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Summary 

To date, there are only limited pharmacological treatments to cure AUD and the success rate 

is very low. Therefore, new therapeutic routes are warranted. This thesis aims to contribute 

to this need by identifying molecular mechanisms that are altered in AUD, considering the 

patient aspect through the use of human post-mortem brain samples, and compare the 

findings to a frequently used animal model of alcohol dependence. By combining multiple 

cutting-edge techniques, this study provides high evidence for further follow-up studies, 

where it will be possible to validate the findings in pre-clinical approaches and predict the 

relevance for the patient more precisely than previous studies. In addition, biomarkers for 

AUD, that are defined by this study, contribute substantially to the diagnosis of AUD on a 

molecular basis.  

The meta-analysis of three brain regions (study 2) –prefrontal cortex (PFC), nucleus 

accumbens (NAc) and amygdala (AMY)– identified common signatures comparing rodent, 

monkey, and human post-mortem brain tissue. In the PFC, we found commonly enriched 

pathways for cancerogenesis, pro-inflammatory processes, and oxidative stress. The analysis 

of the NAc resulted in no differentially expressed genes (DEGs) in the rodent model and less 

than 10 DEGs in humans, suggesting that this brain region is not significantly vulnerable to 

long-term alcohol abuse with prolonged abstinence. Further evidence was also found in the 

bulk sequencing approach (Study 1), where both methylome- and transcriptome-wide data 

of prefrontal and striatal regions were conducted, and the ventral striatum (VS) showed a 

limited number of DEGs and no overlapping genes in the data integration of methylation and 

transcription data. However, on the level of differentially methylated positions and regions, 

the VS was one of most affected regions observed. When comparing the results of all three 

brain regions in humans, SERPINA3 appears to be up-regulated independently of the region, 

suggesting this gene as a new biomarker for AUD.  

First preliminary snRNA-Seq data from the dorsomedial striatum of PD rats (Study 3) – the 

brain region that was also found in the human post-mortem brain to be most significantly 

altered on the multiomics level (Study 1) – suggests a pronounced relevance for 

oligodendrocytes and microglia in regard to altered transcripts that persist after long-term 

abstinence. These cell types have been previously found to be relevant in AUD patients and 

the post-dependent rats on several brain regions.  
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As indicated by studies 1-3, the immune system is strongly dysregulated in AUD. Therefore, 

in study 4, chronic alcohol consumption and alcohol dependence as potential risk factors for 

COVID-19 infection and severity was observed across multiple rat models of alcohol intake. 

Especially, the consistent up-regulation of ACE2 in lung tissue detected in all models as well 

as the reduction of Mas expression in the olfactory bulb led to the conclusion that alcohol 

intake – especially in a sub-chronic to chronic manner – might increase the propensity to 

develop a SARS-CoV2 infection and potentially, suffer from severe long-term consequences, 

such as anosmia.  
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Zusammenfassung 

Bis heute sind nur wenige pharmakologische Präparatee für die Bewältigung von 

Alkoholkonsumstörung (AUD) verfügbar und deren Erfolgsrate ist stark limitiert. Deshalb sind 

neue therapeutische Wege unerlässlich. Diese Dissertation hat zum Ziel dieser Notwendigkeit 

nachzukommen, indem molekulare Mechanismen identifiziert werden, die in AUD verändert 

sind. Hierzu wird der Patientenaspekt durch Verwendung von humanem post-mortem 

Hirngewebe in Betracht gezogen und die Ergebnisse mit einen frequent eingesetzten 

Tiermodel von Alkoholabhängigkeit verglichen. Durch die Kombination von zahlreichen 

cutting-edge Techniken liefert diese Arbeit hohe Evidenz für weitere aufbauende Studien, die 

es ermöglichen werden die Ergebnisse in präklinischen Ansätzen zu validieren und deren 

Relevanz für den Patienten genauer vorherzusagen als vorherige Studien. Zusätzlich können 

Biomarker für AUD, die in dieser Studie identifiziert werden, substanziell zur AUD-Diagnose 

auf molekularer Basis beitragen.  

Die Meta-Analysis von drei Hirnregionen (Studie 2) –präfrontaler Kortex (PFC), nucleus 

accumbens (NAc) und Amygdala (AMY) – hat gemeinsame Signaturen identifiziert, indem 

Nager, Affen und humanes post-mortem Hirngewebe verglichen wurden. Im PFC wurden 

Kanzerogenese, pro-inflammatorische und Metabolismen von oxidativem Stress 

identifizieret. Die Analyse im NAc zeigte keine signifikanten unterschiedlich exprimierten 

Gene (DEGs) im Nager-Modell und weniger als zehn DEGs in Menschen, was vermuten lässt, 

dass diese Hirnregion wenig vulnerabel für Langzeit-Alkoholkonsum mit anhaltender 

Abstinenzphase ist. Weitere Evidenz konnte ebenfalls aus bulk Sequnzierungsanwendungen 

(Studie 1) entnommen werden, in denen Methylom- und Transkriptom-weite Daten aus 

präfrontalen und striatalen Regionen erhoben wurden und das ventrale Striatum (VS) eine 

geringe Anzahl an DEGs und keine überlappenden Gene in der Datenintegration von 

Methylierungs- und Transkriptionsdaten aufwies. Jedoch auf der Ebene von differenziell 

methylierten Positionen und Regionen, wurde das VS als eine der am stärksten beeinflussten 

Regionen beobachtet. In einem Vergleich durch alle drei Hirnregionen in der humanen 

Spezies ist SERPINA3 als konsistent hoch-reguliertes Gen aufgefallen, was unabhängig von der 

Hirnregion beobachtet werden konnte und dieses Gen als neuen Biomarker für AUD in 

Betracht zieht.   
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Erste vorläufige Daten aus einem snRNA-Seq-Experiment (Studie 3) aus dem dorsomedialen 

Striatum –die Hirnregion, die in humanem post-mortem Gewebe die stärksten 

Veränderungen auf dem multiomics Level zeigte (Studie 1)– von Alkohol abhängigen Ratten 

zeigen eine potenziell verstärkte Relevanz für Oligodendrozyten und Mikroglia in Bezug auf 

veränderte Transkripte, die Langzeit-Abstinenz überdauern. Diese Zelltypen haben bereits in 

vorangehende Studien an AUD-Patienten Relevanz gezeigt.  

Wie in den Studien 1-3 gezeigt, ist das Immunsystem in AUD stark beeinträchtigt. Deshalb 

wurde in Studie 4 chronischer Alkoholkonsum und Alkoholabhängigkeit als potenzielle 

Risikofaktoren für COVID-19-Infektion und Komplikationen durch multiple Rattenmodelle von 

Alkoholkonsum betrachtet. Besonders die konstante Hochregulation von Ace2 im 

Lungengewebe aller Modelle, sowie die Reduktion von Mas-Expression im olfaktorischen 

Bulbus führten zur Schlussfolgerung, dass Alkoholkonsum –insbesondere in einer sub-

chronischen und chronischen Weise– die Wahrscheinlichkeit mit SARS-CoV2 infiziert zu 

werden, sowie potenziell unter schweren Langzeitkonsequenzen, wie beispielsweise 

Anosmie, zu leiden, erhöhen könnte.  
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1. Introduction 

1.1 Alcohol use disorder – a common mental health problem 

Alcohol is one of the few drugs that is consumed legally in the majority of countries 

worldwide. This is potentially encouraging an elevated consumption rate of this substance, 

where, e.g., in the US 86% of all people aged 18 year or older drank alcohol at least once in 

their lifetime and 70% of people of the same age reported drinking over the last year, 

according to a report of the National Institute on Alcohol Abuse and Alcoholism (NIAAA) 

(SAMHSA, 2019). Furthermore, alcohol-related emergencies and deaths account for about 

20% of all cases reported in the US, making alcohol the third-leading preventable cause of 

death in this country (Jones et al., 2014; Mokdad et al., 2004). Globally, 5.3% of all deaths are 

caused by alcohol consumption (World Health Organization, 2018), making alcohol abuse the 

highest risk factor for premature disability and death for people aged between 15 and 49 

years (Collaborators, 2018). Therefore, it might not be surprising, that alcohol was classified 

as the most harmful drug, in comparison to other licit and illicitly commonly consumed drugs 

(Nutt et al., 2010). Furthermore, Alcohol Use Disorder (AUD) is the most prevalent substance 

use disorder worldwide (Collaborators, 2018). Despite cultural and religious aspects, alcoholic 

beverages can be found in TV advertisements, public bars, and restaurants and are freely 

available even on public transportation, such as planes and trains. This omnipresence of 

alcohol is not just engaging consumption in general, but also represents a high number of 

trigger points and cues for patients suffering from AUD, which enhances their relapse 

potential. 10-15% of the global population suffers from AUD, whereby the number of 

undiagnosed AUD patients is potentially even higher (Egervari et al., 2021). One of the most 

challenging aspects of AUD is withdrawal, and relapse. More than 50 % of the patients do not 

manage to break through the steady cycles of abstinence, withdrawal and relapse (Sliedrecht 

et al., 2019). Furthermore, less than 10% of all AUD patients receive treatment (Fairbanks et 

al., 2020), and pharmacotherapeutic options are comparably low for these patients, since, to 

date, there are only three commonly approved therapeutic drugs available (Egervari et al., 

2021; Littleton et al., 2004). Disulfiram, FDA-approved since 1951, interacts with aldehyde 

dehydrogenase to block alcohol catabolism, which leads to the accumulation of acetaldehyde. 

