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Zusammenfassung

In dieser Dissertation betrachten wir multivariate Hawkes-Prozesse mit bed-
ingten Intensitäten und Reproduktionsfunktionen, die von der Zeit abhängig
sind. In diesem Fall wird das Modell durch die bedingte Intensitätsfunktion
λ = (λ1, . . . , λd)T charakterisiert, die zu einem Zeitpunkt t ∈ [0, T ] durch

λ

(
t

T

)
= ν

(
t

T

)
+

∫ t−

−∞
µ(t− s, t/T ) dNs

für eine in dem Zeitfenster [0, T ] zu beobachtende multivariate Realisation
des Hawkes-Prozesses N = (N (1), . . . , N (m))T .
Dadurch wird eine Klasse von lokal stationären Prozessen definiert. Ein Ver-
fahren zur Schätzung des Vektors von zeitabhängigen Immigrationsfunktio-
nen ν und des Vektors der Reproduktionsfunktionen µ, welches auf einem
lokalen Kriterium beruht, wird vorgestellt. Die Theorie über stationäre
Hawkes-Prozesse wird um asymptotische Theorie über den Schätzer im lokal
stationären Modell erweitert. Simulationsstudien runden die Überlegungen
ab.
Im zweiten Teil betrachten wir lokal stationäre Hawkes-Prozesse, die sich in
bestimmten Punkten ähneln. Die vorangegangene Arbeit ermöglicht es nun,
Testergebnisse zu formulieren. Wir beobachten zwei Hawkes-Prozesse und
testen, ob sie zu einem festen Zeitpunkt Realisierungen derselben Immigrations-
und Reproduktionsfunktionen sind. Alternativ, aber inhaltlich identisch,
könnte man auch das Verhalten eines Hawkes-Prozesses zu zwei verschiedenen
Zeitpunkten vergleichen. Dies ermöglicht die Behandlung von Saisonalität,
was ein typisches Problem der Anwendung darstellt.
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Abstract

In this work we consider multivariate Hawkes processes with baseline con-
ditional intensities and reproduction functions that depend on time. In
this case, the model is characterized via the conditional intensity function
λ = (λ1, . . . , λd)T at a time point t ∈ [0, T ] given by

λ

(
t

T

)
= ν

(
t

T

)
+

∫ t−

−∞
µ(t− s, t/T ) dNs

for a multivariate realization of the Hawkes process N = (N (1), . . . , N (m))T ,
which is observed in a time frame [0, T ].
Thus, a class of locally stationary processes is defined. The discussed esti-
mation procedure of the vector of time-dependent baseline intensities ν and
vector of reproduction functions µ is grounded on a localized criterion. The-
ory on stationary Hawkes processes is extended to develop asymptotic theory
for the estimator in the locally stationary model. Simulation studies round
off the considerations.
In the second part we consider the option for local alignment of locally sta-
tionary Hawkes processes. The previous work enables the possibility to for-
mulate testing results. We observe two Hawkes processes and test whether
they are realizations of the same underlying immigration and reproduction
functions at a fixed point in time. From an alternative point of view, but iden-
tically contentwise, one could compare the behaviour of one Hawkes process
at two distinct time points. This enables reasearch sorrounding seasonarity.
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1 | Introduction

As researchers in this field the goal consists of formalizing and modelling
certain behaviours and progressions we detect in our lives and nature itself.
More specifically, we observe some events in a certain frame of time. In
this explicit case we use these observations and try to model this behaviour
with a stochastic process on the real line or a subset of it. In our further
implications it is notable that we choose a model which is inherintly not re-
producable as we only observe it once. This is natural as we would not be
able to recreate a lot of phenomenons but would still like to use the data to
further our knowledge. On the other hand as statisticians we would like to
repeat any experiment as often as possible to get asymptotic results, which
enables us to use well known tools.
In this work we develop theory for a specific point processes, meaning the
data consists of designated points in time and the goal is to make inference
to deduce properties and significant behaviors. Point processes themselves
have generated and inspired a vast number of scientific fields in the past and
the present. In this specific thesis we devote ourselves to an explicit model,
while leaving flexibilty to the model via a nonparametric approach.

1.1 Motivation

An initial idea and inspiration for the upcoming formulation of the problem
can be found in an example from epidemiology. We consider the spreading of
an infectious disease. Each time a person gets infected then corresponds to an
event in the model. Each infectious patient then triggers additional events by
infecting hitherto healthy patients. The progression of the infection can then
be understood as a whole series of events, and thus might be modelled quiet
naturally via stochastic point processes. An underlying strong component of
dependency can be detected as the events in the future depend on the events
in the past. This results in a significantly harder problem to solve. Whenever
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2 Chapter 1. Introduction

an infectious person enters the community or a member of the observed
community gets infected from the exterior, we call this immigration of an
event. Each immigrating infection triggers new events (reproduction) and
hence a so-called cluster process is giving the observation a hidden structure
which we aim to use to our benefit.
A multivariate setting is obviously intuitive, as the developement of one
disease might influence the progression of others. On the other hand, different
communities might be considered which affect each other, giving rise to the
idea of cross-dependency.
The aim is to find a suitable notion of interdependency using the notion of
a so-called (conditional) intensity function as a mean of probabilty for an
event to occur in the next upcoming timeframe given the whole history or
past of the observed process.
We formalize a variation of the Hawkes process model. This model consists
of the merger of two ideas. We consider new events to emerge as either
triggered by the immigration of an insect or the reproduction of insects.
Thus, we define a baseline conditional intensity, call it ν and a reproduction
function µ, also called fertility function or excitement function, which models
the influence of recent jumps or events on the imminent conditional intensity.
Finally we formalize the model more explicitely, as initially named by and
introduced in Hawkes (1971).
Denote by N(t) = (N1(t), ..., Nd(t))ᵀ for t ∈ [0, T ] the multivariate Hawkes
Process, which is characterized by its vector of intensity functions

λl(t) = νl +
d∑

m=1

∫ t−

−∞
µl,m (t− s) dN (m)

s (1.1)

with l = 1, ..., d and for a certain time point t ∈ [0, T ]. Here νl is a positive
constant and µl,m for 1 ≤ l,m ≤ d are some positive functions defined on
R+

0 .
One could interpret the model as follows. An infectious member enters the
community or gets infected from the outside with probability ν and thus
enhences the function λ representing a mean expectation of passing on the
infection in the time point t corresponding to the present. For each infection
at a past point in time s, i.e. s < t, λ grows with a factor generated by µ via
the passed by time t− s.



1.2. Contribution and Structure of the Thesis 3

1.2 Contribution and Structure of the Thesis

There already is a wide range of literature concerning the case of Hawkes
processes as defined in (1.1). In this work the set up differs from the orig-
inal in the sense that the baseline conditional intensity ν and reproduction
function µ are generalized in the following way. Inspired by the example of
the spreading of an infection, we propose that the immigration as well as the
reproduction should vary over time. In our example, it could be noted that
most diseases are prone to spread faster in certain seasons or even only occur
in specific times of the year. This effect is called seasonality and calls for a
more introcate and challenging model, affecting the theoretical manageabil-
ity as we will see in the following pages.

The original case allows for a notion of stationarity, as will be described
in detail later. To make room for this dependence structure we use a locally
stationary specification where we assume that the process can be approxi-
mated locally around a fixed time point by a stationary Hawkes process.

There are many other similar prominent examples, i.e. lineages of insects.
Imagine considering a population of insects. Each birth can be interpreted as
an event or a designated point in time. During an insect’s lifespan it possibly
brings forth additional births of insects, hence new events. Each immigrating
insect triggers the forming of a family tree. Again, we find that the devel-
opment of certain species might have an effect on other species, enabling the
wish to formulate cross dependency in a multivariate setting. Concerning
seasonality, one might imagine insects immigrating only in certain seasons of
the year, which might hold for the reproduction of insects as well.

Making the appropriate changes, in this work we will consider a model
for multivariate Hawkes processes N(t) = (N1(t), ..., Nd(t))ᵀ for t ∈ [0, T ]
of the following kind. The multivariate point process is modelled via the
conditional intensity function given by

λl(t) = νl
(
t

T

)
+

d∑
m=1

∫ t−

−∞
µl,m

(
t− s; t

T

)
dN (m)

s (1.2)

with l = 1, ..., d and t ∈ [0, T ] or in vector notation

λ(t) = ν

(
t

T

)
+

∫ t−

−∞
µ

(
t− s, t

T

)
dNs.

Now, νl and µl,m, where 1 ≤ l,m ≤ d, are positive functions defined on [0, 1]
and R+

0 × [0, 1], respectively. We will use an asymptotic framework where
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T →∞.

We thus found a model to be investigated. The object of interest λ
can give relevant information about when to interfere in the process to take
necessary steps to prevent the spreading of said diseases.
In Chapter 2, we formally introduce notions of appropriate point processes
and become familiar with fundamental tools, essential features and properties
concerning the structures of interest.

While our approach shows a different perspective, many valid strategies
are led by other views and great ideas, which are shortly presented in Section
1.3.

The asymptotic framework we will work with will be introduced in the
beginning of Chapter 3. For locally stationary Hawkes processes we will pro-
pose a nonparametric estimator for the baseline conditional intensity and the
reproduction function and develop the asymptotic theory in the following.
Consistency of the resulting estimator is shown. The results are demon-
strated and displayed in a simulation study. The proofs are found hereafter
and we finish the chapter with a discussion of applicability and suitable as-
sumptions.
In the second chapter of theoretical work, (chapter 4) we modify the setting
slightly. This additional part of the developed theory is devoted to testing
procedures concerning whether or not two Hawkes processes coincide at a
certain time point. This is equivalent to testing if one realization of the same
underlying process coincides at two different points. This is motivated by
e.g. questioning whether or not the reproduction is the same each summer.
Again, discussions follow.
The thesis finishes with a short summary and outlook on further research to
be made.

1.3 Embedding in Literature

By now there is not only a wide variety of theoretical work, but many fields
of application for Hawkes process models as well.
For all the ground work and fundamental work of point processes in general,
see Andersen (1993) and Daley and Vere-Jones (1988).
Initially proposed and namegiving of the model is the work of Hawkes (1971).
The model is introduced and elemental properties are discovered and de-
spicted. In Hawkes and Oakes (1974) the crossing to cluster processes is
made and further investigated.
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Considering inference on the stationary model we find a vast amount
of literature. For stationary nonparametric multivariate Hawkes processes,
Bacry, Dayri and Muzy (2012) are considering the reproduction function of
a multivariate nonparametric Hawkes process by estimating the covariance
of increments of the Hawkes process and using spectral methods. In Bacry,
Dayri and Muzy (2016) estimates of reproduction functions of multivariate
Hawkes processes are discussed via solving empirical integral equations with
estimated average conditional intensity vectors and estimated conditional
laws. This approach is used in Rambaldi, Bacry and Lillo (2016) for the study
of order book dynamics. The papers Kirchner (2016) and Kirchner (2017)
relate Hawkes processes to integer valued autoregressive processes of infinite
order INAR(∞). They approximate these processes by integer valued autore-
gressive processes of finite order, p < ∞, INAR(p), and use methods from
statistical inference for INAR(p) processes. In Eichler, Dahlhaus and Dueck
(2017) a nonparametric estimator of reproduction functions is proposed for
multivariate Hawkes processes based on discretisations of the process. Its
consistency is shown and the estimator is used for causal inference. The
paper Bai, Chen and Chen (2015) discusses observations of n independent
Hawkes processes with constant baseline conditional intensity and nonpara-
metric reproduction function. The paper shows rates of convergence for a
nonparametric maximum likelihood sieve estimator and proves asymptotic
normality for the parametric estimator of the baseline conditional intensity.
The papers Hanssen, Reynaud-Bouret and Rivoirard (2015) and Reynaud-
Bouret and Schabt (2010) prove exponential inequalities and tail bounds for
statistics of Hawkes processes and apply the results for asymptotic analysis
of adaptive and LASSO-estimation of Hawkes processes with nonparametric
reproduction function. In the estimation procedure the reproduction func-
tion is approximated by a linear combination of functions from a dictionary.
For work on nonparametric Bayesian estimation of Hawkes processes, see
Donnet, Rivoirard and Rousseau (2018).

There is some work to allow for nonstationary models. The definition of
locally stationary Hawkes processes introduced in Roueff, von Sachs and San-
sonnet (2016), Roueff and von Sachs (2019) differs from the notion studied
here. In particular, they make use of the later discussed cluster representa-
tions of one-dimensional Hawkes processes to define spatial locally stationary
point processes that generalizes one-dimensional Hawkes processes to higher
dimensions. They also relate the definition of their notion of locally station-
ary processes to the general class of non-stationary Hawkes processes.
The papers Chen and Hall (2013) and Chen and Hall (2015) allow for a
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varying baseline conditional intensity. They study estimates in an asymp-
totic framework where the baseline conditional intensity is multiplied by a
factor that converges to infinity. In the asymptotic theory the time horizon
is kept fixed. The papers discuss models with parametric reproduction func-
tions and they allow for parametric and nonparametric specifications of the
baseline conditional intensity. The work of Omi, Hirata and Aihara (2017)
delivers a Bayesian approach for models with time varying baseline condi-
tional intensity. The paper Clinet and Potiron (2018) considers parametric
Hawkes processes with the reproduction rate modeled as an exponential func-
tion. They allow for the baseline conditional intensity and the parameters of
the exponential function to depend on time. In Roueff, von Sachs and San-
sonnet (2016), Roueff and von Sachs (2019) a new class of locally stationary
multi-dimensional Hawkes processes is proposed. Nonparametric estimation
is discussed that is based on local Bartlett spectra. The approach allows one
to compute approximations of first and second order moments.

For the application side we see a vast number of applications are found in
finance, see Aït-Sahalia, Cacho-Diaz and Laeven (2015) as an example and
Bacry, Mastromatteo and Muzy (2015) for an overview. The main idea here
lies in the assumption, that limit order books behave like Hawkes processes.
In that sense whether you buy or sell stocks influences the buying and selling
the nondistant future.
A very interesting usage of the Hawkes model is found in seismology, see
Vere-Jones (1970), where the occurance of earthquakes is modeled. The first
shocks are innitiated via the immigrationrate and further aftershockes are
triggered hence via the reproductionfunction.
We find other applications in the usage of social networks or social media.
News and messages get written and shared and influence each other respec-
tively. Examplary, this is despicted in statistical modeling of e-mail networks
in Fox, Short, Schoenberg, Coronges, and Bertozzi (2015).
Additionally, application in crime analysis (see Mohler, Short, Brantigam,
Schoenberg and Tita (2011)) and genome analysis (see Reynaud-Bouret and
Schabt (2010)) are very well worth mentioning.



2 | Fundamentals, Basics and No-
tation

Starting off, a formal introduction of point processes is neccessary. A trail of
features and desired properties will lead us to the notion of a Hawkes process,
which we will introduce later on. Any fundamental abilities and limits con-
sidering the up-coming problems of the following chapers will be discussed
and cited.
Definitions and elementary statements about point processes are mainly ob-
tained from work by Daley and Vere-Jones (1988) and Andersen (1993), while
some are picked from more applicable work of Hautsch (2012). The more in-
volved segment about Hawkes processes then orignates from the works of
Hawkes (1971) and Hawkes and Oakes (1974).

2.1 Point Processes

We first let our intuition lead us to what a point process should be and how
we can fomulate it appropriately.

Definition 2.1.1. A point process on R is a set of random points P = {tj ∈
R : j ∈ Z , tj ≤ tj+1 for all j}. Always assume t−1 ≤ 0 ≤ t0.

An embedding into the notion of measure theory seems intuitive and
useful. Hence, the following definition is motivated. This will open up the
possibility to use well-known terms and measure theory as well as existing
results of probability theory.

Definition 2.1.2. The (to a point process P corresponding) counting process
N = (N(t))t∈R is given by

N(t) :=
∑
i∈Z

1{ti≤t}(t).

7



8 Chapter 2. Fundamentals, Basics and Notation

N is right-continuous. A point proces is characterized by its counting process.
The natural filtration F = (Ft)t∈R is given by

Ft := σ(N(s), s ≤ t).

This very well-known notion of point processes now enables us to express
similar expressions and assertions as we would for existing and established
theory.
As a side note, the following notion is often used as well.

Definition 2.1.3. From a different pespective define the counting measure
of a point process P by

N(A) := #(P ∩ A)

for A ∈ B(R).

Note, that the notation N(t) refers to N((−∞, t]) in the setting of ob-
serving the counting process N over time up until a point t.

We see that here a point process is charakterized by the number of events
one finds in an intervall. This allow for serveral ideas of sliding windows over
time as an equivalent to a pointwise shifting. This correspondence will open
up the possibility to form a suitable alternative definiton of stationarity.

Remark. The finite dimension distributions, i.e. the joint distributions of

N(I1), . . . , N(Ik),

where k ∈ N and bounded intervals Ii ⊂ R, i = 1, . . . , k, characterize P .

For a formal definition of stationarity for counting processes and all many
up-coming properties, we make the following assumption.

Definition 2.1.4. A point process P is called orderly, if t 6= t′ for all t, t′ ∈
P .
Always assume t−1 < 0 ≤ t0.

From now on we will only consider orderly processes, which allow for
finiteness, in the sense that multiplicity of deisgnated points implies the pos-
sibility for singularities. This would impede theoretical results. One could
argue that it is even reasonable. Consider the example from seismology. We
observe earth quakes and their aftershocks. In a reasonable experiment two
earthquakes, i.e. two simultaneously triggered quakes, would be indistin-
guishable from the sole observation.
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The general assumption, that two events can never really happen at the ex-
act same point in time, might be agreeable as well.

Now, we want to formulate a suitable definition for stationarity in the
observed processes.

Definition 2.1.5. A point process is called stationary, if for any k ∈ N and
t1, . . . , tk, τ ∈ R it holds that

L
(
(N(t1 + τ), . . . , N(tk + τ))

)
= L

(
(N(t1), . . . , N(tk))

)
.

2.2 The Intensity Function

The strucutre we oberve does not directly show the object of interest. The
generated data is merely a realization of the function of interest, i.e. the
intersity function, which will be introduced below.
As motivated in the last section 2.1, we will use a notion of infinitesimally
small intervalls in the imminent future to underlie our point processes and
perform inference. This leads us to the structure of interest, i.e. the under-
lying model specification.

