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1. Introduction 

1.1 Preface 

Radiotherapy is a cornerstone of cancer therapy. More than 50% of cancer patients 

undergo radiotherapy in their course of disease. Non-small cell lung cancer (NSCLC) 

and head and neck squamous cell carcinoma (HNSCC) constitute two example cancer 

entities where improvement in radiotherapy has substantially contributed to improved 

outcomes over the past decades. Particle therapy with protons and heavier ions have 

been postulated to elicit superior biophysical properties and are therefore candidate 

new modalities for high precision cancer therapy. Using prototypic NSCLC and 

HNSCC in-vivo tumor models combined with functional genomics (CRISPR-Cas9), this 

dissertation aims to systematically characterize the radiobiological effect of these new 

particle therapy modalities. 

1.2 Radiotherapy  

1.2.1 Radiotherapy in cancer treatment 

In clinical practice, radiotherapy (RT) seeks to simultaneously deliver the maximal dose 

required to kill malignant cells and the minimal damaging dose to the surrounding 

normal tissue (Baskar et al., 2012). Over half of cancer patients will receive RT in the 

course of their treatment (Delaney et al., 2005). RT can be administered either alone, 

in a definitive setting, in combination with chemotherapy or following surgery as an 

adjuvant setting.  RT is capable of curing >40% of all cancer patients (Ringborg et al., 

2003). Additionally, it is indicated for selected benign diseases and in disease 

palliation, in case of pain, obstruction (for example, an occluding bronchial mass), in 

stabilization of weight-bearing joints in case of bony metastases and in urgent 

treatment of intracranial pressure caused by brain metastases and prevention of 

paralysis in the case of spinal cord compression (Christian et al., 2008).  

The relevant damage induced by RT can be classified into indirect and direct DNA 

damage (Baskar et al., 2012). Indirect damage occurs when radiation beams generate 

oxygen free radicals inside the cell (through ionization of the water components), 
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resulting in double-strand breaks (DSBs) (Rockwell et al., 2009). Direct damage occurs 

when high energy particles induce DSBs along their traversal through tissue (Kozubek 

& Krasavin, 1984).  

The contribution of direct vs. indirect DNA damage depends on the type of ionizing 

radiation used. Photon radiotherapy is the most routinely used modality to treat tumors. 

Photon beams (also known as X-rays and Gamma-radiation depending on RT source) 

are sparsely ionizing beams (Zhang et al., 2021). Likewise electron and protons are 

applied as charged beams with a low linear energy transfer (LET) (Baskar et al., 2012) 

and induce cell death at lower doses predominantly via indirect DNA damage. The 

main disadvantage of photon RT is that its energy scatters and decreases along the 

path of tissue penetration (depth). This result in the deposition of radiation in the 

surrounding normal tissue, which leads to side effects of treatment. To minimize normal 

tissue complications RT is administered in a fractionated manner over a series of daily 

fractions typically given over several weeks. For example, a typical fractionation 

regimen would be the administration of 54-72 Gy in fractions of 2 Gy each (Thames et 

al., 1990). Fractionation schemes exploit the fact that normal tissue cells are able to 

repair DNA damage more efficiently than cancer cells (Baskar et al., 2012).  

1.2.2 Particle beam therapy 

Particle beams with charged ions like carbon ions are more densely ionizing radiation, 

thus creating more complex direct DNA damage along their tracks (Mohamad et al., 

2017). That is why particle RT with helium, carbon, oxygen ion utilized in this thesis is 

postulated to have a higher relative biological effectiveness (RBE) compared to photon 

and low-LET proton irradiation. RBE is the iso-effective dose at which different 

radiation modalities can generate the same biological effect (Sorensen et al., 2021; 

Zhou et al., 2019). For example, carbon ions have an RBE of ~2-3 compared to 

photons for different endpoints like neurologic side effects and tumor cell killing, 

respectively (Bendinger et al., 2021). 

Linear energy transfer (LET) is defined as “the amount of energy transferred by an 

ionizing particle per unit distance” in keV/μm (Antonovic et al., 2014). Photons are 

considered as low LET irradiation. However, particle beams have mixed LET, meaning 

they possess a lower LET in the entrance/plateau area traversing through normal 
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tissue and a high LET in the Bragg Peak at tumor site (Jakel et al., 2003; Karger & 

Peschke, 2017).This means that particle beams using carbon ions are more 

advantageous in their dose deposition than photon beams and release their energy at 

the “Bragg peak region” (Figure 1) within deeper layers of the tissue. Technological 

advancements such as raster scanning techniques allow particle therapy to be 

deposited in a “spread-out Bragg Peak” (SOBP), which is effectively a cumulative 

overlaying of several individual Bragg peaks. This result in the delivery of a high local 

dose to the tumor while the normal tissue around it remains spared (Zhou et al., 2019). 

Clinically this means that there is not only a difference in dose deposition but also in 

radiation quality between entrance low-LET and dose leading to less damage and 

sparing of normal tissue while tumor is irradiated with a steep dose gradient i.e., higher 

dose, LET and consequently RBE (Durante & Debus, 2018; Schaub et al., 2020; 

Weber & Kraft, 2009). 

 

Figure 1. Depth-Dose profile of photons, Bragg peaks, single pristine Bragg and SOBP 
protons and carbon ions. To cover the entire tumor volume the Bragg peak is widened using 
a set of overlapping beams with different energies to form SOBP. Figure prepared by Dr. Katrin 
Rein. 

 

1.3 Lung Cancer  

1.3.1 Epidemiology 

Lung cancer is the most common cause of cancer-related deaths worldwide (Bray et 

al., 2018). An estimated 1.4 million lung cancer-related deaths occur yearly (de Groot 

et al., 2018). Non-small cell lunger cancer (NSCLC) is the most prevalent histological 
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subtype accounting for ~84% of cases (Siegel et al., 2018) with tobacco smoking being 

the most important risk factor (de Groot et al., 2018). In non-smokers, risk factors 

include environmental exposure, second-hand smoking and occupational carcinogens 

(de Groot et al., 2018). Following decades of public health prevention campaigns and 

tobacco control policies, incidence rates for men have begun to decrease in the United 

States and the European Union (Barta et al., 2019). Worldwide, the incidence of lung 

cancer continues to rise, for instance in Asia where air pollution and occupational 

exposure play an important role (Barta et al., 2019). After adjusting for gender, NSCLC 

is the second most common cancer in men (14% of incident cases) and women (13%) 

(de Groot et al., 2018). The rates of female lung cancer are also on the rise (de Groot 

et al., 2018). With improvements in screening and treatment techniques, the five-year 

survival of NSCLC was 26.4% in 2017 (Ganti et al., 2021). Prognosis is chiefly 

impacted by the extent of disease at presentation (categorized by the Tumor, Node, 

and Metastasis (TNM) stage). The best outcomes are achieved for patients with early-

stage disease (>73% for stage IA). By contrast, patients with metastatic disease have 

poor outcomes (<10% OS at 5 years) (Woodard et al., 2016).  

1.3.2 Histology and staging 

NSCLC can be further classified into distinct histopathological classes, each class 

having characteristic molecular and genetic alterations that impact the choice of 

treatment. Adenocarcinoma is the most common subtype, implicated in 50% of cases 

(Groot et al. 2018). Adenocarcinomas may exhibit characteristic activating mutations 

in epidermal growth factor receptor (EGFR) in roughly 15% of cases, which can be 

targeted using third generation EGFR tyrosine kinase inhibitors such as Osimertinib 

(Soria et al., 2018; Wu et al., 2020). Roughly 30% of adenocarcinomas have KRAS 

(Kirsten rat sarcoma viral oncogene homolog) proto-oncogene mutations. KRAS 

protein is GTPase which cycles between active and non-active forms in response to 

extracellular stimuli. Hyperactivating mutations decrease its intrinsic GTPase activity, 

leading to higher amount of an active GTP-bound population and result in tumor 

initiation and progression and is associated with poor prognosis (Prior et al., 2012; 

Skoulidis & Heymach, 2019). KRAS mutations are seen in both early-stage and 

metastatic adenocarcinomas (Jordan et al., 2017) and the mutations are associated 

with poor response against EGFR inhibitors (Eberhard et al., 2005). In ~4% of cases, 
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a fusion of the echinoderm microtubule associated-protein-like 4 (EML4) gene and the 

Anaplastic lymphoma kinase (ALK) gene will result in constitutively activated tyrosine 

kinase activity and can be targeted using ALK inhibitors (Griffin & Ramirez, 2017). 

Other targetable mutations include ROS1, BRAF or MET (Skoulidis & Heymach, 2019). 

Squamous cell carcinoma is the second most common subtype, arising frequently in 

the proximal portion of the bronchi (Kallini et al., 2015). The most common druggable 

targets in squamous cell carcinoma include PIK3CA, FGFR1, MET, DDR2 and BRAF 

(Drilon et al., 2012; Kim, 2013). The recognition of targetable gene alterations has 

changed the management of lung cancer and personalized therapy and has led to 

remarkable responses in selected patients (Herbst et al., 2018).  

Staging of lung cancer follows the TNM system from the American Joint Committee on 

Cancer (AJCC) (Table 1 and 2). 

Table 1. Staging of NSCLC (8th AJCC edition) 

Tx: Tumor in sputum/bronchial washings but not assessed on imaging or 

bronchoscopy 

T0: No evidence of tumor 

Tis: Carcinoma in Situ 

T1: ≤3 cm surrounded by lung/visceral pleura, not involving the main bronchus 

T1a(mi): minimally invasive 

T1a: ≤1cm 

T1b: >1 but ≤2cm 

T1c: >2 but ≤3cm 

T2: >3 but ≤5cm or a tumor involving the main bronchus without carina, regardless 

of the distance, or a tumor invading the visceral pleura, or presence of atelectasis 

or post obstructive pneumonitis extending to hilum 

T2a: >3 but ≤4cm  

T2b: >4 but ≤5cm 

T3: >5 but ≤7cm or a tumor that involves the chest wall, pericardium, phrenic nerve 

or satellite nodules in the same lobe 

T4: >7 cm or a tumor invading the mediastinum, diaphragm, heart and/or great 

vessels 

N1: ipsilateral peribronchial or hilar nodes and intrapulmonary nodes 



 

16 
 

N2: Ipsilateral mediastinal and/or subcarinal nodes 

N3: contralateral mediastinal or hilar; ipsilateral/contralateral 

scalene/supraclavicular 

M: distant metastasis 

M1a: in contralateral lung, pleura/pericardial nodule, malignant effusion 

M1b: single extrathoracic metastasis 

M1c: multiple extrathoracic metastases in one or more organs 

 

Table 2. (Continued) Staging of NSCLC (8th AJCC) 

 N0 N1 N2 N3 

T1 IA IIB IIIA IIIB 

T2a IB IIB IIIA IIIB 

T2b IIA IIB IIIA IIIB 

T3 IIB IIIA IIIB IIIC 

T4 IIIA IIIA IIIB IIIC 

M1a IVA IVA IVA IVA 

M1b IVA IVA IVA IVA 

M1c IVB IVB IVB IVB 

Prognosis is largely dependent on the extent of the disease at presentation. Patients 

with early resectable disease have the best cure rate (Goldstraw et al., 2016). Surgical 

resection is the standard of care (Shirvani et al., 2014). Nevertheless, advances in 

radiotherapy (RT) technique have also revolutionized treatment of early-stage I-II 

disease, whereby patients who may not be candidates for surgical resection can 

receive stereotactic ablative radiotherapy (SABR) (Shirvani et al., 2014). SABR is a 

technique whereby a much higher radiotherapy dose can be applied in a short period 

of time (typically over the course of days) while sparing nearby normal tissue structure 

(Chang, 2015). Stage II/IIIA patients are treated by surgery followed by adjuvant 

chemotherapy or immunotherapy. In the case where the patient is not a candidate for 

surgical resection, radiation therapy is offered (Burdett et al., 2015). Treatment of stage 

IIIB tumors depends on the patient’s health as well as extent of disease involvement 

and is dominated by radiochemotherapy (RCHT) (Baas et al., 2011). In the metastatic 

Stage IV setting, beyond immunotherapy and chemotherapy schedules, patients with 

driver mutations are eligible to receive targeted therapy and often receive radiotherapy 
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for control of critical metastatic sites like e.g., frequently present brain and bone 

metastases (Hsu et al., 2017). 

1.3.3 Preclinical A549 model of NSCLC 

Adenocarcinoma is the most common subtype of NSCLC (Groot et al. 2018). A549 is 

lung adenocarcinoma epithelial cell line, derived in 1972 from a 58-year-old Caucasian 

male by removing and culturing pulmonary carcinoma tissue (Giard et al., 1973). The 

doubling time of A549 is 22 hours and in-vitro, these cells grow as a monolayer. A549 

cell line carries KRAS G12S mutation, other altered driver genes for A549 model are 

summarized on Figure 2. 

 

Figure 2. Altered cancer driver genes lung adenocarcinoma. Font size indicates the 
frequency of the mutation. Mutations are indicated in red (gain of function), blue (loss of 
function) and grey (ambiguous). Copy number alterations are indicated in purple (amplification) 
and green (deletion). Figure adapted from (cellmodelpassports.sanger.ac.uk). 

 

1.4 Head and neck cancer 

1.4.1 Epidemiology 

Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common 

cancers worldwide (Alsahafi et al., 2019). These cancers develop from the mucosal 
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epithelium in the oral cavity, pharynx and larynx. The prognosis and therapeutic options 

of HNSCC depend on anatomical location, epidemiologic factors, and cancer stage. 

Oral cavity and larynx cancers have been correlated with exposure to tobacco-derived 

carcinogens and/or excessive alcohol consumption (Rettig & D'Souza, 2015). 

1.4.2 HPV status 

Oropharynx cancers are increasingly attributed to infection with human papillomavirus 

(HPV) (Noone et al. 2018). Rates of oropharyngeal cancer are on the rise and it has 

superseded cervical cancer as the most frequent HPV driven cancer in the United 

States (Brennan et al., 2021). In comparison to other head and neck tumors, HPV 

driven oropharyngeal cancer is associated with a better prognosis and survival 

outcome. Patients with HPV driven tumors who receive the same treatment have 58% 

lower risks of death and 51% lower risks of developing a recurrence (Ang et al., 2010). 

The precise mechanism behind the improved sensitivity towards treatment is not 

completely elucidated (Bol & Gregoire, 2014). Nevertheless, survivorship is high in this 

patient group, spurring the design of clinical trials considering de-escalation of 

treatment (Mirghani & Blanchard, 2018) (Tawk et al., 2022). 

