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Abstract

For over a century, open clusters have been a key tool for understanding stellar and
galactic evolution. Now, thanks to groundbreaking new astrometric and photometric
data from the European Space Agency’s Gaia satellite, it is possible to study open
clusters to never before seen levels of accuracy and precision. In this thesis, I develop
and apply new methodologies to improve the census of open clusters with data from
Gaia. I focus on using modern, efficient, and statistically rigorous techniques, aiming
to maximise the reliability and usefulness of the open cluster census despite the
many challenges of working with the billion-star dataset of Gaia. Firstly, I conducted
a comparative study of clustering algorithms for retrieving open clusters blindly
from Gaia data. I found that a previously untrialed algorithm, HDBSCAN, is the
most sensitive algorithm for open cluster recovery. Next, using this methodology, I
used Gaia DR3 data to create the largest homogeneous catalogue of open clusters to
date, recovering a total of 7167 clusters – 2387 of which are candidate new objects.
I developed an approximate Bayesian neural network for classifying the reliability of
the colour-magnitude diagrams of the clusters in the census. Additionally, I used
a modification of this network to infer parameters such as the age and extinction
of these clusters. Finally, since many of the objects in my catalogue appeared more
compatible with moving groups, I measured accurate masses, Jacobi radii, and
velocity dispersions for these clusters, thus creating the largest catalogue of these
parameters for open clusters to date. Using said parameters, I showed that no more
than 5619 of the clusters in my catalogue are compatible with bound open clusters.
I used my mass estimates to derive an approximate completeness estimate for the
Gaia DR3 open cluster census, finding that the approximate 100% completeness
limit depends strongly on cluster mass. The results of this thesis show that it is
possible to reliably create a catalogue of open clusters with a single blind search, in
addition to measuring parameters for these objects. The methods developed in this
thesis will be applicable to future data releases from Gaia and other sources.
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Zusammenfassung
Seit über einhundert Jahren ist die Erforschung offener Sternhaufen ein wichtiges
Mittel um die stellare und galaktische Evolution zu verstehen. Dank neuer, bahn-
brechender astrometrischer und photometrischer Daten des Gaia Satelliten der
Europäischen Weltraumorganisation (ESA) ist es nun möglich offene Sternhaufen
mit bisher ungekannter Genauigkeit und Präzision zu untersuchen. In dieser Dok-
torarbeit entwickelte und implementierte ich neue Methodiken, um den Zensus
offener Sternhaufen anhand von Gaia Daten zu verbessern. Ich konzentrierte mich
dabei auf moderne, effiziente und statistisch präzise Verfahren, mit dem Ziel, die
Reliabilität und Anwendbarkeit des Zensus zu maximieren, trotz der vielen Her-
ausforderungen des Milliarden-Sterne Datensatzes von GaiaŻuerst führte ich eine
vergleichende Studie von Clustering- Algorithmen durch, die zur blinden Suche
nach offenen Sternhaufen in Gaia Daten genutzt werden. Ich fand heraus, dass
der bisher nicht getestete Algorithmus HDBSCAN der empfindlichste Algorithmus
für das Wiederfinden offener Sternhaufen ist. Anhand dieser Methode nutzte ich
anschließend Gaia DR3 Daten, um den bisher größten, homogenen Katalog of-
fener Sternhaufen zu erstellen. Aus den Daten gehen 7167 Sternhaufen hervor,
wovon 2387 Kandidaten für bisher nicht entdeckte Sternhaufen sind. Zusätzlich
entwickelte ich ein approximatives Bayessches Neuronennetz, um die Reliabilität
von Farben-Helligkeits-Diagrammen der Sternhaufen zu klassifizieren. Außerdem
benutzte ich eine Modifikation dieses Netzwerkes, um Parameter, wie das Alter
und die Extinktion dieser Sternhaufen zu erschließen. Da viele der Objekte des
Katalogs Sternassoziationen ähneln, berechnete ich akkurate Massen, Jacobi Radien,
sowie Geschwindigkeits-Dispersionen, und erstellte somit den bisher größten Katalog
dieser Parameter für offene Sternhaufen. Anhand dieser Parameter zeigte ich, dass
lediglich 5619 der Sternhaufen des Katalogs gravitativ gebundenen offenen Stern-
haufen entsprechen. Ich benutzte die berechneten Massen, um eine Abschätzung
der Vollständigkeit für den Gaia DR3 Zensus offener Sternhaufen abzuleiten und
fand heraus, dass das geschätzte 100% Vollständigkeitslimit stark von der Masse
der Sternhaufen abhängt. Die Ergebnisse dieser Arbeit zeigen, dass es möglich ist,
einen verlässlichen Katalog offener Sternhaufen anhand eines einzelnen blinden
Suchlaufes zu erstellen und zusätzlich die Parameter der Objekte zu bestimmen. Die
in dieser Arbeit entwickelten Methoden werden auf zukünftige datensätze von Gaia
sowie anderen Quellen anwendbar sein.
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Introduction 1
„Δέδυκε μὲν ἀ σελάννα

The moon and the Pleiades

καὶ Πληΐαδες, μέσαι δέ

have set, it is

νύκτες, πάρα δ΄ ἔρχετ΄ ὤρα,

midnight, time is passing,

ἔγω δὲ μόνα κατεύδω.

but I sleep alone.

— Sappho, ‘The Midnight Poem’
(c. 600 BC)

1.1 From seven sisters to a powerhouse of astronomy

In all of astronomy, few objects have retained relevance throughout the centuries as
much as open clusters (OCs). Easily visible to the naked eye, the Pleiades has been
observed since at least the dawn of civilisation (Mozel 2003; Rappenglück 2001),
along with a handful of other OCs visible without a telescope. In the present day, the
now thousands of known OCs are a key tool in modern astronomy for understanding
stellar and galactic evolution.

Star clusters are formed when clouds of cold molecular gas collapse due to gravity,
forming stars. Sometimes, when star formation occurs densely enough, these stars
fall further into gravitationally bound clusters that can survive in the galactic disk for
as long as ∼ 109 years (Lada and Lada 2003; Portegies Zwart et al. 2010). It is this
property of the formation of OCs that makes them so useful: having formed at the
same time and from the same molecular cloud, all stars in an OC will have the same
age and initial chemical composition, and will remain co-located in space in a dense
cluster. Even hundreds of millions of years after an OC forms, the parameters of
the cluster’s member stars can be measured significantly more precisely than when
studying stars in isolation.
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For instance, when a parameter such as the distance of member stars can simply
be averaged over all member stars, then the precision of the mean distance of an
OC (and hence the distance to all of its member stars) will be a factor

√
n more

precise than the distance to any individual star. Alternatively, when a property such
as chemical composition is highly time consuming to derive, it can be derived for a
fraction of stars in an OC and be applied relatively safely to all stars in a cluster.

The ease of studying stellar astrophysics with OCs results in OCs having an extremely
wide range of scientific use cases. For instance, OCs are used as testing grounds
for stellar evolution models (Bressan et al. 2012), as tracers of galactic structure
(Cantat-Gaudin et al. 2020; Castro-Ginard et al. 2021), or even as calibrators of
Cepheid variable stars (Medina et al. 2021), which are an essential first rung on the
cosmic distance ladder and are vital in the derivation of the cosmological parameters
of the universe. It is somewhat of a cliché to describe OCs as ‘the laboratories of
stellar evolution’, but it really is true: OCs are a fantastic way to observe stars of a
given age and composition across a broad range of masses, and to do so with orders
of magnitude more precision than when studying isolated field stars.

The best part of the modern story of the OC’s contribution to astrophysics comes
with the Gaia satellite, however. In just five years since its first full data release
(Brown et al. 2018), Gaia has revolutionised the study of our galaxy, including
the study of OCs; with dozens of papers reporting thousands of new objects (e.g.
Castro-Ginard et al. 2019, 2022, 2020; Liu and Pang 2019), and a number of works
deriving dramatically improved parameters and members for OCs in the Milky Way
(e.g. Cantat-Gaudin et al. 2018a; Tarricq et al. 2020). Arguably, there has never
been a better time to do science with OCs, owing to the incredible quantity and
quality of data that Gaia has provided.

There is, however, a catch. Even though the Milky Way is estimated to contain as
many as 105 OCs (Dias et al. 2002), there are still only a few thousand currently
known in the literature – representing a small fraction of the total number of OCs
in our galaxy. It has been shown that the census of OCs is incomplete within even
1 kpc from the Sun (e.g. Castro-Ginard et al. 2018), and the extent of the remaining
incompleteness is unknown. Worse still, it has been shown that many of the OCs
catalogued previously in the literature may not exist (Cantat-Gaudin and Anders
2020; Piatti 2023), with it being largely unknown which OCs are or are not real.
The many fantastic uses of OCs in other areas of astronomy are contingent on a
reliable, accurate, and complete census of OCs; and the many current caveats with
the census of OCs limit the science potential of these fantastic objects, in a time
when we have more available data with which to study them than ever before.

2 Chapter 1 Introduction



In this thesis, I will present solutions to a number of the current issues with the OC
census in the era of Gaia, using a range of data analysis and parameter inference
techniques. I will then use these techniques to create the largest census of OCs to
date and derive a range of parameters for these OCs. With this thesis, I also hope
to present methods that could continue to be used to maximise the quality of the
OC census for the coming decade of Gaia data releases – as well as for whatever
instruments supersede Gaia in the future.

Before launching into the chapters detailing my work over the past three and
a half years, it is worth first conducting an overview of the science behind OCs
in the introduction to this thesis. In Sect. 1.3, I will discuss the history of OC
observations up to before the release of Gaia DR2 in 2018. Section 1.4 will then
discuss the stunning data of Gaia and how it has already thoroughly revolutionised
our understanding of OCs in just a handful of years. Section 1.5 reviews the
current issues with the OC census and discusses the broad aims of this thesis.
Finally, Sect. 1.6 will briefly discuss some key concepts from both observational and
theoretical studies of OCs, providing background that will assist with the reading of
this thesis.

The nomenclature and definition of star clusters varies throughout the literature.
Hence, in the next section, I will discuss a working definition of OCs that I will adopt
throughout the rest of this work.

1.2 The definition of an open cluster

There are many types of star cluster in the universe. Avoiding confusion when talking
about star clusters is important, particularly since observers and theorists often use
very different nomenclature. Even in observational communities, definitions of star
clusters can differ significantly – particularly when comparing between galactic and
extra-galactic astronomy. In practice, it is challenging to define star clusters in an
exact way that is consistent across all branches of astronomy; nevertheless, with
the aim of minimising confusion, I will use the following approximate definitions
throughout this thesis for the star clusters of the Milky Way.

Traditionally, star clusters in the Milky Way are divided into three broad categories.
I will primarily discuss open clusters, although I will also touch on globular clusters
and moving groups. I differentiate between these three types of cluster as follows,
matching the rough observational definitions in Portegies Zwart et al. 2010.

1.2 The definition of an open cluster 3



1 pc 1 pc 1 pc

Fig. 1.1.: A visual comparison between the three main types of star cluster found in the
Milky Way. Left: the open cluster NGC 2547. Middle: the globular cluster M4.
Right: the moving group/OB association Monoceros R2. All images contain a
scale in the bottom right showing a length of 1 pc at the distance of each cluster.
Credit, left to right: ESO / J. Pérez; ESO; ESO / J. Emerson / VISTA.

Open clusters (OCs) are gravitationally bound clusters with a typical age of around
100 Myr, although some are older than 1 Gyr and some are as young as 0.1 Myr.
OCs have masses of typically no greater than 104 M� and may be made up of a
few dozen to a few thousand stars, with a typical minimum being ten stars. OCs
are remnants of recent star formation, and are hence predominantly located in
the galactic disk where the star formation rate is highest. Most OCs have a size of
around 3 to 10 pc. Other than some rare, potential exceptions, OCs contain a single
population of stars.

Globular clusters (GCs) are much older and more massive gravitationally bound
clusters, with ages typically greater than 10 Gyr and masses typically greater than
105 M�. The largest GCs can contain a million stars or more. GCs have a typical size
of around 10 to 20 pc. GCs tend to reside in the galactic bulge or in the galactic
halo. Many GCs contain multiple populations of stars. Almost all OCs have masses
significantly lower than the typical present day mass of GCs, although observations
of a handful of young massive clusters in the Milky Way such as Westerlund 1
(sometimes also referred to as ‘super star clusters’) as well as observations of galaxies
with more active star formation suggest that the highest mass star clusters will be
long-lived, and may evolve into GCs. However, this is not the case for almost all OCs
that I will study in this thesis, as the only young massive clusters in the Milky Way
are generally distant, heavily reddened, and outside of the reach of the visual-band
observations of the Gaia telescope.

Moving groups (MGs) are of a similar mass and number count to OCs, except
they are not gravitationally bound. Due to this, they disperse much more quickly,
and hence often have much younger ages. MGs have the widest definition, and
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Tab. 1.1.: Approximate definitions for the three types of star cluster that will be discussed
in this thesis.

Type Bound? Age Mass Location
Open cluster (OC) Weakly . 1 Gyr . 104 M� Disk
Globular cluster (GC) Strongly & 10 Gyr & 105 M� Halo/Bulge
Moving group (MG) No . 50 Myr . 103 M� Disk

encompass any group of stars that are comoving and coeval, but are specifically
not gravitationally bound. Many MGs are referred to as ‘OB associations’ in the
literature, due to them often containing a number of young, high mass O and B
stars.

These definitions are summarised in Table 1.1 and compared visually in Fig. 1.1.
The figure shows three clusters; NGC 2547, M4, and Monoceros R2. NGC 2547 is a
sparser OC that has a clear core of young blue stars at its centre, about ∼ 1 pc across.
On the other hand, despite being only slightly larger, the GC M4 clearly contains
significantly more stars. The stars in M4 are older, with the cluster having a whiter
appearance along with more evolved red giant stars. Finally, the MG Monoceros R2
is simply a group of young blue stars, with no discernible core.

1.3 The pre-Gaia history of open cluster observations

While the results of this thesis are entirely derived using data from Gaia, to truly
understand just how groundbreaking the current data of the Gaia satellite is, it is
worth first briefly reviewing the history of OC observations.

1.3.1 Open clusters up to the 20th century

Our ability to observe OCs has progressed incredibly far throughout the history of
astronomy (Fig. 1.2). The invention of the refracting telescope allowed for early
astronomers such as Galileo to observe that OCs and GCs are in fact clusters of
many stars, as opposed to being dispersed single sources as previously believed from
unaided observations. It was, however, the invention and widespread use of the
reflecting telescope in the 17th and 18th centuries that led to catalogues of clusters
like we use today.

The power of reflecting telescopes allowed astronomers to scan the sky to signifi-
cantly greater depth, searching for clusters of stars and discovering many new objects

1.3 The pre-Gaia history of open cluster observations 5



Fig. 1.2.: The Pleiades, as depicted throughout history and showing the clear improvements
in astronomical data gathering over time. Left: the Nebra Sky Disc, depicting the
Pleiades with its seven naked-eye visible stars in the upper centre. The disc was
discovered in 1999 in northern Germany and is dated to between 1800-1600 BC.
Middle left: the Pleiades, as imaged in 1909 with Wolf’s Doppelastrograph at the
Landessternwarte Heidelberg-Königstuhl. Middle right: the Pleiades, as imaged
by Hubble. Right: the ∼1000 member stars for the Pleiades extracted from Gaia
DR2 data and isolated from field stars by Cantat-Gaudin et al. 2018b. Each star
is represented by a point scaled by its magnitude and coloured according to its
BP − RP colour. Credits: Frank Vincentz; Heidelberg Digitized Astronomical
Plates; Davide De Martin & NASA/ESA Hubble.

in the process (e.g. Herschel 1786), with the number of known OCs jumping from a
few dozen to around 700 in a little over a century. Figure 1.3 shows the evolution
in size of OC catalogues over time, showing the rise to around 700 clusters by the
turn of the 20th century. Many of the OCs known and catalogued by astronomers
at this point were some of the largest and most scientifically useful, with many of
these OCs (especially those in the NGC catalogue) being some of the most frequently
studied objects even today.

The 20th century saw improvements to data gathering and techniques, with early
photometric and spectroscopic methods allowing authors such as Rosenberg 1910
and Hertzsprung 1911 to plot the brightness of the stars in the Pleiades and the
Hyades against their spectral features, noticing for the first time that the brightness
of stars is related to their colour and spectral features. Russell 1914 derived the
absolute magnitude of stars in the Hyades and plotted this against an early spectral
analogue of the temperature of its member stars, plotting the luminosity of stars
against their temperature for the first time and inventing ‘Hertzsprung-Russell’ or
‘colour-magnitude’ diagrams (CMDs), a type of plot still used extensively in the
present day as an essential tool to understand stellar evolution. Later, the differences
in CMDs between different clusters were noticed. This was interpreted as being
a difference in age between the clusters, allowing for the ages of stars within star
clusters to be estimated, and beginning the foundation of our knowledge of stellar
evolution (Fig. 1.4).
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Fig. 1.3.: The size of OC catalogues over time. After the initial rise in the size of catalogues
due to the advent of reflecting telescopes in the 18th and 19th centuries, it was not
until the past 25 years and the advent of large-scale astrometric and IR datasets
that the OC census significantly increased in size.
N.B.: this is not an exhaustive plot of all catalogues, and a number of old catalogues such
as Herschel 1786 and Herschel 1864 without digitised versions are not included.

While the 20th century saw huge strides in our understanding of stars and star
clusters, the size of OC catalogues went relatively unchanged (Fig. 1.3). It was not
until the 1990s and the arrival of new methodologies that the OC census itself has
begun its largest upheaval since the growth in use of reflecting telescopes more than
200 years prior.

1.3.2 The advent of modern astrometry and infra-red datasets

The launch of the Hipparcos satellite and subsequent data releases (Perryman
et al. 1997) produced a catalogue of around 105 sources with five-parameter
milliarcsecond-precision astrometry. OCs stand out as overdensities in Hippar-
cos data, in particular in proper motions, as OCs are comoving groups of stars that
often have different velocities to background field sources. This new data allowed
works such as Platais et al. 1998 to discover a number of new OCs, with many being
small objects near to the Sun that evaded detection with only two-dimensional visual
observations.
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Fig. 1.4.: A comparison of the CMDs of a number of nearby OCs, using membership lists
from later in this thesis in Sect. 3 and plotted with their absolute magnitude
MG against colour BP − RP . The OCs are plotted from left to right in order
of increasing age, with their distance d, logarithmic age log t and extinction AV
shown in the top right. The dashed red line indicates the approximate 100%
completeness limit of these OC membership lists, with sources fainter than an
apparent magnitude of G = 18 frequently being missed and often having under-
estimated BP − RP colours. BH 23 is less than 10 Myr old and has almost no
main sequence turn off; NGC 6475 is over 100 Myr old and has a clear turn off;
Ruprecht 147 is around 1 Gyr old and even has a clear population of white dwarf
stars.

The catalogue of Dias et al. 2002 included over 300 more objects than the roughly
ten years prior catalogue of Mermilliod 1995 (Fig. 1.3), representing the largest
major jump in the size of the OC census in over a century, in addition to the much
more accurate mean cluster proper motions and parallaxes provided by Hipparcos.
However, this was just the beginning, and more new science was to come.

Data releases from the Two Micron All Sky Survey (2MASS, Skrutskie et al. 2006)
in the 2000s provided the next major jump in data availability for furthering OC
science. The infrared (IR) data of 2MASS and its associated catalogue of 471 million
point sources allowed works such as Dutra and Bica 2001, Dutra et al. 2003, Bica
et al. 2003, and Froebrich et al. 2007 to uncover over a thousand new OC candidates
in the galactic disk, using IR data to peer through interstellar dust and unveil many
previously-obscured objects for the first time. In addition, works around this time
began to make increasing use of advances in computing power, with works such as
Froebrich et al. 2007 using automated retrieval to extract cluster candidates instead
of simply scanning datasets by eye for overdensities.

Work predominantly with IR data culminated in the catalogue of Kharchenko et al.
2013, who derived homogeneous membership lists, ages, extinctions, distances,
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proper motions, radii, and many other parameters for a total of 3006 clusters,
2399 of which are OCs or probable OCs, using a combination of 2MASS data and
astrometric data from the PPMXL catalogue of proper motions (Roeser et al. 2010).

In around 20 years, the OC census more than doubled in size between the work of
Mermilliod 1995 to the work of Kharchenko et al. 2013. This unprecedented shift
represented the first time that the OC census had been significantly expanded in
over a century, with improved datasets offering significantly better measurements of
more clusters than ever before.

Yet the seismic shift in cluster catalogues brought about by IR datasets and Hipparcos
was scarcely the beginning of the modern revolution in studies of OCs. Gaia’s first
full data release in 2018, DR2 (Brown et al. 2018), sparked the next revolution in
the census of OCs.

1.4 The Gaia revolution

For almost all of the history of astronomy, our view of the Milky Way has been
strictly two-dimensional. Observing a three-dimensional galaxy in two dimensions is
inherently limiting; it took until the 20th century to even discover that galaxies are
separate from the Milky Way (Curtis 1917). Although astrometric parameters like
parallaxes have been measured for stars for over a century, and can be used to view
the stars of the galaxy in three dimensions, these datasets have always been limited
to a few hundred or thousand stars until very recently.

1.4.1 Background on the Gaia satellite

Gaia is a space-based telescope launched in 2013 that aims to measure a wealth
of parameters to an unprecedented level of precision for around 109 stars. Gaia is
measuring precise positions, proper motions, parallaxes, and photometry for its full
sample of stars, and also measures radial velocities and low-resolution spectra for
brighter subsamples of sources (Gaia Collaboration et al. 2016). It is the incredible
scale and precision of Gaia data that sets it apart from any previous datasets.

Figure 1.5 shows a comparison of the parallax uncertainty of Gaia data against data
from the Hipparcos satellite. The difference in accuracy and quantity of data is clear:
Gaia can measure parallaxes for 104 times as many stars at a projected eventual
maximum accuracy around 40 times better than Hipparcos for bright stars, or around
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Fig. 1.5.: Comparison between the astrometric accuracy for all sources in the final data
release of Hipparcos, Gaia DR1, and Gaia DR2. The predicted accuracy of future
data releases using 5 and 10 years of data is shown by the solid and dashed lines
respectively. Credit: Lindegren et al. 2018.

500 times better than Hipparcos for stars at G = 12. Inevitably, such a large increase
in the amount (and quality) of data has huge implications for the study of all objects
in the Milky Way, of course including OCs.

To truly understand the wonder of the Gaia satellite, it is first worth discussing how
exactly it works. Although our galaxy is a dynamic system, with stars continually
orbiting around the centre of the Milky Way (Binney and Tremaine 1987), it is
exceptionally difficult to capture the movement of our galaxy in real time. To the
human eye, the night sky is static; even the closest stars with the highest proper
motions and parallaxes have movements across the sky measured in arcseconds, with
one arcsecond being equivalent to just 1/3600 of a degree. For stars at a distance of,
say, 1 kpc, their parallax will amount to just 1 mas. With the Milky Way having an
estimated radius of between roughly 15 to 25 kpc (López-Corredoira et al. 2018), it
is clear that measuring precise astrometry for even a small fraction of the stars in
the galaxy requires an incredible level of precision.
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Fig. 1.6.: The predicted on-sky astrometric tracks of stars with different parameters, gen-
erated using astromet (Penoyre et al. 2022a). All sources are at coordinates
α, β = (0°, 45°), but are offset in the y direction for clarity of plotting. The first
source has µα∗ = 4 mas yr-1, µδ = 0, and is at a distance of 1 kpc. In the second
example, the distance is quadrupled relative to the first. In the third example, the
proper motion is halved relative to the first. In the final example, a binary with a
period close to 1 yr, high eccentricity, and a low light ratio is added to the first
example, producing a highly irregular track. The crosses denote the position of
each source in one-year intervals.

Using some techniques originally pioneered with the Hipparcos satellite as well as a
number of new concepts, Gaia operates quite unconventionally relative to traditional
‘point and take a picture’ telescopes. Instead, Gaia gathers data continuously while
rotating at a rate of exactly 1° per minute. Sources are spread into lines on Gaia’s
detectors, with photoelectrons being moved across Gaia’s detector in line with the
rotation of the telescope. This uses a process known as ‘time-delay integration,’
which allows for continuous read-outs of the Gaia detectors while it rotates. Gaia
actually has two primary mirrors with fields of view 106.5° apart, both of which
reflect onto a single set of detectors at the same time – hence allowing for the
positions of sources far apart from one another on the sky to be linked together to a
high level of accuracy.

By slowly precessing while it rotates, Gaia visits every location on the celestial
sphere an average of 14 times a year. The multiple measurements of each source
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allow for the complicated track of sources across the sky to be reconstructed to an
exceptionally high level of precision (see Fig. 1.6). Finally, hundreds of billions of
observations are linked together in a monumental data processing step, turning all
detections into single sources and deriving a single catalogue in a single consistently
derived coordinate frame of over one billion sources (Gaia Collaboration et al. 2016;
Lindegren et al. 2018). The many novel design features of the Gaia satellite are
essential to allow for such a large and accurate catalogue of sources to be created.

1.4.2 The Gaia impact on the census of OCs

With so much data at an incredible level of quality, it is perhaps unsurprising that
the OC census has been completely overhauled in just five years since the first full
release of Gaia data (Gaia DR2). In many ways, Gaia is the perfect instrument for
the study of OCs. Most OCs (such as NGC 2547 in Fig. 1.1) have relatively low star
counts and are situated on the galactic disk, where high numbers of field stars are
present – making them challenging to isolate from background sources (Kharchenko
et al. 2012). However, as OCs are comoving groups at a similar distance to one
another and denser than the surrounding field, Gaia’s proper motions and parallaxes
provide an excellent way to isolate clusters from the field (Cantat-Gaudin et al.
2018b; Gaia Collaboration et al. 2017).

Figure 1.7 shows the region around the high galactic latitude OC Blanco 1 in data
from the Hipparcos-2 catalogue (van Leeuwen 2007), compared against the same
region in data from Gaia DR3 (Gaia Collaboration et al. 2022). The difference in
precision between the two datasets is dramatic. In Hipparcos, while the cluster is
visible as an overdensity in proper motion space, in Gaia, the cluster becomes a
small, compact group of stars that is trivially easy to separate from field stars. In
addition, while Hipparcos parallaxes have accuracies on the order of 1 mas, Gaia’s
∼ 100× better parallaxes make the cluster stand out as a clearly visible horizontal
line as a function of right ascension. When combined, proper motions and parallaxes
make an exceptionally powerful tool to isolate OCs from field stars and derive clean,
minimally contaminated membership lists. In addition, the difference in dataset size
between the two telescopes is abundantly clear: Gaia DR3 can be used to probe the
cluster eight to ten magnitudes fainter than Hipparcos, resulting in a membership
list around ∼ 50× larger than the cluster in Hipparcos data. This incredible level of
astrometric precision is repeated across the entire galactic disk, and has powered
the last five years of revolution in the OC census.
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Not long after the release of Gaia DR2, Cantat-Gaudin et al. 2018a produced an
updated catalogue of OCs and OC membership lists, using pre-Gaia works such as
Kharchenko et al. 2013 as input and trying to redetect their catalogued clusters
in Gaia data. Cantat-Gaudin et al. 2018a were able to derive updated cluster
membership lists with around twice as many members on average as in Kharchenko
et al. 2013, as well as deriving cluster proper motions to around two orders of
magnitude greater precision than in Kharchenko et al. 2013 and precise distances to
clusters.

One of the largest results of the work on the OC census so far in the era of Gaia
has been that many clusters catalogued before Gaia cannot be detected in Gaia
data. This is clear in Fig. 1.3, with the catalogue of Cantat-Gaudin et al. 2018a
containing around half as many clusters as Kharchenko et al. 2013. The reasons for
the non-detection of so many OCs remain mostly unclear.

Cantat-Gaudin and Anders 2020 provided some answers to this question, searching
again in Gaia DR2 data for some of the clusters they were unable to detect. They
found that many clusters reported earlier in IR datasets continued to be undetectable
in Gaia, being able to strongly rule out 38 objects as definite asterisms. The asterisms
they found are generally older and at high galactic latitudes, and were typically
reported in IR datasets. They comment that although Gaia’s visual observations
should mean some clusters are too heavily reddened to be visible to Gaia, there
are nevertheless many objects that Gaia should still be able to detect, owing to its
deep visual photometry and ease of separating OCs from the field. The status of at
least another ∼1000 clusters remains unknown. Cantat-Gaudin and Anders 2020
theorised that many clusters as-yet undetected in Gaia data probably do not exist,
although this requires further study.

1.4.3 New open clusters found with Gaia

At the same time that Gaia has been an invaluable tool for better cataloguing already-
known OCs, Gaia has also allowed for many new OC discoveries; particularly for
smaller, sparser objects that are otherwise impossible to find in 2D datasets (Cantat-
Gaudin 2022). Figure 1.8 shows the approximate number of papers reporting new
OCs in the 21st century. Papers were found by searching the ADS1 in Februrary
2023 for papers whose title or abstract contained the string ‘new open cluster’.
The release of Gaia DR2 in 2018 (Brown et al. 2018) clearly corresponds with the
number of papers reporting new OCs each year roughly tripling.

1https://ui.adsabs.harvard.edu/
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Fig. 1.8.: The approximate number of papers reporting new open clusters in the 21st century,
shown as a stacked bar chart of peer reviewed and non-peer reviewed works.
Data for 2022-2023 are incomplete.

The central challenge of finding new OCs in data from Gaia is the sheer size of
the Gaia dataset, with hundreds of millions of stars to search through in a five-
dimensional dataset of positions, proper motions and parallaxes for each star. While
traditional approaches in the 19th and 20th centuries searched for clusters by hand,
and works such as Froebrich et al. 2007 refined this approach by using kernel density
estimation to identify overdense regions in the two-dimensional 2MASS dataset, the
release of Gaia has also seen many new approaches for OC recovery.

Machine learning (ML) has exploded into observational astronomy over the last
decade, developing from a niche method into a mainstay of astronomical data
analysis methods (Ivezić et al. 2020). ML has two primary appeals. Firstly, it mostly
automates the solving of complicated problems. ML can learn the relationship
between input data and a desired output largely autonomously, with the user only
being responsible for checking its work. Especially for arduous tasks like classification
of large datasets (e.g. Killestein et al. 2021), ML-based approaches can be orders of
magnitude more straightforward to implement than creating a brand-new algorithm
or approach to solve every problem every time, or by simply solving a problem by
hand as would be done traditionally. In this way, ML methods can be considered
a ‘Swiss army knife’ of model fitting, with every method being applicable to a very
wide range of potential problems. Secondly, ML-based approaches are generally
much quicker than previous methodologies (Hunt and Reffert 2021), leveraging the
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latest computing hardware such as graphics processing units (GPUs) significantly
more efficiently than previous approaches.

While ML is not without its caveats (which will be discussed later in this thesis), ML
has still been essential to the dramatic increase in newly reported OCs in the Gaia
era. Castro-Ginard et al. 2018 were the first authors to adopt an ML-based approach
for OC recovery, using two kinds of ML to automate tasks in cluster searches. Firstly,
they used a clustering algorithm called DBSCAN (a form of unsupervised ML) to
recover 31 new OCs in Gaia DR2 data, automating the process of cluster retrieval.
Then, they used a neural network (a form of supervised ML) to classify OCs based
on their CMD, also automating the process of assuring that OC CMDs have single
stellar populations. Aside from Sim et al. 2019 and a handful of works where small
numbers of new OCs were noticed by mistake (e.g. Anders et al. 2022; Bastian 2019;
Zari et al. 2018), all of the other roughly two dozen papers over the past few years
that have found new OCs have used ML techniques to search for clusters.

Since then, many other works have used DBSCAN or variations on it to detect new
clusters, with it proving to be an extremely popular method in the literature for
OC retrieval (Castro-Ginard et al. 2019, 2022, 2020; Hao et al. 2022a; Hao et al.
2020; He et al. 2021; He et al. 2022a,b,c; Liu and Pang 2019; Qin et al. 2021; Qin
et al. 2023). In total, these works have reported nearly 4000 new OC candidates,
which – if all of these objects are real – presents a major expansion in the size of
the OC census. A handful of other works have used different methods, including
Cantat-Gaudin et al. 2019 who used Gaussian mixture models (GMMs) and Jaehnig
et al. 2021 who used extreme deconvolution (a probabilistic extension of GMMs).

The discovery of so many new OCs has brought a number of exciting new results.
In particular, before Gaia, works such as Kharchenko et al. 2013 believed that the
OC census of 955 objects within 1.8 kpc was largely complete; however, around
∼400 new OCs have been reported in this range by Gaia-based OC searches since
the release of Gaia DR1, firmly challenging the idea that the OC census is complete
at close distances and providing many new objects for study.

The most recent analysis of the completeness of the OC census in the Gaia era
(Anders et al. 2020) found that the OC census within 2 kpc remains incomplete,
although the full extent of this incompleteness is still an open question. It is unknown
how many new OCs are remaining to be discovered and if existing methodologies
could be improved upon.
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Fig. 1.9.: The detected tidal tails and comas of ten OCs near to the Sun. Clusters are shown
as coloured density plots and plotted in heliocentric coordinates with the galactic
centre to the right. Credit: Meingast et al. 2021

1.4.4 Gaia’s brand-new insights into open clusters

Although this thesis will mostly focus on methods to further improve the census
of OCs, fundamentally, the reason why OCs are thoroughly important to modern
observational astronomy is the science that can be performed with them. Hence, I
will also quickly discuss some of the main new results into OCs that Gaia data has
enabled, giving an overview of the power and importance of these objects.

One of the most exciting results of the Gaia era is that the dissolution of OCs can
now be observed. OCs have a typical age of around 100 Myr, which is significantly
younger than the ≈ 13 Gyr age of the Milky Way, a difference that has long been
argued as evidence that OCs are broken up by two-body interactions between stars
ejecting some cluster members and the tidal forces of the Milky Way. Numerical
simulations have shown that almost all OCs should have ‘tidal tails’ of stars stretching
in front and behind the cluster’s orbit due to such interactions with the Milky Way’s
potential (Cantat-Gaudin 2022; Portegies Zwart et al. 2010), although such tidal
tails had only been observed for GCs until Gaia. Now, thanks to Gaia, the detection
and study of OC tidal tails and dissolution processes is possible in exquisite detail
for dozens of clusters.

As the nearest OC to the Sun, the Hyades has been extensively studied, with its
spatial elongation first being probed by Reino et al. 2018 using Gaia DR1, and
studied further by Lodieu et al. 2019, Röser et al. 2019, and Meingast and Alves
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Fig. 1.10.: A model of the Milky Way’s spiral arm structure as traced by OCs and high-mass
star forming regions. Credit: Castro-Ginard et al. 2021

2019 with Gaia DR2. Similar analyses have been performed on many more clusters,
with Meingast et al. 2021 analysing ten OCs in the solar neighbourhood and finding
that not only do they all exhibit tidal tails, but most are also surrounded by ‘comas’
of stars ejected in all directions from each cluster (Fig. 1.9). Tarricq et al. 2022
studied 369 clusters within 1.5 kpc and detected tidal tails for 71 of them. Such
clear visibility of the ongoing dynamical destruction of Milky Way OCs has been
used by works such as Yeh et al. 2019, Oh and Evans 2020, and Pang et al. 2021
to study the dynamics of nearby OCs and make predictions on their future lifespan.
It should be possible to expand these methods to more OCs and derive dynamical
parameters for a wide range of star clusters, making wide-ranging inferences about
the life of star clusters after their formation.

OCs have also been extensively used to probe the wider structure of the Milky Way.
Gaia’s improved parallax accuracy allows for more accurate distances to OCs to be
derived, and the improved OC membership lists possible with Gaia allow for better
determination of photometric parameters. Cantat-Gaudin et al. 2020 derived ages,
extinctions, and distances for around 2000 OCs, showing that young clusters are
generally correlated towards low galactic altitudes and appear to loosely trace spiral
arm models derived from masers in works such as Reid et al. 2014, while older
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clusters are more uniformly dispersed and can be found at higher altitudes above or
below the galactic plane, suggesting that their orbits have evolved while they aged.
Castro-Ginard et al. 2021 used these results to perform fits of a spiral arm model to
a combination of the distribution of young OCs and star forming regions (Fig. 1.10),
finding that the addition of young OCs slightly changes the most likely spiral arm
model relative to the fit of Reid et al. 2014.

Finally, new OC results in the Gaia era have allowed for a number of new studies
of stellar evolution. In particular, many more exotic phases of stellar evolution can
now be studied more easily thanks to Gaia OC membership lists, which allow for
significantly easier separation of OC member stars from field contamination.

A primary hot topic within the literature is blue straggler stars (BSSs), which are
stars near to the main sequence turn-off of a cluster that are bluer and brighter
than would otherwise be expected (e.g. four stars to the upper left of the turnoff
point of Ruprecht 147 in Fig. 1.4). These stars are interesting cases of non-ideal
stellar evolution, with leading theories stating that BSSs may be caused by mass
transfer, dynamical mergers, or a combination of multiple processes (Boffin et al.
2015). While BSSs have been extensively investigated in GCs, Gaia has allowed for
many new investigations of BSSs in OCs (Cantat-Gaudin 2022), such as in Rain et al.
2020 who investigated BSSs in Trumpler 5, Trumpler 20, and NGC 2477, or Vaidya
et al. 2020 who studied BSSs in a further seven OCs and found that BSSs are not
mass-segregated in just two of the seven clusters they studied. Leiner and Geller
2021 investigated BSSs in 16 OCs and found that standard population synthesis
techniques do not produce enough BSSs when compared to Gaia observations. They
found that changes to assumptions about binary mass transfer somewhat rectify
differences between observations and theoretical predictions, although they found
that it still remains difficult to create the observed number of BSSs from current
theories, suggesting that theories of BSS formation may still require additional
physics.

Another hot topic within stellar evolution that is more easily investigated within star
clusters is extended main-sequence turnoffs (eMSTOs). Initially observed only in
Magellanic cloud clusters (e.g. Bastian and de Mink 2009), Gaia’s improved contrast
between cluster and field stars has allowed for eMSTOs to be observed in a number
of Milky Way OCs (Marino et al. 2018). eMSTOs challenge traditional theories of star
formation for smaller clusters such as OCs, as they could be explained by multiple
stellar populations of a range of ages. On the other hand, simpler theories such
as different rates of stellar rotation or even circumstellar dust are also competing
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theories to explain the existence of eMSTOs (D’Antona et al. 2023; Milone and
Marino 2022).

Finally, OCs have also been used to study and calibrate variable stars. In particular,
Cepheid variable stars are a critical first rung on the cosmic distance ladder, useful
for finding accurate distances galaxies within a few Mpc of the Milky Way. Currently,
tension in the Hubble parameter H0 could be explained in number of ways, ranging
from the dominant ΛCDM cosmological model being wrong to simply being a
miscalibration of one or more rungs on the cosmic distance ladder. Hence, in this
context, accurate calibration and study of Cepheid variables is essential to ruling
out or confirming issues with Cepheids as the source of any H0 tension, a task that
multiple authors have used OCs to aid in. Breuval et al. 2020 used OCs hosting
Cepheid variables to derive a new Cepheid period-luminosity relation (Leavitt law)
and derive an updated value for H0, finding that the Hubble constant could be
revised to a lower value still in some tension with Planck CMB results (Planck
Collaboration et al. 2020) when using Gaia astrometry and Cepheid OC members.
Works including Medina et al. 2021, Zhou and Chen 2021, and Hao et al. 2022b
have searched for more Cepheid variable stars within OCs to assist in the further
study of Cepheids.

It goes without saying that all scientific use cases of OCs rely on the OC census
being accurate, and are greatly improved by it being as complete as possible. Even
though this brief review may have presented a ‘rosy-eyed’ view of the status of OC
science in the era of Gaia, there remain many issues with the current status of the
OC census, with many unanswered questions and barriers to easier usability of OCs
for science. In the next section, I will discuss some of these problems at length, and
briefly introduce how I will try to solve some of them in the rest of this thesis.

1.5 Issues and solutions for the open cluster census

As detailed in Sects. 1.3 and 1.4, there has been a huge amount of recent scientific
progress in the OC census and in the study of OCs as a whole. However, the Gaia
era of OC science is still relatively new, with many more years of data releases being
anticipated. Inevitably, this will allow for a huge range of new scientific studies into
OCs (Gaia Collaboration et al. 2022).

To maximise the scientific potential of OCs, it makes sense to improve the census of
OCs as much as possible, as well as developing ‘future-proof’ methodologies that
can be applied to future Gaia data releases as well as the current ones. The issues
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with the census of OCs in the Milky Way can be divided into five broad topics that I
will discuss next.

1.5.1 The issues with the open cluster census

Problem 1. The methods used to detect open clusters (and their biases)

As mentioned in Sect. 1.4, the Gaia mission has provided the OC community with a
tremendous quantity of data. However, until now, many works have tried various
different approaches for OC recovery (both for recovery of existing clusters and
for blind searches), with no direct comparison having been done between different
approaches. Additionally, modern computer science is fast-paced, particularly in the
field of machine learning. Many approaches exist for clustering data, only a handful
of which have been trialled for OC recovery (Xu and Tian 2015), despite the fact
that publicly available open-source implementations of these algorithms are often
available and ready to use (e.g. Pedregosa et al. 2011a).

This causes a number of problems. Primarily, it is unclear whether existing ap-
proaches are subject to biases. Particularly since almost all blind searches for OCs
have used DBSCAN (Sect. 1.4.3), it could be that a bias with the algorithm could
prevent certain clusters from being detected depending on their age, distance, or
other parameters, which may mean that a whole type of new OC has been as-yet
undiscovered within Gaia data. There is no certainty that all OCs that can be detected
have been detected with Gaia.

It is also unclear how many false positives current approaches produce. Most
works do not include an estimate of how many of their reported clusters are real
(e.g. Castro-Ginard et al. 2018; He et al. 2021; Liu and Pang 2019). It is not
known whether it is safe to assume that the results of a clustering algorithm can
always be trusted, and it is not known whether certain algorithms are more or less
trustworthy.

Additionally, there are many quirks with the usability of current approaches. For
instance, the comprehensive DBSCAN-based works of Castro-Ginard et al. 2019,
2018, 2022, 2020 adopted a sky tiling scheme that requires many algorithm re-runs,
resulting in a method that must be applied on a supercomputer (Castro-Ginard
et al. 2022). It is not known whether a more efficient approach that requires fewer
computational resources and is easier to repeat on future data releases is possible.
This is a particular issue as future Gaia data releases are likely to contain higher
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numbers of reliable sources (Gaia Collaboration et al. 2022), meaning that current
approaches will need to be run on four to eight times as many sources2.

Problem 2. The status of clusters discovered before Gaia

Of the many clusters discovered before Gaia, fewer than 50% have so far been
re-detected in Gaia data (Cantat-Gaudin and Anders 2020; Cantat-Gaudin et al.
2018a). The fact that so many objects are missing from Gaia-based OC studies could
represent a total paradigm shift in the census of OCs in the Milky Way, or it could be
indicative of the limitations of Gaia. For every cluster, there are two possibilities.

In the case that an object is real but cannot be detected in Gaia data, such as for
heavily reddened clusters discovered using IR datasets that are obscured by dust in
Gaia data (Cantat-Gaudin and Anders 2020), such an object would be a sign of the
incompleteness of the Gaia OC census. If a significant number of IR clusters are in
fact real, then to study all known OCs, it would be necessary to use both Gaia and
IR datasets simultaneously.

On the other hand, it is also possible that such objects are not real. Gaia has
significantly higher astrometric accuracy than all previous astrometric catalogues,
and Gaia should be sensitive to numerous real OCs, even for those with intermediate
levels of reddening (Cantat-Gaudin and Anders 2020).

While some studies have performed small investigations into clusters missing from
Gaia on a case-by-case basis (e.g. Cantat-Gaudin and Anders 2020; Piatti 2023), the
status of most objects is still unknown. It should be possible to rule out many OCs
reported previously in the literature given a large enough study. Alternatively, if Gaia
is in fact a major limitation in recovering many OCs discovered before Gaia using IR
datasets, then different datasets would need to be used to study such objects. This
would also be a further strong science case for Gaia follow-up missions such as the
proposed GaiaNIR mission for near-infrared astrometry (Hobbs et al. 2016).

Problem 3. The status of clusters discovered with Gaia

At the same time as the aforementioned ‘re-detection crisis’ of clusters reported
before Gaia, thousands of new OC candidates have been reported in the literature.
Most of these objects have not been independently verified (Cantat-Gaudin 2022),

2Calculated for Gaia DR3, which contains ∼250 million sources with G ≤ 18, which is a commonly
adopted cut; however, the final Gaia data release is projected to contain at least 1 billion sources
(Gaia Collaboration et al. 2016).
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meaning that many objects exist in the literature and may be being used for studies
of OCs and galactic structure but without knowing which objects are or are not real
(e.g. Anders et al. 2020; Castro-Ginard et al. 2021). Given that so many clusters
cannot be detected from recent works reporting new OCs before Gaia, with some
works such as (Scholz et al. 2015) having as many as 100% of their clusters being
impossible to redetect (Cantat-Gaudin et al. 2018a), it is not far-fetched to suggest
that there can be reproducibility issues between different studies when reporting
new objects. Hence, there is a need to independently verify new OC candidates
reported recently using Gaia data, preferably also with an alternative methodology
and a thorough analysis of which objects are and are not real.

Additionally, it is also possible that some objects reported recently are duplicates.
The large number of papers reporting new OCs since the release of Gaia DR2
(Fig. 1.8) can make the literature difficult to keep up with (Cantat-Gaudin 2022).
There is likely a need to verify that new cluster candidates are unique and have
not been previously reported in the literature. For instance, during the writing of
this thesis, Chi et al. 2023b (accepted in ApJS) reported 1179 new OCs, which
would represent a large increase in the number of newly discovered OCs in the Gaia
era. However, many plots of their ‘new’ clusters are clearly compatible with OCs
previously reported in the literature (e.g. candidate 14677, which is Blanco 1). The
existence of works containing duplicates ‘muddies the water’ when attempting to
use existing catalogues of OCs in combination with papers reporting new objects.
There is a clear need to verify that newly reported OCs are real, unique clusters.

Problem 4. The completeness of the open cluster census

Despite the publication of many works that have used Gaia data to report thousands
of new OCs (Sect. 1.4.3), it is still unclear how complete the census of OCs is. It is
not clear how many objects are missing or if any further biases contribute to certain
objects being missed. Beyond the widespread disproving of the result in Kharchenko
et al. 2013 that the OC census is complete within 1.8 kpc, there has been little study
in the Gaia era on the completeness of the OC census.

Nevertheless, the completeness of any catalogue, not least the OC census, is an
interesting thing to know that would enable numerous scientific studies. The study
of star clusters in the Milky Way is unique in that we are able to study bound star
clusters of significantly lower masses and luminosities than is possible in extragalactic
studies (Portegies Zwart et al. 2010). While extragalactic astronomy is able to probe
the occurrence rates of massive, highly luminous clusters in a large number of
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galaxies, it is only in the Milky Way that study of low-mass objects is possible, due
to their low luminosity. Milky Way OCs are hence an important calibration point for
understanding star formation at lower mass ranges.

