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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der nichtparametrischen Schätzung für eine spezielle
Klasse von schlecht-gestellten inversen Problemen, den sogenannten multiplikativen Messfehler-
Modellen. In diesen Modellen sind die Beobachtungen der unbekannten, zu schätzenden Größe
lediglich mit einem multiplikativen Messfehler zugänglich. Eine Konsequenz ist die Abhängigkeit
der Stabilität der Rekonstruktion von der Verteilung der Fehlergröße, wobei diese maßgeblich die
Schlechtgestelltheit des zugrundeliegenden inversen Problems beeinflusst. Die Theorie derMellin-
Transformierten ermöglicht zum Einen den Einfluss der Verteilung der Fehlergröße auf die Stabi-
lität der Rekonstruktion zu beschreiben und zumAnderen die Schätzung der unbekanntenGrößen
auf eine regularisierte Schätzung der unbekannten Mellin-Transformierten zurückzuführen. Die
vorgestellten Schätzmethoden werden mittels eines zu erwartenden gewichtet(-integrierten) qua-
dratischen Risikos evaluiert.
Neben einer Einführung in die Theorie der Mellin-Transfomierten und multiplikativen Faltungen
ist die Arbeit in drei Themengebiete unterteilt.
Im ersten Teil betrachten wir die globale Dichteschätzung bei vorliegendemmultiplikativenMess-
fehler. Nach einem Vergleich zwischen direkten und verrauschten Beobachtungen behandeln wir
verschiedene Fehlerdichtenfamilien, den multivariaten Fall und den Einfluss von Abhängigskeits-
strukturen in den Daten. Hierbei wird jeweils eine Schätzmethode präsentiert, ihre Minimax-
Optimalität diskutiert und daten-getriebene Wahlen des Glättungsparameters betrachtet. Mithilfe
einer Monte-Carlo Simulation wird das theoretisch zu erwartende Verhalten des Schätzer illus-
triert.
Der zweite Teil der Arbeit beschäftigt sich mit der globalen Schätzung der Überlebensfunktion,
die neben der Dichte einer Verteilung, eine gängige Charakterisierung von Verteilungen dar-
stellt. Auch hier wird eine Schätzmethode vorgestellt, ihre Minimax-Optimalität bewiesen und
daten-getriebene Wahlen von Glättungsparameter diskutiert. Des Weiteren wird die Stabilität des
Schätzers für Bernoulli-Shift Prozesse analysiert und mittels einer Monte-Carlo Simulation visua-
lisiert.
Der dritte Teil betrachtet die Schätzung der Evaluation eines linearen Funktionals im multipli-
kativen Messfehler-Model. Als Evaluation eines linearen Funktional können, unter anderem, die
Punktevaluationen der Dichte, der Überlebungsfunktion und der Verteilungsfunktion interpre-
tiert werden. Dies erlaubt es, diese unterschiedlichen Schätzprobleme simultan zu analysieren und
Vergleiche bezüglich der Schlechtgestelltheit der inversen Probleme zu betrachten. Eine minimax-
optimale Schätzmethode als auch eine daten-getriebene Wahl des Glättungsparameters werden
präsentiert und analysiert.





Abstract

This thesis deals with the nonparametric estimation for a special class of ill-posed inverse prob-
lems, the so-called multiplicative measurement error models. In these models, the observations of
the unknown, to be estimated quantity is only accessible with a multiplicative measurement error.
As a consequence, the instability of the reconstruction depends on the distribution of the error by
effecting the ill-posedness of the underlying inverse problem. The theory of Mellin transform al-
lows to express the influence of the error distribution on the instability of the reconstruction and to
reduce the estimation of the unknown quantity to a regularized estimation of its unknown Mellin
transform. The proposed estimation strategies will be evaluated in terms of a mean weighted(-
integrated) squared risk.
Aside from being an introduction to the theory of Mellin transforms and multiplicative convolu-
tions, this thesis is structuered in three topics.
In the first part, we consider global density estimation under multiplicative measurement error.
After a comparison between direct and noisy observations, we study several families of error dis-
tributions, the multivariate case and the influence of dependence structures in the data. Here in
each case we will propose an estimation strategy, discuss its minimax-optimality and consider data-
driven choices of smoothing parameters. The theoritcal expected behavior of the estimators are
illustrated through Monte-Carlo simulations.
In the second part, we study global survival function estimation, which is, alongside the density of
a distribution, a frequently considered characterization of a distribution. We once again propose
an estimation method, prove its minimax-optimality and discuss data-driven choices of smoothing
parameters. Furthermore, we analyse the stability of the estimator for Bernoulli-shift processes and
visualize it using a Monte-Carlo simulation.
The third part considers the estimation of the evaluation of an linear functional under multiplicative
measurement errors. The point evaluation of the density, the survival function and the cumulative
distribution function, to mention only a few, can be intrepreted as an evaluation of a linear func-
tional. This allows the simultaneous analysis of these different estimation problems and the com-
parison of the ill-posedness of the underlying inverse problems. A minimax-optimal estimation
strategy as well as a data-driven choice of the smoothing parameters are presented and analyzed.
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CHAPTER1

Introduction

In this thesis, we are in general interested in the nonparametric estimation in a multiplicative mea-
surement errors model. Starting with an motivation for the multiplicative measurement errors
models, we will continue with an introduction to the nonparametric estimation framework and
include the multiplicative measurement errors in the theory of inverse problems. We will then
procede to a historical overview of the Mellin transform followed by a list of the contribution of
this thesis to the existing nonparametric statistics literature.

Motivation

In the statistical inference, we are in general interested in using empirical data, for instance a sam-
ple X1, . . . , Xn, to gain information about the underlying distribution PX . For example we are
interested in the expected numbers of a cells on a 3D printed grid. This elementary problem can
directly be solved by using the empirical mean of the sample X1, . . . , Xn.
In practice however, the sample X1, . . . , Xn is often corrupted in the sense, that we might not
be able to observe the number of cells explicitly. For example, cell counting programs sometimes
count two cells which are too close to each other as one cell. This measurement error would always
leads to a smaller number of cells per experiment. It is clear to see, that an additive model does not
fit the described measurement error as it is of a ratio nature. Moreover, it is natural to model the
measurement error as a random variable as it possibly depends on different latent effects.
In other words, instead of a sample X1, . . . , Xn, we do only observe a sample Y1, . . . , Yn where

Yi = Xi · Ui, i = 1, . . . , n,

where the error term Ui is a random variable with values in (0, 1). In this case, if the numbers
of cells Xi and the measurement error of Ui are independent, the estimation of the mean is rather
straight forward. Another question, for example the cestimation of the probability that the numbers
of cells is bigger than 100, i.e. P(X > 100), leads to a very interesting but complicated statistical
inverse problems which will be discussed throughout this thesis.
Before we formally introduce the multiplicative measurement errors model, we shall briefly reca-
pitulate some elementary concepts of nonparametric estimation.
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Nonparametric estimation

Let us consider a statistical experiment (Ω,A,PΘ) where (Ω,A) is a measurable space and PΘ :=

(Pθ)θ∈Θ is a family of probability measures on (Ω,A). If the parameter space Θ can be identified
with a subset of Rk, k ∈ N, one usually speaks of a PARAMETRIC FRAMEWORK. In contrary, if such
an identification does not exist, the framework is said to be NONPARAMETRIC, compare Tsybakov
(2009).
In other words, in nonparametric statistics, we do not assume that the parameter space Θ can be
expressed as a subset of a finite-dimensional space. For instance, a frequently considered example
of Θ would be the set of all square-integrable Lebesgue densities on R.
In nonparametric estimation, we are interested in estimating θo ∈ Θ, respectively γ(θo) for γ : Θ →
Γmeasurable, based on an identically distributed sampleX1, . . . , Xn ∼ Pθo . Given ameasurable loss
function d : Γ×Γ → [0,∞), we measure the accuracy of an estimator γ̂ := γ̂(X1, . . . , Xn) : Ω → Γ

through the expected risk
Rn(γ̂, γ(θo)) := Enθ0(d(γ̂, γ(θo)))

of the estimator γ̂ given θo ∈ Θ. Here, Enθ0 denotes the expectation with respect to the joint
distribution of X1, . . . , Xn. An example for such a risk is given by the mean integrated squared
error (MISE) where Γ is the space of all square-integrable functions on R and d(f, g) =

∫
R |f(x)−

g(x)|2dλ(x) for f, g ∈ Γ. In this context, λ denotes the Lebesgue measure on R.
A fundamental concept of nonparametric estimation consists of the minimax theory for estimation
problems. We will now briefly summarize the main concepts of this theory while a more precise
study in each estimation scenario can be found throughout this thesis.
For a class F ⊆ Θ, we define the MAXIMAL RISK over the class F of the estimator γ̂ through

Rn(γ̂,F) := sup
θ∈F

Enθ (d(γ̂, γ(θ))).

Usually, the class F consists of an ellipsoid and/or express a regularity condition on the parame-
ter θ ∈ Θ. As typical for nonparametric estimation problems, the maximal risk Rn(γ̂,F) might
not decay with a so-called parametric rate, that is supn∈N n · Rn(γ̂,F) = ∞. To show that the
rate of convergence is an intrinsic feature of the statistical experiment itself rather than being a
consequence of the choice of the estimator, we study the MINIMAX RISK over the class F defined by

Rn(F) := inf
γ̂
Rn(γ̂,F) = inf

γ̂
sup
θ∈F

Eθ(d(γ̂, γ(θ))).

where the infimum is taken over all estimators based on the sampleX1, . . . , Xn. If the maximal risk
of an estimator γ̂ behaves similar as the minimax risk, we would call it MINIMAX OPTIMAL. More
precisely, an estimator γ̂ is minimax-optimal if there exists a constant C > 0 such that for all n ∈ N
holds

Rn(F) ≤ Rn(γ̂,F) ≤ CRn(F).

The first inequality is a direct consequence of the definition of Rn(F) and Rn(γ̂,F). The study
of the minimax risk and the minimax optimality of the proposed estimation strategy will be a
reoccurring topic throughout this thesis. For classical results in context of density and regression
function estimation, we refer to Tsybakov (2009) and Comte (2017).
For the sake of simplicity, let us restrict ourselves to the case of (Ω,A) = (R+,B+) where R+ :=

(0,∞) and B+ denotes the Borel σ-field on R+. In practice, the observationsX1, . . . , Xn are often
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only accessible in presence of measurement errors or censoring. Here, the additive noise model is a
frequently considered noise model, see Meister (2009) for an overview of nonparametric estimation
in additive noise models. In these model, we assume to observe identically distributed copies of Y
with

Y = X + ε,

where ε is a second random variable, stochastically independent of X , the so-called error term.
In this thesis, we will focus on multiplicative measurement errors, that is

Y = X · U,

where U is second random variable, stochastically independent ofX . A brief introduction and how
these two models are connected will be discussed in the following.

Multiplicative measurement errors model

Formally, multiplicative measurement error models can be characterised by a statistical experiment
(R+,B+,PΘ) where we only have access to identically distributed copies of

Y = X · U, X ∼ Pθo , U ∼ PU , (1.1)

whereX and U are stochastically independent. Our goal is to estimate θo, respectively γ(θo), given
the observations Y1, . . . , Yn.
This general model was studied in Belomestny and Goldenshluger (2020) and includes a variety
of frequently considered models as the multiplicative censoring model, see Vardi (1989), and the
stochastic volatility model, see Genon-Catalot et al. (2003), Comte and Genon-Catalot (2006), to
mention only a few.
Due to the independence of X and U the distribution PY of Y is given by the multiplicative con-
volution of the probability measures Pθo and PU . Exploiting the Mellin transform, Belomestny and
Goldenshluger (2020) show that the multiplicative convolution can be rewritten as the product of
the Mellin transforms, that is M[PY ] = M[Pθo ] · M[PU ]. (The precise definition of the Mellin
transform M[P] of a probability measure on (R+,B+) will be given in Chapter 2. For now, it
suffices to read M[P] as a bounded function M[P] : R → C.)
In other words, the Mellin transform allows us to bring the convolution operator T : H → H, for
a Hilbert space H to be specified later on, in a diagonal form, i.e.

T̃ : L2(R) → L2(R), T̃h = h · M[PU ] (1.2)

where L2(R) denotes the space of all square-integrable, complex-valued function on R endowed
with theL2 inner product ⟨·, ·⟩L2(R). Next, we clarify the terminology of inverse problems and then
identify the estimation under multiplicative measurement errors as a statistical inverse problem.

Inverse problems

Given two separable Hilbert spaces (H, ⟨·, ·⟩H) and (G, ⟨·, ·⟩G) and a linear operator

T : H → G, h 7→ Th
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recovering the element ho ∈ H given a noisy observation of go = Tho is called a STATISTICAL
INVERSE PROBLEM. Naturally, the inverse ofT, if it exists, characterizes the stability of the recovering
of ho ∈ H. A statistical inverse problem is called WELL-POSED, compare Hadamard (1902), if the
following three conditions hold

• EXISTENCE. There exists an element h ∈ H such that Th = go, in other words go ∈ TH.

• UNIQUENESS. For all h, ho ∈ H holds: Th = g = Tho implies h = ho, in other words the
operator T is injective.

• STABILITY. The inverse operator T† is continuous, that is for all ε > 0 there exists δ > 0 such
that ∥T†g1 − T†g2∥H ≤ ε for all g1, g2 ∈ G with ∥g1 − g2∥G ≤ δ.

In this thesis, the existence of a solution for the operator in (1.2) is equivalent with the fact that
go/M[PU ]1{M[PU ] ̸=0} ∈ H which is guaranteed by the assumption that our data is generated by
the equation (1.1). From (1.2) we see that the uniqueness of a solution is ensured as soon if the set
of all zeros of the Mellin transform of PU is a Lebesgue null-set which is a common assumption
in the additive noise model, compare Meister (2009). Furthermore, we will discuss that in terms
of stability, we see that the inverse operator is not continuous as soon as the Mellin transform
M[PU ](t) tends to zero for |t| going to infinity. This is already the case if U possesses a Lebesgue
density. It is therefore that the estimation under multiplicative measurement errors is in many cases
an ILL-POSED statistical inverse problem.

In the case of ill-posed inverse problem, we cannot ensure that a good approximate of go would
lead to a good approximate of ho, or that even the noisy observation of go lies inside of the domain
of T†. To overcome this instability issue REGULARIZATION METHODS are needed. In this theses,
we primary use the spectral cut-off regularization method, respectively a variation of it, which
we present first in the setting of inverse problems and then in the particular case of multiplicative
measurement error models.
Let T : H → H be a normal operator. Then due to the spectral theorem of normal operators,
compare Werner (2006), the normal operator is unitary equivalent to a multiplication operator.
More precisely, there exists a measure space (Ω,A , µ), an unitary operator U : H → L2(µ) and a
bounded, complex-valued measurable function τ : Ω → C such that

(UTU†)φ = τ · φ =: Mτφ, µ− almost everywhere,φ ∈ L2(µ). (1.3)

In view of the spectral theorem of normal operators, it is natural to focus on the case of multiplica-
tion operators as the one expressed in (1.2). Thus, we assume from now on that T = Mτ , compare
(1.3).

• SPECTRAL CUT-OFF REGULARIZATION Let L2(µ) be the L2 space with respect to a given mea-
sure space (Ω,A , µ) and

T : L2(µ) → L2(µ), φ 7→ Tφ := τ · φ,

for a bounded, measurable function τ : Ω → C. The spectral cut-off regularized inverse of
T† is then given by the family (T†

k)k∈R+ . where

T†
k : L

2(µ) → L2(µ), φ 7→ T†
kφ :=

φ

τ
1Bk
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where (Bk)k∈R+ is a nested family of subsets of Ω such that
∪
k∈R+

Bk = Ω and τ is bounded
from below on each Bk, k ∈ R+.

In the case of the multiplicative convolution, see (1.2), the function τ is given through M[PU ].
Under some regularity assumption on M[PU ], we then choose Bk := [−k, k] for k ∈ R+. Given
an estimator M̂[PY ] of M[PY ], the spectral cut-off regularization motivates a family of estimator
(M̂k[Pθ0 ])k∈R+ of M[Pθo ] given by

M̂k[Pθ0 ] := T†
kM̂[PY ] =

M̂[PY ]
M[PU ]

1[−k,k]

from which we will deduce a family of estimator (γ̂k)k∈R+ , indexed by the cut-off parameter
k ∈ R+, of the quantity of interest γ(θo). A choice of the cut-off parameter k ∈ R+ which
minimizes the risk of the estimation of γ(θo) is in general non-trivial, as the dependency of the
risk and the cut-off parameter is neither monotone nor known. Strategies to choose the parameter
k ∈ R+ only depending on the observations are called data-driven method and represent next to
the minimax theory an important field inside the nonparametric estimation literature.

Data-driven choices of smoothing parameters

In nonparametric estimation there exists many heuristics to construct estimators. Some examples
are orthonormal series estimators, kernel estimators or estimators based on a regularization strategy
of an inverse problem, compare Comte (2017) and Tsybakov (2009) for an overview. In general,
these heuristics lead not to one single estimator but a family (γ̂k)k∈K of estimator of γ(θo) indexed
by a smoothing parameter k ∈ K and a parameter space K. For kernel estimators the smoothing
parameter k ∈ K = R+ is called bandwidth while for orthonormal series estimators k ∈ K =

N is referred to as dimension parameter. In most of these settings, the choice of the smoothing
parameter is non-trivial. The existing literature addresses this issues by proposing and studying
so-called DATA-DRIVEN or ADAPTIVE methods. In the statistical literature, these two expressions are
sometimes used synonymous.
To avoid confusion, we will only use the expression data-driven methods where we call any choice
k̂ ∈ K depending measurable only on the observations, a data-driven choice of the smoothing
parameter. Some authors distinguish between PARTIALLY or FULLY data-driven methods, if the
choice is additionally dependent on some knowledge of the distribution of the observations or not.
In this thesis, we only consider FULLY DATA-DRIVEN METHODS and call them shortly DATA-DRIVEN
METHODS.
A desirable property of a data-driven method k̂ are risk bounds of the form

Rn(γ̂k̂, γ(θo)) ≤ C1 inf
k∈K

Rn(γ̂k, γ(θo)) + C2rn (1.4)

where C1, C2 ∈ R+ are positive constants possibly depending on θo and rn is a negligible rest term
which vanishes if the sample size n ∈ N goes to infinity. In other words, a data-driven choice k̂
behaves, in terms of its risk, like the best choice of k ∈ K up to a multiplicative constant and a
negligible additive rest term. In the literature, we often find bounds results of the form

Rn(γ̂k̂, γ(θo)) ≤ C1 inf
k∈Kn

Rn(γ̂k, γ(θo)) + C2rn (1.5)
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instead of (1.4) for a subset Kn ⊆ K. If infk∈Kn Rn(γ̂k, γ(θo)) ≤ C3 infk∈K Rn(γ̂k, γ(θo)) for a
positive constant C3 ∈ R+, then we say that Kn ⊂ K is sufficiently large as it leads to no change of
the rate. This may not always be the case.
Similar to the minimax theory, we will propose in each section a data-driven method for the choice
of the upcoming smoothing parameters and prove upper boundaries of the form (1.5).
We present now a brief overview of the history of the Mellin transform in Mathematics and its role
in Probability theory and Statistics.

History of the Mellin transform

TheMellin transform is an integral transformwhich is used in number theory, mathematical statis-
tics and the theory of asymptotic expansions. It is named after the Finnish mathematician Hjalmar
Mellin who was born in 1854 and died in 1933. During his studies Mellin was introduced to the
field of complex analysis by his professor Gösta Mittag-Leffler. In his research he intensely studied
the properties of the Γ-function and its relationship to linear differential and difference equations.
One of his most famous results states that the conditions under which two functions F,Φ satisfy
the relationship {

Φ(x) = 1
2πi

∫ a+i∞
a−i∞ F (z)x−zdz,

F (z) =
∫∞
0 Φ(x)xz−1dx

compare Lindelöf (1933).
In 1948, the mathematician Benjamin Epstein proposed in his paper, Epstein (1948), the usage of
the Mellin transform in probability theory to determine the distribution of a product, respectively
a quotient, of random variables. From there many authors have used the Mellin transform in their
analysis of products of random variables, for instance Fox (1957), Wells et al. (1962), Springer and
Thompson (1966), Lomnicki (1967), Subrahmaniam (1970) and Springer and Thompson (1970)
to mention a few.
In the last years, the Mellin transform found its application in modern nonparametric statistics and
was used by Belomestny and Schoenmakers (2016), Belomestny and Goldenshluger (2020) and
Geenens (2021). Compared to the Fourier transform the Mellin transform has not been used fre-
quently in nonparametric statistics although there exists several models involve the product of two
independent random variables. To establish the usage of the Mellin transform for nonparametric
statistics, we are in need of a theory of Mellin transforms similar to the functional analytical theory
of Fourier transform, respectively the measure theoretical notion of characteristic functions which
is one motivation for the underlying theses.

Contribution and structure of this thesis

This thesis is divided in five chapters. While the first two chapters present a general introduction
in the underlying mathematical concepts and objects, chapter 3, 4 and 5 are dedicated to different
quantities of interest which are estimated in a model with multiplicative measurement errors.
In general all chapters, respectively the sections of the chapter, begin with a short summary of
the proposed results and related literature. Within the sections the main results and necessary
definitions are displayed, discussed and illustrated by several examples. Proofs, which allows for a
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deeper understanding of the topic, are presented within the sections while others are postponed to
a dedicated proof subsection.
Let us summarize the main results of this thesis.

Chapter 2 - The Mellin transform and multiplicative convolution

In nonparametric Statistics, we often rely on functional analytical properties of the studied objects
which are used for the construction of estimators. Although our focus is on the probabilistic respec-
tively statistical aspects of the theory, a sufficiently large collection of properties of the considered,
functional analytical objects is an essential part of the mathematical theory.
To our knowledge such a collection of properties of the Mellin transform does not exist as it has
been rarely used in the context of nonparametric Statistics. It is therefore we collect and prove
these properties in Section 2.
Our main contributions are the following

• We collect and prove properties of the multiplicative convolution from a functional analytical
and probabilistic point of view.

• Further we define the Mellin transform in a functional analytical and probabilistic context
and study their properties.

• We develop a canonical notion of multivariate Mellin transforms and their corresponding
regularity classes.

Parts of this chapter has been published in Brenner Miguel et al. (2021), Brenner Miguel (2021),
Brenner Miguel (2022a), Brenner Miguel (2022b), Brenner Miguel and Phandoidaen (2022) and
Brenner Miguel et al. (2023).

Chapter 3 - Global density estimation under multiplicative measurement
errors

In this chapter, we study the estimation of the density of a positive (multivariate) random variable
with respect to a global risk. This chapter is divided into six sections each with varying assumptions
on the error distribution, respectively the dependency structure of the observations.
In all sections, we contribute to the existing literature the following results

• We construct an estimator based on a regularization of the inverse Mellin transform.

• By proving upper and lower bounds of the risk, we establish the minimax optimality of the
proposed estimator with respect to Mellin Sobolev spaces.

• We propose and study data-driven choices of the upcoming smoothing parameters.

Furthermore we briefly summarize the differences of the sections 3.1 to 3.6.

3.1 DIRECT OBSERVATION: We study the case without multiplicative measurement error and in-
troduce general strategies and concepts which are revisited in the following sections.

3.2 MULTIPLICATIVEMEASUREMENT ERRORS: Themultiplicativemeasurement errormodel is stud-
ied under the assumption of smooth error densities.
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3.3 SUPER SMOOTH ERROR DENSITIES: The results proposed in 3.2 are shown under the assumption
of super smooth error densities.

3.4 OSCILLATING DENSITIES: Another class of error densities, the so-called oscillating error den-
sities are studied in this section.

3.5 MULTIVARIATE DENSITIES: While Section 3.1-3.4 consider univariate density estimation, the
generalization of the estimation procedure to multivariate density estimation can be found
in this section.

3.6 STATIONARY PROCESSES: Section 3.1-3.5 assume independency of the observations. Here,
we only assume stationarity of the observation and study the resulting differences in the risk
bounds of the proposed estimators. Furthermore, we address the volatility density estimation
in a stochastic volatility model using the presented techniques of the chapter 3.

Section 3.1 and 3.2 has been published independently in Brenner Miguel et al. (2021), as well as
Section 3.5 in Brenner Miguel (2021), Section 3.4 in Brenner Miguel (2022a) and Section 3.6 in
Brenner Miguel (2022b).

Chapter 4 - Global survival function estimation under multiplicative
measurement errors

With respect to a global risk, we study in this chapter the estimation of the survival function of a
positive random variable under multiplicative measurement errors. Here, we restrict our studies to
the case of smooth error densities and stationary processes. The chapter is separated in to sections
considering the independent and the dependent case. In all sections, we contribute to the existing
literature the following

• We construct an estimator based on the regularization of the inverse Mellin transform.

• By proving upper and lower bounds of the risk, we show the minimax optimality of the
proposed estimator with respect to the Mellin Sobolev spaces

• We propose and study data-driven choices of the upcoming smoothing parameters.

The results of this section has been published independently in Brenner Miguel and Phandoidaen
(2022).

Chapter 5 - Local estimation under multiplicative measurement errors

In this chapter, we consider the estimation of the evaluation of a linear functional with respect to
the mean squared error. Since the point evaluation can be interpreted as an evaluation of a linear
functional, this setting includes the estimation of several quantities of interests with respect to the
point wise risk. For instance the point wise density and survival function estimation are included
in this setting. We contribute to the existing literature the following

• We construct an estimator based on the regularization of the inverse Mellin transform.

• By proving upper and lower bounds of the risk, we show the minimax optimality of the
proposed estimator with respect to the Mellin Sobolev spaces
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• We propose and study data-driven choices of the upcoming smoothing parameters.

The results of this section has been published independently in Brenner Miguel et al. (2023).
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CHAPTER2

The Mellin transform and multiplicative convolution

2.1 The Mellin transform for distributions

In this section, we start to define the multiplicative convolution and the Mellin transform for distri-
butions similar to the definitions of additive convolution and characteristic functions. Inspired by
the characteristic function chapter in Durrett (2019), we show corresponding results for the Mellin
transform and the multiplicative convolution of distributions.

2.1.1 Multiplicative convolution

Let us consider the measurable space (R+,B+) where we denote by R+ := (0,∞) the set of all
strictly positive real numbers and B+ the Borel σ-algebra on R+.
Let X,Y be two independent R+ random variables with distribution PX and PY on (R+,B+).
It is well-known that the random vector (X,Y ) follows the product measure PX ⊗ PY on R2

+.
Therefore, the random variable XY follows the distribution (PX ⊗ PY ) ◦ ⊙−1, where ⊙ : R2

+ →
R+, (x, y) 7→ xy which leads to the following definition.

Definition 2.1.1 (Multiplicative Convolution):
Let P,Q be two probability measures on (R+,B+). Then we call the probability measure

P ∗Q := (P⊗Q) ◦ ⊙−1

on (R+,B+) the MULTIPLICATIVE CONVOLUTION of P and Q.

By the definition of the multiplicative convolution its commutativity and associativity follows
straightforward. If bothmeasures are dominated by the countingmeasure, respectively the Lebesgue
measure, we can express the multiplicative deconvolution in a more explicit form.
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Proposition 2.1.2:
Let P and Q be two probability measures on (R+,B+).

(i) Let A ⊆ R+ be a discrete, or an at most countable, subset of R+ such that A ⊙ A ⊆ A. If
the probability measures P and Q are dominated by the counting measure δ|A on A with
Radon-Nikodym derivatives p := dP

dδ|A
and q := dQ

dδ|A
then P ∗Q is dominated by δ|A and has

for any a ∈ A the Radon-Nikodym derivative

(p ∗ q)(a) :=
∑
b∈A

p(a/b)q(b), where p(z) := 0 for z ∈ R+ \A.

(ii) If the probability measures P and Q are dominated by the Lebesgue measure λ with Radon-
Nikodym derivatives f = dP

dλ and g = dQ
dλ then P ∗Q is dominated by λ and has the Radon-

Nikodym derivative

(f ∗ g)(y) :=
∫
R+

f(y/x)g(x)x−1dλ(y), for any y ∈ R+.

Proof of Proposition 2.1.2. Let A ⊆ R+ with A⊙A ⊆ A and A at most countable. For a ∈ A we
have ⊙−1(a) =

∪
b∈R+

{(b, a/b)}. Since P is dominated by the measure δ|A we get

(P ∗Q)[{a}] =
∑
b∈A

P⊗Q[{(b, a/b)}] =
∑
b∈A

p(b)q(a/b).

For the second part, let y ∈ R+. Then,

(P ∗Q)[(−∞, y)] =

∫
R+

∫
(0,y/x)

f(x)g(z)dλ(z)dλ(x) =

∫
(0,y)

∫
R+

f(x)g(z/x)x−1dλ(x)dλ(z)

by application of the Fubini-Tonelli theorem and a change of variable. We deduce thatP∗Q is dom-
inated by the Lebesgue measure with Radon-Nikodym density y 7→

∫
R+
f(x)g(y/x)x−1dλ(x).

Let us now illustrate the multiplicative convolution using the example of Log-Gamma and Log-
Normal distributed random variables.

Example 2.1.3 (Log-Gamma Distribution):
The family of Log-Gamma densities (fa,σ)(a,σ)∈R2

+
with respect to the Lebesgue measure is given

by

fa,σ(x) =
σa

Γ(a)
x−σ−1(log(x))a−11(1,∞)(x) for x ∈ R+.

Here Γ denotes the Gamma function Γ : C\N−
0 → C, s 7→

∫∞
0 xs−1 exp(−x)dxwith N−

0 := {−n :

n ∈ N0}. Then for arbitrary σ, a1, a2 ∈ R+,

fa1,σ ∗ fa2,σ = fa1+a2,σ.

This can be deduced from the formula in Proposition 2.1.2.
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Example 2.1.4 (Log-Normal Distribution):
The family of Log-Normal densities (fµ,σ2)(µ,σ2)∈R×R+

with respect to the Lebesgue measure is
given by

fµ,σ2(x) =
1√
2πσx

exp(−(log(x)− µ)2/2σ2)1R+(x) for x ∈ R+.

Then for any σ21, σ22 ∈ R+ and for any µ1, µ2 ∈ R,

fµ1,σ2
1
∗ fµ2,σ2

2
= fµ1+µ2,σ2

1+σ
2
2
.

This can be deduced from the formula in Proposition 2.1.2.

A more elegant way to show that the convolution properties in Example 2.1.3 and Example 2.1.4
is by using the theory of Mellin transforms which will be presented next.

2.1.2 The Mellin transform

Let us denote by P+ the set of all probability measures on (R+,B+). For c ∈ R we set

P+
c := {P ∈ P+ : EP(X

c−1) :=

∫
R+

xc−1dP(x) <∞},

as the set of all probability measures on (R+,B+) with finite c− 1 moment. Note that P+ = P+
1 .

Definition 2.1.5 (Mellin transform for distributions):
Let P ∈ P+

c for a c ∈ R. Then we define the MELLIN TRANSFORM Mc[P] of the distribution P
developed in the point c as the function Mc[P] : R → C, by

Mc[P](t) := EP(X
c−1+it) =

∫
R+

xc−1+itdP(x) (2.1)

for any t ∈ R. Here i ∈ C denotes the imaginary unit.

Given that P is dominated by the Lebesgue measure, respectively the counting measure on a dis-
crete set A ⊆ R+, we can rewrite Equation (2.1) as

Mc[P](t) =
∫
R+

xc−1+itf(x)dλ(x) resp. Mc[P](t) =
∑
b∈A

bc−1+itp(b)

for any t ∈ R where f and p are the Radon-Nikodym derivatives with respect to the Lebesgue
measure, respectively the counting measure on A. Let us illustrate the Mellin transform by giving
some examples of commonly considered distribution families.
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Example 2.1.6 (Beta-Distribution):
We consider the family of Beta-Distributions (Pa,b)(a,b)∈R2

+
with Lebesgue densities

fa,b(x) := B(a, b)−1xa−1(1− x)b−11(0,1)(x)

for x, a, b ∈ R+. Here, B denotes the Beta-function B(x, y) :=
∫ 1
0 t

x−1(1 − t)y−1dt for x, y ∈ C
with strictly positive real parts Re(x),Re(y) > 0. For all a, b ∈ R+ and c ∈ (1 − a,∞) we have
Pa,b ∈ P+

c . The Mellin transform of the Beta-distribution is then given by

Mc[Pa,b](t) = B(a, b)−1

∫
(0,1)

xc+a−2+it(1− x)b−1dλ(x) =
B(c+ a− 1 + it, b)

B(a, b)

for any t ∈ R. If b ∈ N, then the last expression simplifies to

Mc[Pa,b](t) =
b∏

j=1

a− 1 + j

c+ a− 2 + j + it
for any t ∈ R.

Example 2.1.7 (Gamma-Distribution):
Let us consider the family of Gamma-Distributions (Pp,λ)(p,λ)∈R2

+
with Lebesgue densities

fp,λ(x) =
λp

Γ(p)
xp−1 exp(−λx)1(0,∞)(x)

for p, λ, x ∈ R+. For all p, λ ∈ R+ and c ∈ (1 − p,∞) we have Pp,λ ∈ P+
c . The Mellin transform

of the Gamma-Distribution is then given by

Mc[Pp,λ](t) = λ1−c−it
Γ(p+ c− 1 + it)

Γ(p)
for any t ∈ R.

From the Definition 2.1.5 we can derive that |Mc[P](t)| ≤ Mc[P](0) = EP[X
c−1]. Furthermore,

we can show the following property which is called the CONVOLUTION THEOREM for the Mellin
transform.

Proposition 2.1.8 (Convolution theorem for the Mellin transform):
Let c ∈ R and P,Q ∈ P+

c . Then P ∗Q ∈ P+
c and

Mc[P ∗Q] = Mc[P] · Mc[Q].

Proof of Proposition 2.1.8. First we see that

EP∗Q[X
c−1] =

∫
R+

xc−1d(P ∗Q)(x) =

∫
R2
+

(uv)c−1d(P⊗Q)(u, v) = EP[X
c−1]EQ[X

c−1].

Analogously, we can show that for all t ∈ R, Mc[P ∗Q](t) = Mc[P](t)Mc[Q](t).

Now we will show that for two distribution having the same Mellin transform at a development
point c ∈ R already implies that these distributions are identical.
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Proposition 2.1.9 (Uniqueness of the Mellin transform):
Let c ∈ R and P,Q ∈ P+

c . If Mc[P] = Mc[Q], then P = Q.

Proof of Proposition 2.1.9. It suffices to consider the case c = 1. Indeed, setting µ := EP[X
c−1] =

Mc[P](0) = EQ[X
c−1] we define if µ ̸= 0 the distributions P̃, Q̃ ∈ P+

1 through their Radon-
Nikodym derivatives

dP̃
dP

(x) :=
xc−1

µ
, respectively

dQ̃
dQ

(x) :=
xc−1

µ
.

Then µM1[P̃](t) = Mc[P](t) = Mc[Q](t) = µM1[Q̃](t) for any t ∈ R. If µ = 0 we already have
P = δ|{0} = Q.
Let c = 1 and let k ∈ R+. Then for any a < b ∈ R+ we have∫

[−k,k]

a−it − b−it

2πit
M1[P](t)dλ(t) =

∫
R+

1

π

∫
[−k,k]

(
x
a

)it − (xb )it
2it

dλ(t)dP(x).

Considering the inner integral we see that by exploiting µit = cos(log(µ)t)+ i sin(log(µ)t) for any
µ ∈ R+ we get∫

[−k,k]

(
x
a

)it − (xb )it
2it

dλ(t) =

∫
[0,k]

sin(log(x/a)t)− sin(log(x/b)t)

t
dλ(t)

= g(k log(x/a))− g(k log(x/b))

for g(t) := 1
π

∫ t
0

sin(u)
u du. Now we have that limt→∞ g(t) = 1/2 and limt→−∞ g(t) = −1/2. This

on the other-hand implies

g(k log(x/a))− g(k log(x/b)) →


0 , x ̸= [a, b]

1/2 , x ∈ {a, b}
1 , x ∈ (a, b)

.

Taking the limes inside the integral, which is allowed due to the fact that g is bounded and P is a
probability measure, we get that

lim
k→∞

∫
[−k,k]

a−it − b−it

2πit
M1[P](t)dλ(t) = P[(a, b)] +

1

2
(P[{a}] + P[{b}]).

Thus, we conclude from M1[P](t) = M1[Q](t) that for any a < b ∈ R+ Q[(a, b)] + 1
2(Q[{a}] +

Q[{b}]) = P[(a, b)] + 1
2(P[{a}] + P[{b}]). Now for any open interval I = (a, b) ⊂ R+ we can find

a sequence ((an, bn))n∈N with

• an ≤ an+1 ≤ a, bn ≥ bn+1 ≥ b for all n ∈ N;

• limn→∞ an = a, limn→∞ bn = b and

• (an)n∈N and (bn)n∈N are neither atoms of P nor atoms of Q.

This is possible due to the fact that there are at most countable many atoms for each probability
measure. Due to the continuity from above of the probability measure we deduce that P[I] = Q[I]

for any open interval I ⊂ R+.
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Now let us revisit Example 2.1.3 and Example 2.1.4 to show the convolution properties.

Example 2.1.10 (Example 2.1.3 continued):
For all a, λ ∈ R+ and c ∈ (−∞, λ) the Mellin transform of the Log-Gamma distribution Pa,λ with
density fa,λ(x) = λa

Γ(a)x
−λ−1 log(x)a−11(1,∞)(x) is given by

Mc[Pa,λ](t) = λa(λ− c+ 1− it)−a, for all t ∈ R.

We deduce thus by application of the convolution theorem, Proposition 2.1.8, that Mc[Pa1,λ ∗
Pa2,λ] = Mc[P(a1+a2,λ)]. Applying now the uniqueness of the Mellin transform, Proposition 2.1.9,
we get fa1,λ ∗ fa2,λ = fa1+a2,λ.

Example 2.1.11 (Example 2.1.4 continued):
For all µ ∈ R, λ ∈ R+ and c ∈ R the Mellin transform of the Log-Normal distribution (Pµ,λ2)
with density fµ,λ2(x) = 1√

2πλx
exp(−(log(x)− µ)2/2λ2)1R+(x) is given by

Mc[Pµ,λ](t) = exp(µ(c− 1 + it)) exp(λ2
(c− 1 + it)2

2
), for all t ∈ R.

We deduce thus by application of the convolution theorem, Proposition 2.1.8, that Mc[Pa1,λ21 ∗
Pa2,λ22 ] = Mc[P(a1+a2,λ21+λ

2
2)
]. Applying now the uniqueness of the Mellin transform, Proposi-

tion 2.1.9, we get that fa1,λ21 ∗ fa2,λ22 = fa1+a2,λ21+λ22 .
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2.2 The Mellin transform for integrable functions

In the last section we introduced the Mellin transform for arbitrary probability measures P on
(R+,B). For probability measures dominated by the Lebesgue measure, we have seen that the
Mellin transform can be expressed using the Radon-Nikodym derivative of P with respect to the
Lebesgue measure. For the sake of simplicity we will call any Radon-Nikodym derivative with
respect to the Lebesgue measure from now on a density with respect to the Lebesgue measure or
short a density.
In this section, we will build a theory of the Mellin transform from a more functional analytical
point of view. To do so, we construct the Mellin transform and analyze its properties similar to the
theory of Fourier transform. A well-structured introduction to the theory of Fourier transform can
be found for instance inWerner (2006). The introduction ofWerner (2006) inspired the presented
theory.
Let us now introduce some frequently used notation and definitions from the theory of Lp-spaces.
More precisely, we consider for a Borel-measurable weight function ω : R → R+ the cor-
responding weighted semi-norm by ∥h∥ω :=

∫
R+

|h(x)|ω(x)dλ(x) for a measurable function
h : R+ → C. Denote byL1(R+, ω) the set of all measurable functions with finite ∥ . ∥L1(R+,ω)-semi-
norm. For h1, h2 ∈ L1(R+, ω) we can define the equivalence relation ∼ by h1 ∼ h2 :⇔ h1 = h2
Lebesgue-almost everywhere. As usual, we denote by L1(R+, ω) := {[h] : h ∈ L1(R+, ω)}
the set of all equivalence classes [h] with respect to ∼. On this set, we can define the norm
∥[h]∥L1(R+,ω) := ∥h∥L1(R+,ω) where h ∈ L1(R+, ω) is a representant of [h] ∈ L1(R+, ω). Since
the right-hand-side of the definition is independent of the choice of the representant h ∈ [h] the
norm is well-defined and in fact a norm. By abuse of notation, we will write ∥h∥L1(R+,ω) instead of
∥[h]∥L1(R+,ω) and h ∈ L1(R+, ω) instead of [h] ∈ L1(R+, ω) keeping in mind, that h always stands
for the whole equivalent class which h is a member of.

2.2.1 Multiplicative convolution

The following Lemma ensures that we can define the multiplicative convolution of two functions
h1, h2 ∈ L1(R+, x

c−1), where the weight function xc−1 for c ∈ R is defined by xc−1 : R+ →
R+, y 7→ yc−1.

Lemma 2.2.1:
Let c ∈ R and h1, h2 ∈ L1(R+, x

c−1). Then for any y ∈ R+ the function Iy : R+ 7→ R, x 7→
Iy(x) := h1(y/x)h2(x)x

−1 is measurable and integrable for almost all y ∈ R+ . Furthermore,
the function h1 ∗ h2 : R+ → R, y 7→

∫
R+
Iy(x)dλ(x) is weighted integrable, that is h1 ∗ h2 ∈

L1(R+, x
c−1) with

∥h1 ∗ h2∥L1(R+,xc−1) ≤ ∥h1∥L1(R+,xc−1)∥h2∥L1(R+,xc−1).

Proof of Lemma 2.2.1. The measurability of Iy is obvious. The fact, that Iy is integrable for almost
all y ∈ R+ is equivalent to the case that the set N := {y ∈ R+ :

∫
R+

|h1(y/x)||h2(x)|x−1dλ(x) =

∞} is a Lebesgue-null set. To show this, let us define h̃1 := xc−1|h1|∥h1∥−1
L1(R+,xc−1)

and analo-

gously h̃2. Then both, h̃1, h̃2 are densities. Denoting P1,P2 the corresponding distributions on
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(R+,B+) we see that P1 ∗ P2 has the density

(h̃1 ∗ h̃2)(y) =
yc−1

∥h1∥L1(R+,xc−1)∥h2∥L1(R+,xc−1)

∫
R+

|h1(y/x)||h2(x)|x−1dλ(x) (2.2)

Since (h̃1 ∗ h̃2) is a density, the set N needs to be a Lebesgue-null set and ∥h̃1 ∗ h̃2||L1(R+,x0) = 1.
On the other hand, we can directly derive from (2.2) that

∥h1 ∗ h2∥L1(R+,xc−1) ≤
∫
R+

yc−1

∫
R+

|h1(y/x)||h2(x)|x−1dλ(x)dλ(y)

= ∥h1∥L1(R+,xc−1)∥h2∥L1(R+,xc−1).

It is worth stressing out, that the function h1 ∗ h2 is not dependent on the choice of c ∈ R. Now
we are able to define the multiplicative convolution for L1(R+, x

c−1)-functions.

Definition 2.2.2 (Multiplicative convolution of L1(R+, x
c−1) functions):

Let c ∈ R and h1, h2 ∈ L1(R+, x
c−1). Then we call the function h1 ∗ h2 ∈ L1(R+, x

c−1) with

(h1 ∗ h2)(y) :=
∫
R+

h1(y/x)h2(x)x
−1dλ(x) for any y ∈ R+,

the MULTIPLICATIVE CONVOLUTION of h1 and h2.

By definition of the multiplicative convolution operator ∗ : L1(R+, x
c−1) × L1(R+, x

c−1) →
L1(R+, x

c−1) with (h1, h2) 7→ h1 ∗ h2 is associative and commutative. Further, for two proba-
bility measures P1,P2 with densities h1, h2 the multiplicative convolution h1 ∗ h2 of h1 and h2
coincides with the density of the multiplicative convolution P1 ∗P2 of the measures P1 and P2. We
will now define the Mellin transform for a function h ∈ L1(R+, x

c−1).

2.2.2 The Mellin transform

For h ∈ L1(R+, x
c−1) the function x 7→ xc−1+ith(x) is absolutely integrable for any t ∈ R which

allows us to define the Mellin transform of h in the following way.

Definition 2.2.3 (The Mellin transform for L1(R+, x
c−1) functions):

Let c ∈ R and h ∈ L1(R+, x
c−1). Then we define the MELLIN TRANSFORM Mc[h] of the function

h developed in the point c as the function Mc[h] : R → C, where

Mc[h](t) :=

∫
R+

xc−1+ith(x)dλ(x) for any t ∈ R.

We observe for P ∈ P+
c with Lebesgue density f , thatMc[P] = Mc[f ], which motivates the abuse

of notation. From the definition of the Mellin transform we can derive the following properties.
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Proposition 2.2.4 (Calculation rules for Mellin transforms):
Let c, p ∈ R and κ ∈ R+.

(i) If h ∈ L1(R+, x
c+p−1) then Mc[x

ph] = Mc+p[h]

(ii) If h ∈ L1(R+, x
c/κ−1) then Mc[h ◦ xκ](t) = κ−1Mc/κ[h](t/κ) for any t ∈ R.

(iii) If h ∈ L1(R+, x
−c−1) then Mc[h(x

−1)](t) = M−c[h](−t) for any t ∈ R.

(iv) If h ∈ L1(R+, x
c−1) then Mc[h(κx)](t) = κ−c−itMc[h](t) for any t ∈ R.

(v) If h ∈ L1(R+, x
c), with c > 0, and Sh(y) :=

∫
(y,∞) h(x)dλ(x), y ∈ R+, then Mc[Sh](t) =

(c+ it)−1Mc+1[h](t) for any t ∈ R.

Proof of Proposition 2.2.4. The claim (i) is obvious. For (ii) we see that

Mc[h(x
κ)](t) = κ−1

∫
R+

xc−κ+itκxκ−1h(xκ)dλ(x)

= κ−1

∫
R+

xc/κ−1+it/κh(x)dλ(x) = κ−1Mc/κ[h](t/κ)

for any t ∈ R by a change of variables. Analogously, we can show (iii) and (iv) by a change of
variables. For (v) we see that for any t ∈ R by application of Fubini-Tonelli,

Mc[Sh](t) =

∫
R+

∫
R+

xc−1+it1(0,y)(x)h(y)dλ(y)dλ(x) =

∫
R+

h(y)

∫
(0,y)

xc−1+itdλ(x)dλ(y)

= (c+ it)−1

∫
R+

yc+ith(y)dλ(y) = (c+ it)Mc+1[h](t).

We will show that the convolution theorem, Proposition 2.1.8, holds also true on L1(R+, x
c−1).

Proposition 2.2.5 (Convolution theorem for L1(xc−1,R+) functions):
Let h1, h2 ∈ L1(R+, x

c−1) for a c ∈ R. Then

Mc[h1 ∗ h2] = Mc[h1] · Mc[h2].

Proof of Proposition 2.2.5. In the proof of Lemma 2.2.1 we have already seen that the function
y 7→

∫∞
0 |h1(y/x)||h2(x)|x−1dx belongs to L1(R+, x

c−1). This allows for the following usage of
the Fubini-Tonelli theorem

Mc[h1 ∗ h2](t) =
∫
R+

yc−1+ith1 ∗ h2(y)dλ(y)

=

∫
(0,∞)

h2(x)x
−1

∫
(0,∞)

yc−1+ith1(y/x)dλ(y)dλ(x)

=

∫
(0,∞)

h2(x)x
c−1+it

∫
(0,∞)

yc−1+ith1(y)dλ(y)dλ(x) = Mc[h1](t) · Mc[h2](t)

for any t ∈ R.
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2.3 The Mellin transform for square-integrable functions

In this section we expand the Mellin transform to square-integrable functions and derive the fre-
quently used properties such as the inversion formula, a Plancherel identity, and develop a theory
of Sobolev spaces for the Mellin transform. An equivalent introduction to the Fourier transform
can be found in Werner (2006) which inspired the upcoming section.
Let us, similar to L1(R+, x

c−1), define

L2(R+, x
2c−1) = {h : R+ → C : ∥h∥2x2c−1 :=

∫
R+

|h(x)|2x2c−1dλ(x) <∞}/ ∼,

the quotient set of all measurable functions h : R+ → C with finite L2(R, x2c−1) norm, where
∼ is the equivalence relation defined in the last section. We endow the set L2(R+, x

2c−1) with
the induced inner product ⟨h1, h2⟩x2c−1 :=

∫
R+
h1(x)h2(x)x

2c−1dλ(x) for h1, h2 ∈ L2(R+, x
2c−1).

Analogously, we define L2(R), respectively L1(R), the set of all measurable functions H : R → C
with finite L2(R)-norm, that is ∥H∥2R :=

∫
R |H(x)|2dλ(x) < ∞, and endow it with the inner

product ⟨H1,H2⟩R :=
∫
RH1(x)H2(x)dλ(x). Furthermore, let L1(R) be the quotient set of all

integrable, complex-valued measurable function with norm ∥H∥L1(R) :=
∫
R |H(x)|dλ(x) for H ∈

L1(R).

2.3.1 Multiplicative convolution

Lemma 2.3.1:
Let h1, h2 ∈ L1(R+, x

c−1) and h2 ∈ L2(R+, x
2c−1) for a c ∈ R. Then h1 ∗ h2 ∈ L1(R+, x

c−1) ∩
L2(R+, x

2c−1) with ∥h1 ∗ h2∥x2c−1 ≤ ∥h1∥L1(R+,xc−1)∥h2∥x2c−1 .

Proof of Lemma 2.3.1. Due to Lemma 2.2.1 we have h1 ∗ h2 ∈ L1(R+, x
c−1). It remains to show

that h1 ∗ h2 ∈ L2(R+, x
2c−1). By the application of the generalized Minkowski inequality, we see

∥h1 ∗ h2∥2x2c−1 =

∫
R+

∣∣∣∣∫
R+

h1(y/x)h2(x)x
−1yc−1/2dλ(x)

∣∣∣∣2 dλ(y)
≤

(∫
R+

(∫
R+

|h1(y/x)|2|h2(x)|2x−2y2c−1dλ(y)

)1/2

dλ(x)

)2

= ∥h1∥2x2c−1∥h2∥2L1(R+,xc−1).

2.3.2 The Mellin transform

For c ∈ R let us first revisit the definition of the Mellin transform on L1(R+, x
c−1) functions. Sec-

ondly, we deduce a notion of aMellin transform onL2(R+, x
2c−1). Let h ∈ L1(R+, x

c−1). Then for
any t ∈ R, by a change of variable,

∫∞
0 xc−1+ith(x)dx =

∫∞
−∞ exp(−itx) exp(−xc)h(exp(−x))dx

which implies

Mc[h](t) = (2π)1/2F [H](t), (2.3)

where H(x) := exp(−xc)h(exp(−x)) and F [H] : R → C, t 7→ (2π)−1/2
∫
R exp(−itx)H(x)dλ(x)

is the FOURIER TRANSFORM for H ∈ L1(R). A definition of the Fourier transform and some of its
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major properties are collected in Section 2.6. The identity in equation (2.3) motivates the following
construction. Let us define the diffeomorphism φ : R → R+, x 7→ exp(−x). Furthermore, let us
denote by M(R), respectively M(R+) the set of all measurable, complex-valued functions on R,
respectively on R+. Then the operator

Φc : M(R+) → M(R), h 7→ Φ(h) := φc · (h ◦ φ)

is isomorphic with inverseΦ†
c : M(R) → M(R+).H 7→ x−c ·(H◦φ†), where φ†(x) := − log(x), x ∈

R+. Since φ is a diffeomorphism we get for h1 ∼ h2, h1, h2 ∈ M(R+) that Φc[h1] ∼ Φc[h2].
Therefore we can interpret the operator Φc as an operator Φc : L2(R+, x

2c−1) → M(R)/ ∼. More
precisely, we show the following mapping property.

Lemma 2.3.2:
The mapping Φc : L2(R+, x

2c−1) → L2(R) is an isomorphism with inverse Φ†
c.

Proof of Lemma 2.3.2. Let h ∈ L2(R+, x
2c−1). Then,∫

R
|Φc[h](x)|2dλ(x) =

∫
R
exp(−2xc)|h(exp(−x))|2dλ(x)

=

∫
R+

x2c−1|h(x)|2dλ(x) <∞,

which impliesΦc[L2(R, x−1)] ⊆ L2(R). Analogously, we see that Φ†
c[L2(R)] ⊆ L2(R+, x

−1).

Let us now define the operator

F2 : L2(R) → L2(R),H 7→ lim
k→∞

F [H1[−k,k]],

the so-called FOURIER-PLANCHEREL transform, where the limit is understood in the sense of L2(R)
convergences, compare Theorem 2.6.3. As an abuse of notation we will drop the index of the
Fourier-Plancherel transform. Now, Equation (2.3) motivates the following Definition.

Definition 2.3.3 (The Mellin transform for L2(R+, x
2c−1) functions):

For c ∈ R and h ∈ L2(R+, x
2c−1) we define the MELLIN TRANSFORM Mc[h] of h developed in c as

the function Mc[h] : R → C where

Mc[h] := (2π)1/2(F ◦ Φc)(h).

If h ∈ L2(R+, x
2c−1)∩L1(R+, x

c−1), then the two notions of the Mellin transforms, compare Def-
inition 2.2.3 and Definition 2.3.3, are identical. This property is captured in the next Proposition.

Proposition 2.3.4:
Let c ∈ R and h ∈ L2(R+, x

2c−1) ∩ L1(R+, x
c−1). Then for any t ∈ R,

(2π)1/2(F ◦ Φc)(t) =
∫
R+

xc−1+ith(x)dλ(x).
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Proof of Proposition 2.3.4. For h ∈ L2(R+, x
2c−1)∩L1(R+, x

c−1)we haveΦc[h] ∈ L1(R)∩L2(R).
In this situation, the Fourier and the Fourier-Plancherel transformation coincides, see Proposi-
tion 2.6.5. From this we deriveby a change of variable that for any t ∈ R,

(2π)1/2F [Φc[h]](t) =

∫
R
exp(−itx)Φc[h](x)dλ(x) =

∫
R+

xc−1+ith(x)dλ(x).

We will now derive important properties of the Mellin transform which will be used frequently
in this dissertation.

Proposition 2.3.5 (Plancherel identity for Mellin transforms):
Let c ∈ R. Then for all h1, h2 ∈ L2(R+, x

2c−1), the Plancherel identity holds true, that is

⟨h1, h2⟩x2c−1 = (2π)−1⟨Mc[h1],Mc[h2]⟩R.

Furthermore, the PARSEVAL IDENTITY holds true, that is ∥h1∥2x2c−1 = (2π)−1∥Mc[h1]∥2R.

Proof of Proposition 2.3.5. For h1, h2 ∈ L2(R+, x
2c−1) we have by a change of variable

⟨h1, h2⟩x2c−1 = ⟨Φc[h1],Φc[h2]⟩R
= (2π)−1⟨F [Φc[h1]],F [Φc[h2]]⟩R

and an application of the Plancherel identity, Proposition 2.6.4, for the Fourier-Plancherel trans-
form. This shows the first claim. The Parseval identity follows from the Plancherel identity and
vice versa.

As a composition of isomorphisms Mc : L2(R+, x
2c−1) → L2(R) is an isomorphism. Let us

denote by M†
c : L2(R) → L2(R+, x

2c−1) its inverse. Then we can see that M†
c = (2π)1/2Φ†

c ◦ F†

whereF† is the inverse of the Fourier-Plancherel transform. We can therefore derive the following
explicit representation of the inverse Mellin transform for a special case. More precisely, in the case
of H ∈ L1(R) ∩ L2(R) we can express a representant of M†

c[H] explicitly through the following
formula.

Proposition 2.3.6 (The inverse Mellin transform):
For H ∈ L1(R) ∩ L2(R) the inverse Mellin transform M†

c : L2(R) → L2(R+, x
2c−1) for c ∈ R of

H is explicitly given by

M†
c[H](x) =

1

2π

∫
R
x−c−itH(t)dλ(t) for any x ∈ R+.

Proof of Proposition 2.3.6. For H ∈ L1(R) ∩ L2(R) we can express the inverse of the Fourier-
Plancherel transform by F†[H](x) = (2π)−1/2

∫
R exp(itx)H(t)dλ(t), compare Theorem 2.6.6.

On the other hand for any H ′ ∈ L2(R) we have Φ†
c[H ′](x) = x−cH ′(− log(x)) for any x ∈ R+.

This implies

M†
c[H](x) =

1

2π
Φ−1
c [y 7→

∫
R
exp(ity)H(t)dλ(t)](x) =

1

2π

∫
R
x−c−itH(t)dλ(t)

for any x ∈ R+.
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For H1,H2 ∈ L1(R) we denote the additive convolution H1 ∗+ H2 ∈ L1(R) as usual by

H1 ∗+ H2(y) :=

∫
R
H1(y − x)H2(x)dλ(x) y ∈ R,

compare Definition 2.6.7.

Proposition 2.3.7 (Product rule):
Let h1, h2 ∈ L2(R+, x

2c−1) such that Mc[h1],Mc[h2] ∈ L1(R). Then h1h2 ∈ L1(R+, x
2c−1) and

1

2π
M2c[h1h2] = Mc[h1] ∗+ Mc[h2].

Proof of Proposition 2.3.7. First, the Cauchy-Schwarz inequality implies h1h2 ∈ L1(R, x2c−1),
and hence M2c[h1h2] is well-defined with M2c[h1h2] = (2π)1/2F [Φ2c[h1h2]] where F denotes
the Fourier transform for L1(R) functions. Since Mc[h1],Mc[h2] ∈ L1(R) ∩ L2(R) we have
Mc[h1] ∗+ Mc[h2] ∈ L1(R) ∩ L2(R). Due to the convolution theorem of the Fourier transform
we have F [(Mc[h1] ∗+ Mc[h2])](t) = (2π)1/2F [Mc[h1]](t)F [Mc[h2]](t), for t ∈ R, from which
we deduce

F [(Mc[h1] ∗+ Mc[h2])](t) = (2π)3/2Φc[h1](−t)Φc[h1](−t) = (2π)3/2Φ2c[h1h2](−t).

Now applying the Fourier transform on both sides implies the statement.

Example 2.3.8 (The lsi function):
Let us define the logarithmic si function as

lsi : R+ → R, x 7→ lsi(x) :=
sin(log(x))

π log(x)
.

Then we can see that lsi ∈ L2(R, x−1) with

M0[lsi](t) = 1[−1,1](t), t ∈ R,

and thus M0[lsi] ∈ L1(R). In other words, the Mellin transform of the lsi function is a scaled
rectangle function. We deduce using Proposition 2.3.7 that lsi2 ∈ L1(R, x−1), where

M0[lsi
2](t) = (1[−1,1] ∗+ 1[−1,1])(t) = (2− |t|)1[−2,2](t),

for t ∈ R. Here the Mellin transform of lsi2 is a scaled triangle function.

2.3.3 Mellin Sobolev spaces

In analogy to the theory of Sobolev spaces for Fourier transforms we define a Sobolev space for
the Mellin transform through the decay of the Mellin transform. After that, we will analyze what
degree of smoothness characterization is given through these spaces.

Definition 2.3.9 (The Mellin Sobolev-space):
For c ∈ R and s ∈ R+ we define the MELLIN-SOBOLEV space through

Ws
c(R+) := {h ∈ L2(R+, x

2c−1) : ∥(1 + |t|2)s/2Mc[h]∥2R <∞}.
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By the definition of the Mellin-Sobolev spaces, we see that Φc[Ws
c(R+)] = {H ∈ L2(R) : ∥(1 +

|t|2)s/2F [H]∥2R <∞} =W s(R) which is the usual Fourier-Sobolev space, see Equation (2.5). For
integer-valued s ∈ R+, that is s ∈ N, this coincides with the Sobolev spaces characterized via
the existence of weak derivatives, see Definition 2.6.10. Through this consideration we get the
following version of the Lemma of Sobolev for Mellin transforms. Here, in contrary to the rest of
this thesis, we strongly distinguish between the equivalence class [h] and a representant h using the
bold brackets, that is [h].

Theorem 2.3.10 (Lemma of Sobolev):
Let m, k ∈ N such that m > k + 1/2. Then for each equivalence class [h] ∈ Wm

c (R+) exists a
representant of [h] which is k-times continuously differentiable.

Proof of Theorem 2.3.10. Let h ∈ Wm
c (R+). If for the equivalence class [h̃]with h̃ : R+ → C, x 7→

xch exists a k-time differentiable representant , so does for the equivalence class [h]. Therefore, we
restrict ourselves to the case that c = 0. For [h] ∈ Wm

0 (R+) we have Φ0 [[h]] = [Φ0[h]] ∈ {H ∈
L2(R) : ∥(1 + |t|)m/2F [H]∥2 < ∞}. Applying the Lemma of Sobolev, Theorem 2.6.11, for the
Fourier transform, we get that there exists a representantH ∈ [Φ0[h]] that is k-times continuously
differentiable. Therefore, Φ†

0[H] is k-times continuously differentiable as a composition of such
functions. Furthermore, since Φ†

0 is a diffeomorphism, we get that Φ†
0[H] is representant of [h]

which shows the claim.

Our aim is now to define a weak derivative operator for theMellin transformwhich characterizes
the Mellin Sobolev spaces for s ∈ N in the same manner as the usual weak derivative operator does
for the Fourier-Sobolev spaces. To do so, let us define the set C∞

0 (R+) as the set of all smooth,
complex-valued functions with compact support inR+, that is for any β ∈ N and any h ∈ C∞

0 (R+)

the derivatives

Dβ[h] :=
dβ

dxβ
h

exist and vanish for x→ 0 and x→ ∞. Through the natural inclusion ofC∞
0 (R+) inL2(R+, x

2c−1)

for any c ∈ R we can show the following property.

Proposition 2.3.11:
For any β ∈ N, c ∈ R and h ∈ C∞

0 (R+),

Mc[D
β[h]](t) = (−1)β

Γ(c+ it)

Γ(c− β + it)
Mc−β[h](t)

for any t ∈ R.

Proof of Proposition 2.3.11. First we see for β = 1 that

Mc[D[h]](t) =

∫
R+

D[h](x)xc−1+itdλ(x)

=
[
h(x)xc−1+it

]∞
0

−
∫
R+

(c− 1 + it)xc−2+ith(x)dλ(x)

= −(c− 1 + it)Mc−1[h](t).

Now the claim follows by induction and Γ(c+it)
Γ(c−β+it) =

∏β
j=1(c− j + it) for any t ∈ R.
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Thus, the usual differential operator does not interact with the Mellin transform as it does with
the Fourier transform, compare Lemma 2.6.12 and the previous discussion there. A more natural
operator can be defined in the following way. We set

S : C∞
0 (R+) → C∞

0 (R+), h 7→ (x 7→ −xD1[h](x))

and for β ∈ N define Sβ := Sβ−1 ◦ S where S1 := S. Then we can show the following property.

Proposition 2.3.12:
For β ∈ N, c ∈ R and h ∈ C∞

0 (R+),

Mc[S
β ◦ h](t) = (c+ it)βMc[h](t)

for any t ∈ R.

Proof of Proposition 2.3.12. First for β = 1 we have

Mc[S[h]](t) = −Mc+1[D
1[h]](t) = (c+ it)Mc[h]

by application of Proposition 2.3.11 for any t ∈ R. The claim follows then by an induction.

The operator Sβ can also be motivated by the following consideration for c = 0. For h ∈
C∞
0 (R+) we see that Φ0[h] ∈ C∞

0 (R). Applying, the operator D1 we obtain

D1[Φ0[h]] = −φ(D1[h] ◦ φ) = Φ0[S[h]]

and we get S1 = Φ†
0 ◦D1 ◦ Φ0 and therefore Sβ = Φ†

0 ◦Dβ ◦ Φ0. Exchanging now the differential
operator Dβ with the weak differential operator D(β), we can show the following intermediate
result.

Lemma 2.3.13:
Let s ∈ R+, s ≥ 1, and β ∈ N, β ≤ s, and define S(β)0 := Φ†

0◦D
(β)
0 ◦Φ0. Then for any h ∈ Ws

0(R+),

M0[S
(β)
0 [h]](t) = (it)βM0[h](t) for any t ∈ R,

and S
(β)
0 : Ws

0(R+) → Ws−β
0 (R+) is well-defined.

Proof of Lemma 2.3.13. As always, we have Φ0[Ws
0(R+)] = W s(R) ⊂ Wβ(R) for any β ∈ N,

β ≤ s. On this set the operator D(β) is well-defined and we have F [D(β)[H]](t) = (it)βF [H](t)

for any t ∈ R and H ∈ Wβ(R), compare Lemma 2.6.12. We deduce that

M0[S
(β)
0 [h]](t) = (2π)1/2F [D(β)[Φ0[h]]](t) = (2π)1/2(it)βF [Φ0[h]](t) = (it)βM0[h](t).

The last equation and h ∈ Ws
0(R+) implies further that ∥(1 + |t|2)(s−β)/2M0[S

(β)
0 [h]]∥R <∞.

Now we generalize the last result for any c ∈ R. To do so, we start again with the strong
derivatives. In fact, let us define Dc : C

∞
0 (R) → C∞

0 (R) through Dc := Φc ◦ S ◦ Φ†
c then we have

for H ∈ C∞
0 (R)

Dc[H] = Φc[S[x
−cH(φ†)]] = cΦc[x

−cH(φ†)] + Φc[x
−cD[H](φ†)] = cH +D[H].

Due to this construction we have that for any h ∈ C∞
0 (R+), (Φ†

c ◦Dc ◦Φc)[h] = (Φ†
0 ◦D◦Φ0)[h] =

S[h]. Now we can show the following Proposition.
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Theorem 2.3.14:
Let s ∈ R+, s ≥ 1, and β ∈ N, β ≤ s. Let us define for c ∈ R the operator

S(β)c := Φ†
c ◦D(β)

c ◦ Φc,

where D
(β)
c = D

(1)
c ◦ D

(β−1)
c and D

(1)
c [H] = cH + D(1)[H] for H ∈ Wβ(R). Then for any h ∈

Ws
c(R+),

Mc[S
(β)
c [h]](t) = (c+ it)βMc[h](t) for all t ∈ R,

and S
(β)
c : Ws

c(R+) → Ws−β
c (R+) is well-defined.

Proof of Theorem 2.3.14. We show the Theorem for the special case β = 1. The general case
follows by induction. The operator S(1)c is well-defined, since Φc[Ws

c(R+)] = W s(R) ⊂ W1(R)
and D(1) is well-defined for any H ∈ W1(R). Next we have

Mc[S
(1)
c [h]](t) = cMc[h](t) + (2π)1/2F [D(1)Φc[h]](t)

= cMc[h](t) + itMc[h](t) = (c+ it)Mc[h](t)

for any t ∈ R. As h ∈ Ws
c(R+) we deduce ∥(1 + |t|2)(s−1)/2Mc[S

(1)
c [h]]∥2R <∞.
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2.4 The Mellin transform for multivariate functions

In this section, our aim is to generalize the definition ofMellin transforms for multivariate functions
as it is done by Werner (2006) in the case of Fourier transforms. To do so, we denote for p ∈
R+, d ∈ N, Ω ⊂ Rd and for a weight function ω : Rd → R+ the set Lp(Ω, ω) the quotient set of all
p-integrable weighted, complex-valued functions, that is

Lp(Ω, ω) := {h : Ω → C measurable : ∥h∥pLp(Ω,ω) :=

∫
Ω
|f(x)|pω(x)dx <∞}/ ∼

where we define the equivalence relation ∼ for two measurable functions h1, h2 : Ω → C by
h1 ∼ h2 :⇔ h1 − h2 = 0 Lebesgue-almost everywhere. For the special case p = 2 we endow
the space L2(Ω, ω) with its inner product, defined by ⟨h1, h2⟩L2(Ω,ω) :=

∫
Ω h1(x)h2(x)ω(x)dx. If

ω ≡ 1, we will drop the argument ω and set Lp(Ω) := Lp(Ω, 1).
For two vectors u = (u1, . . . , ud)

T ,v = (v1, . . . , vd)
T ∈ Rd such that there exists no index i ∈ JdK

with vi = 0 and ui ≤ 0 we define the multivariate potence through

vu :=
∏
j∈JdK v

uj
j .

Additionally, we define the component-wise multiplicationuv := (u1v1, . . . , udvd) and if there ex-
ists no index i ∈ JdK such that vi = 0 the component-wise division u

v := u/v := (u1/v1, . . . , ud/vd)
T .

Further, we denote the usual Euclidean inner product and norm on Rd through ⟨u,v⟩Rd :=∑
j∈JdK uivi and |u|Rd :=

√
⟨u,u⟩Rd .

2.4.1 Multiplicative convolution

In contrary to the univariate case, let us consider another convenient approach to define the mul-
tiplicative convolution using the additive convolution presented in Definition 2.6.7. Let us de-
fine φ : Rd → Rd+, x 7→ (exp(−x1), . . . , exp(−xd))T and denote by φ† : Rd+ → Rd,x 7→
(− log(x1), . . . ,− log(xd))

T its inverse. Further, define the isomorphism Φc : Lp(Rd+,x
pc−1) →

Lp(Rd) for c ∈ Rd and p ≥ 1 through

Φc[h] : x 7→ φ(x)ch(φ(x))

and denote by Φ†
c : Lp(Rd) → Lp(Rd+,x

pc−1). The well-definedness of this operator follows by
a single change of variable, as seen in the univariate case presented in the last section for p =

2. The proof is thus omitted. Now using the operator Φc and the additive convolution, we see
that the function (h1 ∗ h2) := Φ†

c[Φc[h1] ∗+ Φc[h2]] ∈ L1(Rd+,xc−1) for two functions h1, h2 ∈
L1(Rd+,xc−1). More precisely, for y ∈ Rd+

(h1 ∗ h2)(y) :=
∫
Rd

h1(y/φ(x))h2(φ(x))dλ
d(x) =

∫
Rd
+

h1(y/x)h2(x)x
−1dλd(x).

Again, by the last equation, we see that the definition of (h1 ∗ h2) is independent of the value of
c ∈ Rd.

27



Definition 2.4.1 (Multiplicative convolution for multivariate functions):
Let c ∈ Rd and h1, h2 ∈ L1(Rd+,xc−1). Then we call the function h1 ∗ h2 ∈ L1(Rd+,xc−1) with

(h1 ∗ h2)(y) =
∫
Rd
+

h1(y/x)h2(x)x
−1dλd(x) for any y ∈ Rd+,

the MULTIPLICATIVE CONVOLUTION of h1 and h2.

If we additionally to h1, h2 ∈ L1(Rd+,xc−1) assume that h1 ∈ L2(Rd+,x
pc−1) for p ∈ [1,∞], we get

that Φc[h1],Φc[h2] ∈ L1(Rd) and Φc[h1] ∈ Lp(Rd). This already implies, that Φc[h1] ∗+ Φc[h2] ∈
L1(Rd) ∩ Lp(Rd), compare Proposition 2.6.8. More generally spoken, for h1 ∈ L1(Rd+,xc−1) the
convolution operator

• ∗ h1 : Lp(Rd+,x
pc−1) ∩ L1(Rd+,xc−1) → Lp(Rd+,x

pc−1) ∩ L1(Rd+,xc−1), h2 7→ h2 ∗ h1

is well-defined with bounded operator norm, which motivates the following multivariate version
of Lemma 2.3.1.

Lemma 2.4.2:
Let h1, h2 ∈ L1(Rd+,xc−1) and additionally h1 ∈ Lp(Rd+,x

pc−1) for p ∈ [1,∞]. Then h1 ∗ h2 ∈
L1(Rd+,xc−1) ∩ Lp(Rd+,x

pc−1) with

∥h1 ∗ h2∥Lp(Rd
+,x

pc−1
)
≤ ∥h1∥Lp(Rd

+,x
pc−1

)
∥h2∥L1(Rd

+,x
c−1).

2.4.2 The Mellin transform

We will now define first the Mellin transform for multivariate integrable function, derive another
version of the convolution theorem for multivariate function and consider then the Mellin trans-
form for multivariate square-integrable functions.

Definition 2.4.3 (The Mellin transform for integrable functions):
Let c ∈ Rd and h ∈ L1(Rd+,xc−1). Then we define theMELLIN TRANSFORM of h developed in c as
the function Mc[h] : Rd → C with

Mc[h](t) :=

∫
Rd
+

xc−1+ith(x)dλd(x) for any t ∈ Rd.

