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A B S T R A C T

We present the results of applying a perturbative treatment of the interaction operator
in the canonical formulation of kinetic field theory (KFT) to cosmic structure formation.
The KFT formalism, developed in a series of publications [1–4], allows for the descrip-
tion of equilibrium and non-equilibrium classical many-body systems. The usefulness
of KFT for analytical calculations of cosmic structure formation stems from the fact that
it circumvents approximations such as the single-stream approximation, which cause
more common hydrodynamical frameworks such as Eulerian and Lagrangian pertur-
bation theory to break down at small scales where non-linear structures are forming.
This work focuses on a systematic treatment of perturbation theory, which corresponds
to an expansion in perturbative corrections to the free phase-space trajectories of the
classical point-particles of the system in canonical KFT. We show how diagrams for
this perturbation theory can be constructed and evaluated and investigate the different
choices for defining free particle trajectories and the corresponding interactions. Results
for the dark matter power spectrum are presented and discussed for two such choices,
Newtonian and Zel’dovich trajectories. We find that the choice of free trajectories has a
substantial impact on the strength of perturbative corrections and specifically that New-
tonian trajectories are not well suited to be applied in the canonical formulation of KFT.

Z U S A M M E N FA S S U N G

Wir stellen die Resultate der Anwendung einer störungstheoretische Behandlung des
Wechselwirkungsoperators in der kanonischen Formulierung der kinetischen Feldtheo-
rie (KFT) auf kosmische Strukturbildung vor. Der KFT Formalismus, welcher in einer
Reihe von Publikationen [1–4] entwickelt wurde, erlaubt die Beschreibung klassischer
Vielteilchensysteme innerhalb und außerhalb des Gleichgewichtzustandes. Die Nüt-
zlichkeit der KFT zur analytischen Berechnung kosmischer Strukturbildung ist dadurch
begründet, dass sie es einem erlaubt die Einzelstromnäherung, welche andere weitver-
breitete Methoden wie die Eulersche und Lagrangesche Störungstheorie auf kleinen
Skalen, wo sich nichtlineare Strukturen bilden, zusammenbrechen lässt, zu umgehen.
Der Schwerpunkt dieser Arbeit liegt in einer systematischen Auswertung der Störungs-
theorie in kanonischer KFT, welche einer perturbativen Entwicklung in den, durch Wech-
selwirkungen verursachten, Korrekturen der klassischen Teilchentrajektorien des Sys-
tems entspricht. Wir zeigen wie Diagramme für diese Störungstheorie konstruiert und
ausgewertet werden können, und untersuchen die Auswirkung verschiedener Wahlen
für die Definition freier Teilchentrajektorien und den entsprechenden Wechselwirkun-
gen. Für zwei dieser Wahlen, welche Newton- und Zel’dovich-Trajektorien entsprechen
werden Resultate für das Dunkle-Materie-Leistungsspektrum vorgestellt und diskutiert.
Wir finden eine erhebliche Auswirkung der Wahl freier Teilchentrajektorien auf die
Stärke der störungstheoretischen Korrekturen und zeigen, dass Newtonsche Trajekto-
rien sich nicht für Rechnungen in der kanonischen Störungstheorie eignen.

i
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“If you are out to describe the truth, leave elegance to the tailor.”

— Ludwig Boltzmann
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1
I N T R O D U C T I O N

1.1 motivation

Although cosmology is a comparatively young science, it has seen tremendous progress
throughout its relatively short history. Starting with the early discovery of cosmic ex-
pansion due to the works of Friedman, Lemaître, Hubble, and others in the 1920s, cos-
mology has evolved into a precision science due to crucial developments such as the
discovery of the cosmic microwave background (CMB) radiation in 1964 [5], the first
measurement of CMB anisotropies by COBE in 1992 [6] and the definitive measurement
of cosmic acceleration in 1998 [7, 8], to name just a few.

These and many more discoveries and paradigm shifts have led us to the current stan-
dard ΛCDM model of cosmology, postulating a universe containing not only radiation
and visible matter but also a predominantly unknown component called dark energy
(which might well be a cosmological constant Λ), driving the current cosmic acceler-
ation, and an unknown dark matter component dictating the formation of large-scale
structures. Although the ΛCDM model is hugely successful in matching observational
data and has been constrained to extremely high precision by modern CMB observations
[9], many open questions remain. While the physical nature of dark energy and dark
matter have been a mystery for decades, additional challenges have arisen more recently
with an emerging tension between the values of the Hubble constant H0 (quantifying
the current rate of cosmic expansion) inferred by CMB and local supernova observa-
tions [10]. Addressing these outstanding problems requires more data and a better
understanding of the underlying models. Nowadays, a large variety of measurements
are used to put further constraints on the current cosmological model, and with larger
and more precise surveys planned for the coming years, a more profound theoretical un-
derstanding of the observed objects is in need. Among these observations are surveys
probing the large-scale structure of the universe. Comparing observations and theoreti-
cal predictions of distinct features, such as baryonic acoustic oscillations, in the spatial
distribution of galaxies allows us to infer further information about the cosmological
model and put constraints on its parameters.

But beyond its practical usefulness, cosmic structure formation is an interesting phys-
ical problem in its own right, as it represents an example of a classical statistical system
far from equilibrium. The predominant analytical methods to calculate the evolution
of cosmic structures are based on the equations of hydrodynamics, thus describing the
cosmic matter content as a self-gravitating fluid. Around the turn of the century, two ap-
proaches emerged for the analytical treatment of cosmic structure formation, Standard
(Eulerian) Perturbation Theory (SPT) and Lagrangian Perturbation Theory (LPT) corre-
sponding to the Eulerian and the Lagrangian picture of fluid dynamics (see the review
of Bernardeau et al. [11]). The seminal papers of Crocce and Scoccimarro [12, 13] in

1
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2 introduction

2006 sparked a renewed interest in SPT by introducing the community to more power-
ful techniques of field theory. Since then, a broad panoply of advanced non-perturbative
methods of quantum field theory (QFT), such as the use of an effective action and renor-
malization group techniques, have been proposed for SPT [14–16]. Nevertheless, as was
noted early on in [17], theories building on the basic assumptions of SPT are bound to
break down below certain length scales. In parallel to the developments of analytical
methods for cosmic structure formation, more and more powerful simulations are be-
coming available [18], allowing us to tackle the problem from a different angle. Indeed,
simulations of cosmic structure formation allow for a calculation of cosmic structures
down to much smaller scales than analytical methods. Unfortunately, they come at a
high computational and financial cost and are not suitable for efficiently exploring large
ranges of cosmic models.

It is in this context that Kinetic Field Theory (KFT), which has recently been devel-
oped as a new analytical method to describe the large-scale cosmic structure formation
and takes ideas from both numerical simulations and previous analytical methods, was
introduced in a series of papers [1–3]. Building upon earlier developments in statistical
field theory [19–21], KFT aims to describe the evolution of cosmic structures based on
the motion of classical particles in phase-space. At its very basis, there are no a priori as-
sumptions that would invalidate the application of KFT at any length scale, making it a
promising candidate for a consistent analytical treatment of non-linear cosmic structure
formation. In this work, we will explore the possibilities of the most basic formulation of
KFT —canonical KFT—and the resulting canonical perturbation theory. Whereas many
works on KFT have been published since its development in 2015, a systematic look
at canonical perturbation theory is so far lacking, even though the latter is useful for
at least two reasons. First, we will see that if applied correctly, canonical perturbation
theory in KFT can be a powerful tool to explore the evolution of cosmic structures in
the non-linear regime. Second, a proper understanding of canonical KFT can help build
an intuition for more advanced KFT methods such as resummed KFT (rKFT) [22] or the
grand-canonical formulation of KFT [4].

After a thorough introduction to the standard analytical approaches to cosmic struc-
ture formation in Chapter 2, we will therefore give a detailed introduction into the
canonical formulation of KFT Chapter 3 focussing on building an intuition for the per-
turbative treatment of particle interactions with the help of a toy model. Chapter 4 is
dedicated to the specialization of KFT to cosmic structure formation by demonstrating
how initial conditions and particle trajectories are obtained for the cosmological applica-
tion of KFT. In particular, we will establish a new diagrammatic language for canonical
KFT and show how Zel’dovich trajectories can be introduced consistently. While in
Chapter 5, we explore the application of canonical perturbation theory to the linear
growth of the dark matter power spectrum, Chapter 6 treats the non-linear behaviour of
the power spectrum. We draw our conclusions in Chapter 7.

1.2 notation and fourier convention

Since we will be confronted with a lot of three-dimensional integrals both in configura-
tion and in Fourier space we introduce the following shorthand notation

∫
R3

d3q f (q) =:
∫

q
f (q) ,

∫
R3

d3k
(2π)3 g(k) =:

∫
k

g(k). (1.1)
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1.2 notation and fourier convention 3

Fourier transforms will be commonly used throughout this thesis. We assume that the
concept is known to the reader and merely state the convention that we employ in this
work. The Fourier transform of a function f (q), as well as its backtransform are defined
by

f (k) :=
∫

q
f (q) e−ik·q , f (q) :=

∫
k

f (k) e ik·q. (1.2)

The Fourier transform of unity is the Dirac-delta distribution∫
q

e−ik·q = (2π)3δD(k). (1.3)
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Part I

F O U N D AT I O N S
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2
C O S M O L O G Y A N D L A R G E S C A L E S T R U C T U R E F O R M AT I O N

2.1 the cosmological standard model

The standard model of cosmology has evolved over the past century, starting with the
first symmetric solutions to Einstein’s field equations by Alexander Friedmann, the ob-
servations of Edwin Hubble of the redshift of distant nebulae and the work by Georges
Lemaître who connected Friedmann’s solution to observations, to name just a few. Since
then, cosmology has come a long way, evolving into a precision science at the latest with
the observation of the Cosmic Microwave Background (CMB) radiation. This section
presents a narrow selection of aspects of our cosmological model relevant to properly
understanding cosmic structure formation. A more detailed discussion can be found in
most cosmology textbooks, e. g. [23–25].

2.1.1 The Friedmann equation

The theory at the basis of modern cosmology is general relativity, where spacetime is
described as a smooth manifold curved by its energy-momentum content. Classical
particles moving under the influence of gravity, in turn, follow geodesics on this curved
manifold. The equations relating curvature and the energy-momentum tensor of some
content of spacetime are Einstein’s field equations

Gµν + Λgµν =
8πG

c4 Tµν, (2.1)

which contain the spacetime geometry and the cosmological constant Λ on the lhs and
the energy-momentum content on the right. Since Einstein’s field equations are inher-
ently non-linear, they are impossible to solve analytically without further symmetry as-
sumptions or approximation schemes. In the standard model of cosmology, we assume
the maximally symmetric case of a spatially homogeneous and isotropic spacetime,
leaving but a single free parameter in the line element

ds2 = gµνdxµdxν = −c2dt2 + a2(t)gijdxidxj. (2.2)

The function a(t) is called the scale factor and indicates how physical distances change
with cosmic time t. Since we compare relative changes in distances over time, the ab-
solute value of the scale factor is irrelevant for us, such that we can fix a0 = a(t0) = 1
where t0 is the present cosmic time. Using these symmetry assumptions and including
the energy-momentum tensors of non-relativistic matter and radiation on the rhs of (2.1).
In standard cosmology, where the universe contains non-relativistic matter, radiation,
and a cosmological constant Einstein’s equations reduce to the Friedmann equation

H2(a) = H2
0

(
Ωr,0 a−4 + Ωm,0 a−3 + Ωk,0 a−2 + ΩΛ,0

)
, (2.3)

7
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8 cosmology and large scale structure formation

which relates the scale factor’s time evolution to the universe’s overall matter content.
Here H(a) = ȧ

a is the Hubble-Lemaître function, H0 = H(a0) is its present value and the
dimensionless density parameters Ωi,0 are obtained from the physical densities ρi(a0)

by

Ωi,0 =
ρi(a0)

ρcrit,0
with ρcrit,0 =

3H2
0

8πG
. (2.4)

The critical density ρcrit,0 is the density of a spatially flat universe at t0. In (2.3) we
distinguish between non-relativistic matter with density parameter Ωm,0, radiation (or
ultra-relativistic matter) Ωr,0, spatial curvature Ωk,0 and the cosmological constant ΩΛ,0.
Note that (2.3) evaluated at a0 leads to Ωk,0 = 1− Ωm,0 − Ωr,0 −ΩΛ,0, explaining the
geometric interpretation of the critical density.

From the different scaling of the terms in (2.3) with the scale factor a we can infer
that the universe’s expansion history can be divided into different phases. Observations
of the velocities of distant galaxies indicate that we live in an expanding universe, such
that the scale factor becomes smaller as we go back in time. These observations suggests
that there should have been a period in the early universe where the Hubble-Lemaître
function was dominated by the radiation content, followed by matter domination, cur-
vature and finally, the cosmological constant. By equating different terms, we can get a
rough value for the scale factor where a transition from the domination of one form of
energy to another took place. Of course, without knowing the values of the individual
density parameters, we cannot know for sure if and when all these expansion epochs
took place. This is a question only observations can address, which we talk about after
having introduced the notion of cosmological redshift. Recession velocities of distant
galaxies can only be determined indirectly via the shift they induce in the spectral lines
in galaxy spectra. The redshift is defined by

z :=
νe

νo
− 1, (2.5)

where νe and νo are the emitted and observed frequencies, respectively. In cosmology,
these frequencies are related, respectively, to the scale factor at the time of emission and
observation. Since all our observations take place at a0 = 1, this gives us a one-to-one
relation between the scale factor a(t) at some time t in the past and the corresponding
redshift an event at this time would be observed with

a(t) =
1

1 + z
. (2.6)

The redshift is zero at t0 by definition and increases as we go back in cosmic history.

2.1.2 Observations

First, one might ask whether the simple model of a spatially homogeneous and isotropic
spacetime truly describes the actual universe we live in. After all, the world in our imme-
diate surroundings is certainly not following such tight symmetry constraints. However,
observations of cosmic structures confirm that homogeneity and isotropy appear to be
fulfilled to a very high degree once we consider large cosmological scales.

Beyond confirming large-scale isotropy, observations allow us to determine the param-
eters entering Friedmann’s equation (2.3). Observations in cosmology require extremely
sophisticated measurement devices and techniques and involve advanced data analysis
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2.1 the cosmological standard model 9

methods. The most groundbreaking discovery, which started the age of precision cos-
mology, was the detection of the CMB signal in 1965 [5]. Until this day, measurements
of the temperature fluctuations in the CMB are providing us with the most precise esti-
mates for the values of the cosmological parameters. According to the latest analysis of
CMB data by the Planck Collaboration [9], assuming vanishing spatial curvature1 Ωk,0,
the parameters in (2.3) take the values

Ωm,0 = 0.3111± 0.0056 Ωr,0 = (9.182± 0.175) · 10−5

ΩΛ,0 = 0.6886± 0.0056 h = 0.6766± 0.0042,
(2.7)

where h is defined such that H0 = 100 h km(s Mpc)−1. There are several additional
parameters that can be extracted from the CMB, but discussing them all would go far
beyond the scope of this section. We should note, however, that extracting parameter
values from CMB data can only be done within the scope of a specific class of cosmo-
logical models. CMB measurements are therefore often referred to as ‘model dependent’
observations, in contrast to local measurements, e. g. of the Hubble constant using obser-
vations of redshifts of type Ia supernovae, which can yield values for a limited number
of cosmological parameters independent of specific model assumptions.

An exciting consequence of CMB measurements and observations of the velocity of
galaxies in galaxy clusters [26] is that the majority of the matter content of the universe
consists of an unknown form of matter which does not couple to electromagnetism and
is therefore referred to as dark matter2. Observations from Planck [9] suggest that the
contribution of visible matter to the overall matter content lies around 16%, making the
majority of gravitating matter in the universe dark matter. The fundamental nature of
dark matter and the cosmological constant are among the most pressing challenges of
modern physics. For dark matter, there are different candidates, most notably a selection
of fundamental particles beyond the standard model of particle physics or primordial
black holes (PBHs). Different fundamental particle candidates, such as WIMPS (weakly
interacting massive particle), axions, or entire dark sectors, have emerged and run out
of fashion over the years [27]. PBHs are still in the running as well, but weak-lensing
surveys, gravitational wave observations (or the lack thereof) and bounds due to evapo-
ration have already put tight constraints on their permitted mass range [28]. The discus-
sion about the cosmological constant and whether it is the manifestation of a dynamical
dark energy is even more unclear. Many models have been proposed, but for now, no
compelling evidence heavily favours any of them. Ultimately, we must acknowledge
that we do not know the answers to these questions yet.

Luckily, we can be agnostic about the precise physical origin of the dark components
of the universe since we do not need microscopic properties of dark matter to describe its
effect on the formation of cosmic structures. For our purpose, it is sufficient to assume
that dark matter exists and acts like an ensemble of classical non-relativistic particles

1 This assumption can be tested precisely by a combination of baryon-acoustic oscillation and CMB mea-
surements. Even if the curvature parameter is not wholly vanishing, it will never make an appreciable
contribution to the universe’s expansion history since it scales with a−2. Due to this scaling, curvature
therefore takes over after matter domination, but due to its small values is immediately overpowered by
the cosmological constant. This is in contrast to radiation, which has a minimal density parameter at
current times as well but dominated in the early universe due to its a−4-dependence.

2 This is to date the most successful and widespread explanation among cosmologists since it can explain
a wide range of observations with very few assumptions. Nonetheless, alternatives to the dark matter
paradigm, such as modifications of Newtonian dynamics (MOND) or General Relativity, are actively inves-
tigated.
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10 cosmology and large scale structure formation

on cosmological scales. Dark energy will be treated as a cosmological constant which
drives accelerated expansion at the current cosmic epoch.

2.2 cosmic structures - a statistical description

2.2.1 The two-point correlation function

Although the assumptions of homogeneity and isotropy seem to be fulfilled on large cos-
mic scales, smaller scales exhibit fluctuations w. r. t. this highly symmetrical background.
These structures play an essential role in advancing our understanding of the universe
since they allow us to extract information on various cosmological parameters. As we
have mentioned above, the main contribution to the matter content in our universe
comes from dark matter, making it the most crucial component in large-scale structure
formation. Additionally, once the universe has cooled down sufficiently to allow for
the presence of neutral atoms, structures in baryonic matter3 essentially follow those of
dark matter on large cosmic scales. In contrast, baryonic effects such as pressure due to
a finite cross-section and cooling due to the coupling to electromagnetism are relevant
only on small scales. For our description of cosmic structure formation, it is therefore
sufficient to treat the entire cosmic matter content as a collisionless gas with density

ρm(q, t) = ρ̄m(t)
(
1 + δ(q, t)

)
, (2.8)

where we introduced the density contrast δ(q, t) as a fluctuation of the matter density
w. r. t. the background density ρ̄(t). As in (2.2) t denotes cosmic time and q the position
vector in comoving coordinates, i. e. the physical position vector scaled with the scale
factor a.

Since we care little about the exact location of large conglomerates of matter but
rather about their relative distribution, the discussion of large-scale structures has to
be statistical. A key statistical quantity of the matter field is the two-point correlation
function of the density contrast

ξδ(q, t) =
〈
δ(q0, t)δ(q0 + q, t)

〉
, (2.9)

where q is the norm of the comoving distance vector q and ⟨. . . ⟩ denotes the ensem-
ble average4. Note that homogeneity and isotropy are inherited by the density field in
a statistical way. Even though, on small scales, the system is neither homogeneous nor
isotropic around a single point, the fluctuations behave so that they fulfil both conditions
when taking the ensemble average. Due to statistical homogeneity, the two-point corre-
lation function is independent of the absolute positions q0, whereas statistical isotropy
additionally restricts the dependence to the absolute comoving distance q between the
points, independent of the direction.

3 Cosmologists tend to use the word baryonic matter as an umbrella term for anything that is not dark
matter.

4 It might appear bizarre to refer to an ensemble average in the context of cosmology since there is but
a single universe to perform observations on. Indeed, to extract statistical quantities from observations,
isotropy allows us to take averages over different positions on the celestial sphere, which should then be
equivalent to ensemble averages. As theorists, we can be content with imagining a large set of universes
which are different realisations of our universe and averaging over these.
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2.3 structures in the early universe 11

2.2.2 The power spectrum

The Fourier transform of the two-point correlation function (2.9) is the density fluctua-
tion power spectrum

Pδ(k, t) =
∫

q
ξδ(q, t) e−ik·q, (2.10)

which is related to the two-point function in Fourier space by

〈
δ(k, t)δ(k′, t)

〉
= (2π)3δD(k + k′) Pδ(k, t). (2.11)

Due to its relation to the density correlation function, the dark matter power spectrum
contains information on the clustering behaviour of dark matter. As we will see, work-
ing with the power spectrum instead of the correlation function is significantly more
convenient since the equations governing the dynamics of the density contrast allow
for a simpler description in Fourier space. Therefore, the dark matter power spectrum
is the most natural quantity to start with, to understand cosmic structure formation.
If dark matter density fluctuations follow a Gaussian random field, it is also the only
non-vanishing cumulant of the underlying probability density. From observations of
the CMB [9], we have strong evidence that fluctuations in the matter field in the early
universe were, if not Gaussian, then at least very close to it.

Predicting the power spectrum at z = 0 for a large range of scales is, at the same
time, a significant challenge and of crucial importance for modern cosmology. Although
numerical simulations can reproduce small-scale structures, even considering baryonic
feedback effects, they yield limited physical insights into the physical processes of struc-
ture formation. Unfortunately, for low redshift the evolution of cosmic structures on
length scales l ≲ 8 h−1 Mpc is governed by non-linear dynamics and therefore extremely
difficult to calculate analytically. We aim to walk down a few steps on the long road to a
complete description of non-linear structure formation in this work, but before thinking
about late-time evolution, it pays off to start at the beginning.

2.3 structures in the early universe

To motivate the initial conditions underlying late-time cosmic structure formation, we
want to give a short overview of the most important ideas that can explain the creation of
cosmic structures in the very early universe and their evolution shortly after that. Many
of the ideas in this section are discussed in greater depth in [23]. An essential concept
in the following considerations is the comoving Hubble horizon. The Hubble-Lemaître
function H has the dimension of inverse time, such that the quantity rH = c/H, where
c is the speed of light is a natural cosmic length scale, quantifying the distance between
two points that can still be in causal contact5. The comoving Hubble horizon, which
plays a crucial role in the behaviour of Fourier modes of the density field in the early
stages of cosmic structure formation, is then given by c/(aH).

5 The Hubble horizon is not a physical horizon per se but gives a reasonable estimate for the actual particle
horizon, i. e. the maximum physical distance between two points which can still be in causal contact, and
appears as a natural length scale in the equations of structure formation, e. g. in Appendix F
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12 cosmology and large scale structure formation

2.3.1 Planting the seeds

The most widely spread theory for the earliest epoch of cosmic expansion is inflation.
The main reason for the success of this model is that, in addition to its simplicity, it
not only solves cosmological puzzles such as the flatness and the horizon problems but
also makes a prediction for cosmic structures. The simplest inflationary model can be
summarized as a scalar field—the inflaton—driving exponential expansion while slowly
relaxing to its vacuum state. At this stage of cosmic history, nothing is assumed to ex-
ist in the universe except for said inflaton field. While primarily driving inflation, the
scalar field exhibits quantum fluctuations around its false vacuum value. Exponential
expansion implies a shrinking comoving Hubble horizon, so modes of the quantum fluc-
tuations can exit the horizon, freeze in and become classical fluctuations on top of the
homogeneous background. Once the period of exponential expansion ends, we enter an
epoch called reheating, supposedly induced by oscillations of the inflaton field around
its true vacuum. During reheating, the energy that is still stored in the inflaton is as-
sumed to be converted into standard model particles and dark matter. The fluctuations
that were imprinted onto the scalar field during the inflationary epoch are imprinted
onto the initial conditions of the emerging standard model fields. A key prediction of
the inflationary model is that scalar fluctuations follow a (nearly) Gaussian random field
(GRF) described by the primordial power spectrum

P(prim.)(k) ∝ kns . (2.12)

The exponent ns is the spectral index and should be close to but smaller than one. In
fact, how close the spectral index is to unity is directly related to the duration of the
inflationary epoch; for example, an infinitely long inflationary epoch would result in
ns precisely equal to one. Measurements of the cosmic microwave background (CMB)6

indicate that ns ≈ 0.965 and the relative amplitude of fluctuations was initially very
small. Standard model particles and dark matter were thus produced in an almost
entirely homogeneous fashion, with tiny fluctuations in their density imprinted on them
due to quantum fluctuations in the inflaton field.

It should be noted that inflation is one of many models capable of solving the flatness
and horizon problems and predicting the primordial power spectrum. Additionally,
within the inflationary paradigm, there is a broad panoply of proposed models for the
inflaton field and currently minimal opportunity to test their predictions. And even in
the simplest scalar field model, many open questions remain; for example, the exact
mechanism behind the reheating process is currently completely unknown. Therefore,
the handwavy explanation we provided here should be taken with a gigantic grain of
salt. On the other hand, the most important take-home message of this section is the
prediction of (nearly) Gaussian primordial fluctuations with a power spectrum following
(2.12), which is predicted by a wide variety of early-universe models and supported by
current observations [9].

2.3.2 Evolution through matter-radiation equality

After reheating, the universe entered a radiation-dominated phase, i. e. the Hubble ex-
pansion was controlled mainly by the energy density of radiation. During this period,

6 One should note that CMB measurements can only be interpreted within a cosmological model, i. e. they
are model-dependent.
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2.3 structures in the early universe 13

the behaviour of Fourier modes of the density fluctuations (density modes) depends on
the modes’ comoving wavelength relative to the comoving Hubble horizon. Throughout
inflation, the comoving Hubble horizon was shrinking, pushing all density modes that
are relevant today beyond the Hubble horizon. Once the exponential expansion is over,
density modes start re-entering the horizon, starting with shorter wavelengths and mov-
ing towards longer ones. As we transition from the radiation-dominated epoch to matter
domination, the time evolution of density modes inside the comoving Hubble horizon
changes since radiation pressure slowly ceases to suppress their growth. As a result,
modes that enter the horizon after matter-radiation equality show a different behaviour
from those that entered before, a feature which is directly imprinted onto the density
fluctuation power spectrum. From the scale factor aeq=2.95 · 10−4 at matter radiation
equality [9] we can derive the comoving wavenumber of those modes that entered the
comoving Hubble horizon at the time of the transition. A short calculation reveals that
the corresponding wavenumber is

keq =

√
2Ωm,0H2

0
aeqc2 ≈ 0.015 h Mpc−1 (2.13)

This scale offers a qualitative explanation for the behaviour of the density fluctuation
power spectrum after matter-radiation equality. For a quantitative result, we must solve
the underlying relativistic Boltzmann equations coupled with Einstein’s field equations.
Since fluctuations remain relatively small throughout this period, linearized equations
where different Fourier modes evolve independently are an excellent approximation of
all length scales of interest. The solution for the fluctuations of non-relativistic mat-
ter can thus be encoded in a transfer function T(k), which describes the evolution of
individual modes as the universe progresses from radiation to matter domination. Al-
though the Boltzmann system is not solvable with purely analytical methods, it allows
for quantitative discussions of some asymptotic solutions, e. g. for large, respectively,
small values of k. The complete solution for the transfer function requires a numerical
treatment. An excellent fit to the numerical result for the transfer function of pressure-
less, non-relativistic matter is derived in the work of Bardeen, Bond, Kaiser and Szalay
(BBKS) [29] and reads

TBBKS(x) =
log(1 + 0.171x)

0.171x
(
1 + 0.284x + (1.18x)2 + (0.399x)3 + (0.49x)4)−1/4.

(2.14)

Here x ≡ k/keq, where keq is the wavenumber of a fluctuation that entered the comoving
Hubble horizon exactly at matter-radiation equality (2.13). The power spectrum for dark
matter density fluctuations after matter-radiation equality is thus given by

PBBKS(k) ∝ T2
BBKS(k) P(prim.)(k) ∝ T2

BBKS(k) kns . (2.15)

It is customary to infer the overall amplitude of the BBKS power spectrum from the
quantity7 σ8, obtained from low redshift observations of large-scale structures. From
the Planck data [9] we obtain σ8 = 0.8102± 0.0060. Once the amplitude of the BBKS
power spectrum is fixed, we can use it as a starting point to derive the late-time power
spectrum and, therefore, henceforth refer to it as the initial power spectrum P(i)

δ (k) for
the rest of this work.

7 σ8 is the variance of the density contrast where all structures at length-scales smaller than 8 h−1 Mpc have
been smoothed out.
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Figure 2.1: The density fluctuation power spectrum resulting from the BBKS transfer func-
tion and a primordial power spectrum with spectral index ns = 0.965. Note that
we recover the power law behaviour P(i)

δ (k) ∼ kns on large scales (small k) and

P(i)
δ (k) ∼ log2(k) kns−4 on small scales (large k). The maximum is located around

keq ≈ 0.015 h Mpc−1. The overall amplitude is inferred from σ8 and evaluated around
recombination zrec = 1100.

2.4 eulerian perturbation theory

After the transition from radiation to matter domination, density modes continue their
evolution according to the Boltzmann equation. As the universe continues to expand,
the modes of the density field that make up the universe’s large-scale structure become
increasingly small relative to the comoving Hubble horizon. As a result, the cosmic
structures that interest us today are well inside the Hubble horizon and follow non-
relativistic dynamics. When we approach the later stages of cosmic history, the density
contrast, which started as a tiny perturbation of the background density, continues to
grow. Eulerian perturbation theory attempts to describe the evolution of density fluctua-
tions in terms of fluid dynamics and has been the focus of intense research over the past
couple of decades [11, 12, 14, 16, 30]. Here we will briefly introduce the most essential
concepts of the ideas of Eulerian perturbation theory.

2.4.1 Equations of motion

Standard Eulerian perturbation theory (SPT) starts from the non-relativistic Vlasov-
Poisson system (the collision-less Boltzmann system with a potential that fulfils the
Poisson equation) for the one-particle phase-space density and takes moments of this
equation w. r. t. the momentum coordinate. In comoving coordinates, this results in the
Euler-Poisson system

∂tδ +∇ ·
[
(1 + δ)v

]
= 0 (2.16)

∂tv + 2Hv + (v ·∇)v = − 1
a2∇Φ (2.17)

∇2Φ = 4πGa2ρ̄mδ, (2.18)

where δ(q, t) and v(q, t) denote the density contrast from (2.8) and the peculiar veloc-
ity field, respectively, in terms of the comoving coordinate q and cosmic time t. Note
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2.4 eulerian perturbation theory 15

that (2.17) should additionally contain a stress-energy tensor σij from the second mo-
mentum moment of the Vlasov equation. This contribution is neglected in the most
basic approach to SPT, thus modelling the matter field as pressure-less dust, which is
equivalent to assuming that there is a single-valued velocity field at any moment and
therefore called the single-stream approximation (SSA). This assumption is far from trivial
and significantly limits the usefulness of SPT since the SSA breaks down at scales where
gravitationally bound, virialized structures exist. In addition to the SSA, we assume
that the peculiar velocity field is curl-free and can therefore be expressed in terms of a
velocity potential

v(q, τ) = ∇ψ(q, τ). (2.19)

A curl-free velocity field is certainly consistent with the SSA since there is no source for
vorticity in the Euler-Poisson system, such that any initial vorticity is quickly diluted
due to cosmic expansion. As long as perturbations remain small and the SSA is valid, a
curl-free velocity field should describe cosmic structures fairly well. However, on length
scales where density fluctuations have grown beyond unity, we expect vorticity to build
up, and the results of SPT to strongly deviate from reality.

The expressions (2.16)–(2.18) form a non-linear system of partial differential equations
and cannot be solved exactly. However, observations confirm that fluctuations around
the mean matter density and the cosmic flow are tiny at high redshifts and can be
treated perturbatively. SPT is therefore attempting to solve (2.16)–(2.18) by perturba-
tively expanding around the linearized Euler-Poisson system. Since such an expansion
necessarily breaks down for density contrasts that have grown far beyond unity, SPT is
mainly valuable for describing cosmic structures in the mildly non-linear regime, where
the density contrast is of order unity.

2.4.2 Linear growth

As long as the absolute value of the density contrast is well below unity, its time evo-
lution is dictated by the linearized Euler-Poisson system. This condition is fulfilled
only in the large-scale or early-time limit. After linearizing the Euler-Poisson sys-
tem (2.16)–(2.18), the continuity and the Euler equation can be combined to yield a
second-order differential equation for the density contrast. This equation is solved by
δ(1)(q, t) = D(t)δ(i)(q), where D(t) fulfills the equation

∂2
t D + 2H ∂tD− 4πGρ̄mD = 0. (2.20)

For special values of the density parameters, this equation can be solved analytically,
e. g. for an Einstein-de-Sitter (EdS) universe where Ωm = 1, we find the two solutions

D(t) =

D+(t) = a(t) (growing solution)

D−(t) = a−3/2(t) (decaying solution),
(2.21)

where the growing solution is usually referred to as the linear growth factor. For the
standard ΛCDM cosmology (2.7), however, no analytical solution exists, such that the
equation needs to be integrated numerically. Nonetheless, the EdS case is also relevant
for ΛCDM, since a large portion of late-time cosmic structure formation takes place
during the matter-dominated era, where EdS offers an excellent approximation.
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16 cosmology and large scale structure formation

For analytical calculations of cosmic structure formation, using the linear growth fac-
tor D+ to define a new time coordinate often proves useful, leading us to define

τ := ln
D+(t)
D+(ti)

(2.22)

as our new time parameter. We choose for ti a moment in cosmic history where the
growth of cosmic structures can be described by the non-relativistic, linearized system
(2.16)–(2.18). It is sensible to choose this moment to lie around recombination, where
zi = 1100. Conveniently, (2.22) defines τ to be zero initially and to increase monotoni-
cally, with a final value τf = ln(1+ zi) = 7 in an EdS and τf ≈ 6.75 in a Planck cosmology.
Switching to τ turns the system of equations (2.16)–(2.18) into

δ̇ +∇ ·
[
(1 + δ)u

]
= 0 (2.23)

u̇ + µ
2 u + (u ·∇)u +∇ϕ = 0 (2.24)

∇2ϕ =
(
µ/2 + 1

)
δ, (2.25)

where we introduced the time-dependent variable µ(τ) = 2
( 3Ωm

2 f 2(Ωm)
− 1
)

for notational
convenience. The steps are detailed in Appendix A, where we also introduce the growth
rate f (Ωm) = d ln D+

d ln a . Here and from now on, a dot signifies a derivative w. r. t. τ. There
are a few things to note about these equations, starting with the fact that the entire
explicit dependence on the cosmological parameters has been shifted into the function
µ(τ). It is easy to check that µ = 1 in an EdS cosmology, although this is no longer true
once matter ceases to dominate cosmic expansion. In the case of ΛCDM, deviations of
up to 20% from unity arise at z = 0 due to the increasing dominance of the cosmological
constant at low redshifts. Nonetheless, it turns out that cosmic structure formation is
extraordinarily well described by fixing µ to one, even when non-relativistic matter no
longer dominates the universe’s expansion. To understand why, it suffices to re-derive
linear growth from (2.23)–(2.25), which is now solved by the Ansatz δ(q, τ) = e ατ, such
that

α =

 1 (growing solution)

−µ/2− 1 (decaying solution).
(2.26)

The growing solution is thus independent of µ and exactly follows D+ (as it should) for
any cosmology! The second solution D−µ/2−1

+ , on the other hand, is only compatible
with the decaying solution D− in the EdS cosmology when µ = 1. Deviations from the
EdS result are, therefore, purely contained in the evolution of the subdominant decaying
modes.

In the following, we will keep the description in terms of µ general whenever possible,
but it should be clear from the previous discussion that restricting µ to be constant at
unity is an excellent approximation we will make much use of in later calculations.

2.4.3 Initial conditions and the linear power spectrum

The initial conditions for the density contrast and the peculiar velocity field can be
connected by using the linearised continuity equation

δ̇ +∇ · u = 0. (2.27)
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For density contrasts that evolve according to the growing solution, it is easy to verify
that δ̇ = δ. Making use of the fact that the velocity is initially curl-free, we find

u(i)(q) = ∇ψ(i)(q) , δ(i)(q) = −∇2ψ(i)(q), (2.28)

where ψ(i)(q) = ψ(q, 0) is the velocity potential evaluated at τ(ti) = 0. From δ(i)(k) =
k2ψ(i)(k) the relation between the power spectrum of the velocity potential and the
density contrast

P(i)
ψ (k) = P(i)

δ (k) k−4 (2.29)

follows immediately. Formulating the initial conditions in terms of a velocity potential
has the advantage of highlighting the relation between initial density and velocity field.
The velocity potential should therefore be viewed as a mere auxiliary field.

The Fourier-space correlation function resulting from the growing solution of linear
SPT (2.20) is straightforward to write down since different density modes evolve inde-
pendently:〈

δ(1)(k, τ)δ(1)(k′, τ)
〉
= e2τ

〈
δ(i)(k)δ(i)(k′)

〉
, (2.30)

and with the definition (2.22) of the time parameter we find the linear power spectrum

P(1)
δ (k, t) =

(
D+(t)
D+(ti)

)2

P(i)
δ (k). (2.31)

Linearly growing density contrasts thus lead to a power spectrum which is a scaled ver-
sion of the initial power spectrum, with a time-dependent amplitude given by the linear
growth factor. Additionally, the Gaussian nature of the density contrast is conserved in
this limit. This simple scaling behaviour is lost when higher-order corrections become
relevant for the density contrast. Intuitively this can be understood by realising that
density modes no longer evolve independently once we leave the linear regime, leading
to mode-coupling.

