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Abstract

We formulate extended mirror symmetry of Calabi-Yau threefolds with D-
branes as an equivalence between variations of mixed Hodge structure under
the mirror map. After an introduction to Hodge theoretic closed string mir-
ror symmetry, we review the relation between D-branes, normal functions and
extensions by algebraic cycles on the side of the B-model. We define an exten-
sion of the A-model variation of mixed Hodge structure whose flat connection
is derived from an enhancement of the quantum product by holomorphic disks
ending on Lagrangian submanifolds. Our construction is based on the Solomon-
Tukachinsky axioms for open Gromov-Witten invariants together with the open
WDVV equations and matches the predictions from extended mirror symmetry.
For the particular case of homology spheres, we define an extension of Iritani’s
Gamma-integral local system and propose an extended version of the Gamma
conjecture. We demonstrate the validity of the conjecture for the standard
pair of branes in case of the quintic and prove a corresponding extended Mir-
ror Theorem. Using the extended holomorphic anomaly equations, we explore
novel invariants from one-loop amplitudes for cycles of van Geemen-type, whose
A-model geometry is at present unknown.

Zusammenfassung

Wir formulieren die erweiterte Spiegelsymmetrie von Calabi-Yau 3-Mannig-
faltigkeiten mit D-branen als ein Äquivalenz zwischen Variationen von gemis-
chter Hodge-Struktur unter der Spiegelabbildung. Nach einer Einführung in
die Hodge-theoretische Spiegelsymmetrie für geschlossene Strings, arbeiten wir
die Verbindungen zwischen D-branen, Normalfunktionen und Erweiterungen
durch algebraische Zykel auf Seiten des B-Modells auf. Wir definieren eine Er-
weiterung der A-Modell Variation von gemischter Hodge-Struktur, deren flacher
Zusammenhang aus einer Ergänzung des Quantenproduktes um holomorphe
Disks abgeleitet ist, die auf Lagrange-Untermannigfaltigkeiten enden. Unsere
Konstruktion beruht auf den Solomon-Tukachinsky Axiomen für offene Gromov-
Witten Invarianten zusammen mit den offenen WDVV Gleichungen und deckt
sich mit den Vorhersagen der erweiterten Spiegelsymmetrie. Für den Spezialfall
von Homologiesphären definieren wir eine Erweiterung von Iritanis Gamma-
integralem lokalen System und schlagen eine erweiterte Variante der Gamma-
Vermutung vor. Wir zeigen die Gültigkeit dieser Vermutung für das Stan-
dardpaar von Branen im Falle der Quintik und beweisen einen entsprechen-
den erweiterten Spiegelsatz. Indem wir die erweiterten holomorphen Anoma-
liegleichungen verwenden, untersuchen wir neuartige Invarianten von Schleifen-
Amplituden für Zykel vom van Geemen-Typ, deren A-Modell Geometrie zu
diesem Zeitpunkt unbekannt ist.
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1. Introduction

Initiated by the predictions of enumerative invariants for the quintic in [CdlOGP],
mirror symmetry has been a source of plentiful novel mathematics related to the
geometry of string compactifications. In its original form, it asserts a relation-
ship between “mirror pairs” of Calabi-Yau threefolds X and Y , whose utilization
as extra dimensions in string theory leads to the same effective physics in four
dimensions. In terms of the topological phases of string theory [Wit1], it can be
understood as an equivalence between the A-model on X and the B-model on
Y , implying the characteristic relationship of Hodge numbers in Figure 1.1 and
the encoding of highly non-trivial enumerative information of X in the Hodge
theory of Y .

In particular, the Gromov-Witten invariants of X can be extracted from the pe-
riods that determine the variation of Hodge structure (VHS) associated to the
middle dimensional cohomology of the mirror family Y → ∆∗. This objective
crucially involves the asymptotic behavior of this VHS near a point of “maximal
degeneracy” in the moduli space, that can be locally described as a variation
of mixed Hodge structure (VMHS) of a special (Hodge-Tate) type [Del4]. A
Hodge theoretic framework for the mirror phenomenon is then based on the
observation that this object admits an A-model interpretation in terms of the
H2-module structure on the even dimensional cohomology Heven(X) defined by
Gromov-Witten invariants leading to a quantum product [Mor2, Mor3] . As
observed in [CF1, CF2], the appearance of variations of MHS of this kind in
the A-model can be viewed as a general consequence of the cup product being
deformed by a quantum potential subject to a WDVV-type of equation. While
this quantum product captures the holomorphic components of the B-model
periods, a certain (Gamma-)integral structure is necessary to link the Hodge
asymptotics with intrinsic topological quantities of the A-model [KKP, Iri]. An
equivalence of the respective variations then defines the notion of Hodge theo-
retic mirror pairs and is the consequence of Mirror Theorems [Giv, LLY], which
imply the enumerative predictions of mirror symmetry in case of the quintic.

Open strings and D-branes become relevant in the homological mirror symmetry
program [Kon1], in which mirror pairs of Calabi-Yau threefolds are characterized
by an equivalence of the D-brane A∞-categories associated to the A- and B-
model. In the A-model, the derived Fukaya category Fuk(X) is defined via
Floer theory, with objects given by suitably decorated Lagrangian submanifolds
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Figure 1.1.: Hodge diamond of a Calabi-Yau threefold. Given a mirror pair,
the Hodge numbers are mirrored according to h3−p,q(X) = hp,q(Y ), exchanging
deformation parameters for symplectic and complex structures. In terms of the
Hodge diamond, this corresponds to a mirroring along the depicted axis.

of X, while on the B-side, the derived category of coherent sheaves Db(Y ) is
purely classical. Homological mirror symmetry then amounts to the statement

Fuk(X) ∼= Db(Y ), (1.1)

which is by now proven for the quintic [She] and known to imply Hodge-theoretic
closed string mirror symmetry with its enumerative predictions [GPS].

While the enumerative geometry of Lagrangian submanifolds implicitly appears
in the definition of the Fukaya category [Fuk2], an explicit calculation of open
Gromov-Witten invariants via mirror symmetry has originally been achieved
only in certain (non-compact) toric situations [AV, AKV]. The first imple-
mentation of the traditional mirror principle in the presence of D-branes in
compact Calabi-Yau threefolds, which are most relevant to phenomenological
questions, has been put forward in [Wal1, PSW]. In analogy to the case of
closed strings, the invariants associated to a given Lagrangian arise in a Hodge-
theoretic quantity attached to the mirror object in the derived category, when
expanded around a point of maximal degeneracy. Physically, this involves an
equivalence between the corresponding A- and B-brane superpotentials, which
are the basic observables of a given brane vacuum. While this thesis is ex-
clusively concerned with the geometric aspects of brane superpotentials, their
additional relevance in the standard scenarios for the construction of realistic
string vacua, as for example [KKLT], should be noted. In this context, they
appear as non-perturbative instanton corrections to the scalar supergravity po-
tential governing the effective physics in four-dimensional spacetime [Wit4]. The
physical situation which is relevant for this work is depicted in Figure 1.2.

On the B-side, the superpotential is given by the holomorphic Chern-Simons in-
variant. In many situations, it can be calculated from an algebraic cycle C → ∆∗
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Figure 1.2.: Worldsheet instantons and string compactifications. The space-
time superpotential of a type IIA string compactification on X receives non-
perturbative corrections from closed string worldsheet instantons. The presence
of a space filling D6-brane wrapping a supersymmetric (special Lagrangian) cy-
cle L additionally leads to instanton contributions from open strings that deter-
mine the brane vacuum. Aided by (extended) mirror symmetry, both objects
are computable from the classical geometry of the mirror Calabi-Yau Y .

that represents the algebraic Chern class of the B-brane. More precisely, the
algebraic cycle determines a Hodge theoretic normal function that generally
classifies extensions of variations of MHS [MW]. Until now, this extension of
the VMHS in the B-model has not been interpreted geometrically in the A-
model, partly due to the unavailability of sufficiently general axioms for open
Gromov-Witten invariants which were only recently found in a series of papers
by Solomon-Tukachinsky [ST1, ST2, ST3]. The purpose of this work is to fill
this gap by providing an A-model description for the extended VMHS of the
B-model. Guided by the lessons of the closed string, the central ingredients of
our construction are extensions of the quantum product, the WDVV equations,
and the Gamma-integral local system.

Parts of Chapters 3-6 of this dissertation are uploaded to the arXiv (see [HW])
and submitted to a journal.
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1. Introduction

Overview

This dissertation is structured in the following way. As many constructions and
assumptions made on the side of the A-model are motivated by the physics of
brane superpotentials, we begin with a review of all the relevant physical con-
cepts in Chapter 2. This includes the general notion of a string vacuum and
the topological phases of superstring theory, for which we describe the physical
aspects underlying the mirror phenomenon. Subsequently, we discuss the sec-
tor of the open topological string, which will be the main focus of this work.
We give a geometric account of A- and B-branes together with their associated
superpotentials in the relevant regime, whose mathematical interpretation as
Hodge theoretic (truncated) normal functions will be the topic of later chap-
ters. The basis for the prediction of open Gromov-Witten invariants given in
[Wal1], for which this thesis aims to provide a better understanding, is physi-
cally motivated and revisited in a Hodge theoretic language in Chapter 6.

In order to establish the mathematical background, the topic of Chapter 3 is
the formulation of standard closed string mirror symmetry in terms of Hodge
theory, following [DK2, dSJKP]. Starting with general definitions, we discuss
the appearance of Hodge-Tate variations of MHS arising in both the A- and the
B-model. On the B-side, we study the degenerating behavior of the VHS asso-
ciated to the middle-dimensional cohomology of a family of threefolds Y → ∆∗

around a point of maximal degeneracy. After collecting the relevant definitions
and axioms of Gromov-Witten theory, we then describe the reconstruction of
the B-model objects based on this data coming from the mirror A-model. While
focusing on the one-parameter case, we emphasize the role of the WDVV equa-
tions in a multi-parameter situation and further describe the relevance of the
Gamma class in defining the correct integral local system. We conclude the
chapter with a description of Hodge theoretic mirror pairs and discuss the stan-
dard example of [CdlOGP] in this context.

Chapter 4 is concerned with the extension of B-model data by algebraic cycles
following [MW, SVW2]. In this geometric situation, we describe their associated
normal functions in terms of the Abel-Jacobi map and explain how the B-brane
superpotential arises in this setting as a well-defined mathematical object. We
then put a special emphasis on the asymptotic behavior of normal functions
around a point of maximal degeneracy and derive the general structure of the
B-brane superpotential based on monodromy considerations.

The A-model analog of this superpotential is discussed in Chapter 5. We be-
gin with an overview of related topics in Lagrangian Floer theory pertaining to
the Fukaya category of Calabi-Yau threefolds, providing the context to formu-
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late open Gromov-Witten theory. After establishing topological properties of
Lagrangians that lead to appropriate brane vacua, we characterize the superpo-
tential taking into account the Solomon-Tukachinsky axioms, before addressing
various classical contributions related to gauge bundle data on the brane.

Having identified all relevant structures on the side of the A-model, we are able
to turn to the main objective of this thesis in Chapter 6. We define the notion
of extended mirror pair based on an equivalence of extension classes and then
provide a recipe to reconstruct the relevant normal function intrinsically in the
A-model. The construction is based on an extension of the quantum product by
holomorphic disks, subject to the open WDVV equations [Alc, ST3, CZ], and
a characterization of an extended version of the Gamma-integral local system
in certain examples. In particular, we are able to formulate an extended ver-
sion of the Gamma conjecture for a special class of Lagrangians submanifolds.
By studying the limiting behavior of the normal function in the A-model, we
identify a type of algebraic object that abstractly captures properties of the
A-model that mirror Hodge asymptotics in the presence of an algebraic cycle.
Putting everything together, we conclude with the formulation of an extended
Mirror Theorem for the main example of [Wal1], based on the equivalence of
extensions of variations of MHS arising on the two sides of the duality. This
theorem includes an A-model interpretation of the Abel-Jacobi limit as the
Chern-Simons invariant of the mirror Lagrangian, whose explicit calculation is
reviewed in Appendix B.

The construction of the extended Gamma-integral local system does not im-
mediately generalize to the arithmetically interesting algebraic cycles akin to
the van Geemen lines described in [Wal4, JW]. In these examples, where the
A-model geometry is so far unknown, we produce novel invariants based on the
calculation of one-loop amplitudes in Chapter 7. This includes the analysis of
solutions to the extended holomorphic anomaly equations [Wal3] in three case
studies that can hopefully contribute to the project of identifying potential mir-
ror A-branes.

The main contribution of this thesis is the construction of an extended A-model
VMHS that mirrors the Hodge theory of the corresponding B-model, as demon-
strated for the quintic in Theorem 6.12. In all examples for which the topology of
the Lagrangian submanifold is understood, this includes an intrinsic topological
interpretation of the Abel-Jacobi limit, as described in Conjecture 6.8. When
it comes to a Hodge theoretic understanding, these results elevate extended
mirror symmetry to a more equal footing with its closed string counterpart in
many regards, while also leading towards novel research directions, proposals
for which we collected in Chapter 8.
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2. String and Brane Vacua

In this chapter we present a review of the physics background that is relevant
for the topics presented in this thesis. Besides providing additional context to
the mathematical theory that will be developed, it is supposed to serve two
purposes: We want to briefly introduce all physical concepts that also appear
in the purely mathematical discussion and motivate various constructions of
the coming chapters. The following treatment is kept on a very qualitative
level without focus on detailed calculations, all of which can be found in a
vast literature (see below). In Section 2.1 we begin with a motivation for the
study of Calabi-Yau threefolds in string theory, before turning to its topological
phases and the phenomenon of mirror symmetry in Section 2.2. We end with
a discussion of D-branes in Section 2.3, whose role in the context of mirror
symmetry will be most import in what follows.

2.1. Calabi-Yau Manifolds as String Backgrounds

We will partially follow the reviews [NV, Von] and also [Hor, Asp, CK2]. The
propagation of closed bosonic strings in some spacetime can be described by a
sigma model in which the dynamical fields are given by maps

φ : Σ −→ M (2.1)

from a closed two-dimensional surface Σ, together with a prescribed metric
h, into a target space or string background M . It is viewed as the worldsheet
sweeped out by the motion of closed strings in M which, at this stage, is taken to
be a general Lorentzian manifold of any dimension d. The case in which Σ has a
boundary corresponds to the open string, which will be discussed in Section 2.3.
The coordinate fields of φ are naturally governed by a sigma model action that
couples their dynamics to the geometry of M , defining a two-dimensional field
theory on the worldsheet. Due to the symmetries of the sigma model action,
this field theory classically only depends on the conformal class of the metric h,
so that we can think of (Σ, h) as a compact Riemann surface.

Applying the procedure of quantization to these fields produces a Hilbert space
of quantum states, consisting of a tower of string excitations including a massless
level in which we are mostly interested. The interactions between string states
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2. String and Brane Vacua

can be described in terms of a path integral
󰀭

n󰁜

i=1
Vi

󰀮

X

=
󰁛

genus

󰁝
[DφDh]

n󰁜

i=1
Vi eiS(φ,h), (2.2)

where the insertion Vi of a state is geometrically related to a puncture on the
relevant Riemann surface. The integral contains a sum over all possible gen-
era and an integral over the moduli space of conformal structures, coupling the
sigma model to two-dimensional quantum gravity. The path integral is weighted
by the classical action and endowed with an appropriately normalized measure,
generalizing Feynman’s ordinary path integral to string-like trajectories.

The massless states are of a special significance as they form the sigma model’s
geometric background and therefore interact with various geometric quantities
associated to the target space. Famously, one of these excitations corresponds
to a symmetric traceless tensor that can be interpreted as deformations of the
spacetime metric G away from being flat and can be physically viewed as a gravi-
ton. The corresponding antisymmetric excitation of the closed string is called
the Kalb-Ramond field which we will think of as a closed 2-form B ∈ H2(X;R).
From the point of view of the sigma model, it naturally becomes part of the
modular parameters of the theory, as we will see below.

Bosonic string theory can only be viewed as a toy model, as it cannot pro-
duce spacetime fermions and suffers infrared divergences associated to unnatural
tachyon excitations. In order to make contact with observed nature it is there-
fore necessary to decorate the worldsheet theory of the bosonic sigma model
with fermionic degrees of freedom in a way that remedies both of the above
mentioned issues. The resulting superstring theory can be described by a sigma
model based on a supergeometric extension of Riemann surfaces [Wit5]. In this
way, the worldsheet of the superstring is endowed with a fermionic sector and
a supersymmetry transformation that exchanges bosonic and fermionic degrees
of freedom. The left and right moving generators Q, Q of this transformation
satisfy anti-commutation relations of the form

󰁱
Q, Q

󰁲
∼ P, {Q, Q} = 0,

󰁱
Q, Q

󰁲
= 0, (2.3)

where P is the four-momentum generating translations in spacetime. They are
part of the superconformal algebra that replaces the classical symmetry group
in case of the superstring. In the end, there are various ways in which bosonic
and fermionic sectors can be combined on the worldsheet theory, leading to
five perturbatively well defined superstring theories without the deficiences of
the bosonic string. In what follows, we will be mostly concerned with the type
IIA/B string.
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2.1. Calabi-Yau Manifolds as String Backgrounds

In any case, the superconformal symmetry of the classical theory needs to sur-
vive the quantization process in order for the quantum theory to be well de-
fined. The potential presence of associated anomalies in both the worldsheet
theory and the loop expansion from the spacetime perspective produce nontriv-
ial constraints on the allowed background geometry M . It can be seen that the
worldsheet theory in flat space is constrained in a way that the central extension
of the quantum super Virasoro algebra, comprising of generators of the super-
conformal symmetry, must vanish. This forces a constraint on the number of
bosonic and fermionic degrees of freedom and the dimension of spacetime to the
value d = 10. In a more general geometric background described by the sigma
model, conformal invariance is equivalent to the vanishing of the beta function
of the spacetime metric, order by order in perturbation theory. As it turns out,
the beta function is at one-loop level proportional to the Ricci tensor of M

βµν(G) ∼ Rµν + higher loop corrections, (2.4)

which means that M is required to be Ricci-flat in order to define a proper
solution of superstring theory. While it is known that the beta function does
not receive quantum corrections at two- and three-loop level, the first non-zero
contribution arises at four-loop and is a rational multiple of the zeta value ζ(3)
[GvdVZ], which will have important appearances at various other places in this
thesis. We will refer to a target space that is compatible with a quantum su-
perstring theory to a given loop-level as a string vacuum.

In order to make contact with physics observed in 3+1 extended spacetime
dimensions it is necessary to tailor realistic string vacua in a way that is able
to reproduce the expected phenomenology. One way to do so is to consider
solutions in which spacetime is topologically of the form

M = R1,3 × X (2.5)

where R1,3 denotes ordinary, 3+1 dimensional Minkowski spacetime and X is a
compact space of real dimension six. The phenomenological advantage of such
a string compactification is that it is possible to study a regime in which the
volume of X is assumed to be small in comparison to relevant scales in the
extended dimensions.

The details of the geometry of X then determine the field content and dynamics
of the four-dimensional effective theory that arises in R1,3 at larger scales. There
are various phenomenologically favourable configurations that are potentially
able to solve problems in particle physics and cosmology. One important tool
in this endeavor is spacetime supersymmetry, which is therefore often supposed
to be unbroken at least on some energy scale. Geometrically, this requirement
translates to the most prominent class of string vacua, given by the following
type of background.

9



2. String and Brane Vacua

Definition 2.1. A d-dimensional Calabi-Yau manifold1 X is a compact, simply
connected Kähler manifold with trivial canonical bundle

kX =
󰁡d

T ∗
X

∼= OX . (2.6)

Equivalently, X admits a nowhere vanishing holomorphic d-form Ω which cor-
responds to a section of (2.6).

By Yau’s theorem [Yau], X then famously admits a Kähler metric for which the
Ricci curvature vanishes, making Calabi-Yau threefolds viable solutions to su-
perstring theory, at least to the three-loop level of the sigma model perturbative
expansion. The relevant Ricci flat metric is in general very hard to determine
explicitly, but the corresponding volume form can be expressed in terms of the
holomorphic d-form via

volX = Ω ∧ Ω. (2.7)
As the choice of Ω is only unique up to a scalar multiple, the volume form is
equally only well-defined up to scaling. A further important topological conse-
quence of (2.6) is that the integral first Chern class of X must vanish,

c1(X) = c1(TX) = 0 ∈ H2(X;Z). (2.8)

Our main class of examples of Calabi-Yau manifolds are given by the following
type of hypersurfaces.

Example 2.2. The canonical bundle of complex projective space is given by
kPN = OPN (−N − 1). For a smooth hypersurface i : X ↩→ PN of degree d the
canonical bundle can be computed by the adjunction formula yielding

kX = i∗kPN ⊗ OX(d) ∼= OX(−N − 1 + d), (2.9)

such that every smooth hypersurface of degree N + 1 in PN is Calabi-Yau. In
particular, each quintic X ⊂ P4 is a Calabi-Yau threefold.

This thesis will be mainly concerned with Hodge theoretic properties of Calabi-
Yau threefolds, where precise definitions will be given in Chapter 3. For the pur-
pose of exposition it will suffice to study symmetries of the Hodge numbers and
their corresponding effects on the geometry and physics of string backgrounds.
One way to view the Hodge numbers is as dimensions of sheaf cohomology
groups

hp,q(X) = dim Hq(X;
󰁡p

T ∗
X) (2.10)

associated to various powers of the cotangent bundle. In case of a Calabi-
Yau threefold, Definition 2.1 immediately implies that h1,0 = 0 and h3,0 = 1.
Furthermore, the Hodge numbers satisfy the well known symmetry relations

hp,q = hq,p = h3−p,3−q = h3−q,3−p, (2.11)
1In case of Calabi-Yau 3-manifolds, we will often simply use the term threefold.
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2.2. Topological Strings and the Mirror Phenomenon

which then already constrain most of their values. In particular, the only non-
trivial and independent Hodge numbers are h1,1 and h1,2, which have a direct
geometric interpretation as deformation parameters of the symplectic and com-
plex structures that underly the Kähler manifold. Physically, these deformation
parameters also arise as massless fields in the effective theory on R1,3.

Recall that the symplectic structure is determined by the Kähler class, a choice
of two-form J ∈ H2(X;R). From the point of view of the sigma model the
Kähler class arises from the massless closed string excitation associated to the
spacetime metric as a consequence of the Kähler condition. As described above,
the Kalb-Ramond B-field defines another two-form B ∈ H2(X;R) that equally
has to be viewed as a defining property of the string vacuum. The Hodge
number h1,1 is then associated to the parameters space

H1(X;
󰁡1

T ∗
X) ∼= H2(X;C), (2.12)

which records the variation of the complexified Kähler class of X, given by the
form ω = B + iJ ∈ H2(X;C), taking both objects into account. Turning to the
complex structure, the relevant sheaf cohomology group becomes

H2(X;
󰁡1

T ∗
X) ∼= H1(X; OX ⊗ TX) ∼= H1(X; TX), (2.13)

by using Serre duality and the Calabi-Yau condition. The right hand side of
(2.13) can be viewed as the tangent space to the moduli space of complex
structures via the Kodaira-Spencer map, such that h1,2 is counting the number
of complex structure parameters on X.

2.2. Topological Strings and the Mirror Phenomenon

As described in the previous section, the full superstring theory defined on a
Calabi-Yau threefold interacts with both the symplectic and the complex ge-
ometric aspects of its background. However, there is a way in which certain
topological phases can be extracted from the full spectrum which are only de-
pendent on one type of parameter. These versions of topological string theory
[Wit1] can be viewed as a toy model for the study of various types of string
dynamics and dualities, but also capture supersymmetric observables of the full
superstring theory. Their construction is based on a projection of states onto
a spectrum that is nontrivially annihilated by a fermionic nilpotent symmetry,
in very close analogy to the BRST procedure. This symmetry transformation
corresponds in this context to a certain combination of the supercharges that
are nilpotent due to the supersymmetry algebra satisfying (2.3).
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2. String and Brane Vacua

In case of the closed (type II) string there is a N = (2, 2) supersymmetry
algebra generated by two fermionic supercharges Q± together with their com-
plex conjugates Q±. In the supersymmetric sigma model, the bosonic sector
determines the coordinate functions of the string, while fermionic degrees of
freedom can be understood as complex differential forms. The action of the
supercharges on both sectors can be determined explicitly, and it turns out that
special combinations of the generators have a well known geometric meaning.
These projections of the sigma model’s spectrum are referred to as topological
twists of the sigma model. In one version, called the (topological) A-model, the
supercharges add up to the de Rham differential

Q+ + Q− = d : Ωk(X) −→ Ωk+1(X) (2.14)

such that its “physical” states correspond to classes in the de Rham cohomology
Hk

dR(X) of the target space. On the other hand, the combination

Q+ + Q+ = ∂ : Ωp,q(X) −→ Ωp,q+1(X) (2.15)

reproduces the Dolbeault operator, acting anti-holomorphically on complex dif-
ferential forms with a (p, q)-grading according to the number of its holomorphic
and anti-holomorphic components. The spectrum of the resulting (topological)
B-model therefore consist of classes in the Dolbeault cohomology Hp,q

∂
(X) as-

sociated to X. In both manifestations of the twisted theory, the dynamics of
the remaining field content loses its explicit dependence on the metric, and the
theories are in this sense topological.

The dynamics of the A- and B-model is determined by correlations functions
defined in terms of a version of the path integral (2.2). In stark contrast to
the general situation in quantum field theory, the path integral in presence of
supersymmetry often simplifies significantly due to a phenomenon called super-
symmetric localization. It refers to the fact the only non-vanishing contributions
to the path integral arise from the fixed point locus of the fermionic symme-
try generated by the supercharges Q. In case of the A-model, the Q-invariant
field configurations translate to the maps φ : Σ → X that are holomorphic, i.e.
∂φ = 0. Such fields are physically interpreted as worldsheet instantons, as they
lack any time-dependence from the point of view of the Minkowskian part in
(2.5), see also Figure 1.2. Turning to the B-model, the path integral localizes
to field configurations that satisfy dφ = 0, i.e. the sigma model consisting of
constant maps. This means that the B-model essentially reduces to an ordinary
quantum field theory on X. For our purposes, the most important type of in-
teraction is the tree-level data captured by the three-point correlation function
associated to the moduli for the complex and symplectic structure described
earlier. Given a fixed background defined by a Calabi-Yau threefold (X, Ω, ω)
with prescribed complex structure and complexified Kähler class, we start with

12



2.2. Topological Strings and the Mirror Phenomenon

the A-model and first consider elements ω1, ω2, ω3 ∈ H2(X;C). A path integral
calculation shows that the three-point correlation function is given by (see e.g.
[CK2])

〈ω1, ω2, ω3〉X =
󰁝

X
ω1 ∧ω2 ∧ω3 +

󰁛

β ∕=0∈H2(X;Z)

󰁩Nβ

󰁝

β
ω1

󰁝

β
ω2

󰁝

β
ω3 e

2πi
󰁕

β
ω
. (2.16)

While the first term of (2.16) is classical, this function crucially contains a highly
non-trivial sum of quantum contributions related to worldsheet instantons.
Namely, the numbers 󰁩Nβ are defined as the count of possible instanton configu-
rations associated to a given homology class β ∈ H2(X;Z) in a way that has to
be made mathematically precise (see Section 3.3). Given θ1, θ2, θ3 ∈ H1(X, TX)
on the side of the B-model, which we interpret as vector fields on the moduli
space of complex structures on X, the three-point correlation function is of the
form

〈θ1, θ2, θ3〉X =
󰁝

X
Ω ∧ (∇θ1∇θ2∇θ3Ω) , (2.17)

where ∇ denotes the Gauß-Manin connection. The details of how this function
arises in the B-model will be given in Section 3.2. At this point it is important
to note that (2.17) is essentially determined by the periods of the holomorphic
three-form Ω, and therefore obtainable from standard calculations in complex
algebraic geometry, contrary to the case of (2.16).

The point at which the mirror phenomenon enters into the story of topological
strings is the definition of the generators Q±, Q± of the N = (2, 2) supersym-
metry algebra. These are only well defined up to a choice of sign where, from a
physical point of view, both versions should lead to equally valid string vacua.
However, reversing the sign cannot generally translate into a symmetry of a
given Calabi-Yau background: This would exchange the notion of A- and B-
model on X, which is generally not possible as the related cohomology groups
do not have the same dimension. A remedy for this inconsistency lies in the
proposal that for each string vacuum given by a Calabi-Yau threefold X, there
exists another mirror dual Calabi-Yau threefold Y on which the sigma model
yields a dual physical theory, up to the sign change described above. This du-
ality implies that the A-model on X should be determined by the B-model on
Y and vice versa. One consequence is therefore that the symplectic moduli of
X correspond to the complex moduli of Y , i.e.

H1(X;
󰁡1

T ∗
X) ∼= H2(Y ;

󰁡1
T ∗

Y ). (2.18)

An investigation of the full spectrum produces similar equalities in all degrees
such that the duality involves a mirroring of Hodge numbers

h3−p,q(X) = hp,q(Y ) (2.19)

13



2. String and Brane Vacua

that can be expressed by a symmetry of the Hodge diamond as depicted in Fig-
ure 1.1. In Definition 3.7 we will introduce a map between the relevant moduli
spaces, defined in the neighborhood of special boundary points, of which (2.18)
represents a linearization.

Perhaps the most amazing prediction of mirror symmetry between X and Y is
the equality of three-point correlation functions

〈ω1, ω2, ω3〉X = 〈θ1, θ2, θ3〉Y . (2.20)

As stressed before, the A-model correlation function contains highly nontrivial
quantum corrections associated to X, while the B-model correlation function
is essentially a classical object. This means that, given a mirror dual pair of
Calabi-Yau manifolds, the computation of highly non-trivial enumerative in-
formation in the A-model can be outsourced to the B-model, where the cor-
responding task is comparatively simple. As we will see in Section 3.6, the
equality (2.20) does only hold in a certain large volume limit, for which the
volume of X is large in comparison to the relevant quantum effects. Indeed,
(2.16) is only a meaningful expression in a small neighborhood around such a
large radius limit point (cf. Remark 3.14). The most well known example of a
mirror pair in the above sense was first constructed in [GP] and the enumerative
invariants contained in (2.20) were predicted in [CdlOGP].

So far we have presented mirror symmetry as a duality or phenomenon that
arises in the geometry of string compactifications. This involves various objects
that are not well defined mathematically, like the path integral in quantum
field theory or the notion of superconformal field theory. The study of mirror
symmetry in the mathematical context therefore involves organizing aspects of
these physical theories into well-defined mathematical structures for which the
phenomenon can be formalized. There are various such ways in which parts of
the duality can be captured, including geometric approaches in the toric context
[Bat], an equivalence between D-brane categories (see Section 2.3) and, for our
purposes most importantly, a Hodge theoretic formulation. The Hodge theoretic
approach is most closely related to the enumerative predictions described above
and the relevant theory will be systematically developed in Chapter 3.

2.3. A- and B-Branes

So far, we focused on the sector of the closed string, whose massless excitations
lead to Calabi-Yau threefolds as string backgrounds. However, this is only half
of the story and misses the open string sector, which has an equally important
role to play in both physical and mathematical applications. From a qualitative
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2.3. A- and B-Branes

point of view, its description in terms of a sigma model

φ : (Σ, ∂Σ) −→ X (2.21)

is quite analogous to the closed case, with the exception that we have to consider
two-dimensional surfaces with boundaries in the definition of the worldsheet.
The key novelty is therefore the necessity to specify appropriate boundary con-
ditions on the end points of the string, which determine whether they are allowed
to move beyond specific subspaces or not. The subspaces onto which strings can
be constrained in this way are called D-branes and are, through their interaction
with open strings and potential backreactions with the geometric background,
regarded as dynamical objects in open string theory. The superstring theory
in which open superstrings and D-branes are included through an orientifold
action is referred to as type I theory.

Again, massless excitations have a geometric meaning also for the open string,
where they are related to the subspace on which the D-brane is localized. Those
excitations parallel to the brane transform as vectors on the worldvolume of the
brane and therefore have an interpretation as gauge fields in quantum field
theory. The coupling to open strings then means that a single D-brane always
comes equipped with the structure of a U(1)-bundle that defines the correspond-
ing gauge theory2. Orthogonal excitations can be physically interpreted as the
Goldstone bosons associated to the breakdown of Poincaré invariance and are
related to geometric deformation parameters of the brane, as discussed in more
detail in Appendix A. In superstring theory, D-branes additionally couple to
certain higher form gauge potentials called Ramond-Ramond (RR) fields, such
that a brane carries both a mass (proportional to its volume) and a natural
charge associated to this coupling.

Turning to the topological phases of superstring theory, the truncation of the
physical spectrum by the topologically twisted supersymmetry algebra also has
an effect on the admissible boundary conditions of the open string. In the
simplest cases, and in the large volume regime, topological branes correspond
to smooth submanifolds with additional structure, where the requirement of
compatibility with A- and B-type twisted supersymmetry poses restrictions on
the number of dimension the brane is allowed to have. It turns out that in
the A-model the dimension has to be odd, while there are only even dimen-
sional branes in the B-model. A further important dynamical property of D-
branes is the fact that the stable, energy minimizing configurations saturate the
Bogomol’nyi-Prasad-Sommerfeld (BPS) bound, generally satisfied in supersym-
metric quantum field theory. It says that the mass of a supersymmetric state

2We will mostly focus on the case of single branes. In case of a stack of N branes, the gauge
group enhances to U(N).
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2. String and Brane Vacua

is always bounded from below by a certain central charge of the supersymme-
try algebra, which in case of D-branes corresponds to the RR charge. Given a
p-dimensional brane N this means that

󰁝

N
volN ∼ M ≥ Z, (2.22)

where the left hand side corresponds to the mass of the brane, determined by the
volume induced from the metric on X and the brane tension, and Z is a topo-
logical charge. The energetically stable configurations, called BPS branes, are
therefore specified by the property to be volume minimizing in their respective
homology class. Namely, the saturation of the BPS bound for a p-dimensional
brane mathematically translates into the notion of the brane being calibrated
with respect to an appropriate p-form on X.

On a Calabi-Yau threefold, the type of calibrated submanifold depends on the
dimension and corresponds to well known objects in symplectic and complex
algebraic geometry [Joy]. In the A-model, BPS branes are given by special
Lagrangian submanifolds i : L ↩→ X, dim(L) = 3, defined by the conditions

i∗ω = 0, i∗ Im(Ω) = 0. (2.23)

Special Lagrangians in Calabi-Yau threefolds are calibrated by Re(Ω). In the
B-model, suitably normalized powers of the Kähler class always define a calibra-
tion, for which the calibrated submanifolds are simply the complex submanifolds
C ⊂ X.

Due to the coupling to the open string sector, the topological branes in both
twisted theories are only specified when a (holomorphic) U(1)-bundle, describing
the associated gauge theory, is chosen. The basic observable of a given brane
configuration then is the spacetime superpotential, which is closely related to
certain versions of the Chern-Simons functional [Wit3], and depends on both
open and closed string moduli. Given a pair L = (L, E) of a special Lagrangian
submanifold, together with a U(1)-bundle in the A-model, the superpotential
is given by3

WA =
󰁝

L
Tr (A dA) + instanton corrections, (2.24)

where A ∈ Ω1(L, u(1)) is the connection 1-form of the gauge bundle. The open
string moduli are geometrically realized by the choice of connection 1-form,
while the closed string Kähler modulus appears in the weighting of the instanton
corrections as before. In analogy to the case of closed strings, these instantons
can be described by a count of holomorphic maps from Riemann surfaces with

3This is the case only for a globally trivial bundle, a more general formulation of the Chern-
Simons invariant is given in Definition 5.9.
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2.3. A- and B-Branes

boundary on L and a weighting that takes into account the topological data of
the image. In general, the critical values of the superpotential are in correspon-
dence with the vacua of physical theories living on the brane, posing further
conditions on the type of geometry that is allowed in this context. Indeed, a
classical constraint is the requirement for the bundle E to be flat, while quantum
corrections produce two further conditions associated to quantum anomalies of
the ghost number grading and tadpole cancellation. Both quantum properties
of the brane have an immediate interpretation in the context of Floer theory
and the Fukaya category, and are further discussed in Section 5.1. We will usu-
ally refer to the pair L as an A-brane on X, and the structure of the A-brane
superpotential (2.24) can be best understood in a regime of two limits. For
one, we again consider a large volume limit that controls the effect of instanton
corrections in a way that makes the expression meaningful, as in the case of
closed string instantons. Furthermore, for weak string coupling the dynamics
of open and closed strings separate, such that the restriction onto the critical
locus depends only on closed string moduli. In these limits, the superpotential
takes the form [TV, CKLT, PSW]

WA

󰀏󰀏󰀏
∂WA=0

= 1
2

󰁝

Γ4
ω ∪ ω +

󰁝

Γ2
ω + 󰁨c +

󰁛

β ∕=0∈H2(X,L;Z)
󰁨nβ e

2πi
󰁕

β
ω
, (2.25)

where Γ4, Γ2 are smooth 4- and 2-chains with boundary on L and 󰁨nβ denotes,
roughly speaking, the number of holomorphic disks ending on L. In Section 5.2
we focus on a situation in which both the constant 󰁨c and the numbers 󰁨nβ can
be made precise and discuss the various terms appearing in (2.25). Turning to
the B-model, we note that the B-brane given by an algebraic curve C ⊂ Y can
also be understood in terms of a holomorphic vector bundle E → Y , when C is
the image of the algebraic second Chern class

E 󰀁−→ calg
2 (E) = C ∈ CH2(Y ) (2.26)

in the corresponding Chow group. The superpotential is in this case given by
the holomorphic Chern-Simons functional

WB =
󰁝

X
Ω ∧ Tr

󰀓
A ∂A

󰀔
, (2.27)

where now A ∈ Ω0,1(X; End(E)). As in the case of the three-point correla-
tion functions in the B-model, the expression (2.27) does not receive quantum
corrections. In order to study the vacuum structure of the theory, we again
reduce it to the critical locus, which is known to lead to the membrane integral
[AV, KKLM]

WB

󰀏󰀏󰀏
∂WB=0

=
󰁝

Γ
Ω, (2.28)
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2. String and Brane Vacua

when C is homologically trivial in X and where Γ is a smooth 3-chain with
boundary given by C. Again, (2.28) does only depend on closed string moduli
in terms of the choice of holomorphic 3-form on X. This specific form of the
superpotential can be interpreted in terms of a (truncated) normal function,
that is more precisely described in Chapter 4.