Definition 2.2.1. Define by Ht := {tj ∈ P : tj < t} the history of P at time
t. Define the complete intensity function or hazard function of P , denoted
by Λ(t,Ht) as follows:

lim
δ→0

δ−1P(N(t+ δ)−N(t) = 1 | Ht) = λcom(t,Ht),

lim
δ→0

δ−1P(N(t+ δ)−N(t) = 0 | Ht) = 1− λcom(t,Ht).

As mentioned earilier, one shall keep in mind, that the intensity function
does not characterize the point process.
The conditional intensity function of P is given by

λ(t,Ht) := lim
δ→0

δ−1E[N(t+ δ)−N(t)| Ht] =
E[dN(t)| Ht]

dt

This definition suggests that Point processes of interest would have the
significant porperty to be highly influenced by its history. This is nort nec-
essarily the case. We will go on by defining a vast general class of point
processes not depending on their history. Our final outlook and the center
of this thesis focuses on point processes of such a form.
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Concerning notation the argument of the history, i.e. the conditioning of the
past events is often omitted in writing.

The following notation is often found and is consistent with the one used
up until now. We define the (conditional) intesity function as a measure.
The intensity measure λN : B(R) → R of a point process N is given by
λN(B) =

∫
B
λ(u,Hu) du, where λ denotes the intensity function of N .

These notations are interchangeable.

Definition 2.2.2. A point process is called simple if its conditional intensity
function in locally finite and non-atomic. Orderly point processes are simple.
A measure µ is called non-atomic if there do not exist atoms, i.e. measurable
sets A such that for all B ⊂ A with µ(B) < µ(A) it holds that µ(B) = 0.

We shall only be concerned with processes for which Λ(·, ·) is well-defined
and finite with probability 1.
The (conditional) intensity function does not necessarily characterize the
process.

Lemma 2.2.3. Given a point process N with well-defined (conditional) in-
tensity function λ(·, ·) we see that(

N((0, t])−
∫ t

0

λ(s,Hs) ds

)
t≥0

is a martingale with resect to the canonical filtration of the process (N((0, t]))t≥0.

2.3 Martingale Theory

Lemma 2.2.3 motivates us to make use of matingale properties in our setting.
Thus, we formally introduce martingales and features of relevance.

Definition 2.3.1. Let M = (Mt)t∈R be an adapted stochastic process w.r.t.
the filtration F = (Ft)t∈R with E[Mt] <∞ for all t ∈ R.
M is called a F-martingale, if for s < t <∞

E[Mt|Fs] = Ms a.s.

and M is called a F-submartingale, if for s < t <∞

E[Mt|Fs] ≥Ms a.s.
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In the work of this thesis we wil be confronted with terms of the form∫
g(s) dMs for some function g and a martingaleM generated via Lemma ??.

From classical martingale theory we have a vast knowledge of asymptoctics of
such forms including limiting behavior, which we will use to our advantage.

Remark. Any counting process is a submartingale w.r.t. to its history.

We recall a very well-known property, which we are to use considerably
often.

Theorem 2.3.2 (Doob-Meyer decomposition). Any F-submartingale (N(t))t∈R
with can be decomposed into a unique zero-mean F-martingale (M(t))t∈R and
a unique F-predictable cumulative process (Λ̃(t))t∈R, i.e.

N(t) = M(t) + Λ̃(t)

for t ∈ R. (Λ̃(t))t∈R is called the compensator.

Lemma 2.3.3. If the considered submartingale is a counting process w.r.t.
the history H the compensator is given by

Λ̃(t) =

∫ t

−∞
λ(t,Ht) dt.

This is again consistent with results and the notation of the previous sec-
tion.

The well-known limit theory of Rebolledo (1980) for local martingales will
be enabling us to formulate our asymptotic results. This will be rigourously
discussed in Chapter 4.

2.4 Poisson Processes

Before actually defining Hawkes processes, we want to get into a specific
process to then develop and extend the theory to our needs.

Definition 2.4.1. A point process with constant intensity function, i.e.
λ(t,Ht) =: λ is called a (homogeneous) Poisson process with intensity rate
λ.

Remark. Let N be a Poisson process with intensity rate λ. It holds that

N((s, t]) ∼ Poi(λ(t− s)).



12 Chapter 2. Fundamentals, Basics and Notation

This remark gives the intuition to its name. Homogeneous Poisson pro-
cesses are obviously stationary.

Ultimately we will want to treat processes with an intensity function with
random behavior. Towards this direction we establish this other special case.

Definition 2.4.2. A point process N is called an inhomogeneous Poisson
process if the number of events in an intervall (a, b] for a, b ∈ R is Poisson
distributed as follows

N(a, b] ∼ Poi

(∫ b

a

λ(u) du

)
for a locally integrable positive function λ, which is called the intensity func-
tion.

2.5 Hawkes Processes

We define Hawkes processes via their (conditional) intensity function. The
realized point process is then considered to be the Hawkes process, while the
underlying model is called the Hawkes model, which is not directly observ-
able.

Definition 2.5.1. Point processes with the conditional intensity function
given by

λ(t) = ν +

∫ t−

−∞
µ(t− u) dN(u).

are called Hawkes processes or self-exciting processes where ν > 0 and µ :
R→ R with µ(u) ≥ 0 for all u ≥ 0 and µ(u) = 0 for all u < 0.

As already motivated in Chapter 2, we find application in ν as the immi-
gration rate and µ as the reproduction rate. Whenevery an event happened
as a time point s in the past, the conditional intensity in a time point t for
s < t increases depending on the amount of time passed t− s.
We see that the formal definition of the intensity function gives rise to the
perspective of looking at the immigration and reproduction separately. We
note, that the immigration itself is then following a Poisson process model.
Note, that Hawkes processes are thus inhomogenous Poisson processes. The
practical problem lies in the additonal randomness of the intensity function,
via the conditioning on the history of the process. Even with the knowledge
of the reproduction function at a point in time, one knows the mean number
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of events in the next instant, but could not know it in the following instant.
This behavior makes the model so fascinating and obviously gives rise to a
vast amount of applications follow such a pattern.

Remark. Let λ(t,Ht) denote the intensity function of a Hawkes process N .
Suppose that the mean of the intensity function λ be constant, i.e. E[λ(t)] =
λ∗ for all t ∈ R. Then it holds that

λ∗ = E[λ(t)] = ν +

∫ t

−∞
g(t− s)E[dN(s)] = ν + λ

∫ ∞
0

µ(s)ds,

i.e. it holds that

λ =
ν

1−
∫∞

0
µ(s)ds

.

In particular, it has to hold that
∫∞

0
µ(s)ds < 1.

Remark. Therefore, a Hawkes process has to fulfill
∫∞

0
µ(s)ds < 1 to be

stationary.

We will see in Theorem 2.6.3, which are conditions for a Hawkes process
to be stationary.

Lemma 2.5.2. There exists at most one stationary orderly point process
of finite rate which has the condition intensity of a Hawkes process from
Definition 2.5.1 with 0 <

∫∞
0
µ(s)ds < 1.

2.6 Cluster Processes

Beforehand we have already motivated the following idea. A point in a
Hawkes process is always triggered by either the Poisson process share via
ν, the immigration rate i.e. events in the past history via the summed up
weights of values of µ. Recalling the insect lineage analogy, this means,
that the population grows either by reproduction or immigration. This thus
implies a family tree-like structure on the point process, as each ancestoral
triggers a family tree.
We formally introduce this notion as follows.

Definition 2.6.1. A (Poisson) cluster process is a point process which fulfills
the following properties
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(1) It contains highlighted points, so-called cluster centers or immigrants
which are generated by a Poisson process with a rate, the so-called im-
migration measure νc,i.e.

N c(a, b] ∼ Poi

(∫ b

a

νc(t) dt

)
for a, b ∈ R.
The process of cluster centers N c ist also called the first generation.

Denote by Ki the number of individuals in a generation i ∈ N.

(2) We denote the set of times of birth of individuals of generation i by
{t(i)j }j=1,...,Ki.
The random variables Pi,j have a Poisson distribution. Each individ-
ual j in a generation i triggers the birth of Pi,j-many (direct) descen-
dents whose times of births are characterized by some random variables
{Xi,j,k}k=1,...,Pi,j , which denote the time passed after the birth of the an-
cestor such that the set of individuals of (i + 1)th generation is given
by {t(i)j +Xi,j,k : j = 1, . . . , Ki, k = 1, . . . , Pi,j}.
We denote by µci,j(·) the reproduction measure, i.e. the intensity of
the process of decendents of individual j in generation i, where µci,j(t)
denotes the intensity at time t(i)j + t.

Remark. A Hawkes process NH is a (Poisson) cluster process. We notice
the cluster representation of Hawkes processes as follows.

(1) The immigration measure is given by νc = ν. In this case ν is constant,
which is not necessary for a cluster process.

(2) The reproduction measure is given by µci,j = µ, not depending on the
time of birth of the ancestor or its generation.
The number of (direct) descendents of the jth ancestor in generation
i,Pi,j, is Poisson distributed with parameter

∫∞
0
g(u) du.

Definition 2.6.2. We say that a cluster process N exists if with probability
one there are only a finite number of points in any finite interval.

Lemma 2.6.3. If ν > 0 is constant and m :=
∫∞

0
µ(u) du < 1 there exists

a stationary Poisson cluster process with intensity λ := ν
1−m and conditional

intensity of a Hawkes process and m > 0.

This enables us to use existing theory of cluster processes on Hawkes
processes.
Additionally, it was shown, that the length of a cluster is almost surely finite
in the sense that the last birth of a decendant of every immigrant is finite..
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Theorem 2.6.4. Assume that 0 <
∫∞

0
µ(s) ds < 1. The length of the cluster

is integrable if and only if the mean of the birthing time is finite.

This now enables the idea, that one can impose an independence structure
on a cluster process, as each cluster is independently generated via a Poisson
process of births of cluster centers. This yields that a Hawkes process fulfills
a notion of independence from a time point as long away as the length of a
cluster.

Remark. For Galton-Watson theory we know, that the size of a cluster is
almost surely finite if m < 1. The expected cluster size, i.e. the number of
the events triggered by the cluster center, is 1

1−m =
∑

k∈Nm
k.

2.7 Locally Stationary Hawkes Processes

We have by now seen great advantages to using stationary Hawkes processes,
but fairly obviously they lack flexibility in certain aspects. As seen in Theo-
rem 2.6.3 for stationarity we can not allow for time varying immigrationrate
oder reproduction function. Thus, an extended version of the model will be
introduced. Developed inference ist the centerpiece of this work and will be
handled in the following chapters.

Definition 2.7.1. We consider a model for multivariate Hawkes processes
N(t) = (N1(t), ..., Nd(t))ᵀ for t ∈ [0, T ] which has an underlying conditional
intensity function given by defined by

λl(t) = νl
(
t

T

)
+

d∑
m=1

∫ t−

−∞
µl,m

(
t− s; t

T

)
dN (m)

s (2.1)

with l = 1, ..., d and t ∈ [0, T ] or in vector notation

λ(t) = ν

(
t

T

)
+

∫ t−

−∞
µ

(
t− s; t

T

)
dNs.

νl and µl,m are positive functions for 1 ≤ l,m ≤ d defined on [0, 1] and
R+

0 × [0, 1], respectively R+
0 := [0,∞).
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3 | Setup and Estimation Proce-
dure

The goal is to implement inference for the conditional intensity function λ
at a fixed time point x0 = t0

T
for t0 ∈ [0, T ] and a fixed dimension l in a local

neighborhood.
We will use an asymptotic framework where T → ∞. Intuitively, for grow-
ing T more events are contained in said local neighborhoods in the time line.
This idea is inspired by the work on locally stationary processes in Dahlhaus
(1996).
We will make assumptions corresponding to the observed Hawkes process
being locally stationary. In this chapter reproduction functions µ are con-
sidered, which have compact support. In the testing procedure of Chapter 4
we change this setting to a weaker assumption.

3.1 Estimation Strategy

For a fixed value x0 ∈ (0, 1) and for a fixed value of l we will develop theory
for estimation of the parameter νl (x0) and the function µl,m (u;x0) for 1 ≤
m ≤ d. Without loss of generality we choose l = 1 and we write ν∗ = ν1 (x0),
µ∗,m (u) = µ1,m (u;x0), and µ∗ (u) = (µ∗,m (u))1≤m≤d. Correspondingly, we
write t0 = x0T . Note that this value depends on T . We assume that the
Hawkes process is observed on an interval [0, T ]. To simplify discussions
we assume that the observed process has the conditional intensity function
(2.5.1) for (−∞, T ]. All counting processes considered in this paper are
normed to be equal to 0 for t = 0.
We will discuss the so-called cluster representation of a Hawkes process as
mentioned in Section 2.6. In this representation each jump of the counting
process is interpreted as the birth of an individual. There are d different
types of individuals. The lth component of the counting process jumps if an
individual of type l is born. We distinguish between individuals with exactly

17
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one parent and individuals without parents. Individuals without parents are
called immigrants or ancestors. The parent of an individual who is not an
immigrant can be of type 1 ≤ m ≤ d. We allow for the type of a parent
to differ from the type of its child. For the cluster representation of the
Hawkes process we have to define with which conditional probability λl(t)dt
an individual of type l is born in an infinitesimal interval dt, given the past
of the process. Let us write for the birth times of individuals of type l:
(tl,i : i ∈ Z). According to (2.5.1) we can write

λl(t)dt = νl
(
t

T

)
dt+

d∑
m=1

∑
i∈Z,tm,i<t

µl,m
(
t− tm,i;

t

T

)
dt. (3.1)

Each summand of this sum can be interpreted as conditional probability of
a birth of an individual of type l in the interval dt where for each summand
the birth is caused by another reason, for details see Section 3.3.3.

We now come to the definition of our smoothing estimator. It is based
on B-spline fits with accuracy measured by a local criterion function that
is localized around x0. The local criterion makes use of locally polynomial
kernel smoothing of fixed order K. Thus, when estimating the function
µ∗ (u) = µ1,m (u;x0) in the smoothing procedure the function µ1,m (u;x) is
approximated locally for x in a neighborhood of x0 by the sum of products
of a B-spline function with argument u and a power of x − x0. For the B-
spline approximation we use a B-spline basis ψ1, ψ2, ..., ψJ for d-dimensional
functions on [0, A] with equidistant knot-points and with norm ‖ψl‖2 =∫ A

0
ψᵀ
l (x)ψl(x)dx = 1 for 1 ≤ l ≤ J . We suppose that the support of the

basis elements is a rectangle with side lengths bounded by a constant times
J−1/d and that the basis elements are absolutely bounded by J1/2. Other
theory can be easily extended to other basis choices with these properties.
But, we have no idea how to implement other smoothing methods with re-
spect to the first argument of the reproduction functions. In particular, this
concerns kernel smoothing. But also for smoothing splines this is not clear
to us, because of the additional kernel smoothing done with respect to the
second argument of the reproduction functions.

We now give the definition of our estimator for the case K = 1. The
definiton for K > 1 will be introduced in the following Subsection 3.1.1.

The estimator (ν̂∗, µ̂∗ (·)) of (ν∗, µ∗ (·)) is equal to

ν̂∗ = β̂0,

µ̂∗(u) =
J∑
j=1

β̂jψj(u),
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where β̂0, ..., β̂J are defined as follows.
For some bandwidth h = hT → 0 and basis dimension J = JT → ∞,

both depending on T ,

ρ(β) = − 2

T

∫
λ#(t; β)h−1L

(
t− t0
Th

)
dN1

t

+
1

T

∫
λ#(t; β)2h−1L

(
t− t0
Th

)
dt

is minimized for β = β̂. The function L is a kernel function, i.e. a probability
density function. Furthermore,

λ#(t; β) = β0 +
J∑
j=1

βj

∫ t−

t−A
ψj(t− u)ᵀdNu

is a local approximation of λ1(t) with ν1(x) = β0 and (µ1,m(u, x))dk=1 =∑J
j=1 βjψj(t−u)ᵀ. The criterion ρ(β) =min! can be interpreted as a localized

least squares criterion. This becomes clear if one writes in abuse of notation
:

ρ(β) =

∫ [(
dNt

dt
(t)− λ#(t; β)

)2

−
(

dNt

dt
(t)

)2
]2

h−1L

(
t− t0
Th

)
dt.

Here the undefined term
(

dNt
dt

(t)
)2 cancels out and dNt

dt
dt is read as dNt.

It holds that ρ(β̂) = −2τ̂ ᵀβ̂ + β̂ᵀ∆β̂, where τ̂ = (τ̂0, ..., τ̂J)ᵀ is a (J + 1)-
dimensional vector with

τ̂0 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)
dN1

t , (3.2)

τ̂j =
1

Th

∫ t0+Th

t0−Th

∫ t−

t−A
ψᵀ
j (t− u)L

(
t− t0
Th

)
dNudN

1
t , (3.3)

and where ∆ is the following random (J + 1)× (J + 1)-matrix

∆ =


∆00 ∆01 ... ∆0J

∆ᵀ
01 ∆11 ... ∆1J
...

... . . . ...
∆ᵀ

0J ∆J1 ... ∆JJ

 (3.4)

with

∆0,0 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)
dt,
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which is equal to 1, for h small enough,

∆0,j =
1

Th

∫ t0+Th

t0−Th
Rj(t)L

(
t− t0
Th

)
dt, (3.5)

∆j,j′ =
1

Th

∫ t0+Th

t0−Th
Rj(t)Rj′(t) L

(
t− t0
Th

)
dt, (3.6)

Rj(t) =

∫ t−

t−A
ψᵀ
j (t− u)dNu.

Note that β̂ = ∆−1τ̂ as long as ∆ is invertible. We see that our resulting es-
timators ν̂∗ and µ̂∗(u) are based on locally weighted least squares estimation,
where the local weights are coming from Nadaraya-Watson type smoothing.

