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Abstract

Topological data analysis and geometry in quantum field dynamics

Many non-perturbative phenomena in quantum field theories are driven or accompanied
by non-local excitations, whose dynamical effects can be intricate but difficult to study.
Amongst others, this includes diverse phases of matter, anomalous chiral behavior, and
non-equilibrium phenomena such as non-thermal fixed points and thermalization. Topo-
logical data analysis can provide non-local order parameters sensitive to numerous such
collective effects, giving access to the topology of a hierarchy of complexes constructed
from given data.

This dissertation contributes to the study of topological data analysis and geometry in
quantum field dynamics. A first part is devoted to far-from-equilibrium time evolutions
and the thermalization of quantum many-body systems. We discuss the observation of
dynamical condensation and thermalization of an easy-plane ferromagnet in a spinor
Bose gas, which goes along with the build-up of long-range order and superfluidity. In
real-time simulations of an over-occupied gluonic plasma we show that observables based
on persistent homology provide versatile probes for universal dynamics off equilibrium.
Related mathematical effects such as a packing relation between the occurring persistent
homology scaling exponents are proven in a probabilistic setting.

In a second part, non-Abelian features of gauge theories are studied via topological
data analysis and geometry. The structure of confining and deconfining phases in non-
Abelian lattice gauge theory is investigated using persistent homology, which allows for a
comprehensive picture of confinement. More fundamentally, four-dimensional space-time
geometries are considered within real projective geometry, to which canonical quantum
field theory constructions can be extended. This leads to a derivation of much of the
particle content of the Standard Model.

The works discussed in this dissertation provide a step towards a geometric under-
standing of non-perturbative phenomena in quantum field theories, and showcase the
promising versatility of topological data analysis for statistical and quantum physics
studies.





vii

Zusammenfassung

Topologische Datenanalyse und Geometrie in der Dynamik von Quantenfeldern

Nicht-lokale Anregungen sind eine treibende Kraft für zahlreiche nicht-perturbative Phä-
nomene in Quantenfeldtheorien oder deren Begleiterscheinung und können komplexe
dynamische Effekte mit sich bringen, jedoch schwer zu untersuchen sein. Unter anderem
umfasst dies vielfältige Phasen von Materie, anomales chirales Verhalten und Nicht-
gleichgewichtsphänomene wie nicht-thermische Fixpunkte oder Thermalisierung. Die
topologische Datenanalyse kann nicht-lokale Ordnungsparameter zur Verfügung stellen,
die sensitiv auf zahlreiche solcher kollektiven Effekte reagieren und die Topologie einer
Hierarchie von Komplexen zugänglich machen.

Diese Dissertation trägt zum Verständnis der topologischen Datenanalyse und Geome-
trie in der Dynamik von Quantenfeldern bei. In einem ersten Teil werden Zeitevolutionen
fern des Gleichgewichts sowie die Thermalisierung von Quantenvielteilchensystemen
behandelt. Wir diskutieren die Beobachtung von dynamischer Kondensation und Ther-
malisierung eines easy-plane (in der Ebene) Ferromagneten in einem Spin-behafteten Bose
Gas, die mit dem Aufbau von langreichweitiger Ordnung und Suprafluidität einhergehen.
In reell-zeitigen Simulationen eines überbesetzten gluonischen Plasmas zeigen wir, dass
Observablen basierend auf persistenter Homologie vielseitige Sensoren für universelles
Verhalten außerhalb des Gleichgewichts darstellen. Damit einhergehende mathematische
Effekte wie etwa eine Packungsrelation zwischen auftretenden homologischen Skalie-
rungsexponenten werden in probabilistischem Rahmen bewiesen.

Im zweiten Teil werden nicht-Abelsche Besonderheiten von Eichtheorien mittels topo-
logischer Datenanalse und Geometrie untersucht. In nicht-Abelschen Gittereichtheorien
wird mit persistenter Homologie die Struktur konfinierender und dekonfinierender Pha-
sen beleuchtet, was ein umfassendes Bild von confinement erzeugt. Auf grundlegenderer
Ebene können vierdimensionale Raumzeit-Geometrien innerhalb von reeller projektiver
Geometrie behandelt werden, auf die kanonische Quantenfeldtheorie-Konstruktionen
erweitert werden können. Dies führt zur Herleitung eines Großteils der Teilchen des
Standardmodells.

Die Arbeiten, die innerhalb dieser Dissertation diskutiert werden, stellen einen Schritt
hin zum geometrischen Verständnis nicht-perturbativer Phänomene in Quantenfeldtheo-
rien dar. Sie zeigen exemplarisch die erfolgversprechende Vielseitigkeit topologischer
Datenanalyse für Untersuchungen in statistischer und Quantenphysik.
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Chapter 1

Introduction

1.1 Motivation

The inconceivably complex and phenomenologically rich dynamics of physical systems
on macroscopic scales provides the basis for many physical experiments. As a unified
approach to model the related many-body physics, quantum field theory (QFT) has proven
extraordinarily powerful. Its applicability ranges from high-energy particle physics and
condensed matter physics to cosmology and astrophysics [8–12]. Quantum field theories
can be formulated both for presumably fundamental degrees of freedom and for effective
degrees of freedom [13]. This provides twofold challenges: (i) fundamental ingredients of
quantum field theories, and (ii) the formation of effective degrees of freedom and their
collective, macroscopic dynamics need to be understood.

Among the most successful scientific theories of all times and related to (i), the Standard
Model of particle physics [14–16] describes the status quo of what has been experimentally
verified regarding the elementary subatomic particles making up matter. The Standard
Model is constructed from local symmetry principles, which give rise to gauge bosons
mediating the strong and the electroweak forces. For instance, on everyday temperature
scales the gluons of quantum chromodynamics (QCD) bind quarks into hadrons, and
these in turn into atomic nuclei. Unstable atomic nuclei can radioactively decay into others
via the weak force. Atomic nuclei are electromagnetically charged and attract electrons
via the photons of quantum electrodynamics (QED), thus forming atoms.

The Standard Model cannot explain the observed occurrence of dark matter and
comes with a range of theoretical difficulties such as the ultraviolet triviality of the Higgs
sector and neutrino masses. All extension attempts, ranging from e.g. supersymmetry
[17], grand unified theories [18], axions [19, 20] and sterile neutrinos [21], to the fun-
damental paradigm changes that string theory proposes [22, 23], have so far escaped
experimental validation [24]. Despite the mentioned problems, this might hint at parts of
the Standard Model being more fundamental than originally thought. A range of studies
explored different possibilities to derive Standard Model structures (without vast exten-
sions) from mathematical constructions with strong ties to space-time geometry, using
e.g. non-commutative geometry [25, 26], the octonions [27–30], or Twistor theory [31]. A
clarification of the link between space-time geometries and parts of the Standard Model
appears crucial, also in light of the demand for a quantum theory of gravity.
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Quantum field theories such as the Standard Model can give rise to a plethora of
collective phenomena and related dynamics, which motivates (ii). In equilibrium this
includes multifarious phases of matter, whose detection often requires non-local order
parameters. For instance, strongly interacting nuclear matter can be in the hadronic
phase, where quarks are confined into hadrons, or show exotic superconducting and
superfluid behavior [32, 33]. The detection of confinement is facilitated, amongst others,
by the (non-local) Polyakov loop. Providing another example, in condensed matter
physics a zoo of topologically ordered phases is known [34], which come with long-range
entanglement. Out of equilibrium the quantum many-body phenomenology is even richer.
Instabilities [35–38] and non-thermal fixed points with their characteristic self-similar
dynamics can appear [39–49], along with dynamical condensation [43, 44, 50, 51], for
which particles transiently condense into (global) zero modes to form a Bose-Einstein
condensate (BEC). Moreover, many quantum field theories can thermalize despite their
unitary time evolution, steadily approaching thermodynamic expectation values primarily
for lower-order correlation functions [52–55]. This goes along with partial memory loss
[37] and entanglement growth [56–58].

The prediction of such collective dynamics of quantum particles provides extensive
theoretical challenges, often based on the lack of understanding of the relevant, effective
degrees of freedom and their dynamics. Yet, a detailed understanding of these is necessary
to devise suitable effective theories for their description, ideally based on first principles
derivations. An example is given by heavy-ion collisions at collider facilities such as the
Large Hadron Collider (LHC) or the Relativistic Heavy-Ion Collider (RHIC). There, quark-
gluon plasma (QGP) is created through the collision of atomic nuclei, which provides
highly energetic, strongly correlated nuclear matter [59, 60]. Its description throughout
the entire collision process calls for different theoretical approaches, from semi-classical to
kinetic to hydrodynamic theories [38]. Prominently appearing in the chiral magnetic effect
(CME) [61–64], non-local, non-perturbative excitations such as topological configurations
can be of relevance for anomalous behavior in heavy-ion collisions. The detection of
corresponding experimental signatures remains challenging [65]. This also applies to
the identification of topological configurations in lattice simulations of this and related
scenarios, which is often based on ambiguous cooling techniques [45, 66].

Versatile non-local probes for mechanisms and signatures of collective quantum field-
theoretic phenomena are demanded. Observables based on topological data analysis
(TDA) are promising in this regard. TDA provides flexible means to infer scale-resolved
topological information from discrete data via a hierarchy of combinatorial objects. Per-
sistent homology, the prevailing TDA tool, is numerically efficiently calculable [67] and
comes with desirable mathematical properties such as stability with regard to input data
perturbations [68, 69] as well as well-defined statistical limits [70] and large-volume
asymptotics [71]. It has proven sensitive to the partly intricate phase structure of diverse
physical models and can allow for the identification of corresponding non-local order
parameters [72–80]. In particular, this can include strong persistent homology signatures
of relevant physical scales with parametric dependences [6, 76–80].
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1.2 Thesis overview

This dissertation is devoted to topological data analysis and geometry in quantum field
dynamics. In a first part we study far-from-equilibrium time evolutions and the thermal-
ization of quantum many-body systems. This includes an experiment-theory effort to
understand the dynamics of an ultracold spinor Bose gas, and the study of topological
observables in a simulated gluonic plasma out of equilibrium. We investigate dynamical
self-similarity in persistent homology from a mathematical viewpoint.

A second part is dedicated to non-Abelian features in the dynamics of gauge theories
in conjunction with geometry. Confinement is explored in a non-Abelian lattice gauge
theory on Euclidean space-time through the lens of TDA. Further, we extend canonical
quantum field-theoretical constructions to projective space-time geometries, which allows
for the derivation of much of the particle content of the Standard Model.

In more detail, the individual chapters address the following.

In Chapter 2, “Key physical concepts", a review of the physical concepts of relevance
for this thesis is provided. This includes a brief introduction to the formulation of non-
equilibrium quantum field theories and to gauge theories. An overview of collective
phenomena out of equilibrium is given.

Chapter 3, “Condensation and thermalization of an easy-plane ferromagnet in a spinor Bose
gas", is devoted to the study of the thermalization dynamics of an easy-plane ferro-
magnet employing a homogeneous one-dimensional spinor Bose gas. We demonstrate
the dynamic emergence of effective long-range coherence for the spin field and verify
spin-superfluidity by experimentally testing Landau’s criterion. The structure of one
massive and two massless emerging modes is revealed, which is a consequence of explicit
and spontaneous symmetry breaking. The experiments allow for the observation of the
thermalization of the easy-plane ferromagnetic Bose gas, in agreement with a thermal
prediction for the relevant momentum-resolved observables, obtained from an underlying
microscopic model within the Bogoliubov approximation.

In Chapter 4, “Probing universal dynamics with topological data analysis in a gluonic plasma",
we study the non-equilibrium dynamics of pure SU(2) lattice gauge theory in Minkowski
space-time in a classical-statistical regime, where characteristic gluon occupancies are
much larger than unity. In this strongly correlated system far from equilibrium, the
correlations of energy and topological densities show self-similar behavior related to a
turbulent cascade towards higher momentum scales. We employ persistent homology to
infer topological features of the gluonic plasma via a hierarchy of simplicial and cubical
complexes. All topological observables under investigation are manifestly gauge-invariant
and shown to exhibit self-similar time evolution, which relate the spatial and temporal
properties of the plasma in terms of universal scaling exponents and functions.

In Chapter 5, “The self-similar evolution of stationary point processes via persistent homology",
the persistent homology of point clouds is embedded into a probabilistic setting, exploiting
the theory of point processes. We provide variants of ergodicity and investigate measures
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on the space of persistence diagrams. In particular, we introduce the notion of self-similar
scaling for persistence diagram expectation measures and prove a packing relation for
the occurring dynamical scaling exponents. As a byproduct we generalize the strong law
of large numbers for persistent Betti numbers, proven in [71] for averages over cubes, to
arbitrary convex averaging sequences.

In Chapter 6, “Confinement in non-Abelian lattice gauge theory via persistent homology",
we investigate the structure of confining and deconfining phases in SU(2) lattice gauge
theory via persistent homology. Specifically, we use filtrations by traced Polyakov loops,
topological densities, holonomy Lie algebra fields, as well as electric and magnetic fields.
This allows for a comprehensive picture of confinement. In particular, topological densi-
ties form spatial lumps, which show signatures of the classical probability distribution
of instanton-dyons. Signatures of well-separated dyons located at random positions
are encoded in holonomy Lie algebra fields, following the semi-classical temperature
dependence of the instanton appearance probability. Debye screening discriminating
between electric and magnetic fields is visible in persistent homology and pronounced at
large gauge coupling. All employed constructions are gauge-invariant without a priori
assumptions on the configurations under study.

In Chapter 7, “Standard Model gauge theory from projective geometries", four-dimensional
space-time geometries are considered within real projective geometry. This provides a
mathematically well-defined framework to discuss their deformations and limits without
the appearance of coordinate singularities. We introduce quantum fields that transform
naturally under deformations and limits of geometries. Connections on the related pro-
jective frame bundles provide gauge fields with gauge group PGL5R. Causality implies
that only P(GL2R × GL3R) ∼= R 6=0 × PGL2R × PGL3R gauge bosons can interact non-
trivially with other quantum fields. P(GL2R × 1) ∼= R 6=0 × PGL2R gauge bosons break
physical scale invariance, reminiscent of the Higgs mechanism. Irreducible fermionic
quantum fields yield Dirac fermions which transform under the reduced gauge group
P(GL2R×GL3R) analogous to Standard Model fermions under the Standard Model gauge
group. It is conjectured that the projective setting facilitates renormalization of the model.

Chapter 8, “Conclusions", provides a résumé of the main chapters. We discuss future
research prospects. This includes both evident extensions to nearby research questions
and proposals for more fundamental applications.

Except for Chapter 3, we employ units with ~ = c = kB = 1 throughout this thesis.
Where applicable and sensible, parts of this dissertation are formulated in full mathemati-
cal rigor. In particular, this applies to Chapters 5 and 7.
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Chapter 2

Key physical concepts

The application of methods from topological data analysis and geometry to quantum
field dynamics provides an interdisciplinary research theme. We formulate quantum field
theories for general non-equilibrium density operators, followed by gauge theories and
related physical phenomena. While this introduction is restricted to the fundamentals,
more elaborate introductions to non-equilibrium quantum field theory can be found in
[37, 81, 82], which this chapter is based on.

2.1 Non-equilibrium quantum field theory

Quantum field theory provides a generic framework to describe quantum many-body
systems on Minkowski and other space-times, not limited to finite-dimensional Hilbert
spaces. We consider Minkowski space-time here, and refer to Chapter 7 for a more
formal discussion of general space-time geometries. In the Heisenberg picture of quantum
mechanics a state in the Hilbert spaceH of the quantum system under investigation can
be described by a fixed density operator1 %̂0 : H → H, and may be mixed (Tr (%̂2

0) < 1) or
pure (Tr (%̂2

0) = 1). Examples of density operators include vacuum and thermal density
operators, but the following discussion is not restricted to these.

Let Φ̂(x) be a complex (Heisenberg) quantum field, which provides linear operators
H → H for every point x in Minkowski space-time. Measurable in experiments are the
expectation values of observables, i.e., of self-adjoint operators Ô = Ô†,

〈Ô〉 := Tr [%̂0 Ô] , (2.1)

with a trace over the Hilbert spaceH. Of particular interest are expectation values of field
operator correlators such as one- and connected two-point correlation functions,

φ(x) := Tr [%̂0 Φ̂(x)] , Tr [%̂0 (Φ̂(x)− φ(x))(Φ̂(y)− φ(y))] . (2.2)

In fact, all correlation functions of quantum fields in a certain sense completely specify the
QFT at any point in space-time.2

1A density operator is a linear operator acting on the Hilbert space H of the QFT and fulfils positive
semi-definiteness, %̂0 ≥ 0, is self-adjoint, %̂†0 = %̂0, and has unit trace, Tr (%̂0) = 1.

2In algebraic QFT the Reeh-Schlieder theorem goes even further, stating that all correlation functions with
arguments within an arbitrarily small open space-time neighborhood suffice for this [83, 84].
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The field Φ̂(x) transforms unitarily under a Poincaré transformation (Λ, a), which
consists of a homogeneous Lorentz transformation Λ ∈ O(1, 3) and a translation a ∈ R4 in
Minkowski space-time,

Φ̂(x) 7→ U(Λ, a)Φ̂(x)U †(Λ, a) = σ(Λ−1)Φ̂(Λx+ a) , (2.3)

where Û denotes a projective unitary representation of the Poincaré group onH, and σ is a
finite-dimensional complex representation of the homogeneous Lorentz group. This type
of transformation behavior originates from the unitary representations of the universal
cover of the Poincaré group, all of which decompose into direct sums or, more generally,
direct integrals of irreducible unitary representations [85]. The latter are induced from the
little group, which is the homogeneous Lorentz group [8]. We can use Equation (2.3) to
evolve the quantum field Φ̂(x) ≡ Φ̂(t,x), x = (x1, x2, x3), in time:

Φ̂(t′,x) = U(14×4, (t
′ − t,0))Φ̂(t,x)U †(14×4, (t

′ − t,0)) = eiĤ(t′−t)Φ̂(t,x)e−iĤ(t′−t) . (2.4)

Here, the Hamiltonian Ĥ appears as the Lie algebra generator of time translations on the
representation level.3

For closed quantum systems, the density operator %̂0 together with the Hamiltonian
Ĥ allow in principle for the computation of any observable at arbitrary time. The time
evolution of a closed quantum system to later times provides an initial value problem. Fre-
quently, non-equilibrium expectation values of quantum field correlators evolve towards
thermal equilibrium in the course of time, as we discuss later. Although not considered
in this work, we note that often the dynamics of open quantum systems can be suitably
described by stochastic approaches [86, 87].

In light of special relativity, we require quantum fields to preserve causality. Let two
points x, y in Minkowski space-time be space-like separated, i.e., their Minkowski distance
(∆x0)2 − (∆x1)2 − (∆x2)2 − (∆x3)2 < 0 with ∆xµ = yµ − xµ. Then, for σ an integer spin
(bosonic) Lorentz group representation, causality preservation requires that on operator
level the commutator fulfils

[Φ̂(x), Φ̂(y)] = 0 . (2.5)

Else, intuitively quantum fields could transmit information faster than the speed of light,
thus breaking causality. Causality implies that a given QFT contains particles and their
anti-particles with the same spins and masses [9]. For the related discussion of fermionic
representations of the Poincaré group and the symmetry groups of other space-time
geometries which admit a notion of causality, we refer to Chapter 7.

If we consider the non-relativistic (Galilei) limit of a relativistic QFT, causality cannot
be required anymore. Indeed, for Galilei geometry all points x, y with x0 6= y0 are time-
like separated. For instance, this applies to the ultracold atom experiment described in
Chapter 3. Such a limit is conventionally taken by explicitly reinserting factors of the
speed of light c and sending c→∞, which corresponds to a Lie algebra contraction [88].

3We employ physics conventions for Lie algebras in this dissertation, such that a simply connected Lie
group G with Lie algebra g fulfils G = exp(ig).
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FIGURE 2.1: Schwinger-Keldysh contour with the thermal branch Cβ .

In Chapter 7 we describe a more canonical method to take such limits of space-time
geometries.

To allow for the computation of two-point correlation functions of arbitrary order in
time from time-ordered field operator correlations, we introduce the Schwinger-Keldysh
contour C. This is necessary to be able to apply the versatile functional (path) integral
formalism, which gives access to time-ordered correlation functions. The contour C is
sketched in Figure 2.1 and consists out of equilibrium of two time branches:4 the forward
branch C+ from time 0 to time ∞, and the backward branch C− from time ∞ to time
0, identifying 0 ∈ C+ with 0 ∈ C−. In thermal equilibrium with inverse temperature β,
before the latter identification the contour C is augmented by a third, imaginary time
branch Cβ from 0 to −iβ, then identifying −iβ ∈ Cβ with 0 ∈ C+. If field operator
correlators are considered with all time arguments in Cβ , i.e., on a Euclidean space-time,
this identification leads to the discrete Matsubara frequencies of equilibrium systems. We
denote time ordering along the contour C by TC .

All information on contour time-ordered correlation functions of the QFT is contained
in the non-equilibrium generating functional

Z[J ; %̂0] = Tr

[
%̂0 TC exp

{
i

∫
x,C

[J†(x)Φ̂(x) + Φ̂†(x)J(x)]

}]
, (2.6)

where
∫
x,C :=

∫
C dx 0

∫
d3x, and the source J is a dim(σ)-vector of complex functions

with contour time arguments. Out of equilibrium, for x = (x0,x) with x0 ∈ C we denote
the time x0 after forgetting the branch by t(x0). For x0 ∈ Cβ we set t(x0) := x0. Field
operators Φ̂(x0,x) with x0 ∈ C as in Equation (2.6) are defined from two independent
copies Φ̂±(t(x0),x) of the original field operators on Minkowski space-time, one for each
of the two branches C±. To implement the thermal branch Cβ , these are augmented
by a third independent copy Φ̂β(t(x0),x), analytically continued to imaginary times
t(x0) ∈ [0,−iβ). Similarly, we can decompose the source J(x0,x) into J±(t(x0),x) and
Jβ(t(x0),x) according to whether x0 ∈ C+, x0 ∈ C− or x0 ∈ Cβ . Out of equilibrium, we
then have∫

x,C
J†(x)Φ̂(x) ≡

∫ ∞
0

dt

∫
d3x [J+,†(t,x)Φ̂+(t,x)− J−,†(t,x)Φ̂−(t,x)] , (2.7)

4We assume the time arguments of all real-time correlation functions of interest to be in [0,∞).
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and analogously for
∫
x,C Φ̂†(x)J(x). Functional derivatives of Z[J ; %̂0] with respect to the

source J yield all contour time-ordered correlation functions, e.g.

φJ(x) := 〈TCΦ̂(x)〉J = Tr

[
%̂0 TCΦ̂(x) exp

{
i

∫
x,C

[J†(x)Φ̂(x) + Φ̂†(x)J(x)]

}]
=

1

Z[J ; %̂0]

δ

i δJ(x)
Z[J ; %̂0] , (2.8)

〈TCΦ̂(x)Φ̂(y)〉J = Tr

[
%̂0 TCΦ̂(x)Φ̂(y) exp

{
i

∫
x,C

[J†(x)Φ̂(x) + Φ̂†(x)J(x)]

}]
=

1

Z[J ; %̂0]

δ

i δJ†(x)

δ

i δJ†(y)
Z[J ; %̂0] , (2.9)

where the subscript J denotes the expectation value in the presence of the source J .
Expectation values without the source J can be computed by setting J = 0.

The Schwinger functional is defined as

W [J ; %̂0] = −i logZ[J ; %̂0] . (2.10)

Its functional derivatives with respect to the source J yield the connected contour time-
ordered correlation functions such as the propagator

GJ(x, y) := 〈TCΦ̂(x)Φ̂(y)〉J − φJ(x)φJ(y) = −i
δ

δJ†(x)

δ

δJ†(y)
W [J ; %̂0] . (2.11)

In comparison to Equation (2.9) we note that here the disconnected contribution φJ(x)φJ(y)

has been subtracted.
In order to rewrite the generating functional Z[J ; %̂0] out of equilibrium in the func-

tional integral formalism, we evaluate the trace Tr using eigenstates |ϕ±〉 of the field
operators Φ̂±(0,x):

Φ̂±(0,x)|ϕ±〉 = ϕ±0 (x)|ϕ±〉 , (2.12)

where the ϕ±0 (x) are dim(σ)-vectors of complex functions on R3. Formally, we introduce
the integration measure ∫

[dϕ±0 ] :=

∫ ∏
x∈R3

dϕ±0 (x) . (2.13)

The Hilbert space identity operator admits a decomposition as

1H =

∫
[dϕ−0 ] |ϕ−〉〈ϕ−| . (2.14)

A number of derivation steps [37] yields

Z[J ; %̂0] =

∫
[dϕ+

0 ][dϕ−0 ] 〈ϕ+|%̂0|ϕ−〉
∫ ϕ−0

ϕ+
0

D ′ϕ exp

{
iSC [ϕ]+i

∫
x,C

[J†(x)ϕ(x)+ϕ†J(x)]

}
,

(2.15)
where

∫ ϕ−0
ϕ+
0

D ′ϕ is the functional integral over all fields ϕ(x0,x) with time arguments

x0 ∈ C, which are consistent with the boundary conditions ϕ±(0,x) = ϕ±0 (x). The action
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SC [ϕ] is of the form

SC [ϕ] =

∫
C

dx 0

∫
d3x L(ϕ(x0,x), ∂µϕ(x0,x), . . . ) (2.16)

with L(ϕ(x0,x), ∂µϕ(x0,x), . . . ) the Lagrangian of the QFT, which can be computed from
the Hamiltonian Ĥ . The functional integral expression (2.15) for the generating functional
consists of two parts: the initial conditions, which give boundary conditions for the space-
time functional integral, and the latter integral itself. This encodes the non-equilibrium
initial value problem in the functional integral formalism: for given initial conditions
%̂0, the knowledge of the action SC [ϕ] suffices to compute any contour time-ordered
correlation function. Depending on the problem under investigation, the Hamiltonian
operator formalism or the functional integral formalism can both be beneficial with regard
to computational efficiency. We will encounter both approaches in this dissertation.

For completeness we note that upon inclusion of the thermal branch Cβ in C the
derivation proceeds analogously.

2.2 Gauge theories

A central pillar of contemporary particle physics and the topic of Chapters 4, 6 and 7 are
gauge theories, which obey local symmetry principles. Their construction is particularly
transparent in the functional integral approach. We provide a brief introduction to gauge
theories formulated on Minkowski space-time, considering a unitary matrix gauge group
G with Lie algebra g. Prominent examples for such gauge groups are U(1) and SU(Nc) for
a number of colours Nc, or a direct product of these. We focus on a physical viewpoint
on gauge theories, based on [9]. For a mathematical introduction to the construction of
gauge fields from connections on principal bundles we refer to [89], in this dissertation
appearing in Chapter 7.

Let us assume that under a gauge transformation V (x), i.e., a smooth map of space-time
points into G, the field Φ̂(x) and its adjoint transform as

Φ̂(x) 7→ V (x)Φ̂(x) , Φ̂†(x) 7→ Φ̂†(x)V †(x) . (2.17)

This implies that the corresponding fields ϕ(x) and ϕ†(x) as in Equation (2.15) transform
analogously. We aim to construct a Lagrangian for the gauge theory that is invariant under
such gauge transformations. For this, we first note that kinetic contributions with partial
derivatives of ϕ(x) do not gauge-transform as ϕ(x), since

∂µϕ(x) 7→ (∂µV (x))ϕ(x) + V (x)∂µϕ(x) . (2.18)

If instead we replace ∂µ by the covariant derivative

∇µ(x) = ∂µ − igAµ(x) , (2.19)
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for a coupling constant g and a (classical) g-valued vector field Aµ(x) which gauge-
transforms as

Aµ(x) 7→ V (x)Aµ(x)V †(x) +
i

g
V (x)∂µV

†(x) , (2.20)

then we find
∇µ(x)ϕ(x) 7→ V (x)∇µ(x)ϕ(x) . (2.21)

Expressions such as (∇µϕ(x))†∇µ(x)ϕ(x) are gauge-invariant and provide both a space-
time derivative of the field ϕ(x) and interactions with the gauge field Aµ(x), if considered
part of a Lagrangian.

Gauge bosons propagate in the gauge theory, if a gauge-invariant kinetic term for the
gauge field Aµ(x) is included in the Lagrangian. Define the g-valued field strength tensor

Fµν(x) :=
i

g
[∇µ(x),∇ν(x)] = ∂µAν(x)− ∂νAµ(x)− ig[Aµ(x), Aν(x)] , (2.22)

which is antisymmetric in the indices µ, ν. If G is Abelian, the commutator contribution
[Aµ(x), Aν(x)] is absent, as for QED. The field strength tensor transforms covariantly
under the gauge transformation V (x):

Fµν(x) 7→ V (x)Fµν(x)V †(x) . (2.23)

Unitarity of G implies that the gauge-invariant Lie algebra trace tr(Fµν(x)) ∈ iR, or
tr(Fµν(x)) = 0 for unit-determinant gauge groups such as SU(Nc). Thus, this expression
cannot be used to construct a real-valued kinetic Lagrangian term for the gauge bosons.
Instead, the second order trace

− 1

2
tr(Fµν(x)Fµν(x)) (2.24)

is readily Lorentz and gauge-invariant. Here, upper indices are obtained by contraction
with the inverse Minkowski metric ηµν = (diag(+1,−1,−1,−1))µν , and summation over
repeated indices is implied. In fact, for G a direct product of compact simple factors
such as SU(Nc) and U(1) factors, the term tr(Fµν(x)Fµν(x)) is positive-definite, due to
properties of the quadratic Casimir of the Lie algebra g [90]. As such, the Lagrangian
kinetic term (2.24) contributes negative-definitely to the corresponding Lagrangian. This
is required for the eigenvalues of the corresponding Hamiltonian (energies) to be bounded
from below, such that the quantum system maintains stability in this regard.

Finally, a minimal-coupling Lagrangian for the gauge theory can read

L(ϕ(x), Aµ(x)) = −1

2
tr(Fµν(x)Fµν(x)) + (∇µϕ(x))†∇µ(x)ϕ(x) + Lpot(ϕ(x)) , (2.25)

with Lpot(ϕ(x)) a potential term for the field ϕ(x), which can include a mass term for
suitable σ. If multiple matter fields similar to Φ̂(x) are included, one may simply sum over
the last two terms with ϕ(x) replaced by these. For Dirac fermions the second term may
be suitably replaced by a corresponding kinetic term which involves the Dirac γ-matrices.
Based on renormalization group arguments, higher-order contributions to L(ϕ(x), Aµ(x))
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polynomial in the field operators, other than those already included in Equation (2.25),
are highly suppressed at ordinary energies by negative powers of a very large mass [90].
These are hence commonly and in this dissertation ignored.

So far, we discussed the classical gauge field Aµ(x) interacting with the quantum field
Φ̂(x). The quantization of Aµ(x) can be efficiently accomplished in the functional integral
formalism. We assume the Hilbert spaceH encompasses now excited states of both fields
Φ̂(x) and Âµ(x). We proceed analogously to the construction of the functional integral for
Φ̂(x) correlators, Equation (2.15), and consider time arguments on the Schwinger-Keldysh
contour C. Focusing on non-equilibrium situations here, we note that the inclusion
of a thermal branch Cβ is again straight-forward. As is usual in light of its canonical
commutation relations, we assume that the quantized gauge field Âµ(t,x) commutes with
the quantum field Φ̂(t,x) at the same time. To this end, we can choose a common basis of
eigenstates |A±, ϕ±〉 for both field operators Â±(0,x) and Φ̂(0,x):

Φ̂±(0,x)|A±, ϕ±〉 = ϕ±0 (x)|A±, ϕ±〉 , Â±µ (0,x)|A±, ϕ±〉 = A±µ,0(x)|A±, ϕ±〉 . (2.26)

The Hilbert space identity operator 1H changes to

1H =

∫
[dϕ−0 ][dA−0 ] |A−, ϕ−〉〈A−, ϕ−| , (2.27)

where ∫
[dA±0 ] :=

∫ ∏
µ,x

dA±µ,0(x) . (2.28)

Similar to before, we find for the corresponding generating functional with density opera-
tor %̂0 and sources Jϕ and JµA for the fields Φ̂ and Âµ:

Z[Jϕ, JA; %̂0]

:= Tr

[
%̂0 TC exp

{
i

∫
x,C

[J†ϕ(x)Φ̂(x) + Jµ,†A (x)Âµ(x) + h.c.]

}]
=

∫
[dϕ+

0 ][dϕ−0 ][dA+
0 ][dA−0 ] 〈A+, ϕ+|%̂0|A−, ϕ−〉

×
∫ ϕ−0

ϕ+
0

D ′ϕ

∫ A−0

A+
0

D ′A exp

{
iSC [A,ϕ] + i

∫
x,C

[J†ϕ(x)ϕ(x) + Jµ,†A (x)Aµ(x) + h.c.]

}
,

(2.29)

with the functional integral
∫ A−0
A+

0

D ′A over all fields Aµ(x0,x), x0 ∈ C, which are consistent

with the boundary conditions A±µ (0,x) = A±µ,0(x).
The functional integral (2.29) can be readily applied to (formally) compute gauge-

invariant observables. For these no gauge fixing is required. This is different if gauge
dependent quantities such as gauge boson propagators∼ 〈AµAν〉 are computed, where full
gauge fixing must be applied. Quantization can then be accomplished with the inclusion of
Faddeev-Popov ghosts, see e.g. [9, 90]. The physical Hilbert space of perturbation theory
containing only transversely polarized gauge bosons is singled out as the cohomology of
the Becchi-Rouet-Stora-Tyutin (BRST) operator [9, 90]. Let us remark that gauge-invariant
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observables can equivalently be computed with or without gauge fixing. While the
formulation of classical-statistical simulations in Chapter 4 for Minkowski space-time
makes use of temporal-axial gauge fixing with the additional fixation of Gauss’ law, the
Monte Carlo simulations of Chapter 6 do not employ any gauge fixing. Both approaches
are equally valid to compute the gauge-invariant observables under investigation in these
chapters.

The Standard Model of particle physics provides a gauge theory with gauge group

GSM = (U(1)× SU(2)× SU(3))/Z6 , (2.30)

with the cyclic Z6 subgroup generated by [91]

(exp(πi/3),−12×2, exp(2πi/3) · 13×3) . (2.31)

In the Standard Model, Dirac fermions interact non-trivially with the gauge bosons of
GSM gauge theory. The gauge theory including the fermions can be subdivided into
different theories for particular gauge subgroups. U(1) × SU(2) yields the electroweak
interactions involved in radioactive decays, and SU(3) gives QCD, which includes the
strong interactions binding atomic nuclei, for instance. After electroweak symmetry
breaking, the U(1)em gauge subgroup of U(1) × SU(2) corresponds to QED. Yet, the
origin of the specific gauge group structure of GSM remains unknown. We provide a
corresponding space-time geometry-based proposal in Chapter 7, which also yields the
observed behavior of fermions as they interact with the Standard Model gauge bosons.

We note that in Equation (2.24) cubic and quartic self-interactions of the gauge bosons
appear for non-Abelian gauge groups. These are responsible for a plethora of non-
perturbative physical phenomena even at everyday energy scales, and render computa-
tions in non-Abelian gauge theories complicated and in general intractable. Prominently,
non-Abelian gauge theories give rise to color confinement and asymptotic freedom. At low
energies quarks and gluons are confined, such that the physically observed Hilbert space
contains only states which transform trivially under gauge transformations for the full
gauge group G. This includes the observed mesons, baryons, tetra- and pentaquarks [92],
for instance. At higher energies, lattice simulations suggest a cross-over which renders the
quarks and gluons deconfined. Signatures of free quarks can appear for instance in the
QGP.

Typically, deconfinement is accompanied by the spontaneous breaking of center sym-
metry, i.e., elements of the center Z(G) of G can act non-trivially on physical states. As
an example consider G = SU(Nc) with center Z(SU(Nc)) ∼= ZNc , which is generated by
exp(2πi/Nc) · 1Nc×Nc . Let V (x) be a center gauge transformation, i.e., V (x) ∈ Z(SU(Nc))

for all space-time points x. Continuity of V (x) implies that V (x) = c for a constant
c ∈ Z(SU(Nc)). The center gauge transformation is thus actually a global gauge trans-
formation, and the breaking of center symmetry is the breaking of a global symmetry.
The gauge symmetry is not spontaneously broken as a local symmetry, which would not
be possible anyhow due to Elitzur’s theorem [93]. To date, the rigorous mathematical
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origin of confinement remains elusive [94]. We discuss confinement and center symmetry
breaking in light of topological data analysis in Chapter 6.

At the highest energies, quarks and gluons become asymptotically free. This is due
to the effective running of the gauge coupling, which changes depending on the probed
energy scale. Based on quantum effects, at low energies the gauge coupling can become
non-perturbatively large, while being perturbative at high energies and approaching zero
asymptotically. Analytical computations are mostly restricted to perturbative high energy
regimes. In part, the non-perturbative regime can be accessed with numerical lattice
methods. In equilibrium and for imaginary times, for instance, importance sampling
techniques such as Monte Carlo simulations, carried out in Chapter 6, often allow for nu-
merical investigations [95], although finite baryon densities can cause a sign problem due
to an uncontrollably oscillating functional integral measure. Out of equilibrium, the sign
problem is more severe, since the functional integral measure ∼ exp(iS) oscillates vastly
even without chemical potentials. Yet, at early times weakly coupled classical-statistical
regimes can be accessed, for which quantum effects are suppressed, and at late times
kinetic approaches can facilitate the numerical analysis [38, 96]. For the classical-statistical
real-time simulations of Chapter 4 the former applies. Not conclusively established meth-
ods to study non-perturbative regimes at finite baryon densities include amongst others
complex Langevin approaches [97] and Lefshetz thimbles [98].

The requirement of gauge-invariance puts strong constraints on the types of observ-
ables that one can measure in experiments. A particularly interesting class is given by
Wilson loops, which can be formulated also for pure gauge theories. Let γ be a continuous
space-time path with parameters in [0, 1]. We define the Wilson line along γ as

W [γ] := P exp

{
ig

∫
γ

dx µAµ(x)

}
, (2.32)

where P denotes path ordering along γ from γ(0) to γ(1). It gauge-transforms as

W [γ] 7→ V (γ(1))W [γ]V †(γ(0)) . (2.33)

If γ is a closed loop, i.e., γ(0) = γ(1), we can construct the Wilson loop as the gauge-
invariant observable

trW [γ] . (2.34)

Polyakov loops, which are Wilson loops for particular lattice-encircling paths γ, will
be studied explicitely in Section 6.2. Wilson lines facilitate the efficient formulation of
gauge theories on discretized space-time lattices. There, the independent field degrees
of freedom are not taken to be the gauge fields themselves but instead Wilson lines
between neighboring lattice sites, called link variables [95]. Lattice gauge theories will
be investigated in Chapters 4 and 6, which contain non-equilibrium and equilibrium
formulations, respectively.
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2.3 Collective phenomena out of equilibrium

Despite their unitary time evolution, generic isolated out-of-equilibrium quantum many-
body systems steadily approach thermal equilibrium during their time evolution. The
dynamics of quantum fields and their late time thermalization can accommodate a variety
of collective phenomena, an overview of which we deliver in this section with emphasis
on the phenomena of relevance for this dissertation. This excludes phenomena such as
dynamical quantum phase transitions [99, 100], which come with non-analyticities on
transient time scales. This section is in parts based on [37, 81].

Isolated quantum many-body systems with far-from-equilibrium initial conditions ap-
pear in a wide range of physical scenarios. Notably, this encompasses the post-inflationary
early universe, the early stages of ultrarelativistic collisions of heavy or not quite so heavy
[101] atomic nuclei for instance at the LHC or RHIC, or table-top experiment with ultra-
cold quantum gases. While typical energy scales differ vastly for these systems, their
subsequent dynamics can show similarities.

In the early time regime the non-equilibrium dynamics of a QFT can give rise to
instabilities, of specific relevance e.g. for the (pre-)heating of the early universe [35] or for
heavy-ion collisions [38]. They are based on parametric resonance effects, which amplify
quantum fluctuations and lead to particle production even for small couplings [36]. This
can be due to effective mass terms interacting with two-point correlation functions, similar
to parametric resonances in classical mechanics. In the subsequent non-linear regime,
when characteristic occupancies become of order one or larger, secondary instabilities can
occur. For these, loop corrections can lead to further non-linear amplifications.

At some point the explosive particle production stops, having led to over-occupations
at characteristic momenta if compared to a thermal equilibrium state for the same con-
served quantities. At this stage there is often an infinite number of order-one loop correc-
tions; the quantum many-body system is strongly correlated, even for a possibly small
coupling. A regime of universal behavior can set in, related to non-equilibrium attractor
solutions to the (quantum-)dynamical equations of motion. It is governed by self-similar
time evolutions, which share similarities with critical scaling phenomena in equilibrium.
Specifically, for a distribution function f(t,p) of particles or quasi-particles in a homo-
geneous and isotropic system, the self-similar dynamics is described by a characteristic
scaling function fS and a pair of scaling exponents α, β, such that

f(t,p) = tαfS(tβ|p|) , (2.35)

for all times t in the self-similar scaling regime, measured in suitable dimensionless units.
In Chapter 4 we discuss self-similarity in classical-statistical Yang-Mills theory using
gauge-invariant observables, in part constructed with tools from topological data analysis.
In Chapter 5 we consider self-similar time evolutions in persistent homology from a
mathematical viewpoint.

Dynamical self-similar behavior as in Equation (2.35) is often related to (turbulent)
transport processes for conserved quantities. Isolated many-body systems feature en-
ergy conservation, and additional conserved quantities can appear. For instance, for
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FIGURE 2.2: A dual cascade with related self-similar dynamics in the vicinity of
non-thermal fixed points in scalar field theory, schematically. The inverse particle
cascade is characterized by scaling exponents α, β, the direct energy cascade by α′, β′.
Figure reprinted from [44].

both relativistic and non-relativistic scalar field theories an effective mass is dynamically
generated [44], which results in the effective conservation of the total particle number,
transiently for the relativistic theory. As such, multiple conservation laws need to be
met. This can result in dual cascades as shown schematically in Figure 2.2. Energy is
transported in a direct cascade towards higher momenta, and total particle number is
transported in an inverse cascade towards the infrared. Both transport processes can come
with different pairs of scaling exponents α, β and α′, β′. The direct energy cascade can
often be understood from perturbative weak wave turbulence [39, 102]. Due to typical
occupations much larger than one, the non-perturbative inverse particle cascade in scalar
field theories requires the introduction of strong wave turbulence [40, 103].

Self-similar behavior far from equilibrium can be remarkably universal across different
physical systems, energy scales and initial conditions. For instance, this includes the
example of relativistic and non-relativistic scalar field theories giving rise to the same
scaling function fS and the same scaling exponents α, β for the inverse particle cascade [44].
Numerical agreement with these scaling exponents has also been found for spatial Wilson
loops in non-Abelian gauge theory [46]. As for the direct cascade, non-Abelian gauge
theories and relativistic scalar fields give rise to similar scaling exponents [39, 41, 45]. For
longitudinally expanding spatial lattices, agreement has been observed for simulations of
non-Abelian gauge theories and relativistic scalar fields [42, 43]. In recent years, dynamical
self-similarity has been found experimentally for ultracold Bose gases [47–49], which
includes evidence for its universality across very different initial conditions. In particular,
the scaling exponent β observed in [47] matches the one found for the inverse particle
cascade in the simulations of scalar fields [44]. The conclusive grouping of many-body
systems into non-equilibrium universality classes based on their dynamical behavior in
the vicinity of non-thermal fixed points, similar to the Hohenberg-Halperin classification
scheme based on critical behavior in equilibrium [104], is outstanding.
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The inverse cascade with particle number transported towards the infrared can result in
the dynamical formation of a BEC off equilibrium [50]. In relativistic QFTs the condensate
is not stable and later decays due to particle number-changing processes [50]. In non-
relativistic quantum many-body systems such as ultracold quantum gases this can be
different, since total particle number is conserved. Indeed, for such systems the formation
of an equilibrium condensate is expected for large particle densities at sufficiently low
temperatures [105].

For non-moving systems, a condensate can be characterized by zero mode occupations
scaling extensively with volume [106]. This criterion can be readily employed to examine
the presence of out-of-equilibrium condensates in terms of volume scaling, employed e.g.
in [43, 44, 50, 51]. Related to this, condensates also feature off-diagonal long-range order
(ODLRO) [106, 107]. The spatial asymptotics of coherence functions, which are normalized
correlation functions in position space, contains information on the corresponding conden-
sate fraction, i.e., the quotient of the number of particles in the condensate divided by the
total particle number [108]. To this end, the formation of a condensate out of equilibrium
can be transparently followed with such correlators, which probe the related ODLRO. We
employ this method in Chapter 3 to study the emergent non-equilibrium condensation of
magnetizations in a spinor Bose gas.

As a specific phenomenon for non-Abelian gauge theories, initial states with gluonic
over-occupations in the infrared can give rise to dynamical condensation [51], which
is not accompanied by an inverse cascade. Typically, solely a direct cascade appears in
simulations, see e.g. [109] and Chapter 4 of this thesis. We briefly provide an argument
for this based on large-Nc dynamics. Let γ, γ′ be two spatial loops. An inverse cascade
related to the condensation dynamics of Wilson loops can be expected to show up in the
connected Wilson loop correlator,

〈tr(W [γ])tr(W [γ′])〉 − 〈tr(W [γ])〉〈tr(W [γ′])〉 , (2.36)

which is gauge-invariant. Agreement of the condensation dynamics of spatial Wilson
loops for both SU(Nc) gauge theory with Nc = 2 and Nc = 3 has been observed [46].
It can thus be expected that the non-equilibrium condensation dynamics of [51] can be
extrapolated to largeNc � 1. At largeNc the expectation values of Wilson loop correlators
behave as [110–112]

〈tr(W [γ])tr(W [γ′])〉 = 〈tr(W [γ])〉〈tr(W [γ′])〉+O(1/N2
c ) . (2.37)

The potential appearance of a related inverse glue cascade in connected Wilson loop
correlators such as (2.36) can thus be largely suppressed due the large-Nc Wilson loop
factorization, Equation (2.37).

Ultimately, generic quantum many-body systems thermalize. Although overall gov-
erned by unitary and thus reversible time evolution, at late times particular local ob-
servables such as low-order correlation functions approach their equilibrium expectation
values computed for a thermal ensemble consistent with the conserved quantities [52–
55]. For the equilibration of local observables, entanglement can provide a driving force
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[56–58]. At increasingly late times local observables resemble thermal equilibrium on
larger and larger length scales due to correlations which spread with finite speed through
the quantum many-body system [113, 114], and progressively entangle more degrees of
freedom. Varying the system size, in Chapter 3 we utilize the volume-dependence of
thermalization times for specific observables in order to be able to study a spinor Bose gas
until its eventual thermalization.

To conclude, quantum many-body systems in and out of equilibrium, in particular
gauge theories, provide a phenomenologically fertile ground. Much is known in this
regard, but crucial open problems remain. In this dissertation we address some these
through the lens of topological data analysis and geometry.
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Part I

Far-from-equilibrium time evolutions
and thermalization

Starting from initial conditions far from equilibrium, quantum field theories
can thermalize in the course of time. We report about a corresponding experi-
ment with ultracold atoms. A study on self-similar dynamics in the gluonic
plasma follows, leading to a mathematical analysis of related persistent homol-
ogy phenomena.
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Chapter 3

Condensation and thermalization of
an easy-plane ferromagnet in a spinor
Bose gas

This chapter is based on the following article:

• Prüfer, M., Spitz, D., Lannig, S., Strobel, H., Berges, J., and Oberthaler, M. K., “Con-
densation and thermalization of an easy-plane ferromagnet in a spinor Bose gas”,
Nat. Phys., vol. 18, no. 12, pp. 1459–1463, 2022. arXiv: 2205.06188 [cond-mat.quant-
gas].

Most of the present chapter is taken from this publication, where I contributed to the
text, to the discussion of the measurement results, participated in the data analysis and
predominantly elaborated the theoretical framework.

This work has been reported about in the following popular scientific account, which
is not part of this dissertation:

• Prüfer, M., Spitz, D., and Strobel, H., “Supraflüssigkeit mit Spin”, Physik in unserer
Zeit, vol. 54, no. 2, pp. 58–59, 2023.

3.1 Overview

Bose-Einstein condensates are an ideal platform to experimentally explore dynamical phe-
nomena emerging in the many-body limit, such as the build-up of long-range coherence,
superfluidity or spontaneous symmetry breaking. In Bose-Einstein condensates [115]
the macroscopic occupation of the ground state together with a spontaneously broken
symmetry manifests itself in a globally well-defined phase of the complex-valued order
parameter in each realization. This phase can be probed experimentally by interferometric
measurements, which has been demonstrated with different platforms [116–118]. In an
easy-plane ferromagnetic system the order parameter is characterized by a well-defined
magnitude in the transversal plane, and all orientations in the plane are equally likely.
Theoretically, this is due to a spatial anisotropy, breaking the full rotational SO(3) symmet-
ric part of the Hamiltonian down to a transversal SO(2) symmetry. In condensed matter
physics prototype models include the XXZ model [119], which has also been realized with
ultracold atoms in lattice systems [120] and Rydberg atoms [121, 122].

http://dx.doi.org/10.1038/s41567-022-01779-6
http://dx.doi.org/10.1038/s41567-022-01779-6
http://arxiv.org/abs/2205.06188
http://arxiv.org/abs/2205.06188
http://dx.doi.org/https://doi.org/10.1002/piuz.202370204
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In recent years analog quantum simulators with ultracold atoms allowed for unprece-
dented insights by implementing building blocks of complex condensed matter systems
[123, 124]. This opens up new possibilities for studying pressing questions concerning
quantum many-body dynamics and thermalization [125–133]. For probing these phenom-
ena in macroscopic systems, often either the time-scales are too short or the control to
extract information is not given such that direct observation of the dynamical processes is
not possible.

We study the thermalization dynamics of an easy-plane ferromagnet in a homoge-
neous one-dimensional spinor Bose gas. The dynamic emergence of effective long-range
coherence for the transversal magnetization field is demonstrated, and spin-superfluidity
is verified by experimentally testing Landau’s criterion. We reveal the structure of one
massive and two massless emerging quasi-particle modes, which appear as a consequence
of explicit and spontaneous symmetry breaking. Our experiments allow us to observe
the thermalization of the easy-plane ferromagnetic Bose gas, for the relevant momentum-
resolved observables in agreement with a thermal prediction obtained from an underlying
microscopic model within the Bogoliubov approximation.

This chapter is structured as follows. In Section 3.2 we describe the experimental
setup. Subsequently, in Section 3.3 we demonstrate the emergence of a condensate in the
transversal spin degree of freedom, and test for superfluidity. In Section 3.4 we derive
the structure of quasi-particles for the system via Bogoliubov theory, and experimentally
probe their infrared behavior using local perturbations. To characterize the system at late
times, in Section 3.5 we compare a variety of structure factors and local observables with
thermal predictions obtained in the Bogoliubov approximation. In Section 3.6 we provide
a summary.

3.2 The experimental setup

We realize a spinor BEC of 87Rb with easy-plane ferromagnetic properties [134, 135] in a
quasi-one-dimensional box trap [136], see Figure 3.1(a). It consists of three internal states,
labelled by their magnetic quantum number m ∈ {0,±1}. The system features rotationally
invariant ferromagnetic spin-spin interactions described by Ĥs = c1

∫
d3x F̂2/2, where

c1 < 0 is the spin-spin interaction constant and F̂ denotes the spin operator (see Equa-
tion (3.4)). A quadratic Zeeman shift q induced by the magnetic field plays the role of the
isotropy-breaking term; it shifts the energy of the m = ±1 levels (see Figure 3.1(b)) and is
explicitly given by Ĥq = q

∫
d3x (N̂+1 + N̂−1), N̂± the atom number density operators of

the m = ±1 levels. We adjust q by using off-resonant microwave dressing [137] such that
the mean-field ground-state exhibits easy-plane ferromagnetic properties (0 < q < 2n|c1|
with n the atomic density) and our initial conditions restrict the dynamics to the spatially
averaged longitudinal (z-) spin being zero. In addition to the spin interactions, our system
exhibits SO(3)-invariant density-density interactions described by Ĥd = c0

∫
d3x N̂2/2,

with interaction constant c0 and |c0/c1| ≈ 200 [134].
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To implement the box-like trapping potential we use a weakly focused red-detuned
laser beam creating a quasi-one-dimensional trapping potential with longitudinal fre-
quency ωl ≈ 2π × 1.7 Hz and transversal frequency ωr ≈ 2π × 170 Hz. This corresponds to
a transversal harmonic oscillator length of

√
~/Mωr ≈ 0.8µm, with M the atomic mass.

Repulsive potential walls are created by two blue-detuned laser beams which results
in a trapping volume of adjustable size around the centre of the harmonic trap. The
longitudinal harmonic potential is in good approximation constant over the employed
sizes and, thus, effectively leads to a one-dimensional box-like confinement for the atomic
cloud.

The capability to extract the relevant order-parameter field [138] allows us to study
the build-up of effective long-range coherence in a time- and space-resolved fashion.
Accessing the full structure factors of the observables defining the Hamiltonian will also
be the handle to faithfully witness thermalization. Details concerning the preparation and
readout of the transversal spin can be found in [138–141].

We experimentally examine the order parameter, which is the transversal spin de-
gree of freedom, by acquiring many realizations of the complex-valued field F⊥(y) =

Fx(y) + iFy(y) depending on the longitudinal position y, using spatially resolved joint
measurements based on positive operator valued measures (POVM) [138, 140]. Specif-
ically, after the evolution time t we image the atomic densities using spatially resolved
absorption imaging. Employing a Stern-Gerlach magnetic field gradient followed by a
short time-of-flight (TOF; 2 ms), we are able to image the atomic densities of all 8 magnetic
sublevels of the F = 1 and F = 2 hyperfine manifolds of the electronic ground state.
Additional coherent microwave and radio-frequency manipulations before the imaging
allow us to map the two spin projections Fx and Fy of the transversal spin [140] onto
measurable densities. In every experimental realization (i) we infer single shot realizations
O(i) of different observables Ô from the atomic densities. The quantum expectation value
is approximated by averaging over many realizations as

〈Ô〉 ' O =
1

NS

NS∑
i=1

O(i) , (3.1)

where NS is the number of realizations. This way, we obtain the complex-valued transver-
sal spin F⊥(y) = Fx(y) + iFy(y) = |F⊥|(y) exp(−iφL(y)) with length |F⊥| and orientation
in the plane φL as a function of the position y. The discretized position y is the centre
of a spatial bin which contains ∼ 500 atoms and has a spatial extension of ∼ 1.2µm

along the cloud.1 In each typical imaging volume we infer the spin from an average over
∼ 500 atoms which are described by a spin field, i.e., taking nearly continuous values as
illustrated schematically in Figure 3.1(c). This provides a macroscopic order-parameter
field, which is sensitive to spin condensation.

