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Kohärenzeffekte und Spinpolarisation von Elektronen in Elektromagnetischen
Feldern:

Die Kollision relativistischer Elektronen mit einem sich gegenläufig ausbreitenden
Laserpuls hat das Potenzial kurze Pulse von Harmonischen im Röntgenbereich
zu erzeugen, die die molekulare, atomare und subatomare Dynamik verfolgen
können. Auch die Erzeugung relativistischer, spinpolarisierter Elektronenstrahlen
ist für die Untersuchung spinabhängiger, fundamentaler Wechselwirkungen in der
Teilchenphysik von wesentlicher Bedeutung. Unser Ziel ist es, einen numerischen
Code zu erstellen, der die Elektronen-Spin-Präzession modellieren und gleichzeitig
das Spektrum und die Winkelverteilung der Energie, die von einer beliebigen Anzahl
relativistischer und im Rahmen der klassischen Elektrodynamik mit einem externen
Feld wechselwirkenden Elektronen emittiert wird, vorhersagen kann. Dieser Code
wird streng gegen analytische Lösungen getestet. Mit numerischen und analytischen
Ergebnissen können wir die Bedingungen für die Elektronenverteilung, die zur
Erzeugung kohärenter Röntgenstrahlen erforderlich sind, und für spinpolarisierter
Elektronenstrahlen untersuchen.

Coherence Effects and Spin Polarisation of Electrons in Electromagnetic Fields:

The collision of relativistic electrons with a counter propagating laser pulse can
potentially generate short pulses of harmonics in the X-ray range, capable of
tracking molecular, atomic and sub-atomic dynamics. Also, the creation of relativistic
spin polarised electron beams is essential for probing spin dependent, fundamental
interactions in particle physics. Our aim is to create a numerical code capable of
modelling electron spin precession, while also predicting the spectrum and angular
distribution of energy emitted from an arbitrary number of relativistic electrons,
interacting with an external field in the domain of classical electrodynamics. This
code will be rigorously tested against analytic solutions. With both numerical and
analytic results, we can explore the conditions on the electron distribution necessary
for generating coherent X-rays, and spin polarised electron beams.
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Chapter 1

Introduction

The generation of short, coherent X-ray pulses has long been a goal of experimental physics
due to the restriction of most lasers to optical wavelengths. Historically X-ray pulses have been
obtained by synchrotron radiation, and are typically limited to picosecond duration. With the advent
of free electron lasers, such as the Linac Coherent Light Source [LCL] and the European X-ray
Free-Electron Laser Facility [XFE], we can generate femtosecond pulses with photon energies in
the order of 10 keV [Emm+10; Ama+12]. These facilities produce X-rays by passing a relativistic
electron beam from a linear accelerator through an alternating series of magnets known as an
undulator. When the electrons are bunched together longitudinally their emitted radiation becomes
coherent, and the frequency emitted can be tuned with the electron momentum or properties of
the undulator. Alternatively, one can create a plasma with relativistically oscillating electrons by
irradiating a solid or gas with an intense laser pulse. This process, known as high harmonic
generation, is capable of producing attosecond pulses with photon energies in the order of ≲ 1 keV
[KI09; Kor+18; Dro+06]. Without the need for a linear accelerator, this technique is compact. There
are a wide range of applications for short X-ray pulses in crystallography [Wie+18], quantum optics
[Ada+13], observing molecular, atomic and sub-atomic dynamics [Sin+16], with various medical
applications [Col+16; Neu+00; Edw+94]. Throughout this thesis we will focus on a rival scheme
for generating coherent X-rays, based on the collision of relativistic electrons with a counter
propagating laser pulse. The change in frequency and amplitude of the reflected light can be
described by the Doppler effect, as originally proposed by Einstein in his 1905 paper on Special
Relativity [Ein05].

Laser-electron interactions are often parameterised in terms of the dimensionless wave amplitude
a0 = eE0/mecω0, for an electric field of amplitude E0 and frequency ω0, and an electron of charge
−e and mass me. For weak fields a0 ≪ 1, electron dynamics transverse to the propagation
axis are non-relativistic. As we approach a0 ≳ 1 transverse electron motion becomes relativistic
within a single oscillation. We will neglect the change in momentum from emitting radiation when
calculating the electron trajectory, known as radiation reaction. Quantum effects such as non-
linear Compton scattering and electron-positron pair production are important when the fields
become an appreciable fraction of the Schwinger limit in the electron rest frame; Ecr = m2

ec
3/eℏ ≈

1.3 × 1016 V/cm and Bcr = m2
ec

2/eℏ ≈ 4.4 × 109 T [Di +12]; throughout this thesis we restrict
ourselves to the regime of classical electrodynamics, where fields in the electron’s rest frame
remain well below this limit.

The purpose of this thesis is to find conditions under which coherent photons in the 10− 100 keV
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range can be obtained from the collision of counter propagating, relativistic electron bunches with
a weak laser pulse a0 ≪ 1. In this case we expect reflected radiation around the Doppler shifted
frequency ω ≈ 4γ2ω0 where γ is the initial Lorentz factor [Ein05]. Schemes of this nature have
also been proposed by more recent authors such as Bulanov [Bul+13; BET03], who suggest
this method could produce attosecond X-ray pulses, depending on the electron dynamics. One
could generate a relativistic electron pulse using a linear accelerator, or a compact laser driven
plasma based accelerator [ESL09]. For this investigation we will design and test a numerical
code, capable of predicting the energy spectrum produced from a particular electron distribution
interacting with an external electromagnetic field. In this thesis we use S.I. unit conventions, and
we set ℏ = c = ε0 = 1 to obtain natural units, unless explicitly stated otherwise. For a list of notation
and conventions see Appendix A. The energy radiated per unit solid angle, per unit frequency by
an arbitrary number of electrons each denoted by j, can be expressed as [Jac98, pg. 675, eqn.
14.65]

d2E

dωdΩ
=

e2

16π3

∣∣∣∣∣∣
∑
j

∫ ∞

−∞

n̂×
[
(n̂− βj(t))× β̇j(t)

]
(1− n̂ · βj(t))2

eiω[t−n̂·rj(t)]dt

∣∣∣∣∣∣
2

. (1.1)

The spectrum of energy emitted can be determined providing we know each electron’s trajectory
rj(t) and velocity βj(t), for an observer in the direction of the dimensionless unit vector n̂ who
measures radiation of frequency ω. One can derive equation (1.1) by solving Maxwell’s equations
with a point like charge and current to obtain the Liénard-Wiechert potentials and their corresponding
fields; this is equivalent to solving Maxwell’s equations with the Green’s function method. These
fields consist of a static term which varies with R−2, and a term which depends on acceleration and
varies with R−1, where R is the distance of the observer from the electron at the time of emission
(known as the retarded time) [Jac98, eqs. 14.13, 14.14]. For observers at large distances R,
far away from the spatial extent of the electrons’ trajectories, we retain only the second term and
hence the unit vector pointing to the observer n̂, is approximately constant in time and for every
electron. At this point Jackson proceeds to derive equation (1.1) by considering the Poynting
vector from the Liénard - Wiechert fields, integrating over time to find energy, and then performing
a Fourier decomposition to obtain the spectrum. This integral is performed in the observer’s frame
of reference who measures frequency ω, and the integration variable t is the retarded time. Note
that the final polarisation of light is not measured. Equation (1.1) can be integrated by parts using
the following derivative (1.2) [Jac98, eq. 14.66],

n̂×
[
(n̂− βj(t))× β̇j(t)

]
(1− n̂ · βj(t))2

=
d

dt

[
n̂× (n̂× β(t))

1− n̂ · βj(t)

]
, (1.2)

d2E

dωdΩ
=

e2ω2

16π3

∣∣∣∣∣∣
∑
j

∫ ∞

−∞
n̂× (n̂× βj(t)) eiω[t−n̂·rj(t)]dt

∣∣∣∣∣∣
2

. (1.3)

The boundary terms have been discarded by assuming the motion is periodic, and that we are
integrating over some integer multiple of the period T . We restrict our observation to harmonics
ω = 2πl/T where l is an integer, and at this point the boundary terms vanish. Then by taking the
limit T → ∞ we recover a continuous spectrum of frequencies. Jackson instead proves equation
(1.3) is equivalent to (1.1) by inserting a convergence factor e−ϵ|t| for ϵ > 0 in the integrand of
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equation (1.1), and after integrating he takes the limit ϵ → 0 [Jac98]. Equation (1.1) shows that the
energy radiated is identically zero during periods of no acceleration; this is not explicit for equation
(1.3). This behavior is expected from the well known Larmor result, which describes the power
radiated as proportional to the square of the acceleration, for one particle [Jac98, eq. 14.23]. We
will refer to equations (1.1) and (1.3) interchangeably as ’radiation integrals’. In practice we will
design our code to numerically integrate (1.1), but when solving for analytic solutions equation
(1.3) is usually a simpler starting point. Numerically integrating integrals such as equation (1.3)
has been attempted before, usually inside a particle-in-cell code (PIC) [RK10]. This is prohibitively
slow for the small time steps needed to resolve high frequencies reflected from relativistic particles,
according to the Nyquist theorem.

Earlier we cited laser wake field acceleration as a possible method for generating relativistic
electrons [ESL09], this technique has the ability to produce high current, spin polarised bunches
[WTK19]. Polarised beams of electrons allow for probing of fundamental, spin dependent processes
in atomic, nuclear and particle physics [WTK19; Tol56], including symmetry breaking processes
[Sch+13]. As we intend to numerically integrate electron trajectories to calculate the energy
radiated, this information can also be used to model spin precession. One can show that the
spin vector s in the rest frame of an electron precesses according to the Bargmann-Michel-Telegdi
(BMT) equation [BPL82, § 41][BMT59]. We will adopt a form of the BMT equation used by Wen,
Tamburini and Keitel [WTK19]:

ds

dt
= Ω(t, r(t),β(t))× s, (1.4)

Ω(t, r(t),β(t)) =
e

me

[(
ae +

1

γ(t)

)
B(t, r(t))−

(
ae +

1

γ(t) + 1

)
β(t)×E(t, r(t))

− aeγ(t)

γ(t) + 1

(
β(t) ·B(t, r(t))

)
β(t)

]
.

Where ae ≈ 1.16 × 10−3 is the anomalous electron magnetic moment, which takes into account
radiative corrections to one loop [PS95, § 6.3]. All fields are stated in the laboratory frame of
reference. A common procedure for deriving the BMT equation, is to write down the Hamiltonian
in non-relativistic Quantum Mechanics, in the presence of an external field. In the Heisenberg
picture we can take the expectation of the spin operator, to obtain an equation of motion for some
classical spin vector s. One can then construct a covariant generalisation of this equation. Finally
the equation listed above (1.4), can be obtained by assuming electron motion is well described by
the covariant Lorentz equation. A full discussion can be found in Landau and Lifshitz volume 4
[BPL82, § 41] or by Jackson [Jac98, § 11.11]. Clearly the position, velocity and spin depend on
the electron under consideration, but we assume each electron’s spin precesses independently of
one another, so there is no need insert a subscript j. Note that by taking the scalar product of
equation (1.4) with s demonstrates the spin vector magnitude is always conserved, throughout our
thesis it will be normalised |s| = 1.
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Chapter 2

Numerical code

This chapter outlines the algorithms used to calculate the spectrum of energy emitted from an
arbitrary number of electrons. To do this we need to numerically integrate the trajectory of each
particle and its radiation integral (1.1). Difficulties arise because these integrals are often rapidly
oscillating, and the Doppler factor 1− n̂ ·β on the denominator of equation (1.1), produces a sharp
peak when observing parallel to the velocity for an ultra relativistic particle [RK10]. Throughout this
thesis, we will often be concerned with radiation reflected from relativistic particles at frequencies
given by the Doppler shift ω ≈ 4γ2ω0 relative to the incident frequency ω0. Observing these
frequencies requires small time steps according to the Nyquist theorem. This suggests that using
a particle in cell (PIC) code will be extremely slow. Instead we have chosen to write our own code.

Our program is structured around a Python (3.7.4) class named ’Simulation’ [Pyt19]. The user can
write a simple Python script initiating an instance of this class with fundamental properties of the
particles involved: charge, mass, initial position and momenta for all particles etc. External fields
are defined as functions which are passed to the Simulation class. The numerical integrators for
the trajectory and radiation integrals, are stored as methods of the Simulation class. We make
frequent use of the Numpy [Har+20] and Scipy [Vir+20] software packages throughout.

