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Abstract
Given a complete non-archimedean valued field K, we discuss a relative trace map
attached to any finite étale morphism of smooth rigid-analytic Stein spaces over K
and prove that it is compatible with the trace maps that arise in the Serre duality
theory on the respective Stein spaces. Our proof builds on the technique of inves-
tigating the trace map of a rigid Stein space via a relation between algebraic local
cohomology and compactly supported rigid cohomology established in the work of
Beyer [Bey97a]. For this purpose we also prove a generalization of a theorem of
Bosch [Bos77] which concerns the connectedness of formal fibers of a distinguished
affinoid space. This closes an argumentative gap in [Bey97a].
Furthermore, we consider the behaviour of any rigid-analytic Stein space and its
trace map under (completed) base change to any complete extension field K ′/K
and prove that there are natural base change comparison maps that yield a com-
mutative diagram relating Serre duality over K with Serre duality over K ′.
Finally we discuss the recent work of Abe and Lazda [AL20], which constructs a
trace map on proper pushforwards of analytic adic spaces, and we explain how some
of their results can be related to ours (via Huber’s functor from the category of rigid
analytic varieties to the category of adic spaces).

Zusammenfassung
Gegeben einen vollständig nicht-archimedisch bewerteten Körper K betrachten
wir eine relative Spurabbildung, die sich jedem endlich étalen Morphismus glat-
ter rigid-analytischer Steinscher Räume über K zuordnen lässt, und beweisen ihre
Kompatibilität mit den in der Serre-Dualitätstheorie auf den jeweiligen Steinschen
Räumen auftretenden Spurabbildungen. Unser Beweis baut auf der in Beyers Ar-
beit [Bey97a] verwendeten Methode der Untersuchung der Spurabbildung eines
rigiden Steinschen Raumes mittels eines Zusammenhangs zwischen algebraischer
lokaler Kohomologie und rigider Kohomologie mit kompakten Trägern auf. Zu
diesem Zweck beweisen wir auch eine Verallgemeinerung eines Theorems von Bosch
[Bos77] über Zusammenhangskomponenten formeller Fasern ausgezeichneter affi-
noider Räume. Damit lässt sich eine argumentative Lücke in [Bey97a] schließen.
Ferner untersuchen wir das Verhalten rigid-analytischer Steinscher Räume und
ihrer Spurabbildungen unter (vervollständigtem) Basiswechsel zu jedem vollständi-
gen Erweiterungskörper K ′/K und beweisen die Existenz natürlicher Basiswechsel-
Vergleichsmorphismen, welche die Serre-Dualitätspaarung über K mit jener über
K ′ in einem kommutativen Diagramm vereinen.
Schließlich gehen wir auf eine neuere Arbeit von Abe und Lazda [AL20] ein und
erklären, wie einige ihrer Ergebnisse (zur Konstruktion einer Spurabbildung auf
direkten Bildern mit kompakten Trägern auf analytischen adischen Räumen) mit
unseren Ergebnissen in Beziehung gesetzt werden können (über den Huber’schen
Funktor von der Kategorie der rigid-analytischen Räume in die Kategorie der adis-
chen Räume).
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Introduction

Background

Cohomology theory of coherent sheaves on complex analytic spaces has been an
active and fruitful area of research since the middle of the past century, one of
its finest results being the Serre duality theorem. On the other hand, in modern
number theory one often works over a non-archimedean field : a field that is complete
with respect to a specified nontrivial absolute value satisfying the non-archimedean
triangle inequality |x + y| ≤ max(|x|, |y|). The field of p-adic numbers Qp is a key
example of a non-archimedean field. When working over a non-archimedean field
K instead of C, the analogue of a complex analytic space is a rigid analytic space.
Indeed, one could argue that there is another analogue, namely the classical notion
of a K-analytic manifold defined using charts and atlases, as in [Ser92]. However,
these are only of limited use in non-archimedean geometry since they are totally
disconnected. Therefore, Tate defined new K-analytic spaces provided with an
extra “topological” structure (a certain Grothendieck topology) which allows one
to say that the closed unit ball is “connected” and which yields a satisfactory theory
of coherent sheaves (and hence a theory of “analytic continuation”). To distinguish
them from classical K-analytic spaces, Tate called his new spaces rigid analytic
spaces. The advancement of the theory of coherent sheaves on rigid analytic spaces
in particular led to the question whether one can establish a Serre-type duality in
this setting as well. This question was first answered affirmatively for rigid Stein
spaces by Bruno Chiarellotto in [Chi90], who introduced a notion of cohomology
with compact support for rigid spaces, a canonical topology on cohomology groups
and proved:

Theorem 1 (Serre duality for smooth rigid Stein spaces). Let K be a complete
non-archimedean valued field. Let X be a smooth rigid K-space of dimension d and
let ωX = ∧dΩ1

X/K be the sheaf of holomorphic d-forms on X. Let H∗c (X,−) denote
the cohomology with compact support. If X is Stein, then there is a canonical trace
morphism

t : Hd
c (X,ωX) −→ K

which has the following property: If F is a coherent sheaf on X, then the composite

Hd−i
c (X,F)× ExtiX(F , ωX) −→ Hd

c (X,ωX)
t−→ K

1



Introduction

of t with the Yoneda-Cartier pairing induces an isomorphism of topological K-vector
spaces

Hd−i
c (X,F)∨ ∼−−→ ExtiX(F , ωX)

for all i ≥ 0.

Here Hd−i
c (X,F)∨ denotes the space of continuous linear forms on Hd−i

c (X,F),
equipped with the strong dual topology. Moreover, ExtiX(F , ωX) is equipped with
the canonical topology for global sections of a coherent sheaf (see Definition 1.41
below), as the discussion preceding Remark 5.4 below shows that indeed
ExtiX(F , ωX) = H0(X, Ext iX(F , ωX)).

Chiarellotto’s approach was to prove the theorem in the special case of the affine
rigid space and then show that the general case can be reduced to this special case by
using the fact that a Stein space always admits a closed immersion into an affine rigid
space. Peter Beyer subsequently provided another proof of Serre duality for rigid
Stein spaces, appearing in his dissertation [Bey97b, Satz 7.1] and outlined in the
abridged version of his dissertation [Bey97a, Remark 5.1.5] published as an article.
Instead of relying on the embedding theorem for Stein spaces, his proof establishes
and exploits a relationship between the compactly supported rigid cohomology and
algebraic local cohomology. This allows him to obtain a rather explicit (albeit
complicated) description of the trace map t, which is a major advantage of his
approach.1 He first constructs the trace map in the special case of so-called special
affinoid wide-open spaces (which we review in Chapter 3 below), then he uses the
fact that a Stein space can be exhausted by subspaces of this type. To prove that
the trace maps in the covering are compatible and thus glue to a global trace map,
he uses the aforementioned relation to local cohomology.

Structure of this thesis

The main objective of this thesis (achieved in Chapters 5 and 6) is to build upon
Beyer’s methods to prove companion theorems to Theorem 1. For instance, if
α : X −→ Y is a finite étale morphism of smooth connected d-dimensional Stein
spaces over K, there is a natural “relative trace map”

tα : α∗ωX −→ ωY

(see Definition 5.2) which, for an affinoid Sp(A) ⊆ Y and its preimage Sp(B) ⊆ X,
is given by

Ωd
B/K = Ωd

A/K ⊗A B −→ Ωd
A/K

ω ⊗ b 7−→ TrB/A(b) · ω
1We also mention that Beyer’s technique moreover allows him to recover the results of [van92],

i.e. Serre duality for proper rigid spaces. Whereas Van der Put builds upon Chiarellotto’s methods
by using the fact that a proper rigid space X can be covered by Stein spaces and showing that
the local dualising data provided by Chiarellotto’s result glues to a global dualising pair (ωX , t),
Beyer’s method is again more explicit.

2



(see Section 5.3). Here and elsewhere, Ωd
A/K := ∧dΩ1

A/K and Ω1
A/K denotes the

“universally finite” differential module, characterised by being finitely generated
over A and universal for derivations into finitely generated A-modules. Moreover,
TrB/A is the trace of the finitely generated projective A-module B. (Recall that
for such a module, the canonical map B∗ ⊗A B

∼−−→ EndA(B) is an isomorphism
and TrB/A is defined as the composite B −→ EndA(B) ∼= B∗ ⊗A B −→ A where
B∗ := HomA(B,A), the first map sends b ∈ B to the endomorphism given by
multiplication by b, and the last map is given by “evaluation”.) If B is free of finite
rank over A, then TrB/A coincides with the usual trace map from linear algebra.
One of our major results is the following compatibility of this relative trace map
with Serre duality:

Theorem A (Theorem 5.5, Proposition 5.17). Let α : X −→ Y be a finite étale
morphism of smooth connected d-dimensional Stein spaces over K. Then the dia-
gram

Hd
c (Y, ωY )

Hd
c (Y, α∗ωX) K.

Hd
c (X,ωX)

tY
Hd

c (Y,tα)

∼= tX

commutes, where tα : α∗ωX −→ ωY is the relative trace map. In particular, letting
ExtiX(α

∗G, ωX) −→ ExtiY (G, ωY ) denote the morphism constructed from the relative
trace map and the adjunction morphism G −→ α∗α

∗G as in Proposition 5.17, one
obtains a commutative diagram of Serre duality pairings

Hd−i
c (X,α∗G)∨ ExtiX(α

∗G, ωX)

Hd−i
c (Y,G)∨ ExtiY (G, ωY )

∼

∼

for every coherent sheaf G on Y and all i ≥ 0.

One incentive to prove such a compatibility result was its relevance in the
study of reciprocity laws for (φL,ΓL)-modules over Lubin-Tate extensions done by
Schneider and Venjakob, which by now has been published as a preprint [SV23].
In [SV23, §4.2], our compatibility result Theorem A is used as a conceptual way to
obtain functorial properties of pairings arising from Serre duality on various rigid
Stein spaces.

Chapter 5 is devoted to proving Theorem A. In a first step, carried out in Section
5.2, we prove that X and Y can be covered by special affinoid wide-open spaces in
such a way that the coverings are compatible in our relative situation – in the sense
that they behave well with respect to the finite étale morphism α : X −→ Y . This

3



Introduction

allows us to reduce the proof of Theorem A to the case of special affinoid wide-open
spaces. The second step (carried out in Section 5.4) then proves this case using the
relation to local cohomology.

Concerning the first step of the proof, the relevant background (on formal fibers
of rigid spaces, Stein spaces and special affinoid wide-open spaces) is given, on
the one hand, in Sections 1.1 and 1.2, but also in Chapters 2 and 3. Sections 1.1
and 1.2 mostly consist of facts gathered from the literature, but we provide the
occasional proof for non-obvious claims in [Bey97a] made implicitly and without
proof or reference (e.g. Lemma 1.25).

Chapter 2, on the other hand, contains original material. Namely, there is a cru-
cial technical lemma [Bey97a, Lemma 4.2.2] underlying Beyer’s arguments, which
asserts that special affinoid wide open spaces can be characterised in two (equiv-
alent) ways. The proof of this lemma in turn relies on Bosch’s Theorem on the
connectedness of formal fibers (Theorem 2.3 below). However, this theorem con-
tains the assumption that the affinoid algebra under consideration is distinguished
(see Definition 1.16) and this assumption is not satisfied in the general setting of
[Bey97a], resulting in an argumentative gap. Driven by the endeavour to bridge this
gap, the second chapter of this thesis is devoted to proving a generalised version of
Bosch’s Theorem on the connectedness of formal fibers (Theorem 2.4), now valid for
affinoid algebras that become distinguished after a base change to a finite Galois
extension. This indeed bridges the gap in the setting of smooth special affinoid
wide-open spaces, since Subsection 1.1.3 proves that the relevant affinoid algebras
can be made distinguished after a base change to a finite Galois extension, allowing
us to deduce Corollary 2.5.

Chapter 3 then uses the results of Chapter 2 to remedy the aforementioned gap
and to lay out the necessary background on special affinoid wide-open spaces that
is used in subsequent chapters. We moreover fill in some proofs that are omitted in
the literature, in particular the argument in Proposition 3.10.

Returning to our outline of the proof of Theorem A in Chapter 5, we have noted
that the second step of the proof involves the relation to local cohomology. In par-
ticular, this requires obtaining an explicit description of the relative trace map at
the level of local cohomology, which we achieve in Lemma 5.14. The way for this
is paved by Sections 1.3 and 1.4 and Chapter 4, whose purpose is to gather the
relevant background facts from the literature. In Section 1.3 we recall the basics of
local cohomology, whereas in Chapter 4 we review Beyer’s construction of the trace
map and the relation between local cohomology and compactly supported rigid co-
homology.

Chapter 6 turns to investigating the behaviour of the Serre duality pairing from
Theorem 1 under (completed) base change. Let K ′ be a complete field extension of
K and, for any (separated) rigid space X over K, let

X ′ := X ⊗̂K K ′

denote the base change of X to K ′. In Remark 6.1 and Section 6.1, we recall

4



some background on completed base change, in particular that there is an exact
“pullback” functor

F ⇝ F ′

from coherent sheaves on X to coherent sheaves on X ′. We moreover recall that
the properties of being smooth, having dimension d and being Stein are all stable
under base change. For a special affinoid wide-open space (resp. a Stein space) X
over K, we construct comparison maps

Hj
c (X,F)⊗K K ′ −→ Hj

c (X
′,F ′)

in Section 6.2 (resp. Section 6.4). Our main result in Chapter 6 then reads as
follows:

Theorem B (Corollary 6.18). Let X be a smooth rigid Stein K-space of dimension
d. Then, for every coherent sheaf F on X, the diagram

Hd−i
c (X ′,F ′) ExtiX′(F ′, ωX′) Hd

c (X
′, ωX′) K ′

Hd−i
c (X,F) ExtiX(F , ωX) Hd

c (X,ωX) K

× tX′

× tX

(∗)

commutes for all i ≥ 0.

This result is likewise relevant in the context of [SV23, §4.2], where it is used
to argue that the constructions carried out there are compatible with base change.
The structure of our proof of Theorem B is as follows: we first investigate how base
change affects separable Noether normalisation maps (Lemma 6.9) and how the
trace of the associated extension of total rings of fractions behaves on differentials
(Lemma 6.14). This allows us to prove (in Proposition 6.15) that the square on the
right-hand side of the diagram (∗) commutes when X is a special affinoid wide-open
space. Then we extend this to the case of a general Stein space by a limit argument
in Theorem 6.15. Finally, in Proposition 6.17 we prove that the rest of the diagram
(∗) commutes, i.e. that the Yoneda-Cartier pairing is compatible with base change.

In the final Chapter 7 we discuss the recent work of Abe and Lazda [AL20], and
explain how some of their results can be related to our Theorem A. In [AL20], Abe
and Lazda consider partially proper morphisms f : X −→ Y of analytic adic spaces,
the proper pushforward f! and its derived functor Rf!, which in particular yields a
notion of (relative) compactly supported cohomology. For a special class of smooth
partially proper morphisms, they construct an OY -linear “trace map” TrX/Y in the
derived category of OY -modules that is local on the base Y and compatible with
composition (see, for instance, Proposition 7.10 below).
At the beginning of Chapter 7, we recall Huber’s functor which induces an
equivalence from the category of quasi-separated rigid analytic varieties over Sp(K)
to the category of quasi-separated locally of finite type adic spaces over Spa(K, oK).

5



Introduction

Huber’s functor allows us to embed our setting into the setting of Abe and Lazda.
In Lemma 7.8 we compare our notion of compactly supported cohomology of a rigid
Stein space to Abe and Lazda’s compactly supported cohomology of the correspond-
ing adic space. Buildung upon this, we prove in Subsection 7.3.1 that their trace
map TrX/Y can then recover Beyer’s trace map when X −→ Y = Spa(K, oK) is the
structure morphism of a Stein space. Finally, in Subsection 7.3.3, we prove that
assuming that Abe and Lazda’s trace map TrX/Y coincides with the classical trace
map α∗OX −→ OY whenever α : X −→ Y is finite étale (see Question 7.12 which
is discussed thoroughly in Section 7.3.2 below), one can relate Abe and Lazda’s
trace map TrX/Y to our relative trace map tα and recover our compatibility re-
sult (Theorem A) from their result on the compatibility of TrX/Y with respect to
composition.

6



Notations and conventions

• K is a complete non-archimedean nontrivially valued field.

• oK is the ring of integers in K.

• k is the residue field of K.

• K⟨ξ1, . . . , ξn⟩ is the free Tate algebra in n variables, for which we also write
Tn, or Tn(K) when we wish to emphasise the base field.

• We set

Dn := Dn
K := SpK⟨ξ1, . . . , ξn⟩, and

D̊n := D̊n
K := {x ∈ Dn : |ξi(x)| < 1 for all i = 1, . . . , n}.

For x ∈ Dn, we often write |x| < 1 to mean |ξi(x)| < 1 for all i = 1, . . . , n.

• For an affinoid algebra R, points in the associated affinoid space Z = Sp(R)
will usually be denoted by z and the corresponding maximal ideal in R by mz.

• For a morphism R −→ S of affinoid algebras, Ω1
S/R denotes the universal finite

differential module (cf. [BLR95, §1]).

• All rigid analytic spaces are assumed to be separated.2

• All rings are commutative and unital.

• The total ring of fractions of a ring A (i.e. the localization of A with respect
to the set of all non-zero divisors in A) is denoted by Q(A).

• The radical of an ideal I is denoted by
√
I.

• For an extension K ′/K of complete fields and a (separated) rigid space X
over K, the base change of X to K ′ is the rigid space X ⊗̂K K ′ defined as in
[BGR84, §9.3.6]. See the beginning of Chapter 6 for some basic facts on base
change.

2Note that this assumption is superflous for Stein spaces, since they are automatically separated
by [Lüt73, Satz 3.4].

7
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Chapter 1

Preliminaries

1.1 Several special topics from the theory of rigid

analytic spaces

1.1.1 The reduction of an affinoid space and formal fibers

Given a K-affinoid algebra R, an f ∈ R and a point z in the affinoid space
Z := Sp(R), we recall that |f(z)| is defined as follows. The residue field R/mz is fi-
nite over K, hence one can choose an embedding R/mz ↪−→ K into a fixed algebraic
closure K of K. Then |f(z)| is computed by choosing any embedding R/mz ↪−→ K
and taking the absolute value of the image of the residue class f mod mz. This is
well-defined since any two embeddings of R/mz into K are Galois conjugate over
K and Gal(K/K) acts isometrically on K.

Remark 1.1. Let φ : R −→ S be a morphism of affinoid algebras and let

Z1 := Sp(S)
α−→ Sp(R) =: Z2

be the morphism of affinoid spaces associated to φ. Then, for every point z1 ∈ Z1

and every element r ∈ R, we have

|r(α(z1))| = |φ(r)(z1)|.

Proof. This is a well-known and straightforward fact, due to the following simple
argument. Fixing an embedding ι : S/mz1 ↪−→ K and setting ι′ to be the composite

ι′ : R/φ−1(mz1)
φ
↪−→ S/mz1

ι
↪−→ K

we have
ι′(r mod φ−1(mz1)) = ι(φ(r) mod mz1)

by design, from which the desired equality follows by taking the absolute value on
both sides, because mα(z1) = φ−1(mz1) by definition of α.

9



1. Preliminaries

Recall that the supremum semi-norm of an f ∈ R is given by |f |sup = supz∈Z |f(z)|.
We have the oK-algebra of all power-bounded elements in R

R̊ = {f ∈ R : |f |sup ≤ 1}

and the R̊-ideal of all topologically nilpotent elements in R

Ř = {f ∈ R : |f |sup < 1}.

Then

R̃ = R̊/Ř

is called the reduction of R and R̊ −→ R̃, f 7−→ f̃ denotes the canonical projection.
In particular, K̊ is the ring of integers of K and K̃ is the residue field of K.

Remark 1.2. (i) In general, R̃ is always reduced, since |·|sup is power-multiplicative
(i.e. |fn|sup = |f |nsup holds for all f ∈ R and n ∈ N).

(ii) R̃ is a finitely generated K̃-algebra by [BGR84, 6.3.4/Corollary 3] and hence
in particular Noetherian.

Definition 1.3. The reduction Z̃ of the affinoid space Z := Sp(R) is the affine

algebraic variety given by the maximal spectrum of R̃.

Recall that there is a functorial reduction map

p : Z −→ Z̃,

defined as follows (cf. [BGR84, §7.1.5]): Given a z ∈ Z, the canonical projection

map σ : R −→ R/mz induces a map σ̃ : R̃ −→ (R/mz)
∼ and we set mp(z) := ker(σ̃),

which indeed is a maximal ideal in R̃. Letting m̃z denote the image of mz ∩ R̊ under
the projection R̊ −→−→ R̃, we have mp(z) =

√
m̃z by [BGR84, 7.1.5/Proposition 1].

The reduction map

p : Z −→−→ Z̃

is surjective by [BGR84, 7.1.5/Theorem 4].
We often use the notation

p(z) and z̃

interchangeably.

Remark 1.4. Let Z1 −→ Z2 be a surjective map of affinoid rigid spaces. Then its
reduction Z̃1 −→ Z̃2 is surjective as well.

10



1.1. Several special topics from the theory of rigid analytic spaces

Proof. We have a commutative diagram

Z1 Z2

Z̃1 Z̃2

where all arrows with two heads are surjective. Hence the remaining arrow must
also be surjective.

Proposition 1.5. Let f ∈ R̊ and z ∈ Sp(R). Then |f(z)| < 1 if and only if

f̃(p(z)) = 0.

Proof. This fact, which is also recorded in [BGR84, 7.1.5/Proposition 2], follows
immediately from the definition of p.

Definition 1.6. For z ∈ Z, the fibers

Z+(z) := p−1(p(z))

of the reduction map p : Z −→ Z̃ are called the formal fibers of Z, the terminology
and notation being as in [Bos77].

For any f1, . . . , fr ∈ R̊ with

√
(f̃1, . . . , f̃r) = mp(z), we have

Z+(z) = {y ∈ Z : |fi(y)| < 1 for all i = 1, . . . , r}

as a consequence of Proposition 1.5. Thus Z+(z) is an admissible open analytic
subspace of Z, an admissible cover by open affinoids being given by

Z+(z) =
⋃

ε∈
√
|K×|

ε<1

{y ∈ Z : |fi(y)| ≤ ε for all i = 1, . . . , r}

In particular, Z+(z) is quasi-Stein (see Definition 1.32). Note that Dn
+(0) = D̊n.

Remark 1.7. Let Z1 = Sp(S) be an affinoid space. For a morphism π : Z1 −→ Z2

to an affinoid space Z2 = Sp(R) and the associated ring morphism φ : R −→ S, the
following assertions are equivalent

(i) π is finite and surjective.

(ii) φ is finite and ker(φ) ⊆ Nil(R).

Proof. Note that the finiteness of φ is equivalent to the finiteness of π by definition
of finite morphisms between rigid spaces. To prove (ii) =⇒ (i), we note that the
underlying sets of Sp(R) and Sp(R/ ker(φ)) coincide because ker(φ) ⊆ Nil(R), so
we may replace φ by the induced morphism R/ ker(φ) ↪−→ S, i.e. assume that φ

11



1. Preliminaries

is injective. Then we have an integral ring extension, so for every prime ideal in R
there exists a prime ideal in S lying over it. Given a maximal ideal in R, any prime
ideal lying over it is necessarily maximal due to the finiteness of φ, which allows us
to deduce the surjectivity of π. Conversely, if we assume (i), then

Ker(φ) ⊆
⋂
m′⊆S

max. ideal

φ−1(m′) =
⋂
m⊆R

max. ideal

m = Nil(R)

where the inclusion holds because φ(Ker(φ)) = {0} ⊆ m′ for all m′, the first equality
holds because π is surjective, and the second equality holds since R is a Jacobson
ring (as all affinoid algebras are).

Theorem 1.8 resp. Theorem 1.10 below relates the finiteness resp. the injectivity
of a morphism φ : R −→ S of affinoid algebras to the finiteness resp. injectivity of
its reduction φ̃ : R̃ −→ S̃.

Theorem 1.8 ([BGR84, 6.3.1/Theorem 6]). Assume that R is reduced. Then the
following conditions are equivalent for any morphism φ : R −→ S of affinoid alge-
bras:

(i) φ : R −→ S is injective and strict.1

(ii) φ : R −→ S is an isometry with respect to | · |sup.

(iii) φ̃ : R̃ −→ S̃ is injective.

The following remark tells us that condition (ii) in Theorem 1.8 is satisfied
by any Noether normalisation morphism (or, more generally, any finite injective
morphism of affinoid algebras):

Remark 1.9. Any finite injective morphism φ : R ↪−→ S between affinoid algebras
is an isometry with respect to | · |sup.

Proof. The equality |φ(r)|sup = |r|sup for all r ∈ R is a well-known fact, where the
inequality |φ(r)|sup ≤ |r|sup is due to the fact that any morphism between affinoid
algebras is contractive with respect to the supremum semi-norm [Bos14, 3.1/Propo-
sition 7], and the reverse inequality is due to the following simple argument. Note
that the morphism π : Sp(S) −→ Sp(R) associated to φ is surjective since φ is finite
injective. Therefore, given any y ∈ Sp(R), we can choose a preimage x ∈ Sp(S)
under π and then we have |r(y)| = |φ(r)(x)| by Remark 1.1 above. Taking the
supremum over all y we obtain |r|sup ≤ |φ(r)|sup, which completes the proof of the
assertion.

Theorem 1.10 ([BGR84, 6.3.5/Theorem 1]). The following statements are equiv-
alent:

1A map f : X −→ Y between topological spaces is called strict if the quotient topology on
f(X) coincides with the subspace topology inherited from Y .

12



1.1. Several special topics from the theory of rigid analytic spaces

(i) φ : R −→ S is finite.

(ii) φ : R −→ S is integral.

(iii) φ : R̊ −→ S̊ is integral.

(iv) φ̃ : R̃ −→ S̃ is integral.

(v) φ̃ : R̃ −→ S̃ is finite.

Remark 1.7, Theorem 1.8, Remark 1.9 and Theorem 1.10 together imply:

Corollary 1.11. Let Z = Sp(R) be an affinoid space and π : Z −→ Dn a morphism.
Then the following are equivalent:

(i) π : Z −→ Dn is finite surjective.

(ii) π̃ : Z̃ −→ Am
k is finite surjective.

We end this subsection by noting that it is hard to relate the surjectivity of φ
to the surjectivity of φ̃. In fact, [BGR84, 6.3.1/Example 1] one shows that it can
happen that the reduction φ̃ is surjective (even bijective) but φ is not surjective. On
the other hand, [BGR84, 6.3.1/Example 2] exhibits a surjective φ whose reduction
φ̃ isn’t surjective.

1.1.2 Connected components

Definition 1.12. Let X be a rigid space.

(i) X is called connected if every admissible open cover X = U ∪ V such that
U ∩ V ̸= ∅ must have U = ∅ or V = ∅.

(ii) A connected component of X is an equivalence class of a point x ∈ X
with respect to the following equivalence relation: x, y ∈ X are equivalent
if there exist finitely many connected admissible opens U1, . . . , Un such that
x ∈ U1, y ∈ Un and Ui ∩ Ui+1 ̸= ∅ for all 1 ≤ i < n.

Remark 1.13. Let X be a rigid space. Then:

(i) Two connected components of X are either disjoint or equal.

(ii) If X is connected and X −→−→ Y a surjective morphism of rigid spaces, then
Y is connected as well.

Proof. Assertion (i) is immediate. To prove (ii), consider an admissible open cover
Y = U ∪ V such that U ∩ V ̸= ∅. Then X = f−1(U) ∪ f−1(V ) is an admissible
open cover such that f−1(U) ∩ f−1(V ) ̸= ∅. Since X is connected, it follows that,
say, f−1(U) = ∅. Due to the surjectivity of f , we then have f(f−1(U)) = U , i.e.
U = ∅ as well.

13



1. Preliminaries

We list additional facts regarding connected components of rigid spaces, all of
which can be found in [Con99, §2.1], [BGR84, §9.1.4] or [Bos14, §5.3]:

Remark 1.14. Let X be a rigid space. Then:

(i) If {Xi}i∈Σ is a subset of the set of connected components of X, then ∪i∈ΣXi

is admissible open and {Xi}i∈Σ is an admissible covering thereof. Moreover,
{Xi}i∈Σ are precisely the connected components of ∪i∈ΣXi.

(ii) X is connected if and only if it has exactly one connected component.

(iii) The admissible opens of X obtained as in (i) are precisely the admissible opens
of X that are also analytic sets, i.e. “open and closed”.2 We refer to such
subsets as clopen.

(iv) Any connected admissible open in X is contained in a connected component
of X. In particular, the connected components of X are precisely the maximal
connected admissible opens in X.

(v) X is connected if and only if Γ(X,OX) has no non-trivial idempotents. In
particular, an affinoid Sp(A) is connected if and only if the affine scheme
Spec(A) is Zariski-connected.

Remark 1.14 (v) will allow us to deduce the following:

Remark 1.15. Let Z = Sp(R) be a connected affinoid space whose local rings OZ,z

are integral domains for all z ∈ Z. Then R is an integral domain. In particular, if
Z = Sp(R) is a connected smooth affinoid space, then R is an integral domain.

Proof. We will show that the affine scheme Spec(R) is integral (i.e. irreducible and
reduced), whence R is an integral domain by algebraic geometry. The local rings
of Z are integral domains and therefore reduced, so Z is a reduced rigid space (by
definition) which by [BGR84, 7.3.2/Corollary 9] is equivalent to Nil(R) = 0. But
Nil(R) = 0 implies that Spec(R) is a reduced affine scheme. It remains to show that
Spec(R) is irreducible for the Zariski topology. Since R is Noetherian, Spec(R) has
finitely many irreducible components, say Z1, . . . , Zr where the Zi correspond to
minimal prime ideals pi in R. By assumption and Remark 1.14 (v), we know that
Spec(R) is connected for the Zariski topology, so it suffices to prove that Zi∩Zj = ∅
for i ̸= j, because then Spec(R) =

∐r
i=1 Zi is a covering by pairwise disjoint closed

subsets, whence connectedness forces r = 1. Suppose there exists an x ∈ Zi ∩ Zj

with i ̸= j. By [Stacks, Tag 02IL], we may assume that x is a closed point, i.e.
corresponds to a maximal ideal mx in R. Then the fact that x ∈ Zi∩Zj implies that
Rmx contains two different minimal prime ideals (pi and pj). But this contradicts
the fact that Rmx is an integral domain (being a subring Rmx ↪−→ OZ,x of the
integral domain OZ,x).

2Recall that any analytic subset of X can canonically be given the structure of a reduced closed
analytic subvariety of X by [BGR84, 9.5.3/Proposition 4].
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1.1. Several special topics from the theory of rigid analytic spaces

If X is a rigid space and C ⊆ X a connected component, then C is admissible
open in X and hence an open rigid subspace. On the other hand, C is an analytic
subset of X, so it can also be endowed with the structure of a reduced closed rigid
subspace. If X is reduced, then these two canonical structures on C coincide3, in
which case we can (and will) often consider the inclusion C ↪−→ X simultaneously
as an open immersion and a closed immersion.

1.1.3 Distinguished affinoid algebras and absolutely reduced
algebras

The following definition is as in [BGR84, 6.4.3/Definition 2] and in [Bos69, §6, after
Satz 1]:

Definition 1.16. Let R be a K-affinoid algebra. A surjective morphism
α : K⟨ξ1, . . . ξm⟩ −→−→ R is called distinguished if the residue norm | · |α coincides
with the supremum semi-norm | · |sup on R. A K-affinoid algebra R is called dis-
tinguished if for some m ≥ 0 it admits a distinguished α : K⟨ξ1, . . . ξm⟩ −→−→ R.

In particular, if R is distinguished, then |R|sup = |R|α = |K⟨ξ1, . . . ξm⟩| = |K|,
where the middle equality holds by [BGR84, 5.2.7/Corollary 8]. Moreover, since
| · |sup = | · |α is a norm (and not only a semi-norm), R is reduced.
Conversely, these two conditions are sufficient for R to be distinguished if we assume
that K is a stable field (in the sense of [BGR84, 3.6.1/Definition 1]):

Theorem 1.17 ([BGR84, 6.4.3/Theorem 6]). Assume that K is stable, and let R
be an K-affinoid algebra. Then the following two statements are equivalent:

a) R is distinguished.

b) R is reduced and |R|sup = |K|.

We mention that K is stable if it is spherically complete [BGR84, 3.6.2/Propo-
sition 15] or algebraically closed [BGR84, 3.6.2/Proposition 12]. In the latter case,
the second condition in b) of Theorem 1.17 is automatic, i.e. we have |R|sup = |K|
for all affinoid K-algebras R. (In general we have |R|sup ⊆ |K| because of the Max-
imum Principle.)
For example, a finite field extension L of K := Qp with e(L/Qp) > 1 is a reduced
Qp-affinoid algebra where |L|sup = |L| is strictly larger than |Qp|, hence L is not
distinguished, according to Theorem 1.17.