If the patient is consuming alcohol during this medication, strong negative side effects such 

as nausea, vomiting, and heart palpitations occur, which is supposed to establish a negative 
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association with alcohol and therefore initiate an aversive behavior in the patient, eventually 

(Vallari & Pietruszko, 1982). Additionally, disulfiram was suggested to interact with the 

dopamine system, thereby inducing the metabolization of dopamine to noradrenaline, 

leading to reduced withdrawal symptoms (Bagdy & Arato, 1987). However, the efficacy of 

disulfiram is still questioned. While a meta-analysis from 2014 showed, that disulfiram 

treatment seems to be solely affective in open-label, but not in blinded trials (Skinner et al., 

2014), it was suggested that just awareness of the direct negative physiological consequences 

of alcohol consumption might improve treatment outcome (Mutschler et al., 2016). To date, 

disulfiram is mainly recommended for abstinence maintaining, but not for a slight reduction 

of drinking behavior (Kranzler & Soyka, 2018). The second FDA-approved 

pharmacotherapeutic drug is naltrexone, which was approved in 1994 for treating AUD, and 

was initially used for opioid use disorders (OUD). Naltrexone interacts with the µ-opioid 

receptor (MOR) as an antagonist, which results in a reduced rewarding effect of alcohol, 

caused by impairment of the dopamine system (Nestler, 2005). Previous studies reported a 

significant reduction of drinking days, relapse episodes, and the general rewarding effect of 

alcohol (O'Malley et al., 1992; Ray & Hutchison, 2007; Volpicelli et al., 1992). Nevertheless, 

for naltrexone, mixed outcomes have been observed. Additional clinical trials reported no 

significant positive outcome to placebo, which, considering the aversive side effects of this 

medication, points towards a limited utility (Kranzler et al., 2000). In general, it has to be taken 

into account that naltrexone might enhance OUD withdrawal signs, and therefore AUD 

patients should be screened for additional OUD as a comorbidity before initiating the therapy 

(Kranzler & Soyka, 2018). Additionally, patients with alcoholic liver disease are suggested to 

abstain from naltrexone treatment, since acute hepatitis and liver failure are 

contraindications (McDonough, 2015). The third pharmacotherapy, acamprosate, was 

approved in 2004. Even though the mechanism of action is yet not fully understood, it is 

suggested to act on N-methyl-d-aspartic acid (NMDA) receptors as a partial co-agonist to 

reduce the hyperexcitability of neuronal cells and therefore, reducing the effects of acute and 

protracted withdrawal (Mason & Heyser, 2010). Furthermore, it has previously been shown 

that a hyper-glutamatergic state, induced by a mutation in the circadian clock gene Per2 gene, 

which leads to the accumulation of glutamate, induces enhanced alcohol consumption and 

that this effect can be reversed by acamprosate (Spanagel et al., 2005). In addition, the 

efficacy of acamprosate was dedicated to calcium, as it has been found that that replacing 
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the calcium ligand in the acamprosate compound with sodium was leading to no positive 

effects on alcohol preference, and craving. Also, increased levels of calcium in the plasma of 

AUD patients were positively correlated with acamprosate treatment outcomes. (Spanagel et 

al., 2014)   

Also, for acamprosate, several studies showed only little to no effect over placebo (Anton et 

al., 2006; Chick et al., 2000; Kampman et al., 2009; Paille et al., 1995; Richardson et al., 2008; 

Shabunin, 1991). However, confirmatory studies were also published, stating an increase in 

abstinence duration with acamprosate treatment and these additionally recommended 

applying it for abstinence maintenance (Mann et al., 2004; Rosner et al., 2010; Rosner et al., 

2008).  

This short introduction to AUD pharmacological treatments shows the necessity for further 

investigations to reduce the burden caused by long-term withdrawal, relapses and repeated 

abstinence from high-level drinking cycles. Since AUD and the associated relapse behavior 

strongly affect the brain (Cui et al., 2015; Koob & Volkow, 2016; Uhl et al., 2019), research is 

mostly focusing on the neurocircuits that are altered in this disease phenotype. Therefore, 

pre-clinical studies on post-mortem human brain tissue as well as on animal models of alcohol 

dependence are used to study the molecular processes underlying the variety of aspects that 

define AUD to develop new successful therapeutic approaches. Additionally, the more 

scientific communication and education to the public takes place, the higher the likelihood 

will be that AUD becomes less stigmatized and eventually, more patients become diagnosed 

and receive treatment.  

 

1.2 Dysregulated neurocircuits in AUD 

At the time alcohol abuse and addiction arose as a topic in society, it was mainly considered 

a social issue, and as a consequence, it was concluded that the justice system had to take care 

of eliminating this public problem (Leshner, 1997). Over time, with increased general 

understanding of mental disorders, AUD has been added to diagnostic handbooks in 

psychiatry and has been officially characterized as a brain disease (Heilig et al., 2021; Leshner, 

1997). Furthermore, the phenomenon of the “dark side of addiction” was established, 

describing the impact of negative emotions on the negative reinforcement for drug intake 

(Koob, 2017; Koob & Le Moal, 2005, 2008). As the term indicates, this aspect focuses on the 
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counterpart of the positive reinforcement factors that come with the pleasurable, rewarding 

effects of the drug. To this date, this terminus serves as a basis for neurobiological 

observations and interpretation in addiction research.   

By now, various neurobiological studies have observed which brain components might be 

dysregulated by alcohol consumption, dependence, withdrawal, and relapse. Hence, most of 

these studies reported that when developing an AUD, the brain activity patterns are 

substantially altered compared to those of social drinkers. Besides the activity patterns the 

brain volume is also shrinking in AUD patients. As a neurotoxic agent, alcohol causes a 

reduction in grey matter volume through damage and induced autophagy in neurons. Even 

though this effect was observed globally throughout the brain, the major affected regions 

were reported to be the prefrontal cortex (PFC), cingulate cortex, insula, and striatum (Nutt 

et al., 2021) and these effects were found to have a negative effect of biological aging with 

an increase of up to 11.7 years with the strongest effect in older AUD patients (Guggenmos 

et al., 2017). Also, the white matter is impaired by long-term alcohol abuse, as microstructural 

changes have been observed that even progress in early abstinence in a translational 

approach focusing on alcohol preferring rats as well as AUD patients (De Santis et al., 2019).  

The pleasurable, stimulating effect of alcohol, when occasionally consumed, has been 

attributed to the striatum (Weafer et al., 2018). In AUD, the rewarding properties of alcohol 

are experienced less, and the pleasure of alternative natural rewards is declining until it is 

completely absent. This impairment in reward processing is mediated by a reduced reward-

driven motivational function from the ventral striatum and projections to the extended 

amygdala (Koob & Le Moal, 2008). As part of the driving forces in reward processing, the 

endocannabinoid system as well as endogenous opioids interact directly with the dopamine 

system in a positively enhancing manner, but also stimulates glutamate release, mainly in the 

nucleus accumbens (NAc) (Spanagel, 2009, 2020). When comparing the severity of AUD and 

the level of impairment of the driving neurocircuits, a stronger impairment of these circuits 

was reported in heavy drinking AUD patients, compared to moderate AUD patients (Fede et 

al., 2022).  

In addition, so-called antireward circuits are activated, which drive aversive aspects, such as 

dysphoria, emotional pain, and loss of motivation for natural rewards via an imbalance in 

neurotransmitters through a down-regulation of dopamine and opioids and an up-regulation 

of corticotrophin-releasing factor (CRF) in the HPA axis and extended amygdala (Koob & Le 



 
 

5 

Moal, 2008). Also, an inner-striatal shift takes place, inducing a shift in activity from ventral 

to dorsal striatum, when developing AUD (Vollstädt-Klein et al., 2010). The aspect of craving, 

including compulsivity and loss of control over alcohol intake despite the awareness of 

negative consequences, is mainly driven by alterations in the PFC (de Paiva Lima et al., 2017; 

Frascella et al., 2010; Koob & Volkow, 2010). Reduced dopamine receptor expression was 

assumed to lead to decreased activity of the PFC, which might explain impaired self-control 

leading to compulsive drinking behavior in AUD patients (Volkow et al., 2017). The aspect of 

craving was additionally related to an increase in MORs in the ventral striatum of short-term 

abstinent AUD patients (Heinz et al., 2005). However, in non-abstinent patients and human 

post-mortem brain tissue, reduced levels of MOR were measured, and even further, the 

decreased availability of MOR was interpreted as a worse treatment prognosis with 

naltrexone, and MORs were suggested as molecular markers for AUD relapse prediction 

(Hermann et al., 2017).  

When presenting an alcoholic cue, AUD patients show activation of several brain regions, e.g., 

nucleus accumbens (NAc), anterior cingulate cortex (ACC), insula, and ventral tegmental aera 

(VTA), while social drinking individuals only show minor activation of the cingulate gyrus 

(Myrick et al., 2004). However, AUD is a complex disorder with a broad spectrum of 

characteristics that are directed by different brain regions and their interactions with each 

other (Figure 1). The amygdala is impaired in AUD by, e.g., dysregulation of neuropeptides, 

such as endocannabinoids, substance P, and CRF, which all are stress-relevant molecules 

(Egervari et al., 2021; Koob, 2009). Inhibition of CRF neurons in the amygdala projecting to 

the bed nucleus of the stria terminalis (BNST) initiates escalated drinking and physiologic 

withdrawal symptoms (Centanni et al., 2019). In terms of connective projections between 

brain regions, the interaction between the orbitofrontal cortex (OF) and the dorsomedial 

striatum (DMS) is impaired by chronic alcohol consumption, leading to reduced excitation of 

outputs from the OF to the DMS (Nimitvilai et al., 2017a; Nimitvilai et al., 2017b). Additionally, 

projections from the prefrontal cortex (PFC) to striatal regions are bidirectionally controlling 

alcohol consumption in a long-lasting manner (Ma et al., 2018). Incentive salience is one of 

the key features of AUD. It describes the desire to consume the drug and goes along with the 

loss of alternative rewards. Therefore, the main brain regions involved refer to the 

mesocorticolimbic system, which includes the midbrain to forebrain projections as well as the 

striatum and is mainly driven by dopamine (Berridge & Robinson, 2016). Figure 1 depicts a 
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schematic overview of the brain regions that are involved in AUD and their major neuronal 

projections.  

Based on these neuroscientific studies, new hypotheses were established, focusing on, e.g., 

neuroinflammation as the main alcohol-sensitive process (Grantham et al., 2023; Mayfield & 

Harris, 2017; Warden et al., 2016). The stress hypothesis explains stress as a major driving 

force for alcohol acquisition and relapse (Zhou & Kreek, 2014; Zorrilla et al., 2013). Another 

hypothesis focuses on anxiety that comes along with acute withdrawal, but also as an initial 

factor for alcohol consumption, since alcohol has high anxiolytic properties (Silberman & 

Winder, 2015; Tolic & Soyka, 2018). On the cellular level, e.g., the glial dysfunction theory has 

been described that suggests glia cells as the main cell type that is impaired by chronic alcohol 

consumption and AUD (Erickson et al., 2019; Kim et al., 2015; Miguel-Hidalgo & Rajkowska, 

2003; Orellana et al., 2017). These hypotheses aim to describe major factors that drive the 

development and maintenance of the disorder, with the goal of modulating them to induce 

long-term abstinence and eventually, overcome craving and relapse. The number of 

hypotheses point out not only the complexity of this disorder, but also the variety of ways 

scientists try to intervene to develop new targets for treatment.  

In conclusion, this section aimed to give a short overview of dysregulated brain regions and 

neurotransmitters that have previously been identified in AUD research. However, even 

though this paragraph does not represent the full content of this research field, it might still 

be sufficient to point out that in AUD patients, neuroadaptation takes place in diverse brain 

regions and connectivities between the regions are dysregulated, which eventually leads to 

addictive behavior. However, the full picture of these neurocircuitries is not yet clear, since 

especially the sex-specific differences and the involvement of cell type-specific components 

are not well understood so far (Borrego et al., 2022). The aspects discussed in this section 

underline that AUD is a multidimensional disease, that still requires further investigation into 

a variety of molecules, interactions, and regions to fully understand its extent on the 

neurophysiological level.  
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Figure 1: Neurocircuits of AUD.  