For studying the spin condensation dynamics, we initialize the system far from equi-
librium with |F⊥| near zero [142]. For the detailed observation of the emergence of spin
coherence we prepare the atoms in the state |F,m〉 = |1, 0〉, the so-called polar state. We

1We bin three adjacent camera pixels where each pixel corresponds to 420µm in the atom plane.
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FIGURE 3.1: Homogeneous spinor Bose gas and easy-plane ferromagnetic properties.
(a): We realize a homogeneous spinor BEC of 87Rb in a box-like trapping potential
by a combination of an elongated attractive potential (red) and two repulsive end
caps (green). The total density (grey shading) is flat over the extent of the cloud.
(b): Level structure of the F = 1 hyperfine manifold. We control the offset energy
between the m-states by microwave dressing (blue shading) such that the system
features easy-plane ferromagnetic properties in its ground state. (c): The spatial
degree of freedom is continuous, however, in the analysis discretized by the finite
pixel size of the camera and the imaging resolution (≈ 1.2µm). Each imaging volume
(boxes) contains ≈ 500 atoms which are described by continuous fields for density
and spin. The spins orient themselves in the (easy-)plane orthogonal to the external
magnetic field B. (d): The transversal spin features two different types of excitations:
A Goldstone mode and a Higgs mode related to the excitation of the orientation
φL and length |F⊥|, respectively. (e): Histogram of the local spin normalized by
the atom number, combining all spatial points and experimental realizations. In
every realization the phase of the central spatial point is subtracted fixing the spin
in the center to the y-direction. The dashed line is a guide to the eye and indicates
|F⊥| = 0.75.

visualize the emergence of a spin field expectation value |F⊥| by evaluating the histogram
of local F (i)

⊥ (y) values, taking into account all spatial positions and realizations, and given
in Figure 3.1(e). After 5 s, which corresponds to approximately 10 times the typical time
scale of the spin interaction energy ts = h/(n|c1|), the spin is still far from equilibrium
and shows large fluctuations in orientation and length. After 30 s (approximately 60 ts) of
evolution time we find that the fluctuations settle around a well-defined spin length |F⊥|
and the phase φL becomes well-defined over the whole sample, i.e., effective long-range
order emerges. This is expected for a thermal state incorporating spontaneous symmetry
breaking in the transversal spin degree of freedom and, intuitively, can be grasped by
looking at the underlying mexican-hat-like free-energy potential, see Figure 3.1(d) and
[143].
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FIGURE 3.2: Emergence of effective long-range coherence in the transversal spin and
superfluidity. (a): Absolute value of first order coherence |g1(x, y = 0)| of transversal
spin F⊥; reference point (y = 0) is chosen at the left edge of the cloud with system size
L = 74µm. We observe a build-up of effective long-range order, i.e., for long times
the system features non-zero coherence over its whole size. Inset: Two-dimensional
coherence function |g1(x, y)| after 27 s evolution time. For long times we find the
correlations to be approximately translation invariant. (b): Second order coherence of
the transversal spin showing the evolution and character of spin length fluctuations.
(c): Superfluid properties of the spin condensate. Standard deviation along the cloud
of spin length (purple) and density (grey) for different barrier velocities v. The rapid
increase at non-zero speeds indicates superfluid properties of spin and density. Insets
show representative single realizations of the spin length and total density in the
different regimes.

3.3 Spin condensation and superfluidity

To test for eventual spin condensation, we characterize the coherence properties of the
transversal spin by evaluating first and second order coherence functions [108]. These are
explicitly given by

g1(x, y) =
〈F̂ †⊥(x)F̂⊥(y)〉√

〈F̂ †⊥(x)F̂⊥(x)〉 〈F̂ †⊥(y)F̂⊥(y)〉
(3.2)

and

g2(x, y) =
〈F̂ †⊥(x)F̂ †⊥(y)F̂⊥(x)F̂⊥(y)〉
〈F̂ †⊥(x)F̂⊥(x)〉 〈F̂ †⊥(y)F̂⊥(y)〉

. (3.3)

For the inferred single shot results of the transversal spin F
(i)
⊥ (y) the † is treated as

the complex conjugate. In contrast to earlier experiments observing the emergence of
long-range coherence in one-component BECs [116, 144, 145], we do not rely on spatial
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interference as we access the relevant spin field directly by joint measurements entailing
interference in the internal degrees of freedom [138, 141]. We find that coherence is built
up dynamically and the system finally features long-range order, i.e., non-zero |g1(x, y)|
over the whole extent of the atomic cloud, see Figure 3.2(a). At the same time the spin
length fluctuations, quantified by g2(x, y) as shown in Figure 3.2(b), settle close to unity at
zero distance as expected for a weakly interacting Bose-Einstein condensate [146–150].

To characterize the final state, we first test for superfluidity of the spin as well as
the density. In the spirit of Landau [151], we drag a well-localized obstacle coupling to
density and spin through the BEC [152–154], and measure the response of the system,
see Appendix 3.A for experimental details. We quantify the response by evaluating the
mean standard deviation of the total density and the transversal spin length along the
cloud. The breakdown of superfluidity is signalled by a rapid increase of the response at a
non-zero critical velocity. We find two different critical velocities for spin and density in
Figure 3.2(c). While the spin shows superfluidity up to vc,s ' 3× 10−2 mm/s, the density
tolerates a moving barrier for up to 10 times faster speeds. This is consistent with the
interaction strengths and the corresponding stiffness of the degrees of freedom.

3.4 Bogoliubov quasi-particles

We address the underlying quasi-particle structures in more detail. With two sponta-
neously broken symmetries, the U(1) symmetry of the total density and the SO(2) symme-
try of the spin orientation, we anticipate two Goldstone-like modes with linear dispersions
in the infrared. The different energy scales of density and spin interactions are reflected in
the two associated sound speeds. They are theoretically expected to differ by more than
an order of magnitude, which is consistent with the observed critical velocities. Addition-
ally, the symmetry explicitly broken by Ĥs + Ĥq leads to a Higgs-like gapped mode, see
Figure 3.3(a). Compared to two-component BECs we find an additional quasi-particle
mode due to the increased number of degrees of freedom [155, 156]. This behavior of the
Bogoliubov quasi-particles can be inferred from their dispersion relations. These come
with related Bogoliubov transformations, which we employ later to compute correlation
functions for a thermal ensemble.

3.4.1 Bogoliubov transformations in the easy-plane ferromagnetic phase

We explicitely derive the Bogoliubov transformations in the easy-plane ferromagnetic
phase (0 < q/(n|c1|) < 2). Here we set ~ = 1. In terms of the total density and spin
operators

N̂(x) =

1∑
m=−1

N̂m(x) =

1∑
m=−1

ψ̂†m(x)ψ̂m(x) , F̂ν(x) =

1∑
m,m′=−1

ψ̂†m(x)(fν)mm′ψ̂m′(x) ,

(3.4)
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with the spin-1 matrices

fx =
1√
2

0 1 0

1 0 1

0 1 0

 , fy =
i√
2

0 −1 0

1 0 −1

0 1 0

 , fz =

1 0 0

0 0 0

0 0 −1

 , (3.5)

the system Hamiltonian reads

Ĥ =

∫
d3x

[ 1∑
m=−1

ψ̂†m(x)

(
− ∇

2

2M
+ qm2

)
ψ̂m(x) +

c0

2
: N̂2(x) : +

c1

2

∑
ν=x,y,z

: F̂ 2
ν (x) :

]
,

(3.6)
where : · : indicates normal ordering. With the momentum-space creation and annihilation
operators

â†k,m =
1√
V

∫
d3x ψ̂†m(x)eikx, âk,m =

1√
V

∫
d3x ψ̂m(x)e−ikx , (3.7)

the Hamiltonian becomes in the number-conserving Bogoliubov approximation [143]

ĤB =E0 +
∑

k 6=0,m

(εk + qm2 − µ)n̂k,m

+
N

V

∑
j,j′,m,m′

∑
k 6=0

(Γjj′,m′m + Γjm,m′j′)ζj′ζ
∗
m′ â
†
k,j âk,m

+
N

2V

∑
j,j′,m,m′

∑
k 6=0

Γjj′,mm′
(
ζ∗j ζ
∗
mâ−k,m′ âk,j′ + ζm′ζj′ â

†
k,j â

†
−k,m

)
, (3.8)

with εk = k2/(2M), atom mass M , total atom number N , system volume V , and n̂k,m =

â†k,mâk,m. The momentum scale |k| corresponds to the wavelength λ = 2π/|k|. The spinor
(ζm) specifies the normalized condensate configuration, and we have set âk=0,m =

√
Nζm.

Γjj′,mm′ denotes density and spin interactions,

Γjj′,mm′ ≡ c0δjj′δmm′ + c1

∑
ν=x,y,z

fνjj′f
ν
mm′ . (3.9)

The ground state energy is in the Bogoliubov approximation given by

E0 ≡ N
[∑

m

qm2|ζm|2 +
N − 1

2V

∑
j,j′,m,m′

Γjj′,mm′ζ
∗
j ζ
∗
mζm′ζj′

]
, (3.10)

the chemical potential reads

µ ≡
∑
m

qm2|ζm|2 +
2N − 1

2V

∑
j,j′,m,m′

Γjj′,mm′ζ
∗
j ζ
∗
mζm′ζj′ . (3.11)

We set sin θ =
√

1/2− q/(4n|c1|), such that the mean-field ground state is ζ =

(sin θ/
√

2, cos θ, sin θ/
√

2) [157]. The initial orthogonal transformation of creation and
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annihilation operators, given by âk,d

âk,θ

âk,fz

 =

sin θ/
√

2 cos θ sin θ/
√

2

cos θ/
√

2 − sin θ cos θ/
√

2

1/
√

2 0 −1/
√

2


 âk,1

âk,0

âk,−1

 ≡ A(θ)

 âk,1

âk,0

âk,−1

 , (3.12)

leads to a description of the system in terms of longitudinal and transversal spin fluctua-
tions.

The longitudinal (z-)spin fluctuations can be diagonalized using the Bogoliubov trans-
formation [157]

b̂k,fz = uk,fz âk,fz + vk,fz â
†
−k,fz , (3.13)

where

uk,fz ≡

√
εk + q/2 + Ek,fz

2Ek,fz

, vk,fz ≡

√
εk + q/2− Ek,fz

2Ek,fz

, (3.14)

with the dispersion
Ek,fz =

√
εk(εk + q) . (3.15)

To diagonalize transversal spin fluctuations we follow the procedure outlined in [143].
We obtain mode energies ±Ek,+ and ±Ek,− as in [143], explicitely given by

Ek,± =
√
ε2k + n(c0 − c1)εk + 2n2c1(c1 − cq)± E1(k) , (3.16)

with

E1(k) =
(
[n2(c0 + 3c1)2 + 4n2cq(c0 + 2c1)]ε2k − 4n3c1(c0 + 3c1)(c1 − cq)εk

+ [2n2c1(c1 − cq)]2
)1/2

. (3.17)

The dispersions Ek,fz and Ek,± are sketched in Figure 3.3(a). Defining

h00 ≡ n(c0 + c1 − c1) , h01 ≡ q sin(2θ)/2 , h11 ≡ −2nc1 + ncq , h211 ≡ ncq , (3.18)

and

uk,±,1 = −
(
h01

[
± 2E1 + 4ε2k + 2εk(2Ek,± + h00 + 2h11 − h211)

+ (h11 − h211)(2Ek,± + h11 + h211)
])/(

4εkh
2
01 + 2εk(h11 − h00)h211

+ h211(±2E1 + h2
11 − h2

211)
)
, (3.19a)

uk,±,2 =
(
4ε2k(h00 − h11)− 2(Ek,± + h11)(±2E1 + h2

11 − h2
211)

− 2εk(±2E1 + 4h2
01 − 2Ek,±(h00 − h11)− 2h00h11 + 3h2

11

− h2
211)

)/(
8εkh

2
01 + 4εk(h11 − h00)h211 + 2h211(±2E1 + h2

11 − h2
211)

)
,

(3.19b)

vk,±,1 =
h01

[
± 2E1 + 2εk(h00 + h211) + (h11 − h211)(2Ek,± + h11 + h211)

]
4εkh

2
01 + 2εk(h11 − h00)h211 + h211(±2E1 + h2

11 − h2
211)

, (3.19c)

vk,±,2 = 1 , (3.19d)
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FIGURE 3.3: Local spin and density control enables probing of quasi-particle prop-
erties. (a): Schematics of the three Bogoliubov dispersion relations. (b-d): Time
evolution of transversal spin orientation (b), total density (c) and spin length (d) after
local perturbation of the spin condensate. The upper panels show all evolution times
and lower panels selected 1D cuts. We find a splitting of the imprinted wavepacket
for phase and total density according to the expected linear dispersion relations
(green and blue); solid lines are Gaussian fits. Strikingly, the speed of sound differs
by one order of magnitude reflecting the energy scales (solid black line corresponds
to v = 110µm/s and dashed line to v = 1100µm/s). In contrast, the spin length
excitation disperses. (e): Results of Gaussian fits to spin length excitations. 1σ width
(circles), the amplitude a (diamonds) and the integral ∝ aσ (squares) are shown. We
find an increasing (decreasing) width (amplitude) while the product stays nearly
constant; this is in accordance with an underlying gapped quadratic dispersion. (f):
Oscillation of the m = 0 population after perturbing the k = 0 mode of the spin
length. The oscillation frequency is a measure of the gap ∆ of the quadratic mode
identified in (d). All shown error bars are 1 s.d. of the mean.

together with the normalization factors

Nk,± ≡
√
u2
k,±,1 + u2

k,±,2 − v2
k,±,1 − v2

k,±,2 , (3.20)

we find the Bogoliubov transformation matrices for transversal excitations (in the parametriza-
tion of [157]):

Uk,dθ =

(
uk,+,1/Nk,+ uk,+,2/Nk,+

uk,−,1/Nk,− uk,−,2/Nk,−

)
, Vk,dθ =

(
−vk,+,1/Nk,+ −vk,+,2/Nk,+

−vk,−,1/Nk,− −vk,−,2/Nk,−

)
.

(3.21)
These fulfil the identities

Uk,dθU
†
k,dθ − Vk,dθV

†
k,dθ = 1 , U∗k,dθV

†
k,dθ − V

∗
k,dθU

†
k,dθ = 0 , (3.22)
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as required for the transformations to preserve canonical commutation relations. This
requirement is not fulfilled for the transformations given in [157].

The complete transformation matrices diagonalizing the Bogoliubov Hamiltonian (3.8)
read

Uk =

(
Uk,dθ 0

0 uk,fz

)
A(θ) , Vk =

(
Vk,dθ 0

0 vk,fz

)
A(θ) . (3.23)

3.4.2 Local spin and density perturbations probing quasi-particle properties

Experimentally, we probe the three different modes with dispersions Ek,fz and Ek,± by
applying local perturbations. Experimental details for this can be found in Appendix 3.A.
After the perturbation we observe and analyze the temporal evolution, to learn about the
underlying structure of the dispersion relations. First, we probe the linear mode associated
with the spin orientation by imprinting a spatially varying orientation pattern in φL onto
the thermalized state. The probing scheme is based on our capabilities to combine global
and local radio frequency spin rotations with fixed relative phases. The initially imprinted
Gaussian wavepacket splits up into two wavepackets travelling with velocities of ±vs, see
Figure 3.3(b). This provides a clear indication for a linear dispersion relation.

To access the density degree of freedom we imprint a Gaussian-shaped density re-
duction of ∼ 5% and observe again a splitting of the initially prepared wave packet, see
Figure 3.3(c). The difference in energy scales of density and spin is reflected in the two
observed sound speeds vd and vs which yield vd/vs ≈ 10 ≈

√
|c0/c1|.

Finally, the gapped mode is associated with excitations of the spin length, which
we perturb with a Gaussian length modulation. Strikingly, in Figure 3.3(d) we observe
no splitting but a decaying amplitude and growing width of the prepared perturbation.
Additionally, we measure the gap of this mode, which manifests as a finite oscillation
frequency when exciting the k = 0 mode, see Figure 3.3(f). We find a q-dependent,
non-zero oscillation frequency consistent with expectations concerning the nature of the
underlying Bogoliubov mode in the easy-plane ferromagnetic phase.

3.5 Thermal comparison

In order to characterize the experimental spinor Bose gas at late times, we compare
structure factors of multiple experimentally accessible atom and spin densities with
predictions obtained within the Bogoliubov approximation for a thermal ensemble with a
single temperature for all Bogoliubov quasi-particles. We describe the latter in Section 3.5.1,
before dicussing the experimental protocol and results in Section 3.5.2. A comparison
of experimental local density histograms with results for Bogoliubov theory samples is
provided in Section 3.5.3, and Section 3.5.4 gives indications for long-lived non-linear
excitations in other parameter regimes.
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3.5.1 Thermal structure factors from Bogoliubov theory

Employing the Bogoliubov theory for the spinor Bose gas, we are interested in correlators
of the form

〈Ĉ†(x)Ĉ(y)〉β,s (3.24)

for a composite field Ĉ(x) given by

Ĉ(x) =
+1∑

m,m′=−1

ψ̂†m(x)cmm′ψ̂m′(x) (3.25)

with cmm′ a 3× 3 matrix corresponding to the type of structure factor under investigation;
c = fx + ify leads to the transversal magnetization structure factor, c = fz describes the
structure factor of magnetization in the z-direction, c = diag(1, 1, 1) describes the total
density structure factor. In Equation (3.24) 〈·〉β,s indicates the thermal expectation value
at inverse temperature β = 1/(kBT ) with symmetrically (Weyl-)ordered arguments. We
compare with symmetrically ordered predictions since expectation values of experimental
observables are inferred from realizations of observablesO(i) given by polynomials of com-
plex numbers (cf. [158] for a similar normal-ordered computation). Fourier-transforming
Equation (3.24) with respect to the relative coordinate x− y, we obtain the structure factor

〈Ĉ†(k)Ĉ(k)〉β,s =

∫
d3(x− y) 〈Ĉ†(x)Ĉ(y)〉β,s e−ik(x−y)

=
1

V

∑
m,m′,n,n′

c†mm′cnn′
∑
p,q

〈â†p+k,mâp,m′ â
†
q,nâq+k,n′〉β,s . (3.26)

In the Bogoliubov approximation Equation (3.26) simplifies as follows. We replace
zero modes of creation and annihilation operators by numbers, â0,m =

√
Ncondζm, Ncond

the total number of condensate atoms. Contributions from fluctuating modes âk 6=0,m are
computed from propagators via Wick’s theorem. The symmetrically ordered propagators
are defined as

G11
mm′(k) ≡ 〈âk,mâ†k,m′〉β,s , G22

mm′(k) ≡ 〈â†k,mâk,m′〉β,s ,

G12
mm′(k) ≡ 〈âk,mâ−k,m′〉β,s , G21

mm′(k) ≡ 〈â†k,mâ
†
−k,m′〉β,s . (3.27)

The first two of these we refer to as normal propagators, the second two as anomalous
propagators. Any normal propagator evaluated for non-diagonal momenta such as
〈â†k,mâk′,m′〉β,s for k′ 6= k and any anomalous propagator evaluated for non-anti-diagonal
momenta such as 〈âk,mâ−k′,m′〉β,s for k′ 6= k equates to zero. We then find for k = 0,

〈Ĉ†(0)Ĉ(0)〉β,s =
Ncond(Ncond − 1)

V

∑
m,m′,n,n′

c†mm′cnn′ζ
∗
mζ
∗
nζm′ζn′ +O(Ncond) , (3.28)
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and for the non-zero modes k 6= 0,

〈Ĉ†(k)Ĉ(k)〉β,s =
Ncond

V

∑
m,m′,n,n′

c†mm′cnn′

[
ζ∗mζ

∗
nG

12
m′n′(k) + ζ∗mζn′G

11
m′n(k)

+ ζ∗nζm′G
22
mn′(k) + ζm′ζn′G

21
mn(k)

]
+O(1) , (3.29)

where we have used that the propagators Gabmm′(k) only depend on the absolute value
of the momentum, |k|. Thus, to leading order in Ncond they are independent from the
trap geometry, since no sum over momenta occurs for given k. Normalized experimental
structure factors are compared to 〈Ĉ†(k)Ĉ(k)〉β,s/ncond, ncond = Ncond/V the total con-
densate atom density. The photon shot noise of the absorption imaging is determined
to be 0.6 after normalization and is added on the thermal prediction of the total density
fluctuations.

In the easy-plane ferromagnetic phase thermal propagators Gabmm′(k 6= 0) can be
computed from the Bogoliubov transformations derived in Section 3.4.1. Bogoliubov quasi-
particle excitations fz and ± are expressed in terms of fundamental magnetic sublevel
excitations as (

b̂k,j

b̂†−k,j

)
=

+1∑
m=−1

(
Uk,jm Vk,jm

V ∗−k,jm U∗−k,jm

)(
âk,m

â†−k,m

)
, (3.30)

for j ∈ {fz,±}. Inverting this, we obtain [143](
âk,m

â†−k,m

)
=

∑
j∈{fz ,±}

(
U †k,mj −V T

k,mj

−V †−k,mj UT−k,mj

)(
b̂k,j

b̂†−k,j

)
. (3.31)

The propagators can efficiently be computed from the tensor product(
G12
mm′(k) G11

mm′(k)

G22
mm′(−k) G21

mm′(−k)

)
= 〈

(
âk,m

â†−k,m

)
⊗
(
â−k,m′ , â

†
k,m′

)
〉β,s

=
∑

j,j′∈{fz ,±}

(
U †k,mj −V T

k,mj

−V †−k,mj UT−k,mj

)(
〈b̂k,j b̂−k,j′〉β,s 〈b̂k,j b̂†k,j′〉β,s
〈b̂†−k,j b̂−k,j′〉β,s 〈b̂

†
−k,j b̂

†
k,j′〉β,s

)

×

(
U∗−k,j′m′ −V ∗−k,j′m′
−Vk,j′m′ Uk,j′m′

)
. (3.32)

The Bogoliubov quasi-particle modes b̂k,j are occupied thermally,

〈b̂†k,j b̂k,j′〉β = δjj′nβ(Ek,j) , 〈b̂k,j b̂†k,j′〉β = δjj′(nβ(Ek,j) + 1) , (3.33)

with the Bose-Einstein distribution nβ(Ek,j) ≡ 1/(exp(βEk,j)−1). Anomalous propagators
of b̂k,j-modes are zero. Insertion of Equation (3.33) into Equation (3.32) and using that
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Uk,mj and Vk,mj only depend on |k| leads to

G11
mm′(k) =

∑
j∈{fz ,±}

[
U †k,mj

(
nβ(Ek,j) +

1

2

)
Uk,jm′ + V T

k,mj

(
nβ(Ek,j) +

1

2

)
V ∗k,jm′

]
,

(3.34a)

G22
mm′(k) =

∑
j∈{fz ,±}

[
V †k,mj

(
nβ(Ek,j) +

1

2

)
Vk,jm′ + UTk,mj

(
nβ(Ek,j) +

1

2

)
U∗k,jm′

]
,

(3.34b)

G12
mm′(k) = −

∑
j∈{fz ,±}

[
U †k,mj

(
nβ(Ek,j) +

1

2

)
Vk,jm′ + V T

k,mj

(
nβ(Ek,j) +

1

2

)
U∗k,jm′

]
,

(3.34c)

G21
mm′(k) = −

∑
j∈{fz ,±}

[
V †k,mj

(
nβ(Ek,j) +

1

2

)
Uk,jm′ + UTk,mj

(
nβ(Ek,j) +

1

2

)
V ∗k,jm′

]
.

(3.34d)

With these expressions thermal structure factors can be readily computed from Equa-
tion (3.29).

3.5.2 Experimental structure factors

We now turn to the question if we experimentally realized a thermal ensemble. To ease its
realization we prepare an elongated spin initial condition and evolve it for 30 s. For this
we apply a π/2-rf rotation with the atoms initially prepared in the state |F,m〉 = |1,−1〉.
Experimentally, we characterize the thermalized state of our system by using different
structure factors, such as those of the spin in transversal as well as in longitudinal (z-)
direction and the densities of the three m-components, see Figure 3.4. For the measure-
ments of the thermalized state we utilize a box size of ∼ 100µm. The position of the walls
fluctuates ∼ 0.4µm from realization to realization. The final characterized state has on
average Ntot = 65, 000 atoms (initially starting with 160, 000 atoms). To separate the single
components we employ a Stern-Gerlach magnetic field gradient and a short TOF (2 ms).
We are able to extract momentum-resolved structure factors by Fourier-transforming
the spatial profiles, i.e., as functions of the spatial momentum k the structure factors are
computed as

〈|Ô(k)|2〉 ' |O(k)|2 =
1

Ntot

1

NS

NS∑
i=1

∣∣∣DFTx→k

(
O(i)(x)−O(x)

)∣∣∣2 , (3.35)

where DFTx→k is the discrete Fourier transform, k = 1/λ the spatial momentum. The
structure factors have been divided by Ntot to obtain an atom number independent
measure for the fluctuations and facilitate the comparison between experiment and theory.
As a reference noise level for the thermalized structure factor, we prepare a coherent spin
state by performing the rotation after holding the atoms in |1,−1〉 for 30 s (grey diamonds
in Figure 3.4 and Figure 3.6).



34 Spinor condensation and thermalization

|n-1(k)|2

|ntot(k)|2

|n0(k)|2|n+1(k)|2

|Fz(k)|2|F (k)|2

Momentum k (μm-1) Momentum k (μm-1) Momentum k (μm-1)

10
−1

10
0

10
1

10
2

0.01 0.03 0.06 0.18

10
−1

10
0

10
1

10
2

0.01 0.03 0.06 0.18 0.01 0.03 0.06 0.18

FIGURE 3.4: Structure factors of different observables at late times. We show experi-
mental structure factors (green diamonds; error bars smaller than plot markers) after
30 s evolution time where the system behaves approximately stationary. Experimen-
tal uncertainties are smaller than marker size. We compare to a thermal prediction
within number-conserving Bogoliubov theory (green line; grey band indicates 68%
confidence interval of statistical and systematic uncertainties). Grey diamonds indi-
cate reference noise level of a coherent spin state prepared from a single component
gas by a global spin rotation.

For the total density structure factor |Ntot|2(k) a value of one corresponds to the
atomic shot noise level. Special care has to be applied here since phase fluctuations are
transformed into density fluctuations during any TOF, leading to a strongly enhanced
structure factor for the total atom densities [159, 160]. For its measurement we take in-situ
images without spin resolution (without Stern-Gerlach separation). It is important to note
that the observed increased fluctuations compared to the spin coherent state by a factor
of two can be a result of only one particle per k-mode. For the spin observables and the
single densities we checked that the enhanced fluctuations due to the TOF are negligible.

The structure factors of all observables are consistently described using a thermal
prediction, displayed in Figure 3.4. The latter is obtained for the spinor Bose gas with
contact interactions within the Bogoliubov approximation [157, 161], using a single tem-
perature for all three quasi-particle modes and detailed in the previous subsection. We
thus conclude that the system has evolved to a thermal state within experimentally acces-
sible time-scales. The found temperature is (57± 3) Hz (∼ 3 nK) and thus approximately
five times smaller than the density-density interaction energy scale (nc0 = (252± 54) Hz)
and more than one order of magnitude larger than the spin-spin interaction energy scale
(|nc1| = (1.17 ± 0.25) Hz). The effective energy scales have been obtained from fitting
the thermal Bogoliubov theory structure factors to the experimental data as detailed in
Appendix 3.B. The temperature is consistent with theoretical estimates for the critical
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FIGURE 3.5: Histograms of local observables in the thermalized state. Histograms
obtained from evaluating the local observations of the experimental data presented
in Figure 3.4 (green bars). Here, each local observable is normalized to the square-
root of the local mean of the total atom number. On top we display theoretical
estimates from 1000 samples generated according to thermal Bogoliubov theory with
parameters as in Figure 3.4 (grey line; grey band indicates 68% confidence interval
including statistical and systematic uncertainties). The mean value of each local
observable is subtracted.

temperature related to the emergence of the easy-plane ferromagnetic phase [162, 163].
Interestingly, the single m-densities feature high fluctuations also in comparison with
three independent single-component condensates at corresponding density, interaction
and temperature.

3.5.3 Local fluctuations

As a further consistency check with the thermal ensemble, though not independent from
the structure factors, we study local density histograms as shown in Figure 3.5. In order
to access these within Bogoliubov theory, we devise a sampling scheme for drawing
individual samples according to thermal Bogoliubov theory, detailed in Appendix 3.C. We
find consistency up to deviations comparable to those for the structure factors displayed
in Figure 3.4.

3.5.4 Indications for long-lived non-linear excitations

We repeat our measurement close to the phase boundary at q = 0 and find structures
beyond thermal Bogoliubov theory, see Figure 3.6. The observed enhanced fluctuations can
be signatures of long-lived non-linear excitations of the spin [164], which are energetically
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FIGURE 3.6: Structure factor close to q = 0. We show experimental power spectra of
different spin and density degrees of freedom close to q = 0 (green diamonds). The
grey diamonds represent the fluctuations of a coherent spin state with comparable
atom numbers. We compare to thermal Bogoliubov theory predictions for the same
parameters as displayed in Figure 3.4 but with q = 0 (green line; grey band indicates
68% confidence interval of statistical and systematic uncertainties). Experimentally,
we find that for momenta in the range of 0.02µm−1 to 0.1µm−1 the fluctuations are
higher than for the thermal Bogoliubov theory predictions for all observables (except
the transversal spin F⊥). The length scale of these fluctuations is in accordance with
observable localized long-lived non-linear excitations which are not present in the
thermalized data of Figure 3.4.

less suppressed for lower q. These excitations can delay equilibration, as discussed for
polar core vortices in two spatial dimensions [165].

3.6 Summary

We have observed the emergence of effective long-range coherence in a quasi one-dimensio-
nal spinor Bose gas. For this we have initialized the system in the polar phase, and have
let it evolve for system parameters corresponding to the easy-plane ferromagnetic phase.
The built-up condensate has given rise to superfluidity in spin and density degrees of
freedom. This we have verified experimentally by dragging an obstacle through the
BEC, which couples to both spin and density, and measuring the response of the system.
By means of local perturbations of the Larmor phase, the total density and the spin
length we have accessed the infrared limit of corresponding dispersion relations. We have
shown that these are in accordance with Bogoliubov theory predictions for corresponding
quasi-particles.
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For this we have derived the extensive Bogoliubov transformations which diagonalize
the Hamiltonian corresponding to the spinor Bose gas in the Bogoliubov approximation,
assuming a large condensate fraction. This has allowed us to compare diverse experimen-
tal structure factors at late times with thermal structure factors obtained from Bogoliubov
theory. Agreement has been revealed for a temperature of∼ 3 nK, obtained from fits to the
data. Moreover, local fluctuations of the corresponding observables could be consistently
described using a Bogoliubov theory sampling scheme which we have devised.

Proceeding related research questions will be discussed in Chapter 8.

Appendix

3.A Local perturbations of total density and transversal spin
length

To access the superfluid properties of the spin and density degrees of freedom we use
a localized perturbation (r.m.s. width ∼ 5µm) that we drag through the thermalized
system. Specifically, we use a blue detuned, steerable laser beam (760 nm) whose position
is controlled by an acusto-optical deflector. Using a linear frequency ramp we implement a
sweep over the cloud with fixed velocity, which we change over two orders of magnitude.
The density is probed after 35 s and the spin after 20 s evolution time. The ramp duration
for the lowest speed is approximately 18 s.

Local perturbation of the Larmor phase. We use a combination of global and local rf
rotations (see [166] for details on local rf rotations). A first global π/2-rf rotation around
the x-axis maps the z-axis onto the y-axis. Using a local rotation with a well-defined phase
with respect to the global rotation we perform a rotation with variable angle around the
y-axis. Because of the performed mapping this effectively leads to a rotation around the
z-axis in the original coordinate system. At the time ∆τ = 210µs after the first global rf
pulse we apply a global rf π-pulse followed by a second global rf π/2-pulse after another
time delay of ∆τ , where all pulses rotate around the same axis. This constitutes a spin echo
sequence which additionally executes a full 2π spin rotation and ensures that the global
rotation pulses do not excite the system. The last π/2-pulse maps the local rotation axis
back to the z-axis in the original system. The perturbation has an approximate Gaussian
shape with a r. m. s. width of ∼ 5µm according to the shape of the used laser beam.

Local perturbation of the total density. We reduce the total density locally by ∼ 5% by
shining a blue detuned laser beam (760 nm) onto the centre of the cloud. We adiabatically
ramp up the potential in 100 ms such that we get no further excitations in the density; after
the ramp the potential is instantaneously switched off to generate the wavepacket.

Local perturbation of the transversal spin length |F⊥|. We induce a local density reduc-
tion by applying the same blue-detuned laser beam. During the evolution time of 30 s we
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let the system thermalize subject to the local density reduction. This effectively leads to
a spatially dependent mean-field ground state spin length. We linearly ramp down the
potential over 50 ms. This implements an adiabatic ramp for the total density and a rapid
switch off for the spin.

For experimentally accessing the gap we excite the k = 0 mode of the spin length by
changing the phase of the m = 0 component (spinor phase) globally. For this we use two
microwave π-pulses between |1, 0〉 and |2, 0〉, where the second pulse is phase-shifted by
∆φ. We record the subsequent oscillations of the m = 0 population and fit a sinusoidal
function to extract the frequency. The theoretical prediction for the gap ∆, deduced from
Bogoliubov theory (Ek,+ as in Equation (3.16)), and the m = 0 ground state population n0

in the easy-plane ferromagnetic phase are [157]:

∆ =
√

4n2c2
1 − q2 , n0 =

1

2
− q

4nc1
. (3.36)

Assuming n+1 = n−1, these formulae also hold for 0 > q > 2nc1.

3.B Fitting thermal Bogoliubov theory structure factors

Using a least-squares fitting procedure and Gibbs sampling, systematic as well as statistical
uncertainties on the optimal set of parameters for the thermal Bogoliubov theory prediction
fits to the experimental structure factors are estimated. Given experimental structure
factors SĈ,exp(k) = 〈Ĉ†(k)Ĉ(k)〉with Ĉ ∈ S := {N̂+1, N̂0, N̂−1, F̂z, F̂⊥}, we determine an
optimal set of parameters T, q, nc1 by minimizing

χ2(T, q, nc1; kmax) =
∑
Ĉ∈S

kmax∑
k

(SĈ,exp(k)− SĈ,Bog(k;T, q, nc1))2

∆SĈ,exp(k)2
, (3.37)

with SĈ,Bog(k;T, q, nc1) = 〈Ĉ†(k)Ĉ(k)〉1/(kBT ),s/ncond the Bogoliubov theory structure fac-
tor computed for parameters T, q, nc1, and ∆SĈ,exp(k) the standard deviation of SĈ,exp(k)

computed from experimental realizations. Technical correlations of the absorption imaging
are described by real-space signals convoluted with a Gaussian of r. m. s. widthw = 5.0µm,
taken into account by the multiplication of momentum-space structure factors with a
Gaussian of width 2π/w [167]. Throughout the fitting procedure we set c0/c1 ' −216 in
accordance with [134]. In the definition of χ2 we did not include the structure factor of the
total density.

We define a distribution of parameters for a specific kmax,

W (T, q, nc1; kmax) ∼ exp
(
−χ2(T, q, nc1; kmax)/2

)
. (3.38)

We exploit Gibbs sampling to draw i = 1, . . . , 100 approximately i.i.d. samples (T (i)(kmax),
q(i)(kmax), nc(i)

1 (kmax)) from W (T, q, nc1; kmax), which only requires corresponding condi-
tional distributions normalized individually. For a given kmax we compute their means
(T (kmax), q(kmax), nc1(kmax)). We repeat this for 5 values of kmax evenly spaced between
0.1 · 2π/µm and 0.2 · 2π/µm. Collecting all 5 · 100 samples in a single array, we take the
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mean values T , q, nc1 of all samples as final parameter estimates and their distances to the
boundaries of 68% confidence intervals as corresponding error estimates. Errors include
systematic fit uncertainties. We obtain the final fit parameters

T = (57.4± 2.9) Hz , q = (0.30± 0.08) Hz , nc1 = (−1.17± 0.25) Hz , (3.39)

such that nc0 = (252± 54) Hz and q/(nc1) = (−0.26± 0.09).

3.C Drawing Bogoliubov theory samples

Bogoliubov theory being quadratic in fluctuating field creation and annihilation operators,
it is fully described by zero modes and a suitable covariance matrix of fluctuations. The
latter can be constructed from the propagators Gijmm′(k).

Given a one-dimensional position space lattice {−N , . . . ,N} · a with lattice spacing
a = L/(2N ), the corresponding momentum space lattice reads {−N , . . . ,N} · π/(Na).
With ∆z = z1 − z2 ∈ {−2N , . . . , 2N} for zi ∈ {−N , . . . ,N} we compute the real-space
propagators via

G̃ijmm′(∆z) =
1

L

N∑
p=−N

Gijmm′(p) exp

(
2πip∆z

2N + 1

)
. (3.40)

We assemble these into magnetic sublevel-specific covariance matrices,

Covmm′ = 〈



ψ̂m(−N )

.

.

.
ψ̂m(N )

ψ̂†
m(−N )

.

.

.
ψ̂†
m(N )


(
ψ̂m′ (−N ), . . . , ψ̂m′ (N ), ψ̂

†
m′ (−N ), . . . , ψ̂

†
m′ (N )

)
〉β,s (3.41)

=
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,

(3.42)

exploiting spatial homogeneity. We decompose complex field operators into real compo-
nents, ψ̂(x) = 1√

2
(ψ̂1(x) + iψ̂2(x)), translating into the unitary transformation



ψ̂m,1(−N )
...

ψ̂m,1(N )

ψ̂m,2(−N )
...

ψ̂m,2(N )


= A



ψ̂m(−N )
...

ψ̂m(N )

ψ̂†m(−N )
...

ψ̂†m(N )


, A =

1√
2

(
I I

−i I i I

)
, (3.43)
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with I the (2N +1)× (2N +1)-dimensional identity matrix. We define the final covariance
matrix of the theory as

Cov =

ACov+1,+1A
T ACov+1,0A

T ACov+1,−1A
T

ACov0,+1A
T ACov0,0A

T ACov0,−1A
T

ACov−1,+1A
T ACov−1,0A

T ACov−1,−1A
T

 . (3.44)

Finally, we sample i = 1, . . . , Nsample field realizations

ψ(i) =

ψ
(i)
+1

ψ
(i)
0

ψ
(i)
−1

 ,

ψ(i)
m =

(
ψ

(i)
m,1(−N ), · · · , ψ

(i)
m,1(N ), ψ

(i)
m,2(−N ), · · · , ψ

(i)
m,2(N )

)T
, (3.45)

from the multivariate Gaussian distribution with zero mean vector and covariance matrix
Cov. This corresponds to samples from the Wigner distribution of the symmetrically
ordered Bogoliubov theory of fluctuating modes at inverse temperature β. We sample
fields in position space instead of momentum space, since in momentum space, having
decomposed the operators âk,m into âk,m = (âk,m,1 + iâk,m,2)/

√
2, the components âk,m,j

need to satisfy â†k,m,j = â−k,m,j , such that samples of individual momentum modes
cannot be drawn independently. From the fluctuating realizations ψ(i) we can compute
realizations of the individual spin sublevel fields in real space,

ψ(i)
m (x) =

1√
2

[ψ
(i)
m,1(x) + iψ

(i)
m,2(x)] +

√
ncondζm , (3.46)

with ncond the condensate density. We explicitely checked that for increasing sample
numbers structure factors computed from the samples ψ(i)

m (x) converge towards their
expectation values Gijmm′(k).

The composite operator histograms displayed in Figure 3.5 are computed from com-
posite profiles of individual realizations, given by

+1∑
m,m′=−1

(ψ(i)
m (x))∗cmm′ψ

(i)
m′(x)/

√
ncond , (3.47)

with the matrices c as denoted in Section 3.5.1.
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Chapter 4

Probing universal dynamics with
topological data analysis in a gluonic
plasma

This chapter is based on the following article:

• Spitz, D., Boguslavski, K., and Berges, J., “Probing universal dynamics with topologi-
cal data analysis in a gluonic plasma”, under review in Phys. Rev. D, arXiv: 2303.08618
[hep-ph].

Most of the present chapter is taken from this preprint, to which I contributed major
parts of the manuscript, ran the numerical simulations and analyzed the data, and carried
out the data analysis.

4.1 Introduction

Collective phenomena are ubiquitous during the thermalization of the quark-gluon plasma
generated in ultrarelativistic collisions of heavy nuclei at the LHC or RHIC [38, 59, 60].
Most of the freed quarks and gluons during the first yoctosecond of the collision originate
from the small-x regime, giving rise to the notion of gluon saturation and large gluon
occupations [168, 169]. The ‘bottom-up’ scenario provides a systematic description for the
subsequent thermalization of the pre-equilibrium QGP [170]. Its early stage is governed
by gluon over-occupation at low momenta, such that the weakly coupled system can be
accurately mapped onto classical-statistical Yang-Mills theory [109, 171–175], which sets
the model for this study. For simplicity we focus on homogeneous initial states in non-
expanding Minkowski geometry, while more realistic extensions feature also longitudinal
expansion [176].

In this chapter we compute the non-equilibrium time evolution of an initially over-
occupied gluonic plasma. For a real-time SU(2) lattice gauge theory in 3+1 dimensions
in the classical-statistical regime, we analyze gauge-invariant observables using energy
and topological densities and their fluctuations, which evade the typical drawbacks of
using gauge-fixed field correlation functions. In order to infer non-local geometric infor-
mation about the plasma’s evolution, we use persistent homology [67, 177, 178]. Persistent
homology computes topological structures that appear in a hierarchy of simplicial or

http://arxiv.org/abs/2303.08618
http://arxiv.org/abs/2303.08618
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cubical complexes constructed from the field data and features measures of their domi-
nance (persistence). It behaves stable with respect to perturbations on the data, and can
be efficiently calculated [67, 177, 178]. We devise gauge-invariant persistent homology
observables and demonstrate that they exhibit self-similar evolution in terms of universal
scaling exponents and functions.

Identifying universal phenomena in the time evolution of the QGP off equilibrium
provides a rich line of understanding the otherwise complicated and theoretically challeng-
ing relaxation dynamics of strongly interacting nuclei [38]. For the gluonic plasma these
include universal time dependences related to non-thermal fixed points [41, 42, 179], and
the universal approach to local thermal equilibrium governed by viscous hydrodynamics
[180–182]. Non-thermal fixed points provide far-from-equilibrium attractor solutions
characterized by universal dynamical self-similarity, as described earlier in Section 2.3.
They have first been discussed for relativistic and non-relativistic scalar theories, partly in
the context of reheating of the early universe after inflation [39, 40, 44, 96, 102]. In recent
years, dynamical self-similarity has been found experimentally for ultracold Bose gases
[47–49].

For the gluonic plasma a dynamically separating hierarchy of momentum scales
characterizes transport processes related to non-thermal fixed points. In the infrared, the
string tension scale encodes the area dependence of spatial Wilson loops [45, 46], going
along with condensation far from equilibrium [51]. The Debye mass describing the electric
screening scale evolves dynamically towards the infrared, too [45, 109], and the hard scale
indicates energy transport towards the ultraviolet in a universal self-similar process [41,
45, 109, 183–189].

Such universal behavior is typically probed using variants of occupation numbers.
These are constructed as two-point correlation functions of gluon fields, which are not
gauge-invariant and contain limited information on the plasma. Therefore, it is instrumen-
tal to go beyond this description using gauge-invariant observables. Energy densities and
their fluctuations are relevant quantities for the hydrodynamical description of the later
fluid dynamics of the QGP in heavy ion collisions [190, 191]. Topological densities are of
importance for the structure of the QCD vacuum, linked to chiral properties of quarks in
the QGP via anomalies and of central relevance for topological effects such as sphaleron
transitions [45]. For these reasons the study of two-point correlation functions of energy
and topological (charge) densities is promising, which involve gauge-invariant four-point
correlation functions in the gluon fields.

A complementary viewpoint on universal dynamics beyond local correlation functions
can be based on persistent homology [67, 177, 178]. A first study of persistent homology
dynamics in the vicinity of a non-thermal fixed point in scalar field theory demonstrated
its ability to reveal self-similar behavior [6]. Persistent homology has been applied in the
related context of critical phenomena [72–79], notably confinement in non-Abelian gauge
theory [3, 80] and corresponding effective models [192, 193].

This chapter is organized as follows. In Section 4.2 we provide details on the lattice
setup and discuss energy and topological density correlations, which show clear manifes-
tations of the direct cascade related to energy transport. We argue that dynamical scaling
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exponents can be understood from occupation numbers and the energy-momentum con-
servation Ward identity. We suggest an explanation for the accurate matching of energy
and topological density correlations. In Section 4.3 we introduce persistent homology,
and discuss the self-similarity of Betti number distributions. We explain how this can
heuristically be understood from the behavior of correlation functions in conjunction with
the bounded packing of topological features in the constant lattice volume. Finally, in
Section 4.4 we summarize the results of this chapter.

4.2 Direct cascade in energy and topological density correlators

Energy and topological density correlators show dynamical self-similarity indicative of an
energy cascade. In this section we first describe the lattice simulations and the examined
observables, and proceed with an analysis of energy and topological density correlators.

4.2.1 Real-time non-Abelian gauge theory on the lattice

We consider SU(Nc) gauge theory for Nc = 2 on a cubic lattice with Minkowski metric,
spatial extent N3

s , and temporal and spatial lattice spacings dt and as, respectively. Spa-
tially periodic boundary conditions are applied. The volume of the spatial lattice Λs is
V = a3

sN
3
s . We study the theory in temporal-axial gauge, A0 ≡ 0, and formulate it in terms

of su(Nc)-valued (chromo-)electric fields E(t,x) and SU(Nc)-valued link variables Ui(t,x),
i = 1, 2, 3. The latter are related to the gauge fields Ai(t,x) via Ui(t,x) ≈ exp(igasAi(t,x))

up to lattice corrections, with g the gauge coupling.
We study the system in the weakly coupled regime, g � 1, and consider highly

occupied gluonic initial conditions. Then, at sufficiently early times the full quantum
dynamics is accurately described by the classical-statistical approximation [96, 109, 171–
175]. Specifically, we sample over Gaussian initial conditions with variances

〈AA〉(t=0,p) =
Q

g2|p|2
θ(Q− |p|) , (4.1a)

〈EE〉(t=0,p) =
Q

g2
θ(Q− |p|) , (4.1b)

where averages over transverse polarizations and color degrees are implied. Here the
momentum scale Q determines the width of the initial momentum-space distribution. In
particular, these correlation functions are related to the distribution function of gluonic
quasiparticles as f(t=0,p) ' |p|〈AA〉(t=0,p) ' 〈EE〉(t=0,p)/|p|, see Appendix 4.B.
Such gluon over-occupation up to a gluon saturation scale is characteristic for a state
shortly after the collision of heavy ions [38]. More details on how initial conditions are
generated can be found in [41, 188]. The time evolution for the lattice fields E(t,x) and
Ui(t,x) results from solving the classical equations of motion. These are the Hamilton
equations for the instantaneous classical lattice Hamiltonian

H(t) =
1

2g2

∑
x∈Λs

[
Tr (E(t,x)2) +

4

a4
s

∑
j>k

[Nc − Re Tr (Ujk(t,x))]

]
=:
∑
x∈Λs

T 00(t,x) , (4.2)
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with elementary spatial plaquette variables

Ujk(t,x) = Uj(t,x)Uk(t,x + ĵ)U †j (t,x + k̂)U †k(t,x) , (4.3)

and ĵ, k̂ unit lattice vectors in directions j, k. We refer to T 00(t,x) as the energy density, and
emphasize its gauge-invariance. Specifically, the discretized lattice equations of motion
derived from the classical Hamiltonian (4.2) read [188]

Uj(t+ dt /2,x) = ei dt asgEj(t,x)Uj(t− dt /2,x) , (4.4a)

gEi(t+ dt ,x) = gEi(t,x)− dt

a3
s

∑
j 6=i

[
Uij(t− dt /2,x) + Ui(−j)(t− dt /2,x)

]
ah

, (4.4b)

where
Ui(−j)(t,x) = Ui(t,x)U †j (t,x + î− ĵ)U †i (x− ĵ)Uj(x− ĵ) . (4.5)

The anti-Hermitian part of a matrix U is defined as

[U ]ah = − i

2

(
U − U † − 1

Nc
Tr (U − U †)

)
. (4.6)

Additionally, Gauss’ law has to be satisfied. Once fixed initially, which is accomplished
using a projection algorithm onto the constraint surface [194], it is preserved by the time
evolution of Equation (4.4).

Finally, observables are computed as the average over sampled initial conditions.
We set Ns = 512, dt /as = 0.05 and Qas = 0.125, and explicitly verified approximate
independence of our results from unphysical lattice parameters. Accordingly, no renormal-
ization is applied to any of the computed observables. Results are shown for a single run,
which for our large lattice agree with results averaged over multiple runs up to statistical
fluctuations. Rescaling the fields Ai → gAi and Ei → gEi, the equations of motion and
initial conditions become independent of the coupling g. This formally corresponds to
the classical field limit g → 0 while keeping g2f fixed. For more details on the lattice
formulation we refer to [188]. Based on [46, 195, 196], we expect similar results as in this
work for SU(Nc) theories with Nc ≥ 2.

In conjunction with energy densities, we study the dynamics of topological densities
q(t,x), which are space-time integrands of Chern-Simons numbers. In the continuum, we
have q ∼ Tr (E ·B), with the (chromo-)magnetic field B.

On the lattice we define a topological density as

q(t,x) := − 1

32π2
Tr (Eav(t,x) ·Bav(t,x)) , (4.7)

where Eav(t,x) and Bav(t,x) are SU(Nc)-valued clover-leaf variants of lattice electric and
magnetic fields, averaging contributions of neighboring lattice sites. This expression
coincides with [197] and is symmetric under parity transformations due to the employed
clover-leaf electric and magnetic fields. We emphasize that q(t,x) defined through Equa-
tion (4.7) is gauge-invariant. Expression (4.7) is identical to the spatially symmetrized
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(thus clover-leaf) version of the topological density usually employed in lattice studies [95,
198]:

q(x) = − 1

29π2

±3∑
µνρσ=±0

ε̃µνρσTr (Uµν(x)Uρσ(x)) . (4.8)

Here, the fully antisymmetric ε̃µνρσ = ε̃µνρσ is defined through 1 = ε̃0123 = −ε̃1023 =

−ε̃(−0)123. Explicitly, in temporal-axial gauge the clover-leaf electric field Eav is defined
from the electric fields Ei(t,x) as the Lie algebra element

Eav
i (t,x) :=

1

4

[
Ei(t+ dt /2,x) + U †i (t,x− î)Ei(t+ dt /2,x− î)Ui(t,x− î)

+Ei(t− dt /2,x) + U †i (t− dt ,x− î)Ei(t− dt /2,x− î)Ui(t− dt ,x− î)
]

ah
.

(4.9)

Numerically, due to small deviations O(dt ) compared to the full definition (4.9), we
employ the following electric field variant

Eav
i (t,x) =

1

2

[
Ei(t+ dt /2,x) + U †i (t,x− î)Ei(t+ dt /2,x− î)Ui(t,x− î)

]
ah
, (4.10)

which transforms under a gauge transformation V as Eav
i (t,x) 7→ V (t,x)Eav

i (t,x)V †(t,x).
We define a clover-leaf magnetic field as the Lie algebra element

Bav,i(t,x)

=
1

4
εijk

[
Ujk(t,x) + U †j (t,x− ĵ)Ujk(t,x− ĵ)Uj(t,x− ĵ)

+ U †k(t,x− k̂)Ujk(t,x− k̂)Uk(t,x− k̂)

+U †k(t,x− k̂)U †j (t,x− ĵ − k̂)Ujk(t,x− ĵ − k̂)Uj(t,x− ĵ − k̂)Uk(t,x− k̂)
]

ah
,

(4.11)

which also transforms gauge covariantly under a gauge transformation V as Bav,i(t,x) 7→
V (t,x)Bav,i(t,x)V †(t,x).

4.2.2 Correlations of energy and topological densities

Connected two-point correlation functions of the energy density T 00(t,x) are constructed
via

CT 00(t,∆x) :=
∑
x∈Λs

〈T 00(t,x + ∆x)T 00(t,x)〉c

=
∑
x∈Λs

〈(T 00(t,x + ∆x)− T̄ 00)(T 00(t,x)− T̄ 00)〉 (4.12)

with the volume-averaged energy density

T̄ 00 =
1

N3
s

∑
y∈Λs

〈T 00(t,y)〉 , (4.13)
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FIGURE 4.2.1: Connected two-point correlation functions of energy density T 00(t, px)
(top) and topological density q(t, px) (bottom). Variants without (left) and with
dynamical rescaling (right) are shown. Gray: Initial condition.

which remains constant in time in the simulations as required by total energy conservation.
We Fourier-transform to lattice momentum space in x-direction,

CT 00(t, p̃x) =

Ns−1∑
∆x=0

C(t,∆x=(∆x, 0, 0)) e−ip̃x∆x , (4.14)

with p̃x ∈ 2π/(asNs){−Ns/2, . . . , Ns/2− 1} lattice momentum, corresponding to physical
momentum px = (2/as) sin(p̃xas/2). Finally, we set

〈(T 00(t, px))2〉c := CT 00(t, p̃x) . (4.15)

In continuum this correlator corresponds to

〈(T 00(t, px))2〉c =

∫
py ,pz

〈T 00(t,p)(T 00(t,p))∗〉c , (4.16)

where T 00(t,p) =
∫
x T

00(t,x) exp(−ipx), with
∫
x =

∫
V d 3x and

∫
pi

=
∫

dpi /(2π). The
topological density two-point correlation function 〈(q(t, px))2〉c is defined analogously.

In Figure 4.2.1 we show results for energy and topological density correlators, com-
pared across times. We find that they start off flat in momentum space and rapidly decay
above the momentum scale Q. This indicates an equidistribution of low momentum
fluctuations of energy and topological densities in momentum space. After a short early-
time dynamics (not displayed), the correlators remain constant in shape for times above
Qt = 100 and solely decrease in overall numbers while shifting to larger momenta. This is
indicative of a non-thermal fixed point. We test for the characteristic dynamical self-similar
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scaling according to the scaling ansatz

〈(T 00(t, px))2〉c = (t/t′)αT00 〈(T 00(t′, (t/t′)βpx))2〉c, (4.17)

for suitably chosen scaling exponents αT 00 , β and a reference time t′ in the time interval
when Equation (4.17) describes the dynamics accurately. In the right column of Fig-
ure 4.2.1 we display correlations rescaled according to the scaling ansatz (4.17), where we
suggestively set β = −1/7 and αT 00 = −1/7. We find accurate matching of the rescaled
correlations for the entire considered time range from Qt = 100 to Qt = 1800. The same
observations apply to topological density correlations. In fact, both types of correlations
agree with each other nearly exactly. We argue for this at the end of this subsection, and
primarily discuss T 00 correlations in the following, noting that similar arguments apply
for topological density correlations.