3In general, for any analytic subset Y ⊆ X, the structure sheaf OY of a reduced closed
subvariety on Y is obtained from the following local building blocks: Given an affinoid open
U ⊆ X, one has (OY )|U∩Y := OU/IU∩Y where IU∩Y ⊆ OU is the radical ideal associated to
the analytic subset U ∩ Y of U . In our case, Y := C is also admissible open in X, meaning that
it can be covered by open affinoids U ⊆ X that are contained in C (i.e. U ∩ C = U). Then
(OC)|U = (OC)|U∩C = OU/IU∩C = OU/IU = OU/Nil(OU ) = OU since Nil(OU ) = 0, proving
our claim.
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1. Preliminaries

A significant result for us will be Proposition 1.20 below, which tells us that, when
regarding an affinoid algebra that is not necessarily distinguished, we can achieve
that the algebra becomes distinguished after a base change to a finite Galois exten-
sion. First we recall the following definition as in [Bos70]:

Definition 1.18. A K-affinoid algebra R is called absolutely reduced (or analyt-
ically separable in [Ber+67, Definition 4.2.1]) over K, if for every complete field
extension K ′ of K, the algebra R ⊗̂K K ′ is reduced.

The condition in Definition 1.18 is an “analytic version” of MacLane’s separa-
bility criterion [Eis13, Theorem A1.3], which explains why the algebras that satisfy
it are sometimes also called analytically separable.
Next, we recall from [Kie67b, (1.11.1) in Definition 1.11] that, if Sp(R) is smooth
over K, then (R ⊗̂K K ′)m is a regular ring for every complete field extension K ′ of
K and every maximal ideal m of R ⊗̂K K ′. In particular, this implies the following
remark:

Remark 1.19. The affinoid algebra of a smooth affinoid space is absolutely reduced.

We are now ready to prove the following:

Proposition 1.20. Let R be an absolutely reduced K-affinoid algebra. Then there
exists a finite Galois field extension K ′/K such that the algebra R⊗K K ′ is distin-
guished.

Proof. In the proof of [Bos71, Lemma 2.7], Bosch constructs a finite field extension
K ′/K such that the algebra R ⊗K K ′ is distinguished. (Note that we don’t have
to complete the tensor product since K ′ is finite over K.) We go through Bosch’s

proof and argue why K ′ can be taken to be Galois. Let C = K̂ be the completed
algebraic closure of K. Since R is absolutely reduced, RC = R ⊗̂K C is reduced
and hence a distinguished affinoid algebra over the algebraically closed field C. Let
x = (x1, . . . , xm) be an affinoid generating system of R and y′ = (y′1, . . . , y

′
n) a

distinguished affinoid generating system of RC , i.e.

Φ′ : C⟨ξ1 . . . , ξn⟩ −→ RC , ξi 7−→ y′i

is a distinguished epimorphism. Then the morphism Φ̊′ : oC⟨ξ1 . . . , ξn⟩ −→ R̊C

obtained by restriction is surjective by [BGR84, 6.4.3/Proposition 3]. The property
of being an affinoid generating system is preserved under completed base change to
C [BGR84, 2.1.8/Proposition 6], so x is an affinoid generating system of RC . Hence
there exist elements c′iν ∈ C (with i = 1, . . . , n and ν ∈ Nm

0 ) such that

y′i =
∑
ν∈Nn

0

c′iνx
ν .

The separable algebraic closure Ksep is dense in K by [BGR84, 3.4.1/Proposition
6]. Since K is dense in C, it follows that Ksep is also dense in C, meaning that we
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can find ciν ∈ Ksep which are zero for all save finitely many indices i and ν and
such that the

yi :=
∑
ν∈Nn

0

ciνx
ν

satisfy

|yi − y′i|α′ < 1.

The argument in [Bos14, 4.2/Lemma 8] can then be applied both to

Φ: C⟨ξ1 . . . , ξn⟩ −→ RC , ξi 7−→ yi

and Φ̊ to deduce the surjectivity of Φ resp. Φ̊ from the surjectivity of Φ′ resp. Φ̊′.
Thus Φ is a distinguished epimorphism by [BGR84, 6.4.3/Corollary 6]. We setK ′ to
be the Galois closure of the finite separable extension K(ciν | i = 1, . . . , n, ν ∈ Nm

0 )
of K. Then yi ∈ RK′ = R ⊗K K ′ and the rest of the argument in the proof of
[Bos71, Lemma 2.7] can be applied verbatim to show that

ϕ : K ′⟨ξ1 . . . , ξn⟩ −→ RK′ , ξi 7−→ yi

is a distinguished epimorphism (since its base change ϕC = Φ is a distinguished
epimorphism).

1.1.4 Noether normalisation with specific properties

We recall two refined versions of the Noether normalisation theorem for affinoid
algebras, namely Lemma 1.21 and Lemma 1.24 below:

Lemma 1.21 (Noether normalisation map with prescribed zeros). Let Z = Sp(R)
be an affinoid space. Given finitely many points z1, . . . , zn ∈ Z, there exists a finite
surjective morphism π : Z −→ Dd such that π(zi) = 0 for all i = 1, . . . , n.
Equivalently, there exists a Noether normalisation Td = K⟨ξ1, . . . , ξd⟩ ↪−→ R such
that all the mzi lie over the maximal ideal (ξ1, . . . , ξd).

Proof. This is [Ber+67, Lemma 1.1.4].

Recall that, given any field F and any ring A, a ring map F −→ A is étale if
and only if A is isomorphic as an F -algebra to a finite product of finite separable
field extensions of F , see [Stacks, Tag 00U3].

Definition 1.22 (Separable ring map). Let A be an integral domain. A torsion-free
morphism A −→ B is called separable if the induced map Q(A) ↪−→ Q(B) of the
fraction field Q(A) of A into the total ring of fractions Q(B) of B is étale.

Accordingly, a morphism Sp(S) −→ Sp(R) of affinoid spaces is called separable
if the ring morphism R −→ S is separable.
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Definition 1.23. (i) A morphism A −→ B of local rings is said to be unramified
if the maximal ideal mB of B is generated by the maximal ideal mA of A and
B/mB is a separable algebraic extension of A/mA.

(ii) A morphism A −→ B of rings is said to be unramified at a prime ideal p ⊆ B,
if the induced morphism Ap∩A −→ Bp of local rings is unramified.

In particular, an injective morphism A −→ B of integral domains is separable if
it is finite and unramified at (0) ⊆ B. Being unramified at (0) is also called being
“generically unramified”.

Lemma 1.24 (Separable Noether normalisation). If Z = Sp(R) is a smooth con-
nected affinoid space, then there exists a finite surjective morphism π : Z −→ Dd

that is separable (meaning that the associated morphism of affinoid algebras is sep-
arable).
More generally, for any affinoid algebra A that is an integral domain, the following
statements are equivalent:

(i) A is absolutely reduced.

(ii) There exists a Noether normalisation Td ↪−→ A, such that Q(A) is separable
over Q(Td).

Proof. See [Ber+67, Satz 4.2.4].

We need something akin to a combined version of Lemma 1.21 and Lemma 1.24:

Lemma 1.25 (Separable Noether normalisation with controlled behaviour on points).
Given a smooth connected affinoid space Z = Sp(R) and points z1, . . . , zn ∈ Z, there
exists a finite surjective separable morphism π : Z −→ Dd, such that |π(zi)| < 1 for
all i = 1, . . . , n.

Proof. We start by choosing a Noether normalisation morphism π : Z −→ Dd such
that π(zi) = 0 for all i = 1, . . . , n, which is possible due to Lemma 1.21. Let

φ : Td = K⟨ξ1, . . . , ξd⟩ ↪−→ R

be the corresponding finite injective morphism of affinoid algebras. Setting
xi := φ(ξi), one can then modify the xi by finding certain yi ∈ R, q ∈ N and
defining

x′i := xqi + yi

as in the proof of [Ber+67, Satz 4.1.9], to achieve that the morphism

φ′ : Td ↪−→ R, ξi 7−→ x′i

is finite, injective and separable, i.e. the associated morphism of affinoid spaces
π′ : Z −→ Dd is finite, surjective and separable. At the same time, we claim that
one can achieve that

|x′i(zj)| < 1 (1.1)

18



1.1. Several special topics from the theory of rigid analytic spaces

for all i = 1, . . . , d and j = 1, . . . , n, which means that |π′(zj)| < 1 for all j =
1, . . . , n by Remark 1.1. To see that this can be achieved, we outline the gist of the
argument in the proof of [Ber+67, Satz 4.1.9] and do the necessary modification
at a certain step. In the first step there, it is argued that it suffices to prove that,
given any maximal ideal m ⊆ R, there exists a Noether normalisation φ′ : Td ↪−→ R
that satisfies (1.1) and is unramified at m, since then φ′ is necessarily generically
unramified (=separable). The minimal number of generators of M := Ω1

Rm/K (i.e.

dimk(M/mM)) is d due to the smoothness assumption on Z and the morphism
(Td)m∩Td

−→ Rm will be unramified if we can choose the x′i in such a way that

dx′1, ..., dx
′
d

is a minimal system of generators of M . On a side note, we observe that due to
Lemma 1.21 we can assume that all the xi lie in m, which will allow us to apply
Nakayama’s lemma later. Now we choose y1, . . . , yd ∈ R such that dy1, . . . , dyd is a
minimal system of generators of M . Since we have R = K · R̊, we can assume that

yi ∈ R̊ and |yi(zj)| < 1 (1.2)

for all i = 1, . . . , d, j = 1, . . . , n. If we choose a non-unit t ∈ oK and set R̊ = R̊/tR̊

and B = imφ, then R̊ is finite over B̊ = k[x1, . . . , xd]. Taking an integral equation

y1
r + p1(x)y1

r−1 + . . .+ pr(x) = 0 (pi(x) ∈ k[x1, . . . , xd]) (1.3)

for y1 over B̊, we choose q ∈ N large enough so that defining x′1 := y1+x
q
1 and plug-

ging in y1 = x′1− x
q
1 into (1.3) and regrouping terms yields an integral equation for

x1 over k[x′1, x2, . . . , xd]. Therefore, B̊ = k[x1, . . . , xd] is finite over k[x′1, x2, . . . , xd]

and by transitivity R̊ is then finite over k[x′1, x2, . . . , xd]. By [Tat71, Proposition
4.2], this implies that R is finite over K⟨x′1, x2, . . . xd⟩. Moreover, the latter is in fact
a free affinoid algebra since the substitution homomorphism Td −→ K⟨x′1, x2, . . . xd⟩
is a surjective morphism from a domain to a ring of the same finite Krull dimension
and hence necessarily an isomorphism. Finally, since dx′1 = dy1 + q · xq−11 dx1 and
x1 ∈ m, we see that the system dx′1, dy2, . . . , dyd reduces modulo m to a basis of
M/mM , so by Nakayama’s lemma it is a minimal generating system of M . Pro-
ceeding in the same fashion for x′2 and x′3 and so forth, we eventually obtain the
Noether normalisation morphism

φ′ : Td ↪−→ R, ξi 7−→ x′i

that satisfies all the desired properties, including

|x′i(zj)| = |yi(zj) + xqi (zj)| ≤ max{|yi(zj)|, |xi(zj)|q} < 1

due to (1.2) and since xi(zj) = 0 (because π(zj) = 0).
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Remark 1.26. We stress that the separability of a Noether normalisation morphism
is not automatic even if K is perfect. Indeed, if K is a perfect non-archimedean field
of characteristic p > 0 (e.g. if K is the t-adic completion of the separable algebraic
closure Fp((t))

sep of the formal Laurent series Fp((t))), then K⟨ξp⟩ ↪−→ K⟨ξ⟩ is a
Noether normalisation morphism that isn’t separable.

1.1.5 A note on pure dimension

If R is a K-affinoid algebra, then R is Noetherian and hence contains only finitely
many minimal prime ideals, say p1, . . . , ps. As in [Bos70], we say that R has pure
dimension (or is equidimensional) if

dimR/p1 = dimR/p2 = . . . = dimR/ps.

Note that there exists a chain of prime ideals of length dimR in R and it necessarily
starts with a minimal prime ideal, say pj, so it projects to a chain of the same length
in R/pj, hence dimR = dimR/pj for some j. Thus the above condition is equivalent
to the condition

dimR = dimR/p1 = dimR/p2 = . . . = dimR/ps.

Lemma 1.27. Let R be a reduced K-affinoid algebra and d = dimR. The following
are equalent:

(i) R has pure dimension d.

(ii) Every finite injective morphism Td ↪−→ R is torsion-free.

(iii) There exists a finite injective morphism Td ↪−→ R that is torsion-free.

Proof. Let p1, . . . , ps be the minimal prime ideals of R.
(i) =⇒ (ii). Let Td ↪−→ R be a finite injective morphism. We have to show that no
element of Td, different from zero, is a zero divisor in R. Since R is reduced, [Stacks,
Tag 00EW] tells us that the set of zero divisors in R is

⋃s
i=1 pi, so we have to show

that pi ∩ Td = 0 for each i. The finite injective morphism Td ↪−→ R induces a
finite injective morphism Td/(pi ∩Td) ↪−→ A/pi, so in particular dimTd/(pi ∩Td) =
dimA/pi. By assumption (i), the latter is equal to d, so there exists a chain of
prime ideals 0 ⊊ q1 ⊊ . . . ⊊ qd of length d in Td/(pi ∩ Td) and this lifts to a chain
of prime ideals pi ∩ Td ⊊ q1 ⊊ . . . ⊊ qd of length d in Td. Thus pi ∩ Td = 0, as
otherwise we would have the chain 0 ⊊ pi ∩ Td ⊊ q1 ⊊ . . . ⊊ qd of length d + 1 in
Td.
(ii) =⇒ (iii). By Noether normalisation, there exists a finite injective morphism
Td ↪−→ A. This morphism is torsion-free by assumption (ii).
(iii) =⇒ (i). If we have a finite injective morphism Td ↪−→ A which is torsion-free,
then the set

⋃s
i=1 pi of zero divisors in R pulls back to 0 in Td, so in particular

pi ∩ Td = 0 for each i. Hence the morphism Td ↪−→ A induces a finite injective
morphism Td ↪−→ A/pi, so we have dimA/pi = dimTd = d for all i = 1, . . . , s.
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If R is a reduced K-affinoid algebra which has pure dimension, then Lemma
1.27 shows that every finite injective morphism Td ↪−→ R induces a morphism
Q(Td) ↪−→ Q(R) of the fraction field Q(Td) of Td into the total ring of fractions
Q(R) of R. Bosch makes extensive use of this fact in [Bos77, §§4-6], where he works
exclusively with affinoid algebras that are distinguished (and hence reduced) and
have pure dimension.
In our applications, Z = Sp(R) is a connected smooth affinoid space, so R is an
integral domain by Remark 1.15 and hence (0) is its only minimal prime ideal, so
in particular R has pure dimension.

1.2 Compactly supported cohomology of rigid

spaces

1.2.1 Cohomology and Stein spaces: definitions and basic
facts

Lemma 1.28 ([Chi90, Proposition 1.2]). Let X be a rigid analytic variety and
Z ⊆ X a finite union of admissible affinoids. Then X \Z is admissible open in X.

Definition 1.29 ([Bey97a, §1.1], [Chi90, §1]). Let X be a rigid analytic variety and
Z ⊆ X a finite union of admissible affinoids. For a sheaf F of abelian groups, set

ΓZ(X,F) := ker(Γ(X,F) −→ Γ(X \ Z,F)). (1.4)

Then
Γc(X,F) := lim−→

Z

ΓZ(X,F)

where the limit is taken over all subspaces Z of the above form. We use the following
notation for its right derived functors:

Hj
c (X,−) := RjΓc(X,−).

If we denote the j-th right derived functor of the left exact functor ΓZ(X,−) by
Hj

Z(X,−), then
Hj

c (X,F) = lim−→
Z

Hj
Z(X,F)

by [Chi90, the discussion preceding Remark 1.4]. We note that there is the standard
long exact sequence

... −→ Hj
Z(X,F) −→ Hj(X,F) −→ Hj(X \ Z,F) −→ Hj+1

Z (X,F) −→ ... (1.5)

obtained in the same way as in the topological situation (cf. [Stacks, Tag 0A39]).

Definition 1.30. A rigid analytic space X is said to be quasi-compact if it satisfies
one of the following equivalent conditions:
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(i) Every admissible cover of X admits a finite subcover.

(ii) X admits an admissible covering consisting of finitely many affinoid opens.

Remark 1.31. If X is quasi-compact, then we can take Z = X in Definition 1.29
which is a cofinal object, hence Hj

c (X,F) = Hj
X(X,F) = Hj(X,F), the last equality

being true since ΓX(−,F) = Γ(−,F).
If X is proper or affinoid, then in particular X is quasi-compact by Definition 1.30
(ii), hence Hj

c (X,F) = Hj(X,F).

In complex analysis, the complex spaces X that satisfy Cartan’s Theorem B
(i.e. for every coherent analytic sheaf F on X, Hq(X,F) vanishes for all q ≥ 1) are
called Stein [GR04, IV.§1.1 Definition 1]. By [GR04, V.§4.2 Theorem 3], these are
precisely the complex spaces that are “holomorphically complete” [GR04, IV.§3.3
Definition 8], i.e. the spaces that can be exhausted by “analytic blocks”, where
an analytic block is defined as a compact set D in X that can be mapped by a
finite proper holomorphic map (which is defined on a neighbourhood of D) into an
m-fold product of rectangles in some Cm. By [GR04, IV.§4.5 Theorem 5], such an
exhaustion {Di}i∈N is necessarily a “Stein exhaustion” [GR04, IV.§1.5 Definition 6],
in particular it satisfies the property that restriction map OX(Di+1) −→ OX(Di)
has dense image for all i. This characterisation is taken as the inspiration for the
definition of (quasi-)Stein spaces in the non-archimedean world:

Definition 1.32 ([Kie66, Definition 2.3]). Let X be a rigid space.

(i) X is said to be quasi-Stein if it admits an an admissible affinoid cover {Di}i∈N
such that, for i > 0, Di ⊆ Di+1 and the restriction map OX(Di+1) −→ OX(Di)
has dense image.

(ii) A Stein space is a quasi-Stein space which admits an admissible affinoid cover
as in (i) that additionally satisfies Di ⋐ Di+1 for all i (see Definition 1.33
below).

Definition 1.33 (Relative compactness). Let X −→ Y be a morphism of rigid
spaces with an affinoid base space Y and let Z1 ⊆ Z2 be open affinoid subspaces of
X. We say that Z1 is relatively compact in Z2 over Y and write

Z1 ⋐Y Z2

if there is a closed immersion i : Z2 ↪−→ Dr
Y over Y such that Z1 lands in D̊r

Y . (∗)
Equivalently, if there exists an affinoid generating system f1, . . . , fr of O(Z2) over
O(Y ) such that

Z1 ⊆ {z ∈ Z2 : |fi(z)| < 1 for all i = 1, . . . , r}

or, equivalently (by the Maximum Modulus Principle for affinoids) such that there
is an ε ∈

√
|K×|, 0 < ε < 1, satisfying

Z1 ⊆ {z ∈ Z2 : |fi(z)| ≤ ε for all i = 1, . . . , r}.
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If Y = Sp(K), then we just write

Z1 ⋐ Z2.

It is obvious from the definition that any affinoid space is quasi-Stein (see Re-
mark 1.35 below for a sharper statement). Therefore, Kiehl’s Theorem B (Theorem
1.37 below) and Remark 1.31 together imply that Serre Duality doesn’t hold for
affinoid spaces (except for zero-dimensional ones). Since, on the other hand, Serre
Duality does hold for Stein spaces, we see that no affinoid space of positive dimen-
sion is Stein.

Remark 1.34. (i) Both in complex analysis and in rigid geometry, Stein spaces
satisfy embedding theorems into the affine space. In particular, a complex
manifold is Stein if and only if it embeds into some CN as a closed complex
submanifold [GR04, V §1.1] and a smooth rigid analytic K-space is Stein if
and only if admits a closed immersion into some AN,an

K [Lüt73, Theorem 4.25].

(ii) Rigid analytifications of affine K-schemes of finite type are rigid Stein spaces.
This is due to (i), since the analytification functor respects closed immersions
(which is clear from the explicit constructions in [Bos14, §5.4]).

From the definitions we immediately deduce the following:

Remark 1.35. A rigid analytic space is affinoid if and only if it is quasi-Stein and
quasi-compact.

Lemma 1.36. Let X be a rigid space that admits a closed immersion ι : X ↪−→ S
into a quasi-Stein space S. Then X is also a quasi-Stein space.

Proof. Let {Di}i∈N be a cover of S as in Definition 1.32. By [BGR84, 9.5.3/Proposi-
tion 2], each ι−1(Di) is again affinoid and each morphism OS(Di) −→ OX(ι

−1(Di))
is surjective. Thus the commutative diagrams

OX(ι
−1(Di+1)) OS(Di+1)

OX(ι
−1(Di)) OS(Di)

dense

imply that the vertical maps on the left have dense image. Indeed, the morphism
OS(Di) −→ OX(ι

−1(Di)) being surjective, it pulls back non-empty open sets to
non-empty open sets, all of which have non-trivial intersection with the image of
OS(Di+1) −→ OS(Di). Due to the commutativity of the diagram, this implies that
all non-empty open sets in OX(ι

−1(Di)) have non-trivial intersection with the image
of OX(ι

−1(Di+1)) −→ OX(ι
−1(Di)).

The following analogue of Cartan’s Theorem B is due to Kiehl and is often called
Kiehl’s Theorem B :
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Theorem 1.37 ([Kie66, Satz 2.4]). Let S be a quasi-Stein Space and F a coherent
sheaf on S. Then

Hn(S,F) = 0 for all n ≥ 1.

Contrary to Stein spaces in complex analysis, it turns out that rigid quasi-Stein
spaces are not characterised by the vanishing of higher coherent cohomology. This
was proved in [Liu90], where a rigid space is called “Stein” if it satisfies Kiehl’s
Theorem B, and according to [Liu90, Théorème 4] there exists such a space that
is moreover quasi-compact yet isn’t affinoid (and therefore isn’t quasi-Stein, by
Remark 1.35). Hence we rather follow [Sig17] in calling such spaces cohomologically
Stein, to avoid confusion:

Definition 1.38. A rigid space X is called cohomologically Stein if, for every
coherent analytic sheaf F on X, Hq(X,F) vanishes for all q ≥ 1.

Recall the following Theorem of Leray, which tells us that the Čech cohomology
on an acyclic admissible covering computes derived functor cohomology:

Theorem 1.39 ([Bos14, 6.2/Theorem 5]). Let U be an admissible covering of a
rigid space X and let F be an OX-module. Suppose that U is a Leray covering,
i.e. that every finite intersection of sets in U is cohomologically Stein. Then the
canonical map from Čech- to derived cohomology

Hj(U,F) −→ Hj(X,F)

is an isomorphism for all j ≥ 0.

Since the intersections of two affinoid opens in a separated rigid space is again
affinoid and affinoids are quasi-Stein, we obtain:

Corollary 1.40. Let X be a rigid space and let F be an OX-module. Let U be
an admissible covering of X by affinoids. Then the canonical map from Čech- to
derived functor cohomology

Hj(U,F) −→ Hj(X,F)

is an isomorphism for all j ≥ 0.

1.2.2 The topology on Hj(X,F)

In this and the following subsection, we introduce canonical topologies on the co-
homology groups, as in [Bey97a, §1.3] and [van92, 1.6]. We assume that X is a
(separated) rigid analytic space of countable type, i.e. it has a countable (or finite)
admissible covering by affinoids.

Definition 1.41 (Topology on Hj(X,F)). Let F be a coherent sheaf on X. Then:
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(i) F(X) receives the following canonical structure of a Fréchet space.
Choose a countable admissible covering {Xi}i of X by affinoids. For each
finite intersection V of the Xi, F(V ) is a finitely generated module over the
affinoid algebra O(V ) and thus canonically a Banach space. Hence

∏
i F(Xi)

and
∏

i,j F (Xi∩Xj) are countable products of Banach spaces and in particular
Fréchet spaces. Then

F(X) = ker

(∏
i

F(Xi) −→
∏
i,j

F (Xi ∩Xj)

)

is a closed subspace of a Fréchet space and hence a Fréchet space. This topology
is independent of the choice of the covering {Xi}i .

(ii) Given a countable admissible covering U = {Ui}i of X, the Čech cohomology
Hj(U,F) is topologised as follows.
For each finite intersection U of the Ui, F(U) is a Fréchet space by (i). Then
the space of cochains

Čj(U,F) =
∏

i0<...<ij

F(Ui0 ∩ . . . ∩ Uij)

is a countable product of Fréchet spaces and hence a Fréchet space. The sub-
spaces of cocycles ker ∂p and of coboundaries im ∂j−1 are endowed with the
subspace topology and

Hj(U,F) = ker ∂j/ im ∂j−1

with the quotient topology.

(iii) To topologise Hj(X,F), we choose a countable Leray covering U of X, so that

Hj(U,F) = Hj(X,F)

and we let it carry the topology from (ii). To see that this is independent of
the choice of U, we note that, given a countable Leray covering V of X which
refines U, the continuous maps between Fréchet spaces

Čj(U,F) −→ Čj(V,F)

induce continuous bijections in cohomology due to Corollary 1.40, so Lemma
1.43 below then asserts that these bijections are in fact homeomorphisms

Hj(U,F) ∼−−→ Hj(V,F).

Remark 1.42. The differentials ∂j : Čj(U,F) −→ Čj+1(U,F) are continous, hence
ker ∂j is closed in Čj(U,F) and thus a Fréchet space. On the other hand, im ∂j−1

is in general not closed in ker ∂j, which means that Hj(U,F) and Hj(X,F) are
seldom Hausdorff, let alone Fréchet spaces.
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Lemma 1.43. Let C• and C ′• be complexes of Fréchet spaces (with continuous
linear differentials) and f : C• −→ C ′• a continuous linear map. If f induces
bijections on cohomology, then these bijections are necessarily homeomorphisms for
the natural (quotient) topologies on the cohomology groups (even though these are
not necessarily Hausdorff).

Proof. This is [RR70, Lemme 1]. We give the full proof, since we wish to fill in the
details in the proof outline in loc. cit. Let Zj, Bj and Hj = Zj/Bj denote the cocy-
cles resp. coboundaries resp. cohomology of C• and Z ′j, B′j, H ′j the corresponding
objects for C ′•. Suppose for a moment that we have shown that

f(Bj) = B′j, (1.6)

where the overline denotes topological closure. This would mean that the induced
map Hj −→ H ′j (also denoted by f) maps the closure of {0} onto the closure of
{0}. Thus f induces a continuous linear bijection

Hj/{0} −→ H ′j/{0} (1.7)

between Fréchet spaces, which is necessarily a homeomorphism due to the Open
Mapping Theorem. To show that the continuous bijection f : Hj −→ H ′j is also
a homeomorphism, we show that it maps closed subsets to closed subsets. Let
W ⊆ Hj be a non-empty closed subset. We may assume that W contains 0 (by
choosing a w ∈ W and replacing W by W − w), hence also {0} ⊆ W . We claim
that then necessarily W + {0} = W . Indeed, the image of W × {0} under the
continuous map +: Hj ×Hj −→ Hj is W . As with any continous map, the closure
W × {0} = W × {0} = W × {0} is then mapped into the closure W = W of
the image, i.e. we have W + {0} ⊆ W . Thus W + {0} = W , which in particular
implies that the image of W in Hj/{0} is closed in Hj/{0}. The map (1.7) being a
homeomorphism, it follows that the image of f(W ) in H ′j/{0} is closed in H ′j/{0},
i.e. f(W ) + {0} is closed in H ′j. But then

f(W ) = f(W + {0}) = f(W ) + f({0}) = f(W ) + {0}

is closed in H ′j, where the first equality is due toW +{0} = W , the second equality
is clear and the third equality is a consequence of (1.6). Thus f : Hj −→ H ′j is a
homeomorphism, as desired.
It remains to show (1.6). The map f : Hj −→ H ′j being surjective implies that the
continuous linear map between Fréchet spaces

α : C ′i−1 ⊕ Zi −→ Z ′i, (x, y) 7−→ ∂′(x) + f(y)

is surjective, hence a quotient map due to the Open Mapping Theorem. We claim
that the closed subset A := C ′i−1 ⊕ Bi of C ′i−1 ⊕ Zi is saturated with respect to
α, i.e. we have α−1(α(A)) = A. Indeed, let (a, b) ∈ α−1(α(A)), so ∂′(a) + f(b) =
∂′(x) + f(y) for some x ∈ C ′i−1, y ∈ Bi; we need to show that b ∈ Bi. Note that
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f(b− y) = ∂′(x− a) ∈ ∂′(C ′i−1) = B′i, so b− y ∈ f−1(B′i) = Bi (this last equality
being guaranteed by the assumption that f induces a bijection Hj −→ H ′j) and
thus b ∈ y + Bi ⊆ Bi + Bi = Bi, as desired. Here Bi + Bi = Bi holds since the
closure of the vector space Bi is again a vector space, and contains Bi. Quotient
maps send saturated closed sets to closed sets, so α(A) = B′i + f(Bi) is closed in
Z ′i. Since it contains B′i, this implies B′i ⊆ B′i + f(Bi). The equality B′i = f(Bi),
which is due to the assumption that f induces a bijection Hj −→ H ′j, then allows
us to conclude

B′i ⊆ B′i + f(Bi) = f(Bi) + f(Bi) = f(Bi +Bi) = f(Bi).

The reverse inclusion B′i = f(Bi) ⊇ f(Bi) is clear due to the continuity of f , so
(1.6) is shown and the proof of the lemma is complete.

Proposition 1.44. Let f : X −→ Y be a finite morphism of rigid spaces and F a
coherent sheaf on X. Then f∗F is coherent and the induced morphism on cohomol-
ogy

Hj(Y, f∗F) ∼−−→ Hj(X,F)

is a topological isomorphism for all j ≥ 0.

Proof. The sheaf f∗F is coherent by [BGR84, 9.4.4/Proposition 3]. For any ad-
missible covering U of Y and any morphism f : X −→ Y (not necessarily finite),
we have the obvious equality of Čech-complexes Čj(U, f∗F) = Čj(f−1U,F) which
induces an equality of cohomologies

Hj(U, f∗F) = Hj(f−1U,F). (1.8)

Now if U consists of affinoids (so Hj(U, f∗F) = Hj(Y, f∗F)) and f is finite, then
f−1(U) also consists of affinoids by [BGR84, 9.4.4/Corollary 2], so Hj(f−1U,F) =
Hj(X,F). Hence the assertion follows from the established identity (1.8).

Remark 1.45. In algebraic geometry, a morphism of schemes f : X −→ Y is called
affine if for every affine open subset U ⊂ X, f−1(U) is affine. This is equivalent
to the condition that there exists an open affine cover U of Y such that f−1(U)
is an open affine cover. The same argument as in our proof of Proposition 1.44
then shows that an affine morphism f : X −→ Y of separated schemes induces
isomorphisms Hj(Y, f∗F) ∼−−→ Hj(X,F) on cohomology, for any quasi-coherent
sheaf F on X. The reason we need f to be a finite morphism in Proposition 1.44
rather than merely an “affinoid” morphism, is, on the one hand, not to leave the
class of coherent sheaves by applying f∗ and, on the other hand, that there is no
good notion of an affinoid morphism in rigid geometry. Indeed, [SW20, Example
9.1.2] constructs a morphism f : V −→ X of rigid spaces where X is affinoid and
V = f−1(X) is not affinoid, even though there exists a certain affinoid open cover
U of X such that f−1(U) is an affinoid open cover of V .

An immediate consequence of Proposition 1.44 is the following:

Remark 1.46. The preimage of a cohomologically Stein rigid space under a finite
morphism is itself cohomologically Stein.
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1.2.3 The topology on Hj
c (X,F)

Definition 1.47 (Topology on Hj
c (X,F)). Let Z ⊆ X be a finite union of ad-

missible affinoids. We endow ΓZ(X,F) ⊆ Γ(X,F) with the subspace topology and
Hj

Z(X,F), j ≥ 1, with the finest topology making the connecting homomorphism

Hj−1(X \ Z,F) −→ Hj
Z(X,F)

from the long exact sequence (1.5) continuous, where Hj−1(X \Z,F) is topologised
as in Definition 1.41. Note that each map Hj

Z(X,F) −→ Hj(X,F) in (1.5) is then
also continuous, since its continuity is equivalent to the continuity of the composite
map Hj−1(X\Z,F) −→ Hj(X,F) which indeed is continuous (being the zero map).
Finally,

Hj
c (X,F) = lim−→

Z

Hj
Z(X,F)

receives the direct limit topology.

Remark 1.48. Hj
c (X,F) is in general not Hausdorff, let alone a Fréchet space.