By contrast, HPV negative HNSCC are challenging to treat. Patients are often older 

and sicker than patients with HPV driven tumors. Treatment strategies depend on the 

anatomical site of origin, TNM status and the patient’s overall health (Johnson et al., 

2020). In early-stage disease, cure can be achieved through surgical resection 

followed by adjuvant chemotherapy or RT if risk factors are present, or primary RCHT 

(Johnson et al., 2020). In advanced stages, treatment schemes are generally 

multimodal and consisting of surgical eradication followed by RCHT or definitive RCHT 

(Pignon et al., 2009). For patients with metastatic disease, treatment options include 

further targeted agents or immunotherapy (Ferris et al., 2016). Due to “field 

cancerization” of the upper aerodigestive tract following a sustained exposure to 

carcinogens patients are prone to develop tumor recurrences (Braakhuis et al., 2003; 

Califano et al., 1996) . Local recurrences are associated with poor prognosis. Some 

risk factors for local recurrence include the presence of tumor at surgical margins after 

resection and extracapsular extension of the tumor at the site of affected lymph nodes 

(Bernier et al., 2005). These patients benefit from adding chemotherapy to 

radiotherapy in the postoperative setting. In patients with locally advanced cancer that 
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is not amenable to surgery, the first line treatment is a combination of RT with cisplatin-

based chemotherapy (Pignon et al., 2009). The toxicity of treatment increases when 

more than one modality is used. Surgery is associated with increased bleeding risk, 

pain and eating difficulties (dysphagia) and use of gastrotomy feeding tubes (Hay et 

al., 2017). RT is associated acutely with mucositis, dysphagia, nausea/vomiting, skin 

changes (dermatitis) and necessity of using feeding tubes (Adelstein et al., 2003; 

Rosenthal et al., 2014). Long-term side-effects include fibrosis, dysphagia, dryness of 

the mouth (xerostomia) and second primary cancers (Eisbruch et al., 2004; Garden et 

al., 2008; Langendijk et al., 2008; Machtay et al., 2008). The addition of chemotherapy 

to RT synergizes these side-effects and increases the rate of toxicities during treatment 

from 51% to 85% (Adelstein et al., 2003). Therefore, for patients with HPV negative 

HNSCC, it is necessary to find the balanced treatment that is capable of achieving cure 

and maintaining a sufficient quality of life for the patient (Tawk et al., 2022). To develop 

versatile new treatment strategies, including personalized therapy, there is an urgent 

need for identifying genetic biomarkers of radioresistance and to understand how 

genes are regulated in response to RT (Tawk et al., 2021). 

1.4.3 Preclinical FaDu model of HNSCC 

FaDu is hypopharyngeal squamous cell carcinoma cell line, established in 1968 from 

a punch biopsy from a 56-year-old male patient with squamous cell carcinoma. The 

cell line was named FaDu for the patient from whom the tissue was removed. It has 

epithelial morphology and grows as a monolayer with the doubling time around 50 

hours (Rangan, 1972). Alterations in both tumor suppressor TP53 and CDKN2A 

genes, similar to those observed in primary tumors, are present in FaDu cell line 

(Figure 3) (Nichols et al., 2012). 
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Figure 3. Altered cancer driver genes for hypopharyngeal squamous cell carcinoma. 
Font size indicates the frequency of the mutation. Mutations are indicated in blue (loss of 
function) and grey (ambiguous). Copy number alterations are indicated in purple (amplification) 
and green (deletion). Figure adapted from (cellmodelpassports.sanger.ac.uk). 

  

1.5 Functional genomics  

Functional genomic screens are robust and powerful tools for determining responsible 

genes in diverse hallmarks of cancer progress (Huang et al., 2020; Przybyla & Gilbert, 

2022). Forward genetics was a highly successful approach to decipher the role of 

genes in developmental biology and disease in model organisms with large number of 

progenies, such as Escherichia coli and Saccharomyces cerevisiae. Developments 

such as RNA interference (RNAi) and whole genome sequencing enabled to perform 

genome-wide screens in various organisms (Yamamoto-Hino & Goto, 2013). Clustered 

regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field 

and overtaken the previously existing tools for genetic engineering in terms of editing 

efficiency, simplicity, and flexibility (Adli, 2018). 

1.5.1 RNA interference  

RNAi utilizes sequence-specific double-stranded RNAs complementary to a target 

gene mRNA to acquire silencing (Adamson et al., 2016). Thereby, double-stranded 
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RNA is treated by the RNase III-like enzyme Dicer to form small interfering RNAs 

(siRNAs) to accomplish RNA silencing (Cowley et al., 2014). However, there are 

several limitations in RNAi approach, such as the extent and duration of mRNA 

cleavage, resulting in transient gene knockdown; and off-target effects, resulting an 

unintended gene knock-down due to sequence similarity with the intended target. 

1.5.2 CRISPR/Cas9 genome editing 

The CRISPR/Cas system was first recognized and explored as repetitive DNA 

sequences in prokaryotes (Jansen et al., 2002). The system which revolutionized the 

targeted genome editing-based explorations is the Streptococcus pyogenes type II 

CRISPR/Cas9 system (Doudna & Charpentier, 2014). It is an adaptive defense 

mechanism that uses a small RNA targeting sequence, enabling endonuclease Cas9 

to bind DNA sequences upstream of a protospacer adjacent motif (PAM) and cause a 

DSB (Jinek et al., 2013). In bacteria and archaea, CRISPR locus contains unique 

spacer sequences acquired from invading genetic elements (protospacers) (Sorek et 

al., 2013) . Protospacers are flanked by PAM sequence, which serves as a binding 

signal for Cas9 (Sternberg et al., 2014). Targeting and cleavage need a presence of 

RNA duplex consisting of CRISPR RNA (crRNA) and a transactivating crRNA 

(tracrRNA) (Deltcheva et al., 2011). Any DNA sequence that is flanked by PAM can be 

targeted. PAM in Streptococcus pyogenes is 5′-NGG-3′, where "N" is any nucleobase 

followed by two guanines “G” (Jinek et al., 2012). In the engineered CRISPR/Cas9, 

crRNA and tracrRNA is substituted with the single guide RNA (gRNA) which is a fusion 

transcript and guides the Cas9 protein to the desired location (Jinek et al., 2012). By 

using an appropriate delivery system (such as lentiviral vehicles) the gRNA and Cas9 

protein are delivered into the cells and combine to form the gRNA-Cas9 complex. DSB 

is induced when the nuclease activity of the Cas9 domains cleaves the target DNA 

sequence after the third nucleotide base upstream of the PAM after binding to the 

target site (Anders et al., 2014).  

There are two major pathways that repair DSBs: non-homologous end joining (NHEJ) 

and homology-directed repair (HDR) (Chapman et al., 2012; Lieber, 2010; San Filippo 

et al., 2008). HDR, which uses an undamaged homologous sequence, normally from 

the sister chromatid, as a template, is considered highly accurate. NHEJ, on the other 

hand, is active throughout the cell cycle and religates the broken DNA ends, sometimes 
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in an error-prone manner. This can cause insertion or deletion mutations (Indels) that 

can result in frame-shift mutations and gene knockout. When standard repair pathways 

fail, alternative DSB repair pathways such as microhomology-mediated end joining 

(MMEJ) can activate (McVey & Lee, 2008) which may result in deletions or 

chromosome translocations. Finally, the precision of the HDR repair pathway can be 

used to insert the exact desired sequence into the target genomic region by providing 

a homologous donor template (Sander & Joung, 2014; Stracker & Petrini, 2011; Zhang 

et al., 2017) (Figure 4). 

 

Figure 4. CRISPR/Cas9-mediated genome editing. Recruitment of Cas9 to the target DNA 
is mediated by gRNA, containing PAM. Cas9-induced DSBs are repaired either by NHEJ or 
MMEJ, which can result in insertions or deletions, or by HDR by using a donor DNA template, 
enabling desired sequence changes. Figure prepared by Dr. Katrin Rein. 

 

1.6 CRISPR/Cas9 genetic screens 

CRISPR/Cas based genome editing has become a robust tool in cancer biology owing 

to its easy planning and adaptability (Hsu et al., 2014). Genetic screening links 

genotype with phenotype in a process in which the expression of multiple genes in cell 

lines or animal models are systematically modulated and the cellular phenotypes of 

interest (e.g., proliferation) are selected (Grimm, 2004).  
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1.6.1 In-vitro genetic screens 

A typical CRISPR in-vitro screen starts by viral transduction of desired cell type (e.g., 

tumor cell line) with gRNA library to integrate gRNAs into the genome of the target 

cells. Low multiplicity of infection (MOI) in used, which results, with high probability, in 

one perturbation per cell. Cellular pool with the desired phenotype is then selected, 

and the readout typically measures depletion or enrichment of gRNAs in this pool (e.g., 

cell death or proliferation, respectively). Sequencing of the DNA containing the gRNAs 

before and after phenotype selection reveals changes in gRNA representation and 

thereby selects candidate genes for further experiments (Figure 5 a) (Chow & Chen, 

2018; Kuhn et al., 2021). 

CRISPR screens were first developed by using pooled gRNA libraries which target all 

annotated genes in the human genome at once (Shalem et al., 2014). The feasibility, 

efficiency and availability of gRNA libraries has made CRISPR knock-out pooled 

screens a widely used method for interrogating gene function in cancer (Katti et al., 

2022). CRISPR screens have played an important role to identify genes involved in 

multiple processes, including regulators of drug resistance (Sanjana et al., 2016), 

synergistic and synthetic lethal interactions (Han et al., 2017), and essential genes 

(Hart et al., 2015), among others.  

1.6.2 In-vivo genetic screens 

While in-vitro screens are highly valuable for identifying properties of cancer cells and 

potential therapeutics, they do not take into account complex cellular interactions at 

the tumor microenvironment, e.g. innate or adaptive immune response, the degree of 

tissue remodeling and extracellular matrix deposition, and tissue architecture that can 

all influence the phenotypes (Quail & Joyce, 2013). Advances in cancer research 

highlighted that tumor cells heavily crosstalk with their microenvironment with a 

multitude of consequences for tumor biology (Abdollahi & Folkman, 2010; Hanahan & 

Folkman, 1996; Hanahan & Weinberg, 2011). This is considered in in-vivo screens, 

which for example were indeed revealing cancer dependencies in tumor 

microenvironment that in-vitro screens failed to identify (Miller et al., 2017). 
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In direct in-vivo screens, delivery, and expression of genetic modification reagents 

directly in-vivo is commonly achieved my using lentiviruses or plasmids for local 

delivery, and adeno-associated virus (AAV) for systemic delivery. However, delivering 

and expressing enough reagents is challenging, therefore plasmids or AAV can be 

combined with effector proteins (i.e., integrase, recombinase, or transposase) that 

facilitate integration (Xue et al., 2014). Cas9, coupled with sgRNA, promoters, and 

other elements exceed the packaging capacity of viral vectors for in-vivo applications 

(Wu et al., 2010). Therefore, transgenic animal models in which Cas9 is integrated into 

the genome, reduce delivery burden, and provide more efficient platform for in-vivo 

screens (Platt et al., 2014). Cellular coverage can be limiting especially if genome-wide 

libraries are used. This requires scaling up considerably and using cells or DNA from 

multiple animals per replicate, and therefore limiting the library size to target a certain 

class of proteins. The readout of in-vivo screen is similar to the one of in-vitro screen, 

where gRNA representation is compared between control and experimental condition 

(Figure 5 b) (Kuhn et al., 2021). 

To overcome difficulties of direct delivery of gene editing reagents, indirect in-vivo 

screens can be an effective approach. In indirect in-vivo screens, the target cell line is 

first transduced in-vitro and subsequently transplanted into model animal to assess 

phenotypes in-vivo (Figure 5 c). While being highly effective, the limitations include 

specific cell types that allow transplantation, and in case human cell lines are used, the 

requirement of immunocompromised animals (Chow & Chen, 2018; Kuhn et al., 2021). 

The identification of mutations associated with tumor growth and metastasis was one 

of the first examples of CRISPR/Cas9 applications for indirect in-vivo functional genetic 

screens (Chen et al., 2015). In-vivo CRISPR screens have among others identified 

tumor suppressors (Katigbak et al., 2016), oncogenes(Braun et al., 2016), synthetically 

lethal genes (Yau et al., 2017) and regulators of cancer immunotherapy (Patel et al., 

2017).  
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Figure 5. In-vitro and in-vivo CRISPR screen example workflows. a) In in-vitro screen, 
gRNA library is introduced into a desired cell line and cells are collected before and after a 
certain phenotype (e.g., proliferation) selection. gRNA cassettes are then amplified from 
genomic DNA and sequenced. b) In a direct in-vivo screen, gRNA library is delivered directly 
into the target cells by using, for example, lentivirus or AAV. Intracranial viral injection, for 
example, can drive tumorigenesis. The gRNA representation of resulting tumors is compared 
with control condition. c) In an indirect in-vivo screen, gRNA library is first introduced into a cell 
line of interest, followed by transplantation (e.g., subcutaneous injection). In the case of a 
tumorigenesis screen, the resulting tumor is harvested, and gRNAs sequenced. Figure 
prepared by Dr. Katrin Rein. 

 

1.7 CRISPR/Cas9 screening libraries  

1.7.1 GeCKO and GeCKO v2 libraries 

First widely used whole genome screening library was lentiviral genome-scale 

CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique 

guide sequences (Shalem et al., 2014) and was used to identify genes essential for 

cell viability in cancer and pluripotent stem cells. The original library was improved by 

both the lentiviral packaging and choice of guide sequences, resulting an increase in 

functional viral titer (GeCKO v2). The GeCKO v2 libraries consist of over 100,000 

unique gRNAs sequences for gene knock-out in the human genome. This library is 

available as two half-libraries (A and B). When used together, the A and B half-libraries 

contain 6 sgRNAs per gene (3 sgRNAs in each library). Both A and B half-libraries 
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contain 1000 control sgRNAs each designed not to target in the genome. The A library 

also targets 1,864 miRNAs (4 sgRNAs per miRNA). This library is available in one 

vector (lentiCRISPRv2) or two vector (lentiCas9-Blast and lentiGuide-Puro) formats 

(Sanjana et al., 2014) (Table 3). 

1.7.2 Brunello library 

The human CRISPR Brunello lentiviral pooled library was developed to minimize the 

impact of off-target activity on screening results and to improve on-target activity of 

gRNAs. It is available in either one vector (lentiCRISPRv2 backbone) or two vector 

(lentiGuide-Puro backbone) system. The Brunello CRISPR knockout pooled library 

has 76,441 gRNAs to make edits across 19,114 genes in the human genome. It 

contains 4 sgRNAs per gene and 1000 control sgRNAs designed not to target the 

genome (Doench et al., 2016) (Table 3). 