3.1.1 Estimation using Locally Polynomial Smoothing

We now describe our smoothing method for K > 1 where the weights are
coming from locally polynomial smoothing of order K. As in classical non-
parametric regression locally polynomial smoothing leads to a better per-
formance at boundaries and it achieves faster rates in case of higher order
smoothness of ν1 (x) and µ1,m (u;x), here with respect to x. Now, the esti-
mator (ν̂∗, µ̂∗ (·)) of (ν∗, µ∗ (·)) is equal to

ν̂∗ = θ̂0,1,

µ̂∗(u) =
J∑
j=1

θ̂j,1ψj(u),

where θ̂ = (θ̂0,1, θ̂1,1, ..., θ̂J,1) = (θ̂ᵀ0 , ..., θ̂
ᵀ
J)ᵀ with θ̂j = (θ̂j1, ..., θ̂jK)ᵀ for

0 ≤ j ≤ J is defined as follows. The criterion

ρ(θ) = − 2

T

∫
λ#(t; θ)h−1L

(
t− t0
Th

)
dN1

t

+
1

T

∫
λ#(t; θ)2h−1L

(
t− t0
Th

)
dt

is minimized for θ = θ̂. Now,

λ#(t; θ) =
K∑
k=1

θ0,k

(
t− t0
Th

)k−1

+
J∑
j=1

K∑
k=1

θjk

∫ t−

t−A

(
t− t0
Th

)k−1

ψj(t− u)ᵀdNu
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is a higher order approximation of λ1(t) with ν1(x) =
∑K

k=1 θ0,k

(
x−x0
h

)k−1 and
(µ1,m(u, x))dk=1 =

∑J
j=1

∑K
k=1 θjk

(
x−x0
h

)k−1
ψj(t− u)ᵀ. As above, ρ(θ) =min!

can be interpreted as a localized least squares criterion. Furthermore, we
have θ̂ = ∆−1τ̂ as long as ∆ is invertible where now τ̂ = (τ̂ ᵀ0 , ..., τ̂

ᵀ
J )ᵀ is a

K(J + 1)-dimensional vector and ∆ is a K(J + 1)×K(J + 1)-matrix. The
vector τ̂ is defined by

τ̂0 =

(
1

Th

∫ t0+Th

t0−Th

(
t− t0
Th

)k−1

L

(
t− t0
Th

)
dN1

t

)
1≤k≤K

,

τ̂j =

(
1

Th

∫ t0+Th

t0−Th

∫ t−

t−A
ψᵀ
j (t− u)

(
t− t0
Th

)k−1

L

(
t− t0
Th

)
dNudN

1
t

)
1≤k≤K

.

Furthermore, the matrix ∆ is given by

∆0,0 =

(
1

Th

∫ t0+Th

t0−Th

(
t− t0
Th

)k+k′−2

L

(
t− t0
Th

)
dt

)
1≤k,k′≤K

,

∆0,j =

(
1

Th

∫ t0+Th

t0−Th

∫ t−

t−A
ψᵀ
j (t− u)

(
t− t0
Th

)k+k′−2

L

(
t− t0
Th

)
dNudt

)
1≤k,k′≤K

,

∆j,j′ =

(
1

Th

∫ t0+Th

t0−Th

∫ t−

t−A

∫ t−

t−A
ψj(t− u)dNu ψ

ᵀ
j′(t− v)dNv

×
(
t− t0
Th

)k+k′−2

L

(
t− t0
Th

)
dt

)
1≤k,k′≤K

.

We are back in the case K = 1 for the particular choice β = (θ0,1, ..., θJ,1)ᵀ.

3.2 Asymptotic Analysis

We make the following assumptions:

(A1) The support of the functions µl,m(s, x) is contained in [0, A]× [0, 1] for
some known A > 0 and the functions are bounded and positive for
l,m = 1, ..., d, s ∈ [0, A], x ≤ 1. The matrix Γ+ has spectral radius
strictly smaller than 1. Here we define Γ+ as the matrix with elements∫ A

0

sup
x≤1

µl,m(s, x)ds.

The function ν(x) is bounded and bounded away from 0 for x ≤ 1.
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(A2) The partial derivatives of µl,m(s, ·) with respect to the second argument
exist and they are uniformly absolutely bounded for l,m = 1, ..., d and
0 ≤ s ≤ A.

(A3) The smoothing parameters h = hT and J = JT depend on T . The order
K is fixed. It holds that J(hT )−1/2T δ → 0 for δ > 0 small enough and
that log TJ−1/d → 0.

(A4) There exist θ∗j,k for k = 1, .., K and j = 0, ..., J , depending on J such
that for u ∈ [0, A] and |x− x0| ≤ h∣∣∣∣∣ν1(x)−

K∑
k=1

θ∗0,k(x− x0)k−1

∣∣∣∣∣ ≤ ε1,T ,∣∣∣∣∣µ1,m(u, x)−
K∑
k=1

J∑
j=1

θ∗j,kψj(u)(x− x0)k−1

∣∣∣∣∣ ≤ ε2,T

for some sequences ε1,T , ε2,T → 0.

Let us shortly discuss the assumptions. In the common case where
µl,m(s, x) does not depend on x Assumption (A1) is a standard assump-
tion to get the existence of a stationary solution for (2.5.1). It guarantees
that the Hawkes process does not explode. For d = 1 it boils down to the
integrability condition of the kernel function to be below 1, in order to avoid
that the number of events of the Hawkes process converges to infinity which
excludes a stationary version of the Hawkes process. In (A1) we assume
that the functions µl,m(·, x) have bounded support [0, A]. From an applied
point of view it would be important to generalize our approach to functions
µl,m(·, x) with unbounded support. To simplify our theoretical discussions
we do not allow that A =∞ because nonparametric estimation of a function
with unbounded support needs additional considerations, in particular on
the tails of the function. In a first step one could generalize our results to
an asymptotic setting where A → ∞. In an alternative approach one could
use a parametric model for the tails and one could apply the nonparametric
estimator only in a finite interval. Both extensions of our approach will not
be considered in this paper. Assumption (A2) is used at a technical point in
the proof. It could be replaced by weaker smoothness assumptions which is
not done here because stronger assumptions are already needed to get (A4)
with reasonable rates ε1,T , ε2,T → 0. Assumption (A3) demands standard
assumptions on the rate of convergence of the smoothing parameters h = hT
and J = JT for T → ∞. Note that J/h could be interpreted as the order
of the number of unknown parameters and that, under our assumptions, the
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number of events is of order OP (T ). Thus T could be seen as the order of the
sample size and in (A3) we assume that the number of unknown parameters
is of order O((T/h)1/2T−δ) for some δ > 0 small enough. We conjecture that
this assumption can be weakened. For an interpretation of Assumption (A4)
suppose that, for 1 ≤ m ≤ d, for u in [0, A] and for x in a neighborhood
of x0, µ1,m(u, x) has absolutely bounded partial derivatives of order M with
respect to u and x. Assume further that B-splines of order M with n in-
tervals of [0, A] are used and locally polynomial smoothing with K = M is
applied. Then one can show for some constants C1, C2, ... that Assumption
(A4) holds with ε1,T ≤ C1h

M and ε2,T ≤ C2n
−M + C3h

M . Because J is of
order nd we get that εT = max(ε1,T , ε2,T ) ≤ C4J

−M/d +C5h
M . In the follow-

ing theorem we get that the estimator is of order εT +
√

J
hT

. This order is
minimized by choosing h and J−1/d of order T−1/(2M+d+1). Then one gets an
estimator with rate of convergence of order T−M/(2M+d+1). In nonparametric
curve estimation this rate of convergence shows up as optimal rate in many
settings for the estimation of M -times differentiable functions with (d + 1)-
dimensional argument. We get that this rate can also be attained in our
estimation problem after appropriate choice of the smoothing parameters J
and h.

Theorem 3.2.1. Make Assumptions (A1) – (A4). With εT = max(ε1,T , ε2,T )
it holds that

ν̂∗ − ν∗ = OP

(
εT +

√
J

hT

)
,

(∫
[µ̂∗,(l)(u)− µ∗,(l)(u)]2du

)1/2

= OP

(
εT +

√
J

hT

)
for l = 1, ..., d.

By using some simplifications in our proofs one gets the following result
for a stationary Hawkes process Nt with conditional intensity function

λl(t) = νl +
d∑

m=1

∫ t−

t−A
µl,m (t− s) dN (m)

s (3.7)

for some constants νl and functions µl,m (·) (1 ≤ l,m ≤ d). Now, the
estimator (ν̂, µ̂ (·)) of (ν, µ (·)) is defined by µ̂(u) =

∑J
j=1 β̂jψj(u), where

(ν̂, β̂1, ..., β̂J) minimizes

− 2

T

∫
λ#(t; ν, β)dN1

t +
1

T

∫
λ#(t; ν, β)2dt
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with λ#(t; ν, β) = ν +
∑J

j=1 βj
∫ t−
t−A ψj(t− u)ᵀdNu. In the stationary case we

get the following result:

Corollary 3.2.2. For a stationary process with (3.7) assume that for 1 ≤
l,m ≤ d the support of the functions µl,m(s) is contained in [0, A] for some
A > 0, that the functions are positive for l,m = 1, ..., d, s ∈ [0, A], and that
the matrix Γ+ has spectral radius strictly smaller than 1. Now, we define
Γ+ as the matrix with elements

∫ A
0
µl,m(s)ds. Furthermore, we assume that

ν > 0, that J(T )−1/2+δ → 0 for δ > 0 small enough, that log TJ−1/d → 0 and
that there exist β∗j for j = 1, ..., J , depending on J , such that∣∣∣∣∣µ1,m(u)−

J∑
j=1

β∗jψj(u)

∣∣∣∣∣ ≤ εT

for some sequence εT → 0 and for u ∈ [0, A]. Then, it holds that ν̂ − ν =

OP

(
εT +

√
J/T

)
and

(∫
[µ̂1,m(u)− µ1,m(u)]2du

)1/2

= OP

(
εT +

√
J/T

)
for m = 1, ..., d.

Up to an additional log factor this result can also be proved along the
lines of arguments used in Hanssen, Reynaud-Bouret and Rivoirard (2015).
There an additional log factor appears because adaptive LASSO estimation
is considered.

3.3 Proof of Theorem 3.2.1

3.3.1 Outline of the Proof

In our proofs the quantities C,C∗, C1, ... are positive constants that are cho-
sen large enough and c, c∗, c1, ... are strictly positve constants that are cho-
sen small enough. The same names will be used for different constants,
also in the same formula. For simplicity we assume that K = 1. All ar-
guments go through for K > 1 at the cost of a more complex notation.
For the case K = 1 we can make use of a simplified notation as already
outlined in Section 3.1. We write β̂j = θ̂j,1 and β∗j = θ∗j,1. Our estima-
tor (ν̂∗, µ̂∗ (·)) of (ν∗, µ∗ (·)) is defined as µ̂∗(u) =

∑J
j=1 β̂jψj(u), where for

β̂ = (β̂0, ..., β̂J)ᵀ with some bandwidth h → 0 and basis dimension J → ∞
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ρ(β) = − 2
T

∫
λ#(t; β)h−1L

(
t−t0
Th

)
dN1

t + 1
T

∫
λ#(t; β)2h−1L

(
t−t0
Th

)
dt is mini-

mized. Here, as above, ψ1, ..., ψJ is a B-spline basis for d-dimensional func-
tions on [0, A] and λ#(t; β) = β0 +

∑J
j=1 βj

∫ t−
t−A ψj(t − u)ᵀdNu. Note that

now ρ(β) = −2τ̂ ᵀβ + βᵀ∆β, where

∆ =

(
1 δᵀ

δ ∆∗

)
with δ = (∆0,1, ...,∆0,J)ᵀ and ∆∗ = (∆j,j′)1≤j,j′≤J see (3.5), (3.6). Note that
β̂ = ∆−1τ̂ as long as ∆ is invertible. We now decompose τ̂ = (τ̂0, ..., τ̂J)ᵀ =
(τ̂0, τ̂

ᵀ
−0)ᵀ as follows

τ̂0 = τ̂0,A + τ̂0,B + τ̂0,C ,

τ̂−0 = τ̂−0,A + τ̂−0,B + τ̂−0,C ,

where

τ̂0,A =
0

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)
dM1

t ,

τ̂0,B =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)[
{ν(t/T )− β∗0}

+

∫ t−

t−A

{
µ(t− s, t/T )−

J∑
k=1

β∗kψ
ᵀ
k(t− s)

}
dNs

]
dt,

τ̂0,C =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)[
β∗0 +

∫ t−

t−A

J∑
k=1

β∗kψ
ᵀ
k(t− s)dNs

]
dt,

τ̂−0,A,j =
1

Th

∫ t0+Th

t0−Th

∫ t−

t−A
ψᵀ
j (t− u)L

(
t− t0
Th

)
dNudM

1
t ,

τ̂−0,B,j =
1

Th

∫ t0+Th

t0−Th

∫ t−

t−A
ψᵀ
j (t− u)L

(
t− t0
Th

)
dNu

[
{ν(t/T )− β∗0}

+

∫ t−

t−A

{
µ(t− s, t/T )−

J∑
k=1

β∗kψ
ᵀ
k(t− s)

}
dNs

]
dt,

τ̂−0,C,j =
1

Th

∫ t0+Th

t0−Th

∫ t−

t−A
ψᵀ
j (t− u)K

(
t− t0
Th

)
dNu

[
β∗0

+

∫ t−

t−A

J∑
k=1

β∗kψ
ᵀ
k(t− s)dNs

]
dt
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with β∗j = θ∗j,1 for j = 1, ..., J , see (A4).
Note that (β∗0 , ..., β

∗
J)ᵀ = ∆−1(τ̂0,C , τ̂−0,C,1, ..., τ̂−0,C,J)ᵀ. For the proof of

the theorem we will show that for 1 ≤ j ≤ J

τ̂0,A = OP

(√
1

hT

)
, τ̂−0,A,j = OP

(√
1

hT

)
, (3.8)

τ̂0,B = OP (εT ) , τ̂−0,B,j = OP (εT ) , (3.9)

see Subsection 3.3.6 and Lemma 3.3.9. Furthermore we will show that

the smallest eigenvalue of E[∆] is bounded from below
by some constant c > 0, (3.10)

see Subsection 3.3.2 and Lemma 3.3.3. Finally we will show that for all ε > 0
with probability tending to one it holds that

max
0≤j,j′≤J

|∆j,j′ − E[∆j,j′ ]| ≤ CT ε
1√
hT

, (3.11)

see Subsection 3.3.5. From (3.11) and Assumption (A3) we get that the
operator norm of ∆− E[∆] is of order oP (1). Thus, from (3.10)– (3.11) one
concludes that, with probability tending to 1, the smallest eigenvalue of ∆
is bounded from below by some constant c > 0. In summary, together with
(3.8), (3.9), this shows that the statement of Theorem 3.2.1 follows from
(3.8)–(3.11).

For the proof of (3.10) we need formulas for the first two moments of lin-
ear statistics of the Hawkes process. We present such results in Subsection
3.3.2. For the proof of (3.8)–(3.9) we need bounds on the number of jumps of
the Hawkes process in subintervals of [0, T ]. For the proof of (3.11) we need
that ∆j,j′ − E[∆j,j′ ] can be approximated by sums of independent random
variables. For these two claims we make use of the cluster representations
of Hawkes processes, see Hawkes and Oakes (1974) and Reynaud-Bouret
and Roy (2007). This representation has also been used in the statistical
analysis of nonparametric estimators of other classes of Hawkes processes in
Hanssen, Reynaud-Bouret and Rivoirard (2015), Roueff, von Sachs and San-
sonnet (2016), and Roueff and von Sachs (2019). In Subsection 3.3.3 we will
define a cluster representation for our non-stationary inhomogeneous process
N . We will use the cluster representation in Subsection 3.3.4 to compare
N with a stationary Hawkes process by a coupling argument. The coupling
will allow to carry over results known for stationary Hawkes process to our
locally stationary setting. In Subsection 3.3.5 we will apply the cluster repre-
sentation to show that for 0 ≤ j, j′ ≤ J ∆j,j′ −E[∆j,j′ ] can be approximated



3.3. Proof of Theorem 3.2.1 27

by sums of independent variables. This will be used to show (3.11). Finally
in Section 3.3.6 we show (3.8) and (3.9) by using bounds from Subsection
3.3.4 on the moments of the number of jumps of the Hawkes process in an
interval.

3.3.2 Bounds on the Moments of Linear Statistics with
an Application for the Calculation of E[∆]

We will use the following lemma for the calculation of second order moments
of linear statistics of Hawkes processes of the form (2.5.1). This lemma gen-
eralises results in Bacry, Dayri and Muzy (2012) for stationary homogeneous
Hawkes processes.

Lemma 3.3.1. For a Hawkes process Nt of the form (2.5.1) that fulfils As-
sumption (A1), it holds for Λ(t/T ) = E [λ(t)] that:

Λ

(
t

T

)
= ν

(
t

T

)
+

∫
χ

(
t− s, t

T

)
ν
( s
T

)
ds, (3.12)

λ(t) = Λ

(
t

T

)
+

∫
χ

(
t− s, t

T

)
dMs, (3.13)

where

χ

(
t− s, t

T

)
=
∞∑
k=1

µ(∗k)

(
t− s, t

T

)
with µ(∗1)

(
t− s, s

T

)
= µ

(
t− s, s

T

)
and

µ(∗k)

(
t− s, t

T

)
=

∫
µ(∗(k−1))

(
t− u, t

T

)
µ
(
u− s, u

T

)
du

for k ≥ 2, and where Mt is the martingale defined by dMt = dNt − λ(t)dt.
Finally, we have that

E [dNtdN
ᵀ
t′ ] =

(
Λ

(
t

T

)
Λ

(
t′

T

)ᵀ

+ Σt/T δt−t′ + χ

(
t− t′, t

T

)
Σt′/T (3.14)

+Σt/Tχ

(
t′ − t, t

′

T

)ᵀ

+

∫
χ

(
t− s, t

T

)
Σs/Tχ

(
t′ − s, t

′

T

)ᵀ

ds

)
dtdt′,

where Σt/T is a diagonal matrix with diagonal elements Λi(t/T ) and where
δt−t′dtdt

′ is equal to dt for t = t′ and equal to 0 otherwise.

A proof of this Lemma can be found in the supplement ?. By application
of the lemma we get immediately the following result.