One can heuristically motivate the scaling ansatz (4.17) by following a kinetic quasi-
particle picture. The Fourier-transformed local energy density fluctuations for sample i
can be approximated on an individual sample level as

T 00
i (t,p) ∼ ωp fi(t,p) . (4.18)

Here, ωp ' |p| is the gluon dispersion and fi(t,p) denotes a distribution function of gluon
occupation numbers computed for a single classical-statistical sample. It has previously
been demonstrated that the gluon occupancy 〈fi(t,p)〉 shows dynamical self-similarity
for initial conditions similar to ours, scaling as [41, 109, 186–188]

〈fi(t,p)〉 = (t/t′)−4/7〈fi(t′, (t/t′)−1/7p)〉 , (4.19)

even for single samples as for our simulations, see Appendix 4.B. The scaling is remi-
niscent of a direct energy cascade to higher momenta since the momenta of hard modes
grow during this process as (t/t′)1/7Q, while the energy (density) remains constant,
〈
∫
p T

00
i (t,p)〉 = const. Due to Equation (4.18) one expects that the exponent β = −1/7

governs the dynamics at hard momenta also for 〈(T 00(t, px))2〉c.
The scaling exponent αT 00 can be understood from the energy-momentum conserva-

tion Ward identity. For the derivation we work in a continuum space-time with spatial
volume V in a general spatial dimension d. By means of metric variations, in [199] the
identity

0 = 〈∂x1,νT 0ν(x1)T 00(x2)〉c (4.20)

has been derived for correlations of the stress-energy tensor Tµν(x), connected in the
Tµν(xi). Integrating x1 over V , we find using Gauss’ theorem and periodic boundary
conditions, such that no spatial boundary terms occur,

0 = ∂t1

∫
x
〈T 00(t1,x)T 00(t2,y)〉c . (4.21)
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Expectation values in our simulations exhibit approximate homogeneity and isotropy in
space, such that ∫

x
〈T 00(t1,x)T 00(t2,y)〉c =

∫
∆y
〈T 00(t1,0)T 00(t2,∆y)〉c

=

∫
∆x
〈T 00(t1,∆x)T 00(t2,0)〉c , (4.22)

where ∆x = x− y and ∆y = y − x. We note that

∂t〈T 00(t,x)T 00(t,y)〉c = (∂t1 + ∂t2)|t1=t2=t〈T 00(t1,x)T 00(t2,y)〉c . (4.23)

Analogous to Equation (4.17) we assume a scaling ansatz in position space for T 00-
correlations,

〈T 00(t,x)T 00(t,y)〉c = (t/t′)α
′〈T 00(t′, (t/t′)−βx)T 00(t′, (t/t′)−βy)〉c . (4.24)

Together with classical-statistical simulations corresponding to symmetric operator order-
ing, denoted 〈·〉s, this yields

0 = (∂t1 + ∂t2)|t1=t2=t

∫
x
〈T 00(t1,x)T 00(t2,y)〉c,s

= ∂t

∫
x
〈T 00(t,x)T 00(t,y)〉c,s

= ∂t

∫
∆x
〈T 00(t,∆x)T 00(t,0)〉c,s

= ∂t

[
(t/t′)α

′+dβ

∫
∆x′
〈T 00(t′,∆x′)T 00(t′,0)〉c,s

]
=
α′ + dβ

t′
(t/t′)α

′+dβ−1

∫
∆x′
〈T 00(t′,∆x′)T 00(t′,0)〉c,s , (4.25)

with the substitution ∆x′ = (t/t′)−β∆x and exploiting the empty boundary of the lattice
torus due to periodic boundary conditions. This is solved by α′ = −dβ. We obtain the
scaling behavior of 〈(T 00(t, px))2〉c via momentum integration over directions 2, . . . , d and
a Fourier transformation:

〈(T 00(t, px))2〉c =

∫
p2,...,pd

∫
∆x

∫
x
〈T 00(t,x + ∆x)T 00(t,x)〉c,se−ip∆x

= (t/t′)β〈(T 00(t′, (t/t′)βpx))2〉c , (4.26)

such that αT 00 = β, which is consistent with Figure 4.2.1.
It remains to discuss the similarity of energy density T 00 ∼ Tr (E2+B2) and topological

density q ∼ Tr (E · B) correlations visible in Figure 4.2.1 and giving rise to identical
dynamical scaling behavior. While their one-point functions are different,

T̄ 00 = (0.106± 8.4 · 10−8)/Q4 , q̄ = (2.2 · 10−5 ± 3.3 · 10−5)/Q4 , (4.27)

where the error indicates fluctuations in time, their variances agree. This suggests that
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the colour and spatial directions of E(t,x) and B(t,x) are statistically independent and,
by spatial homogeneity, identically distributed (i.i.d.). This is consistent with the ob-
served 〈Tr (E2 + B2)〉 > 0, 〈Tr (E ·B)〉 = 0, and identical higher-order connected corre-
lation functions. Phrased differently, the space-time and colour components of the field
strength tensor Fµν(t,x) are i.i.d. up to antisymmetry of the indices. Similar observations
have been reported for two-point correlation functions of electric and magnetic fields [186].
Note that this indicates suppressed contributions from non-trivial topological excitations
such as sphalerons [45].

The agreement of energy and topological densities provides further evidence for the
universality of the non-thermal fixed point across different observables O with respect to
its scaling exponent β. The amplitude exponent αO is linked to β by constraints such as
energy-momentum conservation. In the next section we provide a complementary study
of this universality by analyzing non-local geometric observables instead of correlation
functions.

4.3 Direct cascade in persistent homology

Persistent homology provides a quantitative means to extract topological structures from
point clouds of data, and is based on the construction of a hierarchy of combinatorial
objects like simplicial or cubical complexes. We will start this section with an intuitive in-
troduction to the utilized alpha complexes and their persistent homology in Section 4.3.1,
followed by a discussion of dynamical self-similarity in persistent homology in Sec-
tion 4.3.2. We then study the dynamics of topological structures in point clouds computed
from energy and topological densities in Section 4.3.3. We find clear indications for self-
similar scaling associated to the energy cascade, which again reveals universality across
observables. Moreover, we confirm a geometric relation between appearing exponents in
persistent homology. In Section 4.3.4 we discuss persistence ratios of topological structures,
i.e., spatially scale-invariant measures of their dominance, which form a set of dynamical
invariants beyond self-similarity in the gluonic plasma.

Similarly to the findings for alpha complexes reported in this section, in Appendix 4.D
we discuss so-called cubical complexes, which give access to the persistent homology of
level sets without spatial metric information entering the analysis, and are particularly
suitable for pixelized data. In this approach the application of coarse-graining is inevitable
to exclude lattice artefacts. Again, we find evidence for self-similarity associated to the
energy cascade. Hence, the universal dynamics also encompasses the persistent homology
of cubical complexes.

4.3.1 Introducing alpha complexes and persistent homology

Let X ⊂ R3 be a point cloud, i.e., a finite set of distinct points. 1 Alpha complexes of X are
computationally useful geometric simplicial complexes describing X . Their topology can

1We assume the point cloud to be in general position, i.e., that no three points are collinear, that no four
points lie on a single circle, and that no five points lie on a sphere.
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FIGURE 4.3.1: (a): Simplices of different dimensions; the 3-simplex is to be regarded
as filled. (b): Alpha complexes of increasing radii. The point cloud in (b) consists of
points sampled randomly from a circle with Gaussian noise added on their positions.
(c): Persistence diagram of dimension one holes of the point cloud. Dashed line: the
diagonal rb = rd.

be extracted algorithmically, which is facilitated by their combinatorial properties. Here
we focus on an intuitive description, and in Appendix 4.A we deliver more mathematical
details related to persistent homology. For a thorough introduction to topological data
analysis we refer to the literature [67, 177, 178, 200], similarly for general introductions to
algebraic topology [201, 202].

Simplices of different dimensions are illustrated in Figure 4.3.1(a). We refer to a point
as a 0-simplex, a line as a 1-simplex, a triangle as a 2-simplex, and a filled tetrahedron
as a 3-simplex. A simplicial complex is a collection of simplices closed under taking
boundaries. We construct alpha complexes of X . Trivially, we can connect two points in X
by a straight line, i.e., a 1-simplex. Similarly, through any three points in X we can draw
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a unique circle and through any four points in X we can draw a unique sphere. We call
a circle or sphere empty if all points of X lie on or outside of it. We can associate to any
two, three and four points a 1-, 2- or 3-simplex connecting them, and a radius parameter.
The latter can be defined as half of the length of the line between the two points, as the
radius of the unique circle through the three points, or as the radius of the unique sphere
through the four points, respectively. We finally define the alpha complex αr(X) ofX with
radius r to consist of empty simplices of arbitrary dimension ≤ 3 with radius ≤ r. The
construction works analogously in an arbitrary number of dimensions. Alpha complexes
are simplicial complexes.

In Figure 4.3.1(b) we give two-dimensional examples of alpha complexes of increasing
radii (indicated by gray disks around the points) for a cloud consisting of points sampled
randomly from a circle with Gaussian noise added to their positions. We note that
simplices which enter at larger radii have visually larger area. For a finite point cloud there
are finitely many different alpha complexes αri(X) with ri < rj for i < j, i, j = 1, . . . ,K

for an integer K. They form a filtration:

α0(X) = ∅ ( α1(X) ( · · · ( αK(X) = Del(X) . (4.28)

The final, ‘full’ alpha complex Del(X) is also known as the Delaunay complex or Delau-
nay triangulation. That alpha complexes of increasing radii are nested can be seen in
Figure 4.3.1(b).

As we sweep through the filtration of alpha complexes αr(X), topology changes
appear. We observe in Figure 4.3.1(b) that for the lowest radius the alpha complex consists
of many distinct connected components. Upon increasing the radius, the connected
components successively merge with each other, such that the large loop gets born in the
alpha complex. The large loop persists for a comparably large range of radii, until it dies
when filled entirely by triangles. Its topology does not ‘see’ its thickening upon increasing
the radius. We describe the topology of αr(X) for a specific radius r by homology, which
can be algorithmically computed. Homology can describe holes of different dimensions in
complexes. A dimension zero hole is a connected component, a dimension one hole is an
unfilled, planar-like loop, and a dimension two hole is an empty void in the complex.

Persistent homology describes the changing topology of the entire filtration of alpha
complexes at once. It associates to a dimension-k hole a birth radius rb and a death radius
rd > rb, such that the hole is present in the alpha complexes for all radii r ∈ [rb, rd), with
rb minimal and rd maximal. We can describe the persistent homology of the filtration
of alpha complexes {αr(X)}r by the collection of all birth-death pairs (rb, rd), which
we call the persistence diagram, denoted Dgmk(X). In Figure 4.3.1(c) we display the
dimension one persistence diagram of the noisy, approximately circular point cloud.
We note that many features appear near the diagonal rb = rd, i.e., have persistence
ratio rd/rb near 1, represented by the tiny, short-lived unfilled loops which appear at
smaller radii in Figure 4.3.1(b). One prominent feature appears at large rd, highlighted in
Figure 4.3.1(c). Having a high persistence ratio rd/rb ' 5, this feature is represented by
the large circular structure present in the point cloud. In summary, persistent homology
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provides a quantitative means to extract topological structures from point cloud data, and
incorporates persistence measures of their dominance.

Persistent homology has a number of useful theoretical properties. It is stable, i.e.,
perturbations of the input point cloud result in only slight changes of corresponding per-
sistence diagrams with respect to suitable metrics [68, 69]. Furthermore, most observables
computed with persistent homology behave well with regard to statistical limits, and also
large volume asymptotics exist, including notions of ergodicity, see [71] and Chapter 5.
The efficient computation of persistent homology is facilitated by a variety of suitable
libraries for different programming languages, see [67] for an overview. We employ the
versatile GUDHI library [203], and compute periodic alpha complexes to take the spatially
periodic boundary conditions of our lattice into account.

4.3.2 Self-similarity in persistent homology

How can dynamical self-similarity manifest itself in persistent homology? Let X(t) ⊂ Rd

be a family of time-dependent point clouds. In [6] the dimension-k persistence pair
distribution has been introduced as

Pk(t, rb, rd) =
∑

(r′b,r
′
d)∈Dgmk(X(t))

δ(rb − r′b) δ(rd − r′d) . (4.29)

In general, its expectation value 〈Pk〉(t, rb, rd) exists and is not a sum of Dirac δ-functions
anymore, see [204] and Chapter 5. We note that 〈Pk〉(t, rb, rd) has support only for rd > rb.
We say that the expected persistence pair distribution 〈Pk〉(t, rb, rd) scales self-similarly in
time if

〈Pk〉(t, rb, rd) = (t/t′)−η2〈Pk〉(t′, (t/t′)−η1rb, (t/t′)−η1rd) , (4.30)

for suitable scaling exponents η1, η2 and arbitrary reference time t′ in the self-similar
regime. This scaling ansatz is similar to the position space scaling ansatz for the T 00-
correlator given in Equation (4.24).

From 〈Pk〉we can compute many persistent homology descriptors. For instance, the
expected number of dimension-k holes at radius r, known as the Betti number, can be
computed as

βk(t, r) =

∫ r

0
dr b

∫ ∞
r

dr d 〈Pk〉(t, rb, rd) . (4.31)

With Equation (4.30) Betti numbers scale as

βk(t, r) = (t/t′)2η1−η2βk(t
′, (t/t′)−η1r) . (4.32)

〈Pk〉 also yields the total number of homology classes that appear in the filtration at
arbitrary radius:

nk(t) =

∫ ∞
0

dr b

∫ ∞
0

dr d 〈Pk〉(t, rb, rd) , (4.33)

which scales as
nk(t) = (t/t′)2η1−η2nk(t

′) . (4.34)
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FIGURE 4.3.2: Betti number distributions of the alpha complex filtration for T 00(t,x)
(top) and q(t,x) sublevel sets (bottom), with limiting values νT 00 = −0.081/Q4 and
νq = −0.13/Q4. Scaling exponents are set to η1 = −1/7 and η2 = 5η1 = −5/7
in accordance with the packing relation. Insets show figures without rescaling.
Distributions at initial time are displayed in gray.

The exponent η2 encodes the power-law decline of the number of persistent homology
classes for given birth and death radii rb, rd. Similarly, we can compute from 〈Pk〉 the
average death radius of dimension-k holes as

〈rd,k〉(t) =
1

nk(t)

∫ ∞
0

dr b

∫ ∞
0

dr d rd 〈Pk〉(t, rb, rd) = (t/t′)η1〈rd,k〉(t′) . (4.35)

The exponent η1 describes the dynamical power-law blow-up of length scales associated to
persistent homology. For later use we note that the normalized distribution of persistence
ratios π = rd/rb can be computed from 〈Pk〉 as

Πk(t, π) =
1

nk(t)

∫ ∞
0

dr b rb 〈Pk〉(t, rb, πrb) . (4.36)

For self-similar time evolutions all Πk(t, π) constitute invariants of motion. It has been
conjectured in [205] that the distributions Πk(t, π) are in fact universal across different
processes to generate i.i.d. point clouds, thus invariant beyond self-similar time evolutions.
We will confirm this in Section 4.3.4.

4.3.3 Dynamics of homology classes in Betti numbers

Alpha complexes and their persistent homology require point clouds as input. Motivated
by the findings of Section 4.2.2, we examine sublevel sets of energy and topological
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densities, constructed for T 00
i (t,x) and qi(t,x), and computed from an individual classical-

statistical sample i as

XT 00,νT00 ,i(t) := {x ∈ Λs |T 00
i (t,x)− T̄ 00 ≤ νT 00} , (4.37a)

Xq,νq ,i(t) := {x ∈ Λs | qi(t,x) ≤ νq} . (4.37b)

For each such point cloud at time t we compute the persistent homology of its filtration of
alpha complexes. In the classical-statistical approximation we approximate expectation
values of persistent homology descriptors as ensemble averages of observables computed
for individual samples [6].

In Figure 4.3.2 we show results for Betti number distributions of energy and topological
density sublevel sets. We set νT 00 = −0.081/Q4 and νq = −0.13/Q4, such that the point
clouds comprise 20, 000− 50, 000 points which reflect the dynamics of local minima. For
comparison, T̄ 00 and q̄ have been given in Equation (4.27). We notice that dimension
zero Betti numbers monotonously decrease with increasing radii, which originates from
connected components merging and thus decreasing in number. Dimension one and two
Betti numbers show distinct peaks. We observe peaks appearing at larger radii the larger
the dimension of the holes is. Dimension zero holes are present at lowest radii, required
to merge with each other to form dimension one holes, which in turn need to die (getting
filled with triangles) to form dimension two holes, and thus giving rise to the hierarchy.
Focusing on the inset figures for T 00

i and qi sublevel sets, we notice a continuous motion of
holes to lower radii with time, across all dimensions. The numbers of holes increase, while
the shapes of Betti number distributions qualitatively remain invariant. This suggests that
topological structures in the alpha complexes decrease in size in the course of time.

The main figures are rescaled according to Equation (4.32). We propose the exponents
η1 = −1/7, η2 = −5/7. For these we observe that the rescaled distributions coincide to
good accuracy, which is indicative of the validity of the self-similar scaling ansatz for
persistent homology, given in Equation (4.30). The relation η2 = 5η1 is an example of the
general packing relation first observed in [6] and rigorously proven in Chapter 5 of this
dissertation. It originates from the geometric bound that the constant volume puts on the
number of holes. If holes decrease in size, more of them fit on the lattice.

We explicitly checked for the independence of the scaling behavior and qualitative
shapes of Betti number distributions from the choice of νT 00 and νq in nearby regimes. We
verified an approximate insensitivity from infrared and ultraviolet lattice cutoffs, such that
the non-local features that persistent homology captures are well-resolved and sufficiently
dense.

We conclude that the persistent homology of sublevel sets of energy and topological
densities reveals self-similar scaling related to the energy cascade with the same spatial
scaling exponent η1 = β as for correlation functions. Yet, while energy densities are
bounded by positivity, T 00

i ≥ 0, this is not the case for topological densities. This generally
results in different functional shapes through the involved point cloud construction. This
is to be contrasted with correlation functions. Still, with regard to scaling exponents,
we find that the universality of the self-similar dynamics related to the energy cascade
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FIGURE 4.3.3: Normalized persistence ratio distributions of the alpha complex
filtration for T 00(t,x) (top) and q(t,x) sublevel sets (bottom), with νT 00 = −0.081/Q4

and νq = −0.13/Q4. Distributions at the initial time are displayed in gray.

encompasses persistent homology observables.

4.3.4 Persistence ratio distributions

In Figure 4.3.3 we display distributions of persistence ratios, Πk(t, π), for the energy and
topological density sublevel sets XT 00,νT00 ,i(t) and Xq,νq ,i(t). The distributions Πk(t, π) are
particularly sensitive to lattice artefacts. We explicitly removed the two most prominent
lattice artefacts from the computed distributions by excluding in dimension 1 holes with
π =
√

2 and π =
√

4/3, and in dimension 2 holes with π =
√

3/2 and π =
√

9/8. Square
roots of quotients of small integers are unique to specific point configurations on the lattice
originating from vertices of one up to few elementary lattice voxels. We checked that
further lattice artifacts in this sense do not contribute significantly to the distributions
shown in Figure 4.3.3.

The distributions Πk(t, π) decrease fast and have support roughly up to π ≈ 2 in
dimension 1 and up to π ≈ 1.6 in dimension 2. Crucially, the distributions remain constant
in time up to statistical fluctuations. Although showing more fluctuations at smaller
Πk(t, π)-values, this also applies to the initial time (indicated in gray). Thus, the time
translation invariance of Πk(t, π) is not due to the specifics of a self-similar time evolution.
The persistence ratio distributions Πk(t, π) rather constitute approximate invariants of
motion for all π.

As already mentioned in Section 4.3.2, it has been conjectured that persistence ratio
distributions are universal across i.i.d. point cloud generation processes [205]. We regard
the constancy in time of Πk(t, π) in Figure 4.3.3 as a manifestation of this. An even stronger
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universality conjecture for a distribution of transformed π-values has been provided in
the same work [205]. This applies to our data, too, as we detail in Appendix 4.C.

4.4 Summary

Energy and topological densities have been studied in real-time SU(2) lattice gauge theory
simulations in the classical-statistical regime with over-occupied initial conditions. We
have found that energy and topological density correlation functions reveal self-similarity
related to a direct energy cascade. Corresponding scaling exponents could be understood
from a kinetic quasi-particle picture (β) and the energy-momentum conservation Ward
identity (α(β)).

The approximate agreement of energy and topological density correlations hints at
independently and identically distributed colour and space directions of E(t,x) and
B(t,x). Differences between energy and topological density correlations could have been
due to topological excitations such as sphalerons. While topological excitations typically
manifest themselves in coarsening dynamics due to their mutual annihilation, in our
study both energy and topological density correlations instead have shown a dynamical
refinement of associated structures. This suggests that topological excitations are barely of
relevance for the dynamics in gluonic plasmas at the length scales probed by the energy
and topological densities for the examined over-occupied initial conditions.

In order to look for self-similar dynamics beyond local correlation functions, we have
constructed non-local observables based on persistent homology. Specifically, we have
examined the filtration of alpha complexes of energy and topological density sublevel
sets, and the filtration of cubical complexes of energy and topological densities (in Ap-
pendix 4.D). Even for topological observables like Betti number distributions we have
observed self-similarity. The associated scaling exponents could be understood from the
correlation functions (η1 = β) and the packing relation (η2(η1)), which follows from the
bounded number of topological features for a given non-expanding lattice volume and
is, amongst others, the topic of Chapter 5. All investigated observables have been gauge-
invariant, and the universality related to the direct energy cascade has encompassed local
and non-local observables.

For prospective related research questions we refer to Chapter 8.

Appendix

4.A The mathematics of persistent homology

In this appendix we describe the construction of persistent homology groups from a
more mathematical perspective. We begin with homology groups, subsequently leading
to persistent homology. Mathematical aspects of persistent homology in a probabilistic
framework will be the topic of Chapter 5. Some of the constructions described here in
brevity are described there more concisely.
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4.A.1 Homology groups

Let C be a simplicial complex such as the alpha complexes αr(X) constructed in the main
text; the same constructions apply for cubical complexes. We consider chain complexes
and homology groups with coefficients in Z2, such that the k-th chain complex Ck(C) of
C consists of formal sums of chains of k-simplices with Z2-coefficients. The boundary
operator ∂k : Ck(C)→ Ck−1(C) is defined to map a chain of k-simplices to its boundary,
which is a (k − 1)-chain. Since boundaries of chain boundaries are empty, one has
∂k−1 ◦ ∂k = 0. We define the cycle group Zk(C) := ker(∂k) to consist of all closed k-chains,
i.e., k-chains without boundary. We further define the boundary group Bk(C) := im(∂k+1)

consisting of all k-chains which are boundaries of (k + 1)-chains. We find Bk(C) ⊆ Zk(C)
as subgroups, such that we can define their quotient groups,

Hk(C) := Zk(C)/Bk(C) , (4.38)

called homology groups.
We can study the topology of C using the homology groups Hk(C), which capture sim-

ilar topological information compared to the homotopy groups of C, but are in general not
the same. Technically, elements of Hk(C), called homology classes, are equivalence classes
of k-cycles modulo higher-dimensional boundary contributions. We may intuitively think
of homology classes as independent holes. Their number is the Z2-dimension of Hk(C),
called k-th Betti number,

βk(C) := dimZ2(Hk(C)) . (4.39)

4.A.2 Persistent homology groups

Let {Cr}r≥0 be a filtration of complexes, such as the alpha complex filtration considered in
the main text of this chapter. We compute all their individual homology groups {Hk(Cr)}r.
In addition, the filtration contains inclusion maps Cr ↪→ Cs for all r ≤ s. These induce
maps on homology groups,

ιr,sk : Hk(Cr)→ Hk(Cs) . (4.40)

The ιr,sk map a homology class in Hk(Cr) either to one in Hk(Cs), if it is still present for Cs,
or to zero, if corresponding (potentially deformed) cycles appear as boundaries in Hk(Cs).
Further, non-trivial cokernels can appear for ιr,sk : new homology classes may appear in Cs,
which are not present in Cr. Then, s can be chosen such that for sufficiently small ε > 0,

Hk(Cs−ε) ( Hk(Cs) . (4.41)

We call the collection {(Hk(Cr), ιr,sk )}r≤s a persistence module. It is tame, if Equation (4.41)
holds only for finitely many distinct s-values.

By the structure theorem of persistent homology [206, 207], any tame persistence
module is isomorphic to its persistence diagram, i.e., the collection of all its birth-death
pairs (rb, rd), rb < rd ∈ R ∪ {∞}. Persistence diagrams form multisets, since the same
birth-death pair can appear multiple times.
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FIGURE 4.B.1: Occupation numbers (left) with dynamical rescaling (right) employ-
ing β = −1/7, α = 4β = −4/7 in accordance with energy conservation. Top row
shows occupation numbers for the fEE definition, bottom row for the fĖĖ definition.
Initial time displayed in gray. Dashed lines indicate ∼ p−4/3 power-laws.

4.B Self-similarity in occupation numbers

One typically investigates dynamical scaling behavior in the vicinity of non-thermal
fixed points using occupation numbers. In a non-Abelian gauge theory, the definition of
occupation numbers suffers from ambiguities. We focus on occupation numbers defined
from electric fields as [188]

fEE(t, p) =
1

(N2
c − 1)V p

P ijT (p)〈Eai (t,p)(Eaj (t,p))∗〉 , (4.42a)

fĖĖ(t, p) =
1

(N2
c − 1)V p3

P ijT (p)〈(∂tEai (t,p))(∂tE
a
j (t,p))∗〉 , (4.42b)

with color decomposition Ej(t,p) = Eaj (t,p)T a of the Fourier-transformed electric field,
T a generators of su(Nc), p ≡ |p|, and the transversal polarization projector P ijT (p) defined
as in [188]. For simplicity we ignore effects from hard thermal loop self-energies, in
particular screening masses, since we focus on hard momentum modes while they would
alter correlators primarily at soft momenta.

In Figure 4.B.1 we display the occupation numbers for both definitions in Equa-
tion (4.42) across the entire time range investigated. Without dynamical rescaling, we
observe an approximate power-law decline ∼ p−4/3 in momentum space at lower mo-
menta, which for fĖĖ appears overlaid by an approximate∼ p−2 behavior of the correlator.
Above Q, a steep decline towards zero appears for all times. We note that for both defi-
nitions occupations shift towards larger momenta in the course of time. For dynamical
rescaling we suggestively set exponents β = −1/7 and α = −4/7 = 4β, consistent with
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FIGURE 4.C.1: `-transformed distributions of persistence ratios of the alpha complex
filtration for T 00(t,x) (top) and q(t,x) sublevel sets (bottom), with filtration parame-
ters νT 00 = −0.081/Q4 and νq = −0.13/Q4. Curves at initial time are displayed in
gray. The black dashed line indicates the left-skewed Gumbel probability distribution
∼ exp(`− exp(`)).

Equation (4.19). In particular, the same β describes occupation numbers and all dynamical
observables considered in the main text.

4.C Strong universality in persistent homology

In this appendix we discuss transformed persistence ratios for alpha complexes of energy
and topological density sublevel sets, based on the findings in [205]. There, for a point
cloud X and the persistent homology of its alpha complexes2 it has been proposed to
investigate the normalized distribution Lk(`(π)) of

`(π) =
1

2
log log π − λ− 1

2
L̄ , (4.43)

where λ = 0.577216... is the Euler-Mascheroni constant and

L̄ =
1

|Dgmk(X)|
∑

(rb,rd)∈Dgmk(X)

log log
rd
rb
, (4.44)

|Dgmk(X)| denoting the total number of holes described by Dgmk(X). In Figure 4.C.1 we
show the distributions Lk(t, `), again with the two leading lattice artefacts removed as

2Strictly speaking, in [205] the filtration of so-called Čech complexes of X has been considered, which for
point clouds in general position has isomorphic persistent homology to the filtration of alpha complexes.
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described in Section 4.3.4. We note that distributions look the same for dimensions 1 and
2. Furthermore, up to statistical fluctuations they remain constant in time, including the
initial time. This provides evidence for the universality of Lk(t, `) conjectured in [205], in
which the authors suggest that the Lk(t, `) are independent from dimensions of both the
ambient space of the point clouds and the holes, and independent from the point cloud
generation process, even beyond i.i.d. processes. In particular, it is suggested that the
distributions follow the left-skewed Gumbel distribution,

Lk(t, `) ∼ e`−e
`
, (4.45)

also shown in Figure 4.C.1 as dashed curves. We find that our numerical distributions
are consistent with Equation (4.45). Remaining differences may be a consequence of
sub-leading lattice artefacts that we have not removed and thus may still enter Lk(t, `),
though not visible in the persistence ratio distributions Πk(t, π) shown in Figure 4.3.3.

4.D Persistent homology of cubical complexes

In the main text of this chapter we have shown results for the persistent homology of the
alpha complex filtration for fixed sublevel sets, which give rise to dynamical self-similar
scaling. Here, we discuss results for the filtration of superlevel set cubical complexes,
with persistent homology describing persistence properties of topological structures as
function values are swept through. We expect similar results for the sublevel set filtration.

First, we introduce cubical complexes as an alternative to alpha complexes. We then
discuss Betti numbers and persistence distributions, and find indications of self-similar
scaling behavior. We conclude that the universal behavior stemming from the direct
energy cascade also encompasses the persistent homology of cubical complexes for the
superlevel set filtration.

The homology of sub- or superlevel set cubical complexes of lattice observables does
not discriminate between different length scales. Therefore, lattice artefacts enter these
in general. Since self-similar scaling associated to non-thermal fixed points requires a
sufficient momentum space distance to lattice cutoffs, we employ spatial coarse-graining
by a factor of 8 to T 00

i (t,x) and qi(t,x) before computing the persistent homology of their
superlevel set cubical complexes. Thus, higher lattice momentum scales than π/(8as) do
not enter the persistent homology analysis. Concerning the infrared, we have verified an
approximate extensive scaling of Betti numbers and other persistent homology quantifiers
with respect to the lattice volume.

4.D.1 Cubical complexes

A cubical complex is a collection of cubes of different dimensions, which is closed under
taking boundaries, similarly to simplicial complexes. We explicitly construct the filtration
of cubical complexes for sub- and superlevel sets of lattice functions at a given time t.
Cubical complexes are well-suited to describe sub- and superlevel sets of lattice functions,
or pixelized data more generally.
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Let C be the full cubical complex of the lattice, consisting of one 3-cube x+ [−1/2, 1/2]3

for each spatial lattice point x ∈ Λs. Such a 3-cube comes with all its faces, edges and
vertices, as required to have C closed under taking boundaries. On our lattice, a 3-cube is
a cube of side length as, a 2-cube is a square of side length as, a 1-cube is an edge of length
as, and a 0-cube is a point. In the literature, such cubes are called elementary [208].

We equip C with the information contained in T 00
i (t,x) by inductively constructing

a map Tt,i : C→ R. By construction of C, any 3-cube has a unique lattice point x ∈ Λs at
its center. For any 3-cube C ∈ C we set Tt,i(C) := T 00

i (t,x), x the center point of C. Any
2-cube D ∈ C is contained in the boundaries of two 3-cubes. For all 2-cubes D ∈ C, we set

Tt,i(D) := min{Tt,i(C) |D ⊂ ∂C, C ∈ C 3-cube} . (4.46)

Analogously, any 1-cube is contained in the boundaries of four 2-cubes, and any 0-cube
is contained in the boundaries of six 1-cubes. We inductively apply Equation (4.46) to
construct Tt,i for lower-dimensional cubes from higher-dimensional ones, until Tt,i is
defined on all C. This construction is called the lower star filtration.

We define cubical complexes corresponding to lattice sublevel sets of T 00
i (t,x) at time

t as
CT 00

i
(t, ν) := T−1

t,i (−∞, ν] . (4.47)

These are closed under taking boundaries, thus indeed cubical complexes. We define
superlevel set cubical complexes as

DT 00
i

(t, ν) := C−T 00
i

(t,−ν) , (4.48)

reflecting the structure of lattice superlevel sets. For topological densities the construction
is the same; simply replace T 00

i (t,x) by qi(t,x).
We are interested in the persistent homology of the filtrations of complexes {CT 00

i
(t, ν)}ν

and {DT 00
i

(t, ν)}ν , as ν is swept through. Indeed, we notice that they define filtrations, e.g.
CT 00

i
(t, ν) ⊆ CT 00

i
(t, µ) whenever ν ≤ µ. The previous constructions of persistent homol-

ogy apply also in this setting. The persistent homology of cubical complex filtrations can
be efficiently calculated [208]. We again use GUDHI [203] to compute persistent homology
of the cubical complex filtration, and use periodic cubical complexes to take spatially
periodic boundary conditions into account.

Displayed in Chapter 6, in Figure 6.3.1(a) we illustrate the meaning of cubical complex
homology classes. In Figure 6.3.1(b) we sketch the meaning of birth b and death d of
homology classes as the filtration of superlevel sets is swept through. We note that the
birth of dimension zero homology classes happens at function values of local maxima.
Their persistences quantify their dominances, dying when merging at saddle points
with tails of other local maxima. Dimension one homology classes can be thought of
as describing potentially deformed volcano-like features in function landscapes, and
analogously for higher-dimensional homology classes.
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FIGURE 4.D.1: Betti number distributions of the T 00(t,x) (top) and the q(t,x) super-
level set filtrations (bottom) using cubical complexes. The initial time is displayed in
gray. The scaling exponents are set to η1 = −1/7 and η2 = 3η1 = −3/7. The insets
show the original distributions without rescaling; the inset axes have the same ranges
as the axes in the main plots.

4.D.2 Betti number distributions

In Figure 4.D.1 we show results for Betti number distributions of all dimensions for both
the energy and the topological density superlevel set filtrations, using cubical complexes.
Insets show numbers without, main plots with dynamical rescaling. Note that energy
densities are shown with the average subtracted. We notice from the unrescaled figures
that topological features of both energy and topological densities give rise to a hierarchy
of peaks between dimensions. For superlevel sets of a function whose values scatter
approximately symmetrically around zero, connected components appear first at positive
filtration parameters. Multiple such need to merge, to form a dimension one feature, born
around zero. Typically at negative filtration parameters, multiple dimension one features
die to give birth to a dimension two feature.

In the course of time, throughout dimensions and energy and topological densities
topological features shift towards zero filtration parameters, suggesting a homogenization
of structures. Further, their number increases, indicative of their dynamical refinement. In
the main plots we suggestively rescaled the figures with η1 = −1/7 and η2 = −3/7 = 3η1.
We notice approximate matching of the rescaled curves. Notice that aside of the initial
condition we here show data from Qt = 300 onwards, while in the main text of this
chapter we have shown data starting with Qt = 100. Betti number distributions do not
allow sufficiently consistent rescaling before Qt = 300 (not displayed).

The exponent η1 = −1/7 is consistent with the earlier findings of η1 for alpha com-
plexes and β for correlation functions. However, here it describes the dynamical refine-
ment of structures in the space of function values, not with respect to spatial sizes of
structures. How can the exponents still agree? We recall from Section 4.2.2 that the corre-
lators 〈(T 00(t, px))2〉c and 〈(q(t, px))2〉c scale overall as ∼ tβ for spatial scaling exponent
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FIGURE 4.D.2: Persistence distributions of the T 00(t,x) (top) and the q(t,x) super-
level set filtrations (bottom) using cubical complexes. The initial time is displayed in
gray. The scaling exponents are set to η1 = −1/7 and η2 = 3η1 = −3/7. The insets
show the distributions without rescaling; the inset axes have the same ranges as the
main plots.

β = −1/7. If such correlators contribute predominantly to local fluctuations in T 00
i (t,x)

and qi(t,x), we can heuristically find that topological features scale in the space of function
values as ∼ tβ , too. We take our observation of η1 = −1/7 for the superlevel set filtration
as an indication for this.

The number of topological features which appear in T 00
i superlevel sets is bounded

by total energy conservation in a similar way that the number of topological features for
alpha complexes is bounded by the constant system volume. This effectively provides
a one-dimensional constraint for the persistent homology of the superlevel set filtration.
Then, for cubical complexes of T 00

i superlevel sets the packing relation yields η2 = 3η1,
see [6] and Chapter 5. This is consistent with the data.

The apparent similarity of energy and topological density cubical complexes in persis-
tent homology can again be understood from independent spatial and colour directions of
E(t,x) and B(t,x) as proposed in Section 4.2.2. Yet, differences are visible in particular
for the left-sided tail of dimension two Betti numbers, where the Betti number distribution
has larger support for topological rather than energy densities.

4.D.3 Persistence distributions

In Figure 4.D.2 we display the distribution of absolute persistences, d − b, for energy
and topological density superlevel sets. Again, insets show figures without rescaling,
which we discuss first. We notice that dimension zero distributions decline approximately
exponentially with persistence values. Dimension one distributions have more restricted
support only up to T 00 − T̄ 00, q ' 0.05Q4. Persistence distributions of dimension two fea-
tures of energy densities have more restricted support compared to topological densities,
whose dimension two persistence distributions moreover show approximate exponential
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behavior. This indicates that energy density persistences have an upper bound due to the
positivity of T 00

i , which is not the case for qi. There, the approximate symmetry among
dimension zero and two features hints at a symmetric distribution of topological density
values around zero, which in particular features local lumps, similarly to the deductions
in Chapter 6 of this dissertation.

Let us now consider absolute persistences defined as integrals of the averaged dimension-
k persistence pair distributions over the death parameter,

Pk(t, p) =

∫ ∞
0

dd 〈Pk〉(t, d− p, d) . (4.49)

The scaling ansatz Equation (4.30) then leads to the self-similar scaling

Pk(t, p) = (t/t′)η1−η2Pk(t′, (t/t′)−η1p) . (4.50)

Accordingly, we have rescaled the curves in the main plots in Figure 4.D.2 using the same
exponents η1 = −1/7 and η2 = −3/7 as for the Betti numbers shown in Figure 4.D.1. We
observe approximate agreement among the rescaled curves mostly up to statistical fluc-
tuations, which is indicative of dynamical self-similarity. We suggest that the deviations
for dimension two persistences of energy density sublevel sets are due to the positivity
bound.



65

Chapter 5

The self-similar evolution of
stationary point processes via
persistent homology

This chapter is based on the following article:

• Spitz, D. and Wienhard, A., “The self-similar evolution of stationary point processes
via persistent homology”, arXiv: 2012.05751 [math.PR].

Most of the present chapter is taken from this preprint, where I predominantly wrote
the text, designed and elaborated the mathematical framework, and derived the results.

While this dissertation contains in Chapters 4 and 6 two persistent homology appli-
cations, this chapter is devoted to mathematical explorations of the persistent homology
of point clouds in a statistical context. As such, this chapter is kept in mathematically
rigorous language.

5.1 Introduction

Persistent homology allows one to infer topological structure from finite data. It was
developed over the past two decades into a robust and versatile methodology, see for
example [67, 178, 209–212]. In recent years there has been a lot of interest in bringing
together the classical machinery from algebraic topology with probabilistic approaches,
leading to the investigation of random geometric complexes and their limiting behavior,
based on random fields and point processes [71, 213–220], see [221] for a survey. In
particular, in [204] the density of expected persistence diagrams and its kernel based
estimation have been discussed.

In this chapter we follow a similar route. We consider point processes and their
persistence diagrams. We describe measures on the space of persistence diagrams. Under
certain ergodicity assumptions we show the existence of persistence diagram expectation
measures. These persistence diagram expectation measures are maps from the set of
bounded Borel sets in Rn to the space of Radon measures on the set ∆ = {b, d ∈ R2 | b < d}.

Strong laws of large numbers for topological descriptors such as (persistent) Betti
numbers are of special interest with multifarious results already established [71, 222–225].
Here, as a byproduct we extend the strong law of large numbers for persistent Betti

http://arxiv.org/abs/2012.05751
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numbers, proven in [71] for asymptotically large cubes, to more general convex averaging
sequences.

With the persistence diagram expectation measures at hand, we introduce the notion
of self-similar scaling for time-dependent persistence diagram expectation measures.

Definition 5.1.1. Let (p(t))t∈(T0,T1) be a family of existing non-zero persistence diagram ex-
pectation measures, 0 < T0 < T1. For t ∈ (T0, T1) and A ⊂ Rn a bounded Borel set, we set
p(t, A) := p(t)(A). We say that (p(t))t∈(T0,T1) scales self-similarly between times T0 and T1

with exponents η1, η2 ∈ R, if for all t, t′ ∈ (T0, T1) and B an element of the Borel σ-algebra of ∆:

p(t, A)(B) = (t/t′)−η2p(t′, A)((t/t′)−η1B) , (5.1)

where κB := {(κb, κd) | (b, d) ∈ B} for κ ∈ [0,∞).

We prove a packing relation for the exponents η1 and η2 in the self-similar scaling
approach, which results from bounded total persistence [69].

Theorem 5.1.2. Let (ξ(t))t∈(T0,T1), 0 < T0 < T1, be a family of stationary and ergodic simple
point processes on Rn having all finite moments. Let (p(t))t be the family of persistence diagram
expectation measures associated to (ξ(t))t. Assume that all (p(t))t exist, are non-zero and that
the family scales self-similarly between times T0 and T1 with exponents η1, η2 ∈ R. Then, if the
interval (T0, T1) is sufficiently extended, almost surely

η2 = nη1 . (5.2)

In the proof of Theorem 5.1.2 we specify what sufficiently extended means.
Self-similarity is usually exhibited by fractals. We prove that, under a weak assumption

on large-volume asymptotics, processes that admit self-similar scaling in fact have constant
fractal dimension in the persistent sense of [226].

The motivation for this work originates from applications of the concept of self-similar
scaling of time-dependent persistence diagrams to quantum physical systems in [6] and
Chapter 4 of this dissertation. This chapter provides a more rigorous mathematical
framework for some of the heuristic arguments in [6] and Chapter 4.

It is structured as follows. In Section 5.2 we embed persistence diagrams into the
framework of point processes, introduce notions of ergodicity, in order to define persis-
tence diagram measures and related geometric quantities. The existence of limiting Radon
measures for large point clouds and the strong law of large numbers for persistent Betti
numbers are shown for general convex averaging sequences. In Section 5.3 we introduce
the notion of self-similar scaling of persistence diagram expectation measures and prove
the packing relation. Section 5.4 is devoted to examples constructed from different point
processes. Finally, in Section 5.5 we provide a summary and state further mathematical
questions.

Remark 5.1.3. We derive our results for Čech complexes, though they are easily extendable to
other types of simplicial complexes. Under the assumption of point clouds being in general position,
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the filtrations of Čech complexes and of alpha and Wrap complexes have isomorphic persistent
homology groups [227]. Thus, all results developed in this work can be directly extended to these.1

In [71] a fairly general family of complexes defined through specific measurable functions on
finite sets of points is introduced, covering both the filtrations of Čech complexes and of Vietoris-Rips
complexes. Care is required regarding the extension of our results to this family since for instance
Lemma 5.2.15 only applies to filtered complexes with persistent homology groups isomorphic to
those of the filtration of Čech complexes.

5.2 Point processes and persistence diagram measures

5.2.1 Background on point processes and persistent homology

Point processes. Point processes are random collections of at most countably many
points, identified with random counting measures. We review notions from the theory of
point processes [228–230].

Let S be a complete and separable metric space, B(S) its Borel σ-algebra andR(S) the
space of Radon measures2 on S. We define Bn = B(Rn) and denote the set of bounded
Borel subsets of Rn by Bnb . The space of all boundedly finite measures on Rn is denoted
byMn and of the integer-valued ones by N n ⊂Mn. We denote by λn the n-dimensional
Lebesgue measure.

Let (Ω, E ,P) be a probability space. A random measure on Rn is a measurable map
µ : (Ω, E ,P)→ (Mn,B(Mn)). A point process on Rn is a measurable map ξ : (Ω, E ,P)→
(N n,B(N n)).

A point process ξ is simple, if a.s. all its atoms are distinct; it has all finite moments,
if for all k ≥ 1 and A ∈ Bnb : E[ξ(A)k] < ∞. We assume that all point processes studied
in this work have non-zero first moments, E[ξ(A)] > 0 for A ∈ Bnb with λn(A) > 0. For a
simple point process ξ on Rn we define the set of atoms in A ∈ Bnb as

Xξω(A) =

{
xi

∣∣∣∣∣ ξω(A) =
∑
i

δxi(A)

}
, (5.3)

where δxi(A) = 1 if xi ∈ A, else δxi(A) = 0. The setsXξω(A) form point clouds3 forA ∈ Bnb .
We often omit the sample ω from notations.

Filtered simplicial complexes and persistent homology. We briefly review notions from
persistent homology. For a general introduction to algebraic topology we refer to [201, 202,
231]; for a thorough introduction to computational topology the interested reader may
consult [67, 178].

1The proof of Lemma 5.2.4 actually employs this argument.
2A measure µ on (S,B(S)) is called a Radon measure, if µ(A) <∞ for every relatively compact A ∈ B(S).

In particular, since S is a complete, separable metric space, a thus defined Radon measure is regular [228].
3A point cloud X ⊂ Rn is a finite subset of Rn.
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Let X ⊂ Rn be a point cloud. The Čech complex of radius r is defined as the abstract
simplicial complex

Čr(X) :=

{
σ ⊆ X

∣∣∣∣∣⋂
x∈σ

Br(x) 6= ∅

}
, (5.4)

Br(x) denoting the closed ball of radius r around x ∈ Rn. We denote the m-skeleton of
Čr(X) by Čr(X)m, which consists of all simplices of Čr(X) up to and including dimen-
sion m.

The Čech complexes form a filtration of simplicial complexes: Čr(X) ⊆ Čs(X) if
s ≥ r. We set C(X) := {Čr(X) | r ≥ 0}. As in Section 4.A.2, the map of homology groups
induced by the inclusion Čr(X) ↪→ Čs(X) is denoted by ιr,s` : H`(Čr(X)) → H`(Čs(X)),
where we can more generally consider homology with coefficients in an arbitrary field
F. The `-th persistence module is the collection of homology groups with corresponding
induced linear maps, H`(C(X)) = (H`(Čr(X)), ιr,s` )s≥r. The `-th persistent Betti numbers
are defined as βr,s` (C(X)) := rk(im(ιr,s` )). All persistence modules studied in this work are
by construction tame,4 since the underlying point clouds are finite.

Due to the structure theorem [212], tame persistence modules such as H`(C(X)) are
up to isomorphism in one-to-one correspondence with persistence diagrams, i.e., finite
multisets of pairs (b, d) with b, d ∈ R2 and b < d. We set ∆ := {(b, d) ∈ R2 | b < d} and
denote the space of persistence diagrams by D , which is the space of finite multisets of
pairs (b, d) with b, d ∈ R2 and b < d. A persistence pair (b, d) in the persistence diagram
Dgm`(X) of H`(C(X)) corresponds to an `-dimensional homology class being present in
Čech complexes of all radii within [b, d). We call b the birth radius of the corresponding
homological feature, d its death radius and pers((b, d)) := d− b its persistence. We ignore
persistence pairs with zero persistence in persistence diagrams. While this is consistent for
our work, persistence pairs with zero persistence can be important e.g. for the computation
of the bottleneck distance.

Let ξ be a simple point process on Rn. In this work we are interested in persistence
diagrams of the filtration of Čech complexes, Dgm`(Xξω(A)) for A ∈ Bnb and ω ∈ Ω. In
particular, then

⋃n−1
`=0 Dgm`(Xξ(·)) defines a point process on D .

5.2.2 Ergodicity in persistent homology

A random measure µ on Rn is stationary, if for all x ∈ Rn the distributions of µ and θxµ

coincide. Here, (θxµ)(A) := µ(A+ x) for all A ∈ Bnb . A stationary random measure µ is
ergodic, if P(µ ∈ A) ∈ {0, 1} for all Borel sets A ofMn that are invariant under translation
by x for all x ∈ Rn. A sequence {Ak} ⊂ Bnb is called a convex averaging sequence if

(i) each Ak is convex , (ii) Ak ⊆ Ak+1 for all k, (iii) lim
k→∞

r(Ak) =∞ ,

(iv) Wn−1(Ak) = O(λn(Ak)
1/n) for sufficiently large k , (5.5)

4A value r > 0 is a homologically critical value of H`(C(X)), if the map ιr−ε,r+ε` : H`(Čr−ε(X)) →
H`(Čr+ε(X)) is not an isomorphism for sufficiently small ε > 0. The persistence module H`(C(X)) is called
tame, if dim(H`(Čr(X))) <∞ for all r ≥ 0 and only finitely many homologically critical values occur.
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where r(A) := sup{r |A contains a ball of radius r} and Wn−1 denotes the (n− 1)-st quer-
massintegral. The quermassintegrals Wi(C), i = 0, . . . , n, of a convex body C in Rn are
given by [232]

Wi(C) = V (C, . . . , C︸ ︷︷ ︸
n−i

, B1(0), . . . , B1(0)︸ ︷︷ ︸
i

) , (5.6)

where V denotes the mixed volume of n convex bodies in Rn. They are further used in
Appendix 5.C.

Remark 5.2.1. The scaling property (iv) is similar to the vanishing relative boundary condition
for sequences of Borel subsets of Rn in [233]. Though not contained in the usual construction of
convex averaging sequences, property (iv) is fairly general. For instance, sequences of growing
cubes, simplices, polyhedra or balls fulfill this property. Property (iv) is required in the proof of
Theorem 5.2.10 in order to exclude sequences of increasingly flat convex bodies for which the ratio
of surface area to volume does not converge to zero for k →∞ [234].

Proposition 5.2.2 (Corollary 12.2.V in [229]). Let {Ak} be a convex averaging sequence. When
a random measure ξ on Rn is stationary, ergodic and has finite expectation measure with mean
density m = E[ξ([0, 1]n)] = mλn([0, 1]n), then ξ(Ak)/λn(Ak) → m a.s. as k → ∞, where λn
denotes the Lebesgue measure.

We define a notion of ergodicity for point processes on the space of persistence dia-
grams.

Definition 5.2.3. Let ξ be a stationary simple point process on Rn with finite expectation measure,
{Ak} a convex averaging sequence, and n(Xk) := #

⋃n−1
`=0 Dgm`(Xξ(Ak)) for all k. We say that

ξ is ergodic in persistence if a.s. for any ε > 0 there exists N ∈ N such that for all k, l ≥ N ,∣∣∣∣1− n(Xl)

n(Xk)

λn(Ak)

λn(Al)

∣∣∣∣ < ε . (5.7)

Lemma 5.2.4. Let ξ be a simple point process on Rn having all finite moments. If ξ is stationary
and ergodic, then ξ is ergodic in persistence.

Proof. Let {Ak} be a convex averaging sequence and set Xk := Xξ(Ak). We find by means
of Proposition 5.2.2 that for any ε > 0 there exists an N ∈ N such that a.s. for all k, l ≥ N :∣∣∣∣1− #Xl

#Xk

λn(Ak)

λn(Al)

∣∣∣∣ < ε. (5.8)

Next, we show that n(Xk)/#Xk converges as k → ∞. Given that ξ is stationary, its
first moment measure is proportional to the Lebesgue measure [229], i.e., for A ∈ Bnb :

E[ξ(A)] = E[ξ([0, 1]n)]λn(A) . (5.9)

Now, any k-dimensional hyperplane and any k-dimensional hypersphere for k < n is a
set of Lebesgue measure zero. It directly follows a.s. that the affine hull of any subset
of n + 1 atoms of a sample X of ξ is the entire5 Rn. Let P ⊂ X be a subset of k ≤ n + 1

5Else, with non-vanishing probability a Lebesgue-zero set would contain one or more points, in contradic-
tion to Equation (5.9).
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points. Analogously, a.s. no point of X \ P lies on the smallest circumsphere of P , given
that circumspheres are Lebesgue-zero sets. Thus, a.s. X is in general position.6

To this end, a.s. the number of persistent homology classes n(Xk) computed via
Čech complexes is equal to the number of persistent homology classes computed via the
family of Delaunay complexes7 (Delr(Xk))r, denoted nDel(Xk). Indeed, by [227] Čech and
Delaunay complexes are even simple-homotopy equivalent for point clouds in general
position.

We show that in the limit of large Xk, nDel(Xk) scales proportional to #Xk, using
results of [235]. First, the sets Conv(Xk) define polyhedra in the sense of [235]. It can be
shown that ξ a.s. generates point clouds Xk for which λ, ε ∈ R exist such that the Xk are
λ-sparse ε-samples of Conv(Xk) [235], i.e., (i) a.s. every point x ∈ Conv(Xk) has a distance
ε or less to a point in Xk of Conv(Xk), and (ii) a.s. every closed n-ball with radius 5nε

contains at most λ points of Xk. To show (i) assume there exists with non-zero probability
x ∈ Conv(Xk) such that for all ε > 0, s ∈ Xk: |x− s| > ε. Then, with non-zero probability
a ball of arbitrary radius r > 0 around x exists, such that ξ(Br(x)) = 0. With non-zero
probability this then leads for a sample ξ and r →∞ to

ξ(Br(x))

λn(Br(x))
→ 0 . (5.10)

Since ξ is ergodic, via Proposition 5.2.2 we can conclude with non-zero probability for such
a sample ξ that E[ξ([0, 1]n)] = 0, in contradiction to the assumption of ξ having non-zero
first moment. Thus, an ε exists such that a.s. for all x ∈ Conv(Xk) there exists s ∈ Xk:
|x− s| < ε.

To show (ii) assume that with non-zero probability there exists an n-ball B with radius
5nε, such that for all λ > 0: ξ(B) > λ. Then, ξ(B) = ∞ with non-zero probability, in
contradiction to ξ having all finite moments. Thus, every closed n-ball with radius 5nε

contains at most λ points of Xk.
Indeed, Theorem 1 of [235] can be applied and we find that the Delaunay triangulation

of Xk is a.s. of size Θ(#Xk). Denoting the `-th persistence diagram of (Delr(Xk))r as
Dgm`,Del(Xk), we find

nDel(Xk) = #
n−1⋃
`=0

Dgm`,Del(Xk) ≤
n∑
`=0

dimF
(
C`(Del∞(Xk))

)
= #Del∞(Xk) , (5.11)

with C`(Del∞(Xk)) the `-th chain group of Del∞(Xk) with F-coefficients. On the other
hand, nDel(Xk) ≥ #Xk for all k.

Thus, for any ε > 0 there a.s. exist constants c > 0 and N ′ ∈ N, such that for all k ≥ N ′,∣∣∣∣n(Xk)

c#Xk
− 1

∣∣∣∣ < ε . (5.12)

6Employing the definition of [227], X ⊂ Rn is in general position if for every P ⊆ X of at most n + 1
points (i) P is affinely independent, and (ii) no point of X \ P lies on the smallest circumsphere of P .

7The Delaunay complex of a point cloud X ⊂ Rn is defined as Delr(X) = {Q ⊆ X |
⋂
x∈Q Vorr(x,X) 6=

∅}with Vorr(x,X) = Br(x) ∩ {y ∈ Rn | |y − x| ≤ |y − p| ∀ p ∈ X} the Voronoi ball around x ∈ X [227].
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Inversion yields ∣∣∣∣c#Xk

n(Xk)
− 1

∣∣∣∣ < ε+O(ε2) . (5.13)

For any k, l ≥ max(N,N ′) we a.s. obtain from Equations (5.8), (5.12) and (5.13):∣∣∣∣1− λn(Ak)

λn(Al)

n(Xl)

n(Xk)

∣∣∣∣ ≤ ∣∣∣∣1− λn(Ak)

λn(Al)

c#Xl

c#Xk

∣∣∣∣+

∣∣∣∣λn(Ak)

λn(Al)

#Xl

#Xk
− λn(Ak)

λn(Al)

n(Xl)

n(Xk)

∣∣∣∣
< ε+

λn(Ak)

λn(Al)

n(Xl)

n(Xk)

∣∣∣∣1− #Xl

#Xk

n(Xk)

n(Xl)

∣∣∣∣
<

(
1 +

λn(Ak)

λn(Al)

n(Xl)

n(Xk)

)
ε+O(ε2) . (5.14)

Exploiting stationarity of ξ and Theorem 5.2.10 given below and proven independently
from Lemma 5.2.4, the prefactor to ε on the right-hand side of the last inequality converges
to a constant c∗ > 0. This leads to ergodicity in persistence.

5.2.3 Persistence diagram measures

In this section we consider point processes on D constructed from persistence diagrams
such as

⋃n−1
`=0 Dgm`(Xξ(·)).

Let ξ be a simple point process on Rn. Then for any A ∈ Bnb and ω ∈ Ω we con-
sider the point cloud Xξω(A). We denote by DA(Xξω(A)) :=

⋃n−1
`=0 Dgm`(Xξω(A)) the

corresponding persistence diagram of the filtration of the Čech complexes.

Definition 5.2.5. Given a simple point process ξ and A ∈ Bnb , the map

ρω(A) :=
∑

x∈DA(Xξω (A))

δx for all ω ∈ Ω (5.15)

defines a point process ρ·(A) on ∆. The map ρ· : Ω × Bnb → N (∆) is called the persistence
diagram measure. If the measure exists, its first moment measure defines

p(A) := E[ρω(A)] . (5.16)

The map p : Bnb → R(∆), A 7→ p(A) is called the persistence diagram expectation measure.

