorbitol on the thermal stability of the enzyme (fig. 5A+B). Already, in the presence of 

10 wt% glycerol respectively sorbitol, thermograms are shifted towards higher 

temperatures, when compared to the enzyme in water. This trend increases with the 

amount of glycerol and sorbitol. For MPG, however, a negative trend between increasing 

concentrations and thermal stability can be observed (fig. 6C). Although, formulations with 

10 wt% MPG exhibit a similar thermal stability than the enzyme in water, increasing MPG 

concentrations shifted the thermogram towards lower temperatures. 

 

 

Figure 6: DSC results for subtilisin protease/polyol formulations with varying polyol 

concentrations (10-50 wt%). (A) Glycerol, (B) Sorbitol and (C) 1,2-Propanediol (MPG). 

 

Besides, samples with low solvent concentrations, show to exhibit two distinct peaks. This 

is particularly evident for sorbitol formulations, where this observation is visible up to 50 

wt% polyol content. The observation is less frequent for glycerol formulations and even 

less in the case of MPG. 

Since the subtilisin protease/polyol formulations have two distinct peaks, two Tm values 

per formulation could be determined (tab. 5). The Tm values for glycerol and sorbitol show 

to increase with the solvent concentration (fig. 7 blue & orange). For MPG, increasing 

solvent concentrations show to exhibit decreasing Tm values (fig. 7; green). The Tm values 
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in presence of 10 and 20 wt% glycerol and sorbitol are similar for both peaks. However, at 

higher polyol concentrations a clear separation between both solvents is visible. 

Subsequently, samples with a similar concentration achieve higher Tm values in the 

presence of sorbitol, when compared to glycerol. In contrast, Tm values of formulations 

with MPG are considerably lower. The Tm values for the first peak remain constant (fig. 

7A), while the values for the second (fig. 7B) appear to decrease with increasing MPG 

concentration. 

 

 

Figure 7: Tm values of two distinct peaks observed for different subtilisin protease/polyol 

formulations.  Shown are the observed Tm values of (A) Peak 1 and (B) Peak 2 with respect to the 

solvent concentration of the different formulations. 

 

Table 5: Tm values of two distinct peaks observed for different subtilisin protease/polyol 

formulations. 

 

 

The unfolding enthalpy (ΔH) for each measurement is obtained by determining the area 

under each thermogram. Due to the bi-peaked shape, two gaussian peaks were fitted to the 

thermogram and evaluated separately. Both peaks show an increase of the enthalpy of 

deconvolution, with respect to the solvent and increasing solvent concentrations. However, 



Results & Discussion 

 
 62 

the unfolding enthalpy for the first peak appears to be comparable (fig. 8A) in between 

similar solvent concentrations. Further, only moderate changes, when compared to the 

subtilisin protease in water, can be observed. 

In contrast, significant differences, between the different polyols and concentrations are 

visible for the second peak (fig. 8B). In addition, formulations with solvent concentrations 

above 10 wt% polyol exhibit a significantly higher unfolding enthalpy than the enzyme in 

water. In the presence of 10 wt% solvent, the highest unfolding enthalpy can be observed 

for glycerol, followed by sorbitol and MPG. When further increasing the polyol 

concentration, however, the order is shifted and remains the same for following 

concentrations. In this regard, MPG exhibits the highest unfolding enthalpy, followed by 

glycerol and sorbitol. 

 

 

Figure 8: Unfolding enthalpies determined for different subtilisin protease/polyol formulations. 

Illustrated is the unfolding enthalpy for two distinct peaks: (A) Peak 1, (B) Peak 2. The average 

enthalpy and standard deviation of the enzyme in water is depicted by the solid grey line 

respectively dashed lines. 

 

Glycerol and sorbitol, both increase the thermal stability of the subtilisin protease, when 

compared to the unstabilized sample in water. In contrast, the enzyme exhibits a decreased 

thermal stability in the presence of MPG. The differences were illustrated by the obtained 

thermograms as well as based on the determined Tm values. However, the order of the 

different solvents according to their unfolding enthalpy is different. Especially, MPG 

appears to exhibit considerably higher values, when compared to glycerol and sorbitol. The 

unfolding enthalpy is, however, strongly dependent on the enzyme concentration in the 

sample [161]. Subsequently, changes in the enzyme concentration during the measurement 

have to be considered. The autolytic activity of the protease is expected to increase with 
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temperature, until the enzyme is denaturated [189, 190]. Consequently, this effect is 

prolonged in solvents in which the enzyme exhibits a higher thermal stability. Following, 

the active enzyme concentration in sorbitol is expected to be lower upon unfolding, when 

compared to glycerol or MPG. Subsequently, in the case of the subtilisin protease, the 

unfolding enthalpy, is negligible with regard to the evaluation of thermal stability. 

Consequently, based on the Tm values, the used polyols can be classified in terms of their 

ability to increase the thermal stability of the subtilisin protease as follows:  

Sorbitol > Glycerol > Water > MPG 

Besides, the appearance of two distinct peaks in the thermogram was the subject of an in-

depth analysis in chapter 3.3. 

 

3.2.2 Thermal Stability of a Subtilisin Protease in Presence of Polyols 

determined by MD Simulations 
 

The results from the DSC measurements demonstrate the effect of different polyols on the 

stability of the subtilisin protease. To gain additional insights on the effect of the different 

polyols on the enzyme structure, MD simulations were conducted. Thereby, polyol induced 

changes of the enzyme structure, were to be studied on an atomistic scale. In addition, a 

possible correlation between DSC and MD results was to be assessed. In this context, 

molecular descriptors, and experimental Tm values/predicted logP values, of different 

subtilisin protease/alcohols/polyols formulations were to be determined. The studied 

molecular descriptors comprised the solvent accessible surface area (SASA), the root mean 

square deviation (RMSD), the radius of gyration (RG), and the Q-value. Molecular 

descriptors were calculated based on the returned simulation trajectories, using the tcl-

scripting language in VMD. The Tm values were obtained by DSC-analysis and logP values 

were predicted based on the molecular structure of the solvents, by molinspiration online 

prediction tool (https://www.molinspiration.com) [191].  

The molecular descriptors were determined, by conducting MD simulations in atomistic 

environments resembling the laboratory subtilisin protease/polyol formulations. For this, 

systems were generated, which resembled laboratory formulations with approximately 

50 wt% alcohol/polyol and 0.3 wt% CaCl2. Following, MD simulations were conducted 

over a period of 200 ns at a constant temperature of 373.15 K (100 °C). Besides, the 

polyols used in chapter 3.2.1, further alcohols/polyols, as xylitol, erythritol, ethylene 

https://www.molinspiration.com/
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glycol, and methanol were included in the analysis. Subsequently, six repeats for each 

subtilisin protease/alcohol/polyol system were simulated. Following, the molecular 

descriptors were calculated based on the simulation trajectories. Besides, the mean 

fluctuation of each amino acid residue was determined, by calculating the root mean square 

fluctuation (RMSF). 

For the better visualization of the results, the values were averaged over the six 

independent repeats, obtained for each solvent. The correlation analysis was conducted by 

determining the average value of each descriptor over the last 10 ns of the trajectory, which 

was plotted against the Tm value of the formulation respectively the estimated logP-value 

of the solvent. Erythritol and methanol were excluded from the DSC analysis due to 

solubility and denaturation issues under laboratory conditions, at a concentration of 

50 wt%. 

 

Calcium-Bound Structure 

MD simulations were conducted based on the native structure of the subtilisin protease. In 

its active state this is expected to comprise two occupied calcium binding sites [192]. 

Thereby, the stability of the active state of the subtilisin protease in different alcohol/polyol 

formulations was to be monitored. In order to prevent one or both calcium ions from 

leaving the protein structure, artificial bonds were applied to retain both calcium ions in 

their binding pockets throughout the simulations. 

The average values of the molecular descriptors illustrate a dense picture for the different 

subtilisin protease formulations (fig. 9). Especially, the results for the RG (fig. 9C) exhibit 

only a minor separation in between the different formulations. This state appears to 

improve for the SASA and the Q-value (fig. 9A+D), however, classification of the solvents 

is not possible. The RMSD (fig. 9B) returns the best separation for the underlying dataset, 

but still, for the majority of formulations a visual separation is not possible. In general, the 

results shown, do not allow a clear classification of the different solvents according to their 

ability to stabilize the subtilisin protease. Even though, some solvents show to be isolated 

exceptions, as erythritol and sorbitol, the obtained results illustrate an arbitrary behavior in 

the corresponding correlation analysis (fig. 10).   

For the correlation analysis, the average value of the last 10 ns of each system and its six 

repeats is plotted against the experimental values obtained from DSC measurements and 
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logP predictions. The plots lack any evident correlation between the results of the 

molecular descriptors and the experimental/predicted Tm and logP values. Especially, the 

correlation of the logP value with the different descriptors shows to fluctuate significantly 

in between the different solvents, independent from their hydrophobicity/hydrophilicity. 

Subsequently, some solvents that have shown to increase the thermal stability of the 

enzyme, exhibit similar values for molecular descriptors as solvents, which have shown to 

be destabilizing. In this context, glycerol has shown to considerably increase the thermal 

stability of the subtilisin protease during DSC measurements, in contrast to MPG. 

However, based on some molecular descriptors glycerol appears to perform similar, or 

even worse, than MPG. Fare more, results show to significantly fluctuate in between the 

different subtilisin protease/alcohol/polyol systems.  

Therefore, based on the obtained results, no correlation between the experimental Tm values 

respectively predicted logP-values of different alcohol/polyol formulations/solvents and 

molecular descriptors from MD simulations can be determined. Far more, it can be 

assumed that the results are rather arbitrarily distributed for the different alcohol/polyol 

formulations. The missing differentiation between the molecular descriptors, is expected to 

be the result of normal structural fluctuations, rather than structural changes associated 

with thermal unfolding. Consequently, observed differences between the formulations, 

may be regarded as “noise” rather than representing actual structural changes caused by the 

environment. Subsequently, it can be assessed that the general stability of the subtilisin 

protease in its native state is too high, to monitor significant structural changes in the time 

frame of 200 ns. 
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Figure 9: Molecular descriptors determined for the different subtilisin protease/alcohol/polyol 

systems with Ca2+. (A) SASA, (B) RMSD, (C) RG, and (D) Q-value. The illustrated values were 

averaged over six independent MD simulation repeats for each subtilisin protease/alcohol/polyol 

system.  
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Figure 10: Correlations between Tm values/predicted logP-values and the average value of the 

last 10 ns of different molecular descriptors in presence of Ca2+. (A) SASA, (B) RMSD, (C) RG, 

and (D) Q-value. 
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Calcium-Free Structure 

The MD simulations with the native structure of the subtilisin protease have illustrated a 

high stability of the subtilisin protease in the presence of the different alcohols/polyols. 

Subsequently, differentiation between the subtilisin protease/alcohol/polyol formulations is 

not possible and the molecular descriptors lack a correlation with experimental Tm and 

predicted logP values. Therefore, additional MD simulations were performed, to determine 

the molecular descriptors in the absence of bound and free calcium in the subtilisin 

protease structure and formulation. By removing calcium, a decreased stability of the 

enzyme structure was expected. Thereby, it was hoped, to shift stability related unfolding 

processes in the simulated time frame of 200 ns. 

For this, molecular systems were prepared, which resembled laboratory subtilisin protease 

formulations with 50 wt% alcohol/polyol. Besides, removing the calcium from the enzyme 

structure, no CaCl2 was added to the molecular ensembles. This was supposed to prevent 

the re-binding of calcium throughout the simulation. The enzyme-solvent systems were 

simulated for 200 ns, whereafter the molecular descriptors (SASA, RMSD, RG, and Q-

value) were determined based on the simulation trajectories. For a better illustration of the 

results, the average value of each descriptor was calculated based on the six independent 

repeats. 

The obtained results show a high similarity in between the different molecular descriptors 

(fig. 11). The spread in between the different enzyme-solvent systems is, however, larger 

than in the presence of calcium. Similar to before, the resolution is the best for the RMSD, 

followed by SASA and Q-value (fig. 11A-B & D). RG results (fig. 11C) appear to be more 

condensed. Overall, the increased separation enables a better interpretation and 

classification of the solvents according to the different molecular descriptors. 

Subsequently, the average value of the last 10 ns of each descriptor, was compared with 

experimentally determined Tm and predicted logP-values. In contrast to before, all plots 

illustrate a strong correlation of the MD results with the experimental and predicted values 

(fig. 12). While the correlation with the Tm values appears to be linear, correlations with the 

logP show to be exponential. 

The observed correlation between the values shows to be the highest for the SASA (fig. 

12A). In this regard, correlation analysis for Tm and SASA-values illustrate a high negative 

linear correlation between both data sets. Overall, Pearson, Spearman, and Kendall tau 

correlation analysis exhibit values of -0.999. 
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Figure 11: Molecular descriptors determined for to the different subtilisin 

protease/alcohol/polyol systems without Ca2+. (A) SASA, (B) RMSD, (C) RG, and (D) Q-value. The 

illustrated values were averaged over six independent MD simulation repeats.  
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Figure 12: Correlations between Tm values/predicted logP-values and the average value of the 

last 10 ns of different molecular descriptors in absence of Ca2+. (A) SASA, (B) RMSD, (C) RG, 

and (D) Q-value. 
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In addition, an R2-value (0.997) close to 1 indicates a high similarity in between the linear 

regression model and the MD/experimental values. Similarly, the predicted logP-values for 

the solvents and the SASA-values show an exponential correlation, as was illustrated by 

fitting an exponential equation to the datapoints. The fitted exponential equation exhibits 

an R2-value of 0.967, which illustrates the high-level conformity between the datapoints 

and fitted model. 

Experimental and predicted values show a similar high correlation with regard to the 

RMSD (fig. 12B). Tm values and RMSD exhibit a strong negative correlation (Pearson= 

0.982; Spearman= 0.900; Kendall tau= 0.800). Further, the R2-value of 0.964 illustrates a 

high accordance with the linear regression model. In addition, the correlation between the 

logP-values and the RMSDs exhibit the already experienced exponential behavior. The 

fitted exponential model returns an R2-value of 0.961. 

RG and Q-value (fig. 12C+D) show to be similarly correlated with regard to the 

experimental Tm and predicted logP-values. For both descriptors, the linear regression 

model appears to be in good accordance with the determined datapoints. In this regard, an 

R2-value of 0.936 can be determined for the RG and 0.937 for the Q-value. The calculated 

linear correlation coefficients for the RG (Pearson= -0.973; Spearman= -0.999; Kendall 

tau= -0.999) illustrate a strong negative correlation, while the Q-value exhibits a strong 

positive correlation (Pearson= -0.960; Spearman= -0.900; Kendall tau= -0.800). Further, 

both descriptors exhibit an exponential correlation with the logP-values of the solvents. In 

this context, an R2-value of 0.936 can be determined for the RG and 0.948 for the Q-value.  

The conducted MD simulations, in absence of calcium, in and around the protein, illustrate 

the influence of the alcohols/polyols on the enzyme structure on an atomistic scale. While 

differentiation between the subtilisin protease/alcohol/polyol formulations was not possible 

in the presence of calcium, the enzyme shows to be significantly less stably in the absence 

of calcium in the monitored 200 ns time frame. Subsequently, results from molecular 

descriptors appear to be in good accordance with DSC results. In general, the subtilisin 

protease exhibits a smaller surface area and diameter in the presence of larger/hydrophilic 

polyols and shows to better retain native contacts inside the protein structure. Furthermore, 

fluctuations of the amino acid residues show to be decreased, when compared to 

formulations with smaller/hydrophobic alcohols/polyols. 
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Root Mean Square Fluctuations (RMSF) 

When considering the root mean square fluctuations (RMSF) of the single amino acid 

residues, differences between the calcium occupied and -free (fig. 13) subtilisin protease 

become evident. Especially amino acids from loop regions show to fluctuate significantly 

throughout the simulations. While fluctuations of these regions appear to be arbitrary in the 

presence of different alcohols/polyols for the calcium carrying protease (fig. 13A), 

fluctuations for the calcium-free phenotype (fig. 13B) appear to be related to the molecular 

weight respectively hydrophilicity/-phobicity of the solvent. In this context, the RMSF 

illustrates a similar picture as observed for the different molecular descriptors. The 

observation further adds to the hypothesis, that the observed changes in the calcium 

occupied subtilisin protease structure are rather natural fluctuations than the onset of 

thermal unfolding. 

 

 

Figure 13: RMSF of subtilisin protease/polyol systems in the presence/absence of Ca2+ in and 

around the enzyme structure. (A) Both calcium binding sites occupied, (B) calcium-free. 

 

Besides, several enzyme regions exhibit increased fluctuations in the absence of the two 

calcium ions (fig. 14). In this regard, three regions that have already shown increased 

fluctuations in the presence of calcium (fig. 14; yellow)) exhibit even stronger fluctuations 

in the absence of calcium (fig. 14; orange). Further, additional four regions (fig. 14; red) 

illustrate significantly increased fluctuations, in the calcium-free protease structure. These 
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four regions, show to be loops in close proximity of the calcium binding sites. Among 

others, these regions comprise the N- and C-terminal region of the subtilisin protease.  

 

 

Figure 14: Regions of the subtilisin protease with increased RMSF in the presence/absence of 

Ca2+. (A) Ca2+-bound enzyme structure and (B) Ca2+-free enzyme structure. Yellow regions have 

shown to significantly fluctuate in the Ca2+-bound structure respectively have shown similar 

fluctuations in the Ca2+-free state. Orange regions have shown to fluctuate in the Ca2+-bound 

structure and have shown even stronger fluctuations in the absence of Ca2+. Red regions exhibited 

minor fluctuations in the Ca2+-bound structure but illustrate significant fluctuations in the Ca2+ 

free state. 

 

The obtained results, illustrate the influence of the two calcium ions on the subtilisin 

protease structure. While several regions show to fluctuate in the presence of calcium, 

fluctuations show to significantly increase in the absence of both calcium ions. 

Subsequently, it can be assessed that the presence/absence of both calcium ions 

significantly influences the flexibility respectively rigidity of the subtilisin protease 

structure. The increased fluctuations in the proximity of the calcium binding sites, illustrate 

the importance of both calcium ions as interactions partners to maintain the enzyme 

structure and stability. The overall influence of both calcium ions on the protein stability 

and activity is further evaluated and discussed in chapter 3.3. 
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3.2.3. Long-Term Stability of a Subtilisin Protease in Presence of 

Polyols  
 

To determine the long-term stability and thereby, the extent to which the different polyols 

stabilize the subtilisin protease over time, storage tests were performed over a period of 60 

days. In this regard, formulations were prepared with 10, 20, 30, 40 and 50 wt% glycerol 

(G), sorbitol (S), and MPG (M). The enzyme concentration was set to ≈50 g/L and a 

consistent amount of 0.3 wt% CaCl2 was added to each formulation. Following, samples 

were stored at four different temperatures, 4, 22, 37 and 45 °C, and samples were 

withdrawn after 0, 3, 7, 14, 21, 28, 60 days. After storage, the residual active enzyme 

concentration, was determined with the AAPF assay. Following, the residual activity of the 

samples was illustrated relative [%] to the starting concentration (0 d). 

 

 

Figure 15: Residual enzyme activity [%] of the subtilisin protease in different polyol 

formulations (10-50 wt%) after storage at 4 °C over 60 days. Samples were withdrawn after 0, 3, 

7, 14, 21, 28 and 60 days. (A) Glycerol, (B) Sorbitol, (C) 1,2-Propanediol (MPG), and (D) 

Residual enzyme activity [%] after 60 days of storage.    

 

At 4 °C (fig. 15), only minor changes of the active enzyme content in between the different 

formulations can be determined. Compared to the reference in water, however, all 

formulations illustrate a higher residual enzyme activity after 60 days. Overall, differences 
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in between the different solvents and concentrations are only scarcely visible. Even after 

60 days, the data points of similar solvent concentrations are still overlapping. 

Subsequently, no significant differences in between the solvents and concentrations can be 

detected. However, in the presence of 10 wt% solvent a separation shows to develop. 

At 22 °C (fig. 16), the separation between the samples and similar concentrations of 

different solvents becomes more evident. Especially, the samples formulated with 10 wt% 

MPG (fig. 16C) show a significant decline in activity (-41 % (60 d)), when compared to 

samples with similar amounts of glycerol (-23 % (60 d)) and sorbitol (-24 % (60 d)) (fig. 

16A+B). At higher solvent concentrations, however, the clear separation between solvents 

and concentrations fades (fig. 16D). In comparison, glycerol (G20/60 d (91 %), G30/60 d 

(97 %)) appears to maintain the active enzyme content on the highest level, while sorbitol 

(S20/60 d (85 %), S30/60 d (91 %)) and MPG (M20/60 d (85 %), M30/60 d (93 %)) 

exhibit similar results at solvent concentrations of 20 and 30 wt%. In the presence of 40 

and 50 wt% solvent, a clear separation based on the residual active enzyme content is not 

possible. 

 

 

Figure 16: Residual enzyme activity [%] of the subtilisin protease in different polyol 

formulations (10-50 wt%) after storage at 22 °C over 60 days. Samples were withdrawn after 0, 3, 

7, 14, 21, 28 and 60 days. (A) Glycerol, (B) Sorbitol, (C) 1,2-Propanediol (MPG), and (D) 

Residual enzyme activity [%] after 60 days of storage.    
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When incubating the samples at 37 °C (fig. 17), a clear separation between the different 

solvents and concentrations becomes evident. In the case of the samples with 10 wt% MPG 

(60 d; 16 %) (fig. 17C) only a minor improvement of stability with regard to the reference 

in water (60 d; 12 %) can be determined. Similar formulations with glycerol and sorbitol in 

turn (fig. 17A+B), exhibit an active enzyme content of 27 and 25 % after 60 days. As 

solvent concentrations increase, the active enzyme concentration of sorbitol and MPG 

begin to converge (fig. 17D), starting in the presence of 20 wt% solvent (S20 (60 d; 37 %), 

M20 (60 d; 35 %)). In the presence of higher concentrations, MPG (M30 (60 d; 58 %), 

M40 (60 d; 79 %), M50 (60 d; 91 %)) exhibits slightly higher active enzyme 

concentrations, when compared to sorbitol (S30 (60 d; 55 %), S40 (60 d; 76 %), S50 (60 d; 

91 %)). Formulations with glycerol in turn, illustrate considerably higher stabilities in the 

presence of 20 (60 d; 45 %) and 30 wt% (60 d; 72 %) solvent. This level is maintained at 

40 wt% (60 d; 89 %) glycerol, however, begins to converge towards 50 wt% (60d; 95 %). 