2.4.4 Beyond linear growth

Moving beyond the description of linear growth where density modes evolve indepen-
dently is most easily done by transferring the system (2.23)–(2.25) to Fourier space, turn-
ing it into a coupled system of integral-differential equations [11, 12, 14]. Introducing
the velocity divergence θ(q, τ) = ∇ · u(q, τ) and collecting δ and θ in the field tuple
φ = (δ,−θ)T, the system can be compactly written as

(δab∂τ + Ωab)φb(k, τ) =
∫

k1,k2

γabc(k,−k1,−k2)φb(k1, τ)φc(k2, τ), (2.32)

where we have collected all linear terms on the lhs and the quadratic (mode-coupling)
terms on the right. The details of the system are contained in the matrix Ωab and the
vertex tensor γabc(k,−k1,−k2), which are given by

(
Ωab

)
=

(
0 −1

− µ
2 − 1 µ

2

)
µ=1
=

(
0 −1

− 3
2

1
2

)
(2.33)

γδδθ(k, k1, k2) = γδθδ(k, k2, k1) = (2π)3δD(k + k1 + k2)
(k1 + k2) · k2

2k2
2

γθθθ(k, k1, k2) = (2π)3δD(k + k1 + k2)
(k1 + k2)2(k1 · k2)

k2
1k2

2
.
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18 cosmology and large scale structure formation

The common strategy to solve (2.32) is to derive a Green’s function—often called linear
propagator—for the linear differential operator on the lhs which is then used to derive
a formal, self-consistent solution [11, 12, 14]. From the formal solution, explicit expres-
sions for corrections to the linear solution can be found by a series expansion, leading
to a perturbative series for the tuple φa. To derive results for perturbative spectra, a
diagrammatic formulation resembling Feynman diagrams from quantum field theory
was introduced [12, 13] such that perturbative corrections to cosmic spectra in SPT are
often referred to as loop-corrections. The cosmic power spectrum with second-order cor-
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Figure 2.2: A comparison of the linear (2.31) (blue curve) and the one-loop (yellow curve) power
spectrum from SPT. The green curve shows the correction, added to the linear spec-
trum to arrive at the full one-loop result.

rections from SPT, the one-loop power spectrum, is shown in Figure 2.2, together with
the linear power spectrum as a reference. The one-loop result was taken from [31]8. We
can observe the typical mode-coupling behaviour in the green curve, the one-loop cor-
rection, which takes negative values on large and positive values on small scales, thus
suggesting a power transfer from large- to small-scale structures. The resulting one-loop
power spectrum seemingly shows a strong growth of small scale structures, since its am-
plitude rises sharply on small scales. This, however, is an artefact of the perturbative
expansion, and a thorough analysis shows that we cannot trust the values of the power
spectrum at these scales.

2.5 lagrangian perturbation theory

As mentioned in the previous section, SPT suffers from a couple of significant draw-
backs, most notably that due to the single-stream approximation, it breaks down at
stream-crossing and is, therefore, unable to describe cosmic structures in the non-linear
regime even in principle. In addition, we need to assume a curl-free velocity field, which
is not reflecting the reality of bound structures. Last but not least, it is known that SPT
does not converge since the expansion takes place in the density contrast, which can
become extremely large. Altogether, these known issues suggest that a description of
cosmic structure formation in terms of the Vlasov-Poisson system might not be the
most promising approach. Lagrangian perturbation theory (LPT) offers an alternative

8 Beware, there is a typo in the self-energy contribution (A21a) to the one-loop correction in this reference.
Instead of . . . 3

r2 . . . it should read . . . 3
r3 . . . !
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2.5 lagrangian perturbation theory 19

by considering the evolution of particle positions and determining the resulting density
contrast [11, 32, 33]. This opens the door to new possibilities since we are not tied to
a description of the system in terms of a fluid. Indeed, some basic results from LPT
already go beyond the possibilities of SPT and can be used to extend the description of
cosmic structures to more non-linear scales [34, 35].

2.5.1 Equations of motion

We need two ingredients to describe cosmic structures in terms of a particle-based ap-
proach. First, we need to derive an equation that governs the dynamics of fluid particles,
and second, we need to determine how particle positions are related to the density con-
trast. To derive the equations of motion for particle positions, consider a particle that
starts at position q(i) at ti. At any later time t, its position can be written as

q (q(i), t) = q(i) + Ψ(q(i), t), (2.34)

where we introduced the displacement field Ψ(q(i), t). We shall refer to q as the Eulerian,
and to q(i) as the Lagrangian coordinate9. Whereas SPT corresponds to the Eulerian
picture of fluid dynamics, where we imagine coordinates as a static grid that covers
space, LPT takes the Lagrangian perspective (hence the name), where we follow the
flow lines of individual fluid elements (or particles). Both points of view can be related
by noting that the local velocity field v(q, t) in the Eulerian view corresponds to the
total time derivative of the fluid element’s position q(t) in the Lagrangian view:

v(q, t) =
dq(t)

dt
=

dΨ(t)
dt

. (2.35)

Additionally, the total time derivative is related to the partial time derivative by d
dt =

∂t + (v ·∇)v. This then leads to the equation of motion for the displacement field

d2Ψ

dt2 + 2H
dΨ

dt
+

1
a2∇qΦ = 0, (2.36)

which follows from the Euler equation (2.17). In LPT, the advection term, which is the
source of non-linearity in SPT, is absent since it is absorbed into the total time derivative.
The non-linear nature of (2.36) is less evident since it is encoded in the gravitational
potential gradient, which is taken w. r. t. the Eulerian position q. Since the displacement
field is a function of the Lagrangian coordinate q(i), the gradient will give rise to an
inverse determinant down the road, as we will see in the following. Regarding the
second ingredient, the evolution of the density contrast in terms of the displacement
field follows from mass conservation

ρ̄
(
1 + δ(q, t)

)
d3q = ρ̄

(
1 + δ(i)

)
d3q(i) ⇒ δ(q, t) =

[
det

(∂q(t)
∂q(i)

)]−1

− 1, (2.37)

where we neglected the initial density fluctuations δ(i) ≪ 1.
Similar to SPT, we will exclusively consider the evolution of the longitudinal (i. e. curl-

free) component of the displacement field by taking the divergence of (2.36) w. r. t. q.

9 Unfortunately, the Eulerian position is usually denoted by x, and the Lagrangian by q. Since the variable
x is reserved for the coordinates of a particle in phase-space, we adapted the conventional names for
consistency.
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20 cosmology and large scale structure formation

Using, in addition, the more convenient time parameter (2.22), the divergence of the
displacement field follows

∇q ·
(

Ψ̈ +
µ

2
Ψ̇
)
= (µ/2 + 1)

(
1− J−1), (2.38)

where we inserted the Poisson equation (2.25) and replaced the density contrast with

the determinant J = det
(

∂q(t)
∂q(i)

)
. The appearance of the inverse determinant J−1 in (2.38)

highlights a known deficiency of LPT. Similar to SPT, it leads to the breakdown of the
theory once particle streams are crossing since the density diverges at these points.

Example 2.5.1 Consider a simple system of freely streaming particles in one dimension. The
initial conditions are chosen such that the Eulerian position of a fluid particle initially located at
q(i) is given by

q (q(i), t) = q(i)(1− t/τc), (2.39)

with some parameter τc, which will turn out to be the free-streaming time. The initial velocity
field is u(q(i), 0) = Ψ̇(q(i), 0) = −q(i)/τc. The density of such a simple system as a function
of time t is given by ρ(q, t) = (det(∂q(t)/∂q(i)))−1 = (∂q(t)/∂q(i))−1. Via the relation (2.34)
between the Eulerian and the Lagrangian coordinates q and q(i) we find the time-dependent
density field

ρ(t) =
1

(1− t/τc)
, (2.40)

which becomes singular at t = τc.

In addition to the appearance of singularities, the naive approach to LPT fails to
take into account that multiple initial Lagrangian positions can be mapped to the same
Eulerian position after stream-crossing. Unlike the issue with singularities, this can be
remedied relatively easily by extending the definition of the density to take multiple
particle streams into account.

2.5.2 First-order result and the Zel’dovich approximation

Similar to our analysis of SPT, we are looking to determine the first-order solution of
(2.38). In LPT, this requires a tad more work than for the case of SPT since we need to
account for the mapping from q to q(i) to evaluate ∇q and J. We execute these steps in
detail in Appendix A, which leads us to

Ψ̈
(1)

+
µ

2
Ψ̇

(1) − (µ/2 + 1)Ψ(1) = 0, (2.41)

for a curl-free displacement field Ψ(1). Since this is equivalent to the linear growth equa-
tion (2.20) for the density contrast in SPT, the first-order solution for the displacement
field is given by

Ψ(1)(q(i), τ) = e τ Ψ(i)(q(i)) =
D+(t)
D+(ti)

Ψ(i)(q(i)). (2.42)

From the relation between the Eulerian velocity and the displacement field, it directly
follows that

Ψ(i)(q(i)) = u(i)(q(i)) = ∇ψ(i)(q(i)). (2.43)
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2.5 lagrangian perturbation theory 21

Extending the first-order result of LPT to calculations of late-time structure formation
is known as the Zel’dovich approximation (ZA). The peculiar velocity field u(q, τ) can be
inferred from (2.41) and comparison to (2.24) shows that

u(Z)(q, τ) = −∇ϕ(q, τ)

(µ/2 + 1)
. (2.44)

In the Zel’dovich approximation, the peculiar velocity field thus points down the local
gravitational well at any given time. It is often stressed that the ZA is a local approx-
imation in that individual fluid elements do not influence each other and evolve inde-
pendently. Although this is true, one should keep in mind that the trajectories of fluid
elements do contain effects of gravity since the third term on the lhs of (2.41) stems from
the Poisson equation.

2.5.3 The power spectrum in the Zel’dovich approximation

In Appendix A, we derive the density fluctuation power spectrum in the Zel’dovich
approximation and arrive at the result

P(Z)
δ (k) = e−σ2

Ψk2
∫

∆q(i)

(
e kTCΨ Ψ(∆q(i))k − 1

)
e−ik·∆q(i)

, (2.45)

where CΨ Ψ(∆q(i)) is the covariance matrix of the linearly evolved displacement field
(2.42) and σ2

ΨI3 = CΨ Ψ(0). The power spectrum in the Zel’dovich approximation is
quite extraordinary since it results in an expression that contains infinitely many or-
ders of the correlation function CΨ Ψ. This contrasts the results we expect from SPT,
which are ordered in powers of these correlation functions and can be traced back to
the non-linear relation between the displacement field and the density contrast (2.37).
Expanding (2.45) in terms of CΨ Ψ we recover the linear power spectrum from SPT at
first-order, plus higher order correction terms. Higher-order perturbations of the dis-
placement field no longer follow a GRF, prohibiting a closed analytical expression for
the resulting power spectrum. In Figure 2.3 we show the Zel’dovich power spectrum in
green, compared to the linear power spectrum from SPT—which is also the first-order
expansion of (2.45)—in blue. Interestingly, the full Zel’dovich result falls below the lin-
ear power spectrum on small scales (large k) since particles simply move past each other,
washing out structures on small scales. The yellow dashed line shows the expansion of
the full Zel’dovich power spectrum (2.45) up to second order in CΨ Ψ. Although this
curve seems to suggest excessive growth of small-scale structures due to the sharp in-
crease in amplitude for large k values, comparison to the full Zel’dovich result shows
that it is only a valid approximation of (2.45) until k ≈ 0.2 h Mpc−1. The behaviour at
small scales is therefore merely an artifact of the expansion in the correlation function
CΨ Ψ. This clearly shows that the one-loop result in SPT and LPT, which are identical at
this order [32] are not to be taken seriously for length scales where k ≈ 0.2 h Mpc−1. The
one-loop power spectrum from LPT is shown in the pink dotted line. The derivation of
the density power spectrum reveals that we deal with two different series expansions in
LPT. On the one hand, the equation of motion for the displacement field (2.38) calls for a
perturbative treatment; on the other hand, going beyond the Zel’dovich approximation
additionally requires a perturbative treatment of the cumulant expansion (A.15). We
encounter the same challenges in Kinetic Field Theory, which, as a particle-based ap-
proach to cosmic structure formation, shows a lot of similarity to LPT, but consistently
incorporates crossing particle streams.
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Figure 2.3: A comparison of the linear power spectrum from SPT (2.31) (blue line), the full
Zel’dovich power spectrum (2.45) (green line) and the expansion of the Zel’dovich
power spectrum up to second order in the initial power spectrum (orange line). The
one-loop power spectrum from LPT (identical to the result from SPT) is shown in the
pink dotted line.

2.6 simulations and the halo model

As we have seen, describing cosmic structure formation in the non-linear regime with
either SPT or LPT is fundamentally flawed. In both cases, fundamental assumptions
prevent us from successfully describing the system after stream-crossing. To make pre-
dictions for the non-linear power spectrum on small scales, where bound objects such
as galaxies and galaxy clusters have formed, simulations combined with the halo model
are the method of choice. The halo model [36] assumes that all matter in the universe is
part of virialised dark matter halos, which can be used to provide estimates for statisti-
cal properties of the cosmic matter field. The power spectrum is assumed to consist of
a one-halo contribution which dominates on small scales and a two-halo term on large
scales. Whereas the small-scale contribution, describing correlations of particles inside a
single halo, depends on the density profile of the dark matter halos, the large-scale term
describes correlations between the positions of different halos and is often assumed to
follow the linear power spectrum. The halo model results in a parametrised descrip-
tion of the dark matter power spectrum and can be used to fit the results of N-body
simulations [37, 38]. The non-linear power spectrum thus obtained by Smith et al. [38]
is plotted in Figure 2.4. Since simulations can probe much smaller length scales than
current analytic methods, the halo model is currently the primary approach to provide
non-linear power spectra for wavenumbers k ≳ 10h Mpc−1. Nevertheless, it comes with
several severe drawbacks regarding flexibility and interpretability. Since free parame-
ters are fixed with simulation data, the halo model can only provide non-linear power
spectra for cosmological models that have been part of a simulation. Since the latter
is costly and time-consuming, using the halo model to probe a broad range of cosmo-
logical models is impracticable. Although simulations are undoubtedly an immensely
useful tool for modern cosmology, they yield little physical insight into the underlying
processes. If possible, it is preferable to use analytic methods.
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Figure 2.4: The non-linear power spectrum obtained in [38] by fitting the halo model to the
result of an N-body dark matter only simulation. On large scales, the fitted non-
linear power spectrum coincides with the linear power spectrum by construction
(due to finite box sizes, simulations are troubled by boundary effects on these scales,
and the linear analytical result is more reliable). Around k ≈ 0.1h Mpc−1, we see
small deviations between simulation and linear power spectrum, characterising the
mildly non-linear regime. SPT and LPT results are the most useful at these scales
since stream-crossing has yet to occur. For larger values of k we enter the non-linear
regime, characterised by the presence of bound structures. Currently, simulations are
the only method to probe the cosmic density field on these length scales.

2.7 discussion

We started this chapter by summarising the standard cosmological model and the most
recent observational data for the cosmological parameters. We then discussed cosmic
structures, giving a glimpse of their formation in the early universe and the derivation
of the BBKS transfer function, which sets up the initial conditions for late-time structure
formation in the form of an initial power spectrum. We fix the initial time ti at recom-
bination where zi = 1100, which leaves us with the initial power spectrum displayed in
Figure 2.1.

We then proceeded with the discussion by introducing the two most widely spread
approaches of late-time structure formation in cosmology. Setting up the system of equa-
tions underlying SPT revealed that the hydrodynamical approach requires us to make
quite a few assumptions that seriously limit the range of length scales accessible to this
method. Most notably, the SSA leads to a breakdown of SPT in the non-linear regime.
More recently, approaches based on a hydrodynamical description have emerged that
attempt to circumvent the SSA, most notably effective field theory of large-scale struc-
tures (EFTofLSS) [39–41]. In a nutshell, EFTofLSS introduces an effective stress-energy
tensor for the cosmic fluid, thus avoiding the SSA altogether at the cost of introducing
further approximations. Intuitively, the effective stress-energy tensor emerges on large
scales by integrating out the shorter (UV) physics. Unfortunately, like all effective field
theories, EFTofLSS contains a set of free parameters that need to be fixed, making it rely
on simulations for the time being. Since one of the aims of analytical methods for cos-
mic structure formation is to get a deeper understanding of the underlying physics, this
might not be a very satisfying approach. Nevertheless, nowadays, EFTofLSS is among
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the most popular approaches to studying structure formation in the mildly non-linear
regime.

In addition to SPT, we also had a superficial look at some aspects of LPT, most no-
tably the ZA and the resulting density contrast power spectrum. As we have seen,
LPT suffers from the same inconsistencies as SPT once trajectories of fluid elements are
crossing. This breakdown can be traced back to the fact that, although LPT is seem-
ingly a particle-based approach, it is based on the continuum ansatz since it assumes
a one-to-one mapping of the initial Lagrangian coordinates to the Eulerian coordinates.
Stream-crossing can be consistently considered in LPT if we loosen this assumption and
treat different particle streams separately. An attempt to make this ansatz work can be
found in [35].

In conclusion, SPT and LPT suffer from severe drawbacks in their most basic formu-
lations and do not allow us to describe cosmic structure formation in the non-linear
regime. Although there have been valid extensions of both theories to remedy the in-
consistencies that have led to exciting developments, some fundamental barriers that
are baked into the very assumptions of these descriptions cannot be overcome without
a radical change in perspective. Overcoming these fundamental barriers is precisely the
aim of Kinetic Field Theory.
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3
K I N E T I C F I E L D T H E O RY

This chapter contains an extensive introduction to KFT in its most general form. Due
to the extensive range of systems that can be described in this framework, we keep
all considerations as general as possible. Specifications to cosmology will be treated
separately in the next chapter.

3.1 general setting and notation

KFT is a mathematical framework for describing classical many-body systems under
general conditions. As such, it offers an alternative to kinetic theory by encoding the
system’s dynamical evolution, as we will see shortly, in a path integral rather than
in a differential equation such as Liouville’s equation. Our primary focus will lie in
the description of late-time cosmic structure formation, which is a prime example of a
classical many-body system far from equilibrium. Nevertheless, it should be stressed
that KFT can be applied in a much broader context since it has very few underlying
assumptions. In principle, it can treat any system of classical, non-relativistic point
particles.

Let us consider the general case of a system of N classical point particles moving in an
external potential W and interacting via a two-particle interaction potential ν(|qa − qb|).
Such a system is described by the Hamiltonian

H =
N

∑
a=1

{ p2
a

2m
+ W(qa, t) + ∑

{b|b<a}
ν
(
|qa − qb|

)}
, (3.1)

where t stands for a general time parameter not to be confused with cosmic time. The
phase-space dynamics of the particles is described by Hamilton’s equations

q̇a =
∂H
∂pa

, ṗa = −
∂H
∂qa

for a = 1, . . . , N. (3.2)

For particle numbers N > 2, the equations of motion for non-trivial physical systems
cannot be solved exactly. Instead, a statistical approach is chosen, which derives macro-
scopic quantities, such as overall energy, entropy, pressure, volume etc. , from the mi-
croscopic phase-space dynamics induced by (3.1). Many systems of interest, such as
classical and quantum gases or spin lattices, are studied in situations where they have
reached a state close to equilibrium. This assumption greatly simplifies the description
of such systems’ properties since macroscopic quantities become time-independent, and
the ergodic assumption holds.

On the other hand, late-time cosmic structure formation is a process that is far from
equilibrium, such that we cannot tackle it with the traditional methods of equilibrium
statistical mechanics. Since we have seen previously that a fluid-dynamical approach,

25
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as employed by SPT, comes with its own tight restrictions and is therefore not an option
either, a new ansatz is in order. We will explore this in the following section, but before
properly introducing KFT, we will have to spend a couple of words on notation.

As we will see in the following, the fundamental fields in KFT are the 6N phase-space
coordinates of the classical particles of the system under consideration. To abbreviate
the equations on the coming pages, we want to introduce a notation that allows us to
write them compactly. For each individual particle, we collect the phase-space positions
in a single vector xa = (qa, pa)T, with the particle index a = 1, . . . , N. We then define

x(t) :=
N

∑
a=1

xa(t)⊗ ea =
N

∑
a=1

(
qa(t)

pa(t)

)
⊗ ea, (3.3)

where ea is the N-dimensional unit vector pointing in a-direction, such that (ea)b = δab.
This notation bundles the phase-space coordinates of all the particles of the system into
one single tensorial object. We define a scalar product for such tensors A and B by

A · B :=
N

∑
a=1

Aa · Ba. (3.4)

If the tensors are additionally time-dependent we extend the definition of the scalar
product to include a time integral

A · B :=
N

∑
a=1

∫
dt Aa(t) · Ba(t). (3.5)

Note that in this notation Hamilton’s equations (3.2) are compactly expressed as

E [x] = ẋ−J∇xH = 0, where J =

(
0 I3

−I3 0

)
⊗ IN . (3.6)

3.2 from the probability density to the generating functional

To illustrate the ideas behind KFT, let us consider a many-body system described by
the Hamiltonian (3.1). At the initial time ti, we assume that the particles occupy the
infinitesimal phase-space volume around position x(i) with probability P(x(i)). After
the initialization, the microscopic degrees of freedom evolve according to the laws of
classical mechanics so that the system changes at the macroscopic scale. To calculate
the macroscopic properties of such a system, we need a time-dependent phase-space
probability density. At some final time tf the ensemble average of a general observable
O is given by

⟨O(tf)⟩ =
∫ N

∏
a=1

d3 pa d3qa O(q1, . . . , qN , p1, . . . pN , tf) P(q1, . . . , qN , p1, . . . pN , t f ),

=:
∫

dx O(x, tf) P(x, tf). (3.7)

In contrast to equilibrium statistical mechanics, the phase-space probability density
P(x, tf) is time-dependent and needs to be determined by describing the system’s evo-
lution from its initial state. From the known initial probability density P(x(i)), we can
infer

P(x, tf) =
∫

dx(i) P(x(i))P(x, tf|x(i)), (3.8)

[ April 24, 2023 at 9:45 – classicthesis version 4.2 ]



3.2 from the probability density to the generating functional 27

where P(x, tf|x(i)) denotes the transition probability from the initial state x(i) to the final
state x at time tf. Since we are dealing with a classical N-body system, the transition am-
plitude is non-vanishing only for those phase-space positions x that result from evolving
the initial state along its classical trajectory x̃(tf; x(i)), such that

P(x, tf|x(i)) = δD
(
x− x̃(tf; x(i))

)
. (3.9)

Slicing the classical trajectory into infinitesimal time-steps it can be shown that for each
time ti < t ≤ tf the ensemble average of a general operator O is given by

⟨O(t)⟩ =
∫

dx(i) P(x(i))
∫

x(ti)=x(i)
Dx(t) O(x, t)δD

[
x(t)− x̃(t; x(i))

]
. (3.10)

Note that the Dirac delta has become a functional delta distribution under the path
integral. For the next step, we note that the expression in the functional delta distribu-
tion forces the phase-space coordinates of the system to lie on the classical trajectory at
each moment in time. This is equivalent to demanding that Hamilton’s equations (3.6)
be fulfilled for each time t. The transformation of the phase-space trajectories in the
functional delta-distribution to Hamilton’s equations of motion involves a functional
determinant which is linked to the value of the Heaviside step function at t = 0 [42,
43]—naturally, since the Heaviside function is the Green’s function of the first-order
derivative operator. A common choice in quantum field theory is to set θ(0) := 1

2 , which
preserves time-reversal symmetry at the cost of a non-vanishing functional determinant,
thus introducing ghost degrees of freedom into the theory. To avoid the occurrence of
ghosts, we choose instead θ(0) := 0, such that the determinant becomes constant and
the transformation from particle trajectories to equations of motion can be done without
introducing additional dynamical degrees of freedom to the path integral:

δD
[
x(t)− x̃(t; x(i))

]
∝ δD

[
E [x]

]
. (3.11)

This statement holds for general first-order equations of motion, independently of addi-
tional assumptions such as a symplectic structure. To arrive at the final expression for
the probability density, we represent the functional Dirac delta in Fourier space

δD
[
E [x]

]
=
∫
Dχ(t) exp

(
iχ · E [x]

)
, (3.12)

where χ = (χ
q
, χ

p
)T is the Fourier conjugate to the equations of motion. Note that the

generalized scalar product between χ and the equations of motion

χ · E [x] =
∫

dt
N

∑
a=1

χa · E [xa] =
∫

dt
N

∑
a=1

(
χqa

(t)

χpa
(t)

)
·
q̇a − ∂H

∂pa

ṗa +
∂H
∂qa

 (3.13)

can be thought of as an action, since δ
δχ

(
χ · E [x]

)
= 0 generates the classical equations of

motion. Introducing the time-dependent source fields J(t) and K (t) for the phase-space
coordinates x(t) and the auxiliary field χ(t), respectively, we arrive at the (canonical)1

generating functional

Z[J, K ] =
∫

dx(i) P(x(i))
∫

x(i)
Dx(t)

∫
Dχ(t) exp

{
iχ · E [x] + iJ · x + iK · χ

}
.

(3.14)

1 Canonical refers to the fact that we keep the particle number N constant, in contrast to the grand-canonical
formalism introduced in [4].
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The lower boundary of the path integral is an abbreviation to remind ourselves that at
ti the initial state x(ti) is fixed at x(i). The generating functional (3.14) is the central
object in KFT since it allows for a systematic calculation of macroscopic quantities such
as correlation functions. Since Z[0, 0] is normalized to unity, the ensemble average of a
general observable O(x, t) now takes the form

⟨O(t)⟩ = Ô
( δ

iδJ(t)

)
Z[J, K ]

∣∣
0, (3.15)

where (. . . )|0 implies that the expression is to be evaluated at J = K = 0. More system-
atically, we can calculate ensemble averages of a general observable by substituting

x→ x̂ =
δ

iδJ
and χ→ χ̂ =

δ

iδK
(3.16)

for its arguments and applying the resulting operator to the generating functional. Ob-
servables in operator form are generally marked as such by a hat, e. g. Ô(t). Note that
we do not expect actual physical observables to depend on the auxiliary field χ, since
it has no direct physical interpretation. Nevertheless, we will see shortly that it plays a
vital role in KFT calculations.

3.3 general particle trajectories and the interaction operator

For most many-body systems of physical interest, e. g. systems with particle interactions,
solving the full equations of motion E [x] is hopeless. Instead, our strategy will be to
split E [x] into a simple linear part E0[x] and a non-linear part E I [x] due to interactions.
Here linear and non-linear refer to the nature of the resulting differential operator. Note
that, in the case of underlying Hamiltonian dynamics, this splitting could be due to a
separation of the Hamiltonian H = H0 +HI , but this does not necessarily have to be
the case. For example, we can imagine that we perform a coordinate transform on x,
which leaves the path integral in (3.14) invariant but destroys the symplectic nature of
the equations of motion. We can then still split E [x] into two parts, but since it is no
longer symplectic, we can not define a split of the underlying Hamiltonian. We will
encounter this case when we discuss particle trajectories in an expanding universe.

Performing the separation of the equations of motion and rearranging terms in (3.14)
leads to

Z[J, K ] =
∫

dΓ i

∫
x(i)
Dx(t)

∫
Dχ(t) exp

{
iχ ·

(
E0[x] + K

)
+ iχ · E I [x] + iJ · x

}
,

(3.17)

where we have additionally introduced the abbreviation dΓ i = dx(i) P(x(i)). We refer
to the term containing the non-linear part of the equation of motion as the interaction
action SI . Promoting it to an operator such that

iSI = iχ · E I [x] → iŜI := iχ̂ · E I [x̂] = i

(
δ

iδK
· E I

[
δ

iδJ

])
(3.18)

allows us to pull it in front of the path integral. The result is the interaction operator ŜI ,
which we will spend much time with later. For now, let us focus on the remaining path
integral, which we will from now on refer to as the free generating functional

Z0[J, K ] =
∫

dΓ i

∫
x(i)
Dx(t)

∫
Dχ(t) exp

{
iχ ·

(
E0[x] + K

)
+ iJ · x

}
. (3.19)
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At this point, we can revert the steps that we have taken previously by recasting the
path integral over the auxiliary field χ into a functional delta-distribution

Z0[J, K ] =
∫

dΓ i

∫
x(i)
Dx(t) δD

[
E0[x] + K

]
e iJ·x, (3.20)

thus enforcing the condition that the particles’ motion be dictated by the linear part of
the e. o. m. with an inhomogeneity given by the source field K . Evaluating the path
integral then leads to

Z0[J, K ] =
∫

dΓ i exp
{

iJ · x̃[K ]
}

, (3.21)

where x̃[K ] denotes the K -dependent phase-space trajectory which solves the initial
value problem E0[x] + K = 0, with x(ti) = x(i). Since Hamilton’s equations are first-
order differential equations, and we demand E0[x] to be a linear differential operator,
we can write

E0[x] + K = ẋ−M x + K = 0 x(ti) = x(i), (3.22)

where the details of the physical system are contained in the matrix M. We discuss the
solution of this equation in terms of a Green’s function in more detail in Appendix B,
where we end up with the phase-space trajectory

x̃[K , t) = G(t, ti)x(i) −
∫

dt̄ G(t, t̄)K (t̄) ∀ t > ti. (3.23)

Since all particles share the same Green’s function, we have G(t, t′) = G(t, t′) ⊗ IN ,
where G(t, t′) is the single-particle Green’s function. Due to the structure of the phase-
space coordinates it can be generally written as

G(t, t′) =

(
gqq(t, t′) I3 gqp(t, t′) I3

gpq(t, t′) I3 gpp(t, t′) I3

)
θ(t− t′), (3.24)

but the exact expression for the individual components depends on M. A common
situation in the application of KFT to cosmic structure formation and beyond is that
p = q̇ is imposed by the equations of motion2. Conditions such as this one are directly
translated to the Green’s function, such that we would get the relation gp×(t, t′) =

∂tgq×(t, t′), where × stands for either q or p. Furthermore, if the linear e. o. m. does not
contain any terms that are proportional to the particle position, it follows that gqq(t, t′) =
1 and gpq(t, t′) = 0. This situation is quite common in KFT since q-dependent terms
tend to be included in the non-linear part of the equations of motion. Under these two
conditions, the Green’s function retains but a single independent component, gqp(t, t′),
which we shall refer to as the ‘particle propagator’. For all applications of interest in
this thesis, the Green’s function can therefore be simplified to

G(t, t′) =

(
I3 gqp(t, t′) I3

03 ġqp(t, t′) I3

)
θ(t− t′), (3.25)

where the dot refers to the derivative w. r. t. the first time argument. Note that the
particle propagator gqp(t, t′) describes how the position of a particle changes between
the times t and t′ due to its momentum and, therefore, naturally fulfils gqp(t, t) = 0.

2 In general, the particle mass should appear in this relation, but we are mostly interested in purely gravita-
tional systems where particle masses cancel out in the e. o. m. .
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3.3.1 Free phase-space trajectories

First, let us consider the case where no interaction operator acts on the free generating
functional, allowing us to set the source current K to zero. The resulting free particle
trajectory x̄(t) is then solely determined by the initial conditions and the Green’s function

x̄(t) = G(t, ti) x(i). (3.26)

Note that free trajectories reflect our choice of the linear part of the equation of motion
and do not necessarily correspond to force-free motion in the physical sense. Indeed,
it turns out that in cosmological applications incorporating a particular part of particle
interactions into the ‘free’ trajectories can be helpful when doing explicit calculations.
Keeping this in the back of our mind, we will mainly glance over this semantic sub-
tlety and refer to the solution to the linear part of the e. o. m. as ‘free’ trajectories and
to the terms inducing deviations therefrom as ‘interactions’. For the free phase-space
trajectories of individual particles, (3.26) and (3.25) imply that ∀ a = 1, . . . , N

q̄a(t) = q(i)
a + gqp(t, 0)p(i)

a , (3.27)

p̄a(t) = ġqp(t, 0)p(i)
a . (3.28)

Recall that, due to the statistical nature of the initial conditions, the free generating
functional contains an integral over the initial phase-space density. For particles moving
along free trajectories, we can reformulate (3.21) explicitly in terms of the initial phase-
space coordinates. Starting from the free generating functional with K = 0 we define
the time-integrated source fields by using the definitions (3.27) and (3.28) for the free
phase-space trajectories:

J̄ q =
∫

dt J q(t) J̄ p =
∫

dt
(

gqp(t, 0) J q(t) + ġqp(t, 0) J p(t)
)
. (3.29)

As a result, we can rewrite the free generating functional in the particularly simple form

Z0[J, 0] =
∫

dΓ i exp
{

iJ̄ q · q
(i) + iJ̄ p · p

(i)}. (3.30)

3.3.2 Fully interacting phase-space trajectories

As a consistency check, it is now instructive to consider the opposite, where we apply
the interaction operator in its exponential form to the free generating functional. The
fully interacting generating functional is given by

Z[J, K ] = exp
(
iŜI
) ∫

dΓ i exp
{

iJ · x̃[K ]
}

, (3.31)

with the interaction operator defined in (3.18). Applying the functional derivative
w. r. t. K introduces a shift, resulting in

Z[J, K ] = exp
{

i
(
Ê I ·

δ

iδK

)}
Z0[J, K ] = Z0[J, K + E I ] (3.32)

in complete analogy to the effect of the translation operator in quantum mechanics
exp(a ·∇) f (x) = f (x + a). Now that the interaction operator has been applied, there is
no further need for the source field K , and we may set it to zero, which yields

Z[J] =
∫

dΓ i exp
{

iJ · x̃
[
E I [x̃]

]}
, (3.33)

with x̃
[
E I [x̃], t

)
= G(t, ti)x(i) −

∫
dt̄ G(t, t̄) E I [x̃, t̄). (3.34)
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The resulting particle trajectory is thus a self-consistent solution of the full equation
of motion E [x] = E0[x] + E I [x], illustrating that the interaction operator introduces
perturbations into the phase-space trajectory by means of the source field K . Of course,
as the inhomogeneous part of the trajectory contains the full phase-space trajectory itself,
this is a purely formal result, which can lead to a perturbative treatment by iteratively
inserting the solution into itself. Whereas the first iteration step corresponds to free
trajectories, the second iteration consists of free trajectories perturbed by interacting
with all other particles that move along free trajectories themselves, known as Born’s
approximation.

3.4 essential macroscopic operators

So far, we have been laying the groundwork for KFT in constructing the generating
functional from the microscopic phase-space dynamics and have kept the discussion of
macroscopic observables at an abstract level. Building upon our work in the previous
sections, we are now in a position to introduce operator expressions for the physical
quantities in which we are interested. It turns out that two fundamental fields naturally
enter calculations in KFT, no matter which macroscopic quantities we aim to calculate:
the particle density and the so-called response field3. Of course, many more observables
of interest can be expressed as operators in KFT, but we will be content with the two
mentioned above for our application.

As an aside, let’s make a short note on the notation at this point. Since we will contin-
uously work with time-dependent observables in Fourier-space, we should introduce a
compact notation for their arguments. For an arbitrary function f in Fourier-space, we
therefore define

f (1) := f (k1, t1), f (−1) := f (−k1, t1),
∫

d1 f (1) :=
∫

dt1

∫
k1

f (k1, t1).

(3.35)

3.4.1 The density operator

Let us start our discussion of macroscopic observables with the familiar notion of par-
ticle density in configuration space. Due to the assumption of classical point-particles,
reads

ρ(q, t1) =
N

∑
a=1

δD
(
q− qa(t1)

)
. (3.36)

It is essential to distinguish between the configuration space coordinate q and particle
a’s time-dependent phase-space position qa(t1). Whereas the time-dependent position
in phase-space is a particle-bound quantity, the coordinate q denotes a position in con-
figuration space independent of particles. Due to its distributional nature, it is much
more convenient to work with the particle density in Fourier space, where it reads

ρ(1) = ρ(k1, t1) =
N

∑
a=1

exp
(
− ik1 · qa(t1)

)
. (3.37)

3 This is because these two fields are needed to describe the interaction operator for the case of particle inter-
actions that are caused by a two-particle interaction potential. Some applications, such as the resummed
version of KFT, require a slight generalisation from the particle density to the total phase-space density,
though.
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Intuitively, we decompose the density field into its Fourier modes, and each of these
modes evolves in time due to its dependence on the spatial trajectories of the microscopic
particles of the system. We, therefore, refer to a density mode being carried by particles.
From (3.37), we derive the density operator by replacing the spatial particle trajectories
with functional derivatives w. r. t. the source current J

ρ̂(1) =
N

∑
a=1

exp

(
− ik1 ·

δ

iδJqa(t1)

)
=

N

∑
a=1

ρ̂a(1). (3.38)

In the last step, we identified the single-particle density operator ρ̂a(1), which is the
operator expression of a density mode being carried by particle a.

To gain some intuition, let us calculate a free (Fourier-space) m-point density correla-
tion function Ḡρ...ρ(1, 2, . . . , m) by applying m density operators on the free generating
functional. Since density operators in Fourier space (3.4.1) are exponentials of functional
derivatives, they generate functional shifts in Z0, such that

Ḡρ...ρ(1, 2, . . . , m) =
N

∑
{a1...am}

ρ̂a1(1)ρ̂a2(2) . . . ρ̂am(m) Z0[J, K ]
∣∣
0 =

N

∑
{a1...am}

Z0[L, 0], (3.39)

with L(t) =
m

∑
s=1

(
−ks

0

)
δD(t− ts)⊗ eas . (3.40)

Note that the shift tensor L implicitly depends on the set of particle indices {a1 . . . am}. It
is enlightening to examine this expression from a different angle by explicitly evaluating
the result for Z0. After inserting the shift tensor into the definition of the free generating
functional (3.21) at vanishing K , a quick calculation shows that

Z0[L, 0] =
∫

dΓ i exp
(
−

m

∑
s=1

iks · q̄as(ts)
)

, (3.41)

which integrates the free Fourier-space particle densities over initial conditions. Here
q̄as(ts) denotes the free spatial trajectory of particle as at time ts. We interpret this in a
way that a single Fourier mode of the density field evolves in time due to the evolution
of particle trajectories, starting from specific initial conditions. In this sense, density
modes can thus be thought of as being carried by point particles which govern their
evolution via their phase-space dynamics. Correlations between time-evolved particle
densities are obtained by propagating the initial correlations between particles forward
in time. The expression (3.27) for free spatial trajectories allows us to formulate the
integrand explicitly in terms of the initial phase-space positions as in (3.30)

Z0[L, 0] =
∫

dΓ i exp
(
iL̄q · q(i) + iL̄p · p(i)), (3.42)

where we derived the time-integrated position and momentum shift tensor L̄q and L̄p
from the time-dependent shift tensor (3.40) in analogy to (3.29). To stay consistent with
the common notation in KFT, we will drop the bars on these vectors in the following,

L̄q → L q L̄p → L p, (3.43)
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always keeping in mind that L q and L p are not the p- and q-components of the time-
dependent shift tensor! Their definition in terms of the particle indices as and the argu-
ments of the density operators is

L q =
m

∑
s=1

Lqas
⊗ eas with Lqas

= −ks, (3.44)

L p =
m

∑
s=1

Lpas
⊗ eas with Lpas

= −gqp(ts, 0) ks. (3.45)

Since time has explicitly been integrated out in the definition of the position and momen-
tum shift tensors, they should not be considered as functions but rather as parameters
appearing in Z0. Additionally, once the source fields J and K are set to zero (3.42) is
strictly speaking no longer a generating functional—although it is commonly referred
to as the ‘free-generating functional at shift L’ in KFT literature. To stay somewhat con-
sistent with the standard KFT convention while still recognising these facts, we define
the function

Z0(L q, L p) :=
∫

dΓ i exp
(
iL q · q(i) + iL p · p(i)), (3.46)

which, due to (3.39) plays the role of a free m-point correlation function at fixed particle
indices in KFT. As we will see in the next chapter, the sums over particle indices in (3.39)
turn into trivial prefactors in the continuum limit, such that we can identify Z0(L q, L p)

with a free correlation function up to a constant prefactor.