Proposition 5.2.6. Let ρ be a persistence diagram measure, p the corresponding persistence
diagram expectation measure and A ∈ Bnb , ω ∈ Ω. Then, there exist Borel measurable functions
ρ̃ω,A, p̃A : ∆→ R+ and singular measures ρω,s(A), ps(A), such that for all B ∈ B(∆),

ρω(A)(B) =

∫
B
ρ̃ω,A(x)λ2(dx ) + ρω,s(A)(B) , (5.17a)

p(A)(B) =

∫
B
p̃A(x)λ2(dx ) + ps(A)(B) . (5.17b)

Proof. This is a direct consequence of applying first the Lebesgue decomposition theo-
rem and then the Radon-Nikodym theorem for absolutely continuous measures [236].
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Focussing on p(A), we explicitly set

p̃A(x) := lim
r↘0

p(A)(Br(x))

λ2(Br(x))
(5.18)

and
S :=

{
x : lim

r↘0

p(A)(Br(x))

λ2(Br(x))
=∞

}
. (5.19)

Then, we set ps(A)(B) = p(A)(B ∩ S), and find λ2(S) = 0. Fully analogous constructions
lead to the decomposition of ρω(A).

Remark 5.2.7. In [204] it is shown that under particular assumptions on the simplicial complex
filtration, covering for instance the filtration of Čech complexes, the singular contribution ps to the
persistence diagram expectation measure p can be absorbed into the density p̃.

Remark 5.2.8. The measurable Lebesgue density corresponding to the non-singular contribution to
the persistence diagram (expectation) measure appearing in Proposition 5.2.6 can be identified with
the so-called (asymptotic) persistence pair distribution defined in [6] and employed in Section 4.3.2
of this dissertation. In particular, if the persistence diagram (expectation) measure exists, then the
density exists as well, though it might be zero.

The persistence diagram expectation measure exists for stationary and ergodic point
processes on Rn, as the following lemma shows.

Lemma 5.2.9. Let ξ be a simple stationary and ergodic point process on Rn having all finite
moments. Then the corresponding persistence diagram expectation measure exists.

Proof. Let A ∈ Bnb and B ∈ B(∆) be bounded, ω ∈ Ω. Let F`(Xξω(A), r) be the number of
`-simplices in Čr(Xξω(A)) and F`(ξ, r;A) the number of `-simplices in Čr(Xξω(Rn)) with
at least one vertex in A. We compute, with r ≥ 0 sufficiently large, the n-skeleton of the
Čech complex, Čr(Xξω(A))n, and #K denoting the number of simplices in a simplicial
complex K,

ρω(A)(B) ≤ n(Xξω(A)) ≤ #(Čr(Xξω(A))n) (5.20)

=

n∑
`=0

F`(Xξω(A), r) (5.21)

≤
n∑
`=0

F`(ξ, r;A) ≤
n∑
`=0

∑
x∈Xξω (A)

(
ξ(B2`r(x))

`+ 1

)
, (5.22)

which holds since all vertices of an `-simplex containing a vertex x ∈ A are contained in
Xξω(Rn)∩B2`r(x), and all `-simplices are constructed from `+ 1 points in this intersection.
If `+ 1 > ξ(B2`r(x)), the binomial coefficient is zero. Let R(ξω, A) <∞ be the maximum
r > 0, such that for any ε > 0, ε < r,

Čr(Xξω(A)) 6= Čr−ε(Xξω(A)) . (5.23)

Indeed,R(ξω, A) is well-defined and exists, since the point cloudsXξω(A) are always finite,
hence the Čech complex Čr(Xξω(A)) changes only finitely often as r increases. Then, we
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find

ρω(A)(B) ≤ n(Xξω(A)) ≤ #(Č∞(Xξω(A))n) ≤
n∑
`=0

∑
x∈Xξω (A)

(
ξ(B2`R(ξω ,A)(x))

`+ 1

)
. (5.24)

Taking expectations yields

p(A)(B) ≤
n∑
`=0

E

 ∑
x∈Xξω (A)

(
ξ(B2`R(ξω ,A)(x))

`+ 1

) . (5.25)

The expectation value on the right-hand side of this expression exists and is finite for
bounded A, since ξ is stationary, ergodic and has all finite moments. Thus, p(A)(B) is
finite and in particular exists.

5.2.4 The strong law for persistent Betti numbers

In this section we state an extension of the strong law of large numbers for persistent Betti
numbers of stationary point processes, established in [71, Theorem 1.11] for averaging
along cubes, to general convex averaging sequences. The proofs are given in Appendix 5.C.
They make use of the results for cubical averaging sequences [71], and exploit results from
convex geometry.

The extension to general convex averaging sequences is of interest for applications
in the natural sciences, where large volume asymptotics are not only taken via nested
sequences of cubes. An example is given by thermodynamic limits of spherically shaped
systems in quantum many-body physics [237, 238].

The following theorem establishes the existence of a limiting Radon measure, towards
which volume-averaged persistence diagram expectation measures for convex averaging
sequences converge.

Theorem 5.2.10. Let ξ be a simple point process on Rn having all finite moments and {Ak} a
convex averaging sequence. If ξ is stationary, then there exists a unique Radon measure P ∈ R(∆),
such that

p(Ak)

λn(Ak)

v−→ P for k →∞ , (5.26)

where p is the persistence diagram expectation measure corresponding to ξ and v→ denotes conver-
gence in the vague topology.

A stronger statement can be established for persistent Betti numbers.

Theorem 5.2.11 (Strong law of large numbers for persistent Betti numbers). Let ξ be a
stationary simple point process having all finite moments and {Ak} a convex averaging sequence.
Given ω ∈ Ω, we set Xk := Xξω(Ak). Then, for any 0 ≤ r ≤ s < ∞ and ` = 0, 1, . . . , n there
exists a constant β̂r,s` , such that

E[βr,s` (C(Xk))]

λn(Ak)
→ β̂r,s` for k →∞ . (5.27)
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Additionally, if ξ is ergodic, then a.s.

βr,s` (C(Xk))

λn(Ak)
→ β̂r,s` for k →∞ . (5.28)

In the spirit of Theorem 5.2.10 and Theorem 5.2.11, several related and also stronger
results have been established for particular point processes [222–225, 239].

5.2.5 Geometric quantities and a packing lemma

Different geometric quantities may be computed from persistence diagram (expectation)
measures, linked by a relation deduced from the notion of bounded total persistence, i.e.,
a bound on sums of persistences to some power. These quantities are of relevance e.g. for
applications in many-body physics, see again [6].

Definition 5.2.12. Let ρ be a persistence diagram measure and A ∈ Bnb . Assume that the
corresponding persistence diagram expectation measure p exists and is non-zero. Let ω ∈ Ω. We
define the number of persistent homology classes as

nω(A) :=

∫
∆
ρω(A)(dx ) = ρω(A)(∆) (5.29)

and the expected number of persistent homology classes as

n(A) :=

∫
∆
p(A)(dx ) = p(A)(∆) . (5.30)

Let q > 0. The degree-q persistence is defined as

lq,ω(A) :=

[
1

nω(A)

∫
∆

pers(x)q ρω(A)(dx )

]1/q

, (5.31)

and the corresponding expected degree-q persistence as

lq(A) :=

[
1

n(A)

∫
∆

pers(x)q p(A)(dx )

]1/q

. (5.32)

With Yω(A) ⊂ ∆ the multiset of atoms of ρω(A), we define the maximum death as

dmax,ω(A) := max{d | (b, d) ∈ Yω(A)} = lim
p→∞

[∫
∆
d(x)p ρω(A)(dx )

]1/p

, (5.33)

where the last equality is a general result for p-norms in finite dimensions. We define the expected
maximum death as

dmax(A) := lim
p→∞

[∫
∆
d(x)p p(A)(dx )

]1/p

. (5.34)

The following two propositions justify the nomenclature used in Definition 5.2.12.

Proposition 5.2.13. Let p be an existing non-zero persistence diagram expectation measure and
A ∈ Bnb . We find that

n(A) = E[nω(A)] . (5.35)
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If the measure p(A) is boundedly finite, then n(A) <∞.

We get similar statements for dmax(A) and lq(A) for sufficiently large point clouds.

Proposition 5.2.14. Let ξ be a stationary and ergodic simple point process on Rn having all finite
moments. Let p be the persistence diagram expectation measure computed from ξ, assumed to exist
and to be non-zero. Let {Ak} be a convex averaging sequence and ε > 0. We find for k sufficiently
large,

|dmax(Ak)− E[dmax,ω(Ak)]| < ε . (5.36)

We find for all q > 0 and k sufficiently large that

|lq(Ak)− E[lq,ω(Ak)]| < ε . (5.37)

Almost surely, for any p, q 6= 0 and ω ∈ Ω we find for sufficiently large k∣∣∣∣E [dmax,ω(Ak)
p

lq,ω(Ak)q

]
− lim
k′→∞

dmax,ω(Ak′)
p

lq,ω(Ak′)q

∣∣∣∣ < ε . (5.38)

In particular, this a.s. implies with Equations (5.36) and (5.37) for sufficiently large k∣∣∣∣dmax(Ak)− lim
k′→∞

dmax,ω(Ak′)

∣∣∣∣ < ε , (5.39)

and for all q > 0, ∣∣∣∣lq(Ak)− lim
k′→∞

lq,ω(Ak′)

∣∣∣∣ < ε . (5.40)

Let A ∈ Bnb . If the measure p(A) is boundedly finite and supp(p(A)) ⊂ ∆ is bounded, then
dmax(A) <∞ and lq(A) <∞ for all q > 0.

The proofs of Proposition 5.2.13 and Proposition 5.2.14 are postponed to Appendix
Section 5.B.3.

A link between the geometric quantities is provided by bounded total persistence as
introduced in Appendix 5.A, which results in an upper bound for the number of persistent
homology classes in a given volume.

Lemma 5.2.15 (The packing lemma). Let ξ be a simple point process on Rn and nω(·), dmax,ω(·)
and lq,ω(·) be computed from the sample ξω, ω ∈ Ω. Then there exists a constant c > 0, such that
for any δ > 0 and A ∈ Bnb ,

nω(A) ≤ c (n+ 2δ)

δ

dmax,ω(A)δ

ln+δ,ω(A)n+δ
. (5.41)

Proof. Let A ∈ Bnb and X := Xξω(A). For all x ∈ Conv(X) we set

dX(x) := min
p∈X

d(x, p) . (5.42)

Clearly, dX is Lipschitz with Lipschitz constant 1. By the nerve theorem [240], for any
r > 0 the sublevel set d−1

X [0, r] and the Čech complex Čr(X) have isomorphic homology
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groups with homology groups of d−1
X [0, r] computed via singular homology. In particular,

the persistence modules of both corresponding filtrations are isomorphic. Conv(X) being
bounded implies bounded degree-(n+ δ) total persistence of the filtration (d−1

X [0, r])r for
all δ > 0, see Appendix 5.A. Then, as in Proposition 5.A.1 there exists a constant c > 0,
such that

nω(A)ln+δ,ω(A)n+δ = Persn+δ(dX) ≤ cAmp(dX)δ
n+ 2δ

δ
, (5.43)

with Amp(dX) = maxx∈Conv(X) dX(x). Note that Amp(dX) = dmax,ω(A), so we obtain the
desired result for the filtration of Čech complexes.

5.3 Self-similarity

In this section we introduce the notion of self-similar scaling of persistence diagram
expectation measures and discuss related phenomena. For this, persistence diagrams
are considered depending on an additional parameter t, which can be interpreted, for
instance, as the time in physics applications, see again [6] and Chapter 4 of this dissertation.
Intuitively, self-similar scaling describes geometric quantities blowing up or shrinking as
a power-law in time with characteristic scaling exponents. A packing relation between the
occurring scaling exponents can be derived from the previous packing lemma.

5.3.1 Self-similar scaling

Definition 5.3.1. Let (p(t))t∈(T0,T1) be a family of existing non-zero persistence diagram expecta-
tion measures, 0 < T0 < T1. For t ∈ (T0, T1), A ∈ Bnb we set p(t, A) := p(t)(A) and let {Ak} be
a convex averaging sequence. We say that (p(t))t∈(T0,T1) scales self-similarly between times T0

and T1 with exponents η1, η2 ∈ R, if for all t, t′ ∈ (T0, T1), B ∈ B(∆) and k sufficiently large
depending on the sequence (Ak),

p(t, Ak)(B) = (t/t′)−η2p(t′, Ak)((t/t
′)−η1B) , (5.44)

where κB := {(κb, κd) | (b, d) ∈ B} for κ ∈ [0,∞).

Self-similar scaling of persistence diagram expectation measures manifests in the
characteristic scaling behavior of corresponding geometric quantities.

Lemma 5.3.2. Let (p(t))t∈(T0,T1) be a family of existing non-zero persistence diagram expectation
measures, which scales self-similarly between times T0 and T1 with exponents η1, η2. The t-
dependence of any geometric quantity constructed from p(t) is denoted by an additional t-argument.
Let {Ak} be a convex averaging sequence. Then for all t, t′ ∈ (T0, T1), q ≥ 1 and k sufficiently
large,

n(t, Ak) = (t/t′)−η2n(t′, Ak) , (5.45a)

lq(t, Ak) = (t/t′)η1 lq(t
′, Ak) , (5.45b)

dmax(t, Ak) = (t/t′)η1dmax(t′, Ak) . (5.45c)
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Proof. The derivation of the first two equations follows analogously to the third via
push-forward measures and changing integration variables. We let t, t′ ∈ (T0, T1), set
ft,t′(x) := (t/t′)η1x for all x ∈ ∆ and note that ft,t′(∆) = ∆. Let k be sufficiently large. We
compute,

dmax(t, Ak) = lim
p→∞

[∫
∆
d(x)p p(t, Ak)(dx )

]1/p

= lim
p→∞

[
(t/t′)−η2

∫
∆
d(x)p ((ft,t′)∗p(t′, Ak))(dx )

]1/p

= lim
p→∞

[
(t/t′)−η2

∫
∆
d(ft,t′(x))p p(t′, Ak)(dx )

]1/p

= lim
p→∞

(t/t′)η1−η2/p
[∫

∆
d(x)p p(t′, Ak)(dx )

]1/p

= (t/t′)η1dmax(t′, Ak) . (5.46a)

In [226] a fractal dimension estimator has been introduced, based on persistent homol-
ogy. Let (p(t))t∈(T0,T1) be a family of non-zero persistence diagram expectation measures
and let (ξ(t))t be a family of simple point processes on Rn having all finite moments,
corresponding to the family of persistence diagram expectation measures. For α > 0,
A ∈ Bnb we define

Eα(ξ(t), A) :=
∑

x∈
⋃
` Dgm`(Xξ(t)(A))

pers(x)α . (5.47)

Let {Ak} be a convex averaging sequence. We set

ϑα(t) := lim sup
k→∞

logE[Eα(ξ(t), Ak)]

logE[ξ(t, Ak)]
. (5.48)

Then, the persistent homology fractal dimension is defined as

dimα
PH(ξ(t)) :=

α

1− ϑα(t)
. (5.49)

The following lemma shows that dimα
PH(ξ(t)) stays constant in the course of time upon

self-similar scaling, if the expectation values of ξ(t, A) fulfill a weak assumption on the
large-volume behavior.

Lemma 5.3.3. Let (p(t))t∈(T0,T1) be a family of non-zero persistence diagram expectation measures,
which scales self-similarly between times T0 and T1 with exponents η1, η2. Let (ξ(t))t be a family
of simple stationary point processes on Rn having all finite moments and corresponding to the
family of persistence diagram expectation measures. Assume that

lim
k→∞

logE[ξ(t′, Ak)]

logE[ξ(t, Ak)]
= 1 . (5.50)

Then, the persistent homology fractal dimension dimα
PH(ξ(t)) stays constant in the course of time

for all α > 0.
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Proof. Let ρ(t, ·) be the persistence diagram measure corresponding to ξ(t). Then

Eα` (ξ(t), A) =

∫
∆

pers(x)αρ(t, A)(dx ) . (5.51)

Using Proposition 5.B.3, we obtain

E[Eα` (ξ(t), A)] =

∫
∆

pers(x)αp(t, A)(dx ) . (5.52)

Exploiting self-similarity yields for all t, t′ ∈ (T0, T1) and k sufficiently large

E[Eα` (ξ(t), Ak)] = (t/t′)αη1−η2E[Eα` (ξ(t′), Ak)] . (5.53)

By means of this equation we find

ϑα(t) = lim sup
k→∞

(αη1 − η2) log(t/t′) + logE[Eα` (ξ(t′), Ak)]

logE[ξ(t′, Ak)]

logE[ξ(t′, Ak)]

logE[ξ(t, Ak)]

=ϑα(t′) lim
k→∞

logE[ξ(t′, Ak)]

logE[ξ(t, Ak)]
= ϑα(t′) . (5.54)

Thus, the persistent homology fractal dimension stays constant in the course of time,

dimα
PH(ξ(t)) =

α

1− ϑα(t)
= dimα

PH(ξ(t′)) . (5.55)

Remark 5.3.4. The above assumption that limk→∞ logE[ξ(t′, Ak)]/ logE[ξ(t, Ak)] = 1 is fairly
general. A special instance, when it is fulfilled, is when the expectation of ξ satisfies a power-law in
time, i.e., if a κ exists, such that for all t, t′ ∈ (T0, T1), E[ξ(t, A)] = (t/t′)κE[ξ(t′, A)] for A ∈ Bnb .

Remark 5.3.5. The above results can be generalized to more complicated time-dependences.
Let (p(t))t∈(T0,T1) be a family of existing non-zero persistence diagram expectation measures,
0 < T0 < T1, {Ak} a convex averaging sequence and B ∈ B(∆). Let f, g : (0,∞)→ (0,∞) be
continuous surjections which strictly increase or decrease, and assume that for all times t, t′ ∈
(T0, T1) and k sufficiently large,

p(t, Ak)(B) = g(t/t′)p(t′, Ak)(f(t/t′)B) . (5.56)

Clearly, there exist continuous F,G : (0,∞)→ (0,∞), such that

p(t, Ak)(B) = (t/t′)G(t/t′)p(t′, Ak)((t/t
′)F (t/t′)B) . (5.57)

All of the arguments in this section generalize easily to this setting.

5.3.2 The packing relation

In this section we establish a relation between the scaling exponents η1 and η2 (see Defini-
tion 5.3.1). Intuitively, it describes the bounded packing of homology classes of growing
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sizes, less of which fit into a given constant volume. The relation can have applications
throughout many-body physics whenever self-similar behavior with some parametric
dependence occurs for persistent homology quantifiers, e.g. for studies of critical scaling
phenomena [78–80] and non-thermal fixed points, see again [6] and Chapter 4 of this
dissertation.

Theorem 5.3.6 (The packing relation). Let (ξ(t))t∈(T0,T1), 0 < T0 < T1, be a family of stationary
and ergodic simple point processes on Rn having all finite moments. Let (p(t))t be the family of
persistence diagram expectation measures computed from (ξ(t))t. Assume that all (p(t))t exist,
are non-zero and that the family scales self-similarly between times T0 and T1 with exponents
η1, η2 ∈ R. Then, if the interval (T0, T1) is sufficiently extended as detailed in the proof, we a.s.
find

η2 = nη1 . (5.58)

Proof. The time-dependence of any geometric quantity constructed from ρω(t, ·) and p(t, ·)
is again denoted by an additional t-argument. We derive the packing relation from
evaluation on a convex averaging sequence {Ak}. From Lemma 5.2.15 we obtain that for
an arbitrary δ > 0,

nω(t, Ak) ≤
c (n+ 2δ)

δ

dmax,ω(t, Ak)
δ

ln+δ,ω(t, Ak)n+δ
. (5.59)

Using Proposition 5.2.14 we a.s. find for a sample ω ∈ Ω, ε > 0 and k sufficiently large

ε >

∣∣∣∣dmax(t, Ak)− lim
k′→∞

dmax,ω(t, Ak′)

∣∣∣∣ , (5.60)

and a.s. for q > 0:

ε >

∣∣∣∣lq(t, Ak)− lim
k′→∞

lq,ω(t, Ak′)

∣∣∣∣ . (5.61)

Exploiting Equation (5.38) from Proposition 5.2.14, Equation (5.59) a.s. yields for suffi-
ciently large k upon taking expectations:

n(t, Ak) ≤ lim
k′→∞

c (n+ 2δ)

δ

dmax,ω(t, Ak′)
δ

ln+δ,ω(t, Ak′)n+δ
+O(εδ)

=
c (n+ 2δ)

δ

dmax(t, Ak)
δ

ln+δ(t, Ak)n+δ
+O(εδ) . (5.62)

Exploiting self-similarity and Lemma 5.3.2, we find for any t, t′ ∈ (T0, T1),

dmax(t, Ak)
δ

ln+δ(t, Ak)n+δ
= (t/t′)−nη1

dmax(t′, Ak)
δ

ln+δ(t′, Ak)n+δ
. (5.63)

Hence,

n(t, Ak) = (t/t′)−η2n(t′, Ak) ≤ (t/t′)−nη1
c (n+ 2δ)

δ

dmax(t′, Ak)
δ

ln+δ(t′, Ak)n+δ
+O(εδ) . (5.64)
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We assume that η2 6= nη1 and that t, t′ ∈ (T0, T1) exist with

t/t′ >
c(n+ 2δ)

δ
max

{
dmax(t, Ak)

δ

n(t, Ak)ln+δ(t, Ak)n+δ
,

dmax(t′, Ak)
δ

n(t′, Ak)ln+δ(t′, Ak)n+δ

}1/|nη1−η2|

, (5.65)

for any k sufficiently large. Then, either for nη1 < η2,

(t/t′)η2−nη1 = (t′/t)nη1−η2 >
c(n+ 2δ)

δ

dmax(t, Ak)
δ

n(t, Ak)ln+δ(t, Ak)n+δ
, (5.66)

or for nη1 > η2,

(t/t′)nη1−η2 >
c(n+ 2δ)

δ

dmax(t′, Ak)
δ

n(t′, Ak)ln+δ(t′, Ak)n+δ
, (5.67)

both of them being in contradiction to Equation (5.64) for sufficiently small ε. Thus, the
desired equality η2 = nη1 a.s. follows, provided that the interval (T0, T1) is sufficiently
extended in the sense of Equation (5.65).

5.4 Examples

This section is devoted to examples for self-similar scaling. First, we consider a Poisson
point process with time-dependent intensity and show self-similar scaling of correspond-
ing persistence diagram measures. The second example considers persistence diagram
measures of point clouds sampled uniformly from sublevel sets of smooth functions which
themselves scale self-similarly. The third example describes an application of the deduced
results in quantum physics [6], which stimulated the present work.

5.4.1 Poisson point process with power-law scaling intensity

We consider time-dependent Poisson point processes in the following sense, which gener-
alize usual Poisson point processes [230].

Definition 5.4.1. A family of point processes (ξ(t))t∈[1,∞) on Rn is a time-dependent Poisson
point process on Rn, if there exists an intensity function γ : [1,∞)→ (0,∞), such that for each
t ∈ [1,∞),

(i) the expected number of points in A ∈ Bn is E[ξ(t, A)] = γ(t)λn(A),

(ii) for every A ∈ Bn the distribution of ξ(t, A) is P[ξ(t, A) = k] = Po(γ(t)λn(A); k) for all
k ∈ N, Po(λ; k) = (λk/k!) exp(−λ) denoting the Poisson distribution,

(iii) for every m ∈ N and all pairwise disjoint Borel sets A1, . . . , Am ∈ Bn the random variables
ξ(t, A1), . . . , ξ(t, Am) are independent.

A time-dependent Poisson process with properties (i) to (iii) defines a Poisson point
process at each time t, individually. It is a basic result from the theory of point processes
that such a point process ξ(t) is stationary and ergodic, having all finite moments for each
t ∈ [1,∞) [228–230].
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Proposition 5.4.2. Let (ξ(t))t∈[1,∞) be a time-dependent Poisson point process on Rn with
intensity function

γ(t) = γ0t
−nη1 , (5.68)

γ0 > 0 and η1 ≥ 0. Let {Ak} be a convex averaging sequence. Then the family (p(t, Ak)/λn(Ak))t

of persistence diagram expectation measures computed from (ξ(t))t normalized to the volume of
the convex sets converges vaguely for k →∞ to a family of Radon measures (P(t)) which scales
self-similarly between 1 and∞ with exponents η1 and nη1.

Proof. Let ξ̃0 be the Poisson point process with intensity γ0, such that E[ξ̃0(A)] = γ0λn(A)

for A ∈ Bnb . We draw a sample point cloud Xξ̃0,ω
(A) of ξ̃0 and define for all t ∈ [1,∞)

Xξ̃ω
(t, A) :=

(
tη1Xξ̃0,ω

(A)
)
∩A . (5.69)

This defines a point process ξ̃(t) with #Xξ̃ω
(t, A) = ξ̃0,ω(t−η1A) for each t. Its intensity can

be computed,

E[ξ̃(t, A)] = E[#((tη1Xξ̃0,ω
(A)) ∩A)] = E[#Xξ̃0,ω

(t−η1A)] = γ0t
−nη1λn(A) , (5.70)

that is, the intensities of ξ(t) and ξ̃(t) agree for all t. Also, we have

P[ξ̃(t, A) = k] = P[ξ̃0(t−η1A) = k] = Po(γ0λn(t−η1A); k) = Po(γ(t)λn(A); k) . (5.71)

Furthermore, let A1, A2 ⊂ Rn be disjoint Borel sets. Then, ξ̃0(A1) and ξ̃0(A2) are indepen-
dent random variables, ξ̃0 being a Poisson point process. Let xi ∈ Ai. Then, |x1 − x2| > 0

and t−η1 |x1 − x2| > 0, i.e., t−η1A1 and t−η1A2 are disjoint, too. Thus, ξ̃(t, A1) and ξ̃(t, A2)

are also independent random variables. The Poisson point process being uniquely charac-
terized by the properties (i) to (iii) of Definition 5.4.1, ξ(t) and ξ̃(t) can be identified for
all t.

We employ the strong law of large numbers for persistent Betti numbers, Theo-
rem 5.2.11 and denote the limiting persistent Betti numbers at time t as β̂r,s` (t), such
that for k →∞,

E[βr,s` (C(Xξ(t, Ak)))]

λn(Ak)
→ β̂r,s` (t) . (5.72)

We compute,

E[βr,s` (C(Xξ(t, Ak)))]

λn(Ak)
=

E[βr,s` (C(tη1(Xξ̃0
(Ak) ∩ t−η1Ak)))]

λn(Ak)

=
E[βt

−η1r,t−η1s
` (C(Xξ̃0

(Ak) ∩ t−η1Ak))]
λn(Ak)

=
t−nη1E[βt

−η1r,t−η1s
` (C(Xξ̃0

(t−η1Ak)))]

λn(t−η1Ak)

k→∞−→ t−nη1 β̂t
−η1r,t−η1s
` (1) .

(5.73)
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Both limits need to agree, i.e.,

β̂r,s` (t) = t−nη1 β̂t
−η1r,t−η1s
` (1) . (5.74)

With p(t, Ak) the persistence diagram expectation measure computed from ξ(t) and
evaluated on Ak, by means of Theorem 5.2.10 we obtain the existence of a unique Radon
measure P(t) at each time t, such that for k →∞

p(t, Ak)

λn(Ak)

v−→ P(t) . (5.75)

Starting from Equation (5.74), identical arguments which lead to the proof of Theorem 1.5
in [71] here lead to

P(t)(B) = t−nη1P(1)(t−η1B) (5.76)

for any B ∈ B(∆).

5.4.2 Scaling from function sublevel sets

The following example establishes a relation between self-similar scaling exponents de-
rived from moments of random variables and those derived from persistence diagram
measures, based on single-sample manifestations of an underlying rescaling of the metric.

Scaling functions. Let (T0, T1) be a time interval. Let (Ω, E ,P) be a probability space
with Ω a set of smooth functions Y : (T0, T1)× Rn → R, E some event space, such that for
arbitrary t, t′ ∈ (T0, T1), x ∈ Rn:

P
[
Y (t, x) =

(
t

t′

)α
Y (t′, (t/t′)βx)

]
= 1 , (5.77)

i.e., a.s. all samples reveal self-similar scaling in time. Then, all moments of P show
self-similar behavior, as well:

E

[
N∏
i=1

Y (t, xi)

]
=

∫ N∏
i=1

Y (t, xi)P(dY ) =

(
t

t′

)Nα ∫ N∏
i=1

Y (t′, (t/t′)βxi)P(dY )

=

(
t

t′

)Nα
E

[
N∏
i=1

Y (t′, (t/t′)βxi)

]
, (5.78)

where xi ∈ Rn for i = 1, . . . , N with N ∈ N. Let f : R→ R be a homogeneous function of
degree κ > 0 with f(x) ≥ 0 for all x ∈ R. We define submanifolds of Rn via

Xν [Y ](t) := {x ∈ Rn | f(Y (t, x)) ≤ ν} . (5.79)

Then, a.s. we find by Equation (5.77)

Xν [Y ](t) =
{
x ∈ Rn

∣∣∣ f(Y (t′, (t/t′)βx)) ≤ (t/t′)−καν
}

=

(
t

t′

)−β
X(t/t′)−καν [Y ](t′) .

(5.80)
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Scaling of the persistence diagram measure. We demonstrate in the following that
this likely implies scaling of persistence diagram measures computed from point clouds
appropriately sampled from Xν [Y ](t).

Let {Ak} be a convex averaging sequence in Rn, ε > 0. We choose q points xi ∈
Xν [Y ](t) ∩ Ak such that

⋃q
i=1Bε(xi) is a cover of Xν [Y ](t) ∩ Ak. From Xν [Y ](t) ∩ Ak

we sample a point cloud Xν,M [Y ](t, Ak) consisting of a number M of i.i.d. uniformly
distributed points. Then, there exists α > 0 such that E[Xν,M [Y ](t, Ak) ∩Bε(xi)] > α for
all i.

With quantifiably high confidence, homology can be inferred from random point
samples from manifolds as in [241], which includes a range of probability bounds on
point sampling. In particular, by Lemma 5.1 of [241] we then have for δ > 0 that with
probability 1− δ

Xν,M [Y ](t, Ak) ∩Bε(xi) 6= ∅ (5.81)

for all i, given that M > (log q − log δ)/α. Thus, with probability 1− δ we find

Xν,M [Y ](t, Ak) ⊆ Xν [Y ](t) ∩Ak ⊆
⋃

x∈Xν,M [Y ](t,Ak)

B2ε(x) ⊆ (Xν [Y ](t) ∩Ak)⊕B2ε(0) ,

(5.82)

⊕ denoting the Minkowski sum among subsets of Rn. To this end, we have shown that
with probability 1−δ a 2ε-interleaving between point clouds Xν,M [Y ](t, Ak) and sublevels
sets Xν [Y ](t) ∩Ak exists.

For simplicity we denote the filtration of Čech complexes of Xν,M [Y ](t, Ak) by Ct and
the filtration of growing balls around Xν [Y ](t) ∩ Ak, that is, ((Xν [Y ](t) ∩ Ak) ⊕ Br(0))r,
by Dt. We denote the persistence module computed via simplicial homology from Ct by
H∗(Ct) and the persistence module computed via singular homology from Dt by H∗(Dt).
Given the 2ε-interleaving, which exists with probability 1 − δ, we then find an upper
bound for their interleaving distance,

dI(H∗(Ct), H∗(Dt)) = inf{ε | there exists an ε-interleaving between H∗(Ct), H∗(Dt)}

≤ 2ε . (5.83)

Following Theorem 3.5 of [242] we find equality between the bottleneck and the interleav-
ing distance in our case:

dB(H∗(Ct), H∗(Dt)) = inf{ε ∈ [0,∞) | there exists an ε-matching between H∗(Ct), H∗(Dt)}

= dI(H∗(Ct), H∗(Dt)) ≤ 2ε , (5.84)

with an ε-matching defined as in [242]. This implies that ifB ∈ B(∆) fulfills (b, d) ∈ B =⇒
d− b > 4ε, then the persistence diagram measures are related as follows:

ρ(Ct)(B) ≤ ρ(Dt)(B ⊕B2ε(0)) and ρ(Dt)(B) ≤ ρ(Ct)(B ⊕B2ε(0)) , (5.85)
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where the dependence on the sample function Y is implicit here. Thus, we find with
probability 1− δ

ρ(Dt)(B) ≤ ρ(Ct)(B ⊕B2ε(0)) ≤ ρ(Dt)(B ⊕B4ε(0)) (5.86)

and can likely estimate the persistence diagram measure computed from sampled point
clouds, ρ(Ct), from the one of sublevels, directly, ρ(Dt). Employing Equation (5.80), we
find

Xν [Y ](t) ∩Ak =

(
t

t′

)−β
(X(t/t′)−καν [Y ](t′) ∩ (t/t′)βAk) . (5.87)

From this we find the time-dependence of the singular homology groups,

H∗((Xν [Y ](t) ∩Ak)⊕Br(0)) = H∗((X(t/t′)−καν [Y ](t′) ∩ (t/t′)βAk)⊕B(t/t′)βr(0)) . (5.88)

Hence, we find for any B ∈ B(∆):

ρ(Dt)(B) = ρ(D′t,t′)((t/t′)βB) , (5.89)

with D′t,t′ the filtration ((X(t/t′)−καν [Y ](t′) ∩ (t/t′)βAk) ⊕ Br(0))r of topological spaces.
Insertion into Equation (5.85) leads with probability 1− δ to

ρ(D′t,t′)((t/t′)βB) ≤ ρ(Ct)(B ⊕B2ε(0)) ≤ ρ(D′t,t′)((t/t′)βB ⊕B4(t/t′)βε(0)) . (5.90)

For any given ε we can always choose the number of sampled points M sufficiently large
for the described constructions to apply. To this end, the limit ε → 0 may be taken in
Equations (5.86) and (5.90), leading with probability 1− δ for any B ∈ B(∆) to

lim
ε→0

ρ(Ct)(B) = ρ(D′t,t′)((t/t′)βB) = lim
ε→0

ρ(C′t,t′)((t/t′)βB) . (5.91)

Here, C′t,t′ denotes the filtration of Čech complexes of X(t/t′)−καν,M [Y ](t, (t/t′)βAk).

Self-similar scaling of the persistence diagram expectation measure. The scaling of
sublevel set homology groups as in Equation (5.88) still encodes temporally varying
convex averaging sequences (t/t′)βAk. We show that for particular sets of functions Ω the
point clouds sampled make up a stationary point process, then leading via Theorem 5.2.10
to an overall scaling factor of the persistence diagram expectation measure in the infinite-
volume limit, resulting in self-similar scaling of the latter in the form of Definition 5.3.1.
As a byproduct the packing relation is independently from the proof of Theorem 5.3.6
demonstrated for this particular example.

We assume that the samples f ◦ Y resemble stationarity in probability for each time
individually, i.e., for all −∞ ≤ a ≤ b ≤ ∞, x, y ∈ Rn and t ∈ (T0, T1),

P[a ≤ f(Y (t, x)) ≤ b] = P[a ≤ f(Y (t, y)) ≤ b] . (5.92)

Then, any point x ∈ Ak is equally likely included in a point cloud Xν,M [Y ](t, Ak), given
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that Xν,M [Y ](t, Ak) consists of i.i.d. uniformly distributed points in Xν [Y ](t) ∩Ak. To this
end, under assumption (5.92) Y (t, ·) 7→ Xν,M [Y ](t, Ak) defines a stationary point process
on Ak with Y ∈ Ω. Furthermore, the defined point process has all finite moments, again
exploiting that Xν,M [Y ](t, Ak) consists of i.i.d. uniformly distributed points.

Thus, we may apply Theorem 5.2.10 for persistence diagram expectation measures.
Let p(C′t,t′) := E[ρ(C′t,t′)] be the persistence diagram expectation measure computed from
the persistence diagram measures of the filtrations of Čech complexes of point clouds
sampled from sublevel sets with as special case p(Ct) := E[ρ(Ct)]. Implicitly, it depends
on the parameter ε. By Theorem 5.2.10 we obtain that a limiting Radon measure Pt on ∆

exists, such that for any continuous function g on ∆ with compact support,

lim
k→∞

1

λn(Ak)
lim
ε→0

∫
∆
g p(Ct) =

∫
∆
gPt . (5.93)

Regard here that p(Ct) implicitly depends on the Ak. More generally, we find that a Radon
measure Pt,t′ exists, which satisfies the following, again for all continuous functions g on
∆ with compact support:(

t

t′

)nβ ∫
∆
g((t/t′)−βx)Pt,t′(dx )

=

(
t

t′

)nβ
lim
k→∞

1

λn((t/t′)βAk)
lim
ε→0

∫
∆
g((t/t′)−βx) p(C′t,t′)(dx )

= lim
k→∞

1

λn(Ak)
lim
ε→0

∫
∆
g((t/t′)−βx) p(C′t,t′)(dx ) . (5.94)

We employed here Theorem 5.2.10 together with ((t/t′)βAk)k being a convex averaging
sequence. As a limiting case we obtain Pt = Pt,t. Using Equation (5.91), we arrive at

lim
k→∞

1

λn(Ak)
lim
ε→0

∫
∆
g(x) p(Ct)(dx ) = lim

k→∞

1

λn(Ak)
lim
ε→0

∫
∆
g((t/t′)−βx) p(C′t,t′)(dx ) ,

(5.95)
which leads with Equation (5.93) to

∫
∆
g(x)Pt(dx ) =

(
t

t′

)nβ ∫
∆
g((t/t′)−βx)Pt,t′(dx ) . (5.96)

If we assume that in a sufficiently large regime of filtration parameters ν under consider-
ation persistence diagram (expectation) measures are independent from ν, then Pt,t′ is
independent from t′ up to the power-law denoted in the argument of g on the right-hand
side of Equation (5.96). Then, in the limit of large volumes we obtain self-similar scaling
of volume-averaged persistence diagram expectation measures, including an independent
derivation of the packing relation given in Theorem 5.3.6 for the considered example.

5.4.3 Application: Numerical simulations in non-equilibrium quantum physics

Studying quantum physics far from equilibrium, indications for self-similar scaling of
persistence diagram expectation measures have been found in numerical simulations of
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the non-relativistic Bose gas [6] and of a gluonic plasma, see Chapter 4 of this dissertation.
The scaling behavior can be attributed to the existence of a non-thermal fixed point
in the dynamics of the system, characterized by such scaling and typically verified by
investigating the behavior of correlation functions.

We embed the scenario of [6], where in particular the packing relation first appeared,
into the present mathematical framework. The analogous considerations hold for the
considerations of Chapter 4 of this dissertation. The simulations of [6] have been carried
out in the classical-statistical regime of many particles interacting comparably weakly. In
this regime the quantum physics could be accurately mapped to a Gaussian ensemble
of complex-valued fields at initial time t = 0, ψω(0) : Λ → C, ω ∈ Ω, Λ ⊂ R2 a uniform
finite square lattice with constant lattice spacing, which have then been time-evolved
individually according to the Gross-Pitaevskii differential equation in order to obtain
ψω(t) from ψω(0) for all t ∈ [0,∞). This has yielded an ensemble of fields (ψω)ω∈Ω,
ψω : [0,∞)× Λ→ C. Theoretical predictions have been computed as expectation values
with respect to this ensemble of fields.

Given a sample ψω, point clouds have been constructed as subsets of the lattice Λ at
individual times for filtration parameters ν̄ ∈ [0,∞),

Xν̄,ω(t) := |ψω(t)|−1[0, ν̄] ⊂ R2 . (5.97)

Λ being finite, the Xν̄,ω(t) have been finite sets, too. Its alpha complexes and their persis-
tence diagrams have been computed. For an impression of the occurring alpha complexes
at different radii see Figure 5.4.1. Finally, expectations for functional summaries such
as smooth variants of the distribution of birth radii, that is, p(t,Λ)([r1, r2]× [0,∞)), and
dmax(t,Λ) have been computed.8

A scaling-ansatz has been made for the Lebesgue density of the persistence diagram
expectation measure,

p̃(t,Λ)(b, d) = (t/t′)−η2 p̃(t′,Λ)((t/t′)−η1b, (t/t′)−η1d) , (5.98)

resulting in the self-similar scaling of persistent homology quantities. A possible singular
contribution to the persistence diagram expectation measure as it appears in Proposi-
tion 5.2.6 has been ignored. Resulting exponents are summarized in Figure 5.4.2. By
simple application of the transformation theorem we find

n(t, A) = (t/t′)2η1−η2n(t′, A) . (5.99)

Comparing with a family of persistence diagram expectation measures that scales self-
similarly with exponents η′1, η

′
2 but yields the same scaling behavior of geometric quantities,

8Numerically, convolutions with a Gaussian mollifier of arbitrary width, which are necessary to obtain
for instance smoothed distributions of death radii, are irrelevant. Simple binning procedures for such
distributions and averaging over a sufficiently large number of samples allow for a proper computation of
expectation values.
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FIGURE 5.4.1: Alpha complexes of increasing radii from (a) to (d) in the vicinity of a
non-thermal fixed point, reprinted from [6].

FIGURE 5.4.2: Self-similar scaling exponents at a non-thermal fixed point, reprinted
from [6]. η′1 has been introduced here as an independent scaling exponent for death
radii in Equation (5.98).

we obtain η1 = η′1 and via Lemma 5.3.2

η2 = η′2 + 2η′1 . (5.100)

The packing relation given in Theorem 5.3.6 then translates for the Lebesgue density
scaling exponents to η2 = (2 + n)η1, in accordance with Figure 5.4.2.

In the simulations the underlying mathematical assumptions of this work could be
approximately shown numerically, in particular stationarity and ergodicity of the cor-
responding point process. First, it has been checked that varying the distance between
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neighboring lattice sites does not affect the obtained results, which is theoretically moti-
vated by existing stability theorems for persistent homology [68, 69, 242]. To this end, the
specific microscopic lattice geometry can be regarded as unimportant for the displayed
results. Furthermore, for the chosen initial ensemble of fields, ψω(0), physical quantities
have numerically revealed (approximate) translation invariance across the lattice, reflect-
ing stationarity. It is easy to verify numerically that classical-statistical simulations are
ergodic in the sense of recovering expectation values for intensive quantities from single
samples in the limit of large lattices.9

5.5 Summary and further questions

In this chapter we have studied the persistent homology of point processes, which has
provided a mathematically versatile framework to discuss the persistent homology of
point clouds in a probabilistic setting. We have constructed measures on the space of
persistence diagrams and their expectations, which have facilitated a notion of ergodicity
for persistent homology. The strong law of large numbers for persistent Betti numbers has
been extended to more general convex averaging sequences.

We have introduced self-similar scaling for time-dependent persistence diagram ex-
pectation measures. In the given framework the notion of bounded total persistence
has yielded a relation between the occurring scaling exponents, which originated from
a bound on the packing of cycles representing persistent homology classes into a time-
independent volume. The packing relation has been exemplified for a time-dependent
Poisson point process, for certain function sublevel sets, and for numerical simulations in
non-equilibrium quantum physics.

From the mathematical viewpoint, a number of further questions can be of interest for
later investigations:

1. The self-similar scaling behavior of the persistence diagram expectation measure of a
time-dependent Poisson point process and of scaling function sublevel sets has been
derived without using the packing relation, though confirming the latter. While the
packing relation as derived in this chapter only holds for filtrations of complexes
with persistent homology groups isomorphic to those of the Čech complex filtration,
the derivation for the Poisson point process holds more generally. This raises the
question if the packing relation can be extended to more general situations. A related
question is if the ergodicity assumption, which has been crucial at various points for
the derivations, can be relaxed.

2. In the application we describe temporally self-similar scaling of persistence diagram
expectation measures has been found. In this case, however, also the correlation
functions of the point clouds show self-similar scaling [6]. Do there exist other time-
dependent point processes, for which persistence diagram expectation measures
show self-similar scaling but the correlation functions do not? This would provide
further motivation for other applications in the natural sciences.

9In the field of quantum dynamics this property is better known as self-averaging.
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3. With respect to applications an extension of our results to filtrations of weighted
simplicial complexes would be of interest.

For a brief discussion of related prospective applications of the results of this chapter in
physics we refer to Chapter 8.

Appendix

5.A Bounded total persistence

In this appendix we discuss the concept of bounded total persistence, as introduced
in [69]. With (M,d) a compact, triangulable metric space, let f : M → R be a Lipschitz
function with Lip(f) = inf{c ∈ R | |f(x) − f(y)| ≤ c d(x, y) ∀x, y ∈ M} its Lipschitz con-
stant. We denote the `-th persistence diagram computed via singular homology from
the filtration of sublevel sets of a Lipschitz function f by Dgm`(f) and call f tame, if
all its persistence diagrams are finite. Let K be a finite simplicial complex triangulat-
ing M via a triangulation homeomorphism ϑ and set mesh(K) := maxσ∈K diam(σ),
diam(σ) := maxx,y∈σ d(ϑ(x), ϑ(y)) the diameter of a simplex σ. For r > 0 we define
N(r) := minmesh(K)≤r #K. We consider the total persistence diagram ∪`Dgm`(f) of a
Lipschitz function f , and define the degree-k total persistence of f as

Persk(f) :=
∑

x∈∪`Dgm`(f)

pers(x)k . (5.101)

Proposition 5.A.1 (Technical results from [69]). Assume that the size of the smallest triangula-
tion of a triangulable, compact metric space M grows polynomially with one over the mesh, i.e.,
there exist C0,m, such that N(r) ≤ C0/r

m for all r > 0. Let δ > 0 and k = m+ δ. Then,

Persk(f) ≤ m+ 2δ

δ
C0 Lip(f)mAmp(f)δ , (5.102)

where Amp(f) := maxx∈M f(x)−miny∈M f(y) is the amplitude of f .

For M a compact Riemannian n-manifold there exist constants c, C, such that c/rn ≤
N(r) ≤ C/rn for sufficiently small r. A compact metric spaceM implies bounded degree-k
total persistence, if there exists CM > 0, such that Persk(f) ≤ CM for every tame function
f : M → R with Lip(f) ≤ 1.

5.B Functional summaries

Persistence diagrams themselves do not naturally lead to statistical goals [243]. Instead,
functional summaries of persistence diagrams such as persistence landscapes [70] have
been proposed for their statistical analysis [244]. In recent years, a multitude of different
functional summaries have been developed across the literature [244–247].
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In this appendix we introduce the notion of functional summaries. Different types of
functional summaries accompanied by corresponding limit theorems then lead to proofs
of Propositions 5.2.13 and 5.2.14.

5.B.1 Additive functional summaries and persistence diagram measures

Let T be a compact metric space and F (T ) a collection of functions, f : T → R. A
functional summary F is a map F : D → F (T ). We call a functional summary F additive,
if for any two persistence diagramsD,E ∈ D withD+E defined as the union of multisets
the equation F(D + E) = F(D) + F(E) is fulfilled.10 We denote the set of additive
functional summaries by A (T ).

A functional summary F is uniformly bounded, if a constant U <∞ exists, such that

sup
f∈im(F)

sup
s∈T
|f(s)| ≤ U . (5.103)

The following proposition on the pointwise convergence of uniformly bounded functional
summaries has been given in the literature [244].

Proposition 5.B.1 (Pointwise convergence of functional summaries [244]). Let F be a
uniformly bounded functional summary and Di ∈ D for i ∈ N, sampled i.i.d. from a probability
space (D ,B(D),PD). Set fi := F(Di). If im(F) is equicontinuous, then a.s. for n→∞

sup
s∈T

∣∣∣∣∣ 1

m

m∑
i=1

fi(s)− E[F(D)(s)]

∣∣∣∣∣→ 0 . (5.104)

We restrict to uniformly bounded and equicontinuous functional summaries, such that
Proposition 5.B.1 applies.

In the framework of functional summaries persistence diagram (expectation) measures
as constructed in Section 5.2.3 naturally show up.

Proposition 5.B.2. Let A ∈ A (T ) be an additive functional summary, s ∈ T and A ∈ Bnb .
Let Yω(A) ⊂ ∆ be the multiset of atoms of ρω(A). In the evaluation of A the related persistence
diagram measure ρ appears,

A(Yω(A))(s) =
∑

x∈Yω(A)

A({x})(s) =

∫
∆
A({x})(s) ρω(A)(dx ) . (5.105)

Proposition 5.B.3. Assume that the persistence diagram expectation measure p exists. Then, for
any functional summary F ∈ F (T ), s ∈ T and A ∈ Bnb , we have

E
[∫

∆
F({x})(s) ρω(A)(dx )

]
=

∫
∆
F({x})(s) p(A)(dx ) . (5.106)

Proof. This statement is clear from the theory of point processes and their moment
measures [229]. Note that for any A ∈ Bnb there exists a bounded B ⊂ ∆, such that

10In [204, 248] additive functional summaries have been introduced similarly as so-called linear representa-
tions of persistence diagrams.
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supp(ρω(A)) ⊆ B for any ω ∈ Ω. Then∫
∆
F({x})(s) ρω(A)(dx ) =

∫
∆
F({x})(s)χB(x) ρω(A)(dx ) (5.107)

with indicator function χB , and F(·)(s)χB has bounded support.

5.B.2 Intensive functional summaries

Definition 5.B.4. Let ξ be a stationary and ergodic simple point process on Rn and F : D →
F (T ) a functional summary. We say that F is ξ-intensive, if for any convex averaging sequence
{Ak}, ε > 0 and k sufficiently large we a.s. have

lim
l→∞
||F(Dl)−F(Dk)||∞ < ε , (5.108)

where || · ||∞ denotes the supremum norm and Dk :=
⋃n−1
`=0 Dgm`(Xξω(Ak)).

Lemma 5.B.5. Let A ∈ A (T ) be an additive functional summary and ξ a stationary and ergodic
simple point process on Rn. Set Dk :=

⋃n−1
`=0 Dgm`(Xξω(Ak)), where {Ak} is a convex averaging

sequence. Then A(Dk)/λn(Ak) a.s. defines a ξ-intensive functional summary.

Proof. Set Xk := Xξω(Ak). Let s ∈ T and k, l ∈ N,∣∣∣∣A(Dl)(s)

λn(Al)
− A(Dk)(s)

λn(Ak)

∣∣∣∣
=

n(Xk)

λn(Ak)

∣∣∣∣(λn(Ak)

n(Xk)

n(Xl)

λn(Al)
− 1

)
A(Dl)(s)

n(Xl)
−
(
A(Dk)(s)

n(Xk)
− A(Dl)(s)

n(Xl)

)∣∣∣∣
≤ n(Xk)

λn(Ak)

∣∣∣∣λn(Ak)

n(Xk)

n(Xl)

λn(Al)
− 1

∣∣∣∣ |A(Dl)(s)|
n(Xl)

+
n(Xk)

λn(Ak)

∣∣∣∣A(Dk)(s)

n(Xk)
− A(Dl)(s)

n(Xl)

∣∣∣∣ .
(5.109)

By Lemma 5.2.4 we have that ξ is ergodic in persistence. Thus, for ε > 0 there exist
sufficiently large k, l such that a.s.∣∣∣∣1− n(Xl)

n(Xk)

λn(Ak)

λn(Al)

∣∣∣∣ < ε . (5.110)

Furthermore, by Theorem 5.2.10 a c∗ > 0 exists, such that for all k: n(Xk)/λn(Ak) < c∗. By
uniform boundedness of the functional summary there exists a constant U <∞, such that
for any persistence diagram Dk,

sup
s∈T
|A(Dk)(s)| < U . (5.111)

By additivity of Awe obtain that A(Dk)(s)/n(Xk) converges for k →∞ and every s. To
this end, for sufficiently large k, l we find∣∣∣∣A(Dk)(s)

n(Xk)
− A(Dl)(s)

n(Xl)

∣∣∣∣ < ε . (5.112)
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Estimating Equation (5.109) further, we obtain for sufficiently large k, l:∣∣∣∣A(Dl)(s)

λn(Al)
− A(Dk)(s)

λn(Ak)

∣∣∣∣ < (1 + U)c∗ε . (5.113)

Indeed, the A(Dk)/λn(Ak) a.s. define a ξ-intensive functional summary.

Corollary 5.B.6. Given the assumptions of Lemma 5.B.5, A(Dk)/n(Dk) is a ξ-intensive func-
tional summary. This is a direct result of

A(Dk)

n(Dk)
=
λn(Ak)

n(Dk)

A(Dk)

λn(Ak)
, (5.114)

both factors being ξ-intensive functional summaries.

Asymptotically, for ξ-intensive functional summaries the ensemble-average can be
replaced by the infinite-volume limit.

Proposition 5.B.7. Let ξ be a stationary and ergodic simple point process on Rn. Let F be a
ξ-intensive functional summary and {Ak} a convex averaging sequence. Choose i.i.d. samples ωi ∈
Ω, i ∈ N, according to the probability distribution P and define Dk,i :=

⋃n−1
`=0 Dgm`(Xξωi

(Ak)).
Then for any j ∈ N, ε > 0 and sufficiently large k we a.s. find

sup
s∈T

∣∣∣∣∣ liml→∞
F(Dl,j)(s)− lim

m→∞

1

m

m∑
i=1

F(Dk,i)(s)

∣∣∣∣∣ < ε . (5.115)

Proof. Let s ∈ T , ε > 0, j ∈ N, Dk :=
⋃n−1
`=0 Dgm`(Xξ(Ak)). Since F is ξ-intensive, further

exploiting Proposition 5.B.3 and Theorem 5.2.10, we a.s. obtain for sufficiently large k∣∣∣∣ liml→∞
F(Dl,j)(s)− E[F(Dk)(s)]

∣∣∣∣ < ε

2
. (5.116)

Similarly, Proposition 5.B.1 a.s. yields for sufficiently large k∣∣∣∣∣E[F(Dk)(s)]− lim
m→∞

1

m

m∑
i=1

F(Dk,i)(s)

∣∣∣∣∣ < ε

2
. (5.117)

Putting things together, we a.s. find∣∣∣∣∣ liml→∞
F(Dl,j)(s)− lim

m→∞

1

m

m∑
i=1

F(Dk,i)(s)

∣∣∣∣∣
≤
∣∣∣∣ liml→∞

F(Dl,j)(s)− E[F(Dk)(s)]

∣∣∣∣+

∣∣∣∣∣E[F(Dk)(s)]− lim
m→∞

1

m

m∑
i=1

F(Dk,i)(s)

∣∣∣∣∣ < ε .

(5.118)
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5.B.3 Proofs of Proposition 5.2.13 and Proposition 5.2.14

Given the preceding statements on functional summaries, we can now prove Propositions
5.2.13 and 5.2.14.

Proof of Proposition 5.2.13. The statement directly follows from Proposition 5.B.3.

Proof of Proposition 5.2.14. The final statement on finiteness of dmax(A) and lq(A) is clear
for any A ∈ Bnb . For ω ∈ Ω and A ∈ Bnb we define

Lq,ω(A) :=

∫
∆

pers(x)qρω(A)(dx ) . (5.119)

Certainly, Lq is an additive functional summary. Under the assumptions of the proposi-
tion, Corollary 5.B.6 holds. Therefore Lq,ω(A)/nω(A) constitutes a ξ-intensive functional
summary. Let {Ak} be a convex averaging sequence and for all i ∈ N choose i.i.d. ωi ∈ Ω.
For any j ∈ N we a.s. obtain by means of Proposition 5.B.1, Corollary 5.B.6 and Proposi-
tion 5.B.7 for ε > 0 and sufficiently large k:

∣∣∣∣E[lq,ω(Ak)
q]− lim

k′→∞
lq,ωj (Ak′)

q

∣∣∣∣ =

∣∣∣∣∣ lim
m→∞

1

m

m∑
i=1

lq,ωi(Ak)
q − lim

k′→∞
lq,ωj (Ak′)

q

∣∣∣∣∣ < ε .