Using the long exact sequence (1.5) and Definition 1.47, one obtains:

Remark 1.49. Let S be a rigid space that is cohomologically Stein, Z ⊆ S a
finite union of admissible affinoids and F a coherent sheaf on S. Then (1.5) yields
topological isomorphisms

Hn
Z(S,F) ∼= Hn−1(S \ Z,F) for n ≥ 2

and

H1
Z(S,F) ∼= H0(S \ Z,F)/H0(S,F).

Lemma 1.50. Let f : X −→ Y be a finite morphism of rigid spaces. Let Z be
a cofinal subfamily of the family of all finite unions of admissible affinoids in Y .
Then f−1(Z) is a cofinal subfamily of the family of all finite unions of admissible
affinoids in X.

Proof. The preimage of an affinoid subset under f is again affinoid because f is
finite, so f−1Z is indeed a subfamily of the family of all finite unions of admissible
affinoids in X. To show cofinality, suppose that W is an affinoid subset of X. Take
an admissible affinoid cover U of Y . Then f−1U is an admissible affinoid cover of X.
Since W is affinoid and in particular quasi-compact, it is covered by finitely many
members of f−1U, the union of which is obviously a member of f−1Z . Hence every
affinoid subset of X is contained in a member of f−1Z . But then every finite union
of affinoids in X is contained in a finite union of members of f−1Z , and the latter
finite union is itself a member of f−1Z .
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Proposition 1.51. Let f : X −→ Y be a finite morphism of cohomologically Stein
rigid spaces and F a coherent sheaf on X. Then f∗F is coherent and we have an
induced morphism on compactly supported cohomology

Hj
c (Y, f∗F) ∼−−→ Hj

c (X,F)

which is in fact a topological isomorphism for all j ≥ 0.

Proof. If Z is a finite union of affinoids in Y , then f restricts to a finite morphism

X \ f−1(Z) = f−1(Y \ Z) −→ Y \ Z

which induces isomorphisms on cohomology

Hj(Y \ Z, f∗F) ∼−−→ Hj(X \ f−1(Z),F) for j ≥ 0 (1.9)

due to Proposition 1.44. By Remark 1.49, these yield isomorphisms

Hj
Z(Y, f∗F) ∼−−→ Hj

f−1(Z)(X,F) for j ≥ 1. (1.10)

Moreover, the isomorphisms (1.9) allow us to apply the 5-Lemma to the commuta-
tive diagram obtained from the long exact sequences (1.5)

0 0 H0
Z(Y, f∗F) H0(Y, f∗F) H0(Y \ Z, f∗F)

0 0 H0
f−1(Z)(X,F) H0(X,F) H0(X \ f−1(Z),F)

∼= ∼= ∼= ∼=

and deduce the hitherto missing case

H0
Z(Y, f∗F) ∼−−→ H0

f−1(Z)(X,F). (1.11)

By passing to the limit in (1.10) and (1.11) we obtain

Hj
c (Y, f∗F) = lim−→

Z

Hj
Z(Y, f∗F) ∼−−→ lim−→

Z

Hj
f−1(Z)(X,F) = Hj

c (X,F) for j ≥ 0

where the limit on the right-hand side indeed produces Hj
c (X,F) due to Lemma

1.50.

1.2.4 Compactly supported cohomology of the open unit
ball

We set

Dn
K(ε) := Dn(ε) := {x ∈ Dn : |xi| ≤ ε for all i = 1, . . . , n}.

Any admissible open affinoid W ⊆ D̊n is contained in a Dn(ε) for some ε ∈ (0, 1).
To see this, note that, setting εm := 1 − 1/m, we have that D̊n =

⋃
m D(εm) is

an admissible affinoid cover of D̊n. Since W is affinoid and in particular quasi-
compact, it is covered by finitely many D(εm). Choosing ε to be the largest among
these finitely many m’s, we obtain our claim. This proves the following remark:
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Remark 1.52. The Dn(ε), for varying 0 < ε < 1, form a cofinal subfamily of the
family of all finite unions of admissible affinoids in D̊n. In particular, we have

Hn
c (D̊n,ODn) = lim−→

0<ε<1

Hn
Dn(ε)(D̊n,ODn)

as is recorded in [Bey97a, Lemma 1.2.2].

Hence we wish to understand Hn
Dn(ε)(D̊n,ODn). Remark 1.49 thus leads us to

study D̊n \ Dn(ε). Consider the admissible open cover

D̊n \ Dn(ε) =
n⋃

i=1

Ui,ε where Ui,ε := {x ∈ D̊n : ε < |xi|}. (1.12)

The intersection
⋂n

i=1 Ui,ε is precisely the annulus

n⋂
i=1

Ui,ε = {x ∈ Dn : ε < |xi| < 1 for all i = 1, . . . , n},

whose ring of holomorphic functions is given by

RK,n,ε := H0(
n⋂

i=1

Ui,ε,ODn) = {
∑
α∈Zn

aαX
α : lim
|α|→∞

|aα| · εα = 0}.

Note that (1.12) is a Leray cover (i.e. it satisfies the conditions of Theorem 1.39)
since the Ui,ε and their finite intersections are quasi-Stein, so Čech cohomology
computes

Hn−1(D̊n \ Dn(ε),ODn) =
ODn(

⋂n
i=1 Ui,ε)

im ∂n−1ε

= Rn,ε/im ∂n−1ε for n ≥ 1

where ∂n−1ε is the differential in degree n− 1 of the Čech complex under consider-
ation. For n ≥ 2, every element of Rn,ε/im ∂n−1ε is represented by a Laurent series∑

α<0 aαX
α consisting only of the principal part, because the regular part (that is

holomorphic on the whole disk) lives in Hn−1(D̊n,ODn) which vanishes for n ≥ 2
due to Kiehl’s Theorem B.

Remark 1.49 then yields

Hn
Dn(ε)(D̊n,ODn) = Hn−1(D̊n \ Dn(ε),ODn) = Rn,ε/im ∂n−1ε for n ≥ 2

and

H1
D1(ε)(D̊

1,OD1) =
H0(D̊1 \ D1(ε),OD1)

H0(D̊1,OD1)
=

R1,ε

im ∂0ε +H0(D̊1,OD1)
. (1.13)

Thus, for all n ≥ 1, every element in Hn
Dn(ε)(D̊n,ODn) is represented by a Laurent

Series
∑

α<0 aαX
α consisting only of the principal part. Indeed, for n ≥ 2 this

follows from our discussion above and for n = 1 it is true because H0(D̊1,OD1) =
O(D̊1) is divided out on the right-hand side of (1.13). In fact:

30



1.3. Local cohomology

Lemma 1.53 ([Bey97a, Corollary 1.2.5]). Letting K⟨X−11 , . . . , X−1n ⟩† := lim−→0<ε<1
R−n,ε

where R−n,ε ⊆ Rn,ε denotes the subring of Laurent series of the form
∑

α≤0 aαX
α,

we have an isomorphism of topological K-vector spaces:

Hn
c (D̊n,ODn) ∼= K⟨X−11 , . . . , X−1n ⟩† ·

1

X1 · · ·Xn

.

1.3 Local cohomology

1.3.1 Definitions and basic properties

Let R be a commutative ring and a an ideal of R.

Definition 1.54. For a R-module M , set

Γa(M) := {m ∈M : atM = 0 for some t ∈ N}.

We denote the j-th right derived functor of the left exact functor Γa(−) by Hj
a(−),

i.e.
Hj

a(M) = Hj(Γa(I
•))

where I• is an injective resolution of M . The R-module Hj
a(M) is called the j-th

local cohomology of M with support in a.

Local cohomology commutes with finite direct sums: If {Mλ} is a finite family
of R-modules, then

Hj
a(
⊕
λ

Mλ) =
⊕
λ

Hj
a(Mλ). (1.14)

Indeed, if I•λ is an injective resolution of Mλ, then
⊕

λ I
•
λ is an injective resolution

of
⊕

λMλ since every direct sum of finitely many injective modules is injective.
Moreover, Γa(−) obviously commutes with arbitrary direct sums so we have the
equality Γa(

⊕
λ I
•
λ) =

⊕
λ Γa(I

•
λ) which then yields (1.14) after we take cohomolo-

gies. We add that a ring R is Noetherian if and only if arbitrary direct sums of
injective R-modules are injective [Lam99, Theorem 3.46] and therefore, if the base
ring R is Noetherian, the above argument shows that local cohomology commutes
with arbitrary direct sums.

Remark 1.55. Suppose R is Noetherian. Then

Hj
a(M) = Hj√

a
(M).

for each j ≥ 0

Proof. Since R is Noetherian, a contains a power of its radical
√
a, hence we even

have Γa(−) = Γ√a(−).
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The following description of local cohomology as a limit of Ext-modules will be
useful in the proof of Proposition 1.59 below: If {an} is any nested system of ideals
which are cofinal with the powers of a, then

Hj
a(M) = lim−→

n

ExtjR(R/an,M) (1.15)

for each j ≥ 0. Indeed, this identification comes from the fact that we have a
canonical identification

{m ∈M : anM = 0} = HomR(R/an,M)

and hence Γa(M) =
⋃

n{m ∈ M : anM = 0} = lim−→n
HomR(R/an,M), which ex-

tends to higher cohomology groups as well, by a standard argument (cf. [Hun07,
§2.1]).
Next we recall the notion of a system of parameters for a local ring:

Definition 1.56 ([Stacks, Tag 07DU, Tag 00KU]). Let (R,m) be a Noetherian local
ring of dimension d. An ideal J ⊆ R whose radical

√
J satisfies

√
J = m is called an

ideal of definition of R. A system of parameters for R is a sequence of d elements
x1, . . . , xd ∈ m that generates an ideal of definition in R.
If m can be generated by d elements, R is said to be a regular local ring and a
system of parameters generating m is called a regular system of parameters.

We note that every Noetherian local ring has a system of parameters by [Stacks,
Tag 00KQ].

1.3.2 A description obtained via Koszul- and Čech-complexes

Lemma 1.57. Let R be Noetherian, a ⊆ R an ideal and M a R-module. Let
t1, . . . , td ∈ R be such that

√
a =

√
(t1, . . . , td). Write t = (t1, . . . , td). For each

ρ ∈ N, set tρ := (tρ1, . . . , t
ρ
d). Then there are canonical isomorphisms

lim−→
ρ

M/tρM ∼−−→ Hd
a (M) (1.16)

and

Mt1···td/
d∑

i=1

image(Mt1···ti−1ti+1···td)
∼−−→ Hd

a (M), (1.17)

where Mx denotes the localisation of M at x ∈ R. Furthermore, if we let [mtρ ]
denote the image of m+ tρM under M/tρM −→ lim−→j

M/tjM ∼−−→ Hd
a (M), then [mtρ ]

coincides with the image of the residue class of m
(t1···td)ρ

under then map (1.17).

Proof. The assertion of the lemma is standard material that can be found in the
literature ([Iye+07, Theorem 7.11 and Theorem 7.13]), but we spell out some details
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for the convenience of the reader. Note that we can assume a = (t1, . . . , td) by
Remark 1.55. Then we claim that we obtain (1.16) by specializing to degree j = d
in the isomorphism

lim−→
ρ

Hj(HomR(K
•(tρ;R),M)) ∼−−→ Hj

a(M) (1.18)

from [Iye+07, Theorem 7.11], where K•(tρ;R) is the Koszul complex on tρ as in
[Iye+07, Definition 6.1]. Indeed, to see that

Hd(HomR(K
•(tρ;R),M)) =M/tρM, (1.19)

we first note that we have a commutative diagram of complexes of R-modules

K−(d+1)(tρ;R) K−d(tρ;R) K−(d−1)(tρ;R)

0
∧dR = R

∧d−1R

∂

∼=

1 7→
∑d

j=1 t
ρ
jEj

∼=

where the formal symbols

Ej := e1 ∧ . . . ∧ êj ∧ . . . ∧ ed.

are an R-basis of
∧d−1R. By the definition of the complex HomR(K

•(tρ;R),M), we
have for the object in degree j that (HomR(K

•(tρ;R),M))j = HomR(K
−j(tρ;R),M).

Therefore, applying HomR(−,M) to the right-hand square in the above diagram
yields

(HomR(K
•(tρ;R),M))d (HomR(K

•(tρ;R),M))d−1

M Md

∼= ∼=

∑d
j=1 t

ρ
jmj←[(m1,...,md)

where we have used the standard identification HomR(R
j,M) ∼= M j in the bottom

row. Now (1.19) is obtained by taking cokernels of the horizontal maps.
In [Iye+07, Construction 7.12], an isomorphism of complexes

Č•(t;M) ∼= lim−→
ρ

HomR(K
•(tρ;R),M) (1.20)

is constructed, where Č•(t;M) is the Čech complex 4 on t as in [Iye+07, Definition
6.25]:

M −→
⊕
1≤i≤d

Mti −→
⊕

1≤i<j≤d

Mtitj −→ . . . −→Mt1···td

4This Čech complex is sometimes also called the “(stable) Koszul complex” in the literature,
a collision of nomenclature which is justified by the isomorphism (1.20). Indeed, in the discussion
preceding Proposition 2.13 in [Hun07], the complex Č•(t;M) is denoted by K•(t1, t2, . . . , td;M)
and is called the “Koszul cohomology complex”.
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with
⊕

1≤i1<...<ik≤dMti1 ···tik sitting in degree k and the differentials being alternating
sums of localization maps. We mention that the construction of the isomorphism
(1.20) is reduced to the case d = 1 and M = R. Then, given a single x ∈ R,
lim−→ρ

HomR(K
•(xρ;R),M) is isomorphic to the direct limit of the following direct

system of complexes that are concentrated in degree [0, 1]

. . .

[R R] HomR(K
•(xρ;R), R)

[R R] HomR(K
•(xρ+1;R), R)

. . .

id

·xρ

·x

∼

·xρ+1 ∼

(1.21)

The fact that the maps φρ : R −→ Rx, a 7−→ a
xρ , ρ ∈ N, are compatible with the

transition maps in the direct system

R
·x−→ R

·x−→ R
·x−→ . . . (1.22)

and realise Rx as the direct limit of (1.22), implies that the direct limit of the left-
hand side of (1.21) is the complex [R −→ Rx] = Č•(x;R), proving our claim.
Specializing the isomorphism (1.20) to degree j in cohomology and then composing
with (1.18) yields the isomorphism

Hj(Č•(t;M)) ∼−−→ Hj
a(M) (1.23)

-- which for j = d is the isomorphism (1.17) -- and proves the rest of Lemma
1.57.

1.3.3 Permanence properties under completion and base
change

With a straightforward application of the isomorphism (1.23), one can prove the
following:

Proposition 1.58. Let φ : R −→ S be a morphism between Noetherian rings and
a ∈ R an ideal. Let M be an R-module and N an S-module.

(i) (Flat base change) If φ is flat, then Hj
a(M)⊗R S ∼= Hj

aS(M ⊗R S).

(ii) (Independence of base) Hj
a(N) ∼= Hj

aS(N), where Hj
a(N) is computed over the

base ring R.
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Proof. For the convenience of the reader, we reproduce the proof from [Hun07,
Proposition 2.14] here, since the argument will be needed in Lemma 5.14 later. We
have Č•(t;M)⊗R S = Č•(φ(t);M ⊗R S) and hence

Hj
aS(M ⊗R S) ∼= Hj(Č•(φ(t);M ⊗R S)) ∼= Hj(Č•(t;M)⊗R S)

∼= Hj(Č•(t;M))⊗R S ∼= Hj
a(M)⊗R S

where the third isomorphism holds because φ is flat, proving Assertion (i). Assertion
(ii) follows from the fact that

Č•(t;N) = Č•(t;R)⊗R N = (Č•(t;R)⊗R S)⊗S N

= Č•(φ(t);S)⊗S N = Č•(φ(t);N)

and (1.23).

Lemma 1.57 is often used in the case where R is a local ring and t1, . . . , td is a
system of parameters for R. We may often assume without loss of generality that
we are in this case, by passing over to the completion with respect to a maximal
ideal m = (t1, . . . , td), due to the insensitivity of local cohomology to completion:

Proposition 1.59. Let R be a Noetherian ring and let a ⊆ R be an ideal. Let
M be a finitely generated R-module. Let R̂ be the a-adic completion of R; it is a
Noetherian ring that is complete with respect to the ideal â = aR̂ and the ring map
R −→ R̂ is flat. The R̂-module M̂ = R̂⊗R M is finite and we have

Hj
a(M) ∼= Hj

â(M̂).

for all j ≥ 0.

Proof. The assertions regarding R̂ and M̂ are standard facts from commutative
algebra [Stacks, Tag 05GH, Tag 00MB, Tag 00MA]. The isomorphism between the
local cohomology groups is shown in [Hun07, Proposition 2.15] for the case that R
is local and a = m is its unique maximal ideal. We show that the proof of [Hun07,
Proposition 2.15] carries over verbatim to our (more general) setting: We have

Hj
â(M̂) ∼= Hj

aR̂
(M ⊗R R̂) ∼= Hj

a(M)⊗R R̂ ∼= lim−→
n

ExtjR(R/a
n,M)⊗R R̂

∼= lim−→
n

(ExtjR(R/a
n,M)⊗R R̂) ∼= lim−→

n

ExtjR(R/a
n,M) = Hj

a(M),

the second isomorphism being due to Proposition 1.58 (i) since R −→ R̂ is flat,
the third due to (1.15), and the fifth due to the fact that each ExtjR(R/a

n,M) is
a-adically complete since it is annihilated by a power of a. Indeed, to see that
ExtjR(R/a

n,M) is annihilated by an, take an injective resolution M −→ I• and
note that every module in the complex HomR(R/a

n, I•) is already annihilated by
an.
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1.3.4 The Mayer-Vietoris sequence

Another basic result that we recall is the Mayer-Vietoris sequence in local cohomol-
ogy: Let a′ ⊇ a be ideals in a Noetherian ring R and M an R-module. Then the
inclusion Γa′(M) ⊆ Γa(M) induces a homomorphism

θja′,a : H
j
a′(M) −→ Hj

a(M).

for each j. We abuse notation and write just θ for θja′,a since the sub- and superscripts
of θ will always be implicitly clear from the context. For ideals a, b ⊆ R, we define

ιja,b : H
j
a+b(M) −→ Hj

a(M)⊕Hj
b(M)

z 7−→ (θ(z), θ(z)),

and πj
a,b : H

j
a(M)⊕Hj

b(M) −→ Hj
a∩b(M)

(x, y) 7−→ θ(x)− θ(y)

where we will again abuse notation and simply write ι and π.

Proposition 1.60 (Mayer-Vietoris sequence). Let a, b be ideals in a Noetherian
ring R and M an R-module. Then there exists a long exact sequence of the form

0 −→ H0
a+b(M)

ι−→ H0
a (M)⊕H0

b (M)
π−→ H0

a∩b(M)

∂−→ H1
a+b(M)

ι−→ H1
a (M)⊕H1

b (M)
π−→ H1

a∩b(M)
∂−→ . . .

that is functorial in M .

Proof. [Iye+07, Theorem 15.1].

Corollary 1.61. Let m1, . . . ,ms be different maximal ideals in a Noetherian ring
R and M an R-module. Then the map

s⊕
i=1

Hj
mi
(M) ∼−−→ Hj⋂s

i=1 mi
(M)

(z1, . . . , zs) 7−→
s∑

i=1

θ(zi)

is an isomorphism for all j ≥ 0.

Proof. Assume for the moment that s = 2. Since m1 + m2 = R and ΓR(−) is the
zero functor (so Hj

R(M) is always zero), the Mayer-Vietoris sequence tells us that

π : Hj
m1
(M)⊕Hj

m2
(M) ∼−−→ Hj

m1∩m2
(M)

(z1, z2) 7−→ θ(z1)− θ(z2)

is an isomorphism. Precomposing with the isomorphism (z1, z2) 7−→ (z1,−z2)
proves the assertion for s = 2, more generally for any two (not necessarily maximal)
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ideals m1,m2 that are coprime in the sense that they satisfy m1 +m2 = R.
Now we proceed by induction on s: The map

s⊕
i=1

Hj
mi
(M) ∼−−→ Hj⋂s−1

i=1 mi
(M)⊕Hj

ms
(M)

(z1, . . . , zs) 7−→ (
s−1∑
i=1

θ(zi), zs)

(1.24)

is then an isomorphism by the induction hypothesis. Moreover, the map

Hj⋂s−1
i=1 mi

(M)⊕Hj
ms
(M) ∼−−→ Hj⋂s

i=1 mi
(M)

(x, y) 7−→ (θ(x) + θ(y))
(1.25)

is an isomorphism by the case s = 2 for two coprime ideals, where we note that ms

and
⋂s−1

i=1 mi are indeed coprime, since otherwise ms +
⋂s−1

i=1 mi would be a proper
ideal containing ms i.e. we would have ms+

⋂s−1
i=1 mi = ms and hence

⋂s−1
i=1 mi ⊆ ms,

which would, by [AM69, Proposition 1.11. ii)], necessarily imply mi ⊆ ms for some
i < s, a contradiction. Composing the two isomophisms (1.24) and (1.25) yields
the desired isomorphism, proving the assertion.

1.3.5 Relation to sheaf cohomology

Finally, we review the geometric interpretation of the local cohomology groups
H•a (M), namely that they are isomorphic to the sheaf cohomology groups

H•Z(SpecR, M̃) of the quasi-coherent sheaf M̃ with support in Z := V (a) ⊆ SpecR.
This is used in the construction of the map from local cohomology to compactly
supported rigid cohomology (Lemma 4.6).

Definition 1.62. Let X be a topological space and Z ⊆ X a closed subspace. For
a sheaf F of abelian groups, the sections with support in Z are

ΓZ(X,F) := ker(Γ(X,F) −→ Γ(X \ Z,F)).

We denote the j-th right derived functor of the left exact functor ΓZ(X,−) by
Hj

Z(X,−) and call Hj
Z(X,F) the j-th local cohomology of F with support in Z.

Remark 1.63. For a sheaf F of abelian groups on X and a section s ∈ F(U) over
an open set U , the support of s is defined to be Supp(s) := {p ∈ U : sp ̸= 0}, where
sp is the germ of s in the stalk Fp. We have

ΓZ(X,F) = {s ∈ Γ(X,F) : Supp(s) ⊆ Z},

since s|(X\Z) = 0 if and only if sp = 0 for all p ∈ X \ Z, i.e. if and only if
Supp(s) ⊆ Z.
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There is a long exact sequence

. . . −→ Hj
Z(X,F) −→ Hj(X,F) −→ Hj(X \ Z,F) −→ Hj+1

Z (X,F) −→ . . .
(1.26)

Remark 1.64. Let R be a Noetherian ring and a ⊆ R an ideal. For Z = V (a) in
X = SpecR, one has

Hj
a(M) ∼= Hj

Z(X, M̃)

for any R-module M and any j ∈ N0.

Proof. This is well-known, but we summarise the simple argument for the conve-
nience of the reader. First of all, one has ΓZ(M̃) = Γa(M), for the following reason:
Choosing generators f1, . . . , fk of a, the subsets Ui := SpecAfi yield a finite open

covering of X \Z. Hence, an element of Γ(X, M̃) =M becomes zero in Γ(X \Z, M̃)

if and only if it becomes zero in Γ(Ui, M̃) = Mfi for all i, i.e. if and only if it is
annihilated by a power fni

i of fi for all i. This last condition is obviously equiva-
lent to the element being annihilated by a suitable power of a, which proves that
ΓZ(M̃) = Γa(M).

Now choose an injective resolution M −→ I• of M and consider M̃ −→ Ĩ•. Then
we have Γa(I

•) = ΓZ(Ĩ
•) by the above, so it remains to show that ΓZ(Ĩ

•) computes

H•Z(X, M̃). Note that M̃ −→ Ĩ• is an injective resolution of M̃ in the category of
OX-modules, by [Har66, Corollary II.7.14]. Moreover, any injective OX-module is
flasque by [Har77, Lemma III.2.4] and any flasque sheaf is acyclic for ΓZ by [Har66,
IV.1 Motif C]. Hence we are done by [Har77, Proposition III.1.2A].

From Remark 1.64, we deduce using the long exact sequence (1.26) and Serre’s
cohomological characterization of affineness:

Proposition 1.65 (Local cohomology and sheaf cohomology). Let R be a Noethe-
rian ring and a = (x1, . . . , xd) an ideal. Set X = Spec(R) and U = X \ V (a). Let

M be an R-module and M̃ the corresponding quasi-coherent sheaf on X. Then we
have an isomorphism

Hj(U, M̃) ∼−−→ Hj+1
a (M) for each j ≥ 1

and a surjection
H0(U, M̃) −→−→ H1

a (M)

which sits in an exact sequence

0 −→ H0
a (M) −→ H0(X, M̃) =M −→ H0(U, M̃) −→ H1

a (M) −→ 0.

It is worth noting that an alternative proof of Proposition 1.65 is given by the
fact that, by (1.23), H•a (M) can be computed using the Čech complex Č•(t;M) on
x = (x1, . . . , xd) which in degree k is the R-module⊕

1≤i1<...<ik≤d

Mxi1
···xik

,
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and the fact that the sheaf cohomology H•(U, M̃) can be computed using the topo-
logical Čech complex with respect to the open cover U = {Ui} of U consisting of
the open sets Ui := X \ V (xi), which in degree k is∏

1≤i1<...<ik+1≤d

Γ(Ui1 ∩ . . . ∩ Uik+1
, M̃)

while observing that Ui1 ∩ . . . ∩ Uik+1
= X \ V (xi1 · · ·xik+1

) = Spec(Rxi1
···xik+1

) and

thus Γ(Ui1 ∩ . . . ∩ Uik+1
, M̃) =Mxi1

···xik+1
.

1.4 Commutative algebra

1.4.1 A note on completions and systems of parameters

For a ring A and an ideal a ⊆ A, we write A∧a for the a-adic completion of A. If
A is local, we write Â for the completion with respect to the maximal ideal. The
purpose of this section is to justify the claim in Lemma 4.5 (ii) below that the
maps Tn

∧m −→ R∧mi send any system of parameters to a system of parameters (see
Definition 1.56). This is the content of Corollary 1.68 below.

Lemma 1.66. Let φ : (A,mA) −→ (B,mB) be a local ring homomorphism between
Noetherian local rings of dimension d. Suppose that φ is integral. Then any system
of parameters is mapped to a system of parameters under φ.

Proof. Let a1 . . . , ad ∈ A be a system of parameters in A, meaning that the ideal
I := (a1, . . . , ad) satisfies

√
I = mA. Since the ideal φ(I)B ⊆ B is generated

by d elements φ(a1), . . . φ(ad) and B has dimension d, it suffices to show that√
φ(I)B = mB. Let q be a prime ideal containing φ(I)B. Then p := φ−1(q)

is a prime ideal in A containing I and hence also containing
√
I = mA. Thus

p = mA. Now B/q is an integral domain and A/p ↪−→ B/q a subring such that
B/q is integral over A/p, so we have

A/p is a field ⇐⇒ B/q is a field.

But A/p is indeed a field since p = mA, so we conclude that q is a maximal ideal
and hence necessarily q = mB. We have shown that mB is the only prime ideal
containing φ(I)B, whence

√
φ(I)B = mB.

Proposition 1.67. Let A and B be Noetherian rings, A −→ B a ring morphism.
Let m be a maximal ideal in A and n a maximal ideal in B that pulls back to m. If
A −→ B is finite, then the induced morphism on the completions

A∧m −→ B∧n

is finite as well. If A −→ B is moreover flat, then A∧m −→ B∧n is flat as well.
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Proof. This is surely a well-known fact but we give a proof due to lack of an adequate
reference. Since A is Noetherian and B is finite over A, we have A∧m⊗AB = B∧mB.
Hence the induced morphism A∧m −→ B∧mB arises by tensoring the given finite
(resp. finite flat) morphism A −→ B with A∧m over A and is therefore also finite
(resp. finite flat). Thus we are reduced to proving that B∧mB −→ B∧n is finite
(resp. finite flat). Let n1, . . . , nr be all the prime ideals of B that pull back to m,
so in particular r :=

√
mB = n1 ∩ . . . ∩ nr. Since A −→ B is finite, the ni are

maximal ideals. We claim that the natural maps B∧mB −→ B∧ni together induce
an isomorphism

B∧mB = B∧n1 × . . .×B∧nr . (1.27)

Indeed, as a special case of [Bou72, III §2.13 Proposition 1.7], we see that the natural
maps B∧r −→ B∧ni together yield an isomorphism B∧r = B∧n1 × . . . × B∧nr Since
moreover mB and r =

√
mB define the same topology on B, our claim follows. Now,

because n appears among the ni, we see from (1.27) that the map B∧mB −→ B∧n can
be realised as a projection onto a factor in a product, hence is finite flat. (Indeed,
for any ring product R = R1 × R2, the projection map R −→ R1 is finite because
it is surjective and it is flat because it can be identified with the localisation map
R −→ R[(1, 0)−1].)

Corollary 1.68. Let R be an affinoid algebra and Tn −→ R a finite injective
morphism (thus necessarily dimTn = dimR), let m be a maximal ideal in Tn and n
a maximal ideal in R that pulls back to m. Then

Tn
∧m −→ R∧n

is a finite morphism between Noetherian local rings of the same dimension (so by
Lemma 1.66 it sends any system of parameters to a system of parameters).

Proof. Since Tn −→ R is finite, Tn
∧m −→ R∧n is finite by Proposition 1.67. More-

over, Tn
∧m and R∧n indeed have the same Krull dimension, since

dimTn
∧m = dim (̂Tn)m = dim (Tn)m = dimTn = dimR = dimRn = dim R̂n = dimR∧n

where the first and seventh equalities hold since “completion with respect to a
maximal ideal commutes with localisation”5, the second and sixth equalities hold
since the dimension of a Noetherian local ring is invariant under completion [Stacks,
Tag 07NV], the third resp. fifth equality holds since all maximal ideals in Tn resp.
in R have the same height by [Con99, Lemma 2.5], and the fourth equality holds
since there exists a finite injective ring morphism Tn −→ R.

5Meaning that, if A is a ring and m a maximal ideal in A, then the natural map A∧m ∼−−→ Âm

is an isomorphism. Indeed, since m is maximal, A/mi is equal to its localisation (A/mi)m, which
in turn is equal to Am/m

i
m since localisation is exact. The claim now follows from the fact that

A∧m resp. Âm is the projective limit of the A/mi resp. Am/m
i
m.
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Chapter 2

A generalisation of Bosch’s
theorem on the connectedness of
formal fibers

The following result will play an important role in the proof of Theorem 2.4 below.

Proposition 2.1. Let R be an K-affinoid algebra and K ′/K a finite Galois exten-
sion. Consider

S := R⊗K K ′.

Let ι : R −→ S be the canonical inclusion and

ϕ : Z ′ = Sp(S) −→ Z = Sp(R)

the associated morphism of rigid spaces over K, which fits into the commutative
diagram

Z ′ Z̃ ′

Z Z̃.

ϕ ϕ̃

Then the reduction map Z ′ −→ Z̃ ′ is fiberwise surjective in the sense that for every
z ∈ Z, the induced map

ϕ−1(z) −→ ϕ̃−1(z̃)

is surjective.

Proof. The morphism ϕ is finite, so ϕ−1(z) is a finite set, say

ϕ−1(z) = {z′1, . . . , z′n}.

Then ϕ̃ is also finite by Theorem 1.10, so the complement ϕ̃−1(z̃) \ {z̃′, . . . , z̃′n} is a
finite set and we have to show that it is in fact empty. Suppose that it is non-empty,
say

ϕ̃−1(z̃) \ {z̃′, . . . , z̃′n} = {z̃′n+1, . . . , z̃
′
s}
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2. A generalisation of Bosch’s theorem on the connectedness of formal fibers

for some elements z̃′n+1, . . . , z̃
′
s ∈ Z̃ ′ with lifts z′n+1, . . . , z

′
s ∈ Z ′. Based upon this

assumption, we will construct an f ∈ R̊ such that

|f(z)| = 1 and |f(ϕ(z′n+1))| < 1.

But then, by Proposition 1.5, |f(z)| = 1 means that f̃(z̃) ̸= 0 and |f(ϕ(z′n+1))| < 1

means that f̃(z̃) = 0 since ϕ(z′n+1) also reduces to z̃. Thus we arrive at a contradic-

tion and the assertion is proved. It remains to construct such an f ∈ R̊. For this,
we first choose a g̃ ∈ S̃ such that

g̃(z̃′j) = 1 for j = 1, . . . n and g̃(z̃′n+1) = 0. (2.1)

This is possible since

S̃ −→
n+1∏
j=1

S̃/mz̃′j

is surjective by the Chinese Remainder Theorem. Then we choose a lift g ∈ S̊ of g̃.
Note that (2.1) then yields

|g(z′j)| = 1 for j = 1, . . . n and |g(z′n+1)| < 1 (2.2)

by Proposition 1.5. Next, the Galois group G = Gal(K ′/K) acts in an obvious way
on R⊗K K

′ = S by R-algebra homomorphisms, and it is easy to prove that for the
fixed elements we have

SG = R.

