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Abstract

Markov random fields (MRF) based on linear filter responses are one of the most
popular forms for modeling image priors due to their rigorous probabilistic inter-
pretations and versatility in various applications. In this dissertation, we propose
an application-independent method to quantitatively evaluate MRF image priors us-
ing model samples. To this end, we developed an efficient auxiliary-variable Gibbs
samplers for a general class of MRFs with flexible potentials. We found that the
popular pairwise and high-order MRF priors capture image statistics quite roughly
and exhibit poor generative properties. We further developed new learning strategies
and obtained high-order MRFs that well capture the statistics of the inbuilt features,
thus being real maximum-entropy models, and other important statistical properties
of natural images, outlining the capabilities of MRFs. We suggest a multi-modal
extension of MRF potentials which not only allows to train more expressive priors,
but also helps to reveal more insights of MRF variants, based on which we are able to
train compact, fully-convolutional restricted Boltzmann machines (RBM) that can
model visual repetitive textures even better than more complex and deep models.

The learned high-order MRFs allow us to develop new methods for various
real-world image analysis problems. For denoising of natural images and decon-
volution of microscopy images, the MRF priors are employed in a pure generative
setting. We propose efficient sampling-based methods to infer Bayesian minimum
mean squared error (MMSE) estimates, which substantially outperform maximum
a-posteriori (MAP) estimates and can compete with state-of-the-art discriminative
methods. For non-rigid registration of live cell nuclei in time-lapse microscopy im-
ages, we propose a global optical flow-based method. The statistics of noise in
fluorescence microscopy images are studied to derive an adaptive weighting scheme
for increasing model robustness. High-order MRFs are also employed to train image
filters for extracting important features of cell nuclei and the deformation of nuclei
are then estimated in the learned feature spaces. The developed method outper-
forms previous approaches in terms of both registration accuracy and computational
efficiency.
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Zusammenfassung

Markov Random Fields (MRF) auf der Basis linearer Filterantworten sind eine
der beliebtesten Formen zur Modellierung von Bildprioren aufgrund ihrer rigorosen
probabilistischen Interpretationen und Vielseitigkeit in verschiedenen Anwendungen.
In dieser Dissertation schlagen wir eine anwendungsunabhängige Methode vor, um
MRF-Bildprioren quantitativ mithilfe von Stichproben der Modelle zu bewerten. Zu
diesem Zweck haben wir effiziente Hilfsvariablen-Gibbs-Sampler für eine allgemeine
Klasse von MRFs mit flexiblen Potentialen entwickelt. Wir haben festgestellt, dass
die populären Pairwise- und High-Order-MRF Prioren die Bildstatistik sehr grob
erfassen und schlechte generative Eigenschaften aufweisen. Wir haben weiterhin
neue Lernstrategien entwickelt und High-Order-MRFs erhalten, die die Statistik der
eingebauten Merkmale gut erfassen, und damit echte Maximum-Entropie-Modelle
und andere wichtige statistische Eigenschaften von Naturbildern darstellen, wodurch
die Fähigkeiten von MRFs herausgestellt werden. Wir schlagen eine multimodale
Erweiterung der MRF-Potentiale vor, die nicht nur das Training von expressiveren
Prioren ermöglicht, sondern auch dazu beiträgt, weitere Einblicke in MRF-Varianten
zu gewinnen, auf deren Basis wir kompakte, vollständig konvolutionale Restricted
Boltzmann Machines (RBM) trainieren können, die visuelle wiederkehrende Tex-
turen besser modellieren können als komplexere und tiefe Netzwerke.

Die erlernten High-Order-MRFs ermöglichen es uns, neue Methoden für ver-
schiedene Realwelt-Bildanalyseprobleme zu entwickeln. Für die Rauschunterdrück-
ung von natürlichen Bildern und die Dekonvolution von Mikroskopiebildern werden
MRF-Prioren in einem rein generativen Rahmen eingesetzt. Wir schlagen effiziente
sampling-basierte Methoden vor, um die Bayesschen Minimum-Mean-Squared-Error
(MMSE) Schätzungen zu inferieren, die wesentlich besser abschneiden als die Maximum-
a-posteriori-Methode (MAP) und mit den State-of-the-Art diskriminativen Metho-
den konkurrieren können. Für die nichtstarre Registrierung von Lebend-Zellkernen in
Zeitraffer-Mikroskopiebildern schlagen wir eine globale optische Fluss-basierte Meth-
ode vor. Die Statistik des Rauschens in Fluoreszenz-Mikroskopiebildern wird unter-
sucht, um ein adaptives Gewichtungsverfahren zur Erhöhung der Modellrobustheit
abzuleiten. High-Order-MRFs werden auch eingesetzt, um Bildfilter zur Extraktion
wichtiger Merkmale von Zellkernen zu trainieren, und die Deformation der Kerne
wird dann in den erlernten Merkmalsräumen geschätzt. Die entwickelte Methode
übertrifft bisherige Ansätze in Bezug auf Registrierungsgenauigkeit und Rechenef-
fizienz.
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Notation

Symbol Description

x, hjc, αi, · · · Scalars

x, fj , wjc, · · · Vectors

A, Σ, Γ, · · · Matrices

(·)i Elements of vectors or matrices

fT
j , H

T Transposed vector and matrix

g(x), ϕ(y) Scalar-valued functions

ψ(x) Vector-valued function

ψ′(x) Derivatives of vector function ψ(x) (element-wise)
∂f(x)
∂xi

, ∂
∂xi
f(x) Partial derivative of scalar function f(x)

∇xf(x), ∇f(x) Gradient of scalar function f(x) w.r.t. x

fj ∗ x Convolution of image x with filter fj

p(x), p(x) Probability density functions (continuous)

p(x|y) Conditional probability (density) of x given y

p(x; ωj) Probability (density) of x given parameters ωj〈
f(x)

〉
p(x)

,
〈
f(x)

〉
p

Expected value of f(x) w.r.t. probability (density) p(x)〈
f(x)

〉
X

Expected value of f(x) w.r.t. data X = [x(1),x(2), · · · ]

N (x;µ,Σ) Normal distribution with mean µ and covariance matrix Σ
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Chapter 1

Introduction

1.1 Motivation

Computer vision is an interdisciplinary field that studies how computers can un-
derstand and interpret digital images or videos using computational models and
algorithms. Its applications range from pixel-level information extraction (low-level
vision) to semantic understanding of the image content (high-level vision) using, for
example, methods for image segmentation and object tracking.

A typical low-level vision problem is microscopy image deconvolution, which we
use to motivate our work in this thesis (cf . Fig. 1.1). The task is to recover sharp
images of the samples (or scenes) from the blurry images with noise acquired by
microscopes, which is very useful for further analysis. Although this problem has
been studied for decades, it has remained difficult, even if the noise statistics and the
point spread function (PSF) of the microscope are known. The essential reason is that
this problem (as many other low-level vision problems) is mathematically ill-posed:
The available data is generally insufficient to constraint the solution, the image
formation process is too complex to be perfectly modeled, and the noise is generated
randomly by the sensor. To deal with these issues in practice, prior knowledge, for
example, in the form of a regularizer, is often imposed in the computational model
to constraint the solution.

An important and common strategy for building a computational model is to
adopt a probabilistic formulation due to some distinct advantages. For example,
the modeling choices can be made based on statistical properties of the data, and
the most suitable model parameters can be determined using learning algorithms.
For the optimization process to compute the solution, advanced statistical inference
methods can be employed. In addition, the uncertainty of the solution is quanti-
tatively accessible, for example, using information theoretic measures such as the
entropy. In a popular Bayesian approach, the posterior probability distribution of
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Figure 1.1: Microscopy image deconvolution. (Left) blurry and noisy image acquired
by a microscope; (right) recovered “ideal” image.

the hidden ideal image given the observed image is defined using Bayes’ rule

p(ideal | observed) ∝ p(observed | ideal) · p(ideal), (1.1)

where the likelihood p(observed | ideal) models how the ideal image is degraded dur-
ing acquisition (or how the observed image is generated in general) and is thus
application dependent, and the prior p(ideal) models our belief or prior knowledge
about what the ideal state should be and is independent to the observation. Such
probabilistic models with separate likelihood and prior terms are called generative
models. The prior model is application-independent and thus very versatile, and
can be used in different applications by changing the likelihood model. In contrast,
in a discriminative model, the posterior density (e.g., p(ideal | observed)) is directly
modeled. While the discriminative models can generally achieve higher application
performances, they have to be trained end-to-end entirely for each application.

Modeling (or training) a probabilistic prior of images is not easy, since an image
taken by a common consumer camera today or a modern microscope contains tens
of millions of pixels, resulting in a very high dimension of the model if each pixel is
considered as a random variable. As a result, priors of small patches were proposed
(e.g., ICA-based [1], Products-of-Experts [2], mixture of Gaussians [3]), which could
extensively treat the statistics of image patches (due to relatively lower dimension-
ality) and yield good image restoration results. However, as these models are build
on fixed small patches (e.g., 8×8 pixels in [3]), it is generally difficult to adapt them
to modeling entire images with arbitrary sizes, which limits their use in applications.
Note that, due to the “curse of dimensionality”, learning a patch-based prior still
requires a large amount of training data and is not easy.

As the pixel grid of an image can be naturally regarded as nodes of a graph
(cf . Fig. 1.2), undirected graphical models, or more specifically Markov random fields
(MRFs), have been used to formulate image priors [4]. MRFs provide a sound prob-
abilistic framework for modeling the entire images and dense scene representations.
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(a) Image pixel grid. Nodes represent
pixels.

(b) Undirected graph. Nodes are
connected by edges.

Figure 1.2: Analogy of pixel grid for images to nodes of undirected graphs.

In general, training a MRF means estimating the potential functions associated with
the maximal cliques of the graph (e.g., pairwise connected nodes in Fig. 1.2(b)).
The potential functions are often identical for different connected nodes due to the
assumption of spatial homogeneity of images, and thus the model training does not
require too much data compared to patch-based priors. Different MRF priors have
been proposed and found widespread use across low-level vision, ranging from the
pairwise models (e.g., [4, 5]) to high-order ones (larger maximal cliques, e.g., [6, 7]),
from modeling generic images to modeling visual textures (e.g., [8, 9]), from using
hand-crafted filters and/or potential functions (e.g., [10, 6]) to using learned ones
(e.g., [7, 11]), and from homogeneous models to content-aware MRFs [12, 13].

A trend in computer vision is to move away from a rigorous probabilistic inter-
pretation of MRF. One reason is the prevalence of non-probabilistic discriminative
methods (e.g., loss function-based training [14, 11]). More significantly, deep neu-
ral networks have gained momentum. Besides exploiting potential functions, inter-
pixel relations can be modeled using deep convolutional networks (CNNs) to learn
deep MRFs [15, 16]. More common is directly employing “traditional” MRFs in the
deep learning models as a regularizer in the loss function (e.g., optical flow esti-
mation [17, 18], image registration [19, 20, 21], blind image denoising [22], medical
image reconstruction [23]). As the learning target of these models coincides with
application-specific model evaluation, the performance of such models is highly ap-
pealing. In addition, deep generative image models (e.g., [24, 25, 26, 27]) explicitly
or implicitly approximate high-dimensional probability distributions of images and
can be regarded as image priors. However, the deep learning models lack statistical
interpretability and/or versatility of generative MRFs.

Despite that MRF priors are still widely used in image analysis, learning and
inference of MRFs, even for the pairwise models, is not easy. Moreover, it is actually
not clear whether these MRF models have been properly trained or whether they
have right captured important statistics of real images, since they have only been
evaluated indirectly in applications.
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The potentials and problems of MRFs for modeling image priors motivate our
work. The main goal of this dissertation is to explore how well high-order MRFs can
model images and how much a good prior can improve the performance of generative
models. To this end, we will develop strategies for dealing with the difficulties in
learning (especially high-order) MRFs, for application-independent evaluation of the
learned prior models, and for efficient probabilistic inference in various computer
vision problems.

1.2 Challenges

We use a vector x∈RN to denote all pixels of an image or a dense scene represen-
tation. Under a common filter-based MRF framework, where the clique potential
is represented as a Product of Experts [28], the probability density of an image is
written as

p(x;Ω) =
1

Z(Ω)

∏
c∈C

(∏
j

ϕ
(
fT
j x(c);ωj

))
, (1.2)

where x(c) are the pixels of maximal clique c∈C, clique potentials use experts1 ϕ(·)
with parameters ωj ∈Ω to model the responses to linear filters fj , and Z(Ω) is the
partition function. In this section, we use this MRF framework to briefly discuss the
challenges.

MRF modeling choices and training

Pairwise MRFs are equivalent to the filter-based MRFs in (1.2) that rely on x- and
y-derivative filters (see Sec. 2.2.3 for details), but their small neighborhood with
pairwise cliques limit the expressiveness of MRFs. A straightforward extension is to
use larger, high-order (derivative) filters that imply larger maximal cliques to define
the so-called high-order MRFs (e.g., [8]). In the framework of Fields of Experts
(FoE) [7], the filters can even be directly learned from the training data. How to
choose or learn the most suitable filters for MRFs is a challenging task.

The choice of potential functions ϕ(·) has always been an issue for model perfor-
mance. Early MRF models use Gaussian potentials (cf . Fig. 1.3(b)) due to several
reasons, for example, easy inference. However, natural images of common scenes ex-
hibit heavy-tailed marginal distributions, significantly differing from Gaussians (cf .
Fig. 1.3(a)), which suggests the use of robust or sparse potential functions, e.g., the
generalized Laplacian [5, 29] (cf . Fig. 1.3(c)) or the Student-t function [7, 30] (cf .
Fig. 1.3(d)). In [31], the potentials were computed by fitting the image marginals

1The terms “potential” and “expert” are sometimes used inter-changeably, depending on the
context.
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using more flexible Gaussian scale mixtures (GSM) [32]. In fact, many MRFs includ-
ing high-order ones have been hand-tuned and only roughly capture the statistics
of images. Moreover, the most common potential functions in MRFs are uni-modal.
While (probably) being sufficient for modeling natural images, they are not able
to properly model visual textures due to different statistics [9]. Exceptions are the
FRAME models [6, 8] which rely on a discrete non-parametric potential representa-
tion (thus allowing for multi-modal potentials) and strict learning procedures. While
the FRAME model for texture modeling [8] yields impressive results, the FRAME
model for generic natural images [6] does not perform competitively in image restora-
tion tasks.

A special case of MRFs is the restricted Boltzmann machine (RBM) [33] which
is a generative stochastic neural network. Its continuous variants are often used for
image feature (or filter) learning (e.g., [34, 35]) or modeling visual textures (e.g.,
[36, 37]). A question is: What are the characteristics of RBMs as image models
compared to common filter-based MRFs? In addition, both RBMs and filter-based
MRFs can be employed to train filters for image feature extraction in higher-level
vision problems. In this case, what is the relation between the two types of learned
filters?

Challenges also arise from training MRFs. In the context of training MRF im-
age priors, unsupervised learning of very high-dimensional models should be accom-
plished. Unfortunately, learning (and probabilistic inference) in many MRF models
is NP-hard [38], and the more complex the model is (e.g., high-order MRFs), the more
difficult the training will be. For the common maximum likelihood (ML) learning ob-
jective, as there is generally no closed form expression for the expectation of model
likelihood, exact computation is intractable. Approximate inference, for example,
using sampling, must thus be used. Markov chain Monte Carlo (MCMC) approxima-
tions are historically most common (e.g., [6]), but very inefficient. Consequently, ML
estimation itself was frequently approximated by contrastive divergence (CD) [33],
which avoids costly equilibrium samples. Different efficient sampling methods such
as Gibbs sampler [4, 33], hybrid Monte Carlo [7] were developed. In addition, deter-
ministic methods including basis rotation [39] and score matching [40] have also been
used. These approaches rely on particular potential functions, either fitted after the
training process or with limited expressiveness, which constrains their applicability.

Model evaluation

Evaluating the quality of MRF priors is a long-standing issue. Due to the intractable
partition function of the MRF, direct computation of the model likelihood is not
possible. In [39], likelihood bounds for GSM-based MRFs were derived, but could
only provide limited insights. Actually, MRF model evaluation largely happens in
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Figure 1.3: Marginal statistics of natural images and common potential (or expert)
functions in MRFs. (a) Histogram of neighboring pixel differences (blue, solid) and its
Gaussian fit (red, dashed); (b) Gaussian expert ϕ(y;σ)=exp

(
− 1

2σ2 y
2
)

(here, σ=5);
(c) generalized Laplacian expert ϕ(y;β, γ) = exp(−β|y|γ) (here, β = 0.5, γ = 0.7);
(d) Student-t expert ϕ(y;α) =

(
1+ 1

2y
2
)−α (here, α = 0.5). Note that logarithmic

(base 10) scale is used for the y-axis.

the context of particular applications, e.g., using image restoration to evaluate image
priors [5, 7], which is a rather indirect measurement of how good the prior model is.

Since the statistics of natural images and scenes motivate the modeling choices
for MRFs, a central question is how well the statistical properties are captured by
these MRF models. This is relatively unclear, although MRFs provide a generative
framework of images and scenes. In contrast to local statistical models (e.g., in [32],
the local variance of the wavelet coefficients in the neighborhood is modeled), the
generative properties of MRFs have been studied only rarely, mainly because com-
puting marginal distributions and other probabilistic properties of MRFs is difficult.
In [6], Zhu and Mumford advocated the use of sampling for evaluating their MRF
prior and computed derivative histograms from model samples. However, widely
applicable sampling algorithms (e.g., standard Gibbs sampling [4, 6], hybrid Monte
Carlo [7]) are inefficient, while sampling is almost the only choice. Based on sam-
pling, Lyu and Simoncelli [41] found the marginals of their MRF model of wavelet
coefficients to be non-Gaussian, but not as heavy-tailed as those of real image data.
Levi [42] also exploited sampling and found the marginals of the Fields of Experts [7]
to lack the heavy-tailed properties.

Efficient inference

The highly non-convex energy of common MRF models makes probabilistic infer-
ence of the posterior very difficult. In the context of maximum a-posteriori (MAP)
estimation, gradient-based methods (e.g., conjugate gradient method in [7]), though
being relatively efficient, can typically only find local optima of the objective; graph
cuts (e.g., [43, 44]) and belief propagation (e.g., [5, 45]) are good at finding approxi-
mate solutions, but are discrete models in contrast to the continuous interpretation
of MRFs, and are difficult to apply to models with larger cliques [46]. To achieve
best performance in an application, some ad-hoc modifications, e.g., imposing an
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additional weight on the MRF prior [7], have been made, which contradicts the
application-independent setting in generative models. A question is whether this
means that the MRF priors are not properly learned.

One of the advantages of probabilistic models is the accessibility of the uncer-
tainty of the solution . The MAP solution is a point estimate and does not reveal any
statistical information. Sampling the posterior allows approximating the marginals
and the expectation of the posterior (e.g., perfect sampling in [47]), but is gener-
ally computationally very expensive. More efficient variational Bayesian methods,
in particular, mean field approximation, have been used in multiple applications of
MRFs with a certain loss of model accuracy (e.g., [48, 49]).

1.3 Contributions

In this dissertation, we performed an application-independent evaluation of proba-
bilistic Markov random field (MRF) image priors by checking their generative prop-
erties and developed new effective learning approaches for training high-order MRF
priors that accurately capture key statistics of images and dense scene represen-
tations. We also developed new image analysis methods using the learned MRF
priors in different real-world problems: denoising of natural images, deconvolution
of microscopy images, and non-rigid registration of live cell microscopy images. This
demonstrates the versatility and performance competitiveness the learned MRF im-
age priors. The major contributions of this dissertation can be summarized into two
categories:

1.3.1 Methods for application-independent evaluation, effective learn-
ing, and understanding of MRF image priors

Evaluation of MRF priors using sampling. We developed an efficient auxiliary-
variable Gibbs sampler for a general filter-based MRF with potentials represented
by flexible Gaussian scale mixtures (GSM, mixture of Gaussians with same mean
but different variances) [39]. This allows us to analyze the generative properties of
common MRF priors using sampling and to perform an application-independent eval-
uation by checking the model statistics quantitatively. We surprisingly found that
the popular pairwise MRFs [5, 31] and high-order Fields of Experts (FoEs) [7, 39]
are relatively poor generative models and can not even capture the statistics of the
inbuilt features, i.e. responses to the (learned) model filters. This contradicts the
maximum entropy interpretation of filter-based MRFs [6], indicating that the poten-
tial functions of these models are chosen or learned inappropriately. The work was
published in [50].
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Learning MRF priors that capture proper image statistics. We exploited the
developed efficient Gibbs sampler to train pairwise MRFs and high-order FoEs with
flexible GSM potentials. We found that a standard maximum likelihood learning
procedure based on sampling and contrastive divergence (CD) [33] only works well
for pairwise MRF. We further proposed strategies to solve several learning issues
for the high-order models. Heavier-tailed potentials than have been considered in
previous work (e.g., [5, 31, 7, 39]) allow the model to capture the statistics of the
inbuilt features correctly; the trained models are thus real maximum entropy models.
More importantly and in contrast to previous MRFs, the learned FoEs also quite
accurately represent multi-scale derivative statistics, random filter statistics as well
as joint feature statistics of natural images. To the best of our knowledge, this is the
first time that such close matches between model and natural image statistics have
been reported for an MRF image prior. This also demonstrates that FoEs are indeed
capable of capturing a large number of key statistical properties of natural images.
The work was published in [50, 51].

Understanding the mean and covariance units in MRFs. To improve the
model expressiveness, we extended the MRFs with multimodal potentials based on
mixtures of GSMs. Such an extension not only enables training MRF priors for
specific classes of images (e.g., visual textures), but also helps us to find impor-
tant insights of MRFs through revisiting the seminal FRAME model [6]. To further
understand the importance of “covariance” units that impose regularization in typ-
ical MRFs for visual textures, we proposed to learn “mean”-only fully convolutional
Gaussian restricted Boltzmann machines (RBMs) for modeling Brodatz textures [52].
Our learned models exhibit several favorable properties of simplicity, efficiency, spa-
tial invariance, and a comparatively small number of structured, more interpretable
features; yet they outperform the more complex deep belief networks [37]. The re-
sults demonstrate that the “mean” units are actually most important in modeling
textures. The work was published in [53].

1.3.2 Image analysis methods based on (learned) MRF priors

Denoising natural images based on sampling. We modeled the denoising
problem in a Bayesian framework with the learned high-order MRFs for generic nat-
ural images as the prior in a purely generative setting. We extended the efficient
auxiliary-variable Gibbs sampler to infer the posterior mean or the Bayesian mini-
mum mean squared error (MMSE) estimate. Experiments show that our approach
outperforms previous MRF-based models and can compete with popular denoising
methods such as non-local sparse coding [54] and BM3D [55]. Moreover, the MMSE
estimate not only substantially outperforms MAP, but also avoids several of its prob-
lems (e.g., incorrect statistics of the output images [56]). We demonstrated that a
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rigorous probabilistic interpretation and good generative properties of MRFs can
go hand-in-hand with very good application performance. The work was published
in [50, 51].

Joint deconvolution, denoising and super-resolution of microscopy im-
ages. We developed a new Bayesian approach that simultaneously performs de-
convolution, denoising as well as super-resolution to restore microscopy images with
mixed Poisson-Gaussian noise. The model is based on a likelihood modeling the
statistics of mixed Poisson-Gaussian noise, and a learned high-order MRF prior. We
approximated the likelihood using general mixtures of Gaussians (MoG), which al-
lows a further extension of the developed efficient block Gibbs sampler [50]. The
degraded microscopy images are then restored by the MMSE estimate. Experiments
using both natural images and fluorescence microscopy images demonstrate that our
method can compete with state-of-the-art deconvolution approaches, and the joint
computation of deconvolution, denoising and super-resolution is superior to a sequen-
tial scheme. Our method is also applied to microscopy images of telomeres acquired
via stimulated emission depletion (STED) nanoscopy [57] for distinguishing different
experimental conditions. The work was published in [58].

Non-rigid registration of live cell nuclei in time-lapse microscopy images.
We introduce a global optical flow-based method to estimate the complex deforma-
tions of cell nuclei and perform non-rigid registration. The known properties of the
deformation fields are represented by an MRF prior for determining the most suit-
able regularizer in the model. Based on studying the noise statistics in fluorescence
microscopy images, we developed an adaptive weighting scheme to increase model
robustness. We further extended the global model by exploiting high-order image
features beyond the brightness. As the model formulations of FoEs and convolu-
tional Gaussian RBMs are both consistent with the assumption of high-order feature
constancy in the registration model, we learn filter banks with these generative MRF
models for extracting high-order features of cell nuclei, thus achieving increased reg-
istration accuracy. Using multiple data sets of real 2D and 3D live cell microscopy
image sequences as well as synthetic image data, we demonstrated that our proposed
approach outperforms the previous methods in terms of both registration accuracy
and computational efficiency. The work was published in [59, 60]. In addition, we in-
tegrated elasticity properties into the MRF prior to achieve more robust registration
performance. This work was published in [61, 62].

1.4 Thesis overview

In Chapter 2, we review basic concepts of Markov random fields and previous im-
portant MRF image priors as well as their learning and inference strategies. We
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also review other generative image models and variational methods. Chapter 3 in-
troduces a method for application-independent evaluation of image priors and new
efficient learning approaches to achieve expressive high-order MRFs. We further
explore MRFs with multimodal potential functions. Through an analytical com-
parison between MRFs and restricted Boltzmann machines, we reveal insights of
MRFs and introduce an MRF for modeling visual textures. In Chapter 4, we study
practical probabilistic inference approaches with the learned high-order image priors
and present new methods for denoising of natural images, deconvolution and super-
resolution of microscopy images, and non-rigid registration of cell nuclei in time-lapse
microscopy images. In Chapter 5, we summarize the findings in this dissertation and
discuss the limitations of current work. We also provide some thoughts on future
work.



Chapter 2

Background and related work

In this chapter, we review basic concepts of Markov random fields and previous
important MRF image priors as well as their learning and inference strategies. We
also review other generative image models and variational methods. Related work
on methods in particular applications (e.g., image restoration, image registration) is
reviewed in Chapter 4.

2.1 Graphical models and Markov random fields

A graphical model is a probabilistic model for formalizing the joint probability dis-
tribution over a set of random variables. It uses a graph to encode the independences
between random variables and to represent how the joint distribution factorizes. The
edges of the graph can be either directed or undirected, resulting in directed graph-
ical models and undirected graphical models. The former is also known as Bayesian
network and requires the graph to be acyclic (i.e., no directed cycles). But this re-
striction is generally too strong for modeling pixels in low-level vision. As a result,
we will focus on the second class in our work.

Undirected graphical models. In an undirected graphical model, the edges are
undirected and the graph may have arbitrary cycles (cf . Fig. 2.1(a)). The factoriza-
tion depends on the cliques of the graph, which are defined as the subsets of nodes
with full connection, resulting in the joint probability distribution formulation

p(x) =
1

Z

∏
c∈C

gc(x(c)), (2.1)

where x(c) denote the random variables of the clique c ∈ C, associated with a potential
function gc(·) ∈ R+ for assigning a positive score, and Z is the normalization or
partition function (the potential functions gc do not have to be normalized). This

11
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(a) Undirected graphical model
(Markov random field).
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(b) Factor graph.

Figure 2.1: Two types of graphical models. Red nodes denote observed random
variables, red nodes denote hidden random variables, and black squares are factor
nodes.

distribution can be equivalently written in the form of a Gibbs distribution (or Gibbs
random field).

While undirected graphical models are able to represent cyclic dependencies and
can be seen as a generalization of the directed models, learning and inference of
these models are difficult. For example, the connections between potential functions
and marginal distributions of cliques are complex; the partition function is gener-
ally intractable and the estimation needs expensive computation. In addition, the
generalization is not unique, as smaller cliques can be regarded as subsets of larger
cliques. To make the factorization unique, maximal cliques are often required.