2.1 Ballistic movement of electrons

A significant overhead of PIC codes at each time step, is the need to calculate charge and current
densities on a spatial grid from the position and velocities of macroparticles, which are used to
advance the electromagnetic fields in time according to Maxwell’s equations. Our code avoids this
by only considering physical scenarios in which the electron motion is determined by external
fields; one such example is ballistic motion, which we demonstrate as follows. Consider the
Lorentz transformation of the electromagnetic field [Jac98];

E′ = γ (E + β ×B)− γ2

γ + 1
(β ·E)β, (2.1a)

B′ = γ (B − β ×E)− γ2

γ + 1
(β ·B)β. (2.1b)

A prime will denote a quantity in the electrons’ rest frame. If the electron beam in question is initially
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coherent and propagating through vacuum, we can expect the magnetic field in their common rest
frame to be zero, B′ = 0. Then the laboratory magnetic field is linked to the electric field by a
simple relation [Jac98];

B = β ×E. (2.2)

From this we can find the Lorentz force in the lab frame,

FL = −e

(
E

γ2
− (β ·E)β

)
. (2.3)

Normally one would now argue for low density, relativistic electrons the inter-electron force transverse
to the boost direction is heavily suppressed by the Lorentz factor squared [Sam+20]. If this is
unsatisfactory, we can be explicit by calculating the Coulomb repulsion between two electrons in
the rest frame and transform to the lab frame by inverting equation (2.1a),

E = − γe

4π[d′]2

(
r̂ − γ

γ + 1
(β · r̂)β

)
. (2.4)

Where r̂ is a dimensionless unit vector pointing from one electron to another and d′ is their
separation distance in the rest frame (which electron we consider is irrelevant here). Consider
a laser of amplitude a0 = 0.02 and optical wavelength λ0 = 0.8 µm in the lab frame. This
corresponds to an electric field of amplitude E0 = 2πmec

2a0/eλ0 ≈ 8 × 1010 V/m. Assume we
have weakly relativistic electrons with Lorentz factor γ = 10 or energy 5.11 MeV and a separation
in the order of one wavelength in the rest frame d′ ∼ λ0/γ, given by a Lorentz contraction. With
these parameters the term in front of the brackets in equation (2.4) can be used to estimate the
electric field magnitude, which is in the order of ∼ 106 V/m. Considering only the electric field,
we can estimate the work done on an electron over one wavelength in the lab frame as ∼ 1 eV,
treating the electric field as constant and at its maximum initial value. This is so small, that no
reasonable number of ballistically moving electrons at this density will produce enough repulsion
to disperse in the lab frame over the time/length scales we are interested in; clearly such a beam
can propagate ballistically before colliding with a laser pulse.

2.2 Runge-Kutta integrator for Lorentz equation

Restricting ourselves to low density electrons, initially moving ballistically before a collision with
a weak laser pulse, the equations of motion for each electron can be determined entirely by the
Lorentz equation for an external field:

du

dt
= f (t, r(t),u(t)) , (2.5)

dr

dt
=

u(t)

γ(t)
, (2.6)

f (t, r(t),u(t)) = − e

me

[
E(t, r(t)) +

u(t)

γ(t)
×B(t, r(t))

]
, (2.7)
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γ(u[t]) =

√
1 + [u(t)]2. (2.8)

No reference to a specific electron j will be given in this section, as our discussion will be applied to
every electron in the system independently. Our code always uses the dimensionless momentum
u = γβ (A.2), as opposed to the velocity which is restricted by the speed of light |β| < 1. Therefore
the momentum is less susceptible to numerical roundoff. Evaluating the radiation integral (1.1) is
most convenient when the position and momentum are defined simultaneously. To this end we use
a modified 4th order Runge-Kutta scheme (RK4). Numerical integration with the RK4 algorithm
is covered by many mathematics [RHB06, § 27.6.4] and programming textbooks [Pre+92, § 16.1,
§ 16.2]. We note that the RK4 method is not symplectic, that is it does not conserve the volume of
phase space and therefore the on shell condition E2 = m2

eu
2 +m2

e is not identically preserved.

We begin with the position rm and momentum um at time tm, and we wish to find the position
rm+1 and momentum um+1 at the next time step tm+1 = tm +∆t. The initial quantities allow us to
immediately estimate the change of momentum between time steps k1, using the Euler method.
Now our approach differs from the usual explicit RK4 scheme as the electromagnetic fields (or f
(2.7)) depend on the position. We get around this by using the change in momentum k1 from the
previous step of the algorithm to estimate the position rm+1/2 needed to calculate k2. This can be
achieved by discretising equation (2.6) with a leapfrog scheme

rm+1/2 − rm

∆t/2
=

um+1/4

γ(um+1/4)
+O

(
[∆t/2]2

)
, (2.9)

and estimating the velocity at m+ 1/4 using the change in momentum k1 which has already been
calculated;

rm+1/2 = rm +
∆t

2

um + k1/4

γ(um + k1/4)
+O

(
[∆t/2]2

)
. (2.10)

If we repeat this procedure for each step of the RK4 algorithm, the full scheme becomes;

k1 = ∆t f
(
tm, rm, um

)
, (2.11a)

k2 = ∆t f

(
tm +

∆t

2
, rm +

∆t

2

um + k1/4

γ(um + k1/4)
, um +

k1

2

)
, (2.11b)

k3 = ∆t f

(
tm +

∆t

2
, rm +

∆t

2

um + k2/4

γ(um + k2/4)
, um +

k2

2

)
, (2.11c)

k4 = ∆t f

(
tm +∆t, rm +∆t

um + k3/2

γ(um + k3/2)
, um + k3

)
. (2.11d)

Now the momentum at the next time step is determined with the following weighted average

um+1 = um +
1

6
(k1 + 2k2 + 2k3 + k4) +O

(
[∆t]5

)
. (2.12)

Here we have stated the local error of order O
(
[∆t]5

)
for a single step, which would accumulate

to a global error of O
(
[∆t]4

)
in a usual RK4 scheme. In practice, our hybrid scheme will introduce
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an additional error from estimating the position to second order at each step to evaluate the
fields. This additional error depends on the variation of the fields with position. In the interest
of avoiding any further function calls, we can determine the position to second order using our
leapfrog scheme again. The velocity at the midpoint is estimated by averaging between time
steps.

rm+1 = rm +∆t um+1/2 = rm +
∆t

2

(
um

γ(um)
+

um+1

γ(um+1)

)
+O

(
[∆t]2

)
. (2.13)

This procedure is repeated until the complete trajectories and momenta of all particles in the
system are found, for some time interval. In practice, due to the small time step needed to
resolve high frequencies in the spectra (2.16), numerically integrating the trajectory for many
particles is the most intensive task our program must perform. There are a couple of ways we
have sped up our code; by pre-compiling regularly used functions such as the Lorentz equation
(2.7) using the ’just-in-time’ methods provided by Numba [LPS15]. We frequently use a cluster
when running these scripts with many particles, and as each particle’s trajectory is integrated
independently from one another we can easily split the workload over several nodes using the
Message Passing Interface for Python (MPI4PY) [Dal+11]. Note that this numerical integrator
could easily be extended to take into account radiative losses when calculating the trajectory,
simply by replacing f in equation (2.7) with the Landau-Lifshitz equation [Pia08].

2.3 Fast Fourier transform method for radiation integral

Before proceeding we first need to rewrite the radiation integral (1.1) in terms of the dimensionless
momentum our numerical code uses. This is easily done by differentiating the definition u(t) =
γ(t)β(t) with respect to time (as indicated by a dot), and using the derivative of the Lorentz factor

γ̇(t) =
u · u̇
γ

, (2.14)

to obtain a relation between both acceleration-like quantities β̇ and u̇,

β̇ =
u̇

γ
− (u · u̇) u

γ3
. (2.15)

Substituting the acceleration β̇ (2.15) into the radiation integral (1.1) for each particle denoted by
j, we obtain

d2E

dωdΩ
=

e2

16π3

∣∣∣∣∣∣
∑
j

∫ tf

ti

n̂×
(
n̂×

[
γ2j u̇j − (uj · u̇j)uj

]
− γjuj × u̇j

)
γj(γj − n̂ · uj)2

eiω[t−n̂·rj ]dt

∣∣∣∣∣∣
2

. (2.16)

Where the time dependence of the position rj , momentum uj and the Lorentz factor γj is implied.
In practice, we always define the initial values for every particle simultaneously at ti, and the
final time tf is chosen when all particles are no longer interacting with the external fields. If an
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electron has non-zero acceleration at ti this suggests we are neglecting radiation emitted before
the simulation begins, and subsequent interference. This suggests ti should be chosen when all
particles have zero acceleration.

The radiation integral (2.16) must now be numerically evaluated. We start by approximating the
integral inside the square modulus as a Riemann sum for each particle,

Kj(ω) = ∆t

Nt−1∑
m=0

F j [m] eiωTj [m]. (2.17)

Where the integral has been broken into Nt equally spaced time steps, ∆t = (tf − ti)/Nt. The
integrand is now determined by the j th particle’s momenta and trajectory from the RK4 algorithm
at the m th time step,

F j [m] =
n̂×

(
n̂×

[
(γmj )2u̇m

j − (um
j · u̇m

j )um
j

]
− γmj um

j × u̇m
j

)
γmj (γmj − n̂ · um

j )2
. (2.18)

Tj [m] = ti +m∆t− n · rmj (2.19)

The Lorentz factor has been determined at each time step according to γmj =
√
1 + (um

j )2.
Approximating the radiation integral as a Riemann sum is only possible because Tj is monotonically
increasing with time; if we take the derivative before discretisation in equation (2.19) we see
dTj/dt = 1 − n̂ · β > 0 because the electron can never propagate faster than the speed of light.
There are several different approaches one could take to calculate Kj (2.17). We could directly
evaluate each term and add. This would be very computationally expensive O(Nd+1

t ); where O
refers to the run time or resource requirements in computer science, and d is the dimension of the
Fourier Transform, in this case d = 3. Instead we will treat equation (2.17) as a discrete Fourier
transform in the dummy variable Tj . While our data was equally spaced in time it will not in general
be equally spaced in Tj , so we cannot use a common FFT algorithm like Cooley-Tukey [CT65].
Instead we use a non-equispaced fast Fourier transform (NFFT) developed by Keiner, Kunis and
Potts [KKP09, NFFT3]. Their algorithm interpolates between unequally spaced data points using
a window function, to approximate an equally spaced data set which can be used with a FFT.
These algorithms are provided as a C library, so we have also used a Python wrapper developed
by Vanderplas to implement this in our code [Van17].

Overall, our program calculates the momenta and trajectories of each particle using the RK4
method, from which F j and Tj are calculated. These quantities are passed to the NFFT3 algorithm,
which calculates Kj at the following Nt discrete frequencies

ω =
2πfs
Nt

[
0, 1, . . . ,

Nt

2
− 1

]
, sample frequency: fs =

1

∆t
. (2.20)

Where the maximum frequency is determined by the Nyquist theorem according to the step size.
Taking the sum of Kj over all particles and the square modulus, determines the spectral energy
radiated (2.21),

13



d2E

dωdΩ
=

e2

16π3

∣∣∣∣∣∣
∑
j

Kj [ω]

∣∣∣∣∣∣
2

. (2.21)

2.4 Runge-Kutta integrator for Bargmann-Michel-Telegdi equation

At each time step of our simulation, we must advance the spin vector’s rotation. Electron spin
precession as determined by the BMT equation (1.4) can be rewritten in terms of momentum u,

ds

dt
= g

(
t, r(t),u(t), s(t)

)
,

g
(
t, r(t),u(t), s(t)

)
=

e

me

[(
ae +

1

γ(t)

)
B(t, r(t))−

(
ae +

1

γ(t) + 1

)
u(t)×E(t, r(t))

γ(t)

− ae
γ(t) + 1

(
u(t) ·B(t, r(t))

γ(t)

)
u(t)

]
× s(t). (2.22)

Applying the same method used to obtain the momentum and position, we discretise both of these
equations and use the RK4 algorithm. Spin sm is known at time tm, and we wish to find sm+1 at
time tm+1 = tm +∆t. By inserting the same momentum and position estimates at each RK4 step
from our calculation of the trajectory (2.11),

l1 = ∆t g
(
tm, rm, um, sm

)
, (2.23a)

l2 = ∆t g

(
tm +

∆t

2
, rm +

∆t

2

um + k1/4

γ(um + k1/4)
, um +

k1

2
, sm +

l1
2

)
, (2.23b)

l3 = ∆t g

(
tm +

∆t

2
, rm +

∆t

2

um + k2/4

γ(um + k2/4)
, um +

k2

2
, sm +

l2
2

)
, (2.23c)

l4 = ∆t g

(
tm +∆t, rm +∆t

um + k3/2

γ(um + k3/2)
, um + k3, sm + l3

)
. (2.23d)

This is computationally inexpensive as no additional function calls to the fields are necessary,
every quantity needed aside from the spin estimates has already been calculated for the trajectory
(2.11). As with the momentum (2.12), we can perform a weighted sum of the derivatives to
calculate the new spin,

sm+1 = sm +
1

6
(l1 + 2l2 + 2l3 + l4) +O

(
[∆t]5

)
. (2.24)

Once again we have stated the local error for one time step as O
(
[∆t]5

)
which excludes any

additional error from the estimation of position, at each step of the RK4 algorithm.
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Chapter 3

Constant magnetic field

Having written a numerical code, we should test it against an exact analytic solution to demonstrate
its accuracy. One such benchmark is the helical motion of electrons in a constant magnetic field.
This problem has been studied extensively before. The earliest derivation we can find of the
spectral energy radiated by an electron in circular motion is by Schwinger [Sch49, section III].
Jackson extends this to several electrons evenly distributed around a circle executing the same
periodic motion [Jac98, problems 14.15, 14.23], which is the specific problem we are interested
in. The goal of our derivation is to reproduce these results while also proving that only harmonics
of the cyclotron frequency are emitted, this is simply assumed by the derivations of Jackson and
Schwinger. Finally we reference a derivation by Salamin and Faisal [SF96, Appendix A], who
consider single electron motion in a circularly polarised plane wave; we use a similar method
to obtain the power radiated per unit solid angle into the m th harmonic. To provide physical
justification, this scenario can be considered similar to electrons moving in a closed circuit with a
constant drift velocity in a conductor.