As is the case for potentials in general, only differences of their values consti-
tute proper physical observables. It is therefore important to stress that also
the brane superpotentials in both topological phases have to be viewed as rel-
ative invariants. This means that the expressions (2.25) and (2.28) have to be
interpreted as measuring an observable that is only meaningful when a reference
brane vacuum is chosen. In most situations this implies that we have to consider
Lagrangian or algebraic cycles with various homologically equivalent connected
components, and that the relative chains have to be viewed as interpolating
between the associated vacua. The relative nature of the superpotential in-
cludes the possibility to compare two vacua in which the only difference is the
topological type of the flat bundle. This is a crucial ingredient in the correct
understanding of the superpotential associated to the real quintic, as studied in
Section 6.5. In those situations where a canonical reference vacuum is chosen
among a collection of A- or B-branes, the symbol W will be used to denote the
corresponding superpotential. The difference of two superpotentials measured
in relation to the same vacuum

Tij := Wj − Wi (2.29)

is often understood as the BPS domain wall tension between the two brane
vacua. Applying the mirror principle to a pair of mirror dual Calabi-Yau three-
folds, X and Y , suggests that for appropriately chosen mirror symmetric brane
configurations there should be an equality of domain wall tensions

T (X)
A = T (Y )

B (2.30)

under the mirror map. Such an equality was first successfully established in
case of the quintic by Walcher in [Wal1]. The analogy to the equality of three
point functions (2.20) lies in the fact that the superpotential encodes the two-
point correlation function on the disk, associated to the relevant brane vacua.
Together, these objects determine the tree-level structure of the underlying
open-closed physical theory and are expected to satisfy

〈ω1, ω2〉(X,L) = 〈θ1, θ2〉(Y,C) (2.31)

as a consequence of (2.30). As we will see, these two-point correlation functions
on the disk in both topologically twisted theories also have a well defined mean-
ing in the Hodge theoretic context. Their precise definitions in the relevant
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limit are given in Section 4.3 and Section 6.1.

We close this chapter with a brief account of more general A- and B-branes
and their role in a categorical approach to mirror symmetry. The A-branes
on X described above constitute the simplest objects of a decorated version
of the Fukaya category, which will be described in more detail in Section 5.1.
Due to convergence issues regarding the instanton corrections in (2.24), the
Fukaya category is currently only understood in a small neighborhood around
large volume. Its counterpart on the B-model side is given by the derived
category of coherent sheaves Db Coh(Y ) on Y , of which holomorphic vector
bundles with their associated complex submanifolds are elementary examples.
Both categories are endowed with an A∞ structures and the equivalence of
categories4

Fuk(X) ∼= Db Coh(Y ) (2.32)

in the large volume regime is the statement of homological mirror symmetry
[Kon1]. While still a conjecture in the context of general Calabi-Yau threefolds,
homological mirror symmetry is by now proven for quintic threefolds of the type
described in Example 2.2 [She]. For our purposes, there is no need to go into
more details regarding the explicit realization of the equivalence. However, it
can be viewed as providing examples of brane configurations for which equalities
of the type (2.30) hold, leading to the notion of extended mirror pair introduced
in Section 6.1.

4This involves a certain derived version of the Fukaya category.
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3. Closed String Mirror Symmetry
Having provided the physical context in which mirror symmetry arises as a
duality of Calabi-Yau threefolds, we now focus on the Hodge theoretic approach
based on which many aspects on the phenomenon can be made precise. In this
chapter we begin with a treatment of those structures that are physically related
to the closed string described in Section 2.1 and Section 2.2. This includes the
enumerative predictions of [CdlOGP] contained in the equality of three-point
correlation functions (2.20). We start with a collection of relevant definitions
in (mixed) Hodge theory in Section 3.1, before describing how they arise in the
B-model in Section 3.2. A mathematical description of the instanton corrections
in (2.16) is given in Section 3.3. How the related structures can be organized
Hodge theoretically is discussed in Section 3.4 and Section 3.5, and we end with
the definition of Hodge theoretic mirror pairs in Section 3.6.

3.1. Mixed Hodge Theory

A mathematical framework that systematically captures the enumerative as-
pects of the mirror phenomenon is based on Hodge theory. While traditionally
studied on the B-model side, the key insight in the present setting is that the
corresponding algebraic structure also arises in the A-model. We therefore start
with a mostly algebraic collection of the relevant definitions, together with brief
explanations based on the geometric realization in the context of complex al-
gebraic geometry, see e.g. [PS, CMSP, CK2], and also [DK2] for the case of
threefolds.
Definition 3.1. Let HZ be an abelian group and denote by H = HZ ⊗Z C
its complexification. We call H a pure Hodge Structure (HS) of weight n, if it
admits a Hodge decomposition

H =
󰁐

p+q=n

Hp,q (3.1)

into complex subspaces subject to the condition Hp,q = Hq,p, with respect to the
complex conjugation determined by the complexification. An element of Hp,q is
said to be of Hodge type (p, q). Equivalently1, H is endowed with a decreasing
Hodge filtration F •

H = F 0 ⊃ F 1 ⊃ · · · ⊃ F n−1 ⊃ F n ⊃ F n+1 = {0}, (3.2)
1By setting Hp,q = F p ∩ F q and F p =

󰁏
i≥p Hi,n−i.
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satisfying H = F p ⊕F n−p+1 for all p. A polarization is a non-degenerate bilinear
form

Q : HZ × HZ −→ Z, (3.3)
linearly extended to H, that is (−1)n-symmetric and satisfies the Hodge-Riemann
bilinear relations

Q(α, β) = 0 for α ∈ Hp,q, β ∈ Hp′,q′ with (p, q) ∕= (q′, p′)
ip−q Q(α, α) > 0 for α ∕= 0 ∈ Hp,q.

(3.4)

A morphism of (polarized) Hodge structures is a map between abelian groups
which is compatible with the Hodge filtration.

The geometric standard case in which Hodge structures of weight n naturally
arise is the integral cohomology Hn(Y ;Z) of compact Kähler manifolds Y in
degree n. Here, the Hodge Theorem guarantees that the de Rham cohomol-
ogy with complex coefficients always admits a decomposition into Dolbeault
cohomology groups

Hn
dR(Y ;C) =

󰁐

p+q=n

Hp,q

∂
(Y ). (3.5)

When Y ↩→ PN is projective, the notion of polarization is closely related to
the choice of an integral Kähler 2-form. Namely, by the Kodaira embedding
theorem, the pullback of the 2-form [ωFS] associated to the unique Fubini-Study
metric on PN defines an integral Kähler class ω ∈ H2(Y ;Z). The pairing

Q(α, β) = (−1)
n(n−1)

2

󰁝

Y
α ∧ β ∧ ωdim(Y )−n, α, β ∈ H3(Y ;C), (3.6)

then defines a polarization on the part of the cohomology that is generated
from ω in spirit of the Lefschetz hyperplane theorem, i.e. on primitive coho-
mology. While a sum of expressions like (3.6) can be used to generally define a
polarization on the full cohomology, this thesis will be mostly concerned with
a situation in which all cohomology classes are generated via cup product with
ω from a single non-primitive class. When the modular parameters of the geo-
metric configuration are varied, as discussed below, the Hodge-Riemann bilinear
relations (3.4) are necessary to constrain moduli in a way that makes polarized
Hodge structures classifiable by their periods, i.e. integrals of closed forms over
homology classes.

Before turning to this more dynamical situation, we consider the general case in
which the Hodge decomposition theorem fails. The standard example is a non-
smooth variety where the strata of a singularity locus can be associated Hodge
structures of different weights that cannot be viewed as independent from one
another. The correct way in which this can be algebraically summarized is due
to Deligne [Del2].
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Definition 3.2. Let HZ be an abelian group together with a decreasing Hodge
filtration F • on H and an increasing weight filtration W•

{0} = W−1 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ Wm−1 ⊂ Wm = HQ (3.7)

on HQ = HZ ⊗Z Q. If the graded quotients

GrW
k H = Wk󰃭Wk−1

⊗Z C (3.8)

define a pure HS of weight k with induced Hodge Filtration

GrW
k F p = (F p ∩ Wk + Wk−1)󰃭Wk−1

⊗Z C (3.9)

for all k, the resulting object is called a mixed Hodge structure (MHS).

Even though the standard Hodge decomposition fails in the context of a general
MHS, there still is a unique decomposition

H =
󰁐

p,q∈Z
Hp,q, Hp,q = F p ∩ Wp+q ∩

󰀳

󰁃F p +
󰁛

j≥0

󰀓
F q−j−1 ∩ Wp+q−j−2

󰀔
󰀴

󰁄 (3.10)

called the Deligne-Bigrading of H. It turns out that this bigrading is related to
both the Hodge and weight filtrations in a way that most closely resembles the
situation for a pure HS. Namely, it is uniquely determined by the properties

F k =
󰁐

p,q∈Z,p≥k

Hp,q, Wl =
󰁐

p,q∈Z,p+q≤l

Hp,q

Hp,q ≡ Hq,p mod
󰁐

a<p,b<q

Ha,b.
(3.11)

We will refer to the elements in the Hp,q-component of the MHS defined via
(3.10) as of Hodge-Deligne type (p, q).

Example 3.3. A simple but important example is the pure HS Z(−1) of weight
2 given by the abelian group (2πi)−1 Z ⊂ C for which the complexification is
given by Z(−1) ⊗Z C = H1,1. Here, the exponent of the 2πi-prefactor is meant
to record the weight, such that the n-fold product

Z(−n) = Z(−1) ⊗ · · · ⊗ Z(−1) (3.12)

is a pure HS of weight 2n and Hodge-Deligne type (n, n) with Z(−n) ⊗Z C =
Hn,n. A MHS satisfying GrW

2i = Z(−i)⊕ di and GrW
2i+1 = {0} for all i is referred

to as of Hodge-Tate type. We will think of it as consisting of building blocks of
the form (3.12) in each weight.

23



3. Closed String Mirror Symmetry

In a geometric setting it is natural to consider not only a single variety but
an appropriate family π : Y → B over some parameter space. The analog
of the abelian group Hn(Y ;Z) here corresponds to the higher direct images
Rnπ∗Z defining a locally constant sheaf on B, with stalks given by the integral
cohomology of the fibers. How the information encoded in the (M)HS associated
to each fiber varies with modular parameters is then captured by the following
object.

Definition 3.4. Let HZ be an integral local system on a complex manifold B.
We call the holomorphic vector bundle H = HZ ⊗Z OB a variation of Hodge
structure (VHS) of weight n over B, if it admits a decreasing Hodge filtration
F• ⊂ H by holomorphic subbundles that induces a pure HS of weight n on each
fiber and such that the Gauß-Manin connection ∇ : H → H ⊗ Ω1

B, specified by
∇(HZ) = 0, satisfies the condition

∇ (Fp) ⊂ Fp−1 ⊗ Ω1
B, (3.13)

called Griffiths transversality. Similarly, a variation of mixed Hodge structure
(VMHS) is specified by an additional increasing weight filtration W• ⊂ HQ on
HQ = HZ ⊗Z Q such that each fiber of GrW

k H defines a pure HS of weight k.
A polarization of a variation of (M)HS is understood fiberwise and a morphism
is a map between local systems that is compatible with all relevant additional
structures.

Concretely, and in the specific case of a smooth projectic family Y → B, the
Gauß-Manin connection can be locally described as

∇(σ ⊗ f) = σ ⊗ df, σ ∈ HZ, f ∈ OB. (3.14)

Roughly speaking, the Griffiths transversality condition reflects the fact that
when differentiating a vertically closed differential form on the total space with
p holomorphic components, the increase in holomorphic degree can only take
place in a horizontal direction, i.e. along the base.

3.2. Maximal Degenerations of Calabi-Yau Threefolds

Following [SVW2, DK2], let π : Y → ∆∗ be a smooth family of projective
Calabi-Yau threefolds over a punctured disk ∆∗ with local coordinate z, for
which each fiber π−1(z) = Yz is torsion free, simply connected and has Hodge
numbers

h3,0 = h2,1 = h1,2 = h0,3 = 1. (3.15)

We think of the base as a small neighborhood around a boundary point of the
compactified moduli space 󰁦M(Y ) of complex structures on a reference fiber Y
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3.2. Maximal Degenerations of Calabi-Yau Threefolds

and further assume that there is a semi-stable continuation to the disk ∆

Y 󰈓 󰉳 󰈣󰈣

󰈃󰈃

Y

󰈃󰈃

Y0󰈳
󰉓󰉣󰉣

󰈃󰈃

∆∗ 󰈓 󰉳 󰈣󰈣 ∆ {0},󰈳 󰉓󰉣󰉣

(3.16)

where the singular fiber Y0 has at most normal crossing singularities.

While most of the story is true for a larger class of Calabi-Yau threefolds, we
will be mainly concerned with the examples arising as complete intersections in
some (weighted) projective space (see e.g. Example 2.2). These can be classified
into 14 distinct types that are distinguished by their associated Hodge theory
[DM2] and their periods are governed by a Picard-Fuchs differential equation of
a generalized hypergeometric type, to be discussed below. Our running example
will be the mirror quintic [GP], while we keep the notation flexible enough to
also cover its closest relatives, see e.g Chapter 7. Consider the family of varieties

Yψ =
󰀫

(x1 : · · · : x5) ∈ P4
󰀏󰀏󰀏󰀏󰀏 Wψ =

5󰁛

i=1
x5

i − 5ψ x1x2x3x4x5 = 0
󰀬

⊂ P4. (3.17)

It is invariant under the Greene-Plesser group

G =
󰀫

(a1, . . . , a5) ∈
󰀓Z󰃭5Z

󰀔5
󰀏󰀏󰀏󰀏󰀏

󰁛

i

ai ≡ 0 mod 5
󰀬 󰀯 󰀓Z󰃭5Z

󰀔
(3.18)

of symmetries leaving W invariant. Given an element a ∈ G, its action on Yz is
defined by multiplication of homogeneous coordinates with fifth roots of unity,
i.e.

a · (x1 : · · · : x5) := (µa1x1 : · · · : µa5x5), µ = exp(2πi/5). (3.19)

While Yψ is generically smooth, the quotient Yψ/G has a singular locus con-
sisting of the divisors Dij = {xi = xj = 0}/G, that is inherited from the fixed
points of the G-action on P4. By [Mor2], there is a smooth resolution

󰁩Yψ/G −→ Yψ/G (3.20)

of the quotient which is both compatible with the action of the Greene-Plesser
group and the Calabi-Yau condition, see also [GGK1]. Slightly abusing nota-
tion, we denote by Y the resulting family, with fibers obtained by smoothly
resolving these singularities, and having the Hodge numbers (3.15).

Due to the invariance of the mirror quintic family under rescalings of homoge-
neous coordinates by fifth roots of unity Yψ

∼= Yµψ, it is natural to choose a local
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3. Closed String Mirror Symmetry

coordinate on the moduli space that incorporates this invariance. The usual
choice is to set z = (5ψ)−5 as the parametrization of the complex structure pa-
rameter. Topologically, the complex moduli space is now given by P1\{0, 1, ∞},
i.e. a thrice punctured sphere in which each marking corresponds to a special
singular point. At the Landau-Ginzburg point z = ∞ (ψ = 0) the symmetry
group of the variety

Y∞ =
󰀫

(x1 : · · · : x5) ∈ P4
󰀏󰀏󰀏󰀏󰀏 W0 =

5󰁛

i=1
x5

i = 0
󰀬

⊂ P4 (3.21)

enhances because the condition in (3.18) becomes immaterial, leading to an
orbifold singularity of the moduli space. The special point

z = zC = 1 − 55z (ψ5 = 1) (3.22)

is called the conifold point, because here the fiber of the variety defined by
(3.17) acquires singularities whose neighborhood looks like a cone over S2 × S3.
The conifold locus has an important role to play in the general context of
mirror symmetry, as the different ways in which the singularity can be resolved
leads to description of a topology-change that can be physically interpreted
as a geometric transition between different string vacua [GMS]. A topological
description of this phenomenon can be found in [Ban]. For the purpose of
this thesis the most import singularity corresponds to the puncture at z = 0
(ψ = ∞), usually called the large complex structure limit. At this point, the
variety naively degenerates to a union of five intersecting P3’s defined by

Y0 =
󰀫

(x1 : · · · : x5) ∈ P4
󰀏󰀏󰀏󰀏󰀏 W∞ = x1x2x3x4x5 = 0

󰀬

⊂ P4. (3.23)

This type of degeneration is considered “maximal” either on the basis of maxi-
mally decreasing volume determined by (2.7), see [KS], or due to considerations
of a monodromy classification [Mor1, Del4] that will be discussed further below.
As described in [GGK1], the singular fiber in the large complex structure limit
admits a semi stable reduction, such that a small neighborhood of this singular
point is our standard example of the family Y → ∆∗ described in (3.16). The
full moduli space of the mirror quintic is sketched in Figure 3.1.

As Yz varies across ∆∗, its middle-dimensional integral cohomology fits into a
Z-local system given by the higher direct image H3

Z = R3π∗Z whose fibers are
given by (H3

Z)z = H3(Yz;Z). Over C, these cohomology groups admit a Hodge
decomposition

H3 := H3(Yz;C) = H3,0(Yz) ⊕ H2,1(Yz) ⊕ H1,2(Yz) ⊕ H0,3(Yz) (3.24)
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3.2. Maximal Degenerations of Calabi-Yau Threefolds

z = 0

z = zC

z = ∞

Figure 3.1.: Sketch of the B-model moduli space. Topologically, it is given
by P1 with 3 distinguished points corresponding to the large complex structure
(z = 0), conifold (z = zC) and Landau-Ginzburg (z = ∞) points. The orb-
ifold singularity at z = ∞ is depicted. The blue line indicates the radius of
convergence of the periods expanded around z = 0 (see below).

for which there is a decreasing Hodge filtration

F p =
󰁐

i≥p

H i,3−i(Yz) (3.25)

with F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = H3. The Hodge filtration varies holomorphi-
cally across ∆∗, such that Fp := F p ⊗ O∆∗ defines a corresponding filtration
of holomorphic subbundles on H3 := H3

Z ⊗ O∆∗ . A natural antisymmetric
polarization form Q(·, ·) : H3

Z ⊗ H3
Z → Z is induced from the Poincaré dual-

ity pairing on integral cohomology and can be extended linearly to H3. The
local system H3

C = H3
Z ⊗ C uniquely determines the flat Gauß-Manin con-

nection ∇ : H3 → H3 ⊗ Ω1
∆∗ with ∇(H3

C) = 0 that satisfies the Griffiths
transversality condition ∇(Fp) ⊂ Fp−1 ⊗ Ω1

∆∗ . This collection of algebraic data
(H3

Z, H3, F•, ∇, Q) defines a polarized, integral VHS of weight 3 over ∆∗.

For a small loop γ(t) around the singular point 0 ∈ ∆ based at some z ∈ ∆∗,
we can lift any class gz ∈ H3(Yz;Z) to a flat section g(t) ∈ H3(Yγ(t);Z) over
[0, 1] with g(0) = g. The monodromy operator M : H3

Z → H3
Z is then defined

by M(g) = g(1) in each fiber and guaranteed to be quasi-unipotent by the
monodromy theorem [Lan]: Given a VHS over ∆∗, there is always an integer
m ≥ 0 such that

(Mm − id)n+1 = 0, (3.26)

where n is (at most) the Hodge theoretic weight. Assuming that M is unipotent,
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3. Closed String Mirror Symmetry

i.e. m = 1, the monodromy logarithm N := log(M) : H3
Q → H3

Q, defined by

N = log(M) =
∞󰁛

k=1

(−1)k−1

k
(M − id)k , (3.27)

is a nilpotent operator on H3
Q = H3

Z ⊗ Q. Note that the sum (3.27) is always
finite due to the unipotency of the monodromy. It induces the unique increasing
monodromy weight filtration W• := W•(N), satisfying the properties

W−1 = {0} ⊂ W0 ⊂ · · · ⊂ W6 = H3
Q,

N(Wk) ⊂ Wk−2, Nk : GrW
3+k

∼−→ GrW
3−k,

(3.28)

where GrW
k = Wk/Wk−1 for k = 0, ..., 3, from which explicit expressions for the

form of its pieces can be derived [Gri, CK2]. In our situation, they are explicitly
given by

W0 = im(N3)
W1 = im(N2) ∩ ker(N)
W2 = im(N) ∩ ker(N) + im(N2) ∩ ker(N2)
W3 = ker(N) + im(N) ∩ ker(N2) + im(N2) ∩ ker(N3)
W4 = ker(N2) + im(N) ∩ ker(N3)
W5 = ker(N3).

(3.29)

The monodromy logarithm can also be employed to define the untwisted local
system with corresponding connection

󰁩H3
Z := exp

󰀣

− log(z)
2πi

N

󰀤

H3
Z, ∇c := ∇ + N

2πi

dz

z
, (3.30)

from which Deligne’s canonical extension 󰁩H3 := 󰁩H3
Z ⊗ O∆ → ∆ over the punc-

ture can be constructed [Del4].

Lemma 3.5. The sections 󰁨g ∈ 󰁩H3
Z of the canonical extension are single-valued,

i.e. they have trivial monodromy.

Proof. Monodromy around the puncture in the coordinate z is accomplished
by z 󰀁→ z exp(2πi) such that log(z) 󰀁→ log(z) + 2πi. The action on a general
element of 󰁩H3

Z is then given by

M(󰁨g) = M

󰀣

exp
󰀣

− log(z)
2πi

N

󰀤

g

󰀤

= exp
󰀣

− log(z)
2πi

N

󰀤

exp(−N)M g

= exp
󰀣

− log(z)
2πi

N

󰀤

M−1M g = 󰁨g,

(3.31)

yielding the desired invariance under monodromy.
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3.2. Maximal Degenerations of Calabi-Yau Threefolds

As a consequence of the nilpotent orbit theorem [Sch], the Hodge filtration also
extends to holomorphic subbundles 󰁨Fp ⊂ 󰁩H3 = 󰁩H3

Z ⊗ O∆, with limiting filtra-
tion F •

0 ⊂ 󰁩H3
0. This canonical extension of the Hodge theoretic data allows to

assign a meaningful limit to the VHS at the puncture that carries information
about the degeneration of the fiber Y0 over 0 ∈ ∆. For this purpose, we untwist
a multivalued basis {gi} of H3

Z via (3.30) and consider the local system 󰁩H3
Z,0

generated by 󰁨gi(0). The collection of data (󰁩H3
Z,0,

󰁩H3
0, F •

0 , W•) defines a MHS
called the limiting mixed Hodge structure (LMHS) of H3.

In the given situation, the LMHS can be classified in terms of the monodromy
behavior around the puncture [GGK1], as depicted in Figure 3.2. While the
upper left panel shows the nonsingular situation with trivial monodromy, all
the further degenerations have an interesting geometric realization: The up-
per right panel corresponds to the degeneration at the aforementioned conifold
locus z = zC , in which cycles represented by 3-spheres collapse to a point in
the B-model. The monodromy structure depicted in the lower left panel arises
in a degeneration where the Calabi-Yau threefold collapses to a union of Fano
varieties, referred to as Tyurin degeneration [DHT]. Of particular interest in
the context of (Hodge theoretic) mirror symmetry is the case of a maximal
degeneration depicted in the lower right panel. From this point of view, it is
characterized by maximally unipotent monodromy (MUM) with (M − id)4 = 0
and (M − id)3 ∕= 0 at z = 0.

At a MUM point, the LMHS is Hodge-Tate of the form

Z(−3) N 󰈣󰈣 Z(−2) N 󰈣󰈣 Z(−1) N 󰈣󰈣 Z(0) (3.32)

with W2i = ker N i+1 and GrW
2i

∼= Z(−i) for i = 0, ..., 3 while otherwise {0}.
In a neighborhood around the puncture, the limiting Hodge filtration can be
extended to a filtration that is constant with respect to (3.30), leading to a VHS

H3
nilp := (H3

Z, H3, exp(− log(z)
2πi

N) F •
0 , ∇, Q), (3.33)

called the nilpotent orbit, which approximates the original VHS asymptotically.
Griffiths transversality follows from the property (3.59) of the Gauß-Manin con-
nection discussed further below, which here implies N(F p

0 ) ⊂ F p−1
0 . Together

with the weight filtration W• = W• ⊗ O∆∗ the nilpotent orbit defines a Hodge-
Tate VMHS on ∆∗ with LMHS (3.32). It can be understood as the most trivial
VMHS with a prescribed LMHS and its structure will become more appar-
ent in our main example (3.52). Indeed, following Deligne [Del4], the filtra-
tion W• pairs up also with the original Hodge filtration such that the data
(H3

Z, H3, F•, W•, ∇, Q) defines a polarized, integral VMHS of Hodge-Tate type
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3. Closed String Mirror Symmetry

p

p

q

N

N

N

q

p

q

p

q

N

N

N

M = id (M − id)2 = 0

(M − id)3 = 0 (M − id)4 = 0

Figure 3.2.: Monodromy classification of limiting mixed Hodge structures.
There are four possibilities in which a geometric degeneration can be reflected
in the structure of the monodromy. The bullets at position (p, q) indicate that
there is a non-zero component of corresponding Hodge-Deligne type. The arrows
depict the action of the monodromy logarithm N .

in a neighborhood ∆∗ of the MUM-point. Its periods consist of a ∇c-constant
part encoded in the nilpotent orbit, as well as holomorphic components vanish-
ing at 0 ∈ ∆ [CK1]. This VMHS can be viewed as describing the degeneration
of the original variation of pure HS to the LMHS (3.32) in terms of its periods,
on which we will focus now.

We denote by Ω ∈ Γ(F3, ∆∗) a choice of nonvanishing holomorphic 3-form on Y .
For any multivalued flat section g of H3

C the periods Q(g, Ω) are holomorphic
functions on ∆∗ satisfying a Picard-Fuchs differential equation of generalized
hypergeometric type [DM2]. In a neighborhood of the MUM-point, it can be
expressed in terms of a canonical logarithmic vector field via

DPF(θ) Q(g, Ω) = 0, θ := d

d log(z) = z
d

dz
. (3.34)

While the periods generally diverge when approaching the puncture, the limiting
periods Q(󰁨g(0), Ω) defined in terms of the untwisted local system are well defined
and determine the LMHS at z = 0. In the examples of one-parameter families
arising from complete intersections in weighted projective space [op.cit.], the
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3.2. Maximal Degenerations of Calabi-Yau Threefolds

p p

q

N

N

N

z ⟶ 0

q

Figure 3.3.: LMHS associated to H3 at a point of maximal degeneration. The
process of the degeneration can be summarized in the asymptotic behavior of
the periods of the VMHS arising from a deformation of the nilpotent orbit.

Picard-Fuchs operator is of the generalized hypergeometric type

DPF (−) = (2πi)2
󰀥

θ4 − z
4󰁜

k=1
(θ + rk)

󰀦

(−), rk ∈ Q. (3.35)

It can always be brought into the form

DPF (−) = (2πi)2
󰁫
θ4 + E3(z) θ3 + E2(z) θ2 + E1(z) θ

󰁬
(−), (3.36)

where each Ei is analytic at z = 0 but has a singularity at the conifold point
zC = 0. We note that the first term is always given by

E3(z) = − 2αz

1 − αz
, zC = 1 − αz. (3.37)

The singularity of the Picard-Fuchs operator at the conifold locus reflects the
fact that the periods generally have a radius of convergence touching the corre-
sponding point in the moduli space, as depicted in Figure 3.1.
Example 3.6. Turning to our running example, we consider the mirror quin-
tic family and give an explicit description of the periods when expanded in a
neighborhood of the boundary point with maximally unipotent monodromy.
The periods can be explicitly calculated by integrating the holomorphic vol-
ume form over the vanishing cycle [CdlOGP], from which also the form of the
Picard-Fuchs operator can be derived. For the standard choice of holomorphic
3-form

Ωz =
󰀕 5

2πi

󰀖3
Res W =0

󰁓5
i=1(−1)ixi dx1 ∧ · · · ∧ 󰁧dxi ∧ · · · ∧ dx5

W
, (3.38)

where W denotes the defining polynomial (3.17) in the variable z, the Picard-
Fuchs operator is given by [DM2]

DPF (−) = (2πi)2
󰀥

θ4 − 5z
4󰁜

k=1
(5θ + k)

󰀦

(−). (3.39)
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3. Closed String Mirror Symmetry

Taking this operator to be given, the periods can be easily determined from a
power series Ansatz and the Frobenius method. Namely, the unique fundamen-
tal solution of the Picard-Fuchs equation is found to be given by

ϖ0 =
∞󰁛

n=0

Γ(5n + 1)
Γ(n + 1)5 zn = 1 + 120 z + 113400 z2 + 168168000 z3 + · · · , (3.40)

which we will refer to as the fundamental period of the mirror quintic. A full
system of solutions can now be derived via the Frobenius method, starting with
the following hypergeometric series

ϖ(z, h) :=
∞󰁛

n=0

Γ(5(n + h) + 1)
Γ(n + h + 1)5 zn+h, (3.41)

with ϖ0 = ϖ(z, 0). Because DPF ϖ(z, s) = h4zh +O(h5) and ∂h commutes with
DPF, the functions

ϖi := (∂h)i

󰀏󰀏󰀏󰀏󰀏
h=0

ϖ(z, h), i = 0, 1, 2, 3, (3.42)

are all solutions to the Picard-Fuchs equation. Writing

ϕi(z) =
∞󰁛

n=0
(∂h)i

󰀏󰀏󰀏󰀏󰀏
h=0

Γ(5(n + h) + 1)
Γ(n + h + 1)5 zn, (3.43)

these additional periods are iteratively given by the formula

ϖi(z) =
i󰁛

k=0

󰀣
i

k

󰀤

ϕk(z) log(z)i−k. (3.44)

Starting with the first iteration of this process

ϖ1 = ϖ0 log(z) + ϕ1 = ϖ0 log(z) + 770 z + 810225 z2 + 3745679000
3 z3 + · · · ,

(3.45)
the periods exhibit a diverging behavior for i = 1, 2, 3.
Following [SVW2, DK2, CK2, Mor1], we start from the periods ϖ0 and ϖ1,
where we can find integral flat generators gi ∈ W2i ∩ H3

Z together with a Hodge
basis {ej} := {e3, e2, e1, e0} where ej ∈ F j, which lead to a structure that can
be reinterpreted from an A-model point of view. Starting with the holomorphic
3-form e3 = Ω and the generator g0 Poincaré dual to the minimal integral
vanishing cycle, the function ϖ0 = Q(g0, e3) is up to a constant the unique
fundamental period which is analytic at z = 0. Assuming the monodromy is
small [Mor2], there exists a further generator g1 with period ϖ1 = Q(g1, e3)
that transforms according to M(g1) = g1 + g0 such that

q(z) := exp(2πit(z)), t(z) = ϖ1(z)
ϖ0(z) , (3.46)

is a well-defined function that serves as the unique canonical coordinate on ∆∗.
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3.2. Maximal Degenerations of Calabi-Yau Threefolds

Definition 3.7. The map m : q(z) 󰀁→ z(q) relating the coordinate z to the
canonical coordinate q is called the mirror map.

Example 3.8. For the mirror quintic, the canonical coordinate can be com-
puted from the periods (3.40) and (3.45) and is given by the power series

q(z) = z + 770 z2 + 1014275 z3 + · · · . (3.47)

The mirror map
z(q) = q − 770 q2 + 171525 q3 + · · · (3.48)

can be obtained by computing the inversion of the power series (3.47).

We choose (3.46) as the canonical coordinate and set e3 := Ω/ϖ0, essen-
tially normalizing the fundamental period. As in [SVW2, dSJKP], we can
complete {g0, g1} to an integral flat basis {gi} := {g3, g2, g1, g0} with periods
ϖi = Q(gi, e3) in which the full monodromy and its logarithm are represented
by the matrices

M =

󰀳

󰁅󰁅󰁅󰁃

1 0 0 0
−1 1 0 0
0 κ 1 0

−a+2κ
12 κ 1 1

󰀴

󰁆󰁆󰁆󰁄 , N =

󰀳

󰁅󰁅󰁅󰁃

0 0 0 0
−1 0 0 0

κ
2 κ 0 0

− a
12

κ
2 1 0

󰀴

󰁆󰁆󰁆󰁄 , κ, a ∈ Z. (3.49)

Furthermore, we find that the matrix

Q =

󰀳

󰁅󰁅󰁅󰁃

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

󰀴

󰁆󰁆󰁆󰁄 . (3.50)

represents the polarization form in both bases {gi} and {ej}.

Introducing the logarithmic vector field that corresponds to the canonical coor-
dinate

δ := 2πi
d

d log(q) = 2πi q
d

dq
= 2πi

q

z

dz

dq
z

d

dz
= 2πi

q

z

dz

dq
θ, (3.51)

we denote by ∇(δ) := ∇t its contraction with the Gauß-Manin connection. The
flat basis {gi} is then related to the Hodge basis {ej} by (see also [CdlOGP]
and [CK2, Proposition 5.6.1])

g0 = e0, g1 = e1 + log q e0, g2 = e2 + δ2F e1 + δF e0

g3 = e3 − log q e2 +
󰀓
δF − log q δ2F

󰀔
e1 + (2F − log q δF) e0,

(3.52)
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3. Closed String Mirror Symmetry

where the periods are determined by the prepotential

F = 1
(2πi)3

κ

6 log(q)3 + 1
(2πi)2

κ

4 log(q)2 − 1
(2πi)

a

24 log(q) + f(q). (3.53)

Here, f(q) is a single valued function, which extends holomorphically over the
puncture

f(q) =
󰁨b ζ(3)
(2πi)3 + 1

(2πi)3

∞󰁛

d=1

󰁩Nd qd, 󰁨b ∈ Q. (3.54)

When the family Y is defined over Q, the coefficients 󰁩Nd ∈ Q of the q-series
expansion are generally rational numbers. The explicit form of the basis (3.52)
and the prepotential (3.53) depends on the choice of the integral basis {gi} an
its underlying monodromy. It can be determined by iteratively constructing the
Hodge filtration of the graded quotients of Hodge-Tate type, as for example in
[Del4, GGK1, SVW2]. The existence of a prepotential capturing the periods
can be viewed as a consequence of the Hodge-Riemann bilinear relations (3.4),
which constrain their structure in the given situation.

By untwisting the local system (3.52) according to (3.30), we get a basis {󰁨gi} of
the canonical extension which encodes the limiting asymptotics of the periods
Q(gi, ej). Roughly speaking, it is obtained by dropping the logarithmic terms
from the basis {gi}. The limiting period matrix is then defined by

Π q=0 := Q(󰁨gi(0), ej)i,j=0,...,3 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0 0 0
0 1 0 0
a
24 −κ

2 1 0
b ζ(3)
(2πi)3

a
24 0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
(3.55)

and determines the LMHS at q = 0. On the other hand, the nilpotent orbit to
which we come back later, is obtained by only keeping the logarithmic terms in
(3.52). It is therefore determined only by the structure of the monodromy.