Therefore,

f :=
∏
σ∈G

σ(g) ∈ R.

Moreover, any morphism S −→ S is contractive with respect to | · |sup by [Bos14,
3.1/Proposition 7], so in particular we have |σ(g)|sup ≤ |g|sup ≤ 1 for all σ ∈ G.
Hence

|f |sup ≤
∏
σ∈G

|σ(g)|sup ≤ 1. (2.3)

Due to Remark 1.9, the |·|sup of S restricts to the |·|sup of R. Thus the inequality
(2.3) shows that in fact

f ∈ R̊.

Next we claim that
|σ(g)(z′1)| = 1 for all σ ∈ G. (2.4)

To see this, note that each σ ∈ G permutes {mz′1
, . . . ,mz′n} so we have σ−1(mz′1

) =
mz′j

for some j ∈ {1, . . . n} and thus σ induces an isomorphism

σ : S/mz′j
∼−−→ S/mz′1
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mapping g mod mz′j
to σ(g) mod mz′1

, which means that |g(z′j)| = |σ(g)(z′1)|. Since
|g(z′j)| = 1 by (2.2), this proves (2.4). Finally, we compute

|f(z)| = |f(ϕ(z′1))|
= |ι(f)(z′1)|

= |
∏
σ

σ(g)(z′1)|

=
∏
σ

|σ(g)(z′1)|

=
∏
σ

1

= 1

and similarly

|f(ϕ(z′n+1))| =
∏
σ

|σ(g)(z′n+1)|

= |g(z′n+1)| ·
∏
σ ̸=id

|σ(g)(z′n+1)|

< 1

since |g(z′n+1)| < 1 and moreover |σ(g)(z′n+1)| ≤ 1 because |σ(g)|sup ≤ 1.

Corollary 2.2. Let Z be an K-affinoid space and K ′/K a finite Galois extension.
Consider the base change

Z ′ := Z ⊗K K ′

of Z to K ′ and the associated morphism ϕ : Z ′ −→ Z of rigid spaces. Then we have
the following relation between formal fibers

Z+(z) =
n⋃

i=1

ϕ(Z ′+(z
′
i)), (2.5)

where {z′1, . . . , z′n} = ϕ−1(z).

Proof. The inclusion “⊇” in (2.5) is clear due to the commutativity of the diagram

Z ′ Z̃ ′

Z Z̃.

ϕ ϕ̃ (2.6)

To show the reverse inclusion, let y ∈ Z+(z) and take a preimage y′ ∈ Z ′ under ϕ.
We will show that y′ ∈ Z ′+(z′i) for some i. By the commutativity of (2.6) and since

y ∈ Z+(z), we have ϕ̃(ỹ′) = ỹ = z̃, so ỹ′ ∈ ϕ̃−1(z̃). Now ϕ̃−1(z̃) = {z̃′1, . . . , z̃′n} by
Proposition 2.1, whence ỹ′ = z̃′i for some i, i.e. y′ ∈ Z ′+(z′i).
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2. A generalisation of Bosch’s theorem on the connectedness of formal fibers

The following Theorem 2.3, which is due to Bosch, is an important technical
result concerning the connectedness of formal fibers:

Theorem 2.3 ([Bos77, Satz 6.1]). Let R be a distinguished K-affinoid algebra which
has pure dimension and let Z = Sp(R). Then, for every z ∈ Z, the formal fiber

Z+(z) = p−1(p(z)) of the reduction map p : Z −→ Z̃ is connected.

We generalise Bosch’s theorem to the case of a not necessarily distinguished
affinoid algebra:

Theorem 2.4. Let R be an K-affinoid algebra which has pure dimension and
let Z = Sp(R). Suppose that there exists a finite Galois extension K ′/K such
that S := R ⊗K K ′ is distinguished. Then, for every z ∈ Z, the formal fiber
Z+(z) = p−1(p(z)) of the reduction map p : Z −→ Z̃ is connected.

We postpone the proof for a moment to record the following corollary:

Corollary 2.5. Let R be an K-affinoid algebra such that Z = Sp(R) is smooth
and connected. Then, for every z ∈ Z, the formal fiber Z+(z) = p−1(p(z)) of the

reduction map p : Z −→ Z̃ is connected.

Proof of Corollary 2.5. Since Z = Sp(R) is smooth and connected, R is an integral
domain and hence has pure dimension. Remark 1.19 and Proposition 1.20 show
that the other condition of Theorem 2.4 is satisfied as well.

Proof of Theorem 2.4. Let ι : R −→ S be the canonical inclusion and
ϕ : Z ′ = Sp(S) −→ Z = Sp(R) the associated morphism of rigid spaces, which
fits into the commutative diagram

Z ′ Z̃ ′

Z Z̃.

ϕ ϕ̃ (2.7)

The morphism ι : R −→ S is finite flat and injective, so ϕ is finite flat and surjective.
Since the morphism ϕ is finite, ϕ−1(z) is a finite set, say

ϕ−1(z) = {z′1, . . . , z′n}.

Since R has pure dimension, the base change S = R⊗KK
′ also has pure dimension

by [Bos70, Lemma 2.5]. Because S is moreover distinguished, the formal fibers
Z ′+(z

′
i), i = 1, . . . , n are connected by Theorem 2.3. Being a flat map between quasi-

compact rigid F -spaces, ϕ is open by [BL93, Corollary 5.11], so ϕ(Z ′+(z
′
i)) is open in

Z and hence a rigid (sub)space. In particular, the restriction Z ′+(z
′
i) −→−→ ϕ(Z ′+(z

′
i))

is a surjective map of rigid spaces whose domain is connected, whence the codomain
ϕ(Z ′+(z

′
i) is also connected. On the other hand, ϕ is finite and hence proper, so ϕ

maps closed analytic subsets to closed analytic subsets by [Kie67a, Satz 4.1 and
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its proof], which is why ϕ(Z ′+(z
′
i)) is clopen in Z. Due to the commutativity of

the diagram (2.7) above, ϕ(Z ′+(z
′
i)) is contained in Z+(z), i.e. we can regard it as a

(clopen) subset of Z+(z). Therefore, being clopen and connected, each ϕ(Z ′+(z
′
i)) is

a connected component of Z+(z) by Remark 1.14. On the other hand, we have

Z+(z) =
n⋃

i=1

ϕ(Z ′+(z
′
i)) (2.8)

by Corollary 2.2. Next we will show that ϕ(Z ′+(z
′
i)) = ϕ(Z ′+(z

′
1)) for all i = 1, . . . , n,

which then implies that Z+(z) = ϕ(Z ′+(z
′
1)) due to (2.8) and thus completes the

proof of the theorem. Since ϕ(z′i) = z = ϕ(z′1), we have z ∈ ϕ(Z ′+(z′1)) ∩ ϕ(Z ′+(z′i)),
so ϕ(Z ′+(z

′
1))∩ϕ(Z ′+(z′i)) ̸= ∅ for all i which means that the connected components

ϕ(Z ′+(z
′
1)) and ϕ(Z

′
+(z

′
i)) must coincide.
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Chapter 3

Special affinoid wide-open spaces
and a gap in Beyer’s article

3.1 Remedying a gap regarding “Special affinoid

wide-open spaces”

Definition 3.1 ([Bey97a, Definition 4.2.1]). Let Z be an affinoid space. A subset
W̊ ⊆ Z is called a special affinoid wide-open space if W̊ is the preimage of a finite
set of points of the reduction Z̃ under the reduction map p : Z −→ Z̃

There is a gap in the proof of the crucial result [Bey97a, Lemma 4.2.2] on
equivalent characterisations of special affinoid wide-opens: Bosch’s Theorem on the
connectedness of formal fibers of distinguished affinoid algebras (Theorem 2.3 above)
is applied to a not necessarily distinguished affinoid algebra. Our generalisation of
Bosch’s Theorem (Corollary 2.5) can be used to remedy this gap.

Lemma 3.2. Let Z = Sp(R) be a smooth and connected affinoid space, p : Z −→ Z̃
the reduction map and let W̊ ⊆ Z be a special affinoid wide-open space. Then
there exists a finite surjective morphism π : Z −→ Dm such that W̊ is a union of
connected components of π−1(D̊m). For any such morphism π, π−1(D̊m) consisty of
only finitely many connected components.
More precisely: For W̊ = p−1({z̃1, . . . , z̃r}), there exists a finite surjective morphism

π̃ : Z̃ −→ Am
k that maps all the z̃i to 0, and any lift π of any such π̃ satisfies the

desired properties above. In this setting, if π̃−1(0) = {z̃1, . . . , z̃r, z̃r+1, . . . , z̃s} is the
full fiber over zero, then the connected components of π−1(D̊m) are precisely the
p−1(z̃1), . . . , p

−1(z̃s) and W̊ is the union of the components p−1(z̃1), . . . , p
−1(z̃r).

Proof. Choosing a π as in Lemma 1.21 and taking its reduction, we obtain a π̃ as
in the assertion. On the other hand, given any π̃ as in the assertion, then any lift
π of π̃ is finite surjective by Corollary 1.11 and, as we will now prove, satisfies the
fact that W̊ is a finite union of connected components of π−1(D̊m).
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Indeed, we have

W̊ ⊆ p−1(π̃−1(0)) = π−1(Dm
+ (0)) = π−1(D̊m)

where the first equality holds by the commutativity of

Z Dm

Z̃ Am
k

p

π

π̃

(3.1)

and the second equality holds because Dm
+ (0) = D̊m. Let z̃r+1, . . . , z̃s ∈ Z̃ be such

that π̃−1(0) = {z̃1, . . . , z̃r, z̃r+1, . . . , z̃s}. Then Z+ := π−1(D̊m) as an analytic space is
the disjoint union of the p−1(z̃i). Finally, each p

−1(z̃i) is connected by Corollary 2.5.
Thus the connected components of π−1(D̊m) are precisely the p−1(z̃1), . . . , p

−1(z̃s).
Since moreover W̊ = p−1({z̃1, . . . , z̃r}) by assumption, it follows that W̊ is the union
of the components p−1(z̃1), . . . , p

−1(z̃r).

A very important technical result is the fact that the morphism π in Lemma 3.2
can be chosen to be separable (see Definition 1.22):

Remark 3.3. Let Z = Sp(R) be a smooth and connected affinoid space, p : Z −→ Z̃
the reduction map and let W̊ ⊆ Z be a special affinoid wide-open space. Then there
exists a finite surjective separable morphism π : Z −→ Dm such that W̊ is a union
of connected components of π−1(D̊m).
More precisely: For W̊ = p−1({z̃1, . . . , z̃r}), there exists a finite surjective morphism

π̃ : Z̃ −→ Am
k that maps all the z̃i to 0, and that admits a separable lift π.

Proof. Choose a finite surjective separable π as in Lemma 1.25 and note that the
property |π(zi)| < 1 means that π̃(z̃i) = 0 (due to Proposition 1.5).

Now we show that the converse to Lemma 3.2 holds as well:

Lemma 3.4. Let Z be a smooth connected affinoid space and let W̊ ⊆ Z be a subset.
Suppose that there exists a finite surjective morphism π : Z −→ Dm such that W̊
is a union of connected components1 of π−1(D̊m). Then W̊ ⊆ Z is special affinoid
wide-open.

Proof. Applying the reduction functor, we obtain a commutative diagram

Z Dm

Z̃ Am
k .

p

π

π̃

1The rigid space π−1(D̊m) has only finitely many connected components, as we will see in the
proof.
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Knowing that π and hence π̃ is finite and surjective by Corollary 1.11, we have that
π̃−1(0) is finite and non-empty, say π̃−1(0) = {z̃1, . . . , z̃s} for suitable points z̃i ∈ Z̃.
Since π(W̊ ) ⊆ D̊m and D̊m reduces to {0} ⊆ Am

k , we have p(W̊ ) ⊆ π̃−1(0), say

p(W̊ ) = {z̃1, . . . , z̃r}. Then Z+ := π−1(D̊m) as an analytic space is the disjoint union
of the p−1(z̃i), i = 1, . . . , s, and each p−1(z̃i) is connected by Corollary 2.5, so the
connected components of π−1(D̊m) are precisely the p−1(z̃1), . . . , p

−1(z̃s). Thus W̊ ,
being the union of some connected components, must satisfy W̊ = p−1({z̃1, . . . , z̃r}).

Lemma 3.2, Remark 3.3 and Lemma 3.4 together yield:

Proposition 3.5 (Equivalent characterisation of special affinoid wide-opens). Let Z
be a smooth connected affinoid space. For a subset W̊ ⊆ Z, the following conditions
are equivalent:

(i) W̊ ⊆ Z is special affinoid wide-open.

(ii) There exists a finite surjective morphism π : Z −→ Dn such that W̊ is a union
of connected components of π−1(D̊n).

(iii) There exists a finite surjective separable morphism π : Z −→ Dn such that W̊
is a union of connected components of π−1(D̊n).

Recall that in the setting of Proposition 3.5 (ii) and (iii) above, π−1(D̊n) consists
of finitely many connected components.
We note that a special affinoid wide-open space need not be affinoid. For example,
D̊n with n > 0 is a special affinoid wide-open space that isn’t affinoid. In fact, one
can show that an affinoid space which is special affinoid wide-open is necessarily
zero-dimensional.

3.2 “Special affinoid wide-open spaces” are “affi-

noid wide-open”

We digress to provide a proof for an important claim made implicitly and without
proof in [Bey97a], namely that special affinoid wide-open spaces are “affinoid wide-
open spaces” in the following sense ([Bey97a, Definition 4.1.1 and Remark 4.1.2]):

Definition 3.6. Let Z = Sp(R) be an affinoid space. A subset W̊ ⊆ Z is called an
affinoid wide-open space if there exists a closed immersion i : Z ↪−→ Dm such that
W̊ lands in D̊m via i and the diagram

W̊ D̊m

Z Dm

i

⊆ ⊆

i

(3.2)

is cartesian.
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Remark 3.7. Let Z be an affinoid space. For a subset W̊ ⊆ Z, the following
conditions are equivalent:

(i) W̊ ⊆ Z is affinoid wide-open.

(ii) There exists an affinoid generating system f1, . . . , fm of R over K with

W̊ = {z ∈ Z : |fi(z)| < 1 for all i = 1, . . . ,m}.

Proof. To give a closed immersion i : Z ↪−→ Dm is the same as to give an epimor-
phism φ : K⟨ξ1, . . . ξm⟩ −→−→ R. Then the fj := φ(ξj) are an affinoid generating
system of R over K (by definition), and we have |ξj(i(z))| = |fj(z)| for all z ∈ Z
and j = 1, . . . ,m by Remark 1.1. Thus we have

|i(z)| < 1 ⇐⇒ |ξj(i(z))| < 1 for all j ⇐⇒ |fj(z)| < 1 for all j

from which it follows that W̊ := {z ∈ Z : |fj(z)| < 1 for all j = 1, . . . ,m} is
precisely the subspace of Z that makes the diagram (3.2) cartesian.

Lemma 3.8. Let R be an affinoid algebra. Given finitely many points z1, . . . , zr
in Sp(R), there exists an affinoid generating system g1, . . . , gn of R that satisfies
|gi(zj)| < 1 for all i and j.

We postpone the proof for a moment to discuss the following:

Remark 3.9. A naive idea for the proof of Lemma 3.8 would be to take an ar-
bitrary affinoid generating system and rescale it. This doesn’t work, because the
rescaled system needn’t be an affinoid generating system of R anymore. For in-
stance, the variable ξ is an affinoid generating system of Qp⟨ξ⟩ but pξ isn’t, for the
map Qp⟨ξ⟩ −→ Qp⟨ξ⟩, ξ 7−→ pξ isn’t surjective (it merely has dense image). Indeed,
the image is the subalgebra Qp⟨pξ⟩ = {

∑∞
i=0 biξ

i ∈ QpJξK : limi→∞ bip
−i = 0} and

Qp⟨pξ⟩ ⫋ Qp⟨ξ⟩ since
∑∞

i=0 p
iξi ∈ Qp⟨ξ⟩ \Qp⟨pξ⟩.

Proof of Lemma 3.8. Lemma 1.21 guarantees the existence of a finite injective mor-
phism φ : K⟨ξ1, . . . , ξd⟩ ↪−→ R such that the φ(ξi) =: gi satisfy gi(zj) = 0 for all i, j.
Now let f1, . . . , fs ∈ R generate R as a module over imφ. Choose an a ∈ F with
|a| ≪ 1 such that

gm+i := a · fi ∈ R̊, i = 1, . . . , s

and also |gm+i(zj)| < 1 for all j = 1, . . . , r. The elements gm+1, . . . , gm+s also
generate R as a module over imφ. Consequently, the morphism

φ′ : K⟨ξ1, . . . ξm, ξm+1, . . . , ξm+s⟩ −→ R, ξi 7−→ gi

is surjective, because its image contains both imφ and gm+1, . . . , gm+s, so it contains∑s
i=1 imφ · gm+i = R.
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Proposition 3.10 (Special affinoid wide-open spaces are “affinoid wide-open spaces”).
Let W̊ ⊆ Z = Sp(R) be a special affinoid wide-open space. Then W̊ ⊆ Z is “affinoid
wide-open” in the sense of Definition 3.6.

Proof. Let

W̊ =
n⋃

j=1

Z+(zi).

Choose an affinoid generating system g1, . . . , gs of R, so necessarily gi ∈ R̊ for all i.
By Lemma 3.8, we may assume |gi(zj)| < 1 for all i = 1, . . . , s and all j = 1, . . . , n.

By Proposition 1.5, this means that g̃1, . . . , g̃s ∈ mp(zj) for all j = 1, . . . , n. Since R̃

is Noetherian, we can choose g̃s+1, . . . , g̃r ∈ R̃ such that

(g̃1, . . . , g̃s, g̃s+1, . . . , g̃r) =
n⋂

j=1

mp(zj).

Since g̃s+1, . . . , g̃r ∈ mp(zj), any system of lifts gs+1, . . . , gr ∈ R̊ satisfies |gi(zj)| < 1
for all i = s + 1, . . . , r, again by Proposition 1.5. Moreover, g1, . . . , gs, gs+1, . . . , gr
is an affinoid generating system of R, since this is already true for g1, . . . , gs. We
claim that

W̊ = {w ∈ Z : |gi(w)| < 1 for all i = 1, . . . , r}.

Indeed, let z′ ∈ Z+(zj) for some j. Then we have p(z′) = p(zj) and hence g̃i(p(z
′)) =

g̃i(p(zj)) = 0, so |gi(z′)| < 1 for all i = 1, . . . , r. Conversely, if |gi(w)| < 1 for all
i = 1, . . . , r, then g̃i(p(w)) = 0. In particular,

⋂n
j=1 mp(zj) = (g̃1, . . . , g̃r) ⊆ mp(w). In

general, if an intersection of finitely many ideals is contained in a prime ideal, then
one of the ideals is already contained in that prime ideal, hence mp(zj) ⊆ mp(w) for
some j. But then mp(zj) = mp(w) i.e. p(w) = p(zj).

Remark 3.11. Let Z be a connected smooth affinoid space. Let W̊ ⊆ Z be a special
affinoid wide-open space with associated finite surjective morphism

π : Z = SpR −→ Dn = SpK⟨ξ1, . . . , ξn⟩.

Let Z̊ := π−1(D̊n). Then the natural map

Hj
c (D̊n, π∗ωZ)

∼−−→ Hj
c (Z̊, ωZ)

is an isomorphism for all j ≥ 0.

Proof. Since π : Z̊ = π−1(D̊n) −→ D̊n is a finite morphism between quasi-Stein
spaces, the assertion follows from Proposition 1.51.
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For a disjoint union X = X1 ⨿X2 of rigid spaces and any coherent sheaf F on
X, we have a canonical isomorphism

F ∼−−→ j1∗j1
∗F ⊕ j2∗j2∗F

where ji : Xi −→ X is the inclusion. In particular, we have

Hp
c (X,F) = Hp

c (X, j1∗j1
∗F)⊕Hp

c (X, j2∗j2
∗F) (3.3)

for all p ≥ 0.

Remark 3.12. In the setting of Remark 3.11, we have a natural embedding

Hn
c (W̊ , ωZ) ↪−→ Hn

c (Z̊, ωZ), (3.4)

whose construction we wish to explain precisely. First of all, we explain the abuse
of notation in (3.4): Let ι denote the clopen immersion W̊ −→ Z (see Remark 1.14
(iii)) and F denote the restriction of ωZ to Z̊. Then the pullback ι∗F is the restric-
tion of ωZ to W̊ and the left-hand side of (3.4) is just notation for Hn

c (W̊ , ι∗F).
Then (3.4) is defined as the composite

Hn
c (W̊ , ι∗F) ∼−−→ Hn

c (Z̊, ι∗ι
∗F) ↪−→ Hn

c (Z̊,F),

where the first map is the inverse of Hn
c (Z̊, ι∗ι

∗F) −→ Hn
c (W̊ , ι∗F) (which is an

isomorphism by Proposition 1.51, since W̊ −→ Z̊ is a closed immersion and thus a
finite map) and the second map is the inclusion of a direct summand as in (3.3).

The natural map Hn
c (D̊n, π∗ωZ) −→ Hn

c (Z̊, ωZ) being an isomorphism, we can
consider its inverse and the composite.

Hn
c (W̊ , ωZ) ↪−→ Hn

c (Z̊, ωZ)
∼−−→ Hn

c (D̊n, π∗ωZ) (3.5)

which later plays a role in the definition of the trace map for a special affinoid wide
open space (cf. Definition 4.10).

We finish this section by proving that the converse to Proposition 3.10 is in fact
also true, so that the notions of “special affinoid wide open spaces” and “affinoid
wide open spaces” are equivalent:

Proposition 3.13 (All affinoid wide-open spaces are “special”). Let Z = Sp(R)
be an affinoid space and W̊ ⊆ Z be an affinoid wide-open space. Then W̊ ⊆ Z is
“special affinoid wide-open” in the sense of Definition 3.1.

Proof. Suppose that W̊ is affinoid wide open in Z, i.e. there exists an affinoid
generating system f1, . . . , fm of R over K with

W̊ = {z ∈ Z : |fi(z)| < 1 for all i = 1, . . . ,m}.
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Then

W̊ = p−1({y ∈ Z̃ : f̃i(y) = 0 for all i = 1, . . . ,m})

by Proposition 1.5. Thus it remains to show that the set {y ∈ Z̃ : f̃i(y) = 0 for all i}
is finite. The morphism φ : K⟨ξ1, . . . ξm⟩ −→ R mapping ξi to fi is surjective

and hence finite, so φ̃ : k[ξ1, . . . ξm] −→ R̃ is finite by Theorem 1.10. Setting
π̃ := Sp(φ̃), we have that π̃−1(0) is finite, so in particular there exist only finitely

many maximal ideals m in R̃ such that φ̃−1(m) = (ξ1, . . . , ξm). In other words,

there exist only finitely many maximal ideals m in R̃ such that f̃i ∈ m, i.e. the set
{y ∈ Z̃ : f̃i(y) = 0 for all i = 1, . . . ,m} is finite.

53



3. Special affinoid wide-open spaces and a gap in Beyer’s article

54



Chapter 4

Review of residue maps and trace
maps

4.1 The residue map on local cohomology

Let Z = Sp(R) be a connected smooth affinoid space of dimension n and z ∈ Z a
point with corresponding maximal ideal mz ⊆ R. Following Beyer, we often shorten
the notation as follows: Given a coherent sheaf F on Z, we set M = Γ(Z,F) and

Hj
z (F) := Hj

mz
(M) = Hj

m̂z
(M̂).

The latter identification (due to Proposition 1.59) enables use of Lemma 1.57 in a
relative situation (where a system of parameters is mapped to a system of param-
eters) -- which yields the isomorphisms (4.4) and (4.5) in Lemma 4.5 (ii) below.
In [Bey97a, Definition 4.2.7], Beyer defines a canonical residue map

resz : H
n
z (ωZ) = Hn

mz
(Ωn

R/K) −→ K. (4.1)

on the local cohomology group Hn
z (ωZ). This is not to be confused with the residue

map (4.8) on the compactly supported rigid cohomology group Hn
c (D̊n, ωD̊n), al-

though there is a relationship between these two that is encoded in Proposition 4.5
below.
In Definition 4.2 below, we recall the construction of the local residue map (4.1), but
first we need to make some preparations. We recall that a local ring (A,m) is said
to be equicharacteristic if charA = charA/m. We mention that this is equivalent
to saying that A contains a field.

Theorem 4.1 (Structure of complete local rings). Let (A,m) be an equicharacter-
istic local ring.

(i) If A is complete, then A has a “coefficient field” (i.e. a subfield K ′ ⊆ A that
maps isomorphically to A/m under the natural map A −→ A/m).

(ii) If A is complete and A/m is separable over a subfield k ⊆ A, then A has a
coefficient field containing k.
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(iii) Suppose that A is Noetherian, complete and regular. Then A has a coefficient
field K ′ and choosing any regular system of parameters x1, . . . , xd of A yields
an isomorphism

K ′JX1, . . . , XdK ∼−−→ A, Xi 7−→ xi. (4.2)

If we moreover assume that A/m is separable over a subfield k ⊆ A, then K ′

can be chosen to contain k by (ii), so in particular (4.2) is an isomorphism of
k-algebras.

Proof. Assertion (i) is [Mat87, Theorem 28.3 (ii)] and Assertion (ii) follows from
[Mat87, Theorem 28.3 (iii) and (iv)]. For an argument that (4.2) is an isomorphism,
see [Mat87, Proof of the converse statement in Lemma 1 subsequent to Theorem
28.3].

Definition 4.2 ([Bey97a, Definition 4.2.7]). Let Z = Sp(R) be a connected smooth
affinoid space of dimension n and z ∈ Z a point with corresponding maximal ideal
mz ⊆ R. Let K ′ = R/mz and let R̂ be the mz-adic completion of R. Then K ′

is also the residue field of R̂. Suppose that K ′ is separable over K, so in particu-
lar Theorem 4.1 (iii) yields an isomorphism K ′JX1, . . . , XdK ∼−−→ R̂ of K-algebras

(depending on a choice of a regular system of parameters t1, . . . , td of R̂). Let m
be the maximal ideal in K ′JX1, . . . , XdK. To shorten the notation, we write K ′JXK
for K ′JX1, . . . , XdK. The universal finite differential module Ω1

K′JXK/K is free over

K ′JXK, with basis dX1, . . . , dXd, hence Ωd
K′JXK/K =

∧d Ω1
K′JXK/K is free of rank one,

with basis dX = dX1 ∧ . . . ∧ dXd. Setting Xν = Xν1
1 · · ·Xνn

n for ν ∈ Nn
0 , the local

residue map

resz : H
n
z (ωZ) = Hn

mz
(Ωn

R/K) −→ K

is then defined as the composite

Hn
mz
(Ωn

R/K)
∼−→ Hn

m̂z
(Ω̂n

R/K)
∼−→ Hn

m̂z
(Ωn

R̂/K
)
∼−→ Hn

m(Ω
n
K′JXK/K)→ K (4.3)[∑

ν aνX
ν · dX

Xρ

]
7→ TrK′/K(aρ−1,...,ρ−1)

which is in fact independent of the choice of t1, . . . , td by [Bey97a, Proposition 3.2.1].
We note that the second isomorphism in (4.3) is due to Remark 4.4 below. Moreover,
we have used the notation of Lemma 1.57 in the last map in (4.3).

Convention 4.3. To be able to define resz, we need the residue field of z to be
separable overK, which is why we henceforth tacitly assume thatK is a perfect field
in every result where resz is mentioned for arbitrary points z ∈ Z. This convention
stands throughout, unless otherwise stated.

Remark 4.4. In the setting of Definition 4.2 above, we have Ω̂n
R/K
∼= Ωn

R̂/K
.
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Proof. We have R̂ = R̂mz since “completion with respect to a maximal ideal com-
mutes with localisation” (see the footnote in the proof of Corollary 1.68). Moreover,

we claim that we have Rmz ⊗R Ωn
R/K
∼= Ωn

Rmz/K
and R̂mz ⊗Rmz

Ωn
Rmz/K

∼= Ωn
R̂mz/K

.

Indeed, this is true for n = 1 by [Ber+67, page 56] resp. by [Ber+67, Satz 2.4.2]
and therefore also for higher n, since the tensor product commutes with exterior
powers. Thus

Ω̂n
R/K
∼= R̂⊗R Ωn

R/K
∼= Rmz ⊗Rmz

R̂⊗R Ωn
R/K
∼= R̂⊗Rmz

Rmz ⊗R Ωn
R/K

∼= R̂mz ⊗Rmz
Ωn

Rmz/K
∼= Ωn

R̂mz/K
∼= Ωn

R̂/K
.

Lemma 4.5. Let Z = Sp(R) be a connected smooth affinoid space of dimension n.
Write Tn = K⟨ξ1, . . . , ξn⟩. Let W̊ ⊆ Z be a special affinoid wide-open space with
associated finite surjective morphism

π : Z = SpR −→ Dn = SpTn.

with corresponding finite injective ring morphism

φ : Tn −→ R.

Let {z1, . . . , zr} = π−1(0) ∩ W̊ and {z1, . . . , zr, zr+1, . . . zs} = π−1(0). Denote by
m1, . . .ms ⊆ R the corresponding maximal ideals in R. Let M = Γ(Z, ωZ) and let
m denote the maximal ideal corresponding to 0 ∈ Dn. Then:

(i) For every coherent sheaf F on Z one has a canonical isomorphism

γ :
s⊕

i=1

Hn
zi
(F) ∼−−→ Hn

0 (π∗F).

We write γ = γF ,π when we want to stress the dependence on F and π.

(ii) Let X1, . . . , Xn be a system of parameters for the m-adic completion Tn
∧m.

One has canonical isomorphisms

Hn
0 (π∗ωZ) ∼= lim−→

ρ

M̂m/(X
ρ
1 , . . . , X

ρ
n) (4.4)

and

s⊕
i=1

Hn
zi
(ωZ) ∼= lim−→

ρ

s⊕
i=1

M̂mi
/(Xρ

1 , . . . , X
ρ
n), (4.5)

where we have denoted the image of Xj under each map Tn
∧m −→ R∧mi on

completions induced by φ again by Xj; these form a system of parameters in
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4. Review of residue maps and trace maps

R∧mi by the results of Subsection 1.4.1. Then the isomorphism γ−1 can be
identified with the map

γ̃−1 : lim−→
ρ

M̂m/(X
ρ
1 , . . . , X

ρ
n)

∼−−→ lim−→
ρ

s⊕
i=1

M̂mi
/(Xρ

1 , . . . , X
ρ
n)[

ω
Xρ

]
7−→

([
ω1

Xρ

]
, . . . ,

[
ωr

Xρ

])
where, as in Lemma 1.57, [ ω

Xρ ] denotes the image of ω under the canonical
map

M̂m/(X
ρ
1 , . . . , X

ρ
n) −→ lim−→

j

M̂m/(X
j
1 , . . . , X

j
n),

and ωi denotes the image of ω in M̂mi
.

(iii) The diagram

s⊕
i=1

Hn
zi
(ωZ)

γ

∼
//

∑
reszi &&

Hn
0 (π∗ωZ)

Hn
0 (σ)// Hn

0 (ωDn)

res0
yy

K

(4.6)

commutes, where σ = σπ is defined as in Definition 4.9 below.

Proof. (i) The isomorphism γ is the map from [Bey97a, Lemma 4.2.9 (a)], where
the only comment is that the assertion regarding this map is well known from
local cohomology. Therefore, we note that γ is obtained as the composite

s⊕
i=1

Hn
mi
(N) ∼−−→ Hn⋂s

i=1 mi
(N) = Hn√

φ(m)R
(N) = Hn

φ(m)R(N) = Hn
m(N)

with N := Γ(Z,F) and where the first arrow is the Mayer-Vietoris map from
Corollary 1.61, the first equality is due to

⋂s
i=1mi =

√
φ(m)R (which is true

since m1, . . . ,ms are precisely the maximal ideals containing φ(m)R and R is
a Jacobson ring), the second equality is due to Remark 1.55, and the final
equality is due to independence of base (Proposition 1.58 (ii)).

(ii) This is true by the arguments in [Bey97a, Proof of Lemma 4.2.9 (c)].

(iii) This assertion is precisely [Bey97a, Lemma 4.2.9 (c)].
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4.2 The map from local cohomology into com-

pactly supported cohomology

Let Z = Sp(R) be a connected smooth affinoid space of dimension d, let W̊ ⊆ Z be
a special affinoid wide-open space. In [Bey97a, Lemma 4.2.6], a canonical injection

Hd
z (ωZ) −→ Hd

c (W̊ , ωZ)

is constructed for every point z ∈ W̊ :

Lemma 4.6 ([Bey97a, Lemma 4.2.6]). Let Z = Sp(R) be a connected smooth
affinoid space of dimension d and W̊ ⊆ Z a special affinoid wide-open space. Let
z ∈ W̊ be a point and F a coherent sheaf on Z. Then there exists a canonical map

Hd
z (F) −→ Hd

c (W̊ ,F) (4.7)

that is functorial in F .