28 Chapter 3. Setup and Estimation Procedure

Lemma 3.3.2. Make the assumptions of Theorem 3.2.1. For functions g :
[0, A]→ Rd and γ ∈ R it holds for

R(g, γ) = E

[
1

Th

∫ t0+Th

t0−Th

(
γ +

∫ t−

t−A
gᵀ(t− u)dNu

)2

L

(
t− t0
Th

)
dt

]
.

that:

R(g, γ) = R(g) +R∗(g, γ) (3.15)

where

R(g) =
1

Th

∫ t0+Th

t0−Th

∫ (
g(t− v) +

∫
χ
(
u− v, u

T

)ᵀ
g(t− u)du

)ᵀ

Σv/T

(
gᵀ(t− v) +

∫
χ
(
u− v, u

T

)ᵀ
g(t− u)du

)
L

(
t− t0
Th

)
dvdt,

R∗(g, γ) =
1

Th

∫ t0+Th

t0−Th

(
γ +

∫ t−

t−A
gᵀ(t− u)Λ

( u
T

)
du

)2

L

(
t− t0
Th

)
dt.

Finally, this lemma can be used to prove the following result, see Subsec-
tion 3.3.7 for details.

Lemma 3.3.3. Make the assumptions of Theorem 3.2.1. For functions g :
[0, A]→ Rd and γ ∈ R it holds for T large enough that:

R(g, γ) ≥ c

(
γ2 +

∫ A

0

gᵀ(t)g(t)dt

)
(3.16)

for some constant c > 0. In particular, it holds that the smallest eigenvalue
of E[∆] is bounded from below and that, thus, the matrix E[∆] is invertible.

3.3.3 Cluster Representations of Locally Stationary Hawkes
Processes

We now come back to the cluster representation of a Hawkes process where
the jumps tm,i of the counting process are interpreted as the birth dates of
immigrants or children, see (3.1). We now interpret each summand of the
sum on the right hand side of (3.1) as conditional probability of a birth of
an individual of type l in the interval dt where for each summand the birth
is caused by another reason. The first summand νl

(
t
T

)
dt is the conditional

probability that an immigrant of type l is born. And µl,m
(
t− tm,i; t

T

)
dt is

the conditional probabilty that the individual of type m who was born at
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tm,i gets a child of type l in the interval dt. Clearly, for an observed Hawkes
process we do not know if a birth of a child of type l in the interval dt is
caused by immigration or by an individual of type m getting a child. But
the interpretation of the Hawkes process as developing families simplifies the
mathematics essentially. We now give a more formal description of the cluster
representation of locally stationary Hawkes processes.

The cluster representation for locally stationary Hawkes process (2.5.1)
is given by independent random variables

- the number of children P l,m
x (x ∈ [0, 1], 1 ≤ l,m ≤ d) of type l of an

individual of type m born at Tx. The number P l,m
x is assumed to have

a Poisson distribution with parameter pl,mx =
∫ A

0
µl,m(s, x+ (s/T ))ds;

- the number of anchestors P (m) (1 ≤ m ≤ d) born in the interval [0, T ].
It is assumed that P (m) has a Poisson distribution with parameter
p(m) = T

∫ 1

0
ν(m)(s)ds;

- Possible birth dates x+X l,m
x,i (x ∈ [0, 1], 1 ≤ l,m ≤ d, i ∈ N) of children

of type l of an individual of type m born at Tx. The variables X l,m
x,i are

distributed according to Lebesgue density µl,m(·, x+ (·/T ))/pl,mx ; and

- Possible birth dates Z(m)
i (1 ≤ m ≤ d, i ∈ N) of anchestors. The

variables Z(m)
i have a Lebesgue density ν(m)(·/T )/p(m).

The variables P l,m
x and X l,m

x,i are defined for all x ∈ [0, 1] and X l,m
x,i and Z(m)

i

are defined for all i ∈ N. In the construction of the locally stationary Hawkes
process we will make use of the variables only for random subsets of [0, 1]
and N. More precisely, we only use the variables P l,m

x for xT equal to the
birth times of individuals of type m and we use X l,m

x,i for xT equal to the
birth times of individuals of type m and with 1 ≤ i ≤ P l,m

x and finally we
need Z(m)

i only for 1 ≤ i ≤ P
(m)
x .

The construction of the Hawkes process now starts with the definition of
birth dates of the ancestors. The birth dates of ancestors of type m are given
by a Poisson process with conditional intensity ν(m)(·/T ) or equivalently, as
Z

(m)
1 , ..., Z

(m)

P (m) . Each ancestor sets up a separate family with descendants of
type 1 ≤ l ≤ d. The descendants are born iteratively in generations n ≥ 1.
A member of a family that was born at time S and that is of type m has
P l,m
S/T children of type l. They are born at the dates

S +X l,m
S/T,1, ..., S +X l,m

S/T,P l,m
S/T

.
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In the construction we made use of the fact that with probability 1 no two
individuals are born at the same date. This follows because our conditional
intensity measures are assumed to have Lebesgue densities. In particular,
for this reason none of the variables P l,m

x (x ∈ [0, 1], 1 ≤ l,m ≤ d) and
X l,m
x,i (x ∈ [0, 1], 1 ≤ l,m ≤ d, i ∈ N) is used twice or more times in the

construction, with probability equal to 1.
The cluster construction allows to compare the process N with a homo-

geneous Hawkes process N̄ that is constructed by adding a random number
of additional individuals. Thus we can apply bounds on the number of birth
times in an interval stated for homogeneous Hawkes processes. By construc-
tion the bounds are also valid for the locally stationary process N . This will
be described in the next subsection.

3.3.4 Bounds on the Number of Births in an Interval,
on the Life Spans of Families and on the Number
of Family Members

For homogeneous Hawkes processes bounds have been given for the number
of births in an interval, for the life spans of families and for the number of
family members. We now construct a homogeneous Hawkes process N̄ by
adding births of a random number of additional individuals. These allows
us to get bounds for these quantities also for our locally stationary process.
The homogeneous Hawkes process N̄ has conditional intensity function

λ̄l(t) = ν̄l +
d∑

m=1

∫ t−

t−A
µ̄l,m (t− u) dN̄ (m)

s (3.17)

with ν̄l = supx≤1 ν
l (x) and µ̄l,m (t) = supx≤1 µ

l,m (t;x) for 1 ≤ l,m ≤ d and
0 ≤ t ≤ A. Using cluster representations for both processes, it can be seen
that there exists a strong construction of N and N̄ such that all birth points
of N l are also birth points of N̄ l for 1 ≤ l ≤ d. Under strong construction we
mean that this holds for two processes constructed on the same probability
space with the distribution of N or N̄ , respectively. Thus, we can carry
over the results of Lemma 1 and of Proposition 2 in Hanssen, Reynaud-
Bouret and Rivoirard (2015) that treat homogeneous Hawkes processes to
our inhomogeneous Hawkes process and we get the following result.

Lemma 3.3.4. Make the assumptions of Theorem 3.2.1. There exist ρ > 0
and C > 0, not depending on T , such that

E
[
eρWl

]
< C, (3.18)

E
[
eρN[t−A,t]

]
< C (3.19)
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for 1 ≤ l ≤ d and t ≤ T . Here Wl is the number of family members in a
family with ancestor of type l and N[t−A,t] is the number of birth points of all
types of N in the interval [t− A, t].

At this point we would also like to add another result that follows from the
theory of homogeneous Hawkes processes and that will be used in the local
mathematical analysis of our estimator β̂. Denote by T ∗e,t the last birth date
of all types inside all families whose ancestor was born before t and put Te,t =
T ∗e,t − t. This is also called extinction time. For the homogeneous process N̄
the distribution of Te,t does not depend on t and it holds that P[Te,t ≥ s] ≤∑d

l=1
ν̄l

ρl
E
[
eρlWl

]
e−ρls, see the proof of Proposition 3 in Hanssen, Reynaud-

Bouret and Rivoirard (2015). Again using the above strong approximation,
we can carry over this result to our inhomogeneous Hawkes process and we
get the following lemma.

Lemma 3.3.5. Make the assumptions of Theorem 3.2.1. We have for some
constants C, ρ∗ > 0 that do not depend on T

P[Te,t ≥ s] ≤ Ce−ρ
∗s (3.20)

for t ≤ T and s ≥ 0.

For the study of the terms δ and ∆ we will use that these quanti-
ties can be approximated by sums of independent random variables. For
this aim we will use a construction that also has been used in Hanssen,
Reynaud-Bouret and Rivoirard (2015) and Reynaud-Bouret and Roy (2007)
for the study of homogeneous Hawkes processes. For x∗, x fixed, suppose
that Nq,n (q ∈ N, n ∈ Z) are independent Hawkes processes with condi-
tional intensity function λlq,n(t) = λln(t) = ν(m)

(
t
T

)
I[x∗+2nx−x≤t<x∗+2nx+x]

+
∑d

m=1

∫ t−
t−A µ

l,m
(
t− s; t

T

)
dN

(m)
q,n;s for 1 ≤ l ≤ d. These are Hawkes pro-

cesses that only contain families with ancestors born in the interval [x∗+2nx−
x, x∗+2nx+x). PutN+ =

∑
−∞<n<∞N0,n and Nq =

∑
−∞<n<q−1Nq,n+N0,q.

It holds: The Hawkes process N+ has the same distribution as N . The an-
cestors of the Hawkes process Nq are all born before x∗ + 2qx + x and the
process Nq has conditional intensity function

νl
(
t

T

)
I[−∞<t<x∗+2qx+x] +

d∑
m=1

∫ t−

t−A
µl,m

(
t− s; t

T

)
dN (m)

q;s (3.21)

for 1 ≤ l ≤ d. Furthermore, it holds that the processes Nq (q ≥ 1) are
independent. We now put for a, x fixed with 0 < a < x

Mx∗,x
q = Nq

∣∣
[x∗+2qx−a,x∗+2qx+x)

. (3.22)
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These are independent processes for q ∈ N. With the same arguments as in
Section 3.1 of Reynaud-Bouret and Roy (2007) for one-dimensional homoge-
neous Hawkes processes one gets that∣∣∣P[Mx∗,x

q 6= N+
∣∣
[x∗+2qx−a,x∗+2qx+x)

]
∣∣∣ ≤ 2P[Te,x∗+2qx−x ≥ x− a]

≤ 2Ce−ρ
∗(x−a),

where (3.20) has been used. In particular, we have that for measurable sets
A ∣∣∣P[Mx∗,x

q ∈ A]− P[N
∣∣
[x∗+2qx−a,x∗+2qx+x)

∈ A]
∣∣∣ ≤ 2Ce−ρ

∗(x−a).

By a small extension of the arguments one gets the following lemma.

Lemma 3.3.6. Make the assumptions of Theorem 3.2.1. There exists a
Hawkes process N+ that has the same distribution as N with the following
property. For a finite subset I of N, x∗ ∈ [0, 1), and x > a > 0 there
exist independent Hawkes processes Nq for q ∈ I with conditional intensity
function (3.21) such that for the processes Mx∗,x

q defined in (3.22) it holds
that

P[Mx∗,x
q 6= N+

∣∣
[x∗+2qx−a,x∗+2qx+x)

for some q ∈ I] ≤ 2C|I|e−ρ∗(x−a).(3.23)

3.3.5 Treatment of ∆− E[∆]

We now consider the variables δ and ∆∗. With the help of Lemma 3.3.6 with
a = A we can approximate these variables by the sum of two terms, where
each term is the sum of independent variables. Such a splitting device has
also been used in Reynaud-Bouret and Roy (2007) to prove Hoeffding and
Bernstein inequalities for averages of flows induced by stationary Hawkes
processes. We start by discussing ∆∗. With G(t) = (Gjk(t))1≤j,k≤J where

Gjk(t) =

∫ t−

t−A

∫ t−

t−A
L

(
t− t0
Th

)
ψᵀ
j (t− u)dNuψ

ᵀ
k(t− v)dNvI(t0−Th≤t≤t0+Th)

we get that ∆∗ − E[∆∗] = ∆∗1 + ∆∗2 with

∆∗1 =
1

Q

Q∑
q=0

∫ x∗+(2q+1)x

x∗+2qx

Q

Th
{G(t)− E[G(t)]} dt,

∆∗2 =
1

Q

Q∑
q=0

∫ x∗+(2q+2)x

x∗+(2q+1)x

Q

Th
{G(t)− E[G(t)]} dt,
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where x∗ = t0−hT and where x is a value that depends on T and that we will
choose below as T ε with ε > 0 small enough. Furthermore, Q is the smallest
integer larger than hT/x− 1. Note that ∆∗1 has the same distribution as ∆+

1

which is defined as ∆∗1 but with G(t) replaced by G+(t). The function G+(t)
is defined as G(t) but with the counting process N replaced by N+. We also
define G+

q (t) as G+(t) but with N+ replaced by Mx∗,x
q . From Lemma 3.3.6

with a = A we get that with probability ≥ 1− CQ exp(−ρ∗(x− A))

∆+
1 =

1

Q

Q∑
q=0

∫ x∗+(2q+1)x

x∗+2qx

Q

Th

{
G+(t)− E[G(t)]

}
dt =

1

Q

Q∑
q=0

ηq

with

ηq =

∫ x∗+(2q+2)x

x∗+(2q+1)x

Q

Th

{
G+
q (t)− E[G(t)]

}
dt.

The variables ηq are mean zero independent random d×d matrices. Further-
more, they are bounded as follows. Denote the jump points of the compo-
nents ofMx∗,x

q by tq1, t
q
2, .... First we have that for x∗+2qx ≤ t < x∗+(2q+1)x,

1 ≤ j, j′ ≤ J

|G+
q,j,j′(t)| ≤ C

∑
k,l≥1

‖ψj(t− tqk)‖‖ψj′(t− t
q
l )‖ (3.24)

≤ CJ
∑
k,l≥1

∑
d≥r,r′≥1

I(|t−tqk−τ
r
j |≤CJ−1/d)I(|t−tql−τ

r′
j′ |≤CJ

−1/d),

where τ lj ∈ (τ l,−j , τ l,+j ) and τ lj′ ∈ (τ l,−j′ , τ
l,+
j′ ) with rectangles

∏d
l=1[τ l,−j , τ l,+j ]

and
∏d

l=1[τ l,−j′ , τ
l,+
j′ ] equal to the support of ψj or ψj′ , respectively. We

now construct upper bounds for the number of jump points of the com-
ponents of Mx∗,x

q . For this purpose first note that Lemma 3.3.4 implies that
E[exp(ρN[t−2A,t]/2)] < 2C. This implies that sup0≤t≤T N[t−A,t] < C log T with
probability tending to 1. Because νl0 and µl,m are bounded by Assumption
(A1) for 1 ≤ l,m ≤ d we have that λl(t) ≤ C log T with probability tending
to 1 for C chosen large enough. With similar argumennts as above we now
argue that a homogeneous Poisson proces Ñ q

t can be constructed with con-
ditional intensity λ̃(m)(t) ≡ C log T such that all jumps of a component of
Mx∗,x

q are also jumps of the corresponding component of Ñ q, with probability
tending to 1. Denote the jump points of the components of Ñ q in the interval
[x∗ + 2qx− A, x∗ + 2qx+ x) by t̃q1, t̃

q
2, ....

Using this argument and (3.24) we get that for

η+
q;j,j′ =

Q

Th

∫ x∗+(2q+1)x

x∗+2qx

G∗q,j,j′(t)dt
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|η+
q;j,j′ | ≤

C

x

∫ x∗+(2q+1)x

x∗+2qx

J |G+
q,j,j′(t)|dt (3.25)

≤ C
J

x

∫ x∗+(2q+1)x

x∗+2qx

∑
k,l≥1

∑
r,r′≥1

I(|t−t̃qk−τ
r
j |≤CJ−1/d)I(|t−t̃ql−τ

r′
j′ |≤CJ

−1/d)dt

≤ C
J

x

∫ x∗+(2q+1)x

x∗+2qx

∑
k,l≥1

∑
r,r′≥1

I(|t−tqk−τ
r
j |≤CJ−1/d)I(|t−tql−τ

r′
j′ |≤CJ

−1/d)dt

≤ C
J

x

∫ x∗+(2q+1)x

x∗+2qx

(∑
k≥1

∑
r≥1

I(|t−t̃qk−τ
r
j |≤CJ−1/d)

)2

dt

+C
J

x

∫ x∗+(2q+1)x

x∗+2qx

(∑
l≥1

∑
r′≥1

I(|t−t̃ql−τ
r′
j′ |≤CJ

−1/d)

)2

dt.

The first term on the right hand side of (3.25) can be bounded by

≤ C
J

x

I∑
i=1

∫ x∗+2qx+CiJ−1/d

x∗+2qx+C(i−1)J−1/d

(∑
k≥1

∑
r≥1

I(|t̃qk+τrj −x∗−2qx−CiJ−1/d|≤2CJ−1/d)

)2

dt

≤ C
1

x

I∑
i=1

Z2
q,i

with Zq,i =
∑

k≥1

∑
r≥1 I(|t̃qk+τrj −x∗−2qx−CiJ−1/d|≤2CJ−1/d) and where I is of order

xJ1/d. Note that for 1 ≤ q ≤ Q, 1 ≤ l ≤ 4 the variables Zq,l, Zq,l+4, Zq,l+8, ...
are independent Poisson random variables with parameter of order log TJ−1/d.
We now use that withXj = (Z2

q,l+4(j−1)−E[Z2
q,l+4(j−1)]) and with constants Ck

depending on k we have that E[X2k
j ] ≤ Ck log TJ−1/d. Note that log TJ−1/d

converges to 0 according to Assumption (A3). By application of Rosen-
thals inequality, see Rosenthal (1970), we have that E[(X1 + ...+XI/4)2k] ≤
Ck{IE[X2k

1 ] + (IE[X2
1 ])k} ≤ Ck(I log TJ−1/d)k. Here we assume without loss

of generality that I is a multiple of 4. This gives that P(x−1(X1+...+XI/2) >

v) ≤ Ck(log T/x)kv−2k. Because of | 1
x

∑I
i=1 E[Z2

q,i]| ≤ C log T for C > 0 large
enough, we get that

P
(
|η+
q;j,j′| ≥ C log T + v for some 1 ≤ q ≤ Q, 1 ≤ j, j′ ≤ d

)
(3.26)

≤ C

(
log T

x

)k
QJ2v−2k

for v > 0. We will use these considerations for the proof of the following
lemma.
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Lemma 3.3.7. Make the assumptions of Theorem 3.2.1. Choose ε > 0 small
enough such that Q converges to infinity where Q is chosen as the smallest
integer larger than hT 1−ε − 1. Then for 1 ≤ j, j′ ≤ J, 1 ≤ q ≤ Q there
exist independent mean zero variables η̃q,j,j′ and η̃q,j with |η̃q,j,j′| ≤ CT ε,
|η̃q,j| ≤ CT ε for some C > 0 such that for all κ > 0 there exists C∗ > 0 with∣∣∣∣∣∆+

j,j′ − E[∆+
j,j′ ]−

1

Q

Q∑
q=1

η̃q,j,j′

∣∣∣∣∣ ≤ C∗T−κ,∣∣∣∣∣δ+
j − E[δ+

j ]− 1

Q

Q∑
q=1

η̃q,j

∣∣∣∣∣ ≤ C∗T−κ

with probability ≥ 1 − C∗T−κ. Here, ∆+ is a d × d random matrix and δ+

is a Rd-valued random variable that have the same distribution as ∆ or δ,
respectively.