Schematic overview of the most abundantly studied brain regions, their function in AUD and their major neuronal projections 
(based on Egervari et al. (2021)). As central regions the prefrontal cortex, the striatum and the amygdala are highlighted, 
since they play key roles in AUD. BNST= Bed nucleus of stria terminalis, HPC= Hippocampus, PAG= periaqueductal grey, VTA= 
ventral tegmental area.  

1.3 Pre-clinical models of alcohol dependence – the post-dependent (PD) model 

The observation of affected neurocircuits and the outcome of their modulation on addictive 

behavior in patients is very limited. Therefore, animal models are valuable tools to observe 

alterations underlying the development of dependent behavior.  

The modulation of dysregulated molecules and circuits can be applied on the behavioral level 

to predict their efficacy as therapeutic targets. Over the past decades, several studies have 

shown the successful induction of alcohol-dependent behavior in rodent models (Gilpin et al., 

2008; Rodd et al., 2004; Spanagel, 2003). The use of rodent species to study the molecular 

effects of alcohol dependence comes with several advantages, since the environmental 

factors can be controlled to have harmonized conditions across the individuals and the 

genome can be manipulated with a variety of tools adequate for numerous different research 

questions. In addition, over the years, a variety of animal models for studying different 

aspects of AUD have been established, which has enabled the observation of the factors of 

AUD in diverse settings. To date, there is no “all-rounder model” that can mimic all the aspects 
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of AUD combined in animals, but it is possible to study the criteria, such as neurocircuits (on 

the genetic, epigenetic, transcription, and network level), and their behavioral consequences 

(reinforcing factors, craving, and dysphoria), separately (Koob & Le Moal, 1997). Additionally, 

the stages of developing dependence, withdrawal, and craving can be studied longitudinally. 

Due to common diagnostic tools, such as the Diagnostic and Statistical Manual of Mental 

Disorders 5th Edition (DSM-V), AUD is classified by loss of control over alcohol consumption, 

alcohol seeking and craving behavior, consumption despite negative consequences, 

enhanced risk-taking behavior, increasing tolerance to alcohol, and withdrawal symptoms 

during abstinence periods (American Psychiatric Association, 2013). The post-dependent (PD) 

animal model, which is induced by chronic intermittent ethanol (CIE) exposure, is frequently 

used in pre-clinical studies, since it is known to fulfill a high proportion of these criteria, such 

as withdrawal, tolerance to alcohol over time, excessive alcohol consumption, increased 

motivation for alcohol seeking, and evidence for loss of control over alcohol intake 

(Meinhardt & Sommer, 2015). In addition, due to the intense treatment characterized by 

numerous repeated cycles of ethanol exposure and abstinence, the animals show strong and 

persistent changes in neurocircuits on several molecular levels (Hansson et al., 2008; Heilig et 

al., 2017; Kisby et al., 2021; Meinhardt et al., 2013; Meinhardt et al., 2015; Olsen & Liang, 

2017; Rimondini et al., 2002).  

The PD phenotype emerges from a chronic intermittent exposure (CIE) treatment that usually 

consists of ethanol vapor exposure. In our laboratory, rodents usually undergo ethanol vapor 

cycles of 16 h followed by 8 h of abstinence per day for seven weeks in total. Hereby, the 

measurement of the blood alcohol concentration (BAC) ensures that the animals stay 

consistently in a high intoxication state ranging from 150 to 300 mg/dl (1.5-3.0‰) throughout 

the whole treatment period. After one to three weeks of abstinence, persistent alterations 

can be observed in alcohol dependence-related behavioral experiments, such as ethanol 

reinstatement behavior, to measure the relapse potential of the animals, as well as the 

persistent alterations on the molecular level (Carpio et al., 2022; Eisenhardt et al., 2015; 

Hansson et al., 2018; Uhrig et al., 2017). The treatment paradigm can vary across laboratories 

and research questions, but the general principle of high intoxication due to repeated circles 

of ethanol exposure and recurring abstinence periods to induce dependence is the same. 

Recent research has also included the model in translational approaches as a comparison to 

human findings or to elucidate behavioral relevance of targets observed in AUD patients 
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(Griffin, 2014). Functional magnetic resonance imaging (fMRI) studies have shown significant 

overlap between the brain activity patterns in CIE animals and AUD patients (Fritz et al., 2022). 

When measuring the dynamic changes of dopamine receptor expression during abstinence, 

the observed expression pattern in the human post-mortem brain was matched to a 

longitudinal observation of the expression changes in CIE rats at different time points of 

protracted abstinence (Hirth et al., 2016). Eventually, the consequence of this 

hyperdopaminergic state found in long-term abstinent rats as well as in human tissue, was 

suggested as an increased relapse vulnerability in additional behavioral data from the animal 

model. 

For testing treatment drug candidates, the CIE model has demonstrated that pregnenolone 

derivates can reduce alcohol intake in dependent individuals (Macedo et al., 2023). The model 

has also been used to investigate potential optogenetic treatment interventions during 

withdrawal (Alberto et al., 2023). In a study comparing CIE animals with human post-mortem 

brains as well as alive AUD patients, oxytocin was described as an anti-craving component. 

Since the findings in the preclinical experiments, were directly investigated in the clinics, this 

study led to a highly comprehensive and robust finding (Hansson et al., 2018).  

In summary, the use of animal models in preclinical research of AUD is essential. Therefore, 

the PD model plays a central role in examining the behavioral and molecular processes 

underlying this disorder to deliver target molecules for clinical drug testing. The combination 

with human post-mortem brain tissue and the establishment of translational approaches 

provides a promising basis for the understanding of AUD and the development of 

psychopharmacotherapy.   

 

1.4 Human post-mortem brain tissue 

Human post-mortem brain tissue is a valuable, but sparse resource for pre-clinical research 

on AUD to observe molecular changes in patients and establish connections between the 

observations in patients and animal models of alcohol addiction. There are only a limited 

number of brain banks worldwide that provide brain tissue from deceased AUD patients and 

healthy controls under high standards of archiving. Probably, the most frequently approached 

brain bank is the New South Wales Brain Tissue Resource Center (NSWBTRC) at the University 

of Sydney, Australia, which has been providing high quality tissue for decades (Dedova et al., 
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2009; Sutherland et al., 2016). The NSWBTRC is collaborating with the National Institute of 

Alcohol Abuse and Alcoholism (NIAAA) in the US as their major founder and is a certified 

biobank that aims to provide post-mortem brain tissue from patients with AUD and other 

mental disorders and healthy individuals. Since 2002, the brain bank has established a donor 

program called “Using our Brains” that aims to collect brain tissue from individuals before 

they die, and focuses on both, healthy and mentally disordered people (Sheedy et al., 2008). 

The requested tissue can be provided as either fresh-frozen or formalin-fixed, depending on 

the research purposes. In addition, each sample comes with a health record of the individual, 

including ethnic origin, psychiatric history, family history, cause of death, age at time of death, 

post-mortem interval and substance use, which provides a highly informative set of meta-

data for the molecular analyses.    

Especially with the development of high-throughput sequencing methods, human post-

mortem brain tissue was applied for DNA, RNA and protein expression profiling, which 

identified new risk alleles, biomarkers, and drug targets of AUD (Sutherland et al., 2014; 

Warden & Mayfield, 2017). Specifically, in transcriptomic observations, it has to be stated that 

even though the number of significantly altered transcripts is high, the effect size is 

comparably small. Therefore, the previous studies point towards the understanding of 

network interactions, by using, e.g., weighted gene network co-expression analysis (WGCNA), 

instead of the observation of single genes (Warden & Mayfield, 2017). On the network level, 

it has been suggested that impaired homeostatic regulation of gene networks might be the 

cause for neurotoxicity of high level ethanol consumption in AUD. In addition, dysregulation 

of numerous transcription factors as well as signalling cascades, such as the MAPK cascade, 

were identified across several alcohol-related studies (Farris & Miles, 2012). On the basis of 

epigenetic regulation, both non-coding RNAs (ncRNA) as well as micro RNAs (miRNA) are 

potentially influenced by alcohol and might have an important role in gene expression 

regulation (Farris & Mayfield, 2014). Furthermore, the combination of human post-mortem 

brains with blood samples from AUD patients in the clinics is a usual approach to find 

biomarkers that are commonly altered in brain tissue as well as peripheral organs, and also in 

finding brain-specific effects. Therefore, the GABAB-receptor promotor GABBR1 was 

suggested as a biomarker for neuronal dysregulation in the brain with a sex-specific outcome, 

showing effects only in male AUD subjects (Meyer-Bockenkamp et al., 2023). Another study 

using the same approach claimed that these alterations in the methylation pattern of the 
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DRD2 gene observed in several brain regions, could not be predicted by blood samples solely 

(Arfmann et al., 2023). 

Even though the previous findings in human post-mortem studies were highly promising, they 

were limited in sample size and lacked generalizability. The disease history of AUD patients is 

diverse, since every patient has a different onset of drinking, duration of drinking, number of 

relapses, and additional influencing factors, such as comorbidities, mainly additional 

psychiatric disorders and smoking, but also physiological diseases. All these factors describe 

the high heterogeneity of this mental health disorder, and it has been reported that these 

factors have influence on the molecular patterns of AUD (Bohnsack et al., 2019; Lohoff, 2020; 

Zahr et al., 2016). It is well known that also the environment has a high impact not only on 

the behavioral, but also on the molecular outcome (Gorwood et al., 2007; Sher et al., 2010). 

Therefore, according to statistics, heterogeneous cohorts that represent a set of numerous 

variables in addition to the main outcome measure, require a decent sample size to enable 

clear-cut statements of molecular processes underlying a certain disease (B-Rao, 2001; Jung, 

2010; Lai et al., 2003; Lau et al., 2023). To date, we are facing these limitations, as the 

approaches with the highest gain of information also require the highest amount of funding. 

In addition, even though the human post-mortem samples are expanding, the sample size is 

still limited. Especially, the observation of sex-specific differences in AUD, as well as ethnicity-

specific outcomes, is strongly underrepresented. There are several reasons for this. As 

mentioned above, the number of diagnosed AUD patients does not by far represent the total 

number of patients. In the past, women were significantly less diagnosed than men, which is 

why the number of potentially available study samples for sex-specific observations is 

restricted. However, recent data from the US indicate that the number of female AUD 

patients is increasing (Grant et al., 2017). It is known that female AUD patients differ from 

male AUD patients in their drinking patterns and general vulnerability to AUD (Stanesby et al., 

2018). Women seem to be less likely to develop an AUD, but if they do, women sustain more 

severe physiological consequences than men (Erol & Karpyak, 2015). One potential 

explanation for these sex-specific effects might be the differences in density of 

neurotransmitter receptors in women, such as dopamine, GABA, and glutamate (Ceylan-Isik 

et al., 2010). However, the number of studies investigating the sex-specific effects of AUD, 

including risk factors, treatment needs, and molecular patterns, is highly limited so far. But 

the currently existing points towards the need for further exploration of female AUD patients 
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and their comparison to men. Most of the individuals who have donated post-mortem brain 

tissue so far are of Caucasian origin. This might be explained by the high percentage of white 

people in industrial countries, which is the area where the majority of patients are diagnosed, 

and samples are donated. However, it has been shown that ethnicity is an important factor 

to consider when investigating potential risk factors for developing AUD (Evans et al., 2017; 

Wall et al., 2016). 