 

 

Figure 17: Residual enzyme activity [%] of the subtilisin protease in different polyol 

formulations (10-50 wt%) after storage at 37 °C over 60 days. Samples were withdrawn after 0, 3, 

7, 14, 21, 28 and 60 days. (A) Glycerol, (B) Sorbitol, (C) 1,2-Propanediol (MPG), and (D) 

Residual enzyme activity [%] after 60 days of storage.    

 

The most significant change of the active enzyme concentration can be determined for the 

samples stored at 45 °C (fig. 18). Especially, samples with a solvent concentration of 10-20 
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wt% illustrate a drastic decline of activity within the first sampling timepoints. For samples 

with 10 wt% solvent, no enzyme activity was measurable after 60 days. Samples with 20 

wt% polyol exhibit only minor differences close to zero (G20 (60 d; 4 %), S20 (60 d; 0 %), 

M20 (60 d; 3%). At higher solvent, concentrations, however, a clear trend for the different 

solvents begins to develop. Similar to before, values of sorbitol (60 d; 10 %) and MPG (60 

d; 8 %) show to converge in the presence of 30 wt% solvent. Above, however, the residual 

enzyme activity of the samples with sorbitol (S40 (60 d; 21 %, S50 (60 d; 48 %)) show to 

significantly increase, when compared to MPG (M40 (60 d; 13 %), M50 (60 d; 20 %). 

Formulations with Glycerol in contrast, illustrate a considerably higher residual enzyme 

activity and therefore stabilizing effect at all concentrations above 10 wt%. This effect is 

first visible at 20 wt% and then maintained across higher concentrations ((G30 (60 d; 16 

%), (G40 (60 d; 33 %)) and culminates in a residual active enzyme content of 60 % after 

60 days at 45 °C. 

 

 

Figure 18: Residual enzyme activity [%] of the subtilisin protease in different polyol 

formulations (10-50 wt%) after storage at 45 °C over 60 days. Samples were withdrawn after 0, 3, 

7, 14, 21, 28 and 60 days. (A) Glycerol, (B) Sorbitol, (C) 1,2-Propanediol (MPG), and (D) 

Residual enzyme activity [%] after 60 days of storage.    

 

The conducted long-term storage tests illustrate the stabilizing effect of polyols on the 

subtilisin protease, when compared to the enzyme in water. Besides, higher solvent 
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concentrations have shown to increase this effect. Based on the obtained results 

formulations with glycerol exhibit the highest residual active enzyme content. 

Formulations with Sorbitol and MPG in turn, illustrate varying results dependent on 

concentration and temperature.  

 

3.2.4 Correlation Analysis between Thermal Stability and Long-Term 

Stability Results of a Subtilisin Protease in Presence of Polyols 
 

In the past, it was demonstrated that results of DSC measurements, especially Tm values, 

show a good correlation with results from storage stability studies. Among others, it was 

shown to be applicable for subtilisin proteases in liquid detergents [187]. Consequently, a 

possible correlation, between the Tm values determined in chapter 3.2.1 and the residual 

active enzyme content after 60 days at 37 °C from chapter 3.2.3 was investigated.  

For better comparability of the results, Tm and the residual activity values (60 d) were 

normalized on the basis of the results obtained with the respective sorbitol concentration. 

Following, the obtained values were plotted based on the solvent present in the 

formulations. Since two distinct peaks were visible in the DSC measurements both Tm 

values were used, in separate approaches. 

The obtained results show to be similar (fig. 19), independent of the peak used for the 

analysis. During DSC measurements, sorbitol has shown to increase the thermal stability of 

the subtilisin protease the most, when compared to the water reference. Subsequently, 

glycerol and MPG formulations exhibit values below 1 after normalization. In contrast, 

several formulations with glycerol and MPG have shown to exhibit higher residual enzyme 

activities, when compared to sorbitol. With regard to the normalization, this leads to values 

above 1. Especially, glycerol shows to retain a significantly higher active enzyme content, 

after 60 days, when compared to sorbitol. For MPG, Tm values have shown to be 

significantly lower than for similar sorbitol concentrations. Besides, increasing MPG 

concentrations appear to destabilize the subtilisin protease, which becomes evident by 

reduced Tm values. However, when looking at the active enzyme content after 60 days of 

storage, several MPG concentrations illustrate a higher residual activity, then the 

respective sorbitol formulations.  

Subsequently, it could be illustrated that for the subtilisin protease, Tm values from DSC 

measurements are not suitable for accessing the residual activity after several days of 
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storage. In contrast to earlier reports, results of both datasets were missing any correlation. 

Thereby, it is not possible to predict the effect of different polyols on the long-term 

stability of the used subtilisin protease based on DSC measurements. 

 

 

Figure 19: Correlation between Tm values and residual enzyme activities of a subtilisin protease 

in different polyol formulations after storage at 37 °C over 60 days.  Obtained values for glycerol 

and MPG were normalized with regard to the corresponding sorbitol results. Since two distinct 

peaks were visible in DSC, Tm values of both peaks were evaluated. 

 

 

3.2.5 Discussion 
 

A popular strategy to increase protein respectively enzyme stability in liquid formulations 

is the use of cosolvents. These so called osmolytes, are in most cases, small molecules, as 

sugars, polyols, and neutral amino acids [140, 142, 193], which stabilize the folded state of 

a protein. In the past, various studies have shown their ability to increase thermal and long-

term stability of globular proteins. This effect appears to be mediated by the 

physicochemical characteristics of these molecules, such as structure, charge, size, and 

their ability to interact with other solvent molecules in aqueous solutions [194]. 

Numerous mechanisms have been proposed to explain the molecular basis of polyol-

induced protein stabilization. Among others, Wyman linkage function [146], excluded 

volume effect [195], transfer of protein energy to chemical groups [196], modification of 

surface tension [197], and preferential exclusion [198] have been considered. Besides, the 

type and the amount of cosolvent seem to play a critical role in enhancing conformational 

stability. 

Preferential exclusion is mediated by the ability of polyols to repel non-polar substances. 

In an aqueous environment several protein residues are exposed to the outside. When 
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nonaqueous solvents are added, the solvent molecules displace water, whereby the 

environment of these residues is changed. Subsequently, the composition of the water 

lattice is changed. This effected is mediated by the ability of polyols to form hydrogen 

bonds with water molecules, which reinforce water interactions [199]. This, however, 

makes contacts between non-polar residues of the protein and the polyol solution even 

more unfavorable, than the contact with water [200]. Non-polar groups on the proteins 

surface, would normally react to these changes by orientating themselves towards the 

interior of the protein, however, there ability to do so is hindered by the protein structure. 

Consequently, the solvent structure surrounding the protein is changed, as to keep the 

chemical potential respectively activity of the solvent components constant. Subsequently, 

polyol molecules tend to migrate away from the protein surface. The resulting space is 

occupied by water molecules, which form a protective layer around the protein. Since 

unfolding of the protein structure would expose additional hydrophobic residues to the 

solvent, this would result in a thermodynamically unfavorable situation, which would 

require more free energy than in water. Subsequently, polyols tend to preserve the proteins 

native fold [143-145, 201]. 

In the conducted DSC and MD experiments, especially larger/hydrophilic polyols show to 

significantly increase the thermal stability of the subtilisin protease. Therefore, the 

obtained results, show to be in good accordance with the preferential exclusion 

mechanism. The observed effect appears to be mediated by a more compact structure of 

the subtilisin protease, which is illustrated by a reduction of the solvent accessible surface 

area, radius gyration and an increased number of preserved native contacts. Besides, the 

enzyme structure appears to be more rigid, as the RMSD and RMSF are reduced in the 

presence of larger/hydrophilic polyols. 

Since larger/hydrophilic polyols tend to mediate a local accumulation of water molecules 

around hydrophobic protein residues, an increase of the hydrophobic surface area would 

not be favorable. The extend of this effect in the presence of different polyols/-

concentrations is expected to be the result of indirect interactions, mediated by the ability 

of polyols to reduce the entropy around the protein, based on their molarity and volume 

[202]. A reduced entropy in the first hydration shell around the protein, is expected to shift 

the equilibrium towards the folded state, enabling higher thermal stability. It was found 

that this effect is positively correlated with both the molecular volume and the fractional 

polar surface area of polyols. 
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Subsequently, smaller/hydrophobic alcohols/polyols are expected to reduce the need of 

hydrophobic residues to evade the surrounding environment. Far more, 

smaller/hydrophobic alcohols and polyols tend to displace water from the protein surface, 

whereby the increased entropy in the protein’s proximity, is expected to make the unfolded 

state thermodynamically more favorable. Consequently, the subtilisin protease stability 

appears to be significantly reduced in the presence of smaller/hydrophobic alcohols/polyols 

respectively different MPG concentrations, when compared to the water reference. This is 

further illustrated by an increased surface area and diameter of the subtilisin protease in the 

presence of smaller/hydrophobic alcohols/polyols, which is assumed to be the beginning of 

thermal unfolding. Subsequently, the fraction of native contacts appears to decrease with 

the molecular volume and fractional polar surface area of the alcohols and polyols. 

Besides, the fluctuations of the protein structure and single amino acids shows to 

significantly increase with size and hydrophobicity of the underlying solvent.  

The observed effect of the different alcohols/polyols on the Tm values of DSC 

measurements, together with the structural changes determined by different molecular 

descriptors based on MD simulation trajectories, have illustrated the high conformity 

between the experimental and computational results. Subsequently, Tm values and averaged 

values from molecular descriptors exhibit a high correlation in the conducted correlation 

analysis. Both methods are extensively used to study the stability of proteins on a 

molecular level. In this regard, both methods utilize temperature as an evaluation criterion. 

While DSC measures the heat absorbed or released by an analyte, MD simulations mimic 

temperature by adapting the velocity of the atoms in the molecular ensembles. In the past, 

single molecular descriptors have shown to correlate well with experimental Tm values, 

however, not to the extend and rarely with the here reported accuracy [203-205]. The 

applicability of the conducted approach, however, has yet to be proven for other 

enzyme/solvent formulations. Nonetheless, the current approach has illustrated the 

possibility of predicting the thermal stability of an enzyme in the presence of different 

alcohols/polyols based on MD simulation derived from molecular descriptors.  

In this context, simulation time and temperature are expected to influence the prediction 

performance [203]. Temperature was chosen to be slightly above the maximum Tm value of 

the most stabilizing subtilisin protease/polyol formulation (50 wt% sorbitol). Subsequently, 

the optimal temperature could appear to be enzyme respectively formulation dependent. 

Furthermore, the missing separation and correlation between the molecular descriptors, in 

the presence of both calcium ions in the subtilisin protease structure, has demonstrated the 
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significant influence of simulation time on the observed result. The enzyme appears to be 

too stable, in the presence of calcium, to observe unfolding related changes in the 

monitored time frame. Therefore, either simulation time has to be increased or the stability 

of the enzyme structure has to be decreased. However, the effects of a deliberate 

destabilization of the protein structure are difficult to assess, which makes the 

transferability to experimental results questionable. In the underlying case, the possibility 

has to be assessed, whether the loss of one or both calcium ions from the subtilisin protease 

structure is part of the thermal unfolding mechanism. If true, thermal stability studies 

would have to be assessed with the calcium free enzyme structure, and activity related 

mechanisms by utilizing the calcium occupied enzyme structure. 

Even though, DSC and MD simulation results have illustrated a high level of correlation, 

residual enzyme activities have shown to significantly deviate from these results. In 

contrast to former reports [187], a correlation between thermal stability and residual 

enzyme activities, could not be shown with regard to the subtilisin protease. Subsequently, 

based on the obtained results, additional factors and processes affecting long-term stability 

of the subtilisin protease in different alcohol/polyol formulations, had to be considered. 

Although, DSC and MD simulations can provide a larger understanding of protein 

behavior in different environments, both methods try to assess the protein stability from a 

thermodynamic point of view. However, especially with regard to proteases, additional 

mechanisms for activity loss have to be taken into consideration.  

Subsequently, the influence of polyols on the calcium binding state, and catalytic activity 

were considered in following chapters. MD simulation results have demonstrated the 

significant influence of calcium on the subtilisin protease stability and DSC results have 

shown to exhibit two distinct peaks. In this context, the presence of two distinct 

populations of subtilisin protease, with regard to the calcium binding state, was to be 

assessed (chapter 3.3). Furthermore, it could be assumed that autolysis contributes to a 

considerable extent to the loss of active enzyme. Consequently, a possible influence of the 

polyol formulation environment on the proteolytic activity, was investigated (chapter 3.4). 
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3.3 Influence of Calcium on the Subtilisin Protease Stability 
 

The conducted MD simulations in chapter 3.2.2 had illustrated the influence of calcium on 

the subtilisin protease stability. The subtilisin protease structure was observed to be 

considerably less stable in the absence of calcium in and around the enzyme structure. 

Considering, the two distinct peaks in the DSC measurements and the missing correlation 

between DSC and long-term storage test results, a possible influence of the calcium-

binding state on the long-term stability was to be subject of further investigations. In this 

context, the possible existence of different populations of the subtilisin protease was to be 

investigated. Resulting differences in thermal stability and catalytic activity could account 

for the missing correlation in between DSC results and residual enzyme activities. 

Furthermore, possible changes in the ratio of the two peaks could be an explanation for the 

observed differences between the solvents/-concentrations. In this regard, DSC 

experiments were conducted to determine the influence of calcium on the subtilisin 

protease thermal stability, as well as on the ratio in between the two hypothetical states 

represented by the two distinct peaks.  

 

3.3.1 Influence of Added Calcium on the Subtilisin Protease Thermal 

Stability 
 

Prior to this chapter, 0.3 wt% calcium had been added to formulations to increase the 

general stability and solubility of the subtilisin protease. To investigate a possible influence 

of calcium on the subtilisin protease thermal stability and on the ratio between the two 

peaks, the DSC measurements conducted in chapter 3.2.1 were repeated without the 

addition of calcium. For this, analogous to before, subtilisin protease/polyol formulations 

with ≈50 g/L active enzyme and 10-50 wt% (n= 5; interval= 10 wt%) glycerol, sorbitol, 

and MPG were prepared. Following, formulations were analyzed with DSC and the change 

of the Tm values in the absence of additional calcium was determined. Besides, the relative 

enthalpy [%] of both peaks was determined, by fitting the peaks with gaussian curves 

relative to the total enthalpy (ΔH). The Tm values and the relative area were afterwards 

compared to the results obtained in chapter 3.2.1. 

The absence of additional calcium in the formulations results in significant differences (fig. 

20) in between the observed Tm values and the results from chapter 3.2.1. In the absence of 

calcium, Tm values show to be decreased for the majority of the formulations. In numbers, 

formulations with glycerol (fig. 20A) illustrate an average decrease by 1.14 (± 0.18) °C for 
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the first peak and 1.03 (± 0.09) °C for the second peak. In a similar manner the Tm values 

for sorbitol (fig. 20B) are decreased by 1.45 (± 0.36) °C for the first and 1.83 (± 0.29) °C 

for the second peak. With MPG (fig. 20C), differences are only visible at lower polyol 

concentrations, while at higher differences diminish. The Tm values appear to be reduced 

by 0.98 °C (peak 1)/1.16 °C (peak 2) in the presence of 10 wt% MPG, whereas 

formulations with 50 wt% MPG exhibited differences of 0.03 °C for the first and 0.20 °C 

for the second peak. 

 

 

Figure 20: Comparison of the Tm values of the subtilisin protease in presence/absence of 

additional 0.3 wt% Ca2+ in different polyol formulations (10-50 wt%). (A) Glycerol, (B) Sorbitol, 

and (C) MPG. 

 

Subsequently, the relative enthalpy [%] of both peaks was determined in the absence and 

presence of additional calcium. In this regard (fig. 21), results appear to be unchanged in 

between the subtilisin protease/polyol formulations. Differences, however, are visible in 

between the different solvent concentrations of glycerol and MPG (fig. 21A+C). While in 

both cases the first peak shows to comprise ≈60 % of the total enthalpy in the presence of 

10 wt% solvent, the proportion decreases to ≈50 % at higher solvent concentrations. 

Subsequently, the area comprised by the second peak shows to increase by the same 

proportion. The formulations with sorbitol (fig. 21D), in contrast, maintain the ratio 
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between peak 1 and 2 in presence of the different concentrations. In this regard ≈60 % of 

the area is represented by the first and ≈40 % by the second peak. 

 

 

Figure 21: Enthalpy of the first and second Peak relative [%] to the total enthalpy (ΔH) in 

presence/absence of additional 0.3 wt% Ca2+, determined for different subtilisin protease/polyol 

formulations. (A) Glycerol, (B) Sorbitol, and (C) 1,2-Propanediol (MPG). 

 

The comparison of the subtilisin protease stability, in absence and presence of additional 

calcium, illustrates the stabilizing effect of calcium, when added to formulations. In 

general, it can be assessed that the presence of calcium leads to an increased thermal 

stability of the subtilisin protease with regard to the measured Tm values. However, an 

influence on the ratio of the two hypothetical subtilisin protease species, with regard to the 

calcium binding state, could not be observed. However, what can be observed, is a solvent 

concentration dependent change of the ratio in between both peaks in the presence of 

glycerol and MPG. 
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3.3.2 The Effect of Chelators on the Observation of two Distinct Peaks 
 

The results obtained in chapter 3.3.1 had demonstrated the stabilizing effect of calcium on 

the subtilisin protease structure. However, the presence respectively absence of additional 

calcium had shown to not affect the ratio between the observed peaks. Since the exact 

amount of calcium in the used enzyme concentrate is unknown, chelating agents were used 

to further reduce the free calcium content in selected subtilisin protease/polyol 

formulations. In this context, two random solvent concentrations were selected, which had 

shown to exhibit two distinct peaks. Subsequently, 5 wt% (pH 6.0) ethylenediamine-N,N'-

disuccinic acid (EDDS), ethylenediaminetetraacetic acid (EDTA), and 

methylglycinediacetic acid trisodium salt (MGDA) were added to the formulations in three 

separate approaches. For this, two formulations with ≈50 g/L subtilisin protease and 

30 wt% glycerol respectively 10 wt% MPG were prepared. Following, the thermal stability 

of the subtilisin protease was to be assessed by conducting DSC measurements.  

In the presence of the chelating agents, the morphology of the thermogram (fig. 22), with 

two distinct peaks, is largely lost or diminished. In the case of EDDS, peaks appear more 

gaussian shaped and overlap with the second peak of the former thermogram. For MGDA 

similar peaks are visible, however, slightly shifted towards lower temperatures. This shift 

is observed to further increase in the presence of EDTA. In this case, both peaks show to 

be considerably shifted to lower temperatures and appear to be broader when compared to 

the other formulations. 

 

 

Figure 22: DSC results of formulations with the subtilisin protease (≈50 g/L) and glycerol (30 

wt%) respectively 1,2-Propanediol (MPG; 10 wt%) after the addition of EDDS, EDTA and 

MGDA (5 wt%; pH 6.0). (A) glycerol and (B) MPG. 
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The use of chelating agents had shown to shift the bi-peaked morphology of the 

thermogram towards a single gaussian peak. Subsequently, the use of chelators has shown 

to change the ratio between both peaks. However, upon addition of the chelators, the 

formulations environments is expected to be considerably altered. Consequently, the 

observed effect, could either be the result of different populations or an artifact caused by 

the presence of the chelating agents in the subsequent analysis. In order to be able to better 

compare the resulting subtilisin protease populations, before and after complexation, the 

chelator was to be removed after complexation. Thereby, the effect of the chelator on the 

experimental results was to be diminished, resulting in a better comparability and 

significance of the results. 

 

3.3.3 Removal of Chelating Agents after Calcium Complexation 
 

In order to diminish the influence of the chelating agents on the conducted DSC 

measurements, the chelator was to be removed after complexation by dialysis. Thereby, the 

thermostability of the treated subtilisin protease was studied in the same environment as 

the native enzyme. In this regard, different protease samples were generated, with the goal 

to reduce the calcium content in the enzyme structure and the surrounding environment. 

For this, the subtilisin protease, with a concentration of ≈100 g/L, was dialyzed in 

deionized water, in its native state (WT/dia) and after the treatment with 5 wt% (pH 6.0) 

MGDA (WT/dia+MGDA). Subsequently, the thermostability of WT/dia and 

WT/dia+MGDA was compared to the native enzyme (WT) and to WT/dia+MGDA after 

the repeated addition of calcium (WT/dia+MGDA+). Since, dialysis had significantly 

reduced the active enzyme content, the concentration of all samples was adjusted to 

≈30 g/L. The thermal stability of the different approaches was afterwards determined by 

DSC.  

With regard to the unprocessed sample in water, the thermogram (fig. 23; black) shows a 

high similarity with the results obtained in chapter 3.2.1. The thermogram of WT/dia (fig. 

23; blue), in turn, shows to be shifted towards lower temperatures. The treatment with 

MGDA and the following dialysis (fig. 23; grey) seems to further amplify this effect, 

shifting the thermogram to even lower temperatures. When repeatedly adding calcium to 

WT/dia+MGDA (fig. 23; yellow) the effect appears to be reverted and the thermogram 

returns to the position of the subtilisin protease in its native state, however, with a reduced 

amplitude.  
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Figure 23: DSC results of the subtilisin protease in water after different treatments to reduce the 

calcium in and round the enzyme structure. 