Proof. Choose ∆+ as ∆ but with G(t) replaced by G+(t). With this choice
the lemma holds. This can be seen by the considerations made above with
the choice

η̃q,j,j′ = η∗q,j,j′I[|η∗
q,j,j′ |≤CT

ε] − E
[
η∗q,j,j′I[|η∗

q,j,j′ |≤CT
ε]

]
.

This follows by application of (3.26) with x = T ε and with k > 0 large
enough. In particular, one gets from (3.26) with k > 0 large enough that

E
[
η∗q,j,j′I[|η∗

q,j,j′ |≤CT
ε]

]
≤ C∗T−κ

for all κ > 0 with C,C∗ > 0 large enough. This shows the statements on ∆+

in the lemma. The statements for δ+ can be shown by similar arguments for
an appropriately chosen δ+.

Lemma 3.3.8. Make the assumptions of Theorem 3.2.1. Then it holds uni-
formly for ν ∈ Rd and b1, ..., bJ ∈ R with g =

∑J
j=1 bjψj

(ν, b1, ...bJ) ∆ (ν, b1, ...bJ)ᵀ

=
1

Th

∫ t0+Th

t0−Th

(
ν +

∫ t−

t−A
gᵀ(t− u)dNu

)2

L

(
t− t0
Th

)
dt

≥ c

(
‖ν‖2 +

∫ A

0

gᵀ(t)g(t)dt

)
with probability tending to one for c > 0 small enough. In particular, we
have that ‖∆−1x‖ ≤ c−1‖x‖ for all x ∈ RJ+1 with probability tending to one.
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Proof. By application of Bernstein’s inequality we get that for all ε, κ∗ > 0
with C,C∗ > 0 large enough that for 1 ≤ j, j′ ≤ J

P

(∣∣∣∣∣ 1

Q

Q∑
q=1

η̃q,j,j′

∣∣∣∣∣ > CT ε
1√
hT

)
≤ C∗T−κ

∗
,

P

(∣∣∣∣∣ 1

Q

Q∑
q=1

η̃q,j

∣∣∣∣∣ > CT ε
1√
hT

)
≤ C∗T−κ

∗
.

By application of Lemma 3.3.7 this gives with probability ≥ 1 − J2C∗T−κ
∗

that

max
1≤j,j′≤J

|∆j,j′ − E[∆j,j′ ]| ≤ CT ε
1√
hT

and thus ‖∆ − E[∆]‖2 ≤ CJT ε 1√
hT
. By Assumption (A4) and Lemma 3.3.3

we get the result of the lemma.

3.3.6 Treatment of the τ̂

According to (A4), we have that |β∗0−ν∗0 | ≤ εT and and |µ∗,(l)(u)−
∑J

j=1 β
∗
jψj(u)| ≤

εT . This remark shows that for the proof of Theorem 3.2.1 it remains to show
the following lemma.

Lemma 3.3.9. Make the assumptions of Theorem 3.2.1. Then (3.8) – (3.9)
hold for j = 1, ..., J .

Proof. For the proof of the second part of claim (3.8) note that for 1 ≤ j ≤ J

E[τ̂ 2
−0,A,j] =

1

(Th)2

∫ t0+Th

t0−Th
E[(

∫ t−

t−A
ψᵀ
j (t− u)dNu)

2L2

(
t− t0
Th

)
λ(t)dt

≤ C

(Th)2

∫ t0+Th

t0−Th
E[N2

[t−A,t] +N3
[t−A,t]]dt = O(1/(Th))

because of Lemma 3.3.4 and λ(t) ≤ C(1 + N[t−A,t]). The first part of claim
(3.8) follows similarly.

For the proof of (3.9) one can use the inequality |ab| ≤ ((a2/εT ) +
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(b2εT ))/2. Note that

E
[

1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)[
{ν(t/T )− β∗0}

+

∫ t−

t−A

{
µ(t− s, t/T )−

J∑
j=1

β∗jψ
ᵀ
j (t− s)

}
dNs

]2

dt

]
= O(ε2

T ),

E
[

1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)[∫ t−

t−A
ψᵀ
j (t− u)dNu

]2

dt

]
= O(1),

by Assumption (A4) and Lemma 3.3.4. The first part of Claims (3.9) can be
shown by similar arguments.

3.3.7 Additional Proofs

Proof of Lemma 3.3.1. Using the conditional intensity defined in (3.17) we
can construct a stationary homogeneous process N̄t with the property that
all jumps of Nt are also jumps of N̄t. In particular, this implies the existence
of Nt. Note that

λ(t) = ν

(
t

T

)
+

∫
µ

(
t− u, t

T

)
dNu

= ν

(
t

T

)
+

∫
µ

(
t− u, t

T

)
λ(u)du+

∫
µ

(
t− u, t

T

)
dMu

= ν

(
t

T

)
+

∫
µ

(
t− u, t

T

)
ν
( u
T

)
du+

∫
µ(∗2)

(
t− u, t

T

)
λ(u)du

+

∫ 2∑
l=1

µ(∗l)
(
t− u, t

T

)
dMu

= ν

(
t

T

)
+

∫ k−1∑
l=1

µ(∗l)
(
t− u, t

T

)
ν
( u
T

)
du

+

∫
µ(∗k)

(
t− u, t

T

)
λ(u)du+

∫ k∑
l=1

µ(∗l)
(
t− u, t

T

)
dMu

for k ≥ 1. Because λ and µ(∗l) are positive and can be bounded by λ̄ and µ̄(∗l),
where µ̄(∗l) is defined as µ(∗l) but with Nt replaced by N̄t, we can conclude
that the right hand side of the last equation converges to

ν

(
t

T

)
+

∫
χ

(
t− u, t

T

)
ν
( u
T

)
du+

∫
χ

(
t− u, t

T

)
dMu.
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This convergence holds almost shurely and also in the sense that the second
moment of the difference converges to 0. Thus, λ(t) is equal to this expression
and we conclude (3.12) by taking the expectation of this expression. This
also implies (3.13).

For the proof of (3.14) one proceeds similarly as in the proof of Proposi-
tion 2 in Bacry, Dayri and Muzy (2012). Note that:

E [dNtdN
ᵀ
t′ ] = I1 + ...+ I4

with

I1 = E [dMtdM
ᵀ
t′ ] = Σt/T δt−t′dtdt

′,

I2 = E [λ(t)dMᵀ
t′ ] dt

= E
[{

Λ

(
t

T

)
+

∫
χ

(
t− s, t

T

)
dMs

}
dMᵀ

t′

]
dt

=

∫
χ

(
t− s, t

T

)
Σs/T δs−t′dsdtdt

′

= χ

(
t− t′, t

T

)
Σt′/Tdtdt′,

I3 = Σt/Tχ

(
t′ − t, t

′

T

)ᵀ

dtdt′,

I4 = E [λ(t)λ(t′)ᵀ] dtdt′

= E
[{

Λ

(
t

T

)
+

∫
χ

(
t− s, t

T

)
dMs

}
λ(t′)ᵀ

]
dtdt′

= Λ

(
t

T

)
Λ

(
t′

T

)ᵀ

dtdt′

+E
[{∫

χ

(
t− s, t

T

)
dMs

}{∫
χ

(
t′ − u, t

′

T

)ᵀ

dMu

}]
dtdt′

= Λ

(
t

T

)
Λ

(
t′

T

)ᵀ

dtdt′ +

∫
χ

(
t− s, t

T

)
Σs/Tχ

(
t′ − s, t

′

T

)ᵀ

dsdtdt′.

This shows equation (3.14).

Proof of Lemma 3.3.3. For the second statement of the lemma note that for
β = (β0, ..., βJ)ᵀ it holds that βᵀE[∆]β = R(g, β0) with g(u) =

∑J
j=1 βjψj(u).

For the proof of (3.16) we will show that

R(g) ≥ c∗
∫ A

0

gᵀ(t)g(t)dt (3.27)
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for some constant c∗ > 0. Note that for all 0 < D ≤ 1 with a constant C > 0

R∗(g, γ) ≥ DR∗(g, γ)

≥ D

2
γ2 −DC

∫ A

0

gᵀ(t)g(t)dt,

where the inequality (a + b)2 ≥ a2/2 − b2 has been used. Choosing D > 0
small enough we get inequality (3.16) from (3.28) and from the last lemma
if one chooses c > 0 small enough.

For the proof of (3.28) note that because of (A2) with c > 0 small enough
for functions g with

∫
g(w)ᵀg(w)dw = 1 the left hand side of (3.28) can be

bounded from below by

c
1

Th

∫ t0+Th

t0−Th

∫ (
g(w) +

∫
χ

(
w − s, t− s

T

)ᵀ

g(s)ds

)ᵀ

(
gᵀ(w) +

∫
χ

(
w − s, t− s

T

)ᵀ

g(s)ds

)
L

(
t− t0
Th

)
dwdt

≥ c
1

Th

∫ t0+Th

t0−Th

∫ (
g(w) +

∫
χ# (w − s)ᵀ g(s)ds

)ᵀ

(
gᵀ(w) +

∫
χ# (w − s)ᵀ g(s)ds

)
L

(
t− t0
Th

)
dwdt− Ch

≥ c

∫ (
g(w) +

∫
χ# (w − s)ᵀ g(s)ds

)ᵀ

(
g(w) +

∫
χ# (w − s)ᵀ g(s)ds

)
dw − Ch

≥ c+

∫ ∫
g(w)ᵀ

∞∑
k=1

µ#,(∗k) (w − s) g(s)dsdw

+

∫ ∫
g(w)ᵀ

∞∑
k=1

µ#,(∗2k) (w − s) g(s)dsdw − Ch

≥ c− Ch ≥ c

for c > 0 small enough and T large enough. Here we use our convention that
a constant c > 0 may denote different constants also in the same formula.
Furthermore, we used χ# (t− s) =

∑∞
k=1 µ

#,(∗k) (t− s) with µ#,(∗1) (t− s) =
µ∗ (t− s, t0/T ) and

µ#,(∗k) (t− s) =

∫
µ#,(∗(k−1)) (t− u)µ#,(∗1) (u− s) du



40 Chapter 3. Setup and Estimation Procedure

for k ≥ 2. Note that the operator norm of µ#,(∗k) (w − s)−µ(∗k)
(
w − s, t−s

T

)
is bounded by C(γ+)k−1h, uniformly for k ≥ 1, |w−s| ≤ A and |t−t0| ≤ CTh.
Here, we used (A1) to get the last inequality. Note that this implies that
the operator norm of χ# (t− s) − χ

(
t− s, t−s

T

)
is bounded by Ch, again

uniformly k ≥ 1, |w − s| ≤ A and |t − t0| ≤ CTh. This shows (3.28) and
concludes the proof of the lemma.

Proof of Lemma 4.1. Using the conditional intensity defined in equation (18)
of the main text we can construct a stationary homogeneous process N̄t with
the property that all jumps of Nt are also jumps of N̄t. In particular, this
implies the existence of Nt. Note that

λ(t) = ν

(
t

T

)
+

∫
µ

(
t− u, t

T

)
dNu

= ν

(
t

T

)
+

∫
µ

(
t− u, t

T

)
λ(u)du+

∫
µ

(
t− u, t

T

)
dMu

= ν

(
t

T

)
+

∫
µ

(
t− u, t

T

)
ν
( u
T

)
du+

∫
µ(∗2)

(
t− u, t

T

)
λ(u)du

+

∫ 2∑
l=1

µ(∗l)
(
t− u, t

T

)
dMu

= ν

(
t

T

)
+

∫ k−1∑
l=1

µ(∗l)
(
t− u, t

T

)
ν
( u
T

)
du

+

∫
µ(∗k)

(
t− u, t

T

)
λ(u)du+

∫ k∑
l=1

µ(∗l)
(
t− u, t

T

)
dMu

for k ≥ 1. Because λ and µ(∗l) are positive and can be bounded by λ̄ and µ̄(∗l),
where µ̄(∗l) is defined as µ(∗l) but with Nt replaced by N̄t, we can conclude
that the right hand side of the last equation converges to

ν

(
t

T

)
+

∫
χ

(
t− u, t

T

)
ν
( u
T

)
du+

∫
χ

(
t− u, t

T

)
dMu.

This convergence holds almost shurely and also in the sense that the second
moment of the difference converges to 0. Thus, λ(t) is equal to this expression
and we conclude equation (13) of the main text by taking the expectation of
this expression. This also implies equation (14) of the main text.

For the proof of equation (15) of the main text one proceeds similarly as
in the proof of Proposition 2 in Bacry, Dayri and Muzy (2012). Note that:

E [dNtdN
ᵀ
t′ ] = I1 + ...+ I4
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with

I1 = E [dMtdM
ᵀ
t′ ] = Σt/T δt−t′dtdt

′,

I2 = E [λ(t)dMᵀ
t′ ] dt

= E
[{

Λ

(
t

T

)
+

∫
χ

(
t− s, t

T

)
dMs

}
dMᵀ

t′

]
dt

=

∫
χ

(
t− s, t

T

)
Σs/T δs−t′dsdtdt

′

= χ

(
t− t′, t

T

)
Σt′/Tdtdt′,

I3 = Σt/Tχ

(
t′ − t, t

′

T

)ᵀ

dtdt′,

I4 = E [λ(t)λ(t′)ᵀ] dtdt′

= E
[{

Λ

(
t

T

)
+

∫
χ

(
t− s, t

T

)
dMs

}
λ(t′)ᵀ

]
dtdt′

= Λ

(
t

T

)
Λ

(
t′

T

)ᵀ

dtdt′

+E
[{∫

χ

(
t− s, t

T

)
dMs

}{∫
χ

(
t′ − u, t

′

T

)ᵀ

dMu

}]
dtdt′

= Λ

(
t

T

)
Λ

(
t′

T

)ᵀ

dtdt′ +

∫
χ

(
t− s, t

T

)
Σs/Tχ

(
t′ − s, t

′

T

)ᵀ

dsdtdt′.

This shows equation equation (15) of the main text.

Proof of Lemma 4.3. For the second statement of the lemma note that for
β = (β0, ..., βJ)ᵀ it holds that βᵀE[∆]β = R(g, β0) with g(u) =

∑J
j=1 βjψj(u).

For the proof of equation (17) of the main text we will show that

R(g) ≥ c∗
∫ A

0

gᵀ(t)g(t)dt (3.28)

for some constant c∗ > 0. Note that for all 0 < D ≤ 1 with a constant C > 0

R∗(g, γ) ≥ DR∗(g, γ)

≥ D

2
γ2 −DC

∫ A

0

gᵀ(t)g(t)dt,

where the inequality (a + b)2 ≥ a2/2 − b2 has been used. Choosing D > 0
small enough we get inequality (17) of the main text from (3.28) and from
the last lemma if one chooses c > 0 small enough.
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For the proof of (3.28) note that because of (A2) with c > 0 small enough
for functions g with

∫
g(w)ᵀg(w)dw = 1 the left hand side of (3.28) can be

bounded from below by

c
1

Th

∫ t0+Th

t0−Th

∫ (
g(w) +

∫
χ

(
w − s, t− s

T

)ᵀ

g(s)ds

)ᵀ

(
gᵀ(w) +

∫
χ

(
w − s, t− s

T

)ᵀ

g(s)ds

)
L

(
t− t0
Th

)
dwdt

≥ c
1

Th

∫ t0+Th

t0−Th

∫ (
g(w) +

∫
χ# (w − s)ᵀ g(s)ds

)ᵀ

(
gᵀ(w) +

∫
χ# (w − s)ᵀ g(s)ds

)
L

(
t− t0
Th

)
dwdt− Ch

≥ c

∫ (
g(w) +

∫
χ# (w − s)ᵀ g(s)ds

)ᵀ

(
g(w) +

∫
χ# (w − s)ᵀ g(s)ds

)
dw − Ch

≥ c+

∫ ∫
g(w)ᵀ

∞∑
k=1

µ#,(∗k) (w − s) g(s)dsdw

+

∫ ∫
g(w)ᵀ

∞∑
k=1

µ#,(∗2k) (w − s) g(s)dsdw − Ch

≥ c− Ch ≥ c

for c > 0 small enough and T large enough. Here we use our convention that
a constant c > 0 may denote different constants also in the same formula.
Furthermore, we used χ# (t− s) =

∑∞
k=1 µ

#,(∗k) (t− s) with µ#,(∗1) (t− s) =
µ∗ (t− s, t0/T ) and

µ#,(∗k) (t− s) =

∫
µ#,(∗(k−1)) (t− u)µ#,(∗1) (u− s) du

for k ≥ 2. Note that the operator norm of µ#,(∗k) (w − s)−µ(∗k)
(
w − s, t−s

T

)
is bounded by C(γ+)k−1h, uniformly for k ≥ 1, |w−s| ≤ A and |t−t0| ≤ CTh.
Here, we used (A1) to get the last inequality. Note that this implies that
the operator norm of χ# (t− s) − χ

(
t− s, t−s

T

)
is bounded by Ch, again

uniformly k ≥ 1, |w − s| ≤ A and |t − t0| ≤ CTh. This shows (3.28) and
concludes the proof of the lemma.
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3.4 Simulation Study

We now illustrate our approach by a small simulation study. We generated
one-dimensional locally stationary Hawkes processes on a time frame [0, T ]
with T = 4000. This was done for the following choice of the reproduction
function µ and the conditional baseline intensity function ν with support
[0, A] = [0, 5]:

µ
(
s,
t

T

)
: =

(
3

2
exp

(−8s

5

)
· t
T

+
1

2
exp

(−s
2

)(
1− t

T

))
· 1[0,A](s),

ν
( t
T

)
: =

3

2
+

1

2
cos
((

1− t

T

)
π
)
.

