
DISSERTATION

submitted to the

Combined Faculty of Mathematics, Engineering and Natural Sciences

of the

Ruprecht–Karls University
Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

put forward by

M.Sc. Lorenz Braun

born in
Achern, Baden-Württemberg

Heidelberg, 2023

Automated Partitioning of CUDA
Kernels for Multi-GPU Systems

Advisor: Professor Dr. Holger Fröning

Oral Examination:

I dedicate this dissertation to my family and friends.

A special feeling of gratitude goes to my loving parents,
Doris and Thomas Braun,

who always stood behind me and my choices.

Abstract

Supercomputers and powerful workstations with multiple GPUs have become
the state of the art. GPUs are favored for their immense computational power,
high memory bandwidth and energy efficiency for highly parallel workloads. The
translation of mathematical problems to multi-GPU compute kernels has already
been solved in research by using domain-specific languages and libraries or clever
analysis and transformation during compilation. The process of optimizing the
partitioning of kernels has received very little attention in research. This work
explores the viability of automated partitioning of GPU kernels. The problem
is approached by modeling the compute graph of selected applications. The
Execution of the applications is simulated on a wide range of systems with
different interconnects and GPUs. To cut down on simulation time, a simulator
was developed for this specific use case. With the simulation results, simple but
per-case individual models were created, with which we show that the application
behavior can be well predicted. Results show that the automated partitioning is
only 10.17% slower than the optimal partitioning.

Analyzing and improving this problem for real applications depends on good
information about the compute kernel. Thus, this work additionally considers
the problem of obtaining such information. We use profiling of CUDA kernels
to obtain information on instruction counts. A LLVM-based compiler extension
providing instruction counts per kernel on PTX level is proposed and evaluated.
This approach is the advantage that profiling is much faster compared to NVIDIAs
profiler nvprof. The average overhead could be improved by a factor of 10 to
13.2 times the normal execution time.

The metrics of the new profiling approach are used to develop a methodology
for kernel performance prediction. Because the metrics of the profiler are GPU-
independent, they only need to be measured once, which is a great advantage. 168
kernels from the benchmark suites such as Parboil, Rodinia, Polybench-GPU and

SHOC are evaluated on five GPUs. The models are based on random forests and
are built for execution time and power consumption prediction. The evaluation
of the model prediction performance is using cross-validation and the results
show that the median average percentage error ranges from 8.86 to 52% for time
and from 1.84 to 2.94% for power prediction.

Zusammenfassung

Supercomputer und leistungsstarke Workstations mit mehreren Grafikkarten
sind mittlerweile Stand der Technik. GPUs werden wegen ihrer immensen Re-
chenleistung, hohen Speicherbandbreite und Energieeffizienz für hochgradig
parallele Berechnungen bevorzugt. Die Übersetzung mathematischer Probleme
in Multi-GPU Kernel wurde in der Forschung bereits durch die Verwendung
domänenspezifischer Sprachen und Bibliotheken oder durch geschickte Analyse
und Transformation während der Kompilierung gelöst. Dem Prozess der Optimie-
rung der Partitionierung von Kernels wurde in der Forschung bisher nur wenig
Aufmerksamkeit geschenkt. In dieser Arbeit wird die Machbarkeit einer automa-
tischen Partitionierung von GPU-Kerneln untersucht. Das Problem wird durch
Modellierung des Berechnungsgraphen ausgewählter Anwendungen untersucht.
Die Ausführung der Anwendungen auf einer breiten Auswahl von Systemen mit
unterschiedlichen Interconnects und GPUs wird simuliert. Um die Simulationszeit
zu reduzieren, wurde für diesen spezifischen Use-Case ein Simulator entwickelt.
Mit den Ergebnissen der Simulation, wurden einfache, aber individuelle Modelle
erzeugt, mit denen wir zeigen können, dass das Anwendungsverhalten gut vorher-
gesagt werden kann. Die Ergebnisse zeigen, dass die automatische Partitionierung
nur 10,17% langsamer ist als die optimale Partitionierung.

Die Analyse und Verbesserung dieses Problems für reale Anwendungen hängt
von guten Informationen über den Kernel ab. Daher befasst sich diese Arbeit zu-
sätzlich mit dem Problem der Beschaffung solcher Informationen. Wir verwenden
Profiling von CUDA-Kernel, um Informationen über die Anzahl der ausgeführten
Instruktionen zu erhalten. Es wird eine LLVM-basierte Compiler-Erweiterung
präsentiert und evaluiert, die die Anzahl der Instruktionen pro Kernel auf PTX-
Ebene ermittelt. Dieser Ansatz hat den Vorteil, dass das Profiling im Vergleich zu
NVIDIAs Profiler nvprof viel schneller ist. Der durchschnittliche Overhead konnte
um den Faktor 10 bis 13,2 gegenüber der normalen Ausführungszeit verbessert

werden.
Die Metriken des neuen Profiling-Ansatzes werden verwendet, um eine Metho-

dik für die Vorhersage der Kernel-Performance zu entwickeln. Da die Metriken
des Profilers GPU-unabhängig sind, müssen sie nur einmal gemessen werden,
was ein großer Vorteil ist. 168 Kernel aus den Benchmark-Suiten wie Parboil,
Rodinia, Polybench-GPU und SHOC werden auf fünf GPUs ausgewertet. Die
Modelle basieren auf Random Forests und wurden für die Vorhersage der Aus-
führungszeit und des Stromverbrauchs entwickelt. Die Ergebnisse zeigen, dass
der durchschnittliche prozentuale Fehler bei der Zeitvorhersage zwischen 8,86
und 52% und bei der Stromverbrauchsvorhersage zwischen 1,84 und 2,94% liegt.

Contents

1 Taming Multi-GPU Partitioning 1
1.1 Motivation . 1
1.2 Challenges of Multi-GPU Programming 2
1.3 Methodology . 3
1.4 Limitations . 3
1.5 Structure of this Work . 4

2 Background 5
2.1 GPU Programming Model . 5
2.2 Related Work . 8
2.3 GPGPU Workloads and Benchmark Suites 12

3 Compute Graph-Based Workload Partitioning for Multi-GPU
Systems 15
3.1 Partitioning Approach . 16
3.2 Pick-Sim Implementation . 20
3.3 Modeling System-Application Interaction with Polynomial Regres-

sion . 27
3.4 Evaluation . 29
3.5 Conclusion . 43

4 Benefits of Instrumentation for Profiling of CUDA Kernels 45
4.1 The ecosystem of CUDA kernel profiling 47
4.2 CUDA Flux Tool Design . 51
4.3 Evaluation Methodology . 57
4.4 Qualitative Evaluation . 60
4.5 Performance Evaluation . 64
4.6 Conclusion . 68

4.7 Future Work . 68

5 Fast and Portable Performance Prediction 71
5.1 Introduction . 71
5.2 Related Work . 74
5.3 Benchmarking the Data Foundation 78
5.4 The GPU Mangrove Methodology 83
5.5 Case Study on the Tesla K20 GPU 87
5.6 Evaluation - Portability . 90
5.7 Discussion . 98

6 Conclusions for Automated Multi-GPU Partitioning 101

List of Figures 107

List of Tables 111

Appendix A Simplifying Multi-GPU Programming with Unified
Memory Usage 123

1

C
h

a
p

t
e

r

Taming Multi-GPU Partitioning

1.1 Motivation

Many of today’s supercomputers feature multiple GPUs per node. Four of the five
best systems in the Top500 list from November 2022 feature four or more GPUs
per Node [1–4]. Not only supercomputers make use of multiple GPUs. Cloud
providers such as Amazon, Google and Microsoft (MS) Azure offer compute
instances with multiple GPUs per Node [5–7]. MS Azure offers up to 8 GPUs,
while Amazon and Google offer up to 16 GPUs.

Since multiple GPUs per node in supercomputers is the new normal, it is no
surprise that the problem sizes of parallel workloads have immensely grown. Just
to give an example: largest problem size classes from NAS Parallel Benchmarks [8]
have memory requirements ranging from 12 gigabytes up to 5 terabytes! These
are requirements for benchmarks and real-world applications may be different,
but a fraction of these problem sizes would still be sufficient to fully utilize
most recent multi-GPU compute nodes. When processing multi-GPU workloads
the number of participating GPUs is selected from experience. But even for
experienced developers, this is a hard task to get right and often requires test
runs. This clearly shows a need for a more structured approach for partitioning
workloads on multiple GPUs.

1

Taming Multi-GPU Partitioning

1.2 Challenges of Multi-GPU Programming

From formulating a computational problem to processing it efficiently on multiple
GPUs several stages have to be completed:

• Translation of the mathematical problem into one or multiple compute
kernels.

• Adapting data distribution and kernel placement for the usage of multiple
compute devices.

• Partitioning of the workload for efficient execution.

Translating a mathematical problem into a kernel for a single GPU is in itself
a difficult task. Managing the data of multiple kernels and multiple devices is
very time-consuming and error-prone. For this very reason, few GPU applications
are developed with support for multiple GPUs.

This emphasizes the need for good multi-GPU programming frameworks.
To the best of our knowledge, there is no framework, which has been widely
established or pushed by GPU manufacturers. There are some works, which
solve these problems (e.g. Ben-Nun et al [9] and Matz et al. [10]), but these are
research prototypes and have not been developed further.

These multi-GPU programming frameworks, do not solve the task of efficient
partitioning but merely provide multi-GPU applications which can be partitioned.
Now that, there are tools available, which make generating multi-GPU appli-
cations easier. Tools that can predict an optimal number of GPUs depending
on the workload problem size are desirable. Additionally, how can multi-GPU
programming frameworks be made partitioning agnostic?

Just being able to divide a GPU workload into any number of partitions, does
not enable partitioning decisions. Metrics with which the performance of kernels
can be estimated are required. Device-independent metrics would be preferable.
Ideally, there is one framework that handles the multi-GPU code generation,
performance metrics, performance modeling and optimizing the partitioning of
the multi-GPU application. This way, the power of multi-GPU systems would
be made accessible and hopefully used efficiently.

2

1.3 Methodology

1.3 Methodology

This work will first deal with the big picture of automating partitioning decisions.
Our approach is to try to generate models which can predict the execution time
of an application on a multi-GPU system with a given problem size and a set
number of GPUs. For this task, we develop Pick-Sim a simple simulator to
estimate the execution time of multi-GPU compute graphs on varying hardware
and use it to develop execution time prediction models. This enables the rapid
collection of data in many settings. We consider this as a minimum viable
prototype, which can be improved iteratively. Next, the approach is enhanced
by diving into sub-problems of the automated partitioning problem. Predicting
kernel performance is very important for good partitioning decisions. Thus, we
work on providing device-independent metrics for kernels. To achieve this the
LLVM compiler framework was leveraged to build CUDA Flux, a CUDA kernel
profiler based on instrumentation. The profiler is compared with NVIDIA’s
nvprof profiler. With these metrics, we develop the GPU mangrove performance
prediction methodology. The models created using the metrics as input features
are used to predict the performance of CUDA kernel. We collect metrics on a
wide range of kernels and with different GPU models. Additionally, the prediction
performance is evaluated and set into context with similar recent work.

1.4 Limitations

Because the topic has a lot of ground to cover, the scope of this work has to
be limited. This work does not deal with the generation of multi-GPU code
or single to multi-GPU code transformation. This problem has already been
solved with multiple approaches. Even though, the CUDA compute grid will
be sliced in multiple dimensions, we do not probe every possible configuration
with a set number of GPUs. The partitioning will only deal with GPUs as whole
processing units, instead of breaking them further down into smaller allocatable
processing units (such as streaming multiprocessors). Additionally, applications
will have few kernels and will not change the number of GPUs participating
in the computation. These limitations make the optimization of the number
of partitions manageable. While we would like to lift these limitations, we

3

Taming Multi-GPU Partitioning

think that the basics need to be matured to be able to make more sophisticated
optimizations.

Dynamic frequency settings are not considered. Lowering the frequency
of the core or the memory when either one is not used to full capacity, is a
great way to save energy. Neither in the Pick-Sim simulator nor in the GPU
Mangrove approach this is considered. The reasons for this are mainly that
for this, much more data collection would be required which takes more effort
and time. Additionally, strategies for lowering clocks for energy efficiency have
already been covered in recent research.

1.5 Structure of this Work

The remaining dissertation consists of five more chapters.

• The background chapter provides the necessary background information
on the GPU programming model, related work, and GPGPU workloads.

• Chapter three deals with the big picture problem for automated partition-
ing of CUDA kernels. It explores the approach of compute graph-based
workload partitioning and describes its implementation. It closes with the
evaluation and conclusion of the results.

• Chapter four is a deep dive into better profiling of CUDA kernels. It
introduces CUDA Flux a LLVM-based profiler and reviews the performance
of the profiler and the quality of the metrics provided.

• In chapter five, CUDA Flux is used to collect metrics on a wide range of
kernels. These metrics are used to build GPU Mangrove a collection of
performance prediction models. The models are evaluated on five different
GPUs.

• Finally, chapter six, summarizes the key findings of the dissertations and
offers some concluding remarks on the topic of automated partitioning of
CUDA kernels on multi-GPU systems.

4

2

C
h

a
p

t
e

r

Background

2.1 GPU Programming Model

GPUs are traditionally used for rendering computer graphics. Because the hard-
ware of GPUs enables substantial parallel computation they are used for compu-
tational tasks as well. The GPU programming model leverages the SIMD/SIMT
paradigm. A GPU has typically multiple processing units which work in parallel
and virtually independently. These properties allow GPUs to process many
parallel workloads at very high speed and energy efficiency.

The programming model requires defining compute kernels which are the
processing routines running on the GPU. These kernels are implemented using
languages such as CUDA or OpenCL, which are specifically designed to leverage
parallel accelerator hardware.

Implementing a compute kernel involves breaking the computational workload
down into smaller independent tasks, which can be executed in parallel. As
the processing is distributed across multiple cores which work in a SIMD/SIMT
manner, the programmer has to consider the GPU’s architecture and optimize
the implementation accordingly.

Since this work is based on NVIDIA GPUs, the following explanations describe
the CUDA programming model in more detail.

The CUDA programming language is an extension of C/C++. CUDA source
files include the compute kernel definition and may also include host code that

5

Background

runs on the CPU. The kernel functions are called from the host CPU and are
executed by the processing units in a SIMT manner.

Execution of work is divided by thread blocks, also called collaborative thread
arrays (CTAs), which are divided further into threads. Threads within the same
thread block are executed on the same processing unit and share computational
resources.

The processing units of NVIDIA GPUs are called streaming multiprocessors
(SMs). Each SM executes at least one thread block and can execute more if there
are enough computational resources available.

The thread blocks are organized into a grid of blocks, which defines the total
number of blocks a kernel launch will process. Each thread block and thread
receive a unique ID which is used to let the threads and blocks process different
data.

Figure 2.1 from the CUDA Programming Guide [11] illustrates how the blocks
of a grid are executed. The grid defined in the green box can be distributed
differently, depending on how many SMs are available for computation. In this
example, there are two GPUs with two and four SMs. Each SM can only execute
one thread block in this case. Even though, the CUDA programming model is
inherently parallel, not all blocks are necessarily processed at the same time. In
the case of two SMs, the first two blocks are processed in parallel and after those
are finished, the next two blocks are processed until all blocks are done. Likewise,
with four SMs per GPU, four blocks are being processed in parallel.

Similar to the architecture of CPUs, NVIDIA GPUs also have a memory
hierarchy. In contrast to CPUs, the usage of different types of memory is much
more explicit.

There are several types of memory:

• Global memory: the largest and slowest type of memory and equally
accessible to all threads of the grid.

• Shared memory: small and fast type of memory located on the SM and
only accessible to the threads on the same thread block and SM.

• Constant memory: fast read-only memory which is accessible for all threads.

• Texture memory: specialized memory featuring optimized 2D access and
interpolation of data.

6

2.1 GPU Programming Model

GPU with 2 SMs

SM 0 SM 1

SM 0 SM 1Block 0 Block 1

SM 0 SM 1Block 2 Block 3

SM 0 SM 1Block 4 Block 5

SM 0 SM 1Block 6 Block 7

GPU with 4 SMs

SM 0 SM 1 SM 2 SM 3

SM 0 SM 1 SM 2 SM 3Block 0 Block 1 Block 2 Block 3

SM 0 SM 1 SM 2 SM 3Block 4 Block 5 Block 6 Block 7

Multithreaded CUDA Programm

Block 4 Block 7Block 6Block 5

Block 3Block 2Block 1Block 0

Figure 2.1 Distribution of thread blocks on GPUs with different SM counts [11]

7

Background

Each of these types of memory has to be used explicitly. This requires the
programmer to be aware of the properties of the memory type.

The execution model of a simple CUDA program has typically three stages:

• Copy data from host memory to device (GPU) memory

• Execution of the compute kernel on the GPU

• Copy results back from the device memory to the host memory

More complicated CUDA programs may use multiple compute kernels (e.g.
as a synchronization barrier) and use multiple memory copies. Memory copy
operations and compute kernel can run at the same time, which allows for
optimizing the time needed to process the whole application. Also, multiple
GPUs can be used and the GPUs can exchange data with each other without
the need of using CPU memory as an intermediate stage.

2.2 Related Work

In this section, important related work is briefly reviewed. Some chapters will
review related work more extensively.

The related work for this dissertation can be categorized into three different
topics:

• Multi-GPU programming

• GPU kernel profiling

• GPU kernel performance prediction

Multi-GPU programming

There are multiple approaches to automated multi-GPU programming, which we
define as generating code that processes an algorithm on multiple GPUs from
some sort of description that does not reason about multiple processing units.
The code can be generated by either a high-level description, such as a compute
graph or an algorithm described by a domain specific language (DSL) or from
existing algorithms for single processing units. Distribution and exchanging
data for the kernel running on the GPUs is the main problem here. Initially
moving data to multiple GPUs and exchanging updates between the devices

8

2.2 Related Work

requires knowledge of the memory access patterns. Memory access patterns
and the resulting requirements for synchronization have to be generated from
the DSL implementation of the algorithms or extracted from existing code via
analysis or profiling. Optimal memory access patterns do not only depend on
the algorithms used but also on the mapping of the grid on the GPUs and the
memory layout. When implementing multi-GPU applications with plain CUDA
on a single compute node or with message passing on multiple compute nodes,
the programmer has to do the tedious work of determining the access patterns
and issuing resulting memory transfers.

To alleviate the programmer of this error-prone task several solutions to this
problem have been proposed:

• Use of DSLs or libraries which make the memory access patterns known
implicitly [9, 12–14].

• Analysis of memory access patterns during compile time [10].

• Sampling of the memory access patterns during runtime [15, 16].

Ben-Nun et al. [9] proposes MAPS-Multi a multi-GPU partitioning framework.
His framework introduces smart containers to use when accessing data in a kernel.
The developer has to define the properties of the container which let the memory
analyzer determine the memory access patterns. Most features of CUDA should
be compatible with this approach and a high level of optimization in the kernel
is still possible. The memory access patterns supported are derived from the
classification of Berkeley’s „parallel dwarfs” [17], and thus should give great
coverage of known parallel algorithms.

SkePU, which was initially released by Enmyren et al. [18] in 2010 and
later redesigned by Ernestsson [14] in 2018, is a high-level skeleton programming
framework for heterogeneous parallel systems, which also supports multi-GPU
computing. The computation has to be expressed by the developer with pre-
defined skeletons. These skeletons imply memory access patterns similar to
MAPS-Multi containers. The high-level approach of SkePU simplifies the pro-
gramming but will not be able to cover programming patterns not covered by the
skeletons. Steuwer et al. [19] introduce SkelCL, a high-level GPU programming
framework, which is also making use of skeleton programming. The skeletons
perform very similar functions and the memory access patterns are also inferred
by the selected skeleton.

9

Background

Compiler-assisted analysis and container/skeleton-based deduction of mem-
ory access patterns work well when memory locations that are accessed are
deterministic and do not depend on runtime data.

The analysis of memory access patterns during compilation is a powerful
tool with the advantage, that no changes to the source code have to be made.
Matz et al. [10] uses polyhedral compilation to model memory access patterns of
single-GPU applications to later transform them into multi-GPU applications.
The analysis is limited to regular memory access patterns, meaning that memory
accesses must not depend on runtime data.

Matz et al. [16] also showed that memory access patterns of various appli-
cations can be captured by using an open-source memory tracing plugin for
clang/LLVM. While the analysis this tool provides is very detailed, the time and
memory overhead for such tracing is of significant magnitude.

A more optimized approach to trace memory accesses at runtime is proposed
by Kim et al. [15]. Instead of profiling on the GPU their runtime performs a
sampling run on the CPU. For efficiency, they sample only a representative subset
of items in the thread grid. This requires some conditions to be met, which means
that not all memory access patterns can be analyzed. Also, data-dependent
memory accesses can not be computed.

Closing the loop of obtaining memory access patterns and using them to
automatically generate multi-GPU code is achieved in [9, 10, 14]. Data-dependent
memory access patterns can usually not be covered. Notably, Ernestsson and Matz
both use similar components to track and manage data placement dynamically.
We think that dynamic management of data dependencies and placement is very
important when implementing automated multi-GPU programming because the
performance of GPU workloads is most sensitive to orchestrating data (except
when data exchange is minimal and/or trivial). This is underlined by results,
which were produced using unified memory (UM) for data orchestration. UM
allows GPUs with support for paging (CUDA compute capability 6.0 and higher)
to fetch data on demand to the GPU memory similar to paging on CPUs. A
single memory allocation is sufficient to be used on all devices. Appendix A
shows a small study on the subject of unified memory performance regarding
multiple GPUs. Comprehensive studies on whether using this particular feature
for multi-GPU computing is beneficial are yet to be done. When used with
single GPUs, performance is usually lower than using conventional memory

10

2.2 Related Work

allocation (see figure A.1, Appendix A). Reasons for performance degradation
are presumably: latency overhead when fetching pages; and page trashing; when
CPU and GPU are modifying memory on the same page. UM gives a functional
solution to the problem, but is usually not worth using it as performance is rarely
improved.

GPU Kernel Profiling

Related work on the topic GPU kernel profiling includes work of Villa et al. [20],
Diamos et al. [21] and Farooqui et al. [22] and several works with GPU simulators
like [23–27]. While simulators could be used to profile CUDA kernels profiling of
a wide range of kernels is prohibitively expensive and thus, simulators are not
explored further.

Villa et al. introduce NVBit, a dynamic binary instrumentation framework
for CUDA applications. Their tool allows users to selectively instrument binaries
and execute them on GPUs. They show that NVBit can be used to easily
implement profilers, performance evaluation, error checking, and bug detection
tools. NVBit operates at the SASS assembly level, which is GPU-specific,
and uses dynamic recompilation. NVBit enables the following modifications
to the code basic-block instrumentation, multi-function injection to the same
location, inspection of ISA visible state, dynamic selection of instrumented
or uninstrumented code, permanent modification of register state, correlation
with source code, and instruction removal. Their work can be viewed as a
continuation of the work of Stephenson et al. [28] who proposed a software
profiling tool for GPU architectures that can be used to identify performance
bottlenecks and optimize GPU applications. They share a common goal of
improving GPU performance through profiling and analysis. Stephenson et al.
introduce SASSI an instrumentation tool for the assembly SASS. They show
several use cases of SASSI, which also includes profiling of conditional branches
which is a very effective way to infer the executed instructions of a CUDA kernel.
GPUOcelot by Diamos et al. [21] and Lynx by Farooqui et al. [22] offer the
possibility to dynamically instrument PTX assembly of CUDA kernels. Instead
of instrumenting at compile time they intercept the kernel before it is executed
and apply the instrumentation at runtime. This approach is very similar to our
work, but their tools are not maintained anymore.

11

Background

GPU Kernel Performance Prediction

On the topic of GPU kernel performance prediction, Braun et al. [29] provide an
extensive list of related work on that topic. In the scope of this work, it is an
advantage to be able to make predictions based on static information available
ahead of execution time. For this reason, the works of Guerreiro et al. [30] and
Fan et al. [31] are the most relevant. Besides using similar features, Guerreiro
and Fan use a comparable number of kernels for their study.