Markov random fields. A set of random variables x = (xv)v∈V and a neighbor-
hood system N on these variables form a Markov random field (MRF) when the pos-
itivity and the Markovianity are both fulfilled [63], i.e., p(x) > 0 and p(xv|xV \{v}) =

p(xv|N (v)), where V \{v} is the set of all variables except v and N (v) is the set
of neighbors of v. In an MRF, the Markovianity also means a variable xv is con-
ditionally independent of all other variables given the set of its neighbors N (v).
According to the Hammersley–Clifford theorem [64], Markov random fields with a
neighborhood system N are equivalent to Gibbs random fields when the edges follow
the same neighborhood system. Therefore, Markov random fields and undirected
graphical models are the same class of probability distributions.

Factor graphs. Factor graphs [65] use a bipartite graph with an additional set
of nodes f ∈ F called factor nodes, to correspond to factors in the factorized joint
distribution. Variable nodes are only connected to factor nodes (cf . Fig. 2.1(b)), thus
the ambiguity of factorization can be removed. The joint probability distribution is
given as

p(x) =
1

Z

∏
f∈F

gf (x(f)), (2.2)



13

where x(f) are the random variables connected to factor f , and gf (·) ∈ R+ is the
associated potential function. We will see in later sections that the factor graph
formalism makes it easier to distinguish and understand different Markov random
field image priors studied in this dissertation.

2.2 Markov random field image priors

Many problems in low-level vision are formulated using probabilistic models, particu-
larly Markov random fields (MRFs), to impose prior knowledge [63]. In this section,
we review the most prominent MRF image priors as well as related learning and
inference approaches.

2.2.1 Pairwise and high-order MRFs

In an MRF image model, the nodes are arranged on a 2D lattice that corresponds
to the spatial organization of the image or dense scene representation and each node
corresponds to pixel intensities. Factor graphs allow a clear distinction between two
types of MRF image priors: (1) pairwise Markov random fields (cf . Fig. 2.2(a)), in
which factors (or maximal cliques) connect only pairs of nodes, and (2) high-order
Markov random fields (cf . Fig. 2.2(b)), in which factors (or maximal cliques) connect
more than two nodes.

Pairwise MRFs

The probability density of an image x in a pairwise MRF is generally written as
(e.g., [5, 46, 29])

p(x) =
1

Zpw

∏
i

∏
j∈N (i),j>i

gpw(xj − xi), (2.3)

where N (i) denotes indices of the 4-neighbors of pixel i, and the condition j >

i ensures that no pixel pairs are counted twice. The potential gpw is defined as
a function of the intensity difference in a pixel pair and usually assumed to be
the same at all spatial locations within the image grid, and thus the MRF model
is homogeneous and translation-invariant. As can been seen, the pairwise MRF
prior is formulated in terms of (the approximation of) first-order image derivatives;
though being simple, it poses an important restriction on structures in images and
scenes, thus being widely used for modeling prior knowledge of images. Actually,
there is an equivalence between pairwise MRF priors and first-order derivative-based
regularizers (also called smoothness terms) that are commonly used in variational
methods (e.g., [66]; see also Sec. 2.3.3 for more extended review).

Regarding the potential functions, the most common and simplest choices are
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(a) Pairwise MRF. (b) High-order (2×2 cliques) MRF.

Figure 2.2: Typical pairwise and high-order Markov random field image priors il-
lustrated as factor graphs. Colored dashed lines indicate image pixels connected to
each factor node.

Gaussians (cf . Fig. 1.3(b)). Gaussian potentials (as quadratic regularizers in vari-
atinal models) make the model inference relatively easy, but lead to smooth image
discontinuities, which is obviously different than those in generic images. To preserve
image discontinuities, robust potentials or regularizers are often chosen (cf . Fig. 2.5).
The special statistics of image derivatives (cf . Fig. 1.3(a)) also motivate the para-
metric forms of the robust potentials. While the parameters of many pairwise MRF
models still remain hand-tuned, there are some methods that learn the parameters
from training data. For example, potentials based on generalized Laplacian distri-
butions (cf . Fig. 1.3(c)) were trained in [5, 29], and mixture model-based potentials
were trained in [31] to fit the image derivative marginals.

High-order MRFs

In pairwise MRFs, the small neighborhood with pairwise cliques limit the expres-
siveness of the model. A straightforward extension is to use larger neighborhoods
(overlapping cliques), yielding a high-order MRF (cf . Fig. 2.2(b)). Difficulties for
choosing an appropriate potential function arise as the potential needs to be defined
over larger cliques. Since the potentials of pairwise MRFs are modeled based on first-
order image derivatives, potentials of high-order MRFs can be analogously modeled
based on higher-order image derivatives, which can be (approximately) extracted us-
ing linear filters. Usually a bank of linear filters are used and the potential function
can be written as

g(x(c)) =
∏
j

exp
(
− ρj(fT

j x(c))
)
, (2.4)

where fj are linear (high-order derivative) filters with the same size as the cliques, and
ρj are some (parametric or nonparametric) functions that model the filter responses.
Geman and Reynolds [10] modeled gray value images with a high-order MRF based
on 5 derivative filters (orders of 1, 2, 3) of size 3× 3 and robust regularization func-
tions. Another important high-order MRF image prior is the FRAME model [8]
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that can be learned from training data. The potential functions are modeled using a
flexible discrete, nonparametric representation. A bank of (much larger) linear filters
consisting of Gabor filters of various orientations and scales is first manually chosen
as candidates. The leaning procedure includes several rounds of greedily selecting
a filter from the candidates using the minimum entropy criterion and adding it to
the model, followed by training the model parameters using the maximum entropy
criterion. While the FRAME model for visual textures [8] yields impressive results,
the FRAME model for natural images [6] does not perform competitively in image
restoration applications. As the FRAME model is particularly important in this dis-
sertation, we will revisit and re-evaluate it for modeling generic images with today’s
learning and inference techniques in Sec. 3.4 and Sec. 4.1.

2.2.2 Fields of Experts

In high-order MRFs, besides the potential functions, the linear filters can also be
learned from the training data. Roth and Black proposed the Fields of Experts
(FoE) [7], in which the potentials and filters are learned jointly. The potential func-
tion in an FoE is formed through a combination of several “expert” functions defined
on the filter responses

gFoE(x(c)) =
∏
j

ϕ(fT
j x(c);αj), (2.5)

where fj are linear filters and ϕ(·) are expert functions with parameter αj . The
term “expert” has its origin in the Products of Experts (PoE) framework [28]. The
idea behind is that each expert is a simple model describing a particular property of
the neighborhood (on a low-dimensional subspace), and the combination of several
experts yields an expressive high-dimensional model. Note that the FoE model per-
mits more experts than clique dimensions (over-complete), which allows modeling
dependencies between filters.

Natural images and common dense scenes have heavy-tailed marginal distri-
butions. For example, Fig. 1.3(a) shows the marginal log-histograms of x- and
y-derivatives, which have a much stronger peak than a Gaussian with the same
mean and variance, and very heavy tails that decline slowly away from the mean.
Huang [67] showed that natural images exhibit heavy-tailed statistics not only for
derivatives and wavelet coefficients, but also for the responses to random, zero-mean
linear filters. The distinct heavy-tailed marginal distributions of images motivate
the use of heavy-tailed experts. In [7], the experts are modeled using unnormalized
Student-t distributions and have the form (cf . Fig. 1.3(d))

ϕ(y;α) =

(
1 +

1

2
y2
)−α

, (2.6)
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Figure 2.3: 5 × 5 filters obtained by training the Fields of Experts with Student-t
experts on natural images [7]. The number above each filter denotes the correspond-
ing expert parameter αj .

where the parameter α∈R+ controls the heavy-tailedness of the expert. Note that
this continuous, parametric expert representation contrasts with that of the FRAME
model [8].

Learning FoEs (i.e., filters fj and expert parameters αj) is very difficult as the
model is highly non-convex and the partition function is intractable. The general
learning strategy will be reviewed in next section. Fig. 2.3 shows the learned filters
with Student-t experts as well as expert parameters on natural images in [7].

Weiss and Freeman [39] extended the FoEs by using Gaussian scale mixtures
(GSMs) [32] to represent the experts. GSMs are weighted mixtures of Gaussian
components with the same means but different variances (in terms of multiple scales),
thus allowing a wider variety of heavy-tailed potentials to be represented, including
the Student-t potential in [7] and generalized Laplacians in [5].

While these (learned) heavy-tailed potential (or expert) functions are all uni-
modal (except for those of the FRAME models) and can well model the statistics of
generic images, Heess et al . [9] showed that such potentials are not suitable for mod-
eling textures. They further extended the Student-t expert in (2.6) to comprise both
uni-modal and bi-modal cases and trained FoE priors for different visual textures.
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2.2.3 Learning

Filter-based MRFs

Above, we have reviewed different pairwise and high-order MRFs (including FoEs).
These models can be written in a more general form by

pMRF(x;Ω) =
1

Z(Ω)

∏
c∈C

∏
j

ϕ
(
fT
j x(c);ωj

)
, (2.7)

where Z(Ω) is the partition function dependent on model parameters Ω, ωj are
parameters for the expert or potential ϕ(·) that models responses of filter fj , and C
denotes all overlapping maximal cliques (overlapping image patches). We can further
rewrite the MRF formulation using convolution [7]

pMRF(x;Ω) =
1

Z(Ω)

∏
j

∏
i

ϕ
(
(f̃j ∗ x)i;ωj

)
. (2.8)

Here “∗” denotes the convolution operation. f̃j is the convolution filter that is the
spatially flipped version of filter fj (simply by rearranging the coefficients). We use
(·)i to denote the ith pixel in the convolved image.

The pairwise MRF can be subsumed in this class of MRFs in (2.8) easily by
defining two derivative filters f1 = [−1, 1] and f2 = fT

1 (cf . (2.3)).

The expression of MRFs with convolution not only allows efficient implementa-
tion, but also makes it easier to derive the learning and inference approaches. In this
dissertation we also denote this model class as filter-based MRFs.

Maximum likelihood learning

Learning MRFs means the estimation of model parameters Ω (including expert pa-
rameters and linear filters) from a set of R training images X0 = [x(1),x(2), · · · ,x(R)].
While there is an extensive literature on learning methods for MRF models, here we
focus on the popular maximum likelihood (ML) methods (e.g., used in [2, 30, 7, 9]).
By assuming the training images x(n) are independent, the learning objective is to
maximize the log-likelihood

L(X0;Ω) := log pMRF(X
0;Ω) =

R∑
n=1

log pMRF(x
(n);Ω). (2.9)

As there is generally no closed form solution for Ω, gradient ascent on the log-
likelihood can be performed. The partial derivative of the log-likelihood with respect
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to a parameter Ωj is

∂

∂Ωj
L(X0;Ω) =

R∑
n=1

∂

∂Ωj
log p(x(n);Ω)

=

R∑
n=1

∂

∂Ωj

(
− E(x(n);Ω)− logZ(Ω)

)
(2.10)

= −
R∑

n=1

∂E(x(n);Ω)

∂Ωj
−

R∑
n=1

∂ logZ(Ω)

∂Ωj

= −R ·
〈
∂E(x;Ω)

∂Ωj

〉
X0

−R · ∂ logZ(Ω)

∂Ωj
. (2.11)

E in (2.10) is the unnormalized Gibbs energy according to p(x;Ω) = 1
Z(Ω)e

−E(x;Ω)

and ⟨·⟩X0 in (2.11) denotes expectation value (here equivalent to the average) over
the training data X0. The second term in (2.11) can be further simplified as

∂ logZ(Ω)

∂Ωj
=

1

Z(Ω)
· ∂Z(Ω)

∂Ωj

=
1

Z(Ω)
· ∂

∂Ωj

∫
e−E(x;Ω)dx

=
1

Z(Ω)

∫
−∂E(x;Ω)

∂Ωj
e−E(x;Ω)dx

= −
∫
∂E(x;Ω)

∂Ωj
p(x;Ω)dx

= −
〈
∂E(x;Ω)

∂Ωj

〉
p(x;Ω)

. (2.12)

⟨·⟩p denotes the expectation with respect to the model distribution. Thus, the gra-
dient ascent on the log-likelihood leads to the updates of parameters

Ω
(t+1)
j = Ω

(t)
j + η

[〈
∂E

∂Ωj

〉
p(x;Ω(t))

−
〈
∂E

∂Ωj

〉
X0

]
, (2.13)

where η is the learning rate. One conceptual advantage is that this minimizes the
Kullback-Leibler (KL) divergence between the model and the data distribution and,
in principle, makes the model statistics as close as possible to those of the training
data.

Approximate inference using sampling

The equations for computing partial derivatives of the unnormalized Gibbs energy of
MRFs in (2.13) can be straightforwardly derived. The expectation over the training
data is relatively easy to compute. Various difficulties, however, arise in practice, as
there is no closed form expression for the model expectation, and an exact compu-
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tation is intractable. Approximate inference must thus be used.

The expectation can be approximated using samples xs from the MRF model
distribution 〈

∂E

∂Ωi

〉
Xs
≈
〈
∂E

∂Ωi

〉
p

, (2.14)

where Xs = [x
(1)
s ,x

(2)
s , · · · ] is a set of model samples. To draw samples from MRF

models, Markov chain Monte Carlo (MCMC) techniques are commonly used. De-
spite being powerful, MCMC is often computationally expensive and slow (e.g., in
the FRAME model [8]), because the dimensions of entire images are generally very
high and MCMC often requires many iterations until the Markov chain converges to
the target distribution. One strategy is to make MCMC sampling more efficient using
data-driven proposal distributions (e.g., [68]) or domain-specific proposal distribu-
tions (e.g., [69]). A second strategy is to perform approximate maximum likelihood,
e.g., contrastive divergence (CD) [33]. The samplers are initialized at the training
data X0 and only run for a small, fixed number of MCMC iterations to yield the
sample set Xcd, instead of running the Markov chain until convergence. Xcd are
then used as model samples to compute the expectation in (2.14). The interpretation
is that samples Xcd are closer to the (current) model distribution and the change is
sufficient to estimate the parameter updates. Although CD was shown to be biased
in many cases, the bias is very small in practice [70]. CD has been successfully ap-
plied to learning MRF models (e.g., FoEs in [7]) as well as a few related models such
as Products of Experts (PoE) [30] and conditional random fields [71, 72].

The development of samplers for performing MCMC sampling is also an im-
portant issue. The Gibbs sampler [4] is a classical method commonly used in image
modeling, which is performed by repeatedly sampling subsets of the random variables
while keeping the other variables fixed. In [4, 8], single-site Gibbs sampling that sam-
ple each pixel conditioned on all other pixels was very inefficient, and many MCMC
iterations were needed to reach the equilibrium distribution. More efficient block
Gibbs samplers was developed for training the restricted Boltzmann machines [33]
and the Products of Experts [2], which alternately sample a set of hidden variables
given the random variables and vice versa, and thus achieve rapid mixing. For train-
ing the FoEs in [7, 9] as well as the PoE in [30], a Metropolis-based sampler, in
particular, hybrid Monte Carlo (HMC) [73] was used. The HMC sampler uses the
gradient of the log-density to explore the space more effectively and is sufficient for
small images, but exhibits slow mixing for larger ones as sample dynamics have to
be very small to admit a sufficiently high acceptance ratio.
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2.2.4 Inference

Using MRF priors in applications is usually formulated as probabilistic inference of a
posterior under a Bayesian framework. Given the observed data (or measurement) y
and the application specific likelihood p(y|x), the posterior is written as

p(x|y) ∝ p(y|x) · pMRF(x). (2.15)

The inference goal includes finding estimates for x and computing marginal distri-
butions of the posterior.

The most common estimate for x is the maximum a-posteriori (MAP) solution.
As there is generally no closed form solution for x, a basic strategy is to perform
gradient ascent on the log-posterior

x← x+ τ
(
∇x log p(y|x) +∇x log pMRF(x)

)
, (2.16)

where τ is the stepsize. According to the MRF formulation in (2.8), the expression
for ∇x log pMRF(x) can be derived as

∇x log pMRF(x) =
∑
j

fj ∗φ′(f̃j ∗ x; ωj

)
, (2.17)

where φ′(·; ωj) is the vector of derivatives of all log-experts log ϕ(·i; ωj). Con-
volution makes the computation of this term very efficient. When the likelihood
is not very complex (e.g., for additive Gaussian noise removal), the inference algo-
rithm is very easy to apply and implement. For example, in [7], conjugate gradient
methods [74] were applied for MAP estimation for faster convergence in FoE mod-
els. However, since the unnormalized Gibbs energy of MRF models is often highly
non-convex, gradient-based method typically only find local optima.

Methods for inference with graphical models are also a common choice in low-level
vision, including graph cuts [38, 75, 43, 44] and belief propagation [76, 5, 77, 45].
These algorithms can find very good approximate (sometimes exact) solutions of
non-convex optimization problems [43, 44]; but they are discrete models in contrast
to the continuous interpretation of MRFs, and are difficult to be applied to models
with larger cliques [46].

A number of methods have relied on sampling the posterior distribution to com-
pute approximate MAP solutions. Geman and Yang [78] used posterior sampling for
image restoration. Barbu and Zhu [69] developed an efficient Swendsen-Wang sam-
pling scheme and applied it to segmentation and stereo matching. Kim et al . [79]
used population-based MCMC methods for stereo matching. Moreover, sampling the
posterior allows approximating the expectation of the posterior which is also called
minimum mean squared error (MMSE) estimate. Fox and Nicholls [47] sampled the
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(a) (b)

Figure 2.4: Restricted Boltzmann machines and learned filters. (a) Graph represen-
tation of a RBM with four visible units (blue) and three hidden units (gray). (b)
Filters of 7×7 pixels obtained by training a convolutional Gaussian RBM [35] on
natural images.

posterior of binary MRFs using perfect sampling, and found the MMSE estimate
leading to more robust results.

To directly and more efficiently estimate the MMSE solutions, variational Bayesian
methods, in particular, mean field approximation, have been used in multiple appli-
cations with high-order MRFs (e.g., [48, 49]), which yielded results with comparable
accuracy to sampling methods.

2.3 Other related work

2.3.1 Restricted Boltzmann machines

The restrict Boltzmann machine (RBM) [33] is a generative stochastic neural network
and can be represented as a bipartite graph, where there are two groups of nodes
(“visible” and “hidden”) with only inter-group connections (cf . Fig. 2.4(a)). The
RBM is a special case of Markov random fields [80], and its structure allows for
efficient training algorithms such as contrastive divergence (CD) [33].

While the standard RBM has binary visible and binary hidden variables, it has
been extended to model the density over continuous visible variables (keeping the
hidden binary) [81], which makes the RBMs appropriate for modeling images at pixel
level. Norouzi et al . [35] further applied the continuous RBM convolutionally to all
overlapping cliques of a large image to obtain a generative image model. In terms of
energy function, such a RBM image model is defined as

ERBM(x,h) =
1

2
xTx−

∑
c∈C

∑
j

hjc
(
wT

j x(c) + bj
)
, (2.18)

where x are visible variables and denote image pixels, hjc ∈ h are binary hidden
variables, wj determine the interaction between pairs of visible and hidden variables,
and bj are the biases. The (joint) distribution of this model can be defined as a Gibbs
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distribution according to the model energy1. As the conditional of x give the hidden
variables h is a (multi-variate) Gaussian distribution with identity covariance, this
continuous model is called convolutional Gaussian RBM (cGRBM).

Note that the cGRBM was not proposed for generic image priors, but to train a
bank of filters (which are actually the interaction vectors wj in (2.18)) for feature
extraction in higher-level vision problems (e.g., object detection [35, 82]). Fig. 2.4(b)
shows learned filters from a cGRBM on natural images. Due to the convolution
structure in the model (cf . (2.8)), the learned cGRBM filters can capture shift-
invariant image features.

2.3.2 Filters for image feature extraction

Filtering (or convolution) is an important image processing operation. A large num-
ber of computer vision applications rely on image features extracted using filters.

Gabor filters are an popular class of linear filters in image processing designed
for frequency analysis and texture feature extraction, which are defined as Gaus-
sian functions modulated by sinusoidal plane waves with different frequencies and
directions, thus can be regarded as smooth derivative filters at various scales and
orientations. Gabor filters have been used in MRF image models, e.g., the FRAME
model [8] for modeling textures.

Using unsupervised feature learning methods, filters can be learned directly from
training images. The common methods are patch-based, meaning that the filters
are learned from a large number of image patches, and the size of each filter is the
same as that of a training patch. These methods include K-means clustering, sparse
coding2 [84, 85], Products of Experts [2], mixtures of Gaussians [3], sparse RBMs [34],
sparse auto-encoders [86, 87], and typically (when using whitened training data)
yield localized filters, which resemble Gabor filters of various orientations, scales and
locations. Note that these methods generally permit more filters than dimensions
(number of pixels in a patch). This over-complete feature representation allows
dependencies between filters being modeled and consequently is more expressive,
resulting in better performance in applications (e.g., image classification) [88].

Filters can also be learned by training high-order generative MRFs (e.g., FoEs
or convolutional RBMs, also [11]), which are shift-invariant due to the convolution
structure of MRFs. It was shown in [7, 11] that the learned MRF filters are supe-
rior to those trained by patch-based models or engineered by hand in the context
of image denoising with high-order MRFs. The learned MRF filters have also found
widespread use across low-level and high-level vision problems such as denoising [89],

1The density for image x can be easily derived by marginalizing out the hidden variables h.
2Principal component analysis (PCA) [83] and independent component analysis (ICA) [1] can

be regarded as variations of sparse coding.
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Figure 2.5: Common robust regularizers. (a) Truncated quadratic; (b) Charbonnier
ψ(y)=

√
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deconvolution [90], object detection [35], classification [91] to extract important im-
age features.

2.3.3 Regularization in variational methods and deep models

In variational methods, the images or scene representations are regarded as functions
of real-valued coordinates (e.g., f : R×R→ R) and the goal is to determine f(x, y)
based on the observations o(x, y) through minimizing the energy functional in the
general formulation [92]

E(f ; o) =

∫∫
D(f, o) + λ · ψ(∥∇f∥) dx dy, (2.19)

where D(f, o) is the data term that ensures a reasonable relation between the un-
known f and the observation o. The second term imposes prior knowledge by pe-
nalizing large image gradients using a regularization function ψ, and λ is a weight to
balance the two terms. To preserve image discontinuities (e.g., edges) in the results
as those that appear in real images, robust regularizers (cf . Fig. 2.5) [93, 94, 95] have
been used, which less penalize significant image gradients. Variational methods are
also called regularization methods, and have continued to be popular since the early
work for optical flow estimation [96] and image restoration [97].

Discretization of the variational energy functionals in space allows defining Gibbs
random fields, and thus variational methods can be interpreted as Markov ran-
dom fields [98]. It is easy to find the equivalences of the robust Charbonnier and
Lorentzian functions in regularization methods to special cases of generalized Lapla-
cian and Student-t potential functions in MRFs (cf . Fig. 1.3(c,d)), respectively. Ac-
tually some high-order MRFs (e.g., [11]) were trained using variational methods.

More recently variational methods have also been combined with deep neural
networks. For example, non-rigid registration of medical images is a typical complex
non-linear optimization problem, for which the deep models could be trained as
efficient solvers. Convolutional neural networks (CNN) (in particular, patch-based
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models [99, 19], models with encoder-decoder structures [100, 20, 21]) for estimating
the deformation fields were trained unsupervisedly, where energy functionals with
some regularization (e.g., quadratic [99, 20, 19], total-variation (TV) [100], control
function [21]) serve as the loss functions.

2.3.4 Deep generative models

Deep generative image models use neural networks with multiple hidden layers to
approximate high-dimensional probability distributions of images either explicitly or
implicitly. They are trained unsupervisedly and can be regarded as image priors.
Below, we review few typical deep generative image models.

In PixelRNN and PixelCNN [24], the tractable probability density of images p(x)
is factorized into a product of conditional distributions

p(x) =

N∏
i=1

p(xi |x1, . . . , xi−1), (2.20)

where the image x ∈ RN is written as a one-dimensional sequence (x1, . . . , xN ) and
p(xi |x1, . . . , xi−1) is the distribution of the i-th pixel xi given all previous pixels
(x1, . . . , xi−1). These complex conditional distributions are modeled by a recurrent
neural network (RNN) or a convolutional neural network (CNN). Such deep genera-
tive models allow explicitly computing the likelihood of images.

Variational Auto-encoders (VAE) [25, 101] define the intractable density of im-
ages with latent variables z

pθ(x) =

∫
pθ(x|z)pθ(z)dz, (2.21)

where θ denotes the model parameters. VAEs are used to generate image sam-
ples with a decoder network given the latent variables that can be sampled more
efficiently. Training of VAEs is performed by including an encoder network and
maximizing the variational lower-bound of the likelihood.

Generative Adversarial Networks (GAN) [26, 27], rather than modeling the im-
age density, take a different strategy to generate image samples from the training
distribution. Through a two-player game, GANs simultaneously learn two networks,
a generator and a discriminator: The former tries to cheat the latter by generating
more realistic images, and the latter try to distinguish between real and generated
images. Compared to VAEs, GANs can generate high quality image samples, but
are generally more difficult to train due to the minimax optimization objective.

The main aim of these deep generative models is to capture the high-level image
structures and generate realistic samples for various purposes such as artwork, super-
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resolution, and colorization. However, it is hard to use them as a versatile image
prior in a variety of image analysis problems (e.g., with a generative setting in a
Bayesian framework).



Chapter 3

Learning and evaluation of MRF
image priors

Both learning and evaluation of MRF priors for images are challenging problems. In
this chapter, we first develop a new efficient auxiliary-variable Gibbs sampler for a
general class of MRFs with flexible Gaussian scale mixture (GSM) potentials. This
enables us to propose an application-independent method to quantitatively evaluate
various common probabilistic MRF priors using model samples. After showing that
previous MRF priors only crudely capture image statistics, we further present new
strategies for more effectively training MRF priors that can accurately capture key
statistical properties of natural images. An extension of the potential functions to
the multi-modal case allows to revisit the seminal FRAME model [6] and obtain
more in-depth understanding of the learned MRF potential functions. In the last
section, we analyze the “mean” and “covariance” units in MRF models and introduce
a compact, “mean”-only MRF for efficiently modeling image textures.

The development of the Gibbs sampler and the model evaluation scheme were
published in [50]. New MRF learning strategies and results were published in [51].
The extension to multi-modal potentials and revisiting the FRAME model are un-
published work. The analysis and training of MRFs for textures were published
in [53].

3.1 Developing an efficient Gibbs sampler

3.1.1 Flexible MRF model

Rather than proposing a new prior, we rely on the filter-based, high-order MRF
model Fields of Experts (FoE) [7], whose clique potentials model the responses to a
bank of linear filters. The prior probability density of an image x ∈ RN under the

26
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FoE can be written as

p(x;Ω) =
Nϵ(x)

Z(Ω)

∏
c∈C

J∏
j=1

ϕ
(
fT
j x(c);ωj

)
, (3.1)

where x(c) are the pixels of clique c ∈ C, fj are the linear filters and ϕ(·;ωj) is the
respective potential function (or expert, depending on the context) with parameters
ωj . Z(Ω) is the partition function that depends on the model parameters Ω =

{fj ,ωj | j=1, . . . , J}. A very broad unnormalized Gaussian Nϵ(x) = e−ϵ∥x∥2/2 with
ϵ = 10−8 is used to guarantee the model to be normalizable even when the potential
functions do not fully constrain image pixels [39].

Apart from a variety of FoE models [7, 102, 39], this general class of MRFs in (3.1)
subsumes popular pairwise MRF models as well (e.g., [46, 29, 5]). For the pairwise
case we define a single fixed filter f1 = [−1, 1]T and let the maximal cliques C be all
pairs of horizontal and vertical neighbors.