 

The analysis of the Tm values of the two distinct peaks, reveals additional differences. For 

WT/dia a similar shift of the Tm values of both peaks (fig. 24A+B), when compared to the 

unprocessed sample can be observed. In this context, the first peak (fig. 24A) appears to be 

shifted by 2.1 °C (68.98 → 66.87 °C), and the second (fig. 24B) by 2.3 °C (76.81 → 74.50 

°C). The sample incubated with MGDA prior to dialysis (fig. 24C+D) illustrates additional 

changes, besides the general shift of the thermogram towards lower temperatures. 

 

 

Figure 24: Obtained peaks after the deconvolution of the thermograms and comparison of the 

temperature shift from sample to sample. (Blue A + B) From unprocessed to dialyzed sample, 

Peak 1 and Peak 2. (Teal C + D) From dialyzed to MGDA treatment and dialyzed, Peak 1 and 

Peak 2. (Yellow E + F) From MGDA treatment and dialyzed to MGDA treatment, dialyzed and 

calcium addition.  
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In this regard, the first peak (fig. 24C) appears to be shifted by 1.1 °C (66.87 → 65.80 °C), 

while the second (fig. 24D) appears to be shifted by 2.6 °C (74.50 → 71.91 °C). 

Subsequently, the peaks appear to move closer together. The trend is reverted (fig. 24E+F) 

upon the addition of 0.3 wt% calcium, whereby both peaks are shifted to higher 

temperatures and the temperature gap between both peaks is again enlarged. In this 

context, the first peak (65.80 → 69.60 °C) (fig. 24E) is shifted by 3.8 °C, while the second 

(71.91 → 76.81 °C) (fig. 24F) is shifted by 4.9 °C. Subsequently, the effect of MGDA and 

dialysis appears to be reverted and the thermograms of WT and WT/dia+MGDA+ show to 

overlap. 

The determined Tm values have shown, that besides a general shift of the thermograms, the 

different peaks appear to be shifted to one another. Therefore, the difference in between the 

Tm values of both peaks was set as an evaluation criterion (fig. 25). The distance for the 

unprocessed sample is determined to be 7.83 °C (fig. 25; gray). Upon dialysis in deionized 

water (fig. 25; blue) only a moderate change to 7.63 °C can be observed. However, as was 

already visible based on the Tm values, the temperature gap significantly decreases upon 

incubation with MGDA (fig. 25; dark gray), which returns a distance of 6.11 °C in 

between both peaks. When calcium is added (fig. 25; yellow) to this sample, the distance is 

again increased, which results in a difference of 7.20 °C. 

 

 

Figure 25: Thermal gap between the first and second peak (A) of the thermogram and relative 

enthalpy [%] of the peaks with regard to the total enthalpy (ΔH) (B). 

 

Besides monitoring the changes of the Tm values and the resulting temperature gap in 

between both peaks, the area under the two distinct peaks was determined relative [%] to 

the total enthalpy (ΔH) (fig. 25B). With respect to the unprocessed sample, the analysis 
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illustrates the first peak to comprise 55 % of the total enthalpy and the second 45 %. After 

dialysis, the relative area of the first peak shows to increase to 67 %, when compared to the 

unprocessed sample, while the area under second peak decreases to 33 %. When adding 

MGDA to the subtilisin protease prior to dialysis, the area of the first peak is again 

decreased to 60 %, whereas the second peak increases to 40 %. Upon the addition of 0.3 

wt% calcium to this sample, the relative area of the first peak is again increased to 68 % 

and the second decreases to 32 %. 

In contrast to the results in chapter 3.3.2, the thermogram of WT/dia+MGDA did not 

exhibit the trend towards a single gaussian shaped peak. However, the treatment with the 

chelator had shown to greatly affect the thermostability and the ratio of the two peaks. 

Besides, WT/dia had illustrated the already destabilizing effect of dialysis on the 

thermostability of the subtilisin protease. Furthermore, the chelator showed to not only 

further reduce the thermostability but also affect the distance and ratio between both peaks.  

 

3.3.4 Discussion 
 

Metal ions play a major role in biological systems, especially for the structure, regulation, 

and enzymatic activity of proteins. More than one quarter of all proteins in the Protein Data 

Bank, have shown to contain bound metal ions [206]. The greater part of these proteins 

contains bound zinc, iron, calcium, and magnesium.  

Subtilisin proteases are classified to the S8 family and assigned to the SB clan of serine 

proteases [207]. They are characterized by a catalytic triad of aspartate, histidine, and 

serine, which is common for all subtilisins of Bacillus species [89]. Subtilisins, further 

contain two or more cation binding sites, which are occupied by calcium or sodium ions 

[106, 208, 209]. Members from family A, subtilisins, generally have two Ca2+ sites, a high 

and low affinity binding site, although a calcium independent phenotype has been reported. 

Both sites are shared by thermitase (family B), which contain a third binding site of 

intermediate binding strength [210]. Furthermore, proteinase K, from family C, has two 

binding sites, which are however different to the ones found in subtilisins and thermitase 

[211]. Lastly, the Ak. 1 protease has shown to comprise four cation binding sites, three 

occupied by Ca2+ and the fourth by Na+ [106]. 

The Ca-1 binding site has shown to be conserved in various members of the subtilisin 

superfamily and is often referred to as high-affinity binding site. It is shared by subtilisins, 

thermitase, and Ak.1 protease. In the past, protein engineering, thermodynamic and kinetic 
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studies had demonstrated the unique role of this binding site for the stabilization of 

subtilisins [212, 213]. Ca-1 appears to be formed only, after removal of the 77 amino acid 

residue propeptide, which mediates the correct folding of the enzyme. Subsequently, once 

calcium is bound, there is large enthalpic barrier for unfolding, as the Ca2+ ion is buried 

inside the protein structure [214]. Therefore, the stabilizing effect of Ca-1 on the folded 

enzyme structure is likely to be very high in all enzymes. This effect is expected to be 

mediate by interactions with the backbone carbonyl oxygen atoms of Leu75, Ile79, and 

Val81 and the side-chain oxygen of Asn77 (subtilisin BPN numbering) [215]. Structurally 

the Ca-1 binding site is primarily composed by the loop (residue 75-83) that protrudes 

from the α3-helix, which provides three oxygen ligands from the side chains of Glu2 and 

Asp41, and thereby coordinates the cation from either side of the loop. 

The low affinity binding site of subtilisins is located in a narrow crevice more than 30 Å 

away from the high affinity binding site [215]. Ca-2 is primarily formed by a single loop 

that is part of the ß2-α3 connection, which consists of the peptide carbonyl oxygen atoms 

of Gly169, Tyr171, Val 174, and Glu195, and two water molecules. Therefore, it is 

concluded that the calcium binding strength of Ca-2 is significantly smaller than for Ca-1. 

Pantoliano et al. have reported, that the calcium binding strength (K(M-1)= 102) in 

subtilisin BPN is indeed considerably lower than for the strong calcium binding site Ca-2 

(K(M-1)= 108) [216]. 

In the past, metal ions have shown to play a significant role in stabilizing protein structures 

against denaturation [208] and proteolysis [217]. This ability was assessed to be mediated 

by their ability to reduce the flexibility of the polypeptide chain and thereby prevent local 

unfolding. This is particularly true for calcium, as it tends to bind carboxylate and oxygen 

ligands, which are the binding groups most commonly found in external loops [106]. In 

enzymes of the subtilisin family, calcium binding has shown to increase thermal stability 

and reduce the loss of enzyme due to autolysis. For several other subtilisins it could be, 

further shown to contribute to full enzymatic activity, by stabilizing the active 

conformation [218-220]. In the past, the loss of calcium from Ca-1 binding site has shown 

to result in destabilization and loss of activity, while deletion of the whole binding site 

retained full activity [221]. Similarly, it has been reported that the binding of a cation in 

Ca-2 dramatically improves the stability of subtilisin [108, 216]. 

The stabilizing effect of both calcium ions on the subtilisin protease structure was 

demonstrated by conducting MD simulations (chapter 3.2.2) of the calcium occupied and -
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free enzyme structure in different formulation environments. Fluctuations of the subtilisin 

protease structure and single amino acids have shown to considerably increase, in the 

absence both calcium ions. Especially, the loops involved in calcium binding and loops in 

close proximity appear to be considerably more flexible in the absence of calcium. 

Subsequently, the subtilisin structure is expected to be less stable and therefore more 

susceptible to thermal unfolding and autolysis. 

The absence of additional Ca2+, similar to the dialysis of the native enzyme, has further 

shown to reduce the thermal stability of the subtilisin protease in the conducted 

experiments. The addition of low salt concentrations is known to increase the protein 

solubility in a process described as “salting in” [222]. When salt ions are added to enzyme 

solutions, they compete with enzymes for water and bind to charged groups or dipoles. 

Subsequently, interactions, between hydrophobic residues are increased, which results in a 

more compact protein structure, increasing its resistance to thermal unfolding reactions 

[223]. The absence of additional Ca2+ and a reduced Ca2+ concentration, thereby showed to 

reduce the thermal stability of the subtilisin protease in the conducted DSC measurements. 

In contrast, the addition of chelators has shown to affect the two visible peaks in different 

ways. Based on the reduced distance between both peaks respectively the stronger shift of 

the second peak after the incubation with MGDA a direct effect on the bound calcium in 

the subtilisin structure is to be assumed. Since the calcium binding strength of Ca-2 was 

determined to be low (K(M-1)= 102) by Pantoliano et al. [216], MGDA is expected to 

withdraw the Ca2+ from the subtilisin protease structure. The binding strength of Ca-1 in 

turn, is assumed to be too large (K(M-1)= 108) to be affected by MGDA (K(M-1)= 107), 

thus the chelator is less likely to compete with the enzyme for the bound Ca2+. 

Consequently, the change of the distance in between both peaks, is to be mediated by the 

loss of the Ca2+ from the Ca-2 binding site. Therefore, the second peak, is most likely to 

represent a subtilisin protease structure, with only one Ca2+ bound to Ca-1. 

Since the first peak remained rather unaffected in the presence of MGDA, the shift appears 

to be mediated by the further reduction calcium in the environment, rather than being 

directly affected by the chelator. Consequently, the first peak is assumed to represent a 

calcium-free state of the subtilisin protease. What appears to contradict this assumption, 

however, is the fact that the relative area of the first peak shows to decrease upon the 

addition of MGDA rather an increase. Subsequently, the exact composition of the first 

peak remained unclear and was further elaborated in chapter 3.4. 
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The addition of calcium to WT/dia+MGDA showed to revert the effect of MGDA and 

dialysis, and partly restored a similar stability than observed for the native state of the 

subtilisin protease. This and the increased distance between both peaks appears to be 

mediated by the repeated binding of Ca2+ to the Ca-2 binding site. In the past, it was shown 

that the stability of subtilisin BPN’ is highly dependent on the Ca2+ concentration [216]. In 

this regard, the addition of Ca2+ in the range of 0.1-100 mM had decreased the rate of 

thermal inactivation of the enzyme by 100-fold at 65 °C. A sequence of refined X-ray 

crystal structures had further shown that the binding of Ca2+ to Ca-2 is affected by the 

calcium concentration in the surrounding environment. Subsequently, the second peak in 

the native state of the subtilisin protease is assumed to resemble the active state of the 

subtilisin protease, with two bound calcium ions. 

The conducted experiments added further insights on the origin of the two distinct peaks 

observed for different subtilisin protease/polyol formulations during DSC. In this context, 

the second peak appeared to represent the native state of the subtilisin protease with two 

occupied calcium binding sites. The exact composition of the first peak, however, 

remained largely unclear. Even though the missing reaction in presence of MGDA led to 

the assumption it could be a population of calcium-free subtilisin protease, the ratio in 

between both peaks appears to be unrelated with conditions favoring the calcium-free state. 

Furthermore, the repeated addition of Ca2+ to the same sample shows to increase the 

proportion of the first peak rather than decreasing it. Therefore, either the calcium-free 

state is not revertible, or the first peak is composed of something different. Subsequently, 

as part of chapter 3.4 the composition of the first peak was to be further elaborated. 
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3.4 The Effect of Polyols on the Proteo-/Autolytic Activity of a 

Subtilisin Protease 
 

The experiments in chapter 3.3 had demonstrated the significant influence of Ca2+, bound 

to the enzyme structure and in the surrounding environment, on the subtilisin protease 

stability. However, the exact composition of the two distinct peaks observed in DSC, and 

thereby the reason for the missing correlation between DSC and storage-test results 

remained largely unclear. Although the results indicated that the second peak was caused 

by the unfolding of the native state of the subtilisin protease and the first appeared to be 

calcium-free, it remained doubtful whether the first peak solemnly consisted of the 

calcium-free enzyme structure. Subsequently, the influence of autolysis on the observed 

DSC results and thereby on the missing correlation with the residual enzyme activities, was 

to be assessed. In this context, the possibility was investigated whether the observed first 

peak could originate from the thermal unfolding of released peptide fragments as part of 

the proteolytic activity of the subtilisin protease. Besides, the influence of the different 

alcohols/polyols on the catalytic activity of the subtilisin protease was determined. In this 

regard, enzyme kinetic parameters of the subtilisin protease in the presence of different 

polyols was assessed, based on the artificial AAPF substrate. Furthermore, the approximate 

autolysis rate in the different formulations, was to be determined by SDS-PAGE. At last, 

an influence of the alcohols/polyols on the catalytic mechanism of the subtilisin protease 

was to be investigated on an atomistic scale using MD simulation trajectories from 

chapter 3.2.2.  

 

3.4.1 The Effect of Peptide Fragments on DSC Results  
 

Subtilisin proteases, belong to the family of serine proteases, an enzyme class known for 

their ability to hydrolyze peptide bonds [89]. In the absence of other proteins, the main 

target of this degrading process are the proteases themselves. In a process, referred to as 

autolysis, the active enzyme content is reduced due to the proteolytic activity. Since 

subtilisin proteases are rather unspecific, peptide fragments of varying length and structure 

are released [224]. Subsequently, it was investigated whether the first peak observed 

during DSC measurement, could be the result of the fragmentation of the enzyme before 

and during the analysis. In this regard, size exclusion chromatography (SEC) was 

performed to separate shorter peptide fragments present in the formulations from the 

enzyme of interest. For this, a sample with ≈30 g/L subtilisin protease in deionized water 
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was used. Following, the composition of the different fractions obtained from SEC was 

analyzed by SDS-PAGE. In an additional step, several fractions were selected and their 

ability to exhibit a signal during DSC measurement was investigated. 

Interestingly, the elution profile (fig. 26) obtained from SEC by UV detection, similarly to 

the DSC thermograms, exhibits two distinct peaks. The first after an elution volume of 

≈70-80 mL and the second after ≈90-100 mL. To further elaborate on the composition of 

both peaks, several fractions of both peaks were analyzed by SDS-PAGE. Therefore, the 

still active protease, was first fractionated, to prevent autolysis from progressing and 

thereby influencing the result of the SDS-PAGE. 

 

 

Figure 26: Size exclusion chromatography (SEC) elution profile for the subtilisin protease. The 

line corresponds to the absorbance readings at 280 nm. Besides the elution volume, the top x-axis 

represents the different fractions, which were collected during SEC. The gap between these 

fractions is further distributed in 12 subfractions. 

 

Subsequently, different fractions of peak 1 and peak 2 were loaded to and analyzed by 

SDS-PAGE (fig. 27A). As was to be expected, the fractions of the two peaks exhibited 

significant differences, with regard to the observed peptide fragment pattern and 

distribution. Besides illustrating the expected band for the subtilisin protease at ≈27 kDa 

several additional peptide fragments, especially of smaller size, are visible. The quantity 

respectively intensity of the smaller fragments appears to be considerably higher, in the 

first peak (fig. 27A; D8-11), when compared to the second. However, also a small amount 

of the subtilisin protease appears to be present. In the case of the second peak (fig. 27A; 

F2-F6), the intensity of the subtilisin protease band significantly increases, due to the 
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considerably higher concentration. In contrast, the intensity/quantity of the smaller peptide 

fragments shows to be considerably lower, when compared to the first peak. Besides, 

fractions of both peaks show to exhibit a band with ≈54 kDa, which is assumed to be due 

to the formation of dimers in between subtilisin protease peptide chains. 

 

 

Figure 27: Analysis of the SEC fractions from peak 1 and 2. (A) SDS-PAGE of the first peak 

(fractions D8-11) and second peak (fractions F2-6). The subtilisin protease was detect at ≈27 kDa. 

(B) DSC results of fractions D8 and F2. 

 

To determine the capability of the smaller peptide fragments to exhibit a measurable 

enthalpy in DSC, various fractions of both peaks were analyzed. The illustrated results 

from fractions D8 and F2 (fig. 27B), represent a general picture, observed during the 

analysis. In general, results show to considerably vary from the thermograms obtained in 

chapter 3.2.1 and 3.3.3. However, it has to be considered that the SEC had significantly 

reduced the peptide fragment/protein concentration in the different fractions. Subsequently, 

Tm value and enthalpy are assumed to be considerably lower than for the dialyzed enzyme 

in water. Nonetheless, the resulting peaks from fraction D8 and F2, and others, appear to 

overlap, similar to the two-peaks determined before. Furthermore, the SDS-PAGE has 

revealed small fractions of the native enzyme and smaller peptides in both peaks, which 

appear to become visible in the overlapping region of both peaks. 

The SEC elution profile has revealed two distinct peaks similar to result obtained by DSC. 

Furthermore, fractions of the first peak, which are mainly composed of smaller peptide 

fragments, exhibit a signal in the conducted DSC measurements. This shows to overlap 

with the peak observed for fractions of the second peak, which have shown to be composed 

mainly of the full-length subtilisin peptide chain. Therefore, it is to be concluded, that the 

peptide fragments released as a result of the proteolytic activity of the subtilisin protease, 
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are expected to be the reason for the two distinct peaks observed in the DSC thermograms 

of different subtilisin protease formulations. Subsequently, the difference between the ratio 

of both peaks is assumed to be related to the autolytic rate of the subtilisin protease in the 

respective formulation environment. Therefore, the influence of the different 

alcohols/polyols on the autolysis rate was to be assessed in following chapters. 

 

3.4.2 Michaelis Menten Kinetics of the Subtilisin Protease in the 

Presence of Different Polyols 
 

The result obtained from chapter 3.4.3 had illustrated the ability of peptides, which are 

released as result of the catalytic activity of the subtilisin protease, to exert a measurable 

enthalpy during DSC. Since these results contradicted the theory of different protease 

populations, with regard to the calcium binding state, to cause the observed differences 

between thermal stability and residual activity results, autolysis moved into focus. 

Therefore, the influence of different polyols, namely glycerol, sorbitol and 1,2-propanediol 

(MPG), on the subtilisin protease activity was investigated. For this Michalis-Menten 

kinetic parameters were determined, in order to assess the influence of the solvents on the 

Michaelis constant (Km) and the maximum velocity (Vmax) of the subtilisin protease, with 

regard to the used AAPF substrate. Subsequently, the AAPF assay protocol for microtiter 

plates was adapted to be performed in the respective buffer/polyol environment, in the 

presence of varying AAPF substrate concentrations. 

Since the addition of polyols to the TRIS buffer affects the extinction coefficient of the 

reaction environment, it was to be redetermined in the presence of 10, 30, and 50 wt% 

glycerol, sorbitol, and MPG. The extinction coefficients were assessed, based on the slope 

of a dilution series performed, with the para-nitroaniline moiety, in the respective reaction 

environment at 30 °C. The exact values can be obtained from chapter 2.2.8. Subsequently, 

MM-kinetic parameters were determined by measuring the turnover of a fixed 

concentration of the subtilisin protease in presence of varying AAPF concentrations. For 

this, an enzyme stock solution with a concentration of 1 µg/mL and different starter 

solutions with a substrate concentration in between 0.06 to 3.38 mM were generated. 

Based on the average absorption change measured for the different solutions, in the 

presence of the subtilisin protease, the specific activity (U/mg) was determined. Following, 

Km and Vmax were obtained, by fitting the hyperbolic curve of the MM-equation to the 

datapoints. Further, the reciprocal values of the substrate concentration and specific 
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activity were determined, in order to visualize the proposed inhibition mechanism based on 

the Lineweaver-Burk plot. 

 

Enzyme Kinetics 

Based on the extinction coefficients for the different TRIS buffer/polyol environments, the 

specific activity of the subtilisin protease in the presence of varying AAPF concentrations 

was determined (fig. 28). For the subtilisin protease in TRIS buffer a Km value of 3.9 mM 

and a Vmax of 172.4 U/mg could be determined. 

 

 

Figure 28: Michalis-Menten kinetics of the subtilisin protease in the presence of different polyol 

concentrations (10, 30, 50 wt%). (A) TRIS-buffer, (B) Glycerol, (C) Sorbitol, and (D) MPG. 

 

The MM-constants of the other TRIS buffer/polyol systems show to considerably vary 

based on the present solvent/-concentration (tab. 6). In the presence of 10 wt% glycerol a 

minor increase of the Km value to 5.2 mM can be observed, while at elevated glycerol 

concentrations the Michalis-constant appears to be mostly stable. Therefore, at a 

concentration of 30 wt% glycerol a Km of 5.5 mM and at 50 wt% a Km of 4.6 mM can be 

determined. In the case of sorbitol, the increase of the specificity appears to be even more 

related to the solvent concentration. Subsequently, in the presence of 10 wt% sorbitol a Km 
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value of 6.1 mM, followed by 4.3 mM at 30 wt% and lastly 2.4 mM at 50 wt% can be 

observed. Considerably higher Km values and thereby a significantly reduced specificity of 

the enzyme can be determined in the presence of MPG. In this case, Km values show to 

drastically increase already in the presence of 10 wt% MPG. Showing a Km value of 10.3 

mM. In the presence of 30 and 50 wt% the specificity remained almost constant exhibiting 

values of 11.9 and 10.0 mM. 

