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Abstract

In this thesis we study quantum corrections to string-derived effective actions per se as well
as their implications for phenomenologically relevant setups like the Large Volume Scenario
(LVS) and the anti-D3-brane uplift.

In the first part of this thesis, we improve the understanding of string loop corrections on
general Calabi-Yau orientifolds from an effective field theory perspective by proposing a new
classification scheme for quantum corrections. Thereby, we discover new features of string loop
corrections, like for instance possible logarithmic effects in the Kahler and scalar potential,
which are relevant for phenomenological applications like models of inflation.

In the next part of the thesis, we derive a simple and explicit formula, the LVS parametric
tadpole constraint (PTC), that ensures that the anti-D3-brane uplifted LVS dS vacuum is
protected against the most dangerous higher order corrections. The main difficulty appears to
be the small uplifting contribution which is necessary due to the exponentially large volume
obtained via the LVS. This in turn requires a large negative contribution to the tadpole which
is quantified in the PTC. As the negative contribution to the tadpole is limited in weakly
coupled string theories, the PTC represents a concrete challenge for the LVS.

The last part of the thesis investigates the impact of α′ corrections to the brane-flux
annihilation process discovered by Kachru, Pearson, and Verlinde (KPV) on which the anti-
D3-brane uplift is based. We find that α′ corrections drastically alter the KPV analysis with
the result that much more flux in the Klebanov-Strassler throat is required than previously
assumed in order to control the leading α′ corrections on the NS5-brane. The implication for
the LVS with standard anti-D3-brane uplift can again be quantified by the PTC. Incorporating
this new bound significantly increases the required negative contribution to the tadpole. In
addition, we uncover a new uplifting mechanism not relying on large fluxes and hence deep
warped throats, thereby sidestepping the main difficulties related to the PTC.



Chapter 0

Zusammenfassung

Diese Dissertation befasst sich mit Quantenkorrekturen zur effektiven, niedrig energetischen
Wirkung der Stringtheorie. Dabei werden Quantenkorrekturen per se sowie deren Auswirkung
auf phenomenologisch relevante Szenarien wie das Large Volume Scenario (LVS) und den
anti-D3-Branen Uplift studiert.

Im ersten Teil werden String-Scheifenkorrekturen aus der effektiven Feldtheorie-Perspektive
erforscht. Dabei wird ein neues Schema zur Klassifizierung von Quantenkorrekturen vorgeschla-
gen, durch welches anschließend bisher unentdeckte Eigenschaften der Schleifenkorrekturen
entdeckt werden. Diese beinhalten beispielsweise potentielle logarithmische Korrekturen zum
Kähler- oder skalaren Potential. Es zeigt sich, dass diese neuen Effekte einen wichtigen Einfluss
auf phenomenologische Anwendungen, wie beispielsweise auf stringtheoretische Modelle der
Inflation, haben können.

Im zweiten Teil wird eine einfache und explizite Formel, der sogenannte LVS parametric
tadpole constraint (PTC), hergeleitet. Diese stellt sicher, dass das de Sitter Vakuum erzeugt
mittels des LVS mit anti-D3-Branen Uplift vor den gefährlichsten Quantenkorrekturen geschützt
ist. Die größte Schwierigkeit besteht dabei darin, dass der Uplifting-Term aufgrund des
exponentiell großen Volumens exponentiell klein sein muss. Dies wiederum erfordert einen
großen negativen Beitrag zum Tadpole, welcher durch den PTC quantifiziert wird. Da der
negative Beitrag zum Tadpole in schwach gekoppelter Stringtheorie limitiert ist, stellt der PTC
eine konkrete Anforderung an konsistente LVS Modelle dar.

Im letzten Teil werden die Auswirkungen von α′ Korrekturen auf den von Kachru, Pearson
und Verlinde (KPV) entdeckten Brane-Flux-Annihilationsprozess untersucht, auf dem der
Anti-D3-Branen-Uplift basiert. Es zeigt sich, dass α′ Korrekturen die KPV-Analyse drastisch
verändern können. Um die führenden α′ Korrekturen zu kontrollieren wird viel mehr Fluss
im Klebanov-Strassler Throat benötigt als bisher angenommen. Dieser neue Effekt wird
anschließend in den PTC implementiert. Im Vergleich zum vorherigen Kapitel zeigt sich, dass
der erforderliche negative Beitrag zum Tadpole signifikant steigt. Außerdem wird ein neuer
Uplifting-Mechanismus vorgeschlagen, der nicht auf langen, gewarpten Throats basiert und
damit die Schwierigkeiten, die mit dem PTC einhergehen, umgeht.
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Chapter 1

Introduction

1.1 The current status of high energy physics

The world around us as we understand it today is characterized by four fundamental forces.
One of these forces is gravity, described by General Relativity (GR), which treats gravity
as the intrinsic curvature of spacetime. The remaining three forces, the strong, weak, and
electromagnetic interactions, are described by gauge theories and are unified in what is known
as the Standard Model (SM) of particle physics. The SM is the result of decades of mutually
stimulating research by experimental and theoretical physicists which culminated in the dis-
covery of the Higgs boson [5, 6]. The striking success of the SM is built on the framework of
Quantum Field Theory (QFT). The concept of QFT unifies Quantum Mechanics and Special
Relativity and particles are understood as pointlike energy concentrations of some field. In
the language of QFT, the SM is a renormalizable effective field theory (EFT) meaning that
all its coupling constants have positive or zero mass dimension. In other words, the coupling
constants are relevant or marginal, respectively. The SM (extended by massive neutrinos)
describes all known elementary particles and their interactions to an astonishing accuracy1.
Despite this huge accomplishment it is widely believed that the SM can not be the fundamental
theory of our world.

The reason being that the SM itself leaves many questions unanswered as, for instance, why
the Higgs mass is so small which is related to the electroweak hierarchy problem, how neutrino
masses are generated, why there are three fermion generations, or why the (renormalizable)
Θ-QCD term is so small. It would also be natural to ask why there are 19 a priori undetermined
parameters in the SM.

From a more theoretical perspective, the main reason why the SM can not be the truly,
fundamental theory is that it fails to include gravity. Since the gravitational coupling constant,
the Newton constant, is irrelevant in EFT language – it is of negative mass dimension – gravity
is non-renormalizable and hence can not be completely described perturbatively in QFT (the

1After fixing its 19 free parameters by experiments.

1
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framework the SM is based on). Intuitively, this is understood by noting that the gravitational
force increases with mass and hence energy. Since in quantum mechanics and therefore also
in QFT arbitrarily large energy fluctuations in a sufficiently small region of spacetime are
allowed, there is no bound on the strength of gravitational interactions. This is in fact the
nature of irrelevant couplings – they are increasingly important with increasing energy. It is
the general belief that this tells us that there should be a more fundamental theory at the
energy scale where the non-renormalizable theory becomes strongly coupled. This reasoning
has proved very useful in the past for Fermi’s theory. In that theory the four fermion interaction
is non-renormalizable such that the theory becomes invalid at around 100GeV. This led to the
prediction of the Glashow-Salam-Weinberg theory of electroweak interactions [7–9].

For gravity the scale of strong coupling is the Planck scale which is in natural units
(ℏ = c = 1) given by MP = (8πGN )

−1/2 ≈ 2.43 × 1018GeV. This tells us that as an effective
field theorist we expect new physics is guaranteed to become relevant around the Planck scale.
The Planck scale is much higher than the energy at currently performed collider experiments
which is a few TeV.

On the opposite end of energy scales, in cosmology, the history of the universe is described
by the standard model of cosmology called the Lambda-Cold-Dark-Matter model (ΛCDM).
It is the simplest model that accomplishes to describe the cosmic microwave background,
the large-scale structure in the distribution of galaxies, and the accelerated expansion of the
universe that we observe. The ΛCDM model assumes GR and baryonic matter (described by
the SM), as well as two additional components namely dark energy denoted by Λ, and cold
dark matter (CDM). Dark energy makes up 70% of the energy density today [10] and is given
by the cosmological constant. Our universe is accelerated expanding as measured in [11, 12]
which can be explained by a positive cosmological constant.

But as it was the case for the SM, also ΛCDM can not be the final story. One important
reason is that ΛCDM is completely agnostic about the microscopic nature of dark matter and
dark energy – it does not explain their origin but just assumes both components to exist.

One very reasonable way of approaching all these unresolved puzzles beyond what is
currently known is to study a “theory of everything” that is capable of unifying all four
fundamental forces and then study what this theory offers as solutions for our unanswered
questions. One possible theory that describe physics even to the Planck scale is String Theory.
Let us in the next sections explain why string theory is a fascinating theory worth studying
and what it can and (so far) can not explain. This presentation will be incomplete and the
focus will be on the issues addressed in this thesis.

1.2 String Theory as a candidate for a UV complete theory

The simple basic idea of string theory (see e.g. [13–19] and references therein) is that the
fundamental objects of a theory are not point-like as in a QFT, but that the fundamental
object is a unique string that extends along a spatial coordinate and time, sweeping out a
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worldsheet. In contrast, point-like objects sweep out a worldline. Different particle species are
then found to be different vibration modes of this string. Since strings are one-dimensional
objects, there are only two distinct topologies that a string can form: a line (open string)
or a circle (closed string). Upon quantizing the string, the massless spin two excitations of
the closed string can be identified with the graviton whereas the massless excitations of open
strings lead to Yang-Mills gauge bosons. This already hints towards a theory that unifies
Yang-Mills theory and gravity. Thinking one step further we observe that since interactions in
string theory are understood as the joining and splitting of strings it can be quite intuitively
concluded why string theory necessarily requires gravity: The joining and splitting of open
strings automatically encapsulate closed strings and hence gravity. This is very remarkably
since in a perturbative QFT the unification of Yang-Mills theories with gravity seems to be
impossible whereas in string theory describing Yang-Mills theories without gravity is impossible.

Another appealing property of string theory is that it does not have adjustable free pa-
rameters besides the string length ls, or equivalently the string scale Ms = α′−1/2 = 2π/ls.
Rather it is the case that all couplings and masses are set by the dynamics of the theory itself.
A particular example is the so-called string coupling constant gs which arises as the vacuum
expectation value (vev) of the dilaton, an excitation mode of the closed string.

It is even more remarkable that all string theories with bosonic and fermionic degrees of
freedom turn out to be supersymmetric and only anomaly-free in ten spacetime dimensions.
In this sense, (super-)string theory predicts the number of spacetime dimensions. There are
five consistent superstring theories, namely heterotic string theory with gauge group E8 ×E8

or SO(32), type I, type IIA, and type IIB string theory. In fact, all these are related to each
other by dualities. They can hence be seen as different limits of one underlying theory, called
M-theory. At low energies and small string coupling the five string theories are described by
ten dimensional supergravity (sugra) theories2.

Besides these very desirable features a consistent high-energy theory should have, there is
(so far) no direct implication for real world physics. Nevertheless string theory continuously
improved our understanding of real world physics. The study of the string worldsheet and its
conformal symmetry, for example, led to new insights into 2d conformal field theories (CFTs)
that are directly applicable to real world physics like condensed matter theory. Also the
AdS/CFT correspondence first proposed by Maldacena [20–22] relating strongly coupled QFTs
in d dimensions and weakly coupled gravity in d+ 1 dimensions emerged from string theory.
Since weakly coupled gravity is well understood, this gauge/gravity duality has wide-ranging
applications from nuclear physics to condensed matter theory, offering insights into strongly
coupled systems. Additionally string theory has also provided new results in mathematics
like mirror symmetry (see e.g. the lecture notes [23, 24] and references therein), which relates
topologically different Calabi-Yau manifolds.

2Very intriguingly, there exist only five sugra theories in ten dimensions which are precisely the low-energy
limits of the five string theories. This motivates the so called string lamppost principle which postulates that
all consistent quantum gravity theories come from string theory such that string theory is the unique theory of
quantum gravity.
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With all that said, why then do physicists not agree that string theory is the UV completion
of the physics we observe? The main reason is that by the time of writing up this thesis there
is no experimental evidence for string theory. This is on the one hand due to the string scale
being incredibly large from the point of view of currently performed collider experiments3. On
the other hand, one may imagine/hope that there exist emergent phenomena from string theory
testable at energies accessible today or in near future. This broadly encapsulates the goal of
string phenomenology. The main obstacle here is that string theory has a plethora of vacua4,
giving rise to the string theory landscape of vacua. The landscape originates from many possible
choices of compactifying the ten dimensional theory down to our four observable dimensions.
This includes details of the compactification geometry or choices of flux quanta [28, 29]. One
interpretation of this is that different solutions of string theory describe different universes, just
as different solutions to Einstein’s equations describe different galaxies or planetary systems.
For the believers of the multiverse this may be a necessary property of a fundamental theory
whereas for others it is more an obstacle as it radically reduces the predictive power of the
theory at low energies. The reason is that a plethora of vacua essentially means that our
fundamental 4d physics parameters are not really fundamental but just drawn from a large set
of possible choices.

Even more importantly, we observe an accelerated expanding universe. However, completely
trustworthy calculations proving that string theory actually allows for accelerated expanding
universes are still lacking, despite its vast number of possible vacua/universes and decades of
research in this direction. The difficulty of obtaining accelerated expanding universes from
string theory will be introduced in detail in Sect. 1.4 and represents also the overarching subject
of this thesis.

1.3 Compactification and moduli stabilisation

We have already stated that superstring theories are consistent only in ten spacetime dimensions.
This immediately begs the question how this can be in agreement with the four spacetime
dimensions we observe. The typical way to achieve four dimensional effective physics is by
demanding that six space dimensions are compact and small thereby escaping detection of
present experiments. This is a rather ad hoc assumption which, apart from the attempt in [30],
lacks a deeper explanation of why exactly six dimensions should be compact. Even though the
compact dimensions are not detectable, they have an imprint on the 4d physics: The geometry
of the compact space determines the field content of the 4d theory. This intriguing idea of
compactification goes back to Kaluza and Klein (KK) [31, 32].

3As nicely pointed out in [25]: The conceptual shortcoming of string theory not making unique predictions
at the TeV scale is as big as the conceptual shortcoming of QCD not making predictions Kopernikus could
have verified.

4The number of vacua in Calabi-Yau compactifications of IIB string theory is estimated to be of order 10500

[26] or 10272,000 in more general geometries including D-branes [27] which is huge but finite.
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In string theory, the ansatz for the background spacetime M10 realizing the idea of Kaluza
and Klein is a product structure of the form

M10 = M1,3 × Y , (1.1)

where M1,3 are the observed non-compact dimensions and Y a six dimensional compact
manifold. The associated ansatz for the ten-dimensional metric consistent with four dimensional
Poincaré invariance is given by [33–36]5

ds2 = e2A(y)ηµνdxµdxν + e−2A(y)gmndy
mdyn , (1.2)

where ηµν with µ, ν ∈ {0, . . . , 3}, is the metric on the external spacetime which we have
taken to be the four dimensional Minkowski metric. The metric on Y is denoted by gmn with
m,n ∈ {4, . . . , 9} and e−4A(y) is the warp factor depending only on the internal coordinates ym.
The lower dimensional effective theory is obtained by expanding all ten dimensional fields into
eigenmodes of the internal manifold Y and then integrate over the compact space. Neglecting
the warp factor for the moment, this can be illustrated with a ten dimensional free scalar field
ϕ(x, y) obeying the 10d Laplace equation ∆10ϕ = 0. The ansatz for expanding ϕ(x, y) into
eigenmodes ψn(y) of the Laplace-Beltrami ∆6 operator on Y reads

ϕ(x, y) =
∞∑︂

n=0

ϕn(x)ψn(y) , (1.3)

where ϕn(x) only depends on the external coordinates. Due to the product structure of the
metric the Laplacian splits according to ∆10ϕ = (∆4 +∆6)ϕ = 0. The internal Laplacian ∆6

acts only on the eigenmodes ψn and yields ∆6ψn = m2
KK,nψn, where mKK,n has dimension mass

and is called the KK mass of the n-th eigenmode. From the 4d perspective after integrating out
the internal dimensions this looks like a mass term for the ϕn(x) fields: (∆4+m

2
KK,n)ϕn(x) = 0.

Since there are infinitely many eigenfunctions on a compact space, an infinite tower of massive
scalars called KK modes arises. Their masses are quantized (the spectrum of the Laplacian on
a compact manifold is discrete) and their scale is given by the inverse of the typical length scale
R of the compact manifold: mKK ∼ 1/R. The mass scale mKK is also called KK scale. If the
internal dimensions are sufficiently small, the infinite tower of massive scalars becomes heavy
and can be integrated out consistently. In this manner, one obtains an effective theory valid
below the KK scale which then includes only the massless zero KK-modes. These zero modes
are not only massless but also have no potential and can therefore take arbitrary constant
values that all fulfill the vacuum solution. Such fields are called moduli. A KK decomposition,
as exemplified above for a free scalar field, can be performed for any field of the theory including
the metric. Since the moduli arise as zero modes of the internal Laplacian, i.e. ∆ϕ0 = 0, they
are in one-to-one correspondence with the harmonic forms on Y and can hence be counted by
the dimensions hp,q of the corresponding Dolbeault cohomology classes.

5A more general ansatz is presented in [37].
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A well trodden path in string theory is to choose Y to be a Calabi-Yau 3-fold or six-
torus6. A Calabi-Yau k-fold is a manifold admitting a Kahler metric with SU(k) holonomy
or, equivalently, a manifold which admits a Kahler metric with vanishing Ricci curvature.
One reason for this choice is that these manifolds will retain some supersymmetry even after
compactification. Eventually, supersymmetry will then be broken well below the KK scale as
we do not observe any supersymmetry at the Large Hadron Collider (LHC).

The moduli of a Calabi-Yau (arising as moduli of the internal metric gmn) are the allowed
deformations of the metric that keep the manifold Ricci flat. This leads to h1,1 Kahler moduli
describing the size of 4-cycles of the Calabi-Yau and to h2,1 complex structure moduli describing
the ratio of volumes of 3-cycles of the manifold7. For the simple example of a torus, the Kahler
modulus is the overall size of the torus whereas the complex structure modulus is the ratio
of the sizes of the two 1-cycles of the torus. For generic compactifications on Calabi-Yau
manifolds, one typically has O(100− 1000) of moduli.

Moduli stabilisation

The problem of moduli stabilisation now arises in the following way. After compactification
to 4d and integrating out the massive KK modes, we are left with a theory containing many
massless scalars/moduli. If these would remain massless in the full theory, they would mediate
long-range fifth forces which are very strongly constrained [40]. Therefore we need to create a
potential for all the massless scalars in such a way that in the minimum of the potential all
scalars obtain a heavy mass thereby escaping detection. This is known as moduli stabilisation.

It is generally not difficult at all to make scalars massive, as they can only be massless
if protected by some symmetry. Without supersymmetry, the moduli of a compactification
are not protected and hence guaranteed to become massive by some quantum corrections.
The problem is that most quantum corrections are not calculable explicitly for a general
compactification and thus we can not control the potential for the moduli or their masses.

This is where supersymmetry and a compactification on a Calabi-Yau come to rescue.
Compactifying type II string theory on a Calabi-Yau is a controlled framework as it leads to
N = 2 supersymmetry in four dimensions. In N = 2 theories in 4d there is no scalar potential
since all scalars are protected by the large amount of supersymmetry and are therefore massless.
Accordingly, to obtain a scalar potential we have to break supersymmetry to N = 1. To
understand how this is usually done we have to introduce the concept of a Dirichlet p-brane
and of an orientifold p-plane.

A Dirichlet p-brane, Dp-brane for short, is a p+ 1 dimensional dynamical hypersurface in
the d = 10 dimensional spacetime on which oriented open strings can end [41–43]. Dp-branes
have a non-trivial action describing their interaction with open and closed strings. The position
of a Dp-brane in the transversal space is given by the vev of d− p− 1 scalar fields which are

6Recent work on compactifications not using Calabi-Yau manifolds can be found in [38, 39].
7Note that there also exist moduli coming from all other 10d fields besides the metric. In fact, they pair up

with the metric moduli to form h1,1 complexified Kahler and h2,1 complexified complex structure moduli.
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called position moduli. Additionally, a Dp-brane breaks half of the supersymmetries since the
boundary conditions of the brane relate the left- and right-moving fields at the endpoints of the
open string. And since both the left- and right-moving sector preserve some supersymmetry,
only a linear combination remains. A crucial fact for phenomenology is that a stack of N
Dp-branes carries a U(N) gauge theory on the worldvolumes of the branes. If branes are not
on top of each other but intersect, standard model matter can be realized on their intersection
locus.

Introducing an arbitrary number of D-branes into the theory generically leads to so called
tadpoles which are non-vanishing 1-point functions. As in QFT, they signal an instability of
the vacuum. In string theory, a Dp-brane sources a Ramond-Ramond (R-R) (p+ 1)-form field
which is part of the closed string spectrum. This linear coupling induces an R-R tadpole. To
cancel the R-R tadpole it is necessary to include unoriented strings and therefore Op-planes
since O-planes couple with the opposite sign to the R-R (p+ 1)-form fields.

To understand the concept of an orientifold, O-plane for short, we consider first the simpler
concept of an orbifold. An orbifold of some manifold X is the quotient space X/G where G
is some discrete isometry group of X. This is readily understood for the simple example of
the orbifold S1/Z2 where the S1 has radius R and Z2 acts as a reflection on the coordinate
x of the circle: x ∼ −x. The orbifold is therefore the real line of length πR as illustrated in
Fig. 1.1 and has two fixed points8 at x = 0, πR which are invariant under Z2.

Figure 1.1: Illustration of the orbifold S1/Z2 which is an interval.

The orientifold plane (O-plane) now arises when not only a geometric action is modded
out (as above for the orbifold) but when additionally worldsheet parity (orientation reversal
of the string) is modded out. This combined modding out is called orientifolding and the
quotient space is called orientifold. At the fixed points of the orbifold action, the theory is
unoriented due to the orientation reversal which projects out half of the states. This indicates
the presence of a new object called O-plane located at these fixed points [41]. It can be shown
that O-planes have negative tension and since closed strings can end on O-planes, they source
various closed string sector fields. Moreover, in string perturbation theory, O-planes are not
dynamical and therefore, unlike D-branes, have no degrees of freedom on their worldvolume.

8In higher dimensional theories the fixed points are fixed planes. Consider for instance the spacetime
R1,3 × S1/Z2 in which the fixed planes are 1 + 3 dimensional.
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The reason is that open strings can not end on the O-plane due to the orientation reversal of
the string. Important for the issue of canceling tadpoles is the fact that Op-planes source the
R-R (p+1)-form field with a different sign and coefficient compared to Dp-branes. R-R tadpole
cancellation is therefore achieved by adding the right number of Dp-branes and Op-planes. In
addition, it can be arranged that in theories with D-branes and O-planes the four dimensional
effective theory has N = 1 supersymmetry. This is exactly what we were after in the context
of moduli stabilisation for introducing a scalar potential for the moduli.

In the course of this thesis we will be working in the framework of the low energy super-
gravity effective action of type IIB string theory exclusively but some results also carry over to
other string theories. A motivation to study type IIB string theory in the context of dS vacua
will be given in Sect. 1.4. Let us therefore explain moduli stabilisation in more detail in the
context of orientifold compactifications of type IIB string theory (for more details see [44]).

In order to stabilize all scalar fields in the effective 4d theory the knowledge of the field
content of the 10d string theory is required. The bosonic field content of type IIB string
theory contains the following set of fields: the dilaton Φ, the metric G2 (µν), the antisymmetric
Kalb-Ramond field B2 [µν] as well as the Ramond-Ramond form fields C0, C2, and C4. The
corresponding action is given in Sect. 2.2.1. Orientifold compactifications of type IIB string
theory preserve N = 1 supersymmetry in four dimensions if the theory contains either O3/O7-
planes or O5/O9-planes. In the following we consider the class of orientifold compactifications
with O3/O7-planes since they allow for Klebanov-Strassler throats [45] (to be described below)
and a consistent description of the backreaction of fluxes onto the geometry by including a
warp factor9 [36] as in the ansatz (1.2). Further more models with O3/O7-planes allow for
rich phenomenology due to intersecting D7-branes.

Since orientifolding projects out part of the spectrum, the cohomology groups split up into
even (+) and odd (−) eigenspaces under the orientifold action such that hp,q = hp,q− + hp,q+ .
In the following we assume h1,1− = 0 such that no scalar fields from B2 and C2 arise in the
compactification and further neglect D7- and D3-position moduli. The treatment of position
moduli is reviewed for instance in [47] and generalizations to h1,1− ≠ 0 are discussed in [48]. The
number of complex moduli is then given by h2,1− complex structure moduli, the axio-dilaton
and h1,1+ Kahler moduli10. It can be shown that the theory in 4d can be described by N = 1
supergravity. Accordingly, the scalar potential V is characterized by a holomorphic function
W called superpotential and by a real function K known as the Kahler potential. The scalar
potential is then given by

V = eK
(︂
Kiȷ(DiW )(DȷW ) +Kαβ(DαW )(DβW )− 3|W |2

)︂
, (1.4)

9Including the warp factor the internal manifold is no longer Calabi-Yau but conformally Calabi-Yau
which geometrically ‘comes as close as possible’ to a Calabi-Yau. For the case of O5/O9-planes for instance
the backreaction of fluxes is much more drastic and one needs to consider more general manifolds of SU(3)
structure. See [46] for more details.

10Note that h2,1
+ counts the number of vector fields arising from the reduction of C4 and thus does not count

scalar fields.
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where DMW = ∂MW +(∂MK)W , ∂M denotes the derivative w.r.t. the M -th modulus, α, β =
1, · · · , h2,1− + 1, i, j = 1, · · · , h1,1+ , and M is either a complex structure or Kahler modulus. At
leading order in α′ and string loops (see below for more details), W and K are given by

W =

∫︂

Y
Ω ∧G(3) , K = −2 lnV − ln(−i(τ − τ))− ln

(︃
−i
∫︂

Y
Ω ∧ Ω

)︃
, (1.5)

where Ω is the non-vanishing holomorphic three form of the Calabi-Yau, G(3) the 3-form flux,
τ the axio-dilaton, and V the Calabi-Yau volume. The leading order superpotential is called
the Gukov-Vafa-Witten superpotential [49, 36]. It is induced by three form fluxes and depends
only on the complex structure moduli and the axio-dilaton. The Kahler potential is always
a function of all moduli. The dependence on the Kahler moduli in K is precisely such that
the first and last term in (1.4) cancel (independently of the choice of W ) making type IIB
string theory a no-scale model [50]. As a result, all Kahler moduli are in the leading order
approximation (1.5) massless.

The complex structure moduli are now stabilized (acquire a mass in the minimum of the
scalar potential) by the second term in (1.4) using 3-form fluxes G(3)

11. The minimum of
the scalar potential is obtained by solving the SUSY preserving conditions DαW = 0 [35, 36]
for the complex structure moduli leading to a vanishing scalar potential V = 0. As we will
assume in the following, the complex structure moduli can then be integrated out because they
turn out to be much heavier than the Kahler moduli12. This can be verified a posteriori after
stabilizing Kahler moduli.

Due to the no-scale property, Kahler moduli stabilisation is notoriously difficult. The
general strategy to stabilize Kahler moduli is to include a certain set of higher order corrections
into W and K, like α′ corrections and string loop corrections to K, or non-perturbative
corrections to W and K13. For this strategy to work out, all corrections should enjoy an
expansion in some small parameter. In our case of perturbative string theory this will be
the string coupling gs and the inverse of the Calabi-Yau volume V for the validity of the
string loop expansion and α′ expansion, respectively. In this way, there is in principle the
possibility to ensure that the neglected corrections do not spoil the stabilisation mechanism
because they arise at subleading order in the expansion in gs and 1/V. The difficulty that
arises in such settings is usually referred to as the Dine-Seiberg problem [59]. It arises when
quantum corrections are invoked to stabilize a modulus and the modulus itself is the expansion
parameter of quantum corrections as it is the case in string theory where no free parameters

11This has recently been questioned in smooth compactifications with large numbers of complex structure
moduli [51–56] (see also the discussion of the tadpole problem in [57]).

12This is strictly speaking only true for complex structure moduli living in the bulk of the Calabi-Yau. In a
throat for example, the masses are exponentially suppressed by the warp factor and are hence much lighter,
see e.g. [58].

13In principle, all moduli could also be stabilized using only fluxes, D-branes and O-planes if the geometry
is not Calabi-Yau but this is for almost all cases excluded by no-go theorems. We will elaborate on different
strategies of moduli stabilisation in Sect. 1.4.
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except the string length ls exist. To understand the Dine-Seiberg problem let us for simplicity
focus on the one modulus case where the only modulus is V and the potential V is zero in
the weak coupling limit corresponding to V → ∞. In order to create a local minimum in
the quantum corrected scalar potential, (at least) two terms with different sign and different
dependence on V need to be comparable in size. This typically does not happen anymore in the
weakly coupled regime of large V where we trust our expansion. For explicitness, consider the
(unrealistic) example of a potential V = −a/V + b/V2, where a, b are positive O(1) constants.
The potential has a minimum at V = 2b/a ∼ O(1) which is not in the weakly coupled regime
of large volume where we trust our analysis. Thus, in principle, all higher order corrections
eventually become important in the vicinity of the minimum. The Dine-Seiberg problem can
for instance be avoided by fine-tuning the numerical prefactors of each correction (in our toy
model this corresponds to tuning a≪ b)14.

Kahler moduli stabilisation in IIB string theory

After stabilizing and subsequently integrating out the complex structure moduli we ended up
with a flat potential and therefore massless Kahler moduli in the last section. Let us in the
following explore possibilities to stabilize Kahler moduli.

The best studied scenarios for Kahler moduli stabilisation in type IIB string theory to 4d
on a Calabi-Yau orientifold are KKLT [60] and the Large Volume Scenario (LVS) [61, 62].
Variants of KKLT and the LVS as well as other proposals of Kahler moduli stabilisation
including quantum corrections can be found in [63–73].

As explained above, for Kahler moduli stabilisation in type IIB string theory on Calabi-Yau
orientifolds it is necessary to include quantum corrections. The KKLT scenario does so by using
non-perturbative corrections to the superpotential whereas in the LVS one uses a combination
of non-perturbative corrections to the superpotential and the α′ correction of [74, 75] to the
Kahler potential. In the main body of the thesis we focus on the LVS since KKLT seems to
suffer from the so called singular bulk problem [76–78]15.

Let us therefore briefly review the LVS. We will not be concerned with O(1) constants
and refer the reader to a detailed summary of the LVS in Sect. 3.2 or to e.g. [80, 81]. In the
minimal LVS setting, the geometry on which we compactify has at least two Kahler moduli,
a big 4-cycle Tb = τb + icb and a small, blowup cycle Ts = τs + ics. The real parts of the
Kahler moduli describe the sizes of the corresponding cycles and the imaginary parts are axions
coming from the KK reduction of the four form C4. The volume V of the manifold is given by

14In the KKLT for instance the Dine-Seiberg problem is avoided by fine-tuning the value of W0 ≪ 1. W0

denotes the value of the superpotential after stabilizing the complex structure moduli. The value can be tuned
by fluxes.

15See [79] for a possible resolution.
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V ∼ τ
3/2
b − τ

3/2
s . The Kahler and superpotential read

K = −2 ln

(︄
V +

ξ

g
3/2
s

)︄
, W =W0 +Ase

−asTs , (1.6)

where ξ, As, and as are model dependent numbers. W0 is the value of the Gukov-Vafa-Witten
superpotential (1.5) after stabilizing complex structure moduli. The exponentially small
correction to the superpotential is due to Euclidean D3-instantons or gaugino condensation
on D7-branes. We will find below that τb ≫ τs such that we neglect the non-perturbative
corrections16 to Tb in W which are generically also present. The correction proportional to ξ
in the Kahler potential is due to the α′3 correction [74, 75]. The scalar potential V for the
Kahler moduli follows from plugging in (1.6) into (1.4) and has the form

V ∼ gs
√
τse−2asτs

V − gsτs|W0|e−asτs
V2

+
ξ|W0|2√
gsV3

, (1.7)

where we already minimized the potential w.r.t. the imaginary part of Ts. We can then further
minimize (1.7) w.r.t. V and τs and we obtain

V ∼W0
√
τs easτs , τs ∼

ξ2/3

gs
+O(1) . (1.8)

By inserting these values into V , one obtains an AdS vacuum with value

VAdS ∼ −gs
√
τs|W0|2
V3

. (1.9)

For small gs, the volume modulus is therefore stabilized at exponentially large values in string
units. Hence, gs and V provide good expansion parameters since gs suppresses higher loop
corrections and V higher order α′ corrections. It is moreover crucial for the validity of the
4d effective description that the masses of the moduli should be much lighter than the KK
modes which are neglected in the scalar potential. Additionally, as we use the framework
of supergravity, the SUSY breaking scale has to be much lower that the KK scale. As the
compact dimensions escape detectability of current experiments, the physics of the compact
space has to decouple from the low energy 4d physics. For this to be true, the KK length scale
LKK = 1/mKK should be much smaller than the dS/AdS length scale LdS/AdS which is the
inverse of the Hubble scale. This is commonly referred to as scale separation. Note that in
recent years the construction of scale-separated AdS vacua was questioned in [82–87].

Higher order corrections

At the example of the LVS above we have seen that moduli stabilisation in type IIB string theory
on Calabi-Yau orientifolds requires taking into account a certain set of quantum corrections

16Note that in this approximation the imaginary part of Tb will remain massless.
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and by that neglecting all other corrections. To be able to do this consistently, we need to know
the form of all additional quantum corrections that are neglected in the moduli stabilisation
scenario. There are two main difficulties in the business of quantum corrections in string
theory. First, they need to be derived as corrections to the 10d theory from string amplitude
calculations. In principle this calculation is methodologically straightforward but tedious.
Then, to study their implications for moduli stabilisation, they need to be compactified to
4d. This can not be done explicitly for the majority of quantum corrections because of the
complicated topology of the internal space. For the case of Casimir-like loop corrections, which
will be considered below, the situation is even worse. Their explicit calculation involves infinite
sums over KK-modes and therefore knowledge of the eigenfunctions of the compact space.

Besides the danger of quantum corrections, they can in fact also be beneficial. In the LVS
for example, string loop corrections are commonly used to stabilize non-blowup Kahler moduli
[88, 89]. Furthermore, quantum corrections can be used to realize inflation like in [90–94] or
even to establish new de Sitter (dS) uplifting mechanisms like we proposed in [3, 4].

Due to these reasons, higher order corrections to the leading order IIB effective action
and thus ultimately to the 4d effective scalar potential together with their implications on
phenomenology are a central topic of this thesis. Let us therefore introduce the different kinds
of quantum corrections and mention some literature where these are studied.

Quantum corrections to the stringy 10d effective action can in principle be divided into
three different types. First, there are higher derivative corrections which are commonly called
α′ corrections as they are suppressed by the string scale Ms = α′−1/2. They can be understood
as corrections arising due to strings being extended objects and not point-like. Thus, in the
effective action the extendedness of the string is captured by including α′ corrections. Second,
there are string loop corrections. They are suppressed by the string coupling gs and originate
from higher genus string amplitude calculations. They are the stringy analogue of the standard
loop expansion in a QFT. Finally, there are non-perturbative effects due to solitonic objects
like Dp-branes which lead for instance to instanton corrections when Dp-branes wrap a (p+1)-
cycle of the internal manifold. There is also the possibility of gaugino condensates on stacks
of D7-branes wrapping 4-cycles in the internal manifold.

In this thesis we will be mainly concerned with perturbative corrections, so let us discuss
these in more detail in our setting of type IIB string theory. For the type IIB 10d bulk theory,
the leading order α′ corrections arise at order α′3. The purely gravitational corrections are
calculated in [74, 75] and corrections including fluxes are only partially known [95–100]. From
the M- and F-theory perspective α′ corrections are studied in [101–107]. Additionally to the
bulk theory, also localized objects like Dp-branes or Op-planes receive α′ corrections. They
arise at order α′2 and are investigated in [108–125] and will be crucial for our work [3, 4].
String loop corrections are studied in [126–129, 88, 89, 130–134] and are also the main focus
of our work [2].

Additionally to the literature on either purely α′ or gs corrections, in [135–140, 69, 70, 141,
142] the combination of different effects, field redefinitions, and higher derivative supergravity
corrections are investigated.
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In Part I we will study perturbative quantum corrections with a focus on string loop
corrections from the field theory/EFT perspective. It is therefore useful to elaborate on how
to understand string loop corrections from the EFT perspective. We assume some knowledge
of string loop amplitudes and only discuss their field-theoretic limits.

Figure 1.2: A torus diagram with two graviton insertions. Limit a) depicts the limit of the
torus diagram where the closed string travels a long distance corresponding to a long and
thin torus. In an EFT this corresponds to a loop diagram where the massless closed string
excitations run in the loop. Limit b) shows the limit of the torus diagram where the string
travels a string-size distance. From the EFT this looks like a local higher dimensional operator
(illustrated with the cross between the graviton lines) inserted.

Consider as an example a torus diagram as a string loop correction to the graviton prop-
agator depicted in Fig. 1.2. The external lines correspond to the graviton and the torus
corresponds to a closed string running in the loop. To calculate this diagram one has to
integrate over all inequivalent tori of different shapes and sizes17. This effectively amounts to
integrating over different lengths of the loop and of the closed string. The low energy limit
of the torus diagram is obtained when the torus is very long and thin. This corresponds to
a short closed string18 traveling in a large loop (see Fig. 1.2 a)) such that the closed string
effectively looks point-like and the loop is dominated by the massless states of the closed string.
Furthermore, since the closed string travels a large distance (approximately the length scale of
the compact space) the diagram is dominated by the KK scale. The string diagram in this limit
can then be approximated by the standard loop diagrams of a QFT whose finite contributions
are dominated by the KK scale. This works analogously for open string diagrams where the
short open string should run in a large loop.

Let us now discuss the limit when both 1-cycles of the torus are string-scale as in Fig. 1.2
b). In this case the closed string travels a string-scale distance. This corresponds to the
high-momentum region of field theory loops which might require adding counterterms in
form of higher dimensional operators to renormalize the loops (remember that gravity is non-
renormalizable). Additionally to the loop-induced counterterms, higher dimensional operators
exist also at tree level in the string loop expansion and hence come at leading order in gs. They

17This corresponds to the moduli space of the torus.
18Note that the string has a tension set by the inverse string length ls. Hence it is energetically very expensive

to stretch the string.
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are known as α′ corrections. From the stringy perspective loop induced counterterms are then
understood as a mixture of α′ and gs corrections. A well known example is the R4 term of
type IIB string theory [74] whose coefficient has a tree level and 1-loop contribution in gs.

The classification of the EFT limits will serve as a guiding principle of classifying perturba-
tive corrections to stringy effective actions from the field theory perspective in Part I. We will
call loop corrections due to the first limit Fig. 1.2 a) genuine loop corrections. From the per-
spective of the compactified four dimensional theory, they arise from integrating out the tower
of KK modes. From 10d, genuine loops can be viewed as fields propagating in the compact
space. From the KK reduction above we know that it is precisely the eigenfunctions of the
compact space of the respective fields that propagate in the compact space. The distinguishing
feature of genuine loops is therefore their non-locality in 10d (or on branes) such that they
can not be associated with local operators. This is reminiscent of the Casimir effect where
the eigenmodes propagating on the compact space lead to a zero-point energy density. In the
effective four dimensional theory, after integrating out the tower of KK modes, genuine loop
effects can again be associated to a local operator19.

Quantum corrections arising through dimensional reduction of classical or loop induced (see
Fig. 1.2 b)) higher dimensional operators will be called local α′ corrections in our classification
scheme.

At the end of the day we aim for controlled moduli stabilisation and are hence interested
in calculating the effect of quantum corrections on the supergravity scalar potential (1.4). As
a result, all quantum corrections have to be recast into corrections to the Kahler potential
K and superpotential W . As W is not corrected perturbatively [143, 144], all perturbative
corrections enter the Kahler potential. Converting corrections to the 4d effective action into
corrections to the Kahler potential can be done by observing that the second derivative of K
is the metric on the Kahler moduli space. Hence, in the Einstein frame of the 4d effective
theory, the second derivative of the Kahler potential w.r.t. the moduli enters as the prefactor
of the kinetic terms of the moduli. Therefore, all terms contributing in 4d Einstein frame
to the kinetic terms of the moduli can be interpreted as corrections to K. This can either
happen through corrections directly to the moduli kinetic terms, or through corrections to
the 4d Einstein-Hilbert term which after Weyl rescaling contribute to the kinetic terms of
the moduli. The 4d Einstein-Hilbert term and the kinetic terms of the moduli are corrected
directly by loop corrections or by dimensionally reducing higher dimensional operators. As an
example of how higher dimensional operators correct the 4d Einstein-Hilbert term consider
the 10d R4 term of type IIB string theory which can be reduced to the 4d Einstein-Hilbert
term schematically as

∫︂

M10

d10x
√−g10R4

10 ∼
∫︂

R1,3

d4x
√−g4Rexternal

∫︂

Y
d6y

√−g6R3
internal , (1.10)

where g is the determinant on the 10d, 6d, or 4d space respectively. In summary, this shows
19Analogously to integrating out the gauge bosons in the Glashow-Salam-Weinberg theory to obtain a local

four fermion interaction in Fermi’s theory.
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that genuine loops contribute to the Kahler potential directly through loop corrections and
local α′ effects indirectly by dimensional reduction. More details and equations can be found
in Sect. 2.3.

1.4 de Sitter vacua in String Theory

So far, before giving a rough overview on quantum corrections relevant for type IIB string
theory, we have stabilized all complex structure moduli by fluxes and then used some Kahler
moduli stabilisation scenario like the LVS to make the remaining moduli heavy. The vacuum
energy of the theory then turned out to be at negative value. This seems to be a general feature
of moduli stabilisation and is in contradiction with present observations which measure an
accelerated expanding universe [11, 12]. An AdS minimum of any moduli stabilisation scenario
should hence be uplifted to a positive minimum by supplying a source of energy contributing
positively to the scalar potential. This contribution should be small enough to obtain a tiny,
positive vacuum energy consistent with observations.

As a side remark, let us note that another way of explaining the accelerated expansion of
the universe are quintessence models where at present the quintessence field is slowly rolling at
positive values. This seems to be as difficult (or even more difficult) to realize in string theory
as a dS vacuum, see e.g. [145–149, 81]. We will therefore pursue the aim of constructing dS
vacua in this thesis.

Proving that controlled dS minima in string theory exist is notoriously hard. Despite
intense work over the last two decades this remains one of the (or even the) core problem(s)
of string phenomenology since not even a single, rigorous 4d dS vacuum has been found. This
has recently cast doubt on the very existence of dS space in quantum gravity [150–153].

Let us overview the current status of 4d dS vacua in string theory at the time of writing
this thesis to get a feeling for why dS vacua are so elusive. For this we focus on critical string
theory on compact geometric backgrounds (such that the geometry is Riemannian and there
are no non-geometric fluxes). Details on other constructions can for instance be found in [150].
In critical, geometric models there are two main strategies on how to (potentially) obtain dS
vacua. The first approach is to construct dS vacua at the two derivative level of the string
effective supergravity action which are usually referred to as classical dS vacua. The second
idea is to include a certain set of quantum corrections beyond the leading order action such
as higher derivative, string loops, and non-perturbative corrections. Both strategies can be
pursued in either type II or heterotic theories20.

At first sight, the classical dS solutions seem more appealing since the properties of all
ingredients of these setups are well understood. From this perspective, quantum corrections
just represent additional components increasing the complexity of the setup. So why then did
we advertise the study of these quantum correction above? The reason is a very long history

20Type I string theory is S-dual to the SO(32) heterotic string as shown in [154]. Explicit moduli stabilisation
in type I has been initiated in [155].
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of so called no-go theorems forbidding dS vacua in certain classical solutions.
The no-go theorems are especially strong for heterotic theories. In a series of papers

[156–159] it has been shown that heterotic theories at string tree level including α′ and non-
perturbative stringy α′ corrections as well as gaugino condensates do not admit dS vacua.

In type II theories the no-go theorems are not as stringent as in heterotic theories. They only
apply to the classical action with Dp-branes and Op-planes included. The current status of no-
go theorems in type II theories21 can be summarized by three (so far not proven) conjectures
[174]. First, there are no classical dS solutions with parallel sources. Second, classical dS
solutions with intersecting sources are unstable. And third, classical dS solutions can not exist
at weak coupling (large volume, small string coupling) with quantized fluxes and a number
of orientifolds that is bounded. Note that the no-go theorems do often also forbid slow roll
inflation.

As a result classical dS vacua can not be fully excluded and therefore remain an open
research field. For some open issues consult [150].

Nevertheless, it seems likely that in order to obtain dS vacua, the degree of complexity
of the setup has to be increased. For classical dS solutions this can be done by including
manifolds of negative curvature, or anti-branes/NS5-branes [163, 162, 175, 176] as these evade
all no-go theorems. Another way of evading the no-go theorems is by incorporating quantum
effects as we have already done above when introducing KKLT and LVS. A further motivation
for taking into account quantum corrections is that they are typically required to stabilize
all moduli. We have seen an example of this above for type IIB orientifolds on Calabi-Yau
manifolds where all Kahler moduli remain flat directions at classical level22. Other examples
of massless moduli at classical level are Kahler axions in IIB and also some complex structure
axions in DGKT [161] in the context of IIA string theory.

As there are some no-go theorems excluding heterotic dS solutions including quantum
effects, it seems more natural to focus on type II theories. There, the models in IIA have
the following drawbacks compared to models in IIB that complicate moduli stabilisation in
IIA. First, the backreaction of fluxes in IIA is stronger than in IIB such that the underlying
manifold is no longer Calabi-Yau but half-flat [178–180]. In type IIB the backreaction of fluxes
is taken into account by the warp factor that renders the background manifold conformally
Calabi-Yau. Second, the most studied scenarios for establishing dS vacua like KKLT and LVS
in IIB feature a very steep AdS minimum since it is obtained by non-perturbative effects in
contrast to the DGKT scenario in IIA where all moduli are stabilized perturbatively. The
advantage of a steep minimum is that it is in general easier to uplift to a positive value. Third,
IIB theories feature the Klebanov-Strassler throat [45] which turns out to be very useful for
creating dS uplifts and hierarchies in general as we will review shortly. Note that also the
backreation of intersecting O6-planes was for a long time not understood except from the

21An incomplete list of references studying classical type II solutions and their for no-go theorems is [160–
173, 150, 174] and references therein.

22Note that there are also classical solutions of IIB where all moduli are stabilized [173, 177, 165]. In these
cases, the compact manifold is not Calabi-Yau.
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smeared approximation [181]. This has been resolved by now in [182].
Due to these reasons there is much less work on obtaining dS vacua in IIA string theory

including quantum effects. There is for instance the possibility of mimicking the LVS in IIA
string theory by T-dualizing the corresponding IIB orientifold [183] or the KKLT scenario
[175, 176, 184].

Another reason why dS vacua are difficult to construct independently of the type of string
theory is that supersymmetry is necessarily broken in a vacuum of a theory arising from a
N = 1 supergravity theory as shown for instance in [185]. This makes it more difficult to solve
all equations of motion.

This overview should motivate why we focus on the framework of IIB string theory with
a particular emphasis on quantum corrections and their implications when investigating dS
vacua in string theory in the main body of the thesis.