3.1 Equations of Motion

We start from the Lorentz equation with a constant magnetic field of magnitude B0 along the ŷ
axis,

me
d(γβ(t))

dt
= −eβ(t)×B0ŷ. (3.1)

Taking the scalar product of equation (3.1) with the velocity β demonstrates that β2 and therefore
the Lorentz factor γ are conserved. For an electron with initial velocity β0x̂ at the origin the
equations of motion can be written:

β(t) = β0

 cos(ωct)
0

− sin(ωct)

 , r(t) =
β0
ωc

 sin(ωct)
0

cos(ωct)− 1

 . (3.2)

Where ωc = eB0/meγ is the cyclotron frequency and T = 2π/ωc is the period of oscillation. This is
the usual circular motion of an electron in a plane perpendicular to a magnetic field. The magnetic
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field should be ’switched on’ for the interval −NT ⩽ t ⩽ NT and zero at all other times, so the
electrons do not accelerate or radiate energy before the simulation begins. It is our intention to
use these equations of motion to solve the radiation integral given by equation (1.3). We start
by defining our observation direction n̂ = (cos(ϕ), sin(ϕ), 0) with one component parallel and one
perpendicular to the plane of motion. Using this we can derive some algebraic results;

n̂ · r(t) = β0
ωc

cos(ϕ) sin(ωct), (3.3)

n̂× (n̂× β(t)) = β0 sin(ϕ) cos(ωct) [− sin(ϕ)x̂+ cos(ϕ)ŷ] + β0 sin(ωct)ẑ,

⇒ β0 sin(ϕ) cos(ωct)ẑ × n̂+ β0 sin(ωct)ẑ. (3.4)

We can now write down the radiation integral (1.3) for Np particles

d2E

dωdΩ
=

e2ω2

16π3

∣∣∣∣∣
Np−1∑
j=0

Kj

∣∣∣∣∣
2

. (3.5)

3.2 Solution of the radiation integral

The particle with equations of motion (3.2) will be referred to as the zeroth particle j = 0, and will
have an associated integral K0. Using the algebraic results above, equations (3.3) and (3.4), to
calculate the integrand our radiation integral (1.3) can be written for this particle as,

K0 =

∫ NT

−NT
β0 [sin(ϕ) cos(ωct)ẑ × n̂+ sin(ωct)ẑ] e

i ω
ωc

[ωct−β0 cos(ϕ) sin(ωct)]dt (3.6)

Consider an ensemble of electrons equally distributed around a circle, undergoing the same
periodic motion. The equations of motion and integral for each particle are identical to those
for j = 0 apart from a constant phase shift. Or equivalently, we can consider the orbit of particle
j to be identical to j = 0 if it started at a later time obtained from the substitution t → t + jT/Np,
which allows us to write the integral for a general particle,

Kj =

∫ NT+ jT
Np

−NT+ jT
Np

β0

[
sin(ϕ) cos

(
ωc

[
t+

jT

Np

])
ẑ × n̂+ sin

(
ωc

[
t+

jT

Np

])
ẑ

]
e
i ω
ωc

[
ωct−β0 cos(ϕ) sin

(
ωc

[
t+ jT

Np

])]
dt. (3.7)

By a simple change of integration variable, we can see this is identical to our integral for j = 0
(3.6) apart from a constant phase term.

Kj = e−i 2πωj/Npωc K0. (3.8)
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Therefore we only need to solve the integral for j = 0 to obtain the total energy radiated from all
particles,

d2E

dωdΩ
=

e2ω2

16π3

∣∣∣∣∣
Np−1∑
j=0

Fj(ω)

∣∣∣∣∣
2∣∣∣K0

∣∣∣2, where Fj(ω) = e−i 2πωj/Npωc . (3.9)

The generating function for Bessel functions of the first kind [AS64, eq. 9.1.41],

eiz sin(θ) =
∞∑

m=−∞
Jm(z)eimθ, (3.10)

can be used to expand K0 (3.6) in an infinite series of Bessel functions. We will demonstrate this
process greatly simplifies the resulting integral,

K0 = β0

∫ NT

−NT

∞∑
m=−∞

[sin(ϕ) cos(ωct)ẑ × n̂+ sin(ωct)ẑ] Jm(x) ei(ω−mωc)tdt, x =
ω

ωc
β0 cos(ϕ).

(3.11)

To obtain equation (3.11) we have used the well known properties of Bessel functions for negative
arguments and integer orders, Jm(−x) = J−m(x) = (−1)mJm(x). The integrand of equation
(3.11) can be rewritten by replacing each sinusoidal function with a Bessel function, and using the
recurrence relations of Bessel functions to simplify [AS64, pg. 361, eq. 9.1.27];

∞∑
m=−∞

Jm(x) cos(ωct) e
−imωct =

1

2

∞∑
m=−∞

Jm(x)
(
e−i(m−1)ωct + e−i(m+1)ωct

)
,

⇒ 1

2

∞∑
m=−∞

[Jm+1(x) + Jm−1(x)] e
−imωct =

∞∑
m=−∞

m

x
Jm(x) e−imωct.

(3.12)

∞∑
m=−∞

Jm(x) sin(ωct)e
−imωct =

1

2i

∞∑
m=−∞

Jm(x)
(
e−i(m−1)ωct − e−i(m+1)ωct

)
,

⇒ 1

2i

∞∑
m=−∞

[Jm+1(x)− Jm−1(x)] e
−imωct = i

∞∑
m=−∞

dJm
dx

e−imωct.

(3.13)

Using equations (3.12) and (3.13), and exchanging the order of summation and integration we can
reduce K0 (3.11) to the following integral,

K0 = β0

∞∑
m=−∞

[
m

x
sin(ϕ)Jm(x)ẑ × n̂+ i

dJm
dx

ẑ

] ∫ NT

−NT
ei(ω−mωc)tdt. (3.14)

The remaining integral is easy to solve, and we recognise its asymptotic behaviour as a Dirac
delta when N → ∞, we can see already that this will restrict emission to fixed harmonics of the
cyclotron frequency.
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∫ NT

−NT
ei(ω−mωc)tdt =

2 sin([ω −mωc]NT )

ω −mωc
→ 2πδ(ω −mωc) as N → ∞ (3.15)

3.3 Average power per unit solid angle emitted into each harmonic

Recalling our integral is defined for 2N oscillations, we can write the total power radiated per unit
solid angle averaged over one oscillation as

dP

dΩ
=

∫ ∞

−∞
lim

N→∞

1

2NT

(
d2E

dωdΩ

)
dω. (3.16)

To solve (3.16) we must expand the square modulus | K0 |2 (3.14). In general this is a double sum
with a product of two integrals of the kind seen in (3.15). Applying the limit to one of the integrals
will result in a delta function (3.15), which collapses the expression into a single sum. Keeping in
mind the second integral is multiplied by this delta function, we can expand out the sin function for
small arguments (3.15), cancelling out the factor of 2NT in (3.16). Integrating the remaining sum
and delta function over frequency will restrict the emitted radiation to harmonics of the cyclotron
frequency,

dP

dΩ
=

e2β2
0

8π2

∞∑
m=−∞

m2ω2
c

∣∣∣∣∣
Np−1∑
j=0

Fj(mωc)

∣∣∣∣∣
2([

dJm
dx

]2
+

tan2(ϕ)

β2
0

[Jm(x)]2
) . (3.17)

From this we can identify the power radiated into the m th harmonic,

dPm

dΩ
=

e2β2
0m

2ω2
c

8π2

∣∣∣∣∣
Np−1∑
j=0

Fj [m]

∣∣∣∣∣
2([

dJm
dx

]2
+

tan2(ϕ)

β2
0

[Jm(x)]2
)
, (3.18)

where Fj [m] = e−i 2πmj/Np , and x = mβ0 cos(ϕ).

This derivation is our own work, designed to demonstrate only harmonics are emitted from periodic
motion. However this result has been obtained before for a single electron by Schwinger [Sch49,
eq. III.28], and for many electrons by Jackson [Jac98, problems 14.15, 14.23], who use a different
method based on the Poisson sum formula.

3.4 Single electron: trajectory and spectrum of radiation emitted

Consider a single electron with the equations of motion listed above (3.2). Choosing a relatively
small Lorentz factor γ = 5, confines emission to low multiples of the cyclotron frequency, so we can
easily observe the harmonic behaviour. This is equivalent to choosing an initial momentum u0x =√
γ2 − 1 in our numerical code, or velocity β0 = u0x/γ in our analytic solutions (3.2). Our numerical

code requires a magnitude for the magnetic field, so we choose B0 = 1 T ; this choice is completely
arbitrary, and in fact we have normalised all of our results relative to the cyclotron frequency ωc
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such that this choice is irrelevant to the plots produced. Initially this simulation is performed for
one oscillation to produce the trajectory and average power radiated in Figure 3.1a, this leads to
a resolution in frequency of exactly the cyclotron frequency according to the Nyquist theorem. As
the motion is periodic we can instead average our numerical result over ten oscillations, seen in
Figure 3.1b, to effectively increase the resolution and demonstrate only harmonics of the cyclotron
frequency are emitted.

After computing the numerical results we turn our attention to the analytic solutions. To evaluate
the Bessel functions in equation (3.18) to a high degree of accuracy, we can use the SciPy library
for special functions [Vir+20].

Clearly the trajectory of the electron is correct, however the accuracy of the numerical solutions
is somewhat meaningless because of the small time step that was needed to solve the spectrum.
The power radiated per unit solid angle, as a function of the angle ϕ relative to the plane of orbit can
be seen in Figure 3.1a and Figure 3.1b. Most of the energy, in particular at high frequencies tends
to be radiated closer to the plane of orbit. Note that Figure 3.1a may be somewhat misleading; the
continuous line implies that power is emitted at all frequencies. This is why Figure 3.1b has been
included to prove only harmonic emission is allowed.

3.5 Spin precession of a single electron

When an electron moves with equations of motion (3.2), its spin precession will be independent
from the momentum, no electric field is present and the u ·B term is zero. The BMT equation in
these circumstances is given by (1.4),

ds

dt
=

e

me

(
ae +

1

γ

)
B × s(t). (3.19)

Where the magnetic field is constant, and the Lorentz factor conserved. This is equivalent to three
differential equations,

dsx
dt

= ωc(aeγ + 1) sz(t), (3.20a)

dsy
dt

= 0, (3.20b)

dsz
dt

= −ωc(aeγ + 1) sx(t). (3.20c)

Which have similar solutions to the Lorentz equation for a constant magnetic field:

sx(t) = s0x cos(ωc[aeγ + 1]t) + s0z sin(ωc[aeγ + 1]t), (3.21)

sy(t) = s0y, (3.22)

sz(t) = s0z cos(ωc[aeγ + 1]t)− s0x sin(ωc[aeγ + 1]t). (3.23)
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Figure 3.1: Trajectory and power emitted by a single electron in a constant magnetic field. Analytic solutions
for momentum and position are given by equation (3.2). Plotting the power emitted, averaged over many
time periods, achieves a higher resolution in frequency demonstrating only harmonics of the cyclotron
frequency are emitted; analytic solutions are given by (3.18).
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Ignoring the small contribution provided by the magnetic moment anomaly ae, it is well known
from the classical Larmor equation that spin precesses around a magnetic field with constant
magnitude. The results of our simulation can be seen in Figure 3.2, where an initial spin of sx =
sz = 1/

√
2 with no component parallel to the magnetic field sy = 0, and a Lorentz factor γ = 5 has

been selected to be consistent with the results in Figure 3.1. The BMT equation (3.19) predicts
the spin vector will oscillate with frequency ωs = ωc(aeγ + 1). However the anomalous correction
ae is too small to be observed over one cycle, so it appears that the momentum and spin oscillate
with the cyclotron frequency.
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Figure 3.2: Spin precession in a constant magnetic field. Analytic solutions are provided by equations
(3.21), (3.22) and (3.23). The spin vector is normalised to 1 at all times.

3.6 Coherence effects with multiple electrons

Having established that our numerical code works accurately for a single electron, we can extend
our analysis to two electrons. Consider the scenario used to derive equation (3.18), several
electrons equally distributed around a circle executing the same periodic motion. Each of our
simulations average the power radiated over ten oscillations to reduce the effective time step, as
seen earlier for one electron in Figure 3.1b, to discern the harmonics emitted. Much of the physics
involved is apparent from the sum of oscillatory terms F present in equation (3.18). If the electrons
radiate coherently, the average power emitted should be proportional to the number of electrons
squared N2

p .