Remark 3.9. The entries of the limiting period matrix can be viewed as certain
extension classes arising in the composition series (3.32) [GGK1]. The most
interesting extension class lies in

Ext1
MHS(Z(−3),Z(0)) = C󰃭Z(3), (3.56)

and corresponds to the constant term of (3.54), whose theoretical origin is
explained in [GGK2]. It determines the limit of the period ϖ3

lim
q→0

ϖ3 := Q(󰁨g3(0), e3) = b ζ(3)
(2πi)3 , b = 2󰁨b, (3.57)
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3.2. Maximal Degenerations of Calabi-Yau Threefolds

in the LMHS. From a physical perspective, it can be interpreted as a four-loop
correction to the sigma model metric on the corresponding A-model Calabi-
Yau background [CdlOGP, GvdVZ]. As we will see, the rational multiple b in
(3.57) corresponds to a topological invariant (the Euler number) of the mirror
manifold.

In terms of the logarithmic vector field (3.51), the Gauß-Manin connection ∇t

in the basis {ej} is fully determined by the prepotential via

∇t = d +

󰀳

󰁅󰁅󰁅󰁃

0 0 0 0
1 0 0 0
0 −C 0 0
0 0 −1 0

󰀴

󰁆󰁆󰁆󰁄 ⊗ dq

2πi q
, C = δ3F = Q(∇3

t e3, e3). (3.58)

The function C is called the Yukawa coupling of H3 and (3.58) serves as the
mathematical definition of the three-point correlation function (2.17) of the
closed B-model discussed in Chapter 2.

It is a general feature of unipotent monodromy in this context that the mon-
odromy logarithm encodes the singularity structure of the Gauß-Manin connec-
tion in a certain sense. Namely, the monodromy logarithm at q = 0, i.e. in the
basis {ej}, can be computed from the residues of the Gauß-Manin connection
at the singularity via [Del1]

Nq=0 = −2πi Resq=0∇. (3.59)

In the situation at hand this means that

Nq=0 =

󰀳

󰁅󰁅󰁅󰁃

0 0 0 0
−1 0 0 0
0 κ 0 0
0 0 1 0

󰀴

󰁆󰁆󰁆󰁄 . (3.60)

An explicit formula for the Yukawa coupling can then be determined from a
certain differential equation (cf. [CK2]).

Proposition 3.10. Let Y → ∆∗ be a one-parameter family of complete inter-
section Calabi-Yau threefolds in a small neighborhood around a point for which
the associated weight 3 VHS has maximally unipotent monodromy. Then the
Yukawa coupling in the canonical coordinate is given by

C = κ

(1 − αz) ϖ2
0

󰀣
q

z

dz

dq

󰀤3

. (3.61)
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Proof. We begin with the unnormalized coupling Q(∇3
θ Ω, Ω) in the coordinate

z and compute its derivative

z
d

dz
Q

󰀓
∇3

θ Ω, Ω
󰀔

= Q
󰀓
∇4

θ Ω, Ω
󰀔

+ Q
󰀓
∇3

t Ω, ∇t Ω
󰀔

= 1
2 Q

󰀓
∇4

t Ω, Ω
󰀔

. (3.62)

Here, the second equality follows from Griffiths transversality: Differentiating
the equation Q(∇2

θ Ω, Ω) = 0 twice yields

Q
󰀓
∇3

θ Ω, ∇θ Ω
󰀔

= −1
2 Q

󰀓
∇4

θ Ω, Ω
󰀔

. (3.63)

By virtue of the Picard-Fuchs equation (3.36), the unnormalized holomorphic
3-form Ω satisfies the relation

∇4
θ Ω = −E3 ∇3

θ Ω − E2 ∇2
θ Ω − E1 ∇θ Ω. (3.64)

Plugging ∇4
θ Ω into (3.62) and using (3.37) produces the differential equation

z
d

dz
Q

󰀓
∇3

θ Ω, Ω
󰀔

= αz

1 − αz
Q

󰀓
∇3

θ Ω, Ω
󰀔

. (3.65)

with a solution that can be determined up to a constant factor

Q
󰀓
∇3

θ Ω, Ω
󰀔

= c

1 − αz
, c ∈ C. (3.66)

We now turn to the normalized Yukawa coupling in the canonical coordinate.
In case of the normalized 3-form e3, computing the derivative similar to (3.62)
produces additional terms that all vanish by Griffiths transversality. Further-
more, when switching to the canonical coordinate q we have to take into account
the chain rule (3.51). The corresponding solution is given by

C = c

(1 − αz) ϖ2
0

󰀣
q

z

dz

dq

󰀤3

, c ∈ C, (3.67)

which determines the Yukawa coupling up to the same constant. As C = c +
O(q), it suffices to compute C(0) = c to determine this constant. For this
purpose we consider the monodromy logarithm and its relation to the Gauß-
Manin connection (3.60). From this we can deduce that

Nq=0 e2 = κ e1 = C(0) e1, (3.68)

such that C(0) = κ.

36



3.3. Gromov-Witten Invariants and Quantum Cohomology

Example 3.11. In case of the mirror quintic, the constants κ = 5, a = 50 and
b = −200 can be determined from monodromy considerations2, such that the
prepotential is given by

F = 1
(2πi)3

5
6 log(q)3 + 1

(2πi)2
5
4 log(q)2 − 1

(2πi)
25
12 log(q) + f(q). (3.69)

Via Proposition 3.10, we can compute the Yukawa coupling including its holo-
morphic part

C = δ3F = κ + δ3f(q) = 5 + 2875 q + 4876875 q2 + 8564575000 q3 + · · · , (3.70)

using the periods and the mirror map.

3.3. Gromov-Witten Invariants and Quantum Cohomology

We are now ready to turn to the A-model, where the aim is to reinterpreted
the Hodge-theoretic objects of the preceding section in terms of the symplectic
geometry of the mirror manifold. For this purpose, let X be a simply connected
and projective Calabi-Yau threefold and denote by ω = B + iJ = t[H] the
complexified Kähler class with t ∈ H in the upper half plane. This means, we
assume for simplicity that h1,1 = 1. For the B-model, we have described how the
Yukawa coupling arises in the maximal degeneration of a family of threefolds
and, as pointed out in Chapter 2, one feature of the physical mirror phenomenon
is the equivalence between the three-point functions in the topologically twisted
theories. In order to make the three-point function in the A-model (2.16) pre-
cise, we first have to give a geometric description of the instanton corrections
󰁩Nβ arising therein, see e.g. [CK2].

Roughly speaking, in their role as coefficients of the topological string amplitude
they should geometrically correspond to the number of holomorphic genus 0
curves C ⊂ X that represent a given homology class β ∈ H2(X;Z). In an
enumerative problem like this it is necessary to specify a number of incidence
relations, e.g. intersection points with cycles, that make the relevant moduli
space zero dimensional. With this objective in mind, we consider cycles Zi in
X and are generally interested in the numbers

#
󰁱
C ⊂ X

󰀏󰀏󰀏 genus(C) = g, [C] = β, C ∩ Zi ∕= ∅ for all i
󰁲

. (3.71)

A way of making this count of curves well defined is due to Kontsevich [Kon2]
and involves the notion of stable maps and their moduli space. Instead of a

2For κ and a this can be seen from the basis (3.52), while b requires a continuation to the
conifold locus [CdlOGP].
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curve C ⊂ X, we consider an abstractly defined curve together with a holo-
morphic map f : C → X that satisfies f∗[C] = β. Note that such an approach
quite strongly resembles the sigma model (2.1) discussed in Chapter 2. When
we want to specify incidence relations, this can be achieved by requiring that a
set of distinct points pi ∈ C is mapped to cycles f(pi) ∈ Zi for Zi ∈ H∗(X;C).
Naively, the numbers (3.71) are obtained by integrating an appropriate form
over a moduli space of isomorphism classes of such curves that needs to be
sufficiently well-behaved. In particular, the moduli space has to admit a com-
pactification, leading to the notion of stability which we discuss next.

In the ordinary case of marked curves (C, p1, . . . , pn) without reference to a map
to some ambient space, it is necessary to make various assumptions in order for
a compact moduli space to exist. Crucially, it is necessary to include not only
smooth but certain kinds of singular curves into the discussion, which can be
interpreted as limiting configurations of degenerating curves. Here it suffices to
only focus on singularities that can be locally described as an ordinary double
point. The notion of stability is now related to the fact that the moduli problem
is only solvable (in a way to be made precise), when each reducible component
of a curve only has finitely many automorphisms. This can be enforced by
requiring that (i) an irreducible component D ⊂ C with D ∼= P1 has at least
3 marked points and (ii) if C has only one irreducible component of genus 1,
there is at least one marked point. A marked point refers in this context either
to one of the incidence relations (p1, . . . , pn) or the nodal singularities. In this
way it is ensured that all continuous3 automorphisms of a Riemann sphere or
an elliptic curve are fixed by the specification of the markings. The moduli
problem can be assessed by first defining a contravariant functor

F : Sch C −→ Sets, B 󰀁−→ {CB → B} (3.72)

sending a scheme over C to a family of pointed curves over B. A solution of
the moduli problem is usually thought of as a representation

F
∼−→ Hom(−, 󰁦Mg,n) (3.73)

of this functor by a, preferably simple, parameter space. In the given case
of curves it turns out that the above representation cannot be achieved by a
scheme. This problem is generally related to the fact that many curves still
admit finite automorphism groups. The correct object that incorporates such
automorphisms is a Deligne-Mumford stack, which we will think of as the al-
gebraic version of a compact orbifold with finite group action. As it turns out
[DM1], in the particular moduli problem for curves the moduli stack 󰁦Mg,n is a
smooth Deligne-Mumford stack (or smooth orbifold) of dimension 3g − 3 + n

3By this we mean those automorphisms that are isotopic to the identity.
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3.3. Gromov-Witten Invariants and Quantum Cohomology

when n + 2g ≥ 3.

Turning again to maps f : C → X, a similar strategy can be employed. The
correct stability conditions are slight modifications of the ones presented above
and are given by the requirement that (i) an irreducible component D ⊂ C with
D ∼= P1 and f(D) = {pt.} has at least 3 marked points and (ii) if C has genus
g = 1 and f(C) = {pt.}, then there are n > 0 marked points. The correspond-
ing moduli problem again has a solution in the sense that the functor of families
can be represented by a Deligne-Mumford stack 󰁦Mg,n(X, β) [Kon2], however in
the case of stable maps it is not smooth in general. Before discussing this issue
we come back to our initial task in the simplest situation.

A general feature of the moduli space 󰁦Mg,n(X, β) of stable maps is the existence
of evaluation maps

evi : 󰁦Mg,n(X, β) −→ X, (f, C, p1, . . . , pn) 󰀁−→ f(pi), (3.74)

sending a given stable map to the image of one of the marked points in X. As-
suming 󰁦Mg,n(X, β) to be a smooth Deligne-Mumford stack, or smooth compact
orbifold, it can be shown that its compex dimension is given by [Kon2, CK2]

dimC
󰁦Mg,n(X, β) = (1 − g)(dimC X − 3) −

󰁝

β
c1(X) + n, (3.75)

which simplifies significantly in case of a Calabi-Yau threefold. In this par-
ticular case, a numerical invariant can be extracted when incidence relations
are specified in a way that fixes n complex or 2n real parameters. To do so,
consider cohomology classes γi = PD(Zi) ∈ Heven(X;C) Poincaré dual to the
cycles which aid as such incidence relations. Assuming 󰁓

i deg(γi) = 2n, the
count (3.71) can then be formalized by the Gromov-Witten invariant

GWg,β(γ1, . . . , γn) =
󰁝

󰁦Mg,n(X,β)

n󰁞

i=1
ev∗

i (γi), (3.76)

in which we integrate an appropriate 2n-form over the real 2n-dimensional mod-
uli space of stable maps.

In the more general case, this naive approach will fail as the moduli space might
have strata on which the dimension deviates from the expected value (3.75).
Fortunately, there is a remedy for this issue based on the idea that there is
proper substitute for the fundamental class also when 󰁦Mg,n(X, β) is not smooth,
which can be employed to define the invariants quite analogous to (3.76). As
the construction of the relevant virtual fundamental class is rather involved,
we refer the reader to the exposition in [CK2] and content ourselves with the
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3. Closed String Mirror Symmetry

fact that the more sophisticated version of (3.76) is always defined, with the
rough intuition sketched in the beginning of this section persisting. There are
both algebro-geometric and symplectic approaches to the general problem, both
of which produce consistent properties or axioms for the resulting invariants,
attributed to Kontsevich-Manin [KM]. For our purposes it will suffice to rely
on these axioms, which we now formulate for the general situation.

Axioms 3.12. Given cohomology classes γi ∈ H∗(X;C) with i = 1, ..., n, the
invariants GWg,β(γ1, ..., γn) of X satisfy the axioms

• (Degree) GWg,β(γ1, ..., γn) = 0 unless

2(1 − g)(dim X − 3) − 2
󰁝

β
c1(X) + 2n =

n󰁛

i=1
deg(γi). (3.77)

• (Equivariance) For † = deg(γi) · deg(γi+1) it is

GWg,β(γ1, . . . , γi, γi+1, . . . , γn) = (−1)† GWg,β(γ1, . . . , γi+1, γi, . . . , γn).
(3.78)

• (Unit) An insertion of the unit [X] ∈ H0(X;C) yields

GWg,β([X], γ1, ..., γn−1) = 0. (3.79)

• (Zero) The restriction to g = 0 and β = 0 yields

GW0,0(γ1, ..., γn) =

󰀻
󰀿

󰀽

󰁕
X γ1 ∪ γ2 ∪ γ3 if n = 3

0 otherwise.
(3.80)

• (Divisor) For deg(γn) = 2 it is

GWg,β(γ1, ..., γn) =
󰀕󰁝

β
γn

󰀖
· GWg,β(γ1, ..., γn−1). (3.81)

• (Splitting) The invariants associated4 to curves coming from the divisor
󰁦Mg1,n1+1 × 󰁦Mg2,n2+1 → 󰁦Mg,n, g1 + g2 = g, n1 + n2 = n, (3.82)

are given by
󰁛

β1+β2=β

󰁛

i,j

Qij GWg1,β1(γ1, . . . , γn1 , ei) ·GWg1,β1(ej, γn1+1, . . . , γn), (3.83)

where {ei} denotes a homogeneous basis for which the Poincaré pairing is
represented by a matrix with entries Qij and Qij = (Qij)−1.

4We refer the reader to [CK2] for an explicit construction.
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• (Reduction) The invariants associated to curves coming from the divisor

󰁦Mg−1,n+2 −→ 󰁦Mg,n, (3.84)

are given by 󰁛

i,j

Qij GWg−1,β(γ1, . . . , γn, ei, ej). (3.85)

• (Invariance) The numbers GWg,β(γ1, . . . , γn) are constant under deforma-
tions of the Kähler class ω.

Remark 3.13. We have formulated the Kontsevich-Manin axioms for Gromov-
Witten invariants in terms of the invariants itself, rather than their associated
classes, as it is often done. The reason is that this will make the comparison to
their open cousins more apparent, where an immediate focus on the invariants
is more convenient. We dropped the effectivity axiom from our list, stating that
the invariants vanish except

󰁕
β ω ≥ 0, because this is always the case when we

focus on holomorphic maps.

For now and until Chapter 7 we will focus our attention on the tree-level case,
i.e. g = 0, and denote GW0,β(γ1, . . . , γn) = GWβ(γ1, . . . , γn). We will also use
the notation GWβ for those invariants without insertions. To these tree-level
invariants we can associate their generating function, called the Gromov-Witten
Potential, which can be physically interpreted as the genus 0 partition function
for the closed A-type topological string. We define it by

Φ = 1
6

󰁝

X
ω ∪ ω ∪ ω + Φh = κ

6 t3 + Φh, (3.86)

where5

κ =
󰁝

X
H ∪ H ∪ H, [H] ∈ H2(X;C), (3.87)

is the classical triple intersection number in terms of the hyperplane class and

Φh = 1
(2πi)3

󰁛

β∈H2(X;Z)\{0}
GWβ qβ, qβ = exp(2πi

󰁝

β
ω), (3.88)

is the quantum part of the potential. We will assume this quantum part to
converge and think of it as a holomorphic function on ∆∗. The conventional
prefactor of 1/(2πi)3 will become especially clear in a later comparison to the
B-model.

Remark 3.14. It is conjectured [CK2], that the power series (3.88) is conver-
gent for sufficiently small q. From a physical point of view, such an assumption
is plausible as q measures the impact of quantum effects on the physical theory,

5It is no coincidence that the letter κ is repurposed at this point.
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such that a restriction to a sufficiently small neighborhood around q = 0 should
be expected to have a well-defined physical meaning. At the moment there is
no proof of this statement in the mathematical literature. As a consequence,
this problem is often dealt with by thinking of Φh as a formal power series in
the variable q. Geometrically, this means that one is forced to restrict oneself
to an infinitesimal or formal neighborhood around q = 0. For our purposes the
details of how to make this precise are immaterial, as we will not be concerned
with questions of convergence in this thesis.

In case of a Calabi-Yau threefold X, the properties of Gromov-Witten invariants
have a special significance pertaining to the cohomology of X. Namely, they
can be used to define a deformation of the ordinary cup product on H∗(X;C)
of the form

∗ = ∪ + O(q), (3.89)
that can be interpreted as leading to a “quantum” version of the intersection
product. While the intersection product requires honest intersections at single
points, its quantum version will compute intersections up to the presence of a
holomorphic sphere, or closed string instanton.

Definition 3.15. Let (X, ω) be a Calabi-Yau threefold with complexified Käh-
ler class ω. For γ1 ∈ Hk(X;C) and γ2 ∈ H l(X;C) the operation

γ1 ∗ γ2 =
󰁛

β∈H2(X;Z)

󰁛

i,j

GWβ(γ1, γ2, ei) Qij ej qβ ∈ Hk+l(X;C) (3.90)

is called the (small) quantum product. The graded ring (H∗(X;C), ∗) is called
the (small) quantum cohomology of X.

Remark 3.16. There is also a big version of quantum cohomology in which
not only invariants with n = 3 but all invariants are taken into account. Even
though the corresponding quantum product contains considerably more infor-
mation, we are exclusively interested in its smaller cousin as it already captures
all the data that is relevant for our Hodge theoretic applications.

Note that due to the zero axiom, the classical contribution to the quantum
product

γ1 ∗ γ2
󰀏󰀏󰀏
q=0

=
󰁛

i,j

GW0(γ1, γ2, ei) Qij ej =
󰁛

i,j

󰀕󰁝

X
γ1 ∪ γ2 ∪ ei

󰀖
Qij ej (3.91)

is indeed representing the ordinary cup product. In the next section we will
see how this deformation of the cup product can be algebraically summarized
in terms of a VMHS. Of particular enumerative importance will be the associa-
tivity of the quantum product, which reflects certain equalities of the numbers
discussed in the splitting axiom. In what follows, we will interpret this condition
as the flatness of a certain connection on even degree cohomology.
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3.4. A-model Variations of Hodge Structure

Following Morrison [Mor3], closed string mirror symmetry can then be estab-
lished by a reconstruction of the Hodge theoretic structures discussed in Section
3.2 from objects that are inherent to the associated A-model geometry, see also
[DK2]. These include the Gromov-Witten invariants and the quantum cup
product introduced in Section 3.3. We fix X to be a simply connected and
projective Calabi-Yau threefold with Hodge numbers

h0,0 = h1,1 = h2,2 = h3,3 = 1 (3.92)

mirror to (3.15). The standard example on the A-model side is given by the
Fermat quintic

X =
󰁱
(x1 : · · · : x5) ∈ P4

󰀏󰀏󰀏 x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0

󰁲
⊂ P4, (3.93)

see [CdlOGP, GP]. On the even degree cohomology

Heven := Heven(X;C) = H0,0(X) ⊕ H1,1(X) ⊕ H2,2(X) ⊕ H3,3(X) (3.94)

we define the decreasing A-model Hodge filtration

F p =
󰁐

i≤3−p

H i,i(X) ⊂ Heven (3.95)

with F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = Heven, inspired by the characteristic symmetry
of Hodge numbers depicted in Figure 1.1. For t ∈ H in the upper half plane,
we again denote by ω = B + iJ = t[H] the complexified Kähler class and con-
sider a region of the Kähler moduli space 󰁥K(X) given by a punctured disk ∆∗

parametrized by q = e2πit around the boundary point q = 0. As the ordinary
Kähler form J measures the volume of X in a classical sense, the value q = 0
is often considered as the large volume limit of the string vacuum. This limit
point will correspond to the large complex structure limit in the B-model via the
mirror map, hence the description of the local coordinate by the same symbol.

In order to construct an object that mirrors the VMHS coming from Y we define
the vector bundle Heven := Heven ⊗O∆∗ to which we can extend the filtration by
Fp := F p ⊗O∆∗ . The antisymmetric polarization form Q(·, ·) : Heven ⊗Heven →
C is again induced from the cup-product on Heven and given by

Q(α, β) = (−1)i
󰁝

X
α ∪ β, α ∈ H i,i(X), β ∈ H3−i,3−i(X). (3.96)

In the basis {ej} := {e3, e2, e1, e0} with ej ∈ H6−2j(X;C) given by

e3 = [X], e2 = [H], e1 = −[ℓ], e0 = [p], (3.97)
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the polarization form is represented by the matrix (3.50), whose entries we
denote by Qij = Q(ei, ej). We use physicists’ notation for coefficients of the
inverse matrix, writing them in terms of upper indices Qij = (Qij)−1.

So far, the construction only contains classical information encoded in the cup
product. However, it is the quantum information contained in the Gromov-
Witten invariants and the quantum product that actually varies with the Kähler
parameter t. It is therefore natural to introduce the Dubrovin (or A-model, or
Quantum) connection that measures the energy of quantum effects accordingly.
The Dubrovin connection on Heven is defined in terms of the small quantum
product (cf. Definition 3.15) e2 ∗ (−) : Heven(X) → Heven(X) with the hyper-
plane class e2 = [H], i.e.

∇t(ek) = e2 ∗ ek =
󰁛

l,m

󰁛

β∈H2(X;Z)
GWβ(e2, ek, el) qβ Qlm em, (3.98)

whose energy zero contribution e2 ∗ ek|q=0 = e2 ∪ ek ∈ Heven(X) corresponds
to the ordinary cup product. On the bundle Heven with Hodge basis {ej} the
action of the Dubrovin connection is then given by

∇t := d +
󰀕

[H] ∗
󰀖

⊗ dt = d +

󰀳

󰁅󰁅󰁅󰁃

0 0 0 0
1 0 0 0
0 −Φ′′′ 0 0
0 0 −1 0

󰀴

󰁆󰁆󰁆󰁄 ⊗ dt. (3.99)

It records the variation of the small quantum product with respect to the Kähler
parameter and the analog of the Yukawa coupling (3.58) is here identified as
the closed A-model three-point correlation function (2.16)

Φ′′′ =
󰁛

β

GWβ(H, H, H) qβ =
󰁝

X
H ∗ H ∗ H = Q(∇3

t e3, e3), (3.100)

by means of the Divisor axiom of Axioms 3.12. Any γ ∈ H2k(X) for k ≤ n − p
is a section of Fp and Griffiths transversality ∇(Fp) ⊂ Fp−1 ⊗Ω1

∆∗ follows from
the fact that [H]∗γ ∈ H2k+2(X) is a section of Fp−1. In the one-parameter case,
flatness of ∇ is an immediate consequence of associativity and commutativity of
the small quantum product. In the notation of Doran-Kerr [DK2], the complex
local system Heven

C = ker(∇) can be systematically constructed in terms of Φ
and the basis {ej} by setting

󰁨σ(e0) := e0, 󰁨σ(e1) := e1, 󰁨σ(e2) := e2 + Φ′′
h e1 + Φ′

h e0,

󰁨σ(e3) := e3 + Φ′
h e1 + 2Φh e0

(3.101)

and then defining the quantum deformed classes by

gi = σ(ei) := 󰁨σ(e−ω ∪ ei). (3.102)
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This leads to a flat basis which corresponds to a complex solution of the quantum
differential equation defined by the A-model connection [op.cit.]. We will refer
to the functions Q(gi, ej) as the A-model periods of Heven. While their B-model
analogs have an interpretation in terms of honest period integrals, the A-model
periods are simply understood as the coefficients appearing in the local system
(3.101). The quantum deformed classes can then be physically interpreted as
cycles attaining a quantum deformed volume measured by Q(gi, ej).

Remark 3.17. In the one-parameter setting, flatness of the Dubrovin connec-
tion is an automatic consequence of the algebraic properties of the operation
[H] ∗ (−). In the case h1,1(X) = n of several Kähler parameters, we denote by

ω =
r󰁛

i=1
ti [Hi] 󰀁−→ q = (q1, . . . , qr) =

󰀓
e2πit1 , . . . , e2πitr

󰀔
∈ (∆∗)r , ti ∈ H,

(3.103)
the Kähler class and corresponding coordinates of the Kähler moduli space
around a small punctured polydisk around the large volume limit point. The
curvature of the Dubrovin connection is now given by

R∇(∂i, ∂j)
󰀓
[Hk]

󰀔
= [Hi] ∗

󰀓
[Hj] ∗ [Hk]

󰀔
− [Hj] ∗

󰀓
[Hi] ∗ [Hk]

󰀔
, (3.104)

and vanishes only when associativity of the small quantum product is persisting
also in this more general situation. While commutativity is a given on Heven,
associativity leads to constraints on the Gromov-Witten invariants discussed
in the splitting axiom of Axioms 3.12. This constraint can be formulated as a
system of partial differential equations satisfied by the Gromov-Witten potential

󰁛

a,b

∂a∂i∂j Φ·Qab·∂b∂k∂l Φ =
󰁛

a,b

∂a∂i∂k Φ·Qab·∂b∂j∂l Φ, for all i, j, k, l. (3.105)

These are known as the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations
and can be understood as an equivalence of Gromov-Witten invariants associ-
ated to different boundary strata of the moduli space of stable maps with four
marked points [Wit2, DVV1, DVV2]. A nice geometric proof of this property
of Gromov-Witten invariants in the simplest case of 󰁦Mg,n(X, β) being smooth
can be found in [AMTV].
In order to study the asymptotics of the A-model periods Q(gi, ej) we turn
again to the monodromy M : Heven

C → Heven
C of the local system around the

puncture. By (3.59), its logarithm at q = 0 can be computed from the residue
Resq=0(∇), which is seen to coincide with the energy zero contribution to the
quantum product [CK2] (cf. (3.91))

2πi Resq=0(∇) =
󰀳

󰁃
󰁛

l,m

GW0(ej, ek, el) Qlmem

󰀴

󰁄 =
󰀳

󰁃
󰁛

l,m

󰀕󰁝

X
ej ∪ ek ∪ el

󰀖
Qlmem

󰀴

󰁄 .

(3.106)
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Figure 3.4.: Geometric interpretation of the WDVV equations. The collision of
marked points leads to boundary strata of the moduli space consisting of nodal
curves. Gromov-Witten invariants associated to the depicted degenerations
coincide.

The monodromy logarithm Nq=0 = −2πi Resq=0(∇) is therefore given by the
cup product −[H] ∪ (−) : Heven(X) → Heven(X), which in the basis {ej} is
represented by the matrix

Nq=0 =

󰀳

󰁅󰁅󰁅󰁃

0 0 0 0
−1 0 0 0
0 κ 0 0
0 0 1 0

󰀴

󰁆󰁆󰁆󰁄 , (3.107)

where κ is the classical intersection number. For example in case of the Fermat
quintic (3.93), it is κ = 5. The weight filtration W• := W (N)• associated to
this monodromy is at 0 ∈ ∆ given by

Wk =
󰁐

i≥3−k/2
H2i, (3.108)

invoking the Hard Lefschetz theorem [H]k ∪(−) : H3−k ∼−→ H3+k. We regard the
graded pieces GrW

k Heven = H2n−k as having a pure Hodge structure of weight
k and denote by F •

0 = 󰁨F•
0 the limit of the Hodge filtration 󰁨F• = F • ⊗ O∆

that can be trivially extended to the full disk. By untwisting the local system
according to (3.30), this defines a MHS (󰁩Heven

Z,0 , 󰁩Heven
0 , F •

0 , W•) of Hodge-Tate
type at 0 ∈ ∆. Similar to the construction in the B-model, we can extend it to
a nilpotent orbit

Heven
nilp := (Heven

C , Heven, e−tNF •
0 , ∇, Q) (3.109)

in a small neighborhood around the puncture, with Griffiths transversality fol-
lowing from N(F p

0 ) ⊂ F p−1
0 and LMHS given by (3.32). Paired up with the

filtration W• = W• ⊗ O∆∗ , this defines a Hodge-Tate VMHS that is constant
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3.4. A-model Variations of Hodge Structure

with respect to the corresponding untwisted connection (3.30) and fully de-
termined by the H2-module structure on Heven induced by the cup product.
Again, also the original Hodge filtration leads to a polarized, complex VMHS
(Heven

C , Heven, F•, W•, ∇, Q) of Hodge-Tate type on ∆∗, in which the additional
holomorphic components of the periods are derived from the quantum part
of the Gromov-Witten potential (3.88), see also [CK2, Theorem 8.5.11]. Its
structure is similar to (3.52), except for the constant terms (i.e. the integral
structure) which will be discussed further below.

The fact that a VMHS of Hodge-Tate type arises in this context can be viewed
as a general consequence of the WDVV equations for a deformation of the H2-
module structure on even degree cohomology to a quantum product [CF1, CF2,
FP]. While (big) quantum cohomology is often studied in the realm of Frobenius
manifolds [Man], only part of this structure is required for this Hodge theoretic
application.

Definition 3.18. Let V = 󰁏2n
i=0 Vi with n ∈ N and V0 = 〈1〉 be a graded finite

dimensional C-vector space together with a symmetric non-degenerate bilinear
form Q : V × V → C that pairs V2i with V2(n−i). Given a graded module
structure

∗ : Sym(V2) × V −→ V, (3.110)
the collection (V, Q, ∗) is called a graded V2-Frobenius module of weight n, if

Q(v, w1 ∗ w2) = Q(w1, v ∗ w2) (3.111)

for all v ∈ V2 and w1, w2 ∈ V , i.e. the module structure ∗ is compatible with
the bilinear form Q.

For simplicity, we will focus on the case n = 3, dim V2i = 1 for all i and else
zero, which captures the situation of Frobenius modules arising from Calabi-
Yau threefolds. A feature of Frobenius modules is that, analogous to the case
of a Frobenius manifold, the module structure can be encoded in a (classical)
potential function Fc : V → C. Namely, given a graded basis {ej} of V with
ej ∈ V2(3−j) and associated linear coordinates tj on V , the module structure is
recovered via

ei ∗ ej =
󰁛

k,l

∂3Fc

∂ti∂tj∂tk

Qklel, ei ∈ V2, ej, . . . el ∈ V. (3.112)

Here, the potential function is given by [CF1]

Fc = t1t2t3 + 1
6 Q(e2 ∗ e2, e2) t3

2. (3.113)

In case of our standard examples of Calabi-Yau threefolds arising as complete
intersections, the classical potential is therefore uniquely determined by the
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3. Closed String Mirror Symmetry

classical intersection number κ = Q(e2 ∗ e2, e2). The following notion can be
viewed as an abstraction of the quantum product as deformation of the standard
H2-module structure on even degree cohomology.

Definition 3.19. Let (V, Q, ∗) be a V2-Frobenius module of weight n = 3 and
classical potential Fc. Setting r = dim V2, we consider a graded basis {ej} with
associated coordinates tj and define qi = exp(2πiti) for ei ∈ V2. A quantum
potential is a function F : V → C of the form F = Fc + Fq, with Fq being a
convergent power series in the qi vanishing at qi = 0 for all i. We further require
that it satisfies the WDVV equations

󰁛

a,b

∂a∂i∂j F · Qab · ∂b∂k∂l F =
󰁛

a,b

∂a∂i∂k F · Qab · ∂b∂j∂l F, for all i, j, k, l,

(3.114)
where ei, ej, ek, el ∈ V2 and ea, eb ∈ V . Then (V, Q, ∗q) is called a quantum
deformed Frobenius module if the operation

ei ∗q ej =
󰁛

k,l

∂3F

∂ti∂tj∂tk

Qklel, ei ∈ V2, ej, ek, el ∈ V, (3.115)

defines a Frobenius module for each q = (q1, . . . qr).

In the Calabi-Yau case, the quantum part of the potential corresponds to the
quantum part of the Gromov-Witten potential, such that

F = t1t2t3 + 1
6 Q(e2 ∗ e2, e2) t3

2 + 1
(2πi)3

∞󰁛

d=1

󰁩Nd qd, (3.116)

where q = (q1, . . . qr) as in Remark 3.17, encodes a Frobenius module defined by
the small quantum product. Note that the first term in (3.116) has to be added
in order to ensure compatibility with the unit in V , which here corresponds to
the coordinate t3 by our choice of basis, see (3.97). One of the main results of
[CF1, CF2] is that there is a 1:1 correspondence between the weight 3 quantum
deformed Frobenius modules and variations of MHS that arise in a maximal
degeneration of pure Hodge structures of weight 3 at a MUM boundary point.
How to establish this correspondence starting from the A-model side was de-
scribed at the beginning of this section, while the inverse direction essentially
corresponds to the transformation into the canonical coordinate described in
Definition 3.7. We defer the reader to [op.cit.] for a more detailed discussion,
and also a more general treatment of the multiparameter case and different
weights. How the correspondence interacts with mirror symmetry will be de-
scribed in Section 3.6. Before going there, we have to discuss how to fix the
integral local system of the A-model VMHS.
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3.5. The Gamma-Integral Local System

So far the construction of this VMHS in the A-model only involved the specifica-
tion of a complex local system as a solution to the quantum differential equation
defined by the Dubrovin connection. A subtle problem arises in the definition of
the correct integral local system, which is reflected by the fact that the limiting
A-model periods Q(󰁨gi, ej) do not reproduce the limiting period matrix of the
B-model, including the crucial zeta value ζ(3). A direct construction of this
integral local system Heven

Z from a pure A-model perspective is due to Iritani
[Iri] and Katzarkov-Kontsevich-Pantev [KKP], while we follow [DK2, dSJKP].
It starts with a basis {ξi} of the algebraic K-theory Kalg

0 (X) which is symplectic
with respect to the Mukai pairing

〈ξ, ξ′〉M =
󰁝

X
ch(ξ∨ ⊗ ξ′) ∪ Td(X), Td(X) = 1 + c1

2 + c2
1 + c2

12 + · · · , (3.117)

where Td(X) denotes the Todd class of X. From this, the integral quantum
deformed classes (cf. (3.102))

gi := σ
󰀓
Γ̂(X) ∪ ch(ξi)

󰀔
, ch(ξi) ∈ Heven, (3.118)

are defined in terms of the Chern characters of the basis elements and the
Gamma class

Γ̂(X) := exp
󰀳

󰁃
󰁛

k≥2

(−1)k(k − 1)!
(2πi)k

ζ(k) chk(X)
󰀴

󰁄 ∈ Heven (3.119)

of X. The Gamma class is often viewed as a certain “square-root” of Td(X),
because the pairing between the correctly quantum deformed classes reproduces
the Mukai pairing. This means that we have

Q (g(ξ), g(ξ′)) = 〈ξ, ξ′〉M , (3.120)

writing g(ξ) = σ
󰀓
Γ̂(X) ∪ ch(ξ)

󰀔
, as proven in [Iri].