Following [39], we use flexible Gaussian scale mixtures (GSM) [32] to represent
the potentials. In their finite form they can be written as

ϕ(fT
j x(c);ωj) =

K∑
k=1

ωjk · N (fT
j x(c); 0, sk · σ2j ), (3.2)

where ωjk ≥ 0,
∑

k ωjk = 1 are the mixture weights of the Gaussian components
with scales sk and base variance σ2j . GSMs have the advantage that they allow a
wide variety of heavy-tailed potentials to be represented, including the Student-t
function [7] and generalized Laplacians [5], and are yet computationally relatively
easy to deal with.

3.1.2 Auxiliary-variable Gibbs sampler

The partition function Z(Ω) of the MRF priors is intractable, which results in the
infeasibility of exact computations of model statistics. As sampling is a distinguished
feature of generative models, the statistical properties can be analyzed through sam-
ples. In order to make it practical, an efficient sampler, also as a general inference
engine for probabilistic models, is required.

Markov chain Monte Carlo (MCMC) is largely the only choice to sample MRFs.
Single-site Gibbs samplers [4, 6] are very inefficient, as they need many iterations to
reach the equilibrium distribution. Other Metropolis-based samplers, such as hybrid
Monte Carlo [7], are sufficient for small images, but exhibit slow mixing for larger
ones as sample dynamics have to be very small to admit a sufficiently high acceptance
ratio.
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Here, we take a different route and exploit that our potentials are represented
using Gaussian scale mixtures. In the context of Products of Experts [33], Welling
et al . [2] showed that it is beneficial to retain the scales of the GSM as an explicit
discrete-valued hidden random vector z ∈ {1, . . . ,K}J , one scale for each expert.
Similar to a regular mixture model, one can define a joint distribution p(x, z;Ω) of
x and the auxiliary mixture coefficients z such that

∑
z p(x, z;Ω) = p(x;Ω). [2]

showed that this allows defining a rapidly mixing auxiliary-variable Gibbs sampler
that alternates between sampling z(t+1) ∼ p(z|x(t);Ω) and x(t+1) ∼ p(x|z(t+1);Ω),
where t denotes the current iteration. If one only cares about obtaining samples of
x, the coefficients z can later be discarded. Similar ideas have been pioneered by
Geman and Yang [78] in the context of MRFs. Levi and Weiss [42, 103] showed that
this general framework can also be applied to MRFs with arbitrary Gaussian mixture
potentials.

We rewrite the model density in (3.1) and (3.2) as

p(x;Ω) =
∑
z

Nϵ(x)

Z(Ω)

∏
c∈C

J∏
j=1

p(zjc) · N (fT
j x(c); 0, szjcσ

2
j ), (3.3)

where the scales z ∈ {1, . . . ,K}J×|C| for each potential function and clique are treated
as random variables with p(zjc) = ωjzjc (i.e., the GSM mixture weights). Instead of
marginalizing out the scales, we retain them explicitly and define the joint distribu-
tion (cf . [2])

p(x, z;Ω) =
Nϵ(x)

Z(Ω)

∏
c∈C

∏
j

p(zjc) · N (fT
j x(c); 0, szjcσ

2
j ). (3.4)

The conditional distribution p(x|z;Ω) can be derived as a multivariate Gaussian

p(x|z;Ω) ∝ Nϵ(x) ·
∏
c∈C

∏
j

exp

{
−
(fT

j x(c))
2

2szjcσ
2
j

}

∝ N

(
x;0,

(
ϵI+

∑
c∈C

∑
j

wjcw
T
jc

szjcσ
2
j

)−1
)
, (3.5)

where wjc is defined as wT
jcx = fT

j x(c) which is the result of applying the filter fj to
clique c of the image x.

Difficulties of sampling the Gaussian in (3.5) arise from the fact that the (inverse)
covariance matrix is huge for large images, which prevents an explicit Cholesky de-
composition as in [2]. Levi and Weiss [42, 103] showed that this can be avoided by
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rewriting the covariance as

Σ =
(
ϵI+

∑
c∈C

∑
j

wjcw
T
jc

szjcσ
2
j

)−1
=
(
WΛWT)−1 (3.6)

with Λ being a diagonal matrix and obtaining a sample x from p(x|z;Ω) by solving
a least-squares problem

WΛWTx = W
√
Λy, (3.7)

where the vector y is sampled from a unit normal y ∼ N (0, I). Solving this sparse
linear system of equations is much more efficient than a Cholesky decomposition.
The advantage over single-site Gibbs samplers [6] or patch Gibbs samplers is that
the whole image vector can be sampled at once, which leads to an efficient sampling
procedure with rapid mixing and fast convergence to the equilibrium distribution.

Since the scales z are conditionally independent given the image, the conditional
distribution p(z|x;Ω) is given as

p(zjc|x;Ω) ∝ ωjzjc · N (fT
j x(c); 0, szjcσ

2
j ) (3.8)

and sampling this discrete distribution is straightforward.

Convergence analysis

Whenever MCMC methods are used to compute expected values and marginals,
only fair samples after converging to the equilibrium distribution should be used
to estimate the quantities of interest. While the auxiliary-variable Gibbs sampler
mixes rapidly (see Fig. 3.1), a more rigorous procedure for monitoring convergence
is still desirable. We use the popular approach by Gelman and Rubin [104], which
relies on running several Markov chains in parallel and initializing them at different
over-dispersed starting points. By computing the within-sequence variance σ2w and
the between-sequence variance σ2b of a scalar estimand (here, the model energy), one
can monitor convergence by estimating the potential scale reduction

R̂ =

√
(n− 1)σ2w + σ2b

nσ2w
, (3.9)

where n is the number of iterations per chain. If R̂ is near 1, we can regard the sam-
pler to have approximately converged, since the chains have “forgotten” about their
initialization. For computing R̂ the first half of the samples is always conservatively
discarded. We refer to [104] for details.
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Figure 3.1: Fast mixing of the Gibbs sampler when sampling an image of 100×100
pixels from the learned pairwise MRF prior. Three chains are initialized with dis-
persed starting points (an image and processed versions). Approximate convergence
is reached after 28 iterations (R̂ < 1.1).

3.2 Model evaluation via generative properties

Here we revive and extend the methodology of Zhu and Mumford [6], which takes
advantage of the generative nature of image priors by drawing samples from the
model and evaluating its quality through the samples. The central advantage is that
this provides a fully application-independent way of evaluating MRFs.

3.2.1 Evaluation based on marginal statistics

According to [8], the filter-based MRFs (cliques corresponding to the filters) discussed
in this thesis take the form of a maximum entropy distribution, so the statistics of the
in-build features (filter responses) should be preserved. Note that [6] only analyzed
the derivative statistics and did not perform quantitative measurements. We here
propose to analyze generative models regarding these properties and to quantitatively
measure the Kullback-Leibler (KL) divergences between the discretized marginal
distributions of images with respect to filters Px̂ and those of model samples Pŝ:

Dkl =
∑
k∈K

Pŝ(k) · ln
Pŝ(k)

Px̂(k)
, (3.10)

where K denotes the probability space. The lower the KL-divergence values, the
better the model captures the statistical properties of images.

Minimizing the KL-divergence between the model and the data distribution is
equivalent to maximizing the likelihood of the model to the data. While the most
popular learning objective for image priors is maximum likelihood (ML), we have also
developed a direct and quantitative measurement for evaluating the effectiveness of
learning.
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3.2.2 Conditional sampling

In order to avoid extreme values at the less constrained boundary pixels [35] during
model analysis, we rely on conditional sampling. In particular, we sample the pixels
xa ∈ RNA given fixed pixels xb ∈ RNB , NA+NB =N, and scales z according to the
conditional Gaussian distribution

p(xa|xb, z;Ω), (3.11)

where A and B denote the index sets of the respective pixels. Without loss of
generality, we assume that

x =

[
xa

xb

]
, Σ =

(
WΛWT)−1

=

[
A C

CT B

]−1

, (3.12)

where the square sub-matrices A and B have the dimensions NA×NA and NB×NB,
respectively. The conditional distribution of interest can now be derived as

p(xa|xb, z;Ω) ∝ exp

−1

2

[
xa

xb

]T [
A C

CT B

][
xa

xb

]
∝ exp

(
−1

2

(
xa +A−1Cxb

)T
A
(
xa +A−1Cxb

))
∝ N

(
xa;−A−1Cxb,A

−1
)
.

(3.13)

The matrix A is given by the appropriate sub-matrices of W and Λ, and allows for
using the same efficient sampling scheme. The mean µ = −A−1Cxb of the Gaussian
can also be computed by solving a least-squares problem Aµ = −Cxb. Sampling
the conditional distribution of scales p(z|xa,xb;Ω) = p(z|x;Ω) remains as before.

3.2.3 Properties of common MRFs

In order to exploit the efficient Gibbs sampler for an analysis of common MRF
models, we convert them into the required form, if needed. For this we fit the flexible
GSM potential from (3.2) to the target potential by minimizing their KL-divergence
through gradient-based nonlinear optimization of the weights ωjk. We achieve very
good fits through a wide range of different potential shapes (Dkl < 0.0005).

To evaluate the baseline statistics of natural images, we use a validation set
of 3000 randomly cropped 32 × 32 non-overlapping patches from the test images
of the Berkeley image segmentation dataset [105], and convert it to grayscale. The
properties of the MRF models, on the other hand, are obtained by randomly sampling
3000 images of size 50× 50 pixels. To avoid boundary artifacts during sampling, we
follow [35] and condition on fixed image boundaries from a separate set of 3000



32

−200 −100 0 100 200

10−5

10−3

10−1

(a) potentials

D   = 1.37KL

−200 −100 0 100 200

10−5

10−3

10−1   

  

  D   = 1.37KL

D   = 1.57KL

D   = 0.006KL

(b) derivative marginals

Figure 3.2: Pairwise MRFs. (a) Potentials: generalized Laplacian [5] (blue, dash-
dotted), fit of the marginals [31] (green, solid), and proposed flexible potential (red,
dashed). (b) Derivative histograms of samples from corresponding MRFs, and statis-
tics of natural images (black, solid). Typical models [31, 5] lead to an incorrect rep-
resentation of image statistics.

image patches. The fixed boundaries are m − 1 pixels wide/high, where m is the
maximum extent of the largest clique; thus every interior pixel is constrained by
equally many cliques. To avoid the effects of the boundary creeping into the analysis,
we only collect sample statistics from 32× 32 pixels in the middle. To draw a single
sample from the model distribution, we set up three chains and assess convergence as
described. We use three over-dispersed starting points: the interior of the boundary
image, a median-filtered version, and a noisy version with Gaussian noise (σ = 15)
added.

Pairwise MRFs

We first analyze the generative properties of pairwise MRF models, which remain
popular until today due to their simplicity. The study of natural image statistics has
widely found marginal histograms of image derivatives to exhibit a sharp peak at 0

and heavy tails (see Fig. 3.2), which motivates the use of heavy-tailed potentials with
shapes similar to the empirical derivative statistics [46, 29, 5]. It has also become
common to fit potential functions directly to the derivative histogram [31, 39]. This
is at least unsatisfactory, since there is no direct correspondence between potential
functions and marginals in MRFs.

Do these potential functions actually allow capturing the derivative statistics
of natural images? We first consider generalized Laplacians (ϕ(y) = exp(−β|y|γ),
typically γ<1), which have been popular in the literature [29, 5] (here, β=0.5, γ=

0.7). We also consider GSM potentials that have been directly fitted to the empirical
marginals, similar to [31, 39]. As Fig. 3.2 shows, neither potential allows pairwise
MRFs to capture the derivative statistics of real images. The model marginals are
much too tightly peaked and the tails have an incorrect shape. Other potentials such
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Figure 3.3: Filter statistics of natural images (top) and filter marginals of FoE models
(bottom). (Filters are normalized for ease of display.)

as truncated quadratics exhibit similar issues. Evaluating other model properties
appears pointless, since not even the statistics of the model features (i.e., derivatives)
are captured. This seems surprising, however, given how widely used such models are.
Since pairwise MRFs can be interpreted as maximum entropy models that capture
first derivatives (cf . [6]), the shape of the potential function is the only cause of the
problem.

High-order MRFs

Since pairwise MRFs are quite restricted as they (at best) model the statistics of first
image derivatives, high-order MRF models have become increasingly popular. While
the early FRAME model [6] was found to exhibit heavy-tailed derivative marginals,
only modest levels of image restoration performance have been achieved. The more
recent Field of Experts (FoE) and variants [7, 102, 39] differ by their parametric
expert functions and learned filters, and have shown to be among the best-performing
image priors. We analyze their generative properties by inspecting the marginal
distributions of filter responses. Since different models have different features (i.e.,
filters), we evaluate each model w.r.t. its learned bank of filters. We consider both
the original FoE with Student-t experts [7] and the GSM-based FoE model of [39].
The study of natural images has found that even arbitrary zero-mean filters have
heavy-tailed statistics [67], which also holds for the learned filters (see Fig. 3.3, top).
We confirm and extend the findings of Levi [42], that the original FoE model [7] does
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not capture the filter statistics (Fig. 3.3, bottom). The model marginals are much
too peaky for all filters, and exhibit a high marginal KL-divergence. Beyond this,
we find that the model of Weiss and Freeman [39] shows similarly unsatisfactory
results. This is again surprising, given how well FoEs perform in real applications.
Since FoEs can also be interpreted as maximum entropy models [6] that constrain
the statistics of the bank of learned filters, this means either the parametric form of
the experts or the learning procedure is insufficient.

3.2.4 Visual inspection of model samples

Although visual inspection is not very suitable for evaluating the “quality” of model
samples, it can provide some intuition about which image structures a model cap-
tures. Fig. 3.4 shows three subsequent samples (after reaching the equilibrium dis-
tribution) from the common MRFs discussed above in Sec. 3.2.3. It can been seen
that samples from common pairwise models appear too “grainy”, while those from
previous FoE models are too smooth and without discontinuities.

3.3 Learning comprehensive MRFs

We have shown that popular pairwise and high-order MRFs are quite poor generative
models and can not even capture the statistics of the inbuilt features. This appears
in contradiction to the maximum entropy interpretation of filter-based MRFs [6],
which means that the potential functions of these models are chosen or learned
inappropriately. As the Gaussian scale mixtures (GSMs) are flexible to represent
a wide variety of heavy-tailed potentials, in this section we investigate the model
learning procedures.

3.3.1 Standard learning procedure

Learning the model parameters Ω from data involves estimating the weights ωjk of
the GSM, and in case of Fields of Experts also the filters fj . The classical learning
objective for training models of natural images is maximum likelihood (ML). A
gradient ascent on the log-likelihood for a parameter Ωi leads to the update

Ω
(t+1)
i = Ω

(t)
i + η

[〈
∂E

∂Ωi

〉
p

−
〈
∂E

∂Ωi

〉
X0

]
, (3.14)

where E is the unnormalized Gibbs energy according to p(x;Ω) = e−E(x;Ω)/Z(Ω),
η is the learning rate, ⟨·⟩X0 denotes the average over the training data X0, and ⟨·⟩p
denotes the expectation value w.r.t. the model distribution p(x;Ω(t)).
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Figure 3.4: Three subsequent samples (left to right) from various MRF models after
reaching the equilibrium distribution. The boundary pixels are removed for better
visualization.
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One conceptual advantage is that (3.14) minimizes the Kullback-Leibler (KL)
divergence between the model and the data distribution and, in principle, makes
the model statistics as close as possible to those of natural images, which means a
maximum entropy model. Various difficulties, however, arise in practice. First, there
is no closed form expression for the model expectation, and exact computation is in-
tractable. Approximate inference, e.g., using sampling, must thus be used. Markov
chain Monte Carlo (MCMC) approximations are historically most common (e.g., [6]),
but very inefficient. Consequently, ML estimation itself is frequently approximated
by contrastive divergence (CD) [33], which avoids costly equilibrium samples: Sam-
plers are initialized with the training data X0 and only run for n (usually a small
number) MCMC iterations to yield the sample set Xn. Then ⟨∂E/∂Ωi⟩Xn is used
to replace ⟨∂E/∂Ωi⟩p in (3.14). A second challenge is the speed of mixing, which
is usually addressed with efficient sampling methods. For a detailed review of the
standard maximum likelihood learning procedure, readers are refereed to Sec. 2.2.3.

3.3.2 Best practices for learning

While the standard learning procedure with the efficient auxiliary-variable Gibbs
sampling (see Sec. 3.1.2) allows to learn simple pairwise MRFs that capture derivative
statistics correctly (cf . Fig. 3.2), the high-order case (e.g., FoEs) is more problematic
(cf . Fig. 3.5(a)): Marginal statistics of model samples were found not as heavy-tailed
as those of natural images [50]. Moreover, the models are limited to moderate clique
sizes and a comparatively small number of filters.

We here show that such a standard learning procedure is insufficient to learn
accurate high-order MRF models of natural images, and propose best practices for
an improved learning scheme.

PCD instead of CD

Although contrastive divergence (CD) is a reasonably good and formally justified
approximation of maximum likelihood [33], it may still incur a training bias. While
using n-step CD (with large n) may reduce the bias, learning becomes much less
efficient. We instead use persistent contrastive divergence (PCD) [106], in which the
samplers are not reinitialized each time the parameters are updated. Contrastingly,
the samples from the previous iteration are retained and used for initializing the next
iteration. Combined with a small learning rate, the samplers are held close to the
stationary distribution:〈

∂E

∂Ωi

〉
Xpcd

≈
〈
∂E

∂Ωi

〉
X∞
≈
〈
∂E

∂Ωi

〉
p

. (3.15)
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Figure 3.5: Filter-based MRFs and image statistics: Image filter (top right) with
corresponding learned potential function (solid, green), marginal histograms of nat-
ural images (dash-dotted, red), and model marginals obtained by sampling (dashed,
blue). The proposed learning scheme leads to a better match to natural image statis-
tics (top left, marginal KL-divergence).

Thus each parameter update closely approximates a true ML update step as in
(3.14). Even with a small learning rate, PCD has an efficiency comparable to that
of 1-step CD, but substantially reduces bias as the experiments below show. Note
that while PCD has been used to train restricted Boltzmann machines [106] and
filter-based MRFs with Student-t potentials [107], this is the first time that PCD has
been investigated in conjunction with more flexible GSM potentials.

Replacing CD with PCD not only reduces training bias, but more importantly
improves the models’ properties significantly. To demonstrate this, we use a 1-step
CD trained 3×3 FoE [50] as a basis and retrain the potentials with PCD, while keeping
the filters fixed. The resulting marginal statistics of the inbuilt model features match
those of natural images well; all marginal KL-divergences are below 0.01. Fig. 3.6
shows in detail the parts where PCD affects the potential shape the most and most
improves the resulting model marginal. Another notable benefit of using PCD is
that it enables the following improved boundary handling scheme.
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Figure 3.6: Difference between (left) potentials trained with 1-step CD (dashed,
blue) and PCD (dash-dotted, red), as well as (right) resulting model marginals (mag-
nified for display). The marginal KL-divergence is given w.r.t. natural images (solid,
black).

Boundary handling

Boundary pixels are a common source of problems in MRFs, since they are overlapped
by fewer cliques, making them less constrained than those in the image interior.
When sampling the model, boundary pixels of the samples tend to take extreme
values, which affects both learning and analysis of the model through sampling.
Norouzi et al . [35] proposed to use conditional sampling, i.e. keeping a small number
of pixels around the boundary fixed and conditionally sampling the interior. The
drawback of this scheme is that the boundary pixels will significantly diffuse into
the interior during sampling, which can be seen from the example in Fig. 3.7(a,b).
To reduce bias in learning and evaluation of the model, a thick boundary from the
samples thus has to be discarded. The disadvantage is that this lowers the accuracy
and the efficiency of learning.

To address this, we propose toroidal sampling, in which the cliques are extended
to also cover the boundary pixels in a wrap-around fashion. The toroidal topology
used during sampling is shown in Fig. 3.7(d). The obvious benefit of using this
topology is the absence of any boundary pixels; all pixels are overlapped by the
same number of cliques, and there are as many cliques as pixels. Since all pixels are
constrained equally, boundary artifacts are avoided, and bias from the boundaries
during learning is avoided.

Fig. 3.7(c) shows how toroidal sampling is less affected by its initialization and can
quickly explore a large space. The generated samples will in turn make learning more
accurate, while not requiring boundary pixels to be discarded. This increases the
learning efficiency, because fewer parallel samplers suffice to estimate the likelihood
gradient accurately. It is important to note that while PCD allows using toroidal
sampling, the more common CD does not. This is because CD repeatedly initializes
the samplers from the training images, which usually do not satisfy periodic boundary
conditions.
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(a) (b) (c) (d)

Figure 3.7: Effect of boundary handling on samples: (a) Initialization of the sampler;
(b) typical sample generated by conditional sampling (note how the boundaries affect
the interior of the sample); (c, d) typical sample and its topology generated by the
proposed toroidal sampling.
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Figure 3.8: Filter coefficients may decay or disperse during learning (a). This
problem can be solved with filter normalization (b).

Filter normalization

Some researchers (e.g. [40, 2]) have suggested to impose constraints on the norms of
filters, because filters may otherwise become “inactive”, i.e. decay to zero during train-
ing. As zero filters and the corresponding potentials do not contribute to the model
at all, this is an issue, especially when a large number of filters are trained [40, 2].
But even with fewer filters as used here (the flexibility of the GSM potentials im-
poses limits on the attainable number of filters), we observe that filter coefficients
may decay or disperse during learning (Fig. 3.8). To address this, we normalize the
coefficients of each filter to unit ℓ2 norm after each parameter update. This incurs
no loss of generality due to the redundancy between the GSM scales and the filter
coefficient norm: GSM potentials with an infinitely large range of scales can in prin-
ciple adapt to filters with arbitrary coefficient norm. The necessarily limited range
of GSM scales in practice, however, does not allow to properly model the potentials
if the filters take extreme values. Moreover, removing the parameter redundancy
increases robustness, and in turn enables learning more filters. Fig. 3.5(b) shows
an example in which all 8 filters are “active” and contribute to the model. Unlike
previous work [40, 2], combining filter normalization with more flexible potentials
enables learning different, heavy-tailed potentials. This notably improves the ability
to capture the marginal statistics of the inbuilt features.
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Figure 3.9: Typical uniform initialization of GSM weights (dashed, red) leads to
filters with fewer patterns (middle). Broad (Dirac δ-like) initialization (solid, green)
leads to more diverse filters (right).

Initialization of parameters

Initialization is crucial due to the non-convexity of the data likelihood. Specifically,
we found that the initialization of the potential shape (GSM weights) can significantly
affect learning, including the filters. A uniform initialization of the GSM weights
(Fig. 3.9, red curve) is problematic. This overly constrains the pixel values and
makes model samples spatially flat. The filter responses on the samples thus fall
into a much smaller range than those on training images. The learning algorithm
aims to reduce this difference by changing the filters toward patterns that reduce the
filter-response range on natural images. The effect is that filters, particularly the
Laplacian (Fig. 3.9, middle), are redundantly learned.

We alleviate this by initializing the potentials such that the pixels are initially
less constrained than they should be. To that end, we initialize the potentials with
a broad Dirac δ-like shape (Fig. 3.9, green curve). We find that this improves the
robustness of learning and enables training a more diverse set of filters that captures
different kinds of spatial structures (Fig. 3.9, right). Our findings indicate that
the filters, on the other hand, are best initialized randomly. Initializing them to
interpretable filters, such as Gabor filters, is counterproductive as these are usually
not optimal for FoEs, and cause training to get stuck in poor local optima.

3.3.3 Evaluation of learned MRFs

Based on 1000 randomly cropped 48 × 48 image patches from the training images
of [105], we trained (1) a pairwise MRF with fixed horizontal and vertical derivative
filters and a single GSM potential, and (2) high-order FoEs with different size of
cliques and different number of GSM experts including filters. We use a fixed base
variance and a wide range of 15 scales s = exp (0,±1,±2,±3,±4,±5,±7,±9) to
support a broad range of shapes. The remaining details of the learning procedure
are similar to [7]: We use a fixed learning rate, exponential smoothing of the gradient,
zero-mean filters, and stochastic gradient descent with mini-batches of 100 images.
Fig. 3.2 shows the learned pairwise MRF and Fig. 3.5(b) shows a leaned 3× 3 FoE
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Figure 3.10: Learned 5× 5 FoE with 16 experts and filters. Image filter (top right)
with corresponding learned potential function (solid, green), marginal histograms
of natural images (dash-dotted, red), and model marginals obtained by sampling
(dashed, blue). All marginal KL-divergence values are smaller than 0.006. Note the
more structured appearance of filters compared to that of the learned FoE filters
in [7] (cf . Fig. 2.3).

with 8 experts and filters. To showcase the benefits of the improved learning scheme,
a 5× 5 model with 16 experts and filters is also learned (see Fig. 3.10). We use the
same strategy in Sec. 3.2 based on model samples to analyze our learned models.

Model features

Fig. 3.2(a) shows the learned pairwise potential, which is significantly heavier-tailed
than the marginal derivative statistics and looks similar to a Student-t distribu-
tion [46]. In contrast to the popular pairwise MRFs from above, it well captures the
marginal derivative statistics of natural images (Fig. 3.2(b), marginal Dkl = 0.006).
Because of the maximum entropy interpretation of MRFs, this potential shape is
optimal for generative pairwise MRF image models.

In case of the FoEs, we find fully “active” filters and very broad experts with a
small, narrow peak (cf . Fig. 3.5(b)). Their almost δ-like shape is in contrast to the
experts used before [7, 39] (cf . Fig. 2.3(b)). Fig. 3.5(b) shows that these learned
experts lead to a good match between the filter statistics of natural images and the
filter marginals of the learned model. This is also true for our 5×5 models (Fig. 3.10).
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(a) pairwise MRF (b) 5×5 FoE (c) MGSM-FRAME

Figure 3.11: Samples from our learned models. (a) The learned pairwise model
yields locally uniform samples with occasional discontinuities that appear spatially
isolated (“speckles”). (b) The learned high-order FoE model leads to smoothly varying
samples with spatially correlated discontinuities. (c) Our reimplemented FRAME
model [6] with expert functions represented by mixtures of GSMs (MGSM) yields
samples with large uniform areas as well as edge-like discontinuities.

The resulting priors are thus truly maximum entropy models. We can conclude that
the Student-t experts of [7] were not heavy-tailed enough, and that fitting experts
to marginal statistics [39] is not appropriate. Instead, GSM expert functions prove
to be sufficiently flexible for achieving good generative properties.

Other important statistics

To fully comprehend the modeling power of MRF priors, it is instructive to go
beyond the model’s features. Since natural images exhibit heavy-tailed statistics
even for the marginals of random linear filters [67], we evaluate our models in this
regard with random filters of 4 different sizes (8 of each size). Fig. 3.12 (top) shows
the average responses to these random filters for natural images, as well as the
learned models. Moreover, natural images have been found to exhibit scale invariant
derivative statistics [108, 109]. Hence, we check the marginal statistics of derivatives
at 3 image scales (powers of 2), which are shown in Fig. 3.12 (middle). Natural
images have also been found to have characteristic conditional distributions of two
image features, with a particular bow-tie shape [32]. Fig. 3.12 (bottom) shows the
conditional histograms of neighboring image derivatives.

From Figs. 3.12(b), we can see that the learned pairwise MRF only captures
the statistics of small random 3 × 3 filters and derivatives at the finest scale well.
The model marginals of larger random filters and coarser-scale derivatives, however,
tend toward Gaussians. The conditional distribution of neighboring derivatives also
deviates much from that of natural images. On the other hand, the learned high-
order FoEs (Figs. 3.12(c) and (d)), well capture the characteristics of natural images
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across a much wider range of random filter sizes and derivative scales, as well as
the conditional statistics, which clearly demonstrates the improved modeling power.
This also becomes apparent by visually comparing samples from these models (see
Fig. 3.11). Moreover, we can observe that larger and more filters can further improve
the model’s statistics.