Guerreiro et al. [30] use GPU assembly as input for modeling execution time,
power and energy consumption of GPU kernel, with respect to dynamic voltage
and frequency scaling. They change the core and memory frequencies of the
GPUs and predict how this changes the GPU’s behavior. They use a deep
learning model and use it to find Pareto-optimal frequency settings. Fan et al.
[31] follow a very similar approach. They also examine the effect of frequency
scaling on the performance of a GPU kernel. Their machine learning models
predict speedup and normalized energy and they also try to find Pareto-optimal
frequency settings.

2.3 GPGPU Workloads and Benchmark Suites

Parts of this work are based on GPU benchmark suites. This section introduces
important benchmark suites for this work.

The Rodinia benchmark suite by Che et al. [32] is a very important collection
for GPU computing. It includes a wide range of benchmarks for evaluating the
performance of heterogeneous computing systems, including GPUs. The included
applications are inspired by the Berkeley Dwarves taxonomy.

The SHOC (Scalable Heterogeneous Computing) benchmark suite by Danalis
et al. [33] is also a heterogeneous benchmark suite. The CUDA implementation
makes this benchmark collection well-suited for GPU benchmarking. The suite
contains low-level benchmarks and implementations of typical basic parallel
algorithms.

The parboil benchmark by Stratton et al. [34] is another benchmark suite that
is used in this work. The benchmark suite covers a wide range of applications for
heterogeneous computing systems and makes supporting additional platforms or
compilers easier than most other benchmark suites.

12

2.3 GPGPU Workloads and Benchmark Suites

Lastly, we want to introduce the Polybench-GPU Benchmark by Grauer-Gray
et al. [35]. The benchmark suite was originally developed for compiler research
and is therefore not heavily optimized. The benchmark suite covers important
workloads and is not heavily optimized. For this reason, we think that it is
an interesting counterpoint to the more optimized implementations and reflects
properties of naive implementations, which are also important because many
developers may not know how to program GPUs efficiently.

13

3

C
h

a
p

t
e

r

Compute Graph-Based Workload Partition-
ing for Multi-GPU Systems

This chapter explores a possible solution to the problem of multi-GPU kernel
partitioning. The problem is approached by modeling the compute graph, GPU
hardware and the interconnect processing of the application. We use simple
building blocks to create models for partitioning GPU workloads on specific multi-
GPU systems. To do so, we provide a “bare-bones” modeling and simulation of
partitioned compute graphs on different multi-GPU systems. The simulation
focuses on the key aspects of multi-GPU applications which are kernel execution,
memory transfers and synchronization. We use real and simulated benchmark
data to build and compare partitioning models. We evaluate our models on
various systems with multiple GPUs by leveraging simulation.

15

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

3.1 Partitioning Approach

The main objective is a decision process on how many GPUs should be used to
compute a sequence of kernels in an application. This task can be broken down
to finding the appropriate number of GPUs for a given problem size N.

We emphasize that the execution time of an application is defined as kernel
execution time plus communication time in the context of this work. For this
reason, we focus on estimating kernel execution time, communication time and
the interaction of kernel and communication task of a GPU application. Running
a complete application realistically includes time spent on host code, which
usually handles I/O and the data to be processed by the GPUs. The host code
execution time could change with different numbers of GPUs, but these changes
are most likely very small and orders of magnitude lower than time changes in
kernel execution or communication. For that reason, this work does not consider
host code execution time.

3.1.1 Data Collection

For the best results when building a model, it is usually preferable to work with
realistic data which is as close to the real world as possible. Measurements on
real hardware, while being desirable, require a lot of effort. Modeling a single
application for a specific system requires a lot of measurements because there
are many combinations of the factors (e.g. problem size, GPU/interconnect
specifications).

Since this work is concerned with the general approach of partitioning and
thus should be able to cover many combinations of applications, interconnects,
GPUs and problem sizes there must be a solution to collect data faster using
than real execution of the workloads.

Because there are only a few systems with different interconnect and GPUs
available to us, simulating the applications and systems is a good solution to
that problem. Using existing GPU simulators such as GPGPU Sim by Bakhoda
et al. [23], Barra by Collange et al. [25] or Multi2Sim by Gong et al. [27] would
require even more time than the execution of the application on real hardware.

Selecting the best number of GPUs for a given problem size is the actual goal.
Most simulators are therefore too detailed and too slow for us to use. Simulating

16

3.1 Partitioning Approach

only the essentials needed for our approach seems to be a viable option, as it
would be fast and allow us to collect more data in less time.

Kernel execution time and communication are very important and must be
calculated by the simulation. Including every aspect that affects kernel execution
and communication would make the simulation prohibitively complex. For this
reason, the calculation of kernel execution time and communication throughput
is allowed to be approximate and only needs to scale similarly to real-world
behavior. This idealized notion of the multi-GPU system also excludes overheads,
which may lead to deviations seen in real application executions. Since the
simulation is based on compute graphs, not specific implementations, and the
observed overheads may be avoided or hidden by optimized implementations of
such compute graphs, this is an acceptable limitation.

The goal is to simulate the application with respect to the behavior of the
big O notation. With this in mind, several simplifications can be made:

• a kernel has always 100% throughput for all hardware resources

• no overhead for 2D/3D mem. copies

• no overhead for synchronization

Ideally, the simulation should work on a GPU compute graph that can be
easily exported from real applications such that modeling of such applications
on arbitrary hardware is possible.

3.1.2 Behavior Modeling and Partition Size Optimization

Our approach uses separate machine learning models for each application, GPU
and interconnect combinations. This allows using small models, which brings a
few advantages such as:

• Improved accuracy and less over-fitting.

• Fast training times which also allows fast re-fitting of selected models, when
there is more data available.

• Better comprehensibility of the models because they have fewer parameters
and are less complex.

In order to evaluate the approach properly, multiple applications, GPUs and
interconnects need to be examined. Ideally as many as possible.

17

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

The prerequisites for the collection of a fair amount of samples for modeling
are resource intensive:

• There are not many multi-GPU CUDA applications that allow arbitrary
selection of problem size N and the number of GPUs.

• Access to many GPUs is needed. For each model for which an examination
is sought a minimum of 4 devices is needed; 8 or 16 devices would be even
better.

• Different interconnects of the host systems may have a significant influence
on the partitioning performance. Therefore, benchmarking with different
interconnect is required.

With limited access to GPUs, host systems and computational time a simula-
tion approach is favorable. For this reason, we decided to simulate the execution
of compute graph on virtual hardware, which can be easily exchanged. The
compute graphs of each application are calculated and execution is simulated on
virtual hardware. To reduce the number of simulations to be done there will be
only one partitioning for each number of GPUs in a host system.

For the modeling of the applications, we chose a polynomial regression to fit
the model parameters. Training data consists of execution time samples with
only two input features problem size n and number of GPUs g. Multiple additive
terms nxgy are fitted to minimize the error between the model and samples.

The optimal partitioning is found by finding the minimum of the resulting
function t(n,g). The optimum is sought concerning n, which simplifies the
optimization even more.

Although beyond the scope of this work, we would like to mention that
partitioning can be done on partial compute graphs, which allows optimizing the
graph execution with changing numbers of GPUs. Finding the optimum while
allowing to change the number of GPUs is a much harder problem, but could be
solved based on the approach presented here.

3.1.3 Application Selection

The examined applications are roughly at the same complexity level as the SHOC
benchmark level 1 [33]. This allows us to reason about workloads with multiple
kernels and data movements in between. Applications with larger compute graphs

18

3.1 Partitioning Approach

may not be suited to be executed with a fixed number of GPUs. We choose to
study only three applications with very different communication behaviors in
order to keep the effort of implementing the generation of compute graphs for
the simulation to a minimum. The selected applications are:

• Matrix Multiplication

• 2D 5-point stencil

• N-Body

19

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

3.2 Pick-Sim Implementation

Because existing GPU simulators are providing much more detailed information
than needed for this work, we developed the Plain InterConnect and Kernel
simulator (Pick-Sim) specifically for our research task. It is composed of the
following components:

• Kernel execution time estimation

• Flow-based communication processing

• Application compute graph generator

• Hardware specifications

Together, these components allow for fast approximate simulation of multi-
GPU applications. The following sections describe each component in more
depth.

3.2.1 Kernel Execution Time Estimation

Kernel execution time can be modeled to a high degree of accuracy. The
approximate simulation does not need a very high degree of accuracy and thus
the computed kernel execution time can be simplified.

The implementation is required to simulate realistic scaling behavior to
changes in workload size (similar to big-o notation) and to calculate the results
for the hardware resources available on the GPU.

The implementation is using the idea of a simplified resource consumption
model. A compute kernel can not perform better than the theoretical computa-
tional resources of the GPU allow. The same idea is also used in the roofline
model, which is used to analyze bottlenecks of computational kernels by viewing
the attainable GFlops/s with respect to the operational intensity [36]. The speed
at which a kernel is executed is not only limited by floating-point operations but
could also involve other operations like integer or bit operations. Only looking
at one type of resource like the operations per second a processor can perform,
will omit other important limiting factors like memory bandwidth.

The list of the considered resources includes:

• Global GPU Memory Bandwidth

20

3.2 Pick-Sim Implementation

• Shared Memory Bandwidth (per SM)

• 64-bit floating-point operations

• 32-bit floating-point operations

• Integer operations

• Logic and bit operations

64- and 32-bit floating-point operations are separated because depending on
the GPU type the number of 64-bit ALUs can differ significantly.

The time is a function of hardware resources the GPU provides and kernel
properties and is calculated as follows:

t(−−−−−−−−−→
kernel_prop,

−−−−−−→
HW_res) = max(

−−−−−−−−−→
kernel_prop

−−−−−−→
HW_res

) (3.1)

Using the maximum operation and not considering the interaction of the
instructions simplifies the time estimation a lot while still respecting the very
fundamental limitations for the kernel execution time. The main advantage of
this method is the speed of this computation. There are certainly better models
for execution time estimation, but these depend on the implementation details
on the kernel and in-depth information on the GPU being used. Theoretically,
this component can be easily exchanged if more details on kernel and GPU are
provided.

3.2.2 Flow-based Communication Processing

Time spent on communication (CUDA memcpy operations) is simulated using a
directed graph representing the interconnect of the GPU. The graph comprises
different kinds of nodes such as GPU, CPU, Memory and PCIe switches. The
connections between these nodes are represented by directed edges in the graph
which are annotated with their corresponding bandwidth. Section 3.2.4 describes
in detail how these graphs are composed.

The goal is to compute the estimated duration of each of the concurrent
transactions, taking into account the reduced bandwidth at share edges. The final
duration of the entire transaction is evaluated in the encompassing multi-GPU
simulation. Each transaction is allocated a bandwidth which is used by the

21

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

simulation to calculate the progress of the copy operation. This problem is very
similar to the multicommodity flow problems.

In real GPU interconnects, there are many variables determining how the
actual transactions are being executed, such as driver behavior, OS and inter-
connect implementations. These influences introduce randomness to the exact
timings and are ignored as they can not be captured well. As a result, all source-
destination connection pairs are treated equally regarding bandwidth allocation.
Multiple transfers for the same source-destination connection have to share the
allocated bandwidth of the connection.

Listing 3.1 shows how the bandwidth is allocated, which is a key function.
The procedure works on the edge properties of the interconnect graph.

Listing 3.1 Allocate bandwidth pseudo code.
1 def allocate_bandwidth(graph , unused_bw , connections):

2 link_uses = graph.new_edge_property ()

3 for c in connections:

4 link_uses[c.path] += 1

5

6 # available bw for each connection

7 available_bw = unused_bw / link_uses

8

9 for c in connections:

10 min_bw = min(available_bw[c.path])

11 c.bw += min_bw

12 unused_bw[c.path] -= min_bc

13

14 return unused_bw

unused_bw is initialized with the bandwidths of the graph describing the
interconnect. Line 7 shows that the bandwidth is divided by the number of uses
for each link. For each connection from a source to a destination, the allocated
bandwidth is the minimum of the available bandwidth (see line 10). Depending
on the layout of the interconnect there might be still unused bandwidth. For
this reason, the procedure can be called until the bandwidth does not change
anymore. The bandwidth for each connection will be increased accordingly.

22

3.2 Pick-Sim Implementation

3.2.3 Application Compute Graph Generator

Applications in the simulation are modeled by a directed acyclic graph (DAG)
– the compute graph. Each of the generated compute graphs has a start and
an end node. The task nodes between the start and end are either kernel or
memcpy nodes and are annotated as such. The latter can be further distinguished
by processor type of source and destination: host-to-device (h2d), device-to-
host(d2h) and device-to-device(d2d).

Figure 3.1 shows an example of such a compute graph for a matrix multipli-
cation. The application is partitioned into two partitions (0,0) and (1,0). The
partition ID is a tuple to enable partitioning in two or possibly more dimensions.
The graph is partitioned into a number of partitions which is equal to the number
of GPUs, which shall process the application. At this stage, the GPUs are still
virtual and could be mapped arbitrarily.

Nodes in the compute graph are annotated with the following information:

• name – task name for visualization and debugging purposes

• pid – partition ID

• size – the size of the partition for kernel nodes or size of the memory
transactions for copy nodes

• kernel properties – info on the resource usage of the kernel

• src/dest – source and destinations for copy nodes

The compute graphs are synthetically generated for a specific problem size
and number of GPUs. The generation is user-defined and has to be implemented
manually. In theory, the graphs can also be captured from real applications
via instrumentation and profiling. Because there are only a few configurable
multi-GPU applications (concerning problem size and GPUs used) implementing
instrumentation for this use case remains part of future work. The graph genera-
tion was defined for the following selected applications: matrix multiplication
2D 5-point stencil and n-body.

3.2.4 Hardware Specifications

The hardware specification module contains several predefined interconnects and
GPU specifications. Figure 3.2 shows such a predefined interconnect with two

23

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

Start

End

Copy A (0,0) Copy A (1,0)Copy B (0,0) Copy B (1,0)

Copy C (0,0) Copy C (1,0)

MatMul (0,0) MatMul (1,0)

Figure 3.1 Compute graph of the matrix multiplication with two partitions.

24

3.2 Pick-Sim Implementation

System InterconnectCPU 0

PCIe

CPU 1

PCIe

PCIe

Switch 0

PCIe

GPU 0 GPU 0

Memory

PCIe PCIe

Switch 1

GPU 2 GPU 3

Figure 3.2 Interconnect graph modeling the octane dual socket system with four
GPUs.

CPU sockets and four GPU slots. The interconnect is modeled as a directed
graph and includes a connection between CPU, memory and GPU compute
devices. Note that all connections represent two edges (one in each direction).
Each connection can be configured with the corresponding bandwidth. This
is important because the system interconnect (e.g. Intel QPI or AMD Hyper-
transport) differs with the type of CPU being used. The edges of the CPU and
Memory are sharing their read and write bandwidth.

The interconnect does not define the specific GPU. This is done in the
simulation. The connections are given a maximum bandwidth, which can be
put through the link. Between CPU and GPU there may be switches or similar

25

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

intermediate hops. These are necessary to account for bottlenecks between
devices.

3.2.5 Multi-GPU Execution Simulation

The simulation is processing the application compute graph. GPUs are mapped
to the logical partitions of the compute graph and the specifics of the selected
GPU are applied. The compute graph is processed step by step until the end
node is reached.

Listing 3.2 shows the gist of the simulation loop. The compute graph is
processed from the start node. Nodes are explored in a BFS search manner
as successors of a task node will be added once it is done. There are active,
waiting and finished tasks nodes with their corresponding sets in which they are
managed. Active task nodes will make progress in each simulation step. Each
step ends when the first task is finished. This ensures waiting task nodes can
become active as soon as possible and each task node can be processed with
the corresponding available resources in the current simulation step. This is
important for copy task nodes for which the bandwidth allocation depends on all
copies running concurrently (as discussed in flow-based communication). Kernel
task nodes are not sharing GPUs and are therefore completely independent and
do not interfere with each other. After each task was updated in the simulation
step one or multiple tasks should be done (line 13 and following). Active, finished
and waiting tasks are managed accordingly. In an intermediate step successors
of task nodes are added to the waiting tasks if they are not already active or
finished (lines 19–21). In the end, waiting tasks are added to the active task if
the predecessors are finished (lines 23–25).

26

3.3 Modeling System-Application Interaction with Polynomial
Regression

Listing 3.2 Compute graph simulation pseudo code.
1 active_tasks = set(start.successors ())

2 waiting_tasks = set()

3 finished_task = set()

4

5 while not active_tasks.empty ():

6 bandwidth_allocation(active_tasks)

7 # compute time to finish each task

8 for task in active_tasks:

9 task.compute_task_eta ()

10 step_time = min([task.eta for task in active_tasks])

11 # progress each task with the shortest task time

12 for task in active_tasks:

13 task.update(step_time)

14 if task.done ():

15 active_tasks.remove(task)

16 finished_tasks.add(task)

17 # successors of the finished task become waiting ,

18 # if they are not already active or finished

19 successors = task.successors () - active_tasks

20 successors = successors - finished_tasks

21 waiting_tasks.update(successors)

22 for task in waiting_tasks:

23 if task.predecessors (). issubset(finished_tasks):

24 active_tasks.add(task)

25 waiting_tasks.remove(task)

3.3 Modeling System-Application Interaction
with Polynomial Regression

Each combination of application and system is modeled separately. This has
several advantages:

• Model Size – only a few model parameters are needed

• Model Simplicity – model parameters can be interpreted better

27

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

• Low use of computational resources – model fitting and usage of the model
are fast

For the above reasons, a linear regression model was chosen. To allow
modeling more complex behavior the input parameters N and g are augmented
with polynomials. The exponent for g ranges from -1 to 3 and for N from 0 to 3.
This should allow for covering most applications’ behavior.

The implementation of the system-application model is kept simple by restric-
tion to regression models. Feature engineering is employed to model non-linear
behavior by augmenting the features. This approach uses polynomial features,
but other (preferably derivable) features are also possible. The features are
augmented by computing the cartesian product of n and g vectors with different
exponents

When applying the regression model it is favorable to get a simple model
with fewer parameters. For this reason, the LassoLars regression is used [37].
The algorithm provides a good fit and regularization so that only important
features remain.

Predictions for the optimal number of GPUs g(n) are quickly calculated. The
usually low number of GPUs allows the enumeration of all possible settings and
picking the lowest one. For large numbers of GPUs t(g, n) can be derived to
compute the minimum analytically.

28

3.4 Evaluation

0 10000 20000 30000 40000 50000 60000 70000
n

0

100

200

300

400

t [
s]

GPU Count
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 3.3 Performance measurements of the matrix multiplication application
with varying problem sizes and up to 16 GPUs. Measurements were executed on
the victoria system and repeated five times for statistical stability.

3.4 Evaluation

The evaluation involves several stages of the approach presented in this chapter.
First, benchmark data from real hardware is examined. This is followed by
a comparison of the simulation data with the real benchmark data. Next,
linear regression is applied to generate time prediction models, and finally, the
optimization of the number of GPU devices is evaluated.

3.4.1 Benchmark Results on Real Hardware

Figure 3.3, 3.4 and 3.5 show the measured execution times over the problem size
with 1 to 16 GPUs used for the applications matrix multiplication, n-body and
the 2D 5-point stencil. Each data point was measured five times and the median
of the results is used. The error bars show the standard deviation. The error of
the execution time measurement is very small, so the error bars are very hard
to see (if even visible at all). Some lines for lower numbers of GPUs end early,
because there is not enough device memory for larger problem sizes.

The results of the matrix multiplication (figure 3.3) are mostly as expected.
Some lines do cross each other at certain thresholds. This suggests that the
approach of simply increasing the number of GPUs with the problem size can be

29

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

0 20000 40000 60000 80000 100000
n

0

20

40

60

80

t [
s]

GPU Count
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 3.4 Performance measurements of the n-body application with varying
problem sizes and up to 16 GPUs. Measurements were executed on the victoria
system and repeated five times for statistical stability.

optimized. Here are some examples: At n = 40960, eight GPUs outperform nine,
and 14 GPUs outperform 15. Only at n = 61440 are 15 GPUs faster than 14
GPUs again.

The n-body results in figure 3.4 show that the problem can easily benefit
from almost any number of GPUs because it requires a lot of computational
resources and communicates very little. The graph shows that the interesting
problem sizes for partitioning tasks are the smaller ones, where the overhead
is more important. Optimizing the number of GPUs may not seem profitable,
but small differences can add up at high iteration counts. The measured data
contains one hundred iterations.

The results of the stencil application in figure 3.5 are not as expected. The time
required for computation and communication increases approximately linearly.
Since the computation increases quadratically and the communication increases
linearly, it can be concluded that communication time is the dominant factor
for the stencil application. Using the one GPU measurement (blue line in the
graph) as a baseline, the other measurements can be divided into two groups.
All lines above the one GPU measurement are measurements that are slower
despite having more processing power available. The lines below the blue line
are measurements that run faster. The reason for this is not directly the number
of GPUs. Since the stencil grid is two-dimensional, the computational grid can

30

3.4 Evaluation

0 10000 20000 30000 40000 50000
n

0

50

100

150

200

250

300
t [

s]

GPU Count
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 3.5 Performance measurements of the stencil application with varying
problem sizes and up to 16 GPUs. Measurements were executed on the victoria
system and repeated five times for statistical stability.

also be divided into two dimensions if the number of partitions can be factorized.
Partition counts that are prime numbers run faster because the stencil grid is
only sliced in such a way that the halos to be exchanged between the GPUs
are continuous in memory. The other partition counts have halos that must be
accessed with a stride. Although the cudaMemcpy2D functions from the CUDA
runtime were used, this resulted in severe performance penalties and thus long
runtimes. To test the ability of the models to cover such difficult behavior, it
was decided to use this benchmark data anyway.

The benchmark data was used to fit models for predicting execution time.
To get a good visual impression of the fit 3D plots are provided in figures 3.6,
3.7 and 3.8. The models seem to capture the behavior quite well. The surface is
generally smoother, which is to be expected because the models have very few
parameters.

The plots in figure 3.6 are visually almost indistinguishable, indicating a
good fit. A few large problem sizes show more changes in execution time in the
benchmark data compared to the simulation data.

Figure 3.7 shows a similar picture, where benchmark data and the model
correlate very well. Again, the model is smother than the benchmark data.

Figure 3.8 has very different plots for the benchmark data and the model.
Clearly, the model is unable to reproduce the behavior. Given the severity of

31

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

GPU Count

2
4

6
8

10
12

14
16

N

0

10000

20000

30000

40000
50000

60000
70000

t [
s]

50

100

150

200

250

300

350

400

Benchmark Data

GPU Count

2
4

6
8

10
12

14
16

N

0

10000

20000

30000

40000
50000

60000
70000

t [
s]

0

100

200

300

400

Model Data

Figure 3.6 Two 3D surface plots showing execution time (z-axis) over the GPU
count (x-axis) and problem size N (y-axis) for the matrix multiplication. The
left plot shows the median of the benchmark data. The right plot shows the data
from the model.

GPU Count

2
4

6
8

10
12

14
16

N

0

20000

40000

60000

80000

100000

t [
s]

10

20

30

40

50

60

70

80

Benchmark Data

GPU Count

2
4

6
8

10
12

14
16

N

0

20000

40000

60000

80000

100000

t [
s]

10

20

30

40

50

60

70

80

Model Data

Figure 3.7 Two 3D surface plots showing execution time (z-axis) over the GPU
count (x-axis) and problem size N (y-axis) for n-body. The left plot shows the
median of the benchmark data. The right plot shows the data from the model.

32

3.4 Evaluation

GPU Count

2
4

6
8

10
12

14
16

N

0

10000

20000

30000

40000

50000

t [
s]

50

100

150

200

250

Benchmark Data

GPU Count

2
4

6
8

10
12

14
16

N

0

10000

20000

30000

40000

50000

t [
s]

0

50

100

150

200

250

Model Data

Figure 3.8 Two 3D surface plots showing execution time (z-axis) over the GPU
count (x-axis) and problem size N (y-axis) for the stencil. The left plot shows
the median of the benchmark data. The right plot shows the data from the
model.

the performance penalty, this is acceptable, as optimized implementations would
certainly avoid this performance bug.