Example 2.4.4 (Independent variates):
Let X = (X1, X2) be a random vector on R2

+ where X1 ∼ f1 and X2 ∼ f2 are stochastically
independent. ThenX possesses the density f(x1, x2) = f1(x2)f2(x2), x1, x2 ∈ R+, and for c ∈ R2

with Ef (Xc−1) = Ef1(X
c1−1
1 )Ef2(X

c2−1
2 ) <∞ we have

Mc[f ](t) =

∫
R+

∫
R+

xc1−1+it1
1 xc2−1+it2

2 f(x1, x2)dλ(x1)dλ(x2) = Mc1 [f1](t1)Mc2 [f2](t2),

t ∈ R2.More general, if the function f ∈ L1(Rd+,xc−1) can be written as a product of univariate,
measurable functions (fi)i∈JdK, that is f(x) =∏i∈JdK fi(xi), x ∈ Rd+, then fi ∈ L1(R+, x

c1−1) and

Mc[f ](t) =
∏
i∈JdKMci [fi](ti), for t ∈ Rd.
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Example 2.4.5 (Multivariate Log-Normal distribution):
Let us consider the family of multivariate Log-Normal distributions (Pµ,Σ)(µ,Σ)∈Rd×R(d,d)

>0

, where

R(d,d)
>0 denotes the set of symmetric, positive definite d× d-matrices, with densities

fµ,Σ(x) =
x−1

(2π)d/2|Σ|1/2
exp

(
−1

2
(log(x)− µ)TΣ−1(log(x)− µ)

)
, x ∈ Rd+,

where log(x) := (log(x1), . . . log(xd))
T . Then for all c ∈ Rd we have fµ,Σ ∈ L1(Rd+,xc−1). The

Mellin transform of the multivariate Log-Normal distribution is then given by

Mc[fµ,Σ](t) = exp(µT (c− 1+ it)) exp

(
1

2
(c− 1+ it)TΣ(c− 1+ it)

)
, t ∈ Rd.

The proof of the following version of the convolution theorem, Proposition 2.2.5, can be done
analogously to the univariate version. We therefore omit it.

Proposition 2.4.6 (Convolution theorem for Rd+- functions):
Let h1, h2 ∈ L1(Rd+,xc−1) for a c ∈ R. Then,

Mc[h1 ∗ h2] = Mc[h1] · Mc[h2].

Let us now define the Mellin transform for arbitrary h ∈ L2(Rd+,x2c−1) again via the Fourier-
Plancherel transform.

Definition 2.4.7 (The Mellin transform for square integrable functions):
Let c ∈ Rd. For h ∈ L2(Rd+,x2c−1) we define the MELLIN TRANSFORM developed in c as the
function Mc[h] : Rd → C given by

Mc[h] := (2π)d/2F ◦ Φc[h].

Similar to the univariate case, for h ∈ L1(Rd+,xc−1)∩L2(Rd+,x2c−1)we have (2π)d/2F [Φc[h]](t) =∫
Rd
+
xc−1+ith(x)dx for any t ∈ Rd. Hence Definition 2.4.7 is an extension of the Mellin transform

on L2(Rd+,x2c−1).We derive major properties of the Mellin transform using the theory of Fourier
transform as done in the univariate case. Due to these strong similarities of the proofs, we only
collect the statements and omit the proofs. The used properties of the Fourier transform can be
found in Section 2.6. Let us start with a Plancherel identity for the multivariate Mellin transform.

Proposition 2.4.8 (Plancherel identity for the multivariate Mellin transform):
Let c ∈ Rd. Then for all h1, h2 ∈ L2(Rd+,x2c−1)

⟨h1, h2⟩L2(Rd
+,x

2c−1) = (2π)−d⟨Mc[h1],Mc[h2]⟩L2(Rd).

Further, the PARSEVAL IDENTITY holds true, that is ∥h1∥2L2(Rd
+,x

2c−1)
= (2π)−d∥Mc[h1]∥2L2(Rd)

.

Although the existence of an inverse of the multivariate Mellin transform is obviously expressed
through M†

c := (2π)−d/2Φ†
c ◦ F† we state the following generalization of Proposition 2.3.6.
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Proposition 2.4.9 (The inverse Mellin transform for multivariate functions):
For H ∈ L1(Rd) ∩ L2(Rd) we can express the inverse Mellin transform M†

c : L2(Rd) →
L2(Rd+,x2c−1) for c ∈ Rd of H explicitly by

M†
c[H](x) =

1

(2π)d

∫
Rd

H(t)x−c−itdt, for any x ∈ Rd+.

2.4.3 Mellin-Sobolev space

Let us now develop the Sobolev spaces theory for the Mellin transform of multivariate functions.
We start with defining the Mellin-Sobolev spaces, derive a Lemma of Sobolev-type result for these
spaces and investigate the differential operator on these spaces. In contrary to the univariate case,
we additionally define the so-called anisotropic Mellin-Sobolev spaces as another natural general-
ization of the univariate Mellin-Sobolev spaces.

Definition 2.4.10 (The Mellin-Sobolev space):
For s ∈ R+ and c ∈ Rd we define the MELLIN-SOBOLEV SPACES through

Ws
c(Rd+) := {h ∈ L2(Rd+,x2c−1) : ∥(1 + |t|2Rd)

s/2Mc[h]∥L2(Rd) <∞}.

Since Φc[Ws
c(Rd+)] = W s(Rd), we obtain by similar arguments a multivariate version of Theo-

rem 2.3.10.

Theorem 2.4.11 (Lemma of Sobolev for the multivariate Mellin transform):
Let m, k ∈ N0 such that m > k + d/2. For each equivalence class [h] ∈ Wm

c (Rd+) there exists a
k-times continuously differentiable representant of [h].

Let us denote by C∞
0 (Rd+) the set of all smooth functions with compact support in Rd+. For

j ∈ JdK let us define the operator Sj : C∞
0 (Rd+) → C∞

0 (Rd+), h 7→ −xj ∂
∂xj

h. Further for any vector

β = (β1, . . . , βd)
T ∈ Nd0 let us define the operator Sβ by Sβ = Sβ11 ◦· · ·◦Sβdd where Sβjj = Sj◦· · ·◦Sj

the βj-times self composition of Sj where S0
j := IdC∞

0 (Rd
+) is the identity on C∞

0 (Rd+). Then we
can prove the following Proposition.

Proposition 2.4.12:
For any multi index β ∈ Nd0, c ∈ Rd and h ∈ C∞

0 (Rd+)

Mc[S
β ◦ h](t) = (c+ it)βMc[h](t) for any t ∈ Rd+.

Proof of Proposition 2.4.12. It is sufficient to show that for any j ∈ JdK and t ∈ Rd we have
Mc[Sj [h]](t) = (cj + itj)Mc[h](t). In fact,

Mc[Sj [h]](t) =

∫
Rd−1
+

x
c−j−1+it−j

−j

∫
R+

(
−xcj+itjj

∂

∂xj
h(x)

)
dλ(xj)dλ

d−1(x−j)

where we denote by v−j for a d-dimensional vector v ∈ Rd the d − 1-dimensional vector v−j =
(v1, . . . , vj−1, vj+1, . . . vd)

T . Analogously to the proof of Proposition 2.3.12, using the integration
by parts for the inner integral proves the claim.
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To deduce a weak version of Sβ for the multivariate case, we define for any j ∈ JdK the operator
D

(ej)
c [H] := cjH+D(ej)H forH ∈ Ws(Rd)with s ≥ 1. Here ej ∈ Nd0 denotes the j−th canonical

vector, that is ej = (ej1, . . . , ejd)
T with eji = 1j=i. Then we define for β ∈ Nd0 and any s ∈ R+

with |β|1 :=
∑

j∈JdK βj ≤ s the operator D(β)
c : Ws(Rd) → Ws−|β|1(Rd) through

D
(β)
c = D

(e1)
c ◦ · · · ◦D(e1)

c︸ ︷︷ ︸
β1−times

◦ · · · ◦D(ed)
c ◦ · · · ◦D(ed)

c︸ ︷︷ ︸
βd−times

and define S(β)c : Ws
c(Rd+) → Ws−|β|1

c (Rd+) through Sβc := Φ†
c ◦D(β)

c ◦ Φc.

Theorem 2.4.13:
Let s ∈ R+ and c ∈ Rd. Then for any h ∈ Ws

c(Rd+) and any β ∈ Nd0, |β|1 ≤ s,

Mc[S
(β)
c ◦ h](t) = (c+ it)βMc[h](t) for any ăt ∈ Rd.

Proof of Theorem 2.4.13. It is sufficient to show the theorem for the special case β = ej for
j ∈ JdK. In fact, we have for t ∈ Rd,

Mc[S
(ej)
c [h]](t) = cjMc[h](t) + (2π)d/2F [D(ej)[Φc[h]]](t)

= cjMc[h](t) + itj(2π)
d/2F [Φc[h]](t)

= (cj + itj)Mc[h](t).

Let us now define the anisotropic counterpart to the Mellin-Sobolev spaces defined in Defini-
tion 2.4.10.

Definition 2.4.14 (The anisotropic Mellin-Sobolev spaces):
Let s ∈ Rd+, c ∈ Rd we define the ANISOTROPIC MELLIN-SOBOLEV SPACE through

Ws
c(Rd+) := {h ∈ L2(Rd+,x2c−1) :

∑
j∈JdK ∥(1 + |tj |2)sj/2Mc[h]∥2L2(Rd) <∞}.

For the case s ∈ Nd0 we can characterize these spaces by the following proposition which is a direct
consequence of its Fourier counterpart, Proposition 2.6.14, and its proof is thus omitted. Here
|v|1 :=

∑
j∈JdK |vj | for v ∈ Rd.

Proposition 2.4.15:
For s ∈ Nd0,

Ws
c(Rd+) = {h ∈ L2(Rd+,x2c−1) :

∑
γ ∈ Nd

0
|γ/s|1 ≤ 1

∥S(γ)c [h]∥L2(Rd
+,x

2c−1) <∞}.

We can prove the following version of Theorem 2.4.13 for the anisotropic Mellin-Sobolev space.

31



Theorem 2.4.16:
Let s ∈ Nd0, c ∈ Rd and h ∈ Ws

c(Rd+). Then for every j ∈ JdK we have S(sjej)c [h] ∈ L2(Rd+,x2c−1)

and

Mc[S
(sjej)
c ◦ h](t) = (cj + itj)

sjMc[h](t) for any t ∈ Rd.

Proof of Theorem 2.4.16. From |(sjej)/sj |1 = sj/sj = 1we can deduce using Proposition 2.4.15
that S(sjej)c [h] ∈ L2(Rd+,x2c−1). The rest of the proof follows the same steps as Theorem 2.4.13.
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2.5 Approximations and numerical study

In this section we want to use the Mellin transform in Definition 2.4.7 to build approximations
of a function h ∈ L2(Rd+,x2c−1) in the L2(Rd+,x2c−1)-sense. First we will use the inverse of
the Mellin transform, Proposition 2.3.6, to construct the approximations. Then we will analyze
the upcoming approximation error for functions lying in a Mellin-Sobolev space, respectively an
anisotropic Mellin-Sobolev space. We end this section with an illustration by plotting both the
true functions h ∈ L2(Rd+,x2c−1) and their approximations for the case d = 1 and d = 2 for some
examples of functions.

2.5.1 Theoretical study

For the upcoming construction, let us assume that h ∈ L2(Rd+,x2c−1) and k ∈ Rd+. Let us first
define the hypercuboid [−k,k] :=×j∈JdK[−kj , kj ]. Since 1[−k,k]Mc[h] ∈ L1(Rd) ∩ L2(Rd) we
can define the function hk ∈ L2(Rd+,x2c−1) through hk := M†

c[Mc[h]1[−k,k]]. More precisely,
applying Proposition 2.3.6, we get for any x ∈ Rd+,

hk(x) =
1

(2π)d

∫
[−k,k]

Mc[h](t)x
−c−itdλd(t). (2.4)

It is worth stressing out, that the functions (hk)k∈Rd
+
are also dependent on the model parameter

c ∈ Rd. A more precise notation would therefore include the parameter c ∈ Rd. For the sake of
readability we exclude this index and make sure that the value of the model parameter c ∈ R is
always stated.
We will now consider the upcoming approximation error. In fact, we consider the induced metric
on the Hilbert space L2(Rd+,x2c−1). The approximation error is then given for any k ∈ Rd+ by

∥hk − h∥2L2(Rd
+,x

2c−1)
=

1

(2π)d

∫
Rd\[−k,k]

|Mc[h](t)|2dλd(t)

applying the Parseval identity, Proposition 2.4.8. Obviously, for k → ∞, where the limit is
understood component-wise, the approximation error goes to 0.
More precisely, if we assume that h lies in the Mellin-Sobolev space Ws

c(Rd) for s ∈ R+, see
Definition 2.4.10, we get

1

(2π)d

∫
Rd\[−k,k]

|Mc[h](t)|2dλd(t) =
1

(2π)d

∫
Rd\[−k,k]

(1 + |t|2)s(1 + |t|2)−s|Mc[h](t)|2dλd(t)

≤ (min(k1, . . . , kd))
−2s ∥(1 + |t|2)s/2Mc[h]∥2L2(Rd)
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If we assume that h lies in an anisotropic Mellin-Sobolev space, that is h ∈ Ws
c(Rd) for a s ∈ Rd+,

see Definition 2.4.14, we get by using
∪
j∈JdK{t ∈ Rd : |tj | > kj} ⊇ Rd \ [−k,k] that

1

(2π)d

∫
Rd\[−k,k]

|Mc[h](t)|2dλd(t) ≤
d∑
j=1

∫
Rd

1|tj |>kj |Mc[h](t)|2dλd(t)

≤
d∑
j=1

∫
Rd

1|tj |>kj (1 + |tj |2)sj (1 + |tj |2)−sj |Mc[h](t)|2dλd(t)

≤

 d∑
j=1

k
−2sj
j

 d∑
j=1

∥(1 + |tj |2)sj/2Mc[h]∥2L2(Rd)

 .

For the case of d = 1, these two spaces are equal. As we can see, a higher assumption on the
regularity is directly connected to the decay of the Mellin transform and thus on the decay of the
approximation error.

Univariate case Let us consider the following four examples

(i) BETA-DISTRIBUTION: h(x) := B(2, a)−1x(1− x)a−11(0,1)(x) for a ∈ N,

(ii) LOG-GAMMA DISTRIBUTION: h(x) = 1
Γ(b)x

−2 log(x)b−11(1,∞)(x) for b ∈ R+;

(iii) GAMMA-DISTRIBUTION: h(x) = 1
Γ(e)x

e−1 exp(−x)1(0,∞)(x) for e ∈ R+ and

(iv) LOG-NORMAL DISTRIBUTION: h(x) = 1√
2fπx

exp(− log(x)2/(2f))1R+(x) for f ∈ R+.

We will consider the three different cases of c = 0, c = 1/2 and c = 1. In the first case, the weight
function is given by x 7→ x−1, for the second case by x 7→ 1 and for the third through x 7→ x. To
ensure that all examples can be approximated for all three values of c, we need to assume additionally
e > 1 for the Gamma distribution. The Mellin transform of the four functions are then given in

(i) Example 2.1.6 by Mc[h](t) =
∏a
j=1

j+1
c+j+it , t ∈ R,

(ii) Example 2.1.10 by Mc[h](t) = (2− c− it)−b, t ∈ R,

(iii) Example 2.1.7 by Mc[h](t) = Γ(e+ c− 1 + it)/Γ(d), t ∈ R, and

(iv) Example 2.1.11 by Mc[h](t) = exp(f(c− 1 + it)2/2), t ∈ R.

Let us now consider when the examples lay in the Mellin-Sobolev space. For the cases (i), (ii) and
(iv) this can be directly derived from the Mellin transform. For the case (iii)we needs to apply the
Stirling formula, see Andrews et al. (1999), which states that |Γ(σ + it)| ≤ |t|σ−1/2 exp(−π|t|/2)
for |t| ≥ 2 and σ ≥ −2. We get

(i) h ∈ Ws
c(R+) if and only if s < a− 1/2,

(ii) h ∈ Ws
c(R+) if and only if s < b− 1/2,

(iii) h ∈ Ws
c(R+) for all s ∈ R+ and

(iv) h ∈ Ws
c(R+) for all s ∈ R+.
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More precisely, the approximation error is decaying with an exponential rate in the cases (iii) and
(iv). We will plot the approximations and the true densities to visualize the approximation error
and the effects of the choice of c ∈ {0, 0.5, 1}.

Bivariate case Let us consider the examples

(a) BETA/LOG-NORMAL DISTRIBUTION: h(x) = h1(x1)h2(x2) with h1(x1) = B(2, a)−1x1(1 −
x1)

a−11(0,1)(x1) and h2(x2) = 1√
2πbx2

exp(− log(x2)2

2b )1R+(x2) for a ∈ N and b > 0;

(b) BIVARIATE-LOG-NORMAL DISTRIBUTION: h(x) = 1
2πx1x2|Σ|1/2 exp(−

1
2(log(x))

TΣ−1 log(x))

for Σ symmetric positiv-definit matrix in R2×2.

Then the Mellin transforms for c ∈ {0.1/2, 1}2 are given by

(a) Mc[h](t) = exp( b2(c2 − 1 + it2)
2)
∏a
j=1

j+1
c1+j+it1

, for t ∈ R2 and

(b) Mc[h](t) = exp(12(c− 1+ it)TΣ(c− 1+ it)) for t ∈ R2.

Now we study whether the examples are in the isotropic Mellin Sobolev-space Ws
c(R2

+), respec-
tively the anisotropic Mellin-Sobolev space Ws

c(R2
+). Indeed, we have

(a) h ∈ Ws
c(R2

+) if and only if s < a − 1/2, while h ∈ Ws
c(R2

+) if and only if for s ∈ (0, a −
1/2)× R+ arbitrary;

(b) h ∈ Ws
c(R2

+) for all s ∈ R+, respectively h ∈ Ws
c(R2

+) , s ∈ R2
+.

It can be seen that the anisotropicMellin-Sobolev space captures more detailed the decay properties
of the Mellin transform in comparison to the Mellin-Sobolev space. Indeed, in example (a) it can
be nicely seen that the regularity parameter s ∈ R+ corresponds to the slowest decay in one of the
directions of the Mellin transform, while the regularity parameter s ∈ R2

+ can better distinguish
in this case the possibly different decay in different directions.

2.5.2 Numerical study

We start by comparing all examples with varying parameter k ∈ R+ for the case d = 1 and c = 1/2.
Comparing Figure 2.1 and Figure 2.2 we can see that the approximation error seems to decaymuch
faster for the examples (iii) and (iv) as for the examples (i) and (ii). This is a behavior which is
predicted by the theoretical results.
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Figure 2.1: Considering the examples (i) (top) and (ii) (bottom) with c = 1/2 with k = 1 (left),
k = 10 (middle) and k = 100 (right). For the case (i) we set a = 1 and for (ii) we set
b = 1. The dark blue curve is the true function h while the function hk is represented
by the bright blue curve.
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Figure 2.2: Considering the examples (iii) (top) and (iv) (bottom) with c = 1/2 with k = 1 (left),
k = 3 (middle) and k = 5 (right). For the case (iii) we set e = 2 and for (iv) we
set f = 0.25. The dark blue curve is the true function h while the function hk is
represented by the bright blue curve.
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Figure 2.3: Considering the examples (i) with b = 1 (left), b = 3 (middle) and b = 5 (right) with
c = 1/2. Here we displayed the approximations with k = 1 (top) and k = 10 (bottom).
The dark blue curve is the true function h while the function hk is represented by the
bright blue curve.

Now let us consider example (i) for increasing parameters b ∈ N, keeping in mind that the param-
eter determines in which Mellin-Sobolev space the functions lays in. As the theory would suggest
for higher values of b ∈ N the function h lies in Mellin-Sobolev space with higher smoothness
parameter s ∈ R+ which on the other hand implies that the decay of the approximation error is
stronger, Figure 2.3 seems to imply that higher values of b ∈ N implies a better approximation
through the Mellin transform.
To close the simulation for the univariate case, we will now consider the case of (iv) with varying
value of c ∈ {0, 0.5, 1}. Based on Figure 2.4 it seems that the approximations differ in their behav-
ior with respect to the location on the positive real line. Meaning that for values of c ∈ R smaller
than 1/2, the point-wise distance of the approximation seems to be smaller for x-values close to 0

while for values of c ∈ R bigger than 1/2 the opposite behavior seem to occur. For c = 1/2 neither
of those effects seems to occur. The bottom row of Figure 2.4 suggests that the mentioned effects
seems to be negligible for higher values of k ∈ R+.
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Figure 2.4: Considering the example (iv) with c = 0 (left), c = 0.5 (middle) and c = 1 (right)
with f = 0.04. Here we displayed the approximations with k = 9 (top) and k = 15

(bottom). The dark blue curve is the true function hwhile the function hk is presented
by the bright blue curve.
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Figure 2.5: Considering the example (a) with a = 1, b = 0.2 with the true density (left-top)
compared with the approximation hk (right, top) for k = (5, 5)T and c = (1/2, 1/2)T .
Here we display the intersection of the graph in the bottom row, where the bright blue
curve is the approximation and the dark blue curve is the true density.
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Figure 2.6: Considering the example (a) with a = 1, b = 0.2 with the true density (left-top) com-
pared with the approximation hk (right, top) for k = (15, 15)T and c = (1/2, 1/2)T .
Here we display the intersection of the graph in the bottom row, where the bright blue
curve is the approximation and the dark blue curve is the true density.

Comparing the plots Figure 2.5 and Figure 2.6, we see that the approximation in the direction of
the Log-Normal distribution works much better than the approximation of the Beta distribution
direction. Indeed, we will see that as soon as it comes to estimation of the density, we will have an
additional error term due to the estimation step, which will be increasing in each direction k1, k2 of
k ∈ R2

+ making it necessary to carefully choose the values of k1, k2 and mostly consider anisotropic
choices, that is k1 ̸= k2, motivated by the plots Figure 2.5, respectively Figure 2.6.
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2.6 Appendix: The Fourier transform and the Sobolev space

In this section, we collect the used results of the theory of Fourier transform and Sobolev spaces.
For a detailed introduction to this theory see Werner (2006) and Triebel (2006).

2.6.1 The Fourier transform

Definition 2.6.1 (Fourier transform of L1(Rd)):
For H ∈ L1(Rd) we define the FOURIER TRANSFORM F [H] : Rd → C of H by

F [H](t) := (2π)−d/2
∫
Rd

H(x) exp(−i⟨x, t⟩Rd)dλd(x)

for any t ∈ Rd.

Let us now define the Fourier transform of a square integrable function, that is H ∈ L2(Rd). To
do so, we will first introduce the so-called SCHWARTZ SPACE which lies dense in all Lp(Rd) spaces
for 1 ≤ p < ∞. On this space we will consider Fourier transform for L1-functions, show that
the operator maps to L2(Rd) and is bounded. From this, we derive an extension on the whole set
L2(Rd) which will be referred to as the FOURIER-PLANCHEREL TRANSFORM.
The SCHWARTZ SPACES is defined by

S (Rd) := {f ∈ C∞(Rd) : ∀α,β ∈ Nd0 : lim
|x|→0

xαDβf(x) = 0}

where C∞(Rd) is the set of all smooth function on Rd. The following Theorem is a classical result
of the Fourier analysis. A proof can be found in Werner (2006).

Theorem 2.6.2:
The Fourier transform F : S (Rd) → S (Rd) is an automorphism with inverse F† : S (Rd) →
S (Rd) given

F†[f ](x) =
1

(2π)d/2

∫
Rn

f(t) exp(i⟨x, t⟩Rd)dλd(t), for anyx ∈ Rn, f ∈ S (Rd).

Further, the PLANCHEREL IDENTITY holds true, that is for all f, h ∈ S (Rd), ⟨F [f ],F [g]⟩L2(Rd) =

⟨f, g⟩L2(Rd).

From the last theorem, we deduce that F is well-defined on the dense subspace S (Rd) ⊂ L2(Rd),
isomorphic and isometric with respect to ∥ · ∥L2(Rd). Therefore, we can extend it to an isometric
operator F2 : L2(Rd) → L2(Rd). This is captured in the following theorem whose proof can be
found in Werner (2006).
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Theorem 2.6.3 (Fourier transform of L2(Rd)):
For H ∈ L2(Rd) and any R ∈ R+ we define the functions FR := F [1BR(0)H] ∈ L2(Rd) where
BR(0) := {x ∈ Rd : |x|Rd ≤ R}. Then (FR)R∈R+ converges in the L2(Rd) sense to the function
F2[H] ∈ L2(Rd). Thus we define the PLANCHEREL-FOURIER TRANSFORM F2[H] : Rd → C of H by

F2[H](t) := lim
R→∞

1

(2π)d/2

∫
BR(0)

H(x) exp(−i⟨x, t⟩Rd)dλd(x)

for any t ∈ Rd where the limit is defined in a ∥ · ∥L2(Rd)-sense.

Due to the construction the operator F2 : L2(Rd) → L2(Rd) it is an isometric isomorphism. The
isometric property implies that the PLANCHEREL IDENTITY is valid for the transform F2, too. This
is captured in the next Proposition.

Proposition 2.6.4 (Plancherel identity for the Fourier-Plancherel transform):
Let H1,H2 ∈ L2(Rd). Then ⟨H1,H2⟩L2(Rd) = ⟨F2[H1],F2[H2]⟩L2(Rd). Further the PARSEVAL
IDENTITY holds, that is ∥H1∥L2(Rd) = ∥F2[H1]∥L2(Rd).

In fact, in the special case thatH ∈ L2(Rd)∩L1(Rd), we can show that the two notions of Fourier
transform coincide. The proof of the following Proposition can be found in Werner (2006).

Proposition 2.6.5:
For any H ∈ L1(Rd) ∩ L2(Rd) holds true F2[H] = F [H] almost everywhere.

By an abuse of notation, we will drop the index 2 from now on. Furthermore we can deduce
from Theorem 2.6.3 that there exists an inverse F†

2 : L2(Rd) → L2(Rd) of the Fourier-Plancherel
transform which we will address now.

Theorem 2.6.6 (The inverse Fourier transform):
Let H ∈ L1(Rd) ∩ L2(Rd). Then

F†[H](x) =
1

(2π)d/2

∫
Rd

H(t) exp(i⟨t,x⟩Rd)dλd(t)

for almost all x ∈ Rd.

Proof of Theorem 2.6.6. Let us define the shift operator T : L2(Rd) → L2(Rd),H 7→ T [H] : x 7→
H(−x). Then it is sufficient to show that T ◦ F = F†. Proposition 2.6.5 implies the statement.
We first see that the inverse of the extension of F : S (Rd) → S (Rd) equals the expansion of
the inverse F† : S (Rd) → S (Rd) since the last operator is continuous and has thus a unique
expansion on L2(Rd). Now let H ∈ L2(Rd) be arbitrary and (Hn)n∈N a sequence in S (Rd) such
that ∥H − Hn∥L2(Rd) → 0. Then due to the representation of F† : L2(Rd) → L2(Rd) as the
expansion of F† : S (Rd) → S (Rd) we get F†[H] = limn→∞F†[Hn] = limn→∞[T ◦ F ][Hn] by
Theorem 2.6.2. Now the statement follows from the continuity of F and T.

2.6.2 Convolution

To begin this section, we see that for two measurable functions H1,H2 : Rd → C and x ∈ Rd the
function Ix;Rd → C,y 7→ Ix(y) := H1(x − y)H2(y) is measurable. This allows us to form the
following, very general definition of the additive convolution of two functions.
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Definition 2.6.7 (Additive convolution):
Let H1,H2 : Rd → C be two measurable functions. Then for any x ∈ Rd with Ix ∈ L1(Rd) we
define the ADDITIVE CONVOLUTION of H1 and H2 in the point x as

(H1 ∗+ H2)(x) :=

∫
Rd

H1(x− y)H2(y)dλ
d(y).

Due to the definition of the additive convolution, we can easily see that if (H1 ∗+ H2)(x) is well-
defined, then (H1 ∗+ H2)(x) = (H2 ∗+ H1)(x). Further, if p, q ∈ [1,∞] are conjugate expo-
nents, that is p−1 + q−1 = 1, then for all H1 ∈ Lp(Rd) and H2 ∈ Lq(Rd), |(H1 ∗+ H2)(x)| ≤
∥H1∥Lp(Rd)∥H2∥Lq(Rd) < ∞. In this scenario, the additive convolution of H1 and H2 is well-
defined for any x ∈ Rd which allows its interpretation as a bounded function (H1∗+H2) : Rd → C.
Another interpretation is given by the following proposition.

Proposition 2.6.8:
Let H1 ∈ L1(Rd) and H2 ∈ Lp(Rd) for p ∈ [1,∞]. Then Ix is for almost all x ∈ Rd integrable
and the (almost everywhere defined) function (H1 ∗+ H2) ∈ Lp(Rd) with ∥H1 ∗+ H2∥Lp(Rd) ≤
∥H1∥L1(Rd)∥H2∥Lp(Rd).

Proof of Proposition 2.6.8. The case p = 1 follows directly from the Fubini-Tonelli theorem. Let
p > 1 and q its conjugate, that is p−1 + q−1 = 1. Then,

|H1 ∗+ H2(y)| ≤
∫
Rd

|H2(y)||H2(x− y)|1/p|H2(x− y)|1/qdλd(x)

≤ ∥H1∥1/qL1(Rd)

(∫
Rd

|H2(y)|p|H1(x− y)|dλd(x)
)1/p

using theHölder inequality. From this we deduce the claim after a series of elementary calculations.

For the upcoming theory the case of p = 1 is the most interesting. In fact, if H1,H2 ∈ L1(Rd)
then the additive convolutionH1 ∗+H2 ∈ L1(Rd). This allows us to show the following statement
known as the CONVOLUTION THEOREM.

Proposition 2.6.9 (Convolution theorem for the Fourier transform):
Let H1,H2 ∈ L1(Rd). Then F [H1 ∗+ H2] = F [H1] · F [H2].

The proof of Proposition 2.6.9 can be done analogously to Proposition 2.2.5 and is thus omitted.

2.6.3 The Sobolev space

For a function H ∈ S (Rd) and any multi index β ∈ Nd0 we can show that F [Dβ[H]](t) =

(it)βF [H](t) for any t ∈ Rd, compare Werner (2006). To get a similar result for the equivalence
classes of functions in L2(Rd) we will first introduce another notion of differentiability, the so-
called WEAKLY DIFFERENTIABILITY.
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Definition 2.6.10 (Weak differentiable, Sobolev spaces):
Let β ∈ Nd0 and H ∈ L2(Rd). Then we call g ∈ L2(Rd) the WEAK DERIVATIVE of H of order β if

∀φ ∈ C∞
0 (Rd) : ⟨g, φ⟩L2(Rd) = (−1)|β|1⟨H,Dβ[φ]⟩L2(Rd).

If g exists, it is uniquely defined and we use the notation D(β)[H] := g. Form ∈ N0, we define the
so-called SOBOLEV SPACE through

Wm(Rd) := {H ∈ L2(Rd) : ∀|β|1 ≤ m : D(β)[H] ∈ L2(Rd)}.

The connection between weak differentiability and continuous differentiability is expressed by the
following Theorem which is know as the LEMMA OF SOBOLEV.

Theorem 2.6.11 (Lemma of Sobolev):
Letm, k ∈ N0 such thatm > k+ d/2. Then for any equivalence class [H] ∈ Wm(Rd) there exist a
representant of [H] which is k-time continuously differentiable.

The proof of this theorem can be found in Werner (2006). Now let us come back to the interplay
between the weak differentiability and the Fourier transform. In fact, we can proof the following
property for weakly differentiable functions in L2(Rd) as done in Werner (2006).

Lemma 2.6.12:
Let m ∈ N0 and H ∈ Wm(Rd). Then for any β ∈ Nd0 with |β|1 ≤ m holds

F [D(β) ◦H](t) = (it)βF [H](t), for any t ∈ Rd.

The latter Lemma implies that if H ∈ Wm(Rd), tmj F [H] ∈ L2(Rd) for any j ∈ JdK, where tj :

Rd → R, t 7→ tj denotes the projection on the j-th component. After some basic calculations we
can show that (1 + |t|2)m/2F [H] ∈ L2(Rd), which implies the relationship

Wm(Rd) ⊆W s(Rd) := {H ∈ L2(Rd) : (1 + |t|2)s/2F ∈ L2(Rd)} (2.5)

for any s ≤ m, s ∈ R+. It is worth stressing out that in the case of s = m we can show that
Wm(Rd) ⊆ Wm(Rd) and thus the identity Wm(Rd) = Wm(Rd). It is therefore reasonable to
speak ofW s(Rd) as an interpolation ofWm(Rd) for non-integer parameter s ∈ R+. To distinguish
between Wm(Rd) andW s(Rd), we will address the latter space as the FOURIER-SOBOLEV SPACE.

2.6.4 Anisotropic Sobolev spaces

In this subsection we briefly introduce the existing theory on anisotropic Sobolev spaces and
anisotropic Fourier-Sobolev which is needed for a definition of equivalent spaces for the Mellin
transform. The results can be found in Triebel (2006).

Definition 2.6.13 (Anisotropic Sobolev space):
Let m = (m1, . . . ,md)

T ∈ Nd0. Then the ANISOTROPIC SOBOLEV SPACE is defined by

Wm(Rd) := {H ∈ L2(Rd) : ∀j ∈ JdK : D(mjej)[H] ∈ L2(Rd)}.
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First we see that for any m ∈ No with m1 = m2 = · · · = md = m ∈ N0 we have Wm(Rd) =

Wm(Rd). Additionally, we can show this second characterization of those spaces.

Proposition 2.6.14:
For m ∈ N

Wm(Rd) = {H ∈ L2(Rd) :
∑

γ ∈ Nd
0

|γ/m|1 ≤ 1

∥D(γ)[H]∥2L2(Rd) <∞}.
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In this chapter, we will use the results of Chapter 2 to study the estimation of a density function f
of a positive random variable X , respectively random vector X . We will use the Mellin transform
to define an estimator of the density f and analyze its properties. The chapter is organized as
follows.
We start in Section 3.1 by considering the estimation of the density f : R+ → R+ using an
independent, identically distributed sample X1, . . . , Xn drawn from f , which we will referred as
the case of direct observations.
From there, we will consider in Section 3.2 the multiplicative measurement error model, that is,
we assume that we have only have access to a sample Y1, . . . , Yn of i.i.d. copies of Y = XU where
X ∼ f and U is a multiplicative, stochastic independent error term with known density g. Here,
we will mainly focus on the case of so-called smooth error densities.
In Section 3.3 we will complete our study by including the case of super smooth error densities
and discuss at which point the results differ from their analogues in the smooth error case.
Besides he smooth and super smooth error densities the class of oscillating error densities play a
major role in Section 3.4. Here, our proposed estimator from Section 3.2, respectively Section 3.3,
is not well-defined. We therefore introduce an estimator based on a ridge approach and study its
properties.
In Section 3.5 we then leave the univariate case and see that our estimation strategy can be used for
the anisotropic estimation of a multivariate density f : Rd+ → R+ in a multiplicative measurement
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error model with smooth error density.
Returning to the univariate case, we consider in Section 3.6 the case of stationaryX1, . . . , Xn under
multiplicative measurement errors with a digression to stochastic volatility models.
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3.1 The case of direct observation

3.1.1 Introduction

In this section, we are interested in estimating the unknown density f : R+ → R+ of a positive
random variable X given independent and identically distributed (i.i.d.) copies of X .
In the literature, non-parametric density estimation is a well-discussed problem and many esti-
mation strategies based on splines, kernels or wavelets, to name but a few, are considered. For an
overview of various methods we refer to Comte (2017), Efromovich (1999), Silverman (2018) and
Tsybakov (2009).
In this work, we consider a density estimator using the Mellin transform and a spectral cut-off reg-
ularization of its inverse, which borrows ideas from Belomestny and Goldenshluger (2020) where
they considered the model of multiplicative measurement errors which will be considered in Sec-
tion 3.2. In this section, we will restrict ourselves to the case that the direct observations are given.
Our estimation strategy differs in the following way from the existing results for density estimation
on R+. We define a density estimator by making use of the the Mellin transform and applying an
additional spectral cut-off on the inversion of the Mellin-transform. We measure the accuracy of
the estimator by introducing a global risk in terms of a weighted L2-norm. Exploiting properties
of the Mellin transformwe characterize the natural regularity conditions which borrow ideas from
the inverse problems community (Engl et al. (1996)). The proposed estimator, however, involves
a tuning parameter which is selected by a data-driven method. We establish an oracle inequality
for the fully-data driven spectral cut-off estimator.
Moreover we show that uniformly overMELLIN-SOBOLEV SPACES the proposed data-driven estima-
tor is minimax-optimal. We state both an upper bound for the mean weighted integrated squared
error of the fully-data driven spectral cut-off estimator and a general lower bound for estimating
the density f based on i.i.d. copies from f .
This section is structured as follows. In Subsection 3.1.2 we use the properties of the Mellin trans-
form to introduce and analyze our density estimator based on direct observations X1, . . . , Xn

drawn from f . We derive an oracle type upper bound for its mean weighted integrated squared
error. In Subsection 3.1.3 we show that the presented estimator is minimax optimal overMELLIN-
SOBOLEV SPACES. A fully data-driven estimator is presented and analyzed in Subsection 3.1.4. Fi-
nally, results of a simulation study are reported in Subsection 3.1.5 which visualize the reasonable
finite sample performance of our estimators. Proofs of the results of the Subsection 3.1.2, 3.1.3 and
3.1.4 can be found in the Subsection 3.1.7.

3.1.2 Estimation strategy

Revisiting the approximation study in Section 2.5 we defined an approximation in Equation (2.4)
of an arbitrary function h ∈ L2(R+, x

2c−1) by

hk(x) := M†
c[Mc[h]1[−k,k]](x) =

1

2π

∫
[−k,k]

x−c−itMc[h](t)dλ(t), (3.1)

for any x, k ∈ R+, and analyze this approximation theoretically by considering Mellin-Sobolev
spaces and practically via a numerical study.
In this subsection, we use this approximation step for the unknown density f ∈ L2(R+, x

2c−1) to
define the family of approximations (fk)k∈R+ using Equation (3.1) for h = f . In a second step, we
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will substitute each unknown quantity by an empirical counterpart to define a family of unbiased
estimators (f̂k)k∈R+ of (fk)k∈R+ . We will then close this subsection, by giving an upper bound for
the mean integrated weighted squared error of the estimator f̂k, that is Enf (∥f − f̂k∥2x2c−1) and by
showing that we can find a sequence (kn)n∈N such that Enf (∥f − f̂kn∥2x2c−1) vanishes for n → ∞.
Here, Enf denotes the expectation with respect to the distribution Pnf of (X1, . . . , Xn). For the case
n = 1 we set Ef = E1

f , respectively Pf = P1
f .

The empirical Mellin transform Considering Equation (3.1) we see that in order to define
an unbiased estimator for the function fk, k ∈ R+, we are in need of an unbiased estimator of
Mc[f ](t) for any t ∈ [−k, k]. Keeping in mind that for a density f and any t ∈ R we have
Mc[f ](t) = Ef (Xc−1+it), a natural unbiased estimation strategy is given by a moment estimator,
that is

M̂c(t) := n−1
n∑
j=1

Xc−1+it
j for any t ∈ R,

which we call the EMPIRICAL MELLIN TRANSFORM of the sample X1, . . . , Xn. It is worth stressing
out, that for the empirical distribution P̂n := n−1

∑n
j=1 δXj we have thatMc[P̂n] = M̂c where the

definition of the Mellin transform of a distribution is given in Definition 2.1.5. Here δx denotes
the Dirac measure in the point x.
Considering the function M̂c : R → C, we see that |M̂c(t)| ≤ M̂c(0) < ∞ almost surely, which
implies that 1[−k,k]M̂c ∈ L1(R) ∩ L2(R). Applying now the inversion formula, Proposition 2.3.6,
the functions f̂k := M†

c[1[−k,k]M̂c] lies in L2(R+, x
2c−1) and can be expressed explicitly by

f̂k(x) =
1

2π

∫
[−k,k]

x−c−itM̂c(t)dλ(t) for any x ∈ R+. (3.2)

Other estimators Let us shortly motivate the estimator given in Equation (3.2) from another
point of view. Considering the inverse formula for Mellin transform, Proposition 2.3.6, we get
f = M†

c[Mc[f ]]. A naive approach here, would be to plug the empirical Mellin transform in
directly to define an estimator f̂ = M†

c[M̂c]. This is not well-defined since M̂c is not square-
integrable and does thus not lay in the domain of M†

c. In the inverse problems literature, these
situation are typically dealt with using regularized version of the operator M†

c such that M̂c lies
in it domain. One of the most frequently used techniques for regularizing an operator is the so-
called spectral cut-off method, compare Engl et al. (1996). Applying this method to the theoretical
estimator f̂ = M†

c[M̂c] leads to the estimator in Equation (3.2).
Another often used method, to construct a well-defined estimator from f̂ = M†

c[M̂c], would be a
kernel estimator. Let us consider a function κ ∈ L2(R) ∩ L1(R) and define κh(x) := κ(hx), x ∈ R
and h ∈ R+. Then due to the boundness of M̂c we may define for any h ∈ R+ the estimator
f̂h = M†

c[κhM̂c] which is explicitly expressed,

f̂h(x) =
1

2π

∫
R
x−c−itκ(ht)M̂c(t)dλ(t) for any x ∈ R+. (3.3)
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Furthermore, defining Kh := M†
c[κh] ∈ L2(R) we can rewrite the estimator f̂h and rearrange it

in the following form

f̂h(x) =
1

n

n∑
j=1

X−1
j

1

2π

∫
R

(
x

Xj

)−c−it
κ(ht)dλ(t) =

1

n

n∑
j=1

X−1
j Kh(x/Xj), for any x ∈ R+.

For the special case of κ = 1[−1,1] and h = 1/k the estimators f̂h in Equation (3.3) and f̂k in
Equation (3.2) coincide. In this case, the function Kh would be given by

Kh(x) = x−c
1

2π

∫
[−h−1,h−1]

exp(−it log(x))dλ(t) = x−c

log(x)
sin(log(x)h−1) for any x ∈ R+,

exploiting that sin(y) = (exp(iy)−exp(−iy))/(2πi) for any y ∈ R. This kernel resembles strongly
the sinc-kernel which is used frequently for additive deconvolution problems. For this dissertation
we will mainly focus on the spectral cut-off estimator given in Equation (3.2). The point-wise
estimation using kernel estimators based on Mellin transforms is intensively studied in Belomestny
and Goldenshluger (2020).

Upper bound for the risk Now let us consider the risk Enf (∥f − f̂k∥2x2c−1) for k ∈ R+

and f̂k defined in Equation (3.2). By construction of the function f̂k we can ensure that f̂k ∈
L2(R+, x

2c−1) almost-surely. This allows us to apply the Parseval identity, Proposition 2.3.5, in
the following way

∥f − f̂k∥2x2c−1 =
1

2π
∥Mc[f ]−Mc[f̂k]∥2R =

1

2π

(
∥Mc[f − fk]∥2R + ∥Mc[fk − f̂k]∥2R

)
using that Mc[f − fk] and Mc[fk − f̂k] have disjoint supports. Again, by applying the Parseval
identity, we see that the first term is the approximation error term considered in Section 2.5. In
nonparametric Statistics this term is usually referred as the SQUARED BIAS-TERM.
Considering the second term, it is dependent on the estimator f̂k and thus random. Though it is
almost-surely finite, we have not given any sufficient condition to ensure that it possesses a finite first
moment. This can be done by a simple moment condition. In fact, assuming that Ef (X

2(c−1)
1 ) <

∞, we can state that Enf (|M̂c(t)−Mc(t)|2) = n−1Varf (Xc−1+it
1 ) ≤ n−1Ef (X

2(c−1)
1 ) for all t ∈ R.

This allows us to use the Fubini-Tonelli theorem and get
1

2π
Enf (∥Mc[fk − f̂k]∥2R) =

1

2π

∫
[−k,k]

Enf (|M̂c(t)−Mc(t)|2)dλ(t) ≤
k

nπ
Ef (X

2(c−1)
1 ).

The term (2π)−1Enf (∥Mc[fk − f̂k]∥2R) = Enf (∥fk − f̂k∥2x2c−1) is called the VARIANCE-TERM and
the decomposition of the risk Enf (∥f − f̂k∥2x2c−1) into the squared bias term ∥f − fk∥2x2c−1 and
the variance term Enf (∥fk − f̂k∥2x2c−1) is a frequently used tool in non-parametric statistics called
the BIAS-VARIANCE DECOMPOSITION. We collect these consideration in the following Proposition
which we have already proven.

Proposition 3.1.1 (Upper bound of the risk):
Let f ∈ L2(R+, x

2c−1) and σc := Ef (X
2(c−1)
1 ) <∞. Then for all k ∈ R+,

Enf (∥f − f̂k∥2x2c−1) = ∥f − fk∥2x2c−1 + Enf (∥fk − f̂k∥2x2c−1) ≤ ∥f − fk∥2x2c−1 +
k

nπ
σc

where f̂k is the estimator defined in Equation (3.2).
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Let us have a closer look at the squared bias and the variance term. While the squared bias term
is decreasing and tending to 0 for increasing k ∈ R+ , the variance term is increasing. To ensure
that both term decrease in n ∈ N, it is sufficient to choose a sequence (kn)n∈N of spectral cut-off
parameters with kn → ∞ and knn−1 → 0 for n→ ∞. This thought implies directly the following
Corollary whose proof is thus omitted.

Corollary 3.1.2 (Consistency):
Let f ∈ L2(R+, x

2c−1) and σc = Ef (X2c−1
1 ) <∞. Then for every sequence (kn)n∈N with kn → ∞

and knn−1 → 0 for n→ ∞,

Enf (∥f − f̂kn∥2x2c−1) → 0,

implying that ∥f − f̂kn∥2x2c−1

P→ 0.

Although the simple assumption on (kn)n∈N leads to a consistent estimator only based on the data
X1, . . . , Xn, we might ask how different choices of a sequence (kn)n∈N might effect the rate with
which the risk is decaying. Comparing to Section 2.5, we have seen that the underlying density is
strongly connected to the decay of the bias and thus affects the rate of the risk. Amore sophisticated
analysis of the bias term and the corresponding risk, will be done in the following subsection.

3.1.3 Minimax theory

In this subsection, we will build ellipsoids in L2(R+, x
2c−1) based on the Mellin-Sobolev spaces

introduced in Definition 2.3.9 and deduce a rate for the upper bound of the risk uniformly over
the ellipsoids. This gives us the means to derive an upper bound for the minimax risk of the density
estimation over the ellipsoids. We will prove that the stated rate is minimax by presenting a lower
bound proof. We first state both the upper and lower bound for the risk. Afterwards, we interpret
these results in the context of minimax theory.

Definition 3.1.3 (Mellin Sobolev ellipsoids):
For s, L ∈ R+ and c ∈ R we define the MELLIN-SOBOLEV ELLIPSOIDS by

Ws
c(L) := {f ∈ Ws

c(R+) : |f |2s,c := ∥(1 + t2)s/2Mc[f ]∥2R ≤ L}.

Then for f ∈ Ws
c(L) holds

∥f − fk∥2x2c−1 =
1

π

∫ ∞

k
|Mc[f ](t)|2(1 + t2)s(1 + t2)−sdλ(t) ≤ k−2s L

2π
.

Furthermore, because f is a density, and in need to control the variance term, it is natural to define
the following ellipsoids

Dsc(L) := {f ∈ Ws
c(L) : f is a density , σc = Ef (X

2(c−1)
1 ) ≤ L}.

Then we can state for f ∈ Dsc(L) that Enf (∥fk − f̂k∥2x2c−1) ≤ Lk
πn , which proves the following

Proposition.
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Proposition 3.1.4 (Upper bound for the minimax risk):
Let s, L ∈ R+ and c ∈ R. Then for ko := n1/(2s+1) we get

sup
f∈Ds

c(L)
Enf (∥f − f̂ko∥2x2c−1) ≤ C(L, s)n−2s/(2s+1)

where C(L) := 3L/(2π) is a positive constant depending on L.

Despite the fact, that this rate is typical for nonparametric estimation of densities, compare Comte
(2017) or Tsybakov (2009), we might ask ourselves if there exists an estimator based on the sample
X1, . . . , Xn which can access a better rate uniformly over the ellipsoids Dsc(L). The answer to this
question is captured in the following Theorem.

Theorem 3.1.5 (Lower bound for the minimax risk):
Let s ∈ N and c ∈ R. Then there exist constants Ls,c, ns > 0 such that for all L ≥ Ls,c, n ≥ ns and
for any estimator f̂ of f based on an i.i.d. sample (Xj)j∈JnK,

sup
f∈Ds

c(L)
Enf (∥f̂ − f∥2x2c−1) ≥ Ccn

−2s/(2s+1).

where Cc is a positive constant depending on c.

Proof of Theorem 3.1.5. First we outline the main steps of the proof. The upcoming Lemmata
3.1.6-3.1.8 will be proven afterwards. We will construct a family of functions in Dsc(L) by a per-
turbation of the density fo : R+ → R+ with small bumps, such that their L2(R, x2c−1)-distance
and the Kullback-Leibler divergence of their induced distributions can be bounded from below
and above, respectively. The claim follows by applying Theorem 2.5 in Tsybakov (2009). We use
the following construction.
Let ψ ∈ C∞

0 (R) be a function with support in [0, 1] and
∫
(0,1) ψ(x)dλ(x) = 0. For each K ∈ N (to

be selected below) and k ∈ J0,K − 1K we define the bump-functions ψk,K(x) := ψ(xK −K − k),

x ∈ R and define for j ∈ N0 the finite constant Cj,∞ := max(∥ψ(l)∥∞, l ∈ J0, jK). For a bump-
amplitude δ > 0 and a vector θ = (θ1, . . . , θK) ∈ {0, 1}K we define

fθ(x) = fo(x) + δK−s
K−1∑
k=0

θk+1ψk,K(x), (3.4)

where fo : R+ → R+, x 7→ 1√
2πx

exp(− log(x)2/2)1R+(x) is the density of a Log-Normal distri-
bution, compare Example 2.1.4. Until now, we did not give a sufficient condition to ensure that
our constructed functions {fθ : θ ∈ {0, 1}K} are in fact densities. This condition is given by the
following lemma.

Lemma 3.1.6:
Let 0 < δ < δo(ψ) := fo(2)/C0,γ . Then for all θ ∈ {0, 1}K , fθ is a density.

Further, we can show that these densities all lie inside the ellipsoids for L big enough. This is
captured in the following lemma.

Lemma 3.1.7:
Let s ∈ N. Then, there is Ls,c,δ > 0 such that fo and any fθ as in (3.4) with θ ∈ {0, 1}K , K ∈ N,
belong to Dsc(L) for all L ≥ Ls,c,δ.
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Exploiting VARSHAMOV-GILBERT’S LEMMA (see Tsybakov (2009)) in the proof of Lemma 3.1.8 we
show further that there is M ∈ N with M ≥ 2K/8 and a subset {θ(0), . . . ,θ(M)} of {0, 1}K with
θ(0) = (0, . . . , 0) such that for all j, l ∈ J0,MK, j ̸= l the L2(R+, x

2c−1)-distance and the Kullback-
Leibler divergence are bounded for K ≥ 8. Here, we define for two Lebesgue densities f1, f0 on
R+ its KULLBACK-LEIBLER DIVERGENCE by

KL(f1, f0) :=

{∫
R log(

dPf1
dPf0

(x))dPf0(x) Pf1 ≪ Pf0
∞, else.

=

{∫
R+

log(f1(x)fo(x)
)fo(x)dλ(x), Pf1 ≪ Pf0

∞, else.

Lemma 3.1.8:
Let K ≥ 8. Then there exists a subset {θ(0), . . . ,θ(M)} of {0, 1}K with θ(0) = (0, . . . , 0) such that
M ≥ 2K/8 and for all j, l ∈ J0,MK, j ̸= l,

(i) ∥fθ(j) − fθ(l)∥2x2c−1 ≥ Cc∥ψ∥2x0δ
2K−2s

(ii) KL(fθ(j) , fθ(0)) ≤ Cfo∥ψ∥2x0δ
2 log(M)K−2s−1

and where KL is the Kullback-Leibler-divergence.

Selecting K = ⌈n1/(2s+1)⌉,

1

M

M∑
j=1

KL((fθ(j))⊗n, (fθ(0))⊗n) =
n

M

M∑
j=1

KL(fθ(j) , fθ(0)) ≤ cψ,foδ
2 log(M).

Thus, there exists a δ(ψ, fo) ∈ R+ such that cψ,foδ2 < 1/8 for all δ ≤ δ1(ψ, fo) and M ≥ 2 for
n ≥ ns := 82s+1. Thereby, we can use Theorem 2.5 of Tsybakov (2009), which in turn for any
estimator f̂ of f implies

sup
f∈Ds

c(L)
Pnf
(
∥f̂ − f∥2x2c−1 ≥

cψ,δ,c
2

n−2s/(2s+1)
)
≥

√
M

1+
√
M

(
1− 1/4−

√
1

4 log(M)

)
≥ 0.07.

Note that the constant cψ,δ,c only depends on ψ, c and δ, hence it is independent of the parameters
s, L and n. The claim of Theorem 3.1.5 follows by using Markov’s inequality, which completes
the proof.

Now that we have shown all necessary theorems we will interpret our results in the context of the
MINIMAX THEORY.

Definition 3.1.9 (Minimax Risk):
The MINIMAX RISK of the density estimation over the ellipsoids Dsc(L) given the i.i.d. sample
X1, . . . , Xn is defined as

Rn := inf
f̂

sup
f∈Ds

c(L)
Enf (∥f̂ − f∥2x2c−1) (3.5)

where the infimum is taken over all estimators based on the sample X1, . . . , Xn.
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Of special interest in this context is the determination of the so-calledMINIMAX RATE (rn)n∈N which
is defined as follows.

Definition 3.1.10 (Minimax rate):
Let (Rn)n∈N be the minimax risk. Then a sequence (rn)n∈N is called aMINIMAX RATE if there exists
constants C1, C2 > 0 such that for all n ∈ N,

C1rn ≤ Rn ≤ C2rn.

Inspired by Theorem 3.1.5, we will now show that (rn)n∈N is given by rn = n−2s/(2s+1). While
the lower bound is covered in Theorem 3.1.5, the upper bound is achieved by the simple idea that
for any fixed estimator f̂o based on X1, . . . , Xn,

Rn ≤ sup
f∈Ds

c(L)
Enf (∥f̂o − f∥2x2c−1)

In other words, to show that a given lower bound is optimal, it is sufficient to show that there
exists an estimator which can indeed achieve the proposed rate. Now, Proposition 3.1.4 implies
that our estimator f̂kor achieves the desired rate which implies that (rn)n∈N is in fact, the minimax
rate. Furthermore, we call an estimator which achieves the minimax rate MINIMAX OPTIMAL. This
is captured in the following proposition.

Proposition 3.1.11:
Let c ∈ R and s ∈ N. Then for any L ≥ Ls,c (given in Theorem 3.1.5) and n ∈ Nwe can state that
the estimator f̂kor with kor = n1/(2s+1) is minimax-optimal with minimax rate n−2s/(2s+1).

Although the choice of kor is independent on the density f itself, it is still dependent on the reg-
ularity parameter s ∈ R+. It might be tempting to choose s ∈ R+ fixed and interpret it as a
regularity assumption, but this could cause a massive error due to the fact that the choice kor is
rather pessimistic which will be explained in the next paragraph.

Faster rates Revisiting the examples of the approximations and numerical study, Section 2.5,
we have seen that the family of Gamma-distributions and Log-Normal distributions possess Mellin
transforms which decay exponentially. As a short reminder the density and its Mellin transform of
a Gamma-distribution with parameters p, λ ∈ R+ is given by

f(x) =
λp

Γ(p)
xp−1 exp(−λx)1R+(x) and Mc[f ](t) = λ1−c−it

Γ(p+ c− 1 + it)

Γ(p)

for any x, λ ∈ R+, t ∈ R and c > −p. For the Log-Normal distribution we have for the parameter
µ ∈ R and λ2 ∈ R+,

f(x) =
1√

2πλ2x
exp

(
− 1

2λ2
(log(x)− µ)2

)
and Mc[f ](t) = eµ(c−1+it) exp

(
λ2(c− 1 + it)2

2

)
for any x ∈ R+ and t, c ∈ R. Applying for the Gamma distribution the Stirling formula in Andrews
et al. (1999), which states that |Γ(σ + it)| ≤ |t|σ−1/2 exp(−π|t|/2) for |t| ≥ 2 and σ ≥ −2, we get
for both cases that

∥f − fk∥2x2c−1 =
1

π

∫ ∞

k
|Mc[f ](t)|2dλ(t) ≤ Cf exp(−αka)
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for α ∈ R+, dependent on f and a = 1 for the Gamma distribution and a = 2 for the Log-Normal
distribution. Now choosing kn = log(n)1/a/α−1 we can ensure that for both cases

inf
k∈R+

(
∥f − fk∥2x2c−1 + Enf (∥f̂k − fk∥2x2c−1)

)
≤ Enf (∥f̂kn − f∥2x2c−1) ≤ Cf

log(n)1/a

n
, (3.6)

leading to a faster rate than provided by Proposition 3.1.4 for any choice of s ∈ R+. In other
words, if we interpret s ∈ R+ as a fixed regularity assumption, and choosing kn = n1/(2s+1) we
may end up in many cases with a slower rate. It is therefore desirable, to find a fully data-driven
choice k̂, only dependent on (Xj)j∈JnK such that the risk of f̂

k̂
behaves up to a negligible term like

the infimum on the left hand side of Equation (3.6). In the next subsection, we consider a choice
of the parameter k ∈ R+ based only on the observation X1, . . . , Xn which can achieve even the
faster rate presented in (3.6) without any prior knowledge about the decay of the bias.

3.1.4 Data-driven method

We will now introduce a data-driven choice of the cut-off parameter k ∈ R+. To do so, we first
define first a contrast for a nested system of subspaces (Lk)k∈R+ of L2(R+, x

2c−1), that is Lk ⊆ Lk′

for all k ≤ k′ ∈ R+ and show that the estimator presented in Equation (3.2) can be interpreted
as the corresponding minimal contrast estimator. In this situation, we can then use a penalized
contrast approach, called model selection, to define our data-driven estimator and present an upper
bound of its risk.
Let us define the nested system of subspaces (Lk)k∈R+ by

Lk := {h ∈ L2(R+, x
2c−1) : supp(Mc[h]) := {t ∈ R : Mc[h](t) ̸= 0} ⊆ [−k, k]}.

Obviously, we see that Lk ⊆ Lk′ for any k ≤ k′. For any k ∈ R+ and h ∈ Lk we define the
empirical contrast γn(h) by

γn(h) := ∥h∥2x2c−1 − 2
1

2π

∫
R
M̂c(t)Mc[h](−t)dλ(t) (3.7)

which is well-defined since |M̂c(t)| ≤ M̂c(0) is bounded and Mc[h] has compact support. In
expectation we deduce from (3.7),

Enf (γn(h)) = ∥h∥2x2c−1 − 2
1

2π

∫
R
Mc[f ](t)Mc[h](−t)dλ(t)

= ∥h∥2x2c−1 − 2⟨h, f⟩x2c−1 = ∥h− f∥2x2c−1 − ∥f∥2x2c−1

by applying the Fubini-Tonelli theorem and the Plancherel identity given in Proposition 2.3.5. As
far as the contrast γ(h) := Enf (γn(h)) for h ∈ Lk is converned, we can easily see that

fk = arg min
h∈Lk

γ(h), since ⟨f, h⟩x2c−1 = ⟨fk, h⟩x2c−1

for any h ∈ Lk. Analogously, we have

1

2π

∫
R
M̂c(t)Mc[h](t)dλ(t) =

1

2π
⟨M̂c1[−k,k], h⟩R = ⟨f̂k, h⟩x2c−1

implying that we can write γn(h) = ∥f̂k − h∥2x2c−1 − ∥f̂k∥2x2c−1 , which is obviously minimal for
h = f̂k.
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Proposition 3.1.12 (Minimal contrast estimator):
Let us consider for h ∈ Lk, k ∈ R+ the empirical contrast γn(h) defined in Equation (3.7). Then
we have

f̂k = arg min
h∈Lk

γn(h) with γn(f̂k) = −∥f̂k∥2x2c−1 ,

implying that the estimator f̂k defined in Equation (3.2) is the MINIMAL CONTRAST ESTIMATOR with
respect to the empirical contrast γn over the set Lk.

Now for χ > 0 let us define the penalty pen : R+ → R+ by pen(k) := χσckn
−1 and an empirical

counterpart through p̂en(k) := 2χσ̂ckn
−1 by σ̂c := n−1

∑n
j=1X

2(c−1)
j . The definition of pen

mimics the behavior of the variance term presented Proposition 3.1.1. Then we can define

k̂ := arg min
k∈Kn

(
γn(f̂k) + p̂en(k)

)
= arg min

k∈Kn

(
−∥f̂k∥2x2c−1 + p̂en(k)

)
(3.8)

where Kn, the set of suitable cut-off parameters, is set to Kn := JnK. Indeed, a choice of (kn)n∈N
which leads to a consistent estimator f̂kn needs to satisfy knn−1 → 0 for n→ ∞which on the other
hand implies that the set Kn is rich enough. The following typical result for data-driven method
holds true for the choice k̂ defined in Equation (3.8). Here we denote for a measurable function h
the essential supremum ∥h∥∞ := sup{k ∈ R+ : λ({x ∈ R+ : h(x) > k}) > 0}.

Theorem 3.1.13 (Data-driven choice of k ∈ R+):
Assume that f ∈ L2(R+, x

2c−1), Ef (X
5(c−1)
1 ) < ∞ and ∥x2c−1f∥∞ < ∞. Then for χ > 48/π we

get

Enf (∥f̂k̂ − f∥2x2c−1) ≤ 6 inf
k∈Kn

(
∥f − fk∥2x2c−1 + pen(k)

)
+
Cf
n

where Cf is a positive constant dependent on ∥x2c−1f∥∞,Ef (X
5(c−1)
1 ), σc and χ.

Before proving this result, let us shortly intepret the bound. Theorem 3.1.13 implies that the risk of
the proposed fully data-driven estimator f̂

k̂
behaves like the best choice of k ∈ Kn whichminimizes

the sum of the squared bias term and the penalty term, which in turn behaves like the variance
term. In other words, due to the richness of the subset Kn ⊂ R+ we can say that the estimator f̂

k̂

behaves similarly to the infimum in (3.6) up to a negligible term. Indeed, after the proof of Theo-
rem 3.1.13 we will derive explicit rates for the data-driven estimator under particular smoothness
assumptions, compare Corollary 3.1.18.
The key argument which is used to show Theorem 3.1.13 is the so-called Talagrand inequality, a
concentration inequality from the empirical process theory literature. Wewill present before prov-
ing Theorem 3.1.13. The original version is due to Talagrand (1996); the following formulation
can be found for example in Klein and Rio (2005).
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Lemma 3.1.14 (Talagrand’s inequality):
Let X1, . . . , Xn be independent Z-valued random variables and let

νh = n−1
n∑
i=1

[νh(Xi)− E (νh(Xi))]

for νh belonging to a countable class {νh, h ∈ H} of measurable functions. Then,

E
(
sup
h∈H

|νh|2 − 6Ψ2

)
+

≤ C

[
τ

n
exp

(
−nΨ2

6τ

)
+
ψ2

n2
exp

(
−KnΨ
ψ

)]
(3.9)

with numerical constants K = (
√
2− 1)/(21

√
2) and C > 0 and where

sup
h∈H

sup
z∈Z

|νh(z)| ≤ ψ, E(sup
h∈H

|νh|) ≤ Ψ, sup
h∈H

1

n

n∑
i=1

Var(νh(Xi)) ≤ τ.

Remark 3.1.15:
Keeping the bound (3.9) in mind, let us specify a particular choice for K, i.e. K ≥ 1

100 . The next
bound is now an immediate consequence,

E
(
sup
h∈H

|νh|2 − 6Ψ2

)
+

≤ C

(
τ

n
exp

(
−nΨ2

6τ

)
+
ψ2

n2
exp

(
−nΨ
100ψ

))
. (3.10)

In the sequel we will make use of the slightly simplified bound (3.10) rather than (3.9).

Proof of Theorem 3.1.13. In general, the proof of for the penalized contrast model selection can
be divided in two steps. In the first step, one uses the definition of k̂ in Equation (3.8) and the
minimum contrast property stated in Proposition 3.1.12 to show the following Lemma.

Lemma 3.1.16:
Let us define for h ∈ Bk := {h ∈ Lk : ∥h∥2x2c−1 ≤ 1} the centered process

νh := n−1
n∑
j=1

νh(Xj)− Ef (νh(Xj)), where νh(x) :=
1

2π

∫
R
xc−1+itMc[h](−t)dλ(t),

for any x ∈ R+. Then, under the assumptions of Theorem 3.1.13,

Enf (∥f̂k̂ − f∥2x2c−1) ≤ 6 inf
k∈Kn

(
∥f − fk∥2x2c−1 + pen(k)

)
+ 8Enf (max

k∈Kn

( sup
h∈Bk

ν2h − p(k))+)

+ 2Enf ((pen(k̂)− p̂en(k̂))+)

where p(k) := 12σck
πn and (a)+ := max(a, 0) for any a ∈ R.

The proof of Lemma 3.1.16 can be found in Section 3.1.7.
To finish the proof, it remains to use the Talagrand inequality and basic stochastically calculus, to
show that the last two summands in Lemma 3.1.16 are negligible. In order to apply the Talagrand
inequality, we first need to split the process since the functions νh : R+ → C are not bounded on
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R+ contradicting the existence of a constant ψ ∈ R+ fulfilling the assumption of Lemma 3.1.14.
Therefore, let us decompose the process νh into νh,1 and νh,2 for a positive sequence (dn)n∈N where

νh,1 := n−1
n∑
j=1

νh(Xj)1(0,dn)(X
c−1
j )− E(νh(Xj)1(0,dn)(X

c−1
j ))

and νh,2 := νh − νh,1. The sequence (dn)n∈N will be chosen in Lemma 3.1.17. Then we have

Enf

(
max
k∈Kn

(
sup
h∈Bk

ν2h − p(k)

)
+

)
≤ 2Enf

(
max
k∈Kn

(
sup
h∈Bk

ν2h,1 −
p(k)

2

)
+

)
+ 2Enf

(
max
k∈Kn

sup
h∈Bk

ν2h,2

)
.

In order to show the Theorem 3.1.13, it remains to control the three upcoming expectations.

Lemma 3.1.17:
Under the assumptions of Theorem 3.1.13 we have

(i) Enf

(
max
k∈Kn

(
sup
h∈Bk

ν2h,1 −
p(k)

2

)
+

)
≤ C(∥x2c−1f∥∞, σc)

n
,

(ii) Enf

(
max
k∈Kn

sup
h∈Bk

ν2h,2

)
≤
C(Ef (X

5(c−1)
1 ), σc)

n
and

(iii) Enf
(
(pen(k̂)− p̂en(k̂))+

)
≤
C(χ, σc,Ef (X

4(c−1)
1 ))

n
.

Although the application of the Talagrand inequality follows in general the same steps, we will
present it here to highlight the remarkable application of this concentration inequality in the con-
text of data-driven methods.

Proof of Lemma 3.1.17.
Proof of (i): First,

Enf

(
max
k∈Kn

(
sup
h∈Bk

ν2h1 −
p(k)

2

)
+

)
≤
∑
k∈Kn

Enf

((
sup
h∈Bk

ν2h,1 −
p(k)

2

)
+

)
.

Now on each summand we will use the Talagrand inequality 3.10 to show the first claim. We want
to emphasize that we are able to apply the Talagrand inequality on the sets Bk since Bk has a dense
countable subset and due to continuity arguments. Let us start by determining the constant Ψ2.
We define

f̃k := M†
c[1[−k,k]n

−1
n∑
j=1

Xc−1+it
j 1(0,dn)(X

c−1
j )].

The function f̃k is, similar to f̂k, well-defined as the inverse of the Mellin transform of a bounded
function with compact support. Additionally, the compact support allows the interchange of inte-
gration, leading for any x ∈ R+ to

Enf (f̃k(x)) =
1

2π

∫
(−k,k)

x−c−itEf (Xc−1+it
1 1(0,dn)(X

c−1
1 ))dλ(t)
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Then, we have for any h ∈ Bk that ν2h,1 = ⟨h, f̃k − Enf (f̃k)⟩2x2c−1 ≤ ∥h∥2x2c−1∥f̃k − Enf (f̃k)∥2x2c−1 .
Now, since ∥h∥2x2c−1 ≤ 1 we get

Enf

(
sup
h∈Bk

ν2h,1

)
≤ 1

2πn

∫
(−k,k)

Varf (Xc−1+it
1 1(0,dn)(X

c−1
1 ))dλ(t) ≤ σck

πn
=: Ψ2.

Thus 6Ψ2 = p(k)
2 . Next we consider ψ. Let x > 0 and h ∈ Bk. Using the Cauchy-Schwarz

inequality we get

|νh(x)1(0,dn)(x
c−1)|2 ≤ d2n

(2π)2

(∫
(−k,k)

|Mc[h](t)|dλ(t)

)2

≤ d2nk

π
=: ψ2.

Next we consider τ . For h ∈ Bk we can conclude, that

Varf (νh(X1)1(0,dn)(X
c−1
1 )) ≤ E(ν2h(X1)) ≤ ∥x2c−1f∥∞∥νh∥2x1−2c .

Since νh(x) = 1
2π

∫ k
−k x

c−1+itMc[h](−t)dt = M†
1−c[Mc[h]](x)weget by application of the Plancherel

identity, Proposition 2.3.5, that

Varf (νh(X1)1(0,dn)(X
c−1
1 )) ≤ ∥x2c−1f∥∞

1

2π

∫
(−k,k)

|Mc[h](t)|2dt

= ∥x2c−1f∥∞∥h∥2x2c−1 ≤ ∥x2c−1f∥∞ =: τ.

Now applying the Talagrand inequality,

Enf

(
max
k∈Kn

(
sup
h∈Bk

ν2h,1 −
p(k)

2

)
+

)
≤ C

n∑
k=1

∥x2c−1f∥∞
n

e
− kσc

π∥x2c−1f∥∞ +
d2nk

n2
e−

√
σcn

100dn

≤ C(∥x2c−1f∥∞, σc)
n

+ C
n∑
k=1

c2nk

n2
e−

√
σcn

100cn .

By the choice dn =
√
σcn/(200 log(n)) we get

n∑
k=1

d2nk

n2
e−

√
σcn

100dn ≤ C(σc)

n

n∑
k=1

k

n2
≤ C(σc)

n
,

which implies the first claim (i).
Now let us show part (ii):
For any h ∈ Bk we get ν2h,2 = ⟨h, f̂k − f̃k − Enf (f̂k − f̃k)⟩2x2c−1 ≤ ∥f̂k − f̃k − Enf (f̂k − f̃k)∥2x2c−1 .

From this we deduce by application of the Fubini-Tonelli theorem and the Plancherel identity,
Proposition 2.3.5, that

Enf (max
k∈Kn

sup
h∈Bk

ν2h,2) ≤
1

2π
Enf
(∫ n

−n

∣∣∣Mc[f̂n − f̃n](t)− Enf (Mc[f̂n − f̃n](t)
∣∣∣2 dλ(t))

=
1

2nπ

∫ n

−n
Varf (Xc−1+it

1 1(cn,∞)(X
c−1
1 ))dλ(t)

≤
Ef (X

2(c−1)
1 1(cn,∞)(X

c−1
1 ))

π
.
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Now for any p ∈ R+, Ef (X
2(c−1)
1 1(cn,∞)(X

c−1
1 )) ≤ Ef (X

(2+p)(c−1)
1 1(cn,∞)(X

c−1
1 ))c−pn implying

with p = 3 that

Enf

(
max
k∈Kn

sup
h∈Bk

ν2h,2

)
≤ c−3

n Ef (X
(2+3)(c−1)
1 ) ≤

C(Ef (X
5(c−1)
1 ), σc)

n
.