For a Calabi-Yau threefold as above, with Chern classes c1 = 0, c2 = a [ℓ] and
c3 = b [p], the Todd class is simply Td(X) = 1 + a

12 [ℓ] and the Gamma class
becomes

Γ̂(X) = 1 − ζ(2)
(2πi)2 c2 + ζ(3)

(2πi)3 (c1c2 − c3) = [X] + a

24[ℓ] − b ζ(3)
(2πi)3 [p]. (3.121)

Starting with the right basis of the algebraic K-theory of X, a flat basis of the
form (3.52) can be derived purely from data coming from the A-model topology.
Closely following [DK2, dSJKP], we consider the coherent sheaves

ξ3 = OX , ξ2 = OH − a + 2κ

12 Op, ξ1 = −Oℓ − Op, ξ0 = Op, (3.122)
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3. Closed String Mirror Symmetry

constructed from the skyscraper sheaves associated to even degree cohomology
elements as in (3.97). They are chosen in such a way, that their Mukai pairing
is symplectic and represented by the matrix (3.50). As described for example
in [BKV], the Chern characters of (3.122) can be computed by resolving the
coherent sheaves by vector bundles via OD = OX − O(−D), and then using
ch(O(D)) = exp(D) for any divisor. Applying this procedure leads to the
Chern characters

ch(ξ3) = [X], ch(ξ2) = [H] + κ

2 [ℓ] − a

12 [p]

ch(ξ1) = −[ℓ], ch(ξ0) = [p].
(3.123)

For example, as ξ3 = OX we then have

〈ξ3, ξ2〉M =
󰁝

X
ch(ξ2) ∪ Td(X) =

󰁝

X

󰀕
[H] + κ

2 [ℓ]
󰀖

= 0 (3.124)

for degree reasons, while it is trivially 〈ξ3, ξ1〉 = 1. From here, it is easy to
construct the Gamma-integral local system according to (3.118). Leaving aside
quantum corrections encoded in the holomorphic part of the A-model periods,
the combination gnilp

i = Γ̂(X) ∪ e−ω ∪ ch(ξi) gives

gnilp
3 = [X] − t [H] +

󰀕
κ

2 t2 + a

24

󰀖
[ℓ] +

󰀣

−κ

6 t3 − a

24t + b ζ(3)
(2πi)3

󰀤

[p]

gnilp
2 = [H] +

󰀕
−κt − κ

2

󰀖
[ℓ] +

󰀕
κ

2 t2 + κ

2 t − a

24

󰀖
[p]

gnilp
1 = −[ℓ] + t [p], gnilp

0 = [p],

(3.125)

and corresponds to the desired nilpotent orbit. Based on (3.125), it can be seen
that this basis indeed satisfies the property (3.120).

The large volume monodromy and its logarithm in the basis {gi} := {g3, g2, g1, g0}
are given by (3.49) and the corresponding limiting periods correctly reproduce
the asymptotic behavior of the B-model, where the previously missing values
are from an A-model perspective provided by the Gamma class. In particular,
the corresponding LMHS, that is also visible in (3.125), is of the form (3.32).

Definition 3.20. The collection of algebraic data (Heven
Z , Heven, F•, W•, ∇, Q),

defining an integral, polarized VMHS over the punctured disk ∆∗, is called the
A-model VMHS associated to (X, ω).

Having established the construction of the A-model VMHS, we are finally in a
position to bridge the gap towards the B-model in the following section, and give
a precise definition for a mirror pair that was physically described in Section
2.2.
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3.6. Hodge Theoretic Mirror Pairs

The two variations of MHS associated to A-model and B-model geometries
around suitably chosen limit points in the respective moduli spaces can be used
to formulate closed string mirror symmetry in a Hodge-theoretic framework.

Definition 3.21. A pair of Calabi-Yau threefold families (X, ω) and Y is called
a (Hodge theoretic) mirror pair if the polarized variations of MHS on Heven(X)
and H3(Y) are isomorphic

Heven(X)

󰈃󰈃

∼ 󰈣󰈣H3(Y)

󰈃󰈃

∆∗
q

m 󰈣󰈣 ∆∗
z,

(3.126)

where ∆∗
q and ∆∗

z are small neighborhoods around MUM-type boundary points
of 󰁥K(X) and 󰁦M(Y ) related by the mirror map m : q(z) 󰀁→ z(q).

Given a mirror pair, the periods of Ω in the B-model attain an A-model inter-
pretation as quantum corrected volumes of (D-branes wrapping) the integral
cycles Poincaré dual to gi, e.g.

δF = κ

2 t2 + κ

2 t − a

24 + 1
(2πi)2

∞󰁛

d=1
d󰁩Nd qd = Q(g2, e3). (3.127)

The choice of integral local system corresponds to the specification of the lim-
iting asymptotics of both A- and B-model periods. Given a mirror pair, their
equality establishes a connection between topological data of X with certain ex-
tension data of the Hodge theory of Y , cf. Remark 3.9. The quantum differential
equations coming from the Gauß-Manin and Dubrovin connections are identi-
fied, leading to an equality of the respective A-model and B-model three-point
functions under the mirror map. From this, the Yukawa coupling of Y

C(q(z)) = κ +
∞󰁛

d=1
d3 󰁩Nd qd = Φ′′′(q), (3.128)

computes the Gromov-Witten invariants of the mirror X with 󰁩Nd = GWβ for
β = d[ℓ]. While in general 󰁩Nd ∈ Q for families defined over the rationals, an
integral expansion of the holomorphic part of the Gromov-Witten potential is
given by a Gopakumar-Vafa multicover formula [GV, KSV]

Φh = 1
(2πi)3

∞󰁛

d=1

󰁩Nd qd = 1
(2πi)3

∞󰁛

d=1
Nd Li3(qd) := 1

(2πi)3

∞󰁛

d,k=1
Nd

qdk

k3 , Nd ∈ Z,

(3.129)
where the instanton numbers Nd are closely related to the number of degree d
curves lying in X, see e.g. [CK2].
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3. Closed String Mirror Symmetry

Example 3.22. The most well-known example of a mirror pair was orignally
studied in [GP, CdlOGP] and consists of the Fermat quintic X (3.93) on the A-
model side and the mirror quintic family Y , obtained by resolving the quotient
of (3.17), on the B-model side. The prediction of [op.cit.] consists of the equality
of the superconformal field theories underlying the A-model on X and the B-
model on Y , which in particular implies the equality of three-point functions
under the mirror map, as discussed in Section 2.2. Starting in the B-model,
the Picard-Fuchs operator of Y is given by (3.39) (see Example 3.6) and the
Yukawa coupling can be computed via Proposition 3.10 leading to

C = 5
(1 − 55z) ϖ2

0

󰀣
q

z

dz

dq

󰀤3

= 5 + 2875 q + 4876875 q2 + 8564575000 q3 + · · · .

(3.130)
That the classical parts of the three-point functions coincide, amounts to com-
puting the triple-intersection number in the A-model via Bézout’s theorem

κ =
󰁝

X
H ∪ H ∪ H = 5. (3.131)

That the Yukawa coupling of Y indeed produces the Gromov-Witten invariants
of X in all degrees in terms of the Gromov-Witten potential

C = Φ′′′, (2πi)3 Φh = 2875 q + 4876875
8 q2 + 8564575000

27 q3 + · · · , (3.132)

is the statement of the Mirror Theorems [Kon2, Giv, LLY] proving the prediction
of [CdlOGP] via a localization formula. The equality of three-point function is
the first essential ingredient in showing that (X, ω) and Y define a mirror pair
in the sense of Definition 3.21, as described in [CK2]. Namely, after mapping
the sections [X] and [p] of Heven(X) to the sections e3 and g0 of H3(Y), the
variations of complex variations of MHS are isomorphic under the mirror map if
the differential equations defined by the Gauß-Manin and Dubrovin connections
are identified [Theorem 8.6.4][op.cit.]. In the canonical basis defined by {ej}
the latter are completely determined by C and Φ′′′ respectively, from which the
statement follows. The second ingredient is related to the underlying integral
local systems Heven

Z and H3
Z. In the B-model, it is determined by the limiting

periods, which are for the choice of basis in Section 3.2 given by

Q(󰁨g3(0), e2) = 25
12 , Q(󰁨g3(0), e3) = −25i ζ(3)

π3 . (3.133)

As described in Section 3.5, the specification of an integral local system of this
kind in the A-model can be achieved utilizing the Gamma class (3.121). Indeed,
the constants a = 50 and b = −200 of (3.55) arise in this context as the second
Chern class and Euler class of X. In particular, the LMHS of the B-model
geometry is determined by topological quantities associated to the A-model.
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3.6. Hodge Theoretic Mirror Pairs

Remark 3.23. In Section 2.3 we briefly touched on the notion of homological
mirror symmetry, relating the A- and B-brane categories of X and Y . This
categorical statement, proven for the quintic in [She], turns out to be a more
general statement than the Hodge theoretic Mirror Theorem described in Ex-
ample 3.22. The reason is that the variations of MHS arising in the latter, can
be derived from the respective brane categories, such that Hodge theoretic mir-
ror symmetry can be viewed as a consequence of homological mirror symmetry
in this context [GPS].

The central role of a multicover formula of the type (3.129) in relating string am-
plitudes to integral enumerative invariants is not unique to the Yukawa coupling.
The overarching concept, of which we will encounter various manifestations later
on, is the following [SVW1].

Definition 3.24. Given s ∈ N, a formal power series

V (q) =
∞󰁛

d=1
ad qd ∈ q Q󰌻q󰌼 (3.134)

with rational coefficients and without constant term is called an s-function if it
can be written as a linear combination of s-Logarithms

V (q) =
∞󰁛

d=1
bd Lis(qd), Lis(q) =

∞󰁛

k=1

qk

ks
, (3.135)

with integral coefficients bd ∈ Z.

Remark 3.25. Definition 3.24 is equivalent to a certain property of the coeffi-
cients ad in relation to the Frobenius endomorphism Frp(q) = qp. Namely, V (q)
is an s-function if and only if the combinations

1
ps

ad/p − ad ∈ Zp (3.136)

are p-integral6 for all p and d, with ad/p = 0 if p ∤ d (see [op.cit.]). This point
of view then allows for a generalization of the concept to formal power series
V (q) ∈ q K󰌻q󰌼 with coefficients ad ∈ K/Q lying in an algebraic number field.
In this situation, we have to view the coefficients of V (q) as p-adic numbers and
replace the p-adic integers Zp in (3.136) with the localization Op of the ring of
algebraic integers at a prime ideal p ⊂ O lying over p, away from the branch
locus of Spec(O) → Spec(Z). We refer the reader to [KSV, SVW2, Mü2] for a
treatment of the arithmetic details.

6This means that there are no factors of p in the denominator, such that the elements define
p-adic integers.
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In the language of s-functions, the Yukawa coupling (3.128) is a 3-function. Its
analog for the open string, to be discussed in Section 4.3, will be a 2-function and
the possibility of a non-trivial field extension of Q entering the story is related to
the field of definition of the relevant algebraic cycle. The resulting arithmetically
twisted multicover formula in the simplest examples will be discussed in Section
6.1 and in particular Example 6.2. The open and closed topological string one-
loop amplitudes, to be discussed in Chapter 7, will be seen to be examples for
1-functions.
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In this chapter we describe how the concept of D-branes can be embedded
into the Hodge theoretic framework developed in Chapter 3, while focussing
exclusively on the B-model. As in Section 2.3 we are mostly interested in B-
type topological branes that can be understood as complex submanifolds, or
algebraic cycles, of the given string vacuum. An algebraic consequence of the
presence of algebraic cycles is the production of extensions of variations of MHS,
which we discuss in Section 4.1. The classification of extensions in terms of the
Abel-Jacobi map is the topic of Section 4.2, where we also encounter the B-
brane superpotential (2.28). We close with an analysis of the asymptotics of
the Abel-Jacobi map in Section 4.3 in a neighborhood of a MUM-type boundary
point, revealing the open string analog of the Yukawa coupling that will play a
crucial role in what follows.

4.1. Extensions from Algebraic Cycles

Following [MW, SVW2], we continue with the type of family π : Y → ∆∗

described in Section 3.2 and consider for each fiber Yz an algebraic curve i :
Cz ↩→ Yz varying with z ∈ ∆∗ such that π ◦ i : C → ∆∗ is a smooth family which
admits a semi-stable continuation over ∆. In what follows, we will denote by
CH2(Y)hom the subgroup of the Chow group consisting of homologically trivial
algebraic cycles. When the family of cycles C ∈ CH2(Y)hom is homologically
trivial, meaning that i∗([Cz]) = 0 ∈ H2(Yz;Z) for each z ∈ ∆∗, we can associate
to the pair (Y , C) a VMHS that can be realized as an extension

0 −→ H3 −→ Ĥ3 −→ I −→ 0, Ĥ3 ∈ ExtVMHS(I, H3), (4.1)

of the pure VHS I of weight 4 by H3. In case of a Kähler manifold it is important
to note that there can be no irreducible cycle represented by a complex subman-
ifold which is in itself homologically equivalent to zero. The reason is that the
Kähler form defines a calibration on each fiber Yz with respect to which complex
submanifolds are calibrated. In particular this implies that compact complex
submanifolds of a Kähler manifold are homologically volume minimizing (see
also Section 2.3). The homologically trivial cycle described above is therefore
always consisting of several connected components that are homologically equiv-
alent to one another. For now we assume for simplicity that H0(Cz,Z) = Z2,
meaning that Cz consists of two homologically equivalent components. The
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extension is fiberwise coming from the exact sequence

0 −→ H3(Yz;C) −→ H3(Yz \ Cz;C) −→ ker
󰀕

H0(Cz;C) i!−→ H4(Yz;C)
󰀖

−→ 0,

(4.2)
where i! := PD ◦ i∗ ◦ PD denotes the Gysin map. Under our assumptions,
the kernel above is one-dimensional and generated by the difference of classes
associated to the two connected components of Cz. The extension of local
systems

0 −→ H3
Z −→ Ĥ3

Z −→ IZ −→ 0 (4.3)

arises geometrically from the short exact sequence

0 → H3(Yz;Z) → H3(Yz, Cz;Z) → ker
󰀓
H2(Cz;Z) → H2(Yz;Z)

󰀔
→ 0 (4.4)

by Poincaré duality where, after a suitable Tate-twist, IZ,z = Z(−2) is Hodge-
Tate of pure Hodge type (2,2). The extended Hodge filtration F̂ p on the coho-
mology of the complement is coming from the grading of the sheaf1 Ω•

Y〈log C〉
of rational holomorphic forms and satisfies

F̂ 2
󰃭F 2 = Z(−2)d, F̂ p

󰃭F̂ p+1 = F p
󰃭F p+1. (4.5)

We define the Hodge filtration F̂p = F̂ p ⊗ O∆∗ of holomorphic subbundles on
Ĥ3 = Ĥ3

Z ⊗ O∆∗ and the Gauß-Manin connection canonically extends to Ĥ3

by specifying the horizontal sections according to ∇(Ĥ3
C) = 0. The only non-

vanishing components of the weight filtration W• on Ĥ3
Q are set to W3 = H3

Q

and W4 = Ĥ3
Q, such that the data (Ĥ3

Z, Ĥ3, F̂•, W•, ∇, Q) defines an integral,
polarized VMHS that fits as an extension in the exact sequence (4.1).

By a theorem of Carlson [Car], extensions of variations of MHS of this kind are
classified by the intermediate Jacobian fibration

Ext1
VMHS(IZ, H3) ∼= J 2(H3) := H3

󰃭󰀓
F2 + H3

Z

󰀔, (4.6)

in terms of a normal function ν of H3, given by a holomorphic section ν of
J 2(H3) that satisfies the horizontality condition ∇󰁨ν ∈ F1 ⊗ Ω∆∗ , where 󰁨ν is
any lift of ν to H3. The section which determines a given extension can be
explicitly described by taking both an integral lift h and an F̂2-lift f of the
generator of IZ in Ĥ3, such that the normal function is defined as the class of
the difference [h − f ] ∈ J 2(H3). Because ∇2 = 0 and modulo the ambiguity

1Details of the construction can be found for example in [PS], see also [Ker].
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4.2. The Abel-Jacobi map and B-Brane Superpotentials

of the F̂2-lift f , the derivatives ∇󰁨ν characterize the C-VMHS locally by the
Griffiths-Green-Voisin infinitesimal invariant

󰁫
∇󰁨ν

󰁬
∈

ker
󰀓
∇ : F1 ⊗ Ω1

∆∗ → F0 ⊗ Ω2
∆∗

󰀔

im
󰀓
∇ : F2 → F1 ⊗ Ω1

∆∗

󰀔 , (4.7)

of H3 [Voi]. Its vanishing implies that the normal function is locally constant,
meaning that locally there always exists a lift 󰁨ν ∈ H3 satisfying ∇󰁨ν = 0. In
case of an extension coming from an algebraic cycle, vanishing of the infinitesi-
mal invariant is geometrically reflected by the cycle being locally constant, i.e.
independent of the modular parameter z.

4.2. The Abel-Jacobi map and B-Brane Superpotentials

In the geometric situation of a homologically trivial algebraic cycle, Poincaré
duality implies an isomorphism [Voi]

J 2(H3) ∼=
󰀓
F2

󰀔∨

󰃭󰀓
H3

Z

󰀔∨, (4.8)

which allows to characterize the extension by a functional νC : F2 → O∆∗

defined modulo integral periods. To define its action in each fiber Yz, we follow
[Ker] and choose any relative 3-chain Γz ∈ H3(Yz, Cz;Z) with boundary ∂Γz =
Cz and define the integral lift as a current

h = (2πi)2δΓz ∈ H3
󰀓
Yz \ Cz;Z(2)

󰀔 ∼= H3
󰀓
Yz, Cz;Z(−1)

󰀔
. (4.9)

The F̂2-lift is given by another current f ∈ F̂ 2 with df = (2πi)2δCz . Their dif-
ference h−f is a class in H3(Yz), well-defined modulo F 2H3(Yz)+H3(Yz;Z(2))
and the equivalence class in the intermediate Jacobian

[h − f ] ∈ J2(H3) = J 2(H3)z (4.10)

gives rise to a functional defined up to integral periods by

νC(η)z :=
󰁝

Yz

(h − f) ∧ η = (2πi)2
󰁝

Γz

η, η ∈ F 2H3(Yz), (4.11)

where the second term vanishes by type considerations because f∧η ∈ F 4 = {0}.

Definition 4.1. The Abel-Jacobi map2

AJ : CH2(Y)hom −→ J 2(H3), C 󰀁−→ νC, (4.12)

is defined by the assignment of the functional (4.11) to a homologically trivial
algebraic cycle C.

2We focus on the case of middle dimensional cohomology of Calabi-Yau threefolds.

57



4. B-Branes and Normal Functions

Acting in each fiber on F 2H3(Yz) = H2,1(Yz) ⊕ H3,0(Yz), the Abel-Jacobi map
has two components arising from its restriction to each summand. We will
refer to these components as the truncated normal functions coming from an
algebraic cycle. Of central importance in what follows will be the truncated
normal function associated to the holomorphic 3-form

WB(z) = Q(AJ(C), e3) = (2πi)2
󰁝

Γz

Ωz, (4.13)

because it can be physically interpreted as the B-brane superpotential (2.28)
associated to the open string vacuum determined by the cycle, as described
in Section 2.3. Its asymptotic behavior around a MUM-type boundary point
will be the main focus of Section 4.3, because it is the open string analog of
the prepotential (3.53) and contains the full information of the VMHS in the
limit. As described by Morrison-Walcher in [MW], the superpotential satisfies
an inhomogeneous version of the Picard-Fuchs equation

DPF WB = J , (4.14)

where DPF is the ordinary Picard-Fuchs operator of Y and the inhomogeneity
J is additive with respect to the corresponding cycles.

In the more general situation of a cycle consisting of any number of connected
components, we take the following point of view to define the Abel-Jacobi map.
It depends on the choice of a homologically equivalent cycle C0 that serves
as a fixed reference with C − C0 ∈ CH2(Y)hom. The normal function is then
fiberwise determined by integrating η ∈ F 2H3(Yz) over a relative 3-chain Γz

with boundary ∂Γz = Cz − C0,z. In general we will therefore consider cycles

C =
d󰁞

k=0
Ck, Cz =

d󰁞

k=0
Cz,k, (4.15)

assuming that all irreducible components are homologically equivalent to each
other, i.e. [Cz,k] − [Cz,k′ ] = 0 ∈ H2(Yz,Z), for each pair of indices k and
k′. We choose C0 ⊂ C as a fixed and globally defined reference cycle with
respect to which homological equivalence is measured and denote by AJ(Ck) =
νCk

the normal function described above, slightly abusing notation. Suitable
choices for C0 are the coordinate lines on Y , see e.g. [JW]. This determines
an extension similar to (4.1), where IZ,z = Z(−2)⊕d, and we interpret the
truncated normal functions Wk as the B-brane superpotential associated to the
open string vacuum determined by Ck relative to the reference C0. For any two
homologically equivalent cycles Ck, Ck′ ⊂ C the differences

Tk,k′ := Wk − Wk′ , DPF Tk,k′ = Jk − Jk′ , (4.16)
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4.3. Asymptotics and Abel-Jacobi Limits

have an interpretation as BPS domain wall tensions between the open string
vacua associated to Ck and Ck′ . This construction is in line with the relative
nature of the B-brane superpotential in the physical context, as sketched in
Section 2.3.

4.3. Asymptotics and Abel-Jacobi Limits

When the monodromy of the extended local system M̂ : Ĥ3
Z → Ĥ3

Z is unipotent,
its logarithm N̂ = log(M̂) is a nilpotent operator that preserves the filtration
W• of Ĥ3. In such a situation there exists a relative monodromy weight filtration
Ŵ• := Ŵ•(N̂ , W•) on Ĥ3

Q such that N̂(Ŵk) ⊂ Ŵk−2 and Ŵ• induces on each
GrW

k the weight filtration of the map induced by N̂ [Del3], see also [BZ]. With
respect to this relative filtration and due to its mapping into H4(Yz;C) in (4.2),
IZ is of weight 4 and the extension can be described in terms of the canonical
coordinate around a MUM-point and the Hodge basis {ej}. In what follows, we
will first assume that the rank d of IZ is 1. For any lift

󰁨ν = h − f = S e3 + U e2 + V e1 + W e0 ∈ H3 (4.17)

with S, U , V , W holomorphic on ∆∗, the validity of the horizontality condition
Q(∇t 󰁨ν, e3) = 0 corresponds to the vanishing of the coefficient of e0 in ∇t 󰁨ν. This
derivative is given by

∇t 󰁨ν = ∇t(h − f) = δS e3 + (S + δU) e2 +
󰀓
Uδ3F + δV

󰀔
e1 + (−V + δW) e0,

(4.18)
with the canonical logarithmic vector field δ = 2πi q d/dq introduced in (3.51).
It is now evident that the horizontality condition is here independent of the
F2-part of the F̂2-lift f , such that maximal degeneracy provides a canonical
lift3 of the normal function given by setting S = U = 0 [SVW2], i.e.

󰁨ν = h − f = V e1 + W e0, (4.19)

where V and W are the truncated normal functions of 󰁨ν. From now on, we will
denote by 󰁨ν this canonical lift of the normal function, slightly abusing notation.
Vanishing of the coefficient of e0 in ∇t 󰁨ν then implies V = δW . The integral
lift becomes part of the extended basis {gi, h} of Ĥ3

Z and satisfies by definition
∇(h) = 0, which further leads to

∇tf = −θV e1 = −θ2W e1, (4.20)

such that the extension of the Gauß-Manin connection is fully determined by
the B-brane superpotential W . The open string analog of the Yukawa coupling

3This point of view is also taken in [Usu].
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4. B-Branes and Normal Functions

is therefore given by a certain representative of the infinitesimal invariant (4.7)
in the canonical coordinate. Namely, the derivative of the canonical lift ∇󰁨ν is
fully determined by its F1 component, which motivates the definition [SVW2]

D := −Q(∇t 󰁨ν, ∇te3) = Q(∇2
t 󰁨ν, e3) = θ2W , (4.21)

where the second equality follows from differentiating the horizontality condi-
tion. In particular, the full information of the extension can be recovered from
the superpotential and its inhomogeneous Picard-Fuchs equation in the given
situation.

In general the monodromy is not guaranteed to be unipotent, as the cycle might
branch when encircling the puncture, exchanging the connected components of
C. This implies that M̂ has finite order r when restricted to IZ, where we
assume for simplicity that all arising orbits are of the same order. To ensure
the existence of a globally well defined cycle, we have to pass to an r-fold cover
ẑ = z1/r 󰀁→ z, branched at 0 ∈ ∆, and consider the pullback

C 󰈓 󰉳 󰈣󰈣

󰈚󰈚

Ŷ 󰈣󰈣

󰈃󰈃

Y

󰈃󰈃

∆∗
ẑ

󰈣󰈣 ∆∗
z.

(4.22)

On the cover, the extended monodromy logarithm is then given by N̂ = log(M̂ r),
and after pullback along (4.22), the degree of the local system ÎZ is d/r. The
extended monodromy logarithm is now generally of the form [GGK2]

N̂ =
󰀣

rN L
0 0

󰀤

, L ∈ HomQ(ÎQ, H3
Q). (4.23)

While we can find a splitting of the sequence (4.1) over Q, such that L = 0 and
ÎQ has weight 3, the integral local system ÎZ has weight 4 in general. In the
integral basis {gi, hk}, the logarithm N̂ is therefore represented by

N̂ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 0 0 · · · 0
−r 0 0 0 0 · · · 0
rκ
2 rκ 0 0 λ1 · · · λd

− ra
12

rκ
2 r 0 s1 · · · sd

0 0 0 0 0 · · · 0
... ... ... ... ... . . . ...
0 0 0 0 0 · · · 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,
λk

r
,
λk

2 + sk ∈ Z for all k, (4.24)

where the extending generator hk is mapped to N̂(hk) = λk g1 + sk g0 ∈ W2 and
the integrality constraints ensure that the monodromy on the cover is integral.
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4.3. Asymptotics and Abel-Jacobi Limits

Over Q we can find a basis such that N̂(hk) = sk g0 ∈ W0 and hk ∈ Ŵ3, but
this change of coordinates cannot be performed while retaining integrality of
the generators in general [SVW2]. The graded pieces of the filtration Ŵ• then
fit into the diagram (cf. [Usu])

GrW
6

rN

󰈃󰈃

∼ 󰈣󰈣 GrŴ
6

N̂
󰈃󰈃

0 󰈣󰈣 GrW
4

rN

󰈃󰈃

󰈣󰈣 GrŴ
4

N̂
󰈃󰈃

󰈣󰈣 ÎZ 󰈣󰈣

L

󰈃󰈃

0

0 󰈣󰈣 GrW
2

rN

󰈃󰈃

󰈣󰈣 GrŴ
2

N̂
󰈃󰈃

󰈣󰈣 H 󰈣󰈣 0

GrW
0

∼ 󰈣󰈣 GrŴ
0 ,

(4.25)

where horizontal lines are exact sequences and H corresponds to an r-torsion
group given by the quotient

H := Z〈g0〉󰃭rZ〈g0〉, (4.26)

reflecting the branching behavior of the cycle.
Example 4.2. Returning to the mirror quintic family Y , defined by resolving
the quotient of (3.17), the motivating example for the discussion above is the
algebraic cycle defined by

C±,ψ =
󰀝

x1 + x2 = 0, x3 + x4 = 0, x2
5 = ±

󰁴
5ψ x1x3 = 0

󰀞
⊂ Yψ. (4.27)

Its image under the Greene-Plesser group is referred to as the Deligne conics in
[Wal4]. In view of the physical context of the superpotential in which we always
consider a regime in which the brane vacuum decouples from open string defor-
mations, we note that the Deligne conics have no open string moduli, meaning
that they admit no holomorphic deformations inside of a fixed Yψ. A more de-
tailed account of this property can be found in Appendix A. As the components
of C±,ψ are exchanged under monodromy around z = 0, the algebraic curve
C± ⊂ Ŷ is only globally well defined after passing to a double cover as described
above. By [MW], the combination [C+ − C−] = 0 ∈ H2(Yz) and similarly
C+ −C− ∈ CH2

hom(Y), such that the Deligne conics determine a normal function
of the VHS H3(Y). For the standard choice of holomorphic 3-form (3.38), its
associated truncated normal function, or B-brane superpotential, satisfies the
inhomogeneous Picard-Fuchs equation

DPFWB = (2πi)4
󰀥

θ4 − 5z
4󰁜

k=1
(5θ + k)

󰀦 󰀕󰁝

Γ
Ω

󰀖
= JDel := −15

4
√

z, (4.28)
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4. B-Branes and Normal Functions

where ∂Γz = [C+,z]− [C−,z] and the square root is an indicator for the branching
behavior of the conics.

The extended Gauß-Manin connection in the basis {ej, fk} and the canonical
coordinate q is now given by

∇t = d+

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 0 0 · · · 0
1 0 0 0 0 · · · 0
0 −C 0 0 −D1 · · · −Dd

0 0 −1 0 0 · · · 0
0 0 0 0 0 · · · 0
... ... ... ... ... . . . ...
0 0 0 0 0 · · · 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

⊗ dq

2πi q
, Dk = δ2Wk = Q(∇2

t 󰁨ν, e3)

(4.29)
and determined by the Yukawa coupling C together with the infinitesimal invari-
ants Dk coming from all superpotentials. It describes a VMHS of Hodge-Tate
type on ∆∗ which we think of as recording the degeneration of the VMHS given
by the extension in the neighborhood of the singular point. Its components and
their respective Hodge-Deligne types are depicted in Figure 4.1.

p p

q

N

N

N

z ⟶ 0

q

Figure 4.1.: LMHS associated to Ĥ3 at a point of maximal degeneration. In
contrast to the situation of Figure 3.3, we begin with a VMHS whose weight
filtration comes from the extension by an algebraic cycle. The process of its
degeneration is determined by both the asymptotic behavior of the periods and
the normal function.

Remark 4.3. The VMHS Ĥ3 can also be viewed from a dual perspective4 by
considering relative cohomology H3(Yz, Cz) instead of the cohomology of the
complement H3(Yz \ Cz). In this case, the extension is of the form

0 −→ I∨ −→
󰀓
Ĥ3

󰀔∨
−→ H3 −→ 0,

󰀓
Ĥ3

󰀔∨
∈ ExtVMHS(H3, I∨), (4.30)

4The author thanks Felipe Espreafico for helpful discussions around this point of view.
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where I∨ is a pure VHS of weight 2. It arises geometrically from the short exact
sequence

0 −→ coker
󰀓
H2(Yz) → H2(Cz)

󰀔
−→ H3(Yz, Cz) −→ H3(Yz) −→ 0 (4.31)

coming from the long exact sequence of the pair (Yz, Cz). The extended Hodge
filtration is specified by

F̂ 1
󰃭F 1 = Z(−1)d, F̂ p

󰃭F̂ p+1 = F p
󰃭F p+1, (4.32)

and the weight filtration satisfies W3 = (Ĥ3)∨ and W2 = I∨. The two variations
of MHS are dual in the sense that the respective extending generators are dual
with respect to the duality pairing

H3(Yz \ Cz) × H3(Yz, Cz) −→ C, (α, β) 󰀁−→
󰁝

P D(α)
β. (4.33)

We denote the extending generator of (Ĥ3)∨ by f∨
k . The monodromy weight

filtration associated to a MUM-point and the corresponding LMHS can be an-
alyzed similar to the presentation in the preceding section. The Hodge-Deligne
types of the degeneration are depicted in Figure 4.2.

p p

q

N

N

N

z ⟶ 0

q

Figure 4.2.: LMHS associated to (Ĥ3)∨ at a point of maximal degeneration.
The dual picture can be viewed as arising from mirroring Figure 4.1 at the
“center of mass” of the pure HS H3.

In the basis {ej, f∨
k } the Gauß-Manin connection in the canonical coordinate of

the degeneration limit then takes the form [Esp]

∇t = d +

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 0 · · · 0
1 0 0 0 · · · 0
0 −C 0 0 · · · 0
0 0 −1 0 · · · 0
0 0 0 0 · · · 0
0 −D1 0 0 · · · 0
... ... ... ... . . . ...
0 −Dd 0 0 · · · 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

⊗ dq

2πi q
, (4.34)
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4. B-Branes and Normal Functions

in which the nontrivial entries correspond to the Yukawa coupling and in-
finitesimal invariants associated to all extending generators as in (4.29). A
similar approach is also employed in the study of N = 1 special geometry of
[LMW1, LMW2].

On the r-fold cover we pass to the local coordinate q̂ = q1/r and the structure
(4.24) of the extended monodromy logarithm N̂ implies that the superpotential
is generally of the form

Wk = 1
(2πir)2

λk

2 log(q)2 + 1
2πir

sk log(q) + wk(q), (4.35)

with a single valued function

wk(q) = 󰁨ck + 1
(2πi)2

∞󰁛

d=1
󰁨nd qd/r (4.36)

extending holomorphically over the puncture. Here, the constant c̃k and the
coefficients 󰁨nd of the q-series are constrained by the arithmetic of the situation.
In the standard case, considered above, the family Y has a model over Q, and
the coefficients 󰁩Nd in (3.54) are rational numbers. Even so, the cycle C will
generically only be defined over an algebraic number field K/Q, ñd ∈ K (or
possibly a subextension thereof), and the constant 󰁨ck is related to special values
of L-functions associated to K. We refer to [GGK2, Wal4, SVW2] for general
expositions of this phenomenon, and to [Wal4, LW, JW, JMW] for illustration
in various examples. Concretely, and analogous to the situation of Remark 2.1,
the constant term of the expansion is related to the limit of the Abel-Jacobi
map associated to C in the canonical coordinate. As shown in [GGK2], this
limit takes values in the Néron-Model

AJ(Cq̂)
q̂→0−−→ AJ(C0) ∈ G ⋉ C󰃭Z(2), (4.37)

with a finite group G generated by cycles limiting to distinct components in the
singular fiber Y0 and Ext1

MHS(Z(−2),Z(0)) ∼= C/Z(2) arising as the image of a
regulator map acting on the degenerated cycle C0. To fix ideas, in the simplest
non-trivial case that K/Q is a quadratic number field, the Abel-Jacobi limit is
expected to be of the general form

lim
q→0

Q(hk, e3) := Q(󰁨hk(0), e3) = ck

√
∆ L(2, χ)
(2πi)2 , ck ∈ Q, (4.38)

in which ∆ denotes the discriminant of the field extension and L(2, χ) is the
value of the Dirichlet L-function

L(2, χ) =
∞󰁛

k=1

χ(k)
k2 (4.39)
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associated to the non-trivial quadratic character χ(k) =
󰀓

∆
k

󰀔
. In the particular

situation of a cycle defined over Q, the Abel-Jacobi limit will therefore always
be a rational multiple of ζ(2)/(2πi)2, similar to Remark 3.9, which in this case
is itself rational. When the extension is defined by the superpotential (4.35),
the finite group G contains an r-torsion subgroup coming from the covering,
and the components of the Abel-Jacobi limit

Q(󰁨hk(0), e2) = sk

r
, Q(󰁨hk(0), e3) = 󰁨ck, (4.40)

can be expressed in terms of the untwisted local system which determines the
LMHS.
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After having established the role of the B-brane superpotential and its relation
to Hodge theoretic normal functions in Chapter 4, we now turn to its A-model
counterpart. Its embedding into the context of the A-model VMHS will be
subsequently discussed in Chapter 6. The central quantum ingredient to the
A-brane superpotential is a count of disk invariants whose appearance in the
context of Lagrangian Floer theory will be explained in Section 5.1. The nature
of the resulting enumerative invariants as open Gromov-Witten invariants and
how they arise in specific geometric configurations is described in Section 5.2.
The specification of an A-brane vaccum requires the choice of certain bundle
data on top of a Lagrangian submanifold. The classical contributions to the
superpotential that arise from these choices are outlined in Section 5.3.

5.1. Lagrangian Floer Theory and the Fukaya Category

In a neighborhood of a large volume limit point, the D-brane geometry of the
A-model is encoded in the Fukaya category of X. As discussed in Chapter 2,
the relevant objects in the present context are BPS branes given by compact,
special Lagrangian submanifolds i : L ↩→ X with respect to the Kähler class
and holomorphic 3-form on X. Morphisms between these objects are related
to a special version of Lagrangian intersection Floer cohomology and the A∞-
algebra associated to Lagrangian submanifolds [FOOO1]. This section provides
an overview of the various concepts that arise in this context, without going
into too much detail when it comes to explicit constructions. The main aim is
to motivate the notion of superpotential used by Fukaya-Oh-Ohta-Ono and its
relevance for questions in symplectic geometry, before we discuss its relation to
extended mirror symmetry and the physical superpotential. Fortunately, the
focus on physically relevant configurations implies that various objects, like the
moduli space of disks to be discussed below, simplify substantially which allows
to keep the treatment close to classical objects in differential geometry.