In addition to the visual evaluation, a quantitative result is needed to judge
the fitness of the model. The error is calculated in percent and displayed in
the box plot of figure 3.9. In most cases, the model slightly underestimates the
execution time by a few percent. The error for the stencil code is generally higher.
For matrix multiplication and especially for stencil code, the range of error is
quite high. This should be taken with a grain of salt, as the error is computed in
percent, and low absolute errors for small problem sizes can lead to very high
percent errors. The mean error percentage is -95.82% while the mean absolute
error is 6.74 seconds. Without the stencil application, the mean error percentage
is -1.12% and the absolute error is 1.04 seconds.

33

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

matmul nbody stencil5p
application

300

200

100

0

100

200

300

400

er
ro

r [
%

]

 -1.71 -2.08 -10.2

Figure 3.9 Boxplot of the model error in percent over the applications matrix
multiply, n-body and stencil on the victoria system. The median is annotated in
red for better readability. Whiskers are limited to 1.5 of the interquartile range,
outliers are not shown.

3.4.2 Comparing Measured Data with Simulation Data

To compare the scaling behavior of the execution times of benchmark and
simulation data, the time is scaled by the problem size. Figure 3.10, 3.11
and 3.12 show the scaled execution time over the number of GPUs. The number
of GPUs on the x-axis is preferred because we want to scale by n and show how
the number of GPUs influences time. The top plot shows the scaled time of the
benchmarks and the bottom plot the time of the simulation. Each line represents
a different problem size n.

The plot for the matrix multiplication used the log scale on the y-axis as
this makes slight differences in execution time better visible. We can make the
following observations:

• Larger problem sizes take longer because matrix multiplication has a
complexity of O(n2).

• Using more GPUs improves performance, if there is enough work.

• Not all aspects of the application can be fully parallelized, which results
in diminishing performance improvements when increasing the number of
GPUs.

• Besides the effect of Amdahl Law, increased overhead can be observed
which is very pronounced in the simulation results of the problem size 1024.

• Comparing the performance delta of an even count of GPUs with the next

34

3.4 Evaluation

10
5

10
4

10
3

10
2

t n
[s

]

benchmark

2 4 6 8 10 12 14 16
GPU Count

10
5

10
4

10
3

10
2

t n
[s

]

simulation

n
1024
10240
20480
30720
40960
51200
61440
71680

Figure 3.10 Two plots showing the execution time t normalized by the problem
size n of matrix multiplication over the number of GPUs used for computation.
The top shows the simulation results and the bottom the benchmark results. Log
scale is applied on the y-axis.

35

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

t n
[s

]

benchmark

2 4 6 8 10 12 14 16
GPU Count

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

t n
[s

]

simulation

n
1024
10240
20480
30720
40960
51200
61440
71680
81920
92160
102400

Figure 3.11 Two plots showing the execution time t normalized by the problem
size n of n-body over the number of GPUs used for computation. The top shows
the simulation results and the bottom the benchmark results.

odd count of GPUs reveals a very low gain or even loss in performance.
This is explained by the higher communication overhead of usually not
being able to partition the C matrix in two dimensions among the GPUs.

• This effect is stronger in the simulation. The benchmarked results show
this effect to a lesser extent because there are additional overheads that
are not reproduced by the simulation (such as copying data slices that are
not stored continuously in memory).

• The simulation and benchmark results show similar behavior and often
similar results regarding the optimal number of GPUs. The overhead of
real execution is most likely not affecting computation and simulation to
the same extent. This may slightly shift the optimal number of GPUs.

For the n-body application, the observations are as follows:

• N-body is a compute-intensive application with little communication. Thus,
it can benefit multiple GPUs even with low problem sizes.

36

3.4 Evaluation

0.000

0.001

0.002

0.003

0.004

0.005

t n
[s

]
benchmark

2 4 6 8 10 12 14 16
GPU Count

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

t n
[s

]

simulation

n
1024
10240
20480
30720
40960
51200

Figure 3.12 Two plots showing the execution time t normalized by the problem
size n of the stencil computation over the number of GPUs used for computation.
The top shows the simulation results and the bottom the benchmark results.

• The simulation scales very well, due to the lack of overhead.

• The benchmark results show that communication overhead can outweigh
performance gains when the problem size is low.

• The effect of using too many GPUs is not very strong and does not affect
the performance a lot but decreases the efficiency significantly.

• The maximum problem size is suitable for processing with about eight
GPUs. Beyond that, the gains are quite low. Larger problem sizes would
scale better.

• Using 3 GPUs is performing worse than expected. We suspect that the
rather short communication time of this workload is sensitive to the pro-
cessing order of the memory transfers and overheads in general.

Stencil observations:

• Our stencil implementation behaves very differently in simulation and real
execution.

• As explained earlier this behavior comes from very high overhead from
exchanging unaligned halos.

37

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

• The simulation results show, that the application could scale quite well if
it was optimized better.

• All GPU counts, which cannot be factorized performed well, because the
grid is only split along the y-axis and the slices to copy are continuous in
memory.

3.4.3 Evaluating Model Fit on Simulation Data

With the simulation able to reproduce the behavior of real benchmarks, the
simulation results are used to evaluate the model fit on a large combination of
applications, GPUs and interconnects. The applications used include matrix
multiplication, n-body simulation and a 5-point 2D stencil, as used in this work
before. As GPUs, we used the NVIDIA GPUs Tesla K20, Tesla K80, Tesla P100,
Tesla V100 and Tesla A100. As interconnects, we used three different systems
modeled after real hardware:

• octane: 2 CPU sockets, 4 GPUs

• victoria: 2 CPU sockets, 16 GPUs

• brook: 1 CPU socket, 8 GPUs

The results are used to assess model error for prediction application runtime.
Figure 3.13 shows a box plot of the error in time prediction for the fitted

model of the simulation results. The error in the average case is very close to
zero. The distribution of the error is slightly more spread out for the matrix
multiplication.

The error distribution on the different interconnects is shown in the box
plots of figure 3.14. Again, the error of the average case is very close to zero.
The victoria interconnect has the widest error spreads, followed by brook and
then octane which has almost no spread at all. This observation has an easy
explanation: The victoria interconnect can host up to 16 GPUs, brook only eight
and octane only four GPUs. Fewer GPUs seem to allow better fitting of the
model parameters.

Finally, table 3.1 shows the main quartiles of the error of the model fit over all
simulated samples. These numbers serve as a summary of the model fit. There
are three columns with the error in percent, absolute error and squared error.
The median (second quartile) is almost zero for any error metric, which is to

38

3.4 Evaluation

matmul nbody stencil5p
application

15

10

5

0

5

10

15

er
ro

r [
%

]

Figure 3.13 Boxplot of the model error in percent over the applications matrix
multiply, n-body and stencil on all simulated systems. Whiskers are limited to
1.5 of the interquartile range, outliers are not shown.

victoria brook octane
application

15

10

5

0

5

10

er
ro

r [
%

]

Figure 3.14 Boxplot of the performance loss of the optimal partitioning according
to the model compared to the actual optimal partitioning over the simulated
interconnects. Whiskers are limited to 1.5 of the interquartile range, outliers are
not shown.

39

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

error [%] absolute error squared error
Q1 -3.17 0.00 0.00
Q2 0.00 0.02 0.00
Q2 1.48 0.28 0.08

Table 3.1 First, second and third quartile of the model fit over all simulation
samples.

be expected from the results shown in figure 3.13 and 3.14. The first and third
quartiles also show that the majority of data points of the models are within
-3.17 and 1.48 percent. The mean absolute error is 0.74 seconds and the mean
error percentage is -0.73%.

3.4.4 Compute Device Optimization Performance

Similar to the previous section figure 3.13 and 3.14 show box plots of the
relative performance as multiple of the actual best time over the applications
and interconnects. The majority of the predicted optimal number of GPUs is
within the range of about 1.2 and 1.6 of the actual optimum. The average case
is about 1.1 times slower for matrix multiplication and n-body. The average
relative performance of stencil code is only slightly higher than the optimum.

Figure 3.14 shows that the interconnects octane and brook are much better
optimized than the victoria interconnect, in which the average case is about 1.3
times slower than the optimum. With only four GPUs the octane interconnect
seems trivial to optimize. The quite substantial number of eight GPUs hosted by
the brook interconnect is performing well. Most predictions are within 1.0 and
1.2 of the optimum. The victoria interconnect on the contrary is much harder to
predict correctly. Most of the predicted optimums differ substantially from the
actual optimal time.

Finally, table 3.2 shows the main quartiles of the differences regarding the
GPU device count optimization of the model fit over data points. These numbers
serve as a summary of the optimization results. There are three columns with
the differences in GPU count, absolute time difference and time difference in
percent. The median of the GPU difference is one, which is not as good as one
can hope. But the third quartile is also one which means that in the majority of
cases, the number of GPUs is the same or off by one. However, this may be okay
if the time difference in these cases is not too high. For this reason, the time

40

3.4 Evaluation

matmul nbody stencil5p
application

1.0

1.2

1.4

1.6

1.8

2.0

2.2

re
la

tiv
e

pe
rfo

rm
an

ce

Figure 3.15 Boxplot of the performance loss of the optimal partitioning according
to the model compared to the actual optimal partitioning over the simulated
applications. Whiskers are limited to 1.5 of the interquartile range, outliers are
not shown.

brook octane victoria
interconnect

1.0

1.2

1.4

1.6

1.8

2.0

2.2

re
la

tiv
e

pe
rfo

rm
an

ce

Figure 3.16 Boxplot of the performance loss of the optimal partitioning according
to the model compared to the actual optimal partitioning over the simulated
interconnects. Whiskers are limited to 1.5 of the interquartile range, outliers are
not shown.

41

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

GPU count difference time difference [s] time difference [%]
Q1 0 0.00 0.00
Q2 1 0.02 3.99
Q3 1 0.93 30.15

Table 3.2 First, second and third quartile of optimization differences over all
data points.

difference in seconds and percent are also important metrics. Considering the
other time metrics, it can be seen, that the absolute time difference is very low.
The percentage difference is ranging from 0.00% for the first quartile to 30.15%
for the third quartile. The mean time difference is 10.17%.

42

3.5 Conclusion

3.5 Conclusion

Graph-based workload partitioning can be a powerful tool for optimizing the
execution of multi-GPU workloads. Optimizing multiple multi-GPU applications
for various compute systems with different interconnects and GPU models can
be prohibitively expensive. Thus, conventional simulation and kernel profiling
do not solve this problem.

We have shown that a simple approach with a building block-like imple-
mentation is feasible. Benchmark data from real hardware showed that even
applications with lower computational requirements can benefit from optimized
partitioning. We have shown that a simple regression model can reproduce the
scaling behavior of the application quite well. For real benchmark data, the mean
average error percentage is -95.82% and the mean absolute error is 6.74 seconds.
We attribute this high percentage error to the odd behavior of the memory
transfers of the stencil application. The simulated benchmarks could be modeled
much better with a mean average error percentage of -0.73% and an absolute error
of 0.74 seconds. The implementation and use of Pick-Sim allowed the collection
of a large amount of data with different interconnects and GPUs. Even with the
basic implementation of a GPU simulator, the behavior shown is quite similar.
We want to emphasize that parts of the simulation, such as kernel execution time
estimation or interconnect throughput calculation, can be easily replaced with
more accurate building blocks that are closer to the real application behavior.
The models built on the simulation data allow for partitioning decisions that
could predict the optimal number of GPUs in many cases, with little performance
penalty when not predicting the optimum. The average performance penalty
over all simulated GPU, interconnect and application combination is 10.17%.

There is certainly room for improvement and more ideas to explore:
For some use cases with very short execution time per run, simulation may

not be needed and the model could work with execution statistics alone. For
use cases with long execution times, a hybrid approach that uses simulation and
execution statistics to model application behavior would be advantageous. With
a model that can adapt as more real data is captured, auto-tuning of partitioning
becomes feasible, which may be worthwhile for larger compute graphs where
sub-graphs are to be optimized.

For these hybrid approaches, the execution times should match the actual

43

Compute Graph-Based Workload Partitioning for Multi-GPU
Systems

application, not just scale similarly. This requires accurate kernel time estimation
and interconnect simulation. While this is computationally expensive, long-
running applications may still benefit. In general, API behavior should also be
considered, as we have seen in the stencil application.

We believe that the ideas in this work should be further explored and tested
on real-world applications with large compute graphs. We know that this is a
difficult task and that there are many sub-problems to solve in order to improve
partitioning for multi-GPU applications. The pursuit of compute graph-based
partitioning will hopefully not only make applications run faster and more
efficiently on different hardware but also shape the way multi-GPU applications
are developed. In this process, we would like to move away from low-level
placement of compute tasks and data onto compute devices to high-level task
descriptions that can be scheduled similarly to processes on CPUs.

44

4
C

h
a

p
t

e
r

Benefits of Instrumentation for Profiling of
CUDA Kernels

This chapter is based on work of Braun et al. - „CUDA Flux: A Lightweight
Instruction Profiler for CUDA Applications” [38].

Profilers are important development tools for programmers in the CPU
programming domain. This is also true for other processors like for example
GPUs In 2013 nvprof was added to the CUDA SDK Version 5.0 [39]. Since then
it is a great tool for collecting additional data on executed CUDA binaries, which
also included the possibility to use hardware performance counters to analyze
the performance of CUDA kernels.

With a relatively large overhead for nvprof instruction counter profiling,
collecting large amounts of instruction counter samples was impractical. For
CPUs, it is not uncommon to use instrumentation for detailed profiling of binaries
under execution. Thus, the same principle can be applied to GPU binaries /
CUDA kernels.

This leads to the question, of how profiling on GPUs implemented by in-
strumentation of the kernel code compares to conventional profiling with nvprof.
Additionally, since CUDA is inherent parallel, this also raises the question if
sampling only a subset of the executed threads would be a viable trade-off for
faster execution but less accurate results. Finally, not only the performance is
important, but also the quality of the results. How accurate are the results in
practice and might there be even more detailed information available without

45

Benefits of Instrumentation for Profiling of CUDA Kernels

large performance penalties?
There is little public work using instrumentation for CUDA kernels. Lynx[22]

which is based on GPU Ocelot[21] and was released in 2013[40] and is not actively
developed anymore and also currently not available for download1. There is also
NVBit[20], which can be downloaded at GitHub2.

Because of the lack of available tools for instrumentation, CUDA Flux was
developed. This chapter introduces the tool CUDA Flux and the evaluation of
its performance and the quality of its results.

1URL: https://code.google.com/archive/p/gpulynx/ - 09.05.2022
2URL: https://github.com/NVlabs/NVBit

46

https://code.google.com/archive/p/gpulynx/
https://github.com/NVlabs/NVBit

4.1 The ecosystem of CUDA kernel profiling

4.1 The ecosystem of CUDA kernel profiling

This section will give background information on the LLVM compilation frame-
work which is used to compile and instrument CUDA kernels. The level of
abstraction when profiling is also discussed. Finally, this section ends with an
overview of similar tools which can characterize CUDA kernels.

4.1.1 LLVM and gpucc

With the introduction of gpucc [41] it became possible to compile CUDA appli-
cations with the LLVM compiler framework [42]. With LLVM version 3.9 gpucc
was integrated such that clang is natively able to compile CUDA applications
[43].

Frontend Optimizer Backend Machine
Code

Source
Code

Figure 4.1 The LLVM compilation pipeline is composed of frontend, optimizer
and backend.

The three most important modules of the framework are the frontend
(e.g. clang for C/C++/CUDA), optimizer or middle”end” (code-analysis, -
transformation and -optimization) and backend (emitting machine code for
target architecture), see figure 4.1. The framework supports many programming
languages and target architectures as it is designed to be independent of lan-
guage or target features. This is greatly helped by the well-defined intermediate
representation (IR) of the code, which is target-independent and serves as an
interface between different modules. As a result, the compilation pipeline can be
easily extended and modified. Also, most so-called passes which perform code
analysis, transformation and optimization can be reused. This leads to very
similar compilation pipelines for CUDA and C/C++ code.

CUDA code is compiled in two separate compilation pipelines – one for host
(CPU) code and one for device (GPU) code. Figure 4.2 shows the compilation
of CUDA code. Device code generation has to run first and yields a fat binary
which is included in the binary which contains the host code.

47

Benefits of Instrumentation for Profiling of CUDA Kernels

Host compiler

Mixed mode input
file

NVPTX code
generator

Fat binary

IR optimizer

Clang CUDA
frontend

Open-source
component
Contributions
of this paper

Host IR

Device IR

Host code
generator PTX

De
vi
ce

co
de

ge
ne

ra
to
r

Figure 4.2 Compilation of CUDA code with LLVM in two separate compilation
pipelines by Wu et al. [41].

4.1.2 Choices of Instruction Set Level for CUDA Kernel
Characterization

The code running in CUDA kernels is represented in different levels of abstraction.
For characterization, of such kernels, one must choose a fitting abstraction level.
C/C++ operators on different datatypes are too high level as there is a too
detailed insight into what instructions are executed on the GPU. LLVM IR is
also too unspecific to the actual hardware, even though it is much more detailed.

Two possible levels of abstraction remain. These are the parallel thread
execution (PTX) ISA [44] and the SASS assembly [28]. PTX is an intermediate
representation of the kernel assembly. There are different versions of the PTX
ISA, but it is supposed to span multiple GPU generations. SASS is the result of
translating PTX to a specific GPU and is the hardware instruction set.

Both PTX and SASS could be good candidates for characterization. We
choose PTX for the following reasons:

• PTX is well documented and stable which is not the case for SASS

• PTX can be used across different GPU generations

48

4.1 The ecosystem of CUDA kernel profiling

• Obtaining PTX code is easy as the LLVM framework can produce it

• The instruction set is already well optimized for performance and includes
specific instructions for function units like fmul or sinus/cosine functions

4.1.3 Limitations of Currently Available Tools for CUDA
Kernel Characterization

4.1.3.1 Performance Counter Based

As an example for profiling using performance counters on NVIDIA GPUs the
work of Burtscher et al. [45] is considered. They use the Nvidia profiler to
measure control flow and memory-access irregularities. At the time of their work,
they were using a Fermi-based GPU which required the profiling process to run
multiple times to collect the metrics.

Similar to NVIDIAs profiler there is also a profiler for AMD GPUs. Since
it is possible to transform CUDA kernels for execution on AMD GPUs [46],
profiling on AMD hardware becomes also possible. AMDs Rocm Profiler [47]
supports similar features like cache hits/misses, read/write to memory, instruction
counter etc. Unfortunately, there is no public work available that investigates
the performance. Compared to the NVIDIA profiling tools, the AMD tools do
provide less information on the application. For example, the number of metrics
is significantly less. Combined with the possible inaccuracies when translating
CUDA this approach would be only used in very few (if any) cases when the
starting points are CUDA kernels.

4.1.3.2 GPU Simulators

Bakhoda et al. [23] extend GPGPU Sim by Fung et al. [24], which is a micro-
architecture performance simulator, to support CUDA. GPGPU Sim runs the
PTX assembly defined by CUDA. They exchange the libcuda library with a
custom one that runs the kernels on the simulator. They use the GPGPU Sim
to study how different micro-architecture choices impact the performance of a
few selected CUDA applications.

Another GPU simulator is introduced by Collange et al. [25]. The simulator
called Barra does not work on the PTX intermediate instruction set but on
the NVIDIA Tesla instruction set architecture (ISA). They achieve similar

49

Benefits of Instrumentation for Profiling of CUDA Kernels

performance than CUDA emulation but with more detailed information about
internal processes. Like Bakhoda et al. [23] they use a custom libcuda library to
run kernels on the simulator.

Gong et al. [27] extended the Multi2Sim framework [26] with support for
simulating NVIDIA Kepler GPUs. Multi2Sim Kepler is a micro-architecture
simulator running on shader assembly (SASS) which was chosen over PTX for
accuracy reasons. Like Barra [25] and GPGPU Sim [23] they also integrate the
simulator by exchanging the libcuda library.

4.1.3.3 Instrumentation

Farooqui et al. provide with Ocelot [48] and their subsequent work Lynx [22]
instrumentation frameworks for PTX code. They exchange the CUDA runtime
with their own library which dynamically instruments code during the runtime
of the CUDA application. In the case of Ocelot, the instrumentation is defined
programmatically whereas Lynx allows using C-on-Demand (COD) which is a
subset of the C programming language.

Stephenson et al. introduced SASSI [28] in 2015, which is a tool instrumenting
SASS code for GPUs. In their paper, they show that SASSI can be used to
characterize GPU applications. SASSI exposes several options to insert user-
specific code instrumentation code. The instrumentation takes place during
compile time as a final compiler pass in ptxas, the ptx assembler.

In 2019, Villa et al. made NVBit [20] public. Like SASSI, NVBit allows
instrumentation of GPU code on SASS level. The improvement over SASSI is,
that NVBit performs the instrumentation dynamically during runtime when the
code is loaded onto the GPU. Their approach does not require access to the
source code of the application and thus also works with precompiled binaries
and libraries.

Shen et al. use the LLVM framework to implement CUDA Advisor [49].
The framework provides memory analysis capabilities, including reuse distance,
caching, and memory divergence (e.g. non coalesced memory access). In addition,
the framework can analyze branch divergence. The framework requires source
code.

50

4.2 CUDA Flux Tool Design

4.2 CUDA Flux Tool Design

CUDA Flux is integrated into the LLVM compilation toolchain. A simple wrapper
ensures that the instrumentation passes of CUDA Flux will be executed during
compile time. Besides instrumentation, an analysis of the PTX code of the kernel
will be performed and the basic blocks and the instructions which they execute
are stored. When the instrumented binary is executed the basic block frequencies
of the kernel are collected and stored as well. After execution processing of the
PTX analysis and the basic block frequencies yield the instruction counts of the
corresponding kernel. This extra step keeps the execution overhead low.

The following sections will discuss the major components of CUDA Flux which
are the device instrumentation pass, the PTX parser, the host instrumentation
pass and the post-processing step. Figure 4.3 shows how CUDA Flux is integrated
into the CUDA compilation of clang.

The device pass is executed first. Before any modifications are done, the
kernel is compiled into PTX. The PTX kernel is then processed by the PTX
parser. The device pass then performs the instrumentation. After the device code
has been compiled the host pass will run. The instruction summary produced by
the PTX parser and fat binary which includes the compiled kernel is included in
the host IR. The host pass performs additional instrumentation, which completed
the modifications needed for functioning profiling.

4.2.1 Device Instrumentation Pass

The device instrumentation pass is executed after all the optimizations have been
performed on the device code. The compilation module is dumped to disk and
llc is used to compile the LLVM IR to PTX code.

Next, the PTX parser is invoked. After the lexical analysis dividing the PTX
code into tokens, the actual parsing takes place. The parser extracts all the
kernel functions containing their basic blocs including the instruction sequences
each basic block executes.

Afterward, the original kernel code has been parsed, the device runtime is
compiled and linked to the current compilation module. This has the advantage
that the device runtime can be compiled for the same CUDA architecture as the
compilation module.

51

Benefits of Instrumentation for Profiling of CUDA Kernels

Device Source

Clang
frontend

Device IR

CUDA Flux
Device Pass

llc

PTX

PTX Parsing &
Instr. extraction

Instruction Summary

Modified Device IR

Code Generation

Host Source

Clang
frontend

Host IR

CUDA Flux
Host Pass

Code GenerationFat Binary

Binary

Modified Host IR

Figure 4.3 Integration of CUDA Flux into the CUDA compilation of clang. Braun
et al. [38]

In the next step, the kernel functions are cloned and modified for profiling.
Additional arguments are added, which include a pointer to the counters for
the basic bloc frequencies, the number of banks used for the counter and the
profiling mode.

The kernel code is instrumented as in the pseudocode in listing 4.1.

52

4.2 CUDA Flux Tool Design

Listing 4.1 Pseudo-code showing the process of instrumentation of each basic
block.

1 irBuilder = IRBuilder(moduleContext)

2 For each basicblock in kernel:

3 irBuilder.SetInsertPoint(basicblock.getFirstInsertPt ())

4 irBuilder.CreateCall(

5 incBlockCounter ,

6 {bbCounter , IDMap[basicblock],

7 n_banks , profiling_mode}

8)

The rather naive approach instruments every basic block. With a bit more
sophisticated analysis of the control flow graph, the number of accesses to the
basic block counter can be reduced a lot. As the performance is already more
than sufficient with this approach further optimizations were not attempted.
Note that an IDMap for the basic blocks is used. This allows stable mapping of
the basic blocks and their IDs to ensure correctness.