To finish the proof of this Lemma, we now show claim (iii):
Let us define the set Ω := {|σ̂c − σc| ≤ σc/2}. Then on Ω we have σc/2 ≤ σ̂c ≤ 3/2σc and, since
k̂ ≤ n,

Enf ((pen(k̂)− p̂en(k̂))+) =
χ

n
Enf (k̂(σc − 2σ̂c)+) ≤ χEnf (σc − 2σ̂c)+1Ωc)

Now by application of the Cauchy-Schwarz inequality we get

Enf (σc − 2σ̂c)+1Ωc) ≤ Enf (|σc − σ̂c|1Ωc) ≤ Varnf (σ̂c)1/2Pnf (Ωc)1/2,

where due to the Markov inequality follows Pnf (|σ̂c − σc| > σc/2)
1/2 ≤ 2Varnf (σ̂c)1/2/σc. Thus

Enf ((pen(k̂)− p̂en(k̂))+) ≤ C(χ, σc)Varnf (σ̂c) ≤
C(χ, σc,Ef (X

4(c−1)
1 ))

n
.

Combining Lemma 3.1.16 and Lemma 3.1.17 implies the claim of Theorem 3.1.13.

Now, for densities lying in a Mellin-Sobolev space we can prove the following Corollary.

Corollary 3.1.18:
Let f ∈ Ws

c(L), ∥x2c−1f∥∞ <∞ and Ef (X
5(c−1)
1 ) <∞. Then for any χ > 48/π,

Enf (∥f̂k̂ − f∥2x2c−1) ≤ Cfn
−2s/2s+1

for a positive constant Cf dependent on L, s,Ef (X
5(c−1)
1 ), χ and ∥x2c−1f∥∞.

To show that this bound holds true uniformly over a class of function based on the Mellin-Sobolev
ellipsoids, we additionally need to control the terms Ef (X

5(c−1)
1 ) and ∥x2c−1f∥∞. While the as-

sumption ∥x2c−1f∥∞ < ∞ is rather weak and fulfilled for many densities which have a finite
2(c− 1) moment, σc = Ef (X

2(c−1)
1 ) <∞. On the other hand, the assumption Ef (X

5(c−1)
1 ) could

become very crucial if we aim to consider the unweighted L2(R+, x
0)-norm. In this case, we

would choose c = 1/2 which implies that we need Ef (X
−5/2
1 ) <∞, implying that the density has

to vanish in 0. This might be seen as a boundary condition for the estimation. Nevertheless, the
case c = 1 implies that both σ1 = 1 = Ef (X

5(1−1)
1 ) < ∞ for all densities. In this particular case,

the penalty pen is known and thus does not neet to be estimated.
We close this section by visualizing our estimation strategy.
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3.1.5 Numerical results

In the last two subsections we have constructed the estimator f̂k for k ∈ R+, compare Equa-
tion (3.2), we have shown that it is minimax-optimal for an oracle choice ko, Proposition 3.1.11,
and presented a fully-data driven estimator f̂

k̂
in Equation (3.8). Our aim in this subsection is now

to visualize the behavior of our estimator f̂
k̂
using aMonte-Carlo simulation. Wewant to stress out,

that a study addressing the behavior of the approximations (fk)k∈R+ can be found in Section 2.5.
For this simulation study, let us revisit the following examples chosen from Section 2.5.

(i) BETA DISTRIBUTION: f(x) = B(2, 5)−1x(1− x)41(0,1)(x), x ∈ R+,

(ii) LOG-GAMMA DISTRIBUTION: f(x) = 55Γ(5)−1x−6 log(x)41(1,∞)(x), x ∈ R+,

(iii) GAMMA DISTRIBUTION: f(x) = Γ(5)−1x4 exp(−x)1(0,∞)(x), x ∈ R+ and

(iv) LOG-NORMAL DISTRIBUTION: f(x) = (0.08πx2)−1/2 exp(− log(x)2/0.08)1(0,∞)(x), x ∈ R+.

If f ∈ Ws
c(R+) for these examples has already been studied in Section 2.5. More precisely, we can

calculate the bias for each example (i) − (iv) explicitly and balance the bias and variance term to
get the following rates for the upper risk bounds.

(i) (ii) (iii) (iv)

Rate n−9/10 n−9/10 log(n)n−1 log(n)1/2n−1

From a theoretical point of viewwewould therefore expect that the estimator for the Beta distribu-
tion and the Log-Gamma distribution should behave similarly, while for the Gamma distribution,
respectively the Log-Normal distribution, the behavior should be noticeable better. It is worth
stressing out, that these interpretations are based on an asymptotic point of view. For a fixed sam-
ple size n ∈ N, the multiplicative constant in front of the rate has a much stronger influence on
the behavior of the estimator. Doing a preliminary simulation we choose the parameter χ = 2.
In Figure 3.1, we presented the choice c = 1, since for c = 1/2 in the case of (i) we have no
theoretical result of the behavior of f̂

k̂
since the assumptions of Theorem 3.1.13 do not hold true.

Before considering the behavior of our estimator for changing values of c ∈ R we will study the
effect of varying sample sizes.
The theory that shows consistency of the estimator f̂

k̂
seem to be visible in the simulation presented

in Figure 3.2 as the estimation improves for increasing n ∈ N. We will now consider the case of
varying values of c ∈ R. In fact, we are considering the cases c = 0, c = 1/2 and c = 1. Therefore,
we use examples (ii) and (iv) since both match the assumption of Theorem 3.1.13 for these three
choices of c ∈ R.

61



0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 3.1: Considering the estimator f̂
k̂
and a sample size n = 500 the adaptive estimators are

depicted for 50 Monte-Carlo simulations in the cases (i) (top, left), (ii) (top, right),
(iii) (bottom, left) and (iv) (bottom, right) with c = 1. The true density f is given by
the dark blue curve while the red curve is the point-wise empirical median of the 50
estimates.
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Figure 3.2: Considering the estimator f̂
k̂
with varying sample size n = 500 t(left), n = 1000

(middle), n = 2000 (right) the adaptive estimators are depicted for 50 Monte-Carlo
simulations in the cases (i) (top) and (iv) (bottom) with c = 1. The true density f is
given by the dark blue curve while the red curve is the point-wise empirical median of
the 50 estimates.
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Figure 3.3: Considering the estimator f̂
k̂
and a sample size n = 1000 the adaptive estimators are

depicted for 50 Monte-Carlo simulations in the cases (ii) (top) and (iv) (bottom) with
c = 0 (left), c = 1/2 (middle) and c = 1 (right). The true density f is given by the dark
blue curve while the red curve is the point-wise empirical median of the 50 estimates.

Similar to the results in Figure 3.3, we can see that the parameter c ∈ R has a strong influence on
the approximation behavior of the estimator. For c = 0 it seems that the error for values of x ∈ R+

close to 0 is rather small, while for bigger values of x ∈ R+ the error seems to increase. For the
choice c = 1 the opposite behavior seems to occur. For c = 1/2, none of the both effects can be
observed.

3.1.6 Conclusion

In this section we considered the estimation of a density f : R+ → R+ based on an i.i.d. sample
X1, . . . , Xn. We propose an estimator based on the estimation of the Mellin transform of f using
the empirical Mellin transform and a regularized inverse Mellin transform. Further, we studied its
minimax-optimality over Mellin-Sobolev ellipsoids and proposed a data-driven procedure for the
choice of the spectral cut-off parameter. To show that the estimator behaves reasonable in practice,
we ended this sections with a Monte Carlo simulation.
Although we are interested in the estimation in the multiplicative measurement error model, we
motivated this section by the case of direct observation as a toy example. In the next section, we
will use these results and implement them in the context of multiplicative measurement errors.
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3.1.7 Proofs

Proof of Lemma 3.1.6. By the fact that
∫ 1
0 ψ(x)dλ(x) = 0, we have that any δ > 0 and θ ∈ {0, 1}K

that
∫∞
0 fθ(x)dλ(x) = 1.

Due to the construction (3.4) of the function ψk,K , K ∈ N, k ∈ J0,K − 1K, ψk,K has support on
[1 + k/K, 1 + (k + 1)/K] which lead to ψk,K and ψl,K having disjoint supports if k ̸= l. For
x ∈ [1, 2]c we have fθ(x) = fo(x) ≥ 0. On the interval [1, 2] the function fo is monotonically
decreasing. Furthermore, there is ko ∈ J0,K − 1K such that x ∈ [1 + ko/K, 1 + (ko + 1)/K] and
hence

fθ(x) = fo(x) + θko+1δK
−sψko,K(x) ≥ fo(2)− δC0,∞

since ∥ψk,K∥∞ ≤ C0,∞ for any k ∈ J0,K − 1K and j ∈ N. Choosing δ ≤ δo(ψ) = fo(2)/C0,∞
ensures fθ(x) ≥ 0 for all x ∈ R+.

Proof of Lemma 3.1.7. Our proof starts with the observation that for all t ∈ R we have

|Mc[fo](t)| = | exp((c− 1 + it)2/2)| = exp((c− 1)2/2) exp(−t2/2),

compare Example 2.1.11. Thus for every s ∈ N and c ∈ R there exists Ls,c such that |fo|2s,c ≤ L for
all L ≥ Ls,c where | . |s,c is defined in Definition 3.1.3. Next, we show that there exists a constant
C(s,c,δ) > 0 such that |fo − fθ|s,c < C(s,c,δ) which then implies |fθ|2s,c ≤ 2(|fo − fθ|2s,c + |fo|2s,c) ≤
2(C(s,c,δ) + Ls,c) =: Ls,c,δ,1.
Consider |fo − fθ|s,c. Let us first define ΨK :=

∑K−1
k=0 θk+1ψk,K . Then we have |fo − fθ|2s,c =

δ2K−2s|ΨK |2s,c By application of Proposition 2.3.12 and Proposition 2.2.4 we deduce that

(1 + t2)s|Mc[ΨK ](t)|2 = (1 + t2)s|M1[x
c−1ΨK ](t)|2 = |M1[S

s[xc−1Ψk]](t)|2

and thus

|ΨK |2s,c =
∫ ∞

−∞
(1 + t2)s|Mc[ΨK ](t)|2dλ(t) = (2π)∥Ss[xc−1ΨK ]∥2x2c−1

by the Parseval identity, see Proposition 2.3.5. By induction, we show that there exist coefficients
(aj)j∈J0,sK and (bj)j∈J0,sK, possibly dependent on s and c, such that Ss[xc−1ΨK ] =

∑s
j=0 ajx

bjΨ
(j)
K .

Since ΨK has compact support in [1, 2] we get |ΨK |2s,c ≤ Cc,s
∑s

j=0 ∥Ψ
(j)
K ∥2x2c−1 and further

|ΨK |2s,c ≤ Cc,s

s∑
j=0

K2j
K−1∑
k=0

∫ 2

1
x2c−1(ψ(j)(xK −K − k))2dλ(x)

≤ Cc,s

s∑
j=0

K2j
K−1∑
k=0

K−1∥ψ(j)∥2x0 ≤ Cc,sK
2s

where we used that if ψk, ψl have disjoint support for l ̸= k, so do their derivatives of any order.
Thus, |fo − fθ|2s,c ≤ C(s,c,δ) and |fθ|2s ≤ 2(|fo − fθ|2s + |fo|2s) ≤ 2(C(s,c,δ) + Ls,c) =: Ls,c,δ,1. Now
we still have to show the moment condition. In fact, we can show with the same arguments as
before, ∫ ∞

0
x2(c−1)fθ(x)dx = e2(c−1)2 + δK−s

K−1∑
k=0

∫ ∞

0
x2c−2ψk,K(x)dλ(x) ≤ Lc,δ,2.

Now choosing Ls,c,δ := max(Ls,c,δ,1, Lc,δ,2) completes the statement.
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Proof of Lemma 3.1.8.
Using that the functions (ψk,K)k∈J0,K−1K with different index k have disjoint supports we get

∥fθ − fθ′∥2x2c−1 = δ2K−2s

∥∥∥∥∥
K−1∑
k=0

(θk+1 − θ′k+1)ψk,K

∥∥∥∥∥
2

x2c−1

= δ2K−2sρ(θ,θ′)∥ψ0,K∥2x2c−1

with ρ(θ,θ′) :=
∑K−1

j=0 1{θj+1 ̸=θ′
j+1} the HAMMING DISTANCE. The first claim follows by showing

that by ∥ψ0,K∥2x2c−1 ≥ CcK
−1∥ψ∥2x0 for any K ∈ N. To do so, we observe that

∥ψ0,K∥2x2c−1 =

∫ ∞

0
x2c−1ψ(xK −K)2dλ(x) ≥ Cc

∫ 2

1
ψ(xK −K)2dλ(x) = CcK

−1∥ψ∥2x0 .

Thus ∥fθ − fθ′∥2x2c−1 ≥ Ccδ
2∥ψ∥2x0K

−2s−1ρ(θ,θ′) for all K ∈ N.
Now we use the VARSHAMOV-GILBERT LEMMA (see Tsybakov (2009)) which states that for K ≥ 8

there exists a subset {θ(0), . . . ,θ(M)} of {0, 1}K with θ(0) = (0, . . . , 0) such that ρ(θ(j),θ(k)) ≥
K/8 for all j, k ∈ J0,MK, j ̸= k and M ≥ 2K/8. Applying this leads to ∥fθ(j) − fθ(l)∥2x2c−1 ≥
Cc∥ψ∥2x0δ

2K−2s.

For the second part we have fo = fθ(0) and by using

KL(fθ, fo) ≤ χ2(fθ, fo) :=

∫
R+

(fθ(x)− fo(x))
2/fo(x)dλ(x)

it is sufficient to bound the χ-squared divergence. We notice that fθ − fo has support in [1, 2] and
fo is bounded from below on the interval [1, 2] by a constant cfo > 0. Now by using the compact
support property and a single substitution we get

χ2(fθ, fo) ≤ c−1
fo

∥fθ − fo∥2 = c−1
fo
δ2K−2s∥ΨK∥2x0 = c−1

fo
δ2K−2s

K−1∑
k=0

∥ψ∥2x0
K

= c−1
fo
δ2K−2s∥ψ∥2x0 .

SinceM ≥ 2K we have thus KL(fθ(j) , fθ(0)) ≤ C(fo)∥ψ∥2x0δ
2 log(M)K−2s−1.

Proof of Lemma 3.1.16. First we see that for any k ∈ Kn and h ∈ Lk, γn(h) = ∥h∥2x2c−1 −
2n−1

∑n
j=1 νh(Xj). From this we can easily see that for h1, h2 ∈ Lk,

γn(h1)− γn(h2) = ∥h1 − f∥2x2c−1 − ∥h2 − f∥2x2c−1 − 2νh1−h2 . (3.11)

Using Equation (3.11) with h1 = f̂
k̂
and h2 = fk we get

∥f − f̂
k̂
∥2x2c−1 ≤ ∥f − fk∥2x2c−1 + 2ν

f̂
k̂
−fk

+ γn(f̂k̂)− γn(fk).

Since f̂k is the minimal contrast estimator, see Proposition 3.1.12, with respect to γn and Lk we
deduce that γn(f̂k) ≤ γn(fk) and through the definition of k̂, compare Equation (3.8), we deduce
γn(f̂k̂) + p̂en(k̂) ≤ γn(f̂k) + p̂en(k), which implies that

γn(f̂k̂)− γn(fk) ≤ γn(f̂k) + p̂en(k)− p̂en(k̂)− γn(fk) ≤ p̂en(k)− p̂en(k̂).

And thus

∥f − f̂
k̂
∥2x2c−1 ≤ ∥f − fk∥2x2c−1 + 2ν

f̂
k̂
−f̂k

+ p̂en(k)− p̂en(k̂). (3.12)
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Let us define a ∨ b := max(a, b) for a, b ∈ R. Then we have by applying 2ab ≤ a2 + b2 that

2ν
f̂
k̂
−fk

≤
∥f̂
k̂
− fk∥2x2c−1

4
+ 4 sup

h∈B
k∨k̂

ν2h ≤
∥f̂
k̂
− f∥2x2c−1 + ∥f − fk∥2x2c−1

2
+ 4 sup

h∈B
k∨k̂

ν2h. (3.13)

Combining Equation (3.12) and Equation (3.13) we get

∥f − f̂
k̂
∥2x2c−1 ≤ 3∥f − fk∥2x2c−1 + 8

(
sup

h∈B
k̂∨k

ν2h − p(k̂ ∨ k)

)
+

+ 8p(k̂ ∨ k) + 2p̂en(k)− 2p̂en(k̂).

Now for χ > 48/π we have 4p(k̂ ∨ k) ≤ pen(k) + pen(k̂) and Enf (p̂en(k)) = 2pen(k) which
implies

Enf (∥f − f̂
f̂k
∥2x2c−1) ≤6

(
∥f − fk∥2x2c−1 + pen(k)

)
+ 8Enf

(
max
k∈Kn

(
sup
h∈Bk

ν2h − p(k)

)
+

)
+ 2Enf ((pen(k̂)− p̂en(k̂))+).

The claim follows by taking the infimum over k ∈ Kn on both sides.
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3.2 Under multiplicative measurement errors

3.2.1 Introduction

Wewill continue with estimating the unknown density f : R+ → R+ of a positive random variable
X but now given independent and identically distributed (i.i.d.) copies of

Y = XU,

where X and U are independent of each other and U has a known density g : R+ → R+. In this
setting the density fY : R+ → R+ of Y is given by

fY (y) = (f ∗ g)(y) =
∫
R+

f(x)g(y/x)x−1dλ(x), for y ∈ R+,

where ∗ denotes multiplicative convolution defined in Definition 2.2.2. The estimation of f using
an i.i.d. sample Y1, . . . , Yn from fY is thus an inverse problem called multiplicative deconvolution.
Vardi (1989) and Vardi and Zhang (1992) introduce and study intensively MULTIPLICATIVE CEN-

SORING, which corresponds to the particular multiplicative deconvolution problem with multi-
plicative error U uniformly distributed on [0, 1]. This model is often applied in survival analysis
as explained and motivated in van Es et al. (2000). The estimation of the cumulative distribution
function of X is considered in Vardi and Zhang (1992) and Asgharian and Wolfson (2005). Series
expansion methods are studied in Andersen and Hansen (2001) treating the model as an inverse
problem. The density estimation in a multiplicative censoring model is considered in Brunel et al.
(2016) using a kernel estimator and a convolution power kernel estimator. Assuming a uniform
error distribution on an interval [1 − α, 1 + α] for α ∈ (0, 1) Comte and Dion (2016) analyze a
projection density estimator with respect to the Laguerre basis. Belomestny et al. (2016) study a
beta-distributed error U .
In this section, covering all those three variations of the multiplicative censoring model, we con-

sider a density estimator using the Mellin transform and a spectral cut-off regularization of its
inverse, which borrows ideas from Belomestny and Goldenshluger (2020). The key to the analysis
of the multiplicative deconvolution problem is the convolution theorem of the Mellin transform
M, which roughly states M[fY ] = M[f ]M[g] for a density fY = f ∗ g. Exploiting the convo-
lution theorem Belomestny and Goldenshluger (2020) introduce a kernel density estimator of f
allowing more generally X and U to be real-valued. Moreover, they point out that the following
widely used naive approach is a special case of their estimation strategy. Transforming the data by
applying the logarithm the model Y = XU writes log(Y ) = log(X) + log(U). In other words,
multiplicative convolution becomes convolution for the log-transformed data. As a consequence,
the density of log(X) is eventually estimated employing usual strategies for non-parametric decon-
volution problems, see for example Meister (2009), and then transformed back to an estimator of f .
However, it is difficult to interpret regularity conditions on the density of log(X). Furthermore,
the analysis of a global risk of an estimator using this naive approach is challenging as Comte and
Dion (2016) pointed out.
Our strategy differs in the following way. Making use of the convolution theorem of the Mellin

transform and applying an additional spectral cut-off on the inversion of the Mellin-transform we
define a density estimator. We measure the accuracy of the estimator by introducing a global risk
in terms of a weighted L2-norm. Exploiting properties of the Mellin transform we characterize
the underlying inverse problem and natural regularity conditions which borrow ideas from the
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inverse problems community, Engl et al. (1996). The regularity conditions expressed in the form of
MELLIN-SOBOLEV SPACES and their relations to the analytical properties of the density f are discussed
in more details. The proposed estimator, however, involves a tuning parameter which is selected by
a data-driven method. We establish an oracle inequality for the fully-data driven spectral cut-off
estimator under fairly mild assumptions on the error density g. Moreover we show that uniformly
over MELLIN-SOBOLEV SPACES the proposed data-driven estimator is minimax-optimal. Precisely,
we state both an upper bound for the mean weighted integrated squared error of the fully-data
driven spectral cut-off estimator and a general lower bound for estimating the density f based on
i.i.d. copies from fY = f ∗ g.
The section is organized as follows. In Section 3.2.2 we explain our general estimation strategy
by introducing and analyzing our estimator based on the observations Y1, . . . , Yn. The estimator
relies on an inversion of the Mellin transform which we stabilize using a spectral cut-off approach.
In Section 3.2.3 we show that the proposed estimator are minimax optimal overMELLIN-SOBOLEV
SPACES for a large class of error densities g. Based only on the given sample Y1, . . . , Yn, we will
propose in Section 3.2.4 a fully data-driven choice of the upcoming smoothing parameter. Finally,
results of a simulation study are reported in section 3.2.5which visualize the reasonable finite sample
performance of our estimator. The proofs of Section 3.2.3 and Section 3.2.4 are postponed to the
Appendix.

3.2.2 Estimation strategy

Our aim now is to modify the estimator presented in Equation (3.2) for the case of multiplicative
measurement errors, that is we observe an i.i.d. sample Y1, . . . , Yn drawn from fY = f ∗ g. In fact,
for a c ∈ R, with EfY (Y

c−1
1 ) < ∞, we can define analogously to Subsection 3.1.2 an unbiased

estimator of Mc[fY ] using the sample (Yj)j∈JnK by
M̂c(t) := n−1

n∑
j=1

Y c−1+it
j , t ∈ R.

Applying now the convolution theorem, Proposition 2.2.5, we can stateMc[fY ] = Mc[f ]Mc[g]. If
we now assume that Mc[g](t) ̸= 0 for all t ∈ R and that for any k ∈ R+ we have 1[−k,k]/Mc[g] ∈
L2(R), we can again define f̂k := M†

c[1[−k,k]M̂c/Mc[g]]. Since 1[−k,k]M̂c/Mc[g] ∈ L2(R) ∩
L1(R) we can express f̂k explicitly by

f̂k(x) :=
1

2π

∫ k

−k
x−c−it

M̂c(t)

Mc[g](t)
dλ(t) for any x ∈ R+. (3.14)

To ensure the well-definedness of our estimator (f̂k)k∈R+ we had to impose the moment condition
EfY (Y c−1) < ∞, which directly forces Eg(U c−1) < ∞, a minor condition on the error density
which is captured in the following assumption

∀t ∈ R : Mc[g](t) ̸= 0 and ∀k ∈ R+ :
1[−k,k]

Mc[g]
∈ L2(R). ([G0])

By the construction of the estimator f̂k in Equation (3.14), we see that it is an unbiased estimator
of the approximations (fk)k∈R+ presented in Section 2.5. Similarly to the direct case, we can split
the weighted mean integrated squared error into

EnfY (∥f̂k − f∥2x2c−1) = ∥f − fk∥2x2c−1 + EnfY (∥f̂k − fk∥2x2c−1).

68



Now for EfY (Y
2(c−1)
1 ) < ∞ an application of the Fubini-Tonelli theorem and the Plancherel

identity Proposition 2.3.5 allows us to bound the variance term in the following way

EnfY (∥f̂k − fk∥2x2c−1) =
1

2π

∫ k

−k

VarnfY (M̂c(t))

|Mc[g](t)|2
dλ(t) ≤

EfY (Y
2(c−1)
1 )∆g(k)

n

where∆g(k) := (2π)−1
∫ k
−k |Mc[g](t)|−2dt for any k ∈ R+.This proves directly the multiplicative

measurement error model version of Proposition 3.1.1.

Proposition 3.2.1 (Upper bound of the risk):
Let f ∈ L2(R+, x

2c−1), σc := EfY (Y
2(c−1)
1 ) <∞ and [G0] be fulfilled. Then for any k ∈ R+

EnfY (∥f − f̂k∥2x2c−1) ≤ ∥f − fk∥2x2c−1 +
σc
n
∆g(k)

for ∆g(k) := (2π)−1
∫ k
−k |Mc[g](t)|−2dt and f̂k defined in Equation (3.14).

As we can see, in the case of multiplicative measurement errors, the decay of the Mellin transform
of the error density seems to have a strong effect on the variance term. Before we actually have a
deeper analysis of the underlying inverse problem using the minimax theory in Section 3.2.3, we
want to state that there exists a choice of cut-off parameter, such that our estimator becomes con-
sistent. This is stated in the following Corollary which is a direct consequence of Proposition 3.2.1
and its proof is thus omitted.

Corollary 3.2.2:
Under the assumption of Proposition 3.2.1 choose (kn)n∈N such that kn → ∞ and∆g(kn)n

−1 → 0

for n→ ∞. Then we have

EnfY (∥f − f̂kn∥2x2c−1) → 0

for n→ ∞ and thus ∥f − f̂kn∥2x2c−1

P→ 0.

Remark 3.2.3:
Although the assumption [G0] is fulfilled for many error densities the assumption holds not true for
the class of so-called OSCILLATING ERROR DENSITIES. In Section 3.4 we consider an estimator based
on a ridge approach which can be used for this class of error densities and study its theoretical
properties.

3.2.3 Minimax theory

Now we want to develop the minimax theory for the spectral cut-off estimator f̂k, see (3.14) pre-
sented in Subsection 3.2.2. As we have already seen in Proposition 3.2.1 and Proposition 3.4.3,
the behavior of the variance term is strongly connected to decay of the Mellin transform of the
error density g. In contrast to the direct case presented in Section 3.1, we now have to control
both, the bias term and the variance by proposing suitable assumptions on the unknown density
f and the error density g. To control the bias term, we will again use the Mellin-Sobolev spaces,
respectively the Mellin-Sobolev ellipsoids presented Section 2.5, respectively Subsection 3.1.3. We
start by proposing a widely used assumption on the error density.
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Noise assumption To determine the growth of the variance term more precisely we will now
introduce an additional assumption on the error density. In the context of additive deconvolution
problems, compare Fan (1991), densities whose Fourier transform decay polynomially, like in Ex-
amples 2.1.6 and 2.1.10, are called SMOOTH ERROR DENSITIES. To stay in this way of speaking we
introduce the following definition

Definition 3.2.4 (Smooth error density):
Let g : R+ → R+ such that Eg(U c−1) <∞ for a c ∈ R. The we call g a SMOOTH ERROR DENSITY if
there exists cg, Cg, γ ∈ R+ such that

cg(1 + t2)−γ/2 ≤ |Mc[g](t)| ≤ Cg(1 + t2)−γ/2 for all t ∈ R. ([G1])

This assumption on the error density was also considered in Belomestny andGoldenshluger (2020).
It is clear that [G1] implies [G0] and that

∆g(k) ≤ Cg

∫
(−k,k)

(1 + |t|2)γdλ(t) ≤ Cgk
2γ+1

for a positive constant Cg depending on g.

Remark 3.2.5:
Considering the Examples 2.1.7 and 2.1.4, these error densities do not fulfill assumption [G1].
Indeed, these are examples of so-called SUPER SMOOTH error densities which will be considered in
Section 3.3.

Minimax bounds Now let us prove upper and lower bounds for the minimax risk of the esti-
mation of the unknown density f based on the i.i.d. sample Y1, . . . , Yn over the ellipsoids Dsc(L)
defined in Section 3.1.3.

Proposition 3.2.6 (Upper bound for the minimax risk):
Let s, L ∈ R+ and c ∈ R. Let additionally Eg(U

2(c−1)
1 ) < ∞ and [G1] be fulfilled. Then for the

choice ko := n1/(2s+2γ+1)

sup
f∈Ds

c(L)
EnfY (∥f̂ko − f∥2x2c−1) ≤ C(L, s, g)n−2s/(2s+2γ+1)

where C(L, s, g) is a positive constant depending on L, s and g.

The proof of Proposition 3.2.6 follows the same argumentation as for Proposition 3.1.4 using that
∆g(k) ≤ Cgk

2γ+1 for g fulfilling [G1]. To show that the presented estimator f̂ko are minimax-
optimal over the ellipsoidsDsc(L), we propose a lower bound for theminimax risk, compare Subsec-
tion 3.1.3. For technical reasons, we need the additional assumption that g has a compact support,
that is g(x) = 0 for any x > K where we say for simplicity that K = 1. Further, we need to
control the decay of the Mellin transformMc[g] of g developed in c̃ = 0 if we consider c ∈ (0, 1/2]

and in c̃ = 1/2 for c > 1/2. We collect both conditions in the following assumption

∀x > 1 : g(x) = 0 and cg(1 + t2)−γ/2 ≤ Mc̃[g](t)| ≤ Cg(1 + t2)−γ/2, t ∈ R, ([G1’])

for constants cg, Cg > 0.
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Theorem 3.2.7 (Lower bound for the minimax risk):
Let s, γ ∈ N and c ∈ R+ and assume that [G1] and [G1’] are fulfilled for g with γ. Then there
exist constants Cg,c, Ls,g,c > 0 such that for all L ≥ Ls,g,c and for any estimator f̂ of f based on an
i.i.d. sample Y1, . . . , Yn,

sup
f∈Ds

c(L)
EnfY (∥f̂ − f∥2x2c−1) ≥ Cc,gn

−2s/(2s+2γ+1).

where Cc,g is a positive constant depending on c and g.

The proof of Theorem 3.2.7 follows the same steps as the proof of Theorem 3.1.5 with small adap-
tions to themultiplicativemeasurement errormodel. While those adaptions are rather technical and
of an elementary nature, we postpone the proof to Section 3.2.7. Let us shortly comment on [G1’].
If c > 1/2 then [G1’] necessitates Eg(U−1/2

1 ) < ∞ which is rather weak and fulfilled for many
densities. If c ≤ 1/2 then [G1’] does not impose an additional assumption since Eg(U−1

1 ) < ∞
already follows from σc = EfY (Y

2(c−1)
1 ) < ∞. We want to stress out that the family of Beta dis-

tribution fulfills both the compact support property and the decay assumption in [G1] and [G1’]
with suitable choices of their parameter (a, b) ∈ R2

+, compare Example 2.1.6.

Faster rates Again, we can use the same examples as presented in Section 3.1.3 to show that
many families of densities possesses a Mellin transform with exponential decay. More precisely, we
considered the case of Gamma distribution and Log-Normal distribution where

∥f − fk∥2x2c−1 ≤ Cf exp(−αka)

for α ∈ R+, dependent on f and a = 1 for the Gamma distribution and a = 2 for the Log-Normal
distribution. Now by choosing kn = log(n)1/a/α−1 we can ensures that for both cases

inf
k∈R+

EnfY (∥f̂k − f∥2x2c−1) ≤ EnfY (∥f̂kn − f∥2x2c−1) ≤ Cf
log(n)(2γ+1)/a

n
,

leading to a faster rate than provided by Proposition 3.1.4 for any choice of s ∈ R+, although
f ∈ Ws

c(L) for any choice of s ∈ R+ with L big enough.

3.2.4 Data-driven method

In this section we will present for the spectral cut-off estimator f̂k a fully data-driven version and
bound its weighted mean integrated squared error.
Let us for χ > 0 define the penalty pen : R+ → R+ through pen(k) := χσc∆g(k)n

−1 and
an empirical counterpart through p̂en(k) := 2χσ̂c∆g(k)n

−1 where σ̂c := n−1
∑n

j=1 Y
2(c−1)
j . By

definition penmimics the behavior of the variance term presented Proposition 3.2.1. Then we can
define

k̂ := arg min
k∈Kn

(
−∥f̂k∥2x2c−1 + p̂en(k)

)
(3.15)

where Kn, the set of suitable cut-off parameters, is set Kn := JKnK. Here we choose Kn ∈ N as
the largest positive integer such that ∆g(Kn) ≤ n, that is Kn := max({k ∈ N : ∆g(k) ≤ n}).
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We keep in mind that (kn)n∈N needs to suffy ∆g(kn)n
−1 → 0 for n → ∞ in order for f̂kn to

be a consistent estimator. Now we can show the following version of Theorem 3.1.13 for the
multiplicative measurement error model.

Theorem 3.2.8 (Data-driven choice of k ∈ R+):
Assume that f ∈ L2(R+, x

2c−1), EfY (Y
5(c−1)
1 ) < ∞, ∥x2c−1g∥∞ < ∞ and g is a smooth error

density. Then for χ > 48 we get

EnfY (∥f̂k̂ − f∥2x2c−1) ≤ 6 inf
k∈Kn

(
∥f − fk∥2x2c−1 + pen(k)

)
+
Cf,g
n

where Cf,g is a positive constant dependent on ∥x2c−1g∥∞,EfY (Y
5(c−1)
1 ), σc and χ.

Proof of Theorem 3.2.8. Again we can divide the proof in two main steps. In the first step, we use
the definition of k̂ in Equation (3.15) and the minimum contrast property to show the following
Lemma.

Lemma 3.2.9:
Let us define for h ∈ Bk := {h ∈ Lk : ∥h∥2x2c−1 ≤ 1} the centered process

νh := n−1
n∑
j=1

νh(Yj)− EfY (νh(Yj)), where νh(x) :=
1

2π

∫ ∞

−∞
xc−1+itMc[h](−t)

Mc[g](t)
dλ(t)

for any x ∈ R+. Then under the assumptions of Theorem 3.2.8,

EnfY (∥f̂k̂ − f∥2x2c−1) ≤ 6 inf
k∈Kn

(
∥f − fk∥2x2c−1 + pen(k)

)
+ 8EnfY

(
max
k∈Kn

(
sup
h∈Bk

ν2h − p(k)

)
+

)
+ 2EnfY ((pen(k̂)− p̂en(k̂))+)

where p(k) := 12σc∆g(k)
n and (a)+ := max(a, 0) for any a ∈ R.

In the second step, we will use the Talagrand inequality. To do so, we need to decompose the
process νh into νh,1 and νh,2 where

νh,1 := n−1
n∑
j=1

νh(Yj)1(0,dn)(Y
c−1
j )− EfY (νh(Y1)1(0,dn)(Y

c−1
1 ))

and νh,2 := νh−νh,1 where (dn)n∈N is a suitable sequence chosen in Lemma 3.2.10. Then we have

EnfY

(
max
k∈Kn

(
sup
h∈Bk

ν2h − p(k)

)
+

)
≤ 2EnfY

(
max
k∈Kn

(
sup
h∈Bk

ν2h,1 −
p(k)

2

)
+

)
+ 2EnfY

(
max
k∈Kn

sup
h∈Bk

ν2h,2

)
.

In order to show the Theorem it remains to control the three upcoming expectations which is
done in the following Lemma.
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Lemma 3.2.10:
Under the assumptions of Theorem 3.2.8,

(i) EnfY

(
max
k∈Kn

(
sup
h∈Bk

ν2h,1 −
p(k)

2

)
+

)
≤)
C(Ef (X

2(c−1)
1 ), g)

n
;

(ii) EnfY

(
max
k∈Kn

sup
h∈Bk

ν2h,2

)
≤
C(EfY (Y

5(c−1)
1 ), σc)

n
and

(iii) EnfY ((pen(k̂)− p̂en(k̂))+) ≤
C(χ, σc,EfY (Y

4(c−1)
1 ))

n

Combining Lemma 3.2.9 and Lemma 3.2.10 shows Theorem 3.2.8.

Assuming that the density lies in a Mellin-Sobolev ellipsoid, we can deduce directly the following
Corollary.

Corollary 3.2.11:
Let c ∈ R, s, L ∈ R+ and f ∈ Dsc(L). Assume further that EfY (Y

5(c−1)
1 ) < ∞, ∥gx2c−1∥∞ < ∞

and [G1] is fulfilled. Then for χ > 48,

EnfY (∥f̂k̂ − f∥2x2c−1) ≤ C(L, s, g,Ef (X
5(c−1)
1 ))n−2s/(2s+2γ+1)

where C(L, s, g,Ef (X
5(c−1)
1 )) is a positive constant depending on L, s, g and Ef (X

5(c−1)
1 ).

3.2.5 Numerical results

We illustrate the behavior of the data-driven spectral cut-off estimator f̂
k̂
, presented in equation

(3.14) and (3.15). To do so, we use the following examples for the unknown density f

(i) BETA DISTRIBUTION: f(x) = B(2, 5)−1x(1− x)41(0,1)(x), x ∈ R+,

(ii) LOG-GAMMA DISTRIBUTION: f(x) = 55Γ(5)−1x−6 log(x)41(1,∞)(x), x ∈ R+,

(iii) GAMMA DISTRIBUTION: f(x) = Γ(5)−1x4 exp(−x)1(0,∞)(x), x ∈ R+ and

(iv) LOG-NORMAL DISTRIBUTION: f(x) = (0.32πx2)−1/2 exp(− log(x)2/0.32)1(0,∞)(x), x ∈ R+.

A detailed discussion of these examples in terms of the decay of their Mellin transform and its
decay can be found in section 2.5. To visualize the behavior of the estimator, we use the following
examples of error densities g

a) SYMMETRIC NOISE: g(x) = 1(0.5,1.5)(x), x ∈ R+,

b) BETA DISTRIBUTION: g(x) = 2x1(0,1)(x), x ∈ R+,

c) UNIFORM DISTRIBUTION: g(x) = 1(0,1)(x), x ∈ R+ and

d) PARETO DISTRIBUTION: g(x) = 1(1,∞)(x)x
−2, x ∈ R+.
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Here it is worth pointing out that the example a), c) and d) fulfill [G1] with γ = 1 and b) with
γ = 2. By minimizing an integrated weighted squared error over a family of histogram densities
with randomly drawn partitions and weights we select γ = 1 χ = 7 for f̂

k̂
. For the case b) we

choose χ = 5.
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Figure 3.4: Considering the estimator f̂
k̂
and a sample size n = 500 the adaptive estimators are

depicted for 50 Monte-Carlo simulations in the cases (i) (top, left), (ii) (top, right),
(iii) (bottom, left) and (iv) (bottom, right) with c = 1 and in the case of a). The true
density f is given by the dark blue curve while the red curve is the point-wise empirical
median of the 50 estimates.

In Figure 3.4, we presented the choice c = 1 since for c = 1/2 in the case of (i) we have no theo-
retical result of the behavior of f̂

k̂
since the assumptions of Theorem 3.2.8 do not hold true. Before

considering the behavior of our estimator for changing values of c ∈ R we will study the effect of
varying sample sizes.
In Figure 3.5, we presented the choice c = 1 since for c = 1/2 in the case of b) we have no theo-
retical resutl of the behavior of f̂

k̂
since the assumptions of Theorem 3.2.8 do not hold true. Before

considering the behavior of our estimator for changing values of c ∈ R we will study the effect of
varying sample sizes.
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Figure 3.5: Considering the estimator f̂
k̂
and a sample size n = 500 the adaptive estimators are

depicted for 50 Monte-Carlo simulations in the cases (i) with error a) (top, left), b)
(top, right), c) (bottom, left) and d) (bottom, right) and c = 1. The true density f is
given by the dark blue curve while the red curve is the point-wise empirical median of
the 50 estimates.
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Figure 3.6: Considering the estimator f̂
k̂
with varying sample size n = 500 (left), n = 2000 (mid-

dle), n = 5000 (right) the adaptive estimators are depicted for 50 Monte-Carlo simula-
tions in the cases (i) (top) and (iv) (bottom) with c = 1 and for a). The true density f
is given by the dark blue curve while the red curve is the point-wise empirical median
of the 50 estimates.
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3.2.6 Conclusion

In this sectionwe have considered the estimation of the density f given an i.i.d. sample of Y1, . . . , Yn.
Throughout the section, we have focused on the case of smooth error densities and showed that
our estimation procedure is minimax-optimal and proposed a data-driven choice of the spectral
cut-off parameter. We finished the section by illustrating the finite sample properties of our esti-
mator using a Monte-Carlo simulation.
It remains to consider the case of super smooth error densities and error densities which do not
fulfill [G0]. These two cases are considered in the upcoming sections.

3.2.7 Proofs

Proof of Theorem 3.2.7. Analogously to the proof of Theorem 3.1.5 we construct the family
(fθ)θ∈{0,1}K through

fθ(x) = fo(x) + δK−s−γ
K−1∑
k=0

θk+1ψk,K,γ(x) (3.16)

where fo(x) = exp(−x)1R+(x) for c > 1/2 and fo(x) = x exp(−x)1R+(x) for c ∈ (0, 1/2] and
x ∈ R+. Here K ∈ N is determined later on.
We will now explain how to construct the suitable family of functions ψk,K,γ . In fact, let again
ψ ∈ C∞

0 (R) be a function with support in [0, 1] and
∫ 1
0 ψ(x)dλ(x) = 0. For any k ∈ J0,K − 1K we

define the bump-functions ψk,K(x) := ψ(xK −K − k), x ∈ R, and define for j ∈ N0 the finite
constant Cj,∞ := max(∥ψ(l)∥∞, l ∈ J0, jK). Using then the operator S : C∞

0 (R) → C∞
0 (R) with

S[f ](x) = −xf (1)(x) for all x ∈ R defined in Proposition 2.3.12. Now for j ∈ N, we define the
function ψk,K,j(x) := Sj [ψk,K ](x) =

∑j
i=1 ci,jx

i(−K)iψ(i)(xK −K − k) for x ∈ R+ and ci,j ≥ 1

and let cj :=
∑j

i=1 ci,j
Until now, we did not give a sufficient condition to ensure that our constructed functions {fθ :

θ ∈ {0, 1}K} are in fact densities. This condition is given by the following lemma.

Lemma 3.2.12:
Let 0 < δ < δo(ψ, γ) := exp(−2)2−γ(Cγ,∞cγ)

−1. Then for all θ ∈ {0, 1}K , fθ is a density.

Furthermore, we can show that these densities all are contained inside the ellipsoids Dsc(L) for L
big enough. This is captured in the following lemma.

Lemma 3.2.13:
Let s ∈ N. Then, there is Ls,γ,δ > 0 such that fo and any fθ as in Equation (3.16) with θ ∈ {0, 1}K ,
K ∈ N, belong to Dsc(Ls,γ,δ).

For sake of simplicity we denote for a function φ ∈ L2(R+, x
2c−1) the multiplicative convolution

with g by φ̃ := (φ ∗ g). Further we see that for y ∈ [0, 2] holds

f̃o(y) = y1−2c̃

∫
R+

g(x)x2c̃ exp(−y/x)dλ(x) ≥ y1−2c̃

∫
R+

g(x)x−1 exp(−2/x)dλ(x) =: cfoy
1−2c̃

and thus f̃o is bounded from below by the function y 7→ cfoy
1−2c̃ on [0, 2]. Further we have that

f̃o(2) > 0 since otherwise g = 0 almost everywhere. Exploiting VARSHAMOV-GILBERT’S LEMMA
(see Tsybakov (2009)) in Lemma 3.2.14 we show further that there isM ∈ N withM ≥ 2K/8 and
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a subset {θ(0), . . . ,θ(M)} of {0, 1}K with θ(0) = (0, . . . , 0) such that for all j, l ∈ J0,MK, j ̸= l the
L2(R+, x

2c−1)-distance and the Kullback-Leibler divergence are bounded for K ≥ Ko(γ, ψ).

Lemma 3.2.14:
Let K ≥ Ko(ψ, γ, c) ∨ 8. Then there exists a subset {θ(0), . . . ,θ(M)} of {0, 1}K with θ(0) =

(0, . . . , 0) such thatM ≥ 2K/8 and for all j, l ∈ J0,MK, with j ̸= l,

(i) ∥fθ(j) − fθ(l)∥2x2c−1 ≥
Cc∥ψ(γ)∥2x0δ

2

16
K−2s

(ii) KL(f̃θ(j) , f̃θ(0)) ≤
Cg,c,fo∥ψ∥2x0

l̃og(2)
δ2 log(M)K−2s−2γ−1

where KL is the Kullback-Leibler-divergence.

Selecting K = ⌈n1/(2s+2γ+1)⌉, it follows

1

M

M∑
j=1

KL((f̃θ(j))⊗n, (f̃θ(0))⊗n) =
n

M

M∑
j=1

KL(f̃θ(j) , f̃θ(0)) ≤ C
(2)
ψ,δ,g,γ,fo,c

log(M)

where Cψ,δ,g,γ,fo,c < 1/8 for all if δ ≤ δ1(ψ, g, γ, fo, c) and M ≥ 2 for n ≥ ns,γ := 82s+1 ∨
Ko(γ, ψ, c)

2s+2γ+1. Thereby, we can use Theorem 2.5 of Tsybakov (2009), which in turn for any
estimator f̂ of f implies

sup
f∈Ds

c(L)
PnfY

∥f̂ − f∥2x2c−1 ≥
C

(1)
ψ,δ,γ,c

2
n
− 2s

2s+2γ+1

 ≥
√
M

1 +
√
M

(
1− 1/4−

√
1

4 log(M)

)
≥ 0.07.

Note that the constant C(1)
ψ,δ,γ,c does only depend on ψ, γ,δ and c, hence it is independent of the

parameters s, L and n. The claim of Theorem 3.2.7 follows by using Markov’s inequality, which
completes the proof.

Proofs of the lemmata

Proof of Lemma 3.2.12. For any h ∈ C∞
0 (R)we can state that

∫∞
−∞ S[h](x)dλ(x) = −[xh(x)]∞−∞+∫∞

−∞ h(x)dλ(x) =
∫∞
−∞ h(x)dλ(x) and therefore

∫∞
−∞ Sj [h](x)dλ(x) = (−1)j

∫∞
−∞ h(x)dλ(x) for

j ∈ N. Thus
∫∞
−∞ ψk,K,γ(x)dλ(x) = (−1)γ

∫∞
−∞ ψk,K(x)dλ(x) = 0 which implies that for any

δ > 0 and θ ∈ {0, 1}K we have
∫∞
0 fθ(x)dx = 1.

Now due to the construction of Equation (3.16) we easily see that the function ψk,K has support
on [1 + k/K, 1 + (k + 1)/K] which lead to ψk,K and ψl,K having disjoint supports if k ̸= l. Here,
we want to emphasize that supp(S[h]) ⊆ supp(h) for all h ∈ C∞

0 (R). This implies that ψk,K,γ and
ψl,K,γ have disjoint supports if k ̸= l, too. For x ∈ [1, 2]c we have fθ(x) = fo(x) ≥ 0. Now let us
consider the case x ∈ [1, 2]. In fact, there is ko ∈ J0,K−1K such that x ∈ [1+ko/K, 1+(ko+1)/K]

and hence
fθ(x) = fo(x) + θko+1δK

−s−γψko,K,γ(x) ≥ exp(−2)− δ2γCγ,∞cγ

since ∥ψk,K,j∥∞ ≤ 2jCj,∞cjK
j for any k ∈ J0,K − 1K and j ∈ N where cj :=

∑j
i=1 ci,j . Now

choosing δ ≤ δo(ψ, γ) = exp(−2)2−γ(Cγ,∞cγ)
−1 ensures fθ(x) ≥ 0 for all x ∈ R+.
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Proof of Lemma 3.2.13. Our proof starts with the observation that for all t ∈ RwehaveMc[fo](t) =

Γ(c+ it) for c > 1/2 andMc[fo](t) = Γ(c+1+ it) for c ∈ (0, 1/2]. Now by applying the Stirling
formula, compare Section 2.5, we get thus for every s ∈ N there exists Ls,c such that |fo|2s,c ≤ L

for all L ≥ Ls,c.
Next we consider |fo − fθ|s,c. Let us therefore define first ΨK :=

∑K−1
k=0 θk+1ψk,K and ΨK,j :=

Sj [ΨK ] for an j ∈ N. Then we have |fo − fθ|2s,c = δ2K−2s−2γ |ΨK,γ |2s,c. By application of Propo-
sition 2.3.12 we deduce that |Mc[ΨK,s+γ ](t)|2 = (c+ t2)s|Mc[ΨK,γ ](t)|2 for any t ∈ R and thus

|ΨK,γ |2s,c ≤ Cs,c

∫
R
|Mc[ΨK,s+γ ](t)|2dλ(t) = Cs,c

∫
R+

x2c−1|ΨK,s+γ(x)|2dλ(x)

by the Parseval identity, compare Proposition 2.3.5. Since ψk,K have disjoint support for different
values of k we follow that |Ψk,γ |2s,c ≤ Cs,c

∑K−1
k=0 θ

2
k+1

∫
R+
x2c−1|Sγ+s[ψk,K ](x)|2dλ(x). Applying

the Jensen inequality and the fact that supp(ψk,K) ⊂ [1, 2] leads to

|Ψk,γ |2s ≤ Cs,γ,c

K−1∑
k=0

γ+s∑
j=1

∫ 2

1
x2j+1K2jψ(j)(xK −K − k)2dx

≤ Cs,γ,c K
2(γ+s)

K−1∑
k=0

γ+s∑
j=1

C2
ψ,s,γK

−1 ≤ Cs,γ,cK
2(γ+s)

Thus |fo − fθ|2s ≤ Cs,γ,c,δ and |fθ|2s ≤ 2(|fo − fθ|2s + |fo|2s) ≤ 2(Cs,γ,c,δ + Ls,c) =: Ls,γ,c,δ.

Proof of Lemma 3.2.14.
Using that the functions (ψk,K,γ)k∈J0,K−1K with different index k have disjoint supports we get

∥fθ − fθ′∥2x2c−1 = δ2K−2s−2γ∥
K−1∑
k=0

(θk+1 − θ′k+1)ψk,K,γ∥2x2c−1

= δ2K−2s−2γρ(θ,θ′)∥ψ0,K,γ∥2x2c−1

with ρ(θ,θ′) :=
∑K−1

j=0 1{θj+1 ̸=θ′
j+1} the HAMMING DISTANCE. Now the first claim follows by

showing that by ∥ψ0,K,γ∥2x2c−1 ≥
CcK2γ−1∥ψ(γ)∥2

x0

2 for K big enough. To do so we observe that

∥ψ0,K,γ∥2x2c−1 =
∑

i,j∈J1,γK cj,γci,γ
∫
R+

xj+i+2c−1ψ
(j)
0,K(x)ψ

(i)
0,K(x)dλ(x).

Defining Σ := ∥ψ0,K,γ∥2x2c−1−
∫
R+

(xγψ
(γ)
0,K(x))2x2c−1dλ(x), we get for |Σ| ≤

CcK2γ−1∥ψ(γ)∥2
x0

2 that

∥ψ0,K,γ∥2x2c−1 = Σ+

∫
R+

(xγψ
(γ)
0,K(x))2x2c−1dλ(x) ≥ Σ+ CcK

2γ−1∥ψ(γ)∥2x0 ≥
CcK

2γ−1∥ψ(γ)∥2x0
2

.

(3.17)

It remains to show |Σ| ≤
CcK2γ−1∥ψ(γ)∥2

x0

2 . This follows from a comparison of exponents and ex-
ploiting the identity ψ(j)

0,K(x) = Kjψ(j)(xK − K), x ∈ R+. This is obviously true as soon as

K ≥ Ko(γ, ψ, c), and thus ∥fθ − fθ′∥2x2c−1 ≥
δ2Cc∥ψ(γ)∥2

x0

2 K−2s−1ρ(θ,θ′) for K ≥ Ko(ψ, γ, c).
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Now we use the VARSHAMOV-GILBERT LEMMA (see Tsybakov (2009)) which states that for K ≥ 8

there exists a subset {θ(0), . . . ,θ(M)} of {0, 1}K with θ(0) = (0, . . . , 0) such that ρ(θ(j),θ(k)) ≥
K/8 for all j, k ∈ J0,MK, j ̸= k and M ≥ 2K/8. Applying this leads to ∥fθ(j) − fθ(l)∥2x2c−1 ≥
Cc∥ψ(γ)∥2

x0
δ2

16 K−2s.

For the second part we have fo = fθ(0) and by using KL(f̃θ, f̃o) ≤ χ2(f̃θ, f̃o) :=
∫
R+

(f̃θ(x) −
f̃o(x))

2/f̃o(x)dλ(x) it is sufficient to bound the χ-squared divergence. We notice that f̃θ − f̃o
has support in [0, 2] since fθ − fo has support in [1, 2] and g has support in [0, 1]. In fact, for
y > 2 holds f̃θ(y) − f̃o(y) =

∫∞
y (fθ − fo)(x)x

−1g(y/x)dλ(x) = 0. Denote further ΨK,γ :=∑K−1
k=0 θk+1ψk,K,γ = Sγ [

∑K−1
k=0 θk+1ψk,K ] =: Sγ [ΨK ]. Now by using the compact support prop-

erty and a single substitution we get

χ2(f̃θ, f̃o) ≤ cfo∥f̃θ − f̃o∥2x2c̃−1 = cfoδ
2K−2s−2γ∥Ψ̃K,γ∥2x2c̃−1 .

Let us now consider ∥Ψ̃K,γ∥2x2c̃−1 . Now by application of the Parsevaln identity, Proposition 2.3.5,
and the convolution theorem, Proposition 2.2.5, that

∥Ψ̃K,γ∥2x2c̃−1 =
1

2π

∫
R
|Mc̃[Ψ̃K,γ ](t)|2dλ(t) =

1

2π

∫
R
|Mc̃[g](t)(c̃+ t2)γ/2Mc̃[ΨK ](t)|2dλ(t)

Then by a using again Plancherel identity and a single change of variable we get

∥Ψ̃K,γ∥2x2c̃−1 ≤ Cg,c

∫
R
|Mc̃[ΨK ](t)|2dλ(t) = Cg,c

2π
∥ΨK∥2x2c̃−1 ≤ Cg,c∥ΨK∥2x0 = Cg,c∥ψ∥2x0 .

SinceM ≥ 2K we have thus KL(f̃θ(j) , f̃θ(0)) ≤ Cg,c,fo∥ψ∥2

l̃og(2)
δ2 log(M)K−2s−2γ−1.

Proof of Lemma 3.2.9. Defining the empirical contrast for h ∈ Lk,

γn(h) := ∥h∥2x2c−1 − 2
1

2π

∫
R

M̂c(t)

Mc[g](t)
Mc[h](−t)dλ(t)

we see, that f̂k = arg min
h∈Lk

γn(h) with γn(f̂k) = −∥f̂k∥2x2c−1 . Following the steps of the proof

Lemma 3.1.16 we can easily show that

∥f − f̂
k̂
∥2x2c−1 ≤ 3∥f − fk∥2x2c−1 + 8

(
sup

h∈B
k̂∨k

ν2h − p(k̂ ∨ k)

)
+

+ 8p(k̂ ∨ k) + 2p̂en(k)− 2p̂en(k̂).

Now for χ > 48/π we have 4p(k̂ ∨ k) ≤ pen(k) + pen(k̂) and EnfY (p̂en(k)) = 2pen(k) which
implies

EnfY (∥f − f̂
f̂k
∥2x2c−1) ≤6

(
∥f − fk∥2x2c−1 + pen(k)

)
+ 8EnfY

(
max
k∈Kn

(
sup
h∈Bk

ν2h − p(k)

)
+

)
+ 2EnfY ((pen(k̂)− p̂en(k̂))+).

The claim follows then by taking the infimum over k ∈ Kn on both sides.
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Proof of Lemma 3.2.10.
Proof of (i): First we see that

EnfY

(
max
k∈Kn

(
sup
h∈Bk

ν2h,1 −
p(k)

2

)
+

)
≤
∑
k∈Kn

EnfY

((
sup
h∈Bk

ν2h,1 −
p(k)

2

)
+

)
.

Now on each summand we will use the Talagrand inequality 3.10 to show the first claim. We want
to emphasize that we are able to apply the Talagrand inequality on the sets Bk since Bk has a dense
countable subset and due to continuity arguments. To do so we start to determine the constantΨ2.
Let us therefore define f̃k := M†

c[1[−k,k]n
−1
∑n

j=1 Y
c−1+it
j 1(0,dn)(Y

c−1
j )/Mc[g]]. Then we have

for any h ∈ Bk that ν2h,1 = ⟨h, f̃k − EnfY (f̃k)⟩
2
x2c−1 ≤ ∥h∥2x2c−1∥f̃k − EnfY (f̃k)∥

2
x2c−1 . Now since,

∥h∥2x2c−1 ≤ 1 we get

E( sup
h∈Bk

ν2h,1) ≤ E(∥f̃k − E(f̃k)∥2x2c−1) =
1

2πn

∫ k

−k

Var(Y c−1+it
1 1(0,dn)(Y

c−1
1 ))

|Mc[g](t)|2
dλ(t)

≤ σc∆g(k)

n
=: Ψ2.

Thus, 6Ψ2 = p(k)
2 . Next we consider ψ. Let x > 0 and h ∈ Bk. Then using the Cauchy-Schwarz

inequality we get

|νh(x)1(0,dn)(x
c−1)|2 ≤ d2n

(2π)2

(∫ k

−k

|Mc[h](t)|
|Mc[g](t)|

dλ(t)

)2

≤ d2n∆g(k) =: ψ2.

Next we consider τ . In fact, for h ∈ Bk we can conclude that

Varf (νh(Y1)1(0,dn)(Y
c−1
1 )) ≤ Ef (νh(Y1)2) ≤ ∥x2c−1fY ∥∞∥νh∥2x1−2c .

Now since

νh(x) =
1

2π

∫ k

−k
xc−1+itMc[h](−t)

Mc[g](t)
dλ(t) = M†

1−c

[
Mc[h]

Mc[g]

]
(x), x ∈ R+

we get by application of the Plancherel identity, Proposition 2.3.5, that

Varf (νh(Y1)1(0,dn)(Y
c−1
1 )) ≤ ∥x2c−1fY ∥∞

1

2π

∫ k

−k

|Mc[h](t)|2

|Mc[g](t)|2
dλ(t) ≤ ∥x2c−1fY ∥∞∥Gk∥∞

where Gk(t) := 1[−k,k](t)|Mc[g](t)|−2 for t ∈ R. Furthermore, we have for any y ∈ R+,

y2c−1fY (y) =

∫
R+

y2c−1

x2c−1
g(y/x)f(x)x2c−2dλ(x) ≤ ∥x2c−1g∥∞Ef (X

2(c−1)
1 ).

We therefore choose τ = ∥x2c−1g∥∞∥Gk∥∞Ef (X
2(c−1)
1 ). Now applying the Talagrand inequality,

we get

EnfY

(
max
k∈Kn

(
sup
h∈Bk

ν2h1 −
p(k)

2

)
+

)
≤ C(Ef (X

2(c−1)
1 ), ∥x2c−1g∥∞)

Kn∑
k=1

∥Gk∥∞
n

e
−

Eg(U
2(c−1)
1 )∆g(k)

6∥x2c−1g∥∞∥Gk∥∞

+

Kn∑
k=1

d2n∆g(k)

n2
e−

√
σcn

100dn .
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Now considering the first summand, we get by application of [G1]

Kn∑
k=1

∥Gk∥∞
n

e
−

E(U2(c−1)
1 )∆g(k)

6∥x2c−1g∥∞∥Gk∥∞ ≤ Cg
n

Kn∑
k=1

k2γe−Cgk ≤
C ′
g

n
.

By the choice dn =
√
σdn/(200 log(n)) and the definition of Kn we have

Kn∑
k=1

d2n∆g(k)

n2
e−

√
σcn

100dn ≤ Ef (X
2(c−1)
1 )

Cg
n

Kn∑
k=1

∆g(k)

n2
≤
C(Ef (X

2(c−1)
1 ), g)

n

which implies the first claim (i).
Now let us show part (ii):
In fact, for any h ∈ Bk we get ν2h,2 = ⟨h, f̂k − f̃k − EnfY (f̂k − f̃k)⟩2x2c−1 ≤ ∥fk − f̃k − EnfY (f̂k −
f̃k)∥2x2c−1 . From this we deduce by application of the Fubini-Tonelli theorem and the Plancherel
identity, Proposition 2.3.5, that

EnfY

(
max
k∈Kn

sup
h∈Bk

ν2h,2

)
≤ EnfY

(
1

2π

∫ Kn

−Kn

|Mc[f̂Kn − f̃Kn ](t)− EnfY (|Mc[f̂Kn − f̃Kn ](t))]
2dλ(t)

)

=
1

2nπ

∫ Kn

−Kn

VarfY (Y
c−1+it
1 1(dn,∞)(Y

c−1
1 ))

|Mc[g](t)|2
dλ(t)

≤ ∆g(Kn)

n
EfY (Y

2(c−1)
1 1(dn,∞)(Y

c−1
1 )) ≤

EfY (Y
(2+3)(c−1)
1 )

d3n

since for any p ∈ R+ holds EfY (Y
2(c−1)
1 1(dn,∞)(Y

c−1
1 )) ≤ EfY (Y

(2+p)(c−1)
1 )d−pn . Thus,

EfY

(
max
k∈Kn

sup
h∈Bk

ν2h,2

)
≤ d−3

n EfY (Y
(2+3)(c−1)
1 ) ≤

C(EfY (Y
5(c−1)
1 ), σc)

n
.

To finish the proof of this Lemma, we now show claim (iii):
Let us define therefore the setΩ := {|σ̂c−σc| ≤ σc/2}. Then onΩwe have that σc/2 ≤ σ̂c ≤ 3/2σc
and since ∆g(k̂) ≤ n

EnfY ((pen(k̂)− p̂en(k̂))+) =
χ

n
EnfY (∆g(k̂)(σc − 2σ̂c)+) ≤ χE(σc − 2σ̂c)+1Ωc)

Applying the Cauchy-Schwarz inequality we get EnfY (σc−2σ̂c)+1Ωc) ≤ VarmfY (σ̂c)
1/2PnfY (Ωc)

1/2,
where the Markov inequality implies PnfY (|σ̂c − σc| > σc/2)

1/2 ≤ 2VarnfY (σ̂c)
1/2/σc. Thus

EnfY ((pen(k̂)− p̂en(k̂))+) ≤ C(χ, σc)VarnfY (σ̂c) ≤
C(χ, σc,EfY (Y

4(c−1)
1 ))

n
.
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3.3 Under multiplicative measurement errors with super

smooth densities

3.3.1 Introduction

Again, we consider the estimation of a density f of a positive random variableX in a multiplicative
measurement error model. In other words, we assume to have access to a sample of i.i.d. copies of
the random variable

Y = XU

where U is second positive random variable with density g and is supposed to be stochastically
independent of X . This model was intensively motivated in Section 3.2 and studied for the case
of smooth error densities.
However, in this section we are interested in the case where the error density g is super smooth.
We derive similar results as in the smooth error case and compare these two scenarios. We start by
defining the notion of super smooth error densities.

Definition 3.3.1 (Super smooth error density):
Let g : R+ → R+, such that Eg(U c−1) < ∞ for a c ∈ R. Then we call g a SUPER SMOOTH ERROR
DENSITY, if there exist cg, Cg, λ, ρ ∈ R+ and γ ∈ R, such that

cg(1 + t2)γ/2 exp(−λ|t|ρ) ≤ |Mc[g](t)| ≤ Cg(1 + t2)γ/2 exp(−λ|t|ρ) for all t ∈ R. ([G2])

The density of the Gamma distribution and the Log-Normal distribution both are super smooth
which we capture in the following example and continuation of Example 2.1.7 and Example 2.1.11.

Example 3.3.2 (Super smooth errors: The Gamma distribution):
Let us consider the family of densities (fp,λ)(p,λ)∈R2

+
of the Gamma distribution where

fp,λ(x) =
λp

Γ(p)
xp−1 exp(−λx)1(0,∞)(x), for p, λ, x ∈ R+.

Then for c ∈ (1 − p,∞) and t ∈ R we have |Mc[fp,λ](t)| = λ1−c|Γ(p + c − 1 + it)|/Γ(p),
implying with the Stirling formula, compare Belomestny and Goldenshluger (2020), that there
exist cg, Cg ∈ R+ such that

cg(1 + t2)p+c−3/2 exp(−|t|π/2) ≤ |Mc[fp,λ](t)| ≤ Cg(1 + t2)p+c−3/2 exp(−|t|π/2).

In other words, the error density is super smooth with ρ = 1, λ = π/2 and γ = 2p+ 2c− 3.
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Example 3.3.3 (Super smooth errors: The Log-Normal distribution):
Let us consider the family of densities (fµ,θ)(µ,θ)∈R×R+

of the Log-Normal distribution where

fµ,θ(x) =
1√
2πθx

exp(−(log(x)− µ)2/2θ2)1(0,∞)(x), for x ∈ R+.

Then for c ∈ R and t ∈ R we have |Mc[fµ,θ](t)| = exp(µ(c− 1) + θ2(c−1)2

2 ) exp(− θ2t2

2 ) implying
that there exist cg, Cg ∈ R+ such that

cg exp(−θ2t2/2) ≤ |Mc[fp,θ](t)| ≤ Cg exp(−θ2t2/2).

In other words, the error density is super smooth with ρ = 2, λ = θ2/2 and γ = 0.

Assuming that the error density g is super smooth, or equivalently spoken assuming that [G2]
is fulfilled, then [G0] is trivially true and we can consider the family of spectral-cut off density
estimators (f̂k)k∈R+ , defined in (3.14), given by

f̂k(x) :=
1

2π

∫
[−k,k]

x−c−it
M̂c(t)

Mc[g](t)
dλ(t), x ∈ R+.

For this estimator, we have proven in Proposition 3.2.1 the upper bound in the more general
case for [G0]. In the next section, we derive an upper bound for the minimax risk of the density
estimation with super smooth error densities over Mellin-Sobolev ellipsoids and discuss cases, in
which this rate is optimal.

3.3.2 Minimax theory

In the variance term of Proposition 3.2.1, we encounter the function

k 7→ ∆g(k) := (2π)−1

∫
[−k,k]

1

|Mc[g](t)|2
dλ(t)

which characterizes the behavior of the variance term with respect to the cut-off parameter k ∈
R+. For the smooth error case, the computation of the integral was rather straight forward. For
the super smooth case, the following Lemma helps us to derive an upper bound for ∆g, whose
elementary proof is postponed to the proof section.

Lemma 3.3.4:
Let γ ∈ R and λ, ρ ∈ R+. Then there exist constants Cγ,λ,ρ, cγ,λ,ρ ∈ R+ such that for all y ∈ R+

holds

cγ,λ,ρy
1−2γ−ρ exp(2λyρ) ≤

∫ y

0
(1 + t2)−γ exp(2λtρ)dt ≤ Cγ,λ,ρy

1−2γ−ρ exp(2λyρ).

Applying Lemma 3.3.4 we deduce that under the assumption [G2] we have

∆g(k) ≤ Cgk
1−2γ−ρ exp(2λkρ) for k ∈ R+.

By similar arguments as in the proof of Proposition 3.2.6 we get the following rate of the density
estimation over the Mellin-Sobolev ellipsoids defined in Definition 3.1.3 and below.
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Proposition 3.3.5 (Upper bound for the minimax risk):
Let s, L ∈ R+ and c ∈ R. Let additionally Eg(U

2(c−1)
1 ) < ∞ and [G2] be fulfilled. Then for the

choice ko := (log(n)/4λ)1/ρ

sup
f∈Ds

c(L)
EnfY (∥f̂ko − f∥2x2c−1) ≤ C(L, s, g) log(n)−2s/ρ,

where C(L, s, g) is a positive constant depending on L, s and g.

It is worth stressing out, that the choice of ko in Proposition 3.3.5 can be generalized through
ko = (a log(n)/(2λ))1/ρ for any a ∈ (0, 1). For the sake of simplicity, we have chosen a = 1/2.
Furthermore, the choice of ko is independent of the explicit value of the smoothness parameter
s ∈ R+.
To show that the discovered convergence rate is optimal in the sense, that there exists no estimator
based only on (Yj)j∈JnK that achieve a faster converrgence rate than log(n)−2s/ρ, a lower bound
result is needed. Here, we stress out that for the case c = 1, multiplicative and additive deconvo-
lution estimators can always be expressed through each other using a log-, respectively an exp-,
transformation of the data. In Chapter 2 we have seen that the same log/exp -transformation of
the data describes an isometry between the Sobolev and the Mellin-Sobolev spaces. Thus, the fol-
lowing result for the case c = 1 is derived as a direct consequence of its pendant for the additive
deconvolution, which can be found in Meister (2009).

Theorem 3.3.6 (Lower bound for the minimax risk):
Let s ∈ N, assume that g fullfills [G2] and∣∣∣∣ ddtM1[g](t)

∣∣∣∣ ≤ Cg exp(−µ|t|ρ), t ∈ R ([G2’])

are fulfilled with ρ, µ ∈ R+. Then there exist constants Cg, Ls,g ∈ R+, such that for all L ≥ Ls,g
and for any estimator f̂ of f based on an i.i.d. sample Y1, . . . , Yn,

sup
f∈Ds

1(L)
EnfY (∥f̂ − f∥2x) ≥ Cg log(n)

−2s/ρ,

where Cc,g is a positive constant depending on c and g.

Now, Proposition 3.3.5 and Theorem 3.3.6 imply that for the case c = 1, the estimator f̂ko with
ko := (log(n)/4λ)1/ρ is minimax-optimal for the case of super smooth error densities. It is worth
stressing out, that the choice ko itself is not dependent on the unknown regularity parameter s ∈ R+

of the Mellin-Sobolev space Dsc(L) and is therefore known, since it only depends on properties of
g. Nevertheless, the rate of log(n)−2s/ρ is rather pessimistic in the sense that for many densities
inside the Mellin-Sobolev space, a faster rate can be achieved.

Faster rates Let us revisit the Examples 3.3.2 and 3.3.3. More precisely, we consider the case
where g follows a Gamma distribution and f a Log-Normal distribution. Then g is a super smooth
error density satisfying

∥f − fk∥2x2c−1 ≤ Cf exp(−αk2) and E(∥f̂k − fk∥2x2c−1) ≤ Cg exp(πk)n
−1
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for an α ∈ R+, depending on f . Now choosing kn = log(n)1/2/α−1 we have for all ε ∈ (0, 1) that

inf
k∈R+

(
∥f − fk∥2x2c−1 + EnfY (∥f̂k − fk∥2x2c−1)

)
≤ EnfY (∥f̂kn − f∥2x2c−1) ≤ Cfn

−1+ε.

Although both densities f and g lie inDsc(L) for any s ∈ R+ and L ∈ R+ large enough, a faster rate
for an oracle choice of ko ∈ R+ is accessible. In other words, the rate presented in Proposition 3.3.5
is of pessimistic nature. In the following subsection, we present a choice of the parameter k ∈ R+

only dependent of the observations.

3.3.3 Data-driven choice

For the sake of simplicity, we only focus on the case of ρ ≥ 1. For the other cases, similar results
to the work of Comte et al. (2006) can be deduced. First we reduce the space of possible cut-off
parameters to Kn := {k ∈ J(log(n)/2λ)1/ρK : ∆g(k) ≤ n}. Then we define the model selection
method for χ > 0 and σ̂Y := 1

n

∑
j∈JnK Y 2(c−1)

j through

k̂ := arg min
k∈Kn

−∥f̂k∥2x2c−1 + p̂en(k), whereăp̂en(k) := χσ̂Y
kρ∆g(k)

n
. (3.18)

Compared to the penalty in (3.15), we see that the term

pen(k) := EnfY (p̂en(k)) = χσY
kρ∆g(k)

n

is not of the same order as the variance term. This overestimation of the variance term for super-
smooth error densities appears commonly in the deconvolution literature, compare Comte et al.
(2006). We will first state the bound of the fully data-driven estimator similar to Theorem 3.2.8
and sketch the main steps of the proof. Here, we will point out where precisely the overestimation
of the variance is necessary and show that the overestimation does not effect the resulting rate of
the fully data-driven estimator.

Theorem 3.3.7 (Data-driven choice of k ∈ R+):
Let f ∈ L2(R2

+, x
2c−1), EfY (Y

5(c−1)
1 ) < ∞ and [G2] holds true. Then there exists χ0 ∈ R+ such

that for all χ ≥ χ0

EnfY (∥f̂k̂ − f∥2x2c−1) ≤ 3 inf
k∈Kn

(
∥f − fk∥2x2c−1 + pen(k)

)
+
C(EfY (Y

5(c−1)
1 , χ, g)

n
,

where C(g, χ,EfY (Y
5(c−1)
1 )) > 0 is a positive constant depending on g, χ and EfY (Y

5(c−1)
1 ).

Proof of Theorem 3.3.7. The proof of the theorem can be reduced in the following three Lemmas.

Lemma 3.3.8:
Under the assumptions of Theorem 3.3.7 holds

EnfY (∥f̂k̂ − f∥2x2c−1) ≤3
(
∥f − fk∥2x2c−1 + pen(k)

)
+ 11EnfY

(
∥f̂
k̂
− f

k̂
∥2x2c−1 −

1

12
pen(k̂)

)
+

+ EnfY ((pen(k̂)− 2p̂en(k̂))+)
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The theorem follows by applying the following two lemmata and taking the infimum over
k ∈ Kn.