3.4.2 Interactions and the response field operator

3.4.2.1 The interaction operator

In the previous section, we showed how to calculate free correlation functions. A nat-
ural step forward is to ask how interactions can be included—always keeping in mind
that free trajectories and interactions are determined by the part of the split equation of
motion they stem from—in our considerations. Assuming that E I [x] contains the inter-
action potentials from the Hamiltonian (3.1), the interaction action (3.18) and Hamilton’s
equations suggest that

iSI = iχ
p
·∇qV + iχ

p
·∇qW. (3.47)

Here W(q, t) represents a general external potential, whereas particle interactions are
encoded in the collective potential

V(q, t) =
N

∑
a=1

ν
(
|q− qa(t)|

)
=
∫

q′
ν(q− q′)ρ(q′, t), (3.48)

where we relied on the definition (3.36) of the particle density to arrive at the second
equality. To clarify the above notation, note that the potentials W(q, t) and V(q, t) are
to be understood as functions of the spatial coordinate q and time t, whereas gradients
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such as ∇qV(t) are evaluated at the actual positions of microscopic point-particles at
the time t

∇qV(t) =
N

∑
a=1

∇qV(q, t)
∣∣
q=qa(t)

⊗ ea

=
N

∑
a=1

N

∑
{b|b<a}

∇qν
(
|q− qb(t)|

)∣∣
q=qa(t)

⊗ ea

=
N

∑
a=1

∫
q′
∇qν(q− q′)ρ(q′, t)ρa(q, t)⊗ ea. (3.49)

Once again, we have used (3.36) to derive the last equality. Plugging this into the first
term of (3.47) and expanding the generalized scalar product yields

iχ
p
·∇qV = i

∫
dt′
∫

q′,q

N

∑
a=1

χpa
(t′) ·∇qν(q− q′)ρ(q′, t′)ρa(q, t′). (3.50)

Transforming to Fourier space once more and shuffling around the resulting terms
leaves us with

iχ
p
·∇qV = −i

∫
dt′
∫

k′

{ N

∑
a=1

(
− ik′ · χpa

(t′)
)
ρa(−k′, t′)

}
ν(k′)ρ(k′, t′)

= −i
∫

d1′ B(−1′) ν(1′) ρ(1′). (3.51)

In the last step, we identified the term in braces as the response field B(−1′) = B(−k′1, t1).
Following the same line, the second term in (3.47) gives a similar result but lacks the
particle density ρ(1′) under the integral. This is, of course, expected since this compo-
nent represents the particle density that sources the two-particle interaction and should
be absent in the case of an external potential.

As we did previously, we can now turn the resulting expressions into operators by
employing (3.16). The full expression for the resulting interaction operator thus turns
out to be

iŜI = −i
∫

d1′ B̂(−1′) ν(1′) ρ̂(1′)− i
∫

d1′ B̂(−1′)W(1′), (3.52)

where the two terms are due to particle interactions and the presence of an external
potential, respectively.

3.4.2.2 The response field operator

The response field operator B̂(−1′) thus appears naturally once we express the interac-
tion operator in terms of macroscopic fields. To understand its role in the evaluation of
interactions, we have a closer look at its components. By definition

B̂(−1′) =
N

∑
a=1

(
− ik′1 · χ̂pa

(t′1)
)
ρ̂a(−1′) ≡

N

∑
a=1

b̂a(−1′)ρ̂a(−1′), (3.53)

introducing the one-particle response field operator b̂a(−1′) in the second line.
As we show in Appendix C, expressing the effect of response field operators on the

free generating functional is a rather messy business. A more elegant description is
obtained by interpreting response fields as operators acting on other density operators.
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This can then be compactly encoded by considering contractions of response field oper-
ators with density operators

B̂(−R) ρ̂(s) := b(s,−R) ρ̂(s,−R), (3.54)

with the response prefactor and the generalized density operator, respectively, defined
by

b(s,−R) := (−ikR · ks)gqp(ts, tR)θ(ts − tR), (3.55)

ρ̂(s,−R) :=
N

∑
as=1

ρ̂as(s)ρ̂as(−R). (3.56)

Additionally, since response field operators contain one-particle density operators, re-
sponse fields can contract with other response fields. The result of such a contraction
is

B̂(−R) B̂(−S) = b(−S,−R) B̂(−S,−R), (3.57)

with B̂(−S,−R) :=
N

∑
as=1

b̂as(−S)ρ̂as(−S)ρ̂as(−R). (3.58)

Note that since the prefactor b(−S,−R) contains a particle propagator, contractions are
time-directed, leading us to refer to it as a response field ‘targeting’ another operator.
We use the convention that response field operators on the left of a contraction are
evaluated at an earlier time, allowing response fields to form chains, along which their
time and wave-vector arguments are handed down. Causality forbids chains that close
in on themselves since such a topology must contain a term with θ(t− t′) where t′ > t.
As a direct consequence, all correlation functions which exclusively contain response
fields vanish, such that a chain of response field operators necessarily has to end in a
density operator.

The generalized density operators obtained from contractions with response field op-
erators act on the free generating functional to generate density correlation functions
such as in (3.46). As an illustration, consider a single response field operator and m
density operators acting on the free generating functional. Since contractions have their
origin in a functional derivative, they follow a Leibniz rule, such that

ḠBρ...ρ(−R, 1, . . . , m) = B̂(−R) ρ̂(1)ρ̂(2) . . . ρ̂(m)Z0[J, K ]
∣∣
0

=
m

∑
s=1

B̂(−R)ρ̂(1) . . . ρ̂(s) . . . ρ̂(m)Z0[J, K ]
∣∣
0

=
m

∑
s=1

b(s,−R)ρ̂(1) . . . ρ̂(s,−R) . . . ρ̂(m)Z0[J, K ]|0

=:
m

∑
s=1

b(s,−R) ∑
{a1,...,am}

Z0(L q, L p). (3.59)

In the last step, we identified the free m-point correlation function Z0(L q, L p), formally
equivalent to (3.46) but contains different shift tensors. From the definition of the gen-
eralized density operators (3.56), it follows that the s-components of the shift tensors
obtain an additional contribution

Lqas
= −ks + kR , Lpas

= −gqp(ts, 0) ks + gqp(tR, 0) kR. (3.60)
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Informally speaking, we can think of this as the response field handing over its argu-
ments to the density operator with which it contracts. In the most general case where
n response field operators and m density operators are applied to the free generating
functional, giving us a mixed correlation function of order (n, m)

ḠB...Bρ...ρ(−1′, . . . ,−n′, 1, . . . , m)

= ∑
{ci}∈Cn

b(c1,−1′) . . . b(cn,−n′) ∑
{a1,...,am}

Z0(L q, L p),
(3.61)

where Cn is the set of all contractions of the n response fields operators that are allowed
by causality. A free mixed correlation function of order (n, m), i. e. a free correlation
function between n response and m density fields, thus generates a sum of terms, each
containing a generalized free m-point density function. According to (3.46) each such
free correlation function can be assigned a set of shift tensors (L q, L p). If no response
field operators have been applied, the m components of the shift tensors are directly
given by the wave vectors (scaled with particle propagators for the momentum shift
vectors) of the density operators that generated the correlation function. Applying re-
sponse fields, in addition, does not add new components to the shift tensors but instead
modifies their existing components by adding arguments of the response fields to them.
The modified arguments of the resulting m-point density function take the general form

L q =
m

∑
r=1

Lqar
⊗ ear with Lqar

= −∑
{i}

kri , (3.62)

L p =
m

∑
r=1

Lpar
⊗ ear with Lpar

= −∑
{i}

gqp(tri , 0) kri . (3.63)

This is a direct generalization of (3.44) and (3.45), in the sense that each component
of the shift tensor can now be a linear combination of the arguments of density and
response field operators. Note that components of momentum shift vectors are related
to those of spatial shift vectors straightforwardly, such that it is sufficient to indicate the
spatial shift vectors of a free correlation function.

3.5 canonical perturbation theory

We have introduced some basic building blocks at the foundation of KFT, from the
canonical generating functional to density and response field operators. Different for-
mulations of KFT can be and have been constructed [4, 22, 44] building upon these
foundations. In this section, we introduce the simplest and, in some ways, the most
naive formulation, canonical perturbation theory.

We have seen in Section 3.3.2 that we can formally apply the full exponential of the
interaction operator to recover fully interacting particle trajectories in the canonical gen-
erating functional. However, since these are self-consistent expressions, this approach
does not lead us very far in actual calculations. Instead, we evaluate particle interac-
tions by expanding the exponential of the interaction operator in (3.31) in a Taylor series.
To this end, consider a system of point particles with particle-particle interactions dic-
tated by the potential ν(|q− q′|). Additionally, we assume the absence of an external
potential, such that the particle interaction operator is given by

iŜI = −i
∫

d1′ B̂(−1′) ν(1′) ρ̂(1′). (3.64)
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Intuitively the ingredients of the interaction operator play the following roles: Since
ρ̂(1′), once it has acted onto the generating functional, represents the entire particle
density field, the product ν(1′)ρ̂(1′) generates the potential landscape that particles are
moving through. The response field operator B̂(−1′), by contracting with a density
operator, decides which representative particle will be perturbed by the presence of the
interaction potential.

Perturbation theory in KFT is an expansion in terms of the interaction potential, which
should ideally only lead to minor corrections to the free result. As we will discuss in
more detail in our application to cosmology, carefully choosing the splitting of the equa-
tions of motion (3.6) can help minimize the impact of the particle interaction operator.
For now, let us go ahead with the expansion of the exponential in the generating func-
tional by considering the full m-point density correlation function

Gρ...ρ(1, . . . , m) = ρ̂(1) . . . ρ̂(m) exp(iŜI) Z0[J, K ]
∣∣
0

=
∞

∑
n=0

(iŜI)
n

n!
ρ̂(1) . . . ρ̂(m) Z0[J, K ]

∣∣
0

=:
∞

∑
n=0

δ(n)Gρ...ρ(1, . . . , m). (3.65)

In the last line we introduced the notation δ(n)Gρρ(1, . . . , m) for the n-th order correction
to a free m-point function. Note that since all operators act on the free generating
functional and since functional derivatives commute, operators can be commuted to our
liking. If we wish to express the effect of response fields in terms of contractions with
other operators, we implicitly impose a natural ordering into our expressions. Response
fields can contract with all operators that follow them (on their right) and therefore have
to be collected on the left, similar to the normal ordering we encounter in the operator
formalism in quantum field theory. As an example, consider the n-th order term in the
above expansion

(iŜI)
n

n!
ρ̂(1) . . . ρ̂(m) Z0[J, K ]

∣∣
0

=
(−i)n

n!

∫
d1′ B̂(−1′)ν(1′)ρ̂(1′) . . .

∫
dn′ B̂(−n′)ν(n′)ρ̂(n′) ρ̂(1) . . . ρ̂(m) Z0[J, K ]

∣∣
0

=
1
n!

∫
d1′
(
− iν(1′)

)
. . .
∫

dn′
(
− iν(n′)

)
ḠB...Bρ...ρ(−1′, . . . ,−n′, 1′, . . . , n′, 1 . . . , m)

=
1
n!

∫
d1′ . . .

∫
dn′ ∑

Cn

f (c1,−1′) . . . f (cn,−n′) ∑
{e1,...,em}
{i1,...,in}

Z0(L q, L p) (3.66)

In the third line, we identified the free mixed correlation function of order (n, n + m),
which we evaluated according to (3.61) to arrive at the final expression. Since their ar-
guments are integrated out, we refer to the n density modes, which act as sources in
the interaction operators as internal density modes. In contrast, density operators repre-
senting the modes of the m-point function are called external modes. Whereas internal
densities are labelled with the particle indices i1, . . . , in, external density modes carry
the indices e1, . . . em. We additionally collected response field prefactors and interaction
potentials in the force prefactors

f (cs,−s′) := −iν(s′)b(cs,−s′) = −ν(s′)(kcs · ks)gqp(tcs , t′s)θ(tcs − t′s). (3.67)
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As the name suggests, these prefactors contain information on the total deviation of a
particle trajectory from inertial motion due to the force caused by a density field. To
evaluate perturbative corrections to free correlation functions in KFT, we thus need to
evaluate free correlation functions of higher order. In the application to cosmology, most
of the complications of the system are contained in these correlation functions, and we
will go to great lengths to evaluate them for cosmological initial conditions. But first, to
see how these general considerations apply to a concrete situation, let us quickly look
at a basic example calculation.

Example 3.5.1 Consider the simple case of a first-order correction to a two-point density func-
tion. We apply two density operators to the free generating functional and follow it up with a
particle interaction operator

iŜI ρ̂(1) ρ̂(2) Z0[J, K ]
∣∣
0 = −i

∫
d1′ ν(1′) B̂(−1′) ρ̂(1′) ρ̂(1) ρ̂(2) Z0[J, K ]

∣∣
0. (3.68)

The response field operator has two choices for density operators to contract to since causality
forbids it to contract with ρ̂(1′). Each of the two contractions gives rise to a free 3-point density
function such that

iŜI ρ̂(1) ρ̂(2) Z0[J, K ]
∣∣
0

=
∫

d1′ ρ̂(1′)
{

f (1,−1′) ρ̂(1,−1′)ρ̂(2) + f (1,−1′) ρ̂(1)ρ̂(2,−1′)
}

Z0[J, K ]
∣∣
0

= ∑
{e1,e2,i1}

∫
d1′
{

f (1,−1′)Z0
(
L(A)

q , L(A)
p
)
+ f (2,−1′)Z0

(
L(B)

q , L(B)
p
)}

. (3.69)

The shift tensors that are generated for the two terms each have three components, given by
L(A)

qe1
= −k1 + k′1 L(A)

pe1
= −gqp(t1, 0) k1 + gqp(t′1, 0) k′1

L(A)
qe2

= −k2 L(A)
pe2

= −gqp(t2, 0) k2

L(A)
qi1

= −k′1 L(A)
pi1

= −gqp(t′1, 0) k′1

(3.70)


L(B)

qe1
= −k1 L(B)

pe1
= −gqp(t1, 0) k1

L(B)
qe2

= −k2 + k′1 L(B)
pe2

= −gqp(t2, 0) k2 + gqp(t′1, 0) k′1

L(B)
qi1

= −k′1 L(B)
pi1

= −gqp(t′1, 0) k′1.

(3.71)

To proceed further in the evaluation, we need more specific knowledge about the initial
conditions and the equations of motion of the system at hand, which we postpone to the
next chapter. Note that the entire formalism we developed up until this point is com-
pletely general and can be applied to arbitrary systems of classical particles. In many
cases, systems exhibit additional symmetries that enter the formalism and lead to sim-
plifications. In statistically homogeneous systems like cosmic structures, the two-point
correlation function in Fourier space forces the respective wave vectors to be antiparallel
since ⟨ρ(k)ρ(k′)⟩ ∝ δD(k + k′). If we additionally consider an equal-time correlation
function, contractions of a response field operator with either density operator give the
same result. Thus, for a homogeneous system example, 3.5.1 results in one single term
with an overall multiplicity factor of 2.
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3.6 a toy model for canonical perturbation theory

Although KFT merely describes systems following classical dynamics, getting a good
intuition for the physical meaning of the perturbative treatment of the interaction opera-
tor is quite challenging. Since toy models can hugely benefit our understanding of KFT,
it is worth having a deeper look at a specific example.

3.6.1 Setting

To illuminate some of the main concepts at the core of canonical perturbation theory, we
want to use the simple situation of two interacting particles a and b with equal masses
ma = mb = 1 in a static space-time

H =
pa

2
+

pb

2
+ ν(|qa − qb|). (3.72)

For now, we keep the interaction potential ν(|qa − qb|) general but assume that it has
no explicit time dependence. The Green’s function resulting from the free part of Hamil-
ton’s equations is given by

G(t1, t′1) =

(
I3 g1,1′I3

03 ġ1,1′I3

)
θ(t1 − t′1) with g1,1′ = t1 − t′1. (3.73)

To fully concentrate on the effect of particle interactions, we use explicit initial conditions
by choosing the initial probability density

P
(
x(i)
)
= δD(q

(i)
a − qa,0)δD(q

(i)
b − qb,0)δD(p

(i)
a − pa,0)δD(p

(i)
b − pb,0), (3.74)

where we assume to be in the centre of mass frame of the system such that qa,0 = −qb,0
and pa,0 = −pb,0. The corresponding full generating functional reads

Z[J, K ] = eiŜI

∫
dΓ i e iJ·x[K ] = eiŜI exp

(
iJa · x̃a[Ka]

)
exp

(
iJb · x̃b[Kb]

)
. (3.75)

Since we are interested in the particle density rather than the full phase-space density,
the only relevant information lies in the spatial part q̃ of the phase-space trajectories x̃.
Additionally, we know that response fields only contain functional derivatives w. r. t. K p,
such that we set K q = 0 right away. The particle trajectory of particle a therefore reads

q̃a[Kpa , t1) = qa,0 + g1,0 pa,0 −
∫

dt′1 g1,1′Kpa(t
′
1)

= q̄a(t1)−
∫

dt′1 g1,1′Kpa(t
′
1), (3.76)

where we introduced the free spatial trajectory q̄a(t1) of particle a in the last step. The
contribution to the overall free density from particle a can be calculated, as usual, by
applying the one-particle density operator to the free generating functional yielding

⟨ρ̄a(k1, t1)⟩ = ρ̂a(1)Z0[J, K ]
∣∣∣
0
= e−ik1·q̄a(t1). (3.77)

Note that this is technically the ensemble average of the density at the position of parti-
cle a, but since we use explicit initial conditions, we simply reproduce the Fourier-space
density of a freely evolving particle. For the corresponding density in configuration
space, we obtain a delta-peak at the linearly evolving position q̄a(t1) = qa,0 + g1,0 pa,0,
and are thus simply describing a point particle moving along a straight line. This exer-
cise aims to derive the full density contribution of particle a from canonical perturbation
theory in KFT.
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3.6.2 Interactions and diagrams

Doing perturbation theory corresponds to expanding the exponential interaction opera-
tor in a Taylor series which is applied order by order. Consider the first-order perturba-
tive correction to the free density of particle a

iŜI ρ̂a(1)Z0[J, K ]
∣∣∣
0
= −i

∫
d1′ ν(1′)ρ̂(1′)B̂(−1′)ρ̂a(1)Z0[J, K ]

∣∣∣
0

= −i
∫

d1′ ν(1′)b(1,−1′)ρ̂b(1′)ρ̂a(1,−1′)Z0[J, K ]
∣∣∣
0

=
∫ t1

0
dt′1

∫
k′1

g1,1′
[
(−ik1) · (−ik′1)

]
ν(k′1)e

ik′1·q̄ab(t′1)e−ik1·q̄a(t1)

= e−ik1·q̄a(t1)(−ik1) ·
∫ t1

0
dt′1 g1,1′

(
−∇ν̄ab(t′1)

)
. (3.78)

From the first to the second line, we have evaluated the contraction of the response field
with the density and used the fact that there is no self-interaction such that only particle
b can be the source of a perturbation to a. In the third line q̄ab(t′1) = q̄a(t′1) − q̄b(t′1)
is obtained from the k′1-dependent phases of the two density operators. To arrive at
the last line, we have performed the internal Fourier integral, yielding the gradient of
the interaction potential evaluated at the linearly evolving distance between the two
particles

−∇ν̄ab(t′1) := −∇ν
(
|q̄a(t′1)− q̄b(t′1)|

)
. (3.79)

This expression describes the force acting between particles a and b moving along
straight trajectories, i. e. the force between the particles in the Born approximation. We
will now introduce a graphical notation to encode contractions of response fields diagra-
matically. To this end, we define

b
a := −i

∫
d1′ ν(1′)ρ̂(1′)B̂(−1′)ρ̂a(1)Z0[J, K ]

∣∣∣
0
. (3.80)

In this notation, response fields are denoted by empty and (freely evolving) density
fields by filled circles carrying a particle index. Contraction of a response field to
another field is indicated by an interaction line pointing from the response field
to its target. Each interaction operator’s density and response fields are joined by an
undirected edge representing the two-particle interaction potential. In terms of these
elements, the distinct contractions of response fields at second-order perturbation theory
are given by

1
2
(iŜI)

2ρ̂a(1)Z0[J, K ]
∣∣∣
0
=

1
2

(
2

b b
a + 2

a
b

a +

b

b
a

)
,

(a) (b) (c)

where multiplicities follow from permutations of internal arguments among interaction
operators that play different roles in the diagram. In the first and second diagrams, both
interaction operators play different roles since one contracts with the external density
mode and the other with an internal mode. As a result, the two permutations of their
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internal arguments contribute to the multiplicity. The same is not the case for the last
diagrams since both interaction operators contract to the external density mode and
therefore play the same role. In general, the multiplicity of one of these diagrams can be
determined by recognising that each interaction operator has a set of internal parameters
(k′s, t′s), which are integrated out. Permuting these arguments among all internal density-
response pairs, which play a distinct role in the diagram, gives the multiplicity.

How can we interpret the three diagrams above? The most intuitive diagram seems to
be (b) where the trajectory of particle a is perturbed by particle b which moves along a
trajectory that was already perturbed by a moving along a free trajectory. Compare this
to the physical situation where both particles are moving in each other’s total potential,
which can be understood as a dynamical process where each particle is perturbed at each
instant by the presence of the other particle, which is moving along the fully interacting
trajectory. Perturbation theory in KFT corresponds to precisely this idea, except that
perturbative corrections of particles to each other’s trajectories are truncated at some
order. In diagrams (a) and (c), particle a is twice perturbed by a freely evolving particle
b. Physically they, therefore, seem to describe the same process, and at this point, it is
not yet clear what the difference between both diagrams is. For now, let us evaluate the
terms individually, starting with (a):

(a) =
1
2

2(−i)2
∫

d2′
∫

d1′ ν(2′)ν(1′)ρ̂(2′)B̂(−2′)ρ̂(1′)B̂(−1′)ρ̂(1)Z0[J, K ]
∣∣∣
0

= (−i)2
∫

d2′
∫

d1′ ν(2′)ν(1′)b(1,−1′)b(−1′,−2′)eik′1·q̄ab(t′1)eik′2·q̄ab(t′2)e−ik1·q̄a(t1)

= e−ik1·q̄a(t1)(−ik1) ·
∫ t1

0
dt′1

∫ t′1

0
dt′2 g1,1′g1′,2′(−∇⊗∇)ν̄ab(t′1) ·

(
−∇ν̄ab(t′2)

)
.

The contribution from the Hessian of the interaction potential Hab(t′1) = (∇⊗∇)ν̄ab(t′1)
can be traced back to the intermediate response field operator B̂(−1′) which is targeted
by B̂(−2′). In general, it can be easily checked that each interaction line connecting to
an internal response/density contributes an additional spatial derivative to the corre-
sponding two-particle potential.

Diagram (b) is evaluated along the same lines and yields the same result as (a). This
equivalence is not valid in general but rather a consequence of the system only con-
sisting of two particles, creating symmetry between perturbing a trajectory twice via
response-field contractions and perturbing a particle with a potential sourced by a per-
turbed trajectory. In the following, we will therefore evaluate all subdiagrams with con-
figurations of the form (a) and (b) by a representative of this group with an increased
multiplicity, thus considerably reducing the possible topologies of diagrams that need
to be evaluated.

Last but not least, evaluating diagram (c) yields

(c) = (−i)2
∫

d2′
∫

d1′ ν(2′)ν(1′)ρ̂(2′)B̂(−2′)ρ̂(1′)B̂(−1′)ρ̂(1)Z0[J, K ]
∣∣∣
0

= (−i)2
∫

d2′
∫

d1′ ν(2′)ν(1′)b(1,−1′)b(1,−2′)eik′1·q̄ab(t′1)eik′2·q̄ab(t′2)e−ik1·q̄a(t1)

= e−ik1·q̄a(t1)

[
(−ik1) ·

∫ t1

0
dt′1 g1,1′

(
−∇ν̄ab(t′1)

)]
×
[
(−ik1) ·

∫ t1

0
dt′2 g1,2′

(
−∇ν̄ab(t′2)

)]
, (3.81)

which can be written as the product of two first-order corrections since the two time
integrals are decoupled from one another.
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3.6.3 Topologies of diagrams

The total wealth of topologies of diagrams in our toy example is only obtained at third-
order perturbation theory. For simplicity, we will drop the particle indices in the coming
diagrams and obtain the following diagrams

1
3!
(iŜI)

3ρ̂a(1)Z0[J, K ]
∣∣∣
0

=
1
3!

{
3!

(
+ +

+

)
+ 3!

(
+

)

+ 3!

(
+ +

)

+

}
. (3.82)

We want to distinguish between three categories of diagrams here.

1. The first category is the chain diagrams in the first bracket, all of which are all
identical in the two-particle case. At n-th order perturbation theory, there will be
2n−1 (the number of times we have to choose between connecting an interaction
line to an internal density or response field) diagrams with a chain-like topology.
We will therefore represent chains of length n by a single diagram

1 2 n
· · · (3.83)

with multiplicity n! 2n−1.

2. The second category contains all ‘branching’ topologies, i. e. diagrams where multi-
ple chains connect to the external density mode. This is the case for both diagrams
in the second bracket as well as the very last diagram. We will consider these in
more detail once we have understood the role of chain diagrams.

3. Diagrams where multiple chains connect to an internal density or response field
constitute the third category. Since they contain higher-order derivatives of the
interaction potential, these diagrams should be less important in systems where
we can assume a relatively smooth potential landscape. Indeed, these diagrams
are identically zero for a harmonic two-particle interaction potential.
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3.6.4 Special case: harmonic interaction potential

To continue the analysis, we now further narrow down the discussion to a harmonic
two-particle interaction potential ν(q) = 1

2 ω2q2 for which gradient and Hessian are
given by

∇ν̄ab(t′1) = ω2q̄ab(t′1) , Hab(t′1) = ω2I3. (3.84)

Since higher-order derivatives vanish, topologies of the third category do not occur in
the diagrams, so we are left with chain and branching diagrams. Consider first the
contribution from a single chain of length n > 0

1
n!

1 2 n
· · ·

=
1
n!

n!2n−1e−ik1·q̄a(t1)(−ik1) ·
∫ t1

0
dt′1 . . .

∫ t′n−1

0
dt′n g1,1′

(
− Hab(t′1)

)
. . .

. . . gn′−2,n′−1
(
− Hab(t′n−1)

)
gn′−1,n′

(
−∇ν̄ab(t′n)

)
=

1
2
(−2)ne−ik1·q̄a(t1)(−ik1) ·

∫ t1

0
dt′1 g1,1′ . . .

∫ t′n−1

0
dt′n gn′−1,n′ q̄ab(t′n)ω2n. (3.85)

Splitting the free trajectories in q̄ab(t′n) into the initial position and momentum contribu-
tions and using the symmetry between initial conditions in the centre of mass frame, we
get q̄ab(t′n) = 2qa,0 + 2gn′,0 pa,0. Reinsertion into the above equation, we obtain the sum
of two contributions

1
n!

1 2 n
· · · = (−1)n(

√
2ω)2ne−ik1·q̄a(t1)(−ik1) (3.86)

·
[
C(n)q (t1)qa,0 + C(n)p (t1)pa,0

]
,

where the time integrals are contained in the factors C(n)q (t1) and C(n)p (t1), respectively
given by

C(n)q (t1) =
∫ t1

0
dt′1 g1,1′ . . .

∫ t′n−1

0
dt′n gn′−1,n′ =

t2n
1

2n!
(3.87)

C(n)p (t1) =
∫ t1

0
dt′1 g1,1′ . . .

∫ t′n−1

0
dt′n gn′−1,n′gn′,0 =

t2n+1
1

(2n + 1)!
. (3.88)

The last equalities follow by specifying g1,1′ = t1 − t′1 and solving the nested time inte-
grals analytically. From this, we can already guess that summing up chains of all lengths
will result in the sine and cosine contributions we expect for a harmonic oscillator. In
this simple toy example, the contributions from chains of interaction lines are exactly
reproducing the Taylor series of the sine and cosine functions. Doing the calculation, we
obtain the full contribution to the one-particle density from chain diagrams〈

ρa(k1, t1)
〉

chains
= e−ik1·q̄a(t1)

[
1− ik1 ·

(
q̃a(t1)− q̄a(t1)

)]
, (3.89)

where the full trajectory is given by

q̃a(t1) = qa,0 cos
√

2ωt1 +
pa,0√

2ω
sin
√

2ωt1. (3.90)
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Thus summing up all chain diagrams recovers the full particle trajectories. However, we
do not recover the full particle density but merely the first-order Taylor expansion of the
full Fourier factor. At this point, the branching diagrams come into play. Recall from the
diagram (c) in second-order perturbation theory that two interaction lines connecting
to the external particle density result in the product of two time integrals. The same
behaviour continues for chains of increasing length connecting to the external modes,
such that we can again sum up contributions from all chain lengths individually and
attach an increasing number of them to the external density. For example, the diagrams
where two chains connect to the external density can be resummed to

∞

∑
n1,n2=1

1 2 n1

1 2 n2

· · ·

· · ·
=
[
(−ik1) ·

(
q̃a(t1)− q̄a(t1)

)]2
. (3.91)

Summing over all numbers of resummed branches recovers the full Taylor series of the
exponential, such that we end up with the final result〈

ρa(k1, t1)
〉
= e−ik1·q̄(t1)

∞

∑
n=0

1
n!

[
− ik1 ·

(
q̃a(t1)− q̄a(t1)

)]n
= e−ik1·q̃a(t1). (3.92)

The factor 1
n! is obtained by correcting for the fact that we overcount the multiplicity of

each diagram by the number of permutations of chains. By a careful resummation of
different groups of diagrams, we have thus obtained the final result for the density due
to particle a, which in configuration space reads〈

ρa(q1, t1)
〉
= δD

(
q1 − qa,0 cos

√
2ωt1 −

pa,0√
2ω

sin
√

2ωt1

)
. (3.93)

Notwithstanding that this result could have been derived in a couple of lines by straight-
forwardly integrating Hamilton’s equations, we can draw some important conclusions
from it:

• Diagrams of different topologies in canonical perturbation theory can be inter-
preted in terms of the physical process they represent, as well as the kind of re-
summation they lead to.

• Chains of interaction lines lead to a resummation of the perturbative expansion of
particle trajectories, whereas multiple chains targeting the same external density
mode result in the resummation of the density itself.

• Internal modes that are targeted multiple times lead to higher-order derivatives of
the interaction potential. This insight could be helpful considering the potential
dominance or subdominance of certain diagram classes since we expect higher-
order derivatives to play a secondary role if the potential landscape is sufficiently
smooth. This situation is similar to the idea behind the derivative expansion em-
ployed in specific applications of the functional renormalization group [45].

In general, a closer understanding of certain diagrams’ role in the perturbative expan-
sion of the interaction operator in KFT is helpful since it might allow to partially resum
particular classes of diagrams also in more general systems of interest. We will see that
this is indeed the case for cosmic structure formation, where linear growth follows from
precisely the kind of resummation we have explored here.
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3.7 discussion

This chapter was dedicated to constructing KFT for general non-equilibrium classical
particle systems. Starting with a generic Hamiltonian (3.1) we showed how to construct
a generating functional (3.14) that allows for the calculation of statistical quantities. Spec-
ification for actual physical systems occurs by fixing two principal ingredients: the initial
probability distribution P(x(i)) and the equations of motion E [x]. In the general case
where the equations of motion are not exactly solvable, we split them into a free (linear)
part and a non-linear part used to construct the interaction operator. Again, we should
stress that the split E [x] = E0[x] + E I [x] is not unique and can be chosen in such a way
as to improve the convergence of the perturbative expansion of the interaction operator.
This ambiguity can be illustrated by considering a single particle in an external potential

H =
p2

2m
+

mω2

2
q2 + λq4, (3.94)

where λ is a small (coupling) constant. Physically, we would interpret the q2-term as
an interaction potential (as we did in our toy model) and attribute it to the interaction
operator together with the q4-term. However, both the first and second terms lead
to a linear differential operator in Hamilton’s equations, allowing us to consider the
simple harmonic oscillator as our system’s ‘free’ trajectory and only include the q4-term
perturbatively. Both splitting choices are allowed and would lead to the same result
if we evaluate infinitely many perturbation orders. Practically, however, including the
harmonic potential into the free trajectories would be preferred since it already captures
the essential nature of the motion (an ellipse in phase-space) with small perturbation
due to the quartic potential. We will encounter a similar, albeit more subtle, situation in
the application to cosmology.

Calculating ensemble averages of macroscopic quantities requires introducing opera-
tors for the particle density (3.4.1) and the response field (3.53) which act on the free gen-
erating functional. Whereas density operators generate freely evolving density modes
with explicit initial conditions (3.46), response field operators have a less straightforward
effect on Z0. This circumstance inspired us to interpret them as operators targeting other
density modes, instead resulting in the combined correlation function (3.61).

With our understanding of density and response field operators, we can evaluate the
effect of the interaction operator on free correlation functions (3.66). In 3.5.1, we calculate
the concrete example of a first-order perturbation of a two-point function, which results
in an integral over a free three-point function. This relation hints towards the deeper
connection of KFT to the Boltzmann equation and the BBGKY hierarchy, which was
discussed in detail in [46].

The canonical perturbation theory introduced in this chapter is the most straight-
forward but certainly not the only way to approach interactions in KFT. So far, two
alternative formulations of KFT exist, leading to different perturbation theories. One
such reformulation leads to the grand-canonical ensemble by summing over the number
of particles N that contribute to the macroscopic system [4]. In a physical system with
correlated initial conditions, this leads to a set of self-consistent equations for the macro-
scopic cumulants, which are challenging to solve. Perturbation theory corresponds to an
ambiguous truncation of these self-consistent equations, which poses significant concep-
tual challenges. Structurally the grand-canonical formulation of KFT closely follows the
original works of Das and Mazenko [20, 21], by which KFT was initially inspired. Yet,
it turns out that the description of systems with initial phase-space correlations (evalu-
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ated by employing a Mayer-cluster expansion) adds considerable complications to their
formalism, e. g. the ambiguity of the perturbative expansion.

A different approach is taken by resummed KFT (rKFT) [22, 47], which reformulates
the canonical generating functional in terms of macroscopic fields. This method leads
to a path integral formulation of the generating functional for the macroscopic density
and response fields, where the action contains infinitely many non-local vertices. This
formulation allows for a diagrammatic formulation à la Feynman, and the resulting per-
turbation theory consists of a consistent loop expansion of the involved diagrams. Due
to its structural similarities to path integrals in quantum field theory, it can additionally
be used as the starting point for applications of non-perturbative methods.

Both of the above approaches have in common that they implement infinite resum-
mations of terms that arise in canonical perturbation theory, which requires a great
deal of effort. Additionally, the effects from initial correlations and particle interactions
are not separable in either of these formulations4. Canonical perturbation theory, on
the other hand, is more straightforward and offers similar rewards to grand-canonical
and resummed KFT with comparably little effort. Furthermore, particle interactions and
initial correlations are cleanly separated in the canonical generating functional (3.31), cir-
cumventing the ambiguity that currently plagues both of the latter reformulations. We
will investigate the relationship between the canonical, grand-canonical and resummed
KFT in more detail in Chapter 5, where it will turn out that a clever choice of particle
trajectories allows us to mimic the results of macroscopic resummations with the simple
canonical formalism.

With the preliminary work behind us, we can now apply KFT to arbitrary systems of
classical particles. The specifications to the central situation of interest, cosmic structure
formation, are given in the following chapter and consist of a discussion of the initial
conditions, the trajectories of classical point particles in an expanding space-time, and a
diagrammatic language for KFT perturbation theory.

4 However, it was recently shown that rKFT could be obtained from canonical KFT via a Hubbard-
Stratonovich transformation. In this derivation, particle interactions and initial correlations become per-
fectly separable, making it a promising direction for further investigations.
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4
K I N E T I C F I E L D T H E O RY F O R C O S M I C S T R U C T U R E F O R M AT I O N

4.1 the continuum limit

Before we get into the mathematical details of the initial phase-space density and particle
trajectories in cosmology, we should discuss the continuum limit in KFT. Until this point,
we were careful to formulate our expressions so that they describe systems with an
arbitrary (small or large) number of particles. Indeed, although our main focus lies in
describing many-body systems, considerations and calculations of single or two-particle
systems in the form of toy models can yield surprising insights into the mechanics of,
e. g. perturbation theory in KFT. This being said, we now turn to the proper application
of KFT to cosmology, where the number of point particles in any volume of interest
can be assumed to be extremely large. Indeed, even assuming the most massive dark
matter candidate, PBHs, the number of particles within a volume relevant for large-scale
structure formation is gigantic, allowing us to formally consider the continuum limit
N → ∞ in our calculations. This consideration directly affects our calculations; since
particles are indistinguishable, indices in the sums over particles in correlation functions
such as (3.46) can be fixed, and the sum replaced by a factor N for each index. Thus,
an m-point function scales like Nm to the leading order in the particle number, which
is obtained by choosing a distinct representative particle for each density mode. The
sum over all particle indices in (3.46) also leads to terms where particle indices are equal
and which thus scale with lower powers of N. These terms, which are subdominant
in systems with large particle numbers and are formally vanishing in the continuum
limit, are referred to as shot-noise. In the application of KFT to cosmology, we neglect all
shot-noise contributions, enabling us to express the correlation function (3.46) by

Ḡρ...ρ(1, 2, . . . , m) = Nm
∫

dΓ i exp
(
iL q · q(i) + iL p · p(i)) = NmZ0(L q, L p), (4.1)

where the indices of the m components {e1, e2, . . . , em} of the shift tensors (3.44) and
(3.45) are now fixed, distinct labels for representative particles. Due to this one-to-one
correspondence we refer to both Z0(L q, L p) and Ḡρ...ρ(1, 2, . . . , m) as free correlation
functions.

4.2 initial conditions

In the previous chapter, we have seen that the central object to evaluate in KFT, be it to
calculate free correlation functions or contributions from the perturbative expansion of
the interaction operator, is the free correlation function Z0(L q, L p). The main challenge
this poses for cosmological applications lies in the initial probability distribution, which
will be treated in this section. Due to the technical and lengthy nature of the calculations

47
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ahead, some steps will be skipped; for a complete derivation and thorough discussion
of the initial phase-space density, we refer the reader to chapter 3 of [4].