To the best of our knowledge, this is the first time that such close matches
between model and natural image statistics have been reported for MRF image priors.
Importantly, this also demonstrates that FoEs are indeed capable of capturing a large
number of key statistical properties of natural images.

3.4 Learning MRFs with multi-modal potentials

In the previous sections, we have discussed MRFs with unimodal potenitals, such as
the Student-t, the generalized Laplacian or the more flexible GSMs. The intuition
is that important image features usually show heavy-tailed distributions. However,
there are MRFs that require multimodal potentials. One example are the seminal
FRAME models of Zhu et al . [6, 8], which use a discrete non-parametric representa-
tion for the potential functions that allows to represent multimodal functions. Heess
et al . [9] proposed bi-modal potentials for modeling textures in a Fields-of-Experts
framework. Unlike unimodal potentials, which proved insufficient for modeling spe-
cific kinds of textures, their bimodal potentials enabled the model to learn the char-
acteristic properties of textures.

3.4.1 Mixtures of GSMs for modeling potentials

In Sec. 3.1.1 we have chosen flexible Gaussian scale mixtures (GSM) as the potentials
in the MRFs. Formally, GSMs are specified as an infinite mixture of Gaussians (MoG)
with shared mean µ (typically zero), but different variance. In most applications,
finite variants are used, e.g.,

ϕGSM(x) =

K∑
k=1

αk · N (x;µ, sk · σ2), (3.16)

where αk ≥ 0,
∑

k αk = 1 are the mixture weights of the scales sk. Fig. 3.13 (left)
illustrates a heavy-tailed distribution modeled as a GSM and its Gaussian compo-
nents.

Here, we propose mixtures of GSMs (MGSMs) as an alternative, more flexible
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representation. MGSMs are composed of different GSMs with differing means:

ϕMGSM(x) =
L∑
l=1

K∑
k=1

αlk · N (x;µl, slk · σ2). (3.17)

The benefit of this formulation is that it allows representing multimodal distributions
that are highly kurtotic with tight peaks (see Fig. 3.13 (right)).

To simplify our following treatment, we write the MGSM potential as a general
Gaussian mixture:

ϕ(fT
j x(c);ωj) =

∑
k

ωjk · N (fT
j x(c);µjk, σ

2
jk), (3.18)

where ωjk are the normalized weights of the Gaussian component with mean µjk

and variance σ2jk. It is important to note that this does not imply that we treat
the potential as a general Gaussian mixture during learning, as this would lead to
difficulties with learning and inference as described below.

For sampling the MGSM-based model we still rely on the Gibbs sampler described
in Sec. 3.1.2. The conditional distribution p(z|x;Ω) is slightly different:

p(zjc|x;Ω) ∝ ωjzjc · N
(
fT
j x(c);µjzjc , σ

2
jzjc

)
. (3.19)

However, the conditional distribution p(x|z;Ω) is more complex:

p(x|z;Ω) ∝
∏
c

∏
j

N
(
fT
j x(c);µjzjc , σ

2
jzjc

)

∝ exp

−1

2

∑
c

∑
j

(wT
jcx− µjzjc)2

σ2jzjc


∝ exp

−1

2
xT

∑
c

∑
j

wjcw
T
jc

σ2jzjc

x+ xT

∑
c

∑
j

µjzjc
σ2jzjc

wjc


∝ exp

(
− 1

2
xT (WΛWT)︸ ︷︷ ︸

Σ−1

x+ xT (WΛµ̃)

)

∝ N
(
x;ΣWΛµ̃︸ ︷︷ ︸

µx|z

,Σ
)
, (3.20)

where W and Λ take the same forms as in (3.6), and µ̃=[· · · , µjzjc , · · · ]T is composed
of the means of GSM components. Note that the conditional mean µx|z is in general
different from zero. Sampling (3.20) still remains efficient by solving a least-squares
problem.
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Figure 3.13: Potential functions (solid lines) represented by (left) unimodal Gaussian
scale mixture (GSM) and (right) multimodal mixture of GSMs (MGSM). The dashed
lines show the Gaussian components. Colors indicate GSMs with different means.

MGSMs vs. general Gaussian mixtures

Even though the model as well as the sampling procedure in principle allow using
potentials modeled as arbitrary mixtures of Gaussians (cf . [42]), we found this not to
work well in practice. In a general MoG, not only the weights, but also the component
means and variances have to be learned, which leads to many local optima in the
learning objective. In fact, even re-fitting a trained MGSM model with a general
MoG using expectation maximization fails: The crucial peak at zero is only poorly
captured, which leads to models with incorrect statistical properties. The MGSM
model proposed here avoids these difficulties and facilitates learning broad and at
the same time tightly peaked potentials.

3.4.2 Revisiting FRAME

The FRAME model for natural images [6] is a combination of pairwise MRFs at
four image scales, thus a high-order MRF. Under this model the energy of a natural
image is defined as

E(x) =
3∑

s=0

∑
c∈Cs

(
ϕxs(f

T
x x

[s]
(c)) + ϕys(f

T
y x

[s]
(c))
)
, (3.21)

where s are four scales of an image pyramid, Cs defines the cliques at each scale,
fx and fy are first-order x- and y-derivative filters with corresponding potentials ϕxs
and ϕys, and x

[s]
(c) denotes the pixels of clique c at image scale s.

Even though conceptually clear and simple, the model was hindered significantly
by its implementation and the computational capabilities of computers at the time:
Discrete, non-parametric representations with a small number of bins were used to
model the potentials, images were reduced to 32 gray levels, and a single-site Gibbs
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sampler with discrete-valued pixels was used for learning1. As a result, this family of
models did not find widespread use despite of being very flexible in principle. Finally,
inference was performed in a PDE framework, which required to approximate the
learned potentials and only led to modest levels of image restoration performance.

Another hinderance in adoption, as, e.g., noted by Weiss and Freeman [39], is the
unintuitive shape of the learned potentials. While the potentials for the derivative
features at the finest scale are heavy-tailed, those for the coarser scales were found to
hand an “inverted” shape. This seems to contradict essentially all other MRF image
models in the literature. Nonetheless, when evaluating the model by sampling from
it, Zhu and Mumford [6] found the model to reproduce the scale invariant derivative
statistics of natural images.

MGSM-FRAME

The MGSMs described above can represent multimodal potentials. In contrast to
the non-parametric representation as used in the original FRAME models [6, 8],
MGSMs are continuous-valued, thus do not require any gray value discretization, and
moreover admit faster mixing auxiliary variable Gibbs samplers. With the flexible
MGSM potentials, it is thus possible to analyze the FRAME model with modern
inference and learning techniques and to reassess its performance. The FRAME
model can be “translated” into an MRF in our framework:

pFRAME(x;Ω) ∝
S∏

s=0

∏
c∈Cs

ϕ(fT
xsx(c);ωs) · ϕ(fT

ysx(c);ωs). (3.22)

Dealing with S different image scales is done by omitting the downsampling step for
the coarser scales, and instead increasing the stride between neighboring cliques Cs
(2s pixels at scale s). The filters fxs and fys for s > 0 are given by convolutions of
horizontal and vertical first derivative filters and the binomial kernels stemmed from
[1/4, 1/2, 1/4]T that are used for generating the image pyramid.

As larger filters will make the precision matrix in (3.20) denser and thus slow
down the sampling, for simplicity and efficiency, we only learn the MGSM-FRAME
model with 3 scales and use the same potentials for horizontal and vertical filters at
each scale. We use 3 GSM components – one with fixed zero mean and two with
non-zero means to be learned – to enable learning tri-modal potentials.

Generative properties. Fig. 3.14 shows the potentials and the marginal statistics
of the learned model. The in-build feature, i.e., multi-scale derivative statistics being
well captured suggests that the learning objective is reached. While the random filter

1In other regards, FRAME was well ahead of its time. E.g., it used persistent contrastive
divergence 10 years before it was rediscovered [106].
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Figure 3.14: Learned potentials (solid, green) of MGSM-FRAME, model marginals
(dashed, blue) and marginals of natural images (dash-dotted, red). Top right: cor-
responding filters (only horizontal ones shown). Learned potentials at scale 1 have
an “inverted” shape, which was also observed in [6].

statistics are much better than those of the pairwise MRF, the conditional statistics
are still relatively poor (see Fig. 3.12(e)). Important image structures are still not
well captured by multi-scale derivative filters. A sample from the learned MGSM-
FRAME model is shown in Fig. 3.11(c). As can be seen, the sample contains large
uniform areas as well as simple edge-like discontinuities.

About the “inverted” potentials. Although the potentials are represented dif-
ferently in our MGSM-FRAME model, we can confirm the finding of “inverted”
potentials in the original FRAME for natural images [6]. Comparing Fig. 3.14 with
Fig. 3.12 (b, middle), it is not hard to understand the unintuitive shape of the
learned potentials. To make the derivative statistics at coarser scales of a pairwise
MRF right, applying inverted-shape derivative regularizers at these scales can en-
courage the Gausian-like statistics to be more heavy-tailed, which results in the same
structure as the FRAME. Also note that central peaks of the potentials at coarser
scales are important for right model statistics. While the peaks are also observed in
the original FRAME, it is ignored by the fitting functions in the applications.

3.4.3 Discussion

The 5×5 filters of the FoEs that we have learned in Sec. 3.3 can only cover image
structures with moderate sizes. Pushing the FoEs even further to learn larger filters
is difficult due to the less-sparse linear equation systems in sampling. The FRAME
model, taking another route, provides a solution to regularize large image structures.
Since the mixture of GSMs provide a more flexible representation of potential func-
tions, and the FRAME model can be regarded as a hierarchical extension of common
pairwise MRF, is it worthwhile to learn a hierarchical FoE in a similar way? For
the case of pairwise MRFs, as the model statistics at coarser scales are unsatisfac-
tory, applying potentials on these scales will be beneficial. The FoEs, however, have
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already depicted good multi-scale statistics, which suggests that further applying
coarser-scale potentials will not contribute no matter how the shapes of such poten-
tial functions are. For this reason, under the filter-based MRF model structure and
learning procedures discussed in this thesis, a hierarchical extension of FoEs does
not help; at least no appropriate coarser-scale filters can be learned. Therefore, fur-
ther gains of natural image priors are likely challenging and may require new model
design.

3.5 Modeling visual textures with MRFs

When only considering specific types of images or scenes, somewhat different chal-
lenges arise, since the specific structure of the data needs to be taken into account.
For example, visual textures, even though playing a large part in the composition of
natural images, cannot be modeled well by directly applying the methods for building
generic image priors. The major reason is that generic image priors mainly consider
the smoothness and continuity of the image, while texture models have to capture
the specific textural structures.

To this end, the seminal FRAME texture model [8] uses Markov random fields
(MRFs) with non-parametric, multi-modal potentials to allow for spatial structure
generation. Heess et al . [9] suggested an MRF with parametric bi-modal potentials,
which can be learned alongside the filters (features). Another class of probabilistic
texture models extends restricted Boltzmann machines (RBMs) [110] toward cap-
turing the spatial structure of textures, e.g., work by Kivinen et al . [36] and Luo et
al . [37]. Common to these MRF- or RBM-based texture models is that they can be
interpreted as a conditional Gaussian random field whose parameters are controlled
by discrete latent variables. Moreover, all of them simultaneously perform regular-
ization and generate textural structures through modeling the conditional covariance
and mean, respectively. Due to their complex “mean+covariance” construction, these
models are not easy to train in practice. Some compromises toward stabilization of
training, e.g., tiled-convolutional weight-sharing [36, 37], can be detrimental to the
quality of the generated textures. Moreover, the relative importance of the mean
vs. the covariance component of these models is unclear in light of modeling tex-
tures.

3.5.1 Mean units

Mean units in MRFs

Eq. (3.1) is a typical formulation of a MRF prior for a generic image x through
modeling the response to some linear filters with potential functions. As the filter
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responses usually have heavy-tailed empirical distributions around zero, the poten-
tial functions ϕ(·;ωj) are also chosen to be heavy-tailed (e.g., Student-t). Many
heavy-tailed potentials can be formulated as Gaussian scale mixtures (GSMs) [32].
For better understanding and more efficient inference, such GSM potentials allow
augmenting the prior with discrete-valued hidden variables z = (zjc)j,c, one for each
filter fj and clique c, which represent the index of the Gaussian mixture compo-
nent modeling the filter response [50]. It holds that pMRF(x;Ω) ∝

∑
z pMRF(x, z;Ω).

Given the hidden variables, the conditional distribution for the image is a zero-mean
Gaussian

pMRF(x|z;Ω) ∝ N
(
x;0,Σ(z,Ω)

)
. (3.23)

As changing the hidden units only changes the conditional covariance, such basic im-
age priors focus on modeling the covariance structure of the image, which is intuitive
as they are primarily aimed at regularization.

Heess et al . [9] showed that such generic MRF priors for natural images are not
suitable for textures, and propose to extend them using bi-modal potential functions.
Multi-modal potentials can also be modeled with Gaussian mixtures; however, the
components may no longer all have zero means. Given the hidden units, the condi-
tional distribution of such an MRF texture model

pMRF(x|z;Ω) ∝ N
(
x;µ(z,Ω),Σ(z,Ω)

)
(3.24)

shows that bi-modal potentials capture not only the covariance structure, but also
the local mean intensities. The seminal FRAME texture model [8] with its non-
parametric potentials is also consistent with this observation. Comparing (3.24)
with (3.23) suggests that modeling the conditional mean is a particular trait of
texture models. The intuitive explanation is that the model does not “just” perform
regularization, but instead generates textural structure.

Note that in these models the filters are applied in a convolutional manner across
the entire image. Since filters can be understood as weights connecting visible and
hidden units, this is called convolutional weight sharing (cf . Fig. 3.15). Importantly,
this keeps the number of parameters manageable, even on images of an arbitrary
size, and also gives rise to the model’s spatial invariance.

Nonetheless, learning such a “mean+covariance” model is difficult in practice,
since the hidden units affect both conditional mean and covariance in complex ways.
Since the filters need to be sufficiently large to generate coherent structures, the
resulting covariance matrix will furthermore be quite dense, making both learning
and inference rather inefficient. Moreover, the learned texture filters from [9] lack
clear structure (see Fig. 3.16), making them difficult to interpret.
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Figure 3.15: Tiled-convolutional (left) and full-convolutional (right) weight sharing.
Lines converging to the hidden units (shaded) are the filters; they share their pa-
rameters when indicated by the same color or line type.

Mean units in RBMs

Models derived from restricted Boltzmann machines (RBMs) take a different route.
A Gaussian RBM [110] models an image by defining an energy function over visible
units x (here, the image pixels) and binary hidden units h. The random variables
have a Boltzmann distribution pRBM(x,h) = 1

Z exp{−ERBM(x,h)}, where Z is the
partition function and E denotes energy. Gaussian RBMs have the property that
the conditional distribution of the visible units given the hidden ones is a Gaussian

pRBM(x|h;Ω) ∝ N
(
x;µ(h,Ω),Σ

)
, (3.25)

in which only the conditional mean depends on the hidden variables.

More recent variants of Boltzmann machines for texture modeling [36, 37] not
only model the conditional mean, but also the covariance akin to (3.24). [36] experi-
mentally compared three models: Gaussian RBMs, Products of Student-t (PoT) [2],
and their combination, which corresponds to modeling conditional mean, covariance,
and mean+covariance, respectively. The results revealed the importance of the con-
ditional mean for texture synthesis and inpainting.

Note that both [36, 37] adopt tiled-convolutional weight sharing [107] (see Fig.
3.15). The apparent reason is that the states of hidden units are less correlated,
thus making training of the models easier. Unfortunately, tiled-convolutional models
involve many parameters, since several sets of features (filters) must be learned. For
example, [36, 37] learn and use more than 300 features for every texture, which are
moreover not spatially invariant. Consequently, tiled-convolutional weight sharing
requires copious training data, which for textures is often not available.

3.5.2 Learning convolutional Gaussian RBMs for textures

Mean units appear to be an important component of many texture models. As
these models also include covariance units and/or complex weight sharing, it is not
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clear how important the mean units are. Below, we investigate this and explore the
capability of “mean-only” Gaussian RBMs for textures.

Convolutional Gaussian RBM

A spatially invariant model is obtained through applying the Gaussian RBM to all
overlapping cliques of a large texture image in a convolutional manner. The energy
function of the convolutional Gaussian RBM (cGRBM) is then written as

EcGRBM(x,h) =
1

2γ
xTx−

∑
c

∑
j

hjc
(
wT

j xc + bj
)
, (3.26)

where we add a weight γ to the quadratic term. Here, wj determine the interaction
between pairs of visible units xc and hidden units hjc. Thus, wj are the features
or filters, bj are the biases, c and j are indices for all overlapping image cliques and
filters, respectively. The conditional distribution of x given h is a Gaussian

pcGRBM(x|h) ∝ N
(
x; γ

∑
c

∑
j

hjcwjc, γI

)
, (3.27)

where the vector wjc is defined as wT
jcx = wT

j xc. The conditional distribution of h
given x is a simple logistic sigmoid function

pcGRBM(hjc|x) ∝ logsig(wT
jcx+ bj). (3.28)

Probability density of an image under cGRBM

Based on the energy function of the cGRBM in (3.26), we have the joint distribution
of the visible units x (image) and the hidden units h

pcGRBM(x,h) ∝ N (x;0, γI)·
∏
j

∏
c

exp
{
hjc(w

T
j xc+bj)

}
. (3.29)

The probability density of x can be obtained by marginalizing out the hidden units

pcGRBM(x) ∝ N (x;0, γI)·
∏
j

∏
c

(
1+exp{wT

j xc+bj}
)

∝ N (x;0, γI)·
∏
j

∏
c

φ
(
wT

j xc; bj
)
,

(3.30)

where φ are filter specific potential functions. As can be seen, the cGRBM is also a
Markov random field (MRF) model.
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Texture data

For a fair comparison with other models [9, 36, 37], we follow their use of the Brodatz
texture images [52] for training and testing our models. The images are rescaled to
either 480×480 or 320×320 pixels, while preserving the major texture features, and
then are normalized to zero mean and unit standard deviation. We also divide each
image into a top half for training and a bottom half for testing.

Learning

As the partition function of the model is intractable, we perform approximate maxi-
mum likelihood (ML) learning based on persistent contrastive divergence (PCD) [106].
Model samples are obtained using efficient block Gibbs sampling, which alternately
samples the visible units x or the hidden units h given the other. Through marginal-
izing the hidden units we obtain the free energy

E(x) =
1

2γ
xTx−

∑
j

∑
c

log
(
1 + exp{wT

jcx+ bj}
)
. (3.31)

The parameters (i.e., the filters) are updated using gradient ascent

w
(t+1)
j = w

(t)
j + η

[〈
∂E(x)

∂wj

〉
Xpcd

−
〈
∂E(x)

∂wj

〉
X0

]
, (3.32)

where η is the learning rate, ⟨·⟩ denotes the average over the training data X0 or the
samples Xpcd.

The standard learning procedure [110], however, does not ensure that a good con-
volutional RBM texture model is learned in practice. For example, even the simple
mean-only RBM baseline of [36] stabilizes learning using tiled-convolutional weight
sharing and a slowly mixing Hybrid Monto Carlo (HMC) sampler. Consequently,
care must be taken to be able to train a cGRBM for textures.

Choice of parameter γ. The typical best practice in Gaussian RBMs is to set
the weight γ to 1 when the training data is normalized [110]. But we find that γ = 1

is far from the optimum and its value can greatly affect the generative properties of
the trained texture models. Fig. 3.17(a) shows how γ changes the texture similarity
score (TSS) [9] (see Sec. 3.5.3 for details) of model samples and synthesized textures.
Actually, since a texture sample drawn with the Gibbs sampler is a sum of the condi-
tional mean and i.i.d. Gaussian noise, γ = 1 will lead to the textural structures being
dominated by noise. But even if we synthesize textures by taking the conditional
mean of the final sampling iteration, as we do here, we see that γ can greatly affect
the quality of the texture and that the previous best practice of γ = 1 does not work
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Figure 3.17: (a) Texture similarity scores (TSS) of synthesized textures (black,
dashed) and model samples (red, solid) vs. the choice of γ. (b) Covariance matrix of
1000 samples of h for γ = 0.03. Results are based on D21.

well. This may be the reason why other texture models considered more complex
pixel covariances and/or rely on less well-mixing samplers for stabilizing training.

Although Fig. 3.17(a) suggests that smaller values of γ should be preferred, an
overly small γ will lead to a small covariance for the Gaussian in (3.24) and con-
sequently to slow mixing of the Gibbs sampler. We find γ = 0.03 to be a good
trade-off. To illustrate this, Fig. 3.17(b) shows the covariance matrix computed
from 1000 consecutive samples of h corresponding to one feature. As it is close to a
diagonal matrix, the variables in h are approximately independent, thus the sampler
mixes well. We use γ = 0.03 for all our experiments.

Other best practices. To obtain structured filters and – in our experience – also
better texture models, we have to impose some constraints on the filters. As usual,
the filters are initialized with random values, but their coefficient norms are ensured
to be small initially. During training they are moreover constrained to have zero
mean and limited to not increase above an empirical threshold of 0.05

γ . Otherwise,
the filters will often get stuck in poor local optima without any clear structure. Since
the biases do not change significantly during learning, we fix them to bj = −1

3∥wj∥,
similar to [35]. The bias depends on the current norm of filter coefficients to keep a
reasonable portion of the hidden units being “on” (cf . (3.28)).

Also note that the typical whitening of the training data cannot be applied for
textures, even if it is common for natural image priors. Since whitening will remove
the major structural pattern of a single texture, it is in our experience difficult for
the RBM to represent the remaining spatial patterns.

The learned models. We trained cGRBM models for several Brodatz textures,
each of which is trained based on 40 patches of size 76×76, randomly cropped from the
corresponding preprocessed training image. As all the training images are rescaled,
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Table 3.1: Means and standard deviations of TSS of the synthesized textures.
Model D6 D21 D53 D77
BiFoE [9] 0.757± 0.059 0.871± 0.032 0.827± 0.087 0.646± 0.022
Tm [36] 0.930± 0.021 0.890± 0.079 0.849± 0.061 0.866± 0.008
TmPoT [36] 0.933± 0.036 0.896± 0.070 0.853± 0.056 0.870± 0.008
TssRBM [37] 0.937± 0.047 0.948± 0.025 0.941± 0.022 0.841± 0.012
DBN [37] 0.952± 0.016 0.947± 0.032 0.950± 0.026 0.864± 0.160
cGRBM (ours) 0.963± 0.005 0.961± 0.008 0.965± 0.004 0.875± 0.013

we simply fix the filter size to 9×9 for all models. The models for textures D6,
D21 and D53 consist of 15 learned filters, while the model for D77 has 20 filters due
to its slightly more complex pattern. Examples of the learned filters are shown in
Fig. 3.16. We can observe clearly apparent structure, e.g., unlike [9].

3.5.3 Generative properties

To evaluate the generative performance of the learned cGRBM texture models, we
quantitatively compute texture similarity scores (TSS) [9] between the synthesized
textures and real texture patches, which is defined based on the maximum normalized
cross correlation

TSS(s,x) = max
i

sTx(i)

∥s∥ · ∥x(i)∥
, (3.33)

where s is the synthesized texture and x(i) denotes the patch of the same size as s

within the texture image x, at location i.

We collect 100 samples of size 76×76 for each model (each texture) using Gibbs
sampling. Since in Gibbs sampling the texture samples are obtained by summing
the final conditional mean and i.i.d. Gaussian noise, we use the conditional means
from the last sampling step as the synthesized texture. For computing the TSS, only
the center 19×19 pixels are considered (the same size as in [9, 36, 37]). Tab. 3.1
shows the means and standard deviations of TSS. Thanks to the full-convolutional
weight sharing scheme, our simple cGRBM models only require 15 (or 20 for D77)
features (filters) to exceed the generative properties of much more complex Boltz-
mann machine models [36, 37] with many more (> 300) features. Note the con-
siderable performance difference between our learned cGRBMs and the Gaussian
RBM baseline “Tm” of [36], which is based on a standard learning procedure and
tiled-convolutional weight sharing. Our cGRBMs even outperform the deep belief
networks (DBNs) of [37]. Meanwhile, the 9×9 filter size of our models is also smaller
than that of [36, 37] (11×11). The BiFoE models [9] only use 9 filters of size 7×7,
but the paper argues that more and larger filters do not lead to a large difference in
model quality, but greatly reduce the efficiency of inference.
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(a) Inpainting
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(b) Our cGRBM (c) Our
deterministic

(d) Efros & Leung
[113]

(e) Ground truth

Figure 3.18: Examples of inpainting results. From top to bottom: D6, D21, D53,
D77.

3.5.4 Texture synthesis

Hao et al . [111] modified high-order Gaussian gated Boltzmann machines for texture
modeling, and also directly model the dependencies between two visible units. They
learned 1000 features with convolutional weight sharing and achieved good texture
classification performance. The performance in texture generation are less satisfac-
tory, however, with block artifacts appearing in texture inpainting results. Efros et
al. [112, 113] proposed non-parametric methods for texture synthesis. In [113] the
synthesized image is grown by one pixel at a time according to the best matches
between its neighbors and patches from the texture. [112] instead stitch together
small patches directly.

Texture inpainting

Following previous work [36, 37], we take 76×76 patches from the testing texture
images and create a 54×54 square hole in the middle of each patch by setting the
intensity values to zero. The task is to generate texture in the square hole that is
consistent with the given boundary.

Inpainting is done through sampling conditioned on the given boundaries (cf .,
Sec. 3.2.2). This procedure is quite efficient when using a block Gibbs sampler. For
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Table 3.2: Means and standard deviations of MSSIM scores of the inpainted textures.
Model D6 D21 D53 D77
Tm [36] 0.858± 0.016 0.866± 0.019 0.849± 0.023 0.764± 0.027
TmPoT [36] 0.863± 0.018 0.874± 0.012 0.860± 0.023 0.767± 0.032
TssRBM [37] 0.888± 0.023 0.912± 0.014 0.916± 0.024 0.763± 0.031
DBN [37] 0.889± 0.025 0.906± 0.016 0.924± 0.029 0.774± 0.023
cGRBM (ours) 0.909± 0.017 0.928± 0.012 0.933± 0.010 0.783± 0.027

Efros & Leung [113] 0.827± 0.028 0.801± 0.029 0.863± 0.018 0.632± 0.041
Deterministic (ours) 0.899± 0.019 0.918± 0.014 0.926± 0.016 0.775± 0.034

Algorithm 1 Deterministic Texture Inpainting
Require: Image x to be inpainted

repeat
hjc ← H(wT

jcx+ bj) ▷ where H is a unit step function

x← γ
∑

j,c hjcwjc

until no change of x (or h)
return x

each texture, we use 20 different inpainting frames and perform inpainting 5 times
with different initializations, leading to 100 inpainting results. The quality of the
inpainted texture is measured by the mean structural similarity (MSSIM) score [114]
between the inpainted region and the ground truth. Fig. 3.18 shows examples of
inpainting results and Tab. 3.2 gives a quantitative comparison with other models2,
which we outperform considerably despite a simpler model architecture.