 

Table 6: Michaelis-Menten kinetic parameters determined for the subtilisin protease in different 

TRIS buffer/polyol environments. 

 

 

In the case of the maximum reaction velocity (tab. 6), changes mediated by the different 

solvents/-concentrations, appear to be even larger. However, in the presence of 10 wt% 

solvent, the Vmax values of glycerol and MPG appear to be similar in size, when compared 

to the TRIS buffer environment. In this regard, the enzyme has shown to exhibit a Vmax of 

172.4 U/mg. In a similar range, reactions environments with 10 wt% glycerol and MPG 

have shown to illustrate a maximum reaction velocity of 171.7 respectively 171.9 U/mg. 

With 10 wt% sorbitol, surprisingly, a larger Vmax of 225 U/mg can be determined. 

However, increasing the solvent concentration, shows to reduce the maximum velocity. 

This is particularly evident in the case of 30 and 50 wt% MPG, as Vmax shows to be 

reduced to 71.2 U/mg respectively 16.8 U/mg. Similarly, reaction environments with 30 

and 50 wt% glycerol illustrate a reduction of the maximum velocity, when compared to the 

original TRIS buffer. At first the Vmax was reduced to 133.2 U/mg and then to 69.5 U/mg. 

In comparison, reaction environments with sorbitol appear to be only mildly affected by 
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increasing concentrations. After exceeding the maximum velocity in TRIS buffer, in the 

presence of 10 wt% sorbitol, values show to further decrease to 167.8 U/mg (30 wt%) and 

122.9 U/mg (50 wt%).  

The conducted experiments illustrate the effect of different polyols on the subtilisin 

protease substrate specificity and catalytic rate. In this context, MPG has shown to 

considerably reduce the specificity of the subtilisin protease towards the AAPF substrate. 

Furthermore, MPG has illustrated to significantly reduce the maximum reaction velocity. 

Thereby, it can be assumed that in the presence of high MPG concentrations, the subtilisin 

protease proteolytic activity is greatly diminished. A similar effect is observed to be 

mediated by glycerol, however not to the same extend. Still, glycerol is expected to 

considerably decrease the autolytic rate of the subtilisin protease at high concentrations. 

Sorbitol, however, is expected to be a weaker inhibitor, as the catalytic rate and maximum 

reaction velocity remains greatly uninfluenced by the surrounding solvent environment. 

Subsequently, different polyols have been shown to affect the proteolytic activity of the 

subtilisin protease at varying rates. Therefore, polyols could not only be shown to affect 

the thermal stability of the subtilisin protease, but also the activity.     

 

Lineweaver Burk Plot 
 

The Lineweaver-Burk plot is a graphical representation of the relationship between the 

catalytic rate of a reaction and the corresponding substrate concentrations. Historically 

these plots have been used to determine the Michalis-Menten kinetic parameters of 

enzymes, which are the maximum reaction velocity (Vmax) and the substrate specificity 

(Km). In a Lineweaver-Burk plot, the reciprocal of the reaction rate (1/V) is plotted against 

the reciprocal of the substrate concentration (1/[S]). The result is a linear plot, whose x-

intercept represents the reciprocal Km (1/Km) and the y-intercept the reciprocal Vmax. The 

advantage of using a Lineweaver-Burk plot besides the simple way of determining the 

kinetic parameters, is the visualization of different enzyme reaction conditions. This allows 

to distinguish between different inhibitory mechanisms affecting enzyme activity.  

While the Lineweaver-Burk plot has historically been used for the evaluation of kinetic 

parameters, all linearized forms lost importance as computational approaches, being 

significantly more accurate, became accessible. Nonetheless, this approach is a convenient 

way visualize different inhibitory effects, comprised by different kinetic parameters. 

Subsequently, the Lineweaver-Burk plot was used, with regard to the obtained MM-kinetic 
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parameters, to visualize the effect of the different polyols on the subtilisin protease 

specificity and catalytic rate. 

For glycerol Km values have shown to be slightly increased (fig. 29A), when compared to 

TRIS buffer, though remain relatively constant in between the different concentrations. 

The Vmax in turn, appears to be unchanged in the presence of 10 wt% glycerol. Thereby, the 

TRIS buffer and TRIS buffer/glycerol result share the same y-intercept. Thereupon, it 

could be inferred that at low concentrations glycerol appears to act as a competitive 

inhibitor. In this context, the Vmax remains unchanged while the Km is increased. A similar 

result could be determined in the presence of 10 wt% MPG (fig. 29C), whereby the same 

competitive inhibition is assumed to affect subtilisin protease activity.  

 

 

Figure 29: Lineweaver-Burk plot of the results obtained from MM-kinetic experiments. (A) 

Glycerol, (B) Sorbitol, and (C) 1,2-Propanediol (MPG). 

 

An exception, however, can be determined for sorbitol (fig. 29B), as the decreased 

specificity would tend towards a competitive inhibition mechanism, which however, 

appears to be inconsistent with an increased reaction velocity. Furthermore, the inhibition 

type of the solvents appears to change with increasing concentrations. In the case of 

glycerol and MPG, higher concentrations show a noncompetitive (mixed) inhibition, which 

is illustrated by a largely unaffected Km value and a considerably reduced Vmax. In the 
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presence 30 wt% sorbitol Km and Vmax values appear to resemble the result obtained in 

TRIS buffer. Therefore, lower sorbitol concentrations appear to not affect the protease 

activity at all. In contrast, 50 wt% sorbitol shows to further reduce the Km and Vmax, which 

corresponds to an uncompetitive inhibition type. 

The Lineweaver-Burk plot has provided an overview on the inhibition mechanisms, by 

which different polyols tend to reduce the proteolytic activity of the subtilisin protease. In 

this context, glycerol and MPG appear to act as a competitive inhibitor at lower 

concentrations while exhibiting the mechanism of an uncompetitive (mixed) inhibitor at 

higher concentrations. In contrast, sorbitol appears to hardly affect the subtilisin protease 

activity at 10 and 30 wt%. At higher concentration however, sorbitol appears to act as an 

uncompetitive inhibitor, increasing the substrate specificity, while decreasing the 

maximum reaction velocity.  

 

3.4.3 The Effect of Polyols on Autolytic Activity of a Subtilisin Protease 

determined by SDS-PAGE 
 

The results in chapter 3.4.2 had demonstrated the effect of polyols on the substrate 

specificity and maximum reaction velocity of the subtilisin protease. In order, to further 

investigate the extent, to which this effect is relevant for the missing correlation in between 

DSC and storage-test results, the influence of autolysis was to be determined. In this 

context, the intensity of the ≈27 kDa subtilisin protease band, observed by SDS-PAGE, 

was selected as an evaluation criterion to monitor progression of autolysis throughout 

storage. Thereby, the influence of the polyols on the proteolytic activity was assessed, 

based on the degradation of the subtilisin protease itself. In this context, the decrease in the 

intensity of the full-length band was expected to correspond to the amount of enzyme/full 

length peptide lost due to autolysis. In contrast to earlier reports [225], the results were, 

however, not expected to correspond to the actual autolytic rate of the subtilisin protease, 

as the proportion of unfolded/inactivated enzyme comprised by the full-length band 

remains unknown throughout storage. Nonetheless, the results were regarded to provide an 

accurate overview about the extent to which long-term stability is influenced by autolysis 

in different subtilisin protease/polyol formulations. 

For this, samples from a long-term storage test, conducted over 60 d at 4, 22, 37 and 45 °C 

in the presence of 10, 20, 30, 40 and 50 wt% glycerol, sorbitol and 1,2-propanediol (MPG), 

were collected (0, 3, 7, 14, 21, 28, 60 days) and prepared according to chapter 2.2.8. 
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Afterwards, samples from the same formulation and temperature were analyzed by SDS-

PAGE. The obtained intensity values of the full-length band were normalized with regard 

to the intensity at timepoint 0 days. Furthermore, the active enzyme content of all samples 

was determined with the AAPF assay on the Gallery™ system and the residual enzyme 

activity was determined relative to the concentration at timepoint 0 days. 

The determined residual enzyme activities show a high accordance with the results 

obtained in chapter 3.2.3. Consequently, samples at low temperature and in the presence of 

high solvent concentrations show to retain their stability over the sampled time period. 

Thus, no differences between residual enzyme activities and full-length band intensity 

could be determined. In contrast, samples with low solvent concentrations, as with 10 wt% 

polyol at 37 °C (fig. 30), illustrate a considerable decrease of the residual enzyme activity  

 

 

Figure 30: Residual enzyme activity [%] and relative full-length band (≈27 kDa) intensity [%] of 

subtilisin protease/10 wt% polyol formulations, stored at 37 °C over 60 days. (A) Glycerol, (B) 

sorbitol, and (C) 1,2-Propanediol. 

 

and full-length intensity. Furthermore, the relative intensity loss shows to match the results 

from the residual activity measurements. Subsequently, the driving force for the enzyme 
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loss in these formulations, is assessed to be autolysis. However, as explained before, the 

result is not expected to resemble the actual ratio between thermal unfolding and autolysis. 

Rather, the thermal unfolding rate appears to be masked by a considerably higher autolysis 

rate, leading to a rapid degradation of already inactivated/unfolded subtilisin proteases. 

Besides these results, some show significant differences in between the relative activity 

and intensity in presence of different polyol concentrations. Especially, formulations with 

50 wt% polyol at 45 °C and 30 wt% at 37 °C provide additional insights on the ratio 

between activity loss and autolysis.  

In general, formulations with 50 wt% polyol (fig. 31) have shown to exhibit the highest 

residual enzyme activity after 60 days, when compared to other concentrations. However, 

the relative full-length intensity showed to considerably differ from the relative activity 

results. 

 

 

Figure 31: Residual enzyme activity [%] and relative full-length band (≈27 kDa) intensity [%] of 

subtilisin protease/50 wt% polyol formulations, stored at 45 °C over 60 days. (A) Glycerol, (B) 

sorbitol, and (C) 1,2-Propanediol. 
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Therefore, only a minor part of the overall activity loss, appears to be the result of 

autolysis. Subsequently, it can be assessed that the autolysis rate is either smaller or equal 

to the activity loss mediated by thermal unfolding. Furthermore, the proportion of the area 

described by autolysis appears to vary in between the different polyols. While in glycerol 

(fig. 31D), SDS-PAGE results appear to describe 67.8 % of the overall loss, values show to 

increase to 78.6 % for sorbitol and 71.1 % for MPG. Thereby, under these conditions’, 

glycerol appears to be the strongest inhibitor of autolysis, followed by sorbitol and MPG. 

The high proportion of autolysis observed in the formulation with MPG, however, partly 

contradict the results obtained in chapter 3.4.2, where MPG has shown to be the by far 

strongest inhibitor of the subtilisin protease specificity and maximum reaction velocity. 

The destabilizing effect of high concentrations of MPG, however, could counteract the 

reduced activity by increasing the number of partially unfolded and thereby susceptible 

protease binding sites. Subsequently, the rate of autolysis appears to be increased, as a 

result of the partial destabilization of the subtilisin protease structure in the presence of 

high concentrations of MPG.  

Results obtained in the presence of 30 wt% solvent at 37 °C (fig. 32), provide additional 

insights on the high similarity in between the storage test results obtained with sorbitol and 

MPG. As before glycerol (fig. 32A) has illustrated to retain the active enzyme content on 

the highest level. Sorbitol and MPG (fig. 32B+C) in turn, appear to be on the same level 

after 60 days, even though thermal stability results have shown to be considerably higher 

for sorbitol, when compared to MPG. Based, on the determined full-length intensity 

values, differences in between glycerol, sorbitol, and MPG become visible. While for 

sorbitol (fig. 32B) residual enzyme activities and full-length intensities illustrate a high 

similarity, glycerol and MPG show (fig. 32A+C) considerable differences in between 

residual enzyme activity and full-length intensity. Therefore, in the case of sorbitol 90.2 % 

(fig. 32D) of the overall loss appears to be explained by the relative intensity result, 

whereas for glycerol and MPG it shows to cover 71.6 % respectively 50.8 %. 

Subsequently, the inhibitory effect of MPG on the autolysis rate appears to be stronger, 

when compared to glycerol or sorbitol. At the same time however, MPG shows to be 

considerably more affected by thermal unfolding, as glycerol and sorbitol. Subsequently, 

glycerol which had shown to neither exhibit the highest inhibitory effect nor the highest 

thermal stability, illustrates the highest residual enzyme activity when compared to MPG 

or sorbitol, which are either strongly affected by thermal unfolding or their missing ability 

to reduce autolysis. 
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Figure 32: Residual enzyme activity [%] and relative full-length band (≈27 kDa) intensity [%] of 

subtilisin protease/30 wt% polyol formulations, stored at 37 °C over 60 days. (A) Glycerol, (B) 

sorbitol, and (C) 1,2-Propanediol. 

 

Subsequently, the performed experiments have once again demonstrated the significant 

influence of different polyols on the proteolytic activity of the subtilisin protease. 

Furthermore, it was shown, that the observed long-term storage test results derive from a 

complex interplay of different detrimental factors. Even though, thermal unfolding and 

autolysis are expected to be the major cause of inactivation, additional factors are expected 

to contribute. Overall, the obtained results provided an explanation for the missing 

correlation in between residual enzyme activities and thermal stability. Furthermore, they 

clarified the need to consider additional factors, besides thermal stability, when trying to 

predict the outcome of long-term storage tests, conducted with the subtilisin protease. In 

summary, polyols have shown to affect the autolysis rate of the subtilisin protease, the 

mode of action and the exact rate, however, have jet to be determined. 
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3.4.4 The Effect of Polyols on Proteo-/Autolytic Activity of a Subtilisin 

Protease determined by MD Simulations 
 

The catalytic activity of serine proteases is highly dependent on the interplay of a 

nucleophile, a general base, and an acid. In the case of the subtilisin family this catalytic 

triad is composed of serine, histidine, and an aspartic acid residue. The catalytic 

mechanism is initiated upon substrate binding. Subsequently, the catalytic serine residue in 

the enzymes active site undergoes a nucleophilic attack on the carbonyl carbon of the 

peptide bond, which results in the formation of a tetrahedral intermediate. The histidine 

residue stabilizes the intermediate by accepting a proton from the serine hydroxyl group, 

whereby a protonated histidine residue is formed.  

In the past, it was shown that the proteolytic activity of an enzyme is influenced by the 

orientation of the serine residue and by the accessibility of the substrate. Radisky and 

Koshland demonstrated, that the activity of a subtilisin protease was greatly diminished in 

the presence of inhibitors, due to a change of the nucleophilic attack angle and by 

increasing the distance of the serine oxygen to the carbonyl carbon of the peptide bond 

[226]. Besides lipase b with engineered amidase activity had exhibited reduced activity 

when mutations affected the nucleophilic attack angle or the distance to the carbonyl 

carbon [227].  

 

 

Figure 33: Distance between the catalytic serine oxygen (Ser Oγ) and histidine nitrogen (His 

Nε2) of the subtilisin protease 
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Further, the distance between the hydrogen donor and acceptor was shown to be an 

important factor that determines the catalytic nature of the active site. Katz et al. have 

shown, that in the presence of an inhibitor, the distance between the serine hydrogen 

attached to the oxygen and the nitrogen of histidine is increased [228]. The change in 

distance, resulted in a loss of catalytic activity of the enzyme. Subsequently, it can be 

assessed that the bonding distance between the donor and acceptor atoms of serine and 

histidine play a crucial role for the catalytic activity [229]. 

Based on these findings, the distance between the catalytic serine oxygen (Ser Oγ) and 

histidine nitrogen (His Nε2) (fig. 33) was set as an evaluation criterion to monitor the 

catalytic activity of the subtilisin protease in the presence of different alcohols/polyols in 

MD simulations. In this regard, trajectories obtained in chapter 3.2.2 were used for further 

analysis. The distance between Ser Oγ and His Nε2 was determined using the calcium 

bound and free enzyme structure. Following, the relative proportion of the frames, 

exhibiting a distance >3 Å between both residues was determined for the subtilisin 

protease/alcohol/polyol systems. The results of the six independent repeats per solvent 

were averaged and used for comparison. 

 

Calcium-Bound Structure 

The results obtained for the enzyme structure with two bound calcium ions, show 

significant differences in between the different enzyme/solvent systems (fig. 34). While in 

the presence of long chained polyols, as sorbitol, xylitol, and erythritol, the distance 

between the Ser Oγ and His Nε2 appears to mainly fluctuate in between 3-6 Å, smaller, 

more hydrophobic alcohols/polyols show to increase the rate and amplitude of the 

observed fluctuations. Subsequently, the distance in some of the trajectories with glycerol, 

MPG, and ethylene glycol, appears to be increased throughout the simulation time of 200 

ns. In this context, distances in between 6-10 Å and above can be observed. 

When looking at the number of frames in which the distance between Ser Oγ and His Nε2 

are >3 Å, the proportion (fig. 35) appears to be highly solvent dependent. While the 

distance appears to be larger in the presence of sorbitol in 63 % of all frames, the 

proportion increases to 87 % in the case of MPG. Furthermore, the proportion shows to 

increase based on the size/hydrophobicity of the polyols. In this context, formulations with 

xylitol (67 %), erythritol (71 %), glycerol (75 %), and ethylene glycol (81 %) show to 

exhibit proportions in between. 
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Methanol shows to be an exception, as the average result illustrates a distance larger than 3 

Å in 74 % of the cases. However, the observed frequency and amplitude of the fluctuations 

appears to be different, when compared to rest. In this context, corresponding trajectories 

show to fluctuate in the range of 3-14 Å, however, more scarcely when compared to other 

solvents.  

When looking for the reason of the drastic increase in the distance between the Ser Oγ and 

His Nε2 in subtilisin protease systems with glycerol, MPG, and ethylene glycol, a changed 

orientation of the catalytic histidine (H64) side chain could be identified (fig. 36). While 

both histidine nitrogen’s appear to interact with the serine respectively aspartate in its 

native state, the histidine side chain appears to be flipped in the cause of some simulations. 

This change in orientation, shows to result in a loss of the interactions with the catalytic 

serine (Ser215) and later on with the aspartate (Asp32). Subsequently, the distance 

between the Ser Oγ and His Nε2 is significantly increased. 

In summary, the trajectories of the subtilisin protease with two bound calcium ions could 

be used to identify a possible reason for the observed decrease of proteolytic respectively 

autolytic activity in chapter 3.4.2 and 3.4.3 in the presence of smaller/hydrophobic 

alcohols/polyols. The distance between the Ser Oγ and His Nε2 appears to be affected by 

alcohols/polyols present in the formulations. Subsequently, smaller/hydrophobic residues 

have shown to promote a flipping of the histidine side chain, significantly increasing the 

distance between the catalytic residues. This is expected to interfere with the proteolytic 

activity of the subtilisin protease and shows the ability of polyols to mediate changes in the 

subtilisin structure that can affect the enzymes catalytic activity. The mechanism, leading 

to the observed changes is, however, yet to be discovered. 

 



Results & Discussion 

 
 110 

 

 

Figure 34: Distance between the Ser Oγ and His Nε2 atom in different subtilisin 

protease/alcohol/polyol systems with Ca2+ in and around the enzyme structure.  
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Figure 35: Relative number of frames [%], which exhibit a distance larger than >3 Å between 

Ser Oγ and His Nε2 in presence of Ca2+in and around the enzyme structure.  

 

 

 

Figure 36: Change in the orientation of the histidine side chain, observed for simulations with 

glycerol, MPG, and ethylene glycol. (A) Resembles the native active state, (B + C) illustrate the 

change in the histidine side chain orientation throughout the simulation. 

 

 

Calcium-Free Structure 

The calcium-free structure of the subtilisin protease shows a totally different picture in the 

conducted analysis. In contrast to the results of the calcium occupied structure, the distance 

between the Ser Oγ and the His Nε2 shows to significantly fluctuate independent of the 

present solvent (fig. 37). Subsequently, in the majority of the cases the distance shows to 

vary in the range from 3-12 Å. In contrast, to the observed histidine flipping in the 

subtilisin structure with bound calcium ions, the flipping is observed to be non-permanent. 
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Figure 37: Distance between the Ser Oγ and His Nε2 atom in different subtilisin 

protease/alcohol/polyol systems in absence of Ca2+. 
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Much more, the distance appears to fluctuate significantly in between the different states, 

which is represented by the increased amount of noise in the underlying data. 

Subsequently, the histidine side chain is observed to move erratically rather than targeted 

as in the presence of calcium. 

As a result, the average relative proportion of frames exhibiting a distance >3 Å shows 

similar results (fig. 38) for the different subtilisin protease/alcohol/systems. Consequently, 

on average the distance appears to be out of bounds in 87 % of the frames over all systems. 

This is the same result obtained for MPG with regard to the calcium bound structure.  

Subsequently, the results show that the distance between the Ser Oγ and His Nε2 appear to 

be significantly influenced in the absence of calcium in the subtilisin protease structure. 

However, the mechanism leading to the observed erratic change of distance between the 

Ser Oγ and His Nε2 is expected to be different. However, the effect on the proteolytic 

activity of the subtilisin protease could be the same. Therefore, the loss of both calcium 

ions is expected to similarly reduce the catalytic rate of the subtilisin protease as the 

polyols do in the active respectively calcium bound state. 

 

 

Figure 38: Relative number of frames [%], which exhibit a distance larger than >3 Å between 

Ser Oγ and His Nε2 in absence of Ca2+in and around the enzyme structure. 
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3.4.5 Discussion 
 

Subtilisins are one of the largest classes of serine proteases that are encoded in the 

genomes of all life forms, including viruses [230-234]. Bacterial subtilisins form the 

largest group and are normally associated with Gram-positive Bacillus or Chlostridium 

species [230, 235]. The majority have low substrate specificity and are secreted in the 

extracellular space to degrade proteins for defense and nutrition. Besides, less common 

intracellular forms show to be important for the degradation of intracellular proteins [54].  