4.2.1 Probability density

In Section 2.4, we have seen that the initial conditions for the density and velocity fields
in cosmology can both be related to the initial velocity potential by

δ(i)(q) = −∇2ψ(i)(q) , u(i)(q) = ∇ψ(i)(q), (4.2)

and follow a GRF. These initial fields can be used to derive a probability density for
the initial phase-space coordinates by Poisson sampling. The idea is the following: For
fixed initial density and velocity fields, each of the N particles of our system is assigned
a phase-space position with probability dx(i) P

(
x(i)|δ(i), u(i)), which is then weighted

with the probability density for the initial fields and integrated over the realisations of
δ(i) and u(i). The conditional probability for a particle to be placed in a small volume
around phase-space position x(i) is independent of other particles and depends locally
on the initial fields, i. e.

P
(
x(i)|δ(i), u(i)) = N

∏
a=1
P
(

x(i)a |δ(i)
(
q(i)

a
)
, u(i)(q(i)

a
))

. (4.3)

To allow for a more condensed notation, we define

d =
N

∑
a=1

da ⊗ ea , da =

(
δ
(i)
a

u(i)
a

)
:=

(
δ(i)(q(i)

a )

u(i)(q(i)
a )

)
, (4.4)

bundling the initial density and velocity fields evaluated at the initial particle positions
in the data tensor d. With this notation, the initial phase-space density reads

P
(
x(i)
)
=
∫

ddP
(
x(i)|d

)
P
(
d
)
. (4.5)

The conditional probability density for an initial phase-space position x(i) given the data
tensor d factorises into one part for initial particle positions and another for particle
momenta, respectively, given by

P
(
q(i)

a |δ(i)a
)
=

1
N

ρ̄
(
1 + δ

(i)
a
)

P
(
p(i)

a |u(i)
a
)
= δD

(
p(i)

a − u(i)
a
)
. (4.6)

The probability of finding a particle in a small volume around q(i) is directly propor-
tional to the fraction of particles in that volume, i. e. the local particle density. On the
other hand, initial momenta are sampled by simply assigning particles the local value
of the velocity field. As a result, integrating out the initial velocity field simply replaces
u(i)

a with p(i)
a in P(d).

Initial covariance matrix

Since the initial particle density and velocity fields follow a GRF, the probability density
for the initial data reads

P
(
d
)
=

1√
det(2πC)

exp
(
− 1

2 ∑
a,b

dT
a C−1

ab db

)
, (4.7)
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with the data covariance matrix

Cab =

(〈
δ
(i)
a δ

(i)
b

〉 〈
δ
(i)
a p(i)

b

〉T〈
p(i)

a δ
(i)
b

〉 〈
p(i)

a ⊗ p(i)
b

〉) =:

(
Cδδ

ab

(
Cδp

ab

)T

Cpδ
ab Cpp

ab

)
. (4.8)

By (4.2) and the relation (2.29) between the density and velocity potential power spectra,
all elements of the initial covariance matrix can be expressed as integrals over the initial
density fluctuation power spectrum. Specifically, we find

Cδδ
ab =

∫
k

P(i)
δ (k) e ik·q(i)

ab (4.9)

Cδp
ab = −i

∫
k

k
k2 P(i)

δ (k) e ik·q(i)
ab (4.10)

Cpp
ab =

∫
k

k⊗ k
k4 P(i)

δ (k) e ik·q(i)
ab , (4.11)

where we defined q(i)
ab := q(i)

a − q(i)
b . Note that density-momentum correlation Cδp

ab is

a vector pointing in q(i)
ab -direction such that Cδp

ab = −Cδp
ba = −Cpδ

ab , and consequently
Cδp

aa = 0. The momentum-momentum correlation Cpp is a 3× 3 matrix and defines the
momentum variance σ2

p via its trace

σ2
p =

1
3

∫
k

P(i)
δ (k)
k2 =

1
3

Tr Cpp
aa . (4.12)

Taking the initial power spectrum from the BBKS transfer function (2.15) we find σ2
p =

3.639 · 10−5, which gives a typical order of magnitude for initial momentum correlations.

Resulting phase-space density

Using the GRF (4.7) and integrating out the initial density and velocity fields—a lengthy
and tedious calculation—eventually leads to the final expression for the initial probabil-
ity density

P(x(i)) = 1
VN
√

det(2πCpp)
C
(

∂

i∂p(i)

)
exp

(
− 1

2

N

∑
a,b=1

p(i)T
a (Cpp)−1

ab p(i)
b

)
, (4.13)

where we introduced the straightforward generalisation of the momentum-momentum
correlation elements to a tensorial object Cpp = ∑a,b Cpp

ab ⊗ (ea ⊗ eb). Density-density
and density-momentum correlations are contained in the operator

C
(

∂

i∂p(i)

)
=

N

∏
a=1

(
1−

N

∑
b=1
b ̸=a

iCδp
ab ·

∂

i∂p(i)
b

)
+

N

∑
{a,b}

Cδδ
ab

N

∏
c=1

c ̸=a,b

(
1−

N

∑
d=1
d ̸=c

iCδp
cd ·

∂

i∂p(i)
d

)

+
N

∑
{{a,b},{c,d}}

Cδδ
abCδδ

cd

N

∏
e=1

e ̸=a,b,c,d

(
1−

N

∑
f=1
f ̸=e

iCδp
e f ·

∂

i∂p(i)
f

)
+ . . . ,

(4.14)

whose form is a direct consequence of the sampling procedure of initial phase-space
positions according to the density field. The sums over indices of density-density cor-
relations go over distinct pairs of particles a and b, indicated by the notation {a, b};
e. g. {1, 2} and {2, 1} are not distinct and count only once. {{a, b}, {c, d}} is a distinct
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tuple of two distinct pairs of particles; as such {{1, 3}, {2, 4}} and {{4, 2}, {1, 3}} are
two identical configurations and thus only counted once. In particular, note that pairs
of indices belonging to initial densities can never be equal, which can be traced back to
P(q(i)

a |δ(i)a ) ∝ 1 + δ
(i)
a . Likewise, indices on density-momentum correlation lines cannot

be equal due to homogeneity. The next term in the series in (4.14) will contain three
density-density correlation functions but is structurally equivalent to the ones shown,
and the total number of terms is ⌊N/2⌋. The restrictions on the allowed index configu-
rations in (4.14) will become clearer with the graphical representation we introduce for
initial correlations in the next section.

4.2.2 KFT correlation functions with cosmological initial conditions

Consider the case of an arbitrary correlation function with an m-component shift ten-
sor. This can be either a free m-point density correlation function or a mixed density-
response field correlation function, the difference being encoded in the definition of the
shift tensors L q and L p. No matter the exact definition of the shift tensors, we need to
evaluate the expression

Z0(L q, L p) =
∫

dx(i) P(x(i)) exp
(
iL q · q(i) + iL p · p(i)) (4.15)

=
∫ dq(i)

1
V
· · · dq(i)

m

V
C(−L p) exp

(
− 1

2

m

∑
a,b=1

LT
pa

Cpp
ab Lpb

)
exp

(
iL q · q(i)),

where the second line follows from inserting (4.13) for the initial probability density,
applying partial integration for the p(i)-derivatives in C and solving the Gaussian inte-
gral over the initial momenta. Since position and momentum shift tensors have only m
non-vanishing components, sums over particle indices in the initial conditions now run
up to m. The N −m trivial position integrals were solved to yield a factor VN−m, partly
cancelling the prefactor. The main challenge is posed by the remaining integral over ini-
tial particle positions since the initial probability density depends on these in a highly
non-trivial manner. To take full advantage of the symmetries of the system, i. e. that
correlations only depend on distances between particles, we cast the components of the
initial probability density in (4.15) into a graphical representation.

Density-density and density-momentum correlation lines

First, consider the polynomial (4.14) of initial density-density and density-momentum
correlations. In the context of cosmology, initial correlations are characterized by the
amplitude of initial density and velocity fluctuations w. r. t. the background, raising the
hope that terms of higher order in initial correlations are less important than the lower
order terms. We, hence, order the polynomial (4.14) in powers of initial correlations

C(−L p) = 1 +
m

∑
a ̸=b

iCδp
ab · Lpb +

m

∑
{a,b}

Cδδ
ab +

m

∑
a ̸=b,c ̸=d

a ̸=c

(
iCδp

ab · Lpb

)(
iCδp

cd · Lpd

)

+
m

∑
{a,b},c ̸=d

c ̸=a,b

Cδδ
ab
(
iCδp

cd · Lpd

)
+

m

∑
{{a,b},{c,d}}

Cδδ
abCδδ

cd + . . . ,
(4.16)

where all remaining contributions are of third and higher order in Cδδ and Cδp. For
a more intuitive understanding of which index combinations are allowed to occur in
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(4.16) we follow [4] and introduce a graphical notation, representing density-density
and density-momentum correlations by

Cδδ
ab =: a b

, iCδp
ab · Lpb =: a b

. (4.17)

Initial particle positions are represented by vertices endowed with a particle index,
whereas the corresponding lines depict correlations between particles. Note that the
density-momentum correlation line is a directed edge in the sense that one end corre-
sponds to a density (solid), whereas the other end corresponds to momentum (dashed).
As such, permuting its indices results in a different line, unlike the symmetric density-
density lines. Representing initial correlations in terms of the lines (4.17) allows for an
intuitive graphical representation of the sums in (4.16) if we adhere to the following
rule:

δ-rule No two delta line-ends are allowed to meet at the same vertex. This includes both
ends of the density-density correlation line and the density-end of the density-
momentum correlation line.

The δ-rule is an elegant way to encode the restrictions on the sums over particle indices
in (4.16), both for density-density and density-momentum correlations. In terms of the
correlation lines (4.17) and under consideration of the δ-rule, expression (4.16) turns into

C(−L p) = 1+
m

∑
{a,b}

[
a b

+
(

a b
+

ba

)
+ a b

]

+
m

∑
{{a,b},{b,c}}

[
a

b

c

+

a

b

c

+

a

b

c

]

+
m

∑
{{a,b},{c,d}}

[(
a b

+ a b
+

ba

)

×
(

c d
+ c d

+ cd

)]
+ · · · ,

(4.18)

where the first line contains all contributions with two, the second with three and the
third with four distinct particle indices. Attaching two correlation lines, such as for the
three-particle case, corresponds to multiplying the two corresponding correlations with
a shared particle index, e. g.

a

b

c

= a b
×

b c = Cδδ
ab
(
iCδp

cb · Lpb

)
. (4.19)

To get the full sum in the second line for m particles, we have to go through all the
combinations of drawing three out of m representative indices. With the three in-
dices fixed at (1, 2, 3), the distinct configurations represented by {{a, b}, {b, c}} are
{{1, 2}, {2, 3}}, {{1, 3}, {3, 2}} and {{3, 1}, {1, 2}}. Similarly, for the four representa-
tive indices (1, 2, 3, 4), the configurations prescribed by the sum in the third line are
{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}} and {{1, 4}, {2, 3}}. Although tedious, pushing to higher
orders in the initial correlation lines is straightforwardly done by drawing all graphs
with three, four, etc. edges that are allowed by the δ-rule.
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Momentum correlation lines

Similarly, we assign a correlation line to the momentum correlation term in (4.15) by
first splitting off the diagonal term

exp

(
− 1

2

m

∑
a,b=1

LT
pa

Cpp
ab Lpb

)
= exp

(
−

σ2
p

2

m

∑
a=1

L2
pa

)
exp

(
−

m

∑
{a,b}

LT
pa

Cpp
ab Lpb

)

= e−QD
m

∏
{a,b}

exp
(
− LT

pa
Cpp

ab Lpb

)
, (4.20)

where, in the first line, the second sum on the right goes over distinct pairs of particles,
thus cancelling the factor 1

2 . In the second line, we have identified the damping factor

QD :=
σ2

p

2

m

∑
a=1

L2
pa

, (4.21)

which arises due to momentum auto-correlation and thus describes diffusion caused by
statistical momentum uncertainty. The remaining non-diagonal part of Cpp quantifies
correlations between the initial momenta of distinct particles, although a trivial uncor-

related part is still retained by ∏m
{a,b} exp

(
− LT

pa
Cpp

ab Lpb

)
, since exp(x) = 1 +O(x). To

ensure that the momentum correlation line exclusively quantifies correlations between
the momenta of different particles, we subtract the trivial background contribution by
defining

exp
(
− LT

pa
Cpp

ab Lpb

)
− 1 =: a b

. (4.22)

The treatment of initial momentum correlations thus closely follows the Mayer cluster ex-
pansion [48], which is used in equilibrium statistical mechanics to calculate perturbative
corrections to the canonical partition function, e. g. of an ideal gas, due to two-particle
interactions. Although, in our case, the interest lies in corrections due to initial momen-
tum correlations, the treatment is equivalent and relies on the fact that perturbations
depend only on the absolute distance between pairs of particles. Due to the subtraction
of the factor unity, the momentum correlation line is at least of first order in the initial
momentum correlation Cpp. For the Gaussian in (4.20) this yields

m

∏
{a,b}

exp
(
− LT

pa
Cpp

ab Lpb

)

=1 +
m

∑
{a,b}

a b
+

m

∑
{{a,b},{b,c}}

a

b

c

+
m

∑
{{a,b},{c,d}} a b

c d
+ . . . , (4.23)

where we have again ordered the resulting terms in powers of the correlation line and
included all distinct two-, three-, four- etc. particle contributions, as for density-density
and density-momentum correlations. Note that, since the product in (4.20) only includes
distinct particle pairs, graphs or subgraphs with topology do not occur.

Combined correlation lines

The expressions we have derived for the initial probability density in terms of correlation
lines allowed us to arrange contributions from density-density, density-momentum as
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well as momentum-momentum correlations in terms of clusters of particles. Integration
over the initial probability density leads to a product of C(−L p), containing density-
density and density-momentum lines and the Gaussian factor encoding momentum-
momentum correlations. The result will therefore contain all allowed combinations of
correlation lines. Consider the contribution of up to two-particle clusters between a
fixed pair of particles{

1 +
[

a b
+
(

a b
+

ba

)
+ a b

]}{
1 + a b

}

= 1 +

[
a b

+ a b
+ a b

+ a b

]
+ a b

+ a b
+ a b

+ a b
+ a b

=: 1 + a b
, (4.24)

where the first equality follows by simply multiplying out all the terms. In the last
line, we have defined the combined correlation line, collecting all allowed combinations
of lines for two-particle clusters. The combined correlation line can now be used as
the fundamental building block to formulate the initial probability density in terms of
clusters of particles:

C(−L p)
m

∏
{a,b}

exp
(
− LT

pa
Cpp

ab Lpb

)

=1 +
m

∑
{a,b}

a b
+

m

∑
{{a,b},{b,c}}

a

b

c

+
m

∑
{{a,b},{c,d}} a b

c d
+ . . . , (4.25)

where terms with a larger number of distinct indices need to be constructed under
adherence to the δ-rule. We have thus managed to order the initial probability density
for correlated phase-space positions in such a way that each term exclusively depends
on a fixed number of initial positions, and inserting (4.25) into (4.15) yields

Z0(L q, L p) = e−QD

∫ dq(i)
1

V
· · ·dq(i)

m

V
exp

(
iL q · q(i))(1 +

m

∑
{a,b}

a b

+
m

∑
{{a,b},{b,c}}

a

b

c

+
m

∑
{{a,b},{c,d}} a b

c d
+ . . .

)
.

(4.26)

With the initial conditions in this form, the integration over initial positions can now be
performed for each term individually. The first term in brackets represents the uncorre-
lated background

e−QD

∫ dq(i)
1

V
· · ·dq(i)

m

V
exp

(
iL q · q(i)) = m

∏
a=1

(2π)3δD(Lqa), (4.27)

and is a direct consequence of particle positions being sampled not according to the
density contrast δ but to the overall density ρ, which has a non-zero mean. Since the
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natural quantity to work with in KFT is the particle density rather than the density
contrast, we inevitably obtain such trivial background contributions. Comparing, for
example, the relation between density and density fluctuation two-point functions using
(2.8) we find

Gδδ(1, 2) = ρ̄−2Gρρ(1, 2)− (2π)6δD(k1) δD(k2). (4.28)

The second term on the rhs stemming from the homogeneous background density ρ̄

exactly corresponds to, and thus cancels, the constant in the initial conditions. Keeping
this in mind, we will henceforth discard the constant part, thus ignoring the contribution
of the homogeneous background.

The first non-trivial term in (4.25) quantifies initial correlations of pairs of particles
and reads

V−m
m

∑
{a,b}

e−QD

∫
dq(i)

1 · · ·dq(i)
m a b

exp
(
iLq · q(i))

=V−m
m

∑
{a,b}

[ m

∏
c=1

c ̸=a,b

(2π)3δD
(
Lqc

)]
(2π)3δD

(
Lqa + Lqb

)
e−QD

∫
q(i)

ab
a b

eiLqa ·q(i)
ab

=V−m
m

∑
{a,b}

∆/a/b (2π)3δD
(
Lqa + Lqb

)
e−QD P̃ab(Lqa). (4.29)

In the step from the first to the second line, the integrals over all initial positions except
for q(i)

a and q(i)
b lead to Dirac-delta distributions for the respective spatial shift vectors.

The coordinate transform (q(i)
a , q(i)

b )→ (q(i)
a − q(i)

b , q(i)
b ) and subsequent integration over

q(i)
b result in (2π)3δD(Lqa + Lqb). In the last line, we have defined ∆/a/b and the Fourier-

space combined correlation line

P̃ab(Lqa) :=
∫

q(i)
ab

a b
eiLqa ·q(i)

ab , ∆/a/b :=
m

∏
c=1

c ̸=a,b

(2π)3δD
(
Lqc

)
. (4.30)

The product over Dirac deltas ∆/a/b arises due to all particles of the system, which repre-
sent a density mode and are not initially correlated to any other particle. If we think of
uncorrelated particles as isolated one-particle clusters, the Dirac-delta distributions for
the spatial shift vectors occurring in the initial conditions enforce spatial homogeneity
for each cluster.

Integration over initial particle positions for three- and four-particle clusters is per-
formed analogously to (4.29), leading to the final expression of the free correlation func-
tion

Z0(L q, L p) =V−me−QD
{ m

∑
{a,b}

∆/a/b (2π)3δD
(
Lqa + Lqb

)
P̃ab(Lqa)

+
m

∑
{{a,b},{b,c}}

∆/a/b/c (2π)3δD
(
Lqa + Lqb + Lqc

)
P̃ab(Lqa)P̃cb(Lqc)

+
m

∑
{{a,b},{b,c}}

∆/a/b/c/d (2π)6δD
(
Lqa + Lqb

)
δD
(
Lqc + Lqd

)
P̃ab(Lqa)P̃cd(Lqc)

+ . . .
}

,

(4.31)
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where ∆/a/b/c and ∆/a/b/c/d are products of Dirac-deltas of shift vectors excluding those with
indices (a, b, c) and (a, b, c, d) respectively. When evaluating three-particle contributions,
special care must be taken since the δ-rule must be applied correctly. Additionally, note
that the ordering of the two indices of the Fourier-space correlation lines in relation
to the index of the spatial shift vector is crucial since density-momentum lines are not
symmetric. As a consequence, P̃ab(Lqa) ̸= P̃ba(Lqa)! As a rule of thumb, the spatial shift
vector in the argument of a correlation line should always carry the first index of the
pair of the line. For correlation lines that share a particle index like the second line in
(4.31), the spatial shift-vector arguments always carry the index which is not shared.

Although we have truncated the series at quadratic combined correlation lines, the
logic that we applied to derive (4.31) extends straight to higher orders. Were we inclined
to include all cubic terms, we would get (a lot of) additional contributions containing
three, four, five and six particles, respectively. For example, the cubic contribution from
initial correlations between three particles a, b, c would read

∫
dq(i)

a

b

c

e iL q·q(i)

=∆/a/b/c (2π)3δD
(
Lqa + Lqb + Lqc

) ∫
k
P̃ab(Lqa − k)P̃cb(Lqc + k)P̃ac(k). (4.32)

4.2.3 Expanding in the initial power spectrum

The proper evaluation of the initial correlation lines and, most notably, the momentum
correlation line poses a significant challenge for KFT calculations from a numerical point
of view. The Fourier-space momentum correlation line is traditionally denoted by P and
reads

Pab(Lqa) =
∫

q(i)
ab

a b
eiLqa ·q(i)

ab =
∫

q(i)
ab

{
exp

(
− Lpa Cpp

ab Lpb

)
− 1
}

eiLqa ·q(i)
ab . (4.33)

This is a notoriously difficult integral to solve numerically since the Fourier phase oscil-
lates rapidly for intermediate to large particle separations. In the last step of our analysis
of correlation functions of cosmic structures, we will therefore be forced to introduce one
further approximation by expanding the momentum correlation line in orders of initial
momentum correlations

Pab(Lqa) =
∫

q(i)
ab

{
− Lpa Cpp

ab Lpb +
1
2
(
Lpa Cpp

ab Lpb

)(
Lpa Cpp

ab Lpb

)
+ · · ·

}
eiLqa ·q(i)

ab

=:
∫

q(i)
ab

(
a b

(1)
+

1
2 a b

(2)
+ · · ·

)
eiLqa ·q(i)

ab , (4.34)

thus defining the respective first- and second-order expanded momentum correlation

lines (1) and (2) . Since all initial correlations Cδδ, Cδp and Cδδ are integrals over
the initial power spectrum (4.9)–(4.11), expanding the momentum correlation lines up
to a fixed order in Cpp and truncating the initial conditions at the same order in terms
of the correlation lines, we obtain expressions for correlation functions in KFT at a fixed
maximum order in the initial power spectrum P(i)

δ (k). Note that the Gaussian damping
due to momentum auto-correlations (4.21) should be part of such an expansion since σ2

p
is an integral over the initial power spectrum itself.
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When evaluating correlation functions in KFT, we thus have to refer to two different
expansions. The first expansion, taking place in the interaction operator, is intrinsic
to the basic formalism of KFT, and we will generally refer to it as the n-th order per-
turbative expansion, or SI-expansion. The second expansion, namely the expansion of
correlation lines in terms of the initial power spectrum, is not a fundamental feature of
KFT but rather an unfortunate practical necessity. To avoid confusion as far as possible,
we will refer to it as the linear or quadratic expansion in terms of P(i)

δ , or P(i)
δ -expansion.

Consistent expansion of free correlation functions

To perform the P(i)
δ -expansion of the free correlation function (4.31), all its components

are expanded in the initial power spectrum. To include all terms up to quadratic order in
P(i)

δ , the Gaussian damping factor must be included up to linear order. In the expansion,
all the contributions from the combined correlation line that are of the same order in the
initial power spectrum need to be collected, such that

a b
= a b

+ a b
+ a b

+ a b
(1)

+
1
2 a b

(2)
+ a b

(1)

+ a b

(1)

+ a b

(1)

+ a b
+ . . .

=: a b
(1)

+ a b
(2)

+ . . . . (4.35)

All the terms on the rhs of the first line are linear in the initial power spectrum and

are collected in (1) , whereas the second line contains quadratic contributions which

make up (2) . The linear and quadratic contributions of a consistent expansion of
the free correlation function (4.31) then read

Z (1)
0 (L q, L p) =V−m

m

∑
{a,b}

∆/a/b (2π)3δD
(
Lqa + Lqb

)
P̃ (1)

ab (Lqa) (4.36)

Z (2)
0 (L q, L p) =V−m

{ m

∑
{a,b}

∆/a/b (2π)3δD
(
Lqa + Lqb

)[
−QD P̃ (1)

ab (Lqa) + P̃ (2)
ab (Lqa)

]
+

m

∑
{{a,b},{b,c}}

∆/a/b/c (2π)3δD
(
Lqa + Lqb + Lqc

)
P̃ (1)

ab (Lqa)P̃ (1)
cb (Lqc) (4.37)

+
m

∑
{{a,b},{b,c}}

∆/a/b/c/d (2π)6δD
(
Lqa + Lqb

)
δD
(
Lqc + Lqd

)
P̃ (1)

ab (Lqa)P̃ (1)
cd (Lqc)

}
,

where P̃ (1)
ab and P̃ (2)

ab are defined in terms of the linear and quadratic correlation lines
via (4.30). The full m-point correlation function expanded in the initial power spectrum
reads

Gρ...ρ(1, . . . , m) = G(1)
ρ...ρ(1, . . . , m) + G(2)

ρ...ρ(1, . . . , m) + . . . , (4.38)

where we will reserve the notation (. . . )(1) for the P(i)
δ -expansion. Formally G(1)

ρ...ρ(1, . . . , m)

thus contains the full information on particle interactions, but all expressions are evalu-
ated at linear order in P(i)

δ .
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Example 4.2.1 As an instructive and important example, consider the calculation of the free
two-point function at linear order in P(i)

δ

Ḡ(1)
ρρ (1, 2) =

[
ρ̂(1)ρ̂(2) Z0[J, K ]

∣∣
0

](1)
= N2Z (1)

0 (L q, L p), (4.39)

with

Lqe1
= −k1 Lpe1

= −gqp(τ1, 0)k1

Lqe2
= −k2 Lpe2

= −gqp(τ2, 0)k2.
(4.40)

Since there are only two spatial shift vectors (4.36) reduces to

Z (1)
0 (L q, L p) = V−2δD(Lqe1

+ Lqe2
) P̃ (1)

e1e2(Lqe1
), (4.41)

where the combined linearized Fourier-space correlation line evaluates to

P̃ (1)
e1e2(Lqe1

) =
∫

q(i)
12

(
e1 e2

+ e1 e2
+ e1 e2

+ e1 e2

(1) )
e iLq1 ·q

(i)
12

=
∫

q(i)
12

(
Cδδ

e1e2
+ iCδp

e1e2 · Lpe2
+ iCδp

e2e1 · Lpe1
− Lpe1

· Cpp
e1e2 · Lpe2

)
e iLqe1

·q(i)
12

=

(
1−

Lqe1
· Lpe2

L2
qe1

+
Lqe1
· Lpe1

L2
qe1

−
(Lqe1

· Lpe1
)(Lqe1

· Lpe2
)

L4
qe1

)
P(i)

δ (Lqe1
).

(4.42)

Due to the presence of the Dirac-delta in Z (1)
0 (L q, L p), the shift vectors are antiparallel, and the

final expression for the free two-point correlation function becomes

Ḡ(1)
ρρ (1, 2) = ρ̄2δD(k1 + k2)

(
1 + gqp(t1, 0)

)(
1 + gqp(t2, 0)

)
P(i)

δ (k1). (4.43)

4.3 diagrammatic approach to canonical perturbation theory

4.3.1 Motivation

As is the case for most field theories, a diagrammatic language is helpful in KFT to
keep track of the large number of terms arising due to the perturbative expansion of the
interaction operator. Since diagrams represent applications of the interaction operator
to the free generating functional, their topological properties are a direct consequence of
the structural details of the interaction operator. As an illustration, consider ϕ4 theory
with the generating functional

Z[J] =
∫
Dϕ eiS[ϕ]+i

∫
x J(x)ϕ(x), (4.44)

where S[ϕ] =
∫

x

(
ϕ(x)

1
2
(∇2 + m2)ϕ(x) +

λ

4!
ϕ4(x)

)
. (4.45)

To evaluate correlation functions perturbatively, we split the action into a free quadratic
part for which the path integral can be solved directly, resulting in the Feynman propaga-
tor G(x, x′) fulfilling 1

2 (∇2 + m2)G(x, x′) = (2π4)δD(x− x′), and an interaction operator
representing the ϕ4 term:

Z[J] = eiŜI e−
1
2

∫
x,x′ J(x)G(x,x′)J(x′) with ŜI =

λ

4!

∫
y

(
δ

iδJ(y)

)4

. (4.46)
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Whereas the Feynman propagator quantifies ‘free correlations’ of the field ϕ between two
space-time points, the interaction operator describes a local self-interaction of the field,
which is represented as a four-vertex in the resulting Feynman diagrams. Diagrams in
ϕ4-theory are thus constructed from lines which represent the Feynman propagator and
vertices which always connect four edges. This simple structure is shared by many field
theories where interactions are simple monomials of degree n in the fundamental field
ϕ of the theory.

In contrast, the interaction operator in the canonical formulation of KFT shows a
fundamentally different structure, most notably since density and response field opera-
tors are related to the microscopic phase-space coordinates—which are the fundamental
dynamical degrees of freedom, playing the role of ϕ in KFT—in a highly non-linear
way. Furthermore, KFT needs to deal with an additional component absent in equilib-
rium field theories, namely non-Gaussian initial conditions, which we want to include
in the diagrammatic formulation. Therefore, it should be no surprise that diagrams for
canonical perturbation theory in KFT are pretty different from the well-known Feynman
diagrams. Nonetheless, expressing canonical perturbation theory in terms of diagrams
holds the same advantages as in other field theories; it allows for a compact and intuitive
notation for the perturbative inclusion of interactions into calculating statistical quanti-
ties. This section will construct such an approach, starting with the rules for applying
the interaction operator to the free generating functional. Once we have understood
these rules, the evaluation of the initial probability density in terms of correlation lines
is included in the diagrams.

4.3.2 Density operators

The dynamics of macroscopic quantities in KFT occur at the microscopic level, where
classical point particles with correlated initial conditions evolve along their Hamilto-
nian trajectories. We, therefore, choose to describe perturbation theory in terms of
microscopic particles as well. From this point of view, each density operator is repre-
sented by a particle label and the time evolution of the corresponding particle density is
caused purely by the correlations and interactions between particles. Furthermore, since
shot-noise terms are neglected, only contributions where different density operators are
represented by distinct microscopic particles are relevant, such that we can attribute a
distinct particle label to each density operator. Microscopic particles with their respec-
tive labels form the first ingredient for the diagrams of canonical perturbation theory in
KFT. We draw a node with a particle label for each density operator applied to the free
generating functional. By convention external density modes are labelled with e1, . . . em,
whereas internal densities carry indices i1, . . . , in:

∑
{i1,...in}
{e1,...em}

ρ̂i1(1
′) . . . ρ̂in(n

′)ρ̂e1(1) . . . ρ̂em(m)Z0[J, K ]
∣∣
0
∼= ∑
{i1,...in}
{e1,...em} i1 i2

. . .
in

e1 e2 . . .
em

. (4.47)

Since we are considering the continuum limit, the sum over particle indices evaluates to
Nn+m, and the indices turn into fixed particle labels as described in Section 4.1. Hence-
forth, we will therefore discard the sum but retain the particle indices for bookkeeping,
assigning the arguments (k′s, t′s) to internal is and (kr, tr) to external es particle labels.
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4.3.3 Response field contractions

Each internal particle represents a density contained in an interaction operator. Consider
the interaction operator due to the presence of a two-particle potential in KFT in terms
of density and response fields

ŜI = −
∫

d1′ν(1′)ρ̂(1′)B̂(−1′), (4.48)

where we recall that the effect of response fields can be interpreted in terms of con-
tractions with other operators. Response fields that contract to density modes identify
their own particle label to that of their target, thus handing over their arguments to the
particle representing the targeted density mode. In the interaction operator, a response
field is paired with a density and a two-particle interaction potential, jointly represent-
ing a potential landscape that causes a deviation to the particle trajectory targeted by
the response field. We thus define the interaction line

i1 e1
∼=− i

∫
d1′ν(1′)ρ̂i1(1

′)B̂(−1′)ρ̂e1(1)Z0[J, K ]
∣∣∣
0

=
∫

d1′ f (1,−1′)ρ̂i1(1
′)ρ̂e1(1,−1′)Z0[J, K ]

∣∣∣
0
, (4.49)

to encode the perturbation of a density represented by e1. Recall that particle labels
denote sums over all particles, such that the above expression represents a perturbation
of all particles’ trajectories due to interactions with all other particles which move along
free trajectories. Therefore, the internal particle i1 represents the entire freely evolving
potential landscape that particle e1 is moving through. Although the above example
shows an external particle e1 being targeted, targeting internal particles works in the
same way.

Since contractions of response field operators follow a Leibniz rule, we need to repre-
sent the distinct contractions of all response field operators with internal and external
density operators and other response field operators. In the two-particle toy model
in Section 3.6, response fields were represented with empty circles, and their contrac-
tions were taken into account separately. We found that diagrams consisting of chains
of response field operators and those where multiple interaction lines target the same
external density lead to the respective resummation of the particle trajectory and the
density.

Unlike in the toy model, the primary motivation for diagrams in cosmology lies in the
need for an efficient way of encoding the perturbative corrections due to particle inter-
actions. We would like to reduce the number of possible topologies as much as possible
by collecting contributions from different contractions in a single class of diagrams. The
question that poses itself is, which contributions should be collected together? To an-
swer this question, we note that the shift tensors generated by a chain of response fields
acting on a density field are identical to those where all the response fields of the chain
directly contract to the density mode. Consider, for example, a chain of two response
field operators acting on a density operator

B̂(−1′)B̂(−2′)ρ̂e1(1)Z0[J, K ]|0 = b(−2′,−1′)b(1,−2′)Z0(L q, L p) (4.50)

with Lqe1
= −k1 + k′1 + k′2.
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The momentum shift vector of particle e1 follows directly from Lqe1
by attaching parti-

cle propagators with the corresponding time argument to each wave vector. The shift
vectors Lqe1

and Lpe1
have exactly the same components as those of the contraction

B̂(−1′)B̂(−2′)ρ̂e1(1)Z0[J, K ]|0 = b(1,−1′)b(1,−2′)Z0(L q, L p), (4.51)

and thus, the only difference between both contributions lies in the response field pref-
actors. This leads us to define subdiagrams where two internal particles i1, i2 target the
same particle e1 by summing up both contributions (4.50) and (4.51)

i2

i1

e1
∼=
∫

d1′
∫

d2′
[

f (1,−1′) + f (−2′,−1′)
][

f (1,−2′) + f (−1′,−2′)
]
Z0(L q, L p),

with Lqe1
= −k1 + k′1 + k′2, Lqi1

= −k′1, Lqi2
= −k′2. (4.52)

Multiplying the two sums of force prefactors will result in three non-vanishing contri-
butions, two of which correspond to chains of response field operators (4.50) and one
to both response fields targeting the density operator (4.51). The product of the force
prefactors f (−2′,−1′) f (−1′,−2′) ∝ θ(t′1 − t′2)θ(t

′
2 − t′1), corresponding to a closed chain

of response field operators, vanishes due to causality. The same logic applies for a larger
number of particles targeting e1, e. g.

i3

i1

i2 e1
=
∫

d1′
∫

d2′
∫

d3′
[

f (1,−1′) + f (−2′,−1′) + f (−3′,−1′)
]

×
[

f (1,−2′) + f (−1′,−2′) + f (−3′,−2′)
]

×
[

f (1,−3′) + f (−1′,−3′) + f (−2′,−3′)
]

×Z0(L q, L p). (4.53)

Identifying the contractions of response fields to other response fields with those be-
tween response fields and the target of other response fields has the significant advan-
tage that the evaluation of both topologies in terms of initial correlations is identical.
Additionally, the number of distinct diagram topologies reduces dramatically in this ap-
proach, making the evaluation much more efficient and less computationally intensive.
As we will see in Chapter 6, the number of terms that need to be evaluated at a given
order in canonical perturbation theory is quite considerable and poses one of the main
computational bottlenecks.

Notwithstanding the complications of contractions between response fields, the phys-
ical interpretation of interaction lines between particle nodes should be intuitively clear.
The source node stands for a particle representing the density field which causes a po-
tential that influences the trajectory of the target particle. Thus, each node represents the
trajectory of a particle which is perturbed by interactions with other particles depending
on how many interaction lines end in the respective node.

4.3.4 Rules for the construction and evaluation of diagrams

Construction

Diagrams corresponding to n-th order perturbation theory of an m-th order density
correlation function are constructed by following a simple recipe
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• Draw m nodes corresponding to external particles and label them with the external
labels e1, . . . , em. The arguments of the density modes being carried by the external
particles are (k1, t1), . . . (km, tm), respectively.

• Draw n nodes corresponding to internal particles and label them with the internal
labels i1, . . . , in. Thus, one internal node is drawn for each interaction operator.
The arguments of the density modes carried by the internal particles are named
(k′1, t′1), . . . (k′m, t′m), respectively. Due to the definition of the interaction operator,
these arguments are integrated over.

• Response field contractions are marked by interaction lines pointing away from
internal particles. Whereas each internal particle is the origin of precisely one
interaction line, there is no limit on the number of interaction lines that can end
in a node. All distinct configurations of interaction lines need to be drawn, giving
rise to an increasing number of diagrams for higher orders in perturbation theory.

• Determine the multiplicity of the diagram. Multiplicities are constant numerical
prefactors of diagrams reflecting that several interaction line configurations are
equivalent. Since the arguments of internal nodes are integrated out, they are
not distinguishable, and permutations among internal particle labels have to be
considered for the multiplicity. If external modes are evaluated at the same time
parameter, they are indistinguishable as well, and their permutations contribute
to the multiplicity. However, if we do not consider synchronous correlation func-
tions, targeting different external modes is not equivalent, and each configuration
requires a distinct diagram. The multiplicity of a diagram corresponding to a per-
turbative correction to a synchronous correlation function is obtained by counting
all permutations among internal as well as among external particle labels that lead
to distinct graphs. For example, the multiplicities of the three diagrams in (4.55)
are 2, 4 and 2, respectively. In the first diagram, swapping the two external indices
leads to a distinct configuration, giving a factor 2. However, since the two internal
indices play the same role (they both target the same node), permuting them re-
sults in the exact same graph and therefore does not increase the multiplicity. For
the second diagram, both internal and external label permutations yield a factor 2,
resulting in an overall multiplicity of 4. Permuting internal and external labels in
the third diagram is equivalent, such that only one permutation counts, yielding
an overall multiplicity of 2.

As a result of these rules, diagrams for the n-th order corrections of an m-point den-
sity functions are graphs with n + m vertices and n directed edges. In terms of these
diagrams, the first- and second-order corrections to a synchronous two-point function
are

δ(1)Gρρ(1, 2) = 2N3

e1 e2

i1

(4.54)

δ(2)Gρρ(1, 2) = N4

(
2

e1 e2

i1 i2

+ 4

e1 e2

i1 i2

+ 2

e1 e2

i1 i2

)
. (4.55)
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Note that although the above rules impose no global temporal direction, time flows
along the interaction lines since causality is contained in the contractions of response
fields. In particular, this forbids us from forming loops with interaction lines. Although
initial correlations between particles are not drawn explicitly at this point, it is under-
stood that these diagrams implicitly contain all non-vanishing configurations of initial
correlation lines since they are generated by acting with density and interaction opera-
tors on the generating functional.