Figure 3.3a shows the energy radiated for two electrons at every harmonic, emission only occurs
for even harmonics, so we have plotted this against the one electron case in Figure 3.3b. One
can see even harmonics have increased by a factor of N2

p = 4 for two electrons compared to one.
By expanding out the sum of oscillatory terms in equation (3.18), we can easily show only even
harmonics are permitted, |1 + e−iπm|2 = |1 + (−1)m|2.

As the number of electrons tends to infinity no radiation is emitted whatsoever, which can be seen
by approximating the sum of constant phase terms (3.18) as an integral under the following limit;
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lim
Np→∞

Np−1∑
j=0

e−2πi mj/Np = lim
Np→∞

(Np)

∫ 1

0
e−2πi mxdx = 0, (3.24)

which is independent of the harmonic chosen. At this limit the charge distribution becomes
continuous and is therefore analogous to a circuit of electrons, where the current becomes steady
and the emitted magnetic field is static, and no radiation is emitted. However in a real conductor,
static positive ions neutralise the charge density of negative electrons.
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Figure 3.3: Spectra emitted from Np electrons at angle ϕ = 2/γ0 in a constant magnetic field, equally
spaced around a circular path and each Lorentz factor γ = 5. As the number of electron tends to infinity
no radiation is emitted. The power radiated has been averaged over 10 oscillations to demonstrate only
harmonics of the cyclotron frequency are emitted. In Figure 3.3b we have also plotted the analytic solutions
from Figure 3.1b, to show even harmonics are coherent and scale with N2

p . Analytic solutions are provided
by equation (3.18).
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Chapter 4

Spin precession in a monochromatic
plane wave

So far we have successfully demonstrated that our numerical code accurately predicts the electron
trajectory, energy spectrum and spin precession against analytic solutions, for a constant magnetic
field. As described in the introduction, we are predominantly interested with electrons initially
counter propagating with a laser pulse, which we might approximate as a plane wave. Ideally we
would solve the BMT equation (1.4) for a plane wave pulse, however this is non-trivial. To develop
an intuition for this problem we will instead consider the spin precession in a linearly polarised
monochromatic plane wave, for which the BMT equation can easily be solved. Throughout this
chapter we will frequently reference the general equations of motion for an electron in a plane
wave, derived in Appendix B. In this chapter we have neglected to simulate the energy emitted,
because this would only be superseded by our consideration of a more physically realistic, linearly
polarised plane wave pulse in the next chapter.

4.1 Solution of the Bargmann-Michel-Telegdi equation

Consider a single electron in a monochromatic plane wave with frequency ω0. The wave is
propagating along the ẑ axis, and initially so is the electron. We can write the phase of this
electron as,

φ(t) = ω0 [t− z(t)] ,
dφ

dt
=

ω0δ

γ(φ)
. (4.1)

The derivative of φ is defined in the Appendix (B.10), and we have made use of the conserved
quantity δ = γ(φ)− uz(φ) = γ0 − u0z (B.9). Quantities like momentum and the Lorentz factor with
a zero subscript are defined at the origin at time t = 0, or equivalently φ = 0. Using the differential
relation between phase and time, we can rewrite the BMT equation (2.22),

ds

dφ
=

γ(φ)

δ ω0
Ω(φ)× s(φ),
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Ω(φ) =

(
ae +

1

γ(φ)

)
B(φ)−

(
ae +

1

γ(φ) + 1

)
u(φ)×E(φ)

γ(φ)

− ae
γ(φ) + 1

(
u(φ) ·B(φ)

γ(φ)

)
u(φ). (4.2)

Now we can specify a simple sinusoidal vector potential, polarised along x̂. For convenience we
always normalise the potential relative to the electron charge and mass (A.4). The momentum can
be derived by inserting the potential (4.3a) into the generic equations of motion for an electron in
a plane wave, as defined in the Appendix (B.14);

a(ϕ) = a0 sin (φ) x̂, (4.3a)
ux(φ) = a0 sin(φ), (4.3b)
uy(φ) = 0, (4.3c)

uz(φ) = u0z +
a20
2δ

sin2(φ). (4.3d)

From this vector potential the fields can be defined in the usual way eB/me = ∇r × a and
eE/me = ∂ta (A.5). One can immediately see this scenario is not physical. The acceleration or
electromagnetic fields are ’turned on’ at the beginning of the simulation φ = 0, and are therefore
discontinuous. A better argument would be to insert an envelope function f(φ) into our vector
potential (4.3a), then define our initial conditions at some integer number of oscillations φ = −Nπ
yielding the same initial conditions above u(−Nπ) = u0z. One could then take the limit N → ∞
where the envelope is expected to be zero if finite in duration, f(−∞) = 0. Then we could
approximate the envelope as constant when integrating, if it is very slowly varying. This is the
formal argument one should give to derive the results found in this section. Using the potential
from equation (4.3a) and its corresponding fields, with the momentum defined in equations (4.3b),
(4.3c) and (4.3d) we can find the field dependent vector Ω (4.2),

Ωy(φ) = −δω0a0 cos(φ)

γ(φ)

[
ae +

2(δ + 1)

(δ + 1)2 + a20 sin
2(φ)

]
. (4.4)

Written in terms of the conserved quantity δ. Due to our choice of potential and initial momentum
the other components are zero which greatly simplifies this problem: Ωx = 0, Ωz = 0. Choosing
these parameters allows us to ignore any movement parallel to the magnetic field (which is linear
and not interesting) or in the wave polarisation direction. Expanding out the cross product in
equation (4.2), the differential equations for spin are:

dsx
dφ

=
γ(φ)

δ ω0
Ωy(φ) sz(φ), (4.5a)

dsy
dφ

= 0, (4.5b)

dsz
dφ

= −γ(φ)

δ ω0
Ωy(φ) sx(φ). (4.5c)
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The spin component sy parallel to the magnetic field is conserved. By taking the scalar product
of the BMT equation (4.2) with s we can show the total spin s2x + s2y + s2z is conserved (phase
dependence here is implied). With these two facts we can relate sx and sz by a simple constant s,

d

dφ

(
[sx(φ)]

2 + [sz(φ)]
2
)
= 0, [sx(φ)]

2 + [sz(φ)]
2 = s20x + s20z = s2. (4.6)

By differentiating this the expression we can relate the derivatives of sx and sz, which allows us to
obtain an ordinary differential equation for a single spin component,

dsz
dφ

=
d

dφ

√
s2 − [sx(φ)]2 = − sx(φ)√

s2 − [sx(φ)]2
dsx
dφ

. (4.7)

Then by equating with (4.5c),

∫
dsx√

s2 − [sx(φ)]2
=

∫
γ(φ)Ωy(φ)

δ ω0
dφ. (4.8)

Substituting in our equation for Ωy (4.4), one can see these are standard integrals;

sin−1
(sx
s

)
= −a0ae

∫
cos(ϕ) dϕ− 2

∫
dx

1 + x2
, where x =

a0 sin(ϕ)

δ + 1
, (4.9)

sx(φ) = −s sin

(
a0ae sin(φ) + 2 tan−1

[
a0 sin(φ)

δ + 1

]
+ c

)
. (4.10)

Where c is an integration constant. By using the conservation equation relating sz to sz (4.6), we
can obtain the general solution for sz,

sz(φ) =
√
s2 − [sx(φ)]2 = s cos

(
a0ae sin(φ) + 2 tan−1

[
a0 sin(φ)

δ + 1

]
+ c

)
. (4.11)

By expanding equations (4.10) and (4.11) out with compound angle formulae and applying the
initial conditions for spin sx(φ = 0) = sx0 and sz(φ = 0) = s0z, we obtain sin(c) = −s0x/s and
cos(c) = s0z/s. Notice that the inverse tan function is undetermined up to some integer multiple
of π, but shifting the trigonometric functions by an integer multiple of their period leaves them
unchanged. After applying these initial conditions, our equations of motion for spin become;

sx(φ) = s0x cos(I[φ])− s0z sin(I[φ]), (4.12a)
sy(ϕ) = s0y, (4.12b)
sz(φ) = s0z cos(I[φ]) + s0x sin(I[φ]), (4.12c)

I(φ) = a0ae sin(φ) + 2 tan−1

(
a0 sin(φ)

δ + 1

)
. (4.12d)

Finally we note that these solutions are exact, and while the initial values for momentum are not
general, the initial values of spin are.
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4.2 Comparison with simulation
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Figure 4.1: Spin precession in a single oscillation of a linearly polarised monochromatic plane wave (4.3a).
Analytic solutions are provided in equations (4.3b) and (4.3d) for momentum, and equations (4.12a) and
(4.12c) for spin.

As a monochromatic plane wave is somewhat unrealistic because of its infinite duration, we will not
consider the energy radiated in this case; instead the reader can see chapter 5, which deals with a
plane wave pulse. This means we no longer require a small time step to resolve high frequencies
in the spectrum, which gives us an opportunity to demonstrate our code’s accuracy with a small
time step, dt = λ0/100c s in terms of the wavelength λ0 = 0.8 µm. We select a dimensionless
amplitude a0 = 0.02, initial momentum u0z = −

√
γ20 − 1 with Lorentz factor γ0 = 10 at the origin,

and initial spin polarisation along the propagation axis s0 = (0, 0, 1). The results can be seen in
Figure 4.1. In particular one can see a discrepancy at the last step for momentum and spin, ux
and sx, in the plane of polarisation. As in the case of a constant magnetic field, both spin and
momentum appear to oscillate with the same frequency, and any effect from the anomalous term
ae is small. This simple idea, that the electron spin is not significantly changed after an interaction
with a plane wave, is the basis for generating relativistic, spin polarised electron beams from laser
wake field acceleration. However with a more realistic laser pulse, as modelled in PIC simulations
by Wen, Tamburini and Keitel there is a greater degree of depolarisation, demonstrated over many
cycles [WTK19, Fig.2, (c) and (d)].
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Chapter 5

Plane wave pulse

Another paradigmatic case to consider is radiation from an electron in the presence of a plane
wave. This has been studied before in seminal papers by Sarachik and Schappert [SS70], Salamin
and Faisal [SF96]. Sarachik and Schappert consider the average rest frame where the electron
motion is periodic, and then proceed to solve the radiation integral (1.3) to obtain power radiated
into the m th harmonic per unit solid angle, for a plane wave of arbitrary polarisation. Salamin and
Faisal perform a similar derivation for a circularly polarised plane wave, which they then Lorentz
transform to find the power radiated into the m th ’harmonic’ in the lab frame. We wish to derive
the appropriate conditions under which radiation from multiple electrons moving with the same
initial velocity will constructively interfere. Throughout this chapter we will frequently reference the
electron’s equations of motion in a plane wave from Appendix B, and approximate solutions to the
radiation integral in the case of a weak field from Appendix C.

5.1 Radiation integral of electrons in a generic plane wave pulse

Consider an electron denoted by j in the presence of a plane wave pulse. The wave is propagating
along a direction specified by the dimensionless unit vector n̂0. We can write the phase of each
particle can be written as φj(t) = ω0[t−n̂0 ·rj(t)], for frequency ω0. Such a wave can be described
by the normalised vector potential (A.4),

a(φ) =


0 for φ < ϕi,

a(φ) for ϕi ≤ φ ≤ ϕf ,

0 for ϕf < φ.

(5.1)

When the phase is treated as a variable φ, particle subscript j is always implied. We require
that potential a(φ) and its first derivative are both continuous and differential at all times; and are
non-zero only between some initial and final phase ϕi ≤ φ ≤ ϕf . Aside from these conditions, the
pulse shape and polarisation is completely general. All particles are assumed to start outside the
pulse with initial phase ϕ0,j = −ω0n̂0 · r0,j ≤ ϕi, where a zero subscript on a particle’s momentum
or position indicates it is defined at time t = 0. Defining the initial phase at t = 0 is an arbitrary
choice, while starting at some other time simply introduces a constant phase for every particle
which vanishes under the square modulus of the radiation integral (1.1). The equations of motion

27



can be derived in the lab frame using the Hamilton-Jacobi method, this procedure is laid out in
Appendix B closely following common literature [SF96; SS70; LL75];

uj(φ) =


u0,j for ϕ0,j ≤ φ < ϕi,

u0,j + a(φ) + 1
δj
(u0,j · a(φ)) n̂0 +

1
2δj

[a(φ)]2 n̂0 for ϕi ≤ φ ≤ ϕf ,

u0,j for ϕf < φ.