Lemma 3.3.9:
Under the assumptions of Theorem 3.3.7 we get

EnfY

(
∥f̂
k̂
− f

k̂
∥2x2c1 −

1

12
pen(k̂)

)
+

≤
C(g,EfY (Y

4(c−1)
1 )

n
.

where C(g) > 0 is a positive constant only depending on g.

Lemma 3.3.10:
Under the assumptions of Theorem 3.3.7 we get

EnfY ((pen(k̂)− 2p̂en(k̂))+) ≤
C(χ, g,EfY (Y

5(c−1)
1 )

n
,

where C(χ, g,EfY (Y
5(c−1)
1 )) ∈ R+ is a positive constant only depending on χ, g, σY and

EfY (Y
4(c−1)
1 ).

We will now directly prove Lemma 3.3.9 to observe where the overestimation of the variance
term is necessary compared to the smooth error case. The proofs of Lemma 3.3.8 and Lemma 3.3.10
are postponed to the appendix.

Proof of Lemma 3.3.9. First we see that

EnfY

((
∥f̂
k̂
− f

k̂
∥2x2c−1 −

1

12
pen(k̂)

)
+

)
≤ EnfY

(
max
k∈Kn

(
∥f̂k − fk∥2x2c−1 −

1

12
pen(k)

)
+

)
.

Define Bk := {h ∈ Sk : ∥h∥x2c−1 = 1}. Furthermore we set

∥f̂k − fk∥2x2c−1 = sup
h∈Bk

⟨f̂k − fk, h⟩2x2c−1 =: sup
h∈Bk

ν2h,

where

ν̄h := n−1
∑
j∈JnK(νh(Yj)− EfY (νh(Yj))) and νh(Yj) :=

1

2π

∫
[−k,k]

Y c−1+it
j

Mc[g](t)
Mc[h](t)dλ(t).

We are aiming to apply the Talagrand inequality, namely Lemma 3.1.14. We therefore split, for a
sequence (dn)n∈N specified afterwards, the process again in the following way

ν̄h,1 :=n
−1
∑
j∈JnK νh(Yj)1(0,dn)(Y

c−1
j )− EfY (νh(Y1)1(0,dn)(Y

c−1
1 ))

and ν̄h,2 := n−1
∑
j∈JnK νh(Yj)1(dn,∞)(Y

c−1
j )− EfY (νh(Y1)1(dn,∞)(Y

c−1
1 ))
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to get

EnfY (max
k∈Kn

( sup
h∈Bk

|ν̄h|2 −
1

12
pen(k))+) ≤ 2EnfY (max

k∈Kn

( sup
h∈Bk

|ν̄h,1|2 −
1

24
pen(k))+ + |ν̄h,2|2)

:=M1 +M2.

We will now consider the two summandsM1 andM2 separately.
To bound the M1 we will use the Talagrand inequality 3.1.14 on the term EnfY (supt∈Bk

|ν̄h,1|2 −
1
24 p̂en(k))+. Indeed, we have

M1 ≤
∑
k≤Kn

EnfY ( sup
t∈Bk

|ν̄h,1|2 −
1

24
pen(k))+,

whichwill be used to show the claim. Wewant to emphasize that we are able to apply the Talagrand
inequality on the sets Bk since Bk has a dense countable subset and due to continuity arguments.
In order to apply Talagrand’s inequality, we need to find the constants Ψ, ψ and τ such that

sup
h∈Bk

sup
y∈R+

|νh(y)1(0,dn)(y
c−1)| ≤ ψ; EfnY ( sup

h∈Bk

|ν̄h,1|) ≤ Ψ;

sup
h∈Bk

1

n

∑
j∈JnKVarfY (νh(Yj)1(0,dn)(Y

c−1
j )) ≤ τ.

We start to determine the constant Ψ2. Let us define M̃c(t) := n−1
∑

j∈JnK Y c−1+it
j 1(0,dn)(Y

c−1
j )

as an unbiased estimator of Mc[fY 1(0,dn)(y
c−1)](t) and

f̃k(x) :=
1

2π

∫
[−k,k]

x−c−it
M̃(t)

Mc[g](t)
dλ(t),

where n−1
∑

j∈JnK νh(Yj)1(0,cn)(Y
c−1
j ) = ⟨f̃k, h⟩x2c−1 . Thus, we have for any h ∈ Bk that ν̄2h,1 =

⟨h, f̃k − EnfY (f̃k)⟩
2
x2c−1 ≤ ∥h∥2x2c−1∥f̃k − EnfY (f̃k)∥

2
x2c−1 . Since ∥h∥x2c−1 ≤ 1, we get

EnfY ( sup
h∈Bk

ν̄2h,1) ≤ EnfY (∥f̃k − EnfY (f̃k)∥
2) =

1

2π

∫
[−k,k]

VarnfY (M̃(t))

|Mc[g](t)|2
dλ(t) ≤ σY

∆g(k)

n
,

as VarnfY (M̃(t)) ≤ n−1EfY (Y
2(c−1)
1 1(0,dn)(Y

c−1
1 ) ≤ σY n

−1.We obtain

EnfY ( sup
h∈Bk

ν̄2h,1) ≤ σY
∆g(k)

n
=: Ψ2.

Next we consider ψ. Let y ∈ R+ and h ∈ Bk. Then using the Cauchy-Schwarz inequality,

|νh(y)1(0,dn)(y
c−1)|2 = (2π)−2d2n|

∫
[−k,k]

yit
Mc[h](−t)
Mc[g](t)

dλ(t)|2

≤ (2π)−2d2n

∫
[−k,k]

|Mc[g](t)|−2dλ(t) ≤ d2n∆g(k) =: ψ2

since |yit| = 1 for all t ∈ R. For τ we use the crude bound

sup
h∈Bk

1

n

n∑
j=1

VarfY (νh(Yj)1(0,dn)(Y
c−1
j ) ≤ 1

2π

∫
[−k,k]

VarfY (Y
c−1+it
1 1(0,dn)(Y

c−1
j )

|Mc[g](t)|2
dλ(t) ≤ nΨ2,

and set τ = nΨ2.
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Remark 3.3.11 (Overestimation of the variance term):
In the proof of Lemma 3.2.10, we have used the same choice of Ψ2 while we have chosen

τ = ∥x2c−1g∥∞∥Gk∥∞Ef (X
2(c−1)
1 ), Gk := 1(−k,k)|Mc[g]|−2.

In the smooth error case [G1] we have then deduced that

cgk ≤ nΨ2

τ
≤ Cgk,

implying that the sequence (Cgk2γ exp(−Cgk))k∈N is summable. For the super smooth case [G2]
for γ < 0 we have for any k ∈ R+

∥Gk∥∞ ≤ sup
t∈(0,k)

Cg(1 + t2)−γ exp(2λtρ) ≤ Cgk
−2γ exp(2λkρ),

respectively ∥Gk∥∞ ≥ cgk
−2γ exp(2λkρ). Now Lemma 3.3.4 leads to

nΨ2

τ
≤ Cg

k1−ρ−2γ exp(2λkρ)

k−2γ exp(2λkρ)
= Cgk

1−ρ,

which is decreasing in k ∈ R+ implying that the first summand in Lemma 3.1.14 might not be
bounded w.r.t. k ∈ R+ in the case of super smooth error densities. A more general version of the
Talagrand inequality is thus needed which on the other hand implies the need of the overestimation
of the variance of the estimator.

The following inequality is due to Talagrand (1996), the formulation of the first part can be found
for example in Klein and Rio (2005).

Lemma 3.3.12 (Talagrand’s inequality):
Let Z1, . . . , Zn be independent Z-valued random variables and let ν̄h =

n−1
∑n

i=1 [νh(Zi)− E (νh(Zi))] for νh belonging to a countable class {νh, h ∈ H} of mea-
surable functions. Then, for all ε ∈ R+

E
(
sup
h∈H

|ν̄h|2 − 2(1 + 2ε)Ψ2

)
+

≤ C

[
τ

n
exp

(
−K1εnΨ

2

τ

)
+

ψ2

C2
εn

2
exp

(
−CεK2

√
εnΨ

ψ

)]
(3.19)

with numerical constants Cε :=
√
1 + ε− 1 and C ∈ R+ and where

sup
h∈H

sup
z∈Z

|νh(z)| ≤ ψ, E(sup
h∈H

|νh|) ≤ Ψ, sup
h∈H

1

n

n∑
j=1

Var(νh(Zi)) ≤ τ.

It is clear to see that the Lemma 3.1.14 follows from Lemma 3.3.12 for ε = 1, in other words for
a fixed choice of ε ∈ R+. For our study, a choice of ε = ε(k), which is increasing in k ∈ R+, is
necessary as discussed before. Indeed, we have nΨ2

τ = 1 and nΨ
ψ =

√
σY n
dn

, and get

EnfY
(
sup
h∈Bk

ν̄2h,1 − 2(1 + 2ε)σY
∆g(k)

n

)
+
≤ C

n

(
σY∆g(k) exp

−K1ε+
∆g(k)d

2
n

n
e−K2Cε

√
ε
√
σY nd

−1
n

)
.
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Choosing now ε = 4λkρ/K1 we get by applying assumption [G2] for k ≥ kg

∆g(k) exp(−K1ε) ≤ Cgk
−2γ exp(−2λkρ),

which is summable overN. Next for k ≥ kg wegetCε
√
ε ≥ ε/2 and choosing dn :=

√
nσY 2K2/K1

leads to

−K2Cε
√
ε
√
σY nd

−1
n ≥ λkρ,

which implies

EnfY
(
sup
h∈Bk

ν̄2h,1 − 2(1 + 2ε)σY
∆g(k)

n

)
+
≤ CgσY

n
2k−2γ exp(−2λkρ).

Furthermore, for χ ≥ χ0 > 0 holds 1
24pen(k) ≥ 2(1 + 4λkρ)/K1)σY∆g(k)n

−1 implying

∑
k≤Kn

EnfY ( sup
t∈Bk

|ν̄h,1|2 −
1

24
pen(k))+ ≤ Cg

n
σY

∑
k≤Kn

k−2γ exp(−2λk) ≤ C(g)σY
n

.

Now, we consider M2. Let us define fk := f̂k − f̃k. Then from νh,2 = νh − νh,1 we deduce
ν2h,2 = ⟨fk − EnfY (fk), h⟩

2
x2c−1 ≤ ∥fk − EnfY (fk)∥

2
x2c−1 for any h ∈ Bk. Further,

max
k∈Kn

∥fk − EnfY (fk)∥
2
x2c−1 ≤ ∥fKn

− EnfY (fKn
)∥2x2c−1

and

EnfY (∥fKn
− EnfY (fKn

))∥2x2c−1) =
1

2π

∫
[−Kn,Kn]

VarnfY (M̂(t)− M̃(t))

Mc[g](t)|2
dλ(t)

≤ ∆g(Kn)

n
EfY (Y

2(c−1)
1 1(dn,∞)(Y

c−1
1 ))

≤ EfY (Y
2(c−1)
1 1(dn,∞)(Y

c−1
1 )).

Now EfY (Y
2(c−1)
1 )1(dn,∞)(Y

c−1
1 )) ≤ d−2

n EfY (Y
4(c−1)
1 ) ≤ C(EfY (Y

4(c−1)
1 )))n−1, which implies

EnfY

(
∥f̂
k̂
− f

k̂
∥2x2c−1 −

1

12
pen(k̂)

)
+

≤
C(g,EfY (Y

5(c−1)
1 )

n
.

Before studying the resulting rates of convergence under regularity conditions we compare
shortly the assumptions of Theorem 3.3.7 and Theorem 3.2.8.
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Remark 3.3.13 (Continuation of Remark 3.3.11):
Comparing the assumptions of Theorem 3.2.8 and Theorem 3.3.7, we observe that the boundness
of x 7→ x2c−1g(x) is not necessary in the case of super smooth error densities. More precisely, it
is needed for the choice of τ := ∥x2c−1g∥∞∥Gk∥∞Ef (X

2(c−1)
1 ) of the Talagrand constant in the

proof of Theorem 3.2.8. As mentioned in Remark 3.3.11 this choice cannot be applied in general
in the super smooth error density case. Thus, an overestimation of the variance term is necessary,
which on the other-hand does not need the assumption ∥x2c−1g(x)∥∞ <∞.

At the same time, the overestimation of the variance does effect the expectation EnfY ((pen(k̂) −
2p̂en(k̂))+). Indeed, the moment assumption EfY (Y

5(c−1)
1 ) <∞, compared to EfY (Y

4(c−1)
1 ) <∞

in the proof of Theorem 3.2.8, allows us to bound the term with the order n−1, that is

EnfY ((pen(k̂)− 2p̂en(k̂))+) ≤
C(χ,EfY (Y

5(c−1)
1 )

n
.

Here, two things should be mentioned. First, the assumption EfY (Y
4(c−1)
1 ) < ∞ implies already

in the super smooth case an order log(n)n−1,

EnfY ((pen(k̂)− 2p̂en(k̂))+) ≤
C(χ,EfY (Y

4(c−1)
1 ) log(n)

n
.

In other words a small digression of the rate by a Log-term occurs which could be seen as a neg-
ligible price to pay compared to a higher moment condition. Secondly, the moment assumption
EfY (Y

5(c−1)
1 ) <∞ can be weakened by an assumption EfY (Y

(4+δ)(c−1)
1 ) <∞ for δ ∈ (0, 1), with

EnfY ((pen(k̂)− 2p̂en(k̂))+) ≤
C(δ, χ,EfY (Y

(4+δ)(c−1)
1 )

n
,

which was not considered for the sake of readability of the proof.

We will come to the deduction of the resulting rate under regularity assumptions of the density f
for the fully data-driven estimator f̂

k̂
.

Corollary 3.3.14:
Let c ∈ R, s, L ∈ R+ and f ∈ Dsc(L). Additionally assume that EfY (Y

5(c−1)
1 ) < ∞ and [G2] is

fulfilled. Then for all χ > χ0 holds

EnfY (∥f̂k̂ − f∥2x2c−1) ≤ C(L, s, g,Ef (Y
5(c−1)
1 , χ) log(n)−2s/ρ,

where C(L, s, g,EfY (Y
5(c−1)
1 ) > 0 is a positive constant depending on L, s, g, χ and EfY (Y

5(c−1)
1 ).

Here, we deduce the same rate as the choice ko = (log(n)/4λ)1/ρ from Proposition 3.3.5. Contrary
to the smooth case, this choice is independent of s ∈ R+ and thus known in advance. In this
situation, we do not improve the rate by using a data-driven method. Again, this rate is rather
pessimistic and in explicit situations, the data-driven method leads to a faster convergence rate. We
consider now exemplary the case of a Log-Normal distributed random variable X . Its proof is a
direct consequence and thus omitted.
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Corollary 3.3.15:
Let c ∈ R such that Eg(U

5(c−1)
1 ) <∞, [G2] is fulfilled with ρ = 1 and X ∼ LN(µ,σ2). Then for all

χ > χ0 and ε ∈ (0, 1)

EnfY (∥f̂k̂ − f∥2x2c−1) ≤ C(g, µ, σ, χEg(U
5(c−1)
1 , ε)n−1+ε,

where C(g, µ, σ, χEg(U
5(c−1)
1 ), ε) is a positive constant depending on g µ, σ, Eg(U

5(c−1)
1 ) and ε.

Thus, in the case of a Log-Normal distributedX1, respectively if the decay of the Mellin transform
of f is faster than the decay ofMg, a better rate can be achieved through the data-driven choice k̂.

3.3.4 Numerical results

In this subsection, we compare the behavior of the data-driven spectral cut-off estimator f̂
k̂
, pre-

sented in equation (3.14), with the data-driven choice (3.15) for the smooth error case and (3.18)
in the super smooth case. To do so, we use the following examples for the unknown density f ,

(i) BETA DISTRIBUTION: f(x) = B(2, 5)−1x(1− x)41(0,1)(x), x ∈ R+ and

(ii) LOG-NORMAL DISTRIBUTION: f(x) = (0.32πx2)−1/2 exp(− log(x)2/0.32)1(0,∞)(x), x ∈ R+.

A detailed discussion of these examples in terms of the decay of their Mellin transform can be found
in section 2.5. To compare the behavior of the estimator in the smooth and the super smooth error
case, we use the following examples of error densities g

a) PARETO DISTRIBUTION: g(x) = 1(1,∞)(x)x
−2, x ∈ R+, and

b) CHI-SQUARED DISTRIBUTION: g(x) = 1(0,∞)(x)
x−1/2
√
2π

exp(−x/2), x ∈ R+, and

c) GAMMA DISTRIBUTION: g(x) = 1(0,∞)(x)
x2

2 exp(−x), x ∈ R+.

Here it is worth pointing out that the example a) fulfill [G1] with γ = 1 and b) fulfills [G2] with
ρ = 1. By minimizing an integrated weighted squared error over a family of histogram densities
with randomly drawn partitions and weights we select χ = 7 for a), and for the cases b) and c) we
choose χ = 1.7.
In Figure 3.7, we presented the choice c = 1 since for c = 1/2 in the case of b) we have no
theoretical result of the behavior of f̂

k̂
as the assumptions of Theorem 3.2.8 hold not true. It can

be seen that the reconstruction of the density f given the noisy sample (Yj)j∈JnK seems to be more
difficult in the case of super smooth errors compared to smooth error which coincides with the
theory.
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Figure 3.7: Considering the estimator f̂
k̂
and a sample size n = 103 (left), n = 104 (middle) and

n = 105 the adaptive estimators are depicted for 50 Monte-Carlo simulations in the
cases (i)with error density b) (top) and a) (bottom) and with c = 1. The true density f
is given by the dark blue curve while the red curve is the point-wise empirical median
of the 50 estimates.
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Figure 3.8: Considering the estimator f̂
k̂
and a sample size n = 103 (top) and n = 105(bottom) the

adaptive estimators are depicted for 50 Monte-Carlo simulations in the cases (ii) with
error density b) (left), c) (middle) and a) (right) with c = 1. The true density f is given
by the dark blue curve while the red curve is the point-wise empirical median of the
50 estimates.
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Again in Figure 3.8, we study c = 1 since for c = 1/2 in the case of b) we have no theoreti-
cal result of the behavior of f̂

k̂
as the assumptions of Theorem 3.2.8 hold not true. Comparing

the left and the middle column in Figure 3.8 with the right column, the different behavior of the
smooth and the super smooth case is easy to be seen. It is interesting though that the middle col-
umn, the case of the Gamma-distributed error, the estimator seems to perform better. From a
theoretical point of view, both left and middle column have Gamma-distributed errors, keeping in
mind that the chi-squared distribution is just a special case of the Gamma distribution. This effect
might come from the fact that the chi-squared distribution b) has the form parameter p = 1/2

while the considered Gamma distribution c) has the form parameter p = 3. Based on Exam-
ple 3.3.2 the Mellin transform for the case b) decays faster than c). While this slight difference do
not effect the general rate, it could effect the performance of the estimator for finite sample sizes.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

Figure 3.9: Considering the estimator f̂
k̂
and a sample size n = 103 (left), n = 104 (middle) and

n = 105 (right) the adaptive estimators are depicted for 50 Monte-Carlo simulations in
the cases (ii) with c = 1 (top) and c = 1/2 (bottom) and in the case of c). The true
density f is given by the dark blue curve while the red curve is the point-wise empirical
median of the 50 estimates.

In Figure 3.9, we compared the cases c = 1 with c = 1/2. It can be seen that the behavior of the
estimators close to 0 differs strongly. This is natural since for the case c = 1 the weight function
suppress the influence of this region on the global risk. This effect does not occur for c = 1/2.

3.3.5 Conclusion

In Section 3.3 we have studied the spectral cut-off estimator, presented in Section 3.2, for super
smooth error densities. More precisely, we have derived an upper bound for the minimax risk and
showed that the resulting rate is minimax-optimal for the case c = 1 for a variety of super smooth
error densities. We then considered for the case ρ ≥ 1 a fully data-driven estimator of the density,
derived an oracle inequality, and showed that the estimator achieves the minimax rate. The finite
sample size properties of our estimator has been motivated by a Monte-Carlo simulation study.
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In general, we can say that the estimation of the density with super smooth error is possible but
harder in terms of the decay of the risk. For the lower bound, a proof of the case c ̸= 1 is left
as an open research question. For the data-driven method the cases ρ ∈ (0, 1) can be considered,
but have been omitted for the sake of readability. More precisely, for the upcoming theory, the
case of ρ = 1 will be of special interest while considering the estimation of volatility densities in a
stochastic volatility model, see Section 3.6.4.

3.3.6 Proofs

The next inequality was proven by Nagaev (1979). A similar formulation can be found in Liu et al.
(2013), equation (1.3).

Lemma 3.3.16 (Nagaev’s inequality):
Let X1, . . . , Xn be i.i.d. mean-zero random variables with E(|X1|p) <∞ for p > 2. Then for any
x ∈ R+ holds

P(
∑
j∈JnKXj ≥ x) ≤ (1 + 2p−1)p

nE(|X1|p)
xp

+ 2 exp(− apx
2

nE(X2
1 )

),

where ap = 2e−p(p+ 2)−2.

Proof of Lemma 3.3.4. Let us define

φ1(y) :=

∫ y

0
(1 + t2)−γ exp(2λtρ)dt and φ2(y) := y1−2γ−ρ exp(2λyρ)

for y ∈ R+. Then it is sufficient to show that we can find a constant Cγ,λ,ρ ∈ R+ such that
φ1(y) ≤ Cγ,λ,ρφ2(y) for all y > yγ,λ,ρ ∈ R+. Indeed, since both functions are strictly positive
and continuous, we can always find for bounded subintervals (0, yγ,λ,ρ) ⊂ R+ a constant Cγ,λ,ρm
such that the inequality holds. Therefore, we are interested in the behavior of φ1/φ2 for large
arguments. Using the L’Hôpital rule we get

lim
t→∞

φ1(t)

φ2(t)
= lim

t→∞

(1 + t2)−γ exp(2λtρ)

(1− 2γ − ρ)t−2γ−ρ exp(2λtρ) + 2λρt−2γ exp(2λtρ)

= lim
t→∞

(1 + t−2)−γ

(1− 2γ − ρ)t−ρ + 2λρ
= (2λρ)−1.

Thus, we can find a yρ,λ,γ > 0 such that φ1(y)/φ2(y) ≤ (λρ)−1 for all y > yρ,λ,γ . This implies the
claim.

Although the result of Lemma 3.2.9 and Lemma 3.3.8 seem to be similar, we present an alternative
proof of the decomposition in the proof of Lemma 3.3.8.

Proof of Lemma 3.3.8. Let k ∈ Kn and let us keep in mind that [−k′, k′] = supp(Mc[fk′ ]), for
k′ ∈ Kn. For Kn := ⌊log(n)1/ρ⌋, for all k′ ∈ Kn we have [−k′, k] ⊆ [−Kn,Kn]. Further, we have
for any k′ ∈ Kn that ∥f̂Kn∥2x2c−1 − ∥f̂k′∥2x2c−1 = ∥f̂Kn − f̂k′∥2x2c−1 implying with (3.18)

∥f̂
k̂
− f̂Kn∥2x2c−1 + p̂en(k̂) ≤ ∥f̂k − f̂Kn∥2x2c−1 + p̂en(k).
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Now for every k′ ∈ Kn we have

∥f̂k′ − fKn∥2x2c−1 = ∥f̂k′ − f̂Kn∥2x2c−1 + ∥f̂Kn − fKn∥2x2c−1 + 2⟨f̂k′ − f̂Kn , f̂Kn − fKn⟩x2c−1 ,

which implies that

∥f̂
k̂
− fKn∥2x2c−1− ∥f̂k − fKn∥2x2c−1= ∥f̂

k̂
− f̂Kn∥2x2c−1− ∥f̂k − f̂Kn∥2x2c−1+ 2⟨f̂

k̂
−f̂k, f̂Kn−fKn⟩x2c−1

≤ p̂en(k)− p̂en(k̂) + 2⟨f̂
k̂
−f̂k, f̂Kn−fKn⟩x2c−1 , (3.20)

As

⟨f̂
k̂
− f̂k, f̂Kn − fKn⟩x2c−1 = ⟨(f̂

k̂
− f

k̂
) + (f

k̂
− fk) + (fk − f̂k), f̂Kn − fKn⟩x2c−1

= ∥f̂
k̂
− f

k̂
∥2x2c−1 + ⟨f

k̂
− fk, f̂Kn − fKn⟩x2c−1 − ∥f̂k − fk∥2x2c−1 . (3.21)

Now combining (3.20) and (3.21), we get

∥f̂
k̂
− fKn∥2x2c−1 ≤ ∥fk − fKn∥2x2c−1 − ∥f̂k − fk∥2x2c−1 + 2⟨f

k̂
− fk, f̂Kn − fKn⟩x2c−1

+ p̂en(k) + 2∥f̂
k̂
− f

k̂
∥2x2c−1 − p̂en(k̂). (3.22)

Let us consider the term |2⟨f
k̂
− fk, f̂Kn − fKn⟩x2c−1 |. First we remind that for any k′ ∈ Kn

∥f̂k′ − fk′∥2x2c−1 =
1

2π

∫
R
1[−k′,k′](t)

|Mc[fY ](t)− M̂c(t)|2

|Mc[g](t)|2
dλ(t).

Setting A∗ := [−k̂, k̂] ∪ [−k, k], we have Mc[fk̂ − fk] = Mc[f ](1[−k̂,k̂] − 1[−k,k]) implying that
supp(Mc[fk̂−fk]) ⊆ A∗ ⊆ [−Kn,Kn] by definition ofKn. Using the Cauchy-Schwarz inequality
and 2ab ≤ a2 + b2 we deduce

|2⟨f
k̂
− fk,f̂Kn − fKn⟩x2c−1 | =

2

(2π)2

∣∣∣∣∣
∫
A∗

Mc[fk̂ − fk](t)
M̂c(−t)−Mc[fY ](−t)

Mc[g](−t)
dλ(t)

∣∣∣∣∣
≤ 1

4
∥f
k̂
− fk∥2x2c−1 +

4

2π

∫
R
1A∗(t)

|Mc[fY ](t)− M̂c(t)|2

|Mc[g](t)|2
dλ(t)

≤ 1

2
∥f
k̂
− fKn∥2x2c−1 +

1

2
∥fk − fKn∥x2c−1 + 4∥f̂k − fk∥2x2c−1 + 4∥f̂

k̂
− f

k̂
∥2x2c−1

using that 1A∗ ≤ 1Ak
+ 1A

k̂
. Thus, we get

|2⟨f
k̂
− fk,f̂Kn − fKn⟩x2c−1 |

≤ 1

2
∥fKn − fk∥2x2c−1 +

1

2
∥f̂
k̂
− fKn∥2x2c−1 + 4∥f̂k − fk∥2x2c−1 +

7

2
∥f̂
k̂
− f

k̂
∥2x2c−1 ,

which implies with (3.52)

∥f̂
k̂
− fKn∥2x2c−1 ≤ 3∥fk − fKn∥2x2c−1 + 6∥f̂k − fk∥2x2c−1 + 2p̂en(k) + 11∥f̂

k̂
− f

k̂
∥2x2c−1 − 2p̂en(k̂).

Since EnfY (p̂en(k)) = pen(k) and for χ0 ≥ 6 6EnfY (∥f̂k − fk∥2x2c−1) ≤ 6σY∆g(k)n
−1 ≤ pen(k).

we get

EnfY (∥f̂k̂ − fKn∥2x2c−1) ≤3
(
∥fKn − fk∥2x2c−1 + pen(k)

)
+ 11EnfY

(
∥f̂
k̂
− f

k̂
∥2x2c−1 −

1

12
pen(k̂)

)
+

+ EnfY ((pen(k̂)− 2p̂en(k̂))+),

which implies the claim since ∥f̂
k̂
− f∥2x2c−1 = ∥f̂

k̂
− fKn∥2x2c−1 + ∥f − fKn∥2x2c−1 .
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Proof of Lemma 3.3.10. Let us define Ω := {|σ̂Y − σY | ≤ σY /2}. Then on Ω we have 2σ̂Y ≥ σY
and

EnfY ((pen(k)− 2p̂en(k))+) = χEnfY

(
k̂
∆g(k̂

ρ)

n
(σY − 2σ̂Y )+

)
≤ 2χKρ

nEnfY (|σY − σ̂Y |1Ωc)

≤ C(χ, g) log(n)

√
VarnfY (σ̂Y )P(Ω

c)

σY
.

Now applying the Nagaev inequality, Lemma 3.3.16, we get for p = 5

EnfY ((pen(k)− 2p̂en(k))+) ≤ C(χ,EfY (Y
5(c−1)
1 ))

log(n)

n−5/2
≤
C(χ,EnfY (Y

5(c−1)
1 ))

n
.
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3.4 Under multiplicative measurement errors with

oscillating densities

3.4.1 Introduction

As mentioned in Section 3.1, from an inverse problem theoretical point of view, the estimator
presented in Equation (3.14) can be interpreted as a spectral cut-off regularization of the inverse
Mellin transform to ensure that the function M̂c/Mc[g] lies in its domain, respectively introduced
with M+

c [g] := 1(−k,k)/Mc[g] a regularized version of 1/Mc[g] such that M̂cM+
c [g] lies in the

domain of M†
c. In this section, we will propose another choice of M+

c [g] based on a so-called
RIDGE-approach similar to the work of Meister (2009) and Hall and Meister (2007).
Despite this, we stay in the global density estimation under the multiplicative measurement error
model. As a reminder, we are interested in estimating the density f : R+ → R+ of a positive
random variable X given an i.i.d sample (Yj)j∈JnK of

Y = XU,

where U is a second positive random variable, stochastically independent of X , with known error
density g : R+ → R+.

3.4.2 Estimation strategy

Given a positive, continuous RIDGE FUNCTION ρn : R → R+, possibly dependent on the sample size
n ∈ N, we can state, with max(|Mc[g](t)|, ρn(t)) =: (|Mc[g]| ∨ ρn)(t) > 0, for any t ∈ R

|Mc[g]|
|Mc[g]| ∨ ρn)2

≤ |Mc[g]|
ρ2n

.

If ρ−2
n ∈ L2(R) then M̂c

Mc[g]
|Mc[g]|∨ρn)2 ∈ L2(R) follows. Here, M̂c(t) := n−1

∑
j∈JnK Y c−1+it

j is the
empirical Mellin transform introduced in Section 3.1.2, respectively in Section 3.2.
For any ridge function ρn : R → R+ with ρ−2

n ∈ L2(R) and any error density g : R+ → R+ with
E(U c−1

1 ) <∞ the RIDGE ESTIMATOR f̃ρn is defined by

f̃ρn := M†
c

[
M̂cMc[g]

(|Mc[g]| ∨ ρn)2

]
.

If the function Mc[g]/ρ
2
n ∈ L1(R) we can express this estimator explicitly by

f̃ρn(x) :=
1

2π

∫
R
x−c−itM̂c(t)

Mc[g](−t)
(|Mc[g]| ∨ ρn)(t))2

dλ(t). (3.23)
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Remark 3.4.1 (Regularized inversion):
In comparison with the family of estimators (f̂k)k∈R+ from Section 3.2.2, both estimators are based
on the application of the inverse Mellin transform M†

c on the product of the empirical Mellin
transform M̂c and a regularized version M+

c [g] of 1/Mc[g], which ensures that M̂cM+
c [g] ∈

L1(R) ∩ L2(R). In other words they follow the same construction

f̂ = M†
c[M̂cM+

c [g]], where M+
c [g] =


1(−k,k)

Mc[g]
, f̂ = f̂k,

Mc[g]
(|Mc[g]∨ρn)2 , f̂ = f̃ρn .

The regularization of the inverse operator to construct estimator is a frequently used technique in
the theory of statistical inverse problems.

Before studying the properties of the estimator f̃ρn and deducing situations where it is well-defined
while its counterpart f̂k is undefined, we will begin by exploring on which subset of R the two
choices of M+

c [g] differ.
Let us define the set Gn := {t ∈ R : ρn(t) > |Mc[g](t)|}. Then for all t ∈ Gcn, we can ensure that
|Mc[g](t)| ≥ ρn(t) > 0 and thus

M̂c(t)
Mc[g](−t)

(|Mc[g]| ∨ ρn)(t))2
=

M̂c(t)Mc[g](−t)
|Mc[g](t)|2

=
M̂c(t)

Mc[g](t)
, for any t ∈ Gcn,

where all quotients are well-defined even without the assumption [G0] from Section 3.2.

Remark 3.4.2 (Choices of ρn):
It seems natural to consider a choice of ρn such that both ρ−2

n ∈ L2(R) and that ρn converges point-
wise to 0, that is for any t ∈ R should ρn(t) → 0 for n→ ∞. A choice of such a ρn is presented in
Meister (2009) by

ρn(t) := n−η(1 + |t|)ξ, ξ, η ≥ 0. (3.24)

To ensure that ρ−2
n ∈ L2(R), it is sufficient to choose ξ > 1/4. In the work of Hall and Meister

(2007), a notion of Ridge estimator is presented, which includes the choice of ξ = 0, that is ρn is a
constant function. The square-integrablilty of the function |Mc[g]|/ρ2n can then only be achieved,
if the function Mc[g] decays fast enough. This excludes many error densities, for example if g is
Log-Gamma distributed with a ≤ 1/2, compare Example 2.1.10. To include these cases, we need
to modify our estimator in the following way inspired by the work of Hall and Meister (2007).

Let ρn be of the form as seen in Equation (3.24) and let r ≥ 0 be such that Mc[g]
r+1ρ−r−2

n ∈
L1(R) ∩ L2(R). Then,

Rρn,r,g := Mc[g]|Mc[g]|r(|Mc[g]| ∨ ρn)−r−2 ∈ L1(R) ∩ L2(R)

and we define the estimator f̂ρn,r for any x ∈ R+ by

f̂ρn,r(x) :=
1

2π

∫
R
x−c−itM̂c(t)Rρn,r,g(t)dλ(t), (3.25)
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Using the usual bias-variance decomposition we get

EnfY (∥f − f̂ρn,r∥2x2c−1) = ∥f − EnfY (f̂ρn,r)∥
2
x2c−1 +

1

2π

∫
R
VarnfY (M̂c(t))|Rρn,r,g(t)|2dλ(t).

Bounding both the bias and the variance term separately we get the following results whose proof
is postponed to Section 3.2.7.

Proposition 3.4.3 (Ridge Upper bound):
Let c ∈ R and f ∈ L2(R+, x

2c−1). Let ρn as in (3.24) and r ≥ 0 such that Mc[g]
r+1/ρr+2

n ∈
L1(R) ∩ L2(R) and σc := E(Y 2(c−1)

1 ) <∞. Then

E(∥f − f̂ρn,r∥2x2c−1) ≤ ∥1GnMc[f ]∥2R +
σc
2πn

∥Rρn,r,g∥2R,

where Gn := {t ∈ R : ρn(t) > |Mc[g](t)|} and f̂ρn,r is defined in Equation 3.25.

For the Ridge function ρn we already stated that it is desirable that it converges point-wise to 0.
In fact, this property would imply that (Gn)n∈N is a decreasing sequence of sets, that ist Gn+1 ⊂
Gn, which converges in many cases to Lebesgue null-set. A case, where such a converges is not
given, would be if the error density g vanishes on set A ⊆ R with strictly positive Lebesgue-
measure λ(A) > 0. We want to stress out that this discussion is necessary at this point, since the
Ridge estimator is well-defined even for densities not fulfilling [G0]. Nevertheless, the result of
Proposition 3.4.3 does not already imply the consistency of the ridge estimator. This is due to
the fact, that it is not clear that the squared bias term (∥1GnMc[f ]∥2R)n∈N is vanishing. We will
now give a minimal assumption to ensure, that we can define a consistent estimator using the
Ridge estimator framework. We will from now on assume, that the Mellin transform of g is almost
everywhere not 0, that is

λ({t ∈ R : Mc[g](t) = 0}) = 0. ([G-1])

Under the assumption [G-1]we can use the dominated convergence theorem to state that the first
and the second term in Proposition 3.4.3 are converging to 0. From this we can instantly deduce
the following result whose proof is therefore omitted.

Corollary 3.4.4 (Consistency):
Let the assumption of Proposition 3.4.3 be fulfilled and [G-1] holds true. If n−1∥Rρn,r,g∥2R → 0 for
n→ 0, then

EnfY (∥f̂ρn,r − f∥2x2c−1) → 0,

for n→ 0 and f̂ρn,r defined in Equation (3.25).

Although the assumptions in Corollary 3.4.4 seem to be rather technical, we will see that they can
be simplified while considering more precise classes of error densities, compare Subsection 3.2.3.
Before we define this family of error densities let us shortly comment on the consistency of the
presented estimator.
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Remark 3.4.5 (Strong consistency):
In Proposition 3.4.3 we have seen that we can determine a set of assumptions which ensures by
application of the Markov inequality, that ∥f̂ρn,r − f∥2x2c−1 → 0 in probability. Here, we needed
the additional assumption that f ∈ L2(R, x2c−1) to construct the estimator and show its properties.
A less restrictive metric which can be considered would be the L1(R+, x

0)-metric, since for any
density f ∈ L1(R+, x

0) holds. Further, the Mellin transform developed in c = 1 is well-defined
for any density f . In the book of Meister (2009) they proposed an estimator f̂V of the density
fV : R → R of a real random variable V given i.i.d. copies of Z = V + ε where V and ε are
stochastically independent. They were able to show that their estimator f̂ is strongly consistent
in the L1(R)-sense, that is ∥f̂V − fV ∥L1(R) → 0 almost surely. Given the log transformed data,
log(Y ) = log(X) + log(U), we can use the estimator f̂V for V = log(X) and deduce the estimator
f̂X(x) := f̂V (log(x))x

−1 for any x ∈ R+. Then ∥f̂X − f∥L1(R+,x0) = ∥f̂V − fV ∥L1(R) implying
that the estimator f̂X is strongly consistent in the L1(R+, x

0) sense. Although it might be tempting
generalize this result for the L1(R+, x

c−1)-distance for any c ∈ R, it would need an additional
moment assumption on f which contradicts the idea of considering the most general case.

Oscillating error densities Examples of error densities which do not fulfill [G0] are given
by the so-called OSCILLATING ERROR DENSITIES which we define analogously to the additive decon-
volution in Hall and Meister (2007).

Definition 3.4.6 (Oscillating error density):
Let g : R+ → R+ such that Eg(U c−1) < ∞ for a c ∈ R+. Then we call g a OSCILLATING ERROR
DENSITY if there exist cg, Cg, λ, T > 0, µ, ρ ∈ R+, γ, κ ∈ R and µ ≥ 1 such that

cg(1 + |t|2)−γ/2| sin(λt)|µe−κ|t|ρ ≤ |Mc[g](t)| ≤ Cg(1 + |t|2)−γ/2| sin(λt)|µe−κ|t|ρ for all |t| > T

and |Mc[g](t)| > cg for all t ∈ [−T, T ].

Definition 3.4.6 implies that for an oscillating error density the set of zeros {t ∈ R : Mc[g](t) = 0}
is countable. Since limx→0 sin(x)/x = 1, respectively limx→xo sin(xo−x)/xo−x = 1 for any zero
x0 ∈ R of the sine function, we see that the zeros of the sin function are of order 1, implying, that
the zeros {t ∈ R : Mc[g](t) = 0} are of order µ ≥ 1. Therefore, the function 1[−k,k]/Mc[g] is not
square-integrable and thus [G0] is not fulfilled. We will now present an example of an oscillating
error density.

Example 3.4.7 (Log-Uniform distribution):
Let U ∼ LU(−1,1), that is log(U) ∼ U(−1,1). Then the density g of U is given by g(x) =
1
2x1(e−1,e)(x), x ∈ R+. Since Eg(U c−1

1 ) < ∞ for any c ∈ R, its Mellin transform is well-defined
for t ∈ R by

Mc[g](t) =
sinh(c− 1 + it)

c− 1 + it
,

where sinh(z) := (exp(z) − exp(−z))/2, z ∈ C, is the sinus hyperbolicus. For c = 1 we have
sinh(it) = i sin(t), t ∈ R, and thus M1[g](t) = sin(t)

t , t ∈ R, showing that g is for c = 1 an
oscillating error density.

100



Considering Example 3.4.7, the natural question arise if c = 1 is the only value of c ∈ R such
that Mc[g] is oscillating. Indeed, applying the calculation rule sinh(s + it) = sinh(s) cos(t) +

i cosh(s) sin(t), for s, t ∈ R, where cosh(z) := (exp(z) + exp(−z))/2, z ∈ C to get

Mc[g](t) = 0 ⇔ (sinh(c− 1) = 0) ∨ (cosh(c− 1) = 0) ⇔ c = 1,

since cosh(x) > 0 for x ∈ R and x = 0 is the only zero of sinh on R. In other words, the LU(−1,1)

distribution is only for c = 1 an oscillating error density. In the additive noise model, similar results
motivate the usage of the bilateral Laplace transform, instead of the Fourier transform, as pointed
out in Belomestny and Goldenshluger (2021).

Remark 3.4.8 (Existence of a zero-free Mellin transform):
From Example 3.4.7 and the further discussion, one might wonder if there always exist a value
of c ∈ R such that the Mellin transform Mc[g] of g is zero-free. Indeed, if there exists a c′ ∈
R \ {1} such that Eg(U c

′−1) <∞, then the Mellin transform of g is well-defined for all c ∈ (c′, 1),
respectively (1, c′). Now from the interpretation

M[g] : {z ∈ C : Re(z) ∈ (c′, 1)} → C, z = s+ it 7→ M[g](z) := Ms[g](t),

it is known from the complex analysis literature, that the function M[g] is holomorph on {z ∈
C : Re(z) ∈ (c′, 1)}, compare Paris and Kaminski (2001). From this we deduce that there exists a
c ∈ (c′, 1) such that Mc[g] is zero-free. Otherwise, the holomorphic function M[g] would have
an uncountable set of zero which implies that M[g] is constant zero, due to the identity theorem
of holomorphic functions. The only distribution with a constant 0 Mellin transform is the point
measure in 0.

Remark 3.4.9 (Counter example for a zero-free Mellin transform):
On the other hand, not all distributions possesses a c ∈ R+\{1}with Eg(U c−1) <∞. For example,
considering the Log-Cauchy distribution, with density

gV (u) :=
1

xπ(1 + | log(u)|2)
, u ∈ R+,

fulfills EgV (V c−1) <∞ only for c = 1.
Therefore the multiplicative convolution of a Log-Cauchy and a Log-Uniform distribution would
be an example of an oscillating error density without the existence of c ∈ R such that Mc[g] is
zero-free.
More precisely, let U = VW , where V ∼ gV and W ∼ gW (x) := (2x)−11(e−1,e)(x), x ∈ R+. If
additionally V andW are stochastically independent, then E(U c−1) < ∞ if and only if c = 1 and
for the density g of U holds

M1[g](t) = M1[gV ](t)M1[gW ](t) =
sin(t)

t
exp(−|t|),

which is an example for a super smooth oscillating error density.

In the next section, we will show that the proposed estimator is minimax-optimal for smooth error
densities and comment on the case of oscillating error densities.
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3.4.3 Minimax theory

For the further analysis, we consider the case of a constant ridge function, that is ρn(t) := n−η

which correspond to ξ = 0, compare Equation (3.24). We can now prove that in the case of a
smooth error densities the ridge estimator does reach the minimax rate developed in Section 3.2.3.
As a reminder, we call an error density smooth if there exist constants cg, Cg, γ ∈ R+ such that

∀t ∈ R : cg(1 + |t|2)−γ/2 ≤ |Mc[g](t)| ≤ Cg(1 + |t|2)−γ/2. ([G1])

Under assumption [G1] it is sufficient to choose r > 0∨ (γ−1−1) to ensure thatMc[g]
r+1/ρr+2

n ∈
L1(R)∩L2(R). Now let us show that for a particular choice of η ∈ R+ the resulting ridge estimator
achieves the minimax rate over the Mellin Sobolev ellipsoids introduced in Section 3.1. The proof
of the following Proposition is rather technical and thus postponed in the proof section.

Proposition 3.4.10 (Upper bound for the minimax risk):
Let s, L ∈ R+ and c ∈ R. Let additionally E(U2(c−1)

1 ) < ∞ and [G1] be fulfilled. Further let
r > 0 ∨ (γ−1 − 1). Then for the choice ηor := γ/(2s+ 2γ + 1), ρn = n−γ/(2γ+2s+1),

sup
f∈Ds

c(L)
EnfY (∥f̂ρn,r − f∥2x2c−1) ≤ C(L, s, g, r)n−2s/(2s+2γ+1),

where C(L, s, g, r) is a positive constant depending on L, s, r and g.

Proposition 3.4.10 combined with Theorem 3.2.7 implies that, if g fulfills both [G1] and [G1’]
the ridge estimator with the choice ρn = n−γ/2(2γ+2s+1) leads to an minimax optimal estimator.
Similar to the result of Section 3.2.3, this estimator is again dependent on the unknown regularity
parameter s ∈ R+. Thus, a fully data-driven choice of η, respectively ρn is is needed which we
proposed in the next section.

Remark 3.4.11 (Oscillating error densities):
For the case of oscillating error densities, Remark 3.4.8 suggests to choose a value of c ∈ R such that
the error densities is not oscillating, if possible. In this situation, and if κ = 0, the above presented
result for smooth error densities can be used.
Nevertheless, Remark 3.4.9 indicates, that there are situations where a choice of c = 1 is unavoid-
able resulting in an oscillating error density. The case of c = 1 can then be covered by exploiting
the theory of oscillating error densities for the Fourier deconvolution in combination with a log
transformation of the data, as frequently discussed. Here, we refer to the work of Hall and Meister
(2007) for further reading.
For the counterexample proposed in Remark 3.4.9, the expected minimax rate is then given by

sup
f∈Ds

c(L)
EnfY (∥f̂ρn − f∥2x) ≤ C(L, s, g, r)(log(n))−2β/γ

for ηor = 1/8 and r = 0.

3.4.4 Data-driven choice

Wewill now present a data-driven version of the estimator f̂ρn,r. To do so, let us start by rewriting
the estimator f̂ρn,r in a more simple form. We define the family of ridge estimators (f̂ℓ,r)ℓ∈R+
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through

f̂ℓ,r(x) :=
1

2π

∫
R
x−c−itM̂c(t)Rℓ,r,g(t)dλ(t), Rℓ,r,g :=

Mc[g]|Mc[g]|r

(|Mc[g]| ∨ ℓ−1)r+2
, (3.26)

where we choose r > 0 such that the function Rℓ,r,g ∈ L1(R)∩L2(R). For the data-driven choice
of ℓ ∈ R+ we will use a Goldenshlugger Lepski method. In fact, we will define

ℓ̂ := arg min
ℓ∈Ln

Â(ℓ) + χ2V̂ (ℓ) (3.27)

for two random functions Â, V̂ : Ln → R+, a subset Ln ⊆ R+ which is rich enough and a
χ1 > 0. Generally spoken, the random function Â should behave like the unknown bias of the
estimator while the term V̂ should mimic the variance term. Based on Proposition 3.4.3 we define
the variance term V (ℓ) for ℓ ∈ R+ by

V (ℓ) :=
σc
n
∆̃g,r(ℓ) :=

σc
n
∥Rℓ,r∥2R

and its empirical counterpart by V̂ (ℓ) := 2σ̂c
n ∆̃g,r(ℓ) for ℓ ∈ R+ and σ̂c := n−1

∑n
j=1 Y

2(c−1)
j .

Considering the variance term, it seems natural to set Ln := {ℓ ∈ N : ∆̃g,r(ℓ) ≤ n} and define
Ln := max(Ln). Further let us define

A(ℓ) := sup
ℓ′∈Ln

(∥f̂ℓ′,r − f̂ℓ′∧ℓ,r∥2x2c−1 − χ1V (ℓ′))+

for χ2 ∈ R+ and Â(ℓ) := supℓ′∈Ln
(∥f̂ℓ′,r − f̂ℓ′∧ℓ,r∥2x2c−1 − χ1V̂ (ℓ′))+. Then we can show the

following result.

Theorem 3.4.12 (Data-driven ridge estimator):
Let c ∈ R and f ∈ L2(R+, x

2c−1). Assume that EfY (Y
5(c−1)
1 ) < ∞, ∥gx2c−1∥∞ < ∞ and [G1] is

fulfilled. Then for χ2 ≥ χ1 ≥ 72 holds

EnfY (∥f̂ℓ̂,r − f∥2x2c−1) ≤ C1 inf
ℓ∈Ln

(
∥1Gℓ

Mc[f ]∥2R + V (ℓ)
)
+
C2

n
,

where C1 is a positive constant depending on χ2, χ1 and C2 is a positive constant depending on
EfY (Y

5(c−1)
1 ), ∥x2c−1g∥∞, g and r.

Proof of Theorem 3.4.12. The proof can be split in twomain steps. The first one is using a sequence
of elementary steps to find a controllable upper bound for the risk of the data-driven estimator. In
the second step, we use mainly the Talagrand inequality to show the claim of the theorem. These
two steps are expressed through the following Lemmata which we state here and postpone the
proofs in the appendix.

Lemma 3.4.13:
Under the assumptions of Theorem 3.4.12 holds for any ℓ ∈ Ln

EnfY (∥f̂ℓ̂,r − f∥2x2c−1) ≤C(χ1, χ2)
(
∥f − fℓ,r∥2x2c−1 + V (ℓ)

)
+ C(χ1)EnfY ( sup

ℓ∈Ln

(V̂ (ℓ)− V (ℓ))+)

+ 108EnfY ( sup
ℓ′∈Ln

(
∥f̂ℓ′,r − fℓ′,r∥2x2c−1 −

χ1

6
V (ℓ′)

)
+
)

for positive constants C(χ1, χ2) and C(χ1) only depending on χ1 and χ2 and fℓ,r := EnfY (f̂ℓ,r).

103



To be able to apply the Talagrand inequality on the third summand we need to split the process
first. To do so, let us define the set U := {h ∈ L2(R+, x

2c−1) : ∥h∥x2c−1 ≤ 1}. Then for ℓ ∈ Ln we
have ∥f̂ℓ,r − fℓ,r∥x2c−1 = suph∈U⟨f̂ℓ,r − fℓ,r, h⟩x2c−1 , where

⟨f̂ℓ,r − fℓ,r, h⟩x2c−1 =
1

2π

∫
R

(
M̂c(t)− EnfY (M̂c(t))

)
Rℓ,r,g(t)Mc[h](−t)dλ(t)

by application of the Plancherel identity, Proposition 2.3.5. Now for a positive sequence (dn)n∈N
we decompose the estimator M̂c(t) into

M̂c(t) : = n−1
n∑
j=1

Y c−1+it
j 1(0,dn)(Y

c−1
j ) + n−1

n∑
j=1

Y c−1+it
j 1[dn,∞)(Y

c−1
j )

=: M̂c,1(t) + M̂c,2(t).

Setting

νℓ,i(h) :=
1

2π

∫
R

(
M̂c,i(t)− E(M̂c,i(t))

)
Rℓ,r,g(t)Mc[h](−t)dλ(t) for h ∈ U, i ∈ {1, 2}

we can deduce that

EnfY ( sup
ℓ∈Ln

(
∥f̂ℓ,r − fℓ,r∥2x2c−1 −

χ1

6
V (ℓ)

)
+
) ≤ 2EnfY ( sup

ℓ∈Ln

(
sup
h∈U

νℓ,1(h)
2 − χ1

12
V (ℓ)

)
+

)

+ 2EnfY ( sup
ℓ∈Ln

sup
h∈U

νℓ,2(h)
2)). (3.28)

This decomposition and the following Lemma proves then the claim.

Lemma 3.4.14:
Under the assumptions of Theorem 3.4.12 holds

(i) EnfY ( sup
ℓ∈Ln

(sup
h∈U

νℓ,1(h)
2 − χ1

12
V (ℓ))+) ≤

C(g, r,Ef (X
2(c−1)
1 )

n
,

(ii) EnfY ( sup
ℓ∈Ln

sup
h∈U

νℓ,2(h)
2)) ≤

C(σc,EfY (Y
5(c−1)
1 ))

n
,

(iii) EnfY ( sup
ℓ∈Ln

(V̂ (ℓ)− V (ℓ))+) ≤
C(EfY (Y

4(c−1)
1 ),EfY (Y

2(c−1)
1 ))

n
.

Assuming again that the density lies in a Mellin-Sobolev ellipsoid, we can deduce directly the
following Corollary whose proof is thus omitted.

Corollary 3.4.15:
Let c ∈ R, s, L ∈ R+ and f ∈ Dsc(L). Assume further that E(Y 5(c−1)

1 ) < ∞, ∥gx2c−1∥∞ < ∞ and
[G1] is fulfilled. Then for χ2 ≥ χ1 ≥ 72 holds

EnfY (∥f̂ℓ̂,r − f∥2x2c−1) ≤ C(L, s, r, g,E(X5(c−1)
1 ))n−2s/(2s+2γ+1),

where C(L, s, r, g,E(X5(c−1)
1 )) is a positive constant depending on L, s, r, g and E(X5(c−1)

1 ).
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3.4.5 Numerical results

Since both, the data-driven ridge estimator f̂
ℓ̂,r

and the data-driven spectral cut-off estimator f̂
k̂
are

densities estimators, we will illustrate the behavior of the data-driven ridge estimator f̂
ℓ̂,r
, presented

in (3.26) and (3.27), in comparison to the data-driven spectral cut-off estimator f̂
k̂
, presented in

equation (3.14) and (3.15). To do so, we use the following examples for the unknown density f ,
which has been already considered in Section 3.2.5.

(i) BETA DISTRIBUTION: f(x) = B(2, 5)−1x(1− x)41(0,1)(x), x ∈ R+,

(ii) LOG-GAMMA DISTRIBUTION: f(x) = 55Γ(5)−1x−6 log(x)41(1,∞)(x), x ∈ R+,

(iii) GAMMA DISTRIBUTION: f(x) = Γ(5)−1x4 exp(−x)1(0,∞)(x), x ∈ R+ and

(iv) LOG-NORMAL DISTRIBUTION: f(x) = (0.32πx2)−1/2 exp(− log(x)2/0.32)1(0,∞)(x), x ∈ R+.

A detailed discussion of these examples in terms of the decay of their Mellin transform and its
decay can be found in section 2.5. To visualize the behavior of the estimator, we use the following
examples of error densities g, namely

a) SYMMETRIC NOISE: g(x) = 1(0.5,1.5)(x), x ∈ R+,

b) BETA DISTRIBUTION: g(x) = 2x1(0,1)(x), x ∈ R+,

c) UNIFORM DISTRIBUTION: g(x) = 1(0,1)(x), x ∈ R+ and

d) PARETO DISTRIBUTION: g(x) = 1(1,∞)(x)x
−2, x ∈ R+.

Here it is worth pointing out that the example a), c) and d) fulfill [G1] with γ = 1 and b) with
γ = 2. By minimizing an integrated weighted squared error over a family of histogram densities
with randomly drawn partitions and weights, we select γ = 1 χ1 = χ2 = 72 for f̂

ℓ̂,r
and χ = 5 for

f̂
k̂
. For the case b) we choose χ1 = χ2 = 6 and χ = 3. In both cases, we have set r = 2.

Figure 3.10 shows that both estimators behave similar. As suggested by the theory, the recon-
struction of the density f from the observation Y1, . . . , Yn seems to be more difficult, if the error
variable is uniformly distributed, case a), than if the error variable is Beta distributed, case b).
Again we see that both estimator react analogously to varying values of the model parameter c ∈ R.
Looking at the medians in Figure 3.11, for c = 0 the median seems to be closer to the true den-
sity for smaller values of x ∈ R+. For c = 1 the opposite effects seems to occur. For c = 1/2,
the case of the unweighted L2-distance, such effects cannot be observed. Regarding the risk, this
seems natural as the weight function for c = 0 is monotonically decreasing, while for c = 1 it is
monotonically increasing.
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Figure 3.10: The estimator f̂
ℓ̂,r

(top) and f̂
k̂
(bottom) is depicted for 50 Monte-Carlo simulations

with sample size n = 2000 in the case (i) under the error density a) (left) and b) (right)
for c = 1. The true density f is given by the black curve while the red curve is the
point-wise empirical median of the 50 estimates.
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Figure 3.11: The estimator f̂
ℓ̂,r

(top) and f̂
k̃
(bottom) is depicted for 50 Monte-Carlo simulations

with sample size n = 2000 in the case (i) under the error density a) for c = 0 (left),
c = 1/2 (middle) and c = 1 (right). The true density f is given by the black curve
while the red curve is the point-wise empirical median of the 50 estimates.
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Figure 3.12: The estimator f̂
ℓ̂,r

(top) and f̂
k̃
(bottom) is depicted for 50 Monte-Carlo simulations

with sample size n = 2000 in the case (i) under the error density a) (left), c) (middle)
and d) (right). The true density f is given by the black curve while the red curve is
the point-wise empirical median of the 50 estimates.

In Figure 3.12 we see that both estimator react similar for different examples of error densities with
common error parameter γ ∈ R+, γ = 1.
Based on the results of the following Table 3.1, none of the estimators performance strictly better
in terms of MISE. Nevertheless, we see again:

Case (i) (ii) (iii) (iv)

Sample size 500 2000 500 2000 500 2000 500 2000

a) Ridge 0.94 0.31 2.17 1.54 0.63 0.17 7.13 2.38

Spectral 1.10 0.38 2.03 1.26 0.52 0.16 15.07 2.34

b) Ridge 2.32 1.43 5.90 3.81 1.19 0.47 25.84 11.03

Spectral 3.95 1.56 10.63 7.12 1.52 0.84 33.95 13.45

Table 3.1: The entries showcase the MISE (scaled by a factor of 100) obtained by Monte-Carlo
simulations each with 500 iterations. We take a look at different densities f and g, two
distinct sample sizes, and for both estimators f̂

k̂
and f̃

k̃
for c = 1.

3.4.6 Conclusion

In this sectionwe have considered the estimation of the density f given an i.i.d. sample of Y1, . . . , Yn.
In contrary to Section 3.2, we constructed an estimator using a Ridge approach and showed its con-
sistency under the minimal assumption [G-1]. We proposed examples of error densities fulfilling
[G-1], but not [G0], the so-called oscillating error densities. Afterwards we focused througout
the section on the case of smooth error densities and showed that our estimation procedure is
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minimax-optimal and proposed a data-driven choice of the ridge parameter. We finished the sec-
tion by illustrating the finite sample properties of our estimator using a Monte-Carlo simulation in
comparison to the data-driven spectral cut-off estimator.

3.4.7 Proofs

Proof Proposition 3.4.3. We start by considering the bias term. In fact, we have for t ∈ Gcn
Rρn,r,g(t) = Mc[g](t)

−1. On the other hand, for t ∈ Gn we have

|Rρn,r,g(t)| =
|Mc[g](t)|r+1

(|Mc[g]| ∨ ρn)(t))r+2
≤ |Mc[g](t)|−1.

Now using the Plancherel identity, compare Proposition 2.3.5,

∥f − E(f̂ρn,r)∥2x2c−1 =
1

2π

∫
R
|Mc[g](t)Rρn,r,g(t)− 1|2 |Mc[f ](t)|2dλ(t)

=
1

2π

∫
Gn

|Mc[g](t)Rρn,r,g(t)− 1|2 |Mc[f ](t)|2dλ(t)

≤
∫
Gn

|Mc[f ](t)|2dλ(t).

Let us now consider the variance term. In fact, we see directly that

1

2π

∫
R
VarnfY (M̂c(t))|Rρn,r,g(t)|2dλ(t) =

1

2πn

∫
R
VarfY (Y

c−1+it
1 )|Rρn,r,g(t)|2dλ(t)

≤ σc
2πn

∥Rρn,r,g∥2R.

Proof of Proposition 3.4.10. For the ridge estimator, using a simple computation we see that if g
fulfills [G1], then we can find positive constants Cg,1, Cg,2 > 0 only depending on g such that the
sets Gn,i := R \ [−Cg,inη/γ , Cg,inη/γ ] for i = 1, 2 fulfill the inclusion relationship

Gn,1 ⊆ Gn ⊆ Gn,2.

This relationship will help us to control the summands of the bound given in Proposition 3.4.3

EnfY (∥f − f̂ρn,r∥2x2c−1) ≤ ∥1GnMc[f ]∥2R +
σc
n

∫
R

1Gn(t)|Mc[g](t)|2r+2

ρ2r+4
n

+
1Gc

n
(t)

|Mc[g](t)|2
dλ(t)

≤ ∥1Gn,2Mc[f ]∥2R +
σc
n

∥∥∥∥∥1Gn,2Mc[g]
r+1

ρr+2
n

∥∥∥∥∥
2

R

+
σc
n

∥∥∥∥ 1Gc
n,1

Mc[g]

∥∥∥∥2
R
.

As f ∈ Dsc(L) we get

∥1Gn,2Mc[f ]∥2R =

∫
(Cg,2nη/γ ,∞)

|Mc[f ](t)|2dλ(t) ≤ C(g, L)n−2sη/γ .
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For the second summand we see, since γ(r + 1) > 1,

σc
n

∥∥∥∥∥1Gn,2Mc[g]
r+1

ρr+2
n

∥∥∥∥∥
2

R

= C(g, L)n2η(r+2)−1

∫
(Cg,2nη/γ ,∞)

t−2γ(r+1)dt

= C(g, L, r)n2η(r+2)−1−2η(r+1)+η/γ

= C(g, L, r)n2η+η/γ−1.

For the third summand we get

σc
n

∫
(−Cg,1nη/γ ,Cg,1nη/γ

|Mc[g](t)|2dλ(t) ≤ C(g, L)n2η+η/γ−1.

In total we have

E(∥f − f̂ρn,r∥2x2c−1) ≤ C(g, L, r)(n−2sη/γ + n2η+η/γ−1),

where both summands are balanced for the choice η = γ/(2s+ 2γ + 1).

Proof of Lemma 3.4.13. In fact, by the definition of ℓ̂ it follows for any ℓ ∈ Ln and since χ2 ≥ χ1,

∥f − f̂
ℓ̂,r
∥2x2c−1 ≤ 3∥f − f̂ℓ,r∥2x2c−1 + 3∥f̂ℓ,r − f̂

ℓ∧ℓ̂,r∥
2
x2c−1 + 3∥f̂

ℓ∧ℓ̂,r − f̂
ℓ̂,r
∥2x2c−1

≤ 3∥f − f̂ℓ,r∥2x2c−1 + 3(Â(ℓ̂) + χ1V̂ (ℓ) + Â(ℓ) + χ1V̂ (ℓ̂))

≤ 3∥f − f̂ℓ,r∥2x2c−1 + 3(2Â(ℓ) + (χ1 + χ2)V̂ (ℓ)).

To simplify the notation, we set χ := (χ1 + χ2)/2. Let us now have a closer look at Â(ℓ). From

∥f̂ℓ′,r − f̂ℓ′∧ℓ,r∥2x2c−1 ≤ 3(∥f̂ℓ′,r − fℓ′,r∥2x2c−1 + ∥f̂ℓ′∧ℓ,r − fℓ′∧ℓ,r∥2x2c−1 + ∥fℓ,r − fℓ′∧ℓ,r∥2x2c−1)

≤ 6∥f̂ℓ′,r − fℓ′,r∥2x2c−1 + 3∥f − fℓ,r∥2x2c−1

we conclude by a straight forward computation and the monotony of V that

Â(ℓ) ≤6 sup
ℓ′∈Ln

(
∥f̂ℓ′,r − fℓ′,r∥2x2c−1 −

χ1

6
V (ℓ′)

)
+
+ 3∥f − fℓ,r∥2x2c−1 + χ1 sup

ℓ′∈Ln

(V̂ (ℓ′)− V (ℓ′))+.

This implies

EnfY (∥f − f̂
ℓ̂,r
∥2x2c−1) ≤ C(χ)

(
∥f − fℓ,r∥2x2c−1 + V (ℓ)

)
+ C(χ1)EnfY ( sup

ℓ∈Ln

(V̂ (ℓ)− V (ℓ))+)

+ 108EnfY ( sup
ℓ′∈Ln

(∥f̂ℓ′,r − fℓ′,r∥2x2c−1 −
χ1

6
V (ℓ′))+).

Proof of Lemma 3.4.14. Proof of (i): Now on the first summand of the right hand side of (3.28)
we can apply the Talagrand. We use that

EnfY ( sup
ℓ∈Ln

(sup
h∈U

νℓ,1(h)
2 − χ1

12
V (ℓ))+) ≤

Ln∑
ℓ=1

EnfY ((sup
h∈U

νℓ,1(h)
2 − χ1

12
V (ℓ))+).
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To apply the Talagrand inequality, compare Lemma 3.1.14, to each summand we need to deter-
mine the constants Ψ2, ψ2 and τ first. Staying in the notation of the Talagrand inequality, we set
for h ∈ U,

νh(y) :=
1

2π

∫
R
yc−1+it1(0,dn)(y

c−1)Rℓ,r,g(t)Mc[h](−t)dλ(t)

for any y > 0. Now applying Cauchy-Schwarz inequality νℓ,1(h)2 ≤ ∥f̂ℓ,r − fℓ,r∥2x2c−1∥h∥2x2c−1 ≤
∥f̂ℓ,r − fℓ,r∥2x2c−1 since h ∈ U. We then deduce

EnfY (sup
h∈U

νℓ,1(h)
2) ≤ EnfY (∥f̂ℓ,r − fℓ,r∥2x2c−1) ≤ σc∆̃g,r(ℓ)n

−1 =: Ψ2,

compare proof of Proposition 3.4.3. For y ∈ R+ wehave |νh(y)|2 ≤ d2n∥Rℓ,r,g∥2R∥Mc[h]∥2R/(2π)2 ≤
d2n∥Rℓ,r,g∥2R ≤ d2n∆̃g,r(ℓ) =: ψ2 since h ∈ U. Additionally, for h ∈ U holds VarnfY (νh(Y1)) ≤
EnfY (ν

2
h(Y1)) ≤ ∥fY x2c−1∥∞∥νh∥2x1−2c . More precisely, we see that

y2c−1fY (y) = y2c−1

∫
R+

f(x)g(y/x)x−1dλ(x) ≤ ∥x2c−1g∥∞E(X2(c−1)
1 ), for any y ∈ R+.

Next, we have

∥νh∥2x1−2c ≤
1

2π

∫
R
|Mc[h](t)|2|Rℓ,r,g(t)|2dλ(t) ≤ ∥R2

ℓ,r,g∥∞
1

2π
∥Mc[h]∥2R ≤ ∥R2

ℓ,r,g∥∞,

which implies the choice τ := ∥x2c−1g∥∞Ef (X
2(c−1)
1 )∥R2

ℓ,r,g∥∞. Applying the Talagrand inequal-
ity we get

EnfY ((sup
h∈U

ν2h − 6Ψ2)+) ≤
CfY
n

(
∥Rℓ,r,g∥∞ exp(−CfY

∆̃g,r(ℓ)

∥Rℓ,r,g∥∞
) + d2n exp(−

√
nσc

100dn
)

)

≤
CfY
n

(
∥Rℓ,r,g∥∞ exp(−CfY

∆̃g,r(ℓ)

∥Rℓ,r,g∥∞
) + n−1

)

for the choice dn :=
√
nσ/(100 log(n2)). Following the same step as in the proof of Proposition

3.4.10, we can state that Ln ≤ Cg,rn
γ/(2γ+1) ≤ Cg,rn

1. For χ1 ≥ 72 we can conclude that

EnfY ( sup
ℓ∈Ln

(
sup
h∈U

νℓ,1(h)
2 − χ1

12
V (ℓ)

)
+

) ≤
Ln∑
ℓ=1

CfY
n

(
∥Rℓ,r,g∥∞ exp(−CfY

∆̃g,r(ℓ)

∥Rℓ,r,g∥∞
) + n−1

)

≤
CfY
n

(1 +

Kn∑
k=1

∥Rℓ,r,g∥∞ exp(−CfY
∆̃g,r(ℓ)

∥Rℓ,r,g∥∞
)).

Now it can easily seen that there exist constants cg,r, Cg,r > 0 such that cg,rℓ2+γ
−1 ≤ ∆̃g,r(k) ≤

Cgℓ
2+γ−1 using [G1]. By a simple computation, we can show that ∥Rℓ,r,g∥∞ ≤ Cg,rℓ

2. Now, since
(ℓ2e−CfY

ℓ1/γ ))ℓ∈N is summable we get EnfY (supℓ∈Ln

(
suph∈U νℓ,1(h)

2 − χ1

12V (ℓ)
)
+
) ≤ CfY n

−1.

Let us now show part (ii) : For any h ∈ U and ℓ ∈ Ln we get

νℓ,2(h)
2 ≤ (2π)−1∥M̂c,2Rℓ,r,g∥2R∥h∥2x2c−1 ≤ ∥M̂c,2Rℓ,r,g∥2R.
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Therefore

EnfY ( sup
ℓ∈Ln

sup
h∈U

νℓ,2(h)
2)) ≤ EnfY ( sup

ℓ∈Ln

∥M̂c,2Rℓ,r,g∥2R) ≤
1

n
∥RLn,r,g∥2REfY (Y

2(c−1)
1 1[dn,∞)(Y1))

since by the definition of Rℓ,r,g it is clear that Rk,r,g(t) ≥ Rℓ,r,g(t) for all t ∈ R and k ≥ ℓ. Now by
definition of Ln we know that ∥RLn,r,g∥2Rn−1 ≤ 1. We deduce that for any p > 0 it holds

EnfY ( sup
ℓ∈Ln

sup
h∈U

νℓ,2(h)
2)) ≤ d−pn EfY (Y

(2+p)(c−1)
1 ) ≤

C(σc,EfY (Y
5(c−1)
1 ))

n

choosing p = 3 and by the definition of (cn)n∈N.
Part (iii): First we see that for any ℓ ∈ Ln it holds (V (ℓ) − V̂ (ℓ))+ = ∆̃g,r(k)n

−1(σc − 2σ̂c)+ ≤
(σc − 2σ̂c)+. On Ω := {|σ̂c − σc| ≤ σc/2} we have σc

2 ≤ σ̂c ≤ 3
2σc. This implies

EnfY ( sup
ℓ∈Ln

(V (ℓ)− V̂ (ℓ))+) ≤ EnfY ((σc − 2σ̂c)+) ≤ 2EnfY (|σc − σ̂c|1Ωc) ≤ 4
VarnfY (σ̂c)

σc

applying the Cauchy-Schwarz inequality and the Markov inequality. Now the last inequality
implies the claim.
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3.5 Under multiplicative measurement errors for

multivariate densities

3.5.1 Introduction

We will now investigate the multivariate version of the model presented in Section 3.2. More
precisely, we are interested in estimating the unknown density f : Rd+ → R+ of a positive random
variable X = (X1, . . . , Xd) given independent and identically distributed (i.i.d.) copies of

Y = (X1U1, . . . , XdUd) =: XU ,

where X and U are independent of each other and U has a known density g : Rd+ → R+. In this
setting the density fY : Rd+ → R+ of Y is given by

fY (y) = (f ∗ g)(y) :=
∫
Rd
+

f(x)g(y/x)x91dλd(x), for y ∈ Rd+,

the multiplicative convolution between the function f : Rd+ → R+ and g : Rd+ → R+, defined in
Definition 2.4.1.
In the additive deconvolution literature the density estimation for multivariate variables based on
non-parametric estimators has been studied by many authors. A kernel estimator approach was
investigated by Comte and Lacour (2013) with respect toL2-risk and by Rebelles (2016) for general
Lp-risk. The multivariate convolution structure density model was considered by the authors of
Lepski and Willer (2019). The recent work Dussap (2021) focuses on the study of deconvolution
problems onRd+ and introduces a data-driven estimator based on a projection on the Laguerre basis.
An inclusion of the univariate case in the density estimation literature can be found in section 3.2.1.
The section is organized as follows. In Subsection 3.5.2 we propose the density estimator based on
a spectral cut-off approach. Characterizing the regularity of both, the unknown density f and the
error density g, by the decay of their corresponding Mellin transform, we develop the minimax
optimality of our estimator for smooth error densities in Subsection 3.5.3. A data-driven choice
of the upcoming smoothing parameter based on a Goldenshluger-Lepski method is presented and
studied in Subsection 3.5.4. Finally, results of a simulation study are reported in Subsection 3.5.5,
which visualizes the reasonable finite sample performance of our estimator. The proof of Subsection
3.5.3 and sub section 3.5.4 are postponed to the Subsection 3.5.7.