In order to find dS vacua in IIB string theory one typically starts with a scale separated
AdS minimum like the one achieved via the LVS and then adds a source of potential energy to
uplift the minimum to a positive value. This can be done in many different ways [60, 186–188,
66, 189, 67, 190–196, 69, 70, 197], see also the reviews [145, 81] for an overview. Additionally,
in [3, 4] we also propose a new uplifting mechanism which will be explained in detail in Chapter
4 and 5. The most famous uplifting proposal is the anti-D3-brane uplift [60] which we will
review in the following since it is essential for the major part of this thesis [2–4].

(a) (b)

Figure 1.3: Uplifting an AdS minimum of VAdS to dS. In a) a consistent uplift to a dS minimum
is depicted. In b) the uplifting contribution Vup is too large such that the total potential Vtot
is a runaway.

As anti-D3-branes have opposite charge compared to D3-branes, they do not satisfy the
zero force condition and therefore contribute positively to the potential. This makes them
suitable for uplifting. Their contribution to the potential is given by Vup = 2TD3 ∼ 1/V2 in
string units with TD3 the tension of a D3-brane. This, however, is much larger than the depth
of the AdS minimum |VAdS|. For the LVS VAdS ∼ −1/V3 as given by (1.9). For VAdS ≪ Vup
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Figure 1.4: An illustration of a KS throat glued into a compact manifold with an anti-D3-brane
sitting at the tip. The throat can be described by two 3-cycles A and B.

the total potential Vtot = VAdS + Vup does not have a metastable minimum anymore – the
potential has a runaway behavior driving the volume modulus to infinity which leads to a
decompactification of the theory. This is illustrated in Fig. 1.3 b). To obtain a metastable
minimum for Vtot at positive value the contribution of the anti-brane needs to be diminished.
This can be done by placing the anti-brane(s) at the tip of a Klebanov-Strassler (KS) throat
[45]. The KS throat provides an exponentially large warp factor which effectively suppresses all
quantities of objects living in the throat. In our case this will be the tension of the anti-brane.
The feature of creating hierarchies due to exponentially large warping makes the KS throat an
extremely popular topology in string compactifications. Such a throat glued into a compact
space is illustrated in Fig. 1.4.

The KS throat is six dimensional and consists of a radial direction τ and a five dimensional
space called T 1,1 which can be viewed as an S2 fibration over S3. The throat is described by two
3-cycles A and B which are threaded by M units of F3 flux or K units of H3 flux, respectively.
At the tip (τ = 0), the S2 of the T 1,1 pinches off such that the tip is topologically given by an
S3 which coincides with the A-cycle at the tip. The B-cycle extends to infinity or, if glued into
a compact geometry, over the entire geometry. The warp factor is generated by the fluxes and is
approximately given at the tip of the throat by exp(4A(τ = 0)) ∼ V2/3 exp(−N/(gsM2)) with
N = KM the flux in the throat23. The size of the positive contribution to the potential from
the anti-D3-branes at the tip of a KS throat is then given by Vup = 2TD3 exp(4A(τ = 0)) ∼
exp(−N/(gsM2))/V4/3. This uplifting potential can hence be tuned in an almost continuous
manner through the amount of fluxes K and M in the throat and the string coupling gs. For
sufficiently large warping N ≫ gsM

2, Vup ≈ |VAdS| so that a small and positive cosmological
constant can be achieved.

However, this picture is too simplistic since the anti-branes at the tip can undergo a
classical decay into a supersymmetric state which can not be used for uplifting since for a

23The volume scaling is due to [198]. See also a derivation in Sect. 3.6.
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Figure 1.5: Flux-brane annihilation a la KPV. The tip of the throat, topologically an S3,
is depicted. The p anti-D3-branes puff up into an NS5-brane, wrapping an S2 inside the
S3 (in green). At the north pole the NS5-brane annihilated against flux decaying into a
supersymmetric minimum consisting of M − p D3-branes.

supersymmetric state, the potential vanishes. This decay is known as brane-flux annihilation
and is described by Kachru, Pearson, and Verlinde (KPV) in [199]. The p anti-D3-branes at the
tip can puff up due to the Myers effect [200] into a single NS5-brane with p units of worldvolume
F2 flux. In other words, the anti-branes form an energetically favored state, the NS5-brane.
The NS5-brane wraps an S2 inside the S3 and has a non-trivial potential VKPV(ψ) where ψ
parametrizes the position of the S2 inside the S3, see also Fig.1.5. Then, depending on the
parameters p and M , the NS5-brane may either provide a metastable supersymmetry breaking
vacuum suitable for uplifting or be classically unstable. To be precise, if p/M < 0.08 the NS5-
brane resides in a metastable minimum at positive energy. If p/M > 0.08 the NS5 is classically
unstable. In the case of classical instability, the NS5 slips over the equator while its anti-D3-
brane charge annihilates against flux, materializing into M − p D3-branes at the north pole
of the S3. This decay leads to a supersymmetric vacuum. If the NS5-brane is metastable, the
uplifting potential is given by Vup = VKPV(ψmin) exp(4A(0)) ∼ 2TD3 exp(4A(0)) which agrees
with the formula given above. The KPV process can also be understood quite intuitively.
Roughly, the tension of the NS5-brane pushes the brane towards the south pole of the S3

whereas the F3 flux wants to pull the NS5-brane over the equator. Balancing these effects
eventually leads to a metastable minimum. Further important formulas and more details are
given in Sects. 4.2.1 and 5.2.

Besides this in principle working mechanism, the anti-D3-brane uplift is far from being
settled and still remains an open research field in multiple directions.

A much investigated issue is that of backreaction of anti-D3-branes or, equivalently, the
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puffed-up NS5-brane on the geometry [201–226]. Furthermore, in a series of papers [227, 58, 228–
230] a further decay channel of the anti-branes at the tip of the KS throat is studied. This
decay channel is called the conifold instability and arises due to a runaway behavior of a
light complex structure modulus governing the size of the throat if the bound gsM

2 > 46 is
invalidated. This bound is stronger than a similar bound from the KPV decay which reads
gsM

2 > 12 (following from p/M < 0.08 and gsM > 1 for p = 1). Note that the existence of
the conifold instability is also not fully established. The instability was recently questioned
and shown to be weaker in [231].

It is worth pointing out that the parameter gsM2 is a phenomenologically very relevant
quantity since it is essential for the size of the warp factor exp(4A(0)) ∼ exp(−N/(gsM2)).
Remember that at the end of the day we aim for a small and positive cosmological constant
which, as explained above, requires exponentially large warping for which we need N ≫ gsM

2.
Thus, strong bounds on the quantity gsM2 therefore increase the required flux N in the throat
and therefore the contribution to the D3-tadpole. This positive contribution to the tadpole
needs to be canceled due to tadpole cancellation (the net flux on a compact space has to
vanish) by a negative contribution coming from O-planes or D7-planes which is limited in
compactifications of type IIB string theory.

In the context of the LVS with the assumption that higher order corrections should not
spoil the standard LVS construction, we quantified the minimal required negative contribution
to the D3-tadpole in [2] which we called the LVS parametric tadpole constraint (PTC). As
expected from the discussion of the previous paragraph, the quantity gsM2 is a major player
in the PTC.

Another research direction that was opened up in [3, 4] is the effect of higher order α′

corrections on the KPV decay channel. In KPV [199], the potential of the NS5-brane remained
at leading order in α′. But it can be anticipated that α′ corrections will change the leading
order behavior substantially. This is most easily understood for curvature corrections but
holds also true for all other α′ corrections. Since the NS5-brane sits at the tip of the throat,
intrinsic and extrinsic curvature corrections will be suppressed by the radius of the S3 or S2,
respectively. The radii are given by RS3 ∼ √

gsMα′ and RS2 ∼ √
gsMα′ sinψ, respectively.

We have seen that the parameter gsM2 and hence gsM should be as small as possible for
the phenomenological reasons explained above. This is precisely the regime where curvature
corrections become important such that their study is mandatory and will increase the KPV
bound24 gsM

2 > 12. In the Chapters 4 and 5 we will calculate that this α′ corrected bound
for gsM2 turns out to be by far the most important bound on gsM2.

All the discussion above concerning the tadpole and the parameter gsM2 is only relevant
in the standard anti-D3-brane uplift where one uses exponentially large warping to warp down
the tension of the anti-branes. It would therefore be highly preferable to find an uplifting
mechanism not relying on the exponentially large warping. Such a mechanism is proposed in
[3, 4] where it was observed that α′ corrections overall lower the potential of the NS5-brane

24Remember that this uses gsM ∼ 1 which is where all α′ corrections are equally important!



Introduction 21

and therefore the effective tension (the value of the NS5-brane potential at the minimum) of
the anti-branes. By tuning the fluxes in the throat and the string coupling thereby balancing
tree level and α′ corrections, one can achieve a metastable minimum at arbitrarily small energy.
As a result, the effective tension of the NS5-brane is itself arbitrarily small and need not be
warped down, thereby sidestepping all problems related to exponentially large warping.

1.5 This thesis

This thesis explores higher order corrections to the leading order effective action of type IIB
string theory and their implications for phenomenology. As we have reviewed above, this is an
important and interesting task for several reasons. First, quantum corrections can in principle
endanger moduli stabilisation scenarios like the LVS with and without a dS uplift. Second, if
dS minima in string theory exist, they are very likely to be found in the interior of moduli
space where higher order corrections potentially become important. Finally, it is possible to
take advantage of some of these corrections for approaching long standing problems in string
phenomenology like dS vacua or inflation. These questions will be investigated in the main
body of the thesis.

Part I mainly investigates higher order corrections to the effective action of type IIB string
theory from the field theoretic perspective focusing on string loop corrections. This is moti-
vated by the fact that not much is known about string loop corrections on general Calabi-Yau
manifolds. Their form is only conjectured in [129] based on very special but exact string loop
calculations on torus orbifolds [127]. The conjecture is known as the Berg-Haack-Pajer (BHP)
conjecture. Although only conjectured, string loop effects are often used in phenomenological
applications like in moduli stabilisation scenarios or in models of inflation. This can be a
dangerous venture, as not only is the form of the loop corrections only conjectured, but it
is also not entirely clear when these loop corrections occur. Improving their understanding
is therefore very much needed. A step towards this goal is taken in Chapter 2 which repro-
duces [1]. Therein we provide a classification scheme of higher order corrections suitable for
understanding perturbative quantum corrections from the EFT perspective. This resolves an
apparent, longstanding inconsistency between the parametric behavior of string loop results
and expectations from field theory. Additionally, our results show interesting new features not
captured by the BHP conjecture. An example is the possible existence of a logarithmically
enhanced loop correction dominant compared to all other loop corrections. This new knowledge
is subsequently also applied to fibre inflation.

Part II studies the effects of higher order corrections on the LVS and the anti-D3-brane
uplift. In Chapter 3 which reproduces [2], we apply higher supergravity corrections [140] and
a correction from warping and α′ effects [141] to the LVS with anti-D3-brane uplift. The
exponentially large volume of the LVS requires exponentially large warping in order to find a
very small but positive cosmological constant. As a consequence, the negative contribution to
the D3-tadpole must be very large. We quantify the minimal negative tadpole in order to be in
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control over the previously mentioned corrections in what we call the LVS parametric tadpole
constraint (PTC). A large negative contribution to the tadpole severely constraints manifolds
suitable for the LVS. We discuss future research directions on how to overcome the PTC.

In the Chapters 4 and 5 we focus on the anti-D3-brane uplift and the underlying KPV
decay channel [199]. In recent work [141, 142] the effect of curvature corrections to anti-D3-
branes has been investigated. Effectively, the curvature corrections reduce the tension of the
anti-brane. This clearly effects the uplifting potential Vup. However, as we pointed out in the
last section, the picture of the p anti-branes at the tip of the throat is too simplistic as the
setup has a classical decay process as observed by KPV [199]. For a consistent uplift potential
one has to satisfy the metastability condition p/M < 0.08. Hence, also the effect of curvature
corrections on this metastability condition of the puffed up NS5-brane should be studied to see
whether the curvature corrected potential provides an uplift. In Chapter 4, reproducing [3], we
derive curvature corrections for the NS5-brane by S-dualizing known curvature corrections on
Dp-branes and investigate the curvature corrected KPV potential. We find that the standard
KPV constraint gsM2 > 12 for a metastable uplift is significantly tightened25. As a result, the
radius of the S2 wrapped by the NS5-brane at the tip of the KS throat needs to be much larger
than previously assumed requiring much more flux on the A-cycle of the throat. The curvature
corrected lower bound on gsM2 then affects the standard anti-D3-brane uplift in the LVS. This
can be quantified using the PTC, with the result that an even larger negative contribution to
the D3-tadpole is necessary to control the most dangerous quantum corrections.

Besides the standard anti-D3-brane uplift which suffers from the strong bound on gsM
2

induced by the curvature corrections, we can also take advantage of strong curvature corrections.
The reason is that they effectively lower the NS5-brane potential and therefore also the energy
at the metastable minimum. As described in Chapter 4, one could hence imagine tuning the
value of the potential at the metastable minimum of the NS5 by tuning the size of the curvature
corrections. Trusting our incomplete analysis, this tuning can reduce the effective tension to
such small values that no exponentially large warping is needed. This mechanism then avoids
issues related to the PTC. We also comment in detail on open questions of this construction.

In Chapter 4 we have only calculated curvature corrections to the NS5-brane potential at
the tip of the KS throat. However, many more α′ corrections to Dp-branes are known. In
[4] which is reproduced in Chapter 5, all known α′ corrections are S-dualized to obtain the
α′ corrections to NS5-branes. These hundreds of α′ corrections include gauge fields, fluxes,
curvature, and mixings thereof. The α′-corrected KPV potential is then studied analogously
to Chapter 4. This leads to more precise predictions for the allowed parameter range for
a metastable minimum to exist. Also the new uplifting mechanism proposed in 4 can be
constructed explicitly.

Finally, in Chapter 6 we combine the results of Part I and II. In Sect. 6.1 we give a detailed
self contained summary of the main ideas and results of each publication. Then, in Sect. 6.2

25For precise numbers consult the Introduction 4.1 of Chapter 4. However, note that these numbers will
change again in Chapter 5 when taking into account all known α′ corrections.
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we discuss the main results and embed them into the broader picture of string phenomenology.
We conclude in Sect. 6.3 with an outlook highlighting potential future directions emerging
from or developing results of this thesis.
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The following Chapters 2 to 5 are a compilation of papers published by the author together
with a number of collaborators. At the time of submission of this thesis, the papers in Chapter
2, 3, and 4 have been published in a peer-reviewed journal. The paper of Chapter 5 is currently
under review. The reference to each article is listed in the Preface and at the beginning of
each chapter before the publication is reproduced. There, a detailed description of the author’s
contributions to each multi-authored paper can be found.
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1 Introduction

The leading paradigm in the search for realistic vacua in the string theory landscape is to
start with type-IIB Calabi-Yau orientifold models with O3/O7-planes, to stabilize complex
structure moduli by 3-form flux, and only then to deal with the classically flat Kahler
moduli space [1, 2]. Those flat directions may then be stabilized by nonperturbative effects
alone [3] or in combination with α′ corrections and loop effects [4–6]. In any case, be it as a
central ingredient or as a potentially dangerous, subleading effect, perturbative corrections
are important in string phenomenology. They affect the scalar potential and hence the
prospects of uplifting an initial AdS vacuum to de Sitter — a key step which is still under
debate.1 Clearly, loop and other perturbative effects also impact models of inflation which
use Kahler moduli [22, 23].

Motivated by this situation, we devote the present paper to the study of loop corrections
to the type-IIB Kahler moduli Kahler potential in the Calabi-Yau context [24–31]. The
present level of understanding is not satisfactory: while field-theoretic arguments allow one
to make a proposal for such corrections in the simplest Calabi-Yau settings [24, 28], explicit
string loop calculations are available only in torus orbifold geometries [25, 26]. It has been
conjectured how to generalize the latter to Calabi-Yau models [27, 28], but no derivation for
the proposed structure is available. Moreover, there is a seeming inconsistency [28] between
field-theoretic and string loop results, which we will resolve in this paper.

In our analysis, we will have the Large Volume Scenario (LVS) [4, 5] in the back of our
minds as this is a prototypical example of a model with fluxes where a better understanding
of loop and α′ corrections is crucial — see [32–44] for recent work on loop and α′ corrections
in this and related settings. However, our findings are not restricted to the LVS and should
be relevant more generally in the type-IIB context.

To explain our approach at a more technical level, let us start by stating the Berg-
Haack-Pajer (BHP) conjecture and then describe how, according to our findings, it relates
to the three basic types of loop corrections between which we will distinguish. The BHP
conjecture proposes two kinds of corrections to the Kahler potential, scaling like

δKKK
(gs) ∼

∑

a

gsTa(ti)
V , δKW

(gs) ∼
∑

a

1
Ia(ti)V

. (1.1)

Here Ta and Ia are linear combinations of 2-cycle Kahler moduli ti, the volume is
V = κijkt

itjtk/6, and we recall that the proper Kahler variables are the complex 4-cycle
moduli, with real parts τi = ∂V/∂ti. While, as we will see momentarily, our results in part
deviate from (1.1), it is nevertheless a good starting point for organizing our discussion.

Next, we clarify the origin and fix terminology for three different kinds of loop
corrections.

First, there are genuine loop corrections which arise from integrating out the tower of
KK modes (4d perspective) or from loops of 10d or brane-localized fields propagating in the
compact space (10d perspective). Their distinguishing feature is their non-locality in the

1This discussion has recently gained momentum following [7, 8]. For some of the latest additions, see
e.g. [9–19]. An important part of the debate is the issue of scale separation [20, 21].

– 1 –
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higher-dimensional theory: they can not be associated with local operators in 10d or on a
brane. In this sense, they are analogous to the Casimir energy,2 which arises in geometries
with two separated surfaces but can not be encoded in a local operator on either surface or
in the space between them.

The genuine loop corrections may be thought of as coming from the interacting 4d
field theory of moduli and KK modes. In this theory, 3-vertices are suppressed by 1/M4.
Accordingly, genuine 1-loop effects correct the Kahler moduli kinetic terms as
(

1 + M2
KK

M2
4

)
1
τ2∂µτ∂

µτ or, more generally,
(

1 + M2
KK

M2
4

)
Kij∂µτ

i∂µτ j . (1.2)

Here the factor M2
KK appears on dimensional grounds since, similarly to Casimir energy

calculations, no UV mass scales are involved.
It is easy to see that M2

KK/M
2
4 is a homogeneous function of degree -2 in Einstein-frame

4-cycle volumes. Equivalently, we can say that the correction appears at order α′4g2
s , such

that its scaling agrees with that of the second term of the BHP conjecture (1.1). Our
previously mentioned inconsistency is then the apparent absence of the first term in (1.1) in
the field-theoretic approach. Moreover, we will argue that the functions Ia in the Calabi-Yau
case are not necessarily linear in 2-cycles. Instead, the additional dependence on ratios of
cycles is expected. In section 2, we discuss the genuine loop corrections in detail and also
derive (1.2) using Feynman diagrams.

Second, there are local α′ corrections or, in more precise language, corrections coming
from higher-dimension local operators in 10d, on branes and O-planes, or on their intersection
loci. We use the adjective ‘local’ to distinguish them from other effects, such as genuine loop
corrections, which also induce 4d EFT operators suppressed by α′. It is important to note
that local α′ corrections may receive contributions from the high-momentum region of loop
integrals. There is in particular no clean separation between local α′ corrections which are
part of the classical action and the counterterms needed to renormalize the loops. It appears
natural to us to collect all corrections which can be associated with higher-dimension local
operators, be they fundamental or loop-induced, under the name ‘local α′ corrections’.

Local α′ corrections appear at different order in α′ since the underlying higher-dimension
operators come with different α′ suppression factors. Crucially, such local corrections at
order α′2 can explain the first term in (1.1) and thus resolve the above puzzle. Other local
α′ corrections contribute to the second term in (1.1), with or without additional gs factors.
This depends on whether the operator in question appears at the string tree level or at
higher-loop order.

An important result of our paper, for which we argue in section 3.1.1, is the general
expectation that marginal local operators (appearing at order α′4) introduce logarithmic
corrections to the Kahler potential. Examples for this would be, if existent, the R4

8
operator on a D7-brane/O7-plane and the R3

6 operator on the intersection locus between
D7-branes/O7-planes. In section 3.1, we will deal more generally with loop corrections
induced by localized objects and extend the results to multiple Kahler moduli.

2As a result, our analysis may be relevant for compactification schemes directly relying on Casimir energy,
see e.g. [45].
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Correction type Discussed
in section

Induced by Correction to
Kahler potential

Correction to
scalar potential

Genuine loops [24] 2 and 3 — f−2 |W0|2gs × h−5

BBHL+1-loop [48, 49] 2.3 M2
10

g
3/2
s

(1 + g2
s)R4

10
(g−1/2
s + g

3/2
s )

×f−3/2

|W0|2(g−3/2
s + g

1/2
s )

×h−9/2

Non-intersecting
D7/O7 (partly) [38, 39]

3.1.1 M4
10(1 + gs)R2

8 (0 + gs)× f−1 |W0|2g3
s × h−5

Log-Correction
on D7/O7

3.1.1 R4
8

ln(M10g
1/4
s L)

×f−2

|W0|2gs ln(M10g
1/4
s L)

×h−5

Intersecting D7/O7
[38–40, 50, 51]

3.1.3 M4
10(1 + gs)R6 (0 + gs)× f−1 |W0|2g3

s × h−5

Log-Correction
on intersecting D7/O7

3.1.3 R3
6

ln(M10g
1/4
s L)

×f−2

|W0|2gs ln(M10g
1/4
s L)

×h−5

Table 1. Some of the key corrections discussed in the paper and their effect on the Kahler and
scalar potential. The functions f−λ, h−λ are homogeneous of degree −λ in 4-cycles and L is the
typical length scale of the internal manifold.

Finally, there are warping corrections or, more generally, corrections due to the classical
backreaction of the background geometry. These can not be cleanly separated from string
loop effects since, in the regime where the worldsheet is a long cylinder, the string loop
encodes the effects of light 10d fields propagating at tree-level. In our 10d EFT approach,
such corrections have to be viewed as classical rather than loop-induced.

As is well known (and reviewed in section 4) warping corrects the Kahler potential
by a series of terms 1/τn, starting at n = 1. The complete series does not affect the
scalar potential since warping respects the no-scale structure [2]. The n = 2 term matches
parametrically the second term in (1.1).

In section 6 we work out the explicit form of loop corrections for a blowup modulus (see
also [46]) and for fibred geometries. Before concluding in section 8, we devote Section 7 to
some further applications where loop corrections can be important: the parametric control
of the LVS [18, 19], the control of KKLT with many moduli and small 2- or 4-cycles [14, 15],
and the possible presence of dominant log-corrections to the Kahler potential [35–37, 43, 44].
Appendix A contains more details concerning our discussion of warping corrections in
section 4, following mainly [47].

Table 1 provides a partial list of the genuine loop and local α′ corrections considered
in this paper.3 In particular, concerning the operators on branes and their intersections, we
display only the lowest-dimension and marginal operators. It is convenient to express the
correction to the Kahler and scalar potential in terms of homogeneous functions of a certain
degree in the Kahler moduli since the detailed dependence on ratios of 4-cycle volumes is
known only in special cases. We emphasize in particular the corrections induced by an R4

8
term, potentially present on D7-branes and O7-planes, which has to our knowledge not been

3We do not include warping corrections since they do not affect the scalar potential.
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considered before. Being marginal and hence probably log-divergent, this operator induces a
correction to the scalar potential which is leading compared to the corrections following from
the BHP conjecture. It is therefore important for cosmological applications like Fibre Infla-
tion (to be discussed in section 6.2) or moduli stabilization scenarios involving loop effects.

2 Basics of loop corrections — the single modulus case

2.1 Naive power counting

Our goal is a better understanding of the role of loop corrections in type-IIB. Since exact
string loop calculations for Calabi-Yau manifolds are not feasible, we will try to develop the
parametric estimates based on dimensional analysis as suggested in [24]. We will later on
compare our findings with the exact torus-orbifold results of [25] and the corresponding
Calabi-Yau form of such corrections conjectured in [27].

Let us start from the bosonic part of the Einstein-frame type-IIB action (see e.g. [52]),

SEF = 1
2κ2

10

∫
d10x
√−g


R10 −

∂Mτ∂
Mτ

2 (Imτ)2 −
G(3) ·G(3)

12Imτ −
F̃ 2

(5)
4 · 5!


+ SCS , (2.1)

where 2κ2
10 = (2π)7α′4, and SCS the Chern-Simons term. We compactify on a Calabi-Yau

orientifold with O3/O7 planes and local tadpole cancellation by D3/D7-branes, without
fluxes.4 The corresponding metric can be written as

ds2 = gµνdxµdxν + L(x)2g̃mndymdyn, (2.2)

with µ, ν ∈ {0, . . . , 3}, m,n ∈ {4, . . . , 9} and a Calabi-Yau metric g̃mn normalized such that
the compact space has unit volume. The physical Einstein-frame volume is hence given by
V = L6. The resulting action in 4d Jordan-Brans-Dicke frame (Jordan frame for short) reads

SJBD = 1
2κ2

10

∫
d4x
√−gL6

[
R4 + 6(6− 1)(∂L)2

L2 + · · ·
]
, (2.3)

where we only display the Einstein-Hilbert and volume Kahler-modulus kinetic terms.
Postponing a more careful, Feynman-diagram-based derivation to section 2.2, we first

provide a simple dimensional argument for the parametric behaviour of the genuine loop
corrections to (2.3): at one loop, such corrections come from integrating out the tower of all
KK modes. The total UV divergence is absorbed in 10d in a renormalization of M4

10. The
finite piece knows only about a single dimensionful parameter, the length scale L which
governs the KK masses. Hence, on dimensional grounds, the corrections read

∆SJBD =
∫

d4x
√−g

(
b0
L2R4 + b1

L4 (∂L)2
)
, (2.4)

4In the case of D3-branes, this is only possible in a supergravity toy model, where one can place one
fourth of a D3 on each O3-plane to cancel its tadpole. In string theory, one can at best place one D3 on
every fourth O3. This implies warping corrections, to be discussed below. In the D7/O7 case, the curvature
of the brane and O-plane induces a D3 tadpole, such that our analysis without fluxes is, once again, in most
cases only an approximation.
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where b0, b1 are O(1) numerical coefficients depending on the specific Calabi-Yau and, if
present, on complex structure moduli.5 Since we perform our analysis of loop corrections to
the Kahler potential in a pure Calabi-Yau orientifold, without fluxes, the complex structure
moduli are massless. We treat their vevs as parameters and their fluctuations as light
fields, running in the loop just like the Kahler modulus, the 4d graviton and the KK modes.
We expect flux-induced modifications of the loop corrections to the Kahler potential to
be subleading. To see this, recall that the spacing of KK towers is set by m2

KK ∼ 1/L2.
The lowest level of many of the towers is zero, making the corresponding fields moduli.
Three-form fluxes thread 3-cycles and hence scale as 1/L3. They induce an energy density
G2

3 ∼ 1/L6 which depends e.g. on the 10d metric and hence provides as mass correction for
the 10d-metric KK tower. One obtains δm2

KK ∼ 1/L6, which is clearly subleading. The
above is consistent with the well-known fact that complex structure moduli masses scales
as mcs ∼ 1/L3.

The sum of (2.3) and (2.4) can be translated to 4d Einstein frame. In addition, we trade
L for the dimensionless 4-cycle variable τ = M4

10L
4/(2π)4 = L4/(l4sgs), with ls = 2π

√
α′.

This corresponds to common conventions for measuring 4-cycle volumes in type-IIB. The
result is

(S + ∆S)EF = M2
4

2

∫
d4x
√−g

[
R4 +

(
a2

(∂τ)2

τ2 + b2
(∂τ)2

τ4

)]
, (2.5)

with M4 the 4d Planck mass, a2 = −3/2, and b2 = (114b0 + b1)/(32π) which again depend
on complex structure moduli. To make contact with the Kahler potential, we have to
interpret (2.5) as a 4d SUSY action, with τ = ReT and T the complexified Kahler modulus.
Thus,

(L+ ∆L)EF = M2
4

(
− 3

(T + T )2∂T · ∂T + 16b2

(T + T )4∂T · ∂T
)
, (2.6)

where we can identify the prefactors as second derivatives of the Kahler potential K and its
loop correction δK. Hence δK/M2

4 = 8b2/3(T + T )2, which induces a term in the scalar
potential of order V−10/3. This matches the winding correction of the BHP conjecture [27],
but it does not capture the leading KK correction. We will resolve this issue in section 4
and 5.2.

2.2 Support by Feynman-diagram calculations

We now verify the results of [24] reviewed in section 2.1 using a more explicit Feynman
diagram argument. We follow the literature on ‘extra dimensions’ [55–57], where Kaluza-
Klein (KK) expansions are performed in simple geometries, as well as more general and
recent studies [58–62]. Of course, we can not be fully explicit in our Calabi-Yau situation.

We start by expanding the metric as gMN = g
(0)
MN + κ10hMN . Here g(0)

MN denotes the
background metric (2.2), but with L(x) replaced by a constant which, by slight abuse of

5These coefficients can be large if the number of light fields, including in particular complex structure
moduli, is large [53]. It has been suggested in [53] to use such large loop corrections to uplift from AdS to
de Sitter. We consider it safer to include the loop effects as corrections to the Kahler potential, and then to
study the minima of the resulting supergravity scalar potential. The validity of such an approach, even
concerning loops with fields below the SUSY breaking scale, has recently been emphasized in [54].
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notation, we call L. In other words, we write L(x) = L+ δL(x) in (2.2), treating the volume
modulus δL(x) as part of the metric fluctuation hMN . In order to obtain a 4d action from
which Feynman diagrams can be read off, we KK expand all fields in terms of eigenfunctions
of their corresponding Laplace operator6 on the Calabi-Yau. In the following we will focus
on the 4d graviton and its massive spin-2 modes as an example but similar terms can be
written down for all bulk fields in (2.1) and their KK modes. We first diagonalize the action,
eliminating the mixing of graviton modes with scalars and vectors arising from the 10d
metric. Focusing on the spin-2 part, the action then reads [55, 58–62]

S =
∫

d4x

[∑

a

(
1
2h
∗µν,a

(
�+m2

a

)
haµν −

1
2h
∗µ,a

µ

(
�+m2

a

)
hν,aν

+ h∗µν,a∂µ∂νh
λ,a
λ − h∗µν,a∂µ∂λhλ,aν + c.c.+ . . .

)

+ 1
M4

∑

a1,a2,a3

V3
[
ha1
µν , h

a2
ρσ, h

a3
λα

]
+ 1
M2

4
V4[. . .] + . . .

]
,

(2.7)

where haµν are the 4d graviton modes with a labeling the eigenfunctions ψa of the Laplace-
Beltrami operator with eigenvalues m2

a. In order to obtain (2.7), one has to use the
relation

hµν =
∑

a 6=0
haµνψa + 1

L3h
0
µν (2.8)

between the 4d part of the 10d graviton hµν , the 4d graviton h0
µν , and its massive KK

modes haµν [58]. To understand the mass dimensions of our fields, recall that our background
metric g(0)

MN and its correction κ10hMN are dimensionless. Hence [hMN ] = −[κ10] = 4.
Correspondingly, the l.h.s. of (2.8) has mass dimension 4, [ψa] = [1/L3] = 3, and the fields
haµν and h0

µν have the canonical mass dimension one of 4d bosonic fields. This is consistent
with (2.7).

The functionals V3 and V4 are sums of cubic and quartic terms in the haµν . Each
term contains two derivatives. When deducing Feynman rules, V3 and V4 will give 3- and
4-vertices. We have for brevity suppressed the arguments of V4 — they coincide with those
of V3. The ellipsis at the very end of (2.7) stands for higher vertices as well as for analogous
quadratic and higher-order action pieces involving all other modes of the KK-expansion —
both from the 10d metric and other bulk fields. One can convince oneself that if all those
4d fields are canonically normalized, then the suppression by 1/M4 is a universal feature of
all 3-vertices. This is a key observation: it implies that all 3-vertex-based loop corrections
to the massless 4d graviton or volume modulus propagator (see l.h.s. of figure 1) have the
same parametric behavior. This holds independently of the kind of field running in the loop.
Other 1-loop contributions come from tadpole diagrams involving a 4-vertex (see r.h.s. of
figure 1). The 4-vertices are universally suppressed by 1/M2

4 , such that all tadpole diagrams
have the same parametric behavior as the loops built with two 3-vertices.

6By this we mean the Laplace-Beltrami operator for scalar fields, the Laplace-de-Rham operator for
p-forms and the Laplace-Lichnerowicz operator for the graviton (in general for symmetric tensors).
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h0
µν ,δL

χa

χa

h0
ρσ,δL1

M4

1
M4

h0
µν ,δL

χa

h0
ρσ,δL

1
M2

4

Figure 1. Self-energy diagrams correcting the propagator of the massless 4d graviton and the
volume modulus. The 3-vertex is suppressed by 1/M4 and the 4-vertex by 1/M2

4 . The field χa

symbolizes all fields with their KK towers, including the massless moduli and ghost fields.

Using the KK action of (2.7) and the diagrams in figure 1, one can in principle explicitly
compute the 1-loop correction to the propagators of the massless 4d graviton h0

µν and the
volume modulus. Let us first focus on the graviton correction. It can be interpreted as a
correction δR4 to the Ricci scalar term in the Einstein-frame action:

(S + ∆S)E = M2
4

2

∫
d4x
√−g (1 + δR4)R4 + · · · . (2.9)

In dimensional regularization, the loop contribution takes the form

δεR4 = d
dp2

∣∣∣∣
p2=0

κ2
4µ

ε
∑

a

∫
d4−εq

f4 (p, q,ma)
(q2 +m2

a) ((p− q)2 +m2
a)
, (2.10)

where f4 (p, q,ma) is of mass dimension 4. For the 3-vertex contribution, this follows from
the fact that each 3-vertex comes with two derivatives. For the 4-vertex contribution, one
has two derivatives from the vertex and a term cancelling the (p − q)2-expression in the
denominator. The sum over KK modes gives (2.10) a maximal degree of divergence which
is as strong as in 10d, i.e. octic in cut-off language. The final 4d correction is obtained as

δR4 = lim
ε→0

(
δεR4 + δε, c.t.R4

)
, (2.11)

i.e. after adding the counterterm contribution and taking ε to zero. To be specific, we use
minimal subtraction, such that δε, c.t.R4

= const./ε.
If the integral in (2.10) were finite, and hence no counterterm were needed, then on

dimensional grounds one would find

δR4 = O(1)
L2M2

4
. (2.12)

This follows because m2
a = fa/L

2, with fa dimensionless numbers encoding the Calabi-Yau
geometry. Then, the loop correction in Einstein frame takes the form

(S + ∆S)E = M2
4

2

∫
d4x
√−g (1 + δR4)R4 = M2

4
2

∫
d4x
√−g

(
1 + O(1)

L2M2
4

)
R4 , (2.13)

in agreement with the first term in (2.4).
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Let us now discuss the precise form of (2.11). Note that a non-zero counterterm δε, c.t.R4
comes with a pole in (2.10) and the latter is necessarily accompanied by a factor (µL)ε. In
the limit ε→ 0, a finite term ∼ ln(µL) is left. If we take our theory to be defined at the
string scale, we may set µ = Ms = M10g

1/4
s and the resulting logarithm would represent a

significant enhancement of the O(1) coefficient in (2.12).
In the following we will argue that such terms do not occur. The reason is that

δε, c.t.R4
vanishes. To understand this, note that compactifying of a theory on a smooth

manifold represents an IR modification and does not affect the UV structure. Hence all 4d
counterterms derive from 10d counterterms. It is clear that a counterterm proportional to
R10 in 10d will induce a counterterm proportional to R4 after compactification. However,
this is not the only option. For instance, if the 10d action contains a term of the form7

R5
10, one way of compactifying this term is schematically as Rexternal

∫
M6

d6yR4
internal. A

10d counterterm ∼ R5
10, which is completely unrelated to the 10d propagator of hMN , can

hence induce a 4d counterterm relevant for the propagator of hµν and thereby signal a
logarithmic enhancement of δR4 .

To study 4d counterterms we then require some information about higher-order terms
in the 10d action. It is known that there are no terms of order R2

10, R3
10 [63], or R5

10 [64] in
the IIB supergravity action.

First let us consider the 1-loop correction to R10. By analogy to (2.10), it takes the form

δεR10 = d
dp2

∣∣∣∣
p2=0

κ2
10µ

ε
∫

d10−εq
f10(p, q)
q2(p− q)2 , (2.14)

where f10 is again a function of mass dimension 4. The dominant divergence, taking into
account the p2 derivative, is octic. Nevertheless, one could in principle imagine a sub-leading
logarithmic divergence and hence a pole being present.8 However, here this can be excluded
on dimensional grounds since no dimensionful parameters like a mass appear and p2 is set
to zero. Thus, δεR10 vanishes.

This argument can be repeated word by word for the R4
10 term: the dominant 1-loop

divergence for its coefficient is quadratic and, since no mass scale is available, there is no sub-
leading logarithmic divergence. Hence there is no pole and no non-zero counterterm arises.

Let us make a side remark concerning specifically the R4
10 term (but also relevant more

generally): this higher-order term contributes a 4-vertex and can hence also correct the
propagator via a diagram of the form figure 1(b). The loop diagram with this R4

10 vertex is,
however, suppressed by a factor M6

10 compared to the analogous loop with a 4-vertex from
R10. We may hence neglect it.

Note that if the ten-dimensional action would have included a term of order R5
10, such

a term could have produced a pole in 10d since it is a marginal operator. This could in
7We denote by Rn10 any nth power term in the Riemann tensor with all indices contracted.
8As a simple example where subleading logarithmic corrections occur, consider the 1-loop correction to

the Higgs mass:

∼ λ

2

∫
d4p

(2π)4
1

p2 +m2 = − λm
2

32π2

(
Λ2

m2 − ln Λ2

m2

)
+O(Λ0) .

In 4− ε dimensions, one would find a pole proportional to m2.
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turn have produced a logarithmic term for the four-dimensional propagator.9 The absence
of such a term in ten dimensions combined with the absence of counterterms in 1-loop
diagrams constructed from R10 and R4

10 ensures that there are no counterterms in ten
dimensions that could induce a logarithmic term in four dimensions.

As (2.4) suggests, there are also direct corrections to the volume modulus kinetic term
coming from the loop diagrams in figure 1, with the external legs belonging to the modulus.
If the modulus is canonically normalized, the 3- and 4-vertices are again suppressed by
1/M4 and 1/M2

4 . This leads to the same form of loop integrals as for R4. After returning
to the non-canonical field L, one finds

M2
4

∫
d4x

O(1)
L2M2

4

(∂L)2

L2 , (2.15)

consistently with the correction proportional to b1 in (2.4).
In summary, the vertices all scale the same way, regardless of the fields correcting the

propagator: 3-vertices are suppressed by 1/M4 and 4-vertices by 1/M2
4 . This results in the

universal form of the 1-loop correction proposed in (2.5) and [24]. The leading correction
to the Kahler potential stemming from genuine loop corrections is therefore proportional to
1/τ2, with τ the 4-cycle volume. The absence of a logarithmic enhancement is a non-trivial
consequence of the divergence structure of the 10d effective supergravity theory.

2.3 Local α′ corrections from the bulk theory

Our field-theoretic loop analysis of the last subsection required the discussion of 10d higher-
curvature terms, which are needed to absorb UV divergences. Specifically, the absence of
an R5

10 term prevented the appearance of a logarithmic correction in 4d. In this context, it
may be useful to provide a short, more general discussion of such higher-curvature terms
and the resulting corrections to the Kahler potential (the local α′ corrections). Our line of
reasoning will be directly applicable to similar higher-curvature terms localized on branes,
O-planes and their intersections, where the implications are less well-established and hence
more interesting. From now on we will explicitly keep track of gs. In a purely low-energy
EFT perspective, it can be understood as gs ∼ Λ4/M4

10, where Λ = Ms is the EFT cutoff.
We focus on the purely gravitational (higher) curvature part of the type-IIB action in

the Einstein frame. Suppressing numerical prefactors for brevity, it reads [48]

SEF ∼
∫

d10x
√−g

[
M8

10R10 + M2
10

g
3/2
s

R4
10 +M2

10g
1/2
s R4

10 +O
(
M−2

10 g
−5/2
s R6

10

)]
. (2.16)

The first two terms appear at string tree-level: the Einstein-Hilbert term and the R4
10

correction. The third term arises at string-theoretic 1-loop order [48] and hence comes with
a relative g2

s suppression. In our field-theoretic approach, its size is set by the quadratic
divergence of the R4

10 term, such that its coefficient can also be understood as Λ2. In other
words, part of this term may be identified as a counterterm of the EFT analysis. Note
that the Einstein-Hilbert term does not receive a string-theoretic 1-loop correction [52].

9This happens for example in four-dimensional higher derivative gravity with a marginal R2 term [65].
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We will not discuss corrections at order R6
10 since their effects on the Kahler potential are

subleading compared to genuine loop effects.
Independently of the genuine loop effects, higher-curvature terms affect the 4d Einstein-

Hilbert term obtained after compactification. Specifically, dimensionally reducing the R4
10

term as
(
M2

10

g
3/2
s

+M2
10g

1/2
s

)
Rexternal

∫
d6xR3

internal ∼
(
M2

10

g
3/2
s

+M2
10g

1/2
s

)
Rexternal (2.17)

reproduces the well known string tree-level BBHL correction [48, 49] and its 1-loop counter-
part [48]. Comparing to the tree-level term M8

10L
6Rexternal, we see that their relative size is

1/(M6
10L

6g
3/2
s ) and g1/2

s /(M6
10L

6) respectively. This is also the scaling of the corresponding
corrections to the Kahler potential, which arise after Weyl rescaling to 4d Einstein frame.

3 Extending and generalizing the basic analysis

3.1 D-brane and O-plane corrections

We still need to consider additional corrections due to extended objects filling the four
external spacetime dimensions. We will focus on D3/D7-branes and O3/O7-planes as they
are relevant to phenomenological compactifications such as the LVS, but the same logic
applies to other extended objects, like for example even dimensional D-branes/O-planes of
type IIA. To study corrections induced by D-branes, we follow the procedure of section 2.2.
However, the KK tower of 10d type-IIB bulk fields is now replaced by the analogous tower
resulting from the compactification of the worldvolume theory on the brane. For O-planes
no such additional tower exists, but the bulk-field KK tower and hence the corresponding
loop correction is modified by the orientifold projection. Both for D-branes and O-planes
new operators localized on the brane, on intersection cycles, or at the singularity potentially
come into play.

Our Dp-branes/Op-planes wrap p−3 cycles in the internal dimensions. For the moment,
we assume our compact geometry to be governed by a single length scale L. This is then
also the typical length scale of these p − 3 cycles. Further down in this section we will
also comment on generalizations to cases with multiple Kahler moduli. Scenarios with
hierarchically different cycles will be considered in sections 6.1 and 6.2.

3.1.1 D-branes
The fields of the gauge multiplet living on the brane couple to the graviton and its moduli.
Hence, these fields run in loops, such as in figure 1. It is easy to see that, as long as L remains
the only relevant length scale, the couplings to graviton and moduli still come with factors
1/M4. More precisely, 3-vertices and 4-vertices are again universally suppressed by 1/M4
and 1/M2

4 , respectively. Therefore, the new genuine loop corrections are parametrically the
same as those computed in section 2.2.

In addition, we should consider Rnp+1 terms on the brane. In analogy to our previous
discussion of Rn10 terms, brane localised higher-curvature terms can, after dimensional
reduction, impact the coefficient of R4. Again, two distinct effects arise.

– 10 –
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First, if the Rnp+1 term is marginal, its coefficient at one-loop order can contain a
1/ε counterterm. This means that the one-loop correction from the brane KK-tower can
contain a corresponding 1/ε pole. Hence, a logarithm ln(M10g

1/4
s L) can appear in the

loop correction to the coefficient of R4. In terms of our classification proposed in the
Introduction, this effect is on the boundary between a localized α′ correction and a genuine
loop correction. For definiteness, we will count it as part of localized α′ corrections. This
appears sensible since a logarithmic integral over momentum scales µ in the range between
1/L and Λ = M10g

1/4
s is dominated by scales which satisfy µ� 1/L. The effect is hence

localized in the sense of not being sensitive to the non-trivial CY geometry with typical
length scale L.

Second, if the Rnp+1 operator is relevant, the coefficient includes possible power-like
divergences, cut off at the string scale (see section 2.3). From the perspective of a loop
calculation, such operators generically supply counterterms, which however happen to
vanish in dimensional regularization. Thus, for us only the classical part of the coefficient is
relevant, providing a localized α′ correction.

We will only consider Rnp+1 terms up to and including n = (p+ 1)/2, which corresponds
to the operator being marginal. Irrelevant operators will not contribute at the same order
in 1/L as the loop effects we are interested in.

The worldvolume action of a p-brane contains two types of curvature corrections.
Firstly, there are curvature corrections to the DBI action [66]. For further work, including
curvature-gauge-field terms, see e.g. [67–72]. The curvature corrections start at order R2

p+1.
Higher order terms in Rp+1 have to our knowledge not been computed, but we expect that
such terms exist. We will hence include them in our discussion, with the caveat that some of
them may turn out to be forbidden. Suppressing again numerical prefactors, the curvature
corrections to the DBI action then take the form10

SDBI ⊃
∫

dp+1x
[
Mp−3

10 g(p−7)/4
s (1 + gs)R2

p+1 +Mp−5
10 g(p−9)/4

s (1 + gs)R3
p+1 + . . .

]
. (3.1)

This equation is written in Einstein frame in the sense that the varying part of the dilaton
is absorbed into the metric. The gs scaling follows from the substitution Ms = Λ = M10g

1/4
s .

For each of the operators in (3.1), the second, gs-suppressed term in the round bracket can
be interpreted as coming from a power-like divergence cut off at the string scale.

In addition, there are topological curvature terms in the Wess-Zumino (WZ) action.
Their form is known, see e.g. [66, 75]. These terms consist of couplings between the bulk
Ramond-Ramond fields and even powers of the curvature two-form. Since our analysis is
focused on backgrounds without fluxes, we will not consider these terms here. However,
even in the absence of background fluxes, D3/O3 loci source F5 while D7/O7 loci source F9
(and possibly an induced F5 field strength). For D7/O7, the induced F9 RR-field strength
can be set to zero by cancelling the D7 tadpole locally. For D3/O3, local D3 tadpole
cancellation can not be achieved.

The resulting F5 field strength is a source for warping to be discussed in section 4. In
fact, it is well known since [2] that the leading-order F5 background is fixed together with

10In our understanding, it is expected [66, 73, 74] that there is no R3 term but the R4 term is present.
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the warp factor. As soon as higher-order corrections like, for example, higher-order terms
in the WZ action are included, F5 effects may become relevant independently of warping,
but this would correspond to a superposition of classical backreaction and higher-order
α′ effects. Hence, this goes beyond the goals of the present paper, where we limit our
discussion to each effect separately.

Consider first the impact of counterterms from marginal operators in (3.1) that signal
the possibility of a logarithmic term in the R4 coefficient.

For the D3-branes, the leading R2
4 term is marginal. There is then potentially a

1/ε counterterm and hence a logarithmic enhancement. However, this cannot possibly
impact the R4 term as the D3-brane is pointlike in the internal dimensions and there is no
dimensional reduction to be done that could turn the R2

4 term into an R4 term. Moreover,
similarly to our discussion in the case of R4

10 in the bulk, a contribution of R2
4 via the

induced vertex will be subleading.
Concerning the D7-branes, a possible R4

8 term would be a marginal operator. This
may give rise to a 1/ε counterterm, leading to a logarithmic enhancement of the form
ln(M10g

1/4
s L) in the coefficient of R4. We note that the logic here is exactly the same as

for a potential R5
10 bulk term in section 2.2, which is however known to be absent. The

expected appearance of a logarithmic term, related to D7-branes, in our analysis of loop
corrections is extremely interesting: if present, it would be dominant compared to genuine
loop effects. Moreover, it is conceivable that the numerical coefficient of this logarithm
is calculable since it is a universal feature of the UV structure of the 10d theory with
D7-branes in flat space.