Bottom line, human post-mortem brain tissue provides the unique chance to study the 

molecular changes at the genomic, transcriptomic, and proteomic level within the patient. 

Therefore, numerous studies investigated this valuable resource and contributed 

substantially to the understanding of the disorder. However, since it is only possible to study 

these phenomena in deceased individuals, it cannot be determined whether the observed 

patterns are caused by AUD or if they are initiating factors leading to the development of the 

disease that persist over lifetime. 

 

1.5 Bulk sequencing and the era of transcriptome-wide approaches 

Since the end of the last century, interest in capturing more than just a limited set of target 

genes has increased, and therefore the development of sequencing (seq) methods for 

transcriptome- and genome-wide observations has been initiated and developed further. 

Over time, the sensitivity for captured molecules has increased dramatically, leading to 

reliable observations of lowly expressed transcripts. One of the first techniques for 

transcriptome-wide analysis were microarrays. With these arrays, several thousand genes 

could be detected at the same time by hybridization of the pre-labeled sample cDNA to 

custom-made adaptor sequences on the microarray chip (Celis et al., 2000). The samples were 

distributed on the microarray chip, and the cDNA strands hybridized to the probes on the chip 

were detected. Afterwards, the sample cDNA could be washed away to re-use the chip, which 

made this technique cost-effective and approachable for financially limited studies, as well. 

Since the adaptor sequences on those chips were custom-made, a broader spectrum of 

gensets and networks of interest could be detected than before. This was the first time, 

thousands of genes could be detected at the same time, which enhanced the number of 

investigated genes dramatically in comparison to Northern Blots, qPCR and any other target-

molecule approach. Nevertheless, capturing the full transcriptome was first possible with the 
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development of the Next Generation Sequencing (NGS) approaches at the beginning of the 

second decade of the 21st century. Hence, the number of detected genes had significantly 

increased by enabling the capture of the whole transcriptome, and a reliable observation of 

lowly abundant transcripts was granted. Not only was the resolution enhanced, but due to 

automated sample processing and high-throughput sequencing methods, the hands-on 

working time was strongly reduced (Ambardar et al., 2016). In many research fields, 

numerous key publications have identified target genes and pathways that are strongly 

dysregulated in a variety of diseases, thereby providing the basis for follow-up studies of 

treatment target identifications. Also, in the field of personalized medicine, bulk sequencing 

approaches contributed extensively to establishing cost-effective solutions to optimize 

diagnosis procedures in the clinics (Rabbani et al., 2016). As mentioned in Section 1.4, in pre-

clinical research on AUD, important findings were conducted applying these seq techniques 

and are still ongoing, which is contributing extensively to better understanding of the 

underlying molecular mechanisms and interactions of the disorder. However, even though 

bulk seq approaches have pioneered the field of molecular analyses at the DNA, RNA and 

protein level, one crucial limitation of these methods is that bulk seq measures a merged 

average of all cell types within one sample. Through the homogenization process applied in 

the RNA isolation procedure, all cell types appear in a merged interphase in the sequencing. 

Therefore, findings in bulk analyses represent the average of transcripts from a specific tissue 

type, but cell type-specific signatures cannot be observed accurately. By now, it is known that 

cell types show individual epigenetic and transcriptomic expression profiles, which leads to 

the expectation that the effects observed in bulk analyses might not represent the full picture 

of important aspects of a transcriptome-wide or epigenome-wide profiling. 

 

1.6 Single cell sequencing approaches deliver new insights to understanding the cell-

type specific signatures in AUD 

Since the first study published results from single cell RNA- Seq (scRNA-Seq) in 2011 (Islam et 

al., 2011), single-cell seq (scSeq) techniques have been developed, and contributed 

fundamentally to investigations of several diseases, and to date are even part of diagnostic 

tools. E.g., in the cancer field, scSeq techniques are used to more precisely identify the 

appropriate target therapy for the patient since the previous bulk analyses led to a high 
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number of patients not being treated with their respective optimal medications (Baslan & 

Hicks, 2017). Therefore, scSeq approaches are the pioneering methods for understanding 

diseases in greater detail on a cell type-specific level, which is enabling the development of 

new, promising therapeutic diagnostics and approaches. Also, in the context of general organ 

development, which is also linked to physiological malfunctioning, longitudinal scSeq studies 

have enlightened the interaction of the individual cell types at different time points 

throughout embryonic development and further (Herring et al., 2022). In the AUD field and 

in addiction research in general, so far, only a very few studies have applied this approach. 

Brenner et al. (2020) performed single nuclei RNA (snRNA) seq in human post-mortem brain 

samples of the prefrontal cortex (PFC) from deceased AUD patients and observed the highest 

number of differentially expressed genes (DEGs) in astrocytes, oligodendrocytes, and 

microglia. Furthermore, a snRNA-Seq study published this year analyzed NAc tissue derived 

from human post-mortem brains of AUD patients (van den Oord et al., 2023). Here, the cell 

types with the strongest effect were identified as medium spiny neurons (MSN), both 

dopaminergic subtypes D1 and D2, microglia, and oligodendrocytes. The authors integrated 

their dataset with the already existing one from Brenner et al. (2020) of the PFC and found 

replicating findings. The main finding, that CD53 is differentially expressed in microglia, was 

also observed in the previous PFC study in post-mortem AUD brains. In the central amygdala 

of vapor exposed rats with acute withdrawal, the most affected cell types were found to be 

astrocytes and GABAergic neurons (Dilly et al., 2022). When looking further into subclasses of 

GABAergic neurons, the protein kinase C delta expressing GABAergic neurons were identified 

as the most affected subclass, which was also validated using fluorescent in-situ staining and 

quantification methods. This study has identified a new cellular subpopulation that might play 

an important role in alcohol- and withdrawal-related transcriptomic changes. In addition, a 

recent study focusing on an animal model of cocaine intake identified dopamine-receptor 

positive MSN and immediate early genes expressed in this cell type as key driving aspects of 

cocaine intake (Savell et al., 2020). Taken together, these limited number of single-cell 

resolution studies have pointed towards the high importance of medium spiny neurons as 

well as glia cells being affected by AUD on the transcriptomic level. Without doubt, in the near 

future, numerous additional snSeq studies will add further understanding of the cell types 

mainly involved in AUD, which has great potential for better understanding the disease to a 

greater extent. However, even though the number of snSeq studies is by now very limited in 
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the addiction field, past studies have focused on the impact of specific cell types on alcohol 

drinking behaviors using, e.g., cell type enrichment analysis as a downstream analysis in bulk 

sequencing approaches (Mavromatis et al., 2022; Ponomarev et al., 2012) and targeted cell 

type-specific approaches (O'Sullivan et al., 2021; Warden et al., 2021), which are adding 

further evidence to snSeq findings. 

To understand the molecular alterations of AUD and other addiction-related disorders in 

greater detail, additional single cell studies need to be conducted on different molecular 

layers. One of the aims of this thesis is to contribute to these previous findings and add further 

information on genes and molecular pathways that might be involved in AUD and represent 

potential future targets for pharmacotherapeutic treatment.    

 

1.7 Alcohol and the COVID-19 pandemic 

At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) and 

the resulting coronavirus disease (COVID-19) were a rapidly and long-lastingly evolving global 

health problem, resulting in a pandemic. Millions of people required severe hospitalization, 

treatments, or died due to COVID-19, which represented a tremendous burden for the health 

system in nearly all countries worldwide. Therefore, it has been intensively discussed how to 

protect the global population most effectively, reduce the amount of severely suffering 

patients, and end this pandemic as soon as possible. In this context, the identification of risk 

groups for severe COVID-19 was of great importance. Hence, the elderly, obesity, smoking, 

gender, respiratory dysfunction, and pre-existing autoimmune diseases were some of these 

identified risk groups that were found to be more often infected by SARS-CoV2, but also 

showed an increased number of severe and fatal cases. Since alcohol is known to cause 

impairment on a broad spectrum of physiological health conditions, it might well be that this 

could contribute to enhanced conditions for the coronavirus to infect and cause severe 

symptoms. However, even though it has been recorded that throughout the pandemic, the 

global alcohol consumption increased, the impact of alcohol on the pandemic as a potential 

risk factor was only sporadically discussed. This is surprising, considering that more than two 

billion people worldwide regularly drink and hundreds of millions of people are diagnosed 

with AUD.  
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Epidemiological data from AUD patients and SARS-CoV2 infection, hospitalization, and 

mortality rates provide no basis for a clear-cut conclusion about whether AUD, or above 

average drinking, can be considered a risk factor for COVID-19. While most studies examined 

increased risk for complications in AUD patients (Bailey et al., 2022; Bhalla et al., 2021; Pavarin 

et al., 2022; Ramakrishnan et al., 2022; Varela-Rey et al., 2013), there were also observational 

studies that reported increased general COVID-19 infection without increased risk for 

complications (Kianersi et al., 2022; Saurabh et al., 2021). Moreover, some studies reported 

no significant increase in COVID-19 infection or disease severity compared to individuals with 

no comorbidity (Dai et al., 2022; S. Rao et al., 2021; Zhong et al., 2020). Interestingly, an early 

onset study by Hamer et al. (2020) even reported data suggesting over average drinking as a 

potential protective factor (Hamer et al., 2020).  

On the molecular level, it is known that the virus is infecting the cells via the cell-surface 

protein ACE2, that is, in collaboration with the transmembrane protease TMPRSS2, facilitating 

virus entry (Hoffmann et al., 2020). Therefore, an increased expression of ACE2 has been 

correlated with a higher risk of COVID-19 infection in general, but also with an increased 

potential to develop complications. In terms of ACE2 expression in AUD patients, most studies 

reported up-regulation of this gene and protein in several tissues, such as the brain and liver, 

before and after the infection (Muhammad et al., 2021; Nuovo et al., 2022; Testino et al., 

2022).   

It has been reported that throughout the pandemic, AUD patients consumed significantly 

more alcohol than before, and the number of alcohol-related organ damage cases in AUD 

patients has increased since 2020 (Hutchison et al., 2022; Kothadia et al., 2022; Marano et al., 

2022; Schecke et al., 2022; Tikaria et al., 2022). Therefore, it is of great importance to further 

investigate the consequences for AUD patients of the COVID-19 pandemic. In addition, the 

stressful effects of the pandemic, such as social isolation and life uncertainties, led several 

healthy individuals to drink alcohol more often alcohol to cope with these suffocating worries. 