A morphism between two such objects L0, L1 is defined by the corresponding
Floer cochain complex spanned by their intersection points

Hom(L0, L1) = CF (L0, L1) =
󰁐

p∈L0∩L1

C〈p〉. (5.1)
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We will always assume that any pair of Lagrangians is transversally intersecting
such that (5.1) is well defined. A more general configuration of Lagrangians can,
under our assumptions, always be made transveral by a systematic pertubation
via hamiltonian diffeomorphisms, as described in [FOOO1]. Compositions be-
tween morphism groups fit into a hierarchy of structure maps

mk : Hom(L0, L1) ⊗ · · · ⊗ Hom(Lk−1, Lk) −→ Hom(Lk, L0) (5.2)

for k = 0, 1, 2, . . ., that are constructed from the count of holomorphic disks
with boundary on L = 󰁖k

i=0 Li, as depicted in Figure 5.1. Similarly to the
sphere count1 described in Section 3.3, the disk invariants are defined via the
compactification 󰁦Mk+1(X, L, β) of the moduli space of holomorphic genus zero
open stable maps u : (D, ∂D) → (X, L) with degree β ∈ H2(X, L;Z) and one
boundary component with k + 1 marked points p0, . . . pk. For now, we only
consider the genus zero case and suppress the corresponding index. One way
to describe this moduli space is as the quotient of the moduli space of stable
maps C → X with respect to an anti-holomorphic involution acting pointwise
on each C [op.cit.]. This means that the relative object 󰁦Mk+1(X, L, β) generally
inherits the subtleties pertaining to the stacky nature of its absolute counterpart
described in Section 3.3. We similarly focus on the simplest example, in which
the moduli space can be thought of as a smooth orbifold with boundary and
corners of dimension

dimR
󰁦Mk+1(X, L, β) = dimC X − 3 − µ(β) + k + 1. (5.3)

In a situation in which the Lagrangian arises as the fixed point set of an anti-
holomorphic involution (see Assumptions 5.5 below) the Maslov index µ(β) can
be defined as

µ(β) =
󰁝

󰁥β
c1(X), (5.4)

where 󰁥β ∈ H2(X;Z) denotes the homology class of the double cover of the disk.
In particular, the moduli problem again significantly simplifies in the situation
of such a Lagrangian in Calabi-Yau threefolds: As dimC X = 3 and µ(β) = 0 for
all β ∈ H2(X, L;Z), it suffices to specify k+1 boundary constraints as incidence
relations in order to make the disk count well defined. A precise treatment of
the moduli space and its relation to the product in Floer theory involves an
analysis that can be thought of as a generalization of Morse theory, see for ex-
ample [Aur] for an introductory discussion.

We denote by Mk+1(X, L, β, p0, . . . pk) the moduli space in which k+1 boundary
constraints are specified. When the relevant analysis is taken care of, the moduli

1In order to avoid the introduction of too much new notation, we recycle some of the symbols
used in Section 3.3. This should not lead to confusion, as the current section exclusively
deals with the open string case.
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space is seen to be zero-dimensional [op.cit.] and the product operation is
defined by the formula

mk(p1, . . . , pk) =
󰁛

β∈H2(X,L;Z)

󰁛

p0∈Lk∩L0

#Mk+1(X, L, β, p0, . . . pk) qβ p0. (5.5)

In analogy to (3.88), the number of holomorphic disks #Mk+1(X, L, β, p0, . . . pk)
is weighted by the energy of the relevant homology class with

qβ = exp(2πi
󰁝

β
ω), (5.6)

such that (5.5) has to be generally viewed as a formal power series in q. In
[FOOO1], convergence issues are taken care of by considering coefficients in a
certain Novikov field, but based on physical principles we will assume that all
such power series are convergent in a small neighborhood around the large vol-
ume limit q = 0 to which we restrict our attention. The level of understanding
of these convergence issues is similar to Remark 3.14. An example of the prod-
uct operation in the Fukaya category is shown in Figure 5.1.

The composition of two morphisms defined by the product operation m2 fails to
be associative in a way that is controlled by all higher products mk for k > 0.

L0

L1L2

L3

L4

L5

L6

Figure 5.1.: A product operation in the Fukaya category. A circular config-
uration of transversally intersecting Lagrangians is shown. The product (5.5)
defined by mk is determined by the number of disks that bound the configu-
ration. It is constructed in a way that the k intersection points in Li ∩ Li+1,
i = 0, ..., k − 1 enter the product as inputs, while the distinguished point in
Lk ∩ L0 is considered as output (colored in red).
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Namely, the structure maps satisfy the A∞-relations
󰁛

k1+k2=k+1
(−1)∗ mk1(p1, . . . , pi,mk2(pi+1, . . . , pi+k2), pi+k2+1, . . . pk) = 0, (5.7)

making Fuk(X) into an A∞-category2. Algebraically, the relation (5.7) reflects
the stratification behavior of the boundary ∂Mk+1(X, L, β), where each stra-
tum arises from a disk degeneration in which two punctures collide in the limit.
The sign depends on the degrees of all punctures and can be chosen in such a
way that all such boundary contributions add up to zero.

As motivated in Chapter 2 the geometric object that corresponds to an A-
brane is not only specified by the Lagrangian condition, but also requires a
choice of flat U(1)-bundle E → L, i.e. we have to consider pairs L = (L, E).
Following [Fuk1], the correct modification of the Floer cochain groups that take
this additional data into account is given by

Hom(L0, L1) = CF (L0, L1) =
󰁐

p∈L0∩L1

Hom(E0
󰀏󰀏󰀏
p
, E1

󰀏󰀏󰀏
p
). (5.8)

Given a similar configuration of Lagrangians as before, each decorated with
a rank 1 local system, let γi ∈ Hom(Ei|pi

, Ei|pi+1) be the isomorphism defined
by parallel transport of the local system along Li with i = 0, . . . k. For each
intersection point pi ∈ Li∩Li+1, denote by fi ∈ Hom(Ei|pi

, Ei+1|pi
) an element of

the corresponding Floer cochain complex for i = 1, . . . , k. Then the composition

holf1,...,fk
= γk ◦ fk ◦ · · · ◦ γ1 ◦ f1 ◦ γ0 (5.9)

can be viewed as the holonomy of the local system when going around the
circular configuration of Lagrangians [Aur]. The product operation has to be
adjusted by this holonomy factor and is defined by

mk(f1, . . . , fk) =
󰁛

β∈H2(X,L;Z)

󰁛

p0∈Lk∩L0

#Mk+1(X, L, β, p0, . . . pk) qβ holf1,...,fk
p0.

(5.10)
The resulting operators define the A∞ structure maps of this decorated version
of the Fukaya category.

The identity morphism for an object L in Fuk(X) corresponds to the Floer
cochain complex CF (L, L) associated to a single Lagrangian. It is defined
by using a Hamiltonian diffeomorphism ϕ : X → X such that L ∩ ϕ(L) has
finitely many transversal intersection points and CF (L, L) := CF (L, ϕ(L)) is
well defined. In this particular case, there is another description of the relevant

2The resulting object is sometimes also called a curved A∞-category, as at the current stage
we do allow for the tadpole anomalies discussed below.
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cochain complex that is much closer to ordinary de Rham cohomology than
to Morse Cohomology. Namely, an intersection point of given degree can be
associated to a smooth differential form, Poincaré dual to a cycle which it
intersects [ST1]. Here, we assume that the marked points u(pi) lie on cycles in
L, Poincaré dual to smooth forms αi ∈ Ω∗(L), and we have evaluation maps
evi : 󰁦Mk+1(X, L, β) → L, sending the stable map u to u(pi). In this approach,
a proper Z-grading of the complex can only be achieved in special situations,
including special Lagrangians in Calabi-Yau threefolds3, see for example [Aur].
The Floer cochain complex of L can here be thought of as a deformation of the
de Rham complex Ω•(L) in which the differential and the cup product

m1 = d + O (q) , m2 = ∪ + O (q) (5.11)

are deformed by the holomorphic disks in Mk+1(X, L, β). For each homology
class β we define the operators

mk,β : Ω•(L)⊗k → Ω•(L)[2 − k], mk,β (α1, . . . , αk) := (ev0)∗

󰀣
k󰁞

i=1
(evi)∗ αi

󰀤

,

(5.12)
with the exceptional case k = 1, β = 0 being set to m1,0 = d. In the geometri-
cally well-behaved examples [ST1], the push-forward map (ev0)∗ can be under-
stood as integration of a differential form along the fibers of 󰁦Mk+1(X, L, β) → L.
The A∞-structure maps are then defined by

mk :=
󰁛

β∈H2(X,L;Z)
mk,β qβ, (5.13)

where, as always, we assume all power series to be convergent in a small neigh-
borhood of the large volume limit point. In the case in which the moduli spaces
can be thought of as smooth orbifolds with corners, the degree 2−k of the struc-
ture maps is an immediate consequence of the relative dimension that enters
into the push-forward map in (5.12), namely

dimR Mk+1(X, L, β) − dimR L = k − 2, (5.14)

using (5.3). The condition for the moduli space to be orientable, such that
the integration along fibers is well defined, is related to L being relatively spin,
which is always ensured in the given situation [FOOO1].

The condition m2
1 = 0 for m1 to define a differential is generally obstructed when

there is a non-zero “tadpole anomaly” m0 ∕= 0 ∈ Ω2(L), coming from the disk
amplitude with one boundary marked point. This can be seen from the special
manifestation of the A∞ relations in degree 2,

m2
1(α) = m2(m0, α) − m2(α,m0), α ∈ Ω•(L). (5.15)

3The reason is that in this case the Maslov index vanishes for all relative homology classes.
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L
φ(L)

Figure 5.2.: Geometric origin of the tadpole anomaly. Holomorphic disks that
enter into the definition of the Floer differential can degenerate in various ways.
The broken disk in the middle depicts m2

1, whose vanishing is obstructed due to
the A∞-relations. As described above, the obstruction is related to the presence
of m0, counting disks with exactly one puncture on the boundary. Physically,
m0 can be regarded as a tadpole in which an open string state is created from
the brane vacuum.

Again, this example of the A∞ relations can be interpreted from a geometric
point of view as a cancellation of certain boundary terms of the moduli space.
In this case, the relevant boundary is ∂ 󰁦M2(X, L, β) and the corresponding disk
degenerations are depicted in Figure 5.2.

In the specific situation of Calabi-Yau threefolds, the correction for this anomaly
amounts to deforming the A∞ structure according to

mb
k(α1, . . . , αk) :=

󰁛

l0,...,lk

mk+l0+···+lk(b, . . . , b󰁿 󰁾󰁽 󰂀
l0

, α1, b, . . . , b󰁿 󰁾󰁽 󰂀
l1

, . . . , b, . . . , b󰁿 󰁾󰁽 󰂀
lk−1

, αk, b, . . . , b󰁿 󰁾󰁽 󰂀
lk

),

(5.16)
by a 1-form b ∈ Ω1(L) that satisfies the A∞-Maurer-Cartan equation

mb
0 = m0 + m1(b) + m2(b, b) + m3(b, b, b) + · · · = 0. (5.17)

Given the existence of such a Maurer-Cartan element, or bounding cochain
[FOOO1], it can be shown that the deformed differential then satisfies (mb

1)2 = 0
such that Floer cohomology

HF n(L) := Hn(Ω•(L),mb
1) =

ker
󰀓
mb

1 : Ωn(L) → Ωn+1(L)
󰀔

im
󰀓
mb

1 : Ωn−1(L) → Ωn(L)
󰀔 (5.18)

is defined. In this case, L is considered an unobstructed element of the Fukaya
category Fuk(X). However, for the purpose of describing the structure of the
superpotential, we are only interested in the space of bounding cochains that
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enter into the definition of Floer cohomology, rather than the invariant itself.

Namely, the space of bounding cochains can be identified with the critical locus
of a functional that is also called superpotential4 in [FOOO1, Fuk2]. This notion
of superpotential has also been studied in the general context of A∞-structures
associated to D-brane categories in both the A- and B-model [Laz, Tom]. It is
given by

Ψ(b) =
∞󰁛

k=0

1
k + 1 QL (mk(b, . . . , b), b) + m−1, m−1 =

󰁛

β∈H2(X,L;Z)
m−1,β qβ,

(5.19)
where the constant term with

m−1,β = # 󰁦M0(X, L, β), dim 󰁦M0(X, L, β) = 0, (5.20)

corresponds to a count of disks without boundary constraints. This count is well
defined for Calabi-Yau threefolds as the associated moduli space has dimension
zero. The pairing QL : CF •(L) × CF •(L) → C is induced from the Poincaré
duality pairing on ordinary cohomology. Given a basis {xi} of H1(L;C), the
pairing satisfies a cyclical symmetry5

QL (mk(x0, . . . , xk−1), xk) = (−1)k QL (mk(xk, x0, . . . , xk−2), xk−1) , (5.21)

where we note that all relevant expressions are non-zero due to the degree of
the structure maps (5.13). The relevance of the Fukaya-Oh-Ohta-Ono superpo-
tential is twofold. For one, its critical locus indeed corresponds to solutions of
the A∞-Maurer-Cartan equation [FOOO1, Proposition 3.6.50].

Proposition 5.1. Let {xi} be a basis of H1(L;C) such that any bounding
cochain is of the form b = 󰁓

i bixi. Then the bounding cochain is in the critical
locus, i.e. ∂iΨ(b) = 0 for all i, if and only if mb

0 = 0.

Proof. Computing the derivative of Ψ(b) with respect to the ith coordinate
yields

∂iΨ(b) = ±
∞󰁛

k=0
QL (mk(b, . . . , b), xi) , (5.22)

after using the cyclical symmetry (5.21) to transport each xi to the rightmost
position. Setting ∂iΨ(b) = 0 for all i is then equivalent to

∞󰁛

k=0
QL (mk(b, . . . , b), xi) = QL(mb

0, xi) = 0 (5.23)

4Whenever confusion is likely we will refer to this notion of superpotential as the Fukaya-
Oh-Ohta-Ono superpotential. It is closely related to, but not identical, to its physical
namesake.

5Here we ignore abovementioned transversality issues, see [FOOO1, Conjecture 3.6.48].
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for all i, such that mb
0 = 0 follows from the non-degeneracy of the Poincaré

pairing.

The second important property of Ψ is related to its enumerative content, as
the main result of [Fuk2] is that the inclusion of m−1 makes Ψ a numerical
invariant on each critical point. The way in which enumerative information is
packaged in the Fukaya-Oh-Ohta-Ono superpotential is described in [Theorem
7.1][op.cit.], where it is shown that there is a resummation in which Ψ takes the
form

Ψ(b) =
󰁛

β∈H2(X,L;Z)
m−1,β qβ y∂β, y∂β = exp

󰀕
2πi

󰁝

∂β
b
󰀖

. (5.24)

Here, the enumerative invariants m−1,β are weighted not only by the energy
of the holomorphic disk, but also by an appropriate factor that depends on
the bounding cochain. As noted in [FOOO1], the property (5.22) persists also
when terms are added to Ψ(b) that do not depend on the open string deforma-
tion parameters xi. Physically, the Fukaya-Oh-Ohta-Ono superpotential should
therefore be viewed as the quantum part of a function that also contains certain
classical terms that play a role for the corresponding brane vaccum in string
theory. One contribution of this thesis is a specification and A-model inter-
pretation of these classical terms, based on the physical properties of A-brane
superpotentials and a comparison with the B-model geometry on the mirror
side. The enumerative invariants contained in Ψ(b) can in special situations
be extracted by an extended version of the mirror principle, provided certain
contributions by holomorphic spheres are excluded. These problematic con-
tributions are attributed to a certain wall-crossing phenomenon in [Fuk2] and
render the disk count ill-defined in general (cf. Remark 5.2). As hypothesized in
[op.cit.], the calculation of disk invariants presented in [Wal1] then relies on an
investigation of brane configurations in which various choices of decorations by
flat bundles leads to a cancellation of the anomalous terms. The way in which
this has to be interpreted from the point of view of Hodge theory is discussed
in Chapter 6 and in particular Section 6.5.

In view of the possibility to decorate objects in Fuk(X) by flat bundles leading to
the structure maps (5.10) weighted by holonomy factors, the Fukaya-Oh-Ohta-
Ono superpotential has a close analog which is equally well known in physics
[Vaf, KKLM]. This involves the weighting of the disk count not only by energy,
but also by an correspondingly exponentiated factor of holonomy, leading to
a complexification of the full moduli space of the brane by Wilson lines when
open string deformation parameters are present. In most of what follows we
will focus on Lagrangians with very special properties (see Assumptions 5.5),
whose superpotentials considerably simplify. Namely, we will be able to ignore
the contributions by bounding cochains and the complexification will at most
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5.2. A-Brane Vacua and Open Gromov-Witten Invariants

contribute a factor by a root of unity. The details of this approach are discussed
in the following sections.

5.2. A-Brane Vacua and Open Gromov-Witten Invariants

In [ST1, ST2, ST3], Solomon-Tukachinsky further generalized the numerical
invariant defined by the Fukaya-Oh-Ohta-Ono superpotential Ψ(b) by using
the bulk-deformed A∞-algebra associated to Lagrangian submanifolds [Fuk2,
FOOO1]. This involves a moduli space 󰁦Mk+1,l(X, L, β) which takes not only
boundary constraints into consideration, but also allows for incidence relations
in the bulk of the disks, similar to the case of ordinary stable maps. The
dimension of this moduli space is given by

dimR
󰁦Mk+1,l(X, L, β) = dimC X − 3 − µ(β) + k + 1 + 2l (5.25)

and it admits canonical evaluation maps

L
󰁦Mk+1,l(X, L, β)

ev∂
i 󰈦󰈦❞❞❞❞❞❞❞❞❞❞❞❞

evj 󰈠󰈠❨❨❨❨❨
❨❨❨❨❨❨

X,

(5.26)

that can be used to define a generalization of the A∞-structure maps mk as
follows. The corresponding operators

qk,l,β : Ω•(L)⊗k ⊗ Ω•(X)⊗l −→ Ω•(L)[k + 2l − 2], (5.27)

for each relative homology class β ∈ H2(X, L;Z), are given by the straightfor-
ward enhancement

qk,l,β(α1, · · · αk, γ1, · · · , γl) :=
󰀓
ev∂

0

󰀔

∗

󰀳

󰁃
k󰁞

i=1

󰀓
ev∂

i

󰀔∗
αi ∪

l󰁞

j=1
(evj)∗ γj

󰀴

󰁄 (5.28)

of (5.12) and we similarly set

qk,l :=
󰁛

β∈H2(X,L;Z)
qk,l,β qβ. (5.29)

Doing so allows to make contact with the closed string sector and replacing m
with q in (5.19) leads to enumerative invariants similar to (5.24) that incorporate
interactions between the two sectors. A careful analysis of the properties of the
resulting superpotential, as performed in [ST2], reveals axioms for these open
Gromov-Witten invariants with both boundary and bulk constraints. Here,
bulk constraints are specified by intersections of the disks’ interior with cycles
in X, while boundary constraints are always point-like and closely related to
the choice of bounding cochain.
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Remark 5.2. When a holomorphic disk without boundary constraints has
spherical degree β = i∗

󰁨β ∈ im (H2(X) → H2(X, L)), it can degenerate in a
way in which the boundary collapses to a point in L. These contributions spoil
invariance of Ψ but can be corrected when L is homologically trivial by fur-
ther including sphere invariants with one puncture lying on a 4-chain Γ4 with
∂Γ4 = L [PSW]. A formalization of this procedure results in enhanced open
Gromov-Witten invariants [ST3, Proposition 4.19] which in general depend on
the choice of Γ4. In addition to the bounding cochain, it becomes part of the
data making the disk count well defined.

In order to systematically address the anomaly described in Remark 5.2, we
make use of a general property of 3-cycles in compact symplectic 6-manifolds.
It can be interpreted as a guarantee for the existence of a canonical reference
cycle. The following is based on [Ban, Proposition 3.2] and [Fre, Theorem 1.4].

Proposition 5.3. Let (X, ω) be a simply connected, compact and symplectic
threefold. Then any three-dimensional homology class α ∈ H3(X,Z) can be
represented by an immersed Lagrangian sphere S3 ⊂ X.

Proof. The argument is following a version of the h-principle known as the
Gromov-Lees theorem [Gro, Lee]. Given a smooth immersion f : L → X,
such that Df : TL −→ TX is a fiberwise Lagrangian monomorphism, there
exists a Lagrangian immersion in the same homotopy class if the cohomological
obstruction [f ∗ω] ∈ H2(L) vanishes. As X is simply connected, the Hurewicz
map

π3(X) −→ H3(X;Z), [f : S3 → X] 󰀁−→ f∗[S3] (5.30)
is onto such that there always exists a continuous map f : S3 → X with
f∗[S3] = α. We can smoothly approximate f and make it into an immer-
sion with transversal self-intersections by a general position argument, denot-
ing the resulting map by the same symbol. In order to study the properties
of the differential Df we consider the normal bundle of f(S3). We choose
local trivializations over neighborhoods around two poles that intersect along
an equator homeomorphic to S2, such that the transition functions correspond
to continuous maps S2 → GL(3,R). They are therefore classified by the group
π2(GL(3,R)) which vanishes by Bott-periodicity, meaning that the normal bun-
dle is trivial. As the normal bundle can be identified with the cotangent bundle
T ∗S3 via the symplectic form, we have a global splitting f ∗(TX) ∼= TS3 ⊕T ∗S3

which implies that Dfp : TpS3 → Tf(p)X defines a Lagrangian subspace for each
p ∈ S3. The statement then follows from the vanishing of the cohomological
obstruction H2(S3) = 0.

Even with their existence assured, the explicit construction of these Lagrangian
spheres can be very involved in practice, see for example [She], where they play
a crucial role in the proof of homological mirror symmetry for the quintic. This
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is part of a notorious problem of finding examples of Lagrangian submanifolds
in compact threefolds, in which the (extended) mirror principle could become
an important tool: In a situation in which a given A-model geometry is hard to
understand, it can be instructive to study its enumerative invariants that can
be extracted from the mirror B-model in a relatively simple way.

There is one systematic way to construct special Lagrangians in compact Calabi-
Yau threefolds that is completely understood. While occasionally commenting
on more general situations, this construction will be our main focus and will
contain all running examples.

Lemma 5.4. Let X be a projective Calabi-Yau manifold of complex dimension
n together with an antiholomorphic involution ι : X → X satisfying ι2 = id
and ι∗J = −J , where J : TX → TX is the complex structure. Then the fixed
point set

Fix(ι) = {x ∈ X | ι(x) = x}, (5.31)
if non-empty, defines a real n-dimensional special Lagrangian submanifold of
X.

Proof. Given a holomorphic chart (U, φ) of X around a fixed point of ι, the
map φ ◦ ι ◦ φ−1 defines an antiholomorphic involution on Cn. Its fixed point
set is diffeomorphic to Rn and it follows that Fix(ι) is an n-dimensional real
submanifold of X, which we assume to be non-empty. As X is Kähler, the
symplectic form is related to the Kähler metric ω(·, ·) = g(J ·, ·), which can be
expressed in local coordinates via

ω = i
󰁛

i,j

gij dzi ∧ dzj. (5.32)

We can always find a local coordinate system in which the involution acts by
ι(z) = z and it follows that

ι∗ω = i
󰁛

i,j

gji dzi ∧ dzj = −i
󰁛

i,j

gji dzj ∧ dzi = −ω, (5.33)

where we are using the fact that the Kähler metric is Hermitian. In a similar
fashion the involution acts on the holomorphic 3-form. We can always find a
local splitting Ω = Re(Ω) + i Im(Ω) into real and imaginary parts for which

ι∗Ω = Re(Ω) − i Im(Ω) = Ω. (5.34)

Now let i : Fix(ι) ↩→ X denote the inclusion. When restricting on the fixed
point set, it follows from (5.33) and (5.34) that

i∗ω = i∗ι∗ω = −i∗ω, i∗Im(Ω) = i∗ι∗Im(Ω) = −i∗Im(Ω), (5.35)

such that i∗ω = 0 and i∗Im(Ω) = 0, meaning that Fix(ι) is special Lagrangian.

77



5. A-Brane Superpotentials

Assumptions 5.5. Drawing from these known examples of Lagrangian sub-
manifolds in compact Calabi-Yau threefolds described in Lemma 5.4, we as-
sume that L = {x ∈ X | ι(x) = x} is the fixed point set of an anti-holomorphic
involution ι : X → X. As described around (5.4), this implies that every class
β ∈ H2(X, L;Z) has vanishing Maslov index µ(β) = 0. We further assume that
L is a rational homology sphere, i.e.

Hk(L;Q) = Hk(S3,Q) (5.36)

for all k. To make contact with the examples of [KW], we will generally allow
r-torsion in H1(L;Z) ∼= H2(L;Z). In these cases, H1(L;Z) = 0 follows from the
universal coefficient theorem (see also [Liu])

0 → Ext1
󰀓
H0(L;Z),Z

󰀔 ∼= 0 −→ H1(L;Z) −→ 0 ∼= Hom
󰀓
H1(L;Z),Z

󰀔
→ 0.

(5.37)
In particular, L is classically rigid as a special Lagrangian because H1(L;R) = 0
due to McLean’s theorem [McL], see also Appendix A. The latter condition
physically corresponds to the absence of open string moduli of the A-brane.
If L is homologically trivial, there exists a relative 4-chain [Γ] ∈ H4(X, L)
with boundary ∂[Γ] = [L]. Whenever L is not homologically trivial, we use
Proposition 5.3 and include a homologically equivalent (immersed) Lagrangian
sphere L0 ∼= S3 as a canonical fixed reference and consider L ∪ L0 in order to
correct for the failure mode addressed in Remark 5.2. In this case there exists a
relative 4-chain [Γ] ∈ H4(X, L∪L0) with boundary ∂[Γ] = [L]− [L0]. Lastly, we
will assume that L remains Lagrangian under small deformations of the Kähler
class in ∆∗.

Example 5.6. An anti-holomorphic involution ι : P4 → P4 with ι(xi) = xi

restricted to the Fermat quintic (3.93) has a fixed point locus

L =
󰁱
(y1 : · · · : y5) ∈ RP4

󰀏󰀏󰀏 y5
1 + y5

2 + y5
3 + y5

4 + y5
5 = 0

󰁲
⊂ X, (5.38)

which is special Lagrangian with respect to the Kähler class ω and holomorphic
3-form Ω on X. Solving (5.38) for any yi over R topologically identifies this real
quintic with a copy of real projective space L ∼= RP3, whose fundamental class
defines an element [L] ∈ H3(X,Z) in homology.

Under Assumptions 5.5, the constant term of the Fukaya-Oh-Ohta superpoten-
tial satisfies [FOOO2, Fuk2]

m−1,β = m−1,ι∗β, (5.39)

leading to the equality Ψ(b) = Ψ(−b), which is best visible from the point of
view of (5.24). As a consequence, the bounding cochain b = 0 is always a
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5.2. A-Brane Vacua and Open Gromov-Witten Invariants

critical point of Ψ(b), leading to disk invariants without boundary constraints.
In the bulk deformed situation considered in [ST2], this invariant essentially
corresponds to the value of

q−1,l(γ1, . . . , γl) =
󰁛

β∈H2(X,L;Z)
q−1,l,β(γ1, . . . , γl) qβ. (5.40)

This is in line with the axioms for enhanced open Gromov-Witten invariants pro-
posed in [ST3] (cf. Remark 5.2) implying that all disk invariants with boundary
constraints vanish for β ∕= 0 in case of Lagrangians with µ(β) = 0 in Calabi-
Yau threefolds. We therefore consider a version of the axioms for enhanced
open Gromov-Witten invariants adapted to our particular situation in which
only bulk constraints are present6.

Axioms 5.7. Given cohomology classes γi ∈ H∗(X;C) with i = 1, ..., n, the
invariants OGWβ(γ1, ..., γn) of the pair (X, L) satisfy the axioms

• (Degree) OGWβ(γ1, ..., γn) = 0 unless

dimC X − 3 − µ(β) + 2n =
n󰁛

i=1
deg(γi). (5.41)

• (Equivariance) For † = deg(γi) · deg(γi+1) it is

OGWβ(γ1, . . . , γi, γi+1, . . . , γn) = (−1)†OGWβ(γ1, . . . , γi+1, γi, . . . , γn).
(5.42)

• (Unit) An insertion of the unit [X] ∈ H0(X;C) yields7

OGWβ([X], γ1, ..., γn−1) =

󰀻
󰀿

󰀽

󰁕
Γ4

γ1 [L] = 0, β = 0 and n = 2
0 otherwise.

(5.43)

• (Zero) The restriction to β = 0 yields

OGW0(γ1, ..., γn) =

󰀻
󰀿

󰀽

󰁕
Γ4

γ1 ∪ γ2 [L] = 0 and n = 2
0 otherwise.

(5.44)

• (Divisor) For deg(γn) = 2 it is

OGWβ(γ1, ..., γn) =
󰀕󰁝

β
γn

󰀖
· OGWβ(γ1, ..., γn−1). (5.45)

6The author thanks Sara Tukachinsky for various explanations regarding open Gromov-
Witten theory.

7Note that all of the relevant integrals are well defined because there is always a lift to
relative cohomology under Assumptions 5.5, see also (5.48).
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• (Invariance) The numbers OGWβ(γ1, . . . , γn) are constant under defor-
mations of the Kähler class ω for which L remains Lagrangian.

Remark 5.8. Similar to the case of ordinary Gromov-Witten invariants, and
as discussed in Remark 3.13, there is no version of the effectivity axiom as
we consider all disks to have non-negative energy

󰁕
β ω ≥ 0. The open string

analog of the splitting axiom is not visible in the situation of b = 0, as we do
not allow for boundary constraints that would arise from certain types of disk
degenerations. In a more general context, the construction of open Gromov-
Witten invariants of [op.cit.] crucially allows for disks to separate such that
they intersect up to a cycle Poincaré dual to the bounding cochain, which can
be viewed as a substitution for the splitting axiom in the open string case.
Lastly, we remark that we only consider disks of genus g = 0, such that we do
not have a version of the reduction axiom. The reason is that higher genus open
Gromov-Witten invariants are even harder to define from the point of view of
Floer theory, cf. Chapter 7.

We again denote by OGWβ the invariants without constraints, i.e. n = 0.
Based on the divisor axiom we consider the generating function of open Gromov-
Witten invariants

Ψ = 1
2

󰁝

Γ4
ω ∪ ω + Ψh = λ

2 t2 + Ψh, (5.46)

where λ =
󰁕

Γ4
H ∪ H corresponds to the energy zero contribution by the zero

axiom. In analogy to (3.88) we define the quantum part by

Ψh = 1
(2πi)2

󰁛

β∈H2(X,L;Z)\{0}
OGWβ qβ, (5.47)

which we think of as a holomorphic function on ∆∗. The function Ψ can be
interpreted as the A-brane superpotential, or BPS domain wall tension with
quantum corrections by disk instantons, between two open string vacua deter-
mined by L and L0. Note that by the exact sequence

· · · −→ H1(L;C) ∼= 0 −→ H2(X, L;C) −→ H2(X;C) −→ 0 ∼= H2(L;C) −→ · · ·
(5.48)

and under Assumptions 5.5, there always exists a canonical lift of the Kähler
class to relative cohomology such that the first term of (5.46) is well defined. The
fact that Hamiltonian isotopies of L do not affect the A-brane superpotential
corresponds to the invariance of the Abel-Jacobi map under rational equivalence
in the B-model. Altering the choice of Γ in the definition of the enhanced open
Gromov-Witten invariants will change the A-brane superpotential only by the
closed string period Q(g2, e3) = Φ′ (cf. (3.101)).
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5.3. Classical Contributions

To characterize the Lagrangian submanifold as an A-brane it is necessary to
also specify a flat U(1)-bundle E on L, leading to further classical contributions
to the superpotential of the pair L = (L, E) that arises from different choices of
flat bundle E and E0 on the same Lagrangian L, see Section 2.3. In addition,
the A∞-structure maps mk have to be weighted by the holonomy hol∂β(E) of
the corresponding flat connection [Fuk1] (cf. (5.10)) which, under Assumptions
5.5, changes the holomorphic part of the superpotential by a rth root of unity
as a constant prefactor. The flat bundles are topologically classified by their
first Chern class in the r-torsion group H2(L;Z) and the analog of homological
equivalence is the fact that they cannot be distinguished after their embedding
into the simply connected ambient space X, i.e.

i! : H2(L;Z) −→ H5(X;Z), i!
󰀓
c1(E) − c1(E0)

󰀔
= 0. (5.49)

Writing s[γ] = [c1(E)] − [c1(E0)] ∈ H2(L;Z), the additional contribution to the
domain wall tension comes from a relative homology class [Γ2] ∈ H2(X, L;Z)
with boundary Poincaré dual to s[γ]. The Puppe sequence

0 −→ π1(X, L) −→ π0(L) ∼−→ π0(X) −→ 0 (5.50)

implies π1(X, L) = 0 such that π2(X, L) ∼= H2(X, L;Z) follows from the relative
Hurewicz theorem. Therefore, the 2-chain Γ2 admits a representation in relative
homology by a disk D with [Γ2] = s[D]. From the long exact sequences

· · · 󰈣󰈣 H2(X;Z) 󰈣󰈣

P D
󰈃󰈃

H2(X, L;Z) 󰈣󰈣

P D
󰈃󰈃

H1(L;Z) 󰈣󰈣

P D
󰈃󰈃

0

· · · 󰈣󰈣 H4(X;Z) 󰈣󰈣 H4(X \ L;Z) 󰈣󰈣 H2(L;Z) 󰈣󰈣 0

(5.51)

we see that the class r[D] ∈ H2(X, L;Z) can be lifted to [ℓ] ∈ H2(X;Z) such that
the associated currents satisfy [δℓ] = r[δD] ∈ H4(X \ L;Z). The contribution to
the domain wall tension is then given by

󰁝

Γ2
ω = s

r

󰁝

ℓ
ω = s

r
t, s ∈ Z, (5.52)

and well defined due to the exact sequence (5.48).

Under monodromy t 󰀁→ t+1 around the puncture, the domain wall tension is not
invariant but changes up to integral periods that can be physically interpreted
as a change in the integrally quantized flux of Ramond-Ramond fields which
naturally couple to the A-brane in addition to the U(1)-gauge field [Wal1]. In
addition, the gauge theory leads to a Chern-Simons term cs(E) that arises as
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5. A-Brane Superpotentials

a constant three-loop contribution to the tension, which in full is up to closed
string periods given by the function [TV, CKLT, PSW]

WA(q) = 1
2

󰁝

Γ4
ω ∪ ω +

󰁝

Γ2
ω + cs(E) + Ψh. (5.53)

Γ

D

β
β̃

L

L0

Γ2

Γ4

Figure 5.3.: Contributions to the A-brane superpotential. The domain wall
tension between two A-brane vacua classically consists of the volume of a 4-
chain Γ4 interpolating between the Lagrangians and a 2-chain Γ2 interpolating
between choices of flat bundles. These are corrected by open and closed string
instantons, together with the Chern-Simons invariant associated to the gauge
bundles.

When contributions coming from the bundle data are taken into account, large
volume monodromies are in general not integral. This anomaly can be com-
pensated by introducing several A-branes whose superpotentials are exchanged
when t 󰀁→ t + 1, such that the full domain wall spectrum is invariant under in-
tegral monodromy. This is the A-model analog of an algebraic cycle branching
when encircling the puncture in the B-model (4.25) and forces the superpoten-
tial to take the general form (4.35). The integrality constraint λ/r ∈ Z of (4.24)
arises in A-model terms from the integral version

−→ H1(L;Z) ∼= 0 −→ H2(X, L;Z) −→ H2(X;Z) −→ Z󰃭rZ ∼= H2(L;Z) −→
(5.54)

of the short exact sequence (5.48). The condition λ/2 + s ∈ Z can be physically
viewed as a consequence of the mixing of different discrete open string moduli,
as discussed in [KW].

In case of a trivial U(1)-bundle E , the three-loop contribution to the superpo-
tential given by the Chern-Simons invariant is of the form

cs(E) = − 1
(2πi)2

󰁝

L
Tr (A ∧ dA) , (5.55)
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where A ∈ Ω1(L, u(1)) is the globally well-defined connection 1-form associated
to the bundle. In general, we consider the following construction of the Chern-
Simons invariant [DW].

Definition 5.9. Whenever L can be thought of as the boundary of an oriented
4-manifold Γ4 onto which the flat bundle admits an extension 󰁨E with connection
1-form 󰁨A and curvature F 󰁨A, we call

cs(E) = − 1
(2πi)2

󰁝

Γ4
Tr

󰀓
F 󰁨A ∧ F 󰁨A

󰀔
= −

󰁝

Γ4
ch2( 󰁨E) (5.56)

the Chern-Simons invariant of E , where ch2( 󰁨E) = 1
2c1( 󰁨E)2 − c2( 󰁨E).

Note that the two formulas for cs(E) agree in the globally trivial case by Stokes’
theorem. The existence of the relevant 4-manifold is generally obstructed by
the bordism theory of the ambient space X and the classifying space of the
bundle8. We note that for our purposes in Chapter 6 it will suffice to have a
smooth map g : Γ4 → X in order to make sense of various integral expressions
via pullback along g.

Proposition 5.10. Let L, L0 ⊂ X be homologous (immersed) three-dimensional
submanifolds in a threefold X. Then an interpolating 4-chain can be represented
by a smooth oriented bordism Γ4 ∈ ΩSO

4 (X). Furthermore, any U(1)-bundle on
L ∪ L0 admits an extension onto Γ4.