In the context of logarithmic corrections, let us comment on the log effect at order α′3
analysed in [35], which may also be used for the construction of novel (A)dS vacua. The
relevant correction arises in torus orbifolds from the combination of two effects: first, there
is the R4 term in the bulk (the third term in (2.16)), which is localized at the points of
high curvature.11 Second, there is a backreaction on the R4 term sourced, in this case, by a
D7-brane. The logarithm comes from the codimension-2 behaviour of the relevant Greens
function. Crucially, this backreaction is claimed not to involve a further α′ suppression,
possibly related to the assumption that D7-tadpoles are not cancelled locally, i.e. O7/D7
branes do not come in SO(8) stacks. We note that the log term of [35] appears at the order
α′3, while our previously discussed logarithm arises at the order of genuine 1-loop effects,
i.e. α′4. The correction of [35] can be understood as a combination of a local α′ correction,
the R4 part, and a warping effect, the backreaction of the D7 brane on the geometry where
the curvature is localized. We will discuss warping in detail in sections 4 and 5.2. A similar
correction, based on the interplay of warping and higher-curvature terms, has been recently
discussed in [18, 19]. There, the warping does not come from D7-branes and the effect
arises at higher order in α′. In the present paper, we do not consider corrections which need
warping and higher-curvature terms at the same time. Clearly, such formally higher-order
effects can nevertheless be important and should be systematically studied in the future.

11We note in passing that this localization as well as the absence of a corresponding tree-level term is a
special feature of torus orbifold models.
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Consider now the local α′ corrections of branes to the R4 coupling.
D3-branes are pointlike in the internal dimensions, so no dimensional reduction has to

be done. There is then no way for the leading R2
4 term in (3.1) or any higher term Rn4 to

contribute to the coefficient of R4 in the 4d EFT.
D7-branes wrap 4-cycles with typical length scale L. Thus, Rn8 terms contribute as

M8−2n
10 g(2−n)/2

s (1 + gs)Rexternal

∫

4−cycle
d4y Rn−1

internal

∼M8−2n
10 g(2−n)/2

s (1 + gs)L4−2(n−1)Rexternal ,

(3.2)

with the leading term arising for n = 2. The effects of such an R2
8 term have been studied

in [36, 38–40, 76]. The M4
10R

2 term induces a field redefinition and does not correct the
Kahler potential [38–40]. However, as displayed in (3.2), a subleading term M4

10gsR
2 may

in general be present and induce a correction to the Kahler potential. Its presence has to
our knowledge not yet been confirmed by string amplitude calculations. Such a term would
contribute at order M4

10L
2gs to R4. This would lead to a correction proportional to gs and

of degree −1 in 4-cycles to the Kahler potential, which is dominant compared to BBHL [49].
We note that this matches the KK correction of the BHP conjecture. At the level of the
scalar potential, this correction will be subleading compared to BBHL but of the order of
genuine loop corrections due to the extended no-scale structure [24, 27, 28].

If an R3
8 term in (3.1) should exist, it would via (3.2) contribute at the order of

BBHL [48, 49]. Since it is not subject to an extended no-scale cancellation, this is dominant
compared to loop effects on the level of the scalar potential. Even though we have so far
not discussed the case of multiple Kahler moduli, let us briefly note that an R3

8 would be
particularly interesting in this context. Dimensionally reducing the term as above gives

M2
10

g
1/2
s

∫
d8xR3

8 ∼
M2

10

g
1/2
s

∫
d4yR2

internal

∫
d4xR4 ∼

M2
10

g
1/2
s

f(τ1, . . . , τn)
∫

d4xR4 , (3.3)

where n labels the Kahler moduli τi and f(τ1, . . . , τn) is a homogeneous function of degree
0. Crucially, it is possible that f is not just a constant but depends non-trivially on the
ratios of 4-cycles. It could hence be the dominant effect lifting the flat directions associated
with ‘large’ 4-cycle ratios, as it is typically required in the LVS.

Finally, the dimensional reduction of an R4
8 term in (3.2) would result in a correction

comparable to one-loop effects, but without logarithmic enhancement.

3.1.2 O-planes

In contrast to D-branes, O-planes do not come with new fields propagating on their
world-volume. Thus, no new contributions to the diagrams of figure 1 arise.

The curvature terms of the type of (3.1) also exists for O-planes. At the order α′2,
where the corrections are known, the R2 curvature term on the O-plane is 2p−5 times that
on the D-brane. Crucially, D-brane and O-plane curvature correction have the same sign,
so they do not cancel against each other. The dimensional reduction of curvature terms on
the O-plane worldvolume action then proceeds entirely analogously to the D-brane case.
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O-planes have two further effects that are not present for D-branes. First, the orientifold
projection removes part of the KK modes. Thus, the KK spectrum relevant for the 4d
action (2.7) is modified. The parametric form of the resulting loop correction remains,
however, unchanged. Note also that local 10d physics away from the orientifold plane is not
affected by the projection, such that the analysis of 10d divergences and counterterms goes
through as before.

Second, the orientifolding changes the geometry of the compact space in a UV sensitive
manner. Put differently, the O-plane hypersurface represents a singularity within the
surrounding, weakly curved 10d geometry. Thus, our logic in section 2.2, which assumed
that the UV structure and in particular the counterterms are those of the flat 10d theory,
does not apply any more. Instead, the loop calculation involving the orientifold-projected KK
spectrum may require counterterms localized at the O-plane. These are the same operators
that we discussed above as possible curvature corrections on O-planes and D-branes. Thus,
no entirely new effects arise and our previous discussion of loop corrections from the bulk
and from D-branes, including the possible log-enhancements, remains valid. Crucially, after
an orientifold projection introducing O7-planes a second source for log-enhancements which
we discussed in the D7-brane context appears: it is due to the projected spectrum of bulk
modes, which may induce a log-divergent R4

8 term on the O7-plane.

3.1.3 Intersecting D-branes and O-planes

Finally, let us discuss setups where D-branes/O-planes intersect. We focus again on type-IIB
orientifolds with D3/D7-branes and O3/O7-planes. In this setting, only D7/O7 intersections
are relevant, filling out curves in the internal space. We assume that their 2d geometry is
governed by a single length scale L. In total, the intersection manifold is 6-dimensional and
potentially supports new operators. We focus on curvature effects, neglecting fluxes and
couplings of the branes to higher form fields.

Fields living on the intersection couple to the graviton and its moduli, hence inducing
loop correction as in figure 1. The 3- and 4-vertices are again universally suppressed by
1/M4 and 1/M2

4 , respectively. This leads to the same parametric behavior of genuine loop
corrections as observed before.

As usual, UV divergences of loop corrections are absorbed in local operators, the most
interesting being the marginal operator R3. If this operator is allowed and the corresponding
divergence arises, a logarithmic enhancement in the coefficient of R4 is induced.

Of the other local curvature operators, the most import one is the Einstein-Hilbert
term:

Sint,EH ∼M4
10(1 + gs)

∫
d6xR6 . (3.4)

Here we have displayed both the tree level and the string-one-loop contribution. The
tree level term does not lead to a correction of the Kahler potential but only to a field
redefinition [38–40]. This is supported by scattering analyses in type IIA on intersecting D6-
branes/O6-planes12 [50] and in type IIB with D9/D5-branes [51]. They show that an Einstein-
Hilbert term on brane intersections can only be induced at 1-loop level, corresponding to

12It would very interesting to study the effect of this term in the context of DGKT [77].
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the gs-suppressed term in (3.4). References [50, 51] discuss the contribution of this term to
R4, which is of order M4

10L
2gs:

Sint,EH ∼M4
10gs

∫
d6xR6 ∼M4

10gsL
2
∫

d4xR4 . (3.5)

This matches the EFT analysis of [40]. In this analysis, one starts from the string-frame
R2

8 operator on D7/O7. Taking into account the Weyl rescaling to the 10d Einstein frame
together with the varying dilaton near D7-branes, one of the Ricci scalars may be replaced
by dilaton gradients. One is then left with an integral over the remaining Ricci scalar which
is effectively localized on the D7/O7 intersection. This localization is due to the non-trivial
dilaton profile which one brane induces in the vicinity of the intersecting brane. The net
effect is an R6 operator on the brane intersection, to be viewed as a local α′ correction.
The resulting correction to the Kahler potential is proportional to gs and of degree −1 in
4-cycles and its effect on the scalar potential is subject to the extended no-scale structure.
Not much is known about higher order operators on the intersection cycle such as R2

6 and
R3

6. A comment on this issue can be found in [42]. If terms of the form R2
6 and R3

6 on the
intersection locus exist, they would induce correction with the volume-scaling of BBHL
(but suppressed in gs) and of genuine loops effects respectively.

Let us briefly comment on the possible R2
6 term in more detail. Using the metric

ansatz (2.2), the R2
6 term contributes to the 4d Einstein-Hilbert term through the following

dimensional reduction:

M2
10

g
1/2
s

∫
d6xR2

6 ∼
M2

10

g
1/2
s

∫
d2y Rinternal

∫
d4xR4 ∼

M2
10

g
1/2
s

χ(S)
∫

d4xR4 . (3.6)

Here χ(S) is the Euler characteristic of the intersection surface S. Comparing this with the
tree-level term M8

10L
6R4, we see that the relative, parametric suppression of the correction

from an R2
6 term on a 7-brane intersection locus is 1/(L6M6

10g
1/2
s ) ∼ gs(l6s/L6). This is

down by a factor gs compared to BBHL.

3.1.4 Summary

In this section we have studied brane-induced corrections to the four-dimensional Kahler
potential. Our goal was to demonstrate that branes do not spoil the analysis of sections 2.1
and 2.2. We have seen that, indeed, brane effects do not alter the power of the volume with
which genuine loop corrections scale. However, in the presence of D7-branes/O7-planes,
log-enhanced terms may arise. They are expected to be dominant since M10g

1/4
s L � 1

and hence, though to lesser extent, also ln(M10g
1/4
s L)� 1. The log-enhanced contribution

then wins against the O(1) numerical coefficient b0 in (2.4). This correction would then
be decisive for all moduli stabilization schemes relying on loop corrections. The marginal
operators potentially responsible for this effect are of type R4

8 for 7-branes and of type R3
6

for their intersections. It would therefore be very important to know whether these terms
are really present and to determine their coefficients.

In setups with intersecting D7-branes and/or O7-planes, it has been shown that an
Einstein-Hilbert term localized on the intersection curve is induced at 1-loop level. Local
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α′ corrections coming from this operator then lead to corrections to the Kahler potential
proportional to gs and of degree −1 in 4-cycles. This is fundamentally different from the
genuine loop corrections of degree −2 in 4-cycles. Terms of degree −1 in 4-cycles can also
be obtained from an M2

10gsR
2
8 operator on a D7/O7.

In cases with multiple Kahler moduli the corrections considered in this section can be
even more interesting since ratios of 4-cycles can potentially appear. These ratios can be
large given a hierarchical structure in the Kahler moduli. An explicit example where large
ratios appear is discussed in section 6.2.3.

We emphasize once again that for some of the corrections discussed it is not yet clear
whether the required term really appears in the DBI action and whether its dimensional
reduction works as displayed schematically in (3.2). Moreover, one needs to understand
whether the resulting effect can be absorbed in a field redefiniton.13

3.2 Multiple Kahler moduli
Most Calabi-Yau manifolds have more than a single Kahler modulus. Moreover, the LVS
requires at least two Kahler moduli. It is therefore crucial to extend the analysis above to
Calabi-Yaus with multiple Kahler moduli. This is the goal of the present subsection. The
fundamental result is the same as in the single-modulus case: the genuine loop correction
to the Kahler potential is a homogeneous function of degree −2 in 4-cycle volumes. A
logarithmic enhancement is again possible. Readers who are prepared to accept these facts
may skip to section 4.

To demonstrate our claims, let us first recall some basics concerning the Kahler moduli
sector of type-IIB orientifolds with D3/D7-branes. The tree-level Kahler potential K and
volume V of the internal manifoldM6 read

K = −2 ln(V), V = 1
3!

∫

M6
J ∧ J ∧ J = 1

3!Kijkt
itjtk , (3.7)

with J the Kahler form and Kijk the triple intersection numbers. The two-cycle Kahler
moduli ti are related to four-cycle Kahler moduli τi as

τi = ∂V
∂ti

= 1
2Kijkt

jtk . (3.8)

The τi (ti) measure the Einstein frame 4-cycle (2-cycle) volume in units of ls = 2π
√
α′. The

Kahler potential K has to be interpreted as a function of the complexified 4-cycle moduli
Ti. This is achieved by expressing the ti through the τi and the latter as τi = (Ti + T ı)/2.

To argue for the parametric form of loop corrections, we introduce dimensionful Kahler
moduli as follows:

t̃i = ti

M2
10
, τ̃i = τi

M4
10
, Ṽ = V

M6
10
. (3.9)

The dimensionful quantities are characterized by a tilde.
13By this we mean that the Kahler manifold as an abstract mathematical object remains unchanged, only

the coordinates are modified. In other words, a given point on this manifold might change its interpretation
in terms of the volumes of some set of 4-cycles, measured in string units. This implies that, from the
perspective of the 4d supergravity model, there is no change (as long as the above 4-cycles do not enter the
model in some other way, e.g. through the non-perturbative superpotential). An observer having access to
the ‘microscopic information’ of 4-cycle volumes in string units could discover the correction.
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Let us start from the 10D IIB action (2.1) and the metric ansatz (2.2) (but now with
multiple Kahler moduli) and dimensionally reduce to four dimensions. This yields the
four-dimensional Jordan frame action. At tree level we have14

SJBD = 1
2κ2

10

∫
d4x
√−gṼ

[
R4 + F̃ij∂µτ̃

i∂µτ̃ j + · · ·
]
. (3.10)

Here we display only the Einstein-Hilbert term and kinetic terms of the dimensionful 4-cycle
moduli τ̃ i, with F̃ij denoting their prefactors.15 One-loop corrections come from integrating
out the tower of KK modes and from the fluctuations of the moduli themselves. Exactly
as in the single-modulus analysis of section 2.1, the UV-scale M10 can not appear in the
result, except through divergences associated with higher-dimension operators in 10d or on
branes (cf. sections 2.2 and 3.1). Thus, on dimensional grounds one expects

∆SJBD =
∫

d4x
√−g

(
ã({τ̃k})R4 + b̃ij({τ̃k})∂µτ̃ i∂µτ̃ j

)
, (3.11)

where ã({τ̃k}) is a homogeneous function of degree −1/2 in the τ̃k (mass dimension 2) and
b̃ij({τ̃k}) is of degree −5/2 (mass dimension 10).

We now trade all dimensionful quantities for dimensionless ones as it was done in
section 2.1 and convert (3.11) to 4d Einstein frame. We can then read off the Kahler metric
and its correction:16

(S + ∆S)E =
∫

d4x
√−g

[
M2

4
2 R4 +

(
Kij

4 + fij({τk})
)
∂µτ

i∂µτ j
]
. (3.12)

Here fij({τk}) is derived from ã({τ̃k}) and b̃ij({τ̃k}) as in section 2.1. The functions fij({τk})
are homogeneous of degree −4 in the τk. Further, Kij is of degree −2 and so (3.12) shows
explicitly that every loop correction is necessarily suppressed by a factor of degree −2 in
4-cycle volumes relative to the leading term. Our simple dimensional analysis is in general
insufficient to provide information about the dependence of fij({τk}) on individual 4-cycle
volumes. However, we will be able to make progress in specific examples in sections 6.1
and 6.2.

The whole argument goes through the same way using the Feynman diagram approach
of section 2.2. After canonically normalizing the moduli fields, each 3-vertex (4-vertex)
will again be suppressed by 1/M4 (1/M2

4 ). Moreover, the argument for a possibly log-
enhanced correction induced by an R4

8 term on the D7-brane is still valid. The logarithmic
enhancement appears in the coefficient of R4 and will therefore after Weyl rescaling appear
in the coefficients of all kinetic terms of the moduli. This will in turn lead to log-enhanced
corrections to the Kahler potential.

14From here on we change our index conventions slightly: we use the 4-cycle-moduli as coordinates on the
moduli space, hence giving them upper indices.

15After Weyl rescaling to the Einstein frame, these prefactors take the form of second derivatives of
the tree-level Kahler potential (see e.g. [78] for the corresponding 2-cycle calculation and [49, 79] for the
transition to 4-cycles).

16Note that derivatives of K with respect to τ i or T i differ only by a factor of 2. In the following, we will
use the notation ∂2K/(∂τ i∂τ j) ≡ Kij and hence Ki = Kij/4.
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4 Warping corrections

In this section we discuss how warping of the type-IIB orientifold geometry [2] affects the
4d moduli action. In our 10d EFT approach below the string scale, warping corrections
are simply classical backreaction effects, arising because branes and fluxes deform the CY
geometry. In this sense, they are distinct from the loop corrections which are our main
subject. However, concerning specifically the Kahler moduli Kahler potential, warping
corrections take the form of a series of terms suppressed 1/τ , 1/τ2 etc., where τ is a generic
4-cycle variable. This is similar to loop effects, so it is natural to include some discussion of
warping in our analysis.

From a stringy perspective, the warping induced by a D-brane can be understood at
leading order as a disk diagram with the boundary on the brane. More precisely, the warping
far away from the brane corresponds to the regime where this disc is deformed into a long,
thin cylinder, ending on the brane on one side and being capped-off by a half-sphere on the
other side. Inserting, for example, two 4d graviton vertex operators in the half-sphere region
gives the warping correction to the 4d Einstein-Hilbert term. An analogous discussion
applies to the warping induced by an O-plane. The only difference is that the long, thin
cylinder now ends in a cross-cap on one side and in a half-sphere on the other side.

The proposed association between the disk diagram and warping may at first sight
appear unnatural since warping is a gravitational effect, generally associated with closed
strings. However, our claim that disk diagrams on D-branes describe the leading warping
effect becomes more apparent if one considers as an example a stack of D3-branes in 10d flat
space in the holographic limit of [80]. In the holographic limit, the open-string dynamics on
the brane clearly corresponds to the closed-string or supergravity dynamics in the AdS5×S5

background. This AdS5 × S5 geometry appears precisely due to the warping of the 10d flat
space induced by the brane stack, consistently with our discussion above.

One way to get the first subleading order in warping is by having two disconnected
disk diagrams. However, at the same order one can also have a long cylinder between two
separated branes. This naturally describes the gravitational pull between two spatially
separated branes. Now, since we will be interested in comparing 10d EFT loops with string
loops, it is clear that the discussion of warping corrections is mandatory.

Although we will not make this concrete, one should also be able to think of the warping
corrections from the perspective of Kaluza-Klein fields in a supergravity analysis. One can
do so in two different ways.

In the first approach, one starts with the pure CY geometry. The KK mode expansion
of 10d metric and fields is performed on the basis of this unwarped background. Introducing
sources may lead to warping which, in this language, is equivalent to turning on VEVs of
the 4d fields in the KK mode tower.

In the second approach, one first determines the warped geometry and performs the
KK modes expansion on this basis. The resulting 4D KK tower is affected by the warping —
it is different from the tower in the first approach. The advantage is that now the VEVs of
the 4d fields in the tower remain zero. One may also switch between these two perspectives
by redefining the 4D KK fields.
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For the analysis in our paper this distinction is not relevant as we only consider loop
corrections and warping separately, as independent additive effects. We expect that, for
an analysis of the interplay between warping and loop effects it will be crucial to properly
account for the background in which one performs the loop analysis. It would be interesting
to understand such interplay effects in more detail.

The key information for us, deriving from [2, 47, 81–87], is as follows: warping induced
at leading order in α′ by fluxes, D3/O3 and curved D7/O7 branes is incorporated in the
analysis of GKP [2]. It corrects the Kahler potential K by a series of terms 1/τn, starting
at n = 1. However, in total the tree-level no-scale structure of K is not violated, such that
no correction to the scalar potential arises. The statements just made follow from classical
field theory. More generally, warping corrections do not represent a loop effect from our
10d EFT point of view. Nevertheless, subleading warping corrections do appear as part of
a string one-loop calculation. The reader who is willing to simply accept this may move on
to the next section.

The claims above may be underpinned by two series of papers which we will briefly
discuss in turn. To begin, let us write the metric as

ds2 = e2A(y,τ)gµν(x)dxµdxν + e−2A(y,τ)g̃mndymdyn , (4.1)

where we have made it manifest that the warp factor depends on the values τ i of Kahler
moduli governing the unwarped CY geometry. However, as observed by Giddings and
Maharana [81], it would be too naive to simply promote the moduli to dynamical 4d fields
τ i = τ i(x) since then the ansatz above does not satisfy the 10d Einstein equations. One
has to allow for more general metric fluctuations, parametrized by so-called compensator
fields [81]. On this basis, the moduli space metric KIJ and hence the Kahler potential may
be derived. For a deeper understanding, employing in particular the ADM/Hamiltonian
formulation, see e.g. [82, 84].

Using the ingredients above, the Kahler potential in the single-modulus case was derived
in [83] (see [84] for a generalization allowing for mobile D3-branes):

K = −3 ln
(

(T + T ) + 2 V
0
W

VCY

)
. (4.2)

Here
VCY =

∫
d6y

√
g̃ and V 0

W =
∫

d6y
√
g̃e−4A0(y) (4.3)

are the CY volume and a fiducial warped-CY volume. The real modulus τ = ReT
determines the difference between general and fiducial warp factors: e−4A(y,τ) = e−4A0(y) +τ .
A redefinition, T → T ′ = T + V 0

W /VCY makes it manifest that K is still of no-scale form, as
expected for warping corrections [2]. Moreover, a large-volume expansion of (4.2) results
in a power series in 1/τ . Note that no factor of gs comes in since we work in the Einstein
frame, such that the Poisson equation [2, 81] determining the warp factor e−4A0 contains
no string coupling.17

17We thank Daniel Junghans for correcting an error concerning this important point in an earlier version.
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A generalization to the multi-moduli case has been achieved in [47, 87] in a supergravity-
based approach, using the earlier work [85, 86]. We briefly state the main ideas and results
and give more details in appendix A. The first key idea of [47] is to argue, on the basis of a
nonlinearly realized superconformal symmetry of the 4d EFT,18 that the Kahler potential
must have the following implicit form:

K = K(a) = −3 ln (VCYa)− 3 ln(4π) . (4.4)

Here a is a universal modulus which, by analogy to what has just been said in the single-
modulus case, is defined as a ≡ e−4A − e−4A0 . More specifically, one may choose A0 such
that V 0

W = 0. Now the task is to determine the functional dependence of a on the chiral
superfields T i conventionally used to describe the type-IIB Kahler moduli space and on
possible further chiral fields, e.g. D3-brane positions ZI .

The second key idea of [47] is to solve this problem by considering E3 instanton
corrections: on the one hand, by holomorphicity the instanton action must be the real part
of a chiral superfield. On the other hand, this action is given by the DBI action of the
E3-brane in the warped background. It is determined by the warped 4-cycle volume,

1
2

∫

Di
e−4AJ0 ∧ J0 , (4.5)

with J0 the unwarped CY Kahler form. Combining these two conditions, one arrives at

ReT i + f i(Z) + f
i(Z) = aV i + 1

2

∫

Di
e−4A0J0 ∧ J0 , (4.6)

where V i ≡ 1
2
∫
Di J0 ∧ J0 and f i(Z) are holomorphic functions of the remaining chiral fields.

In the simplest case these are D3-brane positions.
From this, the desired warping-corrected Kahler potential can be derived: one first

expands the Kahler form of the unwarped Calabi-Yau as J0 = viωi, with ωi integral
harmonic (1, 1) forms providing a basis for H2(CY,Z). The ωi are chosen to be Poincaré
dual to the divisors Di. The condition on the Kahler form

1
3!

∫

CY
J0 ∧ J0 ∧ J0 = VCY (4.7)

can then be thought of as a constraint on the vi, which hence contain only h1,1 − 1 degrees
of freedom. Using (4.6) and (4.7) one can now express a and the vi in terms of the variables
[ReT i + f i(Z) + f

i(Z)]. Inserting the resulting expression for a in (4.4) gives the warping-
corrected Kahler potential. Different choices of the constant VCY correspond to different
additive normalizations of the T i. So far, this is all rather implicit, but it suffices to make
our main points. We quote a somewhat more explicit formulation in appendix A. We also
note that a more general calculation, including the backreaction of the Kahler moduli to
fluxes, appears in [87].

As demonstrated explicitly in [47], the multi-Kahler-moduli Kahler potential just
obtained is of no-scale type. For large volumes, (4.4) can be expanded in V and the leading

18Extensive studies of superconformal symmetries can be found in [88].
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order correction to the Kahler potential is of degree −1 in 4-cycles. This can be seen as
follows: the integral in (4.6) is independent of the volume modulus — it depends only on
the ratios of Kahler moduli. This integral is therefore suppressed by 1/aV i(v) compared to
the leading-order term aV i, which is of degree 1 in 4-cycles. With this, we have collected
all the facts stated at the beginning of the present section.

5 Relation to string amplitude calculations

5.1 String loop calculations and the BHP conjecture

In the last sections we have derived field-theoretically how loop corrections on Calabi-Yau
geometries scale with the Kahler moduli. Let us now review the string loop results by Berg,
Haack and Körs (BHK) in the torus orbifold case [25] and with the conjecture by Berg,
Haack and Pajer (BHP) on how this might extend to CYs [27]. We will compare both
viewpoints in section 5.2.

String loop calculations on general CYs are currently not feasible. Results are only
available for torus orbifolds without flux but with, for example, D3-/D7-branes and O3-/O7-
planes. Concretely, the N = 2 geometry T 4/Z2×T 2 and the N = 1 geometries T 6/(Z2×Z2)
and T 6/Z′6 were considered in [25]. Subsequently, BHP [27] conjectured how these BHK
results might generalize to the CY case. Explicitly, the torus orbifold corrections and their
proposed CY generalizations read

δKKK
(gs) ∼

3∑

i=1

EKKi (U,U)
Re(S)τi

CY−→ δKKK
(gs) ∼

∑

a

CKKa (U,U)T a(ti)
Re(S)V (5.1)

δKW
(gs) ∼

3∑

i 6=j 6=k=1

EWi (U,U)
τjτk

CY−→ δKW
(gs) ∼

∑

a

CWa (U,U)
Ia(ti)V . (5.2)

Here Re(S) is the inverse string coupling and τi, ti are 4-cycle and 2-cycle Kahler moduli
respectively. The functions T a and Ia are linear in the ti. The Calabi-Yau volume is V
and EKK,Wi (U,U), CKK,Wa (U,U) are functions of the complex structure moduli U . In the
Calabi-Yau case, they are unknown. The corrections are presented in the form of two
different contributions, δKKK

(gs) and δKW
(gs), with the indices referring to ‘Kaluza-Klein’ and

‘winding’. These names will be discussed in section 5.2 below.
For a toroidal orbifold, the Ia are 2-cycles on which D7-brane stacks intersect while

the T a are 2-cycles transverse to the available D7-brane stacks [27, 28]. For a generic CY it
is not obvious whether an unambiguous definition of the latter ‘transverse’ 2-cycles exists.

In our understanding, the BHP proposal on the r.h.s. of (5.1), (5.2) consists of two
steps. First, the scaling in terms of Kahler moduli is assumed not to change in going from
torus orbifold to Calabi-Yau. This is rather convincing and in good agreement with the
scaling arguments we discussed in previous sections, cf. also [24]. The formulae on the
r.h.s. of (5.1), (5.2) would be consistent with this scaling if T a and Ia were replaced by
any homogeneous function of the 2-cycle variables of degree 1. The second part of the
conjecture then states, non-trivially, that these are not just homogeneous functions but,
specifically, linear expressions in the ti. This linearity does not follow from our derivation
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in section 3.2, where only the homogeneity of degree 1 is obtained. In particular, extra
ratios of 2-cycle volumes may appear. An example suggesting that this indeed happens is
provided in section 6.2.

The loop corrections to the Kahler potential induce corrections to the scalar potential.
At the perturbative level, the leading such corrections take the form [28, 29]

δV 1-loop
(gs) =



h1,1∑

i=1

(C(KK)
i )2

Re(S)2 Ktree
ii − 2δKW

(gs)


W 2

0 gs
V2 . (5.3)

A key role in obtaining this result is played by the ‘extended no-scale structure’ (ENSS) [24,
28]. This refers to the fact that the leading order contribution from corrections δK to
the Kahler potential vanishes if δK is a homogeneous function of degree −1 in 4-cycles.
Without the ENSS, one would expect a term linear in C(KK)

i to be present in (5.3). This
term would be dominant since it would scale with the volume as V−8/3. Thanks to the
ENSS cancellation, the Kaluza-Klein correction contributes only at second order and the
leading loop correction to the potential scales as V−10/3.

5.2 Comparing field-theoretic and (conjectured) string-theoretic loop effects
In this section we compare and match the results of our field-theoretic analysis of corrections
to the Kahler potential (Sections 2 and 3) with the expectations from string amplitude
calculations (Section 5.1). We will in particular suggest a resolution for a discrepancy
between the field-theory analysis of [24] and the string amplitude results [25] (together with
the conjecture [27]). This discrepancy was discussed in [28] but has, to the best of our
knowledge, so far not been resolved. The discrepancy arises as follows.

From genuine loop effects we obtain corrections to the Kahler potential of degree −2 in
4-cycles. This matches the form of the BHP winding corrections. But the BHP conjecture
proposes a leading correction to the Kahler potential, called KK correction by the authors,
which is proportional to gs and of degree −1 in 4-cycles. Thus, it has to be clarified how
this correction arises if we take the 10d EFT below the string scale as our starting point. In
the remainder of this section, we argue that the EFT counterpart of the BHP KK correction
are specific terms of local α′ corrections discussed in section 3.1. On the way, we try to
develop a better physical understanding of our field theory corrections from a worldsheet
perspective and vice versa.

Let us start with the interpretation of genuine loop corrections from a worldsheet
perspective. They correspond to those parts of a string 1-loop integral where the worldsheet
has, roughly speaking, one long and one short dimension. Pictorially, this means that one
has a long and thin torus/Klein bottle in the closed string case or, similarly, a long and thin
annulus/Moebius strip in the open string case. Those are the regimes where the string loop
integration can be identified with the field theoretic loop integral, i.e. with the propagation
of a 10d or brane-localized massless state around a loop. Comparing this interpretation
with the BHP conjecture, we find that the two perspectives nevertheless appear to have an
imperfection.

For the BHP winding correction to appear, it was argued in [27] that D7-branes or
O7-planes need to intersect. Then a short open string connecting the two branes (or brane
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Figure 2. Short open string connecting two localized objects. The ellipse with attached arrows
represents that the string is wrapped around the intersection cycle.

and image brane) may propagate in a closed loop along the intersection surface (see figure 2).
This corresponds to the thin annulus above or, equivalently, to a field-theoretic loop effect
of a massless, intersection-localized state. So far, everything looks perfect. Also the name
winding correction is justified if one reinterprets the worldsheet as a closed, winding string
which propagates over a short distance from brane to brane. However, as a field theorist
one would expect genuine loop corrections to arise more generally — they are not tied to
intersecting objects. We have seen examples for this at the beginning of section 3.1.1 where
an open string 1-loop effect on a single brane appears to contribute genuine loop correction.
Similarly, according to section 2 closed string 1-loop effects in the bulk should also provide
a loop correction of the same type and with the same scaling. It is not clear to us why the
explicit string loop analysis does not see this more general type of correction producing
additional terms of degree −2 in 4-cycles volumes. Conceivably, this is due to the special
torus based geometries underlying the calculations.

Next, we discuss local α′ corrections. According to our definition, these are classical
effects arising from the dimensional reduction of local, higher-dimension operators. However,
such operators receive contributions from the high-momentum region of field theory loops.
This region corresponds to string 1-loop effects where the worldsheet has a short, string-scale
extension in both dimensions. There are two specific examples of this in our context which
match the parametric scaling of the BHP KK correction: first, consider the Einstein-Hilbert
term on the intersection-2-cycle of two D7-branes or of an D7/O7 pair. This term arises
from a short open string stretched from brane to brane near the intersection surface and
propagating on an (also short) closed loop. Equivalently, one may think of a short, closed
string exchanged between branes. The closed string carries KK momentum and one may
hence call this a KK correction, as proposed in BHP. Second, we can consider the operator
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M4
10gsR

2
8 on a D7/O7. This operator can be understood as arising from a 1-loop open

string diagram on the D7/O7. Equivalently, it is a short closed string emitted by the brane
and absorbed by the same brane after propagating a string-scale distance. From what has
just been said, it is clear why the scaling analysis of [24] does not capture these local α′
effects: while they can be interpreted as loop effect, the relevant scale is the cutoff or string
scale. Thus, the in principle correct assumption that finite loop effects are dominated by
the KK scale does not apply to the present contribution, which comes from the UV end of
the integral.

Finally, we turn to warping effects. As reviewed in section 4, warping effects at
subleading order scale as the BHP winding correction. Field-theoretically, warping is a
classical backreaction effect and one may think of it as coming from the propagation of
massless 10d fields between some source and the point where the geometry is being warped.
One of the relevant string diagrams describing this is the tree-level exchange of a closed
string between branes, i.e. a long cylindrical worldsheet. Alternatively, this may be viewed
as a one-loop diagram, with a long open string propagating in a short loop. Such effects
should in principle be part of the analysis performed by BHK/BHP. By contrast, they are
clearly not part of field-theoretic loop analyses. As we have discussed in section 4, warping
effects do not correct the scalar potential as they are no-scale to all orders in a large-volume
expansion [2]. For applications, it would hence be important to split the winding effect
in (5.1) according to CWi = CWi, gen + CWi,warp. Then the scalar potential correction of (5.3)
would have to include only the genuine loop effect, i.e. only CWi, gen.

Let us now change perspective and check that we have identified all integration regions
of a string 1-loop calculation in our field theoretic approach: an open- or closed-string
1-loop worldsheet which is short in both dimensions corresponds to a local α′ effect. The
strongest scaling is that of the BHP KK correction. A closed-string 1-loop worldsheet with
one long and one short dimension corresponds to genuine loop effects, scaling like the BHP
winding correction. An open-string 1-loop worldsheet corresponds either to genuine loop
corrections (the case of a long strip) or to warping corrections (the case of a long cylinder).
For both cases, the scaling is that of the BHP winding correction.

Finally, a worldsheet with large extension in both dimensions gives an exponentially
suppressed contribution, which we can neglect and do not attempt to identify in the field
theory perspective. Thus, we appear to have found all relevant regions of the integration
over worldsheet geometries in our field-theoretic analysis.

Before closing, let us discuss how loops of a D7-brane gauge theory correct the Kahler
modulus kinetic term. This effect has been employed in [28] to argue that genuine loop
contributions exist which scale like the BHP KK correction. We will, instead, find that the
analysis of this particular effect also supports our earlier conclusion that all genuine loop
corrections scale like the BHP winding contribution.

To construct Feynman diagrams for the gauge-theory-derived loop correction to the
volume modulus kinetic term, we start from gauge-kinetic term in the DBI action:

SDBI ⊃
∫

d4x
√−g τ(x)FµνFµν . (5.4)
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Figure 3. (a) 1-loop diagram for a D7-brane gauge field correcting the kinetic term of a modulus.
(b) 1-loop diagram for the wave function renormalization of a charged scalar induced by the
gauge boson.

The 4-cycle modulus τ can be expanded around its vev, τ(x) = τ(1 + ϕ(x)/M4). Here we
have chosen the fluctuation to be described by a canonically normalized scalar. Redefining
Ãµ = Aµ

√
τ and inserting this in the action above, we have

SDBI ⊃
∫

d4x
√−g

(
F̃µνF̃

µν + 1
M4

ϕF̃µνF̃
µν
)
, (5.5)

such that the 3-vertex is suppressed by 1/M4, as expected. Moreover, the gauge coupling is
identified as g2 = 1/τ . Due to the universal suppression of the 3-vertex by 1/M4, we know
from section 2 that the loop diagram, depicted in figure 3(a), leads to a correction which
scales like BHP winding. A similar calculation has appeared earlier in the unpublished
Master Thesis [46].

Instead, the authors of [28] estimate the loop correction by considering the wavefunction
renormalization of a scalar field φ in ordinary QFT:

∫
d4x
√−g 1

2∂µφ∂
µφ∗ →

∫
d4x
√−g 1

2

(
1 + g2

16π2

)
∂µφ∂

µφ∗ . (5.6)

This suggests a suppression by g2 = 1/τ compared to the tree level term, matching the
parametric behavior of the KK corrections of BHP. From our point of view this has the
following shortcoming: as already noted in [28], the analogy between modulus and charged
scalar is not perfect. In the first case, the relevant 3-vertex (cf. figure 3(a)) is ϕ(∂A)2/M4.
With an effective cutoff MKK , this gives a correction M2

KK/M
2
4 ∼ 1/τ2. In the second

case (cf. figure 3(b)), the 3-vertex is gφ∗(∂φ)A, with g ∼ 1/
√
τ and a log-divergent integral.

While this gives a correction of order g2 ∼ 1/τ , it is not be applicable to our situation.
Moreover, BHP KK corrections have an additional factor gs, which does not arise in the
charged-scalar analogy.

6 Examples and applications

6.1 Blowup modulus: power counting result informed by localization
and generic volume scaling

The LVS relies on Calabi-Yau geometries where the volume takes the form

V = f(τ1, . . . , τn)− β1τ
3/2
s,1 − · · · − βmτ3/2

s,m , (6.1)
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Figure 4. Illustration of a Calabi-Yau manifold with a small blowup cycle. In the vicinity of the
blowup, the geometry is assumed to resemble a cone.

with f a homogeneous function of degree 3/2 in n ‘large’ 4-cycle moduli τi. The m ‘small’
4-cycle moduli τs,j parametrize blowups and the βj are numerical constants. In what follows,
we will focus on the case of a single blowup, m = 1. But our findings generalize straightfor-
wardly to several blowup cycles if these are sufficiently well separated in the full geometry.

The moduli stabilization mechanism of the LVS scenario ensures a hierarchical structure
in the vacuum, τs � V2/3. We will make the stronger assumption τs � τi, ∀i. One may
then expect the geometry to be of the form illustrated in figure 4.

Clearly, it is interesting to know the parametric dependence of loop corrections on the
blowup moduli. This is important to be completely certain that loop corrections do not spoil
the stabilization scenario in the first place, but it may also be useful for phenomenological
applications, e.g. to inflation [22].

In our context, a blowup is a geometric feature which induces a codimension-six
singularity once the volume of the relevant 4-cycle (e.g. a CP2) is taken to zero. A simpler
case, useful to build intuition, is the blowup of the singularity of the non-compact geometry
C2/Z2. Famously, this is described by the explicitly known Eguchi-Hanson metric [89, 90].
Since we are interested in 3-folds, a better model for us is the Freedman-Gibbons-Pope
metric describing the blowup of C3/Z3 [91, 92]. Even closer to our case of interest is the
blowup of the related compact geometry T 6/Z3, for which the Freedman-Gibbons-Pope
metric provides an approximation.

To compute loop corrections, we assume ls � Lτs � Ṽ1/6, where Ṽ is the dimensionful
Calabi-Yau volume and Lτs is the typical length scale of the τs cycle. An important
property of the blowup modulus is that its effect on the geometry is highly localized [93, 94].
Specifically, in the C3/Z3 model the profile of the metric deformation parametrized by the
blowup modulus falls off with the sixth power of the distance from the origin [94]. This
implies that the integral over the internal geometry which calculates the kinetic term of the
modulus is of the type

∫
M6

dy6/(y6)2 in the region y � Lτs . Thus, the 10d dynamics of
the blowup modulus is dominated by the length scale Lτs . We therefore assume that it is a

– 26 –

Loops, local corrections and warping in the LVS and other type IIB models 55



J
H
E
P
0
9
(
2
0
2
2
)
0
9
1

Figure 5. Self-energy (a) and tadpole (b) loop diagram correcting the kinetic term of the scalar
field φs. The scalar is confined to a 4d submanifold whereas the graviton hMN propagates in 10d.

reasonable approximation to treat the blowup modulus as localized in the internal 6d space
at a point y0, which characterizes the locus of the would-be singularity.19

Our blowup modulus is thus identified with a localized 4d scalar field, included in the
10d action according to

S = 1
2κ2

10

∫
d10x
√−gR10 + 1

2

∫
d10x
√−gδ(6)(y − y0)∂µφs∂µφs . (6.2)

Here the δ-function must be viewed as smeared on the scale Lτs . It is easy to check
that, in the compact case, the relation to the conventional 4d supergravity modulus is
φs/M4 ∼ τ3/4

s /
√
V. For simplicity, we consider the graviton as the only 10d field, but our

following discussion could be repeated including further 10d degrees of freedom. We also
disregard higher-dimension operators localized at y0 which can in principle induce further
couplings between φs and the 10d metric. Their effects will not change our conclusions
qualitatively.

The 1-loop diagrams correcting the φs propagator are shown in figure 5. To work out
the corresponding integrals explicitly one has to linearize the metric, gMN = g

(0)
MN +κ10hMN ,

in (6.2). Here the background metric g(0)
MN corresponds to the singular geometry, with τs = 0.

Compared to the loop analysis in section 2.2, a key difference is that the modulus is localized
at a special, singular point. The propagator of hMN near this singularity is not known,
not even approximately. We may nevertheless make progress by using our assumption
that the geometry near the singularity is conical, i.e. in particular scale-free in the limit
Ṽ → ∞. Taking this latter limit will be justified a posteriori when we see that the loops are
short-distance dominated. Moreover, we need the graviton propagator Dh only with both
arguments at the singularity. Thus, on dimensional grounds we have Dh(x−x′) ∼ 1/|x−x′|8,
where x, x′ are 4d coordinates and we have suppressed any index structure.

Using also the propagator Dφs ∼ 1/|x− x′|2 of the scalar φs, one may now estimate
the self-energy diagram of figure 5(a) in position space. This diagram contributes to the
correction δφs to the kinetic term of the modulus, defined by L ⊃ (1 + δφs)(∂φs)2/2. Using

19An alternative approach to derive loop corrections is to sum over the contributions of the KK-tower,
taking into account how each mass depends on the blowup cycle. While an estimate for the lowest modes,
with wavelength much larger than Ls is possible [46], the challenge of extending such an analysis to modes
with wavelength ∼ Ls appears daunting to us.
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dimensional regularization, we have

δεφs = d
dp2

∣∣∣∣
p2=0

κ2
10µ
−2ε

∫
d4−ε(x1 − x2)f4(∂x1 , ∂x2)e−i(x1−x2)pDφs(x1 − x2)Dh(x1 − x2)

∼ d
dp2

∣∣∣∣
p2=0

κ2
10µ
−2ε

∫
d4−ε(x1 − x2)f4(∂x1 , ∂x2) e−i(x1−x2)p

|x1 − x2|2−ε|x1 − x2|8−ε
, (6.3)

where we suppressed any index structure and f4(∂x1 , ∂x2) is a homogeneous function of
degree 4 in derivative operators. The integral in (6.3) has an octic UV divergence at ε = 0.
In dimensional regularization, this integral vanishes since the only dimensionful parameter,
p2, is set to zero.

A second 1-loop contribution comes from the tadpole diagram figure 5(b). It is propor-
tional to the graviton propagator in the conical geometry, Dh, evaluated at coincident points:

Dh(0) ∼ lim
x→x′

1
|x− x′|8 . (6.4)

This is a pure, octic divergence without any intrinsic mass scale, which would again give
zero in dimensional regularization.

Thus, all we can learn form a dimensionally (or otherwise) regularized calculation in a
low-energy EFT below the scale at which the small cycle is resolved is the following: there
is no loop correction to the small-cycle kinetic term coming from the IR. Any possible
corrections are dominated by the UV, i.e. by scales at which the small-cycle geometry is
resolved. Put differently, there is no interference between the deep IR, encoded in the total
volume V (which we have taken to infinity when talking about a conical geometry) and the
small-cycle-scale Lτs ∼ τ1/4

s /M10.
Nevertheless, UV-dominated quantum corrections do in general exist and can simply

be added by hand as a localized operator sitting at the singularity:

(∂φs)2 → (∂φs)2(1 + f(φs)) . (6.5)

In spite of our failure above to write down a loop integral calculating f in the EFT below
the scale 1/Lτs , we are able to determine the form of this function. We give two independent
arguments.

The first is very intuitive but it requires us to be slightly generous with the concept of
a 4d EFT: let us raise our EFT scale above 1/Lτs but still below M10. In this EFT, one
starts seeing 10d supersymmetric cancellations and the loops, still described by figure 5,
are cut off at the small-cycle scale: Λ ∼ 1/Lτs . The suppression by loop couplings is still
governed by κ2

10 ∼ 1/M8
10. Thus,

f(φs) ∼
Λ8

M8
10
∼ 1
L8
τsM

8
10
∼ 1
τ2
s

, (6.6)

where τs ∼ (φs/M10)4/3.
The second argument is precise but slightly technical and indirect: for this, we

rewrite (6.5) in terms of τs, reinstate a finite total volume V , and return to the 4d Einstein
frame:

(∂φs)2(1 + f)→ (∂τs)2
√
τs

(1 + f)→ (∂τs)2

V√τs
(1 + f) . (6.7)
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Now we recall that, on the one hand, we have shown that genuine loop corrections to Kahler
moduli kinetic terms scale with the power −4 in 4-cycle volumes. On the other hand, from
our argument about the decoupling of IR and UV in the conical geometry near the small
cycle, we know that f is a function of τs only, independent of V. This enforces f ∼ 1/τ2

s ,
consistently with (6.6).

As result, we have the 4d Einstein frame kinetic Lagrangian (ignoring O(1) factors)

M2
4

∫
d4x

1
V√τs

(1 + f(φs(τs))) ∂µτs ∂µτs ∼M2
4

∫
d4x

1
V√τs

(
1 + 1

τ2
s

)
∂µτs ∂

µτs . (6.8)

Integrating the 1-loop correction twice with respect to the blowup modulus leads to a
correction to the Kahler potential of the form

δK1-loop ∼
1
V√τs

+ subleading terms . (6.9)

This matches exactly of the form of the winding corrections of the BHP conjecture.
Note that we only expect blowup corrections of the type just discussed to arise if

supersymmetry is broken to 4D N = 1 locally, near the blowup cycle. This is to be
contrasted with situations where SUSY is locally N = 2 in 4D language, i.e. all O3/O7-
planes and branes are localized elsewhere in the internal geometry. Thus, the above
corrections may simply not arise in LVS geometries where the blowup cycle used for moduli
stabilization has locally 4D N = 2 SUSY. However, it is also possible that, if the blowup is
locally 4d N = 2, nonperturbative corrections to the superpotential of the form exp(−asτs)
are absent,20 making such geometries unsuitable LVS moduli stabilization. If this were
the case, then blowup cycles inducing nonperturbative superpotential effects would always
come with an appropriate loop correction.

This discussion may be related to the Supersymmetric Genericity Conjecture [97].
According to this conjecture, an allowed correction in a quantum gravity theory can only be
systematically zero if the theory at hand descends in some way from a theory with higher
supersymmetry.