Deterministic texture inpainting method

From Sec. 3.5.2 we know that the value for γ in our cGRBM model is small. Looking
at (3.27), this means that the sample will not deviate significantly from the condi-
tional mean. Moreover, the norms of filter coefficients must be large to balance the
small γ, which implies that most values of wT

jcx+ bj will fall outside of the smooth
transition area of the logistic sigmoid in (3.28). This suggests that, in applications, it
may be possible to use deterministic functions to replace sampling the two condition-
als. In particular, we apply a unit step function on wT

jcx+ bj , then use the obtained
binary auxiliary variable to modulate the filters to reconstruct the image, and re-
peat the procedures until convergence (Algorithm 1). Note that this is equivalent
to a block coordinate descent on the model energy in (3.26). Since this scheme only
works well if some reference pixels are given, such as in texture inpainting, we use
it in this context. While slightly worse than sampling the cGRBM, the performance
of the deterministic approach is still better than other models. In our inpainting
experiment, our deterministic method only needed 30∼ 50 iterations to reach con-
vergence, while sampling the cGRBM usually required about 100 iterations. It is

2Our implementation of Efros & Leung [113] uses a window size of 15×15.
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moreover quite efficient, because the computation in each iteration is very simple.
By contrast, nonparametric methods (e.g., [113]) are often not as efficient due to the
necessary matching step.

3.5.5 Discussion

Compared to more complex (and deep) texture models with latent variables control-
ling the conditional covariance [36, 37], the Gaussian RBMs trained in a convolu-
tional fashion not only yield higher quality of the synthetic textures, but also show
advantages such as computational efficiency, spatially invariant and clearly struc-
tured learned filters. Note that there is still some redundancy in the leaned few
filters (see Fig. 3.16 (e, f)). An open question is to automatically determine the
optimal number of filters based on the complexity of the respective texture. More-
over, although a mean-only model can capture repetitive textures well, covariances
might have to be considered for general textures. Training such two kinds of filters
simultaneously is difficult in practice.

3.6 Summary

Based on a flexible representation of MRF potentials using Gaussian scale mixtures
(GSM), we developed an efficient auxiliary-variable Gibbs sampler (Sec. 3.1). In Sec.
3.2, we proposed to evaluate probabilistic MRF priors in an application-independent
manner by checking their generative properties using model samples. We found
that the popular pairwise and high-order MRF priors capture image statistics quite
crudely and exhibit poor generative properties. We further developed new learning
strategies for training expressive high-order MRFs in Sec. 3.3. The learned MRFs
well capture the statistics of the inbuilt features, thus being truly maximum entropy
models. More importantly, the high-order FoE also show a number of other key
statistics of natural images, which outlines the capabilities of MRFs. By extending
the representation of potentials to be multimodal (Sec. 3.4), we were able to revisit
the seminal FRAME model and gained more insights of MRF variants. In Sec. 3.5
we analyzed and compared the “mean” and “covariance” units in MRF models. We
trained compact “mean”-only fully-convolutional RBMs that can model visual repet-
itive textures even better than more complex and deep “mean+covariance” models.



Chapter 4

Image analysis using learned MRF
priors

MRF image models have found widespread use across low-level and high-level vi-
sion as reviewed in Chapters 1 and 2. In this chapter, we introduce new approaches
with the learned comprehensive Fields of Experts (FoE) priors to solve three different
real-world image analysis problems. First, we propose a new sampling-based method
for natural image denoising, which moves away from computing the prevalent max-
imum a-posteriori (MAP) solution, but uses the Bayesian minimum mean squared
error (MMSE) estimate (Sec. 4.1). This method was published in [50, 51]. Second,
for microscopy image deconvolution, we further extend the sampling-based inference
method to deal with more complex likelihoods. This allows super-resolution, decon-
volution and denoising to be performed jointly (Sec. 4.2). This work was published
in [58]. Third, we present a global optical flow-based method for non-rigid registra-
tion of cell nuclei in live cell time-lapse microscopy. Rather than using the MRFs as
priors, we employ FoEs and convolutional RBMs to train image filters for extract-
ing important image features. Registration in learned feature spaces yields higher
accuracies (Sec. 4.3). This work was published in [59, 60]. In addition, elasticity
properties are integrated into the MRF prior to achieve more robust registration
performance, which was published in [61, 62].

4.1 Natural image denoising

Digital images always contain some random variation of brightness or color informa-
tion, which is called image noise. It generally comes directly from the image sensor
and circuitry of the imaging device. While different types of images have differ-
ent noise sources and characteristics, here we consider typical Gaussian noise. The

60
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process of an image x being degraded by Gaussian noise is commonly formulated as

y = x+ n, n ∼ N (0, σ2I), (4.1)

where n is i. i. d. Gaussian noise with zero mean and variance σ2, and y is the resulting
noisy image. The goal of denoising is to recover the hidden noise-free image from
the observed noisy image.

MRF-based denoising models are one major type of image denoising approaches.
In Chapters 1 and 2, we have reviewed different MRFs for denoising (e.g., discrimina-
tive MRFs [102, 14, 11], generative MRFs [39, 7, 3]). Most MRF denoising methods
compute the maximum a-posteriori (MAP) estimation, which is relatively efficient.
However, theoretical and empirical results [115, 56] have pointed to deficiencies of
MAP estimation (e.g., ad-hoc modifications of the generative model setting [7], in-
herent bias toward δ-like marginals [56]). The Bayesian minimum mean squared
error (MMSE) estimate, which is equivalent to the expectation of the posterior, is
also used in image denoising applications. Since approximating the MMSE estimate
by sampling is computationally very expensive (e.g., perfect sampling in [47]), vari-
ational Bayesian methods, in particular, mean field approximation, have been used
in MRF denoising methods [48, 49] with slightly decreased accuracy.

Below, we also mention some related image denoising methods that are not based
on MRFs. BLS-GSM proposed by Portilla et al . [32] builds a GSM-based model of
wavelet coefficients and computes the MMSE estimate from the posterior. The non-
local means method [116] exploits the inherent self-similarities of natural images.
A noise-free pixel is restored by a weighted average of non-local pixels based on
contextual similarities. The result can be regarded as an approximation to the MMSE
estimate. BM3D [55] is a popular image denoising approach based on block-matching
of image fragments followed by 3D filtering. Non-local sparse coding (NLSC) [54]
combines the non-local means approach and sparse coding for denoising. For a
detailed review of previous work on image denoising, we refer to a recent survey [117].

In this section, we model the denoising problem in a Bayesian framework with
the learned high-order MRFs for natural images from Sec. 3.3 as the prior in a purely
generative setting. The auxiliary-variable Gibbs sampler introduced in Sec. 3.1.2 is
extended to efficiently and accurately infer the posterior mean or the MMSE estimate.
Experiments show that our approach outperforms previous MRF-based models [39,
7, 102] and can compete with popular denoising methods such as NLSC [54] and
BM3D [55]. Moreover, for the proposed denoising method, the MMSE estimate
not only substantially outperforms MAP, but also avoids several of its problems. In
contrast to [56], our approach does not require a modification of the MRF framework.
We demonstrate that a rigorous probabilistic interpretation and good generative
properties of MRFs can go hand-in-hand with very good denoising performance.
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The work was published in [50, 51].

4.1.1 Sampling-based denoising approach

We formulate the denoising problem as a posterior distribution in a Bayesian frame-
work

p(x|y;Ω) ∝ p(y|x) · p(x;Ω), (4.2)

where y is the observed noisy image, x is the hidden noise-free image to be restored,
and Ω denotes model parameters. Due to the Gaussian noise assumption in (4.1),
the application-specific likelihood p(y|x) is a Gaussian

p(y|x) ∝ exp
(
− 1

2σ2
∥y − x∥2

)
, (4.3)

where ∥ ·∥ denotes the ℓ2 norm. For the prior model p(x;Ω), we use the learned
generative MRFs for natural images described in Sec. 3.3. Note that (4.2) is a purely
generative setting. Though discriminative approaches that directly model the poste-
rior (e.g., [102, 11]) are popular, and the learning and inference can be very efficient,
they are limited to specific applications and lack the statistical interpretability. By
contrast, our learned application-independent priors p(x;Ω) are versatile. While a
large part of the denoising literature assumes Gaussian noise, our learned MRF pri-
ors and the denoising approach can be straightforwardly adapted to other types of
noise.

MMSE estimation

We propose to restore the noise-free image x through computing the Bayesian min-
imum mean squared error (MMSE) estimate of the posterior

x̂ = argmin
x̃

∫
||x̃− x||2p(x|y;Ω) dx, (4.4)

which is equal to the mean of the posterior distribution and generally differs from
the maximum in the case of non-Gaussian posteriors as used here due to the non-
Gaussian prior p(x;Ω). Contrary to the maximum a-posteriori (MAP) estimate,
the MMSE estimate exploits the uncertainty of the model, but was long regarded
as being impractical due to the difficulty of taking expectations over entire images
(cf . [115]).

We instead approximate the MMSE estimate, or the posterior mean, by averaging
the samples from the posterior distribution. To make our sampling-based method
practical, we extend the auxiliary-variable Gibbs sampler introduced in Sec. 3.1.2 to
efficiently sample the posterior in (4.2). The scales of the Gaussian scale mixtures
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(GSMs) used for representing the potential functions of the MRF prior p(x;Ω) are
retained as hidden variable z. To draw samples from the posterior, we alternate
between sampling the hidden scales according to p(z|x,y;Ω)=p(z|x;Ω) (remaining
as before in (3.8)) and sampling the image according to

p(x|y, z;Ω) ∝ p(y|x) · p(x|z;Ω)

∝ exp
(
− 1

2σ2
∥y − x∥2

)
· exp

(
− 1

2
xTΣ−1x

)
∝ exp

(
1

σ2
xTy − 1

2
xT
( 1

σ2
I+Σ−1

)
x

)

∝ N
(
x; 1

σ2 Σ̃y, Σ̃
)
,

(4.5)

where Σ̃ =
(

1
σ2 I+Σ−1

)−1 with Σ defined as in (3.6). The conditional distribution
in (4.5) is also a Gaussian and thus the sampling is very efficient. Note that the con-
ditional mean 1

σ2 Σ̃y in (4.5) corresponds to the case of MRF priors with potential
functions represented by Gaussian scale mixtures (GSM, cf . Eq. (3.2)). For the case
of potentials represented by mixtures of GSMs (MGSMs, cf . Sec. 3.4.1) or general
mixtures of Gaussians (MoGs), the conditional mean can be derived analogously.
In practice, to make inference more efficient, we approximate the MMSE estimate
using the Rao-Blackwellized estimator [118], which averages the conditional expecta-
tions from p(x|y, z;Ω) (e.g., the mean of the Gaussian 1

σ2 Σ̃y in (4.5)) during Gibbs
sampling.

MAP estimation

To highlight the benefits of using the MMSE estimate, we also compute the maximum
a-posteriori (MAP) estimate which is more common in the literature

x̂ = argmax
x̃

p(x|y;Ω). (4.6)

However, maximizing the posterior probability is not easy in our case of using the
learned priors. To do this, a gradient ascent on the logarithm of the posterior
p(x|y;Ω) leads to the update (cf . (2.16))

x(t+1) = x(t) + τ
[∑

j

fj ∗φ′(f̃j ∗ x(t);ωj

)
+

1

σ2
(y − x(t))

]
(4.7)

where f̃j is the flipped version of filter fj , “∗” denotes convolution, φ′(·) is the vector
of derivatives of all log-experts log ϕ(·i), and τ is the stepsize.

In our experiments, instead of directly using this gradient ascent procedure, we
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Figure 4.1: The test set of 10 images [46].

employ a more efficient conjugate gradients (CG) method implemented by Ras-
mussen [119]. Moreover, we maximize the posterior p(x|y)∝p(y|x) · p(x)λ where λ
is an optional regularization weight, which has frequently been employed to obtain
good application performance (e.g., [7] and common variational methods).

4.1.2 Experiments

We test the denoising performance of our learned MRF priors (see Sec. 3.3) on two
different test sets from the Berkeley segmentation dataset [105]: A set of 10 images
(160×240 pixels) used in [46] (see Fig. 4.1), and a set of 68 images (320×480 pixels)
used in [120, 7, 102].

To evaluate the quality of restored images, we use two measurements: The peak
signal-to-noise ratio (PSNR) and the structural similarity (SSIM) index [114]. The
PSNR is a widely used evaluation criterion. It is defined via the mean squared
(pixel-wise) image error ē2

PSNR = 10 · log10
(
I2max

ē2

)
, (4.8)

where Imax is the maximum intensity value of an image. For an 8-bit image, Imax=

255. According to the definition, a higher PSNR value corresponds to a better quality
of the image. As the PSNR can not fully reflect the perceptual quality of an image to
human eyes, we also employ the SSIM, which provides a perceptually more plausible
measure. SSIM values range between 0 and 1. A higher value means better image
quality.



65

Table 4.1: Denoising results for 10 test images [46].

(a) Average PSNR in dB

Model MAP MAP with λ MMSE
σ=10 σ=20 σ=10 σ=20 σ=10 σ=20

pairwise (marginal fit [31]) 28.35 23.96 30.98 26.92 29.70 24.72
pairwise (generalized Lapl. [5]) 27.35 22.97 31.54 27.59 28.64 23.92
pairwise (Laplacian) 29.36 24.27 31.91 28.11 30.34 25.47
pairwise (Student-t [46]) 28.19 24.04 31.22 26.70 29.38 24.68
pairwise (ours) 30.27 26.48 30.41 26.55 32.09 28.32
5×5 FoE from [7] 27.92 23.81 32.63 28.92 29.38 24.95
15×15 FoE from [39] 22.51 20.45 32.27 28.47 23.22 21.47
3×3 FoE (ours) 30.49 25.83 31.82 27.39 32.94 29.04

(b) Average SSIM [114]

Model MAP MAP with λ MMSE
σ=10 σ=20 σ=10 σ=20 σ=10 σ=20

pairwise (marginal fit [31]) 0.787 0.599 0.873 0.748 0.833 0.631
pairwise (generalized Lapl. [5]) 0.745 0.559 0.886 0.777 0.804 0.609
pairwise (Laplacian) 0.832 0.624 0.897 0.801 0.869 0.703
pairwise (Student-t [46]) 0.784 0.602 0.887 0.746 0.825 0.631
pairwise (ours) 0.855 0.720 0.854 0.725 0.904 0.808
5×5 FoE from [7] 0.753 0.595 0.913 0.833 0.826 0.657
15×15 FoE from [39] 0.515 0.445 0.903 0.820 0.564 0.489
3×3 FoE (ours) 0.846 0.677 0.899 0.781 0.924 0.842

Results on the test set of 10 images

We compare our learned models against pairwise MRFs with four potential functions
(standard and generalized Laplacian [5], Student-t [46], and a marginal fit as in [31])
as well as two FoE models [7, 39]. As can be seen in Tab. 4.1, when using MAP
estimation without the regularization weight, our learned models perform rather
poorly despite good generative properties. With an optional regularization weight
λ (optimized on the test set), improved denoising results can be achieved, but are
still worse than those of previous models. Moreover, such a regularization weight
deteriorates the generative properties (at least for our models).

To approximate the MMSE estimate, we run four parallel Markov chains from
different starting points (noisy image and smoothed versions from median, Wiener,
and Gauss filtering), which allows to assess convergence using the potential scale
reduction (see Sec. 3.1.2). Fig. 4.3 shows that the Gibbs sampler mixes rapidly
when sampling the posterior. After discarding the “burn-in” samples from the first
few sampling iterations, we average all conditional means of (4.5) from subsequent
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(a) Original image (b) Noisy image (σ=20)

(c) Pairwise (marginal fit [31]), MAP with λ,
PSNR = 26.07dB, SSIM = 0.821

(d) Pairwise (marginal fit [31]), MMSE,
PSNR = 23.05dB, SSIM = 0.625

(e) Pairwise (g. Laplacian [5]), MAP with λ,
PSNR = 26.61dB, SSIM = 0.836

(f) Pairwise (g. Laplacian [5]), MMSE,
PSNR = 21.89dB, SSIM = 0.589

(g) Pairwise (ours), MAP with λ,
PSNR = 25.79dB, SSIM = 0.806

(h) Pairwise (ours), MMSE,
PSNR = 27.06dB, SSIM = 0.851

Figure 4.2: Denoising examples of different pairwise MRFs based on MAP (with λ)
and MMSE.
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Figure 4.3: Fast mixing of the Gibbs sampler when sampling an image of 160×240
pixels from the denoising posterior (a Gaussian likelihood σ = 20 with the learned
pairwise MRF prior). Four chains with over-dispersed initializations (red, dashed:
noisy image; blue, dash-dotted: Gauss filtered version; green, solid: median filtered
version; black, dotted: Wiener filtered version). Approximate convergence is reached
after 24 iterations (the potential scale reduction R̂ < 1.1, cf . Sec. 3.1.2).

iterations until the average images from the four samplers are sufficiently close to
one another. Finally, the restored image is obtained by averaging these four average
images.

The results of MMSE estimation are compared with those of MAP estimation in
Tab. 4.1. We can see that the MMSE outperforms MAP without a regularization
weight. When applied to good generative models such as our learned ones, the
MMSE is even superior to MAP with an optimal regularization weight. Note that
MMSE estimation operates in a purely generative setting with no regularization
weight required. Fig. 4.2 shows denoising examples of different pairwise MRFs based
on MAP (with optimal regularization weight λ) and MMSE.

Denoising results on the test set of 68 images

More extensive experiments on 68 test images [7, 102] with additive Gaussian noise
confirm our findings. Table 4.2 shows that, using MMSE-based denoising, even our
learned pairwise MRF outperforms the FoE of [7] using MAP, despite their much
larger 5×5 cliques and noise-adaptive regularization weight. Our learned FoE models
improve the denoising performance consistently with larger and more filters, which
coincides with the improvements of the model statistics (cf . Fig. 3.12). With MMSE
denoising using posterior sampling, our 5×5 FoE even outperforms the results of [102]
by 0.4dB. This is remarkable since this discriminative approach explicitly maximizes
the denoising performance of MAP estimates, and furthermore uses more experts. In
consequence, MMSE estimation enables application-independent generative MRFs to
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Table 4.2: Denoising results for 68 test images [7, 102] (σ = 25).
Model Inference avg. PSNR avg. SSIM
5×5 FoE from [7] (24 filters) MAP w/λ 27.44 0.746
5×5 FoE from [102] (24 filters) MAP 27.86 0.776
Pairwise MRF (ours) MMSE 27.54 0.758
MGSM-FRAME (ours) MMSE 27.80 0.779
3×3 FoE (ours, 8 filters) MMSE 28.19 0.795
5×5 FoE (ours, 8 filters) MMSE 28.22 0.797
5×5 FoE (ours, 16 filters) MMSE 28.26 0.799
Non-local means [116] (MMSE) 27.50 0.734
BLS-GSM [32] MMSE 28.02 0.789
NLSC [54] – 28.28 0.799
BM3D [55] – 28.35 0.797

be competitive with MAP-based denoising-specific discriminative MRFs.

We also compared our method to two MMSE-related methods that are not based
on MRFs: non-local means [116] (with tuned parameters), and the wavelet-based
BLS-GSM [32]; we clearly outperform them despite not being limited to denoising.
More importantly, our approach is competitive with popular BM3D (particularly in
SSIM [114]) as well as NLSC [54]. As far as we are aware, this is the first time such
competitive denoising performance has been achieved with any generative, global
model of natural images.

In addition, we evaluate our reimplemented FRAME model [6] using MGSM-
based potential functions (see Sec. 3.4 for details). Note that the MGSM-FRAME
model with MMSE estimation not only achieves much better denoising results than
the original GRADE procedure in [6], but also performs competitively at a level that
is not much below the popular methods despite of its age. The MGSM-FRAME
is inferior to our learned high-order FoE models, which may be attributed to fewer
potential functions it uses, or to the fact that its filters are not learned.

Figs. 4.4, 4.5 and 4.6 show denoising results for three of the 68 images, for which
the average performance is reported in Tab. 4.2. Note that in contrast to the tested
previous approaches, combining our learned models with MMSE leads to good per-
formance on relatively smooth as well as on strongly textured images.

4.1.3 Discussion: MMSE vs. MAP

Problems of MAP

Our experiments have shown that, despite very good generative properties, our
learned models perform rather poorly when using MAP estimation no matter whether
a regularization weight is used or not. Nikolova [115] showed this to be an intrinsic
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problem of MAP estimation. To better understand this, we analyze the denoising
performance of pairwise MRFs with a wide range of potentials from the family of
generalized Laplacians ϕ(y;β, γ) = exp

(
−β|y2 + ϵ|

γ
2

)
, where β controls the width

of the potential, γ controls the heavy-tailedness, and the small ϵ > 0 ensures dif-
ferentiability. Moreover, we measure the generative quality of the model through
the KL-divergence between the image derivative statistics and the model marginals.
From Fig. 4.7 we make two important observations about MAP: First, the best per-
formance is obtained from a convex potential (γ = 1.0, i.e., Laplacian). Second,
there is only a moderate correlation between the generative quality of the model and
denoising performance. Not only does this confirm the results of [115], it also offers
an explanation why better generative models have not been used in the literature:
They simply performed poorly in the context of MAP.

More benefits from MMSE estimation

Beyond improved quantitative results, MMSE-based image restoration has two other
important advantages: First, MAP solutions have often been found to be piecewise
constant with staircasing, which results in incorrect statistics of the output image
(see [56] and Fig. 4.8). Woodford et al . [56] developed models that explicitly enforce
certain statistical properties of the MAP estimate, but needed to abolish the well-
understood MRF framework and had to rely on a rather complex inference procedure.
From a practical point of view, Fig. 4.8 shows that we do not need to replace MRFs,
but that replacing MAP with MMSE estimation is already sufficient to achieve the
desired statistics of the output image and circumventing this long-standing problem.
Second, Fig. 4.7 shows that the denoising performance of MMSE is highly correlated
with the generative quality of the model, which in contrast to MAP suggests that
better generative models are likely to improve application results without requiring
any ad-hoc modifications.

Efficiency analysis of sampling-based MMSE approximation

Fig. 4.9 shows the evolution of the PSNR over the number of samples for one ex-
ample. Computing the MMSE using sampling is practical, despite our simple imple-
mentation, and much superior to using only a single sample [42]. Running multiple
samplers results in less correlation between model samples, thus improving the model
performance (faster convergence of the denoised image), even when using sequential
computing (Fig. 4.9(a)). Since communication between the samplers is not needed
during the Gibbs sampling, parallel computing is easy to implement for accelerat-
ing the computation. Fig. 4.9(b) shows that, in the case of parallel computing (one
sampler per computing core), faster convergence will also be achieved.
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Figure 4.7: Correlation between generative properties and denoising performance:
Pairwise MRF with generalized Laplacian potential and different parameters. Test
image is “Lena” of 128×128 pixels, σ=20. (a) MAP denoising with conjugate gradient
(red: high PSNR); PSNRmax = 28.07dB. (b) KL-divergence between derivative
statistics of images and model marginals (blue: low Dkl). (c) MMSE denoising with
sampling; PSNRmax = 28.26dB. While the correlation between Dkl and PSNR of
MAP is low (normalized cross-correlation NCC = −0.43), the Dkl and PSNR of
MMSE are highly correlated (NCC = −0.84).

−100 0 100

10−3

10−1

 

 

MAP MMSE
D   = 1.54KL D   = 0.03KL

Figure 4.8: Derivative statistics of 10 denoised test images and of corresponding
noise-free originals (black, solid), σ=10, 20.
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Figure 4.9: Efficiency of sampling-based MMSE denoising with different number of
samplers. Learned pairwise MRF, σ = 20.



74

4.2 Microscopy image deconvolution

4.2.1 Introduction and related work

Images acquired by photon-counting devices in applications such as biology, medicine,
and astronomy are usually degraded by noise with mixed Poisson-Gaussian (PG)
statistics and by blurring characterized by the system point spread function. In
previous work, besides denoising methods dedicated to PG noise (e.g., [121, 122,
123]), methods for joint deconvolution and PG denoising (e.g., [124, 125, 126, 127,
128, 49]) have been proposed. Recently, Gazagnes et al . [129] proposed a joint
super-resolution and denoising method for single-molecule localization microscopy
(SMLM). However, there Poisson noise is treated as additive Gaussian noise (by
using a quadratic data fidelity term).

Most of the methods mentioned above are formulated within a maximum a poste-
riori (MAP) framework [123, 124, 125, 126, 127, 129]. To achieve best performance,
a regularization parameter which defines the trade-off between the data fidelity term
and the regularization term must be tuned manually. In contrast to MAP, [121]
and [128] avoid such problem by approximating the minimum mean square error
(MMSE) estimate. More recently, Marnissi et al . [49] proposed a Bayesian deconvo-
lution method that computes the MMSE estimate and the regularization parameter
through variational Bayesian approximation. In general, as has been shown in Sec.
4.1, the usage of an application-dependent regularization parameter suggests that
common regularizers (e.g., total variation) employed in these MAP-based methods
as well as in [49] are insufficient as a generative image prior.

A Bayesian MMSE estimate, which is computed based on the whole model dis-
tribution, exploits more information and is statistically more sound than an MAP
estimate. However, computing the MMSE estimate is generally difficult for non-
convex problems. In methods for denoising and deblurring for additive Gaussian
noise [50, 130], a trained non-convex probabilistic generative image prior is used
and the MMSE estimate is approximated by averaging model samples based on an
efficient block Gibbs sampler. As the MMSE estimation operates in a purely gener-
ative setting, a regularization parameter is not needed. However, this efficient Gibbs
sampler cannot handle the case of PG noise due to the more complex statistics.

In this section, we propose a Bayesian deconvolution and denoising model for
mixed Poisson-Gaussian noise and determine the MMSE solution. We explore the
statistics of PG noise and find that its distribution can be well approximated using
mixtures of Gaussians (MoGs). A high-order MRF image prior from Sec. 3.3 is
employed and a regularization parameter is not needed. The MoG-based likelihood
(data fidelity) and the Gaussian scale mixture (GSM)-based prior allow to augment
the model using hidden variables and define an efficient block Gibbs sampler. The
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degraded images are restored using the MMSE estimate that is approximated by
averaging multiple samples from our probabilistic model. We also integrate super-
resolution into our model framework and simultaneously achieve super-resolution,
deconvolution, and denoising. We have applied our approach to different types of
synthetic data and performed a comparison with previous methods. Experiments
demonstrate that our joint method is superior to a sequential scheme, and that the
deconvolution performance can compete with the popular methods. Our method is
also applied to real microscopy images of telomeres acquired via stimulated emission
depletion (STED) nanoscopy. The work was published in [58].

4.2.2 Joint super-resolution, deconvolution and denoising

Model formulation

We formulate image restoration from a single image as a posterior distribution in a
Bayesian framework

p(x|y;Θ,Ω) ∝ p(y|x;Θ) · p(x;Ω), (4.9)

where y ∈RN is the given degraded image (noisy, blurry, and low-resolution), x ∈
Rr2N is the image to be restored (with a scaling factor r in case of super-resolution),
N is the number of pixels in the image, and Θ and Ω are the likelihood and prior
parameters, respectively.

Likelihood model. For the case of Poisson-Gaussian noise, the intensity of each
pixel yi in the observed image y can be modeled as

yi = αti + ni, (4.10)

where ti follows a Poisson distribution

ti ∼ Poi
(
1
α(S(k ∗ x))i

)
= Poi

(
( 1αHx)i

)
:= Poi(x̃i), (4.11)

and H is the matrix representing the convolution of x with some point spread function
k and down-sampling by S ∈ RN×r2N , α is a gain factor that controls the Poisson
noise strength, and ni is additive Gaussian noise.

ni ∼ N
(
µn, σ

2
n

)
. (4.12)

We further assume that pixels in y are conditionally independent. The likelihood
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model can then be written as

p(y|x;Θ) =
∏
i

p(yi|x̃i)

=
∏
i

(
+∞∑
ti=0

p
(
yi|ti

)
· p
(
ti|x̃i

))

=
∏
i

+∞∑
ti=0

e
− (yi−αti−µn)

2

2σ2
n

√
2πσn

x̃tii · e−x̃i

ti!

 .