1.7.3 TKO library 

The Toronto KnockOut (TKO) Library was developed to expand the catalog of human 

core and context-dependent fitness genes (Hart et al., 2015) and further optimized for 

editing efficiency, resulting in TKO v3 Library that contains 70,948 gRNAs targeting 

18,053 protein coding genes with 142 control gRNAs targeting EGFP, LacZ, and 

luciferase. The optimized library size of TKO v3 offers the benefit of improved 

accuracy, efficiency and scalability for CRISPR screens, as it small enough to perform 

genome-wide screens and sensitive enough to minimize false negatives (Hart et al., 

2017) (Table 3). 

Table 3. List of genome-wide CRISPR libraries 

Library gRNAs Genes miRNAs gRNAs/gene control gRNAs 

GeCKO v2 

A+B 

123411 

65,383 (A)  

58,028 (B) 

19050 1,864 6 

3 (A) 

3 (B) 

2000 

1000 (A) 

1000 (B) 

Brunello 76441 19114 0 4 1000 

TKO v3 70948 18053 0 4 142 
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Aim of this dissertation  

The aim of this thesis was to systematically characterize novel radiation qualities i.e., 

particle irradiation with protons, helium, carbon, and oxygen ions available at 

Heidelberg Ion-Beam Therapy Center (HIT) in HNSCC and NSCLC in-vivo preclinical 

xenograft models. To dissect the molecular underlying of tumor response to these 

radiation modalities transcriptome and functional genomic analysis was conducted.   

The objectives of this work were:   

1. Establish the FaDu HNSCC and A549 NSCLC xenograft models and the 

radiotherapy setup for conventional photon irradiation as well as irradiation with 

the four particle qualities at HIT.  

2. Generate Cas9 stable A549 and FaDu clones and integrate genome-wide 

lentiviral CRISPR/Cas9 based libraries using two different platforms, i.e., 

GeCKO and Brunello libraries, respectively. 

3. Perform quality control and characterization of the GeCKO A and Brunello 

libraries under standard in-vitro vs. more complex in-vivo constraints 

considering tumor microenvironment (TME) selection pressure.  

4. Study the effect of fractionated conventional irradiation with photons/x-ray in-

vivo.  

5. Study the effect of fractionated proton irradiation as a clinical standard particle 

therapy modality with assumed fixed RBE of 1.1 vs. irradiation with a gradual 

increase of LET using heavier i.e., helium, carbon, and oxygen ions.  

6. Decipher the tumor transcriptome response to different radiation qualities via 

RNA-seq analysis. 
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7. Dissect tumor evolutionary dynamic with and without radiotherapy selection 

pressures, considering the additional effect of single gene knock-out on top of 

the inherent genetic background of the two tumor models.  

8. Identify novel regulators of radiosensitivity of HNSCC and NSCLC for the 

development of biomarkers and novel drug targets. 
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2. Materials and methods 

2.1 Materials 

2.1.1 Cell lines 

Name (species; tissue origin)   Supplier 

A549 (human lung adenocarcinoma)  DSMZ, Germany 

FaDu (human hypopharyngeal carcinoma) Jochen Hess, Germany 

293T (human embryonic kidney)   SBI System, Bioscience, Germany 

 

2.1.2 Chemical materials 

Acetic Acid>99.8%                                Sigma-Aldrich, Germany 

Agarose (11404.05)     SERVA, Germany 

Ampicillin (A051-B)     G-Biosciences, USA 

Crystal Violet (C0775)    Sigma-Aldrich, Germany 

DMEM (FG0415)     Biochrom, Germany 

DMSO (P60-36720100)    PAN Biotech, Germany    

DPBS (14190-094)     Thermo Fisher, USA 

FCS (S0615)      Biochrom, Germany 

Isopropanol      Sigma-Aldrich, Germany 

Lipofectamine 2000 (11668-27)   Invitrogen, USA 

IMDM (12440053)     Thermo Fisher, USA 

LB-Agar (X965.1)     Roth, Germany 

LB-Medium (X964.1)    Roth, Germany 

MEM (31095-029)     Biochrom, Germany 

Methanol (32213)     Sigma-Aldrich, Germany 

1x NEBuffer 2     New England Biolabs, Germany 

10x Taq Buffer     Genaxxon bioscience, Germany 

6x DNA Loading Dye    Thermo Scientific, USA 

Opti-MEM Reduced Serum Medium  Gibco Invitrogen, USA 

PAXgene Tissue FIX    PreAnalytix GmbH, Germany 
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Penicillin/Streptomycin    Gibco Invitrogen, USA 

Puromycin      Gibco Invitrogen, USA 

PLUSTM Reagent     Thermo Scientific, USA 

RNase-free Water     Sigma-Aldrich, Germany 

S.O.C Medium     Fisher BioReagents, Germany 

T7 Endonuclease 1     New England Biolabs, Germany 

Trypan Blue      Sigma-Aldrich, Germany 

Trypsin/EDTA     PAN Biotech, Germany 

 

2.1.3 Non-chemical materials 

Greiner 96-well plate    Greiner bio-one, Germany 

Greiner 24-well plate    Greiner bio-one, Germany 

Greiner 12-well plate    Greiner bio-one, Germany 

Greiner 6-well plate     Greiner bio-one, Germany 

Tissue culture flask T-75    SARSTEDT, Germany 

Tissue culture flask T-175    SARSTEDT, Germany 

Cellstar falcon tubes    Greiner bio-one, Germany 

29G Injection needle    BD Microlance, Germany 

Disposable syringe     BD Microlance, Germany 

Cryo tubes      Thermo Scientific, USA 

 

2.1.4 Kits 

NucleoBond ® DNA-kit     MACHEREY-NAGEL, Germany 

RNeasy® Mini Kit     QIAGEN, Germany 

DNA Chips      Agilent Technologies, USA 

RNA Nano Chips     Agilent Technologies, USA 

EnGen ® Mutation Detection Kit   New England Biolabs, Germany 

 

2.1.5 Animals and anesthesia 

NMRI-Foxn1nu/nu nude mice   JANVIER labs, France  
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Isoflurane      Bayer Vital GmbH, Germany 

 

2.1.6 Laboratory devices 

DNA Engine Thermal Cycler   Bio-Rad, USA 

Agilent 2100 Bio-analyzer    Agilent Technologies, Germany 

AccuJet Pro automatic pipette   Brand, Germany 

Biowizard cell culture hood   KOJAIR, Finland 

ChemiDoc system     Bio-Rad, USA 

200R Mikro centrifuge    Hettich Zentrifugen, Germany 

460R Rotanta centrifuge    Hettich Zentrifugen, Germany 

-80ºC deep freezer     Sanyo, Germany 

Nanodrop 1000 spectrophotometer  NanoDrop, USA 

Vortexer      IKA Janke&Kunkel, Germany 

Water bath      Huber, Germany 

 

2.1.7 Software 

CS-Cal   http://angiogenesis.dkfz.de/oncoexpress/software/ 

ImageJ7Fiji   http://imagej.nih.gov/ij/ 

SUMO   http://angiogenesis.dkfz.de/oncoexpress/software/ 

TableButler   http://angiogenesis.dkfz.de/oncoexpress/software/ 

SeedScan   http://angiogenesis.dkfz.de/oncoexpress/software/                        

GraphPad Software  www.graphpad.com 

 
 

2.2 Methods 

2.2.1 Basic cell culture procedures 

FaDu cells were cultured in MEM medium supplemented with 10% fetal calf serum 

(FCS) and 1% Penicillin/Streptomycin. A549 cells were cultured in DMEM medium 

complemented with 10% FCS and 1% Penicillin/Streptomycin. Media with mentioned 

http://angiogenesis.dkfz.de/oncoexpress/software/
http://imagej.nih.gov/ij/
http://angiogenesis.dkfz.de/oncoexpress/software/
http://angiogenesis.dkfz.de/oncoexpress/software/
http://angiogenesis.dkfz.de/oncoexpress/software/
http://www.graphpad.com/
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supplements are referred to as complete medium. For cell passaging, cells were 

washed with DPBS once and incubated with Trypsin/EDTA for 5 minutes at 37ºC. 

Complete medium was added to stop Trypsin activity. The cell suspension was 

centrifuged at 1000 rpm for 5 minutes. The supernatant was discarded, and the cells 

were dispersed at a dilution of 1/5 in new medium. 

2.2.2 Cell lines used 

FaDu is human squamous cell carcinoma line with epithelial morphology which 

obtained from hypopharyngeal tumor; its doubling time is 30 hours and they adherent 

to the culturing flask. In nude mice they grow as an undifferentiated carcinoma (Hessel 

et al., 2003). 

A549 is human lung adenocarcinoma and developed through the removal of cancerous 

lung tissue, it grows as a monolayer and attaching to the culture flasks. It is KRAS 

mutant, EGFR and TP53 wild type. This line used for testing of novel drugs in-vitro and 

in-vivo in the field of cancer. The A549 cell line derived xenograft (CDX) is one of the 

most used xenograft lung cancer models (Balis et al., 1984). 

2.2.3 Generating Cas9-expressing single cell clones 

Genetic heterogeneity which exists in cancer cell lines increases the likelihood of false 

positive hits in functional genomic screens. To minimize these effects for the 

performance of our functional screens in in-vivo, clonal FaDu (HNSCC) and A549 

(NSCLC) cell lines were derived that express Cas9.  

To generate Cas9 expressing lines, FaDu and A549 cells were transduced using 

lentiviral particles produced in 293T cells using pSpCas9(BB)-2A-Puro (PX459) V2.0 

plasmid (Addgene #62988). Following determination of optimal dose of blasticidin as 

selective antibiotic, DMEM medium was mixed with polybrene to achieve 10µg/ml 

concentration. In the next step lentiviral aliquot was thawed at 37ºC and lentivirus 

dilution in DMEM-polybrene were prepared. 5x104 cells were transduced in 6-well 

plates by adding 0.5ml of virus solution and incubated for 48 hours. Transduced cells 

were selected using complete DMEM medium containing blasticidin. Confluent well of 

a 6-well plate was expanded into a 10cm dish. To generate single cell clones, cells 
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were seeded in 96-well plates in limiting dilutions: 1x105 cells were suspended in 5 ml 

of medium and 500µl of prepared cell suspension was added to 4.5ml of medium. In 

the next step cells were diluted 1:10 ratio and 100µl of suspension was seeded in each 

well of 96-well plates. The cells were cultured in incubator at 37ºC for two weeks, while 

monitoring the formation of colonies. Wells with only one clone were selected for further 

expansion into larger plates. Derived single cell clones were passaged and stock 

frozen in liquid nitrogen for future use. 

2.2.4 Plating efficiency  

Single cell clones were selected to compare their plating efficiency with the wild type 

cells. 500 cells of wild type and selected single clones were seeded in 6-well plates in 

triplicate and were incubated at 37ºC to form clones. After 2 weeks of culturing, number 

of clones which were formed were counted and divided by initial seeding number and 

their percent of plating efficacy was calculated.  

2.2.5 Clonogenic survival assay  

The response to irradiation of single cell clones and the parental cell lines was 

evaluated by performing clonogenic survival assay. 500cells/well of 6-well plate were 

seeded for non-irradiated control plates, cells seeding densities increased up to 4000 

cells for higher radiation doses. Cells were seeded in triplicates. Plates were incubated 

overnight at 37ᵒC and were irradiated with 1Gy as the lowest and 8Gy as the highest 

dose with 2Gy increasing intervals on a Siemens Artiste (6MV) linear accelerator at 

the Department of Medical Physics in Radiation Therapy (DKFZ). After irradiation, 

plates were incubated for two weeks to form colonies. When colonies were observed 

by eye, they were stained with crystal violet. For image acquisition, plates were 

exposed for 0.03 sec with trans-illumination white light by using ChemiDoc system 

(Bio-Rad). Colonies were counted automatically by using image processing software 

ImageJ. Survival fractions were computed using the in-house software CS-Cal. 

2.2.6 T7 Endonuclease I assay  

To evaluate the cleavage efficiency in clonally derived FaDu and A549 lines, 

CRISPR/Cas9-mediated double strand break (DSB) in the SYNE1 gene was induced 
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by transducing each cell line with lentiviral vectors expressing gRNA sequence specific 

for the Synaptic nuclear envelope protein 1 (SYNE1) locus (vectors were cloned by Dr. 

Maximillian Knoll and Dr. Ali Nowrouzi). For lentivirus transduction, FaDu-Cas9 and 

A549-Cas9 cells were seeded in 12-well plates with the seeding density of 5x104 

cells/well and incubated at 37ºC. The following day, cells were transduced with 500µl 

of the lentivirus solutions. Successfully transduced cells were selected with 2µg/ml 

(FaDu-Cas9 cells) or 4µg/ml (A549-Cas9 cells) of puromycin selection. One of the 

wells containing non-transduced FaDu-Cas9 and A549-Cas9 cells was treated also 

with puromycin to serve as positive control. The genomic region in which the DSB was 

induced was amplified by PCR (Table 4) and purified using QIAquick PCR purification 

Kit according to the manufacturer's protocol. To perform T7 Endonuclease I (T7EI) 

assay, 200ng of purified PCR product was mixed with 2µl of 1xNEBuffer 2 and exposed 

to high temperature (denaturation) followed by a cooling down step to form 

heteroduplexes (Table 5). After the formation of heteroduplexes, the solution was 

treated with 1µl of T7EI to cleave DNA fragments. Cleavage products were detected 

by agarose gel electrophoresis. 

Table 4. PCR program for amplifying DSB induced region 

Description Temperature Time Replications 

Initial denaturation 95ºC 2 minutes 1 Cycle 

Denaturation 95ºC 45 seconds 30 Cycles 

Annealing 58ºC 45 seconds 30 Cycles 

Elongation 72ºC 1 minute 30 Cycles 

Final elongation 72ºC 5 minutes 1 Cycle 

 

Table 5. T7 Endonuclease 1 heteroduplex formation program 

Description Temperature Time / Rate 

Initial denaturation 95ºC 5 minutes 

Annealing 95ºC to 85ºC 2ºC/s 

Annealing 85ºC to 25ºC 0.1ºC/s 
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2.2.7 Whole genome CRISPR/Cas9 screen in in-vivo models 

For performing the functional screens in-vivo, the FaDu-Cas9 and A549-Cas9 single 

cell clones were selected and transduced with the genome-wide Brunello library 

(Addgene Catalog # 73178). GeCKO library A (Addgene Catalog # 1000000049) was 

previously integrated in the team in FaDu-Cas9 and A549-Cas9 single cell clones. 