3.5.2 Estimation strategy

We will now present a generalization of the spectral cut-off approach presented in Section 3.2 for
the case of multivariate distributions. Let us recapitulate that for k ∈ Rd+ we defined the hyper
cuboid [−k,k] := {x ∈ Rd : ∀i ∈ JdK : |xi| ≤ ki} and for f ∈ L2(Rd+,x2c−1) the approximations

fk(x) :=
1

(2π)d

∫
[−k,k]

x−c−itMc[f ](t)dλ
d(t), for x ∈ Rd+.

SinceMc[f ]1[−k,k] ∈ L2(Rd)∩L1(Rd)weget that fk is an approximation of f in theL2(Rd+,x2c−1)-
sense, that is ∥fk− f∥x2c−1 → 0 for k → ∞ where the limit k → ∞means that every component
of k is going to infinity, compare (2.4).
Now let us additionally assume that f ∈ L2(Rd+,x2c−1) ∩ L1(Rd+,xc−1) and g ∈ L1(Rd+,xc−1).
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Then from the convolution theorem, we deduce Mc[fY ] = Mc[f ]Mc[g]. Under the mild as-
sumption that Mc[g](t) ̸= 0, for any t ∈ Rd we can rewrite the last equation as Mc[f ] =

Mc[fY ]/Mc[g]. Thus we have

fk(x) :=
1

(2π)d

∫
[−k,k]

x−c−itMc[fY ](t)

Mc[g](t)
dλd(t), for x ∈ Rd+.

Let us now consider for any t ∈ Rd the unbiased estimator M̂c(t) := n−1
∑

j∈JnK Y c−1+it

j of
Mc[fY ](t). We see that |M̂c(t)| ≤ |M̂c(0)| < ∞ almost surely. If additionally 1[−k,k]/Mc[g] ∈
L2(Rd), then 1[−k,k]M̂c/Mc[g] ∈ L2(Rd)∩L1(Rd) and we can define our spectral cut-off density
estimator by f̂k := M−1

c [1[−k,k]M̂c/Mc[g]]. More explicitly, we have

f̂k(x) =
1

(2π)d

∫
[−k,k]

x−c−it M̂c(t)

Mc[g](t)
dλd(t), for x ∈ Rd+. (3.29)

Up to now, we had two minor assumptions on the error density g, which we want to collect in
the following assumption:

∀t ∈ Rd : Mc[g](t) ̸= 0 and ∀k ∈ Rd+ :

∫
[−k,k]

|Mc[g](t)|−2dλd(t) <∞. ([G0])

The following proposition shows that the proposed estimator is consistent for a suitable choice
of the cut-off parameter k ∈ Rd+. Its proof is postponed to the proof section, Section 3.5.7.

Proposition 3.5.1 (Upper bound of the risk):
Let f ∈ L2(Rd+,x2c−1), σ := EfY (Y 2c−2) < ∞ and assume that [G0] holds for g. Then we have
for any k ∈ Rd+,

EnfY (∥f − f̂k∥2x2c−1) = ∥f − fk∥2x2c−1 +
σ∆g(k)

n
, (3.30)

where ∆g(k) := 1
(2π)d

∫
[−k,k] |Mc[g](t)|−2dλd(t). Now choosing kn such that ∆g(kn)n

−1 → 0

and kn → ∞ implies the consistency of f̂kn .

Let us comment the last result. For a suitable choice of the spectral cut-off parameter k ∈ Rd+ we
can show that the estimator is consistent in the sense of the weighted L2 distance.

Example 3.5.2 (Error distribution: Independent variates):
LetU1 have stochastic independent variates, that isU1,1, . . . , U1,d are stochastically independent and
g(x) =

∏
j∈JdK gj(xj) for x ∈ Rd+. Then the Mellin transform g factorize as seen in Example 2.4.4.

For c ∈ Rd such that Eg(Uc−1) <∞ and k ∈ Rd+ holds

∆g(k) =
1

(2π)d

∫
[−k,k]

∏
j∈JdK |Mcj [gj ](tj)|−2dλd(t) =

∏
j∈JdK∆gj (kj),

in other words, ∆g factorizes, too.
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Up to now, the assumptions on f and gwere to ensure the well-definedness of the estimator and the
weighted L2-risk. Here, we can already see that the first term, the bias term, in Proposition 3.5.1
is decreasing if k ∈ R+ is increasing in any direction while the second summand, called variance
term, is increasing. For a more sophisticated analysis of both terms we will consider stronger
assumptions on the densities f and g.

3.5.3 Minimax theory

Starting with the noise density g we will present in analogy to Subsection 3.2.3 a multivariate
definition of SMOOTH ERROR DENSITIES. We will then make use of the anisotropic Mellin Sobolev
spaces, compare 2.4.14, to control the bias term and develop the minimax-optimality of our es-
timator by stating both, an upper and a lower, bound of the risk uniformly over the anisotropic
Mellin-Sobolev ellipsoids.
As alreadymentioned, the variance term in (3.30) is monotonically increasing in each component

kj , j ∈ JdK, of k. More precisely, the growth of ∆g is determined by the decay of the Mellin
transform of g in each direction.

Definition 3.5.3 (Multivariate smooth error density):
Let g : Rd+ → R+ such that Eg(Uc−1) < ∞ for a c ∈ Rd. Then we call the error density g is a
SMOOTH ERROR DENSITY, if there exist cg, Cg ∈ R+ and γ ∈ Rd+ such that

cg
∏
j∈JdK(1 + t2j )

−γj/2 ≤ |Mc[g](t)| ≤ Cg
∏
j∈JdK(1 + t2j )

−γj/2 for all t ∈ R. ([G1])

This assumption on the error density was also considered in the work of Belomestny and Gold-
enshluger (2020) in the univariate case and Comte and Lacour (2013) for multivariate additive
deconvolution. Under [G1] we see that ∆g(k) ≤ Cg

∏
j∈JdK k2γj+1

j for every k ∈ Rd+.

Remark 3.5.4 (Error distribution: Independent variates):
In the case of independent variates, we see that an error density g is smooth with γ ∈ Rd+ if and
only if for each j ∈ JdK the marginal distribution gj is smooth with parameter γj ∈ R+.

For the sake of completeness, let us now give an example of a smooth error density, without inde-
pendent variates.

Example 3.5.5 (Error distribution: Dependent variates):
Let S := (0,2) \ (0,1) and g the density of the uniform distribution on S which is then given by
g(x) = 1S(x)3

−1. The support of the marginal distributions g1, g2 of g are both (0, 2) implying
that g1(x1)g2(x2) ̸= g(x) for all x ∈ (0,1), in other words g does not factorize. Then, for c = 1

holds

M1[g](t) =
1

3

(∫
(0,2)

xitdx−
∫
(0,1)

xitdx

)
=

22+i(t1+t2) − 1

3(1 + it1)(1 + it2)
.

Further, for all t ∈ R2 holds

1

3
≤ |M1[g](t)|(1 + t21)

1/2(1 + t22)
1/2 ≤ 1,

implying that g fulfills [G1] with γ = 1.
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After a more sophisticated bound of the variance term we will consider now the bias term which
occurs in (3.30). Let us for s, c ∈ Rd+ consider the ANISOTROPIC MELLIN-SOBOLEV SPACE defined in
Definition 2.4.14, namely

Ws
c(Rd+) := {h ∈ L2(R+,x

2c−1) : |h|2s,c :=
∑
j∈JdK ∥(1 + tj)

sjMc[h]∥2Rd <∞} (3.31)

and the corresponding ellipsoids with L ∈ R+ Ws
c(L) := {h ∈ Ws

c(Rd+) : |h|2s,c ≤ L}. Since∪d
j=1{t ∈ Rd : |tj | > kj} ⊃ [−k,k]c we deduce from the assumption f ∈ Ws

c(L) that

∥f − fk∥2x2c−1 ≤
∑
j∈JdK ∥1[−kj ,kj ]cMc[f ]∥2Rd ≤ L

∑
j∈JdK k

−2sj
j .

Setting Ds
c(L) := {f ∈ Ws

c(L) : f density,Ef (X2c−2) ≤ L}, the previous discussion leads to the
following statement whose proof is thus omitted.

Proposition 3.5.6 (Upper bound for the minimax risk):
Let f ∈ L2(Rd+,x2c−1) and Eg(U2c−2) <∞. Then under the assumption [G1] it holds

sup
f∈Ds

c(L)
EnfY (∥f − f̂ko∥x2c−1)2 ≤ C(L, g, s)n−1/(1+2−1

∑
j∈JdK(2γj+1)s−1

j )

for the choice ko = (k1,o, . . . , kd,o) with ki,o := n1/(2si+si
∑

j∈JdK(2γj+1)s−1
j ).

Before presenting a lower bound of the risk, we illustrate the result presented in Proposition 3.5.6.

Remark 3.5.7:
We consider the following special cases which are derived from Proposition 3.5.6

(i) For the case of isotropic noise, that is γ1 = · · · = γd = γ ∈ R+, the resulting rate is given by

sup
f∈Ds

c(L)
EnfY (∥f − f̂ko∥x2c−1)2 ≤ C(L, g, s)n−2s/(2s+2dγ+d)

for s := (1d
∑

j∈JdK s−1
j )−1, which is a natural extension to the expected rate in anisotropic

density estimation, compare Comte (2017) for the case d = 2.

(ii) For the case of isotropic regularity, that is s1 = · · · = sd = s ∈ R+ we get

sup
f∈Ds

c(L)
EnfY (∥f − f̂ko∥x2c−1)2 ≤ C(L, g, s)n−2s/(2s+2dγ+d),

where γ := d−1
∑

jJdK γj .
(iii) For the case γ1 = · · · = γd = γ and s1 = · · · = sd = s ∈ R+ we get the usual isotropic rate

sup
f∈Ds

c(L)
EnfY (∥f − f̂ko∥x2c−1)2 ≤ C(L, g, s)n−2s/(2s+2γd+d).

Now to show that the rate presented in Lemma 3.5.6 is the minimax rate, compare 3.1.3 we are
in need of a lower bound result. From this we deduce that our estimator f̂kn is minimax-optimal
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over the ellipsoids Ds
c(L) for many classes of error densities.

For the following part, we will need to have further assumption on the error density g. In fact,
we will distinguish if cj ∈ (0, 1/2] or cj > 1/2 for j ∈ JdK. Let therefore c̃ := (c̃1, . . . , c̃d) ∈ Rd+,
where c̃j = 2−11(1/2,∞)(cj). Let us assume that g has a bounded support, that is for all x ∈
Rd+ \ (0, 1)dg(x) = 0 and that there exist constants cg, Cg > 0 such that

cg
∏
j∈JdK(1 + t2j )

−γj/2 ≤ |Mc̃[g](t)| ≤ Cg
∏
j∈JdK(1 + t2j )

−γj/2 for all t ∈ Rd. ([G1’])

With this additional assumption we can show the following theorem where its proof can be found
in Subsection 3.5.7.

Theorem 3.5.8 (Lower bound for the minimax risk):
Let s,γ ∈ Nd , c > 0 and assume that [G1] and [G1’] hold. Then there exist constants
Cg,c, Ls,g,c > 0, such that for all L ≥ Ls,g,c, n ∈ N and for any estimator f̂ of f based on an
i.i.d. sample (Yj)j∈JnK,

sup
f∈Ds

c(L)
EnfY (∥f̂ − f∥2

x2c−1) ≥ Cg,cn
−1/(1+2−1

∑
j∈JdK(2γj+1)s−1

j ).

Let us shortly comment on the assumption [G1’]. For the case that cj > 1/2 for j ∈ JdK then
c̃j = 1/2, and hence we need to assume that Eg(U

−1/2
j ) < ∞, which is a mild condition. If

cj ≤ 1/2 we have that c̃j = 0. In this case, we have automatically that Eg(U−1
j ) <∞, if we assume

that Eg(U
2cj−2
j ) <∞, compare Proposition 3.5.1.

3.5.4 Data-driven method

Althoughwe have shown that in certain situations the estimator f̂kn in Proposition 3.5.6 isminimax-
optimal, the choice of kn is still dependent on the regularity parameter s ∈ Rd+ of the unknown
density f , which is again, unknown. Therefore, we will propose a fully data-driven choice of
k ∈ Rd+ based on the sample (Yj)j∈JnK. To do so, we will use a model selection approach. For
the special case of d = 1, we proposed a data-driven choice for the parameter k ∈ R+ based
on a penalized contrast approach in Subsection 3.2.4. For the multivariate case, a model selec-
tion approach has been mainly used, if one considers an isotropic choice of the cut-off parame-
ter; that is, instead of considering the estimator defined in (3.29) one would use for k ∈ R+ and
[−k, k]d := {x ∈ Rd : ∀j ∈ JdK : |xj | ≤ k} the estimator

f̃k(x) =
1

(2π)d

∫
[−k,k]d

x−c−it M̂c(t)

Mc[g](t)
dt, x ∈ Rd+.

For the family (f̃k)k∈R+ a data-driven choice of the parameter k ∈ R+ based on a model selection
approach is possible. For the anisotropic estimator defined in (3.29) we propose a data-driven
choice based on a model selection, which can be used even for anisotropic choices of the cut-off
parameter k ∈ Rd+. To the knowledge of the author the usage of a model selection approach instead
of a Lepski approach, Dussap (2021); Comte and Lacour (2013), has not been considered so far.
Let us reduce the set of possible parameters to

Kn := {k ∈ Nd : ∆g(k) ≤ n},
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and define for k ∈ Rd+ and χ > 0 the penalty term

pen(k) := χσ∆g(k)n
−1.

It can be seen that the bias ∥f − fk∥2x2c−1 = ∥f∥2
x2c−1 − ∥fk∥2x2c−1 behaves like −∥fk∥2x2c−1 . Ex-

changing −∥fk∥2x2c−1 and pen(k) with their empirical counterparts, we define k̂ by the following
expression:

k̂ := arg min
k∈Kn

(−∥f̂k∥2x2c−1 + p̂en(k)), p̂en(k) := χσ̂∆g(k)n
−1, (3.32)

where σ̂ := n−1
∑

j∈JnK Y 2c−2

j . Now, let us show that this data-driven procedure mimics the
optimal choice up to a negligible term.

Theorem 3.5.9 (Data-driven anisotropic choice of k ∈ Rd+):
Assume that EfY (Y 7(c−1)) < ∞, ∥x2c−1fY ∥∞ < ∞ and [G1] is fulfilled. Then, for χ ≥ 144 we
have

EnfY (∥f − f̂
k̂
∥2
x2c−1) ≤ 3 inf

k∈Kn

(∥f − fk∥2x2c−1 + pen(k)) +
C2

n
,

C2 > 0 is a constant depending on χ, ∥fY x2c−1∥∞, σ,EfY (Y 7(c−1)) and g.

For every s ∈ Rd+ we can see that kn, defined in Proposition 3.5.6 lies in Kn. Due to this, and
the consideration in the minimax theory section, we can deduce the following Corollary directly,
whose proof is thus omitted.

Corollary 3.5.10:
Under the assumption of Theorem 3.5.9 and the additional assumption that f ∈ Ds

c(L), we get

EnfY (∥f − f̂
k̂
∥2x2c−1) ≤ Cn−1/(1+2−1

∑
j∈JdK(2γj+1)s−1

j ),

where C is a positive constant depending on χ, ∥fY x2c−1∥∞, σ, EfY (Y 7(c−1)), g and L.
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3.5.5 Numerical results

Next, we demonstrate the performance of the estimator f̂
k̂
defined in (3.29) and (3.32). We will

restrict ourselves to the case d = 2. In the bivariate case, we will study the performance of the
fully data-driven method presented in (3.32), while we omit the consideration of different values
of c ∈ R2.
In the upcoming simulation study we will consider the densities

(i) GAMMA DISTRIBUTION: f1(x) = x3

96 exp(−0.5x)1R+(x),

(ii) WEIBULL DISTRIBUTION: f2(x) = 2x exp(−x2)1R+(x),

(iii) BETA DISTRIBUTION: f3(x) = 1
560(0.5x)

3(1− 0.5x)4,1[0,1](0.5x) and

(iv) LOG-NORMAL DISTRIBUTION: f4(x) = 1√
2πx

exp(−(log(x)2/2))1(0,∞)(x).

For the error densities, we consider the univariate densities

(i) PARETO DISTRIBUTION: g1(x) = x−21(1,∞)(x), see Tables 3.1,

(ii) LOG-GAMMA DISTRIBUTION: g2(x) = 1
Γ(1/2)x

−2 log(x)−1/21(1,∞)(x).

In the sense of [G1] we see that g1 has the parameter γ = 1, while g2 has γ = 1/2. Let us now
consider the data-driven choice defined (3.29) and (3.32) for the case of d = 2. To illustrate the
performance of our estimator, we consider the following four cases

(i) ERROR DENSITIES: f(x1, x2) = f1(x1)f1(x1) with direct observations compared to observa-
tions with g(x1, x2) = g2(x1)g2(x2) with c = (1/2, 1/2)T ,

(ii) ANISOTROPIC DENSITY: f(x1, x2) = f3(x1)f4(x2)with direct observations and c = (1/2, 1/2)T ,

(iii) DEPENDENCY: X ∼ LNµ,Σ with µ = (log(4), log(4))T , c = (1/2, 1/2)T and direct observa-
tions. For Σ we compare

Σ1 =

(
1 0

0 0.81

)
, Σ2 =

(
1 0.1

0.1 0.81

)
,

and

(iv) ANISOTROPIC ERROR: f(x) = f2(x1)f2(x2) with U = (U1, U2)
T , where U1 ∼ LΓ(1,1) and

U2 ∼ LΓ(1/2,1), dependent, and c = (1/2, 1/2)T , compare Example 2.1.3.

For the first case, we visualize the impact of observations with measurement error compared to
direct observations. The second case resembles the case when the decay of the Mellin transform of
the density f has significantly different behavior in different directions. The third case will illustrate
the behavior of the estimator when the two coordinates ofX are dependent, and in the fourth case
the decay of the Mellin transform of the density is similar but the decays of the error density are
not the same. By minimizing an integrated weighted squared error over a family of histogram
densities with randomly drawn partitions and weights, we select χ = 1 (respectively χ = 0.3) for
the cases of direct observation (respectively contaminated data), where χ is the variance constant,
see (3.32).
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Case 1: We begin by examining the influence of measurement errors by comparing the esti-
mator f̂

k̂
based on the copies of X compared to copies of Y .
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Figure 3.13: The estimator f̂
k̂
are depicted for 50 Monte-Carlo simulations with sample size

n = 1000 with direct observations (left) and with multiplicative measurement er-
rors (right). The top plots are the true density (left) and the point wise median of the
estimators (right). The bottom plots are the sections for x = 7.5 (right) and y = 7.5

(left), where the true density f is given by the black curve while the red curve is the
point wise empirical median of the 50 estimates.

Case 2: In the second case, we additionally compare the anisotropic estimator f̂
k̂
with the

isotropic choice, that is we define f̂
k̃
:= f̂

k̃,k̃
with

k̃ := arg min
k∈N,∆g((k,k))≤n

−∥f̂(k,k)∥2x2c−1 + κσ̂
∆g((k, k))

n
, (3.33)

a penalized contrast approach which is a direct generalization of the estimator given in Section 3.2.
Here we choose κ = 5 by a preliminary simulation study.
As we see in Fig. 3.14, the anisotropic estimator seems to invest more in the approximation of the
Beta distribution than the Log normal distribution. This leads to worse performance in the Log
normal direction but to an overall satisfying result. In comparison to that, the isotropic estimator
chooses in both direction the same cut-off parameter leading to a better approximation of the log
normal distribution but also to a worse approximation of the beta distribution. Overall it seems
that the anisotropic estimator behaves better.
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Figure 3.14: The estimator f̂
k̂
(left) and f̂

k̃
(right) are depicted for 50 Monte-Carlo simulations

with sample size n = 1000with direct observations. The top plots are the true density
(left) and the point wise median of the estimators (right). The bottom plots are the
sections for x = 5 (right) and y = 0.59 (left) where the true density f is given by the
black curve while the red curve is the point wise empirical median of the 50 estimates.

Case 3: Now we consider the influence of the dependency between the coordinates of X .
While Σ1 resembles the case of independent coordinates, Σ2 is not a diagonal matrix and thus the
coordinates are dependent.
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Figure 3.15: The estimator f̂
k̂
are depicted for 50 Monte-Carlo simulations with sample size n =

1000 with direct observations and Σ1 (left) and Σ2 (right). The top plots are the true
density (left) and the point wise median of the estimators (right). The bottom plots
are the sections for x = 1.5 (right) and y = 1.5 (left), where the true density f is given
by the black curve while the red curve is the point wise empirical median of the 50
estimates.

In Fig. 3.15 we can see that although the estimator does reconstruct the general shape of the density
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f , the included dependency slightly impedes the estimation.

Case 4: We finish our simulation study by considering the case, where the decay of the Mellin
transform of the density behaves similar in both direction, while the decay of the Mellin transform
of the error densities differs. For U = (U1, U2)

T we set U1 := ξ1ξ2 and U2 := ξ2 where ξ1, ξ2
i.i.d.∼

LΓ(1/2,1), compare Example 2.1.3. Then we have U1 ∼ LΓ(1,1), U2 ∼ LΓ(1/2,1) and

M1/2[g](t) = (3/2− it1)
−1/2(1− i(t1 + t2))

−1/2, t ∈ R2,

leading to that g satisfies in this situation [G1] with γ = (1, 1/2). For this case, we found by a
preliminary simulation study the choice χ1 = χ2 = 0.25. For the distribution of X = (X1, X2)

t

we set for the sake of simplicity X1, X2
i.i.d.∼ f2. We compare the performance of the data-driven

anisotropic estimator f̂
k̂
with the performance of the data-driven isotropic estimator f̂

k̃
introduced

in (3.33) with the choice κ = 1.02. For both estimator we consider c = 1/2 = (1/2, 1/2)T .
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Figure 3.16: The estimator f̂
k̂
(left) and f̂

k̃
(right) are depicted for 50Monte-Carlo simulationswith

sample size n = 1000with observations undermultiplicativemeasurement errors. The
top plots are the true density (left) and the point wise median of the estimators (right).
The bottom plots are the sections for x = 5 (right) and y = 0.59 (left), where the true
density f is given by the black curve while the red curve is the point wise empirical
median of the 50 estimates.

As we see in Fig. 3.16 the anisotropic estimator f̂
k̃
behaves better in the second coordinates as the

isotropic estimator f̂
k̃
, which is consistent with the theory since the decay of the Mellin transform

of the error density in this direction is slower.

3.5.6 Conclusion

In this section, we generalized the results from Section 3.2 for the multivariate case. More precisely,
we considered an anisotropic version of the estimator in Section 3.2 and showed its minimax op-
timality over the anisotropic Mellin Sobolev spaces and proposed a fully data-driven choice of
the upcoming spectral cut-off parameter k ∈ Rd+. Furthermore, we demonstrated the reasonable
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behavior of our estimator via a Monte-Carlo simulation study and compared it with its isotropic
counterpart.

3.5.7 Proofs

Proof of Proposition 3.5.1. For k ∈ Rd+ we see that f − fk ∈ L2(Rd+,x2c−1) with Mc[f − fk] =

Mc[f ]1Rd
+\[−k,k]. We deduce by application of the Plancherel identity that ⟨f−fk, fk−f̂k⟩x2c−1 =

⟨Mc[f ]1Rd
+\[−k,k], (Mc[f ]− M̂c)1[−k,k]⟩Rd = 0, which implies that

EnfY (∥f − f̂k∥2x2c−1) = ∥f − fk∥2x2c−1 + EnfY (∥f̂k − fk∥2x2c−1).

Now by application of the Fubini-Tonelli theorem we interchange the integration order to get

EnfY (∥f̂k − fk∥2x2c−1) =
1

(2π)d

∫
[−k,k]

EnfY (|Mc[fY ](t)− M̂c(t)|2)|Mc[g](t)|−2dλd(t)

≤ 1

(2π)dn
σ∆g(k).

Proof of Theorem 3.5.8. First we outline the main steps of the proof. Let us denote by I :=

{j ∈ JdK : cj > 1/2} the subset of indices. We will construct a family of functions in Ds
c(L) by

a perturbation of the density fo : R+ → R+ with small bumps, such that their L2(Rd+,x2c−1)-
distance and the Kullback-Leibler divergence of their induced distributions can be bounded from
below and above, respectively. The claim then follows then by applying Theorem 2.5 in Tsybakov
(2009). We use the following construction, which we present first.
Denote byC∞

0 (R) the set of all smooth functions with compact support inR and let ψ ∈ C∞
0 (R) be

a function with support in (0, 1) and
∫
R ψ(x)dλ(x) = 0. For each j ∈ JdK, Kj ∈ N (to be selected

below) and kj ∈ J0,Kj − 1K we define the bump-functions ψkj ,Kj
(xj) := ψ(xjKj − Kj − kj),

xj ∈ R and define for p ∈ N0 := {z ∈ Z : z ≥ 0} the finite constant Cp,∞ := max(∥ψ(l)∥∞, l ∈J0, pK). Let us further use the operator S : C∞
0 (R) → C∞

0 (R) with S[f ](x) = −xf (1)(x) for all
x ∈ R and define S1 := S and Sn := S ◦ Sn−1 for n ∈ N, n ≥ 2. Now, for p ∈ N, we define the
function ψkj ,Kj ,p(xj) := Sp[ψkj ,Kj

](xj) =
∑p

i=1 ci,px
i
jK

i
jψ

(i)(xjKj −Kj − kj) for xj ∈ R+ and
ci,p ≥ 1 and let cp :=

∑p
i=1 ci,p.

For a bump-amplitude δ > 0,γ ∈ Nd and K := (K1, . . . ,Kd)
T ∈ Nd define

K := ×
j∈JdKJ0,Kj − 1K := J0,K1 − 1K × · · · × J0,Kd − 1K = {k ∈ Nd0 : ∀j ∈ JdK : kj < Kj}

and for θ = (θk+1)k∈K ∈ {0, 1}×j∈JdKJKjK =: Θ set

fθ(x) = fo(x) + δF
−1/2
K,γ,s

∑
k=(k1,...,kd)T∈K

θk+1

∏
j∈JdKψkj ,Kj ,γj (xj), (3.34)

where FK,γ,s := K2γ∑
j∈JdKK2sj

j and fo(x) :=
∏
j∈JdK fo,j(xj) with

fo,j(x) :=

{
exp(−x)1R+(x), j ∈ I;
x exp(−x)1R+(x), else.

Until now, we did not give a sufficient condition to ensure that our constructed functions {fθ :

θ ∈ Θ} are in fact densities. This condition is given by the following lemma.
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Lemma 3.5.11:
Let 0 < δ < δo(ψ,γ) := exp(−2d)/(

∏
j∈JdK 2γjCγj ,∞cγj ). Then for all θ ∈ Θ, fθ is a density.

Further, we show that these densities all lie inside the ellipsoids Ds
c(L) for L big enough. This is

captured in the following lemma.

Lemma 3.5.12:
Let s ∈ Nd. Then, there is Ls,γ,c,δ > 0, such that fo and any fθ as in (3.34) with θ ∈ Θ, belong to
Ds
c(Ls,γ,c,δ).

For sake of simplicity we denote for a function φ ∈ L2(Rd+,x2c̃−1) the multiplicative convolution
with g by φ̃ := (φ ∗ g). Further we see that for y ∈ (0, 2)d it holds

f̃o(y) = y1−2c̃

∫
Rd
+

g(x)x2c̃
∏
j∈JdK exp(−yj/xj)dλ

d(x)

≥ y1−2c̃

∫
Rd
+

g(x)x2c̃
∏
j∈JdK exp(−2/xj)dλ

d(x) =: cgy
1−2c̃, (3.35)

where cg > 0 since otherwise g = 0 almost everywhere. Exploiting VARSHAMOV-GILBERT’S
LEMMA (see Tsybakov (2009)) in Lemma 3.5.13 we show further that there is M ∈ N with M ≥
2
∏

j∈JdK Kj/8 and a subset {θ(0), . . . ,θ(M)} ofΘwith θ(0) = (0, . . . , 0) such that for all j, l ∈ J0,MK,
j ̸= l the L2(Rd+,x2c−1)-distance and the Kullback-Leibler divergence are bounded for K ≥
Ko(γ, c, ψ).

Lemma 3.5.13:
Let K ≥ Ko(ψ,γ, c) (understood component wise). Then there exists a subset {θ(0), . . . ,θ(M)}
of Θ with θ(0) = (0, . . . , 0), such thatM ≥ 28

−1
∏

j∈JdK Kj and for all j, l ∈ J0,MK, j ̸= l it holds

(i) ∥fθ(j) − fθ(l)∥2x2c−1 ≥ Cγ,cδ
2∑

j∈JdKK2sj
j

and

(ii) KL(f̃θ(j) , f̃θ(0)) ≤
Cg,γδ

2 log(M)K−2γ−1∑
j∈JdKK2sj

j

,

where KL is the Kullback-Leibler-divergence.

Selecting Kj = ⌈n1/(2sj+sj
∑

i∈JdK(2γi+1)s−1
i ⌉, it follows that∑

j∈JdKK
2sj
j

−1

≥ cn−1/(1+0.5
∑

i∈JdK(2γi+1)s−1
i ) and

K−2γ−1∑
j∈JdKK2sj

j

≤ n−1

for n ≥ ns,γ , and thus

1

M

M∑
j=1

KL((f̃θ(j))⊗n, (f̃θ(0))⊗n) =
n

M

M∑
j=1

KL(f̃θ(j) , f̃θ(0)) ≤ cδ,g,γ log(M),
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where cδ,g,γ < 1/8 for all δ ≤ δ1(g,γ, s) andM ≥ 2 for n ≥ ns,γ . Thereby, we can use Theorem
2.5 of Tsybakov (2009), which in turn for any estimator f̂ of f implies

sup
f∈Ds

c(L)
PnfY

(
∥f̂ − f∥2x2c−1 ≥

cδ,γ,c
2

n−1/(1+0.5
∑

i∈JdK(2γi+1)s−1
i )) ≥ 0.07.

Note that the constant cδ,γ,c does only depend on ψ, γ and δ, hence it is independent of the pa-
rameters s, L and n. The claim of Theorem 3.5.8 follows by using Markov’s inequality, which
completes the proof.

Proof of Lemma 3.5.11. For any h ∈ C∞
0 (R) we can state that

∫
R S[h](x)dλ(x) = [−xh(x)]∞−∞ +∫

R h(x)dλ(x) =
∫
R h(x)dλ(x) and therefore

∫
R Sp[h](x)dλ(x) =

∫
R h(x)dλ(x) for p ∈ N. Thus for

every j ∈ JdK we get ∫R ψkj ,Kj ,γj (xj)dλ(xj) =
∫
R ψkj ,Kj

(xj)dλ(xj) = 0, which implies that for
any δ > 0 and θ ∈ Θ we have

∫
Rd
+
fθ(x)dλ

d(x) = 1.
Now due to the construction (3.34) of the functionsψkj ,Kj

we easily see that the function ψkj ,Kj
has

support on [1+ kj/Kj , 1+ (kj +1)/Kj ], which leads to ψkj ,Kj
and ψlj ,Kj

having disjoint supports
if kj ̸= lj . Here, we want to emphasize that supp(S[h]) ⊆ supp(h) for all h ∈ C∞

0 (R). This implies
that ψkj ,Kj ,γj and ψlj ,Kj ,γj have disjoint supports if kj ̸= lj , too. For x ∈ Rd+ \×j∈JdK[1, 2]we have
fθ(x) = exp(−

∑
j∈JdK xj)∏j∈Ic xj ≥ 0. Now let us consider the case x ∈×j∈JdK[1, 2]. In fact

there are k1,o ∈ J0,K1 − 1K, . . . , kd,o ∈ J0,Kd − 1K, such that x ∈×j∈JdK[1 + kj,o/Kj , 1 + (kj,o +

1)/Kj ] and hence for ko := (k1,o, . . . , kd,o)
T

fθ(x) = fo(x) + δF
−1/2
K,γ,sθko+1

∏
j∈JdKψko,j ,Kj ,γj (xj) ≥ exp(−2d)− δ

∏
j∈JdK 2

γjCγj ,∞cγj

since ∥ψkj ,Kj ,γj∥∞ ≤ 2γjCγj ,∞cγjK
γj
j for any kj ∈ J0,Kj − 1K and j ∈ JdK and FK,γ,s ≥ 1.

Choosing δ ≤ δo(ψ,γ) = exp(−2d)/(
∏
j∈JdK 2γjCγj ,∞cγj ) ensures fθ(x) ≥ 0 for all x ∈ R+.

Proof of Lemma 3.5.12. Our proof starts with the observation that fo(x) =
∏
j∈JdK fo,j(xj)where

fo,j(xj) := exp(−xj) if j ∈ I and fo,j(xj) := xj exp(−xj) else, for all x ∈ Rd+. By the definition of
the multivariate Mellin transform, compare (2.3), we see that fo ∈ L2(R+,x

2c−1)∩L1(Rd+,xc−1)

holds for every c ∈ Rd+, and that for all t ∈ Rd we have

Mc[fo](t) =
∏
j∈JdKMcj [fo,j ](tj) =

∏
j∈JdKΓ(cj + itj) ·

∏
j∈Ic

(cj + itj).

Now by applying the Stirling formula (see also Belomestny and Goldenshluger (2020) ) we get
|Γ(cj + itj)| ∼ |tj |cj+1/2 exp(−π|tj |/2), |t| ≥ 2. Thus for every s ∈ Nd there exists Ls,c such that
|fo|2s ≤ L for all L ≥ Ls,c.
Next, we consider |fo − fθ|s. Again we see that, fo − fθ ∈ C∞

0 (Rd+) ⊂ L2(Rd+,x2c−1) ∩
L1(Rd+,xc−1) with

Mc[fo − fθ](t) = δF
−1/2
K,γ,s

∑
k∈K

θk+1

∏
j∈JdKMcj [ψkj ,Kj ,γj ](tj), for all t ∈ Rd.

124



For any fixed ι ∈ JdK, we derive fromψkι,Kι,γι = Sγι [ψkι,Kι ] for any tι ∈ R thatMcι [ψKι,kι,γι ](tι) =

(cι + itι)
−sιMcι [ψKι,kι,γι+sι ](tι). This implies that

|(1 + tι)
sιMc[fo − fθ](t)|2

≤ Ccι,sιδ
2F−1

K,γ,s

∣∣∣∣∣∣
∑
k∈K

θk+1Mcι [ψkι,Kι,γι+sι ](tι)
∏

j∈JdK,j ̸=ιMcj [ψkj ,Kj ,γj ](tj)

∣∣∣∣∣∣
2

.

Now using that the inverse Mellin operator is linear and by a factorization argument we get

M†
c[
∑
k∈K

θk+1Mcι [ψkι,Kι,γι+sι ](tι)
∏

j∈JdK,j ̸=ιMcj [ψkj ,Kj ,γj ](tj)](x)

=
∑
k∈K

θk+1ψkι,Kι,γι+sι(xι)
∏

j∈JdK,j ̸=ιψkj ,Kj ,γj (xj),

which implies that due to the disjoint supports of ψkj ,Kj ,γj and another factorization argument,

∥(1 + tι)
sιMc[fo − fθ]∥2Rd ≤ Ccι,sιδ

2F−1
K,γ,s

∑
k∈K

∥ψkι,Kι,γι+sι∥2x2cj−1

∏
j∈JdK,j ̸=ι ∥ψkj ,Kj ,γj∥

2
x2cj−1

≤ Cc,s,γδ
2 K2sι

ι∑
j∈JdKK2sj

j

since ∥ψkj ,Kj ,p∥2x2cj−1 =
∫
R+
ψ2
kj ,Kj ,p

(x)x2cj−1dλ(x) ≤ Cγj ,sj ,cjK
2p−1
j for any p ∈ N. We follow

|fo − fθ|2s,c ≤ Cc,s,γ . Finally, we have that |fθ|2s ≤ 2(|fo − fθ|2s + |fo|2s) ≤ 2(C(s,γ,c,δ,ψ) + Ls) =:

Ls,γ,c,δ,1.
We consider the moment condition Efθ(X

2c−2) ≤ L. In fact we have∫
Rd
+

x2c−2fθ(x)dλ
d(x) =

∏
j∈JdK

∫
R+

x2cj−2fo,j(xj)dλ(xj)

+ δF
−1/2
K,γ,s

∑
k=(k1,...,kd)T∈K

θk+1

∏
j∈JdK

∫
R+

x2cj−2ψkj ,Kj ,γj (xj)dλ(xj)

≤ Cc + δF
−1/2
K,γ,s

∑
k=(k1,...,kd)T∈K

∏
j∈JdKCγ,cK

γ−1
j

≤ Cc + δCγ,c =: Lγ,c,δ,2.

Now we choose Ls,γ,c,δ := max(Ls,γ,c,δ,1, Lγ,c,δ,2).

Proof of Lemma 3.5.13.
Proof of (i): Using that the functions (ψkj ,Kj ,γj )with different index kj have disjoint supports and
a factorization argument we get

∥fθ − fθ′∥2x2c−1 = δ2F−1
K,γ,s∥

∑
k∈K

(θk+1 − θ′k+1)
∏
j∈JdKψkj ,Kj ,γj (xj)∥

2
x2c−1

= δ2F−1
K,γ,s

∑
k∈K

(θk+1 − θ′k+1)
2
∏
j∈JdK ∥ψkj ,Kj ,γj∥

2
x2cj−1

≥ δ2F−1
K,γ,sρ(θk+1, θ

′
k+1)

2Cγ,cK
2γ−1,
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where the last step follows if we can show that there exists a ccjR+, such that

∥ψkj ,Kj ,γj∥
2
x2cj−1 =

∫
R+

ψkj ,Kj ,γj (x)
2x2cj−1dλ(x) ≥

ccjK
2γj−1
j ∥ψ(γj)∥2x0

2
(3.36)

for Kj big enough. Here ρ(θ,θ′) :=
∑

k∈K 1{θk+1 ̸=θ′
k+1} denotes the Hamming distance.

To show Equation (3.36) we observe that

∥ψkj ,Kj ,γj∥
2
x2cj+1 =

∑
i,ι∈J1,γjK ci,γjcι,γj

∫
R+

xι+i+1ψ
(ι)
kj ,Kj

(x)ψ
(i)
kj ,Kj

(x)dλ(x),

and by defining Σ := ∥ψkj ,Kj ,γj∥2x2cj+1 −
∫
R+

(xγjψ
(γj)
kj ,Kj

(x))2xdλ(x) we can show

∥ψkj ,Kj ,γj∥
2
x2cj−1 = Σ+

∫
R+

(xγψ
(γ)
0,K(x))2x2cj−1dλ(x)

≥ Σ+ ccjK
2γj−1∥ψ(γj)∥2 ≥

ccjK
2γj−1
j ∥ψ(γj)∥2x0

2
(3.37)

as soon as |Σ| ≤
ccjK

2γ−1∥ψ(γj)∥2
x0

2 . This is obviously true as soon as Kj ≥ Ko(γj , cj , ψ) and thus
∥fθ−fθ′∥2x2c−1 ≥ δ2Cγ,cK

−1(
∑

j∈JdKK2sj
j )−1ρ(θ,θ′) forK ≥ Ko(ψ,γ, c), which is understood

in a component wise sense.
Now let us interpretate the objects θ ∈ Θ as vectors using the canonical bijection T : Θ →
{0, 1}

∏
j∈JdK Kj . Then ρ(θk+1,θ

′
k+1)) = ρ̃(T (θk+1), T (θ

′
k+1)), where for ϑ,ϑ′ ∈ {0, 1}

∏
j∈JdK Kj ,

ρ̃(ϑ,ϑ′) :=
∑∏

j∈JdK Kj

k=1 1{ϑj ̸=ϑ′j}. Using the VARSHAMOV-GILBERT LEMMA (see Tsybakov (2009)),

which states that for
∏
j∈JdKKj ≥ 8 there exists a subset {ϑ(0), . . . ,ϑ(M)} of {0, 1}

∏
j∈JdK Kj with

ϑ(0) = (0, . . . , 0), such that ρ̃(ϑ(j),ϑ(k)) ≥
∏
j∈JdKKj/8 for all j, k ∈ J0,MK, j ̸= k and M ≥

28
−1

∏
j∈JdK Kj . Defining θ(j) := T−1(ϑ(j)) for j ∈ J0,MK leads to ∥fθ(j)−fθ(l)∥2x2c−1 ≥ Cγ,cδ2∑

j∈JdK K2sj
j

.

Proof of (ii): For the second part we have fo = fθ(0) , and by using KL(f̃θ, f̃o) ≤ χ2(f̃θ, f̃o) :=∫
Rd
+
(f̃θ(x) − f̃o(x))

2/f̃o(x)dλ
d(x) it is sufficient to bound the χ-squared divergence. We notice

that since U1, . . . , Un are independent we can write g(x) =
∏
j∈JdK gj(xj) for x ∈ Rd+. Further,

f̃θ − f̃o has support in [0, 2]d since fθ − fo has support in [1, 2]d and g has support in [0, 1]d. In fact
for y ∈ Rd+ with yj > 2 for j ∈ JdK,

f̃θ(y)− f̃o(y) =

∫
Rd
+

(fθ − fo)(x)x
−1g(y/x)dλd(x)

= δF
−1/2
K,γ,s

∑
k∈K

θk+1

∏
j∈JdK

∫ ∞

yj

ψkj ,Kj ,γj (xj)gj(yj/xj)x
−1
j dλ(xj) = 0.

Next we have for any t ∈ Rd by application of assumption of Theorem 3.5.8, the convolution
theorem and the fact that Mc̃j [ψkj ,Kj ,γj ](tj) = (c̃j + itj)

γjMc̃j [ψkj ,Kj ,0](tj)

|Mc̃[f̃θ − f̃o](t)| = |δF−1/2
K,γ,s

∑
k∈K

θk+1

∏
j∈JdKMc̃j [ψkj ,Kj ,γj ](tj)Mc̃j [gj ](tj)|

≤ Cg,γδF
−1/2
K,γ,s|

∑
k∈K

θk+1

∏
j∈JdKMc̃j [ψkj ,Kj ,0](tj)|
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for all t ∈ Rd. Applying the Parseval identity, and using the disjoints supports, the factorization
property and Equation (3.35) we get

χ2(f̃θ, f̃o) ≤ Cg∥f̃θ − f̃o∥2x2c̃−1

≤ Cg,γδ
2F−1

K,γ,s∥
∑
k∈K

∏
j∈JdKMc̃j [ψkj ,Kj ,0](tj)∥

2
Rd

≤ Cg,γδ
2F−1

K,γ,s

∑
k∈K

∏
j∈JdK ∥ψkj ,Kj ,0∥

2
x2c̃j−1 .

In fact, using that ∥ψkj ,Kj ,0∥2x2c̃j−1 ≤ K−1
j ∥ψ∥2x0 implies χ2(f̃θ, f̃o) ≤ Cgδ

2F−1
K,γ,s. Since M ≥

2
∏

j∈JdK Kj we can deduce that

KL(f̃θ(j) , f̃θ(0)) ≤ Cg,γδ
2 log(M)K2γ−1(

∑
j∈JdKK

2sj
j )−1.

Proof of Theorem 3.5.9. Let k ∈ Kn. By definition of the estimator, (3.29), we have [−k′,k′] =

supp(Mc[fk′ ]), for k′ ∈ Kn and we can find a Kn ∈ (N∗)d such that for all k′ ∈ Kn holds
[−k′,k′] ⊆ [−Kn,Kn]. Then we have for any k′ ∈ Kn that ∥f̂Kn∥2x2c−1 − ∥f̂k′∥2

x2c−1 = ∥f̂Kn −
f̂k′∥2

x2c−1 implying with (3.32)

∥f̂
k̂
− f̂Kn∥2x2c−1 + p̂en(k̂) ≤ ∥f̂k − f̂Kn∥2x2c−1 + p̂en(k). (3.38)

Now for every k′ ∈ Kn we have ∥f̂k′ − fKn∥2x2c−1 = ∥f̂k′ − f̂Kn∥2x2c−1 + ∥f̂Kn − fKn∥2x2c−1 +

2⟨f̂k′ − f̂Kn , f̂Kn − fKn⟩x2c−1 , which combined with (3.38) implies

∥f̂
k̂
− fKn∥2x2c−1 − ∥f̂k − fKn∥2x2c−1 ≤ p̂en(k)− p̂en(k̂) + 2⟨f̂

k̂
− f̂k, f̂Kn − fKn⟩x2c−1 . (3.39)

Since ⟨f̂
k̂
− f̂k, f̂Kn − fKn⟩x2c−1 = ∥f̂

k̂
− f

k̂
∥2
x2c−1 + ⟨f

k̂
− fk, f̂Kn − fKn⟩x2c−1 −∥f̂k− fk∥2x2c−1

we get

∥f̂
k̂
− fKn∥2x2c−1 ≤ ∥fk − fKn∥2x2c−1 − ∥f̂k − fk∥2x2c−1 + 2⟨f

k̂
− fk, f̂Kn − fKn⟩x2c−1

+ p̂en(k) + 2∥f̂
k̂
− f

k̂
∥2
x2c−1 − p̂en(k̂). (3.40)

We now consider the term |2⟨f
k̂
− fk, f̂Kn − fKn⟩x2c−1 |. First we remind that for any k′ ∈ Kn

∥f̂k′ − fk′∥2
x2c−1 =

1

(2π)d

∫
Rd

1[−k′,k](t)
|Mc[fY ](t)− M̂c(t)|2

|Mc[g](t)|2
dλd(t).

Setting Q∗ := [−k̂, k̂] ∪ [−k,k] we have Mc[fk̂ − fk] = Mc[f ](1[−k̂,k̂]
− 1[−k,k]) implying that

supp(Mc[fk̂ − fk]) ⊆ Q∗ ⊆ [−Kn,Kn] by definition ofKn. Using that 2ab ≤ a2+ b2 we deduce

|2⟨f
k̂
− fk, f̂Kn − fKn⟩x2c−1 | =

2

(2π)d

∣∣∣∣∣
∫
Q∗

Mc[fk̂ − fk](t)
M̂c(−t)−Mc[fY ](−t)

Mc[g](−t)
dλd(t)

∣∣∣∣∣
≤ 1

4
∥f

k̂
− fk∥2x2c−1 +

4

(2π)d

∫
Q∗

|M̂c(t)−Mc[fY ](t)|2

|Mc[g](t)|2
dλd(t)

≤ 1

2
∥f

k̂
− fKn∥2x2c−1 +

1

2
∥fk − fKn∥2x2c−1 + 4∥f̂k − fk∥2x2c−1

+ 4∥f̂
k̂
− f

k̂
∥2
x2c−1
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using that 1Q∗ ≤ 1
[−k̂,k̂]

+ 1[−k,k]. Since ∥fk̂ − fKn∥2x2c−1 + ∥f̂
k̂
− f

k̂
∥2
x2c−1 = ∥f̂

k̂
− fKn∥2x2c−1

we get

|2⟨f
k̂
− fk, f̂Kn − fKn⟩x2c−1 | ≤

1

2
∥f̂

k̂
− fKn∥2x2c−1 +

1

2
∥fKn − fk∥2x2c−1

+ 4∥f̂k − fk∥2x2c−1 +
7

2
∥f̂

k̂
− f

k̂
∥2
x2c−1 ,

implying that

∥f̂
k̂
− fKn∥2x2c−1 ≤ 3∥fk − fKn∥2x2c−1 + 6∥f̂k − fk∥2x2c−1 + 2p̂en(k)

+ 11∥f̂
k̂
− f

k̂
∥2
x2c−1 − 2p̂en(k̂). (3.41)

Now since EnfY (p̂en(k)) = pen(k) and 6EnfY (∥f̂k−fk∥2x2c−1) ≤ 6χ−1pen(k) ≤ pen(k)we deduce
from (3.41) that

EnfY (∥f̂
k̂
− fKn∥2x2c−1) ≤ 3

(
∥fKn − fk∥2x2c−1 + pen(k)

)
+ 11EnfY (

(
∥f̂

k̂
− f

k̂
∥2
x2c−1 − 1

6
p̂en(k̂)

)
+

)

≤ 3
(
∥fKn − fk∥2x2c−1 + pen(k)

)
+ 11EnfY (

(
∥f̂

k̂
− f

k̂
∥2
x2c−1 − 1

12
pen(k̂)

)
+

)

+ EnfY ((pen(k̂)− 2p̂en(k̂))+).

The two expectations on the right hand side of the last inequality can be bounded using the fol-
lowing Lemma.

Lemma 3.5.14:
Let the assumptions of Theorem 3.5.9 hold true. Then

(i) EnfY (
(
∥f̂

k̂
− f

k̂
∥2
x2c−1 − 1

12pen(k̂)
)
+
) ≤ C

f,g,σ,EfY
(Y

7(c−1)
)
n−1,

(ii) EnfY ((pen(k̂)− 2p̂en(k̂))+) ≤ C
σ,EfY

(Y
4(c−1)

)
n−1.

Consequently, we have

EnfY (∥f̂
k̂
− f∥x2c−1)2) ≤ ∥f − fKn∥2x2c−1 + 3

(
∥fKn − fk∥2x2c−1 + pen(k)

)
+
Cf,g
n

≤ 3
(
∥f − fk∥2x2c−1 + pen(k)

)
+
Cf,g
n
.

Taking now the infimum over all k ∈ Kn implies the claim.

Proof of Lemma 3.5.14. We start by proving (i). Let us therefore define the set U := {h ∈
L2(Rd+,x2c−1) : ∥h∥x2c−1 ≤ 1}. Then for k′ ∈ Rd+, ∥f̂k′ − fk′∥x2c−1 = suph∈U⟨f̂k′ − fk′ , h⟩x2c−1 ,
where

⟨f̂k′ − fk′ , h⟩x2c−1 = (2π)−d
∫
[−k′,k′]

(M̂c(t)− EnfY (M̂c(t))
Mc[h](−t)

Mc[g](t)
dλd(t)
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by application of the Plancherel identity. Now for a sequence (dn)n∈N we decompose the estimator
M̂c(t) into

M̂c(t) : = n−1
∑
j∈JnKY

c−1+it

j 1(0,dn)(Y
c−1

j ) + n−1
∑
j∈JnKY

c−1+it

j 1[dn,∞)(Y
c−1

j )

=: M̂c,1(t) + M̂c,2(t).

Setting

νk′,i(h) :=
1

(2π)d

∫
[−k′,k′]

(M̂c,i(t)− EnfY (M̂c,i(t))
Mc[h](−t)

Mc[g](t)
dλd(t), h ∈ U, i ∈ {1, 2},

we can deduce that

EnfY

((
∥f̂

k̂
− f

k̂
∥2
x2c−1 − 1

12
pen(k̂)

)
+

)
≤ 2EnfY

((
sup
h∈U

ν
k̂,1

(h)2 − 1

24
pen(k̂)

)
+

)
+ 2EnfY (sup

h∈U
ν
k̂,2

(h)2)). (3.42)

We start by bounding the first summand. To do so, we see that

EnfY

((
sup
h∈U

ν
k̂,1

(h)2 − 1

24
pen(k̂)

)
+

)
≤
∑

k′∈Kn

EnfY

((
sup
h∈U

νk′,1(h)
2 − 1

24
pen(k′)

)
+

)
.

To control each summand we apply the Talagrand inequality, see Remark 3.1.14, which can be
done since there exists a dense subset of U. For each k′ ∈ Rd+ and h ∈ U we set

νh(y) :=
1

(2π)d

∫
[−k′,k′]

yc−1+it1(0,dn)(y
c−1)

Mc[h](−t)

Mc[g](t)
dλd(t), y ∈ Rd+.

So, νh = νk′,1(h) in the notation of Remark 3.1.14. Thus we need to determine the parameters
τ,Ψ2, ψ. Let us begin with Ψ. For h ∈ U we have 1 ≥ ∥h∥2x2c−1 = (2π)−d∥Mc[h]∥Rd . Using the
Cauchy-Schwarz inequality delivers

EnfY (sup
h∈U

ν2h) ≤ (2π)−d
∫
[−k′,k′]

EnfY (|M̂c,1(t)− EnfY (M̂c,1(t))|2)
|Mc[g](t)|2

dλd(t) ≤ σn−1∆g(k
′) =: Ψ2.

Now for τ we see that VarnfY (νh(Y1)) ≤ EnfY (ν2h(Y1)) ≤ ∥fY x2c−1∥∞∥νh∥2x1−2c . Further,

∥νh∥2x1−2c = (2π)−d
∫
[−k′,k′]

|Mc[h](t)|2|Mc[g](t)|−2dt ≤ ∥1[−k′,k′]Mc[g]
−2∥∞.

Thus we choose τ := ∥fY x2c−1∥∞∥1[−k′,k′]Mc[g]
−2∥∞. Let us now consider ψ2. We have for

any y ∈ Rd+,

|νh(y)|2 = (2π)−2d

∣∣∣∣∣
∫
[−k′,k′]

yc−1+it1(0,dn)(y
c−1)

Mc[h](−t)

Mc[g](t)
dt

∣∣∣∣∣
2

≤ d2n∆g(k) =: ψ2,

129



since ∥h∥x2c−1 ≤ 1 and |yit| = 1. Applying now the Talagrand inequality we get

EnfY ((sup
h∈U

ν2h − 6Ψ2)+) ≤
CfY
n

(
k2γ exp(−CfY ,σk

1) + d2n exp(−
√
nσ

100dn
)

)
≤
CfY ,σ
n

(
k2γ exp(−CfY ,σk

1) + n−d
)

for the choice dn :=
√
nσ/(100 log(nd+1)). For χ ≥ 144 we can conclude that

EnfY (

(
sup
h∈U

ν
k̂,1

(h)2 − χ

24
σ∆g(k̂)n

−1

)
+

) ≤
∑
k∈Kn

CfY ,σ
n

(
k2γ exp(−CfY ,σk

1) +
1

nd

)
≤
CfY ,σ,γ
n

,

since |Kn| ≤ nd. For the second summand in (3.28) we get for any k′ ∈ Kn and h ∈ U,

|ν
k̂,2

(h)|2 ≤ (2π)−d
∫
[−k̂,k̂]

|M̂c,2(t)− EnfY (M̂c,2(t))|2|Mc[g](t)|−2dλd(t)

≤
∑

k′∈Kn

(2π)−d
∫
[−k′,k′]

|M̂c,2(t)− EnfY (M̂c,2(t))|2|Mc[g](t)|−2dλd(t).

Thus, we have for any u > 0

EnfY (sup
h∈U

ν
k̂,2

(h)2)) ≤
∑

k′∈Kn

∆g(k
′)

n
EfY (Y

2c−2
1 1[dn,∞)(Y

c−1
1 )) ≤ Cg|Kn|

dun
EfY (Y

(2+u)(c−1)

1 ).

Now under assumption [G1] we have |Kn| ≤ |{k ∈ Nd : k2γ+1 ≤ cgn}| ≤ Cgn log(n)
d−1,

compare Dussap (2023). Now choosing u = 5 implies

EnfY ( sup
h∈U

ν
k̂,2

(h)2)) ≤ Cg,σEfY (Y
7(c−1)

1 )n−1.

To finish the proof we still need to show (ii). To do so, we define the event Ω := {|σ̂− σ| ≤ σ/2}.
On Ω holds σ ≤ 2σ̂ ≤ 3σ and we deduce

(pen(k̂)− 2p̂en(k̂))+ ≤ ∆g(k̂)

n
χ(σ − 2σ̂)+1Ωc ≤ χ(σ − 2σ̂)+1Ωc ≤ χ2|σ − σ̂|1Ωc ,

since k̂ ∈ Kn. Now, since |σ − σ̂|1Ωc ≤ 2|σ − σ̂|2σ−1 we get

EnfY ((pen(k̂)− 2p̂en(k̂))+) ≤
4χ

σ
VarnfY (σ̂) =

4χEfY (Y
4(c−1)

1 )

σn
.
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3.6 Under multiplicative measurement errors for stationary

processes

3.6.1 Introduction

Again, we consider the multiplicative measurement error model, that is

Y = XU,

where the density f of X is our quantity of interested and U is < second positive random variable
independent of X with density g. In contrary to Section 3.2 we assume that we have access to a
sample (Yj)j∈JnK, Yj = XjUj , where (Xj)j∈JnK is a strictly stationary process with marginal density
f and (Uj)j∈JnK is an i.i.d. sample of U independent of (Xj)j∈JnK.
In other words, we will not restrict ourselves to the case of an i.i.d. sample (Xj)j∈JnK but some
dependency structure on the process (Xj)j∈JnK and analyze its influence on the risk of the estimator
(f̂k)k∈JnK, (3.14), given by

f̂k(x) :=
1

2π

∫
[−k,k]

x−c−it
M̂c(t)

Mc[g](t)
dλ(t), x ∈ R+,

under the assumption [G0], introduced in Section 3.2, which implies the well-definedness of our
estimator. Before analyzing the risk of our estimator, let us briefly recapitulate the definition of
strict stationarity and introduce two notions of dependence, which will be considered througout
this section. For a more detailed introduction we refer to Rio (2013).

Definition 3.6.1 (Strict stationary process):
The process (Xj)j∈N is said to be STRICTLY STATIONARY, if for any j ∈ N and S ⊂ N finite, it holds

P(Xj+s:s∈S) = P(Xs:s∈S).

Furthermore, we call a process (Xt)t≥0 STRICTLY STATIONARY, if for any t ∈ R+ and S ⊂ R+ finite,
it holds

P(Xt+s:s∈S) = P(Xs:s∈S).

As a direct consequence, we can see that the marginals distributions (PXj )j∈N of the process
(Xj)j∈N are identical. A trivial example of stationary processes are i.i.d. processes considered in
Section 3.2.

Definition 3.6.2 (β-mixing coefficient of σ-fields):
For two sigma fields U and V over some probability space Ω we define the β-MIXING COEFFICIENT
by

βmix(U ,V) := 1

2
sup

(Up)p∈P ,(Vq)q∈Q

∑
(p,q)∈P×Q

|P(Up ∩ Vq)− P(Up)P(Vq)|,

where the supremum is taking over all finite partitions (Up)p∈P , respectively (Vq)q∈Q, of Ω with
(Up)p∈P ⊂ U , respectively (Vq)q∈Q ⊂ V .
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As a direct consequence of the definition, we see that for two independent σ-fields U and V the
β-mixing coefficient is 0. On the other hand, if βmix(U ,V) = 0 then U and V are independent
σ-fields. Thus βmix measures dependency between two σ-fields. Now we will first introduce
the notion of a β-mixing process (Xj)j∈No , No := N ∪ {0}, and then precise the definition of a
β-mixing sample (Xj)j∈JnK.
Definition 3.6.3 (β-mixing process):
Let now (Xk)k∈No be a strictly stationary sequence of real-valued random variables and let us define
the positive real-valued sequence (β(k))k∈N by

β(k) := β(X0, Xk) := βmix(σ(X0), σ(Xk))

where σ(X0), respectively σ(Xk), is the σ field generated by X0, respectively Xk. Furthermore,
we call a process (Xk)k∈N0 β-MIXING, if limk→∞ β(k) = 0 and a finite sample (Xk)k∈JnK β-mixing,
if its a finite subsequence of a β-mixing process.
In analogy, we define for a strictly stationary process (Xt)t≥0 the family (β(t))t≥0 through

β(t) := βmix(σ(X0), σ(Xt)).

Many linear processes of current interest, such as GARCH or ARMA processes, have absolutely
summable β(k), cf. Bradley (2005), Fryzlewicz and Subba Rao (2011) or Doukhan (1994).

3.6.2 Estimation strategy

Due to the strict stationarity of (Xj)j∈JnK we still have that EnfY (f̂k) = fk and that the squared bias
variance decomposition

EnfY (∥f̂k − f∥2x2c−1) = ∥f − fk∥2x2c−1 + EnfY (∥f̂k − fk∥2x2c−1)

still holds true. It remains to bound the variance of our estimator. Here, we will frequently use
the fact that conditioned on σ(Xj , j ∈ JnK) the random variable (Yj)j∈JnK are independent but not
identically distributed. Nevertheless, this allows us to split the variance into two terms, an inverse
problem term, which occurs also in the i.i.d. case, compare Proposition 3.4.10 and a dependence
term. This is captured in the following Proposition.

Proposition 3.6.4 (Upper bound of the risk):
Let f ∈ L2(R+, x

2c−1), σc := EfY (Y
2(c−1)
1 ) <∞ and [G0] be fulfilled. Then for any k ∈ R+

EnfY (∥fk − f̂k∥2x2c−1) ≤
σc
n
∆g(k) +

1

2π

∫
[−k,k]

Varnf (M̂X(t))dλ(t),

where M̂X(t) := n−1
∑n

j=1X
c−1+it
j , and for ∆g(k) := (2π)−1

∫
[−k,k] |Mc[g](t)|−2dλ(t) and f̂k

defined in Equation (3.14). Consequently, one has

EnfY (∥f − f̂k∥2x2c−1) ≤ ∥f − fk∥2x2c−1 +
σc
n
∆g(k) +

1

2π

∫
[−k,k]

Varnf (M̂X(t))dλ(t).
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Proof of Proposition 3.6.4. Let us denote byE|X(·) := E(·|X1, . . . , Xn) the conditional expectation
with respect to (Xj)j∈JnK. Then due to the independence between (Uj)j∈JnK and (Xj)j∈JnK we have
E|X(U

c−1+it
j ) = Mc[g](t) and thus

E|X(M̂c(t)) = Mc[g](t)M̂X(t), t ∈ R.

By a direct calculus, we see that

EnfY (|M̂c(t)−Mc[fY ](t)|2) = EnfY (|M̂c(t)− E|X(M̂c(t))|2) + |Mc[g](t)|2Varnf (M̂X(t))

which implies, by exploiting that for j, j′ ∈ JnK
EnfY (X

c−1+it
j Xc−1+it

j′ (U c−1+it
j −Mc[g](t))(U

c−1+it
j′ −Mc[g](t))) = δj,jEf (X

2(c−1)
1 )Varg(U c−1+it

1 ),

here δj,j′ = 1j=j′ , that

EnfY (|M̂c(t)−Mc[fY ](t)|2) =
Ef (X

2(c−1)
1 )Varg(U c−1+it

1 )

n
+ |Mc[g](t)|2Varnf (M̂X(t))

≤ σc
n

+ |Mc[g](t)|2Varnf (M̂X(t)).

We deduce that

EnfY (∥f̂k − fk∥2x2c−1) =
1

2π

∫
[−k,k]

EnfY (|M̂c(t)−Mc[fY ](t)|2)
|Mc[g](t)|2

dλ(t)

≤ σc∆g(k)

n
+

1

2π

∫
[−k,k]

Varnf (M̂X(t))dλ(t).

The rest of the proof follows the same steps as Proposition 3.2.1.

Remark 3.6.5 (Decomposition of the variance):
In Proposition 3.6.4, we decomposed the the variance term into two terms and simplify it to

EnfY (∥fk − f̂k∥2x2c−1) ≤
σc∆g(k)

n
+

1

2π

∫
[−k,k]

Varnf (M̂X(t))dλ(t),

where the first term already arises in Proposition 3.2.1 and is characterized by the decay of the
Mellin transform of the error density. It can be seen as the influence of the underlying statistical
inverse problem on the risk. The second summand is characterized by the dependency structure
of (Xj)j∈JnK and is independent of the error density g. Indeed, in the i.i.d. case, we have

1

2π

∫
[−k,k]

Varnf (M̂X(t))dλ(t) ≤
Ef (X

2(c−1)
1 )

n

2k

2π
≤ σX

k

n

with σX := Ef (X
2(c−1)
1 ). Thus, in the i.i.d. case, the growth of the variance term is determined

by the growth of the inverse problem term σc∆g(k)n
−1.

To specify the result of Proposition 3.6.4, we will consider the case of β-mixing processes. To do
so, we will be in need of the following Lemma. The key statement regarding β-mixing processes
is delivered by the proposed variance bound derived by Asin and Johannes (2017) after Lemma 4.1
of the same work. Their approach is based on the original idea of Viennet (1997, Theorem 2.1).
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Lemma 3.6.6 (Variance bound of β-mixing):
Let (Zj)j∈N0 be a strictly stationary process of real-valued random variables with commonmarginal
distribution P. There exists a sequence (bk)k∈N of measurable functions bk : R → [0, 1] with
EP[bk(Z0)] = β(Z0, Zk), such that for any measurable function h with E[|h(Z0)|2] < ∞, b =∑∞

k=1(k + 1)p−2bk : R → [0,∞], p ≥ 2,

VarnP

 n∑
j=1

h(Zj)

 ≤ 4nE[|h(Z0)|2b(Z0)],

where we set b0 ≡ 1.

The proof of Lemma 3.6.6 can be found in Asin and Johannes (2017). The following Corollary is
a direct consequence of Proposition 3.6.4 and Lemma 3.6.6 and is thus omitted.

Corollary 3.6.7:
Under the assumptions of Proposition 3.6.4 and for (Xj)j∈JnK β-mixing with Ef (X

2(c−1)
1 b(X1)) <

∞, it holds

EnfY (∥f − f̂k∥2x2c−1) ≤ ∥f − fk∥2x2c−1 +
σc
n
∆g(k) + 2Ef (X

2(c−1)
1 b(X1))

k

n
.

Remark 3.6.8:
For any error distributions with limt→∞ |Mc[g](t)| → 0we have that k/∆g(k) → 0, implying that
in these cases, the second summand is negligable or in other words, the underlying dependence
structure does not disorientate the rate since the underlying inverse problem has a more significant
effect on the variance term of the estimator.

In the next part, we will discuss a fully data-driven choice of k ∈ R+. Indeed, we will present a
data-driven choice for both cases, smooth and super smooth error densities.

3.6.3 Data-driven method

Let us propose a data-driven choice of k ∈ R+ in analogy to Section 3.3.3 for the super smooth case,
compare Definition 3.3.1. We focus on this case, as it naturally arise while considering stochas-
tic volatility density estimation, Section 3.6.4. To do so, we reduce the space of possible cut-off
parameters to

Kn := {k ∈ JKnK : ∆g(k) ≤ n}, Kn := (log(n)/2λ)1/ρ,

where we assume ρ ≥ 1. Here, the parameters ρ, λ ∈ R+ are taken from Definition 3.3.1. Then
we define the model selection method for χ > 0 and σ̂Y := 1

n

∑
j∈JnK Y 2(c−1)

j

k̂ := arg min
k∈Kn

−∥f̂k∥2x2c−1 + p̂en(k), whereăp̂en(k) :=
χσ̂Y k

ρ∆g(k)

n
. (3.43)

Again, the penality term (pen(k))k∈Kn with

pen(k) = EnfY (p̂en(k)) = χσY
kρ∆g(k)

n
, k ∈ Kn,
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overestimates the variance term as in Section 3.3. Furthermore, the penality only reflects the in-
fluence of the inverse problem on the variance term and neglects the maybe unknown dependency
structure.

Theorem 3.6.9 (Data-driven choice of k ∈ R+):
Let c ∈ R with EfY (Y

4(c−1)
1 ) < ∞ and [G2] holds true with ρ ≥ 1. Then there exists χ0 ∈ R+,

such that for all χ ≥ χ0

EnfY (∥f̂k̂ − fKn∥2x2c−1) ≤ 3 inf
k∈Kn

(
∥fKn − fk∥2x2c−1 + pen(k)

)
+
C(g, χ,Ef (X

4(c−1)
1 ))

n

+

∫
[−Kn,Kn]

Varnf (M̂X(t))dλ(t) + C(g, χ, σX)Varnf (σ̂X) log(n),

where C(·) is a positive constant only depending on its arguments. If further f ∈ L2(R+, x
2c−1),

then

EnfY (∥f̂k̂ − f∥2x2c−1) ≤ 3 inf
k∈Kn

(
∥f − fk∥2x2c−1 + pen(k)

)
+
C(g, χ,Ef (X

4(c−1)
1 ))

n

+

∫
[−Kn,Kn]

Varnf (M̂X(t))dλ(t) + C(g, χ, σX)Varnf (σ̂X) log(n).

Remark 3.6.10 (Comment on the additional dependency term):
Comparing to the result of Proposition 3.6.4, an additional dependency term, Varnf (σ̂X) log(n),
arises in the bounds of Theorem 3.6.9. Indeed, this dependency term arises as a direct consequence
of the need of the estimation of σc. For c = 1 the estimation of the moment is not necessary, which
is why this additional term is not needed. Furthermore, the log-term in the super smooth case is
due to the overestimation of the variance term. In the smooth error case the log-term could be
omitted.

Proof of Theorem 3.6.9. First, since EfY (Y
c−1
1 ) <∞ we have thatMc[f ],Mc[g] andMc[fY ] are

well-defined, and so (fk)k∈Kn even without the assumption f ∈ L2(R+, x
2c−1). Now we can state

the following Lemma whose proof can be found in the proof section.

Lemma 3.6.11:
Under the assumptions of Theorem 3.6.9, it holds

EnfY (∥f̂k̂ − fKn∥2x2c−1) ≤3
(
∥fKn − fk∥2x2c−1 + pen(k)

)
+ 11EnfY

(
∥f̂
k̂
− f

k̂
∥2x2c−1 −

1

12
pen(k̂)

)
+

+ EnfY ((pen(k̂)− 2p̂en(k̂))+) +

∫
[−Kn,Kn]

Varnf (M̂X(t))dλ(t).

The first inequality of the theorem follows by applying the following tow Lemmas and taking
the infimum over k ∈ Kn.
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Lemma 3.6.12:
Under the assumptions of Theorem 3.6.9 we get

EnfY

(
∥f̂
k̂
− f

k̂
∥2x2c−1 −

1

12
pen(k̂)

)
+

≤
C(g,Ef (X

4(c−1)
1 ))

n
+

∫
[−Kn,Kn]

Varnf (M̂X(t))dλ(t)

+ C(g, χ, σX)Varnf (σ̂X) log(n),

where C(·) > 0 is a positive constant only depending only on its arguments.

Lemma 3.6.13:
Under the assumptions of Theorem 3.6.9 we get

EnfY ((pen(k̂)− 2p̂en(k̂))+) ≤ C(χ, σY ,EfY (Y
4(c−1)
1 )) log(n)(n−1 + Varnf (σ̂X)),

where C(·) > 0 is a positive constant only depending only on its arguments.

The second inequality is a direct consequence of ∥f− f̂k∥2x2c−1 = ∥f−fKn∥2x2c−1+∥fKn− f̂k∥2x2c−1

for any k ∈ Kn including k̂.

We will now give the proofs of Lemma 3.6.12 and Lemma 3.6.13 to demonstrate the usage of
the conditional expectation in combination with the Talagrand inequality.

Proof of Lemma 3.6.12. First we see that

EnfY

((
∥f̂
k̂
− f

k̂
∥2x2c−1 −

1

12
pen(k̂)

)
+

)
≤ EnfY

(
max
k∈Kn

(
∥f̂k − fk∥2x2c−1 −

1

12
pen(k)

)
+

)
.

Define Bk := {h ∈ Sk : ∥h∥x2c−1 = 1}. Furthermore, we define

∥f̂k − fk∥2x2c−1 = sup
h∈Bk

⟨f̂k − fk, h⟩2x2c−1 =: sup
h∈Bk

ν2h

and decompose νh into ν̄h = ν̄h,in + ν̄h,de, where

ν̄h,in := n−1
∑
j∈JnK(νh(Yj)− E|X(νh(Yj))), ν̄h,de = n−1

∑
j∈JnKE|X(νh(Yj)))− EnfY (νh(Yj))

and

νh(Yj) :=
1

2π

∫
[−k,k]

Y c−1+it
j

Mc[g](t)
Mc[h](t)dλ(t).

Thus

EnfY

(
∥f̂
k̂
− f

k̂
∥2x2c−1 −

1

12
pen(k̂)

)
+

≤ 2EnfY

(
max
k∈Kn

(
ν2h,in −

1

24
pen(k)

)
+

)
+ 2EnfY

(
max
k∈Kn

ν2h,de

)
.

Starting with the second dependent term, applying the Cauchy-Schwarz inequality and the fact
E|X(Y

c−1+it
j )−EfY (Y

c−1+it
j ) = Mc[g](t)(X

c−1+it
j −Ef (Xc−1+it

1 )we get for any k ∈ Kn and any
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h ∈ Bk,∣∣∣∣∣∣
∑
j∈JnKE|X(νh(Yj))− EfY (νh(Yj))

∣∣∣∣∣∣
2

=
1

4π2

∣∣∣∣∣∣
∫
[−k,k]

∑
j∈JnKX

c−1+it
j − Ef (Xc−1+it

j )

Mc[h](t)dλ(t)

∣∣∣∣∣∣
2

≤
∥h∥2x2c−1

2π

∫
[−k,k]

∣∣∣∣∣∣
∑
j∈JnKX

c−1+it
j − Ef (Xc−1+it

j )

∣∣∣∣∣∣
2

dλ(t).