This has an impact on the global health system even after the pandemic. Hence, further 

investigations into the potential risk of AUD patients to COVID-19 infections are warranted to 

eventually convey strong evidence for the government to protect this group of the population 

with, e.g., a higher priority for vaccination and other preventive measures.  
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1.8 Study aims 

The aim of this thesis is the observation of molecular patterns in AUD, with the main focus on 

transcriptomic changes in human post-mortem brain tissue of AUD patients as well as in the 

brain of a rodent animal model of alcohol dependence across different brain regions. 

Therefore, bulk as well as scSeq approaches were applied in a comprehensive manner to find 

commonly altered mechanisms in the patient samples and the animal model in four studies: 

Study 1 focuses on bulk DNA- and RNA-sequencing on human post-mortem brain tissue from 

multiple brain regions and the separate and combined analysis of these two omics layers. 

Study 2 represents a meta-analysis of transcriptome-wide sequencing approaches in three 

brain regions of human post-mortem and animal brain samples in a translational setting. In 

Study 3, single nuclei RNA-sequencing is applied to identify cell-type specific patterns in the 

dorsomedial striatum of alcohol dependent rats. Finally, as mentioned in the introduction, 

AUD has been previously associated with impairment in neuroimmune processes and since 

this thesis was predominantly conducted during the COVID-19 pandemic, Study 4 investigated 

the potential of chronic alcohol consumption on COVID-19 severity and disease progression 

by measuring Ace2 gene expression across several animal models of alcohol intake and 

dependence using RT-qPCR.  

 
Figure 2: Schematic overview of the studies in this thesis and how they contribute to the observation of neurocircuits in AUD. 
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 To distinguish the brain regions included in study 1 and study 2, the brain regions of study 2 (mPFC, AMY and NAc) are 
highlighted in light yellow and additionally surrounded by a black stroke. Human post-mortem brain tissue was included in 
study 1 (dark yellow) and 2 (light yellow), while study 3 (blue) and 4 (green) focused on rat brain tissue. PFC= medial prefrontal 
cortex; BA9= Brodmann Area 9; ACC= anterior cingulate cortex; CN= caudate nucleus; PUT= putamen; VS= ventral striatum; 
NAc= nucleus accumbens; AMY= amygdala; OB= olfactory bulb; DMS= dorsomedial striatum. 

 

As highlighted in Figure 2, these studies all contribute to the main study aim of the 

translational comparison of neurocircuits impaired by AUD in different species and at diverse 

levels of molecular investigations. We believe that the targets identified in these studies will 

provide profound evidence for further exploration of their functional importance using 

behavioral experiments in animal models of alcohol dependence and will eventually lead to 

new therapeutic approaches to overcome the high relapse risk in AUD patients, which is still 

a tremendous challenge in the treatment of this psychiatric disorder.  
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2. Materials and Methods 

2.1 Study 1: Bulk sequencing in human post-mortem brain tissue 

As extensively demonstrated in the introductory part of this thesis, AUD is a brain disease. 

Therefore, the study of this organ to identify the brain regions, that are showing the strongest 

impairment by AUD, is highly relevant to understanding the disorder. On the molecular level, 

it is only possible to observe these changes within the patient through the use of post-mortem 

samples. As described in 1.4, human post-mortem brain tissue is a sparse and valuable source 

in the AUD research field, and even though there is pre-existing data derived from this kind 

of sample, the heterogeneity of the patients is too high to determine the generalized effects 

of AUD on the patient’s brain. In addition, the observation of several brain regions in the same 

individual has only been partially possible to date. Therefore, this study examines molecular 

changes in DNA methylation as well as the RNA expression level by observing five and three 

brain regions, respectively, with high individual overlap across the brain regions. This 

approach aims to identify altered genes and pathways on two omics layers, both separately 

and combined, which adds to the already existing findings of previous studies. The findings of 

this study are published as Zillich et al. (2022a) and Zillich et al. (2022b). While I performed 

sample preparation, Lea Zillich (Department of Genetic Epidemiology in Psychiatry, ZI 

Mannheim) analyzed the data. 

 

2.1.1 DNA sequencing for epigenome-wide analyses 

DNA extraction in human post-mortem brain tissue of deceased AUD patients and matched 

controls was performed to analyze DNA methylation patterns in the following brain regions: 

PFC/BA9, anterior cingulate cortex (ACC), caudate nucleus (CN), ventral striatum (VS), and 

putamen (PUT). All samples were derived from the NSWBTRC at the University of Sydney. 

Characterization of the subjects based on next-of-kin interviews revealed DSM-IV criteria of 

alcohol dependence for the case individuals and additionally, an estimated daily ethanol 

consumption of >80 g per day and <20 g per day for control individuals. In addition, the study 

subjects were older than 18 years, had no diagnosis of an additional severe psychological 

disorder, no neurodevelopmental impairments or brain injuries, no additional substance use 

disorder (despite having nicotine use disorder), and were of Caucasian ethnicity. Each 
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individual contributed between one and five brain region-specific samples. Further details on 

the samples can be obtained from Table 1. 
Table 1: Demographic description of all human post-mortem brain samples included for DNA methylation analysis. 

Control and case individuals were matched by age and sex. PMI = post-mortem interval; BAL = blood alcohol level. The number 
of detected CpG sites varies between 657 000 and 690 000 sites per brain region. Table adapted from Zillich et al. (2022a). 

Characteristic AUD Cases Controls Difference (p value) 

n 53 58  

Age (years) 56.72 ± 10.81 56.69 ± 10.29 0.989 

Sex 34M/19F 40M/18F 0.737 

pH value 6.5 ± 0.28 6.57 ± 0.32 0.189 

PMI (hours) 35.46 ± 16.1 28.17 ± 15.29 0.038* 

Smoking status  0.72 ± 0.26 0.51 ± 0.31 >0.001* 

BAL >0 at time of death 8 0  

Number of brain regions coming from same patient 

5 19 (35.8%) 19 (32.8%)  

4 9 (17.0%) 8 (13.8%)  

3 18 (34.0%) 21 (36.2%)  

2 0 (0%) 3 (5.1%)  

1 7 (13.2%) 7 (12.1%)  

Number of samples per brain region 

ACC 28 26  

BA9 25 21  

CN 45 49  

PUT 44 50  

VS 46 47  

 

DNA extraction was performed using the Qiagen DNeasy extraction kit (Qiagen, Hilden, 

Germany). Afterward, the samples were placed randomly on processing plates, for each brain 

region separately. The DNA methylation levels were measured using the Illumina 

HumanMethylationEPIC Beadchip and the Illumina HiScan array scanning system under the 

leadership of Dr. André Heimbach at the Life & Brain GmbH at the University Bonn.  

 

2.1.2 RNA sequencing for transcriptome-wide analyses 

RNA was extracted from human post-mortem brain tissue derived from the VS, CN, and PUT. 

The sample criteria were similar to the ones mentioned in Section 2.1.1 with only the inclusion 
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of an RNA integrity number (RIN) of greater than 5.5 of the extracted RNA. Tissue was also 

obtained from NSWTRC at University of Sydney, Australia. A detailed sample description can 

also be extracted from Table 2.  

Table 2: Demographic description of included samples for RNA sequencing.  

Demographic description of the included samples for RNA sequencing. PMI = post-mortem interval; BAL = blood alcohol level. 
The significance of difference is calculated as t-test/ chi2-test comparing cases and controls. Content adapted from Zillich et 
al. (2022b).  

Characteristic AUD Cases Controls Significance of 

Difference (p value) 

n 48 51  

Age (years) 55.58±10.62 57±10.64 0.51 

Sex 31M/17F 37M/14F  

pH value 6.53±0.26 6.65±0.25 0.026* 

PMI (hours) 37.07±15.79 30.7±15.57 0.047* 

Smoking status  0.67 0.24 <0.001* 

BAL >0 at TOD 7 0  

Number of samples per brain region 

CN 36 37  

PUT 35 42  

VS 31 32  

 

RNA extraction was performed using the RNeasy micro kit from Qiagen (Qiagen, Hilden, 

Germany), and RIN value measurement was performed using an Agilent Bioanalyzer and 

TapeStation 4200 (Agilent, Stanta Clara, CA). Samples with a RIN threshold of <5 were 

excluded for sequencing. Afterward, sequencing libraries were prepared using the TruSeq 

Stranded Total RNA Library Prep Kit (Illumina, San Diego, CA), and sample sequencing was 

performed in technical replicates via Illumina NovaSeq 6000 with a read length of 2 x 100 bp 

and a sequencing depth of 62.5 M read pairs per sample. The library preparation as well as 

the sequencing was performed at the Life & Brain GmbH at the University Bonn under the 

leadership of Dr. André Heimbach. 

 

2.1.3 Data analysis 

Data analysis of bulk DNA- and RNA-Seq was performed by the Department of Genetic 

Epidemiology in Psychiatry at the Central Institute of Mental Health Mannheim. Detailed 

information can be extracted from Zillich et al. (2022a) and Zillich et al. (2022b). Since the 
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data analysis is not the main scope of this thesis, the respective methods will be described 

briefly in the following sections. 

 

2.1.3.1 Data analysis of DNA methylation in human post-mortem brain tissue 

The CPACOR-pipeline (Lehne et al., 2015) was used for the first processing of the raw intensity 

data into methylation data and following Quality Control (QC). Removal criteria for samples 

were either a low quality of the extracted DNA or methylation-based, and phenotypic sex was 

not matching. Exclusion criteria for probes were call-rate of <0.95, allele frequency for SNPs 

of >0.1, or probe allocation to sex-specific chromosomes (X or Y chromosome). After filtering, 

657.593- 694.791 methylation sites remained for further analysis, depending on the brain 

region. Afterwards, association analyses were used with the log2-transformed methylation 

values as dependent variables. Principal component analysis (PCA) was used to correct for 

batch effects, and the resulting first ten PCs were used in further association testing as 

covariates. Since more than 10% of all patient samples did not include information about the 

smoking status, smoking was estimated by the methylation pattern using a validated set of 

methylation sites as reference (Maas et al., 2019). This smoking estimate for each sample was 

included in the analysis as a continuous variable.  

Epigenome-wide analysis was performed to compare AUD with control samples, using a linear 

model including sex, age, PMI, pH, smoking estimate, standardized neuronal cell count, and 

the first ten PCs as covariates. The brain regions were analyzed separately. Afterward, CN and 

VS were combined using a meta-analysis approach and the METAL package for R (Willer et 

al., 2010). P value correction was performed with the Benjamini-Hochberg (FDR) method, and 

CpG sites were annotated via the Illumina’s manifest files (http://webdata.illumina.com.s3-

website-us-east-1.amazonaws.com/downloads/product-files/methylationEPIC/infinium 

methylationepic-v-1-0-b4-manifest-file-csv.zip; downloaded on 10th of August 2018). 

Differentially methylated regions (DMRs) were calculated by the com-p-algorithm (Pedersen 

et al., 2012), where autocorrelation of methylation sites in a given window are calculated. The 

settings were set to Seed-p value <0.01, minimum 2 probes per window, and a sliding window 

of 500 bp. Multiple testing correction was performed with the Šidák method.  