We finally note that our blowup Kahler potential correction is expected to arise more
generally than the similar BHP correction of ‘winding-type’. The latter relies on the presence
of intersecting D7s. Hence, if our correction always arises in local N = 1 SUSY situations,
and if this reduced amount of SUSY is necessary for nonperturbative effects in W to appear,
then this should drastically affect blowup inflation [22]. The reason is that this model relies
on an exponentially flat potential at asτs � 1, which would then always be spoiled by loops,
even if no D7s are present in the local geometry.

6.2 Fibred geometries and fibre inflation

As we have seen in sections 3.2 and 6.1, determining the explicit Kahler moduli dependence
of loop corrections is complicated if multiple Kahler moduli are present. In this section we

20Note that nonperturbative corrections to the superpotential can appear more generally than just on rigid
divisors as E3-branes on effective divisors can be ‘rigidified’ by world-volume flux and provide nonperturbative
corrections [95, 96].
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will make partial progress in the special case of fibred Calabi-Yau manifolds, governed by
two Kahler moduli.

Fibred manifolds are of particular interest in the LVS context, where they are used
for example in the Fibre Inflation proposal [23]. Fibre Inflation relies explicitly on the
parametric form of loop corrections. We will see that our improved understanding of loop
corrections affects Fibre Inflation.

A simple example for a fibred Calabi-Yau is provided by a K3 fibration over a CP1 base.
Let the K3 fibre be governed by the 4-cycle modulus τf and the base by the 2-cycle variable
tb. To be useful in the LVS context, a blowup modulus τs is also needed. It will however
mostly be ignored below since we have already computed the form of loop corrections
associated with τs in section 6.1. The volume of this fibred Calabi-Yau takes the form

V = tbτf − τ3/2
s = 1

2
√
τfτ2 − τ3/2

s , (6.10)

where we re-expressed the base 2-cycle volume in terms of the 4-cycle modulus τ2 = 2tb
√
τf .

The 2-cycle volume tb (or 4-cycle volume τ2) can be traded for the total volume V , as is typi-
cally done in the LVS analysis. Then the standard LVS potential stabilizes τs and V , leaving
τf a flat direction. In Fibre Inflation, τf is identified with the inflaton. Its loop-induced
potential governs inflation and also stabilizes the cycle in the post-inflationary vacuum.

Building on the BHP conjecture (cf. (5.1) and (5.2)), it is argued in [23] that loops
induce a Kahler potential correction

δK(gs) =
gsC

KK
1
√
τf

V +
gsC

KK
2
√
τ2

V + CW12
V√τf

, (6.11)

which in turn, using (5.3), induces a scalar potential for τf of the form

δV(gs) =
(

(gsCKK1 )2

τ2
f

− 2CW12
V√τf

+ (gsCKK2 )2τf
2V2

)
W 2

0 gs
V2 . (6.12)

This assumes a geometry where D7-brane stacks wrap the 4-cycles described by τ2 = 2tb
√
τf

and by τf . The first and last term in (6.12) are due to the KK corrections associated with the
corresponding transverse cycles. The second term comes from winding corrections related
to the intersection 2-cycle with volume √τf . Note that the KK corrections are suppressed
by g2

s compared to the winding correction. For such a potential, inflation corresponds to an
initial situation where the fibre is much larger than the base. As the inflaton rolls, this is
reversed and eventually the base is much larger than the fibre. During this process, the
volume of the Calabi-Yau remains constant.

In the following, we will attempt to derive the explicit form of all loop corrections
in the hierarchical regime τ2 � τf � τs. We shall see that while all three terms with
a Kahler moduli dependence as in (6.12) will indeed appear, our result has two major
differences: first, all terms in (6.12) will arise at the same order in gs. Second, our analysis
suggests the presence of additional logarithmic corrections and corrections including ratios
of Kahler moduli, some of which could be dominant over the usual fibre-inflation terms.
Our discussion will be based on a 2-step compactification process: 10d

τf−→ 6d tb−→ 4d.
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6.2.1 Genuine loop effects in fibred geometries

Let us first consider the 10d to 6d compactification on the fibre 4-cycle and integrate out
the heavy KK modes of the fibre. The compact 4d manifold is governed by the single length
scale Lf ∼ τ1/4

f /M10, to which we can hence apply dimensional analysis. We demand that
both the loop correction to the Einstein-Hilbert term and the kinetic term of Lf ,

∆SJBD =
∫

d6x
√−g6

[
F (Lf )R6 +G(Lf )(∂Lf )2

]
, (6.13)

are dimensionless. Since Lf has mass dimension −1, this fixes the scaling of the prefactors
to be F (Lf ) ∼ 1/L4

f and G(Lf ) ∼ 1/L6
f . Now we compactify to 4d, Weyl rescale by

M8
10Ṽ + L2

b/L
4
f with Ṽ ∼ L2

bL
4
f to arrive at 4d Einstein frame, and express everything in

terms of 4-cycle variables:

R6
L4
f

+ (∂Lf )2

L6
f

compactify−−−−−−→ L2
b

(
R4
L4
f

+ (∂Lf )2

L6
f

)

Weyl rescale−−−−−−−→ 1
M8

10

(
1

L2
bL

4
f

L2
b

L4
fL

2
b

(∂Lb)2 + 1
L2
bL

4
f

L2
b

L5
fLb

(∂Lb)(∂Lf ) + 1
L2
bL

4
f

L2
b

L6
f

(∂Lf )2
)

∼ (∂τ2)2

τ2
2 τ

2
f

+ (∂τf ) (∂τ2)
τ2τ3

f

+ (∂τf )2

τ4
f

, (6.14)

where we used that M10Lb = t
1/2
b ∼ (τ2/

√
τf )1/2. We implicitly assumed that, in the

compactification step from 10d to 6d, supersymmetry has been broken to 6d N = 1 by
O7-planes/D7-branes wrapping the 4-cycle associated with τ2 = 2tb

√
τf . We expect that

the appearance of a non-trivial correction to the kinetic term is then consistent since this
corresponds to 4d N = 2 SUSY, where corrections to the Kahler potential (or better the
prepotential) are allowed.

We now explicitly translate the different terms in the last line of (6.14) in corrections
to the Kahler and scalar potentials. The final term gives

δK(τf ) ∼
1
τ2
f

. (6.15)

This in turn induces a correction to the scalar potential which is similar to the first term
in (6.12), albeit without a g2

s suppression, making the correction (6.15) more important.
The first two terms in (6.14) (if not absent due to a magical cancellation) induce a

logarithmic correction in the Kahler potential:

δK(τf ) ∼
ln τ2
τ2
f

. (6.16)

We immediately recognize a problem: the correction (6.16) induces a further contribution
to the kinetic Lagrangian not present in (6.14), a term of the form ln(τ2)(∂τf )2/τ4

f . We will
discuss this and related inconsistencies and how they might be resolved in section 6.2.2.

Further genuine loop corrections can arise from D7-brane-localized fields. Concretely, if
a D7-brane wraps the fibre, loop corrections to the modulus kinetic term as described by
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the diagram in figure 3(a) arise. In addition, loop corrections induce a 4d Einstein-Hilbert
term on the worldvolume of the brane. The form of the corrections follows from the fact
that the KK masses of the gauge fields running in the loop depend only on τf and not on
tb (or, equivalently, the volume V). One then finds

R4
L2
f

+ (∂Lf )2

L4
f

→ 1
M8

10

(
1

L4
bL

6
f

(∂Lb)2 + 1
L3
bL

7
f

(∂Lb)(∂Lf ) + 1
L2
bL

8
f

(∂Lf )2
)

∼ (∂τ2)2

τ3
2 τf

+ (∂τf ) (∂τ2)
τ2

2 τ
2
f

+ (∂τf )2

τ2τ3
f

→ δK ∼ 1
V√τf

, (6.17)

where we also displayed the expression after Weyl rescaling and the resulting effect on the
Kahler potential. The corresponding correction to the scalar potential scales like the second
term in (6.12).

Genuine loop corrections induced by a D7 wrapping the τ2-cycle do not lead to
parametrically novel corrections to K. As above, these corrections are obtained by gauge
fields running in the loop. In particular, they induce a 6d Einstein-Hilbert term on the
worldvolume of the brane of the form R6/L

4
f which hence matches the correction in (6.13).

A further type of loop corrections arises if one first compactifies on the fibre to 6d and
then, using the 6d classical action, considers the quantum effects of the KK modes on the
base. In this case the only relevant length scale is Lb and one finds

∆SJBD =
∫

d4x
√−g4G(Lb)(∂Lb)2 , (6.18)

with G(Lb) ∼ 1/L4
b on dimensional grounds. We do not discuss the related loop corrections

to the Einstein-Hilbert term since they will not induce parametrically different effects in
the Kahler potential.

After Weyl rescaling, (6.18) gives

(∂Lb)2

L4
b

→ (∂Lb)2

M8
10L

4
fL

6
b

∼ (∂τ2)2

τ4
2

+ (∂τf ) (∂τ2)
τfτ

3
2

+ (∂τf )2

τ2
f τ

2
2
, (6.19)

where we used that M10Lb = t
1/2
b ∼ (τ2/

√
τf )1/2. The first term in (6.19) implies a

corrections to the Kahler potential of the form

δK(τ2) ∼
1
τ2

2
∼ τf
V2 . (6.20)

This reproduces the Kahler moduli dependence of the third term in (6.12). Note that the
correction (6.20) is again enhanced by a factor 1/g2

s compared to expectations based on the
BHP conjecture.

The last two terms in (6.19) enforce again a logarithmic correction to the Kahler
potential,

δK(τ2) ∼
ln τf
τ2

2
, (6.21)

which introduces a similar problem as described below (6.16).
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6.2.2 Local α′ corrections from D7-branes in fibred geometries

Let us now study the possible effects of the R4
8 operator, focusing first on the case where

the D7-brane wraps the 4-cycle parametrized by τ2 = 2tb
√
τf . Let us moreover assume that

the coefficient of R4
8 displays a non-trivial logarithmic running, as is generally expected

for marginal operators. Thus, starting with an O(1) coefficient at the string scale, the
coefficient grows as the energy at which we study our EFT decreases to some smaller value
µ & 1/Lf . If we then compactify the D7-brane theory from 8d to 6d at the scale 1/Lf , we
find an operator ln(M10g

1/4
s Lf )R4

8. Disregarding the small effect of the factor gs under the
log, we may replace this by ln(τf )R4

8. After compactification to 6d, we obtain a sum of
different terms:21

∫

R1,5×√τf

ln(τf )R4
8 ∼

3∑

n=0

∫

R1,5

ln(τf )R4−n
6

∫

√
τf

Rn2 ∼
3∑

n=0

∫

R1,5

ln(τf )R4−n
6 L2−2n

f . (6.22)

Here the symbol √τf under the integral stands for the integration over the 2-cycle of
the fibre wrapped by the brane. The index n runs over all possibilities of how R4

8 could
contribute to the 6d action.22 Note that we have to allow for all these possible reductions
as we do not know how the indices of R4

8 are contracted. Hence some (or maybe all) of the
four terms could turn out to vanish when the detailed structure of the R4

8 term is specified
by a string amplitude calculation.

Before compactifying further down to 4d, we have to run our 6d Lagrangian from the
scale 1/Lf down to 1/Lb. In this process, the n = 1 term is special because it is a marginal
operator in the 6d theory. We expect further logarithmic running, in general with a different
prefactor than previously in 8d. Hence, the generic prefactor of the R3

6 term just above
the 4d compactification scale 1/Lb reads ln(τα2 τ

β
f ), where α, β are in principle calculable

constants. For n 6= 1 no further running occurs since the operators are relevant or irrelevant
and we also do not expect subleading logarithmic divergences. We have seen this already in
section 2.2. Key to this feature was the absence of massive fields in the 1-loop diagrams
which also holds in the 6d theory at hand.

After compactification to 4d, we find the following corrections to the coefficient of the
Einstein-Hilbert term:

ln τf
∑

n=0,2,3

L2n
b

L2n
f

L2
f

L4
b

+ ln(τα2 τ
β
f ) 1
L2
b

. (6.23)

Focusing, as above, only on the kinetic term of Lb, the Weyl rescaling then produces

21To avoid clutter, we keep only the logarithmic piece in the coefficient of R4
8 in the following terms. In

general there are additional constants, such that the reader may always replace ln()→ const + ln().
22We do not consider the case n = 4 since we know from supersymmetry that a 6d cosmological constant

will not be induced.
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corrections of the following type:

1
M8

10


ln τf

∑

n=0,2,3

L2n
b

L2n
f

L2
f

L4
b

+ ln(τα2 τ
β
f ) 1
L2
b


 1
L4
fL

2
b

(∂Lb)2

L2
b

(6.24)

∼

ln τf

∑

n=0,2,3

τn2
τnf

+ ln(τα2 τ
β
f ) τ2
τf



(
τf (∂τ2)2

τ5
2

+ (∂τ2)(∂τf )
τ4

2
+ (∂τf )2

τ3
2 τf

)
.

As an illustration, let us restrict attention to the (∂τ2)2 contribution and write out the sum
in (6.24) explicitly for this case:


 ln(τα2 τ

β
f )

τ4
2

+ ln(τf )
(
τf
τ5

2
+ 1
τ3

2 τf
+ 1
τ2

2 τ
2
f

)
 (∂τ2)2 . (6.25)

Ideally, we want to write down a Kahler potential correction from which all terms
in (6.24) and no undesired further terms follow. This can not be achieved. Let us then start
our discussion by writing down a correction which induces as many of the terms in (6.24)
as possible and no extra terms:

δK(R4
8) ∼

1 + ln τf + ln τ2
τ2

2
+ 1 + ln τf

τ2τf
+ 1 + ln τf

τ2
f

+ τf (1 + ln τf )
τ3

2
. (6.26)

Here we suppressed numerical factors in each term. We may try to compare this to the
structure of corrections deduced from the BHP conjecture in [23] (cf. (6.11) above). At first
sight, this is very different since (up to logs) all of our terms are homogeneous of degree
−2 in 4-cycles. Thus they are all of ‘winding-type’ in BHP language. Correspondingly,
there are no gs factors. Interestingly, the difference becomes less dramatic at the level of
the scalar potential, cf. (6.12): the first three terms of (6.26) reproduce, at the level of
power-like scaling, the structure deduced from the BHP conjecture in (6.12). However, the
additional logs could clearly be very important in concrete applications. The last term
of (6.26) contradicts the BHP conjecture at an even more elementary level in that it involves
an additional 4-cycle ratio: τf/τ2.

Let us now comment on the kinetic terms for which we were not able to write a
consistent Kahler potential. This concerns part of the terms in (6.24) as well as the
previously emphasized problematic terms in (6.14) and (6.19). First, on the positive side,
we note that the previously emphasized problem with the Kahler correction (6.21) associated
with (6.19) could now potentially be resolved: the required term appears in (6.26) and
its log might thus be explained by the log associated with the R4

8 operator. However,
the problem with the correction (6.16) associated with (6.14) is still there: this Kahler
correction induces kinetic terms that do not arise in our analysis. Moreover, problems arise
for all those kinetic terms in (6.24) that lead to a product of logarithms in the appropriate
correction δK. This happens for example for the last term in (6.25). This kinetic term
would require a correction δK ∼ ln(τf ) ln(τ2)/τ2

f . This in turn leads to a new kinetic term
for τf not present in (6.24).

We hence have to draw one of the following conclusions.
First, since in our approach it is not possible to compute numerical prefactors of each

correction, the inconsistent kinetic terms could be zero due to some magical cancellation.

– 34 –

Loops, local corrections and warping in the LVS and other type IIB models 63



J
H
E
P
0
9
(
2
0
2
2
)
0
9
1

This is not implausible since oftentimes more that a single term contributes at a specific
order and the required precise compensation could then be a consequence of supersymmetry.
The total loop induced correction to the Kahler potential including genuine loop effects is
then given by (6.26).

Second, it could be that only the kinetic terms leading to (6.16) and (6.21) vanish
due to cancellation. The other inconsistent kinetic terms could vanish due to a particular
structure of the R4

8 operator and its log-divergences. The log-divergence producing the
problematic kinetic terms should be absent. Assuming that all inconsistent terms produced
by the log enhanced R4

8 operator vanish due to the structure of the R4
8 operator, only the

n = 2 case in (6.24) is left. The total correction to K including genuine loop effects is then
given by

δK ∼ 1
τ2
f

+ 1 + ln τf
τ2τf

+ 1
τ2

2
. (6.27)

It is of course also possible that some of the problematic kinetic terms induced by R4
8 vanish

due to cancellation and some by the structure of R4
8. The correction δK would then be

given by (6.27) extended by some (but not all) of the additional terms in (6.26).
Finally, the inconsistencies could be explained by field redefinitions which can in

principle remove certain corrections to K. We have seen an example of this in section 3.1.1.
For a D7-brane wrapping the τf -cycle an entirely analogous analysis of corrections

coming from an R4
8 term on the brane worldvolume can be carried out. This does not

produce any parametrically novel effects. We finally note that, also in the fibred setting, a
correction associated with the small cycle of the type δK ∼ 1/(V√τs) is expected to arise.
This follows in analogy to the discussion of section 6.1.

Let us summarize: we can reproduce the corrections to the scalar potential (6.12) used
in [23], but with some important differences and caveats. In our analysis, all three terms ap-
pear at the same order in gs. Thus, the analogue of the hierarchy (gsCKK1 )2, (gsCKK2 )2/2�
2CW12 , which is required for fibre inflation, can be harder to realize (see [98] for more details
on the required hierarchies). Moreover, higher-curvature terms that we expect to be present
on D7-branes induce log-enhanced terms of the same structure. Those would be dominant
in the Kahler and scalar potential compared to (6.12). Finally, we find a term which,
though small in the relevant regime Lf � Lb, contradicts the BHP conjecture. For a deeper
understanding of Fibre Inflation it is hence essential to make sure whether an R4

8 term on
D7-branes exists and to derive its precise structure.

Besides the corrections we have discussed so far, a further, gs-suppressed effect arises
if two brane stacks intersect on the 2-cycle of the fibre with volume ∼ √τf . It is due to
the Einstein-Hilbert term induced at 1-loop order (and hence suppressed by gs) on the
intersection locus (see section 3.1.3). We may then apply (3.5), generalized to the case with
multiple Kahler moduli. The resulting correction to the Kahler potential, δK ∼ gs√τf/V,
reproduces the first term in (6.11) and (6.12), including the right power of gs.

6.2.3 Loop corrections in the inverse fibration
In the initial stage of Fibre Inflation, we have τf � τ2. This situation is not directly
amenable to our earlier analysis as the length scale Lb of the base is smaller than the length

– 35 –

64 Chapter 2



J
H
E
P
0
9
(
2
0
2
2
)
0
9
1

scale Lf of the fibre. One would have to first dimensionally reduce on the base to obtain
an 8d theory, which could then be further compactified to 4d on the larger fibre-4-cycle.
For this, one would need the geometry in this regime to possess some form of ‘inverse
fibration’ structure. In other words, one should be able to reinterpret what was originally
the base 2-cycle tb as being fibred over the 4-cycle τf . It is not clear to us whether such an
inverse fibration emerges in the case at hand. Clearly, in a toy model where the 6D internal
manifold is a product of a 2D and a 4D manifold, the required notion of inverse fibration
trivially exists.

Assuming the inverse fibration to exist, one can perform a similar analysis as above
in the limit τf � τ2 using 10d tb−→ 8d

τf−→ 4d as the 2-step compactification process. In
the following, we will only be concerned with the differences compared to the calculation
above. The first difference appears in 8d, where we expect no loop corrections to the Kahler
potential due to the larger, 8d N = 1 and hence 4d N = 4, supersymmetry. Next, let us
include D7-branes and check whether corrections contradicting the BHP conjecture occur.
This is indeed the case and it happens because extra factors involving ratios of cycles appear
(cf. the last term in (6.26)). Concretely, such an effect is induced by a D7-brane wrapping
τ2 both through genuine loop corrections and by dimensionally reducing R4

8 like
∫

R1,5×tb

R4
8 ∼

∫

R1,5

R6

∫

tb

R3
2 ∼

∫

R1,5

R6/L
4
b ∼

∫

R1,3

R4 L
2
f/L

4
b . (6.28)

This is analogous to the n = 0 contribution in (6.23). The equivalent genuine loop effect is
induced on the 6d worldvolume of the wrapped D7-brane by gauge fields running in the
loop. Here we assume that the corresponding KK modes depend only on the length scale of
tb. This induces a localized 6d Einstein-Hilbert term on the brane worldvolume of the form
R6/L

4
b , which after compactification gives the same result as on the r.h.s. of (6.28). Weyl

rescaling turns this into a Kahler potential correction δK ∼ τf/τ3
2 . This correction in now

by far more interesting as it is dominant in the regime τf � τ2 and could therefore strongly
affect Fibre Inflation. We note that, similar to what has been discussed in section 6.2.2, a
log coefficient in front of (6.28) would be inconsistent.

We recall that the last paragraph is to be read with the caveat that the geometry in
the regime τf � τ2 has an interpretation as an inverse fibration. This caveat disappears
if we leave fibre inflation aside and simply start with a geometry which, by construction,
consists of a 2-cycle with volume tb ∼ τ2/

√
τf which fibred over a base with volume τf . The

analysis of the last paragraph then applies without extra assumptions.

7 Towards applications in LVS and KKLT

Here, we want to collect a number of further observations concerning the role of the loop
corrections we studied in concrete phenomenological scenarios.

We first note that in the LVS, loop corrections are commonly used to stabilize non-
blowup Kahler moduli for cases where h1,1 > 2. Doing so rigorously is notoriously difficult
as it requires precise knowledge of the Kahler moduli dependence of the loop correction to
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the scalar potential. This has so far only been achieved for torus orbifold examples [25] and
we hope that further work along the lines of the present paper will improve this situation.

We now turn to the question of whether loop corrections are capable of upsetting the
LVS. This is in principle the case and hence loop corrections have been rightfully listed as
part of the corrections to be dealt with in the recent critical analysis of [18]. We expect that
the blowup loop correction δK ∼ 1/V√τs, which has not been discussed in that analysis,
represents one of the leading loop effects.23 It corrects the scalar potential by terms which
are suppressed by g

3/2
s /
√
τs or 1/τ2

s relative to the leading LVS scalar-potential terms.
For establishing an AdS minimum this is not dangerous since gs (and hence 1/τs) can be
tuned extremely small. But as has been quantified very recently in [19], after including
an anti-D3-brane uplift to dS control over the LVS becomes crucially limited by the LVS
Parametric Tadpole Constraint: the size of the available negative D3 tadpole limits the size
of the volume and hence of the small cycle. Explicitly, one has asτs . 16πN/(9×(12 · · · 46)),
which very significantly restricts the size of τs ∼ 1/gs [19] and hence our ability to be safe
from loop effects. Nevertheless, parametric control is clearly achievable in principle since τs
is, by the definition of the LVS, a large parameter.

Given the previous comment, it is clearly highly relevant to determine the precise
expansion parameter governing this and possibly higher loop corrections. Indeed, recall that
in 4d gauge theory the true expansion parameter is g2/(16π2) rather simply g2. This line of
thinking is known as ‘naive dimensional analysis’ [99]. In our context, the explicit study of
refs. [25, 26]24 suggests that the expansion parameter is 1/(2π)4τ2, with τ being a generic
4-cycle variable. (Relating this to the previous paragraph, we would have τ2 ∼ V√τs.) To
the best of our present understanding, part of this significant suppression by (2π) factors is
associated, in field theory language, with the explicit results for sums over KK modes on tori
(see e.g. [101], Section II). It would be interesting to understand whether the 1/(2π)4 factor
survives in CY geometries. This is not obvious since the loop factor in a purely 4d approach
(following the logic of section 2.2) is ∼ Λ2/(16π2M2

4 ). Identifying the cutoff with the KK
mass scale, one does of course get the expected parametric behaviour m2

KK/M
2
4 ∼ 1/τ2,

but fixing the (2π) factors in this relation appears difficult in a CY geometry.
We have seen that small 4-cycles τs induce loop corrections to the Kahler metric

which are 1/τ2
s suppressed compared to the leading terms, see section 6.1. Clearly, such

corrections are dangerous when the small-cycle volume becomes O(1) in Einstein frame.
More generally, going beyond the specific case of LVS-type blowup-cycles, one might suspect
that even corrections suppressed only by 2-cycle volumes exist. For example, the previously
discussed blowup correction came from a term δK ∼ 1/V√τs, where the 2-cycle volume √τs
appears. Now, in a series of papers [15, 102–104], flux compactifications with large h1,1 were
constructed with the goal to obtain explicit KKLT-type models. While, as already noted
in [14], having large h1,1 appears to be a promising route to counteract the ‘singular-bulk
problem’, this may force one into a regime of dangerously small 2-cycles. Indeed, in [15]
many 2-cycles with Einstein-frame volumes of order unity or smaller arise. While this may

23In the LVS, equally important contributions to the scalar potential come from the interplay of KK-type
loop corrections with nonperturbative effects, namely from Kss∂sW∂sW , see [18] chapter 3.1.1.

24See e.g. eqs. (10), (12) of [26] and eq. (2.6) of [100].
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be harmless in cases where, as the authors argue, the shrinking of the 2-cycle merely leads
to a conifold singularity with local N = 2 SUSY, it is not clear whether the presence of
nearby O-planes with reduced SUSY can always be avoided. If it can not, then our loop
corrections with potentially only a 2-cycle Einstein-frame-volume suppression represent a
serious concern.

Moreover, the above compactifications have many, typically O(100), small cycles. One
might then be concerned that even if individual small-cycle corrections are controlled, the
corrections could add up to become dangerously large if many small 2- or 4-cycles contribute.
It would be interesting to better understand the form these small-cycle loop corrections in
settings where they are not well-separated.

Let us now change perspective and estimate from a 4d EFT perspective and without
the detour via the Kahler metric at which order in the inverse volume 1/V loop corrections
to the scalar potential arise. Due to the supersymmetric spectrum, i.e. StrM0 = 0, the
quartic divergence ∼ Λ4 vanishes and we have (disregarding numerical prefactors)

V1-loop ∼ Vtree + Λ2 StrM2 + StrM4 ln
(

Λ2

M2

)
+ . . . . (7.1)

Here Λ is the cutoff and M2 the mass matrix. We also assume that SUSY is broken
in a flat or approximately flat background (as e.g. in the LVS). This may be quantified
by requiring 1/LAdS/dS � m3/2 and it implies that the supertrace of the mass matrix
obeys StrM2 ∼ m2

3/2 (see e.g. [105, 106]). In our case, Λ = mKK ∼ M4/V2/3 and
m3/2 ∼ M4g

1/2
s W0/V. For sufficiently large volume, the SUSY breaking scale is hence

below the KK scale, as required for consistency of our 4d analysis. Using this, the leading
correction is given by

V1-loop ∼ Vtree +M4
4
gsW

2
0

V10/3 + . . . . (7.2)

This precisely matches the order at which the genuine loop effects correct the scalar potential
(cf. table 1). Independently, this represents a very general argument suggesting that the
leading loop effect in the scalar potential scales as ∼ V−10/3. This appears to clash with the
existence of loop corrections ∼ V−8/3 which have recently been proposed in the literature [43].
Note also that the Kahler potential term inducing such corrections is δK ∼ ln(τ)/τ , with
τ ∼ V2/3. Consistently with what was said before, this does not correspond to a genuine
loop but rather to a local α′ correction. The log would then be expected if the underlying
operator is marginal in 6d, 8d or 10d. However, we have seen that marginal operators
always produce Kahler potential corrections which scale as 1/τ2, not 1/τ . So we are left
with a contradiction.

A possible resolution is as follows: let us start with the G2
4R

3
11 term in 11d which

according to [36, 42, 107] is the origin of the effect. Let us assume that, using the curvature of
the torus fibration of F-theory, this descends to a local operator ∼ (∇H3)2 on D7-brane stacks
(see e.g. [68]).25 This would lead to a term ∼ |W0|2 in the 4d scalar potential. The volume

25Another option would be terms of the type R8(∂F2)2 computed in [108]. Note that G4 flux in M-theory
descends to H3, F3 and F2 flux in type IIB.
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scaling follows by noting that H3 ∼ 1/τ3/4, ∇ ∼ 1/τ1/4,
∫
D7 d

4y ∼ τ and that, finally, the
Weyl rescaling to the 4d Einstein frame gives a factor 1/V2. In total, one finds |W0|2/V8/3.

To summarize, the proposal is that the correction ∼ ln(τ)/τ in the Kahler potential
comes from a field redefinition and has nothing to do with a marginal operator. It does,
however, produce a manifestly physical correction to the scalar potential ∼ |W0|2/V8/3

which, as we saw earlier, can not be understood as a 4d loop effect. Instead, it comes from a
local α′ correction, for example a brane-localized 4-derivative term involving flux and hence
proportional to |W0|2. Clearly, this is at the moment only a suggestion and it deserves
further study how a possible ln(τ)/τ term and the corresponding scalar-potential effect are
to be understood in a 10d SUGRA analysis of type-IIB orientifolds.

We leave it as a challenge for the future to study possible corrections associated with a
field redefinition τ ′s ≡ τs + α ln(V) [32] in our approach (see also the comment in [19]).

8 Discussion

In this work, we have analysed corrections to the Kahler potential in type-IIB string
compactifications on Calabi-Yau orientifolds. We relied on one-loop field theory together
with the available information about higher-mass-dimension local operators, both in 10d
and on branes or brane intersections. The key corrections are summarized in table 1.

A novel proposal suggested by our analysis is that log-enhanced corrections, dominant
w.r.t. established terms, arise on the basis of marginal higher-curvature operators in 8d or in
6d. The operators in question are localized on D7-branes/O7-planes or on their intersection
loci respectively. One example is an R4

8 operator, which is expected to be present on
D7/O7s [66], another is the R3

6 operators on the 6d intersection loci. The correction affects
the scalar potential at order ln(M10g

1/4
s L) × h−5, where h−5 is a homogeneous function

of degree -5 in 4-cycle Kahler moduli and L is a typical length scale of the relevant cycle.
Because of its log-enhancement, this correction tends to be dominant and may hence
be critical in moduli stabilization schemes relying on loop corrections, such as in Fibre
Inflation (cf. section 6.2) or, more generally, in multi-moduli LVS constructions. Moreover,
log-enhanced corrections could be dangerous for the LVS per se if an uplift to dS is included.
It would hence be essential to confirm the existence of R4

8/R3
6 terms localized on 8d/6d

from a string amplitude calculation.
One of our declared goals was to derive the Berg-Haack-Pajer conjecture, which we

have partially achieved: first, we understand that ‘winding-type’ terms, correcting the
Kahler potential at order -2 in 4-cycle variables, come from genuine loop effects and may,
as just noted, feature a UV-sensitive log-enhancement associated with local α′ corrections.
Additional terms with the same volume dependence but suppressed by gs are expected. We
were not able to confirm the more specific suggested form ∑

a 1/Ia(ti)V with Ia(ti) linear
combinations of 2-cycle variables ti. On the contrary, fibred examples suggest that a more
general Kahler moduli dependence is possible.

Second, we understand the ‘KK-type’ terms as coming from higher-curvature operators.
This resolves a discrepancy between the field theory analysis of 1-loop corrections to the
Kahler potential in [24] on the one hand and string loop calculations by BHK [25] and
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the BHP conjecture [27] on the other hand. The local operators, like for example an
Einstein-Hilbert term induced at 1-loop level on intersection cycles of D7-branes, induce
KK-type Kahler potential corrections which, in turn, may modify the scalar potential.

Returning to the corrections of winding-type, we note that our analysis suggests a
different interpretation than what is usually found in the literature: first, part of them is
due to warping and, because warping respects the no-scale structure, this part will not affect
the scalar potential. Second, the remaining part of the winding-type corrections corresponds
to genuine loop effects and should hence be present more generally than proposed by BHP.
The reason is that these effects are not tied to intersecting D7-branes but only to the
requirement that the relevant tower of KK modes running in the loop displays an N = 1
rather than an N = 2 SUSY spectrum. It is conceivable that the absence of corresponding
contributions in [25] is due to the special torus geometries used. We also note that winding-
type corrections (and in particular genuine loop effects) contribute to the scalar potential
with a 1/g2

s enhancement compared to KK-type corrections since the latter are subject to
the extended no-scale structure [24, 27, 28]. Thus, genuine loop effects should always be
included in scenarios where KK-type corrections play a role, like in fibre inflation [23] or α′
inflation [100]. Another example where this proposed more general occurrence of genuine
loop corrections is important is blowup inflation [22]: for this scenario, the loop correction
to a blowup cycle τs calculated in section 6.1 is dangerous and, in our understanding, it is
expected to always be present as long as the geometry is N = 1 locally, near the blowup
cycle. We hope that it will be possible to clarify this further, strengthening the proposal of
blowup inflation or ruling it out.

Let us close with an optimistic outlook. Naively, one might fear that loop effects
will never be explicitly calculable on Calabi-Yaus and will hence always be in the way of
fully controlled models. But things could be much better: it is conceivable that, as we
argued in this paper, the dominant loop effects in the scalar potential will always come
from log-enhanced winding-type corrections. Those are UV sensitive, being tied to certain
marginal local operators. If the coefficients of the latter can be determined and the integrals
over these operators in the classical Calabi-Yau background can be calculated, one may
hope that the dominant effect from loops on moduli stabilization will become accessible.
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A The warped Kahler potential in the multi-moduli case

In section 4 we reviewed some of the results of [47]. A key starting point was the simple
expression (4.4) for the Kahler potential in terms of the universal modulus a. Through the
identification

ReT i + f i(Z) + f
i(Z) = aV i + 1

2

∫

Di
e−4A0J0 ∧ J0 , (A.1)

it is then possible to express a as a function of the other Kahler moduli. In this appendix
we add some details concerning how the integral in (A.1) can be evaluated. This material
is entirely a review of [47], to which we refer the reader for further information.

First, one observes that the harmonic basis 2-forms may be expressed through so-called
h1,1 local potentials κi(z, z; v):

ωi = i∂∂κi(z, z; v) . (A.2)

The κi(z, z; v) cannot be defined globally as the ωi are, by definition, nontrivial in cohomology.
This can be remedied by introducing sections ζi of the line bundles OCY(Di), such that
ζi = 0 identifies the location of Di. It can then be shown that the combination

πκi − Re log ζi (A.3)

is globally well-defined.
With this, one can derive that

1
2

∫

Di
e−4A0J0 ∧ J0 = 1

2πl4s

∫

CY

(
πκi − Re log ζi

)
Q6 . (A.4)

Here Q6 denotes the D3 charge distribution, which by itself would of course integrate to
zero on the compact space. One may isolate from it the mobile D3-brane contribution by
writing

Q6 = l4s
∑

I ∈{D3s}
δ

(6)
I +Qbg

6 , (A.5)

where I labels the mobile D3-branes. The background D3 charge distribution Qbg
6 includes

the contributions from bulk fluxes and O3-planes:

Qbg
6 ≡ F3 ∧H3 − l4s

∑

J ∈{O3s}

1
4δ

(6)
J . (A.6)

We could include here the D3 charge of curved D7/O7s but will not do so for notational
simplicity. Inserting Q6 in (A.4) and introducing the functions

hi ≡ 1
2πl4s

∫

CY

(
πκi − Re log ζi

)
Qbg

6 (A.7)

then leads to the final expression

ReT i = aV i(v) + hi(v) + 1
2

∑

I ∈{D3s}
κi(ZI , ZI ; v) . (A.8)
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The last term arises since the δ-function part of (A.5) evaluates κi(z, z; v) at the positions
ZI , ZI of the mobile D3-branes. The Re log ζi(ZI) + Re log ζi(ZI) term coming from the
mobile D3-branes is of the form f i(Z) + f

i(Z) and is absorbed in the definition of these
functions in (A.1), hence this term does not appear in (A.8). The hi then encode the data
about the geometry, bulk fluxes, and all localized objects except mobile D3-branes.

One should view (A.8) as a system of h1,1 equations defining a and vi in terms of
ReT i, ZI , and ZI . In [47], the expression for a in terms of ReT i, ZI , and ZI is explicitly
worked out in several examples. For us, the importance of the result (A.8) is that it may,
in principle, be used to study the parametric dependence of the warping correction to K
on the T i. One would need to understand in more detail how the last two terms on the
r.h.s. of (A.8), which are of degree zero in the Kahler moduli, depend on ratios ReT i/ReT j .
This may then be used to disentangle which part of the winding correction comes from
warping and which from genuine loop effects. Moreover, a non-trivial check of the BHP
conjecture about the form of the winding correction may become possible. We leave these
open problems for future work.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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1 Introduction

The construction of metastable de Sitter vacua in string theory is challenging and, in
spite of many years of work, the focus has remained on two close cousins: the KKLT [1]
and the LVS [2] proposals. Recently, fundamental doubts about the very existence of
de Sitter space in quantum gravity (see e.g. [3–6]) have triggered intense scrutiny of these
models. KKLT has arguably survived attacks related to the stability question of the anti-
D3 uplift [7–10] and the gaugino condensate [11–16]. It is too early to judge how it will
fare in view of the singular-bulk problem [17], which arises since one is forced to glue a
large throat into a fairly small Calabi-Yau [12]. In view of this uncertainty (see [18, 19] for
some the recent discussion), it is maybe natural to shift the focus on the LVS, where the
singular-bulk problem does, at first sight, not arise [17] because the volume can be made
exponentially large.

However, as recently emphasised in [20], the problem does not entirely disappear either.
The reason is that at large volume the AdS minimum of the LVS becomes shallow, requiring
a small uplift and hence a strongly warped throat. The latter comes with a large positive
D3 charge and hence requires a large negative D3 charge of the embedding Calabi-Yau
orientifold. This requirement has been emphasised as a potential problem in [21] and
argued to be a solvable issue in [22], where the focus was on a concrete model. Most
recently, this model has in turn been challenged in [20] on the basis that all the different
corrections can not be made sufficiently small at the same time.

Our purpose in this short note is to derive a simple formula quantifying what we
believe to be the most serious obstacle to defending the LVS against such skepticism.
We call our result the ‘LVS parametric tadpole constraint’, as it quantifies the amount

– 1 –

The LVS parametric tadpole constraint 81



J
H
E
P
0
7
(
2
0
2
2
)
0
5
6

of negative tadpole which the geometry must possess to be in perturbative control. The
desired quality of control is an input to this formula.

Our result will follow from two different corrections to the LVS potential, both with
the same parametric behaviour. One is related to warping and hence similar in spirit
to the singular-bulk problem, the other to higher F -terms [23–25]. As we will see, this
leads to a simple, strong and conceptually clear bound on controlled LVS models with
de Sitter uplift, deriving from the requirement to keep warping and higher F -term effects
small at the same time. By comparison, the recent analysis of [20] used these conditions
together with a number of conditions related to further corrections (see e.g. [26–40]) to
collectively constrain the LVS. These analytical constraints were then applied to a specific
Calabi-Yau orientifold. The most important of those further corrections are probably
certain logarithmic contributions to the Kahler potential, which are not yet unambiguously
established. We will comment on this in slightly more detail below. Many of the remaining
corrections are interesting but probably not as dangerous. We will discuss them only briefly
in what follows.

We note that, in an upcoming paper [41] we will provide a general discussion of loop
corrections to the Kahler moduli Kahler potential in type-IIB compactifications [33–37].
We will in particular discuss at which order in α′, gs, and cycle volumes loop corrections
can appear and what their potential impact on proposed compactifications, such as the
LVS, is.

The rest of the present paper is organized as follows: we list the most important LVS
relations in section 2, we derive the proposed key equation for the required minimal tadpole
in section 3. Then, in section 4, we discuss how one may try to strengthen the LVS proposal
in the future in spite of the presented constraint. We also discuss further challenges and
comment on the interplay of our constraint with the tadpole conjecture [21, 42–45].

2 Summary of basic equations

To set the scene, we recall the LVS set-up. One compactifies IIB string theory to 4D on a
Calabi-Yau orientifold X with flux and warping. The geometry has at least a big 4-cycle
τb and a small 4-cycle τs. The corresponding Kahler potential reads [2, 46]

K = −2 ln
(
V + ξ

2g3/2
s

)
= −2 ln

(
τ

3/2
b − κsτ3/2

s − χ ζ(3)
4(2π)3g

3/2
s

)
. (2.1)

Here V = τ
3/2
b − κsτ

3/2
s is the Calabi-Yau volume in units of ls = 2π

√
α′ and after a

rescaling to the 10d Einstein frame. The constant κs is related to the triple intersection
number of τs and an analogous constant in front of τb has been absorbed by rescaling τb.
The string coupling is gs and χ is the Euler number of the Calabi-Yau. The superpotential
is given by

W = W0 +Ase−asTs , (2.2)

with W0 due to flux and the nonperturbative correction coming from either ED3-branes
(as = 2π) or gaugino condensation on D7-branes (as depends on the gauge group, e.g.

– 2 –
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as = π/3 for SO(8)). The prefactor As is model-dependent. We have absorbed the complex
structure Kahler potential in a multiplicative rescaling of W0 and As.

This yields the pure LVS scalar potential (in 4d Planck units)

V = 4a2
s|As|2gs

√
τse−2asτs

3κsV
− 2as|As|gsτs|W0|e−asτs

V2 + 3ξ|W0|2
8√gsV3 , (2.3)

which is minimized by

V = 3κs|W0|
√
τs

4as|As|
easτs , τs = ξ2/3

(2κs)2/3gs
+O(1) , (2.4)

leading to an AdS vacuum at

VAdS = −3κsgs
√
τs|W0|2

8asV3 . (2.5)

As noted in the appendix of [47] this value is parametrically suppressed with respect to
the individual terms in V by a factor of 1/τs or gs. This has been emphasised and studied
in detail in [20] under the name ‘non-perturbative no-scale structure’.

One now assumes that a Klebanov-Strassler throat is present and places an anti-D3
brane at its tip. This adds a metastable uplift [1]

Vuplift = VD3 = 2TD3e
4A(0) (2.6)

to the scalar potential. Here TD3 is the D3-brane tension in 4D Einstein frame and eA(0)

is the warp factor at the tip of the throat. To determine this warp factor, we neglect
the difficult issue of backreaction [48, 49] since it is expected to make the uplift smaller.
Hence we are being conservative by disregarding it. We rather use the standard Klebanov-
Strassler geometry, glued into the conical region of a compact Calabi-Yau. We are careful
to keep all O(1) factors except for those which are unknown since they are related to
the specific Calabi-Yau (cf. appendix A for details). Including in particular the corrected
volume scaling of [50], we find

e4A(0) =
(
g

3/2
s V
V0

)2/3 3 22/3π

a0

N

gsM2 e
− 8πK

3gsM . (2.7)

Here a0 ≈ 0.71805 is a numerical constant related to the explicit Klebanov-Strassler geom-
etry [51], V0 is the volume of the T 1,1 where the conifold is glued into the Calabi-Yau, and
M is the F3 and K the H3 flux on the throat 3-cycles. The contribution of the flux in the
throat to the D3-tadpole is N = KM . The final form of the uplift potential is then

Vuplift =
(
32 π3 222/3)1/5

a0

e−
8πK
3gsM

gsM2V4/3 . (2.8)

Jumping slightly ahead we note that the weaker volume suppression of the uplift as com-
pared to the depth of the AdS potential in (2.5) does not represent a problem. The
matching of the two effects will be ensured by the non-trivial volume scaling of |W0|2 and
of the exponential warping suppression in (2.8).
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Before moving on to the derivation of the tadpole constraint, we have to discuss one of
the so-called higher F -term corrections. It is important since it bounds the size of W0 in
terms of the Calabi-Yau volume.1 Concretely, this correction comes from eight derivative
terms involving the field strength G3 and takes the form [20, 25]

δVF ∼
W 4

0 g
1/2
s

V11/3 . (2.9)

Its ratio to the value of the AdS potential at the minimum (2.5) is required to be small.
To quantify this, we multiply this ratio by our control parameter cW0 and set the result
equal to unity:

1 = cW0
16as

3(2κs)2/3ξ1/3
W 2

0
V2/3 . (2.10)

For cW0 � 1, higher terms in the superspace derivative expansion are suppressed [23–25].

3 The LVS parametric tadpole constraint

The LVS tadpole constraint is derived in two steps: first, we require the uplift potential (2.8)
to be of the size of the potential in the AdS minimum (2.5).2 This leads to

V = a0
(32π3222/3)1/5

(3(2κs)2/3ξ1/3

16as

)2 g
1/2
s

cW0
gsM

2 e
8π

3gsM2N , (3.1)

where we replaced |W0| by (2.10). Setting V in (2.4) equal to (3.1) gives an implicit equation
for τs = τs(N) which can be solved to leading order by comparing the exponentials:3

asτs = 16πN
9gsM2 + ln

(O(1)
)
. (3.2)

In the second step, we bound the volume from below by demanding that we have
a well-controlled solution. One argument is to require that the singular-bulk problem is
avoided. This imposes [12, 17]

1� N

V2/3 . (3.3)

However, as recently argued in [20], a related and more quantitative bound can be given by
studying 10d higher-curvature terms. Indeed, before strong warping leads to the formation
of singular regions, it drives curvature corrections large. Specifically, consider a correction
to the 4d Einstein-Hilbert term, analogous to BBHL [46], arising from the interplay between
the 10d R4

10 term and a varying warp factor [20]:
One uses the warped metric ansatz

ds2 = e2A(y)gµνdxµdxν + e−2A(y)g̃mndymdyn (3.4)
1The resulting constraint is slightly stronger than the gravitino constraint m3/2 � mKK needed for a

valid low-energy supergravity description [52]. We thank Daniel Junghans for making us aware of this.
2The relative fine tuning of the two terms can always be realised by adjusting |W0|, which should not

be problematic as long as cW0 has not been chosen too close to unity.
3Note that replacing W0 by the higher F-term constraint changes the exponential factor in (2.4) to

e3asτs/2.
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together with the term

1
g

3/2
s

∫
d10x
√
−GεABM1...M8εABN1...N8R

N1N2
M1M2 · · ·RN7N8

M7M8 (3.5)

from the R4
10 correction to the type-IIB action [46, 53] in 10d Einstein frame. To derive

the contribution to the 4d Einstein-Hilbert term, we focus on fluctuations of the type
gµν = gµν(x). We also disregard terms with derivatives of A(y). This turns (3.5) into

1
g

3/2
s

∫

M10
e2A(y)R ∧R ∧R ∧R ∧ e ∧ e , (3.6)

where R is the Riemann tensor of the unwarped Calabi-Yau compactification with metric
(gµν , g̃mn) and e denotes the vielbein 1-form. Since we are now working with a product
geometry, the contribution to the 4d Einstein-Hilbert term can be made explicit as

1
g

3/2
s

∫
d4xR4

∫

X
R6 ∧R6 ∧R6

(
1 + (e2A(y)− 1)

) ≈ 1
g

3/2
s

∫
d4xR4

(
χ(X) + χ(X)N

V2/3

)
. (3.7)

Here we assumed that the bulk of the Calabi-Yau is at weak warping, e2A ' 1. We may then
use the fact that, in the 10d string frame, (e−4A − 1) is the solution of a Poisson equation
with the sources being the throat-localised flux ∼ gsN and the compensating negative
tadpole elsewhere in the compact space. The 6d Greens function behaviour ∼ 1/r4 then
implies that the typical variations of (e−4A − 1) and hence of (e2A − 1) on the scale of the
Calabi-Yau are ∼ gsN/r4 ∼ N/V2/3.

