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Abstract

Biology at the molecular level is driven by macromolecules interacting with each other to
form multi-component complexes. To understand the function of macromolecular complexes,
quantitative information about their composition and dynamics are essential. Single-molecule
fluorescence microscopy offers unique possibilities to provide such information, but relies
on the labeling of target molecules with fluorescent markers. In addition, the fluorescence
signal emitted by a sample does not readily inform about absolute fluorophore numbers. To
measure complex stoichiometries with fluorescence microscopy, it is therefore required to
know the fraction of successfully labeled target molecules and to apply a method which
infers the number of fluorescent markers from the recorded fluorescence signal. To approach
these challenges, I have established and optimized tools to allow for a reliable determination
of labeling efficiencies and secondly to successfully determine fluorophore numbers in
fluorescently labeled complexes inside cells.

In the first part of this study, I show that the labeling efficiency achieved with self-labeling
protein tags in living and fixed cells can be calibrated by single-molecule colocalization
analysis. An improved and validated data processing pipeline enabled me to systematically
study the performance of the self-labeling protein tags, SNAPt-tag and HaloTag across
different labeling conditions and with different fluorescent ligands. I found that labeling
efficiencies for both tags depend on the ligand used and are limited to sub-stoichiometric
levels for all tested ligands and labeling conditions. The highest labeling efficiency for either
tag was achieved by labeling of SNAPt-tag with BG-SiR in fixed cells, where a maximum
labeling efficiency of 65 % was reached. The developed calibration approach provides a
generalizable platform for the development and benchmarking of new labeling schemes for
quantitative fluorescence microscopy.

To address the need for a method to translate fluorescence intensity into absolute fluo-
rophore numbers, quickPBSA was established as a new framework for fluorophore counting
by photobleaching step analysis. quickPBSA was validated with simulations and in vitro
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measurements on DNA origami demonstrating an accessible counting range of up to 35
fluorophores and a 100-fold improvement in computational cost compared to previous al-
gorithms. I could show that by combining improved data acquisition conditions with the
quickPBSA framework for photobleaching step detection enables measuring stoichiometries
on complexes labeled with up to 32 fluorophores inside cells.

In combination, the developments presented in this study provide a comprehensive
approach for measuring stoichiometries of protein complexes in situ and put applications in
cell biology into perspective.



Zusammenfassung

Biologische Prozesse werden auf molekularer Ebene von Komplexen, welche durch die
Interaktion verschiedener Makromoleküle entstehen, angetrieben. Um die Funktion dieser
Komplexe zu verstehen, werden quantitative Informationen über ihre Zusammensetzung
und Dynamik benötigt. Einzelmolekülfluoreszenzmikroskopie ist in der Lage diese Informa-
tionen zu erheben. Eine Herausforderung hierbei ist jedoch, dass hierfür eine fluoreszente
Markierung der Zielproteine notwendig ist. Gleichzeitig gibt das Fluoreszenzsignal, das
in einer Probe detektiert wird nicht direkt Auskunft über die Anzahl der enthaltenen Fluo-
reszenzmarker. Um die Stöchiometrie von Komplexen mittels Fluoreszenzmikroskopie zu
bestimmen ist es deshalb unerlässlich den Anteil der erfolgreich markierten Zielmoleküle
zu bestimmen und außerdem eine Methode anzuwenden, welche es erlaubt die Anzahl
an fluoreszenten Markern in einer Probe mittels des gemessenen Fluoreszenzsignals zu
bestimmen.

Um diese methodischen Herausforderungen anzugehen, habe ich im Rahmen der vor-
liegenden Arbeit Methoden zur Bestimmung der Markierungseffizienz, sowie zur Messung
der Anzahl von Fluoreszenzmarkern mittels Einzelmolekülfluoreszenzmethoden etabliert
und optimiert. Im ersten Teil dieser Arbeit habe ich gezeigt wie die Markierungseffizienz
von den selbst-markierenden Protein-Tags SNAPf-tag und HaloTag in lebenden und fixierten
Zellen mit Hilfe von Einzelmolekülkolokalisationsanalyse kalibriert werden kann. Eine
optimierte und validierte Plattform zur Datenanalyse haben es mir erlaubt die Leistungs-
fähigkeit der beider Protein-Tags unter verschiedenen Bedingungen und für verschiedene
fluoreszente Liganden systematisch zu untersuchen. Dabei konnte ich zeigen, dass die
Markierungseffizienz fuer beide Protein-Tags von dem jeweilig verwendeten Liganden ab-
hängt und für alle getesteten Bedingungen auf sub-stöchiometrische Werte limitiert ist. Die
höchste Markierungseffizienz von 65 % wurde fuer die Markierung mittels SNAPf-tag unter
Verwendung des Liganden BG - SiR und in fixierten Zellen erreicht. Der hier vorgestellte
Kalibrationsansatz kann als flexible Plattform zur Charakterisierung und Entwicklung neuer
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Ansätze zur Fluoreszenzmarkierung für die quantitative Fluoreszenzmikroskopie eingesetzt
werden.

Im zweiten Teil der Arbeit habe ich mich auf die Weiterentwicklung von Methoden, die
es erlauben aus dem gemessenen Fluoreszenzsignal die Anzahl an Fluorophoren zu bestim-
men, fokussiert. quickPBSA wurde als ein Verfahren entwickelt, welches das Zählen von
Fluoreszenzmarkern mittels Beobachtung schrittweiser Photozerstörung ermöglicht. Hierzu
habe ich quickPBSA zunächst mit Hilfe von Simulationen, sowie in vitro Messungen auf
DNA-Origami validiert und konnte so zeigen, dass bis zu 35 einzelne Fluoreszenzmarker zu-
verlässig identifiziert werden können. Im Vergleich zu existierenden Algorithmen benötigte
quickPBSA zudem eine 100-fach geringere Rechenzeit. Schließlich konnte ich zeigen, dass
quickPBSA in Kombination mit optimierten Bedingungen fuer die Datenaufnahme in Zellen,
die Stöchiometrie von Komplexe mit bis zu 32 Fluoreszenzmarkern auch direkt in Zellen
erfolgreich bestimmen kann. In Kombination, stellen die in dieser Arbeit beschriebenen
Entwicklungen einen umfassenden Ansatz zur Bestimmung der Stöchiometrie von Pro-
teinkomplexen in situ dar und eröffnen damit die Möglichkeit für zukünftige Anwendungen
in der Zellbiologie.



Für Julia.
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Part I

Introduction





Chapter 1

Motivation

Biological processes are driven by billions and billions of individual macromolecules co-
existing and interacting to form complex multicomponent structures. Among this pool
of macromolecules are many different molecular species belonging to different classes of
macromolecules including nucleic acids, proteins and lipids. Higher order structures such
as subcellular organelles and cells made up of individual macromolecules then interact to
give rise to life on the macroscopic scale[1,2]. Biomedical research seeks to understand this
intricate network of different types of molecules by mapping their molecular properties, their
interactions and their distribution across space and time.

One organizing principle in biology is that macromolecules can form complexes by self-
interaction to form homotypic complexes or by interaction with other molecular species to
form heterotypic complexes. These complexes vary with respect to their stability, the number
of individual components and copy numbers per component[3,4]. One example for a stable
macromolecular complex is the Nuclear pore complex (NPC), a multi-protein machinery
made up of ∼1×103 protein molecules from at least >30 different protein species, which
form a channel with selective permeability in the nuclear membrane of eukaryotic cells[5,6].
NPCs reach a size of >100 nm in diameter and a molecular weight of >1×102 MDa and
were recently shown to exhibit a higher degree of structural and functional flexibility than
previously known[7,8].

Transmembrane receptor clusters in the plasma membrane of cells are another prominent
class of macromolecular complexes. Receptor clusters are also often composed of several
different molecular species and multiple copies of each molecular species, but tend to
exhibit a more dynamic behavior. The specific function of receptor clusters can vary, but
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in general, they form to enable, regulate or modulate signal transduction across the plasma
membrane[9–11]. For example, the surface receptors of immune cells are often organized
into large multicomponent assemblies, which can change in terms of size and composition
upon contact between the immune cell and its cognate antigen. This compositional flexibility
enables the highly sensitive, yet specific response that is the basis of the immune system in
many multicellular organisms[12–15].

Despite decades of intense research, many questions regarding the specific composition,
formation and dynamic regulation of macromolecular complexes in cells remain open[16,17].
Since macromolecular complexes are too small to be directly observed by eye, analytical
techniques with sufficient sensitivity and selectivity to study their composition by indirect
means are required. In that respect, fluorescence microscopy offers unique possibilities
as it allows to study individual species of biomolecules with molecular specificity even in
the presence of high concentrations of structurally similar molecules. The extraordinary
sensitivity of modern fluorescence microscopes enables observing individual molecules in
real time and with high spatial resolution.

As most biological macromolecules are not fluorescent, fluorescence microscopy typically
requires conjugation of a fluorescent label to the macromolecule of interest. For this purpose,
different types of fluorescent labels with vastly different properties have been developed[18].
As a consequence, fluorescent labeling is the basis for the extraordinary specificity of
fluorescence microscopy. However, this also means that if the fluorescence signal emitted
from labels is used as proxy for the macromolecule under investigation, the fraction of target
molecules carrying a fluorescent label has to be calibrated. Due to the diffraction of light,
our ability to directly count the number of fluorescent labels contained in a macromolecular
complex by enumeration of fluorescent signals in images is limited. In order to obtain
information about the composition and stoichiometry of macromolecular clusters, it is
therefore necessary to use additional information contained in the fluorescence signal[19].

In the course of the work presented in this study, I will address both, the need for calibrated
labeling of target molecules and the need for a method to convert fluorescence signals into
label numbers. This work was done with the goal to provide a workflow which enables
researchers to elucidate the composition of molecular complexes with single-molecule
sensitivity and in their native cellular context.



Chapter 2

Background

Fluorescence microscopy has become an essential technique for biological research. In
order to maximize the information obtained from fluorescence microscopy experiments, it
is important to be aware of the basic principles and limitations of fluorescence and image
formation in a fluorescence microscope. In the next chapter, I will provide a brief introduction
to fluorescence and fluorescence microscopy. I will then briefly discuss how POIs can be
labeled using different fluorescent markers and how emitter number estimates can be obtained
from fluorescence microscopy. Finally, I will provide a brief overview of reference standards
that have been used for calibration and validation of emitter counting fluorescence microscopy.
For a detailed description of the phenomenon of fluorescence and its applications as analytical
technique, the interested is referred to books covering both topics in great detail[20,21]

2.1 Basics of Fluorescence Microscopy

Fluorescence is defined as the emission of photons by molecules upon return from an
electronically excited state into their ground state. Typically, this transition occurs by
relaxation from the first excited state S1 to the ground state S0. Excitation of molecules into
a higher energy electronic state occurs through absorption of electromagnetic radiation. In
the case of fluorescence microscopy and spectroscopy, this is typically achieved by means of
shining visible light onto the sample. In a seminal discovery in 1852, Stokes observed that
some substances emit light with a red-shifted spectrum compared to the incident light[22]. It
was later discovered that this effect is due to the dissipation of energy in the excited electronic
state during return to the lowest vibrational state. Here, the transition between vibrational
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states occurs on time scales shorter than the time scale for S1-S0 transition by emission of a
photon. This is the reason why the wavelength of light emitted as fluorescence is independent
from the wavelength of light absorbed during excitation (Kasha’s rule)[23].

In addition to the S1 - S0 transition via emission of a photon, several non-radiative
transition mechanisms such as internal conversion between vibrational states of different
electronic states can occur. Intersystem crossing from S1 to the triplet excited state T1

requires spin conversion and therefore typically occurs with lower probabilities. Due to the
low probability of the T1 - S0 transition the residence time in the triplet state is typically
substantially longer than in S1. The sequestration of a fluorescent molecule in T1 away from
the fast cycling between S0 and S1 results in a temporary loss in fluorescence signal from
this molecule and is also known as triplet blinking.

Normally, non-radiative return to the ground state S0 is favored in solution, but radiative
return to S0 in a process termed phosphorescence can occur in rigid media.

Figure 2.1 Simplified Jablonski diagram to illustrate state transitions of fluorescent molecules.
Transitions between electronic ground state (S0), first excited state (S1) and triplet state (T1) and
typical time scales for individual processes. Large gray arrows: non-radiative transition between
states. Small gray arrows: vibrational relaxation to lowest vibrational state (∼1×10−11 s).

The transitions between electronic states of fluorescent molecules are illustrated in
Jablonski diagrams. Here, the energetic states of molecules are represented as potential wells,
which are populated by distinct vibrational states and electronic transitions between energetic
states are represented as vertical lines. An example for a simplified Jablonski diagram
showing transitions between S0, S1 and T1 and the time scales associated with individual
transitions is shown in Fig. 2.1. The Quantum yield (QY) of a fluorescent substance in a
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given environment is a measure for the probability of excited state relaxation via photon
emission. It is defined as the ratio of absorbed and emitted photons:

QY =
# emitted photons

# absorbed photons
(2.1)

As a consequence, a high QY is reached, if the rate of radiative relaxation from S1 to S0

via emission of a photon is favored over alternative, non-radiative transitions. In addition
to the quantum yield, the molar extinction coefficient, η , which measures the probability
of a molecule to absorb photons of a given wavelength, is typically used to characterize
fluorescent labels. The molecular brightness, QY η is helpful to compare fluorophores with
respect to their expected signal strength in fluorescence-based assays. It is important to note
that the properties of fluorescent molecules can strongly depend on the specific environment
in which the molecules reside.

Due to its high stability compared to the S1, the triplet state T1 often serves as the starting
point for reactions with other molecules. Since these reactions can have a large impact on
the fluorescence signal observed from a fluorescent molecule, some of the relevant reactions
and how they can be controlled will be discussed in the following.

It has been known for decades that the presence of molecular oxygen during excita-
tion of fluorescent molecules negatively influences their stability and leads to irreversible
bleaching[24]. This observed macroscopic behavior can be explained by the high reactivity of
electronically excited triplet states of fluorophores with molecular oxygen (3O2). Reaction
between these two reaction partners can lead to formation of highly reactive singlet oxygen
(1O2) and superoxide anions, which in turn was shown to react with and ultimately destroy
fluorescent molecules[25]. One simple solution to this problem is removal of molecular
oxygen from the environment of fluorophores during experiments[26]. This can be effi-
ciently achieved by addition of an enzymatic system that consumes oxygen in a catalytic
reaction[27,28]. While removal of oxygen generally leads to reduced photobleaching, it was
also observed that the lack of molecular oxygen as reaction partner to facilitate the transition
from the triplet to the ground state increases the probability of fluorophores residing in dark
states[29]. Alternative triplet state quenchers (TSQs) such as β-mercaptoethanol, Trolox or
ascorbic acid can be used to promote the triplet state - ground state transition, but tend to
exhibit varying efficiencies in dependence of the fluorescent molecule used[30,31].

A more consistent performance was observed using a combination of reducing and
oxidizing agents as radical scavengers (ROXS)[32]. Supplying both types of reaction partners
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(reducing and oxidizing) is important as fluorophores may exhibit either reductive or oxidative
reactive behavior once in their triplet state. Those reactions then lead to the formation of
radicals and ultimately the destruction of the fluorophore (i.e. bleaching). Presence of the
complementary reducing or oxidizing agent can prevent this reactive chain by rapidly reacting
with the formed radical to return the fluorophore to its ground state S0 (illustrated in Fig. 2.2).
If used in combination with enzymatic oxygen removal the use of a Reducing and oxidizing
system (ROXS) consisting of ascorbic acid as reducing and methyl viologen as reducing
agent led to increased photostability, while at the same time effectively depopulating the
triplet state.

Figure 2.2 Influence of photostabilizing agents on fluorophores. Schematic overview of fluo-
rophore state transitions between fluorescent (Fl), triplet (T1), Radical cation/anion (R•+/R•−) and
bleached state. State transitions indicated by labeled arrows. Red/Ox: Reduction or oxidion reaction.
Intersystem crossing (ISC): intersystem crossing. Influence of oxygen removal (-O2), addition of
ROXS reagents (+ROXS) and addition of triplet state quenchers (+TSQ) indicated by symbols. Dashed
arrows: Irreversible bleaching via diverse reactions.

Optical microscopy has been used to study biology ever since the first developments
of single-lens and compound microscopes to observe microscopic specimen otherwise
invisible to the human eye[33]. Developments in optical microscopy have led to advances
across different biological fields and light microscopy continues to play an important role
in biomedical research until today[34]. Modern optical systems offer minimal aberration
and high light collection efficiencies. The combination of those with fluorescent labels and
spectral detection gave rise to fluorescence microscopy. In contrast to a conventional light
microscope, a fluorescence microscope makes use of the properties of fluorescence introduced
above to selectively report on the presence of fluorescent molecules. This is achieved by
restricting the spectrum of detected light to a narrow window matching the emission spectrum
of the fluorescent marker, while at the same time preventing excitation light from reaching
the detector. As a consequence, the sensitivity with which a fluorescence microscope is able
to detect fluorescent molecules within a sample directly depends on its ability to collect and
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detect emitted light. In the past years, objective lenses with high light collection efficiency
and detectors with quantum efficiencies >90 % have enabled fluorescence microscopists to
approach the ultimate limit of sensitivity by detection of individual photons emitted from
fluorescent molecules[35].

Despite these capabilities, fluorescence microscopy is still limited in its ability to resolve
objects due to the diffraction of light. According to Abbe[36], even for a perfect imaging
system free of aberrations, a fundamental resolution limit depending on the wavelength of
light, λ and the numerical aperture (NA) of the objective applies:

d =
λ

2NA
(2.2)

This means that objects located closer than the distance d along the lateral axis will not
be distinguishable in images acquired with the optical system. For fluorescence microscopy
using visible light for excitation and high numerical aperture objectives, the Abbe limit is in
the range of 200-300 in the lateral dimension. For objects smaller than this diffraction limit,
the signal of an object in the image plane of a microscope will appear as a diffraction-limited
pattern, called the Point-spread function (PSF)[37]. Since the size and shape of the PSF is
dictated by the properties of the optical system, it is possible to model the distribution of
signal across a PSF to infer the position of the light-emitting object with precision beyond
the resolution limit[38]. Today, this approach is being routinely used in single-molecule
fluorescence microscopy, where the signal emitted by individual fluorophores is modeled
with a two-dimensional Gaussian function to determine its position with best possible
accuracy[39]. Additional information such as the shape, the width and the amplitude of
the modeled Gaussian function can be used to assess additional properties of individual
fluorophores[40].

Based on this simple idea, two classes of techniques with major impact on biological
research have been developed. In a scenario, where fluorescent emitters are present at a
density low enough such that PSFs of individual emitters do not overlap, the position of
emitters can be tracked over time by repeatedly localizing them in a time series of individual
images[41]. The second approach known as Single-molecule localization microscopy (SMLM)
assumes a situation where the density of fluorophores is too high to identify individual PSFs.
Here, the majority of fluorophores is first forced into a non-fluorescent state and subsequently
only a small subset of fluorophores is transferred into a fluorescent state. The position
of active emitters can then be determined before they are irreversibly photobleached (see
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Fig. 2.2 above). By repeating this process many times, the exact position of fluorophores
in the sample is accumulated and can be used to render an image with improved resolution.
Depending on the process used to transfer fluorophores from their non-fluorescent state these
techniques are known as photoactivation localization microscopy (PALM)Betzig:Hess:2006 or
stochastic optical reconstruction microscopy (STORM)[42]. For both of these techniques
the localization precision, that is the accuracy with which the position of a fluorophore can
be determined, is directly connected to the amount of photons collected from individual
emitters in an image and therefore depends on the molecular properties of the fluorophores
themselves[43].

2.2 Fluorescent labels

Fluorescent labeling is a prerequisite for any type of fluorescence microscopy. An extensive
toolbox of fluorescent labels has been developed in the past and is available to meet the
demands posed by different experimental systems, targets and fluorescence microscopy
techniques[18,44,45]. In the following, I will briefly introduce different types of fluorescent
labels with a focus on molecule-specific labeling of POI. I will then introduce self-labeling
protein tags, which were used as the main labeling approach throughout this study in more
detail. Finally, I will explain how labeling approaches can be calibrated to determine the
number of labels or fluorophores attached to their target.

In its simplest form, fluorescent labels can be considered as a bifunctional system, where
one part of the label mediates binding to the target and the other part of the molecule carries
one or more fluorophores. While the binder part of fluorescent labels is critical to achieve
specific and efficient labeling of the target, an ideal binder should be as small as possible to
minimize potential impacts of labeling onto the target, while at the same time maintaining
high specificity and affinity towards the target. The fluorescent part of the label serves to
enable efficient detection of labels via emission of a fluorescent signal. In general a high
molecular brightness (see above), photostability and low tendency to undergo dark-state
transitions are considered favorable properties. Beyond the specific demands on the binder
and fluorophore part of a label, general properties such as the overall size of labels, their
compatibility with biological samples and their versatility with respect to possible targets
are important criteria when choosing a label. It is important to note that depending on the
imaging technique, these general demands on fluorescent labels may be extended towards
specific properties. Fluorescent markers for labeling POIs can be broadly divided into two
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classes based on the means by which they are introduced into the sample. Affinity labels,
which do not require modification of the sample prior to labeling and genetically-encoded
labels, which have to be introduced into the biological system by expression of a transgene.

Affinity labels include small-molecule reagents with high specificity towards individual
target, such as filamentous actin[46] or microtubules[47]. While these labels have a small size,
can be labeled with a defined number of small organic fluorophores and often bind their
target with high affinity, they do not offer a generalizable approach where arbitrary POI can
be targeted.

Immunoreagents are a second group of popular affinity labels used extensively in biomed-
ical research[48,49]. Same as small-molecule labels, immunoreagents require the development
of a specific reagent (e.g. an antibody) for each desired target, typically by immunization of
animals and harvesting of generated antibodies from blood samples. The most popular im-
munoreagent currently in use are IgG-type antibodies (Fig. 2.3). With a size of approximately
160 kDa, they are relatively large and typically require fixation and permeabilization to allow
for access to intracellular targets. Antibodies are typically labeled with amine or thiol-reactive
small organic fluorophores[50]. Since antibodies typically exhibit multiple reactive sites for
attachment of such fluorophores, a distribution of fluorophore numbers attached to individual
antibodies is often observed[51]. The observed variability in fluorophore numbers attached
to target molecules via antibodies is further amplified, if polyclonal mixtures of different
antibodies against a target are used. The same holds true if the target is labeled via indirect
immunolabeling, where the primary antibody binding the target is not directly labeled, but a
mix of fluorescently-labeled polyclonal secondary antibodies directed against the primary
antibody is used. To reduce the size and the variability in fluorophore attachment, antibody
fragments, which are obtained by protease digestion of antibodies can be used[52]. As it
was shown that conjugation of fluorophores can influence the affinity of antibodies towards
their targets[53], the functionality and affinity of antibodies should always be confirmed
after conjugation. In summary, their size, the potential for steric hindrance upon binding of
multiple antibodies to target molecules in close proximity and, limited accessibility towards
target molecules in dense structures complicate the use of antibodies for quantitative imaging.

To reduce the variability often encountered with IgG antibodies, single-domain antibodies
with a size of 15 kDa, often called nanobodies, derived from the variable region of Camelidae
immunoglobulins can be used[54]. After establishing a new nanobody, they can be expressed
in prokaryotic cells and labeled by site-specific modification, which largely reduces the
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variability in fluorophore number observed for IgG-type antibodies[55]. However, the same
requirement of immunization of animals for raising novel nanobodies persists[56].

A third group of affinity labels consists of synthetic labels consisting of RNA (aptamers)[57]

or peptides (affimers)[58] which can be generated by means of in vitro selection[59,60]. In
addition, aptamers and affimers typically are small and, due to their simpler molecular
structure enable stoichiometric labeling with a defined number of fluorophores[61,62].

Figure 2.3 Overview of fluorescent labeling schemes. Schematic overview of different approaches
to label target proteins (orange) with labels (gray) to attach fluorophores (green) to target proteins.
Schemes not to scale. a, Labeling with fluorophore-conjugated polyclonal primary antibodies. b,
Labeling by genetic fusion with a fluorescent protein. c, Two-step labeling via genetic fusion of
protein tag and subsequent binding of fluorescent ligand to tag.

Genetically-encoded labels constitute the second class of widely-used labels for flu-
orescence microscopy. In contrast to affinity labels, genetically-encoded labels require
introduction of a transgene into the host cells prior to imaging. While different simple and
efficient methods for transient expression of transgenes in eukaryotic cells are available,
the development of genome-editing technologies such as CRISPR/Cas9 now enables tar-
geted introduction of genetically-encoded labels without perturbation of endogenous gene
expression[63].

Fluorescent proteins are arguably the most prominent genetically encoded label and a
large selection of fluorescent proteins with different properties is available[45,64]. In addition
to fluorescent proteins, alternative genetically-encoded labels for fluorescence microscopy
have been developed[65]. In contrast to fluorescent proteins, many of these protein tags
consist of two complementary components. One component is genetically-fused to the POI
and typically not fluorescent itself. The second component is either expressed as separate
protein or introduced during an additional labeling reaction (Fig. 2.3c). This two-component
scheme has the advantage that protein-specific labeling with small organic fluorophores can
be achieved in a live-cell context. At the same time, two-component protein labels can easily
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be attached to different POI and often allow for labeling with different fluorophores due to
their modular structure[66].

Early examples of two-component tags include FlAsH tag[67] and eDHFR[68]. FlAsH
tag consists of a 12 amino acid peptide containing a tetracysteine motif and a bis-arsenical
fluorescein probe which binds to the tetracysteine motif. While labeling with FlAsH tag
is limited to a specific fluorescent ligand, eDHFR is able to bind to different trimethoprim
(TMP) derivates as ligands and exhibits fast ligand binding kinetics, but does bind its ligands
in a covalent reaction. An modified version of eDHFR capable of covalent ligand binding
named TMP-Tag was reported[69].

A relatively recent class of labels, are self-labeling proteins, which combine a set of
favorable properties for advanced fluorescence microscopy approaches. Self-labeling proteins
covalently bind their substrates through a single active site in their catalytic center, they
exhibit fast kinetics and were shown to be compatible with a wide range of ligands[70]. The
first reported self-labeling protein tag, SNAP-tag, is based on the human DNA repair enzyme
O6-alkylguanin-DNA alkyltransferase (hAGT, Fig. 2.4a) and binds O6-Benzylguanine (BG)
or benzylchloropyrimidne (CP) derivatives as ligands (Fig. 2.4b). Covalent binding occurs
via the cysteine residue Cys145 in the catalytic center of the protein under release of guanine
(Fig. 2.4c). The first version of SNAP-tag, SNAP26m contained 10 mutations compared
to hAGT and was shown to be able to bind Background (BG)-ligands after expression in
living eukaryotic cells[71]. SNAPf-tag was developed as an improved version of SNAP-
tag by introducing another 19 mutations[72] and was shown to exhibit >10-fold increased
labeling kineticsSun:CorreaJr:2011. In addition, CLIP-tag was developed as a closely-related
self-labeling protein tag binding to O2-benzylcytosine derivatives as ligand[73].

Based on the prokaryotic dehalogenase DhaA isolated from Rhodococcus sp., HaloTag
(Fig. 2.4d) was developed as an orthogonal self-labeling protein tag to SNAPf-tag and CLIP-
tag[74]. HaloTag reacts with choloralkane ligands[75] to which a wide variety of functional
groups can be conjugated (Fig. 2.4e). HaloTag binds to its ligands via formation of an ester
bond between aspartate asp106 and the hydrocarbon chain of the ligand followed by release
of a chloride ion (Fig. 2.4f). A recent comprehensive study compared the labeling kinetics
for SNAPf-tag and HaloTag and reported apparent rate constants for HaloTag labeling with
the HaloTag ligand HTL-TMR of >1×107 M−1 s−1, almost two order of magnitude higher
than what coud be achieved with SNAPf-tag using a comparable BG-TMR liand[70]. An
improved variant of HaloTag, HaloTag7, was further optimized with respect to its stability
and reactivity[76]. A second favorable property of HaloTag is that fluorescent ligands can
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interact tightly with the surface of HaloTag, which has enabled the development of fluorescent
ligands, which exhibit fluorogenic properties upon binding to HaloTag through a shift in the
equilibrium of a intramolecular spirocyclization reaction[76,77]. Recently, several mutants of
HaloTag with additional improvements over HaloTag7 were reported[78,79].

Figure 2.4 Protein structure, substrates and reaction mechanism for SNAP-tag and HaloTag.
a-c Protein structure (a), structure of ligand BG-TMR (b) and reactive site (c) for SNAP-tag. d-f
Protein structure (d), structure of ligand HaloTag ligand (HTL)-TMR (e) and reactive site (f) for
HaloTag. Figure reproduced under license from[80].

In addition to the protein tags introduced above, a series of recently developed peptide
tags represent a promising alternative for quantitative fluorescence microscopy approaches.
Peptide tags feature a small size (12-15 amino acids) of the peptide that has to be genet-
ically fused to the POI and high-affinity binders based, for example, on nanobodies are
available[81,82]. Finally, Unnatural amino acids can be considered the smallest possible
protein label based on genetic fusion[83]. In combination with bioorthogonal chemistry
for attachment of fluorescent labels, UAAs represent a promising technique for quantita-
tive approaches since they enable labeling of POIs with minimal perturbation, while at
the same time enabling the attachment of small organic fluorophores[84]. It was recently
reported that by using an inverse electron-demand Diels Alder reaction for conjugation of
tetrazines to dienophiles, probes with fluorogenic properties and high reaction kinetics were
obtained[85–87].

In addition to the general properties of fluorescent labels discussed above, the suitability
of fluorescent labeling approaches for quantitative studies of protein numbers depends on
three additional criteria. First, the target binding efficiency of a given labeling approach
directly influences our ability to draw conclusions about the number and distribution of
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target molecules based on the presence of fluorescent labels. Second, nonspecific binding
of the fluorescent label to samples will limit our ability to infer target molecule numbers
from the number of fluorescent labels in a sample. Third, labels for quantitative fluorescence
microscopy should exhibit a defined and narrow distribution of fluorophores per label. For an
ideal label, the target binding efficiency should thus be as high as possible, while the tendency
for non-specific attachment should be as low as possible. For many counting approaches,
stoichiometric labeling, i.e. a 1:1 relation between label and fluorophore is desirable. To
determine the quality of a given labeling approach, it is therefore necessary to characterize
all three of these properties in dedicated assays.

The Degree of labeling (DOL), refers to the number of fluorophores attached to a label
on average an dis typically measured in vitro by absorption spectroscopy using published
information about fluorophore spectra and brightness[88]. However, reports showed that
fluorophore conjugation to antibodies resulted in changes of fluorophore brightness, which
can lead to biased DOL values if not corrected for[53]. In addition, since the DOL only reports
on the ration of fluorophores and labels across an ensemble of label molecules, heterogeneity
in the distribution of fluorophores remains undetected, which can lead to bias in subsequent
quantitative measurements. This an be addressed by measuring the label number distribution
instead of the average DOL using an approach with single-molecule sensitivity[51].

The labeling efficiencies refers to the fraction of POI caries a fluorescent marker. The
labeling efficiency can be determined with different methods ranging from semi-quantitative
in vitro approaches based on immunoblotting[71] to more quantitative approaches based on
mass-spectrometry[89]. In situ assays based on fluorescence microscopy are advantageous
as they report the labeling efficiency for conditions that are comparable to the ones used
in subsequent quantitative fluorescence microscopy measurements[90,91]. This allows to
determine the effective labeling efficiency, i.e. the fraction of labels that can be successfully
detected with a given experimental approach[92]. For SNAPf-tag, labeling efficiencies
ranging from 30 % up to >90 % were reported for different ligands and using different
methods[93]. For HaloTag, generally slightly lower labeling efficiencies around 30-40 % were
reported[92,94].

For evaluating non-specific binding of fluorescent labels, it is especially important to
ensure that the conditions used for testing the labeling specificity match the conditions that
will later be used for measurements targeting POI. As part of the evaluation of a fluorescent
labeling approach, non-specific label deposition should always be checked for to allow correct
interpretation of fluorescence microscopy data. This is typically achieved by generating a
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negative control sample which lacks specific bindings sites and which is then treated and
imaged in the same way as the sample[95].

2.3 Emitter Counting Fluorescence Microscopy

Light microscopy is limited in resolution due to the diffraction of light. Different methods
have been introduced to improve the spatial resolution of fluorescence microscopy beyond the
diffraction limitSauer:Heilemann:2017, Sahl:Jakobs:2017, [43]. Still, the resolution of these methods
is not yet sufficient to enable unambiguous identification and localization of all individual
fluorophores in a given sample. Therefore, counting of fluorescently labeled molecules
by direct enumeration of fluorophore signals in images is not (yet) possible. Instead, it is
therefore necessary to make use of additional information contained in the fluorescence
signal to determine the number of fluorophores that contributes to the measured signal.

Different methods to convert fluorescence signals into fluorophore numbers have been
developed[96,97]. The first class of techniques is based on fluorescence fluctuation approaches
and provides estimates of the concentration of fluorescently labeled POI by measuring
intensity fluctuations caused by molecules diffusing within the sample[98–100]. Although these
methods can be used to determine the stoichiometry of protein complexes, they are limited in
their ability to address stationary complexes and in their ability to provide information about
the distribution of stoichiometries for heterogeneous complexes. For this reason, they will
not be discussed further in the context of this study. Comprehensive reviews covering this
class of techniques are available[101–103].

A second class of methods provides information about the absolute abundance of labeled
molecules in defined structures, which can be identified and localized based on their signals
observable in images[19]. These methods often are able to report measured fluorophore
numbers for individual structures and thereby give access to the distribution of fluorophore
numbers across a population of individual structures. I will refer to this set of methods as
emitter counting microscopy techniques in the course of this study.

In the following, I will provide an overview of the different concepts for emitter counting
microscopy, provide selected application examples and discuss the advantages and disadvan-
tages of individual concepts.

One straightforward way to obtain fluorophore number estimates, is to compare the
fluorescence intensity recorded from a structure to the intensity emitted from a single
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fluorophore or a structure labeled with a known number of fluorophoresFig. 2.5. This emitter
counting approach, also known as Intensity-based counting (IBC), has been applied as
early as 1986[104] and poses little demands on the type of fluorescence microscope data is
acquired on or on fluorescent markers used for labeling. IBC can either be used to assign
fluorophore numbers to individual clusters[105] or to assess the stoichiometry of an ensemble
of molecules[106] and different implementations of IBC have been demonstrated[107,108]

The accessible counting range of IBC for assigning fluorophore numbers to individual
signals is limited by the increasing uncertainty of fluorophore number estimates and was
shown to not exceed 4[105]. Stoichiometry estimates for ensembles of molecules are not
affected by this limitation and higher number of fluorophore number estimates were reported
following the ensemble approach to IBC. For in vitro samples, where the density of individual
complexes can be adjusted and complexes can be immobilized directly on the surface of
coverslips, IBC was found to have a high precision. Experimental validations of IBC with
DNA origami demonstrated an accessible counting range of up to 36 counted fluorophores
per cluster[109]. Another example where IBC was applied for characterization of protein
complexes in cellular samples was recently reported by Finan et al.Finan:Heilemann:2015.
Here, protein complexes with up to 32 protein copies were characterized by comparison of
intensity distributions acquired on many individual complexes with the average intensity of
defined protein oligomers with known stoichiometry.

The main limitation of IBC results from the underlying assumption that the unitary
brightness for the calibration probe (individual fluorophores or complexes with known
stoichiometry) has to be identical to the unitary brightness of fluorophores in the target
complex. In practice, this assumption is often violated due to variable excitation intensities
across the field of view, e.g. due to uneven illumination or due to Total internal reflection
(TIRF) illumination. Also, fluorophores themselves can exhibit different behavior depending
on their local environment. For example, it was reported that small organic fluorophores
exhibit changes in photophysical properties after conjugation to proteins[110] and upon
changes in pH[111]. In addition, the need for a calibration sample poses high demands on
minimizing sample-to-sample variability as minor changes in sample preparation or imaging
conditions can lead to inaccurate emitter number estimates upon comparing sample and
reference intensities.

Irreversible photobleaching of individual fluorophores was initially used to demonstrate
the successful detection of individual fluorophores by fluorescence microscopy[112]. The
same principle was later applied to determine the number of fluorophores contained in a
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Figure 2.5 Overview of emitter counting microscopy techniques. a, Intensity-based counting by
comparison with calibration standard (inset). b, Emitter counting by identification of individual
photobleaching steps (arrows) in intensity traces (gray). c, Principle of antibunching utilized in
Counting by photon statistics (CoPS). Inset: Multi-detection event distribution for different emitter
numbers (1,4,24). d, Quantitative single-molecule localization analysis. Inset: Calibration standard to
correct for average number of localizations per label. e, Quantitative Points accumulation for imaging
in nanoscale topography (PAINT). Binding site numbers are measured from repeated binding of
imager strands (left) and dark time distribution without imager strand bound to target complex (right).
Figure modified after[19].

complex[113]. For this, a sample is exposed to continuous, high-intensity illumination and
the intensity from a Region of interest (ROI) is recorded over time. Plotting the intensity
values of those ROIs over time generates intensity traces, which are used for the subsequent
analysis. Step-wise losses in fluorescence intensity caused by irreversible photobleaching of
individual fluorophores are then identified in the intensity trace and counted to determine the
total number of fluorophores present at the start of the measurement (Fig. 2.5b). Unlike IBC,
Photobleaching step analysis (PBSA) was shown to achieve a higher accessible counting
range, but ultimately is also limited by noise in cases where many fluorophores contribute to
an fluorescence intensity trace. In addition, the likelihood for missed steps due to multiple
photobleaching events occurring within a single time point increases exponentially with
increasing fluorophore numbers. Such a behavior can be minimized by adjusting imaging
rates and exposure times. Similar to IBC, PBSA is compatible with a wide range of mi-
croscopy techniques for data acquisition and was shown to be compatible with different
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fluorescent markers[114,115]. However, fluorophores, which exhibit transient dark-state tran-
sitions will complicate trace interpretation and ideally would be avoided when choosing a
fluorescent marker for PBSA. Since PBSA relies solely on the identification of step-like
intensity changes in individual traces, it is able to provide fluorophore number estimates for
individual complexes and is calibration-free.

In its initial form, PBSA was non-automated and relied on manual classification of
photobleaching traces to assign perceived numbers of step-wise intensity changes[113,116].
Such approaches were successfully used for biological targets with stoichiometries of <10
per complex[117]. A first improvement of PBSA approaches was achieved by filtering of
intensity traces to remove noise and to facilitate manual interpretation[118]. Here, for example
Chung-Kennedy filtering was used to preserve step-like features while reducing overall
noise[114].

Progress towards automated analysis of photobleaching traces was made by developing
approaches based on on hidden Markov modeling[119] or change-point analysis[120] to assess
the oligomeric state of G protein-coupled receptors in vitro with counting of up to six
subunits[121]. This approach was validated using Enhanced green fluorescent protein (EGFP)-
multimers and was found to be highly dependent on the achieved Signal-to-noise ratio (SNR)
during image acquisition.

A more generalized approach to PBSA addressed the need for more sophisticated ex-
traction of intensity traces from cellular samples, where high densities of target complexes
and cellular background otherwise complicate trace interpretation. This was combined with
Chung-Kennedy filtering for noise reduction and a custom approach for identification of pho-
tobleaching steps in filtered traces. The established pipeline was validated on the pentameric
transmembrane receptors GluK2 and GlyRα1 labeled with EGFP[122].

Recently, a set of fully automated step detection algorithms based on Bayesian approaches
was established and reported to achieve extended accessible counting ranges of more than
30 fluorophores in individual traces[123,124]. While such appraoches clearly represent a
significant step in the ability of PBSA-based emitter counting microscopy to target large
intracellular complexes, experimental validation on complexes with stoichiometries >30
has not been reported to date. In addition, due to the high complexity of these algorithms
computational cost becomes an relevant factor with run times of 17 h per trace having been
reported for analysis of a trace containing 50 photobleaching steps[123].
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A third class of emitter counting approaches is based on the principle of photon anti-
bunching, which dictates that the probability for detecting more than one photon from a
fluorophore approaches zero for a time window approaching a width of zero[125]. In contrast
to IBC and PBSA, emitter counting based on photon antibunching requires specialized
microscopy setups equipped with single-photon sensitive detectors which are typically used
in conjunction with confocalized detection. Photon antibunching can be used to infer the
number of fluorophores by recording coincident photon detection events from simultaneously
excited fluorophores in a diffraction-limited structure[126] (Fig. 2.5c). By employing a detec-
tor geometry where the collected fluorescence signal from a sample is equally distributed
onto four single-photon avalanche diodes, multiple photon detection events (mDE) with
up to four coincident photons can be recorded (Fig. 2.5c, inset). The distribution of mDEs
detected after excitation with pulsed lasers with pulse widths shorter than the fluorescence
life time of the fluorophores used (typical pulse widths: ∼100 fs), then allows to infer the
number of independent fluorophores present in the excited volume[127]. However, in contrast
to PBSA and all other emitter counting microscopy approaches except for IBC, CoPS is able
to provide time-resolved fluorophore number estimates. Here, the achievable time resolution
and counting precision depends on the molecular brightness of the employed fluorophores
and sub-second time-resolution was previously reported[128,129].

CoPS was shown to achieve an experimentally validated counting range of at least 30
fluorophores[130], while simulations showed that accessible counting ranges of up to 50
fluorophores could be possible[131]. By combining CoPS with the super-resolution technique
Stimulated emission depletion (STED), quantitative information on emitter numbers across a
sample were obtained, while providing spatial information with improved resolution[132].