(5.120)
Now,

lq,ωj (Ak′)
q =

Lq,ωj (Ak′)

nωj (Ak′)
=

λn(Ak′)

nωj (Ak′)

Lq,ωj (Ak′)

λn(Ak′)
. (5.121)

Each of the two factors on the right-hand side is a ξ-intensive functional summary accord-
ing to Lemma 5.B.5. By the same arguments, we get for sufficiently large k

ε

2
>

∣∣∣∣∣E[lq,ω(Ak)
q]1/q −

(
lim
k′→∞

λn(Ak′)

nωj (Ak′)
lim
k′→∞

Lq,ωj (Ak′)

λn(Ak′)

)1/q
∣∣∣∣∣ . (5.122)

Thus we find again for sufficiently large k

ε >

∣∣∣∣∣∣E[lq,ω(Ak)
q]1/q −

(
λn(Ak)

limm→∞
1
m

∑m
i=1 nωi(Ak)

lim
m→∞

1

m

m∑
i=1

Lq,ωi(Ak)

λn(Ak)

)1/q
∣∣∣∣∣∣+

ε

2

>

∣∣∣∣∣E[lq,ω(Ak)
q]1/q −

(
λn(Ak)

E[nωi(Ak)]
E
[
Lq,ωi(Ak)

λn(Ak)

])1/q
∣∣∣∣∣

=
∣∣∣E[lq,ω(Ak)

q]1/q − lq(Ak)
∣∣∣ . (5.123)

Finally, we find

ε >

∣∣∣∣∣E[lq,ω(Ak)
q]1/q −

(
lim
k′→∞

lq,ωj (Ak′)
q

)1/q
∣∣∣∣∣ =

∣∣∣∣E[lq,ω(Ak)
q]1/q − lim

k′→∞
lq,ωj (Ak′)

∣∣∣∣
=
∣∣∣E[lq,ω(Ak)

q]1/q − E[lq,ω(Ak)]
∣∣∣ , (5.124)
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completing the proof for lq(Ak). The proof of |dmax(A) − E[dmax,ω(A)]| < ε proceeds
similarly. Defining for all Bnb and q > 0

dq,ω(A) :=

∫
∆
d(x)qρω(A)(dx ) , (5.125)

we note that via Equation (5.33)

lim
q→∞

(
dq,ω(A)

nω(A)

)1/q

= dmax,ω(A) . (5.126)

On the other hand, dq,ω(A)/nω(A) defines a ξ-intensive functional summary. Then, argu-
ments analogously to those for lq(A) and monotone convergence lead for sufficiently large
k to

|dmax(Ak)− E[dmax,ω(Ak)]| < ε . (5.127)

Let p, q 6= 0. Then, dmax,ω(Ak)
p/lq,ω(Ak)

q constitutes a ξ-intensive functional summary.
As such, Propositions 5.B.1 and 5.B.7 apply and yield Equation (5.38).

5.C Proofs of limit theorems for convex averaging sequences

In this appendix we provide the proofs for Theorems 5.2.10 and 5.2.11. First, necessary
results from convex geometry are revisited.

Theorem 5.C.1 (Steiner’s formula [232]). Let C be a convex body in Rn. Then for δ ≥ 0:

λn(C ⊕ δB1(0)) = λn(C) +
n∑
i=1

(
n

i

)
Wi(C)δi , (5.128)

where Wi(C) are the quermassintegrals, given in Equation (5.6).

Using Aleksandrov-Fenchel inequalities from convex geometry in terms of the quer-
massintegrals, an upper bound for the quermassintegrals can be given.

Theorem 5.C.2 (Theorem 2 in [249] rephrased for quermassintegrals). Let K ⊂ Rn be a
convex body. Then, for any 0 ≤ j ≤ n

Wn−j(K) ≤ njκn−j

j!
(
n
j

)
κjn−1

Wn−1(K)j , (5.129)

with κj the volume of a j-dimensional unit ball.

Proof of Theorem 5.2.10. We largely follow the strategy of [71]. The key step is that we
construct a tessellation by cubes for each convex set Ak, which allows us to prove a
statement on the convergence of persistent Betti numbers of point clouds in the sets Ak.
The lengthy proof proceeds in three steps. First, we employ Theorem 1.11 in [71] to obtain
persistent Betti numbers for large cubic volumes in Rn. Second, we construct a tessellation
by cubes for each Ak and use methods from convex geometry to obtain a statement on the
convergence of persistent Betti numbers of point clouds in the sets Ak. Third, we assemble
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the results to obtain the desired statement for measures, similarly to the derivation of
Theorem 1.5 in [71].

First step. Let βr,s` (C(X)) be the `-th persistent Betti numbers of the Čech complex
filtration of a point cloud X ⊂ Rn. We define for any A ∈ Bnb ,

ψ(A) = E[βr,s` (C(Xξω(A)))] (5.130)

for some r ≤ s. For each L > 0 let ΛL := [0, L]n be the cube of side length L. For any Ak in
the convex averaging sequence there exists a unique L′k, such that λn(Ak) = λn(ΛL′k) =

(L′k)
n. We set

Lk := sup{L | ∃x ∈ Rn : ΛL + x ⊆ Ak} . (5.131)

Note that by construction Lk ≤ L′k, and {ΛLk | k} as well as {ΛL′k | k} are convex averaging
sequences, too. Given ε > 0, by means of Thm. 1.11 in [71] we find for sufficiently large
k,m ∣∣∣∣∣ψ(ΛL′k)

(L′k)
n
− ψ(ΛLm)

Lnm

∣∣∣∣∣ < ε . (5.132)

Second step. We want to show that for sufficiently large k,m:∣∣∣∣ ψ(Ak)

λn(Ak)
− ψ(ΛLm)

Lnm

∣∣∣∣ < ε . (5.133)

In order to establish this, we investigate the scaling behavior of quermassintegrals Wi(Ak)

with the volume of Ak. For this purpose, we construct a tessellation made up from cubes.
Using the n-dimensional lattice

LM · Zn = {(LMz1, . . . , LMzn) | zi ∈ Z} (5.134)

with 0 < M ∈ N arbitrary, we set

Λ(Ak) :=
⋃

x∈(LM ·Zn)∩Ak

(
ΛLM + x

)
. (5.135)

By boundedness of eachAk, (LM ·Zn)∩Ak is finite for all k. If we already findAk ⊆ Λ(Ak),
we define Ck := Λ(Ak). If on the other hand Bk := Ak \ Λ(Ak) 6= ∅, we choose x1 ∈ Bk.
For x1 there exist finitely many x′i ∈ LM ·Zn, i = 1, . . . , N ′, such that x1 ∈ ΛLM + x′i for all
i = 1, . . . , N ′. We define

Λ1(Ak) := Λ(Ak) ∪
N ′⋃
i=1

(ΛLM + x′i), Bk,1 := Ak \ Λ1(Ak) . (5.136)

By boundedness of Ak, we can inductively repeat this construction finitely many times,
until Bk,N := Ak \ ΛN (Ak) = ∅, i.e., Ak ⊆ ΛN (Ak). Then we set Ck := ΛN (Ak). The Ck
give the desired tessellation. Since Ak ⊆ Ck, it follows by monotonicity of the quermassin-
tegrals [232] that

Wi(Ak) ≤Wi(Ck). (5.137)



96 Point processes via persistent homology

By construction, we find Ck ⊆ Ak ⊕
√
nLMB1(0). Thus, using Equation (5.137) and

Steiner’s formula, i.e., Theorem 5.C.1, we obtain

λn(Ck) ≤ λn(Ak ⊕
√
nLMB1(0)) = λn(Ak) +

n∑
i=1

(
n

i

)
(
√
nLM )iWi(Ak) . (5.138)

By Theorem 5.C.2 constants κn,j > 0 exist, such that for 0 ≤ j ≤ n: Wn−j(Ak) ≤
κn,jWn−1(Ak)

j . Exploiting that we restrict to sequences {Ak}with their (n− 1)-th quer-
massintegrals scaling as Wn−1(Ak) = O(λn(Ak)

1/n) = O(L′k) for large k, we thus find for
0 ≤ j ≤ n that

Wn−j(Ak) = O((L′k)
j) . (5.139)

Using Equations (5.138) and (5.139), we obtain an estimate for the volume difference
between Ck and Ak,

|λn(Ck)− λn(Ak)| ≤

∣∣∣∣∣
n∑
i=1

(
n

i

)
Wi(Ak)(

√
nLM )i

∣∣∣∣∣ = O((L′k)
n−1LM ) . (5.140)

Hence, ∣∣∣∣λn(Ck)

λn(Ak)
− 1

∣∣∣∣ = O
(
LM (L′k)

−1
)
→ 0 as k →∞ . (5.141)

For later use we state the following∣∣∣∣ ψ(Ck)

λn(Ak)
− ψ(ΛLm)

Lnm

∣∣∣∣ ≤ ∣∣∣∣(λn(Ck)

λn(Ak)
− 1

)
ψ(Ck)

λn(Ck)

∣∣∣∣+

∣∣∣∣ ψ(Ck)

λn(Ck)
− ψ(ΛLm)

Lnm

∣∣∣∣ . (5.142)

There exists K1 ∈ N, such that for all k ≥ K1 the first term is bounded by ε/2 (due to
Equation (5.141)). Applying the same argument as in the proof of Theorem 1.11 in [71] for
the second term, which is applicable since only cubes appear in it, there exists a K2 ∈ N,
such that the second term is bounded from above by ε/2 for all k ≥ K2. Thus, the left-hand
side of Equation (5.142) converges to zero for k,m→∞.

Equation (5.142) provides the necessary inequality to continue with arguments of the
proof of Theorem 1.11 in [71]. Starting from

|βr,s` (C(Xξω(Ck)))− βr,s` (C(Xξω(Ak)))| ≤
`+1∑
j=`

Fj(ξ, s;Ck \Ak)) , (5.143)

where again Fj(ξ, r;A) is the number of j-simplices in Čr(Xξ(Rn)) with at least one vertex
in A (see the proof of Lemma 5.2.9), we have

E[Fj(ξ, s;Ck \Ak))] = O(λn(Ck \Ak)) . (5.144)

Again using Equation (5.141), we obtain∣∣∣∣ ψ(Ck)

λn(Ak)
− ψ(Ak)

λn(Ak)

∣∣∣∣ = O(λn(Ck \Ak)λn(Ak)
−1)→ 0 as k →∞ . (5.145)
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Assembling Equations (5.142) and (5.145), we finally get∣∣∣∣ ψ(Ak)

λn(Ak)
− ψ(ΛLm)

Lnm

∣∣∣∣ ≤ ∣∣∣∣ ψ(Ck)

λn(Ak)
− ψ(ΛLm)

Lnm

∣∣∣∣+

∣∣∣∣ ψ(Ck)

λn(Ak)
− ψ(Ak)

λn(Ak)

∣∣∣∣→ 0 (5.146)

for k,m→∞. Therefore the desired inequality (Equation (5.133)) holds.
Third step. Using Equations (5.132) and (5.133), we find for sufficiently large k,m∣∣∣∣∣ψ(ΛL′k)

(L′k)
n
− ψ(Ak)

λn(Ak)

∣∣∣∣∣ ≤
∣∣∣∣∣ψ(ΛL′k)

(L′k)
n
− ψ(ΛLm)

Lnm

∣∣∣∣∣+

∣∣∣∣ψ(ΛLm)

Lnm
− ψ(Ak)

λn(Ak)

∣∣∣∣ < 2ε . (5.147)

Hence, Theorem 1.11 of [71] holds for any convex averaging sequence {Ak} instead of
{ΛL}, that is, there exists a constant β̂r,s` such that

ψ(Ak)

λn(Ak)
→ β̂r,s` for k →∞ . (5.148)

The proof of Theorem 1.5 in [71] holds now equally in this more general case. Indeed, on
∆ a unique Radon measure P exists with the property

1

λn(Ak)
E[ρω(Ak)]

v−→ P for k →∞ . (5.149)

We now deliver the proof of the strong law of large numbers for persistent Betti
numbers using general convex averaging sequences.

Proof of Theorem 5.2.11. The first statement follows directly from the proof of Theorem 5.2.10.
For the second statement, we construct a tessellation Ck for each of the Ak as in the proof
of Theorem 5.2.10. Then we get∣∣∣∣βr,s` (C(Xk))

λn(Ak)
− ψ(Ak)

λn(Ak)

∣∣∣∣ ≤ ∣∣∣∣βr,s` (C(Xk))

λn(Ak)
−
βr,s` (C(Xξ(Ck)))

λn(Ak)

∣∣∣∣
+

∣∣∣∣βr,s` (C(Xξ(Ck)))

λn(Ak)
− ψ(Ck)

λn(Ak)

∣∣∣∣+

∣∣∣∣ ψ(Ck)

λn(Ak)
− ψ(Ak)

λn(Ak)

∣∣∣∣ .
(5.150)

We estimate the first term on the right-hand side via Equation (5.143) as follows,

∣∣∣∣βr,s` (C(Xk))

λn(Ak)
−
βr,s` (C(Xξ(Ck)))

λn(Ak)

∣∣∣∣ ≤ `+1∑
j=`

Fj(ξ, s;Ck \Ak)
λn(Ak)

. (5.151)

By means of ergodicity and Equation (5.144) we obtain for sufficiently large k

Fj(ξ, s;Ck \Ak)→ E [Fj(ξ, s;Ck \Ak)] = O(λn(Ck \Ak)) . (5.152)

Thus, the first term on the right-hand side of Equation (5.150) converges to zero for
k →∞. The Ck being made up from cubes which intersect only at mutual boundaries, the
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subsequent second term converges to zero for k →∞ by means of ergodicity (see proof of
[71, Theorem 1.11]). The third term converges to zero for k →∞ due to Equation (5.145).
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Part II

Dynamics of non-Abelian gauge
theories and geometry

Non-Abelian gauge theories are a cornerstone of the Standard Model of par-
ticle physics. They feature confinement, which we explore with topological
methods. In fact, one can derive much of the Standard Model structure from
quantum fields on projective space-time geometries as we show.
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Chapter 6

Confinement in non-Abelian lattice
gauge theory via persistent homology

This chapter is based on the following article:

• Spitz, D., Urban, J. M., and Pawlowski, J. M., “Confinement in non-Abelian lattice
gauge theory via persistent homology”, Phys. Rev. D, vol. 107, no. 3, p. 034 506, 2023.
arXiv: 2208.03955 [hep-lat].

Most of the present chapter is taken from this publication, for which I wrote major
parts of the text, extensively contributed to the structure of the study and the interpretation
of the results, and carried out the persistent homology and correlation function analyses.

6.1 Introduction

Many non-perturbative phenomena are driven by topological configurations or rather
their density, or are accompanied by qualitative changes in the latter. This makes topol-
ogy changes an ideal probe for investigating the mechanisms and signatures of these
phenomena, ranging from (topologically driven) phase transitions to non-perturbative
scalings as seen in the presence of topological tunneling effects in the anharmonic oscil-
lator. A prominent and important example is QCD, whose confinement-deconfinement
phase transition is accompanied by a rapid change in the topological density, and anoma-
lous chiral symmetry breaking is closely related to instantons, which are stable, classical
(minimal-action) configurations. Topological confinement mechanisms have been sug-
gested, based on topological defects in QCD such as vortices and monopoles. While not
being finite-action configurations in QCD, monopoles and vortices naturally emerge as
constituents of instantons. For the discussion of finite temperature instantons (calorons),
see e.g. [250–253]. More generically, instanton constituents of different topological types
emerge on general compact manifolds [254–257], which may be seen as a simulation with
a given topological density.

At finite temperature, instanton-dyons interact with holonomies (Polyakov loops) [251–
253], and have been identified in pure lattice gauge theory and lattice QCD [258–262].
Ensembles of instanton-dyons can often readily explain confinement [263–268], even for
theories with exceptional gauge groups exhibiting a trivial center such as G(2) [269–271],
yet consistently giving rise to center symmetry breaking for theories with non-trivial
center. Local correlations exist between topological hotspots and values of the Polyakov

http://dx.doi.org/10.1103/PhysRevD.107.034506
http://dx.doi.org/10.1103/PhysRevD.107.034506
http://arxiv.org/abs/2208.03955
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loop trace [272]. Moreover, instantons and instanton-dyons can be linked to spontaneous
chiral symmetry breaking in QCD if sufficiently dense [273–275].

Evidently, phase transitions go hand in hand with a topology change in the vacuum
manifold, and more generally that of equipotential hypersurfaces [276–279]. Persistent
homology has been developed to detect topological structures in finite, noisy data [200],
accompanied by profound mathematical works on their stability [68, 69, 242] and benign
statistical behavior, see [71] and Chapter 5 of this dissertation. In light of topology changes
of equipotential hypersurfaces in the realm of phase transitions, emergent topological
structures have been searched for numerically via persistent homology in configuration
space [72]. Since the scalability of this approach to larger systems is unclear, studies of a
variety of condensed matter and spin systems have since been focusing on persistent ho-
mology as sensitive observables in their own right [73–77, 79, 280, 281]. Using a specifically
tailored filtration constructed from plaquettes, center vortices have been probed in SU(2)

lattice gauge theory [80]. Effective QCD models have also been investigated [192, 193].
Further persistent homology applications in physics include non-thermal fixed points, see
[6] and Chapter 4 of this dissertation, quantum entanglement [282], physical chemistry
and amorphous materials [283, 284], the cosmic web [285–287], and non-Gaussianities in
cosmic microwave background fluctuations [288, 289]. Quantum algorithms for the com-
putation of persistent homology have also been developed [290]. Furthermore, topological
neural network layers can be constructed using persistent homology [291, 292].

Typically, the study of classical field configurations in lattice gauge theories requires the
application of cooling/smoothing techniques, as well as sophisticated gauge-fixing and
-projection procedures [95]. To identify instanton-dyons on the lattice, overlap fermions
may be used as probes [293]. In the present chapter we set out to study finite-temperature
pure SU(2) gauge theory on a four-dimensional Euclidean lattice via observables con-
structed from persistent homology. All of the investigated order parameters are gauge-
invariant. In addition, our approach is not biased towards particular classical field con-
figurations. The Hybrid/Hamiltonian Monte Carlo (HMC) algorithm [294] is employed
to generate samples. To relate structures occurring in the full quantum theory to clas-
sical field configurations, a comparison with cooled configurations is provided. Using
persistent homology, we investigate sub- and superlevel set cubical complex filtrations
of different gauge-invariant local observables such as Polyakov loop traces, topological
densities, Polyakov loop algebra element norms, as well as electric and magnetic field
strengths. This allows for diverse insights into the (non-)local structures occurring at dif-
ferent couplings: topological densities form spatial lumps instead of string-like structures,
approximately invariant under cooling in the confined phase and thus (near-)classical.
Probabilistic predictions for the appearance of instantons and instanton-dyons are met by
persistent homology quantifiers. Debye screening discriminates between spatial structures
of electric and magnetic fields. The identification of the approximate critical coupling
is facilitated by the simultaneous appearance of qualitative changes across persistent
homology observables.

This chapter is organized as follows. We review relevant aspects of lattice gauge
theory calculations as well as the Polyakov loop trace as the common confinement order
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parameter in Section 6.2. Section 6.3 deals with the persistent homology of different
Polyakov loop descriptors, and begins with a description of (filtered) cubical complexes
and persistent homology. Results for the traced Polyakov loop filtration, the Polyakov
loop topological density filtration, and the so-called angle-difference filtration of Polyakov
loop algebra element norms are discussed. In Section 6.4, we investigate filtrations of
traced electric and magnetic field strengths, as well as the topological density. Finally, we
summarize in Section 6.5.

6.2 Order parameters from lattice calculations

We provide a brief description of our lattice setup in Section 6.2.1. In Section 6.2.2, we
discuss standard order parameters for the confinement-deconfinement phase transition,
based on the Polyakov loop.

6.2.1 Prerequisites

We consider a four-dimensional Euclidean lattice withN3
s×Nτ sites and periodic boundary

conditions in all directions. We denote the set of all lattice sites by Λ and the spatial N3
s

lattice given by the coordinates (nx, ny, nz, 0) by Λs. Throughout this work, we fix Ns = 32

and Nτ = 8, but aim to investigate different and larger lattice geometries as well as
conduct a detailed analysis of the Nτ -dependence in the future.

The gauge degrees of freedom are described in terms of SU(2)-valued links de-
noted as Uµ(x). Under a local gauge transformation V (x), links transform as Uµ(x) 7→
V (x)Uµ(x)V †(x+ µ̂). With β the inverse coupling squared and the plaquettes Uµν(x) =

Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x), the Wilson gauge action reads

S[U ] =
β

2

∑
x∈Λ

∑
µ<ν

Tr [1− Uµν(x)] . (6.1)

From lattice renormalization group arguments, close to the critical point a linear relation
exists between β and the temperature [295]. We evaluate observables at 16 evenly spaced
points ranging from β = 1.5 to β = 3.0. Throughout this paper, results are given in lattice
units. Field configurations Uµ(x) distributed according to exp(−S[U ]) are generated and
subsequently further decorrelated using the standard HMC algorithm. Details on the
sampling procedure are described in Appendix Section 6.A.1. All expectation values given
in this work are computed as averages of 100 samples for each β. No gauge-fixing is
applied during sampling.

In order to understand the occurring structures in relation to ultraviolet fluctuations,
we repeatedly compare with results from cooled samples. These are obtained by applying
the standard Wilson flow [296], which removes fluctuations by numerically solving a
gradient flow equation that minimizes the Wilson action defined in Equation (6.1), thereby
smoothing the configurations. Further details of our cooling setup can be found in
Appendix Section 6.A.2.
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6.2.2 Confinement in Polyakov loops and their effective potential

Winding around the periodic time direction, the Polyakov loop

P(x) = P
Nτ∏
τ=1

U4(x, τ) , (6.2)

where P indicates path ordering, provides a sensitive order parameter for confinement.
Related to the free energy of static test quarks interacting via gluons, of particular interest
is its trace [297],

P (x) =
1

2
TrP(x) , (6.3)

as well as the expectation value of its absolute volume average,

L =
1

N3
s

〈∣∣ ∑
x∈Λs

P (x)
∣∣〉 . (6.4)

In order to account for the restoration of center symmetry for Polyakov loop observables
in the statistical limit, for their evaluation we augment our Monte Carlo ensembles by
adding duplicate samples with P (x) 7→ −P (x).

In Figure 6.2.1(a) we display two-dimensional single-sample slices of P (x) for three
different values of β, of configurations with and without cooling applied. Throughout
β-values, uncooled samples show many fluctuations on small length scales. For β = 2.5

and β = 3.0, a bias towards non-zero P (x)-values can be recognized. A comparison with
cooled variants shows that for β = 1.5, barely any structural changes can be observed. For
β = 2.5 and β = 3.0, large domains of like-signed P (x)-values are visible after cooling.

Under a center transformation, z ∈ Z(SU(2)) = {±1}, the traced Polyakov loop
transforms non-trivially as P (x) 7→ zP (x). Unbroken center symmetry requires L = 0. If
center symmetry is spontaneously broken, L > 0 is possible. This effect shows up in L(β),
see Figure 6.2.1(b): L(β) ≈ 0 below β ' 2.3 in our calculations, while for β & 2.3 we find
L(β) > 0. This signals spontaneously broken center symmetry above β ' 2.3. We identify
βc ' 2.3 as the (approximate) critical inverse coupling squared,1 similar to previous
works on critical properties of SU(2) lattice gauge theory on lattices of comparable size to
ours [295, 298]. This explains the structures visible in Figure 6.2.1(a): above βc spontaneous
symmetry breaking is responsible for the formation of like-signed P (x)-domains, which
in particular show up in cooled configurations.

All this can be attributed to a second-order phase transition manifesting in the effective
Polyakov loop potential V (L). We schematically display V (L) in Figure 6.2.1(c), where
contributions from a leading-order large-coupling expansion and contributions from the
SU(2) Haar measure (Vandermonde determinant) are taken into account [297]. Linearly
mapping inverse couplings squared to temperatures, V (L) has a global minimum at
L = 0 below βc. L = 0 corresponds to an infinite energy cost to excite a single static test
quark. It thus becomes impossible to excite states which transform non-trivially under

1Note that the value of βc reported in the literature based on the computation of the Binder cumulant is
slightly larger. A precise determination of βc is not the aim of this work, and we merely use the point where
L(β) becomes non-zero as a rough approximation.
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FIGURE 6.2.1: (a): Slices at constant x1 of the Polyakov loop P (x) without cooling
applied (top row) and with cooling applied (bottom row), at different β. (b): Absolute
value of the volume-averaged Polyakov loop expectation value versus β with βc '
2.3 indicated (grey, dashed line). Errors are smaller than marker size. (c): Schematic,
effective Polyakov loop potential in the confined phase (solid line), at the phase
transition (dashed-dotted line) and in the deconfined phase (dashed line), derived
from leading-order contributions of a strong coupling expansion and Haar measure
(Vandermonde determinant) contributions [297]. (d): Probability densities of local
Polyakov loop P (x) values, for uncooled (left) and cooled configurations (right).
Data is given in lattice units.
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gauge transformations, indicating confinement. At βc the minimum becomes degenerate,
leading for β > βc to two global minima at L 6= 0. Spatially, this is reflected by domain
formation [299]. For uncooled and cooled configurations, the probability densities for
local P (x)-values displayed in Figure 6.2.1(d) agree with this phenomenology. Including
quarks, similar probability densities have been computed in [300]; the phase transition
smears out to a crossover at finite baryon densities.

Correlations of multiple traced Polyakov loops are related to the free energy of static
multi-quark configurations and similarly make up interpretable confinement order pa-
rameters [297]. In Section 6.B.1, we discuss two-point function results for Polyakov loop
correlations computed from the lattice data.

Non-trivial topology is related to non-trivial holonomies in the Polyakov loop. For
|x| → ∞ the Polyakov loop is diagonalizable with

lim
|x|→∞

P(x) =

(
exp(2πiµ1) 0

0 exp(2πiµ2)

)
, (6.5)

with µ1 ≤ µ2 and µ1 +µ2 = 0. The holonomies µ1, µ2 are related to the masses 8π2(µ2−µ1)

and 8π2(1 + µ1 − µ2) of SU(2) instanton-dyons, two of which form a Kraan-van Baal-Lee-
Lu (KvBLL) caloron [251–253]. Instanton-dyons as well as calorons are (anti-)self-dual
solutions to the classical Yang-Mills equations: Fµν(x) = ±F̃µν(x), i.e., E(x) = ±B(x).
Holonomy potentials computed from instanton-dyon ensembles can approximately ac-
count for the Polyakov loop effective potential V (L) [268, 270].

Without cooling, calorons and instanton-dyons are specific field configurations difficult
to detect in lattice data. However, the cooling process also unavoidably removes relevant
physical information. This prompts the question whether persistent homology is able to
detect meaningful signatures of the underlying topology in the raw data.

6.3 Geometric structures in Polyakov loops from persistent ho-
mology

Persistent homology provides a means to algorithmically deduce topological structures
from potentially noisy numerical data, including with persistence a measure of their
dominance. In this section, we utilize the persistent homology of different types of
filtrations constructed from Polyakov loops and related algebra fields in order to unravel
relevant (de-)confinement features. The latter include the formation of spatial lumps
of topological density instead of extended, string-like configurations, accompanied by
probabilistic evidence for the occurance of calorons and instanton-dyons. We stress that
all of the involved constructions are gauge-invariant without a priori assumptions on the
type of excitations under study.

We begin in Section 6.3.1 with an intuitive introduction to cubical complexes and
persistent homology. In Section 6.3.2 we discuss persistent homology results of the sublevel
set filtration of topological densities computed from Polyakov loops, first introducing
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the latter. Section 6.3.3 is devoted to signals of the confinement phase transition in the
so-called angle difference filtration applied to Polyakov loop algebra element norms.

6.3.1 A primer on persistent homology via sublevel sets of the traced Polyakov
loop

We introduce concepts of persistent homology with the example of the traced Polyakov
loop field P (x) = (1/2)TrP(x) and its sublevel set filtration of cubical complexes.2 Tech-
nical details of mathematical constructions have been given in Appendix 4.A.

The sublevel sets MP (ν) of P (x) displayed in Figure 6.2.1(a) are subsets of the spatial
lattice,

MP (ν) := P−1(−∞, ν] = {x ∈ Λs |P (x) ≤ ν} . (6.6)

Superlevel sets are defined as

NP (ν) := P−1[ν,∞) = {x ∈ Λs |P (x) ≥ ν} . (6.7)

The lattice Polyakov loop P (x) approximates the continuum Polyakov loop in a cube3

x + [−1/2, 1/2]3. The (point set) topology of MP (ν) and NP (ν) merely amounting to
point counting, we seek to construct spaces reflecting the cubical structures while still
corresponding to MP (ν), NP (ν).

Filtered cubical complexes

Particularly suitable for the algorithmic computation of topological descriptors of pixelized
data are cubical complexes. Let C be the full cubical complex, consisting of one cube
x+[−1/2, 1/2]3 of top dimension (here, three) for each spatial lattice point x. Every 3-cube
comes with all its faces, edges and vertices. In fact, it is a defining property of cubical
complexes to be closed under taking boundaries of any of its top- and lower-dimensional
cubes. The boundary of a 3-cube is the union of all its six faces, the boundary of a 2-cube
(face) is the union of its four boundary edges, the boundary of a 1-cube (edge) consists of
its two endpoints, and the boundary of a 0-cube (point) is empty. The boundary operator
∂ provides the map from a cube to its boundary.

How can we equip the full cubical complex C with the information contained in P ?
We inductively construct a suitable map P̃ : C→ R. While in principle we constructed P̃
already in Appendix 4.D, we repeat the construction here for the Polyakov loop traces at
hand, also for better readability. Any 3-cube C ∈ C has a unique lattice point x at its center.
We set P̃ (C) := P (x). Any 2-cube D ∈ C is contained in the boundary of two 3-cubes. For
all 2-cubes D ∈ C we set

P̃ (D) := min{P̃ (C) |D ∈ ∂C,C ∈ C 3-cube} . (6.8)

2The values of P (x) scattering evenly around zero, we expect similar results for superlevel instead of
sublevel sets.

3To clarify notations: x + [−1/2, 1/2]3 = {y ∈ R3 |y − x ∈ [−1/2, 1/2]3}.
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Similarly, any 1-cube is contained in the boundaries of four 2-cubes, any 0-cube is contained
in the boundaries of six 1-cubes. Equation (6.8) is applied to all 1-cubes instead of 2-cubes
with values induced from 2-cubes, and finally to all 0-cubes with values induced from
1-cubes, until P̃ is defined on all cubes of all dimensions in C. Sublevel sets of P̃ ,

CP (ν) := P̃−1(−∞, ν] = {C ∈ C | P̃ (C) ≤ ν} , (6.9)

are closed under taking boundaries, constituting cubical complexes which correspond to
pixelizations of the lattice sublevel sets MP (ν). We define superlevel set cubical complexes
as

DP (ν) := C−P (−ν) , (6.10)

corresponding to the lattice superlevel sets NP (ν). All these constructions work analo-
gously in higher dimensions.

The sublevel set cubical complexes CP (ν) form a filtration of cubical complexes,

CP (ν) ⊆ CP (µ), whenever ν ≤ µ . (6.11)

With its construction, this filtration is called the lower-star filtration. Analogously, a
filtration of superlevel set cubical complexes occurs,

DP (ν) ⊇ DP (µ), whenever ν ≤ µ . (6.12)

The lattice Λs consisting of finitely many points, these filtrations consist of only finitely
many distinct complexes.

Persistent homology: holes in complexes

Generically, the cubical complexes CP (ν) do not contain a cube for every spatial lattice
point. Holes appear, described by homology groups. Their elements, homology classes,
are constructed comparably to homotopy classes and capture similar topological informa-
tion [201], but are algebraically much better accessible. In particular, homology classes
are also homotopy-invariant, i.e., continuous deformations of holes leave homology
classes invariant. For an impression of low-dimensional homology classes, we refer to
Figure 6.3.1(a). Connected components are described by dimension zero homology classes.
Planar-like holes, circumscribed by a circle which cannot be continuously deformed into
a point within the cubical complex, belong to the dimension one homology group. The
dimension two homology group captures enclosed volumes, described by a 2-sphere.
Higher-dimensional homology classes correspond to analogous higher-dimensional holes.

As in cubical complex filtrations the filtration parameter ν is swept through, homology
classes may be born and die again. Persistent homology captures this. In Figure 6.3.1(b)
we indicate two scenarios for superlevel sets of exemplary functions on a surface. The left
function shows three distinct peaks. For ν larger than the maximum value of the highest
peak the cubical complex is empty with trivial homology. As ν is lowered to exactly the
latter value (indicated in Figure 6.3.1(b), left panel, by the green plane), a zero-dimensional
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FIGURE 6.3.1: (a): Cubical complexes giving rise to homology classes of dimensions
zero to two from left to right. The enclosed volume in dimension two is indicated
in red. (b): Schematically, dimension zero and dimension one persistent homology
classes of superlevel sets of a function with two-dimensional domain. Exemplary
superlevel set cubical complexes are indicated by different colors; birth and death of
corresponding persistent homology classes are indicated by b and d, respectively.

homology class is born, with birth b = ν. Lowering ν further (blue plane), the single 2-cube
turns into an accumulation of 2-cubes, nothing changing in homology. At the ν-value
indicated by the pink plane, a second zero-dimensional homology class is born with the
second peak showing up in the complex. Again, for the first homology class nothing
changes. At the ν-value indicated by the red plane, the two accumulations of 2-cubes
merge into one. The first homology class dies with d = ν its death. We call p = d− b its
persistence. The second homology class dies later upon merging with the third peak (not
indicated). Turning to the right function in Figure 6.3.1(b), for ν-values larger than the one
indicated by the blue plane, different dimension-zero homology classes are born and die
upon merging with each other. For ν corresponding to the blue plane, a circular structure
surrounding a hole appears in the corresponding complex: a one-dimensional homology
class is born. For ν between the pink and red planes, the hole disappears, getting fully
filled by 2-cubes. The homology class dies.

In higher dimensions, dimension zero homology classes can still be imagined as
independent connected components. Dimension one homology classes correspond to
structures such as approximate circles or empty tori surrounded by cubes. Dimension two
homology classes are empty 3-volumes.

The `-th persistence diagram Dgm`(CP ) consists of birth-death pairs (b, d), one for each
independent homology class of dimension ` in a given filtration such as CP . Betti numbers
β`(ν) specify the number of independent `-dimensional homology classes in CP (ν). They
can be obtained from Dgm`(CP ) as

β`(ν) = #{(b, d) ∈ Dgm`(CP ) | b ≤ ν < d} . (6.13)
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FIGURE 6.3.2: Betti number distributions of dimensions zero to two for the sublevel
set filtration of P (x) = TrP(x)/2 for (a) uncooled and (b) cooled configurations.

From Dgm`(CP ) we may also obtain statistics such as the number of independent homol-
ogy classes with a given birth b, B`(b), or the number of independent homology classes
with a given persistence p, P`(p). Note that homology classes can have infinite persistence.
For instance, the full cubical complex C is one connected component. Also, periodic
boundaries turn the full complex C into a 3-torus which has three independent dimension
one and three independent dimension two homology classes, and even a one-dimensional
homology group in dimension three.

Statistically evaluating expectation values, throughout this work persistent homology
quantifiers are computed from individual samples and subsequently averaged. The
investigated persistent homology descriptors can be consistently defined in a statistical
setting with limit theorems for large-volume asymptotics existing, see [71] and Chapter 5
of this dissertation. Well-defined thermodynamic limits actually require the latter.

Importantly, persistence diagrams are stable against small perturbations of the input
function P [68, 69, 242], which facilitates the numerics. We again compute persistent
homology of cubical complexes with periodic boundary conditions using the Python and
C++ interfaces of the versatile computational topology library GUDHI [203].

Traced Polyakov loop results

Numerical Betti number distributions of different dimensions of the sublevel set filtration
CP (ν) are displayed in Figure 6.3.2 for configurations without and with cooling applied,
for all inverse couplings squared from β = 1.5 to β = 3.0. All Betti number distributions
show a distinct peak, whose position consistently shifts to larger filtration parameters ν
with increasing homology class dimensions. This is characteristic to sublevel set filtrations:
lowest in the filtration, connected components form in order to merge into extended
circular structures at larger filtration parameters, similar to Figure 6.3.1(b). Typically,
enclosed voids form out of pitted, hollow networks of cubes with many dimension one
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homology classes dying in order to form a dimension two homology class. This behavior
usually continues to higher dimensions.

Without cooling, we observe from Figure 6.3.2(a) that Betti number distributions
approximately lay on top of each other for β . βc ' 2.3. For β & βc and throughout
dimensions, peaks diminish in height with β and broaden. In particular, in dimensions
zero and two, an additional bump occurs on the peak side pointing towards filtration
parameter zero. As seen in Figure 6.3.2(b), cooling enhances these effects. The peaks
already decrease in height for β > 1.8, with moderately constant peak positions up to
β ' 2.2. For β & 2.3, the peak splits up in two. Qualitatively, dimension zero and two
Betti number distributions seem to be mirrored at ν = 0.

These observations can be understood from the effective Polyakov loop potential
V (L), see Figure 6.2.1(c). Below βc ' 2.3, the Z2 center symmetry of L is unbroken: the
distribution of local P (x)-values is symmetric around zero and approximately constant,
see Figure 6.2.1(d). The constancy of uncooled β`(ν) for β . βc is a manifestation of this.
Also, the qualitative mirroring between dimensions zero and two reflects this: in sublevel
set filtrations, a minimum shows up as a dimension zero homology class. A maximum
shows up as a dimension two homology class. Both are expected to occur comparably
likely if the Z2 symmetry is unbroken.

Above βc the center symmetry is spontaneously broken, see Figure 6.2.1(a): individual
samples acquire non-zero volume averages L. Center symmetry is restored only in the
statistical limit. In Betti number distributions, the appearance of additional bumps without
cooling or two peaks with cooling resembles the spontaneous symmetry breaking behavior
and statistical restoration of center symmetry. The decrease in the peak’s heights can be
understood from a homogenization of P (x) above βc: structures become fewer. For cooled
configurations, effects are enhanced due to less ultraviolet fluctuations.

Domains of like-signed Polyakov loops forming, the behavior is consistent with a
percolation interpretation of deconfinement [299]. Beyond that, can we identify topological
excitations?

6.3.2 Sublevel sets of topological densities from Polyakov loops

Topological excitations such as calorons are characterized by non-trivial topological den-
sities. However, in typical Monte Carlo samples, topological densities contain strong
signatures of ultraviolet fluctuations and of the lattice discretization. Effectively averaging
temporal fluctuations, Polyakov loops reveal less such fluctuations. We consider in this
section the sublevel set filtration of the Polyakov loop topological density on the lattice,

qP(x) :=
1

24π2
εijkTr [(P−1(x)∂iP(x))(P−1(x)∂jP(x))(P−1(x)∂kP(x))] . (6.14)

For comparison, we discuss the superlevel set filtration of the usual topological density
q ∼ TrE ·B in Section 6.4.2.

Indeed, the nomenclature is justified. In a theory with continuous Euclidean space-
time and periodic boundary conditions, i.e., with space-time the 4-torus T 4, we can rewrite
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the winding number

Qtop =
1

32π2

∫
T 4

εαβµνTrFαβFµν (6.15)

in terms of the Polyakov loop P : T 3 → SU(2), based on [301]. We take the 4-torus T 4

to have extents Nx, Ny, Nz, Nτ , analogously to the lattice of interest. Starting from gauge
potentials Aµ on the 4-torus T 4, transition functions defined on the entire R4 are defined
via the periodicity properties of T 4, which manifests for all x ∈ T 4 and µ = 1, . . . , 4 in

Aµ(x+Nν) = U−1
ν (x)Aµ(x)Uν(x) + iU−1

ν (x)∂µUν(x) . (6.16)

The transition functions fulfil the cocycle condition

Uµ(x)Uν(x+Nµ) = Uν(x)Uµ(x+Nν) (6.17)

and transform under a gauge transformation V (x) as

UVµ (x) = V −1(x)Uµ(x)V (x+Nµ) . (6.18)

Suppose the transition functions satisfy Ui(x, τ = 0) = 1 for all i = 1, 2, 3 and U4 = 1.
Then, skipping derivation steps detailed in [301], we find

Qtop =
1

24π2

∫
B4

ε0ijkTr [(P−1∂iP)(P−1∂jP)(P−1∂kP)] =

∫
B4

qP , (6.19)

where B4 = {(x, τ) ∈ T 4 | τ = 0}. This establishes qP(x) as a topological density variant.
In Figure 6.3.3 we display birth and persistence distributions of the sublevel set filtra-

tion of qP for uncooled configurations. Cooling barely has any effect on the shown homo-
logical descriptors below βc and enhances the occurring trends above βc, see Section 6.C.1.
We deduce that topologically non-trivial excitations are mostly due to (near-)classical
configurations. Similar to the traced Polyakov loop, the birth distributions in Figure 6.3.3
reveal a single distinct peak for each β. Birth distributions are constant for β . βc. Above
βc distributions broaden for increasing β. Dimension zero birth distributions have support
below birth b = 0, dimension one around birth b ≈ 0, and dimension two with a bias
towards birth b > 0.

The dimension zero and dimension two persistence distributions of Figure 6.3.3(b) are
almost identical in shape. For most β-values, these distributions follow nearly exponential
behavior, approximately constant for β . βc. An exponential fit of the β = 1.5 dimension
two persistence distribution reveals P2(p) ∼ exp(−sp) with s = 26.51± 0.04. The dimen-
sion one persistence distribution does not show comparable behavior for persistences
p & 0.02 and quickly declines. Up to p ≈ 0.02 it looks similar to dimensions zero and two.

We may interpret the similarity of persistence distributions in dimensions zero and
two analogously to the qualitative similarity of Betti numbers of traced Polyakov loops
in Figure 6.3.2(b): qP being statistically symmetric around zero, minima and maxima
occur comparably likely. While the former show up as dimension zero homology classes
in the qP -sublevel set filtration, the latter give rise to dimension two homology classes.
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FIGURE 6.3.3: Homological quantifiers of the sublevel set filtration of the Polyakov
loop topological density qP(x). (a): Birth distributions for dimensions zero to two.
(b): Persistence distributions for dimensions zero to two. The exponential fit of the
β = 1.5 persistence distribution reveals P2(p) ∼ exp(−sp) with s = 26.51 ± 0.04.
Inset shows large-persistence, dimension two persistence distributions for inverse
couplings up to βc. No cooling has been applied in all data shown in this Figure,
though cooling leaves the data shown approximately invariant for β . βc ' 2.3.
Results are given in lattice units.

qP(x) is governed by local accumulations of non-zero topological density. Dimension
one homology classes originate primarily from (thermal) noise, explaining the small-
persistence support of P1(p).

For well-separated peaks, the persistence p of dimension zero and dimension two
homology classes provides a quantifier of their dominance. In [302] it has been argued
that for an instanton dyon-antidyon pair [of type MM̄ or LL̄ in SU(2)] at large separation
r, the due to time-independence effectively three-dimensional action S3,

S =
1

g2

∫ 1/T

0
dτS3 , (6.20)

behaves as
S3 = 8πv + (m1m2 − e1e2)

4π

r
, (6.21)

with dyon magnetic charges m1, m2 and electric charges e1, e2. The holonomy parameter
v originates from Aa4(x→∞)→ vr̂a for a given su(2) direction vector r̂a in the instanton-
dyon parametrization used [302]. If we take T = 1/g2, then for time-independent con-
figurations S3 = S. For self-dual excitations, S further equates to Qtop =

∫
x qP(x). One

is tempted to observe that, at leading order in 1/r, S3/v ' 8π ' 25.1 is close to the fitted
value of s ' 26.5 for the dimension two persistence distribution in the confining phase.
Effects of the lattice discretization, thermal noise, contributions from configurations with
more than two dyons,4 and in general g2T 6= 1 are expected. Nonetheless, we find that

4For in total n instanton-(anti-)dyons it is expected that the 8πv contribution is to be replaced by 4πnv [270].
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FIGURE 6.3.4: Homological quantifiers of the angle difference filtration constructed
from φ(x) = arg(TrP(x)/2). (a): Betti number distributions of uncooled configura-
tions for dimensions zero to two. (b): Betti number distributions of cooled config-
urations for dimensions zero to two, the pink dashed line indicating the uncooled
Betti number distribution for β = 1.5. (c) Maxima of Betti number distributions of
dimensions zero to two versus β for uncooled (left axes) and cooled configurations
(right axes).

in the confining phase persistence distributions of qP resemble the exponential behavior
of the (semi-)classical instanton-dyon occurrence probability ∼ exp(−S). The behavior
of P`(p) above βc shows growing deviations from this. Other topological excitations
such as domain walls can show up in qP configurations above βc due to spontaneous
center symmetry breaking. It is suggestive that growing persistences above βc are at least
partially triggered by these topological structures.

6.3.3 Angle-difference filtration of local Polyakov holonomies

The SU(2)-valued Polyakov loop can be written in terms of an algebra field as

P(x) = exp(iφa(x)T a) , (6.22)

with T a = σa/2 the Hermitian su(2) generators given in terms of the Pauli matrices σa. A
2π-periodic scalar field can be defined as half the norm of the Polyakov loop Lie algebra
components,

φ(x) =
1

2

√
(φ1(x))2 + (φ2(x))2 + (φ3(x))2 . (6.23)
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FIGURE 6.3.5: Number of homology classes in the angle difference filtration con-
structed from φ(x) = arg(TrP(x)/2) with birth b ≥ 2.0 for dimension one and b ≥ 2.8
for dimension two, compared to the semi-classical one-loop instanton appearance
probability scaling behavior ∼ β−22/3.

Then, P (x) = TrP(x)/2 = cosφ(x). If the traced Polyakov loop P (x) locally changes, this
can give rise to non-trivial spatial structures occurring in φ(x).

In [79] a filtration has been constructed, that is only sensitive to local differences of
periodic fields. The filtration differs from the lower-star filtration discussed so far in that
function values are assigned to edges instead of top-dimensional cubes. Specifically, with
C again the full 3-dimensional cubical complex as in Section 6.3.1, we construct from φ(x)

a map φ̃ : C → [0, π], whose sublevel sets then form cubical subcomplexes of C. Lattice
points x ∈ Λs are mapped to vertices of the full complex C, defining5 φ̃({x}) := 0. With x

and y nearest neighbors in Λs, we set

∆φ(x,y) := min{|φ(x)− φ(y)|, 2π − |φ(x)− φ(y)|} , (6.24)

and define φ̃({x,y}) := ∆φ(x,y) with {x,y} the edge connecting x with y. We extend
to higher-dimensional cubes via the upper-star filtration, i.e., we induce values from
lower-dimensional cubes,

φ̃(C) := max{φ̃(D) |D ∈ ∂C} , (6.25)

and apply this construction inductively until φ̃ is defined on all C. Sublevel sets of φ̃ yield
the angle-difference filtration,

φ̃−1[0, ν] ⊆ φ̃−1[0, µ], whenever ν ≤ µ , (6.26)

whose persistent homology we shall investigate.
By construction, the angle-difference filtration of φ(x) does not contain information on

the volume-averaged traced Polyakov loop expectation value L. Indeed, we expand L in

5Strictly speaking, we here choose the 3-cubes of C to be x + [0, 1]3 for lattice points x ∈ Λs.
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terms of φ(x):

L =
1

N3
s

〈∣∣ ∑
x∈Λs

cos(φ(x))
∣∣〉 =

1

N3
s

〈∣∣ ∞∑
n=0

(−1)n

(2n)!

∑
x∈Λs

φ2n(x)
∣∣〉 , (6.27)

i.e., only volume-averages of even powers of φ enterL. The spatial average
∑

x∈Λs
φ(x)/N3

s

does not enter the angle-difference filtration of the holonomy Lie algebra field φ di-
rectly. In addition, the angle-difference filtration of φ is by construction center symmetric
(φ 7→ φ+ π).

Betti number distributions of the angle-difference filtration for uncooled and cooled
configurations are displayed in Figure 6.3.4(a) and (b), respectively. Points entering
as independent connected components at filtration parameter ν = 0 and merging at
ν = ∆φ(x,y) into edges, by construction dimension zero Betti numbers monotonously
decrease with growing filtration parameters and contain information on the statistics of
nearest-neighbor ∆φ(x,y)-values. Throughout dimensions, Betti number distributions of
uncooled configurations are constant for β . βc. For β near 1.5, cooling leaves the Betti
number distributions invariant (see the pink, dashed line in Figure 6.3.4(b)). Dimension
one Betti numbers show a distinct peak around ν ≡ ∆φ ' 2.2 for β . βc, slightly
wandering towards smaller filtration parameters with increasing β. This behavior is
pronounced for cooled configurations and starts off at smaller β already. Dimension two
Betti numbers of uncooled configurations show a prominent peak around ν ' 3.0. After
cooling, it decreases vastly in height for increasing β. A population of dimension two
homology classes emerges at smaller ν for larger β.

The above observations can be understood as follows: below βc Polyakov loop sam-
ples are dominated by vast fluctuations between ≈ −1 and ≈ +1 on tiny length scales,
see Figure 6.2.1(a). The formation of dimension two persistent homology classes in the
angle-difference filtration thus requires large phase jumps of order π to occur everywhere
around local minima or maxima, thus occurring in the angle-difference filtration below
βc primarily for ν ≈ π. As discussed in Section 6.3.1 above βc, extended domains of
like-signed P (x)-values form, however without cooling strongly overlaid by thermal fluc-
tuations. Fewer dimension two homology classes corresponding to extended domains fit
into the given lattice volume compared to those originating from single-pixel fluctuations,
explaining the peak decline in β2(ν) in particular for cooled configurations. On top of the
like-signed domains forming above βc, fluctuations occur. The population of dimension
two homology classes emerging for β & βc below the ν ' 3.0-peak may be understood as
a signal of these.

Dimension one Betti numbers show the strongest β-dependence. In [79] the angle-
difference filtration has been employed to uncover the behavior of vortices in two spatial
dimensions. In three dimensions, these would show up as closed vortex lines, which
would manifest as signals in dimension one Polyakov topological densities. It has been
a key finding of Section 6.3.2 that qP -sublevel sets barely show such signatures, but
instead predominantly give rise to local lumps of topological density. We thus expect
that the strong β-dependence of dimension one Betti numbers originates from locally
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large phase gradients spreading through space around like-signed Polyakov loop regions
with fluctuations on top. Then, the angle-difference filtration yields at intermediate
filtration parameters randomized scaffold-like cubical complexes with a variety of one-
dimensional homology classes occurring. This is qualitatively in accordance with space-
filling instanton-dyon positions in models of instanton-dyon ensembles [266, 270].

Displayed in Figure 6.3.4(c), maxima of Betti numbers of uncooled configurations
show a clear kink around βc, thus providing an order parameter for the confinement-
deconfinement phase transition.

In Figure 6.3.5, we display the number of homology classes with high birth values in
cooled configurations, in dimension one with birth b ≥ 2.0, in dimension two with birth
b ≥ 2.8. We explicitly checked that the displayed results are approximately independent in
shape from the choice of threshold values of comparable sizes. For β & 2.6 the number of
dimension two homology classes is compatible with a power-law with exponent ' −22/3.
Linearly mapping inverse couplings squared to temperatures, the latter describes a dilute
gas of instantons with semi-classical instanton appearance probability

exp(−S) = exp

(
− 8π2

g2(T )

)
∼
(

ΛUV

T

)b
, (6.28)

where ΛUV is a UV-cutoff scale and b = 11Nc/3 from the one-loop beta function for SU(Nc)
gauge theory [266], Nc = 2 in our case. The behavior of the semi-classical instanton-dyon
exponentiated action shows the same scaling behavior with T [266, 302]. One-dimensional
homology classes with large birth show similar behavior, though with larger deviations
from the T−22/3 behavior. Likely, they are more affected by thermal fluctuations.

In Section 6.C.2 we display and discuss birth and persistence distributions of the
angle-difference filtration.

6.4 Electric and magnetic fields in persistent homology

We search for signatures of electric and magnetic screening effects as well as self-duality
in superlevel set filtrations of the three gauge-invariant, rotationally invariant quadratic
forms constructible from E(x) and B(x): TrE2(x), TrB2(x), and the topological density
q(x) ∼ Tr (E(x) ·B(x)).

On the lattice SU(2)-valued electric and magnetic fields, denoted E(x) and B(x), can
be defined via antisymmetric averaging of four neighboring plaquettes, analogous to
Section 4.2. For these clover-leaf variants the topological density reads

q(x) = − 1

16π2
Tr (E(x) ·B(x)) (6.29)

and has well-defined parity, see Section 6.A.3. For an impression of TrE2(x), TrB2(x),
and Tr (E(x) ·B(x)) = −16π2q(x) we display two-dimensional slices in Figure 6.4.1 for
β = 1.5 in the confined and β = 3.0 in the deconfined phase for cooled configurations.
Throughout observables, fewer structures are present for β = 3.0 compared to β = 1.5

variants, also smaller by values. This effect is pronounced for TrB2 compared to both
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FIGURE 6.4.1: Slices of TrE2(x), TrB2(x) and q(x) for constant x1 and τ for a single
cooled configuration. Data is given in lattice units.

TrE2 and TrE ·B. Barely any structural changes with β are visible without cooling (not
shown).

So far, persistent homology quantifiers have been constructed via cubical complexes
in three dimensions. Constructions work the same in higher dimensions. For instance,
the sublevel set filtration CTrE2 is constructed by assigning to the 4-cube corresponding to
each x ∈ Λ the value TrE2(x), inductively expanding to lower-dimensional cubes via the
lower-star filtration, Equation (6.8). We define the corresponding superlevel set filtration
as

DTrE2(ν) := C−TrE2(−ν) . (6.30)

Tr(E2(x)) and Tr(B2(x)) are restricted to positive values. For better comparability
of low-dimensional persistent homology with unbounded filtrations such as q(x) we
investigate their superlevel set filtrations in this section. For unbounded filtrations sub-
and superlevel set filtrations are expected to yield similar results. Subsequently, we study
topological density superlevel sets.

6.4.1 Superlevel sets of TrE2 and TrB2

We display Betti number distributions of dimension zero homology classes for the super-
level set filtrations of TrE2 and TrB2 in Figure 6.4.2(a). Higher-dimensional Betti number
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FIGURE 6.4.2: (a): Dimension zero Betti number distributions of TrE2(x) (left) and
TrB2(x) (right) superlevel set filtrations. No cooling has been applied. Data is
given in lattice units. (b): Maxima of dimension zero Betti number distributions for
uncooled (left) and cooled (right) configurations.

distributions look similar, see Appendix Section 6.C.3. For cooled Betti number distribu-
tions of TrE2 and TrB2, we also refer to Appendix Section 6.C.3. For every β we observe
a distinct peak in both filtrations with positions shifting to lower ν for increasing β. This is
due to 〈TrE2(x)〉 and 〈TrB2(x)〉 decreasing in the calculations. Starting slowly, shifts are
enhanced at intermediate β, slowing down again for β & 2.7. This is particularly visible in
TrB2. Dimension zero homology classes, which are in the superlevel set filtration made
up by local maxima, occur in the TrB2 filtration mostly at larger filtration parameters
compared to TrE2. For both TrE2 and TrB2 peaks are broadened for low β.

In Figure 6.4.2(b) we compare β-dependencies of maximal dimension zero Betti num-
bers of TrE2 and TrB2 filtrations, i.e., the maximal number of connected components
occurring as the filtration parameter is swept through. Both uncooled and cooled configu-
rations give rise to kink-like behavior at βc, indicative of the confinement phase transition.
Throughout, we observe a concave decline below βc. For TrE2 the decline continues
above βc with a smaller slope; cooling enhances these effects without qualitative changes.
For TrB2 above βc we observe less of a further decline compared to TrE2, both uncooled
and cooled.