We deviate from [20] in that we expect a scaling of the warping correction term with
the Euler number χ(X). The reason is that we assume a slowly varying warp factor [17]
and hence do not expect a parametrically strong cancellation between the contributions
from different regions.

The correction to the Einstein-Hilbert term then translates into a Kahler potential
correction and, analogously to the α′ effect in the last term of (2.3), to a correction to the
scalar potential:4

δV = 15 ξ N |W0|2
8√gs V11/3 O(1) . (3.8)

This correction in turn corrects the value of the (A)dS minimum and the stability condition
of the dS minimum [20]. We focus on the effect on the value of the potential at the
minimum since the stability of the minimum depends crucially on the unknown sign of the
correction (3.8). A measure for parametric control is given by comparing the size of the
correction to the scalar potential (3.8) and its value at the minimum (2.5). Hence, we are
prompted to consider the following improved version of (3.3):

1 = cN
10 as ξ2/3

(2κs)2/3gs

N

V2/3 . (3.9)

4Another important correction which is of the same form as BBHL was found in [40]. This can be taken
into account in our analysis by replacing ξ → ξ + ξ′ where ξ′ is computed in [40].
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A large control parameter cN � 1 again ensures a parametric suppression of the correction
compared to the leading term.5

Now, we require the volume in (3.9) to be equal to (3.1) and replace subsequently gs
by τs using (2.4). In doing so, we leave the combination gsM2 untouched since it represents
an important parameter characterising the metastability of the throat. This leads to an
equation for N which is of the form wew = x, where

w = − 16π
21gsM2N , x = −33/5π9/35 a

2/7
0

14 22/15 53/7
κ

2/7
s ξ2/7

a
3/7
s c

2/7
W0

c
3/7
N

1
(gsM2)1/7 . (3.10)

An equation of the above type is solved by w =W−1(x), where W−1(x) is a branch of
the Lambert W function. We find the exact result

N = −21gsM2

16π W−1(x) = −21gsM2

16π
(

ln(−x) + ln
(− ln(−x)

)
+O(1)

)
, (3.11)

where we expanded W−1(x) around x = 0. In order for the D3-tadpole in our compactifi-
cation to cancel, we must at least have sufficient negative tadpole Q3 from O3/O7-planes
and D7-branes to cancel the flux in the throat

−Q3 > N . (3.12)

In addition to (3.12), there is another lower bound on −Q3 given by [54]6

−Q3 ≥ 4πgsW
2
0

2 , (3.13)

where the 4π arises since our superpotential W is normalized differently compared to [54].
Expressing W0 by (2.10) and subsequently V by (3.9) we find

−Q3 ≥
cN
cW0

15πξ
4 N ≡ cQN . (3.14)

Our main result is then that by filling in (3.11) for N in (3.12) and (3.14), we obtain two
lower bounds on the D3-tadpole. For any given model and two prescribed values cN and
cW0 , we should check that the strongest of these bounds is satisfied.

This result allows for a more compact formulation if we do not fix cN and cW0 but
merely restrict them such that some minimal quality of control is ensured. Specifically,
we demand cN ≥ cN,min and cW0 ≥ cW0,min, assuming also that the two values cN,min and
cW0,min are comparable. This is illustrated in figure 1, where the grey area represents the
forbidden regime. The blue line in the plot separates the regimes where one or the other of
the two bounds is stronger. It is described by cW0/cN = 15πξ/4 or, equivalently, cQ = 1.
Since 15πξ/4 is in general significantly larger than unity, the blue line cuts the horizontal
rather than the vertical part of the boundary between the grey and white area.

5Note that, as described in [20], the dS minimum disappears if the correction (3.8) has an unfavourable
sign and is too large. This correspond in our analysis to a value of cN < 11C flux/(18ξ) (see equation (5.8)
in [20]). Evaluating this for the explicit model considered there, the dS minimum breaks down for cN ' 1.35
(see equation (6.23)).

6We thank Erik Plauschinn and the referee for making us aware of this important point.
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cQ>1

cQ<1

cN

cW0

Figure 1. The parameter space of possible values of cN and cW0 . In the grey area, one of these two
control parameters is too small such that corrections are dangerously large. The blue line separates
the regimes of validity of the two bounds in (3.12) and (3.14). The arrows specify how cW0 must
change to decrease the lower bound −Q∗3(cN , cW0) at fixed cN .

Over the white part of the plot in figure 1, we have a function −Q∗3(cN , cW0) given
by the r.h. side of (3.12) or (3.14), whichever is largest. For a conservative constraint,
we want to know the minimal value of that function. To determine this value, we first
consider the area to the right of the blue line, where cQ < 1. It is immediately clear from
eqs. (3.10)–(3.12) that, as indicated by the arrows, our function −Q∗3(cN , cW0) falls as we
move to smaller cW0 at fixed cN . Hence the minimum is attained on the blue line or to
its left. On the contrary, in the region left of the blue line, i.e. for cQ > 1, the value
of −Q∗3(cN , cW0) generically falls if one moves to larger cW0 . This requires a moment of
thought: one first convinces oneself that, in this regime and with fixed cN , the variation
of the minimal tadpole reads δ[−Q∗3(cN , cW0)] ∼ δ[(a + ln(cW0))/cW0 ], with a > 0. This
follows from eqs. (3.10), (3.11) and (3.14), using also the leading logarithmic approximation
in (3.11). It is now easy to see that, for sufficiently large cW0 , the function −Q∗3 always
falls if cW0 grows. The requirement that cW0 is sufficiently large is always satisfied since
we are outside the grey band. Thus, the arrows left of the blue line must indeed point to
the right, and the minimum is hence on top of the blue line. Finally, restricting attention
to points on the blue line, the value of −Q∗3 falls as one moves towards the origin.

As a result, the minimum is at the point where the blue line crosses into the grey area.
This is specified by cN = cN,min and

c∗W0 = cN,min
15πξ

4 . (3.15)

For simplicity, we drop the index ‘min’ on cN in what follows. Then, inserting (3.15)
together with x into (3.11), we obtain the leading order result:

The LVS parametric tadpole constraint. The D3 tadpole contribution Q3 of O3/O7-
planes and D7-branes must fulfil

−Q3 > N = N∗

(1
3 lnN∗ + 5

3 ln cN + ln as −
2
3 ln κs + 8.2 +O( ln(ln)

))
, (3.16)

where we defined N∗ = 9gsM2/(16π).
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Note that the subleading terms in (3.16) have a significant impact on the final bound
one obtains. We only display the leading term to give the reader an intuition of how the
bound scales with the parameters. However, to actually compute N we always make use
of the exact expression (3.11).

Thus, we require Q3 to be negative and its absolute value to exceed the throat-flux
N since additional 3-form flux is needed to stabilize the complex-structure moduli. Let us
discuss the implications of (3.16). The constraint specifies the minimal tadpole needed in
LVS constructions to avoid the singular-bulk problem, and to make sure that the corrections
induced by a varying warp factor and higher F-terms are parametrically suppressed. The
degree of parametric suppression can be chosen at will by specifying cN . The parameter
cN determines to which extent warping effects are suppressed and fixes, through (3.15), the
optimal value of W0. The approximation of x being close to zero improves with increasing
gsM

2 and increasing control parameters. Interestingly, the main expansion parameter N∗
coincides with the size of the small cycle τs.

An optimistic bound on N is obtained by using the metastability constraint gsM2 & 12
by KPV [55] (to be precise,M > 12 combined with gsM & 1). Setting κs = 1 and as = π/3
for the moment, as well as using (3.11) together with (3.15), we obtain for the minimal
tadpole

N ' 33.6 for cN = 5 and N ' 45.8 for cN = 100 . (3.17)

This is, however, probably too weak since it ignores backreaction. Indeed, the constraint
comes from the process in which the D3 polarises into a fluxed NS5, which slips over the
equator of the S3 at the tip of the throat. One expects that, as part of this decay process,
the volume of the S3 is driven to a smaller value, lowering the potential barrier for the
decay.7

An improvement has been suggested in [48, 49] (see also [57, 58]), where the conifold
modulus is treated as a dynamical variable. In [56] this analysis was combined with the
polarization of the D3 into an NS5-brane. As already discussed in [17, 20], the reliability of
these analyses is limited by the assumption that the warp factor behaves as exp(4A(0)) ∼
|Z|4/3, also off-shell. This is not obvious because exp(4A(0)) ∼ exp(−8πK/3gsM) is a
priori a fixed number, determined by the flux choice. Put differently, it is not clear why
the warp factor should go to zero as the S3 at the tip of the throat is dynamically driven to
zero radius. After all, the fluxes K and M determining exp(4A(0)) à la Klebanov-Strassler
are discrete.

Nevertheless, we may take for the moment the value gsM2 ≈ 46 obtained in [48, 49] as
a (probably rather conservative) lower bound and insert it together with (3.15) in (3.11).
Choosing again κs = 1 and as = π/3, we find

N ' 132.9 for cN = 5 and N ' 179.9 for cN = 100 . (3.18)

7Note that this volume is not the same as the conifold modulus Z. Indeed, due to a cancellation between
the Z-dependence of the warping and the Z-dependence of the internal metric at the tip of the warped
throat, the physical volume of the S3 at the tip is Z-independent. Correspondingly, the analysis of [56]
does not find such a lowering of the potential barrier.
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Combined with the fact that, in the explicit LVS models considered to date the maximal
tadpole is ∼ 150 [22], we see that the tadpole constraint is neither harmless nor deadly.

The natural way to ensure the constraint (3.16) is satisfied is to search for LVS compact-
ifications with a large D3-tadpole. We will discuss the prospects for finding such examples
and stabilizing all moduli in section 4. In addition, one may try to study the LVS in more
detail in the regime where the control parameters cN and cW0 are only moderately large.
To convince oneself that the construction remains reliable, one would need to make sure
that even higher order corrections of the same type do not blow up. Interestingly, (3.16)
increases for small κs and is independent of the Euler number. This appears to partly
differ from the trend observed in example studies in [22].

4 Discussion of the LVS tadpole constraint

4.1 Interplay with the tadpole problem

Our central result (3.16) provides a quantitative lower bound on the flux-induced D3 tad-
pole. The tadpole conjecture [21, 42–45] on the other hand states that, for a large number
h2,1 of complex structure (CS) moduli, the tadpole of the 3-form flux required to stabilize
all of them in a non-singular regime grows faster than the negative tadpole of the corre-
sponding orientifold geometry. If the conjecture were true, it would be logical to focus on
LVS models with a large tadpole and a small number of moduli, escaping the allegedly
dangerous asymptotic regime. But this may not be possible since, according to known ex-
amples, a large negative tadpole comes with a complicated topology (as discussed in more
detail in section 5 of [17]) and hence many moduli. Indeed, one would expect that a single
involution of a certain geometry has many O3 fixed points precisely because the topology
is complicated. Similarly, while even a single O7 plane with its D7 branes can produce a
large tadpole, this tadpole is tied to its topology. It grows if the 7-brane topology becomes
complicated, which is in general associated with the presence of many brane-deformation
moduli. These, in turn, require more flux to be stabilized.

It then seems that the allowed LVS vacua are constrained to an interval of permitted
Q3, with (3.16) providing a lower bound and the parametrics of the tadpole conjecture
providing an upper bound above which it becomes hard to stabilize all the CS moduli.
One might worry that further analyses will demonstrate that this interval shrinks to zero
size, casting all LVS de Sitter vacua into the swampland. Indeed, this concern was already
raised in [21], though without deriving a quantitative LVS tadpole constraint. However,
things need not be all doom and gloom:

We recall an important but perhaps underappreciated condition for the tadpole conjec-
ture to apply, namely that the stabilized geometry is required to be smooth. For example,
in the simple K3 × K3 example it is possible to stabilize all CS moduli (including D7
brane moduli in the language of F-theory) if singular geometries are permitted [59–62].
According to the detailed study of [21], developing the method of [61], this fails if one
attempts to avoid the gauge enhancement through singularities. Nevertheless, this failure
allows for the following more optimistic view on the possible string landscape of de Sitter
vacua: the tadpole conjecture says that all vacua in the landscape at large number of CS
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moduli have singular internal geometries. One may embrace this statement together with
the fact that the singularities will in general produce enhanced nonabelian gauge symme-
tries. The dynamics of those gauge theories together with SUSY breaking might stabilize
the new moduli associated to the singularity. If this happens only at low energies, the
nonabelian gauge theories make our compactification more interesting phenomenologically.
The tadpole conjecture then tells us that the de Sitter vacua that do exist in the landscape
are on average much more interesting phenomenologically then one a priori expects.

4.2 Overcoming the LVS Tadpole Constraint and further challenges

With these considerations in mind, let us look at which D3-tadpole has been achieved in
IIB string theory and what the prospects for realizing higher tadpoles might be.

In IIB string theory, the D3 tadpole is generally given by

ND3 + Nflux
2 +Ngauge = NO3

4 + χ(DO7)
12 +

∑

a

Na
χ(Da) + χ(D′a)

48 ≡ −Q3 , (4.1)

with Nflux = 1
(2π)4α′2

∫
H3 ∧ F3, Ngauge = −∑a

1
8π2

∫
Da

trF2
a , where Fa is the gauge flux

turned on on each of the divisors Da, and Na the number of D7 branes (their orientifold
images) wrapping the divisor Da (D′a). Note that a throat with fluxes K andM contributes
an amount of 2N = 2KM to the quantity Nflux in (4.1). The reason is that a throat in
the orientifold corresponds to two throats in the Calabi-Yau. If the D7 brane tadpole is
cancelled locally by placing eight D7 branes on top of the O7 plane, (4.1) simplifies to

ND3 + Nflux
2 +Ngauge = NO3

4 + χ(DO7)
4 . (4.2)

Most concrete type-IIB orientifolds considered in the literature are based on Calabi-
Yaus with a small number of Kahler moduli h1,1(X). The highest negative tadpole values
of explicitly considered models we are aware of are Q3 = −1498 [22] and −104 [63], both in
models with h1,1(X) = 2 and based on reflection involutions. More generally in type-IIB
orientifolds with locally cancelled D7 tadpole, the negative contribution to the D3 tadpole
can be bounded from above by the Lefschetz fixed point theorem [21, 64, 65]:9

−Q3 ≤ 1 + 1
2(h1,1 + h2,1) . (4.3)

Using the largest Hodge numbers from the Kreuzer-Skarke dataset [66], this gives,
−Q3 ≤ 252.

• Exploiting non-local D7-tadpole cancellation: in the models of [22, 63], the D7 tad-
pole is cancelled locally, i.e. eight D7 branes sit on top of each O7. This restricts
the possibilities of getting a large tadpole: indeed, according to [65], canceling the
D7 tadpole locally in smooth and favorable Complete Intersection Calabi-Yau three-
folds (CICYs) with both reflections and simple divisor exchange involutions gives

8This is the model considered in [20].
9We thank Jakob Moritz for pointing this out to us.
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Figure 2. Log distribution of the Euler number of individual divisors χ(D) in toric orientifold
Calabi-Yaus with h1,1(X) ≤ 6.

even tadpole values in the range [−36, 4]. By contrast, non-local D7-tadpole cancel-
lation produced values in the larger range [−132,−12]. Moreover, the study of toric
orientifold Calabi-Yaus with h1,1 ≤ 6 in [67] gave Q3 ∈ [−30, 0]. This was based
only on the divisor exchange involution and local D7-tadpole cancellation. Models
with reflection involution in toric Calabi-Yaus are still under study but we expect
that in this class the tadpole will increase significantly. The reason is that, in the
examples of [22, 63] with reflection involution the tadpole is already as large as 104
and 149 even for h1,1(X) = 2. Thus, one may hope that extending this to the range
h1,1(X) ≤ 6 much larger tadpoles can arise.

• Using divisors Da with large Euler number : (a) from (4.1) one can see another reason
for the limited tadpole range arising in the study of [65]. It is the fact that in CICYs
the topology of each divisor is relatively simple and the largest Euler number of a
divisor is modest: χ(Da)max = 80 [65, 68]. By contrast, in the toric setting even
with h1,1(X) ≤ 6, the highest Euler number that gives an integer contribution to
the tadpole is χ(Da)max = 504 [67]. Even if we only consider a reflection on this
divisor and cancel the D7-tadpole locally, it will contribute −126 to the tadpole. A
distribution of Euler numbers of divisors in the orientifold Calabi-Yau database of [67]
is displayed in figure 2. (b) Another way to enlarge the Euler number of Da is by
considering a D7-brane wrapping a combination of divisors. This relies on detailed
model building and represents an interesting project for the future.

• Large h1,1(X): increasing h1,1(X) enriches the possibilities for D7-brane model build-
ing and hence should make it possible to find larger Euler number for Da and hence
larger NO3. For CICYs, the largest h1,1 is just 19 [69] while for toric Calabi-Yau this
number increases to h1,1(X) = 491 [66]. Although so far no database for orientifolds
of toric Calabi-Yaus with higher h1,1(X) exists, progress based on large cluster com-
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putation and machine learning has been made [70]. We note that in the search for
large gauge groups, a correlation between the rank and h1,1 has been observed [63].
The concrete model studied in that paper has only h1,1 = 2 and a maximal negative
tadpole of −92, but the expectation is that models with much larger h1,1 and D7
brane numbers going into the hundreds exist. While this raises the hope that very
large negative tadpoles can also be achieved by the detailed study of the correspond-
ing geometries, one in general pays the price of large h1,1. This means many Kahler
moduli, the stabilization of which may in itself be non-trivial in the LVS context, as
we discuss below.

• Increasing NO3: finally, an obvious way forward is to search for models with more
O3 planes. In the particularly tractable setting of CICYs, see e.g. [69, 71], the
multiplicities of O3 and O7 planes have recently been studied in [65]. Tadpoles
in the range [−132,−12] were found. An interesting aspect uncovered in this context
is that the resolution branch of each conifold singularity on an O7 plane produces one
extra O3. Although in [65] this did not lead to higher tadpoles, this might change
in more general settings, such as toric Calabi-Yaus. Moreover, the existence of this
method for increasing the number of O3 planes, possibly in the range of NO3 ∼ 100,
is interesting in itself.

If it should nevertheless prove impossible to construct perturbative type-IIB models
with a sufficiently high tadpole to be in control according to (3.16) and with all CS-
moduli stabilized in an acceptable manner, another option is to consider proper F-theory
compactifications10 [72, 73]. The immediate advantage is that Calabi-Yau 4-folds with very
large Euler number χ4 are known, leading to negative D3 tadpoles as high as N = χ4/24 =
75852 [74, 75]. This appears to be sufficient to easily satisfy the constraint (3.16) with
excellent control. But the extension of the discussion to F-theory models has its price:

On the one hand, the key parametric relations lnV ∼ τs ∼ 1/gs demand that we realise
a small value of gs at least in the corner of our compact space where the small cycle is
localized. Studying whether this can be implemented in large-tadpole F-theory geometries
is an interesting task.

On the one hand, the key parametric relations lnV ∼ τs ∼ 1/gs demand that we realise
a small value of gs to achieve a large volume. In F-theory, gs is replaced by an appropriate
average of the exponential of the dilaton, gs ≡ 〈eφ〉. Studying whether a small gs can in
this way be implemented in large-tadpole F-theory geometries is an interesting task.

On the other hand, a 4-fold with large Euler number implies, in the smooth case, that
the F-theory model has either many Kahler moduli or many complex structure moduli
or many 7-brane deformations (cf. section 5 of [17], based on [64, 76, 77]). The latter
two options potentially run into trouble with the tadpole conjecture (though this may be
acceptable if one allows for singular geometries). The former option, where the number
of Kahler moduli is large, potentially has a problem with the LVS moduli stabilization
procedure. Indeed, the standard approach to stabilizing non-blowup moduli (other than

10The F-theory analogue of the crucial correction (3.5) was derived in [40].
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the volume) in the LVS is through loop corrections [36, 37]. The dependence of such
corrections on ratios of 4-cycle volumes as well as the complex-structure moduli dependence
of the prefactors is not known except for simple torus orbifold geometries [34, 35] (see [41]
for an attempt to make progress). This may not be a problem as a matter of principle
since, generically, one expects that all Kahler moduli will somehow be stabilized by loop
effects. But clearly it is a problem if one wants to establish rigorously the existence of
at least one explicit LVS de Sitter model. Hence, the way forward may be not to rely
on loops but rather demand that all ratios of non-blowup cycles are stabilized by D-term
constraints [78–80]. In this case, achieving a purely algebraic and fully explicit construction
in the near future appears more plausible.

The correction we have focused on in this note is not the only correction relevant for
control in the LVS. As emphasized in [20], further potentially dangerous corrections are
associated with logarithmic terms. There are two types:

One of them [26] derives from the field redefinition τ ′s ≡ τs +α log(V), where τ ′s rather
than τs is now the real part of the proper Kahler variable. The Kahler potential then reads

K ∼ −2 log
[
τ

3/2
b − (τ ′s − α log(V)

)3/2 + . . .
]

+ . . . , (4.4)

with the physical small-cycle volume being (τ ′s−α log(V)). It is at the moment not entirely
settled if and when such a correction appears in string compactifications. A surprising
aspect is the implicit claim that, at V → ∞, the correction grows in importance. For
example, the size of non-perturbative effects ∼ exp(−asτ ′s) now has a very different relation
to the physical volumes of small cycle and Calabi-Yau.

Another type of correction, corresponding to a replacement V → V + α log(V), has
been proposed to appear through the interplay of the R4

10 and D7/O7 branes [27]. An
interesting aspect of this proposal is that, while it indeed threatens parametric control of
the LVS, it could instead allow for alternative ways to realize a de Sitter minimum.

The correction (3.8) we have focused on in this note and log corrections are not the
only potentially relevant corrections for the LVS. As recently highlighted in [20], a host
of further corrections are interesting or even potentially dangerous. This requires more
research. In this context, in upcoming work [41], we will give a general discussion of loop
corrections to the Kahler moduli Kahler potential. While important in many ways, we do
not see that these corrections endanger the basic setting of the LVS.

Finally, we emphasize again that the tadpole constraint (3.16) is tied to the D3-uplift.
Hence, even if this constraint turned out to remain problematic for the LVS, other up-
lifting mechanisms could work more successfully, especially if they do not require a very
large tadpole. One example is the D-term uplift, where the positive energy arises be-
cause a D7-brane matter-field is unable to satisfy simultaneously a D-term and an F -term
constraint [81, 82]. Implementing this consistently in the stringy geometry leads to the
concept of a T-brane uplift [83]. Another suggestion is the Winding uplift [84, 85] (with
the idea going back to [86]), which uses the possibility to create a perturbatively flat di-
rection in the complex-structure moduli space by an appropriate flux choice [86]. The
non-perturbatively small potential along this flat valley can then arguably be tuned such
that a local metastable minimum with non-zero F -term arises. In this setting, the tuning
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power of the complex-structure landscape could help to realize an exponentially small uplift
without a warped throat.

5 Summary

The core result of this short note is (3.16), which bounds the D3 tadpole required in LVS
models from below. The bound comes from demanding that warping corrections in the
bulk, associated with the Klebanov-Strassler throat housing the anti-D3 brane uplift, are
under control. While this constrains the set of geometries suitable for an LVS with a
controlled uplift, we so far see no catastrophe that places all LVS vacua in the swampland.
Rather, the bound poses a challenge for LVS model-building which one can attempt to
overcome by searching for compactifications with a sufficiently large D3-tadpole. While
the tadpole conjecture poses an additional challenge in this context, we do not currently
see this as impossible to overcome. In type-IIB a tadpole of 149 has been achieved [22],
but, as we argued above, much larger tadpoles may be possible. In F-theory, the largest
available tadpole of 75852 [74, 75] easily satisfies our bound (3.16) with excellent control.
However, then one faces other challenges: one either has to realize a small averaged gs
in F-theory or, alternatively, one has to replace the control parameter 1/gs by a topology
which makes the coefficient of the α′3 correction appropriately large. Moreover, stabilizing
all moduli in a controlled manner in geometrically complicated models with high tadpole
may introduce new difficulties. Finally, a key quantity determining the bound of the D3
tadpole (3.16) is gsM2, the minimal value of which is still under debate. In order to see
how constraining the bound for the LVS really is, it would be essential to know this value
as precisely as possible.

We hope that this note has highlighted a number of directions for future work which
can help to clarify whether LVS de Sitter vacua exist.
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A Derivation of the D3 uplift potential

In this appendix we derive the uplift potential directly from the Klebanov-Strassler (KS)
geometry [51], using also [87, 88]. This provides a more precise derivation of the (non-
backreacted) uplift potential than we are aware of elsewhere in the literature.

The warp factor in string frame far away from the tip of the throat is given by the
following two equivalent expressions. Firstly, it can be parametrized by the flux N = KM
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and the radial distance from the tip r = rmax at which the total flux in the throat equals
N . At rmax, the throat is glued into the compact Calabi-Yau. This yields [87, 88]

hN (r) = 27πα′2
4r4

(
gsN + 3(gsM)2

2π ln(r/rmax) + 3
8π (gsM)2

)
. (A.1)

Secondly, we may use the KS warp factor hKS
ε (r) which describes both the UV and the

smooth, IR region and which is parametrized by the conifold resolution parameter ε [51, 88].
In the UV, it has the approximate form

hKS
ε (r) ' 81(α′gsM)2

8r4 ln
((25/3

3

)1/2 r

ε2/3

)
. (A.2)

Comparing (A.1) and (A.2) determines rmax as a function of ε to leading order to be

rmax =
( 3

25/3

)1/2
ε2/3 e

2πK
3gsM . (A.3)

Moreover, from KS, the warp factor at the tip is known. In string frame, it reads

hKS
ε (0) = 22/3a0(gsMα′)2

ε8/3 , (A.4)

with the constant a0 ≈ 0.71805.
With this in hand, we can calculate the ratio of the warp factors at the tip and far away

from the tip at r = rmax. This yields the relative warping needed for the uplift potential:

hKS
ε (0)

hKS
ε (r = rmax) = a0

3 22/3π

gsM
2

N
e

8πK
3gsM . (A.5)

So far, we neglected the additive, constant contribution ∼ V2/3 to the warp factor [89]11
which becomes dominant at sufficiently large volume. Specifically, we replace the KS warp
factor according to

hKS
ε (r) → (Vs/Vs,0)2/3 hKS

ε (rmax) + hKS
ε (r) . (A.6)

Here we normalized the constant term by introducing a string-frame, fiducial volume Vs,0.
Our definition implies that, if Vs = Vs,0, the strong-warping region is set by r . rmax. This
is the situation when a strongly warped throat is glued into a weakly warped, compact CY.
For larger Vs, a weakly-warped conical region develops above the throat (see e.g. [90]). From
all of this, it should be clear that Vs,0 must be chosen such that typical length scales in the
CY match typical length scales of the T 1,1 at rmax. Hence, for Vs � Vs,0, the full, inverse
warp factor at the tip is given by

e4A(0) =
( Vs
Vs,0

)2/3hKS
ε (r = rmax)
hKS
ε (0) =

(
Vs

(
Vol(T 1,1)|rmax

)6/5

)2/3
hKS
ε (r = rmax)
hKS
ε (0) . (A.7)

The volume scaling of this expression matches the corrected volume scaling of [50].
11The warp factor is determined by a Poisson equation and can hence be always shifted by a constant.
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To obtain the final formula of the uplift potential, we hence need to determine the
volume of the T 1,1 at rmax. For this we consider the string frame metric of the conifold far
away from the tip

ds2
10 = h

−1/2
N (r) ηµνdxµdxν + h

1/2
N (r)

(
dr2 + r2ds2

T 1,1
)
. (A.8)

Using (A.1) and VolT 1,1 = 16π3/27 from [91], we find

V2/3
s,0 = 33/5

214/5 π3/5

(
gsN + 3

8π (gsM)2
)
. (A.9)

This can be plugged into (A.7) which then yields the uplift potential

Vuplift = VD3 = 2TD3e
4A(0) = (32 π3 222/3)1/5

a0

e−
8πK
3gsM

gsM2V4/3 . (A.10)

Here we only used the leading, first term on the r.h. side of (A.9). Note that the gsM2

dependence of our the uplift potential agrees with the results of the supergravity-based
approach of [48, 57, 58]. At the moment, we do not understand why this agreement occurs
in spite of the absence of a fiducial volume Vs,0 in these references. In our approach, Vs,0
contributes essentially to the final result.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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that for the α′2-corrections to be sufficiently small to recover essentially the leading-order
KPV potential one needs a surprisingly large S3 radius, corresponding to gsM > 20. In the
context of the Large Volume Scenario (LVS) this implies a D3-tadpole of at least O(103–104).
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curvature corrections lower the tension of the brane, a novel uplifting mechanism suggests
itself where the smallness of the uplift is achieved by a tuning of curvature corrections. A
key underlying assumption is the existence of a dense discretuum of gs. This new mechanism
does not require a deep warped throat, thereby sidestepping the main difficulty in uplifting
KKLT and LVS. However, all of the above has to be treated as a preliminary exploration of
possibilities since, at the moment, not all relevant corrections at the order α′2 are known.
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1 Introduction

The set-up of Kachru, Pearson and Verlinde (KPV) [1] is one of the leading proposals for
controlled, spontaneous SUSY breaking in string theory. In KPV, a set of anti-D3-branes
at the tip of a Klebanov-Strassler throat polarize into a fluxed NS5-brane, which may then
decay to restore SUSY or remain metastable1 at finite radius, ideally in a regime controlled
in 10d supergravity.

Our goal is to study α′2 curvature corrections to the NS5-brane of KPV, which is clearly
essential to control metastability. We will show that such corrections can significantly alter
the KPV story. To maintain the validity of the leading-order KPV analysis, a strong lower
bound on the radius ∼ √gsMα′ of the tip of the throat has to be imposed. Here gs is the
string coupling and M counts the units of 3-form flux on the 3-cycle in the throat. If gsM
is small, violating the above bound, α′2-corrections significantly modify the story of KPV
and the possibility of a novel uplifting mechanism suggests itself.

We came to consider α′2 corrections in the KPV set-up by first thinking about corrections
to the anti-brane uplift, as an essential ingredient in the KKLT [4] and Large Volume
Scenario (LVS) [5, 6]. We will start by reviewing this simpler anti-D3-brane setup as a
motivation and to provide a simplified version of the more complete NS5-brane story which
we develop subsequently.

1The corresponding tunneling transitions are key in defining the lifetime of the non-SUSY vacuum [2, 3].
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In recent years, concerns have been raised about the existence of de Sitter vacua in string
theory (see e.g. [7, 8]). In particular, a series of recent papers [9–11] has scrutinized the
conditions required to achieve a de Sitter vacuum in the LVS using an anti-D3-brane uplift.

An effect which was not considered in [10] but was crucial to [9, 11] derives from the
α′2 curvature corrections to the action of the anti-D3-brane responsible for the uplift. They
lead to the anti-D3-induced potential2

VD3 = µ3e−φ
[
1− (4π2α′)2

384π2 R α
aαb R

a bβ
β

]
= µ3e−φ

[
1− c

(gsM)2
]
, (1.1)

where a, b are normal indices and α, β are tangent indices relative to the brane. References [9,
11] demanded that the anti-D3-curvature corrections should be small compared to the
leading order DBI action. In our opinion, (1.1) does not necessarily imply such a strong
constraint, as we now explain:.3

Note first that the curvature correction appears in the 4D scalar potential as a term
which has the same dependence on the Kahler moduli as the tree-level tension. This curvature
correction then does not alter the basic set-up of the LVS uplift. One can absorb the curvature
correction into a redefinition of the anti-D3-brane tension, effectively lowering the tension.

As a result, having a curvature correction of the same order of magnitude as the tree-
level tension is not dangerous to the LVS. In fact, it is helpful as the entire purpose of the
warped throat is anyway to lower the effective tension of the anti-D3-brane. Reducing the
tension through curvature corrections by an O(1) factor will then slightly reduce the amount
of warping needed at the tip of the throat to achieve a de Sitter uplift rather than a runaway.

The curvature correction will only become dangerous when (gsM)2 < c since, in this case,
the brane gives a negative contribution to the potential and is unable to provide an uplift.

Very intriguingly, if the tension can become negative in this manner, this opens up the
prospect for a new uplifting mechanism: we know that for very large gsM the anti-brane
tension is positive and essentially uncorrected by curvature terms. Let us assume that, for
small gsM , the anti-brane tension turns negative. Now, given a sufficiently dense discretuum
of the parameter gsM , which is likely due to the flux dependence of gs, it should be possible
to realize a positive anti-brane tension which is tuned to be hierarchically smaller than
its flat-space value. One may then use this mechanism to tune the uplifting term in the
potential to achieve a metastable vacuum rather than a runaway. There is no need to rely
on a deep warped throat. This mechanism could be used in KKLT or LVS. Crucially, the

2We believe that c should be 3× 1.9747 rather than 1.9747 as in [9, 11]. We obtain 1.9747 when setting
the first derivative of the warp factor h(τ) to zero after computing the Riemann tensor. However, we obtain
three times this result when setting the first derivative of the warp factor to zero only after the scalar
curvature-squared expressions have been computed. The difference arises as the scalar expressions contain
terms h′(τ)/τ , which give a finite contribution at the tip, τ → 0. By contrast, these terms are lost when
setting h′(τ) = 0 too early. A more detailed discussion of curvature computations follows in section 2 and
appendix A.

3Of course, curvature corrections may affect the compactification through effects independent of the
modified D3-tension in (1.1). We comment on such effects in section 2.5, but much more work is needed if
one really wants to gain confidence in a regime where the curvature is partially high.
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strong constraints associated with the large D3-tadpole contribution coming from a deep
warped throat are avoided.

One may object to this picture: if the α′2-corrections are sufficiently large to make the
anti-brane tension negative, surely one should also consider e.g. α′4-corrections and these
might contribute positively to the tension. It is then conceivable that, with all corrections
summed up, the anti-brane tension is positive for all gsM . While this may be hard to
determine, it is clear that there are two logical possibilities:

First, with all corrections taken into account the anti-D3-brane tension may always
remain positive. Corrections shifting the anti-brane tension as in (1.1) are then never a
cause for concern.

Second, the anti-brane tension may become negative for some value of gsM . Corrections
like those in (1.1) are then dangerous and one should demand that they remain sufficiently
small. However, it is sufficient to require that the corrections are small enough for the anti-
brane tension to remain positive, it is not necessary to demand that they are parametrically
small as done in [9, 11]. Moreover, in this case an alternate uplifting mechanism emerges
which does not rely on the deep warped throat but instead tunes the anti-brane potential
to be exponentially small because of curvature corrections.

All this being said, the anti-D3-brane does have decay channels. Their existence
threatens the optimistic story just developed. The best-understood decay channel arises
because p anti-D3-branes puff up into an NS5-brane with p units of 2-form flux, as described
by KPV [1]. This NS5-brane configuration represents a metastable local minimum for
p/M < 0.08. If, on the contrary, p/M > 0.08, the classical decay corresponding to the
annihilation of the anti-D3-branes against the background flux in the throat becomes
possible. Clearly, to establish or disprove our optimistic anti-D3-story sketched earlier, it is
necessary lift the discussion of α′2 corrections to the technical level of KPV and hence to
curvature corrections for the NS5-brane. This is the goal of our paper.

To see more clearly why α′2 corrections are crucial, let us recall some well-known
parametric estimates for KPV and the anti-D3-uplift: the warp factor of the throat is
∼ exp(−8πN/3gsM2), where N is the contribution of the throat to the total D3 tadpole.
Hence, gsM2 is a key phenomenological quantity and it may be constrained as follows:
first, p/M < 0.08 together with p ≥ 1 imply M ≥ 12. Second, for supergravity control
the radius of the S3 at the tip of the throat, which scales like RS3 ∼ √gsM , should be
large. Implementing this through the condition gsM � 1 one finds gsM2 & 12. However,
this argument is dubious in that for hierarchical supergravity control one must demand
gsM � 1, not just gsM & 1. If one wishes to use a bound of the form gsM & O(1),
one must compute the actual numerical coefficient for this bound and this is where α′2
corrections become important. Depending on the precise coefficients, the final bound can
become either significantly stronger or weaker than gsM

2 & 12. Jumping ahead, let us
quote some of our results: the conservative requirement of a metastable NS5 configuration
in the curvature-corrected analysis suggests gsM & 20. It turns out that in this situation
the choice p = 2 is optimal, which together with gs < 1 and p/M < 0.08 implies M ≥ 25
and gsM2 & 500. As we shall see, the actual impact of α′2 corrections is more intricate,
but the above should suffice to provide a feeling for their importance.
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Most optimistically, one may only demand that the barrier preventing the decay of the
curvature-corrected NS5 is at positive potential. This leads to gsM & 4 and hence, using
also p = 1, p/M = 0.08 and M = 12, it implies gsM2 & 48.

While the leading-order KPV analysis suggests gsM2 > 12, it has been proposed that
avoiding a conifold instability for an anti-brane in the Klebanov-Strassler throat requires
gsM

2 > 46 [12–16]. Recently, the existence of this instability has been questioned [17].
However, in light of our results it appears that the curvature-corrected KPV stability
bound is much stronger than previously thought, possibly dominating any potential conifold
instability issue.

Instead of considering the Klebanov-Strassler throat for the uplift one may consider
the S-dual set-up [18] where K units of H3-flux are present on the S3 cycle in the throat.
Now the anti-D3-branes puff up into a D5-brane at the tip.4 We expect our analysis to go
through analogously in this set-up, with the difference that in Klebanov-Strassler the radius
of the tip is set by

√
gsM while in the S-dual the radius is set by

√
K. We will consider

KPV rather than its S-dual as this is the more commonly discussed set-up, but the S-dual
has the advantage that we are more certain about curvature corrections.

Finally, it is a key question whether our novel fine-tuned uplifting mechanism will still
work, even after lifting the simplified anti-D3 curvature correction analysis to the level of
the NS5-brane. A sufficient condition would be that the maximum of the KPV potential is
lowered to zero value while remaining in the calculationally controlled regime. Our analysis
of expected α′2 terms does indeed show such a behaviour of the potential barrier. But
this is clearly insufficient to claim success. From the perspective the curvature-corrected
NS5-brane analysis, the novel fine-tuned uplifing mechanism remains only an intriguing
possibility. To establish this proposal, much more work is required.

An essential shortcoming of our analysis is that we have only taken into account the
pure curvature corrections, which are known for the D5-brane case and which we have
adapted to the NS5-brane. We expect further corrections involving flux which may be
equally important and which are expected to change crucial numerical coefficients in our
results. While we believe that our parametric results in terms of these numerical coefficients
are robust, a complete analysis with all terms has to be performed in future work.

2 Curvature corrections to KPV

2.1 Reviewing KPV

We start by briefly reviewing the set-up of KPV [1]. For this and the computation of the
curvature corrections to the NS5-brane, we consider the Klebanov-Strassler throat with
metric [19, 20]

ds2 = h−1/2(τ)dxµdxµ + h1/2(τ)ds26 , (2.1)

4We thank Thomas Van Riet for making us aware of this interesting set-up.
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where dxµdxµ is the metric of 4D Minkowski space and ds26 the metric of the deformed
conifold:

ds26 = K(τ)
2

[
dτ2+(g5)2

3K3(τ) +cosh2(τ/2)((g3)2+(g4)2)+sinh2(τ/2)((g1)2+(g2)2)
]
. (2.2)

Here, the one-forms g1...5 (see e.g. [20]) parametrize the five directions of the T 1,1, which
can be viewed as an S2 fibration over S3, and

K(τ) = (sinh(2τ)− 2τ)1/3
21/3 sinh(τ)

. (2.3)

The warp factor is given by

h(τ) =
(
gsMα′

)
22/3I(τ) , I(τ) =

∫ ∞

τ
dx x coth(x)− 1

sinh2(x)
(sinh(2x)− 2x)1/3 . (2.4)

Here M counts the units of F3-flux on the A-cycle of the KS throat.
If p anti-D3-branes are placed at the tip of this throat, they can puff up into an

NS5-brane with p units of worldvolume flux. This NS5-brane wraps an S2 inside the S3

whose metric can be written as

R2
S3 dΩ2

3 = R2
S3

(
dψ2 + sin2(ψ) dΩ2

2
)
, (2.5)

where5 RS3 = b0
√
gsM and b20 = 2a1/2

0 /61/3 ≈ 0.93266 with a0 = I(0) ≈ 0.71805.
As realized by KPV [1], this opens up a potential decay channel: the NS5 can slip

over the equator, with its anti-D3 charge annihilating against 3-form flux. Eventually,
the NS5 turns into M − p D3-branes and supersymmetry is restored. The key quantity
determining whether this decay process can take place is p/M : for small enough values of
p/M , a meta-stable minimum below the equator exists.

KPV quantify this by deriving the potential V (ψ) of the NS5 at leading order in α′
(cf. figure 1):

VKPV(ψ) = 4π2pµ5
gs

+ 4πµ5M

gs



√

b40 sin4(ψ) +
(
p
π

M
− ψ + 1

2 sin(2ψ)
)2
− ψ + 1

2 sin(2ψ)


 .

(2.6)
In the small ψ expansion of (2.6), the meta-stable minimum sits at ψmin ≈ 2πp/(b40M). It
disappears when p/M & 0.08 ≡ (p/M)∗. At this value, the minimum and the maximum
merge to form an inflection point.

The radius of the NS5 at the minimum is given by RNS5 ≈ 2π(p/M)
√
gsM/b30. By

increasing gsM at fixed value of p/M , this radius can be made large in string units. Note,
however, that this is not the same as making M large while keeping p fixed: in this limit,
RNS5 approaches the string length such that the solution can not be trusted.

5We work in units where α′ = 1 except where we explicitly display α′ for clarity.
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Figure 1. The potential VKPV(ψ) (suitably normalized) for different values of p/M .

Let us make two comments concerning this regime of small p/M at large S3 radius
∼ √gsM : first, this regime is of great interest since, if one uses the KS throat to uplift an
AdS vacuum of type IIB supergravity, the D3 tension is warped down by exp(−8πN/3gsM2).
Here N is the total D3 charge of the throat. Hence, to have large warping without excessive
N , one wants M not to become too large. As a result, one wants p to be as small as possible.

Second, this regime is under partial control even though the NS5 radius at the minimum
is small. Namely, the maximum of VKPV(ψ) still corresponds to large NS5 radii and is hence
trustworthy. In fact, as can be seen in figure 1, independently of the value of p/M , the
position of the maximum is quite stable and only increases slightly as p/M decreases. The
minimal value of the maximum ψ∗max (corresponding also to the inflection point) can be
approximated by ψ∗max = ψmin|(p/M)∗ ≈ 0.58. For p/M →∞ the position of the maximum
approaches ψmax ≈ 1.154. Thus, we can be sure of the maximum and hence of the existence
of a minimum to the left of it, even if the minimum itself can not be controlled.

Since our discussion will remain at the probe level, we briefly comment on the regime of
validity of the probe approximation: at the very least, the radius Rback of the gravitational
backreaction of any brane we consider should be small compared to the S3 radius ∼ √gsMα′.
The condition for the metric deformation near a k-dimensional brane (a ‘(k−1)-brane’) in d
dimensions to be small reads Tk/Md−2

10 Rd−k−2 � O(1), where Tk is the tension, 1/Md−2
10 the

coupling constant, and R the distance to the brane. Solving this for R in the case of p anti-
D3-branes gives R2

back ∼
√
pgsα

′ and hence the condition for backreaction to be small reads

√
pgs � gsM or p

M
� gsM . (2.7)

This can be compatible with large p/M . Moreover, one can perform the same analysis for
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the backreaction of an NS5-brane with p units of worldvolume gauge flux. One reads off
from (2.6) that the tension of such a fluxed NS5 at ψ ∼ O(1) and p�M is ∼ (p/g2

sM)α′−3.
This leads to the same bound (2.7) on the ratio p/M .

2.2 Curvature corrections
The KPV analysis of section 2.1 can be substantially affected by α′ corrections if the
curvature at the tip of the throat is not very small. As discussed below, such corrections are
suppressed by 1/R4

S3 ∼ 1/(gsM)2, which for phenomenological reasons can not be taken to
zero with arbitrary precision.

Let us start by recalling the curvature corrections to the string-frame DBI action of a
Dp-brane [21, 22]. For a constant dilaton, the Dp-brane DBI action with the α′2 curvature
corrections included at leading order in gs reads

Scurv, Dp = −µp
gs

∫

Mp+1
dp+1ξ

√
− det (gµν + Fµν)

(
1− (2π)4α′ 2

24 · 32π2

[
(RT )αβγδ(RT )αβγδ

− 2(RT )αβ(RT )αβ − (RN )γδab(RN )γδab + 2RabR
ab
])

,

(2.8)

where µp is the brane tension, and Fµν = Bµν + 2πα′Fµν , with F the worldvolume field
strength. The detailed definitions of the various curvature-squared terms and their indices
are given in appendix A.

We could now consider S-dualized Klebanov-Strassler (SDKS) [18], a warped throat
geometry in IIB string theory where one has K units of H3-flux on the S3 which remains of
finite size at the tip of the throat. The p anti-D3-branes can then puff up into a D5-brane
wrapping an S2 on the S3 at the tip of the throat, entirely analogously to how in KPV the
anti-D3-branes puff up into an NS5. We shall instead discuss our results in terms of the
KPV set-up in the KS throat. As we will see, we expect the leading curvature corrections
to be of the same form and at the same order in gs compared to the leading term in the
DBI action for both the D5-brane and the NS5-brane. We then expect our analysis to be
analogous for either the NS5-brane in KPV or the D5-brane in the S-dual set-up, with the
difference that in the Klebanov-Strassler throat the tip radius is set by

√
gsM while in the

S-dual it is set by
√
K.

What are the curvature corrections on the NS5-brane? One may obtain curvature
corrections by S-dualizing the D5-brane action from (2.8), i.e. replacing gs → 1/gs. This
yields, after Weyl rescaling gµν → gµν/gs,

Scurv, NS5 S-duality

=−µ5
g2
s

∫

M6
d6ξ

√
−det(gµν+2πgsF2µν−gsC2µν)

(
1−g2

s

(2π)4α′2
24·32π2

×
[
(RT )αβγδ(RT )αβγδ−2(RT )αβ(RT )αβ−(RN )γδab(RN )γδab+2RabR

ab
])

.

(2.9)

We see that these curvature corrections are g2
s suppressed compared to the leading-order

DBI action, while the D-brane curvature terms were leading order in gs. One expects such
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g2
s corrections for gravitons from loop corrections in the worldvolume field theory on the
NS5-brane [23]. By contrast, the curvature corrections on the D5-brane arise at the disk
level and are enhanced by a factor 1/gs compared to 1-loop expectations. This leads to a
conundrum, as we explain in the two following paragraphs:

Consider a fivebrane (either D5 or NS5) with geometry R1,3 × S2 and p units of
worldvolume flux on the 2-sphere. One can consider this brane either in flat 10D space
or in the KS throat with the NS5-brane wrapping an S2 in the A-cycle or the D5-brane
wrapping an S2 in the B-cycle. The analysis is the same in both scenarios as the curvature
of the background becomes negligible relative to that of the S2 once the latter is taken to
be small. Now consider shrinking the S2 to zero size. The resulting object is a threebrane
with the same quantum numbers as p (anti)-D3-branes. We then assume in line with KPV
that this object must be a stack of p anti-D3-branes.