2.2.8 Determination of infection condition for pooled 
screens  

In order to have one vector copy per cell that would be equivalent with one gene 

knockout per cell, multiplicity of infection (MOI) of 0.3 was used. To find optimal virus 

volumes for achieving the desired MOI, FaDu and A549 cells were seeded at 1x106 

cells/ml in each well of a 12-well plate. The next day, wells were transduced at 1:10, 

1:50, 1:100, and 1:200 dilutions with or without Brunello library virus. Plates were 

incubated for additional 24 hours and after that cells were transferred in duplicates into 

6-well plates in 1:1 ratio. One replicate was treated with and the other without 

puromycin. As soon as non-transduced control cells treated with puromycin were not 

viable, the percentage of transduction rate was calculated by counting the puromycin 

treated cells divided by cell count without puromycin multiplied by 100. Virus titer per 

ml was calculated as the number of seeded cells multiplied with transduction efficiency 

divided by the dilution factor multiplied by 100. 

2.2.9 Subcutaneous xenograft mouse models 

All in-vivo experiments were conducted in accordance with the German Cancer 

Research Center (DKFZ) institutional animal welfare rules approved by the federal 

animal welfare authorities of Regierungspräsidium Karlsruhe. NMRI-Foxn1nu/nu female 

mice from Janvier Labs (France) that were 4-6 weeks old were allowed to acclimatize 

in the animal facility for 1-2 weeks after arrival before starting experiments. 3x106 FaDu 

and A549 cells in 100µl PBS were injected subcutaneously into the right hind limb of 

the mice. The size of tumors was measured every second day with a caliper and when 

their volume reached 150±50mm3 they were randomized to non-irradiated and 

irradiated groups. The mice were sacrificed when the volume of primary/recurrent 

tumor reached 1500mm3 or one side of tumor reached to 15mm. 
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2.2.10 Photon irradiation 

For photon irradiation, anesthetized mice (n=10) for each model were placed on a 

horizontal plate and tumors were irradiated with a vertical photon beam using Siemens 

Artiste (6MV) linear accelerator at the Department of Medical Physics in Radiation 

Therapy (DKFZ). The tumors were placed into the radiation field while the body was 

shielded and irradiated with 13 fractions of 3Gy daily to a total physical dose of 39Gy. 

2.2.11 Charged particle Irradiation 

Particles were administrated at the Heidelberg Ion-Beam Therapy Center (HIT). The 

irradiation plan was developed by Dr. Stephan Brons. For irradiation, anesthetized 

mice (n=10) of each particle were placed on a holder which was designed to place 

tumors into the radiation field (Figure 6 a,b). The tumors were irradiated daily with 8 

fractions at a physical dose of 3Gy protons (Beam energy: 127.5-136.3 MeV/u, LET 

4.5keV/μm (range 3.3-8.5 keV/μm)), carbon ions (Beam energy: 245.4-261.6 MeV/u, 

LET 80 keV/μm (range 55-175 keV/μm)), helium ions (Beam energy : 128.4-136.1 

MeV/u, LET ≈ 18 keV/μm) and oxygen ions (Beam energy: 291.8-311.2 MeV/u, LET 

120 keV/μm (range 70-225 keV/μm)), within a SOBP of 15x15x15 mm at a water 

equivalent depth of 124±10 mm behind a 100mm Poly methyl methacrylate (PMMA) 

(Figure 6 c,d).  
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Figure 6. Radiation field description. a) Holder to place tumor into the irradiation filed. b) 
Anesthetized mice with tumors were placed in holder. c) Irradiated film to confirm irradiation 
with beam. d) Irradiation geometry to reach height and width of 15 mm. 

 

2.2.12 Genomic DNA and total RNA extraction from tumors 

When mice were sacrificed, tumors were excised, and genomic DNA was isolated from 

tumor tissues according to the protocol for NucleoBond DNA extraction Kit (Macherey-

Nagel). Total RNA was isolated from snap frozen tumor tissues according to the 

protocol for RNA extraction in the RNeasy RNA Mini kit (Qiagen). 

2.2.13 Library preparation and sequencing   

For each sample, two PCR cycles were performed (Figure 7). First PCR (Table 6) was 

to amplify the whole genomic region and contained in total of 24µg of isolated gDNA. 

For each sample, eight PCR reactions were performed and pooled together. The 

second PCR was a nested PCR to improve sensitivity/specificity and contained 2.5µl 

of first PCR pooled product. PCR conditions were the same as for the first PCR. Each 

sample from the second PCR was pooled together and was purified with AMPure 

beads (Beckman) in 1:1 ratio according to manufacturer’s instructions. Concentrations 
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of purified samples were measured via Nanodrop spectrophotometer and 500ng of 

each sample was used in a pooled lane. In the next step the pooled lane product was 

run in Bioanalyzer Agilent 2100 and pooled lane concentration was measured using 

Qubit Fluorometric Quantification (Invitrogen), the average size of library (bp) and its 

concentration was used for calculating the amount of needed library to run NovaSeq 

6000 (Illumina) sequencing (Figure 7). Sequencing was performed at the DKFZ 

Genomics and Proteomics Core Facility, and results were provided in FastQ files. 

Table 6. PCR program for library preparation 

Description Temperature Time Replications 

Initial denaturation 98ºC 10 seconds 1 Cycle 

Denaturation 98ºC 1 seconds 15 Cycles 

Annealing 60ºC 5 seconds 15 Cycles 

Elongation 72ºC 10 seconds 15 Cycles 

Final elongation 72ºC 1 minutes 1 Cycle 

 
 

 

Figure 7. Library preparation and multiplexing for NGS 

The experimental setup of the screens is described in the following schematics: 
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Figure 8. Experimental setup of the screens 

 

2.2.14 Sequencing read count processing  

SeedScan in-house software was used for pre-processing of NGS FastQ files. In order 

to identify a sample, first specific barcode pairs which were used for each sample 

(forward/reverse) were detected. Reads which did not match the barcodes were 

rejected. Later, library guides sequence was searched, and matched targets were 

counted and normalized to a million reads. For identification of guides sample’s 

sequences were matched against the guide library allowing 1 error (base 

exchange/insertion/deletion), +/- 2bp-shift against expected position in the construct 

(i.e. up to 2 insertion/deletion upstream the guide sequence). 

FastQ files of NovaSeq6000 sequencing of RNA libraries (100bp, PE) were 

preprocessed as follows: raw reads were aligned against a merged human/mouse 

reference genome (human: GRCh39.p13, mouse: GRCm39.p6) by applying TopHat 

v2.1.1/Bowtie 2. For removing duplicate reads, deduplication step was applied by using 

Picard Tools. Cufflinks v2.1.1 was used to quantify gene expression count using the 

human reference genome (GRCh39.p13) annotations, mouse read counts were 

ignored. Counts are reported as Fragments Per Kilobase transcript length per Millions 

reads analyzed (FPKM). Gene counts were prepared as an expression matrix and 

used for further analysis. 
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2.2.15 Statistical analysis and gRNA abundance analysis 

Survival fractions from clonogenic survival assay were computed using the in-house 

software CS-Cal (v1.01b, by c.schwager@dkfz.de). GraphPad Prism 7 was used to 

plot tumor growth, survival curves and bar charts. Means of data were presented with 

standard deviation (SD) or standard error of mean (SEM). Student’s t-Test was used 

to determine statistical significances. For RNA expression analysis, raw data was 

transformed using the variance stabilizing transformation (vst) function from the 

DeSeq2 package (Love et al., 2014), and mean aggregated per gene. Non complete 

cases (NA, Inf) were removed. As unwanted variability was present in the analyzed 

samples, principal component analysis was performed, and information contained in 

the first principal component was removed. gRNA abundance and its relation with 

treatments were analyzed as following: gRNA count matrixes were aggregated over 

targeted genes per sample (maximum value); genes were then ranked per sample 

(highest observed value: highest rank), non-detected genes were set to NA. Next, 

genes were aggregated over treatment groups (control, photon, etc.) by using the 

respective maximum rank. Only genes being detected in any carbon ion and oxygen 

ion treated samples were retained. This resulted in 1331 genes for further analysis in 

FaDu model and 18686 genes in A549 model (out of 19113 genes in total). Imputed 

data(van Buuren & Groothuis-Oudshoorn, 2011)  matrices (not aggregated per group) 

were used for analyses of associations with LET, and differences between control and 

photon irradiated tumors. Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway enrichment analyses were performed with the enrichR package (Jawaid, 

2021). Gene set enrichment analyses were performed with the tmod package, using 

the tmodUtest function (Weiner 3rd J, DomaszewskaT. 2016). All above mentioned 

analyses were performed in R software (R Core Team, 2018) with help of the internal 

bioinformatic subgroup.  
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3. Results  

3.1 In-vitro characterization of single cell clones 

Genetic heterogeneity which exists in cancer cell lines increases the chance of false 

positive hits in functional genomic screens. In order to minimize these effects and to 

have similar Cas9 cutting efficacy for our functional screens in-vivo, clonal FaDu 

(HNSCC) and A549 (NSCLC) lines expressing Cas9 were generated.  

Three single cell clones (Scc) of A549 were selected to compare their plating efficiency 

with the wild type cell line (Figure 9 a). Clones #1 and #2 showed significant differences 

in comparison with wild type (p=0.03 and p=0.04, respectively). There was no 

significant difference between clone #3 and wild type (p=0.06).  

To evaluate whether single cell clones respond similarly to the pool of parental wild 

type cells to irradiation, clonogenic survival assay was performed (Figure 9 b). A two-

tailed Mann Whitney test was performed to evaluate statistically significant differences 

in the clone numbers (survival reduction) was obtained after 4, 6 and 8 Gy radiation 

doses of all three clonal cell lines. No statistical difference was observed between wild 

type and the clonal cell lines, p=0.7, p=0.9 and p>0.9 in Scc #1, #2, and #3 

respectively. 

To evaluate the cleavage efficiency in clonally derived cell lines, double strand breaks 

(DSBs) were induced by transducing each line with lentiviral vectors expressing gRNA 

sequence specific for the Synaptic nuclear envelope protein 1 (SYNE1) locus. T7 

Endonuclease I (T7 EI) assay was performed to evaluate gene editing efficiency 

(Figure 9 c). The cleavage percent of A549 clone #1 with 63.38% was the lowest 

cleavage percentage in comparison to other tested clones. The higher cleavage 

percentages were observed in clones #2 and #3 with 93.16% and 94.3% respectively.  

Based on the plating efficacy, and T7 E1 assay results, clone #3 was selected for 

transduction with Brunello library.  
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FaDu single cell clone was previously cloned in the lab and used for the further 

experiments. 

Figure 9. In-vitro characterization of single cell clones. a) Plating efficacy of A549 single 
cell clones (Scc) in comparison to wild type cell line. Data represents mean ± SEM; #1 n=3 
p=0.03, #2 n=3 p=0.04 and #3 n=3 p=0.06.  b) Clonogenic survival of single cell clones after 
photon irradiation in comparison to A549 wild type cell line, data were fitted to a linear quadratic 
model (LQM). Data represents mean± SD. c) Cleavage efficacy quantification of single cell 
clones. T7 Endonuclease 1 assay was performed on purified PCR products and samples were 
run in Bioanalyzer. Pseudogel plot shows cleaved mismatch and intact PCR fragments.  

 

3.2 In-vitro and in-vivo representation of GeCKO A and 
Brunello libraries 

First, we assessed library representation between in in-vitro and in non-irradiated 

control mice (in-vivo). The representation of the in-vitro FaDu-GeCKO A library was 

91.4%, the average representation of non-irradiated control tumors in-vivo was 27.42 

± 4.12% (Figure 10 a). The average representation of the FaDu-Brunello library was 

92.8 ± 0.53% and the average representation of non-irradiated control tumors in-vivo 

was 40.9 ± 5.03% (Figure 10 b).  

The average representation of two technical replicates in A549-Brunello library in the 

in-vitro samples was 94.8 ± 0.60% and the average representation in non-irradiated 

control tumors in-vivo was 35.3 ± 2.76% (Figure 10 c). These results indicate that 

library representations are reduced in-vivo mice and show variation between mice.  
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Distributions of detected guides of log10 transformed read counts are shown in Figure 

10 d,e,f. Both in-vivo and in-vitro distributions are highly similar between replicates 

within each model, as are in-vitro distributions between models. In-vivo gRNA 

distributions are skewed, with the mode being between 10 and 100 whereas mode for 

in-vitro is between 100 and 1000 reads. However, in-vivo guide distributions show 

higher fractions of gRNAs with higher numbers of reads (>1000) as compared to in-

vitro samples.  

 
Figure 10. In-vitro and In-vivo representation of GeCKO A and Brunello libraries. In-vitro 
representation of a) FaDu GeCKO A library (n=1). b,c) Brunello library in FaDu (n=4) and A549 
(n=4) respectively. The representation of guides in both libraries was above 92% in-vitro. 
Representation of tumor xenografts in-vivo (n=5) showed variances between individual mice 
and reduction of the representation of guides in comparison to in-vitro representation in both 
libraries. Data represents mean ± SEM. d,e,f) Distribution of gRNA abundance in in-vitro and 
in-vivo. 

 

3.3 Correlation between tumor growth kinetics in-vivo and 
library representation  

Transduced FaDu and A549 cells with GeCKO A or Brunello library were implanted 

subcutaneously into nude mice. Representation of libraries is shown in Figure 11. 

Representation is shown as the percentage of detected gRNAs (>0 reads) from the full 

library complexity (65383 and 76441 unique gRNAs in GeCKO A and Brunello, 
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respectively). A negative linear association between library complexity and survival 

time (days to sacrification) was found in all models (Figure 11 a,b,c). 

 

Figure 11. Library representation decreases as tumor growth increases. Percent of 
detected (>0 reads) unique gRNAs vs. the entire library complexity. X-axis: days of tumor take 
out and termination, after tumor cell injection. Linear regression fits are shown.  

 

3.4 Effect of fractionated conventional photon irradiation 
on in-vivo growth of FaDu and A549 tumors 

These experiments were performed using FaDu and A549 Brunello libraries. To test 

whether photon irradiation can inhibit or delay tumor growth, a group of tumors bearing 

mice (n=10) were irradiated with 13 consecutive fractions of 3 Gy using a vertical 

photon beam on a clinical linear accelerator (Linac, Siemens Artiste, 6MV). Cumulative 

dose was 39Gy (Figure 12 a). 

A delay in tumor growth could be seen starting  6 days post therapy (FaDu) and after 

16 days post therapy (A549). At day 8, average tumor volume of control and photon 

mice was 1037.16 ±218.11mm3 and 484.51±80.21 mm3 in FaDu model (p=0.001). At 

day 20, average tumor volume of control and photon was 792.98±327.37 mm3 and 

251±66.71 mm3 in A549 model (p˂0.0001) (Figure 12 b,d).  