Since ∥h∥x2c−1 ≤ 1, we get for the dependent term

EnfY (max
k∈Kn

sup
h∈Bk

ν̄2h,de) ≤
1

2π

∫
[−Kn,Kn]

Varnf (M̂X(t))dλ(t).

Next, let us define p̃en(k) := E|X(p̂en(k)) = χσU σ̂Xk
ρ∆g(k)n

−1. Then,

max
k∈Kn

( sup
h∈Bk

ν2h,in −
1

24
pen(k))+ = max

k∈Kn

( sup
h∈Bk

ν2h,in −
1

36
p̃en(k))+ +

1

24
max
k∈Kn

(
2

3
p̃en(k)− pen(k))+.

For the second summand, we have

EnfY (max
k∈Kn

(p̃en(k)− pen(k))+) ≤ χKρ
nσUEnf ((

2

3
σ̂X − σX)+).

Let us defineΩX := {|σ̂X−σX | ≤ σX/2}. Then onΩX we have σ̂X ≤ 3σX/2 and thus Enf ((
2
3 σ̂X−

σX)+) ≤ Enf ((σ̂X − σX)+1Ωc
X
) ≤ 2σ−1

X Varnf (σ̂X) by application of the Cauchy-Schwarz and the
Markov’s inequality. This implies

EnfY (max
k∈Kn

(p̃en(k)− pen(k))+) ≤ C(g, χ, σX) log(n)Varnf (σ̂X).

For the first summand, we see

EnfY (max
k∈Kn

( sup
h∈Bk

ν̄2h,in −
1

36
p̃en(k))+) = Enf (E|X(max

k∈Kn

( sup
h∈Bk

ν̄2h,in −
1

36
p̃en(k))+)).

Thus, we start by considering the inner conditional expectation to bound the term. By the con-
struction of ν̄h,in, its summands conditioned on σ(Xi, i ≥ 0) are independent but not identically
distributed. We are aiming to apply the Talagrand inequality, Lemma 3.3.12. We therefore split,
for a sequence (dn)n∈N specified afterwards, the process again in the following way

ν̄h,1 :=n
−1
∑
j∈JnK νh(Yj)1(0,dn)(Y

c−1
j )− E|X(νh(Y1)1(0,dn)(Y

c−1
j ))

and ν̄h,2 := n−1
∑
j∈JnK νh(Yj)1(dn,∞)(Y

c−1
j )− E|X(νh(Yj)1(dn,∞)(Y

c−1
j ))

to get

E|X(max
k∈Kn

( sup
h∈Bk

|ν̄h,in|2 −
1

36
p̃en(k))+) ≤ 2E|X(max

k∈Kn

( sup
h∈Bk

|ν̄h,1|2 −
1

72
p̃en(k))+ + |ν̄h,2|2),

:=M1 +M2.
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We will now consider the two summandsM1,M2 separately.
To bound M1 we will use the Talagrand inequality, Lemma 3.3.12, on E|X(supt∈Bk

|ν̄h,1|2 −
1
72 p̃en(k))+. Indeed, we have

M1 ≤
∑
k≤Kn

E|X( sup
t∈Bk

|ν̄h,1|2 −
1

72
p̃en(k))+,

whichwill be used to show the claim. Wewant to emphasize that we are able to apply the Talagrand
inequality on the sets Bk, since Bk has a dense countable subset and due to continuity arguments.
Further, we see that the randomvariables νh(Yj)1(0,dn)(Y

c−1
j )−E|X(νh(Yj)1(0,dn)(Y

c−1
j )), j ∈ JnK,

are, conditioned on σ(Xi, i ≥ 0), centered and independent but not identically distributed. In order
to apply Talagrand’s inequality, we need to find the constants Ψ, ψ, τ such that

sup
h∈Bk

sup
y∈R+

|νh(y)1(0,dn)(y
c−1)| ≤ ψ; E|X( sup

h∈Bk

|ν̄h,1|) ≤ Ψ;

sup
h∈Bk

1

n

∑
j∈JnKVar|X(νh(Yj)1(0,dn)(Y

c−1
j )) ≤ τ.

We start to determine the constant Ψ2. Let us define M̃c(t) := n−1
∑

j∈JnK Y c−1+it
j 1(0,dn)(Y

c−1
j )

as an unbiased estimator of Mc[fY 1(0,dn)(y
c−1)](t) and

f̃k(x) :=
1

2π

∫
[−k,k]

x−c−it
M̃(t)

Mc[g](t)
dλ(t),

where n−1
∑

j∈JnK νh(Yj)1(0,dn)(Y
c−1
j ) = ⟨f̃k, h⟩x2c−1 . Thus, we have for any h ∈ Bk that ν̄2h,1 =

⟨h, f̃k − E|X(f̃k)⟩2x2c−1 ≤ ∥h∥2x2c−1∥f̃k − E|X(f̃k)∥2x2c−1 . Since ∥h∥x2c−1 ≤ 1, we get

E|X( sup
h∈Bk

ν̄2h,1) ≤ E|X(∥f̃k − E|X(f̃k)∥2) =
1

2π

∫
[−k,k]

E|X(|M̃(t)− E|X(M̃(t))|2)
|Mc[g](t)|2

dλ(t).

Now, since Y c−1+it
j 1(0,dn)(Y

c−1
j ) − E|X(Y

c−1+it
j 1(0,dn)(Y

c−1
j ) are independent, conditioned on

σ(Xi : i ≥ 0), we obtain

E|X(|M̃(t)− E|X(M̃(t))|2) ≤ 1

n2

∑
j∈JnKE|X(Y

2(c−1)
j 1(0,dn)(Y

c−1
j )) =

σU
n
σ̂X ,

which implies

E|X( sup
h∈Bk

ν̄2h,1) ≤ σU σ̂X
∆g(k)

n
=: Ψ2.

Next we consider ψ. Let y ∈ R+ and h ∈ Bk. Then using the Cauchy-Schwarz inequality,

|νh(y)1(0,dn)(y
c−1)|2 = (2π)−2d2n|

∫
[−k,k]

yit
Mc[h](−t)
Mc[g](t)

dλ(t)|2

≤ (2π)−2d2n

∫
[−k,k]

|Mc[g](t)|−2dλ(t) ≤ d2n∆g(k) =: ψ2

138



, since |yit| = 1 for all t ∈ R. For τ we use the crude bound τ = nΨ2. Hence, we have nΨ2

τ = 1,
nΨ
ψ =

√
σU σ̂Xn
dn

and get

E|X
(
sup
h∈Bk

ν̄2h,1 − 2(1 + 2ε)σU σ̂X
∆g(k)

n

)
+
≤ C

n
(σ̂XσU∆g(k) exp(−K1ε)

+
∆g(k)d

2
n

n
exp(−K2Cε

√
ε
√
σU σ̂Xnd

−1
n )

)
.

Choosing now ε = 4λkρ/K1 and t applying assumption [G2] for k ≥ kg, we get

∆g(k) exp(−K1ε) ≤ Cgk
2γ exp(−λkρ),

which is summable overN. Next for k ≥ kg wegetCε
√
ε ≥ ε/2 and choosing dn :=

√
nσU σ̂X2K2/K1

leads to

E|X
(
sup
h∈Bk

ν̄2h,1 − 2(1 + 2ε)σU σ̂X
∆g(k)

n

)
+
≤ Cg

n
σ̂XσU

(
k2γ exp(−λkρ) + ∆g(k) exp(−K1ε)

)
≤ Cg

n
σ̂XσUk

2γ exp(−λkρ).

Hence, there exists aχ0 > 0, such that for allχ > χ0 holds 1
72 p̃en(k) ≥ 2(1+4λkρ)/K1)σU σ̂X∆g(k)n

−1

implying∑
k≤Kn

E|X( sup
t∈Bk

|ν̄h,1|2 −
1

72
p̃en(k))+ ≤ Cg

n
σ̂XσU

∑
k≤Kn

k2γ exp(−λkρ) ≤ C(g)σ̂X
n

.

Now, we consider M2. Let us define fk := f̂k − f̃k. Then from νh,2 = νh,in − νh,1 we deduce
ν2h,2 = ⟨fk − E|X(fk), h⟩2x2c−1 ≤ ∥fk − E|X(fk)∥2x2c−1 for any h ∈ Bk. Further,

max
k∈Kn

∥fk − E|X(fk)∥2x2c−1 ≤ ∥fKn
− E|X(fKn

)∥2x2c−1

and

E|X(∥fKn
− E|X(fKn

))∥2x2c−1) =
1

2π

∫
[−Kn,Kn]

Var|X(M̂(t)− M̃(t))

Mc[g](t)|2
dλ(t)

≤ 1

n2

n∑
j=1

E|X(Y
2(c−1)
j 1(dn,∞)(Y

c−1
j ))∆g(Kn).

Let us define the event ΞX := {σ̂X ≥ σX/2}. Then, we have

1

n2

∑
j∈JnKE|X(Y

2(c−1)
j 1(dn,∞)(Y

(c−1)
j ))∆g(Kn)1ΞX

≤ Cg
n

∑
j∈JnKX

(2+p)(c−1)
j Eg(U

(2+p)(c−1)
j )d−pn 1ΞX

,

where on ΞX we can state that d−pn = C(g)n−p/2(σ̂X)
−p/2 ≤ C(g)σ

−p/2
X n−p/2. Choosing p = 2

leads toE|X(∥fKn
−E|X(fKn

))∥2x2c−1)1ΞX
≤ C(g)σ−1

X
n Eg(U

4(c−1)
1 )n−1

∑n
j=1X

4(c−1)
j . On the other

hand,

1

n2

n∑
j=1

E|X(Y
2(c−1)
j 1(dn,∞)(Y

c−1
j ))∆g(k)1Ξc

X
≤ σY

2
1Ξc

X
≤ σY

2
1Ωc

X
.
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We get

M2 ≤ C(g, σX)

(
Ef (X

4(c−1)
1 )

n
+ Varnf (σ̂X)

)
.

These three bounds imply

EnfY

(
∥f̂
k̂
− f

k̂
∥2x2c−1 −

1

12
pen(k̂)

)
+

≤
C(g,Ef (X

4(c−1)
1 ))

n
+ C(g, χ, σX)Varnf (σ̂X) log(n).

Proof of Lemma 3.6.13. Let us define Ω := {|σ̂Y − σY | ≤ σY /2}. Then on Ω we have 2σ̂Y ≥ σY ,
s.t.

EnfY ((pen(k)− 2p̂en(k))+) = χEnfY

(
k̂
∆g(k̂

ρ)

n
(σY − 2σ̂Y )+

)
≤ 2χKρ

nEnfY (|σY − σ̂Y |1Ωc)

≤ 2χ log(n)
VarnfY (σ̂Y )

σY
.

Now in analogy to the proof of Proposition 3.6.4, we get

VarnfY (σ̂Y ) =
EfY (Y

4(c−1)
1 )

n
+ Eg(U

2(c−1)
1 )2Varnf (σ̂X).

As we have seen, the Theorem 3.6.9 implies, that the fully data-driven estimator f̂
k̂
proposed in

Section 3.3.3 has a reasonable upper bound even in the dependent data case. It is worth stressing out,
that the estimator is not dependent on the knowledge if the data possesses a dependence structure
or not. We will now see, that in the case of β-mixing dependency, we can still achieve an oracle
inequality with a negliable additive term.

Corollary 3.6.14 (Data-driven choice for β-mixing):
Under the assumptions of Theorem 3.6.9 and for (Xj)j∈JnK β-mixingwithEf (X

4(c−1)
1 b(X1)) <∞

holds

EnfY (∥f̂k̂ − f∥2x2c−1) ≤ 3 inf
k∈Kn

(
∥f − fk∥2x2c−1 + pen(k)

)
+ C(g, χ, f)

log(n)

n
,

where C(g, χ, f) is a positive constant depending on EfY (Y
4(c−1)
1 ), σY , Ef (X

4(c−1)
1 b(X1)) and χ.

Aswe have seen in Section 3.3.3 the choice ofKn is not restrictive. In the next section, we introduce
the stochastic volatility model and we will see, that the developed theory for the multiplicative
deconvolution for stationary process can be applied in this scenario.
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3.6.4 Digression: Stochastic volatility models

Let us consider the stochastic volatility model given by

dZt =
√
VtdWt, Z0 = 0, (3.44)

where (Vt)t≥0 is the unique solution of the stochastic differential equation

dVt = b(Vt)dt+ a(Vt)dBt, V0 = η, (3.45)

and (Wt, Bt)t≥0 is a standard Brownian motion, η a positive random variable independent of
(Wt, Bt)t≥0 and b, a are deterministic functions, such that the stochastic differential equation (3.45)
possesses a unique and strictly stationary solution. The unobserved positive Markov process (Vt)t≥0

is the so-called volatility process.
We are interested the case, where we observe the process (Zt)t≥0 in a discrete time and high fre-
quency regime. Here, discrete times means that we observe the process (Zt)t≥0 only for a discrete
subset T = {t0 ≤ t1 ≤ · · · ≤ tq} ⊂ R+. The high frequency regimes expresses that we are inter-
ested in the behaviour of our estimator for supj∈JqK |tj − tj−1| → 0. Here, we assume that we have
access to a sample (Zj∆)j∈JnK drawn from (3.44).
In this section, we are interested in estimating the density fV : R+ → R+ of a strictly stationary
process (Vt)t≥0 given the sample (Zj∆)j∈JnK from the stochastic volatility model.
This model has been consider by Genon-Catalot et al. (2003), respectively Comte and Genon-
Catalot (2006). Based on their approach we can identify an underlying multiplicative deconvolu-
tion problem in the following way. For the rescaled increments

Zj∆ − Z(j−1)∆√
∆

=
1√
∆

∫ j∆

(j−1)∆
VsdWs, j ∈ JnK,

we see that conditioned on σ(Vt : t ≥ 0), the σ-field generated by (Vt)t≥0, the increments are
independently standard normal distributed leading to

Zj∆ − Z(j−1)∆√
∆

∼ N(0,V j)
withăV j :=

1

∆

∫ j∆

(j−1)∆
Vsds.

From this, we see that the multiplicative deconvolution problem is given through

Yj :=

(
Zj∆ − Z(j−1)∆√

∆

)2

= V j · Uj , (3.46)

where (Uj)j∈JnK are i.i.d. Γ(1/2,1/2)-distributed random variables.

Remark 3.6.15 (Continuous time observation):
Alternatively to the discrete time observations, one could consider continuous time observations,
that is we have access to (Zt)t∈[0,T ] for some T > 0. Under regularity assumption on the volatility
process (Vt)t≥0, the quadratic variation process (⟨Z⟩t)t∈[0,T ] is observable and given through

⟨Z⟩t =
∫ t

0
Vsds, for t ∈ [0, T ],

from which we can directly derive the paths (Vt)t∈[0,T ]. Thus, the estimation problem can be
expressed as a density estimation without multiplicative measurement errors.
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It is worth stressing out, that for a strictly stationary processes (Vt)t≥0 the random variable (V j)j∈JnK
are again strictly stationary leading to a similar model as the general model considered in Sec-
tion 3.6. Nevertheless, the stochastic volatility model differs in the way that V 1 does not possesses
the Lebesgue density fV , which will lead to an additional bias term as we will see through out this
digression. Before we start to bound the risk of the estimator, we collect the regularity properties,
which will be assumed for the volatility process (Vt)t≥0 and consider examples, which fulfills them.
Throughout this section, we assume that

[A0] (Wt, Bt)t≥0 in (3.44), respectively (3.45), is a two-dimensional Brownian motion stochasti-
cally independent of η and

[A1] (3.45) possesses a unique solution (Vt)t≥0 which is a time-homogeneous Markov process on
R+ with continuous sample paths, strictly stationary and ergodic. The stationary distribution
of V0 = η admits a density fV with respect to the Lebesgue measure on R+.

The assumption [A0] and [A1] imply that the sample (V j)j∈JnK, from (3.46), is a stationary process
independent of (Uj)j∈JnK, where U1 ∼ Γ(1/2,1/2). Here we want to stress out, that V 1 does not
necessarily possesses a Lebesgue density, which is not needed for the upcoming theory. Let us
now consider the estimator for k ∈ R+

f̂k(x) :=
1

2π

∫
[−k,k]

x−1−it M̂(t)

M1[g](t)
dλ(t), x ∈ R+, (3.47)

where M̂(t) := M̂1(t) := n−1
∑

j∈JnK Y it
j and M1[g] is the Mellin transform of U1. Here, we

considered the estimator (3.14) for c = 1 and remark later on for which c ∈ R we can expand
the presented results. Due to the strict stationarity of (V j)j∈JnK, we get that for any k ∈ R+ the
estimator f̂k is an unbiased estimator for

f∆,k(x) := EnfY (f̂k(x)) =
1

2π

∫
[−k,k]

x−1−itE(V it
1 )dλ(t), x ∈ R+.

We can now state the first intermediate result concerning the variance term of our proposed esti-
mation strategy. It is a direct consequence of Proposition 3.6.4, thus its proof is omitted.

Lemma 3.6.16 (Decomposition of the Variance term):
Let [A0] and [A1] hold true. Then for k,∆ ∈ R+

EnfY (∥f̂k − f∆,k∥2x) ≤
Λg(k)

n
+

1

2π

∫
[−k,k]

Var(M̂V (t))dλ(t),

where M̂V (t) := n−1
∑

j∈JnK V it
j , t ∈ R and Λg(k) := (2π)−1

∫
[−k,k] |M1[g](t)|−2dλ(t).

Since U1 ∼ Γ(1/2,1/2), we get for t ∈ R that M1[g](t) = 2itΓ(1/2 + it)π−1/2, compare Exam-
ple 2.1.7, and thus

Λg(k) =
1

2

∫
[−k,k]

|Γ(1/2 + it)|−2dλ(t) =
1

2π

∫
[−k,k]

cosh(tπ)λ(t) =
1

2π2
(exp(πk)− exp(−πk)),

where cosh(x) = (exp(x) + exp(−x))/2, x ∈ R, is the usual cosines hyperbolicus. At the same
time, the family of functions (f∆,k)(k,∆)∈R2

+
are approximations of fV with f∆,k ∈ L2(R+, x)
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by construction. The approximation error, respectively the squared bias, can be bound in the
following way. As before, we set for fV ∈ L2(R+, x) and k ∈ R+ fV,k := M†

1[M1[fY ]1[−k,k]].

Lemma 3.6.17 (Decomposition of the Bias):
Let fV ∈ L2(R+, x) and k,∆ ∈ R+. Then

∥fV − f∆,k∥2x = ∥fV − fV,k∥2x + ∥fV,k − f∆,k∥2x

= ∥fV − fV,k∥2x +
1

2π

∫
[−k,k]

|E(V it
0 − V

it
1 )|2dλ(t).

The proof of Lemma 3.6.17 consists only of using the Pythagoras formula in the first step and
Parseval identity in the second and is thus omitted.
We will now give two additional assumption on the volatility process motivated by Lemma 3.6.16
and Lemma 3.6.17.

[A2] Let (Vt)t≥0 be β-mixing with
∫
R+
β(t)dt <∞, where β(t) = βmix(σ(V0), σ(Vt)).

[A3] Let there exists c > 0, such that E(| log(V 1)− log(V0)|) ≤ c
√
∆.

Under assumption [A0]-[A3] we state the following result.

Theorem 3.6.18 (Upper bound of the risk):
Let fV ∈ L2(R+, x) and [A0]-[A3] hold true. Then for any k ∈ R+ and ∆ ∈ (0, 1) holds

EnfV (∥fV − f̂k∥2x) ≤ ∥fV − fV,k∥2x + c2∆k3 +
exp(πk)

n
+

2k

n∆

(
1 +

∫
R+

β(t)dt

)
.

Proof of Theorem 3.6.18. Since ∥fV − f̂k∥2x = ∥fV − fV,k∥2x + ∥fV,k − f̂k∥2x it remains to show
that

1

2π

∫
[−k,k]

Var(M̂V (t))dλ(t) ≤
k

n∆

∫
R+

β(t)dt and (∗)

1

2π

∫
[−k,k]

|E(V it
0 − V

it
1 )|2dλ(t) ≤ c2∆k3. (∗∗)

The Theorem then follows by application of Lemma 3.6.16 and Lemma 3.6.17. Starting with (∗∗)
we use that ait = cos(log(a)t) + i sin(log(t)) for a ∈ R+ and thus

|ait − bit| ≤ | cos(log(a)t)− cos(log(b)t)|+ | sin(log(a)t)− sin(log(b)t)| ≤ 2t| log(a)− log(b)|,

for any a, b ∈ R+. This implies with [A3]

1

2π

∫
[−k,k]

|E(V it
0 − V1

it
)|2dλ(t) ≤ 1

2π

∫
[−k,k]

t2|E(| log(V0)− log(V 1)|)|2dλ(t) ≤ k3c2∆.

For (∗) let us denote by βV (j) := βmix(σ(V 1), σ(V j+1)). Then, since V j = hj((Vt)t∈((j−1)∆,j∆))

with hj measurable,

βV (j) ≤ βmix (σ(Vt : t ∈ (0,∆), σ(Vt : t ∈ (j∆, (j + 1)∆))

≤ βmix(σ(Vt : t ≤ ∆), σ(Vt : t ≥ j∆),
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by monotonicity of βmix with respect to nested σ-fields. Now for strictly stationary Markov pro-
cesses, it is known that for any s, τ ∈ R+,

βmix(σ(Vt : t ≤ s), σ(Vt : t ≥ s+ τ) = βmix(V0, Vτ ) = β(τ), (3.48)

compare Bradley (1986, Theorem 4.1), which implies with Lemma 3.6.6 that for all t ∈ R

n

4
Var(M̂V (t)) ≤ E(b(V 1)) =

∞∑
j=1

βV (j) ≤
∞∑
j=1

β(∆(j − 1)) =
∞∑
j=0

β(∆j).

Now exploiting that t 7→ β(t) is monotone decreasing, see (3.48), we bound the sum by the integral
leading to

n

4
Var(M̂V (t)) ≤ 1 +

∫
R+

β(∆s)ds ≤ ∆−1

(
1 +

∫
R+

β(s)ds

)
.

We deduce that (∗) holds true.

Examples for volatility processes We will now study more precisely the assumptions
[A0]-[A3] and propose examples of processes which fulfills these. Assumption [A1] can be checked
for each example or by assuming conditions on the function b and a which are sufficient but not
necessary, compare Comte and Genon-Catalot (2006). For [A2] we mainly refer to Pardoux and
Veretennikov (2001). Based on Comte and Genon-Catalot (2006) assumption [A3] can be easily
checked using the following Proposition.

Proposition 3.6.19 (Sufficient condition for [A3]):
If either

(i) (Vt)t≥0 is a strictly stationary and ergodic diffusion process on R+ satisfying

dVt = b(Vt)dt+ a(Vt)dBt,

and there exists L > 0 with

|a(x)|+ |b(x)| ≤ L(1 + |x|)

for all x ∈ R, with b, a ∈ C0(R) ∩ C1(R+) and E(supt∈(0,∆) V
−2
t ),E(V 2

0 ) <∞ hold true.

(ii) or Vt = exp(Vt), where (Vt)t≥0 is a strictly stationary and ergodic diffusion process on R
satisfying

dVt = b̃(Vt) + ã(Vt)dB̃t,

and there exists L̃ > 0 with

|ã(x)|+ |̃b(x)| ≤ L̃(1 + |x|)

for all x ∈ R, b̃, ã ∈ C1(R) and E(V2
0 ) <∞,

then (Vt)t≥0 satisfy [A3].
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The proof of Proposition 3.6.19 can be found in the proof section. Let us collect some examples of
processes fulfilling [A0]-[A3] which are drawn from Comte and Genon-Catalot (2006).

Example 3.6.20 (Exponential of an Ornstein-Uhlenbeck process):
Let (Vt)t≥0 be the solution of the linear stochastic differential equation

dVt = −αVtdt+ γdBt, V0 = η,

with α ∈ R+,γ ∈ R and η ∼ N(0,ρ2), where ρ2 = γ2/(2α). Then the unique solution (Vt)t≥0,
where

Vt = e−αtη + γ

∫ t

0
e−α(t−s)dBs, t ≥ 0,

is a so-called Ornstein-Uhlenbeck process. Now, since η ∼ N(0,ρ2), stochastically independent of
(Bt)t≥0, we deduce that (Vt)t≥0 is strictly-stationary with Vt ∼ N(0,ρ2). Furthermore, it is a time-
homogenous Markov process, ergodic, with continuous sample paths. This already implies that
[A1] holds true for Vt := exp(Vt). For [A2] we use Pardoux and Veretennikov (2001, Proposition
1) exploiting the fact, that the β-mixing coefficient can be expressed through the total variation
between the stationary distribution of (Vt)t≥0 and the distribution of Vt, if V0 = v0 ∈ R fixed. For
the sake of simplicity we only mention this connection, while we refer Comte and Genon-Catalot
(2006) for further reading. For [A3] we see that all assumption of Proposition 3.6.19 are fulfilled.
The stationary density of V0 is given by the density of a Log-Normal distribution

fV (x) =
1√

2πρ2x
exp

(
− log2(x)

2ρ2

)
, x ∈ R+,

where fV ∈ L2(R+, x) holds obviously true.

Let us quickly study the upcoming bias term ∥fV − fV,k∥2x in the case of an exponential Ornstein-
Uhlenbeck process. Indeed, with Example 2.1.11 we get

∥fV − fV,k∥2x =
1

π

∫
(k,∞)

exp(−ρ2t2)dλ(t) ≤
exp(−ρ2k2

2 )
√
2πρ

.

Then for the choice ko =
√

log(n)ρ we get with Theorem 3.6.18

EnfV (∥fV − f̂V,ko∥2x) ≤ C(fV , g)

(
n−1/2 +∆ log3/2(n) +

log1/2(n)

n∆

)
where by setting ∆ = ∆n := (n log(n))−1/2 we obtain

EnfV (∥fV − f̂V,k0∥2x) ≤ C(fV , g)
log(n)

n1/2
.

For a 1-dimensional Ornstein-Uhlenbeck process solving the differential equation

dVt = −αVtdt+ γdBt, V0 ∼ N(0,ρ2),

where ρ2 = γ2/(2α) we get by application of the Itô-formula, that the process Vt := V2
t fulfills the

stochastic differential equation

dVt = (γ2 − 2αVt)dt+ 2γ
√
VtdBt, V0 ∼ Γ(1/2,γ2/(4α)),

a special case of a so-called Cox-Ingersoll-Ross process which we will consider next.
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Example 3.6.21 (Cox-Ingersoll-Ross process):
Let (Vt)t≥0 be the solution of the stochastic differential equation

dVt = α(β − Vt)dt+ γ
√
VtdBt, V0 = η,

where α, β, γ ∈ R+m η ∼ Γ(ρ,α/γ2), independent of (Bt)t≥0 and ρ = 2αβ/γ2. Since the drift
function is linear and the volatility function is Hölder-continuous with β = 1/2, there exists a
unique solution, the so-called COX-INGERSOLL-ROSS PROCESS, or short CIR-process. This process
is widely studied in the literature, for instance Cox et al. (1985). The process fulfills [A1], if ρ ≥ 1,
compare Comte and Genon-Catalot (2006). For ρ > 3, we haveE(supt∈(0,1) V −2

t ) <∞, see Gloter
(2000), which together with Proposition 3.6.19 implies [A3]. For the case 2ρ ∈ N a solution of the
SDE is given by

Vt =

2ρ∑
j=1

V2
t,i,

where Vt := (Vt,1, . . . ,Vt,2ρ) is a multivariate Ornstein-Uhlenbeck process with

dVt = −α
2
Vtdt+

γ

2
dWt, V0 ∼ N⊗2ρ

(0,γ2/4α)
,

where (Wt)t≥0 is a 2ρ-dimensional Brownian motion. We can thus deduce that [A2] is in this case
fulfilled. The stationary density of V0 is given as the density of a Gamma distribution

fV (x) =
(2α/γ2)ρ

Γ(ρ)
xρ−1 exp

(
−2α

γ2
x

)
, x ∈ R+.

Again, let us study the bias term for a Cox-Ingersoll-Ross process where we consider the case of
α = γ2/2 and ρ = 4. Then we obtain with Example 2.1.7 and the Stirling formula

∥fV − fV,k∥2x =
1

6π

∫
(k,∞)

|Γ(4 + it)|2dλ(t) ≤ C

∫
(k,∞)

t7 exp(−πt)dλ(t) ≤ C(fV ) exp
(
−π
2
k
)
.

Choosing ko := 2 log(n)/3π and ∆ = (n log(n))−1/2 we get

EnfV (∥fV − f̂∆,ko∥2x) ≤ C(fV , g)
1

n1/3
.

Example 3.6.22 (Exponential of a CIR-process):
Let ρ ∈ N and λ ∈ R+. Then Vt = exp(Vt) with

dVt = (
2ρ

λ
− Vt)dt+

√
2

λ

√
VtdBt, V0 ∼ Γ(ρ,λ)

where η independent of (Bt)t≥0. (Vt)t≥0 fulfills [A1] since (Vt)t≥0 fulfills [A1]. Similarly, (Vt)t≥0

is β-mixing with integrable coefficients as (Vt)t≥0, implying that [A2] holds true. To see [A3] we
again use Proposition 3.6.19, where we should stress out in Proposition 3.6.19 the assumption on
ã, b̃ can be relaxed to ã, b̃ ∈ C0(R)∩C1(R+) for strict positive processes and we use the expansion
ã(x) := λ−1/21R+(x)

√
x. The stationary density of V0 is given by the density of a Log-Gamma

distribution
fV (x) =

λρ

Γ(ρ)
x−λ−1 log(x)ρ−11(1,∞)(x), x ∈ R+.
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For the squared bias of an exponential of a Cox-Ingersoll-Ross process with λ ∈ R+ and ρ ∈ N,
we have with Example 2.1.10

∥fV − fV,k∥2x =
λ22ρ

π

∫
(k,∞)

(λ2 + t2)−ρdλ(t) ≤ C(λ, ρ)k−2(ρ−1/2).

Choosing ko := log(n)/2π and ∆ = (n log(n))−1/2 we get

EnfV (∥fV − f̂∆,ko∥2x) ≤ C(fV , g)
1

log(n)2(ρ−1/2)
.

Data-driven choice of k ∈ R+ First we reduce the space of possible cut-off parameters to

Kn := {k ∈ Jlog(n)/πK : Λg(k) ≤ n}

based on Section 3.3.3, since we are in the case of a super smooth error density, compare with the
discussion under Lemma 3.6.16. As seen before, this reduction is rather natural. Then we define
the model selection method for χ > 0

k̂ := arg min
k∈Kn

− ∥f̂∆,k∥2x + pen(k), pen(k) := χkΛg(k)n
−1. (3.49)

Theorem 3.6.23 (Data-driven choice of k ∈ R+):
Let fV ∈ L2(R+, x) and [A0]-[A3] hold true. Then there exists χ0 ∈ R+, such that for all χ ≥ χ0

E(∥f̂
∆,k̂

− fV ∥2x) ≤ C inf
k∈Kn

(
∥fV − fV,k∥2x + pen(k)

)
+ C∆log3(n) +

C(g)

n
,+

C(β) log(n)

n∆

where C is a numerical constant and C(g), respectively C(β), are positive constant only depending
on g, respectively on

∫
R+
β(t)dt.

Proof of Theorem 3.6.23. As E(∥fV − f̂
∆,k̂

∥2x) = ∥fV − fV,Kn∥2x+E(∥fV,Kn − f̂
∆,k̂

∥2x), it follows

E(∥fV − f̂
∆,k̂

∥2x) ≤ ∥fV − fV,Kn∥2x + 2∥fV,Kn − f∆,Kn∥2x + 2E(∥f∆,Kn − f̂
∆,k̂

∥2x).

For the last summand we can apply the result of Theorem 3.6.9 with fKn := f∆,Kn and f̂k := f̂∆,k
to get

E(∥f∆,Kn − f̂
∆,k̂

∥2x) ≤ 3 inf
k∈Kn

(
∥f∆,Kn − f∆,k∥2x + pen(k)

)
+
C(g)

n

+

∫
[−Kn,Kn]

Varnf (M̂V (t))dλ(t).

Here, several summands can be omitted since the penalty term (pen(k))k∈Kn has not to be estimated
in the case of c = 1. Now since

∥f∆,Kn − f∆,k∥2x ≤ 3(∥f∆,Kn − fV,Kn∥2x + ∥fV,Kn − fV,k∥2x + ∥fV,k − f∆,k∥2x)
≤ 6∥f∆,Kn − fV,Kn∥2x + 3∥fV,Kn − fV,k∥2x,
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we get

E(∥fV − f̂
∆,k̂

∥2x) ≤ C

(
inf
k∈Kn

(
∥fV − fV,k∥2x + pen(k)

)
+ ∥f∆,Kn − fV,Kn∥2x

)
+
C(g)

n

+ 8

∫
[−Kn,Kn]

Varnf (M̂V (t))dλ(t)

≤ C inf
k∈Kn

(
∥fV − fV,k∥2x + pen()k)

)
+ C∆K3

n +
C(β)Kn

n∆

following the proof steps of Theorem 3.6.18. Now Kn ≤ log(n)/(2π) implies the claim.

For the estimation of the stationary density in the stochastic volatility model, we derived an es-
timator based on the Mellin transform for the choice c = 1. Here, we have seen that this model is
similar to a multiplicative deconvolution model with super smooth error density and strictly sta-
tionary process. Based on the results of Section 3.3 and Section 3.6 it can be seen that the developed
results for the case c = 1, Theorem 3.6.18 and Theorem 3.6.23, can be expand to any case c ∈ R,
which fulfills the necessary moment conditions. More precisely, regarding Proposition 3.6.4, we
have to assume that Eg(U

2(c−1)
1 ) <∞, which is only fulfilled for U ∼ Γ(1/2,1/2) if c > 3/4. For the

adaptive estimator, Theorem 3.6.9, we have to assume that Eg(U
4(c−1)
1 ) < ∞, which holds only

true for c > 7/8.

Example 3.6.24 (Adaptive rates for Examples 3.6.20-3.6.22):
With the choice of ∆ = (n log2(n))−1/2 we get

EnfV (∥fV − f̂
∆,k̂

∥2x) ≤ C(fV , g) ·


log2(n)

n1/2 , Example 3.6.20,
1

n1/3 Example 3.6.21,
log(n)−2(ρ−1/2), Example 3.6.22.

Here, it is worth pointing out that ∆ is not dependent on the processes and that only in the case
of Example 3.6.20 a slightly slower rate is achievable. This is due to the fact, that the additional
bias ∥fV,k − f∆,k∥2x is evaluated in the maximal dimension Kn = Jlog(n)/πK and not in the oracle
dimension ko =

√
log(n)ρ, since the latter is unknown. Nevertheless, the maximal dimension Kn

is a known, sophisticated upper bound for all possible oracle choices of ko, which are unknown and
may depend on fV .

3.6.5 Numerical results

Considering the Examples 3.6.20-3.6.22 the processes can be expressed as measurable transfor-
mations of Ornstein-Uhlenbeck processes. Thus sampling from these processes reduces itself to
sampling from Ornstein-Uhlenbeck processes, which we will discuss first. Let σ2 > 0 be the
desired variance, then the Ornstein-Uhlenbeck process (Ot)t≥0 solves the stochastic differential
equation

dOt = −1

2
Otdt+ σdBt, O0 ∼ N(0,σ2),

where O0 and (Bt)t≥0 are independent. The explicit strong solution is then given by

Ot = e−
t
2Oo + σe−

t
2

∫ t

0
eαsdBs, t ≥ 0,
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compare Example 3.6.20. A discrete sample scheme is then given for∆ ∈ (0, 1) by exchanging the
upcoming stochastic integral by a discretization characterized by the step size δ ∈ (0, 1), w.l.o.g.
δ−1 ∈ N, given by (Ôjδ∆)j∈N, where

Ôjδ∆ : = e−
δ∆j
2 Oo + σe−

δ∆j
2

j∑
i=1

e(i−1)δ∆(Biδ∆ −B(i−1)δ∆)

= e−
δ∆
2 Ô(j−1)∆δ + σe−

∆δ
2 (Wj∆δ −W(j−1)∆δ).

The process (Õjδ∆)j∈N has the form of an autoregressive process, since the increments of the Brow-
nian motion are identically and independently distributed. It is clear, that the process (Ôjδ∆))j∈N
is not strictly stationary, since the initial distribution of Oo ∼ N(0,σ2) differs from the invariant
distribution N(0,σ2 δ∆

exp(δ∆)−1)
. As we can see, the approximation leads to a digression of the variance

of the invariant distribution. Nevertheless, let w.l.o.g. ∆ = 1. Then, for δ → 0 we get

lim
δ→0

δ

exp(δ)− 1
= 1, more precisely for all δ > 0

∣∣∣∣ δ

exp(δ)− 1
− 1

∣∣∣∣ ≤ (e− 1)δ

using the rule of l’Hôpital, respectively the infinite sum representation of the exponential function.
Throughout the simulations, we consider two different regimes.

[R1] STATIONARY SAMPLE: We estimate the density fX of a stationary sequence (Xj)j∈JnK, β-
mixing, given the sample

Yj = XjUj , j ∈ JnK,
with (Uj)j∈JnK i.i.d. sequence independent of (Xj)j∈JnK.

[R2] STOCHASTIC VOLATILITY MODEL: We estimate the density fV of a stationary volatility process
(Vt)t≥0 given the sample

Yj = V jUj , V j := ∆−1

∫ j∆

(j−1)∆
Vsds, j ∈ JnK,∆ ∈ (0, 1),

where (Uj)j∈JnK is i.i.d and stochastically independent of (Vt)t≥0.

For the generation of a sample in the regime [R1], we make use of the fact that (Xt)t∈N, the
discrete-time sample of (Xt)t≥0 of a strictly-stationary, β-mixing process, is again strictly-stationary
and β-mixing, which is a direct consequence of the definition of both concepts.
Thus, choosing ∆ = 1 and δ−1 ∈ N we generate the sample (X̂ℓδ)ℓ∈N as described before by a
measurable transformation of approximations of Ornstein-Uhlenbeck processes and use the sub-
sample Xj := X̂j = X̂(jδ−1)δ, which correspond to taking ℓ = jδ−1 ∈ N. Analogously, we can
define samples (Xj)j∈JnK for arbitrary values of ∆ ∈ (0, 1), in other words, with varying distance
between the discrete-time samples.
For the regime [R2]we generate first for δ−1 ∈ N and∆ ∈ (0, 1) the sample (V̂jδ∆)j∈N as described
by a measurable transformation of approximation of Ornstein-Uhlenbeck processes. In the second
step, we use this sample to sample from V j using a Riemann-sum approximation

V̂ j := ∆−1
δ−1∑
i=1

δ∆V̂(j−1)∆+iδ∆, j ∈ N.
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For sake of simplicity, we will write Xj instead of X̂j , respectively V j instead of V̂ j , keeping in
mind that we introduced a numerical error due to the numerical approximations in dependence of
δ ∈ (0, 1), which is vanishing for δ → 0.

Densities and error densities For the illustration of the behavior of the fully data-driven
estimator f̂

k̂
, respectively f̂

k̂,∆n
, we consider the following examples of densities f , respectively

volatility densities fV .

(i) LOG-GAMMA DISTRIBUTION: f(x) = 55Γ(5)−1x−6 log(x)41(1,∞)(x), x ∈ R+,

(ii) GAMMA DISTRIBUTION: f(x) = Γ(5)−1x4 exp(−x)1R+(x), x ∈ R+, and

(iii) LOG-NORMAL DISTRIBUTION: f(x) = (0.32πx2)−1/2 exp(− log2(x)/0.32)1(0,∞)(x), x ∈ R+.

These densities have been already considered in Section 3.1, Section 3.2 and are at the same time
the stationary densities of the Examples 3.6.20-3.6.22. For the error densities, we consider a smooth
and a super smooth error density, given by

a) SMOOTH ERROR: g(x) := 1(1/2,3/2)(x), x ∈ R+ and

b) SUPER SMOOTH ERROR: g(x) := (2π)−1/2x−1/2 exp(−x/2)1R+(x), x ∈ R+.

The error density a) is a uniform distribution on the interval (1/2, 3/2) which is a smooth error
density with γ = 1, while b) is the density of a χ2 distribution which is a super smooth error
density naturally appearing in the stochastic volatility model.
Although we have not proposed a data-driven choice of the parameter k ∈ R+ in the context of
smooth error densities and a stationary sample, we use this additionally case as an illustration the
effect of the dependency in comparison to the effect of the super smooth error density. In the
smooth case, we use the data-driven selection defined in (3.15).

Stationary sample [R1] We consider the estimation for c = 1 and for the error density a),
where we use the value of χ = 7 as proposed in Section 3.2.5 while for b) we choose χ = 1.7

based on a preliminary simulation study. Throughout this paragraph we chosen δ := 0.1/∆ to
ensure that, even if we vary ∆, the underlying stationary distribution of our data stays the same
to ensure comparability between the plots. For Figure 3.17 and Figure 3.19 we have ∆ = 1 and
δ = 0.1. In Figure 3.18 we let ∆, the step length between the discrete-time samples (Xj)j∈JnK
vary, ∆ ∈ {0.2, 0.5, 1}, to study the influence of the dependency structure on the behavior of our
estimator.

150



0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

Figure 3.17: Considering the estimators f̂
k̂
, we depict 50 Monte-Carlo simulations with varying

stationary density (i) (left), (ii) (middle) and (iii) (right) for n = 500 (top) and n =

5000 (bottom), where δ = 0.1,∆ = 1, using the error density a). The true density
function f is given by the black curve, while the red curve is the point-wise empirical
median of the 50 estimates.

Figure 3.17 visualizes the performance of our estimator for a stationary sample (Xj)j∈JnK under
varying sample size for different choices of stationary densities.
As the Ornstein-Uhlenbeck process is β-mixing with integrable coefficients, so are the discrete
time samples of the exponential of an Ornstein-Uhlenbeck process, the CIR-process and the ex-
ponential of an CIR-process, see Example 3.6.20, Example 3.6.21 and Example 3.6.22. More pre-
cisely, it can be seen that the parameter ∆, corresponding to the length of the distance between
the discrete observation times∆ = ti− ti−1 of (Xti)i∈JnK, effects the dependency between the ob-
servations, that is for∆ → 0 the dependency is increasing. This effect can be seen in the following
Figure 3.18.
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Figure 3.18: Considering the estimators f̂
k̂
, we depict 50 Monte-Carlo simulations with stationary

density (ii) (top) and (iii) (bottom) for n = 500 where ∆ = 0.2 (left), ∆ = 0.5

(middle) and ∆ = 1 (right) using the error density a). The true density function f
is given by the black curve while the red curve is the point-wise empirical median of
the 50 estimates.

For the Figure 3.18 we considered different choices of ∆ and changed δ ∈ (0, 1), such that
δ ∗ ∆ = 0.1 to ensure that we only observe a difference in the underlying dependency. For
∆ → ∞, the dependency between the observation vanishes.
In comparison to Figure 3.17, we see in Figure 3.19 that even for higher sample size the estimator
f̂
k̂
has still a visible bias. Indeed, from a theoretical point of view, the different error densities have

an enormous effect on the behavior of the variance term. More precisely, for the chi-squared dis-
tributed error, case b), the variance term is increasing exponentially. Thus large values of k ∈ R+

can almost not be chosen. For the simulation with error density b) we used a finer grid than Kn as
dimensions higher then k = 3 have never been chosen by our data-driven method.
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Figure 3.19: Considering the estimators f̂
k̂
, we depict 50 Monte-Carlo simulations with varying

sstationary density (i) (top), (ii) (middle) and (iii) (bottom) for n = 5 ∗ 102 (left),
n = 5 ∗ 103 (middle) and n = 5 ∗ 104 (right), where δ = 0.1,∆ = 1 and for the error
density b). The true density function f is given by the black curve while the red curve
is the point-wise empirical median of the 50 estimates.

Stochastic volatility models [R2] To illustrate the behavior of our estimator in the stochas-
tic volatility we focus on the density (iii), the Log-Normal distribution. We will study two dif-
ferent settings to visualize the theoretical results. First, we study the same estimator f̂

k̂
based on

different samples, namely (Vj∆)j∈JnK and (V j)j∈JnK with ∆ = 0.2. As we do not consider mea-
surement errors in this setting, we use the direct estimator by setting M1[g] = 1.
In the second step, we will analyze the effects of the error density. For the stochastic volatility
model, we have seen that the increments can be written as observations of a multiplicative mea-
surement errors model with Γ(1/2,1/2)-distributed errors, namely case (b). To visualize now the
impact, we consider the direct model based on the observations (V j)j∈JnK and compare it with the
error model observations (Yj)j∈JnK, Yj = V jUj where Uj ∼ Γ(1/2,1/2).
For χ > 0 we choose χ = 42.27 for the direct observations and χ = 1.7 for the stochastic volatility
model observations based on preliminary simulations.
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Figure 3.20: Considering the estimators f̂
k̂
, we depict 50 Monte-Carlo simulations with stationary

density (iii) for n = 5∗102 (left), n = 5∗103 (middle) and n = 5∗104 where∆ = 0.2

without noise based on the sample (Vj∆)j∈JnK (top) and (V j)j∈JnK (bottom). The true
density function f is given by the black curve while the red curve is the point-wise
empirical median of the 50 estimates.
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Figure 3.21: Considering the estimators f̂
k̂
, we depict 50 Monte-Carlo simulations with stationary

density (iii) with varying sample size n = 5 ∗ 102 (left), n = 5 ∗ 103 (middle) and
n = 5∗104 where∆ = 0.2 based on the sample (V j)j∈JnK (top) and (Yj)j∈JnK (bottom).
The true density function f is given by the black curve while the red curve is the
point-wise empirical median of the 50 estimates.
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In Figure 3.20, we see that the difference between the samples (Vj∆)j∈JnK and (V j)j∈JnK is rather
minor for ∆ = 0.2 and the Log-Normal distribution.
Similar effects as in Figure 3.18 and Figure 3.19 can be seen in Figure 3.21. As implied by the theo-
retical results the underlying inverse problem with super smooth error density mainly characterize
the risk of the estimator.

3.6.6 Conclusion

In this section, we studied the fully data-driven estimator f̂
k̂
proposed in Section 3.2 and Section 3.3

in the dependent case, twe considered that the sample (Xj)j∈JnK is strictly stationary but not in-
dependent. We were able to show similar results to the independent case up to an additional term
characterized by the underlying dependency. Furthermore, we considered the model of stationary
density estimation in a stochastic volatility model and identified it as an multiplicative measurement
error model with super smooth error and stationary sample. Thus previous shown results were used
to construct and estimator of the volatility density. With the help of a Monte-Carlo simulation we
have shown the reasonable behavior of our estimator for finite sample.

3.6.7 Proofs

Proof of Lemma 3.6.11. Let k ∈ Kn and let us keep in mind that [−k′, k′] = supp(Mc[fk′ ]), for
k′ ∈ Kn. By definition of Kn, we have for all k′ ∈ Kn holds [−k′, k] ⊆ [−Kn,Kn]. Further, we
have for any k′ ∈ Kn that ∥f̂Kn∥2x2c−1 − ∥f̂k′∥2x2c−1 = ∥f̂Kn − f̂k′∥2x2c−1 , implying with (3.43)

∥f̂
k̂
− f̂Kn∥2x2c−1 + p̂en(k̂) ≤ ∥f̂k − f̂Kn∥2x2c−1 + p̂en(k).

Now for every k′ ∈ Kn we have

∥f̂k′ − fKn∥2x2c−1 = ∥f̂k′ − f̂Kn∥2x2c−1 + ∥f̂Kn − fKn∥2x2c−1 + 2⟨f̂k′ − f̂Kn , f̂Kn − fKn⟩x2c−1 ,

which implies that

∥f̂
k̂
− fKn∥2x2c−1− ∥f̂k − fKn∥2x2c−1= ∥f̂

k̂
− f̂Kn∥2x2c−1− ∥f̂k − f̂Kn∥2x2c−1+ 2⟨f̂

k̂
−f̂k, f̂Kn−fKn⟩x2c−1

≤ p̂en(k)− p̂en(k̂) + 2⟨f̂
k̂
−f̂k, f̂Kn−fKn⟩x2c−1 . (3.50)

Further, we see

⟨f̂
k̂
− f̂k, f̂Kn − fKn⟩x2c−1 = ⟨(f̂

k̂
− f

k̂
) + (f

k̂
− fk) + (fk − f̂k), f̂Kn − fKn⟩x2c−1

= ∥f̂
k̂
− f

k̂
∥2x2c−1 + ⟨f

k̂
− fk, f̂Kn − fKn⟩x2c−1 − ∥f̂k − fk∥2x2c−1 . (3.51)

Now combining (3.50) and (3.51), we get

∥f̂
k̂
− fKn∥2x2c−1 ≤ ∥fk − fKn∥2x2c−1 − ∥f̂k − fk∥2x2c−1 + 2⟨f

k̂
− fk, f̂Kn − fKn⟩x2c−1

+ p̂en(k) + 2∥f̂
k̂
− f

k̂
∥2x2c−1 − p̂en(k̂). (3.52)

Let us consider the term |2⟨f
k̂
− fk, f̂Kn − fKn⟩x2c−1 |. First we remind that for any k′ ∈ Kn

∥f̂k′ − fk′∥2x2c−1 =
1

2π

∫
R
1[−k′,k′](t)

|Mc[fY ](t)− M̂c(t)|2

|Mc[g](t)|2
dλ(t).
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Setting A∗ := [−k̂, k̂] ∪ [−k, k] we have Mc[fk̂ − fk] = Mc[f ](1[−k̂,k̂] − 1[−k,k]), implying that
supp(Mc[fk̂−fk]) ⊆ A∗ ⊆ [−Kn,Kn] by definition ofKn. Using the Cauchy-Schwarz inequality
and 2ab ≤ a2 + b2, we deduce

|2⟨f
k̂
− fk,f̂Kn − fKn⟩x2c−1 | =

2

(2π)2

∣∣∣∣∣
∫
A∗

Mc[fk̂ − fk](t)
M̂c(−t)−Mc[fY ](−t)

Mc[g](−t)
dλ(t)

∣∣∣∣∣
≤ 1

4
∥f
k̂
− fk∥2x2c−1 +

4

2π

∫
R
1A∗(t)

|Mc[fY ](t)− M̂c(t)|2

|Mc[g](t)|2
dλ(t)

≤ 1

2
∥f
k̂
− fKn∥2x2c−1 +

1

2
∥fk − fKn∥x2c−1 + 4∥f̂k − fk∥2x2c−1 + 4∥f̂

k̂
− f

k̂
∥2x2c−1

using that 1A∗ ≤ 1Ak
+ 1A

k̂
. Thus, we get

|2⟨f
k̂
− fk,f̂Kn − fKn⟩x2c−1 |

≤ 1

2
∥fKn − fk∥2x2c−1 +

1

2
∥f̂
k̂
− fKn∥2x2c−1 + 4∥f̂k − fk∥2x2c−1 +

7

2
∥f̂
k̂
− f

k̂
∥2x2c−1

which implies with (3.52)

∥f̂
k̂
− fKn∥2x2c−1 ≤ 3∥fk − fKn∥2x2c−1 + 6∥f̂k − fk∥2x2c−1 + 2p̂en(k) + 11∥f̂

k̂
− f

k̂
∥2x2c−1 − 2p̂en(k̂).

Since EnfY (p̂en(k)) = pen(k) and for χ0 ≥ 6

6EnfY (∥f̂k − fk∥2x2c−1) ≤
6σY∆g(k)

n
+

6

2π

∫
[−k,k]

Varnf (M̂X(t)dλ(t)

≤ pen(k) +

∫
[−k,k]

Varnf (M̂X(t))dλ(t),

we get

EnfY (∥f̂k̂ − fKn∥2x2c−1) ≤3
(
∥fKn − fk∥2x2c−1 + pen(k)

)
+ 11EnfY

(
∥f̂
k̂
− f

k̂
∥2x2c−1 −

1

12
pen(k̂)

)
+

+ EnfY ((pen(k̂)− 2p̂en(k̂))+) +

∫
[−Kn,Kn]

Varnf (M̂X(t))dλ(t).

Proof of Proposition 3.6.19. Let us begin with (ii). We have

log(V 1)− log(V0) = log

(
∆−1

∫ ∆

0
eVt−V0dt

)
≤ sup

t∈(0,∆)
Vt − V0 and

log(V0)− log(V 1) = − log

(
∆−1

∫ ∆

0
eVt−V0dt

)
≤ − inf

t∈(0,∆)
Vt − V0

implying that E(| log(V 1)− log(V0)|) ≤ E(supt∈[0,∆] |Vt−V0|). Next since Vt−V0 =
∫ t
0 b(Vt)dt+∫ t

0 a(Vt)dB̃t, we get

E

(
sup

t∈(0,∆)
|Vt − V0|

)
≤ ∆E(|b(V0)|) + E

(
sup

t∈(0,∆)

∣∣∣∣∫ t

0
a(Vt)dBt

∣∣∣∣
)

≤ c(1 + E(|Z0|2R2)
1/2)∆1/2
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using the Jensen inequality and the Burkholder-Davis-Gundy inequality.
For (i) we first see that for x, y ∈ R+ with x < y holds | log(y) − log(x)| = log(y/x) = log(1 +

(y − x)/x) ≤ (y − x)/x = |y − x|/x, which implies that | log(y)− log(x)| ≤ |y − x|/(x ∧ y). We
deduce that

E(| log(V 1)− log(V0)|)2 ≤ E(|V 1 − V0|2) · E((V 1 ∧ V0)−2)

≤ E( sup
t∈(0,∆)

|Vt − V0|2) · E((V 1 ∧ V0)−2),

since V 1 − V0 = ∆−1
∫ ∆
0 Vt − V0dt ≤ supt∈(0,∆) |Vt − V0|. Now as V 1 ≥ inft∈(0,∆) Vt, we get

E((V0 ∧ V 1)
−2)) ≤ E( sup

t∈(0,∆)
(Vt)

−2).

Analogously to (i) we can show that E(supt∈(0,∆) |Vt − V0|2) ≤ c∆(1 + E(V 2
0 )).
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In this chapter, we consider the estimation of the survival function S : R+ → [0, 1] of a positive
random variable X , defined as

S(x) := P(X > x), x ∈ R+,

under multiplicative measurement error, that is given observations (Yj)j∈JnK drawn from Y = XU

where the positive error random variable U is stochastically independent fromX . Here, we distin-
guish between two cases. The case of independent observations, that is (Xj)j∈JnK are identically,
independent distributed and the case of stationary observations, that is (Xj)j∈JnK are drawn from a
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stationary discrete-time process.
Starting with the independent case, we propose in section 4.1 a survival function estimator based
on the estimation of the Mellin transform of X and a regularized inverse of the Mellin transform
and study the estimation strategy in terms of minimax properties and a data-driven choice of the
upcoming regularization parameter.
In section, 4.2 we drop the independency assumption on the sample (Xj)j∈JnK and consider samples
drawn from stationary processes and study the behavior of the survival function estimator proposed
in section 4.1.

4.1 Under multiplicative measurement errors

4.1.1 Introduction

In this work we are interested in estimating the unknown survival function S : R+ → [0, 1] of a
positive random variable X given identically distributed copies of Y = XU where X and U are
independent of each other and U has a known density g : R+ → R+. If X possesses a Lesbgue
density f : R+ → R+, unknown, then in this setting the density fY : R+ → R+ of Y is given by

fY (y) = [f ∗ g](y) :=
∫
R+

f(x)g(y/x)x−1dλ(x) ∀y ∈ R+.

Here “∗" denotes the multiplicative convolution. The estimation of S using a sample (Yj)j∈JnK from
fY is thus an inverse problem called multiplicative deconvolution.

Related works A summary of related works to the estimation under multiplicative measure-
ment errors is given in Section 3.2.1.

Organisation In Subsection 4.1.2 we propose the survival function estimator based on a spectral
cut-off approach. More precisely, the estimation strategy consists of an estimator for the Mellin
transform of the survival function and a regularization of the inverse Mellin transform by a spectral
cut-off approach. The minimax optimality of the presented estimator is developed in Subsection
4.1.3 while a data-driven choice of the upcoming smoothing parameter, based on a penalized con-
trast approach, is proposed and studied in Subsection 4.1.4. The performance of the presented
estimator is visualized using a Monte-Carlo simulation in Subsection 4.1.5. The proof of Subsec-
tions 4.1.3 and 4.1.4 are gathered in Subsection 4.1.7.

4.1.2 Estimation strategy

In the upcoming theory, we need to ensure that the survival function S of the sampleX is square-
integrable, that is S ∈ L2(R+) := L2(R+, x

0). In this chapter, we will use the abbreviation
∥h1∥2 := ∥h1∥2x0 and ⟨h1, h2⟩ := ⟨h1, h2⟩x0 for h1, h2 ∈ L2(R+). Furthermore, to define the esti-
mator, we additionally need the square integrability of the empirical survival function ŜX which
is defined by

ŜX(x) := n−1
n∑
j=1

1(0,Xj)(x) (4.1)
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for any x ∈ R+. The following proposition shows that we can derive the square-integrability
condition for both functions by a moment condition.

Proposition 4.1.1:
Let Ef (X1/2) < ∞. Then, S ∈ L1(R+, x

−1/2) ∩ L2(R+). If additionally Ef (X1) < ∞ then
ŜX ∈ L1(R+, x

−1/2) ∩ L2(R+) almost surely.

The proof of Proposition 4.1.1 can be found in the Subsection 4.1.7. Following the steps of section
3.1 and assuming now that Ef (X

1/2
1 ) < ∞ we have for k ∈ R+ that M1/2[S]1[−k,k] ∈ L1(R) ∩

L2(R) and thus

Sk(x) := M†
1/2[M1/2[S]1[−k,k]](x) =

1

2π

∫ k

−k
x−1/2−itM1/2[S](t)dλ(t), x ∈ R+, (4.2)

is an approximation of S in the L2(R+) sense, that is, ∥Sk − S∥2 → 0 for k → ∞. Now, applying
the property of the Mellin transform for survival functions, compare Proposition 2.2.4, we obtain
that M1/2[S](t) = (1/2 + it)−1M3/2[f ](t) for all t ∈ R.
If we in addition to Ef (X1/2) <∞ assume that Eg(U1/2) <∞, then EfY (Y 1/2) <∞, and fY , g ∈
L1(R, x1/2). The convolution theorem implies then M3/2[fY ] = M3/2[f ]M3/2[g]. Under the
mild assumption that for all t ∈ R,M3/2[g](t) ̸= 0 we can rewrite equation (4.2) in the following
form

Sk(x) =
1

2π

∫ k

−k
x−1/2−it M3/2[fY ](t)

(1/2 + it)M3/2[g](t)
dλ(t). (4.3)

To derive an estimator from (4.3) we use the empiricalMellin transformgiven byM̂(t) := M̂3/2(t) =

n−1
∑n

j=1 Y
1/2+it
j as an unbiased estimator of M3/2[fY ](t) for all t ∈ R. Keeping in mind that

|M̂(t)| ≤ |M̂(0)| < ∞, it is sufficient to assume that
∫ k
−k |(1/2 + it)M3/2[g](t)|−2dt < ∞ for all

k ∈ R+ to ensure that the spectral cut-off estimator

Ŝk(x) :=
1

2π

∫ k

−k
x−1/2−it M̂(t)

(1/2 + it)M3/2[g](t)
dλ(t), k, x ∈ R+, (4.4)

is well-defined. Up to now, we impose two minor conditions on the Mellin transform of the error
density g which we want to collect in the following assumption,

∀ t ∈ R : M3/2[g](t) ̸= 0 and ∀ k ∈ R+ :

∫ k

−k
|(1/2 + it)M3/2[g](t)|−2dλ(t) <∞. ([G0])
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Remark 4.1.2 (The Mellin transform of the empirical survival function):
It is worth stressing out, that for each t ∈ R the estimator

(1/2 + it)−1M̂X(t) := (1/2 + it)−1n−1
n∑
j=1

X
1/2+it
j

is an unbiased estimator of M1/2[S](t). Furthermore, there is a special link between the empirical
survival function and the estimator (1/2 + it)−1/2M̂(t). In fact, Proposition 4.1.1 ensures that
ŜX ∈ L1(R0, x

−1/2). Consequently, the Mellin transform of ŜX is well-defined and

M1/2[ŜX ](t) = (1/2 + it)−1M̂X(t) (4.5)

for all t ∈ R.

In analogy to Proposition 3.2.1 we can prove the following risk bound whose proof can be found
in Section 4.1.7.

Proposition 4.1.3 (Upper bound of the risk):
Assume that EfY (Y ) <∞ and that [G0] holds. Then for any k ∈ R+,

EnfY (∥Ŝk − S∥2) ≤ ∥S − Sk∥2 + EfY (Y1)
∆g(k)

n

where ∆g(k) = (2π)−1
∫
(−k,k) |(1/2 + it)M3/2[g](t)|−2dλ(t).

By dominated convergence the squared bias term ∥S−Sk∥2 is monotonically decreasing in k ∈ R+

while∆g(k)n
−1 is monotonically increasing. Therefore, any sequence (kn)n∈N with kn → ∞ and

∆g(kn)n
−1 → 0 leads to a consistent survival function estimator Ŝkn which is captured in the

following Corollary.

Corollary 4.1.4 (Consistency):
If (kn)n∈N is chosen such that kn → ∞ for n → ∞ and ∆g(kn)n

−1 → 0, the consistency of Ŝkn ,
that is,

EnfY (∥Ŝkn − S∥2) → 0, n→ ∞

is implied.

For a more sophisticated analysis of the variance’s growth, we need to consider more specific as-
sumptions on the error density g. More precisely, the growth of ∆g is determined by the decay of
the Mellin transform of g.

4.1.3 Minimax theory

As before, we characterize the error density g by the decay of the Mellin transform Mc[g] to
determine the exact growth of the variance term. That is, we mainly focus on the case of SMOOTH
ERROR DENSITIES, introduced in Definition 3.2.4. As a reminder, an error density is called smooth
if there exists c, C, γ ∈ R+ such that

c(1 + t2)−γ/2 ≤ |Mc[g](t)| ≤ C(1 + t2)−γ/2 for t ∈ R. ([G1])
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Parametric rate In the special case, that g satisfies [G1] with γ ∈ (0, 1/2), there is a choice of
the parameter k ∈ R+ which leads to a parametric rate up to a log-term. It is worth pointing out,
that this choice can be done independently of the precise decay of the bias term ∥S − Sk∥2. This
can be accomplished by the elementary bound

∥S − Sk∥2 =
1

π

∫ ∞

k
|M1/2[S](t)|2dλ(t) ≤ k−1Ef (X

1/2
1 )2

where we exploitM1/2[S](t) = (1/2+ it)−1M3/2[f ](t) and the bound |M3/2[f ](t)| ≤ Ef (X
1/2
1 ).

The different cases are collected in the following Proposition whose proof is omitted.

Proposition 4.1.5 (Parametric risk bound):
Let E(Y ) < ∞ and let g satisfy [G1] with γ ∈ (0, 1/2). Then, there exists C(g) ∈ R+ such that
for all k ∈ R+

+

∆g(k) ≤

{
C(g) , γ < 1/2;

C(g) log(k) , γ = 1/2.

Choosing now k = n, then for γ = 1/2, we end up with parametric rate up to a log-term, that is

EnfY (∥Ŝn − S∥2) ≤ C(Ef (X1), g)
log(n)

n

while if γ < 1/2 we accomplish a parametric rate, that is

EnfY (∥Ŝn − S∥2) ≤
C(Ef (X1), g)

n

where C(Ef (X1), g) depends of Ef (X1),Eg(U1) and the constants in [G1].

As demonstrated by Proposition 4.1.5, for γ ≤ 1/2 choosing k = n, independent of f ∈ L2(R+),
we can derive a parametric rate, respectively almost parametric rate. For the case that γ > 1/2

we get under assumption [G1] for c = 3/2 that cg ≤ k2γ−1 ≤ ∆g(k) ≤ Cgk
2γ−1 for positive

constants cg, Cg > 0 possibly dependent on g. Thus the variance term is monotonically increasing
and unbounded leading us to the usual bias-variance conflict.

Non-parametric rates To control the bias-termwemake use again of regularity spaces which
characterize the decay of the Mellin transform similarly to Sobolev spaces for deconvolution prob-
lems. For s ∈ R+ consider the MELLIN-SOBOLEV SPACE, defined in Definition 3.1.3 by

Ws
1/2(R+) := {h ∈ L2(R+) : |h|2s := ∥(1 + t2)s/2M1/2[h]∥2R <∞} (4.6)

and the corresponding ellipsoids with L ∈ R+ by Ws
1/2(L) := {h ∈ Ws

1/2(R+) : |h|2s ≤ L}. For
S ∈ Ws

1/2(L) we deduce that ∥S − Sk∥2 ≤ Lk−2s. Setting

Ss1/2(L) := {S ∈ Ws
1/2(L) : S survival function,Ef (X1) ≤ L}

and the previous discussion leads to the following statement whose proof is omitted.

163



Proposition 4.1.6 (Upper bound for the minimax risk):
Let Eg(U1) <∞. Then under the assumption [G1] with γ > 1/2,

sup
S∈Ss

1/2
(L)

EnfY (∥S − Ŝkn∥)2 ≤ C(L, g, s)n−2s/(2s+2γ−1)

for the choice kn := n1/(2s+2γ−1).

We will now show, that the rates presented in Proposition 4.1.6 are optimal in the sense, that
there exists no estimator based on the i.i.d. sample Y1, . . . , Yn that can reach uniformly over Ss1/2(L)
a better rate. This implies that the estimator Ŝkn presented in 4.1.6 is minimax-optimal.
For technical reasons we need an additional assumption on the error density g. Let us assume that
there are constants cg, Cg, γ ∈ R+ such that

∀x > 1 : g(x) = 0 and cg(1 + t2)−γ/2 ≤ |M1/2[g](t)| ≤ Cg(1 + t2)−γ/2 for t ∈ R. ([G1’])

With this additional assumption we can show the following theorem whose proof can be found
in Subsection 4.1.7.

Theorem 4.1.7 (Lower bound for the minimax risk):
Let s, γ ∈ N and assume that [G1] and [G1’] hold. Then there exist constants cg, Ls,g > 0 such
that for all L ≥ Ls,g, n ∈ N, and for any estimator Ŝ of S based on an i.i.d. sample Y1, . . . , Yn,

sup
S∈Ss

1/2
(L)

EnfY (∥Ŝ − S∥2) ≥ cgn
−2s/(2s+2γ−1).

For the multiplicative censoring model, that is, U is uniformly-distributed on (0, 1), the assump-
tions [G1] and [G1’] hold true. Furthermore, despite the fact that the choice of kn in Proposition
4.1.6 is not dependent on the explicit survival function S ∈ Ss1/2(L), it is still dependent on the reg-
ularity parameter s ∈ R+ of the unknown survival function S, which is unknown, too. While it is
tempting to set the regularity parameter s ∈ R+ to a fixed value and interpret this as an additional
model assumption, the discussion below motivates that this might deliver worse rates.

Faster rates Revisiting Section 3.1.3 and using the survival function formula for the Mellin
transform, we get that the families of Gamma and Log-Normal distributions satisfy

∥S − Sk∥2 =
1

π

∫ ∞

k

|M3/2[f ](t)|2

1/4 + t2
dλ(t) ≤ Cfk

−2 exp(−αka)

for α ∈ R+, dependent on f and a = 1 for the Gamma distribution and a = 2 for the Log-Normal
distribution. Now choosing kn = log(n)1/a/α−1 we can ensure that for both cases

EnfY (∥Ŝkn − S∥2) ≤ Cf
log(n)(2γ−1)/a

n

leading to a faster rate than provided by Proposition 4.1.6 for any choice of s ∈ R+. In the next
section, we therefore present a data-driven method in order to choose the parameter k ∈ R+ based
on the sample Y1, . . . , Yn.
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4.1.4 Data-driven method

We now present a data-driven method based on a penalized contrast approach. In fact, we consider
the case where [G1] holds with γ > 1/2, since in the case γ ≤ 1/2 we already presented a choice
of the parameter k ∈ R+, independent on the density f , which achieves an almost parametric rate.
In the case γ > 1/2 the variance term is increasing, unbounded and characterized by the growth
of ∆g. Our aim is now to define an estimator k̂n which mimics the behavior of

kn := arg min
k∈Kn

∥S − Sk∥2 +
EfY (Y1)Cg

2πn
k2γ−1

for a suitable large set of parametersKn ⊂ R+. Considering the result of Proposition 4.1.6, and the
fact that ∥S − Sk∥2 ≤ k−1Ef (X

1/2
1 )2, which we have seen in the paragraph about the parametric

case, we can ensure that the set Kn := {k ∈ {1, . . . , n} : ∆g(k) ≤ n} is suitably large enough.
Starting with the bias term we see that ∥S − Sk∥2 = ∥S∥2 −∥Sk∥2 behaves like −∥Sk∥2. Further-
more, for k ∈ Kn we define the penalty term pen(k) = χσY∆g(k)n

−1, σY := EfY (Y1),which shall
mimic the behavior of the variance term. Exchanging −∥Sk∥2 and EfY (Y1) with their empirical
counterparts −∥Ŝk∥2 and σ̂Y := n−1

∑n
j=1 Yj we define a fully data-driven model selection k̂ by

k̂ := arg min
k∈Kn

− ∥Ŝk∥2 + p̂en(k) where p̂en(k) := 2χσ̂Y∆g(k)n
−1 (4.7)

for χ > 0. The following theorem shows that this procedure is adaptive up to a negligible term.

Theorem 4.1.8 (Data-driven choice of k ∈ R+):
Let g satisfy [G1] with γ > 1/2 and ∥xg∥∞ <∞. Assume further that EfY (Y

5/2
1 ) <∞. Then for

χ > 48,

EnfY (∥S − Ŝ
k̂
∥2) ≤ 6 inf

k∈Kn

(
∥S − Sk∥2 + pen(k)

)
+
C(g, f)

n

where C(g, f) > 0 is a constant depending on χ, the error density g, EfY (Y
5/2
1 ), σY .

The proof of Theorem 4.1.8 is postponed to Section 4.1.7. The assumption that ∥xg∥∞ < ∞
is rather weak because it is satisfied for the common densities considered. Under the assumptions
of Theorem 4.1.8 and for the case S ∈ Ss1/2(L), we can ensure that s > 1/2. Then we have
kn := ⌊n1/(2s+2γ−1)⌋ ∈ Kn and thus

EnfY (∥S − Ŝ
k̂
∥2) ≤ C(f, g)n−2s/(2s+2γ−1).

4.1.5 Numerical results

Let us illustrate the performance of the fully-data driven estimator Ŝ
k̂
defined in 4.4 and 4.7. To do

so, we consider the following densities whose corresponding survival function will be estimated.

(i) GAMMA DISTRIBUTION: f1(x) = 0.54

Γ(4)x
3 exp(−0.5x)1R+(x),

(ii) WEIBULL DISTRIBUTION: f2(x) = 2x exp(−x2)1R+(x),

(iii) BETA DISTRIBUTION: f3(x) = 1
560(0.5x)

3(1− 0.5x)41(0,2)(x) and

165



(iv) LOG-GAMMA DISTRIBUTION: f4(x) = x−4

6 log(x)31(1,∞)(x).

For the distribution of the error density, we consider the following three cases

a) UNIFORM DISTRIBUTION: g1(x) = 1[0,1](x),

b) SYMMETRIC NOISE: g2(x) = 1(1/2,3/2)(x) and

c) BETA DISTRIBUTION: g3(x) = 2(1− x)1(0,1)(x).

We see that g1 and g2 fulfill [G1] with the parameter γ = 1 and g3 fulfills it with γ = 2. Due to
the fact that for the true survival function holds S(x) ∈ [0, 1], x ∈ R,we can improve the estimator
Ŝ
k̂
by defining

S̃
k̂
(x) :=


0 , Ŝ

k̂
(x) ≤ 0;

Ŝ
k̂
(x) , Ŝ

k̂
(x) ∈ [0, 1];

1 , Ŝ
k̂
(x) ≥ 1.