Following the same concept of combining improved spatial resolution with quantitative
information about fluorophore numbers emitter counting microscopy methods based on
SMLM have been described. quantitative Single-molecule localization microscopy (qSMLM)
is based on the concept that individual localizations used to reconstruct super-resolved images
in SMLM contain information about the underlying number of blinking fluorophores[133].
By correcting the number of localizations recorded from a given structure to the number of
localizations recorded on a reference standard where the number of fluorophores per target is
known, the underlying target copy number in the structure can be determined (Fig. 2.5d). This
concept has been extensively used in combination with photoactivatable fluorophores[134–137]

and small organic fluorophores which can be shelved in transient dark stats[138,139].
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While the basic idea behind qSMLM is intriguingly simple, the implementation of
qSMLM for calibration-free counting can be challenging and is currently limited to accessible
counting range ≪10[139,140]. In contrast, counting of target molecules by calibration with
reference standards was applied to structures containing ≫100 fluorophores[92,138]. In this
context, it is important to note that qSMLM can be readily applied to structures with arbitrary
shapes.

An interesting extension of qSMLM is a recently developed technique named quantitative
Points accumulation for imaging in nanoscale topography (qPAINT). qPAINT relies on the
concept of transient binding and unbinding of fluorescently labeled DNA oligonucleotides
to complementary oligonucleotides. Here, localizations of fluorescent signals are generated
from signals emitted by transiently bound oligonucleotides[141]. This effectively uncouples
the generation of blinking signals required for SMLM from the properties of individual
fluorophores and thereby enables SMLM with high localization precision and label densities.
The fact that the binding and unbinding of oligonucleotides is a well-defined process with
simple kinetics, the frequency of binding events contains information about the number of
binding sites present in a structure. This relation is used by qPAINT to deduce the number of
binding sites from experimentally measured distributions of dark times and by comparison
with a reference standard with a known number of binding sites[142]. qPAINT was shown to
exhibit a large accessible counting range and excellent precision for in vitro measurements
with DNA origami. Recently experimental factors influencing the precision of qPAINT
measurements have been described[143]. qPAINT has been applied to measure protein copy
numbers in different biological systems[144–146] and a calibration-free approach for qPAINT
on low copy number targets was demonstrated recently[147]

2.4 Standards for Quantitative Fluorescence Microscopy

The need for validation and standardization in quantitative fluorescence microscopy has given
rise to a number of approaches which aim at improving the reproducibility of microscopy
techniques[148,149]. Alongside efforts to standardize data formats[150,151], reporting of ex-
perimental parameters[152] and techniques for characterization of optical systems[153,154],
reference standards have emerged as important tool for benchmarking fluorescence mi-
croscopy techniques[155,156]. In the following, I will introduce different reference structures
with dimensions below the diffraction limit and which are therefore of particular use for
emitter counting microscopy.
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Figure 2.6 Selected reference standards for protein copy number measurements. Standards for
emitter number measurements. Protein oligomers and DNA-based probes allow to attach a defined
number of fluorophores to complexes with variable size. a, Standards for in vitro studies. DNA
oligonucleotides, DNA origami and viruses can be used as reference standards with up to 240
fluorophores attached to a individual structures <100 nm. b, In-cell reference standards. Different
trans-membrane and soluble protein complexes with monomer copy numbers ranging from 2–180
have been described in the literature. Protein structures were rendered using Chimera[157] based on
publicly available data deposited in PDBe. Accession numbers: 5iou (NMDAR), 5h3o (CNG), 1fpy
(Glutamine synthetase), 1eum (Ferritin), 4pt2 (Encapsulin), 3j0f (Sindbis virus), 5a9q (Nuclear pore
complex). The structure of a rectangular DNA origami was predicted using CanDo[158] and rendered
using Chimera.

Reference standards for emitter counting microscopy can be distinguished into two classes
based on their area of applicability. The first class of reference standards was developed for
use as isolated particles and their application is often restricted to in vitro studies. Examples
for this class of standards include DNA oligomers[159], DNA nanostructures[109], viral
particles[160] and hybrid DNA-protein nanostructures[161] (Fig. 2.6a). Among these examples,
DNA origami have emerged as widely used reference samples due to their flexible design,
ease of use and high stability under various conditions[162]. DNA-based nanostructures are
typically covalently labeled with small molecule fluorophores and require purification after
labeling[163]. Approaches to attach fluorescent proteins or other protein-based fluorescent
labels to DNA nanostructures have been reported[161]. Although DNA origami are highly
popular as reference standards, limited labeling efficiencies[164] and an influence of attached
fluorophores on the origami itself were reported[165].
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A second class of reference standards was established to meet the need for standards that
can be expressed inside eukaryotic cells. This class of standards consists of different protein
types, which were found to assemble into stable macromolecular complexes. While some of
these protein-based reference standards occur naturally in eukaryotic cells and exert essential
cellular functions, other protein complexes are artificially introduced into eukaryotic cells.
Examples for this class of reference standards include different types of transmembrane
proteins[113,166,167], oligomeric enzyme complexes[168,169], the nuclear pore complex[92] and
virus-like particles[169,170] (Fig. 2.6b). Labeling of in-cell reference standards is typically
achieved with the same labels as for labeling of the POIs (see section 2.2). In contrast to
reference standards for in vitro studies, the properties of in-cell standards can be influenced
by regulatory processes that affect the complex stoichiometry within the host cell. Therefore,
additional criteria beyond the stoichiometry of a complex such as the efficiency of complex
formation in cells, density and subcellular localization are important criteria when choosing
an in-cell reference standard for a given application.
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2.5 Scope of this study

The aim of this study was to establish an experimental framework for counting protein
copies in macromolecular complexes by quantitative fluorescence microscopy. To relate the
observed fluorescence signal to protein copy numbers, two tasks have to be performed:

1. The fraction of POI successfully labeled with a fluorescent marker needs to be deter-
mined.

2. The number of fluorescent labels contributing to the fluorescent signal need to be
inferred from the recorded fluorescence signal.

I addressed both of these challenges in the scope of two projects, which will be described
in the following chapters of this study. In chapter 3, I will describe the development of a
staining efficiency probe and a corresponding data analysis pipeline to determine the labeling
efficiency achieved for protein labeling with self-labeling protein tags. This work was based
on a previous proof-of-principle study performed in our lab, which established this staining
efficiency probe as tool for identifying optimal labeling conditions for multi-color single-
particle tracking and which provided first evidence that labeling efficiencies can be measured
using the probe.

The first goal of my work was to identify and improve key steps in the data analysis
pipeline to optimize the robustness of the pipeline. I then benchmarked the pipeline with
simulations and experimental data to verify that unbiased labeling efficiencies could be
measured across different experimental conditions. The second goal of this project was to
translate the manual imaging assay into a semi-automated imaging workflow with increased
throughput. Despite the widespread use of SNAPf-tag and HaloTag, no systematic studies
of labeling efficiencies that can be achieved with these tags have been reported to date. To
fill this gap in our understanding of self-labeling protein tags, I used the optimized data
acquisition and processing pipeline to investigate the performance of SNAPf-tag and HaloTag
under a wide range of different labeling conditions.

The second project, which will be presented in chapter 4, aimed at establishing an ap-
proach for in situ emitter counting microscopy without the need for specialized hardware
to allow for easy implementation across laboratories. As described in section 2.3, photo-
bleaching step analysis is a calibration-free technique that is able to provide information on
the single-particle level and does not require specialized instrumentation beyond a widefield
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fluorescence microscope. It is therefore well suited for applications in cell biology and can
be adapted to process raw data acquired on different types of fluorescence microscopes.

However, previously reported algorithms for photobleaching step analysis suffer from
limitations due to a limited counting range, high computational demand required for trace
interpretation or lack of validation with experimental data. The aim of this project was there-
fore to develop and validate a comprehensive framework for photobleaching step analysis
with a special emphasis on computational performance to allow for studies measuring emitter
numbers across many complexes per cell and many cells. In conjunction with developing a
new algorithm for trace interpretation, a second goal was to identify experimental conditions
suited for generating high-quality input data to maximize the accessible counting range of
the developed approach. Finally, the developed algorithm was to be validated with simulated
as well as experimental data to provide a robust estimate of the accessible counting range
under relevant experimental conditions.



Part II

Results





Chapter 3

CALIBRATED LABELING WITH
SELF-LABELING PROTEIN TAGS

To measure copy numbers for a POI with fluorescence microscopy, the fraction of POIs
labeled with fluorescent markers needs to be determined. Self-labeling protein tags such as
SNAPf-tag or HaloTag, offer the advantage that they are genetically fused to the POI and
that they bind at most one fluorophore per tag (section 2.2). This comes at the cost that they
require an additional labeling step where samples are incubated with fluorescent ligands. The
possibility of non-specific deposition of fluorescent ligands in samples during labeling means
that the labeling efficiency has to be determined while taking non-specific ligand deposition
into account.

In the following chapter, I will first explain how labeling efficiencies can be mea-
sured on the single molecule level. I will then describe the development and validation
of DOLanalysis, a pipeline for labeling efficiency measurements by single-molecule colo-
calization analysis. Finally, I will present experiments performed to assess the performance of
SNAPf-tag and HaloTag under different experimental conditions with the goal of identifying
optimal labeling conditions for robust protein counting by fluorescence microscopy.

Parts of the results described in this chapter were performed in collaboration with Felix
Braun, who implemented DOLanalysis as a MATLAB framework for data analysis and
helped with establishing simulations. Prior work was performed by Siegfried Haenselmann
and where indicated, parts of the measurements were performed by Felix Braun, Siegfried
Haenselmann and Wioleta Chmielewicz (all Herten Lab, Heidelberg University). A publica-
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tion describing the results presented in this chapter is currently in preparation for submission.
Felix Braun, Siegfried Haenselmann and me will be equal first authors of this publication.

3.1 Single-molecule labeling efficiency measurements

In section 2.2, I explained that fluorescent labeling approaches can be characterized with
different experimental techniques, which provide limited amounts of information about the
efficiency of a labeling approach on the ensemble level or about the relative efficiency of a
labeling approach.

A direct way to measure the labeling efficiency and label number distribution on the
single-molecule level is to assess the colocalization of the label with a second fluorescent
marker, which serves as reference signal, that indicates the presence of a potential labeling
site[91]. To implement a single molecule approach to measure labeling efficiency based on
colocalization, five basic requirements have to be fulfilled:

1. The reference marker and the label under investigation need to be distinguishable based
on their spectroscopic properties. This can, for example, be achieved by choosing
fluorophores with different excitation or emission spectra.

2. Complexes between the POI, reference marker and the label being characterized have
to be sufficiently stable to allow for detection of reference and marker signals.

3. The label being characterized and the reference marker have to be sufficiently bright
for single-molecule detection.

4. The spacing between individual POIs within the sample has to be sufficiently large
and their respective mobility sufficiently low to identify individual POI in fluorescence
microscopy images and to enable assigning pairs between reference markers and labels
being characterized.

5. Emitter detection for reference marker and label being characterized have to be specific,
i.e. a majority of observed signals needs to originate from specifically introduced
fluorophores.

By designing an artificial protein as Staining efficiency probe (SEP), we set out to
meet the demands listed above. This SEP consists of a fluorescent protein, which serves
as reference marker and two self-labeling protein tags, for which the labeling efficiency
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was to be calibrated (Fig. 3.1a). In the following, I will refer to signals detected from the
fluorescent protein as reference marker or ’reference’ and to signals emitted from ligands
of self-labeling protein tags as target signals or ’target’. At low expression strength, signals
from individual SEPs can be observed as diffraction-limited signals in a cell (Fig. 3.1b).
The position of individual reference and target can be obtained by sub-pixel localization
in separate spectral channels (Fig. 3.1c). This type of analysis also allows to distinguish
between ligands specifically attached to a SEP and non-specific deposition of ligands in the
sample (Fig. 3.1d).

Figure 3.1 Labeling efficiency measurements by single-molecule colocalization analysis. a, SEP
for single-molecule colocalization analysis between reference marker and target label. b, Probes
are expressed at low density in cells c, Reference and target signals from individual probes can be
detected and localized with high precision (crosses) in close spatial proximity. d, Signal from specific
and non-specific labeling can be distinguished based on colocalization with a reference marker.

The labeling efficiency can then be obtained by computing the degree of colocalization
between localized reference marker signals and localized signals from fluorescent ligands
bound to the protein tag:

Degree o f colocalization (DOC) =
re f ∩ target

re f
(3.1)

where re f ∩ target is the number of reference marker signals for which a signal from a
protein tag ligand (target) was detected in close proximity and re f is the total number of
reference marker signals. The DOL can be computed from the same data by determining the
average number of signals from protein tag ligands (target) per reference marker position.
In the case of labeling with protein tags, where tags are genetically fused to a target protein
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and each tag molecule can bind at most one fluorescent ligand molecule, the DOL is a direct
measure of the labeling efficiency. In the following, the DOL will be reported as the fraction
of labeled tags (ranging from 0 to 1), while the labeling efficiency will be reported as the
percentage of labeled tags.

3.2 Prior developments

3.2.1 A staining efficiency probe for SNAPf-tag and HaloTag

Based on the principles outline above, we created a SEP specifically designed to measure the
labeling efficiencies for the self-labeling protein tags SNAPf-tag and HaloTag with orange
to red emitting fluorescent ligands. Detection of the reference signal in a separate spectral
channel was enabled by using the green-emitting fluorescent protein EGFP as reference
marker. Both tags were connected by an 25 amino acid α-helical linker with an estimated
length of 57 Å[171] to reduce potential energy transfer via Foerster resonance energy transfer
(FRET) between fluorophores conjugated to each tag. The SEP was targeted to the plasma
membrane by addition of the N-terminal signal peptide of Lyn kinase, which is myristoylated
by N-myristoyl transferase and consequently inserts into the inner leaflet of the plasma
membrane[172]. At the C-terminus, a His6-tag was added to allow for verification of full-
length expression of the construct via immunoblotting. Due to the addition of EGFP as
reference marker, we name this SEP EGFP-enhanced staining efficiency probe (gSEP). A
schematic overview of all components of gSEP is shown in Fig. 3.2a. A second construct
consisting of a EGFP targeted to the plasma membrane via N-terminal fusion to the Lyn signal
peptide was generated to assess non-specific ligand deposition (Lyn-EGFP (LynG), Fig. 3.2b).
Both constructs were stably expressed in mammalian cells by retroviral transduction with the
Phoenix Ampho system[173].

TIRF microscopy of Huh7.5 cells stably transduced with gSEP or LynGs showed that the
expression strength of both constructs was sufficiently low to identify individual diffraction-
limited EGFP signals (Fig. 3.2c,d left) which were to be used as reference markers.

TIRF microscopy of Huh7.5 gSEP and LynG cells after labeling with the SNAPf-tag
ligand BG-SiR and the HaloTag ligand HTL-TMR further showed that both tags within gSEP
could be labeled with their respective ligands in gSEP-expressing cells (Fig. 3.2c) while less
signal was observed in the target (HTL-TMR and BG-SiR) channels in LynG-expressing
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cells (Fig. 3.2d, middle & right). A comparison with Huh7.5 gSEP cells not labeled with
SNAPf-tag or HaloTag ligands showed few autofluorescent signals indicating that imaging
of tag ligands with high specificity was possible (Fig. 3.2e). In the following, I will refer to
the EGFP channel as reference channel, while I will refer to the channels containing signals
from protein tags as target channels.

Figure 3.2 Principle and validation of gSEP activity. a,b Schematic structures of gSEP (a) and
LynG (b). Molecular models of EGFP, SNAPf-tag and HaloTag were obtained from PDB (accession
numbers 1EMA, 6Y8P, 6Y7A). Scheme not to scale. c-e, Representative TIRF microscopy images
of Huh7.5 gSEP or Huh7.5 LynG after labeling with HTL-SiR (500 nM for 30 min before fixation
(c,d) or without labeling (e). Scale bar: 20 µm. Microscopy images in c-e recorded by Siegfried
Haenselmann.

3.2.2 Labeling efficiency measurements with gSEP

From looking at images of cells expressing gSEP and labeled with fluorescent ligands, it is
obvious that obtaining the degree of colocalization form raw images requires a computational
pipeline for data analysis. For this purpose, Siegfried Haenselmann previously developed
a pipeline to perform a single-molecule colocalization analysis which uses multi-channel
images recorded from cells expressing gSEP or LynG as input and computes the degree
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of labeling based on emitters identified in individual image channels (??a). While the
development of routines used in each step of the pipeline were described in detail before[174],
I will summarize the underlying principles for each step below as they are essential to
understand the subsequent improvements to this pipeline that I have developed as part of my
thesis.

Input data: As described above, signals from reference and target fluorophores need to
be distinguished to perform a single-molecule colocalization analysis. In our case, we used
spectral information to distinguish between reference and target fluorophores and therefore
obtained a multi-channel image set with 2-3 images (1 reference channel, 1-2 target channels)
for each cell (Fig. 3.3b). Based on the reference channel image of each cell, a binary mask
was computed as additional input for subsequent processing steps (Fig. 3.3c).

Emitter localization: Individual emitters in images have to be identified and localized
with sub-pixel precision. Typically this is achieved by fitting a two dimensional Gaussian
function to pre-selected sub-regions of images. In addition to the precise x,y coordinates of
an emitter, this gives access to additional properties such as the signal strength (amplitude
of Gaussian) and the signal width (sigma of Gaussian) for each emitter (Fig. 3.3d). Typical
challenges during this step include preselection of sub-regions for fitting in noisy images and
separation of partially overlapping emitters. Since Gaussian fitting for determining sub-pixel
locations of emitters is routinely performed in SMLM and other single-molecule fluorescence
microscopy approaches, many algorithms and software packages to address this task are
available[175]. In the initial version of the gSEP data analysis approach, emitter localization
was therefore performed using the u-track software package originally developed for single-
particle tracking[176]. To remove false positive localizations from results prior to downstream
analysis, detected emitters were filtered based on their localization properties.

Channel registration: Images from different spectral channels have to be aligned since
aberrations caused by optical components of the microscope distort light with different
wavelengths to a variable degree. This can be done by transforming raw images or based on
coordinates of objects detected in both spectral channels. In the case of the gSEP construct,
the presence of the reference marker and the protein tags within one molecule provide signals
in both spectral channels which can be directly used for channel registration. Registration was
performed directly on localizations obtained from emitter detection by computing translation,
rotation and scaling factors to minimize the distance between signals in the reference and
target channels (Fig. 3.3e).
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Figure 3.3 Data processing steps for single-molecule labeling efficiency measurements. a, Data
processing workflow. b, Raw multi-channel images for reference and target channel are used as input
for cell segmentation and emitter localization. c, Cell segmentation based on reference channel. d,
Gaussian fitting of diffraction-limited signals gives access to sub-pixel location, signal amplitude
and width. e, Channel registration scaling, rotation and translation using sub-pixel coordinates
of reference and target localizations as input. f, Computation of colocalization distance cutooff.
Left: Target channel coordinates are rotated by 90° to generate randomized coordinates. Right:
Normalized distance-dependent colocalization between reference and target channels. g, Correction
of density-dependent emitter detection performance.
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Colocalization analysis: Prior to computing the fraction of colocalizing emitters in the
reference vs. target channel, a distance cutoff is required to distinguish between specific
colocalization of signals from the same gSEP molecule and random colocalization of signals
originating from different gSEP molecules. This cutoff depends on the registration quality
between reference and target channel, as well as on the localization precision for individual
emitters in both channels. At small cut off values below the localization precision, even small
localization errors would cause a large fraction of true co-localizations to not be identified.
At high cutoff values, reference and target localizations from different gSEP molecules may
be falsely assigned as colocalizing signals. The specific cutoff distance thus maximizes the
number of true colocalizations while minimizing the number of random colocalizations.

The specific cutoff distance colocspeci f ic(t) was determined by computing the difference
between the number of colocalization events, coloc = localizationre f ∩ localizationtarget ,
observed in datasets after registration of reference and target channel and in a randomized
dataset across different distances ranging from 0 to tmax:

colocspeci f ic(t) =
coloc(t)

coloc(tmax)
− colocrandom(t)

colocrandom(tmax)
. (3.2)

Here, the randomized dataset where no specific colocalization was expected was generated
by rotating coordinates of localizations in the target channel by 90° (Fig. 3.3d). Fig. 3.3f
shows the typical distance-dependent behavior for coloc(t), which shows a steep increase at
small distances t and for colocrandom which shows a more gradual increase with increasing
distance t.

The observed maximum of colocspeci f ic at intermediate t was used as the distance cutoff
T for which reference and target channel localizations were considered to colocalize.

Density correction: In principle, the labeling efficiency can be computed based on the
observed degree of colocalization between reference and target channel emitters located
closer than T to each other and the total number of detected emitter in the reference channel
(Equation 3.1). This approach will report unbiased labeling efficiency measurements if all
emitters in the reference and target channel are successfully detected at their true positions.
However, diffraction limits our ability to directly determine the position of individual emitters
and additional confounding factors such as overlapping emitter signals, a limited SNR or
variable background features will occur in experiments. It is therefore typically not possible
to localize all emitters without introducing positional errors and without missing a fraction
of emitters altogether. This means that in order to achieve unbiased labeling efficiency
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measurements by single-molecule colocalization analysis, measurements have to be adjusted
for imperfect emitter localization.

In simulations with varying emitter density, we previously observed that the recall, that
is the fraction of simulated emitters that were successfully localized, was anti-correlated
with the simulated emitter density and consequently also with the detected emitter density
(Fig. 3.3g). Here, the anti-correlation between recall and detected emitter density exhibited
a linear dependence. As the detected emitter density is readily available after emitter
localization, this means that the relation between detected emitter density and recall can be
used to correct for density dependent errors in emitter localization.

To enable the correction of the degree of colocalization determined from experimental
data, images containing simulated emitters with properties matching experimental data were
simulated for different emitter densities. These simulated images were then subjected to
emitter localization and the relation between recovered emitter density and simulated emitter
density was linearly fitted to extract the slope and offset as correction factors.

The Degree of colocalization (DOC) computed from individual images was then corrected
to compute the Labeling efficiency (LE) according to:

LE = 100
DOC

CFslopedensmeas +CFo f f set
(3.3)

where CFslope and CFo f f set are the correction factors obtained from the analysis of
simulated images and densmeas is the detected emitter density in the target channel of the
analyzed image.
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3.3 Scope

The goal of this study was to develop and validate a method for measuring absolute labeling
efficiencies in the context of protein counting with single-molecule fluorescence microscopy.
To achieve this, I built on previous work performed by Siegfried Haenselmann in our lab, who
established gSEP as validation tool for single-particle tracking and for identifying optimal
labeling conditions for multicolor single-particle tracking[174]. With an initial version of the
data analysis pipeline described above, maximum labeling efficiencies of 40 % for SNAPf-tag
and 50 % for HaloTag were measured. It remained unclear whether this limit in labeling
efficiency was due to inherent limitations of the applied data analysis routines, or if the
labeling efficiency achieved with protein tags depends on the tags, fluorescent ligands or
biological systems in which they are being used.

To understand how technical limitations of the single-molecule colocalization routine
influence measured labeling efficiencies, the first aim was to validate and improve the data
analysis pipeline. This included comparing the current emitter localization approach with
alternative approaches, and validating the analysis routine with simulations and experimental
data. Once a validated analysis pipeline was established, the next aim was to automate data
acquisition to facilitate systematic studies of protein tag performance across different labeling
conditions. The last aim of the work presented here was to study the influence of fluorescent
ligands, fixation conditions and host cell lines on the performance of SNAPf-tag and HaloTag.
The observations made in this context will guide the choice of labeling conditions for in-situ
protein counting with photobleaching step analysis in chapter 4.
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3.4 Optimized labeling efficiency measurements with gSEP

In previous work with gSEP, image sets were acquired manually for each individual cell by
single-molecule sensitive TIRF microscopy. Manual acquisition limits the amount of cells
that can be imaged per sample and in addition may result in photobleaching during focusing
and cell selection. As part of this study, I set out to automate data acquisition by establishing
the ImageJ-based microscope control software µManager[177]. To enable fully unsupervised
image acquisition, the microscope was additionally equipped with a motorized emission
filter wheel. This allowed for scripted acquisition of multi-channel images according to the
original gSEP imaging protocol for >20 cells per condition across up to eight conditions
in one sample holder. If required, the same imaging routine could be extended towards
additional conditions if larger sample holders are used. One important deviation in the
acquisition routine was that cells for imaging were pre-selected prior to data acquisition
based on the Slide Explorer plugin of µManager. This reduced the light exposure of the
sample prior to data acquisition to 50 ms per cell and thereby substantially decreased the
risk of photobleaching. Using the automated acquisition script, the typical duration for an
experiment with eight conditions was reduced from about one day of work to about one hour
of preparation time for cell selection and about six hours of unsupervised imaging time while
increasing the number of imaged cells per condition by at least 2-fold.

For data processing, DOLanalysis was developed as object-oriented analysis framework
in MATLAB. This framework is centered around emitter localization sets (’pointsets’),
multichannel images and sets of multichannel images (’imagesets’) as core objects and
was used for all data processing performed in this chapter. The principles behind each
processing step remained unchanged from the initial version of the gSEP approach described
in Section 3.2.2. Specific procedures for individual experiments and critical parameters
during analysis are described in Section 6.3.2. Taken together, the established approach
for semi-automated data acquisition and flexible analysis framework provided the basis for
optimizing and validating individual steps during analysis as will be described below.

3.4.1 Improved emitter localization with thunderSTORM

Detection of diffraction-limited signals and sub-pixel localization are the basis for measuring
labeling efficiencies with gSEP since they convert raw images into localizations that are
subsequently used for all downstream analysis steps. It is therefore critical that this emitter
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detection step of the data analysis routine produces accurate results, which are as robust
as possible towards changes in input data and exhibit as little as possible variation across
cells. In the initial version of the gSEP approach, emitter detection was performed using the
sub-pixel localization routine of the u-track package for single-particle tracking[176]. It was
observed that while this emitter detection and localization algorithm generally performed
well, it also returned putative emitter positions which did not correspond to diffraction-
limited signals identified by eye. This subset of detection events could be largely removed by
applying an intensity filter with empirically determined threshold, but their origin as well as
the fraction of low-intensity localizations under varying experimental conditions was difficult
to predict.

For this reason, I decided to cross-validate emitter detection obtained with u-track with
emitter localizations obtained with an alternative localization framework. After comparing
the performance of different localization frameworks on representative experimental data
recorded on different gSEP datasets, I chose the thunderSTORM software package[178] for
a detailed comparison with u-track emitter localization. thunderSTORM is available as a
plugin for ImageJ and therefore easy to adapt for automated processing of large datasets.
thunderSTORM additionally allows to perform multi-emitter fitting where signals from
partially overlapping emitters are modeled with a mixture of multiple Gaussians to enable
correct localization of each individual emitter and to avoid misplaced localizations. Emitter
detection settings for thunderSTORM were optimized by visual inspection and kept fixed for
all further analysis. Specific detection parameters are given in section 6.3.2.

3.4.2 Benchmarking of emitter localization frameworks with simula-
tions

To achieve a systematic evaluation of the performance of thunderSTORM and u-track

across different emitter densities and background strengths, I compared both frameworks
with the help of simulated data. For simulated data, the ground truth positions of emitters
are known and a comparison of detected emitter locations with the ground truth can be
performed. Unlike an evaluation with experimental data, evaluation with simulated data
enables a quantitative comparison of emitter localization approaches. One prerequisite for
this is that the simulated data used for benchmarking closely resemble the experimental data
which will be processed with the established analysis routine.
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Simulated images resembling cells labeled with protein tag ligands, were obtained
by combining real images of cells expressing gSEP without labeling of protein tags with
simulated images containing diffraction-limited signals (Fig. 3.4a).

Figure 3.4 Routine for generating simulated input data for emitter detection benchmarking. a,
Overview data generation scheme. b, Representative input data from high background dataset. Left:
low background image acquired on unstained H838 cell expressing gSEP construct under TIRF
illumination and at 561 nm with acquisition settings identical to those used for measurements on
labeled cells. Right: High background image of same cells as for low background with 640 nm
excitation settings. c, Comparison of image from real cell (left) and simulated cell (right) from high
background dataset with overlayed cell segmentation (yellow lines). Scale bars: 20 µm. Simulations
were established jointly with Felix Braun.

To emulate background signals typically observed in fluorescence microscopy images of
mammalian cells, we compiled a set of representative images of unlabeled cells from different
gSEP cell lines acquired under identical acquisition settings as were used for imaging gSEP
target channels. Diffraction-limited signals mimicking the signals originating from individual
labeled gSEP molecules in cells after labeling of protein tags were generated using the
software testSTORM[179]. testSTORM enables simulations of individual emitter signals with
adjustable signal strength, photophysics and size and is therefore ideally suited to generate
test data which closely resembled our experimental data (see Section 6.3.3 for simulations
parameters). Using testSTORM, we simulated emitter signals randomly distributed across
images at varying densities between 0 and 2.6 µm−2. Simulated emitters located outside the
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area covered by cells were removed by applying a mask, which was generated based on the
gSEP reference (EGFP) channel.

The background levels observed in the two target channels with 561 nm and 640 nm
excitation appeared different in overall signal levels, as well as in the number of distinct
features typically contained in cells. We therefore simulated two datasets with low and
high background, where the low background scenario corresponded to background signals
typically encountered in the 561 nm excitation target channel, while the high background
scenario corresponded to background observed in the 640 nm excitation target channel
(Fig. 3.4b). Images resulting from this simulation approach appeared qualitatively comparable
to real data recorded on cells in which gSEP had been labeled with respective ligands for
SNAPf-tag and HaloTag (Fig. 3.4c).

Simulated images with low (0.2 µm−2) or high (1.6 µm−2) simulated emitter densities
were then subjected to emitter detection by u-track and thunderSTORM using detection
parameters previously determined for experimental data. Overall, I observed a good perfor-
mance with both algorithms at simulated emitter densities ≤0.5 µm−2 (Fig. 3.5a), especially
in the low background scenario. As previously observed in experimental data, u-track
showed a tendency to detect emitters at positions with minimally increased background
where no simulated emitters were located (Fig. 3.5a, arrow 1). A small fraction of dim
simulated emitters was missed by both frameworks (Fig. 3.5a, arrow 2). Bright features in
simulated images, which originated from used experimental background images and not
from simulated emitters were detected by both frameworks (Fig. 3.5a, arrow 3). Since these
feature appeared to be highly similar in size and brightness to simulated emitters, it is likely
that a certain degree of localizations from autofluorescent particles will also be encountered
in experimental data.

At higher simulated emitter densities, both detection frameworks failed to identify sim-
ulated emitters to a varying degree (Fig. 3.5b). Multi-emitter fitting with thunderSTORM

helped to correctly identify simulated emitters located in close proximity. Such emitters were
typically missed by u-track, which tended to place localization between closely located
simulated emitters (Fig. 3.5b, arrow 4). If simulated emitters overlapped strongly or if a
large number of simulated emitters occurred in close proximity, both detection frameworks
typically started to miss individual emitters and u-track increasingly failed to place any
localizations at all in these areas (Fig. 3.5b, arrow 5). In contrast to the performance of
u-track at low simulated emitter densities, the high sensitivity of u-track seemed to be
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Figure 3.5 Qualitative comparison of emitter detection performance. Emitter detection with
u-track and thunderSTORM localization algorithms at low (a) and high (b) simulated emitter den-
sities. Zoomed regions of full image shown in inset. Emitter positions were omitted from inset.
Yellow lines indicate masked region of cell. Arrows indicate notable observations in dataset. 1:
Detection of background by u-track. 2: ground truth emitter missed by both algorithms. 3: bright
autofluorescent spot localized by both algorithms. 4: Two closely located emitters correctly detected
by thunderSTORM and missed by u-track. 5: Group of closely located ground truth emitters not
correctly localized by both algorithms. 6: Dim ground truth emitter only localized by u-track. Scale
bars: 20 µm.



44 CALIBRATED LABELING WITH SELF-LABELING PROTEIN TAGS

beneficial at higher emitter densities since u-track tended to identify low intensity emitters
at a higher success rate than thunderSTORM (Fig. 3.5b, arrow 6).

Overall, the qualitative evaluation of u-track and thunderSTORM showed that under
good conditions (low emitter densities and low background) both algorithms succeeded
in identifying the majority of simulated emitters. However, upon increasing simulated
emitter densities and background, thunderSTORM seemed to perform better. To which
degree the high sensitivity of u-track negatively impacts the results of labeling efficiency
measurements remained difficult to assess. This suggests that, for experimental conditions
with low background signal and low-intermediate emitter densities, emitter localization with
thunderSTORM represents an improvement over emitter localization with u-track.

Simulated data allow for a quantitative evaluation by comparison to the known position
of simulated emitters. I therefore proceeded to systematically compare both detection
frameworks across simulated emitter densities between 0.1 and 2.6 µm−2 under the low
and high background scenario. For emitter localization in the context of labeling efficiency
measurements two metrics are critical: The recall and the false positive density. The recall
refers to the fraction of simulated emitters correctly identified. It is the primary criterion
since since efficient detection of emitters is crucial for robustly detecting colocalization
events. The recall is mainly driven by the SNR of emitter signals. The false positive density
refers to the number of false-positive localizations per area identified in images. In contrast
to the recall, the false positive density tends to depend more strongly on background signals
since these can be difficult to distinguish from simulated emitters (Fig. 3.5).

Since it is difficult to compare the recall and false-positive density against each other, the
Jaccard Index (JI) can be used as a high-level metric for assessing the detection performance
of localization algorithms[175]. The Jaccard index is defined as:

JaccardIndex(JI) =
T P

T P+FP+FN
(3.4)

where T P is the number of true positive localizations, FP is the number of false positive
localizations and FN is the number of false negative localizations. To determine FP, I
performed a colocalization analysis between the ground truth emitter positions (reference
channel) and recovered emitter positions (target channel) as described in Section 3.2.2.
Localized emitters detected as colocalization events were used as T P, while ground truth
emitters without colocalizing target emitters were considered to be FN. Surplus localized
emitters not colocalizing with ground truth emitters were used as a measure of FP.
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Figure 3.6 Quantitative comparison of emitter detection with utrack and thunderSTORM. Jac-
card indices for emitter localization with u-track or thunderSTORM at variable emitter densities
from simulations with low (a) and high (b) background strength. Shaded regions indicate standard
deviation around means (crosses) at indicated emitter densities. For each algorithm, 20 simulated
images per condition were analyzed.

In general, JI for emitter localization with thunderSTORM were found to be ≥10 % higher
across all simulated emitter densities and in both background scenarios (Fig. 3.6). Both
emitter localization algorithms exhibited a maximum in their emitter detection performance
at intermediate simulated emitter densities (∼0.5-1.0 µm−2). With a peak JI of 0.77±0.03 at
a simulated emitter density of 0.4 µm−2, thunderSTORM tended to perform better at slightly
lower emitter densities, while u-track exhibited its peak performance at simulated emitter
densities of 0.6-1.0 µm−2. At simulated emitter densities ≤0.4 µm−2, u-track showed
a strongly decreased performance (<50 % peak JI), while thunderSTORM showed ∼10 %
lower peak JIs at simulated emitter densities of 0.2 µm−2. At simulated emitter densities
>1 µm−2, both algorithms showed a linear decrease in achieved JI in both background
scenarios. The overall performance of both algorithms was worse at higher background
levels, while the influence of background strength on JI was lower for u-track than for
thunderSTORM.

To assess the causes for the observed emitter density-dependent variations in JI, I addi-
tionally compared the recall and false-positive density across simulated emitter densities and
background scenarios (Fig. A.1). This analysis revealed that the recall for both localization
algorithms exhibited an almost linear dependence on simulated emitter densities for both
background scenarios. In line with the JI, higher recalls were achieved with thunderSTORM

compared to u-track and both algorithms achieved higher recalls in the low background
scenario. As already observed in exemplary data shown above, the false-positive density was
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high for emitter localization with u-track at low emitter densities explaining the pronounced
decrease in JI at low simulated emitter densities. The same tendency to produce false-positive
localizations at low simulated emitter densities was observed for thunderSTORM. Since
the overall false-positive detection rate for thunderSTORM was at least 2-5-fold lower, this
behavior was not noticed during manual inspection of localization performance. Interestingly,
the false-positive density observed for u-track at low simulated emitter densities exhibited a
strong image-to-image variability, suggesting that some background images contained in the
dataset showed fewer features causing false-positive u-track localizations. At increasing
simulated emitter densities, the false-positive density increased steadily for both localization
algorithms and in both simulated background scenarios.

To conclude, replacing the previously used emitter detection framework u-track with
thunderSTORM resulted in an overall improvement in emitter detection and also in an
improvement in density-dependent performance of emitter localization on simulated data.

3.4.3 Localization filtering

Although replacing the emitter detection framework led to improved detection efficiencies,
a population of false-positive localizations was observed when processing simulated data
where emitters had a well-defined size and shape. In experimental data, additional sources
of undesired signals which were not included in our simulations, such as emitters located
outside the focal plane or emitter aggregates are likely to cause additional false-positive
localizations.

Sub-pixel localization of emitters via fitting of 2D-Gaussians gives access to additional
information about each emitter. In SMLM localization properties such as the signal amplitude,
the localization precision or the width of the fitted Gaussian are routinely used to improve
the quality of reconstructed, super-resolved images. In the previous version of the gSEP
data analysis pipeline, an amplitude filter was used to remove false-positive localizations.
However, the intensity under TIRF illumination strongly depends on the distance of an
emitter from the coverslip surface and additional illumination intensity variations due to
a spatially variant illumination profile are frequently observed when performing TIRF
microscopy on cellular samples (see e.g. Fig. 4.12). In addition, I observed that localization
amplitudes varied between experiments and sometimes even within individual datasets (see
e.g. Fig. A.4c).
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A second parameter that is readily obtained from sub-pixel localization is the width
(sigma) of individual signals. In contrast to the amplitude, sigma is mainly governed by the
optical components in a microscope and closely related to the diffraction limit of the optical
system (section 2.1). If the majority of signals in an image is limited by diffraction, values
smaller or larger than the typical sigma value indicate that a signal does not originate from an
individual, diffraction-limited emitter. I therefore tested, if a filter to remove localizations with
deviating sigma could be used to remove false-positive localizations, including localizations
of background noise, out-of-focus emitters and emitter aggregates (Fig. 3.7a).

To investigate how filtering emitter localizations based on their fitted sigma values
impacted downstream colocalization analysis, I first examined the distribution of sigma values
observed in experimental data upon emitter localization with thunderSTORM. Fig. 3.7b,c
show representative sigma distributions for localizations in the reference and target channel
of a dataset recorded in H838 gSEP cells. Sigma values in both channels typically exhibited
unimodal distributions with a skew towards larger sigma values. In line with expectations
based on the used excitation wavelengths of EGFP (488 nm) and BG-SiR (640 nm), the
mode of the sigma distribution for BG-SiR was shifted towards higher sigmas (1.225 pixel,
Fig. 3.7c) compared to the sigma distribution observed for EGFP (mode: 1.025 pixel,
Fig. 3.7b). In both channels, a small fraction of localizations with sigma values ≤0.1
pixel was observed, which presumably represent localizations of background noise. A
second fraction of putative false-positive localizations was characterized by sigma values
substantially larger than the mode of the sigma distribution. These localizations potentially
could have been caused by signals which contained multiple emitters in close proximity as
they were for example observed during analysis of simulated images with high simulated
emitter densities (Fig. 3.5b). Although it was clear that both, localizations with low and
high sigma values could lead to biased labeling efficiency measurements, precise cutoff
values which distinguished between false-positive and true positive localizations could not
be identified based on the sigma distribution alone.

I therefore proceeded by applying filters centered around the mode of the sigma distri-
bution for all emitters in a given detection channel. I further reasoned, that since undesired
localizations should occur equally in both, the reference and target channels, equal relative
filter widths had to be applied to both channels. Upon increasing the width of the applied
sigma filter window as fraction of the mode (mode±X%), the fraction of included emitter
localizations in both channels increased (Fig. 3.7d). In conjunction with increasing fractions
of emitters included after filtering, the computed degree of colocalization between emitters in
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Figure 3.7 Post-detection localization filtering based on emitter signal width. a, Schematic
overview of signal sources and expected sigma values across typical sigma distribution. Crosses:
centroid, dashed circles: sigma. b,c Sigma distribution in reference (b) and target (c) channel obtained
from H838 gSEP cells labeled with BG-SiR (500 nM) for 3 h. Gray line indicates largest bin around
which applied filter is centered. Dashed lines indicate width of filter for window size of ±50 %. d,
Degree of colocalization between reference and target channel localizations upon sigma filtering and
fraction of retained localizations after filtering with varying window size for reference (green) and
target (magenta) channel. The degree of colocalization was computed at a constant distance cutoff T
of 3.0 pixel. e,f Amplitude distributions for localizations in reference (e) and target (f) channel before
(blue) and after (orange) applying sigma filter with ±50 % window width.
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the reference and target channel also increased. As this analysis showed a gradual dependence
of the degree of colocalization on the applied filter width, it was not possible to establish
cutoff value separating false positive from true positive localizations.

Although the typical amplitude of emitters in a dataset varies depending on a number
of variables (see above), the distribution of amplitudes in single-molecule fluorescence
microscopy experiments typically follows a log-normal distribution[106]. When assessing
the amplitude distributions for emitter localization in the reference or target channel of
measurements with gSEP, I observed that amplitude distributions typically contained a large
population following a log-normal distribution, as well as a second smaller distribution with
high amplitudes (Fig. 3.7e,f). Interestingly, this second population was largely removed
by applying a filter in the sigma channel with a filter window width of ≤±50 % around
the mode (orange distributions in Fig. 3.7e,f). As this behavior could be reproduced across
different datasets, I decided to use a sigma filter with a filter width of ±50 % (indicated as
dashed lines in Fig. 3.7b,c) for further evaluations with simulated data.

To evaluate the density-dependent influence of the established sigma filtering approach
on the overall emitter localization performance, I reanalyzed the simulated image sets I
initially used for comparing emitter localization with u-track and thunderSTORM (Sec-
tion 3.4.2). For the reanalysis with thunderSTORM, I applied the mode±50 % sigma filter
described above. For reanalysis with u-track, I combined previously established amplitude
filtering[174] with the sigma filtering approach as was used for filtering of thunderSTORM lo-
calizations. As previously, I then compared the performance of both localization frameworks
after filtering based on their recall, false-positive density and the Jaccard index to study the
impact of filtering.