Median survival of 8 days in non-irradiated mice in FaDu model was increased to 37  

days in irradiated mice, in A549 model median survival of control mice was 24 days 

which was prolonged to 42 days post irradiation. Overall survival increased significantly 

in both models (p˂0.0001) (Figure 12 c,e).  
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Figure 12. Tumor kinetics in control vs. photon irradiated mice in FaDu and A549 
models. a) Photon RT treatment scheme for both models. b,d) Average tumor volumes of 
control and irradiated FaDu (b) and A549 (d) cohorts over the observation period. Data 
represents mean±SEM, p=0.001 (FaDu) and p˂0.0001 (A549) (t-test). c,e) Kaplan-Meier 
survival curves for FaDu (c) and A549 (e) cohorts. Median survival in photon irradiated mice 
was 37 and 42 days in FaDu and A549, respectively. For both, FaDu and A549 tumor models, 
overall survival was significantly increased in photon irradiated mice compared to non-treated 
controls, p<0.0001 (Log-Rank Mantel-Cox test). 
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3.5 Tumor growth in particle irradiated FaDu and A549 
models 

Subsequent experiments examined the effect of novel radiation qualities with gradual 

increase of LET i.e., irradiation with helium, carbon, and oxygen ions vs. particle 

therapy reference irradiation with protons. Tumor growth curves representing mean 

volume of tumors across each group are shown in Figure 13. Tumor growth curves of 

each individual tumor/mouse are shown in Figure 14. A physical dose of 3 Gy of proton, 

helium, carbon and oxygen irradiation was applied in 8 consecutive fractions (Figure 

13 a). 

Average tumor volumes after particle irradiation are shown in Figure 13 b and d up to 

day 37 (FaDu) and 44 (A549) after therapy where intergroup comparison was 

meaningful. In both models, the slowest tumor growth was observed in carbon/oxygen 

groups, followed by helium and proton group. In A549, oxygen treatment led to a 

stabilization of average tumor volume, whereas for carbon treatment, tumor started re-

growing after 30 days, helium and oxygen only showed a transient delay of tumor 

growth between day 10 and 20. In FaDu, tumor regression following carbon and 

oxygen RT was observed, whereas a stabilization (days 6-14) followed by increase in 

tumor size was observed after helium and proton irradiations. Comparison of irradiated 

mice in FaDu showed significant difference of proton vs. carbon and oxygen ion group, 

p<0.0002. There were also significant differences between proton and carbon and 

oxygen ions in A549 model, p=0.002 and p=0.0007 respectively. A trend for enhanced 

growth delay after helium vs. proton was observed in both models. 

Median survival for FaDu model after irradiation with proton and helium was 29 and 

33.5 days, respectively. In contrast, a median survival was not reached in mice treated 

with carbon and oxygen ions, due to the high tumor control rates (>75%). In A549 

model, median survival after proton, helium, carbon ion treatment was 42.5, 51 and 94 

days respectively. >65% of A549 bearing mice that received oxygen ion treatment were 

controlled, hence, the median survival was not reached in this group (Figure 13 c,e). 
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Figure 13. Tumor growth kinetics following particle irradiation in FaDu and A549 
models. a) Particle RT application scheme for both models. b,d) Tumor growth kinetics in 
FaDu (b) and A549 (d) cohorts (average tumor volumes +SEM) after injection are presented. 
Comparison between irradiated mice in FaDu model show significant differences between 
proton and carbon ion and oxygen ion, p= 0.0001. In A549 model there was significant 
difference between proton and carbon p=0.002 and oxygen p=0.0007 ion treatments. c,e) 
Kaplan-Meier survival curves for FaDu (c) and A549 (e) cohorts. Median survival for FaDu 
model in proton and helium groups was 29 and 33.5 days, respectively, and was not reached 
in carbon and oxygen ion groups. In A549 model median survival after proton, helium, carbon 
ion treatment was 42.5, 51, 94 days respectively and was not reached in oxygen group. 

 

To better explore the heterogeneity in tumor growth kinetics over the entire observation 

period, spaghetti plots are presented. Figure 14 depicts tumor growth fate of each 

individual mouse after particle RT in FaDu (a) and A549 model (b). 
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Figure 14. Individual tumor growth kinetics of particle irradiated mice in FaDu and A549 
models. Tumor growth of each mouse after irradiation with particles is presented in a) FaDu 
and b) A549. 
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3.6 Library complexity decreases as a function of 
irradiation 

It was shown in Figure 11 that the total library complexity in both models decrease with 

gradual increase of the time to progression (tumor take out) in non-treated control 

tumors. In addition to time dependent reduction of library complexity, it was aimed to 

determine the effect of irradiation on library complexity. Both conventional photon 

irradiation as well as particle irradiation markedly decreased the library complexity 

(Figure 15). 

In FaDu model, tumors irradiated with photons, reduction of library complexity reached 

11.3% compared to 50.05% in non-irradiated tumors (t-Test, p=0.0001, Figure 15 a). 

In A549 model, complexity in photon irradiated tumors was 28.6%, whereas non-

irradiated control mice showed 38.07% (t-Test, p=0.07, Figure 15 b). 

The average library complexity in FaDu tumors irradiated with protons was 16.2% and 

11% after treatment with helium ions. A trend was observed between these two 

radiation qualities in terms of library complexity reduction, p=0.05 (Figure 15 c). The 

average library complexity after treatment with carbon ions was 1.27%, and 1.84% 

after treatment with oxygen ions. This reduction differed significantly in comparison to 

mice that received proton treatment, p=0.0007 and p=0.002 respectively (Figure 15 c). 

A significant gradual decrease of complexity with LET was observed (p<0.001, linear 

model analysis). 

The average library complexity in A549 tumors irradiated with protons was 34.22% and 

26.1% after treatment with helium ions. There was a trend between these two radiation 

qualities in terms of library complexity reduction, p=0.08 (Figure 15 d). The average 

library complexity after treatment with carbon ions was 15.2% and 16.01% after 

treatment with oxygen ions. Comparisons of proton with carbon ions and oxygen ions 

showed significant differences, p=0.0004 and p=0.0009 respectively (Figure 15 d), 

Again a significant gradual decrease of complexity with LET was observed (p=0.045, 

linear model analysis). 
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Complexity in treated tumors in A549 model was reduced to lesser extent compared 

to FaDu tumors. This observation is in line with differential tumor growth kinetics in 

these two tumors in response to the radiation qualities.  

 

Figure 15. Reduced tumor library complexity after irradiation. a,b) Reduced complexity of 
FaDu (a) and A549 (b) libraries in mice irradiated with photon irradiation (n=10, per group). It 
was significantly different in FaDu model (*, p=0.0001) and showed a trend in A549 model 
(p=0.07). c,d) Gradual decrease of the tumor library complexity in FaDu (c) and A549 (d) 
libraries, as a function of increased LET of particle irradiation *, p <0.01 for significant reduction 
in carbon and oxygen irradiated tumors vs. proton (as internal low-LET reference).  

 

3.7 UMAP representation of gene expression for different 
irradiation qualities 

To identify differences in genes and pathways affected by irradiation, transcriptomes 

of irradiated and non-irradiated tumors using RNA-seq data were analyzed. RNA was 

extracted from tumors following irradiation with 39Gy (photons) and 24Gy (particles) 

when tumors reached the sacrification size. 
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To examine differential transcriptional perturbations as a function of radiation quality, 

calculated 2-d UMAPs are presented (Figure 16). Control and photon irradiated 

samples showed a clear separation in both FaDu and A549 models (Figure 16 a,c).  

In FaDu model, the median of proton, helium and oxygen ions treated samples 

demonstrated a gradual decrease in both dimensions, while carbon ion treated 

samples showed a stronger distance in the dimension 2 to the rest of the centroids 

(Figure 16 b).  In A549 model, helium treated tumors demonstrated a larger distance 

compared to the rest of the centroids in UMAP-2 dimension, while UMAP-1  dimension 

gradually separated proton, helium and the two higher LET carbon and oxygen treated 

samples (Figure 16 d). 

 
Figure 16. UMAP representation of transcriptional clusters for different radiation 
qualities in FaDu and A549 tumors. a,b) Comparison of radiation qualities in FaDu model. 
c,d) Comparison of radiation qualities in A549 model. Calculated per sample set and cell line, 
the thick dots visualize treatments median and SE for treatment. 

 

a b 
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3.8 Photon irradiation induced transcriptional regulations 

To investigate possible mechanisms leading to resistance after photon therapy, gene 

expression differences between control and photon irradiation were analyzed with 

linear model and results were shown as coefficients of photon versus control and Wald-

type p-value. Figure 17 a,b shows differences between photon and control samples in 

FaDu and A549 models, respectively. The labeling of samples in x-axis indicates gene 

up- or downregulations (black or blue labels, respectively) in photon treated samples 

versus control. Overall, the number of differentially expressed genes was higher in 

A549 model: 3848 genes (non-adjusted p<0.05) and 236 genes (Benjamini-Hochberg, 

FDR < 0.05). In FaDu model, the number of differentially expressed genes was 3451 

(non-adjusted p<0.05) and 34 (Benjamini-Hochberg, FDR < 0.05). No overlaps 

between both models were detected for gene candidates selected with p value 

adjustment (Benjamini-Hochberg, FDR < 0.05). 

In FaDu model, examples of upregulated genes after photon radiation include several 

genes modulating immune response e.g., Peptidoglycan Recognition Protein 4 

(PGLYRP4), S100 Calcium Binding Protein A12 (S100A12), C-X-C motif chemokine 

ligand 14 (CXCL14) and Purinergic Receptor P2X 7 (P2RX7). Other upregulated 

genes included Interleukin 32 (IL32), which has been shown to modulate tumor 

microenvironment (Yan et al., 2018), peptidase inhibitor Serpin family B member 11 

(SERPINB11), chromatin remodeling component SWI/SNF related matrix associated 

actin dependent regulator of chromatin subfamily member 2 (SMARCA2) and 

Podoplanin (PDPN), which has been shown to have diverse roles in the malignant 

progression of tumors (Kato et al., 2022). 

Proposed negative prognostic biomarker for HNSCC (Feng et al., 2021), RUNX Family 

Transcription Factor 1 (RUNX1), DNA damage repair component Fanconi anemia 

complementation group M (FANCM) and a proposed tumor suppressor Semaphorin 

3B (SEMA3B) were downregulated after photon radiation. 

In A549 model, several upregulated genes with the roles in tumor growth and 

proliferation were found, such as Fucosyltransferase 6 (FUT6), Lumican (LUM), 

Metastasis-associated in colon cancer-1 (MACC1), Tetraspanin 1 and 8 (TSPAN1 and 

TSPAN8) and cAMP-dependent protein kinase inhibitor-β (PKIB). Calcium Voltage-
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Gated Channel Auxiliary Subunit Alpha2delta3 (CACNA2D3) and Bcl2 Modifying 

Factor (BMF) genes, both of which are associated with apoptosis (Nie et al., 2019; 

Pinon et al., 2008), were downregulated in photon irradiated tumors. 

 

Figure 17. Differential gene-expression in photon irradiated vs. control tumors. Black 
labeled dots (right side), correspond to radiation upregulated vs. blue labeled dots (left side) 
correspond to radiation downregulated genes compared to control. To avoid gene-name 
overlap not all dots are labeled with gene-names. Only significantly regulated genes with FDR 
< 0.05 are shown in these volcano plots. FaDu (a) and A549 (b) models.  

In order to functionally annotate the differentially regulated genes between photon and 

control samples, KEGG pathway analysis (Figure 18) was performed in both models. 

First, genes from differential gene expression (photon vs ctrl, linear model analysis, 

non-adjusted p-value < 0.05), in A549, in FaDu, and genes differentially regulated in 

both model (intersect), were analyzed in KEGG Pathway per geneset (A549, FaDu, 

intersect), separately for up- and downregulated genes. Significantly enriched 

pathways (non-adjusted p-value < 0.05) were selected and identified genes were 

displayed in Venn Diagram (Figure 18 a,c). Corresponding heatmaps (Figure 18 b,d) 

(completelinkage, Euclidean distance) show genes detected in all KEGG enrichment 

analyses. 

Different DNA repair pathways as nucleotide excision repair, base excision repair and 

Fanconi anemia pathway were identified (downregulated after photon irradiation), as 

well as immune pathways, such as antigen processing and presentation, Graft-vs-host 

disease and Allograft rejection pathways (upregulated after photon irradiation).  

a b FaDu A549 
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Figure 18. Pathway enrichment for common differentially regulated genes in both tumor 
models. a) Genes identified from enriched KEGG pathway analysis upregulated after photon 
irradiation vs. ctrl in both tumor models, intersect genes (n=79) are labeled in red color. b) 
Heatmap of n=79 intersect genes shows clusters of genes associated with immune activation 
pathways (left side, pathways related to viral infections, antigen presentation and immune 
processes). Enriched KEGG pathways are shown, non-adjusted p-value < 0.05. c) Genes 
identified from enriched KEGG pathway analysis downregulated in photon vs. ctrl treated 

a 

b 

c d 
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samples, intersect genes (n=38) are labeled in blue color. d) Heatmap of n=38 intersect genes 
and identified KEGG pathways, non-adjusted p-value < 0.05. Genes associated with DNA-
Damage Response pathways are clustering together.  

 

3.9 Linear Energy Transfer (LET) dependent alterations of 
gene expression 

After analyzing differences between photon irradiation and control samples in section 

3.8, particle treated samples were evaluated by performing gene expression 

associations with LET, using ordinary least squares (OLS) linear model analysis. Four 

particle irradiation qualities were used for treatment of tumors with the dose average 

LETd of ~4.5, 18, 80 and 120 keV/µm for proton, helium, carbon, and oxygen ions, 

respectively (see also materials and methods). In A549, 98 genes were identified after 

Bonferroni p-value adjustment (p<0.05) (Table 7). In A549 and FaDu, 1016 and 2 

genes, respectively, were identified with FDR<0.05 (Benjamini-Hochberg). There were 

303 common genes between two models with non-adjusted p<0.05. 

The stringently selected 98 genes associated with LET in A549 model showed a 

gradual expression trend from proton to helium, carbon and oxygen (Figure 19 a). 

KEGG pathway analysis of these 98 genes (Figure 19 b) identified immune associated 

pathways and Nuclear factor kappa B (NF-κB) signaling to be significantly enriched in 

irradiated A549 model as a function of LET. Gene set enrichment analysis confirmed 

the LET dependent regulation of these genes also in FaDu model (Figure 19 c). 