The function incBlockCounter is shown in listing 4.2. The profiling mode lets
the user choose which threads are performing profiling. In an early development
stage, the usage of fewer profiling threads for better performance was considered.
The performance gain compared to profiling all threads is quite low. The option
remains, but in practice, all threads are profiled.

As can be seen in line 15 only one thread per warp writes to the basic block
counters. This keeps the overhead of CUDA flux already quite low. Since each
thread can find which other threads are active with the __activemask() function
this optimization is quite simple. Another optimization is trading memory usage
for speed. This is achieved by using multiple banks of memory for different CTAs.
The atomicAdd in line 19 is a possible bottleneck as all concurrent accesses to
the same memory location need to be serialized. By using multiple banks this
problem is alleviated.

53

Benefits of Instrumentation for Profiling of CUDA Kernels

Listing 4.2 Function increasing the basic block counters at the beginning of each
basic block.

1 extern "C" __device__ void incBlockCounter(

2 uint64_t *bbCounter , uint32_t block_id ,

3 uint32_t n_banks , ProfilingMode profilingMode) {

4 /* Choose Profiling Threads */

5 if (profilingMode == ..) { ... }

6 // get Number of Active Threads

7 uint32_t lane_id;

8 asm volatile("mov.u32␣%0,␣%% laneid;" : "=r"(lane_id));

9

10 uint32_t active_bitvec = __activemask ();

11 uint32_t active_threads = __popc(active_bitvec);

12 uint32_t first_active_thread = __ffs(active_bitvec) - 1;

13

14 // first thread of warp

15 if (lane_id == first_active_thread) {

16 uint32_t ctaID = blockIdx.x + blockIdx.y * gridDim.x +

17 blockIdx.z * gridDim.x * gridDim.y;

18 uint32_t bank = ctaID % n_banks;

19 atomicAdd(bbCounter +(block_id * n_banks + bank),

20 active_threads);

21 }

22 }

4.2.2 PTX Parser

The PTX Parser performs the lexical analysis and the parsing of the tokens into
function lists containing information on the basic blocks and their instructions.
The parser does not support the full PTX specification and only looks into
functions, basic blocks and instructions but not the operators of the instructions.
The lexical analysis is implemented using RE2C which was originally developed
by Bumbulis et al. [50]. RE2C compiles regular expressions to a deterministic
finite automaton. With RE2C the PTX code is broken down into token vectors.

The token vector is analyzed and returns a structure containing basic blocks
and functions are returned (see 4.3).

54

4.2 CUDA Flux Tool Design

Listing 4.3 Data structure returned by the PTX Parser.
1 struct PTXFunction {

2 std:: string name;

3 struct Block {

4 std:: string name;

5 std::vector <std::string > inst;

6 };

7 std::vector <Block > bb;

8 };

4.2.3 Host Instrumentation Pass

The host instrumentation pass runs before all the optimizations in the host code
compilation pipeline. Here, it is not necessary to have access to the optimized
code. The un-optimized code is preferable because the instrumentation is simpler
on unoptimized code.

The host runtime is linked to the compilation module. It is compiled during
the compilation of CUDA Flux but could also be compiled during the compilation
of the instrumentation target. Besides the host runtime, the instruction summary
is also included in the host compilation module. When the binary is executed
the summary is written to disk along with the counters. This is technically not
necessary, but it proved to be very useful for the further processing of the results.

The host instrumentation pass proceeds with adding kernel call wrappers for
the cloned kernels. In addition, the cloned kernel need also to be registered so
that it can be executed on the compute device. Only then each kernel launch
site can be modified. Listing 4.4 shows a simplified pseudocode of this process.

Listing 4.4 Kernel launch replacement
1 for each launchSite in getLaunchSites(module):

2 basicBlockCounter = createBBCounterMemoryAllocation ()

3 replaceKernelLaunch(launchSite , basicBlockCounter)

4 insertCounterSerialization(launchSite)

Creating code for the allocation of memory for basic block counters is rather
simple. The kernel launch is replaced by the launch of the instrumented ker-
nel clone, which will write the basic block execution frequencies to the ba-

55

Benefits of Instrumentation for Profiling of CUDA Kernels

sic block counter. After kernel execution, the counters need to be processed.
This functionality is implemented in the host runtime. A call to the function
serializeCounters is inserted after the kernel launch. These functions take
care of copying the results to the host code, adding up the counter banks, writing
the counters to disk and freeing the memory.

4.2.4 Post-Processing of Profiling Data

With the execution of the binary, the instruction summary and the block execution
frequencies are obtained. Besides the execution frequencies, the grid and thread
block size and shared memory are provided. Getting the full instruction count
for each kernel is quite simple. Instructions can be counted for each basic block
and multiplied by the execution of the corresponding block. Depending on the
usage of the counters, the instructions could already be summarized at basic
block level.

56

4.3 Evaluation Methodology

4.3 Evaluation Methodology

CUDA Flux is evaluated qualitatively and performance-wise. The qualitative
comparison shall give insight into the accuracy of the results when directly
compared to performance-counter-based profiling methods like nvprof. The
performance evaluation will compare the execution time of CUDA Flux, with a
baseline and an alternative profiling approach, which is nvprof.

For the qualitative comparison to conventional profiling with nvprof a case
example is used (SHOC, FFT). The performance evaluation makes use of the
benchmark suites Rodinia [32], Parboil [34], SHOC [33], and Polybench-GPU [35].

Table 4.1 reports all applications of the benchmark suites and their number
of unique kernels.

The build process needs to be adapted to clang because nvcc and clang support
use slightly different command line arguments. Any build process that works with
unmodified clang/LLVM will also work with the CUDA FLUX. Because clang
does not support texture memory within the LLVM tool-chain, the following
applications had to be excluded:

• Rodinia: hybridsort, mummergpu, leukocyte, kmeans

• Parboil: bfs, sad

• Shoc: DeviceMemory, MD, spmv

Additionally, some applications could not be used because of compilation
issues:

• Rodinia: cfd, huffman, pathfinder, hotspot

• Parboil: cutcp, mri-gridding

• Shoc: qtclustering

The GEMM benchmark from the shoc benchmark suite was not used, because
instead of using a kernel a CUBlAS library routine is called. Since there is no
source code for this routine it could not be instrumented.

Qualitative Comparison to conventional profiling is performed by executing
the FFT application from the SHOC benchmark suite with nvprof and with
CUDA Flux. The instruction counts from CUDA Flux are summarized into
similar groups like the instruction counter from nvprof and these are then

57

Benefits of Instrumentation for Profiling of CUDA Kernels

Benchmark Application Unique Kernels

parboil-2.5 cutcp 1
histo 4
lbm 1
mri-gridding 8
mri-q 2
sgemm 1
spmv 1
stencil 1
tpacf 1

polybench-gpu-1.0 2DConvolution.exe 1
2mm.exe 2
3DConvolution.exe 1
3mm.exe 3
atax.exe 2
bicg.exe 2
correlation.exe 4
covariance.exe 3
fdtd2d.exe 3
gemm.exe 1
gesummv.exe 1
gramschmidt.exe 3
mvt.exe 2
syr2k.exe 1
syrk.exe 1

rodinia-3.1 3D 1
b+tree.out 2
backprop 2
dwt2d 4
euler3d 4
gaussian 2
heartwall 1
lavaMD 1
lud_cuda 3
myocyte.out 1
needle 2
particlefilter_float 4
particlefilter_naive 1
sc_gpu 1
srad_v2 2

shoc DeviceMemory 6
FFT 6
MaxFlops 36
Reduction 2
Scan 6
Sort 5
Stencil2D 2

Table 4.1 Applications of all used benchmark suites and the corresponding number
of unique kernels.

58

4.3 Evaluation Methodology

compared.
Regarding performance evaluation, the procedure is the following:

Three different sets of measurements are done for comparison:

• nvcc without profiling (baseline)

• nvcc with nvprof profiling: overhead of nvprof-based profiling

• LLVM with CUDA Flux instrumentation: overhead of profiling based on
CUDA Flux

Each measurement is performed five times and the average execution time is
evaluated.

59

Benefits of Instrumentation for Profiling of CUDA Kernels

4.4 Qualitative Evaluation

This section begins with a theoretical comparison of the CUDA Flux approach
and nvprof.

Modern GPU architectures have many performance counters. Before compute
capability 5.0, only the following metrics represented the executed instructions:

• flop_count_dp
• flop_count_dp_add
• flop_count_dp_fma
• flop_count_dp_mul
• flop_count_sp
• flop_count_sp_add
• flop_count_sp_fma
• flop_count_sp_mul
• flop_count_sp_special
• inst_bit_convert
• inst_compute_ld_st
• inst_control
• inst_executed
• inst_fp_32
• inst_fp_64
• inst_integer
• inst_inter_thread_communication
• inst_issued
• inst_misc

The profiling approach using performance counters is thus limited when it
comes to fine-grained information on the exact types of the instructions. Modern
GPUs offer more different types of performance counters, but increasing the
number of metrics to profile increases the overhead further. Another downside is,
that the SASS instructions are not documented well. Mapping nvprof metrics
or SASS counters from SASS-based instrumentation to PTX instructions is a
serious hurdle. SASS instrumentation has at least the advantage of being even
more verbose when it comes to the exact instruction type.

60

4.4 Qualitative Evaluation

Listing 4.5 FFT512 kernel code of the shoc benchmark suite
1 template <class T2, class T> __global__

2 void FFT512_device(T2 *work)

3 {

4 int tid = threadIdx.x;

5 int hi = tid >>3;

6 int lo = tid &7;

7

8 work += (blockIdx.y * gridDim.x + blockIdx.x) * 512 +

tid;

9

10 T2 a[8];

11 __shared__ T smem [8*8*9];

12

13 load <8, T2 >(a, work , 64);

14

15 FFT8 <T2 ,T>(a);

16

17 twiddle <8,T2 ,T>(a, tid , 512);

18 transpose <8, T2 , T>(a, &smem[hi*8+lo], 66, &smem[lo

*66+hi], 8);

19

20 FFT8 <T2 ,T>(a);

21

22 twiddle <8,T2 ,T>(a, hi , 64);

23 transpose <8, T2 , T>(a, &smem[hi*8+lo], 8*9, &smem[hi

*8*9+ lo], 8, 0xE);

24

25 FFT8 <T2 ,T>(a);

26

27 store <8, T2 >(a, work , 64);

28 }

For the purpose of a qualitative comparison, we use the FFT application from
the SHOC benchmark 4.5. The FFT kernel is well suited for this comparison
because it uses special function units and also vectorized loads and stores for
complex numbers. The instructions emitted by the compiler and executed by the

61

Benefits of Instrumentation for Profiling of CUDA Kernels

kernel can leverage the potential of fine-grained instruction types. The kernel also
uses shared memory which allows viewing information on instructions working
with this kind of memory, as well (lines 18 and 23). The special function units
are being used in the twiddle function for sine and cosine in lines 17 and 22.

In table 4.2 are the instruction counts from CUDA Flux for the double-
precision version of the FFT kernel. It shows that the sine and cosine instructions
are used. The load and store instructions distinguish between global and shared
memory and the v2 extension shows that vectorized loads and store are executed
by the kernel.

nvprof CUDA Flux Ratio
Metric Name

flop_count_dp 645,922,816 547,356,672 1.18
flop_count_dp_add 301,989,888 144,703,488 2.09
flop_count_dp_fma 121,634,816 109,051,904 1.12
flop_count_dp_mul 100,663,296 113,246,208 0.89
flop_count_sp 0 58,720,256 0.00
flop_count_sp_add 0 0 -
flop_count_sp_fma 0 0 -
flop_count_sp_mul 0 0 -
flop_count_sp_special 58,720,256 58,720,256 1.00
inst_bit_convert 92,274,688 94,371,840 0.98
inst_compute_ld_st 167,772,160 167,772,160 1.00
inst_control 2,097,152 2,097,152 1.00
inst_executed 30,212,096 29,163,520 1.04
inst_executed_global_atomics 0 0 -
inst_executed_global_loads 524,288 524,288 1.00
inst_executed_global_reductions 0 0 -
inst_executed_global_stores 524,288 524,288 1.00
inst_executed_local_loads 0 0 -
inst_executed_local_stores 0 0 -
inst_executed_shared_atomics 0 0 -
inst_executed_shared_loads 2,097,152 2,097,152 1.00
inst_executed_shared_stores 2,097,152 2,097,152 1.00
inst_executed_surface_atomics 0 0 -
inst_executed_surface_loads 0 0 -
inst_executed_surface_reductions 0 0 -
inst_executed_surface_stores 0 0 -
inst_executed_tex_ops 0 0 -
inst_fp_32 88,080,384 58,720,256 1.50
inst_fp_64 524,288,000 547,356,672 0.96
inst_integer 35,651,584 20,971,520 1.70
inst_inter_thread_communication 0 0 -
inst_issued 30,216,709 0 inf
inst_misc 56,623,104 44,040,192 1.29

Table 4.2 CUDA Flux profiling results for the double precision FFT512 kernel.

Table 4.3 shows the profiling results of nvprof in comparison with CUDA
Flux. The more detailed instructions of CUDA Flux are grouped to match the
metrics which nvprof supports. Some deviation may come from a faulty grouping
of the instructions. Other errors may occur because not all PTX instructions
may have a direct SASS counterpart. Considering these sources of errors the

62

4.4 Qualitative Evaluation

nvprof CUDA Flux Ratio
Metric Name

flop_count_dp 645,922,816 547,356,672 1.18
flop_count_dp_add 301,989,888 144,703,488 2.09
flop_count_dp_fma 121,634,816 109,051,904 1.12
flop_count_dp_mul 100,663,296 113,246,208 0.89
flop_count_sp 0 58,720,256 0.00
flop_count_sp_add 0 0 -
flop_count_sp_fma 0 0 -
flop_count_sp_mul 0 0 -
flop_count_sp_special 58,720,256 58,720,256 1.00
inst_bit_convert 92,274,688 94,371,840 0.98
inst_compute_ld_st 167,772,160 167,772,160 1.00
inst_control 2,097,152 2,097,152 1.00
inst_executed 30,212,096 29,163,520 1.04
inst_executed_global_atomics 0 0 -
inst_executed_global_loads 524,288 524,288 1.00
inst_executed_global_reductions 0 0 -
inst_executed_global_stores 524,288 524,288 1.00
inst_executed_local_loads 0 0 -
inst_executed_local_stores 0 0 -
inst_executed_shared_atomics 0 0 -
inst_executed_shared_loads 2,097,152 2,097,152 1.00
inst_executed_shared_stores 2,097,152 2,097,152 1.00
inst_executed_surface_atomics 0 0 -
inst_executed_surface_loads 0 0 -
inst_executed_surface_reductions 0 0 -
inst_executed_surface_stores 0 0 -
inst_executed_tex_ops 0 0 -
inst_fp_32 88,080,384 58,720,256 1.50
inst_fp_64 524,288,000 547,356,672 0.96
inst_integer 35,651,584 20,971,520 1.70
inst_inter_thread_communication 0 0 -
inst_issued 30,216,709 0 inf
inst_misc 56,623,104 44,040,192 1.29

Table 4.3 Profling results of nvprof and CUDA Flux for the FFT512 kernel in
comparison.

instructions count are very close to each other.

63

Benefits of Instrumentation for Profiling of CUDA Kernels

4.5 Performance Evaluation

The performance of CUDA Flux profiling a single warp is evaluated by comparison
with an un-instrumented baseline and execution time of the same application
with nvprof. The metrics to profile with nvprof are chosen to match CUDA Flux
functionality best.

In the bar plot in figure 4.4 the application execution time on a Tesla K20
GPU is displayed. The y-axis is using a logarithmic scale. With a few exceptions,
namely spmv from the parboil benchmark suite, CUDA Flux outperforms nvprof
consistently.

In some cases, the CUDA Flux binary executes faster than the baseline.
Because the application is measured as a whole it is hard to tell if the difference
comes from faster kernel execution. Of the seven applications that are faster,
six belong to the polybench benchmark suite. These benchmarks will check
the results on the host side. It could be the case that LLVM optimized these
benchmarks better than nvcc, since the benchmark suite polybench originates
from the LLVM developer community. Overall, clang produces binaries, which
perform similarly to nvcc, according to Wu et al. [41].

ro
d:

 g
au

ss
ia

n

ro
d:

 p
ar

tic
le

fil
te

r_
flo

at

ro
d:

 n
ee

dl
e

ro
d:

 p
ar

tic
le

fil
te

r_
na

iv
e

po
l:

at
ax

.e
xe

po
l:

bi
cg

.e
xe

po
l:

ge
su

m
m

v.
ex

e

ro
d:

 sr
ad

_v
2

pa
r:

m
ri-

q

ro
d:

 b
ac

kp
ro

p

po
l:

ge
m

m
.e

xe

po
l:

m
vt

.e
xe

po
l:

3D
Co

nv
ol

ut
io

n.
ex

e

ro
d:

 h
ea

rtw
al

l

ro
d:

 d
wt

2d

po
l:

2D
Co

nv
ol

ut
io

n.
ex

e

ro
d:

 m
yo

cy
te

.o
ut

po
l:

3m
m

.e
xe

po
l:

sy
rk

.e
xe

ro
d:

 b
+t

re
e.

ou
t

pa
r:

st
en

cil

sh
oc

: S
or

t

pa
r:

sp
m

v

sh
oc

: F
FT

ro
d:

 la
va

M
D

pa
r:

sg
em

m

sh
oc

: R
ed

uc
tio

n

ro
d:

 3
D

ro
d:

 sc
_g

pu

ro
d:

 e
ul

er
3d

pa
r:

tp
ac

f

pa
r:

lb
m

pa
r:

m
ri-

gr
id

di
ng

sh
oc

: S
ca

n

po
l:

fd
td

2d
.e

xe

po
l:

co
rre

la
tio

n.
ex

e

po
l:

co
va

ria
nc

e.
ex

e

pa
r:

hi
st

o

po
l:

sy
r2

k.
ex

e

sh
oc

: M
ax

Fl
op

s

po
l:

gr
am

sc
hm

id
t.e

xe

ro
d:

 lu
d_

cu
da

po
l:

2m
m

.e
xe

sh
oc

: S
te

nc
il2

D

100

101

102

103

104

Ti
m

e
[s

]

baseline
nvprof
CUDA Flux Profiler

Figure 4.4 Plot of benchmark execution times using no profiling, nvprof and
CUDA Flux profiling a single warp with a Tesla K20 GPU. Braun et al. [38]
.

Detailed reports of the results are shown in table 4.4. The average overhead
when using CUDA FLUX is 13.20. Compared to the average overhead of 171.01

64

4.5 Performance Evaluation

when using nvprof this is a big improvement.

baseline nvprof CUDA Flux # k. launches
Application [s] [norm.] [norm.]

pa
rb

oi
l-

2.
5

histo 20.54 202.66 90.19 40,000
lbm 8.63 104.23 15.73 3,000

mri-gridding 9.18 7.69 1.25 50
mri-q 0.96 10.43 1.45 3

sgemm 3.08 1.48 1.06 1
spmv 2.81 1.17 1.86 50

stencil 2.57 12.38 3.13 100
tpacf 7.89 57.39 2.16 1

p
ol

yb
en

ch
-g

pu
-1

.0

2DConvolution 1.37 1.53 0.96 1
2mm 137.39 1.01 0.69 2

3DConvolution 1.17 14.57 9.46 254
3mm 1.74 1.67 1.09 3
atax 0.78 1.91 1.37 2
bicg 0.80 1.87 1.25 2

correlation 16.73 3.99 0.98 4
covariance 16.76 4.06 0.99 3

fdtd2d 10.63 12.79 6.52 1,500
gemm 1.07 1.77 1.49 1

gesummv 0.83 1.80 1.20 1
gramschmidt 108.27 4.85 3.58 6,144

mvt 1.08 1.58 1.30 2
syr2k 38.40 2.53 0.59 1

syrk 2.42 2.47 0.98 1

ro
di

ni
a-

3.
1

3D 5.60 2.16 1.87 100
b+tree.out 2.56 1.39 1.12 2

backprop 1.03 1.89 1.25 2
dwt2d 1.27 2.84 1.71 10

euler3d 7.84 154.75 83.98 14,003
gaussian 0.65 3.75 3.60 30

heartwall 1.26 79.63 3.51 20
lavaMD 3.01 88.87 3.74 1

lud_cuda 130.67 306.01 3.16 6,142
myocyte.out 1.52 5193.69 151.82 6,071

needle 0.71 21.53 13.90 255
particlefilter_f 0.70 5.48 2.56 36
particlefilter_n 0.75 2.30 1.74 9

sc_gpu 7.04 26.29 8.48 1,611
srad_v2 0.89 2.76 1.50 4

sh
oc

FFT 2.96 21.88 1.91 60
MaxFlops 53.70 3.32 0.51 361
Reduction 3.45 265.75 61.90 5,120

Scan 9.59 709.20 69.57 15,360
Sort 2.80 105.58 8.88 480

Stencil2D 233.89 69.67 5.00 22,000

Min 0.65 1.01 0.51 1
Max 233.89 5,193.70 151.82 40,000

Mean 19.70 171.01 13.20 2790.98

Table 4.4 Table of benchmark execution times using no profiling, nvprof and
CUDA Flux Profile. nvprof and CUDA Flux results are normalized to the
baseline. The last column refers to the number of kernel launches. Braun et
al. [38]

Because CUDA Flux has the ability to selectively profile only a subset of
threads additional measurements using only the polybench GPU benchmark

65

Benefits of Instrumentation for Profiling of CUDA Kernels

have been made. Only kernel time is measured, and five iterations are used of
which the median is used for evaluation. The execution time of a single warp,
a full CTA and all threads are compared with nvprof. Figure 4.5 shows the
normalized overhead on a Tesla K20 GPU. CUDA Flux consistently outperforms
nvprof. As expected profiling only one warp is usually faster. The exceptions
are the application atax and gemm. Reasons for this could be that profiling
only one warp leads to less efficient memory accesses and therefore performance
degradation.

Figure 4.5 Comparison of kernel profiling time on Tesla K20 GPU normalized to
baseline measurement.

Additional measurements were made on a GTX Titan Xp GPU (Pascal
architecture) as shown in figure 4.6. Again, CUDA Flux consistently outperforms
nvprof, but with a lower improvement. Differences in the selection of the profiled
threads are very small. The results show that difference in the performance is
not very high in general when fewer threads are profiled. This difference depends
also on the GPU and depending on the GPU, the trade-off might not be worth it.
Mean overhead ranges from 25x (K20) to 60x (Titan Xp). For these selected
benchmark suites, the median speed-up to nvprof of about 10x (K20) and 6x
(Titan Xp).

66

4.5 Performance Evaluation

Figure 4.6 Comparison of kernel profiling time on Titan Xp GPU normalized to
the baseline measurement.

67

Benefits of Instrumentation for Profiling of CUDA Kernels

4.6 Conclusion

The evaluation showed that CUDA Flux is a viable alternative to conventional
profiling approaches. The PTX abstraction is a valid option and provides valuable
insight into the internals of a kernel, as the qualitative evaluation showed. The
performance of instrumentation-based profiling methods is very competitive
which could be shown with the example of CUDA Flux. On the application level,
the overhead is 13.2 times the normal application execution time on the four
benchmark suites. Additional measurements on the polybench-gpu benchmark
suite where only kernel time was measured the overhead was around 25x for the
Tesla K20 GPU and around 60x for the Titan Xp GPU. It could be shown that
profiling fewer threads only gives a minimal advantage over profiling all threads.
Regarding accuracy, profiling a subset of the thread is viable when the control
flow does not depend on input data or thread/block-ID in any form. For this
reason, use cases of profiling subsets of threads are probably rare.

In summary, this work showed that instrumentation-based profiling of GPU
kernels is a valuable tool with good performance and accuracy. The information
which can be gathered via instrumentation is very detailed and comes with no
additional cost because everything can be calculated with basic block frequencies
and compile-time information. Trading accuracy for faster execution is not
worthwhile. This is even more the case if further optimization of instrumentation
is applied.