Applying additional filters post emitter detection substantially changed the performance of
emitter localization with u-track. The achieved Jaccard index for u-track with filtering at
low simulated emitter densities was almost doubled in both, the low and the high background
scenario (Fig. 3.8). This was mainly due to a substantially reduced false-positive detection
density (Fig. A.1c,d). For thunderSTORM applying an additional post localization sigma
filter had a negligible effect in the low background scenario across all simulated emitter
densities (≤4 % difference). Under the high background scenario, applying a post localization
sigma filter improved the Jaccard index by 5-8 % at simulated emitter densities <0.4 µm−2.
Among the tested combinations of emitter localization and filter approaches, thunderSTORM
in combination with the established sigma filtering approach exhibited the best overall
performance with respect to all three evaluated metrices and across the large majority of
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Figure 3.8 Impact of localization filtering on emitter detection. Jaccard indices after localization
filtering at variable emitter densities from simulations with low (a) and high (b) background strength.
Shaded regions indicate standard deviation around means (crosses) at indicated emitter densities. For
each algorithm, 20 simulated images per condition were analyzed.

simulated emitter densities. I therefore decided to use thunderSTORM in combination with
the applied sigma filtering approach (mode±50 %) as emitter localization framework in all
further experiments presented in this study.

3.5 Validation of the optimized DOLanalysis pipeline

After having established that replacing the initial u-track emitter localization approach
with thunderSTORM and applying a localization filtering step improved the emitter detection
efficiency and specificity in simulations, I set out to benchmark the updated DOLanalysis

pipeline with three complementary approaches.

3.5.1 Reference emitter densities in wild-type cells

In the first evaluation experiment, I compared the specificity of emitter localization in the
EGFP reference channel after emitter localization with thunderSTORM and sigma-based
localization filtering. For this, I prepared and imaged Huh7.5 cells expressing gSEP or LynG
with Huh7.5 wt cells where no specific EGFP signal was expected.

The detected emitter density in both, Huh7.5 gSEP and LynG cells varied consider-
ably with localization densities after localization filtering ranging from ∼0.01 to 1.1 µm−2.
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The median detected reference emitter density in Huh7.5 gSEP cells was found to be
0.75±0.33 µm−2, while Huh7.5 LynG exhibited a median emitter density of 0.40±0.30 µm−2.
This means that in a typical Huh7.5 gSEP cell more than 1×103 individual gSEP constructs
were detected, while in a typical Huh7.5 LynG cell, around 6×102 LynG constructs were
detected. In contrast, Huh7.5 wild-type cells exhibited a median detected emitter localiza-
tion density of 0.013±0.008 µm−2 (or ∼20 localized emitters per cell) and showed less
cell-to-cell variation. As the background signal was previously observed to be worse in
target channels with excitation at 640 nm, I additionally assessed the detected emitter density
at 640 nm excitation in wild-type cells. Also here, a very low detected emitter density of
0.008±0.014 µm−2 was observed.

Figure 3.9 Comparison of detected emitter densities in reference channel after localization
filtering. Huh7.5-gSEP, -LynG and wild-type (wt) cells were prepared and imaged with standard
settings (Section 6.2.3) and sigma-based filtering of localizations was performed. a, Representative
images from indicated cell types. All images acquired and displayed with identical settings. Scale bar:
20 µm. b, Detected emitter densities from indicated cell types shown as total number of localization
detected per cells divided by the segmented area of the respective cell. Circles represent individual
cells. Data from 194 (gSEP), 189 (LynG) or 38 (wt) cells from 5,6 or 1 samples.

This analysis first of all shows that emitter localization with thunderSTORM in combi-
nation with localization filtering based on σwas able to achieve very high specificity. On
average, more than 96 % (98 %) of localizations in Huh7.5 gSEP (LynG) cells originating
from expressed gSEP (LynG) constructs. Secondly, this analysis demonstrates that for the
selected imaging and emitter localization conditions, very low false positive detection rates,
caused by autofluorescence or background signal in the reference channel, are to be expected.
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3.5.2 Dynamic range of DOLanalysis

For the second validation step I again used simulated data to assess the dynamic range of
the DOLanalysis pipeline. As before (Section 3.4.2), images of cells containing diffraction-
limited signals were generated to emulate signals from gSEP constructs after protein tag
labeling with fluorescent ligands. In contrast to previous simulations, this time emitters were
selectively removed from images to generate a set of target channel images with variable
emitter numbers. By providing the ground truth locations as reference localizations, image
set of cells exhibiting varying labeling efficiencies ranging from 5-95 % were obtained.
Following my previous observations that different background levels occurred in the target
channels upon excitation at 561 nm and 640 nm (Section 3.4.2), a set of images for the low
and high background scenario was simulated. In addition, the simulations were repeated
at two different ground truth emitter densities of 0.6 and 1.6 µm−2. A reference channel
emitter density of 0.6 µm−2 was typically encountered across the different cell lines used
in this study, while a density of 1.6 µm−2 emulated the situation in cells with strong gSEP
expression.

The generated image sets were then analyzed by performing emitter localization and
filtering with thunderSTORM followed by channel registration, colocalization analysis and
density correction using DOLanalysis as described above. The recovered median labeling
efficiencies for each set of images were then plotted against the simulated labeling efficiency
for each of the four combinations of background scenario and reference emitter density
Fig. 3.10.
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Figure 3.10 Validation of gSEP pipeline with simulations. Images with specific DOL were gener-
ated by randomly selecting localization subsets and generating cell images from these subsets with
low (a) or high background (b) at a ground truth emitter density of 0.6 or 1.6 µm−2 as described in
Section 3.4.2. Generated images were analyzed with the DOLanalysis pipeline as described above
and are shown as median (crosses) ± SD (shaded region) before (raw) and after (corrected) density
correction. Black dashed line: expected slope for error-free recovery of simulated DOL values. 20
images were simulated and analyzed per condition. Data was produced jointly with Felix Braun.

As expected, labeling efficiency estimates prior to density correction systematically
deviated from simulated labeling efficiencies. The degree of mismatch between simulated
and recovered labeling efficiency varied depending on overall emitter density and the chosen
background scenario. As expected, the mismatch between recovered and simulated labeling
efficiencies increased with higher simulated labeling efficiency. This is expected, as both,
the simulated ground truth density as well as the labeling efficiency influence the number
of emitters occurring in the reference channel images. Consequently, increasing emitter
numbers will result in decreased overall emitter localization efficiency. On average, the
recovered labeling efficiencies were on average ∼10 % higher in the low background scenario
compared to the high background scenario, which is in line with my previous observation
that u-track performed better in the low back ground scenario. After density correction, the
recovered labeling efficiencies closely matched the simulated labeling efficiencies for all four
simulated scenarios. A small, yet systematic tendency towards over-correcting recovered
labeling efficiencies was observed. However, the average deviations between simulated and
recovered labeling efficiencies in this case were below 4 % in all four scenarios and across all
simulated labeling efficiencies. Interestingly, the image-to-image variability was higher for
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datasets from the high background scenario, which indicates that the performance of emitter
localization with thunderSTORM and sigma-filtering may also depend on specific features of
individual cells.

Overall, this analysis confirmed that despite the emitter density-dependent performance
of the employed emitter localization algorithms the analysis pipeline works as intended. I
therefore conclude that labeling efficiencies covering at least the range between 5 and 95 %
could be successfully measured using the established data analysis pipeline.

3.5.3 Experimental validation with multispectral beads

Having confirmed that the chosen imaging approach allowed for acquisition of emitter signals
from gSEP constructs with high specificity and that labeling efficiencies covering the range
from 5-95 % could be recovered with DOLanalysis, I sought to show that DOLanalysis
was able to measure high labeling efficiencies approaching 100 % in experimental data.

As samples for this experiment, I chose multispectral fluorescent beads with sub-diffraction
size (100 nm) which contain different fluorophore species that can be excited at 488 nm,
561 nm and 640 nm, i.e. in the reference and both target channels used in this study. They
also contain multiple fluorophore molecules for each fluorophore type, which makes them
suited validation targets as the degree of colocalization in this case is expected to approach 1.
To avoid confounding effects from the applied density correction routine, I performed this
analysis with samples prepared to contain a low density of beads randomly deposited on the
surface of coverslips. Excitation intensities were chosen to result in emitter amplitudes after
localization which were comparable to amplitudes typically observed in cell experiments
with gSEP.

Figure 3.11a shows a representative overlay of reference and emitter channel images.
Typically, a high degree of overlap between both images was observed in the center of images,
while aberrations resulted in less overlay towards the edges of the Field of view (FOV). The
median detected emitter density in the reference channel was 0.26±0.01 µm−2 across all
images contained in the analysis. As expected, the majority of observed signals in both, the
reference and target channel appeared to be symmetric and well-separated (Fig. 3.11b,c).
Consequently, a large fraction of overlap between emitter localizations in both channels was
obtained after channel registration (Fig. 3.11d). This was also reflected by the distribution of
nearest neighbor distances obtained from colocalization analysis, where more than 90 % of
emitter localizations in the reference channel after channel registration exhibited a distance
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Figure 3.11 Validation of gSEP pipeline with multispectral beads. a, Raw images of 0.1 µm
Tetraspeck beads. Pre-aligned images are shown in false colors. Green: reference channel with
excitation at 488 nm, magenta: target channel with excitation at 640 nm. Scale bar: 15 µm. b,c
Single-channel images for reference and target channel of region highlighted in (a) with overlayed
detected emitter positions for respective channel (colored crosses and circles). d, Emitter positions
after channel registration. Arrowheads: Missed emitters in target channel. e, Emitter positions after
reference channel was rotated by 90°. f, Nearest neighbor distance between reference and target
channel emitters before and after reference channel rotation for detected emitters from image shown
in (a). g, Normalized distance-dependent colocalizations before and after reference channel rotation.
Specific colocalization was computed according to Equation 3.2. Cutoff distance T for dataset shown:
1 px. h, Degree of colocalization for colocalization analysis between reference and green or red target
channel before and after reference channel rotation. 32 images with 1.98×104 reference emitters
total. Data was analyzed jointly with Felix Braun, raw data was recorded by me.
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to their nearest neighbor in the target channel of one pixel or less (Fig. 3.11f). However, it
was also observed that a small fraction of signals that could be identified by eye had not been
successfully localized (Fig. 3.11d, orange arrowheads).

To estimate the amount of non-specific colocalization, we compared the target image to
a reference image rotated by 90°, which led to a low degree of overlap between reference
and target emitter positions (Fig. 3.11e). Consequently, colocalization analysis resulted in
larger nearest neighbor distances of ∼10 pixel on average (Fig. 3.11f). Those data were then
used to identify the distance cutoff value T , which was subsequently used for computing
the degree of colocalization (Fig. 3.11g). The final colocalization analysis with a distance
cutoff T of 1.0 pixels between the reference and the 640 nm target channel resulted in a
degree of colocalization of 93±1 % and a non-specific degree of colocalization after rotation
of the target channel of 0.5±0.2 %. Similar degrees of colocalization were obtained after
repeating the same analysis with the 561 nm excitation reference channel (94±1 % specific
vs. 0.4±0.2 % non-specific).

Based on the shown validation experiments, I conclude that the updated version of
DOLanalysis produces reliable labeling efficiency estimates across a range of different
imaging conditions.



3.6 Global performance of SNAPf-tag and HaloTag 57

3.6 Global performance of SNAPf-tag and HaloTag

In the previous chapter, I described how an initial version of a workflow for measuring
labeling efficiencies on the single-molecule level could be improved by optimizing emitter
localization. I then benchmarked the updated workflow with simulations as well as exper-
imental data and validated that the newly established DOLanalysis framework provided
accurate measurements of labeling efficiencies for protein tag-based labeling. In addition,
I established a protocol for semi-automated data acquisition, which is essential to increase
throughput and therefore provides a basis to extend the investigation of labeling efficiencies
toward additional conditions and parameters.

3.6.1 Influence of ligand concentration and incubation time

To study how achieved labeling efficiencies and non-specific ligand binding in samples
depends on ligand concentration and incubation time, I set out to perform a systematic
evaluation of labeling conditions in the epithelial adenocarcinoma cell line H838[180]. H838
cell lines expressing the gSEP and LynG constructs were generated by retroviral transduction
in collaboration with Florian Salopiata (DKFZ Heidelberg). For retroviral transduction, we
used the Phoenix ampho system and the plasmids pBABE-Lyn-HALO-linker-SNAPf (gSEP)
and pBABE-Lyn-GFP (LynG) as described above (Section 3.2.1). This was done to achieve
stable genomic integration of the gSEP and LynG transgenes, which helps to reduce the
variability of expression levels between experiments and to facilitate semi-automated image
acquisition by maximizing the number of transfected cells per sample.

We verified that both cell lines stably expressed either gSEP or LynG after viral transduc-
tion and selection with puromycin by qualitative immunoblotting. The full-length expression
of both constructs was confirmed by protein detection with antibodies binding to EGFP
located at the N-terminus or to His6-tag located at the C-terminus of gSEP and LynG. For
both H838 cell lines, signals corresponding to the expected size of gSEP (∼80 kDa) and
LynG (∼30 kDa) were observed (Fig. A.2). We therefore concluded that both constructs are
fully expressed, which is critical for downstream data analysis since we assume that each
position at which a reference (EGFP) signal is detected represents a potential binding site for
protein tag ligands. To verify that the expression strength of both constructs was suited for
single-molecule detection, I fixed samples from both cell types and assessed their respective
EGFP signal density as proxy for gSEP and LynG expression by TIRF microscopy. As shown



58 CALIBRATED LABELING WITH SELF-LABELING PROTEIN TAGS

in Fig. 3.12a,b individual, diffraction-limited signals could be observed in the majority of
cells for both cell types.

I proceeded by preparing sets of samples, where I incubated living cells from both H838
cell types with ligands for SNAPf-tag and HaloTag at varying concentrations and incubation
times of 15 min, 30, 60 min, 3 or 16 h. After removal of unbound ligands by repeated
washing, samples were fixed with Paraformaldehyde (PFA) (detailed protocols are described
in Section 6.2.3). For SNAPf-tag, the ligand BG-SiR at concentrations from 0.5 nM to
1.25 µM was added, while for HaloTag, the ligand HTL-TMR was added at concentrations
from 0.1 nM to 250 nM. In addition, a control without ligand addition was included for
each incubation time. BG-SiR and HTL-TMR were used to distinguish between ligands
bound to SNAPf-tag or HaloTag based on their respective excitation wavelengths, which are
561 nm for HTL-TMR and 640 nm for BG-SiR. This allowed me to perform simultaneous
measurements of labeling efficiencies for both protein tags within the same sample and in a
single image acquisition session. The described labeling conditions were chosen to match
a previous experiment performed in Huh7.5 cells. A comparison of labeling efficiencies
obtained in different cell lines will be shown in Section 3.6.2.

Samples for 80 different conditions (2 cell types, 5 incubation times, 8 ligand concentra-
tions) were imaged using the semi-automated data acquisition routine described in section 3.4.
This allowed me to image ≥10 cells per condition by single-molecule TIRF microscopy
and with identical settings for all samples. The obtained dataset comprised a total of 1283
cells. Prior to downstream analysis, cells were classified based on defined quality criteria
(section 6.3.2) and 37.1 % of imaged cells were consequently excluded from the dataset. The
remaining 807 image sets each comprised of one reference channel image containing EGFP
signals, one target channel image containing HTL-TMR signals and one target channel image
containing BG-SiR images were then processed by emitter localization with thunderSTORM

and localization filtering with DOLanalysis as described above.

As this was the first dataset recorded with the new semi-automated data acquisition
pipeline, I assessed the detected emitter densities in the reference (EGFP) channel to evaluate
the reproducibility of generated data. Across the entire dataset, the detected EGFP emitter
density varied considerably between individual cells ranging from 0.05 to 1.65 µm−2 for
H838 gSEP samples and from 0.23 to 1.88 µm−2 for H838 LynG samples (Fig. 3.12c). The
median detected emitter density of 0.60±0.29 µm−2 (median±SD) for H838 gSEP cells was
comparable to Huh7.5 gSEP cells used for previous experiments, while the expression level
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Figure 3.12 Detected emitter density in H838 cell lines in reference (EGFP) channel. a,b Rep-
resentative images of H838-gSEP (a) and H838-LynG (b) cells in the reference (EGFP) channel.
Detected EGFP emitter density for individual images are indicated in the top right corner of each
image. Scale bar: 20 µm. c, Cell-wise detected emitter density across all 40 conditions for H838
gSEP and LynG cell line. d,e, Median emitter density for each experimental condition in gSEP (d)
and LynG (e) cells. Data from 4-15 (gSEP) and 3-15 (LynG) per condition. 427 (gSEP) and 380
(LynG) cells overall.

for H838 LynG cells (0.99±0.29 µm−2) was ∼60 % higher as in the corresponding Huh7.5
LynG cell line (Fig. 3.2c,d).

For both cell types, I also observed variability in detected reference emitter densities
across different samples. In H838 LynG, sample-wise detected reference emitter densities
varied between 0.30±0.11 µm−2 and 1.34±0.28 µm−2 as shown in Fig. 3.12d. In H838
gSEP, sample-wise detected reference emitter densities varied between 0.07±0.04 µm−2

and 0.91±0.22 µm−2 as shown in Fig. 3.12e. In general, samples with identical ligand
incubation times tended to exhibit similar detected EGFP emitter densities, but samples with
different ligand incubation times varied in their detected emitter densities. For example,
systematic deviations towards lower detected emitter densities were observed for samples
with H838 gSEP cells at incubation time #1 and #3 (Fig. 3.12d). This observation was
unexpected as typical reference emitter numbers should be approximately constant across
across different labeling conditions because expression of gSEP and LynG is independent of
labeling and only depends on the used cell line.
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It is important to note that no systematic dependence of detected reference emitter
densities with incubation time or ligand concentrations was observed. Also, even in the
samples with the lowest detected emitter density (H838 gSEP, incubation time #1), at least
240±113 reference channel emitters per were still detected per cell (median±SD), which
is sufficient for evaluating labeling efficiencies based on single-molecule colocalization
analysis. I therefore proceeded by performing the colocalization analysis with DOLanalysis

as described in Section 3.2.2 to determine the labeling efficiencies for SNAPf-tag and HaloTag
across the full set of ligand concentrations and incubation times.

In the target channels, which contained signals from the protein tag ligands BG-SiR
and HTL-TMR, I expected to observe a systematic dependence of emitter numbers on the
applied labeling conditions. In the case of H838 gSEP cells, increased binding of ligands
gSEP upon increasing incubation times or ligands concentrations should lead to an increased
colocalization between emitters detected in the reference and target channels. Consequently,
colocalization analysis between the reference channel and the target channels should reveal a
dependence of measured labeling efficiencies on ligand concentration, as well as incubation
time.

Indeed, I observed a rapid increase in the measured labeling efficiency in H838 gSEP
for labeling of HaloTag with HTL-TMR at ligand concentrations as low as 0.1 nM and
incubation times as short as 15 min (Fig. 3.13a). For an incubation time of 15 min an average
increase in labeling efficiency from 16±6 % to 38±7 % was observed upon increasing
HTL-TMR concentrations from 0.1 to 1 nM, but further increasing ligand concentration did
not lead to increased labeling efficiencies (Fig. 3.13b). At a ligand concentration of 0.1 nM,
a continuous increase of measured labeling efficiencies was observed for incubation times of
up to 1 h.

After 1 h incubation at a concentration of 1 nM the achieved labeling efficiency was
30±7 %. Further increasing the incubation time to 16 h of labeling, resulted in further
moderate increase in labeling efficiency to 42±10 % (Fig. 3.13c). As expected, no specific
labeling was detected if no HTL-TMR had been added to samples (Fig. 3.13b, dashed line), or
in cells expressing LynG instead of gSEP (Fig. A.6a). Incubation times, where below-average
reference emitter densities were observed previously (15 min and 1 h), also tended to show
systematic trends towards lower labeling efficiencies.

Importantly, and in contrast to the general assumption no labeling efficiency beyond
50±12 % was observed across any of the tested conditions. In addition, the observed
saturation behavior of the labeling efficiency, suggested the maximally possible labeling
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Figure 3.13 Labeling efficiency of HaloTag with HTL-TMR in H838 cells under varying label-
ing conditions. a, Median DOL for indicated conditions. Colored lines indicate conditions for data
shown in b,c. b, Median±SD DOL at different ligand concentrations and 15 min incubation time.
c Median±SD DOL at 0.1 nM ligand concentration and different ligand incubation times. Dashed
magenta line: Median±SD DOL without ligand addition. 4-15 cells per condition.

efficiency for labeling of HaloTag with HTL-TMR in living cells had been reached as early
as 15 min at a ligand concentration of 1 nM.

For labeling with BG-SiR, a more gradual increase of the measured labeling efficiency
along both labeling parameters was observed. While for combinations of ligand concentra-
tions ≤1 nM and incubation times ≤1 h no specific labeling was observed, combinations of
ligand concentrations ≥25 nM and incubation times ≥3 h led to high labeling efficiencies
>50 % (Fig. 3.14a), which was consistently higher than the maximum labeling efficiencies
achieved for HaloTag labeling with HTL-TMR. At the same time, the total number of labeling
conditions under which labeling efficiencies seemed to have been saturated were lower for
SNAPf-tag labeling with BG-SiR compared to HaloTag labeling with HTL-TMR. This is
in line with the reported reactivity of SNAPf-tag and HaloTag, where for HaloTag efficient
labeling at shorter incubation times and lower ligand concentrations was observed[70].

At a constant incubation time of 30 min, observed labeling efficiencies continuously
increased up to a ligand concentration of 250 nM, where a labeling efficiency of around
49±14 % was reached. At concentrations beyond that, the labeling efficiency did not seem
to increase further, i.e., saturated labeling had been reached (Fig. 3.14b). At a constant BG-
SiR concentration of 5 nM, increasing labeling efficiencies were observed with increasing
incubation time (Fig. 3.14c). As already observed for HaloTag labeling with HTL-TMR, the
cell-to-cell variability observed for labeling of SNAPf-tag with BG-SiR tended to be higher
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at incubation times ≥3 h. Again, no systematic dependence of labeling efficiencies measured
without ligand addition was observed (Fig. 3.14c, dashed line). Finally, labeling efficiencies
measured in samples with incubation times of 15 min and 1 min again systematically deviated
from measurements at adjacent conditions.

Figure 3.14 Labeling efficiency of SNAPf-tag with BG-SiR in H838 cells under varying labeling
conditions. a, Median DOL for indicated conditions. Colored lines indicate conditions for data
shown in (b,c). b Median±SD DOL at different ligand concentrations and 15 min incubation time. c,
Median±Standard deviation (SD) DOL at 5 nM ligand concentration and different ligand incubation
time. Dashed magenta line: Median±SD DOL without ligand addition. 4-15 cells per condition

After having determined the specific labeling efficiency for SNAPf-tag and HaloTag in
live H838 cells using the gSEP construct, I assessed the tendency for non-specific binding
for the two ligands HTL-TMR and BG-SiR in H838 LynG cells. In these cells, which lack
specific binding sites for HTL-TMR and BG-SiR, substantially lower emitter densities as
compared to H838 gSEP were detected in both target channels (Fig. 3.15). However, a weak
dependence of emitter densities on incubation time and ligand concentration was observed.
For example, at a concentration of 1.25 µM, the non-specific attachment of BG-SiR resulted
in detected emitter densities increasing from ∼0.22 to ∼0.74 µm−2 at incubation times
of 15 min and 16 h, respectively. For HTL-TMR, non-specific attachment in H838 cells
was only observed at concentrations >50 nM and at an incubation time of 16 h. At ligand
concentrations below 50 nM, no significant dependence of non-specific ligand deposition on
incubation time was observed for either ligand.

In principle, colocalization analysis in LynG cells allows to determine an apparent
labeling efficiency caused by random colocalization of non-specific binding of ligands to
cells. However, to be able to compare the apparent labeling efficiency in LynG cells to the
labeling efficiency measured in gSEP cells, both cell types should exhibit approximately
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Figure 3.15 Influence of labeling conditions on non-specific ligand deposition in H838 LynG
cells. Median detected target channel emitter densities after localization filtering in H838 or LynG
cells under variable labeling conditions with HTL-TMR (a) or BG-SiR (b). Data from 3-15 cells per
condition.

equal expression levels. Since H838 LynG cells exhibited, ∼60 % stronger expression,
the obtained labeling efficiencies should not be directly compared. Fig. A.6a,b shows the
obtained labeling efficiencies across all tested combinations of ligand concentration and
incubation time to provide to an upper estimate of the fraction of the labeling efficiencies
measured in H838 gSEP cells due to non-specific deposition of tag ligands. For HTL-TMR a
maximum apparent labeling efficiency of 8±1 % was measured at the highest tested ligand
concentration of 250 nM and an incubation time of 16 h. In the case of labeling with BG-
SiR, the highest apparent labeling efficiency (27±3 %) was also observed at the maximum
incubation time of 16 h and at the maximum tested ligand concentration of 1.25 µM.
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3.6.2 Labeling efficiency across different cell lines

In the previous section, I showed that the labeling efficiency for SNAPf-tag and HaloTag in
living H838 cells depends on the specific labeling conditions. I also showed that HaloTag
exhibited saturated labeling at lower ligand concentrations and incubation times than SNAPf-
tag. Finally, I showed that in H838 cells, the saturation labeling efficiency for SNAPf-tag
with BG-SiR was higher than the saturation labeling efficiency for HaloTag with HTL-TMR.

At this point it was unclear whether the observed performance for both tags was due to
specific properties of the tags, the ligands used or the cell line in which measurements were
performed. For this reason, I decided to address these questions by comparing the results
obtained in H838 cells described above with measurements in Huh7.5 and HeLa cell lines.
For establishing HeLa gSEP and HeLa LynG, I again collaborated with Florian Salopiata,
who performed stable transductions of wild-type HeLa cells as described above for H838 cells
(Section 3.6.1). In contrast to H838 cells, HeLa cells required selection of a sub-population
of gSEP and LynG cell clones with suited expression levels. I consequently performed
Fluorescence-activated cell sorting (FACS) on both cell lines after stable transduction (see
Section 6.1.3). After sorting, HeLa gSEP exhibited a median detected emitter density
in the reference (EGFP) channel of 0.40±0.11 µm−2 (median±SD), while HeLa LynG
cells exhibited a median detected reference emitter density of 0.21±0.19 µm−2. Full-
length expression of gSEP and LynG in HeLa cells after FACS was again confirmed by
immunoblotting (Fig. A.2). Labeling efficiency measurements under identical conditions as
described in Section 3.6.1 were then performed by Wioleta Chmielewicz. A third dataset
recorded in Huh7.5 cells[181] under identical labeling conditions was obtained from previous
work by Siegfried Haenselmann[174].

To ensure that labeling efficiencies could be compared across data obtained in different
cell lines, I first manually curated both datasets from HeLa and Huh7.5 cell lines comprised
of 1605 (HeLa) and 876 (Huh7.5) individual image sets according to the same principles used
for curation of datasets recorded in H838 and described in section 6.3.2. In the HeLa cell
dataset, 54.6 % of image sets passed quality control, while in the Huh7.5 dataset, which was
acquired manually and not with the semi-automated acquisition pipeline, 74.8 % of image
sets passed quality control. I proceeded by processing all three datasets by first performing
emitter localization with thunderSTORM and all further analysis steps with DOLanalysis

using identical settings as in the H838 dataset describe above.
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The additional datasets for SNAPf-tag labeling with BG-SiR and HaloTag labeling with
HTL-TMR in Huh7.5 and HeLa cells exhibited qualitatively similar features as the dataset
acquired in H838 and described in detail in the previous section. To compare datasets
recorded in different cell lines on a global scale, I fitted the observed experimental data with
a model describing the underlying labeling reaction. For this, I assumed a simplified labeling
reaction where unbound ligand (L) reacts with protein tags (P) to form a stable complex (PL)
in an irreversible reaction:

P + L PL

In addition, I assumed that the concentration of ligand over time can be considered to
be constant during the labeling reaction. This assumption is in line with properties of the
experimental system which has been characterized by comparing molecule numbers for free
ligand and gSEP based on both, the reported volume of a HeLa cells[182] and the segmented
area of cells (this work) assuming a density of gSEP molecules of 1 µm−2 (see Fig. 3.12c
and Fig. A.4b). In both cases, even at the lowest ligand concentration (0.1 nM) used in this
study, the total amount of ligand molecules in a sample is 1×103-1×105-fold higher than
the overall number of gSEP molecules on the surface of cells across all cell in a sample.
These two assumptions allowed me to consider the reaction to be of pseudo first-order:

LE(t) = α(1− e−[L]kappt) (3.5)

Here, α is a scaling factor to account for saturated labeling at ≤100 % labeling efficiency,
kapp is the apparent rate constant, [L] is the ligand concentration and t is the incubation time.
Fitting this model to labeling efficiencies obtained at different [L] and t in different cell lines
enabled me to compare labeling of SNAPf-tag or HaloTag with respect to their estimated
saturation labeling efficiency (α) and labeling kinetics (kapp). As shown in Fig. 3.16, the
model was able to describe experimental data recorded in H838 cells for labeling of SNAPf-
tag with BG-SiR (Fig. 3.16a,c) and HaloTag with HTL-TMR (Fig. 3.16b,d) with respect to
both, the kinetics of the labeling reaction, as well as the labeling efficiency at which saturated
labeling occurred.

The general trends for labeling efficiencies with SNAPf-tag and HaloTag in HeLa and
Huh7.5 cells mirrored the features described above for H838 cells (Fig. A.5). Labeling of
HaloTag with HTL-TMR was more efficient as saturated labeling was achieved at lower
ligand concentrations and incubation times. At the same time, the saturation labeling
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Figure 3.16 Comparison of measured DOLs and predicted DOLs from fit with pseudo-first
order model (Equation 3.5). a,b Median measured DOLs in H838 gSEP cells (mesh, same data as in
Fig. 3.14a and Fig. 3.13a) and predicted DOL (colored surface) obtained from fit for HaloTag labeling
with HTL-TMR (a) and SNAPf-tag labeling with BG-SiR (b). c,d Comparison of median±SD
measured DOLs (lines) and modeled DOLs (dashed lines) for HaloTag (c) and SNAPf-tag (d) for
conditions indicated as colored lines in a,b.

efficiency achieved with SNAPf-tag labeling with BG-SiR appeared to be slightly higher.
Incubation times at which measured labeling efficiencies seemed to systematically deviate
towards lower values were also observed in Huh7.5 datasets which were acquired without
using the newly established semi-automated acquisition pipeline. In contrast to samples in
H838 and Huh7.5 cells, labeling efficiencies measured in HeLa cells for both tags tended
to exhibit higher variation between cells for an individual condition and between median
labeling efficiencies achieved for adjacent conditions (Fig. A.5a,b).

While qualitatively, the performance of SNAPf-tag and HaloTag appeared similar across
cell lines, the reaction model fits revealed quantitative differences between cell lines. Overall,
for SNAPf-tag labeling with BG-SiR, apparent rate constants between 1.5-8.1×104 M−1 s−1

were observed (Table 3.1). Here, kapp was similar for labeling in H838 and HeLa cells, while
kapp in Huh7.5 was 4 times higher. In agreement with the maximum labeling efficiencies
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observed in experiments for the three cell lines, model fits resulted in the highest saturation
labeling efficiency, α of 0.45±0.06 for labeling in H838 cells, while in HeLa and Huh7.5
lower α of 0.36±0.04 and 0.36±0.03 were observed

For HaloTag labeling with HTL-TMR, ∼40-70x higher rate constants between 6.3×105-
3.7×106 M−1 s−1 were obtained from fitting (Table 3.1). Here, labeling in H838 and Huh7.5
cells led to similar kapp, while labeling in HeLa cells led to ∼2-4-fold lower kapp. Across all
three cell lines, α values for HaloTag labeling with HTL-TMR were 2-9 % lower compared
to labeling of SNAPf-tag with BG-SiR. Again, the highest α of 0.36±0.04 was observed
for labeling in H838, while the lowest α (0.24±0.02) was observed in HeLa cells.

Table 3.1 Labeling efficiencies for HaloTag and SNAPf-tag across cell lines. HaloTag was labeled
with HTL-TMR, SNAPf-tag was labeled with BG-SiR. kapp and α: Apparent rate constant and scaling
factor obtained from fitting experimental DOL values at varying labeling conditions with Equation 3.5.
Max. DOLexp: Maximum DOL observed in experiments under maximum DOL condition. Raw data
in Huh7.5 cells recorded by Siegfried Haenselmann, raw data recorded in HeLa cells recorded by
Wioleta Chmielewicz. All data was processed and analyzed by me.

Cell type kapp [M−1 s−1] α ∗100 DOLmax,exp [%] max. DOL cond.

SNAPf-tag
H838 (2.0±1.3)×104 45±6 67±14 50 nM,16 h
HeLa (1.5±1.2)×104 26±4 41±5 250 nM, 0.5 h
Huh7.5 (8.1±4.5)×104 36±3 57±14 250 nM, 3 h

HaloTag
H838 (1.5±1.2)×106 36±4 50±12 10 nM,3 h
HeLa (6.3±8.5)×105 24±4 42±10 5 nM, 3 h
Huh7.5 (3.7±2.3)×106 29±2 42±6 0.1 nM, 16 h

3.6.3 Alternative fluorescent ligands for labeling in living cells

So far, labeling of SNAPf-tag and HaloTag was done with the same ligands, BG-SiR and
HTL-TMR. By comparing labeling efficiencies across different incubation times and ligand
concentrations in three different cell lines, I observed that the cell line in which both tags
were expressed influenced labeling kinetics as well as the reachable saturation labeling
efficiency. Across all tested cell lines, I observed saturation of ligand binding to both tags at
labeling efficiencies ≪100 %, which showed that this behavior was well reproducible across
different experiments and influenced only to a small degree by the intracellular environment
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in H838 cells. At this point, limited reactivity of SNAPf-tag and HaloTag towards BG-SiR
and HTL-TMR represented a possible explanation for limited labeling efficiencies.

To determine if improved labeling could be obtained with alternative ligands, I tested
if exchanging the fluorophores conjugated to BG or HTL led to differences in labeling
efficiency. This was done by first swapping TMR and SiR as fluorophores conjugated to
BG and HTL to produce BG-TMR and HTL-SiR and second by extending the set of tested
fluorophores with the TMR and SiR derivatives, Janelia Fluor (JF)549 and JF646. These
fluorophores were recently developed by Grimm et al. and were reported to exhibit improved
photophysical properties while maintaining cell permeability[183].

For all three additional ligands, the labeling efficiencies at two different concentrations
were measured for SNAPf-tag and HaloTag. The tested concentrations varied between tags
to reflect the difference in reactivity previously observed for SNAPf-tag and HaloTag. The
first concentration was chosen such that it was around the minimum saturation concentration
for SNAPf-tag with BG-SiR or for HaloTag with HTL-TMR. The second concentration
was chosen to in a way that saturated labeling with BG-SiR and HTL-TMR was achieved.
As Huh7.5 cells exhibited a lower expression strength for gSEP compared to H838 cells,
the experiments were performed in Huh7.5 gSEP and Huh7.5 LynG cells to minimize the
influence of emitter detection and subsequent density correction.

For HaloTag, all three additional ligands exhibited a dependence of the achieved labeling
efficiency on ligand concentration (Fig. 3.17a). The smallest difference in achieved labeling
efficiency between labeling at 1 nM and 10 nM ligand concentration was observed for HTL-
SiR, indicating that the affinity of HTL-SiR for HaloTag was highest among the tested ligands.
The labeling efficiency achieved at labeling with HTL-SiR at 100 nM ligand concentration
was comparable to the saturation labeling efficiency previously observed for HTL-TMR in
Huh7.5 cells (Fig. A.5).

For the two JF-ligands, larger differences in labeling efficiency between labeling at 1 and
10 nM ligand concentration were observed. Here, labeling with 1 nM ligand resulted in very
low labeling efficiencies of 2±1 and 5±3 % for HTLJF549 and HTL-JF646, respectively.
This indicates that the affinity of HTL-JF ligands for binding to HaloTag was reduced
compared to HTL-TMR and -SiR. The labeling efficiencies achieved at 100 nM ligand
concentration for HTLJF549 and HTL-JF646 of 26±10 % and 39±16 % were again similar
to the saturation labeling efficiency achieved with HTL-TMR. The non-specific emitter
densities detected after labeling with HTL-SiR and HTL-JF646 did not exceed background
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Figure 3.17 Labeling efficiency and non-specific background for SNAPf-tag and HaloTag with
cell permeable ligands. Live Huh7.5 gSEP or LynG cells were labeled for 30 min with indicated
ligands at indicated concentrations to determine labeling efficiencies (a,b) and non-specific labeling
density (c,d). Circles represent individual cells, 15-20 cells per condition. Individual plots are color-
coded according to excitation wavelength. Cyan: 561 nm, magenta: 640 nm. Measurements were
performed by Felix Braun. All data was processed and analyzed by me.
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levels indicating highly specific labeling for these two ligands (Fig. 3.17b). For HTL-JF549,
an increased background emitter density of 0.24±0.06 µm−2 was observed.

For SNAPf-tag, all three additional ligands showed reduced labeling efficiencies com-
pared to BG-SiR at both tested concentrations (Fig. 3.17c). While for BG-TMR, differences
of ∼7 % were observed, differences of >10 % at both tested ligand concentrations were
observed for BGJF549. For BGJF646, almost no difference in measured labeling efficiency
between both tested ligand concentrations was observed and the labeling efficiency at 100 nM
ligand concentration was ∼50 % of the labeling efficiency achieved with BG-SiR at the same
ligand concentration and incubation time. The non-specific detected emitter density in
Huh7.5 LynG cells for BG-TMR was comparable to background levels. At the same time,
the detected non-specific emitter density was strongly increased for both BG-JF ligands
(Fig. 3.17d). For BG-JF549, the background emitter density in Huh7.5 LynG cells was
increased >6-fold over the background emitter density in control cells. For BG-JF646,
a slightly lower non-specific emitter density in LynG cells, ∼3-fold over the background
density in corresponding control cells was observed. This indicated that both, BG-JF549 and
BG-JF646 at 100 nM ligand concentration a strong non-specific labeling under the tested
conditions

To summarize, I observed that different ligands for SNAPf-tag and HaloTag exhibited
different labeling behavior. HTL-JF549 and HTL-JF646 were identified as promising alterna-
tive ligands for HaloTag, while BG-TMR was shown to perform slightly worse than BG-SiR
in earlier experiments. Overall, the comparison of labeling efficiencies achieved with three
alternative fluorescent ligands for each tag suggests that while labeling efficiencies seem to
depend on the applied ligand to some degree, none of the ligands achieved stoichiometric
labeling of either tag.

3.6.4 SNAPf-tag and HaloTag activity after chemical fixation

In the previous sections, I examined how the cell line in which SNAPf-tag and HaloTag
reacted with their respective ligands influenced the achieved labeling efficiencies and which
influence different ligands had on measured labeling efficiencies. Both of these comparisons
were performed with labeling in living cells, i.e. were limited to cell permeable ligands and
live-cell compatible labeling conditions. However, several advanced imaging techniques, such
as correlative light and electron microscopy or super resolutions fluorescence microscopy
approaches such as direct optical reconstruction microscopy (dSTORM) or DNA-PAINT are
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incompatible with living cells or require special, cell impermeable labels. In addition, fixation
prior to labeling of protein tags could potentially be beneficial for structural preservation of
samples since the amount of buffer exchanges on living cells is minimized. Another possible
advantage of labeling post fixation is that non-specific deposition of protein tag ligands could
be reduced in the changed chemical environment of fixed cells. For this reason, I addressed
the question whether SNAPf-tag and HaloTag retain their ability to bind their respective
ligands after chemical fixation and whether labeling post-fixation led to changes in observed
non-specific labeling.

Initial experiments with Glutaraldehyde (GA) as primary fixative showed that the amount
of autofluorescence generated during fixation was prohibitive to single-molecule imaging
with the required SNR. For this reason, no further attempts to implement a sample preparation
protocol with GA as fixative were undertaken. In contrast to fixation with GA, fixation with
PFA resulted in no noticeable increase in autofluorescence and the previously applied data
analysis approach with thunderSTORM and DOLanalysis could be applied without the need
to adjust processing parameters. To determine whether chemical fixation with PFA impacted
the functionality of SNAPf-tag or HaloTag, I performed a direct comparison of labeling
efficiencies achieved across different ligand concentrations for labeling with BG-SiR and
HTL-TMR pre and post fixation. Possible differences in non-specific ligand deposition pre
or post fixation were addressed in a second set of measurements in HeLa LynG cells.

Before assessing labeling efficiencies pre- and post-fixation, I briefly validated that
detected EGFP reference emitter were comparable for samples labeled before and after
fixation. For HeLa gSEP, reference emitter densities of 0.30±0.08 µm−2 for the pre-fixation
labeling and 0.31±0.08 µm−2 for the post-fixation labeling dataset were observed. For HeLa
LynG cells, a reference emitter density of 0.40±0.10 µm−2 was detected for the pre- and a
density of 0.28±0.08 µm−2 was detected for the post-fixation labeling dataset.

In line with previous experiments in HeLa cells (Section 3.6.2), specific labeling after
30 min labeling in living cells was observed for SNAPf-tag with BG-SiR at ligand con-
centrations ≥5 nM. Labeling efficiencies with increasing ligand concentrations up to a
concentration of 250 nM where a saturation labeling efficiency of ∼29 % had been reached
(Fig. 3.18a). For labeling of SNAPf-tag post-fixation, a comparable concentration-dependent
behavior was observed. However, the saturation labeling efficiency for post-fixation labeling
with BG-SiR was 2.3-fold higher as for pre-fixation labeling (∼69 %).