For a plot of the functions see Figure 3.1 where the second argument of
µ is despicted in the colour scheme as explained in the legend and again
illustrated in the graph of ν.
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(a) Reproduction function µ(s, t/T )
with argument t indicated by colour.
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(b) Immigration function ν(t/T ).

Figure 3.1: Choice of reproduction functions and conditional baseline inten-
sity functions in the simulation.

We calculated our locally linear estimator at t0 = 2000 for the choice
K = 1 and J = 7 using kernel smoothing with biweight kernel Kernelbiw :
[−1, 1] → R, t 7→ 15

16
(1 − t2)2. The seven B-Spline basis elements of degree

two which are used are depicted in Figure 3.2. The knots (0, 0.5, 1, 2, 3, 5)
are not equidistant.

The bandwidth h is chosen such that 20000 events are contained in the
support of the smoothing kernel. The simulation used 200 replications. The
estimated conditional baseline intensity function ν is despicted via a boxplot
in Figure 3.3 (a). The green graph represents the true value of ν at time t0.
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Figure 3.2: Basis elements in B-spline estimation.

In Figure 3.3 (b) the 0.25-, 0.50-, 0.75- best estimated reproduction func-
tions with respect to the integrated squared error are shown (in blue, purple
and red respectively). Recall that

ISE(µ̃) :=

∫ A

0

(
µ
(
u,
t0
T

)
− µ̃(u)

)2

du

for an estimator µ̃ of µ(·, t0/T ). The true reproduction function is displayed
in transparent green for comparision.

We see that the conditional baseline intensity function was not always
accurately estimated. In fact, there are some outliers. On the other side
µ was estimated quite accurately. In Figure 3.4 the tuples of ISE for the
estimated reproduction function µ and the squared error of the estimated
conditional baseline intensity ν are shown.
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transparent green.

Figure 3.3: Performance of simulated estimators of ν and µ at t0 = 2000.
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4 | Testing for Local Alignment

The developed estimation procedure from Chapter 3 is inspiring the formula-
tion of testing results. Suppose, we observe two Hawkes processes and want
to test whether their reproduction function and immgration coincide at a
designated point in time. Alternatively one could compare the behaviour of
one Hawkes process at two distinct time points.

We will not make all the same assumptions on the model as in Chapter
3, as there are slightly different requirements to be fulfilled for the necessary
tools as well as technical calculations. We do still consider the same model for
Hawkes processes N which are defined via their conditional intensity function

λ(t) = ν

(
t

T

)
+

∫ t−

∞
µ

(
t− s, t

T

)
dNs

for t ∈ [0, T ] in an asymptotic framework where T → ∞. Note, that this is
the vector notation and µ : R+

0 × [0, 1]→ (R+
0 )d×d and ν : ×[0, 1]→ (R+

0 )d.

The underlying true parameter functions are denoted by µ0 and ν0 and
the corresponding intensity function is called λ0 as before. We denote by L
a kernel function in the sense that L : [−1, 1]→ R with

∫
R L(x) dx = 1 and∫

R xL(x) dx = 0.
According to our intuition and as it is handled in chapter 3, it is not neces-
sarily restrictive to assume, that µ has support in the compact interval [0, A].
In most examples, we would not expect that events in the past carry much
relevance in the far future. The test statictic, that we will be considering al-
lows us to let µ have unbounded support over R+, while we make additional
restrictions. We will see, that a reproduction function with compact support
fulfills the newly formulated requirements.

47



48 Chapter 4. Testing for Local Alignment

4.1 Motivation

In application we would observe two Hawkes processes N (1), N (2) and want to
test whether the underlying models of the realizations N (1) and N (2) coincide
in the following sense.

µ
(1)
0 (s, t0/T ) = µ

(2)
0 (s, t0/T ), (4.1)

ν
(1)
0 (t0/T ) = ν

(2)
0 (t0/T ) (4.2)

at a fixed point of interest t0/T ∈ [0, 1] and all s ∈ R+ = (0,∞). Respectively
we write ·(1) and ·(2) whenever we consider two different realizations.
Alternatively, one could compare the behaviour of one Hawkes process at two
different time points t(1) < t(2). Formally we would then consider N (1) := N

and N (2) = N−(t(2)−t(1)) given by N (2)
t := Nt−(t(2)−t(1)) and use the same local

procedure at timepoint t(1).
As simulations have shown, estimation in such manner is very much unstable,
which is why we remain in a finite dimensional setting as will be introduced
below.

4.2 Assumptions and Setup

The following set of assumptions are made throughout this chapter. These
will be cited explicitely, whenever they are used. Keep in mind, that they
partly vary from the assumptions in Chapter 3.

Assumption 4.2.1. (A1) The functions µl,m0 are positive and bounded for
all 1 ≤ l,m ≤ d and the support of µ0 is contained in R+

0 × [0, 1].
Define Γ+ as the matrix(∫

R+
0

sup
x≤1

µl,m0 (s, x) ds

)
1≤l,m≤d

.

Γ+ has spectral radius smaller than 1.
The function ν0 is bounded and bounded away from 0 for any values
smaller oder equal to 1.
The partial derivatives of µ0 with respect to the second argument exist
and are uniformly absolutely bounded.
Suppose that the basis functions φj are absolutely bounded and have
compact support for all j = 1, . . . , J .
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(A2) Concerning the asymptotic behaviour of T and h suppose, that

Th→∞,
√
Th5 → 0

for T →∞ and h→ 0 and there exists a δ > 0, such that

h > T−δ.

Recall the following definition from chapter 3.

χ(t− s, t/T ) =
∞∑
i=1

µ
(∗i)
0 (t− s, t/T ),

µ
(∗i)
0 (t− s, t/T ) =

∫
R
µ

(∗(i−1))
0 (t− u, t/T )µ0(u− s, u/T ) du

µ
(∗1)
0 = µ0.

In contrast to the last chapter we endow χ with an additional assumption.

(A3) For any s ∈ R+
0 and x ∈ [0, 1] there exist constants c, c′ > 0 such that

χ(s, x) ≤ c exp(−c′s).

(A4) For the designated point t0 from (4.1) and (4.2) and u ∈ [0, T ] there
exist constants c1, c2 > 0 such that

|χ(t− u, t/T )− χ(t− t0, t/T )| ≤ c1|u− t0|

|χ(t− u, t/T )− χ(t− u, t0/T )| ≤ c2

∣∣∣∣t− t0T

∣∣∣∣.
Remark. The assumption (A3) holds for µ with compact support. In this
case (A4) holds with a weak additional assumption on µ. For a disscussion
on that topic, see the Appendix 4.5 of chapter 4.

Consistently, we write for functions f : R+
0 → R, h : [0, 1]→ R with only

one argument and functions g : R+
0 × [0, 1]

(f ∗ g)(t− s) :=

∫
R
f(t− r)g(r − s, r/T ) dr,

(g ∗ f)(t− s, t/T ) :=

∫
R
g(t− r, t/T )f(r − s) dr,

(f ∗ h)(t) :=

∫
R
f(t− r)h(r/T ) dr.
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Note, that this notation is associative but not necessarily symmetric, e.g. it
might hold that (f ∗ χ) 6= (χ ∗ f).

We find motivation in the estimator investigated in chapter 3. Recall
the estimators from chapter 3 as θ̂ = ∆−1τ̂ for invertible ∆ for a band-
width h → 0, the Kernel function L, the basis of functions on R+

0 , namely
{φj}j=1,...,J and ∆ and τ̂ as in 3.1.

4.3 Testing Procedure

We proceed on the idea, that the two underlying Hawkes models coincide
whenever the estimators or related terms have a small square distance. Hence,
we define a suitable test statistic for each component j = 0, . . . , J .

Tj = τ̂
(1)
j − τ̂

(2)
j .

Recall, that

τ̂ = (τT0 , τ
T
1 , . . . , τ

T
J )T

with

τ̂0 :=

(
1

Th

∫ t0+Th

t0−Th

(
t− t0
Th

)k−1

L

(
t− t0
Th

)
dNt

)
k=1,...,K

,

τ̂j :=

(
1

Th

∫ t0+Th

t0−Th

(
t− t0
Th

)k−1

L

(
t− t0
Th

)∫ t−

−∞
φj(t− u) dNudNt

)
k=1,...,K

,

for j = 1, . . . , J . Note, that we will proof assertions for Tj, i.e. in a compo-
nentwise sense.
We consider a framework with J basis functions. This is due to the unstable
nature of the procedure which became clear in the simulation studies in 3.4.
The integer K is chosen such that the estimation procedure captures the
slope of the true parameters well enough.

Theorem 4.3.1. Make the Assumptions 4.2.1. It holds that
√
Th(τ̂ (1) − τ̂ (2))→ N (0,Σ(1) + Σ(2))

in probability for Th→∞ and a covariance matrix Σ(i) as stated in Theorem
4.4.1.
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4.4 Proofs

Theorem 4.3.1 can be shown by using the Cramér-Wold device. One shows
asymptotic normality of

a01τ̂01 + . . .+ a0K τ̂0K + a11τ̂11 + . . .+ aJK τ̂JK

for a fixed matrix (a0, . . . , aJ) ∈ RK×(J+1).
For simplicity we show the statement for τ̂j for j = 0, . . . , J . Furthermore,
without loss of generality we consider the case of a one-dimensional Hawkes
process (d = 1) and K = 1. Whenever we omit the index i, i.e. write λ
instead of λ(i), as well as µ0 instead of µ(i)

0 , we refer to the terms corresponding
to the same i ∈ {1, 2}.

4.4.1 Proof of Theorem 4.3.1

We will show the following theorem.

Theorem 4.4.1. Make the Assumptions 4.2.1. It holds that for i = 1, 2

√
Th(τ̂

(i)
0 − E[τ̂

(i)
0 ])→ N (0,Σ

(i)
0 )

and for j = 1, . . . , J

√
Th(τ̂

(i)
j − E[τ̂

(i)
j ])→ N (0,Σ

(i)
j )

in probability with matrices Σ
(i)
j stated in the proof.

Then, Theorem 4.3.1 immediately follows from Theorem 4.4.1 as a corol-
lary if we can show the following lemma concering the expectation of the
τ̂j.

Lemma 4.4.2. For any j = 0, . . . , J there exists a constant c > 0, such that∣∣E[τ̂
(1)
j ]− E[τ̂

(2)
j ]
∣∣ = c · h2.

We give a brief overview of the proof which is split into many lemmas
and then prove the remaining assertions in section 4.4.2.

We start by writing the terms of interest in a different notion to be used
afterwards.

Proof of Theorem 4.4.1: First of all, we show the following lemma, giving an
alternative form of the τ̂j.
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Lemma 4.4.3. Under assumption (A1) from Assumptions 4.2.1 it holds that

τ̂0 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)
dNt

= τ0 +
1

Th

∫
R
L

(
t− t0
Th

)
g0(t) dMt +OP

(
1

Th

)
,

τ̂j =
1

Th

∫
R
L

(
t− t0
Th

)(∫ t−

−∞
φj(t− u) dNu

)
dNt

= τj +OP

(
1

Th

)
+

1

Th

∫
R
L

(
t− t0
Th

)(
g1(t) + g2(0) · g0(t) + 2 ·

∫ t−

−∞
(g2 + g2)(t− s) dMs

)
dMt,

where Mt is the martingale defined by

dMt = dNt − λ(t) dt,

τ0 =
1

Th

∫
R
L

(
t− t0
Th

)
Λ(t/T ) dt,

g0(t) =

(
1 +

∫
R
χ(s− t, s/T ) ds

)
,

τj =
1

Th

∫
R
L

(
t− t0
Th

)(
(φj,0 ∗ Λ)(t) + g2(0)

)
Λ(t/T ) dt,

g1(t) = ((φj,0 + φj,0) ∗ Λ)(t) + (χ ∗ ((φj,0 + φj,0) ∗ Λ))(t),

g2(t− u) = φj,0(t− u) + ((φj,0 + φj,0) ∗ χ)(t− u) + ((φj,0 ∗ χ) ∗ χ)(t− u)

with Λ(t/T ) = E[λ(t)] and φj,0 := φj · 1(0,∞) and φj,0(·) = φj,0(−·) and
χ(t− u, t/T ) := χ(u− t, t/T ). Note, that g0, g1, g2 are deterministic.

The remaining goal is to control and investigate the these complex terms.
We will make use a version of Rebolledo’s Theorem, namely Proposition

4.2.1 in Ramlau-Hansen (1983):

Proposition 4.4.4. Let Hn be a sequence of predictable processes where
E[
∫ 1

0
H2
n(s)λn(s) ds] < ∞ and introduce M̃n(t) :=

∫ t
0
Hn(s)dMn(s). Then

the following proposition is valid.
Suppose that

(i) ∀ ε > 0 :
∫ 1

0
Hn(s)2

1|Hn(s)|>ελn(s) ds→ 0 in probability,



4.4. Proofs 53

(ii)
∫ 1

0
H2
n(s)λn(s) ds→ 1 in probability when n→∞.

Then M̃n(1)→ N (0, 1) in distribution, where N (0, 1) is the standard normal
distribution.

Define

H(t) :=
1

Th
L

(
t− t0
Th

)(
g1(t) + g2(0) · g0(t) + 2 ·

∫ t−

−∞
(g2 + g2)(t− s) dMs

)
.

Note, that our setting corresponds to the setup of Ramlau-Hansen. We
choose a sequence of intervals with growing length and Hn(·) := H(· Tn),
where Tn denotes the upper bound of the intervals. This strech does not
affect the analysis used. Correspondingly we proceed with λ and M .
Accordingly, for the rest of the proof it remains to show that

(i) It holds that

Th

∫
R
(H(t))2λ(t) dt→ σ2

in probability.

(a) First, we show that

E
[
Th

∫
R
(H(t))2λ(t) dt

]
→ σ2,

(b) Furthermore, we will argue that

Var

(
Th

∫
R
(H(t))2λ(t) dt

)
→ 0

in probabilty.

(ii) It remains to show the Lindeberg conditon. For any ε > 0 it holds that∫ T

0

(
√
ThH(t))2

1{t:|
√
ThH(t)|>ε}λ(t) dt→ 0

in probability.

We start with the investigation of the term in (a) and define G1(t) :=
g1(t) + g2(0) · g0(t) and G2(t) := Λ(t/T ).

We need to articulate a lemma to use the supposed alignment of µ0 and
ν0 to our advantage.
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Lemma 4.4.5. For u, t ∈ [t0 − Th, t0 + Th] and s ∈ [0, T ] it holds under
Assumptions 4.2.1 (A1) and (A2) that there exist distinct constants c > 0
such that

(i) |ν0(t/T )− ν0(t0/T )| = c| t−t0
T
|,

|µ0(t− u, t/T )− µ0(t− t0, t/T )| = c|u− t0|,
|µ0(s, t/T )− µ(s, t0/T )| = c| t−t0

T
|.

(ii) |(χ ∗ ν0)(t/T )− (χ ∗ ν0)(t0/T )| = c|t− t0|.

It follows from (i) and (ii) that |Λ(t/T )−Λ(t0/T )| = c|t− t0| as Λ(t/T ) =
ν0(t/T ) + (χ ∗ ν0)(t/T ). Analogously to (ii) it holds that

(iii) |(φj,0 ∗ Λ)(t)− (φj,0 ∗ Λ)(t0)| = c|t− t0|,

(iv) |(φj,0 ∗ χ)(t− u)− (φj,0 ∗ χ)(t0 − u)| = c|t− t0|,
|(φj,0 ∗ χ)(t− u)− (φj,0 ∗ χ)(t− t0)| = c|u− t0|.

Lemma 4.4.5 together with assumption (A4) from Assumptions 4.2.1 gives
information about how in the case of alignment of µ and ν at the designated
points, the integrands indeed are similar.

The developed assumptions allow for additional bounds of the terms and
factors of interest.

Lemma 4.4.6. It holds that g0, g1 and g2 are (asymptotically) bounded.

We will see that these are the only requirements for g0, g1 and g2. We
come back to the proof of theorem 4.4.1:

We now know, that |G2(t) − Λ(t0/T )| = c|t − t0| for a constant c > 0
and thus asymptotically bounded in the consideres intervall around t0. With
Lemma 4.4.6 we know that G1 is bounded.

For the explicit calculations we need the following lemma.

Lemma 4.4.7. Let k ∈ N and {s1, . . . , sl} = {t1, . . . , tk} ⊂ [0, T ] such that
#{s1, . . . , sl} = l ≤ k. For a function f : Rk → R with∫

|f(sκ(1), . . . , sκ(k))| ds1 . . . dsl <∞

it holds that

E
[∫

f(t1, . . . , tk) dMt1 . . . dMtk

]
<∞
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with M· martingales as in Lemma 4.4.3 and κ : {0, . . . , k} → {0, . . . l} such
that sκ(j) = tj for j = 0, . . . , k.
In particular, for the case k = 3 it holds that

E[dMt1dMt2dMt3 ] = Λ(t1)dt1 + χ(t3 − t1, t3/T )Λ(t1)1t1<t3dt1dt3.

We thus calculate as follows. Plugging in the definition of H, taking he
square, we obtain

E
[
Th

∫
R
(H(t))2λ(t) dt

]
= E

[ ∫
R

1

Th
L2

(
t− t0
Th

)(
G1(t) + 2

∫ t−

−∞
(g2 + g2)(t− s) dMs

)2

·
(
G2(t) +

∫
R
χ(t− v, t/T ) dMv

)
dt

]
= E

[ ∫
R

1

Th
L2

(
t− t0
Th

)(
(G1(t))2 + 4G1(t)

∫ t−

−∞
(g2 + g2)(t− s) dMs

+ 4

∫ t−

−∞

∫ t−

−∞
(g2 + g2)(t− s)(g2 + g2)(t− s′) dMsdMs′

)
·
(
G2(t) +

∫
R
χ(t− v, t/T ) dMv

)
dt

]
.

We use the linearity of the mean, to see, that

E
[
Th

∫
R
(H(t))2λ(t) dt

]
=

∫
R

1

Th
L2

(
t− t0
Th

)
G1(t)2G2(t) dt

+

∫
R

1

Th
L2

(
t− t0
Th

)
4G1(t)

∫ t−

−∞

∫
R
χ(t− v, t/T )(g2 + g2)(t− s)E[dMvdMs] dt

+

∫
R

1

Th
L2

(
t− t0
Th

)
4G2(t)

∫ t−

−∞

∫ t−

−∞
(g2 + g2)(t− s)

· (g2 + g2)(t− s′)E[dMsdMs′ ] dt

+

∫
R

1

Th
L2

(
t− t0
Th

)
4G1(t)

∫ t−

−∞

∫ t−

−∞

∫
R
χ(t− v, t/T )(g2 + g2)(t− s)

· (g2 + g2)(t− s′)E[dMvdMsdMs′ ] dt.