4.7 Future Work

Instrumentation, which is already used on CPUs for many purposes, has a big
potential for GPUs as well. With NVBit NVIDIA published also a framework
for kernel instrumentation. We welcome this development but argue that the
instrumentation of the PTX code is also very important. The implementation of
CUDA Flux leverages the LLVM framework and its ability to compile CUDA
code. This makes it easy to instrument host and device code and to exchange
information between their compilation pipelines. The approach of GPU Ocelot
and Lynx has the advantage, that it can work with already compiled binaries.
Future work could return to this mechanism as this makes working with many
benchmarks and various build-systems much easier. Further improvements can

68

4.7 Future Work

be made to the instrumentation itself. Performance can still be improved. Some
loop iterations may be calculated beforehand and this could save many memory
accesses to the frequency counters. Saving even more profiling overhead can be
achieved by inferring frequency counts from other block executions counts. Both
of these optimizations need the usage of a more detailed analysis of the kernel
code.

Be aware that CUDA Flux is a research prototype. It is nice to improve
its implementation further, but this may also be done in future development of
similar tools.

69

5
C

h
a

p
t

e
r

Fast and Portable Performance Prediction

This chapter is based on the publication of Braun et al. - „A Simple Model for
Portable and Fast Prediction of Execution Time and Power Consumption of
GPU Kernels” [29].

5.1 Introduction

GPUs are well known for their ability to process highly parallel workloads very
fast. The raw operations per second, memory bandwidth and energy efficiency
are hard to match with conventional CPUs. For this reason, many applications
in the areas of data science, physical simulations, visual computing etc. are
heavily using GPUs. The improved performance of GPUs compared with CPUs
is achieved with a restricted programming model, which requires well-structured
parallel implementations. This leads to compute kernels that behave more
predictably.

The landscape of GPU hardware is highly heterogeneous. Between different
generations of GPUs, there may be large changes regarding the architecture
of just the sheer number of execution units. For example, the PCIe version of
the NVIDIA Tesla P100 GPU can reach up to 9.3 TFlops for single-precision
floating-point operations [51]. The next generation GPU the NVIDIA Tesla V100
PCIe can reach 14.0 TFlops, which is an increase of about 50% [52]. Since the
introduction of high bandwidth memory (HBM), which only some GPU models

71

Fast and Portable Performance Prediction

receive, there are big differences with the same GPU generations as well.
Therefore, the scheduling of compute tasks became more complex. Predictive

models help in this regard to select the fastest or most energy-efficient processor
for a given task. In the area of multi-GPU computing these predictive models
help to adjust the number of GPUs, such that an optimal count is used and
GPUs are not underutilized.

A model, which could make the predictions only with hardware-independent
features, allows reasoning about performance in terms of time or energy ahead of
execution time. Selection of the appropriate hardware would be greatly aided by
removing the need to execute a task to schedule on all possible target processors
to get input features for the model. Hardware-independent features include
instruction counts and kernel launch configurations but no hardware-dependent
features such as cache hit rates. Depending on the detail of the instruction
counters additional features like memory volume read or written can be derived.

Performance and power models for GPUs are a well-covered topic in re-
search [30, 53–73]. Braun et al. [29] describe the current research as follows:

They are usually based on: (1) executing the program under
observation, with additional costs depending on the required execution
statistics; (2) collecting execution statistics using the processor’s
performance counters; and (3) inferring executing time and power
consumption based on these statistics. As a result, such models rely on
a variety of input features, in particular also hardware-related features
like cache hit rates. Notably, some models yield good prediction
performance without the use of such hardware-related features [59,
61].

They also list some analytical models [57, 59, 63, 68] and machine learning based
methods [30, 55, 62]. The currently available models have two disadvantages,
with the first one being that it is unknown or documented how these models
would perform on different GPU architectures. They lack portability. In the
worst case, the approaches presented would only work on the GPUs shown in
the work itself. The second disadvantage is the lack of public models which can
be used by anyone. Exceptions are the works of Arafa et al. and Guerreiro et
al. [30, 74]. Their work is based on static analysis of the kernel assembly, which

72

5.1 Introduction

limits the applications to those with kernels exhibiting static control flow. This
shows that there is also a lack of availability.

GPUs match the BSP programming model [75] very well by leveraging parallel
slackness to tolerate latency. Usually, there are much more threads available
than execution units. For this reason and commonly followed programming
practices GPU code is latency tolerant and optimized for data reuse. This is
in accordance with the experiments conducted with the benchmarks used in
this work [32–35]. With these assumptions dynamic hardware becomes a less
important influence factor for execution time and power. The execution behavior
of the kernel mainly depends on the instructions executed, the kernel launch
configuration and static properties of the hardware, which makes prediction
models solely based on hardware-independent features viable. We are aware that
this implicitly dismisses dynamic properties of the interaction of the kernel with
the hardware such for example cache hit-rates which is an important effect on
execution time and power. We argue that dynamic effects like cache hit-rates are
still important, but that in this viewpoint they do not play a major role and have
limited influence. This assumes reasonable optimization of the application and
will definitely not work with applications that are implemented in an adversarial
way.

Using this chain of thought, the method described in this chapter offers a
machine learning model for predicting kernel execution time and power consump-
tion. The model is simple because it uses features that can be collected easily.
The features do not depend on the executing hardware, therefore this approach
is very portable and can quickly be adopted for hardware. With the random
forest implementation that drives the model inference is quickly computed. The
previous work of CUDA Flux [38] makes collecting input samples fast because of
its low profiling overhead.

This chapter will go through related work in this area of research, the methods
behind this approach and a detailed evaluation of the model on five different
GPUs.

73

Fast and Portable Performance Prediction

5.2 Related Work

Work of Braun et al. [29] describes the related work for this topic well and gives
a good overview of that topic:

In last years, performance and power modeling of GPUs are
attracting considerable interest and several approaches have been
proposed. A summary of related works sorted in chronological order
including prediction (execution time or power consumption or both),
model, accuracy, portability, input source, dataset size and support
for different dynamic voltage and frequency scaling (DVFS) settings
is given in Table 5.1.

The most common approach is using machine learning methods
such as random forest (RF) [66, 67, 72], support vector machines
(SVM) [67], artificial neural networks (ANN) [55, 62, 76], long short-
term memory networks (LSTM) [30], k-nearest-neighbor (KNN) [77],
and so forth. The other common approach is using regression-based
models such as statistical regression (SR) [78], regression model (RM)
[79], regression trees (RT) [65], linear regression (LR) [63], multiple
linear regression (MLR) [62] , ordinary least squares linear regression
(OLS), LASSO, polynomial regression (PR) and support vector regres-
sion (SVR) [31]. Machine learning and regression methods provide
an accurate prediction, albeit, tedious effort is required on feature
engineering. However, this fundamental issue can be overcome by
automatic methods evaluating the feature impact on the accuracy of
the model.

The other major approach is to use analytical models (AM).
One example is Aspen as a domain specific language for analytical
performance modeling [64], which basically requires to rewrite an
application in this language. Another analytical model considers the
number of running threads and memory bandwidth for predicting
performance [67]. There is also analytical model using the novel
collaborating filtering based modeling technique to predict the per-
formance [71]. Alternatively, the interval analysis (IA), which differs
from traditional analytical models, uses both trace-driven functional
simulators and analytical model to estimate core-level performance

74

5.2 Related Work

[60]. In this approach, GPUMech, an interval analysis-based per-
formance modeling technique for GPU architectures was used for
modeling two popular warp scheduling policies, namely round-robin
scheduling (RR) and greedy-then-oldest (GTO), respectively.

Furthermore, there are approaches combining the aforementioned
methods, leading to a hybrid model (HM) [70]. For example, combing
an analytical model and with an event-based simulation of the code
[68], or models as throughput model (TM) [58] and empirical model
(EPM) [59, 69, 73] exist as well.

Numerous metrics have been used for measuring the accuracy of
models such as Average Absolute Prediction Error Rate (AAPER)
[62], Average Error (AE) [55, 60, 69, 71], Average Error Ratio (AER)
[63], Average Percentage Error (APE) [65], Absolute and Relative
Error (ARE) [64], Average Squared Error (ASE) [63], Geometric
Mean of Absolute Error (GMAE) [57], Geometric Mean of the Error
(GME) [59], Mean Absolute Error (MAE) [30, 66, 78], Mean Absolute
Percentage Error (MAPE) [70, 72, 80], Mean Prediction Accuracy
(MPA) [67], Mean Squared Error (MSE) [67], Root Mean Square
Error (RMSE) [31] or Symmetric Absolute Percentage Error (SMAPE)
[73]. Different performance metrics are used as they serve different
purposes [81], but a detailed explanation is beyond the scope of this
work.

Besides accuracy, another important characteristic of a model is to
enable portability across different GPUs or other accelerators. Several
studies [30, 55, 57, 62, 66–68, 70–72, 77, 78] have been conducted on
this direction, while many other works focus on one single processor.

Most often, the input features for training the model are per-
formance counters, which are required from tools including CUPTI,
AMD CodeXL, nvprof, LLVM, Score-P, nvcc, Barra simulator, cubin
generator, GPGPUSim, MacSim, DRAMSIM, GPUOcelot (PTX emu-
lator), Architecture Independent Workload Characterization (AIWC),
among others. However, most of the studies do not rely exclusively on
those tools but also develop on their own using custom microbench-
marks, further code analysis, kernel compilation information, hard-
ware specifications, analytical equations, program dependence graphs

75

Fast and Portable Performance Prediction

(PDG) and others.
As previously mentioned, a representative training dataset is

important for the model’s generalization capability. The size of such
a dataset varies highly among the studies, ranging from one single
application to up to 169 different kernels. Note that it often remains
unclear in the references if an application consists of multiple kernels
which are treated independently or not.

More recently, there is the tendency on predicting performance and
power consumption for different DVFS settings, namely for different
memory and core frequencies. Subsequently, those works aim to
determine the best DVFS settings providing the best performance
with the minimum power consumption to leverage energy efficiency
[30, 31, 72, 78, 80].

Our work distinguishes from most of these related works by using
only hardware-independent input features for model training. Only
quite few related works are also based on static input features [30, 31,
59, 61], while the vast majority requires a comprehensive application
analysis prior to prediction. Last, we are aware of only two other
works being publicly available [30, 68], and will discuss them in
Section 7.

76

5.2 Related Work

Source T P Model Accuracy Portability Input source Dataset DVFS

[57] ✓ AM GMAE: 5.4-13.3% 4 NVIDIA GPUs
(Fermi)

NVIDIA
PTX, custom 20 apps

[61] ✓ AM good agreement between
predicted and observed

1 NVIDIA GPU
(Tesla) PDG 4 apps

[76] ✓
RM,
ANN median error: 1.16-6.65% 1 CPU Xen-specific 4 apps

[59] ✓ ✓
EM,
AM

GME: 2.7%
(micro-benchs), 8.94%
(merge)

1 NVIDIA GPU
(Tesla) GPUOcelot 20 apps

[63] ✓ LR ASE: 54.9%, AER: 4.7% 1 NVIDIA GPU
(Fermi)

CUDA
Profiler 49 kernels

[58] ✓ TM error: 5-15% 1 NVIDIA GPU
(Fermi)

Barra, cubin,
nvcc, HW res

3 apps, micro-
benchmarks

[65] ✓
RF, RT,
LR

APE: 7.77%, 11.68%,
11.7%

1 NVIDIA GPU
(Tesla) GPGPUSim 52 kernels

[64] ✓ AM ARE plots Intel CPU & NVIDIA
GPU (Fermi) Aspen 4 kernels

[62] ✓ ✓
MLR,
ANN

AAPER: 6.7% (T), 2.1%
(P)

2 NVIDIA GPUs
(Fermi)

CUPTI,
custom 20 kernels

[69] ✓ EM AE: 7.7% (micro-bench),
12.8% (merge)

1 NVIDIA GPU
(Fermi)

MacSim,
DRAMSIM 23 apps

[60] ✓ AM, IA AE: 13.2% (RR), 14.0%
(GTO) Fermi-like architecture GPUOcelot 40 kernels

[55] ✓ ✓ ANN AE: 15% (T), 10% (P) 6 AMD GPUs (GCN) AMD
CodeXL 108 kernels ✓

[77] ✓
LR,
KNN median divergence: 10% 2 NVIDIA GPUs

(Fermi, Kepler) custom 1 app (SpMV)

[67] ✓

AM,
LR,
SVM,
RF

MPA (pred/meas):
0.75-1.5% (ML), 0.8-1.2%
(AM)

9 NVIDIA GPUs
(Kepler, Maxwell)

nvprof,
custom 9 apps

[72] ✓ ✓ RF MAPE: 25% (T), 12%
(P) AMD CPU+APU AMD

CodeXL 73 apps ✓

[73] ✓ EM SMAPE: 12.97% CPU-GPU (no info) Score-P 7 apps

[56] ✓ AM

predicted/observed: 1.5%
(vector ops), 0.76%
(matrix ops), 5.49%
(reduction)

1 NVIDIA GPU
(Kepler) custom 3 apps

[80] ✓ AM MAPE: 3.5% 1 NVIDIA GPU
(Maxwell)

Nsight,
custom, hard
spec

12 kernels ✓

[78] ✓ SR MAE: 7% (Pascal), 6%
(Maxwel), 12% (Kepler)

3 NVIDIA GPUs
(Pascal, Maxwell,
Kepler)

CUPTI,
custom 83 apps ✓

[66] ✓ RF MAE: 1.2%

3 CPUs, 1 Xeon Phi, 5
NVIDIA GPUs
(Kepler, Pascal), 6
AMD GPUs

AIWC 37 kernels

[68] ✓ HM w/in 10% to real device
performance

2 NVIDIA GPUs
(Maxwell, Kepler)

PTX,
NVIDIA
Visual
Profiler

10 kernels

[70] ✓ HM MAPE: 17.04%
2 Kepler GPUs, 2
NVIDIA GPUs
(Maxwell)

LLVM,
custom 20 kernels

[71] ✓ AM AE: 9.4%
7 NVIDIA GPUs
(Kepler, Maxwell,
Pascal, Volta)

no
information 30 apps

[31] ✓ ✓
OLS,
PR,
SVR

RMSE: 6.68-11.13%
(speedup), 5.65-15.10%
(energy)

1 NVIDIA GPU
(Maxwell) LLVM 118 kernels ✓

[30] ✓ ✓ LSTM MAE: 5.35-7.85% (P),
9.9-19.3% (T)

4 NVIDIA GPUs
(Turing, Volta, Pascal,
Maxwell)

PTX 169 kernels ✓

Ours ✓ ✓ RF MAPE: 8.86-52.0% (T),
1.84-2.94% (P)

5 NVIDIA GPUs
(Kepler, Pascal, Volta,
Turing)

CUDA Flux
189 kernels
(T), 168 ker-
nels (P)

Table 5.1 An overview of related work, showing prediction target (time [T], power
[P]), used model, accuracy, portability, input feature source, and dataset size.
Braun et al.[29].

77

Fast and Portable Performance Prediction

5.3 Benchmarking the Data Foundation

Design choices of the machine learning model depend a lot on the quantity and
quality of data at hand. For this very reason, we like to show the data foundation
on which the models are built first. Applications are drawn from four different
benchmark suites: Rodinia 3.1 [32], Parboil 2.5 [34], Shoc [33] and Polybench
GPU [35].

Three of the four benchmark suites were characterized by Adhinarayanan et
al. [82]. They found that all benchmark suites have some unique applications.
We decided to use as many applications as possible to have more samples at
hand, even though some types of applications may be slightly over-represented.

Since the collection of input features requires CUDA Flux which is based
on the LLVM compiler framework, limitations of said framework apply. For
this reason, applications using texture memory can not be used. Table 5.2 from
the work of Braun et al. [29] shows which benchmarks were used and which
benchmarks were not used and the reasons why this was not possible.

Several minor modifications have been implemented on the benchmarks to
get more samples. Some applications have been modified such that the kernel
launch and the kernel definition are in the same compilation module. This is
necessary because of a limitation of CUDA Flux and should have no impact on
application performance. Additional problem sizes were introduced when it was
possible. For example, the Polybench-GPU benchmark was modified to allow
dynamic problem sizes instead of hard-coded ones. In general problem sizes
were also increased when possible as more recent GPUs can process much larger
problems now. Longer running kernels also help when measuring power as the
sampling frequency for power measurements is usually below 100Hz.

5.3.1 Data Acquisition Methodology

Time and power measurements are performed on five different NVIDIA GPUs:
Tesla K20 (Kepler), Titan Xp (Pascal), Tesla P100 (Pascal), Tesla V100 (Volta)
and the GTX 1650 (Turing). The collection of the input features with CUDA
Flux only needs to be measured on one device. Table 5.3 [29] shows the basic
properties of these GPUs. The table shows that the power sampling frequency of
the GPUs is very low, considering that kernel execution times below 10 ms are

78

5.3 Benchmarking the Data Foundation

Suite parboil-2.5 polybench-gpu-1.0 rodinia-3.1 shoc

Included

cutcp 2DConvolution 3D BFS (irregular)
histo 2mm b+tree (irregular) FFT
lbm 3DConvolution bfs (irregular) MD5Hash
mri-q 3mm backprop MaxFlops
sgemm atax dwt2d Reduction
stencil bicg euler3d S3D
tpacf correlation gaussian Scan

covariance heartwall Sort
fdtd2d lud_cuda Stencil2D
gemm myocyte Triad
gesummv needle
gramschmidt particlefilter_naive
mvt particlefilter_float
syr2k sc_gpu
syrk

Excluded

bfs1 correlation3 b+tree3 FFT3

mri-gridding2 gaussian3 GEMM5

sad1 hotspot2 MD1

spmv6 hybridsort1 MaxFlops3

kmeans1 NeuralNet4

leukocyte1 QTC1

mummergpu1 Sort3

nn2 deviceMemory1

pathfinder2 spmv1

srad-v16

srad-v26

Exclusion reasons: 1texture memory, 2CUDA Flux compilation error, 3power measurement methodology could not
be applied, 4hardcoded datasets, 5no instrumentation possible due to cuBlas use, 6unstable behavior
Table 5.2 List of included and excluded applications used for sampling. Some
kernels are only excluded from the power prediction model. Braun et al. [29].

not unusual. Binaries were compiled with LLVM to measure the same produced
code that CUDA Flux is instrumenting. The LLVM version used was 7.0 and
the CUDA SDK version was 9.2.

F32 perf. Mem. BW CUDA Core f Mem. f TDP fs

GPU [TOP/s] [GB/s] SMs Cores [MHz] [MHz] [W] [Hz]
K20 3.5 208 13 2496 706 2600 225 73.6
Titan Xp 12.0 548 30 3840 1404 5705 250 60.2
P100 9.3 732 56 3584 1189 715 300 61.1
V100 14.0 900 80 5120 1290 877 300 61.2
GTX1650 3.0 128 14 896 300-2250 400-4001 75 10.9

Table 5.3 Overview of used GPUs and their relevant hardware specifications. fs

stands for power sampling frequency. Adapted from Braun et al. [29].

79

Fast and Portable Performance Prediction

5.3.2 Execution Time Measurement Results

Code for time measurements was inserted into all applications before and after
kernel launch. Each kernel launch is measured separately. Measurements of
execution time were repeated ten times to get a statistical sample of each execution
kernel. Some applications execute their kernels in loops, which yield over 900,000
samples in total. The results are combined with CUDA Flux measurements
and identical samples are grouped and the median of each group is used as a
prediction target. After the grouping, about 21,000 individual samples remain.

Figure 5.1 shows the execution time distribution on all GPUs. Because
the execution time has a very large range from a fraction of milliseconds to a
few minutes the bins in the histogram are applied only after the logarithm has
been applied to the execution time. There is no shortage of samples with short
execution times, but long-running kernels are scarce.

0 10 20
log(time [us])

101

103

Co
un

t

K20

0 10 20
log(time [us])

101

103

Co
un

t

TitanXp

0 10 20
log(time [us])

101

103

Co
un

t

P100

0 10 20
log(time [us])

101

103

Co
un

t

V100

0 10 20
log(time [us])

100

101

102

103
Co

un
t

GTX1650

Figure 5.1 Histogram of the kernel execution time in logarithmic timescale. Note
that long-running kernels are statistically under-represented. Braun et al. [29].

Since kernel execution time can also be in the low microsecond range. Looking
into the variance of the measurements is important because it can have an impact
on the prediction accuracy of the model. Figure 5.2 shows the coefficient of
variation plotted over the mean execution time for identical kernel executions.
In general, the variation is high for low execution time and gets lower when
execution time increases. Even for long kernel execution times, there are still many
kernel executions with high variance. This could be improved with additional
measurements. Real-world systems, which may have more external influencing
factors, could have even higher variance. We think that this behavior should
be partially covered by the model. In a very advanced model, it may even be
possible to quantify the variance.

80

5.3 Benchmarking the Data Foundation

Figure 5.2 Visualization of the variance of execution time: coefficient of variation
Cv plotted over the mean of execution time (for identical kernel executions)
shows that short-running kernels appear to have a larger variance compared to
long-running kernels. Braun et al. [29].

5.3.3 Power Measurement Results

Power consumption is measured using the onboard power sensors of the GPU.
Similar to the execution time measurements code is inserted before and after the
kernel to measure power. The NVML library [83] is used to read power values
from the device. While the power values can be read with a high frequency,
the results get only updated with the frequencies provided in table 5.3. If the
kernel execution time is in the order or time between measurements of the power
values, the measurement may have a high error. To improve the measured power
accuracy, the kernel is executed multiple times in a loop until at least one second
has passed. This was not possible for some applications therefore these could
not be included in the power measurements. Measurements were repeated ten
times as well.

To better understand the accuracy of the power measurements figure 5.3
shows the coefficient of variance over the mean power measured for identical
kernel executions. The variance is usually well below 5%, which is in line with
the findings of Burtscher et al. [84].

81

Fast and Portable Performance Prediction

Figure 5.3 Validation of power measurements by comparing the coefficient of
variation against mean power consumption. Braun et al. [29].

82

5.4 The GPU Mangrove Methodology

5.4 The GPU Mangrove Methodology

For our method, we decided to use portable code features together with feature
engineering to build our random forest models. This section will also cover how
we selected samples as well. The following subsections provide the details on
each of these topics.

5.4.1 Portable Code Features

The approach for this method requires features to be hardware independent and
portable. For this reason conventional methods of capturing information on the
kernels like nvprof cannot be used. Instead, the CUDA Flux profiler is used.
The PTX instructions provided are portable across multiple GPUs and do not
change, unlike the SASS assembly. The output of CUDA Flux is independent
of the GPU platform used to generate the results. The data gathered with the
profiler is used to train not only one model but multiple. With a given set of
benchmarks, which have been sampled, each model only requires sampling the
target prediction values for the set of benchmarks.

Features provided by CUDA Flux include instruction counts and kernel launch
configurations. These configurations consist of block- and grid-size and static
shared memory allocation. The block- and grid-size are especially important
because they give insight into the occupancy of the GPU.

5.4.2 Feature Engineering

There are many types of PTX instructions and there are even more subtypes of
instructions as some instructions are extended with qualifiers. These qualifiers
often define the data types of the operands or describe in more detail how
the instructions should behave. Instructions for accessing memory also include
qualifiers for the memory location (local, shared, global etc.).

Having separate features for each (sub)-instruction would give too many
features to reasonably train most machine learning models accurately, with the
number of samples we can collect. The number of features could be reduced
by applying a PCA, but we believe that manually grouping the instructions
gives more control over the results and interpretable features. Additionally, some
analytical features can be introduced.

83

Fast and Portable Performance Prediction

Preliminary experiments showed that simple grouping of instructions by arith-
metic, special, logic and control flow are suitable to reach acceptable prediction
accuracy. The grouping approach was inspired by the classification of instructions
by Patterson and Hennessy [85]. Instructions accessing memory (load/store)
are grouped differently. The operand type qualifiers allow deriving the type
bit-width. The bit-width is used to compute the total volume of data which is
written or read from memory. Separate features are computed for read and write
accesses for all the different memory locations. Because arithmetic intensity is
an important metric, which is often used to optimize kernels, it was also added
as a feature. It is computed as the ratio of arithmetic instructions and access to
global or local memory.

5.4.3 Selection of Samples

Because some applications execute kernels in loops with different launch con-
figurations, these particular kernel executions are over-represented. While it is
preferable to have as many samples as possible, the model should not be biased
toward a specific type of kernel. This is addressed by reducing the number
of samples of a kernel belonging to an application and applying a threshold
of allowed samples per kernel in an application. The threshold is set to 100
samples. Therefore, if there are more than 100 samples of a specific kernel in an
application, 100 randomly selected samples are used in the final dataset. This
number could be tweaked because too few or many very similar samples can
impact the quality of the model prediction.