(4.13)

Prior model. We use the high-order MRF image prior from Sec. 3.1 in which the
potential functions are represented by Gaussian scale mixtures (GSM)

p(x;Ω) ∝
∏

i

∏
j
ϕ
(
(fj∗x)i;ωj

)
∝
∏

i

∏
j

(∑
k
ωjk · N

(
(fj∗x)i; 0, sk ·σ2j

))
,

(4.14)

where fj are linear filters and “∗” denotes convolution. In the GSM-based potential
functions ϕ

(
·;ωj

)
, the parameters ωj include the mixture weights ωjk>0,

∑
k ωjk=1

of the zero-mean Gaussian components with scales sk and base variance σ2j . The
model parameters Ω={fj , ωjk} can be learned unsupervisedly from training images
(see Sec. 3.3 for details on the learning procedure).

Sampling-based inference

In Sec. 4.1.3 we have shown that, when applying our learned MRF priors to a
Bayesian posterior model, the MMSE estimate is superior to the MAP estimate
with additional good properties (e.g., desired image statistics, no regularization pa-
rameter required). As there is no closed form expression for the MMSE estimate of
our model, we develop a sampling-based approximation method.

Given y, the likelihood p(yi|x̃i) is a function of x̃i, which has an asymmetric
bell shape (Fig. 4.10, the black solid curve). Despite the complex mathematical
expression, the model likelihood in (4.13) can be well approximated by fitting these
functions using general mixtures of Gaussians (MoGs):

p
(
yi|x̃i

)
∝ p
(
x̃i; yi

)
=
∑M

l=1
πyil · N

(
x̃i; µ̃yil, σ̃

2
yil

)
, (4.15)

where πyil>0, µ̃·l and σ̃2·l are the means and variances of the Gaussian components,
respectively. Since in practice the value of yi is usually within a finite set (or can
be discretized for real values), the Gaussian mixture parameters can be obtained in
advance before inference. Note that the MoGs in (4.15) are different to the GSMs
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Figure 4.10: Likelihood values p
(
yi|x̃i

)
of (4.15) w.r.t. x̃i (black, solid) for yi = 20

with α = 2, µn = −15, and σn = 10. Model fitting using a mixture of Gaussians
with three components (blue, dotted) is more accurate than using a Gaussian (red,
dashed). “kld” means KL-divergence (a smaller value corresponds to a better fit).

in (4.14); for the latter, the means of the Gaussian components are set to zero.

The scales of the GSMs in (4.14) are retained as discrete-valued hidden random
variable zji ∈ {1, ...,K} such that p(x;Ω) =

∑
z p(z,x;Ω), allowing to define a

rapidly mixing auxiliary-variable Gibbs sampler (cf . Sec. 3.1.2). Following the strat-
egy, we further augment the mixture model in (4.15) using the discrete-valued hidden
variable hi ∈ {1, ...,M}, which represents the index of the Gaussian mixture compo-
nent, such that p(x;y) =

∑
h p(h,x;y). The following conditional distributions can

be derived
p(hi|x, yi) ∝ πyihi

· N
(
( 1αHx)i; µ̃yihi

, σ̃2yihi

)
, (4.16)

p(zji|x) ∝ ωjzji · N
(
(fj∗x)i; 0, szjiσ2j

)
, (4.17)

p(x|z,h,y) ∝ p(y|x,h) · p(x|z)

∝
∏

i
N
(
( 1αHx)i;µyihi

, σ2yihi

)
·
∏

i

∏
j
N
(
fT
jix; 0, szjiσ

2
j

)
∝ N

(
1
αHx;b,Q−1

)
· N
(
x;0,P−1

)
∝ N

(
x; 1

αΣHTQb,Σ
)
,

(4.18)

where fji is defined as fT
jix = (fj ∗x)i, b = [..., µ̃yihi

, ...]T, Q = diag{1/σ̃2yihi
},

P =
∑

i

∑
j

1
szjiσ

2
j
fjif

T
ji and Σ =

(
1
α2H

TQH+P
)−1.

We can then define a rapidly mixing block Gibbs sampler that alternatively
samples h, z, and x according to (4.16), (4.17) and (4.18), respectively. This is very
efficient, as (4.16) and (4.17)) are discrete distributions conditionally independent
to each other, and (4.18)) is a multivariate Gaussian that can be sampled through
solving a linear system of equations. The MMSE estimate x̂ can be approximated by
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Algorithm 2 Sampling-based MMSE estimate approximation
1: initialization of x(0) ∈ Rr2N ;
2: for t = 1, 2, ... do
3: sample h(t)∼p(h|x(t−1),y) according to (4.16);
4: sample z(t)∼p(z|x(t−1)) according to (4.17);
5: update b(t),Q(t) and Σ(t) in (4.18);
6: sample x(t)∼p(x|z(t),h(t),y) according to (4.18);
7: if t>B then ▷ B: no. of “burn-in” iterations
8: compute x̂(t) = 1

t−B
∑t

i=B+1
1
αΣ

(i)HTQ(i)b(i);
9: if ∥x̂(t)−x̂(t−1)∥⩽ϵ then

10: return x̂(t);

averaging multiple samples of x. To achieve faster convergence, instead we average
the conditional expectations from (4.18) during Gibbs sampling, which is the Rao-
Blackwellized estimator [118]. Algorithm 2 provides the pseudo-code of the sampling-
based MMSE estimate approximation. Note that it is straightforward to parallelize
sample drawing by running multiple samplers, which can further greatly improve the
efficiency of inference.

4.2.3 Experiments

We applied our method to both natural images and fluorescence microscopy images.
For the prior model, we use the 3×3 MRF with 8 filters learned from natural images
in Sec. 3.3. We also studied retraining the parameters using fluorescence microscopy
images. However, experimental results show that this does not improve the result.
For the likelihood model, unless otherwise mentioned, we use mixtures of Gaussians
(MoGs) with three components. Image noise parameters α, µn, σn and H are assumed
to be given (for synthetic data) or are estimated from the images. No additional
parameters need to be tuned. For a performance comparison, we choose popular
denoising and deconvolution methods with authors’ code available.

Denoising. In this case, H is set to an identity matrix. As can be seen from
Tab. 4.3, using MoGs (3 components) for likelihood approximation yields a gain of the
peak signal-to-noise ratio (PSNR) up to 0.45dB compared to a single Gaussian, which
suggests that the accuracy of likelihood modeling is crucial for the performance.
Our method outperforms the popular Poisson-Gaussian denoising method PURE-
LET [121] and generates less artifacts in the restored images, especially when the
noise strength is large. Fig. 4.11 shows example images of the denoising results.

Deconvolution. Here H is a convolution matrix generated from a blur kernel.
Tab. 4.4 and Fig. 4.12 show that our method outperforms GILAM [131], which is a
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Table 4.3: Denoising results (PSNR in dB) for test images with different noise pa-
rameters.

Poiss. param. α 1 2 5

Gauss. param. σn 10 20 10 20 10 20

Method Cameraman 256×256
Noisy input 24.79 21.24 22.89 20.32 19.79 18.39
PURE-LET [121] 31.29 28.92 30.14 28.39 28.48 27.35
Ours (M=1) 31.63 29.22 30.38 28.69 28.48 27.58
Ours (M=3) 31.66 29.26 30.41 28.74 28.64 27.68
Method Crym 256×256
Noisy input 25.74 21.59 24.22 20.97 21.53 19.56
PURE-LET [121] 29.77 27.31 28.84 26.95 27.23 26.09
Ours (M=1) 29.83 27.36 28.84 26.97 27.09 26.05
Ours (M=3) 29.87 27.39 28.90 27.01 27.27 26.14
Method Moon 512×512
Noisy input 26.13 21.99 24.51 21.31 21.69 19.76
PURE-LET [121] 29.67 26.85 28.77 26.56 27.34 25.92
Ours (M=1) 29.76 27.32 28.87 27.12 27.00 26.18
Ours (M=3) 29.85 27.40 28.98 27.26 27.36 26.45
Method Fluocells 512×512
Noisy input 26.92 22.44 25.68 21.98 23.19 20.79
PURE-LET [121] 33.92 30.50 33.25 30.27 31.97 29.91
Ours (M=1) 34.09 31.26 33.45 31.35 31.67 30.83
Ours (M=3) 34.18 31.36 33.56 31.44 32.12 31.00

deconvolution method for Poissonian images. GILAM fails when the Gaussian noise
part of the PG noise gets stronger. Compared to the method in [125] (using their
settings), our method is slightly better (less outlier pixels in the restored image, see
Fig. 4.13).

Super-resolution. When H is a matrix for performing Gaussian blurring and
downsampling, our method can perform super-resolution and denoising simultane-
ously. Fig. 4.14 shows a comparison of our joint scheme and a sequential scheme of
denoising (our method with H as identity matrix) followed by bicubic interpolation.
It can be seen that our joint scheme yields sharper image edges.

Real microscopy images

In practical applications, when the noise parameters are not available, they can be
directly estimated from the original images using different methods (e.g., [132, 133]).
We performed joint super-resolution (factor of two), deconvolution, and denoising on
real microscopy images of telomeres acquired with an easySTED system [57]. Ex-
amples are shown in Fig. 4.15. Noise parameters α≈3.2 and σn≈4.9 were estimated
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Table 4.4: Deconvolution results (PSNR in dB) for Gaussian blur with variance 3
and different noise parameters.

Pois. param. α 1 5

Gaus. param. σn 0 10 0 10

Method Cameraman 256×256
Input 22.34 21.36 18.79 18.36
GILAM [131] 25.50 23.00 23.69 23.50
Our method 25.70 25.08 24.35 24.12
Method Crym 256×256
Input 23.86 22.49 20.66 19.98
GILAM [131] 25.87 22.38 23.74 23.51
Our method 26.17 25.50 24.73 24.49
Method Fluocells 512×512
Input 28.92 25.84 23.87 22.72
GILAM [131] 31.20 22.93 29.13 27.97
Our method 32.84 31.55 30.51 30.40

using [133]. It can be seen that the noise as well as the blur have been significantly
reduced. The resolution of the resulting images after applying our joint method is
a factor of two higher compared to the original images. We employed these images
for segmentation and shape analysis of telomeres using the model fitting approach
in [134]. The model in this approach is based on a Fourier representation, and by
fitting the model to an image the Fourier coefficients are determined. We applied the
model fitting approach both to the original images and the high resolution images.
It turned out that for the high resolution images from our joint method, the Fourier
coefficients reflecting the shape were determined more robustly and accurately com-
pared to using the original images. This is important for distinguishing different
experimental conditions.

Discussion

In the denoising experiment, we have seen that the accuracy of likelihood modeling
is crucial for the model performance. Thus, the likelihood distribution must be
accurately estimated in applications. For a likelihood that is defined (e.g., derived
from some regularization of the data term), the optimal parameters can be obtained
by training from the data.

Although we have developed an efficient Gibbs sampler and run multiple samplers
in parallel for an acceleration, our method is still slower than the methods used in
our comparison, which is a common issue of sampling-based methods. To further
reduce the computation time, some variational Bayesian method, e.g., mean field
approximation, can be employed for the inference in our method, with a slight loss
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(a) Original (b) Blurry and noisy,
PSNR = 18.36dB

(c) GILAM [131],
PSNR = 23.50dB

(d) Our method,
PSNR = 24.12dB

Figure 4.12: Deconvolution of Cameraman (cropped) degraded by Gaussian blur
(σ2=3) and Poisson-Gaussian noise (α=5, µn=0, σn=10).

(a) Original (b) Blurry and noisy,
PSNR = 18.16dB

(c) Method in [125],
PSNR = 24.59dB

(d) Our method,
PSNR = 24.67dB

Figure 4.13: Deconvolution of Crym (cropped) degraded by Gaussian blur (σ2=0.25)
and Poisson-Gaussian noise (α=4.25, µn=0, σn=25.5).

(a) Downsampled with noise,
128×128 pixels

(b) Restored, 256×256 pixels,
PSNR = 24.35dB

(c) Restored, 256×256 pixels,
PSNR = 24.63dB

Figure 4.14: Super-resolution (2x) and denoising of Crym using our method. Poisson-
Gaussian noise (α=1, µn=0, σn=10) is applied to (a) the downsampled image. (b)
Denoising followed by bicubic interpolation; (c) Joint super-resolution and denoising.
PSNR is computed based on the original image.
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Figure 4.15: Super-resolution (2x), deconvolution, and denoising of STED mi-
croscopy images using our method. (Top) original images; (Bottom) restored images.
Noise parameters are estimated using [133]: α≈3.2 and σn≈4.9.

of the accuracy. Examples of mean field for high-order MRFs can be found in [48].

In our experiments, the model with a MRF prior trained on natural images per-
formed better than that trained on fluorescence microscopy images. Due to the
significantly higher noise in microscopy images compared to natural images, a prior
model might not be well trained. On the other hand, a reason is probably that
microscopy images have similar local image structures as natural images, or nat-
ural images exhibit scale invariant derivative statistics [108], which also represent
microscopy images.

4.3 Non-rigid registration of live cell nuclei

4.3.1 Introduction and related work

Time-lapse live cell microscopy enables studying the dynamics of subcellular struc-
tures to understand cellular processes. As the observed motion of intranuclear par-
ticles (proteins) is superimposed on the motion of cell nuclei, to analyze the relative
motion patterns of particles, the particle motion must be decoupled from the de-
formation and movement of cell nuclei. This can be achieved by registration of
cell nuclei in microscopy images at different time points. Usually the intranuclear
particles and cell nuclei are acquired in two different channels (see Fig. 4.16). The
deformation fields are first estimated according to the cell nucleus channel, and then
applied to the particle channel to accomplish the decoupling of the motion.

Early methods for registration of cell or cell nuclei images mostly rely on rigid
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Figure 4.16: Two images at different time points from a time-lapse multi-channel
live cell image sequence: (left) t=0; (right) t=50. The red channel shows the cell
nucleus and the green channel shows the intranuclear particles.

and affine transformations (e.g., [135, 136, 137, 138, 139, 140]) and work well in
applications with relatively simple conditions. As the patterns of cell deformations
are usually complex and cannot be well described by linear transformations, non-rigid
registration approaches have been proposed. Mattes et al . [141] described a method
based on landmarks and thin-plate splines. Yang et al . [142] used segmented images
and a variant of the demons algorithm with a multiresolution scheme to register
static and live cell nuclei images. De Vylder et al . [143] proposed a registration
method based on the deformation of the nuclear contour. More recently, Sorokin
et al . [144] used contour matching and a physical prior to model the deformation
based on elasticity theory. However, the approaches in [142, 143, 144] do not directly
exploit the image intensity. Also, since the deformation fields are determined using
interpolation, complex local deformations in the inner part of a cell nucleus are
difficult to capture.

Another type of non-rigid cell image registration methods directly exploits the
image intensity and employs local optical flow models to compute the deformation.
These methods are based on the observation that the deformation between two con-
secutive image frames changes gradually over time and shows temporal coherence.
Kim et al . [145] extended the Lucas-Kanade optical flow model [146] to estimate
dense deformation fields between consecutive frames and then register each frame
to the reference frame using an incremental scheme. This method was extended
by Tektonidis et al . [147], where a multi-frame approach was proposed to improve
the robustness to image noise. Tektonidis and Rohr [148] introduced a diffeomorphic
multi-frame approach, which guarantees invertibility and continuity of the computed
transformations. The major advantage of optical flow-based registration methods is
that they can cope with general motion which is not necessarily constrained by a
physical prior. All above mentioned approaches for non-rigid registration of cell
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nuclei using optical flow models [145, 147, 148] are local, since the deformation vec-
tors are computed based on local image patches. Besides low efficiency, using local
patches implies that only some basic regularization on the result is included.

In contrast, global optical flow models explicitly integrate the optical flow con-
straint (e.g., brightness constancy) and the regularization of optical flow vectors into
one single objective function. The optical flow vectors for all pixels, i.e., a dense
optical flow field, are computed simultaneously and efficiently based on the whole
images. Interpolation as often used in local models is not required. By appropriately
choosing the type of regularization, global models can generally improve the perfor-
mance compared to local models. For a survey on optical flow models, readers are
referred to [149]. However, popular global optical flow models have been originally
proposed for video images of natural scenes (e.g., street traffic). For cell microscopy
images, the image structures are generally more blurry (e.g., out-of-focus local re-
gions, scattering of fluorescence) and the image noise is more significant. Another
characteristic is that occlusions (due to 3D-2D projection) generally do not occur
in contrast to video images of natural scenes. Due to different properties, direct
application of these global optical flow models for estimating the deformation fields
in fluorescence microscopy images generally does not yield optimal results.

In addition, previous optical flow-based registration methods for cell microscopy
images [140, 145, 147, 148] assume brightness constancy. This means that the image
intensities of moving structures do not change over time, which is a relatively strong
assumption and often violated in real data. In the field of optical flow estimation for
images of natural scenes, extensions of brightness constancy to gradient constancy
and high-order feature constancy were proposed to improve, for example, the ro-
bustness to varying illumination (e.g., [150]). While it is often hard to handcraft the
most suitable features, they could be determined by some feature learning method.
In [150], estimation of optical flow for images of natural scenes relied on discrimi-
natively learned features through maximizing the conditional likelihood of the data
fidelity term. However, for cell microscopy image data, due to the lack of ground
truth of deformations, an unsupervised feature learning method should be employed.
Note that, since the feature-constancy data term in an optical flow model implies
(conditional) independence among features, an ideal feature leaning model should
be “coupled” with the registration model (data term), i.e., their hidden assumptions
should be consistent. Unfortunately, common unsupervised feature learning meth-
ods (e.g., PCA, autoencoder, sparse coding [85]) and patch-based image models with
features learned simultaneously (e.g., product of Student-t model [2]) do not fulfill
this requirement.

For registration of temporal medical images (e.g., CT, MR and US images of
organs), group-wise approaches have been proposed (e.g., [151, 152, 153, 154, 155]),
which simultaneously exploit all frames of an image sequence. Typically periodic
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movement is considered (e.g., lung, heart) and often parametric registration ap-
proaches are employed (e.g., using B-splines). For registration of live cell microscopy
image sequences, it was shown that optical flow-based methods with an incremental
scheme [147, 148] perform better than a group-wise method [151]. A main reason
is that an incremental scheme better copes with the heterogeneous changes of the
intensity structure over time, since the deformations are computed by concatenating
deformation fields estimated from a limited number of consecutive frames.

In this section, we introduce global optical flow models with appropriate regu-
larization of the deformation fields for non-rigid registration of cell nuclei in live-cell
fluorescence microscopy images using an incremental scheme. We compare different
regularizers and show that a convex quadratic function is more suitable than non-
convex functions widely used for optical flow estimation in video images of natural
scenes. To increase the robustness to noise, we propose an adaptive weighting scheme
derived from the mixed Poisson-Gaussian statistics of typical noise in microscopy im-
ages. The deformation fields can be efficiently computed by solving linear systems
of equations.

Moreover, we extend the global models by high-order filter banks obtained through
learning the Field of Experts (FoE) and the convolutional Gaussian RBM priors (see
Sec. 3.1 and Sec. 3.5). We show that these two models are consistent with the hidden
assumption in the feature-constancy data term of the registration model. An advan-
tage is that these two models only require moderate amount of training data due
to the convolutional model structure. To cope with the problem that learned coeffi-
cients in the filters might shift and distort image correspondences in the feature space
(note that this is not an issue in image deconvolution and denoising applications), we
augment the learning procedure (Sec. 3.3 and Sec. 3.5) by an additional constraint.
In addition, our adaptive weighting scheme based on brightness constancy can also
be extended to the global model using high-order features to increase the robustness
to noise. To deal with outliers and complex noise not following Poission-Gaussian
statistics, we also employ a combined local-global (CLG) scheme [66].

To evaluate the performance of our proposed global methods, we use multiple
data sets including both 2D and 3D real live cell microscopy image sequences as well
as synthetic image data. Experimental results demonstrate that our global method
significantly improves the registration accuracy compared to existing state-of-the-art
non-rigid registration methods such as [148] and [144]. It also turns out that our
proposed method based on global optical flow models is much more efficient than
existing methods based on local models. Also, we present results for 3D live-cell
microscopy images and for synthetic image data. The work was published in [59, 60].
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4.3.2 Global optical flow-based method

Our non-rigid registration method for live cell microscopy images is based on a global
optical flow model for estimating the deformations between consecutive image frames
and uses an incremental scheme to register a temporal image sequence.

Incremental temporal registration

Given temporal cell microscopy image sequences, the goal is to determine the dense
deformation field w0,t to register the frame xt at time point t to the reference frame x0

at the first time point. However, directly estimating all w0,t, t=1, ..., T, is not a good
choice, since the deformations over a long time interval are generally too complex.
Instead, we estimate all deformation fields wt−1,t between pairs of consecutive image
frames and then concatenate them incrementally to obtain

w0,t = wt−1,t ◦w0,t−1 = wt−1,t + w̃0,t−1, (4.19)

where w̃0,t−1 is the result of using wt−1,t to warp w0,t−1 using bilinear interpolation,
and w0,0 ≜ 0. Below, we describe methods based on a global optical flow model for
computing a deformation field wt−1,t from two consecutive frames. The superscript
of w will be dropped for easier readability.

Global optical flow-based models

The deformation field w between two consecutive images x0 ∈RN and x1 ∈RN (N
is the number of pixels in an image frame) is modeled via the posterior density in a
Bayesian framework

p(w|x0,x1) ∝ pD(x
0|w,x1) · pR(w), (4.20)

where the data-dependent likelihood pD(x
0|w,x1) models how x0 is generated from

w and x1, and the prior pR(w) imposes regularization on w. For 2D image sequence,
w∈R2N consists of x- and y-components u and v.

Data term. When assuming brightness constancy, the data fidelity (likelihood)
term can be written as

pD(x
0|w,x1) ∝

N∏
i=1

exp
{
− 1

αi
· ψD

(
x0
i − x1

wi

)}
, (4.21)

where αi is the regularization weight and x1
w is the warped (deformed) image of x1

towards x0 by the deformation field w to be estimated. The penalty function ψD can
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take an arbitrary form. When a convex quadratic function ψD(x) = x2 is used, (4.21)
will be a Gaussian function, meaning that the difference x0

i−x1
wi is assumed to follow

a Gaussian distribution. In popular optical flow methods for video images of natural
scenes (e.g., [150]), non-convex functions for ψD are used (e.g., a Lorentzian function).
The reason is that, due to, for example, occlusion in video images of natural scenes,
the brightness constancy assumption is violated, leading to heavy-tailed histograms
with a sharp peak of the intensity differences. In contrast, for cell microscopy images,
there exist less violations of the brightness constancy assumption (e.g., occlusions due
to 3D-2D projection as in video images generally do not occur), but significant noise.
Note that for images with strong noise (e.g., microscopy images), the histogram of
intensity differences has a more rounded peak [150]. Therefore, the histogram of
intensity differences for cell microscopy images is expected to have a shape that is
largely similar to a Gaussian function. Thus, a convex quadratic function for ψD

should be well suited, and we use it in our method. In addition, a quadratic data
term eases the inference procedure.

Regularization term. For the regularization term (prior), we use a Markov ran-
dom field (MRF) formulation

pR(w) ∝
2∏

r=1

N∏
i=1

exp
{
− ψR

(
(dr∗u)i

)
− ψR

(
(dr∗v)i

)}
, (4.22)

where dr are first-order derivative filters in x- and y-directions. The choice of the
regularization function ψR in (4.22) should depend on the statistical properties of
w. Unfortunately, for cell microscopy images, due to the lack of the ground truth,
the statistical properties of w are not known. Tseng et al . [156] found that the cell
nucleus is stiffer and more elastic than the cytoplasm. We accordingly assume that
the deformation vectors in the nuclei change gradually in space and that strong dis-
continuities (e.g., edges) in w are unlikely, which means that the filter responses will
hardly have large values and their histograms will not show a heavy-tailed shape.
Thus, it is expected that a convex quadratic regularization ψR(x) = x2, which has
no edge-preserving property, is more appropriate. As a comparison, we also con-
sider two robust regularizers widely used in popular optical flow models for video
images of natural scenes: the Charbonnier function ψR(x) =

√
x2 + ϵ2 [66], which

is a differentiable variant of the L1 norm, and the non-convex Lorentzian function
ψR(x)=log(1+ x2

2σ2 ) [157]. The latter arises in the context of a Student t-distribution
for one degree of freedom, and is also a common potential function or regularizer in
image modeling and analysis (e.g., [30, 7]).

Inference. The deformation field w is computed by minimizing the model energy
E(w) = − log p(w|x0,x1), which is equivalent to the maximum a-posteriori (MAP)
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estimate. For small deformations, the data term can be linearized using a first
order Taylor expansion. When both ψD and ψR are quadratic functions and a single
regularization weight αi=α0 is applied, the model energy is

E(w) =
∥∥Γu+Λv + x1 − x0

∥∥2 + α0 ·
∑

r

∑
i

(
(dT

iru)
2 + (dT

irv)
2
)
+ c, (4.23)

where Γ= diag(x1
x) and Λ= diag(x1

y) are diagonal matrices containing the partial
image derivatives x1

x and x1
y in x- and y-directions, dir are vectors defined as dT

iru =

(dr ∗u)i, and c is a constant. To minimize (4.23), we need to solve the linear system
of equations ([

ΓΓ ΓΛ

ΓΛ ΛΛ

]
+ α0

[
D 0

0 D

])
·w =

[
Γ

Λ

]
· (x0 − x1), (4.24)

where
D =

∑
r

∑
i
dird

T
ir.

As the coefficient matrix on the left side (comprising Γ,Λ, and D) is sparse and
positive definite, (4.24) can be efficiently solved using Cholesky factorization. For
the Lorentzian and Charbonnier functions, we follow [158] and use a graduated non-
convexity (GNC) scheme.

Handling noise and outliers

To cope with significant noise and outliers in cell microscopy images, we use an adap-
tive weighting scheme and a combined local-global scheme as well as a combination
of these two schemes.

Adaptive weighting (AW) scheme. The noise in cell microscopy images largely
follows mixed Poisson-Gaussian statistics. An observed image can be written as xi=

g0ti +ni, where g0 is the gain of the overall electronic system, ti∈Z+
0 is the number

of collected photo-electrons at pixel i which is a random variable following a Poisson
distribution ti∼Poi(λi), λi∈R+, and ni∈R is Gaussian noise ni∼N (µn, σ

2
n) (e.g.,

[159]). The corresponding noise-free image is

x̂i = g0λi + µn. (4.25)

Assuming brightness constancy for the (hidden) noise-free images x̂0
i = x̂1

wi, we have
λ0
i =λ

1
wi, thus t1wi∼Poi(λ1

wi)=Poi(λ0
i ) following the same Poisson distribution as

t0i ∼Poi(λ0
i ), and therefore the distribution of their difference can be approximated

by a Gaussian [160]
(t0i − t1wi) ∼ N (0, 2λ0

i ). (4.26)
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With (n0
i − n1

wi) ∼ N (0, 2σ2n), the intensity difference of the observed images in the
data term (4.21)

x0
i − x1

wi = g0(t
0
i − t1wi) + (n0

i − n1
wi) (4.27)

has a Gaussian distribution with varying variance

(x0
i − x1

wi) ∼ N
(
0, 2g20λ

0
i + 2σ2n

)
∝ exp

{
− 1

4(g20λ
0
i+σ

2
n)
·(x0

i − x1
wi)

2
}
.

(4.28)

Comparing (4.28) and (4.21) suggests using a quadratic penalty in the data term as
well as a varying regularization weight at each pixel location

αi = α0(g
2
0λ

0
i + σ2n). (4.29)

In practice, however, estimating the parameters in (4.29) is difficult and an approx-
imation is needed.