This is where we need the calculation made in lemma 4.4.7. We can actually
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see an explicit form of the expectations.

E
[
Th

∫
R
(H(t))2λ(t) dt

]
= E

[ ∫
R

1

Th
L2

(
t− t0
Th

)
G1(t)2G2(t) dt

+

∫
R

1

Th
L2

(
t− t0
Th

)(
4G1(t)

∫ t−

−∞
χ(t− s, t/T )(g2 + g2)(t− s)E[λ(s)] ds

+ 4G2(t)

∫ t−

−∞
(g2 + g2)2(t− s)E[λ(s)] ds

+

∫
R

1

Th
L2

(
t− t0
Th

)(
4

∫ t−

−∞

∫ s−

−∞
χ(t− v, t/T )(g2 + g2)2(t− s)

· χ(s− v, s/T )E[λ(v)] dvds+ 4

∫ t−

−∞
χ(t− s, t/T )(g2 + g2)2(t− s)

· E[λ(s)] ds

)
dt

=: σ2.

We have to further investigate the denoted term.
σ2 is obviously deterministic. We have to show, that σ2 is bounded for which
we use the Assumption 4.2.1 (A3) and 4.4.6. Analogously to the case of g2

it holds that g2 is bounded.
We can now easily see that we can bound σ as follows by finding bounds for
each term individually.

σ2 ≤ c ·
∫
R

1

Th
L2

(
t− t0
Th

)
dt

+

∫
R

1

Th
L2

(
t− t0
Th

)
c

∫ t−

−∞
exp(−c(t− s)) ds+O(1/T )

+

∫
R

1

Th
L2

(
t− t0
Th

)
c(F + 1)

∫ t−

−∞
exp(−c(t− s))) ds

+

∫
R

1

Th
L2

(
t− t0
Th

)
c

∫ t−

−∞

∫ s−

−∞
exp(−c(t− v))dv ds

+

∫
R

1

Th
L2

(
t− t0
Th

)
c

∫ t−

−∞
exp(−c(t− s))) ds,

which is obviously bounded with distinct constants c > 0.
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We start with the proof of (b). Note that for a bounded function g̃0 and
functions g̃h, h̃l : R→ R, l ∈ N with

|g̃l(u)|, |h̃l| ≤ c exp(−c′u)

for u ∈ R+ and contants c, c′ > 0 that for

H̃(t) =
1

Th
L

(
t− t0
Th

)(
g̃0(t) +

∫ t−

−∞
g̃1(t− s) dMs

)
it holds that

Th

∫
R
H̃(t)2λ(t) dt

= Th

∫
R
H̃(t)2Λ(t/T ) dt+ Th

∫
R
H̃(t)2

∫
R
χ(t− s, t/T ) dMs dt,

where we used a lemma from the last chapter, i.e. Lemma 3.3.1:
It holds that

λ(t) = E[λ(t)] +

∫
R
χ(t− s, t/T ) dMs.

We continue the calculation by plugging in the newly develoed notation.

Th

∫
R
H̃(t)2λ(t) dt

=

∫
R

1

Th
L2

(
t− t0
Th

)(
g̃0(t)2Λ(t/T )

+ 2g̃0(t)

∫ t−

−∞
g̃1(t− s) dMsΛ(t/T )

+

(∫ t−

−∞
g̃1(t− s) dMs

)2

Λ(t/T )

+ g̃0(t)2

∫ t−

−∞
χ(t− s, t/T ) dMs

+ 2g̃0

∫ t−

−∞
g̃1(t− s) dMs

∫
R
χ(t− s, t/T ) dMs

+

(∫ t−

−∞
g̃1(t− s) dMs

)2 ∫
R
χ(t− s, t/T ) dMs

)
dt.

Note, that the summands are of the form

1

Th

∫
R
L2

(
t− t0
Th

)
g̃0(t)

∫
R
h̃1(t− s1)dMs1 . . .

∫
R
h̃k(t− sk) dMsk
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for k ∈ {1, . . . , 3}. The exact definitions of the h̃l are to be recalled from
Lemma 4.4.3. They are linear combinations of convolutions and are expo-
nentially bounded functions as we see in Lemma 4.4.8.
We now argue, that the variance of all such terms converge to zero. This is
immediately clear for k = 1 and the terms without a stochastic share. For
k = 2 we decompose the term into

1

Th

∫
R
L2

(
t− t0
Th

)
g̃0(t)

∫
s1 6=s2

h̃1(t− s1)h̃2(t− s2) dMs1 dMs2

and

1

Th

∫
R
L2

(
t− t0
Th

)
g̃0(t)

∫
s

h̃1(t− s)h̃2(t− s) (dMs)
2.

The first term has mean zero and its variance is equal to its second moment
which can easily be shown to converge to zero. For the second term we use
that

(dMs)
2 = dNs = Λ(s/T ) ds+

∫
R
χ(s− u, s/T ) dMu.

Thus, by plugging this into the formula we ge a constant term and a mean
zero term for which the second moment can be easily shown to converge to
zero. For the case of k = 3 we repeat the steps for k = 2 and recall the
Lemma 4.4.7 giving us a tool to calculate the moments of the martingale
integrators.

For the verification of the Lindeberg condition (ii) we use the bound∫ T

0

(
√
ThH(t))2

1√ThH(t)>ελ(t) dt

≤
∫ T

0

(
√
ThH(t))4 1

ε2
λ(t) dt

=
1

(Th)2

∫ T

0

(
g̃0(t) +

∫ t−

−∞
g̃1(t− s) dMs

)4

L4

(
t− t0
Th

)
dt

=
1

(Th)2

∫
R
L4

(
t− t0
Th

)( 4∑
k=0

∫
R
h̃1(t− s1) dMs1 . . .

∫
R
h̃k(t− sk) dMsk

)
.

It can be easily seen that this expression is of order OP
(

1
Th

)
= oP(1). Again it

is mainly essential to investigate the behaviour of the martingale integrators
for which we developed a tool in Lemma 4.4.7. This shows (ii).

In particular, we saw that Σj := σ2.
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We thus have shown the statement for τ̂j with j = 1, . . . , J . The case of
τ̂0 is obviously a simplification, and thus analogous with

Σ0 := E
[ ∫

R

1

(Th)2
L2

(
t− t0
Th

)
g2

0(t)λ(t) dt

]
.

4.4.2 Additional Proofs

Proof of Lemma 4.4.2: We recall the representation of the bias from Lemma
4.4.3 and calculate for the respective Hawkes processes i = 1, 2 while using
the result from Lemma 4.4.8. The main argument lies in the fact that for
each i it holds that Λ(t/T )(1) = Λ(t/T )(2) + O(t − t0) for any t ∈ [0, T ] and
similar results, which we prove in Lemma 4.4.5.

E[τ̂
(1)
j ] = τ

(1)
j = τ

(2)
j +O(h2) = E[τ̂

(2)
j ] +O(h2)

for all j = 0, . . . , J .

Proof of Lemma 4.4.3: We recall Lemma 3.3.1, which we will be using vig-
orously.
It holds that

λ(t) = E[λ(t)] +

∫
R
χ(t− s, t/T ) dMs,

E[λ(t)] = ν

(
t

T

)
+

∫
R
χ

(
t− u, t

T

)
ν

(
u

T

)
du

= ν

(
t

T

)
+ (χ ∗ ν)

(
t

T

)
.

Note, that it holds for s, t ∈ R and a constant c > 0 that∣∣∣∣∣L
(
t− t0
Th

)
− L

(
s− t0
Th

)∣∣∣∣∣ = c

∣∣∣∣t− sTh

∣∣∣∣ (4.3)

and ∫ t0+Th

t0−Th
L

(
t− t0
Th

)
f(t) dMt =

∫
R
L

(
t− t0
Th

)
f(t) dMt,∫ t0+Th

t0−Th
L

(
t− t0
Th

)
f(t) dt =

∫
R
L

(
t− t0
Th

)
f(t) dt
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for any deterministic or predictable functions f with appropirate assumptions
since the support of L lies in [−1, 1].

We start our calculation by remembering simply decomposing N into the
martingale share and the conditional intensity.

τ̂0 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)
dNt

=
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)
dMt +

1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)
λ(t) dt

With the definition of τ0 and using the alternative form of λ from Lemma
3.3.1

λ(t) = Λ(t/T ) +

∫
R
χ(t− s, t/T ) dMs,

we can calculate

τ̂0 = τ0 +
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)
dMt

+
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫
R
χ(t− s, t/T ) dMs dt

Finally, we rephrase the terms and switch the integrals to obtain the desired
result. We will use equation (4.3) in the second step, such that linearity of
the integral allows for this simplification in exchange of the O(1/Th) term.

τ̂0 = τ0 +
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)
dMt

+
1

Th

∫
R

∫ t0+Th

t0−Th
L

(
t− t0
Th

)
χ(t− s, t/T ) dt dMs

= τ0 +
1

Th

∫
R
L

(
s− t0
Th

)(
1 +

∫ t0+Th

t0−Th
χ(t− s, t/T ) dt

)
dMs

+O

(
1

Th

)
+ T ∗

= τ0 +
1

Th

∫
R
L

(
s− t0
Th

)(
1 +

∫
R
χ(t− s, t/T ) dt

)
dMs +OP

(
1

Th

)
,

where

T ∗ =
1

Th

∫
R

∫ t0+Th

t0−Th

(
L

(
s− t0
Th

)
− L

(
t− t0
Th

))
χ(t− s, t/T ) dt dMs.
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The last equality is implied by the following treatment of T ∗.
We start by splitting the term of interest into two and do further calculations
individually.

1

Th

∫
R

∫ t0+Th

t0−Th

(
L

(
s− t0
Th

)
− L

(
t− t0
Th

))
χ(t− s, t/T ) dt dMs

=
1

Th

∫
R

∫ t0+Th

t0−Th

(
L

(
s− t0
Th

)
− L

(
t− t0
Th

))
1{|t−s|≥rT }χ(t− s, t/T ) dt dMs

+
1

Th

∫
R

∫ t0+Th

t0−Th

(
L

(
s− t0
Th

)
− L

(
t− t0
Th

))
1{|t−s|<rT }χ(t− s, t/T ) dt dMs

=: I + II.

We start with the first summand. With the bound of χ we know, that
there exist constants c∗, c′ > 0 such that

|I| ≤ c∗

Th

∫
R

∫ T

0

exp(−c′rT )

∣∣∣∣L(s− t0Th

)
− L

(
t− t0
Th

)∣∣∣∣ dt dMs

≤ c∗

h

∣∣∣∣ ∫
R

exp(−c′rT ) dMs

∣∣∣∣
≤ c∗

h

√
T exp(−c′rT ) ≤ c∗T 1/2−c′c∗∗+δ

for the choice of rT := c∗∗ log(T ) and where we use the last of the assumptions
(A2) of Assumptions 4.2.1. We see that we can choose c∗∗ > 0 such that the
term vanishes asymptotically.
Going on with the second summand, we see for constants c∗, c′ > 0 which are
again given by the bound of χ, that

II ≤ c∗

Th

∫
R

(
1{| s−t0

Th
|≤1} + 1{| t−t0

Th
|≤1}

)
1{|t−s|<rT }

rT
Th

dt dMs

≤ c∗

Th

rT
Th

(Th+ rT )

∫
R
1{|s−t0|≤Th+rT } dMs

≤ c∗

Th

rT
Th

(Th+ rT ) oP(
√
Th+ rT ).

We now come to the corresponding term for j = 1, . . . , J . We again start
by using the cited decomposition in both used counting processes in the term.
This will leave us with multiple terms we will have to investigate individually
based on the appropriate integrators. We will repeatedly use the argument
made in the last step to show negligability of certain terms.
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τ̂j =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)(∫ t−

−∞
φj(t− u) dNu

)
dNt

=
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u) dMu dMt

+
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u)Λ(u/T ) du dMt

+
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u)

∫
R
χ(u− s, u/T )dMs du dMt

+
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u) dMu Λ(t/T )dt

+
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u) dMu

∫
R
χ(t− v, t/T ) dMv dt

+
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u)Λ(u/T ) du Λ(t/T ) dt

+
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u)Λ(u/T ) du

∫
R
χ(t− v, t/T ) dMv dt

+
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u)

∫
R
χ(u− s, u/T )dMs du Λ(t/T )dt

+
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u)

∫
R
χ(u− s, u/T )dMs du

·
∫
R
χ(t− v, t/T ) dMv dt

=: T1 + . . .+ T9.

We look at the summands seperately and divided in three cases. Those,
which are deterministic at first, then those containing one martingale, and
thos which contain many martingales for integrators.
Immediately we find that only the sixth summand is deterministic and cal-
culate

T6 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u)Λ(u/T ) du Λ(t/T ) dt

=
1

Th

∫
R
L

(
t− t0
Th

)
(φj,0 ∗ Λ)(t)Λ(t/T ) dt.

It was easily seen that we can write the integrands as convolutions to obtain
the desired form.
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We move on to the next section of terms, namely those with one martingales
integrator. Examplary, we begin with the second summand.

T2 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u)Λ(u/T ) du dMt

=
1

Th

∫
R
L

(
t− t0
Th

)
(φj,0 ∗ Λ)(t) dMt.

The same calculations were used. We are thus able to obtain a simplified
form of the integral. In this way, we aim to write all summand such that we
obtain the form stated in Lemma 4.4.3. We commence with the fourth and
seventh summand.

T4 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u) dMu Λ(t/T )dt

=
1

Th

∫
R
L

(
t− t0
Th

)
(φj,0 ∗ Λ)(t) dMt +OP

(
1

Th

)
,

T7 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u)Λ(u/T ) du

∫
R
χ(t− v, t/T ) dMv dt

=
1

Th

∫
R
L

(
t− t0
Th

)
(χ ∗ (φj,0 ∗ Λ))(t) dMt +OP

(
1

Th

)
.

In both cases, we had to use Fubini’s Theorem to exchange the considered
integrals. The term of order O was added to exchange the argument in the
kernel function L. To be able to use the notation of the extended definition
of the convolution we have to interoduce the following notation.
For functions f : R→ R and funcions g : R× [0, T ]→ R we write

f : u 7→ f(−u),

g : (u, t) 7→ g(−u, t).

This way, it is possible to write the integrands such that we can use a con-
volution to simplify the terms. We come to he last term of that group and
see that with our tools for calculation

T8 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u)

∫
R
χ(u− s, u/T )dMs du Λ(t/T )dt

=
1

Th

∫
R
L

(
t− t0
Th

)
(χ ∗ (φj,0 ∗ Λ))(t) dMt +OP

(
1

Th

)
.

We now take a look at the last four summands to investigate. Again, one of
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them is easiest.

T1 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u) dMu dMt

=
1

Th

∫
L

(
t− t0
Th

)∫
R
φj,0(t− u) dMu dMt.

It was in that case not necessary to use Fubini’s Theorem, as the order of the
integrals was already in the desired position. We go on to the next summand.

T3 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u)

∫
R
χ(u− s, u/T )dMs du dMt

=
1

Th

∫
R
L

(
t− t0
Th

)∫
R
(φj,0 ∗ χ)(t− u) dMu dMt.

Since we again see that the correct integral is already sorted in the desired
postion, we only need elemental calculations and the extention of the integral.

T5 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u) dMu

∫
R
χ(t− v, t/T ) dMv dt

=
1

Th

∫
R
L

(
t− t0
Th

)∫
R
(φj,0 ∗ χ)(t− u) dMu dMt +OP

(
1

Th

)
.

It is immediately clear, that we have to change to argument in the kernel,
as well as using Fubini’s Theorem, explaining the order of the lasting term.
The last term now is easy to intevestigate and we calculate

T9 =
1

Th

∫ t0+Th

t0−Th
L

(
t− t0
Th

)∫ t−

−∞
φj(t− u)

∫
R
χ(u− s, u/T )dMs du

·
∫
R
χ(t− v, t/T ) dMv dt

=
1

Th

∫
R
L

(
t− t0
Th

)
((φj,0 ∗ χ) ∗ χ)(t− u) dMu dMt +OP

(
1

Th

)
,

=
1

Th

∫
R
L

(
t− t0
Th

)
(φj,0 ∗ χ) ∗ χ)(t− u) dMu dMt +OP

(
1

Th

)
.

All in all, we can now use linearity to write the integrals as one term and
define the appropriate integrands. Kepp in mind, that we repeatedly used
the argument from the investigation of τ̂0 on how to show that residual terms
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vanish asymptotically.

τ̂j =
1

Th

∫
R
L

(
t− t0
Th

)
(φj,0 ∗ Λ)(t)(t/T ) dt

+
1

Th

∫
R
L

(
t− t0
Th

)
g1(t) dMt

+
1

Th

∫
R
L

(
t− t0
Th

)∫
R
g2(t− s) dMs dMt +OP

(
1

Th

)
.

Being familiar with the assumptions of limit theorems comparable to Re-
bolledo’s Theorem we have to formulate the terms such that the integrands
are deterministic or predictable. In practice, this means, that we have to
rewrite the stochastic integrals in the integrands. We see that it holds that

1

Th

∫
R
L

(
t− t0
Th

)∫
R
g2(t− s) dMs dMt

=
1

Th

∫
R
L

(
t− t0
Th

)∫
s<t

g2(t− s) dMs dMt

+
1

Th

∫
R
L

(
t− t0
Th

)∫
s=t

g2(t− s) dMs dMt

+
1

Th

∫
R
L

(
t− t0
Th

)∫
s>t

g2(t− s) dMs dMt.

The split of the integrals now allows us to write

1

Th

∫
R
L

(
t− t0
Th

)∫
R
g2(t− s) dMs dMt

=
2

Th

∫
R
L

(
t− t0
Th

)∫ t−

−∞
(g2 + g2)(t− s) dMs dMt

+
1

Th

∫
R
L

(
t− t0
Th

)
g2(0) (dMt)

2.