Evaluation

The diagrams of canonical perturbation theory encode two components: (1.) The shift
vectors associated with each particle label and (2.) the force prefactor.

1. Every node of the diagram gives rise to a shift-vector. For each node, the corre-
sponding shift vector obtains the wave-vector component from the particle node
itself, with a negative sign, and the wave-vectors corresponding to the nodes tar-
geting it via an interaction line, with a positive sign. For example, the spatial shift
vectors of the diagram (4.54) and the second diagram in (4.55) are

(4.54) : Lqe1
= −k1 + k′1 Lqe2

= −k2 Lqi1
= −k′1

(4.55) : Lqe1
= −k1 + k′1 Lqe2

= −k2 Lqi1
= −k′1 + k′2 Lqi2

= −k′2.

Momentum shift vectors trivially follow by attaching the corresponding particle
propagators.

2. There are as many force prefactors as there are interaction lines in a diagram, and
each prefactor obtains its arguments from the two nodes that it connects:

i1 e1
→ f (1,−1′) = ν(k′1)(k1 · k′1)gqp(t1, t′1)θ(t1 − t′1) (4.56)

i1 i2
→ f (2′,−1′) = ν(k′1)(k

′
2 · k′1)gqp(t′2, t′1)θ(t

′
2 − t′1) (4.57)

If multiple interaction lines end in the same node, the diagram additionally rep-
resents all chains of response fields that end in the targeted node, which needs
to be considered in the force prefactor. Let {i1, . . . ir} be the set of internal labels
with arguments I = {(k′1, t′1), . . . (k′r, t′r)} which target the node with label es (not
necessarily external) and arguments (ks, ts)

i1 i2
. . .

ir

es

. (4.58)

Then the prefactor associated with this subdiagram is

r

∏
l′=1

(
f (s, l′) + ∑

p′∈I\l′
f (−p′, l′)

)
. (4.59)

For example, the force prefactors of the first and the third diagram in (4.55) are[
f (1,−1′) + f (−2′,−1′)

][
f (1,−2′) + f (−1′,−2′)

]
and f (1,−1′) f (2,−2′).

(4.60)
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4.3.5 Including initial correlations

One of the primary motivations for the approach we followed when constructing our
diagrams is to create a graphical language that can simultaneously represent the effect
of initial correlations and particle interactions. The main underlying challenge comes
from the fact that initial correlations naturally lead to a description in terms of micro-
scopic particles, whereas the interaction operator is defined in terms of macroscopic
quantities. We choose to work in a diagrammatic language that uses point particles as
its fundamental building blocks, which comes at the cost of having a less straightfor-
ward representation of contractions among response fields. Initial correlations, on the
other hand, can be included straightforwardly by drawing correlation lines between par-
ticle nodes. Since free correlation functions are naturally ordered in clusters of particles
(4.31), diagrams are evaluated by drawing all configurations of initial correlation lines
between particles up to a given number of lines. For example, at linear order in corre-
lation lines (not in the initial power spectrum!), the first-order correction to a two-point
function (4.54) formally has three contributions

δ(1)Gρρ(1, 2)
∣∣∣
1−line

= 2N3

( e1 e2

i1

+

e1 e2

i1

+

e1 e2

i1

)
. (4.61)

The true power of the diagrammatic approach comes from the observations that (i) in a
homogeneous system, the spatial shift vector of every particle which is not connected to
other particles by a correlation line is set to zero, and that (ii) the spatial shift vector of
every particle s which is not targeted by an interaction line contains only a single element
Lqs = −ks. Consequently, if a node is neither connected to a correlation line nor targeted by an
interaction line, its corresponding wave-vector is set to zero, leading to a vanishing contribution
to the correlation function. In other words, diagrams are only non-vanishing if all particle
nodes are either targeted by an interaction line or connected to a correlation line. As a
consequence, among the three diagrams in (4.61), only the second one is non-vanishing
and evaluates to

δ(1)Gρρ(1, 2)
∣∣∣
1−line

= 2N3

e1 e2

i1

(4.62)

= 2N3
∫

d1′ f (1,−1′)(2π)6δD(Lqe1
)δD(Lqi1

+ Lqi1
)P̃i1e2(Lqi1

).

Note that the presence of only connected nodes is a necessary but not a sufficient re-
quirement for non-vanishing diagrams, i. e. there are configurations of correlation and
interaction lines that lead to vanishing contributions even though they contain no iso-
lated particle nodes. Nonetheless, we will make ample use of this fact to reduce the
number of possible topologies of diagrams at a given order in perturbation theory and
in correlation lines.

As a last remark for this section, the number of interaction arrows in a diagram di-
rectly corresponds to the number of time integrals in the resulting expression. The same
is not valid for (non-trivial) wave-vector integrals since initial correlations provide Dirac-
delta functions that trivially solve some integrals over wave vectors. Since correlation
lines additionally provide k-space integrals if evaluated beyond linear order in P(i)

δ , the
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64 kinetic field theory for cosmic structure formation

number of non-trivial wave-vector integrals depends on the order in the initial power
spectrum at which the diagram is evaluated. For example, evaluating perturbations to
a two-point function at quadratic order in P(i)

δ will leave us with a single non-trivial
k-space integral at any order in the interaction.

4.4 phase-space trajectories in an expanding universe

4.4.1 The Lagrangian of a particle in expanding space-time

The dynamics of classical point particles in an expanding space-time with small scalar
perturbations can be derived directly from general relativity. Although straightforward,
the calculation is technical and rather lengthy, such that we shall state the result here
and refer the interested reader to Appendix F for a detailed derivation. The final result
is the Lagrangian of a point-particle in a gravitational potential

Lt

(
q,

dq
dt

, t
)
=

a2

2

(dq
dt

)2
−Φ(q, t), (4.63)

and a Poisson equation for the gravitational potential itself

∇2Φ = 4πGa2ρ̄mδ, (4.64)

which is a valid, effective description for small gravitational potentials Φ/c2 ≪ 1 at
length scales far inside the Hubble horizon. Note that the mass of individual parti-
cles does not influence the overall dynamics of the system since particles only interact
gravitationally.

For calculations of cosmic structure formation with SPT and LPT it proved helpful in
Section 2.4 to introduce a new time parameter in terms of the linear growth factor (2.22).
We will perform the same transformation from cosmic time to τ = ln D+/D(i)

+ in KFT
for two reasons: (i) Using the approximation Ωm/ f 2 = 1 we get a straightforward form
for the particle propagator and (ii) we identified initial momentum p(i)

a of particle a with
the velocity field u(q(i)

a , τ) in (4.6). This identity is only valid for the momentum p that
we will define in the next steps with the time coordinate τ. Invariance of the action
under the transformation of the new time parameter τ results in the new Lagrangian

L(q, q̇, τ) =
a2H f

2
q̇2 − Φ(q, τ)

H f
, (4.65)

where dots denote derivatives w. r. t. the time parameter τ and f is the growth rate.

4.4.2 Hamiltonian and equations of motion

Since KFT is formulated in phase-space we need a description of particle dynamics in
terms of Hamilton’s equations. A Legendre transform leads from (4.65) straight to the
corresponding Hamiltonian

H(q, P, τ) = q̇(P) · P−L
(
q, q̇(P), τ

)
=

P2

2a2H f
+

Φ(q, τ)

H f
. (4.66)
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The resulting equations of motion in terms of the canonical momentum P

q̇ =
P

a2H f
(4.67)

Ṗ = − 1
H f

∇Φ(q, η), (4.68)

pose an inconvenience due to the time-dependent factors appearing in the relation be-
tween the time derivative of the comoving coordinate q and the canonical momentum.
We, therefore, introduce the new momentum coordinate

p :=
P

a2H f
. (4.69)

Note that since this is not a canonical transformation, the resulting system of equations
is no longer symplectic and cannot be traced back to a HamiltonianH(q, p). However, it
can be shown that transforming from the canonical momentum P to the new momentum
p in (4.67) leaves the path-integral measure in the generating functional (3.14) invariant,
and therefore does not change the results, e. g. for density correlators, obtained in the
framework of KFT. The e. o. m. for the new momentum variable can be derived from
(4.68) in analogy to the calculation for the velocity field in Appendix A and reads

ṗ = −
(3

2
Ωm

f 2 − 1
)

p− 1
a2H2 f 2∇Φ(q, τ) = −µ

2
p−∇ϕ(q, τ), (4.70)

where the potential ϕ(q, τ) fulfills the Poisson equation (2.25). The resulting equations
of motion for a single particle in terms of the new momentum coordinate suggest a
straightforward splitting into a free, linear part and an interacting, non-linear part:

E0[x] =

(
q̇

ṗ

)
−
(

03 I3

03 − µ
2 I3

)(
q

p

)
, E I [x] =

(
0

∇ϕ(q, τ)

)
. (4.71)

Interestingly, due to space-time expansion, the free e. o. m. is equivalent to a particle
moving against a time-dependent friction force (Hubble friction). In the second section
of Appendix B we show that the Green’s function solving (4.71) for µ = 1 reads

G(τ, τ′) =

(
I3 gqp(τ, τ′) I3

03 ġqp(τ, τ′) I3

)
θ(τ − τ′), (4.72)

with gqp(τ, τ′) = 2
(
1− e−

1
2 (τ−τ′)). (4.73)

We will refer to the phase-space trajectories defined in terms of the particle propagator
(4.73) as Newtonian trajectories.

For the interaction operator resulting from the non-linear e. o. m. in (4.71), the Fourier-
space representation of the two-particle interaction potential arising from the collective
potential ϕ(q, τ) needs to be determined. Since the collective potential fulfils the Poisson
equation

∇2ϕ(q, τ) =
3
2

δ(q, τ), (4.74)

going to Fourier space and inserting the definition of the density contrast in terms of
the full density leads to

−k2ϕ(k, τ) =
3

2ρ̄

(
ρ(k, τ)− ρ̄

)
. (4.75)
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The last term is proportional to the mean particle density and does not lead to a net force
on phase-space trajectories in a homogeneous matter distribution. We can therefore drop
it, finally arriving at

ϕ(k, τ) = ν(k)ρ(k, τ) with ν(k) = − 3
2ρ̄

1
k2 . (4.76)

The inverse mean density in the two-particle potential appears because the actual source
of gravity, the density contrast, is expressed in terms of the full particle density to
incorporate the two-particle potential into the KFT interaction operator (3.64). As a
consequence, applying an interaction operator increases the number of particles in the
correlation function by one (best seen in the example 3.5.1), leading to an additional
factor ρ̄. This factor is exactly cancelled by the inverse mean density in the two-particle
interaction potential, such that all perturbative corrections to an m-point function scale
with ρ̄m.

4.4.3 Zel’dovich trajectories

Motivation: Free-streaming growth

Using the Green’s function (4.72) and the knowledge from the previous section allows
us to determine the free-streaming power spectrum in KFT

Pδ(k1, τ1) = ρ̄−2
∫

k2

Ḡρρ(1, 2)
∣∣∣
τ1=τ2

. (4.77)

For now, let us consider the large-scale limit, where different density modes evolve
independently, which is obtained by expanding the free two-point correlation function
to linear order in P(i)

δ . Setting τ1 = τ2 in the free linearized two-point function (4.43) we
obtain the free linear power spectrum

P(LS, free)
δ (k1, τ1) =

(
1 + gqp(τ1, 0)

)2P(i)
δ (k1). (4.78)

Due to Hubble friction the particle propagator (4.73) is bounded from above by 2. As
a consequence, the free-streaming amplitude of the power spectrum stays small for
arbitrary times τ, in contrast to the expectation of large-scale linear growth from SPT
and LPT, which scales like e 2τ in both the former and the latter. Unlike theories built
upon hydrodynamics, KFT is seemingly incapable of reproducing linear growth without
considerable effort. Using (4.73) as the particle propagator in KFT, it will turn out that
we formally need an infinite resummation of interactions to reproduce the correct large-
scale behaviour of the power spectrum. Considering the equations of motion (4.71), this
apparent shortcoming of KFT should not come as a surprise since particle interactions
due to gravity are entirely contained in the non-linear equations of motion while Hubble
friction slows down the free motion of particles. This is in contrast to the solution of first-
order LPT (2.41), which contains a contribution from the interaction potential, which is
linear in the displacement field.

Equations of motion and particle propagator

The lack of large-scale growth in the free-streaming solution is not a problem of KFT
itself but rather shows that we might not be working with the best possible splitting of
the equations of motion. Luckily, as we have stressed previously, the splitting of E [x] is
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largely arbitrary and can be chosen such as to fit our needs best. To find the splitting that
will reproduce the correct large-scale growth of structures at the level of free-streaming
we take a page out of the LPT book. In the first-order equation for the displacement
field (2.41), the term stemming from the gravitational potential fulfills (for µ = 1)

∇2ϕ(Z)(q, τ) =
3
2

eτδ(i)(q). (4.79)

We will refer to this as the Zel’dovich potential henceforth. It follows from the defi-
nition of the linear displacement field in terms of the initial velocity potential (A.16)
and the relation between initial density and initial velocity potential (2.28). Note that
the conceptual similarity of KFT and LPT allows us to transfer quantities from one to
the other straightforwardly; e. g. initial particle positions in KFT correspond directly to
the Lagrangian coordinates of LPT. Using this knowledge, we rewrite the equations of
motion to

E (Z)
0 [x] =

(
q̇

ṗ

)
−
(

03 I3

03 − µ
2 I3

)(
q

p

)
+

(
0

∇ϕ(Z)(q(i), τ)

)
, (4.80)

E (Z)
I [x] =

(
0

∇ϕ(q, τ)−∇ϕ(Z)(q(i), τ)

)
, (4.81)

where q(i) is the initial position of the phase-space trajectory x(τ). ∇ϕ(Z)(q(i), τ) is to
be understood as a shorthand notation for taking the gradient of the scalar field ϕ(Z)

and evaluating it at the initial position of the trajectory x(τ). Notwithstanding that the
first-order LPT solution suggests the choice of the Zel’dovich potential, it might seem
unusual to add an inhomogeneity to a differential equation defined in terms of the initial
conditions we impose on the solution. Indeed, this rather awkward form of the free
equations of motion is reminiscent of the fact that Zel’dovich trajectories do not come
naturally to KFT and that introducing them by hand is connected to a loss of intuition
about the physical meaning of free trajectories and deviations from them. This will
also be reflected in the rather peculiar expression for the operator, which compensates
for the effect of imposing free Zel’dovich motion. Nonetheless, from a mathematical
point of view, pulling the Zel’dovich potential into the free equation of motion (4.80)
is perfectly legitimate, as it merely corresponds to a time-dependent inhomogeneity in
the momentum equation. Although we refer to it as such, the Zel’dovich potential is
not a potential in the usual sense of particle interactions but rather represents a local,
single-particle effect, in exactly the same way as the Zel’dovich approximation in LPT
being a local approximation. For want of a clear physical interpretation at the level of
individual particles, Zel’dovich trajectories in KFT should therefore be regarded mainly
as a mathematical trick that leans on physical intuition from a different theory (LPT)
and, as we will show in Chapter 6, improves the convergence of perturbation theory.

In the third part of Appendix B we show that including the Zel’dovich potential into
the free trajectories results in

x[K, τ) = G(Z)(τ, 0) x(i) −
∫

dτ̄ G(τ, τ̄)K(τ̄). (4.82)

Whereas the inhomogeneous term still contains the Green’s function (4.72), the free
evolution of the initial conditions is governed by

G(Z)(τ, 0) =

(
I3 g(Z)qp (τ, 0) I3

03 ġ(Z)qp (τ, 0) I3

)
, with g(Z)qp (τ, 0) = e τ − 1. (4.83)
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The free part of (4.82) defines what we will refer to as Zel’dovich trajectories. As expected,
using free Zel’dovich trajectories in the generating functional to calculate a free two-
point function results in the correct large-scale growth behaviour of the power spectrum
since

P(LS, free,Z)
δ (k1, τ1) =

(
1 + g(Z)

qp (τ1, 0)
)2P(i)

δ (k1) = D2
+(t1)P(i)

δ (k1). (4.84)

The non-linear part of the e. o. m. (4.81), which will give rise to the interaction operator,
describes deviations of the gravitational potential from the Zel’dovich potential. Since
the latter is an excellent approximation for particle interactions evaluated on large scales,
we should expect deviations from it to lead to smaller corrections than the original
gravitational potential. In this sense, we expect KFT perturbation theory to converge
more quickly when employing Zel’dovich trajectories than Newtonian trajectories.

We achieved this at the price of dealing with an additional component in the non-
linear part of the e. o. m. (4.81). Currently, there are two approaches one can follow to
evaluate the resulting interaction operator:

• One can attempt to approximate the two-particle interaction potential correspond-
ing to ϕ(q, τ)− ϕ(Z)(q(i), τ). Such a construction proves tricky since both poten-
tials are evaluated at different positions and because the transition from the collec-
tive potential ϕ(q, τ)− ϕ(Z)(q(i), τ) to the corresponding two-particle potential is
not straightforward. On top of that, we have noted that the Zel’dovich potential
is not a particle interaction potential in the usual sense. However, intuitive rea-
soning suggests that the resulting two-particle potential should roughly follow a
Yukawa-like shape

ν(1′) ≈ − 3
2ρ̄

1
k′ 21 + k2

0(τ
′
1)

. (4.85)

As of now, there is no mathematically rigorous derivation of this statement, how-
ever. Although the description of interactions between particles moving along
Zel’dovich trajectories has already been successfully applied to KFT in the context
of mean-field theory [49], many open questions remain in this approach. In par-
ticular, the derivation of the Yukawa cutoff k2

0(au1) from fundamental principles
has yet to be achieved. The Yukawa cutoff can, therefore, either be regarded as a
free parameter of the theory or one can attempt to determine it in a self-consistent,
iterative way from KFT itself such as in [49, 50]. Since the final aim of KFT is
to provide a parameter-free description of cosmic structure formation from first
principles, more work is needed to better understand this ansatz.

• A different approach is to evaluate both potentials in (4.81) as two separate interac-
tion operators, thus staying closer to the initial formalism of KFT where perturba-
tions to particle trajectories are applied to the free generating functional in operator
form. The two resulting operators show a very different structure and collude in
surprising ways, e. g. to guarantee the correct linear growth of the power spectrum.
As we will see, however, a downside of this approach is that the operator resulting
from the Zel’dovich potential allows for little physical insight.
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Compensating for Zel’dovich trajectories: the counter-operator

If we want to follow the second approach, we need to derive an expression for the
operator that the Zel’dovich potential gives rise to in (4.81). The full interaction operator
perturbing particles which move along free Zel’dovich trajectories is

i∆ŜI =
(

iχ̂
p
·∇ϕ̂

)
−
(

iχ̂
p
·∇ϕ̂

(Z)
∣∣∣
q(i)

)
=: iŜI + iŜC, (4.86)

where we identified the unchanged particle interaction operator ŜI (3.18) and the counter
operator ŜC. Using the relation between initial density, initial momentum and the veloc-
ity potential (4.2) allows us to express the gradient of the Zel’dovich potential in terms
of the initial momentum of the corresponding phase-space trajectory:

∇ϕ(Z)(q(i), τ) = −3
2

e τ∇ψ(i)(q(i)) = −3
2

e τp(i). (4.87)

This identity leads to the expression for the counter-operator

iŜC = i
3
2

∫
dτ′1 e τ′1

N

∑
a=1

(
δ

iδKpa(τ
′
1)
· p̂(i)

a

)
, (4.88)

where p̂(i)
a is the operator that extracts the initial momentum of particle a from the

generating functional. In Appendix E, it is shown that the counter-operator can be
formulated simply as a sum of derivatives acting on the free correlation function

iŜC Z0[J + L, K ]
∣∣
0 =

(
∆Lp ·

∂

∂L(Z)
p

)
Z0

(
L q, L(Z)

p

)
, (4.89)

where ∆Lp = L(N)
p − L(Z)

p . (4.90)

For clarity, we have explicitly marked the momentum shift tensors L(N)
p and L(Z)

p which
are defined with Newtonian and Zel’dovich particle propagators, respectively. To under-
stand what this operator is doing, consider the full generating functional for particles
moving along free Zel’dovich trajectories. The interaction operator compensating for
the free particle motion is then given by (4.86), such that

Z[J, K ] = e i∆ŜI Z0[J, K ] = e iŜC e iŜI Z0[J, K ]. (4.91)

Note that, although we do not mark it explicitly, the free generating functionals with
Newtonian and Zel’dovich trajectories are different from each other since they contain
distinct definitions of inertial motion. Let us now set the physical interaction potential
contained in ŜI to zero to calculate a free m-point function

ρ̂(1) . . . ρ̂(m) e iŜC Z0[J, K ]
∣∣∣
0
= exp

(
∆Lp ·

∂

∂L(Z)
p

)
Z0

(
L q, L(Z)

p

)
=Z0

(
L q, L(Z)

p + ∆L p

)
=Z0

(
L q, L(N)

p

)
. (4.92)

As expected, the exponential of the counter-operator thus replaces all Zel’dovich particle
propagators in the momentum shift vectors by Newtonian particle propagators. Apply-
ing the full exponential form of ŜC thus brings us exactly back to where we started,
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namely to free Newtonian particle trajectories. When we calculate perturbative correc-
tions to correlation functions with Zel’dovich trajectories, we expand the full interac-
tion operator i∆ŜI , which will contain contributions from particle interactions and the
counter-operator. For a fixed order n in perturbation theory, we thus need to evaluate
terms of the form

n

∑
r=1

1
r!
(iŜC)

r 1
(n− r)!

(iŜI)
n−rZ0[J, K ], (4.93)

which is allowed since the counter-operator (4.88) and the particle interaction operator
commute. Practically, we, hence, evaluate the full interaction operator by first applying
the particle interaction operators to the free generating functional, setting the source
fields J and K to zero and applying the counter-operator in the form of (4.89) to the
resulting free correlation function.

4.5 the kft power spectrum in the zel’dovich approximation

To wrap up the discussion on evaluating cosmic correlation functions with KFT, let us
compute the free two-point function in the Zel’dovich approximation. We have shown
in example 4.2.1 that the large-scale growth of a free two-point function is given by

Ḡ(1)
ρρ (1, 2) = ρ̄2δD(k1 + k2)

(
1 + gqp(τ1, 0)

)(
1 + gqp(τ2, 0)

)
P(i)

δ (k1), (4.94)

which is obtained by applying two density operators to the free generating functional
and expanding the resulting initial correlation lines to linear order in the initial power
spectrum. Evaluating the amplitude at τ1 = τ2 = τtoday and assuming Zel’dovich propa-
gators, gqp(τtoday, 0) ≈ 850 such that we can safely approximate(

1 + gqp(τtoday, 0)
)2 ≈ g2

qp(τtoday, 0). (4.95)

This approximation is equivalent to neglecting all but momentum correlation lines when
deriving the large-scale limit of the two-point function; since momentum correlations
evolve with the square of the particle propagator, they quickly dominate over the other
initial correlations for unbounded motion, such as Zel’dovich trajectories. In terms of
the full momentum correlation line, the synchronous two-point function at time τ reads

Ḡ(Z)
ρρ (k, τ)

∣∣∣
p−line only

= ρ̄2δD(k + k′)eQD

∫
∆q(i)

(
e T2 kTCpp(∆q(i))k − 1

)
e−ik·∆q(i)

=: ρ̄2δD(k + k′)P(Z,KFT)
δ (k, τ), (4.96)

where we introduced the abbreviation T := g(Z)qp (τ, 0) = D+ − 1. The resulting power
spectrum is formally identical to the expression that is obtained from the first-order
solution of LPT

P(Z,LPT)
δ (k) = e−σ2

Ψk2
∫

∆q(i)

(
e kTCΨ Ψ(∆q(i))k − 1

)
e−ik·∆q(i)

(4.97)

with CΨ Ψ(∆q(i)) = D2
+

∫
k′

k′ ⊗ k′

k′4
P(i)

δ (k′) eik′·∆q(i)
, (4.98)

except for the factor 1, which is missing in the time-evolution in the exponent. We recall
that KFT gives formal expressions for perturbative corrections to the power spectrum
in terms of correlation lines which contain the full hierarchy of initial correlations. On
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the other hand, LPT can express the power spectrum in terms of this hierarchy only in
the Zel’dovich approximation, whereas the evaluation of higher-order corrections to the
displacement field requires a perturbative expansion of (A.15). In this sense, KFT can be
considered a systematic extension of LPT that achieves the calculation of density spec-
tra with perturbed particle trajectories without expanding the initial power spectrum,
at least at the formal level. Unfortunately, the resulting expressions in terms of the full
correlation lines are tough to evaluate numerically since the kernels of the resulting
integrals are rapidly oscillating. These computational challenges render a systematic
evaluation of correlation functions in KFT extremely problematic. Although the similar-
ity between both expressions for the power spectrum is a nice illustration of the parallels
between KFT and LPT, it does leave some open questions. Whereas the correct linear
growth behaviour is obtained straightforwardly in the large-scale limit by accounting for
all initial correlations between phase-space positions, it is yet to be clarified how the full
expression of the free-streaming KFT power spectrum is related to the first-order LPT
result. Although the momentum correlation line is extremely close to the LPT result,
both results are not precisely equal, and so far, it was not possible to show whether in-
cluding density-density and density-momentum correlation lines leads to D+− 1→ D+

beyond the large-scale limit.

4.6 discussion

The initial conditions and particle trajectories are the two primary components that we
need to specify to apply KFT to cosmic structure formation. The probability density of
the initial phase-space positions can be derived via Poisson sampling from the density
and velocity fields, which follow Gaussian statistics initially. The resulting probabil-
ity density is expressed in initial density-density, density-momentum, and momentum-
momentum correlations between pairs of initial positions. Representing initial correla-
tions graphically in terms of correlation lines, we then derived an expression for the ini-
tial probability density that we explicitly ordered in the number of correlation lines. For
practical reasons, we limit our discussion to quadratic contributions in the correlation
lines. However, it is formally clear how to generalize to higher orders—although evalu-
ating KFT correlation functions at cubic or higher order in the initial correlation lines is
an entirely different story. Since each line connects two initial particle positions, going
up to quadratic order in the correlation lines results in expression with two-, three- and
four-particle contributions (single particle contributions leading to trivial Dirac-deltas),
as illustrated in (4.25). Note that, unlike m-point cumulants, which exclusively contain
connected contributions from initial correlations between m particle positions, correla-
tion functions in KFT contain sums of all contributions from initial correlations between
up to m particles. Canonical perturbation theory is therefore not ordered in initial cor-
relations (unlike perturbation theory in rKFT where one-loop corrections contain all
terms with two initial correlation lines), so every order in the SI-expansion contains
quadratic contributions in P(i)

δ . Since we cannot numerically evaluate the full correlation
line (4.30) yet, we are forced to expand KFT correlation functions in orders of the initial
power spectrum if we wish to arrive at quantitative results. In (4.36) and (4.37), we
have summarized the expressions for a general KFT correlation function at linear and
quadratic order in P(i)

δ .

To specify particle trajectories in an expanding universe, we started with the La-
grangian of a single particle in comoving coordinates, which can be straightforwardly
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obtained from the weak-field limit of a relativistic action. Changing the time parame-
ter to τ (2.22) and introducing a new momentum1 variable then leads us to Hamilton’s
equations (4.71) which define the Green’s function for Newtonian trajectories. Since cos-
mic expansion leads to an effective friction term in the equations of motion, the particle
propagator gqp(τ, τ′) is bounded from above, and consequently, the large-scale growth
of the dark matter power spectrum from free particle trajectories is much smaller than
the expected result. Effectively, this suggests that microscopic particle interactions play a
vital role in structure growth even on large scales, where the evolution of density modes
follows the linearized hydrodynamical equations. Consequently, a perturbative expan-
sion of the interaction operator should not be expected to converge quickly toward the
physical result. If we wish to stick to canonical perturbation theory, this is a solid argu-
ment to consider modifications of particle trajectories to force KFT to produce the correct
linear growth behaviour already at the level of free-streaming. Drawing inspiration from
LPT, we introduce the Zel’dovich potential (4.79) to alter the splitting of the equations of
motion (4.80) and (4.81). As a result, the interaction operator gains an additional term,
which we refer to as the counter-operator (4.88). Perturbation theory now consists in
a consistent expansion of the full interaction operator i∆ŜI = iŜI + iŜC which is small
at least on intermediate if not small scales by construction. There is no straightforward
physical interpretation of the counter-operator in terms of particle-based quantities. The
fact that large-scale growth of cosmic structures is not automatically built into the free
theory as for SPT and LPT is an interesting feature of KFT. Indeed, attempting to derive
a formulation of LPT that does not break down at stream-crossing automatically results
in equations of motion for the displacement field that show the same peculiarity, and
one is forced to introduce the correct linear growth behaviour by hand [35].

1 The new momentum coordinate p is defined analogously to the velocity field u(q, τ) in SPT which, in hind-
sight, motivates the assumption that initial momenta are sampled by precisely tracing the initial velocity
field from SPT.
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5
A N A LY T I C A L R E S U LT S F O R T H E T W O - P O I N T F U N C T I O N

5.1 linear growth from newtonian trajectories

Whereas in SPT and LPT, the large-scale behaviour of the power spectrum (linear growth)
is entirely contained in the first-order solution to the respective equations of motion, the
derivation of linear growth from microscopic KFT requires more work. Since the Newto-
nian particle propagator is bounded from above, the large-scale result of KFT from free
particle trajectories shows a much smaller amplitude than expected for linear growth. To
obtain the correct large-scale amplitude of the power spectrum from Newtonian particle
trajectories, we do need to consider particle interactions, but we do not need to evaluate
the KFT two-point function Gρρ(1, 2) in its full glory. Rather the two-point function is
evaluated at linear order in the initial power spectrum

G(N,1)
ρρ (1, 2) =

∞

∑
n=0

[
1
n!
(iŜI)

n ρ̂(1)ρ̂(2)Z0[J, K ]
∣∣
0

](1)
=

∞

∑
n=0

δ(n)G(N,1)
ρρ (1, 2). (5.1)

Here [. . . ](1) signifies that the contained expression is to be evaluated only up to order
one in P(i)

δ , and we used the notation δ(n)G(N,1)
ρρ (1, 2) for the n-th order correction to the

free two-point function evaluated at linear order in the initial power spectrum. Since
the complicated initial conditions pose the biggest challenge in KFT, discarding order
two and higher terms in the initial power spectrum is an enormous simplification. To
keep the discussion as general as possible, we do not restrict ourselves to the case of
synchronous two-point functions but rather keep τ1 and τ2 independent.

5.1.1 Non-vanishing diagrams

To evaluate the linearized two-point function, we will derive an expression for the n-th
order term in the perturbative expansion of (5.1)

δ(n)G(N,1)
ρρ (1, 2) =

1
n! ∑

diagr.

∫
d1′ . . .

∫
dn′ f (c1,−1′) . . . f (cn,−n′)Nn+2Z (1)

0 (L q, L p),

(5.2)

where Z (1)
0 (L q, L p) is the general correlation function evaluated at linear order in P(i)

δ .
Formally, the sum runs over all diagrams generated for n-th order perturbation theory,
i. e. all contractions of response fields. Since we are interested in linear growth, however,
we only have a single correlation line at our disposal in the diagrams. Recalling that
diagrams containing particle nodes that are neither targeted by interaction lines nor
part of a correlation line are vanishing, the presence of only a single correlation line

75
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drastically reduces the number of relevant diagrams at linear order in P(i)
δ . Diagrams

corresponding to n-th order corrections to a two-point function contain n + 2 nodes
(n internal and 2 external) and n interaction lines. For a diagram to result in a non-
vanishing configuration, each interaction line, therefore, has to connect to a different
node, leaving two untargeted particle nodes, which then have to be connected by a
correlation line. As a result, interaction lines form chains of length r and n− r, where
r ∈ {0, . . . , n}, which end in the two external nodes. These arguments yield a single
allowed topology for non-vanishing diagrams, parametrized by the length r of the chain
connecting to particle e1:

n!

ir · · · i2 i1 e1

in
· · ·

ir+2 ir+1 e2

. (5.3)

The multiplicity of the diagram is n!, corresponding to the number of distinct permuta-
tions among internal labels. Since both external nodes can carry different time parame-
ters τ1 and τ2, we treat them as distinguishable nodes. For the particular values r = 0, n
where one of the chains has length zero, the external node that is not targeted must
be correlated with the first internal node of the chain in. The free correlation function
corresponding to (5.3) reads

Z (1)
0 (L q, L p) =V−n−2∆/ir /in (2π)3δD

(
Lqir

+ Lqin

)
P̃ (1)

ir in
(Lqir

), (5.4)

where we recall that ∆/ir /in is a product of Dirac-deltas of all spatial shift-vectors except
for Lqir

and Lqin
. For the linearized two-point function (5.1), the n-th order perturbative

correction is found by summing (5.3) over all chain lengths r resulting in

δ(n)G(N,1)
ρρ (1, 2) =

n

∑
r=0

∫
d1′ . . .

∫
dn′ f

(
1,−1′

)
f
(
1′,−2′

)
. . . f

(
(r− 1)′,−r′

)
× f
(
2,−(r + 1)′

)
f
(
(r + 1)′,−(r + 2)′

)
. . . f

(
(n− 1)′,−n′

)
(5.5)

× Nn+2Z (1)
0 (L q, L p),

where the multiplicity n! of each diagram exactly cancelled the prefactor from the expo-
nential series. The first and second lines contain the force prefactors that form the chain
to the external nodes e1 and e2, respectively, whereas the third line contains the informa-
tion on particle correlations. The physical interpretation of (5.3) is quite straightforward:
We start with two initially correlated (representative) particles, each of which evolves
along a free phase-space trajectory and perturbs the trajectory of another particle. This
particle then propagates on its perturbed trajectory and perturbs another particle, and so
on, until the chain reaches the two particles which represent the external density modes.
This process imprints the initial phase-space correlations between the two particles at the
chain’s origin onto the external particles. Interestingly, due to the extremely restricted
topology of diagrams with a single correlation line, initial correlations between the two
external particles play no role at this order in the initial power spectrum.
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5.1.2 Evaluation of non-vanishing diagrams

The key to evaluating (5.5) is the free correlation function Z (1)
0 (L q, L p), whose spatial

shift vectors can be read off the diagram in (5.3):

Lqe1
= −k1 + k′1 Lqe2

= −k2 + k′r+1

Lqi1
= −k′1 + k′2 Lqir+1

= −k′r+1 + k′r+2

Lqi2
= −k′2 + k′3 Lqir+2

= −k′r+2 + k′r+3

...
...

Lqir−1
= −k′r−1 + k′r Lqin−1

= −k′n−1 + k′n

Lqir
= −k′r Lqin

= −k′n.

(5.6)

These identities turn the product of the Dirac-deltas of spatial shift vectors in (5.4) into
the following

Z (1)
0 (L q, L p) =

(2π)3n

Vn+2

[
δD
(
k1 − k′1

)
. . . δD

(
k′r−1 − k′r

)]
(5.7)

·
[
δD
(
k2 − k′r+1

)
. . . δD

(
k′n−1 − k′n

)]
(2π)3δD

(
k′r + k′n

)
P̃ (1)

ir in
(Lqir

),

where the Dirac-delta distributions were ordered into the two chains, respectively end-
ing in the nodes e1 carrying the wave-vector k1 and e2 carrying k2. The integration over
internal wave-vectors in (5.5) then trivially results in setting all wave-vectors belonging
to the first chain to k1 and those belonging to the second chain to k2. In particular, this
means that k′r = k1 and k′n = k2, and with the Dirac-delta in the second line forcing
both external wave vectors to be antiparallel, the correlation lines evaluate to

P̃ (1)
ir in

(Lqir
) = (1 + gr′)(1 + gn′)P(i)

δ (k1), (5.8)

where we have introduced the shorthand notation gr′ := gqp(τ′r , 0). Recall that force
prefactors in (5.5) read

f (c,−d) = − 3
2ρ̄

(−kc · kd)

k 2
d

gqp(τc, τd) θ(τc − τd), (5.9)

By construction, their wave-vector arguments coincide with those of the pairs of wave-
vectors that the Dirac-deltas identify in (5.7), such that upon integration over the wave-
vectors each force prefactor becomes

f (c,−d) =
3

2ρ̄
gc,d θ(τc − τd) =:

1
ρ̄

θ(τc − τd) fc,d, (5.10)

where we have collected the constant amplitude of the two-particle interaction potential
and the time-dependent particle propagator in fc,d. Now that the internal wave vectors
in (5.5) have been integrated out, we are left with n time integrals, which organize into
two independent chains of nested integrals. We define the chain of length r by collecting
all time-dependent functions

Cr(τ1) :=
∫ τ1

0
dτ′1 f1,1′

∫ τ′1

0
dτ′2 f1′,2′ . . .

∫ τ′r−1

0
dτ′r f(r−1)′,r′

(
1 + gr′

)
, (5.11)

C0(τ1) := (1 + g1), (5.12)
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where the integration bounds follow from the time-dependent step functions in the force
prefactors (5.10). In this case, the expression for the chain of length zero only contains
the contribution from the correlation line, which attaches to the external particle. The
product of particle densities in the denominator of (5.10) results in an overall factor ρ̄−n,
which is cancelled by the combined volume and particle number factors from the free
correlation function. The overall result thus scales with ρ̄2 for each perturbation order n.
Collecting all the results yields the final expression for the n-th order correction of the
linearized two-point function (5.5), expressed in terms of the nested time integrals (5.11)

δ(n)G(N,1)
ρρ (1, 2) = ρ̄2(2π)3δD(k1 + k2)

(
n

∑
r=0

Cr(τ1)Cn−r(τ2)

)
P(i)

δ (k1). (5.13)

As expected, perturbations amount to a time-dependent scaling of the initial power
spectrum. This result emphasizes that particle interactions in KFT do not inherently
lead to mode-coupling; rather, the transfer of power between different scales is obtained
at every order in perturbation theory by considering contribution from higher orders in
the initial power spectrum P(i)

δ . To obtain the final result for the two-point function, we
sum up all perturbation orders, resulting in an overall time-dependent amplitude

G(N,1)
ρρ (1, 2) = ρ̄2(2π)3δD(k1 + k2)

(
∞

∑
n=0

n

∑
r=0

Cr(τ1)Cn−r(τ2)

)
P(i)

δ (k1)

= ρ̄2(2π)3δD(k1 + k2)A(τ1, τ2)P(i)
δ (k1). (5.14)

The infinite sum in the resulting amplitude leads to a decoupling of the two chains
of particle interaction operators, allowing us to express the amplitude of the two-point
function as

A(τ1, τ2) =

(
∞

∑
n1=0

Cn1(τ1)

)(
∞

∑
n2=0

Cn2(τ2)

)
. (5.15)

We will see in the next section how to evaluate the infinite sums of chains of integrals,
but before we move on, let us consider the steps that brought us to this result. Although
we focused our discussion purely on expanding the initial conditions in terms of the
initial power spectrum, the main simplification in the above derivation came from con-
sidering the contributions of only a single correlation line. Even though we chose to
expand this line to linear order in P(i)

δ , which simplifies the result, this step is not strictly

necessary. Without the P(i)
δ -expansion, additional exponential damping factors due to

initial momentum dispersion would appear, and the correlation line would have to be
evaluated numerically, leading straight to the resummed propagator discussed in [22].