Table 7. Association of gene expression with LET in A549 and FaDu 

Selection A549 FaDu Intersect 

pBonf < 0.05 N=98 N=0  

FDR < 0.05 N=1016 N=2  

p < 0.05 N=4551 N=1892 N=303 
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Figure 19. Gene expression association with LET in FaDu and A549 models. a) A549 
~LET heatmap: n=98 genes, pBonf < 0.05, linear model analysis, ordered by 1d umap 
(Euclidean distance). b) KEGG pathway enrichment in A549 model (n=98 genes), no p-value 
adjustment. Gradual LET dependent increase of genes associated immune signaling 
processes (HLAs, interferon response, MX1, etc.) matches well with enrichment of pathways 
found to be related to immune response e.g. viral infection, autoimmune and transplantation 
immunology (d) Enrichment analysis of n=98 geneset in FaDu model (linear model analysis 
for LET dependent differences, p<0.001). 

More relaxed selection criteria (p<0.05) identified 303 genes commonly associated 

with LET in FaDu and A549 models (Table 7) and was visualized as volcano plot 

(Figure 20). The labeling of samples in x-axis indicates degree of regulation depending 

on LET (positive or negative association with LET, black or blue labels, respectively), 

coefficient indicates the degree of regulation (mean difference between groups).  
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In FaDu model (Figure 20 a), transcription factors Signal transducer and activator of 

transcription 1 (STAT1) and Signal transducer and activator of transcription 3 (STAT3), 

both of which have oncogenic or oncosuppressive roles (Verhoeven et al., 2020; Yu et 

al., 2009), were upregulated in samples irradiated with high LET , as well as enzyme 

Adenosine deaminase RNA specific (ADAR) that has a role in immune silencing in 

tumors (Bhate et al., 2019).  

In A549, model (Figure 20 b), STAT1 was also upregulated in high LET samples, as 

well as proapoptotic tumor suppressor XIAP Associated Factor 1 (XAF1) (Zhu et al., 

2014). 

 

Figure 20. Genes commonly associated with LET in FaDu and A549 models. a,b) Genes 
regulated in FaDu and A549 and models respectively (non-adjusted p<0.05, n=303). FaDu: 
Genes with p<0.01 are labeled, A549: Genes with p<0.001 are labeled.  

 

3.10 Guide RNA abundance analyses 

The data in paragraphs 3.11 – 3.16 represents gRNA abundance and its relation with 

treatments and the analysis is described in detail in Materials and Methods in section 

2.2.15. Briefly, genes were first aggregated per sample, following aggregation per 

treatment. Due to the high selection pressure and consequently low number of guides 

which were detected in carbon and oxygen ion treated tumors and since one of the 

main aspects of the analysis was to compare the differences between high and low 

LET irradiation effects, genes that were detected in any carbon and oxygen ion treated 

a b FaDu A549 
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samples were used for further analyses. This resulted in 1331 genes in FaDu model, 

18686 genes in A549 model and 1328 intersect genes. Imputation of missing data was 

performed to replace missing reads of the genes that were detected in carbon and 

oxygen treated groups but not in the other groups. Imputed data matrices (calculated 

using the data of genes aggregated per sample) were used to visualize differences 

between control and irradiated tumors, and associations with LET. 

3.11 UMAP representation of gRNA data in FaDu and A549 

In order to assess similarities between irradiation qualities on gRNA level, UMAP 

representation of rank transformed gene level aggregated guide data was computed 

(Figure 21). Control and photon irradiated samples showed a separation in FaDu 

model but clustered mostly together in A549 model (Figure 21 a,c). In LET samples, 

helium and photon clustered together and the two high LET (carbon and oxygen ions) 

samples clustered together (Figure 21 b,d). Thus, a LET dependent organization could 

be detected in both models on gRNA level. Of note, the positioning of the photon 

samples might be related to the higher cumulative prescribed dose (39Gy) compared 

to particle irradiation (24Gy).  
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Figure 21. UMAP representation of rank transformed gene aggregated (maximum value) 
guide data. a,b) Comparison of radiation qualities in FaDu model. c,d) Comparison of radiation 
qualities in A549 model. Thick dots visualize treatments median and SE for treatment. Data 
were imputed with the mice R package.   

 

3.12 Genes with higher gRNA abundance in photon 
irradiated vs. control FaDu tumors  

Differently abundant genes between control and photon treatments in FaDu model 

were analyzed. Top 5% most abundant gRNA after photon irradiation, showing a larger 

difference between groups (effect size), are depicted and labeled (Figure 22 a). 

Imputed ranks (n=100) for selected genes are shown (direct ranks), genes with higher 

gRNA abundance are ranked higher.  
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TGF-β signaling pathway growth factor Bone Morphogenetic Protein 8a (BMP8A) and 

histone demethylase Lysine Demethylase 5C (KDM5C) are representatively shown 

(Figure 22 a lower panel). These genes were more frequently detected on gRNA level 

in photon treated tumors in comparison to untreated control tumors, reminiscent of the 

expansion of gRNA harboring clones in photon treated tumors.  

KEGG pathway analysis (Figure 22 b) identified a number of cell signaling pathways 

(MAPK and p53 signaling pathways), DNA base excision repair pathway, ATP-binding 

cassette transporters (ABC transporters) and Folate biosynthesis. 
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Figure 22. Increased gRNA abundance in photon treatments vs control FaDu tumors. a) 
Linear model analysis derived effects between control and photon treated rank transformed 
data with FDR < 0.05, median aggregated and sorted for n=100 imputed datasets. Top 5% 
genes are colored (left) and labeled. The two key comparative groups (bold), additional groups 
are shown to illustrate relative enrichment being specific to photon treatment, in-vivo condition 
or also observed irrespective to radiation quality utilized. b) KEGG pathway analysis of all 

a 
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identified genes in A (n=1009), non-adjusted pathway enrichment p-value. Dashed line: 
p=0.05, terms with p<0.1 are labeled. 

 

3.13 Genes with higher gRNA abundance in photon 
irradiated vs. control A549 tumors  

The analysis described in previous section was applied to A549 model. Top 5% ranked 

gRNA targeted genes such as Mitochondrial malate dehydrogenase 2 (MDH2), Matrix 

metalloproteinase-19 (MMP19) and an matricellular protein Tenascin C (TNC), which 

are highly expressed in most solid tumors and plays a role in tumor angiogenesis and 

metastasis (Kwa et al., 2019). All the gRNA mentioned were more frequently detected 

in photon treated tumors in comparison to untreated control tumors (Figure 23 a).  

KEGG pathway analysis (Figure 23 b) results revealed some pathways which were 

related to cancers like melanoma, hepatocellular carcinoma and endometrial cancer, 

p53, VEGF signaling pathways and citrate cycle (TCA). 
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Figure 23. Genes showing relative guide abundance differences between control and 
photon treatments in A549 model. a) Linear model analysis, non-adjusted p-value < 0.05. 
Imputation of missing data (n=100). b) KEGG pathway analysis, non-adjusted p-value, dashed 
line: p=0.05. 

 

a 

b b 
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3.14 Genes showing relative guide abundance association 
with LET in FaDu model  

After comparing guide abundance differences between control and photon irradiated 

tumors, guide abundance association with LET was analyzed to identify differences 

between ionizing high and low LET radiation qualities. Top 5% of genes associated 

with LET are shown in Figure 24 a. 

Some of the highlighted genes (Figure 24 a lower panel) included BMP8A, angiogenic 

factor Fibroblast growth Factor 2 (FGF2) and tumor suppressor TSC Complex Subunit 

1 (TSC1). Interestingly, BMP8A was also detected in photon irradiated samples.  

KEGG pathway analysis (Figure 24 b) with identified pathways that are involved in 

fundamental cellular processes (phospholipase D signaling pathway, 

Glycosphingolipid biosynthesis) and intercellular communication (Gap junction) and 

p53 signaling pathway. 
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Figure 24. Genes showing relative guide abundance association with LET in FaDu 
model. a) Linear model analysis, FDR < 0.05. Imputation of missing data (n=100). b) KEGG 
pathway analysis (non-adjusted p-value). Dashed line: p=0.05, terms with p<0.1 are labeled.  
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3.15 Genes showing relative guide abundance association 
with LET in A549 model  

As described in section 3.10, 1328 reference genes in A549 model were analyzed to 

show guide abundance association with LET. Top associated genes with LET are 

shown in Figure 25 a.  

With p <0.05 value, apoptosis regulating genes BCL2 Associated Agonist of Cell Death 

(BAD) and BCL2 Interacting Protein 3 (BNIP3) genes were among the significant 

genes (Figure 25 a lower panel). For more restricted selection of genes, the p value 

was increased to <0.001 (Figure 25 b), and interestingly, TGF-β family genes, TGF-β 

Receptor 1 (TGFBR1) and 2 (TGFBR2) were detected. AT-rich Interaction Domain 2 

(ARID2), another highlighted gene, is a putative tumor suppressor in lung cancer 

(Moreno et al., 2021).  

KEGG pathway analysis (Figure 26) identified differently regulated pathways like as 

ErbB, MAPK, NF-κB, Ras, cellular senescence and p53 signaling pathway. 
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Figure 25. Genes showing relative guide abundance association with LET in A549 
model. a, b) Linear model analysis, non-adjusted p-value < 0.05 and < 0.001, respectively. 
Imputation of missing data (n=100). 

a 
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Figure 26. Genes showing relative guide abundance association with LET in A549 
model. KEGG pathway analysis (non-adjusted p-value). 

 

3.16 Guide abundance differences between control and treated 
tumors and regulation on gene expression level 

In previous sections, gene expression data by RNAseq (Sections 3.7 - 3.9) and gRNA 

abundance data (Sections 3.11 - 3.15) in tumors after different radiation treatments 

was analyzed. In the following section, both results were combined in order to verify 

the correlation between RNA expression and guide abundance levels. The genes that 

intersect in FaDu and A549 models are presented in Table 8 and Table 9, respectively. 
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Highlighted genes for FaDu model include DNA- and RNA-binding protein Far 

upstream element binding protein 1 (FUBP1) and Tumor necrosis factor receptor 

associated protein 1 (TRAP1), both of which have been described to have either 

oncogenic or oncosuppressive roles (Debaize & Troadec, 2019; Matassa et al., 2018), 

tumor suppressor Hematopoietically expressed homeobox (HHEX), WD repeat 

domain 5 (WDR5), which recruits an oncoprotein MYC to chromatin (Thomas et al., 

2019) and Serine/Arginine-Rich Splicing Factor Kinase 1 (SPRK1), which is implicated 

in various oncogenic signaling pathways (Nikas et al., 2019). RUNX1 was 

downregulated in FaDu model and CACNA2D3 was downregulated in A549 model 

after photon radiation (see Chapter 3.8). 

Table 8. Regulated genes in FaDu model 

ACADM AGO2 ALKBH2 ALPP ANXA10 ATE1 ATP5F1 

C10orf2 C11orf86 C3orf62 CARM1 CCDC169 CD55 CDK16 

CDK5RAP2 DGKE DLST DNAH14 DPF2 DUSP2 EPCAM 

EPHA6 ESPL1 FAHD2B FAM175B FAM213A FUBP1 GCLM 

HHEX ITGAX KAT2A LYPD1 METTL15 MKLN1 MPHOSPH9 

MUTYH PCOLCE PGAM5 PNMA6A PNN RABEP1 RAPGEF5 

RCE1 RPIA RQCD1 RRP8 RUNX1 SEC24C SLFN11 

SRPK1 SYT12 TRAP1 TTL USP11 WDR5 ZNF473 

 

Table 9. Regulated genes of A549 model 

ACOT2 AMH C16orf45 CACNA2D3 FAM58A GJA1 NASP 

PIR PSIP1 RASSF9 TIMP4 WBP1 ZNF573   
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4. Discussion 

CRISPR/Cas9 screens are a versatile tool to study genetic alterations, often preformed 

as loss-of-function screens. Several genome-wide libraries are available, differing in 

their guide RNA composition (number of targeted genes and number of guides per 

gene), which allow assessment of complex genetic perturbations. Increasingly, in-vivo 

CRISPR/Cas9 screens are performed (Doench, 2018; Ghosh et al., 2019; Shi et al., 

2022; Winters et al., 2018) as they reflect better the complex interactions between 

tumor and its microenvironment i.e., oxygen gradient, tumor microvessel interface, 

communication with stroma cells like carcinoma associated fibroblasts (CAFs) and 

innate immune cells among others. Compared to human tumors, human tumor cell 

lines represent a lower intratumoral genetic heterogeneity. Therefore, addition of 

functional loss of one gene per cell using the CRISPR/Cas9 gene editing technology 

offers a novel venue to assess engineered genetic heterogeneity and its impact against 

defined in-vivo selection pressures. In addition to standard radiotherapy, the in-vivo 

selection pressures induced by a broad spectrum of novel radiation qualities were 

studied in this thesis. Despite using the immunocompromised nude mouse host 

microenvironment innate immune cells as well as natural killer cells are present in 

these prototypic xenograft models. Therefore, not the full but a partial spectrum of 

radiation induced tumor immune response e.g. effects on innate immune cells like 

tumor associated macrophages (TAM, incl. M1/2 polarization) could be addressed in 

these models.   

Particle irradiation confers novel treatment modalities with specific biophysical 

properties. A highly precise and dose deposition makes it a versatile tool for treatment 

in the direct vicinity of high-risk organs by achieving a steep dose gradient and sparing 

adjacent healthy tissue (Rackwitz & Debus, 2019). Available particle irradiation 

modalities with increasing LET at Heidelberg Ion Beam Therapy Center (HIT), utilized 

in this study – are proton, helium, carbon and oxygen particles.  

Biological effects of particle treatment differ from conventional photon therapy, e.g., 

direct interaction of heavy charged particles with DNA backbone leading to complex 

clustered and unrepairable damage is elicited also under lack of oxygen presence in 

hypoxic tumor regions (Tinganelli et al., 2015). In contrast, DNA-damage and cell killing 



 

71 
 

by conventional photon irradiation is highly dependent on the presence of oxygen 

(OER effect).  It has been shown that irradiation with carbon particles induces favorable 

alterations in glioma model by influencing the niche toward an antiangiogenic and less 

immunosuppressive state and eradicating tumor stem cells (Chiblak et al., 2019), and 

the first clinical data show benefits of carbon irradiation in high grade glioma (Eberle et 

al., 2020). Nevertheless, despite rapidly growing use of accelerated charged particles 

in cancer treatment worldwide, tumors can still inevitably recur after irradiation, even if 

therapy efficacy might be improved as compared to conventional photon radiotherapy. 

Regardless of the various efforts to overcome radioresistance, the mechanisms behind 

it are still not fully understood (Konings et al., 2020).  

In this thesis, whole-genome CRISPR/Cas9 screens in preclinical in-vivo cancer 

models were performed to study the following questions: 

1. How does CRISPR library composition change between in-vitro and in-vivo 

conditions considering tumor microenvironment selection pressure? 

2. What is the effect of long term fractionated standard photon irradiation and 

particle therapy consisting of proton, helium, carbon, and oxygen ions in-vivo? 