Proteases preferentially recognize and then hydrolyze peptide bonds, of polypeptide 

substrates, based on the amino acids preceding and/or following the cleavage site [236]. 

This specificity for the substrate is mediated based on favorable interactions of the 

substrate amino acid side chains with the residues that make up the binding site. The broad 

specificity of subtilisins is mediated by a large, hydrophilic binding pocket, with a 

preference for aromatic or large non-polar substrate residues [237, 238]. However, 

subtilisin are not specific for a particular hydrophobic amino acid. Subsequently, the 

subtilisin protease structure itself provides a broad spectrum of potential cleavage sites for 

the protease itself. Thus, a high proportion of peptide fragments with varying length and 

quantity could be determined in the SEC and corresponding SDS-PAGE. Furthermore, 

released peptide chains are expected to partially retain secondary and tertiary structure 

motifs, which leads to the observed enthalpy changes during DSC. 

The process of substrate binding is defined by the active site and several smaller binding 

pockets (S), that interact with side chains of the substrate protein/peptide residues (P). The 

target bond for hydrolysis, is located in the center. Substrate residues upstream (N-

terminal) are termed P1-Pn, residues downstream (C-terminal) are referred to as P1’-Pn
’. 

While aspartate and histidine in the catalytic triad and the S2, S3, and S5 sub-sites are 

primarily involved in binding the N-terminal domain, serine and S1, S4, S6 are linked to the 

fixation of the C-terminal domain. S1 of subtilisin proteases, forms a large hydrophobic 

pocket accommodating non-polar residues located at P1, while S2 is in general a smaller 

pocket that accommodates smaller residues as alanine and proline. Consequently, the 

substrate accumulates in between the catalytic residues, bridging the interface and 

initiating the catalytic reaction [238].  

The used Suc-AAPF-pNA has shown to be a good substrate for many proteases in terms of 

Km/kcat. In its native state, AAPF is a white solid, which absorbs UV light at a wavelength 

of 315 nm. When cleaved, the pNA moetiy is released, which leads to increased 
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absorbance in the range of 405 nm. The low Km for most proteases is mediated by the 

comprised peptide chain. In this regard, the phenylalanine with its high hydrophobicity and 

the subsequent proline have shown to provide a high affinity with the P1 and P2 position in 

the active site of subtilisin proteases. The Km and Vmax in the conducted experiments had 

shown to significantly increase respectively decrease in the presence of different polyols. 

In this regard, proposed inhibition mechanism ranged from competitive, to uncompetitive, 

and non-competitive dependent on solvent/-concentration. In general, classical protease 

inhibitors interact with the enzyme structure in two major ways [239]. The first, is the 

irreversible trapping reaction, which is mediated by protease inhibitors of the serpine-, α2-

macroglobuline-, and balcovirus protein p35 inhibitor families [239]. These inhibitors are 

cleaved when interacting with the active site of proteases, triggering an irreversible 

conformational change. Subsequently, the active site is blocked and not further susceptible 

to substrate binding. The other mechanism observed, are protease inhibitors which act over 

a tight-binding reaction. These inhibitors have unique properties, mediated by an ultrahigh 

affinity, fast association to the target enzyme combined with extremely slow dissociation 

of the from the enzymes active site.  

Since polyols are structurally quite diverse to common protease inhibitors and up to today 

no such mechanism was proposed, structural changes mediated in the presence of polyols 

appear more likely to affect the proteolytic rate. This is also reflected by the various 

proposed inhibition mechanisms, which are known to be the result of interactions with 

protease domains, other than the active site. Furthermore, as discussed in chapter 3.2.5, 

polyols can have a considerable influence on the protein structure. While large/hydrophilic 

polyols tend to mediate a more compact folding of the enzyme structure, 

smaller/hydrophobic polyols have shown to promote an increase of the surface area, 

diameter, and loss of native contacts. Subsequently, flexibility and fluctuations of the 

enzyme structure are to be increased, which will further comprise defined domains and 

residues.  

The observed change in the distance of the Ser Oγ and His Nε2 in the presence of 

smaller/hydrophilic polyols, is expected to be the result of such changes. However, the 

specific reason respectively responsible mechanism for the observed histidine flipping has 

yet to be determined. Nonetheless, an increased distance between both residues is assumed 

to have a considerable effect on the proteolytic activity of the subtilisin protease and may 

thereby affect the enzyme long-term stability in a liquid formulation environment [226-

229]. In general, the conformation of the active site and binding pocket is highly conserved 
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and stable. The bound substrate, therefore, adapts to the given structure, which mediates 

the broad specificity of subtilisin proteases. When, however, the interface of the active site 

is destabilized, the flexibility of this region will increase, leading to an adaption of the 

enzyme to the substrate. Subsequently, the position of certain residues will be changed, 

leading to reduced or no catalytic activity.  

Reduced proteolytic activity, however, is believed to be just one essential component, to 

achieve an increased long-term stability of the subtilisin protease in liquid formulations. In 

the past, high long-term stability was shown to result from a complex interplay of thermal 

stability and proteolysis. In this context, it was shown that many proteins in their native 

compact conformation appear to be resistant to degradation [240-242]. This ability, is 

however, rapidly lost upon partial unfolding of the protein structure, leading to rapid 

degradation. Even though, high concentrations of MPG have illustrated to significantly 

reduce the proteolytic activity of the subtilisins protease, this effect appears to be 

counteracted by the observed destabilization of the enzyme structure. Nonetheless, 

proteases with a broad specificity can still attack proteins in their native conformation, 

especially if they can contain accessible loop regions that are flexible enough for cleavage. 

Subsequently, sorbitol appears to be no better than MPG at retaining the active state of the 

subtilisin protease, due to its lack of reducing the autolysis rate. Consequently, a middle 

way of both, represented by glycerol, showed to lead to the best result. Greatly retaining 

the native compact structure of the subtilisin protease, while at the same time reducing the 

impact of autolysis on the long-term stability. 
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3.5 Summary & Conclusion 
 

The stability of enzymes in liquid formulations is commonly monitored by determining the 

residual enzyme concentration after storage. Thereby, the effect of different additives on 

the long-term stability is to be assessed under conditions similar to the later application. 

However, based on the degree of stabilization and the native stability of the enzyme, this 

can take days, weeks, months or even years. Due to the rapid availability of the results, 

DSC measurements are regarded an alternative for testing the stabilizing effect of various 

additives on the basis of thermal stability. Unfortunately, depending on the enzyme, and 

especially for proteases, the results are rarely transferable to the conducted long-term 

stability studies.  

This lack of correlation can also be observed in the course of the experiments carried out 

with a subtilisin protease. In this context, DSC results appear to significantly deviate from 

the long-term storage test results. Subsequently, it could be shown that this methodology is 

only partially suitable for making predictions about the long-term stability of enzymes in 

liquid formulations. Moreover, results would have led to the false assumption that sorbitol 

provides a better long-term stability than glycerol or MPG. Despite the fact that glycerol 

achieved a significantly better result at moderate temperatures. 

The results, thereby highlight the need to consider other factors besides thermal stability 

when predicting the stabilizing effect of different additives. In this context, the calcium 

binding state was found to be insignificant for the observed differences between thermal 

stability and residual enzyme activity results. Conversely, a considerable influence of 

glycerol, sorbitol, and MPG on the proteolytic activity of the subtilisin protease could be 

demonstrated. In addition, the influence of the polyols on autolysis and subsequent 

interaction between thermal stability and autolysis could be shown. While the use of 

sorbitol was associated with a significant increase in thermal stability, MPG proved to be a 

potent inhibitor of autolysis. However, the lack of effect on the opposite mechanism led to 

a comparable long-term stability in the presence of both solvents. Consequently, the best 

long-term stability could be achieved with glycerol, which had shown to increase thermal 

stability and to limit degradation by autolysis. Therefore, the use of polyol combinations 

appears to be particularly promising in order to minimize the influence of both factors on 

the long-term stability as much as possible. 
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In addition, the use of MD simulations provided further insights, that are a useful 

complements/substitute to the DSC data. Not only do the results obtained allow prediction 

of the thermal stability based on different molecular descriptors, but also the cause and 

correlation of the polyol size/hydrophilicity/-phobicity with the reduced proteolytic activity 

could be determined. However, the exact mechanism causing the histidine flipping, as well 

as possible correlations with the proteolytic/autolysis rate, will be part of future 

investigations. Furthermore, these results could be of interest in the scope of protein 

engineering to specifically induce the inactivated state of the subtilisin protease in the 

storage medium. Upon actual use, and the associated dilution of the formulation 

environment, the effect should be reversed, and the full activity restored. This would open 

the door to inhibitor free protease formulations, which would significantly reduce costs and 

increase the long-term stability of proteases in liquid formulations. Nevertheless, the 

transferability of the results to other proteases/enzymes and additives has yet to be verified.  

In summary, the results have highlighted the complex relationship between several factors 

on the long-term stability of a subtilisin protease. This emphasis the need to take other 

factors into account, when predicting storage stability of enzyme in liquid formulations. 

Particularly, in the case of proteases, it is necessary to consider not only the influence of 

the solvent on thermal stability, but also the influence on activity. Due to the incredible 

diversity of enzymes and the associated structures and catalytic mechanisms, it remains to 

be seen whether the applicability is limited to a single, a few, or a group of enzymes. 
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3.6 Mid Infrared Spectroscopy for Enzyme and Solvent 

Quantification in Liquid Enzyme Formulations 
 

Photometric assays are widely used for the quantification of enzymes in biochemical 

research and clinical diagnostics. These assays rely on measuring the absorbance or 

fluorescence of a product or substrate that is released as part of an enzymatic reaction. The 

amount of product or substrate consumed or produced is in many cases directly 

proportional to enzyme activity. This in turn, allows the quantification of the enzyme 

concentration. 

While photometric assays for enzyme quantification are commonly used, they do have 

several limitations. The presence of interfering substances in the sample, as salts, 

detergents, or other proteins, can negatively affect the accuracy of the assay by binding to 

assay reagents or altering the enzyme activity. Further, the range of enzyme activity that 

can be measured is limited, whereby high enzyme concentrations often require dilutions, to 

stay within the linear range of the assay. This can result in loss of accuracy at higher 

concentrations or underestimation of enzyme activity at lower concentrations. Besides, 

depending on the enzyme being studied and the specific assay used, the cost of substrates 

and buffers can greatly vary and be a significant expense. 

Following, several experiments were performed to evaluate the use of mid-infrared 

spectroscopy for enzyme and solvent quantification in varying enzyme/polyol formulation 

environments. In this regard spectra of the formulations were acquired with the mid-

infrared analyzer (MIRA) and evaluated with multivariate statistics. For this, different 

formulations with varying concentrations of 1,2-propanediol (MPG) and a subtilisin 

protease respectively endocellulase were formulated and analyzed. As a result, different 

principal component regression (PCR) and partial least squares (PLS) models for the 

prediction of the enzyme and solvent concentration of different formulations were 

generated and tested. 

 

3.6.1 Subtilisin Protease/MPG Formulations for Solvent Concentration 

Prediction 
 

First, the capability of the MIRA technology in combination with multivariate analysis, to 

quantify the solvent concentration of different enzyme formulations containing the 

subtilisin protease was determined. Based on a design of experiment (DoE) (tab. 7),  
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Table 7: DoE setup used to create the PCR and PLS model for enzyme and solvent concentration 

prediction of different subtilisin protease/MPG formulations. 
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different formulations with three MPG and five enzyme concentrations were prepared (n= 

34). Solvent concentrations were calculated based on the weight (wt%) of the solvent 

added to the formulations. Following, spectra of all samples were acquired using MIRA 

and the obtained spectra were analyzed by multivariate data analysis. MIRA spectra 

consisted of 1101 variables in a range of 929-3051 cm-1. 

The spectra (fig. 39) show significant differences based on enzyme and solvent 

concentration. Especially, in the range from 1500-1750 cm-1 and 2500-3000 cm-1 an 

organization of the spectra according to the three underlying solvent concentrations is 

visible. In general, higher concentrations of MPG seem to be associated with increased 

absorption, showing the distribution of the solvent bands in all MIRA spectra. Besides, a 

smaller variance of the three groups, especially in the range of 1500-1750 cm-1 can be 

observed. The visible variance into five-line shapes, in this region, suggests a connection 

with the enzyme concentration in the samples. 

 

 

Figure 39: Spectra of different subtilisin protease formulations with 1,2-propanediol (MPG) 

based on the performed DoE.  

 

 

Preprocessing 

Prior to the statistical analyses and model creation, MIRA-spectra were preprocessed by 

applying the Savitzky-Golay (SavGol) smoothing and differentiation filter (fig. 40A). A 

SavGol filter is commonly used to reduce the noise and baseline variations in spectra, 

while preserving the spectral features. This achieved by fitting a polynomial function to a 

small segment of the signal, and then using the coefficients of the polynomial to estimate 
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the smoothened value of the signal at the center of the window. The process is repeated for 

each point in the signal, resulting in a smoothened signal that approximates the underlying 

trend of the data. In this context, a SavGol-filter using a 5th order polynomial and 2nd order 

derivative were applied. 

Further, spectral data was auto scaled (fig. 40B). Thereby, the variability in the spectral 

data, caused by regions with higher intensity than others, was to be reduced. The purpose 

of this normalization is to remove any systematic variations in the data and ensure that the 

data is on the same scale giving the same weight to all variables in the MIRA spectra, 

making it easier to compare and analyze different features in the dataset. Autoscaling 

transforms the data by subtracting the mean value of each feature from the original values 

and then dividing it by the standard deviation of the feature. The mean of each feature is 

thereby zero, and the standard deviation is one, which mean that the transformed data is 

centered around zero and has a similar scale for each feature. 

 

 

Figure 40: Preprocessing of MIRA-spectra with varying subtilisin protease/MPG formulations. 

(A) Savitzky-Golay smoothening and differentiation (5th order polynomial;2nd derivative); (B) 

Autoscaling. 

 

 

Hierarchical Clustering 

Hierarchical cluster analysis is a multivariate data analysis technique used to group similar 

observations of variables into clusters. It is therefore suitable to provide a first overview 

about the data similarities and differences. In the underlying analysis the mathematical 

distance between the variables was determined based on the Euclidian distance algorithm. 

It determines the distance between all points in Euclidian space, with a fixed number of 

dimensions. The algorithm then calculates the distance between all points by taking the 
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square root of the sum of the square differences between their corresponding features in 

each dimension. The Euclidean distance algorithm thereby defines how the clusters are 

formed, while the linkage method specifies the rule for how the distance between the 

clusters is calculated. 

In the present analysis, the linkage method by Joe H. Ward Jr. [243], was used, which 

minimizes the variance within each cluster. This is achieved by treating each data point as 

its own cluster. Subsequently, the algorithm iteratively merges the two closest clusters 

together, which will result in the smallest increase in total variance within the resulting 

cluster. The distance between two clusters is defined as the increase in the sum of squared 

distances between the data points in the merged cluster and their respective cluster 

centroids. The result is represented visually as a dendrogram.  

The dendrogram of the analyzed samples (fig. 41) exhibits three major clusters, which can 

be attributed to the three different solvent concentrations of the DoE samples with 10, 30, 

and 50 wt% MPG. While the purple cluster represents the samples with 10 wt% MPG, the 

blue/green cluster is composed of samples with 30 wt% MPG and the yellow cluster of 

samples with 50 wt% solvent. 

 

 

Figure 41: Hierarchical cluster analysis of preprocessed MIRA spectra of different subtilisin 

protease/MPG formulations. The three colored clusters are composed of samples with a similar 

MPG concentration: purple= 10 wt% MPG, blue/green= 30 wt% MPG, and yellow= 50 wt% 

MPG. Subcluster are composed of samples with a similar enzyme concentration.  
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Furthermore, additional subclusters are visible, which represent the different enzyme 

concentrations. In general, the three clusters with different solvent concentrations are 

composed of additional subclusters comprising samples with similar enzyme 

concentration. 

Hierarchical clustering is often used prior to more sophisticated multivariate statistical 

approaches to identify structures and patterns in the underlying data. In this regard, the 

obtained dendrogram illustrates the information contained within the spectra, retrieved 

based on the mathematical distance and linkage method used. The dendrogram illustrates 

the differences between the samples, resulting from different solvent concentrations, but 

also based on the inherent enzyme concentration. Following approaches, were aimed at 

extracting this information and using it to predict enzyme and solvent concentration based 

on the variability of this properties contained in the spectra. 

 

Principal Component Analysis (PCA) 

The hierarchical clustering analysis had identified different clusters based on the solvent 

concentration of the samples. Besides, smaller subclusters were visible which contained 

samples with similar enzyme concentrations. To reduce the dimensionality of the data and 

identify the origin of the variability in the spectra, principal component analysis (PCA) was 

applied to the spectral data. The goal of PCA is to find a new set of orthogonal variables, 

principal components (PCs), which are linear combinations of the original variables and 

capture the majority of the variance in the underlying data. 

 

 

Figure 42: PCA scree plot with the explained and cumulative variance of the underlying dataset  
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The determined scree plot (fig. 42) illustrates the percentage of variance in the original 

dataset, which is explained by each of the PCs. The explained variance of a PC represents 

the amount of variability in the original data that can be attributed to that component. For 

the given data, PC1 shows to explain 84.91 % and PC2 8.25 % of the variance of the 

original data set. Already with 3 PCs, the PCA model shows to capture more than 99 % of 

the variance. The high proportion of PC1 on the total variability, suggests that the obtained 

spectra have a strong underlying structure or pattern assigned to this component. 

The PCA scores plot (fig. 43), further adds to this observation by visualizing the 

relationship of the variability of the samples according to the respective principal 

components. Each data point represents a sample of the data, which is plotted based on its 

score on the selected PC. Based on the values of the PC1 scores it can be assessed that the 

variance captured, relates to the solvent concentration. This is illustrated by the fact, that 

samples with a similar MPG concentration have the same scores values for PC1. Further, 

PC2 illustrates a tendency to separate the samples according to the present enzyme 

concentration. Consequently, datapoints with a similar solvent concentration were 

subdivided in five groups according to PC2. However, the five groups illustrate a varying 

spread and shift in between the different concentrations. Thereby, it can be assumed, that 

the variability of PC2 is not due to the enzyme concentration alone. 

 

 

Figure 43: PCA scores plot for the first two PCs colored according to the (A) solvent and (B) 

enzyme concentration of the subtilisin protease/polyol formulations.  

 

To understand the cause for this separation, the loadings plot (fig. 44) can provide 

additional information. A PCA loadings plot, can be visualized, to illustrate the 

contribution of different variables to the principal components in a data set. It shows the 
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correlation between variables and PCs, allowing one to identify which variables influence 

the components the most. For better visualization, the mean IR spectra was colored 

according to the loading’s values of PC1 and PC2. These plots, illustrate the contribution 

of the variables to the separation of the samples and their role during PCA model creation. 

Negative scores values correlate with negative loadings values (fig. 44; red) and positive 

scores values correlate with positive loading values (fig. 44; blue). In summary, a negative 

scores value indicates that the variable is less likely to be associated with the PC, than a 

variable with a high loadings value. 

Since high positive and negative loadings indicate a positive respectively negative 

correlation between a variable and a principal component, the contribution of the solvent to 

the overall variability seems to be present in the whole spectrum, as seem by initial 

assumptions. In addition, the high magnitude of the loadings suggests a strong relationship 

of these variables with PC1. Nevertheless, some of the variables, especially with a 

wavelength in the region from 1500-1750 cm-1 show no contribution at all to the first PC. 

For protein samples this region is of special interest, as it comprises the amide I and II 

bands, which are the major signals of the protein infrared spectrum [244]. In the case of 

PC2, especially these regions show a strong contribution to the overall variability, showing 

a high positive and negative contribution.  

 

 

Figure 44: Mean IR spectra colored according to the PCA loadings values. (A) PC1 and (B) 

PC2.  

 

Even though, this fact could lead to the assumption that the variability encoded by PC2 is 

due to the different enzyme concentrations, it could be seen that several other variables 

spread over the spectrum are comprised by PC2. Furthermore, several of these regions are 
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adjacent or overlapping with regions, which show a high correlation with PC1. Therefore, 

from a chemical perspective, it could be assumed that PC2 does not only cover the 

variability caused by different enzyme concentrations, but also by other substances present 

in the formulations. 

 

Principle Component Regression (PCR) for Solvent Concentration Prediction 

Since the solvent concentration shows to be strongly correlated with the overall variability 

of PC1, a model for the prediction of the solvent concentration in different subtilisin 

protease formulations was developed using principal component regression (PCR). The 

goal of PCR is to predict a response variable based on an unsupervised method and a set of 

predictor variables by reducing the dimensionality of the predictor variables through PCA 

and then using the principal components as predictors in a regression model. Thereby, 

multicollinearity and noise, in the underlying data, are to be prevented respectively 

reduced. The use of PCA transformation, makes the PCR an unsupervised approach, 

meaning that it does not consider the target variable when determining the PCs. 

In order to train the model, the DoE dataset was split in training (n= 23) and test dataset 

(n= 11). Following a PCR model was to be created for solvent concentration prediction, 

based on the MIRA-spectra. Since PC1 has shown to describe the variability caused by the 

three different solvent concentrations, the model was created using PC1 only. The PCR 

model (fig. 45), based on the training dataset, exhibits a high accuracy with regard to the 

obtained calibration (R2= 0.999; RMSE= 0.24; bias= 1.0*10-15) and cross validation (R2= 

0.999; RMSE= 0.30; bias= 0.0002) results. Furthermore, the prediction of the “unknow” 

solvent concentrations of the test data, returns results with a similarly high accuracy (R2= 

0.998; RMSE= 0.42; bias= 0.11). 