Proof. In order to assess whether there is a bordism [Γ4, g] ∈ ΩSO(X) fitting
into the diagram

L

incl.
󰈔󰈔
❆❆

❆❆
❆❆

❆❆

󰈕󰈕

Γ4
g
󰈣󰈣 X,

L0

incl.
󰈲󰈲⑥⑥⑥⑥⑥⑥⑥⑥

󰈱󰈱

(5.57)

we first consider the Atiyah-Hirzebruch spectral sequence

Hp(X; ΩSO
q ) =⇒ ΩSO

p+q(X). (5.58)

Because the bordism group ΩSO
k = ΩSO

k (pt) is trivial in degrees k = 1, 2, 3, while
ΩSO

0 = Z, the spectral sequence shows that the bordism version of the Hurewicz
map

ΩSO
3 (X) ∼−→ H3(X;Z), [f : M → X] 󰀁−→ f∗[M ], (5.59)

is an isomorphism [DK1]. Therefore, homological equality [L] = [L0] implies the
existence of an oriented bordism together with a continuous map g : Γ4 → X

8The author is grateful to Markus Banagl for a helpful conversation about these topics.
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that can be smoothly approximated. The possibility to find an extension of
the bundles on L and L0 can be addressed similarly by considering the bordism
theory of the classifying space BU(1) ∼= P∞. The obstruction to the existence of
a bordism which simultaneously interpolates between L and L0, together with
the corresponding bundle data, lives in the bordism group ΩSO

3 (X × P∞;Z).
The Hurewicz isomorphism again reduces the problem to homology, which can
be computed with the Künneth formula

H3 (X × P∞;Z) ∼=
󰁐

i+j=3
Hi(X;Z) ⊗ Hj(P∞;Z) = H3(X;Z), (5.60)

using Hodd(P∞;Z) = 0 and H1(X,Z) = 0.

Remark 5.11. The explicit computation of the Chern-Simons invariant re-
viewed in Appendix B is based on index theory, where it is necessary to specify
a spin structure on Γ4 in addition to an orientation. Obstructions to the exis-
tence of a spin structure can be analyzed similar to Proposition 5.10, where the
bordism groups ΩSpin

k (X) are up to torsion identical to ΩSO
k (X), namely [Mil]

ΩSpin
0 = Z, ΩSpin

1 = Z󰃭2Z, ΩSpin
2 = Z󰃭2Z, ΩSpin

3 = 0. (5.61)

Here, the additional constraint in dimension 1 and 2 corresponds to a choice of
anti-periodic spin structure on the circle and products thereof. As both X and
P∞ are torsion-free, an analogous argument shows that we can always find a
suitable bordism admitting a spin structure.
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In this chapter we are finally able to tackle the central task of providing a
Hodge theoretic context in which extended mirror symmetry is on a more equal
footing with its closed string counterpart described in Chapter 3. We begin with
a mathematical definition of the notion of extended mirror pair in Section 6.1,
which is based on a comparison of the relevant A- and B-brane superpotentials.
A characterization of the extension class in the A-model and its relation to
the open WDVV equations is discussed in Section 6.2, where we define the
extended A-model VMHS. As for closed strings, this construction does not
immediately produce the correct asymptotic behavior of the normal function,
such that a modification by a relative version of the Gamma class is required.
Its definition and role in an extended Gamma-integral local system is given
in Section 6.3. The structure arising in the A-model can be interpreted as a
certain extension of Frobenius modules, a point of view which is explained in
Section 6.4. Concluding with the main example of a mirror pair for the quintic
in Section 6.5, we formulate the statements of [Wal1] in this new language which
culminates in an extended version of the standard Mirror Theorem.

6.1. Extended Mirror Pairs

Starting from a mirror pair with isomorphic variations Heven(X) ∼= H3(Y ) of
MHS, the extension in the B-model can be given an A-model interpretation by
composing the B-brane superpotential WB with the mirror map. As described
in the previous section, the resulting function can be understood as A-brane
superpotential WA of an associated A-model geometry and defines an extension

0 −→ Heven −→ Ĥeven −→ I −→ 0, Ĥeven ∈ Ext1
VMHS (I, Heven) , (6.1)

of the pure VHS I of weight 4 by the A-model VMHS Heven. This identification
motivates the following definition in analogy to the absolute case of Section 3.6.

Definition 6.1. Let (X, ω) and Y be a mirror pair of Calabi-Yau threefold
families, together with a collection of algebraic cycles C ⊂ Y and A-branes L in
X. We call (X, L) and (Y , C) an extended (Hodge theoretic) mirror pair, if the
associated extensions of variations of MHS Ĥeven(X) and Ĥ3(Y) are isomorphic
over small neighborhoods around MUM-type boundary points related by the
mirror map.
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From the discussion in Section 4.3, Definition 6.1 is equivalent to the identifi-
cations of the A- and B-brane superpotentials under the mirror map

WA(q) = WB(z(q)), (6.2)

as the truncated normal functions WA/B = Q(󰁨ν, e3) with respect to the canoni-
cal lift (4.19) fully determine the extension in a situation of maximal degeneracy.
Recall that we canonically normalize e3 in the B-model, such that ϖ0(z) = 1.
Given an extended mirror pair with I of rank 1, the superpotential WB can
therefore be understood as computing the quantum corrected volume of (a
D-brane wrapping) the relative 4-chain Γ4 interpolating between the A-brane
vacua (cf. (3.127))

WA = λ

2r2 t2 + s

r
t + 󰁨c + ξ

(2πi)2

∞󰁛

d=1
󰁨nd qd/r = Q(hk, e3), ξr = 1, (6.3)

with asymptotic behavior specified by the limiting period matrix

Π̂ q=0 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0 0 0 0
0 1 0 0 0
a
24 −κ

2 1 0 s
r

b ζ(3)
(2πi)3

a
24 0 1 󰁨c

0 0 0 0 0
0 0 0 0 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

. (6.4)

In particular, the perturbative three-loop correction to the A-brane superpo-
tential, related to the Abel-Jacobi limit in the B-model, is expected to be given
by the Chern-Simons invariant cs(E) in the known examples. The identification
of flat connections implies

D(q(z)) = λ + ξ
∞󰁛

d=1

d2󰁨nd

r2 qd/r = Ψ′′(q), (6.5)

providing an A-model interpretation of the infinitesimal invariant (4.21) as the
disk two-point correlation function of the mirror A-brane. By the Solomon-
Tukachinsky Axioms 5.7, this corresponds to the generating function of open
Gromov-Witten invariants with two bulk insertions for 󰁨nd = OGWβ and β =
d[ℓ]. When L arises as the fixed point locus of an anti-holomorphic involution,
it is conjectured that the mirror algebraic cycle is generally defined over Q, such
that the open Gromov-Witten invariants 󰁨nd ∈ Q are rational numbers. In these
cases, there exists an Ooguri-Vafa multicover formula analogous to (3.129) in
which the quantum part of the superpotential is expressed as an integral linear
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combination of dilogarithms (assuming r = 1 for simplicity)

Ψh = 1
(2πi)2

∞󰁛

d=1
󰁨nd qd = 1

(2πi)2

∞󰁛

d=1
nd Li2(qd) := 1

(2πi)2

∞󰁛

d,k=1
nd

qdk

k2 , nd ∈ Z,

(6.6)
i.e. Ψh is a 2-function in the sense of Definition 3.24. However, as discussed
in Section 3.2, there are examples in which the B-model predicts the invariants
to lie in the algebraic number field 󰁨nd ∈ K/Q that underlies the cycle in the
B-model. The analog of the multicover expansion (6.6) then corresponds to
the characterization of Ψh as a 2-function with coefficients in K as described in
Remark 3.25. Concretely, when K = Q(

√
∆) is a quadratic number field (cf.

(4.38)), the superpotential admits an expansion of the form (assuming r = 1)

Ψh = 1
(2πi)2

∞󰁛

d=1
󰁨nd qd = 1

(2πi)2

∞󰁛

d,k=1
(n(0)

d +
√

∆χ(k)n(1)
d )qdk

k2 , (6.7)

where χ(k) =
󰀓

∆
k

󰀔
is the non-trivial quadratic character, and n

(0)
d , n

(1)
d ∈ Z. A

more general discussion of abelian number fields can be found in [Mü1]. An
enumerative A-model interpretation of these non-rational invariants remains to
be found.

Example 6.2. An example in which non-trivial arithmetic plays a role in the
B-model is the algebraic cycle defined by

x1 + µx2 + µ2x3 = 0, a(x1 + x2 + x3) = 3x4, b(x1 + x2 + x3) = 3x5

abψ = 6, a5 + b5 = 27,
(6.8)

where µ is a third root of unity, µ3 = 1. For each a, b subject to (6.8), these
equations define a degree 1 curve in (3.17) and their image in the Greene-
Plesser quotient Y is known as the van Geemen lines (see e.g. [Wal4]). To this
family we can associate a normal function that is independent of a and b, as the
Abel-Jacobi map is invariant under algebraic equivalence. Denoting by Cµ the
curve for a given root of unity, let Γµ,µ2 be the smooth 3-chain with boundary
given by ∂[Γµ,µ2,z] = [Cµ2,z] − [Cµ,z] in each fiber. For the standard choice of
holomorphic 3-form (3.38), the resulting truncated normal function satisfies an
inhomogeneous Picard-Fuchs equation

DPFWB = (2πi)4
󰀥

θ4 − 5z
4󰁜

k=1
(5θ + k)

󰀦 󰀣󰁝

Γµ,µ2
Ω

󰀤

= JvG (6.9)

with inhomogeneity (expanded around a small neighborhood around z = 0)

JvG =
√

−3 · 32
45 ·

63
ψ5 + 1824

ψ10 − 512
ψ15

󰀓
1 − 128

3ψ5

󰀔5/2 =
√

−3
󰀕

140000 z + 178000000000
3 z2 + · · ·

󰀖
.

(6.10)
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The associated expansion of the A-brane superpotential is given by

(2πi)2
√

−3
Ψh = 140000 q + 11148100000

3 q2 + 5015947794500000
27 q3 + · · · (6.11)

and satisfies an arithmetically twisted Ooguri-Vafa integrality (6.7) specified by
∆ = −3. In line with (4.38), the constant contribution to the superpotential

󰁨c = lim
q→0

Q(h, e3) = Q(󰁨h(0), e3) = −390
√

−3
(2πi)2 L(2, χ), (6.12)

in terms of the Dirichlet L-function (4.39) with quadratic character, corresponds
to the Abel-Jacobi limit of the van Geemen lines at q = 0, as described in [LW],
and further studied in [JMW].

The A-model geometry mirror to the van Geemen lines is currently unknown,
but expected to not satisfy Assumptions 5.5. In particular, the Abel-Jacobi
limit is unlikely to be related to the Chern-Simons invariant alone, cf. the
outlook in Chapter 8.

6.2. An A-model Origin of the Extension Class

We consider a collection of Lagrangian submanifolds i : L = 󰁖
k Lk ↩→ X with

k = 0, ..., d that satisfy Assumptions 5.5 and are homologically equivalent as
cycles in X, meaning that [Lk] − [Lk′ ] = 0 ∈ H3(X) for each pair of indices
k and k′. The long exact homology sequence of the pair (X, L) produces the
sequences

0 −→ H6(X) −→ H6(X, L) −→ 0
0 −→ H4(X) −→ H4(X, L) −→ H3(L) −→ H3(X) −→ · · ·
0 −→ H2(X) −→ H2(X, L) −→ 0

· · · −→ H0(L) −→ H0(X) −→ H0(X, L) −→ 0,

(6.13)

and defines an extension of the even cohomology in pure weight 4 (cf. [DK2])

0 󰈣󰈣 H4(X) 󰈣󰈣

P D

󰈃󰈃

H4(X, L) 󰈣󰈣

P D

󰈃󰈃

ker
󰀓

H3(L) i∗−→ H3(X)
󰀔

󰈣󰈣

P D
󰈃󰈃

0

0 󰈣󰈣 H2(X) 󰈣󰈣 H2(X \ L) 󰈣󰈣 ker
󰀓

H0(L) i!−→ H3(X)
󰀔

󰈣󰈣 0,

(6.14)

where the kernel of i! : H0(L) → H3(X) is of rank d with generators Poincaré
dual to [Lk] − [L0] ∈ H3(X). Their lifts to H2(X \ L) are the currents

[δΓk
4
] ∈ H2(X \ L) ∼= H4(X, L), (6.15)
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defined via the integral relation
󰁝

X
δΓk

4
∪ η =

󰁝

Γk
4

η, η ∈ H4(X, L), (6.16)

where [Γk
4] ∈ H4(X, L) is a 4-chain with boundary ∂[Γk

4] = [Lk] − [L0].

Remark 6.3. While cup products as in (6.16) can be made precise in all of
our examples, we will usually view them as being defined in terms of certain
integral expressions. Namely, in most down-to-earth terms we set

δΓk
4

∪ η :=
󰀣󰁝

Γk
4

η

󰀤

· [p], [p] ∈ H6(X). (6.17)

We note that the relevant integrals are always well defined using pullback along
g : Γ4 → X (cf. Proposition 5.10) and the fact that the relevant classes can
always be liftet to relative cohomology via a sequence similar to (5.48).

From this, we can define an extension of Heven which on the level of graded
vector bundles takes the form

Ĥeven := Heven(X) ⊕ C(−2)⊕d〈{δΓ1
4
, . . . , δΓd

4
}〉, Ĥeven := Ĥeven ⊗ O∆∗ . (6.18)

An extension of the A-model Hodge filtration to Ĥeven is given by

F̂ p =
󰁐

i≤3−p

Ĥ2i ⊂ Ĥeven, F̂p := F̂ p ⊗ O∆∗ , (6.19)

which is seen to satisfy the conditions

F̂ 2
󰃭F 2 = C(−2)⊕d, F̂ p

󰃭F̂ p+1 = F p
󰃭F p+1. (6.20)

We think of the currents (6.16) as F̂ 2-lifts fk = [δΓk
4
] ∈ F̂ 2 compatible with the

Hodge filtration on Ĥeven.

The H2-module structure on Heven induced by the cup product naturally ex-
tends to Ĥeven via

e2 ∪ fk = [H] ∪ [δΓk
4
] =

󰀕󰁝

X
δΓk

4
∪ H ∪ H

󰀖
[ℓ] =

󰀣󰁝

Γk
4

H ∪ H

󰀤

[ℓ] (6.21)

and we seek a deformation of this module defined in terms of the open Gromov-
Witten potential which matches the extension in the B-model. The flat connec-
tion on Ĥeven is therefore given by a family of algebraic structures

[H] ⊛ (−) : Ĥeven → Ĥeven (6.22)

89
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that is an augmentation of the small quantum product by holomorphic disks.
On Heven it reduces to e2 ∗ (−), while its action on the extending generators is
defined by the rule

∇t(fk) = e2 ⊛ fk :=
󰁛

l,m

󰁛

β∈H2(X,L;Z)
OGW k

β (e2, el) qβ Qlm em = Ψ′′
k [ℓ], (6.23)

where we denote by Ψk and OGW k
β the superpotential and open Gromov-Witten

invariants of Lk. Similar to the case of closed strings, the zero energy contribu-
tion to this extended quantum product corresponds to e2⊛fk|q=0 = e2 ∪fk. The
extension of the Dubrovin connection is determined by both the open and closed
Gromov-Witten potentials and satisfies Griffiths transversality ∇t(fk) ∈ F̂1 due
to the degree axiom. Its flatness in the one-parameter case is an immediate con-
sequence of the algebraic properties of the operation [H] ⊛ (−). In the basis
{ej, fk} it is represented by the matrix

∇t = d +
󰀕

[H] ⊛ (−)
󰀖

⊗ dt := d +

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 0 0 · · · 0
1 0 0 0 0 · · · 0
0 −Φ′′′ 0 0 −Ψ′′

1 · · · −Ψ′′
d

0 0 −1 0 0 · · · 0
0 0 0 0 0 · · · 0
... ... ... ... ... . . . ...
0 0 0 0 0 · · · 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

⊗ dt,

(6.24)
with ∇tfk = −Ψ′′

k e1, c.f. (4.20). In analogy to the absolute case we construct
a ∇-flat C-local system Ĥeven

C by first setting

󰁨σ(fk) := fk + Ψ′
k,h e1 + Ψk,h e0 (6.25)

in terms of the holomorphic part Ψk,h of the generating function of open Gromov-
Witten invariants of Lk, and then defining the quantum deformed current as

hk = σ(fk) := 󰁨σ(e−ω ∪ fk) = e−ω δΓk
4

+ Ψ′
k,h e1 + Ψk,h e0. (6.26)

Lemma 6.4. The quantum deformed current hk is a flat section with respect
to the extended Dubrovin connection, i.e. ∇(hk) = 0.

Proof. In view of Remark 6.3, we write

hk = fk + t
󰀕󰁝

Γ4
H ∪ H

󰀖
e1 + t2

2

󰀕󰁝

Γ4
H ∪ H

󰀖
e0 + Ψ′

k,h e1 + Ψk,h e0, (6.27)

such that flatness is seen to be an immediate consequence of ∇tfk = −Ψ′′
k e1.
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6.2. An A-model Origin of the Extension Class

The local system is extended to Ĥeven
C by ∇(hk) = 0 and we regard Ĥeven

C as a
complex solution to the quantum differential equation coming from [H] ⊛ (−).

In the multiparameter setup of Remark 3.17, vanishing of the A-model curvature
poses a further algebraic constraint on the extended quantum product coming
from

R∇(∂i, ∂j)
󰀓
[δΓk

4
]
󰀔

= [Hi] ⊛
󰀓
[Hj] ⊛ [δΓk

4
]
󰀔

− [Hj] ⊛
󰀓
[Hi] ⊛ [δΓk

4
]
󰀔
. (6.28)

It can be interpreted as an equality of open Gromov-Witten invariants coming
from certain boundary strata of the disk moduli space that correspond to disks
with boundary on Lk, three marked points in the interior and no marked points
on the boundary. In terms of the Gromov-Witten potential and superpotential
associated to Lk, this can be expressed by the following condition.
Proposition 6.5. Flatness of the extended Dubrovin connection (6.24) is equiv-
alent to the concurrent validity of both the ordinary WDVV equations (3.105),
and the system of partial differential equations

󰁛

a,b

∂a∂i∂j Φ · Qab · ∂b∂l Ψk =
󰁛

a,b

∂a∂i Ψk · Qab · ∂b∂j∂l Φ, for all i, j, k, l, (6.29)

which can be identified as the open WDVV equations [ST3, Alc, CZ] under the
Assumptions 5.5.

Lk

i
j

l

Lk Lk

i j

l i

j l

Figure 6.1.: Geometric interpretation of the open WDVV equations.

The difference of lifts hk − fk is d-closed and in each fiber well defined modulo
F2 +Heven

Z , where Heven
Z denotes Iritani’s Gamma-integral local system. In fact,

what we have described so far is best understood as the canonical lift akin to
(4.19) in the B-model. The extension is then classified by a normal function
νLk

= [hk − fk] ∈ J 2(Heven) given by a section of the intermediate Jacobian
fibration

J 2(Heven) = Heven
󰃭󰀓

F2 + Heven
Z

󰀔 ∼=
󰀓
F2

󰀔∨

󰃭(Heven
Z )∨, (6.30)
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where the second equality is an immediate consequence of Poincaré duality. It
is given by a functional defined up to integral periods that acts on each fiber by

νLk
(η)t :=

󰁝

X
(hk − fk) ∪ η =

󰁝

X
hk ∪ η, η ∈ F 2Heven(X), (6.31)

where the second term vanishes for dimensionality reasons as f ∪ η is at most
a 4-form.

Proposition 6.6. Let L = 󰁖
k Lk ⊂ X be a collection of Lagrangians as de-

scribed above. Then the sections νLk
∈ J 2(Heven), defined by the functionals

(6.31), are normal functions of Heven.

Proof. As described above, the difference 󰁨νLk
= hk − fk can be viewed as the

canonical lift described in Section 4.3 such that the only property that remains
to be shown is the horizontality condition

Q(∇t 󰁨νLk
, e3) =

󰁝

X
∇t (hk − fk) ∪ [X] = 0. (6.32)

This can be seen by an explicit calculation that is very similar to the discussion
around (4.19) in the B-model. Namely, the truncated normal functions are
given by

Vk = Q(󰁨νLk
, e2) =

󰁝

Γk
4

ω ∪ [H] + Ψ′
h,k, Wk = Q(󰁨νLk

, e3) = 1
2

󰁝

Γk
4

ω ∪ ω + Ψh,k,

(6.33)
and reproduce the expected structure Vk = W ′

k of the A-brane superpotential.
This last condition is equivalent to the vanishing of the coefficient of e0 = [p] in
∇t 󰁨νLk

, from which horizontality of the normal function follows.

As discussed around (6.5), the infinitesimal invariants correspond to the two-
point correlation functions on the disk

Ψ′′
k =

󰁛

β∈H2(X,L;Z)
OGWk

β(H, H) qβ =
󰁝

X
H ⊛ H ⊛ δΓk

4
= Q(∇2

t 󰁨νLk
, e3), (6.34)

in a way that is quite analogous to the absolute case (3.100).

6.3. Extending the Gamma-Integral Local System

At this stage, our approach has two deficiencies: The additional classical con-
tributions to the A-brane superpotential (5.53) coming from the flat bundle
are related to the choice of a specific integral local system Ĥeven

Z underlying
the extension. Analogous to the closed string case presented in Chapter 3,
they are expected to arise in this context as mirrors of the Abel-Jacobi limit
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6.3. Extending the Gamma-Integral Local System

and determine the LMHS of the extension as a constant of integration of the
quantum differential equation coming from [H] ⊛ (−). Their quantum inter-
pretation in pure A-model terms presumably requires an extension of Iritani’s
Γ̂-construction which takes the bundle data into account and correctly specifies
the asymptotics of A-model periods including the constant term Q(󰁨h(0), e3) = 󰁨c
of (4.36) associated to the number field that underlies the mirror object. We
conjecture that a systematic construction of a relative Gamma class and the
corresponding quantum Abel-Jacobi map

AJ : L 󰀁−→ νL = [h − f ] ∈ J 2(Heven) (6.35)

will generally reproduce the limiting periods of the mirror B-model. Secondly,
as already noted in [DK2], the short exact sequence (6.14) cannot explain an
extension class between two flat bundles on the same Lagrangian. We view this
as a symptom of the cohomology not fully representing the A-brane geometry
and resort to the fact that the corresponding truncated normal function can
often be derived after including an auxiliary reference (see Section 6.5). The
Lagrangian sphere discussed in Assumptions 5.5 is a canonical choice for this
reference and can be viewed as analog of the coordinate lines in the respective
B-model computations.

Guided by known examples and the physics underlying A-brane superpotentials,
we give a conjectural expression for a relative Gamma class which reproduces
the right integral structure for all established cases with a specific A-model
geometry.

Definition 6.7. Consider an A-brane L = (L, E) that satisfies Assumptions
5.5. According to Proposition 5.10, let 󰁨E be an extension of the flat bundle to
the bounding 4-chain Γ4 with ∂Γ4 = L. Then we identify the Chern character

Γ̂(L) := ch( 󰁨E) = 1 + ch1( 󰁨E) + ch2( 󰁨E) = 1 + c1( 󰁨E) + 1
2

󰀓
c1( 󰁨E)2 − 2c2( 󰁨E)

󰀔
(6.36)

as the relative Gamma class of L.

Conjecture 6.8. Let (X, L) and (Y , C) be an extended mirror pair for which
L satisfies Assumptions 5.5. Then the truncated normal function associated to
C satisfies1

Q(AJ(Ck), e3) = (2πi)2
󰁝

Γk,z

Ωz =
󰁝

X
󰁨σ

󰀓
e−ω ∪ Γ̂(Lk) ∪ fk

󰀔
, (6.37)

i.e. the classes

hk = σ
󰀓
Γ̂(Lk) ∪ fk

󰀔
= 󰁨σ

󰀓
e−ω ∪ Γ̂(Lk) ∪ fk

󰀔
(6.38)

are the generators of the extended integral local system in the A-model.
1Here, Γk,z is the smooth 3-chain with boundary ∂[Γk,z] = [Ck,z] discussed in Section 4.2.
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6. Extended Mirror Symmetry

Conjecture 6.8 is motivated by known examples (see Theorem 6.12) and in
general by the following observation (see also Remark 6.3).

Proposition 6.9. Consider an A-brane L = (L, E) in X that satisfies Assump-
tions 5.5 and let Ĥeven be an extension of the A-model VMHS for which the
integral generator h is defined via (6.38). Then the truncated normal function
Q(νL, e3) associated to the extension class νL := [h − f ] ∈ J 2(Heven) is up to
integral periods given by the A-brane superpotential WA, including all contri-
butions of the flat bundle E . In particular, the extension is fully determined by
WA and its derivative, i.e.

󰁨νL =
󰀕󰁝

Γ4
ω ∪ H +

󰁝

D
H + Ψ′

h

󰀖
e1 +

󰀕1
2

󰁝

Γ4
ω ∪ ω +

󰁝

D
ω + cs(E) + Ψh

󰀖
e0

(6.39)
is the canonical lift of the normal function.

Proof. A computation similar to the proof of Proposition 6.6 shows that the
relative Gamma class Γ̂(L) immediately yields the additional contribution of
the Chern-Simons invariant (Definition 5.9) to the truncated normal function,
as the Chern character ch( 󰁨E) = 1 + ch1( 󰁨E) + ch2( 󰁨E) of the extended bundle 󰁨E
has an expression

ch( 󰁨E) = tr exp
󰀣

−F 󰁨A
2πi

󰀤

= 1 − 1
2πi

tr(F 󰁨A) + 1
(2πi)2

tr(F 󰁨A ∧ F 󰁨A)
2 (6.40)

via Chern-Weil theory. Furthermore, the second term of (6.40) gives a 2-chain
integral

󰁝

∆
ω, ∆ = PD

󰀓
c1( 󰁨E)

󰀔
∈ H2(Γ4, L;Z) ∼= H2(Γ4;Z). (6.41)

The homology class ∆ does not always admit a representation by a disk, as Γ4
need not be simply connected. However, because the diagram

H2(Γ4;Z)

P D
󰈃󰈃

incl.∗ 󰈣󰈣 H2(L)

P D
󰈃󰈃

H2(Γ4, L,Z) ∂ 󰈣󰈣 H1(L)

(6.42)

commutes, ∆ bounds the 1-cycle representing c1(E), such that
󰁝

∆
ω =

󰁝

Γ2
ω mod integral periods, (6.43)

where Γ2 ∈ H2(X, L;Z) is the class of a disk discussed around (5.52). Putting
everything together yields the expression (6.39).
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In those cases were Assumptions 5.5 are met, we interpret the extension Ĥeven

with underlying extended Gamma-integral structure Ĥeven
Z as the extended A-

model VMHS that produces the relevant extension class intrinsically in the
A-model. Notably, this includes examples in which the Lagrangian is a spher-
ical 3-manifold whose Chern-Simons invariant is always rational [Nis], see also
Appendix B for a discussion of lens spaces. This is in line with the expected
rational Abel-Jacobi limit for a mirror algebraic cycle that is defined over Q,
cf. Section 4.3. Further speculations regarding K-theory and the Mukai pairing
can be found in the outlook (Chapter 8).

6.4. Asymptotics and Frob Modules

To make the monodromy M̂ : Ĥeven
Z → Ĥeven

Z around q = 0 unipotent, we
pass to a r-fold cover with local coordinate q̂ = q1/r and extended monodromy
logarithm N̂ = log(M̂ r). At the puncture, N̂ is given by −2πi Resq̂=0(∇) and
we consider

∇q̂

󰀓
[δΓk

4
]
󰀔

= r

2πiq

󰁛

β∈H2(X,L;Z)
OGWβ(H, H) qβ [ℓ]. (6.44)

As whenever β ∕= 0 all holomorphic disks have positive area
󰁕

β ω > 0, we have
qβ → 0 as q → 0. The residue is then given by

Resq̂=0∇q̂

󰀓
[δΓk

4
]
󰀔

= r

2πi
OGW0(H, H) [ℓ] = r

2πi

󰀣󰁝

Γk
4

H ∪ H

󰀤

[ℓ], (6.45)

which is r/(2πi) times the only non-vanishing entry of the matrix representing
the cup product e2 ∪ fk. Along similar lines (see [CK2]) we can compute the
remaining entries of the residue matrix such that the monodromy logarithm of
the extended A-model VMHS at 0 ∈ ∆q̂ is given by −r[H]∪(−) : Ĥeven → Ĥeven,
which in the basis {ei, fk} is represented by the matrix

N̂q̂=0 = r ·

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 0 0 · · · 0
−1 0 0 0 0 · · · 0
0 κ 0 0 λ1 · · · λd

0 0 1 0 0 · · · 0
0 0 0 0 0 · · · 0
... ... ... ... ... . . . ...
0 0 0 0 0 · · · 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

. (6.46)

Here, r corresponds to the order of the torsion group H2(L;Z). The associated
relative weight filtration Ŵ• = Ŵ•(N̂) leads to a filtration Ŵ• = Ŵ ⊗ O∆∗ of
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Ĥeven such that the graded pieces fit into the diagram with horizontal exact
sequences

H0

rN

󰈃󰈃

∼ 󰈣󰈣 Ĥ0

N̂
󰈃󰈃

0 󰈣󰈣H2

rN

󰈃󰈃

󰈣󰈣 Ĥ2

N̂
󰈃󰈃

󰈣󰈣 IZ 󰈣󰈣

L

󰈃󰈃

0

0 󰈣󰈣H4

rN

󰈃󰈃

󰈣󰈣 Ĥ4

N̂
󰈃󰈃

󰈣󰈣 H 󰈣󰈣 0

H6 ∼ 󰈣󰈣 Ĥ6,

(6.47)

cf. (6.13). There is an immediate resemblance with (4.25), where we in partic-
ular identify the torsion group H in (4.25) with H2(L;Z) and the degree of the
branched covering Ŷ → ∆∗

ẑ with its order.

The nilpotent orbit associated to the extension Ĥeven is fully determined by the
H2-module structure on Ĥeven defined by the cup product (6.21). Its deforma-
tion to an extended quantum product subject to the open WDVV equations can
be viewed as an extended version of a Frobenius module in the sense of [CF2],
which we discuss further below. In view of Remark 4.3, also the A-model con-
struction admits a dual perspective. Starting from the cohomology of the pair
(X, L),

0 −→ H0(X, L) −→ H0(X) −→ H0(L) −→ · · ·
0 −→ H2(X, L) −→ H2(X) −→ 0

· · · −→ H3(X) −→ H3(L) −→ H4(X, L) −→ H4(X) −→ 0
0 −→ H6(X, L) −→ H6(X) −→ 0,

(6.48)

it is based on the short exact sequence

0 −→ coker
󰀓
H3(X) → H3(L)

󰀔
−→ H4(X, L) −→ H4(X) −→ 0. (6.49)

Defining A-model Hodge and weight filtrations according to Remark 4.3 leads
to a VMHS (Ĥeven)∨ which is dual to Ĥeven via

H2(X \ L) × H4(X, L) −→ C, (α, β) 󰀁−→
󰁝

P D(α)
β. (6.50)

We denote by f∨
k the extending generators and specify the corresponding ex-

tended quantum product by

e2 ⊛̌ e2 :=
󰁛

β∈H2(X;Z)
GWβ(e2, e2) qβ e1 +

󰁛

β∈H2(X,L;Z)
OGW k

β (e2, e2) qβ f∨
k , (6.51)
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such that the variations of MHS (Ĥeven)∨ and (Ĥ3)∨ match by construction .
In particular, the extended Dubrovin connection is now given by

∇t = d +
󰀕

[H] ⊛̌ (−)
󰀖

⊗ dt = d +

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 0 · · · 0
1 0 0 0 · · · 0
0 −Φ′′′ 0 0 · · · 0
0 0 −1 0 · · · 0
0 0 0 0 · · · 0
0 −Ψ′′

1 0 0 · · · 0
... ... ... ... . . . ...
0 −Ψ′′

d 0 0 · · · 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

⊗ dq

2πi q
, (6.52)

cf. (4.34). The extended quantum product (6.51) on Heven(X, L) arising in this
way as a mirror of the Gauß-Manin connection coincides with a special case of
the much more general relative quantum product ,e2)מ e2) constructed in [ST3].
The product מ is defined for any Lagrangian submanifold and its associativity
is equivalent to the validity of a more general set of open WDVV equations
including boundary punctures in terms of bounding cochains (see Section 5.2).
In would be interesting to further study this general construction in the present
context, in particular in view of including boundary punctures and potential
mirror geometries in the B-model.

From this point of view the VMHS (Ĥeven)∨ can also be related to a structure
put forward in [Alc]. In the closed string context, associativity of the quantum
product in terms of the WDVV equations and the corresponding existence of the
Gromov-Witten potential makes the even degree cohomology into a Frobenius
manifold. While part of this structure is lost in the open string situation, an
adapted object was introduced in [op.cit.] that generally captures the geometry
of the open WDVV equations.

Definition 6.10. Let M be a manifold with a flat connection ∇ : TM →
TM ⊗ Ω1

M and a symmetric bilinear form ⊛ : TM ⊗ TM → TM on its tangent
bundle. Then M is called a Frob manifold if ⊛ is associative and arises locally
from a vector field G called vector potential, i.e.

X ⊛ Y = [X, [Y, G]] = ∇X∇Y G, (6.53)

for all ∇-flat vector fields X and Y .

A Frob manifold can be thought of as a Frobenius manifold in which the re-
quirement of a metric compatible with the bilinear form is dropped. As a
consequence, not all of the structure constants as in (3.115) can be integrated
into a single potential function, leading to the notion of a vector that carries the
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product information. As shown in [op.cit.], an open version of the WDVV equa-
tions arise as associativity constraints in a situation where the Frob manifold is
given by an extension

0 −→ I −→ M −→ N −→ 0, (6.54)

where all morphisms should be compatible with the Frob manifold data. As is
the case for Frobenius manifolds, not the entirety of the multiplicative structure
is relevant for questions in Hodge theory and the extended A-model VMHS,
where we are only interested in the H2-module structure induced from the
extended quantum product. For this reason we want to introduce the following
object, that should be viewed as an extension of a Frobenius module as in
Definition 3.18 and Definition 3.19.

Definition 6.11. Let V = 󰁏2n
i=0 Vi with n ∈ N and V0 = 〈1〉 be a graded finite

dimensional C-vector space together with a graded module structure

⊛ : Sym(V2) × V −→ V. (6.55)

We call (V,⊛) a graded V2-Frob module of weight n if the module structure
arises from a classical vector potential: Given a graded basis {ej} of V with
associated linear coordinates tj, there is a vector potential with components
Gk

c : V → C such that

ei ⊛ ej =
󰁛

k

∂2Gk
c

∂ti∂tj

ek, ei ∈ V2, ej, ek ∈ V. (6.56)

We then consider the specific situation in which (V,⊛) is of weight n = 3 and
given by an extension (6.54) of a Frobenius module in the sense of Definition 3.18
with I of rank d, where the extending generators are not contained in V2. Set
dim V2 = r and define qi = exp(2πiti) when ei ∈ V2. A quantum vector potential
is a vector with components Gk : V → C, each of the form Gk = Gk

c +Gk
q where

Gk
q is a convergent power series in the qi vanishing at qi = 0 for all i. Note

that when considering an extension of a Frobenius module, there are always
components of the form ∂iF , i = 1, . . . , r, that can be integrated to a single
potential. In addition to the WDVV equations (3.114) of this potential, we
require the vector potential to satisfy the open WDVV equations

󰁛

a,b

∂a∂i∂j F · Qab · ∂b∂l Gk =
󰁛

a,b

∂a∂i Gk · Qab · ∂b∂j∂l F, for all i, j, k, l, (6.57)

where ei, ej, ek, el ∈ V2 and ea, eb ∈ V . We then call (V,⊛q) a quantum deformed
Frob module if the operation

ei ⊛q ej =
󰁛

k

∂2Gk

∂ti∂tj

ek, ei ∈ V2, ej, ek ∈ V, (6.58)

defines a Frob module for each q = (q1, . . . qr).
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6.5. The Example of the Real Quintic

The obvious example of a quantum deformed Frob module that we have in mind
is related to the short exact sequence

0 −→ coker
󰀓
H3(X) → H3(L)

󰀔
−→ Heven(X, L) −→ Heven(X) −→ 0, (6.59)

which defines a rank d extension of a quantum deformed Frobenius module,
where L = 󰁖

k Lk ⊂ X as above. Here, the open WDVV equations (6.29)
encode associativity of the product (6.51) and the associated vector potential
is given by

G = (∂1F, . . . , ∂rF, Ψ1, . . . , Ψd) , (6.60)

with h1,1 = r and rk(I) = d, and where F is given by the modified Gromov-
Witten potential (3.116). Note that part of the vector potential can actually be
integrated to a single quantum potential: A compatible metric exists for those
components that are associated to the closed string sector, where Heven(X) is an
ordinary Frobenius module. Only the components coming from the extension
have a live on their own, which is a known feature of N = 1 special geometry
as described in [LMW1, LMW2].