5.4.4 Machine Learning Model Selection and Performance
Evaluation

Even though many samples could be collected the remaining samples used are
surprisingly low. From the 21,000 individual samples after grouping only around
1,600 samples remain after applying the threshold of 100 allowed samples. With
this new approach, it is necessary to perform model selection. At the same
time, the performance of the model needs to be evaluated. This is difficult with
the low amount of samples at hand. The traditional approach of splitting the
dataset into training, testing and validation sets, will most likely make poor
usage of the available data. Varma et. al [86] proposed nested cross-validation

84

5.4 The GPU Mangrove Methodology

solves this problem very well. Their approach uses two nested loops of cross-
validation. The inner loop is used to perform tuning of the hyper-parameters.
The outer loop computes the estimated error. While this method is certainly
computationally expensive it is simple to implement and performs model selection
and performance evaluation, which ensures good generalization. For this reason,
we apply the method in our approach. A possible alternative could be the method
of Tibshirani and Tibshirani [87] which uses only two cross-validations.

For the machine learning method itself, the Extremely Randomized Trees
Regression from the scikit-learn library [88] is used. Different learning methods
were tested, including small fully connected neural networks, but they couldn’t
achieve sufficient performance. While this learning method works well for our
approach, there are some disadvantages that required some extra work. The
random forest can not extrapolate our prediction data. For power prediction,
this is not a problem as the power consumption of the GPU has an upper limit
that cannot be exceeded. This is not the case for time predictions, for which
the model can only predict up to an upper limit, which it has learned from the
training data. Therefore, it is necessary to implement a custom grouping for the
splits of the cross-validation.

The custom grouping ensured that each of the training sets always contained
the five longest-running kernels. Additionally, because the range of the execution
time samples is very large, we ensured that each split has a similar amount of
samples from short-running (t < 1,000us), medium running (1,000us <= t <
1000,000us) and long-running kernels (t >= 100,000us).

To address the wide range of execution time the prediction target was trans-
formed for time prediction. A simple log transformation was used to achieve
better prediction results.

The hyper-parameter search space was reduced to three parameters. These
are the number of estimators used, the maximum number of features to determine
a split in a tree and the split criterion.

The number of estimators defines the number of trees in a random forest.
Usually, the prediction quality improves when more trees are used. At the same
time, computational complexity and over-fitting are also increased. Therefore, it
is important to find the right balance of this parameter. The other parameters
influence when a split is made.

The following values have been used for the hyper-parameter search:

85

Fast and Portable Performance Prediction

• N estimators: 128, 256, 512, 1024

• Maximum Features: max, log2, sqrt

• Split criterion: MSE, MAE

The error metric with which the models will be evaluated is also important. A
good metric should reflect on what is important in the results. For example, if a
low average error is wanted, the mean absolute error could be a good error metric.
Sometimes the mean square error is preferred, because larger differences between
the true outcome of a sample and the predicted value are pronounced more. For
this particular approach, a low error relative to the true value is wanted. This
has the advantage that larger differences can be pronounced more while low
differences also matter if the true value is also low. Therefore, the error metric
chosen is the mean average percentage error (MAPE) shown in equation 5.1.
This metric turned out to work well with the wide range of execution time
measurements that have been made.

MAPE = 1
n

n∑︂
i=1

|yi − ŷi|
yi

(5.1)

86

5.5 Case Study on the Tesla K20 GPU

5.5 Case Study on the Tesla K20 GPU

Most of the GPUs are more or less similar. Looking into the details of the model
evaluation gives insight into the success of the proposed methods. We choose the
Tesla K20 GPU because with its older GPU architecture and lower core clock,
we assume that the spread of execution time will be lower and therefore it could
possibly be modeled better than the other GPUs. This section shows how well
the predictions for this GPU are. The results for all GPUs are reviewed in the
following section.

The first goal of this case study is to find out if there are any samples that
can only be predicted poorly and are possible outliers. Nested cross-validation
is used to find the best set of hyper-parameters. Next, the model is evaluated
using the leave-one-out technique (LOO), which is a special case of the K-fold
cross-validation. The number of folds is the number of samples.

5.5.1 Execution Time Prediction

The nested cross-validation is performed with 30 iterations each using a different
random seed for splitting the samples. Figure 5.4 shows the mean error of
all iterations for execution time (left) and power (right). In the case of time
prediction, the error is between 12.11% and 19.37%. Most of the iterations show
an error between 12% and 15%. Comparing these numbers to related work show,
that the results should be acceptable considering the scope of the input features
for the model prediction. The consistent range in which the error stays during
the iterations of the nested cross-validations also indicated that the model seems
to generalize well.

The best parameters from the nested cross-validation are used to perform
another evaluation using LOO. Figure 5.5 shows two plots. In the first plot, the
time value of the sample is plotted on the logarithmic x-axis and the predicted
value is plotted on the logarithmic y-axis. A dotted line indicates where the
points of the scatter plot would be if the prediction was perfect. The majority of
the points are very close to the true value. Note that in the top right, the samples
are under-estimated. This is because the random forest model fails to extrapolate
beyond seen value ranges. Additionally, there are just too few samples with high
execution time, so these samples are under-represented and can not be learned

87

Fast and Portable Performance Prediction

5 10 15 20 25 30
Cross Validation Iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
AP

E
[%

]

5 10 15 20 25 30
Cross Validation Iteration

0.0

0.5

1.0

1.5

2.0

2.5

M
AP

E
[%

]

Figure 5.4 Nested cross-validation score for execution time (left) and power
(right) prediction on the K20 GPU. Braun et al. [29].

as well as other samples. The right plot shows a histogram counting the number
of samples within an error range. Around 82% of the samples are within 10% of
the true value or lower. About 8% are between 10% and 25%. The next groups
represent ∼4%, ∼4%, ∼% and ∼1%. The amount of samples with an error above
100% is very low and there are only a few outliers. The results for execution
time prediction are definitely usable, but there is certainly some caution required
when it comes to long execution time.

5.5.2 Power Prediction

The power prediction for the Tesla K20 GPU follows the same approach as for
execution time. The right side of figure 5.4 shows the nested cross-validation
score for power prediction. The even lower error there which ranges from 1.72%
and 1.97% indicate very good generalization. The range of measured power is
much smaller, which explains the much better results.

The LOO plot (figure 5.6, left) shows more samples, which are further away
from the ideal prediction. This indicates that some samples are harder to predict
than others. The overall results are good, nonetheless. The histogram on the
right side of figure 5.6 shows that 92% of the samples are below the 5% error
margin. Only 4% of the samples have an error of 10% or higher.

88

5.5 Case Study on the Tesla K20 GPU

101 103 105 107

y [us]

101

103

105

107

y
[u

s]

True versus predicted values

0 -
 10

%

10
 -

25
%

25
 -

50
%

50
 -

10
0%

10
0 -

 20
0%

20
0 -

 in
f%

MAPE

0

200

400

600

800

1000

1200

1400

Co
un

t

Distribution of prediction errors

Figure 5.5 Leave-One-Out results for time prediction on the K20 GPU. Left:
scatter plot of true values versus predicted values (logarithmic scale). Right:
distribution of prediction errors. Braun et al. [29].

40 60 80 100 120 140 160 180
y [W]

40

60

80

100

120

140

160

180

y
[W

]

True versus predicted values

0 -
 5%

5 -
 10

%

10
 -

25
%

25
 -

50
%

MAPE

0

200

400

600

800

1000

1200

1400

Co
un

t

Distribution of prediction errors

Figure 5.6 Leave-One-Out results for power prediction on the K20 GPU. Left:
scatter plot of true values versus predicted values (note the linear scale). Right:
distribution of prediction errors. Braun et al. [29].

89

Fast and Portable Performance Prediction

5.6 Evaluation - Portability

The previous section showed the viability of the proposed approach for the Tesla
K20 GPU. This section will examine the portability of the approach which is
evaluated on the five GPUs presented earlier. The application statistics (input
features) are obtained on one GPU, while the execution time and power usage
are measured on each device.

5.6.1 Execution Time Prediction

Similar to the case study with the Tesla K20 GPU, a nested cross-validation
with 30 iterations is performed for each GPU. For a more accurate picture of
the quality of the prediction models, the scores of all folds of the iterations are
considered. Figure 5.7 shows two box plots with scores for execution time (left
side) and power (right side) on each GPU. The orange bar in the middle shows
the median and the box includes the scores from the first to the third quartile.
The whiskers are limited to the interquartile range times 1.5.

The results for execution time prediction are mixed. The median ranges from
8.86% to 52%. The GTX 1650 GPU with a median of 52% is a consumer class
GPU and does not have a fixed core or memory clock setting (see table 5.3). The
other GPUs are mostly server-class GPUs, which have a median error of at most
13.86% (Tesla K20). The exception is the Titan Xp, which could be viewed as a
prosumer (professional consumer) device.

For the server-class GPUs, the variability is low, which shows good prediction
results that do not depend on a favorable split of training and test data. This
is not so much the case for the GTX 1650 for which the third quartile is at
99.23%. This large interquartile range shows that there is a high variability and
poor generalization of the GTX 1650 model. Even with more favorable splits, of
training and test data, the error score is still very high (first quartile is around
30%).

Looking at the distribution of the error scores gives more insight (figure 5.8).
For the four server class GPUs the error is below 20% for the majority of the
cases. This agrees with the good results shown in figure 5.7. For the Tesla K20
and Titan Xp there are a few folds that perform significantly worse than the
other. This is shown by the gap between the non-zero count and the previous

90

5.6 Evaluation - Portability

180

200

K20 TitanXp P100 V100 GTX1650
0

20

40

60

80

100

GPU

M
AP

E
[%

]

K20 TitanXp P100 V100 GTX1650
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

GPU
M

AP
E

[%
]

Figure 5.7 Portability of time (left) and power (right) prediction across different
GPUs: MAPE scores for all iterations of nested cross-validation with median,
first and third quartile. Whiskers are limited to 1.5 times of the interquartile
range (Q3-Q1). Outliers are not shown. Braun et al. [29].

one. For these two GPUs, the variability is not as good as the other server-class
GPUs. The histogram for the GTX1650 shows, that the majority of error scores
are on the low end, but the spread of the error is very high. Some folds of the
cross-validation have errors above 500%. This clearly shows that the model
cannot predict execution time for this device well. The reason for that could be a
lower measurement accuracy compared to the other devices and nondeterministic
behavior due to dynamic clock frequencies.

0 20
MAPE [%]

0

5

10

15

Co
un

t

K20

0 20
MAPE [%]

0

10

20

30

Co
un

t

TitanXp

0 20
MAPE [%]

0

10

20

30

40

Co
un

t

P100

0 20
MAPE [%]

0

10

20

30

Co
un

t

V100

0 500
MAPE [%]

0

10

20

30

40

Co
un

t

GTX1650

Figure 5.8 Histogram of the MAPE score for each fold of the nested cross-
validation. Braun et al. [29].

The error scores using the LOO method are evaluated in figure 5.9. Similar to
the Tesla K20 GPU the other devices underestimate long-running kernels. This
is no surprise as the model is very similar and the data shows that there is a lack

91

Fast and Portable Performance Prediction

of long-running kernels for all devices. Note that for the GTX 1650 GPU, there
are also more samples with lower execution time, where the prediction is off by a
large amount. There is a cluster of very short kernels that are overestimated by
a big factor. These samples could be the reason for the bad prediction quality
in the nested cross-validation. Because the values are very small a rather low
absolute error quickly leads to a high relative error as in the MAPE score.

104

y [us]

101

103

105

107

y
[u

s]

K20

105

y [us]

102

104

106

108

TitanXp

105

y [us]

103

105

107

P100

105

y [us]

102

104

106

108
V100

104

y [us]

101

103

105

107

GTX1650

Figure 5.9 Scatter plot of true time values versus predicted values using the
leave-one-out method for K20, GTX1650, Titan Xp, P100 and V100 GPUs.
Braun et al. [29].

Table 5.4 shows the hyper-parameters, average depth and the prediction
latency of the best model for each GPU. The most important hyper-parameter is
the number of estimators as this, along with the average depth should influence
the prediction latency the most. The prediction latency was measured on an Intel
Xeon E5-2667 (introduced in 2012). As the number of estimators is the same
for each GPU with the exception of the GTX 1650 and the tree depth is also
very similar the prediction latency is very similar for all the GPUs. Even for the
GTX 1650 which has only half the number of estimators. The latency of around
108 ms shows that the prediction models should cater more to long-running
kernels as it would make little sense (latency-wise) to wait for the prediction for
kernels running faster than the prediction latency. With a more recent CPU, the
prediction latency could be improved, which may make the model suitable for a
larger range of kernels. At the same time, more recent GPUs may improve the
execution time of the kernels, too. However, the effects of newer hardware may
be limited as the latest trends tend to increase the performance of processors by
increasing the capabilities of parallel computing.

92

5.6 Evaluation - Portability

GPU Best hyperparameters Avg. depth Prediction latency
K20 MAE, max features, 512 estimators 34.83 108.56 ms
Titan Xp MAE, max features, 512 estimators 33.30 108.65 ms
P100 MAE, max features, 512 estimators 34.94 108.30 ms
V100 MAE, max features, 512 estimators 34.30 106.91 ms
GTX1650 MSE, max features, 256 estimators 31.06 107.46 ms

Table 5.4 Hyperparameters for the best model for time prediction, together with
the corresponding average prediction latency, measured on an Intel Xeon E5-2667
v3 CPU. Braun et al. [29].

5.6.2 Power Prediction

The box plots for the power prediction are shown on the right side in figure 5.7.
The median scores for all GPUs are very good and well below 5% for the majority
of splits in the nested cross-validation. The low interquartile range indicates
good generalization of the models.

50 100 150
y [w]

40
60
80

100
120
140
160
180

y
[w

]

K20

100 200
y [w]

100

150

200

250

TitanXp

100 200
y [w]

50

100

150

200

P100

100 200 300
y [w]

50

100

150

200

250

300

350
V100

25 50 75
y [w]

20

30

40

50

60

70

GTX1650

Figure 5.10 Scatter plot of true power values versus predicted values using the
leave-one-out method for GTX1650, Titan Xp, P100 and V100 GPUs. Braun et
al. [29].

An analysis with the LOO method (figure 5.10) shows that the power predic-
tion also has a problem with underestimating high power usage. There are also
some outliers that have identical kernel features but different power consumption.
With the available data at hand, the model cannot make better predictions.
Therefore, these errors probably come from the limited amount of features or
statistical variance.

When looking at the hyper-parameters, tree depth and prediction latency,
some differences compared to the execution time prediction can be made out.
The number of estimators has a wider range (256 to 1024). While the average

93

Fast and Portable Performance Prediction

GPU Best hyperparameters Avg. depth Prediction latency
K20 MAE, max features, 256 estimators 32.08 15.36 ms
Titan Xp MAE, max features, 256 estimators 33.45 15.32 ms
P100 MAE, max features, 512 estimators 32.49 30.14 ms
V100 MSE, max features, 1024 estimators 32.91 60.58 ms
GTX1650 MAE, max features, 1024 estimators 32.19 59.20 ms

Table 5.5 Hyperparameters for power prediction model, together with the cor-
responding average prediction latency, measured on an Intel Xeon E5-2667 v3
CPU. Braun et al. [29].

tree depth is roughly the same, the prediction latency differs a lot. The latency
correlates with the number of estimators and is about 15ms per 256 estimators.

5.6.3 Feature Importance

The random forest machine learning model allows us to derive feature importance.
Examining the importance of different features helps to understand better how
the models work and which factors influence execution time or power consumption
the most. Additionally, it theoretically allows cutting down on prediction time by
evaluating only the most important features. However, this optimization would
not be for free as this would most certainly decrease prediction accuracy.

In table 5.6 are the feature importance in percent of the best model for each
GPU. Regarding time prediction, threads per CTA seem to be the most important
feature. At the top 3 of the most important feature is the global memory volume
(in place two or three). The arithmetic intensity and synchronization operations
are surprisingly unimportant.

To gain more insight into how the feature importance correlates with the
properties of the GPU, Pearson correlations coefficient between the features and
some hardware properties have been computed (see table 5.7). The following
observations can be made:

• The importance which correlates well with the hardware properties are
total instruction, synchronization, control flow, CTAs and treads per CTA.

• The total instructions and control flow become less important when there
is a higher TDP, memory bandwidth and more CUDA cores.

• While synchronization is not very important in absolute numbers, it corre-
lates well with the memory bandwidth, the number of SMs and power.

94

5.6 Evaluation - Portability

Time Power
Titan GTX Titan GTX

Feature K20 Xp P100 V100 1650 K20 Xp P100 V100 1650
threads per CTA 23.19 27.17 26.62 29.62 23.49 19.74 24.70 17.91 14.77 9.52
CTAs 8.47 10.01 11.74 10.76 5.51 20.64 8.81 16.49 20.26 19.28
total instr. 7.90 7.73 6.40 6.34 9.57 5.58 6.01 5.84 4.36 4.10
special ops 1.16 1.53 1.96 1.46 0.42 2.37 8.00 3.35 1.39 1.07
logic ops 2.15 2.58 2.38 2.30 1.34 3.91 4.32 3.27 3.87 10.94
control ops 4.41 4.50 3.75 3.71 5.51 3.69 6.11 2.68 2.36 2.41
arithm. ops 6.96 8.12 6.75 7.01 11.62 6.75 6.46 6.72 4.84 5.22
sync ops 2.96 3.54 4.89 4.71 2.34 4.97 4.05 8.72 5.08 5.84
global mem vol. 12.46 16.30 16.30 14.13 15.59 8.28 10.61 6.47 5.73 4.99
param mem vol. 20.14 8.15 9.08 8.60 13.45 16.63 11.39 17.72 27.45 30.27
shared mem vol. 4.38 4.22 4.66 4.97 4.72 3.88 3.56 7.49 7.27 4.77
arithm. intensity 5.81 6.14 5.47 6.40 6.43 3.57 5.99 3.34 2.62 1.61

Table 5.6 Feature importance in percent for time and power prediction. Braun
et al. [29].

• The number of CTAs becomes more important with more SMs/CUDA
Cores.

• Threads per CTA are more important when floating-point performance
and memory bandwidth is high.

• Global memory volume is important with few influences from the GPU
properties.

The observations fit the intuition of GPU performance well. E.g. threads
per CTA must be high for good floating-point performance or to reach the more
CTAs which can be executed in parallel the higher the impact of synchronization.
It is interesting to note that the top3 and top5 most important features reach
36-44% and 70% respectively of the accumulated importance.

For the power prediction models, the importance of the features looks different.
The most important features seem to be threads per CTA, CTAs and parameter
memory volume. Importance of the global memory volume is low, which is
surprising as memory usually contributes to power usage by a large factor. But
this could possibly be explained by the memory consuming a rather static factor
of the power. Verifying this would need more experiments, though. The Pearson
correlation computed for the power prediction feature importance is shown in
table 5.8. The correlation for the power feature importance is much lower than
for execution time. This indicates that the GPU properties may be less important
for power prediction in general. Logic operations and the shared memory volume

95

Fast and Portable Performance Prediction

float SMs CUDA Core Mem. Mem. TDP
perf. Cores Clock Clock BW

threads per CTA 0.98 0.91 0.92 0.18 -0.32 0.95 0.73
CTAs 0.78 0.75 0.88 -0.49 -0.50 0.88 0.98
total instr. -0.75 -0.85 -0.90 0.48 0.68 -0.91 -0.97
special ops 0.68 0.62 0.78 -0.58 -0.42 0.79 0.94
logic ops 0.73 0.48 0.83 -0.36 -0.12 0.69 0.91
control ops -0.70 -0.81 -0.88 0.53 0.69 -0.86 -0.98
arithm. ops -0.51 -0.53 -0.76 0.65 0.54 -0.64 -0.94
sync ops 0.78 0.91 0.85 -0.40 -0.68 0.95 0.90
global mem vol. 0.31 0.14 0.01 0.19 0.28 0.25 -0.04
param mem vol. -0.83 -0.68 -0.60 -0.29 0.04 -0.76 -0.42
shared mem vol. 0.20 0.65 0.20 0.15 -0.70 0.42 0.05
arithm. intensity 0.11 0.01 -0.08 0.96 0.38 -0.11 -0.48

Table 5.7 Pearson correlations of feature importances and GPU properties for
execution time prediction.

importance change the most with the GPU properties. When there is more power
available to the GPU logic operations become less important. This is probably
due to the rather high importance of this feature on the GTX 1650 which has a
much lower TDP. It seems that control flow may have a larger power overhead
for chips using less power and fewer parallel processing units. Shared memory
becomes more important when there are more SMs and memory bandwidth.
When there is a lot of high bandwidth memory that can potentially consume a
lot of power this correlation makes good sense. The more SMs can request data
from memory the higher the power usage. Also, the more memory accesses are
going to shared memory instead of global memory, the less power for memory is
needed. Surprisingly most of the feature importances do not correlate a lot with
the TDP.

Around 50% of the cumulative importance of the power model features is
reached by the top 3, which is similar to the execution time model. The top 5
importance is also similar at around 70% (with the GTX 1650 being a bit lower
at 63.5%).

In summary, it seems to be important how many CTAs and threads per CTA
are executed, both for time and power prediction. This is especially the case for
time prediction. This parallel pressure helps to keepthe execution units busy.
In general, the power feature importance is less conclusive. The importance
is distributed more and correlate less with the GPU properties. The total
instructions are significantly more important for time prediction than for power.

96

5.6 Evaluation - Portability

float SMs CUDA Core Mem. Mem. TDP
perf. Cores Clock Clock BW

threads per CTA 0.38 -0.04 0.46 -0.29 0.32 0.22 0.58
CTAs -0.43 0.08 -0.22 -0.19 -0.65 -0.17 -0.19
total instr. 0.16 -0.13 0.25 -0.60 0.16 0.13 0.52
special ops 0.41 -0.12 0.29 0.05 0.62 0.15 0.30
logic ops -0.58 -0.51 -0.80 0.59 0.41 -0.66 -0.95
control ops 0.23 -0.34 0.15 0.15 0.76 -0.08 0.14
arithm. ops -0.20 -0.38 -0.07 -0.73 0.13 -0.17 0.29
sync ops -0.11 0.27 -0.08 -0.66 -0.63 0.23 0.18
global mem vol. 0.22 -0.29 0.24 -0.06 0.60 -0.03 0.30
param mem vol. -0.19 0.19 -0.27 0.44 -0.32 -0.08 -0.47
shared mem vol. 0.45 0.85 0.48 -0.30 -0.87 0.74 0.50
arithm. intensity 0.43 -0.08 0.40 -0.07 0.51 0.19 0.45

Table 5.8 Pearson correlations of feature importance and GPU properties for
power prediction.

This makes sense as not all instructions consume the same amount of power.
The arithmetic intensity is for both predictions rather unimportant. Could it be
that most kernels of the benchmark suites are memory bound? If that were the
case, this would explain why the size of the size and number of the CTAs is so
important. It helps to hide latency and increase throughput. This stresses the
need for parallel slackness for good performance and power efficiency. It is all
about keeping the execution units busy.

97

Fast and Portable Performance Prediction

5.7 Discussion

The execution time and power prediction models work well according to the
nested cross-validation results. The exception is the GTX 1650, which does not
have a fixed clock setting. It can be assumed that a more dynamic clock setting
for core and memory frequency degrades measurement accuracy. We have the
hypothesis that the dynamic clock leads to an increase in the non-deterministic
behavior of the GPU and that the predictions are much worse for this reason on
this device. Of course, further research with experiments would be required to
verify this hypothesis. Not taking into account the GTX1650 the median MAPE
scores for time prediction is ranging from 8.86% to 13.86%. The results for the
power prediction range from 1.84% to 2.93% for all five GPUs.

Despite only using static input features the model produces results, which
are comparable to other recent work. The results also proved that the features
are indeed portable. Even though the number of samples used for training
was rather limited, the models generalized well. This shows that the ensemble
learning method random forest can capture the device behavior with the limited
information at hand. It was also detected that consumer-grade devices with
dynamic clocks cannot be modeled well.