(5.2)

ω0(rj(φ)− r0,j) =


(φ− ϕ0,j)u0,j/δj for ϕ0,j ≤ φ < ϕi,[
(φ− ϕ0,j)u0,j +Θj(ϕi, φ)

]
/δj for ϕi ≤ φ ≤ ϕf ,[

(φ− ϕ0,j)u0,j +Θj(ϕi, ϕf )
]
/δj for ϕf < φ,

(5.3)

Θj(ϕi, φ) =

∫ φ

ϕi

(
a(φ′) +

1

δj

(
u0,j · a(φ′)

)
n̂0 +

1

2δj

[
a(φ′)

]2
n̂0

)
dφ′. (5.4)

Parameter delta δj = γj(φ)−n̂0 ·uj(φ) = γ0,j−n̂0 ·u0,j is a conserved quantity defined by equation
(B.9). When describing the structure of our numerical code we wrote the radiation integral in terms
of the relativistic momentum uj (2.16), which is stated again below for convenience. Substitution
of our equations of motion (5.2) to (5.4) into this integral allows us to discern the properties of
energy radiated in a plane wave of general structure;

d2E

dωdΩ
=

e2

16π3

∣∣∣∣∣∣
∑
j

∫ ∞

−∞

n̂×
(
n̂×

[
γ2j u̇j − (uj · u̇j)uj

]
− γjuj × u̇j

)
γj(γj − n̂ · uj)2

eiω[t−n̂·rj ]dt

∣∣∣∣∣∣
2

. (5.5)

A dot denotes a derivative with respect to time, and the time dependence of position rj , momentum
uj and Lorentz factor γj is implied. Since are considering motion in a generic plane wave pulse, it
is convenient to change the variable of integration to the wave phase using the differential relation
(B.10),

φj(t) = ω0 [t− n̂0 · rj(t)] ,
dφj

dt
=

ω0δj
γj(φj)

. (5.6)

Where we have included subscript j explicitly to show this change of variable must be performed
for each particle. This technique was originally employed by Sarachik and Schappert [SS70]. By
rewriting the integrand as a total differential in time using the following equation, analogous to an
equation used earlier (1.2), allows us to remove the acceleration terms;

d

dt

(
n̂× [n̂× uj ]

γj − n̂ · uj

)
=

n̂×
(
n̂×

[
γ2j u̇j − (uj · u̇j)uj

]
− γjuj × u̇j

)
γj(γj − n̂ · uj)2

. (5.7)

Changing the variable of integration to phase for each particle j using equations eqs. (5.6) and (5.7)
allows us to obtain the following radiation integral,

d2E

dωdΩ
=

e2

16π3

∣∣∣∣∣∣
∑
j

∫ ∞

−∞

d

dφ

(
n̂× [n̂× uj(φ)]

γj(φ)− n̂ · uj(φ)

)
eiΦj(φ)dφ

∣∣∣∣∣∣
2

, (5.8)
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Φj(φ) =
ω

ω0
[φ+ ω0(n̂0 − n̂) · rj(φ)] . (5.9)

The energy radiated is identically zero for any interval in which the momentum is constant (5.8),
as expected. Note the derivative of phase Φj is proportional to the Doppler factor of the particle,

dΦj

dφ
=

ω

ω0

(
γj(φ)− n̂ · uj(φ)

γj(φ)− n̂0 · uj(φ)

)
=

ω

δjω0
[γj(φ)− n̂ · uj(φ)] . (5.10)

Where we have used the differential relation between momentum and position from the Appendix
(B.11). Carrying out integration by parts of equation (5.8) allows us to obtain a simpler radiation
integral similar to equation (1.3),

d2E

dωdΩ
=

e2ω2

16π3ω2
0

∣∣∣∣∣∣
∑
j

1

δj

∫ ∞

−∞
n̂× (n̂× uj(φ)) eiΦj(φ)dφ

∣∣∣∣∣∣
2

. (5.11)

The argument for dispensing with the boundary terms was given in the introduction for equation
(1.3); one assumes the motion is periodic, integrates over an integer number of oscillations,
considers radiation only at harmonics and sends the time period of oscillation to infinity. There
are similar assumptions used in literature [Jac98; RK10]. One could correctly argue that electron
motion in a plane wave is not in general periodic in the laboratory frame, and that the boundary
conditions should not be discarded. However they have no impact on this derivation, so it is not
necessary to include them.

5.2 Interference conditions for two electrons with identical initial
velocity

Our goal is to derive some condition for constructive interference. We expect the frequency
of emitted radiation to depend on the Doppler factor of each electron, and therefore its initial
momentum. It is natural to start by requiring the initial momentum of all particles to be identical
for interference; in doing so we drop the j subscript from δj , γj and uj (5.2). This indicates that
Θj (5.4) is also independent of particle, so we drop the subscript j here also. Only the position
rj(φ) varies for each particle. Substituting the momentum u(φ) (5.2) and position rj(φ) (eqs. (5.3)
and (5.4)) into our equation for phase Φj (5.9) we obtain,

Φj(φ) =
ω

ω0

[
(n̂0 − n̂) · (ω0r0,j −

ϕ0,j

δ
u0) +

(
1 +

1

δ
[n̂0 − n̂] · u0

)
φ+

1

δ
(n̂0 − n̂) ·Θ(ϕi, φ)

]
,

(5.12)

in the interval where the potential is non-zero ϕi ≤ φ ≤ ϕf . Here Φj can be split into two parts,
a constant which depends on the initial position of each particle and a variable independent of
the particle. Using this, we can restate the radiation integral such that it no longer depends on
the choice of particle. Substituting the momentum u (5.2) and phase Φj (5.12) into the radiation
integral (5.11),
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d2E

dωdΩ
=

e2ω2

16π3δ2ω2
0

F (ω)

∣∣∣∣∣
∫ ϕf

ϕi

n̂× (n̂× u(φ)) e
i ω
ω0

[
φ+ 1

δ
(n̂0−n̂)·

(
φu0+Θ(ϕi,φ)

)]
dφ

∣∣∣∣∣
2

. (5.13)

Here the limits of integration are restricted to the region in which the acceleration is non-zero (5.8).
The dependence on particles’ initial positions is given by the following sum of constant phase terms

F (ω) =

∣∣∣∣∣
Np−1∑
j=0

eiω(σn̂0−n̂)·r0,j

∣∣∣∣∣
2

where σ =
γ0 − n̂ · u0

γ0 − n̂0 · u0
. (5.14)

This sum is similar to one obtained earlier in the specific case of a constant magnetic field (3.18);
we have shown this behaviour can be generalised to any plane wave pulse. If the emission is
coherent at a certain frequency ω then the energy radiated will scale with the number of electrons
squared; F (ω) = N2

p , where Np is the total number of particles. Parameter σ has been derived
by inserting the initial phase ϕ0,j = −ω0n̂0 · r0,j into equation (5.12) and rearranging, it is similar
to the square of a Doppler factor. This result no longer depends explicitly on the frequency ω0,
and perhaps most importantly equation (5.14) is general and makes no references to the pulse
structure.

Consider just two particles (j = 1, 2), both with initial momenta u0. Expanding out the sum (5.14),
we can see the general condition for observing coherent radiation is,

ω

([
γ0 − n̂ · u0

γ0 − n̂0 · u0

]
n̂0 − n̂

)
· d = 2πl. (5.15)

Where the displacement of one electron from another is d = r0,2 − r0,1 with distance d = |d|, the
sign on d is irrelevant as l is an integer (positive or negative). Clearly the condition for coherent
radiation varies with the direction of observation and frequency. To simplify this condition, we
require the observation direction n̂, propagation direction of the wave n̂0 and displacement of the
electrons to be co-planar. The angle between the observation direction n̂ and wave propagation
direction n̂0 is ϑ. First we assume both electrons are transversely separated d⊥ · n̂0 = 0, then we
can determine angles ϑ⊥ at which coherent radiation is detected for a given frequency, or we can
determine frequencies ω⊥ at which coherent radiation is detected for a given angle. The same
procedure is repeated for separation parallel to the propagation direction d∥ × n̂0 = 0. Using
equation (5.15) conditions for coherent radiation are:

ϑ⊥(ω) = sin−1

(
2πl

d⊥ω

)
, (5.16)

ω⊥(ϑ) =
2πl

d⊥ sin(ϑ)
, (5.17)

ϑ∥(ω) = cos−1

(
γ0 − n̂ · u0

γ0 − n̂0 · u0
+

2πl

d∥ω

)
, (5.18)
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ω∥(ϑ) =
2πl

d∥

[(
γ0 − n̂ · u0

γ0 − n̂0 · u0

)
− cos(ϑ)

] . (5.19)

The sign on integer l is not consistent from one equation to another, and taking l instead as a half
integer would give destructive interference. There are a few interesting comments to make here.
Quantities ϑ∥ and ω∥ depend on the Doppler factor while ϑ⊥ and ω⊥, strangely do not. Coherence
is observed at every frequency ω⊥ along the wave propagation direction ϑ = 0. This un-physical
behaviour may be a result of the plane wave approximation, as two far away electrons should not
radiate coherent light. Recall that in deriving the radiation integral (1.1), Jackson approximated n̂
as constant for far away observers. So radiation from two electrons could be considered loosely
analogous to a double slit experiment with a far away screen.

5.3 Testing interference conditions for a linearly polarised pulse

In previous sections, we considered the energy radiated from multiple electrons in the presence
of a plane wave of general shape, and derived conditions for coherent emission. We want to test
these conditions using both our numerical code, and approximate analytic solutions. To begin, we
consider the following normalised vector potential for a plane wave pulse, linearly polarised along
x̂ and propagating along ẑ;

a(φ) =


0 for φ < −Lπ,

a0 cos(φ) cos
2
( φ
2L

)
x̂ for −Lπ ≤ φ ≤ Lπ,

0 for Lπ < φ.

(5.20)

The phase for each particle j is similar to the previous section, φj(t) = ω0[t− ẑ ·rj(φ)], and we will
continue to suppress the particle index on the variable phase φ for convenience. L is an integer
defining the half width of the envelope.

At this point we would proceed to state the momentum of each particle and integrate to find
position using the general equations of motion for electrons in a plane wave (see Appendix B).
With this information, we could then solve the radiation integral in terms of the phase (5.11). The
resulting radiation integral depends on several infinite series of Bessel functions of the first kind,
as originally shown by Sarachik and Schappert for a monochromatic plane wave [SS70]. In the
case of a linearly polarised wave this cannot be solved exactly. However in the simplified case
of a weak field a0 ≪ 1 for frequencies in the order of ω = 4γ20ω0 and below, we have derived an
approximate solution in Appendix C. The full procedure is lengthy so we will only state the key
results here.

Substituting the normalised vector potential a(φ) (5.20) into our equation for momentum in a plane
wave (5.2) while ignoring oscillations along the wave propagation axis for weak fields a0 ≪ 1, we
can obtain equation (C.3)

uj(φ) ≈ u0,j + a0

(
x̂+

x̂ · u0,j

δj
ẑ

)
cos(φ) cos2

( φ

2L

)
. (5.21)

For an electron denoted by j while interacting with the pulse, −Lπ ≤ φ ≤ Lπ. Electron properties
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such as position r0,j and momentum u0,j subscripted by a zero are determined at the initial phase
ϕ0,j = −ω0ẑ · r0,j < −Lπ, where all particles start outside the pulse. The conserved quantity delta
is defined by δj = γj(φ) − ẑ · uj(φ) = γ0,j − ẑ · u0,j , as derived in the Appendix (B.9). We can
integrate the momentum with respect to phase (B.12), to obtain the approximate position (C.4)

ω0(rj(φ)− r0,j) ≈
u0,j

δj
(φ− ϕ0,j)

+
a0
4δj

(
ê+

x̂ · u0,j

δj
ẑ

)(
2 sin(φ) +

sin([1− L−1]φ)

1− L−1
+

sin([1 + L−1]φ)

1 + L−1

)
. (5.22)

After substitution of the momentum and position into the radiation integral (C.5), with much simplification
one can obtain the total energy radiated per unit frequency, per unit solid angle from an arbitrary
number of particles during their interaction with the pulse. From equations (C.7) and (C.27) we
can write this as

d2E

dωdΩ
=

e2L2ω2

4πω0

∣∣∣∣∣∣
∑
j

Kj

∣∣∣∣∣∣
2

, (5.23)

Kj ≈
1

δj
e
i ω
ω0

λj

{
n̂× (n̂× u0,j)

(
J1

(
2ρj

ω

ω0

)[
sinc

([ ω
ω0

σj + 1
]
Lπ
)
− sinc

([ ω
ω0

σj − 1
]
Lπ
)]

+ J1

( ωρj
ω0(1 + L−1)

)[
sinc

([ ω
ω0

σj + 1 + L−1
]
Lπ
)
− sinc

([ ω
ω0

σj − 1− L−1
]
Lπ
)]

+ J1

( ωρj
ω0(1− L−1)

)[
sinc

([ ω
ω0

σj + 1− L−1
]
Lπ
)
− sinc

([ ω
ω0

σj − 1 + L−1
]
Lπ
)])

+
a0
4

[
n̂× (n̂× x̂) +

x̂ · u0,j

δj
n̂× (n̂× ẑ)

][
sinc

([ ω
ω0

σj + 1
]
Lπ
)
+ sinc

([ ω
ω0

σj − 1
]
Lπ
)

+
1

2
sinc

([ ω
ω0

σj + 1 + L−1
]
Lπ
)
+

1

2
sinc

([ ω
ω0

σj − 1− L−1
]
Lπ
)

+
1

2
sinc

([ ω
ω0

σj + 1− L−1
]
Lπ
)
+

1

2
sinc

([ ω
ω0

σj − 1 + L−1
]
Lπ
)]}

,

(5.24)

where sinc(x) =
sin(x)

x
.