Given an extended mirror pair according to Definition 6.1, we find a corre-
spondence between weight 3, rank d quantum deformed Frob modules in the
A-model with extensions of variations of MHS coming from a homologically
trivial algebraic cycle as described in Remark 4.3. We comment on potential
future investigations in Chapter 8.

6.5. The Example of the Real Quintic

Now that we have established all of the relevant machinery in both the A- and
the B-model, we are in a position to rephrase the main example of [Wal1] in
this new language. It concerns a pair of cycles lying in the Fermat quintic
(X, ω) and mirror quintic family Y → ∆∗ discussed in Example 3.22 that is
shown to be an extended mirror pair in the sense of Definition 6.1. On the
A-side, we consider the real quintic L = RP3 that arises as the fixed point locus
of an anti-holomorphic involution on X, as described in Example 5.6. Flat
U(1)-bundles E on L are up to isomorphism classified by their integral first
Chern class c1(E) ∈ H2(L;Z) ∼= Z/2Z such that there are two possible A-brane
configurations which we will denote by L+ = (L, E+) and L− = (L, E−). Based
on constraints imposed by the consistency of A-brane charges [op.cit.], the most
general superpotentials associated to L± are up to closed string periods, i.e.
mod tZ + Z, given by

W+ = t2

4 +Ψh, W− = t2

4 − t

2 + 1
4 −Ψh, Ψh = 1

(2πi)2

∞󰁛

d=1
󰁨nd qd/2, (6.61)
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6. Extended Mirror Symmetry

with 󰁨nd = OGWβ for β = d [ℓ]. We interpret these superpotentials as the do-
main wall tensions of L± in relation to a fixed Lagrangian sphere L0 ∼= S3 ⊂ X
in the same homology class (cf. Proposition 5.3), where the classical currents
(6.16) account for the terms proportional to t2. Thinking of the superpotentials
as truncated normal functions W± = Q(󰁨ν±, e3), the class ν± = [󰁨ν±] ∈ J 2(Heven)
defines an extension of the A-model VMHS associated to (X, ω). Note that be-
cause the superpotentials are measured with respect to the same Lagrangian
L0 up to homology, the corresponding F̂2-lifts f± coincide, while the quantum
deformed currents h± differ due to different choices of flat bundle on L, see also
Figure 6.2.

L0 ≅ S3

Γ4

Γ4

L

L

∫Γ2

ω = 0

∫Γ2

ω = − t
2

Figure 6.2.: Domain wall tension coming from the real quintic. The super-
potentials W± arise from the two choices of flat bundle on L, when measured
in reference to a fixed Lagrangian sphere L0. In case of the non-trivial Chern
class, the tension receives additional contributions from the bundle data that
specifies the A-brane.

Under monodromy M̂ of the corresponding extended local system, the extending
generators h± are exchanged because

W+(t + 1) = W−(t) + t, W−(t + 1) = W+(t), (6.62)

such that we have to consider a pullback along the double cover q̂ = q1/2 󰀁→ q and
the monodromy logarithm N̂ = log(M̂2). In the basis {gi, h±} the respective
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6.5. The Example of the Real Quintic

matrices are given by

M̂ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0 0 0 0 0
−1 1 0 0 0 0
0 5 1 0 1 0

−5 5 1 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

, N̂ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 0 0 0
−2 0 0 0 0 0
5 10 0 0 1 1

−25
3 5 2 0 0 −1

0 0 0 0 0 0
0 0 0 0 0 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

. (6.63)

Taking the difference TA = W+ − W− yields the domain wall tension between
the vacua specified by the bundles E+ and E− on the same Lagrangian. It is up
to integral periods of the form

TA = t

2 − 1
4 + 2Ψh = t

2 −
󰀣

1
4 + 1

2π2

∞󰁛

d=1
󰁨nd qd/2

󰀤

mod tZ + Z, (6.64)

and likewise defines an extension of Heven on the double cover with canonical
lift of the normal function 󰁨ν = T ′

A e1 + TA e0. Under monodromy t 󰀁→ t + 1 the
domain wall tension behaves as

TA(t + 1) = −TA(t) + t, (6.65)

and the matrix

N̂ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 0 0
−2 0 0 0 0
5 10 0 0 0

−25
3 5 2 0 1

0 0 0 0 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
(6.66)

represents the corresponding monodromy logarithm of the extended local sys-
tem.

On the side of the B-model we consider the Deligne conics C± → ∆∗ defined in
Example 4.2. Recall that these algebraic cycles are only globally well defined
after passing to the double cover Ŷ defined over ẑ = z1/2 󰀁→ z, as the components
of C±,ψ are exchanged under monodromy around z = 0. Choosing in each
fiber a smooth 3-chain Γz with boundary ∂Γz = [C+,z] − [C−,z], the B-brane
superpotential is given by the integral

TB =
󰁝

Γz

Ωz. (6.67)

The statement of extended mirror symmetry for these two cycles can now be
formulated as the following Mirror Theorem for the quintic.
Theorem 6.12. The cycles given by both choices of flat bundle on the real
quintic L± in X and the Deligne conics C± ⊂ Ŷ determine an extended mirror
pair in the sense of Definition 6.1. In particular, the integral local system in the
A-model is reproduced by the relative Gamma class.
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6. Extended Mirror Symmetry

Proof. The B-brane superpotential TB satisfies an inhomogeneous Picard-Fuchs
equation with inhomogeneity [MW] (see also Example 4.2)

JDel = −15
4

√
z, (6.68)

for the standard choice of holomorphic 3-form (3.38) on Ŷ and its particular
solution τ(z) computes the open Gromov-Witten potential Ψh(q) of the real
quintic. The particular solution corresponds to a multiple of the hypergeometric
series (3.41) evaluated at h = 1/2,

τ(z) = −1
4

∞󰁛

n=0

Γ(5(n + 1/2) + 1)
Γ(n + 1/2 + 1)5 zn+1/2, (6.69)

and by the localization calculation of [PSW] the open Gromov-Witten potential
is obtained by canonical normalization and composition with the mirror map,
i.e.

(2πi)2 Ψh(q) = τ(z(q))
ϖ0(z(q)) . (6.70)

This identification establishes an equivalence of the A- and B-brane superpo-
tentials up to solutions of the homogeneous Picard-Fuchs equation. Employed
as truncated normal functions in terms of the canonical lift (4.19), this induces
an isomorphism of the underlying complex variations of MHS. Equality of in-
tegral local systems corresponds to an identification of the classical terms in
the superpotentials which determine the LMHS. In the A-model, the physical
prediction for their value is given in (6.64). After analytic continuation of TB to
the Landau-Ginzburg point, the requirement of integral monodromy provides
the LMHS of the B-model [Wal1]

TB(z) = ϖ1(z)
2 −

󰀣
ϖ0(z)

4 + 1
2π2 τ(z)

󰀤

, TA(q) = TB(z(q))
ϖ0(z(q)) , (6.71)

which reproduces (6.64) on the A-side. In a fashion intrinsic to the A-model,
this integral structure can be also derived from the relative Gamma classes
associated to a suitable configuration of A-branes. We consider L± = (L ∪
L0, E±), where we include a reference 3-sphere L0 using Proposition 5.3 to make
the configuration homologically trivial. The corresponding integral local system
is now specified by Γ̂(L±) via (6.38). By Proposition 6.9 we have canonical lifts
of the respective normal functions

󰁨ν+ =
󰀕󰁝

Γ4
ω ∪ H + Ψ′

h

󰀖
e1 +

󰀕1
2

󰁝

Γ4
ω ∪ ω + Ψh

󰀖
e0,

󰁨ν− =
󰀕󰁝

Γ4
ω ∪ H −

󰁝

D
H − Ψ′

h

󰀖
e1 +

󰀕1
2

󰁝

Γ4
ω ∪ ω −

󰁝

D
ω + cs(E−) − Ψh

󰀖
e0,

(6.72)
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where for a globally trivial bundle both the first Chern class and the Chern-
Simons invariant vanish (mod Z). In particular, there are no contributions from
bundle data on the reference 3-sphere L0. By the index calculation presented in
Appendix B, the Chern-Simons invariant of the non-trivial bundle on L is given
by cs(E−) = 1/4 and the 2-chain contribution is given according to (5.52). Com-
puting the difference T± = W+ − W− of the superpotentials W± = Q(󰁨ν±, e3)
leads to a cancellation of the terms proportional to t2 and disk instantons asso-
ciated to L0, leaving the expression (6.64).

The flat connection ∇t in the canonical coordinate is determined by the in-
finitesimal invariant

D(z(q)) = 2Ψ′′
h = 15 q1/2 + 6900 q3/2 + 13603140 q5/2 + · · · , (6.73)

which we identify as twice the two-point correlation function on the disk by the
divisor axiom, see Axioms 5.7. Here, the open Gromov-Witten potential of L
is given by

(2πi)2 Ψh = 30 q1/2 + 4600
3 q3/2 + 5441256

5 q5/2 + · · · . (6.74)

The functional which mirrors the Abel-Jacobi map in the A-model is fully de-
termined by its action on F2 with limiting A-model periods

Q(󰁨h(0), e2) = −1
2 , Q(󰁨h(0), e3) = 1

4 , (6.75)

where the first component is related to the double cover and we can think of
the second component as

cs(E−) = 1
4 = − 6 ζ(2)

(2πi)2 ∈ C󰃭Z(2). (6.76)

From the point of view of the B-model, this Abel-Jacobi limit was found by
monodromy considerations around the conifold point in [Wal1, MW]. It would
be interesting to also verify its value based on the methods of [GGK2] applied
to the degenerated Deligne conics and the associated regulator image.

A version of Theorem 6.12 can also be formulated for the further examples
of extended mirror symmetry for one-parameter families discussed in [KW].
These include the sextic, octic and decimic hypersurfaces of the Doran-Morgan
classification [DM2], together with cycles analogous to the Deligne conics in
Example 4.2. In all of these cases, the mirror A-brane satisfies Assumptions
5.5 and the superpotential corresponds to a domain wall tension between two
choices of flat bundle on a Lagrangian that is topologically RP3, similar to the
real quintic.
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7. One-Loop Amplitudes from van
Geemen Lines

Algebraic cycles like the van Geemen lines, whose definition underlies an alge-
braic number field rather than Q, are perhaps the most interesting subjects of
future investigation. At the time of writing, there is no example of such a cycle
for which the mirror A-model geometry is fully understood. It should gener-
ally be expected that in these cases Assumptions 5.5 are not satisfied such that
both the q-series expansion of the normal function as well as its limiting value
carry arithmetic features whose A-model interpretation is yet to be unveiled.
Topological string theory provides a further tool to generate geometric data of
the A-model based on B-model calculations that is physically related to open
string loop amplitudes. This chapter is meant to demonstrate how this can
be achieved in arithmetically interesting examples, where this new enumerative
information could help assessing future candidate mirrors. We begin with a gen-
eral overview of the computational technique developed in [BCOV, Wal3, Wal2]
in Section 7.1. Afterwards, we discuss the example of the van Geemen lines (see
Example 6.2) and two of its analogs inside of the mirror octic, found in [JW],
in Section 7.2 and Section 7.3.

7.1. Loop Amplitudes and Tadpole Cancellation

In this context, the main object of study is the topological string partition
function, in which we allow for a general genus g and any number h of boundary
components [Wal3]. Similar to its tree-level counterpart, it is of the form

F (g,h) =
󰁛

β ∕=0
OGW

(g,h)
β qβ, (7.1)

where the coefficients OGW
(g,h)
β denote the corresponding open Gromov-Witten

invariants of degree β ∈ H2(X, L;Z). As before, we also allow for situations
in which the canonical coordinate expresses a branching behavior where the
formal power series is weighted by an additional factor of 1/r. The precise
definition of these more general Gromov-Witten invariants involves a moduli
space 󰁦M(g,h)(X, L, β) very similar to the one considered in Section 5.1, except
for the fact that we now allow for additional topologies of the open stable maps
u : (Σ, ∂Σ) → (X, L).
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7. One-Loop Amplitudes from van Geemen Lines

However, not much is known about the geometry of 󰁦M(g,h)(X, L, β) for a general
pair (g, h), such that there is currently no formulation of axioms analogous to
Axioms 5.7. In terms of the virtual fundamental class, a naive definition of
these more general open Gromov-Witten invariants is

OGW
(g,h)
β =

󰁝

󰁦M(g,h)(X,L,β)
1, (7.2)

when we assume that the moduli space can be described as a smooth orbifold
with boundary and corners. However, the corresponding boundary strata are
in general much more complicated than in the case of disks, producing various
anomalies (including the ones discussed in Remark 5.2) that hinder a general
understanding of the enumerative meaning of (7.2). The real case, as studied
in [GZ1, GZ2, GZ3], again provides an exception where the definition can be
made precise. Similar to the discussion of disks in Chapter 5, the problematic
behavior at the boundary is in these cases controlled by the action of an anti-
holomorphic involution.

The partition function (7.1) described so far is an object intrinsic to the A-
model that is, as always, only well-defined in a formal neighborhood around
the large volume limit. By the mirror principle, this q-series can also be viewed
from a B-model point of view in which it arises as the large complex structure
limit in the canonical coordinate of a function that is more generally defined
on the moduli space of complex structure of the mirror Calabi-Yau Y , see e.g.
[Liu] for a mathematical survey. While this B-model partition function depends
on the complex structure, it does not preserve the distinction of local holomor-
phic and antiholomorphic coordinates, which can be viewed as a consequence
of the non-holomorphy of the Hodge decomposition (3.1). In case of the closed
string, the famous result of [BCOV] is that this deviation from being holomor-
phic is captured by certain contributions of degenerating surfaces which allows
to systematically compute the amplitude in terms of the recursive holomorphic
anomaly equations. An extension of this procedure to the open string sector
including D-branes was achieved in [Wal3], where the basic philosophy of the
anomaly arising form the boundary ∂ 󰁦M(g,h)(X, L, β) persists. The resulting
extended holomorphic anomaly equations allow for a recursive computation of
the numbers OGW

(g,h)
β , starting in case of a single D-brane with the Yukawa

coupling C and the infinitesimal invariant D that act as interaction vertices in
certain Feynman rules that describe the decomposition of the worldsheet.

The annulus amplitude A = F (0,2) arises physically as the one-loop amplitude of
an open string, in which we assume that both boundary conditions are specified
by a single D-brane. It is one of the simplest partition functions in this context,
where the corresponding anomaly equation is, when going back to the large
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7.1. Loop Amplitudes and Tadpole Cancellation

complex structure limit, given by1 [Wal2]

∂tA = ∂tF (0,2) = D2 C−1 + ∂tf
(0,2). (7.3)

Here, the holomorphic function f (0,2) : ∆∗ → C is the holomorphic ambiguity
that can be viewed as a “constant of integration” of the respective differential
equation. The idea behind this approach is that any amplitude can be computed
by an equation similar to (7.3) up to a finite number of such ambiguities, which
can often be fixed by studying their behavior at singular points in the moduli
space. One physical requirement for the amplitude is related to an interpreta-
tion as counting integral BPS invariants in terms of an Ooguri-Vafa multicover
formula, where the one-loop function in particular is expected to be a 1-function
in the sense of Definition 3.24. The 1-function property can be systematically
assessed by verifying the condition on prime numbers (3.136) for various choices
of f (0,2), for example using Mathematica [Wol]. The validity of the recursion
relation furthermore depends on the decoupling of continuous open string de-
formation parameters, which is always an assumption that already enters into
the definition of the superpotential (2.28) from which the infinitesimal invariant
is derived.

It was further noted in [Wal2] that in order to achieve Ooguri-Vafa integrality
and a satisfactory BPS interpretation of loop amplitudes in general, it is nec-
essary to also include the count of unoriented topological string worldsheets at
any order in string perturbation theory. This requirement can be understood
as the analog of tadpole cancellation2 for topological strings, where in case of
the annulus amplitude it suffices to bring the contribution of Klein bottles and
Möbius strips into the mix. As described in [op.cit.], the contributions of the
Möbius strip decouple in case of brane vacua separated by discrete Wilson lines,
which we also assume in what follows. Although this is a sensible assumption
from the physical point of view, where we always restrict to a limit without
continuous open string deformation parameters, an explicit verification of this
condition would require a better understanding of the relevant A-model geom-
etry. In case of the one-parameter models, the Klein bottle contributions are
seen to be generally of the form [op.cit.]

K ∼ 1
2πi

log
󰀥󰀣

q

z

dz

dq

󰀤

(1 − αz)− 1
4

󰀦

, (7.4)

where 1−αz describes the conifold locus in moduli space. When computing one-
loop amplitudes we will therefore proceed as follows: We first solve the extended

1Note that due to a different normalization of the infinitesimal invariant, we have a prefactor
of the first term that differs from the existing literature.

2This phenomenon is distinct from the tadpole anomaly in the context of Floer theory
discussed in Section 5.1.

107



7. One-Loop Amplitudes from van Geemen Lines

holomorphic anomaly equation (7.3) and choose the holomorphic ambiguity in
a way that makes A into a 1-function. As it turns out in the examples at hand,
this Ooguri-Vafa integrality can always be achieved for the annulus amplitude
itself. We then find that the combination

A + K = 1
2πi

∞󰁛

d=1
󰁨n(0,2)

d qd = 1
2πi

∞󰁛

d=1
n

(0,2)
d Li1(qd) =

∞󰁛

d,k=1
n

(0,2)
d

qdk

k
(7.5)

turns out to be a 1-function with 󰁨n(0,2)
d ∈ Q whose integral coefficients can be

extracted iteratively via the formula

n
(0,2)
d = 󰁨n(0,2)

d −
󰁛

k|d

n
(0,2)
d/k

k
∈ Z. (7.6)

We interpret the integers n
(0,2)
d ∈ Z as BPS invariants of the D-brane configura-

tion and list the low degree examples in Appendix C. Although this approach
is analogous to [Wal2], the fact that the mirror of van Geemen-type algebraic
cycles is not expected to be real means that the corresponding enumerative in-
variants are strictly speaking not well-defined. We view our success in finding
integral invariants also in these cases as further evidence for a broader applica-
bility of this general strategy.

7.2. One-Loop Invariants of the van Geemen Lines

Starting with the mirror quintic, we consider the van Geemen lines with super-
potential (6.11) from which we derive their infinitesimal invariant

D = ∂2
t TA =

√
−3

󰀕
140000 q + 44592400000

3 q2 + 5015947794500000
3 q3 + · · ·

󰀖
.

(7.7)
Integrating the extended holomorphic anomaly equation for the annulus ampli-
tude yields

󰁝 󰀣
D2

C

󰀤
dq

2πi q
= 1

2πi

󰀕
−5880000000 q2 − 2490412400000000

3 q3 − · · ·
󰀖

, (7.8)

which does not satisfy the desired Ooguri-Vafa integrality without correctly
specifying the holomorphic ambiguity. Based on examples from [Wal2], it is
expected that the holomorphic ambiguity exhibits a singular behavior at the
singularity locus of the inhomogeneity (6.10), and we find experimentally that

f (0,2) = − 1
2πi

27
8 log

󰀕
1 − 55 128

3 q
󰀖

= 1
2πi

󰀣

450000 q + 29653500000 q2 + 7861631558750000q3

3 + · · ·
󰀤 (7.9)
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is the minimal choice which does the job. This means that we interpret the sum

A =
󰁝 󰀣

D2

C

󰀤
dq

2πi q
+ f (0,2)

= 1
2πi

󰀓
450000 q + 23773500000 q2 + 1790406386250000 q3 + · · ·

󰀔 (7.10)

as the relevant annulus amplitude. While its coefficients are generally rational,
it satisfies the 1-function property that we checked up to degree d ∼ 50. We
note that one way to verify Ooguri-Vafa integrality in this case is to assess
whether the coefficients of the exponentiated power series

exp
󰁫
2πi(A+f (0,2))

󰁬
= 1+450000 q+125023500000 q2+27675981386250000 q3+· · ·

(7.11)
are integral, see [SVW2, Propositon 7]. As described above, tadpole cancellation
requires the inclusion of the Klein bottle amplitude, which in case of the mirror
quintic and in our conventions is given by

K = − 1
2πi

4 log
󰀥󰀣

q

z

dz

dq

󰀤 󰀓
1 − 55z

󰀔− 1
4

󰀦

= 1
2πi

󰀕
−45 q − 582725

2 q2 − 590044750q3 − · · ·
󰀖

.

(7.12)

The sum of the annulus and Klein bottle amplitudes

A + K = 1
2πi

󰀕
449955 q + 47546417275

2 q2 + 1790405796205250 q3 + · · ·
󰀖

(7.13)
again has rational coefficients 󰁨n(0,2)

d ∈ Q but admits a resummation of the type
(7.5) for which n

(0,2)
d ∈ Z are expected to have a proper interpretation as count-

ing BPS states. The results in low degrees for both the annulus amplitude and
the proper BPS counts are given in Table C.1 and Table C.2. As the overall ir-
rational prefactor gets resolved, one could speculate that these invariants admit
a standard enumerative interpretation, as is the case for cycles defined over Q.

7.3. One-Loop Invariants of lines on the Mirror Octic

Turning to the next examples, we consider the one-parameter family of varieties
defined by

Yz =
󰁱
W = x8

1 + x8
2 + x8

3 + x8
4 + 4x2

5 − ψ x1x2x3x4x5 = 0
󰁲

⊂ WP4
1,1,1,1,4 (7.14)

in weighted projective space. We choose z = (4ψ)−8 as local coordinate and
form the quotient with respect to the group of symmetries leaving the polyno-
mial W invariant. This procedure yields a one-parameter family of Calabi-Yau
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threefolds Y → ∆∗ with Hodge numbers of mirror quintic type (3.15), called the
mirror octic, see e.g. [KW]. The mirror octic family together with the special
fiber at ψ = 0

X =
󰁱
x8

1 + x8
2 + x8

3 + x8
4 + 4x2

5 = 0
󰁲

⊂ WP4
1,1,1,1,4, (7.15)

thought of as a symplectic manifold, form a mirror pair whose treatment is very
similar to the standard example of [CdlOGP] as both complex and symplectic
structure moduli are one dimensional. The Picard-Fuchs operator is given by

DPF (−) = (2πi)4
󰀗
θ4 − 216z

󰀕
θ + 1

8

󰀖 󰀕
θ + 3

8

󰀖 󰀕
θ + 5

8

󰀖 󰀕
θ + 7

8

󰀖󰀘
(−) (7.16)

and leads to a Yukawa-coupling

C = κ

(1 − αz) ϖ2
0

󰀣
q

z

dz

dq

󰀤3

= 2+29504 q+1030708800 q2+38440454795264 q3+· · · ,

(7.17)
where the conifold locus is specified by α = 216 and the classical contribution
corresponds to the triple-intersection number

κ = 1
󰁔n

i=1 νi

󰁝

X
H ∪ H ∪ H = 8

4 = 2 (7.18)

that has to be correctly weighted by (ν0, ν1, ν2, ν3, ν4) = (1, 1, 1, 1, 4), cf. [KT].
There are two families of lines in the mirror octic that can be viewed as analo-
gous to the van Geemen lines [JW]. The first is governed by an inhomogeneous
Picard-Fuchs equation with inhomogeneity

J1(z) =
√

−7 · 147
16 · −823543 + 184534 ψ8 + 129 ψ16

ψ4(ψ8 − 2401)5/2 , (7.19)

from which we can derive the infinitesimal invariant

D =
√

−7
󰀓
77672448 q + 9459686780092416 q2 + · · ·

󰀔
. (7.20)

Using the extended holomorphic anomaly equation (7.3) we find for the annulus
amplitude

A = 1
2πi

󰀓
−10557766062047232 q2 − 1714329236777071559049216 q3 + · · ·

󰀔
,

(7.21)
which turns out to be a 1-function in itself, setting f (0,2) = 0. The corresponding
enumerative invariants are collected in Table C.3. Again, a satisfactory BPS
interpretation is only expected after including Klein bottle contributions given
by the formula (7.12), which in case of the mirror octic amounts to

K = 1
2πi

󰀓
−2304 q − 183464704 q2 − 6942319837184 q3 − · · ·

󰀔
. (7.22)
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The combined amplitude

A + K = 1
2πi

󰀓
−2304 q − 10557766245511936 q2 − · · ·

󰀔
(7.23)

then admits a multicover resummation whose low degree coefficients can be
found in Table C.4. As the resulting invariants turn out to be negative, we
collected their absolute values for the purpose of readability. This is likely a
consequence of a missing factor of normalization, which can only be fixed by a
more direct comparison with the (currently unknown) A-model geometry.

The second van Geemen-like inhomogeneity takes the form

J2(z) =
√

−3 · 3
16 · ψ(8 + ψ2)

(ψ2 − 7)5/2 (7.24)

and leads to the infinitesimal invariant

D =
√

−3
󰀓
48 q1/4 + 4896 q1/2 + 483840 q3/4 + 48733440 q + · · ·

󰀔
. (7.25)

We note that unlike the previous examples, the superpotential associated to
this cycle exhibits a branching behavior, such that we have to consider an
appropriate covering q1/4 󰀁→ q in the large volume limit. The annulus amplitude
can again be defined with vanishing holomorphic ambiguity and is given by

A = 1
2πi

󰀓
−6912 q1/2 − 940032 q3/4 − 105629184 q − · · ·

󰀔
, (7.26)

where the associated (negative) invariants are given in Table C.5. The BPS
invariants of the combined amplitude

A + K = 1
2πi

󰀓
−6912 q1/2 − 940032 q3/4 − 105631488 q − · · ·

󰀔
(7.27)

can be found in Table C.6. As a consequence of the covering, the growth of the
invariants is slower than for the previous examples. It is also worth noting that
the contributions by non-orientable surfaces in this case only arise in degrees
that are multiples of four.

We stress that the computations presented in this section have to be viewed as
preliminary case studies, whose final assessments depend upon a further compar-
ison with A-model investigations. For example, even though we demonstrated
that the extended holomorphic anomaly equations can in principle be used to
produce integral invariants, their explicit form might require a further normal-
ization that is not obtainable from a B-model perspective at this point. Also,
the lack of a precise definition of higher genus open Gromov-Witten invariants,
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7. One-Loop Amplitudes from van Geemen Lines

and in particular of the associated integral BPS numbers, necessitates further
consistency checks between the A- and B-model geometries. We therefore sug-
gest to revisit this subject as soon as canditate mirrors of the van Geemem
lines and its cousins are available. An outlook on further examples is given in
Chapter 8.
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8. Summary and Outlook

The aim of this work was to derive implications of the extended mirror principle
[Wal1] for the geometry and topology of A-branes, in order to develop a bet-
ter Hodge theoretic understanding of the phenomenon built upon the A-model
VMHS [Mor3]. As a first step, we reviewed the physical concepts and the rel-
evant Hodge theory behind closed string mirror symmetry for one-parameter
Calabi-Yau threefolds, with a particular emphasis on the quantum structures
that underly the topological A-model.

In regard to B-branes, we collected what is known about their relation to Hodge
theoretic normal functions, when the corresponding extension class is produced
by the presence of an algebraic cycle [MW]. We described how the B-brane
superpotential, in terms of the infinitesimal invariant of a certain canonical lift,
fully determines the extension in a degeneration limit with maximally unipo-
tent monodromy. The expansion of the superpotential around this singularity
was characterized using monodromy considerations, which identifies a certain
constant term as the limiting value of the relevant Abel-Jacobi map [GGK2].

Prior studies established that the geometric derivation of the normal function
could not be imitated directly in the A-model, because the real locus of an an-
tiholomorphic involution is typically not homologically trivial [DK2]. For this
reason, we proceeded to carefully analyze the structure of A-brane superpoten-
tials associated to Lagrangians with favorable topological properties. In par-
ticular, we explained the relevance and existence of a homologically equivalent
Lagrangian sphere, with respect to which the superpotential has to be measured
in order to handle a certain tadpole anomaly arising in open Gromov-Witten
theory. In combination with the Solomon-Tukachinsky axioms [ST1, ST2], this
enabled us to formulate an open Gromov-Witten potential in very close analogy
to its absolute counterpart. We explained how the gauge bundle carried by an
A-brane furthermore contributes additional classical terms, which are especially
important in understanding the main example of the real quintic.

Equipped with this more systematic understanding of the geometric data that
determines the superpotential, we were able to describe a construction based
on which the extension class can be produced independently in the A-model.
The crucial insight consisted of the fact that including a Lagrangian sphere
as a fixed reference cycle allows to geometrically define the expected normal
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function in a fashion similar to the B-model. A flat connection acting on the
extension was constructed from an extension of the quantum cup product by
holomorphic disks, leading to an identification of the infinitesimal invariant with
the open string two-point function and producing the open WDVV equations
[Alc, ST3, CZ] as associativity constraints. While this normal function of the
A-model VMHS correctly captures the topological contributions to the superpo-
tential, a modification is required to also introduce the classical terms pertaining
to gauge bundle data. The fact that these correspond to a certain constant of
integration from the point of view of the quantum differential equation defined
by the extended quantum product, led us to suspect that they should arise from
a relative version of the Gamma class [Iri, KKP]. Indeed, based on the physical
expectation that the Abel-Jacobi limit should correspond to the Chern-Simons
invariant in certain examples (satisfying Assumptions 5.5), we were able to con-
struct an extension of the Gamma integral local system build from the bundle
data, leading to Conjecture 6.8. We demonstrated the validity of the conjecture
for the main example of the extended mirror principle [Wal1], by formulating
a Mirror Theorem (see Theorem 6.12) that rephrases the duality as an isomor-
phism between extensions of variations of MHS.

Our construction of the relative Gamma class does not immediately apply be-
yond Assumptions 5.5, which excludes algebraic cycles like the van Geemen lines
at this point. We demonstrated how the extended holomorphic anomaly equa-
tions of [Wal3] can be employed to compute invariants for the mirror A-model
also in these cases, which might help in further studying these arithmetically
interesting examples in the future.

Our work produced new insights regarding future research directions. An inex-
hausitive list is presented in the following.

Beyond Spheres

Cycles with an underlying algebraic number field are conjectured to be mir-
rored by Lagrangians that do not satisfy Assumptions 5.5, and it is unclear
how to adapt the construction of the relative Gamma class to these examples
whose geometry is at present unknown. The crucial missing piece is the ana-
log of the Abel-Jacobi limit that in these cases bears interesting arithmetic
features. While its B-model origin is explained in [JMW], the index calcula-
tion of Appendix B might hint at a realization in the A-model. Namely, the
η-invariant is known to have a close relation to special values of L-functions
that generally arise in corrections to the signature theorem for manifolds with
boundary [ADS]. It would be interesting to investigate potential relations with
the Abel-Jacobi limit in arithmetically interesting cases, like the van Geemen
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lines (Example 6.2) by studying the index theory of candidate mirrors. In case
of hyperbolic submanifolds, the index of the Dirac operator (B.8) might receive
further corrections corresponding to a nontrivial space of harmonic spinors.

Extending the Mukai Pairing

The way in which we defined the relative Gamma class is not quite on equal
footing with the construction for the closed string described in Section 3.5,
because it does not include the underlying K-theory and potential extensions
of the Mukai-pairing. Closing this gap likely involves a careful analysis of the
algebraic K-theory of the complement X \L of the Lagrangian brane and would
be necessary to give a precise definition of the A-model version of the Abel-
Jacobi map sketched in (6.35). One difficulty consists of the fact that not all
properties of the branes are captured by topology alone. For example in case
of the real quintic, one should therefore rather consider the subcategory

L+

CF (L+,L−)
󰈜󰈜

CF (L+,L+)
󰈟󰈟

L− CF (L−,L−)
󰉟󰉟

CF (L−,L+)

󰉜󰉜 (8.1)

of the full Fukaya category, where L± = (L, E±) are Lagrangians with flat bun-
dles as described in Section 6.5. A further interesting question in a similar
direction is whether homological mirror symmetry can be seen to imply ex-
tended Hodge theoretic mirror symmetry in the sense of Definition 6.1, using
the methods of [GPS], see also Remark 3.23.

Frob Modules and open WDVV equations

For extended mirror pairs, we identified quantum deformed Frob modules (cf.
Definition 6.11), defined by the H2-module structure coming from the extended
quantum product, as mirroring the asymptotics of variations of MHS extended
by an algebraic cycle. We expect that it is possible to proof a more general
correspondence between these structures, using the methods of [CF1]. Further-
more, it would be interesting to study how quantum deformed Frob modules
more broadly relate to Hodge theoretic objects in the B-model. While it is rea-
sonable to expect there to be a general correspondence between Frob modules
of any rank with variations of MHS of the type discussed in Remark 4.3, one
should expect the case of higher weight to carry additional structure, similar
to higher weight Frobenius modules [CF2, FP]. As the higher weight situation
is geometrically not directly associated with Calabi-Yau threefolds, boundary
punctures in disk invariants do play a role in this context. We expect the rel-
evant associativity equations to be the more general open WDVV equations

115



8. Summary and Outlook

discussed in [Alc, ST3, CZ]. For example, boundary punctures arise in this
general treatment in the associativity constraints coming from multiplying ex-
tending generators. These are absent in our treatment due to the decoupling
of the open and closed string sectors described in Section 2.3. We also expect
there to be some correspondence with the structure induced from the relative
quantum product מ of [ST3].

Loop-Amplitudes and Number Fields

Beside the van Geemen lines and the cycles inside of the mirror octic discussed
in Section 7.3, there are further families of algebraic cycles described for the
quintic [Wal4] and decimic hypersurfaces [JW] with an underlying algebraic
number field. We attempted to perform a calculation similar to the one pre-
sented in Chapter 7 for all of them, but did not succeed in finding the choice
of holomorphic ambiguity that makes the annulus amplitude into a 1-function.
One possible reason is that in all of these examples the parameters of the fam-
ily are constrained by polynomials which require an asymptotic solution at the
MUM-point, and a corresponding expansion of the associated inhomogeneity. A
better understanding of the resulting singularity structure might be necessary
to find the right boundary conditions for the holomorphic ambiguity. Another
difficulty is related to the fact that in those examples the annulus amplitude1,
for example

A = −28814401800 q + 463194713736000
√

114 q3/2 − · · · , (8.2)

is not guaranteed to have only rational coefficients (here they lie in Q(
√

114)),
leading to a significant increase in computational demand for the calculation.
An improved understanding of the one-loop amplitudes could also be acquired
by studying potential extensions of their mathematically precise definition in
terms of Ray-Singer torsions described in [FLY].

1This example is computed from a cycle in the mirror decimic with inhomogeneity [JW,
Equation 2.32].
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A. Rigidity of A- and B-branes

The main examples of branes that are considered in this thesis are rigid in the
sense that they admit no open string deformation parameters. One reason is
that in the A-model there are no examples in which a Lagrangian in a Calabi-
Yau threefold can be deformed independently of bulk Kähler transformations
(cf. Assumptions 5.5).

In the A-model, rigidity reduces to a purely topological condition that is cap-
tured by McLean’s theorem [McL].

Theorem A.1. Let X be a Calabi-Yau manifold and L ⊂ X be a compact
special Lagrangian submanifold. Then the moduli space of special Lagrangian
deformations of L inside of X is of dimension dim H1(L;R).

On general grounds, infinitesimal deformations of L are given by sections H0(L; NL|X)
of the normal bundle. Roughly speaking, McLean’s theorem states that those
deformations that are identified with harmonic one-forms via the symplectic
form respect the special Lagrangian condition. In most known examples, the
A-model geometry satisfies Assumptions 5.5 and rigidity follows from the fact
that the Lagrangian is a rational homology sphere. In the particular case of the
real quintic and its analogs [KW], it is a consequence of H1(RP3) = 0.

The Deligne conics Example 4.2 enter into Theorem 6.12 as the mirror B-model
configuration, where based on physical principles a similar rigidity is expected.
While this is in line with the Clemens conjecture, which states that any curve
in a quintic should be generically isolated, there are examples (like the van
Geemen lines) in which they vary in families. This appendix provides a brief
computation based on the strategy of [Kat] that shows that the Deligne conics
indeed cannot be independently deformed from the bulk complex structure pa-
rameters of the mirror quintic.