For HaloTag labeling with HTL-TMR, labeling prior to fixation resulted in saturated
labeling after 30 min for a ligand concentration of at least 1 nM (Fig. 3.18b). At concen-
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Figure 3.18 Labeling efficiency for labeling post fixation. HeLa gSEP and LynG cells were
labeled with varying concentrations of BG-SiR (a,c) and HTL-TMR (b,d) for 30 min pre- (magenta)
or post-fixation (green) with 3.7 % PFA. a,b DOL measured in gSEP cells at indicated ligand
concentrations. c,d Unspecific labeling measured as detected point density in LynG cells at indicated
ligand concentrations. median±SD (crosses, shaded bands) from 6-20 cells per condition.

trations ≥10 nM, labeling efficiencies of 31-35 % were observed. This behavior was again
highly comparable to previous experiments in HeLa cells. In contrast to the observations
made for SNAPf-tag, labeling of HaloTag with HTL-TMR post-fixation resulted in smaller
differences to pre-fixation labeling. At a ligand concentration of 0.1 nM, a labeling efficiency
of 11±3 % for labeling pre-fixation and 24±6 % for labeling post-fixation was observed.
The achieved saturation labeling efficiency at ligand concentrations ≥10 nM was increased
∼1.3-fold (40-46 %).

The non-specific ligand deposition for both, BG-SiR and HTL-TMR remained virtually
unchanged when switching from pre- to post-fixation labeling. As observed before, BG-SiR
exhibited a tendency for non-specific binding in HeLa cells at concentrations ≥100 nM.
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3.6.5 AF647 ligands for labeling in fixed cells

As described in section 2.3, quantitative SMLM is a popular approach for emitter counting
microscopy and SMLM in fixed samples has been realized with a large variety of different
organic fluorophores[184]. However, Alexa Fluor (AF)647 is arguably the most widely used
fluorophores in SMLM due to its high brightness and propensity to reside in a metastable
dark state[185]. A recent study determined the effective labeling efficiency for labeling of
SNAPf-tag and HaloTag with AF 647-conjugated ligands using the nuclear pore complex as
calibration target[92].

In order to compare labeling efficiencies obtained by this SMLM-based approach with
the gSEP approach established here, I performed labeling efficiency measurements with
BG-AF647 and HTL-AF647 under conditions identical to those used by Thevathasan et
al.. In contrast to fluorophores used for all experiments described so far, AF647 is not cell
permeable, i.e. it can not pass the plasma membrane of living eukaryotic cells. AF647
conjugates therefore require chemical fixation and permeabilization of the plasma membrane
prior to labeling. For this reason, I used a sample preparation protocol, which included
pre-fixation and permeabilization with Triton X-100 (TX-100) prior to PFA fixation and
labeling. To maintain comparability with measurements by Thevathasan et al., I also included
a quenching step with NH4Cl, a blocking step after fixation and added Dithiothreitol (DTT)
as well as Bovine serum albumin (BSA) to the labeling buffer (see section 6.2.3). Labeling
with ligands was performed for 2 h at room temperature.

Samples prepared according to this protocol were then imaged by TIRF microscopy
and data was processed with thunderSTORM and DOLanalysis as described for previous
experiments. Both, BG-AF647 and HTL-AF647 were able to bind their respective tags
and achieved labeling efficiencies between 22 and 69 % depending on protein tag and
ligand concentration (Fig. 3.19a). For a control measurement in unlabeled wt cells, I
observed a median labeling efficiency of 0 %, i.e. no labeling, showing that the altered
sample preparation protocol did not lead to increased autofluorescent background levels
which interfered with the gSEP measurements. For BG-AF647, a labeling efficiency of
69±18 % (median±SD) was achieved after labeling at 1 µM ligand concentration. At
10-fold lower ligand concentration (100 nM), the labeling efficiency remained unaltered
(69±11 % indicating the saturation of active SNAPf-tag had occurred already at this lower
concentration. This is in line with my previous observations for SNAPf-tag labeling with
BG-SiR (Fig. 3.16 and Fig. A.5), where saturation was estimated to have occurred under the
same labeling conditions. Interestingly, the labeling efficiency achieved with BG-AF647 here
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was identical to the labeling efficiency achieved with BG-SiR when labeling was performed
after fixation with PFA (Fig. 3.18).

Figure 3.19 Labeling efficiency with AF647 ligands. Huh7.5 gSEP and LynG cells were fixed as
described in section 6.2.3 and labeled with AF647 conjugates at indicated concentrations for 120 min.
Labeling efficiency (a) and unspecific background (b) for SNAPf-tag and HaloTag AF647 ligands
were determined using gSEP (a,b) or LynG cell (c,d). Control: unlabeled Huh7.5 wt cells. Circles
represent individual cells, 29-42 cells per condition.

For HTL-AF647, labeling efficiencies of 22±7 % at 100 nM and 45±11 % at 1 µM
were observed, indicating that saturation of binding had not been reached after labeling for
2 h at 100 nM HTL-AF647. This is in contrast to labeling with other HaloTag-ligands in
fixed and living cells, where saturated labeling was observed at ligand concentrations as
low as ≤1 nM if labeling was performed for ≥1 h (Fig. 3.16 and Table 3.1). In contrast to
SNAPf-tag labeling with BG-AF647, the labeling efficiency at 1 µM HTL-AF647 observed
for HaloTag was higher than the saturation level observed in fixed cells labeled with HTL-
TMR (Fig. 3.18a). As a dependence of achieved labeling efficiencies on the specific ligand
used for labeling was previously also observed for live-cell compatible HaloTag ligands
(Section 3.6.3), the diverging behaviors for HTL-TMR and HTL-AF647 in fixed cells support
the hypothesis that for HaloTag, the achievable labeling dependency depends on the molecular
structure of the ligand.

Despite the altered labeling protocol, which included a blocking step and addition of BSA
to the labeling buffer, it could not be excluded that non-specific deposition of ligands con-
tributed to the measured labeling efficiencies. I therefore evaluated the tendency of BG-AF647
and HTL-AF647 for non-specific label deposition in LynG cells not expressing SNAPf-tag
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or HaloTag. As for the labeling efficiency, differences between both AF647 ligands were
observed with respect to their tendency for non-specific label deposition (Fig. 3.19b). Both
ligands showed non-specific emitter densities above a corresponding negative control without
added ligand. A concentration-dependent (sublinear) increase in non-specific emitter density
was also observed for both types of ligand. Labeling with 1 µM BG-AF647 resulted in non-
specific emitter densities of 0.6±0.1 µm−2 (median±SD), while labeling with HTL-AF647
at 1 µM, resulted in a non-specific emitter density of 0.10±0.03 µm−2. This translated
to apparent labeling efficiencies of 9 % for BG-AF647 and 1 % for HTL-AF647 at 1 µM
concentration. At 100 nM ligand concentration, non-specific detected emitter densities of
0.11±0.02 and 0.03±0.01 µm−2 were observed for BG-AF647 and HTL-AF647 respec-
tively. This observation once again supported the hypothesis that BG ligands for SNAPf-tag
exhibit a stronger tendency for non-specific binding in cells. In contrast to previous obser-
vations with different live-cell compatible HaloTag ligands, labeling with HTL-SiR under
conditions optimized for labeling with AF647 ligands resulted in a slightly elevated non-
specific emitter density of 0.22±0.06 µm−2 leading to an apparent labeling efficiency of
∼3 % in LynG cells.

To summarize, I observed that for HTL-AF647, a higher ligand concentration led to
improved labeling efficiency while still showing low non-specific labeling meaning that
labeling at 1 µM would be the preferred approach. For BG-AF647, a ligand concentration
of 1 µM resulted in elevated non-specific label deposition while no benefit for the achieved
labeling efficiency could be observed. If labeling is to be performed with BG-AF647, an
intermediate ligand concentration would be the preferred approach. Overall, both ligands
show good (BG-AF647) or excellent (T̋LAF) specificity and labeling efficiencies en-par or
higher than the previously tested live-cell compatible ligands which mean that both are well
suited for emitter counting microscopy experiments if labeling is performed post fixation.
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3.7 Discussion

The work presented in the course of this chapter established the staining efficiency probe
gSEP and the data analysis framework DOLanalysis as a tool to measure the labeling
efficiency for self-labeling protein tags based on single-molecule colocalization analysis.
The gSEP approach was then used to for an in-depth analysis of the labeling behavior of
SNAPf-tag and HaloTag. In the following, I will provide a technical discussion of the results
described above. General implications of the observations made in this chapter in the context
of protein counting by fluorescence microscopy will be discussed in Part III.

In section 3.4, I used simulations to show that emitter localization with thunderSTORM,
a software package typically used for SMLM, improved the emitter localization efficiency
across all tested conditions. I subsequently showed that post detection filtering of detected
emitters based on the sub-pixel localization parameter sigma led to marked reductions
in the false-positive detection rate and an concomitant increase in the overall detection
performance. Filtering of localizations further showed that prior to filtering, localizations
with high amplitude occurred in the raw data. As these localizations originate from emitter
aggregates, it was crucial to remove these localizations prior to downstream analysis to avoid
biased labeling efficiency estimates. As emitter localizations are the basis for all subsequent
analysis steps, improved emitter detection can be expected to increase the robustness of
DOLanalysis in subsequent studies.

The established analysis routine for comparing emitter localization algorithms on the
basis of simulated cell images represents a platform, which can readily be used to evaluate
additional emitter localization algorithms in the future. In a recent study, Sage et al. provide
a comprehensive comparison of different localization algorithms for SMLM, which can
serve as a starting point to identify candidate algorithms[175]. For example, the algorithm
FALCON was developed to explicitly address the challenges posed by emitter localization
at high emitter densities and could therefore lead to further improvements in localization
efficiency[186]. It was recently reported that emitter localization using convolutional neural
networks led to further improvements in emitter localization efficiency outperforming con-
ventional algorithms across a wide range of detection settings and emitter densities[187,188].
Such approaches therefore represent another promising direction for further optimizing the
localization efficiency.

Since gSEP and the associated data analysis principles had only been used in a proof-of-
principle study prior to this work, I validated key steps in the data analysis pipeline prior to
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using gSEP and DOLanalysis to assess labeling efficiencies for SNAPf-tag and HaloTag.
In section 3.5, I first demonstrated that with the chosen emitter localization approach based
on thunderSTORM, detection of emitters in experimental data is highly specific by showing
that >90 % of emitters detected in the reference channel originate from EGFP molecules
contained in the gSEP or LynG constructs. Second, I made use of simulations to show that
the necessary correction to account for missed emitters during localization produces valid
labeling efficiency estimates at different overall emitter densities and background levels.
Finally, I used fluorescent multispectral beads to show that for samples where a high degree
of colocalization between emitters in different spectral channels was expected, the final data
processing pipeline recovered apparent labeling efficiencies of ≥93 % in experimental data.

The presented results demonstrate that gSEP in combination with thunderSTORM for
emitter localization and DOLanalysis for colocalization analysis yields reliable labeling
efficiency estimates across different imaging conditions and for labeling efficiencies between
5 and >90 %.

One important prerequisite to keep in mind is that the correction factors used to account
for limited emitter detection efficiencies were determined with the help of simulated data.
The simulations used in the present work to determine correction factors were performed
such that emitter properties in simulated images matched the properties of emitters observed
in the experimental data described in section 3.6. For future work it will be critical to ensure
that experimental data and simulations employed for determining correction factors exhibit
comparable emitter properties. This can either be achieved by ensuring that experimental
data is acquired under identical conditions or by adapting simulations to match experimental
emitter properties making use of the approach described in Section 3.4.1. As the applied
degree of correction applied to experimental data depends on the detected emitter density,
proper segmentation of cells in images and a homogeneous emitter density across the
segmented area is a prerequisite which should always be verified for each set of experimental
data. In the scope of this study, the segmentation quality and the homogeneity emitter
densities in individual images was manually assessed.

If required, both points can be addressed to reduce the need for manual used input
and data curation. Simulations used for obtaining correction factors can be automatically
generated from acquired experimental data based on the properties of detected emitters in
that data. The homogeneity of emitter densities across an image can also be assessed in an
automated fashion to enable data curation without manual inspection of individual image
sets by the user.
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The optimized and validated pipeline for measuring labeling efficiencies was finally
applied to study the influence of ligand concentration and incubation time, the influence of
the cell line in which measurements were performed as well as the influence of fluorophores
conjugated to ligands and the influence of chemical fixation on tag activity.

In comparison to the initial gSEP data analysis approach used by Haenselmann[174],
labeling efficiencies determined for SNAPf-tag and HaloTag in Huh7.5 cells across different
incubation times and ligand concentrations after reanalysis of the same dataset exhibited
a large degree of overlap in their qualitative behavior. However, labeling efficiencies for
HaloTag labeling with HTL-TMR obtained after reanalysis of the dataset tended to be slightly
lower than previously, and labeling efficiencies for SNAPf-tag labeling with BG-SiR tended
to be slightly higher than previously. The cell-to-cell variation at individual conditions was
slightly reduced after reanalysis. As the observations made in Huh7.5 cells after reanalysis
are in line with the relative behavior of SNAPf-tag and HaloTag in new datasets measured in
H838 and HeLa cells, it seems likely that the improved emitter detection approach resulted
in a more consistent performance across varying conditions.

Across all different conditions I consistently observed that neither for SNAPf-tag nor for
HaloTag, stoichiometric labeling was achieved. This observation was in contrast to an initial
report for labeling of SNAPf-tag in vitro where labeling efficiencies ∼90 % were reported for
different BG-ligands based on mass-spectrometry measurementsSun:CorreaJr:2011. The study
presented here, provides, for the first time a systematic evaluation of achievable labeling
efficiencies in living or fixed cells. Different groups reported labeling efficiencies measured
using different approaches for individual labeling conditions which support the findings made
in the course if this study.

Wilmes et al. used an assay based on single-particle tracking to determine the labeling
efficiency for HaloTag labeling in live HeLa cells. After labeling with HTL-TMR at a ligand
concentration of 30 nM for 15 min, a labeling efficiency of 22 % was determined[91]. Under
comparable conditions, our experiments performed in HeLa cells indicate that saturated
labeling should have occurred at the conditions used by Wilmes et al. a labeling efficiency of
26 % would be expected based on our measurements. Latty et al. made use of a colocalization-
based approach with a fluorescently labeled antibody as reference marker to measure the
labeling efficiency for HaloTag[189]. Here, labeling with HTL-TMR at a ligand concentration
of 5 nM and labeling for 30 min in live HEK293 cells led to a labeling efficiency of 33 %.
Under identical labeling conditions, but in H838 and Huh7.5 cells, I observed very similar
labeling efficiencies of 38±12 % and 36±10 %.
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For SNAPf-tag, Virant et al. measured the labeling efficiency achieved upon labeling
with BG-AF647 in cell lysates using a intensity-based readout with the FtnA complex as
reference standard with defined stoichiometry[168]. Here, a labeling efficiency of 65 % was
achieved for labeling with 100 nM ligand concentration for 6 h. Under comparable labeling
conditions (fixed cells, 100 nM ligand concentration, 2 h incubation time), I observed a highly
similar labeling efficiency of 69±11 % (Section 3.6.5). A second study by Thevathasan
et al. reported similar labeling efficiencies for SNAPf-tag achieved with BG-AF647in an
dSTORM-based assay using the nuclear pore complex as reference structure[92]. Here,
labeling efficiencies of 56-64 % were determined under identical conditions as were used in
my experiments with BG-AF647. For labeling of HaloTag with the ligand HTL-O2-AF647
at a concentration of 1 µM, Thevathasan et al. measured a labeling efficiency of 36±3 %
slightly less than the labeling efficiency observed by me with gSEP under the same labeling
conditions (45±1 %, Section 3.6.5). Using the same approach, Thevathasan et al. measured
a saturation labeling efficiency of 21±4 % for HaloTag with the photoactivatable ligand PA-
JF549 across different ligand concentrations (0.25-5 µM). They reported constant labeling
efficiencies for all tested ligand concentrations between 250 nM and 5 µM corresponding to
the saturation labeling behavior observed in my data.

Taken together, these observations previously reported in the literature support my
observations made with the gSEP approach and thereby further strengthen the claim that
gSEP produces reliable estimates of labeling efficiencies achieved in situ and that labeling
with those tags is far from stoichiometric.

In Section 3.6.2, I further showed that in addition to estimates of the saturation labeling
efficiency, the labeling kinetics for a chosen combination of protein tag and ligand could
be determined by modeling the labeling efficiency in dependence on incubation time and
ligand concentration. Interestingly, the apparent rate constant for labeling of HaloTag with
HTL-TMR determined in this fashion was about 10-fold lower as the value recently reported
by Wilhelm et al. for measured with purified proteins in vitro[70]. This suggests that cell
permeability can significantly influence labeling kinetics even for ligands such as HTL-TMR,
which were previously reported to be highly cell permeable[74].

This is especially important since I observed a dependence of achieved labeling efficien-
cies on the fluorophore conjugated to ligands (Section 3.6.3). These experiments helped to
distinguish between ligands with limited use in protein counting experiments due to their
tendency for non-specific labeling (e.g. BG-JF549 and -JF646) and ligands such as HTL-
JF646 which represent promising candidates for quantitative studies. In the future, systematic
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studies analogous to the experiments performed with BG-SiR and HTL-TMR in H838 cells
will be useful to map out the labeling behavior and to identify optimal labeling conditions
with maximum labeling efficiency and minimum non-specific labeling for alternative ligands.

One interesting finding highlighting the need for labeling efficiency measurements is
the differential labeling efficiency achieved for SNAPf-tag pre- and post fixation. An effect
like this would have been easy to overlook if only labeling kinetics were determined. A
comparison of labeling by comparing signal intensities pre- and post-fixation could easily be
biased due to differences in the microenvironment experienced by fluorophores which are
known to influence fluorophore properties (section 2.1).

The large scale comparison of labeling efficiencies across different tags, cell lines,
incubation times and ligand concentrations showed that in its current implementation, the
gSEP approach can be sensitive towards differences in the raw data used as input for emitter
detection and subsequent colocalization analysis. As already mentioned in Section 3.6.1,
deviations in input data were observed to lead to systematic deviations in the recovered
labeling behavior of individual samples. While it is difficult, to determine the specific reason
for deviating data quality, the variability in different properties of the acquired data was
increased after switching from manual data acquisition to scripted, semi-automated data
acquisition (Fig. A.4).

Improving the data acquisition routine with a focus on reproducibility across and within
samples will therefore help to minimize the variability in measured labeling efficiencies,
while retaining the ability to acquire large datasets with minimal user input. It is known
that for TIRF illumination, the penetration depth of the evanescent wave and the intensity of
signals depend strongly on the illumination angle[190]. Calibration of the illumination angle
following different published approaches[190,191] prior to each experiment would therefore be
expected to lead to better reproducibility in the obtained TIRF illumination and consequently
reduce variations in signal amplitudes, as well as the SNR across samples. The homogeneity
of TIRF illumination across the field of view is typically reduced by mismatches in the
refractive index between different parts of the specimen[192]. To improve the evenness
of TIRF illumination, azimuthal beam scanning on the back focal plane was developed
to effectively reduce illumination inhomogeneities[193].If implemented with a motorized
tip/tilt mirror, this approach comes at the additional advantage that it enables precise control
of the illumination angle[192]. In the current study, a hardware-based autofocus based on
total internal reflection of a near-infrared laser beam was used maintain the focal position
during automated imaging of multiple cells in a sample. In practice, this system was found
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to not exhibit the stability required for fully automated imaging. Yasui et al. recently
described a combined hardware and software autofocus system which employs a neural
network for robust identification of the focal position and showed that the performance of
this approach was sufficient for fully automated single-molecule fluorescence microscopy in
living cells[194].

Complementary to achieving more robust data acquisition, several parameters obtained
from emitter localization can be used for automated quality control of acquired data. As
described in Section 3.6.1, the average detected emitter number in the reference channel
across a dataset was found to be a predictor of samples with deviating properties. In addition,
the amplitude and width of individual PSFs might be used on a per-cell or per-sample basis
to automatically identify samples acquired under irregular acquisition conditions. Together, I
expect the adoption of an imaging protocol and a more stringent quality control of input data
to lead to a substantial improved robustness of the presented gSEP approach for labeling
measurements based on single-molecule colocalization analysis.

In summary, the work presented in this chapter laid the foundation for routine labeling
efficiency measurements for protein labeling with self-labeling protein tags. While future
developments suggested above can help to further improve the robustness of the gSEP
approach for high-throughput studies, the data acquisition and analysis pipeline in the current
implementation are ready for use in routine applications. The labeling conditions identified
in this chapter can further be used to achieve optimal performance for labeling of SNAPf-tag
or HaloTag in emitter counting microscopy applications.





Chapter 4

IN SITU PROTEIN COUNTING WITH
FLUORESCENCE MICROSCOPY

In the previous chapter, I presented a method for measuring the labeling efficiency upon
protein labeling with genetically encoded tags. This enables relating measured fluorophore
numbers to the underlying number of target proteins. With this tool at hand, it is possible to
use fluorophore counting methods for molecular counting of target proteins. Photobleaching
step analysis is a calibration-free fluorophore counting technique based on the identification
of step-like intensity changes in intensity traces recorded by fluorescence microscopy during
photobleaching of a sample. In this chapter, I will describe the development and validation
of quickPBSA, a comprehensive data processing framework for fluorophore counting in situ
via photobleaching step analysis. quickPBSA was developed together with Johan Hummert
(Herten lab, University of Birmingham) who implemented the data analysis framework in
Python and assisted with data acquisition and analysis. Significant parts of this chapter are
part of a publication[195]. Johan Hummert and I are equal first authors of this publication.
Theresa Fink contributed to the project in the scope of a lab rotation by performing initial
measurements and helped with validation of quickPBSA.

4.1 Scope

As described in section 2.3, a number of PBSA approaches for interpretation of intensity
traces recorded during photobleaching of samples have been developed in the past. However,
for a PBSA method to be applicable for in situ fluorophore counting, i.e. in the complex
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environment of a cell, several criteria have to be met. First, the trace interpretation algorithm
should not make implicit assumptions such as uniform photobleaching step height across a set
of photobleaching traces, photostability or monotonous fluorescence decay without visible
photo-induced blinking, which are rarely fulfilled for data acquired on cellular samples.
Second, the complexity of eukaryotic cells will result in varying raw trace quality due to
variable background signal, variable spacing between regions of interest and variations of
axial mismatch between complexes and focal plane. The PBSA framework should thus
be able to automatically extract photobleaching traces under such conditions and remove
traces which do not pass a quality threshold. Third, many cell biological processes exhibit
a significant degree of variability due to stochastically occurring events or heterogeneous
populations reflecting different functional states. To capture and analyze this variability, a
PBSA method for in situ analysis of protein complexes will have to be able to process a
sufficiently large number of photobleaching traces on a computationally feasible timescale in
an automated fashion and with minimal user input during analysis. Finally, any fluorophore
counting technique will have to be fully validated using data with known ground truth. Here,
validation using in-cell reference standards will always provide a more realistic picture
of the performance of a new method compared to validation with simulated data or with
experimental data acquired under idealized conditions.

Since we found that none of the currently available PBSA approaches was able to meet
these criteria, we decided to develop quickPBSA, a dedicated framework for in situ PBSA
building on previous approaches available in the field. This framework was intended to
address three main shortcomings of available methods:

1. Automation: quickPBSA processes raw data and a list of candidate ROIs in an auto-
mated fashion.

2. Robustness: By implementing multiple filtering steps, we ensure robustness against
variable input data.

3. Computation speed: In its current implementation, quickPBSA is suited for analysis of
datasets containing 100s of traces on a simple desktop computer.

In the following, I will first describe the design principles of the quickPBSA framework
for automated trace extraction and PBSA. I will then describe the development of the
quickPBSA algorithm for trace interpretation. This will be followed by an in-depth validation
of quickPBSA with two independent approaches using synthetic and experimental datasets
with varying complexity. I will then show that quickPBSA performs robustly on data acquired
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on different microscopy setups, but that the choice of fluorophore can influence the results
obtained with quickPBSA. Building on the rationale that the robustness of protein counting in
situ with PBSA on high copy number targets depends on the quality of raw data, I performed
a comparison of commonly used protein labels and imaging conditions with respect to their
brightness, photostability and propensity for photo-induced blinking. Finally, I evaluated
two previously described reference protein standards and characterized their performance as
in-cell benchmarking targets. Using a genome-edited cell line expressing a NUP107-SNAPf-
tag fusion protein, I show that in combination with optimized data acquisition conditions,
quickPBSA is able to measure Nucleoporin (NUP)107 copy numbers in individual eukaryotic
nuclear pore complexes in situ.

4.2 Development of the quickPBSA framework

To allow for automated processing of PBSA data, we designed quickPBSA as a modular
framework where each module serves a specific function and individual modules can, in
principle, be replaced with alternative approaches. In cases where were already available
for individual steps in our framework, we tried to make use of those and adapted them as
needed for use as a module in the quickPBSA framework or established routines suitable for
automated execution of the full data analysis pipeline. In the following, I will describe the core
tasks executed in the individual quickPBSA modules and their respective implementation.

As shown in Fig. 4.1a, quickPBSA consists of several modules which are consecutively
applied to a given set of raw timelapse images. We decided to split the trace interpretation into
two separate modules to maximize the amount of information extracted from photobleaching
traces, while at the same time minimizing the computational effort required to process a given
dataset. The candidate ROI detection module is currently implemented as ImageJ/Fiji
script, while all further modules are implemented in the quickPBSA python package1. The
individual modules perform detection of candidate ROI positions, filtering of candidate
ROIs, trace extraction, step detection, step filtering and model refinement, respectively. The
following section will describe the function and underlying principle for each module.

Candidate ROI detection module: The first module in the quickPBSA framework
serves to identify ROIs in the raw image data where photobleaching traces are to be extracted
from. Different modes of ROI selection are supported by quickPBSA. ROIs with arbitrary

1Source code available via pip at https://pypi.org/project/quickpbsa/ or from github at
https://github.com/JohnDieSchere/quickpbsa
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Figure 4.1 Illustration of quickPBSA workflow for PBSA. a, Initial localization of diffraction-
limited structures is performed with external software for SMLM data analysis. All further steps
can be performed using the quickPBSA package implemented in Python. Trace extraction can be
performed with or without local background correction. See Fig. 4.27 for additional details about
candidate filtering and trace extraction. b-e Schematic overview of detailed procedures performed
during candidate detection, step detection (Kalafut-Visscher step detection (KVonly)), trace filtering
and step refinement (quickPBSA algorithm). Trace models shown in green represent results from
KVonly algorithm, trace models shown in magenta represent results from quickPBSA algorithm.

shapes can be subjected to quickPBSA as binary masks created by hand or with thresholding
or segmentation algorithms. For structures with diffraction-limited emission patterns, a
second mode of ROI selection is available. Here, identification of diffraction-limited signals
in raw images can be performed using any of the available software solutions for sub-pixel
localization of emitters (Fig. 4.1b) in SMLM[175]. In the course of the current work, the
quickPBSA framework was exclusively used to investigate protein clusters smaller than the
diffraction limit. Emitter localization was performed using the thunderSTORM SMLM data
analysis plugin for Fiji/ImageJ[178] (for additional details, see Section 6.3.5).

Candidate ROI filtering module: After candidate detection, the candidate filtering
module allows for excluding candidate positions from downstream analysis based on pre-
defined selection criteria. This module uses the output of the candidate detection module
as input. If candidate ROIs were identified using the SMLM option, the list of emitter
localizations and the properties of individual emitters can be used as additional selection
criteria. Additional details regarding the importance of this module for in situ counting will
be discussed in Section 4.5.3.
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Trace extraction module: After identification and pre-selection of suited ROIs, intensity
traces are extracted from raw image data at positions defined by the candidate ROI list.
This extraction can be performed with our without local background correction using a
ring-shaped background region around individual ROIs to obtain the background intensity.
Additional details regarding background correction during trace extraction will be explained
in Section 4.5.3. Once individual photobleaching traces have been extracted, quickPBSA
proceeds with interpretation of these traces. If alternative approaches for ROI selection
and/or trace extraction are to be combined with the quickPBSA trace interpretation module,
the candidate ROI detection, filtering and trace extraction modules can be omitted from the
pipeline.

Preliminary step detection module: Different methods for detecting step-wise changes
in time series exist[196] and have been applied to photobleaching time traces. Here, a balance
between sensitivity of event detection and overfitting is critical for successful identification
of photobleaching steps while ignoring random intensity fluctuations. One algorithm, which
was successfully applied for step detection in fluorescence intensity traces was developed by
Kalafut and Visscher and is based on the Schwarz Information Criterion (SIC, see appendix
on 224) as metric for deciding if and where step-wise intensity changes occurred[197]. The
Kalafut-Visscher (KV) algorithm subsequently adds steps by computing the Schwarz info-
mation criterion (SIC) for all possible step positions and then accepting the position with
minimal SIC value. This minimal SIC value of the trace model with k steps is then compared
to the SIC value of the trace model without this step (k-1 steps). If the model with k steps
exhibits a lower SIC value, the added step position is accepted. This procedure is repeated
until the addition of an additional step does not result in an improved SIC.

In our implementation of the KV algorithm, which I will refer to as KVonly in the
subsequent sections of this chapter, we added three changes to reduce the computation time
for preliminary step detection. First, we included a parameter threshold, which is used to
exclude possible step positions with intensity differences smaller than threshold. This is to
prevent minor intensity variations from being considered as steps and thereby increasing the
computation time required during model refinement. Second, we introduced a trace cropping
procedure to reduce trace lengths and thereby the number of possible step positions which
need to be evaluated. If active, trace cropping discards data points starting from the end of a
trace and moving towards the start of the trace until the difference between two data points
exceeds 0.5*threshold. To prevent trace cropping from interfering with the estimation of
background intensity properties, additional data points specified by the parameter bgframes
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after the crop point are retained in the cropped trace. Finally, we added the parameter
maxiter which specifies the maximum number of steps allowed to be placed during initial
step detection to avoid spending excess computation time on traces which far exceed the
expected complexity of traces. In practice, maxiter is set to values >5 times the expected
maximum number of fluorophores to be contained in a complex.

The cropped trace in combination with the preliminary list of step positions is then
used to compute key properties for each trace. The brightness of a single fluorophore µf

and brightness variance σf of a single fluorophore are computed from all data points in the
interval between the two last detected steps in a trace. The mean background intensity µbg

and background variance (σbg) are computed from all data points after the last detected step
in a trace. In addition, the length of the interval between the last two detected steps in each
trace is extracted (see Fig. 4.1c). The output from this module thus consists of a sequence of
potential step positions as well as a set of properties for each trace.

Trace filtering module: After initial step detection using the KVonly algorithm, the
obtained preliminary step positions are used to decide which traces to include in down-
stream analysis. For this, the distribution of single fluorophore brightness (µf) is computed
across all traces in a dataset. Two user-defined parameters are used during trace filtering:
percentile_step, is a cutoff to exclude traces where µf is larger than the percentile of the
distribution of all µf across a dataset. length_laststep is the minimum number of data points
between the last and the second-to last detected step. Traces are excluded from further
analysis based on a list of requirements, which each render successful processing in the
model refinement module unlikely or impossible:

• KVonly algorithm detected no steps indicating that either, no step-like changes in
intensity occurred or these changes were below the pre-defined intensity threshold

which could for example be the case for traces extracted from structures located far
away from the focal plane. In both cases, a meaningful estimate of fluorophore numbers
initially present in a ROI is not possible.

• Parts of intensity trace are below -threshold after local background correction. If
background detection does not perform as expected, e.g. due to missed adjacent
fluorescent structures during candidate ROI detection, the background correction
routine will overestimate the background signal which may lead to traces exhibiting
intensities below zero.
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• KVonly detected more positive than negative steps. Such behavior is typically observed
if the background correction routine overestimates local background fluorescence.

• µbg is out of bounds defined by [-threshold,threshold] for traces after correcting for
local background. If the intensity after the last detected step is substantially higher or
lower than expected based on the specified minimum brightness of a single fluorophore
(threshold), this is an indicator that not all fluorophores were completely photobleached
at the end of the measurement or that local background subtraction did not work as
expected.

• Single fluorophore brightness µf is out of bounds [threshold,percentile_step] after
local background correction. If the height of the last detected step in a given trace is
lower than threshold after local background subtraction, this can be an indicator for
a structure within the ROI being located outside the focal plane or that the ROI used
for trace extraction was placed in a way that it only partially captured signal emitted
from the structure. If the height of the last detected step in a given trace is higher
than percentile_step, this can be an indicator for more than a single fluorophore being
photobleached within the last detected step. To exclude both cases, only traces with µf

in the given range are accepted (Fig. 4.1d).

• The interval between the final two steps detected by KVonly is shorter than length_-

laststep. Although such traces, in principle, could be suited for downstream refinement,
a short interval between the last two steps will limit the quality of µf and σf estimates
and thereby the reliability with which these values can be used during refinement.

By including this module between the preliminary step detection and model refinement
modules, we avoid unnecessary evaluation of traces in the model refinement module, which
should help to minimize the computation time required for processing a given set of traces.

Model refinement module: The KVonly algorithm proved to be highly sensitive for
detecting step-like changes within a trace, but lacks the ability to distinguish steps likely
arising due to fluorophore photobleaching from signal fluctuations. KVonly is also not able to
distinguish between steps where a single and multiple fluorophore bleaching events events
occurred simultaneously. As explained above, the characteristics of a single fluorophore
and the local background can be obtained from a given trace. For this reason, we decided
to make use of these information in an additional module. This model refinement module
re-evaluates the predicted sequence of photobleaching steps (i.e. the trace model) obtained
from preliminary step detection in the light of fluorophore and background characteristics.
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This concept builds on a similar idea recently presented by Tsekouras and co-workers, who
used a Bayesian framework for interpreting photobleaching traces[123].

In their approach, Tsekouras et al. define a posterior, which takes the reduced probability
for simultaneous photobleaching events where more than one fluorophore photobleaches
and the higher likelihood for photobleaching events at the beginning of a trace where more
fluorophore are still present into account. This posterior is then used to compare a set
of different models and to identify the most likely model as series of photobleaching and
photoblinking events which best describes the photobleaching trace. In practice, this selection
is made by computing the negative logarithm of the probability P(θ |D) given an intensity
trace D and parameter set θ (see Equation B.3 on page 224 for definition of posterior and
corresponding parameters in Table B.1).

Since a systematic comparison of every possible model is computationally not feasible,
Tsekouras et al. apply a model pre-selection strategy to discard unlikely models from further
evaluation. This selection strategy divides the photobleaching trace into discrete windows
for which a likely range of active fluorophores is determined based on single fluorophore
and background intensity and variance determined using the Kalafut-Visscher algorithm
(KV) algorithm. For each window, the most likely active sub-model is then identified using
Equation B.3. In this approach, both the model pre-selection and precise model selection
step contain an additional adjustable parameter for restricting the parameter search ranges
which each influence both, computation time and accuracy of the algorithm. The algorithm
by Tsekouras et al. performed well on simulated photobleaching traces with up to 50
fluorophores present at the beginning of the trace and required shorter computation time
compared to previous approaches (17 h vs. ∼168 h for a trace with 50 fluorophores and
5×104 data points[115]).

For the quickPBSA model refinement module, we rely on the same posterior as used
by Tsekouras et al., but apply a different strategy for pre-selection of likely models, which
are compared using the posterior. Instead of choosing a windowed approach to limit the
number of tested models, we reasoned that, firstly it is unlikely that a photobleaching step
occurs for most positions along the trace and, secondly that the step positions detected
by the KVonly algorithm provide a reasonable starting point for subsequent refinement of
the photobleaching event sequence. As a result, the search space for the best model to
describe a given photobleaching trace is massively reduced since the size of the parameter
space is mainly determined by the number of data points, i.e. the number of possible
photobleaching event sites in a trace. As an additional strategy to restrict the search space
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during model refinement, we follow Tsekouras et al. and use the single-fluorophore and
background characteristics determined in the preliminary step detection module for individual
traces as constants during model refinement. To further minimize the computation cost of
the refinement process, we devised a scheme for iterative evaluation of subsets of likely
models without systematically testing all possible combinations of altered step properties
and positions.

The refinement procedure is initialized with the step position sequence determined in the
preliminary step detection module with the KVonly algorithm. All models are evaluated by
computing −2lnP(θ |D) according to Equation B.3. The model exploration scheme consists
of four steps, which are iteratively applied to each trace and the corresponding preliminary
photobleaching event sequence as illustrated in Fig. 4.2a and described in the following:

Initialize by computing posterior according to Equation B.3 for the step position sequence
determined by the KVonly algorithm.

(I) Generate list of candidate positions for occurrence of steps with heights >1. For the
first iteration, consider all positions as candidate positions. For later iterations, only
consider positions where previous increase in step height improved model. If candidate
positions are identified, proceed with II. If no candidate positions are left, proceed with
III.

(II) Generate a set of models with all possible combinations of candidate positions and
step heights up to the current iteration. For example, in iteration 3, step heights of 1-3
are considered. Keep all positions where increase in step height led to improved model
as candidate positions and return to I.

(III) Continue with best model from I-II and remove step position with lowest SIC value
from preliminary step detection. Then reset all step heights and return to I. Always
keep the last two steps in a trace since these steps are required to calculate the posterior.
Once only three step positions are left, proceed with IV if best current model contains
the same number of step positions as the initial model from preliminary step detection.

(IV) Create and evaluate additional models by adding positive or negative steps at each time
point before the second-to-last preliminary step position. Continue adding steps until
no further improvement in -log(P) is observed or the maximum number of allowed
steps has been added.
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From all models created during I-IV, choose model with minimal -log(P) as final model. The
effect of model refinement in removing spurious steps, adding additional photobleaching steps
and adjusting the number of fluorophore photobleached in a step is illustrated in Fig. 4.2b.The
number of possible models, especially for traces where many possible step positions were
detected during preliminary step detection, can become computationally expensive. We added
break conditions to each of the refinements steps described above to limit the evaluation
of increasingly unlikely models and thereby reduce computational cost. A summary of
parameters in the quickPBSA framework is given in Table B.2. Additional information on in-
and output data for quickPBSA and parameters for optimizing computational performance
can be found in the quickPBSA documentation1. Typical settings used for data analysis in
the course of this chapter are listed in Section 6.3.5.

Figure 4.2 Illustration of the quickPBSA framework and algorithm. a, Schematic description of
quickPBSA model refinement algorithm describing operations used for refinement based on result
from preliminary step detection using KVonly algorithm. Boxes describe operations, which modify
step positions or properties. Ovals: Model states. Customizable parameters important for individual
operations italicized. See Table B.2 for explanation of individual variable. b, Comparison of models
(orange) and raw data (gray) after different model refinement steps. In the case of the trace shown, a
step was removed in step III and step IV was therefore skipped. Data in b) was obtained from Johan
Hummert.

1https://github.com/JohnDieSchere/quickpbsa
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Local intensity algorithm: The signal recorded from a ROI at t0, i.e. the beginning
of data acquisition, depends on the number of active fluorophores and the brightness of
individual fluorophores. For benchmarking of the quickPBSA framework, we decided to
implement an alternative way to estimate the fluorophore number at t0 in a given trace based
on calculating the ratio between intensity at t0 and single-fluorophore brightness. Since the
observed brightness of fluorophores depends on multiple factors, we reasoned that using a
global or even external calibration of single fluorophore brightness, as has been suggested
by others[124], to likely be unreliable. Therefore, we decided to use single-fluorophore
brightness µf determined in the preliminary step detection module as internal standard for the
respective trace. Such an approach has the advantage of not relying on correct interpretation
of complex traces and only requiring identification of the final two steps in a trace which is
usually less demanding on the step detection sensitivity. The precision of such an approach,
however, depends strongly on the SNR and fluorophore photophysics. If the SNR is low or if
fluorophores frequently reside in non-emissive states, a large uncertainty of the t0 fluorophore
estimation is expected. In the course of this chapter, I will refer to this approach as local
intensity approach.

4.3 Validation of quickPBSA with semi-synthetic data

In the previous section, I described the design of the quickPBSA framework for PBSA
with individual modules for trace extraction, preliminary step detection, trace filtering
and finally model refinement to determine the number of fluorescent emitters contained
in microscopic structures. Before testing the performance of quickPBSA on experimental
data, we performed a benchmarking with simulated data to validate the step detection and
model refinement modules with data for which the ground truth is known. This initial
set of experiments was also intended to compare the performance of quickPBSA with
the previously reported approaches by Kalafut and Visscher[197] and Tsekouras et al.[197].
Typically, validation of PBSA algorithms is performed with fully synthetic data[124]. This
has the advantages that parameters such as the SNR, the photostability and the photophysics
of emitters contributing to signal are fully controllable. However, such an approach will, by
design, only include known sources of signal variations and therefore likely underestimate
the complexity of experimental data. For this reason, we generated semi-synthetic intensity
traces from experimental data for which the ground truth number of active emitters could be
determined by visual inspection.
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To generate semi-synthetic intensity traces, I used DNA oligonucleotides probes labeled
with four ATTO647N fluorophores per oligonucleotide (tetraATTO647N). The average
fluorophore number per tetraATTO647N was determined previously using CoPS and was
found to be close to 4[198]. tetraATTO647N probes were sparsely immobilized on the
surface of cleaned glass coverslips via biotin-streptavidin linkage as illustrated in Fig. 4.3a.
Immobilized probes were then imaged under high-intensity illumination (∼2.4 kWcm−2)
in photostabilizing ROXS NaSO3 buffer (see Methods). Immobilized probes could be
identified as individual diffraction-limited spots, which exhibited a decrease in number and
intensity over time (Fig. 4.3b). While bleaching of individual spots was stochastic, the decay
of intensity integrated from all spots in an acquisition was highly reproducible between
acquisitions (Fig. 4.3c). Intensity traces containing signals from tetraATTO647N probes
with up to four fluorophores per probe were then extracted from time-lapse image stacks
by summing across the pre-selected ROIs around individual diffraction-limited spots. The
extracted traces show the expected step-wise decrease in signal over time with step numbers
varying between one and four (Fig. 4.3d). A high SNR and relatively few photoblinking
events allowed us to determine the number and position of photobleaching steps that occurred
in each trace by visual inspection.