The predicted results based on the created PCR model demonstrate a high accuracy for the 

prediction of the solvent concentration of different subtilisin protease/MPG formulations. 

Furthermore, it could be demonstrated that the solvent concentration of different samples 

can be predicted based on a mid-infrared spectrum using an unsupervised PCR model. The 

high quality of the MIRA spectra shows to be suitable for model creation, returning highly 

accurate values for validation and cross-validation. 
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Figure 45: Calibration, cross-validation, and prediction results for the generated PCR model for 

solvent concentration prediction of different subtilisin protease/MPG formulations. 

 

 

Partial Least Squares (PLS) Analysis for Solvent Concentration Prediction 

Besides using a PCR model to predict the solvent concentration in different subtilisin 

protease/MPG formulations a partial least squares model (PLS) was generated. In contrast 

to the unsupervised PCR, PLS is trained on a set of predictor variables (X-variables) and 

corresponding response variables (Y-variables), which makes it a supervised approach. 

Following, the PLS model can be used to predict the value of the response variables for 

unknown samples based on their predictor variable values. The goal of PLS is to find a set 

of latent variables, so called components, that explain the maximum amount of variance in 

both the predictor and response variable. These components are found by projecting the 

data onto a new set of orthogonal axes, which derive from linear combinations of the 

original predictor and response variable.  

In order to determine a reasonable number of PLS components for the prediction of the 

solvent concentration, the root mean square error (fig. 46) of the cross validation is used. 

For the conducted experiment, one PLS component, shows to be sufficient to obtain 

accurate results. The cross-validation exhibits an RMSE 0.25 with the first PLS component 

for the used test dataset. 
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Figure 46: Root mean square error (RMSE) of the cross-validation results with increasing 

number of PLS components for the solvent concentration prediction of different subtilisin 

protease/MPG formulations. 

 

The X-scores plot (fig. 47) for the first two PLS components illustrates a similar picture as 

the scores from PCA/PCR. The X-scores for the first PLS component are grouped 

according to the MPG concentration of the samples. Similar, the second PLS component 

shows a grouping of the samples according to the five different enzyme concentrations.  

 

 

Figure 47: PLS component 1 x PLS component 2 plot of the PLS model for the whole DoE 

dataset. Samples are colored according to (A) the MPG and (B) enzyme concentration present in 

the samples according to the DoE. 

 

For the determined PLS model, the variable of importance in projection scores (VIPs) were 

determined to assess the importance of the X-variables in explaining the variation in the Y-

variable. The VIP score for each X-variable is calculated by summing the squares of the 

product of the loadings and the amount of variance explained by each component. 
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Thereby, the VIPs can be used to rank the X-variables in order of importance, with higher 

VIP scores indicating greater importance. Subsequently, these variables can be used to 

further optimize the model. 

 

 

Figure 48: VIPs for the created PLS model to predict the (A) solvent concentration of different 

subtilisin protease/MPG formulations. In comparison the VIPs gaining relevance when predicting 

(B) the enzyme concentration. 

 

In the shown case (fig. 48), VIPs were calculated, and the average IR spectrum of the DoE 

was colored according to its values. The VIPs for the solvent concentration prediction are 

distributed over the whole spectrum and show a high level of importance of almost all 

variables. As before, minor important regions are scarcely scattered along the spectrum and 

seemed to accumulate in the region from 1500-1750 cm-1. This region is known to 

comprise MIR relevant signals for proteins as the amide I and II band [171]. This region 

gains significant importance when exchanging the solvent for the enzyme concentration as 

predictor variable. In this case, the importance of other variables is significantly decreased 

and the variables in the region from 1500-1750 cm-1 gain importance. 

To train and test the PLS model, the DoE data set was again split into a training (n= 23) 

and test dataset (n= 11). Based on the generated model, the solvent concentration of the 

different subtilisin protease/polyol formulations in the test dataset was determined. As the 

first PLS component comprises the variance related to the solvent concentrations of the 

DoE, the model was created using one PLS component only. Similar to the PCR model the 

generated PLS model (fig. 49) exhibits a high accuracy for the solvent concentration 

predictions, with regard to the calibration (R2= 0.999; RMSE= 0.24; bias= 3.01*10-15) and 

cross validation (R2= 0.999; RMSE= 0.30; bias= 0.001) results. Further, the predicted 
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results (R2= 0.999; RMSE= 0.33; bias= 0.08) for the solvent concentrations of the test 

dataset show to exceed the already highly accurate results from the PCR model.  

 

 

Figure 49: Calibration, cross-validation, and prediction results for the generated PLS model for 

solvent concentration prediction of different subtilisin protease/MPG formulations. 

 

Therefore, it could be shown that the generated PLS model is able to predict the solvent 

concentration of different subtilisin protease/polyol formulations with a high accuracy, 

based on the underlying MIRA-spectra. PCR and PLS model both exhibit a high accuracy 

for the prediction of the solvent concentration. Consequently, both approaches have shown 

to be suitable for the intended use. 

 

3.6.2 Subtilisin Protease/MPG Formulations for Enzyme Concentration 

Prediction 
 

After the solvent concentration prediction had turned out to be consistent and highly 

accurate, a second model to predict the enzyme concentration of different subtilisin 

protease/MPG formulations was developed. In this regard, the DoE samples from chapter 

3.5.1 were used. As a reference, the enzyme concentration of the samples was determined 

with the AAPF assay using the automated photometer Gallery™ system. In parallel, PCR 

and PLS models were created in order to predict the inherent active enzyme content based 

on the MIRA-spectra. 
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Solvent Signal Removal from the MIRA-Spectra 

Prior to model creation, however, the influence of the solvent was to be diminished in the 

obtained spectra, to prevent the results being influenced by the underlying solvent signal. 

The PCA/PLS analysis in chapter 3.5.1 has shown, that most of the variability as well as 

most of the variables of the spectrum have a high correlation with the solvent 

concentration. Therefore, the idea was, to reduce the influence caused by the solvent, by 

predicting and subtracting an artificial solvent spectrum from the subtilisin protease/MPG 

MIRA results. Thereby, a possible cross correlation/multicollinearity in between the 

enzyme and solvent concentrations, was to be prevented. 

To reduce the variability and the influence caused be the solvent on the prediction of the 

enzyme concentration, first, a PLS model for the prediction of the solvent concentration 

was generated based on the approach in chapter 3.5.1. The created model comprised all 

samples from the DoE. Following, the model was generated using the first PLS component 

describing 82.41 % of the total variance of the dataset (fig. 50). The overall accuracy 

shows to be high, for the calibration (R2= 0.999; RMSE= 0.27; bias= -9.93*10-16) and 

cross validation (R2= 0.999; RMSE= 0.24; bias= 0.010).  

 

 

Figure 50: PLS-Model for solvent concentration prediction of subtilisin protease/MPG 

formulations in order to diminish the influence of the solvent on the overall variability of the 

spectra. 

 

In order to remove the solvent signal from the MIRA-spectra of the DoE, several enzyme-

free solvent spectra of 1,2-propanediol (MPG) were acquired. In this context, samples in a 

concentration range from 0 wt% to 80 wt% MPG, with an interval of 10 wt%, were 
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generated in duplicates. The solvent spectra (fig. 51A) show a clear separation according to 

their inherent solvent concentration. Especially, in the region from 1500-1750 cm-1 and 

2500-3000 cm-1 eight distinct groups of spectra can be observed. In the cause of this, 

absorbance values show to increase in the presence of elevated solvent concentrations. 

Following, an average spectrum for each MPG concentration was calculated based on the 

duplicates. Since the absorbance of neighboring MPG concentrations show a close to linear 

correlation (fig. 51B), spectra of any concentration in between the acquired can be 

calculated. With larger concentration differences, however, linearity is lost, which is why 

the difference has to be kept as small as possible. This non-linear behavior of the MIRA 

spectra is expected to be the result of unknown corrections applied by the device. One 

plausible explanation could be polynomial baseline corrections, which is however hard to 

assess since this is inherent to the nature of the MIRA results.  

Consequently, based on the predicted concentrations for the DoE samples, obtained from 

the calibration results (fig. 50), an artificial solvent spectrum for each sample was 

generated and subtracted from their subtilisin protease/MPG counterpart.  

 

 

Figure 51: Generation of artificial solvent spectra of different concentrations based on (A) 

spectra with different MPG concentrations 10-80 wt%. Due to (B) the linear correlation of the 

absorbance values of neighboring concentrations the spectrum of any MPG concentration in 

between can be calculated. When increasing the distance between the concentrations, the linear 

correlation is lost. 

 

The resulting spectra (fig. 52), show a high similarity with a native protein MIR-spectra, 

comprising several characteristic protein bands. The amide I is by far the most intense 

absorption band, which is found in the range between 1600 and 1700 cm.-1 [171, 245]. The 

resulting band is formed due to the stretching vibrations of the C=O (70-85 %) and C-N 
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(10-20 %) groups of the amide bonds. Further, the amide II band can be determined in the 

expected range in between 1480 to 1580 cm-1. Chemically, the amide II band is more 

complex than the amide I. The visible band is the result of in-plane N-H bending (40-60 % 

potential energy), C-N (18-40 %) and the C-C (≈10 %) stretching vibrations. Besides these 

two dominant bands, several smaller bands are visible, which cannot be clearly assigned to 

additional amide related molecular vibrations. Signals represented by the amide III and IV 

bands are in general very complex [171, 246], since the underlying signal is dependent on 

the force field in the respective environment created by individual side chains and 

hydrogen bonds of proteins. Therefore, the pattern of the individual bands is specific for 

different proteins, which makes the clear assignment of additional bands highly complex. 

 

 

Figure 52: Resulting MIRA-spectra after solvent spectra subtraction. The resulting spectra 

illustrate the morphology of a native protein MIR-spectra. Amide I (1600-1700 cm-1) and II band 

(1480-1580 cm-1), as well as several additional bands resulting from the protein structure can be 

identified.  

 

 

Preprocessing 

After the solvent spectra had been subtracted from the subtilisin protease/MPG spectra, the 

resulting “solvent-free” spectra were used to generate PCR/PLS models for enzyme 

concentration prediction. To further increase the prediction accuracy and prevent non-

protein regions of the spectrum influencing the prediction results, the range of the used 

spectra was reduced (fig. 53A) to the spectral range in between 1461-1700 cm-1. Thereby, 

the number of variables was reduced from 1101 to 125 datapoints. The resulting spectral 

range was expected to comprise the enzyme related signals, namely the amide I and II 
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band. The restricted range exhibits five different groups of spectra, based on the five 

different enzyme concentrations of the DoE.  

 

 

Figure 53: Preprocessing of the (A) reduced spectral range after solvent subtraction. (B) SavGol-

filtering (5th order polynomial; 2nd derivative) and (C) autoscaling was applied. 

 

Following, the range selection in the spectra was further preprocessed by applying a 

SavGol-filter (fig. 53B)  and by autoscaling (fig. 53C)  the dataset. With regard to the 

SavGol-filter, a 5th order polynomial was used for smoothening and 2nd order derivative to 

remove noise and possible offsets in the spectra. Besides, autoscaling, was applied to 

remove any systematic variations in the data and ensure that the data is on the same scale, 

making it easier to compare and analyze different features in the dataset.  

 

Hierarchical Clustering 

The subsequent hierarchical clustering analysis (fig. 54), based on the Euclidean distance 

algorithm and Ward linkage method, revealed three major clusters, which comprise 

samples based on the different enzyme concentrations. While the orange cluster contains 

samples with enzyme concentrations of 38.75 and 50 g/L, the green cluster comprises 

samples with an enzyme concentration of 27.5 g/L. At last, the red cluster is composed of 

the two lowest enzyme concentrations of 5 and 16.25 g/L. The three main clusters are 

further subdivided according to the solvent concentrations of the respective samples.  
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Figure 54: Dendrogram of the hierarchical cluster analysis performed with the resulting 

subtilisin protease spectra after subtraction. The orange cluster contains samples with an enzyme 

concentration of 50 and 38.75 g/L, green 27.5 g/L, and red 5 and 16.25 g/L. In addition, samples 

inside the different enzyme concentration clusters were assigned according to the solvent 

concentration present in the sample. 

 

Subsequently, the hierarchical cluster analysis led to the assumption, that by subtracting 

the solvent spectra the variability of the solvent had been diminished but not totally 

removed. Therefore, samples were primarily clustered according to the inherent enzyme 

concentration and secondly according to the solvent concentration.  

 

Principal Component Analysis (PCA) 

To reduce the dimensionality of the underlying dataset, in context of enzyme concentration 

prediction, a PCA analysis was conducted. The resulting scree plot (fig. 55) visualizes the 

comprised variability by each individual PC. With regard to the spectral data after 

subtraction, PC1 accounts for 90.37 % of the total variance. Already with PC2 99.58 % (+ 

9.04 %) of the total variability is covered. Consequently, following PCs covered only 

minor proportions of additional variability. 
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Figure 55: PCA scree plot with the explained and cumulative variance of the underlying dataset 

after solvent spectra subtraction. 

 

The scores plot (fig. 56) led to additional insights on the roots of the variability explained 

by PC1. In contrast, to the original spectra in chapter 3.5.1, where PC1 scores illustrate a 

grouping according to the solvent concentration, scores values of PC1 after subtraction, 

show a tendency to correlate with the enzyme concentration values. Subsequently, scores 

values show five distinct groups based on their PC1 score. From left to right, the five 

groups can be assigned to the different enzyme concentrations ranging from 5-50 g/L. 

Further, score values of PC2 show to form three different groups based on the different 

solvent concentrations of the samples.  

 

 

Figure 56: PCA scores plot colored according to the (A) solvent and (B) enzyme concentration of 

the subtilisin protease/MPG formulations. 
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This, together with the results from the hierarchical clustering, strengthened the 

assumption that the subtraction approach had not totally removed the influence of the 

solvent on the spectrum. Furthermore, the subtraction method seems to have varying 

degree of success based on the underlying enzyme concentration of the samples. While 

scores with a high enzyme concentration appear to be extensively distinct, lower enzyme 

concentrations were only slightly spread with regard to PC2.  

Based on the loadings plot (fig. 57), variables with a strong correlation to the variability 

comprised by PC1, can be determined over the full range of the restricted area of the 

spectrum. With the exception of a small region in between both bands, the majority of the 

variables show a strong correlation with PC1. The maximum intensity of both bands shows 

a strong negative correlation, while the body of the bands are strongly 

positively/negatively correlated. The loadings of PC2 in turn, are in most cases negatively 

correlated with some few exceptions. However, the region between both bands shows a 

strong positive correlation with the variability comprised by PC2. 

 

 

Figure 57: Mean IR of the used spectral region colored according to PCA loadings for (A) PC1 

and (B) PC2.  

 

 

Principle Component Regression (PCR) for Enzyme Concentration Prediction 

Since the PCA analysis has shown a tendency for a separation according to the enzyme 

concentration based on PC1, a principal component regression (PCR) was undergone. 

Thereby, the enzyme concentration of different subtilisin protease/MPG formulations from 

the DoE was to be predicted. For this the DoE data was again split in a training dataset (n= 

23) and a test dataset (n= 11) and the solvent content in the spectra was diminished based 
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on the described subtraction approach. Following, a PCR model was created based on the 

test dataset, using one PC only. To validate the predicted results, the agreement with 

experimentally determined enzyme concentrations based on the AAPF assay was verified. 

A PCR model with one principal component shows to be sufficient to achieve a high 

accuracy, with regard to the prediction of the enzyme concentration of the test dataset. The 

obtained results (fig. 58) for the calibration (R2= 0.997; RMSE= 0.74; bias= 1.62*10-15) 

and cross validation (R2= 0.996; RMSE= 0.95; bias= 0.05) showed to overlap with an ideal 

correlation. In general, calibration and cross-validation yield a high accuracy respectively 

small offsets for the linear regression coefficient (R2), root mean square error (RMSE), and 

bias. Consequently, the PCR model returned predicted enzyme concentrations with a high 

accuracy and low error for the test dataset (R2= 0.998; RMSE= 0.68; bias= 0.28). 

Besides a PCR model (fig. 59) was created to predict the solvent concentration based on 

the restricted spectrum. Thereby, a possible cross correlation/multicollinearity between 

enzyme and solvent concentration prediction was to be excluded. The PCR model was 

created by using PC1 only. As can be observed, the variability comprised by PC1 is not 

able to describe the inherent solvent concentration of the underlying samples. The 

generated model shows a significant discrepancy between the ideal and actual correlation. 

Subsequently, R2 exhibits values close to zero and the RMSE shows a high root mean 

square error in between 14.77, for the predicted and 28.39 for the cross-validation results. 

In addition, the bias of the predicted values shows an offset of -7.83. 

 

 

Figure 58: Calibration, cross-validation, and prediction results for the generated PCR model for 

enzyme concentration prediction based on the magnified spectral range. 
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Figure 59: Calibration, cross-validation, and prediction results for the generated PCR model for 

solvent concentration prediction based on the magnified spectral range. 

 

The established workflow has shown to significantly reduce the effect caused by the 

solvent in the underlying MIRA-spectra. The combination of solvent subtraction and 

restriction of the spectral range to protein associated regions, has shown to lead to highly 

accurate enzyme concentration predictions, with regard to the created PCR model. Overall, 

the created PCR model has shown to be reliable and consistent way to determine the 

enzyme concentration of different subtilisin protease/MPG formulations. 

 

Partial Least Squares (PLS) Analysis for Enzyme Concentration Prediction 

In addition to the unsupervised PCR model for enzyme concentration prediction, a 

supervised PLS model was created. Analogous to the PCR model, the DoE data with the 

solvent signal removed was split in a training (n= 23) and test dataset (n= 11). To be able 

to compare both results, the PLS model was generated using a single PLS component. In 

addition, a solvent model was generated to monitor the capability of the first PLS 

component to predict the solvent concentration. The determined enzyme concentrations, 

based on the AAPF assay, were used to create the model and to evaluate the predicted 

concentrations of the test dataset. 

To determine the influence of the number of PLS components on the accuracy of the 

created model (fig. 60), the RMSE of the cross-validation results were determined. 

Already, with a single component a high accuracy (RMSE= 0.87) of the model can be 

determined. By further increasing the number of PLS component up to three, the RMSE 

can be reduced to ≈0.51. However, to retain the comparability with the PCR results the 
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PLS model was created based on the first PLS component only. Furthermore, increasing 

the number of PLS components to more than three is expected to capture noise and thereby 

to overfit the model. 

 

 

Figure 60: Root mean square error (RMSE) of the cross-validation with increasing number of 

PLS components. 

 

 

Figure 61: X-scores of the PLS model for the whole DoE dataset. X-scores are colored according 

to (A) the MPG and (B) enzyme concentration. 

 

The X-scores (fig. 61) for the samples reveal a similar tendency as observed in the PCA. 

For the first PLS component the scores appear to be grouped according to their inherent 

enzyme concentration. Consequently, five different groups for the enzyme concentrations 

in between 5-50 g/L can be observed. Further, based on the scores for the second PLS 

component, samples appear to form groups according to the solvent concentration of the 
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samples. Therefore, based on the coloring according to the solvent concentration three 

groups could be identified. 

When looking at the VIPs (fig. 62), of the created PLS model, the majority of the variables, 

in the range of the used IR spectrum (1461-1700 cm-1), show a high influence (above 1) on 

the model creation. In general, VIPs are used to measure the importance of each variable in 

predicting the response variable. Since enzyme concentration is expected to correlate with 

the intensity of the amide I and II, chemically, a high importance of this region is expected. 

Subsequently, the majority of the variables show to contribute to the explained variance of 

the PLS model. Since VIP values for the different variables appear to be similar, most 

variables in the selected range appear to be equally important. 

 

 

Figure 62: VIPs fort he created PLS model to predict the enzyme concentration. 

 

The created PLS model (fig. 63) exhibits a high accuracy for calibration (R2= 0.997; 

RMSE= 0.75; bias= 1.78*10-15), cross-validation (R2= 0.996; RMSE= 0.87; bias= 0.69) 

and prediction (R2= 0.57; RMSE= 0.69; bias= 0.30). In this regard, the PLS shows a 

similar accuracy as the generated PCR model. 

Besides, the capability of the selected region to predict the solvent concentration was 

evaluated. As could be shown (fig. 64) based on the first PLS component, it is still possible 

to predict the solvent concentration of the different samples, however the accuracy of 

calibration (R2= 0.83; RMSE= 6.56; bias= 2.08*10-15), cross-validation (R2= 0.57; RMSE= 

10.40; bias= 1.37) and predictions (R2= 0.46; RMSE= 9.06; bias= -2.64) are diminished. 

Especially, the endpoint samples exhibit a broad spread and thereby a discrepancy in 
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between actual and calibration results. Subsequently, actual, and ideal correlation show a 

certain offset at minima and maxima. 

 

 

Figure 63: Calibration, cross-validation, and prediction results for the generated PLS model for 

enzyme concentration prediction of different subtilisin protease/polyol formulations after solvent 

subtraction. The generated PLS model was generated based on PLS1 only. 

 

 

Figure 64: Calibration, cross-validation, and prediction results for the generated PCR model for 

solvent concentration prediction of different subtilisin protease/polyol formulations after solvent 

subtraction. The generated PLS model was generated on PLS1 only.  

 

Overall, however, the conducted experiment has shown that based on MIRA-spectra the 

active enzyme content of different subtilisin protease/MPG formulations can be predicted 

with a high accuracy. The significant reduction of the solvent signal in the spectra, not only 

greatly diminished the influence of the variability caused by the different solvent 
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concentrations, but also added further insights on the behavior of the underlying protein 

signals in the spectrum, which have not been visible before. The conducted workflow has 

shown to be suitable in this regard, however, was not able to totally remove the influence 

of the solvent. In this context, further improvements appear to be necessary to further 

reduce the influence of the solvent on enzyme concentration predictions in subtilisin 

protease/polyol formulations. 