Inferred from correlations of TrE2 and TrB2 as detailed in Appendix Section 6.B.2,
masses of TrE2 excitations are larger than for TrB2 due to electric Debye screening
outpacing magnetic screening. Similarly, the mass of electric excitations is expected to
be larger than the magnetic mass, resulting in 〈TrE2〉 < 〈TrB2〉 and explaining why
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FIGURE 6.4.3: Persistence distributions of the topological density superlevel set
filtration from dimensions zero to three. No cooling has been applied; cooled config-
urations look similar. Results are given in lattice units.

magnetic field homology classes persist to larger filtration parameters compared to electric
ones. TrE2 Betti number maxima in Figure 6.4.2(b) laying above TrB2 maxima indicates
that TrE2 sublevel sets contain finer structures, irrespectively of on average higher TrB2

values. This can already be seen for a single sample in Figure 6.4.1. The slow approach
of maximal TrE2 and TrB2 Betti numbers for growing β & βc suggests that screening
effects discriminate less between electric and magnetic fields at larger inverse couplings.
This is again consistent with the approaching masses of TrE2 and TrB2 excitations.

Signatures of a higher dominance of self-dual excitations in cooled configurations
would manifest in maxima of TrE2 and TrB2 which are closer to each other. This is at
least not significantly the case and barely visible in the single-sample observables shown
in Figure 6.4.1.

6.4.2 Superlevel sets of topological densities

In Section 6.3.2 we have studied the persistent homology of topological densities computed
from Polyakov loops, qP . In this section we discuss the topological density q(x) ∼ TrE(x) ·
B(x), with domain the full four-dimensional lattice Λ. We show persistence distributions
of topological density superlevel sets in Figure 6.4.3 for uncooled configurations. The
distributions monotonously decrease for all dimensions and inverse couplings β. However,
their support is reduced to 16π2p . 2.5 for dimensions one and two, while ranging for
dimension zero up to ≈ 4.0 and for dimension three up to ≈ 5.0. The extended persistence
of dimension zero and dimension three homology classes holds for all β and indicates
that the topological density forms peaks well-separated in space-time, similar to qP as
discussed in Section 6.3.2. Cooling barely affects persistence distributions (not displayed).
We conclude that lumps of topological density are primarily due to (near-)classical field
configurations.

It has been a key finding of Section 6.3.2 that top-dimensional persistence distribu-
tions of qP follow an exponential distribution which is compatible with instanton-dyon
predictions. Such exponential behavior is not visible for q ∼ TrE · B as displayed in
Figure 6.4.3. This hints at qP providing a more suitable lattice approximation to continuous
space-time topological densities than q ∼ TrE ·B, less sensitive to temporal fluctuations
affected by lattice artifacts. Based on the exact equality of

∫
qP and

∫
q in the continuum,
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as briefly discussed in Appendix Section 6.C.1, we expect that the information content of
both topological density variants becomes more similar for larger and finer lattices.

6.5 Summary

We have shown that persistent homology can be used for unraveling topological struc-
tures in the confinement-deconfinement phase transition of finite-temperature Yang-Mills
theory with gauge group SU(2). With persistent homology analyses relying on a hier-
archical, combinatorial description of the input data, a multitude of different cubical
complex filtrations constructed from sampled lattice field configurations has allowed for
the extraction of the multifaceted picture of confinement. All filtrations constructed in
this chapter have been gauge-invariant and without an a priori bias towards particular
classical configurations. While information about the confinement-deconfinement phase
transition may be extracted from a persistent homology analysis of various observables
such as the topological density, the traces of electric and magnetic field strengths, and the
traced Polyakov loop, we have found that amongst these observables the traced Polyakov
loop and in particular the related algebra field (6.22) is best-suited for an application of
persistent homology.

The analysis has revealed that lumps of the topological density formulated in terms of
the Polyakov loop have dominated the configurations, with persistence statistics indicative
of the instanton-dyon occurrence probability. Persistent homology has proven crucial
for this observation. Filtering by the Polyakov loop algebra field has given access to
topological scaling as present in an instanton gas approximation above Tc: we have
shown that homology follows the semi-classical scaling arising from the exponential of
the instanton action with a (one-loop) running coupling, see Figure 6.3.5. Unlike [80] we
have not specifically aimed for particular field configurations such as center vortices. The
main results have been barely affected by the cooling procedure.

For prospective related research questions we refer to Chapter 8.

Appendix

6.A Details on the lattice setup

In this appendix, we first discuss the HMC setup for our lattice gauge theory calculations.
Subsequently, we summarize important aspects of the Wilson flow used for cooling, and
provide further details about clover-leaf fields.

6.A.1 HMC details

We employ the standard HMC algorithm to sample field configurations, using 10 leapfrog
steps per trajectory with a step size of 0.2. This results in acceptance rates between 60%
and 80%. First, for each of the considered values of β, a single Markov chain is initialized
with a hot start and then thermalized. Sufficient equilibration is confirmed by observing
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convergence of the average plaquette and Polyakov loop. 100 samples separated by 10
HMC steps are recorded for each β and then further decorrelated in individual Markov
chains with 1000 steps each, in order to ensure statistical independence of the data.

6.A.2 Wilson flow details

A variety of heuristic algorithms for the smoothing of ultraviolet fluctuations in lattice
gauge field configurations has been proposed in the literature, commonly called cooling
algorithms. The Wilson or gradient flow was introduced as a more rigorous theoretical
ansatz to achieve the same goal. The central idea is similar in all approaches, namely
minimizing the Wilson gauge action locally in a series of small steps.

For the Wilson flow in particular, this is achieved by numerically solving the gradient
flow equation [303]

∂tUµ(x, t) = −g2(∂x,µS[U(t)])Uµ(x, t) (6.31)

with a finite step size approximation. Here, g is the bare gauge coupling, t denotes the
flow time, and the initial condition Uµ(x, 0) is given by a field configuration obtained
through sampling from exp(−S[U ]) as described above. The link derivatives are defined
in the usual way,

∂x,µf(U) = i
∑
a

T a
d

ds
f(eisXa

U)
∣∣∣
s=0
≡ i
∑
a

T a∂(a)
x,µf(U) , (6.32)

where the T a are the Hermitian generators of the associated su(Nc) algebra (i.e., the Pauli
spin matrices for Nc = 2), and

Xa(y, ν) =

T a if (y, ν) = (x, µ),

0 else.
(6.33)

This is equivalent to the computation of the forces in HMC. Throughout this work, the
cooled configurations used to compute various results are obtained after 200 flow steps,
using a comparably small step size of δt = 0.001 to avoid discretization errors.

6.A.3 Clover-leaf electric and magnetic fields

Similar to Equations (4.9) and (4.11), clover-leaf electric fields are the SU(2) elements

Ei(x) :=
1

4
Im

[
U4i(x) + U †i (x− î)U4i(x− î)Ui(x− î)

+ U †4(x− 4̂)U4i(x− 4̂)U4(x− 4̂)

+ U †4(x− 4̂)U †i (x− î− 4̂)U4i(x− î− 4̂)Ui(x− î− 4̂)U4(x− 4̂)

]
, (6.34)
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which transform under a local gauge transformation V (x) as Ei(x) 7→ V (x)Ei(x)V †(x),
and clover-leaf magnetic fields are the SU(2) elements

Bi(x) =
1

8
εijkIm

[
Ujk(x) + U †j (x− ĵ)Ujk(x− ĵ)Uj(x− ĵ)

+ U †k(x− k̂)Ujk(x− k̂)Uk(x− k̂)

+ U †k(x− k̂)U †j (x− ĵ − k̂)Ujk(x− ĵ − k̂)Uj(x− ĵ − k̂)Uk(x− k̂)

]
,

(6.35)

transforming as Bi(x) 7→ V (x)Bi(x)V †(x).
By spatial antisymmetrization the clover-leaf topological density,

q(x) = − 1

29π2

±4∑
µνρσ=±1

ε̃µνρσTr (Uµν(x)Uρσ(x)) , (6.36)

has a well-defined parity [95, 304]. The fully antisymmetric ε̃µνρσ = ε̃µνρσ is defined
through 1 = ε̃1234 = −ε̃2134 = −ε̃(−1)234. Plaquettes for negative directions equate to

U(−µ)ν(x) = U †µ(x− µ̂)U †µν(x− µ̂)Uµ(x− µ̂), (6.37a)

Uµ(−ν)(x) = U †ν (x− ν̂)U †µν(x− ν̂)Uν(x− ν̂), (6.37b)

U(−µ)(−ν)(x) = U †ν (x− ν̂)U †µ(x− µ̂− ν̂)

× Uµν(x− µ̂− ν̂)Uµ(x− µ̂− ν̂)Uν(x− ν̂) . (6.37c)

A straight-forward lattice computation confirms Equation (6.29) for q(x) in terms of Ei(x)

and Bi(x).

6.B Correlation functions

In this appendix we discuss two-point correlation functions of traced Polyakov loops
P (x) and electric and magnetic fields squared. This will provide insights into emergent
screening masses and infrared behavior related to confinement.

We focus on connected correlation functions and their y-, z- and τ -direction zero-modes.
We define

Ē2(nx) :=
1

N2
sNτ

∑
ny ,nz ,nτ

[
TrE2(nx, ny, nz, nτ )− 〈TrE2(nx, ny, nz, nτ )〉

]
, (6.38)

maintaining fluctuations depending on nx. Then, correlations are computed as

〈|TrE2(px)|2〉c =
∑
x

Ē2(nx)Ē2(0)e−ipxnx (6.39)
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FIGURE 6.B.1: Connected Polyakov loop two-point correlation function |〈|P (px)|2〉c|
for (a) uncooled and (b) cooled configurations. Data is given in lattice units.

for nx ∈ {0, . . . , Ns − 1} and

px ∈
{
−π,−(Ns − 2)π

Ns
, . . . ,

(Ns − 2)π

Ns

}
, (6.40)

and analogously for TrB2(x) and q(x). For P (x) correlations, temporal averaging is trivial.
Correlations are displayed depending on physical momenta on the lattice,

p̃x = 2 sin
(px

2

)
. (6.41)

Due to the connectedness of the shown correlators, values at px = 0 are largely suppressed.
Zero modes of the correlators including disconnected contributions would give rise to
susceptibilies.

6.B.1 Polyakov loop correlations

In Figure 6.B.1 we display Polyakov loop correlations for (a) uncooled and (b) cooled
configurations for the entire β-range. A qualitative change can be observed around βc

for uncooled configurations. Below βc the correlator is constant in β and in p̃x up to
fluctuations, indicative of free quasi-particles dominating P (x) [264]. Above βc a peak
emerges around the p̃x = 0 mode, indicative of P (x) excitations acquiring a screening
mass due to spontaneous center symmetry breaking. Above an intermediate regime up
to β ' 2.5 correlations stay approximately constant. They level off for large momenta to
baseline fluctuations.

Below βc cooling smoothens the baseline fluctuations, leaving their height unaltered.
Thus, they are due to (near-)classical configurations. With cooling, for smaller β than
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FIGURE 6.B.2: Connected two-point correlations of (a) electric and (b) magnetic
field strengths, as well as (c) topological densities for uncooled (left) and cooled
(right) configurations. The dip at p̃x = 0 is due to (approximately homogeneous)
disconnected contributions removed. (d): Effective masses of TrE2 (left), TrB2

(center) and q (right) excitations, deduced from a least-squares fit to a Lorentz curve
∼ m/(p̃2x +m2). Zero modes are excluded from fits; errorbars are extracted from the
least-squares fit covariance matrix. Fits did not converge for uncooled q. Data is
given in lattice units.

before a peak emerges in the deep infrared, until it fully developed for β ' 2.6. For such
couplings, the momentum-dependence of the peak-tails is approximately exponential.
The peak decreases in overall height for large β above 2.7, potentially indicative of the
reduction of instantons with increasing temperatures as observed already in Section 6.3.3.
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6.B.2 Correlations of electric and magnetic excitations

In Figure 6.B.2(a) to (c) we display connected two-point correlation functions of electric and
magnetic fields squared, TrE2 and TrB2, as well as of the topological density q ∼ TrE ·B.
First discussing configurations without cooling, barely any β-dependence is visible at low
β near 1.5. For intermediate values of β correlations decrease in value, slowing down
again for β-values near 3.0. Electric fields give rise to a slightly enhanced infrared peak
at larger inverse couplings squared. For magnetic fields this effect is visible more clearly.
Topological density correlations are nearly flat for the entire β-range.

The consequences of cooling are similar to the Polyakov loop correlator. Deviations
from the constant behavior for β near 1.5 start to occur for β & 1.8. Any behavior present
for larger inverse couplings is pronounced by cooling. This is due to more dominant
(near-)classical field configurations after cooling.

All this can be understood from effective masses of the excitations. We extract masses
from correlators using a least-squares fit to a Lorentz curve ∼ m/(p̃2

x + m2). In Fig-
ure 6.B.2(d) we display correspondingly fitted masses, comparing cooled and uncooled
ones. Cooling reduces masses, since less ultraviolet fluctuations enter self-energies and
effectively generate the masses. Masses of TrE2 excitations are observed to be consistently
larger than masses of TrB2 excitations — a direct consequence of Debye screening. In ad-
dition, a kink is visible in effective masses near βc, suggesting that the relevant structures
for confinement enter self-energies, too. Fits of q-masses did not converge for uncooled
configurations. Masses of q excitations after cooling lay somewhat between those of TrE2

and TrB2 excitations. Their comparable height can be regarded as a signature of self-dual
configurations playing a role.

6.C Further persistent homology results

This appendix is devoted to further persistent homology results not shown in the main
text of this chapter. In Section 6.C.1 we discuss the persistent homology of Polyakov
loop topological densities after cooling, in Section 6.C.2 we give birth and persistence
distributions for the angle difference filtration. In Section 6.C.3 we discuss Betti number
distributions of electric and magnetic fields, as well as topological densities, followed by
their cooled variants.

6.C.1 Polyakov loop topological densities

In Figure 6.C.1 we display birth and persistence distributions of the Polyakov loop topo-
logical density sublevel set filtration for cooled configurations. Comparing to Figure 6.3.3,
where uncooled variants have been shown, we note that below βc cooled distributions are
similar to uncooled ones though persistence distributions have larger support. Above βc
major deviations occur. The broadening of uncooled birth distributions transforms after
cooling into an additional peak in dimension zero and a novel shoulder in dimension
one after cooling. Dimension two birth distributions above βc reveal larger broadening
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towards positive qP -values. This goes along with persistence distributions after cooling
spreading more towards larger persistences compared to uncooled data.

While the similarity of cooled and uncooled qP -structures below βc indicates that
topological densities are dominated by (near-)classical configurations, above βc ultravi-
olet fluctuations show up more often. Cooling reveals additional topological structures
above βc.

6.C.2 Angle difference filtration

In Figure 6.C.2(a) we display birth distributions of the angle difference filtration of
the holonomy Lie algebra field φ(x) = arccos(P (x)) for cooled configurations. Zero-
dimensional birth distributions are not displayed, since they are by construction trivial:
all dimension zero homology classes are born at filtration parameter zero. Dimension one
birth distributions at β ≈ 1.5 have two peaks: one near b ≈ 0.9 and a second near b ≈ 2.1.
The latter strongly diminishes above βc, while the former gets enhanced. The lower-∆φ
peak emerges in dimension two homology classes only above βc. Below, a single large
peak near ∆φ ≈ 3.0 is present, which strongly decreases in height for β & βc.

Persistence distributions are shown in Figure 6.C.2(b) for cooled configurations. Persis-
tences of dimension zero homology classes in the angle difference filtration monotonously
decrease, though with smaller β-dependence for lower β ≈ 1.5. In dimension one we
see a second peak near ∆φ ≈ 2.0 at low β, which vanishes above βc and gives rise to a
persistence peak near ∆φ ≈ 1.2. Noise results again in a large number of homology classes
with very low persistences. Persistences of dimension two homology classes are mostly
very low, which follows from comparably large birth parameters and the phase difference
bound ∆φ ≤ π.

6.C.3 Persistent homology of Tr E2, Tr B2 and q superlevel sets

We first discuss the persistent homology for all dimensions zero to three of gauge-invariant
electric and magnetic field quadratic forms, as well as topological densities. A comparison
with cooled configurations follows.

We display dimension zero to dimension three Betti number distributions of the su-
perlevel set filtrations of TrE2 and TrB2 for uncooled configurations in Figure 6.C.3(a)
and (b). The topological density Betti number distributions shown in Figure 6.C.3(c) are
discussed below. For every β we observe a single peak, shifting to lower filtration parame-
ters with increasing dimension. This is due to the superlevel set filtration. Decreasing the
filtration parameter ν, at first maxima appear as dimension zero homology classes. A mul-
titude of these with saddle points in between is required to form dimension one homology
classes; they get born at lower ν. This trend continues to higher dimensions. Finally,
dimension three homology classes (enclosed 3-volumes) die if ν reaches corresponding
minimum values.

For both TrE2 and TrB2 peak positions shift to lower ν with increasing β due to
〈TrE2(x)〉 and 〈TrB2(x)〉 decreasing in simulations. Topological structures of any dimen-
sion occur in the TrB2 filtration mostly at larger filtration parameters compared to TrE2.
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FIGURE 6.C.1: Homological quantifiers of Polyakov loop topological density qP
sublevel sets. (a): Birth distributions for dimensions zero to two. (b): Persistence
distributions for dimensions zero to two. Data is given in lattice units for cooled
configurations.

FIGURE 6.C.2: Homological quantifiers of the angle difference filtration. (a): Birth
distributions for dimensions one and two. All connected components are born at
zero in the angle difference filtration, thus dimension zero birth distributions are not
displayed. (b): Persistence distributions for dimensions zero to two. Data is shown
for cooled configurations.
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Across dimensions and for both TrE2 and TrB2, peaks are broadened for low β. All
this is qualitatively similar to the dimension zero Betti numbers discussed in Section 6.4
and consistent with electric and magnetic screening masses as deduced in Appendix
Section 6.B.2.

Topological densities not bounded from below as electric and magnetic fields squared,
their Betti number distributions in Figure 6.C.3(c) are not limited to positive filtration
parameters. Instead, dimension two distributions have support around zero filtration
parameters, dimension three distributions mostly at negative filtrations parameters. This
is indicative of local topological density values scattering symmetrically around zero.
Maximal values reveal kink-like behavior around β ≈ βc and in overall numbers are
comparable to the TrE2 filtration.

For cooled configurations we show Betti number distributions of all dimensions for
TrE2 and TrB2 superlevel set filtrations in Figure 6.C.4. Similar plots have been shown
in Figure 6.C.3(a) and (b) for configurations without cooling. Upon comparison, we
see that cooling has barely any effect for low β ≈ 1.5. However, after cooling and for
larger β the number of homology classes is reduced compared to uncooled configurations.
Qualitative changes across all dimensions occur near βc. For β & βc maxima of Betti
number distributions saturate in height as indicated already in Figure 6.4.2(b). Cooled
structures move to very small filtration parameters compared to uncooled ones.
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FIGURE 6.C.3: Betti number distributions in dimensions zero to three of (a) TrE2,
(b) TrB2, (c) q superlevel set filtrations for uncooled configurations. Data is given in
lattice units.

FIGURE 6.C.4: Betti number distributions in dimensions zero to three of (a) TrE2

and (b) TrB2 superlevel set filtrations for cooled configurations. Data is given in
lattice units.
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Chapter 7

Standard Model gauge theory from
projective geometries

This chapter represents unpublished work not reported about anywhere else yet. It is
devoted to quantum fields on projective geometries, and their relation to known Standard
Model structures. The derivations are restricted to representation-theoretic aspects of
quantum fields. These are suitably and in this chapter described with mathematical rigor.

7.1 Introduction

The Standard Model of particle physics [14–16] has seen a tremendous amount of experi-
mental validation in the past decades, notably at the LHC, Fermilab and other collider
facilities. It is centered around a gauge theory with gauge group GSM = (U(1)× SU(2)×
SU(3))/Z6, the cyclic Z6 subgroup generated by (exp(πi/3),−12×2, exp(2πi/3) · 13×3) [91].
Three generations of Dirac fermions with particular GSM representation (charge) patterns
interact with the gauge bosons. Oscillations among the generations occur, and the fermions
acquire effective masses due to the Higgs mechanism, which also provides masses to the
W± and Z gauge bosons.

A unified framework to understand the peculiar structure of the Standard Model,
optimally based on widely accepted physical entities, is lacking. The exterior algebra∧
C5 provided an early, remarkably simple finding in this regard. As first demonstrated

in [305], with the non-trivial identification S(U(2)× U(3)) ∼= GSM it yields the Standard
Model gauge group representation of the fermions augmented by two trivial representa-
tions, described in detail in [91]. This stimulated far-reaching research on grand unified
theories extending the Standard Model gauge group [18]. Despite significant experimental
efforts, evidence for the related proton decays remains absent [306]. Not aiming for grand
unification, a number of mathematical constructions, which in part appear more exotic
from the physical viewpoint, give rise to GSM gauge theory and further Standard Model
structures. They are based on e.g. non-commutative geometry [25, 26], the octonions
[27–30], or Twistor theory [31]. In contrast, we derive the particle content of one gen-
eration of the Standard Model with regard to their gauge and Poincaré transformation
behavior in this chapter, based on projective models of established space-time geometries,
causality and the spin-statistics relation. Unlike the Standard Model, gauge and Poincaré
transformations do not act independently from each other in our approach.
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Space-time geometries set the stage for physical models, and can themselves take part
in their dynamics. We consider four-dimensional homogeneous (Klein) geometries (X,O),
which consist of a space-time manifold X and a structure group O acting transitively on X.
Physically relevant examples include Poincaré, de Sitter and anti-de Sitter, non-relativistic
Galilei and ultra-relativistic Carroll geometries [307]. Deformed through the presence
of gravitational matter, more general non-homogeneous space-times give rise to locally
homogeneous geometries as we show.

Limits of (locally) deformed geometries can appear naturally for general-relativistic
space-times, e.g. degenerate near-horizon limits around black holes, or steadily diluted
matter for which curved geometries transform towards flat Poincaré geometry. In physics
such limits are conventionally taken by contracting the Lie algebras of structure groups,
i.e., by ad hoc sending individual commutators to zero [307, 308]. Commutators of con-
tracted Lie algebras are in general not matrix commutators anymore, and space-time
manifolds remain inconsistently unaltered. Instead, many four-dimensional geometries
(X,O) can be considered within the real projective geometry (RP4,PGL5R). Then a canon-
ical framework exists to discuss their deformations and limits [309], based on matrix
products. In the projective setting geometries remain well-defined in limits and merely de-
generate; no infinite blow-ups occur for structure groups and projective frames. Physical
examples of limits include infinite dilatations in specific directions [310–313] and infinite
scale transformations in renormalization group studies.

Quantum field theories can be formulated on curved space-time geometries both in the
more usual non-rigorous approaches [314] and in algebraic approaches [315–317]. Much
of the algebraic formalism is not necessary for our derivations. We consider quantum
fields on the ambient geometry (RP4,PGL5R), focussing on the involved representation-
theoretic structures, which link the quantum fields to the space-time geometry. LetH be
the Hilbert space of the quantum field theory.

Definition 7.1.1. A quantum field Ô = (U, ρ, {Ôα([x]) | [x] ∈ RP4, α = 1, . . . ,dim ρ})
consists of a projective unitary PGL5R representation U onH with adjoint †, a finite-dimensional
complex PGL5R representation ρ, and a family of linear operators Ôα([x]) : H → H, such that
for all [x] ∈ RP4, [g] ∈ PGL5R, α = 1, . . . ,dim ρ:

U([g])Ôα([x])U †([g]) =

dim ρ∑
β=1

ραβ([g−1]) Ôβ([g · x]) . (7.1)

On the (space-time) geometry (X,O) < (RP4,PGL5R) the quantum field is given by restriction,

Ô|(X,O) := (U |O, ρ, {Ôα([x]) | [x] ∈ X, α = 1, . . . ,dim ρ}) . (7.2)

This definition canonically generalizes representation-theoretic aspects of the Wight-
man axioms for quantum fields [318]. We show that such quantum fields transform
naturally under deformations and limits of geometries. Fermionic and bosonic super-
selection sectors can be extended to quantum fields on the entire ambient geometry



7.2. Geometries and limits 133

(RP4,PGL5R). We construct composite quantum fields, discuss their irreducibility as well
as the implementation of the spin-statistics relation.

The geometries (X,O) naturally admit local projective frames which form the related
projective frame bundle with structure group PGL5R. Connections of this bundle thus
correspond to gauge fields with gauge group PGL5R. The PGL5R gauge fields can
naturally interact with the field operators Ô([x]) via the representation ρ. For Poincaré and
homogeneous Lorentzian geometries we prove that causality, i.e., space-like separated
field operators commute, effectively reduces the PGL5R gauge group to P(GL2R×GL3R).
We further show that for the subgroup P(GL2R × 1) ∼= R 6=0 × PGL2R physical scale
invariance breaking appears, which is reminiscent of a Higgs-like mechanism to generate
masses for the quantum fields.

Quantum fields can be characterized according to irreducibility of the representation ρ.
For fermionic statistics all finite-dimensional irreducible representations ρ are given by
exterior powers of the fundamental representation CP4

PGL5R. Considered for the reduced
gauge group P(GL2R × GL3R), this is analogous to

∧
C5 as a S(U(2) × U(3)) ∼= GSM

representation and reminiscent of the gauge group representations of the Standard Model
fermions. For bosonic statistics Higgs-like scalar fields occur, which carry symmetrized
tensor product representations of the P(GL2R× 1) ∼= R6=0 × PGL2R gauge subgroup. No
spontaneous symmetry breaking of larger gauge groups, and no sophisticated mathemati-
cal constructions are required for this.

In projective geometry all fields are taken modulo scalar functions on space-time. We
conjecture that this implies the possibility to renormalize the theory.

This chapter is organized as follows. In Section 7.2 we motivate and discuss (homo-
geneous) geometries and their deformations as well as their local appearance in grav-
ity. Section 7.3 is devoted to quantum fields on the ambient real projective geometry
(RP4,PGL5R) through the lens of representations. Superselection sectors, composite
quantum fields, their spin-statistics behavior as well as their irreducibility, and the de-
pendence on the ambient geometry are explored. In Section 7.4 we introduce PGL5R
gauge fields corresponding to connections of the projective frame bundle. We deduce the
causality-based gauge group reduction to P(GL2R×GL3R) and the physical scale invari-
ance breaking by P(GL2R× 1) gauge bosons. We study irreducible fermionic quantum
fields and implications for particle physics models. Section 7.5 provides a summary.

7.2 Geometries and limits

Mathematically, a (Klein) geometry is defined as a pair (X,O) of a manifold X (the model
space) and a Lie group O (the structure group) acting transitively on it, i.e., for any pair of
points x, y ∈ X there exists g ∈ O, such that y = g ·x. Transitivity identifies the model space
X with the homogeneous space O/Ox, where Ox denotes the stabilizer of an arbitrary
point x ∈ X.

Similarly, the geometry of a homogeneous physical space-time includes both a space-
time manifold and a Lie group of space-time symmetry transformations. Space-time
symmetry groups often contain the indefinite orthogonal groups O(p, q), i.e., the groups
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of isometries of the metric tensor

− (dx 1)2 − · · · − (dx p)2 + (dx p+1)2 + · · ·+ (dx p+q)2 , (7.3)

with examples the Lorentz group O(3, 1) or the de Sitter group O(4, 1). Here, dx 1, . . . ,dx p+q

denote the canonical 1-forms on Rp+q, and (dx j)2 = dx j � dx j with � the symmetrized
tensor product. More generally, the groups

O((p0, q0), . . . , (pk, qk)) :=


O(p0, q0) 0 · · · 0

Rp1+q1 O(p1, q1) 0
...

...
. . .

...
Rpk+qk Rpk+qk · · · O(pk, qk)

 (7.4)

can appear. For reasons which become clear later, we consider projective geometries with
projective structure groups PO((p0, q0), . . . , (pk, qk)) instead of O((p0, q0), . . . , (pk, qk)), de-
fined modulo multiplication by constants. For instance, PO((1), (3, 1)) is isomorphic to
the Poincaré group in 3+1 space-time dimensions, the latter isomorphically embedded in
PGL5R. The elements of R4, which appear in the lower-left corner of the PO((1), (3, 1))

matrices (cf. Equation (7.4) for k = 1, p0 + q0 = 1, p1 = 3, q1 = 1), then correspond to the
usual space-time translations. For an introduction to projective geometry we refer e.g.
to [319, 320].

The group PO((p0, q0), . . . , (pk, qk)) with p0 + q0 + · · ·+ pk + qk = m acts transitively
on the model space

X((p0, q0), . . . , (pk, qk))

:= {[x0, . . . , xm−1] ∈ RPm−1 | − x2
0 − · · · − x2

p0−1 + x2
p0 + · · ·+ x2

p0+q0−1 < 0} . (7.5)

The pairs
G((p0, q0), . . . ) := (X((p0, q0), . . . ),PO((p0, q0), . . . )) (7.6)

are geometries.1 We restrict to four-dimensional space-time geometries in this chapter
(m = 5). For instance, G(4, 1) with model space X(4, 1) is the projective model of four-
dimensional de Sitter geometry, while G((1), (3, 1)) with

X((1), (3, 1)) = {[x0, . . . , x4] |x0 6= 0} = A3,1 , (7.7)

is the projective model of Poincaré geometry, which can be identified with Poincaré
geometry itself. Ap,q denotes the (p+ q)-dimensional affine space with the (p, q)-signature
metric tensor (7.3), and the identification in Equation (7.7) is via

[x0, . . . , x4] = [1, x1/x0, . . . , x4/x0] 7→ (x1/x0, . . . , x4/x0) . (7.8)

Poincaré geometry comes with the metric tensor −(dy 1)2 − (dy 2)2 − (dy 3)2 + (dy 4)2,
yµ = xµ/x0 for µ = 1, . . . , 4, which is the usual Minkowski metric tensor. Galilei geometry

1Moreover, the geometries G((p0, q0), . . . ) actually come with affine bundle structures as detailed in [309].
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G((1), (1), (3)) has the model space X((1), (1), (3)) = A1 × A3 and comes with degenerate
Galilean structures, ultra-relativistic Carroll geometry G((1), (3), (1)) has the model space
X((1), (3), (1)) = A3 × A1 and comes with degenerate Carroll structures [307, 321].

7.2.1 Deformations and limits

Geometric deformations such as the flattening of dS4 to A3,1, i.e., the Poincaré limit of
de Sitter space-time, or the non-relativistic (Galilei) limit of Poincaré geometry can be
described in terms of projective geometries. For this consider a four-dimensional geometry
G = (X,O) which is a subgeometry of the ambient geometry (RP4,PGL5R), i.e., X is an
open submanifold of RP4 and O is a subgroup of PGL5R. All G((p0, q0), . . . , (pk, qk)) for
p0 + q0 + · · ·+ pk + qk = 5 are of this type, for instance.

Remark 7.2.1. While the choice of (RP4,PGL5R) as the ambient geometry is not unique, the
results of this chapter are to some extent independent from the choice of ambient geometries of type
(RPm−1,PGLmR) for m ≥ 5, see Section 7.3.4. Setting m = 5 can be seen as a minimal choice.

Let [bn] ∈ PGL5R be a sequence of group elements. On points [x] ∈ X the [bn] act via
(projective) matrix multiplication, [x] 7→ [bn · x]. Group elements [g] ∈ O are conjugated by
the [bn], [g] 7→ Ad[bn][g] = [bn · g · b−1

n ], analogously to a change of basis acting on matrices.
On the geometry G the sequence [bn] thus acts as

G = (X,O)→ ([bn] · X,Ad[bn]O) =: [bn]∗G , (7.9)

with Ad[bn]O := [bn] ·O · [b−1
n ].

The sequence Ad[bn]O converges geometrically to a subgroup O′ < PGL5R for n→∞,
if every g ∈ O′ is the limit of some sequence hn ∈ Ad[bn]O, and if every accumulation
point of every sequence hn ∈ Ad[bn]O lies in O′. Then, O′ is called a conjugacy limit of
O. Conjugacy limits are identical to limits on the space of closed subgroups of PGL5R
with respect to the Chabauty topology; for details see e.g. [309, 322–324]. The sequence
[bn]∗G ⊂ (RP4,PGL5R) converges to the geometry G′ = (X′,O′), if Ad[bn]O converges
geometrically to O′ and there exists2 z ∈ X′ ⊂ RP4 such that for all n sufficiently large
z ∈ [bn] ·X. All such limits of G((p0, q0), . . . , (pk, qk)) ⊂ (RP4,PGL5R) have been classified
and are up to conjugacy3 within (RP4,PGL5R) of the form G((p′0, q

′
0), . . . , (p′l, q

′
l)) for

l ≥ k, p0 + · · · + pk = p′0 + · · · + p′l and q0 + · · · + qk = q′0 + · · · + q′l, potentially after
exchanging some (pi, qi) with (qi, pi) [309]. Such a limit geometry is called a refinement of
G((p0, q0), . . . , (pk, qk)).

On Lie algebra level the [bn] act analogously. They map X ∈ o to Ad[bn]X , o the Lie
algebra of O. With O → O′ a conjugacy limit via [bn] ∈ PGL5R and o′ = Lie(O′), in
Appendix 7.A and [325] it is shown that

o′ = lim
n→∞

[bn] · o · [b−1
n ] , (7.10)

convergence defined as for the geometric convergence of Lie groups.
2This condition exemplifies the hit-and-miss character of the Chabauty topology [325].
3For the model space actually up to multiplication of points by a PGL5R element.
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Example 7.2.2. (i) To explore the deformation of Poincaré geometry G((1), (3, 1)) by

[bn] = P

e
−n

13×3

e−n

 , (7.11)

focus on a boost generator of the Poincaré Lie algebra such as4

[K] = P


0

0

0

0 −i

−i 0

 . (7.12)

The element [bn] acts via conjugation on [K], with the non-trivial submatrix mapped as(
0 −i

−i 0

)
7→

(
0 −i en

−i e−n 0

)
. (7.13)

Multiplication by exp(−n) yields the well-defined n→∞ limit(
0 −i

0 0

)
. (7.14)

The multiplication by exp(−n) is an identity map in the employed projective setting. In the
non-projective setting the limit matrix would contain diverging elements. After application
of the coordinate index permutation τ = (0) (1 2 3 4) in cycle notation, in the n→∞ limit
the structure group Ad[bn]PO((1), (3, 1)) becomes

τ∗ lim
n→∞

Ad[bn]PO((1), (3, 1)) = PO((1), (1), (3)) , (7.15)

which can be identified with the Galilei group. In particular, the limit process turns Lorentz
boosts with generators such as (7.12) into Galilean velocity additions as generated by the
projective matrix corresponding to (7.14). The model space X((1), (3, 1)) is invariant under
[bn], such that for n→∞ Galilei geometry is retrieved:

[bn]∗G((1), (3, 1))→ τ−1
∗ G((1), (1), (3)) . (7.16)

(ii) Consider

[bn] = P

(
e−4n

en · 14×4

)
(7.17)

acting on projective de Sitter geometry G(4, 1). Let [x0, . . . , x4] ∈ [bn] · X(4, 1), i.e.,

− e8nx2
0 − e−2nx2

1 − e−2nx2
2 − e−2nx2

3 + e−2nx2
4 < 0 . (7.18)

4As everywhere in this dissertation, we employ physics conventions for Lie algebras, such that a simply
connected Lie group G has Lie algebra g and G = exp(ig).
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In the projective setting, the left-hand side is identical to

− x2
0 − e−10nx2

1 − e−10nx2
2 − e−10nx2

3 + e−10nx2
4 , (7.19)

yielding the well-defined limit constraint x0 6= 0 for n→∞. Thus, the model space X(4, 1)

changes in the n → ∞ limit to X((1), (3, 1)) = A3,1. In the non-projective setting the
n→∞ limit of Equation (7.18) would have led again to an infinite blow-up. The projective
formulation generally prevents singular behavior for limit processes. Explicit computation
shows that for n→∞ Ad[bn]PO(4, 1) converges geometrically to the Poincaré group. The
limit process flattens the de Sitter model space, and the structure group changes accordingly.
The limit geometry of projective de Sitter geometry deformed by the [bn] of (7.17) is Poincaré
geometry G((1), (3, 1)).

Given a conjugacy limit O→ O′ with Lie algebras o→ o′, we show in Appendix 7.A
that o′ is isomorphic to a contraction5 of o. Yet, contractions and conjugacy limits of Lie
algebras are not equivalent. While contractions can render any (here 10-dimensional) Lie al-
gebra Abelian by trivializing all commutators, conjugacy limits of any o((p0, q0), . . . , (pk, qk))

terminate up to conjugacy at the final limit o((1), (1), . . . , (1)), which for p0 + q0 + · · · +
pk + qk = 5 is a 3-step non-Abelian nilpotent Lie algebra. No further limit refinement of
the latter is possible by any sequence [bn] ∈ PGL5R. Arguing in favor of conjugacy limits,
they appear naturally from canonical constructions in the framework of geometries, which
is in contrast to contractions.

7.2.2 Projective frames and limits

Let us consider projective vector fields and related projective frames. We define projective
vector fields on a geometry model space X as equivalence classes [W ] of vector fields
on X, which are locally defined up to the equivalence relation W ∼ W̃ if there exists
λ ∈ C∞(X,R6=0) such that for all [x] ∈ X: W̃ ([x]) = λ([x])W ([x]), in short W̃ = λW .

Remark 7.2.3. This definition of projective vector fields is consistent with the more common
definition of projectively related torsion-free connections on a Riemannian manifold. According to
[327–329] two torsion-free connections ∇, ∇̃ on X are projectively related if they have the same
geodesics as point sets, i.e., up to parametrization. Let λ ∈ C∞(X,R 6=0), W ∈ X(X) and W̃ =

λW . Given the connection∇, for every [x] ∈ X there is a unique geodesic γ : (−ε, ε)→ X, ε > 0,
with γ(0) = [x] and dγ (s)/ds |s=0 = W ([x]). Similarly, W̃ induces a geodesic γ̃ : (−ε̃, ε̃)→ X,
ε̃ > 0, with γ̃(0) = [x] and

d

ds

∣∣∣∣
s=0

γ̃(s) = W̃ ([x]) = λ([x])W ([x]) = λ([x])
d

ds

∣∣∣∣
s=0

γ(s) . (7.20)

The geodesics γ and γ̃ are the same as sets. Then there exists a torsion-free connection ∇̃ with
geodesic γ̃, such that∇, ∇̃ are projectively related [329]. Thus, projectively equivalent vector fields
give rise to projectively related connections.

5A contraction of a Lie algebra g = (V, [·, ·]) is defined by sending commutators [X,Y ] → 0 for some
X,Y ∈ V , such that V together with the limiting commutators consistently defines a Lie algebra [308, 326].
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Locally, projective vector fields are linear combinations of projective frame vectors. A
projective frame on the four-dimensional space X is defined from a frame {e1, . . . , e4} on
X as

{([x], {[e1([x])], . . . , [e4([x])], [e1([x]) + · · ·+ e4([x])]}) | [x] ∈ X} . (7.21)

In the projective setting, any set {[eA] |A = 1, . . . , 5} is of this form, if (eA)A 6=B defines
a frame on X for every B = 1, . . . , 5, since [eA] = [λAeA] for all λA ∈ C∞(X,R6=0), A =

1, . . . , 5, such that [e1 + · · ·+ e4] is a general linear combination of [e1], . . . , [e4].

Remark 7.2.4. Five projective vector fields are required to uniquely specify a projective frame on
the four-dimensional model space X by the following argument [320]. Assume that [eµ] = [fµ] for
all µ = 1, . . . , 4. Then, eµ = λµfµ for λµ ∈ C∞(X,R6=0). With the fifth projective vector field
[e1 + · · ·+ e4] = [f1 + · · ·+ f4] we have e1 + · · ·+ e4 = λ(f1 + · · ·+ f4). Together this yields
0 = (λ1 − λ)f1 + · · · + (λ4 − λ)f4, such that by linear independence of the fµ: λµ = λ for all
µ = 1, . . . , 4. In the projective setting the two frames agree.

Projective vector fields are generally different from non-projective vector fields on X,
as the following example demonstrates.

Example 7.2.5. Consider Poincaré geometry G((1), (3, 1)). The map [1, x1/x0, . . . , x4/x0] 7→
(x1/x0, . . . , x4/x0) identifies X((1), (3, 1)) with A3,1. With yµ := xµ/x0, µ = 1, . . . , 4, the
corresponding standard vector fields on A3,1 are given by ∂/∂yµ = x0 ∂/∂xµ. A projective vector
field [W ] on X((1), (3, 1)) is given by the linear combination

[W ([x])] =
4∑

µ=1

Wµ([x])

[
∂

∂yµ

]
+W5([x])

[ 4∑
µ=1

∂

∂yµ

]
. (7.22)

Generally, W5([x]) can be non-zero, such that five independent functions on X((1), (3, 1)) appear,
taken modulo the projective equivalence relation ∼.

This is in contrast to non-projective vector fields. A non-projective vector fieldZ on X((1), (3, 1))

can be thought of as a vector field on the tangent space of the four-dimensional submanifold
{(1, y1, . . . , y4) ∈ R5}, for which only four independent components appear.

We denote the set of projective frames on X by P(X), which can be given a smooth
structure. With the projection map

π : ([x], {[e1([x])], . . . , [e4([x])], [e1([x]) + · · ·+ e4([x])]}) 7→ [x] , (7.23)

the fiber bundle P(X)→ X is obtained.
Matrices c ∈ GL4R act on local frame vectors e1([x]), . . . , e4([x]), [x] ∈ X, via matrix

multiplication, eµ([x]) 7→ c · eµ([x]) for µ = 1, . . . , 4. This action is transitive: any two local
frames on X are connected by a general linear transformation. Similarly, the group PGL5R
acts on fibers of the bundle P(X)→ X. For the action let {[∂A] |A = 1, . . . , 5} denote the
standard projective frame on X, e.g. {[∂/∂y1], . . . , [∂/∂y4], [∂/∂y1 + · · ·+ ∂/∂y4]} for the
case of X = X((1), (3, 1)). Locally, any frame {[e1], . . . , [e4], [e5]} is a linear combination
of the [∂A], A = 1, . . . , 5, defined up to prefactor. This yields a projective invertible 5× 5
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matrix, on which elements of PGL5R act via matrix multiplication. The action is transitive,
giving the projective frame bundle over X, i.e., the principal PGL5R-bundle

PGL5R→ P(X)→ X . (7.24)

To study the behavior of frames under deformations of geometries, let [bn] ∈ PGL5R
and {[e1], . . . } be a projective frame on X. The frame vector fields transform for all
A = 1, . . . , 5 as

([x], [eA([x])]) 7→ ([bn · x], [bn] · [eA([x])]) , (7.25)

with [bn] · [eA([x])] the described matrix multiplication for projective frame vectors. Ne-
glecting infinite oscillatory behavior, n → ∞ limits of vector fields [bn] · [eA([x])] are
well-defined, since infinite blow-ups of components with respect to the standard frame on
RP4 are automatically cured in the projective setting. Yet, the limit matrices limn→∞[bn]

can decrease in rank, cf. the n→∞ limit of the matrix (7.11), whose rank decreases from
5 to 3. Projective frames can thus degenerate in limits, then spanning up strict subspaces
of the projective tangent spaces of X.

We define projective tensor fields on X analogously to projective vector fields modulo
multiplication by C∞(X,R 6=0) elements. On projective tensor fields such as projective met-
rics or projective differential forms deformations of geometries act as tensor contractions
with the [bn] or [b−1

n ], depending on the projective tensor field under consideration. Analo-
gously to projective vector fields, projective tensor fields can degenerate in limit processes,
but remain well-defined in the absence of infinite oscillations of the [bn]. For instance,
no singularities appear for metrics in the projective formulation. This is in contrast to
standard general relativity, where singularities can render the theory inconsistent in their
surrounding neighborhoods.

7.2.3 Locally homogeneous geometries from gravity

General-relativistic space-time manifolds are rarely homogeneous spaces. We argue that
homogeneous geometries are realized locally in the presence of gravitational matter, based
on the projective analogue of Einstein-Cartan gravity. To this end, we expect that many of
the following derivations for homogeneous geometries actually hold in more generality.

In standard Einstein-Cartan gravity for four-dimensional manifolds M [89] the frame
fields, i.e., GL4R-valued sections of the frame bundle, and the Cartan connections appear
as the independent degrees of freedom. The related projective formulation can be based on
projective frames and connections of the projective frame bundle PGL5R→ P(M)→M .
The physically realized projective frames and connections are expected to solve certain
equations of motion, whose specific form is irrelevant for the present argument and will
be discussed elsewhere.

Assume thatM ⊂ RP4, which applies to all four-dimensional geometries considered in
this chapter as well as their (local) deformations and limits. Intuitively speaking, infinites-
imal space-time deformations can be considered irrelevant for any physical measurement.
It is thus physically reasonable to assume that in an arbitrarily small open subset N ⊂M a
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non-degenerate geometry G(p, q) for p+ q = 5 is realized,6 i.e., there exists an embedding
N ↪→ X(p, q), such that G(p, q) induces an action of a Lie subgroup H < PO(p, q) on N

which includes the local isotropy groups PO(p, q)[x] < H for all [x] ∈ N . Otherwise an
infinitesimal modification of M is necessary, which is physically irrelevant. The symme-
try group PO(p, q) appears as the set of fixed points of the involution τ = σ ◦ θ, with
θ([h]) = [(h−1)T ] the Cartan involution and σ([h]) = [JhJ−1] with

J =

(
−1p×p

1q×q

)
, (7.26)

for all [h] ∈ PGL5R.
Choose an extended neighborhood N ′ of N , not required to be open or closed, such

that we can consider a projective frame on N ′, which can be identified with a section
N ′ 3 ([x] 7→ [g([x])]) of the projective frame bundle PGL5R → P(N ′) → N ′. N locally
realizing the geometry G(p, q), we can choose [g([x])] so that [g([x])] = 1 for all [x] ∈ N .
For such a section [g] the deformed local involution ([g]∗σ)[x] at [x] ∈ N ′ is defined for all
[h] ∈ PGL5R as

([g]∗σ)[x]([h]) = (Ad[g([x])][J ])[h](Ad[g([x])][J
−1]) . (7.27)

The Cartan involution θ deforms locally to ([g]∗θ)[x]([h]) = Ad[g([x])][(h
−1)T ]. We set [g]∗τ =

([g]∗σ) ◦ ([g]∗θ). Its fixed point set at [x] is Ad[g([x])]PO(p, q), i.e., the local conjugation of
PO(p, q) by [g([x])], which we encountered before but globally. The local geometry at
[x] ∈ N ′ is [g([x])]∗G(p, q).

Remark 7.2.6. While on N we are able to choose a metric with isometry group PO(p, q), on the
larger N ′ it may not be possible to choose a metric with isometry group Ad[g([x])]PO(p, q) at all
[x] ∈ N ′. In principle, the local isometry groups need not even include the local isotropy groups.

If M is parallelizable, we can extend N ′ to the full M , since [g] can be defined globally.
For manifolds M with non-trivial topology (yielding space-time horizons) we need multi-
ple such extended neighborhoods N ′, related to the minimal atlas of M and potentially
modified infinitesimally in order to locally realize some of the semi-simple symmetry
groups PO(p, q). Towards boundaries of N ′ limits of geometries might be required, which
can readily be taken in the given framework.

7.3 Quantum fields on deformed geometries

Quantum fields are tied to space-time geometries by means of their behavior under space-
time symmetry transformations, which involves projective unitary representations of
the space-time symmetry groups acting on the Hilbert space [8]. Irreducibility of the
representations characterizes fundamental quantum particles, and the Hilbert space of the
theory is constructed from these. Geometries thus dictate the types of particles that can
occur, and the structure of the Hilbert space. For instance, in Poincaré geometry particles

6For instance, it is expected that the universe is asymptotically de Sitter at late cosmological times [330].
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are described by the well-known massive spin and massless helicity representations of the
Poincaré group.

We introduce quantum fields on four-dimensional subgeometries of (RP4,PGL5R) in
Section 7.3.1. These as well as related field operator correlators transform naturally under
deformations and limits. Topological superselection sectors appear for the related repre-
sentations of PGL5R, described in Section 7.3.2. We introduce composite and irreducible
quantum fields in Section 7.3.3. In Section 7.3.4 we discuss the dependence on the ambient
geometry.

7.3.1 Quantum fields and their correlators

We focus on representation-theoretic properties of quantum fields related to space-time
geometries and do not aim for their complete mathematical characterization. Let H
be a fixed, given Hilbert space, on which the quantum field theory can be consistently
formulated. We omit the discussion of its specific form in this chapter. U(H) denotes the
set of unitary linear operators onH.

Definition 7.3.1. A quantum field Ô = (U, ρ, {Ôα([x]) | [x] ∈ RP4, α = 1, . . . ,dim ρ})
consists of a projective unitary PGL5R representation U : PGL5R → U(H) with adjoint †, a
finite-dimensional complex PGL5R representation ρ, and a family of linear operators Ô([x]) =

(Ô1([x]), . . . , Ôdim ρ([x])) with Ôα([x]) : H → H, such that for all [x] ∈ RP4, [g] ∈ PGL5R,
α = 1, . . . ,dim ρ:

U([g])Ôα([x])U †([g]) =

dim ρ∑
β=1

ραβ([g−1])Ôβ([g · x]) . (7.28)

Often we omit the component indicesα, β from notations. When denoted as Ô, Ô = (U, ρ, {Ô([x])})
is understood. The Ôα([x]) and Ô([x]) are synonymously called field operators. All adjoint field
operators Ô†α([x]) are assumed to exist. On the geometry (X,O) < (RP4,PGL5R) the quantum
field is given by restriction,

Ô|(X,O) := (U |O, ρ, {Ôα([x]) | [x] ∈ X}) . (7.29)

Upon restriction to the geometry (X,O), no restriction of the representation ρ to ρ|O is
included in order to be able to consistently include PGL5R gauge transformations later.

Remark 7.3.2. While in Definition 7.3.1 U is a projective unitary representation, ρ is non-
projective. This is sensible, since if ρ was projective, its multiplier would be equivalent to the
trivial one, see Proposition 7.3.7. The finite dimensionality of ρ is part of established formal
approaches [318].

To restrict to the formal minimum, in Definition 7.3.1 no assumptions are made on the
smoothness of field operator expectation values smeared by suitable test functions as for
Wightman field operators. No equal-time commutation relations are discussed, whose
formulation for curved geometries would rest on an observer-specific, distinguished time
direction as available for globally hyperbolic space-times [331]. Implications of causality
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for Lorentzian geometries will be discussed in Section 7.4. As part of a complete algebraic
characterization of quantum fields, Definition 7.3.1 can be naturally incorporated in Haag-
Kastler conditions for nets of von Neumann operator algebras, extended to the ambient
geometry (RP4,PGL5R) [84, 318, 332].

Definition 7.3.1 extends the standard behavior of quantum fields under Poincaré
transformations, as the following example demonstrates.

Example 7.3.3. Let V : PO((1), (3, 1)) → U(H′) be a projective unitary irreducible repre-
sentation of the Poincaré group acting on some Hilbert space H′. These are induced from finite-
dimensional irreducible representations of the little group O(3, 1) [8, 333]. Lorentz transformations
act on the representation space of the little group and translations act on the induced function
space. In the projective picture, a Poincaré transformation

[(Λ, t)] := P

(
1 0

t Λ

)
∈ PO((1), (3, 1)) (7.30)

acts for the unitary vector representation V of the Poincaré group on field operators [Â([x])]

(defined for all [x] ∈ RP4) corresponding to a projective vector field as

V ([(Λ, t)])[Â([x])]V †([(Λ, t)]) = [(Λ, t)]−1 · [Â([Λ · x+ t])] . (7.31)

Here, the action of [(Λ, t)]−1 = [(Λ−1,−Λ−1 · t)] on [Â([Λ · x + t])] is via the fundamental
representation CP4

PGL5R|PO((1),(3,1)) of PO((1), (3, 1)) acting on CP4 via (projective) matrix
multiplication.

Following Example 7.2.5, [Â] has five independent components ÂB , B = 1, . . . , 5, as a
projective vector field. Equation (7.31) yields for µ = 1, . . . , 4:

V ([(Λ, t)])Âµ+1(y)V †([(Λ, t)]) =

4∑
ν=1

(Λ−1)µ
νÂν+1(Λ · y + t) , (7.32)

(Λ−1)µ
ν denotes the µν matrix element of Λ−1. This is the usual transformation behavior of a

vector field on Minkowski space-time.
V induces a unitary representation U : PGL5R→ U(H),H the induced Hilbert space. The

tuple (U,CP4
PGL5R, {[Â([x])] | [x] ∈ RP4}) is a quantum field in the sense of Definition 7.3.1.

Restricted to Poincaré geometry, the transformation behavior (7.28) implies Equation (7.31).

Quantum fields transform naturally under geometry deformations, specified by the
following lemma.

Lemma 7.3.4. Consider a quantum field Ô on the geometry G = (X,O), and let [bn] ∈ PGL5R.
The quantum field on [bn]∗G is given by restriction to [bn]∗G = ([bn] · X,Ad[bn]O). In particular,
Ô|[bn]∗G comes with the projective Ad[bn]O representation U |Ad[bn]O. On the limit geometry
(X′,O′) = limn→∞([bn]∗G), the geometry-restricted quantum fields become Ô|(X′,O′) with the
projective O′ representation U |O′ .

Proof. Let ω be the (Schur) multiplier of the projective representation U . A geometry
deformation via [bn] ∈ PGL5R acts on a field operator Ô([x]), transformed via [g] ∈
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PGL5R, as

U([g])Ô([x])U †([g]) 7→ U([bn])U([g])Ô([x])U †([g])U †([bn])

= ω([bn], [g])ω([bng], [b−1
n ])U([bngb

−1
n ])U([bn])Ô([x])U †([bn])

× ω([bn], [g−1])ω([bng
−1], [b−1

n ])U †([bngb
−1
n ])

= U([bngb
−1
n ])U([bn])Ô([x])U †([bn])U †([bngb

−1
n ]) , (7.33)

where we used multiplier cyclicity, i.e.,

ω([bn], [g])ω([bng], [b−1
n ]) = ω([bn], [gb−1

n ])ω([g], [b−1
n ]) , (7.34)

and

ω([bn], [g−1])U([bng
−1]) = U([bn])U([g−1])

= (U([g])U([b−1
n ]))−1 =

1

ω([g], [b−1
n ])

U([bng
−1]) , (7.35)

analogously for ω([bng
−1], [b−1

n ]). The field operator Ô([x]) is thus changed to

U([bn])Ô([x])U †([bn]) = ρ([b−1
n ])Ô([bn · x]) , (7.36)

and the symmetry group O is conjugated by [bn].
We prove in Appendix 7.B that the conjugacy limit of U |O via U([bn]) inside of U is the

same as U |O′ up to multiplier, i.e., the diagram

limn→∞Ad[bn] : O O′

limn→∞AdU([bn]) : U(O) [U(O′)]

U |O U |O′ (7.37)

commutes. [U(O′)] denotes U(O′) modulo U(1) prefactors. In fact, by the considerations
of Appendix 7.B multipliers of U |O′ are limits of multipliers of U , which can become trivial.
The analogous diagram for ρ commutes without modulo U(1) multipliers. No faithfulness
of U or ρ is necessary for this. The quantum fields thus change in the geometry limit from
Ô|(X,O) to Ô|(X′,O′).