Given that the Milky Way’s cluster age and mass functions are uniquely important in
the general study of star clusters, it is vital that the completeness of the OC census
can be well known. Although this has been attempted in Gaia data by Anders et al.
2020, who also derive a completeness estimate of the OC census, their work has two
main limitations. Firstly, they used the blind searches of Castro-Ginard et al. 2019,
2018, 2020 to calibrate their completeness function. However, it is not known if
the DBSCAN algorithm used in these works has any biases that their completeness
estimate would inherit (see Problem 1/Sect. 1.5.1). Secondly, they only create
a selection function in terms of cluster age and distance. They expect that other
parameters, such as cluster mass or size, could be major factors in the OC selection
function. They were unable to include mass in their selection function due to the
lack of cluster mass measurements in the Gaia era.

In addition, it is not clear how many more new OCs could be detected with future
Gaia data releases. In theory, it should also be possible to extend such a prediction
to other proposed surveys and instruments such as GaiaNIR (Hobbs et al. 2016).
Given that the proposals for GaiaNIR describe science with OCs as a key scientific
justification for the mission, a way to predict how many OCs would be discovered
by a near-infrared astrometric mission such as GaiaNIR would be an interesting way
to strengthen the science case for future astrometric missions and surveys.

Problem 5. The observational definition of open clusters

Finally, and somewhat amusingly, possibly the greatest issue with the OC census
in the Gaia era is that no work can agree on what OCs actually are (at least
observationally). While the theoretical definitions of star clusters in the Milky Way
can now be reasonably clearly defined (Sect. 1.2; Portegies Zwart et al. 2010),
it is challenging to convert these theoretical definitions into a firm observational
definition for OCs. Critically, this presents a number of issues when comparing
between different works or when trying to combine the results of separate OC
studies.

Most works reporting new OCs use different quality criteria to decide which objects
are or are not included in their work. Almost all use some sort of criteria on colour-
magnitude diagrams, requiring that the cluster CMD is narrow and compatible with
a single stellar population. However, this is implemented in many different ways;
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including by using statistical criteria (e.g. Liu and Pang 2019), a neural network
classifier (e.g. Castro-Ginard et al. 2018), or simple manual classification (e.g. He
et al. 2021). Some works require that clusters are clear statistical overdensities
in Gaia, deriving something analogous to a signal-to-noise ratio (S/N) for their
cluster candidates (e.g. Cantat-Gaudin et al. 2019). Some works also limit clusters
based on their physical parameters, requiring that they are compact groups and
hence more likely to be gravitationally bound (e.g. Liu and Pang 2019). Finally, all
works adopt a different minimum size for an OC, ranging from as low as 8 stars
(Castro-Ginard et al. 2018) to as high as 50 (Liu and Pang 2019). With so many
differing definitions of what constitutes a good enough OC candidate, it can be
difficult to compare the results of multiple works or to combine them into singular
catalogues without introducing biases. In addition, most works use simple binary
‘yes/no’ cuts on whether an OC passes a given constraint, which may not capture all
of the uncertainty inherent in deciding whether an edge-case object is or is not a
real OC.

Cantat-Gaudin and Anders 2020 outlined a set of empirical criteria to follow that
all new OC candidates should meet, requiring that OCs are a clear overdensity
in astrometric data, that they have a CMD with a clear homogeneous population
of stars, and that the cluster meets two cuts on its parameters intended to be a
comparable test for being bound: that the radius containing 50% of members is
smaller than 20 pc, and that the cluster’s proper motion dispersion corresponds to an
internal velocity dispersion of less than 5 kms-1. While these criteria are an empirical
minimum for an OC, as a thought experiment, it is still relatively straightforward in
a dense region of the galactic disk to find ∼10 or more stars within 40 pc of each
other and with a velocity dispersion below 5 kms-1, and so these criteria are not
infallible, and could allow unbound moving groups to be misclassified as OCs.

A ‘gold standard’ observational definition of an OC might be more directly derived
from the theoretical definition presented in Sect. 1.2 – requiring that an OC is an
overdensity, a single stellar population, and is unambiguously gravitationally bound.
However, no such way to measure such parameters for a large number of clusters
exists, principally due to the difficulty in measuring the dynamics and boundness of
a large catalogue of star clusters.

1.5.2 The aims of this thesis

Even relative to the major improvements to OC science in the 1990s and 2000s,
Gaia has still been utterly groundbreaking in the quality and quantity of data it
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provides on our galaxy. Never before has so much precise data been available for so
many stars; Gaia will rewrite textbooks on the composition and characteristics of the
Milky Way. Within the field of OCs, this is clear from the many incredible new Gaia
results highlighted in Sect. 1.4. Yet as the many problems discussed in the previous
section show, many issues remain with the census of OCs. In this thesis, I hope to
showcase timely research that can present solutions or partial solutions to the above
problems, developing the methods used to analyse OCs in the Gaia era to maximise
the scientific potential of these objects.

First and foremost, it is impossible to solve many of the other issues in the OC
census without an understanding of the limitations and biases inherent to different
methods for OC retrieval (Problem 1). In addition, numerous unexplored methods
for cluster retrieval present in the computer science literature could provide better
options for the recovery of OCs (Xu and Tian 2015). To date, there has been no
comparative study into the advantages and disadvantages of different approaches
for cluster retrieval, despite the clear importance of understanding the limitations of
different methods; hence, the first part of this thesis focuses on trialling different
algorithms for OC recovery in Gaia DR2 data, performing a comparative study into
their effectiveness. In this study, I will also aim to find optimal ways to divide Gaia
data for OC retrieval, aiming to present a method that can be run efficiently even on
larger datasets, allowing for more sources to be incorporated in the future as Gaia
data releases improve. In the best case scenario, a method can be found that can
redetect the clusters reported by all other works with minimal bias.

With a best method found, other problems in the census will be more straightforward
to solve. Finding the best methodology for OC retrieval and knowing its biases will
allow for the application of the method to solve Problems 2 and 3, and to a lesser
extent Problem 4. Specifically, in the second study of this thesis, I conduct a large-
scale unbiased blind search for OCs using the best method found and data from
Gaia DR3. Depending on which Gaia-discovered clusters can be found in this search
and depending on the effectiveness of the method found in the first study, it will be
relatively simple to solve Problem 3, as some clusters will (or will not) be possible
to re-detect. This study will conduct the largest validation of OCs discovered using
Gaia to date.

An unbiased all-sky search will also allow for a solution to Problem 2. Previously,
studies have generally focused on small, case-by-case attempts to retrieve OCs that
were originally catalogued in pre-Gaia works (e.g. Cantat-Gaudin and Anders 2020).
However, an all-sky search ought to recover all OCs visible in Gaia within the limi-
tations of the adopted methodology; given the understanding of this methodology
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gained from the first study, it should be possible to say with reasonable certainty
whether Gaia should be able to detect many of the as-yet undetected OCs from
before Gaia. This will greatly aid in bridging the OC census from pre-Gaia works
to the Gaia era, tracing down any remaining missing clusters while suggesting that
some are not real.

Inferring the completeness of the OC census is a major task, which this thesis will
contribute towards but will not completely solve. An unbiased all-sky blind search
for OCs is a good tool to find as many OCs as possible and reduce the incompleteness
of the OC census. Despite the many works that have already searched for new OCs
(Sect. 1.4.3), there may still be many new objects left to discover. This search can
be used as a drop-in replacement for the methodology of e.g. Anders et al. 2020,
serving as a better ‘experiment’ to detect a large sample of OCs. However, given that
cluster masses are expected to be a major contributor to the selection function of
OCs in Gaia, with less massive clusters being more difficult to detect, it will also be
important to calculate accurate cluster masses for the entire sample of objects from
the blind search. The final study of this thesis partly focuses on calculating cluster
masses, which will help to solve Problem 4 while also deriving a generally useful
parameter for OCs that has never been derived for such a large catalogue before.
Cluster masses also require cluster ages, which I aim to derive estimates of in the
second study to accompany the overall OC catalogue.

Finally, Problem 5 is likely to continue to plague the OC community for years to
come, owing to the complexity of precisely defining OCs observationally. However,
throughout this thesis, I will present new methods to try and convert a theoretical,
first-principles oriented definition of an open cluster into a practical observational
method to classify objects as OCs, MGs, GCs, false positives, or somewhere in-
between one of those categories. I aim to do so statistically, never presenting simple
binary probabilities of an object being a false positive or one of the classes of real star
cluster, but rather using a statistical treatment to aid in the definition of edge-case
objects that could be between different classes. In the first study of this thesis, I
augment clustering algorithms by trialling a number of different tests for the density
of a cluster compared to its field, deriving a simple and efficient test of a cluster’s
astrometric signal-to-noise in Gaia data. In the second study of this thesis, I use an
approximately Bayesian neural network to classify the likelihood of an OC being
compatible with a single stellar population given the predictions of stellar evolution
models. With the final study of this thesis, I present a preliminary method to test the
boundness of OC candidates and ascertain if they are a real bound object or simply
an MG.
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In total, with this thesis, I hope to contribute to the difficult task of cataloguing
and characterising the OCs of the Milky Way in the era of Gaia. Implicitly, all of
these methods will be ‘future-proof’ and applicable to future Gaia data releases, or
future surveys that could replace the Gaia telescope. Inevitably, no method is perfect,
and I will conclude by speculating on future avenues of research that could further
develop the methods used to analyse OCs.

Before launching into the scientific content of this thesis, it is important to also
present some theoretical background into OCs.

1.6 Further background into star clusters and
associated common methods

To improve the reach and readability of this thesis, I feel it is important to review
some common techniques and pieces of theory from the literature. For the seasoned
open cluster astronomer, this section could be browsed quickly; for the non-specialist,
I hope that this section provides more insight into pieces of theoretical knowledge
that I will assume for the scientific parts of this thesis.

I begin by going into more depth on some of the most important methods to OC
observers.

1.6.1 Analysis of CMDs

As discussed previously, CMDs are essential tools to derive many key parameters of
a star cluster (Fig. 1.4). The most common method to determine the age, extinction,
and to a lesser extent the distance of a cluster is by fitting isochrones to cluster CMDs.
An isochrone gives the predicted colour and luminosity of a population of stars with
a range of masses given that the stars have the same age, extinction, composition,
and distance. Stellar isochrones are derived from stellar evolution models such as
PARSEC (Bressan et al. 2012) and are widely used in many areas of observational
astronomy.

In practice, isochrones are difficult to fit, with age, extinction, distance, and metal-
licity all being somewhat degenerate with one another. Figure 1.11 shows the effect
of varying age and extinction on stellar isochrones, with both age and extinction
moving the location of the cluster turn-off point. Cluster distance merely shifts the
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Fig. 1.11.: Comparison between stellar isochrones of various different parameters, derived
from PARSEC stellar evolution models (Bressan et al. 2012) and shown in Gaia
photometric bands. Left: isochrones of solar metallicity and zero extinction
shown for six different ages. Most noticeably, as cluster age increases, the
magnitude of the turn-off point decreases, with ever-more stars evolving into
red giants and eventually reaching the end of their lives. The rest of the stars
in the cluster also move down slightly, relaxing onto the main sequence as they
age. Right: the log t = 7.9 isochrone from the left plotted at a range of different
extinction values. Extinction reddens cluster stars as well as reducing their
overall brightness. Extinction in Gaia photometry has a strong effect on the
location of the turn-off point.

isochrone up or down based on the cluster’s distance modulus, although this is still
slightly degenerate with age and extinction. Finally, the chemical composition of a
cluster (most often parameterised with its metallicity [Fe/H]) has the smallest impact
on cluster isochrones and is not shown, but will nevertheless slightly impact age and
extinction determination.

Isochrone fitting is further complicated by the presence of other cluster features, such
as blue stragglers, eMSTOs, or the presence of a binary sequence due to unresolved
binaries (see binary sequences in Fig 1.4, showing a clear second line of stars sat
slightly above the main cluster population).

Probably unsurprisingly, there are hence many methods used in the literature to
fit isochrones to data. Particularly as computational power is a major hindrance to
performing three or four-parameter fits with stellar isochrones, historically, it was
common to simply fit isochrones by hand, which includes no robust uncertainty
estimate and can open the door to human biases. For instance, the isochrones in
Kharchenko et al. 2013 were fit by eye, minimising χ2 goodness-of-fit criterions
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manually. Yen et al. 2018 developed this methodology further to perform χ2 fitting
of all cluster parameters autonomously. Hippel et al. 2006 created a full Bayesian
methodology to fit isochrones to cluster CMDs, which has been used by works in the
Gaia era such as Bossini et al. 2019.

By far the main flaw of cluster isochrone fitting is speed. Three or four-parameter fits
using complicated stellar isochrones simply cannot be performed quickly, requiring
significant amounts of computation time to complete in e.g. Yen et al. 2018, making
these key cluster parameters relatively time-intensive to derive using traditional
isochrone fitting techniques. Alternatively, a recently developed approach used in
Cantat-Gaudin et al. 2020 and Kounkel et al. 2020 uses neural networks trained on
the results of a small subsample of precise isochrone fitting results for OCs to derive
ages, extinctions, and distances to clusters. This uses significantly less computational
time, although with the disadvantage that a subset of isochrone fits must be first
created to then use as a training dataset.

1.6.2 Radial profiles

The physical size of OCs is another important property that can be measured. The size
of observed clusters can be compared against theoretical predictions, and interesting
relationships between parameters such as the size of clusters as a function of their
age can be determined (Tarricq et al. 2022).

The simplest commonly used measure of the size of an open cluster is the radius
containing 50% of members, r50, which is the median radius of all detected member
stars from the cluster centre. This radius has been commonly measured in the
literature for OCs (e.g. Cantat-Gaudin and Anders 2020; Cantat-Gaudin et al. 2018a).
For a cluster where the mass of member stars is not correlated with their position
in the cluster, such that high and low mass stars are equally distributed throughout
the cluster (i.e., the cluster is not mass segregated), r50 is equivalent to a common
theoretical definition – the half-mass radius rhm, a radius commonly measured in
theoretical works due to its use in various dynamical equations (Portegies Zwart
et al. 2010).

However, simple measures of cluster radius are not informative about the shape
of a cluster, as clusters have long been known to have different shapes, with some
clusters being more centrally concentrated in their ‘core’ and others being sparser. It
is helpful to apply models to OC radial profiles, allowing for the shape of clusters to
be compared given models of a small number of parameters.
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King 1962 models are the most common models applied to star clusters. While
originally derived for GCs, these models have also been shown to be a good fit to
many OCs (e.g. in Piskunov et al. 2007), with a radial distribution function f given
by:

f = k

 1√
1 + (r/rc)2

− 1√
1 + (rt/rc)2


2

(1.1)

where r is the distance from the cluster centre, rc is the radius of the core of the
cluster (the radius at which the surface density drops to half that of the centre),
and rt is the tidal radius of the cluster beyond which the Milky Way’s potential is
dominant. This can also be convenient to express in terms of the total number of
stars within a distance r from the centre of a cluster n(x), which is given by:

n(x) = πr2
ck

[
ln(1 + x)− 4

√
1 + x− 1√

1 + xt
+ x

1 + xt

]
(1.2)

where x = (r/rc)2 and xt = (rt/rc)2. Within the tidal field of a galaxy (such as the
Milky Way), it is also helpful to compare the King tidal radius with the theoretically
predicted Jacobi radius of a spherically symmetric cluster rJ :

rJ =
(

GM

4Ω2 − k2

) 1
3

(1.3)

which relates the limiting radius of a cluster’s potential field (its Roche surface) rJ
to the cluster’s mass M , given the circular frequency Ω and the epicyclic frequency k
of the cluster’s orbit. Stars outside of rJ are no longer bound to the cluster, with the
galaxy’s gravitational potential instead being dominant. For a spherically symmetric
cluster on a circular orbit, rJ ≈ rt, relating a cluster’s mass to the product of a King
model fit (or vice versa) (Binney and Tremaine 1987). Works including (Piskunov
et al. 2008) have used this relation to derive cluster masses from King model fits.

As an empirical model, the King 1962 model is mostly useful for simple observational
comparisons between clusters, such as comparisons between the core and tidal radii
between clusters of different ages (Kharchenko et al. 2013; Tarricq et al. 2022). King
1966 re-derives a similar model from theoretical principles, including by assuming
that the velocity distribution of stars in the centre of a star cluster is isothermal and
that the cluster is in virial equilibrium. The shape of these models is parameterised
by a dimensionless variable W0 which parameterises the concentration of a cluster,
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with higher values corresponding to a more centrally concentrated cluster. For
W0 . 7, King 1962 and King 1966 models are very similar. In practice, almost all
OCs have W0 < 7, and so these models can be used somewhat interchangeably
(Portegies Zwart et al. 2010). Due to the significantly simpler functional form of
King 1962 models, they are used almost exclusively in the OC literature relative to
King 1966 models (Cantat-Gaudin 2022; Portegies Zwart et al. 2010).

Finally, it is worth mentioning the model of Plummer 1911. Once again originally
designed for GCs, this model parameterises how centrally concentrated a star cluster
is based on a single scale factor a. Unlike King 1962 and King 1966 models, the
Plummer 1911 model assumes star clusters do not have a physical limiting radius
and extend to infinity, which is of course unrealistic. Nevertheless, the Plummer
1911 model is still a satisfactory approximation of star cluster distribution functions,
and it is still used in the literature due to its simple functional form for which many
parameters can be solved analytically (Dejonghe 1987). Plummer 1911 models
are particularly popular in theoretical studies of star clusters due to this reason
(Portegies Zwart et al. 2010). The most interesting observational property of the
Plummer 1911 model is its two-dimensional distribution function, which is given
by:

f = k
{

1 + (r/a)2
}−2

(1.4)

where k is a normalisation constant.

1.6.3 Dynamics

Later in this thesis, I use measures of OC dynamics to test if OCs are bound. Some
works such as Bravi et al. 2018 and Pang et al. 2021 have used similar methods on
small scales to test if OCs are bound. The following useful definitions are all from
Portegies Zwart et al. 2010.

Firstly, for a cluster with a one-dimensional velocity dispersion σ1D, its total kinetic
energy T is approximately

T = 3
2Mσ2

1D (1.5)

where M is the total cluster mass. In addition, one can define the total potential
energy of a cluster U as
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U = −GM
2

2rvir
(1.6)

where G is the gravitational constant and rvir is the theoretically defined virial radius
of the cluster, a parameter that is difficult to calculate observationally as it requires
three-dimensional positions. The three-dimensional virial radius can be converted
to the two-dimensional deprojected median radius r50 with

rvir = η

6r50 (1.7)

where η is a constant that is model-dependent. For an ideal Plummer 1911 model, η
is equal to 9.75, although in practice, this value can be out by a factor of two to four
in extreme cases of star clusters with distributions that are poorly described by a
Plummer 1911 model (Portegies Zwart et al. 2010).

Finally, putting these together, one can define the virial ratio Q of a cluster, which
is the ratio of kinetic to potential energy for a given bound system. Since the virial
theorem predicts that 2T + U = 0, Q is hence given by

Q = T

|U |
= ηr50σ

2
1D

2GM ≈ 1
2 for a bound cluster. (1.8)

Equation 1.8 is also commonly expressed in terms of the predicted one-dimensional
velocity dispersion of a virialised cluster σvir for a cluster of a given mass and radius
(e.g. in Bravi et al. 2018), as

σvir =
√
GM

ηr50
. (1.9)

With these equations and measures of cluster mass, radius, and velocity dispersion,
it is possible to probe the overall dynamical state of a cluster observationally or in
the result of simulations (Banerjee and Kroupa 2017; Bravi et al. 2018; Pang et al.
2021).

1.6.4 Formation, evolution and destruction

Finally, having considered various individual pieces of important theory, it is also
worth discussing the current overall theory of star cluster formation and evolution,
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which should give some theoretical context to the clusters observed at different ages
in this work.

Formation (up to ~1 Myr)

As discussed previously, stars form when clouds of cold molecular gas (giant molecu-
lar clouds, GMCs) within galaxies collapse due to gravity. This process is not believed
or observed to be continuous: stellar winds from young stars rapidly heat and blow
away any remaining gas within the cluster, preventing further star formation from
occurring. Effectively, this process ‘freezes’ star formation, ensuring that the resulting
group of stars is roughly homogeneous in age and chemical composition (Krumholz
and McKee 2020; Lada and Lada 2003). If the parent GMC is dense enough, then
the stars will eventually collapse into a bound star cluster (Krumholz and McKee
2020; Krumholz et al. 2019; Portegies Zwart et al. 2010). GMCs in the local universe
generally have masses in the range ∼ 103 to ∼ 107 M�(Krause et al. 2020). For
exceptionally large GMCs with masses in excess of ∼ 108 M�, it is believed that
they are large enough to form clusters as massive as GCs. Such conditions are rare
in the current universe, being much more common at redshifts z & 2 (Krumholz
et al. 2019); such high-mass GMCs and the clusters they form are hence outside of
the range of open clusters in this study, which generally have ages of no more than
∼1 Gyr.

Historically, it was believed that all stars formed in bound star clusters. However,
recent observations with Gaia have suggested that it may only be a minority of stars
that form in bound clusters (Ward et al. 2019; Wright 2020). Nevertheless, for GMCs
that are dense enough to at least form an OC, a bound, virialised young cluster will
emerge.

Supernova feedback and expansion (~1 to ~30 Myr)

Once stellar winds expel the initial gas a bound cluster formed from, star clusters
in the disk of the Milky Way continue to have a somewhat tumultuous life. Young
clusters were typically observed to have sizes larger than those predicted by N-body
simulations; it is now believed that other processes must inject energy into early
young star clusters in order for them to reach their present-day larger sizes (Banerjee
and Kroupa 2017).

After initial gas expulsion within the cluster stops additional star formation, star
clusters are believed to continue interacting with surrounding gas in their parent
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Fig. 1.12.: The evolution of the virial ratio of simulated star clusters with a ‘placid’ model
of explosive feedback. Simulations were conducted given a cluster of mass
3 × 104 M�, with the dashed line showing a cluster with an initial half-mass
radius of 1 pc and the solid line showing a cluster with an initial half-mass radius
of 4 pc. Credit: Banerjee and Kroupa 2017.

GMC for multiple Myr. Stellar winds and feedback from supernovae will continue to
disperse the GMC well beyond the radius of the cluster, forming a HII region. This
causes a ‘gravitational feedback’ effect, where the massive GMC is blown away and
net forces on stars in the cluster also add energy to the system, causing the cluster
to be supervirial and undergo a phase of expansion (Krause et al. 2020).

The exact physics of this feedback are still under study, although Fig. 1.12 taken
from Banerjee and Kroupa 2017 shows the virial ratio of simulated star clusters with
respect to time, for an intermediate or ‘placid’ model of explosive stellar feedback.
Within the first 10 Myr of the cluster’s lives, feedback causes them to become
supervirial. Once the parent GMC has been dispersed, the clusters continue to
expand, before eventually reaching dynamical equilibrium and returning to a state
with Q ≈ 0.5 after a few tens of Myr. These simulations echo the results of Kuhn
et al. 2019, who studied 28 young stellar groups with Gaia DR2 and found that 75%
were undergoing expansion (i.e. are supervirial).

All star clusters are expected to lose a significant portion of their initial mass during
this phase of expansion. It has been theorised that bound clusters that form with low
initial masses or high initial radii may even be completely destroyed in the initial
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phase of feedback and expansion, which ought to be visible as unbound cluster
remnants (Krause et al. 2020).

Evaporation and destruction (up to ~1 Gyr)

Since OCs are rarely observed at ages greater than ∼ 1 Gyr, it is clear that some
processes eventually destroy them over time. This is believed to happen in three
ways.

Firstly, stellar evolution will gradually cause mass loss in a cluster, with more
massive stars undergoing supernovae and evolving into compact remnants, losing a
significant proportion of their mass in the process. However, since most stars are
more compact M, K, or G stars with lifetimes significantly longer than the typical
maximum OC lifetime of 1 Gyr, this effect is relatively insignificant during the
lifespan of an OC (Krause et al. 2020).

Secondly, clusters gradually lose stars over time in a process known as evaporation.
The stars in a cluster will not all have the same velocity; a cluster in dynamical equi-
librium will have an isothermal velocity dispersion that is approximately Maxwellian.
Some stars with velocities at the tail end of this distribution will have velocities
higher than the escape velocity of the cluster vesc, and will be ejected from the cluster.
Over time, two and three-body interactions will accelerate some stars preferentially
and ensure that a small proportion of cluster members always have velocities greater
than the cluster’s vesc (Krause et al. 2020; Portegies Zwart et al. 2010). Stars are
preferentially ejected via the cluster’s L1 and L2 Lagrange points relative to the tidal
field of the Milky Way, which produces the observed tidal tails of many clusters in
Gaia (Portegies Zwart et al. 2010; Tarricq et al. 2022). Less commonly, stars will
still be ejected in a random direction (opposed to via a Lagrange point), producing
an additional spherical ‘coma’ or ‘corona’ of recently ejected stars around a cluster,
an effect that has also been observed in Gaia data for a number of nearby OCs
(Meingast et al. 2021; Tarricq et al. 2022).

Finally, star clusters are theorised to be heavily disrupted by tidal ‘shocks’ (per-
turbations). Reasonably often within every 1 Gyr, star clusters in the Milky Way’s
disk are expected to come close to or even collide with various pieces of massive
galactic structure, such as GMCs or transient spiral arms. The tidal perturbations
from these interactions increase the energy of stars in a cluster and should cause
considerable mass loss. Due to the rarity of these events, they are yet to be directly
observed for OCs in the Milky Way; nevertheless, simple theoretical arguments can
show that these events will occur reasonably often for any star cluster in the disk.
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Especially within the first 1 Gyr of an OC’s life, tidal shocks are expected to be a
major (and potentially even dominant) method of star cluster destruction (Krause
et al. 2020).

1.7 The structure of this thesis

The remaining structure of this thesis will be as follows:

Chapter 2: Comparison of clustering algorithms applied to Gaia DR2 data

In the first study of this thesis, I compare clustering algorithms for OC retrieval in
Gaia DR2 data. I review a number of different algorithms, before settling on three
for use in the study. I develop methods to use these algorithms in a blind search,
including a statistical density test to remove false positive clusters. I then use them to
look for 100 OCs in Gaia data from the catalogue of Kharchenko et al. 2013, as well
as a wider sample of 1385 OCs that were less well studied. A further development
of the DBSCAN algorithm, HDBSCAN, was found to be the most effective algorithm
for OC retrieval. Additionally, 41 new OCs were detected in the study.

Chapter 3: An all-sky cluster catalogue with Gaia DR3

Having refined an initial clustering methodology in Chapter 2, I conduct the largest
ever blind search for OCs in Gaia data, using HDBSCAN and data from Gaia DR3
down to magnitude G ∼ 20. To further refine the results, I use a Bayesian neural
network to derive the probability of clusters being a single population of stars. In
addition, I use a similar Bayesian neural network to derive ages, extinctions, and
distances to the clusters in the work. A catalogue of 7167 clusters is produced, 2387
of which are candidate new objects and 4782 of which crossmatch to objects in the
literature. 4105 clusters are in a high-quality sample of objects, including 739 of
which are new. OC membership lists resulting from this method generally contain
more member stars than in previous literature works, and often have tidal tails. It is
possible to rule out over 1000 clusters from the pre-Gaia catalogue of Kharchenko
et al. 2013 that I am unable to detect. However, some of the clusters recovered in
this chapter appear more compatible with unbound moving groups, and will require
further classification with a dynamical methodology.

Chapter 4: The masses and dynamics of star clusters in the Milky Way

In the third scientific chapter of this thesis, I develop methodologies to accurately
determine whether OC candidates are gravitationally bound, aiming to determine
accurate masses, velocity dispersions, and radii for the clusters in the catalogue from

1.7 The structure of this thesis 37



Chapter 3. Firstly, I derive cluster masses corrected for selection effects for 6974
clusters, representing the largest catalogue of cluster masses derived using Gaia data.
I use these cluster masses to derive the Jacobi radii of these clusters. Next, I calculate
velocity dispersions for these clusters, representing the largest catalogue of accurate
cluster velocity dispersions ever measured. Using these parameters for the clusters,
I show that the probability that a cluster has a valid Jacobi radius is an effective
way to distinguish between bound OCs and unbound moving groups. However, the
velocity dispersions I derived are less useful, and I show using simulations of Gaia
observations that cluster velocity dispersions measured using proper motions are
likely to be over-estimated due to contamination from binary stars. I show that no
more than 5619 clusters from the catalogue in Chapter 3 are compatible with bound
OCs. In addition, I use these results to derive an approximate mass-dependent 100%
completeness estimate for the Gaia DR3 OC census.

Chapter 5: Conclusion

Finally, I present an overview of all the work contained within this thesis. I discuss
the contribution of this thesis to the scientific literature. I also discuss the future of
OC science in the Gaia era and beyond, and suggest a number of future avenues for
research leading on from this thesis.
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Comparison of clustering
algorithms applied to Gaia
DR2 data

2

„The reward of the young scientist is the
emotional thrill of being the first person in the
history of the world to see something or
understand something. Nothing can compare
with that experience.

— Cecilia Payne-Gaposchkin
(1977)

Details of authorship. The content of this chapter is almost entirely based on work
published in Hunt and Reffert 2021. I conducted all scientific work and wrote all of the
text. Suggestions and corrections from my supervisor and the reviewer of the paper are
included in the text. The formatting of figures and tables has been adjusted to better fit
the formatting of this thesis.

2.1 Introduction

Open clusters (OCs) are commonly known as the laboratories of stellar evolution,
which form when large gas clouds collapse into dense, gravitationally bound regions
of stars. The stars in OCs have roughly the same age and chemical composition,
meaning that every OC is a unique ‘experiment’ showing the results of stellar
evolution with stars across a range of masses given a certain set of initial conditions.
In particular, OCs in our own galaxy are the most enlightening to study, since
their proximity means that individual stars can be resolved and parameters can be
determined to higher levels of precision.

The number of known open clusters has not changed significantly until recently.
The New General Catalogue (NGC) listed ≈700 objects that we now know to be
OCs (Dreyer 1888), the most comprehensive catalogue of its time – yet over a
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century later, the catalogue of Mermilliod 1995 had only increased to a size of 1200
OCs, not even doubling the OC census despite the large strides in astronomical
instrumentation and data analysis taken in the 20th century. In part, this is because
numerous clusters in the literature were ruled out as associations by modern data,
reducing the size of the census – yet it still persists that a century of work did not
significantly increase the size of the OC census.

The largest increases to the size of the census came with the advent of new tech-
niques. The space-based astrometric survey of the Hipparcos satellite (Høg et al.
2000) revealed a number of new, often relatively sparse OCs in studies such as
Platais et al. 1998 and Chereul et al. 1999, while wide-field infrared surveys looked
through interstellar extinction to find new OCs in studies such as Dutra and Bica
2001 and Froebrich et al. 2007. The catalogue of Kharchenko et al. 2013 (hereafter
MWSC) lists 2267 probable OCs and a further 132 that showed nebulosity, a major
increase from the figure of Mermilliod 1995 just two decades prior.

The next major increase to the size of the OC catalogue is currently in progress
thanks to the Gaia satellite (Brown et al. 2018). Gaia maps the stars of the Milky Way
in five dimensions (positions, proper motions, and parallax), while also providing
visual photometry and colours in its own G, GBP , and GRP photometric bands, and
spectroscopic radial velocities for a small sample of bright stars. Compared with
Hipparcos, Gaia has roughly an order of magnitude more precision in astrometric
parameters for 104 times as many stars, resulting in a groundbreaking dataset that
has full astrometric solutions and photometry for 1.3 billion stars as of Gaia DR2, 7
million of which also have radial velocities.

It is perhaps unsurprising that such a large improvement in our ability to map the
galaxy is also greatly improving the OC census. In terms of quantity, works such
as Castro-Ginard et al. 2019, 2018, 2020, Liu and Pang 2019, Sim et al. 2019,
and Cantat-Gaudin et al. 2019 have recently reported hundreds of candidate OCs
using Gaia data. Typically, this is done using automated blind searches of the Gaia
dataset with clustering algorithms – a type of unsupervised machine learning that
can find the most natural groupings or clusters within a dataset, requiring only basic
parameters and minimal prior knowledge about the structure of the data.

The precision of Gaia is also improving the quality of the OC census. While tradi-
tionally, distances to OCs would be derived using photometry alone and fitting a
model-dependent stellar isochrone to the OC’s colour-magnitude diagram, Gaia par-
allaxes provide an unbiased and model-independent distance estimator – allowing
parameters for OCs to be derived to greater levels of precision (e.g. Cantat-Gaudin
et al. 2020) . Cantat-Gaudin et al. 2018a derive membership lists and parameters
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for 1229 OCs using Gaia DR2 data alone, which has been expanded with some
re-analysis and by including recently detected clusters in Cantat-Gaudin and Anders
2020. It is expected that some OCs listed in MWSC will not be detectable in Gaia
data. Gaia’s visual band observations are unable to see into areas of high dust
extinction unlike the infrared photometry used by MWSC – obscuring small, distant
OCs from view in regions with high extinction, such as towards the galactic centre
at distances greater than ∼ 3 kpc. In addition, parallaxes and proper motions have
fractional uncertainties that increase with distance, which has a significant negative
effect on the signal to noise ratio of OCs in Gaia data at distances larger than ∼ 1− 3
kpc.

However, despite astrometric uncertainties or dust obscuring Gaia’s view of some
clusters, it is also possible to rule out a number of OCs that should still be detectable
in Gaia data based on their existing parameters. Cantat-Gaudin and Anders 2020
have ruled out 38 OCs in the literature as asterisms, all of which should be bright
enough to detect in the Gaia dataset based on their reported parameters but do not
appear to exist. Future studies will be able to rule out yet more putative OCs based
on Gaia data alone, particularly as Gaia data improves in the coming years with
future releases.

In its current state, the OC census is difficult for astronomers to use. Despite MWSC
deriving that the OC census was complete to within 1.8 kpc, the recent myriad of
studies using Gaia data have shown that many more OCs are yet to be discovered
within the immediate solar neighbourhood. Until the OC census is shown to be
complete to within a certain radius, it is impossible to calculate accurate population
statistics about OCs in the Milky Way. In addition, the many asterisms that are not
yet concretely ruled out in the literature make the OC census more difficult to use,
as not all reported OCs in the literature are really there and many do not make good
targets for precious telescope time.

Within the next decade, future data releases of the Gaia satellite and large-scale
spectroscopic surveys such as 4MOST (de Jong et al. 2012) will provide astronomers
with a wealth of data on on our galaxy. OCs are an important piece of the jigsaw
puzzle of the Milky Way’s current and past star formation. An OC census with greatly
improved quality and quantity will allow astronomers to use the census reliably for
a range of scientific purposes, including mapping the age distribution of OCs across
the galaxy (Cantat-Gaudin et al. 2020; Yen et al. 2018), studies of the chemical
composition of OCs (Baratella et al. 2020; Donor et al. 2020), to even studying the
conditions of planet formation in OCs and the implications that may have for the
distribution of the wider exoplanet census (Fujii and Hori 2019).
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To date, a number of different methods have been used to search for new or
existing OCs in Gaia data. While UPMASK (Unsupervised Photometric Membership
Assignment in Stellar Clusters, Krone-Martins and Moitinho 2014) as used by Cantat-
Gaudin et al. 2018a and Cantat-Gaudin and Anders 2020 is a highly successful tool
for producing membership lists of existing OCs, it is too slow to conduct a large-scale
blind search across the billion star dataset of Gaia. In turn, while approaches such
as the one applied in Castro-Ginard et al. 2020 has detected hundreds of new OCs in
the Gaia dataset, their method is unable to detect a large fraction of literature OCs,
suggesting that their approach may also be unable to detect a large fraction of as yet
undiscovered OCs with similar properties. Different approaches have advantages
and disadvantages that have never before been compared side-by-side on Gaia data,
and no single approach has yet been developed that can simultaneously detect new
OCs in a large-scale blind search while also detecting a majority of already-reported
objects.

In this series of papers, we will work to improve the OC census: primarily by
attempting to detect new OCs, but also by re-detecting a large fraction of literature
OCs with a different methodology and complementing cataloguing efforts such as
Cantat-Gaudin and Anders 2020. In this study, we create an unbiased preprocessing
pipeline to prepare Gaia data for analysis by clustering algorithms, and test the
ability of three clustering algorithms to detect OCs in Gaia data. In Sect. 2.2, we
describe the Gaia data used and the applied pre-processing steps. Section 2.3
outlines the requirements for any clustering algorithm to be applied to Gaia data and
describes three chosen algorithms that meet these criteria. Our analysis process for
the algorithms applied to our data and the results of this are presented in Sect. 2.4.
In Sect. 2.5, we discuss the strengths and weaknesses of each approach and the
implications for future studies. We report on 41 new OC candidates discovered
during the preparation of this paper in Sect. 2.6. Finally, Sect. 2.7 summarises our
results.

2.2 Data

2.2.1 The Gaia DR2 dataset and the HEALPix system

The results of any unsupervised search for OCs are always highly dependent on the
input data and how it is preprocessed: assumptions must be made for reasons of
computational efficiency (for instance, splitting the dataset into separate chunks to
improve runtime), and dimensions of the data with different units and coordinate
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Fig. 2.1.: Target fields for this study plotted above a Gaia map of stellar density in an
equirectangular projection. Cyan regions show the 100 main HEALPix level five
pixels. Each main pixel was merged with its eight nearest neighbours, which are
shown in blue. Some nearest neighbour pixels overlap between different fields.

systems must be intelligently preprocessed to allow an unsupervised algorithm
to take full advantage of Gaia data. We briefly introduce the Gaia satellite and
explain the preprocessing pipeline we developed to prepare its data for use with
unsupervised clustering algorithms.

The Gaia satellite is producing a previously unprecedented quantity and quality of
astrometric and photometric data for stars in the Milky Way. 1.7 billion sources
brighter than G = 21 are included in Gaia DR2, where 1.3 billion have full five-
parameter astrometric solutions. Uncertainties on derived parameters for each
source depend strongly on the brightness of the source. While as many detected
sources as possible are included in Gaia DR2 for completeness, the majority of faint
sources are not useful for studies of galactic structure as the uncertainties on their
parameters are too large.

For example, a star with brightness G = 17 would have corresponding uncertainties
of 0.1 mas in parallax and 0.2 mas yr−1 in proper motion (Brown et al. 2018). If
this star is 1 kpc away and hence has a true parallax of 1 mas, a measured parallax
for this star would be informative to within roughly 10% of the true distance. The
uncertainty on proper motion for this star would easily allow it to be distinguished
as a member of an open cluster, as open clusters at this distance typically have an
inherent proper motion dispersion of ∼1 mas yr−1 which is larger than the star’s
proper motion uncertainty. However, a faint star with G = 20 at a true distance of 1
kpc will have corresponding uncertainties of 0.7 mas in parallax and 1.2 mas yr−1 in
proper motion. Any parallax measurement for this star will be much less informative
about the star’s true distance, with a near 100% fractional uncertainty. Its proper
motion uncertainty is larger than the typical dispersion of proper motion in OCs at 1
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kpc, meaning that this faint star could never be reliably assigned as a member of an
OC with Gaia DR2.

As such, most studies adopt a cut on the dataset to ignore uninformative stars and
improve the signal to noise ratio of open clusters in the Gaia data. For the purposes
of this study, we cut all stars fainter than G = 18, corresponding to typical maximum
uncertainties of 0.15 mas in parallax and 0.3 mas yr−1 in proper motion, which is
the same magnitude cut as used by Cantat-Gaudin et al. 2018a and Liu and Pang
2019, although Castro-Ginard et al. 2020 adopt a stronger cut at G = 17.

Some studies (such as Castro-Ginard et al. 2020; Liu and Pang 2019) also remove
outlier stars based on the magnitude of their proper motions or parallaxes. We
choose not to remove stars with negative parallaxes, as this would make our study
less sensitive to the most distant clusters for which member stars may have zero or
negative parallax values. We also do not remove stars with high proper motions –
while very few open clusters have proper motions µα∗ or µδ of greater than 30 mas
yr−1, we still wish to have as few biases as possible in this study.

To select regions of the sky for study, we use the HEALPix1 (Hierarchical Equal
Area isoLatitude Pixelization) scheme (Górski et al. 2005) to select equal-area
approximately quadrilateral regions of the Gaia dataset. HEALPix has advantages
over rectangular tesselation schemes (such as those used in Castro-Ginard et al.
2020) since spherical distortions from projecting quadrilaterals onto the sky are
spread out, allowing algorithms to be ran on equal-area pixels. In addition, Gaia
sources are numbered based on a HEALPix system, making the HEALPix system
convenient for a study of Gaia data to implement.

We aim to tile the sky into manageable chunks: large enough to contain OCs beyond
a certain distance, but not so large that the amount of data in each chunk becomes
prohibitively computationally expensive to run on. These chunks should also be
easy to overlap, so that our future blind searches would not have edge effects. To do
this, we select a region of study and its HEALPix level five pixel. The eight nearest
pixels to each central pixel are added to each region of data to analyse, creating
chunks each of area ∼ 31 deg2 and side length approximately 5◦. 0.2% of HEALPix
pixels only have seven neighbours and will hence have slightly smaller areas. It
may be difficult to detect OCs closer than ∼350 pc with this tiling scheme since a
typical OC at this distance may have a larger tidal radius that the data field. Any
future blind search would be supplemented with a clustering analysis in Cartesian
co-ordinates of all stars within 500 pc, solving this issue and also allowing nearby

1http://healpix.sourceforge.net
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OCs to be properly detected without issues stemming from spherical distortions at
angular separations greater than roughly ∼ 10◦.

HEALPix is straightforward to use with Gaia data, since all stars are numbered based
on the HEALPix pixels they are present in. For a given source_id, its HEALPix pixel
at level n is given by:

HEALPix pixel = FLOOR
(

source_id
235 · 412−n

)
. (2.1)

For efficiency when querying the Gaia database with ADQL, this formula is inverted
and used to select all stars with a source_id in the correct range of values. When
downloading the stars in a given pixel, we require that all sources have a full five-
parameter astrometric solution, valid GBP and GRP photometry, and a G-band
magnitude less than 18. An exact copy of the ADQL query used for this study is
included in Appendix A.1.

2.2.2 Selection of target fields

To study the effectiveness of clustering algorithms across a representative sample of
stellar densities, we randomly selected 100 objects from MWSC that were each in
unique HEALPix level five pixels. This list of 100 objects formed a list of 100 ‘main
objects’ to study. The eight nearest pixels to each central pixel were added to each
of the 100 selected pixels to analyse. This resulted in 100 separate chunks, with
733 unique HEALPix level five pixels out of 900 in total since the neighbour pixels
of different chunks were allowed to overlap. The fields are shown in Fig. 2.1 and
listed in Appendix A.5. The fields contained between 100 000 to 4.2 million stars,
with a mean of 734 000 stars. In total, all fields contain 56.8 million unique stars,
representing ≈20% of the 260 million stars in Gaia DR2 brighter than G = 18.

All but one of these fields are in the galactic disk with | b | < 25◦, and many of them
are situated in areas of dense star formation where many OCs are present. We
accidentally selected two globular clusters in our main list that did not contain any
OCs centrally located in their field, which we replaced in our main list of 100 OCs
with OCs from fields 14 and 57. To expand the target list from the initial 100 OCs
to include other OCs contained within these fields, we searched the catalogues of
MWSC, Cantat-Gaudin and Anders 2020, Castro-Ginard et al. 2020 and Liu and Pang
2019, which contain a total sum of 4002 reported OCs. We required that reported
OCs in the literature be entirely contained by a field given their reported radius
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and distance to mitigate edge effects which could cause non-detections. For Cantat-
Gaudin and Anders 2020 OCs, 2 · r50 (the radius containing half of the members of
the OC) was used as a proxy for tidal radius. For the catalogue of Castro-Ginard et al.
2020, which lists Gaussian angular dispersions θ containing ∼ 68% of members, 2 · θ
was used as a proxy for tidal radius. In total, the literature reports 1385 unique
OCs contained within the 100 fields, all of which should be entirely visible and not
partially clipped by the fields’ edges. This represents roughly a third of the total
number of clusters that the above four works report.

The objects in MWSC that remain undetected in Gaia data present a particular
challenge for the algorithms in this study. Since Cantat-Gaudin and Anders 2020
have found that a number of clusters listed in MWSC are not real, we do not
expect any algorithm to detect OC candidates corresponding to all listed targets,
meaning that most MWSC targets are false positives that should be discarded by the
algorithms. However, a small number of MWSC objects may be real but are simply
as yet undetected in Gaia data due to limitations of the methodologies used. Hence,
the inclusion of MWSC objects allows us to test the ability of the algorithms to rule
out putative objects, corresponding to their true and false negative rates, while also
testing the algorithms against the sensitivity of existing approaches and seeing if any
additional MWSC targets can be recovered in Gaia data with new methodologies.
We chose to use real Gaia data for our study instead of simulated data so that we can
develop our full pipeline from start to finish to work with real data, which includes a
number of challenging aspects such as systematic errors on astrometric parameters,
Lindegren et al. 2018 that would not be adequately tested by using simulated data
only.

2.2.3 Preprocessing steps

In the limit of small errors, clustering analysis could be performed with three-
dimensional spatial data in a Cartesian frame. However, parallaxes are inherently
difficult to measure and have large fractional uncertainties in Gaia, and transforming
the spherical co-ordinate system of Gaia data to Cartesian co-ordinates is non-trivial
and would introduce large errors to other axes of the data. As such, it is easier to
remain in a spherical co-ordinate system to avoid contaminating positional data with
the large errors of parallax measurements. Searches for OCs are helped immensely by
proper motions, as OCs are gravitationally bound groups of stars that appear tightly
clumped in proper motion space. These could be changed to Cartesian velocities
with parallaxes, but this is avoided for the same reasons as with positions.
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Attempts were made to use distances instead of parallaxes with the distance cata-
logue of Bailer-Jones et al. 2018. However, while their method is appropriate for
macroscopic studies of galactic structure, it places stars with uncertain parallaxes at
a prior-defined distance, which moves low magnitude member stars further from
their parent OCs in the data and was found to reduce the signal to noise ratio of OCs
in the data. Alternative distance estimators that are better at preserving small scale
galactic structure could be investigated in the future, such as StarHorse (Anders
et al. 2019) which uses magnitude information and stellar models to increase the
accuracy of Gaia-derived distances.

Some pre-processing can be done to reduce the effect of remaining in a spherical co-
ordinate system and using parallaxes instead of distances, but without contaminating
other dimensions of the data with the large uncertainties of parallax measurements.
To remove spherical distortions that occur at high latitudes in position and proper
motions, every field is rotated to an arbitrary co-ordinate frame (λ, φ) centred at
(0,0) and rotated to have edges parallel with the co-ordinate axes for neater plotting
of individual fields, with proper motions µα∗, µδ also transformed to the new frame
as µλ∗, µφ.

Machine learning algorithms benefit from having scaled inputs, so the five dimen-
sions of data for each field (λ, φ, µλ∗, µφ, $) are re-scaled to have a median of zero
and a unit inter-quartile range using a RobustScaler object from scikit-learn
(Pedregosa et al. 2011b). This process is resilient to outliers, unlike scaling to have
zero mean and unit variance as is sometimes used in the literature. This re-scaling
process also ensures that each co-ordinate axis has an equal weight when passed to
clustering algorithms. We choose not to experiment with re-weighting dimensions of
the dataset as was performed tentatively by Liu and Pang 2019, although this could
be explored in future works.