Next, consider our fivebrane action as we shrink the S2 radius RS2 to zero size. We
look first at the DBI action at leading order in α′. As RS2 → 0, one has

∫
S2
√
g −B2 → 0

and
∫
S2
√
g − gsC2 → 0, while one always has (2π/gs)

∫
S2 F2 = 4π2p/gs for the D5 and

(2π/g2
s)
∫
S2 gsF2 = 4π2p/gs for the NS5-brane. We then see that for both fivebranes this

limit reproduces the leading order action of anti-D3-branes, (2.8). Now consider the α′2
terms on the fivebranes as one sends RS2 → 0. Clearly for the D5-brane, (2.8), one
reproduces the gs scaling of the R2 terms for the anti-D3-branes. That the precise index
structure for the R2 terms of the D5 is such that it matches onto the result for a stack of p
anti-D3-branes is something we assume for consistency of the theory. We will comment more
on this in section 2.6. However, when we perform the RS2 → 0 analysis for the NS5-brane,
(2.9), we see that the resulting α′2 action is g2

s suppressed compared to the result required
for the anti-D3-branes. Given that by assumption we must reproduce p anti-D3-branes
from the NS5-brane when sending RS2 → 0, we conclude that the NS5-brane action must
also have R2 terms at leading order in gs. Which index structure should this leading term
have? Since we asserted that for the D5-brane this index structure should be given by the
α′2 term of (2.8) and the limit RS2 → 0 operates entirely analogously for the NS5 and
D5-brane, we propose that in order to obtain the correct anti-D3-brane limit the leading
order in gs curvature correction for the NS5-brane should have the same index structure as
that for the D5-brane. We then have

Scurv, NS5

= −µ5
g2
s

∫

M6
d6ξ

√
− det (gµν + 2πgsF2µν − gsC2µν)

(
1− (2π)4α′ 2

24 · 32π2 (1 + g2
s)

×
[
(RT )αβγδ(RT )αβγδ − 2(RT )αβ(RT )αβ − (RN )γδab(RN )γδab + 2RabR

ab
]

+O(gs)
)
.

(2.10)

In what follows we shall only consider this NS5-brane action at leading order in gs. Note that
after S-duality this leading order term should contribute to the (unknown) g2

s suppressed,
2-loop term for the D5-brane. Such a term is indeed expected to arise for gravitons from field
theory loops in an effective field theory on the D5-brane worldvolume [23], analogously to
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how we also expected such g2
s suppressed corrections to arise on the NS5-brane worldvolume.

This provides a further argument that such a leading order in gs curvature term on the
NS5-brane should exist. We finally note that a 1-loop R2 term is also expected to be present
on the D5. It would dualize to an O(gs) R2 on the NS5, as displayed at the very end
of (2.10) above.

2.3 Curvature-corrected KPV potential and conservative bounds on uplifts

To find the contribution of the NS5-brane to the 4d potential, we evaluate the curvature
correction in (2.10) as explained in more detail in appendix A and use the values I(0) = a0,
I ′(0) = 0, and I ′′(0) = −22/3/34/3. Keeping only the leading order in gs, one then has to
integrate these terms over the S2 wrapped by the NS5 which yields (this integral is also
calculated in [1])

Vcurv(ψ) = − 1
(gsM)2

(
c1 + 2c2 cot2 ψ + c2 cot4 ψ

) µ5
g2
s

∫

S2

√
g + 2πgsF

= − 1
(gsM)2

(
c1 + 2c2 cot2 ψ + c2 cot4 ψ

) 4πµ5M

gs

×
√

b40 sin4(ψ) +
(
p
π

M
− ψ + 1

2 sin(2ψ)
)2
,

(2.11)

where c1 ≈ 8.825 and c2 ≈ 1.891. The analysis of KPV should now be redone including (2.11),
i.e. by considering

Vtot(ψ) = VKPV(ψ) + Vcurv(ψ) . (2.12)

The task is to determine how the KPV bound gsM2 > 12 (which follows from p/M ≥ 0.08
together with gsM > 1) is modified.

In the analysis of KPV, the only parameter determining whether a metastable minimum
exists is the combination p/M . By including the correction (2.11), there are now two
parameters which determine the shape of the potential Vtot(ψ): p/M and gsM . In addition,
Vtot(ψ) contains an overall factor 1/g2

s which sets the overall magnitude of the potential
but does not affect its shape.6

The potential Vtot(ψ) is plotted for some sample values of p/M and gsM in figure 2.
Besides the fact that the original and corrected KPV potential may or may not have a
metastable minimum, the corrected potential has a very different appearance when compared
to the original KPV result in figure 1. The most notable difference to KPV is that Vtot(ψ)
always has a maximum and always diverges to −∞ as ψ → 0, π. These features are due
to the extrinsic curvature corrections, which are dominant when the S2 wrapped by the
NS5-brane shrinks to a small sphere as they introduce terms ∼ cot2 ψ and ∼ cot4 ψ in the
potential. Not to overrate these features, it is crucial to be aware of the limitations of
our analysis.

6Interestingly, the corrections to KPV due to conifold dynamics also only depends only on p/M and
gsM [16], suggesting that there may be a convenient way to deal with corrections to KPV due to conifold
dynamics and due to curvature simultaneously. We thank Vincent Van Hemelryck for making us aware of
this point.
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Figure 2. The potential Vtot = VKPV(ψ) + Vcurv(ψ) for different values of p/M and gsM in units
µ5 = 1. For each set of values of gsM , gs is chosen such that the potential is suitably normalized.

We have only considered α′2 corrections. As the NS5-brane shrinks, corrections at
higher orders in α′ become increasingly important. Because of this, we can only trust our
analysis in the central region of the potential. Further, even at order α′2 we have only
accounted for those pure curvature corrections which we know, ignoring completely the
effect of flux at order α′2. We expect that these additional corrections prevent any divergent
behaviour in the potential. We also assume that, after taking all corrections at all orders in
α′ into account the potential at ψ = 0 matches the (all-orders corrected) potential for p
nonabelian anti-D3-branes. Similarly, the potential at ψ = π should match the (all-orders
corrected) potential for M − p nonabelian D3-branes.7

At intermediate values of ψ, the all-orders-corrected potential may or may not feature
a local maximum and metastable minimum depending on the parameters. Note that unlike
for VKPV, the potential at ψ = π need not be zero. This is due to the α′ terms in the action
of the M − p D3-branes left over in the throat after the p anti-branes have annihilated
against flux.

In figure 3 we show for which ranges of p/M and gsM the potential Vtot(ψ) has a
metastable minimum. The tip of this shark fin region is at p/M = 0.0826 and gsM = 20.363.
The upper horizontal bound is a slightly weakened version of the KPV bound p/M < 0.08.
This weakening is expected since Vcurv always possesses a maximum that facilitates the
existence of the local KPV minimum at smaller values of ψ. The horizontal line asymptotes
to agree with KPV precisely as gsM grows.

The second, diagonal line bounding the shark fin from below corresponds to the α′2
curvature corrections being significant enough to destroy the metastable minimum through

7When saying ‘all orders’ we mean including non-perturbative effects.
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(a) (b)

Figure 3. The yellow area shows the region in the (gsM,p/M)-parameter space where a meta-stable
minimum exists. (a) is a log-log-plot for a wide range of parameters and (b) zooms into the region
of smallest allowed values of gsM .

a runway to ψ = 0.8 Crucially, the loss of a metastable minimum at order α′2 does in this
case not imply that the fully corrected potential has no metastable minimum. It is just that
this minimum may be outside the controlled regime. This may also be the reason why the
bound on gsM is very large, gsM > 20. For the metastable minimum at ψmin ∼

√
gsMp/M

to appear in the controlled regime, it needs to be pushed to large values of ψ which requires
large gsM . In view of the uplift to dS this is problematic, which can be seen as follows:
combined with the perturbativity condition gs < 1, the bound gsM > 20 implies M > 20.
For p = 1, i.e. p/M > 0.05, this forces us to even higher gsM , as can be clearly seen from
figure 3. In fact, to stay within the shark fin region, one has to use (at least) p = 2, leading
to M = 25. This appears to be the optimal choice under the above constraints. It implies
gsM

2 & 500, which requires an enormous tadpole in the LVS as we shall see in section 3.
Note that from this analysis of figure 3, in order for a metastable minimum to exist in

the controlled regime where gs < 1 one requires at least p ≥ 2 anti-D3-branes. Of course
additional field strength corrections can alter this result, but assuming this does not occur,
the following conclusion is tempting: if p = 1 the metastable minimum, if one exists, will
be at small or zero ψ where the radius of the NS5-brane is string-scale and all orders in
α′ corrections are important. This object might be thought of as not really an NS5-brane
but the single anti-D3-brane, at most smeared out over its Compton wavelength. A single
anti-D3-brane then would not polarize into an NS5-brane. This is in line with the logic when
one considers the perspective of the nonabelian DBI action of a stack of anti-D3-branes,

8In the interval gsM ∈ [20.363, 100], this part of the bound can be approximated by

p

M
(gsM) = 0.0313227 + 2.73449

gsM
− 72.7164

(gsM)2 + 1182.92
(gsM)3 −

8223.59
(gsM)4 +O

(
(gsM)−5) .
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where the nonabelianity (and hence the presence of more than one anti-brane) is crucial for
the Myers effect [24] to occur.

2.4 Optimistic bounds on uplifts

We have seen that the α′2-corrected potential (2.12) always has a maximum, but it has
a minimum only in the controlled regime of large gsM . However, for the purpose of
constructing de Sitter vacua, the crucial question is whether our potential Vtot can provide
an uplift. It is not necessary that the corresponding local minimum is in the controlled
regime at large ψ. Indeed, let us assume that we have a local minimum at small ψ, capable
of uplifting. The radius of the S2 wrapped by the NS5-brane may then be too small to
control the relevant Vtot against even higher α′ corrections. A necessary but not sufficient
condition for such an uplift to exist is the presence of a local maximum with a positive
potential energy at larger ψ. We will therefore consider the following very blunt criterion:
we demand that Vtot has to be positive at its maximum in order to have any chance of
providing an uplift. Clearly when the potential is always negative it cannot uplift. As the
maximum in the tree level potential VKPV is always at a fairly central value of ψ it seems
reasonable that for part of the parameter space this will also be true for Vtot and we can
neglect even higher order corrections in α′ so long as the radius of the tip of the warped
throat is not very small in string units. Even then, our criterion can be questioned as we
have not accounted for α′2 flux corrections. Still, while the concrete constraints may change
in a more complete analysis, our limited analysis should provide an estimate of the scale at
which α′2 corrections affect KPV.

The region in p/M and gsM parameter space where the maximum is positive is shown
in figure 4. One sees that there are two distinct asymptotic regimes: when p/M � 0.1 the
bound asymptotes towards gsM > 5.238 and for p/M � 0.1 towards gsM > 2.086. When
p/M ∼ 0.1 there is an interpolating intermediate regime. This clearly suggests that the
nature of the maximum of the potential is different in the two asymptotic regimes.

Let us first consider the regime p/M � 0.1. It is straightforward to evaluate Vtot(ψ) at
p/M = 0. One can convince oneself that the potential has a maximum at ψ = O(1), where
the NS5-brane radius is comparable to the radius of the A-cycle S3. The potential drops
sharply away from this maximum. Clearly, the maximum is trustworthy in this regime if
the A-cycle radius is sufficiently large.

Now let us consider p/M � 0.1. We can expand Vtot(ψ) at large p/M and find

Vtot(ψ) = 4π2

g3
sM

p

M

(
2(gsM)2 − c1 − 2c2 cot2(ψ)− c2 cot4(ψ)

)
+O

((
p

M

)0
)
. (2.13)

We see that the leading p/M term in this expansion provides a table-shape potential which
is essentially flat until ψ gets close enough to the north or south pole such that the cot2(ψ)
term begins to compete with the constant ∼ (gsM)2 term. Near ψ = 0, this happens when
ψ ∼ 1/gsM . As a result, the NS5-brane radius is RNS5 ∼

√
gsM sin(ψ) ∼ 1/

√
gsM . We see

that in this region the NS5-brane radius is stringy or sub-stringy in size and hence out of
control. The (p/M)0 correction adds a downward slope from ψ = 0 to ψ = π. As a result,
at large p/M the potential is essentially flat in the entire controlled regime, with a slight
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Figure 4. The space of curvature-corrected KPV setups, parameterized by gsM and p/M . The
regions where the maximum of the potential is at positive/negative value are coloured yellow/blue.
For p/M � 0.1 the boundary line asymptotes towards gsM → 5.238 and for p/M � 0.1 towards
gsM → 2.086. The red line is at p/M = 0.08, approximately above which the maximum is at stringy
or substringy radii for the NS5-brane and hence not trustworthy.

downward slope. There is a maximum at the left end of the plateau, near ψ = 0, which
corresponds to stringy or substringy radii for the NS5-brane and can hence not be trusted.9

Somewhere in the intermediate regime p/M ∼ 0.1 we then lose confidence in our
maximum. This transition in where the maximum occurs can already be seen in figure 2:
as gsM falls, the maximum coming from the curvature corrections grows, erasing the KPV
local minimum. Moreover, we see that depending on whether we make p/M small or large,
this maximum emerges at either larger or smaller ψ. To make this even more apparent, we
have plotted the potential for a wider range of p/M in figure 5. Here we chose gsM = 15,
a value which is too small for a local minimum to exist.10 We still clearly see that, at
p/M ≈ 0.08, a transition in the location of the maximum occurs. Once the maximum has
shifted to the left, we lose trust in it since it is now very close to the region where the
curvature corrections diverge.

We can then also display the regions where a controlled/uncontrolled maximum exists as
well as the region with a local minimum of Vtot in a single plot, cf. figure 6. We recall that a
controlled maximum implies the presence of a local, SUSY-breaking minimum at smaller ψ.

9We recall that according to (2.7) throughout this whole paragraph, even at ψ ∼ O(1), the ratio p/M is
restricted by p/M � gsM .

10Note that according to (2.7) the probe approximation is only borderline valid for the blue curve. But as
we are only trying to visualize the transition from small to large p/M , we disregard this issue.
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Figure 5. A plot of Vtot(ψ) for different p/M showing the transition between the large and small
p/M regime. The potentials at different p/M have been rescaled by choosing gs to make the
comparison of their shape clearer.

Figure 6. An exclusion plot of the existence of minima and maxima in Vtot(ψ). In the blue region
the potential is negative everywhere. In the red region, a positive maximum exists, but it is in an
uncontrolled regime. In the yellow region a positive maximum exists in a controlled regime. In the
green region a metastable uplifting minimum exists.
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2.5 Uplifting without deep throats?
When ψ is sufficiently small, ψ ∼ 1/

√
gsM , the NS5-brane radius RNS5 ∼

√
gsM sinψ

becomes of stringy size. Then even higher order α′ corrections become important and we
can no longer trust our potential Vtot(ψ). Despite this, we can still make some reasonable
estimates of the fully corrected potential at small ψ. It is reasonable to assume that at
ψ = 0 the potential matches the potential for p anti-D3-branes. Up to order α′2 in curvature
corrections this is given by

pVD3 = pµ3e−φ
[
1− (4π2α′)2

384π2 R α
aαb R

a bβ
β

]
= pµ3e−φ

[
1− c

(gsM)2
]
, (2.14)

with c = 5.9241. If the fully corrected potential has a maximum but no metastable minimum
at intermediate ψ where Vtot(ψ) can be trusted and is set to a finite value at ψ = 0 given
by (2.14) then the fully corrected potential must have a metastable minimum at ψ small
(or 0). It then seems a reasonable estimate that the potential at this minimum is given
roughly by (2.14) plus small corrections.11

It seems that as α′2 curvature corrections contribute negatively to the potential, they
can turn the potential negative. This allows for a novel but speculative alternative uplifting
mechanism. Suppose that for some parameters the fully corrected potential has a metastable
minimum with a positive vacuum energy, while for different parameters (with increased
curvature corrections) there exists a metastable minimum with a negative vacuum energy.
Then by tuning gs it should be possible to obtain a metastable minimum with a positive
but hierarchically small vacuum energy by using the tension-lowering effect of curvature
corrections, without needing a large throat with hierarchical warping.

To obtain a hierarchically small uplift, one requires a finetuning of gs. However, due to
the flux dependence of gs and the density of the string theory flux landscape we believe
this finetuning to be no worse than e.g. the finetuning in W0 required to get a cosmological
constant of real world scale.

An issue in estimating exactly when this uplifting mechanism occurs is that when
in (2.14) the α′2 corrections are important enough to compete with the leading term, one
expects even higher order α′ corrections to also be important.

One may take this logic one step further and forget about our warped throat set-up:
consider an AdS compactification with small cycles, e.g. the models of [26, 27], and place
an anti-D3-brane. The anti-D3-brane will be drawn to the small cycle as this lowers their
tension due to curvature corrections. If many models with many such small cycles exist, it
may by chance happen that for some of them curvature corrections make the anti-brane
tension positive but very small such that it is suitable for an uplift. Of course, all this is
very speculative and it takes one to (and possibly beyond) the edge of a controlled regime.

11This assumes that the potential rolls down a small amount between ψ = 0 and the metastable minimum
at small ψ as happens in the original KPV set-up shown in figure 1. While this seems reasonable, this
need not be the case as we are ignorant of the effects of additional corrections. It is e.g. possible that at
p = 1 there is a barrier between ψ = 0 and a metastable minimum at small ψ and this from the NS5-brane
perspective prevents the anti-D3-brane from puffing up classically into an NS5-brane even though both states
have the same quantum numbers and transitions between them should be possible, though now heavily
suppressed due to quantum tunnelling, due to the no global symmetries conjecture as discussed in [25].
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Let us try to address some of the most immediate concerns which one might have with
the control of compactifications relying on our new uplifting mechanism.

Using this novel uplifting mechanism in the LVS, one may worry that the necessary
tuning of gs will affect the LVS AdS minimum in such a way that |VAdS| ≈ |Vuplift| can not
be satisfied at large volume. However, we see from (1.1) that near gs ∼

√
c/M the potential

Vuplift(gs) is a growing function, changing sign at
√
c/M . By contrast, VAdS ∼ −g1/2

s e−3/gs

asymptotes to zero at an exponential rate. This implies that the sum of these functions
will always go through zero for some value of g∗s just slightly above

√
c/M . Thus, the value

of g∗s can be lowered by choosing a larger M , such that a large CY volume appears to be
easy to achieve.

Furthermore, one might worry that string-scale curvature at the tip implies large
curvature also at the mouth of the throat, affecting the rest of the CY and leading to
corrections to the Kahler potential. Parametrically, the radius at the tip is given by
RS3 ∼ √gsM and the radius at the mouth by Rmouth ∼ (gsN + (gsM)2)1/4. Recalling that
N/gsM

2 is the exponent governing the warp factor, we have R4
S3/R4

mouth ≈ gsM2/N � 1
in the regime of strong warping. At moderate warping, the suppression of the curvature at
the mouth is of course limited. Nevertheless, it is parametrically consistent to assume that
only the curvature at the tip is string scale. This goes together the general expectation
that localized effects in a CY decouple from the bulk.12

There is also the potential danger of loop corrections coming from fields propagating
in the throat. Since the geometry near the tip is string scale, a 10d EFT analysis is
not reliable. The leading closed-string loop diagram contributing to the potential of the
anti-D3-brane is a torus with two vertex insertions, one coupling to the anti-D3-brane, the
other corresponding to the graviton background. Correspondingly, at the open-string level
there is the annulus with a graviton insertion. Compared to the tree level α′ corrections,
these diagrams are suppressed by g2

s and gs. Hence, in the regime gs � 1 and gsM ∼ O(1),
loop corrections are smaller than the curvature corrections computed above.

Another potential concern is that, as the A-cycle shrinks, branes wrapped on it become
light. In our context, such branes are relevant if they additionally fill out from zero to
four of the non-compact dimensions. In type IIB, only D3- and D5/NS5-branes meet these
criteria. They correspond to particles (cf. the discussion in [30]) and domain walls in 4d.
Given a string-scale A-cycle, their mass or tension is small — set by the warped-down string
scale. But they are in general not mass- or tensionless, so the EFT does not break down.
Thus, while they may play an interesting phenomenological role, this does not directly
affect the minimum of the potential and does not threaten the moduli stabilization scenario.
A key exception are NS5s since the corresponding domain walls mediate the decay of the
SUSY-breaking anti-D3 branes. This is, of course, the main subject of the present paper.

Finally, while the effects discussed in the last three paragraphs can all contribute terms
to the Kahler potential which mix Kahler and complex-structure moduli, we do not expect
this to be deadly for the proposed scenario. First, the warped-down string scale is higher
than the Kahler-moduli mass scale, so complex structure moduli may be integrated out first.

12This sequestering is studied for the KS throat in [28, 29].
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Second, since the KS throat does not contain local 2- or 4-cycles, its geometry measured in
string units is insensitive to Kahler deformations of the CY. Thus, we expect α′ corrections
to the Kahler moduli Kahler metric not to be enhanced by the high curvature present in
the throat region.

2.6 Open issues

In this paper we have given only an estimate of how α′2-corrections affect the KPV uplift.
Let us briefly outline what we believe are the main points which must be addressed in a
research program to fully understand α′-corrections to KPV.

• We have assumed that the α′2 curvature corrections for the NS5-brane in KPV are
given by the natural generalization from the known curvature terms on the D5-brane.
If instead we consider the S-dualized KS set-up [18], we can be certain that we have
included all pure curvature corrections in our analysis. It is important to explicitly
derive the α′2 curvature terms for the NS5-brane to be sure that they exist and to
compute their exact form. Some discussion of curvature terms on NS5-branes not
in the DBI-action but related to anomaly cancellation has appeared in [31–34]. For
D-branes, at order α′2, it is known that besides the pure curvature corrections there
also exist pure field strength and field strength-curvature mixing terms in the DBI
action and some of these have been computed in [35–39]. One would expect that by
S-duality analogous terms exist for the NS5-brane. It would be crucial to derive these
and compute their impact on the KPV potential.

• Given the danger posed by the α′2-corrections, one should convince oneself that at
ψ where we claim to trust the α′2 corrected potential Vtot(ψ), even higher order α′
corrections are sufficiently small and can be neglected. Particularly worrying is that,
when the number of anti-branes is one or a fixed small number, the leading order
analysis of KPV seems to indicate that the metastable minimum is always such that
the NS5-brane wraps a string-scale cycle, making it crucial to know the α′-corrections
to all orders to know the value of the potential at the metastable minimum (and
particularly whether this value is positive). Note that there is some indication that
backreaction effects can push the minimum to larger ψ [40].

• Understanding the backreaction of the NS5-brane has played a crucial role in discus-
sions of KPV [40–66]. Our discussion of α′2 effects has remained at a probe level.
It is crucial to understand the interplay between backreaction and higher-derivative
effects.

• It would be valuable to understand α′2-effects from the perspective of a stack of
nonabelian anti-D3-branes. This calculation should provide an α′2 corrected value
of the position of the metastable minimum. Of particular interest is the following
issue: as we saw, terms related to the extrinsic curvature play a crucial role in the
NS5-brane potential. As the anti-D3-branes are pointlike in the internal dimensions,
they have no extrinsic curvature. How then do NS5 extrinsic curvature effects manifest
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from the perspective of a stack of nonabelian anti-D3-branes? Further, even for the
intrinsic curvature, the tensor structure of the terms for the NS5-brane does not
match that for the anti-D3-branes. Taking into account all α′2-corrections on the NS5
including pure flux and mixed curvature-flux corrections, we propose the following
resolution: for nonabelian brane actions, there is no clear distinction between higher
terms in commutators and higher derivative terms [24, 67, 68]. Those higher derivative
curvature terms of the abelian NS5-brane which do not match on to higher derivative
terms of the anti-D3-brane stack we then propose match higher commutator terms
in the nonabelian theory. It should be possible to check this by performing the
nonabelian analysis of KPV [1] at higher order in the commutators. As an example
where higher commutator terms can be reinterpreted as higher curvature terms, it
is known that a stack of flat nonabelian T-branes can be reinterpreted as a curved
abelian brane with an R2 curvature term in the worldvolume action [69]. As usual, it
is unclear how or even if a single anti-D3-brane puffs up into an NS5-brane.

• It would be interesting to understand impact of the 1/(gsM)2-curvature corrections
on the vacua at ψ = 0 and ψ = π from the perspective of the holographic dual field
theory, especially as gsM is the ’t Hooft coupling in the dual Klebanov-Strassler field
theory [19] and the highly curved regime is precisely the weakly coupled holographic
field theory regime. An issue here is that with anti-D3-branes present the existence and
precise location of the nonsupersymmetric metastable field theory vacuum correspond-
ing to the presence of anti-branes, as proposed in KPV [1], remains to our knowledge
poorly understood.13 In fact, if one would be able to establish the metastable anti-
brane vacuum holographically one would be confident that the metastable vacuum
indeed exists. The lack of such a holographic field theory understanding of the
metastable anti-brane vacuum is thus one of the factors leading to the backreaction
discussion [41]. However, our curvature corrections also affect the situation where no
anti-D3-branes are present, the situation described from a holographic field theory
perspective in Section 2.3 of KPV [72]. In this case, the dual field theory has a
baryonic branch, corresponding to a gravity solution with only flux, and a mesonic
branch, corresponding to a gravity solution with M D3-branes at the tip of the warped
throat [1, 19, 73]. Both branches are supersymmetric, however their moduli spaces are
disconnected. There is then a supersymmetric domain wall interpolating between the
baryonic and mesonic vacuum, corresponding to the NS5-brane wrapping an S2 being
pulled over the A-cycle S3 from ψ = 0 to ψ = π in the gravity picture. According
to our curvature-correction computations, when p = 0, the NS5-brane potential is
everywhere negative as soon as gsM < 5.238 (cf. figure 4). This seems surprising given
that for the flux-only (baryonic) supersymmetric vacuum there are no branes present
to provide a negative curvature contribution to the potential. It is possible that
additional corrections render the potential positive, however it could also be that for
the flux-only vacuum α′ curvature corrections in the bulk supergravity action render

13See e.g. [70–72] for work on the field theory perspective of such a metastable vacuum under the
assumption that it exists.
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the potential negative e.g. as discussed in [9] the bulk R4 term of [74] can be corrected
by warping and hence lead to terms involving gsM . It would then be worthwhile to
understand this in the holographic gauge theory at gsM � 1 where our (uncontrolled)
calculation claims that the potential should everywhere be very negative.

We intend to deal with some of these important points in a detailed analysis in
future work.

3 Implications for model-building

In this section we want to collect some interesting phenomenological applications of the
results of section 2.

So far we have been concerned with the effects of α′2-curvature corrections to the
KPV NS5-brane potential per se. The reason we began to study this topic was to better
understand the anti-brane uplift in the LVS. With our newfound understanding one can now
ask how α′2 corrections to KPV affect string-phenomenological model building i.e. models
such as LVS and KKLT.

Since our results suggest it might be possible to uplift without a deep throat, it is
interesting to ask this question not just for the LVS, but also for e.g. KKLT [4]. Since the
difficulty of embedding a deep throat in the bulk Calabi-Yau posed the main difficulty in
uplifting KKLT [25, 75] (see also [3]) one can ask if our results allow one to resurrect the
idea of anti-brane-uplifted KKLT in regimes that previously seemed out of control.

In addition, particles and domain walls in the four external directions have been
constructed by wrapping branes on the cycle at the tip of the warped throat [30, 76]. It
would be interesting to see how these analyses are affected by curvature corrections of the
type considered here.

As each string-phenomenological model comes with many subtleties and additional
effects of its own, unrelated to the story of KPV, we will not discuss these in detail here.
We will merely state some suggestive results related to the LVS and leave our results on the
string-phenomenological impact of α′2 to an upcoming paper [77].

The natural parameters in which to understand curvature corrections to KPV are gsM
and p/M . If we use KPV in model-building, other parameters will become important. In
particular, the individual values of gs,M , and p will become important. It is straightforward
to display the bounds we have derived in terms of these parameters. In figure 7 we show the
region where Vtot(ψ) has a positive maximum in terms of gsM as a function of gs for various p.

Given these bounds, we can now compute for the LVS how they constrain the required
negative D3 tadpole −Q3 present in the compactification geometry by using the PTC [10].
We will present a detailed analysis in [77] and merely state the required tadpole for some
reasonable parameters here. The additional parameters present in LVS are as related
to nonperturbative corrections to the superpotential, κs related to the triple intersection
number of the small divisor, ξ = χ ζ(3)/2(2π)3 where χ is the Euler number of the Calabi-
Yau orientifold, and cN which is a control parameter related to a bulk curvature correction
with varying warp factor. cN must be large for this correction to be small. Not all the
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Figure 7. A plot of gsM over gs for different values of p. The region above the curves is where
Vtot has a positive maximum. For gs � 1 and gs � 1 the curves asymptote again towards
gsM → 5.238 and gsM → 2.086, respectively. Note that when p/M > 0.08 this maximum is not in
a controlled regime.

parameters are independent. On way of thinking about this is setting as, κs, χ, p and cN
will fix gs. This in turn fixes τs, the minimal value of M via section 2, the volume V and
the minimal value of the D3 tadpole N of the warped throat.

Here, we will proceed differently by choosing a value of gs (and hence a value of M
which is in line with figure 6) instead of ξ. We then use the following equations14 to
determine ξ, V and N :

V = 3κ2/3
s ξ1/3|W0|

27/3as|As|g1/2
s

e
as

ξ2/3

(2κs)2/3gs , as
ξ2/3

(2κs)2/3gs
= 16πN

9gsM2 , (3.1)

N =−21gsM2

16π W−1(x) , x=− 311/35a
2/7
0

7 259/105 55/7π1/35
κ

2/7
s

p2/7a
3/7
s c

5/7
N (gsM2)1/7

. (3.2)

Here, the first equation in (3.1) is the on-shell solution for the volume modulus in the LVS,
the second follows from requiring the uplift to be of the same size as the AdS minimum
and (3.2) is called the PTC generalized to generic p.

With this, let us consider some examples where we choose as = 2π as this minimizes
the tadpole compared to the choice as = π/3.

As can be seen from table 1, requiring that a controlled metastable minimum exists via
the bound in figure 3 leads to a minimum value for the tadpole at O(103–104).

Demanding only that a maximum with a positive potential energy exists leads to much
weaker constraints, shown in table 2 where we choose p = 1. In the last line we show

14The equations are taken from [10], see equ. (2.4), (3.2), (3.11) and (3.15) therein.
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p as χ κs cN gsM p/M gs gsM
2 (−Q3)min

2 2π 405 0.1 5 20.58 0.0824 0.848 500 1913

3 2π 225 0.1 5 20.4 0.0825 0.561 742 2900

8 2π 56 0.1 5 20.51 0.0824 0.211 1991 8175

Table 1. Minimal value of the required tadpole (−Q3)min for the minimum of Vtot to occur in the
controlled regime for different p.

input parameters cN = 5 cN = 100

gsM p/M κs gs gsM
2 χ (−Q3)min χ (−Q3)min

5 0.04 0.1 0.2 125 43 455 62 580

10 0.04 0.1 0.4 250 124 921 178 1172

15 0.04 0.1 0.6 375 231 1395 329 1766

20 0.04 0.1 0.8 500 358 1868 510 2365

3.9 0.08 0.1 0.31 48.9 82 175 118 223

Table 2. Minimal value of the required tadpole (−Q3)min for as = 2π, p = 1 and different choices
of p/M , cN and gsM demanding the maximum of the corrected KPV potential to be positive.

the ‘most optimistic’ setting, i.e. the point where the blue, red, and yellow region meet
in figure 6. This point is at the boundary of the maximum being positive in a somewhat
controlled regime. Clearly, all numbers should be viewed as an estimate as flux and possible
further curvature corrections at order α′2 need to be taken into account.

4 Conclusions and outlook

In this paper, we have studied the effects of expected α′2-curvature corrections to KPV. We
have seen that these can radically alter the leading-order KPV story, where the potential
has a metastable, positive-energy minimum. However, we have only been able to analyze a
subset of corrections — many α′-corrections in the NS5-action remain unknown. The main
message then is that in this paper we have opened the Pandora’s Box of higher-derivative
corrections to KPV, but it is not at all clear at the moment where a complete analysis will
lead and whether the final outcome at intermediate gsM will be anything recognizably like
the leading-order story of KPV. The different regimes expected on the basis our (partial)
α′2-corrections to KPV are summarized in figure 6, parametrized by p/M and gsM .

We have then used the resulting bounds on gsM from α′-corrections to KPV in the
context of the LVS to estimate the minimal negative D3 tadpole. To achieve this, we have
employed the Parametric Tadpole Constraint of [10]. To be precise, we have used two
different options for how to bound gsM :
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The conservative option is to demand that gsM is sufficiently large such that α′2-
corrections to the KPV potential are small, a metastable uplifting minimum exists in the
potential, and the leading order story of KPV holds unmodified. How this constrains gsM
can be seen in figure 3. As a result of this constraint, the LVS requires geometries with
a negative D3 tadpole of the order of thousands or tens of thousands and at least two
anti-D3-branes for the uplift (cf. table 1).

The more optimistic approach is to only demand that a local maximum for the NS5-
potential exists at positive vacuum energy, such that the standard KPV decay process is
classically forbidden. Clearly, this maximum has to be at sufficiently large radius of the S2

wrapped by the NS5, such that our computations are controlled against even higher order
α′-corrections.

Given the existence of this maximum one then assumes that, on its SUSY-breaking
side, a local minimum capable of uplifting also exists. One accepts that, at the minimum,
the NS5-brane wraps a string scale S2, where our computations are not controlled. This
constrains gsM as shown in figure 4 and, in the LVS context, only requires a negative D3
tadpole of the order of hundreds, as summarized in table 2.

In fact, there is even further cause for optimism: in the analysis described as the
optimistic approach above, we have assumed that the potential of the α′-corrected minimum
is at the same energy scale as the leading-order anti-D3-brane uplift. If, however, the
α′2-corrections significantly alter the NS5-brane potential, it is entirely plausible that the
metastable minimum could be at much lower energy. It may even change sign, leading to non-
SUSY AdS. This is in fact the situation which a pure anti-D3-analysis (without transition
to the NS5) suggests [11]. Now, if one can tune the uplifting potential to extremely small
values, one may be able to produce an exponentially suppressed uplift without relying on
a deep warped throat. This tuning could be realized using the flux discretuum of gs, which
enters the 1/(gsM)2 prefactor of curvature corrections. If, as a result, one no longer requires
a deep throat, the main difficulty in achieving uplifted KKLT or LVS vacua disappears.15

Although we have not discussed this in detail, one could perform an analogous analysis
in the S-dual set-up to KPV where the anti-D3-branes puff up into a D5-brane at the tip of
the throat. It would be interesting to treat this set-up in full detail.

The issue with making the preceding ideas more concrete is that not all α′2-corrections
to KPV are explicitly known. As an outlook for future research, let us summarize again
which points we believe need to be understood to obtain a clear, controlled picture of
α′-corrected KPV:

• The α′2-corrected NS5-brane action has to be computed explicitly, both curvature
terms and gauge field strength contributions. As we have not included the field
strength terms at all, our results may change significantly. This task should be easier
in the S-dualized KS set-up as more is known about α′2 corrections on the D5-brane.

15All this is a concrete example of the general philosophy of how one expects the interesting vacua with
all moduli stabilized to live in the interior of parameter space rather than at the asymptotics [78]. The more
orders in corrections we take into account, the richer the potential will be and the more options there are for
model-building. If it is possible to explicitly compute all important α′2-corrections, we should do so and
embrace the added richness this gives us.
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• It would be important to check that, at least near the maximum of the corrected
potential, the α′2 effect is trustworthy in the sense that even higher order α′-corrections
are small and can be neglected.

• It is crucial to include backreaction effects, especially the notoriously difficult flux
backreaction, in our analysis.

• In regimes where the S2 wrapped by the NS5 is expected to be of stringy size, it would
be interesting to consider the anti-D3-brane picture and compute higher-commutator
and higher-derivative effects up to a certain order in α′ to estimate if and at which
angle ψ the minimum exists.

• It would be desirable to develop a deeper understanding in the holographically dual
field theory of the vacua on both sides of the domain wall which corresponds to moving
the NS5-brane from the south to the north pole. A natural starting point would be
to study the case without anti-branes, where both the baryonic and mesonic branch
are supersymmetric.
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A Curvature computations

The curvature tensors in (2.8) are given by [21]

(RT )αβγδ = Rαβγδ + gab(Ωa
αγΩb

βδ − Ωa
αδΩb

βγ) , (A.1)
(RN ) ab

αβ = −Rabαβ + gγδ(Ωa
αγΩb

βδ − Ωb
αγΩa

βδ) , (A.2)
Rab = R̂ab + gαα

′
gββ

′ΩaαβΩb α′β′ . (A.3)

Here, Rµνρσ is the 10D Riemann tensor, µ, . . . indices run over all ten dimensions, α, . . .
indices run tangent to the brane, and a, . . . indices run normal to the brane. One obtains
R̂ab = Rαaαb and (RT )αβ = (RT )γαγβ by contracting only over indices tangent to the brane.
The second fundamental form Ωµ

αβ of the brane worldvolume is given by

Ωµ
αβ = ∂α∂βY

µ − (ΓT )γαβ∂γY
µ + Γµνρ∂αY ν∂βY

ρ , (A.4)

with Γµνρ the 10D target space connection, (ΓT )γαβ the connection on the induced metric
on the brane worldvolume and Y µ(ξα) the coordinate functions describing the brane
embedding in the 10D geometry. We defined Ωa

αβ := Ωµ
αβ

∣∣∣
µ=a

such that the normal indices
are contracted with gab.
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When a brane is embedded in flat space, the nonzero curvature terms are entirely given
by terms related to the second fundamental form. When the brane is totally geodesically em-
bedded, the curvature terms are entirely given by terms related to the 10D Riemann tensor.

As the anti-D3-brane is pointlike in the internal geometry, it is totally geodesically
embedded. The NS5-brane however is nongeodesically embedded unless it is wrapping the
equator of the S3 at ψ = π/2.

As the metric of the Klebanov-Strassler throat, (2.1), is known exactly, it is in principle
straightforward to compute all the necessary curvature terms. However, in the natural
metric for the deformed conifold, (2.2), the coordinates of the S2 wrapped by the NS5-brane
are not cleanly isolated. To compute the curvature terms we proceed as follows: to obtain
the coordinates wrapped by the NS5 we use the spherical parametrization of the deformed
conifold at the tip of the throat [79] where the S3 and the S2 are parametrized with standard
spherical coordinates (ψ, ω, ϕ) and (θ, φ), respectively. The NS5 hence wraps the (ω, ϕ)
plane inside the S3. The metric is given by

ds26 = F(τ)Tr
(
dW †dW

)
+ G(τ)

∣∣∣Tr
(
W †dW

)∣∣∣
2
, (A.5)

where, setting ε = 1 as above,

F(τ) = (sinh(2τ)− 2τ)1/3

24/3 sinh τ
, (A.6)

G(τ) =
2− 3 coth2 τ + 3τ

(
cosh τ/ sinh3 τ

)

12 (cosh τ sinh τ − τ)2/3
, (A.7)

W =
(

1 + τ2

8 + τ4

384 +O(τ6)
)
L+

(
τ

2 + τ3

48 +O(τ5)
)
LL̂ . (A.8)

Here,

L=
(
−sinψ sinω cosϕ+isinψ sinω sinϕ cosψ−isinψ cosω

cosψ+isinψ cosω sinψ sinω cosϕ+isinψ sinω sinϕ

)
, (A.9)

L̂=
(
−cosθ −eiφ sinθ
−e−iφ sinθ cosθ

)
. (A.10)

With this, (2.1) and the warp factor (2.4) it is a straightforward but tedious calculation to
obtain the R2 corrections at the tip. We obtain the following results:

(RT )αβγδ(RT )αβγδ = 62/3

g2
sM

2I(0) + 62/3

g2
sM

2I(0)
(
cot4 ψ + 2 cot2 ψ

)
(A.11)

−2(RT )αβ(RT )αβ = −2 62/3

2g2
sM

2I(0) − 2 62/3

2g2
sM

2I(0)
(
cot4 ψ + 2 cot2 ψ

)
(A.12)

−(RN )γδab(RN )γδab = − 62/3

g2
sM

2I(0) (A.13)

2RabR
ab = 2 32/3 (117 I(0)2 − 200 I(0) I ′′(0) + 150 I ′′(0)2

)

25× 21/3g2
sM

2I(0)3

+ 2× 62/3 cot2 ψ
g2
sM

2I(0)
(
2 + cot2 ψ

)
(A.14)
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The terms (A.11) and (A.12) cancel against each other. In (A.14) the term ∼ cot2 ψ
stems from the RΩ2 term and the term ∼ cot4 ψ from Ω4. This also matches the naive
expectation of the extrinsic curvature of an S2 which scales as 1/RS2 . Moreover, for ψ = π/2
the extrinsic curvature terms vanish as at the equator the NS5 is geodesically embedded.
Inserting (A.11)–(A.14) into (2.10) and integrating over the S2 gives the α′2 curvature
corrected KPV potential (2.11).
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Abstract: In earlier work, the effect of α′2 curvature corrections on the NS5-brane respon-

sible for the decay of anti-D3-branes in the set-up of Kachru, Pearson, and Verlinde (KPV)

was considered. We extend this analysis to include all known α′2 corrections to the action

of an abelian fivebrane which involve not just curvature but also gauge fields and flux. We

compute the value of these terms at the tip of the Klebanov-Strassler throat to obtain the

α′2 corrected potential for the NS5-brane of KPV. The resulting potential provides a novel

uplifting mechanism where one can obtain metastable vacua with an arbitrarily small pos-

itive uplifting potential by fine-tuning α′ corrections against the tree-level potential. This

mechanism works for small warped throats, both in terms of size and contribution to the

D3-tadpole, thereby sidestepping the issues associated with a standard deep warped throat

uplift which are deadly in KKLT and, as we explicitly check, severely constraining in the

Large Volume Scenario.
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1 Introduction

The set-up of Kachru, Pearson, and Verlinde (KPV) [1] provides one of the best-known

examples of a proposed metastable spontaneously supersymmetry breaking vacuum in string

theory. One considers p anti-D3-branes at the tip of the Klebanov-Strassler (KS) throat [2].

These puff up into a single fluxed NS5-brane which depending on the parameters at the tip

either has a metastable supersymmetry breaking vacuum or is classically unstable and pulled

over the tip to decay into a supersymmetric vacuum. Our main interest in KPV is as a tool

in the anti-D3-brane uplift to construct de Sitter vacua in string theory.

It remains one of the core questions of string phenomenology whether one can achieve

controlled de Sitter vacua in string theory [3, 4]. One of the most well-trodden paths towards
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constructing de Sitter vacua is to start by constructing a scale separated AdS vacuum1 in

IIB with potential VAdS. One then supplies a source of positive potential energy Vup to

provide an uplift to a de Sitter minimum. This is the route taken by e.g. KKLT [1] and

LVS [10, 11]. One requires that |Vup| ≈ |VAdS|, in order to obtain a metastable de Sitter

vacuum. If |Vup| � |VAdS| the uplifting potential completely overpowers the AdS potential

which provided a minimum and one obtains a runaway instead.

An anti-D3-brane, pointlike in the internal dimensions provides a source of positive po-

tential energy but by itself would lead to a runaway. This is where the KS throat comes to

the rescue: by placing the anti-D3-brane at the tip of a warped throat, one can exponentially

suppress Vup through warping. One may then set the warping at the tip of the throat such

that Vup provides a controlled uplift, as done in KKLT [1] and LVS [10, 11]. The issue with

this is that in order to have sufficient warping one must have a sufficiently large throat, both

in terms of its size and its contribution to the D3-tadpole. The issue of fitting such a large

throat in the compactification geometry seems deadly in KKLT, where it has been dubbed

the singular bulk problem [12–14], and seems severely constraining in the LVS [15–18].

Recently, [18] shed new light on this issue by examining how α′ corrections affect uplifts

with warped throats. Such corrections become important when one considers small warped

throats which should be easier to embed in a compactification geometry. In particular, the

effect of curvature corrections on the worldvolume of the uplifting antibrane was examined,

focussing especially on the impact of these curvature corrections on the KPV decay channel.

This analysis opened up many interesting new possibilities. Most exciting was the possibility

of a new uplifting mechanism unique to warped throats with a small tip. Curvature corrections

correct the potential for a single antibrane as [19, 20, 15]

VD3 = µ3e−φ
[
1− (4π2α′)2

384π2
R α
aαb R

a bβ
β

]
= µ3e−φ

[
1− c

(gsM)2

]
, (1.1)

with c = 5.924 and where a, b are normal and α, β tangent indices relative to the brane.

Here M is the F3 flux at the tip of the throat and the radius RS3 of the tip is proportional

to
√
gsM . By fine-tuning gs one can achieve c/(gsM)2 ≈ 1 and in this way tune VD3 to an

arbitrarily small value. In this way one can achieve an uplift without requiring a large warped

throat. We refer to [18] for further discussion.

It is insufficient to analyze this uplift purely in terms of the anti-D3-brane. The antibrane

puffs up and to study the metastable vacuum we must consider the KPV set-up. Unfortu-

nately, the analysis of [18] had to remain very incomplete on this point as it only considered

curvature corrections. The goal of the present paper is twofold: First, to take into account

corrections to the worldvolume theory due to background fluxes which were neglected in [18].

Second, to more fully explore the phenomenological impact of α′ corrections on the brane

1This first step of constructing a landscape of scale-separated AdS vacua has also been called into question
[5–9]. In the remainder of this paper we will proceed under the assumption that a landscape of scale-separated
AdS vacua can be obtained in IIB string theory via either KKLT or LVS or some other mechanism, but this
assumption is highly nontrivial.
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worldvolume in the KPV set-up.

The rest of the paper is structured as follows. In Sect. 2 we very briefly review the set-up

of KPV [1] and how the results of [18] affect this set-up.

In Sect. 3 we consider additional corrections from flux, gauge fields and mixed terms

involving both of the above as well as curvature. We compute the potential for the NS5-

brane with these corrections taken into account. We show that for throats with a large tip

the analysis of KPV is recovered, while for small throats the corrections become important

and a sensible potential with interesting new features appears.

In Sect. 4 we show that using these new features one can indeed get the new uplifting

mechanism by finetuning α′ corrections to work, while this was previously only hinted at. As

this uplifting mechanism requires balancing α′ corrections to the potential to be as large as

the tree-level potential one is at the borderline of control. This novel uplifting mechanism

allows one to uplift using a small warped throat, requiring a warped throat which contributes

as little as N = 40 to the D3-tadpole.

In Sect. 5 we instead consider the traditional uplifting mechanism where one uses a large

warped throat to exponentially warp down Vup. We investigate under what conditions this

traditional uplift is controlled for the LVS specifically. Even with the weakest demands on

control one finds that the warped throat must have a D3-tadpole N = 560. Demanding a bit

more control, one rapidly finds that an O(103) tadpole from the warped throat. This severely

restricts the possibility of achieving such an uplift with a large warped throat as compacti-

fication geometries with sufficient negative D3-tadpole to fit such throats are currently not

known in IIB string theory with local D7-tadpole cancellation (but larger tadpoles may be

possible for nonlocal cancellation, see [21]).

Our paper focuses on α′ corrections to the worldvolume action of an NS5-brane. However,

many of the corrections we consider have strictly only been derived for a D5-brane and we

have inferred the analogous correction for an NS5-brane. While we believe our method for

inferring these corrections is correct, one may object that we strictly lack a derivation of the

α′ corrections on the NS5-brane. The main reason why we have focused on the KS throat is

that this is the set-up most commonly considered for a warped throat uplift in the literature.

One may instead consider the S-dual throat with a D5-brane at the tip and use this for the

uplift [22]. One can then perform our analysis of α′ corrections for this dual set-up now being

confident that one knows the α′ corrections. We have analyzed our corrections to this S-dual

set-up in Sect. 6. Unfortunately the novel uplifting mechanism we propose does not work in

this S-dual set-up with the main issue being that the radius of the tip of the throat is set by√
K, with K the amount of H3 flux at the tip of the S-dual throat. We then lack a factor of√
gs which allows us to tune the radius of the tip.