We now consider the regularization term. In our fluorescence microscopy images,
cell nuclei have more or less homogeneous intensity and include bright spot-like
structures. The spots generally preserve their sizes and do not expand or shrink.
Thus, it is reasonable to assume that the deformation vectors of the pixels inside
one spot are very similar. Such deformation continuity can be achieved by using
a higher weight for the regularization term to more strongly penalize the variation
of the deformation. Since pixels inside the spots have high intensities, and higher
weights are needed at these locations, we suggest using weights that are proportional
to the image intensities:

αi = α0x̂
0
i = α0(g0λ

0
i + µ0n). (4.30)

Thus, the weight αi should be determined so that it is consistent with the weight-
ing schemes for the data term in (4.29) and the regularization term in (4.30). We
notice that the relations in (4.29) and (4.30) have the same structure: In both cases
the weights are linear functions of λi and have the same sign of derivatives (simul-
taneously increasing or decreasing). Therefore, we propose determining the weights
using the relation in (4.30), where the noise-free image is roughly approximated by
applying Gaussian smoothing on the original image x0

αi = α0(x̂
0
i + b) ≈ α0

(
(gσ∗x0)i + b

)
, (4.31)

where b is a positive constant and gσ is a Gaussian filter with kernel width σ.

For the proposed adaptive weighting scheme, the model energy is still convex.
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The deformation field is computed by solving([
ΓΓ ΓΛ

ΓΛ ΛΛ

]
+

[
Dα 0

0 Dα

])
·w =

[
Γ

Λ

]
· (x0 − x1), (4.32)

where Dα =
∑

i,r αidird
T
ir.

Combined local-global (CLG) scheme. The statistics of noise and outliers in
cell microscopy images are sometimes more complex and cannot be accurately mod-
eled using mixed Poisson-Gaussian as in the case of the adaptive weighting scheme.
An alternative to improve the robustness to noise and outliers is the combined local-
global (CLG) method [66] which exploits local image information within a global
model.

The deformation field w is then determined by solving([
diag{gρ∗(x1

x⊙x
1
x)} diag{gρ∗(x1

x⊙x
1
y)}

diag{gρ∗(x1
x⊙x

1
y)} diag{gρ∗(x1

y⊙x
1
y)}

]
+α0

[
D 0

0 D

])
w

=

[
vec
{
gρ∗

(
x1
x⊙(x

0−x1)
)}

vec
{
gρ∗

(
x1
y⊙(x

0−x1)
)}] , (4.33)

where “⊙” denotes element-wise product and gρ is a Gaussian kernel with standard
deviation ρ. Note that, as the sparsity of the coefficient matrix in (4.33) is the same
as in (4.24), the solution can still be computed efficiently.

Combined AW+CLG scheme. The AW and CLG schemes described above can
also be combined. To this end we extended the linear system of equations of the
CLG scheme in (4.33) by using the weight matrix Dα from the AW scheme in (4.32)
instead of the matrix D.

Extension to 3D image data

For temporal 3D image sequences (volume images over time), the deformation field
w∈R3N includes an additional z-component h∈RN . While the formulation of the
data term (4.21) is the same as in the 2D case, the regularization term needs to be
extended to regularize all components of w

pR(w) ∝
3∏

r=1

N∏
i=1

exp
{
−ψR

(
(dr∗u)i

)
−ψR

(
(dr∗v)i

)
−ψR

(
(dr∗h)i

)}
, (4.34)
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where d3 is a first-order derivative filter in z-direction. The linear system of equations
for computing the 3D deformation field w for a global model (cf . (4.23)) is

ΓΓ ΓΛ Γ∆

ΓΛ ΛΛ Λ∆

Γ∆ Λ∆ ∆∆

+α0

D 0 0

0 D 0

0 0 D


w =

ΓΛ
∆

(x0 − x1), (4.35)

where ∆= diag(x1
z) with xz denoting the partial derivatives in z-direction. Γ, Λ,

and D are defined analogously as in the 2D case described above. Note that, as the
dimension of the coefficient matrix in (4.35) is much higher than that for the 2D
model, using Cholesky factorization to compute the exact solution is not efficient.
Thus, for the 3D model we instead use the preconditioned conjugate gradient (PCG)
method [161] to obtain an approximate solution. To handle noise and outliers, the
adaptive weighting or the CLG scheme can be straightforwardly applied.

4.3.3 Registration in the learned feature space

For estimating the optical flow or deformation field between two images x0 and
x1, often brightness constancy is assumed and the brightness residual after image
warping δi = x0

i −x1
wi is penalized in the data energy term ED(w) =

∑
i ξ(δi), where

ξ is some penalty function. To improve the performance under varying illumination,
gradient constancy and high-order feature constancy were proposed for images of
natural scenes (e.g., [150]). Suppose fj are filters for extracting image derivatives
or high-order features, the residual is then δji = (fj ∗ x0)i − (fj ∗ x1)wi. When
several features are jointly considered, all energy terms of the features are summed
up yielding the data term ED(w) =

∑
j

∑
i ξ(δji), whose corresponding probabilistic

formulation (the likelihood) is

pD(w) ∝ exp
{
−ED(w)

}
∝
∏J

j=1

∏N

i=1
exp
{
− ξ(δji)

}
∝
∏J

j=1

∏N

i=1
p
(
(fj∗x0)i

∣∣w, (fj∗x1)
)
.

(4.36)

This factorization of the likelihood into a product of conditional distributions implies
that the filter responses (fj ∗ x0)i are assumed to be (conditionally) independent.
However, in practice the requirement of independence cannot be fulfilled, as there
are more filter responses than pixels. Note that orthogonality of filters does not lead
to independence of filter responses (e.g., image derivatives in x- and y-directions are
generally correlated).
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Learning features using generative image models

According to (4.36), high-order features with least dependence are best. In addi-
tion, the features should be specific for the considered images. To determine filters
that capture the most important and least dependent features, we train filter-based
generative image models implying the independence assumption. We consider two
generative image models: Fields of Experts (FoE) and convolutional Gaussian re-
stricted Boltzmann machine (cGRBM). These two kinds of models not only have
been widely used in computer vision, but also have the advantage that they only
require moderate amount of training data due to the convolutional model structure.

Fields of Experts. The FoE [50, 51] (see also Sec. 2.2.2) is a filter-based, high-
order Markov random field (MRF) image prior, where both potential functions and
filters are trained unsupervisedly . The probability density of an image x is defined
as

pFoE(x) ∝
J∏

j=1

N∏
i=1

ϕ
(
(fj∗x)i;ωj

)
, (4.37)

where fj are linear filters, and ϕ(·;ωj) are filter-specific potential functions (or ex-
perts) with parameters ωj .

Comparing (4.37) with (4.36), it can be seen that the FoE prior is a generaliza-
tion of the data term (4.36). Proper training procedures will not only yield filters
that capture specific image features of the training data, but also enforce the filter
responses to be as independent as possible, making the learned filters well suitable
for the model in (4.36).

Convolutional Gaussian RBM. The cGRBM (see also Sec. 2.3.1) is a variant
of a convolutional RBM [35, 162], for which a convolutional weight sharing scheme
(as for convolutional neural networks) is used for a Gaussian RBM [110]. The shared
weights can be regarded as filters. In a cGRBM, an image is modeled by defining
an energy function of real-valued visible units x (here, the image pixels) and binary
hidden units h:

EcGRBM(x,h) =
1

2

N∑
i=1

x2
i −

J∑
j=1

N∑
i=1

hji
(
(fj∗x)i + bj), (4.38)

where fj are the weights or filters, and bj denote the biases.

The probability density of x can be obtained by marginalizing out the hidden
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units

pcGRBM(x) ∝ N (x;0, I)·
J∏

j=1

N∏
i=1

(
1+exp{(fj∗x)i+bj}

)
∝ N (x;0, I)·

J∏
j=1

N∏
i=1

φ
(
(fj∗x)i; bj

)
,

(4.39)

where φ are filter specific potential functions. From (4.39), it can be seen that the
cGRBM is also consistent with the independence property of model in (4.36).

Learning. Although we are only interested in the coefficients of the filters fj , all
model parameters (including ωj for the FoE and bj for the cGRBM) must be learned
simultaneously. As the partition functions of both models are intractable, learning
is non-trivial. In our approach we use sampling-based approximate maximum likeli-
hood learning and follow the best practices suggested in Sec. 3.3 and Sec. 3.5. We
noticed that these learning procedures do not constrain the learned coefficients from
shifting within the filters, which is not an issue in other applications (e.g., image
restoration [163, 90, 89]). However, shifting of the filter coefficients generally leads
to shifted extracted image features (see Fig. 4.17), which may distort image corre-
spondences. To address this, we include an additional constraint in the learning
procedure. In our approach, after each iteration of the filter update, the filter coef-
ficients are shifted so that their gravity center is always the center of the filter, and
thus the extracted features are not shifted.

Non-rigid registration using learned features

Based on the learned filters fj using FoE or cGRBM, we define the data term assum-
ing feature constancy

pD(x
0|w,x1)∝

J∏
j=1

N∏
i=1

exp
{
− 1

αji

(
(x̃0

j)i − (x̃1
jw)i

)2}
, (4.40)

where x̃j ≜ fj ∗x and x̃jw denotes the warped (high-order feature) image by w. We
use a quadratic penalty function according to the analysis in Sec. 4.3.2 above. If we
use a single regularization weight αji=α0 in (4.40), w can be computed by solving
the linear system of equationsα0

[
D 0

0 D

]
+

J∑
j=1

[
ΓjΓj ΓjΛj

ΓjΛj ΛjΛj

] ·w =

J∑
j=1

[
Γj

Λj

]
·
(
x̃0
j − x̃1

j

)
, (4.41)
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Figure 4.17: Application of two filters (middle) to an input image (left). The result
(right) shows that the extracted features are shifted using the filter with shifted
coefficients (middle-bottom).

where the diagonal matrices Γj = diag{x̃1
jx} and Λj = diag{x̃1

jy} are composed of
the partial derivatives in x- and y-directions of x̃1

j . As the sparsity of the coefficient
matrix is the same as for the global model using brightness constancy in (4.24),
solving (4.41) is still very efficient.

Constancy assumptions based on high-order image features are more sensitive
to noise. Although Poisson-Gaussian distributed noise is more complex in feature
space (compared to brightness), due to the linearity of learned filters, the adaptive
weighting scheme for high-order features can be derived analogously as for brightness.
In addition, the combined local-global (CLG) scheme can also be used.

Data

We use multiple data sets of real time-lapse fluorescence microscopy images of live
cells to evaluate our proposed methods (see Tab. 4.5). Data set “S” consists of
four 2D image sequences (S1-S4) and data set “T” contains two 3D volume image
sequences (T1 and T2). All these sequences were acquired by a widefield microscope
and consist of two channels, one for nuclei of live human cells (U2OS cell line)
with different chromatin stainings (H2A-mCherry, YFP-SP100) and the other for
subcellular particles (CFP stained PML bodies). Strong deformations occur since
the cells are going into mitosis (cell nucleus division). 9 spot-like structures from
each 2D sequence and 6 from each 3D sequence in the nucleus channel were manually
annotated and tracked.

The other two data sets “A” and “B” were acquired with a confocal microscope
[144, 164, 165]1. In sequences A1 and A2, the nuclei of U2OS cells stained with
mCherry-BP1-2 were UV-irradiated in a stripe-like region. The nuclei undergo sig-

1The data and annotations are available at https://cbia.fi.muni.cz/CellRegistration
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Table 4.5: Real time-lapse microscopy images for evaluation.
Sequence Length Dimension Pixel/voxel size

(time points) (pixel) (nm)
S1 150 512×512 216×216
S2 200 384×384 216×216
S3 100 512×512 216×216
S4 149 512×512 216×216
T1 100 512×512×15 216×216×500
T2 149 512×512×10 216×216×1500
A1 25 512×512 240.5×240.5
A2 38 512×512 240.5×240.5
B1 42 287×356 470×470
B2 30 512×512 490×490
B3 42 279×318 540×540
B4 35 322×304 540×540

nificant translation and rotation along with deformations. Key points of the UV-
irradiated stripe were manually tracked by three independent annotators, considering
that image noisy is rather significant and structures are blurry. Sequences B1-B4 de-
pict HeLa cells with histone H2B tagged by GFP. In each sequence bleached regions
form four intersecting line structures, which can be automatically detected (see Fig.
4.23). These line structures are stable w.r.t. the nucleus and represent the motion
and deformation of the nucleus, and thus can be used for performance evaluation.

4.3.4 Experiments

We also used synthetic image data for a direct evaluation of the estimated defor-
mation fields. We generated four 2D synthetic sequences (G1-G4). The simulated
time-lapse image sequences of cell nuclei should be as realistic as possible and the
used deformations should be coherent and consistent with the cell shape. To achieve
this, we used deformation fields estimated by an independent registration approach
(pairwise local method [148]) from real data (sequences S1-S4) as ground truth for
the deformations. The synthetic image sequences were generated using the first
frame of the real data and progressively deforming this frame by the ground truth
deformation. The sequences comprise between 100 and 200 time points. Note that
the ground truth deformation fields represent large deformations. To verify this we
computed the mean and standard deviation (STD) of the magnitude of the defor-
mation vectors between the first and the last frame for each synthetic sequence (see
Tab. 4.11, second and third rows). It can be seen that the mean and STD are up to
44.3 pixels and 23.8 pixels, respectively, and the values differ largely for the different
sequences, which corresponds to different levels of complexity of the deformations.
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(a) FoE (b) cGRBM

Figure 4.18: Learned 2D filters (5×5 pixels) from two generative image models.

Implementation details

For our global non-rigid registration method we employ a standard coarse-to-fine
strategy for optimization to deal with large deformations. Gaussian pyramids with
5 scales and a downsampling factor of 0.5 are used. At each image scale, the defor-
mation field is initialized using the result from the coarser scale, and then iteratively
updated 5 times using the increment calculated between an image and the warped
subsequent image (by the current estimated deformation field).

To train the two generative image models FoE and cGRBM and determine the
features, we use 2000 image patches of size 50×50 pixels, which are randomly selected
(excluding patches that do not contain any cell nuclei) from the nucleus channel in
data set “S”. Since the images in data sets “A” and “B” contain more significant noise
and rather blurry structures, which degrades the learning result, we exclude them
from the training images. We have trained eight 2D filters of size 5×5 pixels for each
model (see Fig. 4.18). It can be seen that, while the learned cGRBM filters appear
better spatially structured, the FoE filters are more complex and more difficult to
interpret. 3D filters were not used in our experiments due to limited data of data
set “T” for learning 3D image models.

For the adaptive weighting and CLG schemes we use empirically determined fixed
parameters b=10 and σ=1 in (4.31), and ρ=1 in (4.33) in all experiments for both
real and synthetic images.

Performance evaluation using real image data

Geometric registration error. Since ground truth of the deformation fields for
the real microscopy image sequences is not available, it is not possible to directly
evaluate the estimated deformation fields for registration. Evaluation of the intensity
similarity between registered images is also inappropriate due to significant noise,
intensity changes over time as well as appearing or vanishing structures. Instead, we
evaluate the proposed methods by the geometric registration error as the Euclidean
distance of an image structure in the registered image to its corresponding location
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Figure 4.19: Average registration error (in pixel) as a function of the regularization
weight α0 for global models based on brightness constancy and different regularizers
for data set “S” (S1-S4).

in the reference image2

emt = ∥pm0 − pmt(w
0,t)∥2, (4.42)

where pm0 denotes the coordinates of the mth image structure in the reference
image and pmt(w

0,t) represents those in the image at time point t transformed by
the estimated deformation w0,t. We use manually or automatically annotated image
structures in each sequence and compute the mean and standard deviation of the
registration errors for these structures.

Comparison of different regularizers. We first compare basic global models
(assuming brightness constancy, see Sec. 4.3.2) with three different regularizers,
namely quadratic, Charbonnier (with ϵ= 0.01) and Lorentzian (with σ = 0.1). As
the regularization parameter α0 is the only free model parameter (see (4.23)) and
its optimal value depends on the type of deformation field, we applied the models to
all sequences in data set “S” with different values of α0. As can be seen in Fig. 4.19,
the quadratic regularizer not only yields the lowest registration error, but is also
more robust than the others due to its flatter error curve. This is consistent with
our analysis in Sec. 4.3.2 and confirms that strong discontinuities in the deformation
fields are unlikely.

Comparison of multiple model variants. We also compared the performance
of multiple variants of our global method (using a quadratic regularizer) for data
set “S”: Models based on brightness constancy (“Br”) without and with adaptive

2An exception is that, for line features in the sequences B1-B4, the Fréchet distance is computed
as the registration error as in [144].
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Figure 4.20: Average registration error as a function of the regularization weight α0

for different model variants of our global method for data set “S” (S1-S4).

weighting (“+AW”) or combined local-global (“+CLG”), model based on first-order
derivative (gradient) constancy (“Deriv”), and models based on high-order feature
constancy (“FoE” using learned FoE features, and “cGRBM” using learned cGRBM
features) without and with adaptive weighting and/or CLG.

Fig. 4.20 shows the average registration errors of these models w.r.t. the regu-
larization parameter α0. It can be seen that the model based on gradient constancy
(“Deriv”) performs worse than that based on brightness constancy (“Br”), which sug-
gests that first-order derivative features are insufficient to capture structures in noisy
microscopy images. Using the learned FoE or cGRBM features significantly improves
the result and also increases the robustness w.r.t. α0, which can be attributed to the
more accurate modeling of the data term using learned image features. For FoE we
also tested the impact of the scheme for shifting the filter coefficients in our approach
(cf . Sec. 4.3.3 above). Without using the scheme, we obtained for S1-S4 an average
registration error of 1.13 pixels with an average STD of 0.65 pixels, while using the
scheme yielded a lower average error of 1.11 pixels and a lower average STD of 0.58
pixels. For this data set, the CLG scheme further improves the performance, while
the AW scheme does not yield an improvement. This is not surprising since the
noise and outliers in the images have a more complex pattern, but adaptive weight-
ing assumes Poisson-Gaussian noise. The combined FoE+AW+CLG scheme yields a
slightly lower average error compared to CLG. In Tab. 4.6 the registration errors and
standard deviations of different variants of our global model with optimal α0 (w.r.t.
the whole data set) for all sequences of “S” are provided. The models using learned
FoE features are slightly better than (or similar to) those using cGRBM features.
An example of registration results for the sequence S4 can be seen in Fig. 4.21. For
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(a) Unregistered (b) Global model “Br”

(c) Global model “Deriv” (d) Global model “FoE+CLG”

Figure 4.21: Overlay and scatterplot of registered 20th frame (green) with 1st frame
(red) of sequence S4, using different model variants of our global method.
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Table 4.6: Registration errors and standard deviations (in pixel) for annotated spot-
like structures in 2D image sequences S1-S4. Results for proposed global models and
previous methods.
Sequence S1 S2 S3 S4 Avg. Avg. STD
Unregistered 6.56 13.97 26.65 27.84 18.76 9.53
Local, multi-frame weighting [147] 2.99 2.45 3.56 5.31 3.58 2.11
Local, diffeomorphic multi-frame [148] 2.10 1.38 2.19 2.93 2.15 1.64
Contour-based method [144] - - 6.73 - - -
Our global model “Br” 1.31 0.95 1.74 1.76 1.44 0.89
Our global model “Br+AW” 1.36 1.03 1.86 1.87 1.53 0.97
Our global model “Br+CLG” 1.28 0.95 1.76 1.58 1.39 0.87
Our global model “cGRBM” 1.10 0.78 1.73 1.02 1.16 0.68
Our global model “cGRBM+AW” 1.12 0.81 1.73 0.99 1.16 0.69
Our global model “cGRBM+CLG” 1.05 0.79 1.83 0.89 1.14 0.67
Our global model “FoE” 1.04 0.78 1.73 0.89 1.11 0.58
Our global model “FoE+AW” 1.06 0.80 1.79 0.87 1.13 0.59
Our global model “FoE+CLG” 0.94 0.78 1.78 0.73 1.06 0.66
Our global model “FoE+AW+CLG” 0.92 0.78 1.76 0.74 1.05 0.66

our global model “FoE+CLG” more yellow regions in the overlay of registered images
are observable, which indicates a higher registration accuracy.

Comparison with existing registration methods. We also performed a com-
parison with two local methods (local multi-frame weighting [147], local diffeomor-
phic multi-frame [148]) and a recent contour-based method [144]. For a fair compar-
ison between our global models and previous methods, for data sets “S” and “T”, the
model parameter α0 is optimized for the whole data set (as done for the local models
in [147, 148]), and for data sets “A” and “B”, α0 is optimized for every sequence (as
for the contour-based method in [144]). Below, we present results using the optimal
value of α0 obtained by grid search.

For all sequences of data set “S”, it can be seen in Tab. 4.6 that all our global
models outperform previous local methods [147, 148] and the contour-based ap-
proach [144]. The best result is obtained by the model “FoE+AW+CLG” based on
learned FoE features with a combined AW and CLG scheme for handling noise and
outliers. The average registration error is decreased by more than 50% compared
to [148].

Tab. 4.7 shows the results for the 3D image sequences of data set “T”. As trained
3D image features are not available, only the results for our global model using
brightness (“Br” and “Br+CLG”) are provided. Compared to the local models in [147]
and [148], our global model achieves a significant decrease of the registration error
(75% and 60%, respectively). Fig. 4.22 shows the annotated spot-like structures
for sequence T1 after registration by our global model “Br+CLG” compared to the
unregistered case, which illustrates the registration accuracy (much smaller variation
of the spot locations).



102

Table 4.7: Registration errors and standard deviations (in pixel) for annotated struc-
tures in two 3D image sequences. Results for proposed global models and previous
methods.

Sequence T1 T2 Avg. Avg. STD
Unregistered 24.94 21.24 23.09 11.69
Multi-frame weighting [147] 6.98 4.63 5.81 3.75
Diffeomorphic multi-frame [148] 4.90 2.41 3.66 2.66
Our global model “Br” 1.83 1.43 1.63 0.96
Our global model “Br+CLG” 1.67 1.27 1.47 0.83

Figure 4.22: Annotated spot-like structures (green dots) in 3D sequence T1. Unreg-
istered (left) and registered (right) by our global model “Br+CLG”.

Sequences in data set “A” are more difficult to register due to significant noise,
blurry image structures as well as large intensity variation (see Fig. 4.25). The
registration results are presented in Tab. 4.8. It can be seen that our global model
generally yields better results than the previous contour-based approach [144]. The
best result is obtained for the global model with learned FoE features, for which the
average registration error is about 15% lower than that of [144]. It also turns out
that the adaptive weighting scheme is superior to the CLG scheme for this data set.
The reason is that adaptive weighting more appropriately models the image noise
(significant noise but less outliers due to appearing or vanishing structures). Using
FoE+AW+CLG improves the result for one image sequence, but the average error
for both sequences is slightly worse compared to AW.

Next we consider data set “B”. For performance evaluation we follow [144] and
calculate the Fréchet distance between corresponding line features, and the Euclidean
distances between corresponding intersection points and end points of the line struc-
tures. The quantitative results in Tab. 4.9 show that our global model yields better
results than the previous contour-based approach [144]. Using learned features for
FoE or cGRBM improves the result compared to the global model with brightness,
while the cGRBM features perform slightly better than FoE features. Fig.4.23 shows
an example. Using adaptive weighting or CLG the result is not further improved.
This is probably due to the bleached regions which significantly alter the image
structure.
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Table 4.8: Registration errors (in pixel) for annotated structures in sequences of data
set “A”.

Sequence A1 A2
Annotator H1 H2 H3 Avg. H1 H2 H3 Avg.
Unregistered 30.17 30.75 31.29 30.74 49.42 50.20 49.05 49.55
Cont.-based [144] 5.71 7.18 5.78 6.22 7.95 9.10 8.78 8.61
“Br+CLG” 6.87 7.60 5.63 6.70 8.47 8.90 9.60 8.99
“Br+AW” 6.69 7.42 5.38 6.50 7.19 7.85 7.80 7.61
“cGRBM+CLG” 7.27 7.19 5.37 6.61 7.77 8.18 7.88 7.94
“cGRBM+AW” 6.23 6.86 5.14 6.08 7.26 7.74 7.68 7.56
“FoE+CLG” 6.01 6.53 4.69 5.74 7.47 7.67 8.65 7.93
“FoE+AW” 5.98 6.81 3.93 5.57 6.45 6.78 7.86 7.03
“FoE+AW+CLG” 5.69 6.47 4.26 5.47 6.71 6.95 7.87 7.18

Computation time. We have implemented our approach using Matlab without
optimization and performed the experiments on a Linux workstation with an Intel
Xeon E5 (2.90GHz) CPU. As the inference of our model involves solving a series of lin-
ear systems of equations with sparse coefficient matrix, computation is very efficient.
Registration of sequence A2 (all 38 images) takes 1min 37sec by our global method
“FoE+AW”, while the contour-based approach [144] requires 3min 46sec. Registra-
tion of the first 100 images of sequence S2 takes 1min 14sec to 2min 20sec depending
on the model variant of our method (see Tab. 4.10 for details). By contrast, the local
method [148] needs 1h 37min to 2h 41min depending on the method variant. For the
3D data, while [148] requires more than 27h, our method only needs 8min.

Performance evaluation using synthetic data

Since for the synthetic data the ground truth deformations are known, we evaluate
the proposed methods by the endpoint error (EE) defined as the Euclidean distance
between an estimated deformation vector and the corresponding ground truth vector.

Tab. 4.11 shows the mean EEs (over all pixels within the region of the cell nuclei
and over all time points) of the estimated deformation fields for the four synthetic
image sequences (G1-G4). Our global models yield a much better result than the
multi-frame local model in [148]. Note that the sequences comprise different levels of
complexity of the deformations (see Tab. 4.11, second and third rows for the mean
and STD of the magnitude of the deformation vectors). Compared to [148], our
model using FoE features decreases the mean EE by more than 50%. As the original
synthetic images were generated without adding noise, we did not apply the model
variants with AW or CLG.

To evaluate the robustness of our global models w.r.t. different spatial and tem-
poral resolutions, we downsample the synthetic sequences spatially and temporally
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Figure 4.23: Distributions of line structures in sequence B4. Unregistered (left) and
registered (right) by our global model “cGRBM”.

Table 4.9: Registration errors (in pixel) for annotated structures in sequences of data
set “B”.

Sequence B1 B2 B3 B4 Avg.
Line features

Unregistered 22.91 11.54 12.43 11.92 14.70
Contour-based [144] 9.72 7.82 5.32 6.93 7.45
Our “Br” 10.05 8.20 4.75 6.46 7.36
Our “FoE” 8.82 7.87 5.79 6.51 7.25
Our “cGRBM” 8.97 7.82 4.94 6.37 7.02

Intersection points
Unregistered 11.30 5.71 8.00 6.79 7.95
Contour-based [144] 7.92 5.22 2.76 3.04 4.73
Our “Br” 7.56 5.40 2.34 2.90 4.55
Our “FoE” 6.51 4.80 2.58 3.06 4.24
Our “cGRBM” 6.71 4.99 2.35 2.85 4.22

End points
Unregistered 18.15 6.40 9.30 8.13 10.50
Contour-based [144] 3.69 2.02 2.17 2.43 2.58
Our “Br” 5.84 1.69 1.81 1.93 2.82
Our “FoE” 3.58 1.56 1.92 2.08 2.28
Our “cGRBM” 3.36 1.42 1.82 1.86 2.12

Table 4.10: Computation time (in seconds) of different model variants and extra
computation time compared to “Br” for registering the first 100 images of sequence
S2.

Br Br+AW Br+CLG FoE FoE+AW FoE+CLG FoE+AW+CLG
74 78 (+5%) 77 (+4%) 121 (+64%) 126 (+70%) 140 (+89%) 140 (+89%)
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Table 4.11: Mean endpoint errors (in pixel) of the estimated deformations for four
synthetic image sequences (without noise), and mean as well as STD of the magnitude
of the ground truth deformation vectors.

Sequence G1 G2 G3 G4 Avg.
Mean of vector magnitude 11.9 18.8 44.3 32.7 -
STD of vector magnitude 5.68 8.42 23.8 17.5 -
Multi-frame local method [148] 0.75 1.07 1.89 2.06 1.44
Our global model “Br” 0.47 0.49 0.95 1.25 0.79
Our global model “cGRBM” 0.44 0.48 0.77 1.20 0.72
Our global model “FoE” 0.42 0.47 0.80 1.11 0.70

Table 4.12: Mean endpoint errors (in pixel) of the estimated deformations for four
downsampled synthetic sequences.