Given a Calabi-Yau threefold Y on the B-model side, open string excitations
orthogonal to a cycle C again correspond to sections of the normal bundle
NC|Y . These sections in H0(Y ; NC|Y ) geometrically correspond to infinitesimal
deformations of C inside of Y , leaving the complex structure of Y fixed. It
might be the case that a given infinitesimal deformation cannot be integrated
to a finite one, where the corresponding obstruction is measured by higher sheaf
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cohomology groups. Here, the normal bundle is defined via

0 −→ TC −→ TY

󰀏󰀏󰀏
C

−→ NC|Y −→ 0. (A.1)

In case of C ∼= P1 the first Chern class of the tangent bundle TC corresponds
to the Euler characteristic of P1, i.e. c1(TC) = 2. The normal bundle NC|Y has
degree two and by the additivity of Chern classes and the Calabi-Yau condition
c1(TX) = 0 it follows that NC|Y is generally of the form

NC|Y = O(−1 + n) ⊕ O(−1 − n), (A.2)

such that c1(NC|Y ) = −2. As the bundle O(k) has k + 1 holomorphic sec-
tions, (A.1) means that the curve admits n infinitesimal deformation parame-
ters. According to the Clemens conjecture, a generic curve is expected to have
a normal bundle with n = 0, meaning that the associated moduli space is zero-
dimensional and the curve is isolated.

We consider the conics C±,ψ defined by (4.27) inside of the variety

Y =
󰁱
W = x5

1 + x5
2 + x5

3 + x5
4 + x5

5 − 5ψ x1x2x3x4x5 = 0
󰁲

⊂ P4. (A.3)

In view of the deformation problem it suffices to focus on (A.3), as the quotient
by the Greene-Plesser group does not induce additional moduli. Following [Kat],
we rewrite the polynomial in terms of the defining equations of the Deligne
conics, i.e.

W =
󰀕

x2
5 ∓

󰁴
5ψ x1x3

󰀖
f + (x1 + x2) g1,2 + (x3 + x4) g3,4, (A.4)

where f is a cubic and g1,2, g3,4 are quartics. It is a general consequence of
Hilbert’s Nullstellensatz that such a decomposition can always be found. Ex-
plicitly, the relevant polynomials are given by

f = x3
5 ±

󰁴
5ψ x1x3x5, g1,2 =

4󰁛

k=0
(−1)kxk

1x4−k
2 + 5

2ψ x1x3x5(x3 − x4),

g3,4 =
4󰁛

k=0
(−1)kxk

3x4−k
4 + 5

2ψ x1x3x5(x1 − x2).
(A.5)

From [Kat] we know that the corresponding cycle is rigid, whenever there are
no non-trivial relations among the polynomials f , g1,2 and g3,4. Consider the
polynomial ring R = C[x1, . . . , x5] defined by the homogeneous coordinates on
P4 and let I = 〈f, g1,2, g3,4〉 ⊂ R be the ideal generated by the polynomials.
Polynomial relations among the generators of I as well as higher syzygies are
encoded in a free resolution

· · · si+2
󰈣󰈣 Fi+1

si+1
󰈣󰈣 Fi

si 󰈣󰈣 · · · s2 󰈣󰈣 F1
s1 󰈣󰈣 F0

s0 󰈣󰈣 I, (A.6)
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where each Fi is a finitely generated R-module and si+1 ◦ si = 0 defines a differ-
ential. An algorithm which determines a minimal free resolution via Gröbner
basis methods is implemented in the software Macaulay2 [GS] and produces the
resolution

0 s3 󰈣󰈣 R1 s2 󰈣󰈣 R3 s1 󰈣󰈣 R3 s0 󰈣󰈣 I. (A.7)

The map s0 : R3 −→ I is simply the matrix given by the generators f , g1,2 and
g3,4. Their relations are encoded in s1 : R3 → R3, which is given by the matrix

󰀳

󰁅󰁃
−g1,2 f 0
−g3,4 0 f

0 −g3,4 g1,2

󰀴

󰁆󰁄 . (A.8)

The differential condition s1 ◦ s0 = 0 corresponds to
󰀳

󰁅󰁃
−g1,2 f 0
−g3,4 0 f

0 −g3,4 g1,2

󰀴

󰁆󰁄

󰀳

󰁅󰁃
f

g1,2
g3,4

󰀴

󰁆󰁄 =

󰀳

󰁅󰁃
−g1,2 f + f g1,2
−g3,4 f + f g3,4

−g3,4 g1,2 + g1,2 g3,4

󰀴

󰁆󰁄 = 0 (A.9)

and shows that the only relations among these polynomials are trivial in the
sense that they are automatically satisfied as a consequence of commutativity.
The normal bundle to the Deligne conics in Y is therefore given by (A.2) with
n = 0 such that

H0(C; NC/Y ) = H0 (O(−1) ⊕ O(−1)) = 0, (A.10)

meaning that the conics do not admit infinitesimal deformation parameters.
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B. Chern-Simons Invariants of Lens
Spaces

We review the computation of Chern-Simons invariants of flat U(1)-bundles on
three-dimensional lens spaces given in [Nis]. These spaces are given by quotients
L = S3/G, where G = Z/nZ is a cyclical group, and the flat U(1)-bundles Ek

on L, k = 1, . . . , n, are classified by their first Chern class

c1(Ek) ∈ H2(L;Z) ∼= Z󰃭nZ. (B.1)

Following Definition 5.9, let Γ4 be a 4-manifold with boundary ∂Γ4 = L. By
Proposition 5.10 and Remark 5.11 we can choose Γ4 such that it admits a spin
structure and every bundle Ek can be extended to a bundle 󰁨Ek on Γ4. As Γ4 is
even dimensional, the spin bundle is of the form S = S+ ⊕ S− and there are
twisted chiral Dirac operators

C∞(Γ4, Ek ⊗ S+)

D+
k

󰈠󰈠

C∞(Γ4, E∗
k ⊗ S−).

D−
k

󰉠󰉠
(B.2)

The Chern-Simons invariant cs(E) mod Z can be extracted from the Fredholm
index associated to the operator D+

k , using the Atiyah-Patodi-Singer index the-
orem [APS]. Recall that in case of a compact 4-manifold M with spin structure
and flat bundle E , the index theorem gives a formula for the Fredholm index of
the twisted chiral Dirac operator D+ as an integral over characteristic classes
on M

ind(D+) =
󰁝

M
ch(E) 󰁥A(M), (B.3)

where Â(M) denotes the Â-genus. In the given case it can be expressed by

Â(M) = 1 − 1
24 p1(M), p1(M) ∈ H4(M ;Z), (B.4)

in terms of the first Pontryagin class of the tangent bundle of M . In case of a
4-manifold with boundary, the usual Â-genus is corrected by boundary contri-
butions which are related to the space of harmonic spinors and the η-invariant
of the Dirac operator restricted to L [op.cit.]. As the positively curved lens
spaces admit no harmonic spinors by a vanishing theorem of Lichnerowicz [Lic],
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the boundary term essentially corresponds to the η-invariant. It is generally
defined in terms of the eta series

η(s) =
󰁛

λ ∕=0

sgn(λ)
|λ|s , (B.5)

where λ denotes the eigenvalues of the Dirac operator. The eta invariant is de-
fined as the special value η(0). While an explicit calculation of the eta invariant
can be very involved and generally involves analytic continuation, in the context
at hand there is a description purely in terms of the representation theory of
the fundamental group. Namely, it can be calculated from the representations
of the fundamental group π1(S3/G) = G in the gauge group

ρk : G −→ U(1), 1 󰀁−→ exp
󰀣

2πik

n

󰀤

(B.6)

and the corresponding embedding in SU(2)

σk : G −→ SU(2), 1 󰀁−→
󰀳

󰁃exp
󰀓

2πik
n

󰀔
0

0 exp
󰀓
−2πik

n

󰀔

󰀴

󰁄 , (B.7)

which can be associated to each flat bundle Ek. We denote by χk : G → C and
ψk : G → C the respective characters. The Fredholm index of D+

k is now given
by the Kronheimer-Nakajima formula [KN]

ind(D+
k ) =

󰁝

Γ4
ch( 󰁨Ek) 󰁥A(Γ4) − η(D+

k |L)
2

= −cs(Ek) − 1
24

󰁝

Γ4
p1(Γ4) − 1

|G|
󰁛

g ∕=e

χk(g)
ψk(g) − 2 ∈ Z,

(B.8)

where again 󰁥A(Γ4) = 1 − 1
24 p1(Γ4) and we used Definition 5.9. For the globally

trivial flat connection 󰁨E0 we have cs(E0) = 0 and χ0(g) = 0 for every g ∕= e ∈ G.
Noting that ind(D+

k ) − ind(D+
0 ) ∈ Z, identifies the Chern-Simons invariant up

to integers with the expression

cs(Ek) = 1
|G|

󰁛

g ∕=e

χk(g)
ψk(g) − 2 = 1

n

n−1󰁛

l=1

exp
󰀓

2πikl
n

󰀔
− 1

exp
󰀓

2πil
n

󰀔
+ exp

󰀓
−2πil

n

󰀔
− 2

modZ.

(B.9)
While it is now easy to explicitly evaluate the Chern-Simons invariant mod
Z, there is a residue calculation by which this expression can be substantially
simplified [Nis]. We denote by µl = exp(2πil/n) the non-trivial roots of unity
with l = 1, . . . , n − 1 and consider the meromorphic function

fk(z) = zk − 1
(z − 1)2(zn − 1) (B.10)
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on P1 with poles at µl for each l. From

Resz=1 fk(z) = k2

2n
− k

2 , Resz=µl
fk(z) = 1

n

µk
l − 1

µl + µ−1
l − 2

, (B.11)

the residue theorem gives

cs(Ek) =
n−1󰁛

l=1
Resz=µl

fk(z) = −Resz=1 fk(z) = − k2

2n
+ k

2 modZ, (B.12)

where we chose in integration contour of a sufficiently large radius that can be
contracted in P1. In the particular case of the real quintic considered in Theorem
6.12, the Chern-Simons invariants of the bundles E± are therefore given by

cs(E+) = 0, cs(E−) = 1
4 . (B.13)
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C. One-Loop Invariants for Cycles of
van Geemen-type

d Annulus invariant
1 450000
2 23773275000
3 1790406386100000
4 157530934723763250000
5 15139055443028646937410000
6 1540089817611589084662813150000
7 163029163159364675037035977110150000
8 17772125517155222253293432782661415000000
9 1981616814874464036487469614902857258565000000
10 224944212508279700687674585930876820793357401595000
11 25908706334188064501645668553106040120500364200408150000
12 3020292465269009710631261730042826767452054933172473928900000

Table C.1.: Annulus invariants for van Geemen lines. The table depicts integral
invariants for the van Geemen lines in the mirror quintic with inhomogeneity
(6.10). They are obtained from the extended holomorphic anomaly equation
for the annulus amplitude, as described in Chapter 7.
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C. One-Loop Invariants for Cycles of van Geemen-type

d one-loop BPS invariant n
(0,2)
d

1 449955
2 23772983660
3 1790405796055265
4 157530933661020547400
5 15139055441136207256023089
6 1540089817608204537427570779960
7 163029163159358576752736946561620460
8 17772125517155211182491689478757233167000
9 1981616814874464016251412276822502155708670750
10 224944212508279700650460886682337646351225750144428
11 25908706334188064501576869007764916105042871515577505435
12 3020292465269009710631133942033864603435520830764435130938760

Table C.2.: One-loop BPS invariants for van Geemen lines. The table depicts
integral invariants for the van Geemen lines in the mirror quintic with inho-
mogeneity (6.10). They are obtained from the extended holomorphic anomaly
equation for the annulus amplitude, together with non-orientable contributions,
as described in Chapter 7.
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C. One-Loop Invariants for Cycles of van Geemen-type

d
one-loop

B
PS

invariant
−

n
(0

,2)
d

1
2304

2
10557766245510784

3
1714329236784013878885632

4
248576380862536921081938624145792

5
35438330778327716007959092503079754578688

6
5059047452269582001119457290462371759902336774272

7
726308381964591879055617951265369340849048109489053536512

8
104944004754637010754837870497580339800155481223516528740743090560

9
15256596300456643023673821115480896104521664258371178485836150332264142848

10
2230375252837817537985315467273540067962202719827365836669076310658349316121844608

11
327686862616785753903522137627099143462339422853450571799346530093307386868387247326971136

12
48357042047270387451903621581591509062663236483645538231579500120207823938472029597654580760881024

Table
C

.4.:
O

ne-loop
B

PS
invariants

for
van

G
eem

en-type
lines.

T
he

table
depicts

integral
invariants

for
the

van
G

eem
en-type

lines
in

the
m

irror
octic

w
ith

inhom
ogeneity

(7.19).
T

hey
are

obtained
from

the
extended

holom
orphic

anom
aly

equation
for

the
annulus

am
plitude,together

w
ith

non-orientable
contributions,as
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in

C
hapter

7.
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d Annulus invariant
1 0
2 6912
3 940032
4 105625728
5 11299405824
6 1190560230144
7 124945591468032
8 13116289936022784
9 1379614459875047424
10 145491878436969500928
11 15386158358510645329920
12 1631613771604970173215360
13 173478387324471102664998912
14 18490277345840216879312892672
15 1975315723596705506113943488512
16 211471178237844288917751141949440
17 22683918279826037646217285551783936
18 2437659428057500570605654329223613440
19 262396070372666060201611930650073325568
20 28288995592279571924821670816282430069120
21 3054253906132364039414947065170045291501568
22 330199333030782329189853396938684939718651648
23 35742985406317466563464388413304988519122993152
24 3873582888899995421446800054463239250913834025216

Table C.5.: Annulus invariants for van Geemen-type lines. The table depicts
integral invariants for the van Geemen-type lines in the mirror octic with inho-
mogeneity (7.24). They are obtained from the extended holomorphic anomaly
equation for the annulus amplitude, as described in Chapter 7.
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C. One-Loop Invariants for Cycles of van Geemen-type

d one-loop BPS invariant −n
(0,2)
d

1 0
2 6912
3 940032
4 105628032
5 11299405824
6 1190560230144
7 124945591468032
8 13116290119486336
9 1379614459875047424
10 145491878436969500928
11 15386158358510645329920
12 1631613771611912493051776
13 173478387324471102664998912
14 18490277345840216879312892672
15 1975315723596705506113943488512
16 211471178237844543756430039533952
17 22683918279826037646217285551783936
18 2437659428057500570605654329223613440
19 262396070372666060201611930650073325568
20 28288995592279571934264052270113935692928
21 3054253906132364039414947065170045291501568
22 330199333030782329189853396938684939718651648
23 35742985406317466563464388413304988519122993152
24 3873582888899995421447154588447017276144604688768

Table C.6.: One-loop BPS invariants for van Geemen-type lines. The table
depicts integral invariants for the van Geemen-type lines in the mirror octic
with inhomogeneity (7.24). They are obtained from the extended holomorphic
anomaly equation for the annulus amplitude, together with non-orientable con-
tributions, as described in Chapter 7.

130



Bibliography

[ADS] Michael F. Atiyah, Harold Donnelly, and Isadore M. Singer. Eta
Invariants, Signature Defects of Cusps, and Values of L-Functions.
Ann. Math., 118:131–177, 1983.

[AKV] Mina Aganagic, Albrecht Klemm, and Cumrun Vafa. Disk Instan-
tons, Mirror Symmetry and the Duality Web. Z. Naturforsch., 57:1–
28, 2002.

[Alc] Adam Alcolado. Extended Frobenius Manifolds and the Open WDVV
Equations. Ph.D. thesis, McGill University, 2017.

[AMTV] Dan Abramovich, Marcos Mariño, Michael Thaddeus, and Ravi
Vakil. Enumerative Invariants in Algebraic Geometry and String
Theory, volume 1947 of Lecture Notes in Mathematics. Springer,
Berlin, Heidelberg, 2008.

[APS] Michael F. Atiyah, Vijay K. Patodi, and Isadore M. Singer. Spectral
asymmetry and Riemannian geometry. I. Math. Proc. Camb. Phil.
Soc., 78:43–69, 1975.

[Asp] Paul Aspinwall, editor. Dirichlet branes and mirror symmetry. Num-
ber v.4 in Clay mathematics monographs. American Mathematical
Society; Clay Mathematics Institute, 2009.

[Aur] Denis Auroux. A Beginner’s Introduction to Fukaya Categories. In
Contact and Symplectic Topology, volume 26, pages 85–136. Springer
International Publishing, 2014.

[AV] Mina Aganagic and Cumrun Vafa. Mirror Symmetry, D-Branes and
Counting Holomorphic Discs. arXiv:hep-th/0012041, 2000.

[Ban] Markus Banagl. Intersection Spaces, Spatial Homology Truncation,
and String Theory. Lecture notes in mathematics. Springer, 2010.

[Bat] Victor V. Batyrev. Dual Polyhedra and Mirror Symmetry for Calabi-
Yau Hypersurfaces in Toric Varieties. J. Alg. Geom., 3:493–545,
1994.

131



BIBLIOGRAPHY

[BCOV] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa. Kodaira-Spencer
theory of gravity and exact results for quantum string amplitudes.
Commun. Math. Phys., 165:311–427, 1994.

[BKV] Spencer Bloch, Matt Kerr, and Pierre Vanhove. Local mirror sym-
metry and the sunset Feynman integral. Adv. Theor. Math. Phys.,
21:1373–1453, 2017.

[BZ] Patrick Brosnan and Fouad El Zein. Variations of Mixed Hodge
Structure. In Hodge Theory, pages 333–409. Princeton University
Press, 2014.

[Car] James A. Carlson. Extensions of mixed Hodge structures. Journées
de Géometrie Algébrique d’Angers, pages 107–127, 1979.

[CdlOGP] Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda
Parkes. A pair of Calabi-Yau manifolds as an exactly soluble super-
conformal theory. Nucl. Phys. B, 359:21–74, 1991.

[CF1] Eduardo Cattani and Javier Fernandez. Asymptotic Hodge theory
and quantum products. Contemp. Math., 276:115–136, 2001.

[CF2] Eduardo Cattani and Javier Fernandez. Frobenius Modules and
Hodge Asymptotics. Commun. Math. Phys., 238:489–504, 2003.

[CK1] Eduardo Cattani and Aroldo Kaplan. Degenerating variations of
Hodge structure. In Théorie de Hodge - Luminy, Juin 1987, number
179-180 in Astérisque. 1989.

[CK2] David A. Cox and Sheldon Katz. Mirror symmetry and algebraic
geometry, volume 68 of Math. Surveys and Monographs. American
Mathematical Society, 1999.

[CKLT] Gottfried Curio, Albrecht Klemm, Dieter Lüst, and Stefan Theisen.
On the Vacuum Structure of Type II String Compactifications on
Calabi-Yau Spaces with H-Fluxes. Nucl. Phys. B, 609:3–45, 2001.

[CMSP] James A. Carlson, Stefan Müller-Stach, and Chris Peters. Period
mappings and period domains. Number 168 in Cambridge studies in
advanced mathematics. Cambridge University Press, 2017.

[CZ] Xujia Chen and Aleksey Zinger. WDVV-type relations for disk Gro-
mov–Witten invariants in dimension 6. Math. Ann., 379:1231–1313,
2021.

132



BIBLIOGRAPHY

[Del1] Pierre Deligne. Equations différentielles à points singuliers réguliers.
Number 163 in Lecture notes in mathematics. Springer, Berlin, Hei-
delberg, 1970.

[Del2] Pierre R. Deligne. Théorie de Hodge I. Actes du congrès international
des mathématiciens, Nice 1970, pages 425–430, 1971.

[Del3] Pierre R. Deligne. La Conjecture de Weil. II. Publications mathé-
matiques de l’IHÉS, 52:137–252, 1980.

[Del4] Pierre R. Deligne. Local behavior of Hodge structures at infinity. In
Mirror Symmetry II, volume 1 of AMS/IP Stud. Adv. Math., pages
683–699. 1997.

[DHT] Charles F. Doran, Andrew Harder, and Alan Thompson. Mirror
Symmetry, Tyurin degenerations and fibrations on Calabi-Yau man-
ifolds. Proc. Symp. Pure Math., 96:93–131, 2017.

[DK1] James F. Davis and Paul Kirk. Lecture notes in algebraic topology,
volume 35 of Graduate studies in mathematics. American Mathe-
matical Society, 2001.

[DK2] Charles F. Doran and Matt Kerr. Algebraic cycles and local quantum
cohomology. Comm. Num. Th. Phys., 8:703–727, 2014.

[DM1] Pierre R. Deligne and David B. Mumford. The irreducibility of
the space of curves of given genus. Publications mathématiques de
l’IHÉS, 36:75–109, 1969.

[DM2] Charles F. Doran and John W. Morgan. Mirror Symmetry and Inte-
gral Variations of Hodge Structure Underlying One Parameter Fam-
ilies of Calabi-Yau Threefolds. In Mirror Symmetry V, volume 38 of
AMS/IP Stud. Adv. Math., pages 517–537. 2006.

[dSJKP] Genival da Silva Jr., Matt Kerr, and Gregory Pearlstein. Arithmetic
of degenerating principal variations of Hodge structure: Examples
arising from mirror symmetry and middle convolution. Canad. J.
Math., 68:280–308, 2016.

[DVV1] Robbert Dijkgraaf, Herman Verlinde, and Erik Verlinde. Notes on
Topological String Theory and 2D Quantum Gravity. In String The-
ory and Quantum Gravity, Proc. of the Trieste Spring School 1990,
pages 91–156. 1991.

[DVV2] Robbert Dijkgraaf, Herman Verlinde, and Erik Verlinde. Topological
strings in d<1. Nucl. Phys. B, 352:59–86, 1991.

133



BIBLIOGRAPHY

[DW] Robbert Dijkgraaf and Edward Witten. Topological gauge theories
and group cohomology. Commun. Math. Phys., 129:393–429, 1990.

[Esp] Felipe Espreafico. Gauss-Manin connection in disguise: Open
Gromov-Witten invariants. arXiv:2205.08302[math.AG], 2022.

[FLY] Hao Fang, Zhiqin Lu, and Ken-Ichi Yoshikawa. Analytic torsion for
Calabi-Yau threefolds. J. Diff. Geom., 80, 2008.

[FOOO1] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono. La-
grangian Intersection Floer Theory: Anomaly and Obstruction, vol-
ume 46 of AMS/IP Stud. Adv. Math. American Mathematical Soci-
ety, 2009.

[FOOO2] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono. An-
tisymplectic involution and Floer cohomology. Geom. Topol., 21:1–
106, 2017.

[FP] Javier Fernandez and Gregory Pearlstein. Opposite filtrations, vari-
ations of Hodge structure, and Frobenius modules. In Frobenius
Manifolds: Quantum Cohomology and Singularities, volume 36 of
Aspects of Mathematics, pages 19–43. 2012.

[Fre] Alexandre Freire, editor. Conformal, Riemannian and Lagrangian
Geometry: The 2000 Barrett Lectures, volume 27 of University Lec-
ture Series. American Mathematical Society, 2002.

[Fuk1] Kenji Fukaya. Floer homology and mirror symmetry I+II. AMS/IP
Stud. Adv. Math., 23:15–43, 2001.

[Fuk2] Kenji Fukaya. Counting pseudo-holomorphic discs in Calabi-Yau
3-holds. Tohoku Math. J., 63:697–727, 2011.

[GGK1] Mark Green, Phillip Griffiths, and Matt Kerr. Néron models and
boundary components for degenerations of Hodge structure of mir-
ror quintic type. In Curves and Abelian Varieties, volume 465 of
Contemp. Math., pages 71–145. 2007.

[GGK2] Mark Green, Phillip Griffiths, and Matt Kerr. Néron models and
limits of Abel–Jacobi mappings. Compositio Math., 146:288–366,
2010.

[Giv] Alexander B. Givental. Equivariant Gromov-Witten Invariants. In-
ternat. Math. Res. Notices, 13:613–663, 1996.

134



BIBLIOGRAPHY

[GMS] Brian R. Greene, David R. Morrison, and Andrew Strominger. Black
hole condensation and the unification of string vacua. Nucl. Phys.
B, 451:109–120, 1995.

[GP] Brian R. Greene and M. Ronen Plesser. Duality in Calabi-Yau mod-
uli space. Nucl. Phys. B, 338:15–37, 1990.

[GPS] Sheel Ganatra, Timothy Perutz, and Nick Sheridan. Mirror symme-
try: from categories to curve counts. arXiv:1510.03839[math.SG],
2015.

[Gri] Phillip A. Griffiths, editor. Topics in Transcendental Algebraic Ge-
ometry. (AM-106). Princeton University Press, 1984.

[Gro] Mikhael Gromov. Partial Differential Relations, volume 9 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, 3. Folge. Springer
Berlin Heidelberg, 1986.

[GS] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a soft-
ware system for research in algebraic geometry. Available at
http://www.math.uiuc.edu/Macaulay2/.

[GV] Rajesh Gopakumar and Cumrun Vafa. M-Theory and Topological
Strings–I. arXiv:hep-th/9809187, 1998.

[GvdVZ] Marcus T. Grisaru, Anton E. M. van den Ven, and Daniela Zanon.
Four-loop beta-function for the N=1 and N=2 supersymmetric non-
linear sigma model in two dimensions. Phys. Lett. B, 173:423–428,
1986.

[GZ1] Penka Georgieva and Aleksey Zinger. Real Gromov-Witten The-
ory in All Genera and Real Enumerative Geometry: Computation.
arXiv:1510.07568 [math.AG], 2015.

[GZ2] Penka Georgieva and Aleksey Zinger. Real Gromov-Witten theory
in all genera and real enumerative geometry: Construction. Ann. of
Math., 188, 2018.

[GZ3] Penka Georgieva and Aleksey Zinger. Real Gromov–Witten theory
in all genera and real enumerative geometry: Properties. Journal of
Symplectic Geometry, 17(4):1083–1158, 2019.

[Hor] Kentaro Hori, editor. Mirror symmetry. Number v. 1 in Clay math-
ematics monographs. American Mathematical Society ; Clay Math-
ematics Institute, 2003.

135



BIBLIOGRAPHY

[HW] Lukas Hahn and Johannes Walcher. A-model Implications of Ex-
tended Mirror Symmetry. arXiv:2201.08745, 2022.

[Iri] Hiroshi Iritani. An integral structure in quantum cohomology and
mirror symmetry for toric orbifolds. Adv. Math., 222:1016–1079,
2009.

[JMW] Hans Jockers, David R. Morrison, and Johannes Walcher. On the
limiting value of the D-brane superpotential. in preparation, 2022.

[Joy] Dominic D. Joyce. Riemannian holonomy groups and calibrated ge-
ometry. Number 12 in Oxford graduate texts in mathematics. Oxford
University Press, 2007.

[JW] Robert A. Jefferson and Johannes Walcher. Monodromy of inhomo-
geneous Picard–Fuchs equations. Comm. Num. Th. Phys., 8:1–40,
2014.

[Kat] Sheldon Katz. On the finiteness of rational curves on quintic three-
folds. Compositio Math., 60:151–162, 1986.

[Ker] Matt Kerr. Lecture Notes on Hodge Theory and Algebraic Cycles.
Available at https://www.math.wustl.edu/~matkerr/.

[KKLM] Shamit Kachru, Sheldon Katz, Albion Lawrence, and John Mc-
Greevy. Open string instantons and superpotentials. Phys. Rev.
D, 62:026001, 2000.

[KKLT] Shamit Kachru, Renata Kallosh, Andrei Linde, and Sandip P.
Trivedi. de Sitter vacua in string theory. Phys. Rev. D, 68:046005,
2003.

[KKP] Ludmil Katzarkov, Maxim Kontsevich, and Tony Pantev. Hodge the-
oretic aspects of mirror symmetry, From Hodge theory to integrabil-
ity and TQFT tt*-geometry. Proc. Sympos. Pure Math., 78:87–174,
2008.

[KM] Maxim Kontsevich and Yuri I. Manin. Gromov-Witten classes, quan-
tum cohomology, and enumerative geometry. Commun. Math. Phys.,
164:525–562, 1994.

[KN] Peter B. Kronheimer and Hiraku Nakajima. Yang-Mills instantons
on ALE gravitational instantons. Math. Ann., 288:263–307, 1990.

[Kon1] Maxim Kontsevich. Homological Algebra of Mirror Symmetry. Proc.
ICM, 1:120–139, 1994.

136



BIBLIOGRAPHY

[Kon2] Maxim Kontsevich. Enumeration of Rational Curves Via Torus Ac-
tions. In The Moduli Space of Curves, pages 335–368. Birkhäuser,
Boston, Basel, Berlin, 1995.

[KS] Maxim Kontsevich and Yan Soibelman. Homological Mirror Sym-
metry and Torus Fibrations. In Symplectic Geometry and Mirror
Symmetry, pages 203–263, Seoul, 2001.

[KSV] Maxim Kontsevich, Albert Schwarz, and Vadim Vologodsky. Inte-
grality of instanton numbers and p-adic B-model. Phys. Lett. B,
637:97–101, 2006.

[KT] Albrecht Klemm and Stefan Theisen. Considerations of one-modulus
Calabi-Yau compactifications: Picard-Fuchs equations, Kähler po-
tentials and mirror maps. Nucl. Phys. B, 389:153–180, 1993.

[KW] Daniel Krefl and Johannes Walcher. Real mirror symmetry for one-
parameter hypersurfaces. J. High Energy Phys., 2008:0–31, 2008.

[Lan] Alan Landman. On the Picard-Lefschetz transformation for alge-
braic manifolds acquiring general singularities. Trans. Amer. Math.
Soc., 181:89–126, 1973.

[Laz] Calin I. Lazaroiu. String field theory and brane superpotentials. J.
High Energy Phys., 2001:018, 2001.

[Lee] J. Alexander Lees. On the classification of Lagrange immersions.
Duke Math. J., 43, 1976.

[Lic] André Lichnerowicz. Spineurs harmoniques. C. R. Acad. Sci. Paris
Sér. A-B, 257:7–9, 1963.

[Liu] Chiu-Chu Melissa Liu. A Lecture on Holomorphic Anomaly
Equations and Extended Holomorphic Anomaly Equations.
arxiv.org/abs/1907.07705, 2019.

[LLY] Bong H. Lian, Kefeng Liu, and Shing-Tung Yau. Mirror Principle I.
Asian J. Math., 1:729–763, 1997.

[LMW1] Wolfgang Lerche, Peter Mayr, and Nicholas P. Warner. Holomorphic
N=1 Special Geometry of Open-Closed Type II Strings. arXiv:hep-
th/0207259, 2002.

[LMW2] Wolfgang Lerche, Peter Mayr, and Nicholas P. Warner. N=1 Special
Geometry, Mixed Hodge Variations and Toric Geometry. arXiv:hep-
th/0208039, 2002.

137



BIBLIOGRAPHY

[LW] Guillaume Laporte and Johannes Walcher. Monodromy of an Inho-
mogeneous Picard-Fuchs Equation. SIGMA, 8:056, 2012.

[Man] Yuri I. Manin. Frobenius manifolds, quantum cohomology, and mod-
uli spaces. Number v. 47 in American Mathematical Society. Col-
loquium publications. American Mathematical Society, Providence,
RI, 1999.

[McL] Robert C. McLean. Deformations of Calibrated Submanifolds.
Comm. Anal. Geom., 6:705–747, 1998.

[Mil] John W. Milnor. Spin Structures on Manifolds. L’Enseignement
Mathématique, 9, 1963.

[Mor1] David R. Morrison. Compactifications of moduli spaces inspired
by mirror symmetry. In Astérisque, volume 218 of Journées de
Géométrie Algébrique d’Orsay (Juillet 1992), pages 243–271. 1993.

[Mor2] David R. Morrison. Mirror symmetry and rational curves on quintic
threefolds: a guide for mathematicians. J. Am. Math. Soc., 6:223–
247, 1993.

[Mor3] David R. Morrison. Mathematical Aspects of Mirror Symmetry.
In Complex Algebraic Geometry, volume 3 of IAS/Park City Math.
Series, pages 265–340. 1997.

[MW] David R. Morrison and Johannes Walcher. D-branes and normal
functions. Adv. Theor. Math. Phys., 13:553–598, 2009.

[Mü1] L. Felipe Müller. Rational 2-functions are abelian. Comm. Num.
Th. Phys., 15:605–614, 2021.

[Mü2] Luis Felipe Müller. Analytic properties of s-functions. Ph.D. thesis,
Heidelberg University, 2021.

[Nis] Haruko Nishi. SU(n)-Chern-Simons invariants of Seifert fibered 3-
manifolds. Int. J. Math., 9:295–330, 1998.

[NV] Andrew Neitzke and Cumrun Vafa. Topological strings and their
physical applications. arXiv:hep-th/0410178, 2005.

[PS] Chris A. M. Peters and Joseph. H. M. Steenbrink. Mixed hodge
structures. Number 3. Folge, Bd. 52 in Ergebnisse der Mathematik
und ihrer Grenzgebiete. Springer, 2008.

138



BIBLIOGRAPHY

[PSW] Rahul Pandharipande, Jake P. Solomon, and Johannes Walcher.
Disk enumeration on the quintic 3-fold. J. Am. Math. Soc., 21:1169–
1209, 2008.

[Sch] Wilfried Schmid. Variation of Hodge structure: The singularities of
the period mapping. Inventiones Mathematicae, 22:211–319, 1973.

[She] Nick Sheridan. Homological Mirror Symmetry for Calabi-Yau hyper-
surfaces in projective space. Inventiones mathematicae, 199:1–186,
2015.

[ST1] Jake P. Solomon and Sara B. Tukachinsky. Differential
forms, Fukaya A-infinity algebras, and Gromov-Witten axioms.
arXiv:1608.01304[math.SG], 2020.

[ST2] Jake P. Solomon and Sara B. Tukachinsky. Point-like bounding
chains in open Gromov-Witten theory. Geom. Funct. Anal., 31:1245–
1320, 2021.

[ST3] Jake P. Solomon and Sara B. Tukachinsky. Relative quantum coho-
mology. arXiv:1906.04795[math.SG], 2021.

[SVW1] Albert Schwarz, Vadim Vologodsky, and Johannes Walcher. Framing
the Di-Logarithm (over Z). Proc. Symp. Pure Math., 90:113–128,
2015.

[SVW2] Albert Schwarz, Vadim Vologodsky, and Johannes Walcher. Integral-
ity of Framing and Geometric Origin of 2-functions (with algebraic
coefficients). arXiv:1702.07135[math.AG], 2017.

[Tom] Alessandro Tomasiello. A-infinity structure and superpotentials. J.
High Energy Phys., 2001:030, 2001.

[TV] Tomasz R. Taylor and Cumrun Vafa. RR Flux on Calabi-Yau and
Partial Supersymmetry Breaking. Phys. Lett. B, 474:130–137, 2000.

[Usu] Sampei Usui. Studies of closed/open mirror symmetry for quintic
threefolds through log mixed Hodge theory. In Matt Kerr and Gre-
gory Pearlstein, editors, Recent Advances in Hodge Theory, pages
134–164. Cambridge University Press, 1 edition, 2016.

[Vaf] Cumrun Vafa. Extending Mirror Conjecture to Calabi-Yau with
Bundles. Commun. Contemp. Math., 01:65–70, 1999.

[Voi] Claire Voisin. Hodge Theory and Complex Algebraic Geometry I,II,
volume 1 of Cambridge Stud. Adv. Math. Cambridge University
Press, 2002.

139



BIBLIOGRAPHY

[Von] Marcel Vonk. A mini-course on topological strings. arXiv:hep-
th/0504147, 2005.

[Wal1] Johannes Walcher. Opening Mirror Symmetry on the Quintic. Com-
mun. Math. Phys., 276:671–689, 2007.

[Wal2] Johannes Walcher. Evidence for tadpole cancelation in the topolog-
ical string. Comm. Num. Th. Phys., 3:111–172, 2009.

[Wal3] Johannes Walcher. Extended holomorphic anomaly and loop ampli-
tudes in open topological string. Nucl. Phys. B, 817:167–207, 2009.

[Wal4] Johannes Walcher. On the Arithmetic of D-brane Superpotentials.
Lines and Conics on the Mirror Quintic. Comm. Num. Th. Phys.,
6:279–337, 2012.

[Wit1] Edward Witten. Topological sigma models. Commun. Math. Phys.,
118:411–449, 1988.

[Wit2] Edward Witten. On the structure of the topological phase of two-
dimensional gravity. Nucl. Phys. B, 340:281–332, 1990.

[Wit3] Edward Witten. Chern-Simons Gauge Theory As A String Theory.
Prog. Math., 133:637–678, 1995.

[Wit4] Edward Witten. Non-perturbative superpotentials in string theory.
Nucl. Phys. B, 474:343–360, 1996.

[Wit5] Edward Witten. Superstring Perturbation Theory Revisited.
arXiv:1209.5461 [hep-th], 2018.

[Wol] Wolfram. Mathematica, Version 13.1.

[Yau] Shing-Tung Yau. Calabi’s conjecture and some new results in alge-
braic geometry. Proc. Natl. Acad. Sci. U.S.A., 74:1798–1799, 1977.

140