3. How does CRISPR library complexity change as the function of standard photon 

irradiation and particle therapy in-vivo? 

4. Which genes and pathways promote radio-sensitivity and resistance to photon 

and particle therapy? 

5. What is the transcriptional response in relapsed tumors after photon and particle 

therapy in xenograft models? 

Experiments were performed in nude (NMRI) mouse; this mouse has an autosomal 

recessive mutation in the Forkhead box N1 (Foxn1) gene, leading to partial or total 

thymic aplasia, resulting in immunodeficiency. This leads to impaired adaptive immune 

responses, depending on functional T-cells that are also required for B-cell maturation 

(Milicevic et al., 2005).  
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In this thesis, A549, human non-small cell lung adenocarcinoma (NSCLC) and FaDu 

(head and neck squamous cell carcinoma) were used for experiments. NSCLC 

Adenocarcinoma frequently exhibits mutations in TP53 (46%), KRAS (33%), KEAP1 

and STK11 (17%), EGFR (11%) and CDKN2A (4%) (Cancer Genome Atlas Research, 

2014). A549 cells are TP53 wildtype (Tate et al., 2019), exhibit a KRAS gain of function 

missense mutation (c.34G>A), CDKNA2 (p16) copy number deletion, STK11 (Q37*) 

loss of function, KEAP1 (G333C) alteration and SMARCA4 (H736Y) loss of function 

[cellmodelpassports.sanger.ac.uk]. Thus, transferability of findings in A549 to Adeno-

NSCLC patient data might be impaired w.r.t. frequently occurring TP53 status. Also 

absent in A549 are EGFR driver mutations leading to oncogene addiction and distinct 

treatment in clinics with tyrosine-kinase inhibitors.  

HNSCC tumors tremendously differ between HPV status w.r.t prognoses, giving rise 

to molecular stratified treatment recommendations (Tawk et al., 2021). Most frequently 

mutated genes comprise TP53 (71%), FAT1 (23%), CDKN2A (22%), almost 

exclusively in HPV- tumors, and PIK3CA (21%), NOTCH1 (19%), and KMT2D (18%) 

(Cancer Genome Atlas, 2015). FaDu cells are HPV negative (Gottgens et al., 2021) 

show alterations in CDKN2A and FAT1 (loss of function) and TP53 (R248L) 

[cellmodelpassports.sanger.ac.uk]. 

In the experiments described in this thesis, cells were implanted subcutaneously to 

easily monitor tumor growth. The site of implantation, however, can influence tumor 

growth (orthotopic vs. heterotopic), as a number of factors i.e., angiogenesis, 

immunological, available space for expansion etc. may differ between the respective 

organ-specific conditions. It has been shown that –depending on the treatment and 

tumor model – specific therapeutic effects might be altered (Lehmann et al., 2017; 

Sharma et al., 2014).  

On the described backgrounds (A549, FaDu), GeCKO A and Brunello libraries were 

studied to assess global library specific effects, as multiple generations and 

improvements of genome wide libraries have been reported (Sanson et al., 2018). 

GeCKO A library consist of over 60,000 unique guide RNAs for gene knockout in 

human genome. For each gene, 3 single guides were used, and the library contains 

1000 control guides that do not target the genome. The library also targets 1,864 
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miRNAs using 4 guides per miRNA. The Brunello CRISPR knockout pooled library 

targets 19,114 genes using over 70,000 gRNAs with 4 gRNAs per gene and 1000 

control gRNAs designed not to target in the genome. Thus, both libraries are designed 

to yield a high degree of redundancy for single genes.  

4.1 Changes in library complexity 

4.1.1 Library representation decreases between in-vitro and 
in-vivo conditions 

First, we assessed the impact of microenvironmental selection pressure on library 

composition. In out experiments, we observed a tremendous drop of CRIPSR library 

complexity in-vivo vs in-vitro. In-vitro samples showed high representation of gRNAs 

present in the library (>90%), whereas in-vivo, up to half of these guides were not 

detected anymore. This supports the notion of a more complex interaction in-vivo, with 

strong selection mechanisms.  

We further observed a considerable difference in gRNA distributions between in-vivo 

and in-vitro. Despite the reduced complexity (which also complicated data analysis, 

see below), in-vivo gRNA abundance distribution was highly skewed. A high fraction 

of guides was detected less abundantly as compared to in-vitro (in-vitro between 100 

and 1000 reads: 70-80% of guides > 0 reads vs 25-50%; in-vivo between 10 and 100 

reads: 30-50% of guides > 0 reads vs 20%), but the fraction of guides with high read 

counts (>1000) was higher in-vivo (~10% of guides > 0 reads vs <1% ). This indicates 

a clonal expansion of (possibly few) guides in-vivo, in line with the concept of a clonal 

evolution in cancers (Greaves & Maley, 2012; Körber & Höfer, 2019; Williams et al., 

2019) and competitive selection pressure. Single cell sequencing technology has also 

indicated that tumors are constituted of several clones, which compete during tumor 

growth (Patel et al., 2014). Interestingly, guide distributions were qualitatively 

comparable between A549 and FaDu cells, hinting towards selection mechanisms in-

vivo like angiogenic growth, stroma modulation etc. which are less dependent on the 

respective cell’s molecular background.  
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4.1.2 Library complexity decreases over time 

To further elucidate selection processes in-vivo, we tested if complexity in tumors - 

mirroring intratumoral heterogeneity – is altered over time in untreated animals. 

Indeed, we observed a decrease in tumor complexity in animals with longer survival 

times, independent of the molecular background of the cell line and the evaluated 

library (GeCKO and Brunello). These results were similar to data reported by Chen et 

al. in which early primary tumors retained less than half (32% - 49%) of the gRNAs 

found in the transplanted cell populations while only a small fraction (less than 8%) of 

gRNAs were detected in the late-stage primary tumor samples of the corresponding 

tumors (Chen et al., 2015).  

This finding shows that tumors with high intratumoral heterogeneity (higher complexity) 

grow faster which results in shorter survival, without being able to give rise to few 

predominant clones. The observation that high intratumoral heterogeneity is linked to 

poorer outcome has also been made in genome sequencing inferred tumor complexity 

in patients (Zhang et al., 2014). These tumors are not controlled by the animals’ innate 

immune system. On the other hand, if the harsh in-vivo constraints lack or slow 

vascularization, presence of innate immune cells (NK, TAMs) is able to control the 

tumors initially, only fewer fit clones will expand, which finally constitute the majority of 

the tumor. These clones have thus the ability to among others evade the immune 

system “on the long run”, for an extended period of time.  

4.1.3 Tumor growth kinetics correlates with library 
complexity and radiation treatment 

We observed that tumor irradiation leads to longer survival and slower tumor growth 

after both photon and particle treatment in both A549 and FaDu models. Overall 

survival after irradiation with high LET (carbon and oxygen ions) increased significantly 

in comparison with proton and helium ion treated mice. High LET treatment leads even 

to a tumor shrinkage in FaDu cells, in contrast to A549 tumors, where tumor sizes were 

stabilized and tumor growth was delayed. In FaDu, median survival was not reached 

for oxygen and carbon, in A549, median survival was not reached only for oxygen. I 

observed that irradiation also strongly reduces library complexity, photon and proton 

irradiation showing a comparable decrease (compared to control), helium and 
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carbon/oxygen show even further gradual decrease, thus demonstrating a strong LET 

dependency. Thus, w.r.t. efficacy of tumor cell killing, high LET treatment seems 

favorable – a finding, which has been reported for glioma models (preclinical) (Chiblak 

et al., 2019) and recurrent high grade glioma (retrospective clinical study) (Knoll et al., 

2019) as well.  

Moreover, experimental as well as encouraging clinical results support advantages of 

radiotherapy with high-LET carbon ions over standard photon irradiation for HNSCC 

(Ding et al., 2022; Eekers et al., 2016; Held et al., 2022; Held et al., 2019; Mizoe et al., 

2012; Takahashi et al., 2022) and NSCLC (Chun et al., 2017; Liang et al., 2022; Ono 

et al., 2020) patients. 

4.2 Transcriptome profiling and gene expression 
differences after irradiation 

Next, we assessed if recurrent tumors show a specific transcriptome signature, as this 

could help to better interpret the underlying molecular mechanisms for recurrence and 

resistance. UMAP analysis clearly separated control from photon samples and showed 

that high-LET samples are similar in their transcriptome. Detailed examination of 

differences in gene expression revealed that in both A549 and FaDu models, genes 

were expressed differentially between groups and models. The amount of differentially 

expressed genes was higher in A549 model than in FaDu model. A number of detected 

genes which were expressed differentially have been shown to be either diagnostically 

useful and/or expressed in specific cancers.  

4.2.1 Gene expression differences in FaDu model 

Genes differentially expressed in photon irradiated FaDu tumors include genes 

involved in immune modulation, such as Peptidoglycan Recognition Protein 4 

(PGLYRP4), S100 Calcium Binding Protein A12 (S100A12), C-X-C motif chemokine 

ligand 14 (CXCL14), Purinergic Receptor P2X 7 (P2RX7) and Interleukin 32 (IL32). In 

line with upregulation of these genes after photon irradiation, PGLYRP4 and S100A12 

have been also found to be upregulated in patient HNSCC tumor tissues compared to 

normal tissues (Han et al., 2021; Sun et al., 2020). S100A12 was associated with 

improved clinical outcome (Funk et al., 2015). CXCL14 is a homoeostatic chemokine 
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that can stimulate the chemotaxis of immune cells and suppress angiogenesis. In HPV-

positive HNSCC cells, CXCL14 can upregulate the expression of MHC-I which inhibits 

the growth of tumors (Westrich et al., 2019) and the expression level of CXCL14 in 

HNSCC can be utilized to screen for patients that respond to cetuximab therapy 

(Kondo et al., 2016). High CXCL14 levels in HNSCC patients also predict longer overall 

and disease-free survival (Li et al., 2020). P2RX7 has been proposed to positively 

modulate antitumor immune response in HNSCC and its activation combined with 

αPD-1 immune checkpoint inhibitor leads to tumor regression and elevation of 

immunological memory response (Douguet et al., 2021). IL32 has been implicated in 

pro- and anti-tumor effects, potentially arising from functionally different isoforms, by 

modulation of the tumor microenvironment (Yan et al., 2018). However, also clearly 

unfavorable alterations following photon irradiation were observed, i.e., pro-angiogenic 

alterations (overexpression of SERPINB11, decreased expression of SEMA3B).  

Upregulated genes in high LET samples revealed several interesting results. Signal 

transducer and activator of transcription 1 and 3 (STAT1 and STAT3, respectively), 

belong to STAT transcription factor family that can regulate diverse processes, such 

as cellular immunity, proliferation, apoptosis, angiogenesis, and differentiation 

(Verhoeven et al., 2020). Moreover, STAT1 and STAT3 can induce PD-L1 and 

therefore be potential biomarkers for αPD-L1 immunotherapy response (Nakayama et 

al., 2019). Activated STAT1 has been mainly described as having a tumor suppressor 

role in cancer cells (Koromilas & Sexl, 2013) and STAT1 knockout mice develop 

mammary carcinomas (Chan et al., 2012). STAT3, on the other hand, is predominantly 

described as tumor growth and immune evasion promoter (Yu et al., 2009) with 

elevated activity in more than 70% of human cancers (Roeser et al., 2015). 

Consequently, STAT3 inhibitor is an attractive target for cancer therapy, and although 

none of the inhibitors are in the market yet, there are several STAT3 inhibitors in 

preclinical development and a few of them in clinical trials (Dong et al., 2021). 

An enzyme that promotes immune silencing and tumor viability, Adenosine deaminase 

RNA specific (ADAR), was also upregulated in high LET recurrent FaDu samples. 

ADAR is a proposed novel target for cancer immunotherapy as recent studies show 

that loss of ADAR1 sensitizes tumor cells to immunotherapy and overcome resistance 

to PD-1 checkpoint blockade that is caused by antigen presentation inactivation by 
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tumor cells (Bhate et al., 2019; Ishizuka et al., 2019). Therefore, high LET induced 

ADAR upregulation may provide an interesting target for combinatorial radio-immune 

therapy. 

4.2.2 Gene expression differences in A549 model 

Among upregulated genes in A549 photon treated tumors there were several genes 

(FUT6, LUM, MACC1 and PKIB) which expression roles have been confirmed in tumor 

growth, proliferation, invasion and/or metastasis.  

Fucosyltransferase 6 (FUT6) gene, member of the fucosylation pathway, has altered 

expression in NSCLC and upregulation has been shown to promote cell invasion and 

metastasis (Park et al., 2020). Elevated expression of Lumican (LUM) in lung cancer 

cells promotes bone metastasis (Hsiao et al., 2020). Yang et al. indicated that LUM 

could affect cadherin-mediated invasion of A549 cells (Yang et al., 2018). Increased 

LUM expression in re-grown tumors could therefore help the survival of cells and confer 

resistance against treatment. Metastasis-associated in colon cancer-1 (MACC1) is a 

prognostic and predictive metastasis biomarker in several cancer entities (Lisec et al., 

2021) and its overexpression also predicts metastases and poor prognosis for NSCLC 

(Wang et al., 2014). PKIB (cAMP-dependent protein kinase inhibitor-β) is another gene 

that was shown to be upregulated in HNCLC and promotes cell proliferation, invasion, 

and migration in A549 cells (Dou et al., 2016). 

Downregulated genes in photon irradiation treated A549 model included putative tumor 

suppressor and apoptosis related gene CACNA2D3 (Calcium voltage-gated channel 

auxiliary subunit alpha2delta3) and an apoptotic activator Bcl2 modifying factor (BMF). 

CACNA2D3 has been proposed to act as a tumor suppressor in NSCLC (Tai et al., 

2006) with more recent roles in chemosensitivity enhancement to cisplatin by triggering 

Ca2+ mediated apoptosis and blocking the PI3K/AKT pathways (Nie et al., 2019). BMF 

is a pro-apoptotic regulator and functions as an apoptotic activator in cellular stresses 

(Pinon et al., 2008).  

Interestingly, upregulated genes in high LET samples included STAT1, which was also 

upregulated in high LET FaDu model samples (see section 4.2.1). Another upregulated 

gene was XIAP Associated Factor 1 (XAF1), which is expressed at low levels in cancer 
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cell lines, and on the contrary to our results, inhibits angiogenesis and induces 

apoptosis when overexpressed(Zhu et al., 2014). 

4.3 KEGG pathway analysis 

KEGG pathway analysis which was performed in both models for genes reveal different 

DNA repair pathways, such as p53 signaling, nucleotide excision repair, base excision 

repair as well as immune pathways, such as antigen processing and presentation, 

Graft-vs-host disease, and Allograft rejection pathways. Detected pathways which 

were related to immune system showed that even though there is no complete immune 

response in used models but remained parts of acquired immunity like as B cells and 

innate immunity could play an important role in tumors behavior in both models and 

can change the fate of tumors in irradiated mice.  