2.3 Selection and implementation of clustering
algorithms

2.3.1 Criteria

While many clustering algorithms exist in the literature, the complexities of Gaia
data make only a few appropriate for a large-scale unsupervised OC search. In future
works, we will run on the ≈ 200 million stars in Gaia data brighter than G = 18,
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Tab. 2.1.: Algorithms considered for inclusion by this study.

Runtime Deals with Open-
Algorithm scalinga noise source
KMeans n No sklearnb

Affinity propagation n2 No sklearnb

Mean-shift n2 No sklearnb

Spectral n3 No sklearnb

Ward n3 No sklearnb

Agglomerative n3 No sklearnb

DBSCAN n logn Yes sklearnb

OPTICS n2 Yes sklearnb

Gaussian mixtures n No sklearnb

Birch n No sklearnb

Friend of Friends n logn No pyfofc

HDBSCAN n logn Yes HDBSCANd

Notes. (a) Runtime scalings are best case estimates and are only
given with respect to number of data points n. (b) https://scikit-learn.org/
(c) https://pypi.org/project/pyfof/ (d) https://pypi.org/project/hdbscan/

only a small fraction of which reside in OCs. Individual fields can contain up to
approximately five million stars. Hence, any clustering algorithm would need to be
extremely efficient at searching through a large quantity of data to find rare objects
that require a high degree of sensitivity to detect.

In later parts of this work, we compare the performance of the clustering algorithms
we selected. However, to be selected for further study, the algorithms must be even
remotely practical for use with Gaia data. We set the following basic requirements
on clustering algorithms for inclusion in this study. Firstly, it must be fast enough to
run on the entire Gaia dataset with a few weeks of wall time on a relatively powerful
computer. Secondly, it must be able to deal with unclustered field stars (noise), as
only a small fraction of stars in the Milky Way reside in OCs and the rest must be
discarded. Finally, an open-source implementation must be readily available in the
literature for the algorithm.

The performance of all clustering algorithms against these criteria listed in the
scikit-learn (Pedregosa et al. 2011b) Python library, in addition to two other com-
mon algorithms considered here, is listed in Table 2.1. The galaxy cluster detection
algorithm AMICO (Adaptive Matched Identifier of Clustered Objects, Bellagamba
et al. 2018) was also investigated for this work, but necessary modifications to
the algorithm were not made in time to adapt it for use with Gaia data. AMICO
was a top performing algorithm on mock Euclid data (Euclid Collaboration et al.
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2019), and so its application to OC detection would still be worth investigating in
the future.

The first criterion disqualifies the vast majority of clustering algorithms in the
literature. Practically, algorithms with runtime complexities of O(n2) or worse
(where n is the number of stars) are too slow to run on large segments of the Gaia
dataset. For instance, while OPTICS (Ankerst et al. 1999) has seen some use in
astronomy analysing smaller portions of the Gaia dataset – such as by Ward et al.
2019, who used OPTICS to detect OB associations – its O(n2) runtime complexity
was found to be prohibitively slow for inclusion in this work.

The second criterion favours density-based clustering algorithms such as DBSCAN
(Density-Based Spatial Clustering of Applications with Noise, Ester et al. 1996) and
HDBSCAN (Hierarchical DBSCAN, Campello et al. 2013), which are the only class
of clustering algorithm that can discard points that are not in locally dense regions.
These algorithms use nearest-neighbour distances to infer the local density around
points, with points in low density regions discarded as field stars. However, some
success has also been had in the literature with using fast algorithms to partition
all data and only keep partitions that look like OCs, such as with Gaussian mixture
models (Dempster et al. 1977, hereafter GMMs) by Cantat-Gaudin et al. 2019. A
simple cut on proper motion dispersion can be enough to discard most non-OC
partitions. The third criterion is unrestrictive, as open-source implementations exist
for all algorithms that will be considered in this study.

Three algorithms were selected for further study. Firstly, DBSCAN, as mentioned
previously, is a fast density-based clustering algorithm with excellent scalability, that
has already proven itself in the literature in the blind searches of Castro-Ginard et al.
2019, 2018, 2020, recently finding hundreds of new OCs in Gaia data.

The second algorithm, HDBSCAN, is also density-based but improves upon DBSCAN
by clustering the data hierarchically, allowing it to deal with areas of different
densities better and theoretically giving it greater sensitivity. Its parameters are
different to DBSCAN, and may or may not be easier to tune. It has been used by
Kounkel and Covey 2019 and Kounkel et al. 2020 to probe the Gaia dataset for
spatially correlated moving groups within 3 kpc, but has never been used purely to
search for OCs and across all distance scales in the Gaia dataset.

Finally, GMMs were selected for trial, an algorithm unlike DBSCAN or HDBSCAN in
that it must partition all data, and partitions not containing OCs must be discarded.
In principle, this could be a fast method, as GMMs have O(n) runtime. A method
similar to that of Cantat-Gaudin et al. 2019 should be used to discard unclustered
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field stars with this algorithm. In addition, since it fits a model directly to the
data instead of using nearest-neighbour distances, it should be less sensitive to the
preprocessing or underlying shape of the data.

Some algorithms were not included in this study as their performance is clearly
superseded by one of the three above. K-Means (MacQueen 1967) is a partitioning
algorithm similar to GMMs that fits a user-specified number of centroids to a dataset.
Points are assigned to their nearest centroid. However, this algorithm was found
to perform poorly on the Gaia dataset, as the five dimensions of the data have
intrinsically different scales. A distant cluster will have a near-negligible size in
positional space, but will still form a Gaussian clump in proper motion and parallax
spaces due to the dominance of Gaia errors at these distances. Alternatively, a nearby
cluster will have large sizes in position and proper motion spaces, but still a relatively
small parallax dispersion as all stars are at roughly the same distance. K-Means will
routinely over or under-select cluster stars without extremely careful pre-processing,
as it cannot re-scale its model independently for each axis of the data. However,
GMMs can, since they fit a multivariate Gaussian. As such, including K-Means in
this study was unnecessary, as GMMs are effectively a generalisation of the K-Means
algorithm that allows each cluster to have a covariance matrix (i.e. a different
scale for each axis.) In a similar vein, while Birch (Zhang et al. 1996) is similar to
K-Means clustering but makes a number of improvements, it also struggles to deal
with clusters that have different scales in each dimension for the same reasons.

The Friend of Friends (FoF) algorithm has also been used in the literature (Liu
and Pang 2019) and has a history of use in astronomy, especially in searches for
dwarf galaxies (e.g. Duarte and Mamon 2014) or dark matter haloes. However,
it was not included in this study as it is the same as running DBSCAN with the
minimum number of points (mPts) parameter set to 1, since both algorithms use
a global density parameter and a notion of core or border points – or ‘friends’ and
‘friends of friends’ in the FoF algorithm. However, the addition of mPts to DBSCAN
allows it to deal with unclustered points by discarding small clusters, which is a
clear advantage for Gaia data and in line with our second criterion – whereas users
of the FoF algorithm must manually discard small clusters.

In the following sub-sections, each selected algorithm will be explained in brief
detail, along with any steps necessary to determine their parameters.
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Fig. 2.2.: Nearest neighbour graphs for both methods of determining the optimum ε for DB-
SCAN. To produce this plot, which is effectively an unnormalised log cumulative
density function (CDF) of nearest neighbour distances, stars are sorted based on
their kthNN distances and numbered from one to n. These labels as a function of
kthNN distance are then plotted to form a continuous curve. The black line on
both plots is the 9thNN distances of a 2.5◦ field around the nearby OC Blanco 1.
On the upper plot, ε estimates are determined by re-sampling the field 30 times
(shown in red) to smooth out the signature of clustered stars. On the lower plot,
a model of the signature of the cluster (cyan, dashed) and the field (magenta,
dashed) is summed (red, solid) to approximate the curve and produce four ε
estimates.

2.3.2 DBSCAN

Description of algorithm

DBSCAN (Ester et al. 1996) is one of the oldest and most widely used density-based
clustering algorithms in the literature. It works by using the distances between
points as a proxy for the local density of an area in a dataset, with the densest
areas labelled as clusters and sparse regions labelled as unclustered background
noise. Clusters are selected using two parameters. Firstly, points in a dataset are
labelled as ε-reachable if the distance between them is lower than some threshold ε.
Secondly, points are labelled as core points if they are ε-reachable to at least mPts

other points, or border points if they are not core points but are ε-reachable to a
core point, where mPts also includes the considered point itself. Finally, clusters are
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selected as density-connected groups of points that are ε-reachable via a core point,
with all other points labelled as noise.

In this way, it follows that setting ε to a very large value would cause all points
to be labelled as one cluster, and setting ε to a very small value would cause no
points to be labelled as cluster members. The key is to set ε to an appropriate value,
such that separate clusters are not accidentally merged by the algorithm, and such
that the algorithm is still sensitive to sparse clusters that are only marginally denser
than surrounding noise points. However, this is difficult for datasets of variable
density, since ε is a global parameter. This is a particular issue for Gaia data, since
the density of the dataset is highly variable: due to the spherical projection of Gaia
data, the density of the dataset changes with distance, since higher distances sample
a larger angular volume. In addition, fields that include opaque clouds have variable
densities on scales of less than 1◦, since the high levels of extinction in the clouds
reduces the completeness of the Gaia instrument. Hence, a key challenge with using
DBSCAN on Gaia data is choosing values of ε that are a good enough fit to the
entirety of every field under study.

The mPts parameter must be set high enough to restrict the core point label to only
the most densely connected points, but not so high that even real clusters do not
contain enough points to generate core points. In practice, mPts and ε do not act
independently, with a different choice of ε able to largely reproduce the same result
for most values of mPts. As such, mPts can be set to the most efficient choice. Ester
et al. 1996 suggest setting mPts to twice the number of dimensions of the dataset, as
higher values are more computationally intensive but do not appear to include more
information. For the 5D Gaia dataset, this would imply setting mPts = 10, which
also sets a threshold on the minimum size of an OC candidate at ten stars.

By far the most computationally expensive part of the algorithm is the computation
of nearest neighbour distances. This is greatly sped up by using a k-d tree to
calculate nearest neighbour distances efficiently, which is used by the scikit-learn
(Pedregosa et al. 2011b) implementation of DBSCAN which is used in this work.

In the following subsections, two methods for determining ε for each field are
presented, which are both be compared by this study.

Parameter determination with the Castro-Ginard et al. (ACG) method

Castro-Ginard et al. 2018 have developed a method for determining ε for Gaia data
that exploits the random, unclustered nature of field stars to produce consistent ε
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estimates (hereafter abbreviated as the ACG method.) A brief description of how it
works follows.

Firstly, a kth nearest neighbour graph is computed for the dataset, where k = mPts−1
(since mPts includes each point itself whereas k is the distance to the nearest
neighbouring point.) The smallest kth nearest neighbour distance εkNN is recorded.

Secondly, the data are randomly re-sampled according to the overall distribution of
astrometric parameters in a given field. Assuming that the contribution of a cluster
to this distribution is small as very few stars reside in OCs, the signature of the
cluster is removed in the randomly redrawn nearest neighbour graph, allowing it to
approximate the distribution of field stars in the dataset. Its minimum kth nearest
neighbour distance εrand is recorded. This step can be repeated multiple times to
take a more accurate mean value of εrand. Castro-Ginard et al. 2018 repeat this step
30 times.

Finally, the average of these two values εACG = (εkNN + εrand) / 2 is used as ε by
DBSCAN. When a cluster is present in a field, εACG roughly approximates the modal
kth nearest neighbour value for the cluster. When no cluster is present in a field,
εACG ≈ εkNN ≈ εrand, and no clusters will be erroneously detected by DBSCAN.

The ACG method is explained in more depth in Castro-Ginard et al. 2018. The top
panel of Fig. 2.2 shows how random re-sampling allows εACG to be calculated. The
implementation of this method differs slightly from the original used by Castro-
Ginard et al. 2018, as random re-draws in the second step are performed by randomly
re-using existing parameter values for stars instead of first averaging them with
kernel density estimation, as this was found to produce equivalent results while
being somewhat faster.

In Castro-Ginard et al. 2018, 2020, the size of the field under study and the parameter
mPts are also varied across a number of different values, helping to reduce the effect
of DBSCAN’s global density parameter and detect OCs of different densities. Instead,
we trialed varying only ε with the following method, as we expect this will produce
similar results while being more computationally efficient: changing the size of
the field requires re-calculating the array of nearest neighbour distances, whereas
only varying ε means that the array can be cached and efficiently re-used for new
parameter values. In practice, one could also vary ε with the ACG method by using
different multiples of εACG (e.g. 1.5 · εACG or 2 · εACG).
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Parameter determination with a model-fitting method

While consistent, the ACG method is slow. Since kth nearest neighbour determination
is the most computationally expensive part of DBSCAN, repeating it 30 times to
randomly estimate εrand increases the runtime of DBSCAN by a factor of about
30. Instead, a model-fitting method was devised in this study to perform fast
approximate analyses of the kth nearest neighbour graph of a field.

Instead of numerically differentiating this graph to find turning points and hence
an optimum value for ε, fitting a simple, approximate model is significantly more
consistent and numerically stable. A cluster can be made up of just a few dozen stars
projected against tens of thousands of background stars, complicating numerical
differentiation since the signal of a cluster in such a graph is small and noisy.

Chandrasekhar 1943 derived a law for the nearest neighbour distribution of a
uniformly distributed set of points in 3D, which can be converted to an arbitrary
dimensionality d as:

P (x, A, a, d, k) = A
xd+k−1

ad
exp

[
−
(
x

a

)d]
, (2.2)

where x is the kth nearest neighbour distance, A is a normalisation constant calcu-
lated numerically, and a is a constant that can be expressed in terms of the modal
kth nearest neighbour distance xmax as

a = xmax

(
k − 1
d

+ 1
)−1

d

. (2.3)

Many different density scales exist across the 5D Gaia dataset. OCs or globular
clusters are the densest regions, with spatially correlated moving groups (such as
those found by Kounkel and Covey 2019; Kounkel et al. 2020) also forming dense
groups. Unclustered field stars exist across a range of different densities: fewer stars
further from the Gaia instrument are bright enough to be detected, so distant or
dust-obscured regions have lower densities; while regions in the galactic thin disk
(especially towards the galactic centre) have high densities.

Ideally, this complicated structure would be captured by fitting many instances of
Eqn. 2.2 simultaneously, effectively integrating across all density levels to perfectly
fit a kth nearest neighbour model to a field. However, this would be time intensive,
and was found to be unnecessary, since a simple two-instance fit in log-log space
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could achieve good results in less than a second of runtime. A single function Pc with
parameters θc = {ac, dc, k} was combined with a single function Pf with parameters
θf = {af , df , k}, where the former and the latter represent the signal of the cluster
and the field respectively:

Ptotal(x, At, C, θc, θf ) = At [C · Pc(x, θc) + (1− C) · Pf (x, θf )] (2.4)

where a single normalisation constant At was used. C, a number between 0 and 1,
represents the cluster fraction, corresponding to the strength of the signal of the
cluster in the kth nearest neighbour graph relative to unclustered field stars. k was
set to 9, and the fit was constrained using Eqn. 2.3 such that xmax,c < xmax,f .

The fit was further stabilised by finding xmax,f numerically in a histogram of kth

nearest neighbour distances, which was then used in conjunction with Eqn. 2.3
to fix af , leaving just four free parameters: ac, dc, df and C, with At determined
numerically at every fitting iteration. The dimensionalities dc and df were allowed
to be non-integer to give the fit access to a greater range of shapes.

An example fit is shown in Fig. 2.2. Once a field has been fit, points of interest in
the curve can be used to estimate ε. The first, εc, is the modal kthNN distance of the
cluster component of the model, and physically corresponds to the most optimum ε

value for the most prominent cluster in a given field. εc was often similar to εACG.

When multiple OCs are in a single field, sparser objects with less contrast against
field stars were not detected at the εc level, and so we also took three additional
values from the curve: εn1 is the first inflection point in the second derivative of
the overall model, εn2 is the point in the model with the highest second derivative
(i.e. the highest rate of change of curvature) and εn3 is the third inflection point
in the second derivative of the overall model. These additional points correspond
to where unclustered stars become increasingly dominant in the nearest neighbour
distribution of the entire field, and allow low contrast objects in a field to be detected
even if the shape of the fit and the value of εc has been primarily influenced by a
denser object in the field. However, there is a trade-off: these higher values of ε
are also likely to produce more false positives. Values higher than εn3 were briefly
investigated but were found to have false positive rates that were too high to be
useful.
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Fig. 2.3.: Condensed tree graph for HDBSCAN with mclSize = 80 applied to a 2.5◦ field
around Blanco 1, a nearby cluster without any other known OCs in the field. The
colour and width of each icicle denotes the number of stars remaining in the
cluster. Horizontal splits occur when clusters are no longer connected. The long
icicle on the left is Blanco 1, which is an extremely clear, nearby cluster and hence
splits early from field stars. On the right, the algorithm continues discarding
field stars, splitting into two very short icicles at the end which are false positive
clusters. The two small sub-plots in the lower right are zoomed in on the two
small icicles.

2.3.3 HDBSCAN

Description of algorithm

HDBSCAN (Campello et al. 2013) is a more recently developed clustering algorithm
that attempts to improve the performance and usability of previous approaches.
HDBSCAN combines the density-based approach of DBSCAN with hierarchical clus-
tering, allowing it to deal with datasets of varying densities. Despite the extra
computations, HDBSCAN does not have a significant increase in runtime compared
to DBSCAN.

To evaluate possible clustering, nearest neighbour distances are calculated as with
DBSCAN. However, HDBSCAN then effectively considers all possible DBSCAN so-
lutions for all possible values of ε, constructing a hierarchical tree representation
of the possible clusterings of the dataset. As with DBSCAN, clusters are defined
using an mPts parameter to define core and border points. HDBSCAN ‘replaces’
the ε parameter of DBSCAN with a minimum cluster size mclSize, which is used to
define the minimum possible size of a cluster before all points within it are instead
classified as noise. Smaller values of mclSize cause the hierarchical graph to be split
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more, as deeper, more nested solutions become valid. Larger mclSize values will
merge small groups, negating the algorithm’s sensitivity to clusters smaller than
mclSize but while reducing the number of false positive associations of points in the
dataset that are reported as clusters.

Figure 2.3 shows a representation of the HDBSCAN hierarchical graph for clustering
analysis performed on a 2.5◦ field centred on Blanco 1, with parameters mclSize = 80
and mPts = 10. Having produced a hierarchical graph representation of the dataset,
clusters can be selected from it in one of two ways. In the Excess of Mass (EoM)
method, the clusters with the largest area in this plot are selected. Alternatively, in
the leaf method, more fine-grained structure is revealed, as clusters at the bottom of
the tree are always selected.

HDBSCAN solves a number of issues encountered by previous approaches in the
literature. For instance: whereas DBSCAN requires setting the ε parameter ho-
mogeneously across an entire dataset, giving it poor performance when detecting
clusters of different densities, HDBSCAN’s consideration of all DBSCAN solutions
simultaneously gives it equal sensitivity across all density ranges of a dataset. In
addition, mclSize is a much more intuitive parameter to set than ε for detecting OCs,
since the minimum allowable size of an OC can be decided beforehand and does not
require an additional method to try and estimate it for a given dataset as with ε.

However, use of HDBSCAN comes with some challenges when running on largely
unclustered data - such as the Gaia dataset, where very few stars reside in OCs.
HDBSCAN is sensitive to all regions of a dataset where points appear statistically
more clustered than the local background, particularly when setting the parameter
mclSize low to ensure that HDBSCAN is sensitive to the smallest galactic OCs. In the
Gaia regime, it is unsurprising that a field of one million stars will contain many
low signal to noise ratio false positive associations, where groups of 10−20 stars
will appear more clustered than the background by statistical chance. These false
positives will be reported by HDBSCAN and must be later removed to use HDBSCAN
successfully at high sensitivities.

The Python implementation of HDBSCAN by McInnes et al. 2017 was used for this
work, which differs from the original publication in a few small ways (such as using a
k-d tree for nearest neighbour computation) that allow the algorithm to run faster.
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Parameter tuning

HDBSCAN parameters were straightforward to set in a number of small experiments
conducted on well-characterised OCs. While the original HDBSCAN paper recom-
mends setting mPts and mclSize to the same value, setting mPts = 10 was found
to offer the best sensitivity and speed when running the algorithm, a decision also
supported by the arguments for setting mPts = 10 for DBSCAN.

To select candidate clusters from the hierarchical tree, the leaf selection method
was almost always superior to the EoM method. OCs contain a very small number
of stars (∼100) compared to the fields they occupy (∼100 000+), and the leaf
selection method was significantly better at recovering the smallest objects (OCs) in
a given field.

However, there is no perfect setting for mclSize having investigated the effect of
the parameter in a number of small experiments, for which we tested different
parameter values against a representative set of OCs. An exact mclSize setting must
be found empirically based on the properties of a dataset. While theory suggests
that mclSize should not be smaller than the smallest size of an OC (which we define
as ten stars in this work), such low values were found to produce a large number of
false positives, also sometimes erroneously splitting the largest OCs into two or more
sub-clusters that miss many valid members of the cluster. Alternatively, setting it
high (e.g. mclSize = 80) makes the algorithm’s output significantly less noisy at the
cost of missing the smallest objects. Values larger than 80 had no added advantages
despite further decreasing the algorithm’s sensitivity to smaller OCs. High values
also sometimes select dense regions of field stars that must be removed later as they
are not OCs. They may correspond to moving groups such as those reported by
Kounkel and Covey 2019 and Kounkel et al. 2020. A range of settings (10, 20, 40
and 80) will be compared in this paper.

2.3.4 Gaussian mixture models

Description of algorithm

GMMs differ from the other methods considered in this study in a number of ways,
offering an interesting alternative viewpoint on how an entirely different and much
older method performs when trying to detect OCs in a large, modern dataset. The
data are assumed to be drawn from a number of Gaussian distributions, to which
the algorithm fits a mixture of m Gaussian components across a series of iterations.
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The likelihood of consecutive iterations is maximised until convergence is achieved.
Covariances between dimensions allow the fitted Gaussians to have an elliptical
or diagonal shape, which is important for OCs as many are elongated due to tidal
effects.

Since all points must be assigned as a member of a Gaussian, GMMs do not have
a natural way to deal with unclustered field stars. Instead, mixture components
must be ruled out if their properties are incompatible with OCs. The means and
standard deviations of mixture components in the different scaled dimensions
(λ, φ, µλ∗, µφ, $) can be quickly used as proxies for the properties of a candidate
OC, with any targets wholly incompatible with an OC ruled out as groupings of field
stars. We adopt a similar approach to Cantat-Gaudin et al. 2019 and require that
the following constraints are met on the proper motion dispersion (σµλ∗ , σµφ) and
the dispersion in positional space (σλ, , σφ) respectively:

√
σ2
µλ∗

+ σ2
µφ
≤

1 mas yr−1 $ ≤ 0.67 mas

1.49 ·$ mas yr−1 $ > 0.67 mas
(2.5)

√
σ2
λ + σ2

φ ≤

0.1◦ $ ≤ 0.17 mas

arctan($/100)◦ $ > 0.17 mas
(2.6)

which differs from the constraints of Cantat-Gaudin et al. 2019, who only include a
proper motion constraint. The addition of a latter radius constraint helps to remove
clear false positives that are significantly larger than the typical size of OCs.

The implementation of GMMs freely available in scikit-learn (Pedregosa et al.
2011b) was used in this study. In addition, Cantat-Gaudin et al. 2019 have used
UPMASK (Krone-Martins and Moitinho 2014) to verify OC candidates. However,
this was deemed unnecessary for this study, as the sample of OC candidates after the
application of the constraints was already relatively clean with few false positives.

Parameter tuning & dataset sub-partitioning

Issues were encountered when attempting to tune the number of mixtures m. Firstly,
larger fields required linearly more mixtures to ensure that enough were available
for fitting to field stars, such that m ∝ n. Instead, it is easier to set the parameter ms,
the number of stars per mixture – where m = n/ms. This causes the method to be n
times slower, since the GMM runtime complexity also scales linearly with the number
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Fig. 2.4.: Schematic, top-down representation of the GMM partitioning system. Each box
represents a column of sub-partitions viewed from the top. For the highlighted
sub-partition also marked with an asterisk (*), the dashed width of the box shows
the region in which extra stars with a parallax uncertainty of greater than 1
mas would be included. The height of the dashed box shows the extra overlap
between this sub-partition and nearby other sub-partitions. Any cluster with a
centroid within the dashed region but not within the main highlighted region was
automatically discarded, as it will be better characterised by the neighbouring
sub-partition its centroid is in.

of mixtures O(nm), which for this choice of parameters means it is equivalent to
O(n2) since the number of mixtures linearly increases with the number of stars. This
causes the method to fail the speed criterion (criterion one) from Sect. 2.3.1, even
though it was initially believed to be the fastest method under consideration.

To rectify this and ensure that GMMs can still be included in this study, a method
for sub-partitioning Gaia data chunks was devised. While Cantat-Gaudin et al. 2019
used a k-d tree to partition fields into groups of 8000 stars, this method had no
overlap between partitions, and hence may miss OCs that are split between partitions.
k-d trees work by splitting random dimensions of a dataset along their median until
each branch of the tree is small enough, a process that has no guarantee against
splitting a possible OC into many different branches.
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Tab. 2.2.: Specifications of the GMM sub-partitioning scheme.

distance Max. HEALPix Max. sub Optimum
range (pc) level (overlap) partitionsa ms

0 - 500 None (None) 1 1000
500 - 750 None (None) 1 1000

750 - 1500 5 (6) 9 800
1500 - 2500 6 (7) 36 600

2500 -∞ 7 (8) 144 250

Notes. (a) When fewer than 10ms stars were in a sub-partition, the main HEALPix
level was decreased by one to make the sub-partitions a factor of four larger.

Instead, stars in a given field were divided into five segments based on parallax,
where stars may be a member of any segment that they have a better than 2σ$
agreement with. Each parallax segment was sub-divided into smaller HEALPix
pixels at a specific level. Neighbouring HEALPix pixels were also selected to overlap
sub-partitions between each other. The levels of the primary and overlap pixels
were carefully selected to ensure that the nearest edge of every sub-partition could
always fully contain an OC of 10 pc radius. In the case of the most diffuse OCs,
this method could miss some stars that are far from the OC’s centre, but should
always be able to detect the core of all OCs. When any sub-partition in a parallax
range contained fewer than 10ms stars, the main HEALPix level for the parallax
segment was decreased by one to increase the number of stars in the sub-partitions.
This ensured that no sub-partition was impractically small for later GMM fitting.
A schematic representation of this is shown in Fig. 2.4, and the values for the
sub-partitions are listed in Table 2.2.

Any OC candidate with a centroid (λ, φ) in an overlap pixel is automatically dis-
carded, as it is assumed to be better characterised in the neighbouring sub-partition
for which it would be more fully selected. The sub-partitioning scheme improved
the runtime of the method by a factor of about five and the memory use by a
factor of about 80. This could be improved further by reducing the pixel sizes or
overlap levels, albeit at the cost of sensitivity to OCs on the boundaries between
sub-partitions.

Two scenarios were tested in this study for a value of ms. Firstly, ms was fixed to 800
stars per mixture component, which was found to be a good general value across
the entire dataset. Secondly, ms was varied depending on the parallax range, as in
Table 2.2. This was found to greatly improve the sensitivity of the method at high
distances where OCs have fewer visible stars in Gaia data and are much smaller.
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Since GMMs are a method that relies on convergence, the randomly selected starting
parameters of the Gaussian mixtures can affect the final result found by the method.
Selecting the best result after multiple initialisations was not found to significantly
improve results, so the n_init parameter of the scikit-learn implementation was
left at 1. However, the maximum number of iterations of the method, max_iter,
was set to 1000, to ensure that the method was always able to converge.

2.4 Analysis

2.4.1 Evaluation criteria for clustering algorithms

So far, we prepared Gaia data for clustering analysis, selected three algorithms for
further study, and developed techniques to optimise them for use on Gaia data. In
this section, we explain how we quantify the performance of the algorithms against
each other by crossmatching to existing objects in the literature, and we present
those results.

We quantify the performance of the algorithms using a number of standardised
statistics. For our existing literature OCs, we expect that a number of them are real,
or true positives (TP). However, literature catalogues such as MWSC have been
shown to have a number of erroneous entries (Cantat-Gaudin and Anders 2020),
which are in reality true negatives (TN). While a perfect algorithm would report
all true positive OCs, missed objects are defined as false negatives (FN). Similarly,
when a putative object is erroneously reported as real, it is defined as a false positive
(FP).

It is convenient to use these quantities to derive performance statistics normalised
to be between 0 and 1, and so we also derive the sensitivity, specificity and precision
of the algorithms, which are defined as:

Sensitivity = TP
TP + FN

, (2.7)

Specificity = TN
TN + FP

, (2.8)

Precision = TP
TP + FP

. (2.9)
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Effectively, the sensitivity is a measure of an algorithm’s ability to detect real objects,
the specificity is its ability to reject putative objects, and the precision is the fraction
of reported objects that the user could expect are actually real. It follows that a
perfect algorithm would have all three quantities at 1, since FN and FP would be
zero. However, this is of course unrealistic as no algorithm is likely to be perfect,
and different studies may wish to prioritise different statistics over one another. For
instance, a search for new OCs would wish to use an algorithm with a maximised
sensitivity, such that as many new OCs as possible could be discovered – although
the precision of such a study is also of concern, so that as few false positive OCs as
possible are reported. A search for existing OCs that attempts to improve the general
quality of the OC census would need to maximise all three quantities, and may be
especially concerned with maximising the specificity of the method used, such that
as many putative literature OCs as possible can be ruled out.

We look in detail at the 100 main OCs of this study and derive sensitivity, specificity
and precision statistics for all algorithms in these cases, giving the usefulness of each
algorithm and parameter combination when searching for a given literature OC.
Then, in the second part of our results, we derive true positive rates for all algorithms
across all OCs in the fields in this study, giving supplementary information on the
sensitivity of each algorithm as a function of the reported literature distance and
size of the OCs.

2.4.2 False positive identification

It is likely impossible to maximise both the specificity and sensitivity of any algorithm
simultaneously: for all algorithms studied, increasing their sensitivity would always
decrease their specificity. The detection of more true positive OCs always also
resulted in more false positive OCs. We explore two techniques to reduce the
number of false positives of the algorithms: firstly, by dropping all OC candidates
with parameters unrealistic for an OC, and secondly, by using a density-based
criterion to discard OC candidates that have a density compatible with being drawn
from unclustered local field stars.

To reduce the number of false positive crossmatches – particularly since algorithms
such as HDBSCAN and DBSCAN when ran at maximum sensitivity reported over
40 000 OC candidates, the majority of which are false positives – OC candidates with
mean parameters extremely incompatible with a real OC were first removed, using
criteria presented in Cantat-Gaudin and Anders 2020. The proper motion dispersion
of OC candidates was required to satisfy
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Fig. 2.5.: Two examples of NNDs used to test the significance of OC candidates. The solid
black line shows the NND of nearby field stars. The blue line shows the NND of
distances between cluster members. For a cluster to be significant and not simply
a selection of unclustered field stars, the cluster NND must be incompatible with
being drawn from the field distribution. For later illustrative purposes, the NND
of a cluster member to the nearest field star is shown by the dashed orange line,
although this is not used for the CST. In the upper plot, an OC candidate detected
by HDBSCAN and crossmatched to the well-characterised OC NGC 6830 is shown,
which has a clearly different NND to field stars with a significance of over 20σ.
In the lower plot, a false positive OC detected by HDBSCAN in field 19 is shown
that has a significance of 0σ.

√
σ2
µα∗ + σ2

µδ
≤

1 mas yr−1 $ ≤ 0.67 mas

1.49 ·$ mas yr−1 $ > 0.67 mas.
(2.10)

The radius containing half of the members of the OC candidate was also required to
satisfy r50 < 20 pc. These constraints were relatively weak, only removing a small
number of clearly anomalous OC candidates that had velocity dispersions or radii
that were clearly incompatible with real OCs.

Secondly, a method was implemented to compare the density of OC candidates with
the density of local field stars and evaluate the significance of the OC candidate,
hence referred to as the cluster significance test (CST). Ninth nearest neighbour
distances between stars were used as a proxy for density, as this corresponds exactly
to how two of the three methods in this study performed clustering analysis (since
they used mPts = 10, i.e. k = 9) and since this value is free of contamination from
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binary or multiple star systems, since they will have significantly smaller first or
second nearest neighbour distances.

To calculate the density distribution of a cluster, the nearest neighbour distribu-
tion (NND) of intra-cluster distances between stars within an OC candidate was
calculated. Then, in an iterative approach, a minimum of 100 and a maximum of
500 local field stars were found around the OC candidate by traversing the graph
of nearest neighbours and looking for field stars with NNDs uncontaminated by
proximity to the cluster, meaning that none of their 1st to 9th nearest neighbours
were labelled as cluster members. This approach was found to generate reliable and
quick approximations of the NND of local field stars.

Since a good OC candidate is a clear overdensity in the parameter space, its NND
should be incompatible with being drawn from the distribution of field stars. A
number of statistical tests were investigated to test this, with a Mann-Whitney U
test (Mann and Whitney 1947) found to be the most reliable, since it makes no
assumptions about the shape of the distribution and does not require the distribution
to be continuous. Significance values for each OC candidate are then derived from a
one-tailed test where the alternate hypothesis is that the OC candidate has an NND
incompatible with and with a lesser median than the field NND.

Requiring a CST value of at least 3σ was found to keep the vast majority of good OCs
while identifying and removing a large number of false positives for all algorithms.
For instance, for DBSCAN when running with εn3 (the algorithm and parameter
combination that produced the highest number of OC candidates), the CST constraint
reduced the number of reported OC candidates from 51920 to just 1111 objects.

2.4.3 Crossmatches with existing catalogues

Having greatly reduced the number of false positives identified by all algorithms, we
crossmatched OC candidates against literature clusters to estimate the number of
true positives detected by each algorithm. However, this process is non-trivial, with
each catalogue reporting OCs in different ways.

A number of approaches were trialed to crossmatch OC candidates. The best
approach found to crossmatch OC candidates’ positions was that of Liu and Pang
2019. The tidal radius of OC candidates is estimated as the maximum distance of
a member star from its mean α and δ. The OC candidate must be within one tidal
radius of the reported position in the literature, where whichever tidal radius is
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larger (that of the candidate or that of the literature cluster) is used. This would
typically correspond to searching in a radius of no more than 0.5◦.

µα∗, µδ and $ for OC candidates were required to be within 5σ (5 standard errors)
of literature values. It has been shown that Gaia DR2 has a number of small
unaccounted for systematic effects, including a parallax zero-point offset$0 that may
be magnitude-dependent (Lindegren et al. 2018). As such, even when crossmatching
to other OCs detected in Gaia data, magnitude-dependent systematic errors could
cause crossmatches to fail. For instance, Castro-Ginard et al. 2020 have only studied
Gaia data to G = 17. Extra stars introduced by this study using a magnitude cut
of G = 18 will have a different mean systematic effect on derived astrometric
parameters. Additionally, every clustering algorithm will report slightly different
membership lists for each OC, and the differences in parameters of included or
ignored members could introduce different systematic errors. In (α, δ), these effects
are small, since tidal radii (often no smaller than ∼ 0.1◦) are much larger than the
small systematic errors in position of the Gaia reference frame. However, large OCs
especially may have standard errors on their mean parallax or proper motion as
small as 10 µas or 10 µas yr−1, smaller than the reported Gaia systematic errors.

To rectify missed crossmatches, small tolerances to uniform systematic errors of 50
µas yr−1 and 50 µas were accounted for in crossmatching of proper motions and
parallaxes respectively. These values were selected to roughly account for the scatter
in parallax and proper motion offsets as a function of magnitude as reported by
Lindegren et al. 2018. This allowed a number of larger OC candidates with very small
uncertainties (particularly from the catalogue of Cantat-Gaudin and Anders 2020)
to be successfully crossmatched. Many of these large OC candidates were visible by
eye in the Gaia data and in the reported results of the clustering algorithms, and
were being missed in the crossmatch procedure by a lack of tolerance to systematic
error and due to their small uncertainties on parameters owing to their large size.

As the only non- Gaia catalogue, MWSC was more complicated to crossmatch
against. Reported distances to OCs were converted to parallaxes. While distance
measurements in MWSC do not include uncertainties, the estimated 11% systematic
uncertainty on distance measurements reported by Kharchenko et al. 2013 was ac-
counted for. A parallax offset of $0 = −0.029 mas was applied to MWSC parallaxes,
ensuring that they have the same mean systematic offset as parallaxes in the Gaia
DR2 dataset as reported by Lindegren et al. 2018. The additional ±0.8 mas yr−1

external error in MWSC proper motions was also accounted for, which resulted in a
handful of extra crossmatches to objects clearly crossmatched in other dimensions
that had large offsets in their proper motions relative to Gaia DR2.
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2.4.4 Results

Finally, we present analysed results of the algorithms for discussion in three parts.

Firstly, we inspected Gaia data manually to assign the 100 main OCs as either true
positives or true negatives. An interactive data viewer was used to explore the region
around the reported locations of the OCs, searching for significant overdensities
within the possible crossmatch region. We also required that the detected overdensity
had a colour magnitude diagram (CMD) compatible with an OC, for which we define
the following criteria.

A class one OC has a clear, difficult to dispute CMD, with a realistic shape. The
CMD may be somewhat broadened by differential extinction or inhomogeneities,
but there should be enough stars present to make the probability of a false alarm
very small. However, a class two OC is a possible OC that may be too small or too
inhomogeneous for its true existence to be clear. It may be that only the brightest
stars (near the turnoff point) are detected, making its shape difficult to discern as
a true isochrone. There may be a small number of outlier stars incompatible with
an isochrone, owing to a poor detection by the algorithm. This class signifies that
more work would be needed to confirm this object as an OC. Finally, class three OCs
are very unlikely to be an OC and much more compatible with random noise. Even
if some stars follow an isochrone, a significant number are outliers, owing to this
being a selection of unclustered, inhomogeneous stars.

After an overdensity was isolated in position, proper motion and parallax, it was
required to have a class one or two CMD to confirm it as a true positive OC. We
assigned 40 OCs as true positives and the remaining 60 as true negatives.

31 of the 33 OCs in the list of main OCs from MWSC that are also in the catalogue of
Cantat-Gaudin and Anders 2020 were entered as true positives. Most of these objects
were good OCs that were clearly visible at their reported location. We did not detect
significant overdensities with class one or two CMDs corresponding to Patchick 75
or Auner 1, both of which are distant OCs with distances in Cantat-Gaudin and
Anders 2020 of ∼7 kpc and ∼8 kpc respectively. These OCs are heavily polluted in
the literature membership lists. If real, they are scarcely detectable in Gaia data.
Alternatively, they may simply not be real objects.

Most of the additional 67 OCs listed in MWSC do not appear detectable in Gaia
data, and may simply not be real objects. However, we did find sparse overdensities
corresponding to nine objects from MWSC: ASCC 28, ASCC 100, ASCC 130, BDSB
124, Berkeley 64, DBSB 164, IRAS 06046-0603, SAI 90 and Teutsch 146.
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After reducing the number of false positives in the results of the algorithms using
the techniques from Sect. 2.4.2, we crossmatched their results to the main list of
100 OCs and derived performance statistics. To quantify uncertainty on derived
statistics, we used the method for computing Bayesian binomial confidence intervals
described in Cameron 2011, where a Beta distribution with an uninformative prior
is used to estimate a confidence interval containing the true success fraction given
the measured success fraction. The performance of the algorithms is listed in
Table 2.3.

Five OCs from the 40 true positives are never detected by any algorithm within
our constraints, which we discuss here for completeness: Berkeley 91 and Teutsch
156 (objects from Cantat-Gaudin and Anders 2020) as well as ASCC 28, BDSB 124
and Teutsch 146 from MWSC. Berkeley 91 is relatively distant (∼ 4 kpc) OC with
a polluted CMD in the catalogue of Cantat-Gaudin and Anders 2020. If real, it is
barely detectable in Gaia data. Teutsch 156 appears to be detected by HDBSCAN, but
only tentatively with a CST of 0.68σ. ASCC 28 should be detected, as the detected
overdensity was nearby with a parallax of 0.85 mas. It may be too sparse for an
algorithm to detect or may be an association mis-classified by the expert classifier.
The BDSB 124 and Teutsch 146 overdensities are distant ($ ≈ 0.3 mas and 0.25
mas respectively) with polluted CMDs. These objects may be difficult for algorithms
to detect in Gaia data or may simply be associations.

Six OCs from MWSC listed as true negatives are reported at some point by any
algorithm (five by HDBSCAN, two by DBSCAN), although only OC candidates
crossmatched to FSR 0316 are detected by two different algorithms (HDBSCAN and
DBSCAN). In all of these cases, the objects are sparse and relatively separated from
the reported literature locations on the sky, and may be new OCs that marginally
coincide with the existing locations.

Secondly, we performed crossmatches to all 1385 targets listed in the literature in
the fields of this study. While there are too many OCs to conduct a precise by-hand
treatment of the results, these results give a better indication of the dependence
of the algorithms’ sensitivities on OC features like distance, age and size. Clear
dependencies on distance and size are found, which are shown in Fig. 2.6. No
significant dependence on ages listed in MWSC is found for any of the algorithms,
although the more recent and accurate age catalogue of Cantat-Gaudin et al. 2020
did reveal a slight dependence on age that appears to result from the smaller size
of older OCs. HDBSCAN is the most sensitive algorithm across all ages. When
combining all ε runs, DBSCAN is as sensitive for well populated young OCs, but is
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less sensitive to older, typically smaller OCs. GMMs are the worst algorithm across
all ages.

Finally, to compare the general usability of the algorithms, we list the runtimes
and the total number of OC candidates with valid proper motion dispersions and
radii reported by each algorithm in Table 2.4. Ideally, an algorithm would report a
realistic number of OC candidates in as little time as possible.

We also list additional comparisons of our results with other catalogues in Ap-
pendix A.2. Full tables of detected and non-detected objects (including OC member-
ship lists) are available in the online material only, with descriptions of their content
in Appendix A.3.
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Fig. 2.6.: Distance and size dependence of detections by different algorithm and parameter
combinations for all 1385 OCs in all studied fields, plotted against the reported
size and distance of the OCs in the literature. OC candidates not passing the
criterion in Sect. 2.4.2 and with a CST of less than 3σ were discarded. HDBSCAN
detects the most OCs, especially at nearby distances. GMMs only perform well
at detecting well populated OCs. While individual DBSCAN results at different
ε values do not detect especially many OCs, combining them all together nearly
matches the performance of HDBSCAN – even exceeding it slightly at large
distances.

2.5 Comparison of algorithms

Finally, having selected three algorithms for further study and having ran them on
100 representative fields across the galactic disk, we address the central topic of
this work as to which clustering algorithm is best at detecting OCs in Gaia data.
We discuss the pros and cons of each algorithm in subsections before presenting an
opinion.
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2.5.1 DBSCAN is effective at searching for OCs

DBSCAN is a well proven algorithm on Gaia data, having recently detected over 500
new OCs in Castro-Ginard et al. 2020. It performed relatively well on the 100 main
OCs in this study. εACG has particularly high specificity and precision values of ≈ 1.00
(Table 2.4), suggesting that DBSCAN can produce consistent and reliable results
when not ran sensitively. However, even when greatly increasing its theoretical
sensitivity (e.g. εn3, the highest ε value used in this study), DBSCAN still is not able
to detect all OCs present in a field.

At individual values of ε, Fig. 2.6 shows that DBSCAN is most sensitive to OCs at
certain distances, with the εACG sensitivity peaking at 3.1 kpc. This is likely due
to how distant OCs are very compact in all dimensions, while nearby OCs in the
sample may have radii of up to 0.5◦ or more, and are hence much sparser in the
two positional dimensions and require the global density threshold ε to be higher
for them to be completely detected. This is a key disadvantage of DBSCAN: single,
global ε parameters rarely seem to be perfect for individual OCs, especially when
the global parameter is influenced by density contributions from many different OCs
in a single field.

Manual comparison between algorithm results shows that DBSCAN often under
or over-selects OCs and produces less reliable membership lists than HDBSCAN
or GMMs. Over-selection is a particular issue as CMDs become polluted and the
performance of OC candidates in the CST is reduced, as the nearest neighbour
distribution becomes dominated by contaminating field stars. Many OC candidates
detected by DBSCAN at CST values of less than 3σ appear to correspond to real OCs,
but are too polluted or too sparse to pass criterion to verify the candidate objects as
real. In addition, these membership lists containing too few or too many members
are of less use to other scientific applications, and would need to be followed up
with another algorithm to improve their quality.

This can be partially mitigated by combining all DBSCAN results across all ε values,
which approaches a similar degree of sensitivity to HDBSCAN, albeit still with a
deficit of detections for small distances at less than 1 kpc. This result is in good
agreement with what theory presented in Sect. 2.3.3 suggests: that a single run of
DBSCAN’s global density parameter will only be sensitive to a certain size of OC
at a given distance, and that running HDBSCAN is equivalent to running DBSCAN
across all possible values of ε. However, HDBSCAN is better still – able to detect the
majority of OCs in the sample in a single run at mclSize = 10.
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Combining multiple DBSCAN results is similar to the effective approach that Castro-
Ginard et al. 2020 use to detect over 500 new OCs, since they vary the mPts

parameter and the size of the field analysed by the algorithm. εACG results presented
here should be less sensitive than the results of Castro-Ginard et al. 2020 as they
are based on a single DBSCAN run at a single value of mPts = 10 and a single
size of field. However, mPts, ε and the size of the field under consideration are
not entirely independent parameters, since changing ε has a similar effect to how
changing either of the others improves DBSCAN sensitivity in Castro-Ginard et al.
2020. It is not possible to quantitatively compare the sensitivity of DBSCAN methods
in this study to that of Castro-Ginard et al. 2020, since they use a different cut on the
Gaia dataset (G = 17) and autonomous CMD classification to remove false positives,
which will have reduced their sensitivity to faint OCs or distant objects with high
CMD contamination. They detect 688 (55.9%) of the total number of OCs reported
in Cantat-Gaudin et al. 2018a, although the 688 correspond to 81% of objects in
Cantat-Gaudin et al. 2018a with a significant number of members brighter than
G = 17 and a well defined isochrone, which are the objects that their study would
be theoretically sensitive to. The combination of all DBSCAN runs in this study was
able to detect 343 out of 537 (63.9%) of the OCs in this study from Cantat-Gaudin
and Anders 2020 at a CST of greater than 3σ.

Future use of DBSCAN could benefit from repeated runs while only changing ε

opposed to the size of the field, which we expect to be both as sensitive but more
computationally efficient. The most computationally expensive step (calculation
of nearest neighbour distances for a given field) would only need to be performed
once, with DBSCAN then evaluated quickly on the same matrix of nearest neighbour
distances but simply with a wide range of different ε values.

For ε determination for DBSCAN, both methods appear viable, although the ACG
method is more numerically stable. εc results were largely analogous to results
produced by εACG – although occasionally, on more difficult fields, the model fit
would be less stable and would over-estimate the optimum value of ε. This is clear
in Table 2.3, where the ACG method has a very good precision of 1.00 compared
with 0.95 for εc results.