For validation of the most significant finding, pyrosequencing was applied in the DMR of 

DDAH2 as well as TaqMan Assay on the respective mRNA transcript.  
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In addition, GO-term analysis as well as GWAS-enrichment and weighted gene correlation 

network analysis (WGCNA) were performed in the downstream analysis. Detailed information 

about the analysis methods of this study can be extracted from Zillich et al. (2022a).  

 

2.1.3.2 Data analysis of RNA expression in human post-mortem brain tissue 

Despite QC, the analyses were performed with the statistical software R version 3.6.1. For the 

QC of the fastq files, HISAT2 was used for mapping the raw reads and Rsubread for 

quantification. After QC, 11 AUD and 13 control samples had to be excluded due to low 

quality, defined by e.g., significant overrepresentation of specific sequences. The resulting 

input data was loaded in the DESeq2 (v.1.26.0) package to estimate significant DEGs, which 

were defined as log2 fold change >0.02 and a Benjamini-Hochberg corrected FDR value of 

p<0.05. Covariates such as smoking, sex, age, pH-value, RIN ad PMI were included in the 

model to correct for these known influencing cofactors (Durrenberger et al., 2010; Trabzuni 

et al., 2011). Gene-set enrichment analysis was performed with the R package fgsea (v.1.12.0) 

using Gene-Ontology (GO) terms and Hallmark gene sets. DEGs with an FDR <0.25 were 

included for cell-type specific enrichment using GeneOverlap (v.1.22.0).  

 As a follow-up downstream analysis, WGCNA using the WGCNA package in R (v.1.70.3) was 

performed to detect co-expression modules, including co-expressed genes and co-

methylated CpG sites. Additionally, an overlap of DEGs with FDR<0.25 and significant CpG-

sites (p<0.001) from the methylation analysis within the same patient sample was estimated 

using the GeneOverlap package (v.1.22.0) with Fisher’s exact test for each brain region 

separately.  

 

2.2 Study 2: Meta-analysis of transcriptome-wide sequencing approaches across 

four species 

Especially, in context with the low degree of translation into the clinics, that resulted in 

multiple failed therapeutic approaches, identified by preclinical research, animal experiments 

in preclinical research become questioned regarding their usefulness and applicability. In the 

AUD research field, this phenomenon can be observed, as well, since the lack of translation 

represents one of the major explanations for the limited offer of psychotherapeutic 

compounds for AUD. We are facing a reproducibility crisis that is driven by multiple examples 
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where researchers failed to succeed in observing the same effects than the originally 

published study (Llovera & Liesz, 2016). Eventually, this encouraged the pharmaceutical 

industry sector to no longer rely on preclinical findings derived from basic research but to 

rather invest in drug discovery themselves in a more extensive manner (Hyman, 2014). 

Recently, an ongoing debate in the scientific society about the reproducibility crisis and its 

potential initiated conglomerates of researchers that aim to establish guidance for high 

quality pre-clinical research, including experimental planning, pre-registration, and 

comprehensive reporting (Kilkenny et al., 2010; Spanagel, 2022). In line with these, the 3R 

principles –reduce, replace, and refine– (Russell & Burch, 1959), which were established at 

the end of the 50’s, got critically revised (Tannenbaum & Bennett, 2015), and their current 

expansion into the 6Rs –including robustness, registration, and reporting– was introduced 

(Strech & Dirnagl, 2019). These principles also consider meta-approaches to combine 

previous studies into one analysis, which increases the sample size, the statistical power, and 

eventually the meaningfulness of the outcome. The number of individuals included in animal 

research is usually restricted by the number of scientists and experimental conditions. Even 

though, experimental animals are usually bred in controlled settings, which ensures that they 

are genetically more similar than humans, the animal experiments are most of the time 

statistically underpowered.  

To overcome these limitations and to consider certain heterogeneity, that comes with the 

inclusion of different institutions, individuals, and treatment paradigms, we aimed in this 

study to perform a meta-analysis on transcriptome-wide datasets derived from four species: 

mouse, rat, monkey, and human, in a comparative setting. By combining datasets of 

numerous independent experiments, which increases the sample size to a meaningful extent, 

this study is meant to provide statistically solid results, that can be used as a basis for follow-

up studies on the investigation of the involvement of these identified genes on additional 

molecular levels as well as on alcohol-related behavior. In addition, by comparing the most 

frequently used animal species to model alcohol dependence in comparison to the human 

post-mortem brain, potential species-specific and eventually alcohol-specific features can be 

observed. A preliminary version of this study can be found at bioRxiv (Friske et al., 2022). In 

addition, the human meta-analysis was conducted together with Maximilian Haas –who I 

supervised throughout his Bachelor thesis– and is published as his Bachelor thesis. The meta-

analysis in rodents was pre-registered in Open Science Framework 
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(https://doi.org/10.17605/OSF.IO/TF8R4) and the human post-mortem brain project was pre-

registered in Prospero (ID: CRD42020192453).  

 

2.2.1 Systematic Literature Screening 

One of the biggest restrictions of transcriptome-wide sequencing approaches is the limited 

sample size. Therefore, meta-approaches including datasets conducted from various studies 

are warranted to enable the observation of transcriptomic signatures, considering a larger 

sample size and higher level of heterogeneity to determine distinct patterns for the alcohol 

dependent phenotype. Therefore, in this study, we included datasets derived from microarray 

and RNA-Seq approaches in four species –rats, mice, monkeys, and humans –and three brain 

regions –the PFC, nucleus accumbens (NAc), and amygdala (AMY)– to determine 

transcriptomic signatures in a highly comprehensive manner.  

The initial step of meta-analytical approaches consists of a systematic literature screening. In 

this study, the databases PubMed and EMBASE were screened using pre-defined keywords, 

optimally suited to the respective databases (Figure 3A). For rodent studies on the PD 

phenotype, the following keywords were used: (alcohol OR ethanol) AND (rats OR mice OR 

rat OR mouse) AND (ribonucleic acid OR RNA OR RNA-seq OR mRNA OR ncRNA OR miRNA OR 

siRNA OR piRNA OR snRNA OR microRNA OR expression OR gene OR cDNA OR transcription 

OR transcript OR transcripts OR transcriptional OR transcriptomic OR translation OR 

transcriptome OR transcriptomics OR translation) AND (PD OR "post dependent" OR 

postdependent OR cie OR "chronic intermittent"). For monkey studies, we applied the 

following keywords: (alcohol OR ethanol) AND ("Primates"[Mesh] OR "monkey" OR 

"monkeys" OR "ape" OR "apes" OR "macaques") AND (ribonucleic acid OR RNA OR RNA-seq 

OR mRNA OR ncRNA OR miRNA OR siRNA OR piRNA OR snRNA OR microRNA OR expression 

OR gene OR cDNA OR transcription OR transcript OR transcripts OR transcriptional OR 

transcriptomic OR translation OR transcriptome OR transcriptomics OR translation) AND 

brain. For the screening of the human post-mortem studies, we used the keywords: (“post-

mortem” OR “post-mortem” OR “human” OR “patients”) AND (“brain”) AND (“alcohol” OR 

“alcoholic” OR “alcohol dependence” OR “alcoholism” OR “AUD” OR “alcohol use disorder” 

OR “alcohol addiction”) AND (“transcriptome” OR “transcriptomic” OR “transcriptomics” OR 

“gene-expression” OR "gene expression" OR “mRNA” OR “messenger RNA”). Before the start 

of the screening procedure, inclusion and exclusion criteria were defined to ensure a 
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consistent and reproducible screening outcome (Figure 3). Since two databases were 

screened, the literature managing software EndNote was used to deduplicate potential over-

represented studies before initiation of the first screening step. The full data screening and 

extraction procedure was performed based on the well-established PRISMA Guidelines (Page 

et al., 2021). Hence, two researchers independently screened the literature at each screening 

step, title, abstract, full text, and data extraction. After each step, the resulting studies were 

compared, and in terms of discrepancies, a third independent party decided on the inclusion 

or exclusion of the study for the next screening step. The SysRev screening tool, developed 

by the CAMARADES research group at the University of Edinburgh (www.syrf.org.uk), was 

applied to minimize bias and increase traceability and reproducibility. In Figure 3B-C, the total 

number of resulting studies per screening step is visualized for each species separately, 

including the eventually resulting number of individuals.  
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Figure 3: General outline of the keywords designed for systematic literature research in PubMed and EMBASE.  

(A) The general design of the search keywords; (B) the resulting number of studies for rodent studies; (C) monkey studies; (D) 
as well as human post-mortem brain studies. (E) Overview of the analysis steps of the meta-analysis using Stauffer’s p value 
combination, including all approached packages for the statistical software R. Before the first screening step (title/abstract 
screening), duplicates were removed using EndNote. Inclusion criteria rodents: species (rats/mice), alcohol exposure ³ 2 
weeks, post-dependence defined as abstinence prior to death ³ 3 days, transcriptome-wide RNA expression data from post-
mortem brain tissue, high quality RNA samples with RIN ³ 5, EtOH-naïve controls. Exclusion criteria rodents: adolescence, 
prenatal alcohol exposure, too short exposure or abstinence period, additional interventions, ethanol-preferring 
lines/selective breeds for high ethanol intake, non-accessible datasets. Inclusion criteria monkeys: ethanol experience in a 
chronic treatment, ethanol naïve control animals, transcriptome-wide RNA expression data from post-mortem brain tissue, 
high quality RNA samples with RIN ³ 5. Exclusion criteria monkeys: prenatal exposure, no ethanol naïve controls, target gene 
studies, non-accessible datasets. Inclusion criteria humans: human post-mortem brain, diagnosed AUD based on DSM-IV or 
similar diagnostics, transcriptome-wide RNA expression data, high quality RNA samples with RIN ³ 5, control post-mortem 
samples from healthy individuals. Exclusion criteria humans: comorbid psychiatric disorders, co-abuse of additional 
substances (despite nicotine), brain injury as cause of death, age < 18 years, non-accessible datasets. Among the studies that 
matched the inclusion criteria, two rodent studies each included two datasets fulfilling our criteria, which explains the higher 
number of datasets compared to studies. The template for the overview of the resulting studies was extracted from 
www.prisma-statement.org.  
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Table 3: Details of the included rodent studies for transcriptome-wide meta-analysis.  

As indicated in Figure 3, two studies delivered two datasets per study. Details about the screening criteria and keywords can 
be extracted from Figures 3 A and B. 