5.7.1 Prediction Latency

The results showed that the prediction latency is in the range of 15-108 mil-
liseconds. Compared to the execution time of the majority of the kernel this
seems to be a lot. According to Thinakaran et al. [89], sub-millisecond latency is
desirable for load-balancing or work-stealing. The tolerable latency depends on
many factors: overhead/workload ratio, the critical path for scheduling decisions,
the opportunity for memoization etc.

Since the used benchmarks are a few generations of GPU architectures old,
it is not surprising that the execution times are rather short on modern GPUs.
Additionally, many benchmarks are tailored to also be used in simulators. These
effects lead to a lot of very short-running kernels. With the current workload,
the execution times may be a lot higher.

Additionally, we like to point out that the prediction model is not optimized
in any way. A custom regression model written in C++ or maybe even CUDA

98

5.7 Discussion

will surely outperform the current python implementation. If that is not enough
for low prediction latency, there is still the option of feature selection and trading
accuracy for latency.

Therefore, we certainly see the opportunity of using the prediction models for
scheduling reasons. The advantage of not needing to collect input features for
every device will surely outweigh some disadvantages and makes this approach
feasible for a wide range of heterogeneous devices.

5.7.2 Similar Approaches

Work of Arafa et al. [68] and Guerreiro et al. [30] are recent works that are quite
similar to our approach. Guerreiro et al. are also using machine learning on
PTX code to predict execution time and power consumption on GPU kernels.
Their model is a recurrent neural network and supports DVFS. The kernel code
needs to be unrolled and cannot contain dynamic control flow dependencies.
This disadvantage allows them to predict kernel performance based on a PTX
instruction stream instead of an instruction histogram like in this work. The
approach of Arafa et al. is more different and leverages an event-based GPU
kernel simulation and an analytical model. Even though simulation is used, they
avoid cycle-level simulation, which is usually rather slow. Their tool PPT-GPU
is also based on PTX instruction streams. The PTX code is processed for
additional information like dependencies. Their model is also able to factor in
cache behavior. We tested the public model of PPT-GPU, which currently lacks
support for caching. The MAPE error score for the polybench-GPU benchmark
suite was 433.8%. Our model could achieve an error score of 218.6%. These
numbers have to be considered with care because a fair comparison is difficult
and requires a rework of the learning methodology. Still, the simulation is more
time-consuming than the machine learning model.

Using a PTX instruction stream gives the model more information, which is
certainly an advantage. However, a direct comparison with PPT-GPU showed
that just using instruction histograms is competitive. Thanks to the CUDA Flux
profiler, our approach is able to capture dynamic control flow. Ideally, future
work would capture PTX instruction streams and also dynamic control flow.
Collecting and processing more data will certainly need more processing time
and if the possibly better predictions are worth the effort needs to be discovered

99

Fast and Portable Performance Prediction

in the future.

5.7.3 Limitations

Our proposed approach has some limitations which we would like to discuss:
Training Data: Even though four benchmark suites were used, a larger and

more diverse training data set would be helpful. There is a bias towards short-
running kernels. Possibly, due to the age of the benchmarks and GPU simulators
as execution targets. Recent GPUs do not utilize all their SMs fully for all
benchmarks. For the GTX1650 14.59% of the kernels do not use all available
SMs and for the V100 the percentage increases to 56.08% (ignoring register
usage). This shows a lack of highly parallel workloads. Regarding the power
measurement method, the applied method may not reflect actual power usage
accurately for short-running kernels. The power sampling frequency is just too
low. We believe that our workaround utilizing loops for longer execution solves
this problem to some degree, but it cannot be used for all kernel types.

Model Features: reduced precision in arithmetic (16bit and 8bit floating-point
operations) would currently be treated like 32bit floating-point operations. The
instructions could be weighted by the bit width or processed into a separate
feature. In the case of separate features, there may be a lack of training data to
ensure good predictions. Additional features reflecting the degree of optimization
would certainly be helpful. Uncoalesced memory accesses for example can impart
kernel performance by a large factor. The model is currently not able to directly
detect such factors. Other performance bugs like shared memory bank conflicts,
bad cache hit-rates or branch divergence should ideally also be detected and
quantified. Mapping these properties of a kernel into features is non-trivial and
may require serious effort.

Model Training: The model could benefit from a larger hyper-parameter
space and regularization of some parameters such as the number of estimators.
There needs to be a balance between prediction latency and accuracy as well.
Additionally, the model could predict the throughput of instructions for example
instead of kernel execution time. This may improve the situation of predicting
kernels outside the unseen execution time range. In our experiments, this heavily
impacted the accuracy and thus was not implemented.

100

6
C

h
a

p
t

e
r

Conclusions for Automated Multi-GPU Par-
titioning

In this work, several key findings have emerged, shedding light on important
aspects of multi-GPU computing:

1. Models built on compute graph-based simulations are sufficient for auto-
mated partitioning decisions.

Using compute graph-based simulations as a foundation for building models
can effectively automate partitioning decisions. By simulating only neces-
sary aspects of the application, execution time estimates can be computed
at a low computational cost. It has been shown, that this simulation can
be used to create models that approximately resemble real application
behavior. Even with the very simple regression model, good partitioning
decisions could be done. On average the partitioning decisions are only
10.17% slower than the optimal partitioning, over all simulated scenarios.

2. Instrumentation-based profiling is a valuable tool and offers immense per-
formance benefits.

Using the PTX assembly for profiling kernels gives deep insight into what
is happening in kernels and since PTX is portable across different GPUs
the profiling results can be transferred. The average overhead on the
application level is 13.20 times the normal execution time. Using NVIDIA’s
profiler nvprof the average overhead is 171.01. By enabling the collection

101

Conclusions for Automated Multi-GPU Partitioning

of detailed data on kernel execution with low overhead, researchers can
gain insights into the behavior and bottlenecks of CUDA kernels at a larger
scale. This helps to identify areas for improvement and optimization, which
emphasizes the importance of this finding.

3. GPU-independent metrics are viable as input features for performance
models.

The static input features used by the GPU Mangrove approach produce
results comparable to similar work. The median average percentage error
ranges from 8.86-52.0% for time and 1.84-2.94% for power prediction.
Consumer GPUs with a wider dynamic frequency range are more difficult
to predict. Given that the model does not consider core and memory
frequencies as input and these cannot be fixed for consumer-grade GPUs,
this is no surprise.

In this work, we asked how multi-GPU programming framework can be
made partitioning agnostic. We believe to have found one feasible way by
leveraging partitioned compute graphs that have been automatically generated.
The compute graphs allow reasoning about the application as a whole and its
execution on a specific system. Delivering good performance by optimizing the
partitioning is still a hard task with multiple different challenges to solve. In this
work, we showed that kernel time prediction can be solved elegantly for many
different GPUs. However, other building blocks like our simulation should be
improved further and in the end, all the building blocks of this method need to
be integrated.

Unfortunately, this work has a few short-comings:
The number of applications used with compute graph-based workload par-

titioning is very low. The problem was that there are few toy examples with
compute graphs that are not too complex. In addition, the simulated results
should be compared to real benchmark results and almost no benchmarks which
are using multiple-GPUs and allow to set the number of GPUs and the workload
size freely.

Regarding the multi-GPU systems that have been included in this work,
there are no systems featuring NVLink. NVLink are direct high-bandwidth
connections between GPUs and the finding on those systems could be very
different. The higher communication bandwidth lowers the communication cost,

102

which in term would make the use of more GPUs in communication intense
workloads worthwhile.

We would like to end this dissertation with an outlook into future work:
To use simulators like Pick-Sim with many applications, it is currently required

to reproduce the compute graph programmatically. Capturing the graph using
static analysis or instrumentation of the application would reduce the effort
in obtaining more compute graphs drastically. These graphs can not only be
used for simulation but also for analysis of the applications, which could help to
detect patterns in them that can be leveraged to accelerate the processing. Our
implementation generates the compute graphs partitioned for a fixed number
of GPUs. Enabling the partitioning of non-partitioned compute graphs would
lower the effort for graph generation even more.

The GPU Mangrove approach showed how the kernel execution time estima-
tion could be improved. Regarding the simulation of communication, a similar
improvement could be done. Better estimation of the memory transfers would
make the simulation much more accurate. How do concurrent transfers influence
each other and how can the overheads be quantified? A more diverse set of
interconnects should be explored.

As mentioned in the limitations of this work dynamic frequency settings have
not been considered. It would be a great addition to extend both Pick-Sim and
the GPU Mangrove approach to support changing clocks.

This dissertation has resulted in valuable findings and tools which can help
advance further research. We hope that the future of multi-GPU computing
will become more accessible to developers by letting frameworks take care of the
delicate details of partitioning GPU workloads and optimizing their execution
for efficiency. Let the immense computational power of GPUs help to improve
the future of everyone.

These final words of this dissertation are dedicated to the ever-ongoing pursuit
of knowledge and may this be an inspiration to aspiring scholars to start and
finish their intellectual exploration. The way may be long and challenging, but
it is a worthy cause to contribute to the scientific community.

103

Acknowledgements

I would like to express my deep appreciation and thanks to all those who have
supported me through the journey of completing my doctoral dissertation.

First and foremost, I would like to express my deepest appreciation to my
supervisor, Prof. Dr. Holger Fröning. Without him, I would have never started
that journey, which helped me to grow personally and professionally. I am very
grateful for the freedom and support he gave me during this time and that he
was able to excite and motivate me. I cannot understate how helpful it was,
that I could always have an open discussion with him, and he was always very
dedicated to giving me good advice and giving me quality feedback.

I would like to extend my thanks to all the researchers of the scientific
community, with whom I interacted. For this a want to thank Tobias Grosser,
who inspired me a lot at the beginning of my PhD. Next, I want to thank Prof.
Dr. Vincent Heuveline, Dr. Simon Gawlok and Sotirios Nikas, with whom I had
the pleasure of working on a „Bundesministerium für Bildung und Forschung”
(BMBF) project together. I would like to acknowledge the financial support
provided by the BMBF, for which I am very thankful.

Additionally, many thanks to my fellow PhD Students Alexander Matz, Gün-
ther Schindler, Felix Zahn, Benjamin Klenk, Bernhard Klein, Yannick Emonds,
Jonas Dann, Hendrick Borras, Vahdaneh Kiani and Kazem Shekofteh for their
encouragement and inspiring discussions. Besides them, I want to thank all the
students, which I had the pleasure to supervise.

Finally, I would also like to acknowledge the support and encouragement
from my family and friends. I thank them for believing in me, for their patience
and for the stability they gave me during demanding times.

List of Figures

2.1 Distribution of thread blocks on GPUs with different SM counts [11] 7

3.1 Compute graph of the matrix multiplication with two partitions. 24
3.2 Interconnect graph modeling the octane dual socket system with

four GPUs. 25
3.3 Performance measurements of the matrix multiplication applica-

tion with varying problem sizes and up to 16 GPUs. Measurements
were executed on the victoria system and repeated five times for
statistical stability. 29

3.4 Performance measurements of the n-body application with varying
problem sizes and up to 16 GPUs. Measurements were executed
on the victoria system and repeated five times for statistical stability. 30

3.5 Performance measurements of the stencil application with varying
problem sizes and up to 16 GPUs. Measurements were executed
on the victoria system and repeated five times for statistical stability. 31

3.6 Two 3D surface plots showing execution time (z-axis) over the
GPU count (x-axis) and problem size N (y-axis) for the matrix
multiplication. The left plot shows the median of the benchmark
data. The right plot shows the data from the model. 32

3.7 Two 3D surface plots showing execution time (z-axis) over the
GPU count (x-axis) and problem size N (y-axis) for n-body. The
left plot shows the median of the benchmark data. The right plot
shows the data from the model. 32

3.8 Two 3D surface plots showing execution time (z-axis) over the
GPU count (x-axis) and problem size N (y-axis) for the stencil.
The left plot shows the median of the benchmark data. The right
plot shows the data from the model. 33

107

3.9 Boxplot of the model error in percent over the applications matrix
multiply, n-body and stencil on the victoria system. The median
is annotated in red for better readability. Whiskers are limited to
1.5 of the interquartile range, outliers are not shown. 34

3.10 Two plots showing the execution time t normalized by the problem
size n of matrix multiplication over the number of GPUs used
for computation. The top shows the simulation results and the
bottom the benchmark results. Log scale is applied on the y-axis. 35

3.11 Two plots showing the execution time t normalized by the problem
size n of n-body over the number of GPUs used for computa-
tion. The top shows the simulation results and the bottom the
benchmark results. 36

3.12 Two plots showing the execution time t normalized by the problem
size n of the stencil computation over the number of GPUs used
for computation. The top shows the simulation results and the
bottom the benchmark results. 37

3.13 Boxplot of the model error in percent over the applications matrix
multiply, n-body and stencil on all simulated systems. Whiskers
are limited to 1.5 of the interquartile range, outliers are not shown. 39

3.14 Boxplot of the performance loss of the optimal partitioning ac-
cording to the model compared to the actual optimal partitioning
over the simulated interconnects. Whiskers are limited to 1.5 of
the interquartile range, outliers are not shown. 39

3.15 Boxplot of the performance loss of the optimal partitioning ac-
cording to the model compared to the actual optimal partitioning
over the simulated applications. Whiskers are limited to 1.5 of
the interquartile range, outliers are not shown. 41

3.16 Boxplot of the performance loss of the optimal partitioning ac-
cording to the model compared to the actual optimal partitioning
over the simulated interconnects. Whiskers are limited to 1.5 of
the interquartile range, outliers are not shown. 41

4.1 The LLVM compilation pipeline is composed of frontend, optimizer
and backend. 47

108

4.2 Compilation of CUDA code with LLVM in two separate compila-
tion pipelines by Wu et al. [41]. 48

4.3 Integration of CUDA Flux into the CUDA compilation of clang.
Braun et al. [38] . 52

4.4 Plot of benchmark execution times using no profiling, nvprof and
CUDA Flux profiling a single warp with a Tesla K20 GPU. Braun
et al. [38] . 64

4.5 Comparison of kernel profiling time on Tesla K20 GPU normalized
to baseline measurement. 66

4.6 Comparison of kernel profiling time on Titan Xp GPU normalized
to the baseline measurement. 67

5.1 Histogram of the kernel execution time in logarithmic timescale.
Note that long-running kernels are statistically under-represented.
Braun et al. [29]. 80

5.2 Visualization of the variance of execution time: coefficient of
variation Cv plotted over the mean of execution time (for identical
kernel executions) shows that short-running kernels appear to
have a larger variance compared to long-running kernels. Braun
et al. [29]. 81

5.3 Validation of power measurements by comparing the coefficient of
variation against mean power consumption. Braun et al. [29]. . . 82

5.4 Nested cross-validation score for execution time (left) and power
(right) prediction on the K20 GPU. Braun et al. [29]. 88

5.5 Leave-One-Out results for time prediction on the K20 GPU. Left:
scatter plot of true values versus predicted values (logarithmic
scale). Right: distribution of prediction errors. Braun et al. [29]. 89

5.6 Leave-One-Out results for power prediction on the K20 GPU. Left:
scatter plot of true values versus predicted values (note the linear
scale). Right: distribution of prediction errors. Braun et al. [29]. 89

5.7 Portability of time (left) and power (right) prediction across differ-
ent GPUs: MAPE scores for all iterations of nested cross-validation
with median, first and third quartile. Whiskers are limited to 1.5
times of the interquartile range (Q3-Q1). Outliers are not shown.
Braun et al. [29]. 91

109

5.8 Histogram of the MAPE score for each fold of the nested cross-
validation. Braun et al. [29]. 91

5.9 Scatter plot of true time values versus predicted values using the
leave-one-out method for K20, GTX1650, Titan Xp, P100 and
V100 GPUs. Braun et al. [29]. 92

5.10 Scatter plot of true power values versus predicted values using the
leave-one-out method for GTX1650, Titan Xp, P100 and V100
GPUs. Braun et al. [29]. 93

A.1 Benchmark execution time of selected applications from the Ro-
dinia benchmark suite [32] using unified memory, normalized to
unmodified benchmark execution time. 124

110

List of Tables

3.1 First, second and third quartile of the model fit over all simulation
samples. 40

3.2 First, second and third quartile of optimization differences over
all data points. 42

4.1 Applications of all used benchmark suites and the corresponding
number of unique kernels. 58

4.2 CUDA Flux profiling results for the double precision FFT512 kernel. 62
4.3 Profling results of nvprof and CUDA Flux for the FFT512 kernel

in comparison. 63
4.4 Table of benchmark execution times using no profiling, nvprof

and CUDA Flux Profile. nvprof and CUDA Flux results are
normalized to the baseline. The last column refers to the number
of kernel launches. Braun et al. [38] 65

5.1 An overview of related work, showing prediction target (time [T],
power [P]), used model, accuracy, portability, input feature source,
and dataset size. Braun et al.[29]. 77

5.2 List of included and excluded applications used for sampling. Some
kernels are only excluded from the power prediction model. Braun
et al. [29]. 79

5.3 Overview of used GPUs and their relevant hardware specifications.
fs stands for power sampling frequency. Adapted from Braun et
al. [29]. 79

5.4 Hyperparameters for the best model for time prediction, together
with the corresponding average prediction latency, measured on
an Intel Xeon E5-2667 v3 CPU. Braun et al. [29]. 93

111

5.5 Hyperparameters for power prediction model, together with the
corresponding average prediction latency, measured on an Intel
Xeon E5-2667 v3 CPU. Braun et al. [29]. 94

5.6 Feature importance in percent for time and power prediction.
Braun et al. [29]. 95

5.7 Pearson correlations of feature importances and GPU properties
for execution time prediction. 96

5.8 Pearson correlations of feature importance and GPU properties
for power prediction. 97

A.1 Overhead results for selected application-dataset combinations. . 124

112

Bibliography

[1] Oak Ridge National Laboratory. “Frontier”, Oak Ridge Leadership Comput-
ing Facility. (2022), [Online]. Available: https://www.olcf.ornl.gov/frontier/
(visited on 02/03/2023).

[2] LUMI consortium. “LUMI’s full system architecture revealed”, LUMI.
(2021), [Online]. Available: https://www.lumi-supercomputer.eu/lumis-full-
system-architecture-revealed/ (visited on 02/03/2023).

[3] CINECA. “Leonardo HPC System | Leonardo Pre-exascale Supercomputer”.
(2022), [Online]. Available: https://leonardo-supercomputer.cineca.eu/hpc-
system/ (visited on 02/03/2023).

[4] Oak Ridge National Laboratory. “Summit”, Oak Ridge Leadership Com-
puting Facility. (2018), [Online]. Available: https://www.olcf.ornl.gov/olcf-
resources/compute-systems/summit/ (visited on 02/03/2023).

[5] Amazon Web Services. “Amazon EC2 Instance Types - Amazon Web
Services”, Amazon Web Services, Inc. (2023), [Online]. Available: https:
//aws.amazon.com/ec2/instance-types/ (visited on 02/03/2023).

[6] Google. “GPU platforms | Compute Engine Documentation”, Google Cloud.
(2023), [Online]. Available: https://cloud.google.com/compute/docs/gpus
(visited on 02/03/2023).

[7] Microsoft. “Pricing - Linux Virtual Machines | Microsoft Azure”. (2023),
[Online]. Available: https://azure.microsoft.com/en-us/pricing/details/
virtual-machines/linux/ (visited on 02/03/2023).

[8] NAS Program, NASA Ames Research Center. “NAS Parallel Benchmarks”,
NAS Parallel Benchmarks. (2022), [Online]. Available: https://www.nas.
nasa.gov/software/npb.html (visited on 05/17/2023).

[9] T. Ben-Nun, E. Levy, A. Barak, and E. Rubin, “Memory access patterns:
The missing piece of the multi-GPU puzzle”, ACM Press, 2015, pp. 1–12.
doi: 10.1145/2807591.2807611.

[10] A. Matz, J. Doerfert, and H. Fröning, “Automated Partitioning of Data-
Parallel Kernels using Polyhedral Compilation”, in 49th International
Conference on Parallel Processing - ICPP : Workshops, Edmonton AB
Canada: ACM, 2020, pp. 1–10. doi: 10/gjr3rw.

113

https://www.olcf.ornl.gov/frontier/
https://www.lumi-supercomputer.eu/lumis-full-system-architecture-revealed/
https://www.lumi-supercomputer.eu/lumis-full-system-architecture-revealed/
https://leonardo-supercomputer.cineca.eu/hpc-system/
https://leonardo-supercomputer.cineca.eu/hpc-system/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/compute/docs/gpus
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://www.nas.nasa.gov/software/npb.html
https://www.nas.nasa.gov/software/npb.html
https://doi.org/10.1145/2807591.2807611
https://doi.org/10/gjr3rw

[11] NVIDIA Corporation. “CUDA C++ Programming Guide”. (2023), [Online].
Available: https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html (visited on 04/08/2023).

[12] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A
Unified Platform for Task Scheduling on Heterogeneous Multicore Archi-
tectures”, in Euro-Par 2009 Parallel Processing, H. Sips, D. Epema, and
H.-X. Lin, Eds., ser. Lecture Notes in Computer Science, Berlin, Heidelberg:
Springer, 2009, pp. 863–874. doi: 10/crdd6g.

[13] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on het-
erogeneous multiprocessors with adaptive mapping”, in Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, ser. MICRO 42, New York, NY, USA: Association for Computing
Machinery, 2009, pp. 45–55. doi: 10/fk4qtc.

[14] A. Ernstsson, L. Li, and C. Kessler, “SkePU 2: Flexible and Type-Safe
Skeleton Programming for Heterogeneous Parallel Systems”, International
Journal of Parallel Programming, vol. 46, no. 1, pp. 62–80, 2018. doi:
10/gcsg75.

[15] J. Kim, H. Kim, J. H. Lee, and J. Lee, “Achieving a single compute device
image in OpenCL for multiple GPUs”, ACM SIGPLAN Notices, vol. 46,
no. 8, pp. 277–288, 2011. doi: 10/df4n2j.

[16] A. Matz and H. Fröning, “Quantifying the NUMA Behavior of Partitioned
GPGPU Applications”, in Proceedings of the 12th Workshop on General
Purpose Processing Using GPUs, ser. GPGPU ’19, Providence, RI, USA:
Association for Computing Machinery, 2019, pp. 53–62. doi: 10.1145/
3300053.3319420.

[17] K. Asanovic et al., “The Landscape of Parallel Computing Research: A
View from Berkeley”, p. 56, 2006.

[18] J. Enmyren and C. W. Kessler, “SkePU: A multi-backend skeleton pro-
gramming library for multi-GPU systems”, in Proceedings of the Fourth
International Workshop on High-level Parallel Programming and Applica-
tions, ser. HLPP ’10, New York, NY, USA: Association for Computing
Machinery, 2010, pp. 5–14. doi: 10.1145/1863482.1863487.

[19] M. Steuwer, P. Kegel, and S. Gorlatch, “Towards High-Level Programming
of Multi-GPU Systems Using the SkelCL Library”, in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops
PhD Forum, 2012, pp. 1858–1865. doi: 10/ggmz4r.

[20] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “NVBit: A Dynamic
Binary Instrumentation Framework for NVIDIA GPUs”, in Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, ser. MICRO ’52, New York, NY, USA: Association for Computing
Machinery, 2019, pp. 372–383. doi: 10.1145/3352460.3358307.

114

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10/crdd6g
https://doi.org/10/fk4qtc
https://doi.org/10/gcsg75
https://doi.org/10/df4n2j
https://doi.org/10.1145/3300053.3319420
https://doi.org/10.1145/3300053.3319420
https://doi.org/10.1145/1863482.1863487
https://doi.org/10/ggmz4r
https://doi.org/10.1145/3352460.3358307

[21] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A
dynamic optimization framework for bulk-synchronous applications in
heterogeneous systems”, in Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques - PACT ’10, Vienna,
Austria: ACM Press, 2010, p. 353. doi: 10.1145/1854273.1854318.

[22] N. Farooqui, A. Kerr, G. Eisenhauer, K. Schwan, and S. Yalamanchili,
“Lynx: A dynamic instrumentation system for data-parallel applications
on GPGPU architectures”, in 2012 IEEE International Symposium on
Performance Analysis of Systems Software, 2012, pp. 58–67. doi: 10.1109/
ISPASS.2012.6189206.