Our result has been stated in terms of various constants; σj (C.12a) is a Doppler factor, ρj (C.12c)
depends on the field amplitude a0 and the direction of observation n̂ relative to the polarisation
plane x̂ and wave propagation direction ẑ. Here λj (C.12b) is the exponent of the constant phase
terms defined when deriving the general interference conditions (5.14). Each of these constants
is stated below:

σj =
γ0,j − n̂ · u0,j

γ0,j − ẑ · u0,j
=

1

δj
(γ0,j − n̂ · u0,j) , (5.25a)
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λj = ω0(σj ẑ − n̂) · r0,j , (5.25b)

ρj =
a0
4δj

(ẑ − n̂) ·
(
x̂+

x̂ · u0,j

δj
ẑ

)
. (5.25c)

For a finite number of particles we could expand out the square modulus of equation (5.24)
to obtain a lengthy expression. Instead we have written a Python script which evaluates the
radiation integral for some frequency ω and direction of observation n̂, given the initial position
and momentum of every particle. All Bessel functions of the first kind Jn(x) are calculated to a
high degree of accuracy with the Scipy package [Vir+20]. There are some observations we can
make about this result. From equation (5.23) we can see the energy radiated is proportional to the
length of the pulse squared. Inside the square modulus (5.24), we see a series of overlapping sinc
functions centred on frequency ω = ω0/σj ; for reflected radiation from a relativistic particle one
can show 1/σj ≈ 4γ20,j . Taking the limit of a monochromatic plane wave L → ∞ reduces every sinc
function to a Dirac delta distribution δ(ω − ω0/σj), restricting emission to a single Doppler shifted
frequency. Clearly this limit can only be applied when integrating equation (5.23) over frequency,
providing all other functions are smoothly varying.

Unless stated otherwise, we will always consider electrons counter propagating to a pulse given
by equation (5.20) with amplitude a0 = 0.02. The initial momentum will be identical for every
particle along the ẑ axis, u0z = −

√
γ20 − 1 ẑ corresponding to Lorentz factor γ0 = 10. In light

of this we have suspended all use of the particle subscript j on the momentum. The pulse half
length will be L = 10, and the frequency of the rapid oscillations ω0 = 2πc/λ0 is written in terms
of the wavelength λ0 = 0.8 µm. In practice our results will frequently be stated in terms of these
parameters.

5.3.1 Single electron: equations of motion and spectrum

As stated in the previous section, to solve the radiation integral we ignored electron oscillations
along the wave propagation axis providing a0 ≪ 1. It is worth checking the validity of this
approximation. To this end we have performed a simulation for one electron counter propagating
to a pulse given by equation (5.20), the results can be seen in Figure 5.1. Also plotted in Figure 5.1
are the approximate analytic solutions for momentum (5.21) and position (5.22), which have been
used to calculate an approximate solution to the radiation integral given by equations (5.23) and
(5.24), which is plotted with the energy spectrum. ϑ in Figure 5.1 refers to the angle between
the direction of observation n̂ and the direction in which the plane wave propagates, so ϑ = π is
parallel to the initial electron momentum u0z.

From Figure 5.1 one can see the approximate solutions accurately predict the momentum and
trajectory in the plane of polarisation. Along the axis of propagation, our analytic solutions ignore
small oscillations in the momentum, however this still accurately predicts the trajectory over large
changes in the phase φ. If one wanted to check the legitimacy of our numerical code, substituting
the normalised vector potential (5.20) into our general equations for momentum in a plane wave
(B.14) produces a result indistinguishable from the numerical calculation for uz. The main contribution
to our approximate analytic solution for the spectrum (5.24) is a sinc function located at the Doppler
shifted frequency, using this we can predict the location of the peak as a function of angle

ωmax

ω0
=

γ0 − n̂0 · u0

γ0 − n̂ · u0
=

γ0 − u0z
γ0 − u0z cos(ϑ)

. (5.26)
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Figure 5.1: The momentum, trajectory and energy radiated from a single electron with Lorentz factor
γ0 = 10 counter propagating with a plane wave pulse. Each plot shows our numerical code against the
approximate analytic solutions given in Appendix C. ϑ is the angle between the observation direction and
wave propagation direction, while ϑ = π is parallel to the initial velocity.
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Equation (5.26) accurately predicts the peak locations at approximately 398ω0, 375ω0 and 319ω0

for angles ϑ = π, π+1/4γ0, π+1/2γ0 respectively. These angles have been chosen as we expect
most radiation from a relativistic particle to be emitted in a cone of full angle ∼ 1/γ0 around the
velocity [LL75, § 73]. In Figure 5.1a we can see a discrepancy between numerical and analytic
solutions at large angles from φ = π. This deviation results from an approximation made in
deriving our analytic solutions; in Appendix C we assume observation only occurs at small angles
around the initial momentum (close to ϑ = π), such that the arguments of our Bessel functions
are small, and we can truncate any series of Bessel functions. Equation (5.26) is similar to a
result obtained by Salamin and Faisal for the first ’harmonic’ in the lab frame [SF96, eq. 49]. They
calculate the radiation integral in the average rest frame of the electron, where its motion is periodic
and only harmonics are emitted in an infinitely long plane wave. Then they perform a Lorentz
transformation back to the laboratory frame, and in this process the frequency of the harmonics
pick up an angular dependence. Our approximate method in Appendix C ignores oscillations along
the wave propagation axis, so we make no distinction between the average rest frame and the rest
frame corresponding to the initial momentum, this discrepancy is why our results differ slightly to
those of Salamin and Faisal.

5.3.2 Interference between two transversely separated electrons

In the previous section we accurately predicted the frequencies at which peak energy emission
occurs, as a function of the observation angle ϑ relative to the wave propagation direction for
one electron. When considering multiple electrons, we would like an electron distribution which
produces constructive interference at these peaks. For example, consider two electrons with the
same initial momentum u0z as before, with identical z coordinates, separated by one wavelength
d⊥ = λ0 along the polarisation direction x̂. We know the frequency at which the energy peaks
occur for one electron from equation (5.26), and we can equate this to our condition for constructive
interference ω⊥(ϑ) (5.17), and solve for angles of observation ϑ. Using compound angle formulae
we can write the angles at which coherent radiation is detected

ϑ(l) = π + sin−1

(
lγ0√

(γ0 − u0z)2 + l2u20z

)
+ tan−1

(
lu0z

γ0 − u0z

)
for integer l. (5.27)

Clearly the solutions for ϑ(l) are periodic, but we are only interested in reflected radiation near
ϑ = π, so equation (5.27) has been written assuming the inverse sine and tangent are solved in
the closed interval [−π/2, π/2]. Equation (5.27) is only valid for a limited number of integers l,
for which the argument of inverse sine is between minus one and one. A simulation has been
performed with these parameters for angles ϑ(l = 0) = π and ϑ(l = 12) ≈ π + 0.0335, as shown
in Figure 5.2a. Approximate analytic solutions for the radiation integral from equations (5.23) and
(5.24), have been plotted for two electrons transversely separated, and one electron propagating
along the axis. This allows us to see emission is indeed coherent at each peak determined by
these angles, as it scales with the number of particles squared compared to the one electron
case.

Radiation emitted is not coherent at every angle of observation. For example, if we fix our
frequency at the Doppler shifted value ω = 4γ20 , and solve our interference condition ϑ⊥(ω) (5.16)
for small angles around ϑ = π, our condition for constructive interference becomes ϑ ≈ l/4γ20
for integer l. For relativistic particles this produces a rapidly varying interference pattern, seen
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in Figure 5.2b. This can be contrasted with the one electron case where the radiation emitted
decreases slowly with angle.
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Figure 5.2: Energy radiated from two electrons with Lorentz factor γ0 = 10, transversely separated by one
wavelength, counter propagating with a plane wave pulse. Figure 5.2a shows the energy radiated varying
with frequency, at angles were constructive interference can be seen. These angles are determined by
evaluating equation (5.27) for integers l = 0, 12. Figure 5.2b shows the variation of energy radiated with
small angles around the initial velocity, at the Doppler reflected frequency. ϑ is the angle between the
observation direction and wave propagation direction, while ϑ = π is parallel to the initial velocity.

5.3.3 Interference between two longitudinally separated electrons

Consider two electrons initially moving with the same momentum u0z and separated longitudinally
by distance d∥, along the wave propagation axis. For this case we have derived conditions
which determine if constructive interference is observed at certain frequencies ω∥, and angles
ϑ∥ relative to the wave propagation direction, given by equations (5.18) and (5.19). Our electrons
are relativistic, so we expect most radiation to be emitted in a cone of full angle ∼ 1/γ0 around the
momentum [LL75, § 73].

The interference condition for frequency ω∥(ϑ) (5.19) depends on angle ϑ only through cosine
terms, which we can approximate as one to first order for small angles around the momentum
ϑ = π, within the radiation cone. For radiation reflected from relativistic electrons the Doppler
factor on the denominator of equation (5.19) is negligibly small, and so our interference condition
reduces to ω∥ ≈ 2πl/d∥ (where l is an integer). If the separation distance in the laboratory frame
is d∥ = λ0, then constructive interference would only be detected at harmonics ω∥ = lω0, which
is rapidly varying and of little physical use. However if the electron spacing is one wavelength
in the rest frame λ0/γ0 or equivalently in the laboratory frame d∥ = λ0/γ

2
0 as given by a Lorentz

contraction, then the condition for constructive interference becomes ω∥ ≈ lγ20ω0. Therefore we
expect to see destructive interference at l = 3.5, constructive at l = 4 which corresponds to the
Doppler reflected frequency ω∥ ≈ 4γ20ω0, then destructive at l = 4.5 with some sinusoidal variation
between these frequencies.
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With the simulation completed we can consult Figure 5.3a, where both the case for one electron
and two longitudinally separated electrons has been plotted for comparison. As predicted the peak
at ϑ = π (l = 4) is exactly coherent, increasing compared to the one electron case with the number
of particles squared, a factor of four. The peaks at angles ϑ = π+1/4γ0 and ϑ = π+1/2γ0 clearly
experience some amplification but are not fully coherent; both are distorted by the destructive
interference at l = 3.5 predicted above, which is not seen in the one electron case. In Figure 5.3b
we see constructive interference with small angles at the Doppler reflected frequency, unlike the
rapidly varying pattern we saw in Figure 5.2b.

This appears to suggest that by bunching many electrons longitudinally at this density, radiation
emitted off axis will experience some destructive interference, producing a narrow / focused beam
of light along the axis. Also, as radiation at off axis peaks tends to be at lower frequencies, the
light produced is closer to being monochromatic. We should note that by increasing length L (5.24)
which is equivalent to increasing the temporal profile of the pulse, one can produce light which is
closer to being monochromatic, as one would expect from the uncertainty principle of the Fourier
Transform.

250 275 300 325 350 375 400 425 450
/ 0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

d2 E
/d

d
 (e

V 
s s

r
1 )

1e 17

=
= + 1

4 0

= + 1
2 0

FFT - 2 electrons
Analytic - 2 electrons
Analytic - 1 electron

(a) Variation with frequency.

+ 4
4 2

0
+ 8

4 2
0

+ 12
4 2

0
+ 16

4 2
0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

d2 E
/d

d
 (e

V 
s s

r
1 )

1e 17
FFT - 2 electrons
Analytic - 2 electrons
Analytic - 1 electron

(b) Variation with angle, at ω = 4γ2
0ω0.

Figure 5.3: Energy radiated from two electrons with Lorentz factor γ0 = 10, longitudinally separated by
one wavelength, counter propagating with a plane wave pulse. Figure 5.3a shows the energy radiated
varying with frequency, at specific angles within the radiation cone. Figure 5.3b shows the variation of
energy radiated around the initial velocity, at the Doppler reflected frequency. ϑ is the angle between the
observation direction and wave propagation direction, while ϑ = π is parallel to the initial velocity.
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Chapter 6

Conclusion

In summary, we have successfully designed and tested a numerical code capable of modelling the
spectrum and angular distribution of energy, radiated from some electron distribution. In addition,
our code can model the spin precession of these electrons. This is contingent on the assumption
that all electrons move with trajectories that can be independently determined, by an external field
in the realm of classical electrodynamics.

In this thesis we initially explained the Runge-Kutta algorithms used by the code, and proceeded
to test these in the case of a constant magnetic field. This was useful because exact analytic
solutions could be derived for the electron trajectories, spin precession, and the spectrum of
energy radiated from multiple electrons, which served as a useful benchmark for our code. By
extending our analysis to a monochromatic plane wave, we were able to demonstrate that the
electron spin should be unchanged after some integer number of oscillations providing small
radiative corrections could be ignored. This idea, that an initially spin polarised electron beam
will remain spin polarised, suggests that techniques such as laser wakefield acceleration could
produce relativistic and focused spin polarised beams, as originally proposed by Wen, Tamburini
and Keitel [WTK19].