When running on large fields such as those in this study, the ACG method’s random
field resampling only needs to be repeated once, since no improvement is visible in
crossmatch statistics between resampling 30 times versus only performing it once.
The measured sensitivity of the ACG method with a single repeat is slightly better
than using 30 repeats (0.55 vs. 0.50), although this difference is not statistically
significant. Using only a single repeat is also an order of magnitude faster than

2.5 Comparison of algorithms 73



doing 30 repeats, although the field modelling approach is faster still, being 25%
faster than the ACG method with a single repeat.

While naturally, the ACG method only produces a single ε estimate, it could easily
produce more by using multiples of εACG in the range [1, 2.5] to approximate results
between εc and εn3 and to combine multiple different-ε runs to improve sensitivity.

Overall, DBSCAN is an effective and well-proven methodology. In particular, its high
precision at low sensitivities when used with the ACG method makes it an excellent
choice for a limited blind search for good OC candidates. However, it was unable to
detect all OCs present in a given field, and is not reliable for producing complete,
minimally polluted membership lists for OCs, since ε is a global parameter and will
inherently not be optimised for individual OCs in a given field when a field contains
multiple different objects.

2.5.2 HDBSCAN solves many issues encountered by DBSCAN, but
is not without flaws

Many of the issues with DBSCAN are solved with HDBSCAN. Parameter determina-
tion and setup of the method for HDBSCAN is significantly easier, since the minimum
size of an OC mclSize is a much more intuitive choice for a parameter than one based
on nearest neighbour distances for a given dataset, ε. In terms of sensitivity, in-
dividual runs (such as mclSize = 10) are able to outperform all DBSCAN results
combined, detecting the highest number of true positive OCs in the study. However,
this increased sensitivity comes at a cost: HDBSCAN results generally have the
worst specificity and precision scores of any algorithm in this study, with a large
number of false positives and poor characterisation of true negatives (especially
for mclSize = 10.) This would be even worse when not using the CST to reduce
false positives: mclSize = 10 results without a CST restriction had a precision of just
0.47 and a specificity of 0.28, owing to a huge number of reported false positives.
Clearly, to be used effectively, HDBSCAN must also be used with criteria to select
valid clusters from its results.

This appears to happen because of how HDBSCAN autonomously decides local
thresholds for if objects are or are not a cluster. Often, HDBSCAN reports OC
candidates in the densest regions of the dataset. These objects are clearly not OCs,
but simply features of the underlying shape of the data, since the Gaia satellite
samples a magnitude-limited spherical volume with different observed densities at
different distances. This is demonstrated well by some of the existing analysis in
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this work. In Fig. 2.3, two false positive clusters were reported alongside Blanco 1
due to how HDBSCAN effectively considers all possible DBSCAN solutions, which
includes erroneously reporting two small and impersistent clusterings of field stars
as OC candidates. Uniform noise follows a nearest neighbour distribution given by
Eqn. 2.2, which implies that field stars will have a smooth range of different nearest
neighbour distances. However, when more than mclSize stars exist on the dense end
of this curve, HDBSCAN erroneously assigns them into a cluster, even though they
are simply a feature of the random nature of the unclustered stars.

This is also demonstrated by the orange curve in the lower panel of Fig. 2.5, where
the nearest neighbour distributions of a false positive OC are plotted. The 302
stars in this false positive OC have an external (i.e. to the nearest star) density
distribution that is simply a dense slice of the field star nearest neighbour distance
distribution. This orange curve is analogous to what HDBSCAN and other density-
based clustering algorithms use to assign stars as cluster members. However, when
looking at the internal nearest neighbour distance distribution (i.e. distance to the
nearest cluster member), it becomes clear that these stars are not self-consistent
with being a separate, dense object, and still appear to be drawn from a nearest
neighbour density distribution that is the same as that of the local field stars.

An additional issue is that increasing the sensitivity of HDBSCAN sometimes causes it
to miss certain OCs. These are typically large, clearly real objects that are mistakenly
split apart into multiple substructures for low mclSize values. To detect all OCs
in a future all-sky survey, it would be necessary to run with multiple parameters
and combine runs as with DBSCAN. While Fig. 2.6 shows that the effect is not as
significant as with DBSCAN, combining multiple runs still provides a small increase
in the total number of OCs detected.

HDBSCAN detects slightly fewer OCs than the combination of all DBSCAN results
for distances of greater than 4 kpc, as shown in Fig. 2.6. This appears strange at first
glance, as HDBSCAN should consider all DBSCAN solutions and should in theory be
able to detect all objects DBSCAN can detect. On closer inspection, it appears that
this is due to HDBSCAN’s approach to membership lists, since HDBSCAN includes
all objects that could be cluster members but will assign them correspondingly low
membership probabilities. Distant OCs are difficult to separate from field stars, as
proper motions and parallaxes become decreasingly informative at large distances –
and for these objects, HDBSCAN often includes many low probability members that
reduce the quality of the detection and of the CMD of the objects.

At relatively large distances, these low probability members cause HDBSCAN to
perform worse in our study. The CST does not currently consider membership
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probabilities, meaning that low probability members that are more likely to be
members of the field would reduce the measured significance of some distant OC
candidates. In the future, the CST should be modified to also include membership
probabilities.

Despite some shortcomings, it appears that properly handling these (e.g. with
the CST or another test to remove false positives based on their density) allows
HDBSCAN to be used as a powerful method for OC detection. Its runtime is not
significantly longer than DBSCAN (see Table 2.4), yet it is able to detect more
OCs across a wider range of distances. In addition, HDBSCAN’s membership lists
for validated OC candidates were typically very clean, often even detecting tidal
structures for OCs due to its excellent recovery of clusters across all density levels.
There is room for more improvement of HDBSCAN results at distances greater
than 4 kpc by optimising validation criteria to also make use of its membership
probabilities.

2.5.3 GMMs are inappropriate for large-scale OC blind searches in
the Gaia era

While HDBSCAN is somewhat slower than DBSCAN, both are significantly faster than
GMMs. Despite receiving the most time investment from the authors into optimising
the algorithm for use on OCs, it still under-performed relative to HDBSCAN and
DBSCAN by an order of magnitude in runtime. As an O(n2) algorithm when used
with the optimum parameters, it scales poorly to the large Gaia dataset of many
millions of stars per field in the densest regions. This is especially noticeable in the
maximum single-field runtimes of GMMs. The single densest field took 20.1 hours
to run for ms = variable, a factor of around 40 times slower than HDBSCAN on the
same field. GMMs are simply too slow for practical use with unsupervised searches
through Gaia data, and it would take many months to run on the entirety of Gaia
DR2 in its current implementation in this study without using a supercomputer.

In the test on the 100 main OCs, GMMs had the lowest maximum sensitivity of any
algorithm, detecting just 33% of the true positive OCs. However, it did perform well
in the specificity and precision metrics, even without the CST. The built-in validity
constraints of the GMM method on the proper motion and radial dispersion of OC
candidates ensure that all reported candidates are already of high quality. This is
also evident in Table 2.4, where GMMs reported a relatively small maximum number
of OC candidates (2465 for the ms = variable run), although this is still not as good
as the DBSCAN ACG method, for which 1538 OC candidates were reported at most
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– yet the sensitivity in the study of 100 OCs was around 60% greater, suggesting
that the DBSCAN ACG method is still more efficient at producing crossmatches to
existing OCs.

A further disadvantage of GMMs is their sensitivity to the number of stars per
component, ms: reducing this number allows the method to detect smaller OCs,
but greatly increases the runtime of the algorithm, since the runtime complexity
linearly scales with the number of components of the GMM. As shown in Fig. 2.6,
the variable ms values used in this study are still too large to detect many smaller
clusters, with the algorithm performing poorly for any objects with fewer than
around 160 reported members. In addition, low values of ms begin to cause larger
OCs to be erroneously split into separate objects that would require either multiple
runs of the GMM algorithm at different parameters or a scheme to merge nearby
clusters after a run.

More OCs may be detected by GMMs by removing outlier stars from the dataset.
While this approach is not favoured by this study as it introduces biases into the
running of the algorithms, cutting stars with high proper motions (such as in Cantat-
Gaudin et al. 2019) simplifies the likelihood maximisation process for the algorithm.
Sometimes, the algorithm would place individual stars with extremely high proper
motions into single-star clusters, since this maximises the likelihood of the overall
model fit. However, this is counterproductive, as GMM components are wasted on
individual stars at high proper motions and are no longer available to fit to OCs.

While this study shows that GMMs are not scalable to a large-scale blind search, it is
still a useful method for deriving membership lists for the cores of OCs. GMM OC
membership lists are typically very clean. When the location of an OC is known to
high accuracy beforehand, GMMs can be applied quickly to a heavily cut dataset
to derive a membership list. This mirrors the success of works using UPMASK to
derive membership lists for existing OCs (such as Cantat-Gaudin and Anders 2020;
Cantat-Gaudin et al. 2018a), since UPMASK uses K-Means clustering (an algorithm
closely related to GMMs) to derive OC membership lists. This approach assumes that
the reported location of an OC is accurate enough to allow a dataset to be effectively
cut such that an algorithm with an effective runtime complexity of O(n2) can be
applied in a reasonable amount of time.
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2.6 New OC candidates in the galactic disk

2.6.1 Methodology

During the preparation of this work, we discovered that many of the algorithms’
reported OC candidates did not crossmatch to literature targets and appeared to be
distinct, new objects. We investigated this further to see if any of the objects are
genuine new OC candidates.

Firstly, we made conservative cuts on our reported OC candidates to select only
high-quality objects. All objects failing the criteria from Sect. 2.4.2 or with a CST of
less than 5σ were discarded, meaning that our sample of candidates only represents
definitive astrometric overdensities. In addition, any objects with a centre closer
than 1.5 estimated tidal radii to the edge of the field they were detected in were
discarded, removing any objects that could have a remote possibility of issues due to
edge effects.

Secondly, we performed extra crossmatching to the catalogues of Dias et al. 2002,
Bica et al. 2018, Sim et al. 2019, Ferreira et al. 2020 and Qin et al. 2021. To the
best of our knowledge, they in addition to the four catalogues from earlier in this
work include all reported literature OCs from at least the past two decades.

After the crossmatching and the cuts, all algorithms still appeared to detect new
OCs, but the most were found by HDBSCAN. At the high CST threshold of 5σ, any
objects found by DBSCAN or GMMs were almost always also found by HDBSCAN,
and so for simplicity we only looked at the results of HDBSCAN with mclSize = 20,
since merging the results of different algorithm and parameter combinations would
be non-trivial and is beyond the scope of this work.

This produced a list of 102 tentative objects based on astrometry and crossmatching
alone. A small fraction of these had CMDs that were clearly random selections of
unassociated stars that followed no clear isochrone, although many others were
borderline objects with poor quality CMDs. We manually selected only objects with
good or relatively good quality CMDs, leaving a list of 38 new OCs. While this study
was not optimised to find nearby objects, we noticed that some of the 76 objects
closer than 1 kpc that were discarded because of edge effects could be real, new
OCs. We investigated the 12 most promising objects by downloading new regions of
Gaia data around them and re-running HDBSCAN, finding that three of these objects
are of a good quality and bringing our total to 41 new objects.
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We name the objects with the acronym PHOC (Preliminary HDBSCAN Open Cluster)
as we expect to characterise these objects further in future works. Mean parameters
for a selection of these objects are shown in Table 2.5, with a full list of mean
parameters and members for these new objects included in the online material.
Extra descriptions of the contents of these tables are included in Appendix A.3. In
addition, plots of all new objects are included in Appendix A.4.

2.6.2 Comments on the new OC candidates

We present brief remarks on some of the newly reported OC candidates.

Comparing our list of new OC candidates with the DBSCAN blind search of Castro-
Ginard et al. 2020 reveals patterns similar to those shown earlier in this work in
Fig. 2.6. Whereas the 209 OC candidates from their work have a median distance of
2650 pc with a highest individual distance of 8400 pc, our 41 objects detected by
HDBSCAN have a closer median distance of 1940 pc with a maximum distance of
4400 pc. These results are in agreement with our earlier finding that HDBSCAN is
more sensitive to nearby OCs whereas DBSCAN is more sensitive to more distant
OCs. However, as discussed in Sect. 2.5.2, this may simply be an artefact of our
study as our CST as-implemented gives higher scores to more nearby clusters. Our
future works will report more tentative candidates with lower CST scores and may
be able to achieve similar sensitivities as DBSCAN with HDBSCAN.

Our three very nearby candidates within 500 pc (PHOC 39, PHOC 40, and PHOC 41)
are some of the most scientifically interesting. If real, these objects demonstrate that
new clusters are yet to be found even at close distances. We estimated approximate
distances to these objects as the inverse parallax after correcting for the Gaia zero-
point offset (Lindegren et al. 2018), although our future works will use a more
sophisticated inference-based approach. All three objects are within the galactic
disk.

PHOC 39 has an estimated distance of 396 pc, 139 member stars and a CST score
of 15.1σ. While it has a broad CMD as reported, plotting only member stars with a
membership probability of at least 80% gives a much cleaner and less broadened
CMD. PHOC 40 and PHOC 41 are more compact, composed of 36 and 63 stars
respectively with CSTs of 7.7σ and 9.4σ and at estimated distances of just 331 pc
and 290 pc. Both objects have good quality CMDs. All three OC candidates would
be excellent candidates for further study (especially with spectroscopy) thanks to
their proximity.
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The other 38 candidates have a mean size of 49 stars, with the largest having 118
stars and the smallest 29. Additionally, the objects had a mean CST of 7.9σ – many
of the new OC candidates are well above our 5σ CST threshold and represent clear
astrometric overdensities.

2.7 Conclusions and future prospects

In this work, we created a preprocessing pipeline for future searches of the Gaia
dataset for OCs. We selected three viable clustering algorithms from the literature
and developed new methodologies to apply them effectively to the large-scale Gaia
dataset. We compare the three algorithms side-by-side on Gaia data for the first
time. We find that GMMs are an inefficient algorithm inappropriate for large-
scale blind searches of the Gaia dataset, although they are relatively effective at
producing accurate membership lists of known OCs. DBSCAN is found to be feasible
and successful for finding OCs, but still struggles to detect certain objects since
it operates with a single global density parameter that is rarely optimal across
the variable densities of Gaia data. In particular, when DBSCAN is used with the
method of Castro-Ginard et al. 2018 for ε determination, we find that it has very
good precision and specificity, producing only very small numbers of false positives –
although the ACG method is only sensitive to≈50% of the 40 true positive OCs in our
main sample of 100. HDBSCAN is found to solve many of the issues encountered by
DBSCAN and was the most sensitive algorithm of the three, although it also produces
many false positives that need to be mitigated with additional post-processing. We
will use HDBSCAN in future work to conduct a large-scale blind search for OCs. We
expect that HDBSCAN’s improved sensitivity over other methods trialed to date will
reveal many more new OCs.

In addition, we detect a number of literature OCs that have previously gone unde-
tected in Gaia data. We expect that many more literature objects from the MWSC
catalogue remain to be detected in Gaia in future works and data releases, although
the majority appear to be associations or simply undetectable in Gaia. We found that
a handful of OCs from Cantat-Gaudin and Anders 2020 may be associations – either
due to being undetectable by any of the approaches we tried or due to having very
poor CMDs. We hope that future work expanding our analysis to the entire Gaia
dataset will contribute further to improving the quality and completeness of the OC
catalogue of the Milky Way.
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Finally, we searched our existing results for new objects and produced a list of 41
good quality new OC candidates, the nearest of which is at an estimated distance
of just 290 pc. While many authors have performed searches for new OCs in Gaia
data, our comparison of algorithms suggests that existing surveys have gaps in their
sensitivity and that many new objects are yet to be detected. Our tentative new
detections demonstrate this, suggesting that the OC census is still incomplete within
2 kpc to an unknown extent. Future searches with new and improved methodologies
will be essential to increase the completeness of the local OC census.

We plan to develop improved processes and statistical quantifiers of the strength
of all OC candidate detections, including developing supervised machine learning
techniques to classify OC candidate CMDs, owing to their success in other works
such as Castro-Ginard et al. 2020. As methods for improved distance determination
with parallaxes develop further (e.g. StarHorse, Anders et al. 2019), we hope to
include these in our work to increase the signal to noise ratio of OCs in the Gaia
dataset and provide cleaner membership lists.

Data from the Gaia satellite is overhauling our understanding of the Milky Way’s
structure. By continuously developing, comparing and improving our methodolo-
gies, astronomers can maximise the productivity of Gaia data and improve our
understanding of the galaxy.
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An all-sky cluster catalogue
with Gaia DR3

3
„These circumstances, but more especially the

last-mentioned, render it extremely desirable to
have presented in one work, without the
necessity of turning over many volumes, a
general catalogue of all the nebulae and clusters
of stars actually known.

— John Herschel
(1864)

Details of authorship. The content of this chapter is almost entirely based on work
published in Hunt and Reffert 2023. I conducted all scientific work and wrote all of the
text. Suggestions and corrections from my supervisor and the reviewer of the paper are
included in the text. The formatting of figures and tables has been adjusted to better fit
the formatting of this thesis.

3.1 Introduction

The Milky Way galaxy is an intricate ecosystem of ongoing star formation, evolution,
and destruction. Open clusters (OCs) are one such part of this system, which
form when molecular clouds condense into stars and may further condense into
gravitationally bound groups of a few dozen to a few thousand stars. Hence, OCs
offer an important way to study the immediate aftermath of star formation, as
well as the ongoing evolution of stars up to an age of around ∼ 1 Gyr, after which
most OCs will have been broken up, with their member stars dissolving back into
the galactic disk (Krause et al. 2020; Krumholz et al. 2019; Portegies Zwart et al.
2010).

Our view of OCs has always been complicated by their sparsity and their typical
location in the galactic disk, making them challenging to isolate from field stars
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along the line of sight (Cantat-Gaudin 2022). However, dramatically improved
astrometric and photometric data from the Gaia satellite (Gaia Collaboration et al.
2016) are revolutionising our understanding of OCs and the overall Milky Way.
Compared with the Hipparcos mission (Perryman et al. 1997), Gaia provides order
of magnitude improvements in proper motion and parallax accuracy for around
104 times as many stars, with over 1 billion sources in total.

Because of these improvements, Gaia has enabled many new insights into all proper-
ties of OCs. Works such as Meingast et al. 2021 and Tarricq et al. 2022 have shown
that many nearby OCs have tidal tails or comas of ejected member stars indicative
of their ongoing tidal disruption by the Milky Way. Other works such as Bossini et al.
2019 and Cantat-Gaudin et al. 2020 have used Gaia photometry to infer cluster
ages, extinctions, and distances, which can then be used to make wider inferences
about the Milky Way, such as in Castro-Ginard et al. 2021 who used OCs to trace
the spiral arms of the galaxy. Cleaned Gaia cluster membership lists also improve
spectroscopic studies such as Baratella et al. 2020, who combined Gaia data with
ground-based spectroscopic measurements to study the chemistry of OCs.

At the heart of all science with OCs, however, is the census of OCs itself. Particularly
in the four years since Gaia Data Release 2 (DR2, Brown et al. 2018), many works
have contributed major new insights into the census of OCs. Works such as Cantat-
Gaudin et al. 2018b, Cantat-Gaudin and Anders 2020, and Jaehnig et al. 2021
provide new membership lists for OCs with a significantly higher number of stars
and reduced outliers from the field when compared to pre-Gaia works. Thousands
of new OCs have been reported using a range of unsupervised machine learning
techniques, such as in Castro-Ginard et al. 2019, 2018, 2022, 2020, Cantat-Gaudin et
al. 2019, or Liu and Pang 2019. The reliability of the census has also been improved,
with works such as Cantat-Gaudin and Anders 2020 finding that a number of OCs
discovered before Gaia are likely to be asterisms.

One might wonder how much further Gaia can improve the census of OCs, and what
these improvements could reveal. In Hunt and Reffert 2021 (hereafter Paper 1),
we compare three different approaches for recovering OCs in Gaia DR2 data, and
find that the HDBSCAN clustering algorithm (Hierarchical Density-Based Spatial
Clustering of Applications with Noise, Campello et al. 2013) is the most sensitive
approach, although it is essential to reduce false positives with additional post-
processing. In this work, we conduct the largest blind search for star clusters to date
in Gaia data, using Gaia DR3 (Gaia Collaboration et al. 2021), methods developed in
Paper 1, and additional validation criteria based on the photometry of every detected
cluster.
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In Sect. 3.2, we describe the Gaia DR3 data used in this work and the quality
cuts we adopted to filter out unreliable sources. In Sect. 3.3, we briefly recap
our clustering method from Paper 1 and tweaks made to improve cluster recovery
within 1 kpc. We then outline a method to validate cluster candidates using their
photometry in Sect. 3.4, which we generalise to additionally infer ages, extinctions,
and photometric distances to our clusters in Sect. 3.5. In Sect. 3.6, we crossmatch
our catalogue against literature works. Section 3.7 presents an overview of our
catalogue. We discuss the non-detections of some literature clusters in Sect. 3.8, and
discuss required steps a future work will take to improve the reliability of our new
cluster candidates in Sect. 3.9. Section 3.10 summarises this work.

During the preparation of this work, we found that many of the star clusters we
detect appear much more compatible with unbound moving groups than bound OCs,
regardless of the quality of their photometry or how strong of an overdensity they
are. In an upcoming third paper, we will classify the clusters resulting from this
work into bound and unbound clusters, which will result in our final catalogue. This
work will follow shortly (Hunt & Reffert, in prep.).

3.2 Data

In this section, we present a brief overview of Gaia DR3 data and the preprocessing
steps applied to prepare it for clustering analysis.

3.2.1 Gaia DR3

The latest release of Gaia (Gaia Collaboration et al. 2016) astrometry and photometry,
Gaia DR3, presents an update to Gaia DR2, based on an extra 12 months of data
and various improvements to data processing. Astrometric and photometric data
were released early in Gaia EDR3 (Gaia Collaboration et al. 2021), with the full DR3
release containing other data products such as low-resolution spectra and updated
radial velocities that we also make limited use of in this work Gaia Collaboration et al.
2022. In total, DR3 contains 1.47 billion sources with 5- or 6-parameter astrometry,
with a 30% improvement in parallax precisions and a roughly doubled accuracy in
proper motions. These improvements have a large impact on the detectability of OCs
in Gaia – particularly for proper motions, where distant OCs have a signal-to-noise
ratio (S/N) increased by a factor of ∼ 4 in Gaia DR3 proper motion diagrams, owing
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Fig. 3.1.: Comparison of cluster membership lists detected using Gaia DR3 data cut at
G < 18 (black empty circles) and a Rybizki et al. 2022 v1 criterion greater than
0.5 (blue filled circles) using separate runs of HDBSCAN and our pipeline for
each cut, shown for Auner 1 (left) and Ruprecht 134 (right).

to the halving in size of the Gaussian distribution of stars in both axes for distant
clusters with proper motion dispersions smaller than Gaia errors.

In addition, many improvements have been made to the processing and understand-
ing of Gaia data and systematics for Gaia DR3. Most notably for OCs, Lindegren et al.
2021b provide a recipe for greatly reducing remaining parallax systematics for most
sources in Gaia DR3 down to a few µas in the best cases, which should significantly
improve the accuracy of distances to the most distant clusters. Cantat-Gaudin and
Brandt 2021 provide a recipe for correcting the proper motions of certain bright
stars around G ∼ 13. While both of these corrections are too small to make a differ-
ence in unsupervised cluster searches, they are included in later cluster parameter
determinations to improve the accuracy of final catalogue values.

3.2.2 Outlier removal

Despite improvements between Gaia DR2 and DR3, many sources in the catalogue
are still unreliable due to a number of reasons. For instance, blending in crowded
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fields can cause both astrometric and photometric errors, with sources being erro-
neously combined or split for any or all Gaia measurements of the source. This is a
particular issue in regions of the galactic disk with high numbers of sources. In addi-
tion, resolved and unresolved binary stars in DR3 may contribute significant errors
to derived astrometric measurements for these sources, especially when their period
is close to the one year baseline used to measure parallaxes (Lindegren et al. 2021a;
Penoyre et al. 2022a), as well as causing issues with photometric measurements due
to blending (Golovin et al. 2023; Riello et al. 2021).

To remove unreliable sources, a number of different quality cuts were investigated,
both in isolation and combined: firstly, simple magnitude cuts, including G < 18
as adopted in works such as Paper 1 and Cantat-Gaudin et al. 2018b, G < 19, and
G < 20; secondly, a cut on renormalised unit weight error (RUWE) values in the
main Gaia source table; and finally, a cut presented in Rybizki et al. 2022, which
uses a neural network and 17 diagnostic columns in the Gaia EDR3 data release to
classify astrometric solutions as reliable and unreliable, where we required a quality
value of at least 0.5.

To evaluate the performance of these cuts, the reliability of cluster recovery with
HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise,
Campello et al. 2013; McInnes et al. 2017) was inspected manually for 15 challeng-
ing to detect clusters given different combinations of these cuts. Notable clusters
in this process include Ruprecht 134, a difficult to recover cluster located in the
most crowded region of the galactic disk at l, b = (0.28◦,−1.63◦) and at a distance of
∼ 3 kpc, in addition to a number of clusters reported in Cantat-Gaudin and Anders
2020 but not detected in Paper 1 in Gaia DR2, such as Berkeley 91 and Auner 1.

A single, magnitude-independent cut based only on the quality flag of Rybizki et al.
2022 was found to outperform all other cuts trialed for cluster recovery. On average,
for the trial set of 15 clusters, clusters recovered using this cut had the highest S/N
of any recovered by any of the trialed cuts, with S/Ns being an average of 65%
higher than clusters recovered using the G < 18 cut common in the literature (see
e.g. Cantat-Gaudin et al. 2018b; Castro-Ginard et al. 2022). Clusters almost always
had more member stars than a simple G < 18 cut, with up to around twice as many
member stars for distant, faint clusters where only giant stars can be resolved for
magnitudes G < 18, such as for the distant cluster Auner 1 at a distance of 6.8 kpc.
Inevitably, this cut should result in more complete membership lists and a more
complete overall catalogue of clusters.

As a visual example, the CMDs of Auner 1 and Ruprecht 134 from clustering analyses
using this cut and a G < 18 cut are compared in Fig. 3.1. Auner 1 is a distant and
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difficult to detect cluster, for which only 51 stars are detected in the G < 18 trial for
a cluster S/N of 10.8σ. However, the Rybizki cut cluster includes many additional
faint sources, for a total of 139 member stars and an improved S/N of 17.9σ. In
the case of Ruprecht 134, a massive cluster in a crowded region near the galactic
centre, the Rybizki cut cluster has fewer sources than the G < 18 cut (277 to 355)
but a higher S/N (24.7σ to 16.6σ), with the Rybizki cut removing a number of
spurious sources from the cluster membership and the field – improving the cluster
membership list and the cluster’s contrast against field stars.

Compared to having no cut at all, adoption of this cut typically has a minimal
impact on the number of member stars for all clusters – it appears that sources
with unreliable astrometry are already so unreliable that their position in 5D Gaia
astrometry is too far from the bulk cluster position to be tagged as members, and few
outliers are removed from cluster CMDs by this (or any) cut. Instead, in the crowded
region at the galactic centre around Ruprecht 134, 85% of the sources in this field
were removed by the cut, yet all reliable clusters in this field (including the nearby
UFMG 88 reported by Ferreira et al. 2021) remained with a similar membership
list to with no cut at all. In addition, the lack of a magnitude cut means that in
sparse fields where faint sources have reliable astrometry, clusters such as the high
galactic latitude Blanco 1 have membership lists down to fainter than G ∼ 20, two
magnitudes fainter than the membership list of Cantat-Gaudin and Anders 2020 for
this cluster.

Only the v1 version of the Rybizki et al. 2022 quality flag was available during
preparation of cluster membership lists in this work, for which a minimum value
of 0.5 was adopted. Later versions of the initial Rybizki et al. 2022 pre-print
and eventual published paper have a slightly improved version of the quality flag,
although in practice it was found to make a negligible difference to the final results
of this work and so clustering analysis was not revised to include it.

In total, 729.7 million sources in Gaia DR3 have a Rybizki et al. 2022 v1 quality flag
of at least 0.5 and were selected for further clustering analysis in this work. This
represents significantly more sources than the 301.7 million sources with G < 18,
a cut adopted in works such as Castro-Ginard et al. 2022 or Cantat-Gaudin and
Anders 2020, and should result in a greater total number of both detected clusters
and member stars.
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3.2.3 Data partitioning

Finally, due to computational reasons, we partition the Gaia dataset into three
separate collections for further analysis, as it is not possible to efficiently perform
clustering analysis with 729.7 million sources at once. We aim to divide the Gaia
dataset in such a way so that no more than 20 million sources are in any one field
and so that a cluster of around 20pc tidal radius can always be reliably detected
regardless of its distance or location within adopted fields, which should be a
reasonable upper size limit for almost all OCs based on Kharchenko et al. 2013 and
Cantat-Gaudin and Anders 2020.

As in Paper 1, the HEALPix (Hierarchical Equal Area isoLatitude Pixelation) tessella-
tion scheme was used to segment the entire Gaia dataset (Górski et al. 2005), with
calculations performed by the Python package Healpy (Zonca et al. 2019). This
has advantages over other methods to subdivide spheres into a finite number of
regions, in that all regions at a given tessellation level have the same area, and
spherical distortions are minimised. However, unlike in Paper 1, the origin of the
HEALPix grid was set at the origin of galactic coordinates (l, b = (0◦, 0◦)), instead of
the default ICRS origin at right ascension and declination values of α, δ = (0◦, 0◦)
used in Gaia data releases, as this places most remaining spherical distortions at
high galactic latitudes where we expect to find few clusters, meaning that all fields
on the most important regions of the galactic disk are simple quadrilaterals.

We adopted three different partitioning schemes to detect clusters in three different
distance ranges: those more distant than 750 pc, those closer than 750 pc, and
those closer than 150 pc. Each scheme used large enough fields to detect clusters
at each different distance range, but while minimising the number of stars in each
field to keep the fields feasible to perform clustering analysis on. Firstly, for the most
distant clusters, we adopted the same methodology as in Paper 1, dividing the entire
Gaia dataset into 12288 HEALPix level five pixels. To avoid losing clusters on the
edge of each pixel, each pixel is grouped into fields containing the pixel itself and
its eight nearest neighbours, effectively overlapping each ≈ 5.5◦ × 5.5◦ field by 1.8◦

with all surrounding neighbours, with every pixel appearing in nine separate fields
and in the centre of one. Next, to detect clusters closer than 750 pc, a HEALPix level
two scheme with 192 pixels was adopted, containing only sources with $ > 1 mas,
using the same nine pixels per field system and resulting in overlapping fields of
size ≈ 44◦ × 44◦. Finally, for clusters closer than 150 pc, which can have large
extents on the sky, a single field containing all stars closer than 250 pc was used,
based on photo-geometric distances to sources in Bailer-Jones et al. 2021.
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Between these three systems, all bound members of all open clusters of size 20pc
or smaller should be contained within these fields – although in reality, this is
only a worst-case constraint at the 750 pc and 150 pc crossover points and for a
cluster in the worst possible location in a field, and many significantly larger clusters
(including tidal tails many times their size) would be detectable in other regions.

3.3 Cluster recovery

Next, we discuss the methodology we adopted to recover clusters in Gaia data, assign
basic parameters, and crossmatch to existing cluster catalogues in the literature.

3.3.1 HDBSCAN

Many different algorithms have been used to date to recover clusters in Gaia data.
We present a review and full explanation of these algorithms in Paper 1, in which
we found that the HDBSCAN algorithm (Campello et al. 2013; McInnes et al. 2017)
is the most sensitive for recovering OCs in Gaia data.

Briefly, HDBSCAN is an updated version of the DBSCAN algorithm (Ester et al. 1996),
for which only a minimum cluster size mclSize and minimum number of points in
the neighbourhood of a cluster core point mPts must be specified, unlike DBSCAN
which instead uses mPts and a minimum, global distance between points in a cluster
ε. DBSCAN has seen much use in the literature so far for OC recovery, such as in
Castro-Ginard et al. 2019, 2018, 2022, 2020 or He et al. 2021; He et al. 2022a. The
main challenge of DBSCAN is that ε must be set globally for an entire dataset, which
can limit the sensitivity of the algorithm for datasets of varying density – such as
the Gaia dataset, which has different densities at different distances and locations
within the galaxy.

Instead, HDBSCAN copes with varying density datasets by effectively considering all
possible DBSCAN ε solutions for all regions of a dataset, selecting the best clusters
based on the lower limit of cluster size mclSize. HDBSCAN has so far been used
to detect moving groups in Gaia data by Kounkel and Covey 2019 and Kounkel
et al. 2020, as well as being used to find 41 new OCs in Paper 1, and being used
by Tarricq et al. 2022 to reveal new tidal tails and comas of numerous OCs within
1.5 kpc. HDBSCAN has not yet been used to conduct a search through all Gaia data
for OCs.
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A major flaw of HDBSCAN, however, is its high false positive rate. In Paper 1, we
show that this is due to the algorithm being overconfident, reporting dense random
fluctuations of a given dataset as clusters. To mitigate this, we adopt the cluster
significance test (CST) from Paper 1, which searches for field stars surrounding a
cluster and compares the nearest neighbour distribution of cluster stars with that of
field stars. This then produces a signal-to-noise ratio (S/N), with CST scores greater
than 5σ corresponding to highly likely clusters.

The issue of how to convert the five dimensions of Gaia astrometry into a form best
usable by a clustering algorithm is an open problem. Converting proper motions
and parallaxes to velocities and distances respectively is one such approach (e.g. as
in He et al. 2022a; Kounkel et al. 2020), although a major issue is that converting
Gaia parallaxes to distances is non-trivial and results in asymmetric errors and
non-Gaussian parameter distributions (Bailer-Jones et al. 2021). Instead, we use the
approach adopted in Paper 1, similar to that of works such as Castro-Ginard et al.
2018 and Liu and Pang 2019. We use Gaia positions, proper motions, and parallaxes
directly, but with two preprocessing steps: firstly, recentring them into a coordinate
frame with an origin at the centre of each respective field, which removes spherical
distortions present at high declinations; secondly, rescaling all five axes of the dataset
to have the same median and interquartile range, effectively removing the units
of each axis of the data. Particularly for HDBSCAN, which can cope with varying
density datasets, the choice to use these five simple recentred and rescaled features
was found to have no impact on the detectability and membership lists of nearby
clusters, while having great benefits for clusters more distant than ∼ 2 kpc, for which
a distance-based approach causes many clusters to have sparser, non-Gaussian, and
more challenging to detect distributions.

The one exception to this in this work is for the single field of all stars within
250 pc, which was adopted to help improve the accuracy of cluster membership lists
for very nearby clusters with large angular extents on the sky such as the Hyades.
Given that this field covers the entire sky, it is not possible to avoid high latitude
spherical distortions with a simple recentring; instead, photo-geometric distances
from Bailer-Jones et al. 2021 were used to convert positions and parallaxes to a
Cartesian coordinate frame, with proper motions converted to tangential velocities.
At such small distances, the uncertainties in Bailer-Jones et al. 2021 are small and
not prior-dominated, and so reliance on Gaia-derived distances for the single nearby
field should not cause any issues.
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3.3.2 Clustering analysis and catalogue merging

Using HDBSCAN and the same range of parameter choices as in Paper 11, clustering
analysis on all HEALPix level two and five fields was completed in around eight days
of runtime on a machine with a 48 core Intel(R) Xeon(R) E5-2650 CPU with 48 GB
of RAM. This run was mostly RAM-limited due to the worst-case O(n3) memory use
of the HDBSCAN implementation used for the largest fields. Given that fields overlap
and that different parameter choices can detect the same cluster, each cluster can
be duplicated up to four times within a single field, up to nine times by appearing
in all neighbouring fields and a further time by appearing in different distance
ranges (if the cluster has a distance between 0.7 to 1 kpc, or less than 250 pc).
Hence, in the worst case, a single cluster could be duplicated 72 times. It is essential
and non-trivial to merge the results of all fields accurately and without losing or
duplicating any one individual cluster.

In total, 7.1 million different clusters were detected (including duplicates), almost all
of which are astrometric false positives due to the oversensitivity flaws of HDBSCAN
discussed in Paper 1. These clusters can be removed by using their astrometric
S/N, as derived by the CST. Figure 3.2 shows histograms of the S/Ns of detected
clusters, showing a clear spike in count for S/N < 0.5 and an increasing trend in
S/N for S/N . 3 that deviates from the relatively straight log-linear relation in S/N
present for S/N > 3, suggesting that an additional component of false positives is
contributing to the otherwise log-linear component of reliable astrometric clusters
at low S/Ns. This figure, our results from Paper 1, and the poor quality of the
low-S/N clusters we detect strongly support that most low-S/N clusters are false
positives; however, exactly where to set an S/N threshold is a non-trivial decision
that has a large effect on the rest of the catalogue. A catalogue can choose to
prioritise completeness, having a low threshold and including as many true positives
as possible, but while inevitably including many false positives and sacrificing
precision; or, a catalogue can do the opposite, having a lower completeness but also
minimal false positives and maximised reliability of all objects in the catalogue.

For the purposes of this work, we chose to prioritise the precision and reliability of
the catalogue, adopting a higher threshold on the minimum S/N of clusters. This
sacrifices some completeness so that all final catalogue entries are likely to be real
astrometric overdensities and not mere statistical fluctuations. This approach also
comes with a key advantage. Our field tiling strategy aimed to prevent any real
clusters from being ‘lost’, aiming to recover > 99% of real, good-quality OCs in a
single catalogue. However, merging the results of so many separate clustering runs

1mclSize ε {10, 20, 40, 80}, mPts = 10
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Fig. 3.2.: Statistics of all detected clusters compared against the final catalogue. Top:
distribution of the number of member stars of detected clusters, nstars, for all
detected clusters in all fields before catalogue merging and duplicate removal
(solid blue line), for the final catalogue (solid orange line), and amongst clusters
in the final catalogue that crossmatch to clusters in the literature, for all literature
clusters (solid red line) and for only those detected before the release of Gaia
EDR3 (dotted purple line). Bottom: as above, but for the astrometric S/N (CST
score) for all clusters in these sets. S/Ns have a maximum value of 38 due to
numerical reasons.
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is a difficult and non-trivial task, and early experiments showed that the inclusion of
false positives in the catalogue had a severe effect on the reliability and accuracy
of the catalogue merging process. It was common that false positives and clear
real OCs would share members in different clustering runs, meaning that low S/N
thresholds on the final catalogue would adversely affect the catalogue’s completeness
at higher S/Ns. For the purposes of this work, we set a higher threshold on the
minimum S/N, requiring S/N > 3σ. This cut was found to maximise the quality
of later catalogue merging steps, while removing a high number of false positives
and retaining reliable clusters. Many false positives share member stars with real
OCs, which greatly complicated the merging process and made the choice of which
cluster to keep challenging. A single S/N cut means that our incompleteness is well
characterised and easy to understand, whereas lower cuts were found to adversely
affect catalogue completeness even at high S/Ns in a difficult to characterise way. In
addition, while our adopted cut is at an S/N of 3σ, clusters with an S/N lower than
even 5σ may have minimal scientific usefulness, as they cannot be asserted as being
real astrometric overdensities beyond any reasonable doubt; as such, it is not worth
including such clusters in the catalogue at the expense of the recovery of better, real
objects.

Inevitably, some low-S/N real OCs are likely to be lost in this process. We discuss the
number of literature objects that are lost due to this cut in Sect. 3.8.1, and we briefly
discuss some of the improvements to clustering algorithms that could be used to
simplify the merging process and entirely remove the need for an S/N cut to ensure
the catalogue’s reliability in Sect. 3.10.

After dropping unreliable low S/N clusters, the results of each parameter run in every
field were merged. For clusters where every mclSize detected an identical object,
duplicates were simply dropped. In some cases (such as for the largest OCs and
GCs), smaller mclSize runs may split the cluster into two subclusters. Generally, it
was possible to remove duplicate small subclusters by only keeping the single largest
cluster. This process was extensively checked by hand, keeping smaller clusters
instead in the case of some binary and coincident clusters which are better selected
as being split, which was aided by fitting Gaussian mixture models to every cluster
and evaluating the Bayesian information criterion of one and two-component fits,
flagging clusters where a two component fit was preferred for potential splitting.

Secondly, cluster duplicates between fields must be removed. Using maximum
likelihood distances calculated with the method presented in Cantat-Gaudin et al.
2018b, clusters likely to be affected by edge effects or likely to be better detected
at a different HEALPix level were removed. Clusters from the 250 pc run were

94 Chapter 3 An all-sky cluster catalogue with Gaia DR3



only kept if they were closer than 175 pc. Clusters from the HEALPix level 2 run
were only kept with distances between 150 and 750 pc. Finally, clusters from the
HEALPix level 5 run were only kept if they had distances greater than 700 pc. The
small overlaps in these distance ranges allow the best cluster to be selected later for
clusters on the boundaries.

Next, duplicate clusters due to the overlap between fields must be removed. As
each field is composed of nine pixels, a cluster can appear in up to nine separate
fields. Keeping only clusters in the central pixel of every field is sufficient to mostly
remove duplicates, retaining only the best cluster detection in the central pixel
where edge effects are minimised. However, cluster membership lists are often not
identical between fields, and it is hence possible that a cluster’s mean position could
be different enough between runs to appear in the central pixel of multiple fields or
to never appear in the central pixel of any field. Particularly for small clusters of 20
stars or less, the inclusion or removal of even a single star can have a reasonable
impact on the mean position of the cluster. This effect is worst for the nearest
clusters with the largest angular extents on the sky relative to the field they are in.
While this effect only impacts a small number of clusters (causing around ∼ 1% of
clusters reported in Cantat-Gaudin and Anders 2020 to be lost), it is nevertheless
important to address to ensure the final catalogue is as complete as possible.

To mitigate this effect, clusters near to the edge of a central pixel were also kept.
After extensive testing, it was found that cluster positions generally vary by no more
than ∼ 1 pc at the distance of the cluster between different fields. We adopt a
more tolerant cut corresponding to ∼ 5 pc for a cluster at a worst-case distance,
such that clusters within 1.91◦ (HEALPix level 2) or 0.41◦ (HEALPix level 5) of the
edge of a central pixel were also kept. This is small compared to the overall field
sizes of ≈ 44◦ × 44◦ (HEALPix level 2) or ≈ 5.5◦ × 5.5◦ (HEALPix level 5), but was
nevertheless found to be sufficient to avoid losing any genuine clusters.

These processes removed most duplicated clusters while minimising the number of
clusters lost during the merging process, although some duplicates still remained
within the allowed overlaps between fields. These clusters were removed by looking
for clusters with similar membership lists, mean positions, mean proper motions,
and mean parallaxes, and selecting the cluster in each case with only the highest
distance from any field edge. This process was also verified extensively by hand. For
23 large clusters (typically with tidal tails larger than the field they are in), duplicate
clusters were similar but with both having additional members. In these cases, the
clusters were merged into single clusters.
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Finally, the catalogue was checked for clear, known binary clusters that were not
correctly split by HDBSCAN. Four probable cases were identified, including the
close binary Collinder 394/NGC 6716 as well as UBC 76/UBC 77. Generally, these
binary clusters had very similar proper motion and parallax distributions, making
them difficult or impossible for the HDBSCAN algorithm to split – particularly
since HDBSCAN cannot assign members to two clusters at once, although this is
necessary for such close and difficult to separate objects. These clusters were split
with Gaussian mixture models by selecting the number of components with the
highest Bayesian information criterion. In all four cases, multiple components
were preferred over a single component. It is likely that some other objects in the
catalogue may also be better described as binary clusters, although this would need
to be investigated carefully on a case-by-case basis (see e.g. Anders et al. 2022;
Kovaleva et al. 2020) or with analysis using improved astrometry of a future Gaia
data release. This resulted in a list of 7788 clusters for further analysis.

3.3.3 Additional parameters and membership determination

Cluster parameters were mostly determined following the same approach as in Paper
1. However, it was noticed that many clusters are detected with tidal tails or comas,
despite this study not being initially designed to detect cluster tidal tails. This is
particularly common for clusters within ∼ 2 kpc. In many cases, this can cause
clusters to have strongly biased mean parameters, such as for the cluster Mamajek 4
at a distance of 444 pc. Mamajek 4 has a tidal tail that stretches for 15◦ or 100 pc
from its core, although only one side of the tail is detected due to limitations of the
size of the field it was detected in. Using a simple mean position and proper motion
for such clusters is hence affected by this asymmetry and is strongly biased.

Instead, we aim to derive cluster parameters for the central part of clusters only. In
practice, particularly for dissolving clusters with a majority of their mass in their
tidal tails, it can be difficult to decide where stars should be called members of
the cluster or members of the field. For instance, Tarricq et al. 2022 attempted
to derive structural parameters for 467 OCs within 1.5 kpc, but their method
(based on fitting King 1962 profiles) only succeeded on 389 clusters. To allow for
accurate parameters to be inferred for all clusters homogeneously, we adopt a simple
methodology comparing the density of cluster members with that of the field.

Firstly, cluster members with a HDBSCAN membership probability of less than
50% were discarded. HDBSCAN membership probabilities are not based on Gaia
uncertainties, but rather only on the proximity of a given member to the bulk of the
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cluster. It was noticed that membership probabilities lower than this limit always
correspond to low-quality cluster members or members of tidal tails, and are hence
not worth including in the determination of reliable parameters of clusters.

Next, using these members, cluster centres are derived in a way insensitive to
asymmetries. Kernel density estimation was used to select the modal point of the
cluster stellar distribution, with a bandwidth set to 1 pc at the distance of the
cluster.

Finally, using this cluster centre, the radius at which the overall cluster has the best
contrast to field stars was selected. In practice, this is similar to the King 1962
definition of tidal radius as the radius at which a cluster’s density begins to exceed
that of the density of the field, but is model-independent and can be easily and
efficiently computed for the entire catalogue by selecting the radius at which a
cluster has the highest CST against field stars. For instance, for well-defined clusters
such as the Pleiades and Blanco 1, this radius was found to exclude cluster tidal
tails while corresponding well with literature tidal radius values in Kharchenko et al.
2013 (see Sect. 3.7 for a discussion of our cluster radii.)

Mean parameters such as mean proper motion and parallax were then calculated
given the members within the cluster’s estimated tidal radius, in addition to max-
imum likelihood cluster distances calculated using the method of Cantat-Gaudin
et al. 2018b. To calculate more accurate distances, the parallax bias of member
stars was corrected using the method in Lindegren et al. 2021b, which improved
the accuracy of cluster distances particularly for distant clusters. As the Lindegren
et al. 2021b parallax correction can only be applied for certain parameter ranges,
for six clusters, too few sources (or no sources) had available corrections, and so we
applied a simple global offset of $0 = −17 µas as derived in Lindegren et al. 2021b.
These six clusters are flagged in the final catalogue as having less accurate distances.
Overall, although the Cantat-Gaudin et al. 2018b distance method assumes that the
size of clusters is negligible compared to their distance, which introduces a bias for
nearby clusters, our astrometric cluster distances were nevertheless found to agree
well with the literature. For instance, we derive a distance of 47.19+0.004

−0.005 pc to the
Hyades, which is comparable to the 47.34± 0.21 pc distance in McArthur et al. 2011,
who use Hubble Space Telescope parallaxes to a subset of Hyades member stars to
derive its distance.