An algebra A(X) of field operator correlators can formally be defined as

A(X) :=

{ L∑
`=1

∫
X`
a`([x

(`)
j1

], . . . , [x
(`)
j`

])ρ
(†)
α1β1

([g
(`)
1 ])Ô(†)

β1
([x

(`)
j1

]) ◦ · · ·

◦ ρ(†)
α`β`

([g
(`)
` ])Ô(†)

β`
([x

(`)
j`

]) d4[x
(`)
j1

] · · · d4[x
(`)
j`

]

∣∣∣∣∀` : [g
(`)
` ] ∈ PGL5R,∫

X`
a`([x

(`)
j1

], . . . , [x
(`)
j`

]) d4[x
(`)
j1

] · · · d4[x
(`)
j`

] <∞, L ∈ N>0

}
, (7.38)
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where we imply the summation over repeated indices βj , and the superscript (†) denotes
taking the adjoint or not, which must be taken consistently for ρ and the corresponding
field operator Ô([x]) involved in the matrix product. By construction a`([x

(`)
j1

], . . . , [x
(`)
j`

])

can be a distribution on X`, in particular also a product of ` Dirac δ-functions. This can
recover usual field operator correlators such as Ô(†)

α1 ([x
(`)
j1

]) · · · Ô(†)
α` ([x

(`)
j`

]).

Proposition 7.3.5. Let [bn] ∈ PGL5R, (X,O) < (RP4,PGL5R) be a geometry. Deformations of
(X,O) via [bn] give the commutative diagram

Ad[bn] : O Ad[bn]O

AdU([bn]) : A(X) A([bn] · X) ,

∼

AdU AdU

∼

(7.39)

where the horizontal maps are bijections. A correlator Ĉ ∈ A(X) transforms as

Ĉ 7→ U([bn])ĈU †([bn]) ∈ A([bn] · X) . (7.40)

Proof. The claim follows from

Ô(†)
β1

([x
(`)
j1

]) · · · Ô(†)
β`

([x
(`)
j`

]) 7→ U([bn])Ôβ1([x
(`)
j1

]) · · · Ôβ`([x
(`)
` ])U †([bn]) , (7.41)

together with∫
X`
a`([x

(`)
j1

], . . . , [x
(`)
j`

])U([bn])Ô(†)
β1

([x
(`)
j1

]) · · · Ô(†)
β`

([x
(`)
j`

])U †([bn]) d4[x
(`)
j1

] · · · d4[x
(`)
j`

]

=

∫
X`
a`([x

(`)
j1

], . . . , [x
(`)
j`

])ρ
(†)
β1γ1

([b−1
n ])Ô(†)

γ1 ([bn · x(`)
j1

]) ◦ · · ·

◦ ρ(†)
β`γ`

([b−1
n ])Ô(†)

γ`
([bn · x(`)

j`
]) d4[x

(`)
j1

] · · · d4[x
(`)
j`

]

=

∫
([bn]·X)`

a`([b
−1
n · y

(`)
j1

], . . . , [b−1
n · y

(`)
j`

])ρ
(†)
β1γ1

([b−1
n ])Ô(†)

γ1 ([y
(`)
j1

]) ◦ · · ·

◦ ρ(†)
β`γ`

([b−1
n ])Ô(†)

γ`
([y

(`)
j`

]) d4[y
(`)
j1

] · · · d4[y
(`)
j`

] . (7.42)

This provides a bijective map into A([bn] ·X).

Proposition 7.3.5 is similar to a related statement for universal enveloping algebras
of Lie algebras and their conjugacy limits, given in Appendix Section 7.A.3. It can be
generalized to the closure of smeared variants of correlators in A(X) with respect to
suitable operator topologies, as shown in Appendix 7.C. In particular, this can include
correlators of infinite order in field operators.

7.3.2 Superselection sectors

Inequivalent multipliers of the projective representation U yield different superselection
sectors for the quantum field Ô. On Poincaré geometry this gives bosonic and fermionic
representations, which we extend to the ambient geometry (RP4,PGL5R).



7.3. Quantum fields on deformed geometries 145

Let ω be the multiplier of the projective representation U . PGL5R is connected, so for
[g], [h] ∈ PGL5R we can define the path γ([g], [h]) from [1] ∈ PGL5R to [g] to [gh] and then
back to [1] via the exponential map.

Proposition 7.3.6. H2(PGL5R,U(1)) ∼= Z2, generated by the two inequivalent cocycles

ω+([g], [h]) = +1 (7.43)

and

ω−([g], [h]) =

+1 , if γ([g], [h]) is contractible ,

−1 , if γ([g], [h]) is not contractible ,
(7.44)

for all [g], [h] ∈ PGL5R.

Proof. PGL5R ∼= SL5R since −15×5 /∈ SL5R. Since SL5R is perfect, the universal central
extension yields the short exact sequence of groups [334, 335]

1→ H2(PGL5R,Z) ∼= π1(PGL5R)→ PGL5R→ PGL5R→ 1 , (7.45)

with PGL5R the universal cover of PGL5R. The fundamental group is π1(PGL5R) ∼=
π1(SL5R) ∼= Z2. With H1(SL5R,Z) ∼= 0 since SL5R is perfect, we have by the universal
coefficient theorem

H2(PGL5R,U(1)) ∼= HomZ(H2(PGL5R,Z),U(1)) ∼= HomZ(Z2,U(1)) ∼= Z2 . (7.46)

Generators can be chosen of the claimed topological type [8].

The following proposition shows that requiring ρ non-projective for quantum fields as
in Definition 7.3.1 is no restriction.

Proposition 7.3.7. Assume that for a quantum field (U, ρ, {Ô([x])}) the representation ρ is
projective instead of non-projective. It can be chosen with trivial multiplier independent from the
multiplier of U , if not all field operators are zero.

Proof. Assume U and ρ have multipliers ωi and ωj for i, j ∈ {+,−}, respectively. The trans-
formation behavior of the field operators Ô([x]), [x] ∈ RP4, implies for [g], [h] ∈ PGL5R:

ραβ([h−1])ρβγ([g−1])Ôγ([gh · x]) = ραβ([h−1])U([g])Ôβ([h · x])U †([g])

= U([g])U([h])Ôα([x])U †([h])U †([g])

= ωi([g], [h])2U([gh])Ôα([x])U †([gh])

= U([gh])Ôα([x])U †([gh])

= ραβ([h−1g−1])Ôβ([gh · x]) , (7.47)

where the summation over repeated indices is understood. By Equation (7.47):

Ô([gh · x]) = ρ([g])ρ([h])ρ([h−1g−1])Ô([gh · x]) = ωj([g], [h])Ô([gh · x]) , (7.48)

i.e., ωj([g], [h]) = +1.
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Multipliers of projective unitary representations do not discriminate between homoge-
neous Lorentzian geometry structure groups, the Poincaré group, PGL5R isotropy sub-
groups, or the full PGL5R, as the following lemma shows. By a homogeneous Lorentzian
geometry we mean a geometry of the form [g]∗G(4, 1) for [g] ∈ PGL5R.

Lemma 7.3.8. Let O < PGL5R be of type O = Ad[g]PO(4, 1), O = PO((1), (3, 1)), or
O = PGL5R[x] for some [x] ∈ RP4. Its cohomology group H2(O,U(1)) is generated by ω±
as in Proposition 7.3.6. If a projective unitary PGL5R representation U has multiplier ωi upon
restriction to O, i ∈ {+,−}, then U has the same multiplier ωi on the full PGL5R, and vice versa.

Proof. The Lie algebra cohomology groups corresponding to the Lie groups Ad[g]PO(4, 1)

and PO((1), (3, 1)) are trivial,

H2(Ad[g]po(4, 1),R) ∼= H2(po(4, 1),R) ∼= H2(po((1), (3, 1)),R) ∼= 0 , (7.49)

such that

H2(Ad[g]PO(4, 1),U(1)) ∼= H2(PO(4, 1),U(1)) ∼= H2(PO((1), (3, 1)),U(1))

∼= π1(Ad[g]PO(4, 1)) ∼= π1(PO(4, 1)) ∼= π1(PO((1), (3, 1))) ∼= Z2 (7.50)

by the same arguments as for the proof of Proposition 7.3.6. For the isotropy subgroup
PGL5R[x] assume without loss of generality x0 6= 0, and write [x] = [x0, . . . , x4] =

[1, y1, . . . , y4] with yµ = xµ/x0 for µ = 1, . . . , 4, else permute coordinates. Then PGL5R[x]

is given by

PGL5R[x] = P


1

y1 1
...

. . .

y4 1

P

(
1 R4

GL4R

)
P


1

−y1 1
...

. . .

−y4 1

 . (7.51)

Together with H2(pgl4R,R) ∼= 0 this gives H2(PGL5R[x],U(1)) ∼= H2(PGL4R,U(1)) ∼=
π1(PGL4R) ∼= Z2. In particular, the 2-cycles ω± generate all the cohomology groups
H2(Ad[g]PO(4, 1),U(1)),H2(PO((1), (3, 1)),U(1)),H2(PGL5R,U(1)),H2(PGL5R[x],U(1)),
since all of these cohomology groups are entirely due to non-trivial fundamental groups.

Assume a projective unitary representation V of O of any type as in the claim acts on
the Hilbert spaceH with multiplier ω−, and U has multiplier ω+. There exist [g], [h] ∈ O

such that γ([g], [h]) ⊂ O is not contractible, i.e., for these [g], [h] we have ω−([g], [h]) = −1.
On the other hand, ω+([g], [h]) = +1. Thus, V cannot be the restriction of U to O; the
multipliers need to agree. The same holds if V has multiplier ω+ and U has multiplier ω−,
showing the claim. The converse holds trivially.

This allows for the consistent extension of the classification of quantum fields into
bosons and fermions, usually done for Poincaré geometry, to the ambient projective
geometry.

Definition 7.3.9. A quantum field Ô is bosonic if U has a multiplier equivalent to the trivial
multiplier ω+, and fermionic if U has a multiplier equivalent to ω−.



7.3. Quantum fields on deformed geometries 147

The following proposition shows that no non-trivial superpositions of bosonic and
fermionic quantum states are possible.

Proposition 7.3.10. Let U be a projective unitary PGL5R representation acting on a Hilbert
space H. Then no non-trivial splitting H = H+ ⊕ H− together with U = U+ ⊕ U− and U±

acting trivially onH∓ exists, such that U+⊕1H− has multiplier ω+ and 1H+⊕U− has multiplier
ω−. This also holds for the restriction of quantum fields to general four-dimensional geometries
(X,O) independent from the inequivalent multipliers of U |O, which may only be the trivial one.

Proof. Assume H = H+ ⊕ H−, and U |H± has multiplier ω±. Let 0 6= v± ∈ H±. Choose
[g], [h] ∈ PGL5R, such that the loop γ([g], [h]) is not contractible. Then, U([g])U([h])v± =

±U([gh])v±. On the other hand, multipliers only depend on the representation U , such
that U([g])U([h])v∓ = ±U([gh])v∓. This yields ±U([gh])v± = ∓U([gh])v±, such that
U([gh])v± = 0, i.e., v± = 0, which is a contradiction.

The same reasoning applies to the restriction to any geometry (X,O). The claim
holds trivially, if ω− is not a multiplier of U |O, e.g. for the final nilpotent limit group
O((1), (1), (1), (1), (1)), which has trivial fundamental group, since it can be continuously
deformed to a point.

In the setting of quantum fields the multipliers ω± of PGL5R indeed label different
superselection sectors, justifying the previous definition.

7.3.3 Composite quantum fields and irreducibility

We construct composite and irreducible quantum fields from a quantum field Ô =

(U, ρ, {Ô([x])}). Together with the spin-statistics relation and causality requirements,
irreducible fermionic quantum fields carry the known Standard Model gauge group
representations, as we show later in Section 7.4.3.

Composite quantum fields

Let Ô∗([x]) : H∗ → H∗ be the dual field operator to Ô([x]) : H → H. The field operators of
certain composite quantum fields can then be defined from the Ôα([x]) as

(Ô(p, q; [x]))α1...αp,β1...βq

:= (Ô([x])⊗ρ · · · ⊗ρ Ô([x])︸ ︷︷ ︸
p

⊗ρ Ô∗([x])⊗ρ · · · ⊗ρ Ô∗([x])︸ ︷︷ ︸
q

)α1...αp,β1...βq

:= Ôα1([x]) · · · Ôαp([x])Ô∗β1([x]) · · · Ô∗βq([x]) , (7.52)

for α1, . . . , αp, β1, . . . , βq ∈ {1, . . . ,dim ρ}. The individual components provide linear op-
eratorsH → H, i.e., the Hilbert space remains the Hilbert space of the original quantum
field Ô, and the tensor products only encompass the index structure corresponding to
the finite-dimensional representation involved in the construction of quantum fields,
and not the Hilbert space itself. The field operators Ô(p, q; [x]) are equipped with the
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finite-dimensional PGL5R representation ρ⊗p ⊗ (ρ∗)⊗q, with ρ∗ = (ρ−1)T the dual (contra-
gredient) representation of ρ, which the Ô∗([x]) carry. We write

Ô(p, q) := Ô⊗ρp ⊗ρ Ô∗,⊗ρq = (U, ρ⊗p ⊗ (ρ∗)⊗q, Ô(p, q; [x])) . (7.53)

Proposition 7.3.11. The tuple Ô(p, q) is a quantum field for any p, q ∈ N. As (dim ρ)p+q-vectors
of (partly dual) Hilbert space operators, the field operators Ô(p, q; [x]) can be identified with linear
operators acting on

H(dim ρ)p ⊗ (H∗)(dim ρ)q ∼= H⊗ Cdim ρ ⊗ · · · ⊗ Cdim ρ︸ ︷︷ ︸
p

⊗ (C∗)dim ρ ⊗ · · · ⊗ (C∗)dim ρ︸ ︷︷ ︸
q

. (7.54)

Proof. The statement is clear from the definition of quantum fields together with basic
properties of the tensor products.

Definition 7.3.12. We call (H′, Ô(p, q)) forH′ ⊂ H(dim ρ)p ⊗ (H∗)(dim ρ)q Hilbert subspace and
all Ô(p, q; [x]) endomorphisms onH′ a composite quantum field.

Under additional assumptions such as energy positivity, the spin-statistics theorem has
been proven for quantum field theories on Poincaré geometry [336]. Translated into the
present framework, it connects quantum state statistics with causality and multipliers of
the projective representation U |PO((1),(3,1)). Only completely symmetric (anti-symmetric)
quantum states appear in the physical Hilbert space for bosonic (fermionic) quantum
fields with integer spin (half-odd integer spin) Poincaré group representations, which obey
the spin-statistics relation. Based on algebraic quantum field theory, the spin-statistics
theorem can be extended to globally hyperbolic space-times [337], which include the
homogeneous Lorentzian geometries of type [g]∗G(4, 1). Without proof, in this chapter we
assume the spin-statistics relation for composite quantum fields.

Definition 7.3.13. A composite quantum field (H′, Ô(p, q)) obeys spin-statistics, if

(i) for Ô(p, q) bosonic: under the identification (7.54) H′ only contains states which are com-
pletely symmetric under permutations of the first p factors of Cdim ρ and, independently,
under permutations of the last q factors of (C∗)dim ρ,

(ii) for Ô(p, q) fermionic: under the identification (7.54)H′ only contains states which are com-
pletely anti-symmetric under permutations of the first p factors of Cdim ρ and, independently,
under permutations of the last q factors of (C∗)dim ρ,

While spin is a property of the restricted projective representation U |PO((1),(3,1)), the
multipliers ω± appear for both the full PGL5R and PO((1), (3, 1)) and need to agree by
Lemma 7.3.8. Definition 7.3.13 thus provides a consistent formulation of the spin-statistics
relation for composite quantum fields on the entire ambient geometry (RP4,PGL5R). It
can be naturally extended to quantum fields acting on multi-particle Hilbert spaces, which
is beyond the present work.
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Irreducible quantum fields

Quantum fields can be characterized according to irreducibility of the pgl5R representation
ρ̃ corresponding to the PGL5R representation ρ. Elements of pgl5R are defined modulo
the addition of multiples of the 5× 5 identity matrix.

Definition 7.3.14. A quantum field Ô is irreducible, if ρ̃ is irreducible as a pgl5R representation.

We consider here Lie algebra instead of Lie group representations, since all projective
unitary representations U correspond to non-projective unitary PGL5R representations
coming from associated pgl5R representations. On the Lie algebra level, Definition 7.3.14
coincides with the standard definition of irreducibility for Hilbert space operators [338].

By the construction of quantum fields, ρ̃ is finite-dimensional. All finite-dimensional
irreducible representations of pgl5R ∼= sl5R are given by Schur modules for a pair of Young
tableaux. For this we require ρ̃ to be the fundamental representation CP4

pgl5R of pgl5R
acting on CP4 via (projective) matrix multiplication. We describe the related construction
of partly symmetrized, partly anti-symmetrized composite quantum fields. The treatment
closely follows the standard construction of Schur modules [338–340].

A Young tableau is an assignment of the numbers 1, . . . , p to a Young diagram λ =

{λ1, . . . , λr}with #λ = p boxes. Let (λ, λ′) be a pair of Young tableaux, λ = {λ1, . . . , λr}, λ′ =
{λ′1, . . . , λ′r′}with #λ = p, #λ′ = q, and

⋃
i λi = {1, . . . , p},

⋃
j λ
′
j = {1, . . . , q}. Such a pair

can act on tensors inH⊗CP4(p, q) := H⊗CP4p ⊗ ((CP4)∗)4q , which we call (p, q) tensors.
For the Young tableau λ we define subgroups of the degree-p symmetric group Sp:

Pλ = {π ∈ Sp |π preserves each row} , (7.55)

Qλ = {π ∈ Sp |π preserves each column} , (7.56)

analogously for λ′ and Sq. Elements π ∈ Sp, π′ ∈ Sq can act on (p, q) tensors as∑
φ⊗v1⊗· · ·⊗vp⊗ϕ1⊗· · ·⊗ϕq 7→

∑
φ⊗vπ(1)⊗· · ·⊗vπ(p)⊗ϕπ′(1)⊗· · ·⊗ϕπ′(q) , (7.57)

where the left-hand side is a general (p, q) tensor, with vi ∈ CP4, ϕj ∈ (CP4)∗ for all i, j.
Denote this action of (π, π′) on (p, q) tensors by eπ ⊗ e∗π′ . Then set

a(λ,λ′) :=
∑

(π,π′)∈Pλ×Pλ′

eπ ⊗ e∗π′ , b(λ,λ′) :=
∑

(π,π′)∈Qλ×Qλ′

sgn(π) sgn(π′) · eπ ⊗ e∗π′ . (7.58)

The Young symmetrizer is defined as c(λ,λ′) = a(λ,λ′) ◦ b(λ,λ′). It corresponds to sym-
metrizing elements of H ⊗ CP4(p, q) along rows of the Young tableaux (λ, λ′), and anti-
symmetrizing them along columns of (λ, λ′), both with regard to CP4(p, q).

Finally, we define the Schur-Hilbert space

H′(λ,λ′) := im(c(λ,λ′)) , (7.59)

which is a subspace ofH⊗ CP4(p, q).
It comes with the PGL5R representation 1H ⊗ ρ(λ,λ′), where ρ(λ,λ′) is the usual Schur

module construction applied to ρ for the pair (λ, λ′). The pgl5R Lie algebra representation
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corresponding to ρ(λ,λ′) is ρ̃(λ,λ′) = CP4
(λ,λ′), which is the usual complex pgl5R Schur

module. Analogous to the construction of H′(λ,λ′), the Schur field operators ÔSchur
(λ,λ′)([x])

are constructed by partly symmetrizing, partly anti-symmetrizing the composite field
operators Ô(p, q; [x]).

We define the composite Schur quantum field as

Ôcomp
(λ,λ′) = (H′(λ,λ′), (U, ρ(λ,λ′), {Ô(λ,λ′)([x])})) . (7.60)

Example 7.3.15. Consider (2, 0) tensors and ρ̃ = CP4
pgl5R, such that the maximal composite

Hilbert space isH⊗ CP4 ⊗ CP4. Consider the Young tableaux

λ = 1 2 , (7.61)

λ′ empty. The Schur-Hilbert space is the symmetrization,H′(λ,∅) = H⊗ Sym2CP4, and ρ̃(λ,∅) =

CP4
pgl5R �̃CP4

pgl5R := CP4
pgl5R � 1 + 1� CP4

pgl5R. If

λ =
1

2
, (7.62)

the Schur-Hilbert space is the anti-symmetrization, H′(λ,∅) = H ⊗
∧

2CP4, which comes with
ρ̃(λ,∅) = CP4

pgl5R ∧̃CP
4
pgl5R := CP4

pgl5R ∧ 1 + 1 ∧ CP4
pgl5R. The representations ρ̃i1 �̃ ρ̃i2 and

ρ̃i1 ∧̃ ρ̃i2 are the tensor product representation ρ̃i1 ⊗̃ ρ̃i2 acting on CP4 � CP4 and CP4 ∧ CP4,
respectively.

The following proposition shows that irreducible quantum fields are similar to Schur
quantum fields with regard to the involved finite-dimensional representation.

Proposition 7.3.16. A quantum field Ô = (U, ρ′, {Ô([x])}) is irreducible, if and only if for a pair
of Young tableaux (λ, λ′) there is a complex finite-dimensional PGL5R representation ρ such that
ρ′ = ρ(λ,λ′) with ρ̃ = CP4

pgl5R. If |λ|, |λ′| = 5, ρ̃(λ,λ′) is the trivial representation of pgl5R, and if
|λ| ≥ 6 or |λ′| ≥ 6, ρ̃(λ,λ′) = 0.

Proof. Ô is irreducible if and only if ρ̃′ is irreducible. The statements follow with pgl5R ∼=
sl5R from the standard classification of finite-dimensional irreducible representations of
sl5R [338, 339].

Proposition 7.3.16 implies that with regard to the finite-dimensional representation
ρ all irreducible quantum fields are of the form of composite Schur quantum fields. If
Proposition 7.3.16 applies, we write the quantum field Ô as Ô(λ,λ′). Obeying spin-statistics
manifests for irreducible quantum fields as follows.

Lemma 7.3.17. Let Ô(λ,λ′) be an irreducible quantum field, which obeys spin-statistics. Then

(i) for Ô(λ,λ′) bosonic both λ and λ′ consist of single rows, or

(ii) for Ô(λ,λ′) fermionic both λ and λ′ consist of single columns.

Proof. The statement is a direct consequence of Proposition 7.3.16 together with Defini-
tion 7.3.13.
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Thus, bosonic (fermionic) irreducible quantum fields obeying spin-statistics are simi-
lar to composite Schur quantum fields but contain only completely symmetrized (anti-
symmetrized) finite-dimensional representations. Based on the existing spin-statistics
theorems the corresponding field operators are expected to generate the entire physical
Hilbert space.

7.3.4 Dependence on the ambient geometry

The construction of quantum fields depends on the non-unique choice of the ambient
projective geometry (RP4,PGL5R). We show that this is at least partly without loss of
generality.

Proposition 7.3.18. Let G = (X,O) < (RP4,PGL5R) be a four-dimensional geometry. If G is
viewed as a subgeometry of (RPm−1,PGLm), m ≥ 5, all deformations and limits preserving the
subgeometry (RP4,PGL5R) < (RPm−1,PGLm) containing G arise up to conjugation within
(RPm−1,PGLm) from deformations and limits of G in (RP4,PGL5R).

Proof. With O ↪→ PGLmR subgroup, it is conjugate within PGLmR to the canonical form

P((P−1O)× 1) := P

(
P−1O

1(m−5)×(m−5)

)
. (7.63)

Let [cn] ∈ PGLmR. We write

[cn] = P

(
An Bn

Cn Dn

)
, (7.64)

with [An] ∈ GL5R and all other submatrices of matching sizes. Preservation of (RP4,PGL5R) <

(RPm−1,PGLm), where G < (RP4,PGL5R) < (RPm−1,PGLm), yields Bn = 0 and Cn = 0.
Then,

[cn]P((P−1O)× 1)[c−1
n ] = P(An(P−1O)A−1

n × 1) . (7.65)

Deformations and limits of O < PGLmR are up to conjugation within PGLmR the same as
within PGL5R, if the subgroup PGL5R < PGLmR containing O is preserved. The claim
for the related model spaces follows analogously.

Lemma 7.3.19. Consider a quantum field Ô = (U, ρ, {Ô([x]) | [x] ∈ RPm−1}) for ambient
geometry (RPm−1,PGLmR), i.e., U : PGLmR → U(H) is a projective unitary representation
and ρ is a finite-dimensional PGLmR representation. Restricted to the four-dimensional geometry
G = (X,O) < (RPm−1,PGLmR), deformations and limits of Ô|(X,O) which preserve the second
embedding of (X,O) < (RP4,PGL5R) < (RPm−1,PGLmR) agree up to PGLmR conjugation
with those of Ô for the ambient geometry (RP4,PGL5R).

Proof. The claim is a direct consequence of Proposition 7.3.18 together with quantum field
properties.

This does not include ambient geometries which are not real projective geometries. Yet,
one can heuristically argue in favor of the projective geometry setting in three dimensions.
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As for Thurston’s geometrization program, all eight Thurston geometries (almost) admit a
representation in real projective geometry [341, 342].

In the next section we formulate PGL5R gauge theory based on local projective frame
transformations, which are sections of the projective frame bundle (7.24). Since projective
frames only depend on the model space X of the geometry (X,O) < (RPm−1,PGLmR),
the gauge group PGL5R is independent from the ambient geometry, so are the related
results.

7.4 PGL5R gauge theory on Lorentzian geometries

Connections of the projective frame bundle (7.24) provide the gauge fields for PGL5R
gauge theory, as described in Section 7.4.1. On Poincaré and homogeneous Lorentzian
geometries causality preservation reduces the gauge group involved in non-trivial in-
teractions with other quantum fields to P(GL2R × GL3R). The reduction is not due to
spontaneous symmetry breaking, but is expected also on the classical level. Physical scale
invariance is broken by the P(GL2R× 1) ∼= R 6=0 × PGL2R gauge bosons, reminiscent of a
Higgs-like mechanism. This and the gauge group reduction are shown in Section 7.4.2.
Fermionic irreducible quantum fields come with a Standard Model-like representation
of P(GL2R × GL3R), derived in Section 7.4.3. In Section 7.4.4 implications for particle
physics models are discussed.

Throughout this section, let H be a given Hilbert space, which admits all of the
following constructions but whose structure we again do not further discuss here.

7.4.1 Projective frame transformations as PGL5R gauge theory

We review the construction of PGL5R gauge fields. More details on the mathematics of
gauge theories can be found e.g. in [89].

Consider a four-dimensional geometry (X,O) < (RP4,PGL5R). The right action
R[g] : P(X)→ P(X) locally acts as

[x] 7→ [x], [eA([x])] 7→
∑

B=1,...,5

[gA
B([x])] · [eB([x])] , (7.66)

where [e] = {[e]([x]) | [x] ∈ X} = {([x], [e1([x])], . . . , [e5([x])])} ∈ P(X), [e5([x])] = [e1([x]) +

· · ·+ e4([x])] and [(gA
B)] ∈ PGL5R. Let a : pgl5R → X(P(X)) be the fundamental vector

field on P(X), i.e., for all projective frames [e] ∈ P(X), [Y ] ∈ pgl5R:

a([Y ])[e] :=
d

dt

∣∣∣∣
t=0

Rexp(it[Y ])[e] . (7.67)

A connection 1-form of the projective frame bundle

PGL5R→ P(X)→ X (7.68)

is a pgl5R-valued differential form ω ∈ Ω1(X, pgl5R), such that for all [g] ∈ PGL5R the
pull-back via R[g] fulfils R∗[g]ω = Ad[g−1]ω and ω(a([Y ])) = [Y ] for all [Y ] ∈ pgl5R.
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The projective frame bundle comes with a local trivialization {(Uα, [ψα])}, such that
diffeomorphically π−1(Uα) → Uα × PGL5R, [e]([x]) 7→ (π([e]([x])) = [x], [ψα([e]([x]))]),
the projection π given by (7.23). Define the local sections σα : Uα → π−1(Uα), σα([x]) :=

([x], [ψ−1
α ([1])]). On the Uα there are the pull-backs

[Aα] = σ∗αω ∈ Ω1(Uα, pgl5R) , (7.69)

which locally define the gauge 1-form [A ]. Vice versa, all [Aα] together uniquely fix the
connection 1-form ω. To [A ] corresponds a unique projective (gauge) vector field [A],
which can be written as

[A([x])] =
5∑

B=1

[AB([x])] [∂B([x])] , (7.70)

where [AB([x])] ∈ pgl5R and {[∂1], . . . , [∂5]} is the standard projective frame on X.
The transition functions [gαβ([x])] = [ψα([x]) · ψ−1

β ([x])] are defined on the intersection
Uα ∩ Uβ :

[Aα,B] =
∑
β

[g−1
βα ·Aβ,B · gβα] + i [g−1

βα · ∂Bgβα] . (7.71)

Let [Ψ] : P(X) → P(X) be a gauge transformation, i.e., a PGL5R-equivariant diffeomor-
phism, such that π ◦ [Ψ] = π. Let ω′ = [Ψ−1]∗ω be the gauge-transformed connection
1-form, and [Aα], [A′α] the gauge fields corresponding to ω, ω′, respectively. Then,

[A′α,B] = [Ψα ·Aα,B ·Ψ−1
α ] + i [Ψα · ∂BΨ−1

α ] . (7.72)

So far we described classical gauge fields. A rigorous non-perturbative treatment
of gauge quantum fields has not been established yet [316]. We follow the approach of
Section 7.3.1 and focus on representation-theoretic properties, which provide the link to
geometries.

Definition 7.4.1. A PGL5R gauge quantum field [Â] = (UA, ρA, {[Â([x])]}) is a quantum field
with Hilbert spaceH, transforming under a PGL5R gauge transformation [Ψ] for all [x] ∈ RP4 as

[ÂB([x])] 7→ [Ψ([x]) · ÂB([x]) ·Ψ([x])−1] + i [Ψ([x]) · ∂BΨ−1([x])] , (7.73)

with chart indices suppressed. Upon restriction to the geometry (X,O) < (RP4,PGL5R), gauge
transformations and their action (7.73) on [Â] are restricted to X. When denoted as [Â], [Â] =

(UA, ρA, {[Â([x])]}) is understood.

Deformations and limits of geometries act naturally on gauge quantum fields and their
correlators, since they are quantum fields in the sense of Definition 7.3.1. We assume the
gauge transformation [Ψ] acts on a quantum field Ô as

Ô([x]) 7→ ρ([Ψ([x])])Ô([x]) . (7.74)



154 Projective geometries

This action preserves locality in X. A corresponding covariant derivative acting on Ô([x])

is defined similar to spin connections [343, 344] as

∇̂B([x]) = [∂B]− iρ([ÂB([x])]) . (7.75)

The algebra AÔ,Â(X) of field operator correlators for both quantum fields Ô and [Â] is
defined from the Ô(†)([x]) and the [Â(†)] together with ρ, ρA analogously to A(X) as in
Equation (7.38). In particular, AÔ,Â(X) includes mixed correlators for which both the field
operators Ô(†)([x]) and the [Â(†)([x])] act consecutively on each other.

7.4.2 Causality and gauge group reduction

Gauge group reduction on Poincaré geometry

We consider Poincaré geometry G((1), (3, 1)) and focus on geometry deformations by

[c(κ)] = P

κ 13×3

κ

 for κ > 0 . (7.76)

Similar derivations for homogeneous Lorentzian geometries are given later. In Exam-
ple 7.2.2(i) we derived that limκ→0[c(κ)]∗G((1), (3, 1)) is Galilei geometry G((1), (1), (3)) up
to the coordinate index permutation τ = (0)(1 2 3 4). In the limit κ→∞ the geometry be-
comes the ultra-relativistic (Carroll) geometry G((1), (3), (1)). Physically, the deformation
by [c(κ)] corresponds to a change in the (coordinate) speed of light.

The action of [c(κ)] thus deforms causal cones. Let [x], [x′] ∈ X((1), (3, 1)) be time-like
separated, i.e., with

[x] = [x0, . . . , x4] = [1, x1/x0, . . . , x4/x0] ,

[x′] = [x′0, . . . , x
′
4] = [1, x′1/x

′
0, . . . , x

′
4/x
′
0] , (7.77)

and ∆yµ := x′µ/x
′
0 − xµ/x0 for µ = 1, . . . , 4:

∆y2 :=
4∑

µ,ν=1

ηµν∆yµ∆yν = −∆y2
1 −∆y2

2 −∆y2
3 + ∆y2

4 > 0 , (7.78)

where (ηµν) = diag(−1,−1,−1,+1) is the (Minkowski) metric tensor on A3,1. The action
of [c(κ)] maps the left-hand side to

[c(κ)]∗∆y
2 = − 1

κ2
(∆y2

1 + ∆y2
2 + ∆y2

3) + ∆y2
4 . (7.79)

By the time-like separation ∆y4 6= 0. Assume [x] and [x′] have non-zero spatial distance,
i.e., at least one ∆ya 6= 0, a = 1, 2, 3. Then 0 < κ < 1 exists, so that [c(κ)]∗∆y

2 < 0;
[c(κ)]∗∆y

2 becomes space-like. Analogously, space-like separated space-time regions can
become time-like separated via [c(κ)] for some κ > 1. Light-like separated space-time
regions can become both time-like and space-like separated via [c(κ)].
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For quantum fields on Poincaré geometry the following definition of causality preser-
vation is commonly employed [84, 318, 332].

Definition 7.4.2. On Poincaré geometry a quantum field Ô preserves causality, if for all
space-like separated [x], [x′] ∈ X((1), (3, 1)):

[Ô([x]), Ô([x′])]∓ := Ô([x])Ô([x′])∓ Ô([x′])Ô([x]) = 0 , [Ô([x]), Ô†([x′])]∓ = 0 , (7.80)

with ‘−’ for Ô bosonic and ‘+’ for Ô fermionic. On Poincaré geometry the quantum field Ô
is non-trivial, if light-like or time-like separated [x], [x′] ∈ X((1), (3, 1)) with non-zero spatial
distance exist, such that

[Ô([x]), Ô([x′])]∓ 6= 0 and [Ô([x]), Ô†([x′])]∓ 6= 0 (7.81)

with ‘−’ for Ô bosonic and ‘+’ for Ô fermionic.

An algebra-related definition is required for the treatment of operator algebras.

Definition 7.4.3. An algebra A with commutator [·, ·] is commutator-generated, if for all
a′ ∈ A there exist a(a′), b(a′), c(a′) ∈ A: a′ = a(a′)[b(a′), c(a′)]. If the algebra A comes with
multiple commutators [·, ·]1, [·, ·]2, . . . , it is simultaneously commutator-generated with respect to
the commutators [·, ·]1, [·, ·]2, . . . , if for all a′ ∈ A and all i there exist ai(a′), bi(a′), ci(a′) ∈ A:
a′ = ai(a

′)[bi(a
′), ci(a

′)]i.

The ordering choice in this definition is without loss of generality, since a[b, c] =

[ab, c]− [a, c]b.

Example 7.4.4. Commutator-generated algebras naturally appear for causality-preserving quan-
tum fields on Poincaré geometry which obey canonical equal-time commutation relations:

[Ô([x0, . . . , x3, x4]), Ô†([x′0, . . . , x′3, x4])]∓ = δ(3)([x0, . . . , x3]− [x′0, . . . , x
′
3]) · 1H , (7.82)

where δ(3)([x0, . . . , x3]− [x′0, . . . , x
′
3]) denotes the Dirac δ-function in 3 dimensions. Indeed, then

Ô([x]) =

∫
{[x′]∈X((1),(3,1)) |x′4=x4}

d3[x′] Ô([x]) δ(3)([x0, . . . , x3]− [x′0, . . . , x
′
3])

=

∫
{[x′]∈X((1),(3,1)) |x′4=x4}

d3[x′] Ô([x]) [Ô([x0, . . . , x3, x4]), Ô†([x′0, . . . , x′3, x4])]∓ ,

(7.83)

which includes a commutator.

We can now state the gauge group reduction theorem central to this chapter. Intuitively,
commutativity with [c(κ)] probes causality preservation.

Theorem 7.4.5 (Gauge group reduction). Let Ô be a quantum field, [Â] a PGL5R gauge
quantum field, both defined for the same Hilbert spaceH, and PGL5R gauge transformations act
on Ô([x]) as in Equation (7.74). Consider Poincaré geometry G((1), (3, 1)) and assume:
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(i) Ô and [Â] are causality-preserving on Poincaré geometry with commutators [·, ·]Ô,∓ and
[·, ·][Â],∓,

(ii) AÔ,Â(X((1), (3, 1))) is simultaneously commutator-generated with respect to [·, ·]Ô,∓ and
[·, ·][Â],∓, and

(iii) the quantum fields Ô and [Â] are non-trivial on Poincaré geometry.

Then, U([c(κ)]) and UA([c(κ)]) commute with all field operators, i.e., maximally the representa-
tions ρA and ρ of the gauge subgroup

τ−1
∗ P

(
GL2R

GL3R

)
< PGL5R , (7.84)

which is isomorphic to P(GL2R×GL3R), do not act trivially on AÔ,Â(X((1), (3, 1))).

Proof. By non-triviality light-like or time-like separated [x], [x′] ∈ X((1), (3, 1)) with

[Ô([x]), Ô(†)([x′])]Ô,∓ 6= 0 (7.85)

exist. This gives

U([c(κ)]) [Ô([x]), Ô(†)([x′])]Ô,∓ U
†([c(κ)])

= [U([c(κ)])Ô([x])U †([c(κ)]), U([c(κ)])Ô(†)([x′])U †([c(κ)])]Ô,∓ 6= 0 . (7.86)

The transformation behavior (7.28) implies that

AdU([c(κ)]) : Ô([x]) 7→ Ô([c(κ) · x]) , Ô(†)([x′]) 7→ Ô(†)([c(κ) · x′]) . (7.87)

By the above there exists κ, such that [c(κ) · x] and [c(κ) · x′] are space-like separated. Then
Equation (7.86) is a contradiction to causality preservation.

U([c(κ)]) thus needs to commute with the commutator (7.85). The same argument
applies to UA([c(κ)]), which needs to commute with commutators of light-like or time-
like separated gauge field operators [Â([x])]. By causality preservation U([c(κ)]) and
UA([c(κ)]) trivially commute with all commutators of space-like separated field operators.
AÔ,Â(X((1), (3, 1))) is commutator-generated, which implies that U([c(κ)]) and UA([c(κ)])

commute with all AÔ,Â(X((1), (3, 1))), in particular with Ô([x]) and [Â([x])] themselves.
By Equation (7.28) the related ρ([c(κ)]) acts on Ô([x]) as

Ô([x]) = ρ([c(κ)−1])Ô([c(κ) · x]) . (7.88)

This yields upon acting on it with a gauge transformation [Ψ]:

ρ([Ψ([x])])Ô([x]) = ρ([c(κ)−1])ρ([Ψ([c(κ) · x])])Ô([c(κ) · x])

= ρ([c(κ)−1 ·Ψ([c(κ) · x]) · c(κ)])Ô([x]) . (7.89)
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Assume that [Ψ([x])] = [Ψ([c(κ) · x])], then upon their action on the field operators Ô([x]),
ρ([c(κ)]) and ρ([Ψ([x])]) need to commute. For the field operators [Â([x])] and the rep-
resentation ρA the analogous statements hold. Maximally gauge transformations with
values in τ−1

∗ P(GL2R×GL3R) can interact non-trivially with the field operators (again
τ = (0) (1 2 3 4)). Indeed, with

τ∗([c(κ)]) = P

(
κ · 12×2

13×3

)
(7.90)

and A,B,C,D corresponding matrix blocks:

τ∗([c(κ)]) P

(
A B

C D

)
τ∗(c(κ))−1 = P

(
A κB

κ−1C D

)
, (7.91)

which is invariant if and only if B,C = 0.

Theorem 7.4.5 implies that maximally a principal τ−1
∗ P(GL2R×GL3R)-subbundle of

the projective frame bundle on X((1), (3, 1)) is implemented faithfully on operator level:

τ−1
∗ P(GL2R×GL3R)→ P(X((1), (3, 1)))[c(κ)] → X((1), (1, 3)) , (7.92)

where P(X((1), (3, 1)))[c(κ)] denotes the space of projective frames invariant under the
action of [c(κ)]. It consists of all projective frames on X((1), (3, 1)) which preserve the
splitting into space, and time together with the additional projective coordinate, i.e., two
of the projective frame vector fields locally generate Span([∂0], [∂4]), the remaining three
generate Span([∂1], [∂2], [∂3]), and the τ−1

∗ P(GL2R×GL3R) action preserves this splitting.
To construct quantum field theories from classical action functionals, the classical limit

is of interest. Various related methods exist, e.g. contractions of commutation relation Lie
algebras (~→ 0), Moyal bracket truncations, or considering highly occupied potentially
coherent quantum states [112, 345]. The gauge group reduction is expected to be preserved
in classical limits of suitable near-classical quantum states, since Theorem 7.4.5 holds on
operator level without reference to quantum states.

Conjecture 7.4.6. In the setting of Theorem 7.4.5 the reduction of the PGL5R gauge group
to τ−1
∗ P(GL2R × GL3R) is preserved in the classical limit and thus appears in corresponding

classical action functionals.

It is necessary to include quantum states and their classical limits into the given
framework in order to make this conjecture precise and prove it.

Physical scale dependence

The identification X((1), (3, 1)) = A3,1 is via the diffeomorphism

ξ([x0, x1, . . . , x4]) := (x1/x0, . . . , x4/x0) . (7.93)
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The metric tensor (7.78) on X((1), (3, 1)) depends only on the image of ξ. A physical scale
transformation acts as ξ([x]) 7→ sξ([x]) for s > 0. Via ξ−1 this is equivalent to

[x0, x1, . . . , x4] 7→ [x0, sx1, . . . , sx4] . (7.94)

The PGL5R element implementing the scale transformation is

[d(s)] = P

(
1

s · 14×4

)
. (7.95)

Poincaré geometry remains invariant under [d(s)].
Commutativity with U([d(s)]) probes physical scale invariance on operator level and

yields the following lemma.

Lemma 7.4.7 (Scale invariance breaking). Assume the setting of Theorem 7.4.5 and ρ and ρA
are non-trivial as representations of τ−1

∗ P(GL2R× 1). Then for s 6= 1:

ρ([d(s)−1])ρ([k−1])ρ([d(s)])ρ([k]) 6= 1 , ρA([d(s)−1])ρA([k−1])ρA([d(s)])ρA([k]) 6= 1

(7.96)
for some [k] ∈ τ−1

∗ P(GL2R× 1), while the group commutators equate to one for [k] ∈ τ−1
∗ P(1×

GL3).

Proof. The claim follows by comparing [d(s) · k] with [k · d(s)] for [k] ∈ τ−1
∗ P(GL2R× 1)

and [k] ∈ τ−1
∗ P(1×GL3R), together with basic representation properties.

This lemma shows that τ−1
∗ P(GL2R × 1) ∼= P(GL2R × 1) ∼= R6=0 × PGL2R gauge

bosons break physical scale invariance and must be massive in related particle physics
models. It is tempting to associate these with the W±, Z gauge bosons of the Standard
Model, and to deduce from Lemma 7.4.7 the necessity for a Higgs-like mechanism to
generate their masses via an additional quantum field. If masses of P(GL2R× 1) gauge
bosons are effectively due to a non-zero Poincaré-invariant vacuum expectation value of
an additional quantum field, it must be a scalar quantum field upon restriction to Poincaré
geometry, i.e., ρ|PO((1),(3,1)) must be trivial.

Example 7.4.8. The projective vector quantum field [Ŵ ] comes with (Hilbert space operator-
valued) components ŴB , B = 1, . . . , 5, defined up to a common C∞(X((1), (3, 1)),R 6=0) mul-
tiple; choose an arbitrary one. Consider Poincaré geometry G((1), (3, 1)). Under a Poincaré
transformation (Λ, t) the tuple (Ŵµ)µ=2,...,5 transforms as a 4-vector, i.e., for all µ = 1, . . . , 4:

Ŵµ+1([x]) 7→
4∑

ν=1

Λµ
νŴν+1([x]) , (7.97)

as noted already in Example 7.3.3. With the projection pr1 : (Ŵ1([x]), . . . , Ŵ5([x])) 7→ Ŵ1([x]),
pr1(Ŵ ([x])) = Ŵ1([x]) transforms as a Poincaré scalar:

(Ŵ1([x]), 0, . . . , 0)
(Λ,t)·7→ (Ŵ1([x]), t1Ŵ1([x]), . . . , t4Ŵ1([x]))

pr17→ Ŵ1([x]) . (7.98)
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An element k ∈ τ−1
∗ (GL2R× 1) acts on (Ŵ1([x]), 0, . . . , 0) in general non-trivially:

(Ŵ1([x]), 0, . . . , 0) 7→ (k11Ŵ1([x]), 0, 0, 0, k51Ŵ1([x])) . (7.99)

The gauge subgroup τ−1
∗ P(1×GL3R) acts trivially on (Ŵ1([x]), 0, . . . , 0). The gauge transfor-

mation behavior of the field operator (Ŵ1([x]), 0, . . . , 0) is thus similar to the Standard Model
Higgs field.

Generalization to homogeneous Lorentzian geometries

Theorem 7.4.5 and Lemma 7.4.7 have been formulated for Poincaré geometry. We turn to
the analogous derivations for homogeneous Lorentzian geometries of the form

[g]∗G(4, 1) = ([g] · X(4, 1),Ad[g]PO(4, 1)) (7.100)

for some [g] ∈ PGL5R. Poincaré geometry G((1), (3, 1)) is a limit of this, see Exam-
ple 7.2.2(ii).

We introduce causal structures on [g]∗X(4, 1). P−1X(4, 1) comes with the metric tensor
h = −(dx 0)2 − · · · − (dx 3)2 + (dx 4)2. On P−1([g] · X(4, 1)) = g · P−1X(4, 1) it induces the
metric tensor

h̃ := g∗h =

4∑
A,B=0

hAB dxA � dxB , h = (g−1)T

(
−14×4

1

)
g−1 . (7.101)

On the charts VA := {[x] ∈ [g] · X(4, 1) |xA 6= 0}, A = 0, . . . , 4, individual metric tensors
can be defined as follows. Let [x], [x′] ∈ VA, i.e., [x] = [x0/xA, . . . , 1, . . . , x4/xA] and
[x′] = [x′0/x

′
A, . . . , 1, . . . , x

′
4/x
′
A]. This identifies the projective VA with a non-projective

subset of R4 via [x] 7→ (x0/xA, . . . , xA−1/xA, xA+1/xA, . . . , x4/xA). With the coordinate
differences ∆yB = x′B/x

′
A − xB/xA, B = 0, . . . , 4: ∆yA = 0. Metric tensors h′A on the VA

are defined by evaluating h̃ for the ∆yB instead of the dxB for all B = 0, . . . , 4. The h′A
can be glued together by multiplication with a partition of unity subordinate to the atlas
{VA} and summation, to form a metric tensor defined on the full [g] · X(4, 1), denoted h′.

Two points [x], [x′] ∈ [g] · X(4, 1) are called time-like separated, if h′([x], [x′]) > 0, null
if h′([x], [x′]) = 0, and space-like separated if h′([x], [x′]) < 0. Their spatial distance is
defined as h′|∆y4→0([x], [x′]).

To probe causality preservation we consider

[c(κ)] = [g] · P

κ 13×3

κ

 · [g−1] for κ > 0 . (7.102)

Lemma 7.4.9. Let [x] ∈ [g] · X(4, 1), and define the causal cone

C ([x]) := {[x′] ∈ [g] · X(4, 1) |h′([x]− [x′]) ≥ 0} . (7.103)

Then, [c(κ)] deforms the causal cone C ([x]) for κ 6= 1: [c(κ)] · C ([x]) 6= C ([x]).
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Proof. Let [x′] ∈ C ([x]) with [x′] 6= [x], i.e., h′([x] − [x′]) ≥ 0. Assume without loss of
generality x3, x

′
3 6= 0, such that this is equivalent to

−
3∑

A=0

(g−1(x/x3 − x′/x′3))2
A + (g−1(x/x3 − x′/x′3))2

4 ≥ 0 . (7.104)

Choose without loss of generality [x] and [x′] such that (g−1(x/x3 − x′/x′3))1 6= 0. The
element [c(κ)] transforms the left-hand side to

− κ2(g−1(x/x3 − x′/x′3))2
0 −

3∑
A=1

(g−1(x/x3 − x′/x′3))2
A + κ2(g−1(x/x3 − x′/x′3))2

4 . (7.105)

There exists κ > 0 such that this is strictly smaller than zero, i.e., [x′] /∈ [c(κ)] · C ([x]).

The following definition is analogous to Definition 7.4.2 for Poincaré geometry.

Definition 7.4.10. On the geometry [g]∗G(4, 1) a quantum field Ô preserves causality, if for all
space-like separated [x], [x′] ∈ [g] · X(4, 1), i.e., [x′] /∈ C ([x]):

[Ô([x]), Ô([x′])]∓ = 0 , [Ô([x]), Ô†([x′])]∓ = 0 , (7.106)

with ‘−’ for Ô bosonic and ‘+’ for Ô fermionic. On the geometry [g]∗G(4, 1) the quantum field
Ô is non-trivial, if light-like or time-like separated [x], [x′] ∈ [g] · X(4, 1) with non-zero spatial
distance exist, such that [Ô([x]), Ô([x′])]∓ 6= 0 and [Ô([x]), Ô†([x′])]∓ 6= 0, again with ‘−’ for
Ô bosonic and ‘+’ for Ô fermionic.

Theorem 7.4.11. Let Ô be a quantum field, [Â] a PGL5R gauge quantum field, both defined for
the same Hilbert spaceH, and PGL5R gauge transformations act on Ô([x]) as in Equation (7.74).
Consider the geometry [g]∗G(4, 1) and assume:

(i) Ô and [Â] are causality-preserving on the geometry [g]∗G(4, 1) with commutators [·, ·]Ô,∓
and [·, ·][Â],∓,

(ii) AÔ,Â([g] · X(4, 1)) is simultaneously commutator-generated with respect to [·, ·]Ô,∓ and
[·, ·][Â],∓, and

(iii) the quantum fields Ô and [Â] are non-trivial on the geometry [g]∗G(4, 1) .

Then, U([g c(κ) g−1]) and UA([g c(κ) g−1]) commute with all field operators, i.e., maximally the
representations ρA and ρ of the gauge subgroup

[g] · τ−1
∗ P

(
GL2R

GL3R

)
· [g−1] < PGL5R , (7.107)

which is again isomorphic to P(GL2R×GL3R), do not act trivially on AÔ,Â([g] · X(4, 1)).

Proof. The proof is analogous to the proof of Theorem 7.4.5 by replacing Poincaré geometry
with [g]∗G(4, 1) and [c(κ)] with [g c(κ) g−1].
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Deformations and limits of geometries thus conjugate the reduced gauge group within
PGL5R. Still, they can leave the reduced gauge group invariant as the following example
demonstrates.

Example 7.4.12. Consider the Poincaré limit of de Sitter geometry, i.e., the limit via

[bn] = P

(
e−4n

en · 14×4

)
, (7.108)

as discussed in Example 7.2.2(ii). The reduced gauge group on de Sitter geometry deforms for
n→∞ to

lim
n→∞

Ad[bn]τ
−1
∗ P(GL2R×GL3R) = lim

n→∞
Ad[bn]P

∗ 0 ∗
0 GL3R 0

∗ 0 ∗



= P

∗ 0 ∗
0 GL3R 0

∗ 0 ∗

 (7.109)

with the 2× 2 matrix defined from the four corner elements having non-zero determinant. This is
the same τ−1

∗ P(GL2R×GL3R) as for Poincaré geometry by Theorem 7.4.5.

We expect Conjecture 7.4.6 on classical limits to equally apply to the geometry [g]∗G(4, 1).
On the geometry [g]∗G(4, 1) a variant of physical scale invariance can be probed with

[d′(s)] = [g] · P

(
1

s · 14×4

)
· [g−1] for s > 0 , (7.110)

which for [g] = [bn] with the [bn] of Equation (7.17) yields [d(s)] as for Poincaré geometry.
The following lemma is analogous to Lemma 7.4.7.

Lemma 7.4.13. Assume the setting of Theorem 7.4.11. Let ρ and ρA be non-trivial as representa-
tions of Ad[g]τ

−1
∗ P(GL2R× 1). Then for s 6= 1:

ρ([d′(s)−1])ρ([k−1])ρ([d′(s)])ρ([k]) 6= 1 , ρA([d′(s)−1])ρA([k−1])ρA([d′(s)])ρA([k]) 6= 1

(7.111)
for some [k] ∈ Ad[g]τ

−1
∗ P(GL2R × 1), while the group commutators equate to one for [k] ∈

Ad[g]τ
−1
∗ P(1×GL3R).

Proof. The proof is analogous to the proof of Lemma 7.4.7 using [d′(s)] given by Equa-
tion (7.110) instead of [d(s)].

Remark 7.4.14. There are geometries such as Galilei geometry G((1), (1), (3)) or spherical geom-
etry G(5), which do not canonically possess a non-trivial causal structure. For these the gauge
group reduction of Theorem 7.4.11 does not apply. Still, there is a gauge subgroup of PGL5R, for
which the related gauge bosons break scale invariance along the lines of Lemmas 7.4.7 and 7.4.13.
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7.4.3 Gauge group representations for fermions

We show that irreducible fermionic quantum fields give rise to gauge transformation
behavior similar to the Standard Model fermions. We implicitly consider the geometries
G((1), (3, 1)) and [g]∗G(4, 1) here, such that the gauge group reduction of Theorems 7.4.5
and 7.4.11 applies.

By Lemma 7.3.17, the irreducible quantum fields all have the form Ô(λ,λ′) for a pair of
Young tableaux (λ, λ′), where ρ̃(λ,λ′) = CP4

(λ,λ′). Specifically, considered for the full gauge
group PGL5R we find the following gauge transformation behavior, if Ô(λ,λ′) is fermionic
and obeys spin-statistics.

Proposition 7.4.15. For a pair of Young tableaux (λ, λ′) let Ô(λ,λ′) be a fermionic irreducible
quantum field with finite-dimensional representation ρ′ = ρ(λ,λ′) as in Proposition 7.3.16, which
obeys spin-statistics. Let

Ô([x]) 7→ ρ(λ,λ′)([Ψ([x])]) Ô([x]) (7.112)

under a gauge transformation [Ψ] on RP4. Then the quantum field Ô(λ,λ′) gauge-transforms via a
gauge group representation with corresponding Lie algebra representation

∧̃#λ
CP4

pgl5R ⊗̃
∧̃#λ′

CP4∗
pgl5R , (7.113)

which is trivial if both #λ,#λ′ ∈ {0, 5}, and zero if #λ ≥ 6 or #λ′ ≥ 6.

Proof. Lemma 7.3.17 implies that for the fermionic quantum fields under consideration λ
and λ′ must consist of single columns only. This implies the representation of the form
(7.113). The isomorphism PGL5R ∼= SL5R implies triviality of

∧̃r
CP4

pgl5R and
∧̃r

CP4∗
pgl5R

for r = 0, 5, 6, . . . in the two forms specified.

Based on Theorem 7.4.5, representations restricted to the reduced gauge group con-
jugate in PGL5R to P(GL2R×GL3R) need to be considered. Conjugation of the reduced
gauge group results in equivalent representations. We thus focus on P(GL2R × GL3R)

itself. The following group isomorphisms can be established.

Proposition 7.4.16. The map η : R6=0 × PGL2R× PGL3R→ P(GL2R×GL3R),

η(α, g, h) = P

(
α3g

α−2h

)
, (7.114)

is a group isomorphism. Similarly, the map η′ : R>0 × SL2R× SL3R→ S(GL2R×GL3R),

η′(α, g, h) =

(
α3g

α−2h

)
, (7.115)

is a group isomorphism.