The resulting estimator S̃
k̂
has a smaller risk then Ŝ

k̂
, since ∥S̃

k̂
− S∥2 ≤ ∥Ŝ

k̂
− S∥2. On the

other hand, the estimator has the desired property that it is [0, 1]-valued. Nevertheless, it is difficult
ensure that S̃

k̂
(0) = 1 and that S̃

k̂
is monotone decreasing. Although there are many procedures to

guarantee the monotonicity of an estimator Ŝ and the property Ŝ(0) = 1, the presented theoretical
results of this work are not applicable to the modified estimators.
We will now use a Monte-Carlo simulation to visualize the properties of the estimator S̃

k̃
and

discuss whether the numerical simulated behavior of the estimator coincides with the theoretical
predictions. Afterwards, we will construct a survival estimator Ŝ based on Ŝ

k̂
which is in fact a

survival function, keeping in mind that the theoretical results of this work do not apply for this
estimator.

n = 500 n = 1000 n = 2000

(i) 1.31 0.75 0.23

(ii) 0.19 0.09 0.04

(iii) 0.21 0.12 0.06

(iv) 1.10 0.34 0.20

Figure 4.1: The entries showcase the MISE (scaled by a factor of 100) obtained by Monte-Carlo
simulations each with 200 iterations. We take a look at different densities and varying
sample size. The error density is chosen as a) in each case.

In Figure 4.1 we can see that for an increasing sample size, the variance of the estimator seems
to decrease. Also, increasing the sample size allows for the estimator to choose bigger values for
k̂, which on the other hand decreases the bias induced by the approximation step. Next let us
consider different error densities. In Figure 4.2 we can see that reconstruction of the survival func-
tion with error density a) and b) seem to be of same complexity while the reconstruction with
error density c) seems to be more difficult. This behavior is predicted by the theoretical results
because for [G1], a) and b) share the same parameter γ = 1 while c) has the parameter γ = 2.
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Figure 4.2: Considering the estimators S̃
k̂
, we depict 50 Monte-Carlo simulations with varying

error density a) (left), b) (middle) and c) (right) for (i) (top), (ii) (bottom) with n = 1000.
The true survival function S is given by the black curve while the red curve is the point-
wise empirical median of the 50 estimates.

Heuristic estimator We will now modify the estimator Ŝ
k̂
such that the resulting estimator

Ŝ is a survival function. To do so, we see that for any k ∈ R and x ∈ R+,

Ŝk(x) =
1

2π

∫ k

−k
x−1/2−it M̂(t)

M3/2[g](t)
(1/2 + it)−1dλ(t) = (p̂k ∗ gu)(x),

where gu(x) = 1(0,1)(x) the density of the uniform distribution on the interval (0, 1) and p̂k(x) =

(2π)−1
∫ k
−k x

−1/2−it M̂(t)
M3/2[g](t)

dt. Exploiting the definition of the multiplicative convolution we see
that for any x ∈ R+,

Ŝk(x) =

∫ ∞

x
p̂k(y)y

−1dλ(y).

This motivates the following construction of the survival function estimator. First, exchanging p̂k
with (p̂k(x))+ ensures the monotonicity and the positivity of our estimator. The final estimator is

167



then defined as

Ŝ(x) := S̃(x)/S̃(0+), where S̃(x) :=
∫ ∞

x
(p̂
k̂
(y))+y

−1dλ(y), for any y ∈ R+,

where 0+ denotes a positive real number very close to 0. Since our estimator is not defined in 0

we cannot normalize it with S̃(0).
Let us now illustrate the behavior of the heuristic estimator Ŝ for an increasing number of obser-
vations compared to the estimator S̃

k̂
.
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Figure 4.3: Considering the estimators S̃
k̂
(top) and Ŝ (bottom), we depict 50 Monte-Carlo simu-

lations with varying sample size n = 500 (left), n = 1000 (middle) and n = 2000 (right)
in the case (ii) with error density (b). The true survival function S is given by the black
curve while the red curve is the point-wise empirical median of the 50 estimates.

Although the estimator Ŝ is a survival function, the modification of the estimator seems to intro-
duce an additional bias to the estimation. Based on the numerical study, this additional bias seems
to decrease for n large enough. Nevertheless, we want to stress out that this modification is purely
heuristic.

4.1.6 Conclusion

In this section, we have constructed a family of estimators (Ŝk)k∈R+ for the survival function
S : R+ → [0, 1] of a positive random variable X based on i.i.d. observations (Yj)j∈JnK with multi-
plicative measurement error.
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We studied our estimator in terms of the mean integrated squared error, and showed that there
exists a choice of the cut-off parameter ko ∈ R+ which solves the squared bias-variance conflict
uniformly over Sobolev-Mellin ellipsoids. The resulting rate of convergence has been shown to
be minimax-optimal by stating a lower bound result for the estimation of the survival function S
based on the observations (Yj)j∈JnK over the Mellin-Sobolev ellipsoids.
Although the choice ko leads to a minimax optimal estimator Ŝko , the explicit choice ko is still
dependent on unknown smoothness parameters of the Mellin-Sobolev ellipsoid and is thus not
feasible for practical applications. We therefore proposed a fully-data driven choice of the cut-off
parameter based on a model selection approach and proved its adaptivity.
AMonte-Carlo simulation then visualized the reasonable behavior of our estimation strategy. Fur-
thermore, we presented an heuristic approach to ensure that our estimator is indeed a survival
function. Theoretical properties of this heuristic approach are left for further research.

4.1.7 Proofs

Proof of Proposition 4.1.1. Let us assume that Ef (X1/2) < ∞. Then, f ∈ L1(R+, x
1/2) and thus

S ∈ L1(R+, x
−1/2) because∫

R+

x−1/2S(x)dλ(x) =

∫
R+

∫
R+

x−1/21(0,x)(y)f(y)dλ(y)dλ(x) =

∫
R+

2y1/2f(y)dλ(y) <∞.

By the generalized Minkowski inequality, cf. Tsybakov (2009), we have∫
R+

S2(x)dλ(x) =

∫
R+

(∫
R+

1(0,x)(y)f(x)dλ(x)

)2

dλ(y)

≤

(∫
R+

(∫
R+

1(0,x)(y)f
2(x)dλ(y)

)1/2

dλ(x)

)2

=

(∫
R+

x1/2f(x)dλ(x)

)2

,

which implies that S ∈ L2(R+, x
0). For the second part we see that Enf (∥ŜX∥L1(R+,x−1/2)) =∫∞

0 x−1/2SX(x)dx <∞. Since Ef (X1) <∞, we get

Enf (∥ŜX∥2x0) ≤
∫
R+

E(1(x,∞)(X1))dλ(x) =

∫
R+

S(x)dλ(x) = Ef (X1) <∞.

This implies that ŜX ∈ L1(R+, x
−1/2) ∩ L2(R+, x

0) almost surely.

Proof of Proposition 4.1.3. Let k ∈ R+. SinceM1/2[S−Sk](t) = 0 for |t| ≤ kwe get by application
of the Plancherel identity, ⟨S−Sk, Sk−Ŝk⟩ = 1

2π

∫ k
−kM1/2[S−Sk](t)M1/2[Sk−Ŝk](−t)dλ(t) = 0

and thus ∥S − Ŝk∥2 = ∥S − Sk∥2 + ∥Sk − Ŝk∥2. Again by application of the Plancherel identity,
cf. Proposition 2.3.5, and the Fubini-Tonelli theorem,

EnfY (∥Ŝk − Sk∥2) =
1

2π

∫ k

−k

Var(M̂(t))

|(1/2 + it)M3/2[g](t)|2
dλ(t).

Now the theorem follows since VarnfY (M̂(t)) ≤ n−1EfY (Y1).
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Proof of Theorem 4.1.7. We first outline the main steps of the proof. We will construct a family of
functions in Ss1/2(L) by a perturbation of the survival function So : R+ → R+ with small “bump“,
such that their L2-distance and the Kullback-Leibler divergence of their induced distributions can
be bounded from below and above, respectively. The claim follows by applying Theorem 2.5 in
Tsybakov (2009). We use the following construction.
Let ψ ∈ C∞

0 (R) be a function with support in [0, 1] and
∫ 1
0 ψ(x)dλ(x) = 0. For each K ∈ N, to

be selected below, and k ∈ J0,KK we define the bump-functions ψk,K(x) := ψ(xK − K − k),

x ∈ R. For j ∈ N0 we set the finite constant Cj,∞ := max(∥ψ(l)∥∞, l ∈ J0, jK). Using the operator
S : C∞

0 (R) → C∞
0 (R) with S[f ](x) = −xf (1)(x) for all x ∈ R, compare Proposition 2.3.12, we

define for j ∈ N the function ψk,K,j(x) := Sj [ψk,K ](x) = (−1)j
∑j

i=1 ci,jx
iKiψ(i)(xK−K−k) for

x ∈ R+ and ci,j ≥ 1. For a bump-amplitude δ > 0, γ ∈ N and a vector θ = (θ1, . . . , θK) ∈ {0, 1}K
we define

Sθ(x) = So(x) + δK−s−γ+1
K−1∑
k=0

θk+1ψk,K,γ−1(x) where So(x) := exp(−x). (4.8)

Taking the negative sign of the derivative of this function leads to the density

fθ(x) = fo(x) + δK−s−γ+1
K−1∑
k=0

θk+1ψk,K,γ(x)x
−1 where fo(x) := exp(−x). (4.9)

Until now, we did not give a sufficient condition to ensure that our constructed functions {Sθ :

θ ∈ {0, 1}K} are in fact survival functions. We do this by stating conditions such that the family
{fθ : θ ∈ {0, 1}K} is a family of densities.

Lemma 4.1.9:
Let 0 < δ < δo(ψ, γ) := exp(−2)2−γ(Cγ,∞cγ)

−1. Then for all θ ∈ {0, 1}K , fθ is a density.

Furthermore, it is possible to show that these survival functions all lie inside the ellipsoids Ss1/2(L)
for L big enough. This is captured in the following lemma.

Lemma 4.1.10:
Let s ∈ N. Then, there is Ls,γ,δ > 0 such that So and any Sθ as in Equation (4.9) with θ ∈ {0, 1}K ,
K ∈ N, belong to Ss1/2(Ls,γ,δ).

For sake of simplicity we denote for a function φ ∈ L2(R+) ∩ L1(R+, x
−1/2) the multiplicative

convolution with g by φ̃ := φ ∗ g. Next, we see that for y2 ≥ y1 > 0,

f̃o(y1) =

∫ ∞

0
g(x)x−1 exp(−y1/x)dx ≥

∫ ∞

0
g(x)x−1 exp(−y2/x)dx = f̃o(y2)

and thus f̃o is monotonically decreasing. Additionally, we have that f̃o(2) > 0, since otherwise
g = 0 almost everywhere. Exploiting VARSHAMOV-GILBERT’S LEMMA (cf. Tsybakov (2009)) in
Lemma 4.1.11 we show that there exists M ∈ N with M ≥ 2K/8 and a subset {θ(0), . . . ,θ(M)}
of {0, 1}K with θ(0) = (0, . . . , 0) such that for all j, l ∈ J0,MK, j ̸= l, the L2-distance and the
Kullback-Leibler divergence are bounded for K ≥ Ko(γ, ψ).
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Lemma 4.1.11:
Let K ≥ max{Ko(ψ, γ), 8}. Then there exists a subset {θ(0), . . . ,θ(M)} of {0, 1}K with θ(0) =

(0, . . . , 0) such thatM ≥ 2K/8 and for all j, l ∈ J0,MK, j ̸= l,

(i) ∥Sθ(j) − Sθ(l)∥2 ≥
∥ψ(γ−1)∥2δ2

16
K−2s and

(ii) KL(f̃θ(j) , f̃θ(0)) ≤
C1(g)∥ψ∥2

f̃o(2) log(2)
δ2 log(M)K−2s−2γ+1

where KL is the Kullback-Leibler-divergence.

Selecting K = ⌈n1/(2s+2γ−1)⌉ delivers

1

M

M∑
j=1

KL((f̃θ(j))⊗n, (f̃θ(0))⊗n) =
n

M

M∑
j=1

KL(f̃θ(j) , f̃θ(0)) ≤ cψ,δ,g,γ,fo log(M)

where cψ,δ,g,γ,fo < 1/8 for all δ ≤ δ1(ψ, g, γ, fo) and M ≥ 2 for all n ≥ ns,γ := 82s+1 ∨
Ko(γ, ψ)

2s+2γ+1. Thereby, we can use Theorem 2.5 of Tsybakov (2009), which in turn implies
for any estimator S of Ss1/2(L)

sup
S∈Ss

1/2
(L)

PnfY
(
∥Ŝ − S∥2 ≥

cψ,δ,γ
2

n−2s/(2s+2γ−1)
)
≥

√
M

1 +
√
M

(
1− 1/4−

√
1

4 log(M)

)
≥ 0.07.

Note that the constant cψ,δ,γ does only depend on ψ, γ and δ. Hence, it is independent of the
parameters s and n. The claim of Theorem 4.1.7 follows by using Markov’s inequality, which
completes the proof.

Proof of Lemma 4.1.9. For any h ∈ C∞
0 (R) we can state that S[h] ∈ C∞

0 (R) and thus Sj [h] ∈
C∞
0 (R) for any j ∈ N. Further, for h ∈ C∞

0 (R),
∫∞
−∞ h(1)(x)dλ(x) = 0, which implies that for any

δ > 0 and θ ∈ {0, 1}K we have
∫
R+
fθ(x)dλ(x) = 1.

Now due to the construction (4.9) of the functions ψk,K we easily see that the function ψk,K has
support on [1 + k/K, 1 + (k + 1)/K] which leads to ψk,K and ψl,K having disjoint supports if
k ̸= l. Here, we want to emphasize that supp(S[h]) ⊆ supp(h) for all h ∈ C∞

0 (R) which implies
that ψk,K,γ and ψl,K,γ have disjoint supports if k ̸= l, too. For x ∈ [1, 2]c we have fθ(x) =

exp(−x) ≥ 0. Now let us consider the case x ∈ [1, 2]. In fact there is ko ∈ J0,K − 1K such that
x ∈ [1 + ko/K, 1 + (ko + 1)/K] and hence

Sθ(x) = So(x) + θko+1δK
−s−γ+1x−1ψko,K,γ(x) ≥ exp(−2)− δ2γCγ,∞cγ

since ∥ψk,K,j∥∞ ≤ 2jCj,∞cjK
j for any k ∈ {0, . . . ,K−1}, s ≥ 1 and j ∈ Nwhere cj :=

∑j
i=1 ci,j .

Choosing δ ≤ δo(ψ, γ) = exp(−2)2−γ(Cγ,∞cγ)
−1 ensures fθ(x) ≥ 0 for all x ∈ R+.

Proof of Lemma 4.1.10. Our proof starts with the observation that for t ∈ RwehaveM1/2[So](t) =

Γ(1/2+ it). Now, by applying the Stirling formula (cf. Belomestny and Goldenshluger (2020)) we
get |Γ(1/2+ it)| ∼ exp(−π/2|t|), |t| ≥ 2. Thus for every s ∈ N there exists Ls such that |So|2s ≤ L

for all L ≥ Ls.
Next we consider |So − Sθ|s. Let us therefore define first ΨK :=

∑K−1
k=0 θk+1ψk,K and ΨK,j :=
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Sj [ΨK ] for j ∈ N. Then we have |So−Sθ|2s = δ2K−2s−2γ+2|ΨK,γ−1|2s where | . |s is defined in 4.6.
Now since for any j ∈ N, supp(ΨK,j) ⊂ [1, 2], ∥ΨK,j∥∞ < ∞ we have that the Mellin transform
of ΨK,j is defined for any c ∈ (0,∞). By a recursive application of the integration by parts we
deduce that |M1/2[ΨK,s+γ−1](t)|2 = (1/4 + t2)s|M1/2[Ψk,γ−1](t)|2, whence

|Ψk,γ−1|2s ≤ Cs

∫
R
|M1/2[ΨK,s+γ−1](t)|2dλ(t) = Cs

∫
R+

|ΨK,s+γ−1(x)|2dλ(x)

by the Parseval identity, see equation Proposition 2.3.5 where Cs > 0 is a positive constant. Since
the ψk,K have disjoint support for different values of k ∈ J0,K − 1K we reason that |Ψk,γ−1|2s ≤
Cs
∑K−1

k=0 θ
2
k+1

∫
R+

|Sγ−1+s[ψk,K ](x)|2dλ(x). Applying Jensen’s inequality and that supp(ψk,K) ⊂
[1, 2], we obtain

|Ψk,γ−1|2s ≤ C(γ,s)

K−1∑
k=0

γ+s−1∑
j=1

c2j,γ−1+s

∫ 2

1
x2jK2jψ(j)(xK −K − k)2dλ(x)

≤ C(γ,s)K
2(γ−1+s)

K−1∑
k=0

γ+s−1∑
j=1

c2j,γ+s4
jC2

ψ,s,γK
−1 ≤ C(γ,s)K

2(γ−1+s).

Thus, |So − Sθ|2s ≤ C(s,γ,δ) and |Sθ|2s ≤ 2(|So − Sθ|2s + |So|2s) ≤ 2(C(s,γ,δ) + Ls) =: Ls,γ,δ,1. It is
sufficient to show that

∫∞
0 xfθ(x)dx ≤ Ls,γ,δ,2. In fact,∫

R+

xfθ(x)dλ(x) = 1 + δK−s−γ+1
K−1∑
k=0

∫ 1+(k+1)/K

1+k/K
ψk,K,γ(x)dλ(x) ≤ 1 + δCγ

since ∥ψk,K,γ∥∞ ≤ 2γCγ,∞cγK
γ = CγK

γ , cf. Proof of Lemma 4.1.9. The claim follows by
choosing Ls,γ,δ = max{Ls,γ,δ,1, Ls,γ,δ,2}.

Proof of Lemma 4.1.11.
Using the fact that the functions (ψk,K,γ)k∈J0,K−1K with different index k have disjoint supports we
get

∥Sθ − Sθ′∥2 = δ2K−2(s+γ−1)∥
K−1∑
k=0

(θk+1 − θ′k+1)ψk,K,γ−1∥2

= δ2K−2(s+γ−1)ρ(θ,θ′)∥ψ0,K,γ−1∥2

with ρ(θ,θ′) :=
∑K−1

j=0 1{θj+1 ̸=θ′
j+1}, the HAMMING DISTANCE. Now the first claim follows by

showing that ∥ψ0,K,γ−1∥2 ≥ K2γ−3∥ψ(γ−1)∥2
2 for K big enough. To do so, we observe that

∥ψ0,K,γ−1∥2 =
∑

i,j∈{1,...,γ−1}

cj,γ−1ci,γ−1

∫
R+

xj+i+1ψ
(j)
0,K(x)ψ

(i)
0,K(x)dλ(x).

Defining Σ := ∥ψ0,K,γ−1∥2 −
∫
R+

(xγ−1ψ
(γ−1)
0,K (x))2dλ(x) we see that

∥ψ0,K,γ−1∥2 = Σ+

∫
R+

(xγ−1ψ
(γ−1)
0,K (x))2dλ(x) ≥ Σ+K2γ−3∥ψ(γ−1)∥2 (4.10)

≥ K2γ−3∥ψ(γ−1)∥2

2
(4.11)
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as soon as |Σ| ≤ K2γ−3∥ψ(γ−1)∥2
2 . This is obviously true as soon as K ≥ Ko(γ, ψ) and thus ∥Sθ −

Sθ′∥2 ≥ δ2∥ψ(γ−1)∥2
2 K−2s−1ρ(θ,θ′) for K ≥ Ko(ψ, γ). Now we use the VARSHAMOV-GILBERT

LEMMA (cf. Tsybakov (2009)) which states that for K ≥ 8 there exists a subset {θ(0), . . . ,θ(M)} of
{0, 1}K with θ(0) = (0, . . . , 0) such that ρ(θ(j),θ(k)) ≥ K/8 for all j, k ∈ {0, . . . ,M}, j ̸= k and
M ≥ 2K/8. Therefore, ∥Sθ(j) − Sθ(l)∥2 ≥ ∥ψ(γ−1)∥2δ2

16 K−2s.

For the second part we have fo = fθ(0) , and by using KL(f̃θ, f̃o) ≤ χ2(f̃θ, f̃o) :=
∫
R+

(f̃θ(x) −
f̃o(x))

2/f̃o(x)dλ(x) it is sufficient to bound the χ2-divergence. We notice that f̃θ − f̃o has sup-
port on (0, 2) since fθ − fo has support on [1, 2] and g has support on [0, 1]. In fact for y >

2, f̃θ(y) − f̃o(y) =
∫∞
y (fθ − fo)(x)x

−1g(y/x)dλ(x) = 0. Let ΨK,γ :=
∑K−1

k=0 θk+1ψk,K,γ =

Sγ [
∑K−1

k=0 θk+1ψk,K ] =: Sγ [ΨK ]. Now by using the compact support property and a single substi-
tution we get

χ2(f̃θ, f̃o) ≤ f̃o(2)
−1∥f̃θ − f̃o∥2 = f̃o(2)

−1δ2K−2s−2γ+2∥x̃−1ΨK,γ∥2.

Let us now consider ∥x̃−1ΨK,γ∥2. In the first step we see by application of the Parseval identity that
∥x̃−1ΨK,γ∥2 = 1

2π

∫∞
−∞ |M1/2[x̃−1ΨK,γ ](t)|2dt. Now for t ∈ R, we see by using the multiplication

theorem for Mellin transforms thatM1/2[ω̃−1ΨK,γ ](t) = M1/2[g](t)·M1/2[x
−1Sγ [ΨK ]](t). Again

we haveM1/2[x
−1Sγ [ΨK ]](t) = (−1/2+ it)γM−1/2[ΨK ](t). Together with assumption [G1’]we

obtain

∥x̃−1ΨK,γ∥2 ≤
C1(g)

2π

∫
R
|M−1/2[ΨK ](t)|2dλ(t) = C1(g)∥x−1ΨK∥2 ≤ C1(g)∥ψ∥2.

SinceM ≥ 2K we have KL(f̃θ(j) , f̃θ(0)) ≤ C1(g)∥ψ∥2

f̃o(2) log(2)
δ2 log(M)K−2s−2γ+1.

Proof of Theorem 4.1.8. Let us define the nested subspaces (Uk)k∈R+ by Uk := {h ∈ L2(R+) :

∀|t| ≥ k : M1/2[h](t) = 0}. For any h ∈ Uk we consider the empirical contrast

γn(h) = ∥h∥2 − 2
1

2π

∫
R
M̂(t)

M1/2[h](−t)
(1/2 + it)M3/2[g](t)

dλ(t) = ∥h∥2 − 2n−1
n∑
j=1

νh(Yj)

with νh(Yj) := 1
2π

∫
R Y

1/2+it
j

M1/2[h](−t)
(1/2+it)M3/2[g](t)

dλ(t). It can easily be seen that Ŝk = arg min
h∈Uk

γn(h)

with γn(Ŝk) = −∥Ŝk∥2. For h ∈ Uk define the centered empirical process ν̄h := n−1
∑n

j=1 νh(Yj)−
⟨h, S⟩. Then we have for h1, h2 ∈ Uk,

γn(h1)− γn(h2) = ∥h1 − S∥2 − ∥h2 − S∥2 − 2ν̄h1−h2 . (4.12)

Since γn(Ŝk) ≤ γn(Sk) and by the definition of k̂ we have γn(Ŝk̂)− p̂en(k̂) ≤ γn(Ŝk)− p̂en(k) ≤
γn(Sk)− p̂en(k) for any k ∈ Kn. Now using (4.12),

∥S − Ŝ
k̂
∥2 ≤ ∥S − Sk∥2 + 2ν̄

Ŝ
k̂
−Sk

+ p̂en(k)− p̂en(k̂).

First we note that Uk1 ⊆ Uk2 for k1 ≤ k2. Let us now denote by a ∨ b := max{a, b} and define
for all k ∈ Kn the unit balls Bk := {h ∈ Uk : ∥h∥ ≤ 1}. Next we deduce from 2ab ≤ a2 + b2
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that 2ν̄
Ŝ
k̂
−Sk

≤ 4−1∥Ŝ
k̂
− Sk∥2 + 4 suph∈B

k̂∨k
ν̄2h. Furthermore, we see that 4−1∥Ŝ

k̂
− Sk∥2 ≤

2−1(∥Ŝ
k̂
− S∥2 + ∥S − Sk∥2). Putting all the facts together and defining

p(k̂ ∨ k) := 12σY∆g(k̂ ∨ k)n−1 (4.13)

we have

∥S − Ŝ
k̂
∥2 ≤3∥S − Sk∥2 + 8

(
sup

h∈B
k̂∨k

ν̄2h − p(k ∨ k̂)
)
+
+ 8p(k̂ ∨ k) + 2p̂en(k)− 2p̂en(k̂)

Assuming that χ ≥ 48, 4p(k̂ ∨ k) ≤ pen(k) + pen(k̂). Thus,

∥S − Ŝ
k̂
∥2 ≤6

(
∥S − Sk∥2 + pen(k)

)
+ 8 max

k∈Kn

(
sup
h∈Bk

ν̄2h − p(k)
)
+

+ 2(p̂en(k)− 2pen(k)) + 2(pen(k̂)− p̂en(k̂))+.

We will use the following Lemmata which will be proven afterwards.

Lemma 4.1.12:
Under the assumption of Theorem 4.1.8 we have

EnfY

((
max
k∈Kn

( sup
h∈Bk

ν̄2h − p(k)
)
+

)
≤
C(g, σ,EfY (Y

5/2
1 ))

n

Lemma 4.1.13:
Under the assumption of Theorem 4.1.8 we have

EnfY ((pen(k̂)− p̂en(k̂))+) ≤ 4χ
EfY (Y 2

1 )

σY n
.

Applying the lemmata and using the fact that EnfY (p̂en(k)) = 2pen(k),

EnfY (∥S − Ŝ
k̂
∥2) ≤ 6

(
∥S − Sk∥2 + pen(k)

)
+
C(g, χ, f)

n
.

Since this inequality holds for all k ∈ Kn, it implies the claim.

Proof of Lemma 4.1.12. For the first summand we see

EnfY (max
k∈Kn

( sup
h∈Bk

ν̄2h − p(k))+) ≤ 2EnfY (max
k∈Kn

( sup
h∈Bk

|ν̄h,1|2 −
1

2
p(k))+) + 2EnfY (max

k∈Kn

sup
h∈Bk

|ν̄h,2|2),

=:M1 +M2

where we split the process for some sequence (dn)n∈N in the following way

ν̄h,1 :=n
−1

n∑
j=1

νh(Yj)1(0,dn)(Y
1/2
j )− EfY (νh(Y1)1(0,dn)(Y

1/2
1 ))

and ν̄h,2 := n−1
n∑
j=1

νh(Yj)1dcn,∞)(Y
1/2
j )− EfY (νh(Y1)1(dn,∞)(Y

1/2
1 )).
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To bound M1 twe will use the Talagrand inequality 3.10 on EnfY
(
(suph∈Bk

|ν̄h,1|2 − 1
2p(k))+

)
.

Indeed, we have

M1 ≤
Kn∑
k=1

EnfY ( sup
h∈Bk

|ν̄h,1|2 −
1

2
p(k))+,

whichwill be used to show the claim. Wewant to emphasize that we are able to apply the Talagrand
inequality on the sets Bk since each of them has a dense countable subset and due to continuity
arguments. In order to apply Talagrand’s inequality, we need to find the constants Ψ, ψ, τ such
that

sup
h∈Bk

sup
y>0

|νh(y)1(0,dn)(y
1/2)| ≤ ψ; EnfY ( sup

h∈Bk

|ν̄h,1|) ≤ Ψ;

sup
h∈Bk

1

n

n∑
j=1

VarfY (νh(Yj)1(0,dn)(Y
1/2
j )) ≤ τ.

We start to determine the constant Ψ2. Let us define M̃(t) := n−1
∑n

j=1 Y
1/2+it
j 1(0,dn)(Y

1/2
j ) as

an unbiased estimator of M3/2[fY 1(0,dn)](t) and

S̃k(x) :=
1

2π

∫ k

−k
x−1/2−it M̃(t)

(1/2 + it)M3/2[g](t)
dλ(t)

where n−1
∑n

j=1 νh(Yj)1(0,dn)(Yj) = ⟨S̃k, h⟩. Thus, we have for any h ∈ Bk that ν̄2h,1 = ⟨h, S̃k −
EnfY (S̃k)⟩

2 ≤ ∥h∥2∥S̃k − EnfY (S̃k)∥
2. Since ∥h∥ ≤ 1, we get

EnfY ( sup
h∈Bk

ν̄2h,1) ≤ EnfY (∥S̃k − EnfY (S̃k)∥
2) =

1

2π

∫ k

−k

VarnfY (M̃(t))

(1/4 + t2)|M3/2[g](t)|2
dλ(t)

which implies

EnfY ( sup
h∈Bk

ν̄2h,1) ≤ σY
∆g(k)

n
=: Ψ2.

Thus 6Ψ2 = 1
2p(k).

Next we consider ψ. Let y > 0 and h ∈ Bk. Then using the Cauchy-Schwarz inequality,

|νh(y)1(0,dn)(y)|
2 = (2π)−2d2n|

∫ k

−k
yit

M1/2[h](−t)
(1/2 + it)M3/2[g](t)

dλ(t)|2

≤ (2π)−1d2n

∫ k

−k
|(1/2 + it)M3/2[g](t)|−2dλ(t) ≤ d2n∆g(k) =: ψ2

since |yit| = 1 for all t ∈ R.
Next we consider τ . In fact for h ∈ Bk we can conclude

VarnfY (νh(Yj)1(0,dn)(Y
1/2
j )) ≤ EnfY (νh(Yj)

2) ≤ ∥fY x1∥∞∥νh∥2x−1 ≤ ∥gx∥∞Ef (X1)∥νh∥2x−1 .

Applying the Plancherel identity delivers

VarfY (νh(Yj)1(0,dn)(Y
1/2
j )) ≤ Ef (X1)∥xg∥∞

1

2π

∫ k

−k

|M1/2[h](t)|2

|(1/2 + it)M3/2[g](t)|2
dλ(t).
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Now since ∥h∥2 ≤ 1, and for Gk(t) := 1[−k,k](t)|(1/2 + it)M3/2[g](t)|−2,

sup
h∈Bk

1

n

n∑
j=1

VarfY (νh(Yj)1(0,dn)(Y
1/2
j )) ≤ σX∥Gk∥∞∥xg∥∞ =: τ,

where σX = Ef (X1). Hence, with σU := Eg(U1) we have nΨ2

6τ =
σU∆g(k)

6∥xg∥∞∥Gk∥∞ and nΨ
100ψ =

√
σY n

100dn
.

Now, choosing dn :=
√
σY n

a100 log(n) gives
nΨ
100ψ = a log(n), and we deduce

EnfY

((
sup
h∈Bk

ν̄2h,1 −
1

2
p(k)

)
+

)
≤ C

n

(
σX∥Gk∥∞∥xg∥∞ exp

(
− πσU∆g(k)

3∥xg∥∞∥Gk∥∞

)
+
σY∆g(k)

log(n)2
n−a

)
.

Under [G1] we have Cgk2γ−1 ≥ ∆g(k) ≥ cgk
2γ−1 and for all t ∈ R it holds true that cgk2γ−2 ≤

|Gk(t)| ≤ Cgk
2γ−2. Hence,

Kn∑
k=1

EnfY

((
sup
h∈Bk

ν̄2h,1 −
1

2
p(k)

)
+

)
≤ CσX

n

(
Kn∑
k=1

C(g)k2γ−1 exp(−C(g)k) +
Kn∑
k=1

C(g)
k2γ−1

log(n)2na

)

where the first sum is bounded inn ∈ N. The second sum can be bounded byC(g)n
2γ

2γ−1
−a
/ log(n)2

which by choosing a = 2γ
2γ−1 ensures the boundedness in n ∈ N. Thus we have

Kn∑
k=1

EnfY

((
sup
h∈Bk

ν̄2h,1 −
1

2
p(k)

)
+

)
≤ C(g)σX

n
.

Now, we consider M2. Let us define Sk := Ŝk − S̃k. Then from νh,2 = νh − νh,1 we deduce
ν2h,2 = ⟨Sk − EnfY (Sk), h⟩

2 ≤ ∥Sk − EnfY (Sk)∥
2 for any h ∈ Bk. Further, for any k ∈ Kn,

∥Sk − EnfY (Sk)∥
2 ≤ ∥SKn − EnfY (SKn)∥2 and

E(∥SKn − E(SKn))∥2) =
1

2π

∫ Kn

−Kn

Var(M̂(t)− M̃(t))

|(1/2 + it)M3/2[g](t)|2
dλ(t)

≤ ∆g(Kn)

n
EfY (Y11(dn,∞)(Y

1/2
1 )).

Then, we have by the definition of Kn that for any p ∈ N holds

EnfY (∥SKn − EnfY (SKn))∥2) ≤ d−pn EfY (Y
1+p/2
1 ) ≤

C(g, σX ,Ef (X
5/2
1 ))

n

choosing p = 3. These two bounds imply

EnfY

(
max
k∈Kn

(
sup
h∈Bk

ν2h − p(k)

)
+

)
≤
C(g, σX ,Ef (X

5/2
1 )

n
.

176



Proof of Lemma 4.1.13. First, EnfY ((pen(k̂) − p̂en(k̂))+) = 2χEnfY ((σY /2 − σ̂Y )+∆g(k̂)n
−1) ≤

2χEnfY ((σY /2− σ̂Y )+). On ΩY := {|σY − σ̂Y | ≤ σY /2} we have σY /2− σ̂Y ≤ 0. Therefore,

EnfY ((pen(k̂)− p̂en(k̂))+) ≤ 2χEnfY ((σY /2− σ̂Y )+1Ωc) ≤ 2χ
√

VarnfY (σ̂Y )P
n
fY

(Ωc)

by applying the Cauchy-Schwarz inequality. Next, by Markov’s inequality, PnfY [|σ̂Y − σY | ≥
σY /2] ≤ 4VarnfY (σ̂Y )σ

−2
Y which implies

EnfY ((pen(k̂)− p̂en(k̂))+) ≤ 4χVarnfY (σ̂Y )σ
−1
Y ≤ 4χEnfY (Y

2
1 )σ

−1
Y n−1.
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4.2 Under multiplicative measurement errors for stationary

processes

4.2.1 Introduction

In this section, we study again the estimation of the unknown survival function S : R+ → [0, 1] of
a positive random variable X given a sample

Yj = XjUj , j ∈ JnK
where (Uj)j∈JnK is an i.i.d. sample independent of (Xj)j∈JnK. In contrary to Section 4.1, we will
only assume that (Xj)j∈JnK is strictly stationary, compare Definition 3.6.1, and study the behavior
of the survival function estimator (Ŝk)k∈R+ presented in Equation (4.4) where

Ŝk(x) :=
1

2π

∫
(−k,k)

x−1/2−it M̂Y (t)

(1/2 + it)M3/2[g](t)
dλ(t), x ∈ R+,

where M̂Y (t) := n−1
∑

j∈JnK Y 1/2+it
j , t ∈ R.

We will consider a different characterization of dependence than in Section 3.6, the so-called
Bernoulli shift processes. We introduce the so-called functional dependence measure which is
defined for Bernoulli shift processes. This wide class of processes will be presented first. The fol-
lowing definition of Bernoulli shift is based on Dedecker et al. (2007).

Definition 4.2.1 (Bernoulli shift process):
Let H : RZ → R be a measurable function. Let (ξj)j∈Z be a strictly stationary sequence of real-
valued random variables. A BERNOULLI SHIFT with innovation process (ξn)n∈Z is defined as

Xj := H((ξj−k))k∈Z, j ∈ Z.

This sequence is strictly stationary.

While the Definition 4.2.1 from Dedecker et al. (2007) is more general, we will mainly focus on
the case where (ξj)j∈Z is an i.i.d. sequence and H : RN0 → R, in other words Xj only depends on
(ξj−k)k∈N0 . One example of such a process is presented next.

Example 4.2.2 (AR(1)-process):
Let (ξj)j∈Z be an i.i.d. sequence and ρ ∈ R such that |ρ| < 1 and E(|ξ1|p) < ∞ for p ≥ 1. Then
the process

Xn :=

∞∑
j=0

ρjξn−j , n ∈ N0,

is called a AR(1)-process. Here, the infinite sum is defined with respect to the E(| · |p)1/p-norm.
This process is a Bernoulli shift process. In the literature, this process is commonly expressed
through the recursion scheme

Xn = ρXn−1 + ξn, n ∈ N0.

178



For an independent copy ξ∗−k of ξ−k, k ∈ N, we define

X
∗(−k)
0 := (ξ0, ξ−1, . . . , ξ−k+1, ξ

∗
−k, ξ−k−1, . . . )

which is needed for the following definition.

Definition 4.2.3 (Functional Dependence measure):
Let (Xj)j∈Z be a Bernoulli shift process with E(|X0|p) < ∞ for p ∈ R+. Then, we define for any
p ∈ R+ the FUNCTIONAL DEPENDENCE MEASURE

δp(k) := E(|X0 −X
∗(−k)
0 |p)1/p, k ∈ N0.

For AR(1) processes, these coefficients can easily be bounded.

Example 4.2.4 (Continuation of Example 4.2.2):
Let E(|ξ0|p) <∞ for p ∈ R+. Then for any k ∈ N we have

δp(k) = E(|ρk(ξ−k − ξ∗−k)|p)1/p ≤ 2|ρ|kE(|ξ0|p)1/p.

As a consequence we deduce that if the p-th moment of the innovation ξ0 exists, then we can state
that the sequence (δp(k))k∈N is geometrically decreasing.

Before studying the risk of our estimator, let us state the following results for exponential of AR(1)
processes. Its proof is postponed to the appendix.

Proposition 4.2.5 (Exponential of AR(1)-processes):
Let (Xk)k∈N be an AR(1)-process with |ρ| < 1 and increment sequence (ξj)j∈Z. Then for Zj =

exp(Xj) = H((ξ(j−k))k∈N), j ∈ N0, and p ∈ R+ with E(|ξ0|2p),E(Z2p
0 ) <∞, holds

δp(k) = E(|Z0 − Z
∗(−k)
0 |p)1/p ≤ 4ρkE(Z2p

0 )1/(2p)E(|ξ0|2p)1/(2p), k ∈ N.

4.2.2 Estimation strategy

By the strict stationarity, we have PX1 = PXj , j ∈ JnK implying that EnfY (Ŝk) = Sk and moreover,

EnfY (∥S − Ŝk∥2) = ∥S − Sk∥2 + EnfY (∥Ŝk − Sk∥2), k ∈ R+

where we stay in the notation of Section 4.1. As mentioned in Section 3.6.2, we can use the condi-
tional expectation E|X(·) := E(·|σ((Xj)j∈JnK)) to decompose the variance term EnfY (∥Ŝk − Sk∥2)
into a term driven by the underlying inverse problem and a term characterized by the dependency
structure of (Xj)j∈JnK. The proof of the following Proposition can be found in the proof section
due to strong similarity to the proof of Proposition 3.6.4 in Section 3.6.2.
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Proposition 4.2.6 (Upper bound of the risk):
Assume that σY := EfY (Y1) <∞ and that [G0] holds. Then for any k ∈ R+,

EnfY (∥Ŝk − Sk∥2) ≤ σY
∆g(k)

n
+

1

2π

∫
(−k,k)

Varnf (M̂X(t))

1/4 + t2
dλ(t)

where M̂X(t) := n−1
∑

j∈JnKX1/2+it
j and∆g(k) := (2π)−1

∫
(−k,k) |(1/2+ it)M3/2[g(t)]|−2dλ(t).

Furthermore, one has

EnfY (∥Ŝk − S∥2) ≤ ∥S − Sk∥2 + σY
∆g(k)

n
+

1

2π

∫
(−k,k)

Varnf (M̂X(t))

1/4 + t2
dλ(t).

For Bernoulli shift processes, the upcoming dependence term Varnf (M̂X(t)), t ∈ R, in the bound
of Proposition 4.2.6 can be bounded using techniques developed and proposed in Wu (2005). The
rather technical proof can be found in the proof section 4.2.6.

Lemma 4.2.7 (Variance bound for Bernoulli shift processes):
Let t ∈ R and (Xj)j∈N a Bernoulli shift process with (δp(k))k∈N defined in Definition 4.2.1 then

(i) Varnf

∑
j∈JnKX

1/2+it
j

 ≤ 32n(1 + |t|)

∑
ℓ∈N0

δ1(ℓ)
1/2

2

and

(ii) Varnf

∑
j∈JnKXj

 ≤ n

∑
ℓ∈N0

δ2(ℓ)

2

.

Based on Proposition 4.2.6 and Lemma 4.2.7 we directly deduce the following Corollary whose
proof is therefore omitted.

Corollary 4.2.8:
Under the assumptions of Proposition 4.2.6 and for a Bernoulli shift process (Xj)j∈JnK with∑

ℓ∈N0
δ1(ℓ)

1/2 <∞, we have for k ∈ R+

EnfY (∥Ŝk − S∥2) ≤ ∥S − Sk∥2 + σY
∆g(k)

n
+ C

∑
ℓ∈N0

δ1(ℓ)
1/2

2

log(k)

n

where C is a numerical positive constant.

Similarly to Section 4.1, we will assume that g is a smooth error density, compare Definition 3.2.4.
More precisely, we assume that there exists γ > 1/2 and positive constants cg, Cg such that

∀t ∈ R : cg(1 + t2)−γ/2 ≤ |M3/2[g](t)| ≤ Cg(1 + t2)−γ/2. ([G1])

Then we have as in Section 4.1.3, that ∆g(k) ≤ Cgk
2γ−1 for k ∈ R+. In this situation, the choice

of k ∈ R+ is non-trivial as the variance term is increasing and unbounded in k ∈ R+ while the bias
term is decreasing. In the following subsection we will study the behavior of the fully-data driven
estimator Ŝ

k̂
proposed in Section 4.1.4 in the case of a stationary sample (Xj)j∈JnK.
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4.2.3 Data-driven method

Again, let us consider the fully data-driven choice of k ∈ R+ defined in (4.7), that is for χ > 0 and
Kn := max{k ∈ JnK : ∆g(k) ≤ n} and

k̂ := arg min
k∈JKnK − ∥Ŝk∥2 + p̂en(k) where p̂en(k) := 2χσ̂Y∆g(k)n

−1

for χ > 0. Now defining pen(k) = χσY∆g(k)n
−1, k ∈ JKnK, we can show the following result.

Theorem 4.2.9 (Data-driven choice of k ∈ R+):
Let g satisfy [G1] with γ > 1/2 and ∥xg∥∞ <∞. Further let EfY (Y

5/2
1 ) <∞. Then for χ > 96,

EnfY (∥S − Ŝ
k̂
∥2) ≤6 inf

k∈JKnK
(
∥S − Sk∥2 + pen(k)

)
+
C(f, g)

n

+ C(f, g)Varnf (σ̂X) +
∫
(−Kn,Kn)

Varnf (M̂X(t))

1/4 + t2
dλ(t)

where C(f, g) > 0 is a constant depending on χ, g, Ef (X
5/2
1 ) and σX := Ef (X1). Moreover,

σ̂X := n−1
∑

j∈JnKXj .

Proof of Theorem 4.2.9. Identically to the proof of Theorem 4.1.8 we can show

∥S − Ŝ
k̂
∥2 ≤6

(
∥S − Sk∥2 + pen(k)

)
+ 8 max

k∈Kn

(
sup
h∈Bk

ν̄2h − p(k)
)
+

+ 2(p̂en(k)− 2pen(k)) + 2(pen(k̂)− p̂en(k̂))+.

where

ν̄h := n−1
n∑
j=1

νh(Yj)− ⟨h, S⟩, νh(Yj) :=
1

2π

∫
R
Y

1/2+it
j

M1/2[h](−t)
(1/2 + it)M3/2[g](t)

dλ(t),

and

p(k̂ ∨ k) := 12σY∆g(k̂ ∨ k)n−1.

We will use the following Lemmata which will be proven afterwards in the proof section 4.2.6.

Lemma 4.2.10:
Under the assumption of Theorem 4.2.9 we have

EnfY
(
max
k∈Kn

( sup
h∈Bk

ν̄2h − p(k)
)
+
) ≤C(g, σ,EfY (Y

5/2
1 ))

(
1

n
+ Varnf (σ̂X)

)

+
1

2π

∫
(−Kn,Kn)

Varnf (M̂X(t))

1/4 + t2
dλ(t)

Lemma 4.2.11:
Under the assumption of Theorem 4.2.9 we have

EnfY ((pen(k̂)− p̂en(k̂))+) ≤ 4χ
EfY (Y 2

1 )

σY n
+ 4χ

σY
σ2X

Varnf (σ̂X).
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Applying the lemmata and using the fact that EnfY (p̂en(k)) = 2pen(k),

EnfY (∥S − Ŝ
k̂
∥2) ≤6

(
∥S − Sk∥2 + pen(k)

)
+
C(g, χ, f)

n
+ C(g, χ, σX)Varnf (σ̂X)

+
1

2π

∫
(−Kn,Kn)

Varnf (M̂X(t))

1/4 + t2
dλ(t).

Since this inequality holds for all k ∈ Kn, it implies the claim.

Now, for Bernoulli shift processes we can deduce the following Corollary using Lemma 4.2.7 and
Theorem 4.2.9. Due to this, its proof is omitted.

Corollary 4.2.12:
Let the assumptions of Theorem 4.2.9 be fulfilled and assume further the∑

ℓ∈N0
δ1(ℓ)

1/2,
∑

ℓ∈N0
δ2(ℓ) <∞. Then

EnfY (∥S − Ŝ
k̂
∥2) ≤6 inf

k∈JKnK
(
∥S − Sk∥2 + pen(k)

)
+ C(f, g, δ1(·), δ2(·))

log(n)

n

C(f, g, δ1(·), δ2(·) > 0 is a constant depending on χ, g, Ef (X
5/2
1 ),σX := Ef (X1) and the sequences

(δ1(ℓ))ℓ∈N0 and (δ2(ℓ))ℓ∈N0 .

4.2.4 Numerical results

Let us illustrate the performance of the fully-data driven estimator Ŝ
k̂
defined in 4.4 and 4.7 for

stationary processes (Xj)j∈N. More precisely, we will consider examples of Bernoulli shifts, which
are either an AR(1)-process or the exponential of an AR(1)-process, compare Example 4.2.2. To
do so, we consider the following stationary densities whose corresponding survival function will
be estimated.

(i) LOG-GAMMA DISTRIBUTION: f1(x) = x−4

6 log(x)31(1,∞)(x),

(ii) GAMMA DISTRIBUTION: f2(x) = 1
Γ(4)x

3 exp(−x)1R+(x) and

(iii) LOG-NORMAL DISTRIBUTION: f3(x) = (32π)−1/2x−1 exp(− log2(x)/32)1R+(x),
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Example 4.2.13 (Continuation of Example 4.2.4):
Let ρ ∈ (0, 1).

• GAMMA DISTRIBUTION: Let m ∈ N and λ ∈ R+. The stationary distribution of the AR(1)

process (Xj)j∈Z, where

Xj := ρXj−1 + εj , with εj |Bj ∼ Γ(Bj ,λ) with Bj ∼ Bin(m,1−ρ),

is given by an Γ(m,λ) distribution, as shown in Gaver and Lewis (1980).

• LOG-GAMMA DISTRIBUTION: Let m ∈ N and λ ∈ R+. The stationary distribution of the
exponential of the AR(1) process (Xj)j∈Z, that is Xj = exp(Xj) where

Xj := ρXj−1 + εj , with εj |Bj ∼ Γ(Bj ,λ) with Bj ∼ Bin(m,1−ρ),

is given by a LG(m,λ) distribution.

• LOG-NORMAL DISTRIBUTION: Let σ2 ∈ R+. For the AR(1) process (Xj)j∈Z, where for

Xj := ρXj−1 + εj , with εj ∼ N(0,σ2(1−ρ2)),

the stationary distribution is given by a N(0,σ2) distribution. This implies that the Bernoulli
shift process Xj := exp(Xj) has a stationary distribution given by a LN(0,σ2)-distribution.

Exploiting Example 4.2.4 and Proposition 4.2.5, we see that all conditions are fulfilledwhich ensures
that the sequences δ1, respectively δ2 are of geometrical decay, that is for ρ ∈ (0, 1) we have

δ1(k) ∨ δ2(k) ≤ CXρ
k, k ∈ N0,

where CX > 0 is a positive constant only depending on the Bernoulli shift process (Xj)j∈Z. It is
worth stressing out, that for ρ = 0 we would find ourselves in the i.i.d. case while for ρ = 1 we
have Xj = X0 for all j ∈ Z. In some sense, we can interpret ρ as an indicator of the underlying
dependency. For the distribution of the error density, we consider the following three cases

a) UNIFORM DISTRIBUTION: g1(x) = 1[0,1](x),

b) SYMMETRIC NOISE: g2(x) = 1(1/2,3/2)(x) and

c) BETA DISTRIBUTION: g3(x) = 2(1− x)1(0,1)(x).

We see that g1 and g2 fulfill [G1] with the parameter γ = 1 and g3 fulfills it with γ = 2. Due to
the fact that for the true survival function holds S(x) ∈ [0, 1], x ∈ R,we can improve the estimator
Ŝ
k̂
by defining

S̃
k̂
(x) :=


0 , Ŝ

k̂
(x) ≤ 0;

Ŝ
k̂
(x) , Ŝ

k̂
(x) ∈ [0, 1];

1 , Ŝ
k̂
(x) ≥ 1.

By minimizing an integrated squared error over a family of histogram densities with randomly
drawn partitions and weights we select γ = 1 and χ = 0.8 for f̂

k̂
. For the case c)we choose χ = 0.4.

183



0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 4.4: Considering the estimators S̃
k̂
, we depict 50 Monte-Carlo simulations with varying

sample size n = 500 (top), n = 2000 (bottom) and in the case (i) (left), (ii) middle and
(iii) (right) with error density b) and ρ = 0.5. The true survival function S is given
by the black curve while the red curve is the point-wise empirical median of the 50
estimates.

Figure 4.4 visualizes the performance of the proposed estimator for the different examples of sta-
tionary distributions. Furthermore, it is clear to see that a higher sample size leads to a smaller
integrated squared error.
In Figure 4.5, we see the different influence of varying examples of error densities. While in the left
and the middle column the estimators seems to behave similar, the right column differs strongly
from the other two. This observation is consistent with the risk bounds developed in Proposi-
tion 4.2.6.
Varying the value ρ ∈ {0.1, 0.5, 0.9}, we see in Figure 4.6 the influence of the underlying depen-
dency structure on the behavior of the estimator.
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Figure 4.5: Considering the estimators S̃
k̂
, we depict 50 Monte-Carlo simulations with varying

sample size n = 500 (top), n = 2000 (bottom) and in the case (ii) with varying error
density a) (left), b) (middle) and c) (right) and ρ = 0.5. The true survival function S is
given by the black curve while the red curve is the point-wise empirical median of the
50 estimates.
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Figure 4.6: Considering the estimators S̃
k̂
, we depict 50 Monte-Carlo simulations with fixed sam-

ple size n = 500 in the case (ii) (top) and (iii) (bottom)with error density (b) and varying
coefficient ρ = 0.1 (left), ρ = 0.5 and ρ = 0.9 (right). The true survival function S is
given by the black curve while the red curve is the point-wise empirical median of the
50 estimates.
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4.2.5 Conclusion

In this section, we studied the family of estimators (Ŝk)k∈R+ , proposed in Section 4.1 for the survival
function S : R+ → [0, 1] of a positive random variable X based on observations (Yj)j∈JnK with
multiplicative measurement error under dependency.
More precisely, we introduced the notion of Bernoulli shift processes and deduced an upper bound
for the mean integrated squared error of the estimator Ŝk and the fully data-driven estimator Ŝ

k̂
.

A Monte-Carlo simulation then visualize the reasonable behavior of our estimation strategy for
varying scenarios as different error densities or varying dependency.

4.2.6 Proofs

Proof of Proposition 4.2.5. First we see that for all k ∈ N holds

E(|Z0 − Z
∗(−k)
0 |p) = E

|
∏

j∈N0,j ̸=k
exp(ξ−j)

ρj |p| exp(ξ−k)ρ
k − exp(ξ∗−k)

ρk |p
 .

Now applying the mean-value theorem and the monotonicity of x 7→ exp(ρkx) we get

| exp(ξ−k)ρ
k − exp(ξ∗−k)

ρk | ≤ ρk|ξ−k − ξ∗−k| exp(ρkξ−k ∨ ξ∗−k)

where a ∧ b := min(a, b) for a, b ∈ R. Now this implies that

E(|Z0 − Z
∗(−k)
0 |p)1/p ≤ ρkE((Z0 ∨ Z∗

0 )
p|ξ−k − ξ∗−k|p)1/p

≤ 4ρkE(Z2p
0 )1/(2p)E(|ξ0|2p)1/(2p)

by application of the Cauchy-Schwarz inequality.

Proof of Proposition 4.2.6. Due to the independence between (Uj)j∈JnK and (Xj)j∈JnK we derive
E|X(M̂Y (t)) = M3/2[g](t)M̂X(t), t ∈ R.

By a direct calculus, we see that

EnfY (|M̂Y (t)−M3/2[fY ](t)|2) = EnfY (|M̂Y (t)− E|X(M̂Y (t))|2) + |M3/2[g](t)|2Varnf (M̂X(t))

which implies by exploiting that

EnfY (X
1/2+it
j X

1/2+it
j′ (U

1/2+it
j −M3/2[g](t))(U

1/2+it
j′ −M3/2[g](t))) = δj,j′Ef (X1)Varg(U

1/2+it
1 )

for j, j′ ∈ JnK that
EnfY (|M̂Y (t)−M3/2[fY ](t)|2) =

Ef (X1)Varg(U
1/2+it
1 )

n
+ |M3/2[g](t)|2Varnf (M̂X(t))

≤ σY
n

+ |M3/2[g](t)|2Varnf (M̂X(t)).
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We deduce that

EnfY (∥Ŝk − Sk∥2) =
1

2π

∫
(−k,k)

EnfY (|M̂Y (t)−M3/2[fY ](t)|2)
|(1/2 + it)M3/2[g](t)|2

dλ(t)

≤ σY∆g(k)

n
+

1

2π

∫
(−k,k)

Varnf (M̂X(t))

1/4 + t2
dλ(t).

The rest of the proof follows by the same steps as in the proof of Proposition 4.1.3.

Proof of Lemma 4.2.7. We begin by proving that for all x, y ∈ R+ the inequality

|x1/2+it − y1/2+it| ≤ (1 + 4|t|1/2)|x− y|1/2. (4.14)

holds true. Without loss of generality let x > y > 0. By the elementary inequality |x1/2 − y1/2| ≤
|x− y|1/2 we have

|g(x)− g(y)| = |x1/2+it − y1/2+it| ≤ |xit| · |x− y|1/2 + |y|1/2 · |xit − yit|
≤ |x− y|1/2 + |y|1/2 · |xit − yit|

We then bound the second term. First we see that

|y|1/2 · |xit − yit| ≤ |y|1/2 · (| cos(t log(x))− cos(t log(y))|+ |(sin(t log(y))− sin(t log(y)))|)

Moreover,

| cos(t log(x))− cos(t log(y))| ≤ |t| · log(x/y) = |t| · log
(
1 +

x− y

y

)
≤ |t| · x− y

y
.

where we used log(1 + z) ≤ z for z > 0. At the same time | cos(t log(x)) − cos(t log(y))| ≤ 2.
Applying both bounds together and exploiting min{1, z} ≤ zs for z ≥ 0, s ∈ (0, 1),

|y|1/2 · | cos(t log(x))− cos(t log(y))| ≤ 2|y|1/2min
{
|t|x− y

y
, 1
}

≤ 2|t|1/2|y|1/2
∣∣∣x− y

y

∣∣∣1/2
= 2|t|1/2| · |x− y|1/2.

A similar argument applies for the sine terms, which delivers

|y|1/2 · |xit − yit| ≤ 4|t|1/2 · |x− y|1/2

The case y > x > 0 follows analogously by interchanging the roles of x and y. Therefore, (4.14)
holds true.
For the filtration Fj := σ(ξj−i : i ∈ N0) let us define Pj−k(Z) := E(Z|Fj−k) − E(Z|Fj−k−1) for
a random variable such that the increments are well-defined and let g : R+ → C be a measur-
able function. Then by Wu (2005) the projection property of the conditional expectation and an
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elementary property of δ2 (cf. Wu (2005), Theorem 1), we have

Varnf

∑
j∈JnK g(Xj)

1/2

=
∑
ℓ∈N0

Enf

∑
j∈JnKPj−ℓ(g(Xj))

21/2

≤ n1/2
∑
ℓ∈N0

Ef (|g(X0)− g(X
∗(−ℓ)
0 )|2)1/2.

Now, exploiting (4.14) we deduce (i) and (ii) since

Varnf

∑
j∈JnKX

1/2+it
j

 ≤ n(1 + 4|t|1/2)2
∑
ℓ∈N0

Ef (|X0 −X
∗(−ℓ)
0 |)1/2

2

= 32n(1 + |t|)

∑
ℓ∈N0

δ1(ℓ)
1/2

2

and

Varnf

∑
j∈JnKXj

 ≤ n

∑
ℓ∈N0

Ef (|X0 −X
∗(−ℓ)
0 |2)1/2

2

= n

∑
ℓ∈N0

δ2(ℓ)

2

which delivers our desired statement.

Proof of Lemma 4.2.10. The decomposition ν̄h = ν̄h,in + ν̄h,de where

ν̄h,in := n−1
n∑
j=1

(νh(Yj)− E|X(νh(Yj))) and ν̄h,de = n−1
n∑
j=1

E|X(νh(Yj)))− EnfY (νh(Yj))

implies the inequality

max
k∈Kn

( sup
h∈Bk

ν̄2h − p(k)
)
+
≤ 2 max

k∈Kn

( sup
h∈Bk

ν̄2h,in −
p(k)

2

)
+
+ 2 max

k∈Kn

sup
h∈Bk

ν̄2h,de.

Let us start with the second summand. We get for any k ∈ Kn and any h ∈ Bk,

1

n

n∑
j=1

E|X(νh(Yj))− EnfY (νh(Yj)) =
∫
(−k,k)

M1/2[h](t)
∑n

j=1 E|X(Y
1/2+it
j )− E(Y 1/2+it

j )

2πn(1/2 + it)M3/2[g](t)
dλ(t)

=

∫
(−k,k)

M1/2[h](−t)
∑n

j=1X
1/2+it
j − E(X1/2+it

j )

2πn(1/2 + it)
dλ(t).

Applying now the Cauchy-Schwarz inequality, we deduce

|ν̄h,de| ≤

(∫
(−k,k)

|n−1
∑n

j=1X
1/2+it
j − E(X1/2+it

j )|2

2π(1/4 + t2)
dλ(t)

)1/2

∥h∥.
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Now since ∥h∥ ≤ 1,

EnfY (max
k∈Kn

sup
h∈Bk

ν̄2h,de) ≤
1

2π

∫
(−Kn,Kn)

Varnf (M̂X(t))

1/4 + t2
dλ(t).

Now, let us define p̃(k) := 24σU σ̂X∆g(k)n
−1. Then,

max
k∈Kn

( sup
h∈Bk

ν2h,in −
1

2
p(k))+ = max

k∈Kn

( sup
h∈Bk

ν2h,in −
1

2
p̃(k))+ +

1

2
max
k∈Kn

(p̃(k)− p(k))+.

For the second summand we have

EnfY (max
k∈Kn

(p̃(k)− p(k))+) ≤ 24σUEnfY ((σ̂X − σX)+).

Let us defineΩX := {|σ̂X−σX | ≤ σX/2}. Then onΩX we have σ̂X ≤ 3σX/2 and thus EnfY ((σ̂X−
σX)+) = Enf ((σ̂X − σX)+1Ωc

X
) ≤ 2σ−1

X Varnf (σ̂X) by application of Cauchy-Schwarz and the
Markov’s inequality.
For the first summand we see

EnfY (max
k∈Kn

( sup
h∈Bk

ν̄2h,in −
1

2
p̃(k))+) = Enf (E|X(max

k∈Kn

( sup
h∈Bk

ν̄2h,in −
1

2
p̃(k))+)).

Thus we start by considering the inner conditional expectation to bound the term. By the con-
struction of ν̄h,in, its summands conditioned on σ(Xi, i ≥ 0) are independent but not identically
distributed. We therefore split the process for a sequence (dn)n∈N again in the following way

ν̄h,1 :=n
−1

n∑
j=1

νh(Yj)1(0,dn)(Y
1/2
j )− E|X(νh(Y1)1(0,dn)(Y

1/2
1 ))

and ν̄h,2 := n−1
n∑
j=1

νh(Yj)1(dn,∞)(Y
1/2
j )− E|X(νh(Y1)1(dn,∞)(Y

1/2
1 ))

to get

E|X(max
k∈Kn

( sup
h∈Bk

|ν̄h,in|2 −
1

2
p̃(k))+) ≤ 2E|X(max

k∈Kn

( sup
h∈Bk

|ν̄h,1|2 −
1

4
p̃(k))+) + 2E|X(max

k∈Kn

sup
h∈Bk

|ν̄h,2|2),

:=M1 +M2

where we will now consider the two summandsM1,M2 separately.
To bound M1 we use the Talagrand inequality 3.10 on the term E|X(suph∈Bk

|ν̄h,1|2 − 1
4 p̃(k))+.

Indeed, we have

M1 ≤
Kn∑
k=1

E|X( sup
h∈Bk

|ν̄h,1|2 −
1

4
p̃(k))+,

whichwill be used to show the claim. Wewant to emphasize that we are able to apply the Talagrand
inequality on the sets Bk since each set has a dense countable subset and due to continuity argu-
ments. Further, we see that the random variables νh(Yj)1(0,dn)(Y

1/2
j )−E|X(νh(Y1)1(0,dn)(Y

1/2
1 )),

189



j = 1, . . . , n, are conditioned on σ(Xi, i ≥ 0), centered and independent but not identically dis-
tributed. In order to apply Talagrand’s inequality, we need to find the constants Ψ, ψ, τ such that

sup
h∈Bk

sup
y>0

|νh(y)1(0,dn)(y
1/2)| ≤ ψ; E|X( sup

h∈Bk

|ν̄h,1|) ≤ Ψ;

sup
h∈Bk

1

n

n∑
j=1

Var|X(νh(Yj)1(0,dn)(Y
1/2
j )) ≤ τ.

We start to determine the constant Ψ2. Let us define M̃(t) := n−1
∑n

j=1 Y
1/2+it
j 1(0,dn)(Y

1/2
j ) as

an unbiased estimator of M3/2[fY 1(0,dn)](t) and

S̃k(x) :=
1

2π

∫
(−k,k)

x−1/2−it M̃(t)

(1/2 + it)M3/2[g](t)
dλ(t)

where n−1
∑n

j=1 νh(Yj)1(0,dn)(Yj) = ⟨S̃k, h⟩. Thus, we have for any h ∈ Bk that ν̄2h,1 = ⟨h, S̃k −
E|X(S̃k)⟩2 ≤ ∥h∥2∥S̃k − E|X(S̃k)∥2. Since ∥h∥ ≤ 1, we get

E|X( sup
h∈Bk

ν̄2h,1) ≤ E|X(∥S̃k − E|X(S̃k)∥2) =
1

2π

∫
(−k,k)

E|X(|M̃(t)− E|X(M̃(t))|2)
(1/4 + t2)|M3/2[g](t)|2

dλ(t).

Now since Y 1/2+it
j 1(0,dn)(Y

1/2
j )−E|X(Y

1/2+it
j 1(0,dn)(Y

1/2
j )) are independent conditioned on σ(Xi :

i ≥ 0) we obtain

E|X(|M̃(t)− E|X(M̃(t))|2) ≤ 1

n2

n∑
j=1

E|X(Yj1(0,dn)(Y
1/2
j )) =

σU
n
σ̂X ,

which implies

E|X( sup
h∈Bk

ν̄2h,1) ≤ σU σ̂X
∆g(k)

n
=: Ψ2.

Thus 6Ψ2 = 1
4 p̃(k).

Next we consider ψ. Let y > 0 and h ∈ Bk. Then using the Cauchy-Schwarz inequality,

|νh(y)1(0,dn)(y)|
2 = (2π)−2d2n|

∫
(−k,k)

yit
M1/2[h](−t)

(1/2 + it)M3/2[g](t)
dλ(t)|2

≤ (2π)−1d2n

∫
(−k,k)

|(1/2 + it)M3/2[g](t)|−2dλ(t) ≤ d2n∆g(k) =: ψ2

since |yit| = 1 for all t ∈ R. Next we consider τ . In fact for h ∈ Bk we can conclude

Var|X(νh(Yj)1(0,cn)(Y
1/2
j )) ≤ E|X(νh(Yj)

2)

=

∫ k

−k

∫ k

−k

E|X(Y
1+i(t1−t2)
j )

4π2
M1/2[h](−t1)

(1/2 + it1)M3/2[g](t1)

M1/2[h](t2)

(1/2− it2)M3/2[g](−t2)
dλ2(t1, t2)

=

∫
(−k,k)2

X
1+i(t1−t2)
j Eg(U

1+i(t1−t2)
1 )M1/2[h](−t1)

4π2(1/2 + it1)M3/2[g](t1)

M1/2[h](t2)

(1/2− it2)M3/2[g](−t2)
dλ2(t1, t2)

= Xj

∫
R+

g(u)u

∣∣∣∣M†
1/2[1[−k,k](t)

M1/2[h](t)

(1/2− it)M3/2[g](−t)
](u)

∣∣∣∣2 dλ(u).
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Taking the supremum of u 7→ ug(u) and applying the Plancherel identity delivers

Var|X(νh(Yj)1(0,dn)(Y
1/2
j )) ≤ Xj∥xg∥∞

1

2π

∫
(−k,k)

|M1/2[h](t)|2

|(1/2 + it)M3/2[g](t)|2
dλ(t).

Now since ∥h∥2 ≤ 1, and for Gk(t) := 1[−k,k](t)|(1/2 + it)M3/2[g](t)|−2,

sup
h∈Bk

1

n

n∑
j=1

Var|X(νh(Yj)1(0,dn)(Y
1/2
j )) ≤ σ̂X∥Gk∥∞∥xg∥∞ =: τ.

Hence, we have nΨ2

6τ =
σU∆g(k)

6∥xg∥∞∥Gk∥∞ and nΨ
100ψ =

√
σU σ̂Xn
100dn

. Now, choosing dn :=
√
σU σ̂Xn

a100 log(n) gives
nΨ
100ψ = a log(n), and we deduce

E|X

((
sup
h∈Bk

ν̄2h,1 −
1

4
p̃(k)

)
+

)
≤ C

n

(
σ̂X∥Gk∥∞∥xg∥∞ exp(− πσU∆g(k)

3∥xg∥∞∥Gk∥∞
)

+
σU σ̂X∆g(k)

log(n)2
n−a

)
.

Under [G1] we have Cgk2γ−1 ≥ ∆g(k) ≥ cgk
2γ−1 and for all t ∈ R it holds true that cgk2γ−2 ≤

|Gk(t)| ≤ Cgk
2γ−2. Hence,

Kn∑
k=1

E|X

((
sup
h∈Bk

ν̄2h,1 −
1

4
p̃(k)

)
+

)
≤ Cσ̂X

n

(
Kn∑
k=1

C(g)k2γ−1 exp(−C(g)k) +
Kn∑
k=1

C(g)
k2γ−1

log(n)2na

)

where the first sum is bounded inn ∈ N. The second sum can be bounded byC(g)n
2γ

2γ−1
−a
/ log(n)2

which by choosing a = 2γ
2γ−1 ensures the boundedness in n ∈ N. Thus we have

Kn∑
k=1

E|X

((
sup
h∈Bk

ν̄2h,1 −
1

4
p̃(k)

)
+

)
≤ C(g)σ̂X

n
.

Now, we consider M2. Let us define Sk := Ŝk − S̃k. Then from νh,2 = νh,in − νh,1 we deduce
ν2h,2 = ⟨Sk − E|X(Sk), h⟩2 ≤ ∥Sk − E|X(Sk)∥2 for any h ∈ Bk. Further, for any k ∈ Kn,
∥Sk − E|X(Sk)∥2 ≤ ∥SKn − E|X(SKn)∥2 and

E|X(∥SKn − E|X(SKn))∥2) =
1

2π

∫ Kn

−Kn

Var|X(M̂(t)− M̃(t))|(1/2 + it)M3/2[g](t)|−2dt

≤ 1

n2

n∑
j=1

E|X(Yj1(dn,∞)(Y
1/2
j ))∆g(Kn).

Let us define the event ΞX := {σ̂X ≥ σX/2}. Then, we have

1

n2

n∑
j=1

E|X(Yj1(dn,∞)(Y
1/2
j ))∆g(Kn)1ΞX

≤ 1

n

n∑
j=1

X
1+p/2
j E(U1+p/2

j )d−pn 1ΞX
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where on ΞX we can state that d−pn = C(g)n−p/2(σ̂X)
−p/2 log(n)p ≤ C(g)σ

−p/2
X n−p/2 log(n)p.

Choosing p = 3 leads to E|X(∥SKn − E|X(SKn))∥2)1ΞX
≤ C(g)σ

−3/2
X
n Eg(U

5/2
1 )n−1

∑n
j=1X

5/2
j .

On the other hand,

1

n2

n∑
j=1

E|X(Yj1(dn,∞)(Y
1/2
j ))∆g(Kn)1Ξc

X
≤ σX

2
1Ξc

X
≤ σX

2
1Ωc

X
.

These three bounds imply

EnfY (max
k∈Kn

( sup
h∈Bk

ν2h,in −
1

2
p(k))+) ≤ C(g)

(σX
2n

+
Ef (X

5/2
1 )

σ
3/2
X n

+
2Varnf (σ̂X)

σX

)
.

Proof of Lemma 4.1.13. First we see that

EnfY ((pen(k̂)− p̂en(k̂))+) = 2χEnfY ((σY /2− σ̂Y )+∆g(k̂)n
−1) ≤ 2χEnfY ((σY /2− σ̂Y )+).