In addition, King 1962 core radii were estimated given our estimated tidal radius rt
and radius containing 50% of members of the core r50, since there exists only one
solution to the number density equation in King 1962 (Eqn. 18) given n(r50) and rt.
While approximate and less accurate than full Markov chain Monte-Carlo (MCMC)
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Tab. 3.1.: Probability distributions used for simulated clusters for training of the CMD
classifier.

Param. Range Distribution
log t [6.4, 10.0] U(6.4, 10.0)

[Fe/H] [−0.5, 0.5] B(4.0, 4.0)− 0.5
m−M [3.2, 15.73] U(3.2, 15.73)
AV [0.0, 8.0] B(

√
d/3,

√
d/5) · 8 tanh(d/2)a

nstars [10, 10000] 103·B(2, 3.5)+1

σ∆AV [0.0, 0.6] 0.4 · T (1.25)
l [0◦, 360◦) U(0, 360)
b [−90◦, 90◦] 90 · S · R(B(1, 35), B(1, 12), 2/3)

Notes. Distributions of parameters are quoted as uniform distributions U(a, b)
between a and b, beta distributions B(a, b) with parameters a and b, truncated
exponential distributions T (a) truncated at a, R(a, b, x) which is a weighted choice
with probability x of choosing value a and probability 1− x of choosing value b, and
S which is a random sign with value +1 or −1. (a) Distances d in kpc.

fits such as those performed in Tarricq et al. 2022, these core radii still provide a
good approximation of a King 1962 model fit and compared well to literature values
for well-defined clusters for which different works have similar membership lists.
Having calculated basic astrometric parameters for our clusters, we next calculate
photometric parameters for our clusters using convolutional neural networks.

3.4 Photometric validation

In this section, we use photometry to validate members of the cluster catalogue as
being compatible with single-population OCs and infer basic parameters, entirely
using neural networks and simulated data. While Castro-Ginard et al. 2019, 2018,
2022, 2020 successfully use neural networks to classify candidate clusters as real
or false with their photometry, and while Cantat-Gaudin et al. 2020 and Kounkel
et al. 2020 use neural networks to infer the ages, extinctions, and distances of their
catalogued clusters, all of these works rely partially or entirely on existing examples
of OCs detected in Gaia.

While such an approach mitigates issues with simulated training data, namely that
stellar isochrones such as Bressan et al. 2012 are typically an imperfect fit to the
observed CMDs of OCs (Cantat-Gaudin et al. 2020), it is difficult to guarantee that a
small training dataset that relies mostly or entirely on examples of OCs from Gaia
accurately covers a full range in parameters such as absolute extinction, differential
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extinction, distance, metallicity, and age. In particular, due to the different cuts
on Gaia data used in this work, we often detect significantly more member stars
for many clusters and up to two magnitudes fainter than the membership lists of
Cantat-Gaudin and Anders 2020; hence, particularly for more distant OCs, our
membership differences have a significant impact on inferred parameters, making
existing literature catalogues inappropriate to use as training data. Simulated data,
if it can be simulated accurately enough, would offer an attractive way to quickly
generate new training data applicable to new methodologies and new Gaia datasets
or even other instruments, entirely based on a ground truth or ‘best estimate’ of
how OCs should appear based on prior knowledge from stellar evolution models.
Additionally, training data based on real clusters are biased towards an unknown
selection effect of how a human defines a real cluster – whereas for simulated data,
we are able to exactly state the distributions we assume real OCs are drawn from,
hence giving more knowledge of any selection biases this may cause.

A key issue found in early experiments is that typical machine learning approaches
are deterministic, and hence do not quantify the underlying uncertainties on their
predictions. To aid with the use of simulated data, we adopt an approximate
Bayesian neural network (BNN) framework using variational inference. In practice,
true Bayesian machine learning is impractical to achieve with current methods;
however, variational inference-based approaches offer an approximate and fast way
to estimate the uncertainty of a neural network model by approximating parameters
with simple probability distributions (Goan and Fookes 2020; Jospin et al. 2022),
of which networks can then be sampled multiple times to produce a probability
distribution for their output. The BNN approach we trialed had similar accuracy to
a purely deterministic one except while also outputting uncertainties, allowing us
to estimate the uncertainty of our classifier. We provide a broader overview of our
adopted variational inference-based approach in Appendix B.2. Next, we discuss the
creation of training data for our CMD classifier.

3.4.1 Simulated real OCs

A number of steps were used to generate examples of real OCs to train our CMD
classifier. Basic OC generation was conducted using SPISEA (Hosek Jr et al. 2020)
to simulate single-population clusters from PARSEC evolution models (Marigo et al.
2017), with extinction calculated star-by-star using a Cardelli et al. 1989 extinction
law with RV = 3.1. Stars were sampled from these isochrones with SPISEA using a
Kroupa 2001 IMF. In addition, SPISEA was used to supplement simulated OC CMDs
with unresolved binary stars based on general relations derived in Lu et al. 2013 for
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zero-age star clusters. The values in this work were found to correspond relatively
well to Gaia observations, with a mass-dependent multiplicity frequency peaking at
100% for clusters of masses above 5 M�. In practice, unresolved binary stars have
negligible impact on the final cluster CMDs fed to the network, as typical binary
sequences observed in Gaia photometry are smaller than the size of the pixels in
input CMD images. SPISEA was also used to apply Gaussian-distributed differential
reddening, with values up to a standard deviation of 0.6 in the highest cases,
reflecting the most extreme examples of differentially reddened reliable clusters
found in Cantat-Gaudin and Anders 2020.

Next, a random location on the galactic disk was selected for each cluster, which
was used to simulate a realistic selection function and photometric errors. The
magnitude-dependent selection function of Gaia DR3 at each given location was
queried using the selectionfunctions package presented in Boubert and Everall
2020 and Boubert et al. 2020, which gives the basic probability that a source appears
in Gaia as a function of position and G-band magnitude. We use the online version of
their package updated for Gaia DR3. The selectionfunctions package is based on
the dustmaps package from Green 2018. In addition, the selection function of every
cluster was also corrected for the cuts to Gaia data applied in Sect. 3.2.2. During
the preparation of this work, Cantat-Gaudin et al. 2023 released a new selection
function for Gaia DR3 which suggested that the earlier work of Boubert and Everall
2020; Boubert et al. 2020 can be over-confident at the faint end; however, given
that our cluster membership lists are overwhelmingly dominated by the selection
function of our cuts on Gaia data at magnitudes G > 18, and not the pure selection
function of Gaia, we found that it made too small of a difference to our simulated
clusters to be worth updating our training data for, although we will adopt their
work in future works. Realistic photometric uncertainties were added to sources
based on the distribution of source uncertainties at the selected location, which are
generally larger in crowded fields. We added systematic offsets in simulated BP and
RP Gaia photometry for faint sources using relations in Riello et al. 2021.

Outliers were not added to simulated cluster CMDs, as most clusters are already
detected with very few or no outliers; instead, we wish the CMD classifier to
quantify the evidence for a cluster being real based on its photometry alone, which
photometric outliers inherently reduce. In this way, CMDs of clusters with a high
number of outliers are scored more negatively by the network as they have less
photometric evidence supporting them being real. Blue stragglers were also not
added to cluster CMDs as they are indistinguishable from photometric outliers,
although in practice, real OCs with blue straggler stars were not found to be scored
significantly lower by the trained network.
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10 000 examples of simulated real clusters were generated to use as one half of the
simulated cluster dataset. Distributions of parameters such as age log t, extinction
AV , differential extinction ∆AV and distance modulus m−M were carefully chosen
after many iterations to minimise systematics deriving from the overall distribution
of training data in the dataset, while ensuring that the CMD classifier was trained
on a representative set of simulated real OCs. Fundamentally, the objective of the
training data are not to match the real distribution of OCs, but rather to yield an
unbiased and representative sample of OCs to train the BNN on, such that the
BNN can provide an unbiased classification of any object. For instance, while a
distribution of the number of visible stars n based on the distribution of stars in
Cantat-Gaudin and Anders 2020 (corrected for our deeper magnitude limit) was
found to work well to produce an unbiased classifier, in other cases, such as for log t
and m−M , the use of a uniform distribution (instead of one based on the expected
distribution of clusters) was essential to avoid biasing the classifier towards certain
ages or distances. These distributions are listed in Table 3.1.

3.4.2 Simulated fake OCs

A number of methods to simulate fake OCs reminiscent of false positives sometimes
reported by HDBSCAN were trialed. As a clustering algorithm, the member stars of
each cluster reported by the algorithm are spatially correlated, with a similar position,
proper motion, and parallax. Hence, it is important that false positives contain
member stars with similar astrometric parameters. Simply randomly selecting stars
from Gaia data to construct each false positive was found to result in clusters that
were too pessimistic.

Instead, to generate false positives with spatially correlated member stars, a star was
first selected randomly from the entire Gaia dataset as an origin point. This ensures
inherently that false positives are more likely to occur in the densest regions of the
Gaia dataset, which was a behaviour observed inherently for HDBSCAN in Paper 1.
A total number of stars for the cluster was selected from the same distribution as
used for simulated real OCs. Then, a 5D hypersphere in position, proper motion, and
parallax was expanded randomly around this star until the hypersphere contained
the required number of stars. In this way, false positives with spatially correlated
member stars were generated. Actual OCs make up a small enough portion of the
Gaia dataset – 610 000 in the final version of the catalogue, or fewer than 0.1%
– that it was not found to be necessary to first remove them from data used to
generate false positives. This is similar to the false positive generation method used
in Castro-Ginard et al. 2022.
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Tab. 3.2.: Human classifier performance.

Percent classified as
Dataset Size TP TP? FP? FP
Test data 2000 53.6 26.5 11.0 8.9
Simulated real OCs 250 72.0 20.0 6.0 2.0
Simulated fake OCs 250 14.0 26.8 28.0 31.2

Notes. Results of human classification when applied to a test dataset of 2000 clusters
detected by HDBSCAN in this work as well as two datasets of simulated real and
fake clusters.

10 000 false positives were generated using this methodology to provide the other
half of the training dataset. While most false positives have obviously poor quality
CMDs, false positives generated from regions of field stars with roughly homogeneous
ages and composition (such as from the galactic halo) often had more homogeneous
CMDs, that could be compatible with highly differentially reddened OCs. However,
this is a useful property of the training dataset, given the variational inference
approach used in the network: this ‘overlap’ between highly differentially reddened
true positives and chance alignments of somewhat-similar field stars reflects on the
real distributions of field stars in the galactic disk. Real Gaia cluster candidates
with worse-quality CMDs making them compatible with both a real OC or a chance
clustering of field stars hence have broad or bi-modal PDFs from the BNN CMD
classifier, reflecting how photometry alone offers only poor evidence of whether or
not these objects are real or fake star clusters.

3.4.3 Test dataset

In order to test the trained networks against real Gaia data and ensure that they
can be generalised from their training on simulated data to use on real data, a test
dataset of 2000 clusters randomly selected from the initial HDBSCAN clustering was
selected and classified by hand, in addition to 250 simulated real clusters and 250
simulated fake ones to estimate the accuracy of human classification. These different
datasets were classified in one classification run to avoid biasing the human classifier.
Clusters were classified into ‘true positive’ (TP) and ‘false positive’ (FP) categories,
in addition to two other categories for clusters that are most likely to be true or
false clusters but are somewhat uncertain (abbreviated as ‘TP?’ or ‘FP?’), due to the
presence of outliers, a small number of stars, or very high differential reddening
that is compatible with both an association of field stars or a highly differentially
reddened OC. The results of this classification are shown in Table 3.2.
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Fig. 3.3.: Performance of the CMD classifier on the independent test dataset of 2000 clusters
detected by HDBSCAN in Gaia data and labelled by hand. Clusters are labelled as
true positives or false positives, with clusters where the human classifier was less
certain being additionally flagged.

Of clusters reported by HDBSCAN, 53.6% were hand-classified as being highly likely
to be real, with a further 26.5% being potentially real, suggesting that most clusters
we detect have a reliable CMD. Only 8.9% were highly unlikely to be real with a
further 11.0% classified as probably not real, suggesting that around 80% of clusters
reported by HDBSCAN are likely to have single stellar populations based on human
classifications.

In testing the human classifier, 92.0% of simulated real clusters were correctly
classified as real or potentially real, although only 59.2% of simulated fake clusters
were classified as false or potentially false. 14.0% of simulated fake clusters were in
fact classified as highly likely to be real. This shows the inherent limitations of using
photometry to validate OCs, as spatially correlated groups of field stars can often
have somewhat-homogeneous CMDs when all field stars in a given region have a
similar age and chemistry (see Sect. 3.4.2), which can even fool a human classifier.
This is particularly common in the halo and thick disk where most stars have a
similar, old age. This is an important limitation of the human-classified test data to
bear in mind, as a small fraction of clusters classified by hand as true positives will
always in fact be false positives. Nevertheless, CMD classification is still a necessary
validation tool to help ensure that detected cluster candidates are reliable, as many
of the worst quality clusters can still be removed with this method.
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Fig. 3.4.: Four examples of classified cluster CMDs from the test dataset, with cluster CMDs
on the top row and their PDFs of predicted probabilities on the bottom row.
Cluster names and human-assigned labels are indicated on the figures. PDFs are
generated by sampling the CMD classifier 1000 times for every cluster.

3.4.4 Network training and validation

The 20 000 simulated real and fake OCs were split randomly into a training set of
16 000 clusters and a validation dataset of 4 000 clusters to assess network overfit-
ting. As the simulated fake OCs have a different distribution of distance moduli
to the simulated real OCs, fake OCs at undersampled and oversampled distances
were weighted to be emphasised more or less strongly during training, preventing
systematics due to differences in distance distributions.

We used the implementations of neural networks and probabilistic layers in Ten-
sorFlow (Abadi et al. 2015; Abadi et al. 2016) and TensorFlow Probability (Dillon
et al. 2017) for all networks used in this work. Networks were trained with the
Adam optimisation algorithm (Kingma and Ba 2017). A number of different neural
network structures were trialed. Convolutional neural networks (CNNs), which
convolve two-dimensional input with learnt filters, were found to perform ideally
for the problem at hand, and have seen extensive use in the astronomical literature
e.g. Becker et al. 2021; Castro-Ginard et al. 2022; Killestein et al. 2021.

As input, the optimal network trialed used cluster CMDs converted to absolute
magnitudes, with stars of absolute G magnitudes greater than 10 or lower than −2
cut away. Generally, this cuts certain very low mass M stars and bright O stars from
cluster CMDs, which were found to be poorly simulated by PARSEC isochrones with
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their inclusion only worsening network performance on real data. In practice, very
few stars are cut due to this limitation, with O stars making up only a very small
proportion of sources in young clusters and M dwarfs fainter than MG = 10 only
being brighter than G = 20 for clusters within 1 kpc, at which point the rest of the
cluster CMD can be resolved well. In addition, BP −RP colours were cut between -
0.4 to 4, which in practice is a wide enough colour range to include almost all sources
but while providing a good range to discretise cluster CMDs between. Sources with
very low BP and RP fluxes that have overestimated BP or RP magnitudes were
removed using cuts from Riello et al. 2021, as these also only confused the network,
despite these systematics being simulated in the training data. Finally, in terms of
structure, the optimal network trialed was trained on CMDs discretised into 32× 32
pixel images, corresponding to pixels of size 0.38× 0.11 mag. These images were
first processed by three convolutional layers with 5× 5 pixel kernels of 6, 16, and
120 filters respectively. Max pooling layers were placed between these convolutional
layers to speed up training and inference. Convolution layer output was connected
to a single densely connected layer of 128 nodes, with a final single node for output.
The distance modulus of the cluster based on the parallax-derived cluster distances
was also fed to the network as an auxiliary input into the 128 node dense layer, in
a similar way to the network of Cantat-Gaudin et al. 2020 which also uses both
photometric and astrometric input simultaneously. All layers used Rectified Linear
Unit (ReLU) activation other than a sigmoid activation function applied to the final
output to constrain network output in the range [0, 1] as a probability distribution.

The final network had binary accuracies (the percentage of clusters given the correct
true or false label) of 95% for both training and validation data, indicating that the
network did not overfit to training samples when compared with other simulated
data. Fig. 3.3 shows the performance of the network compared to the human-labelled
test dataset of real clusters detected by HDBSCAN in Gaia after sampling the network
1000 times to generate PDFs for every object, with 85.5% of clusters labelled highly
likely to be real and 91.3% of clusters labelled highly unlikely to be real having a
median predicted probability greater or less than 0.5 respectively. Clusters where
the human classifier was less certain have a much broader distribution, although this
also reflects inherent uncertainties in the test dataset discussed in Sect. 3.4.3. Finally,
only 4.3% and 2.5% of highly likely real and highly likely false clusters had predicted
labels that disagree with human labels at more than the 2σ level – namely, that
97.5% of their PDF is below or above 0.5 respectively. It is important to recall that
these quantities merely validate the general agreement between two independent
classifiers (the human classifier and the automated CMD classifier) on the same
dataset, and do not exactly measure the ground truth sensitivity or accuracy of the
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CMD classifier, as the human class labels themself are uncertain Sect. 3.4.3. Instead,
these data show that the CMD classifier can perform comparably well to human
classification, except with the added bonuses of speed and reproducibility.

Fig. 3.4 shows CMD classifier PDFs for four clusters from all human classes, including
the names of any clusters that crossmatched to real objects. In general, CMD classifier
predictions generally agreed well with the human-assigned labels, also generally
with higher uncertainty and a broader PDF in cases where the human classifier
was less certain. For clusters with clear, high-quality CMDs such as UPK 282, the
CMD classifier outputs PDFs that strongly suggest they are real. Teutsch 110 is
a less well-defined cluster that, if real, must have differential reddening and a
few outliers, and is hence not classified as strongly. The candidate new cluster
shown is a similar case albeit with a worse CMD, making it relatively unlikely to
be real given this HDBSCAN detection. Finally, Theia 4560 is visible as a large
and statistically significant overdensity in Gaia data as detected by Kounkel et al.
2020, although the overdensity as detected in this work does not appear to contain
a homogeneous population of stars and is hence classified weakly. CMD classifier
median probabilities and confidence intervals for all clusters are listed in Table 3.4,
based on 1000 samples of the network for each cluster.

3.5 Age, extinction, and distance inference

3.5.1 CMD classifier modifications

While not a main focus of this work, we also show that the approach based on
simulated data and an approximate BNN using variational inference is also applicable
for age log t, extinctionAV , differential extinction ∆AV and distance modulusm−M
inference. Recently, Cantat-Gaudin et al. 2020 use a neural network to infer log t,
AV and m − M for around 2000 OCs. In their work, a training dataset based
on simulated OCs alone is not found to be sufficiently accurate to train a neural
network. While simulated data were found to be accurate enough for the CMD
classifier in Sect. 3.4, parameter inference is more challenging, as a network must
learn to infer multiple parameters from a CMD alone and generalise this accurately
to real data. However, our approach has a number of differences to theirs: firstly, we
use a convolutional neural network, which may be better able to capture structure
in CMDs due to its 2D approach, which may also reduce training data overfitting;
secondly, our network is approximately Bayesian, and includes uncertainty estimates
that quantify when it may have failed; finally, although Cantat-Gaudin et al. 2020
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Fig. 3.5.: Photometric parameters derived in this work compared against test datasets.
Top row: 2D histograms showing the performance of the trained photometric
parameter inference network on all 10 000 clusters from the validation dataset.
The mean output uncertainty is shown with white error bars. As indicated by the
dashed lines, predicted values on the y axis should be equal to true values on the
x axis. The root mean square error (RMSE) and mean absolute error in terms
of output network uncertainty (MAE) are given in the top left. All plots and the
RMSE are in units of magnitude other than on age plots which are logarithms
of cluster age in years. Other rows: comparison between network predicted
parameters and ages, extinctions, and distance moduli for 247, 1753, and 1206
clusters in common with the catalogues of Bossini et al. 2019, Cantat-Gaudin
et al. 2020, and Kharchenko et al. 2013 respectively. Points are shaded based on
the differential extinction we infer for each cluster.
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Fig. 3.6.: Extinction values from Cantat-Gaudin et al. 2020 compared against this work
when corrected for differential extinction with an estimate of cluster differential
extinction, plotted in the same style as Fig. 3.5. The dashed black line shows
where y values equal x ones; the dashed grey line shows the same but offset by
-0.4.

do not elaborate on how they simulate clusters in their work, our methodology is
be different and may produce different results. Hence, despite recent literature
suggesting that using purely simulated data is not possible for parameter inference
with CMDs, it is still worth attempting, as training on simulated data is attractive for
reasons discussed in Sect. 3.4.

To create a parameter inference network, we used a similar network structure
to that of Sect. 3.4.4, except with some tweaks to the network output to infer
parameters. To better predict the aleatoric uncertainty of network output for this
multiple-parameter network, network output was changed to a beta distribution for
each parameter. These distributions can take any shape from a uniform (completely
uncertain) distribution to a single point-like estimate. The output was then scaled
to be within the minimum and maximum ranges of the training data. To train the
network, 50 000 simulated clusters were created using the same methodology as
in Sect. 3.4.1, changing the distribution of cluster extinctions AV (as defined in
Table 3.1) to simply be uniform between 0 and 7.

In initial comparisons with literature results, differential reddening was found to
strongly correlate with disagreements in extinction (and to a lesser extent, age)
between this work and others. A primary cause of this is that while many works
(e.g. Bossini et al. 2019; Cantat-Gaudin et al. 2020) use the so-called ‘blue edge’
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Fig. 3.7.: Predicted cluster isochrones from this work (solid blue line) compared with those
from other works. Cluster members are plotted in black and shaded according to
their membership probability.

of a CMD for isochrone fitting, meaning that ∆AV is only positive. This contrasts
to SPISEA’s default ∆AV model, which is Gaussian – with cluster stars having both
positive and negative ∆AV values.

However, changing SPISEA’s ∆AV model to also only be positive (and hence defining
∆AV in terms of the blue edge of cluster CMDs) was not found to be helpful. Owing
to HDBSCAN’s high sensitivity, we detect a higher number of stars outside of the
core of clusters than in the membership lists of Cantat-Gaudin and Anders 2020,
which are constructed with the UPMASK algorithm (Krone-Martins and Moitinho
2014) and for many clusters only select stars in the core. This means that our CMDs
are constructed from clusters with significantly larger angular extents on the sky
and are hence often more strongly differentially reddened than in Cantat-Gaudin
and Anders 2020, with many clusters having a blue edge at an extinction value
up to 1 magnitude lower than in Cantat-Gaudin and Anders 2020. For instance,
NGC 884 is an example of this, with our membership list being larger and more
strongly differentially reddened. A blue-edge based definition of AV means that
different works produce different values of AV depending on how sensitive their
membership recovery process is.

Instead, we continue using the default SPISEA ∆AV definition centred on the mean
cluster AV , but while also using the network to infer ∆AV for every cluster, which
can then be used as a correction to convert between extinctions in this work and
others that use a blue-edge definition. In practice, ∆AV is very difficult to measure,
as it is degenerate with other effects that broaden cluster CMDs, including unresolved
binary stars and outliers. Against validation and test data, our median ∆AV values
are found to be offset by around 0.4 due to unresolved binaries. Nevertheless, this
parameter is helpful to aid comparisons with literature works.
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Finally, we also updated our ∆AV model from the Gaussian default model in
SPISEA to instead use the differential reddening as would be expected from stars
sampled from a King profile (King 1962), assuming a first order (linear) gradient in
differential extinction across a cluster. This model is narrower than the Gaussian
model while retaining highly differentially reddened stars (which would be at the
outskirts of a cluster), and was found to slightly improve ∆AV inference. This model
depends on two parameters: the total differential extinction across a cluster, which
was matched to have the same range as the previous Gaussian model at a 3σ level;
and the ratio between core and tidal radius, which was set to the median value for
open clusters from Kharchenko et al. 2013.

Against our validation dataset of 10 000 simulated clusters, the network performs
well with no clear systematics in log t, AV or m − M . However, owing to the
degeneracy between ∆AV and other effects such as unresolved binary stars, outliers,
and photometric uncertainties, values of ∆AV smaller than 0.4 are not typically
correctly predicted, although the true value is typically still within 1σ uncertainty of
the predicted value. These results are plotted on the top row of Fig. 3.5.

Using the best trained network after a number of experiments, all clusters in our cat-
alogue closer than a maximum distance of 15 kpc have ages, extinctions, differential
extinctions, and distance moduli listed in Table 3.4. These parameters are based on
1000 samples of the network for each cluster.

3.5.2 Comparison with other works

We briefly compare our photometric parameters to other works in the literature.
Firstly, Fig. 3.7 shows example predicted isochrones for four OCs in this work. In the
first case, NGC 2910 is a cluster with a well-behaved isochrone where all works agree
relatively well. On the other hand, Haffner 14 shows relatively strong differential
reddening, and different definitions of differential reddening between different
works cause isochrone fits to disagree. Berkeley 15 is a sparse cluster where both
differential reddening and field star outliers affect different works in different ways,
with our updated Gaia DR3 membership list having fewer outliers than that of
Cantat-Gaudin et al. 2018b. Ruprecht 147 is a nearby and particularly old cluster
(∼ 1 Gyr), where blue straggler stars systematically affected our network and caused
an incorrect younger age value to be predicted for this cluster. It is clear from these
plots that for all but the most well-behaved OCs, different works can have different
photometric parameters.
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Fig. 3.5 compares all network predictions with values from four test datasets. An
advantage of our simulated training approach is that network predictions can now
be compared to other literature works, which act as independent test datasets which
can verify the accuracy of our network. It is important to note that our results never
agree perfectly, however, particularly since all works we compare to are based on
Gaia DR2 or pre-Gaia OC membership lists that may be significantly less clean or
have significantly fewer stars than our Gaia DR3 membership lists.

Bossini et al. 2019 provide a catalogue of precise OC parameters from Bayesian
isochrone fitting using the BASE-9 algorithm (Hippel et al. 2006). A key difference
is that their work uses metallicity estimates from the literature where available,
whereas our approach is based entirely on Gaia DR3 parameters and assumes a
given cluster can have any metallicity as drawn from a broad probability distribution
based on literature values (Table 3.1). Nevertheless, our results still agree well with
theirs in log t, AV and m −M . In cases where our log t estimates disagree most
strongly, this is typically due to differences in OC membership list. There is however
a possible minor systematic between our two works for OCs with extinctions below
0.6, many of which we infer smaller extinctions for than them; this may be as a
result of AV vs. metallicity degeneracies. However, their values are typically only 1
to 2σ from ours.

Our parameters agree less strongly with the results of Cantat-Gaudin et al. 2020,
which are derived from a neural network trained on isochrone fits from a variety
of works (including Bossini et al. 2019). This is to be expected to some extent,
as while Bossini et al. 2019 only fit isochrones to a subset of OCs with clean
membership lists and the least differential reddening, Cantat-Gaudin et al. 2020
fit isochrones to all known OCs at the time, including many sparse objects which
may now have significantly different membership lists in our current Gaia DR3 work.
However, some differences persist. A clear systematic in our and their AV values is
clear, although this is likely due to their different blue edge definition of extinction
(whereas our network fits to the mean extinction in a cluster.) Figure 3.6 shows
a crude conversion between our AV values and their blue-edge AV values. While
this removes the systematic difference in gradient, our converted AV values are still
generally smaller than theirs by around 0.4 to 0.5 on average. This is likely due
to two effects; firstly, as shown by the results on validation data, ∆AV is generally
overestimated for our validation data by around ∼ 0.4 due to degeneracies with
unresolved binary stars, outlier non-member stars, and photometric uncertainties,
which may explain some of this discrepancy, particularly for clusters with lower
∆AV values. Secondly, our membership lists generally cover a wider extent on
the sky than those used in Cantat-Gaudin et al. 2020, meaning that our clusters
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are often larger and hence are more extremely differentially reddened between
separate sides of the cluster; hence, a conversion between the works based on our
∆AV values is likely to frequently over-correct for the difference in AV definition.
Finally, some of our ages for the oldest clusters (log t > 9) appear systematically
younger, on average by around 2σ; in some cases, this may be due to our fits being
disrupted by blue straggler stars (Fig. 3.7, see Ruprecht 147.) The training data we
use for our photometric parameter inference are adapted from our CMD classifier in
Sect. 3.4, for which blue straggler stars were not found to have a negative impact
on the accuracy of our network and were hence not included. Future works using
purely simulated data to train a photometric parameter inference neural network
would benefit from inclusion of blue straggler stars in their training data, although
in practice the origin of blue stragglers is still disputed, and these stars may hence be
challenging to simulate accurate photometry for (Boffin et al. 2015; Cantat-Gaudin
2022).

Finally, our results have limited agreement with those of Kharchenko et al. 2013.
While some clusters have similar values between their work and ours, particularly
for AV and particularly for the largest and most clearly defined clusters (Fig. 3.7),
many sparse clusters that were difficult to detect before Gaia have very different
photometric parameters. This typically appears to be caused by extremely different
cluster membership lists. Before Gaia, OCs were often challenging to separate
from field stars (Cantat-Gaudin 2022), requiring that suspected outliers be removed
iteratively to improve CMD quality (Kharchenko et al. 2012). However, this process
can also remove true cluster members, which can cause resulting cluster membership
lists to be incorrect (Cantat-Gaudin and Anders 2020). This discrepancy with the
results of Kharchenko et al. 2013 is also reported by Cantat-Gaudin et al. 2020,
who also find that many photometric parameters derived before Gaia are strongly
discrepant with current results. In addition, while the number of member stars
reported in Kharchenko et al. 2013 is generally a poor predictor for whether or
not a given cluster in their work has very different parameters to ours, there are
some cases (such as clusters in their work with AV > 5 that we derive much smaller
values for) where the most discrepant clusters were also the smallest, with fewer
than 20 member stars in reported in Kharchenko et al. 2013.

Although approximate, these results still agree well within the sample-limited but
accurate Bayesian isochrone fits of Bossini et al. 2019 and agree relatively well (albeit
with some caveats) with the machine learning derived parameters of Cantat-Gaudin
and Anders 2020. This work offers a large and homogeneously derived catalogue
of photometric parameters with sufficient accuracy for basic analysis. In the next
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section, we use the ages and extinctions we derived here to aid with discussion of
our cluster sample.

3.6 Crossmatch to existing catalogues

3.6.1 Crossmatch strategy

Before conducting further analysis on the cluster catalogue, such as restricting it to
only clusters with reliable colour-magnitude diagrams or removing moving groups,
it is helpful to crossmatch our results to literature catalogues to allow for easier
comparisons between derived parameters and other works. In particular, this makes
it possible to compare whether clusters reported in other works are compatible with
real open clusters given further parameters derived in Sect. 3.4 and the third paper
in this series, Hunt & Reffert, in prep., where we will derive dynamical parameters
for our census of star clusters.

In Paper 1, we crossmatched by assigning matches to clusters when their mean
positions were compatible to within their tidal radii and when their mean proper
motions and parallaxes were compatible within five standard errors. In initial testing,
the crossmatch strategy of Paper 1 was found to be insufficient for two reasons when
comparing between Gaia DR3 astrometry and Gaia DR2 astrometry, in addition to a
further issue with the positional strategy used.

Firstly, the standard errors on mean proper motions and parallaxes in Gaia DR2
can be as small as 5 to 10 µas for the largest clusters in catalogues such as Cantat-
Gaudin and Anders 2020, although this is smaller than estimated upper limits on
systematics in Gaia DR2 of 50 µas (Lindegren et al. 2018). Many reliable clusters
are hence missed when treating DR2 positions exactly, as they have systematics
significantly larger than their standard errors, with positions in DR3 that can deviate
systematically from their DR2 positions by 50 µas or more.

Secondly, membership lists can differ between works and can be significantly differ-
ent for the same cluster – for instance, works such as Castro-Ginard et al. 2020 only
used stars down to G = 17, whereas this work often has membership lists down to
G ∼ 20. Many clusters hence have significantly different membership lists that can
result in different mean parameters, particularly for asymmetric clusters.

Our positional crossmatch strategy was also revised and improved. Paper 1 used
a conservative strategy for matching on position, which assumed that a cluster is
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a positional match if the centre of the literature cluster is closer than either the
Paper 1 or literature radius for a given cluster. However, in practice, this strategy
appears almost always too conservative, as many distant, compact clusters reported
in catalogues such as Froebrich et al. 2007 would match to large, nearby clusters that
happen to contain the distant object within one radius, despite the cluster centres
being strongly incompatible given the smaller (literature) radius.

To improve positional crossmatching, we instead define a positional match to require
that the centre of the literature cluster is closer than both the current and literature
radius, which in almost all cases still recovers reliable matches but while not erro-
neously matching to compact, distant objects with significantly different sizes and
cluster centres. Then, for catalogues with Gaia astrometry available, we also match
on proper motions and parallaxes, requiring that the new mean proper motion and
parallax are within two standard deviations of the literature value (with both current
and literature standard deviations summed in quadrature.) This approach with
standard deviations matches clusters if a new cluster is within allowed ranges of
the dispersion of the current and literature entries, with the principles that exact
statistical matching based on standard errors is not possible as unknown systematic
errors dominate, and that a cluster within the dispersion of a literature entry is likely
to be the same object. Using a higher maximum value of the dispersion was not
found to significantly increase the number of literature clusters recovered by more
than 1%, but while adding many false crossmatches to other nearby objects that
greatly worsen the reliability of the overall crossmatching process.

Some special cases are also worth mentioning: the catalogue of Kharchenko et al.
2013 is based on PPMXL proper motions and distances from isochrone fitting by
hand, which are generally significantly less accurate than Gaia astrometry. Hence,
we crossmatch to Kharchenko et al. 2013 with both a position-only and a second
positions, proper motions, and distances crossmatch which can more strongly con-
firm the most reliable matches. Some catalogues list only a radius containing 50%
of members for entries (e.g. Cantat-Gaudin and Anders 2020); for these catalogues,
we use twice this radius to approximate the total size of the cluster. Other works
(e.g. Castro-Ginard et al. 2020; He et al. 2022a) list only standard deviations of
the mean position; for these catalogues, we use twice the geometric mean of this
standard deviation on position to approximate the total size of the cluster. Finally,
Kounkel et al. 2020 does not list uncertainties or dispersions on mean parameters,
and so these were manually recalculated with our own pipeline using their lists of
members.
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After an extensive search of the literature for recent catalogues, excluding works
already listed entirely in other catalogues (such as Froebrich et al. 2007, which
appears in its complete form within Bica et al. 2018), we crossmatch against 26
different works listed in Table 3.3. In addition, as our catalogue contains many
moving groups, globular clusters, and a handful of clusters associated with the
Magellanic clouds, we also crossmatch against the Kounkel et al. 2020 catalogue
of predominantly moving groups, the Vasiliev and Baumgardt 2021 Gaia DR3
catalogue of globular clusters and the Bica et al. 2008 catalogue of star clusters in
the Magellanic clouds. Names between catalogues were standardised as much as
possible to facilitate easier comparison and remove duplicated clusters. One such
example are ESO clusters, which are numbered based on their position in the form
‘ESO XXX-XX’ in the original work and Kharchenko et al. 2013, but with numbers
that are separated by a space instead of a dash in Cantat-Gaudin and Anders 2020
and Dias et al. 2002, or often miss leading zeroes in Bica et al. 2018.

3.6.2 Recovery of clusters from prior works

Table 3.3 shows that this work has a high recovery rate of OCs from other works. As
shown in Table 3.3, we recover 96.6% of clusters from Cantat-Gaudin and Anders
2020, higher than the 86.4% of clusters recovered in Paper 1. Generally, clusters not
recovered in Paper 1 were sparse, barely-visible overdensities in Gaia DR2 which
often now stand out strongly in Gaia DR3, including clusters such as Berkeley 91
and Auner 1, which we now detect reliably at S/Ns of 9.7σ and 12.5σ respectively.
The fact that only Cantat-Gaudin and Anders 2020 was able to detect these clusters
in DR2 is likely due to a difference in methodology – by starting with prior cluster
positions, their search regions for these clusters are smaller and may help the clusters
to stand out. However, the disadvantage of such an approach is that it may also
introduce a handful of false positives, due to poor statistics inherent in such small
search regions – in Paper 1, we comment that a handful of clusters in Cantat-Gaudin
et al. 2020 may not exist, which may be the case for some of the 3.4% of clusters
we are still not able to recover in Gaia DR3 despite the greatly improved astrometry
and clear benefits to the S/N of other previously undetected clusters.

We recover most of the new clusters reported in Castro-Ginard et al. 2020 (a work
based on Gaia DR2) and Castro-Ginard et al. 2022 (a work based on Gaia EDR3),
recovering almost exactly 89% of both catalogues, showing that a majority of these
objects can be confirmed independently. The reason for the non-recovery of around
11% of clusters in both cases is not clear, although the fact that this amount is
similar between both clusters detected with Gaia DR2 and EDR3 suggests that it is a
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Tab. 3.3.: Results of crossmatching against literature catalogues sorted by nclusters.

Work nclusters ndetected %
Bica et al. 2018 4391 1251 28.5
Kharchenko et al. 2013 2935 1513 51.6
Dias et al. 2002 2161 1160 53.7
He et al. 2022b 1656 737 44.5
Cantat-Gaudin and Anders 2020 1481 1431 96.6
Hao et al. 2022a 704 501 71.2
Castro-Ginard et al. 2022 628 558 88.9
Castro-Ginard et al. 2020 582 519 89.2
He et al. 2022a 541 440 81.3
He et al. 2022c 270 122 45.2
Sim et al. 2019 208 180 86.5
Qin et al. 2023 101 74 73.3
Chi et al. 2023a 82 18 22.0
Liu and Pang 2019a 76 57 75.0
He et al. 2021b 74 69 93.2
Li et al. 2022 64 44 72.1
Chi et al. 2022b 46 11 23.9
Hunt and Reffert 2021 41 41 100.0
Li and Mao 2023 35 0 0.0
Ferreira et al. 2021 34 32 94.1
Ferreira et al. 2020 25 25 100.0
Casado 2021 20 15 75.0
Hao et al. 2020b 16 5 31.3
Jaehnig et al. 2021 11 7 63.6
Santos-Silva et al. 2021 5 4 80.0
Qin et al. 2021b 4 4 100.0
Ferreira et al. 2019 3 0 0.0
Casado and Hendy 2023 2 2 100.0
Anders et al. 2022 1 1 100.0
Bastian 2019 1 1 100.0
Tian 2020 1 1 100.0
Zari et al. 2018b 1 1 100.0
Kounkel et al. 2020c 8281 1498 18.1%
Bica et al. 2008d 3740 22 0.6%
Vasiliev and Baumgardt 2021e 170 134 78.8%

Notes. 32 catalogues of OCs are listed in the first section of the table, in addition
to three catalogues at the bottom of other star clusters. (a) Original work and this
work uses the acronym ‘FoF’ to name clusters, although others list with acronym ‘LP’.
(b) Cluster(s) in these works were unnamed, and so cluster acronyms were adopted
based on first letters of surnames of authors. (c) Catalogue of predominantly moving
groups, although many are also open clusters. (d) Position-only catalogue of objects
in the Magellanic clouds. (e) Catalogue of globular clusters.
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fundamental methodological difference (their works use the DBSCAN algorithm, see
Paper 1 for a review) rather than a data one.

However, we recover fewer of the new clusters reported by other DBSCAN-based
works such as Hao et al. 2022a; Hao et al. 2020 and He et al. 2021; He et al.
2022a,b,c, recovering fewer than 50% of the clusters reported in He et al. 2022b,c
using Gaia EDR3 data.

Additionally, while a large fraction of clusters reported before Gaia and catalogued
in works such as Dias et al. 2002, Kharchenko et al. 2013, and Bica et al. 2018 still
do not appear in Gaia DR3, we are able to reliably detect an additional 277 clusters
from Dias et al. 2002, 292 clusters from Kharchenko et al. 2013, and 127 clusters
from Bica et al. 2018 that do not appear in the Gaia DR2 catalogue of Cantat-Gaudin
and Anders 2020 (excluding GCs in all cases, as the catalogue of Cantat-Gaudin and
Anders 2020 does not contain them.)

Notably, we are unable to detect any of the high galactic latitude OCs that have
been reported recently in Li and Mao 2023, despite the fact that OCs at such high
latitudes should stand out clearly against the low number of field stars in the galactic
halo. This echoes the results of Cantat-Gaudin et al. 2018b and Cantat-Gaudin and
Anders 2020, who also find that high latitude OCs that have been reported in works
such as Schmeja et al. 2014 are undetectable in Gaia data.

We discuss possible reasons for the non-detection of many literature OCs further in
Sect. 3.8.

Finally, it is worth commenting on our detections of moving groups, globular clusters,
and Magellanic cloud objects. We are only able to detect 18.1% of moving groups
and clusters from the catalogue of Kounkel et al. 2020, despite this work using
the same algorithm (HDBSCAN). Many of the groups reported in Kounkel et al.
2020 have large on-sky extents that are larger than the fields used in this work.
However, although 2276 of their 8281 clusters are compact enough to be easily
detectable in our fields, we only recover 622 (27.3%) of these compact groups, many
of which correspond anyway to known nearby OCs. In Paper 1, we found that while
HDBSCAN is the most sensitive clustering algorithm for application to Gaia data, it
also reports a large number of false positives without additional postprocessing to
remove clusters based on their statistical significance. It may be that these clusters
are false positives, although this should be investigated further in detail (see e.g.
Zucker et al. 2022).

The recovery of a large fraction of GCs in Vasiliev and Baumgardt 2021 shows that
HDBSCAN can be used to effectively recover GCs. The non-recovered objects are
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Fig. 3.8.: Member stars for the candidate new cluster HSC 2384 (red squares) compared
against the nearby cluster IC 2602 (black circles). Four plots of are shown, com-
paring positions (top left), proper motions (top right) and photometry (bottom
right). The bottom left plot shows a histogram of all distances to individual
member stars.

mostly distant and heavily reddened GCs whose member stars can only be recovered
with a prior position and distance to narrow the search region. Finally, while not a
focus of this work, the recovery of 22 Magellanic cloud star clusters from Bica et al.
2008 shows that Gaia data could be used to make limited inferences on existing
Magellanic cloud clusters in a future work, although we do not appear to detect any
new clusters in the Magellanic clouds as their distance is too high.

3.6.3 Assignment of names

As many of the objects we detect crossmatch to multiple entries in the literature
(or vice-versa), assigning detected clusters to literature names can be non-trivial. A
total of 7022 literature clusters crossmatch to 4944 of the entries in our catalogue,
of which only 2749 matches are direct one-to-one matches where a single detected
cluster can be easily assigned a single name.
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Fig. 3.9.: Distance and spatial distributions of clusters in this work. Left: the distance
distribution of all clusters in this work that do not crossmatch to known GCs
compared to other catalogues. Right: The distribution of clusters in this work in
Cartesian coordinates centred on the Sun, cut to only those within 5 kpc in the
X or Y directions. All previously reported clusters that we redetect are shown as
blue triangles, and all objects new in this work shown as orange circles.

1396 detected clusters each match to multiple literature entries. In these cases, the
main cluster name was assigned based on the date of submission to a journal, with
other names recorded in a separate column of alternative names for this object.

In 64 cases, multiple detected clusters crossmatched to the same literature object.
The best match was selected based on position (or proper motions and distances, if
available), with other objects instead recorded as new clusters.

Finally, there were 265 groups of crossmatches where multiple detected clusters
crossmatched to multiple literature clusters, where assigning one match affects other
matches. This is common in regions where many clusters are in a small area, such
as in star formation regions like the Carina nebula. For simplicity, and since many
of these groups contain literature entries with only positions available, we assign
the best match on cluster positions only, iterating over all matches within a group
accepting the match with the smallest positional separation and then removing all
other literature entries with the same name within this group. All valid matches for
every cluster are recorded in a separate column, and as these crossmatches represent
the most difficult to assign reliably, clusters where their name has been assigned in
this way are flagged in the catalogue as crossmatches that were particularly difficult
to assign.

After assigning names to clusters, removing 22 objects associated with the Magellanic
clouds, 17 objects associated with galaxies or dwarf galaxies, and 582 objects clearly
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associated with stellar streams in the galactic halo, our catalogue contains 7167
clusters, and is listed in Table 3.4 and online at the CDS, with tables of member stars
and the rejected Magellanic cloud objects, galaxies, and stellar streams available
online only. 2387 of these clusters are unreported in the literature and are candidate
new objects, which we label with the acronym ‘HSC’ (standing for HDBSCAN Star
Cluster.) Most of these objects have good-quality CMDs, and some are likely to be
new OCs. For instance, HSC 2384 is a nearby new OC candidate at a distance of only
551 pc with 273 member stars and a high astrometric S/N of 23.6σ, which likely
avoided prior detection due to being obscured by IC 2602 and mis-crossmatched to
it (shown in Fig. 3.8.) However, many appear to be more consistent with unbound
moving groups, and will require further classification based on their structure and
dynamics. In addition, we provide a table of all crossmatches and non-crossmatches
against the clusters in this work in Table B.2.

In the next sections, we discuss multiple aspects of the overall catalogue. Firstly, we
discuss the overall catalogue of existing clusters in Sect. 3.7, including its distribution
and the quality of its membership lists. Section 3.8 discusses why some literature
clusters are undetected. Finally, Sect. 3.9 discusses why existing approaches to
differentiate between moving groups and OCs are inadequate to classify the new
clusters detected in this work, a topic that will be explored further in a future work
(Hunt & Reffert, in prep.).

3.7 Overall results

In this section, we briefly discuss the structure and characteristics of the overall
catalogue of 7167 clusters.

3.7.1 Suggested cuts on the catalogue for a high-quality cluster
sample

Our catalogue also includes objects that we detect with CST scores as low as 3σ, and
objects with low-quality CMDs given the results of our classifier in Sect. 3.4. Such
clusters are included in our catalogue for completeness, as a low-quality CMD may
be caused by a poor detection of a real OC by our cluster recovery method, and a
cluster with a low CST that is not a guaranteed astrometric overdensity may still be
a real cluster that could be validated by a future Gaia data release. However, these
clusters are not particularly scientifically useful for studies of star clusters, as they
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Fig. 3.10.: Spatial distributions of clusters detected in this work shaded on our derived log t
and AV values. Left: side-on and top-down distribution of clusters in heliocentric
coordinates that do not crossmatch to known GCs. The galactic centre is to the
right, with the Sun at (0, 0). Only clusters passing two quality cuts are plotted:
firstly, those with a CST score above 5σ, meaning they are highly probable
astrometric overdensities; and secondly, a median CMD class above 0.5, which
are those compatible with single population star clusters. Clusters are plotted
in descending age order, meaning points representing young clusters are most
visible in crowded regions. Right: as left, except clusters are colour-coded by
extinction AV . Clusters are plotted in ascending order of extinction.

cannot be validated as real within this work, or even with any currently available
data.