5.1.3 Formal resummation

To evaluate the infinite sums in (5.15) analytically first note that time-integral chains
defined in (5.11) contain elements of different physical origins. On the one hand, we
have the factors fc, d encoding perturbations to particle trajectories due to gravitational
interactions; on the other hand, each chain starts with a freely propagating correlation
line (1 + gr′). We separate both contributions by rewriting the infinite sum over the
chains as

∞

∑
n=0

Cn(τ1) =
∫ τ1

0
dτ2 ∆R(τ1, τ2)(1 + g2). (5.16)
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Here we introduced ∆R, which exclusively represents particle interactions and can be
interpreted as an effective propagator for a density fluctuation. Comparison between
(5.16) and (5.11) suggests that

∆R(τ1, τ2) = δD(τ1 − τ2) + ∆̃R(τ1, τ2),

with ∆̃R(τ1, τ2) = f1,2 +
∫ τ1

τ2

dτ3 f1,3 f3,2 +
∫ τ1

τ2

dτ3 f1,3

∫ τ3

τ2

dτ4 f3,4 f4,2 + . . .

= f1,2 +
∫ τ1

τ2

dτ3 f1,3 ∆̃R(τ3, τ2), (5.17)

where we used the integrals’ recursive nature in the second line to formulate the self-
consistent relation for ∆̃R in the last line. Under the condition that all the components in
(5.17) depend only on the difference of their time arguments, i. e. ∆̃R(τ1, τ2) = ∆̃R(τ1 −
τ2) and f1,3 = f (τ1 − τ3) the self-consistent equation (5.17) can be solved for ∆̃R by
using a Laplace transform [4, 22]. Since Newtonian particle propagators depend on the
difference between their two time arguments, the same should follow for the resummed
propagator. Then, by the convolution theorem of the Laplace transform, we get

∆̃R(τ, 0) = L−1
τ←s

[
Lτ→s

[
f (τ, 0)

]
1−Lτ→s

[
f (τ, 0)

]] =
3
5
(
eτ − e−

3
2 τ
)
, (5.18)

which is a result that was already derived both in the grand-canonical [4] as well as
the resummed [22] formulation of KFT. For completeness, the derivation can also be
found in Appendix G with a very brief discussion of Laplace transforms. Reinserting
this expression into (5.16) and evaluating the integral recovers the linear growth factor
from SPT

∞

∑
n=0

Cn(τ1) = eτ1 = D+(t1). (5.19)

Thus, we have managed to derive the linear growth of the two-point function in the
microscopic description of KFT by explicitly resumming all the diagrams with non-
vanishing linear contributions in P(i)

δ . Note that analytically resumming the chains of
time integrals relies on the expression of the Newtonian particle propagator

gqp(τ, τ′) = 2
(
1− e

1
2 (τ−τ′)) (5.20)

and leads to the correct large-scale growth behaviour of the power spectrum for arbitrary
cosmic parameters. This result might seem surprising since we used the approximation
Ωm
f 2 = 1 in the derivation of the particle propagator. In our discussion of SPT in Sec-

tion 2.4, we have stressed that deviations from the actual growth behaviour due to this
approximation are contained exclusively in the decaying mode. This behaviour seems to
carry over to KFT, although it is less obvious that the correct large-scale growth should
be reproduced in our calculations since we had to evaluate integrations over time, where
the decaying mode usually becomes relevant in SPT. This highlights the quite non-trivial
connection between both approaches.

5.1.4 Truncation at a finite order

Although we managed to recover the correct linear growth behaviour from Newtonian
particle dynamics with the naive perturbation theory in KFT, one cannot help but notice
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that it took quite a considerable effort to derive this basic result. Indeed, attempting a
similar resummation by hand for mode-coupling contributions, e. g. at quadratic order
in P(i)

δ , seems ludicrous. If finding an analytical scheme to resum all diagrams that con-

tribute at a given order in P(i)
δ is not possible, the alternative in canonical perturbation

theory is to truncate the Taylor expansion of the interaction operator at some highest
achievable order M and evaluate the resulting non-vanishing diagrams. Doing this for
the linear evolution of the power spectrum by calculating

AM(τ1, τ2) =
M

∑
n=0

n

∑
r=0

Cr(τ1)Cn−r(τ2), (5.21)

provides an intuition for the impact of particle interactions on structure formation. This
calculation was done in a slightly different KFT formalism in [44]. Figure 5.1 shows
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A9( )
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Figure 5.1: The linear amplitudes for the first ten orders of perturbation theory in KFT (blue
dashed-dotted), as well as the fully resummed result from (5.19) (solid black line)
as a function of τ and the scale factor a. As we go towards higher orders, the blue
lines continue to follow the true amplitude until later times. Only for orders ten and
beyond do we start to get a reasonable approximation of the true linear growth.

the time-dependence of the amplitude of a synchronous linearized two-point correla-
tion function for different orders in perturbation theory. The solid black line forming
the diagonal of the plot is the fully resummed result e 2τ = D2

+. Starting from the
free-streaming amplitude A0(τ), which falls below A(τ) very early on, the darker blue
curves, which correspond to increasing orders in the interaction operator, continue to
follow the full results up to increasingly late times until they eventually fall below the
black curve for scale factors close to unity.

The amplitude that each perturbative correction contributes individually is plotted for
the first fourteen orders in the left panel of Figure 5.2. Unlike what is usually expected
in a perturbative expansion, corrections to the linear amplitude become increasingly
larger, reach a maximum around order eight and start decreasing after that. The right
panel demonstrates that to achieve a reasonable accuracy for linear growth at a = a0,
we need to include perturbative corrections due to gravity of order thirteen and beyond.
Although achievable for the linearized two-point function, aiming to include quadratic
or even higher contributions in the initial power spectrum is daunting. This result
already hints at the fact that canonical perturbation theory with Newtonian trajectories
in KFT is probably not the smartest choice if one is aiming for high-precision results
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for the non-linear power spectrum. In the next chapter, we will confirm this suspicion
when we evaluate perturbation theory at quadratic order in the initial power spectrum.
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(a) Separate contribution of each order.
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Figure 5.2: The individual amplitudes of each order (a) and the relative error of the linear am-
plitude (b) from Newtonian trajectories, both at a = a0 plotted against the order of
perturbation theory. For low orders, the amplitude of each contribution rises with
increasing order in the interaction and reaches its maximum around order 8. The
perturbation order, which provides the largest contribution to the linear amplitude,
increases with time. As pointed out in [44], we reach percent-level accuracy for the
overall linear amplitude only around the thirteenth order in the interaction operator
as shown in (b).

5.2 linear growth from zel’dovich trajectories

The infinite resummation of diagrams needed in canonical perturbation theory to de-
scribe large-scale growth of the dark matter power spectrum from Newtonian trajecto-
ries can be circumvented by forcing particles onto free Zel’dovich trajectories. As shown
in Section 4.4, free Zel’dovich trajectories by construction reproduce linear growth of the
two-point function and, therefore, represent an intelligent choice for KFT calculations
in cosmology. Since the full linear growth is contained in the free-streaming solution,
corrections to the two-point function due to particle interactions must have a vanishing
linear contribution. If this wasn’t the case, KFT would lead to inconsistent predictions
for large-scale growth. In this section, we will show that perturbative corrections to free
Zel’dovich trajectories have no linear contributions in the initial power spectrum.

The splitting (4.80) and (4.81) of the equations of motion leads to the total interac-
tion operator i∆ŜI and to a free generating functional whose evolution is governed by
Zel’dovich particle propagators. As a result, the linearized two-point function reads

G(Z,1)
ρρ (1, 2) =

∞

∑
n=0

[
1
n!
(i∆ŜI)

n ρ̂(1)ρ̂(2)Z0[J, K ]
∣∣
0

](1)

=
∞

∑
n=0

[
n

∑
s=0

1
s!
(iŜC)

s 1
(n− s)!

(iŜI)
n−s ρ̂(1)ρ̂(2)Z0[J, K ]

∣∣
0

](1)

=
∞

∑
n=0

n

∑
s=0

1
s!
(iŜC)

s
[
δ(n−s)G(Z,1)

ρρ (1, 2)
]
. (5.22)
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In the last line, we have isolated the expression for the (n − r)-th order perturbation
theory evaluated at linear order in the initial power spectrum δ(n−s)G(Z,1)

ρρ (1, 2) eval-
uated with free Zel’dovich trajectories. Since the counter-operator can be expressed
as a derivative w. r. t. the momentum shift tensor, the source fields in the free generat-
ing functional are no longer needed once all other operators have been applied. This
formulation allows us to separately evaluate the term in brackets in the last line and
apply the counter-operator only at the end. Since the two-particle interaction potential
is unchanged when transitioning from Newtonian to Zel’dovich trajectories, the particle
interaction operator ŜI is identical to the Newtonian case in the previous section, such
that

δ(n−s)G(Z,1)
ρρ (1, 2) =ρ̄2(2π)3δD(k1 + k2)

(
n−s

∑
r=0

C(Z)
r (τ1)C

(Z)
n−s−r(τ2)

)
P(i)

δ (k1). (5.23)

Although structurally identical to the Newtonian results, the free propagation of the
initial correlation lines appearing in the chains of time integrals is defined in terms of
the Zel’dovich particle propagator

C(Z)
r (τ1) :=

∫ τ1

0
dτ′1 f1,1′

∫ τ′1

0
dτ′2 f1′,2′ . . .

∫ τ′r−1

0
dτ′r f(r−1)′,r′

(
1 + Tr′

)
, (5.24)

where we defined Tr′ := g(Z)qp (t′r, 0) for compactness. fa,b is unchanged w. r. t. the previous
section. To evaluate applications of the counter-operator to this expression, recall that
momentum shift vectors are contained in the free correlation line. With the only two
momentum shift vectors that occur in the linearized correlation line being

L(Z)
pir

= −Tr′ k′r L(Z)
pin

= −Tn′ k′n, (5.25)

the correlation line evaluates to

(2π)3δD(k′r + k′n) ir in

(1)

=

[
1− Lqir

· L(Z)
pin

L2
qir

+
Lqir
· L(Z)

pir

L2
qir

− (Lqir
· L(Z)

pir
)(Lqir

· L(Z)
pin

)

L4
qir

]
k′r=−k′n

=(1 + Tr′)(1 + Tn′). (5.26)

This simplification has two important consequences for the counter-operator. First, the
derivative w. r. t. the full momentum shift tensor reduces to the two non-vanishing com-
ponents and can be rewritten in terms of derivatives w. r. t. Zel’dovich particle propaga-
tors (

∆L p ·
∂

∂L(Z)
p

)
ir in

(1)
=

[
(gr′ − Tr′)

∂

∂Tr′
+ (gn′ − Tn′)

∂

∂Tn′

]
ir in

(1)
. (5.27)

As a result applying the counter-operator to the chain C(Z)
r (τ1) replaces the free-streaming

correlation line (1 + T) by (g− T):

iŜCC(Z)
r (τ1) =

∫ τ1

0
dτ′1 f1,1′

∫ τ′1

0
dτ′2 f1′,2′ . . .

∫ τ′r−1

0
dτ′r f(r−1)′,r′

(
gr′ − Tr′

)
=: δC(Z)

r (τ1). (5.28)
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Second, since the amplitude in (5.23) is linear in both Tr′ and Tn′ (5.25) all contributions
containing more than two counter-operators (s > 2 in (5.22)) are zero. The full expres-
sion that needs to be evaluated for n-th order perturbation theory at linear order in P(i)

δ

with Zel’dovich particle trajectories, therefore, reduces to three non-vanishing terms[
1
n!
(i∆ŜI)

n ρ̂(1)ρ̂(2)Z0[J, K ]
∣∣
0

](1)
= δ(n)G(Z,1)

ρρ (1, 2) + (iŜC)
[
δ(n−1)G(Z,1)

ρρ (1, 2)
]

+
1
2
(iŜC)

2
[
δ(n−2)G(Z,1)

ρρ (1, 2)
]
.

(5.29)

Evaluating the three terms on the rhs according to (5.23) yields the three time-dependent
amplitudes:

n

∑
r=0

C(Z)
r (τ1)C

(Z)
n−r(τ2) + (iŜC)

n−1

∑
r=0

C(Z)
r (τ1)C

(Z)
n−1−r(τ2)

+
1
2
(iŜC)

2
n−2

∑
r=0

C(Z)
r (τ1)C

(Z)
n−2−r(τ2).

(5.30)

We will now show that these three contributions exactly cancel each other, which relies
on the following relation between chains of length r and r− 1:

C(Z)
r (τ) = −δC(Z)

r−1(τ) ∀ r > 0. (5.31)

This identity can be shown by explicitly performing the first integral in the chain (5.24)
and comparing the result to (5.28). Note that (5.31) relies on the specific expression for
the free particle propagator and only holds for Zel’dovich trajectories. Splitting off the
terms with chains of zero length in the first term of (5.30) (the s = 0 term) and using
(5.31) we obtain

n

∑
r=0

C(Z)
r (τ1)C

(Z)
n−r(τ2) = −C(Z)

0 (τ1)δC(Z)
n−1(τ2)−δC(Z)

n−1(τ1)C
(Z)
0 (τ2)

−
n−2

∑
r=0

δC(Z)
r (τ1)C

(Z)
n−1−r(τ2).

(5.32)

In the last (s = 2) term in (5.30) the square of the counter-operator is applied to the
product of the two chains of time integrals. Since each chain is linear in the Zel’dovich
particle propagator applying the counter-operator twice to a single chain gives a vanish-
ing contribution such that

1
2
(iŜC)

2
n−2

∑
r=0

C(Z)
r (τ1)C

(Z)
n−2−r(τ2) =

n−2

∑
r=0

δC(Z)
r (τ1)δC(Z)

n−2−r(τ2). (5.33)

For the second (s = 1) term in (5.30) we first apply the counter-operator using (5.28) and
split off chains of zero length to find

(iŜC)
n−1

∑
r=0

C(Z)
r (τ1)C

(Z)
n−1−r(τ2) =

n−2

∑
r=0

δC(Z)
r (τ1)C

(Z)
n−1−r(τ2) + δC(Z)

n−1(τ1)C
(Z)
0 (τ2)

+C(Z)
0 (τ1)δC(Z)

n−1(τ2) +
n−1

∑
r=1

C(Z)
r (τ1)δC(Z)

n−1−r(τ2).

(5.34)
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The first three terms cancel the s = 0 contribution, whereas the remaining term, upon
using (5.31), cancels the s = 2 contribution. Thus, the three contributions conspire in
such a way as to cancel exactly for all orders in perturbation theory n > 0. Consequently,
the free-streaming amplitude of the power spectrum from Zel’dovich trajectories is ex-
act, and perturbations to this result only occur at higher orders in the initial power
spectrum. This outcome is extremely reassuring, as it shows that Zel’dovich trajectories,
in conjunction with the counter-operator, lead to exact results in KFT. Compared to the
Newtonian case, where each increasing order in the interaction operator needs to be
considered to reproduce the correct linear growth, interactions play no role in the linear
evolution in the Zel’dovich approximation. Zel’dovich trajectories, hence, represent a
quantitative example of a suitable choice for particle trajectories to minimize the impact
of the interaction operator.

5.3 discussion

As formulations of KFT go, canonical perturbation theory has comparably little theoreti-
cal overhead. Calculating perturbative corrections to the free two-point functions is done
by naively applying the interaction operator to the free generating functional. Focussing
on the calculation of linear growth for a two-point function by applying two external
density operators on the generating functional and expanding the correlation lines in
the resulting free correlation functions to linear order in the initial power spectrum, we
were able to formally resum the entire perturbation series for Newtonian trajectories
(see (5.19)) to arrive at the expected linear growth behaviour. For the formal resum-
mation, we took inspiration from rKFT where the retarded propagator results from the
same chain of time integrals (5.16) and can be calculated via Laplace transforms. An
almost identical result was obtained in earlier works with the grand-canonical ensemble
(section 4.3 of [4]). One notable difference between canonical perturbation theory and
its grand-canonical/resummed counterparts is that the former is formulated in terms of
correlation functions, while both of the latter work with cumulants. While using correla-
tion functions appears natural for canonical perturbation theory, it also tends to obscure
some underlying structures and relations. Only the comparison to grand-canonical KFT
reveals that the infinite chains of time integrals that make up linear growth are chains
of density-response field cumulants ḠBρ, giving these quantities the interpretation of a
statistical propagator. What the resummation (5.1) is then effectively doing is to create
two infinite chains of statistical propagators, each of which hands down its arguments
to its neighbour in a ‘bucket brigade’ process until they reach the external modes at τ1

and τ2. Nonetheless, calculations of the large-scale amplitude of the power spectrum for
a finite order in canonical perturbation theory are interesting in their own right.

On the other hand, working with alternative splittings of the particle’s equations of
motion is most easily done in canonical perturbation theory. Zel’dovich trajectories are
a natural choice for cosmic structure formation and can be consistently introduced as
free particle motion. A counter term, which effectively pushes particles back on their
physical trajectories, occurs in the interaction operator to obtain the same complete par-
ticle trajectories. Since Zel’dovich particle propagators lead to the correct linear growth
behaviour of the power spectrum at the level of free-streaming, perturbative corrections
due to the interaction operator should not contain contributions that are linear in the
initial power spectrum. Indeed, using approximation methods to include the Zel’dovich
potential into the KFT interaction operator, e. g. by introducing an effective Yukawa po-
tential [49] leads to an inconsistent linear growth behaviour in canonical perturbation
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theory since such an interaction potential will fail to cancel unphysical contributions to
the linear amplitude. However, we were able to show in this section that a consistent
treatment of the Zel’dovich potential as an independent operator leads to an exact can-
cellation of terms at linear order in P(i)

δ for each order in perturbation theory. At the
level of linear growth, canonical perturbation theory can thus reproduce the predictions
of other perturbative approaches to cosmic structure formation, either by an infinite re-
summation of diagrams for Newtonian trajectories or from free motion in the case of
Zel’dovich trajectories.

As a final note on linear growth, comparing the results of SPT to canonical KFT with
Newtonian trajectories in the linear regime could be a good playground for more sys-
tematic comparisons between both theories. Like KFT, SPT can be formulated in terms
of a generating functional building on the path integral formulation of classical me-
chanics by Martin, Siggia, and Rose [14, 19, 51]. Gravitational interactions are entirely
contained in the linear e. o. m. , namely in the δθ-component of the matrix (2.33). For a
systematic comparison between SPT and canonical KFT, one could imagine extracting
the contribution of the gravitational potential from the free equation of motion [51] and
formulate it as an independent interaction operator. Structurally, the resulting interac-
tion operator has much in common with the particle interaction operator in KFT since
both are quadratic in macroscopic fields. The perturbative expansion of this operator in
SPT leads to the exact same result for the linear amplitude of the density power spectrum
(5.15) as for Newtonian trajectories in KFT. Additionally, it was shown in [47] that one-
loop rKFT at quadratic order in the initial power spectrum reproduces one-loop SPT. A
better understanding of this result could help find promising pathways to move beyond
SPT.
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6
G O I N G B E Y O N D L I N E A R G R O W T H

Although useful to deepen our understanding of canonical perturbation theory, the lin-
ear growth behaviour of the dark matter power spectrum is not what KFT was devel-
oped to calculate. Indeed, both SPT and LPT do a perfectly fine job in this regime at a
much lower computational effort. KFT’s true strength lies in describing the non-linear
regime where other perturbation theories break down. Formally, to obtain results for the
evolution of non-linear structures, we have to consider the complete hierarchy of initial
correlations between particles. Although KFT, unlike other theories of cosmic struc-
ture formation, has access to this information in principle, the numerical evaluation of
correlation lines is exceptionally challenging. To evaluate expressions in canonical per-
turbation theory in KFT beyond linear growth, we are forced to expand the correlation
lines in the initial power spectrum up to quadratic order. This chapter discusses how
the results of canonical perturbation theory can be derived consistently at this order.
Throughout the chapter, we narrow the discussion to evaluating synchronous two-point
functions. Since the final expressions are all derived by using a symbolic code, we will
refrain from showing calculations in complete detail and instead focus on highlighting
the essential ideas at play.

6.1 results for newtonian trajectories

Since evaluating perturbative corrections to free correlation functions in KFT at quadratic
order in the initial power spectrum involves treating an increasing number of terms, go-
ing beyond second-order perturbation theory is best done by implementing a symbolic
code. But before we discuss the mechanics and logic behind the symbolic evaluation
of perturbation theory, we want to build some intuition for the diagrammatic language
introduced in Section 4.3 by revisiting the evaluation of first and second-order diagrams.
Consider the two-point function evaluated with the Newtonian splitting of the equations
of motion

G(N)
ρρ (1, 2) = G(N,1)

ρρ (1, 2) + G(N,2)
ρρ (1, 2) + . . .

=
[

Ḡ(N,1)
ρρ (1, 2) + δ(1)G(N,1)

ρρ (1, 2) + δ(2)G(N,1)
ρρ (1, 2) + . . .

]
(6.1)

+
[

Ḡ(N,2)
ρρ (1, 2) + δ(1)G(N,2)

ρρ (1, 2) + δ(2)G(N,2)
ρρ (1, 2) + . . .

]
+ . . . ,

which we first separated into contributions in increasing orders of the expansion in the
initial power spectrum in the first line. Each order in the P(i)

δ -expansion is then split
into the free-streaming contribution and perturbative corrections of the latter. Whereas
the previous chapter was treating perturbative corrections, which are linear in the initial
power spectrum (line 2 in (6.1)), the last line of (6.1) is what we will be discussing in this
chapter.

87

[ April 24, 2023 at 9:45 – classicthesis version 4.2 ]



88 going beyond linear growth

6.1.1 First and second-order perturbative corrections

First-order corrections

Although the first-order correction to the dark matter power spectrum in canonical per-
turbation theory has been studied previously [1, 50], we will provide an overview of
the calculations here to get acquainted with the basic ideas underlying the evaluation
of canonical perturbation theory. Also note that our analysis is slightly more general
than that in previous works since we consider all initial correlation lines, as opposed to
[1, 50] where both density-density and density-momentum lines were neglected. For a
synchronous two-point function, we obtain a single distinct diagram

δ(1)G(N,2)
ρρ (1, 2) =

[
iŜI ρ̂(1)ρ̂(2)Z0[J, K ]

∣∣∣
0

](2)
= 2N3

e1 e2

i1

∣∣∣∣∣
quad

(6.2)

= 2N3
∫

d1′ f (1,−1′)Z (2)
0 (L q, L p),

where it is understood that particle indices are fixed labels which mark the components
of the shift tensors in Z (2)

0 (L q, L p) in the last line. The spatial shift tensor components,
which directly follow from the configuration of interaction lines, read

Lqe1
= −k1 + k′1 Lqe2

= −k2 Lqi1
= −k′1, (6.3)

and the momentum shift vectors follow from it in the usual way. The evaluation of
the diagram in terms of initial phase-space correlations is obtained by drawing all non-
vanishing configurations of up to two correlation lines into the diagram and expanding
the overall expression to quadratic order in the initial power spectrum

2N3

e1 e2

i1

∣∣∣∣∣
quad

= 2N3

( e1 e2

i1

(2) +

e1 e2

i1

(1)

(1) +

e1 e2

i1

(1)
(1) +

e1 e2

i1

(1)

(1)

)
(6.4)

= (2π)3δD(k1 + k2)2ρ̄3
∫

d1′ f (1,−1′)
[
(2π)3δD(Lqe1

)
(
−QDP̃ (1)

e2i1
(Lqe2

) + P̃ (2)
e2i1

(Lqe2
)
)

+ P̃ (1)
e1e2(Lqe1

)P̃ (1)
i1e2

(Lqi1
) + P̃ (1)

e2i1
(Lqe2

)P̃ (1)
e1i1

(Lqe1
) + P̃ (1)

e2e1(Lqe2
)P̃ (1)

i1e1
(Lqi1

)
]
,

where ρ̄3 is obtained from the inverse volume factors in the free correlation function
and N3 from the sum over particle labels. The next steps in the evaluation consist in
expressing the expanded correlations in terms of the initial power spectrum and wave-
vector-dependent factors, which follow directly from the definitions of initial correla-
tions (4.9)–(4.11) and the shift vector configuration (6.3). As was noted at the end of
Section 4.2, care needs to be taken when evaluating the correlation lines in three-particle
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clusters since the δ-rule prohibits two delta-ends to meet at a particle node. For example
P̃ (1)

e1e2(Lqe1
)P̃ (1)

i1e2
(Lqi1

) is obtained from

e1 i1

e2

(1) +

e1 i1

e2

+

e1 i1

e2

+

e1 i1

e2

(1) +

e1 i1

e2

(1) +

e1 i1

e2

+

e1 i1

e2

+

e1 i1

e2

+

e1 i1

e2

(1) (1) +

e1 i1

e2

(1) +

e1 i1

e2

(1) +

e1 i1

e2

(1)

=

(
e1 e2

+ e1 e2

)(
e2 i1

(1) + e2 i1

)

+

(
e1 e2

(1) + e1 e2

)(
e2 i1

+ e2 i1
(1) + e2 i1

+ e2 i1

)
.

(6.5)

The evaluation of the resulting expression is then obtained by Fourier-transforming the
individual correlation lines. As usual, care must be taken when evaluating the density-
momentum correlation lines since they are not symmetric under the exchange of indices.
As a final expression, we get

P̃ (1)
e1e2(Lqe1

)P̃ (1)
i1e2

(Lqi1
) =

(
Qδδ

e1e2
+ Qpδ

e1e2

)(
Qpp

i1e2
+ Qδp

i1e2

)
+
(

Qpp
e1e2 + Qδp

e1e2

)(
Qδδ

i1e2
+ Qpp

i1e2
+ Q(δp)

i1e2

)
,

(6.6)

where we encoded the Fourier-space correlation lines in the factors

Qδδ
ab := P(i)

δ (|Lqa |) Qpp
ab := − (Lpa · Lqa)(Lpb · Lqa)

L4
qa

P(i)
δ (|Lqa |)

Qδp
ab :=

Lpb · Lqa

L2
qa

P(i)
δ (|Lqa |) Qpδ

ab := −Lpa · Lqa

L2
qa

P(i)
δ (|Lqa |)

Q(δp)
ab :=

(Lpb − Lpa) · Lqa

L2
qa

P(i)
δ (|Lqa |).

(6.7)

The other correlation line configurations in (6.4) need to be evaluated following the same
procedure. In contrast to the products of two linearized Fourier-space correlation lines,
the quadratic contribution from the single correlation line is not a simple product of
Fourier-space correlation lines but a convolution:

P̃ (2)
e2i1

(Lqe2
) =

[
Qpp

e2i1
∗
(

Qδδ
e2i1 + Q(δp)

e2i1
+ 1

2 Qpp
e2i1

)]
(Lqe2

) +
(

Qδp
e2i1
∗Qpδ

e2i1

)
(Lqe2

). (6.8)

Expanding individual correlation lines to quadratic order in the initial power spectrum
thus results in an additional k-space integral. However, we also see in (6.4) that contri-
butions from single correlation lines obtain an additional Dirac-delta due to the uncor-
related particle e1. This behaviour is systematically continued for higher-order pertur-
bation theory and ensures that a single k-space integral remains for all corrections to a
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two-point function at quadratic order in P(i)
δ except for those terms that contain the ex-

panded Gaussian damping. We refer to those contributions which retain an integration
over an internal wave-vector as mode-coupling terms, whereas negative contributions due
to the damping are usually called self-energy terms.

Second-order corrections

At second-order in the interaction operator, evaluating the initial conditions at quadratic
order in the initial power spectrum already gives rise to quite a number of terms. Three
distinct topologies are possible for the interaction lines and result in the diagrams

δ(2)G(N,2)
ρρ (1, 2) = N4

(
2

e1 e2

i1 i2

+ 4

e1 e2

i1 i2

+ 2

e1 e2

i1 i2

)
quad

. (6.9)

Although the approach to evaluating these diagrams is identical to the first-order correc-
tion, the number of configurations of correlation lines is significantly larger. At second-
order in the initial power spectrum, we obtain 24 non-vanishing terms: 6 from the first
diagram in (6.9), and 9 from both the second and the third.

Once the trivial k-space integral has been solved, we are left with two integrals over
time and one over an internal wave vector, which can not be solved analytically. We,
therefore, collect all the remaining terms in a single integrand I(k1, τ1; k′1, τ′1, τ′2) and
use numerical Monte Carlo integration to obtain the final correction to the two-point
function at different values for the external wave-vector k1.

6.1.2 Evaluation of higher orders

Although the 24 terms from second-order perturbation theory are still manageable and
can be implemented by hand, third-order perturbation theory contains 83 distinct terms,
all of which need to be evaluated analytically and implemented in a code to obtain
the final result. The quickly growing number of non-vanishing terms per interaction
order plotted in Figure 6.1 indicates that going beyond second or (for the brave) third-
order perturbation theory is unfeasible without relying on a symbolic evaluation of the
resulting terms. The general procedure that we followed to systematically generate
contributions from n-th order perturbation theory and evaluate them at quadratic order
in the initial power spectrum consists of the following steps:

1. Generate all non-vanishing diagrams and calculate their multiplicities.

2. Determine the shift tensors and force prefactors corresponding to each diagram.

3. Determine and evaluate the non-vanishing correlation configurations for each dia-
gram.

4. Expand all correlation lines and the Gaussian damping factor consistently to second-
order in the initial power spectrum.

5. Solve the trivial k-space integrals, leaving one single Fourier integral for terms
without damping. These terms will lead to mode-coupling effects. Those terms
that contain the expanded Gaussian damping factor are left with no k-space inte-
gral.
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Figure 6.1: The number of non-vanishing terms (orange squares) as well as the number of dia-
grams (blue triangles). Since we only consider correlations between up to four parti-
cles, the average number of terms per diagram, i. e. the offset between the two curves,
is more or less constant.

6. Collect all mode-coupling and damping terms in two separate functions

IMC(k1, τ1; l, τ′1, . . . , τ′n) = ∑
diagr.

∑
line

configs.

(prefactors)× (correlation lines) (6.10)

ID(k1, τ1; τ′1, . . . , τ′n) = ∑
diagr.

∑
MC−line
configs.

(prefactors)× (correlation lines), (6.11)

where l denotes the remaining internal integration variable in the mode-coupling
contributions.

7. Perform the (n+ 2)-dimensional integration of the function IMC(k1, τ1; l, τ′1, . . . , τ′n)
(mode-coupling) and the n-dimensional time integration of ID(k1, τ1; τ′1, . . . , τ′n)
(self-energy) using Monte Carlo integration.

While steps 2.–5. are merely the generalization of the calculation sketched above for first-
order perturbation theory, and 6.–7. a simple matter of numerics, the first step deserves
more attention. To cast the diagrams of canonical perturbation theory into a shape that
can easily be implemented numerically, note that their actual content is the information
on which internal particle perturbs which other particle. Since each internal particle can
act on exactly one target particle (by a contraction of the corresponding response field
operator), we can therefore represent an n-th order diagram as a list of n labels denoting
the targets of the interaction lines. This list can be generated iteratively, starting with
a single entry for first-order perturbation theory and adding a free slot filled by all
possible target labels for each order.

Similar to the linear case, there are restrictions to the allowed topologies of diagrams if
we allow for a maximum of two correlation lines since only those configurations where
all particles are either targets of interaction lines or part of a correlated cluster are non-
vanishing. In general, if we allow for the presence of a maximum of nC correlation
lines, giving us a contribution of order nC or higher in the initial power spectrum, non-

[ April 24, 2023 at 9:45 – classicthesis version 4.2 ]



92 going beyond linear growth

vanishing n-th order corrections to a free m-point function need to contain nt targeted
particles where

nt
!
≥ n + m− 2nC. (6.12)

The rhs counts the minimum number of particles not connected to other particles with
an initial correlation line. For a non-vanishing diagram, these uncorrelated particles
need to be targeted by interaction lines, which can only be ensured if (6.12) holds. We
can make use of this knowledge to find restrictions on the possible topologies of non-
vanishing diagrams at a given order in the initial power spectrum by asking “What is
the maximum number X of times a single particle can be targeted and still leave enough
interaction lines to fulfil (6.12)?” A quick calculation shows that X needs to fulfill

X
!
≤ 2nC −m + 1. (6.13)

Consequently, only topologies where nodes are targeted up to three times by interaction
lines need to be considered in the diagrammatic evaluation of perturbations to a two-
point function evaluated at quadratic order in the initial power spectrum.

6.1.3 Results for the dark matter power spectrum

The results for perturbative contributions to the dark matter power spectrum due to
free-streaming and the first eight orders in perturbation theory with Newtonian trajec-
tories at quadratic order in the initial power spectrum are shown in Figure 6.2a. We
recognize the typical mode-transport behaviour in each order, where large scales (small
wavenumbers) obtain negative and small scales positive contributions from quadratic
corrections. Thus, power is transported from large to small scales, indicating growth in
small-scale structures.

The transition scale between positive and negative contributions shows an interesting
behaviour, moving towards larger scales as we increase the perturbation order from
zero to three and then turning around to move towards smaller scales after that. It
is not completely clear what causes this non-monotonous behaviour, but one possible
explanation is that there is a shift in the balance between the self-energy (damping)
contribution, which is overall negative, and the mode-coupling contributions. Due to
the expansion up to the second order in the initial power spectrum, the self-energy
contribution is exclusively contained in two-particle correlations. Since there are no
three- or four-particle clusters in the free-streaming solution, the relative importance of
the self-energy compared to the mode-coupling term should be pretty large at the level
of free-streaming, leading to the dominance of the negative self-energy contribution up
to comparatively large k (lightest curve in Figure 6.2a). Adding an internal particle by
doing first-order perturbation theory and thus allowing the occurrence of three-particle
correlations tips the balance between mode-coupling and self-energy in favour of the
positive mode-coupling terms. This mechanism could explain the shift of the transition
scale towards smaller k-values when comparing low orders in perturbation theory. Once
we proceed beyond second-order perturbation theory, no qualitatively new correlation
contributions arise by adding more internal particles, resulting in a slow monotonous
rise of the zero-crossing beyond the third order.

Unlike what is commonly observed for perturbation theories, the maximum ampli-
tude of quadratic corrections to the power spectrum increases as we crank up the order
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(a) Separate contributions up to eighth order.
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(b) Total contribution at eighth order.

Figure 6.2: Contributions from free-streaming (order 0) up to perturbations of order 8 to the
dark matter power spectrum evaluated at quadratic order in the initial power spec-
trum. The individual contributions from each order are shown in (a), whereas their
sum is plotted in (b), together with the corrections linear in the initial power spec-
trum. Adding up quadratic and linear contributions (green dotted curve) yields the
total result for the ‘non-linear’ power spectrum for a given order in perturbation the-
ory. The black curve shows the correct amplitude to which linear corrections should
eventually converge. (b) illustrates that perturbations of this order are insufficient to
describe the correct power spectrum at any scale.

in perturbation theory. This can be considered troublesome for two reasons: (i) it sug-
gests that the perturbative series might be divergent, and (ii) if it does converge, going
to eighth-order perturbation theory is insufficient to obtain a reasonable estimate for the
result. Considering (i), we do not need to worry too much since the results from linear
growth show the same behaviour; the overall time-dependent amplitude increases for
each order until it reaches a maximum and starts to decrease—cf. Figure 5.2. We can
expect the same behaviour from quadratic corrections since we expect that perturba-
tions in the interaction operator are agnostic about the expansion in the initial power
spectrum. As for (ii), better methods for evaluating perturbation theory are needed to
investigate how many perturbation orders are required until the maximum amplitude
is reached and corrections start to decline. Unfortunately, with the current approach of
using Monte Carlo methods to integrate over the n + 2 arguments of the time and wave-
vector integral at n-th order perturbation theory, obtaining results beyond n = 8 is not
attainable. Nonetheless, comparing the amplitudes of individual contributions for dif-
ferent orders in perturbation theory can provide us with a rough understanding of the
behaviour of perturbative corrections at quadratic order in the initial power spectrum.

In Figure 6.3, we plotted the amplitude of individual perturbative corrections, both
linear and quadratic in the initial power spectrum at k = 1 h Mpc−1. Note that the exact
value of k is unimportant here since our main interest lies in the relative amplitude of
different contributions. Most notably, we should point out that while the corrections
linear in P(i)

δ seem to reach their maximum amplitude around the eighth order, the
same can not be said for the quadratic contributions. Although the curve flattens for
increasing orders in the interaction, it does so at a considerably lower rate than in the
linear case, suggesting that convergence will happen only later. We expect convergence
to happen much slower at quadratic order in the initial power spectrum, forcing us to
go to extraordinarily high orders in the interaction operator until contributions become
negligible. This trend most certainly continues if we go to cubic order in P(i)

δ for the
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Figure 6.3: Comparison of the amplitude of linear and quadratic corrections at k = 1 h Mpc−1.
On the left panel, the amplitude of individual corrections is plotted as a function
of their order. Whereas linear corrections (blue triangles) attain their maximum am-
plitude at order 8 and start to decrease after that —as illustrated in Figure 5.2—the
curve corresponding to the corrections that are quadratic in the initial power spec-
trum (orange squares) suggests that these contributions reach this turning point only
at a higher perturbation order.

following reason: From the linear calculation in Section 5.1, we have understood that
summing up the diagrams contributing to linear growth can essentially be understood
as replacing Newtonian particle trajectories, which propagate the initial correlation lines,
by Zel’dovich trajectories. For linear growth, a single linearized correlation line needs
to be propagated, requiring the resummation of two particle propagators. At quadratic
order in the initial power spectrum, each term consists of two correlation lines, joining
up to four particles. Each of these particle trajectories is then perturbed, and a subclass
of diagrams contributes to the resummation of its propagator, meaning that, naively, we
need twice as many orders in the interaction operator to achieve the same convergence
as for linear growth. Intuitively, it makes sense that more interactions are needed for
higher orders in the initial power spectrum.

Adding up all quadratic contributions from Figure 6.2a, we obtain the total quadratic
correction to the dark matter power spectrum up to the eighth order in canonical per-
turbation theory. This result is plotted in Figure 6.2b, together with the total linear
correction of the same order and the expected linear power spectrum. Although it is
technically possible to go beyond the results of this work by an improvement of the
numerical evaluation, our results suggest that an alternative approach, such as a resum-
mation scheme [22] or a change to a more suitable definition of free motion—which will
be investigated in the next section—might be more fruitful.