For the case of two electrons with identical initial velocity interacting with a plane wave pulse
of generic shape, we were able to define conditions for constructive interference (5.15). If the
electron displacement, wave propagation direction and observation direction are all co-planar
these condtions could be expressed in a simple format by equations (5.16) to (5.19). We must
stress that these conditions have been derived assuming the observer is far away with respect
to the electron trajectories, an assumption made in deriving the radiation integral (1.1). In the
specific case of a linearly polarised plane wave pulse, these conditions were tested for separation
of one wavelength transversely in the laboratory frame, and one wavelength longitudinally in the
initial rest frame. Both simulations and approximate analytic solutions showed light emitted will
be coherent parallel to the electron momentum, in the plane wave approximation for a far away
observer. It appears that radiation from tightly bunched, longitudinally spaced electrons is coherent
at small angles around the electron velocity, near the Doppler reflected frequency. If experimentally
possible, the density of some electron pulse in the transverse and longitudinal directions could be
tuned to produce coherent light, at a frequency determined by the electron momentum.

Having reviewed our key results, we can proceed to outline areas for improvement. This code
could easily be extended to model radiative losses in the trajectory by applying the Runge-Kutta
method to the Landau-Lifshitz equation [Di +12], which only becomes necessary when the energy
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radiated during one oscillation is comparable to the initial electron energy. A more realistic laser
pulse with a spatial and temporal profile could be employed to check if the interference conditions
derived in this thesis are only appropriate in the plane wave approximation, or if they are more
generally applicable. The speed of our numerical code is restricted by the numerical integration
of the trajectories; a leapfrog scheme such as the Boris pusher could prove more effective when
modelling large numbers of particles. If considering large particle numbers, one could extend
our analysis to some Gaussian momentum distribution, instead of assuming all electrons have
identical initial momentum. Furthermore, when deriving interference conditions we assumed all
electrons propagated with the same initial momentum. By relaxing this assumption, it would be
useful to derive an interference condition based on the initial momenta of the electrons.
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Appendix A

Notation and Conventions

Units:

Throughout this thesis we use S.I. unit conventions, where 4πε0 appears in the denominator of
Coulomb’s law, and natural units ℏ = c = ε0 = 1, which are commonly found in high energy
physics. In this choice of units the fine structure constant becomes α = e2/4π ≈ 1/137. The
electron has a charge of −e, mass me and anomalous electron magnetic moment ae = 1.159 ×
10−3. It is convenient to state the sign of the electron explicitly, as we often state the momentum,
vector potential and fields relative to e and me.

Vector notation:

All vectors are denoted by bold typeface, e.g. A, however this should also be obvious from context.
Any vector denoted with a hat, e.g. Â, is dimensionless and of unit length. A vector with a dot
overhead represents the derivative of that vector function with respect to time Ȧ(t). The Cartesian
basis is referred to by x̂, ŷ, ẑ.

The electron position is r, and the velocity is always stated in units of the speed of light c (which
we have set equal to one) following the conventions of Jackson [Jac98],

β =
dr

dt
= v. (A.1)

We refer to the following dimensionless quantity as the momentum of an electron,

u =
dr

ds
= γβ. (A.2)

Where ds2 = c2dt2−dx2−dy2−dz2 is the world line of the particle in Minkowski space, with metric
of signature (+,−,−,−). The Lorentz factor is referred to interchangeably as a function of both
velocity β and momentum u,

γ(β) =
1√

1− β2
, γ(u) =

√
1 + u2, (A.3)

and both definitions are equivalent γ(β) ≡ γ(u). Here the square of a vector refers to a dot

40



product with itself. If we refer to a vector without bold typeface, we simply mean the magnitude of
the vector, u = |u|, unless stated otherwise.

Fields and potentials:

We refer to the following quantity as the normalised vector potential

a =
e

me
A, (A.4)

where A is the vector potential, used to determine the electric and magnetic fields (respectively);

E = −∂A

∂t
, B = ∇r ×A. (A.5)

Symbol a0 refers to the amplitude of the normalised vector potential, a0 = eA0/me, and A0 is the
amplitude of the vector potential. A strong field is defined as a0 >> 1, and a weak field as a0 ≪ 1;
if a0 ≈ 1 then an electron will go from rest to becoming relativistic in less than one cycle.

The canonical momentum for an electron is normally defined as,

Pcan = p− eA. (A.6)

where p = meu (A.2), however we prefer to normalise this relative to the electron mass,

Ucan = u− a. (A.7)
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Appendix B

Electron equations of motion in a plane
wave

This appendix will present key results from the Hamilton-Jacobi method of finding equations of
motion, for an electron in a plane wave. One can find this derivation in several textbooks such
as Landau-Lifshitz volume 2 [LL75, § 47, problem 2] and papers by Salamin and Faisal [SF96],
Sarachik and Schappert [SS70]. In practice we will follow the derivation by Salamin and Faisal
[SF96] almost exactly. The reason for repeating their derivation here is because of the frequency
with which we use these results, and to highlight the normalised notation used in our thesis.
An introduction to the Hamilton-Jacobi method can be found in many textbooks on classical
mechanics [LL82, § 47].

Finding equations of motion using the Hamilton-Jacobi method

Consider an electron in the presence of a plane wave. For frequency ω0 its phase can be written
as φ(t) = ω0[t− n̂0 · rj(t)]. Such a wave can be described by a normalised vector potential a(φ).
The Hamilton-Jacobi Equation (HJE) can be written for an electron in the presence of a potential
a(φ), not in the presence of any free charges, as [LL75, § 16, eq. 16.11]

(
∂S

∂t

)2

− (∇S + a)2 = 1. (B.1)

Where the Hamilton principle function S(r(t), t) which usually has dimensions of [Energy][Time],
has been normalised relative to mec such that it now has units of [Length]. Usually we seek
solutions of the form [LL75; SF96]

S(r(t), t) = α · r + βct+ F (φ). (B.2)

Where α and β are dimensionless constants determined by the initial conditions, at some initial
phase ϕ0. Substitution of (B.2) into (B.1) and requiring the wave to be transverse n̂0 · a(φ) = 0 in
the Lorenz gauge yields an integral equation for F [SF96; SS70],

F (φ) =
1

2ω0
(α · n̂0 + β)−1

∫ φ

ϕ0

(
α2 − β2 + 1 + 2α · a(φ′) + [a(φ′)]2

)
dφ′ (B.3)
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We have now solved for Hamilton’s principle function S(φ) (B.2). According to the general rules
of the Hamilton-Jacobi method we differentiate the principle function with respect to the arbitrary
constants α, and equate to new constants, which we choose to be the initial position ∇αS = r0
[SS70]

ω0(r(φ)− r(ϕ0)) = −
∫ φ

ϕ0

α+ a(φ′)

α · n̂0 + β
dφ′ +

n̂0

2

∫ φ

ϕ0

α2 − β2 + 1 + 2α · a(φ′) + [a(φ′)]2

(α · n̂0 + β)2
dφ′. (B.4)

This is consistent with taking a canonical transformation to new co-ordinates α and β [LL82].
Differentiating the principle function (B.2) with respect to the co-ordinates (B.4) allows us to obtain
the canonical momentum ∇rS = Ucan = u− a (A.7), [SF96]

u(φ) = α+ a(φ)− n̂0

2

(
α2 − β2 + 1 + 2α · a(φ) + [a(φ)]2

α · n̂0 + β

)
. (B.5)

Energy of the particle

Differentiating S with respect to time allows us to determine the Hamiltonian (or variable energy)
stated in units of the rest mass energy mec

2 [SF96],

H(φ) = − (β + n̂0 · [α−Ucan(φ)]) . (B.6)

Where the Ucan is the dimensionless canonical momentum (A.7). Using the transverse condition
a(φ) · n̂0 = 0 we can write this equivalently in terms of the momentum u,

H(φ) = − (β + n̂0 · [α− u(φ)]) . (B.7)

If we write down the usual (normalised to the rest mass energy) Hamiltonian for an electron in a
plane wave, not in the presence of any free charges [LL75, § 16, eq. 16.10],

H(φ) =
√
1 + (Ucan(φ) + a(φ))2 ≡

√
1 + [u(φ)]2 = γ(φ), (B.8)

and compare equations (B.7) and (B.8), we can identify the following conserved quantity δ which
appears throughout our equations of motion, eqs. (B.3) to (B.5),

γ(φ)− n̂0 · u(φ) = −(α · n̂0 + β), (B.9)

⇒ γ0 − n̂0 · u0 = δ.

This conserved quantity is particularly useful as it allows us to determine a differential relationship
between phase and time

dφ

dt
= ω0

(
1− n̂0 · r(t)

c

)
=

ω0

γ(φ)
(γ(φ)− n̂0 · u(φ)) =

ω0δ

γ(φ)
. (B.10)
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Using this relationship (B.10) we can also find a simple differential relationship between the position
and momentum (this is a generalised version of a result found by A. Macchi [Mac13, eqs. 2.26,
2.27])

u(φ) = γ(t)
dr

dt
= γ(φ)

dφ

dt

dr

dφ
= δω0

dr

dφ
(B.11)

ω0(r(φ)− r0) =
1

δ

∫ φ

ϕ0

u(φ′)dφ′. (B.12)

These equations are entirely equivalent to those obtained earlier, eqs. (B.3) to (B.5).

Equations of motion in the laboratory frame

Constants α and β can be determined from the initial canonical momentum and position. Following
Salamin and Faisal [SF96, section. B], we choose the normalised vector potential to be zero
a(ϕ0) = 0 in equation (B.5), which yields a relationship between constants α and β,

α = u0 −
n̂0

2δ

(
α2 − β2 + 1

)
. (B.13)

Without loss of generality we can choose α = u0 and β = −γ0 (see [SF96, section B.] or [SS70,
section A.]). The momentum can now be stated in its final form, in terms of the constant δ (B.9),

u(φ) = u0 + a(φ) +
n̂0

δ

(
u0 · a(φ) +

1

2
[a(φ)]2

)
(B.14)

The position of the particle is then given by integrating with respect to the phase, in (B.12).
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Appendix C

Approximate solution of radiation
integral in a weak, linearly polarised
plane wave pulse

In this appendix we derive the energy radiated per unit solid angle, per unit frequency emitted from
an arbitrary number of electrons counter propagating with a plane wave pulse. These particles are
assumed to be moving ballistically, such that their motion is determined entirely from the external
field.

Equations of motion

Consider the following plane wave pulse which is linearly polarised along ê (A.4)

a(φ) =


0 for φ < −Lπ,

a0 cos(φ) cos
2
( φ
2L

)
ê for −Lπ ≤ φ ≤ Lπ,

0 for Lπ < φ.

(C.1)

Parameter L determines the envelope half width, which we take as an integer to simplify our
boundary terms when integrating. In this appendix we will always assume the normalised vector
potential amplitude is small a0 ≪ 1, which we refer to as a weak field. The equation for momentum
then becomes a perturbative expansion in a0 (B.14). We are primarily interested in relativistic
electrons counter propagating to the wave, so providing the following condition is valid,

|u0,j · n̂0| >>
1

2δj
a20, (C.2)

we can ignore all terms proportional to a20. Subscript j denotes a specific particle, so this condition
must hold for all particles. δj = (γ0,j − n̂0 ·u0,j) is a conserved quantity defined by equation (B.9).
At t = 0, the initial position and momentum are determined at the initial phase ϕ0,j = −ω0n̂0 ·r0,j <
−Lπ, where each particle starts outside the pulse. Ignoring terms of second order in the vector
potential, we can write the particles’ momenta as (B.14);
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uj(φ) =


u0,j for ϕ0,j ≤ φ < −Lπ,

u0,j + a0

(
ê+

ê·u0,j

δj
n̂0

)
cos(φ) cos2

( φ
2L

)
for −Lπ ≤ φ ≤ Lπ,

u0,j , for Lπ < φ.

(C.3)

Which can be integrated to find the trajectory (B.12), inside the pulse −Lπ ≤ φ ≤ Lπ,

ω0(rj(φ)− r0,j) =
u0,j

δj
(φ− ϕ0,j)

+
a0
4δj

(
ê+

ê · u0,j

δj
n̂0

)(
2 sin(φ) +

sin([1− L−1]φ)

1− L−1
+

sin([1 + L−1]φ)

1 + L−1

)
(C.4)

Using eqs. (C.3) and (C.4) we wish to solve for the spectrum of energy radiated by these electrons.