Different immune cell populations are important for the immune response after 

irradiation; some of them are natural killer cells and dendritic cells. Relation between 

immune system activation with irradiation could be explained by the fact that exposure 

of tumor cells with irradiation increase peptide pool also release of danger associated 

molecular patterns (DAMPs) and could activate receptors like as toll like receptors 

(TLRs) (Roses et al., 2008). The downstream signaling pathways lead to the 

production of inflammatory cytokines which could explain partial role of immune system 

in irradiated cells.   

4.4 gRNA analysis 

Analysis of gRNAs turned out to be challenging. The above mentioned low complexity 

resulted in detection of mostly only few guides per gene in each sample. That 

representation problem of libraries in-vivo is known, which is usually solved by pooling 

multiple tumors. We therefore made to following assumptions for analysis: all samples 

can be considered to be a sub-part of a “synthetic” tumor (clonal architecture of tumors) 

and a single “hit” (detection of guide) was considered sufficient to impair function of the 

respective gene. We therefore first aggregated guides on gene level, by considering 

only the maximum observed value (maximum expansion of a clone with this genetic 

alteration). This is different to established analysis methods (Model-based Analysis of 

Genome-wide CRISPR/Cas9 Knockout – MaGECK (Li et al., 2014), where aggregation 
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on gene level occurs only after evaluation of single genes. To weight down highly 

abundant clones, we then rank transformed obtained gene values (as proposed in 

methods for analysis of RNAi screens (Birmingham et al., 2009), and as high LET 

treatment led to a tremendous decrease in observed complexity, we only considered 

genes detected in any of the high LET treated samples for evaluation of LET effects 

(positive selection). 

4.4.1 gRNA abundance differences in FaDu model 

Highly abundant gRNAs (leading to loss of function of the gene) in FaDu model 

included Bone Morphogenetic Protein 8a (BMP8A) and histone demethylase Lysine 

demethylase 5C (KDM5C) in photon treated tumors compared to untreated tumors. 

BMP8A is a TGF-β signaling pathway gene and is mainly described in embryonic 

development with recent reports describing its role in promoting cancer cell survival 

and drug resistance (Yu et al., 2020). KDM5C is a cancer-associated epigenetic 

regulator as it can remove methyl marks from Histone H3 lysine K4 (H3K4), thereby 

either activating or repressing transcription. KDM5C is a putative tumor suppressor, 

and its loss has been correlated with increased genomic instability and identified in 

several types of cancers (Ohguchi & Ohguchi, 2022; Plch et al., 2019). 

Interestingly, gRNA abundance in association with LET also revealed BMP8A as one 

of the top genes. Fibroblast growth Factor 2 (FGF2) and TSC Complex Subunit 1 

(TSC1) also had high gRNA counts in LET treated tumors. Aberrant FGFR signaling 

has been widely described in tumorigenesis and resistance to therapy, which has led 

to development of therapies targeting the FGFR pathway (Babina & Turner, 2017). 

TSC1, a member of pro-survival PI3K/AKT/MTOR signaling pathway, is a tumor 

suppressor that is downregulated in several human cancers. Downregulation of TSC1 

can lead to increased proliferation, migration and angiogenesis (Mallela & Kumar, 

2021). 

4.4.2 gRNA abundance differences in A549 model 

gRNA analysis revealed several interesting results in A549 model. In photon treated 

tumors, more frequently detected gRNAs included Mitochondrial malate 

dehydrogenase 2 (MDH2), Matrix metalloproteinase-19 (MMP19) and Tenascin C 
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(TNC). MDH2 is a mitochondrial gene that has been found to be highly expressed in 

NSCLC, suggesting it as a biomarker for early detection of NSCLC (Ma et al., 2021). 

Therefore, an enrichment for A549 clones with MDH2 loss under photon selection 

pressure further underscore the relevant of this protein in tumor biology and therapy 

resistance.  

MMP19 stimulates proliferation and cell migration and is similarly found to be 

overexpressed in NSCLC and proposed as a biomarker for severity and outcome of 

the disease (Yu et al., 2014). TNC facilitates tumor tissue remodeling and is highly 

expressed by cancer-associated fibroblasts (CAFs) and upregulated in most solid 

tumors (Kwa et al., 2019). 

Genes which guide abundance was associated with LET were BCL2 Associated 

Agonist of Cell Death (BAD), BCL2 Interacting Protein 3 (BNIP3), AT-rich Interaction 

Domain 2 (ARID2) and TGF-β Receptor 1 (TGFBR1) and 2 (TGFBR2). BAD is a pro-

apoptotic sensitizer and its overexpression in A549 cells was reported to inhibit cell 

growth and promote apoptosis (Huang et al., 2012). BNIP3 is a mitochondrial pro-

apoptotic mediator that is activated by hypoxia that is overexpressed in up to 80% of 

lung cancer cases and in about 57% of patients with NSCLC (Karpathiou et al., 2013), 

and it correlates with poor prognosis in early stages (Gorbunova et al., 2020). ARID2 

is a chromatin remodeler which loss has been found in 20% of lung cancers with its 

deficiency leading to increased proliferation and metastasis while also sensitizing cells 

to DNA damaging agents (Moreno et al., 2021). 

TGF-β pathway plays crucial roles in carcinogenesis and metastasis. While 

suppressing inflammation and regulating wound healing during homeostasis, it can 

promote malignancy during tumor evolution. Loss of TGF-β related pathways in tumor 

is a mechanism by which tumor cells become resistant to tumor suppressing effect of 

TGF-β, and enhanced TGF-β expression can thereby induce negative effects in the 

tumor microenvironment - epithelial to mesenchymal transition, immunosuppression, 

and stroma remodeling. In pancreatic cancer, one of the early events is loss of SMAD4, 

which desensitizes tumor cells to TGF-β tumor suppressive effects and enables TGF-

β to negatively modulate the stroma (Barcellos-Hoff, 2022; Lan et al., 2021). Inhibiting 
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TGF-β triggers potent antitumor responses in preclinical model systems by enabling to 

restore cancer immunity (Tauriello et al., 2022). 

4.5 Correlation between RNA expression and gRNA 
abundance genes 

Combining gene expression data by RNAseq and gRNA abundance data revealed 

many overlapping genes in FaDu model and less in A549 model. Interesting results in 

FaDu model include Far upstream element binding protein 1 (FUBP1), 

Hematopoietically expressed homeobox (HHEX), Serine/Arginine-Rich splicing factor 

Kinase 1 (SPRK1), Tumor necrosis factor receptor associated protein 1 (TRAP1) and 

WD repeat domain 5 (WDR5). FUBP1 is a transcription activator or repressor which, 

when overexpressed, can downregulate MYC oncogene. FUBP1 loss is associated 

with tumor suppressive role (Debaize & Troadec, 2019). HHEX is considered to be a 

transcriptional repressor and similarly to FUBP1, has been also shown suppress MYC 

activity when overexpressed (Marfil et al., 2015). In addition, HHEX was reported to be 

downregulated in patient HNSCC tumor tissues compared to normal tissues(Sun et al., 

2020). SPRK1 is regulating alternative splicing that has been implicated in oncogenic 

signaling pathways and is overexpressed in various cancer types, correlating with 

worse outcome. SPRK1 downregulation has shown to be tumor-suppressive in 

preclinical models (Nikas et al., 2019). TRAP1 is involved in regulating metabolism in 

cancer cells and its expression is elevated in several cancers that correlates with drug 

resistance while being downregulated in others, also correlating with resistance and 

poor prognosis (Matassa et al., 2018). WDR5 interacts with MYC, promoting its 

recruitment onto chromatin and controls subsequent gene expression. Blocking the 

MYC-WDR5 interaction causes existing tumors to regress, suggesting targeting this 

interaction as a potential anticancer therapeutic strategy (Thomas et al., 2019). Data 

also revealed RUNX1, which was downregulated in FaDu model and CACNA2D3, 

which was downregulated in A549 model after photon radiation (see Chapter 4.2.1 and 

4.2.2 respectively).  
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5. Summary  

This thesis combines the use of novel radiation qualities with in-vivo functional genetic 

screens in prototypic head and neck squamous cell carcinoma (HNSCC, FaDu) and 

non-small cell lung cancer (NSCLC, A549) preclinical xenograft models. Using whole-

genome FaDu and A549 CRISPR/Cas9 libraries, in-vivo tumor response to 

conventional photon radiotherapy as well as a series of particles with gradually 

enhanced ionization density (LET), i.e., proton, helium, carbon- and oxygen ion 

irradiation were investigated. Two genome wide - GeCKO A and Brunello – gRNA 

libraries were integrated in Cas9 expressing FaDu and A549 cells. Transcriptome and 

guide representation studies using next-generation sequencing (NGS) and quantitative 

analysis provided insights into the tumor evolutionary landscape and genes/pathways 

contributing to tumor fitness under different in-vivo and therapeutic selection 

pressures.  

A pronounced reduction of library complexity was detected in-vivo vs in-vitro, 

regardless of tumor model and library. Additional reduction was observed in irradiated 

samples. Clonal tumor evolution could be recapitulated, as outgrown tumors showed 

an expansion of few clones constituting the majority of the tumors. Tumor growth rate 

was negatively linked to library complexity – a potential surrogate for intratumoral 

heterogeneity – strengthening the previously described association between high 

intratumoral complexity and increased tumor aggressiveness.  

High-LET irradiation showed improved capacity for cell killing, with either tumor 

regression (in FaDu model) or enhanced growth delay (in A549 model). Irradiation type 

specific transcriptome fingerprints revealed both favorable- and non-favorable 

changes, comprising modulation of the tumor microenvironment (TGF-β), inflammation 

and senescence, pro- and anti-angiogenic alterations, DNA damage repair, hypoxia 

and antigen presentation. Main factors influencing transcriptome profiles differences 

within particles were LET (high vs. low LET groups). 

On guide level, radio-resistance seems to be mediated by loss of TGF-β signaling 

components (BMP8A), chromatin remodeling (KDM5C) and metabolic pathways 



 

83 
 

(MDH2). LET dependency analyses also identified TGF-β signaling as key component, 

cell-death mediations (BAD, BNIP3) and tumor suppressors (ARID2). 

Common pattern of upregulation across both tumors and libraries was a gradual LET 

dependent increase of genes associated immune signaling processes (HLAs, 

interferon response, MX1, etc.) which correlated well with enrichment of pathways 

found to be related to immune response. Together, this work provides novel insights 

into the molecular fitness landscape of tumors under conventional photon irradiation 

and ion beam therapy.  
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6. Zusammenfassung 

In dieser Arbeit werden neuartige Strahlenqualitäten mit funktionellen genetischen in-

vivo-Screens in prototypischen Kopf- und Halsplattenepithelkarzinomen (HNSCC, 

FaDu) und nicht-kleinzelligem Lungenkrebs (NSCLC, A549) in präklinischen 

Xenotransplantationsmodellen evaluiert. Unter Verwendung von genomweiten FaDu- 

und A549-CRISPR/Cas9-Bibliotheken wurde die in-vivo-Tumorantwort auf eine 

konventionelle Photonen-Strahlentherapie sowie auf eine Bestrahlung mit einer Reihe 

von Partikeln mit zunehmender Ionisationsdichte (LET), d.h. Protonen-, Helium-, 

Kohlenstoff- und Sauerstoffionen, untersucht. Zwei genomweite gRNA-Bibliotheken - 

GeCKO A und Brunello - wurden in Cas9-exprimierende FaDu- und A549-Zellen 

angewandt. Next-Generation-Sequencing (NGS) Analysen der gRNA Verteilung und 

der Genexpression erlaubten Einblicke in molekulare Vorgänge der Tumorentwicklung 

sowie die Identifikation von Genen und Signalwegen, die unter in-vivo und unter 

therapeutischem Selektionsdruck förderlich für das Tumorwachstum sind.  

Unabhängig von Tumormodell und gRNA-Bibliothek wurde in-vivo eine deutliche 

Reduktion der gRNA basierten Komplexität gegenüber in-vitro festgestellt. Eine 

zusätzliche Verminderung wurde in bestrahlten Proben beobachtet. Eine klonale 

Tumor-Evolution wurde – im Sinne einer Expansion weniger Klone – beobachtet, 

wobei wenige Klone einen Großteil des Tumors ausmachten. Die 

Tumorwachstumsrate stand in einem negativen Zusammenhang mit der gemessenen 

Komplexität der gRNA Bibliothek - einem potenziellen Surrogat für die intratumorale 

Heterogenität -, was den zuvor beschriebenen Zusammenhang zwischen hoher 

intratumoraler Komplexität und erhöhter Tumoraggressivität untermauert. 

Die Bestrahlung mit Partikeln mit hoher LET führte zu einer effizienteren 

Tumorkontrolle, beobachtbar als Tumorregression (im FaDu-Modell) bzw. als 

verstärkte Wachstumsverzögerung (im A549-Modell). Bestrahlungstyp-spezifische 

Transkriptom-Signaturen zeigten sowohl günstige als auch ungünstige 

Veränderungen, die eine Modulation der Tumormikroumgebung (TGF-β), Entzündung 

und Seneszenz, pro- und antiangiogene Veränderungen, DNA-Schadensreparatur, 

Hypoxie und Antigenpräsentation beinhalten. Die Hauptfaktoren, die die Unterschiede 
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in den Transkriptomprofilen innerhalb der Partikel beeinflussten, waren der LET (hohe 

vs. niedrige LET-Gruppen). 

Auf Ebene der gRNAs scheint die Strahlenresistenz durch den Verlust von TGF-β-

Signalkomponenten (BMP8A), Chromatin-Remodeling (KDM5C) und 

Stoffwechselwegen (MDH2) vermittelt zu werden. Analysen der LET-Abhängigkeit 

identifizierten auch die TGF-β-Signalübertragung als Schlüsselkomponente, die 

Vermittlung des Zelltods (BAD, BNIP3) und Tumorsuppressoren (ARID2). 

Ein gemeinsames Muster übergreifend über die analysierten Tumormodelle und 

Bibliotheken war ein gradueller, LET-abhängiger Anstieg von Genen, die mit 

Immunsignalprozessen in Verbindung stehen (HLAs, Interferonantwort, MX1 usw.), 

und mit der Anreicherung von Signalwegen korrelier, die mit der Immunantwort in 

Verbindung stehen. Zusammenfassend bietet diese Arbeit neue Einblicke in die 

molekularen Faktoren, die das Tumorwachstum unter konventioneller Photonen- und 

Ionenstrahltherapie beeinflussen. 
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