On ΩY := {|σY − σ̂Y | ≤ σY /2} we have σY /2− σ̂Y ≤ 0. Therefore,

EnfY ((pen(k̂)− p̂en(k̂))+) ≤ 2χEnfY ((σY /2− σ̂Y )+1Ωc) ≤ 2χ
√

VarnfY (σ̂Y )P
n
fY

(Ωc)

by applying the Cauchy-Schwarz inequality. Next, by Markov’s inequality, PnfY [|σ̂Y − σY | ≥
σY /2] ≤ 4VarfY (σ̂Y )σ

−2
Y which implies E((pen(k̂)− p̂en(k̂))+) ≤ 4χVar(σ̂Y )σ−1

Y . In analogy to
the proof of Proposition 4.2.6 we get

VarnfY (σ̂Y ) ≤
EfY (Y 2

1 )

n
+ Eg(U1)

2Varnf (σ̂X).
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CHAPTER5

Local estimation under multiplicative measurement errors
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5.1 Introduction

In this chapter we are interested in estimating the value ϑ(f) of a known linear functional evaluated
at an unknown density f : R+ → R+ of a positive random variable X , when Y = XU is only
observable for some multiplicative positive error U . We assume thatX and U are independent and
that U has a known density g : R+ → R+. In such a multiplicative measurement error model
the density fY : R+ → R+ (of the observable Y ) is consequently given by the multiplicative
convolution between f and g given through

fY (y) = (f ∗ g)(y) =
∫
R+

f(x)g(y/x)x−1dλ(x), y ∈ R+,

compare Definition 2.4.1. The estimation of f using an independent and identically distributed
(i.i.d.) sample from fY is therefore called a multiplicative deconvolution problem.
A list of literature concerning the statistical inference in the multiplicative measurement error
model can be found in Section 3.2.1.
In this section, we focus on the estimation of the value ϑ(f) of a known linear functional of the
unknown density f . The non-parametric estimation of the value of a linear functional from Gaus-
sian white noise observations is subject of considerable literature (in case of direct observations see

193



Speckman (1979), Li (1982) or Ibragimov and Has’minskii (1984), while in case of indirect ob-
servations we refer to Donoho and Low (1992); Donoho (1994) or Goldenshluger and Pereverzev
(2000) and references therein). In additive deconvolution linear functional estimation has been
studied for instance by Butucea and Comte (2009), Mabon (2016) and Pensky (2017) to mention
but a few. Notably, the estimation of the value of a linear functional evaluated at the Lévy measure
assuming observations from a Lévy process has been considered by Kappus (2014). In the litera-
ture, the most studied examples for estimating linear functionals are point-wise estimation of the
unknown density f , its derivatives, its associated survival, cumulative distribution function or its
Laplace transform, and the estimation of their (possibly weighted) averages over a subinterval of
their domains. All these examples are particular cases of our general setting. More precisely, we
show below, that in each of those examples the quantity of interest can be written as the value of
a linear functional evaluated at the Mellin transform M[f ] : R → C of f in the form

ϑ(f) =
1

2π

∫
R
Ψ(−t)M[f ](t)dλ(t)

where Ψ : R → C is a known function. This particular representation allows us to use a plug-in
estimator ϑ̂k := ϑ(f̂k) based on the density estimator f̂k of f proposed in Section 3.2. It is worth
noting that in Section 3.2 we have shown, that even relatively large sample sizes may not be of much
help estimating accurately the density f as a whole. The reason for these poor non-parametric
convergence rates is intrinsic to the considered multiplicative measurement error model as it leads
in a natural way to an ill-posed inverse problem. Exploiting properties of the Mellin transform we
characterize the underlying inverse problem and natural regularity conditions which borrow ideas
from the inverse problems community (see e.g. Engl et al. (1996)). Those conditions essentially
involve the decay of the Mellin transform of f and g. In this work we eventually impose conditions
on the decay of the Mellin transform of f and g, and the decay of the function Ψ which also
ensure that our estimator is well-defined. We shall access the accuracy of the proposed plug-in
estimator by its mean squared error. We identify conditions on f , g and Ψ under which the plug-
in estimator attains a parametric rate of convergence. We illustrate those conditions by considering
different scenarios. The convergence rate of the proposed plug-in estimator ϑ̂k, however, depends
crucially on a tuning parameter k, which has to be chosen non-trivially if the rate is non-parametric.
Provided its optimal choice we show that uniformly over MELLIN-SOBOLEV SPACES the proposed
plug-in estimator can attain minimax-optimal non-parametric rates. However, since the necessary
information for an optimal choice of the tuning parameter k is widely inaccessible in practice, we
propose a fully data-driven choice k̂. The procedure for the local selection of the tuning parameter
is inspired by the work of Goldenshluger and Lepski (2011) who consider data-driven bandwidth
selection in kernel density estimation. We establish an oracle inequality for the completely data-
driven plug-in spectral cut-off estimator ϑ̂

k̂
under fairly mild assumptions on f , g and Ψ. The

upper bound of its mean squared error compared to the minimax rate of convergence features an
additional logarithmic factor which possibly results in a deterioration of the rate. The appearance
of the logarithmic factor within the rate is a known fact in the context of local estimation and it is
widely considered as an acceptable price for adaptation (cf. Brown and Low (1996) in the context
of non-parametric Gaussian regression or Laurent et al. (2008) given direct Gaussian observations).
We shall emphasize that as usual in nonparametric estimation in comparison to the estimation of
the density as a whole as only local features are of interest, it is likely that compared to the overall
performance, certain local features might be estimated more accurately even with the logarithmic
factor.
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This Section is organized in the following way: in Section 5.2 we motivate the linear functional
model by presenting several local estimation problems which can be interpreted as the estimation of
the evaluation of a linear functional in f . Furthermore, we propose a plug-in estimator and prove
a risk decomposition. In Section 5.3 we state an upper bound of the maximal mean squared error
over Mellin-Sobolev spaces of the plug-in spectral cut-off estimator with optimally selected tuning
parameter realizing a squared-bias-variance trade-off. We show lower bounds for the point-wise
estimation of the unknown density f , the corresponding survival function and the derivative of
f that match the upper bounds up to the constants. Thereby, we establish in this situations the
minimax-optimality of the plug-in spectral cut-off estimator. We develop the data-driven plug-
in estimator in Section 5.4. We state an oracle type upper bound for the mean squared error of
the plug-in spectral cut-off estimator with fully-data driven choice of the tuning parameter. The
proofs can be found in the Section 5.6.

5.2 Estimation strategy

In the following paragraph we introduce the linear functional. We motivate it through a collec-
tion of examples and we determine sufficient conditions to ensure that the considered objects are
well-defined. We then define an estimator based on the empirical Mellin transform and the multi-
plication theorem for Mellin transforms. Let c ∈ R and f ∈ L2(R+, x

2c−1) be fixed. In the sequel
we are interested in estimating the value of the linear functional evaluated at the Mellin transform
Mc[f ] : R → C of f given by

ϑ(f) =
1

2π

∫
R
Ψ(−t)Mc[f ](t)dλ(t) (5.1)

for a function Ψ : R → C with Ψ(t) = Ψ(−t) for any t ∈ R. The integral in (5.1) is well-defined
whenever ΨMc[f ] ∈ L1(R) which we assume from now on. Obviously, the latter is trivially
fulfilled, if Ψ ∈ L2

R. However, we may emphasize that the condition ΨMc[f ] ∈ L1(R) neither
imposes thatΨ vanishes at infinity nor that it is square integrable. Evidently, this condition enables
us depending on Mc[f ] to deal with more demanding functionals, such as the estimation of the
point-wise evaluation of the density f or its derivative. Before we present an estimator for ϑ(f) let
us briefly illustrate our general approach by typical examples.

Example 5.2.1 (Point wise density evaluation):
Let xo ∈ R+. If Mc[f ] ∈ L1

R then we have

f(xo) = M†
c[Mc[f ]](xo) =

1

2π

∫
R
x−c−ito Mc[f ](t)dλ(t) = ϑ(f),

with Ψ(t) := x−c+ito , t ∈ R, satisfying Ψ(t) = Ψ(−t) for all t ∈ R.

f ∈ L2(R+, x
2c−1) already implies that |Mc[f ](t)| → 0 for |t| → ∞. Thus for the following

four examples, Example 5.2.2, Example 5.2.3, Example 5.2.4 and Example 5.2.5, the assumption
ΨMc[f ] ∈ L1(R) is trivially fulfilled due to the decay of the specific functions Ψ in each case and
can be therefore omitted.

195



Example 5.2.2 (Point wise Cumulative distribution function evaluation):
Let xo ∈ R+. Then for c < 1 the function Ψ(t) := (1− c+ it)−1x1−c+ito fulfills ΨMc[f ] ∈ L1(R)
and ∫ xo

0
f(x)dλ(x) =: F (xo) =

1

2π

∫
R
x−(c−1)−it
o (1− c− it)−1Mc[f ](t)dλ(t) = ϑ(f).

Here, F (xo) =
∫ xo
0 f(x)dλ(x) is the evaluation of the c.d.f. F at the point xo. The equality

F (xo) = (2π)−1⟨Ψ,Mc[f ]⟩R follows from the Plancherel identity, Proposition 2.3.5, exploiting
that F (xo) = ⟨ψ, f⟩x2c−1 for ψ(x) := x1−2c1(0,xo) with ψ ∈ L2(R+, x

2c−1) ∩ L1(R+, x
c−1) and

Mc[ψ] = Ψ.

Example 5.2.3 (Point wise survival function evaluation):
Let xo ∈ R+. Then for c > 1 the function Ψ(t) := (c− 1− it)−1x1−c+ito fulfills ΨMc[f ] ∈ L1(R)
and ∫ ∞

xo

f(x)dλ(x) =: S(xo) =
1

2π

∫
R
x−(c−1)−it
o (c− 1 + it)−1Mc[f ](t)dλ(t) = ϑ(f).

Here, S(xo) =
∫∞
xo
f(x)dλ(x) is the evaluation of the survival function S at the point xo. The

equality S(xo) = (2π)−1⟨Ψ,Mc[f ]⟩R follows from the Plancherel identity, Proposition 2.3.5.

Example 5.2.4 (Point wise mean residual life evaluation):
The MEAN RESIDUAL LIFE at the point xo is defined by

m(xo) := Ef (X − xo|X > xo) =
Ef ((X − xo)1(0,∞)(X − xo))

S(xo)

where S(xo) = P(X > xo) denotes the survival function corresponding to f , compare Guess and
Proschan (1988). Interestingly, we have Ef ((X − xo)1(xo,∞)(X)) =

∫∞
x0
S(x)dλ(x) which can be

written as the value ϑ(f) of a linear functional in the form of (5.1) for c > 2 choosing

Ψ(t) = (2− c+ it)−1(1− c+ it)−1x2−c+ito .

Since ϑ(f) =
∫∞
x0
S(x)dλ(x) is obtained by an integration of the survival function we expect a

higher estimation accuracy than for the point-wise Estimation of the survival function. Conse-
quently, the estimation of the mean residual life will roughly speaking inherent the accuracy of the
estimator of its nominator.

Example 5.2.5 (Point wise Laplace transform evaluation):
Consider the evaluation L(xo) =

∫
R+

exp(−xox)f(x)dλ(x of the Laplace transform L of f at the
point xo. For c < 1 the function ψ(x) := x1−2c exp(−xox), x ∈ R+ belongs to L1(R+, x

c−1) ∩
L2(R+, x

2c−1) and setting

Ψ(t) := Mc[ψ](t) =

∫
R+

x−c+it exp(−xox)dλ(x) = xc−1−it
o Γ(1− c+ it)

we get ϑ(f) = L(xo) by an application of the Plancherel identity, see Proposition 2.3.5.
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Nevertheless, there we want to include to our study examples of Ψ where Ψ is not bounded. In
these cases, additional assumption on the decay of Mc[f ] are necessary. Later on, we will see that
these assumptions are natural in terms of regularity assumptions on the density f to ensure that
point evaluations of the density, respectively its derivative, are well-defined.

Example 5.2.6 (Point wise derivative of the density evaluation):
If t 7→ (c + it)Mc[f ](t) ∈ L1(R) then the point evaluation f ′(xo) of the derivative f ′ of f in xo
setting

Ψ(t) := −x−c−1+it
0 (c− it)

satisfies ϑ(f) = f ′(xo).

It is worth stressing out that in all five examples the quantity of interest does not depend on value
of the model parameter c ∈ R. However, this is not anymore true for their representations in form
of (5.1), since value ϑ(f) equals a known linear functional evaluated at the Mellin transformMc[f ]

of f . The conditions on c ∈ R in Example 5.2.1-5.2.6 and the assumption f ∈ L2(R+, x
2c−1)

ensure that the representation ϑ(f) is well-defined, which is essential for our estimation strategy.
The value of the model parameter c ∈ R imposes amongst others moment conditions on the
unobserved variablesX andU . Consequently, we present the upcoming theory for almost arbitrary
values of c ∈ R.

Remark 5.2.7 (Relationship between survival and cumulative distribution function):
Consider Example 5.2.2 and 5.2.3. Since S = 1 − F there is an elementary connection between
the estimation of the survival function and the estimation of the c.d.f.. For example, we eventually
deduce from a c.d.f. estimator F̂ (xo) a survival function estimator Ŝ(xo) through Ŝ(xo) := 1 −
F̂ (xo) with same risk EfY ((Ŝ(xo)− S(xo))

2) = EfY ((F̂ (xo)− F (xo))
2). Thus we may define for

any c ̸= 1 a survival function (respectively c.d.f.) estimator using Example 5.2.2 and 5.2.3.

Our estimator of the quantity ϑ(f) makes uses of the convolution theorem, Proposition 2.2.5, as
done in Section 3.2. To do so, let f ∈ L2(R+, x

2c−1)∩L1(R+, x
c−1) and g ∈ L1(R+, x

c−1) which
ensure that Mc[fY ] = Mc[f ]Mc[g]. Under the mild assumption Mc[g](t) ̸= 0 for all t ∈ R we
obviously have Mc[f ] = Mc[fY ]/Mc[g] allowing us to rewrite (5.1) as follows

ϑ(f) =
1

2π

∫
R
Ψ(−t)Mc[fY ](t)

Mc[g](t)
dλ(t). (5.2)

In the sequel we assume that for a fixed c ∈ R the densities f and g, and the function Ψ satisfy
f ∈ L2(R+, x

2c−1) ∩ L1(R+, x
c−1);

g ∈ L1
R+

(xc−1) with ∀t ∈ R : Mc[g](t) ̸= 0;

ΨMc[f ] ∈ L1
R with ∀t ∈ R : Ψ(t) = Ψ(−t)

(5.3)

which ensure that the representation of the real-valued linear functional ϑ(f) in (5.2) is well-
defined.
Remark 5.2.8:
The assumption thatMc[g] does not vanish onR is rather typical and it is fulfilled bymany examples
of densities. Note that the density f , and therefore also ϑ(f), is without an additional assumption
not identifiable anymore if Mc[g] vanishes for example on a non-empty interval. However, the
assumption can be relaxed to oscillating or vanishing Mc[g] if the estimator is based on a ridge
approach, compare Hall and Meister (2007) and Section 3.4.
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A naive approach based on a sample (Yj)j∈JnK from fY is to replace in (5.2) the quantity Mc[fY ]

by its empirical counterpart M̂c(t) := n−1
∑

j∈JnK Y c−1+it
j , t ∈ R. However, the resulting inte-

gral is not well-defined, since ΨM̂c/Mc[g] is generally not integrable. We ensure integrability
introducing an additional spectral cut-off regularization which leads to the following estimator

ϑ̂k :=
1

2π

∫
[−k,k]

Ψ(−t) M̂c(t)

Mc[g](t)
dt for any k ∈ R+. (5.4)

The regularization of the inverse Mellin transform using a spectral cut-off approach is inspired by
Section 3.2. The following proposition establishes consistency of the estimator under a suitable
choice of the cut-off parameter k ∈ R+.

Proposition 5.2.9 (Upper bound of the risk):
In addition to (5.3), assume that σY := EfY (Y

2(c−1)
1 ) <∞. Then for any k ∈ R+ we have

EnfY (|ϑ̂k − ϑ(f)|2) ≤ ∥1(k,∞)ΨMc[f ]∥2L1(R) +
σY
n

∥1[−k,k]Ψ/Mc[g]∥2L1(R). (5.5)

If additionally ∥x2c−1g∥∞ < ∞ setting ∆Ψ,g(k) := (2π)−1∥1[−k,k]Ψ/Mc[g]∥2R and Cg :=

∥x2c−1g∥∞/Eg(U2(c−1)
1 ) we obtain

EnfY (|ϑ̂k − ϑ(f)|2) ≤ ∥1(k,∞)ΨMc[f ]∥2L1
R
+ Cg

σY
n

∆Ψ,g(k). (5.6)

The first summand ∥1(k,∞)ΨMc[f ]∥2L1(R) is an upper bound of the squared bias term |EnfY (ϑ̂k) −
ϑ(f)|2 of our estimator. It is worth stressing out, that the squared bias term is vanishing for k → ∞
but is not in general monotone decreasing. For the upcoming analysis of the risk, the bound
∥1(k,∞)ΨMc[f ]∥2L1(R) simplifies the considerations since its both, monotone decreasing and con-
vergences to 0. Exploiting (5.5) the following consistency result can be deduced whose proof is
omitted.

Corollary 5.2.10 (Consistency):
In addition to (5.3), assume that σY := EfY (Y

2(c−1)
1 ) < ∞. Then for any sequence (kn)n∈N with

kn → ∞ and ∥1[−kn,kn]Ψ/Mc[g]∥2L1(R)n
−1 → 0 for n→ 0 holds

EnfY (|ϑ̂kn − ϑ(f)|2) → 0,

implying that |ϑ̂kn − ϑ(f)|2 P→ 0.

Remark 5.2.11:
Despite the fact, that the first bound (5.5) only requires a finite second moment of Xc−1 and
U c−1 in many cases we have ∆Ψ,g(k)∥1[−k.k]Ψ/Mc[g]∥−2

L1(R) → 0 as k → ∞. In other words
the bound on the variance term in (5.6) increases slower in k than the bound presented in
(5.5). It is worth stressing out, that there exist cases where the opposite effect occurs. For in-
stance let the error U be Lognormal distribution with parameter µ = 0, λ = 1, see Example
2.1.4. Then supu∈R+

u2c−1g(u) = supz∈R(2π)
−1/2 exp(2(c − 1)z) exp(−z2/2)) < ∞. Thus if

Ef (X2(c−1)) < ∞ both bounds are finite and following the argumentation of Butucea and Tsy-
bakov (2008) we see, that in the special case of point-wise density estimation, the inequality pre-
sented in (5.5) is more favorable than the inequality presented in (5.6).
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For the upcoming theorywe focus on the bound (5.6) of Proposition 5.2.9. Keep inmind that under
∥gx2c−1∥∞ < ∞ the order of the second summand, also referred as variance term, is essentially
determined by the order of ∆Ψ,g(k) as k tends to infinity.

5.3 Minimax theory

Let us briefly revisit the example of the estimation of the survival function S : R+ → [0, 1] based
on direct i.i.d. observations (Xj)j∈JnK, discussed in Section 4.1. Here, it is well-known that the
empirical survival function,

ŜX(x) = n−1
n∑
j=1

1(0,Xi)(x), x ∈ R+,

fulfills both

Enf (|ŜX − S∥2x0) ≤ C(f)n−1 and Enf (∥ŜX(xo)− S(xo)|2) ≤ C(f, xo)n
−1

under suitable moment assumptions. In other words, the empirical survival function attempts a
parametric rate n−1 for both risks. In Section 4.1, we have seen that for themean integrated squared
error risk, there are examples of error distributions g : R+ → R+ such that even in case of indirect
observations (Yj)j∈JnK, a parametric rate, respectively a almost parametric rate, is achievable with
the proposed estimator Ŝk, compare Proposition 4.1.5. There we have seen, that parametric rates
for the MISE can be deduced if Mc[g], the Mellin transform of g, converges not to fast to zero.
A similar effect occurs when considering the MSE. More generally we will see, that for the estima-
tion of ϑ(f) the interplay between the functions Ψ and Mc[g] determines whenever a parametric,
or almost parametric, rate is achievable.

The parametric case In this paragraphwe distinguish between two cases when due to Propo-
sition 5.2.9 the rate of convergence of the estimator is parametric or eventually non-parametric.
Note that the upper bound (5.6) of Proposition 5.2.9 is only informative, if ∆Ψ,g(k) < ∞ for all
k ∈ R+ which we assume from now on.

(P) If supk∈R+
∆Ψ,g(k) = ∥Ψ/Mc[g]∥2L2(R) <∞, i.e. the second summand in (5.6) is uniformly

bounded in k, then the rate is parametric. Precisely, since ΨMc[f ] ∈ L1
R for each n ∈ N

there exists a cut-off parameter kn ∈ R+ such that ∥1(k,∞)ΨMc[f ]∥2L1
R
≤ n−1 by dominated

convergence. Obviously, due to (5.6) of Proposition 5.2.9 for all k ∈ [kn,∞) we have

EnfY (|ϑ̂k − ϑ(f)|2) ≤ (1 + ∥f∥1,x2(c−1)∥g∥∞,x2c−1∥Ψ/Mc[g]∥2L2(R)) n
−1. (5.7)

(NP) Let supk∈R+
∆Ψ,g(k) = ∞, i.e. the second summand in (5.6) is unbounded as k → ∞. If

∥1(K,∞)ΨMc[f ]∥2L1
R
= 0 for some K ∈ R+ then the rate is again parametric, i.e., we obtain

a similar bound to (5.7) for k = K and replacing ∥Ψ/Mc[g]∥2L2(R) by ∆Ψ,g(K). On the
other hand if ∥1(k,∞)ΨMc[f ]∥2L1

R
> 0 for all k ∈ R+, then Proposition 5.2.9 (5.6) necessitates

an optimal choice kn := arg inf{∥1(k,∞)ΨMc[f ]∥2L1
R
+ ∆Ψ,g(k)n

−1 : k ∈ R+} of the cut-
off parameter realising a squared-bias-variance trade-off. Note that n∥1(kn,∞)ΨMc[f ]∥2L1

R
+

∆Ψ,g(kn) → ∞ as n→ ∞ and hence the rate is non-parametric.
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Let us now again study the families of SMOOTH ERROR DENSITIES and SUPER SMOOTH ERROR DENSITIES
introduced in Definition 3.2.4 and Definition 3.3.1.
The error density g is called SMOOTH if there exists a constant Cg, cg, γ ∈ R+ such that

cg(1 + t2)−γ/2 ≤
∣∣Mc[g](t)

∣∣ ≤ Cg(1 + t2)−γ/2, t ∈ R ([G1])

and it is referred to as SUPER SMOOTH if there exist constants Cg, cg, λ, ρ ∈ R+ and γ ∈ R such that

cg(1 + t2)−γ/2 exp(−λ|t|ρ) ≤
∣∣Mc[g](t)

∣∣ ≤ Cg(1 + t2)−γ/2 exp(−λ|t|ρ), t ∈ R. ([G2])

On the other hand to calculate the growth of ∆Ψ,g we specify the decay of Ψ. Similar to the error
density g we consider the case of a SMOOTH Ψ, i.e. there exists a constant cΨ, CΨ, p ∈ R such that

cΨ(1 + t2)−p/2 ≤
∣∣Ψ(t)

∣∣ ≤ CΨ(1 + t2)−p/2, t ∈ R, ([Ψ1])

and a SUPER SMOOTH Ψ, i.e. there exists cΨ, CΨ, µ,R ∈ R+ and p ∈ R such that

cΨ(1 + t2)−p/2 exp(−µ|t|R) ≤
∣∣Mc[Ψ](t)

∣∣ ≤ CΨ(1 + t2)−p/2 exp(−µ|t|R), t ∈ R. ([Ψ2])

As we see in the following illustration the examples of Ψ considered in Illustration Examples 5.2.1-
5.2.6 do fit into these two cases.

Example 5.3.1 (Examples 5.2.1-5.2.6 continued):
Let xo ∈ R+.

(i) POINT-WISE DENSITY ESTIMATION:
[Ψ1] is satisfied with p = 0, since |Ψ(t)| = x−co .

(ii) POINT-WISE C.D.F. ESTIMATION :
[Ψ1] is satisfied with p = 1 since |Ψ(t)| = x1−co |(1− c)2 + t2|−1/2.

(iii) POINT-WISE SURVIVAL FUNCTION ESTIMATION:
[Ψ1] is satisfied with p = 1 since |Ψ(t)| = x1−co |(1− c)2 + t2|−1/2.

(iv) MEAN RESIDUAL LIFE ESTIMATION:
[Ψ1] is satisfied with p = 2, since |Ψ(t)| = x2−co |((2− c)2 + t2)((1− c)2 + t2)|1/2.

(v) POINT-WISE LAPLACE TRANSFORM ESTIMATION.
[Ψ2] is satisfied with p = 1− 2c, µ = π/2 and R = 1, since |Ψ(t)| = tc−1

o |Γ(1− c+ it)|.

(vi) POINT-WISE DERIVATIVE ESTIMATION.
[Ψ1] is satisfied with p = −1, since |Ψ(t)| = x−c−1

o |c2 + t2|1/2.

Let us briefly summarize specifications for the parameters in [Ψ1], [Ψ2], [G1] and [G2] leading
to the scenario (P), i.e. a parametric rate of convergence. The next assertion is an immediate
consequence of Proposition 5.2.9 (5.6) (compare also the discussion of (P) above) and we omit the
proof.
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Corollary 5.3.2 (The parametric case):
In addition to (5.3), assume that EfY (Y

2(c−1)
1 ) < ∞ and ∥gx2c−1∥∞ < ∞. Then scenario (P)

occurs, i.e. the rate is parametric, in each of the three cases

(i) [Ψ1] and [G1], if 2p− 2γ > 1;

(ii) [Ψ2] and [G1] or

(iii) [Ψ2] and [G2], if (R > ρ), (R = ρ, µ > λ) or (R = ρ, µ = λ, 2p− 2γ > 1).

Let us briefly revisit the five examples forΨ introduced in the Examples 5.2.1-5.2.6. Clearly, we get
a parametric rate of convergence for point-wise estimation of the survival function and cumulative
distribution function if the error density fulfills [G1]with γ < 1/2. In contrast the rate is parametric
for point-wise estimation of the Laplace transform if the error density g fulfills either [G1] with
γ > 0 or [G2] with (ρ < 1), (ρ = 1, λ < π/2), or (ρ = 1, λ = π/2, γ < −c). For the mean residual
lifetime a parametric rate is attainable if g satisfies [G1] with γ < 3/2.

The non-parametric case In the following section we develop the minimax theory for the
plug-in spectral cut-off estimator under the assumptions [G1] and [Ψ1]. First we derive from
Proposition 5.2.9 (5.6) amaximal upper bound uniformly overMELLIN-SOBOLEV ellipsoids for linear
functionals satisfying assumption [Ψ1]. Our main result of this section states separately a lower
bound for each of the Examples 5.2.1, 5.2.3, 5.2.4 and 5.2.6, that is point-wise estimation of the
density f , the survival function S, the the mean residual lifetime and the derivative f ′. Let us
restrict ourselves to the scenario [G1] and [Ψ1] with 2p − 2γ < 1, i.e. a non-parametric rate of
convergence (see Corollary 5.3.2). Clearly, in this situation we have ∆Ψ,g(k) ≤ C(g,Ψ)k2γ−2p+1

for all k ∈ R+. It remains to specify the order of the bias term. To do so, we consider MELLIN-
SOBOLEV ELLIPSOIDS at the development point c ∈ R, defined in Proposition 3.1.4, given by

Ws
c(L) := {h ∈ L2(R+, x

2c−1) : |h|2s,c := ∥(1 + t2)s/2Mc[h]∥2R < L}. (5.8)

We denote the associated subset of densities by

Dsc(L) := {f ∈ Ws
c(L) : f is a density,Ef (X

2(c−1)
1 ) ≤ L}. (5.9)

Similar smoothness classes have been considered by Butucea and Comte (2009), Mabon (2016),
Pensky (2017) and Kappus (2014) for the estimation of linear functionals. Although the examples
in Examples 5.2.1-5.2.6 may suggest to consider local smoothness classes, our general estimation
strategy allows us to consider also linear functional other than point evaluation. Now, for each
f ∈ Dsc(L) and Ψ satisfying [Ψ1] we clearly have

∥1(k,∞)ΨMc[f ]∥2L1(R) ≤ L

∫
(k,∞)

|Ψ(t)|2(c2 + t2)−sdt ≤ C(L,Ψ, c)k−2s−2p+1. (5.10)

Consequently, the next result is a direct consequence of Proposition 5.2.9 (5.6) and we omit its
proof.
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Theorem 5.3.3 (Upper bound for the minimax risk):
In addition to (5.3) and Eg(U

2(c−1)
1 ) < ∞, ∥gx2c−1∥∞ < ∞ assume that g and Ψ satisfy [G1] and

[Ψ1], respectively, with 2p−2γ < 1. If s > 1/2−p selecting kn := n1/(2s+2γ) as cut-off parameter
we obtain

sup
f∈Ds

c(L)
EfY ((ϑ̂kn − ϑ(f))2) ≤ C(L,Ψ, g)n−(2s+2p−1)/(2s+2γ).

Note that s > 1/2 − p implies ΨMc[f ] ∈ L1(R) by a simple calculus given in the proof of
Theorem 5.3.3 in the Section 5.6. Before stating matching lower bounds let us briefly illustrate the
last result using the Examples 5.2.1-5.2.4 and 5.2.6.

Example 5.3.4 (Examples 5.2.1-5.2.4 and 5.2.6 continued):
Let xo ∈ R.

(i) POINT-WISE DENSITY ESTIMATION:
Since p = 0 for each s > 1/2 = 1/2− p from Theorem 5.3.3 follows

sup
f∈Ds

c(L)
EfY ((ϑ̂kn − ϑ(f))2) ≤ x−2c

o C(L,Ψ, g)n−(2s−1)/(2s+2γ).

(ii) POINT-WISE C.D.F. ESTIMATION:
Since p = 1 for each s ≥ 0 > 1/2− p and γ ≥ 1/2 from Theorem 5.3.3 follows (with c < 1)

sup
f∈Ds

c(L)
EfY ((ϑ̂kn − ϑ(f))2) ≤ x2−2c

o C(L,Ψ, g)n−(2s+1)/(2s+2γ).

Note that for γ < 1/2 the rate is parametric due to Corollary 5.3.2 (see also (P)).

(iii) POINT-WISE SURVIVAL FUNCTION ESTIMATION:
Since p = 1 for each s ≥ 0 > 1/2− p and γ ≥ 1/2 from Theorem 5.3.3 follows (with c > 1)

sup
f∈Ds

c(L)
EfY ((ϑ̂kn − ϑ(f))2) ≤ x2−2c

o C(L,Ψ, g)n−(2s+1)/(2s+2γ).

Note that for γ < 1/2 the rate is parametric due to Corollary 5.3.2 (see also (P)).

(iv) MEAN RESIDUAL LIFE ESTIMATION:
Since p = 2 for each s ≥ 0 > 1/2− p and γ ≥ 3/2 from Theorem 5.3.3 follows (with c > 2)

sup
f∈Ds

c(L)
EfY ((ϑ̂kn − ϑ(f))2) ≤ x4−2c

o C(L,Ψ, g)n−(2s+3)/(2s+2γ).

(v) POINT-WISE DERIVATIVE ESTIMATION:
Since p = −1 for each s > 3/2 = 1/2− p from Theorem 5.3.3 follows (with c ∈ R)

sup
f∈Ds

c(L)
EfY ((ϑ̂kn − ϑ(f))2) ≤ x−2−2c

o C(L,Ψ, g)n−(2s−3)/(2s+2γ).

We shall emphasize that in Example 5.3.4 (i) the sign of c changes drastically the impact of the
evaluation point on the upper bound. In fact, for c > 0 it appears that the estimation in a point
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xo close to 0 is harder than for larger values of xo. In contrast, if c < 0 the effect is just inverted.
Further in Example 5.3.4 (iii) the estimator seems to have a better behavior far away from zero.
An opposite behavior can be found for the estimation of the c.d.f., compare Example 5.3.4 (ii).
However, in Remark 5.2.7 we already indicated how to use an estimator of the survival function
for the construction of an c.d.f. estimator and vice versa. The results of Example 5.3.4 suggests
to estimate the survival function directly or using the c.d.f. estimator, if xo ∈ R+ is close to 0
or not. For the estimation of the derivative, Example 5.3.4 (v), analogously to (i) the impact of
the evaluation point changes for c < 1 and c > 1. (iv) confirms our expectation (compare with
Example 5.2.4) that faster convergence rates than for point-wise estimation of the survival function
in Example 5.3.4 (iii) are attainable.

Remark 5.3.5:
Interestingly, Belomestny and Goldenshluger (2020) derive for point-wise density estimation a
rate of n−2s/(2s+2γ+1) under similar assumptions on the error density g. However, they consider
a maximal risk over Hölder-type regularity classes rather than Mellin-Sobolev spaces. Roughly
speaking, Hölder-type regularity classes characterize regularity rather locally compared to the
global nature of Mellin-Sobolev spaces. Even if the rates in Illustration 5.3.4 may seem less sharp
compared to Belomestny andGoldenshluger (2020), they cannot be improved overMellin-Sobolev
spaces as shown by the lower bounds below.

Lower bound For the following part, we impose additional assumption on the error density
g. In fact, we suppose that g has bounded support, i.e. there is d ∈ R+ such that g(x) = 0 for
all x ∈ (d,∞). For the sake of simplicity suppose d = 1. Furthermore let the Mellin transform
M1/2[g] of g at the development point c = 1/2 satisfy

cg(1 + t2)−γ/2 ≤ |M1/2[g](t)| ≤ Cg(1 + t2)−γ/2, t ∈ R. ([G1’])

For technical reasons we restrict ourselves to the case of c > 1/2.
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Theorem 5.3.6 (Lower bound for the minimax risk):
Let s, γ ∈ N and assume g satisfies [G1] and [G1’].

(i) POINT-WISE DENSITY ESTIMATION: Then there exist constants cg,xo,1, Ls,g,xo,c,1 > 0, such
that for all L ≥ Ls,g,xo,c,1, n ∈ N and for any estimator ϑ̂(f) of ϑ(f) = f(xo) based on an
i.i.d. sample Y1, . . . , Yn,

sup
f∈Ds

c(L)
EnfY ((ϑ̂(f)− ϑ(f))2) ≥ cg,xo,1n

−(2s−1)/(2s+2γ).

(ii) POINT-WISE SURVIVAL FUNCTION ESTIMATION: Then for c > 1 there exist constants
cg,xo,2, Ls,g,xo,c,2 > 0, such that for all L ≥ Ls,g,xo,c,2, n ∈ N and for any estimator ϑ̂(f)
of ϑ(f) = S(xo) based on an i.i.d. sample Y1, . . . , Yn,

sup
f∈Ds

c(L)
EnfY ((ϑ̂(f)− ϑ(f))2) ≥ cg,xo,2n

−(2s+1)/(2s+2γ).

(iii) POINT-WISE DERIVATIVE ESTIMATION: Then there exist constants cg,xo,3, Ls,g,xo,c,3 > 0, such
that for all L ≥ Ls,g,xo,c,3, n ∈ N and for any estimatorϑ̂(f) of ϑ(f) = f ′(xo) based on an
i.i.d. sample Y1, . . . , Yn,

sup
f∈Ds

c(L)
EnfY ((ϑ̂(f)− ϑ(f))2) ≥ cg,xo,3n

−(2s−3)/(2s+2γ).

(iv) MEAN RESIDUAL LIFETIME: Then for c > 2 there exist constants cg,xo,4, Ls,g,xo,c,4 > 0, such
that for all L ≥ Ls,g,xo,c,4, n ∈ N and for any estimator ϑ̂(f) of ϑ(f) = Ef ((X − xo)1X≥xo)

based on an i.i.d. sample Y1, . . . , Yn,

sup
f∈Ds

c(L)
EnfY ((ϑ̂(f)− ϑ(f))2) ≥ cg,xo,4n

−(2s+3)/(2s+2γ).

Let us highlight that in multiplicative censoring the family of Beta(1,k) error densities fulfills
both assumption [G1] and [G1’].

Faster rates Revisiting Section 3.1.3 we get that for the Examples 5.2.1-5.2.6, the family of
Gamma and Log-Normal distributions satisfies

(ϑk − ϑ(f))2 ≤

∣∣∣∣∣
∫
(k,∞)

|Ψ(t)|Mc[f ](t)dλ(t)

∣∣∣∣∣
2

≤ Cf,Ψ exp(−αka)

for α ∈ R+, dependent on f and a = 1 for the Gamma distribution and a = 2 for the Log-Normal
distribution and Cf,Ψ a finite positive constant. Now choosing kn = log(n)1/a/α−1 we can ensures
that in the case of 2p− 2γ < 1 we still get

EnfY ((ϑ̂kn − ϑ(f))2) ≤ Cf,Ψ,g
log(n)(2γ−2p+1)/a

n

leading to a faster rate than provided by Theorem 5.3.3 for any choice of s > 1/2−p ∈ R+. In the
next section, we therefore present a data-driven method in order to choose the parameter k ∈ R+

based only on the sample (Yj)j∈JnK.
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5.4 Data-driven method

We now focus on the case (NP), that is supk∈R+
∆Ψ,g(k) = ∞. In this scenario the first summand

in the upper bound (5.6) of Proposition 5.2.9 is decreasing in k while the second summand is
increasing and unbounded. A choice of the parameter k ∈ R+ realizing an optimal trade-off is
thus non-trivial. We therefore define a data-driven procedure for the choice of the parameter
k ∈ R+ inspired by the work of Goldenshluger and Lepski (2011). In fact, let us reduce the set of
eligible dimension parameters to JKnK with

Kn := max
{
k ∈ Jn1/2(log(n))−3K : ∆Ψ,g(k)

n
≤ ∆Ψ,g(1)

}
. (5.11)

We further introduce the variance term up to a (log n)-term

V (k) := χCgσY∆Ψ,g(k)(log n)n
−1 (5.12)

with σY = EfY (Y
2(c−1)
1 ) and Cg = ∥gx2c−1∥∞/Eg(U2c−1

1 ) defined in Proposition 5.2.9 and χ > 0,
a positive constant chosen later on. Comparing estimators with different cut-off parameters we
estimate the bias term by

A(k) := max
k′∈Jk+1,KnK((ϑ̂k′ − ϑ̂k)

2 − V (k′))+. (5.13)

Since the term σY in V (k) depending on the density f is unknown, we replace it by its empirical
counterpart σ̂Y := n−1

∑
j∈JnK Y 2(c−1)

j . Summarizing we estimate V (k) and A(k) by

V̂ (k) :=
2χCg
n

σ̂Y∆Ψ,g(k) log(n) and Â(k) := max
k′∈Jk+1,KnK((ϑ̂k′ − ϑ̂k)

2 − V̂ (k′))+. (5.14)

Below we study the estimator ϑ̂
k̂
of ϑ(f) with cut-off parameter selected by

k̂ := arg min
k∈JKnK(Â(k) + V̂ (k)) (5.15)

which depends only on observable quantities and hence ϑ̂
k̂
is completely data-driven.

Theorem 5.4.1 (Data-driven choice of k ∈ R+):
In addition to (5.3), suppose that EfY (Y

8(c−1)
1 ) < ∞ and ∥gx2c−1∥∞ < ∞. Then for any χ ≥ 72

there is a positive constant C(f, g, ψ, χ) such that

EnfY ((ϑ(f)− ϑ̂
k̂
)2) ≤ 9 inf

k∈JKnK
(
∥1(k,∞)ΨMc[f ]∥2L1

R
+ V (k)

)
+ C(f, g, ψ, χ)n−1.

Let us briefly discuss the last result. Consider the plug-in spectral cut-off estimator ϑ̂kn with
optimally chosen cut-off parameter kn := arg inf{∥1(k,∞)ΨMc[f ]∥2L1

R
+∆Ψ,g(k)n

−1 : k ∈ R+}. Its
risk is up to a constant bounded by inf{∥1(k,∞)ΨMc[f ]∥2L1

R
+∆Ψ,g(k)n

−1 : k ∈ R+} and we show
below for its maximal risk over certain Mellin-Sobolev balls a matching lower bound. However,
the oracle inequality given in Theorem 5.4.1 essentially provides an upper bound for the risk of
the fully data-driven estimator up to a constant bymin{∥1(k,∞)ΨMc[f ]∥2L1

R
+∆Ψ,g(k)(log n)n

−1 :
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k ∈ JKnK}. Typically we have kn ≤ Kn for sufficiently large sample sizes n ∈ N such that both
upper bounds essentially differ only by the additional (log n)-factor. Its appearance is a known fact
in the context of local estimation and it is widely considered as an acceptable price for adaptation
(in the context of non-parametric Gaussian regression it is unavoidable as shown in Brown and
Low (1996)). Let us further comment on the additional moment assumptions of Theorem 5.4.1.
For c ∈ R close to one, the apparently high moment assumption EfY (Y

8(c−1)
1 ) <∞ is rather weak.

For point-wise density estimation, compare Example 5.2.1, this assumption is trivially satisfied if
c = 1 is selected. For the point-wise estimation of the survival function (respectively, cumulative
distribution function), it is not possible to select c = 1 but values of c ∈ R arbitrary close to one are
possible.
If γ ≥ 1 then the optimal cut-off parameter in Theorem 5.3.3 satisfies kn = ⌊n1/(2s+2γ)⌋ ≤ k1/2

and thus kn ∈ JKnK as introduced in (5.11) . The next result follows immediately from Theorem
5.4.1 and (5.10), and we omit the proof.

Corollary 5.4.2:
In addition to (5.3), EfY (Y

8(c−1)
1 ) <∞ and ∥gx2c−1∥∞ <∞ assume that g and Ψ satisfy [G1] and

[Ψ1], respectively, with 2p− 2γ < 1. If s > 1/2− p then for each f ∈ Dsc(L) we have

EfY (|ϑ̂k̂ − ϑ(f)|2) ≤ C(f, g,Ψ)(log(n)/n)(2s+2p−1)/(2s+2γ).

5.5 Conclusion

In this section, we have considered the local estimation of a variety of quantities of interest, for ex-
ample density, survival function and derivative of the density, under multiplicative measurement
error. Here, the term local estimation refers to the fact that we considered a point wise risk in con-
trary to the global risk studied in Chapter 3 and Chapter 4. More precisely, we have seen that these
local estimations can be interpreted as examples of the estimation of the evaluation ϑ(f) of a linear
functional ϑ at the density f . We then proposed an estimator based on a plug-in estimation, that
is ϑ̂k := ϑ(f̂k), where f̂k is the density estimator studied in Chapter 3. The theoretical properties
of our proposed estimator are derived in terms of minimax-optimality of the estimation strategy,
compare Theorem 5.3.3 and Theorem 5.3.6 and the study of a fully data-driven estimator ϑ̂

k̂
, see

Theorem 5.4.1.
Considering several examples for the linear functional, we were able to compare different quanti-
ties of interest in terms of well-definedness and non-parametric rates. Throughout the chapter, we
focus manly on the case of smooth error densities and excluded for the sake of simplicity oscillating
and super smooth error densities from our study, which has been analyzed in Section 3.4 and 3.3.
Furthermore, a linear functional model for multivariate densities or for stationary samples, like in
Section 3.5 and 3.6 are left open for further research. Another compelling research direction would
be to study the case of an unknown error distribution g of the measurement error U .

5.6 Proofs

The following Bernstein inequality, which in this form can be found in Comte (2017), is based on
a similar formulation in Birgé and Massart (1998).
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Lemma 5.6.1 (Bernstein inequality):
Let (Tj)j∈JnK be independent random variables with |Tj | ≤ b and Var(Tj) ≤ v2 for all j ∈ JnK.
Then for all η ∈ R+ we have

P
(∣∣ ∑

j∈JnK(Tj − E(Tj))
∣∣ ≥ nη

)
≤ 2 exp

(
−min

(nη2
4v2

, nη4b
))
.

Proof of Proposition 5.2.9. For k ∈ R+ denoting ϑk := EnfY (ϑ̂k) the usual squared bias-variance
decomposition gives

EnfY ((ϑ̂k − ϑ(f))2) = (ϑk − ϑ(f))2 + VarnfY (ϑ̂k) (5.16)

where we bound each right hand side term separately. By an application of the Fubini-Tonelli the-
oremwe have ϑk = (2π)−1

∫
[−k,k]Ψ(−t)Mc[f ](t)dλ(t) and the first summand in (5.16) is bounded

by

(ϑk − ϑ(f))2 =

(
1

2π

∫
[−k,k]c

Ψ(−t)Mc[f ](t)dλ(t)

)2

≤ ∥1(k,∞)ΨMc[f ]∥2L1(R).

To estimate the second summand in (5.16), we note that

4π2nVarnfY (ϑ̂k) ≤ EfY

(∣∣∣∣ ∫
[−k,k]

Ψ(−t)Y c−1+it
1

Mc[g](t)
dλ(t)

∣∣∣∣2) ≤ EfY

(∣∣∣∣ ∫
[−k,k]

|Ψ(t)|Y c−1
1

|Mc[g](t)|
dλ(t)

∣∣∣∣2).
Combining (5.16) with the last bounds we deduce the assertions (5.5) and (5.6) of the proposition.
(5.5) follows immediately from the identities

EfY

(∣∣∣∣ ∫
[−k,k]

|Ψ(t)|Y c−1
1

|Mc[g](t)|
dλ(t)

∣∣∣∣2) = EfY (Y
2(c−1)
1 )∥1[−k,k]Ψ/Mc[g]∥2L1(R)

and EfY (Y
2(c−1)
1 ) = σY . Consider (5.6). Exploiting the Plancherel identity (2.3.5) we have

EfY

(∣∣∣∣ 12π
∫
[−k,k]

Ψ(−t)Y c−1+it
1

Mc[g](t)
dλ(t)

∣∣∣∣2) =

∫
R+

fY (y)y
2c−1

∣∣∣∣∣M†
1/2

[
Ψ1[−k,k]

Mc[g]

]
(y)

∣∣∣∣∣
2

dλ(y)

≤ ∥fY x2c−1∥∞

∥∥∥∥∥M†
1/2

[
Ψ1[−k,k]

Mc[g]

]∥∥∥∥∥
2

x0

=
∥fY x2c−1∥∞

2π
∥1[−k,k]Ψ/Mc[g]∥2L2(R)

≤ CgσY
2π

∥1[−k,k]Ψ/Mc[g]∥2L2
R

(5.17)

which implies (5.6). Indeed, we have ∥fY ∥∞,x2c−1 ≤ CgσY , since for any y > 0

y2c−1fY (y) =

∫
R+

f(x)x2c−1g(y/x)
y2c−1

x2c−1
dx ≤ ∥gx2c−1∥∞Ef (X

2(c−1)
1 ) = CgEfY (Y

2(c−1)
1 )

and the proof is complete.
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Proof of Theorem 5.3.6. First we outline here the main steps of the proof. We construct two
densities fo, f1 in Dsc(L) by a perturbation with a small bump, such that the difference (ϑ(f1) −
ϑ(fo))

2 and the Kullback-Leibler divergence of their induced distributions can be bounded from
below and above, respectively. The claim follows then by applying Theorem 2.2 in Tsybakov
(2009). We use the following construction,
We set fo(x) := exp(−x) for x ∈ R+. Let C∞

o (R) be the set of all infinitely differentiable functions
with compact support in R and let φ ∈ C∞

o (R) with

supp[φ] ⊂ [−1, 1],

∫
[−1,1]

φ(x)dλ(x) = 0 and C∞,φ(j) := max(∥φ(ℓ)∥∞, ℓ ∈ J0, jK).
Let us further consider the operator S : C∞

o (R) → C∞
o (R) with S[f ](x) = −xf (1)(x) for all x ∈ R

and define S1 := S and Sn := S ◦ Sn−1 for n ∈ N, n ≥ 2. For each xo ∈ R+, h ∈ (0,min(xo/2, 1))

(to be selected below) and j ∈ N we define the bump-function

φj,h,xo := Sj [φh,xo ], where φh,xo(x) := φ(
xo − x

h
), x ∈ R.

A direct calculus shows that φj,h,xo(x) =
∑j

i=1 ci,jx
ih−iφ(i)(xo−xh ) for x ∈ R+ and ci,j ≥ 1. For a

bump-amplitude δ > 0 and γ ∈ N we define

f1(x) = fo(x) + δhγ+s−1/2φγ,h,xo(x), x ∈ R+. (5.18)

The next lemma implies that f1 is a density for δ chosen sufficiently small.

Lemma 5.6.2:
For any 0 < δ < δo(φ, γ, xo) := exp(−3xo/2)(3xo/2)

−γ(Cφ,∞(γ)cγ)
−1 the function f1, defined

in (3.34), is a density, where cγ =
∑γ

i=1 ci,γ .

Further we show that fo and f1 lie inside the ellipsoids Dsc(L) for L big enough. This is captured
in the following lemma.

Lemma 5.6.3:
Let s ∈ N and c > 1/2. Then, for all L ≥ Ls,c,γ,δ,φ,xo > 0 holds fo and f1, as in (3.34), belong to
Dsc(L).

For sake of simplicity we denote for a function h ∈ L2(R+, x
2c−1) the multiplicative convolution

with g by h̃ := [h ∗ g].

Lemma 5.6.4:
KL(f̃1, f̃0) ≤ Cg,xo,φ,foδ

2h2s+2γ where KL is the Kullback-Leibler divergence.

Selecting h = n−1/(2s+2γ), it follows

1

M

M∑
j=1

KL(f̃⊗n1 , f̃⊗no ) =
n

M

M∑
j=1

KL(f̃1, f̃o) ≤ δ2Cg,xo,φ,fo < 1/8

for all δ ≤ δg,xo,φ,fo .
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Lemma 5.6.5:
Let us additionally assume that φ(γ−p)(0) > 0, where p = 0 (point-wise density estimation), p = 1

(point-wise survival function estimation), p = 2 (mean residual life) and p = −1 (point wise
derivative estimation). Then in all four cases, there exists hφ,xo,γ > 0 such that for all h ≤ hγ,xo,φ
holds

(ϑ(f1)− ϑ(fo))
2 ≥ cφ,γ,xo,δh

2s+2p−1.

Thereby, we can use Theorem 2.2 of Tsybakov (2009), which in turn for any estimator ϑ̂(f) of
ϑ(f) implies

sup
f∈Ds

c(L)
PnfY

(
(ϑ̂(f)− ϑ(f))2 ≥

cφ,δ,xo,γ
2

n−(2s+2p−1)/(2s+2γ)
)
>

3

8
.

Note that the constant cφ,δ,xo,γ does only depend on φ, δ, xo and γ, hence it is independent of the
parameters s, L and n. The claim of Theorem 5.3.6 follows by using Markov’s inequality, which
completes the proof.

Proof of Lemma 5.6.2. For any h ∈ C∞
o (R) holds S[h] ∈ C∞

o (R) and thus Sj [h] ∈ C∞
o (R) for any

j ∈ N. Further for h ∈ C∞
o (R+) holds

∫
R S[h](x)dλ(x) =

∫
R h(x)dλ(x)which implies that for any

δ > 0 and we have
∫
R+
f1(x)dλ(x) = 1.

By construction (5.18) supp(φh,xo) in [xo/2, 3xo/2]. Since supp(S[h]) ⊆ supp(h) for all h ∈
C∞
o (R) the function φγ,h,xo has support in [xo/2, 3xo/2] too. First, for x /∈ [xo/2, 3xo/2] holds

f1(x) = exp(−x) ≥ 0. Further for x ∈ [xo/2, 3xo/2] holds

f1(x) = fo(x) + δhs+γ−1/2φγ,h,xo(x) ≥ exp(−3xo/2)− δ(3xo/2)
γCφ,∞(γ)cγ

since ∥φj,h,xo∥∞ ≤ (3xo/2)
jCφ,∞(j)cjh

−j for any s ≥ 1 and j ∈ N where cj :=
∑j

i=1 ci,j . Now
choosing δ ≤ δo(φ, γ, xo) := exp(−3xo/2)(3xo/2)

−γ(Cφ,∞(γ)cγ)
−1 ensures f1(x) ≥ 0 for all

x ∈ R+.

Proof of Lemma 5.6.3. Our proof starts with the observation that for all t ∈ R and c > 0 it holds
that

Mc[fo](t) ∼ tc−1/2 exp(−|t|π/2), |t| ≥ 2,

by applying the Stirling formula, compare Belomestny and Goldenshluger (2020). Thus for every
s ∈ N there exists Ls,c such that |fo|2s,c ≤ L for all L ≥ Ls,c.
Next we consider |fo − f1|s,c. We have |fo − f1|2s = δ2h2s+2γ−1|φγ,h,xo |2s,c where | . |s,c is defined
in (5.8). Now since supp(φγ,h,xo) ⊂ [xo/2, 3xo/2] and φγ,h,xo ∈ C∞

o (R) we have that its Mellin
transform is well-defined for any c ∈ R. Then Proposition 2.3.12 implies |Mc[φγ+s,h,xo ](t)|2 =

(c2 + t2)s|Mc[φγ,h,xo ](t)|2 and thus

|φγ,h,xo |2s,c ≤ Cc

∫
R
|Mc[φγ+s,h,xo ](t)|2dλ(t) = Cc

∫
[xo/2,3xo/2]

x2c−1|φγ+s,h,xo(x)|2dλ(x)

by the Parseval identity, Proposition 2.3.5, which implies that |φγ,h,xo |2s,c ≤ Cc,xo∥φγ+s,h,xo∥2R.
Now applying the Jensen’s inequality leads to

∥φγ+s,h,xo∥2R ≤ Cγ,s

γ+s∑
j=1

h−2j

∫
[xo−h,xo+h]

x2jφ(j)(
x− xo
h

)2dλ(x) ≤ Cγ,s,xoh
−2γ−2s+1Cφ,∞(γ + s).
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Thus |fo − f1|2s,c ≤ C(c,s,γ,δ,φ,xo) and |f1|2s,c ≤ 2(|fo − f1|2s,c + |f1|2s,c) ≤ 2(C(c,s,γ,δ,φ,xo) + Ls,c) =:

Ls,c,γ,δ,φ,xo,1. Now let us consider the moment condition. First we see that
∫∞
0 x2(c−1)fo(x) = Cc.

Further since h < xo/2 we have

δhs+γ−1/2

∫
R+

x2(c−1)φγ,h,xo(x)dλ(x) ≤ Cγ,δ

γ∑
j=1

hs+γ+1/2−j
∫
[xo/2,3xo/2]

x2(c−1)+jφ(j)(
x− xo
h

)dλ(x)

≤ Cs,c,γ,δ,φ,xo

Thus we have Efo(X2(c−1)),Ef1(X2(c−1)) ≤ Cc + Cs,c,γ,δ,φ,xo =: Ls,c,γ,δ,φ,xo,2 Choosing now
Ls,c,γ,δ,φ,xo = max(Ls,c,γ,δ,φ,xo,1, Ls,c,γ,δ,φ,xo,2) shows the claim.

Proof of Lemma 5.6.4.
Since KL(f̃1, f̃o) ≤ χ2(f̃1, f̃o) :=

∫
R+

(f̃1(x) − f̃o(x))
2/f̃o(x)dλ(x) it is sufficient to bound the

χ-squared divergence. We notice that f̃θ − f̃o has support in [0, 3xo/2] since f1 − fo has support
in [xo/2, 3xo/2] and g has support in [0, 1]. In fact for x > 3xo/2 holds f̃θ(y)− f̃o(y) =

∫∞
y (fθ −

fo)(x)x
−1g(y/x)dλ(x) = 0. Since fo is monotone decreasing we can deduce that f̃o is montone

decreasing since for x2 ≥ x1 ∈ R+ holds

f̃o(x2) =

∫
(0,1)

g(x)x−1fo(x2/x)dλ(x) ≤
∫
(0,1)

g(x)x−1fo(x1/x)dλ(x) = f̃o(x1)

since the integrand is strictly positive. We conclude therefore that there exists a constant cfo,xo,g > 0

such that f̃o(x) ≥ cfo,xo,g > 0 for all x ∈ (0, 3xo/2). Thus

χ2(f̃1, f̃o) ≤ f̃o(3xo/2)
−1∥f̃1 − f̃o∥2R = f̃o(3xo/2)

−1δ2h2s+2γ−1∥φ̃γ,h,xo∥2R.

Let us now consider ∥φ̃γ,h,xo∥2R. In the first step we see by application of the Plancherel iden-
tity, Proposition 2.3.5, that ∥φ̃γ,h,xo∥2R = 1

2π

∫
R |M1/2[φ̃γ,h,xo ](t)|2dλ(t). Now for t ∈ R, we see

by using the multiplication theorem for Mellin transforms that M1/2[φ̃γ,h,xo ](t) = M1/2[g](t) ·
M1/2[S

γ [φh,xo ]](t). Again we have M1/2[S
γ [φh,xo ]](t) = (1/2 + it)γM1/2[φh,xo ](t). Together

with assumption [G1’] we get

∥φ̃γ,h,xo∥2R ≤ Cg
2π

∫ ∞

−∞
|M1/2[φh,xo ](t)|2dt = Cg∥φh,xo∥2R ≤ Cg,xoh∥φ∥2R.

SinceM ≥ 2K we conclude KL(f̃θ(j) , f̃θ(0)) ≤ Cg,xo,φ,foδ
2h2s+2γ .

Proof of Lemma 5.6.5. In all cases, we have (ϑ(f1) − ϑ(fo))
2 = δ2h2γ+2s−1(ϑ(φγ,h,xo))

2. Since
φγ,h,xo(x) =

∑γ
i=1 ci,γh

−ixiφ(i)(xo−xh ) we deduce

(ϑ(φγ,h,xo))
2 =

γ∑
j,i=1

ci,γcj,γh
−i−jϑ

(
xjφ(j)(

xo − x

h
)

)
ϑ

(
xiφ(i)(

xo − x

h
)

)

=: Σ + c2γ,γh
−2γ

(
ϑ(xγφ(γ)(

xo − x

h
))

)2

≥ c2γ,γh
−2γ

(
ϑ(xγφ(γ)(

xo − x

h
))

)2

− |Σ|.

It is now sufficient to show that there exist cφ,xo,γ , Cφ,xo,γ > 0 and p ∈ N such that for h small
enough

sup
j∈J1,γK |ϑ(xjφ(j)(

xo − x

h
)| ≤ Cφ,xo,γ h

p and |ϑ(xγφ(γ)(
xo − x

h
))| ≥ cφ,xo,γ h

p. (5.19)
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Indeed, if (5.19) holds true, then there exists hφ,γ,xo > 0 such that for all h < hφ,γ,xo holds |Σ| ≤
c2γ,γ
2 h−2γ

(
ϑ(xγφ(γ)(xo−xh ))

)2 implying that

(ϑ(φγ,h,xo))
2 ≥

c2γ,γ
2
h−2γ

(
ϑ(xγφ(γ)(

xo − x

h
))

)2

≥ cφ,xo,γh
−2γ+2p.

This shows the claim. It remains to prove (5.19) for each different choice of Ψ.
(i): It holds for j ∈ JγK that

|ϑ(xjφ(j)(
xo − x

h
)| = xjo|φ(j)(0)| ≤ Cφ,xo,γ h

0

and |ϑ(xγφ(γ)(xo−xh ))| = xγoφ(γ)(0) =: cφ,xo,γh
0 since φ(γ)(0) > 0.

(ii): Since φ(j)(xo−xh ) has support in [xo − h, xo + h], where h ≤ xo/2, we have for j ∈ J1, γK∣∣∣∣∣
∫
(xo,∞)

xjφ(j)(
xo − x

h
)dλ(x)

∣∣∣∣∣ ≤
∫
(xo,xo+h)

xj |φ(j)(
xo − x

h
)|dλ(x)

≤
(
3xo
2

)j
h∥φ(j)∥∞ ≤ Cφ,xo,γh.

Further, we get by an integration by parts∫
(xo,∞)

xγφ(γ)(
xo − x

h
)dλ(x) = hxγoφ

(γ−1)(0) + hγ

∫
(xo,∞)

xγ−1φ(γ−1)(
xo − x

h
))dλ(x)

≥ hxγoφ
(γ−1)(0)− h2Cφ,xo,γ ≥ hxγoφ(γ−1)(0)

2
> 0

for h < hφ,xo,γ since φ(γ−1)(0) > 0.
Analogously we can handle the case (iii) with p = 2 and (iv) with p = −1.

Proof of Theorem 5.4.1. Setting ϑ := ϑ(f) we observe that

(ϑ− ϑ̂
k̂
)2 ≤ 2(ϑ− ϑ̂k)

2 + 2(ϑ̂k − ϑ̂
k∧k̂)

2 + 2(ϑ̂
k∧k̂ − ϑ̂

k̂
)2.

Exploiting successively the definition (5.14) of Â, and secondly the definition (5.15) of k̂ we obtain

(ϑ− ϑ̂
k̂
)2 ≤ 2(ϑ− ϑ̂k)

2 + 2(Â(k̂) + V̂ (k) + Â(k) + V̂ (k̂))

≤ 2(ϑ− ϑ̂k)
2 + 4(Â(k) + V̂ (k)).

It is easy to check that Â(k) ≤ A(k) + max{(V (k′)− V̂ (k′))+ : k′ ∈ J1,KnK}, and hence

(ϑ− ϑ̂
k̂
)2 ≤ 2(ϑ− ϑ̂k)

2 + 4A(k) + 4(V̂ (k)− 2V (k)) + 8V (k) + 4 max
k′∈J1,KnK(V (k′)− V̂ (k′))+

≤ 9V (k) + 4(ϑ− ϑk)
2 + 4(V̂ (k)− 2V (k)) + 4 max

k′∈J1,KnK(V (k′)− V̂ (k′))+

+ 4((ϑk − ϑ̂k)
2 − V (k)/6)+ + 4A(k). (5.20)

Further for k′ ∈ Jk + 1,KnK from (ϑ̂k′ − ϑ̂k)
2/3 ≤ (ϑ̂k′ − ϑk′)

2 + (ϑ̂k − ϑk)
2 + (ϑk − ϑk′)

2 we
conclude

A(k) ≤ 3 max
k′∈Jk+1,KnK

(
(ϑ̂k − ϑk′)

2 + (ϑ̂k − ϑk)
2 − V (k′)/3

)
+
+ 3 max

k′∈Jk+1,KnK(ϑk − ϑk′)
2.
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Since V (k′) ≥ 1
2V (k) + 1

2V (k′) for each k′ ∈ Jk,KnK due to the monotonicity of k 7→ V (k) we
deduce

A(k) ≤ 6 max
k′∈Jk,KnK

(
(ϑ̂k − ϑk′)

2 − V (k′)/6
)
+
+ 3 max

k′∈Jk+1,KnK(ϑk − ϑk′)
2. (5.21)

The second summand in (5.21) is bounded for any k′ ∈ Jk + 1,KnK by
|ϑk − ϑk′ | =

1

2π

∣∣∣∣ ∫
[−k′,−k)∪(k,k′]

Ψ(−t)Mc[f ](t)dλ(t)

∣∣∣∣ ≤ π−1∥1(k,∞)ΨMc[f ]∥R. (5.22)

Combining (5.20) with (5.21), (5.22), |ϑk−ϑ| ≤ π−1∥1(k,∞)ΨMc[f ]∥L1
R
and EnfY (V̂ (k)) = 2V (k)

for each k ∈ J1,KnK we obtain
EnfY (ϑ− ϑ̂

k̂
)2 ≤ 2∥1(k,∞)ΨMc[f ]∥2L1

R
+ 9V (k) + 4EnfY

(
max

k′∈JKnK(V (k′)− V̂ (k′))+

)
+ 26EnfY

(
max

k′∈JKnK
(
(ϑ̂k − ϑk′)

2 − V (k′)/6
)
+

)
. (5.23)

We bound the last two summands in (5.23) with the help of Lemma 5.6.6 below.

Lemma 5.6.6:
Under the assumptions of Theorem 5.4.1 we have

(i) EnfY

(
max
k∈JKnK(V (k)− V̂ (k))+

)
≤ C(EfY (Y

5(c−1)
1 ), σY ,Ψ, g)n

−1;

(ii) EnfY

(
max
k∈JKnK

(
(ϑ̂k − ϑk)

2 − V (k)/6
)
+

)
≤ C(EfY (Y

8(c−1)
1 ), ∥gx2c−1∥∞, σY ,Ψ, g)n−1.

Consequently we have

EnfY (ϑ− ϑ̂
k̂
)2 ≤ 9 inf

k∈JKnK
(
∥1(k,∞)ΨMc[f ]∥2L1

R
+ V (k)

)
+ C(f, g, ψ)n−1

which gives the desired conclusion and completes the proof.

Proof of Lemma 5.6.6. Consider (i). On the event {|σY −σ̂Y | ≤ σY /2}we have clearly σY ≤ 2σ̂Y ,
and thus (σY −2σ̂Y )+ ≤ 2|σ̂Y −σY |1{|σ̂Y −σY |>σY /2}. Combining the last boundwith the definition
(5.12) and (5.14) of V and V̂ , respectively, for each k ∈ JKnK we obtain

(V (k)− V̂ (k))+ =
χ

n log(n)
Cg(σY − 2σ̂Y )+∆Ψ,g(k)

≤ χCg∆Ψ,g(1) log(n)|σ̂ − σ|1{|σ̂Y −σY |>σY /2}

= C(g,Ψ, χ) log(n)|σ̂ − σ|1{|σ̂Y −σY |>σY /2}

using∆Ψ,g(k) ≤ ∆Ψ,g(1)n for all k ∈ JKnK due to (5.11). Applying the Cauchy-Schwarz inequal-
ity

EnfY (|σ̂Y − σY |1{|σ̂Y −σY |>σY /2}) ≤ VarnfY (σ̂Y )
1/2PnfY (|σ̂Y − σY | > σY /2)

1/2

≤ C(EfY (Y
4(c−1)
1 )))n−1/2PnfY (|σ̂Y − σY | > σY /2)

1/2.
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Now using the Nagaev inequality, compare Nagaev (1979), we get for p = 3 that

PnfY (|σ̂Y − σY | > σY /2)
1/2 ≤ C(EfY (Y

5(c−1)
1 ), σY )n

−1

implying that

EnfY

(
max
k∈JKnK(V (k)− V̂ (k))+

)
≤ C(Ψ, g, σY ,EfY (Y

5(c−1)
1 ), χ)n−1. (5.24)

Our proof of (ii) starts with a decomposition of ϑ̂k − ϑk into a sum of two parts. To control the
last term we split the centered arithmetic mean ϑ̂k − ϑk into two terms, applying at one term a
Bernstein inequality, cf Lemma 5.6.1, and standard techniques on the other term. For a positive
sequence (cn)n∈N and t ∈ R introduce

M̂c(t) = n−1
n∑
j=1

(Y c−1+it
j 1(0,cn)(Y

c−1
j ) + Y c−1+it

j 1(cn,∞)(Y
c−1
j )) =: M̂c,1(t) + M̂c,2(t).

Split the centered arithmetic mean ϑ̂k − ϑk = νk,1 + νk,2 where νk,i := 1
2π

∫ k
−k

Ψ(−t)
Mc[g](t)

(M̂c,i(t)−
EfY (M̂c,i(t)))dt. Thus we have

max
k∈JKnK

(
(ϑ̂k − ϑk)

2 − V (k)/6
)
+
≤ 2 max

k∈JKnK
(
ν2k,1 −

1

12
V (k)

)
+

+ 2 max
k∈JKnK ν2k,2.

For the first summand, we see that

EnfY

(
max

k′∈JKnK(ν2k′,1 −
1

12
V (k′))+

)
≤
∑
k∈Kn

EnfY

(
(ν2k,1 −

1

12
V (k))+

)
≤
∑
k∈Kn

∫
R+

PnfY

(
(ν2k,1 −

1

12
V (k))+ ≥ x

)
dλ(x)

≤
∑
k∈Kn

∫
R+

PnfY

(
|νk,1| ≥

√
V (k)

12
+ x

)
dλ(x).

Now our aim is to apply the Bernstein inequality 5.6.1. To do so, defining for y > 0 the function
hk(y) :=

1
2π

∫
[−k,k]

Ψ(−t)
Mc[g](t)

yitdλ(t) leads to

νk,1 =
1

n

n∑
j=1

Y c−1
j 1(0,cn)(Y

c−1
j )hk(Yj)− EfY (Y

c−1
1 1(0,cn)(Y

c−1
1 )hk(Y1))

where |hk(y)| ≤ (2π)−1
∫
[−k,k]

∣∣∣ Ψ(t)
Mc[g](t)

∣∣∣ dλ(t) ≤√k∆Ψ,g(k). Thus |Y c−1
j 1(0,cn)(Y

c−1
j )hk(Yj)| ≤

cn
√
k∆Ψ,g(k) =: b. Further,

VarfY (Y
c−1
1 1(0,cn)(Y

c−1
1 )hk(Y1)) ≤ EfY (Y

2c−2
1 h2k(Y1)) ≤ CgσY∆Ψ,g(k) =: v.

Therefore the Bernstein inequality yields, for any x > 0

PnfY

(
|νk,1| ≥

√
V (k)

12
+ x

)
≤ 2max

(
exp

(
− n

4v

(
V (k)

12
+ x

))
, exp

(
− n

8b

(√
V (k)

12
+

√
x

)))
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using the concavity of the square root. We have thus to bound the 4 upcoming terms. In fact

n

4v

V (k)

12
=

χ

48
log(n) ≥ 3

2
log(n) and

n

4ν
≥
Cg,Ψ
4σY

for χ ≥ 72 which implies exp(− n
4v (

V (k)
12 + x)) ≤ n−3/2 exp(−xCg,Ψ/4σY ).Moreover we have

n

8b

√
V (k)

12
=
n
√
σY Cg∆Ψ,k(k)χ log(n)n−1

8cn
√
k∆Ψ,g(k)12

≥

√
n1/2σY Cg log(n)

28cn

√
n1/2

k
≥ 3

2
log(n)

by definition of Kn and cn =
√
n1/2σY Cg log(n)/42. In analogy we can show that

n

8b
=

42n3/4√
σY Cg log(n)k∆Ψ,g(k)

≥
5
√

log(n)√
σY Cg,Ψ

implying that exp(− n
8b(

√
V (k)
12 +

√
x)) ≤ n−3/2 exp(−5

√
x log(n)(σY Cg,Ψ)−1). Thus we conclude

EnfY

(
max

k′∈JKnK(ν2k′,1 −
1

12
V (k′))+

)
≤

∑
k∈JKnKn

−3/2

∫
R+

exp(−xmin(
Cg,Ψ
4σ

, 18

√
log(n)

xσY Cg,Ψ
))dλ(x)

≤ C(σY , g,Ψ)
∑

k∈JKnKn
−3/2 ≤ C(σY , g,Ψ)

n
.

For part (ii) we have |νk′,2| ≤ (2π)−1
∫
[−k′,k′] |Ψ(t)||Mc[g](t)|−1|M̂c,2(t) − EfY (M̂c,2(t))|dλ(t)

implying with the Cauchy-Schwarz inequality that

EnfY

(
max

k′∈JKnK ν2k′,2
)

≤ EnfY ((
1

2π

∫
[−Kn,Kn]

∣∣∣∣ Ψ(t)

Mc[g](t)

∣∣∣∣ |M̂c,2(t)− EnfY (M̂c,2(t))|dλ(t))2)

≤ Kn

2π
∆Ψ,g(Kn)n

−1EfY (Y
2c−2
1 1(cn,∞)(Y

c−1
1 ))

≤ CΨ,gn
1/2EfY (Y

(c−1)(2+u)
1 )c−un

for any u ∈ R+. Choosing u = 6 leads to EfY (maxk′∈JKnK ν2k′,2) ≤ CΨ,g,σEfY (Y
8(c−1)
1 )n−1.
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CHAPTER6

Perspectives

In this work, we mainly consider the non parametric estimation of a quantity of interest of the
distribution of a positive random variable in amultiplicativemeasurement errorsmodel with known
error densities. The following presented extension may be addressed in a future work.

Unknown error distribution In practice, the exact distribution of the error term is often un-
known. There are several attempts to address this problem by estimating simultaneously the error
distribution itself. In the literature, one consider for instance a parametric family of error distri-
bution, a second sample of the error or panel data. In all of these models, additional knowledge
(parametric family, additional samples) are necessary as the multiplicative convolution is commu-
tative, that is

PX ⊙ PU = PY = PU ⊙ PX .

In other words, without additional knowledge we cannot distinguish between signal and error.

Second sample In this scenario, we assume to have additionally to the sample (Yj)j∈JnK access
to a second sample (Ũj)j∈JmK from the error variable U . Based on this sample, we then derive an
estimator M̃c[g] of the Mellin transform of U . Using this estimator a density estimator is given by

f̃k(x) :=
1

2π

∫
[−k,k]

x−c−it
M̂c(t)

M̃c[g](t)
dt, x ∈ R+.

For this estimator, we can develop again minimax optimality and data-driven methods. Similar
results can be found in Neumann and Hössjer (1997), Johannes (2009), Comte and Lacour (2010),
Kappus and Mabon (2014) and Dattner et al. (2016).

Panel data Here, we assume to observe an i.i.d. sample (Yj)j∈JnK of the random vector

Y = (Y 1, Y 2, . . . , Y m), Y j = X · U j

where (U j)j∈JmK are i.i.d. In other words, we measure the same signal X m-times leading to
observations Y 1, . . . , Y m which only differs in the measurement errors. For the sake of simplicity
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let us assume that m = 2. Inspired by Comte and Kappus (2015) and Kappus and Mabon (2014),
we can deduce a representation of the Mellin transform ofX in terms of the Mellin transform of Y .
Such a result for theMellin transform can be used to deduce an estimator of the quantity of interest.
Again, this estimator can be studied in terms of minimax optimality and data-driven choices of the
smoothing parameters.

Non parametric testing Next to non parametric estimation, the problem of non parametric
minimax and adaptive testing has been studied in the literature of statistical inverse problems. Given
a null hypothesis density fo, in non parametric testing we aim to study the testing problem

Ho : f = fo vs. H1 : f ∈ H1

given a sample of Y = XU where X ∼ f and U is again a multiplicative measurement error.
In this scenario we observe that given a niveau α ∈ (0, 1) and a power β ∈ (0, 1) the set H1 has to
be of the form

H1 := {f ∈ L2(R+, x
2c−1) : ∥f − fo∥2x2c−1 > r}.

More precisely, we are in need of a gap between the null hypotheses Ho and H1. Otherwise,
each α-test will have zero power, that is for each α-test we are able to construct an alternative
in such that the test has zero power. In non parametric minimax testing, we are now interested
givenα, β ∈ (0, 1) how to large r ∈ R+ needs to be to allow the existence of a α-test with power β
Based on an estimation of quadratic functional and theMellin transform of f , we can then construct
a test which is minimax optimal and propose a data-driven method for the choice of the upcoming
smoothing parameter. This testing problem in the context of inverse statistical problems has been
studied by Fromont and Laurent (2006), Butucea (2007), , Butucea et al. (2009), Schluttenhofer and
Johannes (2020a), Schluttenhofer and Johannes (2020b),and Schluttenhofer and Johannes (2022).
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