To evaluate the performance of quickPBSA with respect to the maximum number of
photobleaching steps per trace that could be robustly identified, we proceeded by constructing
semi-synthetic traces by combining several low complexity traces according to the workflow
shown in (Fig. 4.4a). First, manually annotated traces were filtered to select traces from
probes, which were imaged with comparable illumination intensities1. The set of traces
obtained after filtering showed a rich set of different features including transient on-off
blinking, and transient states with lower brightness or complex intensity fluctuations, which
are typically not encountered in simulated data (Fig. 4.4b, see Fig. B.1 for overview of
all annotated traces). Complex traces with many photobleaching steps per trace were then
generated by frame-wise summation of a random subset of traces (Fig. 4.4c). By altering the
number of combined traces, the number of photobleaching steps in a traces could be varied.
In total, this procedure was used to generate a dataset with >4×103 semi-synthetic traces
containing 2-41 active fluorophores at the beginning of each trace (Fig. 4.4d).

The generated semi-synthetic dataset was then used for evaluating the performance of the
quickPBSA step detection and model refinement modules. For this, we first processed the
entire dataset and then visually compared the quickPBSA trace models with the underlying

1Due to the Gaussian illumination profile of the laser used as light source, the illumination intensities
across the field of view varied. See Section 5.2.1.
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Figure 4.3 Acquisition of photobleaching traces from immobilized tetraAT647N probes. a,
Workflow for immobilizing biotinylated DNA probes. Glass coverslips were cleaned with 0.1 M hy-
drofluoric acid (HF) and consecutively incubated with BSA/BSAbiotin, streptavidin and tetraAT647N
(see Section 6.1.6). b, Individual frames from bleaching sequence at time points indicated by colored
lines in c. Images displayed with identical lookup table settings. Scale bar: 20 µm. c, Photobleaching
traces obtained by frame-wise summation of intensities within ROIs around bright spots in first frame.
Mean (black line) ±SD (shaded region) from 9 FOVs. Please not that due to the high degree of
similarity between measurements, the SD in no point is larger than 5 % therefore is barely visible.
Traces were normalized to intensity in first frame. d, Representative photobleaching traces exhibiting
1-4 photobleaching steps extracted from individual diffraction-limited areas using quickPBSA. See
Fig. B.1 for complete overview of traces extracted from dataset. Samples were imaged via widefield
epifluorescence microscopy in ROXS NaSO3 buffer. Image sequences were acquired at 1.3 kWcm−2

and 50 ms exposure time per frame until >90 % of spots were fully bleached (∼6×103 frames).
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Figure 4.4 Construction of complex semi-synthetic traces from manually annotated photo-
bleaching traces. a, Scheme depicting workflow for construction of semi-synthetic traces. b,
Representative base traces selected for annotation with annotated photobleaching events indicated by
arrowheads. c, Trace obtained by summation of base traces shown in b. d, Number of constructed
semi-synthetic traces with respective total number of photobleaching steps in base traces used for
construction.
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input traces after linearly scaling the models produced by quickPBSA the absolute intensities
of raw data. This scaling procedure facilitates a qualitative comparison between raw data and
model. As shown in Fig. 4.5a, quickPBSA correctly interpreted different features of measured
data such as short- and intermediate timescale blinking as well as minor intensity fluctuations
not caused by photobleaching and finally predicted the correct number of fluorophores
present at the beginning of the measurement. Events where more than one fluorophore had
photobleached during a single frame were also correctly identified by quickPBSA (4.5b).
Manual inspection of trace models returned by quickPBSA for raw traces with 15 and 30
ground truth photobleaching events further showed that quickPBSA is able to identify the
correct number of photobleaching events even for traces containing a high number of events
(4.5b,c). To systematically compare the performance of quickPBSA in a quantitative fashion,
we compared the number of active fluorophores at t0 predicted by quickPBSA with the known
ground truth for the full set of >4×103 semi-synthetic traces. Overall, quickPBSAwas able
to recover the expected number of events with high precision across the range of simulated
photobleaching numbers (Fig. 4.5d). The deviation of the mean predicted fluorophore number
for a given ground-truth fluorophore number was <1 across all fluorophore numbers tested (2-
41 fluorophores at t0). However, we also observed that quickPBSA showed a weak tendency
towards overestimating the number of photobleaching events. This effect tended to increase
slightly for intermediate fluorophore numbers (>15) before decreasing again for ground truth
fluorophore numbers >30 (Fig. 4.5d).

To further assess the performance of quickPBSA with increasing emitter numbers, we
compared the spread of quickPBSA fluorophore number estimates for increasing ground
truth fluorophore numbers. Here, we observed that only a very weak broadening of the
distribution of fluorophore number estimates for a given number of ground truth fluorophores
occurred (Fig. 4.5e). In contrast, fluorophore number estimates across the set of semi-
synthetic traces with the KVonly algorithm showed a stronger overall tendency towards
overestimating the number of fluorophores contributing to a trace. This effect was correlated
with increasing number of ground truth fluorophores (Fig. 4.5f). The observation, that
quickPBSA provided better emitter number estimates in comparison to the KVonly algorithm
shows that the quickPBSA model refinement module was able to correct the initial estimates
from the KVonly algorithm, which is run during the preliminary step detection. The local
intensity algorithm showed a tendency towards undercounting the true number of ground
truth fluorophores (Fig. 4.5f).
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Finally, we examined if the processing time of traces with quickPBSA depends on the
number of fluorophores present at t0 and hence the number of steps occurring in a trace
and observed a weak dependence of the processing time on the number of ground truth
fluorophores (Fig. 4.5g). For up to ∼30 fluorophores, the computation was dominated by the
preliminary step detection module which relies on the KVonly algorithm. For fluorophore
numbers >30, the model refinement module based on the quickPBSA algorithm starts to
contribute to the overall processing time in a significant manner. However, even for traces
containing >40 fluorophores, the average processing time per trace was still below 10 s
on a standard desktop computer (see Section 6.3.5 for specifications). In this respect, it is
important to note that all semi-synthetic traces contained in this dataset had the same number
of data points per trace (3×103). We expect that the number of data points per trace will
influence processing time.

Having shown that quickPBSA is suited for automated PBSA, we compared quickPBSA

to the related approach by Tsekouras et al.[123]. Here, our first goal was to determine
whether differences between both approaches with respect to their precision or computational
cost could be observed. The comparison between both approaches was performed using
a subset of 40 traces from the semi-synthetic dataset described above with 2-8 ground
truth photobleaching steps per trace and 3×103 data points per trace each. The algorithm
developed by Tsekouras et al. was used in an implementation provided by the authors 1.

In the evaluated range of ground-truth photobleaching steps, both algorithms were able
to precisely determine the number of expected steps per trace and no trend toward over- or
undercounting was observed for either of the two algorithms (Fig. 4.6a). The overall error in
step identification, defined sum of missed and excess steps over total number of ground truth
steps, was about 5-6 % for both, quickPBSA and the approach by Tsekouras et al.. When
comparing both approaches based on their computational cost, substantial differences were
observed. For quickPBSA the total processing time including preliminary step detection and
trace filtering was on average 4.9±0.1 s (mean±SD) per trace, while the Bayesian approach
by Tsekouras et al. required an average computation time of 76±16 min (mean±SD) per
trace (Fig. 4.6b). This means, that the optimized model refinement step developed in the
quickPBSA framework resulted in an >900x reduced analysis time for the analyzed set of
semi-synthetic traces. Interestingly, no systematic dependence of the runtime on the number
of steps contained in a trace was observed for quickPBSA or the approach by Tsekouras et
al. across the tested range of photobleaching steps. One important difference between the

1Download via https://github.com/lavrys/Photobleach
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Figure 4.5 Photobleaching trace analysis of semi-synthetic data with quickPBSA. Semi-synthetic
traces constructed using data recorded on tetraAT647N samples were processed using the quickPBSA
framework. a-c, Raw intensity traces (gray) and corresponding quickPBSA emitter number estimates
(black) for successfully analyzed traces with 5 (a), 15 (b) and 30 (c) bleaching steps. Emitter numbers
were overlayed with intensity traces using a scaling factor (Section 6.3.5). b,c Insets: Zoom-ins
to trace intervals highlighted in orange. d Fluorophore number estimates using quickPBSA for
varying ground truth fluorophore numbers. Mean±SD. Highlighted values in e shown in matching
colors. Black line indicates ground truth, dashed lines indicate deviation of ±1 from ground truth. e,
quickPBSA emitter number estimate distribution (colored) for selected ground-truth bleaching steps
(dashed lines). Distributions were modeled with a Gaussian distribution (black lines). f Fluorophore
number estimates using KVonly (gray) and local intensity (black) approaches for varying ground truth
fluorophore numbers. Lines as in (d). g, Processing time in dependence of ground truth fluorophore
number. Mean±SD for processing with complete quickPBSA framework (black) and KV only step
(gray). Data produced jointly with Johan Hummert.
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approach by Tsekouras et al. and quickPBSA is that in the quickPBSA framework employs
a filtering step to remove traces, which are unsuited for further interpretation in the model
refinement module. To assess to which degree filtering of traces impacted the overall analysis,
we determined the fraction of successfully analyzed traces at varying trace complexity in the
semi-synthetic dataset described above. This analysis revealed that quickPBSA was able to
successfully process >83 % of all traces across the full range of ground truth photobleaching
step numbers independent of trace complexity (Fig. 4.6c).

Taken together, these data show that quickPBSA is able to robustly estimate the number of
active fluorophores in semi-synthetic photobleaching traces with up to ∼41 fluorophores. Fur-
thermore, it was confirmed that the processing time required for trace analysis is sufficiently
small to allow for processing datasets containing ≫1×103 traces without the requirement
for specialized computation infrastructure, which represents a significant advantages over
prior approaches.

Figure 4.6 Comparison of quickPBSA with a Bayesian photobleaching step detection algorithm.
The performance of both algorithms was compared using a set of 40 semi-synthetic photobleaching
traces with 2-8 photobleaching steps and 3×103 datapoints per trace. a, Fluorophore number esti-
mates (mean±SD)for quickPBSA (cyan) and Tsekouras et al.[123] (magenta) with linear fits to mean
fluorophore number estimates (colored lines). Dashed line: expected number of detected photobleach-
ing steps. b, Comparison of analysis runtime. For both algorithms, the runtime for complete analysis
of individual traces (circles) was determined. Mean±SD indicated by error bars. c, Fraction of traces
successfully evaluated using quickPBSA for varying photobleaching step numbers. Blue line: Linear
fit with slope 3.7×10−4 and R2 0.03. Shaded region: 95 % confidence interval of linear fit. The
complete set of semi-synthetic traces described in Fig. 4.4 was used for analysis in (c).
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4.4 In vitro emitter counting with quickPBSA

In the next step, I sought to confirm the findings made above in an experimental setting using
structures carrying defined fluorophore numbers as targets. I reasoned that in order to achieve
optimal performance for emitter counting with quickPBSA, optimizing the data acquisition
conditions in a way that enabled recording of photobleaching traces with maximum SNR.
In this section, I will therefore first describe a set of experiments performed to optimize
data acquisition conditions with small organic fluorophores in vitro. I will then present
experiments performed to characterize DNA origami which were used as target with known
stoichiometry. In the last part of this section, I will evaluate the performance of quickPBSA
in and previously used algorithms on DNA origami with varying stoichiometry and two
different fluorophores.

4.4.1 Optimizing data acquisition with ATTO647N

The ability of PBSA algorithms to detect step-like intensity decreases in intensity traces
depends on different factors related to both, the algorithm used and the input data that is being
processed. Regarding the parameters of data acquisition, it is clear that higher SNR, simplifies
the distinction of individual steps. Following this assumption, acquisition at the maximum
possible excitation intensity should result in the best possible intensity traces for subsequent
PBSA analysis. However, this would cause fluorophores to photobleach too rapidly to
identify individual bleaching steps. Therefore it is required to find experimental conditions
which provide high enough SNR but avoid rapid photobleaching of all fluorophores in short
time.

An experimental strategy to address these contrary demands, is to choose bright and
photostable fluorophores and to acquire data under conditions, which maximize the photon
budget of fluorophores before they irreversibly photobleach. As explained earlier, this has
been achieved for small organic fluorophores by fluorescence imaging in photostabilizing
buffer systems, which remove molecular oxygen and which contain reducing and oxidizing
agents that promote the transition of fluorophores from metastable dark states into the ground
state (section 2.1). For in vitro validation of quickPBSA, I therefore chose the bright and pho-
tostable organic fluorophore ATTO647N as label for DNA origami in subsequent experiments.
To maximize the photon budget of ATTO647N, I compared different photostabilizing buffer
systems to identify an acquisition buffer with the highest photostability for this fluorophore.
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To compare the photostability of ATTO647N conjugated to DNA in different buffers,
I again made use of tetraATTO647N probes and immobilized them as described in the
previous section (Fig. 4.3). I then chose to compare three photostabilizing buffers, which
differ with respect to the system used to deplete molecular oxygen from solution. For the first
buffer system, I used the well-established enzyme combination glucose oxidase (God) and
catalase (Cat), which consumes molecular oxygen and glucose in a two-step reaction[199].
The GodCat system was found to effectively reduce the concentration of molecular oxygen
dissolved in solution[27]. However, it was also shown that this system is prone to causing
a decrease in pH during prolonged measurement times[28] as well as a difference in the
enzymatic activity of glucose oxidase and catalase which might result in buildup of hydrogen
peroxide. Therefore, I included an alternative enzymatic oxygen depletion system, which is
based on the conversion of protocatechuic acid (PCA) by Protocatechuate-3,4-dioxygenase
(PCD) to β-carboxy-cis cis-muconic acid under consumption of oxygen[200], as second buffer
into my comparison. The PCD oxygen scavenging system was shown to achieve lower
dissolved oxygen concentrations compared to the GodCat system[27]. The third buffer was
based on a recent report which made use of sodium sulfite as oxygen scavenger[201]. Sodium
sulfite NaSO3 reacts with molecular oxygen to form sodium sulfate and was found to be
able to efficiently deplete molecular oxygen from aqueous solution without change in pH
and without the need for expensive enzymes[201,202]. To all three buffers, I added methyl
viologen and ascorbic acid as ROXS components following typical buffer formulations for
single-molecule fluorescence microscopy[32].

To compare the different buffer systems, I acquired time-lapse images in samples with
all three buffer systems as well as in Phosphate buffered saline (PBS) as reference. I then
extracted intensity decays by creating a global mask containing the PSFs of all visible
tetraATTO647N in a FOV and extracting the integrated frame-wise intensity. For all four
samples, I observed a constant decay of overall intensity over time with small variations
between FOVs and experiments (Fig. 4.7a). The observed decays required fitting with a bi-
exponential function indicating a more complex photo-induced reaction system with multiple
processes occurring in parallel (Fig. B.3). Such behavior was also previously observed for
different fluorophores and imaging conditions[203,204]. To compare buffer systems based on a
model-independent metric, I determined t1/2, i.e. the time at which the overall intensity had
decayed by 50 % and normalized t1/2 to an excitation power density of 1 kWcm−2.

While rapid bleaching within seconds occurred for samples imaged in PBS or the photo-
stabilizing buffer based on NaSO3. Addition of ROXS reagents and NaSO3 approximately
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Figure 4.7 ATTO647N photostability in ROXS buffers. tetraATTO647N probes were immobilized
on chambered glass coverslips via biotin-streptavidin linkage at single-molecule density (see 4.3a for
representative images) and imaged in indicated buffers. The intensity over time was recorded from
ROIs obtained by applying an intensity threshold. 640 nm excitation light at 1.26 kWcm−2 average
power density was used for imaging. For each buffer system, a minimum of nine FOVs from two
independent experiments were recorded. a, Intensity decays from each FOV were normalized to the
intensity at time zero and averaged over all FOVs (lines). The standard deviation across FOVs for
each condition is shown as shaded region. Dashed line: t1/2. b, Time to half maximum intensity (t1/2)
corrected for excitation power for individual FOVs (small symbols) and means per experiment (large
symbols). Error bars indicate mean±SD across experiments.

doubled the t1/2 compared to PBS. Considerably slower photobleaching was observed in
buffers with enzymatic oxygen removal, where a 10- to 30-fold improvement of t1/2 for
ROXS supplemented with GodCat and PCD systems, respectively was observed (Fig. 4.7b).
These data suggest that changing the buffer system used for data acquisition from standard
physiological buffers such as PBS to a photostabilizing buffer with enzymatic oxygen re-
moval and a ROXS system should enable recording raw data with substantially improved
properties for subsequent PBSA.

4.4.2 Characterization of DNA origami standards

Due to their defined properties and high stability, DNA origami represent ideal validation
targets for quantitative fluorescence microscopy[156]. Different types of origami are available
for benchmarking microscopes and acquisition schemes with respect to their achieved
resolution and based on the brightness of detected objects[109]. In contrast to other biological
macromolecules or macromolecular assemblies, DNA origami are highly modular and can be
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designed to exhibit different properties such as different physical size or different numbers of
conjugated biomolecules[163]. Their modularity in combination with their low complexity
makes them ideal standard targets with low sample-to-sample variation.

In this study, I used three different types of commercially available DNA origami. All
three origami types had the same rectangular layout with sub-diffraction size (∼70x90 nm)
and were functionalized with a varying number of small organic fluorophores and biotin
(Fig. 4.3a). Fluorophores are typically attached to the DNA origami base through binding
of short complementary DNA oligonucleotides, which each carry individual fluorophores.
By varying the number of complementary oligonucleotides used for labeling the origami
base, the number of fluorophores attached to the base can be controlled. I will refer to the
different origami used here as R09, R20 and R35 to indicate the nominal number of attached
fluorophores per origami and the emission wavelength of the fluorophore used (R - red,
labeling with ATTO647N). Before applying DNA origami as in vitro reference samples for
benchmarking quickPBSA, I sought to confirm the labeling efficiency of 70 % stated by the
manufacturer (GattaQuant, personal communication) with the emitter counting microscopy
technique CoPS (see section 2.3) as well as intensity-based measurements.

I immobilized origami via biotin-streptavidin linkage as described above for tetraATTO647Nprobes.
After deposition of origami on cleaned coverslips, individual origami appeared as bright,
immobile spots in epifluorescence microscopy images (Fig. 4.8b). Before proceeding
with CoPS measurements, I confirmed that the photostability of ATTO647N attached to
DNA origami and imaged in PCD ROXS buffer was similar than previously observed for
tetraATTO647Nprobes. For this, I acquired timelapse image series under illumination intensi-
ties comparable to intensities used for photostability measurements with tetraATTO647Nprobes
(∼2.4 kWcm−2) and extracted the integrated frame-wise intensity around all PSFs visible
in the first frame of an image series. I observed that R09 origami (nominally labeled with
ATTO647N) exhibited a photostability comparable to that of tetraATTO647N probes in PCD
ROXS buffer. R20 and R35 origami exhibited a reduced photostability with t1/2 of ∼50 % of
that observed for R09 and tetraATTO647Nprobes under the same conditions (Fig. 4.8c,d).
While the cause for this observation is unclear, one potential reason is a decreased inter-
fluorophore distance for R20 and R35 (GattaQuant, personal communication). Since the
photostability for all three types of origami was still 15-30-fold increased compared to mea-
surements with tetraATTO647N in PBS, I performed all further measurements with DNA
origami in PCD ROXS buffer.
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Figure 4.8 Design and photobleaching behavior of DNA origami labeled with varying number
of fluorophores. R09, R20 or R35 origami were immobilized at single-molecule density via biotin-
streptavidin linkage and images via widefield fluorescence microscopy in ROXS PCD buffer. a,
Schematic layout of DNA origami templates with approximate physical size of of origami as indicated.
Please note that the shown distribution of binding sites across origami was scrambled to protect
intellectual property by the manufacturer. b, Representative image of a R35 origami sample. Scale bar:
5 µm. c, Averaged photobleaching curves for each origami type. Mean±SD from 10-14 FOVs per
sample. d, t1/2 obtained from bleaching curves of individual FOVs. Error bars: Mean±SD. Samples
were compared using Welch’s t-test.

CoPS has been used before to characterize the number of fluorophores attached to DNA
origami[130] and a previous study established criteria for performing robust emitter counting
measurements with CoPS[198]. I followed these previously established guidelines and per-
formed measurements to determine the label number distribution per DNA origami for R20
origami. After removing individual measurements, which did not yield the required minimum
molecular brightness (Fig. 4.9a), a unimodal label number distribution was obtained. This
distribution was well described by a normal distribution with a mean of 14.6±0.6 (95 %
CI) corresponding to a mean labeling efficiency of 73 % (Fig. 4.9b). This is in excellent
agreement with the expected mean fluorophore number per origami of 14 based on the
provided labeling efficiency of 70 %. The standard deviation of the obtained label number
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distribution determined with CoPS was 5.0±0.4, which is approximately 2.4-fold higher
than expected at 70 % labeling efficiency (Fig. 4.9b, bars above distribution).

Figure 4.9 CoPS analysis of fluorophore numbers on R20 DNA origami samples. Biotinylated
DNA origami were immobilized via biotin-streptavidin linkage and imaged in ROXS PCD buffer
supplemented with 10 mM MgCl2 60 min after buffer addition. 386 pooled traces from 10 positions
from 1 experiment. See methods (Section 6.2.2 for details). a, Distribution of brightness p obtained
from CoPS fitting. Cut-off for trace filtering indicated by dashed line. b, Fluorophore number per
origami after filtering for a minimum brightness of ≥5×10−3. Distribution was modeled with a
Gaussian function (dashed red line). Mean±SD from CoPS measurements (black) and from binomial
distribution assuming 70 % LE (red) shown as dot and horizontal bars above distribution.

After validating the labeling efficiency of the R20 origami, I next investigated if DNA
origami with different nominal numbers of fluorophores per origami exhibit the expected
difference in single-molecule brightness. Assuming binding sites on origami are independent
and labeling procedures across different batches of origami are comparable, it would be
expected that the mean intensity of origami linearly scales with the number of binding sites
per origami. To assess this, I imaged immobilized R09, R20 and R35 origami and localized
signals from origami in images using the thunderSTORM emitter localization framework
(Section 3.4.1). Amplitudes from sub-pixel localization of individual origami were then
used to compare the different origami types based on their emission intensity. For all three
origami types, I observed unimodal distributions, which could be well described with a
Gaussian function (R2>0.9 for all distributions) indicating that origami labeling had occurred
evenly across origami (Fig. 4.10a). I then compared the mean intensity obtained for each
origami type against the nominal number of fluorophores per origami and found that the mean
intensity depended linearly on the nominal number of fluorophores per origami (R2>0.99,
Fig. 4.10b).
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To compare the spread of recorded intensity distributions for each origami type with
the expected spread based on the specified labeling efficiency and the nominal number of
fluorophores for each origami type, I divided origami intensities by the slope of the linear
fit shown in Fig. 4.10b to convert intensities into apparent fluorophore numbers. Based on
this analysis and similar to the previous observations with CoPS, the spread of the intensity
distribution for each origami type was between 1.9- (R09) and 4.0-fold (R35) higher as
would be expected based on a labeling efficiency of 70 %.

Taken together, these results show that all three types of DNA origami evaluated in the
scope of the presented experiments conform with the specified labeling efficiency provided
by the manufacturer.

Figure 4.10 Characterization of DNA origami with 9,20 and 35 binding sites for ATTO647N-
labeled oligonucleotides based on fluorescence intensity. DNA origami were immobilized via
biotin-streptavidin linkage and imaged by epifluorescence microscopy. Individual origami were
identified based on thunderSTORM peak localization and subsequent filtering of candidates based on
their PSF width (100-200 nm). Intensities of individual origami were obtained from thunderSTORM
localization and corrected for pixel size. a, Intensity distributions obtained for each origami type.
Distributions were modeled with a Gaussian function (dashed lines). b, Mean intensity (circles)
per origami against nominal number of fluorophores per origami. Error bars indicate standard
deviation obtained from Gaussian modeling shown in a. Linear fit to mean intensity (dashed line)
and corresponding fitting error (95 % confidence intervals, shaded region) show linear dependence of
mean origami intensity and nominal number of fluorophores per origami. 198 to 546 individual spots
per origami type were analyzed.
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4.4.3 PBSA on DNA origami with up to 35 fluorophores

After having identified improved data acquisition conditions and after having verified the
R09, R20 and R35 DNA origami as suited reference targets, I assessed the performance
of quickPBSA in comparison with the previously described KVonly and local intensity
approaches for PBSA. For this, I acquired photobleaching datasets from all three origami
types in ROXS PCD buffer and processed the obtained data with all three algorithms.

Similar to the intensity comparison of the same set of DNA origami described in the
previous section, I found unimodal fluorophore number distributions for all three origami
types when using quickPBSA. At the same time, the widths of the emitter number distribu-
tions increased with increasing nominal fluorophore numbers (Fig. 4.11a). I further observed
a linear dependence of mean emitter numbers measured with quickPBSA on the nominal
fluorophore number. The linear fit across all three mean emitter numbers revealed that
quickPBSA exhibited a slight tendency (<1 emitter) towards underestimating the nominal
fluorophore number (Fig. 4.11b). The local intensity approach yielded similar results confirm-
ing the linear increase in emitter numbers with the increasing number of nominal fluorophore
numbers (Fig. 4.11c). In comparison to quickPBSA, and the local intensity approach, the
KVonly step detection algorithm showed a systematic trend towards underestimating emitter
numbers with increasing nominal fluorophore numbers.

All three PBSA approaches tended to overestimate the emitter number variability com-
pared to the estimated variability at 70 % labeling efficiency. While for R09 origami the
majority of variability in the emitter number distribution could be explained with the expected
variation due to imperfect labeling, the recovered standard deviations for the origami with
higher label numbers (R20 and R35) were substantially larger than expected (Fig. 4.11d).
Here, the variability in emitter number estimates was highly similar for quickPBSA and the
local intensity approach. Both approaches achievd a slightly higher emitter number vari-
ability for R20 in comparison to the variability achieved with CoPS (Fig. 4.9), but achieved
narrower distributions for emitter numbers when based on intensities alone (Fig. 4.10). I
previously observed that for semi-synthetic data, filtering of traces after preliminary step
detection resulted in ∼17 % of traces being removed (Fig. 4.5). In the case of data acquired
on DNA origami, only a weak decrease in the fraction of successfully processed traces to
∼70 % for R35 origami was observed.
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Figure 4.11 quickPBSA robustly reports the number of fluorophores per DNA origami. DNA
origami with 9, 20 or 35 binding sites for ATTO647N-labeled imager strands were immobilized on
coverslips via biotin-streptavidin linkage and imaged in ROXS PCD buffer. Positions of origami
were determined using thunderSTORM and traces were extracted and processed using the quickPBSA
framework. a, quickPBSA results for each DNA origami class as indicated. Distributions for
each DNA origami class were modeled with a Gaussian function (dashed lines). See Table B.3
for information about sample size and results from Gaussian modeling. b, The observed mean
fluorophore number per DNA origami class depends linearly on the nominal number of fluorophores
per origami. Results from all three DNA origami classes were modeled with a linear fit (black line,
fitting uncertainty - shaded region). Expected mean numbers assuming 70 % labeling efficiency
indicated by dashed line. Errorbars indicate sigma from respective Gaussian fit shown in a. c, Bias
of fluorophore number estimates for different algorithms. Means from Gaussian fits normalized
by nominal number of fluorophores assuming 70 % labeling efficiency. Errorbars: 95 % CI from
Gaussian fits. d, Precision of fluorophore number estimates for different algorithms. Sigma from
Gaussian fits. Expected variance due to limited labeling efficiency indicated in gray. Errorbars: 95 %
CI from Gaussian fits.

Based on the observation made above, I concluded that quickPBSA is suited for emitter
counting in a simplified in vitro scenario where all targets were located on the surface of
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coverslips and were immobilized at low densities. In line with previous observations from
the analysis of semi-synthetic data, the local intensity approach yielded comparable results
to quickPBSA, while the KVonly approach performed considerably worse on origami with
nominal emitter numbers ≥9. I next sought to demonstrate that quickPBSA performs well
on in vitro samples in general by testing if data acquired on different microscopes and with
different fluorophores attached to DNA origami resulted in a similar performance.

4.4.4 Improved throughput via data acquisition with large field of view

In the previous section, I showed that quickPBSA can be used for emitter number estimation
from experimental data acquired on in vitro samples using a setup with a Gaussian illu-
mination profile and a Electron-multiplying CCD (EMCCD) camera for image acquisition
(setup A). For further validation of quickPBSA, I acquired photobleaching data from R09
DNA origami on a second microscope (setup B) equipped with a sCMOS camera for image
acquisition. Setup B employed a refractive beam shaping device to homogenize the excitation
intensity across the illuminated area. To study the effect of flatfielded illumination on emitter
intensities, I imaged DNA origami samples randomly at >60 positions and localized individ-
ual diffraction-limited spots via SMLM analysis. The amplitudes of obtained localizations
were used to determine the relative excitation power density in dependence of the origami po-
sition within the FOV for each setup (Fig. 4.12a). The normalized sector-wise intensities for
setup A revealed a strong positional dependence of detected signal from individual origami
with differences >50 % across the FOV (Fig. 4.12b). In contrast, the signal variations from
individual origami on setup B showed substantially lower variability and no systematic trends
across the FOV. This suggests that quickPBSA might perform better on data acquired from
setup B since this setup introduces less trace-to-trace variation in single step heights during
PBSA than setup A. In addition to this putative advantage in the quality of raw traces, the
sCMOS detector used in setup B also enabled image acquisition with a ∼16.5-fold larger
FOV.

This resulted in a largely (>11x) increased number of photobleaching traces that could
be recorded from an identical sample on setup B, where a typical dataset contained ∼5×102

individual traces/FOV. I compared the results obtained by quickPBSA on raw data from setup
A and B by acquiring a dataset comprised of >2×103 traces from FOVs and processing
extracted traces with quickPBSA as described above. The estimated mean emitter number
per R09 origami of 6.0±2.2 (mean±) obtained from data acquired on setup B exhibited
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a comparable deviation from the expected emitter number of 6.3 based on the previously
determined labeling efficiency as for the data acquired previously on setup A. Interestingly,
also the fraction of successfully processed traces of 75 % was similar as in the previously
processed dataset from setup A. This suggests, that the technical improvements included in
setup B helped to increase the number of photobleaching traces acquired in a given time,
but did not result in narrower emitter number distributions after PBSA analysis. quickPBSA
therefore seems to perform robustly on data acquired with different optical setups and, as
expected, somewhat independent of raw data uniformity.
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Figure 4.12 Characterization of setups A and B and quickPBSA analysis using data acquired
on setup B. Illumination profiles were characterized using images acquired on R20 origami samples,
sector-wise mean intensities of origami were obtained by SMLM analysis. On average, 165±23 and
1410±67 (mean±SD) localizations were detected per sector on setup A and setup B, respectively.
The relative sector-wise mean intensity was computed by dividing sector-wise mean intensities by
the median intensity across all sectors. a, Normalized mean intensity within each sector across FOV.
Scale bars: 20 µm. b, Intensity profiles along horizontal (dashed lines) and vertical (solid lines)
regions indicated in a. For each profile column- (horizontal) or row-wise (vertical) means across
sectors contained in boxes were computed. c, Distribution of fluorophore numbers determined using
quickPBSA on photobleaching traces recorded using setup B. Distribution of fluorophore number
estimates was modeled using a Gaussian function (dashed red line). Data was acquired jointly with
Jonas Euchner.

4.4.5 Importance of fluorophore choice

In addition to ensuring robustness across different microscopes used for data acquisition, it
was also important to test how well quickPBSA could cope with data acquired on samples
labeled with different fluorophores. I therefore decided to evaluate how well emitter counting
with quickPBSA worked on DNA origami samples labeled with the fluorophore ATTO565,
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which exhibits a molecular brightness comparable to that of ATTO647N (Table B.4). To
distribute the available photon budget for ATTO565 to a roughly comparable number of
data points (frames) as in previous measurements with origami labeled with ATTO647N, I
adjusted the exposure time per frame and the illumination intensity in a way which resulted
in similar photobleaching rates per frame (Fig. 4.13,a,b). PBSA with quickPBSA on data
acquired on Y09 origami resulted in an unimodal emitter number distribution, but showed
a pronounced tail toward large emitter number (Fig. 4.13c). The obtained emitter number
per Y09 origami of 7.5±1.5 (mean±SD) was ∼20 % higher than expected for a labeling
efficiency of 70 %, while the fraction of analyzable traces was similar (∼80 %) as for origami
labeled with ATTO647N.

Closer inspection of photobleaching traces extracted from timelapse data revealed that
both fluorophores exhibited more than one fluorescent state with different brightness. This
behavior was distinguishable from transient dark states, i.e. binary switching between a
fluorescent and a non-fluorescent state, since switching of individual fluorophores between
both states was observed before single-step bleaching to background levels (Fig. 4.13d,e).
While the observed changes in brightness were rather frequent for ATTO647N and exhibited
a lower intensity differenceΔI of 24 %, brightness changes occurred less often for ATTO565
and exhibited a substantially larger ΔI of 63 %. If the final photobleaching step in a trace
occurs from the lower brightness state in a significant fraction of analyzed trace, the mean
last step height will be underestimated which in turn would lead to an increase in spurious
steps detected in traces. This observed behavior and the subsequent influence on the emitter
number estimates obtained through PBSA with quickPBSA highlights the importance of
label selection and validation of the experimental system using reference standards with
known stoichiometry.
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Figure 4.13 Characterization of ATTO565 for PBSA with quickPBSA. DNA origami with 9 bind-
ing sites for ATTO565-labeled imager strands (Y09) were immobilized on chambered coverglasses
and imaged in ROXS PCD buffer. a, Normalized photobleaching curves for DNA origami labeled
with ATTO565 (blue) or ATTO647N (orange). Mean (solid line) and SD (shaded region) across ≥12
FOVs per fluorophore. b, Corresponding t0.5 values for each FOV. Error bars: mean±SD across FOVs.
Samples were compared using Welch’s t-test. c, Fluorophore number estimate distribution obtained
from quickPBSA analysis of photobleaching traces from Y09 samples. The obtained distribution was
modeled with a Gaussian function (dashed red line). Expected (black) and measured (red) fluorophore
number distribution for the sample assuming LE=70 % indicated by error bars above histogram. See
Table B.3 for full summary statistics of dataset. d,e, Representative intensity traces recorded from
DNA origami labeled with ATTO647N (d) and ATTO565 (e) imager strands exhibiting multiple bright
states followed by a single final bleaching step. The intensity difference between both bright states,
∆I (mean±SD), was estimated by manually annotating traces (n=6) for each fluorophore.
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4.5 In situ emitter number measurements with quickPBSA

In the last two sections, I described the design principles of quickPBSA and showed that
quickPBSA is suited for emitter number estimation on semi-synthetic data. I also showed that
after optimization of data acquisition conditions, quickPBSA achieved results in excellent
agreement with alternative emitter counting microscopy techniques for data acquired in
vitro on DNA origami reference standards. Based on these results, an accessible counting
range for quickPBSA of up to ∼35 emitters contained in a single structure could be verified
experimentally.

However, several experimental parameters in the vitro experiments described above
differ from conditions typically encountered in cell biological samples. For example, the
DNA origami used as target were deposited on clean coverslips. This resulted in samples
where all clusters where located in the same plane and consequently exhibited relatively low
variations in signals between individual origami. Furthermore, DNA origami samples were
prepared at a low origami density which made identifying individual origami and extracting
intensity traces a straightforward task. This also resulted in negligible crosstalk between the
signals from individual origami. In contrast, cellular samples typically exhibit a complex
three-dimensional organization with protein complexes being located in different planes and
at varying distances to each other. In addition, signal contributions from complexes located
in out-of-focus planes and from complexes located in close proximity to each other will have
to be accounted for. This complicates the localization of individual complexes and makes
background correction an essential step during trace extraction. Finally, the fluorophore used
for labeling DNA origami, ATTO647N, is unsuited for labeling of targets in cellular samples
due to its lipophilicity, which causes fluorescent labels conjugated with ATTO647N to bind
non-specifically to cellular membranes[205].

In this section, I will describe how I addressed these challenges to establish quickPBSA

as a tool for counting of POI copy numbers in protein complexes within cells. In the first
part of the section, I will address the need for alternative labels for in situ protein counting
by PBSA, by comparing different labels with respect to their brightness, photostability and
tendency to populate dark states. In the second part, I will describe how I established and
tested two candidate systems which were recently reported as in-cell reference standards
for benchmarking and calibration of emitter counting microscopy techniques. In the third
part of this chapter, I will describe how the quickPBSA framework was extended to meet
the demands posed by the complexity encountered in cellular samples. Finally, I will show
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that after adaption of the data acquisition and data analysis workflow, quickPBSA was
successfully used to measure protein copy numbers in cellular complexes within cells.

4.5.1 Optimized data acquisition for in situ counting

Ideally, protein counting by fluorescence microscopy should be indifferent to the way a POI
is fluorescently labeled. This way, the easiest possible way to introduce a fluorescent label,
with minimal perturbations of the biological system under study could be chosen. In practice,
however, the properties of fluorescent labels play important roles when selecting a fluorescent
label (section 2.2). For emitter counting by PBSA, the brightness, photostability and the
tendency to exhibit photoblinking are critical to obtain photobleaching traces with high SNR,
well-separated photobleaching steps and few signal fluctuations due to photoblinking. To
identify a fluorescent labeling strategy well-suited for PBSA and compatible for labeling in
cells, I compared different fluorescent labels with respect to their photostability and their
tendency to exhibit photoblinking. The set of compared fluorophores included the three
fluorescent proteins EGFP, mCherry and mNeonGreen and the self-labeling protein tags
SNAPf-tag and HaloTag, which each were evaluated with their respective -SiR and -TMR
ligands. EGFP and mCherry were included since both have been used extensively in previous
PBSA experiments[117]. mNeonGreen was recently reported as fluorescent protein with
improved brightness[206] and could therefore confer advantages for PBSA. SNAPf-tag and
HaloTag were included since both tags bind small organic fluorophores, which tend to exhibit
better photostability than fluorescent proteins and are accessible to further enhancements
with photostabilizing buffers.

The brightness of fluorescent labels has been extensively studied in the literature and
spectroscopic characteristics of fluorophores are often available from databases[64] or in
primary literature[183]. I therefore compared the brightness of labels based on molar extinction
coefficients (ε), quantum yields (Φ) reported in the literature. Whenever possible, I used
values measured in aqueous buffer and, in the case of protein tag ligands after conjugation
to the respective protein tag. Table B.4 provides a detailed overview of values used for
calculation and respective references to published work. To correct for the influence of
excitation light source on the molecular brightness, I determined a correction factor CF =

λex/λabs, which corrects the nominal brightness for mismatches between the peak absorption
wavelength λabs and the excitation wavelength λex. The effective molecular brightness b′ is
then computed as b′ =CFεΦ.
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As shown in Fig. 4.14, the nominal brightness of the different fluorophores tested in
this work varied by more than six-fold between mCherry and BG-SiR, which exhibited
the lowest molecular brightness and mNeonGreen (mNG) which exhibited the highest
molecular brightness among the tested fluorophores for in-situ PBSA. The nominal molecular
brightness of mNG approached the brightness of ATTO647N previously used for in-vitro
PBSA measurements, but limited spectral overlap between its excitation wavelength and
the excitation light sources available in this work led to a reduced effective brightness.
Among the ligands for self-labeling protein tags, TMR ligands for both tags exhibit a very
similar effective molecular brightness after coupling to their respective tags, while for Silicon
rhodamine (SiR), a strong influence of the different protein tags was reported recently[207].

Figure 4.14 Nominal and effective molecular brightness for bio-compatible labels tested in this
work. Molar extinction coefficients and QY were obtained from previous studies. The effective
molecular brightness (light colors) at corresponding excitation wavelengths was computed from the
nominal molecular brightness (dark colors) and a measured correction factor to account for spectral
mismatches. Dashed fluorophores were not tested in cellular samples and are included for comparison
to fluorophores used for in-vitro experiments. See Table B.4 for full list of fluorophore properties and
corresponding references.

Next, I set out to determine the photostability of the panel of selected labels. For this, I
followed the approach described above for ATTO647N (Section 4.4.1) to determine the time
to 50 % intensity decrease, t1/2. To mimic the conditions typically encountered in a PBSA
experiment in cells, I expressed each label as fusion construct with a native protein to target
the label to a known subcellular structure and acquired data after chemical fixation of cells
(Fig. 4.15a). Here, fusion of labels to proteins with known subcellular localization served as
validation control to identify cells successfully transfected and to ensure none of the labels
resulted in aberrant subcellular localization (Fig. 4.15b-e). Because fixed and permeabilized
cells are permeable to buffers, I assumed that despite the fact that fluorescent proteins and
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protein tags were conjugated to different subcellular targets, the environment in which the
fluorophores reside can be assumed to be comparable.

Each fluorophore was characterized in each of the four buffers also used for in vitro
experiments with ATTO647N, which were: 1xPBS, ROXS NaSO3, ROXS PCD, ROXS God-
Cat. To correct for differences in excitation power density used for excitation of fluorophores
with different wavelengths, I corrected the measured t1/2 to 1 kWcm−2 assuming a linear
relationship between bleaching rate and excitation power density.

Figure 4.15 Assay for in situ photostability characterization. a, Eukaryotic cell lines transiently
or stably expressing proteins fused to either fluorescent proteins or protein tags were used to determine
fluorophore photostability in situ. Samples expressing protein tag fusion proteins were labeled with
fluorescent substrates for protein tags prior to PFA fixation. Samples expressing fusion proteins
labeled with fluorescent proteins were fixed with PFA without additional washing or incubation steps.
Samples were then imaged in PBS or ROXS buffers under high intensity illumination matching
the absorption spectrum of the corresponding fluorophore. b-e, Representative images from cells
expressing indicated fluorescent protein or protein tag fusion proteins. For TOMM20-mNeonGreen a
comparable subcellular localization as for TOMM20-mCherry was observed. Scale bar: 10 µm.