We conclude in Sect. 7. The new uplifting mechanism we propose requires far smaller

throats than the traditional uplifting mechanism via exponential warping. This allows us to

sidestep the issues involved in uplifting KKLT and LVS with a large warped throat. Some

questions remain on how controlled our new uplifting mechanism is and we discuss future

directions to gain a better understanding of the small throat uplifting mechanism.
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The paper contains two appendices. In App. A we gather various technical computations

related to α′ corrections. In App. B we review the Parametric Tadpole Constraint (PTC) [16]

and recast it into a form more useful for applying the bounds on control for the warped throat

we obtain to the LVS. We also comment on the discrepancy in the conditions for control in

the LVS between [15, 17] and [16].

2 Review of KPV and curvature corrections

In the set-up of KPV [1], p anti-D3-branes are placed at the tip of the Klebanov-Strassler

(KS) throat [2]. The KS throat is a deformed conifold with M units of F3 flux threading the

A-cycle of the throat. Topologically, at a distance τ from the tip there is a T 1,1 geometry,

which is an S2 fibration over an S3. At the tip τ = 0 the S2 shrinks to zero size while the S3

remains of finite radius RS3 ∼ √gsM and coincides with the A-cycle.

The anti-D3-branes at the tip can puff up into an NS5-brane. The NS5 wraps an S2

inside the S3. The authors of [1] calculated the 4d potential of this NS5-brane in terms of

M , p, and ψ, the angular direction of the S3 normal to the S2 wrapped by the NS5, from the

tree-level string-frame NS5-brane action

S = −µ5

g2
s

∫

M6

d6ξ
√
−det (gµν + 2πα′gsF2µν − gsC2µν)− µ5

∫

M6

B6 , (2.1)

where µ5 is the brane tension. The resulting potential is of the form

VKPV(ψ) =
4π2pµ5

gs
+

4πµ5M

gs



√
b40 sin4(ψ) +

(
πp

M
− ψ +

sin(2ψ)

2

)2

− ψ +
sin(2ψ)

2


, (2.2)

where b20 ≈ 0.93266. The potential describes a decay channel for the NS5 into M − p D3-

branes. Whether the NS5 is metastable or unstable in this decay channel depends on the

value of p/M . During this process, the NS5 slips over the equator while the anti-D3-brane

charge of the NS5 annihilates against 3-form flux. The potential is shown in Fig. 1 where one

can see that for p/M > 0.08 no metastable minimum exists.

The main idea of [18] was to include curvature corrections to the potential of the NS5 since

in phenomenologically viable models, the value gsM
2 and hence RS3 ∼ √gsM is typically

not too large. Thus, curvature corrections, scaling like 1/R4
S3 , eventually become important.

This is a manifestation of the fact that the validity of the supergravity expansion in α′ is on

the borderline of control. The curvature corrections evaluated for the NS5 at the tip of the

throat lead to a correction of the KPV potential

Vcurv(ψ) =− c1 + c2 cot2 ψ(2 + cot2 ψ)

(gsM)2

4πµ5M

gs

√
b40 sin4(ψ) +

(
πp

M
− ψ +

sin(2ψ)

2

)2

, (2.3)
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Figure 1. The potential VKPV(ψ) (suitably normalized) for different values of p/M .

where c1 ≈ 8.825 and c2 ≈ 1.891. The terms ∼ cotψ come from the second fundamental form

Ω that is non-zero for non-geodesically embedded branes.

As was repeatedly stressed in [18], great care had to be taken in interpreting this corrected

potential and its regime of validity. One of the main issues is that only pure curvature α′2

corrections to the NS5 worldvolume action were included in this potential while at the same

order in α′ there are also corrections depending on gauge fields, field strengths, and mixing

of these with curvature2. The main goal of this paper is to account for these additional

corrections and we shall see that the resulting potential is much more readily physically

interpretable.

3 Flux corrections

As described in Sect. 2, in [18] higher order α′ corrections to the Chern-Simons action and

corrections to the DBI action that involve fluxes were neglected. In this section, we summarize

all flux corrections to D-branes in superstring theory from the papers [23–33] that are non-

vanishing for the KS throat, extend them to the NS5-brane and evaluate them at the tip

of the KS throat. Many of these corrections have only been derived in flat space without

background F2. We make the following assumptions to extend these corrections to a brane

worldvolume with nonzero F2 in a curved background. We promote all partial derivatives

to covariant ones in order for the action to be Lorentz covariant. Moreover, we assume all

corrections to hold also for non-zero F2 and B2 flux by replacing
√−g →

√
−(g + 2πα′F2).

2We will generically refer to such corrections as flux corrections, even though they involve not just F3, H3,
F5 and H7 but also C2 and F2.
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Schematically, the corrections to the DBI action of a Dp-brane important for the KS

throat read [27, 28, 32, 33]

SDBI,Dp ⊃
µpα

′2

gs

∫

Mp+1

dp+1x
√
−(g + 2πα′F2)

[
H4

3 +H2
3R

+ Ω4(2πα′F2)2 + (2πα′F2)Ω2∇H3

]
,

(3.1)

where we omitted any index contraction and numerical prefactor, and R symbolically repre-

sents either the Riemann or the Ricci tensor. The precise action can be found in App. A.2,

in (A.9), (A.14) and (A.17). Note that the first two terms in (3.1) are derived for Op-planes.

At order α′2, up to overall factors, couplings on O-planes can be obtained from couplings on

D-branes by orientifold projection [34]3. From this we conclude that all couplings on O-planes

at order α′2 are also present on D-branes.

3.1 Extending α′ corrections to NS5-branes

For p = 5, (3.1) can be S-dualized to

SDBI,NS5 ⊃ µ5α
′2
∫

Mp+1

dp+1x
√
−(g + 2πα′gsF2)

[
(−gsF3)4 + (−gsF3)2R

+ Ω4(2πα′gsF2)2 + (2πα′gsF2)Ω2∇(−gsF3)

]
,

(3.2)

where 2πα′gsF2 = 2πα′gsF2 − gsC2. As observed in [18] for the α′2 curvature corrections,

naively S-dualizing the D-brane action leads to g2
s suppressed terms when compared to the

leading-order DBI action of the NS5-brane (2.1). This means that tree level terms on D5-

branes map to two loop effects on NS5-branes. The comparison of the NS5-brane when

shrinking the S2 to zero size with the anti-D3-brane led [18] to propose that there should also

be α′2 curvature correction at leading order in gs. S-dualizing this term back to the D5-brane

case leads again to (so far unknown) two loop open string terms on the D5-brane.

We will now play the same game for the flux corrections in (3.2) where the story is

a little more subtle. To be able to know whether an α′ correction appears gs suppressed

compared to the tree level term, the kinetic terms of all fields need to have the same gs
dependence. We normalize all kinetic terms in such a way that they have a g−2

s dependence.

This means for instance for F3 that we write the kinetic term
∫

10 |F3|2 ∼ g−2
s

∫
10 |F3,norm|2

with F3,norm = gsF3. Similarly, we find F2,norm = gsF2 as we have already indicated in (3.2).

Hence, (3.2) is again g2
s – so two loop open string – suppressed compared to the tree level

DBI action (2.1). Hence, analogously to the curvature corrections, we propose the following

3Note that this is not true for higher order α′ corrections, as can be seen from the expansion of anomalous
CS couplings.
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α′2 corrections for the NS5-brane at tree level in gs:

SDBI,NS5 ⊃
µ5α

′2

g2
s

(1 + g2
s)

∫

Mp+1

dp+1x
√
−(g + 2πα′gsF2)

[
(gsF3)4 + (gsF3)2R

+ Ω4(2πα′gsF2)2 + (2πα′gsF2)Ω2∇(−gsF3)

]
.

(3.3)

The tree level term will after S-dualizing again correspond to so far unknown 2-loop corrections

on the D5-brane.

Besides α′ corrections to the DBI action, there are also α′ corrections to the CS action.

The important couplings for the KS throat schematically read [31]

SCS,Dp ⊃ µpα′2
∫

Mp+1

dp+1x
(
−ε(6)F2R∇F̃5 + ε(6)F2∇H3∇F7

)
, (3.4)

where again we have omitted any index structure. Note that ε(6) denotes the 6d Levi-Civita-

symbol, F̃5 the self dual 5-form flux and F7 the 7-form flux. The numerical prefactor and

index structure are given in (A.19) and (A.21) in the App. A.2. The action (3.4) can be

S-dualized for p = 5 to

SCS,NS5 ⊃ µ5α
′2
∫

Mp+1

dp+1x
(
−ε(6)(gsF2)R∇(gsF̃5) + ε(6)(gsF2)∇(−gsF3)∇(g2

sH7)
)
,

(3.5)

where we have already properly accounted for factors of gs to obtain normalized kinetic

terms. Let us compare the gs scaling in (3.5) with the tree level term
∫

d6xF2 ∧ C4 =

g−2
s

∫
d6x(gsF2) ∧ (gsC4) present on the NS5-brane. This shows that the S-dualized action

(3.5) appears to be 2-loop suppressed. As before, we propose that the CS couplings exist also

at tree level in gs.

It is interesting that this tree level to 2-loop mapping under S-duality for the D5-/NS5-

brane appears to hold for all terms in the α′2 corrected brane action.

We have accounted for all α2 corrections to the fivebrane worldvolume action we found

in the literature. However, there is to our knowledge no proof that the α′2 corrections are

completely known. Especially corrections to the DBI action involving F(p) flux are not known.

Until the fivebrane action at order α′2 is completely determined, our results must necessarily

remain incomplete.
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3.2 The flux corrected KPV potential

With the results of App. A.2, the α′ corrected KPV potential of all currently known corrections

is given by (2.2), (2.3), and (A.23). It is of the form

Vtot =VKPV + Vcurv + Vflux

=
4πµ5M

gs

√
b40 sin4(ψ) +

(
p
π

M
− ψ +

1

2
sin(2ψ)

)2

× 1

(gsM)2

[
c3 − c1

+ (c4 − 2c2) cot2 ψ − c2 cot4 ψ +
c5 cot4 ψ

sin4 ψ

(
πp

M
−
(
ψ − sin(2ψ)

2

))2

− c6 cot3 ψ

sin2 ψ

(
πp

M
−
(
ψ − sin(2ψ)

2

))]

+

[
4π2pµ5

gs
− 4πµ5M

gs

(
ψ − sin(2ψ)

2

)](
1 +

c7

(gsM)2
+

c8 cotψ

(gsM)2 sinψ

)
,

(3.6)

where the numerical constants c1 to c8 are given in Tab. 1.

Table 1. Numerical constants in the α′ corrected KPV potential Vtot.

c1 c2 c3 c4 c5 c6 c7 c8

8.825 1.891 2.448 8.696 32.61 2.174 14.64 18.65

It was already observed in [18] that the curvature corrected KPV potential appears to

have two parameters gsM and p/M that determine the shape of the potential. Non-trivially,

this is still true when the flux corrections are included: All terms precisely line up in terms

of gsM and p/M with an overall 1/g2
s factor. Hence, the α′ expansion of the brane action

translates into an expansion of the potential in terms of gsM and p/M . The expansion in p/M

is a new effect not observed in [18]. It stems from corrections including F2. The F2 corrections

in (3.3) are higher order in α′ compared to the other corrections. Nevertheless, it still makes

sense to include them into the potential since they feature the same gsM suppression but are

additionally suppressed by the second expansion parameter p/M .

The potential Vtot is shown in Fig. 2 for gsM = 20 and different values of p/M and in

Fig. 3 for p/M = 0.01 and varying gsM . As before, we see that depending on p/M and

gsM there exists a metastable minimum. A new feature is that the value of the potential at

the metastable minimum, which we will call Vup, can be at negative, zero, or positive energy

depending on the parameters. This can be summarized in the contour plot in Fig. 4 where

(a) is a log-log plot whereas (b) is linear on the gsM axis. The blue region describes the part

of the parameter space where no metastable minimum exists, the yellow region describes the

region with a metastable minimum at Vup > 0, and the minimum is at negative energy in the

orange region. As expected for large values of gsM , the blue region is bounded from below

by the KPV bound p/M = 0.08.
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Figure 2. The potential Vtot(ψ) (suitably normalized) for gsM = 20 and different values of p/M .
With decreasing values of p/M , the form of the potential transitions from no metastable minimum to
a minimum with Vup < 0. In between, the vacuum energy is zero or positive. Note that we lose control
over the perturbation theory that leads to this potential when either ψ & π/2 or

√
gsM sinψ . 1.

Figure 3. The potential Vtot(ψ) (suitably normalized) for p/M = 0.01 and different values of gsM .
Note that we lose control over the perturbation theory that leads to this potential when either ψ & π/2
or
√
gsM sinψ . 1.
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Before discussing the crucial question of in which region of parameter space the potential

(3.6) can be trusted, let us comment on the main differences to the curvature corrected

potential VKPV + Vcurv calculated in [18]. As the highest order divergence in 1/ψ in (3.6) has

a positive prefactor coming from the correction Ω4F2
2 , the potential diverges to +∞ when

ψ → 0, π. This facilitates the existence of a metastable minimum compared to [18] since

also for very small values of gsM , a minimum will always exist as long as p/M is sufficiently

small. Let us emphasize that in this regime, the radius of the NS5-brane is string size and all

higher order α′ corrections will become important. We will further elaborate on this below.

As already discussed in [18], we assume that summing up all the (unknown) higher order α′

corrections, we find a smooth potential without any divergences. We then expect the fully

corrected potential to have a finite value at ψ = 0. It may be reasonable to expect that the

fully corrected value of the potential at ψ = 0 will be given by p times the fully corrected

potential of an anti-D3-brane.

In the regime of large gsM both potentials yield similar results.

(a) (b)

Figure 4. The yellow area shows the region in the (gsM,p/M)-parameter space where a metastable
minimum at positive energy exists. In the orange region, the minimum is at negative energy. In the
blue region there is no metastable minimum, only an instability towards the supersymmetric minimum.
In (a) a log-log-plot is shown for a wide range of parameters and (b) zooms into the region of smallest
allowed values of gsM .

Let us now turn to the question of when we can trust the approximations that have led

to this potential. A first condition is that gsM sin2 ψ ∼ R2
NS5 should be sufficiently large.

The reason is that higher order α′ couplings feature a suppression by R2
NS5 or R2

S3 . This

applies to curvature and flux couplings. Thus, in order for higher order α′ corrections to be

negligible one should ensure that R̃2
NS5 = gsM sin2 ψ is sufficiently large4. Caution is required

4Note that we do not take R2
NS5 = b40gsM sin2 ψ as the expansion parameter as the powers of b0 are different
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for couplings involving F2 flux since F2 scales in the potential as

F2 ∼
1

gs sin2 ψ

(
p

M
− ψ +

sin(2ψ)

2

)
, (3.7)

which is only small for moderately small ψ.

This leads to a second condition specific to the terms involving F2 in the potential (3.6).

As can be seen from (3.7), for small ψ, F2 scales like F2 ∼ p/R̃2
NS5. But when ψ ∼ O(1),

(3.7) implies F2 ∼ −(M − p)/M which is O(1) in the regime where p � M . This is to be

expected since with increasing ψ the anti-D3-brane charge of the NS5 is neutralised by flux

such that the NS5 describes M−p D3-branes at the north pole. Hence, we lose control over F2

corrections close to the equator of the S3 and on the north side of the equator ψ > π/2. This

is not a serious issue since we anyways expect that the NS5 decays into the SUSY minimum

at ψ = π as soon as the NS5 slips over the equator. Note that it is not guaranteed that the

SUSY minimum at ψ = π has zero vacuum energy. The SUSY minimum has M−p D3-branes

whose α′ corrected worldvolume action contributes to the potential as already discussed in

[18]. This can lead the SUSY minimum to have negative energy, allowing the metastable

minimum to decay even when the metastable minimum has zero or negative energy.

Since in the interesting regime close to the south pole, R̃2
NS5 is the crucial control param-

eter, Fig. 5 depicts again the (gsM,p/M) parameter space but now with contours describing

metastable minima of the potential of fixed R̃2
NS5. Decreasing gsM also decreases the radius of

the NS5. The regime where control over α′ corrections is best is the large gsM and large p/M

regime. This again forces highly warped, deep throats as already observed in [15, 35, 17, 18].

We discuss implications of this for phenomenology in Sect. 5.

In the cases where Vup = 0, the radius of the NS5 is O(1) which marks the outermost

edge of control as can be seen from the red line in Fig. 5 (b), on which Vup = 0 holds. This is

precisely the regime needed for the uplifting mechanism without deep throats which we will

discuss further in Sect. 4.

Note that in the regime of large gsM and p/M one eventually enters the regime where

gs > 1. To stay in the weak coupling regime of type IIB string theory, we should ensure that

p

M
<

p

gsM
, (3.8)

which drives one to smaller values of RNS5. As also noted in [18], this forbids for p = 1 a large

region of parameter space. The line gs = 1 for p = 1 in the (gsM,p/M) parameter space is

depicted in Fig. 5 (b) in green. Hence, the parameter space above this line is forbidden when

choosing p = 1. With increasing p, the forbidden region shrinks such that the regime of large

gsM and p/M becomes accessible at weak coupling.

Besides the KPV decay channel, another proposed instability channel for antibranes at

the tip of the KPV throat is the conifold transition [36–40] (recently questioned in [41]). To

in some of the on-shell α′ corrections.
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Figure 5. A similar contour plot to Fig. 4. The contours indicate lines of constant R̃2
NS5 = gsM sin2 ψ

in the (gsM,p/M) parameter space. Note that R̃2
NS5 is proportional to the squared radius of the NS5-

brane R2
NS5 = b40R̃

2
NS5. The dark blue region is again the region where no metastable minimum exists.

(a) depicts a wide range of parameters and (b) is a more detailed plot for smaller values of gsM . In
b) the contours are at integer values of R̃2

NS5 starting with R̃2
NS5 = 1 on the lowest contour. On the

green line in (b), gs = 1 for p = 1 and above the green line, gs > 1. The red line indicates the line
where the minima of the potential are at zero energy.

avoid a conifold instability for a single antibrane one imposes
√
gsM > 6.8. Note however

that for the smallest values of gs and M where KPV has a zero vacuum energy metastable

vacuum,
√
gsM = 12, such that after α′ corrections requiring the metastable vacuum to have

a positive energy is a stronger constraint than that imposed by the conifold instability.

4 Uplifting without a deep throat

We have seen from Fig. 4 that with α′2 corrections accounted for, there are three types of

metastable vacua allowed: those with a negative energy at sufficiently small gsM and p/M ;

those with a positive energy at sufficiently large gsM and p/M ; and separating these a line

of vacua with zero energy. The line of vacua with zero energy is approximately given by

p

M
≈ 0.1029

(gsM)1.0909
, (4.1)

and the metastable vacuum with zero energy exists for gsM & 3.6. The smallest throat with

a zero energy metastable vacuum then has p/M ≈ 0.025 and gsM ≈ 3.6, yielding for p = 1

antibranes M = 40 and gs = 0.09.

As discussed in the Introduction, one of the main applications of placing an anti-D3-brane

at the tip of a warped throats a la KPV is as an uplifting mechanism. The idea is to start
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from a compactification with a scale-separated AdS vacuum with all moduli stabilized with

potential VAdS. One then introduces the antibrane as a source of positive potential energy

Vup. One must be able to tune Vup ≈ |VAdS| which in most cases requires a hierarchically

small value Vup to avoid a runaway. The existence of the line of metastable vacua with zero

energy in the (gsM,p/M) parameter space now provides a novel uplifting mechanism.

Trusting the potential in the regime where vacua with zero energy exist, one can clearly

obtain a metastable vacuum with a hierarchically small positive energy by fine-tuning gs to

be arbitrarily close to the line (4.1) where Vup = 0. For this to work one must of course have

a sufficiently densely spaced in gs discretuum of vacua in the IIB landscape. This mechanism

can be seen in action by tuning close to the gsM = 10 line in Fig. 3.

One may object to this uplifting mechanism on several grounds.

First, one must glue the KS throat into a compact geometry. The resulting geometry

will not perfectly match the KS geometry. It seems reasonable that if the modification to

the geometry is small the leading effect of this modification will be to alter the coefficients

ci appearing in (3.6) by a small amount. This is not deadly to the uplifting mechanism we

propose so long as the corrections to the ci are sufficiently small that a line of Vup = 0 continues

to exist. However, one may worry that the geometry at the tip is more seriously deformed and

the zero energy vacua are lost. One method to achieve a modicum of safety is to remember

that the warping at the tip is given by exp(−8πK/3gsM) and a deep warped throat to some

extent decouples the tip of the throat from the bulk geometry (see e.g. [42, 43]). When K is

too small there is really no decoupling at all. However, one could demand 8πK > 3gsM to

ensure there is some amount of decoupling between tip and bulk while at the same time not

making K too large to avoid problems such as the singular bulk problem in KKLT or similar

issues in LVS that arise when one needs a very deep throat when one attempts to make the

uplifting contribution to the potential hierarchically small through only the warping at the

tip. In fact, one could combine warping and our uplifting mechanism in a mutually beneficial

manner: One achieves part of the hierarchic suppression in Vup through warping but stops

before one runs into issues with the throat being too big. The remainder of the hierarchy is

then achieved through our mechanism; where the required fine-tuning in gs is now reduced

by several orders of magnitude; making the new mechanism in turn easier to implement as

one requires a less dense discretuum in gs.

In fact for the smallest zero vacuum energy throat gsM ≈ 3.6 the constraint to have

some warping at the tip is that K > 3gsM/8π ≈ 0.43 which is trivially satisfied and already

for K = 1 one has a not insubstantial amount of warping at the tip exp(−2.33) ≈ 10−1.

By choosing K = 2, 3 one can already obtain several orders of magnitude of warping while

maintaining a reasonable D3-tadpole for the throat.

Second, as can be seen from Fig. 5, the line of zero energy metastable minima occurs

when RNS5 ≈ 1. By attempting to fine-tune ourselves arbitrarily close to this line, we come

arbitrarily close to the boundary of control and it is highly dubious how reliably our results

are as all orders in α′ become important. We can only hope that our results give a hint of the

behaviour in this regime but clearly the abelian fivebrane picture is not suitable to analyse
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this regime. Ideally, one would analyse this regime in another picture such as holographically

or as a nonabelian D3-brane stack. In fact, gsM � 1 is the regime where the holographic

picture is perturbatively controlled. If one could establish holographically that there exists

a metastable AdS minimum somewhere in the regime gsM � 1, p/M . 0.025, then this

would qualitatively confirm the picture in Fig. 4 as at large gsM we know we have controlled

metastable vacua with positive energy and by continuity one then expects vacua with zero

energy in some intermediate regime.

Third, we have performed our analysis in a probe approximation and have not considered

the backreaction of the fivebrane. Backreaction generally was commented on in [18] and we

will not rehash those general remarks here. Let us make two specific points. A first point

is that [44] have noted that backreaction may result in the metastable minimum being at

parametrically larger RNS5 than the probe approximation suggests. In this case, the novel

uplifting mechanism we propose may occur at better controlled R2
NS5 than our results suggest

and it would be interesting to investigate this interplay. A second point is specific to KKLT. In

recent work [45] have noted that the branes at the tip of the throat source (0, 3) three-form flux

which in turn can give a mass to gauginos on D7-branes. If in KKLT one stabilized the Kahler

moduli using D7-branes, these gauginos are required to condense for moduli stabilization and

so must have a mass mλ below the confinement scale Λc. It was shown by [45] that this

implies
mλ

Λc
≈ 102 1

M1/4

p

M

1

(gsM)5/4
f(2πK/gsM)� 1 , (4.2)

with f(x) = x5/4 exp (−19x/9). The claim is that for small throats this constraint will not

be satisfied and so one must demand a sufficiently large throat for the uplift. Note however

that our novel uplifting mechanism always satisfies these constraints, even for the smallest

throats where the mechanism operates. The function f(x) is bounded from above by 0.14881

and the smallest throats allowed by our mechanism obey p/M ≈ 0.025 and gsM ≈ 3.6 such

that the bound becomes
mλ

Λ
≈ 10−1 1

M1/4
� 1 , (4.3)

which is always satisfied by the quantization of M . It then follows that in KPV if the anti-D3-

branes polarize into an NS5-brane the loss of control over α′ corrections becomes important

before the bound (4.2) does.

5 Deep throat phenomenology

In the previous section we discussed a novel uplifting mechanism. In this section we will for

the sake of comparison instead consider the traditional mechanism where one also uplifts via

p anti-D3-branes at the tip of a warped throat. However, in the traditional mechanism the

uplifting condition |VAdS| ≈ |Vup| is achieved solely through a large amount of warping at

the tip of the throat and one demands that α′ corrections to Vup are sufficiently small for
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control. This leads to the requirement that one has a large warped throat, which is a severely

constraining condition on the possibility to achieve an uplift.

For KKLT with large throats there is the singular bulk problem [12–14] which generically

appears deadly (see however [46]). Thus we will focus on the LVS where large warping is

required in order to control the most dangerous corrections to the LVS scalar potential [15–

18]. One such constraint is the Parametric Tadpole Constraint (PTC) [16] which quantifies

how large the negative contribution to the D3-tadpole, Q3, needs to be for control. In App. B

we review the PTC in some detail and comment on how dangerous we expect loop corrections

to the scalar potential to be to explain why these are not accounted for in the PTC in contrast

to [15, 17].

It was already observed in [18] that the fundamental parameters of α′ corrected KPV are

p/M and gsM . We have seen from Fig. 5 that increasing gsM by keeping p/M as large as

possible (required that gs < 1) increases the control over α′ corrections. The reason being

that our parameter of control, the radius of the S2 wrapped by the NS5-brane, increases.

Clearly, if we demand that we have significant control, then we must uplift using a deep

warped throat.

Hence gsM is the main control parameter and it is therefore useful to reformulate the

PTC such that it takes ce = gsM As an input control parameter. This version of the PTC is

derived in App. B.3 with the result that the total negative D3-tadpole of the compactification

geometry Q3 must obey the bound

−Q3 > N{cN ,ce} =
28/3

π

κ
2/3
s c2

e

ξ2/3 as
(W−1(y))2 , y = − 32/5 a

1/4
0

8 223/40 55/8 π1/40

κ
1/6
s ξ1/12

p1/4 a
1/4
s c

5/8
N c

1/4
e

, (5.1)

in order for the traditional de Sitter uplift with a large warped throat to be possible. Here κs
is related to the triple self intersection number of the divisor associated to the LVS blow-up

cycle, ξ = 0.6χ/(2π)3 with the Euler number χ of the Calabi-Yau on which is compactified, as
stems from the nonperturbative corrections to the superpotential responsible for stabilising

the Kahler moduli5, W−1(x) is the -1 branch of the Lambert W function, and a0 ≈ 0.71805.

The control parameter cN quantifies the control over a correction due to a varying warp factor

in the bulk of the Calabi-Yau.

Since the topological quantities (as, ξ, κs) enter polynomially in (5.1), we can see that

they are an essential ingredient to find suitable models where the PTC is weakest but still

satisfies the desired amount of control chosen by ce and cN . This is also emphasized in [15, 17].

The quantities as and ξ should be chosen as large as possible and κs as small as possible to

minimize (−Q3)min.

Combining the results of Sect. 3 with the PTC will yield a bound on the minimal negative

contribution to the D3-tadpole that respects the constraints coming from the α′ corrected

KPV potential.

5If the nonpertubative corrections are Euclidean D3-branes, one has as = 2π. For gaugino condensation on
a stack of D7-branes, as depends on the gauge group, for instance as = π/3 for SO(8).
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To obtain the minimal tadpole for some examples we proceed as follows. First, we choose

some reasonable numbers for as and κs, namely as = 2π, κs = 0.1. Then, to minimize

(−Q3)min, we take p/M as large as possible (such that M is as small as possible for fixed p)

for a given value of gsM . This can be read off from Fig. 5. This will fix p (which we may take

as small as possible still compatible with gs < 1) and gs. These parameters together with

some value of cN will already suffice to determine ξ via (B.9) and then (−Q3)min using (5.1).

The minimal choice of gsM depends on the readers notion of control. Each point in the

(gsM,p/M) parameter space corresponds to a specific radius of the NS5 which determines

the amount of control over higher order α′ corrections. For this reason, we list (−Q3)min for

multiple values of R̃NS5. The results are summarized in Tab. 2.

Table 2. The minimal value of the required negative contribution to the D3-tadpole (Q3)min for
as = 2π and κs = 0.1 for different values of the control parameter R̃2

NS5 = gsM sin2 ψ. The choice of
gsM and p/M for a given value of R̃2

NS5 is such that the tadpole is minimal.

input parameters cN = 5 cN = 100

R̃2
NS5 p gsM p/M gs gsM

2 χ (−Q3)min χ (−Q3)min

1 1 3.8 0.025 0.095 152 14 560 20 715

2.2 1 7 0.0323 0.226 217 52 803 75 1015

3 1 9.5 0.0385 0.365 247 108 913 155 1156

5.2 1 13 0.0526 0.684 247 278 913 397 1156

9 2 20.7 0.0667 0.69 310 299 2387 422 3000

Comparing these numbers with [18] we observe that the α′ corrections calculated in this

work lead to higher values of (−Q3)min. The main reason being that at small values of gsM ,

also p/M has to decrease such that a metastable minimum remains. This finally leads to

larger values of M (and smaller values of gs) such that the volume of the Calabi-Yau and the

tadpole in the throat increase. In contrast to [18] where the upper bound on p/M at smallish

gsM is always given by the KPV bound p/M < 0.08. Interestingly, as can be seen from

line four and five in Tab. 2, increasing the control over α′ corrections does not necessarily

result in a higher tadpole. The reason for this is again that higher values of p/M are allowed

when gsM is increased. Let us also emphasize that the control parameter R̃NS5 increases only

slowly at small gsM . Thus, a slight in- or decrease in control can already have a significant

impact on the resulting tadpole.

In total, the results point towards large tadpoles already at small values of gsM in order

to have control over α′ corrections. This challenges LVS model-building to find Calabi-Yaus

with large tadpole.

Considering the strong constraints on (−Q3)min in the traditional uplift with large warped

throats, it becomes very attractive to study the new way of uplifting discussed in Sect. 4.

There, the PTC is not applicable since Vup can be tuned exponentially small without large
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warping. Instead, we saw that this novel uplifting mechanism already works for M = 40, K =

1 such that for the novel uplifting mechanism one has the much more reasonable constraint

−Q3 > KM = 40 for the negative D3-tadpole of the compactification geometry.

6 The S-dual KS set-up

In this paper we have focused on the Klebanov-Strassler throat. One may instead consider an

anti-D3 at the tip of the S-dual to the Klebanov-Strassler throat (SDKS) [22]. The advantage

to this is that in the SDKS set-up one works with D5-branes for which the α′ corrections to

the fivebrane worldvolume action we consider are explicitly known, while for the NS5-brane

in KS we had to infer the analogous corrections as discussed in Sect. 3.

In the SDKS geometry, there are K units of H3 flux on the S3 at the tip of the throat

and M units of F3 flux on the B-cycle. In this S-dual set-up p anti-D3-branes will puff up into

a D5-brane wrapping an S2 at the tip of the throat, rather than an NS5-brane. The radius of

the tip is ∼
√
K in SDKS rather than ∼ √gsM in KS. It is straightforward to compute the

α′ corrected worldvolume potential for the D5-brane at the tip of the SDKS throat by going

through the analysis of Sect. 3 again but now with the SDKS geometry and the action of the

D5-brane. One obtains (3.6) but with gsM substituted by K and p/M substituted by p/K

for the potential of the D5-brane. The analysis of Sect. 3 then also goes through for the D5,

with these substitutions. For instance, Fig. 4 and Fig. 5 also show the different regimes of

the D5-brane after substituting the gsM axis by a K axis. and the p/M axis by a p/K axis.

The issue now is that K and p are both integer and so we cannot achieve arbitrary

points Fig. 4 and Fig. 5. Crucially, to have a metastable vacuum we require at the very least

p/K < 0.08, which requires K > 12.5p. Since then at the very least K = 13 it is not possible

to achieve a small throat in the SDKS set-up, preventing the use of a small throat uplift.

One may also repeat the analysis of Sect. 5 for a traditional uplift with a large warped

throat in the LVS for the SDKS set-up.

To obtain the corresponding formulas, replace gsM → K and K → gsM everywhere.

One finds

Vuplift =

(
32 π3 222/3

)1/5

a0

gs

K2V4/3
e−

8πgsN

3K2 . (6.1)

The derivation of the PTC leads precisely to (B.11) but with the replacement ce → K.

The same conclusion that for an uplift with a large warped throat one requires a very large

negative D3-tadpole in the compactification geometry then also holds when using SDKS to

uplift. However, in SDKS unlike in KS there is no hope of achieving an uplift in a small

throat using the novel uplifting mechanism.

7 Conclusions and outlook

The main result of this paper is to compute as completely as we were able the α′ corrected

potential for the NS5-brane at the tip of a warped throat. This is given by Vtot in (3.6). The
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resulting potential matches the results of KPV in the regime where α′ corrections are small,

but several interesting new features appear when α′ corrections become important.

At large gsM , the condition to have a metastable KPV vacuum is p/M . 0.08 as in KPV.

For small gsM , this bound becomes stronger as can been seen in Fig. 4, getting as strong as

p/M . 0.025 in the small gsM limit.

The α′ corrections generically lower the potential of the metastable vacuum compared to

the tree-level result. Once the corrections become very strong, the metastable vacuum can

even obtain a negative energy as seen in Fig. 4. There exists then a line of metastable vacua

with zero energy. This presents the possibility of a novel uplifting mechanism: By keeping

the vacuum energy of the metastable minimum positive but tuning gs to get arbitrarily close

to the line of zero-energy vacua one can obtain an arbitrarily small uplifting potential Vup in

a small throat without needing to rely on warping. This permits an uplift for a throat with

a D3-tadpole contribution as low as N = 40.

This is in contrast to the traditional anti-D3 uplift using exponential warping. The

requirement to have a sufficiently large warped throat for the standard uplifting mechanism

is generically impossible to satisfy in KKLT due to the singular bulk problem. In the LVS

one requires compactification geometries with O(103) negative D3-tadpole which are difficult

to obtain. The fact that these issues are avoided in our new small throat uplifting mechanism

makes the new uplifting mechanism we propose in our opinion very promising.

The main issue with the small throat uplift is that it relies on α′ corrections to achieve

a very small Vup. As a result, at the metastable minimum the α′ corrections to the potential

are of the same order of magnitude as the tree-level potential. By the very nature of our

set-up, this uplift then drives us near the boundary of control over the perturbation series of

α′ corrections as seen in Fig. 5.

One way to deal with this issue is to continue computing higher order α′ corrections until

one is confident that one has control despite being near (but not past) the boundary where

the perturbation series in α′ breaks down. In a way this is what we have initiated here. In

[18] it was suggested that the new uplifting mechanism might be possible, but this could

not explicitly be checked as not taking into account α′ flux corrections led to some clearly

unphysical behaviour and we had to speculate how this unphysicality would resolve. The

explicit computations we have done here confirm the qualitative behaviour guessed at in [18].

Unfortunately, to compute even higher order α′ corrections to the fivebrane worldvolume

seems a rather grueling task, especially as we have accounted for all α′ corrections to the

worldvolume whose explicit form we were able to find in the literature. Any further terms

one then first has to derive the form of and then compute in the KS throat background.

However, there is also good news when it comes to control. First, the abelian NS5-brane

analysis is just one perspective on the metastable KPV vacuum. One may also perform the

analysis from the perspective of either a nonabelian stack of anti-D3-branes or a holographic

perspective. In fact, the regime gsM � 1 where the α′ perturbation theory breaks down for

the NS5-brane is precisely the regime where the holographic picture is under good perturbative

control. If one could holographically establish that there exists a metastable vacuum with
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negative or zero energy for gsM . 1, p/M . 0.025 as predicted in Fig. 4, then under the

assumption that the potential at the metastable minimum is continuous in gsM and p/M ,

it is guaranteed that there exist metastable vacua with zero energy and our new uplifting

mechanism works. Second, the issues with control in our analysis seems isolated to the tip

of the throat, which in compactifications one can isolate from the rest of the geometry by an

intermediate amount of warping. This is in contrast to uplifts with a large warped throat

which can strongly affect and destroy the entire compactification geometry as for instance

with the singular bulk problem in KKLT [12–14].

We believe that our work shows very encouraging evidence that a de Sitter uplift using α′

corrections for anti-D3-branes in small warped throats is possible. This avoids the issues with

uplifts using large warped throats. Questions concerning the amount of control in our set-up

remain. Many future directions to analyse our set-up are open and we hope to continue this

story in the future.
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A Flux corrections to branes and their evaluation at the tip of the throat

In this appendix, we evaluate the α′ corrections calculated in [23–33] at the tip of the throat.

To do so, we need the KS fluxes close to the tip of the throat. They are given by6

B2 ⊃
gsMα′τ

6
g3 ∧ g4 +O(τ2) , (A.1)

H3 ⊃
gsMα′

6
dτ ∧ g3 ∧ g4 +

gsMα′τ
12

g5 ∧
(
g1 ∧ g3 + g2 ∧ g4

)
+O(τ2) , (A.2)

F3 ⊃
Mα′

2
g5 ∧ g3 ∧ g4 +

Mα′τ
12

dτ ∧
(
g1 ∧ g3 + g2 ∧ g4

)
+O(τ2) , (A.3)

F̃5 ⊃
(

τ

34/3g3
sM

2a2
0

+O(τ3)

)
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτ +O(τ2) , (A.4)

H7 ⊃−
1

25/3a0g3
sM

dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ g3 ∧ g4 ∧ g5+

τ

12 25/3a0g3
sM

dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτ ∧
(
g1 ∧ g3 + g2 ∧ g4

)
+O(τ2) , (A.5)

where the one forms g1...5 (see for instance [47]) parametrize the T 1,1.

Before explicitly evaluating α′ corrections to the worldvolume action of a fivebrane wrap-

ping an S2 at the tip of the throat, we list some important properties of the fluxes that will

make many corrections vanish.

6We only display terms which are relevant to our calculations.
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a) There are only a few components of the fluxes that are non-vanishing at the tip. Hence,

a wrong number of tangential and/or normal indices will make terms vanish.

b) F3, C2 and F2 are covariantly constant along the S2. That means that7 ∇αF2αβ = 0

and ∇αF3βγa = 0.

c) The covariant derivative of F3 with respect to a normal index is always zero at the tip

except for the term ∇ψF3 θϕψ where (θ, ϕ) parametrize the non-shrinking S2 at the tip

and ψ the additional direction inside the S3.

d) If covariant derivatives with respect to a normal index of form fields appear then com-

ponents linear in τ can be non-vanishing at the tip if the terms in the action have the

correct index structure.

A.1 Flux corrections that vanish for the KS set up

Let us start with flux corrections to the DBI action. There are α′2 corrections involving only

covariant derivatives of H3 [23, 28]

SDp,DBI ⊃
µp
gs

π2α′2

48

∫
dp+1ξ

√
−(g + 2πα′F2)

[
−1

6
∇αHabc∇αHabc

− 1

3
∇aHαβγ∇aHαβγ +

1

2
∇αHβγa∇αHβγa

]
,

(A.6)

where 2πα′F2αβ = 2πα′F2αβ + B2αβ for Dp-branes and 2πα′F2αβ → 2πgsF2αβ =

2πgsα
′F2αβ − gsC2αβ for the NS5-brane. Evaluating (A.6) at the tip of the throat for an

NS5-brane (where H3 → −F3 and the correct gs scaling can be inferred from analogous con-

siderations as in Sect. 3.1) gives zero due to property b) and since the term ∇ψF3 θϕψ does

not show up (see property c)).

Next, in [29, 31] corrections including F2 are computed8:

SDp,DBI ⊃
π2α′2µp

12gs

∫
dp+1ξ

√
−(g + 2πα′F)

[
Rβδ

(
∇αFαβ∇γFγδ −∇αF δ

γ ∇γFαβ
)

+
1

2
Rβδγε∇γFαβ∇εF δ

α + Ωa α
α ∇δH δ

γ a∇βFβγ

+
1

4
R δ
δ

(
∇αFαβ∇γF γ

β +∇βF γ
α ∇γFαβ

)

− Ωaβα

(
∇βF γ

α ∇δH δ
γ a +∇δF γ

α ∇aHβγδ −
1

2
∇δF γ

α ∇γHβδa

)]
,

(A.7)

where Rαβγδ is the Riemann tensor and Rαβ the Ricci tensor. These terms also vanish since

F2 and C2 are covariantly constant on the S2 at the tip (property b)). For the same reason the

7We work in conventions where (α, β, γ, · · · ) are indices tangent to the brane and (a, b, c, · · · ) are indices
normal to the brane.

8We abbreviate F2 with F to not clutter notation.
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corrections in [30, 32] vanish at the tip of the throat (except six terms of the form F2Ω2∇H3

in [32] that will be calculated in App. A.2).

Let us move on to corrections of the Chern-Simons (CS) action. The tree level Chern-

Simons action reads

SCS,Dp = µp

∫

Mp+1

Tr
(

e2πα′F2

)
∧
√
Â(4π2α′RT )

Â(4π2α′RN )
∧
⊕

q

Cq

∣∣∣∣∣
p+1

. (A.8)

This can be written in a more explicit form by expanding the exponential and the A-roof

genus Â(Ri) of the Riemann curvature 2-form of the normal or tangent bundle and then

taking the right Cq form such that the integrand matches a p+ 1 form. For the NS5-brane at

the tip of the throat, the only non-vanishing components are B6 +F2 ∧C4 which are already

included in the analysis of [1]. Hence, there are no additional contributions from (A.8) to the

scalar potential.

Moreover, there are α′ corrections to the CS action which are computed in [24–26, 29, 31].

When carefully taking into account properties a) to d), it turns out that all these terms vanish

at the tip of the throat (except one term of the form εF2R∇F̃5 and two terms of the form

εF2∇H3∇F7 of [31] which will be computed in App. A.2).

A.2 Non-zero flux corrections

In [27, 28] α′2 corrections to the O-plane action are calculated. As explained in Sect. 3 these

are also present on Dp-branes. The corresponding action reads9

SDp,DBI ⊃
µp
gs

π2α′2

48

∫
dp+1ξ

√
−(g + 2πα′F2)

[
HαβaH γ

α a(RT )βγ −
3

2
HαβaH b

αβ Rab

+
1

2
HabcH d

ab Rcd −HαβaHγδ
a(RT )αβγδ +HαβaH bc

a (RN )αβbc

− 1

4
HαβaH b

αβ H cd
a Hbcd +

1

4
HαβaH b

αβ Hγδ
aHγδb

+
1

8
HαβaH γb

α H δ
β bHγδa −

1

6
HαβaH γb

α H c
βγ Habc +

1

24
HabcH de

a H f
bd Hcef

]
,

(A.9)

where (RT ), (RN ) and R are defined as [19]

(RT )αβγδ = Rαβγδ + gab(Ω
a
αγΩb

βδ − Ωa
αδΩ

b
βγ) , (A.10)

(RN ) ab
αβ = −Rabαβ + gγδ(Ωa

αγΩb
βδ − Ωb

αγΩa
βδ) , (A.11)

Rab = R̂ab + gαα
′
gββ

′
ΩaαβΩb α′β′ , (A.12)

where Ωµ
αβ is the second fundamental form, and R̂ab = Rαaαb.

9As before, we assume that the couplings extend to non-geodesically embedded branes and abbreviate H3

by H.
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In the case of the KS throat, we extend (A.9) to NS5-branes leading us schematically to

the first two terms of (3.3) from which we can read off the correct gs scaling. Using the KS

flux (A.3) in the spherical parametrization of the deformed conifold at the tip of the throat

[48] (see also [18]), we find

SNS5,DBI ⊃ −
1

(gsM)2

(
c3 + c4 cot2 ψ

) µ5

g2
s

∫
d6ξ
√
−(g + 2πα′gsF2) , (A.13)

where c3 = π2

48

(
45

4I(0)3
− 12 61/3

I(0)2

)
≈ 2.44781 and c4 = π2

48
12 61/3

I(0)2
≈ 8.69589 with I(0) ≈ 0.71805.

The coefficient c3 is smaller than c4 since the F 4
3 terms compete with the F 2

3R terms whereas

c4 is only due to F 2
3 Ω2 couplings.

In [33] couplings of the form Ω4 and Ω4F 2
2 are calculated where Ω is the second funda-

mental form. The couplings are (see equ. (51) in [33])

SDp,DBI ⊃ −
µp
gs

π2α′2

24

∫
dp+1ξ

√−g
[
9Ωa ε

α Ωb η
β ΩbγεΩaδη(2πα

′Fαβ2 )(2πα′F γδ2 )

+ 2Ω ε
aγ ΩaγδΩb η

δ Ωbεη − 2Ωb
γδΩ

aγδΩbεηΩ
εη
a

+
1

4

(
2Ω ε

aγ ΩaγδΩb η
δ Ωbεη − 2Ωb

γδΩ
aγδΩbεηΩ

εη
a

)
(2πα′F2αβ)(2πα′Fαβ2 )

+ . . .︸︷︷︸
12 similar couplings with different contractions

+O(Ω4F 4
2 )

]
.

(A.14)

The terms in the second line are precisely the pure α′2 curvature terms involving only the

second fundamental form that were computed in [19]. We observe that the index structure of

the terms in the third line equals the index structure of the second line – the field strength

tensors are contracted among themselves. This means that we can identify the second and

third line with the first two terms of the expansion of
√
−(g + 2πα′F2)Ω4 which is already

captured by the curvature correction of [19] calculated for the KS throat in [18]10. Dropping

the pure curvature terms, the novel coupling terms in (A.14) read

SDp,DBI ⊃ −
µp
gs

π2α′2

24
(2π)2

∫
dp+1ξ

√
−(g + 2πα′F2)

[
9Ωa ε

α Ωb η
β ΩbγεΩaδηFαβ2 Fγδ2

+ . . .︸︷︷︸
12 similar couplings with different contractions

]
.

(A.15)

Note that we extended the couplings by replacing
√−g →

√
−(g + 2πα′F2) which means that

we assume an infinite tower of (so far not calculated) couplings of the form Ω4Fn2 rearranging

in such a form to reproduce
√
−(g + 2πα′F2). These terms can again be evaluated at the

tip of the KS throat. Choosing the worldvolume F2 flux as in KPV and the gs scaling as in

10Note that this is one reason why we assume that the couplings extend to 2πα′F2 → 2πα′F2.
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(3.3), they yield

SNS5,DBI ⊃ −
cot4 ψ c5

(gsM)2 sin4 ψ

(
πp

M
−
(
ψ − sin(2ψ)

2

))2 µ5

g2
s

∫
d6ξ
√
−(g + 2πα′gsF2) , (A.16)

where we wrote the F2 flux number p as p = (p/M)(gsM)/gs and c5 = π2

6
45 31/3

4 22/3I(0)2
≈ 32.6096.

The parametrics of this result is understood easily: Ω4 ∼ cot4 ψ/R4
S3 , F2 ∼ p/R2

S2 and

C2 ∼M(ψ − sin(2ψ)/2)/R2
S2 with R2

S2 = R2
S3 sin2 ψ ∼ (gsM) sin2 ψ.