Study n Strain Treat-

ment 

Exposure  Abstinence  Brain 

region 

Method 

Meinhardt et 

al., 2013 

18(PFC), 

16(AMY), 

14(NAc) 

Wistar 

rats 

CIE 

Vapor 

7 wk 3 wk mPFC, 

AMY, 

NAc 

Microarray 

Meinhardt et 

al., 2013 

16(PFC), 

13(AMY) 

Wistar 

rats 

CIE 

Vapor 

4 wk 3 wk mPFC, 

AMY 

Microarray 

Osterndorff-

Kahanek et 

al., 2015 

16(PFC), 

16(AMY), 

16(NAc) 

C57BL/6 

mice 

CIE 

Vapor 

8 wk 120 h mPFC, 

AMY, 

NAc 

Microarray 

Smith et al., 

2016 

12(PFC), 

12(AMY), 

11(NAc) 

C57BL/6 

mice 

CIE 

Vapor 

6 wk 72 h mPFC, 

AMY, 

NAc 

Microarray 

Smith et al., 

2016 

12(PFC), 

12(AMY), 

11(NAc) 

C57BL/6 

mice 

CIE 

Vapor 

6 wk 7 d mPFC, 

AMY, 

NAc 

Microarray 

Smith et al., 

2020 

24(PFC), 

19(AMY), 

24(NAc) 

C57BL/6 

mice 

CIE 

Vapor 

(non-

drinker) 

6 wk 7 d mPFC, 

AMY, 

NAc 

Microarray 

 
Table 4: Details of the included human studies for transcriptome-wide meta-analysis.  

Details about the screening criteria and keywords can be extracted from Figures 3A and D. Studies including women are 
represented by the split number of individuals in f= female and m = male. All studies except Hade et al. (2021) obtained brain 
tissue from the NSWBTRC at the University of Sydney, Australia. The tissue analyzed in Hade et al. (2021) was conducted at 
the Estonian Forensic Science Institute.  

Study n (AUD / 
Ctr)  

Diagnosis PMI (±SD) (hrs) Brain Region Method 

Liu et al., 2006  13m, 1f/ 
10m, 3f 

≥80g alcohol per day 28(±14) Superior FC Microarray 

Ponomarev et 
al., 2012 

17/ 15 DSM-IV not reported Superior FC, 
BLA 

Microarray 

Manzardo et al., 
2013 

6m, 3f/ 6m, 
3f  

DSM-IV 26.3 (±9.6) PFC Microarray 

Wang et al., 
2013 

16m, 7f/ 
16m, 7f 

DSM-IV not reported BA9 Microarray 

Farris et al., 
2015 

16/ 16 ≥7 yrs drinking, 
DSM-IV 

≤48 BA8  RNA-Seq 



 
 

29 

Kapoor et al., 
2019 

51m, 14f/ 
60m, 13f 

DSM-IV 33.66(±15.59)/ 
26.63(±13.25) 

BA8  RNA-Seq 

Drake et al., 
2020 

34m, 
7f/34m 7f 

- 31.3(±12.1)/ 
27.4(±12.5)  

NAc RNA-Seq 

Rao et al., 2021 30/ 30 DSM-IV ≤48 Superior FC, 
BLA, NAc 

RNA-Seq 

Hade et al., 
2021 

14/13 alcohol-use-disorder-
related diagnosis 

31.92(±12.88) PFC Microarray 

Zillich et al., 
2022b 

48/51 DSM-IV 37.07(±15.79)/ 
30.7 (±15.57) 

NAc RNA-Seq 

  

Table 5: Details of the included monkey studies for transcriptome-wide meta-analysis.  

Details about the screening criteria and keywords can be extracted from Figures 3A and C. 

Study n Strain Treat-

ment 

Drinking  Absti-

nence 

Brain 

region 

Method 

Bogenpohl et al., 

2019 

43 Macaca 

mulatta 

Drinking 

ad libitum 

1 yr Up to 4 h mPFC 

(BA24, 

15, 32) 

Microarray 

Walter et al., 2020 23 Macaca 

fascicularis 

Drinking 

ad libitum 

6 m None PFC 

(BA46) 

RNA-Seq 

Fei et al. 

(unpublished) 

28 Macaca 

mulatta 

Drinking 

ad libitum 

646 d 

(avg.) 

4 wk PFC 

(BA46) 

RNA-Seq 

Fei et al. 

(unpublished) 

24 Macaca 

mulatta 

Drinking 

ad libitum 

226 d 

(avg.) 

None PFC 

(BA46) 

RNA-Seq 

 

As indicated by the inclusion and exclusion criteria, only studies focusing on transcriptome-

wide approaches, such as microarray and RNA-Seq experiments, were considered for the 

analyses. If provided in the supplementary material, the summary statistics of the eventually 

resulting studies were downloaded from the original publication. Otherwise, the 

corresponding authors were contacted to request the respective datasets. Details of the 

included studies are listed in Tables 3-5. Eventually, the number of datasets to be included in 

the brain region-specific meta-analyses of rodents was six for the PFC, five for the NAc and 

five for the AMY. Monkey datasets were mainly retrieved from the PFC (n=5), while for AMY 

and NAc not sufficient studies were identified to perform a meaningful analysis. For the 

human meta-analyses, six datasets for PFC, three datasets for NAc, and two datasets for AMY 

were included (Figure 3B-D). As an indication of the potential bias of the included original 

studies, systematic reviews and meta-analyses report an assessment of the risk of bias (RoB) 
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to add input about the value of each study contributing to the final analysis results (Sterne et 

al., 2019). Unfortunately, in regard to the included studies for these analyses, inadequate 

reporting was impeding the access to the full information necessary for the RoB assessment. 

Therefore, I want to strongly point out the warranty of full and comprehensive experimental 

reporting in publications, not only for analytical approaches like this study, but also for 

traceability to enable other researchers to fully understand the experiments and interpret the 

respective outcomes properly.  

 

2.2.2 Meta-Analysis  

At the end of the 20th century, microarray-based cDNA analysis was invented (Brewster et al., 

2004). The development of this method enabled, for the first time, the simultaneous 

capturing of thousands of transcripts. The basic principle of microarray consists of pre-existing 

probes presented on an Affymetrix chip. As depicted in Figure 4, once the RNA is extracted, 

the molecules are labeled, before reverse transcription into cDNA. Then, the complementary 

cDNA strand binds to the respective probe on the chip, and after washing away the non-

hybridized unspecific strands, the fluorescent signal of the remaining cDNA molecules is 

detected. The measured differences in intensity of the fluorescent signal correspond to the 

concentration of the respective transcript. The final measurement outcome is based on 

relative quantification, whereby the intensity of a treatment is compared to the intensity of 

a control condition. 

In the early 2010’s, the RNA-Seq method, as part of the next generation sequencing (NGS) 

methods, was invented, which enabled a high-throughput method with increased sensitivity. 

Instead of hybridization to whole sequences of interest and detection of the fluorescent signal 

of the successfully hybridized strands, the RNA-Seq detection workflow is different (Figure 4). 

Here, the cDNA first hybridizes to an adapter primer on a flow cell. Then, the remaining cDNA 

that has not bound to any adapter is washed away, and the complementary strand of the 

cDNA sequence gets elongated by adding one nucleotide at a time to the adapter primer by 

performing a so-called bridge amplification. Whenever a nucleotide is successfully hybridized 

to the cDNA template, the corresponding signal is detected (Ambardar et al., 2016). This 

sequencing-by-synthesis method generates read counts as a measurement outcome, 

representing the number of base pairs and their respective nucleotide code per gene 

sequence. The sample processing, as well as the analysis tools and pipelines for RNA-Seq, are 
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more harmonized from the beginning of its development on, which is supposed to enable a 

higher comparability across individual experiments. However, previous studies have shown 

that microarray and RNA-Seq measure outcomes are highly overlapping but with a higher 

sensitivity for lowly abundant transcripts in RNA-Seq (Giorgi et al., 2013; Kogenaru et al., 

2012; Mooney et al., 2013). Since this study aimed at obtaining the broadest possible picture 

of pre-existing transcriptome-wide data in the field of AUD, across several species and brain 

regions and the number of microarray experiments performed in this field is still 

predominant, I integrated both types into the meta-analytical approach.  

Over the years, a variety of different detection and especially, analysis platforms have been 

developed, which results in a high heterogeneity across the datasets, mainly for the 

microarrays (Kontou et al., 2018). To overcome this methodological challenge, when aiming 

to combine these datasets, we integrated the summary statistics of each measured gene per 

dataset. The retrieved summary statistics consisted of the log2 fold-change, that represents 

the expression difference between the treatment/disease group and the respective control 

group. In addition, the respective p value and the corrected p value of each log2 fold-change 

were reported. By including the probe IDs that were used to identify each measured gene, we 

were able to map the gene sequences to the latest version of the genome. Since the time 

frame in which the studies were conducted is comparably large and the precision of the 

respective genomes has tremendously increased within this time span, it was of great 

importance to obtain the probe ID for each detected gene per dataset. Additionally, by 

including the full summary statistics of each detected gene in the experiment and not 

exclusively focusing on the genes that have been reported as significantly altered within each 

study, we were able to retrieve the full spectrum of the transcriptome. All analysis steps, 

including the respective R packages used to perform the analysis, can be retrieved from Figure 

3E). 
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Figure 4: Comprehensive overview of the basic principles of microarray and RNA-Seq.  

The visualization of the single-channel microarray workflow was modified based on Staal et al. (2003). The general workflow 
of Illumina RNA-Seq was modified based on Lu et al. (2016). 

Since the effect size, which is represented by the log2 fold-change, was estimated by various 

methods in the original studies, and additionally, most of the obtained summary statistics did 

not include a standard error measurement, which is required for estimating effect sizes in an 

effect size combinatorial meta-analysis approach, we decided to perform a weighted 

Stouffer’s p value combination instead, using the R package DExMA (Villatoro-García et al., 

2022). When considering the two methos of meta-analysis despite effect size combination, 

rank- and p value- based approaches remain (Toro-Dominguez et al., 2021). For rank 

combination approaches, usually the fold-change is used as basis for the ranking procedure. 

However, this method is highly sensitive to variance and could therefore lead to false positive 

results. P value-based meta-analysis methods are suited for data derived from different 

platforms and heterogeneous analyses. Furthermore, the Stouffer’s method enables the 

usage of weights, which are regularly estimated by including the sample size per study as the 

root square of the total sample size per datasets (Marot et al., 2009; Whitlock, 2005; Zaykin, 

2011) (Equation 1.2). Stouffer’s p value combination, which is also referred to as the “inverse 

normal” method, consists of the transformation of the p value per gene into a Z-score by 
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including the inverse standard normal cumulative distribution. Afterward, the Z-score is 

combined with the study weight, which is defined by the square root of the total sample size 

for the respective study. The resulting p value of the respective final Z-score can then be 

determined by applying a standard normal distribution table (Stouffer et al., 1949) (Equation 

1.1). The mathematical equations of the Stouffer’s p value combination method can be 

extracted from Equation 1. 

 

𝑍! = 𝜙"#(1 − 𝑝!)					𝑤𝑖𝑡ℎ	𝜙"# = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑛𝑜𝑟𝑚𝑎𝑙	𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛		(1) 

∑ %!&!!
"#$

'∑ %!%!
"#$

		𝑤𝑖𝑡ℎ	𝜔 = √𝑛	𝑓𝑜𝑟	𝑠𝑡𝑢𝑑𝑦	𝑖          (2) 

Equation 1: Stouffer’s p value combination method.  