Proof. For our purposes, we needn’t know the explicit construction of (4.7). But
for the sake of completeness we still give an outline of the construction carried out
by Beyer in the proof of [Bey97b, Lemma 5.20], for Z = Dd, W̊ = D̊d and z = 0.
First note that there is a canonical map Hd

{0}(D̊d,F) −→ Hd
c (D̊d,F). Indeed,

D̊d \ {0} is admissible open in D̊d (because it is even Zariski open), so one can
define Γ{0}(D̊d,F) analogously to (1.4) in Definition 1.29. Then, taking any open

affinoid X ⊆ D̊d which contains 0, the inclusion Γ{0}(D̊d,F) ⊆ ΓX(D̊d,F) induces
the desired map. We will construct a map

Hd
0 (F) −→ Hd

{0}D̊d,F),

from which (4.7) is obtained by composing with the canonical map
Hd
{0}(D̊d,F) −→ Hd

c (D̊d,F). First shorten the notation by recalling that R =

K⟨ξ1, . . . , ξd⟩ and setting M = Γ(Z,F). Then Proposition 1.65 and Remark 1.49
tell us that we need to construct a map

Hd
0 (F) = Hd−1(SpecR \ {0}, M̃) 99K Hd−1(D̊d \ {0}, M̃) = Hd

{0}(D̊d,F), d ≥ 2

resp. a map

H1
0 (F) =

H0(SpecR \ {0}, M̃)

H0(SpecR, M̃)
99K

H0(D̊1 \ {0}, M̃)

H0(D̊1, M̃)
= H1

{0}(D̊1,F).

We will do this by interpreting the sheaf cohomology groups as Čech cohomology
groups with respect to certain open coverings. Choose a zero sequence (εm)m∈N of
numbers in |K×|, εm = |cm| and let

Ui,m := {x ∈ D̊d : εm < |xi|}.
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All finite intersections of the Ui,m are quasi-Stein spaces, hence Um := (Ui,m)i is

a Leray covering of the space D̊d \ Dd(εm) = {x ∈ D̊n : εm < |xi| for some i} and
U := (Ui,m)i,m is a Leray covering of D̊d − {0}. On the other hand, the

Vi := SpecAξi

yield a covering V := (Vi)i of SpecR\{0} by affine open subschemes (hence a Leray

covering). Thus Hd−1(D̊d \ {0}, M̃) = Hd−1(U, M̃) is a subquotient of

Čd−1(U, M̃) = lim←−
m

Čd−1(Um, M̃) = lim←−
m

Γ(
d⋂

i=1

Ui,m, M̃) = lim←−
m

(R⟨cmξ−11 , . . . , cmξ
−1
d ⟩ ⊗R M)

and Hd−1(SpecR \ {z}, M̃) = Hd−1(V, M̃) is a subquotient of

Čd−1(V, M̃) = Γ(
d⋂

i=1

Vi, M̃) = R[ξ−11 , . . . , ξ−1d ]⊗R M.

Then the obvious map

R[t−11 , . . . , t−1d ]⊗R M → lim←−
m

(R⟨cmξ−11 , . . . , cmξ
−1
d ⟩ ⊗R M)

induces the desired maps.

Lemma 4.7. Let Z be a connected smooth affinoid space of dimension d. Let
W̊ ⊆ Z be a special affinoid wide-open space. Then there exist points x1, . . . , xm in
W̊ such that the image of the map

m⊕
i=1

Hd
xi
(ωZ) −→ Hd

c (W̊ , ωZ)

is dense in Hd
c (W̊ , ωZ).

More precisely: Let

π : Z = SpR −→ Dd = SpTd

be any finite surjective morphism defining W̊ . Let {z1, . . . , zr} = π−1(0) ∩ W̊ and
{z1, . . . , zr, zr+1, . . . zs} = π−1(0). Set

Z̊ = π−1(D̊d).

Then the image of the canonical map
s⊕

i=1

Hd
zi
(ωZ) −→ Hd

c (Z̊, ωZ)

is dense in Hd
c (Z̊, ωZ) and the image of the following map induced by restriction

r⊕
i=1

Hd
zi
(ωZ) −→ Hd

c (W̊ , ωZ)

is dense in Hd
c (W̊ , ωZ).

Proof. This is [Bey97a, Lemma 4.2.9 (d)].
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4.3. Beyer’s trace map

4.3 Beyer’s trace map

An immediate consequence of Lemma 4.7 is that there can exist at most one con-
tinuous map t : Hd

c (W̊ , ωZ) −→ K with the property that, for every x ∈ W̊ , the
diagram

Hd
x(ωZ) Hd

c (W̊ , ωZ)

K

resx t

commutes. In fact, there does exist such a map, namely the trace map:

Proposition 4.8 (Characterising property of the trace map for special affinoid
wide-open spaces). Let Z be a connected smooth affinoid space of dimension d and
let W̊ ⊆ Z be a special affinoid wide-open space. Then there exists a unique contin-
uous morphism t : Hd

c (W̊ , ωZ) −→ K with the property that, for every x ∈ W̊ , the
diagram

Hd
x(ωZ) Hd

c (W̊ , ωZ)

K

resx t

commutes. This map t is called the trace map. An explicit construction of t is
given below in Construction 4.10.

Proof. In [Bey97a, Proposition 4.2.10 (a)], it is proved that the trace map tπ from
Construction 4.10 below (constructed by using any choice of a finite surjective
separable morhism π : Z −→ Dd) satisfies the desired universal property.

The trace map will be constructed with help of the residue map

res : Hn
c (D̊n, ωD̊n) −→ K (4.8)

from [Bey97a, Definition 2.1.1]. By the same arguments as for Lemma 1.53, one
sees that each cohomology class in Hn

c (D̊n, ωD̊n) is represented by an n-form

f = (
∑
α<0

aαX
α) dX1 ∧ . . . ∧ dXn.

Then res acts as

res(f) = a(−1,...,−1).

By [Bey97a, Proposition 2.1.3], this definition of res is independent of the choice of
coordinates (X1, . . . , Xn) on Dn.

Another important ingredient in the construction of the trace map is the following
map from [Bey97a, page 234]:
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4. Review of residue maps and trace maps

Definition 4.9 (The map σ). Let Z be a connected smooth affinoid space of di-
mension n. Let W̊ ⊆ Z be a special affinoid wide-open space with associated finite
surjective separable morphism

π : Z = SpR −→ Dn = SpTn.

We denote the trace map of the finite field extension

E = Q(Tn) ↪−→ L = Q(R), (4.9)

by TrL/E. It induces a map on the n-forms

Ωn
L/K = Ωn

E/K ⊗E L
σ−→ Ωn

E/K

ω ⊗ b 7−→ TrL/E(b) · ω,
(4.10)

where Ωn
L/K = Ωn

E/K ⊗E L holds because L/E is separable. Moreover, we have

Ωn
L/K = Q(R)⊗R Ωn

R/K and σ(Ωn
R/K) ⊆ Ωn

Tn/K
, so σ restrics to a map

σ : Ωn
R/K −→ Ωn

Tn/K ,

which induces a map

σ : π∗ωZ −→ ωDn .

We write σ = σπ when we want to stress the dependence on π.

Now we reproduce [Bey97a, Definition 4.2.4]:

Construction 4.10 (Trace map for special affinoid wide-open spaces). Let Z be a
connected smooth affinoid space of dimension n. Let W̊ ⊆ Z be a special affinoid
wide-open space with associated finite surjective separable morphism

π : Z −→ Dn.

Let Z̊ := π−1(D̊n). The trace map

t = tπ : H
n
c (W̊ , ωZ) −→ K

is defined as the following composite map (which is in fact independent of the choice
of the finite surjective separable morphism π since it satisfies Proposition 4.8):

Hn
c (W̊ , ωZ) ↪−→ Hn

c (Z̊, ωZ)
∼−−→ Hn

c (D̊n, π∗ωZ)
Hn

c (σ)−−−−→ Hn
c (D̊n, ωD̊n)

res−−→ K

where the first two maps are as in (3.5) and the third is induced by the σ from
Definition 4.9.

The definition of the trace map can be extended to smooth Stein spaces, since
they admit admissible covers consisting of special affinoid wide-open spaces:
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4.3. Beyer’s trace map

Lemma 4.11. Let S be a connected smooth Stein space of dimension n. Then S
has a cover {W̊i}i∈N consisting of admissible open, special affinoid wide-open subsets
W̊i such that

- the ambient affinoid space Wi ⊇ W̊i in the sense of Definition 3.1 can be chosen
to be connected and contained in S,

- W̊i ⊆ W̊i+1, and

- W̊i is smooth of dimension n.

Proof. Since it is a connected Stein space, S has an admissible open cover {Wi}i∈N
by connected affinoid subsets Wi satisfying Wi ⋐ Wi+1 (see Definition 1.33 above).

We claim that the image of Wi under the reduction map pi+1 : Wi+1 −→ W̃i+1 is a

finite subset of W̃i+1. Then we can define W̊i+1 as the preimage of this finite set
under pi+1 and it is immediate that this W̊i+1 satisfies the desired conditions. To
prove the claim, choose an affinoid generating system f1, . . . , fm of O(Wi+1) over
K such that

Wi ⊆ {w ∈ Wi+1 : |fj(z)| < 1 for all j = 1, . . . ,m}.

Then

pi+1(Wi) ⊆ {y ∈ W̃i+1 : f̃j(y) = 0 for all j = 1, . . . ,m}

by Proposition 1.5. Thus it suffices to show that the set of all y ∈ W̃i+1 sat-
isfying f̃j(y) = 0 for all j = 1, . . . ,m is finite. For R := O(Wi+1), the mor-
phism φ : K⟨ξ1, . . . ξm⟩ −→ R mapping ξj to fj is surjective and hence finite, so

φ̃ : k[ξ1, . . . ξm] −→ R̃ is finite by Theorem 1.10. Setting π̃ := Sp(φ̃), we have that

π̃−1(0) is finite, so there exist only finitely many maximal ideals m in R̃ such that

φ̃−1(m) = (ξ̃1, . . . , ξ̃m). In other words, there exist only finitely many maximal ide-

als m in R̃ such that f̃j ∈ m, which means that {y ∈ W̃i+1 : f̃j(y) = 0 for all j} is
finite.

Definition 4.12 (Trace map for Stein spaces). Let S be a connected smooth Stein
space of dimension n. In the notation of Lemma 4.11, we have the trace morphisms

ti : H
n
c (W̊i, ωS) −→ K.

Since the diagrams

Hn
c (W̊i, ωS) Hn

c (W̊i+1, ωS)

K
ti

ti+1
(4.11)

63



4. Review of residue maps and trace maps

commute (by [Bey97a, Corollary 4.2.12]), the ti induce a map

t : lim−→
i

Hn
c (W̊i, ωS) = Hn

c (S, ωS) −→ K. (4.12)

Beyer shows in [Bey97b, Proof of Satz 7.1] that this t satisfies Theorem 5.3 below.
In particular, it follows by standard universal abstract nonsense (cf. [Har77, Propo-
sition III.7.2]) that, up to a unique automorphism of ωS, t is independent of the
choice of the covering {W̊i}i∈N.
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Chapter 5

The relative trace map and the
main theorem

5.1 Statement of the main theorem

Recall from [BLR95, Definition 2.1] that a morphism f : X −→ Y of rigid spaces
is called smooth of relative dimension d at a point x ∈ X if there exists an open
neighbourhood U of x and a closed immersion j : U ↪−→ Dn

Y over Y such that the
sheaf of ideals defining j(U) as a closed subvariety of Dn

Y is generated by (n − d)
sections gd+1, . . . , gn and the differentials dgd+1, . . . , dgn are linearly independent
in Ω1

Dn
Y /Y ⊗ k(x). The morphism f is called étale at x if it is smooth of relative

dimension 0. As [BLR95, Proposition 2.3] recalls, the canonical sequence of OX-
modules

0 −→ f ∗Ω1
Y/K −→ Ω1

X/K −→ Ω1
X/Y −→ 0 (5.1)

is exact and locally split if f is smooth. Moreover, [FV12, Proposition 8.1.1] and
its proof yield the following characterisation of étale morphisms between affinoid
spaces:

Proposition 5.1. For a morphism Sp(B) −→ Sp(A), the following are equivalent:

(i) f is étale.

(ii) A −→ B is flat and Ω1
B/A = 0.

(iii) There exists a presentation

B = A⟨x1, . . . , xn⟩/(g1, . . . , gn)

such that the image of det(∂gi/∂xj) is a unit in B.

To a finite étale morphism of smooth d-dimensional rigid spaces over K, we can
attach a relative trace map as follows:
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5. The relative trace map and the main theorem

Definition 5.2 (A relative trace map). Let f : X −→ Y be a finite étale mor-
phism of smooth d-dimensional rigid spaces. Since f pulls back affinoids to affinoids
(because f is finite), any coherent f∗OX-module M can naturally be viewed as a

coherent OX-module M̃ such that

f∗M̃ = M

(i.e. M̃(α−1(V )) = M(V ) for all open affinoids V ⊆ Y ) and (−)∼ is an equiv-
alence of categories (cf. [EGAI, Proposition I.9.2.5]). Since f is étale, we have
Ω1

X/Y = 0 so taking the d-th exterior power in the exact sequence (5.1) yields a
natural isomorphism

(f∗OX ⊗OY
ωY )

∼ ∼−−→ ωX , (5.2)

where ωY denotes the sheaf of holomorphic d-forms on Y . Since f is finite flat, the
natural map

HomY (f∗OX ,OY )⊗OY
ωY

∼−−→ HomY (f∗OX , ωY ) (5.3)

is an isomorphism. Finally, since f is finite flat, we have the usual trace pairing
(cf. Section 5.3)

f∗OX −→ HomY (f∗OX ,OY ). (5.4)

The relative trace map is now defined to be the composite map

f∗ωX

(5.2)∼= f∗(f∗OX ⊗OY
ωY )

∼

(5.4)−→ f∗(HomY (f∗OX ,OY )⊗OY
ωY )

∼

(5.3)∼= f∗HomY (f∗OX , ωY )
∼

= HomY (f∗OX , ωY )
g 7−→g(1)−−−−−→ ωY

and is denoted by tf .

See Section 5.3 for a more down-to-earth description of the relative trace map
in terms of affinoids.
On the other hand, the (absolute) trace map from Section 4.3 satisfies [Bey97b,
Satz 7.1]:

Theorem 5.3 (Serre duality for smooth rigid Stein spaces). Let X be a smooth
rigid K-space of dimension d and let ωX =

∧d Ω1
X/K be the sheaf of holomorphic

d-forms on X. Let H∗c (X,−) denote the cohomology with compact support. If X is
Stein, then there is a canonical trace morphism

t : Hd
c (X,ωX) −→ K
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5.1. Statement of the main theorem

which has the following property: If F is a coherent sheaf on X, then the composite
of the trace map t with the canonical pairing

Hd−i
c (X,F)× ExtiX(F , ωX) −→ Hd

c (X,ωX)

induces an isomorphism of topological K-vector spaces

Hd−i
c (X,F)∨ ∼−−→ ExtiX(F , ωX) (5.5)

for all i ≥ 0.

Here Hd−i
c (X,F)∨ denotes the space of continuous linear forms on Hd−i

c (X,F),
equipped with the strong dual topology. Moreover, ExtiX(F , ωX) is equipped with
the canonical topology for global sections of a coherent sheaf (see Definition 1.41),
as ExtiX(F , ωX) = H0(X, Ext iX(F , ωX)) due to the spectral sequence for the derived
functor of the composition being degenerate. Indeed, the spectral sequence degen-
erates since X is quasi-Stein and Ext iX(F , ωX) is a coherent OX-module for all i (cf.
[Chi90, Proposition 3.3 and also the discussion preceding Lemma 3.7]).

Remark 5.4. In the setting of Theorem 5.3, it is equivalent to assert that (5.5) is
an isomorphism for i = 0 (then it is automatically an isomorphism for all i > 0).

Proof. This assertion is a by-product of several of Beyer’s proofs on his way to the
proof of Theorem 5.3, we simply gather his arguments here. Assume (5.5) is an
isomorphism for i = 0.

In a first step, one proves the assertion for X = D̊d. One does this by considering
the contravariant δ-functors

T i := Hd−i
c (D̊d,−)∨

and
Si := ExtiD̊d(−, ωDd)

on the category of coherent ODd-modules. Since Si is a universal δ-functor and we
by assumption have an isomorphism between S0 and T 0, it suffices to show that
T i is also universal. For this, it suffices to prove that T i is coeffaceable, i.e. that
for every coherent ODd-module F and every surjection u : Or

Dd −→−→ F , we have

T i(u) = 0 for all i > 0. But T i(u) = 0 because T i(u) is a map from Hd−i
c (D̊d,F)∨

to Hd−i
c (D̊d,Or

Dd)
∨ and one can show that Hd−i

c (D̊d,Or
Dd)
∨ = 0 for i > 0. Indeed, it

suffices to show this for r = 1, where it is done by an explicit calculation of Čech
cohomology [Bey97a, Corollary 1.2.4].

In a second step, one proves the assertion for X = Z̊ an affinoid wide-open
space inside an affinoid space Z. The strategy is the same as in the first step: One
considers the contravariant δ-functors

T i := Hd−i
c (Z̊,−)∨
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5. The relative trace map and the main theorem

and

Si := Exti
Z̊
(−, ωZ)

on the category of coherent OZ-modules and shows that T i is coeffaceable. In the
same way as in the first step above, the coeffaceability of T i will follow from the fact
that Hd−i

c (Z̊,OZ)
∨ = 0 (i > 0). To prove the vanishing of Hd−i

c (Z̊,OZ)
∨, choose a

closed immersion ι : Z ↪−→ Dn as in Definition 3.6 and observe that

Hd−i
c (Z̊,OZ)

∨ = Hd−i
c (D̊n, ι∗OZ)

∨ = Ext
n−(d−i)
D̊d

(ι∗OZ , ωDd),

the first equality being due to Proposition 1.51 and the second due to the first step
above. Finally, [Bey97a, Lemma 4.1.6] proves that Ext

n−(d−i)
D̊d

(ι∗OZ , ωDd) vanishes
for i > 0 by showing the vanishing locally for each point x ∈ Dn, in the following
way: For x ∈ Dn \ ι(Z), the local Ext-groups vanish in all exponents since the
first argument is ι∗OZ,x = 0. For x ∈ ι(Z), one uses the Auslander-Buchsbaum
formula for projective dimension: setting R = ODn,x and A = ι∗OZ,x, we have a
ring epimorphism R −→−→ A. Since R is regular, the finitely generated R-module A
has finite projective dimension, which by the Auslander Buchsbaum formula [Eis13,
Theorem 19.9] then amounts to

pdR(A) = depth(mR, R)− depth(mR, A),

whence it suffices to show that depth(mR, R)−depth(mR, A) = n−d. To prove this
last equality, note that by definition we have depth(mR, R) = depth(mR) and the
latter is equal to codim(mR) since R is regular and in particular Cohen-Macaulay.
Furthermore, by definition we have codim(mR) = dimRmR

= dimR = n. Next,
note that mR maps surjectively onto mA so in particular the action of mR on A is
the same as the action of mA on A, i.e. we have depth(mR, A) = depth(mA, A) and
the latter is equal to dimA = d by the same argument as for R -- since A is regular
(due to Z being smooth at x) and hence in particular Cohen-Macaulay.

In the third and final step, one observes that we have

Hd−i
c (X,F)∨ = (lim−→

j

Hd−i
c (Ůj,F))∨ = lim←−

j

Hd−i
c (Ůj,F)∨

for any covering {Ůj}j by affinoid wide-opens (which exists by Lemma 4.11 and
Proposition 3.10), and by the second step above

lim←−
j

Hd−i
c (Ůj,F)∨ = lim←−

j

Exti
Ůj
(F , ωX) = ExtiX(F , ωX)

for all i ≥ 0.

Our ultimate goal in this chapter is to prove the following compatibility of the
relative trace map with Beyer’s absolute trace map:
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5.2. Compatible coverings by special affinoid wide-opens

Theorem 5.5. Let α : X −→ Y be a finite étale morphism of smooth connected
d-dimensional Stein spaces over K. Then the diagram

Hd
c (Y, ωY )

tY

$$
Hd

c (Y, α∗ωX)

Hd
c (Y,tα)

77

∼= ''

K.

Hd
c (X,ωX)

tX

::

commutes, where tα : α∗ωX −→ ωY is the relative trace map.

The proof of this theorem is the content of Section 5.4 below. Note that, in the
statement of Theorem 5.5, we have used that the map Hd

c (Y, α∗ωX) −→ Hd
c (X,ωX)

is an isomorphism, which is due to Proposition 1.51.

Notation 5.6. We denote the composite map

Hd
c (X,ωX)

∼−−→ Hd
c (Y, α∗ωX)

Hd
c (Y,tα)−−−−−→ Hd

c (Y, ωY )

by qα.

Thus we have to show that

Hd
c (Y, ωY )

tY

%%
K

Hd
c (X,ωX)

tX

99qα

OO

(5.6)

commutes. This notation is fixed for the remainder of Chapter 5.

5.2 Compatible coverings by special affinoid wide-

opens

We will need the following “relative version” of Lemma 4.11:

Lemma 5.7. There exist admissible covers {Ůi}i∈N of X and {V̊i}i∈N of Y by spe-
cial affinoid wide-opens as in Lemma 4.11, such that α(Ůi) ⊂ V̊i and the map
α : Ui −→ Vi on the ambient affinoid spaces is finite étale. More precisely, we have
a commutative diagram

V̊i Vi Dd

Ůi Ui

⊆ πVi

⊆

α πUi

69



5. The relative trace map and the main theorem

for each i, where Ui and Vi are connected smooth affinoids, α is finite étale, πVi
and

πUi
are finite and separable and “define” V̊i resp. Ůi (in the sense of Proposition

3.5 (iii)), and all arrows with two heads are surjective.

Proof. We obtain the existence of {V̊i}i∈N by Lemma 4.11. Moreover, we have a
connected und smooth affinoid space Vi = Sp(Ai) with V̊i ⊆ Vi ⊆ Y , such that V̊i is
the preimage of finitely many points under the reduction map pVi

, say

V̊i = p−1Vi
({ṽ1, . . . , ṽr}).

The preimage of an affinoid space under a finite morphism is again affinoid, so
U ′i := α−1(Vi) is affinoid. Moreover, the restriction α : U ′i −→ Vi is also finite étale.
Replacing U ′i with one1 of its Zariski-connected components Ui (which is an affinoid
subdomain in U ′i , say Ui = Sp(Bi)), the restriction α : Ui −→ Vi is again finite étale.
Here we use that Ui is “clopen” in U ′i (Remark 1.14 (iii)): the restriction is again
étale since it arises by composition with the open immersion Ui ↪−→ U ′i (which is
étale) and, on the other hand, it is again finite since it arises by composition with
the closed immersion Ui ↪−→ U ′i (which is finite). The restriction α : Ui −→ Vi being
finite étale, the associated ring morphism Ai −→ Bi is finite flat. We may assume
that Ui ̸= ∅. Indeed, since X ̸= ∅, we have Ui ̸= ∅ for all i≫ 0, so we may re-index
and forget the small i. Next we argue that Ai −→ Bi is injective. This is true since
any flat ring morphism R −→ S with R a domain and S ̸= 0 is necessarily injective,
and Ai is a domain since Vi is connected (see Remark 1.15). So Ai −→ Bi is an
injective integral morphism, which implies that the map Spec(Bi) −→ Spec(Ai) is
surjective. Thus

α : Ui −→ Vi

is surjective as well. Note that α being finite implies that α̃ is also finite (by Theorem
1.10) and that α being surjective implies that α̃ is also surjective (by Remark 1.4).

Since α̃ is finite, Ω := α̃−1({ṽ1, . . . , ṽr}) is a finite subset of Ũi and hence

Ůi := p−1Ui
(Ω)

is special affinoid wide-open in Ui. Then we have α(Ůi) ⊆ V̊i because pVi
◦α = α̃◦pUi

by functoriality of the reduction. In fact, we claim that we have Ůi = α−1(V̊i), so
the restriction Ůi −→ V̊i of α is again surjective. To see this, let u ∈ α−1(V̊i), which
by definition of V̊i means that

{ṽ1, . . . , ṽr} ∋ pVi
(α(u)) = α̃(pUi

(u)),

so pUi
(u) ∈ α̃−1({ṽ1, . . . , ṽr}) = Ω, i.e. u ∈ pUi

−1(Ω) = Ůi which proves our claim.
In particular it follows that {Ůi}i∈N is the preimage of the admissible open cover

1In general, an affinoid space Z has finitely many Zariski-connected components, since affinoid
algebras are Noetherian. The Zariski-connected components are affinoid subdomains of Z and de-
fine an admissible affinoid covering of Z, as is mentioned in the discussion following 5.3/Definition
9 in [Bos14].
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5.3. More on the relative trace map

{V̊i}i∈N of Y under X −→ Y , hence it is itself an admissible open cover of X. Now

take a finite surjective map π̃Vi
: Ṽi −→ Ad with π̃Vi

(ṽj) = 0 for all j = 1, . . . , r and
a separable lift πVi

: Vi −→ Dd (see Remark 3.3). Define

π̃Ui
:= π̃Vi

◦ α̃.

Then π̃Ui
(Ω) = π̃Vi

(α̃(Ω)) ⊆ π̃Vi
({ṽ1, . . . , ṽr}) = {0}. Moreover, π̃Ui

is finite sur-
jective since π̃Vi

and α̃ are both finite and surjective. Therefore, any separable lift
of π̃Ui

satisfies the conditions in the assertion, by Lemma 3.2. In particular, the
separable lift

πUi
:= πVi

◦ α
satisfies the desired conditions. Here we used that α is separable, which is true
because it is unramified at all closed points of U and hence necessarily generically
unramified (cf. the proof of Lemma 1.25).

5.3 More on the relative trace map

Consider the diagram from Lemma 5.7 for a fixed i, but omit the index i in the
notation. Thus we have that α : Ů −→ V̊ is the restriction of a surjective finite
étale morhism

α : U = Sp(B) −→ V = Sp(A).

The associated ring morphism A −→ B is, in particular, finite and flat. By Lemma
5.7 and Remark 1.7, we have the commutative diagram

V Dd associated to A K⟨ξ1, . . . , ξd⟩

U B

πV

α
πU

(5.7)

where all morphisms are finite and A and B are integral domains.
Since A is Noetherian, the finite flat ring morphism A −→ B makes B into a finitely
presented flat A-module, i.e. a finitely generated projective A-module. Hence the
natural map

can: B∗ ⊗A B
∼−−→ EndA(B)

f ⊗ b 7−→ [x 7−→ f(x) · b]

is an isomorphism, where B∗ := HomA(B,A). The trace TrB/A is now defined as
the composite

B EndA(B) B∗ ⊗A B A

TrB/A

can−1

71



5. The relative trace map and the main theorem

where the first map sends b ∈ B to the endomorphism given by multiplication by
b, and the last map is given by “evaluation”. If B is free of finite rank over A, then
TrB/A coincides with the usual trace map from linear algebra.
On the other hand, since α is finite étale, we have

Ωd
B/K
∼= Ωd

A/K ⊗A B

according to (5.2) in Definition 5.2.

Definition 5.8 (The map τ). We define a trace map τ at the level of differentials,
by putting

Ωd
B/K = Ωd

A/K ⊗A B
τ−→ Ωd

A/K

ω ⊗ b 7−→ TrB/A(b) · ω.
(5.8)

This corresponds to a map

T : α∗ωU −→ ωV .

Remark 5.9. The map T is equal to the restriction of the relative trace map tα.

Proof. The relative trace map tα restricts to tα : α∗ωU −→ ωV , where it is associated
to a homomorphism of modules Ωd

B/K −→ Ωd
A/K . To see that the homomorphism

in question coincides with the natural homomorphism τ , note that U and V being
affinoid allows us to work with modules instead of sheaves in Definition 5.2, whence
tα : α∗ωU −→ ωV is associated to the composite

Ωd
B/K B ⊗A Ωd

A/K B∗ ⊗A Ωd
A/K HomA(B,Ω

d
A/K) Ωd

A/K
∼

(5.2) (5.4)

∼
(5.3)

f 7−→f(1)

which is precisely the homomorphism τ . Here we used that (5.4) at the level of
modules is induced by the isomorphism B −→ B∗, b 7−→ TrB/A(b · (−)).

We will need the following compatibility of τ with σU := σπU
and σV := σπV

from Definition 4.9:

Lemma 5.10. The diagram

Ωd
B/K

σU //

τ

��

Ωd
K⟨ξ1,...,ξd⟩/K

Ωd
A/K

σV

99

commutes. It corresponds to the commutative diagram

πU ∗ωU = ωU
σU //

πV ∗(T)
��

ωDd

πV ∗ωV .
σV

88
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5.3. More on the relative trace map

Proof. In the following, we write Td forK⟨ξ1, . . . , ξd⟩ andQ(B)∗ = HomQ(A)(Q(B), Q(A)).
Due to the formulae (4.10) and (5.8), we see that it suffices to show that

TrQ(B)/Q(Td) = TrQ(A)/Q(Td) ◦TrB/A . (5.9)

We will show that the restriction of TrQ(B)/Q(A) to B coincides with TrB/A, i.e. that
the diagram

Q(B) EndQ(A)(Q(B)) Q(B)∗ ⊗Q(A) Q(B) Q(A)

B EndA(B) B∗ ⊗A B A

∼

∼

commutes, whence the desired equality (5.9) follows by the transitivity of the trace
in towers of field extensions. Lemma 5.11 below tells us that Q(B) = B ⊗A Q(A),
so in particular extension of scalars yields a map

EndA(B) −→ EndQ(A)(Q(B))

ϕ 7−→ ϕQ := ϕ⊗ idQ(A)

and similarly

B∗ −→ Q(B)∗

f 7−→ fQ := f ⊗ idQ(A).

Thus we can expand the above diagram to

Q(B) EndQ(A)(Q(B)) Q(B)∗ ⊗Q(A) Q(B) Q(A)

B EndA(B) B∗ ⊗A B A.

∼

∼

Now it easy easy to see that each of the three squares in the diagram commute.
To see, for instance, that the middle square commutes, note that the isomorphism
Q(B) ∼= B ⊗A Q(A) means that any element of Q(B) can be written as x

a
with

x ∈ B and a ∈ A, and any ϕQ then acts on it as ϕQ(
x
a
) = ϕ(x)

a
. The commutativity

of the middle square amounts to showing that, if ϕ(x) =
∑

i fi(x)bi for all x ∈ B,

then ϕQ(
x
a
) =

∑
i fiQ(

x
a
) bi
1
for all x ∈ B and all a ∈ A. But ϕQ(

x
a
) = ϕ(x)

a
and∑

i fiQ(
x
a
) bi
1
=
∑

i
fi(x)
a

bi
1
=

∑
i fi(x)bi

a
= ϕ(x)

a
as well, so we are done.

Lemma 5.11. If R′ is an overring of an integral domain R such that each r′ ∈ R′
is integral over R and such that no element of R \ {0} is a zero divisor in R′, then
the localisation R′R\{0} of R

′ at the multiplicative subset R \ {0} coincides with the

total ring of fractions Q(R′).

Proof. This is proved in the discussion after [BGR84, 3.1.3/Proposition 3].
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5. The relative trace map and the main theorem

5.4 Proof of the main theorem

5.4.1 Reduction to the case of special affinoid wide-open
spaces

From Lemma 5.7 we obtain the diagram

. . .

��

. . .

��

. . .

Hd
c (Ůi, ωX)

qα //

��

Hd
c (V̊i, ωY )

ti //

��

K

Hd
c (Ůi+1, ωX)

qα //

��

Hd
c (V̊i+1, ωY )

ti+1 //

��

K

. . . . . . . . .

(5.10)

where all squares on the right-hand side commute by [Bey97a, Corollary 4.2.12] and
all squares on the left-hand side also commute, so taking lim−→i

produces

Hd
c (X,ωX)

qα−→ Hd
c (Y, ωY )

tY−→ K. (5.11)

On the other hand, if we can show that the composite map

Hd
c (Ůi, ωX)

qα−→ Hd
c (V̊i, ωY )

ti=tV̊i−−−→ K

coincides with

Hd
c (Ůi, ωX)

tŮi−→ K,

then taking lim−→i
in (5.10) produces tX . Hence (5.11) would coincide with tX and

Theorem 5.5 would be proved. Thus we are reduced to showing:

Theorem 5.12. The diagram

Hd
c (V̊i, ωY )

tV̊i

%%
K

Hd
c (Ůi, ωX)

tŮi

99
qα

OO

(5.12)

commutes for all i.