Photobleaching under high intensity illumination (0.4 kWcm−2), resulted in a fast loss
of signal intensity for fluorescent proteins within seconds and exchanging PBS for photo-
stabilizing buffers resulted in a further decrease in photostability for EGFP and mCherry
(see e.g. Fig. 4.16a for behavior of EGFP). In PBS, EGFP exhibited the highest photostabil-
ity t1/2: 2.2±0.2 s), with mNeonGreen and mCherry exhibiting t1/2 between 0.6±0.2 and
1.2±0.1 s (Fig. 4.16b). While EGFP showed comparable stability in all three ROXS buffers,
the negative effect on photostability for mCherry was observed to be stronger in ROXS buffer
with enzymatic oxygen removal, possibly due to a stronger sensitivity to changes in pH which
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have been reported for both, the PCD and GodCat system[28]. Interestingly, I observed no
decrease in photostability for mNeonGreen in ROXS buffers. This could be due to improved
stability of mNeonGreen protein structure[206]. Nevertheless, mNeonGreen was found to
bleach about 3-4-fold faster than EGFP in PBS. As previously observed for ATTO647N, all
three fluorescent proteins exhibited bi-exponential intensity decays in all tested buffers again
indicating the complex nature of photobleaching (see Fig. B.2).

Figure 4.16 Photostability of selected fluorescent proteins in ROXS buffers. HeLa or COS-7
cells expressing fusion proteins with EGFP, mNeonGreen or mCherry (see 4.15) were seeded into
chambered coverglasses, fixed with 3.7 % PFA and imaged by widefield fluorescence microscopy in
indicated buffers. 488 nm (EGFP, mNeonGreen) or 561 nm (mCherry) excitation light at 0.4 kWcm−2

and 0.52 kWcm−2 average power density respectively were used for imaging. The intensity over
time was recorded from ROIs obtained by applying an intensity threshold (Section 6.3.6). For each
condition, 7-10 FOVs from two independent experiments were recorded. a, Intensity decays from each
FOV recorded from EGFP samples were normalized to the intensity at time zero and averaged over
all FOVs (lines). The standard deviation across FOVs for each condition is shown as shaded region.
b, Time to half maximum intensity (t0.5) corrected for excitation power for EGFP, mNeonGreen and
mCherry across all ROXS buffer systems tested.

In line with the intensity decay pattern observed above for fluorescent proteins, Tetram-
ethyl rhodamine (TMR) and SiR substrates for SNAPf-tag and HaloTag also exhibited bi-
exponential signal decays upon high intensity illumination in all tested conditions (Fig. B.3).
Extracting t1/2 from the signal decay of TMR and SiR in PBS showed that the photostability
of TMR was comparable to EGFP, while the photostability of SiR was 2-3-fold higher. In
contrast to what I observed for fluorescent proteins, all three tested ROXS buffers had a
pronounced stabilizing effect on both, TMR and SiR. For example, BG-SiR showed 2-fold
increased photostability in ROXS NaSO3 and 10- and 20-fold increased photostability in
ROXS GodCat and ROXS PCD, respectively (Fig. 4.17a). Both dyes exhibited similar
photostabilities after conjugation to SNAPf-tag and HaloTag in PBS and in ROXS buffers.
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The effect of ROXS buffer and enzymatic oxygen removal was more pronounced for SiR than
for TMR (Fig. 4.17b). Overall, SNAPf-tag conjugated with BG-SiR in ROXS PCD buffer
exhibited the highest photostability with an excitation power corrected t1/2 of 120±36 s
which represents a 54-fold improvement over EGFP in PBS.

Figure 4.17 Photostability of TMR and SiR conjugated to SNAPf-tag or HaloTag in ROXS
buffers. HeLa or U2OS cells stably expressing fusion proteins with SNAP-tag or HaloTag (see
4.15) were seeded into chambered coverglasses stained with BG-TMR/SiR (100 nm) or HTL-
TMR/SiR (200 nm) for 120 min, washed and fixed with 3.7 % PFA. Samples were then imaged in in-
dicated buffers by widefield microscopy at 0.52 kWcm−2 (561 nm, BG/HTL-TMR) or 1.26 kWcm−2

(640 nm, BG/HTL-SiR) average excitation power density. The intensity over time was recorded from
ROIs obtained by applying an intensity threshold (Section 6.3.6). For each condition, 7-10 FOVs
from two independent experiments were recorded. a, Exemplary intensity decays from each FOV
recorded from SNAP-tag samples labeled with BG-SiR were normalized to the intensity at time zero
and averaged over all FOVs (lines). The standard deviation across FOVs for each condition is shown
as shaded region. b, Effect of ROXS PCD on photostability. Excitation power-corrected time to
half maximum intensity (t0.5) for PBS and ROXS PCD and each fluorophore/tag combination. Fold
improvement in photostability (median vs. median) as indicated.

For a global comparison of the tested labels and imaging buffers, I compared the reported
molecular brightness against the measured photostabilities (Fig. 4.18). From this graph, it is
clear that none of the labels suited for in-cell labeling via genetic fusion constructs achieves
the combined molecular brightness and photostability of ATTO647N. It is also clear that
the variability in photostability 1×103 across the tested fluorophore - buffer combinations
is substantially larger than the differences in molecular brightness (6-fold). Since the
excitation power densities used for the measurements presented above are at least one order
of magnitude below fluorescence saturation power densities, brightness and correspondingly,
SNR, can be traded against reduced photostability by increasing excitation power. I therefore
reasoned that using more photostable rather than brighter fluorophores represents a promising
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strategy for optimizing data acquisition for PBSA. Following this reasoning, Fig. 4.18
suggests that fluorophore conjugates for SNAPf-tag and HaloTag labeling might be better
suited as labels compared to fluorescent proteins. Among the tested fluorophore ligands,
SiR conjugates showed a 10-100-fold higher photostability compared to TMR conjugates
and would therefore be preferred. The overall low photostability of fluorescent proteins also
indicates that for PBSA on complexes containing large fluorophore numbers, interpretation
of photobleaching trace will be challenging when using fluorescent proteins as labels.

Figure 4.18 Overview of fluorophore brightness and mean photostability for all tested fluo-
rophore and buffer combinations. Fluorophore brightness at indicated excitation wavelengths.
Photostability was measured at different excitation power densities depending on excitation wave-
length and normalized to 1 kWcm−2 (see Section 6.2.5). Symbols and color coding according to
applied buffer composition excitation wavelength.

In addition to photostability and molecular brightness, the propensity of fluorophores
to undergo transitions into temporary dark states with millisecond to >second lifetime can
strongly influence the interpretability of recorded photobleaching traces. To identify labels
and buffers which allowed me to minimize these undesired dark state transitions, I performed
a quantitative evaluation of photoblinking behavior. Since fluorescent proteins had already
exhibited a very low photostability in the experiments described above, I only included
SNAPf-tag and HaloTag each with TMR and SiR ligands and EGFP. Further, as ROXS
PCD had already been identified as the strongest photostabilizing buffer, I performed these
experiments only using PBS (as control) and ROXS PCD buffers. For this set of 10 conditions,
I measured the kinetic rate parameters for transitions between the fluorescent and dark states
using a previously described approach based on image correlation[208]. As samples, I
used the HeLa gSEP cell line described in chapter 3, which enabled me to obtain samples
where SNAPf-tag, HaloTag or EGFP were expressed at single-molecule density to ensure
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that signals emitted by EGFP or HTL/BG-fluorophore could be easily observed by TIRF
microscopy after chemical fixation. On these samples, I acquired image series of 1×103

frames (Fig. 4.19a), computed the temporal Autocorrelation function (ACF) (Fig. 4.19b) and
fitted the ACF with a simplified three-state model of the photoblinking and photobleaching
process (Fig. 4.19c) using MATLAB code provided by Sehayek et al.[208]. This fit then
provided the on- and off-rates, kon and ko f f for transitions between the fluorescent on and
the non-fluorescent off state, which were used as basis to compare photoblinking behavior
between conditions.

Figure 4.19 Principle of image correlation-based photoblinking characterization. a, Image se-
ries recorded on HeLa gSEP cells (a) were used as input data for computing the ACF (b). The obtained
ACF was then fitted to a three state model of photoblinking and -bleaching with rates ko f f , kon and
kpb as fit parameters. d,e Representative fits (dashed) and raw ACFs firstplural (gray) for indicated
combination of fluorophore and buffer exhibiting strong photoblinking (d) and weak photoblinking
(e). Fitted rates are given for each fit. Data shown in (d,e) produced jointly with Jonas Euchner, Yin
Xin Ho and Stanimir Asenov Tashev.

The chosen sample preparation and imaging appraoch yielded well-reproducible ACFs
firstplural across replicates for the different combinations of label and buffer (Fig. B.4).
Only for EGFP, a larger variability of ACFs firstplural computed from samples in PBS was
observed. For EGFP in ROXS PCD buffer, no ACFs firstplural could be computed due
to rapid photobleaching. ACFs firstplural computed from both, samples which exhibited
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strong and samples which exhibited weak photoblinking were well-described by the chosen
fluorophore model (Fig. 4.19d,e).

In PBS, the mean on-time (ton = 1/ko f f ) as well as the mean equilibrium constant
(K = kon/ko f f ) were similar for EGFP and SNAPf-tag conjugated with BG-TMR or BG-SiR
(Fig. 4.20). Exchanging the buffer for fluorophores conjugated to SNAPf-tag resulted in an
increase in ton and K. For TMR- and SiR-ligands conjugated to HaloTag, higher mean kon and
K values were observed in both buffers. Interestingly, a decrease in kon was observed upon
switching from PBS to ROXS PCD buffer for both, HTL-TMR and HTL-SiR conjugated to
HaloTag.

Figure 4.20 Overview of photoblinking tendency. Comparison between equilibrium constant K
(kon/ko f f , mean±SD) and on-time ton (mean±SD) obtained from image correlation experiments
for the indicated conditions. Color coding indicates excitation wavelengths: 488 nm (blue), 561 nm
(green) and 640 nm (orange). See Fig. B.5 for comparison of ko f f and kon for all tested conditions.
22-54 measurements from 2-4 independent experiments per condition. Data was produced jointly
with Jonas Euchner, Yin Xin Ho and Stanimir Asenov Tashev.

The same qualitative behavior was also observed upon visual inspection of single-
molecule intensity traces extracted from samples used for autocorrelation-based analysis of
photoblinking using the quickPBSA candidate ROI detection and trace extraction modules.
Intensity traces from individual EGFP molecules in PBS showed lower signal, frequent
transitions between bright and dark states and tended to irreversibly photobleach within few
seconds (Fig. 4.20a). In contrast, SiR conjugated to SNAPf-tag (Fig. 4.20b) or HaloTag
(Fig. 4.20c) exhibited a photostability similar to that of ATTO647N and only very few dark
state transitions when imaged in ROXS PCD buffer (Fig. 4.20c).

To summarize, I compared different fluorescent labels suited for in-cell labeling which
revealed that self-labeling protein tags in combination with SiR-conjugated ligands represent
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promising labels for in situ PBSA with quickPBSA and presumably also with other PBSA
algorithms. While the brightness of SiR ligands was found to be 2.5- or 9-fold lower than
ATTO647N, the photostability of both ligands was limited to 40-60 % of the stability of
ATTO647N. In comparison, the photostability of EGFP was ∼50-fold lower than that of
-SiR ligands and EGFP exhibited a significantly increased propensity to undergo dark-state
transitions, which makes them less suitable for in situ PBSA.

Figure 4.21 Representative single-molecule intensity traces. Traces for indicated fluorophores
imaged in indicated buffers obtained by TIRF microscopy from chemically-fixed HeLa gSEP without
(a) or after labeling with HTL of BG-SiR (b,c).
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4.5.2 In cell reference target for benchmarking of PBSA approaches

In the previous part I showed that SNAPf-tag or HaloTag in combination with photostable
fluorescent ligands such as SiR and in particular when imaged using photostabilizing ROXS
buffers allow for high-quality in situ data well-suited for PBSA. Importantly, intensity
traces acquired under those optimized conditions in situ approach the quality of traces
generated with ATTO647N in vitro. For the validation of quickPBSA in vitro described in
section 4.4, I used DNA origami with varying numbers of binding sites as reference structure.
However, DNA origami are unsuitable for in cell experiments as they require in vitro
assembly from DNA oligonucleotides and labeling of DNA oligonucleotides with chemistry
that is incompatible with site-specific labeling in complex samples such as eukaryotic
cells[163]. I therefore sought to establish an alternative reference target that could be used for
benchmarking PBSA approaches in cells to verify that improved trace quality for in situ data
acquisition translated into an emitter counting performance with quickPBSA comparable to
that observed in vitro.

Different intracellular targets have been proposed as references for quantitative fluo-
rescence microscopy (see section 2.4). In addition to providing a structure with known
stoichiometry, several practical aspects are important when choosing an in-cell reference
target:

• Complexes should form with high efficiency and low or no dependence on protein
expression level, since removal of incomplete complexes by purification is not possible
when performing validation measurements in cells.

• Complex localization and subunit expression strength should exhibit minimal hetero-
geneity between cells.

• Complexes should exhibit intermediate densities to enable identification of individual
complexes and sufficient sampling.

• Complexes should be sufficiently stable to remain assembled after fixation.

Two potentially suited reference targets which might meet the demands outlined above
were recently suggested by Finan and colleagues and Thevathasan and colleagues. In the first
report, Finan et al. demonstrated that enzyme homo-oligomers with 10-24 protein copies
per complex can be used as in-cell standard for protein-counting applications[168]. In a
second report, Thevathasan et al. proposed to use the eukaryotic nuclear pore complex as
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reference for benchmarking of super-resolution microscopy techniques and as calibration for
quantitative SMLM[92].

To test which of these two in-cell reference complexes was better suited for benchmarking
of emitter counting approaches based on PBSA, I first established and characterized the E.

coli glutamine synthetase homo oligomer following the approach by Finan et al.. I then
compared glutamine synthetase complexes prepared under optimized conditions to nuclear
pore complexes containing labeled NUP107 as an alternative approach.

The structure of glutamine synthetase (GlnA) complexes has previously been determined
by X-ray crystallography and was found to consist of 12 subunits assembled into two stacked
hexameric rings[209]. In this configuration, individual Glutamine synthetase (GlnA) copies
interact with at least three other subunits to form a stable complex with a total molecular
weight of 12x51 kDa. In the previous work by Finan et al., GlnA has been used as standard
in strongly disintegrated cells or after cell lysis[168]. Here, I wanted to find out, if GlnA can
be used as standard in cells after stringent chemical fixation which aims at preserving cellular
ultrastructure.

To address the need for establishing an robust in-cell standard with reproducible properties
across cells and samples, I first addressed the question, whether GlnA complexes assemble in
a reproducible fashion in a population of transiently transfected cells. For this, I transiently
transfected HeLa cells with GlnA-HaloTag, and imaged chemically fixed samples by single-
molecule sensitive widefield fluorescence microscopy.

I observed cells with widely different overall signal levels and diverging staining patterns
(Fig. 4.22a). A subset of cells showed diffraction-limited signals as would be expected for
GlnA clusters and was also observed by Finan et al.[168] (Fig. 4.22a, ’dim’). To determine
if expression levels influenced the efficiency of GlnA-HaloTag complex formation, I used
FACS to separate cells with different expression strengths. Also with flow cytometry, a
large variability in expression strength across three orders of magnitude was observed. Most
cells showed fluorescence signal above the level found in control cells (Fig. 4.22b). This
indicated a high transfection efficiency and specific labeling of HaloTag with HTL-SiR was
achieved. I used FACS to isolate four fractions of transfected cells with overall signals
higher than the signal encountered in untransfected cells and gradually increasing expression
strength (assuming SiR signal correlated with expression strength). From each fraction, I
prepared samples for fluorescence microscopy immediately after cell sorting and manually
scored a random selection of cells according to the observed staining pattern (Fig. 4.22c).
Here, the percentage of cells showing formation of structures with mainly diffraction-limited
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signals (equivalent to cells labeled as ’good’ in Fig. 4.22a) did not exceed 40 % for any of
the sorted fractions. The largest fraction of cells with mainly diffraction-limited signals was
observed in fractions I and II with low overall HTL-SiR signals during sorting (Fig. 4.22c).
In general, increased HTL-SiR signal was correlated with the percentage of cells showing
continuous signal without distinguishable diffraction-limited features. These results indicate
that additional factors beyond the transgene expression strength in a given cell contribute to
observed staining patterns.

Figure 4.22 GlnA-HaloTag expression level and phenotypes vary in transiently transfected
HeLa cells. HeLa cells transiently transfected with GlnA-HaloTag or HeLa wild-type cells were
labeled with 10 nm HTL-SiR for 60 min, fixed with 3.7 % PFA and imaged by widefield fluores-
cence microscopy or subjected to FACS without fixation. a, Representative cells exhibiting different
GlnA-HaloTag expression strength and HeLa wild-type cells. Scale bar: 10 µm. b, FACS analysis
of fluorescence intensity per cell for HeLa cells transiently expressing GlnA-HaloTag (dark gray) or
wild-type HeLa cells (light gray). For each cell type, 1×104 cells were processed and sorted. Vertical
dashed lines indicate FACS gates of fractions I-IV. c, Percentage of cells exhibiting low, good or
bright phenotypes in widefield imaging for each FACS fraction. 50 cells were assessed for fractions
1-3. Fraction 4 contained a large number of non-adherent cells, only 17 cells in total were assessed
for this fraction. Color coding as in a.

To further evaluate the suitability of GlnA-HaloTag as reference target, I reasoned
that stable integration of GlnA-HaloTag into the host cell genome might help to obtain a
cell population with stable expression of GlnA-HaloTag at intermediate expression levels.
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With the help of Florian Salopiata (DKFZ Heidelberg), we therefore created a stable HeLa
GlnA-HaloTag cell line via viral transduction using the Phoenix Ampho system[173]. For
this purpose, GlnA-HaloTag was transferred from its original plasmid where the gene was
expressed under control of a CMV promoter to the pBabe plasmid which was also used
as backbone for viral transduction of gSEP constructs in Section 3.2.1. After transduction,
stably transduced cells were selected using 6.0 µgmL−1 puromycin as selection antibiotic
and a population of cells surviving under selection was obtained two weeks after transduction
(Fig. B.6).

To assess the effect of selection strength with varying concentrations of puromycin
on GlnA-HaloTag expression, I compared selected different cell populations with varying
puromycin concentration and compared the observed GlnA-HaloTag signals by widefield
fluorescence microscopy. Here, I observed considerable cell-to-cell variation in signal
distributions as previously observed after transient transfection and FACS for all tested
puromycin concentrations. No differences for cells selected under 1.5 µgmL−1, 3 µgmL−1

and 6 µgmL−1 puromycin with respect to the median cluster intensity or cluster number
per cell were observed (Fig. B.6). The cell population grown under puromycin selection at
6 µgmL−1 was used for further experiments to exert maximum selection pressure on cells.

Flow cytometry of stably transduced cells after two weeks of puromycin selection
again showed large variability in signal after staining with HTL-SiR indicating varying
GlnA-HaloTag expression levels (Fig. 4.23a). In contrast to transiently transfected cells
directly after transfection, the stably transduced cell population showed two peaks in HTL-
SiR signal, one at low signal strength and a second peak at higher signal strength.

Analogous to experiments performed after transient transfection, I sorted HeLa
GlnA-HaloTag cells into four fractions by FACS and imaged them by widefield fluores-
cence microscopy after fixation. In all fractions, cells with bright, diffraction-limited punctae
were observed (Fig. 4.23c). In contrast to staining patterns observed after transient trans-
fection, fraction I of stably transduced HeLa GlnA-HaloTag cells showed very few and less
bright signals. In fraction IV, cells tended to exhibit increased background signal. The two
intermediate FACS fractions (termed ’low’ and ’high’) showed largest proportion of cells
with bright punctae and were used for further experiments. In the course of further exper-
iments, I noticed that the expression of GlnA-HaloTag over time seemed unstable. While
immediately after sorting, a substantial fraction of cells showed high intensity GlnA-HaloTag
clusters, the fraction of cells containing clusters decreased with increasing age of the re-
spective culture. For example, a culture of unsorted HeLa GlnA-HaloTag cells showed a
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45 % median decrease in the number of GlnA-HaloTag clusters per cell within 30 days under
identical staining and fixation conditions (Fig. 4.23b). This finding was further confirmed
by FACS analysis, where I re-assessed the cell-wise HTL-SiR signal levels observed in the
two intermediate fractions ’low’ and ’high’ 24 days after initial cell sorting (Fig. 4.23d,e).
Within this time, the observed cell-to-cell signal levels broadened considerably beyond the
gates applied during initial sorting and only a mild enrichment of ∼1.6x over the unsorted
population was achieved (Fig. 4.23f).
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Figure 4.23 Stability of GlnA-HaloTag expression in stably transduced HeLa cells over time.
Cells were labeled with 10 nm HTL-SiR for 60 min and subjected to flow cytometry without prior
fixation or to widefield fluorescence microscopy after fixation with 3.7 % PFA. a, Stably transduced
cells were assessed by flow cytometry and sorted into indicated fractions by FACS. b, The number
of GlnA clusters per cell was measured by widefield fluorescence microscopy and SMLM analysis.
HeLa cells stably expressing GlnA-HaloTag were labeled, fixed and imaged at different time points
after initial transduction. As reference, wild-type (wt) cells were labeled and imaged under identical
conditions. Samples were compared using Welch’s t-test. c, Widefield fluorescence microscopy
images of representative cells from FACS fractions shown in b and HeLa wild-type cells labeled under
identical conditions. d,e, FACS analysis of HeLa GlnA-HaloTag cells from low (d) and high (e) gates
cultured for 24 days after sorting. Gates applied during initial sorting highlighted in corresponding
colors. f, Fraction of cells within respective gates for cultures sorted 24 days prior to re-sorting (light
colors) and without prior sorting (dark colors) for low and high expressing fraction.

From these experiments, I concluded that while stable transduction enabled simplified
experiments without the need for repeated transfection, the stable expression levels and low
cell-to-cell heterogeneity in cluster density desired for a robust standard target were difficult
to achieve using GlnA-HaloTag complexes as target.
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Despite the varying expression strength of GlnA-HaloTag after stable transduction, a
subset of cells exhibited expression levels as would be required for use as in-cell standard. I
therefore decided to further evaluate the behavior of GlnA-HaloTag under varying fixation
conditions with the aim to identify sample preparation conditions which minimized back-
ground signal while at the same time avoiding strong disintegration of cells during fixation.
For this, stably transduced and puromycin-selected (6.0 µgmL−1) HeLa GlnA-HaloTag cells
were labeled with HTL-SiR (10 nM, 60 min) and fixed with three different fixation buffers.
The first buffer contained 3.7 % PFA as fixative and was identical to the fixation used for
previous experiments with GlnA-HaloTag shown above. In addition, I tested a high strin-
gency fixation which included addition of GA. The third fixation approach followed previous
experiments by Finan et al. and included a post-fixation extraction step with 0.5 % TX-100to
remove GlnA-HaloTag not immobilized during fixation.

Widefield fluorescence microscopy showed that the overall intensity of cells, the num-
ber of visible clusters and cluster intensities seemed to depend on the specific fixation
protocol (Fig. 4.24a). For a quantitative comparison of GlnA-HaloTag cluster properties
under different fixation conditions, I performed automated imaging of ∼50 cells per condi-
tion and assessed the number and intensity of individual cluster by sub-pixel localization.
GlnA-HaloTag cluster intensities showed a high variability for each of the tested fixation con-
ditions with >20-fold differences in cluster intensity within a single condition (Fig. 4.24b).
Stringent fixation with a combination of PFA and GA resulted in the highest median cluster
intensity almost 2-fold higher than fixation with PFA alone and a tendency towards high
intensity clusters.

On a per-cell basis, I observed that for all three fixation conditions, a range of different
cluster numbers per cell (100-500) could be observed and that also the median intensity of
clusters in single cells varied between cells (Fig. 4.24c). At the same time, the number of
clusters per cells and the mean intensity of clusters per cell varied substantially within each of
the three fixation conditions (Fig. 4.24). Cluster numbers varied from 100-500 per cell. Also
the mean cluster intensity per cell showed ∼500 % spread. On average, stringent fixation
with PFA supplemented with GA resulted in increased median cell-wise cluster intensities.
An additional extraction step after fixation resulted in an increase in detected clusters per cell.
For all fixation conditions, the overall properties of HeLa GlnA-HaloTag cells with respect
to signal intensities and the number of detected clusters were different from wild-type cells
subjected to the same labeling and fixation conditions for the majority of cells. Only cells
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exposed to extraction with TX-100 post fixation, in the number of transfected cells that were
indistinguishable from wild-type cells (Fig. 4.24d).

Figure 4.24 Influence of fixation condition on GlnA-Halo cluster intensity and number. Stably
transduced HeLa GlnA-HaloTag cells were labeled with 10 nm HTL-SiR for 60 min and chemically
fixed in indicated fixation buffers containing PFA or PFA and GA. For indicated conditions, samples
were permeabilized with 0.5 % TX-100 after fixation. Samples were imaged by widefield fluorescence
microscopy and cluster properties were obtained by subsequent SMLM analysis. a, Representative
images from stably transduced HeLa GlnA-HaloTag cells for indicated fixation conditions and HeLa
wild-type cells with 3.7 % PFA fixation. Scale bar: 10 µm. b, Cluster intensities across all clusters
identified in all imaged cells for the indicated conditions. c, Cell-wise cluster number and median
cluster intensity for different fixation conditions (condition indicated by same colors as in a). Gray data
points represent wild-type cells across under identical labeling conditions and all fixation conditions.
For each fixation condition, a two-axis error plot indicates mean±SD cluster intensities and cluster
number per cell. d, Fraction of cells in HeLa GlnA-HaloTag samples with median cluster intensity and
cluster number >95 percentile of corresponding wild-type sample under identical fixation conditions.
Bar represents mean across three samples, error bar represents SD.

I additionally investigated the influence of extraction with TX-100 during fixation by
performing an equivalent analysis of cluster number and cluster intensity in dependence on
TX-100 concentration. For all tested TX-100 concentrations (0.02 %, 0.1 % and 0.2 %), I
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observed a decrease in the cluster number per cell and a dependence of cluster intensity on
TX-100 concentration.

Based on these experiments, I concluded that while it was possible that GlnA-HaloTag
could be used as reference target under selected sample preparation conditions and after
further optimization of GlnA-HaloTag expression, its use as universal reference standard is
limited at the current stage. If the established HeLa GlnA-HaloTag cell line is to be used
as reference standard in the future, the most promising experimental strategy would be to
minimize the time after cell sorting to maximize the fraction of cells in a culture with suited
expression levels. This cell population should then be fixed with PFA supplemented with
TX-100 at low concentrations followed by manual selection of cells for imaging.

As GlnA-HaloTag had therefore been shown to be unsuited as reference standard at
this stage, I then tested if a genome-edited U2OS cell line expressing NUP107-SNAPf-tag
(named NUP107-SNAP hereafter) with a known copy number of 32 per NPC could be used
as alternative reference standard[210]. As recently suggested by others, the nuclear pore
complex is a promising candidate for use as reference standard since it has several desirable
features: The NPC is an essential and endogenous complex in eukaryotic cells. Further the
NPC has an symmetric structure with conserved stoichiometry and its integration into the
nuclear membrane should render it resistant against aggregation during fixation[92,155].

Labeling of U2OS NUP107-SNAP with BG-SiR followed by chemical fixation and
widefield fluorescence imaging revealed the expected nuclear labeling. Due to the stable
genomic integration of the SNAPf-tag fusion protein, consistent staining of nuclei across
many cells was observed. At the equatorial plane of cells, labeling of NUP107-SNAP
resulted in individual pores being visible at the rim of the nucleus (Fig. 4.25a), while imaging
at the basal nuclear membrane revealed individual punctae (Fig. 4.25b). In both cases,
negligible cytosolic background signal was observed. Cross-sections through nuclei at both
axial planes further showed that punctae appeared diffraction-limited and that the intensities
of individual NPCs showed limited variability (Fig. 4.25c). To evaluate the influence of
fixation on the number of detected NPCs per nucleus and on the intensities of individual
NUP107-SNAP, I compared two fixation protocols with and without pre-extraction using
TX-100 using the same SMLM approach used for characterization of GlnA-HaloTag above.
For both fixation protocols, the number and median intensity of clusters in individual cells
showed a low cell-to-cell variations of 10-20 %. However, pre-extraction with 0.5 % TX-100
prior to chemical fixation with 2.4 % PFA as suggested by Thevathasan et al.[92], resulted
in a reduced detected cluster numbers per cell as compared to a fixation protocol without
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pre-extraction (Fig. 4.25d). No differences in the median cell-wise cluster intensity between
both fixation protocols were observed (Fig. 4.25e).

Figure 4.25 Evaluation of NPCs with labeled NUP107-SNAP as standard target. U2OS cells
stably expressing NUP107-SNAP were labeled with 200 nM BG-SiR for 150 min (a-c) or 120 min
(d-f), washed and fixed with 3.7 % PFA or pre-extracted with 0.4 % Triton X-100 and fixed with 2.4 %
PFA. Cells were imaged by widefield fluorescence microscopy in PBS. a, Equatorial section through
nucleus. b, Basal section through nucleus. Scale bar a,b: 10 µm. c, Intensity profiles along boxes
indicated in a,b. Arrow heads indicate putative positions of individual nuclear pore complexes in
profile across basal nuclear membrane. Profiles were normalized to their respective peak intensity.
d,e Influence of sample fixation on cluster number (d) and median cluster intensity per cell (e) in
images of basal nuclear membrane. Circles: results from individual cells. Cluster intensities were
normalized to the respective localization offset to correct for differences in acquisition settings.
Statistical comparisons were performed using Welch’s t-test.

As final comparison between both candidate reference targets, GlnA-HaloTag and
NUP107-SNAP, I compared the detected cluster density and the variability of cluster inten-
sities within individual cells. Both parameters are important since they inform about how
many cells will have to be imaged for subsequent PBSA analysis and about the homogeneity
of complex stoichiometry within cells.
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To compare the density of detected clusters per cell, I segmented whole cells (GlnA-HaloTag)
or the nuclei of cells (NUP107-SNAP) via manual tracing (GlnA-HaloTag) or intensity-based
thresholding (NUP107-SNAP). Different segmentation approaches were required since for
GlnA-HaloTag strong variation of cluster density and cluster intensity complicated identi-
fying robust segmentation algorithm. As noted previously, the density of GlnA-HaloTag
clusters in HeLa cells stably expressing GlnA-HaloTag depended strongly on fixation con-
dition. After fixation with PFA or a combination of PFA and GA, median cluster densities
around 0.2 µm−2 were observed, while extraction with TX-100 post fixation resulted in
reduced cluster densities typically around 0.1 µm−2. To a lesser degree, this was also the
case for the U2OS NUP cell line (Fig. 4.26a). Here, the median density of detected clusters
was around 0.7 µm−2 after fixation with PFA and around 0.6 µm−2 when pre-extraction with
TX-100 prior to PFA fixation was performed. The relative density variability between cells
from the same condition was slightly higher for GlnA-HaloTag and the overall density for
NUP107-SNAP was 2-4-fold higher than the density of detected clusters in GlnA-HaloTag
samples. This is important since a high number of clusters per cell allows for statistically
robust sampling by imaging a small number of cells. At the same time, this also increases
the chance for overlapping PSFs from neighboring clusters.

As final parameter used to compare the behavior of both reference targets, I determined
the variability in cluster intensity. This metric is especially important since it allows to assess
possible variations in cluster stoichiometry. As measure for cluster intensity variations within
and across cells, I made use of the Quartile coefficient of dispersion (QCD), which is defined
as:

QCD =
Q3 −Q1

Q3 +Q1
(4.1)

Where Q1 and Q3 are the first and third quartiles of a given distribution[211]. A lower QCD
indicates less variation within an individual cell, while the spread of QCD values across cells
for a given condition is a measure for cell-to-cell variation. Using this metric, I observed that
GlnA-HaloTag showed substantial QCD variability across cells within individual fixation
conditions and differences between fixation conditions. NUP107-SNAP showed overall
lower QCD and very low QCD variability between cells (Fig. 4.26b).

While GlnA was used as reference standard under non-native cell sample preparation
conditions before[168], the results described above show that using GlnA-HaloTag as refer-
ence standard in intact cells is challenging due to the strong influence of fixation conditions
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on complex density and intensity. Furthermore, the unstable expression of the established
HeLa GlnA-HaloTag cell line over time and the high cell-to-cell variation in expression
strength would have to be addressed further before routine use as reference standard. In con-
trast, NUP107-SNAP appeared to be more suited as reference standard since the cell-to-cell
variability in cluster density and cluster intensity was substantially lower than observed for
GlnA-HaloTag. In addition, the cluster intensity was not influenced by the applied fixation
protocol. The fact that NUP107-SNAP was introduced into U2OS via genome editing also
suggests that the expression strength over time for NUP107-SNAP should be constant. One
disadvantage of NUP107-SNAP as reference standard is the relatively high density of NPCs
on the nuclear membrane which could lead to interfering signal form individual NPCs located
in close proximity. While this potentially complicates subsequent PBSA data analysis, an
adapted candidate ROI identification and trace extraction approach could help to reduce the
impact of partially overlapping PSFs from neighboring clusters.

Figure 4.26 Comparison of GlnA-HaloTag and NUP107-SNAP as standard targets. HeLa cells
stably expressing GlnA-HaloTag or U2OS cells stably expressing NUP107-SNAP were labeled with
10 nM HTL-SiR or 200 nM BG-SiR, fixed as indicated and imaged by widefield fluorescence mi-
croscopy in PBS. a, Comparison of cluster density in HeLa GlnA-HaloTag and U2OS NUP107-SNAP
for indicated fixation conditions. GlnA-HaloTag density was computed using manually determined
cell outlines, NUP107-SNAP density was computed using automatically determined nuclei outlines.
b, QCD of cluster intensity in HeLa GlnA-HaloTag and U2OS NUP107-SNAP for indicated fixation
conditions. a,b Circles: results from individual cells.



4.5 In situ PBSA with quickPBSA 137

4.5.3 Extended workflow is required for in situ counting

After having established that NUP107-SNAP could be used as in-cell reference standard for
validating the quickPBSAframework, I set out to adapt the quickPBSA framework previously
validated in vitro to the more complex image data obtained from in-cell measurements
(Fig. 4.27). As shown in section 4.4 (e.g. Fig. 4.8b), localization of diffraction-limited signals
in images acquired on in-vitro samples was straightforward. In contrast ROI detection and
trace extraction on image stack acquired on cellular samples is considerably more complex as
it is not possible to immobilize target structures at low density and on a planar surface. Instead,
trace extraction in cellular samples has to be able to deal with high emitter densities, partially
overlapping PSFs and elevated background signal due to fluorophores located outside the
focal plane. To enable analysis of cellular samples, the candidate ROI filtering module
was included for selecting suited ROIs based on the localization properties of individual
signals and the local density of localized signals (Fig. 4.27b). This is critical since due to
the variable density of signals encountered in cells, erroneous localizations and localizations
from non-diffraction limited signals are more likely to occur than with data from in vitro
samples. The candidate filtering module also serves to remove candidate ROIs located in
close proximity to other ROIs from further analysis. In addition, the trace extraction module
was extended to enable local background correction of traces. This is crucial since due to
the three-dimensional structure of cellular samples, signal from complexes in other axial
positions may contribute to signal extracted from a given ROI (Fig. 4.27c).
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Figure 4.27 Extended quickPBSA workflow for in situ PBSA. a, Extended quickPBSA workflow
with active candidate filtering module and expanded trace extraction module. b, Candidate filtering
based on sub-pixel localization properties and distance between centroids of neighboring ROIs. c,
Left: Principle of local background subtraction using ring-shaped region (green) with inner radius
rbg1 and outer radius rbg2 around candidate ROI (magenta) shown as dashed lines. Right: Local
background subtraction after removal of regions (blue) overlapping with neighboring candidate ROIs
(magenta). Final background region shown in green.

During manual inspection of results from SMLM-based candidate ROI detection with
thunderSTORM, I observed that unlike for data recorded from in vitro samples, ROI detection
was less reliable for data recorded from NUP107-SNAP expressing U2OS cells. While
in general, SMLM signal detection was sufficiently sensitive to detect the majority of
putative NPC signals, increased background and overlapping signal led to spurious ROI
detection events (Fig. 4.28a-c). Since sub-pixel localization of signals provides additional
information beyond the centroid coordinates, I decided to make use of these information
for removing spurious ROI detection events. NPCs have a diameter of 120 nm[6], which
is below the diffraction limited of typical light microscopes. Thus, the width of the fitted
2D Gaussian function σ can help to identify diffraction-limited signals and to distinguish
them from signals originating from partially overlapping diffraction-limited signals or signals
from structures outside the focal plane2. Setting a lower limit for σ can help removing
spurious ROI detection events originating from noise rather than diffraction-limited signals.
On NUP107-SNAP, candidate ROI filtering based on σ resulted in removal of ∼25 % of

2See also Section 3.4.3 where I applied a similar procedure in the context of labeling efficiency measure-
ments with gSEP.
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initially detected candidate ROIs (Fig. 4.28d), which mainly localized to background regions
(Fig. 4.28b,c).

The random arrangement of complexes within cells will inevitably lead to a fraction of
complexes being localized in close proximity to each other. For these complexes, extraction
of intensity traces via a ROI with fixed size is less reliable since signal from one complex
may contribute to signal in ROI from another complex. To remove complexes for which
such effects could not be excluded, I introduced a spatial filtering routine. This routine
removes ROIs for which the centroid is located closer than a user-defined threshold to the
centroid of neighboring ROIs (Fig. 4.27b). The relatively high density of signals in U2OS
NUP107-SNAP cells, resulted in removal of a majority of candidate ROIs with only ∼20 %
of ROIs remaining after spatial filtering (Fig. 4.28d). While candidate filtering has a profound
effect on the number of NPCs suited for PBSA, we reasoned that including a spatial filtering
step would increase the quality of photobleaching traces substantially and was therefore
necessary for robust emitter counting with quickPBSA. It is, however, also important to
note that despite applying the filtering routines described above, it can not be excluded that
individual ROI contain multiple complexes if they are located at a proximity less than the
diffraction-limit of the microscope used.
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Figure 4.28 Filtering of candidate positions based on localization properties. U2OS cells stably
expressing NUP107-SNAP were labeled with HTL-SiR, fixed and imaged in ROXS PCD buffer
by widefield fluorescence microscopy on setup A. Candidate positions for PBSA were identified
by SMLM analysis. a, Overview image of representative cell with overlayed candidate positions
(colored symbols). Candidates removed based on their localization properties (sigma 100-200 nm,
cyan) and nearest-neighbor distance (<475 nm, magenta) indicated by dots. Positions subjected to
downstream trace extraction highlighted by orange crosses. Scale bar: 5 µm. b,c, Magnified images of
boxed regions in a. d, Fraction of candidate spots remaining after corresponding filtering step. Small
symbols: Results from individual cells, large symbols mean from experiment. Error bar: Mean±SD
across all means from experiments.

The background signal visible between individual diffraction-limited signals in cellular
samples was substantially higher than background signals typically observed on in vitro
samples. From image data acquired on in vitro samples, photobleaching traces with high SNR
could be obtained by extracting frame-wise intensities from ROIs centered on diffraction-
limited signals within images without additional processing. In cells, this approach frequently
resulted in photobleaching traces without discernible step-like intensity changes even after
spatial filtering of candidate ROIs.

Traces can be corrected for local background by subtracting the frame-wise intensity
of a region in close proximity to the target ROI. Here, it is important to make sure that the
background region does not overlap with the PSF of the target itself to ensure that no signal
emitted by fluorophores contained in the target complex contribute to the background signal
(illustrated in Fig. 4.27c, left). In cells, the high density of candidate ROIs usually does
not allow for blind extraction of background intensities from ring-shaped regions as it was
previously done for data acquired on in-vitro samples (Fig. 4.29a,b). I therefore implemented
an adaptive local background correction routine, which takes detected neighboring ROIs into
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account and removes parts of the background region overlapping with other candidate ROIs
(Fig. 4.27c, right). This procedure performed robustly on data recorded on NUP107-SNAP
U2OS cells and produced background ROIs which typically did not overlap with other
diffraction-limited signals (Fig. 4.29c). This adaptive local background correction was found
to be especially important since the intensity decays of background ROIs and candidate ROIs
were indistinguishable, suggesting that the main background contribution originates from
out-of-focus complexes labeled with the same fluorophore (Fig. 4.29d,e).

Figure 4.29 Background subtraction for in situ photobleaching trace extraction. a, Scale bar:
5 µm. b, Magnified views of regions indicated in (a). Central ROI (cyan) and neighboring candidate
positions (orange). c, ROI (cyan) and background region (magenta) ROIs for peak ROI positions
shown above. d, FOV-wise averaged photobleaching curves for peak (cyan, top) and background
(magenta, bottom) ROIs. e, Decay times to half maximum intensity (t1/2) for FOV-wise averaged
peak and background ROIs. Large symbols: mean t1/2 per experiment, small symbols: individual
FOVs. Error bars indicate mean and SD across experiment means.
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4.5.4 NUP107 copy number in human nuclear pore complexes

In the course of the last section I showed how different aspects of an PBSA experiment such
as the choice of fluorophores or buffer systems and routines for extraction of suited intensity
traces from densely-labeled cellular samples can be optimized to improve input data quality.
In the final experiments presented in this chapter, I will make use of this optimized pipeline
for data acquisition to demonstrate the performance of quickPBSA for emitter counting by
PBSA in situ. As validation target for these measurements, I used the gene-edited U2OS
NUP107-SNAP cell line characterized above and labeled SNAPf-tag with BG-SiR. Data was
then recorded in ROXS PCD buffer. Acquired data was processed with the full quickPBSA
framework including the candidate filtering module and trace extraction with local adaptive
background correction.