 

3.6.3 Evaluation of Solvent and Enzyme Concentration Prediction 

Models  
 

In order to evaluate the ability of the created PLS models to monitor the solvent and 

enzyme concentration in the course of long-term storage tests, additional samples were 

generated and tested. Thereby, the applicability of the developed workflow in the context 

of a practical application was to be evaluated. For this, several subtilisin protease/MPG 

formulations were stored over a defined period of time. Subsequently, the solvent and 

enzyme concentration of the samples was predicted, based on the PLS models created in 

chapter 3.5.1 and 3.5.2. Following, prediction results were compared to the calculated 

solvent concentrations and measured enzyme concentrations determined based on the 

AAPF assay on the Gallery™ system. 

 

Solvent and Enzyme Concentration of Stored Subtilisin Protease Samples 

First, the enzyme and solvent concentration of different subtilisin protease/MPG 

formulations after storage was to be determined. For this, different formulations with a 

starting concentration of ≈50 g/L active enzyme were generated, with MPG concentrations 

in the range of 10-53 wt% (interval 10 wt% (last 13 wt%)). All samples were prepared in 

duplicates. Following, the samples (n= 20) were stored at 45 °C over a period of 3 days in 

order to allow enzyme unfolding and degradation to progress. Thereafter, the active 

enzyme concentration of each sample, at timepoint 0 and after 3 days, was determined 

using the AAPF assay based on the Gallery™ automated photometer. Simultaneously, a 

MIRA spectrum was acquired for each sample and evaluated based on the developed PLS 

models for enzyme (chapter 3.5.2) and solvent (chapter 3.5.1) concentration prediction. In 

contrast to prior experiments, the created models were based on the entire DoE dataset 

(n= 34). 
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Figure 65: Residual enzyme activities and MIRA spectra obtained from a storage test conducted 

at 45 °C over a period of 3 days. (A) Illustrates the active enzyme content of each sample at the 

beginning and after 3 days based on the present solvent concentration (n= 20). (B) MIRA-spectra 

of the storage test samples, colored according to the solvent concentration. All timepoints were 

sampled in duplicates. 

 

The storage test results (fig. 65A), show that the applied temperature has greatly 

diminished the active enzyme concentration of the different samples based on their 

inherent solvent concentration. The loss is observed to decrease from 10-50 wt% MPG. 

Furthermore, structural changes of the MIRA-spectra (fig. 65B) due to the reduction of the 

active enzyme content can be observed. Especially, the region comprising the amide I and 

II bands, in the range from 1500-1750 cm-1, appear to be altered throughout storage. 

Besides, the already experienced grouping of the spectra according to the solvent 

concentrations can be observed. In this regard, five separated groups of spectra, 

representing the five MPG concentrations, are visible in the range of 1500-1750 cm-1 and 

2500-3000 cm-1. 

Analogous to chapter 3.5.1 the solvent concentration was determined using the PLS model 

based on the DoE samples. For this, all spectra (DoE, and storage samples) were 

preprocessed in a single approach. A SavGol-filter (5th grade polynomial; 2nd order 

derivative) was applied and the data was autoscaled. Following, the dataset was split, and 

the DoE samples were used to create the PLS models for solvent concentration prediction.  

Similar to chapter 3.5.1 the DoE solvent model (fig. 66) exhibits a high accuracy for 

calibration (R2= 0.999; RMSE= 0.24; bias= -7.84*10-16) and cross-validation (R2= 0.999; 

RMSE= 0.27; bias= 0.01). Furthermore, the prediction of the solvent concentration in the 

storage test samples returns results with a negligibly lower accuracy. For the storage test 

samples an R2-value of 0.997, a RMSE of 0.81 and a bias of 0.67 can be determined. In 
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addition, samples outside the calibration range, with 53 wt% MPG, return similar accurate 

values. Subsequently, the created PLS model shows to be accurate beyond the calibration 

range. 

 

 

Figure 66: Calibration, cross-validation, and prediction results for the generated PLS model for 

solvent concentration prediction of different subtilisin protease/MPG storage test samples. The 

generated PLS model was generated based on PLS1 only. 

 

Following, the enzyme concentration of the storage test samples was predicted based on 

the PLS model generated in chapter 3.5.2. Therefore, the solvent concentration predictions 

were used to generate artificial MPG spectra, which were subtracted from the MIRA-

results of the storage test. The resulting spectra (fig. 67A) illustrate the already experienced 

morphology of the amide I and II bands, characteristic for protein samples. 

 

 

Figure 67: MIRA-spectra of the storage test samples (A) after solvent subtraction and in the 

region from 1461-1700 cm-1. 



Results & Discussion 

 
 147 

Besides several smaller bands are visible. 

In contrast, to the original spectra returned by the DoE samples, several structural changes 

are visible for the amide I and II bands. Not only is the intensity of both bands changed, 

but also a third band appears to develop in between. This is especially visible when 

magnifying the range (fig. 67A) of the spectrum to the amide I and II band (1461-1700 cm-

1). Subsequently, this range was further processed by applying a SavGol-filter (5th order 

polynomial; 2nd derivative) and autoscaling the dataset. 

Based on the preprocessed, restricted spectral range, of the DoE samples, a PLS model (fig. 

68) for enzyme concentration prediction was generated. Following, the enzyme 

concentration in the storage test samples was determined. As was to be expected results 

from the DoE calibration (R2= 0.996; RMSE= 0.92; bias= 1.65*10-15) and cross validation 

(R2= 0.995; RMSE= 1.00; bias= 0.77) showed similar values as in chapter 3.5.2. 

Furthermore, the predicted results (R2= 0.994; RMSE= 1.22; bias= 0.44) show to be in 

good agreement with the enzyme concentrations determined with the AAPF assay.  For 

higher enzyme concentrations, however, a slight offset of the predicted values could be 

observed, when compared to the actual enzyme concentrations.  

 

 

Figure 68: Calibration, cross-validation, and prediction results for the generated PLS model for 

enzyme concentration prediction of different subtilisin protease/MPG storage test samples. The 

generated PLS model was generated based on PLS1 only. 

 

The conducted experiment has shown the high potential of MIRA to be used in the context 

of enzyme and solvent concentration prediction of storage test samples. As in the 

experiments before, the PLS solvent model is capable of predicting the solvent 



Results & Discussion 

 
 148 

concentration with a high accuracy. For the enzyme concentration a minor offset of the 

predictions, when compared to the actual values can be observed. Since the region used for 

the prediction is altered during sample storage, an effect of the observed changes on the 

prediction seems likely. However, this problem is expected to be overcome by increasing 

the sample space for model creation by including stored samples. 

In addition, the used workflow has provided additional insights on the influence of storage 

on the morphology of the amide I and II band. In general, the position of the amide I band 

is sensitive to the hydrogen bonding pattern and local electrostatic interactions within the 

peptide backbone, while the amide II band reflects the local conformation of the peptide 

backbone [171, 244]. By analyzing the positions and relative intensities of these bands, it is 

possible to determine the proportion of the secondary structure motifs, as wells as the 

degree of structural disorder or unfolding [247, 248]. Since unfolding and autolysis are 

expected to gain influence at elevated temperatures, changes and loss of the secondary 

structure and thereby changes of the amide I and II can be expected. 

 

Evaluating Long Term Storage Test Results of a Subtilisin Protease using MIRA 

In addition, to the evaluation of the generated PLS prediction models with aged subtilisin 

protease/MPG samples, with varying solvent concentrations, another approach focused on 

the prediction of the long-term stability. Thereby, the capability of the developed approach 

to be used in the scope of long-term storage tests was evaluated. In this context, a subtilisin 

protease formulation with ≈46 g/L and 10 wt% MPG was prepared in triplicates. 

Following, each sample was stored over a period of 28 days at 37 °C, whereby samples 

were withdrawn after 0, 7, 14, 21 and 28 days. The obtained samples were analyzed with 

regard to their residual active enzyme content using the AAPF assay on the Gallery™ 

system. In addition, each sample was analyzed with MIRA to obtain the spectral data 

necessary to perform solvent and enzyme concentration predictions. 

The residual enzyme concentrations (fig. 69A) show to drastically decline over the 28 days 

of storage, as can be illustrated based on the AAPF results. The average value for the 

active enzyme concentration of the three independent repeats show to decrease from 46.2 

g/L to 12.6 g/L over the period of 28 days. Similarly qualitative changes in the region of 

the amide I and II bands can be observed in the MIRA-spectra (fig. 69B).  
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Figure 69: Enzyme activities and MIRA-spectra obtained based on long-term storage test 

conducted at 37 °C over a period of 28 days. (A) Illustrates the active enzyme content of the 

samples drawn after 0, 7, 14, 21, and 28 days. (B) MIRA-spectra of the storage test samples. All 

timepoints were sampled in triplicates. 

 

After the combined pre-processing of the DoE and long-term storage test data, the solvent 

concentration (fig. 70) of the underlying samples was determined. As was to be expected 

based on the former experiment’s, calibration (R2= 0.999; RMSE= 0.24; bias= -9.93*10-16) 

and cross-validation (R2= 0.999; RMSE= 0.27; bias= 0.01) of the DoE data returned highly 

accurate values. The predicted solvent concentrations for the long-term storage samples 

provide results with a minimally lower accuracy. In this regard, a RMSE of 1.01 and a bias 

of 0.98 could be determined for the data set. 

 

 

Figure 70 Calibration, cross-validation, and prediction results for the generated PLS model for 

solvent concentration prediction of long-term storage test samples. The generated PLS model was 

generated based on PLS1 only. 
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Following, the predicted solvent concentrations were used to create artificial MPG spectra 

with the respective solvent concentrations. These were subtracted from the original spectra 

to reduce the influence of the solvent on the subsequent enzyme concentration prediction. 

 

 

Figure 71: MIRA-spectra of the long-term storage test samples (A) after solvent subtraction and 

in the region from 1461-1700 cm-1. 

 

The resulting spectra (fig. 71A) illustrate the structural changes accompanying the storage 

of the subtilisin protease over time. As observed before, amide I and II show to be the two 

most prominent bands. Furthermore, the structure of both bands appears to be considerably 

altered throughout storage. Since the intensity of amide I and II is directly related to the 

underlying secondary structure, changes in this regions are to be expected upon unfolding 

and degradation of the enzyme.  

Subsequently, the restricted spectral range (fig. 71B) of the DoE was used to generate a 

PLS model for enzyme concentration prediction of the storage test samples. First, however, 

DoE and storage test spectra were pre-processed by applying a SavGol-filter (5th 

polynomial; 2nd derivative) and autoscaling the dataset.  

Based on the created PLS model (fig. 72) the enzyme concentration of the long-term 

storage test results was predicted and compared to values obtained from the activity 

measurements. The predicted storage test results, exhibit an R2-value of 0.994, a RMSE of 

0.93, and a bias of -0.059. These deviated only slightly from the results of calibration (R2= 

0.996; RMSE= 0.92; bias= 1.70*10-15) and cross validation (R2= 0.995; RMSE= 1.00; 

bias= 0.007). 
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Figure 72: Calibration, cross-validation, and prediction results for the generated PLS model for 

enzyme concentration prediction of long-term storage test samples. The generated PLS model was 

generated based on PLS1 only. 

 

When the long-term stability of the subtilisin protease is presented as a relative loss of 

activity over time, only minor differences between the predicted and measured content of 

active enzyme becomes apparent. To do so, the results of both approaches were normalized 

[%] with respect to the initial respectively predicted enzyme concentration (0 d). The 

resulting plot (fig. 73) describes the stability of the enzyme over time. While the assay-

based enzyme activity was 27 % after 60 days, a residual activity of 30 % could be 

determined on the basis on the predicted values. The offset of 3 % is below the average 

error of 5 % in generally experienced with the AAPF assay.  

 

 

Figure 73: Comparison of the residual enzyme concentration results of the subtilisin protease 

concentrations determined with the photometric AAPF assay and the predictions based on 

MIRA spectra. The determined enzyme concentrations were normalized with respect to the initial 

enzyme concentration present in the samples at timepoint 0 d. 
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The obtained results highlight the capability of the described approach to determine the 

enzyme concentration of different subtilisin/protease formulations based on MIRA-spectra. 

The negligible difference between the storage test results obtained from the photometric 

assay and the PLS-model provide additional support that the developed methodology can 

be used to analyze long-term storage test samples. The use of undiluted/-processed samples 

and the missing dependency on different substrates and buffers makes the presented 

approach convenient and easy to apply to different samples with varying formulation 

matrices. Besides the enzyme concentration, additional information about the formulation 

composition can be obtained and integrated into the analysis, which provides additional 

insights on the behavior of the enzyme in the respective environment. 

 

3.6.4 Endocellulase/MPG Formulations for Solvent Concentration 

Prediction 
 

The conducted experiments based on subtilisin protease formulations in chapter 3.5.1-3 

have demonstrated the high accuracy of the enzyme and solvent concentration predictions 

based on MIRA-spectra. To further evaluate the capability of this methodology to be used 

in the scope of enzyme formulations, additional experiments were conducted with an 

endocellulase. In contrast, to the subtilisin protease the missing enzyme loss due to 

autolysis was expected to cause minor changes in the MIRA-spectra. Following, it was 

evaluated whether changes of the MIR-spectrum due to unfolding are sufficient to 

determine the enzyme concentration of different endocellulase/MPG formulations. First, 

however, the solvent concentration of the different formulations was to be predicted. 

In this context, a long-term storage test with different endocellulase/MPG formulations 

was conducted. The formulations contained ≈30 g/L of active enzyme and 10-50 wt% 

MPG (intervals of 10 wt%). All formulations were prepared in duplicates and subsequently 

stored over a period 69 days at a temperature 45 °C. Throughout, samples were withdrawn 

after 0, 21, 28, 35 and 69 days. The concentration of the solvent in the different 

formulations was calculated based on the weighed amount (wt%) of solvent used to 

prepare the samples. In addition, it was assumed that the solvent concentration is not 

changed throughout the experiment. The MIRA-spectra were acquired in the range of 929-

3051 cm-1 and were composed of 1101 datapoints. 
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Figure 74: Spectra of different endocellulase/MPG formulations in the range of 10-50 wt% 

MPG. 

 

Already by visual inspection (fig. 74), significant differences in between the samples can 

be observed. With regard to the solvent concentration of the samples several regions show 

a clear intensity difference in between the spectra. Especially in the range from 1500-1750 

cm-1 and 2500-3000 cm-1 a separation in five separated groups of spectra based on the 

solvent concentrations, can be observed. In contrast to the subtilisin samples, however, 

only minor changes in the region of 1500-1750 cm-1 can be observed, with regard to the 

altered enzyme activity throughout storage. 

 

Preprocessing 

 

 

Figure 75: Preprocessing of MIRA-spectra with different endocellulase/MPG formulations. (A) 

Savitzky-Golay smoothening and differentiation (5th order polynomial; 1st derivative) and (B) 

autoscaling. 
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The MIRA-spectra were preprocessed by applying different filters and mathematical 

transformations to reduce the influence of interfering signals and unwanted offsets. In this 

regard (fig. 75A), a SavGol smoothening (5th grade polynomial) and differentiation (1st 

derivative) filter was applied. In addition, the data was autoscaled (fig. 75B), to reduce the 

influence of spectral regions with high intensity and to remove baseline variations.  

 

Hierarchical Clustering 

The hierarchical clustering analysis (fig. 76) based on the Euclidian distance algorithm and 

Ward linkage method provides a first overview about similarity-based differences in 

between the spectra. The resulting dendrogram illustrates five main clusters corresponding 

to five MPG concentrations present in the formulations. The five solvent clusters are 

further subdivided according to the five different sampling timepoints throughout storage. 

Since samples from the same sampling time presumably have a similar active enzyme 

content, classification on the basis of enzyme concentration also seems feasible.  

 

 

Figure 76: Hierarchical Cluster analysis of preprocessed MIRA-spectra of different 

endocellulase/MPG formulations. The five colored clusters are composed of samples with a 

similar MPG concentration: dark purple= 10 wt% MPG, purple= 20 wt% MPG, blue/green= 30 

wt% MPG, green= 40 wt% MPG, yellow= 50 wt% MPG. Subclusters are composed of samples 

from similar sampling time points and repeats. 
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Subsequently, duplicates of each sample are represented by the smallest level of 

organization in the dendrogram. 

The hierarchical cluster analysis provides an overview of the information stored in the 

spectral data. Based on the formed clusters, differences due to the solvent concentrations 

appear to be the dominant factor. In addition, information about the sampling timepoints 

respectively enzyme concentration appears to be present. Accordingly, further statistical 

analyses were conducted to extract the information of interest from the spectral data. 

 

Principal Component Analysis (PCA) 

In order to reduce the dimensionality of the underlying spectral data and to identify the 

origin of the variability comprised by the spectra a principal component analysis (PCA) 

was conducted. PCA searches for a set of new variables, the PCs, which capture the 

majority of the variance in the analyzed data set. The amount of variability described by 

each PC is illustrated by the scree plot (fig. 77). The first principal component (PC1) shows 

to describe 94.36 % of the total variance present in the spectra. Upon adding the variance 

of PC2 (+4.15 %) already 98.51 % are comprised by the first two PCs. Consequently, 

following PCs showed to describe only minor amounts of the total variability comprised by 

the spectra.  

 

 

Figure 77: PCA scree plot with the explained and cumulative variance of the underlying dataset. 

 

The scores (fig. 78) of the PCA further visualize the relationship of the variability of the 

samples according to the respective PCs. As can be observed, the resulting scores assigned 



Results & Discussion 

 
 156 

for PC1 result in the formation of five distinct groups. The coloring according to the 

solvent concentration present in these samples leads to the assumption, that similar to the 

results in chapter 3.5.1, the majority of the variance is related to MPG respectively the 

different solvent concentrations. The classification of the scores according to PC2 show 

differences in the spread of the datapoints, which leads to the assumption that PC2 could, 

among other things, comprise the variability associated with changes of the enzyme 

concentration. However, the shifted positions of the groups to one another and the coloring 

according to the present enzyme concentration contradict this assumption.  

 

 

Figure 78: PCA scores plot for the first two PCs colored according to the (A) solvent and (B) 

enzyme concentration of the subtilisin endocellulase/MPG formulations. 

 

 

Figure 79: PCA loadings of PC1. Shown is the average spectrum of the underlying MIRA-spectra, 

which were color coded according to the magnitude of the present correlations. 
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To understand the origin of the observed grouping of the scores according to the solvent 

concentration for PC1, PCA loadings (fig. 79) were determined. The loadings are 

visualized by coloring the mean spectrum of all samples with their respective values. The 

colors represent the contribution of the variables to the observed separation of the samples. 

While the red color represents negative loadings, with a low association to PC1, blue color 

illustrates positive loadings with a high contribution. The loadings appear to be either 

highly positively or negatively correlated with PC1. Subsequently, the contribution of the 

solvent appears to be present in the whole spectrum. 

 

Principle Component Regression (PCR) for Solvent Concentration Prediction 

The strong correlation of PC1 with the solvent concentration, was assumed to be sufficient, 

to predict the solvent concentration of different endocellulase/MPG formulations with a 

high accuracy. Therefore, a PCR model to predict the solvent concentration of different 

endocellulase/MPG formulations was created with the variance comprised by PC1 only. 

The principle of PCR is to predict a response variable based on a set of predictor variables. 

However, before doing so, the dimensionality of the dataset is reduced by using PCA. 

Following, the obtained PCs are then used as predictor variables for a regression model. In 

contrast, to PLS, however, the use of PCA makes PCR an unsupervised method. 

Prior to creating the PCR model, the endocellulase dataset was split in a training and test 

dataset. For this, datapoints obtained after 0, 28 and 69 days were transferred into the 

training dataset (n= 30) and datapoints obtained after 21 and 28 days into the test dataset 

(n= 20). The generated results based on this two datasets returned a PCR model (fig. 80) 

with a high accuracy for the solvent concentration prediction. Not only does the calibration 

(R2= 0.995; RMSE= 1.11; bias= 5.21*10-15) and cross-validation (R2= 0.994; RMSE= 

1.25; bias= 0.06) show a high accordance with an ideal correlation, but also the solvent 

concentrations of the test dataset are predicted (R2= 0.993; RMSE= 0.82; bias= -0.64) with 

a high accuracy. 

The PCA analysis of the endocellulase/MPG spectra has again highlighted the significant 

influence of the underlying solvent on the variability comprised in the spectra. In 

comparison to the same analysis in chapter 3.5.2, with the subtilisin protease, the variance 

caused by the solvent appears to be even larger in the case of the endocellulase 

formulations than observed before. Subsequently, the created PCR model for solvent 

concentration prediction exhibits a high accuracy of the results with PC1 only. 
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Figure 80: Calibration, cross-validation, and prediction results for the generated PCR model for 

solvent concentration prediction of different endocellulase/MPG formulations. 

 

 

Partial Least Squares (PLS) Analysis for Solvent Concentration Prediction 

In addition to the generated PCR model for solvent concentration prediction a similar 

model was to be created based on the supervised partial least square (PLS) analysis. A PLS 

model is trained based on a set of predictor variables (X-variables) and corresponding 

response variables (Y-variables). In the ideal case, the resulting PLS model can predict the 

response variable based on the predictor variable values. Similar to PCA, PLS is optimized 

to find a set of latent variables, the PLS components, that explain the majority of the 

variability found, by orthogonalizing the original dataset. 

The calculated RMSE (fig. 81) of the cross-validation results, for PLS-models with varying 

numbers of PLS components, returned a high accuracy of the solvent prediction model 

already with one PLS component (RMSE= 1.22). By further increasing the number of PLS 

components the RMSE shows to be reduced even further reaching local minima with three 

(RMSE= 0.58) and eight (RMSE= 0.43) PLS components. However, to prevent overfitting 

the model and to retain the comparability with the PCR model the first PLS component 

was selected to be sufficient. 