To prove Theorem 5.12, we need to prepare the necessary ingredients, the last
of which will be Lemma 5.16 below.
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5.4. Proof of the main theorem

5.4.2 The relative trace map at the level of local cohomol-
ogy

For notational convenience from now on, we drop the index i, so that we are in the
same setting as in Section 5.3: α : Ů −→ V̊ is the restriction of a surjective finite
étale morhism

α : U = Sp(B) −→ V = Sp(A).

The associated ring morphism A −→ B is, in particular, finite and flat. We have
the commutative diagram

V Dd associated to A K⟨ξ1, . . . , ξd⟩

U B

πV

α
πU

where all morphisms are finite. Let

{x1, . . . , xr} = π−1U (0) ∩ Ů and {x1, . . . , xr, xr+1, . . . , xs} = π−1U (0).

Note that {α(x1), . . . , α(xr)} ⊆ π−1V (0) ∩ V̊ , since πU = πV ◦ α by Lemma 5.7 and
we have {α(x1), . . . , α(xs)} = π−1V (0) since πU = πV ◦α and α is surjective. Denote
the cardinality of {α(x1), . . . , α(xs)} by s′ and let

{y1, . . . , ys′} = {α(x1), . . . , α(xs)} = π−1V (0)

with yi ̸= yj for i ̸= j. We have s′ ≤ s and it may happen that s′ < s. Define r′

in the same way for {α(x1), . . . , α(xr)}. We bring local cohomology into the game:
Using the maps from Section 4.2, expand the diagram (5.12) to obtain

r′⊕
i=1

Hd
yi
(ωV )

∑
resyi

��

// Hd
c (V̊ , ωV )

tV̊

""
? K

r⊕
i=1

Hd
xi
(ωU)

dense //

∑
resxi

JJ

Hd
c (Ů , ωU)

tŮ

;;
qα

OO

(5.13)
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5. The relative trace map and the main theorem

where the lower horizontal map has dense image by Lemma 4.7. The two outer
“slices”

K

r′⊕
i=1

Hd
yi
(ωV )

∑
resyi

��

// Hd
c (V̊ , ωV )

tV̊

%%

and
r⊕

i=1

Hd
xi
(ωU) //

∑
resxi

KK

Hd
c (Ů , ωU)

tŮ

<<

K

in (5.13) commute by Proposition 4.8. We have placed a question mark in the
triangle in (5.13) for psychological reasons - as a reminder that we need to show
that the triangle commutes.

Next, we use the map τ : Ωd
B/K −→ Ωd

A/K from Section 5.3 to obtain an induced
map

Hd
x(τ) : H

d
x(ωU) −→ Hd

α(x)(ωV ) (5.14)

for every point x ∈ U , via Definition 5.13 below. (Recall that we use the notation

Hd
x(ωU) = Hd

mx
(Ωd

B/K)

etc.)

Definition 5.13 (Induced maps on local cohomology in general). Let R and S be
rings, φ : R −→ S a ring morphism, b ⊆ S an ideal, M an R-module and N an
S-module. Let ρ : N −→M be an R-linear map. Then we define

Hj
b(ρ) : H

j
b(N) −→ Hj

φ−1(b)(M)

as follows. The inclusion φ(φ−1(b))S ⊆ b implies Γb(N) ⊆ Γφ(φ−1(b))S(N), whence
we get a natural map

Hj
b(N) −→ Hj

φ(φ−1(b))S(N). (5.15)

Moreover,

Hj
φ(φ−1(b))S(N) ∼= Hj

φ−1(b)(N) (5.16)

by independence of base (Proposition 1.58 (ii)). Finally, Γφ−1(b) is a functor on
R-modules and hence gives rise to

Hj
φ−1(b)(N) −→ Hj

φ−1(b)(M). (5.17)

The desired map Hj
b(ρ) ist the composite of these three maps.
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5.4. Proof of the main theorem

Choosing R = A, S = B, b = mx,M = Ωd
A/K , N = Ωd

B/K and ρ = τ in Definition

5.13 yields Hd
x(τ).

For each i we have the map

⊕
x∈α−1(yi)

Hd
x(ωU)

∑
x Hd

x(τ)−−−−−→ Hd
yi
(ωV ).

Lemma 5.14 (Explicit description of
∑

xH
d
x(τ)). Let M = Ωd

A/K , N = Ωd
B/K and

consider the trace map

τ : N −→M

from Definition 5.8. Let my ⊆ A be a maximal ideal that pulls back to m in Td,
where m denotes the ideal corresponding to the point 0 ∈ Dd. For every mx ⊆ B that
pulls back to my, taking completions in the ring diagram (5.7) yields the diagram

A∧my Td
∧m

B∧mx

(5.18)

where all morphisms are finite due to Proposition 1.67. Let X1, . . . , Xd be a system
of parameters for Td

∧m - so that the images in A∧my resp. B∧mx are also a system
of parameters due to Corollary 1.68. Then the map

⊕
x∈α−1(y)

Hd
x(N)

∑
x Hd

x(τ)−−−−−→ Hd
y (M)

identifies, via Proposition 1.59 in conjunction with Lemma 1.57, with the map

lim−→
ρ

N∧my/(Xρ
1 , . . . , X

ρ
n)

τ∧my

−−−→ lim−→
ρ

M∧my/(Xρ
1 , . . . , X

ρ
n). (5.19)

Proof. Note that

m̂yB̂ = (myÂ)B̂ = my(ÂB̂) = myB̂ = my(BB̂) = (myB)B̂ = m̂yB

and

N∧myB = lim←−
n

N/(myB)nN = lim←−
n

N/mn
yN = N∧my

since we have (myB)N = my(BN) = myN and by similar logic also (myB)nN =

mn
yN . The identities m̂yB = m̂yB̂ and N∧myB = N∧my explain the first identity in

the bottow row of the diagram (5.20) below.
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5. The relative trace map and the main theorem

By going through Definition 5.13, we see that the map
∑

xH
d
x(τ) is the composite

of the arrows in the top row of the diagram⊕
x∈α−1(y)

Hd
mx
(N) HmyB(N) Hmy(N) Hmy(M)

H
m̂yB

(N∧myB) Hm̂y
(N∧my) Hm̂y

(M∧my)

∑
x(5.15)

∼=
(5.16)

τ

(5.17)

(5.16)

τ∧my

(5.17)

(5.20)

where the first map in the top row⊕
x∈α−1(y)

Hd
mx
(N) ∼−−→ HmyB(N)

is an isomorphism by the same Mayer-Vietoris argument as in our proof of Lemma
4.5 (i). On the other hand, the bottom row in the diagram produces the map (5.19),
hence we are done.

Taking the direct sum over all i = 1, . . . , r′ we obtain the map

r⊕
i=1

Hd
xi
(ωU) =

r′⊕
i=1

⊕
x∈α−1(yi)

Hd
x(ωU) −→

r′⊕
i=1

Hd
yi
(ωV )

which we denote by ⊕iH
d
xi
(τ), abusing the notation. This yields the diagram

r′⊕
i=1

Hd
yi
(ωV )

?

∑
resyi

��

// Hd
c (V̊ , ωV )

tV̊

""
? K

r⊕
i=1

Hd
xi
(ωU)

dense //

∑
resxi

JJ⊕iH
d
xi
(τ)

OO

Hd
c (Ů , ωU)

tŮ

;;
qα

OO

(5.21)

with outer semicircle

r⊕
i=1

Hd
xi
(ωU)

⊕iH
d
xi
(τ)

//

∑
resxi ,,

?

r′⊕
i=1

Hd
yi
(ωV )

∑
resyirrK.

(5.22)

78



5.4. Proof of the main theorem

Lemma 5.15. The outer semicircle (5.22) commutes.

Proof. Using the commutative diagram (4.6) from Lemma 4.5 (iii), we can re-write
the diagram (5.22) as

r⊕
i=1

Hd
xi
(ωU)

��

⊕iH
d
xi
(τ)

//
r′⊕
i=1

Hd
yi
(ωV )

��
s⊕

i=1

Hd
xi
(ωU)

γU ∼=
��

s′⊕
i=1

Hd
yi
(ωV )

γV∼=
��

Hd
0 (πU ∗ωU)

Hd
0 (σU )

��

Hd
0 (πV ∗ωV )

Hd
0 (σV )
��

Hd
0 (ωDd)

res0 %%

Hd
0 (ωDd)

res0yy
K.

To show that this diagram commutes, we expand it so that it has three parts:

r⊕
i=1

Hd
xi
(ωU)

(1)

��

⊕iH
d
xi
(τ)

//
r′⊕
i=1

Hd
yi
(ωV )

��
s⊕

i=1

Hd
xi
(ωU)

(2)γU ∼=
��

⊕iH
d
xi
(τ)

//
s′⊕
i=1

Hd
yi
(ωV )

γV∼=
��

Hd
0 (πU ∗ωU)

Hd
0 (σU )

��

Hd
0 (πV ∗(T))

// Hd
0 (πV ∗ωV )

Hd
0 (σV )
��

Hd
0 (ωDd)

res0 %%

(3) Hd
0 (ωDd)

res0yy
K.

Then (1) commutes for obvious reasons and (3) commutes by Lemma 5.10. Thus
it remains to prove that (2) commutes. Letting M = Ωd

A/K , N = Ωd
B/K and m

denote the maximal ideal corresponding to 0 ∈ Dd, the diagram (2) is equivalent to
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5. The relative trace map and the main theorem

a diagram of the form

lim−→ρ

s⊕
i=1

N̂mxi
/(Xρ

1 , . . . , X
ρ
n) // lim−→ρ

s′⊕
i=1

M̂myi
/(Xρ

1 , . . . , X
ρ
n)

lim−→ρ
N̂m/(X

ρ
1 , . . . , X

ρ
n)

γ̃−1
U

∼=

OO

// lim−→ρ
M̂m/(X

ρ
1 , . . . , X

ρ
n)

γ̃−1
V

∼=

OO
(5.23)

by Lemma 4.5 (ii). Moreover, for each yi we have an isomorphism of B-modules

B∧myiB ∼=
⊕

x∈α−1(yi)

B̂mx

by (1.27) from the proof of Proposition 1.67, whence

N̂myi
= N ⊗B B

∧myiB =
⊕

x∈α−1(yi)

N ⊗B B̂mx =
⊕

x∈α−1(yi)

N̂mx .

Thus

lim−→
ρ

s⊕
i=1

N̂mxi
/(Xρ

1 , . . . , X
ρ
n)
∼= lim−→

ρ

s′⊕
i=1

N̂myi
/(Xρ

1 , . . . , X
ρ
n)

and the diagram (5.23) becomes

lim−→ρ

s′⊕
i=1

N̂myi
/(Xρ

1 , . . . , X
ρ
n)

⊕iτ
∧myi // lim−→ρ

s′⊕
i=1

M̂myi
/(Xρ

1 , . . . , X
ρ
n)

lim−→ρ
N̂m/(X

ρ
1 , . . . , X

ρ
n)

∼=

OO

τ∧m
// lim−→ρ

M̂m/(X
ρ
1 , . . . , X

ρ
n)

∼=

OO

with maps according to Lemma 5.14. This last diagram obviously commutes, hence
we are done.

Lemma 5.16. The square

r′⊕
i=1

Hd
yi
(ωV ) // Hd

c (V̊ , ωV )

r⊕
i=1

Hd
xi
(ωU) //

⊕iH
d
xi
(τ)

OO

Hd
c (Ů , ωU)

qα

OO

from Diagram (5.21) commutes.
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5.4. Proof of the main theorem

Proof. We expand the diagram so that it has three parts:

r′⊕
i=1

Hd
yi
(ωV )

(1)

//
s′⊕
i=1

Hd
yi
(ωV )

(2)

// Hd
c (V̊ , ωV ) //

(3)

Hd
c (V̊ , ωV )

r⊕
i=1

Hd
xi
(ωU)

⊕iH
d
xi
(τ)

OO

//
s⊕

i=1

Hd
xi
(ωU) //

OO

Hd
c (Ů , ωU)

qα

OO

// Hd
c (Ů , ωU)

qα

OO

where V̊ := π−1V (D̊d) and Ů := π−1V (D̊d). Then (1) and (3) commute for obvious
reasons, so it remains to prove that (2) commutes. Using Lemma 4.5 (i) and Remark
3.11, we can re-write (2) as

Hd
0 (πV ∗ωV ) // Hd

c (D̊d, πV ∗ωV )

Hd
0 (πU ∗ωU)

Hd
0 (πV ∗(T))

OO

// Hd
c (D̊d, πU ∗ωU).

Hd
c (πV ∗(T))

OO

This diagram commutes by the functoriality of the horizontal maps, so we are
done.

5.4.3 Conclusion of the proof

Proof of Theorem 5.12. We again consider the diagram (5.21):

r⊕
i=1

Hd
yi
(ωV )

∑
resyi

��

// Hd
c (V̊ , ωV )

tV̊

##
? K.

r⊕
i=1

Hd
xi
(ωU)

dense //

∑
resxi

JJ⊕iH
d
xi
(τ)

OO

Hd
c (Ů , ωU)

tŮ

;;
qα

OO
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5. The relative trace map and the main theorem

The objective is to show that the triangle with the question mark commutes. Since
the lower horizontal map (call it η) has dense image, it suffices to show that

tŮ ◦ η = tV̊ ◦ qα ◦ η. (5.24)

By the commutativity of the lower “slice” in the diagram, we have tŮ ◦η =
∑

resxi
.

On the other hand, tV̊ ◦ qα ◦ η is equal to the composite of
∑

resyi with ⊕iH
d
xi
(τ)

by Lemma 5.16 and the commutativity of the upper “slice”. But the composite
of
∑

resyi with ⊕iH
d
xi
(τ) also coincides with

∑
resxi

by Lemma 5.15. Hence both
sides of (5.24) are equal to

∑
resxi

, which completes the proof of Theorem 5.12 and
thus the proof of Theorem 5.5.

5.5 Some consequences

Let α : X −→ Y be a finite étale morphism of smooth d-dimensional Stein spaces
over K and let G be a coherent sheaf on Y . Denote the adjunction morphism
G −→ α∗α

∗G by ξα and let (−)∨ = Homcont
K (−, K) denote the continuous dual. An

easy consequence of Theorem 5.5 is:

Proposition 5.17. The diagram

Hd−i
c (X,α∗G)∨ ExtiX(α

∗G, ωX)

ExtiY (α∗α
∗G, α∗ωX)

ExtiY (α∗α
∗G, ωY )

Hd−i
c (Y,G)∨ ExtiY (G, ωY )

∼

f 7−→α∗(f)

ExtiY (α∗α∗G,tα)

ExtiY (ξα,ωY )

∼

commutes for all i ≥ 0, where the horizontal isomorphisms come from the Serre
duality pairing.

Proof. For the convenience of the reader, we repeat the argument from the proof
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5.5. Some consequences

of [SV23, Lemma 4.2.8]. First consider the diagram

Hd−i
c (X,α∗G) ExtiX(α

∗G, ωX) Hd
c (X,ωX)

(1)

Hd−i
c (Y, α∗α

∗G) ExtiY (α∗α
∗G, α∗ωX) Hd

c (Y, α∗ωX)

(2)

Hd−i
c (Y, α∗α

∗G) ExtiY (α∗α
∗G, ωY ) Hd

c (Y, ωY )

(3)

Hd−i
c (Y,G) ExtiY (G, ωY ) Hd

c (Y, ωY )

×

f−→α∗(f)

×

∼=

ExtiY (α∗α∗G,tα)

∼=

Hd
c (Y,tα)

×

ExtiY (ξα,ωY )Hd−i
c (Y,ξα)

×

The lower part (3) commutes due to the naturality of the Yoneda-Cartier pairing in
the coherent sheaf. The commutativity of the Yoneda-Cartier pairings in the upper
two parts (1) and (2) is a consequence of functoriality properties. Expanding this
diagram as follows

Hd−i
c (X,α∗G) ExtiX(α

∗G, ωX) Hd
c (X,ωX) K

Hd−i
c (Y, α∗α

∗G) ExtiY (α∗α
∗G, α∗ωX) Hd

c (Y, α∗ωX)

Hd−i
c (Y, α∗α

∗G) ExtiY (α∗α
∗G, ωY ) Hd

c (Y, ωY ) K

Hd−i
c (Y,G) ExtiY (G, ωY ) Hd

c (Y, ωY ) K

×
f−→α∗(f)

tX

×

∼=

ExtiY (α∗α∗G,tα)

∼=

Hd
c (Y,tα)

×
ExtiY (ξα,ωY )

tY

Hd−i
c (Y,ξα)

× tY

and observing that the new part also commutes (due to Theorem 5.5), we obtain
the commutativity of the diagram in the assertion.

In the special case G = OY we have α∗OY = OX and hence HomX(α
∗OY , ωX) =

HomX(OX , ωX) = ωX(X), so that the commutativity of the above diagram in
particular yields:

Corollary 5.18. The diagram

Hd
c (X,OX)

∨ ωX(X)

Hd
c (Y,OY )

∨ ωY (Y )

∼

tα(Y )

∼

commutes.

Note that the domain of tα(Y ) is indeed α∗ωX(Y ) = ωX(X).
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Chapter 6

Compatibility of the trace map
with (completed) base change

In this chapter, we consider the following setting: Let K ′ be a complete field exten-
sion of K and, for any (separated) rigid space X over K, let

X ′ := X ⊗̂K K ′

denote the base change of X to K ′ as in [BGR84, §9.3.6]. If R is a K-affinoid
algebra, we accordingly use the notation

R′ := R ⊗̂K K ′.

Remark 6.1. We recall a few well-known facts about base change, all of which are
also recalled in [Con99, page 475]:
One defines Sp(R) ⊗̂K K ′ := Sp(R ⊗̂K K ′) for any K-affinoid algebra R, and in
order to globalize this to more general rigid spaces X, one uses that the overlap of
any two open affinoids in X is quasi-compact (i.e. one uses the quasi-separatedness
of X).
If K ′ is infinite over K, then the base change functor can’t be realised as a fiber
froduct and we don’t have a morphism X ′ −→ X. Nevertheless, the base change
functor is always compatible with the formation of fiber products and takes closed
immersions to closed immersions.
Furthermore, even though we in general don’t have a morphism X ′ −→ X, there is
an exact “pullback” functor

F ⇝ F ′

from coherent sheaves on X to coherent sheaves on X ′, defined in the obvious way
over affinoids: If F is a coherent sheaf on X = Sp(R) and M the finitely generated
R-module associated to F , then F ′ is the coherent sheaf on X ′ that is associated to
the finitely generated R′-module

M ′ := K ′ ⊗̂K M = R′ ⊗̂R M = R′ ⊗R M.
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6. Compatibility of the trace map with (completed) base change

where the first equality is obtained by the associativity of the completed tensor prod-
uct [BGR84, 2.1.7/Proposition 7], and the second equality is due to Lemma 6.7 (ii)
below.

6.1 A brief recollection on completed tensor prod-

ucts

For any locally convex K-vector space V , the Hausdorff (or separated) completion
of V is the unique (up to a unique topological isomorphism) complete Hausdorff

locally convex K-vector space V̂ together with a continuous map V −→ V̂ that
is universal for continuous K-linear maps from V to complete Hausdorff locally
convex K-vector spaces. The map V −→ V̂ has dense image in V̂ and induces
a topological isomorphism between V/{0} and the image, see [Sch13, Proposition
7.5].

When discussing the tensor product V ⊗K W of locally convex K-vector spaces
V and W , we always mean the projective tensor product, i.e. we consider V ⊗K W
equipped with the projective tensor product topology [PS10, Definition 10.3.2]. This
is the strongest locally convex topology on V ⊗K W for which the bilinear map
V ×W −→ V ⊗KW is continuous. If P1 and P2 are families of seminorms inducing
the topology of V and W respectively, then the projective topology on V ⊗K W is
induced by the family {p⊗ q : p ∈ P1, q ∈ P2}, where p⊗ q acts on z ∈ V ⊗K W as

(p⊗ q)(z) := inf{max
1≤i≤n

p(xi)q(yi) : n ∈ N, z =
n∑

i=1

xi ⊗ yi}.

In particular, it follows immediately that the canonical isomorphism K⊗K V
∼−−→ V

is topological.
The completed tensor product V ⊗̂K W is the Hausdorff completion of the pro-

jective tensor product V ⊗K W . In particular, we have a canonical topological
isomorphism

K ⊗̂K V ∼−−→ V̂ . (6.1)

Due to lack of an adequate reference, we quickly prove the following:

Remark 6.2. (i) Hausdorff completion commutes with arbitrary direct sums of
locally convex vector spaces (hence in particular with finite direct products).

(ii) The projective tensor product commutes with arbitrary locally convex direct
sums (hence in particular with finite direct products).

Proof. (i) Let (Vi)i∈I be a family of locally convex vector spaces. Since each V̂i is

Hausdorff and complete, the sum
⊕

i V̂i is Hausdorff and complete by [Sch13,

Corollary 5.4 and Lemma 7.8], and we have a natural map
⊕

i Vi −→
⊕

i V̂i.

86



6.1. A brief recollection on completed tensor products

Combining the universal property of the locally convex direct sum and the
universal property of each V̂i, it is straightforward to see that

⊕
i V̂i satisfies

the universal property of (
⊕

i Vi)
∧.

The “hence in particular” part of the assertion now follows from the fact that,
if the set I is finite, then the identity map

⊕
i Vi

∼−−→
∏

i Vi is a topological
isomorphism by [Sch13, Lemma 5.2 ii.].

(ii) Let V be a locally convex vector space and (Wi)i∈I a family of locally convex
vector spaces. We need to argue that the isomorphism

V ⊗K

⊕
i

Wi
∼−−→
⊕
i

V ⊗K Wi (6.2)

is topological. Let ιj denote the canonical map Wj −→
⊕

iWi. By func-
toriality of the projective tensor product, the maps idV ⊗ ιj are continu-
ous, hence the universal property of

⊕
i V ⊗K Wi yields a continuous map⊕

i V ⊗K Wi −→ V ⊗K

⊕
iWi, which is the inverse of the map (6.2). The

continuity of the map
⊕

i V ⊗KWi −→ V ⊗K

⊕
iWi means that the projective

tensor product topology on V ⊗K

⊕
iWi is coarser than the locally convex di-

rect sum topology (transported onto V ⊗K

⊕
iWi via the bijection (6.2)). On

the other hand, the locally convex direct sum topology on V ⊗K

⊕
iWi is the

coarsest one for which the maps idV ⊗ ιj are all continuous. Since these are
continuous for the projective tensor product topology, we conclude that the
projective tensor product topology on V ⊗K

⊕
iWi is finer than the locally

convex direct sum topology, completing the proof of the assertion.

Corollary 6.3. (i) The completed tensor product commutes with arbitrary direct
sums of locally convex vector spaces (hence in particular with finite direct prod-
ucts).

(ii) If K ′ is a finite extension field of K and V is Hausdorff and complete, then
the natural map K ′ ⊗K V ∼−−→ K ′ ⊗̂K V is an isomorphism.

Proof. Assertion (i) is obtained by combining both assertions of Remark 6.2. On
the other hand, since K ′ is topologically isomorphic to a finite direct product of
copies of K, assertion (ii) follows immediately from Assertion (i) and (6.1) above,

bearing in mind that V = V̂ .

Remark 6.4. In general, we have

Hj
c (X,F) ⊗̂K K ′ ≇ Hj

c (X
′,F ′).

(even when K ′ is finite over K), due to the fact that the left-hand side is Hausdorff
whereas the right-hand side can be a non-Hausdorff space, cf. [Bos21, Remark 1.11].
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6. Compatibility of the trace map with (completed) base change

However, for a special affinoid wide-open space (resp. a Stein space) S over K,
we discuss comparison maps

Hj
c (S,F) ⊗̂K K ′ −→ Hj

c (S
′,F ′)∧

in Section 6.2 (resp. Section 6.4).

6.2 Comparison maps for base change of com-

pactly supported cohomology

It is well-known that the class of smooth morphisms of rigid spaces is stable under
base change. Moreover, the dimension of a rigid space is invariant under base
change by [Con99, Lemma 2.1.5]. The following remark recalls that the class of
(quasi-)Stein spaces is also stable under base change.

Remark 6.5. Let S be a quasi-Stein Space. Then the base change S ′ of S to K ′ is
quasi-Stein as well. If S is moreover Stein, then so is S ′.

Proof. Let {Di}i∈N be a cover of S as in Definition 1.32 and let D′i denote the base
change of Di to K

′. Then {D′i}i∈N is an admissible affinoid cover of S ′ and the maps

OX(D
′
i+1) = OX(Di+1) ⊗̂K K ′ −→ OX(Di) ⊗̂K K ′ = OX(D

′
i)

have dense image, so S ′ is quasi-Stein. If S is moreover Stein, i.e. Di ⋐ Di+1

then also D′i ⋐ D′i+1 because the characterisation (∗) in Definition 1.33 of relative
compactness is obviously stable under base change. Hence S ′ is Stein as well.

Proposition 6.6. Let Z be a connected smooth affinoid space, F a coherent sheaf on
Z. Let W̊ ⊆ Z be a special affinoid wide-open space with associated finite surjective
morphism

π : Z −→ Dn
K

whose restriction
ϖ : W̊ −→ D̊n

K

we denote by ϖ. Let ε ∈ (0, 1) and set

S = W̊ , V = ϖ−1(Dn
K(ε)) and X = S \ V.

Then:

(i) We have V ′ = ϖ′−1(Dn
K′(ε)) and

X ′ = S ′ \ V ′. (6.3)
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(ii) There is a natural map

Hj
V (S,F)⊗K K ′ −→ Hj

V ′(S
′,F ′) (6.4)

for all j ≥ 0.

(iii) Taking lim−→ε
in (6.4) yields a natural map

Hj
c (S,F)⊗K K ′ −→ Hj

c (S
′,F ′) (6.5)

which induces a map on completions

Hj
c (S,F) ⊗̂K K ′ −→ Hj

c (S
′,F ′)∧. (6.6)

(iv) If K ′ is moreover finite over K, then all three maps (6.4), (6.5) and (6.6) are
isomorphisms.

Proof. (i) Since extension of scalars is compatible with the formation of fiber
products, it is in particular compatible with taking preimages under mor-
phisms. Applying this to ϖ, we have

V ′ = (ϖ−1(Dn
K(ε)))

′ = ϖ′
−1
(Dn

K′(ε))

and
X ′ = (ϖ−1(D̊n

K \ Dn
K(ε)))

′ = ϖ′
−1
((D̊n

K \ Dn
K(ε))

′).

Next, we claim that

(D̊n
K \ Dn

K(ε))
′ = D̊n

K′ \ Dn
K′(ε). (6.7)

To see this, note that

D̊n
K \ Dn

K(ε) =
⋃
i,δ

UK,i,δ with UK,i,δ := {x ∈ D̊n
K : δ ≤ |xi| ≤ 1− δ}

where i runs through 1, . . . , n and δ runs through a zero sequence. Due to
how the base change functor is defined, (D̊n

K \ Dn
K(ε))

′ is obtained by gluing
the (UK,i,δ)

′. But (UK,i,δ)
′ = UK′,i,δ, whence (6.7) follows. Altogether, we have

X ′ = ϖ′
−1
(D̊n

K′ \ Dn
K′(ε)) = S ′ \ϖ′−1(Dn

K′(ε)) = S ′ \ V ′,

which proves (6.3).

(ii) By definition, we have H0
V (S,F) = ker(H0(S,F) −→ H0(X,F)) and

H0
V ′(S ′,F ′) = ker(H0(S ′,F ′) −→ H0(X ′,F ′)), where the latter equality uses

(6.3). For any rigid space Y and any coherent sheaf G ony Y , we have the
natural map

H0(Y,G)⊗K K ′ −→ H0(Y,G) ⊗̂K K ′ = H0(Y ′,G ′)
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6. Compatibility of the trace map with (completed) base change

where the last equality is due to the definition of G ′. This yields the vertical
maps in the commutative diagram

H0(S ′,F ′) H0(X ′,F ′)

H0(S,F)⊗K K ′ H0(X,F)⊗K K ′.

(6.8)

By restricting the left vertical map to the kernel of the lower horizontal map
(which coincides with H0

V (S,F)⊗K K ′ due to the flatness of K −→ K ′) and
observing that this map then lands in the kernel of the upper horizontal map,
we obtain the desired map (6.4) for j = 0. For j ≥ 1 we can apply (6.3) and
Remark 1.49 to see that it is equivalent to give a natural map

Hj−1(X,F)⊗K K ′ −→ Hj−1(X ′,F ′). (6.9)

To construct the map (6.9), we imitate the proof of [Stacks, Tag 02KH], which
calls for a finite Leray covering ofX. To see that there exists a finite Leray cov-
ering of X, first note that ϖ is a finite morphism. Indeed, since W̊ is a union of
connected components of π−1(D̊n

K) and hence a clopen subspace, the inclusion
W̊ ↪−→ π−1(D̊n

K) is a closed immersion and in particular a finite map, whence
its composite with the finite map π−1(D̊n

K) −→ D̊n
K is also finite, i.e.

ϖ : W̊ −→ D̊n
K is finite. Now, if we letW be the finite Leray cover of D̊n

K\Dn
K(ε)

defined in (1.12), then U := ϖ−1W is a finite cover of X which is a Leray cover
due to Remark 1.46. Next, the definition of F ′ and the fact that the com-
pleted tensor product commutes with finite direct products yields the following
relation between Čech complexes

Čj−1(U,F) ⊗̂K K ′ = Čj−1(U′,F ′). (6.10)

By precomposing with the map

Čj−1(U,F)⊗K K ′ −→ Čj−1(U,F) ⊗̂K K ′ (6.11)

we obtain a natural map

Čj−1(U,F)⊗K K ′ −→ Čj−1(U′,F ′). (6.12)

The cohomology of the left-hand side in (6.12) is Hj−1(U,F)⊗K K ′ (because
K −→ K ′ is flat), so taking cohomology in (6.12) yields the desired natural
map

Hj−1(U,F)⊗K K ′ −→ Hj−1(U′,F ′). (6.13)

(iii) We only need to show that the V (resp. the V ′), for varying 0 < ε < 1, form a
cofinal subfamily of the family of all finite unions of admissible affinoids in D̊n

K

(resp. in D̊n
K′). But this follows from Remark 1.52 via Lemma 1.50, bearing

in mind that V ′ = ϖ′−1(Dn
K′(ε)) by (i).
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(iv) Now assume that K ′ is finite over K. Obviously, it suffices to show that the
map (6.4) is an isomorphism, or, equivalently, that (6.9) is an isomorphism, or,
equivalently, that (6.13) is an isomorphism. For this, note that the map (6.11)
is an isomorphism due to Corollary 6.3 (ii) since Čj−1(U,F) is a complex of
Fréchet spaces (which are in particular Hausdorff and complete). Hence the
map (6.12) is also an isomorphism, which, by passage to cohomology, yields
that (6.13) is now an isomorphism. This settles the assertion for j ≥ 1. The
case j = 0 follows from the fact that both vertical maps in the diagram (6.8)
are now isomorphisms due to Corollary 6.3 (ii).

6.3 Base-changing separable Noether normalisa-

tion

We prove a number of preparatory results that we will need in order to obtain base
change results for the trace map.

Lemma 6.7 ([Con99, Lemma 1.1.5]). Let R be an affinoid algebra over K and (as
always) R′ = K ′ ⊗̂K R. Then:

(i) The natural map R −→ R′ is faithfully flat.

(ii) For any finite R-module M , the natural map

R′ ⊗R M
∼−−→ R′ ⊗̂R M (6.14)

is a topological isomorphism.

(iii) For any maximal ideal m ⊆ R, there exist prime ideals in R′ over m. These
prime ideals are all maximal.

Corollary 6.8. If R −→ S is a finite (resp. finite injective) morphism of affinoid
K-algebras, then the base change R′ = K ′ ⊗̂K R −→ K ′ ⊗̂K S = S ′ is also finite
(resp. finite injective).

Proof. Note that the map R′ = K ′⊗̂KR −→ K ′⊗̂KS = S ′ is identified with the map
R′ ⊗̂RR −→ R′ ⊗̂R S by the associativity of the completed tensor product [BGR84,
2.1.7/Proposition 7]. Next, (6.14) in Lemma 6.7 tells us that this latter map arises
by viewing R −→ S as a map between finite R-modules and applying R′⊗R (−) to
it. But R′⊗R (−) preserves finiteness (and injectivity too, since R −→ R′ is flat by
Lemma 6.7 (i)), so we are done.

The main result of this section is the stability of separable Noether normalisation
morphisms under base change:
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6. Compatibility of the trace map with (completed) base change

Lemma 6.9. Let Z = Sp(R) be a connected smooth affinoid space and

φ : Td ↪−→ R

a finite injective separable morphism. Then the morphism

φ′ : Td(K
′) ↪−→ R′

obtained by base change to K ′ is finite, injective and separable.