Hence, in discussions of the overall structure of our results, we predominantly
discuss the most reliable sample of 4105 clusters within the catalogue: those with
a median CMD class greater than 0.5, meaning that they are likely to be a largely
homogeneous single population of stars as in OCs and moving groups, allowing
some tolerance for blue stragglers and extended main-sequence turnoffs; and a
CST of greater than 5σ, corresponding to clusters with a high likelihood of being
real overdensities within Gaia data and not simply a statistical fluctuation. The
more tenuous 3062 objects excluded by this cut may still be used in some analyses,
although with the caveat that these objects are less likely to be real star clusters.

122 Chapter 3 An all-sky cluster catalogue with Gaia DR3



6 7 8 9 10

log t

0.0

0.2

0.4

0.6

0.8

N
o
rm

a
li

se
d

co
u

n
t

This work

Kharchenko+13

Cantat-Gaudin+20

Kounkel+20

Fig. 3.11.: Histogram of ages of all clusters in this work with median CMD classes greater
than 0.5 – specifically, all clusters with photometry that is compatible with a
single population of stars. These are compared to the ages of all clusters in the
catalogues of Kharchenko et al. 2013, Kounkel et al. 2020, and Cantat-Gaudin
et al. 2020. Known GCs are excluded from the results of this work and the
results of previous works for this plot.

3.7.2 General distribution

The distribution of clusters in our catalogue is generally similar to that of other
Gaia-based works such as Cantat-Gaudin and Anders 2020, albeit with more stark
differences when compared to those compiled before Gaia, such as Kharchenko et al.
2013. Comparisons are also useful to the catalogue of structures, moving groups,
and star clusters of Kounkel et al. 2020 and papers based on Gaia DR3 data that
report new clusters, such as Castro-Ginard et al. 2022.

Figure 3.9 shows the distance distribution of clusters in this work, as well as the
X,Y distribution of clusters we re-detect and objects new to this work. Owing
to the improved astrometry of Gaia DR3 and the clustering method we use (see
Paper 1), our catalogue has a high total number of clusters in most distance bins
relative to other catalogues. As expected from the results in Paper 1, HDBSCAN is a
cluster recovery technique sensitive across all distance ranges. However, HDBSCAN
is sensitive to all clusters within Gaia data, as it is unbiased on the shape of clusters
it reports; hence, the catalogue contains a large number of moving groups, which
are generally detected near to the Sun. The catalogue contains around 8x as
many objects as the open cluster catalogue of Cantat-Gaudin and Anders 2020
within 500 pc, clearly visible as an overdensity of new objects and in the distance
distribution of Fig. 3.9. These objects are often difficult to classify as being OCs or
moving groups (see Sect. 3.9).
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Fig. 3.12.: Cluster radii derived in this work (dashed black line) compared against the
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The age and extinction distribution of Fig. 3.10 is similar to that of Cantat-Gaudin
et al. 2020. A number of structures stand out, including: the imprint of the galactic
warp in X,Z plots for X < −2 kpc; the presence of spiral arm structure amongst
young clusters very similar to that reported in works such as Castro-Ginard et al.
2021; and the general flatness of the distribution of compact star clusters in the
Milky Way other than GCs, with few existing at heights of |Z| > 250 pc. Additionally,
clusters towards the galactic centre generally have high AV values of 5 or greater,
suggesting that extinction may be a limiting factor in the detection of clusters in this
direction.

Differences to pre-Gaia works are most apparent in the age histogram of Fig. 3.11,
however. Our combined age distribution is relatively similar to that of Cantat-
Gaudin et al. 2020, albeit with a slightly lower median age around log t ≈ 8 and
no additional bump between 7 < log t < 8. However, the star cluster catalogue of
Kharchenko et al. 2013 skews significantly older, with the most common (modal)
age for clusters being around log t ≈ 9, an age range where we detect few clusters. A
similar pattern is also visible for the catalogue of Kounkel et al. 2020, whose moving
group and star cluster catalogue contains many unbound, old structures. Many of
these objects have similar ages to the typical ages of unclustered stars in the Milky
Way disk. In Sect. 3.8, we elaborate on how some of these age differences may be
caused by these catalogues containing a number of old false positive clusters.

Finally, Fig. 3.12 shows the distribution of cluster radii compared between this work
and the works of Kharchenko et al. 2013, Tarricq et al. 2022, and Cantat-Gaudin and
Anders 2020. Our cluster radii agree most strongly with those in Cantat-Gaudin and
Anders 2020, with a similar distribution of cluster radii containing 50% of members
r50. The King 1962 core radii rc that we derive, when compared against those in
Kharchenko et al. 2013 and Tarricq et al. 2022, are generally larger. This may be
due to our more populated membership lists, particularly for faint stars, due to our
lack of a magnitude cut in our clustering analysis. Particularly for clusters with a
high degree of mass segregation, this difference in memberships would cause our
clusters to have larger observed cores. Our tidal radii rt are slightly larger than
those in Kharchenko et al. 2013, but much smaller than those in Tarricq et al. 2022.
In the first case, the difference may be due to the improved precision of Gaia data
compared to pre-Gaia works, causing us to detect more member stars at the outskirts
of clusters and hence derive larger cluster tidal radii, with this effect again being
stronger for mass segregated clusters. In the second case, since Tarricq et al. 2022
also explicitly searched for cluster tidal tails and comas in their work, it may be that
their extended cluster membership lists mean that they report higher cluster tidal
radii.
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Fig. 3.13.: Membership list comparisons between this work and the catalogue of Cantat-
Gaudin and Anders 2020, using three clusters selected at random (upper three)
and two clusters selected at random that were detected in Castro-Ginard et
al. 2018 using Gaia DR1 data. Stars assigned as members by this work are
plotted with filled blue circles, while members reported by Cantat-Gaudin and
Anders 2020 are plotted with empty black circles. The first three columns
compare the astrometry of cluster members in galactic coordinates, proper
motions, and parallax as a function of l. The final column compares colour-
magnitude diagrams of each resulting membership list. For every cluster, various
parameters are labelled on the plots: number of member stars in Cantat-Gaudin
and Anders 2020 NTCG, number of member stars in this work N , astrometric
S/N as estimated by the CST, distance d, and probability of being a single stellar
population given the neural network in Sect. 3.4.
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Fig. 3.14.: Two examples of clusters in the catalogue that have detected tidal structures. The
spatial distribution of the clusters Blanco 1 (top row) and Mamajek 4 (bottom
row) are plotted on the left, with member stars reported in this work shown as
filled blue circles and compared against member stars from Cantat-Gaudin and
Anders 2020 which are plotted as empty black circles. CMDs are shown in the
two plots on the right for both clusters.

3.7.3 Membership lists for individual clusters

Owing to the improved quality of Gaia DR3 data and the expanded selection of
729 million stars from Gaia data used as input into our cluster recovery pipeline,
clusters in this work generally have more populated membership lists than in
previous catalogues. Fig. 3.13 compares our membership lists with those from Cantat-
Gaudin and Anders 2020 for five clusters randomly selected from our catalogue.
Our membership lists typically have a higher total number of stars, with virtually
all new member stars being compatible with the existing cluster CMD. This is
particularly the case for clusters in regions with minimal crowding, where Gaia has
a high completeness of stars with 5-parameter astrometry down to G ∼ 20, with
our membership lists containing stars down to approximately this limit. For more
distant clusters such as Kronberger 4, membership lists are comparable in quality
to those of Cantat-Gaudin and Anders 2020, as Gaia DR3 data does not present a
large improvement in the astrometric quality of these distant sources compared to
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DR2. On average, our work contains 2.1 times as many member stars as the clusters
we have in common with Cantat-Gaudin and Anders 2020, and 4.1 times as many
member stars as the clusters we have in common with Kharchenko et al. 2013.

A second major advantage of our pipeline is that clusters are not forced to take a
spherical shape, as with other methods such as Gaussian mixture models (Paper 1).
Hence, we are able to detect tidal tails for many of the clusters in the catalogue,
especially for those that are nearby and within 1 − 2 kpc. Tarricq et al. 2022 use
HDBSCAN to detect tidal tails for 71 nearby OCs, many of which we are also able to
detect. Figure 3.14 shows two examples of nearby clusters with well-resolved tidal
tails using our methodology, Blanco 1 and Mamajek 4, both of which have reported
tidal tails stretching around 50 pc from the centre of the cluster. Virtually all stars
within the tidal structures appear compatible with the isochrone of the cluster core,
suggesting that they are stars with the same age, composition, and origin as the
stars in the cluster cores. Particularly for clusters within 1 kpc, many of the clusters
in our catalogue have tidal tails or comas.

However, as no current methodology for star cluster recovery from Gaia data is
perfect (Paper 1), our membership lists are not without caveats – both of which are
consistent with our results from Paper 1, but that are still worth mentioning in the
main work of this catalogue.

Firstly, for distant OCs, our method may return fewer members than some other
approaches. At high distances (d & 5 kpc), the errors on Gaia parallaxes and proper
motions generally become much higher than the intrinsic dispersion of OCs, meaning
that many members have low membership probabilities and can only be reliably
assigned as members by incorporating error information. Our methodology does not
use error information in the clustering analysis for reasons of speed and the fact that
HDBSCAN does not directly include a way to consider errors on data in clustering
analysis, although other methods such as UPMASK (Krone-Martins and Moitinho
2014) which do consider error information could return better membership lists
for these distant clusters. This is visible for Kronberger 4 in Fig. 3.13, where the
membership list of Cantat-Gaudin and Anders 2020 (which was compiled using
UPMASK) has a slightly higher number of sources than our membership list, even
though our list was compiled from a greater number of input sources due to our lack
of a G-magnitude cut.

Secondly, HDBSCAN may sometimes return too many members, selecting regions
larger than just an OC’s core and tidal tails. This is particularly common for young
clusters, which are often embedded in regions of high stellar density where recent
hierarchical star formation has occurred (Portegies Zwart et al. 2010). These clusters
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can be difficult for HDBSCAN to isolate from other surrounding stars and sub-clusters.
One particular example can be seen for UPK 545 in Fig. 3.13. Although the tail
emerging from the cluster core in the upper-left of the (l, b) plot appears compatible
with a tidal tail, the connected structure to the right of the cluster is not. It appears
to have the same age and composition as the cluster core, with all members of the
tail being photometrically consistent with it. However, this ‘offshoot’ from the cluster
may be better described as a separate cluster, which may also be bound to the core
of UPK 545 in a binary pair of clusters, due to their proximity. Edge cases such as
these are impossible to deal with autonomously with our current methodology and
HDBSCAN alone, and require manual selection and separation of certain clusters in
the catalogue into multiple separate components.

On a whole, the primary advantage of our catalogue is its completeness, generally
reporting more member stars than previous works in the literature and doing so
with a homogeneous methodology for a high number of total clusters. However, this
is also the primary disadvantage of our catalogue: there are too many clusters and
too many edge cases for all membership lists to be perfect, given only one clustering
methodology. Hence, users of the catalogue who work with a small enough number
of clusters are encouraged to manually check cluster membership lists and refine
them depending on their application. To give one example, a user who wishes to
only study cluster cores could refine our cluster membership lists by selecting a
subset of them with Gaussian mixture models. With careful manual tweaking of the
parameters of the mixture models, such a method could be used to remove tidal tails
or possible other cluster components from our membership lists where necessary.
Having discussed the general results of clusters in our catalogue, we next discuss
the reasons why many clusters reported in the literature may not appear in our
catalogue.

3.8 Reasons for the non-detection of some literature
objects

Thousands of new OCs and moving groups have been reported since the release of
Gaia DR2 (Brown et al. 2018), with over 2000 reported in the last two years using
Gaia DR3 data alone (Gaia Collaboration et al. 2021). While multiple works have
commented on the reliability of individual clusters in the literature at-length (e.g.
Cantat-Gaudin and Anders 2020; Piatti et al. 2023), as an unbiased search for all
clusters within all of Gaia DR3, the results of this work offer a unique way to review
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Fig. 3.15.: Plots showing the fraction of clusters undetected by this work when compared
to various literature works or series of literature works, shown as a histogram of
various parameters as a solid blue line for all clusters in the catalogue, and a
dashed grey line for clusters in the high quality sample defined in Sect. 3.7.1.
The dashed orange lines show the number of clusters in each bin. Optimum
histogram bin widths were selected automatically using numpy (Harris et al.
2020). From left to right, each column shows the number of stars N , distance d,
age log t and extinction Ax reported in each catalogue. For the top four groups of
catalogues, extinctions were given in the V band. For the lower two, extinctions
were given in Gaia’s G band, which are generally slightly lower.
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the reliability of recently detected OCs on a large scale. In addition, with hundreds
of literature OCs newly redetected in this work, this work also offers a chance to
update the status of many older clusters reported in the pre-Gaia era.

The non-detection of a cluster by this work can be a result of multiple different factors.
It is important to first rule out any possible methodological reasons before claiming
that a given cluster does not exist. In Paper 1, we showed that our methodology has
a high sensitivity, and hence a literature cluster being non-detected in this work can
nevertheless raise strong doubts about whether or not it is real. With thousands of
non-detected clusters, there are far too many to review all clusters individually, and
hence we do not aim to decisively prove that some literature clusters are not real.
We discuss the six main methodological and data-related reasons why a cluster may
not appear in this work, concluding with questioning the existence of many objects
reported in existing literature works.

3.8.1 Methodological reasons for the non-detection of a cluster

Limitations of the clustering algorithm used

An obvious reason why we may not detect a given literature OC is due to limitations
of the HDBSCAN algorithm that we use in this work. While we found in Paper 1
that HDBSCAN is the most sensitive clustering algorithm overall, DBSCAN was
slightly more sensitive for clusters at distances greater than 5 kpc when applied to
Gaia DR2 data. On the other hand, with respect to cluster size, HDBSCAN was the
most sensitive algorithm for all sizes of cluster, although HDBSCAN and DBSCAN
had similar or identical sensitivity for clusters with a number of members stars of
nstars = 10. Age and extinction were not found to have any significant differential
impact on the sensitivity of the algorithms trialed, with all algorithms being more or
less equally affected by older and/or heavily reddened clusters having fewer visible
member stars, and hence being harder to detect.

The main limitation of HDBSCAN should be for clusters at distances greater than
5 kpc. However, only 6% and 21% of clusters from the DBSCAN-based works
of Castro-Ginard et al. 2020 and Castro-Ginard et al. 2022 respectively that we
are unable to detect have reported parallaxes of less than 0.2 mas, suggesting that
distance-related detection issues alone are not enough to explain why certain clusters
from these works are not detected. Additionally, we note that Castro-Ginard et al.
2022 using Gaia EDR3 were only able to recover &80% of clusters they found in
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DR2 in Castro-Ginard et al. 2020, and so DBSCAN itself between Gaia data releases
is not able to reliably reconfirm all clusters it detected previously.

Nevertheless, Fig. 3.15 shows that our chance of recovering clusters at high distances
can be lower for certain works. In particular, although we are unable to recover
only 3.4% of clusters reported in Cantat-Gaudin and Anders 2020, most of the
clusters from their work that we are unable to recover are small clusters at distances
above 5 kpc, suggesting that an algorithmic limitation may contribute to why we are
unable to recover remaining objects from Cantat-Gaudin and Anders 2020. A key
difference between our work and Cantat-Gaudin and Anders 2020 is that their work
used locations of clusters reported in the literature to narrow their search regions,
which may in some cases be enough to make very distant clusters at the absolute
limit of detectability in Gaia stand out. Future Gaia data releases with better data
should provide additional clarity on whether or not such objects are real.

Differences in the definition of an OC

There is no single agreed upon definition of an OC in the literature, and the slight
differences in definition between works could cause some clusters to be detected or
missed.

Principle amongst these definitions is the minimum number of observed member
stars for a valid cluster, nstars, min, which is important to distinguish star clusters from
multiple star systems, also being used by some works as a proxy for the significance
of a cluster relative to the field. In the literature, values of nstars, min range from 8 in
Castro-Ginard et al. 2022 to as high as 50 in Liu and Pang 2019, with most works
coalescing around a value of between 10 and 12 (Krumholz et al. 2019). For the
purposes of this work, we adopt a value of 10, and we should hence miss very few
literature clusters due to this constraint alone.

Secondly, OCs generally have a population of stars with the same age and chemical
composition, due to forming at the same time from the same molecular cloud (Cantat-
Gaudin 2022). In practice, this is a difficult definition to constrain observationally,
with the CMDs of OCs being broadened by effects such as differential extinction
or outliers which are not true member stars, with these effects being worse with
increasing distance and field star density. In addition, many OCs are not perfect
single populations, with some hosting blue stragglers or having a clear second
population in the form of an extended main-sequence turnoff (Cantat-Gaudin 2022).
For the purposes of this work, we classify our clusters with our CMD classifier (see
Sect. 3.4) and include all clusters in the final catalogue, instead leaving the task of
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removing clusters with poor photometry to the end user (recommending a minimum
class value of 0.5). This means that no clusters are missing from the catalogue due
to photometric reasons.

Finally, OCs must be distinguished from other types of single-population stellar
overdensities. Star clusters can be divided into bound clusters (such as OCs and GCs)
and unbound clusters (typically referred to as moving groups). Some works, such
as Cantat-Gaudin and Anders 2020, use basic cuts on mean parameters to remove
clear moving groups from their catalogue; we leave the classification of moving
groups in our catalogue to a future work (Hunt & Reffert, in prep.) for reasons
discussed in Sect. 3.9, and hence, no OCs are be missing from this work due to being
catalogued as moving groups. We do, however, flag known GCs in our catalogue by
crossmatching against the catalogue of GCs of Vasiliev and Baumgardt 2021, with
GCs in the Milky Way being distinguished from OCs by their age, which is typically
greater than ∼ 6 Gyr, and their mass, which is typically greater than ∼ 104M�,
whereas most OCs have masses no higher than ∼ 5000M� (Kharchenko et al. 2013).
In total, differences in the fundamental definition of an OC between works should
have a small impact on the inclusion of OCs in this work when compared to others.

Different quality cuts between different works

Different works in the literature often place different quality cuts on their catalogues,
meaning that another possible reason why a given literature cluster does not appear
in this catalogue would be if it has been cut for quality reasons. Our catalogue
adopts a philosophy of allowing users to decide their own quality cuts as much as
possible, and hence includes all objects with bad photometry as well as moving
groups that are unlikely to be bound OCs. The approach of allowing end users of
the catalogue to define their own quality cuts is a similar philosophy to how Gaia
data releases include many poor-quality sources, instead allowing users decide how
strongly they wish to cut the Gaia catalogue (Gaia Collaboration et al. 2021). Poor
photometry and the bound or unbound status hence do not impact our recoverability
of clusters in Fig. 3.15.

However, the sole quality cut applied to the catalogue that would affect its sensitivity
is a cut on the astrometric S/N of detected clusters (derived using the CST) at 3σ.
This was performed because clusters with an S/N below this threshold are likely to be
false positives, and because the high number of clusters below this threshold greatly
complicated the process of merging results between different runs (see Sect. 3.3).
Including such a quality cut dramatically improved the run merging process and
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hence our membership lists and completeness for reliable clusters, which is a more
important scientific product than a list of low quality clusters that we cannot deem
likely to be real clusters based on their S/N alone.

While we believe this is a fair trade-off to produce a catalogue that is as reliable
as possible overall, it is likely that some real clusters are be missed due to this
cut on S/N. For instance, in Paper 1 using Gaia DR2 data, we tentatively detected
Teutsch 156 with an S/N of 0.68σ, which counted as a non-detection; however, using
Gaia DR3, we clearly detect Teutsch 156 with an S/N of 16.3σ. It is difficult to know
exactly how many real literature clusters are missed due to this cut, particularly
since some clusters in the literature with an S/N below 3σ are likely to be statistical
fluctuations and not real clusters, especially for S/Ns below 1σ. This can be approxi-
mately estimated using the histogram of detected cluster S/Ns in Fig. 3.2. Since the
distribution of literature cluster S/Ns is roughly flat for S/Ns below 10σ, assuming
that this trend continues for S/Ns below 3σ, we may have missed approximately
∼ 300 crossmatches to clusters reported before Gaia DR3 and an additional ∼ 400
reported using Gaia DR3 data – although, owing to the low S/Ns that such objects
would inevitably have, it is also likely that a number of these crossmatches would be
false positives.

Inevitably, a repeat of this work with better data (such as Gaia DR4) would likely
detect more of the objects that we do not recover with a sufficient statistical sig-
nificance using Gaia DR3 data. In the future, further development of clustering
algorithms that produce fewer false positives and can be ran on more data at once
(both of which would tremendously simplify the run-merging process) would allow
the minimum S/N threshold to be lowered.

When two clusters are catalogued as one cluster

Certain other non-detections can be explained by further methodological differences.
Sometimes, clusters reported as multiples in the literature are reported as a single
object by HDBSCAN, even across all of itsmclSize runs. A notable example is UPK 533
from Sim et al. 2019, which was re-detected by Cantat-Gaudin and Anders 2020,
but which HDBSCAN assigns as simply being a member of a tidal tail of a different
and significantly larger nearby cluster, UPK 545, with no HDBSCAN mclSize run
separating the two objects. UPK 545 is shown in Fig. 3.13 on the third row. In this
and other edge cases, our catalogue merges the two objects. An improved clustering
algorithm that can separate edge-case binary clusters such as these autonomously
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would be helpful. However, only a small fraction of clusters (fewer than 1%) are
affected by this issue.

When a literature catalogue’s parameters deviate too strongly from a
detected cluster

While our crossmatching procedure as outlined in Sect. 3.6 aims to be as fair as
possible, generally giving the benefit of the doubt to potential crossmatches, there
are nevertheless cases where clusters reported in the literature still remain outside
of our bounds for an accepted match. Generally, in all cases where this occurs,
our detected cluster is significantly different to the literature object in at least one
of the parameters considered for crossmatching, with these clusters representing
ambiguous cases where it is not clear that the reported literature cluster is truly the
same object.

CWNU 528 as reported in He et al. 2022a is one example of a cluster reported
in the literature that we are unable to detect within our crossmatching criteria.
CWNU 528 is reported in He et al. 2022a with 24 member stars, but appears to be a
small offshoot of the recently reported new cluster OCSN 82 from Qin et al. 2023,
which has an overall position different by around 3◦ and a total of 157 member
stars. CWNU 528 is so much smaller than OCSN 82 and at such a different location
that it does not crossmatch to it given our adopted crossmatching scheme, even
though a few of the member stars in our detection of OCSN 82 are in common with
CWNU 528 and they have similar proper motions and parallaxes.

This case is likely to have been repeated a few times, and appears particularly
common with clusters detected in Gaia data using the DBSCAN algorithm (as in
He et al. 2022a). In Paper 1, we commented that while DBSCAN has an excellent
sensitivity and low false positive rate (depending strongly how the ε parameter
is chosen), it often had the sparsest and most incomplete membership lists of all
algorithms we studied. Hence, detections of clusters may be so different or poor
compared to what another algorithm recovers that crossmatch criteria may not be
fulfilled, even when using a very permissive crossmatching scheme. In these cases,
it is debatable whether the literature cluster is even the same object as the newly
detected one.

3.8 Reasons for the non-detection of some literature objects 135



Limitations of Gaia data

Finally, it is worth considering the limitations of Gaia data itself, particularly when
comparing our catalogue to works created from different data sources. Notably, the
catalogue of Kharchenko et al. 2013 was compiled before Gaia and used infrared
data from 2MASS (Skrutskie et al. 2006). Cantat-Gaudin and Anders 2020 are
unable to recover a majority of the clusters from Kharchenko et al. 2013 using Gaia
DR2 data, and we are unable to recover 48.4% of the clusters reported in their
catalogue in Gaia DR3 data. Given that infrared light is significantly less affected
by extinction than the visual light used to compile Gaia data, it begs the question
of whether many clusters from Kharchenko et al. 2013 may still be missing from
Gaia-based catalogues due to extinction limits.

However, Fig. 3.15 shows that extinction does not appear to play a major role in the
non-detection of many clusters from Kharchenko et al. 2013. If extinction was a
major contributor to why we are unable to detect so many of the clusters in their
catalogue, then one would expect to see a linear trend in fundetected; all of their
low-extinction clusters would be easily detected in Gaia, until some cut-off value
beyond which Gaia detects no further clusters. On the contrary, most of their clusters
have AV < 5, and we are unable to detect around 50% of all clusters in this range
with an approximately flat and uncorrelated distribution in the fraction of clusters
recovered.

A few dozen of their reported clusters may be genuinely challenging to detect in
Gaia data, since some of their clusters have AV > 5 and are at high distances of
greater than 10 kpc. However, the majority of their clusters are within 10 kpc and
have AV < 5. Given that Gaia data have ∼ 103 times greater astrometric precision
than Hipparcos data for ∼ 105 times as many stars (Gaia Collaboration et al. 2021),
and given that our chance of detecting a cluster reported in Kharchenko et al. 2013
is uncorrelated with extinction for AV < 5, limitations of Gaia data do not appear
to be responsible for the bulk of non-detections of clusters from pre-Gaia works,
despite assertions in recent works that Gaia data may be extinction-limited and
unable to recover many highly reddened OCs from infrared datasets. Nevertheless,
a handful of high-extinction clusters with AV > 5 reported in the literature may still
be challenging to recover in Gaia data.

136 Chapter 3 An all-sky cluster catalogue with Gaia DR3



3.8.2 The cluster does not exist

Having exhausted all other major possibilities for why a cluster may not appear
in our catalogue, the final potential reason would be that the cluster simply does
not exist. As stated in the introduction to this section, far too many clusters are
non-detected in this work for us to individually review them all and decisively
prove that they are not real; however, we can give a broad overview of the typical
characteristics of non-detected clusters, and contrast the similarities and differences
between non-detected clusters in this work.

Figure 3.15 shows that the parameter most strongly correlated with fundetected is the
number of member stars N , with the smallest clusters from all papers being the least
likely to be redetected. Few works report the statistical likelihood of a cluster being
real in a way similar to the CST used in this work; however, N can be thought of
as a good proxy for the statistical significance of a cluster, as it stands that a cluster
with fewer member stars is probably less likely to be real. Clusters with fewer than
20 reported sources are often the most difficult to redetect.

In general, since most works in Fig. 3.15 use Gaia DR2 data or stronger cuts on
Gaia data than our methodology, there are many cases where we should be able to
detect their reported clusters easily and with a higher number of member stars and
statistical significance. The fact that we cannot suggests that some of these clusters
may have been statistically insignificant associations of a small number of member
stars.

The distance of undetected reported literature clusters is similarly revealing. In
Sect. 3.8.1, we suggest that some clusters may be undetected in this work at high
distances due to limitations of the HDBSCAN algorithm. However, given that
HDBSCAN should be the most sensitive algorithm for recovery of nearby clusters
(Paper 1), it makes little sense that we are unable to recover a number of nearby
clusters within 1 kpc for most of the works in Fig. 3.15. Many of these nearby and
undetected objects may not be real, as there is no reason why we should not be
able to detect them using the improved data of Gaia DR3 and the most sensitive
algorithm for recovery of nearby OCs.

The age of undetected clusters paints a complicated picture. In principle, detecting
an old cluster has two challenges. Firstly, as the cluster ages, the brightest stars in
the cluster evolve into faint remnants, which reduces the number of stars visible in
the cluster. This is a particular issue for distant old clusters, as the remaining fainter
and longer-lived stars in a cluster may be below a survey’s magnitude limit. In the
case of Gaia, stars near to its magnitude limit have the lowest accuracy astrometry,
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reducing the signal-to-noise ratio of a given old, distant cluster in proper motion and
parallax space – further complicating its detection. Secondly, as clusters age, they
are theorised to take a sparser and less centrally concentrated distribution (Portegies
Zwart et al. 2010), reducing their signal-to-noise ratio relative to background field
stars in positional data.

Although old clusters are likely to be harder to detect, in Paper 1, we found that the
age of a reported cluster generally has the same effect on all algorithms: their lower
number counts and sparsity affect all algorithms more or less equally in making
them harder to detect. However, there are correlations between fundetected and log t
for almost all papers in Fig. 3.15, despite all of them other than Kharchenko et al.
2013 being based on Gaia data and using methods found in Paper 1 to be equally
affected by cluster age. Hence, these correlations may be more informative about
the types of cluster in other catalogues that are false positives than on whether or
not a given catalogue used a better method.

For all works other than Cantat-Gaudin and Anders 2020, clusters older than an
age of around 1 Gyr (log t > 9) are much less likely to be redetected. Zucker et al.
2022 have recently investigated the nature of the groups reported in Kounkel et al.
2020, and find that many of them have ages ∼120 times larger than their dispersal
times while being unbound and chemically homogeneous with their surrounding
field stars – strongly suggesting that they are merely associations of field stars and
not physical groupings. The fact that we are unable to redetect almost any of the
groups older than 1 Gyr reported in Kounkel et al. 2020 supports this conclusion,
with it being plausible that many of their oldest groups are instead associations of
field stars, consistent with the mean ages of field stars in the galactic thin and thick
disks of a few Gyr. The similar correlations with old clusters being undetected for
other works may also suggest that a number of other old clusters reported in the
literature are also associations of field stars with mean ages similar to that of the
typical ages of unclustered field stars in the galactic disk.

The reasons for the non-detection of some young clusters are less clear, and are
more surprising given that young clusters should be easier to detect. In the case of
Cantat-Gaudin and Anders 2020, the handful of young clusters that we are unable to
detect are also at high distances, which may mean that their non-detection is entirely
a result of our own methodological limitations (see Sect. 3.8.1.) On the other hand,
these distant, young clusters may have originally been detected by hand-searching
for OB stars in pre-Gaia works and cataloguing them as OCs, but without a test of
their physical nature, which could mean that they are associations. Similar reasoning
could also be applied to the non-detected young clusters from Kharchenko et al.
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Fig. 3.16.: Geometric mean of the proper motion dispersion (left) and radius containing
50% of members (right) for the clusters reported in this work, as a function
of distance. Clusters are split between those detected in previous works (blue
circles) and those newly reported in this work, divided between the high quality
(orange squares) and low quality (grey triangles) samples defined in Sect. 3.7.1.
The cuts on cluster parameters to distinguish between bound OCs and unbound
moving groups or associations proposed in Cantat-Gaudin and Anders 2020 are
shown as a dashed black line.

2013. Both possibilities are plausible, and this should be investigated further in
another work.

Finally, the reasons for the spikes in non-detected clusters between 7 < log t < 8
for Castro-Ginard et al. 2022, 2020 and between 6 < log t < 7 in Hao et al. 2022a
remain unclear. These works are entirely compiled from Gaia DR2 and EDR3
data using the DBSCAN algorithm. Given that our results in Paper 1 suggest that
clustering algorithms applied to Gaia data have no differences between themselves
in their ability to detect clusters based on their age, there is no clear reason why
these clusters would be undetectable. The non-detection of these clusters should be
investigated further.

For most works, extinction AV does not predict the chance of redetecting a given
cluster. In Sect. 3.8.1, we discuss that AV values of greater than ∼ 5 appear to
reduce the chance of a cluster being recovered in Gaia data. The increasing trend
in fundetected for Cantat-Gaudin and Anders 2020 as a function of AV appears to
entirely be due to our lower chance of detecting clusters with d > 10 kpc, since
distant clusters also often have a high AV . No other clear correlations exist for other
works in Fig. 3.15 with respect to extinction, other than for a few dozen pre-Gaia
clusters from the infra-red catalogue of Kharchenko et al. 2013 with AV & 5 that we
are unable to redetect with Gaia data.
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Fig. 3.17.: Three newly reported clusters randomly selected from the cluster catalogue
and ordered by increasing distance, with member stars plotted as a function of
their astrometric and photometric data as in Fig. 3.13. All clusters pass the cuts
proposed in Cantat-Gaudin and Anders 2020, have good-quality CMDs passing
the cuts from Sect. 3.4, and have astrometric significances of greater than 5σ,
meaning they are almost certainly real overdensities in Gaia data.

In summary, we find that there are many potential reasons for the non-detection
of given clusters from the literature, all of which should be investigated in more
depth in future works. Verifying that new clusters reported in the literature are real
is arguably as important as reporting them. While we cannot provide conclusive
reasons for the non-detection of given clusters, given the scope of this survey, the
overall trends we have identified should still be helpful and suggestive in whether
or not given objects are real. We provide a table of all clusters non-detected by this
work in Table B.2 and at the CDS.
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3.9 The difficulties of distinguishing between open
clusters and moving groups

Having discussed the catalogue’s overall quality for the verification and study of
clusters reported previously in the literature, it is worth discussing the 2387 new
objects reported in this work – 739 of which have a median CMD class above 0.5
and a CST of greater than 5σ, and are hence the most reliable new objects that we
report.

3.9.1 The case against many of our new clusters being OCs

On first inspection, despite having reliable CMDs and being statistically significant
astrometric overdensities, many of our most reliable new objects have sparse density
and proper motion distributions that appear more compatible with moving groups
than spherically symmetric OCs with King (King 1962) or Plummer-like (Plummer
1911) profiles. Figure 3.17 shows three clusters randomly selected from the 739
most reliable objects. HSC 1131 is a sparse, elongated grouping of stars in the thin
disk, with a stringy nature much more compatible with a moving group than an OC.
HSC 2376 is less clear, showing a more Gaussian clumping reminiscent of an OC
within proper motion space but while still being relatively sparse, with r50 = 8.9 pc.
HSC 1185 appears visually to be the most OC-like cluster, with its distribution of
member stars forming compacter Gaussian-like overdensities in spatial and proper
motion plots.

While we have used tests on statistical significance and cluster CMDs to determine
the reliability of clusters in the catalogue, it is clear that a further test on the
astrometric parameters of clusters (such as sparsity and proper motion dispersion)
is necessary. Cantat-Gaudin and Anders 2020 propose two tolerant cuts on cluster
parameters, finding that requiring the geometric mean of proper motion dispersion
to be less than a criterion (corresponding to ∼ 5 kms−1) and r50 < 20pc removed
objects highly unlikely to be OCs from their sample.

However, Fig. 3.16 shows that with the exception of some clusters that are clearly
associated with stellar streams (based on their location, CMD, and sparsity at dis-
tances greater than ∼ 3 kpc), most new clusters detected in this work are compatible
with OCs given the tolerant cuts in Cantat-Gaudin and Anders 2020.

If almost all of the new clusters that we detect within 1 kpc of the Sun are in fact
OCs, then this would represent a total paradigm shift in the census of OCs – with a
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large number of previously unseen low number count, low mass, and sparse clusters
being detectable nearby with Gaia data. In reality, there are good reasons for this not
being the case, and a more stringent cut on the astrometric parameters of candidate
OCs is necessary.

In the preparation of this work, much effort was put in to attempting to find a
more stringent cut on basic astrometric parameters (or some combination of them)
to distinguish OCs from moving groups. We found that whether or not a cluster
is a bound OC cannot be decided accurately based on individual cuts on r50 or
proper motion dispersions alone, and instead requires at least some modelling of
the cluster’s spatial profile, its velocity profile, and its mass. In the next section, we
discuss the difficulties of such a method, which will be applied in the next paper in
this series.

3.9.2 A test for if our OC candidates are bound

A given system is said to be in virial equilibrium if the absolute value of its potential
energy |V | is equal to twice its kinetic energy T . A number of works have recently
used a relationship derived from the virial theorem, which predicts a velocity
dispersion that a cluster should have if it is bound, σvir, based on its mass and radius.
This can be compared to the cluster’s measured 1D velocity dispersion σ1D, which
should equal σvir if the cluster is bound:

σvir =
√
GM

ηrhm
≈ σ1D for a bound cluster, (3.1)

where rhm is the cluster’s half-mass radius, M is the cluster’s mass, G is the gravita-
tional constant and η is a constant depending on the cluster’s density profile that is
usually set to 10 (Portegies Zwart et al. 2010). In the case when σ1D >> σvir, the
cluster is likely to be unbound. This relationship has been used by works such as
Bravi et al. 2018, Kuhn et al. 2019, and Pang et al. 2021 to test the virial nature of
OCs using Gaia data, albeit in limited studies of no more than 28 clusters in one
work.

While this relation is a promising way to distinguish between bound OCs and un-
bound moving groups, scaling this methodology to apply across our entire catalogue
is extremely challenging. There are many systematics that can enter velocity dis-
persion, mass, and radius measurements, all of which must be reduced as much as
possible to produce meaningful classifications. The clusters in our catalogue range
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across two orders of magnitude in distance, many orders of magnitude in mass,
and two orders of magnitude in radius, with clusters of different parameters having
fundamentally different challenges. For instance, nearby clusters may have tidal
tails that must be removed from membership lists and may suffer from projection
effects due to their radial velocity that would skew the measurement of their velocity
dispersion with proper motions. On the other hand, distant clusters will push the
limits of Gaia’s astrometric measurements, with velocity dispersions being difficult
to measure precisely.

Given the scope of such a method, we leave its implementation to a future work. To
restrict our catalogue to a reliable sample of OCs, users of our catalogue may for now
use our CST scores, CMD classifications, and the criteria from Cantat-Gaudin and
Anders 2020 to remove objects highly unlikely to be OCs. The next work to follow
this one will provide a more accurate way to separate OCs from moving groups, and
is anticipated to be submitted soon (Hunt & Reffert, in prep.).

3.10 Conclusions and future prospects

In this work, we conducted a blind all-sky search for Milky Way star clusters using
Gaia DR3 data. We show that a single blind search can be used to produce a homo-
geneous star cluster catalogue in the Gaia era. We used the HDBSCAN algorithm, a
density-based test of cluster significance, and a data partitioning scheme to detect
as many reliable clusters as possible, producing a catalogue that is as complete and
reliable as possible given current data. In total, the catalogue contains 7167 clusters,
of which 4105 clusters form the most reliable sub-sample of objects with median
CMD classifications greater than 0.5 and S/Ns greater than 5σ.

We provide a wide range of parameters for clusters in the catalogue, including: basic
astrometric parameters, S/Ns that correspond to their statistical significance given
Gaia astrometry, CMD quality classifications, ages, extinctions, distances, and Gaia
DR3 radial velocities. We recover large, expansive membership lists for many OCs,
often including tidal tails for clusters within ∼ 1 kpc. Membership lists for all of
our clusters are also available as a part of the catalogue (see Appendix B.1 and the
CDS).

Extensive care was taken to crossmatch our catalogue against 35 other works. To
the best of the authors’ knowledge, these works catalogue all OCs reported in the
literature, including many thousands of OCs recently reported in the literature using
Gaia data that are yet to be verified independently. 7022 clusters reported in the
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literature crossmatch against 4944 of the entries in our catalogue, including around
2000 of which we are able to independently verify for the first time. The spatial and
age distribution of our catalogue traces the spiral arms in a similar way to many
other recent works (e.g. Cantat-Gaudin et al. 2020; Castro-Ginard et al. 2021).

However, we are unable to recover many of the clusters reported in the literature,
despite our methodology having the highest sensitivity for OC recovery of all methods
we trialed in Paper 1. We discuss reasons why we may be unable to detect an OC
and are able to tentatively suggest that many thousands of clusters reported in the
literature may not be real, including calling into question the common assertion that
Gaia is unable to recover a large fraction of OCs reported before Gaia due to being
extinction-limited. Further investigations into whether or not many of the OCs we
are unable to detect are real would be helpful to improve the accuracy of the OC
census.

Our catalogue contains 2387 new objects as yet unreported in the literature, 739
of which are a part of our most reliable sample of clusters with median CMD
classifications of greater than 0.5 and an S/N of greater than 5σ. While some of
these objects are likely to be new OCs, we find that many are more compatible
with unbound moving groups, as our methodology is sensitive to all kinds of stellar
overdensity in Gaia data. We find there is often no simple way to distinguish
between the sparse, compact moving groups we detect and OCs, with the cuts on
basic parameters proposed in Cantat-Gaudin and Anders 2020 being too lenient. In
an upcoming work, we will use the virial theorem to distinguish between bound and
unbound clusters with a probabilistic methodology (Hunt & Reffert, in prep.).

The coming decade of Milky Way star cluster research is likely to continue to be
exciting and fast-paced. Firstly, the quality of available data will increase ever-higher.
Gaia DR4 will be produced from ∼66 months of data, almost double that of Gaia
DR3, which will result in a large jump in the accuracy of available astrometric and
photometric data. DR4 is currently slated for release no sooner than the end of 2025.
The current planned final Gaia data release, DR5, may be based on around ten years
of data, again roughly doubling the amount of input data used (Gaia Collaboration
et al. 2021). Such large improvements in the accuracy of available astrometric
data will inevitably result in more new clusters and improvements in the S/N and
membership lists of existing clusters, further increasing the completeness and purity
of the OC census.

Secondly, methodological improvements will continue to ease the process of star
cluster recovery and characterisation. In the preparation of this work, it was still
necessary to extensively verify many results by hand and develop postprocessing
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techniques to clean false positives from our catalogue. Improvements in clustering
algorithms and techniques over the coming decade could make the process of cluster
recovery more straightforward, accurate, and sensitive, with new methodologies
such as Significance Mode Analysis (SigMA) methodology (Ratzenböck et al. 2022)
showing promise in this area. As we discussed in Paper 1, there is currently no
known perfect way to recover OCs from Gaia data; much work remains to be done
to try and find one.
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The masses and dynamics of
star clusters in the Milky Way

4

„Things are only impossible until they’re not.

— Jean-Luc Picard
(2364)

Details of authorship. The results presented in this chapter will be published in Hunt
and Reffert (in prep.). All calculations, figures, and writing in this chapter were
conducted by myself.

4.1 Introduction

Five years on since the release of Gaia DR2 (Brown et al. 2018), the census of open
clusters (OCs) has been resoundingly overhauled (Cantat-Gaudin 2022). Thousands
of new objects have been discovered (e.g. Castro-Ginard et al. 2020; Liu and Pang
2019), parameters have been determined to previously impossible levels of accuracy
(e.g. Bossini et al. 2019; Cantat-Gaudin et al. 2020), and many OCs reported before
Gaia have been ruled out as asterisms (Cantat-Gaudin and Anders 2020; Hunt
and Reffert 2021, 2023; Piatti et al. 2023). However, the OC census in the age of
Gaia remains far from perfect, and one resoundingly large issue stands out that I
will attempt to address in this chapter: there is no robust observational criteria or
definition for what an OC actually is (Hunt and Reffert 2023).

Following up from the first major catalogue of OCs in the Gaia era (Cantat-Gaudin
et al. 2018a), Cantat-Gaudin and Anders 2020 conducted a search for OCs that
remained undetected in Gaia data, and created a set of empirical observational
criteria intended to split dubious objects apart from OCs. This included recommen-
dations that a candidate OC is a clear overdensity with at least ∼ 10 member stars, a
colour-magnitude diagram (CMD) that follows a clear isochrone, a median radius
r50 smaller than 15 pc, and a proper motion dispersion corresponding to an upper
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limit no greater than 5 km s-1. In their work, they used these criteria to show that a
number of objects were highly likely to be asterisms.

In Hunt and Reffert 2023 (hereafter Paper 2), we constructed the largest catalogue
of OCs to date from a blind search of Gaia DR3 data (Gaia Collaboration et al. 2022).
However, we found that the Cantat-Gaudin and Anders 2020 observational criteria
were too permissive. Many of the objects we detected that passed these criteria
were visually much more reminiscent of moving groups (MGs), with sparse, flat
distributions that do not resemble the clustered nature of reliable, gravitationally
bound OCs. In turn, this creates an awkward situation where our Paper 2 catalogue
is challenging to use in many respects, with simple queries of the catalogue returning
mostly MGs – particularly within a few hundred pc of the Sun where MGs are most
common. It is clear that a more precise method to distinguish between bound OCs
and unbound MGs is required.

It appears that the radius and proper motion constraints presented in Cantat-Gaudin
and Anders 2020 are the primary area of the OC observational definition that requires
improvement. Recalling Eqns. 1.3 and 1.8, in addition to the theory around bound
and unbound star clusters discussed in works such as Portegies Zwart et al. 2010 or
Krause et al. 2020, one can note that a cluster’s mass, radius, and velocity dispersion
form a three-way link in defining the dynamical status of a star cluster. Simple
individual cuts on radius, dispersion, or even cluster mass should be insufficient to
accurately split OCs from MGs.

For example, consider a cluster at the upper end of allowed radii from the cuts
of Cantat-Gaudin and Anders 2020, with r50 = 15 pc. Assuming 2 r50 ≈ rt for
convenience (which is a fair approximation for most OCs), Eqn. 1.3 predicts that
in the solar neighbourhood, a cluster of this size would require a total mass of
∼ 104 M� in order to be a bound object with a Jacobi radius of this size – a mass
so high that it corresponds to some of the largest known young clusters in the
Milky Way (Cantat-Gaudin 2022; Portegies Zwart et al. 2010). Such a high mass
appears unrealistic for the many small, sparse new clusters we detected in the solar
neighbourhood in Paper 2.

On the other hand, the proper motion dispersion upper limit from Cantat-Gaudin
and Anders 2020 (corresponding to 5 km s-1 when converted to velocity dispersions)
is also likely to be much too high for many clusters. Many of the moving groups we
detected in Paper 2 have proper motion dispersions that, when converted to velocity
dispersions, correspond to dispersions in the range of 1 to 4 km s-1. Even with a
relatively small r50 of 1 pc, a cluster with a velocity dispersion of 2 km s-1 would
need to have a mass of ∼ 104 M� to be in virial equilibrium, which once again would
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be a high mass for an OC in the Milky Way – let alone within a few hundred pc of
the Sun.

These rough estimates suggest that analysis of OC masses and dynamics could be
fruitful in attempting to discern between bound OCs and unbound MGs, as it is likely
that the empirical cuts presented in Cantat-Gaudin and Anders 2020 are too high
for most objects. In this chapter, I hence aim to refine the observational definition
of OCs. By measuring the masses, Jacobi radii, and dynamics of star clusters in
our catalogue from Paper 2, I aim to determine more accurately which objects are
compatible with bound OCs.

In Sect. 4.2, I outline a pipeline to calculate accurate cluster masses, including
correcting for three different selection effects. Section 4.3 outlines my method to
infer velocity dispersions from cluster proper motions. Section 4.4 outlines the
mass, radius, and dispersion results of this work, including discussing the validity of
velocity dispersions given potential binary star contamination. I discuss the results
of this work further in Sect. 4.5, including estimating the total number of OCs and
MGs in the catalogue and estimating the mass-dependent completeness of the Gaia
DR3 OC census. Finally, I briefly conclude this work in Sect. 4.6.

4.2 Mass and radius calculations

At the time of writing, there exists no large catalogue of OC masses derived using
Gaia data, with the largest study to date including only 78 of the many thousands
of OCs in the Milky Way (Cordoni et al. 2023). In this section, I outline a method
to accurately derive photometric masses of a given cluster of stars detected in Gaia,
including accounting for a range of selection effects. Then, this mass determination
method is used to determine the most likely Jacobi radius of every cluster.

4.2.1 Inference of stellar primary masses

The first step in deriving the photometric mass of a cluster requires calculating the
masses of the cluster’s member stars. To do so, I follow a similar method to those
as used in numerous other works, such as Meingast et al. 2021 and Cordoni et al.
2023.

Using isochrone fits from Paper 2 and assuming solar metallicity for all clusters,
PARSEC isochrones (Bressan et al. 2012) were interpolated to predict mass as a
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Fig. 4.1.: CMD of NGC 2451A with stars shaded by their median sampled stellar mass
from interpolation against cluster isochrones. 100 isochrones sampled from the
age-determination neural network in Paper 2 are plotted in black.

function of G-band magnitude, m(G). In general, this is sufficient for most member
stars within clusters, and derives the most accurate stellar mass given Gaia G-band
photometry and other calculated cluster parameters.