6.2 results for zel’dovich trajectories

If we wish to proceed beyond the results of Newtonian trajectories in canonical pertur-
bation theory, Zel’dovich trajectories are a promising candidate. As we have seen in
the previous chapter, they reproduce the correct large-scale growth of the cosmic power
spectrum at the level of free-streaming, and one can analytically show that all linear cor-
rections to this result cancel exactly. At least for linear growth, they can be considered
as a resummed result of Newtonian trajectories. To proceed beyond the discussion of
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linear growth for Zel’dovich trajectories, we consider the perturbative corrections of the
interaction operator to a free two-point function

G(Z)
ρρ (1, 2) = G(Z,1)

ρρ (1, 2) + G(Z,2)
ρρ (1, 2) + . . .

=
[

Ḡ(Z,1)
ρρ (1, 2) + ∆(1)G(Z,1)

ρρ (1, 2) + ∆(2)G(Z,1)
ρρ (1, 2) + . . .

]
+
[

Ḡ(Z,2)
ρρ (1, 2) + ∆(1)G(Z,2)

ρρ (1, 2) + ∆(2)G(Z,2)
ρρ (1, 2) + . . .

]
+ . . . .

(6.14)

In the first line, we expanded the fully interacting two-point function in orders of the
initial power spectrum, each of which is then evaluated perturbatively. n-th order per-
turbative corrections at a given order o in the initial power spectrum are defined with
the full interaction operator

∆(n)G(Z,o)
ρρ (1, 2) :=

1
n!

[
(i∆ŜI)

nρ̂(1)ρ̂(2)Z0[J, K ]
∣∣∣
0

](o)
, (6.15)

and we have shown in the previous chapter that all corrections at linear order (o = 1)
are identically zero, leaving nothing but the free-streaming solution. To evaluate the
quadratic contributions, we split the full interaction operator into particle interactions
and contributions from the counter-operator such that

∆(n)G(Z,2)
ρρ (1, 2) :=

[
(i∆ŜI)

nρ̂(1)ρ̂(1)Z0[J, K ]
∣∣∣
0

](2)

=
n

∑
s=0

1
s!
(iŜC)

s

[
1

(n− s)!
(iŜI)

(n−s)ρ̂(1)ρ̂(2)Z0[J, K ]
∣∣∣
0

](2)

=
n

∑
s=0

1
s!
(iŜC)

s
[
δ(n−s)G(Z,2)

ρρ (1, 2)
]
. (6.16)

In the last step, we identified perturbations of the two-point function evolving along
Zel’dovich trajectories due to particle interactions δ(n−s)G(Z,2)

ρρ (1, 2).

6.2.1 Evaluation of particle interactions

As we have stressed before, the perturbations in δ(n−s)G(Z,2)
ρρ (1, 2) are caused by the same

particle interaction operator ŜI as in the Newtonian case, the only difference being that
correlation lines are evolved with Zel’dovich instead of Newtonian particle propaga-
tors. Consequently, the same diagrammatic representation applies to determine these
perturbations as in the previous section. For example, the first-order perturbation due
to particle interactions,

δ(1)G(Z,2)
ρρ (1, 2) = 2N3

∫
d1′ f (1,−1′)Z (2)

0 (L q, L(Z)
p ), (6.17)

is identical to (6.2) if we replace the propagators in the momentum shift tensor with
Zel’dovich particle propagators. This result holds true for all orders in the particle
interaction operator, such that

δ(n)G(Z,2)
ρρ (1, 2) = δ(n)G(N,2)

ρρ (1, 2)
∣∣∣
L p=L(Z)

p

. (6.18)
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6.2.2 Evaluation of the counter-operator

The real difference between Zel’dovich and Newtonian trajectories lies in the additional
application of the counter-operator

iŜCδ(n)G(Z,2)
ρρ (1, 2) =

(
∆Lp ·

∂

∂L(Z)
p

)
δ(n)G(Z,2)

ρρ (1, 2). (6.19)

Recall that the dependence of δ(n)G(Z,2)
ρρ (1, 2) on the momentum shift tensor lies entirely

in the correlation lines, such that applying the counter-operator comes down to tak-
ing derivatives of the Fourier-space correlation lines w. r. t. the momentum shift tensor.
Schematically, corrections due to particle interactions are of the form

δ(n)G(Z,2)
ρρ (1, 2) = ∑

diagr.

∫
d1′ . . .

∫
dn′(prefactor)×

{
∑
{a,b}

[
−Q(Z)

D P̃
(Z,1)
ab + P̃ (Z,2)

ab

]

∑
{a,b,c}

P̃ (Z,1)
ab P̃ (Z,1)

cb + ∑
{a,b,c,d}

P̃ (Z,1)
ab P̃ (Z,1)

cd

}
,

(6.20)

where we assume that all details about each term, such as the correct prefactors and the
non-vanishing index configurations on the Fourier-space correlation lines, are known.
Once again, correlation lines and the Gaussian damping term were explicitly marked
with a (Z) to remind us that their momentum shift vectors contain the Zel’dovich par-
ticle propagator. Note that each correlation line expanded to linear order in the ini-
tial power spectrum P̃ (Z,1) is at most quadratic in L(Z)

p , while P̃ (Z,2) contains up to
four orders of the momentum shift tensor components. Thus, each term in (6.20) is
of fourth order in momentum shift vectors, such that applying up to four powers of
the counter-operator results in non-vanishing contributions. For the application of the
counter-operator, we abbreviate iŜC ≡ ∂ and first consider its effect on individual lin-
earized correlation lines and on the Gaussian damping as the fundamental building
blocks of our expressions:

∂Qpp
ab = −

{
(∆Lpa · Lqa)(L

(Z)
pb · Lqa)

L4
qa

+
(L(Z)

pa · Lqa)(∆Lpb · Lqa)

L4
qa

}
P(i)

δ (|Lqa |)

∂2Qpp
ab = − (∆Lpa · Lqa)(∆Lpb · Lqa)

L4
qa

P(i)
δ (|Lqa |)

∂Qδp
ab =

∆Lpb · Lqa

L2
qa

P(i)
δ (|Lqa |) ∂Qpδ

ab = −∆Lpa · Lqa

L2
qa

P(i)
δ (|Lqa |)

∂Q(δp)
ab =

(∆Lpb − ∆Lpa) · Lqa

L2
qa

P(i)
δ (|Lqa |)

∂Q(Z)
D = σ2

p ∆L p · L(Z)
p ∂2Q(Z)

D = σ2
p ∆L p · ∆L p.

(6.21)

The result of applying the counter-operator to a perturbation of the two-point function
due to particle interactions reads

iŜCδ(n)G(Z,2)
ρρ (1, 2) =

∫
∑

diagr./
indices

(
− ∂Q(Z)

D P̃
(Z,1)
ab −Q(Z)

D ∂P̃ (Z,1)
ab + ∂P̃ (Z,2)

ab (6.22)

+ ∂P̃ (Z,1)
ab P̃ (Z,1)

cb + P̃ (Z,1)
ab ∂P̃ (Z,1)

cb + ∂P̃ (Z,1)
ab P̃ (Z,1)

cd + P̃ (Z,1)
ab ∂P̃ (Z,1)

cd

)
,
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where derivatives of combined correlation linesP̃ab are evaluated by expressing them in
terms of individual linearized lines Qδδ, Qδp and Qpp and applying Leibniz’ rule. These
terms need to be evaluated for up to four powers of the counter-operator, such that at
n-th order perturbation theory, where n ≥ 4 we get

∆(n)G(Z,2)
ρρ (1, 2) = δ(n)G(Z,2)

ρρ (1, 2) + iŜCδ(n−1)G(Z,2)
ρρ (1, 2) +

1
2
(iŜC)

2δ(n−2)G(Z,2)
ρρ (1, 2)

+
1
3!
(iŜC)

3δ(n−3)G(Z,2)
ρρ (1, 2) +

1
4!
(iŜC)

4δ(n−4)G(Z,2)
ρρ (1, 2).

(6.23)

As was the case for Newtonian trajectories, manually evaluating perturbation theory be-
yond the first order with Zel’dovich trajectories is extremely lengthy and most certainly
fails due to inevitable arithmetic mistakes. Instead, diagrams are evaluated symbolically
with the same algorithm as for Newtonian perturbation theory, and applications of the
counter-operator are implemented on top of these results.

6.2.3 Results for the dark matter power spectrum

The corrections to the dark matter power spectrum with Zel’dovich trajectories at linear
and quadratic order in the initial power spectrum are plotted in Figure 6.4a. As was
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(a) Separate contributions up to third order.
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(b) Total contribution at third order.

Figure 6.4: Contributions to the dark matter power spectrum linear and quadratic in the initial
power spectrum. Whereas the blue curves in (a) show corrections to the power spec-
trum at quadratic order in the initial power spectrum, the linear order is shown in
orange. Quadratic corrections decrease in overall amplitude with increasing order,
showing a nice convergent behaviour. Only the quadratic free-streaming term leads
to negative contributions (marked by a dashed line) on large scales. In (b), the overall
quadratic correction, as well as the full power spectrum at quadratic order in P(i)

δ are
shown. Comparison with one-loop SPT shows that both results coincide with great
accuracy. Including even higher order corrections (in the interaction operator) in KFT,
we expect to converge exactly towards the SPT result.

stressed previously, the only contribution at linear order is the linear power spectrum
with the correct large-scale amplitude. Quadratic corrections are displayed up to third
order and show a different behaviour from the Newtonian case. Where corrections due
to particle interactions were increasing in amplitude up to extremely high orders for
Newtonian trajectories, we observe a monotonous decrease in their overall amplitude
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for Zel’dovich trajectories. Additionally, perturbations due to the interaction operator
show an overall positive contribution on all length scales; negative contributions on large
scales are entirely due to free-streaming. From this point of view, we can confirm that
Zel’dovich trajectories are much better suited for a perturbative treatment of canonical
perturbation theory in cosmic structure formation than their Newtonian counterpart.

Higher-order corrections become increasingly smaller, and going beyond third-order
perturbation theory will only lead to tiny corrections compared to the third-order result.
Adding up all quadratic contributions to the third order in the interaction operator
results in the blue curve in Figure 6.4b. Interestingly, comparing the final result of the
power spectrum to one-loop SPT/first-order LPT shows that both curves match almost
perfectly. Indeed, were we to include corrections of even higher order, we expect that the
result would converge precisely towards the one-loop power spectrum. This outcome
is quite unfortunate since SPT results are notoriously unstable and not to be trusted
beyond mildly non-linear scales, suggesting that the same must be true for KFT. The
fact that KFT and SPT yield the same result comes as a surprise, since there is no
apparent reason for KFT to break down after stream-crossing has happened. On the
other hand, we did need to expand the initial conditions up to quadratic order in the
initial power spectrum. Although it is not evident that this expansion inevitably leads
to an inconsistent theory on small scales, expanding the correlation lines in P(i)

δ seems
to be equivalent to doing a loop-expansion in SPT. It, hence, becomes clear that the full
power of KFT can only be harnessed by evaluating correlation lines without the need
for an expansion in the initial power spectrum. The advantage of KFT compared to SPT
of LPT is that, although computationally challenging, circumventing a power series in
the linear/initial power spectrum is possible, at least in principle. There is, therefore, a
clear, albeit tedious path ahead for canonical perturbation theory in KFT.

6.2.4 Remarks on the evaluation

Cancellations between different terms

Before concluding the section on the Zel’dovich power spectrum, let us point out that
the current evaluation of corrections to the power spectrum is problematic from a nu-
merical point of view. It is a known issue in SPT that mode-coupling and self-energy
contributions lead to significant cancellations on small scales, which require enormously
accurate integration techniques. As we can observe in Figure 6.5, the same is true even
more in KFT with Zel’dovich trajectories. The curves shown in the figure represent the
individual terms in first-order perturbation theory, which can be sketched as

∆(1)G(Z,2)
ρρ (1, 2) =

[
(iŜC)ρ̂(1)ρ̂(2)Z0[J, K ]

](2)
SE

+
[
(iŜC)ρ̂(1)ρ̂(2)Z0[J, K ]

](2)
MC

+
[
(iŜI)ρ̂(1)ρ̂(2)Z0[J, K ]

](2)
SE

+
[
(iŜI)ρ̂(1)ρ̂(2)Z0[J, K ]

](2)
MC

,
(6.24)

where self-energy and mode-coupling contributions are split up and marked with a
SE and MC, respectively. There is a quite precise cancellation both between damping
and mode-coupling terms for counter and particle interaction individually and again be-
tween both results. As a result, cancellations of up to two orders of magnitude are neces-
sary to arrive from the results of the numerical integration to the final expression. These
large cancellations severely limit the precision of our results since they worsen—the
amplitude of individual contributions rising and that of the final result decreasing—for
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Figure 6.5: Illustration of the large cancellations that occur when evaluating KFT with Zel’dovich
trajectories. In the left panel, the blue curves represent the negative damping (dot-
ted) and mode-coupling (full, dashed where negative) contributions from the term
that stems from applying the particle interaction operator to the two-point function.
Orange curves represent the same contributions for the counter-operator. Note that
the counter-operator switches the signs of the contributions, leading to a positive
damping (full line) and a negative mode-coupling term. In the right panel, the sum
of damping and mode-coupling contributions are shown for the counter-operator (or-
ange) and the particle interaction (blue) terms. Dashed lines indicate negative terms.
The final result, i. e. the sum of both contributions, is the black dashed-dotted line.

increasing orders in perturbation theory, prohibiting us from reliably calculating correc-
tions beyond the third order with our current numerical methods. If we could evaluate
correlation lines without an expansion in the initial power spectrum, cancellations be-
tween mode-coupling and damping terms would be eliminated, but those caused by the
counter-operator would persist.

The relevance of all correlation lines

We have seen in Section 4.5 that momentum correlation lines completely dominate the
free-streaming power spectrum in KFT if we use Zel’dovich trajectories. This dominance
can be traced back to the fact that the other lines come with smaller powers of the particle
propagator and therefore become irrelevant as the latter grows larger. In earlier works on
KFT, this was used as a motivation to neglect all but momentum correlation lines, even
in perturbative calculations with Zel’dovich trajectories. Here we compare the results
of neglecting density-density and density-momentum correlations with those where all
correlation lines are evaluated for different perturbation orders. Figure 6.6 shows that
neglecting certain correlation lines for calculations of corrections to the dark matter
power spectrum leads to considerable errors in the resulting terms. The underlying
reason is two-fold:

1. Perturbative corrections in KFT integrate the effect of particle interactions over
time, such that contributions from early times, where all correlation lines are
equally important, become relevant. This argument is similar to SPT, where linear
growth is entirely dominated by the growing solution for the density contrast such
that the decaying solution plays no role in the tree-level amplitude. When calculat-
ing loop corrections, however, results are obtained by integrating over time, such
that both the growing and the decaying modes need to be taken into account to
recover the correct one-loop result.
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Figure 6.6: Comparison of first (teal) and second (dark blue) order corrections to the power spec-
trum at quadratic order in the initial power spectrum. Results, where all correlation
lines were considered, are represented by full lines. The dashed-dotted lines, on the
other hand, show the results if only momentum correlations are taken into account.
In first-order perturbation theory, the difference is noticeable but small, whereas the
second-order result deviates considerably from the correct curve and even becomes
negative (dotted line) on small scales.

2. Due to the substantial cancellations between counter- and particle interaction terms,
small contributions to the resulting terms become essential and cannot simply be
neglected.

Figure 6.6 nicely illustrates that the difference between results with only momentum
correlation lines and those with all correlation lines considered becomes larger for in-
creasing order in perturbation theory. The upshot is that, even when working with
Zel’dovich trajectories in KFT, all correlation lines need to be taken into account.

6.3 discussion

This chapter introduced a systematic approach to derive expressions in canonical KFT
perturbation theory for Newtonian and Zel’dovich trajectories. Whereas we put the fo-
cus on calculating the synchronous two-point function at quadratic order in the initial
power spectrum, the methods and ideas we introduced extend to higher-order spectra.
The basis of the derivation of the final results is a symbolic code that allows for the
systematic calculation of perturbative corrections, in theory, up to arbitrary order in
perturbation theory. However, we encounter limitations in the symbolic evaluation of
diagrams due to the sheer number of terms that need to be calculated and in the numer-
ical stability of the integration of the result due to the increasingly large number of time
integrals.

For Newtonian trajectories, perturbations up to the eighth order were calculated, plot-
ted, and discussed, the upshot being that canonical perturbation theory, in combination
with Newtonian particle propagators, is seemingly not well suited for precision calcu-
lations in cosmology. Indeed, the convergence of corrections at quadratic order in P(i)

δ

seems to proceed considerably slower than for the linear calculation. Although we were
unable to calculate corrections reliably beyond order 8 in the interaction operator, ex-
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trapolating our results suggests that considerably higher orders would be needed to
observe convergence towards SPT.

Perturbative corrections to the two-point function with Zel’dovich trajectories, how-
ever, seem well-behaved and show a decreasing amplitude with increasing perturbation
order. Already at third-order perturbation theory, we observe a convergence toward the
one-loop SPT result, which is both reassuring and concerning at the same time. On
the one hand, it shows that Zel’dovich trajectories, although seemingly unnatural to
KFT, result in a perturbation series that converges very quickly. On the other hand, it
is mildly surprising that KFT converges toward the result of a theory, which we know
to be inconsistent in the non-linear regime. This is a non-trivial result in that we start
with a theory that should be well-behaved even in the multi-streaming regime and end
up with the same result as SPT, which manifestly breaks down at stream-crossing. The
most likely explanation for this behaviour is that KFT loses its conceptual edge once
we expand correlation lines in the initial power spectrum. It is unclear how, but this
approximation appears to reintroduce the single-stream approximation that KFT tries to
circumvent. This result suggests that the most promising path forward for KFT is to try
at all costs to circumvent the expansion of correlation lines.
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7
C O N C L U S I O N

We started this work with a condensed introduction into cosmic structures and their
formal description, giving brief overviews of the basics of two well-established analytical
approaches to cosmic structure formation. Both these approaches, namely Standard
(Eulerian) Perturbation Theory (SPT) and Lagrangian Perturbation Theory (LPT), are
based on the assumption that the content of the Universe can be treated as a collisionless
fluid, restricting their range of applicability to relatively large scales and only mildly
non-linear structures. Although various extensions of SPT and LPT, trying to tackle
their fundamental restrictions from different angles, exist, we proposed to drop the
hydrodynamic description altogether by working with Kinetic Field Theory (KFT), a
particle-based approach.

KFT is a path-integral approach to statistical non-equilibrium systems whose evolu-
tion is governed by the phase-space dynamics of classical particles. In our thorough
introduction to KFT, we derived the generating functional, emphasising the perturba-
tive treatment of particle interactions and their interpretation. Over the years, various
reformulations of KFT have emerged from the need to cast the theory into a shape
that is more akin to the path integral formalism of quantum field theory (QFT). While
we believe these to be promising paths to strike, we were curious to examine how far
the most basic approach, i. e. canonical KFT, can take us in the description of cosmic
structures. The extreme flexibility of the theory allowed us to use a simple toy model,
far removed from the complexity of cosmic structure formation, to gain some intuition
about the physical role and the mathematical description of the perturbative treatment
of the interaction operator. Building on these ideas, we developed a new diagrammatic
language for canonical perturbation theory, putting the particle nature of the underlying
dynamics into the spotlight. The main challenge in describing cosmic structures lies in
the initial conditions obtained via Poisson sampling of the particles’ initial phase-space
coordinates from the underlying Gaussian density and velocity field. We ordered these
initial conditions in the number of correlation lines connecting increasingly large parti-
cle clusters. The main advantage of our diagrammatic approach is that it allows us to
treat both particle interactions and correlations in the same graphical description.

Besides the complicated initial conditions, particle trajectories are a crucial point of
discussion for the description of cosmic structures with canonical KFT. We have high-
lighted that Newtonian particle trajectories cannot reproduce the correct linear growth
behaviour at the level of free-streaming, prompting us to impose Zel’dovich trajecto-
ries for the free motion of microscopic particles. Unlike previous works, we imposed
this alternative definition of free particle trajectories at the level of the equations of mo-
tion by pulling the expression for the interaction potential of first-order LPT into the
free e. o. m. E [x]. This choice naturally leads to an additional component, the counter-
operator ŜC in the interaction operator, which, as we could show, restores the correct
particle trajectories. For particles on Zel’dovich trajectories, the interaction operator thus
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turned into a sum of two operators, one encoding particle interactions due to gravity
and the other compensating for the unbounded free motion described by the Zel’dovich
particle propagator.

We then moved on to proper applications of canonical KFT, notably calculating the
dark matter power spectrum, starting with the linear-growth behaviour. Since the dy-
namics of macroscopic quantities, such as the particle density, do not trivially follow
from that of the microscopic degrees of freedom, describing linear growth from canon-
ical KFT alone requires a considerable amount of effort. We showed how the inclusion
of correlation lines in our diagrammatic approach could be used to derive the topology
of diagrams contributing to linear structure formation and evaluated the resulting ex-
pressions. Leaning on previous results from resummed and grand-canonical KFT, we
were able to analytically perform the resummation of the entire class of diagrams to
exactly recover the large-scale linear growth of the dark matter power spectrum from
Newtonian phase-space dynamics. On the one hand, this result is a significant step in
clarifying the relation between the different approaches to KFT and can be built upon to
deepen our intuition of more abstract macroscopic reformulations of KFT. On the other
hand, it highlights the challenges facing canonical KFT when applied to cosmic struc-
ture formation with simple Newtonian trajectories. Indeed, truncating the perturbative
expansion of the interaction operator shows that we converge towards the correct linear
growth behaviour at the percent level only after thirteen orders in the expansion.

Zel’dovich trajectories, on the other hand, are known to reproduce the correct linear
growth behaviour of the dark matter power spectrum at the free-streaming level. How-
ever, since a systematic treatment of the interaction operator in KFT with Zel’dovich
trajectories has not been analysed systematically until this point, it was unclear whether
corrections due to the interaction operator would add further unphysical, large-scale
growth. Using the expression of the interaction operator in terms of the counter-operator,
we could show for the first time that this is not the case. At linear order in the initial
power spectrum, the counter-operator leads to an exact cancellation of terms at each
perturbation order individually, such that there are no corrections to the free linear
Zel’dovich solution. This result puts Zel’dovich trajectories in canonical KFT on a solid
foundation, at least at the mathematical level.

With the description of linear structure formation in the framework of canonical KFT
clarified, we then moved on to the more interesting case of higher-order corrections in
the initial power spectrum. Specifically, we restricted ourselves to quadratic contribu-
tions in the initial power spectrum. Immediately we are confronted with significantly
more challenging calculations since both the diversity of diagram topologies and the
number of configurations of initial correlations dramatically increase if we allow for
the occurrence of two correlation lines. Most of the analysis was therefore performed
with a symbolic code, and the final results were obtained by numerically integrating the
automatically generated expressions.

For Newtonian particle trajectories, we obtained results up to eighth order in the
interaction operator and concluded that a far higher order is needed until the series
converges. Indeed, the behaviour of the resulting corrections suggests that we need
considerably higher orders in the interaction operator at quadratic order compared to
linear order in P(i)

δ , which is problematic for two reasons:

• The vastly higher number and increased variety of terms at quadratic order in P(i)
δ

compared to the linear result makes an evaluation of high order corrections, at
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the level of both the symbolic generation of terms and their numerical integration,
much more costly.

• As we will see, results from Zel’dovich trajectories suggest that the result does
indeed converge towards one-loop SPT, which is known to be untrustworthy at
non-linear scales.

It is questionable whether canonical perturbation theory with Newtonian particle tra-
jectories is a good way to move forward if we are interested in a precise and efficient
description of non-linear structure formation.

Our results for Zel’dovich trajectories, on the other hand, look more promising. In the
analysis of perturbation theory, both the particle interaction operator and the counter-
operator need to be evaluated consistently. Since ŜC acts on free correlation lines, at
most, four powers of the counter-operator need to be taken into account at quadratic or-
der in P(i)

δ . The numerical evaluation of the resulting corrections to the power spectrum
looks promising; unlike for Newtonian trajectories, perturbative corrections systemati-
cally decrease in amplitude as we proceed to higher orders. As a result, we observe
a quick convergence of the series, suggesting that corrections beyond third order play
little to no role in our analysis. As we pointed out, consistent treatment of Zel’dovich
trajectories and the corresponding interaction operator requires information on all the
initial correlations. The final result for the power spectrum at quadratic order in the
initial power spectrum converges towards the one-loop SPT result. Since the basic as-
sumptions of KFT are much less restrictive than those of SPT, and there is no apparent
reason why KFT should not be able to describe non-linear structure formation if eval-
uated exactly, we conclude that the expansion of initial correlation lines in the initial
power spectrum is responsible for this correspondence. A more systematic comparison
between KFT and SPT would help us understand this result better. For now, the results
suggest that an expansion in terms of the initial power spectrum robs KFT of its concep-
tual edge and pulls it back to the same level as hydrodynamic descriptions. However,
unlike the hydrodynamic descriptions of cosmic structure formation, KFT does not rely
on such an expansion. Indeed, we can derive expressions for perturbations of the power
spectrum due to particle interactions that include the complete hierarchy of initial corre-
lations. If we wish to harness the full power of KFT, the proper evaluation of correlation
lines can and should not be circumvented and should occupy the top spot in the list of
priorities for the future developments of KFT.
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A
D E TA I L E D C A L C U L AT I O N S F O R E U L E R I A N A N D L A G R A N G I A N
P E RT U R B AT I O N T H E O RY

a.1 transforming the time coordinate in the euler-poisson system

To rewrite (2.16)–(2.18) in terms τ from (2.22), first note that dτ
dt = f (Ωm)H, where

f (Ωm) = d ln D+
d ln a is the growth rate of cosmic structures. The continuity equation (2.16)

in terms of the new time coordinate reads

δ̇ +∇ ·
[
(1 + δ)u

]
= 0, (A.1)

where we redefined the velocity field u(q, τ) = v(q,t(τ))
H f . Additionally, we defined the dot

to represent derivatives w. r. t. the new time coordinate τ for a more compact notation.
The time-derivative of the velocity field in the Euler equation thus turns into

∂tv(q, t) = ∂t(H f )u(q, τ) + H f
dτ

dt
u̇(q, τ). (A.2)

The prefactor of the second term is simply H2 f 2. Using that H f = ∂tD+/D+ the prefac-
tor of the first term evaluates to

∂t(H f ) =
∂2

t D+

D+
−
(∂tD+

D+

)2
=

3
2

H2Ωm − 2H2 f − H2 f 2, (A.3)

where we used (2.20) to get rid of the second order time derivative and re-expressed the
derivative of the growth factor in terms of f and H. Reinsertion into the Euler equation
shows that the new velocity field u(q, τ) satisfies

u̇ +
(3Ωm

2 f 2 − 1
)

u + (u ·∇)u +
1

a2H2 f 2∇Φ = 0, (A.4)

which in turn suggests a redefinition of the gravitiational potential. In fact, absorbing the
arising pre-factor results in a new potential ϕ(q, τ) which satisfies the Poisson equation

∇2ϕ =
4πG

a2H2 f 2 a2 ρ̄mδ =
3Ωm

2 f 2 δ, (A.5)

where we used the definition of the mean mass density in terms of the critical density
(2.4) and the density parameter Ωm in the last step. In summary, after performing
the transformation to the new time coordinate τ, the Euler-Poisson system (2.16)–(2.18)
turns into

δ̇ +∇ ·
[
(1 + δ)u

]
= 0 (A.6)

u̇ + µ
2 u + (u ·∇)u +∇ϕ = 0 (A.7)

∇2ϕ = (µ/2 + 1) δ, (A.8)

where we introduced the time-dependent variable µ(τ) = 2
( 3Ωm

2 f 2 − 1
)

for notational
convenience.
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110 detailed calculations for eulerian and lagrangian perturbation theory

a.2 first order lpt solution equation

To derive the first order e. o. m. for the displacement field in LPT we need to perform a
coordinate transform from the Eulerian coordinate q to the Lagrangian coordinate q(i)

for ∇q and expand both ∇q and the determinant J to first order in the displacement
field. First, note that ∇q = (∂q/∂q(i))−1∇q(i) = ∇q(i) +O(Ψ), allowing us to simply re-
place the gradient in (2.38) by ∇q(i) at lowest order. For small values of the displacement
field the argument of the determinant

J = det
(
I3 +

∂Ψ

∂q(i)

)
(A.9)

can be viewed as a first order expansion of a matrix exponential. Using det eA = eTrA

and re-expanding the exponential of the trace, we find

J−1 = 1− Tr
( ∂Ψ

∂q(i)

)
+O(Ψ2) = 1−∇q(i) ·Ψ +O(Ψ2). (A.10)

Introducing the index notation Ψi,i := ∇q(i) · Ψ for the divergence of the displacement
field turns (2.38) at first order into

Ψ̈(1)
i,i +

µ

2
Ψ̇(1)

i,i − (µ/2 + 1)Ψ(1)
i,i = 0, (A.11)

which is exactly the linear growth equation from SPT and therefore solved by

Ψ(1)
i,i (q

(i), τ) = eτ Ψ(i)
i,i (q

(i)). (A.12)

Since the equation of motion is valid for the divergence of Ψ it also holds for Ψ itself if
the field is curl-free.

a.3 derivation of the power spectrum in the zel’dovich approximation

Using mass conservation (2.37) and neglecting initial density fluctuations we can derive
the relation between the Fourier-space density contrast and the displacement field

δ(k, τ) =
∫

q(i)
e−ik·q(i)(

e−ik·Ψ(q(i),τ) − 1
)
. (A.13)

The density power spectrum therefore reads

Pδ(k) =
∫

k′

〈
δ(k, τ)δ(k′, τ)

〉
=
∫

∆q(i)
e−ik·∆q(i)(〈

e−ik·∆Ψ
〉
− 1
)
, (A.14)

where we defined ∆Ψ = Ψ(q(i))− Ψ(q(i) + ∆q(i)) whose expectation value is indepen-
dent of q(i) due to homogeneity. The expectation value of a Fourier-phase can be ex-
pressed by a cumulant expansion

〈
e−ik·∆Ψ

〉
= exp

{
∞

∑
n=1

(−i)n

n!
〈
(k · ∆Ψ)n〉

c

}
, (A.15)

where the n-th order cumulants of shifts in the displacement fields
〈
(k ·∆Ψ)n〉

c are non-
vanishing for all even n in general. In the case of non-vanishing higher order cumulants
(n > 2), we again have to resort to a perturbative expansion of (A.15), which is the
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usual approach of LPT. The ZA, on the other hand, is a special case that allows for an
exact evaluation of (A.15). Here, the displacement field which, expressed in terms of the
initial velocity potential, reads

Ψ(1)(q(i), τ) = eτ ∇ψ(i)(q(i)), (A.16)

follows a GRF for which all cumulants beyond second order are vanishing. The sum in
expression (A.15) then collapses and, the only remaining term being the quadratic one,
turns into a Gaussian for the second cumulant. The latter splits into two parts〈

(k · ∆Ψ(1))2〉
c = 2k·

〈
Ψ(1)(q(i))⊗Ψ(1)(q(i))

〉
c · k

− 2k ·
〈
Ψ(1)(q(i))⊗Ψ(1)(q(i) + ∆q(i))

〉
c · k,

(A.17)

which can be evaluated in terms of the velocity potential power spectrum by employing
(A.16) and going to Fourier-space. Using (2.29) to replace the power spectrum with the
density fluctuation power spectrum, we get

〈
Ψ(1)(q(i))⊗Ψ(1)(q(i) + ∆q(i))

〉
c = e 2τ

∫
k′

k′ ⊗ k′

k′4
P(i)

δ (k′) eik′·∆q(i)

=: CΨ Ψ(∆q(i)). (A.18)

Altogether, the resulting power spectrum in the Zel’dovich approximation thus turns
out to be

P(Z)
δ (k) = e−σ2

Ψk2
∫

∆q(i)

(
e kTCΨ Ψ(∆q(i))k − 1

)
e−ik·∆q(i)

, (A.19)

where we defined the variance of the displacement field via the matrix evaluated at zero
distance −σ2

ΨI3 := CΨ Ψ(0).
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B
PA RT I C L E T R A J E C T O R I E S

b.1 derivation of general particle trajectories

Particle trajectories in the KFT generating functional are derived from the initial value
problem

E0[x] + K = ẋ−M x + K = 0 x(ti) = x(i). (B.1)

Here we will show how to solve this first order linear inhomogeneous differential
equation in general to derive (3.23). To this end, we express the equations of motion for
single particles

ẋa(t)−M(t) xa(t) = −Ka(t) xa(ti) = x(i)a ∀ a = 1, . . . , N. (B.2)

In the most general case, M(t) is a time-dependent matrix which does not commute
with itself at different times. First we solve the homogeneous equation which results in

x(hom.)
a (t) = G(t, ti) x(i)a (B.3)

with G(t, ti) = I6 +
∞

∑
n=1

∫ t

ti

dt1 · · ·
∫ tn−1

ti

dtn M(t1) · · ·M(tn).

For the special case where the matrix M(t) is self-commuting at different times, the
above series expression simplifies to a matrix exponential

G(t, ti) = exp
( ∫ t

ti

dt̄M(t̄)
)

. (B.4)

To solve the inhomogeneous equation we derive the Green’s function G(t, t′) which, by
definition, solves the differential equation(

I6∂t −M(t)
)

G(t, t′) = I6 δD(t− t′). (B.5)

This can be solved by using the Ansatz G(t, t′) = F(t, t′) θ(t− t′), with the Heaviside step
function θ(t− t′). Inserting this into (B.5), we find that the matrix F(t, t′) has to satisfy
the homogeneous equation and that F(t, t) = I6. The solution to the inhomogeneous
equation is thus given by

x(inhom.)
a (t) = −

∫
dt̄ G(t, t̄)Ka(t̄) with G(t, t̄) = G(t, t̄) θ(t− t̄). (B.6)

Note that the Green’s function is simply the product of the matrix that solves the homo-
geneous equations evaluated at t and t̄, and the Heaviside function. The final particle
trajectory is the sum of both solutions and can therefore be written as

x̃a[Ka, t) = G(t, ti) x(i)a −
∫

dt̄ G(t, t̄)Ka(t̄). (B.7)
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For simplicity, we refer to the time-dependent factors in both the homogeneous and the
inhomogeneous solutions as the Green’s function G(t, t̄), keeping in mind that the ho-
mogeneous solution is defined without a step function. Returning to the tensor notation,
the full bundle of phase-space trajectories is given by

x̃[K , t) = G(t, ti)x(i) −
∫

dt̄ G(t, t̄)K (t̄). (B.8)

b.2 phase-space trajectories in cosmology - newtonian trajectories

For phase-space trajectories on an expanding background with the time parameter τ

from (2.22) the free equations of motion read

E0[x] = ẋ−Mx with M =

(
03 I3

03 − µ
2 I3

)
. (B.9)

Note that we omitted particle indices here, but it should be clear that x(τ) is the phase-
space trajectory of a single particle with initial conditions x(i). Since M is not self-
commuting at different times, we employ (B.3). Straightforward matrix multiplication
yields

M(τ1) · · ·M(τn) =

(
I3 (−1)n−1 µ2

2 · · ·
µn
2 I3

03 (−1)n µ1
2 · · ·

µn
2 I3

)
, (B.10)

where we abbreviated µ(τi) ≡ µi, allowing us to identify the particle propagator as

gqp(τ, τ′) =
∞

∑
n=1

∫ τ

τ′
dτ1

∫ τ1

τ′
dτ2 . . .

∫ τn−1

τ′
dτn (−1)n−1 µ2

2 · · ·
µn
2 . (B.11)

The integrand in the nested integral is no-longer matrix-valued, such that the individual
terms commute, and we get

∫ τ1

τ′
dτ2 . . .

∫ τn−1

τ′
dτn (−1)n−1 µ2

2 · · ·
µn
2 =

(−1)n−1

(n− 1)!
1

2n−1

( ∫ τ1

τ′
dτ̄ µ(τ̄)

)n−1

. (B.12)

The series therefore takes the form of an exponential series, yielding the final result

gqp(τ, τ′) =
∫ τ

τ′
dτ1 exp

(
− 1

2

∫ τ1

τ′
dτ̄ µ(τ̄)

)
. (B.13)

The pp-component is derived analogously from the resummation of a series or by using
the fact that the equations of motion impose that it is given by a derivative of the particle
propagator w. r. t. time τ. As a result, we recover the Green’s function

G(τ, τ′) =

(
I3 gqp(τ, τ′) I3

03 ġqp(τ, τ′) I3

)
θ(τ − τ′), (B.14)

with gqp(τ, τ′) =
∫ τ

τ′
dτ1 exp

(
− 1

2

∫ τ1

τ′
dτ̄ µ(τ̄)

)
. (B.15)

As we have shown in Section 2.4, approximating µ by one, although a seemingly crude
approximation, yields highly accurate results when we calculate cosmic structure for-
mation, since it is only an approximation for decaying modes in SPT. Setting µ = 1, the
integrals in the particle propagator analytically evaluate to

gqp(τ, τ′) = 2
(
1− e−

1
2 (τ−τ′)). (B.16)
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b.3 phase-space trajectories in cosmology - zel’dovich trajectories

To include the Zel’dovich potential in the equations of motion we solve

E (Z)
0 [x] + K = 0, (B.17)

where the free e. o. m. E (Z)
0 [x] defined in (4.80) is the sum of the free e. o. m. for Newto-

nian trajectories and the Zel’dovich potential. As in the previous section, we omitted
particle indices here, but it should be clear that x(τ) is the phase-space trajectory of
a single particle with initial conditions x(i). Pulling the Zel’dovich potential into the
inhomogeneity by rearranging the e. o. m. to(

q̇

ṗ

)
−
(

03 I3

03 − µ
2 I3

)(
q

p

)
= −

(
Kq

Kp

)
−
(

0

∇ϕ(Z)(q(i), τ)

)
, (B.18)

permits us to write down the solution in terms of the Newtonian particle propagator
from the previous section. The full phase-space trajectory therefore reads

x[K, τ) = G(τ, 0) x(i) −
∫

dτ̄ G(τ, τ̄)
(
0, ∇ϕ(Z)(q(i), τ̄)

)T −
∫

dτ̄ G(τ, τ̄)K(τ̄).