Proof. Clearly, η is a Lie group homomorphism. A general element of P(GL2R×GL3R)

can be written as

P

(
α̃5g

β̃h

)
= P

(
α̃5β̃−1g

h

)
(7.116)
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for α̃, β̃ ∈ (0,∞) and g ∈ SL2R, h ∈ SL3R, noting that −12×2 ∈ SL2R. Setting α := α̃β̃−1/5,
the matrix (7.116) equals

P

(
α5g

h

)
= P

(
α3g

α−2h

)
, (7.117)

which is in the image of η; the map η is surjective. In particular, this parametrization
of P(GL2R × GL3R) elements via α ∈ (0,∞), g ∈ SL2R, h ∈ SL3R is the same as the
parametrization by α ∈ R6=0, g ∈ SL2R/Z2, h ∈ SL3R, and PGL2R ∼= SL2R/Z2, PGL3R ∼=
SL3R. To show injectivity, we compute the kernel and set

[1] = η(α, g, h) = P

(
α3g

α−2h

)
, (7.118)

for some α ∈ (0,∞) and g ∈ SL2R, h ∈ SL3R. Equation (7.118) yields α3g = α−2h =

β · 15×5 for some β 6= 0. The only g ∈ SL2R proportional to 12×2 are ±12×2, the only
h ∈ SL3R proportional to 13×3 is 13×3. Hence, β = α−2 and β = ±α−3, such that α = ±1.
But α ∈ (0,∞), such that α = 1 and β = 1, which implies g = 12×2. The kernel of η is
indeed trivial.

The statement for η′ has been proven implicitly.

The isomorphisms of Proposition 7.4.16 are analogous to S(U(2) × U(3)) ∼= GSM =

(U(1) × SU(2) × SU(3))/Z6. No quotient by Z6 appears for the real groups, since the
only roots of unity in SL2R are ±12×2, which are taken care of by restricting the Abelian
subgroup to R>0, and SL3R has trivial center.

We note that the powers α3, α−2 in the definition of η′ in Proposition 7.4.16 are fixed
up to common multiples by the unit determinant requirement. As for η′, any combination
of powers of α other than common multiples of α3, α−2 would break commutativity of
the diagram

R 6=0 × PGL2R× PGL3R R>0 × SL2R× SL3R

P(GL2R×GL3R) S(GL2R×GL3R) ,

η

∼

η′

Ξ

(7.119)

where all maps are group isomorphisms and Ξ maps [g × h] ∈ P(GL2R ×GL3R) to the
unique unit-determinant representative of the equivalence class.

The fundamental complex representation of pglmR is denoted by CPm−1
pglmR and its dual

representation by CPm−1,∗
pglmR ; its trivial representation is 1pglmR. The Abelian representation

R 3 a 7→ [κa·1m×m] ∈ pglmR is denoted Cκ/3 for κ ∈ R, κ/3 is called the weak hypercharge.
As R × pgl2R × pgl3R representations, we find the following behavior of irreducible
fermionic quantum fields upon restriction of the gauge group to P(GL2R×GL3R), which
is based on Theorems 7.4.5 and 7.4.11.

Lemma 7.4.17. Consider the irreducible fermionic quantum fields Ô(λ,λ′) for the setting of
Proposition 7.4.15. Upon restriction of the gauge group PGL5R to P(GL2R × GL3R) the
field operators Ô(λ,λ′)([x]) gauge-transform via a representation which has as the Lie algebra
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representation the tensor product of the #λ-th and the dual representation corresponding to the
#λ′-th of the following representations:

∧̃1
CP4|p(gl2R×gl3R)

∼= (C+1 ⊗̃CP1 ⊗̃ 1)⊕ (C−2/3 ⊗̃ 1 ⊗̃CP2) , (7.120a)∧̃2
CP4|p(gl2R×gl3R)

∼= (C+2 ⊗̃ 1 ⊗̃ 1)⊕ (C+1/3 ⊗̃CP1 ⊗̃CP2)⊕ (C−4/3 ⊗̃ 1 ⊗̃CP2∗) ,

(7.120b)∧̃3
CP4|p(gl2R×gl3R)

∼= (C−2 ⊗̃ 1 ⊗̃ 1)⊕ (C−1/3 ⊗̃CP1∗ ⊗̃CP2∗)⊕ (C+4/3 ⊗̃ 1 ⊗̃CP2) ,

(7.120c)∧̃4
CP4|p(gl2R×gl3R)

∼= (C−1 ⊗̃CP1∗ ⊗̃ 1)⊕ (C+2/3 ⊗̃ 1 ⊗̃CP2∗) (7.120d)

The decompositions are into irreducible representations of R×pgl2R×pgl3R (omitting most group
subscripts), and the weak hypercharges of Equations (7.120a) to (7.120d) are unique up to two
linear maps on the different exterior powers. Further,

∧̃r
CP4

pgl5R

∣∣∣
p(gl2R×gl3R)

(7.121)

is the trivial representation for r = 0 and r = 5, and equates to zero for r > 5.

Proof. Decomposition (7.120a) is clear with CP4 ∼= P(C2 ⊕ C3) via the isomorphism of
Proposition 7.4.16. Equation (7.120b) follows with the Künneth formula for exterior
powers of direct sums of Lie algebra representations:

∧̃2
[(C+1 ⊗̃CP1 ⊗̃ 1)⊕ (C−2/3 ⊗̃ 1 ⊗̃CP2)]

∼=
∧̃2

(C+1 ⊗̃CP1 ⊗̃ 1)⊕ [(C+1 ⊗̃CP1 ⊗̃ 1) ⊗̃ (C−2/3 ⊗̃ 1 ⊗̃CP2)]

⊕
∧̃2

(C−2/3 ⊗̃ 1 ⊗̃CP2)

∼= (C+2 ⊗̃ 1 ⊗̃ 1)⊕ (C+1/3 ⊗̃CP1 ⊗̃CP2)⊕ (C−4/3 ⊗̃ 1 ⊗̃CP2∗) , (7.122)

where for the last isomorphism we employed that Hodge duality yields
∧̃2

CP1
pgl2R

∼= 1pgl2R,∧̃2
CP2

pgl3R
∼= CP2∗

pgl3R. The decompositions (7.120c) and (7.120d) follow with the Hodge
duality ∧̃r

CP4|p(gl2R×gl3R)
∼=
(∧̃5−r

CP4|p(gl2R×gl3R)

)∗
. (7.123)

The weak hypercharges of the decompositions (7.120a) to (7.120d) are by the projective
construction only fixed up to linear maps ξr(κ/3) := Crκ/3 +Dr for arbitrary Cr, Dr ∈ R.
The Hodge duality (7.123) yields ξ1 = ξ4 and ξ2 = ξ3. Two of the linear maps ξr remain
unfixed.

The requirement of a commutative diagram such as (7.119) would fix the weak hyper-
charges up to one common multiple.

Remark 7.4.18. The gauge group reduction to P(GL2R×GL3R) has been proven for the geome-
tries [g]∗G(4, 1) and G((1), (3, 1)) in Theorems 7.4.5 and 7.4.11. Lemma 7.4.17 is thus sensible
for these.
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7.4.4 Implications for particle physics models

The results of this work suggest that particle physics models based on four-dimensional
subgeometries of real projective geometry include a PGL5R gauge quantum field [Â] and
the bosonic or fermionic irreducible quantum fields Ô(λ,λ′). We restrict to the case that the
Ô(λ,λ′) are composite Schur quantum fields of the quantum field Ô(�,∅), which is barely a
restriction with regard to the specified transformation behavior as we discuss. We consider
Poincaré geometry G((1), (3, 1)) in this subsection. Regarding the physical content, a few
of the results of this subsection are somewhat more speculative and necessitate further
investigations.

Particle physics models are regularly given in the functional integral formalism. There,
an action functional is constructed from the quantum fields, which is gauge and Poincaré
invariant. Corresponding kinetic terms allow for the propagation of quantum field ex-
citations in space-time. Potential terms can give rise to (effective) masses as well as
self-interactions, and the inclusion of gauge covariant derivatives implements interactions
among the gauge bosons and the matter fields. The following thus includes a discussion
of implications of our framework for physical action functionals.

Gauge fields

Though corresponding to a projective vector field, on A3,1 = X((1), (3, 1)) the gauge quan-
tum field [Â] looks like a usual non-projective vector field. Indeed, based on Example 7.2.5,
for [x] ∈ X((1), (3, 1)) the projective vector field [Â([x0, . . . , x4])] can be identified with a
non-projective vector field Âµ(y), which has the components

Âµ(y1, . . . , y4) + Â5(y1, . . . , y4) , (7.124)

yµ := xµ/x0 for µ = 1, . . . , 4. A conjectured implication of the actual projective formula-
tion, related to renormalizability, is provided below.

The gauge field operators [Â(y)] do not readily lead to negative-definite kinetic (Yang-
Mills-like) terms for the gauge bosons to include in an action functional, since the reduced
gauge group P(GL2R×GL3R) is non-compact. As a quantum field, [Â(y)] comes with a
finite-dimensional complex representation of pgl5R, which is the same as a representation of
its complexification pgl5C. For the reduced gauge group P(GL2R×GL3R) with Lie algebra
p(gl2R⊕ gl3R) this implies that it is on Lie algebra level the same as a representation of
p(gl2C⊕ gl3C). Only representations of the compact real form of p(gl2C⊕ gl3C) can have
positive-definite trace forms in finite dimensions, which provide negative-definite kinetic
terms for action functionals [90]. The compact real form of p(gl2C⊕ gl3C) is

p(u(2)⊕ u(3)) ∼= s(u(2)⊕ u(3)) , (7.125)

with corresponding compact Lie group S(U(2)×U(3)) ∼= GSM [91]. This suggests that the
gauge quantum field [Â] is in the action functional indistinguishable from the Standard
Model gauge fields.
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Matter fields

The irreducible quantum fields have with regard to the involved finite-dimensional rep-
resentation the building blocks Ô(�,∅) and Ô(∅,�), one being the dual of the other. The
quantum field Ô(�,∅) splits into a scalar field and a Dirac fermion.

Lemma 7.4.19. The field operator Ô([x]), [x] ∈ X((1), (3, 1)), of an irreducible quantum field
of type Ô = Ô(�,∅) splits into a sum of a field operator Ĥ([x]) on which ρ(P(1×O(3, 1))) acts
trivially, and a field operator Ψ̂([x]) on which ρ(P(1×O(3, 1))) acts as for Dirac fermions. If Ô
is bosonic, Ô with Ô([x]) 6= 0 for some [x] ∈ X((1), (3, 1)) cannot exist as a quantum field.

Proof. Considered as a pgl5C representation, ρ̃ is CP4
pgl5C. Write Ô([x]) = Ĥ([x]) + Ψ̂([x]),

where

Ĥ([x]) = [Ô1([x]), 0, 0, 0, 0] , Ψ̂([x]) = [0, Ô2([x]), . . . , Ô5([x])] . (7.126)

By Example 7.4.8, Ĥ([x]) transforms trivially under P(1×O(3, 1)) transformations. The
Lie algebra complexification Lie(1×O(3, 1))C = (0⊕o(3, 1))C ∼= 0⊕su(2)C⊕su(2)C acts on
Ψ̂([x]) by matrix multiplication as for a Dirac fermion, which has spin (1/2, 0)⊕ (0, 1/2).

Let ω be the multiplier of U . If the projective representation U |P(1×O(3,1)) has in-
teger (half-odd integer) spin, it comes with multiplier ω+ (ω−). This comes about,
since P(1 × O(3, 1)) ∼= O(3, 1) has SO+(3, 1) as connected component of the identity,
and Spin(3, 1) ∼= SL2C is the (universal) double cover of SO+(3, 1). The irreducible
(1/2, 0)⊕ (0, 1/2) representation of the Poincaré group thus comes with multiplier equiv-
alent to ω−, and the irreducible higher spin Poincaré group representations, which are
partly symmetrized tensor product representations of the (1/2, 0)⊕ (0, 1/2) representation,
come with multipliers equivalent to powers of ω−. Further, U being a projective unitary
representation, it decomposes into a direct sum or direct integral of irreducible projective
unitary PGL5R representations [85], such that the multipliers only depend on the spin
also without irreducibility. For instance, for U |P(1×O(3,1)) having spin (1/2, 0)⊕ (0, 1/2), it
must be a direct sum or direct integral of one spin (1/2, 0)⊕ (0, 1/2) irreducible Poincaré
group representation with potentially many trivial Poincaré group representations, such
that its multiplier is in full generality equivalent to ω−. Ô violates this for ω equivalent to
ω+, which yields the non-existence statement. Indeed, the transformation property (7.28)
for all PGL5R implies that all field operator components of Ô([x]) are non-zero, such that
the (projective) Lorentz transformations P(1×O(3, 1)) act non-trivially on Ô([x]).

From Ô(�,∅) we can construct the composite Schur quantum field Ô(λ,λ′) := Ôcomp
(λ,λ′),

which comes with the irreducible representation ρ(λ,λ′). We can carry out the same
construction using the field operators Ψ̂([x]) instead, yielding Ψ̂(λ,λ′). Ψ̂(λ,λ′) constitutes a
quantum field if restricted to Poincaré geometry. Indeed, on Poincaré geometry the set
of field operators {Ψ̂(λ,λ′),α([x])} consistently fulfils the transformation property (7.28),
and in Definition 7.3.1 no requirement of it being closed under the action of ρ as for
gauge transformations (7.112) is contained. Taking into account the involved zero field
operators, the Ψ̂(λ,λ′) effectively transform under Poincaré transformations as specified by
the following proposition.
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Proposition 7.4.20. Assume both λ, λ′ consist of a single column, as required by Lemma 7.3.17
for irreducible fermionic quantum fields which obey spin-statistics. A Poincaré transformation
[(Λ, t)] ∈ PO((1), (3, 1)) acts on the fermionic Ψ̂(λ,λ′) as follows:

(i) for Ψ̂(λ,∅) and Ψ̂(∅,λ) via the (0, 0) (scalar) representation if #λ = 0, 4, via the (1/2, 0) ⊕
(0, 1/2) (Dirac fermion) representation if #λ = 1, 3, and via the (1/2, 1/2) (vector) repre-
sentation if #λ = 2,

(ii) for Ψ̂(λ,λ′) = Ψ̂(λ,∅) ⊗ Ψ̂(∅,λ′) via the tensor product of the PO((1), (3, 1)) representations of
the two factors.

If any #λ,#λ′ ≥ 5, the corresponding field operators are all zero.

Proof. We note that
∧̃n

(0 ⊕ C2 ⊕ C2
)0⊕su(2)⊕su(2)

∼=
∧̃n

(C2 ⊕ C2
)su(2)⊕su(2). This can be

viewed as a special case of the Künneth formula for general exterior powers of direct sums
of Lie algebra representations,

∧̃n
(V ⊕W ) ∼=

n⊕
p=0

∧̃p
V ⊗̃

∧̃n−p
W , (7.127)

where V,W are two Lie algebra representations. With this we compute:

∧̃n(
C2
su(2) ⊕ C2

su(2)

) ∼= n⊕
p=0

∧̃p
C2
su(2) ⊗̃

∧̃n−p
C2
su(2) , (7.128)

where C2
su(2) denotes the complex conjugate representation of C2

su(2). Noting that
∧

2C2
su(2)

∼=
C is trivial as a group representation, and

∧
pC2

su(2)
∼= 0 for p ≥ 3 is trivial as a vector space

yields the claim.

Remark 7.4.21. If instead of the restricted Ψ̂(λ,λ′)|G((1),(3,1)) we consider the general irreducible
fermionic quantum fields Ô(λ,λ′) with all involved field operators Ô(λ,λ′),α([x]) non-zero, then
translations [(14×4, t)] ∈ PO((1), (3, 1)) can act non-trivially on the field operators Ô(λ,λ′)([x])

via the finite-dimensional representation ρ(λ,λ′). Yet, if Ô(λ,λ′) transforms as an irreducible
Poincaré group representation under PO((1), (3, 1)) elements, which is induced from the Lorentz
group O(3, 1), then ρ(λ,λ′)([(14×4, t)]) is required to act trivially on all Ô(λ,λ′)([x]). This suggests
a behavior under Poincaré transformations similar to Proposition 7.4.20, since analogous to
Example 7.3.3 some of the field operator components Ô(λ,λ′),α([x]) need to be zero. Details are left
to be worked out.

Lemma 7.4.17 describes how the fermions Ψ̂(λ,λ′) transform with respect to the real
projective gauge group P(GL2R × GL3R). As a representation of the compact group
S(U(2) × U(3)), the Abelian Lie algebra representation Cκ/3 of R becomes the U(1) Lie
group representation U(1) 3 exp(iϕ) 7→ exp(iκϕ/3) · 1m×m ∈ U(m), synonymously
denoted Cκ/3, with weak hypercharge κ/3. The Lie algebra representation CPm−1

pglmR is
mapped to CmSU(m), and CPm−1,∗

pglmR to Cm∗SU(m) = CmSU(m). The trivial representation 1pglmR is
mapped to CSU(m). Tensor products of U(1), SU(2) and SU(3) representations then need
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(#λ,#λ′) GSM rep. Poincaré rep. SM fermion

(0, 0) 0⊗ 1⊗ 1 (0, 0) [

(1, 0) (+1⊗ 2⊗ 1)⊕ (−2
3 ⊗ 1⊗ 3) (1

2 , 0)⊕ (0, 1
2) (e+

R, νR)⊕ (dR)

(0, 1) (−1⊗ 2⊗ 1)⊕ (+2
3 ⊗ 1⊗ 3) (1

2 , 0)⊕ (0, 1
2) (e−L , νL)⊕ (dL)

(2, 0)
(+2⊗ 1⊗ 1)⊕ (+1

3 ⊗ 2⊗ 3)

⊕ (−4
3 ⊗ 1⊗ 3)

(1
2 ,

1
2) [

(0, 2)
(−2⊗ 1⊗ 1)⊕ (−1

3 ⊗ 2⊗ 3)

⊕ (+4
3 ⊗ 1⊗ 3)

(1
2 ,

1
2) [

(3, 0)
(−2⊗ 1⊗ 1)⊕ (−1

3 ⊗ 2⊗ 3)

⊕ (+4
3 ⊗ 1⊗ 3)

(1
2 , 0)⊕ (0, 1

2) (e−R)⊕ (uR, dR)⊕ (uR)

(0, 3)
(+2⊗ 1⊗ 1)⊕ (+1

3 ⊗ 2⊗ 3)

⊕ (−4
3 ⊗ 1⊗ 3)

(1
2 , 0)⊕ (0, 1

2) (e+
L )⊕ (uL, dL)⊕ (uL)

(4, 0) (−1⊗ 2⊗ 1)⊕ (+2
3 ⊗ 1⊗ 3) (0, 0) [

(0, 4) (+1⊗ 2⊗ 1)⊕ (−2
3 ⊗ 1⊗ 3) (0, 0) [

TABLE 7.4.1: Summary of gauge and Poincaré transformation behavior of the ir-
reducible fermionic restricted quantum fields Ψ̂(λ,∅)|G((1),(3,1)) and Ψ̂(∅,λ)|G((1),(3,1))
obeying spin-statistics. Column 1: Number of rows of the Young tableaux pair.
Column 2: GSM gauge group representation, for the U(1) factor denoted by the
weak hypercharge, for SU(2) and SU(3) factors denoted by dimension and complex
conjugation. Column 3: Behavior under Poincaré transformations, denoted by the
spins of the two Weyl spinor components of the Poincaré irreducible representation.
Column 4: A suggestive identification with Standard Model fermions, taking both
the behavior under gauge and Poincaré transformations into account. SU(3) (color)
indices have been suppressed. The symbol [ denotes that the field operators come
with integer spin and multiplier of U equivalent to ω−, which is inconsistent, such
that they cannot exist. The field operators Ψ̂(λ,∅)([x]) and Ψ̂(∅,λ)([x]) are zero for
#λ ≥ 5.

to be taken modulo Z6 due to the isomorphism (U(1) × SU(2) × SU(3))/Z6 = GSM
∼=

S(U(2)×U(3)).
As part of a physical action functional, which includes only the compact real form of

the gauge quantum fields, the irreducible fermionic quantum fields Ψ̂(λ,λ′) transform as in
Lemma 7.4.17 but with the described representation mapping. This leads to the identifica-
tion with one generation of the Standard Model fermions. Taking into account both gauge
and Poincaré group representations, a summary of the behavior of the Ψ̂(λ,∅)|G((1),(3,1))

and Ψ̂(∅,λ′)|G((1),(3,1)) is given in Table 7.4.1.
The field operators Ĥ(λ,λ′)([x]) := Ĥcomp

(λ,λ′)([x]) together with U and ρ(λ,λ′) do not form
a quantum field, even if restricted to Poincaré geometry, since they generally violate the
transformation property (7.28). They can interact non-trivially with S(U(2)× 1) ∼= SU(2)

gauge bosons and must come with bosonic statistics if obeying spin-statistics, since the
(projective) Lorentz group P(1 × O(3, 1)) acts trivially on them. The field operators
Ĥ(λ,λ′)([x]) thus gauge-transform via the symmetrized tensor product representation

Sym#λC5
S(U(2)×1) ⊗ Sym#λ′C5

S(U(2)×1) . (7.129)
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This is similar to the Higgs boson in the Standard Model.

Remark 7.4.22. The derivations in this section are for Poincaré geometry G((1), (3, 1)). All
involved quantum fields and their correlators transform naturally under deformations of geometries,
see Lemma 7.3.4 and Proposition 7.3.5. This suggests that the results of this section hold in a
certain sense approximately for more general Lorentzian space-time geometries of type [g]∗G(4, 1),
if they are sufficiently close to Poincaré geometry. The metrics involved in this statement are to be
specified.

A conjecture on renormalizability

In the projective setting of this work, all quantum fields are defined up to local prefactors
λ ∈ C∞(X((1), (3, 1)) = A3,1,R 6=0). We can thus equivalently choose any such λ, so that
expressions are well-defined. We noted already that the projective formulation facilitates
well-defined limits of geometries such as the non-relativistic limit of Poincaré geometry, see
Example 7.2.2(i). As the infrared limit, this is of considerable relevance to renormalization
group studies for quantum field theories with a mass gap.

Restricting to constant prefactors λ(y) = const., the prefactor choice invariance may be
interpreted as the possibility to perform wave function renormalization for all involved
quantum fields. Potential non-trivial space-time dependences of λ suggest the possibility
to renormalize any involved mass scale and higher-order correlation functions.

Example 7.4.23. Consider as an example the quantum field Ψ̂ := Ψ̂(λ,λ′)|G((1),(3,1)) for some
pair (λ, λ′) of Young tableaux, chosen such that Ψ̂ behaves as a Dirac fermion under Poincaré
transformations. In the projective setting, the field operator map Ψ̂(y) 7→ ZΨ̂(y), Z ∈ R 6=0, is
an identity map, which is analogous to the possibility of wave function renormalization for the
field operators Ψ̂(y) ≡ Ψ̂([x]). Let λ(y) = exp(Zσyσ) with summation convention, Zσ ∈ R for
σ = 1, . . . , 4. A kinetic term for the action functional of the related particle physics model comes
with the operator7

i

∫
X((1),(3,1))

d4y Ψ̂†(y)γ̃0γ̃µ∇µΨ̂(y) , γ̃µ :=

(
1

γµ

)
(7.130)

with γµ the standard Dirac γ-matrices, but considering our index ordering, where the index 4
specifies the temporal direction of X((1), (3, 1)) = A3,1. Under the map Ψ̂(y) 7→ exp(Zνyν)Ψ̂(y),
which is an identity map in the projective setting, this equates to

i

∫
X((1),(3,1))

d4y Ψ̂†(y)γ̃0γ̃µe2Zσyσ(Zµ +∇µ)Ψ̂(y) . (7.131)

The factor exp(2Zσyσ) can again be ignored in the projective setting. A mass term for the quantum
field Ψ̂ is provided by

−
∫
X((1),(3,1))

d4yM(Ψ̂, . . . )Ψ̂†(y)γ̃0Ψ̂(y) , (7.132)

7We again ignore the discussion of boundedness and continuity of the operator.
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for M(Ψ̂, . . . ) an effective mass, which can in particular include effective contributions from
interactions among all involved quantum fields such as Ψ̂. Equation (7.131) provides with the
term proportional to Zσ a counterterm for a potentially diverging effective mass M(Ψ̂, . . . ) by
means of choosing Zσ to match the corresponding divergent contribution. A counterterm for e.g. a
four-point correlation function, which may diverge due to contact interactions, can presumably be
derived from a local peak in λ(y).

This leads to the conjecture, that renormalization of the constructed quantum field
theory is made possible by the projective geometry setting. More specifically, the conjecture
can be phrased as follows.

Conjecture 7.4.24 (Renormalizability). In the given framework every counterterm necessary
to renormalize occurring divergences in expectation values of field operator correlators can be
reinterpreted as coming from multiplication of the field operators with suitable prefactors with
non-trivial space-time dependences, which is an identity map in the projective setting.

A proof of this conjecture requires methods beyond the present approach and is
deferred to future work. Especially, full invariance under multiplication with prefactors in
C∞(X((1), (3, 1)),R 6=0) can provide an uncountable number of counterterms for occurring
divergences.

7.5 Summary

In this chapter we have considered homogeneous space-time geometries within real
projective geometry. This has provided a framework in which deformations and limits
of geometries can be canonically considered. We have viewed quantum fields through
the lens of representation theory, and have shown that they behave naturally under such
geometry deformations and limits. Connections on the corresponding projective frame
bundle have yielded PGL5R gauge fields.

The requirement of causality for the quantum fields has led to an effective gauge group
reduction to P(GL2R×GL3R), which has manifested in corresponding physical action
functionals as S(U(2) × U(3)) ∼= GSM gauge fields. These have been indistinguishable
from the Standard Model gauge fields in the action functional. We have found that
P(GL2R × 1) gauge bosons break physical scale invariance, based on the identification
X((1), (3, 1)) ∼= A3,1. This is reminiscent of the Higgs mechanism, since the P(GL2R× 1)

gauge bosons appear in the action as S(U(2) × 1) ∼= SU(2) gauge bosons. Irreducible
fermionic quantum fields have given Dirac fermions transforming under P(GL2R×GL3R)

or S(U(2)×U(3)) analogous to the Standard Model fermions. We have concluded with a
conjecture on that the projective geometry setting actually facilitates renormalization of
field operator correlator expectation values in the quantum field theory.

The work described in this chapter suggests a number of further questions, which
we give in Chapter 8. In particular, this includes a brief discussion of our framework
compared to models in which representations of space-time and internal symmetry groups
form tensor products in line with the Coleman-Mandula theorem [346].
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Appendix

7.A Conjugacy limits on Lie algebra level

In this section we prove that conjugacy limits of Lie groups correspond to contractions
on the level of Lie algebras. The converse is not true: a general contraction does not
correspond to a conjugacy limit. Similar results for conjugacy limits of Lie algebras have
been obtained in [325].

Much of what follows is based on the KBH decomposition of PGLmR. For H an
indefinite orthogonal group or a deformation or limit of such,B < PGLmR is the subgroup
of diagonal invertible projective matrices. We omit the explicit notation of projective
equivalence classes in this appendix.

7.A.1 Conjugating Lie algebras

Proposition 7.A.1. Let L be a conjugacy limit of a symmetric subgroup H < PGLmR, obtained
by conjugation with a sequence bn ∈ B and taking n→∞. Then, its Lie algebra l = Lie(L) arises
from h = Lie(H) via conjugation,

l = lim
n→∞

Adbnh , (7.133)

limn→∞Adbnh the set of all existing limits limn→∞AdbnXn ∈ pglmR for sequences Xn ∈ h.

Proof. Let Xn ∈ h be a sequence and assume Y = limn→∞AdbnXn exists for bn ∈ B.
Define for t ∈ [0, ε) with ε > 0 sufficiently small g(t) := limn→∞Adbn exp(itXn), which
exists and defines a path g : [0, ε) → L. It is differentiable at zero, since with the matrix
exponential of pglmR:

dg(t)

dt

∣∣∣∣
t=0

=
d

dt

∣∣∣∣
t=0

lim
n→∞

Adbn(1 + itXn +O(t2)) = iY . (7.134)

Thus, Y ∈ l, and limn→∞Adbnh ⊆ l is a subalgebra. Further, PGLmR and symmetric
subgroups of PGLmR are algebraic, such that by Prop. 3.1 of [309] conjugacy limits of H
preserve the group dimension. Thus, dim h = dim l.

Since we have already shown dim limn→∞Adbnh ≤ dim l = dim h, it remains to show
that dim limn→∞Adbnh ≥ dim h. We construct explicit generators. We define the m×m
matrix Eij via (Eij)kl := δikδjl and decompose the generators T a of h,

T a =
∑
i,j

taijEij . (7.135)

With bn = diag(bn,1, . . . , bn,m):

AdbnT
a =

∑
i,j

taij
bn,i
bn,j

Eij . (7.136)
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Up to conjugation with a sequence within a compact subset of PGLmR, we find for any
i, j with taij 6= 0 [309]:

bn,i
bn,j
→


0 ,

1 ,

∞ .

(7.137)

If the limit is finite and non-zero for all i, j appearing with non-zero coefficients, denote
the limiting generator by Sa.

If the limit becomes zero, multiply T a with the appearing quotient bn,̃i/bn,j̃ converg-
ing slowest to zero as n → ∞, i.e., for which there exists N , such that for all n > N :
bn,̃i/bn,j̃ ≤ bn,i/bn,j for any other i, j with Eij appearing with non-zero coefficient in the
decomposition of T a. Call the novel generator Sa.

Assume now that an index pair (i, j) exists for which the limit bn,i/bn,j →∞ appears
as n→∞. Let (̃i, j̃) be the index pair for which the quotient bn,i/bn,j diverges fastest as
n→∞, i.e., for which there exists N , such that for all n > N : bn,̃i/bn,j̃ ≥ bn,i/bn,j for any
other i, j with Eij appearing with non-zero coefficient in the decomposition of T a. We
then define a novel generator Sa := limn→∞(bn,j̃/bn,̃i)(bnT

ab−1
n ). Due to the limit n→∞

some of the Eij appear in Sa now with zero coefficient instead of a non-zero one, though
not all.

Since the generators Sa can mutually not agree by construction, we have shown that

dimn→∞Adbnh ≥ dim h , (7.138)

concluding the proof.

7.A.2 Conjugacy limits as contractions

Lie algebras of conjugacy limits are isomorphic as Lie algebras to Lie algebra contractions,
which first an example demonstrates, subsequently giving the proof. We define a con-
traction as in [326]. For this consider a Lie subalgebra t of a Lie algebra g, the latter with
underlying vector space V . Let t′ denote the subspace of V complementary to t, such that
X ∈ V can be uniquely written asX = Xt+Xt′ . For ε > 0 define φε(X) := Xt+εXt′ . Then
[X,Y ]′ := limε→0 φ

−1
ε ([φε(X), φε(Y )]) exists for all X,Y ∈ V . The vector space V equipped

with the commutator [·, ·]′ is called a contraction with respect to t. Other definitions exist,
see e.g. [347].

Example 7.A.2. The Lie algebra o(3) has generators

X1 =

 0 1 0

−1 0 0

0 0 0

 , X2 =

0 0 −1

0 0 0

1 0 0

 , X3 =

0 0 0

0 0 1

0 −1 0

 , (7.139)

with explicit commutators [X1, X2] = X3, [X1, X3] = −X2, [X2, X3] = X1. We may take a
first conjugacy limit via bn = diag(exp(−2n), exp(n), exp(n)), yielding after un-projectivization
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the Euclidean motion group in two dimensions, O(2) nR2, with generators

Y 1 =

 0 0 0

−1 0 0

0 0 0

 , Y 2 =

0 0 0

0 0 0

1 0 0

 , (7.140)

and X3. We may contract O(3) along X3 (in commutators εX1, εX2 appear), yielding the
contracted commutators [X1, X2] = 0, [X1, X3] = −X2, [X2, X3] = X1. The contracted
algebra is isomorphic to the Lie algebra of the conjugacy limit O(2) nR2.

We can take a final conjugacy limit of O(2)nR2 via bn = diag(exp(−n), exp(−n), exp(2n)),
giving after un-projectivization the Heisenberg group H3, with generators Y 1, Y 2 and

Y 3 =

0 0 0

0 0 0

0 −1 0

 , (7.141)

such that [Y 1, Y 2] = 0, [Y 1, Y 3] = −Y 2 and [Y 2, Y 3] = 0. We obtain an isomorphic Lie algebra
via contraction of O(2) nR2 along X1 (mapping Y 2 7→ εY 2 and X3 7→ εX3 in commutators).

Lemma 7.A.3. Let H < PGLmR be a symmetric subgroup. Let X ∈ b with b consisting of
traceless diagonal matrices as in [309] and take the limit L = limt→∞ exp(itX)H exp(−itX).
Then, l = Lie(L) is isomorphic as a Lie algebra to a contraction of h = Lie(H).

Proof. In the proof of Proposition 7.A.1 we constructed an explicit set of limiting gen-
erators Sa from the generators T a of h. Each of the generators Sa is of the type Sa =

limn→∞ ca,nAdbnT
a for ca,n a sequence of real numbers. Commutators of l are then given

by matrix commutators of elements generated by the Sa:

[Sa, Sb] = lim
n→∞

[ca,nAdbnT
a, cb,nAdbnT

b] = lim
n→∞

ca,ncb,nAdbn [T a, T b] . (7.142)

With fabc the structure constants of h and gabc the structure constants of l, we find this way

[Sa, Sb] =
∑
c

gabcSc =
∑
c

gabc lim
n→∞

cc,nAdbnT
c =

∑
c

lim
n→∞

fabcca,ncb,nAdbnT
c . (7.143)

Since all of the involved limits and structure constants are finite, the quantity

gabcn =
ca,ncb,n
cc,n

fabc , (7.144)

has as finite limit the structure constants

gabc = lim
n→∞

gabcn . (7.145)

Up to conjugacy of the Sa by PGLmR elements, these are either equal to fabc, or zero for
specific a, b, c. Thus, Equation (7.144) defines a contraction, corresponding to the conjugacy
limit h→ l.
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The converse, that every contraction corresponds to a conjugacy limit on the level of
Lie groups, is not true, as the following example shows.

Example 7.A.4. The group PO(3) has inside of PGL3R a conjugacy limit conjugate to the
Heisenberg group H3, whose Lie algebra reads [X,Y ] = Z, [X,Z] = [Y, Z] = 0. We contract
with respect to Span(Z), the center of H3. To this end, the contracted commutators read [X,Z]′ =

[Y, Z]′ = 0 and
[X,Y ]′ = lim

ε→0
[εX, εY ] = 0 .

Thus, the contracted Lie algebra is isomorphic to the abelian R3, but not isomorphic anymore to
H3. The latter, however, appears up to conjugacy by elements in PGL3R as a final conjugacy limit
of PO(3) after un-projectivization. No further conjugacy limit refinement appears [309]. The
contracted algebra R3 does not correspond to a conjugacy limit of PO(3) inside of PGL3R.

7.A.3 Limits of universal enveloping algebras

A commutative diagram for universal enveloping algebras can be given. The universal
enveloping algebra of a Lie algebra g is denoted by UEA(g). Let U : PGL5R→ U(H) be a
projective unitary PGL5R representation.

Lemma 7.A.5. Consider the limit O → O′, o := Lie(O), o′ := Lie(O′). Then, UEA(o′) =

limn→∞AdbnUEA(o) and the diagram

limn→∞Adbn : O O′

limn→∞AdU(bn) : UEA(Ũ(o)) UEA(Ũ(o′))

U |O U |O′ (7.146)

commutes. The same results hold for ρ̃ replacing U .

Proof. We have by Proposition 7.A.1: o′ = limn→∞Adbno. For any Lie algebra g we set
UEAp(g) to be the subspace of UEA(g) spanned by products X1 · · ·Xk, Xj ∈ g, k ≤ p. We
note by insertion of finitely many 1 = bnb

−1
n : AdbnUEAp(o) = UEAp(Adbno). Thus, for all

p:
lim
n→∞

AdbnUEAp(o) = UEAp(o
′). (7.147)

UEA(o′) = limn→∞AdbnUEA(o) follows with

UEA(g) =
⋃
p∈N

UEAp(g) . (7.148)

The extension to Lie algebra representations follows from the same arguments applied to
the Lie algebra Ũ(o) and the sequence U(bn).
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7.B Ambient representations and conjugacy limits

Let G be a Lie group. While setting G = PGLmR, m ≥ 5, suffices for our purposes, we
keep the statements of this appendix general. Denote by GL(H) the space of invertible
linear operators on a Hilbert spaceH.

Proposition 7.B.1. Let U : G→ GL(H) be a complex projective representation of G onH. Let
H < G be a closed subgroup and L a conjugacy limit of H in G. Then U(L) is up to multipliers of
U a conjugacy limit of U(H) in U(G).

Proof. Let cn ∈ G be a sequence, such that cnHc−1
n converges geometrically to the closed

subgroup L < G. Let h̃n = cnhnc
−1
n ∈ cnHc−1

n such that h̃n → g ∈ L. Then [U(h̃n)] =

[U(cn)U(hn)U(cn)−1] with U(cn) ∈ U(G), equivalence classes modulo C 6=0 prefactors, and
U(h̃n) → U(g) ∈ U(L) by continuity of U . Every accumulation point of h̃n lies in L, so
every accumulation point of U(h̃n) lies in U(L). Indeed, U(L) is a conjugacy limit of U(H)

in U(G) up to limits of multipliers of U .

Chabauty topology is the subspace topology on the set C(G) of closed subgroups of
G. C(G) with the Chabauty topology is a compact Hausdorff topological space [309, 325,
348]. A subgroup L < G is a conjugacy limit of H < G via a sequence cn ∈ G if and
only if Hn = cnHc

−1
n → L in the Chabauty topology [309]. This leads to the following

proposition.

Proposition 7.B.2. Every conjugacy limit of U(H) in U(G) is of the form U(L) for a conjugacy
limit L of H in G, up to limits of multipliers of U .

Proof. Let L′ be a conjugacy limit of U(H) in U(G). Then, any g′ ∈ L′ is the limit of some
sequence h′n ∈ c′nU(H)(c′n)−1 with

h′n = U(cn)U(hn)U(cn)−1 = ω(cn, hn)ω(cnhn, c
−1
n )U(cnhnc

−1
n ) (7.149)

for cn ∈ G, hn ∈ H . We define h̃n := cnhnc
−1
n , such that h′n = ω(cn, hn)ω(cnhn, c

−1
n )U(h̃n).

L′ is a subgroup of U(G), i.e., to any g′ ∈ L′ there exists g ∈ G: g′ = U(g). Assume that
U is faithful. Then, given that h′n → g′ in U(G), we obtain h̃n → g. The same argument
applies to accumulation points of h′n ∈ U(G), which are induced from h̃n ∈ G. Thus,
cnHc

−1
n converges to a conjugacy limit L < G up to limits of multipliers of U , with its

group structure induced via U . The set C(G) of closed subgroups equipped with the
Chabauty topology being Hausdorff, limits are unique. Thus, [L′] = [U(L)] for a limit L of
H in G.

The case of a non-faithful representation U remains. Let ker(U) 6= {1} be the non-
trivial kernel of U . ker(U) is a normal closed subgroup of G, such that we obtain the exact
sequence of groups

1→ ker(U) < G→ G/ ker(U)→ 1 . (7.150)

A limit L′ of U(cn)U(H)U(cn)−1 = ω(cn, h)ω(cnh, c
−1
n )U(cnHc

−1
n ) < U(G) for a sequence

cn ∈ G induces the same limit [L′] < [U(G/ ker(U))], since conjugation preserving 1, it
preserves ker(U). U acting on G/ ker(U) is a faithful projective representation, such that



176 Projective geometries

[L′] = [U(ker(U) · L)] = [U(L)] for a limit L of H < G. Conjugacy limits of subgroups of
U(G) and U(G/ ker(U)) coincide trivially. Indeed, for a general representation U we find
[L′] = [U(L)] for a limit L of H < G.

Theorem 7.B.3. For H < G a closed Lie subgroup and L a conjugacy limit of H in G, and U a
projective complex representation of G, the diagram

H L

U(H) [U(L)]

(7.151)

commutes.

Proof. The implied equality of morphism concatenations follows from Propositions 7.B.1
and 7.B.2.

By virtue of Theorem 7.B.3 limits of projective representations are the same as pro-
jective representations of limits up to limits of multipliers, within an ambient projective
representation. Unitarity is preserved, as the following lemma shows.

Lemma 7.B.4. Let U : G→ GL(H) be a unitary projective complex representation of G on H,
L a conjugacy limit of a subgroup H < G within G. Then the projective representation U |L is
unitary.

Proof. Unitarity of U implies that an inner product 〈·|·〉 exists on H, such that for any
g ∈ G, v, w ∈ H: 〈U(g)v|U(g)w〉 = 〈v|w〉. In particular, with cn ∈ G:

〈U(cngc
−1
n )v|U(cngc

−1
n )w〉 = 〈v|w〉 , (7.152)

the limit n→∞ thus preserving unitarity.

7.C Smeared operator algebras, closures and limits

We consider a quantum field Ô on a four-dimensional geometry (X,O) < (RP4,PGL5R).
Assume the field operators Ô([x]) are Hilbert space operator-valued distributions on RP4.
Let f ∈ S (RP4) be a test function, S (RP4) the space of Schwartz functions on RP4, and
define the smeared field operator

Ô(†)(f,X) :=

∫
X

d4[y]Ô(†)([y])f([y]) . (7.153)

Define the operator algebra of smeared fields on X as

As(X) :=

{∑
`

∑
jk

aj1···j`Ô
(†)(f

(`)
j1
,X) · · · Ô(†)(f

(`)
j`
,X) | f (`)

jk
∈ S (RP4)

}
∩ B(H̃) , (7.154)

with B(H) the space of bounded operators on the Hilbert spaceH, and the occurring sums
containing finitely many non-zero summands.
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A sequence Ĉn ∈ As(X) converges weakly to Ĉ ∈ B(H) if for all v, w ∈ H and n→∞:

|〈v|Ĉn|w〉 − 〈v|Ĉ|w〉| → 0 . (7.155)

We denote the closure of As(X) in the weak topology by As(X).

Remark 7.C.1. By construction closed under the adjoint †, As(X) is a von Neumann algebra. A
corresponding net of von Neumann algebras can be constructed from restricting the test functions
employed in the involved smeared operators to functions with support in given bounded subsets
of X.

For von Neumann algebras, closure with respect to the weak operator topology implies
closure with respect to the strong operator topology [318].

To study the interplay of the ambient geometry with smeared operator algebras, set
[g]∗Ô(f,X) := U([g])Ô(f,X)U †([g]).

Proposition 7.C.2. For [g] ∈ PGL5R, f ∈ S (RP4):

[g]∗Ô(f,X) =

∫
X

d4[y]U([g])Ô([y])U †([g])f([y])

=

∫
X

d4[y] ρ([g−1])Ô([g · y]) f([y]) . (7.156)

The element [g] acts on the algebra As(X) analogous to A(X) as in Proposition 7.3.5, denoted [g]∗,
too.

Proof. The claim is clear.

Lemma 7.C.3. Let [bn] ∈ PGL5R, such that (X,O)→ (X′,O′) is the geometry limit via [bn]. If
for any two states v, w ∈ H and any f ∈ S (RP4):∫

RP4
d4[y] |〈v|Ô([y])|w〉| f([y]) <∞ , (7.157)

and ρ([bn]) = 1dim ρ×dim ρ for all n ∈ N, then the diagram

limn→∞Ad[bn] : O O′

limn→∞[bn]∗ : As(X) As(X′)

AdU|O
AdU|O′ (7.158)

commutes.

Proof. For any [g] ∈ PGL5R write f[g]([−]) := f([g · −]). Dominated convergence implies
with Proposition 7.C.2:

lim
n→∞

[bn]∗Ô(f[bn],X) = lim
n→∞

Ô(f, [bn] · X) = Ô(f,X′) . (7.159)
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We obtain by the previous considerations the commutative diagram

O O′

As(X) As(X
′) ,

(7.160)

with the same maps as for (7.158). Assuming that the involved limit operators exist, this
naturally carries over to limits with respect to the weak operator topology.
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Chapter 8

Conclusions

In this dissertation topological data analysis and geometric techniques have been devel-
oped to provide new perspectives on non-perturbative quantum field-theoretic phenom-
ena. We conclusively summarize and discuss the obtained results, and provide a broader
outlook on related future research prospects.

8.1 Discussion

In Chapter 3 we have investigated the emergence of collective phenomena such as long-
range coherence and superfluidity during the time evolution of a spinor Bose gas. The high
degree of control has allowed us to experimentally observe the thermalization process of an
easy-plane ferromagnet, which we have verified with a comparison to Bogoliubov theory.
From an experimental viewpoint, the employed methods and obtained results provide a
step towards a quantitative understanding of the condensation dynamics in large magnetic
spin systems and the study of the role of entanglement and topological excitations for
their thermalization. The robust generation of a spin superfluid is a prerequisite for spin
Josephson junctions, where finite temperature effects and spin-density separation can now
be studied on a new quantitative level due to the direct access to the order parameter.

Understanding the collective processes during the thermalization of quantum many-
body systems often rests on effective degrees of freedom. Topological data analysis
can provide versatile order parameters, which are sensitive to a variety of collective
phenomena. In Chapter 4 we have studied a simulated gluonic plasma through the
lens of topology. We have examined energy and topological density correlations in an
over-occupied regime, which has given rise to universal self-similar behavior. The scaling
exponents could be understood from the energy cascade and the energy-momentum
conservation Ward identity. Topological observables based on persistent homology have
shown self-similarity related to the energy cascade, too. Providing a signature of the
time-independent lattice volume, the occurring scaling exponents have been linked by a
packing relation.

The packing relation itself has been proven in Chapter 5 and exemplifies that appli-
cations of persistent homology in physics can call for thorough investigations of related
mathematical phenomena. The recent mathematical advances in the fields of computa-
tional geometry and random topology can allow for their transparent derivation. The
devised probabilistic framework appears applicable to many further studies of persistent
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homology in statistical and quantum physics settings. Beyond self-similar time evolu-
tions, this particularly includes the introduced notion of ergodicity and the well-defined
large-volume asymptotics for intensive persistent homology observables.

Returning to Chapter 4, we have demonstrated that the packing relation applies to
self-similar dynamics in persistent homology as soon as there is any bound on the filtration.
It need not be a spatial bound through a time-independent volume in which point clouds
reside. Explicitly, we have shown that the packing relation also holds for cubical complex
filtrations without spatial metric information entering, which goes beyond the findings for
alpha complexes in Section 4.3 and [6]. This can be of relevance to any persistent homology
study of self-similar phenomena, e.g. both for critical phenomena in equilibrium and
non-thermal fixed points out of equilibrium.

In Chapter 6 we have investigated confining and deconfining phases in SU(2) lattice
gauge theory via topological data analysis. Specifically, we have examined traced Polyakov
loop and Polyakov loop topological density filtrations, the angle-difference filtration of
Polyakov loop algebra element norms, and filtrations of traced electric and magnetic
field strengths and topological densities. The respective Betti numbers of all filtrations
potentially represent a novel type of order parameter for the confinement phase transition,
showing kinks at the critical inverse coupling.

The employed cooling in general dampens quantum fluctuations beyond a cutoff
scale. It has to be made sure that the physics of interest does not depend on the cutoff
when taking the continuum limit. Our observations suggest that the relevant features are
stable against the removal of high-frequency modes, with cooling merely enhancing the
associated signatures. Nevertheless, a careful continuum extrapolation and study of the
cutoff dependence seems appropriate to confirm that the limit can be taken consistently.
Ideally, extracting the features of interest via topological data analysis should not require
any smoothing at all. This aspect deserves further investigation and will be the subject
of future work, alongside studying the dependence on the ratio of temporal and spatial
lattice extents.

Space-time geometries set the ground for quantum field theories and their microscopic
and macroscopic dynamics. Chapter 7 has been devoted to four-dimensional space-
time geometries within real projective geometry and related quantum field-theoretical
constructions, also taking particle statistics into account. We have considered quantum
fields through the lens of representation theory, and have extended the space-time sym-
metry transformation behavior of quantum fields to the ambient projective geometry
(RP4,PGL5R). Then, quantum fields have behaved naturally under deformations and
limits of geometries.

Connections of the projective frame bundle have given PGL5R gauge fields. Causality
has yielded an effective gauge group reduction to P(GL2R × GL3R) for Poincaré and
other geometries, which admit a notion of causality. Since this reduction has been on
operator level, we have conjectured that it persists in classical limits and manifests in
classical actions as the Standard Model gauge group GSM

∼= S(U(2) × U(3)). We have
shown that physical scale invariance is broken in the projective formulation by gauge
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bosons corresponding to the gauge subgroup P(GL2R × 1) ∼= R6=0 × PGL2R, which is
reminiscent of the Higgs mechanism in the Standard Model.

The consideration of irreducible fermionic quantum fields has led to representations
of the reduced gauge group P(GL2R×GL3R), which are analogous to the gauge transfor-
mation behavior of the Standard Model fermions. We have conjectured that the projective
setting relates for quantum fields to their renormalizability. A formalization and proof
of this conjecture could enhance the geometric understanding of renormalizability for
quantum field theories.

8.2 Outlook

We provide further future research questions, which can be interesting from the physical
viewpoint, and embed them in the broader research perspective. Proceeding mathematical
questions building up on Chapter 5 have been stated at its end.

The observation of thermalization for an ultracold quantum gas off equilibrium along
with a number of dynamically appearing phenomena showcases the importance of emer-
gent collective dynamics for the time evolution of quantum many-body systems. It sets the
foundations for further studies in quantum field settings, which address the microscopic
processes of relevance for thermalization as well as its absence due to e.g. long-lived topo-
logical defects. The work exemplifies the need for a thorough theoretical understanding of
non-perturbative phenomena in strongly correlated systems based on quantum field theo-
ries, optimally via derivations from first principles. In particular, this includes parameter
regimes which are barely accessible with established quantum field-theoretical methods,
e.g. classical-statistical simulations or two-particle-irreducible effective action techniques
in perturbative or resummed 1/N expansions [81, 82]. Amongst others, non-perturbative
regimes such as the low-energy limit of QCD at finite baryon densities or the strongly
correlated dynamics of mobile interacting ultracold atoms throughout thermalization are
of key interest [38].

Analog and digital quantum simulators offer promising perspectives in this regard,
using microscopically engineered quantum devices to controllably emulate the dynamics
of other quantum systems, which can be hardly accessible with established theoretical
methods [349, 350]. Notably, in the past decade interest rose in quantum simulating
the quantum field theories of high-energy physics [351–353]. There is vivid progress to
resolve outstanding challenges such as the scalability of synthetic quantum matter to large
systems [354, 355] or the simulation of lattice gauge theories in more than one spatial
dimension [356]. Concerning the potential combination with TDA, it is interesting to note
that the computation of persistent homology can benefit from the application of quantum
algorithms [290].

Further progress in the understanding of collective phenomena out of equilibrium
can be anticipated from devising suitable effective theories, which in particular take non-
local excitations into account. For the gluonic plasma discussed in Chapter 4 this would
especially include topological defects. While in the simulated over-occupied and weakly
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coupled regime the influence of defects such as sphalerons on the macroscopic dynamics
appears negligible (see Section 4.2.2), this need not be the case anymore if chiral quarks
are included, as the CME suggests [61–64]. In addition, it is expected that topological
defects can play a more dominant role in under-occupied scenarios. This is exemplified by
the self-similar dynamics related to the phase ordering kinetics of defects [357], observed
for one and two spatial dimensions [6, 66, 238, 358–360]. TDA can presumably provide
valuable insights into the presence and macroscopic dynamical influence of non-local
excitations such as topological defects in QCD and beyond. Particularly appealing is
the potential access to topological information without the necessity of cooling, since the
latter unavoidably removes physical information. Aiming for the detection of topological
defects in over-occupied scenarios, a first study in relativistic scalar field theory using
existing classical-statistical reweighing techniques is currently under way. This can pave
the way to an enhanced understanding of the far-from-equilibrium universality classes
related to non-thermal fixed points, which is of relevance for a wide range of applications
in complex many-body systems.

A natural step beyond the study of non-Abelian confinement with TDA, described in
Chapter 6, is its extension to the confinement-deconfinement phase transition in SU(3)

lattice gauge theory as well as QCD with dynamical quarks. The extraction of critical
exponents by means of finite-size scaling [361] can be promising, based on previous
related persistent homology studies [78–80]. This can help identifying signatures of certain
correlation functions in persistent homology observables, which can further establish
persistent homology as a probe for collective phenomena.

The approach to the topological structure of phase transitions with persistent homol-
ogy may support or benefit from the application of machine learning techniques. Both
supervised and unsupervised learning approaches have been explored for analyzing
phase structure [362–369]. The representation of quantum states in variational approaches
via neural networks can also be possible [370, 371]. Although studies have addressed the
issue of extracting explicit expressions for learned order parameters [372–375], interpret-
ing neural networks remains challenging. Explainable machine learning techniques as
employed in [374] are ideally suited for a combined application with persistent homology.
Furthermore, gauge-equivariant neural network architectures [376–379] could make use
of the high sensitivity of persistent homology to non-local structures by means of adding
appropriate topological layers.

On the more fundamental level, in Chapter 7 we have discussed potential origins of
part of the structure of the Standard Model, based on projective geometry, causality and
the spin-statistics relation. While the particle content of one generation of the Standard
Model has been rigorously derived with regard to the gauge and Poincaré transformation
behavior, an explanation for the appearance of three generations and their mixing is
lacking. Regarding the deduced physical scale invariance breaking, its relation to the
Standard Model Higgs mechanism is to be discussed.

In the devised framework Poincaré and gauge transformations both act for a quantum
field Ô via the representation ρ. In the Standard Model they act via a tensor product
of Poincaré and gauge group representations, consistent with the Coleman-Mandula
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theorem [346]. The latter is formulated using asymptotic states and Poincaré geometry. In
our model gauge interactions take place on arbitrary geometries, and asymptotic states
need not be well-defined. While the applicability of the Coleman-Mandula theorem to
our framework thus appears questionable, implications of the peculiar relation between
space-time and internal symmetries in our framework are to be worked out. Specifically,
we expect that the gauge boson propagators with matter fields absent as well as the free
propagators of the matter fields themselves are the same for our model and the Standard
Model, since the two models differ only for correlators containing both gauge and matter
field operators acting on each other. This suggests that at least perturbatively correlators
of one generation of the Standard Model particles and correlators computed for our
framework are indistinguishable.

In our approach the gauge group conjugate to P(GL2R×GL3R) appears as a subgroup
of local projective frame transformations. These intersect non-trivially with the group
of local Lorentz transformations of frames, which are the local symmetries of gravity. It
would be interesting to investigate whether gravitational interactions can be included
in the model to show that all quantum fields considered in Chapter 7 gravitate, as this
suggests. Further, in the projective setting geometry deformations and limits act without
coordinate singularities. This raises the question if gravity can be suitably described in
projective geometry. For torsion-free gravity such a projective description has been devel-
oped, known as Thomas-Whitehead gravity [327, 329, 380–382]. Studies on the related
generalization to projective connections with torsion and its relation to our approach to
quantum fields can be promising.

Conjugacy limits of Lie groups are limits with respect to the Chabauty topology. While
Chabauty topology barely appears in the physics literature, it can thus be central to
studies of quantum theories and beyond, as Chapter 7 exemplifies. For instance, discrete
subgroups of Lie groups can converge to the full groups with respect to Chabauty topology.
This can be of use for the discussion of quantum simulators, whose construction often
rests upon finite approximations of continuous symmetry groups.

In summary, understanding how macroscopic collective phenomena emerge from
microscopic quantum field theories, and understanding their geometric origins provides
versatile challenges across physical disciplines. Topological data analysis and geometry
can provide valuable tools in this regard, as discussed in this dissertation.
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