However, particularly for older clusters, many clusters have giant stars beyond the
turn-off point that dip below the tip of the main sequence (see Fig. 1.11), meaning
that a single value of G can correspond to multiple different stellar masses m. Hence,
for isochrones where a direct conversion from magnitude to stellar mass is not
possible for all stars, the interpolation region was split into a main sequence and
turn-off point component. For stars near to and above the turn-off point, BP −RP
colours were also used to select the best fitting stellar mass. I do not use colours
across the entire isochrone as Gaia DR3 colours can be under-estimated for stars
fainter than G ∼ 19 (especially in the BP band, Riello et al. 2021), and it is hence
likely to be more accurate to limit the use of colour information in stellar mass
interpolation as much as possible.

Since the age inference neural network from Paper 2 used variational inference to
incorporate uncertainties, it can be sampled to produce multiple estimates on param-
eters for each cluster. Hence, for every cluster, the stellar mass interpolation process
was repeated 100 times, allowing the uncertainty inherent from age and extinction
determination to be incorporated into the stellar masses stochastically. Figure 4.1
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shows the CMD of NGC 2451A, with its member stars shaded by their median
sampled stellar mass and the 100 isochrone samples plotted in the background.

As this interpolation process does not account for binaries, these stellar masses can
be considered as being roughly equal to the stellar mass of the primary stars of any
binary system. A separate correction for binaries is discussed and added later in
Sect. 4.2.3.

4.2.2 Correction for selection effects

Next, it is important to correct for selection effects. In Paper 2, we derived cluster
membership lists down to magnitudes as faint as G ∼ 20. However, particularly at
the faint end, clusters still become increasingly incomplete. This depends strongly
on the position of the cluster in the disk: in the most extreme cases, for clusters
in regions with high numbers of sources (such as towards the galactic centre),
incompleteness is clear from magnitudes as bright as G = 17. It is clear that accurate
determination of cluster masses will require incorporation of these effects. The
selection function of Gaia and subsamples of it have been relatively well studied
in works such as Boubert et al. 2020, Boubert and Everall 2020, Rix et al. 2021,
Cantat-Gaudin et al. 2023, and Castro-Ginard et al. 2023, whose work I will adapt
in this section to calculate star cluster selection functions.

The incompleteness of a cluster’s membership list in Paper 2 is governed by three
primary effects. Firstly, there is the simple probability that a source with attributes
q = {l, b, G, ...} appears in the Gaia catalogue at all, Sparent

C (q). To compute this, I
use the selection function presented in Cantat-Gaudin et al. 2023, who compared
the Gaia catalogue with deep photometric surveys of the galactic disk and globular
clusters, deriving Sparent

C (q) empirically as a function of the position and magnitude
of a source for the entire Gaia DR3 catalogue. This builds on the purely theoretical
Gaia selection function derived in Boubert et al. 2020 and Boubert and Everall
2020.

However, many of the sources in Gaia do not include proper motions and parallaxes,
do not include full photometry, or do not have reliable astrometry. Our Paper 2
membership lists were computed for a subsample of Gaia sources: namely, those
with five or six parameter astrometric solutions, G, BP , and RP photometry, and
a Rybizki et al. 2022 v1 quality flag greater than 0.5, indicating that the source is
likely to have reliable astrometry. This constitutes a subsample of 729 million stars
from the overall Gaia DR3 catalogue.
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To compute the probability that a source appears in this subsample given that it is
also in the parent Gaia catalogue, i.e. Ssubsample

C (q | q in parent), I use the method
outlined in Castro-Ginard et al. 2023 and based on Rix et al. 2021. Firstly, sources
are binned based on their attributes q. Then, within bins, the chance that a source
with attributes q appears in the subsample is modelled as a binomial distribution
B(n, p), where n is the number of sources in the Gaia catalogue in this bin with
attributes q and p is the probability that a source with these attributes makes it into
the subsample of valid stars. In practice, p is unknown; hence, an uninformative
uniform Beta distribution prior on p given the number of observed sources in the
bin is used (for full methodology, see Castro-Ginard et al. 2023).

In practice, one must choose the attributes q′ on which the selection function is
assumed to depend. The subsample of stars we use is almost entirely dependent
on astrometric quality. The astrometric quality of Gaia is strongly correlated with
sky position and G-band magnitude, corresponding to background star density,
the number of scans of a given position by the Gaia telescope, and the brightness
(signal-to-noise ratio) of a source (Lindegren et al. 2021b). Hence, I compute
Ssubsample
C (q | q in parent) as a function of position and magnitude, selecting a

region corresponding roughly to the on-sky extent of a cluster for consideration
and binning sources in bins of size 0.2 mag. Bins were expanded until every bin
contained at least ten sources, ensuring that no range of the selection function was
under-sampled, but while preserving high resolution between 11 < G < 20 where
most sources in Gaia are.

Finally, I also found that the selection function of star cluster membership lists could
depend on effects due to our adopted clustering algorithm and methodology in
Paper 2, which is the probability that a given source is assigned as a member of a
cluster by our clustering algorithm given that it appears in the subsample of valid
sources considered for clustering analysis, Salgorithm

C (q | q in subsample). Especially
at high distances or within crowded fields, cluster proper motions and parallaxes
become relatively uninformative, with many cluster members becoming relatively
indistinguishable from field stars in these axes of Gaia astrometry. For distant clusters
such as King 9, which is at a distance of ∼ 6 kpc, this can have a strong effect on
our membership lists. Our adopted clustering algorithm from Paper 2, HDBSCAN, is
density-based – meaning that members are only assigned to a given cluster if they
increase the contrast of a given cluster against unclustered stars. In practice, this
means that stars away from the mean cluster proper motion or parallax are less
likely to be assigned as cluster members, with many being missed in the worst cases.
This is particularly dominant for faint sources at which Gaia astrometric errors can
be on the order of (or even larger than) our measured cluster proper motion and
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parallax dispersions, meaning that many member stars are likely missed for the most
distant objects. Errors on positions are correspondingly negligible compared to the
generally no smaller than 0.1◦ size of clusters, and so this effect is only of concern
for cluster proper motions and parallaxes.

To model this effect, I developed a novel stochastic technique to simulate the
probability that a source would have mean Gaia astrometry within the detected
HDBSCAN cluster. Firstly, the cluster detected by HDBSCAN is modelled as a three-
dimensional ellipsoid in proper motion and parallax space. Then, 100 000 stars
with magnitudes uniformly distributed in the range 2 < G < 21 were simulated,
with astrometric errors assigned to each star depending on the error distribution
of sources in the on-sky vicinity of a cluster. For each star, ten mean astrometric
positions were simulated, given its simulated Gaia astrometric errors which form
a multivariate normal distribution in proper motion and parallax space. For each
simulation, a mean astrometric position within the cluster ellipsoid is assumed
to be assigned as a cluster member, and a star whose mean astrometric position
is outside the cluster ellipsoid is assumed to be assigned as a non-member. The
results of these simulations for each cluster are binned using the same bins as the
subsample selection function, and are then combined into an estimated per-cluster
clustering algorithm selection function as a function of G-band magnitude. Poisson
uncertainties are computed as the uncertainties on these bins.

Finally, all three independent selection effects are multiplied together, giving the
total cluster selection function Scluster

C :

Scluster
C = Sparent

C (q) · Ssubsample
C (q | q in parent) · Salgorithm

C (q | q in subsample).
(4.1)

Figure 4.2 shows the computed cluster selection functions for three OCs: Blanco 1,
Ruprecht 134, and Berkeley 72. Blanco 1 is a nearby (d ≈ 240 pc), high galactic
latitude OC that suffers minimally from background crowding and is easy to separate
from field stars. Its selection function is mostly complete down to G ∼ 19. On
the other hand, Ruprecht 134 is an older, more distant cluster (d ≈ 2.3 kpc) that
is in one of the densest regions of the galactic disk, with l = 0.3◦ and b = −1.6◦.
It is probably one of the most incomplete clusters in our entire catalogue. Its
incompleteness is mostly due to the subsample selection function, as many sources
do not have high enough quality Gaia astrometry to be included in our subsample of
considered sources. Finally, Berkeley 72 is a distant, smaller cluster (d ≈ 5.1 kpc)
whose members are more difficult to separate from field stars. Like many distant
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Fig. 4.2.: Estimated cluster selection functions for three OCs from Paper 2: Blanco 1,
Ruprecht 134, and Berkeley 72. The left column shows computed cluster selection
functions and a combined cluster selection function after accounting for all three
dominant selection effects. The right column shows the CMD of each considered
cluster for comparison.
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objects, the selection function of Berkeley 72 appears mostly dominated by the
selection function of our clustering algorithm from Paper 2 when applied with our
methodology.

It is also worth noting that in general, no clusters appear to have a range in G

in which their CMD is 100% complete. Many of these missing stars across all
magnitudes are likely to be binaries. Other than for a small subsample of around
1 million sources, Gaia DR3 astrometric fits assume that each source is a single star.
Hence, binaries with deviations large enough to be detectable by Gaia can have
poor-quality astrometric fits, resulting in high reduced χ2 values and high error
astrometry that is rejected by quality cuts such as the one used for our subsample of
stars (Lindegren et al. 2021b, see also Sect. 1.4.1).

4.2.3 Correction for unresolved binaries

Given that the stellar mass inference in Sect. 4.2.2 only calculated the masses of
stellar primaries, assuming in the process that every star is single, it is important to
also correct for an additional increase to cluster mass functions due to unresolved
binaries.

Recently, measurements of the binary star fraction in a number of clusters have been
made using Gaia DR3 photometry, with Cordoni et al. 2023 measuring this for 78
reliable OCs and Donada et al. 2023 measuring this for 202 OCs within 1.5 kpc.
Both works are only able to measure the binary star fraction down to mass ratios
of q ≈ 0.6, noting that it becomes difficult to disentangle lower mass ratio binaries
from the main sequence of single stars, particularly for clusters with differential
extinction. Given that the mass ratio distribution of binaries in the field has been
shown to peak around q ∼ 0.3 (Moe and Di Stefano 2017), it is hence unlikely to be
possible using Gaia DR3 photometry alone to accurately measure the full mass ratio
distribution of unresolved and resolved binary stars within a cluster, let alone across
a large sample of clusters such as the 7167 in our catalogue from Paper 2.

For now, I use the selection effect corrected relations for multiplicity fraction, com-
panion star frequency, and mass ratio of field stars from Moe and Di Stefano 2017
to apply binary star corrections to each cluster mass bin. In addition, to calculate
the fraction of unresolved to resolved binary stars, simulations of clusters and the
astrometry of binary stars assuming the period and eccentricity distributions from
Moe and Di Stefano 2017 were conducted using SPISEA (Hosek Jr et al. 2020) and
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astromet (Penoyre et al. 2022a,b), with a binary correction being applied propor-
tional to however many resolved or unresolved binaries were expected for each
cluster.

Incorporation of these binary star corrections results in cluster mass bins that are
inflated by around 10% to 30%, depending on the distance of the cluster and how
many of its stars are likely to be in unresolved or resolved binaries. Uncertainties
around binary star fraction likely add an up to 30% additional uncertainty on my
derived cluster masses, since a single relation is applied to all clusters.

Before the final publication of this chapter in a paper, it may be possible to improve
this binary star correction further. However, this simple correction may already be
sufficient, since determination of the binary star fraction across all mass ratios for
all (or even ∼ 5%) of the 7167 clusters is not feasible with current available data.

4.2.4 Mass function fits

Having calculated accurate completeness and binary-corrected mass bins for every
cluster, I next used these mass measurements to calculate the total mass of every
cluster. To do so, I fit a Kroupa 2001 initial mass function (hereafter Kroupa IMF)
to the mass function of each cluster using least squares fitting. The integral of the
Kroupa IMF from 0.03 M�to the highest observed stellar mass in the cluster is then
taken as the mass value for the cluster.

One could also fit bespoke mass functions to each cluster (e.g. as in Cordoni et al.
2023). The IMF is known to be well approximated by a broken power law for most
populations, with a break point around 0.5 M�(Kroupa 2001). However, low masses
are poorly resolved for many of the clusters in our sample, with clusters more distant
than ∼ 1 kpc or clusters with reddening values AV & 2 having few or no stars at
masses lower than 0.5 M�. Hence, it would not be possible to fit a two-part mass
function to these clusters, preventing an accurate estimate of their true total mass.
The ‘safer’ option in this case is to fit Kroupa IMFs to all clusters, deriving masses on
the same scale with the same assumed mass function.

Some N-body simulations have suggested that cluster mass functions become de-
pleted of low mass stars over time, due to lower mass stars being preferentially
ejected from clusters (Krause et al. 2020). Before publishing this work, it may also
be insightful to fit bespoke mass functions to nearby clusters to investigate this effect.
However, this would likely also require a better determination of a binary star mass
function correction for each cluster, which may be beyond the scope of this work.
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Fig. 4.3.: Mass function fits to the three OCs from Fig. 4.2. The blue points show measured
binned stellar masses, the orange points show these masses after correcting for
selection effects and modest assumptions about binary stars, and the black dashed
line shows the best-fitting Kroupa IMF. The integral of the cluster mass function
is written in the top right of each plot.
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Figure 4.3 shows mass function fits to the three clusters from Fig. 4.2. Generally,
Kroupa IMFs are a reasonable approximation for most clusters, and the integral of
these mass functions produces reasonable values of the total mass for each cluster.

More work should be done to improve the fitting process of cluster mass functions
before publication. One can see in Fig. 4.3 that outlier points can over-constrain
fits and result in erroneously higher or lower masses (such as the highest mass bin
for Ruprecht 134, or some of the higher mass bins for Blanco 1 – in both cases,
these reduce the final total cluster mass by a large amount). I intend to upgrade the
least squared fitting of cluster mass functions to use a more statistical approach that
includes rejection of outlier points, which should improve the overall accuracy of
derived cluster masses.

4.2.5 Jacobi radius inference

Finally, having constructed a pipeline to calculate cluster masses, I used these meth-
ods to infer the Jacobi radius rJ of the clusters in our sample. Recalling Sect. 1.6.2,
the Jacobi radius defines the radius within which a star cluster’s gravitational poten-
tial is greater than the potential of its host galaxy. Within this radius, all stars have
the potential to be bound together. I define the amount of mass within this radius as
the Jacobi (or bound) mass MJ of each cluster, and the total mass of all observed
member stars (including tidal tails) as MA.

The Jacobi radius of each cluster was calculated using the method of Meingast
et al. 2021. Firstly, I calculated the circular and epicyclic frequencies at the cluster’s
distance from the galactic centre using galpy (Bovy 2015) and the MWPotential2014
potential model defined in Bovy 2015. Next, for each cluster, the theoretical value
of the Jacobi mass as a function of radius MJ(r) was calculated at all radii outwards
from the centre of the cluster. Finally, the observed cluster mass as a function of
radius Mobs(r) was calculated by repeating the process of binning stars by mass,
applying a correction for unresolved binaries, and fitting Kroupa IMFs to the resulting
cluster mass functions. The radius at which Mobs(r) = MJ(r) is then hence the
Jacobi radius of the cluster. Only radii at which the cluster would have at least
ten observed bound members were considered, differentiating any potential bound
cluster from multiple star systems and in accordance with common minimum limits
on the size of an OC (Cantat-Gaudin and Anders 2020; Portegies Zwart et al.
2010).

There are two special cases of this method worth discussing. Firstly, for clusters
without a valid Jacobi radius, Mobs(r) < MJ(r) at all radii. These clusters can
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Fig. 4.4.: Jacobi radius determination for three OCs: Blanco 1, Ruprecht 134, and
Melotte 25 (the Hyades). Each of the three columns corresponds to each cluster.
Top row: the estimated total mass contained within a radius r is shown in blue
(Mobs(r)), with the 1σ error region shaded on the plot. The orange line shows the
theoretical amount of mass contained within a radius r according to the Jacobi
radius equation (MJ(r), Eqn. 1.3). The intersection of these two lines corre-
sponds to the cluster’s rJ . Bottom row: the distribution of cluster member stars.
To remove spherical distortions, positions are rotated to an arbitrary coordinate
frame with longitude λ and latitude φ centred on the cluster centre. Stars within
rJ are shown in orange while stars outside rJ are shown in blue. The dashed red
line shows rJ , while the dashed purple line corresponds to the approximate value
of rt determined in Paper 2.

be considered to have no radius at which their potential is stronger than that of
the Milky Way, and would be better classified as MGs instead of OCs. For these
clusters, I take the radius at which they are closest to having a valid Jacobi radius
and compute the probability of a cluster nevertheless having a valid Jacobi radius,
given the uncertainties on their computed observed mass. For most clusters with
Mobs(r) < MJ(r) for all r, this probability is near zero; although some edge-case
objects may still have a small chance of having a valid Jacobi radius. Secondly, some
clusters have an observed mass greater than their Jacobi mass even at the highest
angular distance of any member star from the cluster core. This is particularly
common for more distant or difficult to detect clusters, and is likely because they do
not have detected member stars out to their true rJ . For these clusters, I compute
rJ for the mass of the entire detected cluster, giving a Jacobi radius larger than the
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Fig. 4.5.: Jacobi radius determination for three candidate new OCs from Paper 2 that were
highlighted as example new objects (see Sect. 3.9 and Fig. 3.17). The plot is
formatted the same as Fig. 4.4. The most likely Jacobi radius for HSC 1131 and
HSC 2376 is shown, although Mobs(r) < MJ(r) for all radii for both clusters, and
they are hence more likely to be MGs (see text).

total extent of the cluster on the sky. This value is likely to be an under-estimate
of the true cluster rJ as the undetected outskirts of the cluster would increase rJ
further.

Figure 4.4 shows Mobs(r) and MJ(r) for three clusters: Blanco 1, Ruprecht 134,
and Melotte 25 (the Hyades), in addition to the member stars within these radii.
Firstly, it can be noted that at r < rJ , Mobs(r) is greater than MJ(r) for Blanco 1
and Melotte 25, showing that these are reliable clusters with a range of radii where
enough mass is present that the cluster’s gravitational potential is stronger than that
of the Milky Way. Ruprecht 134 is a more distant and difficult to detect cluster for
which Mobs(r) is always greater than MJ(r). The Jacobi radius of its total population
is larger than the observed maximum radius of the cluster.

This method also appears to be a good test of whether an object is an OC or an
MG. Figure 4.5 shows the Jacobi radius determination for three candidate OCs from
Paper 2 that were highlighted as example new objects. In Sect. 3.9, we suggested
that HSC 1131 and HSC 2376 were sparse objects that appear more compatible
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with moving groups, and HSC 1185 is an object with a denser core that could be
compatible with a small OC. Figure 4.5 suggests that this is the case: HSC 1131 and
HSC 2376 both do not have a valid Jacobi radius, while HSC 1185 is compatible
with a small cluster with around 65 M� of bound stellar content.

Finally, it is worth commenting on a remaining issue with this calculation that I
hope to fix before publication. Mobs(r) values in Figs. 4.4 and 4.5 often jump up and
down. In addition, the fitted mass within a radius r can even decrease as r increases,
as appears to be the case for Blanco 1. This is due to issues with mass function
fitting identified in Sect. 4.2.4, which causes mass function fits to be unstable and
biased by outlier mass bins. Improvements to mass function fitting should make this
process more stable and should improve the accuracy of rJ determination for all
clusters.

4.3 Velocity dispersion inference

While the derived cluster masses and Jacobi radii from the previous section are
effective to determine which clusters have the possibility of being bound, the dynam-
ical state of a cluster depends not only on its mass and radius, but also its velocity
dispersion (Eqn. 1.8). Velocity dispersions from Gaia data have been used in a
number of works such as Bravi et al. 2018, Kuhn et al. 2019, and Pang et al. 2021 to
probe the current dynamical status of star clusters.

While some dynamical studies have used radial velocities to study the dynamics of
OCs (e.g. Bravi et al. 2018) or proper motions in combination with radial velocities
(e.g. Evans and Oh 2022), I aim to use exclusively proper motions (e.g. as in Kuhn
et al. 2019), as they are the only measurement available reliably across the entire
sample of clusters. Hence, in this section, I outline a method to derive approximate
cluster velocity dispersions from cluster proper motions based on a simple Gaussian
model.

4.3.1 Gaussian velocity dispersion model

By definition, dynamically relaxed virialised clusters are expected to have an isother-
mal (Maxwellian) velocity dispersion that will be well described by a Gaussian (King
1966; Portegies Zwart et al. 2010), assuming that stars within a cluster of n stars
have independent, uncorrelated velocities – namely, that there is no overall axis of
rotation within the cluster, and the cluster is well described by a King 1966 profile.
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the likelihood becomes broader and asymmetric as uncertainty on the true value
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Hence, the assumption of a Gaussian model for the distribution of cluster proper
motions is likely to be a good approximation for most OCs, and I approximate cluster
velocity dispersions as a symmetrical multivariate Gaussian distribution with a single
dispersion in all axes, σc.

Given the set of all proper motion measurements for stars within a cluster {µ}, which
each have corresponding covariances from the set of all covariance matrices {Σ},
and a mean cluster proper motion µc = (µα,c, µδ,c), the likelihood of the observed
data given these cluster parameters is hence given by

L = P ({µ} | µc, σc, {Σ}). (4.2)

Every ith star in the cluster has a true proper motion µ̄i = (µ̄α, i, µ̄δ, i), which is
drawn from the two-dimensional Gaussian

P (µ̄i | µc, σc)i ∼ N (µc | σc), (4.3)

where N denotes a bivariate normal distribution.
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However, Gaia proper motion measurements have uncertainties, and the measured
proper motion of every source µi = (µα, i, µδ, i) is the true proper motion µ̄i

convolved with Gaussian measurement uncertainties. µi has a covariance matrix Σi

defined as:

Σi =
[

σ2
µα,i ρiσµα,iσµδ,i

ρiσµα,iσµδ,i σ2
µδ,i

]
(4.4)

where σµα,i and σµδ,i are the uncertainties on proper motions in right ascension and
declination respectively, and ρi is the covariance coefficient between them. Every
measured proper motion µi is therefore drawn from a bivariate normal distribution
centred on the true proper motion of star i µ̄i as:

P (µi | µ̄i,Σi)i ∼ N (µ̄i | Σi), (4.5)

which is the measurement model for each star which accounts for Gaia astrometric
uncertainties.

Since the true proper motion µ̄i is unknown, all possible values of this parameter
must be marginalised over to remove it from the likelihood and arrive at a final
(solvable) equation. The final likelihood for each star is hence given by

Li = P (µi | µc, σc,Σ)i =
∫
P (µi, µ̄i | µc, σc,Σ)i dµ̄i. (4.6)

Using the product rule and conditional independence between parameters, this can
be expressed in terms of Eqns. 4.3 and 4.5 as:

Li =
∫
P (µi | µ̄i,Σi)i P (µ̄i | µc, σc)i dµ̄i. (4.7)

Finally, for all n stars in the cluster, assuming that the set of all proper motion
measurements {µ} with corresponding covariances {Σ} is independent, the final
likelihood is given by:

L = P ({µ} | µc, σc, {Σ}) =
n∏
i=1
Li. (4.8)

Evaluations of this likelihood for the Pleiades are shown in Fig. 4.11, as well as
for smaller subsets of stars randomly sampled from the Pleiades. When the cluster
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dispersion is possible to measure precisely, the Eqn. 4.2 likelihood is symmetric; in
less certain cases, the likelihood becomes asymmetric, with a long tail towards high
σc values.

In practice, Gaia measurements are not strictly independent, and coordinate frame
distortions due to effects such as the radial motion of the cluster will cause clusters
to have distorted, non-Gaussian proper motion distributions. In the next section, I
discuss how cluster proper motions are corrected for various distortions arising from
spherical geometry and cluster radial velocity projected into the tangential proper
motion plane.

4.3.2 Coordinate frame and radial velocity corrections

Cluster proper motions are corrected in two ways. Firstly, I remove the impact of
an effect known as ‘perspective expansion’ due to the relative motion of a cluster to
the Sun. Particularly for clusters with high radial velocities such as the Hyades, this
effect can cause stars to appear to expand or contract away from the centre of the
cluster (Kuhn et al. 2019). To first order, this contributes an excess proper motion
∆µα∗,i and ∆µδ,i to star i given by (van Leeuwen 2009):

∆µα∗,i ≈ ∆αi
(
µδ,c sin δc −

vr,c$c

k
cos δc

)
(4.9)

∆µδ ≈ −∆αiµα∗,c sin δc −∆δi
vr,c$c

k
, (4.10)

where αc, δc, µα∗,c, µδ,c, and $c are the astrometric parameters for the cluster
derived in Paper 2, ∆αi and ∆δi are the distance in right ascension and declination
of the star from the cluster centre, vr,c is the cluster radial velocity determined in
Paper 2, and k is a constant equal to 4.74. For 1418 clusters with no determined
radial velocity (which are generally distant and would be minimally affected by
perspective expansion), this correction was not applied.

In addition, to remove any possible spherical distortions on cluster proper motions,
I rotate the coordinate frame of astrometric measurements and associated proper
motions into a frame centred on the cluster centre determined in Paper 2. Errors on
proper motions are transformed to the new frame. For most clusters, the effect of
this correction is negligible; however, for clusters near to the poles of the adopted
coordinate frame, this correction prevents cluster proper motions from having a
ring-like distribution.
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4.3.3 Inference procedure

Finally, cluster velocity dispersions were inferred for all clusters with a maximum
likelihood method. Only stars within the identified Jacobi radius of each cluster
were considered when inferring σc, which mostly removes the signature of cluster
tidal tails from clusters. In addition, only stars with a renormalised unit weight
error (RUWE) value of less than 1.4 were considered, which should help to restrict
inference to only stars with reliable astrometry and should remove some obvious
astrometric binaries (Lindegren et al. 2021b; Penoyre et al. 2022a,b).

The full PDF and associated confidence intervals around the most likely σc value
were determined. To marginalise over and integrate the likelihood in Eqn. 4.2
quickly for all sources, a C++ program was written using the integration package in
the GNU Scientific Library1.

4.4 Masses, radii, and virial ratios for the entire sample
of clusters

In this section, I present an overview of the current results from my work into OC
masses and dynamics. I begin with an overview of the cluster mass and Jacobi radius
results.

4.4.1 Masses and radii

Masses and Jacobi radii were successfully derived for 6974 clusters in the sample
from Paper 2 that are not known globular clusters and are closer than 15 kpc. 72
clusters more distant than this limit have unreliable age and extinction estimates
due to their distance not being supported by the age inference neural network from
Paper 2. An alternative isochrone fitting method could be used for these objects to
derive more accurate age and extinction estimates, before then finding their masses.
This would be particularly interesting as it would make it possible to confirm or
dispute any potential distant OC discoveries in Paper 2.

There are few cluster mass catalogues in the literature. However, comparison with
literature results is still possible on a limited scale. Figure 4.7 compares cluster
masses derived in this work with masses derived by profile fitting and observations

1https://www.gnu.org/software/gsl/
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in Piskunov et al. 2008, from a similar method to this work in Meingast et al. 2021,
and from Gaia DR3 data in Cordoni et al. 2023.

My results are in some agreement with the work of Meingast et al. 2021, who apply
a similar methodology to ten nearby clusters. However, my masses are generally
higher than theirs, which likely arises due to their mass measurements not being
corrected for incompleteness. The cluster with the largest disagreement is Platais 9,
for which Meingast et al. 2021 find has almost no stars within its Jacobi radius and
derive a low bound mass of just 13.1 M�, which is significantly lower than my mass
measurement of 94.2± 10.3 M�.

Agreement with other works is generally worse. My masses are much larger than
the profile-based masses derived in Piskunov et al. 2008, although a similar upwards
trend exists for some clusters. To derive their masses, the authors used two methods.
Firstly, they fit King profiles to 236 clusters in the All Sky Compiled Catalogue 2.5
Kharchenko 2001. Then, assuming that the King 1962 tidal radius rt is equivalent
to rJ , one can derive a cluster mass from a profile fit given Eqn. 1.3. However,
this method is extremely sensitive to the adopted cluster radius, since MJ ∝ r3

J .
As noted in Sect. 4.2.5, there are some cases (such as Ruprecht 134) where my
derived Jacobi radius is larger than the observed extent of the cluster – this is the
case for 1195 clusters in the catalogue. Given the depth and quality of Gaia data,
with cluster membership lists in Paper 2 containing on average around four times
as many stars as those in Kharchenko et al. 2013, a plausible explanation for this
mass value mismatch would be that many clusters in Piskunov et al. 2008 may have
smaller radii than in this work. On average, King tidal radii derived in Paper 2 are
≈ 1.5× larger than those in Piskunov et al. 2008, corresponding to mass estimates
that would be ∼ 3× larger in this work. In addition, Piskunov et al. 2008 also fit
semi-major axes to a larger sample of 650 clusters and used these as a proxy for
cluster tidal radii, for which my masses have even less correlation.

Cordoni et al. 2023 recently created a catalogue of OC masses for 78 clusters by
fitting bespoke mass functions to the observed counts of stars for clusters in their
sample. For some clusters, my masses are in mild agreement with their results,
although my masses are generally higher as Cordoni et al. 2023 do not incorporate a
correction for CMD incompleteness. However, there are other clusters for which their
masses are extremely different to those derived in this work. Haffner 26 is the cluster
with the highest reported mass in their work, with a total mass from their mass
function fit of 14563 M�, which is extremely discrepant with the 852± 83 M�value
of the mass derived for Haffner 26 in this work. In Cordoni et al. 2023, they fit
bespoke mass functions to every cluster. For Haffner 26, they fit a steep power law
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Fig. 4.8.: The distribution of probabilities that a cluster has a valid Jacobi radius for all
clusters within 15 kpc.

with an overall value of 3.37 above 1 M�and 4.78 below 1 M�, which is significantly
steeper than a Kroupa IMF. Given the reasonably high distance to the cluster of
∼ 3 kpc, not much of the cluster’s low mass regime is resolved in Gaia data, and
extrapolation of such a steep mass function to unobserved low mass stars is likely to
be the reason why their value is so much higher than in this work. While potentially
less accurate in some cases for nearby clusters, assumption of a Kroupa IMF for all
clusters is at least consistent, and avoids errors in extrapolating steep mass functions
to stars that are not observed within a cluster. Nevertheless, the mass function for
Haffner 26 within its Jacobi radius in this work appears consistent with a Kroupa
IMF down to 0.7 M�, suggesting that the steep power law coefficients in Cordoni
et al. 2023 for this cluster may also be incorrect.

Having compared masses derived in this work to those derived in the literature, it
is next interesting to comment on the overall distribution of results for clusters in
this work. Figure 4.8 shows the distribution of probabilities that a cluster has a valid
Jacobi radius, P (rJ). Around 1000 clusters are strongly incompatible with having a
bound component, with P (rJ) ≈ 0. On the other hand, around 6000 clusters are
strongly compatible with having a valid Jacobi radius, with a handful of clusters
taking middling values where they may or may not have a valid rJ .

Some moving groups in the Solar neighbourhood appear to have been identified as
having a possible valid Jacobi radius, for instance in the densest part of the beta
Tucanae moving group detected in Paper 2. The Jacobi masses of these moving
groups are generally less than 50 M�, with some being lower than 20 M�. It
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Fig. 4.9.: The distribution of total masses for all clusters with mass measurements and
excluding globular clusters. Clusters are split into samples based on the probability
that they have a valid Jacobi radius. In addition, solid lines show this for the ‘high
quality’ sample of clusters from Paper 2 (those with an astrometric S/N greater
than 5σ and a median CMD class greater than 0.5), while dashed lines include all
clusters with mass measurements in this work.

is likely that these Jacobi radii are errors. In assuming that all clusters have a
mass distribution well-described by a Kroupa IMF, the cluster masses in this work
are a more lenient upper limit on the mass of evolved, older systems that may
have already lost a number of low-mass stars. Given this method, dynamically
evolved moving groups that have lost much of their low-mass content will have an
overestimated mass, particularly in their densest regions – leading to a Jacobi radius
being erroneously identified. In addition, the Jacobi radius equation (Eqn. 1.3) can
only be accurately applied on spherically symmetric clusters. Many of these small
components of moving groups are not spherically symmetric or have low member
counts, which may violate basic assumptions of this method (Binney and Tremaine
1987). Hence, in deciding which objects are or are not bound OCs, I suggest that
an additional minimum MJ of 50 M�is adopted, since this is already a mass lower
than those of almost any known and reliable OC and removes edge cases where
the method simply may not work. Moving groups with a possible Jacobi radius
should still be flagged separately in the final catalogue, however, and would also
be interesting follow-up candidates for further study of their structure, as a moving
group with a core that does have a small Jacobi radius could be a remnant of a
dissolved OC.

Figure 4.9 shows the distribution of total cluster masses for all clusters in the sample,
including comparing these masses against clusters in both the high and low quality
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samples of clusters in Paper 2. The overall mass distribution of clusters is well
characterised by two components, with OC masses centred on a modal mass of
around ∼ 500 M�and moving group masses centred on a mass of ∼ 75 M�.

In total, masses and Jacobi radii derived in this work appear to be consistent with
literature works where relevant, and also show promise in discriminating between
clusters that plausibly and implausibly have a gravitational potential stronger than
that of the Milky Way, hence implying that they are compatible with bound ob-
jects. Next, I review the measurements of virial ratios, which incorporate velocity
dispersions to derive a second test for how bound cluster candidates are.

4.4.2 Virial ratios and binary star contamination

I calculated velocity dispersions for all clusters within 15 kpc using the method
outlined in Sect. 4.3 and for all stars within the identified Jacobi radius of each cluster,
in addition to all stars within an entire cluster. Then, computing the median radius
from the cluster centre for stars within the Jacobi radius, I computed corresponding
virial ratios of each cluster for both the entire cluster and purely the stars within rJ ,
deriving virial ratios QA and QJ for the entire cluster and for only member stars
within rJ respectively.

The distribution of cluster virial ratios as a function of MJ is shown in the upper plot
of Fig. 4.10 for reliable clusters with valid Jacobi radii within 2 kpc. A clear trend is
apparent, with QJ increasing for clusters of lower MJ in an approximately log-linear
relation. These results suggest that almost all clusters in the sample appear to be
supervirial, with almost no clusters having an observed virial ratio lower than 1 (i.e.
twice the ideal value).

To a certain extent, this mirrors results of recent studies into OC dynamics. For
instance, Bravi et al. 2018, Kuhn et al. 2019, and Pang et al. 2021 have all found that
almost all OCs they studied appear to be supervirial, which is compatible with OCs
all being dynamically heated and tidally disrupted by the Milky Way’s potential, as
is expected for OCs in the disk (Krause et al. 2020). However, the presence of such
a clear trend in QJ as a function of mass is somewhat remarkable, and warrants
further investigation.

To begin with, it is worth noting clear flaws in the assumption of a single component
Gaussian model for cluster velocity dispersions. Most clusters have tidal tails,
implying that stars are being ejected from within the main bound part of the cluster
due to tidal interactions with the Milky Way (Meingast et al. 2021; Tarricq et al.
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Fig. 4.10.: Virial ratios as a function of mass for all 2030 clusters with P (rJ) > 0.5 that are
in the high-quality sample of clusters from Paper 2 and that are within 2kpc.
Points are shaded based on the median distance to the cluster d50. In the upper
plot, virial ratios measured for all stars within the cluster’s Jacobi radius are
shown. In the bottom plot, an approximate correction for dispersion increase
arising from unresolved binary stars was applied. On both plots, the dashed red
line shows the ideal value of the virial ratio for cluster in dynamical equilibrium,
Q = 0.5.

2022). In the most extreme cases, a number of nearby clusters such as Melotte 25
(the Hyades) and Platais 9 show heavy ongoing disruption, with their tidal tails
containing significantly more mass than the clusters themselves (Meingast et al.
2021; Oh and Evans 2020). Even within the Jacobi radius, many stars should be
being ejected from within the cluster, which will cause an inflation of the mean
cluster velocity dispersion.

A two-component model for cluster velocity dispersions may be more appropriate for
such disrupting clusters (see e.g. Kuhn et al. 2019), with a component for both bound
and unbound stars. However, it may be extremely difficult to reliably differentiate
between bound stars and stars undergoing ejection, and such a method is certainly
unlikely to be applicable to small or distant clusters with only a few dozen member
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stars, for which it would be difficult to tell whether a two-component model is a
better fit or simply a case of overfitting.

Another explanation for the observed high virial ratios may be unresolved binary
stars. Unresolved binaries have been shown to contribute to inflation of cluster
radial velocity dispersions in multiple works (e.g. Gieles et al. 2010; Rastello et al.
2020), with dynamical mass estimates in the worst cases potentially being inflated by
factors of 10 to 45 (of which dynamical masses have the same σ2

1D dependence as Q).
However, the effect of unresolved binaries on proper motion-derived cluster velocity
dispersions has been minimally studied, with a number of important differences and
difficulties being present.

Unresolved binaries as an explanation for high cluster virial ratios

Unresolved binary star systems can have proper motions perturbed from their true
value depending on a number of factors (Penoyre et al. 2020). The principal
difference between radial velocity binary contributions and proper motion binary
contributions is their mechanism. For a radial velocity to be perturbed, spectral line
shifts or broadening due to the orbital motion of binaries contributes directly to the
measured radial velocity excess (Gieles et al. 2010). For instance, a star in a binary
pair with a 1 km s-1 orbital speed along the line of sight will have a radial velocity
overestimated by ∼ 1 km s-1 relative to the barycentre of the system.

However, in the case of an unresolved binary with a proper motion excess, it is the
centre of light of the binary system that moves, and not an individual star. This
incurs a number of important differences (Penoyre et al. 2020). For instance, an
equal mass binary star will have little to no proper motion perturbation, as the
centre of light of the system observed by Gaia will not move throughout the binary
star’s orbit. On the other hand, for unequal mass binaries with mass ratios not
equal to unity, each star will orbit the barycentre of the binary system at a different
radius, causing the centre of light of the system to shift throughout the orbit of the
binary and be measured as a shift in the unresolved binary’s position over time. This
also means that only a small subset of binaries that will impact a cluster’s velocity
dispersion can be detected with photometric methods, such as those in Cordoni et al.
2023 or Donada et al. 2023, as these methods are generally only viable in detecting
binaries with mass ratios greater than ∼ 0.6, although many binary stars with lesser
mass ratios will exist within OCs and will contribute a larger overall amount to OC
velocity dispersion inflation.

172 Chapter 4 The masses and dynamics of star clusters in the Milky Way



0 1 2 3 4 5 6

Distance (kpc)

0

500

1000

1500

2000

2500

3000

V
el

o
ci

ty
d

is
p

er
si

o
n

(m
/
s)

5

10

15

20

25

C
ou

n
t

Fig. 4.11.: Simulated binary star velocity dispersion contaminations as a function of distance
for all clusters in the sample. Cluster binary star contaminations are shown as
a two-dimensional histogram, with bin shading giving the number of clusters
in each bin. The measured velocity dispersion of all clusters is shown as a blue
contour plot above this histogram.

Proper motion excesses or anomalies have been used by a number of works in-
tentionally to derive catalogues of astrometric binary stars, generally focusing on
those within the immediate solar neighbourhood (Kervella et al. 2019; Penoyre et al.
2022b). However, astrometric binaries within clusters have not yet been studied
with Gaia data to the best of my knowledge.

To approximately estimate the possible extent of binary star contamination in my
derived velocity dispersions, I used astromet (Penoyre et al. 2022a,b) and SPISEA
(Hosek Jr et al. 2020) to simulate the clusters studied in this work and their velocity
dispersion excess given mean binary star parameters (such as period and eccentricity)
for field stars given in Moe and Di Stefano 2017. Both single and binary star
astrometry was simulated with astromet. Then, velocity dispersions were measured
for these simulated clusters using the pipeline described in Sect. 4.3.

Figure 4.11 shows the binary contamination for each cluster as a function of distance.
Binary star contamination is lowest for nearby clusters, which have CMDs with deep
photometry dominated by lower mass stars, which are expected to have significantly
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Fig. 4.12.: Distribution of cluster virial ratios. The blue histogram shows virial ratios for
clusters with a valid Jacobi radius, the orange histogram shows virial ratios for
the same clusters with an approximate correction for binarity applied, and the
red histogram shows the virial ratio of the entire cluster for clusters without a
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lower chances of being in binary systems than higher mass stars (Moe and Di Stefano
2017). This causes the overall velocity dispersion excess at nearby distances to be
lower. On the other hand, clusters at distances greater than around 2 kpc have the
highest estimated binary star dispersion excess, as their CMDs are dominated by
higher mass stars which are expected to mostly be multiple star systems.

The measured velocity dispersions of clusters in the sample are also overplotted as
contours in Fig. 4.11, and surprisingly, many clusters have velocity dispersions that
are compatible with being almost entirely due to binary star contamination. These
simulations are very approximate, and do not include effects such as the evolution
of binary star orbital parameters as a function of age.

For the sample of clusters in this work, these simulations are likely to be an over-
estimate, since cluster selection functions derived in Sect. 4.2.2 suggest that many
clusters are missing stars at all magnitudes, which are likely to be binaries with poor
quality astrometry that was rejected by the Rybizki et al. 2022 cut, in addition to
the cut on stars with RUWE values greater than 1.4 in velocity dispersion inference
(Sect. 4.3.3). Nevertheless, they challenge the validity of results showing that most
(or even all) clusters are supervirial, and suggest that more work should be done to
estimate the excess velocity dispersion that binary stars may contribute to OC proper
motion dispersions.
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Motivated by these simulations, I tried a number of methods to remove binary stars
from velocity dispersion inference. Penoyre et al. 2022a,b show that cuts on unit
weight error, RUWE, or a renormalised local version of the RUWE can be effective in
identifying astrometric binaries. However, lowering of the RUWE cut to 1.25 or even
1.0 used in velocity dispersion inference only lowered cluster velocity dispersions
by around ∼ 10%. These approximate methods based on Gaia diagnostic criteria
are likely imperfect, and may miss many binary stars with periods longer than a few
years that can still contribute significantly to cluster velocity dispersions, or with
mass ratios that make it too difficult to detect them from astrometry alone.

As an example, Melotte 22 (the Pleiades) is a relatively archetypal cluster, with a
mass of ≈ 103 M� and r50 ≈ 2.5 pc. According to Eqn. 1.8, such a cluster should
have an ideal velocity dispersion of just 415 m s-1. It is easy to simulate scenarios
in which a remainder of undetected unresolved binary stars could still contribute
even just 100 m s-1 of extra dispersion to a cluster’s velocity dispersion, resulting in
a virial ratio which is ∼50% larger than the ideal value.

It may not be possible to conclusively remove the impact of unresolved binary stars
on cluster velocity dispersions until at least Gaia DR4. DR4 is expected to contain
significantly more non-single star solutions than Gaia DR3 (Gaia Collaboration et al.
2022).

For comparison, Fig. 4.12 shows the distribution of virial ratios of clusters as mea-
sured for those with a valid Jacobi radius, for those without a valid Jacobi radius,
and after subtracting estimated binary star contaminations from cluster velocity dis-
persions by assuming that the true dispersion σc,true =

√
σ2

c,measured − σ
2
binary, where

σbinary is the simulated binary star contribution for the cluster. In addition, Fig. 4.10
shows approximately corrected virial ratios as a function of mass, showing that the
trend towards higher QJ values for decreasing cluster mass MJ could be explained
by unresolved binaries alone, since the trend apparent in QJ is removed by the
approximate binary correction.

Even after approximately correcting for binaries, some clusters still have significantly
higher QJ values than the ideal value of 0.5. For instance, Melotte 25 (the Hyades)
has an uncorrected QJ = 40.1± 4.5, with QJ,corrected = 25.7± 3.6. Inspection of the
proper motions of stars within its Jacobi radius shows that many member stars within
this radius appear to be being ejected from the cluster, shown by their alignment
with the cluster tidal tails. As discussed previously, QJ is hence not an estimate of
the virial ratio of the remaining bound members of a cluster, but rather an estimate
of the virial ratio of all stars within my estimated rJ for each cluster, which can
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Tab. 4.1.: Total counts of clusters with various different criteria.

Type Criteria Count (high quality)a

Open cluster (OC) P (rJ) ≥ 0.5 and
MJ ≥ 50 M�

5619 3515

- bound OC QJ,corrected < 5 5051 3317
- dissolving OC 5 ≤ QJ,corrected < 50 501 190
- unbound OC? 50 ≤ QJ,corrected 66 8
Moving group (MG) P (rJ) < 0.5 or

MJ < 50 M�
1355 559

- no rJ P (rJ) < 0.5 961 282
- has rJ P (rJ) ≥ 0.5 374 269
Globular cluster (GC) in Vasiliev and Baum-

gardt 2021
121 21

Too distant d ≥ 15 kpc 91 17

Notes. (a) Number of clusters passing criteria and that are in the high-quality sample
of objects from Paper 2, i.e. those with a median CMD class of greater than 0.5 and
an astrometric S/N greater than 5σ.

include a number of disrupting stars. This may make QJ also useful as a proxy for
how strongly a cluster is currently being disrupted.

4.5 Discussion

This chapter is a work in progress ahead of the publication of these results, which
will hopefully occur within the coming months. However, even at this early stage,
it is still possible to discuss some interesting results that come from this work. I
begin by quantifying how many bound and unbound clusters are in the catalogue in
Paper 2.

4.5.1 An updated observational definition of open clusters

In Paper 2, we remarked that our catalogue was likely to contain many moving
groups. It is now possible to answer how many objects are compatible with moving
groups and how many are better characterised as OCs.

The probability of a cluster having a valid Jacobi radius, P (rJ), appears to be a
powerful tool in discerning OCs from MGs in our sample from Paper 2. Excluding
GCs and 91 clusters more distant than 15 kpc, the total sample of 6974 candidate
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Fig. 4.13.: Distribution in galactocentric coordinates of 3515 OCs in the high quality sample
of OCs from Table 4.1. The Sun is at X = Y = 0 pc. OCs are shaded by their
Jacobi mass.

OCs contains 5619 clusters with P (rJ) > 10, a minimum mass of 50 M�, and at
least ten observed stars, representing 82% of the Paper 2 catalogue. However, most
moving groups in Paper 2 appeared to be near to the Sun; within 250 pc, only 32 of
234 clusters (16%) are compatible with OCs.

Virial ratios derived from cluster velocity dispersions appear much less useful than
Jacobi radii for discerning between OCs and MGs, particularly due to the flaws with
measured cluster velocity dispersions discussed in Sect. 4.4.2. It is difficult to even
choose sensible upper limits on Q, as measurements of the virial ratio are likely to be
mostly dominated by systematic errors. Systematics due to the η = 10 assumption in
Eqn. 1.8 can contribute a systematic up to a factor of around two, and simulations
of cluster expansion after star formation and during the stellar feedback phase show
that star clusters are expected to be supervirial for at least the first 10 to 50 Myr
of their lives, and so some degree of superviriality is to be expected for many star
clusters (Banerjee and Kroupa 2017).
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Assuming that the binary star dispersion corrections from Sect. 4.4.2 are even
approximately correct, a maximum value of QJ,corrected of 5 (ten times the ideal
value) is probably appropriate, and allows for some amount of superviriality. 5051
clusters pass this limit. A further 501 OCs have QJ,corrected between 5 and 50, which
makes them compatible with OCs that are known to be undergoing strong dissolution
– such as Melotte 25 (the Hyades), for which I measure QJ,corrected = 25.7 ± 7.2.
Finally, 66 OCs have QJ,corrected ≥ 50. These objects may be better classified as
MGs due to their extremely high velocity dispersions, which are incompatible with
dynamically relaxed objects given even the highest estimated binary star velocity
dispersion contamination estimates (Rastello et al. 2020). Only 8 of these 71 objects
also have a median CMD class greater than 0.5 and an astrometric S/N of greater
than 5σ, suggesting that many of the objects with such high virial ratios are simply
false positives.