As (dMt)
2 = dNt = dMt + λ(t) dt we furthermore see, that it holds that

1

Th

∫
R
L

(
t− t0
Th

)
g2(0) (dMt)

2

=
1

Th

∫
R
L

(
t− t0
Th

)
g2(0) dMt +

1

Th

∫
R
L

(
t− t0
Th

)
g2(0)Λ(t/T ) dt

+
1

Th

∫
R
L

(
t− t0
Th

)
g2(0)

∫
R
χ(t− s, t/T ) dMs dt
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Now, using additonal splitting tools from Lemma 3.3.1, we calculate

1

Th

∫
R
L

(
t− t0
Th

)
g2(0) (dMt)

2

=
1

Th

∫
R
L

(
t− t0
Th

)
g2(0)Λ(t/T ) dt+OP

(
1

Th

)
+

1

Th

∫
R
L

(
t− t0
Th

)
g2(0)

(
1 +

∫
R
χ(s− t, s/T ) ds

)
dMt

=
1

Th

∫
R
L

(
t− t0
Th

)
g2(0)Λ(t/T ) dt

+
1

Th

∫
R
L

(
t− t0
Th

)
g2(0) · g0(t) dMt +OP

(
1

Th

)
,

where we already denoted g2 and g0 appropriately.
And thus, we find that

τ̂j =
1

Th

∫
R
L

(
t− t0
Th

)(
g1(t) + g2(0) · g0(t) + 2 ·

∫ t−

−∞
(g2 + g2)(t− s) dMs

)
dMt

τj +OP

(
1

Th

)
,

which gives us the statement of the lemma.

Proof of Lemma 4.4.5: (i) As ν are smooth enough functions by the As-
sumptions 4.2.1, such that we know

ν(t/T ) = ν(t0/T ) + ∂ν(t0/T )

(
t− t0
T

)
+

1

2
∂2ν(ξ)

(
t− t0
T

)2

= ν(t0/T ) + ∂ν(t0/T )

(
t− t0
T

)
+

1

2
(∂2ν(t0/T ) + 2C)

(
t− t0
T

)2

for ξ between t/T and t0/T and with

sup
ξ∈[t0−t,t0+t]

|(ν(ξ/T )− ν(t0/T ))| ≤ 2 sup
ξ∈[t0−t,t0+t]

|ν(ξ/T )|,

where C is the bound of ν from the Assumptions.
Analogously it follows that there exist constants c1, c2 > 0 such that

|µ(t− u, t/T )− µ(t− t0, t/T )| = c1|u− t0|,

|µ(s, t/T )− µ(s, t0/T )| = c2

∣∣∣∣t− t0T

∣∣∣∣.
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That same approximation obviously holds for any smooth function,
such as the basis elements φj.

(ii) Let us again calculate with the knowledge that ν0 is bounded

(χ ∗ ν0)(t/T )

=

∫
R
χ(t− s, t/T )ν0(s/T ) ds

= (χ ∗ ν0)(t0/T ) +O(t− t0)

Corollary 4.4.8. For u, t ∈ [t0 − Th, t0 + Th] it holds under Assumptions
4.2.1 (A1) and (A2) that

g
(1)
0 (t) = g

(1)
0 (t0) +O(t− t0) = g

(2)
0 (t) +O(t− t0),

g
(1)
1 (t) = g

(1)
1 (t0) +O(t− t0) = g

(2)
1 (t) +O(t− t0),

g
(1)
2 (t− u) = g

(1)
2 (0) +O(t− t0) +O(u− t0)

= g
(2)
2 (t− u) +O(t− t0) +O(u− t0),

τ
(1)
0 = τ

(2)
0 +O(h2),

τ
(1)
j = τ

(2)
j +O(h2)

for j = 1, . . . , J .

Proof of Corollary 4.4.8: We assumed that µ(1)
0 (t0) = µ

(2)
0 (t0) as well as ν(1)

0 (t0) =

ν
(2)
0 (t0). With assumption (A4) from 4.2.1 and Lemma 4.4.5 we saw that

χ(1)(s, t/T ) = χ(1)(s, t0/T ) +O

(
t− t0
T

)
= χ(2)(s, t0/T ) +O(t− t0)

= χ(2)(s, t/T ) +O(t− t0)

and analogously that

(χ(1) ∗ ν(1)
0 )(t/T ) = (χ(2) ∗ ν(2)

0 )(t/T ) +O(t− t0).

The remaining cases for the other functions and convolution of functions of
Lemma 4.4.5 following analogously.
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Proof of Lemma 4.4.6: Recall, that

g2(t− u) = φj,0(t− u) + ((φj,0 + φj,0) ∗ χ)(t− u) + ((φj,0 ∗ χ) ∗ χ)(t− u).

Note, that 0 < supx∈[0,A] φj(x) := F < ∞. Thus, we look at the summands
of g2 separately. For t − u ≥ 0 we calculate with elementary knowledge of
integration

(φj,0 ∗ χ)(t− u) =

∫
R
φj,0(t− s)χ(s− u, s/T ) ds

≤ F ·
∫ t−

u

c′e−c
′′(s−u) ds

= Fc′ec
′′u(−1)

1

c′′

(
e−c

′′t − e−c′′u
)

= F (−1)
c′

c′′

(
e−c

′′(t−u) − 1

)
.

Analogously we calculate

(φj,0 ∗ χ)(t− u) ≤ F

∫ ∞
t+

c′e−c
′′(s−u) ds

= Fc′
1

c′′

(
− e−c′′(t−u)

)
.

It remains to take a look at the last summand. Note, that supp(φj,0 ∗ χ) ⊂
(0,∞) and supp(χ) ⊂ [0,∞).

((φj,0 ∗ χ) ∗ χ)(t− u) =

∫
R
(φj,0 ∗ χ)(s− t)χ(s− u, s/T ) ds

≤
∫ ∞

max(t,u)

c′′′1 e
−c′′(s−t)c′e−c

′′(s−u) ds

= c′′′1 c
′et+u

∫ ∞
max(t,u)

e−c
′′s ds

=
c′′′1 c

′

c′′
et+u−c

′′max(t,u)

≤ c′′′1 c
′

c′′
e−c

′′′(t−u)

as it holds that

max(t, u) ≥ t

⇒ −c′′max(t, u) ≤ −c′′t
⇒ t+ u− c′′max(t, u) ≤ (1− c′)t+ u ≤ −((c′′)t− u) ≤ −c′′′′(t− u)
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with c′′′′ := max(1, c′′ − 1).
Thus, the bound for g2 is proven.

For the rest of the lemma we look at g0 first. It holds for any t ∈ R that

0 ≤ g0(t) = 1 +

∫
R
χ(s− t, s/T ) ds

≤ 1 + c′ exp(c′′t)

∫ ∞
t

exp(−c′′s) ds

= 1 +
c′

c′′
.

For the bound of g1 we look at both summands individually. It holds that∫
R
(φj,0 + φj,0)(t− s)E[λ(s)] ds = Λ(t0)2M +O

(
1

T

)
,

where M is the positive constant with
∫
R φj(x) dx ≤M and

(χ ∗ (c+O(1/T )))(t) = (c+O(1/T ))

∫
R
χ(s− t, t/T ) ds

≤ (c+O(1/T ))c′ exp(c′′t)

∫ ∞
t

exp(−c′′s) ds

= (c+O(1/T ))
c′

(c′′)2
exp(−c′′t).

Proof of Lemma 4.4.7: W.l.o.g., assume that t1 ≤ . . . ≤ tk. Note, that for
tk−1 6= tk it holds that

E[dMt1 . . . dMtk ] = 0.

Also (dMt)
k = dNt = dMt + λ(t) dt for all k ≥ 2 and t ∈ [0, T ]. We recall

that with Lemma 3.3.1 under Assumption 4.2.1 (A1) it holds that

λ(t) = Λ(t) +

∫
R
χ(t− s, t/T ) dMs.

Therefore,

E
[∫

f(t1, . . . , tk) dMt1 . . . dMtk

]
=

∫
f(t1, . . . , tk) E [dMt1 . . . dMtk ]
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Now, choose the maximal N(l) ∈ N, such that

E [dMt1 . . . dMtk ] = E
[
dMs1 . . . dMtk−N(l)

(dMsl)
N(l)
]
.

In particular, N(l) ≥ 2. Also note, that tk−N(l) = sl−1 6= sl.
We proof the assertion by induction.
For a fixed k ≥ 3 and the corresponding minimal l such that {t1, . . . , tk} =
{s1, . . . , sl} it holds that

E
[∫

f(t1, . . . , tk) dMt1 . . . dMtk

]
=

∫
f(t1, . . . tk−N(l), sl, . . . , sl) E

[
dMt1 . . . dMt−N(l)(dMsl)

N(l)
]

=

∫
f(t1, . . . tk−N(l), sl, . . . , sl) E

[
dMt1 . . . dMtk−N(l)

dMsl

]
+

∫
f(t1, . . . tk−N(l), sl, . . . , sl) E

[
dMt1 . . . dMtk−N(l)

λ(sl)
]

dsl,

where we used the well-known decomposition of a counting process into a
martingale share and the conditional intensity. We go on by using the actual
induction step and finally, again, the despiction of Λ from Lemma 3.3.1.

E
[∫

f(t1, . . . , tk) dMt1 . . . dMtk

]
=

∫
f(t1, . . . tk−N(l), sl, . . . , sl) E

[
dMt1 . . . dMtk−N(l)

dMsl

]
+

∫
f(t1, . . . tk−N(l), sl, . . . , sl)Λ(sl) E

[
dMt1 . . . dMtk−N(l)

]
dsl

+

∫
f(t1, . . . tk−N(l), sl, . . . , sl)

∫
R
χ(sl − u, sl/T ) E

[
dMt1 . . . dMtk−N(l)

dMu

]
dsl.

We note, that χ is integrable via assumption (A3) and that

#{t1, . . . , tk−N(l), sl} ≤ k − 1,

#{t1, . . . , tk−N(l)} ≤ k − 2,

#{t1, . . . , tk−N(l), u} ≤ k − 1.

Thus the proof is complete, if we can show the assertion for k = 1 and k = 2.
In the case, that k = 1 the mean is zero.
For k = 2 we note that

E[dMt1dMt2 ] = E[(dMt1)
2] = E[dNt1 ] = Λ(t1) dt1.
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Easy calculations hence yield that in the case k = 3

E[dMt1dMt2dMt3 ] = Λ(t1)dt1 + χ(t3 − t1, t3/T )Λ(t1)1t1<t3dt1dt3.

4.5 Appendix

Differently than in Chapter 3, we do not require µ to have bounded sup-
port. On the other hand our newly formulated assumptions are fulfilled by
a reproduction functions with compact support, as we will see now.

Lemma 4.5.1. If µ has compact support, i.e.

supp(µ) ⊂ [0, A]× [0, 1]

for a constant A > 0 Assumption 4.2.1 (A3) is fulfilled, i.e. for any s ∈ R+
0

and x ∈ [0, 1] there exist constants c, c′ > 0 such that

χ(s, x) ≤ c exp(−c′s).

Proof of Lemma 4.5.1: Recall that supp(µ0) ⊂ [0, A]× [0, 1] as well as µ0(s−
u, t/T ) ≤ C for any s, u ∈ R, t ∈ [0, T ] and a constant C > 0. There exists a
ρ > 0 with ∫

R
µ0(s− u, t/T ) ≤ ρ < 1

for all (s, u, t) ∈ R× R× [0, T ].
Note, that

supp(µ
(∗k)
0 )) ⊂ [0, kA]× [0, 1]

for k ∈ N and

µ
(∗k)
0 (s− u, t/T ) ≤ Cρk−1

for all k ∈ N, as per induction:

µ
(∗1)
0 (s− u, t/T ) = µ0(s− u, t/T ) ≤ C = Cρ1−1,

µ
(∗(k+1))
0 (s− u, t/T ) =

∫
R
µ

(∗k)
0 (s− v, t/T )µ0(v − u, v/T ) dv

i.s.

≤ Cρk−1

∫
R
µ0(v − u, v/T ) dv

≤ ρk−1ρ = Cρk.
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Now, back to the proof. Consider l ∈ Z with s − u ∈ (lA, (l + 1)A], i.e.
l < s−u

A
and µ(∗l)

0 (s− u, t/T ) ≡ 0 for all l ≤ 0. Then µ(∗k)
0 (s− u, t/T ) = 0 for

all k ≤ l and

χ(s− u, t/T ) =
∞∑
k=1

µ
(∗k)
0 (s− u, t/T ) =

∞∑
k=l+1

µ
(∗k)
0 (s− u, t/T )

≤
∞∑

k=l+1

Cρk−1 = Cρl
∞∑
k=0

ρk = Cρl
1

1− ρ

≤ C

1− ρ
· ρ

s−u
A =

C

1− ρ
exp

(
log(ρ)

A
(s− u)

)
.

We thus define

c′ :=
C

1− ρ
> 0,

c′′ := log(1/ρ) · 1

A
> 0

and finish by seeing, that supp(χ) ⊂ [0,∞).

Lemma 4.5.2. Let µ have compact support, i.e.

supp(µ) ⊂ [0, A]× [0, 1]

for a constant A > 0. If additionally there exits an absolutely bounded func-
tion g : [0, A] → R+ such that for all s ∈ [0, A] and |x − x0| ≤ h it holds
that

|µ0(s, x)− µ0(s, x0)| ≤ |x− x0|g(s).

then the Assumption 4.2.1 (A4) is fulfilled.

Proof of Lemma 4.5.2: Note that∣∣∣∣ ∫
R
µ

(∗(k−1))
0 (t0 − r, t0/T )µ0(r − u, t0/T ) dr

∣∣∣∣
≤ sup

r∈R
|µ(∗(k−1))

0 (t0 − r, t0/T )| · γ ≤ γk

with

γ := sup
t∈[0,T ]

∫
R
µ0(s, t/T ) ds < 1.
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We now obtain that

µ0
(∗k)(t0 − u, t0/T )

=

∫
R
µ

(∗(k−1))
0 (t0 − r, t0/T )µ0(r − u, r/T ) dr

=

∫
R
µ

(∗(k−1))
0 (t0 − r, t0/T )µ0(r − u, t0/T ) dr

+

∫
R
µ

(∗(k−1))
0 (t0 − r, t0/T )

(
µ0(r − u, r/T )− µ0(r − u, t0/T )

)
dr.

For the second summand now holds with the inequality above that∣∣∣∣ ∫
R
µ

(∗(k−1))
0 (t0 − r, t0/T )

(
µ0(r − u, r/T )− µ0(r − u, t0/T )

)
dr

∣∣∣∣
≤
∫
R
µ

(∗(k−1))
0 (t0 − r, t0/T )

∣∣∣µ0(r − u, r/T )− µ0(r − u, t0/T )
∣∣∣ dr

≤
∫
R
µ

(∗(k−1))
0 (t0 − r, t0/T )

∣∣∣∣r − t0T

∣∣∣∣|g(r − u)| dr

≤ γ(k−1) (k − 1)A

T
C

as suppµ
(∗k)
0 ⊆ [0, kA]. Since

∑∞
k=1 γ

kk <∞ we can write

χ(t0 − u, t0/T ) = χcl.(t0 − u, t0/T ) + c
1

T

for

χcl.(t− s, t/T ) =
∞∑
i=1

µ
(∗cl.i)
0 (t− s, t/T ),

µ
(∗cl.i)
0 (t− s, t/T ) =

∫
µ

(∗(i−1))
0 (t− u, t/T )µ0(u− s, t/T ) du

µ
(∗cl.1)
0 = µ0.

We can easily use the well-known properties of ∗cl. such that we can use a
Taylor expansion argument also in the second argument of χ. Therefore, first
note, that

∂2µ
(∗k)
0 (ts − s, t0/T ) =

∫
R
∂2µ

(∗(k−1))
0 (t0 − p, t0/T )µ0(p− s, p/T ) dp.

From now on ∂2χ denotes the derivative with respect to the second argument
of χ̃T := χ(t − s, t/T ). Together with the assumption that ∂2µ

(∗1)
0 = ∂2µ0
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exists, we learn that the derivatives of χ̃T exist and are (uniformly absolutely)
bounded. We finally see that for distinct constants c

χ(s, t/T ) = χcl.(s, t/T ) + c · t− t0
T

= χcl.(s, t0/T ) + c · t− t0
T

= χ(s, t0/T ) + c · t− t0
T

This gives us the result with the substitution of s 7→ u+t The result obviously
holds analogously for i = 2. Note, that the Taylor expansion is immediately
applicable in the first argument, such that for a constant c > 0

|χ(t− u, t/T )− χ(t− t0, t/T )| = c|u− t0|.

In particular, we see that with the alternative notation of the convolution for
µ

(1)
0 (s, t0/T ) = µ

(2)
0 (s, t0/T ) it is easy to see that for constants c1, c2 > 0

|χ(1)
cl. (s, t0/T )− χ(2)

cl. (s, t0/T )| = c1

T

and thus

|χ(1)(t− u, t/T )− χ(2)(t− u, t/T )| = c2

∣∣∣∣t− t0T

∣∣∣∣.
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After developing an estimator and the presentation of a possible testing pro-
cedure there are still a lot of missing possiblities for interesting research to
be filled with additional conclusions.
In the first part of this work of research there were many results obtained,
that were restricted to reproduction functions, that have compact support.
The expansion of the estimator to a non-compact setting seem possible and
desirable. For many settings and examples, the compact support were at
the very least sufficient if not reasonable. The common argument would be
seen e.g. in the example of reproducing species of insects. Insects or any
mammel grow and are not always fertile or at some point die themselves.
Comparably, if a patient is contagious with a disease, it is often the case that
the incubation time is limited to the (not so distant) future.
There is a vast amount of reasearch done in the past and other models for
Hawkes processes with the assertion have been considered. For example, that
the reproduction function does not have to be of compact support. For lack
of better knowledge, I have not seen work on that case in a nonparametric
and especially the locally stationary case, which is obviously favourable in
the application. Arguments for that have been discussed in the introduction,
see seasonarity.
In the second part of this work, we already made the testing procedure pos-
sible for the non-compact case.
Either way, additional simulations for the testing procedure would be an ob-
vious next step. Corollaries in the second part might even enable Bootstrap
methods. Because of the iterative character of Hawkes processes it has been
seen to be very much time consuming to do any calculations. These tries
included in particular attempts to find an optimal or even a good choice of
bandwidth h. There might be different tools to use or approaches to try to
discuss those choices further.
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