Next, we evaluate the corrections to the DBI action calculated in [32] at the tip of the

throat. As explained above, the only non-vanishing corrections for the KS throat are given

by

SDp,DBI ⊃ −
π2α′2µp

96gs

∫
dp+1ξ

√
−(g + 2πα′F2)

[
5(2πα′Fαβ2 )Ωaγ

αΩb δ
δ

(
∇aHβγb

−∇bHβγa

)
+ (2πα′Fαβ2 )Ωaγ

αΩbδ
γ (∇aHβδb −∇bHβδa)

+ (2πα′Fαβ2 )Ωa γ
γ Ωb δ

δ ∇bHαβa − (2πα′Fαβ2 )Ωb
δγΩaδγ∇bHαβa

]
.

(A.17)

For the KS throat, the terms in the first two lines pairwise cancel against each other due to

property c). The non-vanishing contribution then comes from the last line and yields for the

NS5-brane

SNS5,DBI ⊃
cot3 ψ c6

(gsM)2 sin2 ψ

(
πp

M
−
(
ψ − sin(2ψ)

2

))
µ5

g2
s

∫
d6ξ
√
−(g + 2πα′gsF2) , (A.18)

with c6 = 61/3π2

16I(0)2
≈ 2.17397 where the parametrics can be understood from gs∇F3 ∼

gsM cotψ/R4
S3 .

Additionally to the non-vanishing contributions from the DBI action for the KS throat,

we found one non-vanishing α′2 coupling from the Chern-Simons action that includes F̃5 and

two couplings that involve H7. Both can be found in [31]. The F̃5 coupling term on the NS5

is given by

SNS5,CS ⊃ −
π2α′2µ5

24g2
s

1

4!

∫
d6ξεα0α1···α5(2πα′gsF2α0α1)R

ab∇a(gsF̃5)bα2α3α4α5 , (A.19)

where εα0α1...α5 is the Levi-Civita symbol on the worldvolume of the NS5-brane. This can be

evaluated at the tip yielding

SNS5,CS ⊃−
(
−c7 (ψ − sin(2ψ)/2)

(gsM)2 sin2 ψ
+

c7π(p/M)

(gsM)2 sin2 ψ

)
µ5

g2
s

∫
d6ξ
√−g6

= −4πµ5M

gs

c7

(gsM)2

(
πp

M
−
(
ψ − sin(2ψ)

2

))∫
d4x
√−g4

(A.20)
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where I ′′(0) = −22/3/34/3 and c7 = π2 62/3(2I(0)−3I′′(0))

18I(0)7/2
≈ 14.6396.

The H7 coupling terms read (again already for the NS5 where F7 → H7)

SNS5,CS ⊃
π2α′2µ5

48g2
s

1

6!

∫
d6ξεα0α1···α5

[
(2πα′gsF2)αβ∇a(−gsF3) b

αβ∇b(g2
sH7)aα0···α5

+ (2πα′gsF2)αβ∇a(gsF3) b
αβ ∇a(g2

sH7)bα0···α5

]
,

(A.21)

which gives at the tip

SNS5,CS ⊃ −
4πµ5M

gs

c8 cotψ

(gsM)2 sinψ

(
πp

M
−
(
ψ − sin(2ψ)

2

))∫
d4x
√−g4 , (A.22)

where c8 = 2π
2 62/3

I(0)5/2
≈ 18.6475.

Taking all non-vanishing corrections together, the scalar potential following from (A.13),

(A.16), (A.18), (A.20) and (A.22) reads

Vflux =
4πµ5M

gs

√
b40 sin4(ψ) +

(
p
π

M
− ψ +

1

2
sin(2ψ)

)2

× 1

(gsM)2

[
c3

+ c4 cot2 ψ +
c5 cot4 ψ

sin4 ψ

(
πp

M
−
(
ψ − sin(2ψ)

2

))2

− c6 cot3 ψ

sin2 ψ

(
πp

M
−
(
ψ − sin(2ψ)

2

))]

+

[
4π2pµ5

gs
− 4πµ5M

gs

(
ψ − sin(2ψ)

2

)](
c7

(gsM)2
+

c8 cotψ

(gsM)2 sinψ

)
.

(A.23)

B Tadpole constraints in the Large Volume Scenario

In this appendix we first review the PTC [16] and then give a reformulated version of it such

that constraints from α′ corrected KPV can naturally be implemented. In addition we briefly

discuss a loop correction used to constrain the LVS in [15, 17] and explain why we believe it

to be less important than discussed in these papers.

B.1 The Parametric Tadpole Constraint

To begin, we quickly review the basic set up of the LVS and the most important ingredients

of the PTC. For more details consult [16]. We work in type IIB string theory compactified

to 4D on a Calabi-Yau orientifold. In the minimalist case, the Calabi-Yau has two Kahler

moduli, a big cycle τb and a small cycle τs. The volume is given by V = τ
3/2
b −κsτ3/2

s in units

of ls = 2π
√
α′ where κs =

√
2/(
√

3κsss) and κsss is the triple self intersection number of the
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small divisor. The corresponding superpotential is given by

W = W0 +Ase
−asTs , (B.1)

where Re(Ts) = τs and As a model-dependent prefactor. W0 is induced by fluxes and as
determines whether the nonperturbative correction to W is coming from ED3-branes (as =

2π) or from gaugino condensation on D7-branes (for an SO(8) gauge group, as = π/3). The

Kahler potential reads [10, 49]

K = −2 ln

(
V +

ξ

2g
3/2
s

)
= −2 ln

(
τ

3/2
b − κsτ3/2

s − χ ζ(3)

4(2π)3g
3/2
s

)
, (B.2)

where gs is the string coupling, χ the Euler number of the Calabi-Yau and ζ(3) ≈ 1.2. The

correction proportional to g
−3/2
s is due to [49]. At the minimum of the scalar potential

V =
3κs|W0|

√
τs

4as|As|
easτs , τs =

ξ2/3

(2κs)2/3gs
+O(1) . (B.3)

For deriving the PTC, higher F-term corrections [50, 15] and a correction coming from

the combination of higher curvature corrections and a varying warp factor [15, 16] are taken

into account. Demanding the size of the corrections to be small compared to the LVS AdS

minimum leads to the definition of the control parameters cW0 and cN which should be large

for parametric control over the higher F-term or varying warp factor correction, respectively,

[16]:

1 = cW0

16as

3(2κs)2/3ξ1/3

W 2
0

V2/3
, 1 = cN

10 as ξ
2/3

(2κs)2/3gs

N

V2/3
. (B.4)

Additionally to the PTC, there is a bound on Q3 given by [51]

−Q3 ≥ 4π
gsW

2
0

2
, (B.5)

which can be used to determine c∗W0
(cN ) such that some minimal quality of control is ensured

[16]. This leads to c∗W0
(cN ) = 15πξcN/4 such that the minimal tadpole required by the PTC

reads11

−Q3 > N = −21cM
16π

W−1(x) , x = − 311/35 a
2/7
0

7 259/105 55/7 π1/35

κ
2/7
s

p2/7 a
3/7
s c

5/7
N c

1/7
M

, (B.6)

where W−1(x) is the −1 branch of the Lambert W function and we defined the control

parameter cM = gsM
2.

11Note that we generalized the PTC for uplifting with p anti-D3-branes.
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B.2 Loop Corrections

In this section we will consider a loop correction to the LVS de Sitter uplift which was not

taken into account when deriving the PTC but was considered in [15, 17] and we will discuss

the relative importance of this loop correction.

The Kahler potential for the Kahler moduli will generically be loop corrected, see e.g. [52–

57]. A detailed study of such loop corrections and their relative importance was recently given

in [35].

We will focus only on the most dangerous loop corrections which are loop corrections to

the blowup cycle as they are on-shell in the LVS only suppressed by g2
s (instead of the volume

g
3/2
s V−1/3) compared to the leading order terms in the scalar potential [35].

From this it directly follows that loop corrections in the LVS will be small as soon as g2
s

is sufficiently small. This can be made more precise by formulating this condition in terms of

a control parameter. A reasonable way to define the control parameter is to measure the size

of the loop correction to the blowup cycle compared to its leading order value (B.3). Using

the results of [15] this can for instance be specified for a ‘KK-type’12 loop correction to the

Kahler potential of the form [55]

δK = CKK
s

gs
√
τs
V , (B.7)

where CKK
s is some unknown prefactor. This leads to a correction13 to the on-shell value of

τs in (B.3) of the form CKK
s gs/(3κs). The control parameter is hence defined as

1 = cloop
22/3g2

s

3κ
1/3
s ξ2/3

, (B.8)

and we demand cloop � 1 for control.

This is a much weaker constraint than the related one of [17]. They demand λ6 =

asgs/(3κs)� 1. This requirement follows from demanding that the size of the loop correction

is smaller than one. We believe it is only physically meaningful to compare the loop correction

to the leading order term as done in (B.8), and not to compare the size of the loop correction

to unity. We therefore propose to use (B.8) instead of λ6.

Furthermore, as recently discussed in [35], there are settings where loop corrections are

assumed to be absent. For example, the loop correction (B.7) is absent if no D7-brane wraps

the blowup cycle τs. Then, a ‘KK-type’ loop corrections can not be induced since the M2
10gsR

2
8

operator on the D7 and an Einstein-Hilbert term on an intersection 2-cycle ∼ √τs is absent

[35]. Additionally to (B.7) there are ‘Winding-type’ loop corrections [55] or more generally

genuine loop corrections [35] to the blowup cycle. Such corrections appear more generally

and are (probably) only absent if there is N = 2 SUSY locally at the blowup cycle. Hence,

it should be possible to find models not featuring loop corrections to the small blowup cycle.

12We refer the reader to [35] for a classification of the different types of loop corrections.
13Note that also winding type loop correction to the blow-up cycle will contribute at the same order in gs.
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As discussed in [35], one may attempt to estimate the numerical prefactor in the expansion

parameter of loop corrections and hence their 1/2π suppression. Such a suppression can play

a major role since (B.8) would be weakened significantly such that parametric control over

loop corrections could be obtained much earlier than expected. For some toric geometries the

expansion parameter is calculated explicitly in [53] and a 1/(2π)4 suppression is found. For

generic Calabi-Yaus naive dimensional analysis [58] in a 4d approach reveals a suppression

by 1/16π2 [35] without evaluating the sum over KK modes which can lead to a further

suppression (see e.g. Sect. II in [59]).

As these loop corrections are g2
s suppressed and we expect them to be suppressed by a

numerical prefactor generically no larger than 1/16π2, we shall assume they can usually be

neglected in our analysis. In cases where gs ≤ 1 for some choice of M and one does not want

to rely on a small numerical prefactor of loop corrections, it is still possible to increase M

and keep gsM constant to decrease gs. This is of course at the expense of increasing the

D3-tadpole.

B.3 The bound from gsM

The constraints coming from the α′ corrected KPV potential can naturally be thought of as

a bound on gsM since gsM is the main control parameter of the potential.

We hence aim to rewrite (B.6) such that it takes ce ≡ gsM instead of cM = gsM
2 as an

input parameter. As usual, we treat ce as a control parameter where large ce increases the

control over α′ corrections. This can be done using14

ce = gsM =
√
gscM =

(
9as
16π

)1/2( ξ

2κs

)1/3 cM√
N
, (B.9)

where we used

gs =
9as
16π

(
ξ

2κs

)2/3 cM
N

⇐⇒ gs
p

=
9as
16π

(
ξ

2κs

)2/3 ce
N

M

p
, (B.10)

following from a relation τs(N) derived in [16] from comparing the volume in (B.3) with the

volume expressed in terms of the uplift potential.

The version of the PTC which takes ce instead of cM as input is then derived by using

(B.9) in (B.6). We end up with

−Q3 > N{cN ,ce} =
28/3

π

κ
2/3
s c2

e

ξ2/3 as
(W−1(y))2 , y = − 32/5 a

1/4
0

8 223/40 55/8 π1/40

κ
1/6
s ξ1/12

p1/4 a
1/4
s c

5/8
N c

1/4
e

. (B.11)

Let us now compare the two versions of the PTC (B.6) and (B.11). In (B.6) the only

parameter that enters non-logarithmically is cM whereas in (B.11) ce and the topological

quantities enter polynomially. If one considers (B.6) with a given cM , the value of ce is

14Note that ce depends on cN through N logarithmically. With increasing cN also ce decreases.
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then determined by (B.9) where the topological quantities are important. This can be in

contradiction with the constraints on ce obtained from the α′ corrected KPV potential. Taking

into account these constraint, it is more useful to work with the PTC (B.11) instead of (B.6).
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Chapter 6

Conclusions

The thesis intends to address (one of) the most urgent and important questions of string
phenomenology: Does string theory allow for de Sitter vacua? Even after decades of intense
research this question still remains unanswered with many open ends. We hope that the
progress of this thesis will eventually help to find a definitive answer to this question and
that the methods and insights of this thesis will turn out useful for further research in string
phenomenology.

In Sect. 6.1 we summarize in detail the main results of the previous Chapters in order to
give an overview of the research conducted in this thesis. Then in Sect. 6.2 those results will
be discussed and put into the broader context of string phenomenology. Lastly, in Sect. 6.3,
we elaborate on future directions motivated by results of this thesis.

6.1 Summary

In the following we summarize the main findings of the publications associated to this thesis
which are reproduced in Part I and II. Therein the corresponding detailed calculations and
explanations can be found.

Part I – Higher order corrections to type IIB string theory

The first part of the thesis investigates perturbative higher order α′ and gs corrections to the
10d type IIB supergravity effective action. These corrections are often essential for stabilizing
moduli and if they are not, one has to ensure that moduli stabilisation is not spoiled by these
corrections.
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Chapter 2 – Loops, local corrections and warping in the LVS and other IIB
models

The above applies in particular to string loop corrections which are the main subject of study
in this Chapter. String loop corrections are frequently used for stabilizing non-blowup Kahler
moduli and for inflationary model building in the LVS. But phenomenological applications
based on string loop corrections remain on a rather shaky foundation. The reason is that the
conditions under which string loop corrections occur and how they scale with the dilaton and
the Kahler moduli on general Calabi-Yau orientifolds are only conjectured in a work by Berg,
Haack, and Pajer (BHP) [129]. The conjecture is based on explicit string loop calculations on
toroidal orbifolds [127] which are very special geometries compared to a Calabi-Yau orientifold.

Trusting the BHP conjecture, it predicts that the Kahler potential (and also the scalar
potential according to (1.4)) is corrected by string loops due to two effects. First, there
are so-called KK corrections which arise due to the exchange of closed strings carrying KK
momentum between D-branes. They induce a correction to the Kahler potential of the form
δKKK ∼ gsT (ti)/V. The function T (ti) is conjectured to be a linear combination of 2-cycle
Kahler moduli ti. The linearity is very special given the complicated topology of a Calabi-
Yau. The suppression by the volume V of the Calabi-Yau is universal due to Weyl rescaling.
Second, there are winding corrections when a string winding around the intersection 2-cycle of
intersecting D7-branes is exchanged between the branes. The winding correction to the Kahler
potential reads δKW ∼ 1/(I(ti)V) where I(ti) is again a linear combination of 2-cycle Kahler
moduli.

Due to the strong phenomenological interest in loop corrections it is crucial to deepen
the understanding of which correction occurs under which circumstances in the 4d effective
potential and how the corrections depend on the Kahler moduli and the dilaton. Only after
clarifying these questions, one can reliably use string loop corrections for phenomenological
applications without having to rely the BHP conjecture. To make progress in this directions,
we take the perspective of an effective field theorist in this Chapter.

To understand string loop corrections and therefore also the BHP conjecture from the field
theoretic perspective it is useful to first consider perturbative corrections more generally. As
explained in the Introduction, in string theory there are two types of perturbative corrections:
α′ and string loop (or gs) corrections. However, for our purposes this classification is not useful.
Rather, as one outcome of this Chapter, we propose an EFT-biased classification scheme for
perturbative corrections to the 4d string-derived Lagrangian that is suitable for our purposes.
We classify the corrections into the following three types: genuine loop corrections, local α′

corrections, and warping corrections. The main strategy here is to identify specific limits
of string diagrams with objects arising in effective field theory. Some essential connections
between string (loop) diagrams and field theory loop diagrams necessary for our classification
are discussed in Chapter 1.3.

First, the genuine loop corrections are characterized by their non-locality in the higher
dimensional theory. Hence, they can not be associated with higher dimensional operators.
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From the 4d perspective, they come from integrating out the tower of KK modes. Analogously,
in 10d they arise from loops of brane-localized or 10d fields which propagate in the compact
space. In this sense, they are reminiscent of the Casimir effect from the perspective of the
higher dimensional theory. The second type of corrections, the local α′ corrections stem from
higher-dimensional local operators in 10d, on D-branes or O-planes, and their intersections.
These higher dimensional operators can include possible counterterms needed to renormalize
genuine loop corrections. Finally there are corrections due to the classical backreaction of the
background geometry, which are called warping corrections. They can be understood as the
backreaction effect of a localized object (like D-branes, fluxes, or O-planes) on a point where
the geometry is warped. From the field theory perspective this is due to the propagation of
massless 10d fields which is not captured by field theory loops as it is a tree level effect. In
contrast, in the language of string diagrams this may be interpreted as a tree-level closed string
exchange or, equivalently, a 1-loop open string diagram where for instance a long open string
between to branes propagates in a short loop. Hence, warping corrections include contributions
from string loop diagrams and should therefore be part of the analysis of [127] and of the BHP
conjecture.

Based on this EFT-biased classification scheme we find some important differences to
the BHP conjecture (additionally to the warping correction explained above). We find that
genuine loop corrections scale like the BHP winding corrections with two crucial differences.
First, genuine loop corrections are not tied to models with intersecting D7-branes but appear
much more general. These Casimir-like corrections are not directly related to the presence
of branes – they are only subject to the SUSY spectrum of the KK tower generating the
correction. If the spectrum is N = 1 the genuine loop correction occurs. This difference is
important since winding type corrections are often neglected in phenomenological applications
without intersecting branes in the literature although they would contribute to the leading loop
correction in the 4d scalar potential. An example are winding type corrections to the blow-up
cycle which can be dangerous for Kahler moduli inflation. Second, we are only able to confirm
that genuine loops correct the Kahler potential at order −4 in 2-cycles. This generalizes the
form of winding type corrections of the BHP conjecture to the form δKW ∼ 1/(Ĩ(ti)V) where
Ĩ(ti) is not linear in 2-cycle Kahler moduli anymore. We find evidence for this more general
behavior in fibred geometries. Depending on the specific form of Ĩ(ti) and the size of the
2-cycles, this general scaling can lead to more important corrections. In fibred geometries,
we find Ĩ(ti) ∼ t51/t

4
2 with ti 2-cycle Kahler moduli. This leads to a much more important

correction to the Kahler potential if t2 ≫ t1.
Including local α′ corrections into our discussion of identifying corrections of the BHP

conjecture from the EFT perspective we find corrections scaling like the BHP KK type cor-
rections. This resolves the longstanding discrepancy that the BHP KK corrections can not
be found from effective field theory reasoning. The higher dimensional operators leading to
KK-type corrections are an Einstein-Hilbert term at 1-loop in gs on the intersection 2-cycle
of D7-branes or R2 operators at 1-loop in gs on D7-branes. Similarly to the discussion above,
we can not reproduce the linearity of T (ti) in δKKK. In contrast, we also allow for more
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general dependencies on 2-cycle Kahler moduli, i.e. we find δKKK ∼ gsT̃ (ti)/V where T̃ (ti) is
a homogeneous function of degree 1 in 2-cycles.

An additional feature of local α′ corrections is that some higher dimensional operators are
marginal as for instance a (yet to be proved by string amplitude calculations) R4 operator
on D7-branes. As is well known for marginal operators they might include logarithmically
enhanced prefactors induced by counterterms to renormalize the genuine loops. This leads
to logarithmically enhanced corrections in the Kahler potential constituting the dominant
loop correction. Of course, their existence must ultimately be proven by string amplitude
calculations. Evidence for the logarithmically enhanced higher dimensional operator can again
be found in fibred geometries. We show that in certain limits, barring possible magical (SUSY)
cancellations, the logarithmic corrections are required for consistency of dimensional arguments.

Part II – Implications of higher order corrections for the D3
uplift and the LVS

The second part of this thesis is devoted to the implications of quantum corrections for
phenomenologically relevant settings like the LVS and the anti-D3-brane uplift. In Chapter 3
we study the effect of quantum corrections to the LVS relying on the anti-D3-brane uplift. In
Chapter 4 and 5 we study α′ corrections to the anti-D3-brane uplift.

The LVS parametric tadpole constraint

In order to provide explicit examples that feature controlled dS vacua from string theory, one
typically tries to stabilize all moduli by including the leading order corrections into the Kahler
and superpotential while neglecting all other corrections. The inconspicuous word controlled
plays a special role in these constructions because the precise numerical prefactor of many
higher order corrections to the effective action of string theories are unknown. Additionally,
their compactification on a general Calabi-Yau orientifold can not be done explicitly for most
corrections due to the complicated topology. In order to ensure that all these corrections
with unknown prefactors neglected in the stabilisation scheme do not render the calculated
minimum of the scalar potential unstable, they should be parametrically small. If neglected
corrections are parametrically small, it is not necessary to rely on a small numerical prefactor.

A prime example potentially realizing controlled dS vacua is the LVS. It is, at least in
principle, well protected from higher order corrections due to the exponentially large volume
which suppresses higher order corrections. However, combining the LVS with an anti-D3-brane
uplift most of the explicit models investigated in the literature are rather at the borderline of
(parametric) control. The reason is that for achieving a small dS minimum the uplifting term
Vup must be comparably large to |VAdS|. Therefore Vup needs to be warped down exponentially
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due to the exponentially large volume V. In equations this reads schematically

|VAdS| ∼
1

V3

!≈ Vup ∼ e−N/(gsM2)

V4/3
, (6.1)

where N is the flux in the throat. Achieving |VAdS| ≈ Vup requires large flux N contributing
positively to the D3-tadpole. Due to tadpole cancellation (vanishing net charge on a compact
space), the flux has to be canceled by a large negative contribution to the D3-tadpole. Im-
portantly, in string constructions the negative contribution to the tadpole is limited1. This in
turn bounds the volume of the Calabi-Yau and thus the expansion parameter of higher order
corrections. Accordingly, parametric control in the LVS with anti-D3-brane uplift is limited.

In this Chapter we quantify by a simple formula, called the Parametric Tadpole Constraint
(PTC), the amount of flux N in the throat necessary to control the most dangerous corrections
in the setting described above. The corrections taken into account in the PTC are higher
F-terms [140] and a combination of a warping effect and a local α′ correction [141]. The input
parameters of the PTC are topological quantities of the internal space, the parameter gsM2,
and control parameters specifying the desired control over the respective corrections. The
crucial result is that the amount of control increases when increasing the volume of the internal
space and therefore the flux in the throat. But since the actual negative contribution to the
tadpole is limited in IIB constructions, this represents a very concrete challenge for suitable
models for the LVS.

We also discuss additional challenges of the LVS and the interplay of the PTC with the
recent tadpole conjecture [51]. Note that in Chapter 4 and 5 we develop the PTC further to
include α′ corrections to the NS5-brane which will turn out to be crucial for the KPV decay
channel on which the anti-D3-brane uplift is based.

Curvature corrections to KPV: do we need deep throats?

In this Chapter, we calculate the effect of curvature corrections on the metastability condition
of the NS5-brane at the tip of a Klebanov-Strassler [45] throat. As explained in the Introduction
1, the metastability of the NS5-brane is crucial to realize the anti-D3-brane uplift. So far, the
metastability analysis of the NS5-brane has only been carried out to leading order by KPV
[199]. The importance of considering curvature corrections in this analysis can be understood
as follows. In the last Chapter we have calculated that small values of the parameter gsM2

and hence also gsM are phenomenologically preferred since they minimize the necessary flux in
the KS throat for uplifting to dS. This in turn minimizes the required negative contribution to
the D3-tadpole (which is limited). Therefore, the lowest possible bound on gsM and gsM2 is
phenomenologically very relevant. But in the regime of small gsM , also curvature corrections

1The bound depends on the specific construction. In type IIB string theory with locally canceled D7-tadpole
the upper bound is given by 1 + (h1,1 + h2,1)/2 which gives 252 for the largest Hodge numbers of the Kreuzer-
Skarke database [232]. The bound increases for type IIB with non-local D7-tadpole cancellation and is even
higher in F-theory constructions where the largest known negative contribution is 75852 [233, 234].
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Figure 6.1: Curvature-corrected KPV potential for different values of p/M and gsM .

become strong: Curvature corrections are suppressed by R4
S3 ∼ (gsM)2 where RS3 is the radius

of the S3 at the tip of the KS throat. Thus, it is mandatory to include curvature corrections
in the phenomenologically preferred regime of small gsM . So far, KPV derived a lower bound
of the form gsM

2 > 12, using gsM > 1 such that the radius at the tip is larger than the
string length, and p/M < 0.08 such that a meta stable minimum exists. The main result of
this Chapter is to derive a corresponding bound on gsM

2 that ensures metastability of the
NS5-brane taking curvature corrections into account, thereby making the bound gsM > 1
more precise.

The necessary steps to derive this bound are to first infer the curvature corrections to the
NS5-brane by S-dualizing the known curvature corrections to D5-branes and then evaluate
them explicitly at the tip of the throat. This is possible since the KS metric is known. The
calculation leads to a curvature-corrected potential for the NS5-brane at the tip of the KS
throat depicted in Fig. 6.1 for various values of gsM and p/M . The potential has the unphysical
property of diverging to −∞ at ψ = 0, π due to extrinsic curvature terms. This is an artifact
of our incomplete analysis which neglects α′ corrections at the same order in α′ that include
fluxes and gauge fields and all even higher order α′ corrections. As a result, the potential can
not be trusted in the regime of strong extrinsic curvature. Once more α′ corrections are taken
into account the regime where the potential can be trusted will be extended as we show in
the next Chapter. Moreover, the potential has two main parameters, namely p/M and gsM ,
whose parameter space can be scanned to find the regime where metastable minima exist. The
scan is shown in Fig. 6.2 a). From Fig 6.2 a), we find that the minimal value of gsM where
the NS5-brane can be metastable is gsM > 20 (or gsM2 > 500 for p = 2). This drastic change
compared to the KPV bound gsM2 > 12 is caused by the extrinsic curvature corrections which
hamper the formation of a metastable minimum.

Applying the curvature-corrected bound on gsM2 to the PTC introduced in the last Chapter
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(a) (b)

Figure 6.2: Figure a) and b) show the (gsM,p/M) parameter space. In the yellow region in
a) the curvature-corrected potential has a metastable minimum. In the yellow region in b)
the maximum of the curvature-corrected potential is at positive energy. Above the red line
p/M = 0.08 the maximum is at (sub-)stringy radii for the NS5 and therefore not trustworthy.

results in a lower bound on the negative contribution to the D3-tadpole for the LVS with anti-
D3-brane uplift of O(103 − 104). This is severely constraining since the currently largest
explicitly constructed negative tadpole in type IIB string theory is O(3000) [235].

The bound gsM
2 > 500 derived above is so extreme because of the strong extrinsic

curvature corrections at small ψ. Since we assume that this will be resolved as soon as further
α′ corrections are taken into account it might be possible that our uplifting criterion of a
metastable minimum in the curvature-corrected potential is too conservative. It might be that
the all orders corrected potential has a metastable minimum in the regime where we do not
trust the curvature-corrected potential. Therefore, a more optimistic approach is to demand
that the maximum of the curvature-corrected potential should occur at positive values. If a
maximum exists at non-zero ψ there will also be a minimum at smaller ψ. This minimum only
has a chance of being at positive energy if the maximum has positive energy. This criterion is
clearly not a sufficient one but gives at least a most optimistic bound on the parameter gsM2.
The region of parameter space where the maximum occurs at positive values is depicted in
Fig. 6.2 b). From there, we can read off the minimal bound on gsM for the maximum to occur
at positive energy. The bound is of the form gsM > 4 (or gsM2 > 48 for p = 1). Even this
very optimistic bound which is clearly not sufficient to have a metastable minimum at positive
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energy seems to outperform the currently strongest bounds on gsM2 available in the literature
[227]. This emphasizes the importance of taking curvature corrections, and more generally α′

corrections into account.
As we have noted already, the above analysis remains preliminary due to multiple reasons.

Most importantly, besides the α′2 curvature corrections there are hundreds of additional α′

corrections to the DBI- and CS-action of a Dp-brane which we have neglected so far. This
includes corrections involving fluxes, gauge fields, and mixings thereof with curvature terms.
This is addressed in Chapter 5. Furthermore, our analysis remains at the probe level such that
we do not take into account the issue of backreaction. Finally, the potential we obtain can not
be trusted everywhere since in regimes of small radii of the S2 and S3 even higher order α′

corrections become important.
Motivated by the strong impact of curvature corrections on the metastability of the NS5-

brane and the fact that curvature corrections seem to overall lower the KPV potential, we
propose a new uplifting mechanism that circumvents all issues related to the D3-tadpole. In
this new mechanism one fine-tunes the curvature corrections to the NS5-brane at the tip of
the KS throat in such a way that the metastable minimum of the KPV potential is at zero
energy. That it is in principle possible to tune the value of the potential at the minimum by
curvature corrections can be seen from Fig. 6.1 (the value of the potential at the minimum
ψ = ψmin changes for different values of p/M and gsM). The advantage then is that the
curvature-corrected uplifting term Vup = Vcurv-corr(ψmin) exp(4A(0)) can be made arbitrarily
small without an exponentially large warp factor exp(−4A(0)) by tuning the parameters gs and
M . The gs tuning is generically assumed to be possible in the flux landscape which predicts a
dense discretuum in gs.

At this stage, this new mechanism is more a conjecture since the extrinsic curvature
corrections become too large to explicitly construct a potential with zero vacuum energy. This
will be resolved once all α′ corrections are incorporated into the KPV potential. A step towards
this aim is taken in the next Chapter.

α′ corrections to KPV: An uplifting story

As advertised above, in this Chapter we evaluate all currently known corrections to the DBI-
and CS-action of D-branes at the tip of the throat by first S-dualizing them to α′ corrections
to NS5-branes. All corrections appear at order α′2 and at tree level in the string coupling gs.
The corrections include hundreds of flux, gauge field, and curvature terms. Incorporating all
these terms is crucial as it leads to a more complete and physically interpretable α′2-corrected
potential for the NS5-brane at the tip of a KS throat.

The α′-corrected potential is depicted in Fig. 6.3 for gsM = 20 and different values of
p/M . The potential has similar features as the curvature-corrected potential calculated in
the last Chapter. It diverges for ψ = 0, π and the two crucial parameters are again gsM and
p/M . An important difference is that the α′2-corrected potential always has a minimum for
sufficiently small p/M . This can be shown in a scan over the (gsM,p/M)-parameter space in



Conclusions 177

Figure 6.3: α′2-corrected KPV potential for gsM = 20 and different values of p/M . Depending
on the parameters gsM and p/M , the minimum of the potential can be at negative, zero, or
positive energy.

Fig. 6.4. In the yellow/orange region a metastable minimum exists at positive/negative energy,
respectively.

Therefore, the α′2-corrected KPV potential allows for an explicit realization of the new
uplifting mechanism proposed in the last Chapter that does not rely on long warped throats.
By tuning α′ corrections against the tree level KPV potential, metastable minima at zero
energy can be constructed (the black line separating the yellow and orange region in Fig. 6.4).
The new uplifting mechanism circumvents the control issues related to the PTC. This has to
be taken with a grain of salt since the uplifting mechanism is realized in a regime of parameter
space at the very boundary of control where also higher order α′ corrections become important.
The reason is that RNS5, the radius of the S2 wrapped by the NS5 in the metastable minimum,
is of string size. We also discuss future directions how to overcome this control problem. These
include treating the anti-D3-branes as a non-abelian brane stack or studying the throat from
the holographic perspective.

Additionally, the bounds on the parameters gsM and gsM2 from the last Chapter can be
updated by examining the parameter space where the α′-corrected KPV potential exhibits
a metastable minimum. From Fig. 6.4 we find as a most optimistic bound gsM > 3.6 (and
gsM

2 > 144 for p = 1). Note that this point in parameter space occurs again in a regime of bad
control since RNS5 is again string size. Hence, gsM and therefore the radius of the S2 should
be increased for control over α′ corrections. The implications on the standard anti-D3-brane
uplift using long warped throats are, as in the previous Chapter, similarly constraining for
the LVS relying on the standard anti-D3-brane uplift. In the Appendices of this Chapter we
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Figure 6.4: Scan for metastable minima in the (gsM,p/M) parameter space. In the blue
region no metastable minimum exists. In the yellow/orange region the minimum occurs at
positive/negative energies, respectively. These regions are separated by a black line where the
energy at the minimum is zero.

discuss in more detail how to properly incorporate the α′ corrected KPV bounds on gsM into
the PTC and furthermore, how string loop corrections relate to the PTC.

6.2 Discussion

The best studied candidate for the theory of quantum gravity unifying the standard model of
particle physics and gravity is, arguably, string theory. As we have discussed in some detail in
the Introduction 1, string theory provides a solid framework for studying physics beyond the
standard model of particle physics and the ΛCDM model as the theory has many features we
expect our theory of quantum gravity to necessarily have: String theory is capable of unifying
GR and gauge theories, realizing the standard model and inflation as well as providing dark
matter and axions. A main shortcoming of string theory seems to be the explanation of an
accelerated expansion of the universe. Progress in this direction was the main goal of the
present thesis. An accelerated expansion of the universe can be explained either through a
(meta-)stable dS vacuum (with a longer lifetime than our universe) or through a currently at
positive value, slow-rolling Quintessence-like field which eventually will end up in a Minkowski
or AdS vacuum. Independently of which explanation the reader may prefer both constructions
seem to be similarly difficult to realize within string theory. As reviewed in the Introduction 1,
constructing dS vacua in many weakly coupled corners of string theory is forbidden by no-go
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theorems. Similar conclusions also hold for slow roll in parametrically controlled regimes. This
has cast doubt on the very existence of accelerated expanding universes within string theory.
This doubt is mainly driven by the swampland program gathering evidence that dS vacua do
not exist in asymptotic limits of parameter space.

This led to the general belief that, if dS vacua exist, they will lie in the interior of parameter
space. There, the knowledge of the leading order 10D SUGRA effective action is not sufficient
to make precise predictions for low-energy physics because quantum corrections have a non-
negligible effect. This closes the gap with the research conveyed in this thesis. In Part I we
have mainly focused on higher order corrections per se whereas in Part II we have investigated
the implications of higher order corrections on phenomenologically relevant setups like the LVS
and the anti-D3-brane uplift.

The importance of higher order corrections

Due to the web of no-go theorems against dS vacua at classical level and against slow roll in the
parametrically controlled regime of string theory, the understanding of quantum corrections
seems to be inevitable for connecting string theory with the real world. In the context of
moduli stabilisation, quantum corrections are often necessary to stabilize all moduli as it is for
instance the case for Kahler moduli in IIB string theory. Therefore, most celebrated scenarios
for achieving scale separated AdS vacua including their uplift, namely the KKLT and LVS, are
crucially relying on quantum corrections.

One such kind of quantum corrections are string loop corrections which have been the
main subject of study in Chapter 2. String loop corrections are frequently used to stabilize
non-blowup Kahler moduli and for inflationary model building in the LVS. This is clearly
problematic since the scaling of loop corrections with the Kahler moduli is only conjectured
for generic Calabi-Yau compactifications based on explicit string loop calculations on orbifolds.
Additionally, it is not well understood under which circumstances loop corrections occur. The
improved understanding of loop corrections from the EFT perspective provided in Chapter 2
revealed a much more general scaling of loop corrections with Kahler moduli and, possibly,
the existence of previously unknown, logarithmically enhanced loop corrections. Furthermore,
many corrections to the Kahler potential can now be assigned to specific higher dimensional
operators. This improves the understanding of when a specific loop correction occurs. These
findings are capable of spoiling/pinning down existing string inflation scenarios like Fibre and
Kahler inflation or proposing new models for inflation. Nevertheless, our results can only
be viewed as preliminary since the very general EFT arguments that we used in Chapter 2
need to be backed up by string amplitude calculations and/or by Kaluza-Klein reductions on
explicit backgrounds together with EFT loop calculations. Both are rather grueling tasks since
they require explicit knowledge of the compactification geometry. The EFT loop calculations
additionally require knowledge of the eigenfunctions on the compact space. The new findings
on loop corrections are only one particular example that shows that there are still many new
effects to be uncovered once higher order corrections to the effective action become calculable
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in a systematic fashion. Another example is the new uplifting mechanism proposed in Chapter
4 and 5 that emerged once α′ corrections to the NS5-brane action are taken into account.

Additionally, a profound understanding of quantum corrections is crucial for setting up con-
sistent scenarios for moduli stabilisation. A working scenario relies on a consistent truncation of
the Kahler potential and superpotential. At the time of writing it remains unclear whether the
truncation underlying the LVS is consistent. The reason being possible logarithmic corrections
overpowering the α′3 BBHL correction [75] crucial for the LVS. These logarithmic corrections
could arise in different manners: Through a redefinition of the blow-up cycle [136–138] or a
KK exchange between the 10 dimensional R4 term and distant D7-branes/O7-planes [69, 70]2.
Hence, the proof of existence of these logarithmic corrections is key for designing consistent
moduli stabilisation scenarios and therefore also for proving the existence of dS vacua.

Very generally, one might expect that improving the understanding of quantum corrections
and therefore the understanding of string theory from the EFT perspective will be very useful
in searching for low energy evidences of string theory. It is the author’s opinion that the
interior of parameter space of string theory, where quantum corrections become important,
has many surprises in store for us. We encountered one such surprise, namely a new uplifting
mechanism, in Chapter 4 and 5.

Higher order corrections – taming the unknown

A major obstacle in proving the existence of metastable dS vacua in string theory is that the
knowledge of quantum corrections is very limited at the time of writing. In particular, this is
true for their numerical prefactors. The list of quantum corrections whose numerical prefactors
are known is short: the BBHL α′3R4 term and its one loop correction [74, 75], an α′3 correction
due to a non-trivial axio-dilaton profile [103] as well as the α′2 corrections at string tree level
to Dp-branes and Op-planes used in Chapter 4 and 53.

We have already explained that moduli stabilisation scenarios always rely on a truncated
set of corrections, and it is therefore mandatory to verify that all corrections neglected in the
scenario do not spoil the previously achieved (A)dS minimum. This is particularly difficult if
the numerical prefactor is not known. Depending on their size, a correction can be much more
dangerous than one would have naively expected.

Investigating this in the context of the LVS has been the main purpose of Chapter 3
and [141, 142]. At first sight, the LVS seems to be well protected against unknown higher
corrections since the volume is exponentially large in 1/gs, and gs can be tuned arbitrarily
small. Taking into account the uplift, the LVS rather seems to be at the boundary of control,
provided that the negative contribution to the D3-tadpole can be very large. The main lesson
to take from there is that due to our limited knowledge of higher order corrections, we need to

2The possible log enhanced loop correction we found in [2] is subleading compared to the BBHL correction
but log enhanced compared to all other loop corrections.

3There has also been progress in determining the prefactor for further α′3 corrections to the type IIB bulk
theory [100].
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ensure that unknown corrections are suppressed parametrically and not numerically in order
to prove the existence of dS vacua. This pushes us towards the weakly coupled corners of
the moduli space where we do always find obstacles preventing dS vacua. In the case of the
LVS, the limited negative contribution to the D3-tadpole in type IIB string theory is such an
obstacle. We quantified this by the parametric tadpole constraint in Chapter 3.

But the above discussion is not specific to the LVS. It seems to be a more generic feature
that currently available models are at the boundary of control (as a further example consider
the new way of uplifting which we proposed in Chapter 4 and 5).

The reason why we have not found controlled dS vacua so far may then be understood
as follows. Establishing dS vacua requires us to circumvent no-go theorems by incorporating
multiple ingredients like localized objects and quantum corrections into our theory. Doing so
we find, at best, dS vacua at the very boundary of control. One reason for this is our limited
knowledge of quantum corrections which prevents us from accessing the interior of parameter
space where dS solutions are (likely) to be found. Improving our understanding of quantum
corrections should therefore be a primary goal of string phenomenology.

Higher order corrections – taking advantage of the known

Following the discussion of the last sections, we should find ourselves in an advantageous
position for the anti-D3-brane uplift. In this setup, (most of) the leading order quantum
corrections are known explicitly and, further, the metric at the tip of the KS throat is known
explicitly. We used this in the Chapter 4 and 5 to quantify by how much α′2 corrections affect
the leading order KPV story and therefore threaten the existence of a metastable minimum
necessary for the anti-D3-brane uplift. We found that the standard anti-D3-brane uplift,
relying on the exponentially warped down tension of the anti-D3-brane, is only protected
parametrically against the α′ corrections at the cost of even further increasing the flux in the
throat. This exacerbates the problem of controllability of dS vacua obtained from the LVS
with anti-D3-brane uplift.

Besides quantifying the danger of the leading order quantum corrections, we also observed
the emergence of a new uplifting mechanism. The quantum corrections generically lower the
overall potential. The new mechanism then relies on balancing quantum corrections against the
tree level potential such that the minimum occurs at zero energy. This uplifting mechanism is
clearly a surprise from the perspective of leading order physics and requires properly evaluating
the quantum corrections on the given background. We should note that also the new mechanism
is realized in the interior of moduli space even though it circumvents all problems related to
the limited D3-tadpole preventing the LVS from achieving controlled dS vacua. Additionally,
the mechanism always requires tuning and relies on the almost continuously tunable value of
gs due to the flux landscape [236].

In summary, evaluating higher order corrections on a given background allows us on the
one hand to quantify their danger and hence improve perturbative control. This can be done
by either restricting to regimes of parameter space where the quantum corrections can now
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safely be neglected or by restricting to the parameter space where even higher order quantum
corrections are negligible. This second option would again require calculating these higher
order effects explicitly. On the other hand, new mechanisms and properties of the theory might
emerge that can be used for phenomenological purposes. We assume that this will be a general
feature as soon as quantum effects become broadly calculable and explicitly evaluable on given
backgrounds.

Increasing perturbative control and the discovery of new effects through quantum correc-
tions are certainly highly desirable and should be motivation enough to further explore the
quantum effects of string theory and thus advance into the interior of moduli space.

6.3 Outlook and future directions

The overall goal of this thesis has been set out to make progress in clarifying whether string
theory allows for accelerated expanding universes. This remains (one of) the most urgent
problems to be solved in order to connect string theory with the real world. We have contributed
to this problem by improving the understanding of string loop corrections, we pointed out and
quantified challenges of the LVS with anti-D3-brane uplift and the anti-D3-brane uplift itself,
and proposed a new uplifting mechanism for obtaining dS vacua. In these final paragraphs,
we propose some future directions naturally emerging from results of this thesis.

Based on the results of Chapter 2 it would be important to prove the existence of the R4 (or
R3) operator on D7-branes (or their intersections) and the related logarithmic correction to the
Kahler potential. If existent and calculable, the dominant, logarithmic loop effect would become
accessible, constituting an important step towards more controlled models. Additionally, the
logarithmic correction together with the improved understanding of loop corrections in general
should be thoroughly applied to models of inflation like Kahler and Fibre inflation. Both
models are based on the BHP conjecture for loop corrections on Calabi-Yau orientifolds and
might be invalidated or pinned down once the new effects are properly accounted for. We
initiated this for Fibre inflation in Chapter 2 where we already found substantial differences.

More generally, investigating all kinds of so far mostly conjectured logarithmically enhanced
corrections to the Kahler potential would be a crucial task for phenomenology. If they generi-
cally exist, some of them would constitute the leading order corrections to the Kahler potential
in the Kahler moduli sector and are hence crucial for all moduli stabilisation scenarios relying
on perturbative corrections to the Kahler potential.

The main result of Chapter 3 has been that the LVS with standard anti-D3-brane uplift
requires much more negative contribution to the D3-tadpole in order to control the most
dangerous corrections than one might naively have guessed. It is therefore necessary to study
the LVS in IIB on manifolds with non-locally canceled D7-tadpole or, even more difficult, to
study the LVS in the framework of F-theory. In both settings many questions remain to be
answered, as for instance how dangerous corrections due to a varying dilaton are or how the
LVS can in principle work in a F-theoretic context where gs is not small everywhere in the
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compact space. Furthermore, it is usually the case for models with large Euler number that
they come with a large number of moduli. If these happen to be Kahler moduli, a systematic
way of explicitly stabilizing many Kahler moduli is required4.

Another direction to rescue the LVS with standard anti-D3-brane uplift from large tadpoles
is to pin down the numerical coefficients of the most dangerous corrections taken into account
in the PTC. If these turn out to be small or harmless due to the right sign, the tadpole would
not need to be that high for controlled models5. This task is difficult, model dependent, and
requires new tools to calculate quantum corrections on a given Calabi-Yau orientifold. Still, we
have seen in Chapter 4 and 5 that this calculation can be quite rewarding since new phenomena
might emerge. We have explained that to be able to do this requires two conditions. First,
the quantum corrections to the 10D SUGRA EFT and/or the worldvolume theory of localized
objects need be known. If their numerical prefactor is not known, it must be calculated for
instance by string worldsheet calculations. The next step is then to evaluate these quantum
corrections on the Calabi-Yau orientifold one wishes to compactify on. A possible tool for
doing this in the future might be Machine Learning techniques. There is significant progress
[237–240] that shows that neural networks are able to learn the metric of Calabi-Yau manifolds.
With the (numerically approximated) metric at hand, the way to study more advanced models
explicitly (which we need for finding dS vacua due to no-go theorems) might be paved.

Finally, extending the results of the Chapters 4 and 5 in the following directions would be
very interesting future research projects. First, it would be crucial to push our analysis of α′2

corrections to the KPV decay process [199] to higher orders in α′. This amounts to including
α′4 and also, if they exist, α′3 corrections to the worldvolume theory of Dp-branes. This leads
us back to previous discussions on the crucial importance of deriving higher order quantum
corrections to the effective action. With these corrections at hand perturbative control could
be improved, the bounds for phenomenology could be made even more precise, and our new
uplifting mechanism might be realizable with better control.

Second, the analysis performed in Chapter 4 and 5 remained at a probe level. Hence,
including the backreaction effect of the branes onto the geometry is necessary. This might
enlarge the radius of the NS5-brane at the minimum of the potential [221] and thereby the
regime the control.

Third, the α′-corrected anti-D3-brane uplift should be studied from different perspectives.
Investigating the anti-D3-branes as a non-abelian stack of branes will yield a corrected estimate
of the position of the metastable minimum. Although very challenging and already intensively
studied in the literature, investigating the throat from the holographic perspective could lead
to new insights. On the holographic side, the regime of large curvature is the regime of control

4Note that one generally assumes all Kahler moduli to be stabilized by loop effects. But to establish
controlled dS vacua from string theory this is clearly not sufficient since calculating loop correction explicitly
on a general Calabi-Yau is currently not feasible.

5To be more precise, the control parameters cW0 and cN in the PTC could be attenuated or omitted
altogether. Nevertheless, the bound on gsM from the α′-corrected KPV potential still needs to be taken into
account enforcing a large negative contribution to the D3 tadpole.
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which is precisely the regime where control over the α′ expansion is lost. The holographic
perspective might enable us to understand the regime of strong curvature and, as a byproduct,
it could be a way towards proving our new uplifting mechanism.

In all research conducted in this thesis, and also in the future research directions summarized
above, quantum corrections are the main players. They enable us to push the boundaries of
control and by this access more of the interior of parameter space. There, dS vacua are (more
likely) populating the landscape and new, fascinating stringy phenomena are waiting for us to
be discovered.
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