It is also interesting to tally how many of the new objects reported in Paper 2 are
compatible with OCs. 1407 of the 2387 newly reported objects in Paper 2 are
compatible with OCs. Of the 739 high quality new objects from Paper 2, 469 are
also compatible with being OCs.

The overall statistics on total numbers of clusters are shown in Table 4.1. Counts
are shown for both all clusters and clusters that are in the high quality sample from
Paper 2.

The distribution of clusters in Paper 2 had a clear maximum in the region a few
hundred parsecs around the Sun, due to the many unremoved MGs in the catalogue.
Figure 4.13 shows the distribution of high-quality OCs in Cartesian coordinates. The
distribution around the Sun is relatively uniform out to ∼ 1 kpc, suggesting that the
Jacobi radius cut successfully removes most unbound MGs from the catalogue.

4.5.2 Completeness of the Gaia DR3 open cluster census

Although I have not had much time to analyse the results of this chapter further,
one of the most fascinating possible applications of this work would be in deriving
the completeness of the Gaia DR3 OC census. One of the most widely disproven
claims in the Gaia era of OC science is that the OC census is not complete within
1.8 kpc (Cantat-Gaudin 2022), which is at odds with the catalogue of Kharchenko
et al. 2013 who derived a completeness limit of 1.8 kpc for the OC census before
Gaia. Anders et al. 2020 derived an approximate Gaia DR2 OC census completeness
limit, but without access to cluster masses, they commented that their completeness
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Fig. 4.14.: Distance distribution of the clusters in this work divided into multiple mass bins.
Cluster distance probability distributions P (d) are smoothed using kernel density
estimation, and normalised to all have a peak of one.

estimate was missing a key variable – it is not known how much the completeness
of the OC census depends on mass.

Approximating the distribution of OCs in two dimensions and viewing the Milky
Way’s disk top-down in Cartesian coordinates, one can define a two-dimensional
radius away from the Sun R =

√
X2 + Y 2. The number of OCs in a strip of size

R+ ∆R should be proportional to R, such that the number of OCs as a function of
distance will increase linearly. At some point where incompleteness begins to take
effect, this distribution will peak. It should be noted that the distribution of OCs
in the galaxy is known to be non-uniform, with imprints of the Milky Way’s spiral
arms being visible in the distribution of OCs (Castro-Ginard et al. 2021): hence, the
actual observed distribution of OCs is unlikely to follow this simple model exactly.

Figure 4.14 shows the R distribution of the OCs identified in this work in multiple
mass bins and smoothed using kernel density estimation. The distribution of clusters
appears to depend strongly on mass, with clusters at low masses of 50 ≤ MJ <

100 M� having a peak around 1 kpc, with higher mass clusters with 1600 ≤MJ <

3200 M� peaking around 2.6 kpc.

Estimation of the true completeness of the OC census is challenging, as the distri-
bution of OCs depends on some distribution function of OCs in the Milky Way, and
cannot be assumed to be uniform (Anders et al. 2020). Deriving such a model for
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Fig. 4.15.: Mass-distance distribution of clusters shown as a kernel density estimate. At a
given mass, the density estimate is normalised to have a peak of one, such that
every horizontal strip of the diagram is effectively a normalised PDF of cluster
distances at a given mass. The dotted red line shows the best fitting log-linear
completeness model.

OCs is beyond the scope of this work; however, I can produce a rough estimate of
the OC completeness distribution as a function of mass for comparison with other
estimates.

Figure 4.15 shows the mass-R distribution of OCs smoothed with kernel density
estimation. To enhance clarity of the peak of this distribution as a function of mass,
every horizontal strip is normalised to have a peak of one. Up to a cluster mass of
around 1000 M�, this distribution appears to be log-linear; for clusters higher than
this mass, the peak remains at roughly 2600 pc, suggesting that this is the upper
limit of Gaia OC completeness for high mass clusters, potentially due to limitations
of current DR3 data due to astrometric accuracy or extinction.

I fitted a simple log-linear model to the peak of this distribution, finding the radius
at which the DR3 OC census is approximately 100% complete R100%. This takes the
form

R100% = α logMJ + β (4.11)

with the additional constraints that R100% is clipped to be greater than or equal to
zero and may not be larger than some value Rbreak. Fitting to the distribution in
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Fig. 4.16.: Simple log-linear model for the approximate 100% completeness limit (R100%)
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Fig. 4.15, I find α = 667.8± 58.2, β = −1820.3± 1707.8, and Rbreak = 2720.0± 69.4.
This approximate fit is shown in Fig. 4.16.

In Kharchenko et al. 2013, it was claimed that the OC census is complete within
1.8 kpc. However, based on this simple mass-only model for the completeness of
the Gaia DR3 OC census, I find that the OC census is only complete within 1.8 kpc
for clusters heavier than around 230 M�, being incomplete at distances larger than
around 1 kpc for clusters at a mass of 100 M�.

4.6 Conclusion

In this chapter of preliminary results, I aimed to investigate methods to distinguish
between bound OCs and unbound MGs. To do so, I derived masses, Jacobi radii,
and proper motion dispersions for 6974 clusters from Paper 2, and used these to
compute the probabilities that clusters have valid Jacobi radii and have virial ratios
compatible with bound objects. I show that it is possible to accurately distinguish
between bound OCs and unbound MGs using Gaia data.

My mass measurements form the largest catalogue of OC masses to date, being
over 70 times larger than the largest catalogue of OC masses made using Gaia
data. For each cluster, I computed the selection function of its CMD as a function
of G magnitude, estimating three separate quantities that contribute towards CMD
incompleteness to derive accurate cluster masses. My OC masses are generally
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higher than results derived in the literature, which is likely due to the addition of
these incompleteness estimates.

Using my mass measurement pipeline, I derived Jacobi radii for the sample of
clusters. I found that only 82% of the clusters from Paper 2 are compatible with
bound objects that have a valid Jacobi radius, dropping to just 16% of the clusters
in Paper 2 within 250 pc.

In addition, I investigated the virial ratios of the clusters in the catalogue, using
the proper motions of member stars to derive cluster proper motion dispersions
with a maximum likelihood method. However, I found that Gaia proper motions
are generally an ineffective tool in distinguishing between bound and unbound
objects, as the velocity dispersion of most OCs appears to be compatible with being
dominated by dispersion contributions from resolved and unresolved binary stars.

Combining these results, I find that there are 5619 OCs in the catalogue with 3515
being of high quality. Likewise, there are 1355 MGs in the catalogue, 559 of which
are of a high quality. I find that cluster Jacobi radii are a particularly effective tool to
distinguish between bound OCs and unbound MGs. These results represent a leap
forwards in the ability to distinguish between bound and unbound star clusters in
the Milky Way: by applying relatively simple physical laws governing the dynamics
of star clusters, I am able to show with significantly higher accuracy which objects
are and are not bound compared to previous empirical methods.

Finally, I use these results to derive tentative approximate estimates of the complete-
ness of the OC census in Gaia DR3. I find that the completeness of the census is well
described by a logarithmic function until a distance around 2700 pc, at which the
100% completeness limit does not increase higher with increasing OC mass. Within
1.8 kpc, the OC census only appears approximately complete for OCs heavier than
around 230 M�.
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Conclusion 5
„No observational problem will not be solved by

more data.

— Vera Rubin

Finally, in this chapter, I conclude my thesis with a review of various aspects of my
work. Firstly, I briefly summarise the key results of this thesis. Secondly, I provide
some commentary on how my thesis contributes to solving the five broad problems
with the current census of OCs that I identified in Sect. 1.5.1, as well as identifying
some areas in which these problems could be addressed further with future work.

5.1 Summary of the results of this work

In this thesis, I worked to improve the methods for detecting, cataloguing, and
analysing OCs using the astrometric and photometric data of Gaia. Beyond simply
showing that these methodologies are effective, I used these methods to create the
largest homogeneous catalogue of OCs to date. With a focus on rigorous, statistical
approaches, I quantified the reliability of all objects in the catalogue and derived
parameters for them, in addition to reporting over two thousand new star clusters
and showing that over a thousand OCs reported before Gaia are unlikely to be
real. Finally, I derived the largest ever sample of cluster masses and Jacobi radii,
using them to distinguish between bound OCs and unbound MGs and derive an
approximate completeness estimate for the Gaia DR3 OC census.

After reviewing the current status of the literature surrounding OCs in the introduc-
tion to this thesis, in the first scientific chapter (Sect. 2), I reviewed and trialled a
number of different methods to recover OCs from Gaia data. Since the release of
Gaia DR1, automated clustering algorithms have been used to tremendous success to
detect new OCs in Gaia data or to derive membership lists for existing clusters (e.g.
Cantat-Gaudin and Anders 2020; Cantat-Gaudin et al. 2019, 2018b; Castro-Ginard
et al. 2019, 2018, 2022, 2020; Hao et al. 2020; He et al. 2021; He et al. 2022a;
Jaehnig et al. 2021; Liu and Pang 2019). However, despite the widespread use of
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numerous algorithms in dozens of different works, the different methodologies used
in the literature had never been compared side by side for application on OCs.

In Sect. 2, I compared three different algorithms for OC recovery – DBSCAN, HDB-
SCAN, and Gaussian mixture models. Using the results of a practical test of the
three algorithms applied to Gaia DR2 data, I found that no algorithm was without
flaws. However, HDBSCAN was clearly the most sensitive for OC recovery – despite
not having been used by any authors at the time for detecting OCs, with almost all
works preferring to use DBSCAN or Gaussian mixture models. To mitigate issues
with HDBSCAN reporting a high number of false positive clusters, I developed a
computationally efficient statistical density test to postprocess standard OC cluster-
ing results and derive an astrometric S/N for candidate clusters, which acts as a
description of the quality of detected objects. Finally, I was able to detect 41 new
OCs within the data in this work.

Having shown that HDBSCAN is the most sensitive method for OC recovery, in
Sect. 3, I used Gaia DR3 data to conduct the largest all-sky blind search for OCs
to date, searching for OCs amongst a total of 729 million stars. By conducting a
single search with HDBSCAN, I was able to recover a large fraction of all reported
OCs, including virtually all reliable objects from the previous largest catalogue of
OCs of Cantat-Gaudin and Anders 2020. To further classify objects by reliability, I
used an approximately Bayesian neural network to classify clusters based on the
compatibility of their CMD with a single population of stars. Simple modifications
to this network architecture also allowed for the inference of ages, extinctions, and
photometric distances to the clusters within the catalogue.

In total, the catalogue contains 7167 clusters, 2387 of which are candidate new
objects. 4105 of these objects are of high quality, with 739 high-quality objects being
new. This represents the largest homogeneous catalogue of OCs and OC candidates
in the Gaia era. The catalogue was the first time that many recently reported OCs
had been recovered by an independent work, allowing for the confirmation of over
2000 objects as being likely to be real. In addition, owing to the scope of the search, I
was able to show that 1152 clusters from the pre-Gaia catalogue of Kharchenko et al.
2013 that are as yet undetected in Gaia data are unlikely to be real, representing the
largest analysis to date of which clusters detected before Gaia are or are not real.

I showed that many of the clusters in the catalogue appear more compatible with un-
bound MGs, and that basic empirical cuts on mean cluster parameters are insufficient
to remove MGs from the catalogue. Motivated by a need to differentiate between
bound and unbound clusters more accurately, in Sect. 4, I present preliminary results
into a study to measure the masses, velocity dispersions, and Jacobi radii of the
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largest ever sample of clusters, with the aim to use these parameters to discern
between OCs and MGs.

I derived these parameters for 6974 clusters, representing a catalogue of accurate
cluster masses more than 70 times larger than the largest other catalogue of cluster
masses using Gaia data. I showed that 82% of the clusters from Sect. 3 are compatible
with bound objects, dropping to just 16% of those within 250 pc where the Sect. 3
catalogue appeared to be dominated by moving groups. I showed that cluster masses
and Jacobi radii are an effective way to differentiate between MGs and OCs, refining
the observational definition of OCs into a more theoretically grounded definition.

On the other hand, I found that velocity dispersions measured using proper motions
are an unreliable way to probe the boundness of an OC or OC candidate. I conducted
simulations that show that unresolved and resolved binary stars may dominate the
velocity dispersion of most clusters, and especially those of lower masses. This
is at odds with many recent results that have suggested that OCs are supervirial
(e.g. Bravi et al. 2018; Kuhn et al. 2019; Pang et al. 2021), which typically do not
correct for or address the possibility of binary star contamination of proper motion
measurements.

In total, I was able to show that there are 5619 probable OCs in my catalogue, 3515
of which are of high quality. Using these samples of clusters, I derive the largest
ever mass-dependent completeness estimate for the OC census. I found that the
completeness is well-described by a log-linear relation in mass until around 103 M�,
after which the 100% completeness limit for all higher masses of cluster in Gaia DR3
is around 2700 pc.

5.2 Outlook on the future of OC science

At the beginning of this thesis, I painted a bright view of the scientific potential of
OCs in the Milky Way. For over a century, these objects have played a key role in
furthering our understanding of stellar and galactic evolution. Thanks to Gaia, Milky
Way astronomy is currently undergoing a renaissance: but the methodologies and
catalogues used to analyse OCs must keep pace with the incredible data that Gaia is
providing. With this thesis, I have attempted to tackle the issues with the OC census
I outlined in Sect. 1.5.1; to conclude this thesis, I think it is interesting to discuss
how I have tried to contribute to solving these problems, and how these problems
could be further addressed in the future.
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Problem 1. The methods used to detect open clusters (and their biases)

The overview of algorithms presented in Sect. 2 provided a number of useful things
to the OC community. By showing that HDBSCAN is the most sensitive algorithm,
despite having been used minimally in the literature, this work showed that current
approaches were inadequate to effectively detect OCs. The catalogue of OCs in
Sect. 3 confirmed this finding and showed that HDBSCAN can be used to conduct
large blind searches and create a single, homogeneous catalogue. While I think that
this thesis demonstrates that HDBSCAN is the best currently available methodology
for OC retrieval, there are still many things that it leaves to be desired.

During the preparation of the catalogue in Sect. 3, I encountered many difficulties
due to computational limitations. Chief amongst those was that the main loop of
HDBSCAN is single threaded, greatly limiting how large of a dataset the algorithm
can be run on, and meaning that the Gaia dataset had to be tiled into over 12 000
separate regions that required a painstaking merging process to recombine. A faster,
parallelised version of HDBSCAN is currently under development, and could offer a
significantly more straightforward way to construct a blind search catalogue1.

In addition, I think it is quite unsatisfactory that use of HDBSCAN requires postpro-
cessing initial results with a density test to remove false positives. Algorithms that
report mostly incorrect results without further processing open the door to other
issues. The papers of Kounkel and Covey 2019 and Kounkel et al. 2020 are one such
example of an incorrect result derived using clustering algorithms being published.
In those works, the authors used HDBSCAN to report thousands of ‘groups’ and
‘strings’ within 3 kpc. The immense size and scale of these objects was a result
with a certain ‘wow factor,’ which led to the papers being highlighted in multiple
press releases2. Yet despite also using HDBSCAN, I was only able to recover 18% of
the objects they reported in Sect. 3 (most of which are groups that are OCs), and
analysis by Zucker et al. 2022 showed that their strings and groups are incompatible
with physically associated objects. If HDBSCAN did not require so much extra
vigilance from its users, then this set of now-contested results would have never
been published.

Finally, although advantageous for reasons of speed, some detail is lost by the fact
that HDBSCAN does not incorporate error information during its clustering analysis.
Particularly for distant objects, it is likely that some member stars are missed relative
to methods such as UPMASK (see Sect. 3.7). There is currently no method that can

1https://github.com/TutteInstitute/fast_hdbscan
2https://www.esa.int/Science_Exploration/Space_Science/Gaia/Gaia_untangles_the_

starry_strings_of_the_Milky_Way
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include error information while also being feasible to run on a large input list of
sources (UPMASK has an extremely slow runtime compared to HDBSCAN). The
golden bullet would be a clustering algorithm that can include error information
while also having the O(n logn) runtime complexity that makes methods such as
HDBSCAN feasible to run on such large datasets.

Given the pace of modern machine learning literature, I would not be surprised if an
even better clustering algorithm for OC recovery emerges by the end of the decade.
Astronomers should continue to keep a close eye on the machine learning literature,
and should also consider direct collaborations with computer scientists to attempt to
improve existing approaches.

Problem 2. The status of clusters discovered before Gaia

In comparison, Problem 2 is more of a closed case. In Sect. 3, I showed that at least
1000 objects from Kharchenko et al. 2013 should be detectable in Gaia data, but
do not appear to be real objects. Works that still use pre-Gaia catalogues of OCs
(such as the catalogue of OC masses in Just et al. 2023) are likely to reach flawed
conclusions, given that there are many objects in works such as Kharchenko et al.
2013 within a few kpc and with low reported extinctions that should be detectable
in Gaia data but do not seem to exist.

However, there are some IR clusters from works such as Kharchenko et al. 2013 that
Gaia will potentially never be able to detect. Particularly when peering deep into the
galactic disk, extinction quickly terminates the ability to perform analysis of clusters
within heavily reddened regions. There are some fascinating clusters within nebulae
like the Carina nebula that Gaia is inherently limited in studying. For instance,
Trumpler 14 is an extremely young cluster with an age of just ∼ 0.4 Myr, for which
ground based photometric studies have identified as many as 2000 member stars
(Sana et al. 2010); using Gaia data, I identify just 96 member stars in Sect 3.

The proposed GaiaNIR mission (Hobbs et al. 2016) could contribute massively to
analysis of star clusters within reddened regions of the Milky Way. GaiaNIR would
make it possible to peer deeper into the galactic disk than ever before, in addition to
allowing for new analysis of some IR clusters that Gaia has likely missed. This would
be particularly helpful for astrometric studies of heavily reddened or obscured star
formation regions such as the Carina nebula.
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Problem 3. The status of clusters discovered with Gaia

In Sect. 3, I was able to confirm that over 2000 clusters discovered using Gaia appear
to be real objects that can be re-detected independently. Thanks to Gaia data, the OC
census is thousands of objects larger than it was before in works such as Kharchenko
et al. 2013, and these results have now been demonstrated to remain consistent
and reliable across multiple Gaia data releases and with at least one independent
confirmation.

However, there are many objects I was not able to find in Sect. 3. For instance,
despite the generally high reliability of UBC clusters reported using Gaia data in
works since Castro-Ginard et al. 2018, I was only able to recover 89.2% of clusters
reported using Gaia DR2 in Castro-Ginard et al. 2020 and 88.9% of clusters reported
using Gaia DR3 in Castro-Ginard et al. 2022. What is the status of the remaining
missing objects?

For clusters reported in DR2 that cannot be recovered in DR3, it is likely that these
objects are not real clusters. The jump from DR2 to DR3 resulted in clusters having
astrometric S/N around 10σ higher. If these objects are real, they should stand out
clearly in DR3. On the other hand, for the many clusters reported using DR3 that
are not possible to recover (e.g. 55.5% of He et al. 2022b), one could argue that
HDBSCAN may have some insensitivity to some of those clusters – particularly those
at large distances. However, many of the unreported clusters from works such as He
et al. 2022b are nearby and should be well within the range in which HDBSCAN is
the most sensitive algorithm (Sect. 2), suggesting that many of the objects we do
not detect in the catalogue in Sect. 3 are unlikely to be real.

Future data releases will always be a good tool to determine more precisely which
objects are or are not real. However, with so many objects still missing from the
catalogue in Sect. 3, it would be interesting to conduct a follow-up study of the
missing objects, focusing on studying a small sample of missing clusters in greater
depth. It may be that some objects (such as missing UBC clusters) can be recovered
using another methodology, or it may be that many simply do not exist. The study
of Piatti et al. 2023 is one such example of an insightful detailed study of a smaller
sample of objects.

Problem 4. The completeness of the open cluster census

The completeness of the OC census has been improved substantially by Gaia data, of
which this thesis has made multiple contributions. Firstly, by reporting thousands
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of new objects, I have helped to expand the census of OCs. This includes some
objects that I am surprised were missed until now, such as HSC 2384 – which is a
cluster of around 200 M� that is only around 550 pc away, having been obscured
previously by IC 2602. In particular, given that almost all works to detect new OCs
have used DBSCAN until now, which is less sensitive to nearby objects (Sect. 2),
my new clusters help to plug a gap in clusters that may have been missed by other
methodologies.

Secondly, by deriving the largest homogeneous catalogue of OCs to date in Sect. 3,
in addition to complementing this with parameters such as cluster age and mass,
I hope I have made a catalogue that will remain useful to many in the literature
for many years to come – particularly due to the scope of the search and the sheer
number of clusters catalogued accurately within one work. It has previously been
claimed that it is not possible to construct such a catalogue with only one algorithm
(Cantat-Gaudin and Anders 2020). By showing that this claim is incorrect, my
catalogue presents a new way to construct a census of OCs given any dataset. I hope
that this will pave the way for future studies using Gaia DR4 and DR5 (as well as
whatever is a successor to Gaia!). Single homogeneous catalogues including both
existing and new objects can be constructed with one sensitive algorithm.

The clear advantage of a single homogeneous catalogue is that the completeness
of the catalogue is significantly easier to derive. In Sect. 4.5, I show briefly that
the cluster masses I have derived are a good tracer of the completeness of our OC
catalogue. An excellent follow-up to this work would be to derive a completeness
estimate depending on more variables, such as cluster mass, age, distance, extinction,
and position. However, such work would be non-trivial due to the often correlated
nature of OC locations within the galactic disk (Anders et al. 2020). However, such
work would be highly interesting, as a robust completeness estimate would allow
for a precise determination of the Milky Way’s cluster age function and cluster mass
function.

Finally, I expect that future Gaia data releases and potential future instruments will
continue to make major contributions to the OC census. There may be as many
as 105 OCs in the entire Milky Way (Dias et al. 2002), of which around 5000 are
currently known. The potential to find new OCs at ever-greater distances will be
effectively limitless for at least the coming century. In turn, new OC discoveries will
allow for OCs to continue to be used to trace interesting properties of the structure
of the Milky Way out to ever-increasing distances.
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Problem 5. The observational definition of open clusters

The last problem I attempted to solve in this thesis was that of how best to define
OCs, which I worked on throughout the duration of my PhD. Compared to when I
began my PhD, I think that it is now significantly easier to define OCs observationally.
I used the statistical density test from Sect. 2 to quantify how dense a cluster is, the
CMD classifier from Sect. 3 to quantify how compatible a cluster is with a single
population of stars, and the Jacobi radii of clusters from Sect. 4 to measure the
boundness of star clusters. In addition, all of these criteria are probabilistic, meaning
that edge-case clusters can be adequately handled and are not simply rejected.

In particular, I was thoroughly impressed by how effective the Jacobi radius method
was, given that it was derived from a study of just ten clusters near to the Sun
(Meingast et al. 2021). I think that there is an untapped goldmine of potential
in measuring star cluster masses with Gaia data. This is particularly because of
recent strides in determining Gaia’s selection function (Cantat-Gaudin et al. 2023;
Castro-Ginard et al. 2023), which allows for cluster masses to be measured to a
higher level of accuracy. It goes without saying that the work from Sect. 4 should be
published as soon as possible, particularly given the role it will play in dramatically
improving the usability of the results in the main catalogue of clusters. In addition,
it may also be worth publishing an open source library that is able to calculate
properties of clusters such as their masses and Jacobi radii, which would make it
easier for other works to use the methodology I have created.

With the results of this thesis in mind, I feel that Problem 5 can be answered well by
the following four definitions:

• At least ten member stars (distinguishing it from a multiple star system.)

• A statistically significant overdensity within a dataset such as Gaia.

• A colour-magnitude diagram compatible with a single population of stars.

• A valid Jacobi radius (implying that the cluster is bound.)

At this time, I would not recommend including velocity dispersions within these
criteria. Given that many OCs appear to have tidal tails (Tarricq et al. 2022), this
implies that OCs are dynamically warm enough that they are at least slightly super-
virial. It is difficult to define a reasonable cut on the virial ratio equation (Eqn. 1.8),
and it can be extremely challenging to adequately clean a cluster membership list of
stars that are no longer bound to the cluster.
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This cut would be even more challenging to set since some clusters are currently
undergoing strong disruption, such as the Hyades or Platais 9. The clusters are
probably quite strongly supervirial, with many stars within each cluster being
unbound. But I do not feel it would make sense to say that the Hyades is no longer
an OC simply because it only has a few tens of Myr of life remaining (Oh and Evans
2020); rather, it is a disrupting OC. This mirrors some other principles of definitions
in astronomy: for instance, even though red giant stars are quite different to stars
on the main sequence, they are still stars.

Velocity dispersions are probably most useful as probes of the dynamical state of OCs
in different stages of their lives, but do not appear particularly practical or useful
for distinguishing between OCs and MGs. In fact, the investigations into binary
star contamination in Sect. 4 suggest that velocity dispersions of OCs in Gaia DR3
are of limited use, since it is easy to create scenarios where a cluster has just a few
hundred m s-1 of binary star dispersion contamination, which results in an incorrect
measurement of the cluster’s dispersion or virial ratio by at least a factor of two.

Improved astrometry in Gaia DR4 could be extremely helpful in reducing binary star
contamination. The main catalogue of Gaia DR4 is expected to contain numerous
astrometric binary candidates, which could simply be removed from measurements
of cluster dynamics. It may also be possible to use time series astrometry that should
be released with Gaia DR4 directly. Having assigned stars as members of a real
physical cluster, strict priors could be placed on the star’s parallax and proper motion.
These priors could help to further refine an astrometric fit, increasing the ease with
which astrometric binaries can be identified within clusters.

5.3 Final remarks

As I reach the last sentences of this thesis, I want to emphasise just how important it is
that work to improve the census of OCs does not end here. New data, methodologies,
theories, and computational resources will inevitably become available.

With Gaia DR4 slated for release in around 2.5 years at the time of writing (no
sooner than the end of 2025, Gaia Collaboration et al. 2022), and Gaia DR5 coming
around the end of the decade, there are multiple even larger data releases on the
horizon. DR4 will provide proper motions with doubled accuracy, significantly more
identified astrometric binary stars, and most likely improved processing that reduces
the number of bad sources.
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Since the times of the 1700s when reflecting telescopes gained widespread use, the
effort to improve catalogues of objects in the night sky has been never-ending. I
expect that this long-held tradition will continue with future Gaia data releases, as
well as potential Gaia follow-ups such as GaiaNIR. After all, in just five years since
the release of Gaia DR2, the OC census has been changed beyond recognition by the
incredible data available to the current generation of Milky Way astronomers. I am
excited to see where the open clusters take us next.
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A.1 ADQL query used to download data

Gaia DR2 data for this work was downloaded with the following ADQL query.
{start_number} should be replaced with the first possible source_id of the desired
pixel using Eqn. 2.1. {end_number} should be replaced with the first possible
source_id of the next integer pixel.

SELECT
-- Gaia astrometry
g.source_id, g.l, g.b,
g.ra, g.ra_error, g.dec, g.dec_error,
g.parallax, g.parallax_error,
g.parallax_over_error,
g.pmra, g.pmra_error, g.pmdec, g.pmdec_error,
g.astrometric_params_solved,

-- Gaia photometry
g.phot_g_mean_mag, g.phot_g_mean_flux,
g.phot_g_mean_flux_error,
g.phot_bp_mean_mag, g.phot_bp_mean_flux,
g.phot_bp_mean_flux_error,
g.phot_rp_mean_mag, g.phot_rp_mean_flux,
g.phot_rp_mean_flux_error,
g.phot_bp_rp_excess_factor,

-- Calculate HEALPix level 5 index
GAIA_HEALPIX_INDEX(5, g.source_id)

AS gaia_healpix_5,

-- RUWE statistics
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r.ruwe,

-- CBJ+2018 distances
d.r_est, d.r_lo, d.r_hi,
d.r_len, d.result_flag

-- Inner join the tables
FROM gaiadr2.gaia_source AS g
INNER JOIN

gaiadr2.ruwe
AS r
ON g.source_id = r.source_id

INNER JOIN
external.gaiadr2_geometric_distance
AS d
ON g.source_id = d.source_id

-- Select only valid points
WHERE g.source_id >= {start_number}
AND g.source_id < {end_number}
AND g.astrometric_params_solved=31
AND g.phot_bp_mean_mag IS NOT NULL
AND g.phot_rp_mean_mag IS NOT NULL

A.2 Comparison with other OC catalogues

We present brief comparisons with the results of other OC catalogues, in lieu of
best practices proposed in Cantat-Gaudin and Anders 2020 and as a part of efforts
towards generally improving the quality of the OC census, reporting on both positive
and negative detections. In future works, we hope to expand comparisons such
as this across the entire OC census, offering another viewpoint on the existence of
many literature OCs.

A.2.1 Cantat-Gaudin and Anders 2020

Of the 537 objects listed in Cantat-Gaudin and Anders 2020 and in the fields in
this study, we are able to detect 86.4% of them with at least one algorithm or
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parameter combination, many of which are clear overdensities with well-resolved
parameters.

We single out Auner 1, Berkeley 91 and Patchick 75 from Sect. 2.4.4 as objects that
should be detectable but are not found by any algorithm. In addition, FSR 1460
and FSR 1509 are also undetected. If real, these objects are distant and difficult
to detect in Gaia data, although these objects also have heavily polluted CMDs in
the membership lists of Cantat-Gaudin and Anders 2020 and hence may simply be
associations. Future Gaia data releases with better astrometric precision will shed
more light on the status of these edge-case objects.

A.2.2 MWSC

We concur with the results of Cantat-Gaudin et al. 2018a and Cantat-Gaudin and
Anders 2020 that a majority of the objects in MWSC are undetectable in Gaia data.
Some of these objects may simply not be visible in Gaia data due to reddening or
large distances, although many are also likely to not be real. Future studies will
have to quantify this for all OCs on a case-by-case basis. Of our 100 main OCs that
were randomly selected from the MWSC catalogue, we detected OCs corresponding
to 35 of them, suggesting that ≈35% of the total MWSC catalogue is visible in Gaia
data.

However, our results show that a number of MWSC objects appear to have been
missed by works such as Cantat-Gaudin and Anders 2020. In our larger crossmatch-
ing effort, we recovered candidates corresponding to 193 of the 607 objects listed in
MWSC (31.8%) but that are undetected in Cantat-Gaudin and Anders 2020. Some
of these objects may be new OCs that happen to have similar parameters to old
objects, although some others are new detections of MWSC OCs in Gaia data.

The best examples of re-detected OCs were Collinder 347, FSR 0124, FSR 0270
and FSR 1406, which were were clearly crossmatched and are clearly visible by
eye in Gaia data. In addition, Collinder 347 has also been well detected by Piatti
and Bonatto 2019 in Gaia DR2 data and recently by Clariá et al. 2019 in visual
spectrum photometric data. The sparse OCs Sgr OB6, Sgr OB7 and ASCC 100 were
also detected, the latter of which has few members but is nearby with a parallax of
2.75 mas, suggesting that some OCs are yet to be recovered in Gaia data even at
small distances. In all seven cases, the crossmatched objects were clearly compatible
in positional and distance space with MWSC values. They are also compatible in
proper motion space, although at large distances the PPMXL proper motions in
MWSC provide very little constraint.
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While the catalogue of Cantat-Gaudin and Anders 2020 is the most complete and ho-
mogeneous OC catalogue to date, it still appears to lack some OCs from the literature
and contains a handful of OCs that are somewhat putative. Ongoing comparisons
with the results of multiple different clustering algorithms and methodologies will
help to confirm, question or deny the existence of more OCs in the literature.

A.2.3 Castro-Ginard et al. 2020 and Liu and Pang 2019

Castro-Ginard et al. 2020 and Liu and Pang 2019 have recently reported a combined
total of over 600 new OCs in Gaia DR2 data respectively. Of the 209 objects from
Castro-Ginard et al. 2020 in the fields in this study, we detected OCs compatible
with 135 of them (64.6%), representing a sizable fraction of their catalogue of new
OCs that has been detected independently in Gaia data for the first time. We note
that the undetected OC UBC 638 is very close to UBC 637 (which is detected) - their
reported centres are within 0.05◦ of one another, their proper motions 0.07 mas
yr−1 and parallaxes to within 0.1 mas, so they may be the same object.

We are able to detect OCs compatible with 24 of the 32 OCs from the catalogue of
Liu and Pang 2019 that are included in this study. The reasons for non-detections of
OCs from both of these works remain unclear, and would need to be investigated in
a future study.

A.3 Tables of detected clusters and members

Four supplementary tables are available in online-only material at the CDS1. For
literature clusters, all detections by all algorithms are listed following the same
format as Table A.1.1. Any one cluster may have up to 12 different entries from
detections by different algorithm and parameter combinations. When no detections
were made of a literature cluster, a single blank row is given with only columns
one and 26 filled. The 41 new objects have their mean parameters listed in a
separate table following the format of Table A.1.1 except with column 26 omitted.
For both literature and new OCs, members are listed in tables following the format
of Table A.2.2.

1https://vizier.u-strasbg.fr/
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Tab. A.1.: Description of the tables of detected OCs.

Col. Label Unit Description
1 Name – Designation
2 Internal ID – Internal designation
3 Algorithm – Algorithm for detection
4 Parameters – Algorithm parameters

5-7a α deg Right ascension
8-10a δ deg Declination

11 l deg Galactic longitude
12 b deg Galactic latitude

13-15a µα∗ mas yr−1 Prop. motion in α · cos δ
16-18a µδ mas yr−1 Prop. motion in δ
19-21a $ mas Parallax

22 r50 deg Radius containing
50% of members

23 rt deg Estimated tidal radiusb

24 n – Number of members
25 σCST – CST score
26 Source – Source catalogue

Notes. (a) Where marked, three columns are provided: the mean value, standard
deviation σ, and standard error σ /

√
n. (b) Estimated using the maximum distance

between the centre of the cluster and an identified member star.

A.4 Plots of newly detected OCs

See Figs. A.1, A.2, A.3, A.4, A.5, A.6, and A.7.

A.5 List of fields used in this study

See Table A.3.
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Tab. A.2.: Description of the membership tables for detected OCs.

Col. Label Unit Description
1 Name – Designation
2 Internal ID – Internal designation
3 Algorithm – Algorithm for detection
4 Parameters – Algorithm parameters
5 Source ID – Gaia DR2 source ID

6-7a α deg Right ascension
8-9a δ deg Declination
10 l deg Galactic longitude
11 b deg Galactic latitude

12-13a µα∗ mas yr−1 Prop. motion in α · cos δ
14-15a µδ mas yr−1 Prop. motion in δ
16-17a $ mas Parallax

18 Gmag mag G-band magnitude
19 BPmag mag BP-band magnitude
20 RPmag mag RP-band magnitude

21-22a G flux e−1 s−1 G-band flux
23-24a BP flux e−1 s−1 BP-band flux
25-26a RP flux e−1 s−1 RP-band flux

27b p – Membership probability

Notes. (a) Where marked, two columns are provided: the mean value and the stan-
dard error. (b) Always equal to one for DBSCAN as it does not produce membership
probabilities for individual stars.
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Tab. A.3.: Sky locations and HEALPix indices of the central pixels included in this study.

Number α (◦) δ (◦) Pixela Number α (◦) δ (◦) Pixela

0 313.6 -12.0 12238 50 318.1 46.6 3844
1 104.1 18.2 5976 51 91.4 30.0 6106
2 128.0 -41.8 9817 52 136.9 -54.3 9434
3 343.9 69.4 3953 53 357.6 61.9 3575
4 90.0 6.0 5900 54 48.1 46.6 772
5 281.2 -3.6 7564 55 76.5 45.0 365
6 99.8 9.6 5909 56 120.9 -31.4 9940
7 92.8 -6.0 5364 57 278.4 -23.3 7243
8 98.4 6.0 5563 58 293.9 22.0 3585
9 281.2 -25.9 7235 59 143.7 -51.3 9437
10 113.9 -30.0 9946 60 34.4 64.9 915
11 61.9 40.2 403 61 246.1 -27.3 10738
12 225.0 -64.9 10432 62 274.2 -17.0 7278
13 106.9 -8.4 5420 63 169.3 -58.9 9484
14 281.2 -8.4 7552 64 84.4 31.4 6124
15 73.1 31.4 284 65 168.2 -61.9 9480
16 286.9 13.2 7663 66 325.8 52.8 3860
17 80.2 41.8 346 67 246.1 -32.8 10702
18 78.8 48.1 378 68 321.1 57.4 3870
19 268.6 -30.0 7205 69 302.3 35.7 3657
20 303.8 34.2 3651 70 116.7 -17.0 10158
21 152.1 -58.9 9340 71 88.6 27.3 6094
22 120.9 -10.8 5396 72 272.8 -31.4 7192
23 316.6 48.1 3846 73 85.8 30.0 6118
24 295.3 23.3 3588 74 203.6 -58.9 10427
25 319.2 35.7 3317 75 48.6 52.8 792
26 357.0 67.9 3927 76 315.0 46.6 3843
27 112.5 -20.7 9983 77 274.2 30.0 8153
28 143.4 -31.4 10004 78 112.5 -18.2 5376
29 272.8 -18.2 7275 79 299.5 30.0 3606
30 299.5 35.7 3658 80 289.7 10.8 7655
31 136.6 -48.1 9462 81 307.8 52.8 3875
32 157.5 -57.4 9506 82 98.4 23.3 6008
33 257.3 -38.7 10610 83 111.1 -14.5 5385
34 36.6 66.4 918 84 285.5 32.8 3630
35 261.6 -37.2 10612 85 255.9 -37.2 10616
36 204.8 -60.4 10425 86 272.8 -8.4 7387
37 245.0 -49.7 10543 87 300.9 34.2 3656
38 258.8 -37.2 10611 88 272.8 -20.7 7272
39 310.8 12.0 3117 89 23.8 64.9 911
40 277.0 -14.5 7290 90 102.7 0.0 5530
41 122.3 -22.0 10126 91 317.8 40.2 3496
42 278.4 23.3 8056 92 109.7 -31.4 9956
43 105.5 -19.5 5209 93 165.0 -58.9 9483
44 146.7 -55.9 9428 94 95.6 -10.8 5331
45 91.4 19.5 5994 95 71.7 41.8 361
46 61.7 49.7 439 96 253.1 -34.2 10704
47 319.2 38.7 3490 97 282.7 0.0 7578
48 193.1 -43.4 10904 98 95.6 -23.3 5216
49 97.0 7.2 5905 99 119.5 -24.6 10122

Notes. (a) Index of the level 5 HEALPix pixel of the field. To reproduce each full
field, the eight nearest neighbour HEALPix level 5 pixels must also be selected.
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Fig. A.1.: Astrometric and photometric plots of the first five new OCs from Sect. 2.6.
Identified member stars are shown in orange, with background stars in black.
Only members with a membership probability of greater than 50% are plotted.
The estimated tidal radius for the OCs is depicted with a circle in the l vs. b plots
in the first column. CST scores for each object are shown with its name on the
left. Nearby OCs from literature catalogues are marked when visible. T (in red
text) denotes sources from Cantat-Gaudin and Anders 2020, while M (blue) and
S (purple) denote sources from MWSC and Sim et al. 2019 respectively that were
not detected by Cantat-Gaudin and Anders 2020. A (brown) denotes new OCs
detected recently by Castro-Ginard et al. 2020.
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Fig. A.2.: Plots of the new OCs PHOC 6 to 11, plotted in the same style as Fig. A.1.
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Fig. A.3.: Plots of the new OCs PHOC 12 to 17, plotted in the same style as Fig. A.1.
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Fig. A.4.: Plots of the new OCs PHOC 18 to 23, plotted in the same style as Fig. A.1.
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Fig. A.5.: Plots of the new OCs PHOC 24 to 29, plotted in the same style as Fig. A.1.
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Fig. A.6.: Plots of the new OCs PHOC 30 to 35, plotted in the same style as Fig. A.1.
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Fig. A.7.: Plots of the new OCs PHOC 36 to 41, plotted in the same style as Fig. A.1.
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Supporting material for
Chapter 3

B

B.1 Description of contents of online tables

We provide tables of clusters, rejected clusters, member stars, and members stars for
rejected clusters at the CDS. Tables of clusters follow the table format in Table B.1.
Tables of members follow the same columns and column naming scheme as in Gaia
DR3 (Gaia Collaboration et al. 2022), except while also having columns referenc-
ing the cluster name and cluster ID we assign them to, the cluster membership
probability, and a flag for if the star is a member within our estimated tidal radius
rt.

B.1.1 Table of crossmatch results

Here we provide a table of all crossmatches to all literature clusters that meet
our adopted crossmatch criteria from Sect. 3.6 in Table B.2. For every cluster in
the literature that we detect in this work, the table lists the internal cluster ID
corresponding to our table of clusters in Table 3.4 that corresponds to this object.
For clusters that we do not redetect, only a blank row with the cluster name, source
paper, and type of crossmatch is shown.

B.2 Bayesian neural networks

Given that Bayesian neural networks (BNNs) are only just beginning to see use in
the astronomical literature (e.g. Huertas-Company et al. 2019), here we provide a
brief background overview of the advantages and caveats of the approximate BNN
methodology we adopted in Sect. 3.4 and Sect. 3.5.

BNNs are a somewhat elusive area of open research in machine learning. Their
appeal is clear: unlike a deterministic approach or an approach based on simply

231



Tab. B.1.: Description of the columns in the tables of detected clusters.

Col. Label Unit Description
1 Name – Designation
2 Internal ID – Internal designation
3 All names – All literature names
4 Kind – Estimated object typec

5 nstars – Num. of member stars
6 S/N – Astrometric S/N
7 nstars|rt – nstars within rt
8 S/N|rt – S/N within rt

9-10 α, δ deg ICRS position
11-12 l, b deg Galactic position
13-16 r50, c, t, tot deg Angular radii
17-20 R50, c, t, tot pc Physical radii

21-26a µα∗ , µδ mas yr−1 ICRS proper motions
27-29a $ mas Parallax
30-32b d pc Distance

33 nd pc nstars for distance calc.
34 $0 type – Parallax offset typed

35-37 X, Y , Z pc Galactocentric coords.
38-40a RV km s−1 Radial velocitye

41 nRV – nstars with RVs
42-46b CMD class – CMD class quantilesf

47 Human class – (where available)f

48-50b log t log [yr] Cluster age
51-53b AV mag V-band extinction
54-56b ∆AV mag Differential AV
57-59b m−M mag Photometric dist. mod.

60 mclSize – HDBSCAN parameter
61 merged – Flag if mergedg

62 is_gmm – Flag if GMM usedh

63 ncrossmatches – Num. crossmatches
64 Xmatch type – Type of crossmatchi

Notes. The full version is available at the CDS. (a) Mean value, standard deviation
σ, and standard error σ /

√
n are given. (b) Median value and various confidence

intervals are given. (c) g for objects in the Vasiliev and Baumgardt 2021 GC catalogue,
otherwise o (OC) or m (moving group) for clusters according to the empirical cuts in
Cantat-Gaudin and Anders 2020. (d) Flag indicating six clusters for which parallax
bias correction using the method of Lindegren et al. 2021b was not possible, and a
global offset was used instead (see Sect. 3.3.3). (e) Corrected using cluster distances
to be relative to cluster centre. (f) Cluster CMD classes derived using the neural
network in Sect. 3.4. (g) Indicates 25 clusters merged by hand (see Sect. 3.3).
(h) Indicates nine clusters with members from an additional Gaussian mixture model
clustering step. (i) Method used to assign name to cluster (see Sect. 3.6.3.)
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perturbing network inputs, a perfect BNN would be able to estimate both aleatoric
uncertainties, which are uncertainties that result from random phenomena, such as
uncertainty on photometric measurements; and epistemic uncertainties, which are
uncertainties that result from a lack of knowledge about the underlying processes
being modelled. For instance, any remaining gaps or issues in the simulated training
data we use would cause a traditional deterministic neural network to always output
an incorrect answer, whereas a probabilistic neural network should at least output a
wide range of answers that demonstrate its uncertainty in such difficult cases (Goan
and Fookes 2020, Jospin et al. 2022).

In practice, there is currently no perfect BNN architecture, with all approaches
having some flaws (Goan and Fookes 2020, Jospin et al. 2022). While a Monte-
Carlo Markov chain (MCMC)-based approach should in theory be superior, where
every network weight has an arbitrary posterior distribution, MCMC-based BNNs
are extremely difficult or impossible to train accurately, with current sampling
techniques being inadequate (Goan and Fookes 2020). In addition, BNNs are
often time consuming to train. Instead, ‘variational inference’ is widely used to
approximate BNNs. In this technique, an ideal BNN is approximated by perturbing
network features, approximating a BNN by ‘emphasising or de-emphasising’ certain
parts of a trained model when the model is sampled. This can then be used to
estimate the epistemic uncertainty of a model by sampling a variational network
multiple times.

Many approaches for variational inference exist in the literature, with a common
approach being dropout regularisation as an approximation of a BNN (Gal and
Ghahramani 2015), having also been used within astronomy (e.g. Huertas-Company
et al. 2019, Leung and Bovy 2019). However, this approximation is not inherently
Bayesian (Hron et al. 2017), and may be improved upon with recent developments
in the literature. Another common approximation is to assume that all layer kernel
and bias weights are drawn from simple distributions, such as independent Gaussian
distributions. This allows for gradients during network training to be calculated
straightforwardly using Bayes by backpropagation (Blundell et al. 2015). This
approximation can hold relatively well for (simple) neural networks, which often
have normally distributed weights, but may cause underfitting on more complicated
problems (Goan and Fookes 2020). Due to the time-consuming nature of repeated
samples of all kernel and bias posterior distributions, we also apply an approximation
known as Flipout to more efficiently sample them with a lower runtime while
preserving good training characteristics (Wen et al. 2018). Similar approaches
using Bayes by backpropagation and Flipout have seen some use in the astronomy
literature (e.g. Lin and Wu 2021). We use the implementations of DenseFlipout
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and Convolution2DFlipout layers in TensorFlow Probability (Dillon et al. 2017),
minimising the evidence lower bound (ELBO) loss (Blundell et al. 2015).

In initial tests, these approximations produced network outputs with reliable uncer-
tainty estimates that correspond well to the uncertainty inherent to classifying star
cluster CMDs. It is worth noting from the literature that variational-inference based
approaches are still more overconfident than a true BNN when applied to unseen
data (Goan and Fookes 2020), and that this approach is still an imperfect estimator
of the true uncertainty of our model; nevertheless, our adopted method was found
to be as accurate as a traditional deterministic network architecture of the same
configuration when applied to our training data, but while providing an estimate
of its uncertainty and without dramatically increasing runtime during training or
sampling.
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