In raw intensity traces extracted from the recorded dataset without background correction,
virtually no step-like intensity changes could be observed visible (Fig. 4.30a,b). After local
adaptive background subtraction, traces exhibited step-like intensity changes and plateaus
between changes (Fig. 4.30c) indicating that the photostability was sufficient to record
intensity traces amenable for processing by PBSA. However, the SNR of recovered traces was
substantially lower than for previously analyzed traces from in vitro measurements. As first
step to verify that trace interpretation with quickPBSA produced trace models reflecting likely
photobleaching events within traces, I first manually selected a small subset of traces where
individual steps were discernible and compared these traces to the corresponding quickPBSA

model. To facilitate manual comparison between the trace models and raw data, I adjusted
the model trace using a linear scaling factor to minimize differences between raw data and
model (Section 6.3.5). As shown in Fig. 4.30d,e, quickPBSA indeed produced models, which
matched visible features of the underlying raw data trace including photobleaching steps and
transient dark states of individual fluorophores. In contrast to this, step detection with the
KVonly algorithm typically failed to produce reasonable trace models (Fig. 4.30f).
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Figure 4.30 Optimized trace extraction enables extracting traces suitable for quickPBSA pro-
cessing. U2OS cells stably expressing NUP107-SNAP were labeled with 200 nm BG-SiR for 120 min
and fixed with 3.7 % glsPFA as described in Section 6.1.5. Samples were then imaged on widefield
setup A. Identification of candidate trace positions, trace extraction and trace analysis was performed
as described in Section 6.3.5. a, Overview image of representative cell exhibiting nuclear localization
of NUP107-SNAP and diffraction-limited features. Scale bar: 5 µm. b, Photobleaching traces of peak
(cyan) and background (magenta) ROI for individual peak positions. Inset: Zoom-ins of regions indi-
cated in a and used for trace extraction. c, Background-corrected photobleaching traces obtained from
region indicated in a,b exhibit expected step-wise photobleaching. Zoom-ins: time windows around
ultimate photobleaching step highlighted in orange. d-f, Zoom-ins of individual photobleaching traces
from ROIs highlighted in a,b (gray) with corresponding result of emitter number estimation with
indicated algorithm (black). Photobleaching traces were smoothed with a five point running mean
filter for visual inspection.

To test the performance of quickPBSA on a broader scale, I proceeded by performing a
full analysis on a larger dataset. For this, I acquired time lapse images (7×103 per image set)
on U2OS NUP107-SNAP cells prepared as described above to produce a dataset consisting
of 32 cells in two independent experiments. From this data, 6.3×103 traces after candidate
ROI filtering were obtained and subjected to step detection with quickPBSA. On average,
55±9 % of traces were successfully processed (Fig. 4.31a), which was ∼20 % below the
success rate achieved for analysis of recorded on DNA origami. The average processing
time per trace was 100±5 s (Fig. 4.31b), about 10-fold higher than for the benchmarking
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dataset based on semi-synthetic data (3×103 data points per trace vs. 7×103 data points
per trace here). While the number of traces extracted from individual cells varied by more
than four (59-204 traces per cell overall), the average number of detected photobleaching
steps per NPC was relatively constant across cells (21.3±0.9, mean±SD) indicating that
∼60 successfully analyzed traces were sufficient to determine the mean stoichiometry of
NUP107-SNAP in a cell (Fig. 4.31c). In line with the results from individual cells, the
distribution of detected photobleaching steps per NPC across all cells exhibited a unimodal
shape with a mean step number of 21.3±7.6 (mean±SD) (Fig. 4.31d). In contrast, the
local intensity approach for estimating emitter numbers initially present in NPC prior to
photobleaching produced a strongly skewed distribution with two visible peaks and a mean
of 27.1±13.8 (Fig. 4.31e). Since such behavior could be an indicator for the presence of two
NPCs in the extracted ROIs, I modeled both distributions with a coupled double-Gaussian
function (see Section 6.3.5). For quickPBSA, this resulted in a predicted mean fluorophore
number of 10.9±0.2 (95 % CI) and a standard deviation of 3.8±0.3 fluorophores per NPC.
The fraction of ROIs predicted to contain contributions from two NPCs was 83 %. The fit to
the distribution obtained with the local intensity approach resulted in a mean fluorophore
number of 15.7±0.7, a standard deviation of 4.8±0.4 per NPC and a fraction of 45 % ROIs
predicted to contain contributions from two NPCs.
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Figure 4.31 quickPBSA provides robust NUP107-SNAP copy numbers in situ. NUP107-SNAP
in gene-edited U2OS cells was stained 10 nM HTL-SiR for 120 min, fixed in 3.7 % PFA and imaged
in ROXS PCD buffer. Two independent experiments were performed with one experiment shown
in cyan and one experiment shown in magenta. a Fraction of successfully analyzed traces per cell.
Large symbols correspond to experiment mean. Median±SD across experiment means indicated
by error bar. b, Cell-wise mean computation time per trace. Symbols as in (a). c, Top: Number of
successfully analyzed traces per cell. Bottom: Mean±SD (circles, error bars) photobleaching steps
per NPC per cell from corresponding cell in plot above. Dashed line and shaded region indicate
mean±SD across all NPCs from all cells. d, Distribution of photobleaching steps per trace detected
with quickPBSA in successfully analyzed traces (3.5×103) pooled from two experiments. Red lines:
linked double-Gaussian model fitted to distribution. R2

adj: 0.98. e, Estimated fluorophore number
from local intensity approach on identical set of traces processed with quickPBSA in (d). R2

adj for
linked double Gaussian fit: 0.92
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4.6 Discussion

In the previous chapter, I described the development of quickPBSA as data analysis frame-
work for counting fluorescent emitters by photobleaching step analysis. After validation
of the trace interpretation pipeline using semi-synthetic data with known ground-truth, I
showed that quickPBSA provides robust emitter number estimates by measuring the number
of fluorophores attached to DNA origami. These initial experiments suggested that the
accessible counting range for quickPBSA was at least up to 35 emitters in experimental data
and that the achieved speed-up in processing time required per trace was high enough to
process large datasets (>1×103 traces) within hours on a standard desktop computer.

To translate the findings regarding the performance of quickPBSA to counting of POI
copy numbers in protein complexes within cells, I optimized the data acquisition conditions
for cellular samples. This was done by comparing different fluorescent labels with respect
to their photostability and tendency to undergo photoblinking between the fluorescent and
transient dark states. The trace extraction approach was adapted by applying a filtering step to
remove unsuited ROI from further analysis and by establishing an adaptive local background
correction to address the largely increased sample complexity encountered in cells.

Testing two proteins for use as reference standard showed that NUP107, a component
of the nuclear pore complex, is a suitable validation target for in situ measurements. Using
a genome-edited U2OS cell line expressing NUP107-SNAP, I finally demonstrated that
quickPBSA could be used for emitter counting on diffraction-limited structures inside eu-
karyotic cells. In the following, I will provide a discussion of technical aspects of relevance
for the results described in this chapter.

In contrast to several other previously published approaches for PBSA, quickPBSA was
validated with both, simulated and experimental data. Provide us with an objective picture
of the performance that can be expected for target complexes with unknown numbers of
protein copies. In addition, the benchmarking datasets generated in this study based on
semi-synthetic traces with known ground-truth and from experimental data recorded on
DNA origami, can also be used for benchmarking of alternative PBSA approaches. Here, a
comprehensive comparison of different algorithms with respect to the achieved precision,
bias and computational cost would help to make recommendations regarding the choice of
PBSA approach for future biological studies. Benchmarking with semi-synthetic data and
experimental validation recorded on DNA origami could also serve as base for an in-depth
study of the dependence of quickPBSA performance on input data properties. Systematic



4.6 Discussion 147

variations of the temporal sampling of photobleaching traces, the number of data points and
the SNR of traces can be performed in a controlled fashion using both types of data sources.
This way, conditions which reduce the demand on data acquisition (and correspondingly
the size of raw data) and potentially also conditions which improve the precision of emitter
number estimates by quickPBSA could be identified.

No ground-truth information or independent validation with alternative emitter counting
techniques was available for the in-situ emitter counting experiment, where I determined
the number of NUP107-SNAP labeled with BG-SiR in individual NPCs inside eukaryotic
cells (Section 4.5.4). However, in this case an independent validation of the results obtained
with quickPBSA comes from labeling efficiency measurements described in chapter 3. Here,
the number of NUP107-SNAP copies labeled with BG-SiR per NPC (10.9±3.8, mean±SD)
should correspond to the product of the known copy number of NUP107 per NPC (32x)[212]

and the labeling efficiency. For labeling of SNAPf-tag with BG-SiR at a concentration of
200 nM and a ligand incubation time of 2 h as was used for labeling of U2OS NUP107-SNAP,
saturated labeling with an average labeling efficiency of 36±10 % (mean±SD) across
different cell types was observed (Section 3.6.2, Table 3.1). Hence, the expected number of
labeled NUP107-SNAP per NPC based on the known labeling efficiency of 10.9±3.8 is in
excellent agreement with the values reported by quickPBSA. In addition to this finding, which
further supported that quickPBSA represents a promising tool for in-situ emitter counting by
PBSA, further interesting observations were made in the course of this chapter.

In section 4.5.1, I showed that switching from fluorescent proteins as labels to self-
labeling protein tags in combination with data acquisition in photostabilizing ROXS buffers
drastically improved the quality of photobleaching traces. Based on the data presented above,
it is likely that the full potential of PBSA for emitter counting has not yet been reached.
Further optimization of labeling and data acquisition, e.g. by exchanging the fluorophores
used here with fluorophores exhibiting a higher molecular brightness could lead to further
improvements in trace quality and thereby help to extend the accessible counting range
of PBSA. For example, in Section 3.6.3, I compared different ligands for SNAPf-tag and
HaloTag with respect to their achieved labeling efficiency and identified HTL-JF646 as a
promising alternative ligand. In comparison to SiR, JF646 was reported to exhibit a 40 %
increase in molecular brightness[183]. An interesting alternative approach for increasing the
photostability and reducing photoblinking was developed in the form of so-called self-healing
fluorophores[213]. These fluorophores are conjugated directly to redox reactive agents, which
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led to increased photostability and reduced photoblinking, while maintaining the molecular
brightness of the fluorophore itself[214,215].

In this context, it is important to mention that the performed comparison of fluorophore
photostabilities was performed at different excitation power densities for fluorophores excited
at different wavelengths due to limitations in available excitation light sources. Subsequent
normalization to an adjusted excitation power density enabled me to compare different
fluorophores. However, it is known that the applied excitation power density can influence
the rate of photobleaching in a non-linear fashion[216,217]. For this reason, a more detailed
investigation of optimal excitation power densities, which maximize the photon output per
fluorophore before irreversible photobleaching could help to maximize the trace quality for a
chosen fluorophore and imaging condition.

In Section 4.5.2, I characterized the dodecameric E. coli enzyme complex GlnA and the
nucleoporin NUP107 located in the nuclear pore complex of mammalian cells to determine
if these proteins could serve as in-cell standard for benchmarking PBSA approaches. For
the characterization of GlnA I first established a transgenic HeLa cell line stably transduced
with GlnA-HaloTag by viral transduction. During subsequent experiments with this cell
line, I observed that stable expression of GlnA-HaloTag was difficult to achieve although the
chosen strategy for viral transduction allowed me to readily obtain stable HeLa gSEP and
LynG as described in chapter 3 and even though selection of cells with the selection antibiotic
puromycin was highly effective. One potential reason for this behavior might be the fact that
GlnA is a metabolically active enzyme which catalyzes the condensation of glutamate into
glutamine under Adenosine triphosphate (ATP) consumption. It might therefore be favorable
for cells to suppress the expression of GlnA-HaloTag or formation of active complexes.
In addition, the localization of GlnA in the cytosol led to a large variability of observed
GlnA-HaloTag cluster numbers and intensities depending on the chosen condition during
chemical fixation. Both of the observed characteristics, make GlnA-HaloTag a challenging
in-cell reference standard with limited usability under selected conditions.

In contrast, NUP107-SNAP exhibited a largely different behavior in that it exhibited
stable expression after genomic integration, low susceptibility towards stoichiometry changes
during chemical fixation and, most importantly, a low complex intensity variability across
complexes and across cells. However, emitter counting of NUP107-SNAP with quickPBSA

revealed that the majority of ROIs used for extraction of photobleaching traces likely con-
tained intensity contributions from two individual NPC. This was despite the use of the
candidate ROI filtering module of quickPBSA and despite the adaptive background correc-
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tion approach implemented in the trace extraction module (Section 4.5.3). Since the high
density of NPC in the U2OS NUP107-SNAP cell line used here was already noticed during
evaluation of the cell line, this finding is not entirely surprising and in line with previous
reports that characterized the density and distribution of NPC on the nuclear envelope of
eukaryotic cells[218–220]. A similar behavior was also reported when attempting to count the
number of NUP133 copies in NPCs of U2OS cells with IBC and the fluorescent protein YFP
as label[168]. One possible approach to reduce the crosstalk between adjacent nuclei would
be to apply a more stringent candidate ROI filtering at the cost of reducing the number of
traces obtained per cell.

Since in-cell standards are crucial for validation of quantitative fluorescence microscopy
techniques, the observations made here motivate the development of alternative targets. Based
on the observations made above, desirable features of candidates would be: a density of
≪1 µm−2, absence of enzymatic activity in eukaryotic cells, absence of specific interaction
partners in eukaryotic cells and the potential to be targeted to an organellar membrane
or cytoskeletal filaments to facilitate efficient immobilization during fixation. A possible
starting point for the evaluation of further reference standards is the prokaryotic 19.4 kDa
protein ferritin (FtnA), which assembles into stable 24-mer complexes[221]. Ferritin is
commonly used as standard in cryo-electron microscopy and was also suggested as standard
in fluorescence microscopy[168]. Furthermore, targeting of the assembled ferritin oligomer
to the membrane of cells by addition of a signaling peptide was demonstrated[222]. As
alternative strategy an entirely new in-cell standard could be developed by building on recent
advances in the design of artificial proteins[223,224].

Finally, the quickPBSA approach to PBSA can be directly compared with alternative
approaches for emitter counting by fluorescence microscopy based on data acquire in the
course of this study. In section 4.4, I used CoPS to characterize DNA origami, which were
subsequently also used for emitter counting experiments with quickPBSA and the local
intensity approach. These measurements can therefore serve as a direct comparison of the
performance of all three approaches for measurements on in vitro samples. Here, CoPS,
achieved a slightly lower variability (14.6±5.0, mean±SD), than quickPBSA (14.2±6.3,
mean±SD). In contrast to quickPBSA and CoPS, emitter counting based on emission intensity
along requires an additional intensity standard to relate intensities to absolute fluorophore
numbers. To give an estimate about the precision that can be achieved with such an approach,
the local intensity approach used above can be considered. For this approach, a variability
comparable to that of quickPBSA (15.0±6.4, mean±SD) was observed. However, this
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approach for intensity-based emitter number quantification does not rely on calibration with
an external standard contained in a different sample and therefore likely was able to achieve
a precision and bias better than what would typically be achieved with external standards.
Finally, Thevathasan et al. recently performed emitter counting experiments with quantitative
SMLM on nuclear pore complexes[92]. In these experiments, the copy number of NUP107
per NPC was determined by comparison with a reference standard in a second cell line and
the cell-to-cell variability of the estimated number of NUP107 per NPC was found to be 8 %.
For quickPBSA a similar degree of cell-to-cell variability of 4 % was observed for counting
of NUP107-SNAP.

To conclude, our newly developed PBSA framework quickPBSA was shown to perform
well in vitro and inside cells. As part of this work I have systematically optimized differ-
ent parameters and validation standards to identify conditions that allowed us to perform
successful PBSA measurements in cells. The analysis framework is openly available and
together with the optimized labeling and imaging conditions described here can now serve as
a validated tool for PBSA for future experiments and other researchers.
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The characterization of macromolecular complexes with respect to their composition
and function remains a key area of cell biological research. Ideally, information about
the composition, stoichiometry and distribution of complexes within cells should be avail-
able to advance our understanding of complexes and their individual components. While
fluorescence microscopy can in principle provide these information at the single-particle
level, the need for fluorescent labeling and the need to convert fluorescent signals into ab-
solute fluorophore numbers complicate quantitative assays aimed at elucidating complex
stoichiometries. In this study, I presented two techniques that address these limitations of
fluorescence microscopy and which, in combination, provide access to protein complex
stoichiometry at the single-complex level and within cells.

In the first project presented in chapter 3, I described the implementation and validation
of an improved version of the gSEP approach for measuring absolute labeling efficiencies
by single-molecule colocalization analysis using the data analysis framework DOLanalysis.
Based on this pipeline, I showed that the self-labeling protein tags SNAPf-tag and HaloTag are
limited in their ability to bind fluorescent ligands and that labeling efficiencies approaching
100 % could not be reached with either tag under the tested conditions. By systematically
varying ligand concentration and reaction time, I found conditions where maximum labeling
efficiency was achieved while minimizing non-specific background signal to negligible levels.
This observation is very valuable, since labeling under these conditions will minimize the
influence of slight changes in labeling conditions on achieved labeling efficiencies thereby
increasing the robustness of labeling. Beyond this in-depth study of SNAPf-tag and HaloTag,
the gSEP approach now enables routine measurements of labeling efficiencies upon labeling
of target proteins with self-labeling protein tags. This contributes to efforts to improve the
quantitative rigor of fluorescence microscopy techniques for cell biology.

Even though I identified combinations of protein tag, fluorescent ligands and labeling
conditions, which improved the achieved labeling efficiency to up to 65 %, the question what
limits the maximal labeling efficiency for HaloTag and SNAPf-tag remains. The fact that
multiple reports by others support my findings suggests that more general mechanisms limit
the ligand-binding efficiency of both tags. Identifying and potentially addressing the cause
for limited labeling efficiencies for SNAPf-tag and HaloTag is therefore a pressing issue
for future studies given the widespread use of both tags and their otherwise very favorable
properties for quantitative fluorescence microscopy. One possibility is that cellular factors
might compete with the fluorescent ligand for the binding site in self-labeling protein tags.
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Mass-spectrometry experiments could help to assess such a potential blocking of the catalytic
center, by identifying cellular factors bound to individual amino acids in the catalytic center.

It was recently reported that fluorophores attached to SNAPf-tag or HaloTag fused to
different POI resulted in different signal intensities[207]. Based on this study, it remained
unclear to which degree this effect can be attributed to changes in fluorophore brightness or
labeling efficiency. In its current implementation gSEP reports on the labeling efficiency
achieved in the cytosol of eukaryotic cells. However, the general approach of single-molecule
colocalization analysis can in principle be extended towards other cellular organelles such
as the endoplasmatic reticulum or mitochondria. For labeling efficiency measurements in
other subcellular compartments a different image acquisition modality capable of single-
molecule detection away from the coverslip might be required. Promising examples for
potential microscopy techniques could be single-objective light sheet systems[225,226] or
(spinning-disk) confocal microscopy[227].

The second project presented in chapter 4, described the development of the PBSA
framework quickPBSA for emitter counting based on the identification of discrete intensity
changes in intensity traces upon single-fluorophore photobleaching. The established approach
was demonstrated to have an accessible counting range up to at least 35 emitters. In contrast to
many previous approaches to PBSA, validation of quickPBSA was performed using simulated
data as well as experimental data recorded from complexes with known stoichiometry
and labeling efficiency. In comparison to a previous algorithm for advanced PBSA[123],
the computational performance of quickPBSA was improved more than 100-fold without
loss in accuracy, enabling future users to process large datasets on a standard desktop
computer. A comparison with alternative emitter counting techniques further showed that
quickPBSA achieves a precision comparable to that of emitter counting techniques based
on photon antibunching and SMLM. As a calibration-free, robust and thoroughly validated
emitter counting approach without the need for specialized instrumentation, quickPBSA puts
routine measurements of protein complex stoichiometries in cell biological applications into
perspective.

Overall, it is clear that in order to further improve emitter counting by PBSA, two com-
plementary routes can be followed. First, it is likely possible to further improve the quality
of input data by identifying brighter and more photostable fluorescent ligands for protein
tags[228,229] or further optimization of buffer conditions during acquisition. A second route
towards improved PBSA approaches lies in the possibility to develop new algorithms for
trace interpretation and photobleaching step detection. In this respect, the semi-synthetic
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approach to quickly generate a large number of artificial photobleaching traces with high
emitter numbers, realistic fluorophore behavior and known ground truth, opens exciting
possibilities towards the development of novel approaches for trace interpretation based on
machine learning. A recent report demonstrated that automated identification of photobleach-
ing steps with convolutional neural networks is feasible[230]. While this approach was only
able to discriminate between traces with up to four photobleaching steps, the availability of a
large set of annotated ground truth data might enable to extend the counting range of such an
approach.

On a broader level, the developments presented in the course of this work provide the basis
for future studies in two general directions. First and foremost, the combination of calibrated
labeling with self-labeling protein tags and fluorophore counting with quickPBSA provides a
ready-to-use approach for measuring complex stoichiometries in biological samples with
subcellular resolution and single-complex sensitivity. While quantitative fluorescence mi-
croscopy has become an increasingly used tool in cell biology during the past yearsrefs, many
approaches are still difficult to implement and require specialized equipment and dedicated
expertise. Both, the gSEP approach for measuring labeling efficiencies and the quickPBSA
framework can be applied using equipment available to many non-expert laboratories through
imaging facilities and thereby help to make quantitative fluorescence microscopy available to
a broader user base.

While gSEP and quickPBSA were developed as two independent approaches, they readily
benefit from each other due to the fact that both approaches were developed around self-
labeling protein tags as excellent labels for single-molecule fluorescence microscopy. The
labeling procedures and data acquisition conditions for SNAPf-tag or HaloTag identified
in the course of this study provide a good starting point for establishing emitter counting
assays based on gSEP and quickPBSA in cell biology. In this context, I showed that it is
possible to determine the labeling efficiency for a given set of labeling conditions given a
set of multi-color images from few (∼10) cells expressing the gSEP construct. This opens
up the possibility that gSEP cells used for calibration could be spiked into samples before
labeling is performed to directly measure the labeling efficiency within a sample without the
need for additional control samples.

While the developments presented in this study contribute to the growing toolbox available
to fluorescence microscopists, further developments will be needed to transform fluorescence
microscopy from a mainly qualitative technique into a truly quantitative approach, which
readily reports on the quantity and distribution of individual molecular species.
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One key aspect in that regard is the development of novel labeling strategies with fur-
ther improved properties. While labeling kinetics and spectroscopic properties are readily
available, the reachable labeling efficiency is often not well understood even for many la-
bels commonly used in fluorescence microscopy today. In that respect, the gSEP approach
represents a promising platform for comprehensive labeling efficiency studies since the
DOLanalysis data analysis framework is compatible with a wide range of fluorescent labels
and thereby ideally suited for comparing different labeling approaches. It will be interesting
to see how alternative labels such as for example new protein tags[78,79,231,232] or peptide tags,
which were recently reported to achieve relatively high labeling efficiencies[81,233] perform in
systematic studies as were performed here for SNAPf-tag and HaloTag. In this context, also
the evaluation of labeling schemes based on bioorthogonal chemistry and genetic code expan-
sion is a timely issue[234–236]. In the past years, a growing number of available chemistries
for conjugation of small-molecule fluorophores to proteins via unnatural amino acids was
reported[84,237–239]. However, for almost none of these approaches robust and comprehensive
studies of labeling efficiencies that can be reached in live cells have been reported to date.
Finally, the ongoing developments of new small-fluorophore ligands for SNAPf-tag and
HaloTag motivate further comprehensive studies of additional ligands. Many of these ligands
were shown to exhibit favorable properties such as improved brightness or photostability and
sometimes even fluorogenic properties upon binding to protein tags[229,240,241]. If high label-
ing efficiencies comparable to those achieved with SNAPf-tag and the BG-SiR ligand can be
reached, these labels would represent ideal candidates for emitter counting microscopy via
PBSA and alternative emitter counting techniques such as counting by photon statistics[127].

Improved labeling efficiencies will also become increasingly important due to recent
developments of new concepts for super-resolution fluorescence microscopy that are ap-
proaching molecular-scale resolution[242–246]. Here, the density of labels attached to the
imaged structures will have to match the increase in resolution to facilitate sufficient sampling
at high resolution[247–249]. For this reason, novel fluorescent labels with improved efficiency
and concomitantly techniques for benchmarking labeling approaches will be critical.

As long as the ability of fluorescence microscopy to resolve the precise location of
individual fluorophores in routine applications is limited to scales above the size of individual
molecules, additional techniques to infer the number of fluorophores contained in dense
structures from the fluorescence signal are required. This means that emitter counting
techniques will likely remain important tools for cell biology in the years ahead. Still,
developments towards integrating quantitative information obtained by emitter counting with
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additional information to improve the spatial resolution. Towards this goal, Bleaching and
blinking-assisted localization microscopy (BALM) was developed as an alternative approach
to SMLM[250]. While the current implementation of BALM provides images improved
resolution, it might be possible to follow this approach to obtain high-resolution information
in addition to emitter numbers. The fact that photobleaching in contrast to shelving of
fluorophores in transient dark states is an irreversible process might even lead to advantages
of BALM over other SMLM approaches for obtaining molecular numbers in addition to
high-resolution images.

Future developments in fluorescence microscopy for biomedical research will largely
depend on close collaboration across disciplines to come up with further improved labeling
schemes, optical instrumentation and algorithms for data analysis. This study followed this
approach by making use of fluorophore chemistry, single-molecule sensitive microscopy and
automated data processing, to develop tools for quantitative studies of protein complexes,
which will help to bring us one step further towards understanding the intricate processes
that organize life at the nanoscale.
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Chapter 5

Materials

5.1 Reagents

5.1.1 Plasmids

All plasmids used in this study were previously used in peer-reviewed studies or were directly
obtained from commercial sources. Table 5.1 provides an overview of all plasmids used and
their respective sources.

Table 5.1 Plasmids used in this study.

Name Source Reference

pTOM20-HaloTag Wombacher lab1 Hauke et al.[251]

pHaloTag-H2B Wombacher lab Hauke et al.[251]

pH2A-HaloTag Wombacher lab Hauke et al.[251]

pH2A-EGFP-HaloTag Wombacher lab

pTOMM20-mCherry-HaloTag Wombacher lab Werther et al.[252]

pmNeonGreen-TOMM20 Allele Biotech Shaner et al.[206]

pGlnA-HaloTag Heilemann lab2 Finan et al.[168]

1Max-Planck Institute for Medical Research, Heidelberg
2Goethe University Frankfurt
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5.1.2 Cell lines

Table 5.2 provides an overview of transgenic cell lines used in this study. The procedures
used to generate stable transgenic cell lines in the course of this study are described in
Section 6.1.2. All cell lines expressing gSEP or LynG constructs as well as the HeLa
GlnA-HaloTag cell line were cultivated under Puromycin selection (1.5 µgmL−1).

Wild-type HeLa cells were obtained from ATCC, wild-type Huh7.5 and H838 cell lines
were obtained from the laboratory of Prof. Ursula Klingmüller (DKFZ Heidelberg) and
U2OS wild-type cells were obtained from the laboratory of Dr. Jan Ellenberg (EMBL
Heidelberg). COS-7 wild-type cells were obtained from the laboratory of Dr. Richard
Wombacher (Max-Planck Institute for Medical Research, Heidelberg).

Table 5.2 Transgenic cell lines used in this study.

Parent line Transgene Source Reference

Huh7.5 gSEP Siegfried Hänselmann1 Dissertation[174]

Huh7.5 LynG Siegfried Hänselmann Dissertation[174]

HeLa gSEP Florian Salopiata2 Dissertation[253]

HeLa LynG Florian Salopiata Dissertation[253]

H838 gSEP Florian Salopiata Dissertation[253]

H838 LynG Florian Salopiata Dissertation[253]

HeLa GlnA-HaloTag Florian Salopiata

U2OS NUP107-SNAP Ellenberg lab3 Li et al.[210]

5.1.3 Protein tag ligands

Ligands for SNAP-tag or HaloTag were obtained from different commercial and non-
commercial sources listed in Table 5.3. Janelia Fluor (JF) ligands for both tags were
synthesized from N-Hydroxysuccinimide ester (NHS-Ester)-functionalized dyes (gift of
Luke Lavis, Janelia Research Campus, US) and amine-functionalized BG or HTL linkers
(Dominik Brox, Heidelberg University). First, 50 µL dye-NHS-Ester (2 mgmL−1) were
mixed with 5 mg BG- or HTL-amine dissolved in 150 µL Dimethylformamide (DMF) and
20 µL N,N-Diisopropylethylamine (DIPEA) was added. Reaction mixtures were incubated

1Heidelberg University
2DKFZ Heidelberg
3EMBL Heidelberg
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on a shaker for 3 h at room temperature. The formed conjugates were separated from educts
via HPLC and the success of reaction was confirmed via mass spectrometry for all four
conjugates. Purified conjugates were stored in DMF at −20 °C. Coupling, purification and
characterization of HTL- or BG-functionalized JF549 and JF646 was performed by Felix
Braun (Herten lab, Heidelberg University).

Table 5.3 Protein tag ligands used in this study.

Name Alternative name Source

HTL-TMR Promega
HTL-SiR SiR-Halo Johnsson lab1

HTL-AF647 Halo-O2-AF647 Ries lab2

HTL-JF549 this study
HTL-JF646 this study

BG-TMR TMR-Star NEB
BG-SiR SiR-SNAP Spirochrome
BG-AF647 Ries lab
BG-JF549 this study
BG-JF646 this study

5.1.4 Fluorescently-labeled oligonucleotides

DNA origami labeled with AT647N or AT565 were obtained from Gattaquant DNA Nanotech-
nologies, dissolved in 0.5x TBE buffer (89 mM Tris base, 89 mM boric acid, 2 mM EDTA)
supplemented with 11 mM MgCl2 and stored at −20 °C until further use. tetraATTO647N
or DNA oligonucleotides labeled with a single AT647N as described in Grussmayer and
Herten[51] were obtained from biomers.net and stored in 1xPBS at −20 °C.

5.1.5 Chemicals & Consumables

All chemicals were obtained from Sigma-Aldrich unless indicated otherwise and stored
according to manufacturer’s recommendations. Reagents for cell culture were obtained from
Gibco unless indicated otherwise.

1Max-Planck Institute for Medical Research, Heidelberg
2EMBL Heidelberg
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5.2 Fluorescence microscopes

Widefield fluorescence microscopy was performed on two separate microscope setups de-
scribed below. Unless noted otherwise, setup A was used for experiments.

5.2.1 Widefield setup A

Setup A was built around an inverted Nikon TI-Eclipse microscope stand equipped with
a total internal reflection illumination unit, a motorized nosepiece, an autofocus system
(PFS2, all Nikon) and a motorized XY-stage (Marzhäuser). A fiber-coupled multi laser
engine (MLE-LFA, TOPTICA Photonics) equipped with 405 nm, 488 nm and 640 nm diode
lasers and a 561 nm Diode pumped solid state (DPSS) was fed into the microscope stand
through the TIRF illumination unit and used for sample excitation. A quadband dichroic filter
(Di01-R405/488/561/635, Semrock) was used to direct excitation light towards a 100x 1.49
NA Apo TIRF oil immersion objective (Nikon) and to separate emitted light collected by the
objective from excitation light. Remaining excitation light was further removed by directing
the emitted light through a quadband notch filter (AHF Analysetechnik) placed between the
dichroic filter and the tube lens (Nikon). Emitted light was then directed through a motorized
filter wheel (FW102C, Thorlabs) and a 3-color image splitter (Optosplit III, Cairn) before
being focused onto a back-illuminated EMCCD camera (iXon Ultra 897, Andor). The image
splitter was equipped with exchangeable spectral beam splitters and bandpass filters to enable
simultaneous multi-color imaging. The motorized filter wheel was equipped with 525(50) nm,
605(70) nm, and 690(70) nm bandpass filters (all AHF Analysetechnik) to enable automated
multi-color imaging. The back-projected pixel size in the sample plane was 96 nm. Excitation
lasers and camera were synchronized via Transistor–transistor logic (TTL) signals from the
camera which were forwarded to the laser engine via a microcontroller board with analog
in- and output channels (Arduino Uno, arduino.cc). All motorized components of the setup
were controlled using the µManager software package[177]. To enable quantitative imaging,
the camera’s electron-multiplying (EM) gain as well as the output power of the 488 nm,
561 nm and 640 nm laser lines and their spatial illumination profiles were characterized
(Fig. 5.1). The resulting maximum illumination power densities for each laser lines are given
in Table 5.4.
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Figure 5.1 Characterization of illumination power, gain conversion and illumination profile
for setup A. a, Transmitted excitation laser powers at different nominal laser output intensities.
Linear fits to show linear dependence of measured and nominal laser intensities. b, The effective
camera gain for the employed EMCCD at different nominal gain settings determined as described
in Section 6.2.1. Inset: Linear fit of determined effective gain against nominal gain to show linear
dependence of effective and nominal gain. R2 values for all fits shown >0.99. c, Illumination profiles
for different excitation lasers. Illumination profiles were fitted with a 2D Gaussian function. Axes and
corresponding profiles along axes indicated in magenta and cyan. Dashed and solid lines indicate
FOVs for full camera sensor (512x512 pixel) and central quarter of the camera sensor (256x256 pixel)
using the 1.5x magnification tube lens, respectively.
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Table 5.4 Illumination profile parameters of setup A. Full-width at half maximum (FWHM) values for
axes as shown in Fig. 5.1. Fraction of illumination light within indicated regions in Fig. 5.1. Average
illumination power densities were calculated using the transmitted laser power and the fraction of
illumination light in the respective regions.

488 nm 561 nm 640 nm

FWHMx [µm] 97.4 74.0 57.5
FWHMy [µm] 99.0 79.4 63.9

Fraction256 [%] 19.8 29.8 41.1
Fraction512 [%] 57.7 74.6 87.0

Illumination power density256 [kWcm−2] 0.56 0.83 2.39
Illumination power density512 [kWcm−2] 0.40 0.52 1.26

5.2.2 Widefield setup B

Setup B was built around an inverted Axiovert 200 microscope stand (Zeiss). A 647 nm
Continuous-wave (CW) fiber laser (2RU-VFL-P-2000-647, MPB Communications) was used
as excitation light source. The laser was first passed through a half wave plate (Thorlabs)
and an Acousto-optic tunable filter (AOTF) (AOTFnC-Vis-TN, AA Opto-Electronic)and
then expanded to 6.0 mm diameter (1/e2). The Gaussian beam profile of the laser was
converted into a top-hat profile using a refractive beam shaping device (πShaper 6 6 VIS,
AdlOptica)[254] and further expanded to a diameter of 47 mm. The expanded and collimated
beam was then focused onto the back focal plane of a 100x NA 1.49 oil immersion objective
(Apo TIRF, Nikon) using a 500 mm achromatic doublet lens. Light emitted by the sample was
collected through the same objective and separated from excitation light using a quad-band
dichroic filter (R405/488/561/635, Semrock) which was also used to direct the excitation
laser into the objective. Reflected excitation light was removed from the emission beam
path by insertion of a quad-band notch filter (405/488/561/647, Semrock) and additional
spectral filtering using a 700(50) nm bandpass filter (CHROMA). Finally, the remaining light
was focused onto a back-illuminated scientific Complementary metal-oxide-semiconductor
(sCMOS) camera (Prime 95B, Photometrics) using a 150 mm lens. The back-projected pixel
size of 107.6 nm in the sample plane was determined using a micrometer ruler and the pixel
size calibration plugin of µManager. The sample was placed on a motorized three-axis stage
(MS2000) and kept in focus using an autofocus system (CRISP, both Applied Scientific
Instrumentation) which used the back-reflection of a Light-emitting diode (LED) emitting at
850 nm to maintain the distance between coverslip and objective during image acquisition.
The camera and the AOTF were synchronized using a microcontroller board (Arduino Mega,
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arduino.cc). All microscope components were controlled using the µManager software
platform[177]. Microscope setup B was designed and implemented by Jonas Euchner under
my supervision with help from Felix Braun.

5.2.3 Custom confocal scanning fluorescence microscope

CoPS measurements were performed on a custom-built confocal microscope. The setup was
built around an inverted microscope stand (Axiovert 100, Zeiss), a ps-pulsed laser diode
emitting at 640 nm (LDH P-C-640B, PicoQuant) operated at 20 MHz repetition rate and four
single-photon sensitive Avalanche photodiodes (SPCM AQR-13, Perkin-Elmer). Linearly
polarized light emitted by the laser diode was circularized using a quarter wave plate before
being coupled into a single-mode polarization maintaining fiber (Schäfter Kirchhof). The
excitation light was then directed towards a 100x NA 1.45 objective (Alpha Plan-Fluar, Zeiss)
using a dichroic mirror (z532/640, CHROMA). Light emitted by the sample was collected
by the same objective and passed through the dichroic filter. Scattered excitation light
was removed using a quad-band notch filter (488/532/631-640 nm, AHF Analysetechnik).
Remaining emitted light was then spatially filtered using a 100 µm pinhole placed in the focal
plane between two achromatic doublet lenses ( f =75 mm, Thorlabs) which in turn were
place at 2 f distance. All remaining light was split into four equal paths using three 50:50
beamsplitters and focused on the four APDs using achromatic doublet lenses ( f =200 mm).
685(70) nm bandpass filters were place in front of each APD. Signals detected by the
APDs were processed using a multichannel time-correlated single photon counting system
(HydraHarp400) and the SymPhoTime 64 software platform (both PicoQuant). The position
of objective and sample were controlled by a one-axis piezo scanner (P-721 PIFOC) and a
two-axis piezo stage (7332CD, both Physik Instrumente). The two axis piezo stage was also
used for stage scanning during image acquisition.
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Methods

6.1 Sample preparation

6.1.1 Cell culture

Unless stated otherwise, the protocols for culturing and cryo-preservation described below
were used for all cell lines used in this study.

Adherent mammalian cells were cultured in complete growth medium consisting of
phenol red-free Dulbecco’s modified eagle medium (DMEM) supplemented with 10 % FBS
(Australia origin), 20 mM and 1 mM sodium pyruvate (all Gibco/Thermo Fisher Scientific)
at 37 °C, 5 % CO2 and in humidified atmosphere. Either T-25 culture flasks (Sarstedt) or
tissue culture dishes (TPP) were used for routine culturing. Upon reaching 80 % confluence
or after three days, cells were subcultured by detaching cells from dishes and reseeding them
into fresh dishes. Cells were detached by aspirating growth medium from cells, washing
them once with 1xPBS and incubation with TrypLE™ Express (Gibco) for 3-5 min. TrypLE
was inactivated by addition of two volumes complete growth medium and cells were pelleted
by centrifugation for 5 min at 500x g. TrypLE and growth medium was aspirated from the
pelleted cells and the pellet was resuspended in complete growth medium. Cells were then
seeded at a density of 6-8×103 cm−2. Stably transduced cells were additionally exposed to
selection antibiotics indicated in Section 5.1.2.

For long-term storage of cell lines, cells were seeded into tissue culture dishes (TPP) and
grown for at least 24 h and to ∼80 % confluence in complete growth medium at 37 °C, 5 %
CO2 and in humidified atmosphere. Cells were then detached from dishes using TrypLE™
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Express as described above and resuspended in complete growth medium containing 10 %
DMSO. Cells were then gradually cooled to −80 °C at a cooling rate of −1 °Cmin−1 and
transferred to the vapor phase of liquid nitrogen tanks for long-term storage.

Cryo-preserved cells were thawed by agitation of frozen vials in a water bath at 37 °C.
Thawed cells were then plated in tissue culture dishes containing 10 volumes complete
growth medium. The growth medium was replaced 24 h after plating.

6.1.2 Preparation of stable cell lines

Transgenic cell lines stably expressing gSEP or LynG were generated by retroviral transduc-
tion using the Phoenix ampho retroviral transduction[173] system and the plasmids pBABE-
Lyn-HALO-linker-SNAPf (gSEP) and pBABE-Lyn-GFP (LynG) generated by Siegfried
Haenselmann (Heidelberg University) together with Florian Salopiata (DKFZ Heidelberg).
The pBabe plasmid backbone confers transgene expression under control of the 5’ long
terminal repeat (LTR) of Moloney murine leukemia virus[255]. The Phoenix Ampho system
employs a modified HEK293T cell line stably expressing the retroviral env and gag-pol
proteins for helper-free production of replication-incompetent viral particles after transient
transfection with plasmids carrying psi packaging sequences[173].

Plasmids were transfected into the Phoenix ampho virus packaging cell line by calcium
phosphate precipitation for 6 h to produce replication incompetent virus particles later used
for transduction. Virus was harvested 24 h after transfection by filtering through 0.22 µm
syringe filters. Huh-7.5, H838 or HeLa cells were transduced by spin transduction at 340x g
for 3 h. Selection of transduced cells with puromycin was started 24 h after transduction. Huh-
7.5 cell lines gSEP and LynG were generated by Siegfried Haenselmann[174]. Transgenic
H838 and HeLa gSEP and LynG cell lines were generated by Florian Salopiata[253]. Huh-7.5
and HeLa gSEP and LynG cell lines were sorted by FACS as described in Section 6.1.3 to
obtain cell lines with expression levels suited for single-molecule imaging.

Full-length expression of gSEP and LynG constructs in the established cell-lines was
verified by Western blot. Cells were lysed in RIPA buffer (0.05 M Tris pH 7.4, 150 mM
NaCl, 2 mM EDTA, 2 gL−1 sodium deoxycholate, 1 mM Na3VO4, 5 mM NaF, 2 % NP40,
2 µgmL−1 AP, 200 µgmL−1 AEBSF) on a rotator for 30 min and by sonication on ice. Insol-
uble cell fragments were removed by centrifugation (20000x g, 10 min) and the supernatant
was denatured in sample buffer (64 gL−1 SDS, 40 mM Tris pH 7.4, 8 % glycerol, 12.3 gL−1

DTT, 0.16 gL−1 bromophenol blue, 20 % 2-mercaptoethanol) for 2 min at 95 °C. Samples
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were then separated on a 10 % sodium dodecyl sulfate polyacrylamide gel. For immunoblot-
ting, denatured samples were transferred from SDS gels to polyvinylidene fluoride (PVDF)
membranes while immersed in Laemmli buffer (14.4 gL−1 glycine, 3 gL−1 Tris, 1 gL−1

SDS) in a Hoefer TE 77 transfer unit (Amersham Biosciences) for 1 h at 260 mA. After
transfer, membranes were blocked for 1 h in TBS-Tween buffer (150 mM NaCl, 10 mM Tris
pH 7.4, 0.2 % Tween-20) supplemented with 5 % BSA and incubated with primary anti-GFP,
anti-His6 (both Cell Signaling) or anti-actin (Sigma-Aldrich) in TBS-Tween supplemented
with 1 % BSA overnight at 4 °C. The next day, membranes were washed in TBS-Tween,
incubated with secondary antibodies conjugated with horseradish peroxidase (Dianova) for
1 h at room temperature and washed with TBS-Tween. Membranes were then covered with
a 1:1 mixture of ECL buffers A (0.1 M Tris pH 8.5, 1.1 mgL−1 luminol, 0.185 mgL−1 p-
coumaric acid, 1 % DMSO) and B (0.1 M Tris pH 8.5, 0.018 % H2O2) and incubated for
1 min. Chemiluminescence generated during oxidation of luminol by horseradish peroxidase
was detected on a ImageQuant LAS4000 imaging system (GE Healthcare). Western blots
were performed by Florian Salopiata.