Solution to the radiation integral

The energy radiated is identically zero for any interval in which the momentum is constant (5.8),
as expected. Equation (5.8) can be integrated by parts, without discarding the boundary terms, to
obtain

d2E

dωdΩ
=

e2

16π3

∣∣∣∣∣∣
∑
j

([
n̂× (n̂× uj(φ))

γj(φ)− n̂ · uj(φ)
eiΦj(φ)

]∞
−∞

− iω

δjω0

∫ ∞

−∞
n̂× (n̂× uj(φ)) eiΦj(φ)dφ

)∣∣∣∣∣∣
2

,

(C.5)

Φj(φ) =
ω

ω0
[φ+ ω0(n̂0 − n̂) · rj(φ)] . (C.6)

If we substitute the momentum (C.3) explicitly into the radiation integral (C.5), we can split our
problem into three parts. Equation Kj (C.8) refers to the boundary terms from the integration by
parts, Lj (C.9) refers to an integral over constant momentum, and Mj (C.10) refers to an integral
over the normalised vector potential (C.1). Each electron’s momentum is constant except in the
interval −Lπ ≤ φ ≤ Lπ (C.3), which we restrict our integration to.

d2E

dωdΩ
=

e2

16π3

∣∣∣∣∣∣
∑
j

(Kj +Lj +Mj)

∣∣∣∣∣∣
2

, (C.7)

Kj =

[
n̂× (n̂× uj(φ))

γj(φ)− n̂ · uj(φ)
eiΦj(φ)

]Lπ
−Lπ

, (C.8)

Lj = − iω

δjω0
n̂× (n̂× u0,j)

∫ Lπ

−Lπ
eiΦj(φ)dφ, (C.9)
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Mj = − iωa0
δjω0

[
n̂× (n̂× ê) +

ê · u0,j

δj
n̂× (n̂× n̂0)

] ∫ Lπ

−Lπ
cos(φ) cos2

( φ

2L

)
eiΦj(φ)dφ. (C.10)

To solve these integrals, we need to define the phase term Φj by substituting our trajectory (C.4)
into equation (C.6).

Φj(φ) =
ω

ω0

(
λj + σjφ+ 2ρj sin(φ) +

ρj
1 + L−1

sin([1 + L−1]φ) +
ρj

1− L−1
sin([1− L−1]φ)

)
.

(C.11)

Where Φj is determined in terms of the constants σj - a Doppler factor, λj - a constant depending
on the j th particle’s initial position and momentum, ρj - a parameter which determines the
argument of our Bessel functions below. Each parameter depends on the initial electron momentum
u0,j and observation direction n̂:

σj =
γ0,j − n̂ · u0,j

γ0,j − n̂0 · u0,j
=

1

δj
(γ0,j − n̂ · u0,j) , (C.12a)

λj = ω0(σjn̂0 − n̂) · r0,j , (C.12b)

ρj =
a0
4δj

(n̂0 − n̂) ·
(
ê+

ê · u0,j

δj
n̂0

)
. (C.12c)

We can exponentiate Φj this and re-write using the generating function, for Bessel functions of the
first kind [AS64, eq. 9.1.41];

eΦj(φ) = e
i ω
ω0

λj

∞∑
k,l,m=−∞

Jk(xk)Jl(xl)Jm(xm) e
i
[

ω
ω0

σj+k+l(1+L−1)+m(1−L−1)
]
φ (C.13)

xk = 2ρj
ω

ω0
, xl =

ρj
1 + L−1

ω

ω0
, xm =

ρj
1− L−1

ω

ω0
. (C.14)

Where xk is the argument of Bessel function Jk(xk), but xk does not actually vary with integer k,
this is simply a short-hand notation.

We can start by solving the boundary terms Kj (C.8). Notice that the momentum (C.3) is unchanged
from its initial value when the phase changes for integer multiples of π, u0,j = uj(−Lπ) = uj(Lπ),

this is also true for the Lorentz factor γ0,j =
√

1 + u2
0,j (A.3). The phase term (C.11) is not identical

at both limits, Φj(−Lπ) = ω(λj − Lπσj)/ω0 and Φj(Lπ) = ω(λj + Lπσj)/ω0, which gives rise to a
sinusoidal term. With this information we have determined Kj (C.8),

Kj = 2i e
i ω
ω0

λj sin

(
ω

ω0
σjLπ

)
n̂× (n̂× u0,j)

γ0,j − n̂ · u0,j
(C.15)

By substituting the phase term (C.13) into our integral over constant momentum Lj (C.9) and
solving, will result in equation (C.16) below. To obtain this, we separate out the term of order zero
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k = l = m = 0, and re-arrange using the definitions of parameter σj (C.12a) and the conserved
quantity δj (B.9).

Lm = −2i e
i ω
ω0

λj sin

(
ω

ω0
σjLπ

)
n̂× (n̂× u0,j)

γ0,j − n̂ · u0,j
J0(xk)J0(xl)J0(xm)

− iω

δjω0
e
i ω
ω0

λj n̂× (n̂× u0,j)
∞∑

k,l,m=−∞,
k=l=m̸=0.

Jk(xk)Jl(xl)Jm(xm)Dk,l,m(ω), (C.16)

where,

Dk,l,m(ω) = 2Lπ sinc

([
ω

ω0
σj + k + l(1 + L−1) +m(1− L−1)

]
Lπ

)
, and sinc(x) =

sin(x)

x
.

(C.17)

If we apply the usual plane wave approximation of sending the pulse length to infinity lim(L → ∞),
then D behaves like a Dirac delta function located at some frequency determined by the Doppler
shift σj (C.12a).
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Figure C.1: Behaviour of Bessel functions of the first kind, integer order, for small arguments. Created
using using Bessel function approximations from the Scipy.special package in Python [Vir+20].

Truncating the Bessel function series

Consider a relativistic electron initially counter propagating to the pulse with momentum u0,j =
−u0,jn̂0 for u0,j >> 1. Such an electron will have a value of δj ≈ 2γ0,j . Most of the radiation will
be emitted in a cone of full angle 1/γ0 around the momentum u0 [LL75, δ 73], near the Doppler
shifted frequency ω ≈ 4γ20 . In this case ρj (C.12c) is approximately

ρj ≈ −a0n̂ · ê
8γ0,j

. (C.18)
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Assuming the observation n̂, polarisation ê and wave propagation n̂0 are coplanar (as we expect
for a linearly polarised pulse), it is clear the maximum value of ρj will be seen at the radiation cone
edge, at angle 1/2γ0,j ; using the small angle approximation we obtain n̂ · ê ≈ 1/2γ0,j . Then we
can estimate the maximum value of the argument of each Bessel function at frequency ω ≈ 4γ20 ,∣∣∣ ω

ω0
ρj,max

∣∣∣ ≈ a0
4
. (C.19)

Providing the pulse is weak a0 ≪ 1, the argument of each Bessel function will be small within the
radiation cone at these frequencies. Therefore the series of Bessel functions is perturbative and
can be truncated at some point, and because the argument is assumed much smaller than one,
we can assume the zero th order Bessel function is approximately one J0(x) ≈ 1 for x ≪ 1 (see
Figure C.1). If this approximation holds for each Bessel function, for each particle, then the zero
order term k = l = m = 0 of Lj (C.16) and the boundary term Kj (C.8) cancel out. Adding Kj

and Lj , and using the following property of Bessel functions, J−n(x) = (−1)nJn(x), to remove
negative indices we can obtain;

Kj +Lj ≈ − iω

δjω0
e
i ω
ω0

λj n̂× (n̂× u0,j)

∞∑
k,l,m=−∞,
k=l=m ̸=0.

Jk(xk)Jl(xl)Jm(xm)

[
Dk,l,m(ω)

+ (−1)k+l+mD−k,−l,−m(ω)

]
. (C.20)

The approximation in equation (C.20) usually holds well for long pulses L >> 1, as the terms
which cancel do not scale with L. Now consider the second integral Mj (C.10), over the oscillating
momentum component. Substituting in exp(iΦj) (C.13) and ignoring the constant prefactor of Mj ,
we obtain,

∫ Lπ

−Lπ
cos(φ) cos2

( φ

2L

)
eiΦj(φ)dφ

= e
i ω
ω0

λj

∫ Lπ

−Lπ
e
i ω
ω0

σjφ
∞∑

k,l,m=−∞
cos(φ) cos2

( φ

2L

)
Jk(xk)Jl(xl)Jm(xm) ei[k+l(1+L−1)+m(1−L−1)]φ.dφ.

(C.21)

If we expand out the sinusoid as a series of phase terms;

cos(φ) cos2
( φ

2L

)
=

1

4

(
eiφ + e−iφ

)
+

1

8

(
ei[1+L−1]φ + ei[1−L−1]φ + e−i[1−L−1]φ + e−i[1+L−1]φ

)
,

(C.22)

we can see that by shifting the sum indices we can replace these oscillatory terms with Bessel
functions; for example the first term can be removed by translating k → k−1. We can then combine
the resulting series of Bessel functions using the recurrence relation 2nJn(x)/x = Jn−1(x) + Jn+1(x)
[AS64, pg. 361, 9.1.27] repeatedly. Finally the sum inside the integrand of equation (C.21)
becomes,
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1

2

∞∑
k,l,m=−∞

(
k

xk
+

1

2

[
l

xl
+

m

xm

])
Jk(xk)Jl(xl)Jm(xm) ei[k+l(1+L−1)+m(1−L−1)]φ. (C.23)

Note the zero th order term k = l = m = 0 is identically zero. Substituting this sum (C.23) in place
of the sum in equation (C.21) and integrating produces

∫ Lπ

−Lπ
cos(φ) cos2

( φ

2L

)
eiΦj(φ)dφ

=
1

2
e
i ω
ω0

λj

∞∑
k,l,m=0

(
k

xk
+

1

2

[
l

xl
+

m

xm

])
Jk(xk)Jl(xl)Jm(xm)

[
Dk,l,m(ω)−(−1)k+l+mD−k,−l,−m(ω)

]
.

(C.24)

Where function Dk,l,m (C.17) has already been referred to. Combining our equation for Kj + Lj

(C.20) and substituting the result above (C.24) into our equation for Mj (C.10), one can obtain the
complete expression;

Kj +Lj +Mj ≈

ω

δjω0
e
i ω
ω0

λj

{ ∞∑
k,l,m=0,

k=l=m ̸=0.

Jk(xk)Jl(xl)Jm(xm)

(
n̂× (n̂× u0,j)

[
Dk,l,m(ω) + (−1)k+l+mD−k,−l,−m(ω)

]

+
a0
2

[
n̂× (n̂× ê) +

ê · u0,j

δj
n̂× (n̂× n̂0)

] [
k

xk
+

1

2

(
l

xl
+

m

xm

)] [
Dk,l,m(ω)−(−1)k+l+mD−k,−l,−m(ω)

])}
(C.25)

Any factors which vanish under the square modulus (C.7) have been discarded. We have previously
assumed the Bessel function arguments are small, so it is natural to truncate this series. Simply
truncating the series for order zero k = l = m = 0 would obtain a null result in our approximation.
So far we have assumed J0(x) ≈ 1 for x ≪ 1, and we expect higher order terms to converge
rapidly to zero from Figure C.1. A simple choice is to truncate this series for terms that satisfy
k + l +m = 1. It may help to first expand Bessel functions divided by their argument using the
recurrence relation,

nJn(x)

x
=

1

2
(Jn−1(x) + Jn+1(x)) , (C.26)

such that J1(x)/x ≈ 1/2 for x ≪ 1. The full solution is stated below in equation (C.27). We have
tried to state as many quantities as possible explicitly, by including the arguments of any Bessel
functions (C.14), and the sinc functions (C.17). Substituting the equation below for Kj +Lj +Mj

into equation (C.7) will give a general expression for the energy radiated by an arbitrary number
of particles, per unit solid angle, per unit frequency. Expanding out the square modulus even for a
single particle can be cumbersome, so in practice we have written a Python script to evaluate this.
Our answer is still stated in terms of the Doppler factor σj (C.12a) and constant λj which contains
information about the electron’s initial position (C.12b).
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Kj +Lj +Mj ≈
2Lπω

δjω0
e
i ω
ω0

λj

{

n̂× (n̂× u0,j)

(
J1

(
2ρj

ω

ω0

)[
sinc

([ ω
ω0

σj + 1
]
Lπ
)
− sinc

([ ω
ω0

σj − 1
]
Lπ
)]

+ J1

( ωρj
ω0(1 + L−1)

)[
sinc

([ ω
ω0

σj + 1 + L−1
]
Lπ
)
− sinc

([ ω
ω0

σj − 1− L−1
]
Lπ
)]

+ J1

( ωρj
ω0(1− L−1)

)[
sinc

([ ω
ω0

σj + 1− L−1
]
Lπ
)
− sinc

([ ω
ω0

σj − 1 + L−1
]
Lπ
)])

+
a0
4

[
n̂× (n̂× ê) +

ê · u0,j

δj
n̂× (n̂× n̂0)

][
sinc

([ ω
ω0

σj + 1
]
Lπ
)
+ sinc

([ ω
ω0

σj − 1
]
Lπ
)

+
1

2
sinc

([ ω
ω0

σj + 1 + L−1
]
Lπ
)
+

1

2
sinc

([ ω
ω0

σj − 1− L−1
]
Lπ
)

+
1

2
sinc

([ ω
ω0

σj + 1− L−1
]
Lπ
)
+

1

2
sinc

([ ω
ω0

σj − 1 + L−1
]
Lπ
)]}
(C.27)
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