The X-scores (fig. 82) for the created PLS solvent model, illustrate a similar grouping of 

the datapoints, when compared to results of the PCA scores. According to the first PLS 

component the X-scores show to be clustered in five distinct groups. Further, coloring the 

datapoints according to the known solvent concentration of the samples, revealed a 
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grouping according to their inherent MPG concentration. The second PLS component in 

turn showed no visible correlation with the solvent or enzyme concentration.  

 

 

Figure 81: Root mean square error (RMSE) of the cross-validation results with increasing 

number of PLS components. 

 

 

Figure 82: X-scores of the PLS model for the endocellulase/MPG formulations. The X-scores are 

colored according to (A) the MPG and (B) enzyme concentration present in the samples according 

to the DoE. 

 

The returned VIPs (fig. 83) of the PLS model, for the solvent concentration prediction 

illustrate the X-variables of importance for the prediction of the Y-variables/solvent 

concentration. By coloring the average spectra of the samples according to the VIPs, 

regions of high importance for the prediction can be identified. The illustrated results show 

a high importance of the majority of the variables for the solvent concentration prediction. 

Basically, all variables of the MIRA-spectrum appear to contribute.  
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Figure 83: VIPs fort he created PLS model to predict the (A) solvent concentration of different 

endocellulase/MPG formulations.  

 

Subsequently, the created PLS model (fig. 84) for the solvent concentration prediction, 

returned similar values than observed for the PCR model. For this, the overall data set had 

been split in a training (n= 30) and a test dataset (n= 20), composed of the samples after 0, 

28, 69 days, and 21 and 35 days of storage. The PLS model returned almost the same 

values for the calibration (R2= 0.996; RMSE= 1.08; bias= 3.91*10-15), cross-validation 

(R2= 0.994; RMSE= 1.22; bias= 0.5) and predictions (R2= 0.993; RMSE= 0.79; bias= -

0.61) as the unsupervised PCR model. 

The obtained results illustrate the high accuracy of the solvent concentration predictions 

based on the PCR and PLS models. Similar to the results obtained with different subtilisin 

protease/MPG formulations, the presence of a different enzyme has shown to not affect the 

quality of predictions. In contrast, to the protease samples, however, the solvent has gained 

significant influence on the overall variability encoded by the spectrum. This could 

negatively affect enzyme concentrations predictions, since the loadings and variables of 

importance are basically spread over the whole range of the spectrum. Similarly, the region 

relevant for protein quantification, in the range from 1500-1750 cm-1, appears to be 

affected. Subsequently, cross-correlation and a possible multicollinearity of the enzyme 

concentration predictions with the solvent concentration had to be considered in following 

experiments.  
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Figure 84: Calibration, cross-validation, and prediction results for the generated PLS model for 

solvent concentration prediction of different endocellulase/MPG formulations. 

 

 

3.6.5 Endocellulase/MPG Formulations for Enzyme Concentration 

Prediction 
 

The results from chapter 3.5.5 had demonstrated the significant amount influence of the 

underlying solvent concentration on the observed variability in the MIRA-spectra of 

different endocellulase/MPG formulations. The solvent subtraction approach from chapter 

3.5.2 had shown to greatly diminish the variability caused by the solvent but could not 

totally remove its influence on the enzyme concentration predictions. In this regard, prior 

to the PCR and PLS model creation, for endocellulase concentration prediction, an external 

parameter orthogonalization method (EPO) was to be applied. Thereby, the variability 

caused by the solvent was to be removed from the MIRA-spectra and the accuracy of the 

predictions was to be increased. 

For the analysis, the same endocellulase/MPG formulations were used, as for the solvent 

concentration predictions in chapter 3.5.4. The experimental setup consisted of different 

samples with ≈30 g/L endocellulase and 10-50 wt% MPG (10 wt% interval). The samples 

were stored at 45 °C, over period 69 days, whereby samples were withdrawn after 0, 21, 

28, 35 and 69 days. Besides the obtained MIRA spectra, the residual active enzyme 

concentration was determined using the pNPL-assay on the Gallery™ system. Following, 

PCR and PLS models to predict the endocellulase concentration in different formulations 

were generated based on the acquired MIRA-spectra and the determined active enzyme 

concentration. 



Results & Discussion 

 
 162 

The result of the long-term storage test (fig. 85A) returned a varying influence of the MPG 

concentration on the stability of the studied endocellulase. In addition, the absence of 

autolysis showed to lead to minor losses of enzyme activity throughout storage. The 

endocellulase exhibited a good overall stability in the presence of 10 wt% MPG (69 d; 21.8 

g/L). The stability shows to increase with concentrations of 20 (69 d; 22.6 g/L) and 30 wt% 

MPG (69 d; 23.4 g/L). However, in the presence of 40 and 50 wt% MPG the active 

enzyme content drastically declines and results in an average concentration of 17.3 

respectively 3.7 g/L after 69 days. 

In contrast, only minor changes in the determined MIRA-spectra (fig. 85B) were visible 

over the sampled time period, with regard to the enzyme concentration. Especially, in the 

range of 1500-1750 cm-1 spectra appeared to be hardly altered. In the absence of autolysis, 

unfolding of the enzyme is expected to be major reason for activity loss. In contrast to 

autolysis, unfolding of the protein structure is not expected to be accompanied by the loss 

of peptide bonds. Therefore, visible changes of the protein spectrum are expected to be 

mainly due to structural changes of the secondary and tertiary structure of the 

endocellulase, which are, however, expected to be less significant in the MIRA spectrum 

than the loss of peptide bonds.  

 

 

Figure 85: (A) Residual active enzyme concentrations determined based on the pNPL-assay and 

(B) and MIRA-spectra for the endocellulase/MPG formulations. Samples were drawn after 0, 21, 

28, 35, and 69 days, after storage at 45 °C. The formulations contained 10-50 wt% MPG. 

 

 

Preprocessing 

In order to reduce the influence of MPG on the underlying spectra (fig. 86A), the dataset 

was transformed using EPO. EPO can be used as preprocessing method to exclude the 
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influence of one or more PCs from the analysis prior to model building process. To do so, 

EPO performs a PCA on the predictor variables, to identify PCs to exclude from the 

analysis. Following, respective columns in the matrix of eigenvectors are removed and the 

remaining predictor variables are transformed into orthogonal components using the 

modified matrix of eigenvectors. This has the effect, that the influence of certain predictor 

variables is removed from the dataset, which leads to improved accuracy and 

interpretability of the results by reducing the effects of multicollinearity and confounding. 

Based on the PCA analysis conducted in chapter 3.5.5 the variability of the first three 

principal components was removed from the spectral data. During this process the clutter 

mean was to be ignored and the mean of the spectra was to be maintained.  

 

 

Figure 86: Endocellulase/MPG formulation MIRA-spectra before and after the different 

preprocessing steps. (A) Unprocessed MIRA-spectra obtained for the individual samples. (B) 

Pseudo-spectrum obtained after applying EPO. (C) Resulting pseudo-spectrum after applying 

SavGol smoothing (5th grad polynomial) and differentiation (1st derivative). (D) Pseudo-spectrum 

after autoscaling the spectral data. 
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The returned result of the EPO (fig. 86B) is a pseudo spectrum which was used for further 

analysis. Interestingly, the reduced spectral data illustrated two dominant bands in the 

region of 1500-1750 cm-1, which resembled that amide I and II bands after solvent 

subtraction in chapter 3.5.2. Furthermore, the intensity of the absorbance values had 

significantly decreased, when compared to the original spectrum. 

The reduced dataset was further processed by applying SavGol smoothening (fig. 86C) (5th 

polynomial) and differentiation (fig. 86D) (1st derivative). In addition, the data was 

autoscaled. 

 

Hierarchical Clustering 

The conducted hierarchical cluster analysis (fig. 87), based on the Euclidian distance 

algorithm and Ward linkage method, reveals several smaller and bigger clusters, which are 

composed of different samples, of varying composition and age. Even though, some of the 

clusters appear to be composed of formulations with identical solvent concentrations, 

others comprise arbitrary samples, which could not be explained by solvent or enzyme 

concentration. Consequently, the hierarchical cluster analysis did not provide a 

classification according to enzyme or solvent concentration.  

 

 

Figure 87: Dendrogram of the hierarchical cluster analysis performed with the preprocessed 

pseudo-spectra of the endocellulase/MPG formulations at different timepoints throughout 

storge. 
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Principle Component Analysis (PCA) 

The consecutive PCA revealed that the majority of the variability (fig. 88) in the pseudo 

spectra, is described by the first PC, which covers 75.34 % of the total variance. In 

contrast, to former analyses the inclusion of additional parameters only moderately 

increases the cumulative variance explained. For the further analysis, the first three PCs 

were considered, which account for 88.53 % (PC2: +9.83 %; PC3: +3.35 %) of the total 

variance. 

 

 

Figure 88: PCA scree plot of the endocellulase/MPG pseudo-spectra after preprocessing. 

 

Unlike the hierarchical cluster analysis, the PCA scores (fig. 89) gave additional insights 

on the variability and differences described by the pseudo spectra. The scores plots of PC1-

PC3 illustrate that the variability described by PC1 results in a grouping according to the 

active enzyme concentration present in the different samples. This is illustrated by the 

coloring of the sample scores according to their inherent enzyme concentration. The 

resulting trend shows that negative score values for PC1 appear to describe high enzyme 

concentrations, shown in green, while high scores values seemed match to samples with 

low enzyme concentrations, shown in blue. In contrast to that PC2 and PC3 show no 

obvious or further correlation with the parameters of interest, even though PC2 and PC3 

appear to increase the spread in between samples of certain groups.  

The loadings (fig. 90) of PC1-3 illustrate the contribution of each pseudo spectra variable 

to the variability of the different PCs. As was to be expected, based on the amount of 

explained variance, PC1 shows to include the largest proportion of the variables in the 

spectrum.  
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Figure 89: PCA scores plot for PC1-3 colored according to the endocellulase concentration in 

the samples. The single plots illustrate the relationship between (A) PC1 and 2, (B) PC1 and 3, 

and (C) P2 and 3. 

 

 

 

Figure 90: PCA loadings for (A) PC1, (B) PC2, and (C) PC3. Shown is the average pseudo 

spectrum after EPO colored according to magnitude of correlation 
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In this context, the majority of the datapoints appear to have a strong negative or positive 

correlation with the variability described by PC1. Subsequently, as PC2 and PC3 describe 

minor proportions of the variability, only few variables show a low positive/negative 

correlation with the variability described by these PCs. 

 

Principle Component Regression (PCR) 

Before creating the PCR model, the data comprising the pseudo-spectra of all samples was 

split in a training (n= 30) and a test dataset (n= 20). The training set comprised the 

datapoints acquired after 0, 28 and 69 days and the test dataset contained the datapoints 

after 21 and 28 days. The PCR model (fig. 91) based on the first three PCs returned an 

accurate model with a small deviation from the ideal correlation for low enzyme 

concentrations. In general, however, calibration (R2= 0.988; RMSE= 0.74; bias= 2.09*10-

15) as well as cross-validation (R2= 0.984; RMSE= 0.85; bias= 0.027) return precise values 

for the training data set. In addition, the prediction (R2= 0.960; RMSE= 0.72; bias= -0.16) 

of the enzyme content in the test dataset, returns similarly accurate values. 

 

 

Figure 91: Calibration, cross-validation, and prediction results for the generated PCR model for 

enzyme concentration prediction of different endocellulase/polyol formulations. 

 

To exclude the possibility of cross correlations and multicollinearity between the enzyme 

and solvent concentrations predictions a similar PCR model was created based on the 

solvent data. As could be illustrated (fig. 92), however, the model returned, was not able to 

accurately predict the solvent concentration of the different samples. Subsequently, it was 

demonstrated that the created PCR model for enzyme concentration prediction is not 
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influenced, or the result of cross-correlations or multicollinearity caused by the solvent 

variability in the pseudo spectra. This further demonstrates that the applied EPO has 

successfully removed and thereby reduced the variability attributed to the solvent.  

 

 

Figure 92: Calibration, cross-validation, and prediction results for the generated PCR model for 

solvent concentration prediction of different endocellulase/polyol formulations. 

 

 

Partial Least Squares (PLS) Analysis 

In addition to the PCR model for enzyme concentration prediction, a PLS model was to be 

created. The RMSE (fig. 93) of the cross validation returned a small error for the first PLS 

component (RMSE= 0.96). In accordance with the created PCR model, three PLS 

components were selected for model creation, which further decreased the RMSE to 0.61. 

 

 

Figure 93: Root mean square error (RMSE) of the cross-validation with increasing number of 

PLS components. 
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The X-scores (fig. 94) for the whole dataset exhibit a similar result as illustrated by the 

PCA scores. According to the first PLS component, the datapoints show a grouping 

according to the inherent enzyme concentration of the samples. The correlation between 

the enzyme concentration and the first PLS component can be illustrated by coloring the 

datapoints according to the solvent concentration of the samples. For the second and third 

PLS component, however, no visible correlation between the datapoints and enzyme or 

solvent concentration can be observed. 

 

 

Figure 94: X-scores of the PLS model for the endocellulase/MPG formulations. The X-scores are 

colored according to the enzyme concentration present in the samples according to the DoE. 

 

The VIPs (fig. 95) for the created PLS model, show a great importance of the majority of 

regions in the pseudo spectra for the prediction of the enzyme concentration. Not only does 

the region associated with amide I and II show a high importance of the variables, but also 

other variables with higher or lower wavenumber appear to contribute. A minor exception, 

however, was the region from 2000-2750 cm-1. In this area, several variables exhibit only a 

minor importance for the prediction of the enzyme concentration. These region, however, 

shows only minor variations in between the different pseudo spectra. Following, it can be 

assessed that due to a low information content and a chemical perspective this region is not 

excessively important for the prediction of the enzyme concentration. 
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Figure 95: VIPs fort he created PLS model to predict the enzyme concentration of different 

endocellulase/MPG formulations. 

 

The created PLS-model (fig. 96) for enzyme concentration prediction, illustrates an 

improved prediction accuracy, when compared to the PCR model. Especially, at low 

enzyme concentrations the offset between the actual and ideal correlations is not visible. 

Subsequently, calibration (R2= 0.996; RMSE= 0.45; bias= 1.5*10-15) and cross-validation 

(R2= 0.991; RMSE= 0.61; bias= 0.008) exhibit a high accuracy for the samples in the 

training dataset. In addition, predictions (R2= 0.949; RMSE= 0.81; bias= 0.03) of the 

enzyme concentration of samples in the test dataset return results with a similar high 

accuracy.  

Similar as for the PCR model, the ability of the created PLS model (fig. 97) to predict 

solvent concentrations based on the pseudo spectra was to be determined. As before, the 

solvent prediction model illustrates a poor ability to do so. Therefore, it can be concluded 

that by applying the EPO the variability caused by the solvent could greatly be diminished 

by removing the first three PCs from the dataset. The resulting PCR and PLS models 

exhibit a high accuracy for the prediction of the enzyme concentration. The developed 

workflow for the prediction of the endocellulase concentration based on EPO has proven 

itself to be a convenient method to reduce the variability caused by the solvent. In contrast 

to the subtraction of the solvent spectrum, which was used in chapter 3.5.2-3, the use of 

EPO is not reliant on pure solvent spectra, which makes it easy to apply and universally 

useable for different enzyme formulations. 
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Figure 96: Calibration, cross-validation, and prediction results for the generated PLS model for 

enzyme concentration prediction of different endocellulase/MPG formulations. 

 

 

Figure 97: Calibration, cross-validation, and prediction results for the generated PLS model for 

solvent concentration prediction of different endocellulase/MPG formulations. 

 

 

3.6.6 Summary & Conclusion 
 

Infrared light (IR) can be absorbed by molecular vibrations when the frequencies of light 

and vibrations match. The frequency of the vibrations and the probability of the absorption 

depend on the strength and polarity of the vibrating bonds and are thus influenced by intra 

and intermolecular effects [171, 244]. Thus, manifold of information about the structure 

and environment of a sample, molecule or solute can be obtained from spectral parameters, 

as the band position, bandwidth, and absorption coefficient. Subsequently, IR spectroscopy 

is a commonly used technique for the structural characterization of small molecules. This 
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is promoted by its sensitivity, large application range, high time resolution and low sample 

volume required for the analysis. 

This unique combination of properties has promoted the transfer of IR to biological fields 

of application. Besides, its common use for protein secondary structure elucidation [244, 

249], it is used for the identification of molecular mechanisms [250, 251] and to study 

protein folding, unfolding and misfolding [252-254]. Secondary structure analysis is 

conducted based on the amide I band. However, in the past also amide II and III, as well as 

the near infrared region have been used. The amide I vibration, absorbing near 1650 cm-1, 

arise from the C=O stretching vibration with minor contributions from CN stretching 

vibrations, the CCN deformation and the NH in-plane bending [171]. The conformation of 

the amide I is highly dependent on the secondary structure of the backbone and is therefore 

commonly used for secondary structure analysis. Subsequently, changes of the protein 

structure due to the loss of peptide bonds by proteolysis or thermal unfolding and thereby 

the loss of active enzyme are expected to be visible in mid infrared (MIR) spectroscopy. 

The analysis of aqueous samples by MIR spectroscopy represents a certain challenge in 

this context, as the strong absorbance of water in the mid-infrared spectral region (near 

1645 cm-1), overlap with the amide I band of proteins and some side chain bands [255, 

256]. These limitations are to be overcome with the mid infrared analyzer (MIRA) which 

uses a combination of an ultra-thin flow cell (7-10 µm) with AI driven approaches to 

correct the obtained spectral data and provide a digital twin solution. In combination with 

chemometrics, this method is a valuable methodology for the identification and 

quantification of known and unknown substances in solution.  

The developed workflow thereby illustrates the possible application of this technique for 

the quantification of the active enzyme content in different liquid formulations. In the past, 

IR spectroscopy was already extensively used to determined enzyme activity in 

biotechnological processes. These approaches utilize the ability of IR measurement to 

provide an “on-line” monitor of enzymatic reactions, as educt and product concentrations 

can be monitored. In this context, the developed workflow for a subtilisin protease and 

endocellulase provides an addition to quantify the active enzyme content directly in 

solution. The proposed approach is independent of artificial substrates and needs no 

extensive sample dilution prior to the analysis. Thereby, analysis time and costs are 

significantly reduced, and the accuracy of the measured results is expected to be increased. 

In combination with multivariate analysis techniques additional formulation ingredients 
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can be quantified, whereby the information content of a single measurement is further 

increased. 

To further extend the use of the MIRA technology in combination with chemometrics, 

future approaches will focus on the applicability of the developed workflow in the context 

of a more diverse formulation matrix. Besides, increasing the complexity in the presence of 

more than one solvent, the portability of the developed models to other enzyme classes 

must be assessed. In this context, the presented approach may provide a serious and 

universally applicable alternative to common photometric assays, which are in many cases 

limited to certain groups of enzymes. 
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List of Abbreviations 
 

�̅� Weighted center 

[ET] Total enzyme concentration 

°C  Degrees Celsius (Unit) 

µ Mikro 

A Alanine 

A Absorption 

Abs Absorption 

AI Artificial intelligence 

Asn Asparagine 

Asp Aspartic acid 

Atm Standard atmosphere (Unit) 

Bis Bis(2-hydroxyethyl)amino 

c Concentration 

C Cysteine 

Ca2+ Calcium ion 

Cp Heat Capacity 

d Layer thickness 

d Contact distance at time t 

d0 Contact distances at time t= 0 

Dia Dialysed 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DSC Differential scanning calorimetry 

e.g. For example 

E/[E] Enzyme/-Concentration 

EC Enzyme Commission 

EDDS Ethylenediamine-N,N'-disuccinic acid 

EDTA Ethylenediaminetetraacetic acid 

EPO External Parameter Orthogonalization 

eq. Equation 

et al. “and others” 

Eλ Extinction 

FT-IR Fourier Transform Infrared  

g Gram (Unit) 

G Glycine 

Gln  Glutamine 

Glu Glutamic acid 

Gly Glycine 



List of Abbreviations 

 
 184 

GPC Gel permeation chromatography 

H-bonds Hydrogen bonds 

HCl Hydrochloric acid 

I Intensity after analyte 

I0 Intensity before analyte 

ID Identification 

IR Infrared 

IUBMB International Union of Biochemistry and Molecular Biology 

K Association/Dissociation constant 

K Kelvin (Unit) 

K+ Potassium ion 

kat  Katal (Unit)/[E] to turnover mol [S] in 1s  

kD Kilodalton (Unit) 

KD Dissociation coefficient 

kg Kilogram (Unit) 

Km Substrate specificity 

L Liter (Unit) 

LMFIT Non-linear least-squares minimization and curve fitting for python 

M Metal 

MD Molecular Dynamics 

MEROPS Proteolytic enzyme database 

MES 2-(N-morpholino)ethanesulfonic acid 

Mg2+ Magnesium ion 

MGDA Ethylenediaminetetraacetic acid 

MIRA Mid infrared analyzer 

MM Michaelis-Menten 

mol Mol (Unit) 

MOPS 3-(N-morpholino)propanesulfonic acid 

MPG 1,2-Propanediol 

MTS Multiple step integration method 

N Asparagine 

n Number of atoms 

Na+ Sodium ion 

NAMD Nanoscale Molecular Dynamics (Software) 

NaOH Sodium hydroxide 

NHS N-hydroxysuccinimide 

nm Nanometer (Unit) 

P Product 

P Mixed residues (MEROPS classification) 

PACKMOL Initial configurations for Molecular Dynamics (Software) 

PCA Principle Component Regression 
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PCR Polymerase chain reaction/Principle component regression 

PES Polyethersulfone 

pH Potential of hydrogen 

pI Isoelectric point 

PLS Partial Least Squares 

PME Particle mesh Ewald 

pNA 4-Nitroaniline 

pNP 4-Nitrophenol 

pNPL 4-ntrophenyl-ß-D-lactopyranoisde 
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