A transgenic HeLa cell line stably expressing GlnA-HaloTag was established by excising
GlnA-HaloTag from pGlnA-HaloTag and inserting it into the multiple cloning site of pBabe-
M3-puro[253] to generate pBabe-GlnA-Halo. A stable HeLa cell line was then generated
using the Phoenix ampho system as described above. All cloning and transductions for this
cell line were performed by Florian Salopiata.

6.1.3 Flow cytometry

Analytical flow cytometry and FACS was performed with a FACSAria III cell sorter operated
using FACSDiva software version 8.0.1 (both BD Biosciences). Before sorting, cells were
detached from culture dishes as described above, resuspended in 1xPBS and additionally
filtered through a cell strainer (Thermo Fisher Scientific) to remove cell aggregates. Gating
for live cells was then performed based on front and side scatter signal resulting in approxi-
mately 40 % of events being discarded. Sorting was then performed based on fluorescence
signal upon 488 or 633 nm excitation for EGFP- and SiR-labeled samples respectively. For
analytical flow cytometry, typically 10×104 cells per condition were analyzed. Sorted cells
were collected into tubes containing pre-warmed complete growth medium supplemented
with penicillin (100 UmL−1) and streptomycin (100 µgmL−1). Cells were transferred to cul-
ture dishes as soon as possible and cultured in complete growth medium with penicillin and



172 Methods

streptomycin for the next seven days. The flow cytometer was maintained and operated by
the ZMBH flow cytometry & FACS core facility (Heidelberg University) and all experiments
were performed under supervision of Dr. Monika Langlotz.

6.1.4 Labeling of cells expressing protein tag fusion proteins

Labeling of protein tags in living cells

Cells expressing SNAPf-tag or HaloTag fusion proteins were labeled with varying ligands
at variable concentrations and incubation times. Conditions used for specific experiments
are stated in the description of individual experiments below. After labeling, cells were
washed four times in full growth medium pre-warmed to 37 °C by carefully replacing all
medium in a sample with fresh growth medium and incubating samples for 15 min (first two
washes), 45 min (third wash) or 5 min (fourth wash) at 37 °C and 5 % CO2. Samples were
then chemically fixed as described below (Section 6.1.5).

Preparation of U2OS NUP107-SNAP samples

Genome edited U2OS cells expressing NUP107-SNAP were seeded into 8-well chambered
coverslips (Nunc, Thermo Fisher Scientific) at a density of 8×103 cells per well in 250 µL
complete growth medium and grown for 24 h. Cells were then labeled with 200 nM BG-SiR
for 120 min at 37 °C. After labeling, cells were washed twice with complete growth medium,
followed by three extended washes (2x30 min, 1x60 min) with complete growth medium at
37 °C. Samples were fixed in 3.7 % electron microscopy-grade PFA for 30 min as described
in Section 6.1.5.

6.1.5 Chemical fixation of adherent cells

Before fixation, samples were washed once with pre-warmed 1xPBS. Samples were then
fixed in 3.7 % PFA (v/v in 1xPBS) for 30 min followed by three washes (3x5 min) in 1xPBS.
Fixative solutions were prepared by either preparing 3.7 % PFA solutions in 1xPBS by
dissolving PFA powder in 1xPBS at 60 °C under addition of 1 M NaOH followed by adjusting
the pH to 6.8 by addition of HCl after PFA had dissolved or by diluting a 16 % solution of
electron microscopy grade PFA (electron microscopy grade, Science Services GmbH) with
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5xPBS, and distilled H2O directly before use. Fixative solutions were pre-warmed to 37°
before addition onto samples.

All incubation steps during fixation were performed at room temperature and protected
from light. Samples were either imaged directly after the last washing step or stored at 4 °C
protected from light for up to 24 h before imaging.

6.1.6 Preparation of single-molecule surfaces

Samples for in vitro single-molecule fluorescence microscopy were prepared by specific
immobilization of biotin-functionalized biomolecules onto chambered coverglasses. First,
8-well LabTek chambered coverglasses were cleaned by repeated incubation with 0.1 M
hydrofluoric acid for 30-60 s followed by washing with millipore-filtered water (3x after
each hydrofluoric acid incubation). Cleaned chambered coverglasses were incubated with a
20:1 mixture of BSA and biotinylated BSA (5 mgmL−1 total concentration in 1xPBS) for
at least 30 min at room temperature (RT) or over night at 4 °C. Unbound BSA/BSAbiotin

was removed by repeated washing with 1xPBS. BSA-coated surfaces were incubated with
Streptavidin (100 µgmL−1 in 1xPBS) for 20 min at RT and washed three times with 1xPBS.
Biotinylated biomolecules were added at increasing concentrations (typically 0.1-10 nM) and
surface coverage was determined via single-molecule TIRF microscopy. After the desired
surface coverage was reached, unbound probes were removed by repeated washing with
1xPBS. Final washes of single-molecule surfaces carrying DNA origami were washed in
1xPBS supplemented with 10 mM MgCl2. Prepared surfaces were directly imaged or stored
at 4 °C for up to 48 h.

6.1.7 Preparation of photostabilizing ROXS buffers

Photostabilizing buffers were prepared according to previously published procedures[129,201].
All buffers were prepared from a base solution (50 mM phosphate buffer, 13.5 mM KCl,
0.685 M NaCl, 10 mM MgCl2, 12.5 % v/v glycerol) adjusted to pH 7.4. Before addi-
tion of ROXS reagents, oxygen was removed from the base solution by flowing Argon
through it for at least 20 min. 1 mM paraquat dichloride and 1 mM ascorbic acid served
as reducing/oxidizing agents and were freshly dissolved in 1xPBS before addition. For
oxygen removal, 10 mM NaSO3 (ROXS NaSO3), 50 nM protocatechuate-3,4-deoxygenase
(>3 Umg−1) and 2.5 mM of protocatechuic acid (ROXS PCD) or 0.66 MD-Glucose, 5 kU
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catalase, 40-80 U glucose oxidase and 1 mM Tris(2-carboxyethyl)phosphine (ROXS God-
Cat).

6.2 Microscopy

6.2.1 Characterization of microscopes

Transmitted power at varying wavelengths were measured with a handheld optical power
meter (Thorlabs) placed in the optical beam path at the sample position with immersion
oil and a type #1 cover glass placed on the objective. Illumination power densities were
determined by measuring the transmitted power after the objective and normalization to the
illuminated area. The illuminated area was determined by recording >10 images at different
positions from a homogeneous dye solution after replacing the 1.5x magnification tube lens
with a 1x tube lens to increase the back-projected pixel size. Images were averaged and fitted
with a two-dimensional Gaussian.

The effective gain of the EMCCD camera used in widefield setup A was calibrated
according to single point mean variance test following published procedures1.

6.2.2 Counting by photon statistics

Fluorophore numbers per immobilized DNA origami were determined on DNA origami
immobilized as described above ??. 20-30 min before starting measurements, ROXS PCD
buffer was added to samples and sample chambers were sealed using Parafilm while making
sure that no air bubbles remained trapped between buffer and Parafilm. CoPS measurements
were then performed on a custom confocal microscope described in Section 5.2.3. For each
sample, overview scans with a pixel size of 80 nm were acquired at maximum scan speed
and with an excitation intensity of 1 µW to select positions for pointCoPS measurements.
Overview images were processed with a custom-written ImageJ macro making use of the
thunderSTORM localization microscopy package[178] to determine the position of local
maxima with sub-pixel precision. The coordinates of detected maxima were then transferred
to SymPhoTime 64 using a Python script. Time-correlated single photon counting (TCSPC)
data was acquired for 3 s at each coordinate at an excitation intensity of 10 µW for 3 s. A

1https://www.photometrics.com/learn/calculators



6.2 Microscopy 175

second overview scan after TCSPC data acquisition was performed to ensure that samples
remained in focus during measurements.

6.2.3 Labeling efficiency measurements with gSEP

Variation of labeling conditions across incubation times, concentrations and cell lines

Experiments were performed with H838, HeLa or Huh7.5 cell lines stably expressing gSEP or
LynG. Labeling was done live cells according to the protocol described above (section 6.1.4)
with incubation times of 15, 30, 60 min, 3, 16 h and ligand concentrations of:

• BG-SiR: 0 nM, 0.5 nM, 5 nM, 25 nM, 50 nM, 250 nM, 500 nM, 1250 nM

• HTL-TMR: 0 nM, 0.1 nM, 1 nM, 5 nM, 10 nM, 50 nM, 100 nM, 250 nM

Samples were fixed in 3.7 % PFA as described above (Section 6.1.5) and imaged in
serum-free DMEM.

Evaluation of live-cell compatible fluorophore ligands

BG-TMR, HTL-SiR, BG/HTL-JF549 and BG/HTL-JF646 ligands were evaluated in Huh7.5
gSEP and LynG cells with samples being labeled before fixation and and fixation with 3.7 %
PFA as described above (section 6.1.4). All ligands were tested at concentrations of 1 and
10 nM (HaloTag ligands) or 5 and 100 nM (SNAPf-tag ligands). A constant incubation time
of 30 min was used for all samples. Samples were fixed in 3.7 % PFA as described above
and imaged in serum-free DMEM.

Comparison of pre- and post-fixation labeling

Experiments were performed with HeLa gSEP and LynG cell lines. HaloTag and SNAPf-tag
tag were labeled with varying concentrations of HTL-TMR or BG-SiR for 30 min in living
cells or after fixation in 3.7 % PFA (w/v in 1xPBS) for 40 min. All washing steps were
performed identically for both types of samples and as described in section 6.1.4. Images
were imaged in serum-free DMEM.
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AF647 ligands

Cells were seeded in 8-well LabTek chambered coverslips at a density of 6×103 cells per
well in 250 µL complete growth medium 24 hours before fixation. Samples were fixed in a
3-step protocol described in Thevathasan et al.[92]. First, samples were pre-fixed in fixation
buffer (2.4 % PFA (v/v in 1xPBS) for 30 s. Then, cells were permeabilized for 3 min in 0.4 %
Triton X-100 (v/v in 1xPBS) and finally fixed for 30 min in 2.4 % PFA (v/v in 1xPBS). After
fixation, samples were quenched in 100 mM NH4Cl (w/v in 1xPBS) for 5 min and washed
twice in 1xPBS for 5 min each. Before labeling, samples were incubated with Image-iT FX
Signal Enhancer (ThermoFisher Scientific) diluted 1:2 in millipore-H2O for 30 min.

Labeling with HTL-SiR, HTL-AF647 and BG-AF647 was performed in labeling buffer
(0.5 % BSA, 1 µM DTT in 1xPBS) for 120 min at room-temperature, protected from light.
After labeling, samples were washed three times with 1xPBS and three times with 1xPBS
with 30 min incubations between buffer replacement. Samples were stored at 4 °C before
imaging and imaged in PBS.

Data acquisition

Data was acquired on widefield setup A (Section 5.2.1) in TIRF mode. Unless stated
otherwise, samples were imaged with the following settings: exposure time: 50 ms, emGain:
100, excitation intensities (measured at objective back focal plane): 10.6 mW (640 nm),
3.4 mW (561 nm), 6.9 mW (488 nm).

For each spectral channel, image stacks with 20 frames were acquired. Channels were
acquired in reverse order of the excitation wavelength (from 640 nm to 488 nm) to avoid
bleaching of fluorophores prior to imaging. Fluorophores in the 561 nm excitation channel
were photobleached after image acquisition (2 min of constant 561 nm illumination at 17 mW)
to reduce energy transfer by FRET from EGFP during acquisition of the 488 nm channel.

Data shown in Section 3.6.5 (AF647 ligands) was acquired at 200 ms exposure time, 130
emGain and with excitation intensities of 2.6 mW (488 nm) and 21.2 mW (640 nm).

6.2.4 Photobleaching step analysis with quickPBSA

Data for photobleaching step analysis was acquired in ROXS PCD buffer for all samples.
DNA Origami data was acquired with 2.4 kWcm−2 average laser power density at 640 nm
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for R09, R20, R35 and with 0.84 kWcm−2 average laser power density at 561 nm for Y09
origami. NUP107 data was acquired with 1.2 kWcm−2 average laser power density at
640 nm. Exposure times were 50 or 200 ms for all measurements. Unless stated otherwise,
all data was acquired on widefield setup A.

6.2.5 Fluorophore photostability characterization

The photostability of different fluorophores and the influence of ROXS buffers on the blinking
and photostability of fluorophores was evaluated by recording time-lapse data from samples
labeled with the corresponding fluorophore upon high intensity excitation. The stability
of AT647N was evaluated using biotinylated DNA oligonucleotides labeled with AT647N
immobilized as described in Section 6.1.6. TMR and SiR ligands for SNAP-tag and HaloTag
were evaluated in fixed cells using cell lines expressing NUP107-SNAP or GlnA-HaloTag
labeled as described in section 6.1.4.

The stability of EGFP, mCherry and mNeonGreen was evaluated in COS-7 cells tran-
siently expressing H2A EGFP-HaloTag, TOMM20-mCherry-HaloTag or TOMM20-mNeonGreen
(see Table 5.1) fixed 24 h after transfection. For each fluorophore, the stability in PBS pH 7.4
and the NaSO3, ROXS PCD and ROXS GodCat buffer systems was tested with buffer com-
positions as described in Section 6.1.7. Prior to imaging, samples were washed once with
PBS pH 7.4, sample chambers were filled with the respective buffer and sealed with Parafilm
to minimize gas exchange during experiments.

Bleaching curves were acquired on widefield setup A for all buffer-fluorophore com-
binations described above. EGFP and mNeonGreen labeled structure were bleached at
0.58 kWcm−2 average power density, mCherry and TMR labeled samples were bleached
at 0.84 kWcm−2 average power density and ATTO647N- and SiR-labeled samples were
bleached at 2.42 kWcm−2 average power density. Image series were acquired with constant
illumination until samples were fully bleached and the signal reached a plateau.

6.2.6 Fluorophore photoblinking characterization

For characterization of fluorophore blinking, HeLa gSEP cells were used as samples. For
this, HeLa gSEP were grown in LabTek chambered coverslips and labeled with TMR or SiR
ligands for HaloTag or SNAPf-tag as described in section 6.1.4. Cells were incubated with
100 (HaloTag ligands) or 200 nM (SNAPf-tag ligands) for 2 h. After labeling, cells were
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fixed as described in Section 6.1.5 with addition of 0.05 % glutaraldehyde to the fixation
buffer. For recording of image time series, samples were prepared in either PBS or ROXS
PCD buffer and individual cells were randomly selected for imaging. 2×103 frame image
stacks were acquired with TIRF at an illumination power density of 0.05 kWcm−2 and with
an exposure time of 25 ms on setup B.

6.3 Software and data analysis

6.3.1 Statistical analysis

All plotting and statistical tests were performed using MATLAB versions 2019a or 2020a.
Unless stated otherwise, box plots span the interval from the 25th to the 75th percentile
with the median indicated by a horizontal line within the box. Whiskers extend to 1.5x the
interquartile range. Violin plots were generated using the violinplot function written by
Bastian Bechtold2 and are shown with a bandwidth corresponding to ≈10 % of the mean
across all compared conditions. Box plots within violin plots reach from the 25th to the 75th

percentile with the median shown as circle. If not indicated otherwise, values are reported
as median± one standard deviation. R2 values adjusted to the residual degrees of freedom
(R2

adj) were computed using MATLAB3.

6.3.2 Labeling efficiency analysis with DOLanalysis

All labeling efficiency measurements were analyzed using the DOLanalysis framework
implemented in MATLAB and written by Felix Braun4. Raw images used as input for point
detection were obtained by computing average projections of the first 10 frames of individual
image stacks.

Cell segmentation

Segmentation to create binary masks for cells in individual images was performed with
reference channel images as input using the ImageJ/Fiji script processAverageIJ dis-

2https://github.com/bastibe/Violinplot-Matlab
3https://de.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html
4https://bitbucket.org/akherten/dol/src/master/
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tributed as part of DOLanalysis as described in[174]. In summary, background was removed
with the Subtract Background function (radius: 20 px), the image was bandpass filtered
(settings: filter_large=512 filter_small=25 suppress=None tolerance=5 autoscale saturate),
median filtered (settings: radius=30) and thresholded using the AutoThreshold function
(algorithm: Triangle). Masks were exported as .tif images and later imported into MATLAB

using DOLanalysis.

Manual classification

Density correction was found to be critical for obtaining reliable labeling efficiency estimates.
In order for density correction to return reasonable results, it is important to make sure
that input data meets quality criteria since simulations were used to determine the specific
density correction factors (see section 6.3.2). To ensure that image sets included in a labeling
efficiency measurement met the quality demands, image sets were curated and unsuited
images were excluded from further analysis.

Based on the assumptions made for simulated data (constant point density across the entire
area of a cell, proper segmentation of cell boundaries) used for determining density correction
factors, two criteria were applied to decide whether individual images were discarded from
further analysis. First, the segmented mask of cells should not include areas outside of cells
because these surplus area would lead to underestimated detected point densities. Second,
the point density across across the segmented area should be as homogeneous as possible
to avoid over- or under-correction due to areas with low or high point density. In addition,
images were excluded form further analysis if irregularities during image acquisition had
occurred. This included image pairs where the basal membrane was not in focus, image pairs
with uneven illumination across the field of view and cells with increased background levels.

Manual classification of images was performed with the imageSetInspector graphical
user interface of DOLanalysis using the segmentation mask and reference channel images
as evaluation data with images being displayed in random order.

Emitter localization

Emitter localization in averaged images from individual image channels, was performed using
u-track as described previously[174] or with thunderSTORM. For emitter localization with
thunderSTORM, automated analysis of full datasets was performed using the Fiji/ImageJ
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script DOL_thunderSTORMlocalization_efficient.ijm contained in DOLanalysis was
used. The following default settings for emitter detection with thunderSTORM were applied.
Image filtering: Wavelet filter, B-spline order: 3, B-spline scale: 2.0. Approximate local-
ization of molecules: Local maximum method, peak intensity threshold: 2.0std(Wave.F1).
Sub-pixel localization: Method: PSF Integrated Gaussian. Fitting radius: 3 pixel. Fitting
method: Maximum likelihood. Initial sigma: 1.5, Multi-emitter fitting: enabled. Maximum
number of molecules per fitting: 3.

For filtering of sigma values, sigma values from all localizations in a given spectral
channel across all images in a dataset were grouped and binned with a bin width of 0.1.
The bin with the highest number of localizations was used to center the filtering window.
Unless stated otherwise, localizations with sigma values outside the interval ±50 % around
the central bin were excluded from further analysis.

For all experiments shown in section 3.6, emitter localization was performed using
thunderSTORM with post detection emitter filtering based on the distribution of localization
sigma values.

Registration of multi-channel image sets

Registration of image channel pairs for individual multichannel images was performed by
computing a projective transformation between detected emitters in two channels using the
MATLAB function fitgeotrans as implemented in DOLanalysis. To improve robustness
of registration, transformation parameters were only computed for images where more than
50 emitters were detected in both, the reference and target channels. Furthermore, transfor-
mations where the computed translation in x or y exceeded 3 pixels, the rotation exceeded 5°
or the scaling factors exceeded 5 % were discarded. The parameters from successful registra-
tions on a given set of images were averaged and the averaged transformation parameters
were subsequently applied to all images in the set.

Distance threshold determination

Distance cutoffs for compute the specific degree of colocalization were computed according
to a previously described procedure[174] implemented in DOLanalysis. A global distance
cutoff value was determined for all imageset contained in an experiment.
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Density correction

Density correction was performed as described in Equation 3.2.2 on 36. To obtain the
required correction factors, CFslope and CFo f f set , I made use of simulations to generate
images exhibiting diffraction-limited signals as described above (Section 3.4.2). I then
performed emitter localization and filtering with settings identical to the settings used for
processing experimental data (section 6.3.2), plotted the recall against the detected emitter
density in the reference channel and modeled the obtained data with a linear fit (Fig. 6.1).

Figure 6.1 Density correction factors for raw DOL values determined from simulations with different
background levels. Emitter images at defined densities ranging from 0 to 2.6 µm−2 were simulated
and combined with low (a) or high (b) background images as described in Section 3.4.2. 20 generated
images per condition were processed with the optimized point detection (thunderSTORM filtered) or
previous (u-track filtered) point detection approaches and results were compared against ground
truth emitter positions to compute recall (circles). Linear fits (black lines) were performed to obtain
the density correction factor Cdens and offset value. Shaded regions represent 95 % confidence interval
from fit. Simulations were performed by Felix Braun.

The obtained correction factors for emitter localization with u-track and thunderSTORM
in the low and high background scenarios are given in Table 6.1.

Apparent rate constant fits

Median DOL values across varying labeling conditions were fitted to Equation 3.5 by non-
linear least squares regression with the Trust-Region algorithm as provided by the MATLAB

function fit.
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Table 6.1 Correction factors obtained from analysis of simulated data and used for density correction
after emitter localization with indicated localization frameworks. thunderSTORM. See section 6.3.2
for specific emitter localization settings.

Localization framework BG CFslope CFo f f set

thunderSTORM low -0.2131 0.8681
thunderSTORM (filtered) low -0.2292 0.8677
thunderSTORM high -0.2383 0.7943
thunderSTORM (filtered) high -0.2647 0.7641

u-track low -0.4782 1.0119
u-track (filtered) low -0.51 0.9138
u-track high -0.4215 0.9470
u-track (filtered) high -0.4265 0.7579

6.3.3 Simulations for labeling efficiency measurements

Single emitter signal randomly distributed across images without background were simulated
with testSTORM[179]. For this, emitter signal were generated using a Gaussian PSF model,
the ’vesicle’ pattern and acquisition parameters matching those of experimental data acquired
in the scope of this thesis (section 6.2.3). No sample drift was included in simulated data.
The dye model ’Alexa Fluor 647’ with the following parameter values was chosen to adapt
emitter properties to those observed in experimental data: on time: 0.025, off time: 0.01,
bleaching constant: 0.2, emitted photon/s: 350, number of labels per epitope: 1.

6.3.4 CoPS data analysis

TCSPC data was analyzed by first computing coincident photon histograms for each sampled
position from the initial 1×107 laser cycles of the corresponding TCSPC data stream.
Histograms were then fitted to an analytical model of coincident photon event probabilities
using the scipy implementation of the Levenberg-Marquardt algorithm contained in the
pycops package1 developed by Johan Hummert (Herten lab, University of Birmingham).

1https://bitbucket.org/akherten/pycops/
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6.3.5 Data analysis with quickPBSA

The first five images from the measured image sequence were averaged and used to locate
diffraction-limited signals in images. The localization was performed with Fiji[256] ver-
sion 1.52p using the plugin thunderSTORM[178]. Trace extraction was done with the trace
extraction module quickPBSA. In short, the average signal from circular regions around the
localizations was extracted with typical diameters of 950 nm for in vitro samples and 150 nm
for NUP107 samples. For background correction, the average signal from ring-shaped
regions was subtracted (inner diameter 1.7 µm for DNA origami, 0.6 µm for NUP107 sam-
ples, outer diameter 2.0 µm for origami, 0.9 µm for NUP107). Regions around neighboring
localizations were excluded from the background region. Additionally, ROIs with nearest
neighbors at a distance below 950 nm for DNA origami samples and 475 nm for NUP107
samples were excluded. Photobleaching step analysis was performed using the quickPBSA
package. Typically, the threshold parameter for preliminary step detection was set at 0.03
and maxiter at 200. Other analysis parameters were kept at their default values, except for
the mult_threshold parameter in step refinement, which was typically set to 1.5 to decrease
runtime. The analysis according to Teskouras et al.[123] was performed with available python
code5. Data analysis was performed on a desktop computer with an 8-core CPU (Intel Core
i7-3770, 3.4 GHz) and 12 GB DDR3 memory. Semi-synthetic datasets were generated by
manual annotation of traces obtained from tetraATTO647N DNA oligonucleotides measured
in NaSO3 ROXS buffer. For visual inspection of quickPBSA trace models, models and
intensity traces were overlayed by applying a linear scaling factor y = ax to the quickPBSA
model trace.

Distributions of fluorophore numbers measured on NUP107-SNAP samples and shown
in Fig. 4.31 were modeled with the following equation:

f (x) = f racsinglee−
(x0−µ)2

2σ2 + f racdoublee−
(x−2µ)2

4σ2 (6.1)

Where f racsingle and f racdouble are the fractions of ROIs with one or two NPC, µ

is the average number of fluorophores per NPC and σ is the standard deviation. Fitting
was performed with MATLAB by nonlinear least squares regression with the Trust-Region
algorithm as provided by the MATLAB function fit.

5https://github.com/lavrys/Photobleach
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6.3.6 Analysis of fluorophore photostability

Data acquired as described in ?? was background corrected by subtracting a constant offset
from acquired image series to account for camera offset and excitation light bleed-through.
Offsets were manually determined for each sample and were found to be well reproducible
within one condition, but variable across conditions. Bleach curves were then extracted
from image series by extracting the frame-wise average intensity within a masked region.
Masks were obtained from a Gaussian-filtered average projection of the first 10 images
in the series and local thresholding following the Bernsen method. Mask segmentation
and intensity extraction was performed using custom-written code in Fiji/ImageJ. Bleach
curves were normalized to the maximum intensity in the respective trace and the raw half
bleach time (tt1/2,raw) defined as the time at which the intensity traces had decayed to <50 %
of the maximum intensity was extracted using custom-written MATLAB code. To facilitate
comparison between fluorophores excited at different wavelengths, tt1/2,raw were normalized
against the applied illumination power density (IPD) to obtain the excitation power-corrected
tt1/2 = t1/2,raw/IPD at an illumination power density of 1.0 kWcm−2.

6.3.7 Characterization of fluorophore photoblinking

Data acquired as described in Section 6.2.6 was used for analysis. First, images were
correlated following the approach developed by Sehayek et al.[208] using MATLAB code
provided by the authors6. ACFs firstplural were computed using the first 1×103 frames of
each image stack and a maximum lag time of 6×102 frames. The initial decay (lag times
2-125 frames) of obtained ACFs firstplural containing information about photoblinking were
fitted to a 3 state model (equalBleach) developed by Sehayek et al.[208].

6https://github.com/ssehayek/blink-project.git
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Figure A.1 Recall and false-positive density for tested algorithms with or without localization filtering
determined in simulations with variable background strength. a,b Recall at variable emitter densities
at low (a) and high (b) background signal. c,d False-positive density at variable emitter densities at
low (c) and high (d) background signal. Shaded regions indicate standard error around means (crosses)
at indicated emitter densities. For each algorithm, 20 simulated images per condition were analyzed.
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Figure A.2 Full-length expression of gSEP and LynG in H838 and HeLa cell lines confirmed
via immunoblotting. H838 or HeLa cells stably selected with puromycin (1.5 µgL−1 were lysed
and subjected to SDS PAGE and and transferred onto a PVDF membrane. The membrane was
consecutively probed with anti-EGFP and anti-His6 to verify full-length expression of gSEP and
LynG. Probing with anti-actin served as loading control. Lane occupation as indicated above respective
lane. Lane 1 was loaded with a molecular size standard, lanes 6-8 and 13-15 contained samples not
relevant for this study. Lanes 2 and 12 were not loaded with sample. Data was produced jointly with
Florian Salopiata.
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Figure A.3 Target channel emitter densities in H838 gSEP cells. Detected median emitter densities
after localization filtering with HTL-TMR (a) or BG-SiR (b). Data from 4-15 cells per condition.
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Figure A.4 Quality metrices for cell segmentation and point detection during DOL measurements
across cell lines. Metrices were determined for each imaging run which was one 8-well chambered
coverslip containing samples incubated with eight different substrate concentrations at a single
incubation time. Samples with H838 and HeLa cells were acquired using a semi-automated acquisition
routine, samples with Huh7.5 cells were imaged manually. a, Cell-wise segmented area. The entire
FOV imaged had an area of 2300-2800 µm2 indicating cells typically covered 30-60 % of the FOV.
b-d density per cell (b), median cell-wise amplitude (c) and median cell-wise sigma (d) of detected
points in reference (EGFP) channel. The Huh7.5 dataset was recorded by Siegfried Haenselmann, the
HeLa dataset was recorded by Wioleta Chmielewicz. All data was by me.
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Figure A.5 Comparison of measured DOLs and predicted DOLs from fit with pseudo-first order
model (Equation 3.5). Median measured DOLs in indicated gSEP cells (mesh) and predicted DOL
(colored surface) obtained from fit for SNAPf-tag or HaloTag labeling with BG-SiR or HTL-TMR.
1-20 (HeLa) and 5-10 (Huh7.5) cells per condition in HeLa and Huh7.5. The Huh7.5 dataset was
recorded by Siegfried Haenselmann, the HeLa dataset was recorded by Wioleta Chmielewicz. All
data was processed and analyzed by me.
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Figure A.6 Apparent DOLs due to non-specific background labeling. Apparent labeling efficiencies
due to random co-localization of non-specifically attached tag substrates with LynG probes measured
in indicated cell lines with indicated substrates. 3-15 (H838), 5-20 (HeLa) or 5-10 (Huh7.5) cells
per condition. The Huh7.5 dataset was recorded by Siegfried Haenselmann, the HeLa dataset was
recorded by Wioleta Chmielewicz. All data was processed and analyzed by me.
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Schwarz Information Criterion for step detection

The step detection criterion developed by Kalafut and Visscher based on the Schwarz
Information Criterion (SIC) is defined as:

SIC( j1, ..., jk) = (k+2)log(n)+n ln σ̂
2
j1,..., jk +n ln2π +n (B.1)

With step positions j1, ..., jk, n data points within trace and the maximum likelihood
estimator of the variance σ̂2

j1,..., jk defined as:

σ̂
2
j1,..., jk =

1
n

k

∑
i=1

ji+1−1

∑
l= ji

(xl −µi)
2. (B.2)

Posterior for model refinement

Posterior was taken from Tsekouras et al.[123]. All parameters are described in Table B.1
below.

−2lnP(θ |D) =
K

∑
φ=0

(
nφ ln(iσ2

f +σ
2
b )+

nφ

∑
l=1

(xl − iµ f −µbg)
2

iσ2
f +σ2

b

)

+2
(
−K lnλ − ln((m−K)!)− lnK!− ln(m−1)!+

m−K

∑
y=0

lndy!
)

+2
(

γ0
m−K +1

K
+ ln(m−K +2)+ ln(m−K +1)

− ln(m−K +2)− (m−K +1)e−γ0/K)

)
(B.3)
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Table B.1 Symbols used for computation of posterior according to Equation B.3.

θ Bayesian parameters

D Data (photobleaching trace)
σ f Standard deviation of the single fluorophore signal
σbg Standard deviation of the background signal
µ f Mean signal of a single fluorophore
µbg Mean background signal
K Number of steps
nφ Time points in interval φ

x Signal at time point l
i Active number of fluorophores at timepoint
λ Poisson distribution parameter for event occurrences (fixed to 0.1)
m number of events (single fluorophore switches)
dy number of data points between steps
γ0 Cutoff for the hyperparameter constraining K to m (fixed to 0.5)
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Table B.2 Overview of parameters for quickPBSA photobleaching step detection framework.
Module 3: Trace extraction. Module 4: Preliminary step detection. Module 5: Trace filtering. Module
6: Model refinement. For parameters used in model refinement module, the step within the algorithm
is specified in the beginning of the description (I-IV).

Parameter Module Default Description

r_peak extraction - Radius of ROI for trace extraction [pixel].
r_bg1, r_bg2 3 - Inner and outer radius of background region

[pixel] (see Fig. 4.27).
min_dist 3 - Minimum distance of ROI centers.
threshold 4,5 - Minimum single-fluorophore brightness.
maxiter 4 - Maximum number of steps placed during pre-

liminary step detection.
bgframes 4 500 Number of data points to include after crop-

point.
length_laststep 5 20 Minimum length of interval between last two

steps.
percentile_step 5 90 Upper boundary of last step height (µf).
combcutoff 6 2×106 Maximum total number of models to test per

trace.
multstep_fraction 6 0.5 I - Fraction of steps allowed to be >1.
nonegatives 6 false I - Do not test step heights >1 for positive

steps (fluorophores returning from transient
dark states).

mult_threshold 6 1.0 I,II - Threshold for step positions to be tested
for heights >1. For occupancies >2, this thresh-
old is applied proportionally.

maxmult 6 5 II - Maximum height of steps.
maxadded 6 10 IV - Maximum number of steps to add.



227

Figure B.1 Classified photobleaching traces used for construction of semi-synthetic traces. Data
was recorded from tetraATTO647Nprobes as described in section 4.3. Traces exhibiting different
photophysical behavior (arrowheads) were manually categorized according to the number of observed
photobleaching steps. Only traces which showed complete bleaching during the measurement were
considered. a, one photobleaching step, b, two photobleaching steps, c, three photobleaching steps
and d, four photobleaching steps.



Table B.3 PBSA results from DNA origami samples. Mean (µ) and SD (σ) for PBSA using indicated algorithms were obtained by Gaussian fitting
of fluorophore number estimate distributions. Fitting error given in parentheses. Expected (exp.) mean and SD assuming binomial fluorophore
number distribution and a LE of 70 %.

Sample Setup Mean (µ) Standard deviation (µ)
qPBSA
success

[%]

# traces
(FOVs,

experiments)

qPBSA
runtime

[s]

exp. qPBSA KVonly local Int. exp. qPBSA KVonly local Int.

R09
A

6.3
6.7(0.2) 5.9(0.1) 6.6(0.1)

1.4
1.9(0.2) 2.0(0.1) 2.1(0.1) 75.6 192 (13,1) 25

B 6.0(0.1) 5.4(0.0) 5.9(0.1) 2.2(0.1) 2.0(0.0) 2.2(0.1) 76.5 1536 (5,1) 19

R20 A 14.0 14.2(0.3) 11.1(0.3) 15.0(0.6) 2.1 6.0(0.3) 4.3(0.3) 6.4(0.6) 40.0 613 (43,2) 53

R35 A 24.5 22.6(1.0) 16.0(0.7) 23.3(0.8) 2.7 8.6(1.0) 5.8(0.7) 8.9(0.8) 70.5 499 (25,2) 168

Y09 A 6.3 7.9(0.1) 7.5(0.1) 7.9(0.1) 1.4 1.6(0.1) 1.5(0.1) 1.6(0.1) 83.5 853 (12,1) 88
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Table B.4 Properties of fluorophores used in Section 4.5.1. Properties determined in PBS, pH 7.4-7.5
unless stated otherwise. εextinction coefficient, Φfl fluorescence quantum yield, λpeak peak absorption
wavelength, λex excitation wavelength used in this work, CFλ spectral correction factor to adjust ε for
mismatch in λpeak and λex.

ε[103 M−1 cm−1] Φfl λpeak [nm] λex [nm] CFλ Ref

Fluorescent proteins
EGFP 55.9 0.6 488 488 1.00 [257]

mNeonGreen 116 0.8 506 488 0.62 [206]

mCherry 72 0.22 587 561 0.64 [258]

Tag substrates
BG-TMR 89a,e 0.39b,f 555e 561 0.86e [259]

HTL-TMR 78 0.41d,e 548e 561 0.89e [74]

BG-SiR 43.2c,f 0.30b,f 650f 640 0.7e [77]

HTL-SiR 130.2c,f 0.39b,f 648f 640 0.71e [77]

Organic fluorophores
ATTO 565 120 0.9 564 561 0.99 1

ATTO 647N 150 0.65 646 640 0.92 1

afrom Keppler et al. (2006)[260]

bfrom Lukinavicius et al. (2013)[77]

cfrom Erdmann et al. (2019)[207]

dtetramethylrhodamine, from Grimm et al. (2015)[183]

efree dye
fprotein conjugate
1https://www.atto-tec.com/
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Figure B.2 Photobleaching of fluorescent proteins in ROXS buffers. For each combination of
fluorescent protein and buffer, photobleaching traces under constant illumination were recorded in
multiple cells. Decays were normalized against intensity in first frame and corrected for intensity offset
which depended on sample type and illumination wavelength. Mean±SD (black line, shaded region)
from 7-9 cells from two independent experiments for each condition. Illumination power density
for EGFP and mNeonGreen: 0.4 kWcm−2 at 488 nm, illumination power density for mCherry:
0.52 kWcm−2 at 561 nm. Mean decays were modeled with a mono- (green) and bi-exponential
(magenta) decay. Results from exponential modeling are listed in Table B.5.
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Figure B.3 Photobleaching of organic fluorophores in ROXS buffers. For each combination of dye and
buffer, photobleaching traces under constant illumination were recorded in multiple cells (HTL/BG-
TMR, HTL/BG-SiR) or fields of view (ATTO647N). Decays were normalized against intensity
in first frame and corrected for intensity offset which depended on sample type and illumination
wavelength. Mean±SD (black line, shaded region) from 7-9 cells or FOVs from two independent
experiments for each condition. Illumination power density for HTL/BG-TMR: 0.52 kWcm−2 at
561 nm, illumination power density for HTL/BG-SiR and ATTO647N: 1.26 kWcm−2 at 640 nm.
Mean decays were modeled with a mono- (green) and bi-exponential (magenta) decay. Results from
exponential modeling are listed in Table B.5.
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Table B.5 Results from bi-exponential fitting of photobleaching decays shown in Fig. B.2 and Fig. B.3.
Decay parameters F1 (fraction fast decay), t1 (fast decay rate), t2 (slow decay rate).

ROXS

PBS NaSO3 PCD GodCat

EGFP
F1 0.837 0.917 0.912 0.904
t1 0.215 1.000 0.816 0.867
t2 0.040 0.075 0.053 0.051

mNeonGreen
F1 0.881 0.900 0.840 0.886
t1 0.798 0.800 0.725 0.639
t2 0.075 0.105 0.069 0.063

mCherry
F1 0.855 0.804 0.835 0.963
t1 0.556 0.800 0.962 1.00
t2 0.104 0.147 0.059 0.00

BG-TMR
F1 0.551 0.414 0.514 0.634
t1 0.765 0.284 0.136 0.115
t2 0.053 0.034 0.017 0.014

HTL-TMR
F1 0.756 0.455 0.568 0.723
t1 0.287 0.233 0.128 0.156
t2 0.058 0.047 0.018 0.020

BG-SiR
F1 0.519 0.462 0.337 0.324
t1 0.896 0.583 0.073 0.084
t2 0.051 0.022 0.010 0.010

HTL-SiR
F1 0.739 0.807 0.216 0.348
t1 0.407 0.168 0.124 0.083
t2 0.070 0.029 0.010 0.015

ATTO647N
F1 0.767 0.475 0.322 0.481
t1 0.233 0.227 0.272 0.188
t2 0.023 0.035 0.003 0.003
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Figure B.4 Temporal autocorrelation functions computed for photoblinking analysis.. a-e, Av-
eraged ACFs firstplural (lines) and standard deviation (shaded region) for indicated fluorophores in
PBS (magenta) or ROXS PCD (green). Averages from 22-54 measurements from 2-4 independent
experiments per condition. Data was produced jointly with Jonas Euchner, Yin Xin Ho and Stanimir
Asenov Tashev.
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Figure B.5 Rate parameters obtained from image correlation-based analysis of photoblinking.
Fluorophore kon- (a) and ko f f -rates (b) for photoblinking between fluorescent and non-fluorescent
state in 3-state fluorophore model obtained from fitting of ACFs firstplural. Data was produced jointly
with Jonas Euchner, Yin Xin Ho and Stanimir Asenov Tashev.
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.

Figure B.6 Puromycin selection of stably transduced HeLa GlnA-HaloTag cell line. a, HeLa wild-
type and HeLa GlnA-HaloTag cells were grown in full growth medium containing the selection
antibiotic at indicated concentrations for 24 hours and imaged with transmission light microscopy.
Both cell lines exhibited a puromycin concentration dependent reduction in viability. Two weeks
after onset of selection, samples were stained with 10 nm HTL-SiR, fixed in 3.7 % PFA and imaged
on epifluorescence setup I. Diffraction-limited clusters were identified by sub-pixel localization and
conditions were compared with respect to their median cell-wise cluster intensity (b) and cluster
number per cell (c). Statistical comparison between conditions was performed using Welch’s t-test.
No significant pair-wise differences between conditions were found at p>0.05
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Figure B.7 Influence of Triton X-100 concentration during fixation on GlnA-HaloTag cluster
intensity and number. HeLa GlnA-HaloTag cells were labeled with 10 nm HTL-SiR for 60 min,
chemically fixed under indicated conditions and imaged by widefield fluorescence microscopy.
Cluster properties were obtained by subsequent SMLM analysis. a, Representative images from HeLa
GlnA-HaloTag cells fixed with 3.7 % PFA supplemented with variable concentrations of TX-100 and
HeLa wild-type cells fixed in 3.7 % PFA supplemented with 0.02 % TX-100. Scale bar: 10 µm. b,
Cell-wise cluster number and median cluster intensity for different TX-100 concentrations (color
coding as in a). For each condition, a two-axis error plot indicates mean±SD cluster intensities and
cluster number per cell. 95th percentile cut-off for 3.7 % PFA supplemented with 0.02 % TX-100
fixation from wild-type cells indicated by dashed lines (data points not shown in plot). c, Fraction
of cells in HeLa GlnA-HaloTag samples with median cluster intensity and cluster number >95th

percentile of corresponding wild-type sample under identical fixation conditions. Bar represents
mean across three samples, error bar represents SD. d, Background intensities under varying fixation
conditions measured as the offset from Gaussian fitting of individual clusters in SMLM analysis.
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