(B.19)

Since p = q̇, we will focus on the spatial trajectory for the rest; the momentum trajectory
can be derived from it by a simple derivative. Ignoring K for the moment the spatial
trajectory reads

q(τ) = q(i) + gqp(τ, 0)p(i) −
∫

dτ̄ gqp(τ, τ̄)∇ϕ(Z)(q(i), τ̄). (B.20)

Using the initial conditions enables us to evaluate the gradient of the Zel’dovich poten-
tial by relating initial density and momenta via the velocity potential:

∇2ϕ(Z)(q(i), τ) =
3
2

eτ δ(i)(q(i)) = −3
2

eτ ∇2ψ(i)(q(i)) (B.21)

⇒ ∇ϕ(Z)(q(i), τ) = −3
2

eτ ∇ψ(i)(q(i)) = −3
2

eτ p(i). (B.22)

This is consistent with the intuition from LPT that particle momenta point into the
local gravity well. Inserting the Zel’dovich potential and the definition of the particle
propagator (B.16) into the particle trajectory (B.20) results in the time integral

3
2

∫ τ

0
dτ̄ 2

(
1− e−

1
2 (τ−τ̄)

)
eτ̄ = (eτ − 1)− 2

(
1− e−

1
2 τ
)

(B.23)

=: g(Z)qp (τ, 0)− gqp(τ, 0). (B.24)

The Newtonian particle propagator cancels the particle propagator of the homogeneous
part in (B.20), effectively replacing gqp(τ, 0) by g(Z)qp (τ, 0). Reinstalling the source field K,
we recover the full phase-space trajectories

x[K, τ) = G(Z)(τ, 0) x(i) −
∫

dτ̄ G(τ, τ̄)K(τ̄), (B.25)

with the Zel’dovich Green’s function

G(Z)(τ, 0) =

(
I3 g(Z)qp (τ, 0) I3

03 ġ(Z)qp (τ, 0) I3

)
, with g(Z)qp (τ, 0) = e τ − 1. (B.26)
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C
E F F E C T O F R E S P O N S E F I E L D O P E R AT O R S

To investigate the effect of response field operators on the generating functional consider
applying a single operator B̂(−R) = B̂(−kR, tR) in addition to n density operators to
the free generating functional. This gives us the mixed correlation function

ḠBρ...ρ(−R, 1, . . . , n)

= B̂(−R) ρ̂(1)ρ̂(2) . . . ρ̂(n)Z0[J, K ]
∣∣
0

=
N

∑
{aR,a1...an}

b̂aR(−R)ρ̂aR(−R) ρ̂a1(1)ρ̂a2(2) . . . ρ̂an(n)Z0[J, K ]
∣∣
0

=
N

∑
{aR ...an}

∫
dΓ i b̂aR(−R) exp

(
−

n

∑
s=1

iks · q̄as [Kas , ts)
)

exp
(
− ikR · q̄aR [KaR , tR)

)∣∣∣∣∣
K=0

.

(C.1)

The one-particle density operator that is part of the response field operator simply adds
another one-particle density mode to the free generating functional. In addition, we
now have to evaluate the effect of the one-particle response field operator on the density
modes. Since it contains a derivative w. r. t. the p-component of the K source field,
the one-particle response field operator acts on the inhomogeneous part of the particle
trajectories. Recalling that the trajectories read

q̃as [K , ts) = q(i)
as + gqp(ts, 0) p(i)

as −
∫ ts

ti

dt̄
(

gqp(ts, t̄) Kpas
(t̄) + Kqas

(t̄)
)

(C.2)

and employing the chain rule, we recover the density modes, multiplied by the factor{
b̂aR(−R)

(
−

n

∑
s=1

iks · q̄as [Kas , ts)
)}

K=0

=

{(
− ikR ·

δ

iδKpaR
(tR)

)(
−

n

∑
s=1

iks · q̄as [Kas , ts)
)}

K=0

=
n

∑
s=1

(−ikR · ks)gqp(ts, tR)δaR as . (C.3)

Due to the property gqp(t, t) = 0 of the particle propagator—a direct consequence of
causality—the contribution of one-particle response fields acting on density modes at
equal time is vanishing. It will turn out that this is equivalent to the statement that
particles do not perturb their own trajectories, i. e. there is no self-interaction. To get
to the last line we used δ

iδKpaR
(tR)

Kpas
(t̄) = δD(tR − t̄)δaR as . Now that the dust is slowly
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settling, let us collect the emerging terms and make sense of the result. First we note that
the one-particle response field operator has left us with a bunch of pre-factors which we
collect and refer to as the response-field pre-factor

b(s,−R) := (−ikR · ks)gqp(ts, tR). (C.4)

Next we scrape together all the other remaining terms

n

∑
s=1

b(s,−R)
N

∑
{aR,a1...an}

δaR as

∫
dΓ i exp

(
−

n

∑
s=1

iks · q̄as(ts)
)

exp
(
− ikR · q̄aR(tR)

)
,

(C.5)

and allow ourselves a closer look at the effect of the Kronecker-delta δaR as . It identifies
the particle indices aR and as, which entails that the wave-vector kR will be attributed to
position of particle as at time tR. Since each particle index can be attributed to one den-
sity operator, identifying the index of the response field with that of a particle represent-
ing another density mode can be interpreted as the response field operator contracting
with a density operator. With this interpretation, we introduce the notation

ḠBρ...ρ(−R, 1, . . . , n) = B̂(−R) ρ̂(1)ρ̂(2) . . . ρ̂(n)Z0[J, K ]
∣∣
0

=
n

∑
s=1

B̂(−R)ρ̂(1) . . . ρ̂(s) . . . ρ̂(n)Z0[J, K ]
∣∣
0, (C.6)

where the contraction of a response field operator with a density operator is defined
such that

B̂(−R) ρ̂(s) := b(s,−R)
N

∑
as=1

exp
(
− iks · q̂as(ts) + ikR · q̂as(tR)

)
≡ b(s,−R) ρ̂(s,−R). (C.7)

The result of this contraction can again be interpreted as a density operator ρ̂(s,−R)
evaluated at two different wave-vectors at different times. Like a usual density operator
it acts on the generating functional to generate density modes that are to be integrated
over the initial conditions. Informally speaking, we can think of this as the response
fields operator ‘handing over its arguments’ to the density operator it contracts with.

Since response field operators contain one-particle density operators themselves, re-
sponse fields may contract with other response fields, such that

B̂(−R) B̂(−S) = b(−S,−R)
N

∑
aS=1

exp
(

ikS · q̂aS(tS) + ikR · q̂aS(tR)
)

b̂aS(tS)

≡ b(−S,−R) B̂(−S,−R). (C.8)

The remaining response field operator is free to target further density or response field
operators. This allows response fields to form chains, along which their time and wave-
vector arguments are handed down. Causality forbids chains that close in on them-
selves, since such a topology necessarily has to contain a particle propagator gqp(t, t′)
with t′ > t and thus vanishes. As a direct consequence all correlation functions which
exclusively contain response fields have to vanish. In other words, a chain of response
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field operators necessarily has to end in a density operator. We may write the resulting
correlation function

ḠBρ...ρ(−R, 1, . . . , n) =
n

∑
s=1

b(−R, s)ρ̂(1) . . . ρ̂(s− R) . . . ρ̂(n)Z0[J, K ]|0

=
n

∑
s=1

b(−R, s) ∑
{a1,...,an}

Z0(L q, L p), (C.9)

where the free n-point function in the last line is defined such that the shift vectors
belonging to the targeted particle as are given by

Lqas
= −ks + kR Lpas

= −gqp(ts, 0) ks + gqp(tR, 0) kR. (C.10)

In the most general case where m response field operators and n density operators are
applied to the free generating functional, the result is

ḠB...Bρ...ρ(−1′, . . . ,−m′, 1, . . . , n) = ∑
{s′1,...,s′m}

b(s′1,−1′) . . . b(s′m,−m′) ∑
{a1,...,an}

Z0(L q, L p),

(C.11)

where {s′1, . . . s′m} is the set of all indices of targeted modes that are allowed by causality
and the components of the shift tensors L q and L p are determined by the contractions
of response fields and take the general form

L q =
n

∑
r=1

Lqr ⊗ ear with Lqr = −∑
{i}

kri , (C.12)

L p =
n

∑
r=1

Lpr ⊗ ear with Lpr = −∑
{i}

gqp(tri , 0) kri . (C.13)

The exact allocation of the wave-vectors and time arguments to the different particle
indices depends on the configuration of response field contractions.
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D
T R A D I T I O N A L D I A G R A M S O F C A N O N I C A L P E RT U R B AT I O N
T H E O RY

In the main body of this thesis Section 4.3 a diagrammatic language was introduced
for the treatment of perturbative corrections in canonical KFT. The emphasis was put
on the particle nature of KFT, allowing us to accommodate both particle interactions
and correlations in the same graphical representation. We should, however, mention
that a different diagrammatic language had already been developed previously for KFT
[2]. Nevertheless, we opted for a different approach to the graphical representation of
perturbation theory for the following reasons:

1. The emphasis in [2] is put on density and response field operators, which are
macroscopic quantities. However, evaluating the initial conditions in KFT natu-
rally leads to the picture of clusters of point particles. The fact that these point
particles are the carriers of the modes of macroscopic fields, and that microscopic
interactions between their trajectories are the physical source of perturbations in
KFT, is obscured in the traditional diagrams.

2. There is no straightforward or intuitive way to include the discussion of initial
correlations in the diagrams of [2]. Since initial correlations are the main crux in
the evaluation of perturbative corrections in KFT it would be highly desirable to
include them into the diagrams in a straightforward manner.

3. As soon as we go beyond second order perturbation theory, drawing all diagrams
that contribute at a given order becomes quite cumbersome and yields little to no
physical insight.

Nonetheless, for completeness we want to briefly introduce the traditional diagrammatic
language of KFT.

d.1 construction of diagrams

What we wish to represent diagramatically is the application of density and particle
interaction operators on the free generating functional. As we have discussed at length
in Section 3.4.1 applying density operators to the free generating functional generates
density modes with fixed initial conditions that are then integrated over. Response field
operators act on these density modes by updating the shift vectors corresponding to
the representative particle of said mode. Since particle interaction operators contain an
interaction potential, a density and a response field operator, each evaluated at the same
arguments, this results in the following algorithm to construct a diagramatic language
for canonical perturbation theory:
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1. The free generating functional Z0 is represented by a circle. All operators act on
Z0 and therefore need to be attached to this circle.

2. For each density operator that is applied to the generating functional an arrow
pointing radially away from the center is attached to the circle. This arrow rep-
resents the wave-vector of the density mode. The position where the arrow is at-
tached represents the time argument of the density operator, increasing in counter-
clockwise direction. By convention, density operators that are not part of an inter-
action operator are attached around the 12 o’clock position. We shall refer to these
as external density modes, since they represent modes that explicitly appear in the
final correlation function.

3. Particle interaction operators are represented by two arrows that are attached at
the same point, representing the response field and the density operator attributed
to the interaction. Both of these arrows are connected by line, representing the
interaction potential ν. By convention, we attach these arrows around the bottom
of the diagram and refer to the densities as internal density modes, as they are
integrated out and hence do not appear explicitly in the final result.

4. Since response field operators act on other operators, a dashed arrow is drawn
from the mode of each response field to connect to another mode. Due to causality
these arrows have to point counter-clockwise.

Since each configuration of response field contractions is represented by one diagram,
we have to account for and sum up all distinct diagrams for a given order. With distinct
diagrams we mean diagrams that result in non-identical expressions.

Let us consider, once more, a first order correction to a two-point function as in exam-
ple 3.5.1, evaluated at equal time. In a homogeneous system, the only distinct diagram at
this order is shown in Figure D.1, where we chose the response field to contract with the
external density mode carrying the wave-vector k1 by connecting the wave-vector of the
response field to k1. Connection with the wave-vector k2 is equally possible and yields
the same expression, such that we attribute to this diagram a multiplicity of 2. We can
proceed towards higher order corrections in the diagrammatic language by attaching
further pairs of wave-vectors corresponding to particle interaction operators. With each
additional pair attached, the number of configurations grows, and it becomes increas-
ingly difficult to identify distinct diagrams. The second order correction to an equal-time
two-point function in homogeneous system gives rise to four distinct diagrams, shown
in Figure D.2. Note that, for all four diagrams the first response field connects to the
external density mode k1, which is a convention that we adopt for all higher orders.
The remaining response field operator is allowed to connect to each of the modes that
are positioned in the counter-clockwise direction, leaving it with four choices, each of
which results in a distinct contribution. What is left to determine is the multiplicity of
each diagram in Figure D.2, which is most easily done by keeping the arrows of the di-
agram fixed, and considering the possible permutations of the wave-vectors of external
and internal modes. In the upper left diagram, permuting the internal wave-vector pairs
(k′1,−k′1) and (k′2,−k′2) results in the exact same diagram, since both internal pairs con-
nect to the same external mode anyway. On the other hand, exchanging the external
wave-vectors results in a different, but equivalent configuration, adding a factor 2 to the
multiplicity. Overall, the multiplicity of this diagram is therefore 2. The upper right
diagram has a multiplicity of 2 as well; permuting the external wave-vectors results in
two different configurations, whereas exchanging the internal wave-vectors is exactly
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Z0

k1 k2

−k′
1 k′

1

ν

Figure D.1: The only distinct diagram that contributes to first order corrections of an equal-time
two-point function in a statistically homogeneous system. The multiplicity attributed
to this diagram is 2, since it represents the two identical contributions where we
either connect to the external mode k1 or k2.

equivalent to exchanging the external ones and therefore adds nothing further to the
multiplicity. On the lower row, exchanging both internal and external indices result in
4 distinct configurations, and we therefore recover an overall multiplicity of 4 for both
diagrams.

For higher order corrections, the construction continues along the same lines, yielding
an increasing number of distinct diagrams. Although we have focused on diagrams for
equal-time two-point functions in a homogeneous system, it should be evident that the
diagrammatic language we have introduced can be applied to all correlation functions
and systems that allow for a description in terms of KFT. The number of external modes
and the notion of distinct diagrams then has to be adapted.

d.2 evaluation of diagrams

Now that we know how to construct KFT diagrams in general, the next step is to make
use of them for an efficient evaluation of the resulting expressions. There are two main
elements that determine the result of a term in KFT perturbation theory (3.66), namely
the overall prefactor and shift tensors in the free correlation function. Both the prefactor
and the shift tensors are a direct consequence of the contraction configuration of the
response fields and can therefore be read off a diagram.

Example D.2.1 Consider the lower left diagram in Figure D.2, which corresponds to a contrac-
tion of a response field with the external density mode, and another response field with an internal
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Z0

k1 k2

−k′
2

k′
2

ν

−k′
1

k′
1

ν

Z0

k1 k2

−k′
2

k′
2

ν

−k′
1

k′
1

ν

Z0

k1 k2

−k′
2

k′
2

ν

−k′
1

k′
1

ν

Z0

k1 k2

−k′
2

k′
2

ν

−k′
1

k′
1

ν

1

Figure D.2: The only distinct diagram that contributes to first order corrections of an equal-time
two-point function in a statistically homogeneous system. The multiplicity attributed
to this diagram is 2, since it represents two identical contributions.

density mode. The fact that there are two response fields tells us that we are considering a second
order correction to a two-point function that reads

4
2!

∫
d1′

∫
d2′ f (1,−1′) f (1′,−2′) N4Z0(L q, L p) (D.1)

with



Lq1 = −k1 + k′1 Lp1 = −gqp(t1, 0) k1 + gqp(t′1, 0) k′1

Lq2 = −k2 Lp2 = −gqp(t2, 0) k2

Lq3 = −k′1 + k′2 Lp3 = −gqp(t′1, 0) k′1 + gqp(t′2, 0) k′2

Lq4 = −k′2 Lp4 = −gqp(t′2, 0) k′2.

(D.2)
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There are four shift-vectors, two from the external density operators and one for each interac-
tion operator. This is all the information we need to evaluate the diagram for specified particle
dynamics and initial conditions.

Generalizing this to arbitrary diagrams is straightforward and leads to the following
recipe to determine the force prefactor f (·, ·) and the shift tensors L q, L p for a perturba-
tive correction to an m-point density function:

(i) Prefactor: Each interaction operator generates exactly one force prefactor f (s,−r)
defined by (3.67) whose first argument s belongs to the mode the response field
connects to, and whose second argument to the response field itself −r.

(ii) Shift tensors: The total number of components of the shift tensors is given by
the sum of the number of external modes and the number of particle interaction
operators (i. e. pairs of internal wave-vectors.). The components are assigned clock-
wise, starting with the pair (Lq1 , Lp1) assigned to the left-most external mode. In
addition to the wave-vector of the base mode that the shift-vectors are assigned
to we add all the response fields wave-vectors connecting to the base mode to the
according shift-vector as illustrated in D.2.1. Chains of response fields transfer the
arguments of each component to the density mode that is targeted by the final
response field in the chain.

Once we have understood these rules, we can essentially forget about all the complicated
properties of density and response field operators. Nonetheless, bluntly applying a
recipe that hides the many layers of steps contained in KFT is not satisfactory and leads
to little physical understanding.

Note that an alternative diagrammatic approach to canonical perturbation theory in
KFT was proposed in [44], where diagrams are essentially graphs with directed edges
representing the targeting of a mode and vertices represent density modes or interaction
operators. Although both approaches lead to the same final expressions, there is one
significant difference between the diagrams from [2], which were presented in this sec-
tion, and [44] in that the latter do not distinguish between a response field acting on the
response field or the density field belonging to the same interaction operator. As we will
see later on, targeting a response field or an internal density operator have vastly differ-
ent consequences for the resulting correlation function, such that one should consider
them as distinct targets.
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E
D E R I VAT I O N O F T H E C O U N T E R - O P E R AT O R

To derive the result of applications of the counter-operator

iŜC = i
3
2

∫
dτ′1 e τ′1

N

∑
a=1

(
δ

iδKpa(τ
′
1)
· p̂(i)

a

)
(E.1)

onto the free generating functional, consider the case where m density and n response
field operators have been applied to Z0. As we know, density operators generate the
time-dependent shift tensor L (3.40), in this case with n components. In a system where
the particle number is sent to infinity, only such terms where each component of the
shift tensor is assigned to a different particle are non-negligible. Our generating func-
tional will therefore contain n different particle indices, each of which can formally take
integer values between 0 and N. Since all particles are identical, we choose one rep-
resentative particle for each index and multiply the generating functional by a factor
N for each particle index. Response fields, on the other hand, do not add any new
particle indices to the shift-tensor, but add modes to already existing particles. In fact,
each response field operator that is applied to the generating functional will generate a
sum of contributions, one for each particle index that its mode can be added to. This
creates a large amount of configurations of the shift tensor, which are represented by
the diagrams of KFT perturbation theory. Let us now assume that we are dealing with
one specific configuration of the shift tensor (i. e. one specific diagram)

L(τ) =
n

∑
a=1

(
Lqa(τ)

0

)
⊗ êa with Lqa(τ) = −∑

{i}
kai δD(τ − τai), (E.2)

where the indices a represent the different particle indices. Due to the effect of response
fields, the component of the shift tensor corresponding to particle index r may depend
on different wave-vectors and times, which are indexed with ri. The number of modes
for each particle index depends on the specific diagram. Before applying any counter-
operators, the free generating functional therefore reads

Z0[J + L, K ] =
∫

dΓ i e i(J+L)·x̃[K ]. (E.3)

First, applying the initial momentum operator in (E.1) simply generated initial momenta
under the integral. Once this has been accomplished, no further functional derivatives
w. r. t. the source field J remain such that it can be set to zero, which leaves us with

iŜCZ0[J + L, K ]
∣∣∣
0
= i

N

∑
a=1

3
2

∫
dτ′1 e τ′1

∫
dΓ i

(
p(i)

a ·
δ

iδKpa(τ
′
1)

)
e i(L·x̃)[K ]

∣∣∣
K=0

= i
N

∑
a=1

3
2

∫
dτ′1 e τ′1

∫
dΓ i ei(L·x̃)[K ]

[
p(i)

a ·
( δ

δKpa(τ
′
1)
(L · x̃)[K ]

)]∣∣∣∣∣
K=0

.

(E.4)
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To evaluate the functional derivative, we first expand the generalized scalar product

(L · x̃)[K ] =
n

∑
b=1

∫
dτ Lqb(τ) · q̃b[Kpb , τ) (E.5)

=
n

∑
b=1

∫
dτ Lqb(τ) ·

(
q(i)

b + g(Z)qp (τ, 0)p(i)
b −

∫ τ

0
dτ′gqp(τ, τ′)Kpa(τ

′)
)

,

where we have already set the q-component of K to zero, since it is not involved in
any functional derivatives. Recall that the inhomogeneous part of the spatial trajectories
contains the Newtonian particle propagator gqp(τ, τ′) even for free Zel’dovich motion.
With this, the functional derivative in (E.4) evaluates to

δ

δKpa(τ
′
1)
(L · x̃)[K ] = −

∫
dτ Lqa(τ)gqp(τ, τ′1). (E.6)

Note that the particle index on the time-dependent shift vector has been identified with
one of the particle indices a. The sum over all particles in (E.4) thus turns into a sum
over all representative particles that have a non-vanishing shift vector assigned to them.
We can collect these results to find

iŜCZ0[J + L, K ]
∣∣∣
0
= i

n

∑
a=1

3
2

∫
dτ′1 e τ′1

(
−
∫

dτ Lqa(τ)gqp(τ, τ′1)

)
·
∫

dΓ i p(i)
a e iL·x̃.

(E.7)

There are two individual components to this expression that we want to analyze sepa-
rately, starting with the initial phase-space integral∫

dΓ i p(i)
a e iL·x̃, (E.8)

where we can rewrite the phase factor in terms of the initial positions and momenta of
the n representative particles:

iL · x̃ = iL q · q(i) + iL(Z)
p · p(i). (E.9)

Here we have again identified the effectively time-independent (the time parameter τ

being integrated out) shift tensors

Lq =
n

∑
a=1

Lqa
⊗ ea, L(Z)

p =
n

∑
a=1

L(Z)
pa ⊗ ea. (E.10)

Using the general form of the time-dependent shift-tensor in (E.2) we find for the com-
ponents of the time independent shift vectors

Lqa
= −∑

{i}
kai , L(Z)

pa = −∑
{i}

g(Z)qp (τai , 0) kai , (E.11)

where, again, the exact constellation of wave-vectors is determined by the diagram we
consider. Note that we have explicitly marked the momentum-shift tensor/vectors with
a ‘(Z)’ to indicate that they are defined with a Zel’dovich particle propagator. Having
reformulated the phase of our initial expression (E.8) in this way, we can now pull the
initial momentum factor in front of the integral by converting it to a partial derivative,
resulting in∫

dΓ i p(i)
a e iL·x̃ =

∂

i∂L(Z)
pa

∫
dΓ i e iLq·q(i)

e iL(Z)
p ·p(i)

. (E.12)
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The second step is to inspect the time-integral in the pre-factor more thoroughly. Once
more the general form of the time-dependent shift-tensor (E.2) lets us rewrite the time
integral∫

dτ Lqa(τ)gqp(τ, τ′1) = −∑
{i}

gqp(τsi , τ′1) ksi , (E.13)

which in turn allows us to solve the τ′1-integral

i
n

∑
a=1

3
2

∫
dτ′1 e τ′1

(
−
∫

dτ Lqa(τ)gqp(τ, τ′1)

)

=− i
n

∑
a=1

∑
{i}

(
− 3

2

∫
dτ′1 e τ′1 gqp(τai , τ′1)

)
kai , (E.14)

where we can, once again, recognize the same integral as in (B.23). Inserting the solution
from Appendix B the expression turns into

−i
n

∑
a=1

(
−∑
{i}

(
g(Z)qp (τai , 0)− gqp(τai , 0)

)
kai

)
= i

n

∑
a=1

(
L(N)

pa − L(Z)
pa

)
=: i

n

∑
a=1

∆Lpa
,

(E.15)

where we identified the momentum shift-vectors with two different particle propagators,
namely

L(Z)
pa = −∑

{i}
g(Z)qp (τai , 0)kai and L(N)

pa = −∑
{i}

gqp(τai , 0)kai (E.16)

After these rather painful steps, we can now collect the results from the two compo-
nents to arrive at the final, simple form of the counter-operator

iŜCZ0[J + L, K ]
∣∣∣
0
=

n

∑
a=1

(
∆Lpa ·

∂

∂L(Z)
pa

)
Z0

(
L q, L(Z)

p

)
=

(
∆Lp ·

∂

∂L(Z)
p

)
Z0

(
L q, L(Z)

p

)
.

(E.17)

In the end the counter-operator can be rewritten in such a way that it needs no functional
derivatives w. r. t. to either source field K and J, allowing us to apply it after setting all
the source fields to zero.
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F
D E R I VAT I O N O F PA RT I C L E D Y N A M I C S I N C O S M O L O G Y F R O M
G E N E R A L R E L AT I V I T Y

In KFT calculations we describe particle trajectories using Newtonian dynamics, but
we know that a precise description of an ensemble of particles in an expanding space-
time has to have its roots in General Relativity (GR). In this section we want to use
the formalism of GR in its full glory to derive the expressions describing the dynamics
of the metric and of individual freely-falling particles. This will confirm our intuition
about the limits we have to take in order to recover the Newtonian result. Additionally,
it is a nice practical application of Einstein’s field equations and a lot of fun.

A note on notation: Throughout the main text of this thesis, we were cautious to use
the dot-notation only for derivative w. r. t. the time parameter τ defined in (2.22). For
ease of notation, we will drop this restriction here, such that derivatives w. r. t. coordinate
time t are written as dots.

f.1 ingredients

First, let’s summarize the ingredients that we are going to need to describe the dynamics
of particles in an expanding universe.

• Of course, the fundamental equation describing the evolution of space-time itself
is Einstein’s field equation for the metric

Gµν + Λgµν =
8πG

c4 Tµν. (F.1)

It connects the dynamics of the metric gµν (lhs) to the energy contained in a space-
time region (rhs).

• Furthermore, we want to describe individual freely-falling particles moving on our
space-time manifold. Their motion is described by the relativistic Euler-Lagrange
equations, which can be derived from the action

S = −mc2
∫

dτ = −mc
∫ √

−gµνdxµdxν. (F.2)

Here τ is the particle’s proper time (not to be confused with the time parameter
(2.22)) and the only Lorentz scalar we have at our disposal to construct an action.
The prefactor is constructed such that the action yields the correct non-relativistic
limit.

To solve Einstein’s equations (F.1) we further need to specify the metric and the energy
momentum tensor for the situation we are interested in. From our standard cosmology
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132 derivation of particle dynamics in cosmology from general relativity

lectures we remember that the Ansatz for the line element of a spatially flat (we as-
sume this here in advance to make the calculations simpler) homogeneous and isotropic
universe is

ds2 = −c2dt2 + a2(t)δijdqidqj. (F.3)

With regard to the final application to KFT we call the spatial, comoving coordinates qi.
We need to go one step further here and consider a universe that contains small scalar
perturbation in the metric. Introducing these perturbations into the metric is not unique
due to gauge invariance. For cosmic structure formation it has proved very convenient
to work in the Newtonian gauge, where the perturbed metric becomes

ds2 = −c2
(

1 +
2Φ
c2

)
dt2 + a2(t)

(
1− 2Φ

c2

)
δijdqidqj. (F.4)

Here, Φ is for the moment just a scalar perturbation that we introduced, but it will turn
out to correspond exactly to the Newtonian potential in the non-relativistic limit. In the
most general case the Newtonian gauge should actually contain two scalar potentials Φ
and Ψ, but they are equivalent to each other unless we are in the presence of anisotropic
stress. Since this is not the case we start with the single potential Φ. Note that we
assume that Φ

c2 ≪ 1 and therefore discard any higher order contributions of this quantity.
Practically this means that we will frequently use relations like

1
1− 2Φ

c2

= 1 +
2Φ
c2 +O(Φ2

c4 )√
1 +

2Φ
c2 = 1 +

Φ
c2 +O(Φ2

c4 )

(F.5)

without bothering to write that this only holds to first order.
Last but not least, since we are mostly interested in structure formation due to cold dark
matter particles (whatever they may be) we define the energy content of our universe as
a pressure-less fluid

Tµν = ρm(q, t)uµuν, (F.6)

where uµ is the 4-velocity field of the fluid and fulfills uµuµ = −c2. The mass density
ρm(q, t) is not completely uniform, but contains small fluctuations itself

ρm(q, t) = ρ̄m(t)(1 + δ(q, t)). (F.7)

f.2 the dynamics of the metric

Having all the necessary ingredients at hand we simply have to insert them into Ein-
stein’s equations and calculate. Since the metric only contains a single potential Φ, a
single one of the Einstein equations is sufficient to describe its evolution. We therefore
focus on calculating the 00 component, i.e.

G0
0 + Λ =

8πG
c4 T0

0. (F.8)
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As a reminder, these are the definitions of all the objects we are going to need:

Gµν = Rµν − 1
2 Rgµν (F.9)

R = gµνRµν (F.10)

Rµν = Rρ
µρν = ∂ρΓρ

µν − ∂νΓρ
ρµ + Γρ

ρλΓλ
µν − Γρ

νλΓλ
µρ (F.11)

Γλ
µν = 1

2 gλρ(∂µgρν + ∂νgρµ + ∂ρgµν). (F.12)

What we need to calculate in order to evaluate (F.8) is

G0
0 = g00R00 − 1

2 R. (F.13)

For the Ricci scalar R we need the spatial components Rij as well as R00. In order to find
these we start by inserting the components of our perturbed FLRW metric

g00 = −c2 (1 + 2Φ
c2

)
g00 = −c−2 (1− 2Φ

c2

)
gij = a2 (1− 2Φ

c2

)
δij gij = a−2 (1 + 2Φ

c2

)
δij (F.14)

into (F.12). The resulting entries of the Christoffel symbols are

Γ0
00 = 1

c2 Φ̇ Γ0
0i =

1
c2 ∂iΦ

Γ0
ij =

a2

c2 δij

(
H − 4H Φ

c2 − Φ̇
c2

)
Γi

00 = 1
a2 ∂iΦ

Γi
0j = δij

(
H − Φ̇

c2

)
Γi

jk =
1
c2 (−δik∂jΦ− δij∂kΦ + δjk∂iΦ),

(F.15)

where derivatives w.r.t. the coordinate time t are denoted with a dot and we defined the
Hubble function H = ȧ

a . Until now we have refrained from making the usual simplifica-
tion of setting c = 1 as it might be confusing at times to figure out where the c’s belong
in the final expression. To make the notation more compact however, we are now going
to make the following replacements

Φ
c2 → Φ

a2

c2 → a2. (F.16)

At the end of the calculation we can then reverse these identifications to recover the
correct factors of c. Working our way through the equations towards the components
of the Ricci tensor is tedious but simple. After a couple of pages of algebra we should
arrive at the following expressions

R00 =
1
a2∇

2Φ− 3
ä
a
+ 2Φ̈ + 9HΦ̇ (F.17)

Rij = δij

[
(2a2H2 + äa)(1− 4Φ)− 7a2HΦ̇− a2Φ̈ +∇2Φ

]
(F.18)

R =
1
c2

[
6
(

H2 +
ä
a

)
(1− 2Φ) +

2
a2∇

2Φ− 30HΦ̇− 6Φ̈,
]

(F.19)

which altogether result in the following expression for the lhs of (F.8):

G0
0 + Λ = − 1

c2

[
2
a2∇

2Φ− 6H(Φ̇ + HΦ) + 3H2 −Λc2
]

. (F.20)
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The rhs of (F.8) is quickly evaluated by assuming the fluid to be at rest w. r. t. the expan-
sion of the universe. Since in this case uµuµ = u0u0 = −c2 we simply get

T0
0 = ρm(q, t)u0u0 = −c2ρ̄m(t)(1 + δ(q, t)), (F.21)

the final result for the Einstein equation reads

(3H2 −Λc2)︸ ︷︷ ︸
O(0)

+

[
2
a2∇

2Φ− 6H(Φ̇ + HΦ)

]
︸ ︷︷ ︸

O(1)

= 8πGρ̄m(t)︸ ︷︷ ︸
O(0)

+ 8πGρ̄m(t)δ(q, t)︸ ︷︷ ︸
O(1)

. (F.22)

Here we have highlighted the parts that are of zeroth and first order in the perturbations
Φ and δ. Unsurprisingly the zeroth order is simply the first Friedmann equation for a
flat universe containing non-relativistic (cold) dark matter. The first order describes the
dynamics of the scalar perturbation that was introduced into the metric

∇2Φ− 3aH(aΦ̇ + aHΦ) = 4πGa2ρ̄m(t)δ(q, t). (F.23)

This looks suspiciously like the Poisson equation we are used to from Newtonian gravity.
To make the similarity complete, let us have a closer look at the left-hand side. Going
to Fourier space and reinstalling the factors of c contained in the definitions of Φ and a,
we obtain

− k2

c2

[
Φ + 3

a2H2

k2c2

(
1
H

Φ̇ + Φ
)]

. (F.24)

The factor a2 H2

c2 corresponds to the inverse comoving Hubble radius. What this expres-
sion tells us is that the first term dominates the rest for modes of the gravitational
potential that fulfill

k2c2

a2H2 ≫ 1. (F.25)

In other words, for modes that are far smaller than the comoving Hubble radius we can
neglect the second and the third term in (F.23), yielding

∇2Φ(q, t) = 4πGa2ρ̄m(t)δ(q, t). (F.26)

These are in fact the modes that we are interested in when we calculate late-time struc-
ture formation. With this calculation we have thus shown that the scalar perturbation
we introduced into the metric fulfills the non-relativistic Poisson equation if we restrict
ourselves to scales that are far below the Hubble radius. Therefore, we have every right
to interpret this potential as the Newtonian gravitational potential. We will see in the
following that it also appears in the non-relativistic equations of motion of freely falling
particles in exactly the way we would expect from the Newtonian potential.

f.3 particle dynamics

In KFT we imagine the universe being filled with an ensemble of particles with equal
mass m0, moving on the manifold described by the perturbed background metric (F.4).
We assume these particles to be freely falling, i.e. they interact with each other only due
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to gravity. The trajectory of a single particle of the ensemble minimizes the relativistic
action

S = −m0c
∫

dt

√
−gµν

dxµ

dt
dxν

dt

= −m0c
∫

dt
√
−g00 − gijq̇i q̇j

= −m0c
∫

dt
√

c2(1 + 2Φ/c2)− a2(1− 2Φ/c2)q̇2

= −m0c2
∫

dt(1 + Φ/c2)

√
1− a2(1− 4Φ/c2)

q̇2

c2 . (F.27)

Since we assume cold dark matter the particle velocity in units of c is small and the term
Φq̇2

c4 = O(2) can be neglected. To first order the action then becomes

S = −m0c2
∫

dt(1 + Φ/c2)

(
1− 1

2
a2 q̇2

c2

)
=
∫

dt
(
−m0c2 +

m0

2
a2q̇2 −m0Φ

)
. (F.28)

Ignoring the rest mass energy and pulling out the particle mass m0, both of which are
irrelevant for the equations of motion, we recover the one-particle Lagrangian

Lt

(
q,

dq
dt

, t
)
=

a2

2

(dq
dt

)2
−Φ(q, t), (F.29)

where the dynamics of the potential Φ are governed by (F.26). Having shown that
these equations are in fact the non-relativistic limit of GR we can from now on forget
about relativistic effects and treat them in the framework of non-relativistic Newtonain
mechanics.
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G
L A P L A C E T R A N S F O R M S

g.1 some basic facts

The Laplace transform of a one-dimensional function f (t): R→ R is defined by

F(s) = Lt→s
[

f (t)
]

:=
∫ ∞

0
dt f (t)e−st. (G.1)

For our application it is sufficient to calculate the special case where f (t) = e αt for some
α ∈ R, where straightforward integration shows that

F(s) = Lt→s
[

f (t)
]
=
∫ ∞

0
dt e (α−s)t =

1
s− α

∀ s : ℜ(s) > α. (G.2)

As a consequence, the inverse Laplace transform of a fraction can be determined by
simple inspection and is given by

L−1
t←s

[ 1
s− α

]
= e αt. (G.3)

Similar to Fourier transforms, the convolution of two functions is mapped onto the
product of their respective Laplace transforms

Lt→s

[ ∫ t

0
dt′ f (t′)g(t− t′)

]
=
∫ ∞

0
dte−st

∫ t

0
dt′ f (t′)g(t− t′) (G.4)

=
∫ ∞

0
dt
∫ ∞

0
dt′ e−stθ(t− t′) f (t′)g(t− t′) (G.5)

=
∫ ∞

−t′
dt′′

∫ ∞

0
dt′ e−s(t′′+t′)θ(t′′) f (t′)g(t′′) (G.6)

=
∫ ∞

0
dt′′ g(t′′)e−st′′

∫ ∞

0
dt′ e−st′ f (t′) (G.7)

= Lt′′→s
[
g(t′′)

]
Lt′→s

[
f (t′)

]
(G.8)

g.2 application

We can use the convolution theorem for Laplace transforms to solve the self-consistent
equation for the retarded propagator (5.17)

∆̃R(τ1, τ2) = f1,2 +
∫ τ1

τ2

dτ3 f1,3 ∆̃R(τ3, τ2) (G.9)

if we assume that ∆̃R(τ1, τ2) = ∆̃R(τ1 − τ2, 0) and f1,2 = f (τ1, τ2) = f (τ1 − τ2, 0). Since

f1,2 = 3
(
1− e−

1
2 (τ1−τ2)

)
, (G.10)
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this assumption obviously holds, allowing us to rewrite the self-consistent equation to

∆̃R(τ, 0) = f (τ, 0) +
∫ τ

0
dτ3 f (τ − τ3) ∆̃R(τ3, 0). (G.11)

Performing the Laplace transform, applying the convolution theorem and rearranging
the terms results in

∆̃R(τ, 0) = L−1
τ←s

[
Lτ→s

[
f (τ, 0)

]
1−Lτ→s

[
f (τ, 0)

]]. (G.12)

Applying the definition of the Laplace transform a short calculation shows that

Lτ→s
[

f (τ, 0)
]
=
∫ ∞

0
dτ 3

(
1− e−

1
2 τ
)
e−sτ =

3
2

1
s(s + 1/2)

, (G.13)

leading to

∆̃R(τ, 0) = L−1
τ←s

[
Lτ→s

[
f (τ, 0)

]
1−Lτ→s

[
f (τ, 0)

]] (G.14)

= L−1
τ←s

[(
3
2

1
s2 + s/2− 3/2

)]
(G.15)

= L−1
τ←s

[
3
5

(
1

s− 1
− 1

s + 3/2

)]
(G.16)

=
3
5

(
eτ − e−

3
2 τ

)
. (G.17)
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