Sequence downsampling Original 1/2 spatial 1/2 temporal
Our model “Br” 0.79 0.96 0.69
Our model “cGRBM” 0.72 0.94 0.68
Our model “FoE” 0.70 0.91 0.65

by a factor of 1/2. From Tab. 4.12 it can be seen that for 1/2 spatial downsampling,
the mean EE is only slightly increased, while for 1/2 temporal downsampling, the
mean EE is even decreased, since fewer image frames are used. In addition, the
results for the different variants of the global model are consistent with those for the
original synthetic data (see Tab. 4.11).

We also investigate the robustness of the proposed adaptive weighting (AW)
scheme against image noise. We add mixed Poisson-Gaussian (PG) noise, which is
typical for fluorescence microscopy images, to the synthetic image sequences with
different noise levels according to x′ = s · t + nN and t ∼ Poi(x/s), where x and x′

denote intensity values of noise-free and noisy images, s is a gain factor controlling the
Poisson noise strength, and nN is additive Gaussian noise with variance σ2N (example
images are shown in Fig. 4.24). The registration results are provided in Tab. 4.13.
It can be seen that the proposed adaptive weighting scheme consistently improves
the registration accuracy (although we used empirically determined parameter values
without knowing the exact noise levels), while the CLG scheme even slightly degrades
the performance for strong noise. This observation is consistent with the results
for the data set “A” of real images which include significant noise. The combined
AW+CLG scheme improves the result compared to CLG and AW except for a high
level of mixed PG noise, where AW is best.
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Table 4.13: Mean endpoint errors (in pixel) of the estimated deformations for four
synthetic sequences with different levels of noise.

Noise level Gaussian Poisson Mixed PG Mixed PG
σN=3 s=0.3,σN=0 s=0.8,σN=3 s=1.2,σN=5

“Br” 1.58 2.02 3.16 3.87
“Br+CLG” 1.50 1.97 3.18 3.95
“Br+AW” 1.43 1.82 2.98 3.71
“Br+AW+CLG” 1.38 1.77 2.96 3.80

Figure 4.24: Images from the synthetic sequence G3, with mixed Poisson-Gaussian
noise (s=1.2, σN=5) for t=0 (left) and t=50 (right).

Discussion

From experiments it turned out that our global models for non-rigid registration
of cell microscopy images generally outperform existing methods. Best results are
achieved by our global models using learned image features (FoE or cGRBM). In
general, when the image structures are not artificially altered (e.g., by bleaching
as for data set “B”), the registration error using FoE features is lower compared to
cGRBM features. The learned FoE image model can better capture the statistics
of training images, though FoE filters are less spatially structured and difficult to
interpret (see Fig. 4.18). The adaptive weighting (AW) and CLG schemes generally
further improve the registration accuracy. For images with significant noise (e.g.,
data set “A” and synthetic data with Poisson-Gaussian noise), AW is more suitable
as the statistics of the noise is considered; for images containing many outliers (e.g.,
data set “S”, where irregular spot-like structures may vanish or arise), CLG yields
better results as neighborhood information is utilized.

In practice, it is generally difficult to decide whether AW or CLG is better suited
for certain data. If the noise statistics are known (e.g., significant noise or not), one
could decide based on this information. Otherwise, a small amount of annotated data
could be used to decide which of the two schemes should be applied. Alternatively,
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the combined AW+CLG scheme can be used. We found that the combined scheme
improves the result for certain image sequences, and the average error for the data
sets is similar to CLG or AW, while the computation time is nearly the same as
for CLG (see Tab. 4.10). An advantage of the combined scheme is that it is not
necessary to decide between AW and CLG.

In our experiments we used different types of ground truth depending on the
data set. For data set “S” manual annotation was used, which is relatively accurate
since localizing spot-like structures and finding correspondences are relatively easy.
Data set “A” contains significant noise and blurry structures, thus the annotation
was performed by three independent annotators to increase the reliability. For data
set “B”, intersecting line structures of bleached regions were automatically detected
and used for the evaluation, since these line structures are found to be stable w.r.t.
the nucleus. However, the artificial line structures due to bleaching change the
properties and statistics of cell microscopy images. As the bleached regions are
dark and lack spatial structures, local deformations are hardly captured within these
regions. Therefore, the results for data set “B” should be considered with caution.

In our global model we have employed an MRF as the regularizer of the defor-
mation fields, which is not only effective, but also allows arbitrary deformations.
Although the regularizer can be straightforwardly extended by additional terms, one
should be careful using other constraints or physical prior (e.g., elasticity), because
they might be too strict in the case of vanishing or appearing structures in real data.

FoE and cGRBM used for learning features in our global model have a sound
probabilistic interpretation and the learned filters can capture important features
of the considered images. Their convolutional model structure is not only consis-
tent with the (hidden) independence assumption in the registration model, but also
requires moderate amount of training data, which is important for many biological
problems with limited data. In our experiments, we found that the models using FoE
features yield slightly better registration results than those using cGRBM features,
however, training of FoE is slower compared to cGRBM.

4.3.5 Integrating elasticity into the prior

In previous work on non-rigid registration of cell nuclei, often intensity-based meth-
ods (e.g., [140, 145, 148] and our approaches described above in Sec. 4.3) were used
since changes of image intensity are direct evidence for estimating motion and de-
formation. As it was found that cell nuclei show elasticity properties and the in-
tranuclear region is stiffer and more elastic than the cytoplasm [156], contour-based
methods that exploit elasticity properties were proposed. In [143], the deformation
of the nuclear contour is determined from the image data, and deformation vectors
inside the nucleus are interpolated using polyharmonic splines. Linear elasticity was
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explicitly modeled in [144] and combined with contour matching. Final deforma-
tion fields are interpolated using thin-plate splines or partial differential equations.
However, in [143, 144] deformation estimation only depends on the nucleus contours,
while image intensity information is not directly exploited. Thus, local deformations
inside the cell nucleus cannot be captured.

Below, we further extend the above introduced global optical flow-based ap-
proaches for non-rigid registration of cell nuclei (Sec. 4.3) by integrating elasticity
constraints. We analyze the Navier equation from linear elasticity theory and derive
an elasticity prior term. Compared to previous contour-based methods for non-rigid
registration that use an elasticity model [144], our method exploits intensity changes
inside cell nuclei that act as body forces and provide additional information. Ex-
periments using real cell images demonstrate increased registration accuracy of the
proposed method. The work was published in [61, 62].

From elasticity theory to an elasticity prior

In linear elasticity theory, the deformation field (displacement vector field) w for
isotropic and homogeneous material can be determined by solving the Navier equa-
tion given the body forces f [166]:

µ∇2w + (λ+ µ)∇(∇ ·w) + f = 0, (4.43)

where µ and λ are the Lamé constants, and ∇ is the nabla operator.

To derive an elasticity prior that is consistent with (4.43), we consider an energy
function of a 2D deformation field w∈R2N (N is the number of pixels in an image)
and the given forces f ∈R2N

E(w; f) = −fTw +
1

2
µs+

1

2
(λ+µ)t, (4.44)

with s = ∥Dxu∥2+∥Dyu∥2+∥Dxv∥2+∥Dyv∥2, (4.45)

t = ∥Dxu+Dyv∥2. (4.46)

Here u ∈RN and v ∈RN are x- and y-components of w, respectively, Dx and Dy

are matrices for computing the first order partial derivatives of u and v in x- and
y-direction, and ∥·∥ is the ℓ2 norm. The necessary condition for the minimization of
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(4.44) is

0 = ∇wE(w; f)

= −f + µ

[
DT
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y Dy 0

0 DT
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y Dy

][
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v

]
+ (λ+µ)
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y Dx DT
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][
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]

= −f − µ

[
uxx + uyy

vxx + vyy

]
− (λ+ µ)

[
uxx + vyx

uxy + vyy

]
,

(4.47)

where double subscripts of u and v denote second order partial derivatives. Since
(4.47) is equivalent to (4.43), linear elasticity is included in the energy function in
(4.44) to model the displacements given body forces. We can accordingly establish
a probabilistic posterior model of displacements under linear elasticity in a Bayesian
framework with a likelihood term

p(f |w) ∝ exp{fTw} (4.48)

and an elasticity prior

p(w;µ, λ) ∝ exp{−1
2µs} · exp{−

1
2(λ+ µ)t}. (4.49)

In (4.49), the first term is a common Gaussian Markov random field where the
partial derivatives of u and v are assumed to be independent (e.g., as in [60]), while
the second term is a multivariate Gaussian coupling the partial derivatives of u in
x-direction with the partial derivatives of v in y-direction.

Deformation estimation using the elasticity prior

We employ the derived elasticity prior in (4.49) to extend the global model under a
Bayesian framework for estimating the deformation of nuclei. Given two consecutive
frames x0 and x1, the likelihood term is modeled based on image intensities under a
brightness constancy assumption

p(x0|w,x1) ∝
∏
i

exp
{
− 1

αi
(x0

i − x1
wi)

2
}
, (4.50)

where i is the index of image pixel locations, αi the regularization weight, and x1
w

the warped image of x1 towards x0 by the deformation field w. To handle the
problem that the relative motion of sub-cellular structures deteriorates the estimation
of nucleus deformation, we detect sub-cellular structures in the image data and ignore
the corresponding pixels by setting αi=∞. For the other pixels, we use an adaptive
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scheme (as in Sec. 4.3.2) to determine the weights αi and improve the robustness to
noise and outliers.

For the regularization term, we employ the derived elasticity prior

p(w) ∝ exp{−βs} · exp{−γt}, (4.51)

where β = 1
2µ and γ = 1

2(λ+µ) are model parameters, and s and t are defined in
(4.45) and (4.46). Compared to the regularization term in (4.22), we have an extra
term that penalizes the divergence of the deformation field.

The deformation field w between x0 and x1 is computed using the maximum
a-posteriori (MAP) estimate of the posterior p(w|x0,x1)∝p(x0|w,x1)·p(w). A first
order Taylor expansion is used to linearize the likelihood term in (4.50) assuming
small deformation. The MAP estimate can be obtained by solving the linear system
of equations[ΛΓx1

x

ΛΓx1
y

][
Γx1

x

Γx1
y

]T

+β

[
F 0

0 F

]
+γ

[
DT
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DT
y Dx DT

y Dy

]w =

[
ΛΓx1

x

ΛΓx1
y

]
(x0−x1), (4.52)

where Γx1
x
= diag(x1

x) and Γx1
y
= diag(x1

y) are diagonal matrices containing the
first order partial derivatives of x1 in x- and y-direction, Λ = diag([· · · , 1/αi, · · · ])
represents the weights αi, and F=DT

xDx+DT
y Dy. Solving (4.52) is very efficient

since the coefficient matrix on the left side is sparse and positive definite. To deal
with large deformations, we use a standard coarse-to-fine strategy.

Extension for 3D images

We have noticed that a direct extension of the registration method with elasticity
constraints for 3D images by following the strategy described in Sec. 4.3.2 yields un-
satisfactory registration results under complex conditions, for example, strongly dif-
ferent resolution in x- and y-direction compared to the z-direction, much fewer slices
compared to image height and width (resulting in difficulties of using a coarse-to-fine
strategy), large deformation along the z-axis, and reduced intensity information due
to excluding some image structures. To address these issues, we suggest three exten-
sions. First, we use different weights in the regularization term of the deformation
model for the partial derivatives in z-direction than in x- and y-direction according
to the difference in resolution. Second, we employ a special 3D image pyramid for the
coarse-to-fine strategy to handle large deformations. We use multiple scales for the
x- and y-direction, but only one scale for the z-direction; and use a varying weight
for each pyramid scale. Third, we perform an affine pre-registration.



111

Table 4.14: Registration errors (in pixel) for annotated feature points in image se-
quences of dataset A.

Sequence A1 A2
Annotator H1 H2 H3 Avg. H1 H2 H3 Avg.
Unregistered 30.17 30.75 31.29 30.74 49.42 50.20 49.05 49.55
Contour-based [144] (static) 5.96 7.20 6.01 6.39 8.23 9.45 8.97 8.89
Contour-based [144] (dynamic) 5.71 7.18 5.78 6.22 7.95 9.10 8.78 8.61
Ours (Br+AW) 6.69 7.42 5.38 6.50 7.19 7.85 7.80 7.61
Ours (FoE+AW) 5.98 6.81 3.93 5.57 6.45 6.78 7.86 7.03
Ours (Br+AW+Elasticity) 5.36 5.29 3.75 4.80 5.63 6.62 6.67 6.31

Experiments

For a quantitative evaluation of the proposed method we use two datasets of live cell
microscopy image sequences: The first is dataset A (see Sec. 4.3.3 for details) and
the second (dataset D) is an image sequence including 10 frames of 350×350 pixels
generated by a confocal microscope with a resolution of 104nm×104nm, showing
replication foci (expressed by fluorescently tagged PCNA) in nuclei of HeLa cells
during S-Phase [167].

The model parameters β and γ in (4.51) were optimized by first choosing a
suitable value for β, and then setting γ empirically to 5∼ 10 times larger than β.
For dataset D, to exclude replication foci from deformation estimation, we used a
Laplacian-of-Gaussian (LoG) spot detector with σ=2 to locate foci. For all pixels
with a distance of no more than 5 pixels to detected foci, αi in (4.50) was set to ∞.
For the coarse-to-fine strategy, 5 and 4 image scales were used for datasets A and D,
respectively. The registration of an entire image sequence is accomplished based on
an incremental scheme (see Sec. 4.3.2).

We compared the registration results of the proposed method with those of the
contour-based method [144] which also includes an elasticity model (static or dy-
namic) and the above introduced global optical flow methods with the brightness
feature (Sec. 4.3.2) and learned high-order FoE features (Sec. 4.3.3). The results are
provided in Tab. 4.14. It can be seen that the registration error of the proposed
method with elasticity constraints is much lower than that of the previous methods.
We attribute this to the fact that the proposed method exploits intensity information
inside cell nuclei to capture local deformation. Note that the proposed method with
elasticity constraints uses only brightness information but outperforms the model
using learned high-order FoE features (Sec. 4.3.3). This demonstrates that it is im-
portant to use an elasticity model for registration. Fig. 4.25 shows the registration
result of the proposed method for sequence A2 illustrated by the distribution of fea-
ture points in all 38 frames of the sequence from one annotator. It can be seen that
the variation of the feature points in the registered images is much smaller.
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(a) (b) (c)

Figure 4.25: Example registration result. Distribution of feature points in all 38
frames of sequence A2 from one annotator, overlaid with the 1st frame. (a) Unreg-
istered; (b) registered by our global model “FoE+AW”; (c) registered by our method
with elasticity constraints.

For dataset D, it is very difficult to define corresponding feature points for eval-
uation due to appearing and disappearing foci structures. However, there exist hole
structures inside cell nuclei (nucleoli), which can be straightforwardly annotated
(Fig. 4.26(b)). Exploiting the warped annotations of nucleoli in the registered im-
ages (Fig. 4.26(c,d)), the registration accuracy can be quantified. For a comparison,
we computed the area of the nucleoli. The results are shown in Fig. 4.27. It can be
seen that the proposed method with elasticity constraints much better preserves the
size of the nucleoli in the registered images compared to our previous method using
only the brightness feature.

The computation time of the proposed method with elasticity constraints is only
a little bit higher than that of our base global model (e.g., 1min 32sec vs. 1min 20sec
for registration of sequence A2 on a Linux PC with an Intel Core i9 3.60GHz CPU).
The reason is that the coefficient matrix of the linear system of equations in (4.52) is
slightly less sparse. As the deformation fields between all pairs of consecutive frames
are estimated independently, parallelization is straightforward and can be used to
further reduce the computation time.

4.4 Summary

In this chapter, we introduced new methods for three real-world image analysis
problems. Each method exploits the learned high-order MRFs, either as image priors
or for image feature extraction.

For natural image denoising, we proposed an efficient sampling-based method
for Bayesian minimum mean squared error (MMSE) estimation (Sec. 4.1). The
auxiliary-variable block Gibbs sampler was extended to allow the MMSE estimate to
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(a) 1st frame (reference) (b) 10th frame, unregistered

(c) 10th frame registered by our
global method “Br”

(d) 10th frame registered by our
method “Br+Elasticity”

Figure 4.26: Registration results of the 1st and 10th frame of dataset D. Green
contours indicate nucleoli inside the nucleus in the unregistered and registered frames.
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be efficiently approximated by averaging the samples from the posterior distribution.
We demonstrated that our approach with a purely generative setting (without any
ad-hoc modifications) substantially outperforms MAP estimation and can compete
with popular denoising methods.

The microscopy image deconvolution problem is a typical example that involves a
complex likelihood model (Sec. 4.2). The mixed Poisson-Gaussian statistics of noise
in microscopy images were approximated by mixtures of Gaussians to model the like-
lihood, while the learned high-order MRFs acted as the prior. To efficiently sample
the posterior to approximate the MMSE estimate, the auxiliary-variable Gibbs sam-
pler was further extended. Super-resolution, deconvolution, and denoising of images
can be jointly performed in our proposed method, which can be straightforwardly
adapted to other image restoration problems with arbitrary linear degradation model
as well as other types of noise. We also found that, for a posterior model with the
learned generative MRF as the prior, an accurate modeling of the likelihood is crucial
for the model performance.

In Sec. 4.3 we introduced a global optical flow-based method to estimate the
complex deformation of live cell nuclei and accomplish non-rigid registration by an
incremental scheme. Based on the study of noise statistics in fluorescence microscopy
images, an adaptive weighting scheme was developed to increase model robustness.
We further extended the global model by exploiting high-order image features of cell
nuclei beyond brightness, which were extracted using filter banks obtained by training
high-order MRFs, in particular, the FoEs and the convolutional Gaussian RBMs.
Using multiple data sets of real 2D and 3D live cell microscopy image sequences as
well as synthetic image data, we showed that our proposed approach outperforms
previous methods in terms of both registration accuracy and computational efficiency.
In addition, elasticity properties were integrated into the MRF prior to achieve more
robust registration performance.



Chapter 5

Summary and Outlook

5.1 Summary

Markov random fields (MRF) based on linear filter responses, also termed filter-
based MRFs in this dissertation, are one of the most popular forms for modeling
image priors. Note that regularization in variational methods can generally also be
interpreted as applying a filter-based MRF prior. The rigorous probabilistic interpre-
tation of MRFs has several distinct advantages. For example, the modeling choices
can be made based on statistical properties of the data, and the most suitable model
parameters can be determined using learning algorithms. Compared to local models
(e.g., patch-based image priors), MRFs are global models of entire images (regardless
of image size) and can quite easily be applied to a wide range of problems without
any adaptation. Bayesian probabilistic models with MRFs allow advanced statistical
inference methods to be exploited to find the solution. Meanwhile, information from
different sources can be combined in a principled way and the uncertainty of the
solution is maintained.

In this dissertation, we have explored how well filter-based MRFs can model
images and developed new image analysis methods based on the learned high-order
MRF priors.

Application-independent evaluation, effective learning, and understand-
ing of MRF image priors

To directly and quantitatively evaluate MRF priors in an application-independent
way, we developed an efficient auxiliary-variable Gibbs sampler for a general filter-
based MRF with potentials represented by flexible Gaussian scale mixtures (GSM).
Multiple generative properties of MRF priors can thus be analyzed using model
samples. We found that popular pairwise and high-order MRFs, despite success in
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various applications, were not able to capture the statistics of the inbuilt features.
This appeared in contradiction to the maximum entropy interpretation of filter-
based MRFs, implying that the potentials of these models were not properly chosen
or learned. In fact, it is the incoincidence between learning objective and model
evaluation that often leads to the unawareness of failures in learning or model choices.

We used our developed auxiliary-variable Gibbs sampler to learn pairwise MRFs
and high-order Fields of Experts (FoE) with flexible GSM potentials for generic
image priors. A maximum likelihood learning procedure based on sampling and
contrastive divergence only worked well for pairwise MRFs. We further proposed
strategies to solve the learning issues for the high-order models. We found that all
learned pairwise MRF and high-order FoEs capture the statistics of model features
correctly, thus being real maximum entropy models. Moreover, the learned FoEs also
quite accurately represent multi-scale derivative statistics, random filter statistics as
well as joint feature statistics of natural images. This demonstrates that FoEs are
indeed capable of capturing a large number of key statistical properties of natural
images.

Despite being flexible, the GSM-based potentials are uni-modal, which prevents
the MRFs from well modeling some special types of images, e.g., visual textures.
We proposed using a mixture of multiple GSMs to enable multi-modal potentials,
thus improving model expressiveness of MRFs. Such extension helped us to find
more insights of MRFs through revisiting the seminal FRAME model. To further
understand the importance of “covariance” units that impose regularization in typ-
ical MRFs for visual textures, we proposed to learn “mean”-only fully convolutional
Gaussian restricted Boltzmann machines (RBM) for modeling Brodatz textures. Our
learned models exhibit several favorable properties as well as structured and more
interpretable features; yet they outperform more complex and deep models in texture
synthesis and in-painting. The results demonstrated that the “mean” units in MRFs
actually take the most important role in modeling textures.

Image analysis methods based on learned MRF priors

For natural image denoising, we defined a typical posterior model in a Bayesian
framework, where the learned high-order FoEs for generic images were used as the
prior in a purely generative setting. We first showed that popular MAP estimation
does not yield satisfactory results. To take full advantage of generative MRFs, we
then adapted the auxiliary-variable Gibbs sampler to sample the posterior distri-
bution and infer the MMSE estimate. Experiments showed that our approach can
compete with popular denoising methods. Moreover, the MMSE estimate not only
substantially outperforms MAP, but also avoids several of its problems (e.g., ad-hoc
modifications and inherent bias toward δ-like marginals). We also demonstrated
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that a rigorous probabilistic interpretation and good generative properties can go
hand-in-hand with very good application performance.

Regarding microscopy image deconvolution, we first studied the statistics of
mixed Poisson-Gaussian noise in microscopy images and approximated the distribu-
tions using mixtures of Gaussians (MoG). A Bayes deconvolution model composed
of a learned high-order MRF prior and an MoG-based likelihood allowed a further
extension of the developed efficient block Gibbs sampler. The degraded microscopy
images are then restored by approximating the MMSE estimate using samples from
the complex posterior. Under the framework of our model, super-resolution, deconvo-
lution, and denoising can be jointly performed. Experiments demonstrated that the
deconvolution performance of our method can compete with state-of-the-art meth-
ods. Our method was also applied to real microscopy images of telomeres acquired
via stimulated emission depletion (STED) nanoscopy for distinguishing different ex-
perimental conditions.

Registration of live cell nuclei in time-lapse microscopy images is difficult not only
due to complex nucleus deformation but also due to significant noise in the images.
We introduced a global optical flow-based method to estimate the deformation of
cell nuclei and accomplish non-rigid registration by an incremental scheme. Our
experiences from leaning MRF image priors helped to rapidly determine the most
suitable regularizer of the deformation fields in the model. Based on a study of
noise statistics in fluorescence microscopy images, an adaptive weighting scheme was
developed to increase model robustness. We further extended the global model by
exploiting high-order image features beyond brightness. As the model formulations
of FoEs and convolutional Gaussian RBMs are both consistent with the assumption
of high-order feature constancy in the registration model, we trained filter banks
with these generative MRF models for extracting high-order features of cell nuclei,
thus achieving increased registration accuracy. Using multiple data sets of real 2D
and 3D live cell microscopy image sequences as well as synthetic image data, we
showed that our proposed approach outperforms previous methods in terms of both
registration accuracy and computational efficiency. This also demonstrated that
high-order MRFs are good choices for image feature learning, since good generative
properties imply that important image features have been captured by the learned
filters.

5.2 Outlook and future work

In this dissertation, we have seen that the high-order MRFs, in particular FoEs, not
only show impressive power of modeling image statistics when properly trained, but
also exhibit competitive performance in a variety of image analysis problems with a
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pure generative setting. However, the learned MRF priors and our approaches still
have a number of limitations. Below, we briefly discuss some of them which may
motivate future work in this area.

Although our learned FoEs accurately capture important statistics of natural
images, the model samples look not as realistic as real images: Typical image struc-
tures, e.g., sharp edges, closed contours, and flat regions, are hardly observed (cf .
Fig. 3.11). Pushing further to learn more and larger filters is not practical. Many
filters lead to slower mixing, larger ones to less-sparse linear equation systems in
sampling. Some work attributed the reason of non-realistic samples to be that the
FoEs with GSM potentials do not have the “mean” units and thus can not appropri-
ately provide some structure information. We thus tried learning FoEs with mixtures
of GSMs-based multi-modal potentials to allow for mean units, but found this not
very helpful. We have also exploited the idea of applying filters at multiple image
scales from the FRAME model and trained FoEs with such a hierarchical structure.
This model was not only difficult to train, but yielded “inactive” filters and experts,
suggesting this structure can not further improve the FoE as a generic image prior.
This observation was not surprising because multi-scale derivative statistics have al-
ready be well captured by GSM-FoEs. Therefore, further gains as well as realistic
model samples are challenging and may require new model designs.

Another reason for the non-realistic samples might be that our FoEs are homo-
geneous. The same clique potential function is used throughout the entire image
due to the convolutional structure, which limits the number of model parameters
and makes them manageable. As different image content (e.g., sky, trees, cars) has
different statistical properties, content information (e.g., from a higher-level model
of scene understanding) will be useful for selecting best clique potentials to obtain
inhomogeneous or content-aware MRFs. Exploiting structure tensors as a content
indicator, we have trained a content-aware MRF based on the steerable random fields
and the multi-modal mixture of GSM potentials as well as proposed learning strate-
gies. While model samples contain distinct image structures, the MRF was trained
in the framework of conditional random fields (CRF), thus not being a pure prior.
In addition, due to smaller cliques and fewer experts, its application performance
is not as good as our learned FoEs. The scene-aware MRF [13] employs an explicit
scene coefficient and is not a pure prior either. To learn a pure content-aware MRF
prior, additional latent variables may need to be defined, while these variables are
associated with some spatially dependent prior and may be marginalized out.

One problem that we encountered in the applications with a generative setting
is the modeling of the application-specific likelihood. The denoising experiment of
microscopy image deconvolution application (cf . Fig. 4.10 and Tab. 4.3) showed that
the accuracy of likelihood modeling is crucial for the model performance. In prac-
tice, it is hard to ensure high accuracy and many likelihoods have actually remained
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hand-tuned. Even when the likelihood is learned from training data, the choice of
likelihood representation functions is still an issue, because it directly affects the
modeling accuracy and the feasibility of probabilistic inference. On the other hand,
the likelihood also determines which estimate should be used for inferring the solu-
tion. When the likelihood function imposes relatively strong constraints and only
has one (major) modality (e.g., denoising of images with additive Gaussian noise),
an MMSE estimation is generally more suitable. When the posterior distribution
has two or more modalities, an MAP estimate from any modality probably makes
more sense than simply averaging all modalities.

In recent years deep neural networks are getting increasingly popular. Deep prob-
abilistic or generative models of generic images have been proposed (see Sec. 2.3.4),
aiming at capturing high-level image structures and generating realistic samples for
various purposes such as artwork, super-resolution, and colorization. However, these
deep generative models are hard to be used like MRF priors with a generative setting
in a Bayesian framework. Actually, MRF priors studied in this dissertation can be
combined with deep networks, sometimes quite straightforwardly, for a number of
vision tasks. For example, deep networks can be trained as efficient solvers for infer-
ence with MRFs (see Sec. 2.3.3). Combining knowledge or physics-driven approaches
(e.g., the MRFs in Sec. 4.3.5) and data-driven deep learning is one of the directions
for our future research.
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