Proof. The morphism φ′ : Td(K
′) ↪−→ R′ obtained by base change to K ′ is finite

injective by Corollary 6.8. Since R is an integral domain, R has pure dimension d, so
R′ also has pure dimension d by [Bos70, Lemma 2.5]. Since R′ is moreover reduced,
Lemma 1.27 tells us that φ′ is torsion-free, so we have an induced morphism

Q(Td(K
′)) ↪−→ Q(R′).

We need to prove that this morphism is étale. Since Q(R) is a separable field
extension of Q(Td) by assumption, the morphism

Q(Td) ↪−→ Q(R)

is étale. Tensoring with Q(R), it follows by [Stacks, Tag 00U2 part (5)] that the
structure morphism

Q(T ′d) ↪−→ Q(T ′d)⊗Q(Td) Q(R)

is then étale too, where T ′d := Td(K
′). We will show that

Q(T ′d)⊗Q(Td) Q(R)
∼= Q(R′), (6.15)

whence Q(R′) is étale over Q(T ′d) and we are done.
As in the Proof of Corollary 6.8, we see that the map T ′d ↪−→ R′ arises by

applying T ′d ⊗Td
(−) to the map Td ↪−→ R, i.e. we have

R′ = T ′d ⊗Td
R.

With the multiplicative subset S := Td \ {0} ⊆ Td, we then have

S−1R′ = S−1(T ′d)⊗S−1Td
S−1R

= S−1(T ′d)⊗Q(Td) Q(R)

where the last equality holds because S−1Td = Q(Td) by definition and
S−1R = Q(R) by Lemma 5.11. On the other hand, we also wish to apply Lemma
5.11 to the finite ring extension T ′d ↪−→ R′. This is possible since no element of
T ′d \ {0} is a zero divisor in R′. Indeed, this is due to R′ having pure dimension d
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and Lemma 1.27. Hence Lemma 5.11 tells us that Q(R′) = T−1R′ with the mul-
tiplicative set T := T ′d \ {0}. But obviously T−1R′ = T−1(S−1R′). Altogether, we
have

Q(R′) = T−1(S−1R′) = Q(T ′d)⊗T ′
d
S−1R′

= Q(T ′d)⊗T ′
d
(S−1(T ′d)⊗Q(Td) Q(R))

= (Q(T ′d)⊗T ′
d
S−1(T ′d))⊗Q(Td) Q(R)

= S−1Q(T ′d)⊗Q(Td) Q(R)

= Q(T ′d)⊗Q(Td) Q(R),

where the last equality holds because S−1Q(T ′d) = Q(T ′d). This proves (6.15) and
completes the proof of the lemma.

Consider again the setting of Lemma 6.9. Since Z ′ is smooth, the local rings
OZ′,z′ are integral domains for all z′ ∈ Z ′. Then the proof of Remark 1.15 tells us
that the irreducible components of Z ′ are pairwise disjoint and hence they coincide
with the connected components of Z ′. In other words, letting p1, . . . , ps denote the
minimal prime ideals in R′, we have

R′ =
s∏

i=1

R′/pi.

Since R is an integral domain, it has pure dimension d, so R′ also has pure dimension
d by [Bos70, Lemma 2.5]. Since R′ is moreover reduced, Lemma 1.27 (or rather its
proof) tells us that composing φ′ with the projection R′ −→−→ R′/pi yields a finite
injective map

φ′i : Td(K
′) ↪−→ R′/pi.

for all i. Hence we have an induced finite field extension Q(Td(K
′)) ↪−→ Q(R′/pi)

for each i, and we wish to explain how Lemma 6.9 implies that these extensions are
separable. The localisation of a reduced ring at a minimal prime ideal is a field by
[Stacks, Tag 00EU], hence R′pi is a field and the natural map R′pi

∼−−→ Q(R′/pi) is
an isomorphism. Moreover, p1 ∪ . . . ∪ ps is the set of zero divisors in R′ by [Stacks,
Tag 00EW], so there are natural maps Q(R′) −→ Rpi (since any non-zero-divisor
is contained in R \ pi), hence a natural map Q(R′) −→ Rp1 × . . .× Rps which is in
fact an isomorphism by [Stacks, Tag 02LX], so we have

Q(R′) ∼−−→ Rp1 × . . .×Rps
∼−−→ Q(R′/p1)× . . .×Q(R′/ps). (6.16)

In general, if F is a field and A = A1×. . .×An is a finite product of F -algebras, then
A is étale over F if and only if each Ai is étale over F , see [Stacks, Tag 00U2 part
(11)]. Therefore, Lemma 6.9 tells us (equivalently) that the finite field extensions
induced by φ′i

Q(Td(K
′)) ↪−→ Q(R′/pi)

are separable for all i.
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6.4 Base change results for the trace map

Lemma 6.10 ([Con99, Lemma 3.1.1]). Let X be a quasi-separated rigid space over
K, ι : U ↪−→ X a Zariski-open set and Y ↪−→ X a closed immersion whose under-
lying space in X is the complement of U . Then the base change ι′ of ι to K ′ is an
open immersion and the analytic set Y ′ ↪−→ X ′ is the complement of U ′ in X ′.

Proposition 6.11. Let Z = Sp(R) be a connected smooth affinoid space, W̊ ⊆ Z be
a special affinoid wide-open space and π : Z −→ Dn

K an associated finite surjective
separable morphism. Consider the morphism

π′ : Z ′ −→ Dn
K′

obtained by base change to K ′. Then:

(i) π′ is finite, surjective and separable.

(ii) Letting Z ′1, . . . , Z
′
s denote the connected components of Z ′, then the restriction

π′i : Z
′
i −→ Dn

K′ of π to Z ′i is finite, surjective and separable for each i.

(iii) W̊ ′ ⊆ Z ′ is a finite union of connected components of π′−1(D̊n
K′).

Proof. Assertion (i) follows from Lemma 6.9. Assertion (ii) follows from the dis-
cussion at the end of Section 6.3. It remains to prove (iii), i.e. that W̊ ′ embeds into
Z ′ as a finite union of connected components of π′−1(D̊n

K′). Setting Z̊ := π−1(D̊n
K)

and (Z ′)˚:= π′−1(D̊n
K′), we have (Z̊)′ = (Z ′)˚since extension of scalars is compatible

with taking preimages under morphisms. The space W̊ is a finite union of connected
components of Z̊. If U is a connected component in Z̊ (so in particular it is clopen
in Z̊), then we can apply Lemma 6.10 to the inclusion U ↪−→ Z̊ to deduce that
U ′ −→ (Z ′)˚ is an open immersion too. On the other hand, since base change takes
closed immersions to closed immersions, we see that U ′ −→ (Z ′)˚ is also a closed
immersion, so U ′ is clopen in (Z ′)˚. Then Remark 1.14 (iii) tells us that U ′ is a
union of connected components of (Z ′)˚, whence the assertion follows.

Due to Proposition 6.11, we can construct a map

σ = σπ′ : Ωn
R′/K′ −→ Ωn

T ′
n/K

′

by invoking the same formula as in Definition 4.9, but now using the trace TrL′/E′

of the finite étale morphism

E ′ := Q(T ′n) ↪−→ L′ := Q(R′)

induced by π′ : Z ′ −→ Dn
K′ .
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Remark 6.12. In the decomposition L′ = L′1 × . . . × L′s according to (6.16), each
L′i is finite separable over E ′, so we also have the map

Ωn
L′/K′ =

s⊕
i=1

Ωn
L′
i/K

′

∑
i σi−−−→ Ωn

E′/K′ . (6.17)

which is readily seen to coincide with σ.

As before, σ restrics to a map Ωn
R′/K′ −→ Ωn

T ′
n/K

′ or, equivalently, a map

σ : π′∗ωZ′ −→ ωDn
K′ .

We write σ = σπ′ when we want to stress the dependence on π′.

Remark 6.13. Let R be an affinoid algebra over K. Then

Ωn
R′/K′ = Ωn

R/K ⊗̂K K ′

for all n.

Proof. As in the proof of Corollary 6.8, we see that

Ωn
R/K ⊗̂K K ′ = Ωn

R/K ⊗̂R R
′ = Ωn

R/K ⊗R R
′,

so it remains to see that Ωn
R/K ⊗R R

′ = Ωn
R′/K′ . For n = 1 this is the content of

[Ber+67, Satz 2.5.2], whence it follows for all n since the tensor product commutes
with exterior powers.

Lemma 6.14. The diagram

Ωn
R/K ⊗̂K K ′ Ωn

T ′
d/K

′

Ωn
R′/K′

(σπ)′

σπ′

commutes. In other words,

(π∗ωZ)
′ Ωn

T ′
d/K

′

π′∗ωZ′

(σπ)′

σπ′

commutes.
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Proof. We write L = Q(R), E = Q(Td) and L′ = Q(R′), E ′ = Q(T ′d) for brevity.
We can view (σπ)

′ as the composite1

Ωn
R/K ⊗̂K K ′ Ωn

L/K ⊗̂K K ′ (L⊗E Ωn
E/K) ⊗̂K K ′ L⊗E Ωn

E′/K′ Ωn
E′/K′

TrL/E ⊗id

and σπ′ as the composite

Ωn
R′/K′ Ωn

L′/K′ L′ ⊗E′ Ωn
E′/K′ Ωn

E′/K′

TrL′/E′ ⊗id

whence we need to show that the diagram

Ωn
R/K ⊗̂K K ′ Ωn

L/K ⊗̂K K ′ (L⊗E Ωn
E/K) ⊗̂K K ′ L⊗E Ωn

E′/K′ Ωn
E′/K′

Ωn
R′/K′ Ωn

L′/K′ L′ ⊗E′ Ωn
E′/K′ Ωn

E′/K′

TrL/E ⊗id

TrL′/E′ ⊗id

commutes. Under the identification

L′ = L⊗E E
′

from the proof of Lemma 6.9, we certainly have TrL′/E′ = TrL/E ⊗idE′ . Thus we can
replace the last arrow in the lower line of the above diagram with

L⊗E E
′ ⊗E′ Ωn

E′/K′

TrL/E ⊗idE′⊗id
−−−−−−−−−→ Ωn

E′/K′ , whence we obtain the diagram

Ωn
R/K ⊗̂K K ′ Ωn

L/K ⊗̂K K ′ (L⊗E Ωn
E/K) ⊗̂K K ′ L⊗E Ωn

E′/K′ Ωn
E′/K′

Ωn
R′/K′ Ωn

L′/K′ L⊗E E
′ ⊗E′ Ωn

E′/K′ Ωn
E′/K′

TrL/E ⊗id

TrL/E ⊗idE′⊗id

which now obviously commutes, so we are done.

In the setting of Proposition 6.11, we can use σπ′ to define the trace map

tW̊ ′ = tπ′ : Hn
c (W̊

′, ωZ′) −→ K ′

exactly as in Construction 4.10 (even though W̊ ′ is not necessarily connected).
Letting Z ′1, . . . , Z

′
s denote the connected components of Z ′, Z̊ ′i := π′i

−1(D̊K′) and W̊ ′
i

1One obtains the third map in the composite by taking the completion of the map
(L⊗E Ωn

E/K)⊗K K ′ −→ L⊗E Ωn
E′/K′ and observing that L ⊗̂E Ωn

E′/K′ = L⊗E Ωn
E′/K′ since both

factors in the tensor product are finite over E.

96



6.4. Base change results for the trace map

denote the union of those connected components of Z̊ ′ that are contained in Z̊ ′i, we
have the commutative diagram

Hn
c (W̊

′, ωZ′) Hn
c (Z̊

′, ωZ′) Hn
c (D̊n

K′ , π′∗ωZ′) Hn
c (D̊n

K′ , ωD̊n
K′
)

s⊕
i=1

Hn
c (W̊

′
i , ωZ′)

s⊕
i=1

Hn
c (Z̊

′
i, ωZ′)

s⊕
i=1

Hn
c (D̊n

K′ , π′i∗ωZ′)

∼ Hn
c (σπ′ )

∼ Hn
c (σπ′

i
)

which tells us that tπ′ =
∑

i tπ′
i
and in particular shows that tπ′ does not depend on

π′ (since we know that each tπ′
i
does not depend on π′i).

We are now ready to prove the main results of this chapter, which concern
the compatibility of the trace map with (completed) base change, first for special
affinoid wide-opens and then for Stein spaces in general:

Proposition 6.15. Let Z = Sp(R) be a connected smooth affinoid space of dimen-
sion n, W̊ ⊆ Z a special affinoid wide-open space. Then the diagram

Hn
c (W̊

′, ωZ′)

K ′

K ′ ⊗K Hn
c (W̊ , ωZ)

tW̊ ′

idK′⊗tW̊

(6.18)

commutes. Therefore, taking completions, we find that

Hn
c (W̊

′, ωZ′)∧

K ′

K ′ ⊗̂K Hn
c (W̊ , ωZ)

tW̊ ′

(tW̊ )′

commutes.

Proof. First of all, in the special case W̊ = D̊n
K , Z = Dn

K with coordinates X =
(X1, . . . , Xn), we have Hn

c (D̊n, ωDn) ∼= K⟨X−1⟩† · dX
X
. In particular, Hn

c (D̊n
K′ , ωDn

K′ )
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is Hausdorff and complete and the diagram (6.18) in the assertion is just the diagram

K ′⟨X−1⟩† · dX
X

K ′

K ′ ⊗K (K⟨X−1⟩† · dX
X
)

(resK′ )

idK′⊗resK

which obviously commutes. For a general special affinoid wide-open space W̊ ⊆ Z
and an associated finite surjective separable morphism π : Z −→ Dn

K , we have to
show that the outer contour of the diagram

Hn
c (W̊

′, ωZ′) Hn
c (Z̊

′, ωZ′) Hn
c (D̊n

K′ , π′∗ωZ′) Hn
c (D̊n

K′ , ωD̊n
K′
)

K ′

Hn
c (W̊ , ωZ)K′ Hn

c (Z̊, ωZ)K′ Hn
c (D̊n

K , π∗ωZ)K′ Hn
c (D̊n

K , ωD̊n
K
)K′

∼ σπ′

resK′

∼ (σπ)′
(resK)′

commutes, where we have written (−)K′ instead of K ′⊗K (−) in the lower line, for
ease of notation. The left-hand square certainly commutes, since the first vertical
map (from the left) is just the restriction of the second map to a direct summand.
Next, we claim that the middle square commutes. To see this, we first consider
any given ε ∈ (0, 1) and let W be the finite Leray cover of D̊n

K \ Dn
K(ε) defined in

(1.12). Then we recall from (the proofs of) Proposition 6.6, Proposition 1.51 and
Proposition 1.44 that the middle square is obtained by taking lim−→ε

of the diagrams

Hn−1(π′−1W′, ωZ′) Hn−1(W′, π′∗ωZ′)

Hn−1(π−1W, ωZ)⊗K K ′ Hn−1(W, π∗ωZ)⊗K K ′

which obviously commute, whence our claim follows. Similarly, the commutativity
of the right-hand square above comes down to the commutativity of

Čn−1(W′, π′∗ωZ′) Čn−1(W′, ωD̊n
K′
)

Čn−1(W, π∗ωZ)⊗K K ′ Čn−1(W, ωD̊n
K
)⊗K K ′

σπ′

σπ⊗id

which follows from Lemma 6.14. Finally, the right-hand triangle commutes by what
we have already discussed. The assertion follows.
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Theorem 6.16. Let X be a connected smooth Stein space of dimension n. Choos-
ing an admissible open cover {W̊i}i∈N of X consisting of special affinoid wide-open
subsets (as in Lemma 4.11) and taking the limit over all the maps
K ′ ⊗K Hn

c (W̊i, ωX)→ Hn
c (W̊

′
i , ωX′) yields a map

K ′ ⊗K Hn
c (X,ωX)→ Hn

c (X
′, ωX′) (6.19)

which is in fact canonical and makes the diagram

Hn
c (X

′, ωX′)

K ′

K ′ ⊗K Hn
c (X,ωX)

tX′

id⊗tX

commute. Taking completions, we find that

Hn
c (X

′, ωX′)∧

K ′

K ′ ⊗̂K Hn
c (X,ωX)

tX′

(tX)′

commutes.

Proof. First of all, we note that the isomorphism

K ′ ⊗K lim−→
i

Hn
c (W̊i, ωX) ∼= lim−→

i

K ′ ⊗K Hn
c (W̊i, ωX)

is topological. Indeed, this is proved verbatim as in Remark 6.2 (ii). Now, the map
(6.19) is by definition the unique map that makes the left-hand rectangle in

Hn
c (X

′, ωX′) lim−→i
Hn

c (W̊
′
i , ωX′)

K ′

K ′ ⊗K Hn
c (X,ωX) K ′ ⊗K lim−→i

Hn
c (W̊i, ωX) lim−→i

K ′ ⊗K Hn
c (W̊i, ωX)

commute, and we have to show that the resulting outer contour in the above diagram
commutes (cf. Definition 4.12). But this is immediate, since the right-hand triangle
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6. Compatibility of the trace map with (completed) base change

commutes by Proposition 6.15. It only remains to prove that the map (6.19) is
canonical, i.e. independent of the choice of the cover {W̊i}i∈N. Given another cover
{V̊i}i∈N of X as in the assertion, we can assume that V̊i ⊆ W̊i (otherwise replace
V̊i by V̊i ∩ W̊i which is again special affinoid wide-open by [Bey97a, Lemma 5.1.3]).
Then we need to show that the diagram

lim−→i
Hn

c (V̊
′
i , ωX′) Hn

c (X
′, ωX′) lim−→i

Hn
c (W̊

′
i , ωX′)

lim−→i
K ′ ⊗K Hn

c (V̊i, ωX) lim−→i
K ′ ⊗K Hn

c (W̊i, ωX)

commutes. Granting that the map V̊ ′i −→ W̊ ′
i is an open immersion, we have

induced maps Hn
c (V̊

′
i , ωX′) −→ Hn

c (W̊
′
i , ωX′) whose limit over all i makes the outer

contour and the upper semicircle in the extended diagram

lim−→i
Hn

c (V̊
′
i , ωX′) Hn

c (X
′, ωX′) lim−→i

Hn
c (W̊

′
i , ωX′)

lim−→i
K ′ ⊗K Hn

c (V̊i, ωX) lim−→i
K ′ ⊗K Hn

c (W̊i, ωX)

commute, whence the desired commutativity of the rectangle follows. It remains to
check that V̊ ′i −→ W̊ ′

i is an open immersion. Dropping the index i for notational
convenience, it suffices to show that W̊ ′ −→ X ′ is an open immersion (since then
V ′ ⊆ X ′ as an admissible open too, and V ′ lands in the admissible open W ′ ⊆
X ′). Adopting our standard notation W̊ ⊆ Z and π : Z −→ Dn

K , the desired
conclusion follows since W̊ ′ is an admissible open in π′−1(D̊n

K′) by Proposition 6.11

(iii), π′−1(D̊n
K′) is certainly an admissible open in Z ′, and Z ′ is an admissible open

in X ′ by the explicit construction of X ′.

Next, we prove that the Yoneda-Cartier pairing is also compatible with base
change:

Proposition 6.17. Let X be a smooth rigid Stein K-space of dimension d and let
F be a coherent sheaf on X. Then the diagram

Hd−i
c (X ′,F ′) ExtiX′(F ′, ωX′) Hd

c (X
′, ωX′)

Hd−i
c (X,F) ExtiX(F , ωX) Hd

c (X,ωX)

×

×

commutes for all i ≥ 0.
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Proof. We will prove the following equivalent formulation of the theorem: Letting
αi,F : Hd−i

c (X,F) −→ Hd−i
c (X ′,F ′) denote the comparison map for base change,

the diagram

ExtiX′(F ′, ωX′) HomK′(Hd−i
c (X ′,F ′), Hd

c (X
′, ωX′))

HomK(Hd−i
c (X,F), Hd

c (X
′, ωX′))

ExtiX(F , ωX) HomK(Hd−i
c (X,F), Hd

c (X,ωX))

(−)◦αi,F

α0,ωX
◦(−)

commutes for all i ≥ 0. We can view the content of this diagram as having two maps
from the δ-functor ExtiX(−, ωX) to the δ-functor HomK(H

d−i
c (X,−), Hd

c (X
′, ωX′)),

and we want to prove that these maps coincide. Note that the latter is indeed
a δ-functor, since it is the composite HomK(−, Hd

c (X
′, ωX′)) ◦ Hd−i

c (X,−) of the
δ-functor Hd−i

c (X,−) with the exact functor HomK(−, Hd
c (X

′, ωX′)). Now, since
ExtiX(−, ωX) is a universal δ-functor, it suffices to show that the mentioned maps
coincide for i = 0, i.e. that the above diagram commutes for i = 0. Given a
γ ∈ HomX(F , ωX), if we denote its image in HomX′(F ′, ωX′) by γ′ -- so, for U ⊆ X

affinoid, γ′ over U ′ is F ′(U ′) = F(U) ⊗̂K K ′
γ⊗̂id−−−→ ωX(U) ⊗̂K K ′ = ωX′(U ′) -- then

the commutativity of the above diagram for i = 0 amounts to the commutativity of

Hd
c (X

′,F ′) Hd
c (X

′, ωX′)

Hd
c (X,F) Hd

c (X,ωX)

Hd
c (X

′,γ′)

α0,F

Hd
c (X,γ)

α0,ωX

which holds true for all γ ∈ HomX(F , ωX) since it is evident from the construction
of our base-change-comparison maps α that they are functorial in this sense. Thus
the proposition is proved.

Now we can summarise the content of Theorem 6.16 and Proposition 6.17 in the
following:

Corollary 6.18. Let X be a smooth rigid Stein K-space of dimension d. Then
the Serre duality pairing from Theorem 5.3 is compatible with base change, in the
following sense: For every coherent sheaf F on X, the diagram

Hd−i
c (X ′,F ′) ExtiX′(F ′, ωX′) Hd

c (X
′, ωX′) K ′

Hd−i
c (X,F) ExtiX(F , ωX) Hd

c (X,ωX) K

× tX′

× tX

commutes for all i ≥ 0.
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Chapter 7

Comparison with other recent
results

In their preprint [AL20], Abe and Lazda consider partially proper morphisms
f : X −→ Y of analytic adic spaces, the proper pushforward f! (defined by taking
those sections of f∗ whose support is proper over Y ) and its derived functor Rf!,
which in particular yields a notion of (relative) compactly supported cohomology
via

Hq
c (X/Y,−) := Γ(X,Rqf!(−)). (7.1)

They prove that Rf! is compatible with composition (see (7.2) in §7.1 below).
Moreover, for a special class of smooth partially proper morphisms, namely those
that are smooth and “partially proper in the sense of Kiehl” (see Definitions 7.1
and 7.3 below), they construct an OY -linear “trace map” in the derived category
of OY -modules that is local on the base Y and compatible with composition (see,
for instance, Proposition 7.10 below). It has the following explicit description when
Y = Spa(A,A+) is affinoid and

f : X = D̊d
Y −→ Y

is the relative d-dimensional open unit disc over Y : choosing coordinates
z = (z1, . . . , zd) yields the the following commutative diagram

Hd
c (D̊d

Y /Y, ωX/Y ) A⟨z−1⟩† dz
z

A

∼

TrX/Y
∑
i≤0

aiz
i dz

z
7→a0

where A⟨z−1⟩† denotes the ring of overconvergent series in z−1 (cf. our counterparts:
Lemma 1.53 and the residue map (4.8) in Section 4.3).

Recall Huber’s functor r from the category of rigid analytic varieties over Sp(K)
to the category of adic spaces over Spa(K, oK), which is characterised by the fol-
lowing properties [Hub96, (1.1.11)]:
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7. Comparison with other recent results

a) If X = Sp(A) is an affinoid rigid variety, then r(X) = Spa(A, Å). Moreover,
if f : Sp(B) −→ Sp(A) is a morphism of affinoid rigid varieties induced by
a K-algebra morphism φ : A −→ B, then f : Spa(B, B̊) −→ Spa(A, Å) is the
morphism of adic spaces which is induced by the morphism φ : (A, Å) −→ (B, B̊).

b) If f : X ↪−→ Y is an open embedding of rigid varieties, then r(f) : r(X) ↪−→ r(Y )
is an open embedding of adic spaces.

c) A family (Xi)i∈I of admissible open subsets of a rigid variety X is an admissible
open covering of X if and only if r(X) =

⋃
i∈I r(Xi).

d) r is fully faithful.

For every rigid analytic variety X over Sp(K), the adic space r(X) is locally of finite
type over Spa(K, oK). The functor r induces an equivalence from the category of
quasi-separated rigid analytic varieties over Sp(K) to the category of adic spaces
over Spa(K, oK) whose structure morphisms are quasi-separated and locally of finite
type. If r denotes the morphism from the site r(X) of r(X) to the site X of X
given by

r(X) −→X

r(U)←− [ U,

then the induced morphism between the corresponding toposes r(X)∼ and X∼

(recall that this morphism consists of the direct image functor r∗ : r(X)∼ −→X∼,
the inverse image functor r∗ : X∼ −→ r(X)∼ and an adjunction between them) is
an equivalence of toposes.

In this chapter, we will show how our setting embeds into the setting of Abe
and Lazda via Huber’s functor r. Then we compare the two notions of compactly
supported cohomology, by proving in Lemma 7.8 that our compactly supported
cohomology Hj

c (X,F) of a rigid Stein space X coincides with the cohomology
Hj

c (r(X)/ Spa(K, oK), r
∗F) obtained from [AL20] as in (7.1) above. Then, in Sub-

section 7.3.1, we prove that Abe and Lazda’s trace map TrX/Y can recover Beyer’s
trace map when Y = Spa(K, oK). In Subsection 7.3.2, we examine their trace
map TrX/Y in the case when X/Y is finite étale and discuss the following question
(Question 7.12):
Let X and Y be adic spaces coming from rigid analytic varieties via Huber’s functor
r, and let α : X −→ Y be a finite étale morphism. Does TrX/Y coincide with the
classical trace map α∗OX −→ OY ?
We do not know the answer to this question in general, but we give a conjectural
outline how one might obtain a positive answer in the special case when X = Y and
α is the identity. Finally, in Subsection 7.3.3, we prove that under the assumption
of an affirmative answer to Question 7.12, one can relate Abe and Lazda’s trace map
TrX/Y to our relative trace map tα and recover our compatibility result (Theorem
5.5) from their result on the compatibility of TrX/Y with respect to composition.
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7.1. The definition of f! and comparison with our H•c (X,−)

We adopt the standing hypotheses of [AL20, §2] for the rest of this chapter,
i.e. we assume that all adic spaces are analytic and satisfy one of the standard
conditions [Hub96, (1.1.1)] that guarantee that they are sheafy.

7.1 The definition of f! and comparison with our

H•c (X,−)
Definition 7.1 ([Hub96, Remark 1.3.19 i)]). A separated morphism f : X −→ Y of
rigid spaces is called Kiehl-partially-proper if there exist an admissible open covering
Y =

⋃
i∈I Yi by affinoid open subspaces Yi and, for each i, an admissible open

covering f−1(Yi) =
⋃

j∈Ji Xij by affinoid open subspaces Xij that can be “properly

enlarged over Yi within f
−1(Yi)”, meaning that there exists an affinoid open subspace

X ′ij of f−1(Yi) such that
Xij ⋐Yi

X ′ij

(cf. Definition 1.33) for each i and each j.

If we additionally require the morphism to be quasi-compact, we recover Kiehl’s
definition of a proper morphism, i.e. a morphism of rigid spaces is proper if and
only if it is quasi-compact and Kiehl-partially-proper.

Example 7.2. The structure morphism X −→ Sp(K) of a rigid Stein space X is
Kiehl-partially-proper.

If Y = Spa(R,R+) is a Tate affinoid adic space, then we define the open unit
disk D̊r

Y resp. the affine space Ar,an
Y to be the union over n ∈ N of “closed disks of

radius |ϖ|1/n resp. |ϖ|−n” for a topologically nilpotent unit ϖ ∈ R, as in [AL20,
§4.1]. When Y = Spa(K, oK), this collides with our notation for disks in rigid
geometry, which is not a problem since it will always be clear from the context
whether the disk is being regarded as a rigid variety or as the associated adic space.

Under Huber’s functor r, the condition in Definition 7.1 obviously translates to
condition (i) in the following Definition 7.3 (see also Remark 7.6 further below):

Definition 7.3 ([AL20, Definition 4.1.4 and Proposition 4.1.3]). A morphism
f : X −→ Y of adic spaces is called Kiehl-partially-proper if it is separated, taut
and satisfies one of the following equivalent conditions:

(i) Locally on X and Y , there exist open covers {Xi}i∈I and {X ′i}i∈I of X with
Xi ⊆ X ′i, integers Ni ≥ 1, and closed immersions X ′i ↪−→ DNi

Y over Y such

that Xi lands in the open disk D̊Ni
Y .

(ii) Locally on X and Y , there exists an open cover {Xi}i∈I of X, integers Ni ≥ 1,
and closed immersions Xi ↪−→ D̊Ni

Y over Y .

Remark 7.4 ([AL20, Remark 4.1.5]). Let f be a morphism of adic spaces.
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(i) If f is Kiehl-partially-proper, then it is partially proper (i.e. separated, locally
of +weakly finite type and universally specialising).

(ii) If X and Y are quasi-separated adic spaces locally of finite type over a dis-
cretely valued, height one affinoid field, then any partially proper map X −→ Y
is Kiehl-partially-proper by [Hub96, Remark 1.3.19].

(iii) For any Y , the morphisms D̊r
Y −→ Y and Ar,an

Y −→ Y are Kiehl-partially-
proper.

Definition 7.5 (Proper pushforward according to [AL20, Definition 3.1.1]). Let
f : X −→ Y be a morphism of adic spaces that is separated and locally of +weakly
finite type, F a sheaf on X, V ⊆ Y an open subset and s ∈ Γ(f−1(V ),F) a section.
Then

Supp(s) := {x ∈ f−1(V ) : sx ̸= 0}

is a closed subset of the adic space f−1(V ) and hence in particular a “germ” (in
the sense of [AL20, Definition 2.2.1]). Therefore, one can ask whether the map of
germs Supp(s) −→ V is proper [AL20, the discussion preceding Definition 2.2.3].
The proper pushforward

f!F ⊆ f∗F

is defined to be the subsheaf consisting of sections s ∈ Γ(V, f∗F) = Γ(f−1(V ),F)
that have proper support over V . The functor H0(Y, f!(−)) will also be denoted by
H0

c (X/Y,−) or Γc(X/Y,−).

If f is partially proper, then the support of s ∈ Γ(V, f∗F) is proper over V if
and only if it is quasi-compact over V . If f is proper, then

f! = f∗

holds. By [AL20, Proposition 3.3.1], the proper pushforward is left-exact and com-
mutes with composition. For partially proper morphisms, the compatibility of the
proper pushforward with respect to composition extends to the total derived functor
of the proper pushforward, i.e. if

X
f−→ Y

g−→ Z

are partially proper morphisms of adic spaces, then there is a canonical isomorphism

R(g ◦ f)! ∼= Rg! ◦Rf! (7.2)

of functors D+(X) −→D+(Y ), according to [AL20, Corollary 3.4.7].

Remark 7.6. If f : X −→ Y is Kiehl-partially-proper morphism of rigid varieties,
then r(f) : r(X) −→ r(Y ) is a Kiehl-partially-proper morphism of adic spaces.
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Proof. In view of the definitions 7.1 and 7.3, we only need to argue that r(f) is
separated and taut. But, r(f) is in fact partially proper by [Hub96, Remark 1.3.19
iii)] and hence in particular taut (by [Hub96, Lemma 5.1.4 ii)]) and separated.

Assuming that the ground field is discretely valued, Abe and Lazda prove the
following comparison result1 between their compactly supported cohomology and
the one from [van92]:

Lemma 7.7 ([AL20, Lemma 3.2.2]). Let f : X −→ Y be a partially proper, locally
of finite type morphism of adic spaces, with Y affinoid and of finite type over a
discretely valued affinoid field. Then H0

c (X/Y,−) coincides with the following sub-
functor of H0(X,−), obtained by transporting the notion of compactly supported
cohomology from [van92] to the adic context:

H0
c,vdP(X/Y,−) := lim−→

U ′

H0

U
′(X,−)

where the U ′ run over all finite unions of affinoids Ui that can be properly enlarged
over Y within X (i.e., for which there exist affinoids Vi ⊆ X such that Ui ⋐Y Vi)
and H0

U
denotes sections with support in the closed subset U ⊆ X.