[23] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator”, in 2009
IEEE International Symposium on Performance Analysis of Systems and
Software, 2009, pp. 163–174. doi: 10.1109/ISPASS.2009.4919648.

[24] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic Warp
Formation and Scheduling for Efficient GPU Control Flow”, in 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 2007),
Chicago, IL, USA: IEEE, 2007, pp. 407–420. doi: 10.1109/MICRO.2007.30.

[25] S. Collange, D. Defour, and D. Parello, “Barra, a modular functional gpu
simulator for gpgpu”, University de Perpignan, Tech. Rep, 2009.

[26] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A
simulation framework for CPU-GPU computing”, in Proceedings of the
21st International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’12, New York, NY, USA: Association for Computing
Machinery, 2012, pp. 335–344. doi: 10/ggmz5c.

[27] X. Gong, R. Ubal, and D. Kaeli, “Multi2Sim Kepler: A detailed architectural
GPU simulator”, in 2017 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2017, pp. 269–278. doi: 10.
1109/ISPASS.2017.7975298.

[28] M. Stephenson et al., “Flexible software profiling of GPU architectures”,
in Proceedings of the 42nd Annual International Symposium on Computer
Architecture - ISCA ’15, Portland, Oregon: ACM Press, 2015, pp. 185–197.
doi: 10.1145/2749469.2750375.

[29] L. Braun, S. Nikas, C. Song, V. Heuveline, and H. Fröning, “A Simple
Model for Portable and Fast Prediction of Execution Time and Power
Consumption of GPU Kernels”, 2020. arXiv: 2001.07104 [cs].

[30] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás, “GPU Static Modeling Using
PTX and Deep Structured Learning”, IEEE Access, vol. 7, pp. 159 150–
159 161, 2019. doi: 10.1109/ACCESS.2019.2951218.

115

https://doi.org/10.1145/1854273.1854318
https://doi.org/10.1109/ISPASS.2012.6189206
https://doi.org/10.1109/ISPASS.2012.6189206
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/MICRO.2007.30
https://doi.org/10/ggmz5c
https://doi.org/10.1109/ISPASS.2017.7975298
https://doi.org/10.1109/ISPASS.2017.7975298
https://doi.org/10.1145/2749469.2750375
https://arxiv.org/abs/2001.07104
https://doi.org/10.1109/ACCESS.2019.2951218

[31] K. Fan, B. Cosenza, and B. Juurlink, “Predictable GPUs Frequency Scaling
for Energy and Performance”, in Proceedings of the 48th International Con-
ference on Parallel Processing, ser. ICPP 2019, Kyoto, Japan: Association
for Computing Machinery, 2019, pp. 1–10. doi: 10.1145/3337821.3337833.

[32] S. Che et al., “Rodinia: A benchmark suite for heterogeneous computing”,
IEEE, 2009, pp. 44–54. doi: 10.1109/iiswc.2009.5306797.

[33] A. Danalis et al., “The Scalable Heterogeneous Computing (SHOC) bench-
mark suite”, in Proceedings of the 3rd Workshop on General-Purpose Com-
putation on Graphics Processing Units, ser. GPGPU-3, Pittsburgh, Pennsyl-
vania, USA: ACM Press, 2010, pp. 63–74. doi: 10.1145/1735688.1735702.

[34] J. A. Stratton et al., “Parboil: A Revised Benchmark Suite for Scientific
and Commercial Throughput Computing”, 2012, p. 12.

[35] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to GPU codes”, in 2012 In-
novative Parallel Computing (InPar), 2012, pp. 1–10. doi: 10.1109/InPar.
2012.6339595.

[36] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures”, Communications of
the ACM, vol. 52, no. 4, pp. 65–76, 2009. doi: 10/fwnvb4.

[37] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least Angle Regres-
sion”, The Annals of Statistics, vol. 32, no. 2, 2004. doi: 10/bjvr62. arXiv:
math/0406456.

[38] L. Braun and H. Fröning, “CUDA Flux: A Lightweight Instruction Profiler
for CUDA Applications”, in 2019 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS), 2019, pp. 73–81. doi: 10.1109/PMBS49563.2019.00014.

[39] “CUDA Pro Tip: Nvprof is Your Handy Universal GPU Profiler”, NVIDIA
Technical Blog. (2013), [Online]. Available: https://developer.nvidia.com/
blog/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/ (visited on
05/09/2022).

[40] CASL Gatech. “Lynx: A Dynamic Instrumentation System for GPGPU
Computing | CASL Gatech”. (2013), [Online]. Available: https://casl .
gatech.edu/research/lynx-a-dynamic-instrumentation-system-for-gpgpu-
computing/ (visited on 05/09/2022).

[41] J. Wu et al., “Gpucc: An open-source GPGPU compiler”, presented at the
Proceedings of the 2016 International Symposium on Code Generation and
Optimization, ACM, 2016, pp. 105–116.

[42] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation”, in International Symposium on Code
Generation and Optimization, 2004. CGO 2004., San Jose, CA, USA: IEEE,
2004, pp. 75–86. doi: 10.1109/CGO.2004.1281665.

116

https://doi.org/10.1145/3337821.3337833
https://doi.org/10.1109/iiswc.2009.5306797
https://doi.org/10.1145/1735688.1735702
https://doi.org/10.1109/InPar.2012.6339595
https://doi.org/10.1109/InPar.2012.6339595
https://doi.org/10/fwnvb4
https://doi.org/10/bjvr62
https://arxiv.org/abs/math/0406456
https://doi.org/10.1109/PMBS49563.2019.00014
https://developer.nvidia.com/blog/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/
https://developer.nvidia.com/blog/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/
https://casl.gatech.edu/research/lynx-a-dynamic-instrumentation-system-for-gpgpu-computing/
https://casl.gatech.edu/research/lynx-a-dynamic-instrumentation-system-for-gpgpu-computing/
https://casl.gatech.edu/research/lynx-a-dynamic-instrumentation-system-for-gpgpu-computing/
https://doi.org/10.1109/CGO.2004.1281665

[43] LLVM Foundation. “Compiling CUDA C/C++ with LLVM — LLVM 3.9
documentation”. (2016), [Online]. Available: https://releases.llvm.org/3.9.
0/docs/CompileCudaWithLLVM.html (visited on 03/22/2022).

[44] NVIDIA Corporation. “Parallel Thread Execution ISA Version 7.6”. (2022),
[Online]. Available: https : / / docs . nvidia . com / cuda / parallel - thread -
execution/index.html (visited on 03/23/2022).

[45] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on GPUs”, in 2012 IEEE International Symposium on Workload
Characterization (IISWC), 2012, pp. 141–151. doi: 10.1109/IISWC.2012.
6402918.

[46] N. Kondratyuk, V. Nikolskiy, D. Pavlov, and V. Stegailov, “GPU-accelerated
molecular dynamics: State-of-art software performance and porting from
Nvidia CUDA to AMD HIP”, The International Journal of High Perfor-
mance Computing Applications, vol. 35, no. 4, pp. 312–324, 2021. doi:
10.1177/10943420211008288.

[47] Advanced Micro Devices. “AMD ROCm Profiler — ROCm 4.5.0 documen-
tation”. (2022), [Online]. Available: https://rocmdocs.amd.com/en/latest/
ROCm_Tools/ROCm-Tools.html (visited on 03/24/2022).

[48] N. Farooqui, A. Kerr, G. Diamos, S. Yalamanchili, and K. Schwan, “A
Framework for Dynamically Instrumenting GPU Compute Applications
Within GPU Ocelot”, in Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, ser. GPGPU-4, New
York, NY, USA: ACM, 2011, 9:1–9:9. doi: 10.1145/1964179.1964192.

[49] D. Shen, S. L. Song, A. Li, and X. Liu, “CUDAAdvisor: LLVM-based run-
time profiling for modern GPUs”, in Proceedings of the 2018 International
Symposium on Code Generation and Optimization - CGO 2018, Vienna,
Austria: ACM Press, 2018, pp. 214–227. doi: 10.1145/3168831.

[50] P. Bumbulis and D. D. Cowan, “RE2C: A more versatile scanner generator”,
ACM Letters on Programming Languages and Systems, vol. 2, no. 1-4,
pp. 70–84, 1993. doi: 10.1145/176454.176487.

[51] NVIDIA Corporation. “Nvidia-tesla-p100-PCIe-datasheet.pdf”. (2016), [On-
line]. Available: https://www.nvidia.com/content/dam/en-zz/Solutions/
Data- Center/tesla- p100/pdf/nvidia- tesla- p100- PCIe- datasheet .pdf
(visited on 04/11/2022).

[52] NVIDIA Corporation. “Volta-v100-datasheet-update-us-1165301-r5.pdf”.
(2020), [Online]. Available: https://images.nvidia.com/content/technologies/
volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf (visited on
04/11/2022).

[53] A. Koike and K. Sadakane, “A Novel Computational Model for GPUs with
Application to I/O Optimal Sorting Algorithms”, IEEE, 2014, pp. 614–623.
doi: 10.1109/IPDPSW.2014.72.

117

https://releases.llvm.org/3.9.0/docs/CompileCudaWithLLVM.html
https://releases.llvm.org/3.9.0/docs/CompileCudaWithLLVM.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://doi.org/10.1109/IISWC.2012.6402918
https://doi.org/10.1109/IISWC.2012.6402918
https://doi.org/10.1177/10943420211008288
https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html
https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html
https://doi.org/10.1145/1964179.1964192
https://doi.org/10.1145/3168831
https://doi.org/10.1145/176454.176487
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://doi.org/10.1109/IPDPSW.2014.72

[54] S. Madougou, A. Varbanescu, C. de Laat, and R. van Nieuwpoort, “The
landscape of GPGPU performance modeling tools”, Parallel Computing,
vol. 56, pp. 18–33, 2016. doi: 10.1016/j.parco.2016.04.002.

[55] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“GPGPU performance and power estimation using machine learning”, IEEE,
2015, pp. 564–576. doi: 10.1109/HPCA.2015.7056063.

[56] T. C. Carroll and P. W. Wong, “An Improved Abstract GPU Model with
Data Transfer”, IEEE, 2017, pp. 113–120. doi: 10.1109/ICPPW.2017.28.

[57] S. Hong and H. Kim, “An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness”, p. 12, 2009.

[58] Y. Zhang and J. D. Owens, “A quantitative performance analysis model
for GPU architectures”, in 2011 IEEE 17th International Symposium
on High Performance Computer Architecture, 2011, pp. 382–393. doi:
10.1109/HPCA.2011.5749745.

[59] S. Hong and H. Kim, “An integrated GPU power and performance model”,
p. 10, 2010.

[60] J.-C. Huang, J. H. Lee, H. Kim, and H.-H. S. Lee, “GPUMech: GPU
Performance Modeling Technique Based on Interval Analysis”, IEEE, 2014,
pp. 268–279. doi: 10.1109/MICRO.2014.59.

[61] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W.
Hwu, “An adaptive performance modeling tool for GPU architectures”,
p. 10, 2010.

[62] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A Simplified and
Accurate Model of Power-Performance Efficiency on Emergent GPU Archi-
tectures”, IEEE, 2013, pp. 673–686. doi: 10.1109/IPDPS.2013.73.

[63] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,
“Statistical power modeling of GPU kernels using performance counters”,
IEEE, 2010, pp. 115–122. doi: 10.1109/GREENCOMP.2010.5598315.

[64] K. L. Spafford and J. S. Vetter, “Aspen: A domain specific language for
performance modeling”, IEEE, 2012, pp. 1–11. doi: 10.1109/SC.2012.20.

[65] J. Chen, B. Li, Y. Zhang, L. Peng, and J. Peir, “Statistical GPU power
analysis using tree-based methods”, in 2011 International Green Computing
Conference and Workshops, 2011, pp. 1–6. doi: 10 . 1109/ IGCC.2011 .
6008582.

[66] B. Johnston, G. Falzon, and J. Milthorpe, “OpenCL Performance Prediction
using Architecture-Independent Features”, 2018. arXiv: 1811.00156 [cs].

[67] M. Amarís, R. Y. de Camargo, M. Dyab, A. Goldman, and D. Trystram,
“A comparison of GPU execution time prediction using machine learning
and analytical modeling”, in 2016 IEEE 15th International Symposium
on Network Computing and Applications (NCA), 2016, pp. 326–333. doi:
10.1109/NCA.2016.7778637.

118

https://doi.org/10.1016/j.parco.2016.04.002
https://doi.org/10.1109/HPCA.2015.7056063
https://doi.org/10.1109/ICPPW.2017.28
https://doi.org/10.1109/HPCA.2011.5749745
https://doi.org/10.1109/MICRO.2014.59
https://doi.org/10.1109/IPDPS.2013.73
https://doi.org/10.1109/GREENCOMP.2010.5598315
https://doi.org/10.1109/SC.2012.20
https://doi.org/10.1109/IGCC.2011.6008582
https://doi.org/10.1109/IGCC.2011.6008582
https://arxiv.org/abs/1811.00156
https://doi.org/10.1109/NCA.2016.7778637

[68] Y. Arafa, A.-H. A. Badawy, G. Chennupati, N. Santhi, and S. Eidenbenz,
“PPT-GPU: Scalable GPU Performance Modeling”, IEEE Computer Ar-
chitecture Letters, vol. 18, no. LA-UR-18-30853, pp. 55–58, 1 2019. doi:
10.1109/LCA.2019.2904497.

[69] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song, S. Yalamanchili, and
W. Sung, “Power Modeling for GPU Architectures Using McPAT”, ACM
Transactions on Design Automation of Electronic Systems, vol. 19, no. 3,
26:1–26:24, 2014. doi: 10/gnhv42.

[70] X. Wang, K. Huang, A. Knoll, and X. Qian, “A Hybrid Framework for Fast
and Accurate GPU Performance Estimation through Source-Level Analysis
and Trace-Based Simulation”, in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2019, pp. 506–518. doi:
10/gnhv6f.

[71] S. Salaria, A. Drozd, A. Podobas, and S. Matsuoka, “Learning Neural
Representations for Predicting GPU Performance”, in High Performance
Computing, M. Weiland, G. Juckeland, C. Trinitis, and P. Sadayappan,
Eds., ser. Lecture Notes in Computer Science, Cham: Springer International
Publishing, 2019, pp. 40–58. doi: 10/gnhv6m.

[72] A. Majumdar, L. Piga, I. Paul, J. L. Greathouse, W. Huang, and D. H. Al-
bonesi, “Dynamic GPGPU Power Management Using Adaptive Model
Predictive Control”, in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2017, pp. 613–624. doi:
10.1109/HPCA.2017.34.

[73] P. Reisert, A. Calotoiu, S. Shudler, and F. Wolf, “Following the Blind Seer –
Creating Better Performance Models Using Less Information”, in Euro-Par
2017: Parallel Processing, F. F. Rivera, T. F. Pena, and J. C. Cabaleiro,
Eds., Cham: Springer International Publishing, 2017, pp. 106–118. doi:
10.1007/978-3-319-64203-1_8.

[74] Y. Arafa, A.-H. Badawy, G. Chennupati, A. Barai, N. Santhi, and S. Ei-
denbenz, “Fast, accurate, and scalable memory modeling of GPGPUs using
reuse profiles”, in Proceedings of the 34th ACM International Conference
on Supercomputing, ser. ICS ’20, New York, NY, USA: Association for
Computing Machinery, 2020, pp. 1–12. doi: 10.1145/3392717.3392761.

[75] L. G. Valiant, “A bridging model for parallel computation”, Communica-
tions of the ACM, vol. 33, no. 8, pp. 103–111, 1990. doi: 10.1145/79173.
79181.

[76] S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao, “Application per-
formance modeling in a virtualized environment”, in HPCA - 16 2010
The Sixteenth International Symposium on High-Performance Computer
Architecture, 2010, pp. 1–10. doi: 10.1109/HPCA.2010.5463058.

119

https://doi.org/10.1109/LCA.2019.2904497
https://doi.org/10/gnhv42
https://doi.org/10/gnhv6f
https://doi.org/10/gnhv6m
https://doi.org/10.1109/HPCA.2017.34
https://doi.org/10.1007/978-3-319-64203-1_8
https://doi.org/10.1145/3392717.3392761
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1109/HPCA.2010.5463058

[77] C. Lehnert, R. Berrendorf, J. P. Ecker, and F. Mannuss, “Performance
Prediction and Ranking of SpMV Kernels on GPU Architectures”, in
Euro-Par 2016: Parallel Processing, P.-F. Dutot and D. Trystram, Eds.,
ser. Lecture Notes in Computer Science, Cham: Springer International
Publishing, 2016, pp. 90–102. doi: 10.1007/978-3-319-43659-3_7.

[78] J. Guerreiro, A. Ilic, N. Roma, and P. Tomas, “GPGPU Power Modeling
for Multi-domain Voltage-Frequency Scaling”, in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Vienna:
IEEE, 2018, pp. 789–800. doi: 10.1109/HPCA.2018.00072.

[79] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski, and
M. Schulz, “A regression-based approach to scalability prediction”, in Pro-
ceedings of the 22nd Annual International Conference on Supercomputing,
ser. ICS ’08, New York, NY, USA: Association for Computing Machinery,
2008, pp. 368–377. doi: 10.1145/1375527.1375580.

[80] Q. Wang and X. Chu, “GPGPU Performance Estimation with Core and
Memory Frequency Scaling”, 2018. arXiv: 1701.05308 [cs].

[81] A. Botchkarev, “A New Typology Design of Performance Metrics to Mea-
sure Errors in Machine Learning Regression Algorithms”, Interdisciplinary
Journal of Information, Knowledge, and Management, vol. 14, pp. 045–076,
2019. doi: 10.28945/4184.

[82] V. Adhinarayanan and W.-c. Feng, “An automated framework for char-
acterizing and subsetting GPGPU workloads”, IEEE, 2016, pp. 307–317.
doi: 10.1109/ISPASS.2016.7482105.

[83] NVIDIA Corporation. “NVIDIA Management Library (NVML)”, NVIDIA
Developer. (2011), [Online]. Available: https://developer.nvidia.com/nvidia-
management-library-nvml (visited on 04/14/2022).

[84] M. Burtscher, I. Zecena, and Z. Zong, “Measuring GPU Power with the
K20 Built-in Sensor”, in Proceedings of Workshop on General Purpose
Processing Using GPUs, ser. GPGPU-7, New York, NY, USA: Association
for Computing Machinery, 2014, pp. 28–36. doi: 10.1145/2588768.2576783.

[85] D. A. Patterson and J. L. Hennessy, Computer Organization and Design:
The Hardware/Software Interface. Rev. 4. ed. Amsterdam; Heidelberg:
Elsevier Morgan Kaufmann, 2012.

[86] S. Varma and R. Simon, “Bias in error estimation when using cross-
validation for model selection”, BMC Bioinformatics, vol. 7, no. 1, p. 91,
2006. doi: 10.1186/1471-2105-7-91.

[87] R. J. Tibshirani and R. Tibshirani, “A Bias Correction for the Minimum
Error Rate in Cross-Validation”, The Annals of Applied Statistics, vol. 3,
no. 2, pp. 822–829, 2009. JSTOR: 30244266.

[88] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python”, Journal
of Machine Learning Research, no. 12, pp. 2825–2830, 2011.

120

https://doi.org/10.1007/978-3-319-43659-3_7
https://doi.org/10.1109/HPCA.2018.00072
https://doi.org/10.1145/1375527.1375580
https://arxiv.org/abs/1701.05308
https://doi.org/10.28945/4184
https://doi.org/10.1109/ISPASS.2016.7482105
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://doi.org/10.1145/2588768.2576783
https://doi.org/10.1186/1471-2105-7-91
http://www.jstor.org/stable/30244266

[89] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and
C. R. Das, “Phoenix: A Constraint-Aware Scheduler for Heterogeneous
Datacenters”, in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), 2017, pp. 977–987. doi: 10.1109/ICDCS.
2017.262.

121

https://doi.org/10.1109/ICDCS.2017.262
https://doi.org/10.1109/ICDCS.2017.262

A
A

p
p

e
n

d
ix

Simplifying Multi-GPU Programming with
Unified Memory Usage

Can the programmability problem be eased by a simplified programming model?
Unified memory allows paging of memory on the GPU. The developer needs
not worry about moving data to and from the GPU as this can be triggered
automatically when a page fault occurs.

This possible aid was examined in some preliminary experiments and a
bachelor thesis by Georg Weisert (advised by Lorenz Braun). The starting point
of this consideration is a single GPU application, which should be accelerated
by using multi-GPUs. Using unified memory is as simple as replacing memory
allocations with cudaMallocManaged and omitting copy operations to and from
the GPU. For usage of multiple GPUs, the kernel needs to be split up, which
is done at thread block level. Kernels just need to be given an offset such that
each kernel launch on each GPU can work on a different subset of the thread
blocks. Because this task can be automated source-to-source transformation,
which was shown by Weisert, this solution is a potential low-hanging fruit for
the programmability problem.

In experiments, a reduction, matrix multiplication and n-body application
were transformed into multi-GPU applications using unified memory.

The results in figure A.1 show that unified memory is faster for some applica-
tions, but the performance impact, in general, is quite high. Table A.1 shows the

123

3D
 d

ef
au

lt

b+
tre

e.
ou

t d
ef

au
lt

ba
ck

pr
op

 d
ef

au
lt

ba
ck

pr
op

 la
rg

e

bf
s d

ef
au

lt

dw
t2

d
de

f_
m

ed
iu

m

dw
t2

d
de

f_
sm

al
l

eu
le

r3
d

de
f_

fv
co

rr1
93

K

eu
le

r3
d

de
f_

m
iss

ile
0.

2M

he
ar

tw
al

l d
ef

au
lt

ho
ts

po
t l

ar
ge

ho
ts

po
t s

m
al

l

la
va

M
D

de
fa

ul
t

la
va

M
D

la
rg

e

m
yo

cy
te

.o
ut

 d
ef

au
lt

m
yo

cy
te

.o
ut

 la
rg

e

nn
 d

ef
au

lt

pa
rti

cle
fil

te
r_

flo
at

 d
ef

au
lt

pa
th

fin
de

r d
ef

au
lt

sr
ad

_v
1

de
fa

ul
t

sr
ad

_v
1

la
rg

e

sr
ad

_v
2

de
fa

ul
t

sr
ad

_v
2

la
rg

e

0

5

10

15

20

25

no
rm

al
ize

d
tim

e

config
UM 1x GPU
UM 2x GPU

Figure A.1 Benchmark execution time of selected applications from the Rodinia
benchmark suite [32] using unified memory, normalized to unmodified benchmark
execution time.

App Dataset Um 2x GPUs
euler3d def_missile0.2M 73.285187
hotspot small 73.359306
particlefilter_float default 54.344262

Table A.1 Overhead results for selected application-dataset combinations.

results of three application-dataset combinations, which did not fit in the plot on
the figure Since the overhead is usually higher than the performance gained by
using two GPUs, performant and energy-efficient multi-GPU applications need
another solution.

124

	Contents
	1 Taming Multi-GPU Partitioning
	1.1 Motivation
	1.2 Challenges of Multi-GPU Programming
	1.3 Methodology
	1.4 Limitations
	1.5 Structure of this Work

	2 Background
	2.1 GPU Programming Model
	2.2 Related Work
	2.3 GPGPU Workloads and Benchmark Suites

	3 Compute Graph-Based Workload Partitioning for Multi-GPU Systems
	3.1 Partitioning Approach
	3.2 Pick-Sim Implementation
	3.3 Modeling System-Application Interaction with Polynomial Regression
	3.4 Evaluation
	3.5 Conclusion

	4 Benefits of Instrumentation for Profiling of CUDA Kernels
	4.1 The ecosystem of CUDA kernel profiling
	4.2 CUDA Flux Tool Design
	4.3 Evaluation Methodology
	4.4 Qualitative Evaluation
	4.5 Performance Evaluation
	4.6 Conclusion
	4.7 Future Work

	5 Fast and Portable Performance Prediction
	5.1 Introduction
	5.2 Related Work
	5.3 Benchmarking the Data Foundation
	5.4 The GPU Mangrove Methodology
	5.5 Case Study on the Tesla K20 GPU
	5.6 Evaluation - Portability
	5.7 Discussion

	6 Conclusions for Automated Multi-GPU Partitioning
	List of Figures
	List of Tables
	Appendix A Simplifying Multi-GPU Programming with Unified Memory Usage