The only part in the proof of [AL20, Lemma 3.2.2] that relies on the fact that the
ground field is discretely valued is the use of [Hub96, Remark 1.3.19 iii) (b) =⇒ (a)]
to deduce that f being partially proper implies that it is Kiehl-partially-proper and
hence that the collection of those open affinoids U ⊆ X that can be properly
enlarged over Y within X forms a basis for the topology of X. We are interested
in the case where f is the structure morphism of a Stein space. Since f is then in
particular Kiehl-partially-proper, we obtain the following result without having to
assume that the ground field is discretely valued: For any rigid Stein space X over
K and any coherent sheaf F on X, we have

Hj
c,vdP(r(X)/ Spa(K, oK), r

∗F) = Hj
c (r(X)/ Spa(K, oK), r

∗F)

for all j ≥ 0.
Moreover, using the equivalence of the underlying toposes of X and r(X), we can
transport our definition of H0

c (X,−) to the adic context, where it becomes

lim−→
U

H0
U
(r(X),−)

where U runs over all finite unions U of affinoids, U denotes the closure of U in
r(X) and H0

U
denotes sections with support in the closed subset U ⊆ r(X). Since

X is Stein, every open affinoid in X can be properly enlarged within X, whence we
obtain

Hj
c (X,F) = Hj

c,vdP(r(X)/ Spa(K, oK), r
∗F)

for all j ≥ 0. Summarising the above, we obtain:

1We note that [AL20, Remark 3.2.3] gives an example of how this comparison result is false in
greater generality, when one drops the assumptions on f .
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Lemma 7.8. Let X be a rigid Stein space over K and F a coherent sheaf on X.
Then

Hj
c (X,F) = Hj

c,vdP(r(X)/ Spa(K, oK), r
∗F) = Hj

c (r(X)/ Spa(K, oK), r
∗F)

for all j ≥ 0.

7.2 Abe and Lazda’s trace map

In this section, we summarise the construction of the trace map from [AL20, §5].
Two building blocks are needed, which are reviewed in §7.2.1 and §7.2.2 below.

7.2.1 The trace map for the relative open disk

Let X = D̊d
Y be the relative open unit disk over a Tate affinoid adic space

Y = Spa(R,R+) and let
p : D̊d

Y −→ Y

be the structure morphism. Choosing a topologically nilpotent unit ϖ ∈ R and
coordinates z1, . . . , zd on X, we have the following description of Hq

c (D̊d
Y /Y, ωD̊n

Y /Y )

as in [AL20, §5.1]:

Hq
c (D̊d

Y /Y, ωD̊n
Y /Y ) =

R⟨z−11 , . . . , z−1d ⟩
† · dz1

z1
∧ . . . ∧ dzd

zd
if q = d

0 if q ̸= d

where R⟨z−11 , . . . , z−1d ⟩† denotes the ring of series of the form∑
i1,...,id≤0

ri1,...,idz
i1
1 · · · z

id
d , ri1,...,id ∈ R,

for which there exists n ≥ 1 such that rni1,...,idϖ
i1+...+id → 0 as (i1, . . . , id) → −∞.

Switching to multi-index notation, in particular

dz1
z1
∧ . . . ∧ dzd

zd
=
dz1 ∧ . . . ∧ dzd

z1 · · · zd
=:

dz

z
,

the trace map is defined as

Trz1,...,zd : H
d
c (D̊d

Y /Y, ωD̊n
Y /Y ) −→ H0(Y,OY )∑

i≤0

riz
i · dz

z
7−→ r0

which globalises to
Trz1,...,zd : R

dp!ωD̊n
Y /Y −→ OY
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7.2. Abe and Lazda’s trace map

for any adic space Y . It is independent of the choice of coordinates z1, . . . , zd by
[AL20, Corollary 5.3.3]. This trace map generalises the residue map

res : Hd
c (D̊d, ωD̊d) −→ K

from Section 4.3. (Indeed, res projects onto the (−1)-th coefficient with respect to
the basis dz, which coincides with the 0-th coefficient with respect to dz/z.)

Remark 7.9 ([AL20, Remark 5.1.3]). One can replace p : D̊d
Y −→ Y everywhere by

the relative analytic affine space p : Ad,an
Y −→ Y and construct the trace map in a

similar way. This generalises the trace map

Hd
c (A

d,an
Y , ωAd,an

Y /Y ) −→ O(Y )∑
i≤0

riz
i · dz

z
7−→ r0

from [van92, 2.4], where it is proved that each f ∈ Hd
c (A

d,an
Y , ωAd,an

Y /Y ) can uniquely

be written as f =
∑

i≤0 riz
i · dz

z
(in multi-index notation) with coefficients ri ∈ O(Y )

and for which there exists some R ∈ |K×| such that f converges on
{(z1, . . . , zd, y) : all |zi| > R}.

7.2.2 Duality for regular closed immersions

As in [AL20, Definition 5.2.3], we say that a closed immersion u : X ↪−→ D of
adic spaces is regular of codimension c if the associated ideal sheaf JX on D is
locally generated by a regular sequence of c elements. Then u∗(JX/J 2

X) is locally
free of rank c, and its dual u∗(JX/J 2

X)
∨ is called the normal sheaf to X in D.

The top exterior power of the normal sheaf is denoted by nX/D. (We mention that
exterior powers commute with dual spaces by [Lan02, Proposition XIX.1.5].) By
the duality [AL20, Lemma 5.2.4] for regular closed immersions, we have, for any
perfect complex F of OX-modules, a canonical isomorphism

Tru : u∗RHomX(F , nX/D)
∼−−→ RHomD(u∗F ,OD)[c] (7.3)

in D(OD), natural in F and compatible with composition. In §7.2.3, we will re-
view the construction of the trace map for morphisms f : X −→ Y where Y is a
finite-dimensional adic space and f is smooth of relative dimension d and admits a
factorisation over a closed immersion u into a open unit disk over Y :

X D̊N
Y

Y

u

f p
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where p is the natural projection. In this situation, u is regular of codimension
N − d. In fact, the sequence

0 −→ u∗(JX/J 2
X) −→ u∗Ω1

D̊N
Y /Y
−→ Ω1

X/Y −→ 0 (7.4)

is exact (cf. [BLR95, Proposition 2.5]), so taking top exterior powers yields an
isomorphism u∗ωD̊N

Y /Y
∼= n∨

X/D̊N
Y

⊗ωX/Y and then tensoring with nX/D̊N
Y
finally yields

nX/D̊N
Y
⊗ u∗ωD̊N

Y /Y
∼= ωX/Y . (7.5)

Plugging in F = OX in (7.3), tensoring both sides with ωD̊N
Y /Y and then simpli-

fying with (7.5) and the projection formula [AL20, Corollary 3.8.2], we obtain an
isomorphism

Tru : u∗ωX/Y
∼−−→ RHomD̊N

Y
(u∗OX , ωD̊N

Y /Y )[N − d] (7.6)

as follows:

u∗(nX/D̊N
Y
)⊗ ωD̊N

Y /Y RHomD̊N
Y
(u∗OX ,OD̊N

Y
)[N − d]⊗ ωD̊N

Y /Y

u∗(nX/D̊N
Y
⊗ u∗ωD̊N

Y /Y ) RHomD̊N
Y
(u∗OX , ωD̊N

Y /Y )[N − d]

u∗ωX/Y

proj. formula

(7.3)

∼=

(7.5)

(7.7)

Both complexes in (7.6) only have cohomology in degree 0, where we obtain an
isomorphism of sheaves

u∗ωX/Y
∼−−→ ExtN−dD̊N

Y

(u∗OX , ωD̊N
Y /Y ). (7.8)

7.2.3 The trace map for closed subspaces of the open disk

As in §7.2.2, let Y be a finite-dimensional adic space and f : X −→ Y smooth of
relative dimension d admitting a factorisation over a closed immersion u into a open
unit disk over Y :

X D̊N
Y

Y.

u

f p

Consider the isomorphism

Tru : Ru!ωX/Y
∼−−→ RHomD̊N

Y
(u∗OX , ωD̊N

Y /Y )[N − d]
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7.2. Abe and Lazda’s trace map

from (7.6), where we have rewritten the left-hand side using u∗ = Ru∗ = Ru! (the
first equality being due to the exactness of u∗ and the second due to the equality
u∗ = u!). If we apply Rdp! to the above isomorphism, we obtain

Rdf!ωX/Y Rdp!RHomD̊N
Y
(u∗OX , ωD̊N

Y /Y )[N − d]

RNp!RHomD̊N
Y
(u∗OX , ωD̊N

Y /Y ).

∼

Composing with the map induced by OD̊N
Y
−→ u∗OX then yields

Rdf!ωX/Y −→ RNp!ωD̊N
Y /Y .

Finally, composing with Trz1,...,zN from §7.2.1 for a choice of coordinates on D̊N
Y

produces the trace map

TrX/Y : Rdf!ωX/Y −→ OY .

Then [AL20, Proposition 5.3.1] tells us that TrX/Y satisfies:

Proposition 7.10. Suppose that Y is a finite-dimensional adic space, and that
f : X −→ Y is a smooth morphism of relative dimension d, factoring through a
closed immersion into an open unit polydisc over Y . Then:

(i) TrX/Y does not depend on the choice of embedding u : X ↪−→ D̊N
Y over Y .

(ii) Suppose that g : Y −→ Z is a smooth morphism of relative dimension e, fac-
toring through a closed immersion into some relative open disc D̊M

Z . In short,
we have the commutative diagram

X Y

Z.
(dim d+e) g◦f

f (dim d)

g (dim e)

Then, via the identification resulting from

ωX/Z = ωX/Y ⊗ f ∗ωY/Z (7.9)

and the projection formula [AL20, Corollary 3.8.2], the diagram

Rd+e(g ◦ f)!ωX/Z Reg!ωY/Z

OZ

TrX/Z

Rg!(TrX/Y )

TrY/Z

commutes.

111



7. Comparison with other recent results

7.2.4 The trace map for Kiehl-partially-proper morphisms

Let Y be a finite-dimensional adic space, and f : X −→ Y a smooth morphism of
relative dimension d which is Kiehl-partially-proper. Then Definition 7.3 (ii) says
that, locally on Y , there exists a cover of X by open subspaces Ui such that the
restriction Ui −→ Y is as in §7.2.3, so we have the trace maps

TrUi/Y : Rdf!ωUi/Y −→ OY

which, as Abe and Lazda prove, glue to a map

TrX/Y : Rdf!ωX/Y −→ OY

that satisfies properties analogous to Proposition 7.10 above.

7.3 Comparison of results

7.3.1 Recovering Beyer’s trace map from Trr(X)/Spa(K,oK)

Let X be a connected d-dimensional smooth rigid Stein space over K and let

f : X −→ Sp(K)

be the structure morphism. Then the structure morphism r(f) : r(X) −→ Spa(K, oK)
is smooth of relative dimension d and Kiehl-partially-proper, so we have the trace
map Trr(X)/ Spa(K,oK) according to §7.2.4. Evaluating this trace map on global sec-
tions and transporting it onto Hd

c (X,ωX) via Lemma 7.8, we obtain

TrX : Hd
c (X,ωX) −→ K.

Lemma 7.11. The map TrX coincides with Beyer’s trace map t from Definition
4.12.

Proof. The map TrX is constructed locally on X by using closed immersions

X ⊇ U ↪−→ D̊N
K . (7.10)

Since X is Stein, [Lüt73, Theorem 4.25] tells us that there exists a global closed
immersion

u : X ↪−→ AN,an
K . (7.11)

By Remark 7.9, we can replace (7.10) by (7.11) in the construction of TrX in §7.2.3,
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whence we see that TrX fits into the commutative diagram

Rdf!ωX(Sp(K)) Hd
c (X,ωX) Hd

c (A
N,an
K , u∗ωX)

Hd
c (A

N,an
K , ExtN−d

AN,an
K

(u∗OX , ωAN,an
K

))

ExtNc (u∗OX , ωAN,an
K

)

K HN
c (AN,an

K , ωAN,an
K

) = ExtNc (OAN,an
K

, ωAN,an
K

)

TrX

Prop. 1.51

same as (7.8)

(degenerate) spectral sequence

restrict along O
AN,an
K

−→u∗OX

Trz1,...,zN

where Extqc on AN,an
K denotes the q-th derived functor of

Ext0c(F ,G) := H0
c (A

N,an
K ,HomAN,an

K
(F ,G))

as in [van92, 2.2]. Now we consider the composite

ExtNc (u∗OX , ωAN,an
K

)
β−→ H0(AN,an

K , u∗OX)
∨ γ−→ K

in the notation of [van92, 3.4], i.e. β denotes the Serre duality pairing from [van92,
Proposition 2.6 (3.)] for the sheaf u∗OX and γ denotes evaluation at 1. We will also
write β = β(u∗OX) and γ = γ(u∗OX) to keep track of the sheaf if other sheaves
come into play below. We claim that γ ◦ β coincides with the composite

ExtNc (u∗OX , ωAN,an
K

) −→ ExtNc (OX , ωAN,an
K

) = HN
c (AN,an

K , ωAN,an
K

)
Trz1,...,zN−−−−−−→ K.

Due to the commutative diagram

ExtNc (u∗OX , ωAN,an
K

) H0(AN,an
K , u∗OX)

∨ K

ExtNc (OX , ωAN,an
K

) H0(AN,an
K ,OX)

∨ K

β(u∗OX) γ(u∗OX)

β(OX) γ(OX)

it suffices to show that

ExtNc (OX , ωAN,an
K

) H0(AN,an
K ,OX)

∨ K

HN
c (AN,an

K , ωAN,an
K

)

β(OX) γ(OX)

Trz1,...,zN
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commutes. But this is true by the definition of β(OX), cf. [van92, proof of Lemma
2.5]. Hence we see that γ ◦ β expands the above commutative diagram to

Rdf!ωX(Sp(K)) Hd
c (X,ωX) Hd

c (A
N,an
K , u∗ωX)

Hd
c (A

N,an
K , ExtN−d

AN,an
K

(u∗OX , ωAN,an
K

))

ExtNc (u∗OX , ωAN,an
K

)

K HN
c (AN,an

K , ωAN,an
K

) = ExtNc (OAN,an
K

, ωAN,an
K

)

TrX

Prop. 1.51

same as (7.8)

(degenerate) spectral sequence

restrict along O
AN,an
K

−→u∗OXγ◦β

Trz1,...,zN

where everything commutes. Now the upper trapezoid in the above diagram is
exactly how van der Put’s trace map is defined in [van92, 3.4], so TrX coincides
with van der Put’s trace map. By [van92, Proposition 3.6], van der Put’s trace
map satisfies the same Serre Duality2 for Stein spaces (Theorem 5.3 above) as
Beyer’s trace map, hence they coincide by standard universal abstract nonsense.
This completes the proof of the lemma.

7.3.2 TrX/Y when X/Y is finite étale

The purpose of this subsection is to discuss the following question:

Question 7.12. Let X and Y be adic spaces coming from rigid analytic varieties
via Huber’s functor r, and let α : X −→ Y be a finite étale morphism. Does TrX/Y

coincide with the classical trace map

α∗OX −→ OY ?

We will give a conjectural outline how one might obtain a positive answer in a
special case, culminating in Remark 7.16 below. In the following, we take inspiration
from the proof of [Con00, Lemma 2.8.2]. We begin by noting that the question is
local on the base, whence we may assume that X and Y are affinoid and X −→ Y
is associated to a finite ring map A −→ B for which there exists a presentation

B = A⟨x1, . . . , xn⟩/(f1, . . . , fn) (7.12)

such that the image of det(∂fi/∂xj) is a unit in B (see Proposition 5.1). Assume
that the images of the xi in B are topologically nilpotent (i.e. they have supremum

2In fact, [van92, Proposition 3.6] only shows duality for i = 0, but this suffices by Remark 5.4.
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norm less than 1). In particular, the closed immersion corresponding to the top line
of the diagram

A⟨x1, . . . , xn⟩/(f1, . . . , fn) A⟨x1, . . . , xn⟩

A

takes X into D̊n
Y so we see that α admits a factorisation

X D̊n
Y

Y.

u

α p

We have ωX/Y = OX since α is étale. We introduce more notation and let

ξ : OX
∼−−→ nX/D̊n

Y
⊗ u∗ωD̊n

Y /Y

denote the isomorphism from (7.5) and let

η : ExtnD̊n
Y
(u∗OX , ωD̊n

Y /Y )
∼−−→ u∗(nX/D̊n

Y
⊗ u∗ωD̊n

Y /Y )

denote the isomorphism obtained by walking through the upper rectangular part
of the diagram (7.7) from right to left. Then, by design, the composite η−1 ◦ u∗(ξ)
coincides with the map Tru from (7.6). We will describe the maps η and ξ explicitly
further below in (7.16) and Lemma 7.13, respectively. To prove Proposition 7.12,
we need to show that the composition

α∗OX p!u∗OX p!u∗(nX/D̊n
Y
⊗ u∗ωD̊n

Y /Y ) p! ExtnD̊n
Y
(u∗OX , ωD̊n

Y /Y )

Rnp!RHomD̊n
Y
(u∗OX , ωD̊n

Y /Y )

OY Rnp!ωD̊n
Y /Y

ξ

∼=
η−1

∼=

spectral sequence

via OD̊n
Y
→u∗OX

Trx1,...,xn

coincides with the classical trace map α∗OX −→ OY . To further shorten the
notation, we denote the composite of the two vertical arrows in the above diagram
by

β : p! ExtnD̊n
Y
(u∗OX , ωD̊n

Y /Y ) −→ Rnp!ωD̊n
Y /Y .

As recalled in Definition 5.2, we can naturally view any coherent u∗OX-module F
as a coherent OX-module F̃ such that u∗F̃ = F . Thus we can also view η as
η = u∗η̃ with

η̃ : ExtnD̊n
Y
(u∗OX , ωD̊n

Y /Y )
∼ ∼−−→ nX/D̊n

Y
⊗ ωD̊n

Y /Y .
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Moreover, we have
α∗ ◦ (−)∼ = p!

because the identity α∗ = p! ◦ u∗ implies α∗ ◦ (−)∼ = p! ◦ u∗ ◦ (−)∼ = p! ◦ id = p!.
Hence the above diagram can be viewed as

α∗OX α∗(nX/D̊n
Y
⊗ u∗ωD̊n

Y /Y ) α∗(ExtnD̊n
Y
(u∗OX , ωD̊n

Y /Y )
∼)

OY Rnp!ωD̊n
Y /Y

ξ

∼=
η̃−1

∼=

β

Trx1,...,xn

In the following, we will also write η instead of η̃ for ease of notation. Since Y is
affinoid, we can compute at the level of global sections. Hence, setting

R = A⟨x1, . . . , xn⟩, J = (f1, . . . , fn) and M = Ωn
R/A,

the goal would be to show that the diagram

B = R/J (
∧n J/J2)∨ ⊗R/J M/JM ExtnR(R/J,M)

A Hn
c (D̊n

Y /Y, ωD̊n
Y /Y )

ξ

∼=

TrB/A

η−1

∼=

β

a0←[
∑
i≤0

aiz
i dz

z

(7.13)

commutes, where TrB/A is the trace of the finite flat ring map A −→ B as in Section
5.3. To justify that ExtnR(R/J,M) should indeed sit in the top right of the above
diagram, note that

α∗(ExtnD̊n
Y
(u∗OX , ωD̊n

Y /Y )
∼)(Y ) = ExtnD̊n

Y
(u∗OX , ωD̊n

Y /Y )
∼(X)

= ExtnD̊n
Y
(u∗OX , ωD̊n

Y /Y )
∼(u−1(D̊n

Y )) = ExtnD̊n
Y
(u∗OX , ωD̊n

Y /Y )(D̊
n
Y )

= ExtnD̊n
Y
(u∗OX , ωD̊n

Y /Y ) = ExtnR(R/J,M)

where the fourth equality H0(D̊n
Y , ExtnD̊n

Y
(u∗OX , ωD̊n

Y /Y )) = ExtnD̊n
Y
(u∗OX , ωD̊n

Y /Y )

comes from the spectral sequence for the derived functor of the composition be-
ing degenerate. Indeed, this spectral sequence is degenerate since D̊n

Y is quasi-Stein
and Ext iD̊n

Y
(u∗OX , ωD̊n

Y /Y ) is a coherent OD̊n
Y
-module for all i (see [Chi90, Proposi-

tion 3.3]). To study whether (7.13) commutes, we first need to describe the relevant
maps explicitly.

The map ξ

Due to the smoothness of α, we can assume that (f1, . . . , fn) is a regular sequence
and J/J2 is a free R/J-module of rank n with basis given by the residue classes fi
of the fi.
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Lemma 7.13. The map ξ has the following explicit description

ξ : B = R/J ∼−−→ (
n∧
J/J2)∨ ⊗R/J M/JM

1 7−→ [f1 ∧ . . . ∧ fn]∨ ⊗ u∗(df1 ∧ . . . ∧ dfn)

where, for m ∈M , u∗(m) := m⊗ 1 ∈M ⊗R R/J =M/JM .

Proof. Since X/Y is étale, the exact sequence (7.4) is just the isomorphism

δ : J/J2 ∼−−→ Ω1
R/A ⊗R R/J

where, for any b ∈ J , we have δ(b) = db⊗ 1. Taking the n-th exterior power of the
isomorphism δ and then tensoring it with (

∧n J/J2)∨ yields the map described in
the assertion of the lemma. But it also yields ξ by the definition of ξ, cf. (7.5).

The map ξ is canonical by construction, so it is independent of the choice of elements
f1, . . . , fn ∈ J yielding a presentation as in (7.12). This is indeed evident in the
explicit description of ξ, for if h1, . . . , hn ∈ J is another choice of such elements, then
any choice of a matrix G = (gij) with coefficients gij ∈ R satisfying hi =

∑
j gijfj

yields the relations [h1∧. . .∧hn]∨ = det(G)
−1
·[f1∧. . .∧fn]∨ and u∗(dh1∧. . .∧dhn) =

det(G) · u∗(df1 ∧ . . . ∧ dfn).

The map η

Next, the description of the map η : ExtnR(R/J,M) ∼−−→ (
∧n J/J2)∨ ⊗R/J M/JM

will be entirely analogous to the one in [Chi90, (4.14)]. For this, we first need to
discuss Koszul complexes. If S is a ring and t1, . . . , td an ordered sequence of d
elements, the Koszul complex K•(t) has the term

K−p(t) :=

p∧
Sd

in degree −p for 0 ≤ p ≤ d and boundary operator d−p : K−p(t) −→ K−(p−1)(t)
determined by d−p(ei1 ∧ . . . ∧ eip) =

∑p
j=1(−1)j+1tijei1 ∧ . . . ∧ êij ∧ . . . ∧ eip , where

e1, . . . , ed ∈ Sd denote the standard basis vectors. Then, given any S-module N ,
we are interested in the complex

K•(t;N) := HomS(K−•(t), N)

which is concentrated in degrees from 0 to d and whose boundary maps are given
by

dp(γ)(ei1 ∧ . . . ∧ eip+1) =

p+1∑
j=1

(−1)j+1 · tij · γ(ei1 ∧ . . . ∧ êij ∧ . . . ∧ eip+1).
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If t1, . . . , td is a regular sequence, then K•(t) provides a free resolution of S/I, where
I := (t1, . . . , td). In particular, the complex K•(t;N) then computes the Ext-groups
ExtpS(S/I,N), i.e. we have isomorphisms

ψp
t,N : ExtpS(S/I,N) ∼−−→ Hp(K•(t;N)). (7.14)

Since the d-th cohomology group ofK•(t;N) is N/IN (cf. the discussion subsequent
to (1.19)), composing this identification with ψd

t,N yields an isomorphism

φt,N : ExtdS(S/I,N) ∼−−→ N/IN (7.15)

in degree d, dependent on the choice of t. This dependence on t can be made explicit
as follows: If u1, . . . , ud ∈ I is another choice of such elements and G = (gij) is a
(d × d)-matrix with coefficients gij ∈ S satisfying ui =

∑
j gijtj, then the exterior

powers of the matrix G yield an isomorphism between the complexes K•(t;N) and
K•(u;N). In particular, we see that φu,N = det(G) · φt,N . Therefore, the relation

[u1 ∧ . . . ∧ ud]∨ = det(G)
−1
· [t1 ∧ . . . ∧ td]∨ then implies that the isomorphism

ηI,N : ExtdS(S/I,N) ∼−−→ (
d∧
I/I2)∨ ⊗S/I N/IN

y 7−→ [t1 ∧ . . . ∧ td]∨ ⊗ φt,N(y)

is canonical. Our η is the following instance of this isomorphism:

η = ηJ,M . (7.16)

The map β

It remains to describe the map β. For m ∈ N, we consider the open cover
Uεm = {Ui,εm}i=1,...,n of D̊n

Y \ Dn
Y (εm), where Ui,εm = {(z1, . . . , zn, y) : |zi| > εm}

and εm ∈ |K×| satisfies εm → 1 as m → ∞. Then, for any coherent sheaf F
on D̊n

Y , we have Hn−1(Uεm ,F) = Hn−1(D̊n
Y \ Dn

Y (εm),F) = Hn
Dn
Y (εm)(D̊n

Y ,F) for

n ≥ 2 and the lim−→m
of these computes Hn

c (D̊n
Y /Y,F), whereas for n = 1 we have

H1
D1
Y (εm)

(D̊1
Y ,F) = Coker(H0(D̊1

Y ,F) −→ H0(D̊1
Y \D1

Y (εm),F)). Now we would like

to define a map of complexes

θ•N : K•(f ;N) −→ lim−→
m

Č•−1(Uεm ,F) (7.17)

(where F corresponds to the R-module N over Dn
Y ) as follows: Given a

γ ∈ Kp(f ;N) = HomR(K−p(f), N), choose any m ≫ 0 and send γ to the Čech
(p− 1)-cochain whose (i1, . . . , ip)-coordinate (for i1 < . . . < ip) is

γ(ei1 ∧ . . . ∧ eip)
fi1 · · · fip

.
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In the following, we often simply write θ instead of θ•N , unless we really need to
keep track of N or the degree. For θ to be well-defined, we would need each power
series fij to be invertible on D̊n

Y \ Dn
Y (εm) for m ≫ 0. However, this is not true in

general in n ≥ 2 variables, for example: f(X, Y ) := X − Y has the sequence of
zeros (pn+1, pn+1) which approaches (1, 1) if K = Qp. Nevertheless, in the special
case of Remark 7.16 below, this condition is satisfied and θ is well-defined.

Lemma 7.14. Whenever it is well-defined, θ is indeed a map of complexes.

Proof. We will prove that

HomR(K−p(f), N) HomR(K−(p+1)(f), N)

Čp−1(Uεm ,F) Čp(Uεm ,F)

dp

θp θp+1

∂p−1

commutes. Starting in the top left of the above diagram with a γ ∈ HomR(K−p(f), N)
and first going right and then down yields the Čech p-cochain whose (i1, . . . , ip+1)-
coordinate is

dp(γ)(ei1 ∧ . . . ∧ eip+1)

fi1 · · · fip+1

=

∑p+1
j=1(−1)j+1 · fij · γ(ei1 ∧ . . . ∧ êij ∧ . . . ∧ eip+1)

fi1 · · · fip+1

.

On the other hand, first going down and then right yields the Čech p-cochain whose
(i1, . . . , ip+1)-coordinate is

p+1∑
j=1

(−1)j+1 · (the (i1, . . . , îj, . . . , ip+1)-coordinate of θp(γ))

=

p+1∑
j=1

(−1)j+1 ·
γ(ei1 ∧ . . . ∧ êij ∧ . . . ∧ eip+1)

fi1 · · · f̂ij · · · fip+1

which obviously coincides with the above, proving that θ is a map of complexes.

For the sake of further discussion, assume that the power series fi are invertible
on D̊n

Y \ D̊n
Y (εm) for m ≫ 0 (so in particular θ is well-defined). Then there is a

canonical map of functors

Ext0R(R/J,−) −→ H0
c (D̊n

Y /Y,−). (7.18)

Indeed, the left-hand side, when evaluated at a module N , consists of elements of
N that are annihilated by J = (f1, . . . , fn). Such elements, when regarded as global
sections of the corresponding sheaf, have compact support (due to the assumption
on the fi), i.e. they live in the right-hand side of (7.18). Now we want to describe
β with the help of θ, but first we need to introduce more notation. For p ≥ 2, let

θpN : Hp(K•(f ;N)) −→ lim−→
m

Hp−1(Uεm ,F) = Hp
c (D̊n

Y /Y,F)

119



7. Comparison with other recent results

denote the map induced by θ in cohomology in degree p and let

θ1N : H1(K•(f ;N)) −→
lim−→m

H0(Uεm ,F)

H0(D̊n
Y ,F)

= H1
c (D̊n

Y /Y,F)

denote the composite of the canonical projection modulo H0(D̊n
Y ,F) with the map

induced by θ in cohomology in degree 1. Moreover, let

θ0N : H0(K•(f ;N)) = HomR(R/J,N) −→ H0
c (D̊n

Y /Y,F)

be defined as in (7.18). Finally, recall the isomorphisms

ψp
f,(−) : ExtpR(R/J,−)

∼−−→ Hp(K•(f ;−))

as in (7.14).

Conjecture 7.15. Assume that the power series fi are invertible on D̊n
Y \ D̊n

Y (εm)
for m≫ 0 (so in particular θ is well-defined). Then:

(i) The maps
θ•(−) ◦ ψ

•
f,(−) : Ext•R(R/J,−) −→ H•c (D̊n

Y /Y,−)

build a morphism of δ-functors. Note that θ0(−) ◦ ψ0
f,(−) by definition coincides

with (7.18).

(ii) β is induced by the unique δ-functorial map

Ext•R(R/J,−) −→ H•c (D̊n
Y /Y,−)

which is the canonical map (7.18) in degree 0.

If Conjecture 7.15 were true, an immediate consequence would be that

β = θnM ◦ ψ
n
f,M (7.19)

as maps ExtnR(R/J,M) −→ Hn
c (An

Y /Y, ωAn
Y /Y ).

Remark 7.16. Consider the special case where X = Y, α = id and fi = xi and
assume that (7.19) holds. Then the diagram (7.13) commutes.

Proof. Starting with 1 ∈ B = A in the top left of the diagram (7.13) and us-
ing the explicit descriptions of ξ and η, we first observe that η−1(ξ(1)) is the el-
ement y ∈ ExtnR(R/J,M) which satisfies φf,M(y) = u∗(dx1 ∧ . . . ∧ dxn). Then
ψn
f,M(y) ∈ Hn(K•(f ;M)) is represented by the element γ ∈ HomR(

∧
nRn,M)

which is determined by γ(e1 ∧ . . . ∧ en) = dx1 ∧ . . . ∧ dxn. Thus we see that
β(y) = θnM(ψn

f,M(y)) = θnM(γ) = is the class of

dx1 ∧ . . . ∧ dxn
x1 · · ·xn

.

Finally, applying Trx1,...,xn to this obviously produces 1, which coincides with TrA/A(1).
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7.3.3 Recovering compatibility with respect to composition

Theorem 7.17. Let α : X −→ Y be a finite étale morphism of smooth connected
d-dimensional Stein spaces over K, so we have the commutative diagram

X Y

Sp(K)

(dim d) g◦α

α (dim 0)

g (dim d)

of smooth morphisms. Assume that Question 7.12 has an affirmative answer. Then,
starting with the commutativity of the diagram

Rd(g ◦ α)!ωX Rdg!ωY

OSp(K)

TrX

Rg!(TrX/Y )

TrY
(7.20)

(which is due to Proposition 7.10 (ii)), evaluating on global sections and applying
the identifications from Lemma 7.8 and Lemma 7.11 recovers the commutativity of
the diagram

Hd
c (X,ωX) Hd

c (Y, α∗ωX) Hd
c (Y, ωY )

K.
tX

Hd
c (Y,tα)

tY

Proof. First of all, the identity (7.9) amounts in our case to

ωX = α∗ωY (7.21)

since α is étale. Moreover, since α is finite and thus in particular proper, we have
α! = α∗. We also have Rα∗ = α∗ since α is finite. Thus in our case, the projection
formula [AL20, Corollary 3.8.2] yields the isomorphism

α∗(α
∗ωY ) = ωY ⊗ α∗OX . (7.22)

Combining (7.21) and (7.22), we note that the evaluation of (7.20) on global sections
yields that

Hd
c (X,ωX) Hd

c (Y, α∗ωX) Hd
c (Y, ωY ⊗ α∗OX) Hd

c (Y, ωY ⊗OY )

Hd
c (Y, ωY )

K

TrX

Hd
c (Y,id⊗TrX/Y )

TrY
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commutes. But we can expand this diagram to

Hd
c (X,ωX) Hd

c (Y, α∗ωX) Hd
c (Y, ωY ⊗ α∗OX) Hd

c (Y, ωY ⊗OY )

Hd
c (Y, ωY )

K

TrX=tX

Hd
c (Y,tα)

Hd
c (Y,id⊗TrX/Y )

TrY =tY

and our goal is to deduce the commutativity of the lower trapezoid. Given the com-
mutativity of the outer contour of the diagram, it suffices to show the commutativity
of the upper triangle. But this is due to the commutativity of

α∗ωX ωY ⊗ α∗OX ωY ⊗OY

ωY

tα

id⊗TrX/Y

which holds because TrX/Y : α∗OX −→ OY coincides with the usual trace map

α∗OX HomY (α∗OX ,OY ) OY
(5.4)

f 7−→f(1)

by our assumption that Question 7.12 has an affirmative answer.
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über einem bewerteten Körper”. Publications Mathématiques de l’IHÉS
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