Description of the calculation of the Z-score (1) and the respective test-statistic (2). Weights are introduced by 𝜔, which is 
calculated as the square root of the sample size per study.  

Since the p value combination approach does not include information on the fold-change and 

whether a gene is up- or down-regulated, per gene the median of the fold-changes derived 

from the original datasets is calculated as final fold-change indication of the meta-analysis 

outcome. P values per se depend on the consistent direction of the measured effect. 

Therefore, to add a value of trustworthiness of the results coming from this meta-analysis, a 

consistency index (CI) was established, that considers the direction of the fold-changes across 

the studies and compares them with the final outcome fold-change from the meta-analysis. 

As described in Equation 2, the CI is calculated by the number of datasets that detect the fold-

change in the same direction as the median divided by the total number of included datasets. 

For the interpretation of the meta-analysis results as well as for the downstream analysis, 

such as gene set and pathway enrichment analysis, a CI of >0.7 was set as threshold for meta-

analyses focusing on one species. For the rodent meta-analysis outcome, which consists of 

rat and mouse datasets, a less conservative CI of ³0.5 was determined.  

 

𝐶𝐼 = 	 ((*+,-"./0(12	!(	4052	-!62.7!+(	04	52-!0(	*6+5	5270"0(0,84!4)
(	(47:-!24	!(	;/!./	12(2	!4	5204:62-)

  

Equation 2: Formular for the calculation of the consistency index (CI) to add value to the outcome of the meta-analyses. 

To estimate a level of consistency for the direction of dysregulation of each gene, the direction of the gene in the meta-
analysis result, measured as an average across all datasets that detected this gene, was compared to the direction of the 
same gene within each dataset. The number of datasets that measured the same direction as the meta-analysis fold-change 
is divided by the total number of studies that detected the gene. In this formula, only the direction of the fold-change (up- or 
down-regulated) is considered and not the value of the fold-change itself, since an error measure for the fold-change was not 
provided by most of the datasets.  
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To minimize potential bias by extreme outliers measured by only a few datasets, the criteria 

for considering a gene in the meta-analysis were set to a threshold of 60% presence across all 

datasets per species. As stated above, each dataset was annotated to the latest version of the 

respective genome to ensure comparability across the datasets. Therefore, the most current 

databases mouse4302.db, rae230a.db, rheMac10, illuminaHuman4.db, org.Hs.db, and 

EnsDb.Hsapiens.v86 were used for annotation of the probe IDs into the respective gene 

encoded by the detection sequence (Carlson, 2021a, 2021b, 2022; Dunning et al., 2015; 

Rainer, 2017; TBD, 2019). Since some genes were detected by multiple probes, the 

collapseRows function derived from the R package WGCNA (Langfelder & Horvath, 2008) was 

applied to estimate an average across these multiple entries per gene. For the combined 

analysis of rodent datasets, the R package Biomart (Durinck et al., 2009) converted rat genes 

into their respective mouse orthologs to correct for potentially deviating nomenclatures of 

genes across these species. Meta-analysis was performed separately for the rodent datasets 

as well as monkey and human datasets. In addition, each brain region was considered 

separately within each species. In the visualization of the overlapping DEGs of the included 

datasets among each other and with the meta-analysis, a Venn Diagram was used with a 

threshold for defining significant DEGs of FDR<0.1. Subgroup analysis within the rodent 

analyses was performed to estimate the contribution of rat and mouse datasets to the final 

outcome of the meta-analysis. The complete workflow of the meta-analysis pipeline and all 

applied packages is shown in Figure 3E. Each analysis step was performed with the statistical 

program R Version 4.1.2. 

 

2.2.3 Subgroup analysis rodent datasets 

For the datasets derived from the rodent species, both, a combined and a separate analysis 

was performed to observe common and diverse genes that are dysregulated in the PD rodent 

models. As mentioned above, the rodent meta-analysis included a less stringent CI threshold 

because of the heterogeneity of the cohort, while in the other meta-analyses of human and 

monkey datasets, the same species was considered and therefore, a more conservative CI 

threshold was applied. To observe how the two species, mouse and rat, contribute to the 

overall rodent meta-analysis results, the subgroup analysis was performed by considering the 

species separately. Since for the rat species, two datasets were available, the threshold for 

inclusion of a gene was 100%, and a CI of 1.0 was set. In the mouse species, the inclusion 
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threshold of a gene was 70%, and the threshold for CI was 0.7. The results were then 

compared across the species-specific analyses and additionally considering the rodent meta-

analysis by Venn Diagram.  

 

2.2.4 Downstream analysis  

To further investigate the meaning of the resulting DEGs of the meta-analyses, biological 

information was conducted by downstream analyses. Therefore, genes with a CI of at least 

0.7 were filtered for analysis of a potential enrichment in gene ontology (GO)-terms, KEGG- 

pathways, and reactome components. Gene set enrichment analysis (GSEA) was performed 

using the R package ClusterProfiler (Wu et al., 2021). Network analysis on the protein level 

was performed with the STRING database (Szklarczyk et al., 2021). In addition, the level of 

interaction per gene was estimated based on the STRING results, where the number of nodes 

per gene and the score per node were considered and the corresponding ranking was 

estimated. The scoring system in STRING is based on various characteristics, such as 

neighborhood on chromosome, gene fusion, phylogenetic occurrence, homology, co-

expression, experimentally determined interaction, database annotated, and automated text 

mining, which are eventually combined into a final score for each node (Szklarczyk et al., 

2023). To test for a potential enrichment of the DEGs in specific cell types, the R package 

LRcell (Ma, 2021) was applied. The commonly used approach of WGCNA could not be 

performed in this study since this analysis required the input of raw data, which does not go 

in line with the general approach of combination of Summary Statistics.  

 

2.2.5 Overlap between human and animal DEGs 

One of the main aims of this study is the comparison of transcriptome-wide sequencing 

results across species in a translational context to identify commonly dysregulated genes for 

the alcohol-dependent phenotype. Therefore, the investigation into overlapping genes across 

species, defined as FDR<0.1 and consistency index³0.7 for each species, is of great 

importance. The genes derived from rodent, mouse, and monkey meta-analyses were 

converted into the human orthologs by the Babelgene package for R (Dolgalev, 2022). 

Visualization of the overlapping DEGs (FDR<0.1) across species was performed using Venn 

Diagrams.  
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2.2.6 Molecular validation of the top finding identified in the PFC  

Since in the meta-analysis approach –as a p value combinatorial method– not the effect size, 

but the p value was in the center of the analysis, molecular validation of the most promising 

finding was performed to ensure the trustworthiness of this finding. Therefore, we performed 

RT-qPCR on human post-mortem dlPFC/BA9 samples of AUD patients and matched controls 

derived from the NSWBTRC at the University of Sydney, Australia. The sequences of the 

designed primers can be extracted from Table 6.  

Table 6: Sequences of the primer pairs designed for RT-qPCR to validate the finding of one of the top hits of the meta-analysis. 

Gene Sequence Forward Sequence Reverse Product 

length 

Hsd11b1 5‘-GGCTTATCATCTGGCGAAGA-3‘ 5‘-CATGGGCAAGGCAGCTACAGT-3‘ 322 

Gapdh 5’-CATGAGAAGTATGACAACAGCCT-3’ 5’-AGTCCTTCCACGATACCAAAGT-3’ 113 

AluSx 5’-GAGGCTGAGGCAGGAGAATCG-3’ 5’-GTCGCGCAGGCTGGAGTG-3’ 110 

 

A first analysis regarding an observation of the overall effect was performed using analysis of 

variants (ANOVA) considering condition (AUD, control) and sex as factors. In addition, a 

follow-up analysis with analysis of covariates (ANCOVA) was performed, considering 

additional factors such as smoking status, PMI, BAL at timepoint of death, and RIN value of 

the samples. All statistical analyses were performed using the statistical software R Version 

4.1.2. Table 7 represents the detailed sample information of the patients coming from these 

two cohorts.  

 

Table 7: Demographic information of the cohort that served for the validation experiment of RT-qPCR on Hsd11b1.  

Samples from deceased AUD patients and controls are derived from the NSWBTRC at the University of Sydney, Australia. The 
total number of samples included into this experiment is 153. PMI = post-mortem interval; RIN= RNA integrity number; BAC= 
blood alcohol concentration (at timepoint of death); Ex= Ex-smokers. 

Criterion AUD (± SD) Control (± SD) p value 

N 73 80 
 

Age 55± 11.43 56± 11.26 0.78 

Brain pH 6.55± 0.33 6.67± 0.30 0.018* 

PMI 30.5± 15.33 27± 15.53 0.20 

BAL 47 % 6.4 % 8.895e-06* 

Smoking 

Yes 

 

75 %  

 

33 %  

 

8.14e-07* 
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No 

Ex 

16 % 

8.3 % 

42 %  

24 % 

0.0013* 

0.01* 
RIN 7.9± 0.69 7.6± 1.30 0.14 

%Women 35.2 31.1 0.75 

 

 

2.3 Study 3: Single nuclei RNA sequencing in the DMS of PD rats 

As evaluated in the introduction, a variety of brain regions and neuronal circuits are affected 

by alcohol and are supposed to drive the development and maintenance of AUD. One 

hypothesis focuses on the striatum and states that during the development of AUD, there is 

a shift in neuronal activity within the striatum from the ventral (VS) to the dorsomedial (DMS; 

caudate nucleus in primates) and eventually to the dorsolateral (DLS; putamen in primates) 

part (Chen et al., 2011; Vollstädt-Klein et al., 2010). The VS is involved in cue- conditioning, 

the DLS is associated with habitual behavior, and the DMS is activated in goal-directed 

behavior (Balleine & O'Doherty, 2010). Therefore, the working hypothesis of this study is, that 

during the development of alcohol dependence in the PD rat model, there is a shift from goal-

directed to habitual behavior, which is mirrored in the transcriptomic signatures of both, the 

DMS and the DLS. Besides the molecular examination using cutting-edge techniques of single 

cell seq, which is part of this thesis, operant experiments observing the self-administration 

behavior of CIE rats were performed together with Francesco Giannone (Institute of 

Psychopharmacology, ZI Mannheim).  

To date, the number of transcriptome-wide approaches in striatal regions, especially in the 

DMS and DLS are limited. Furthermore, scSeq approaches are arising in the AUD research field 

and cell type-specific alterations are highly necessary to understand the disease phenotype 

and eventually, develop future therapeutic interventions. Therefore, the data derived from 

this project will add molecular information to the behavioral changes observed in PD rats in 

an operant setting and in addition, will contribute to understand molecular signatures of AUD 

in the striatum on a single-cell level.    

 

2.3.1 The PD animal model 

As described extensively in paragraph 1.3, the PD phenotype in rats is a commonly used 

animal model to research alcohol dependence and is induced by chronic intermittent ethanol 
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exposure (CIE). In our laboratory (approval license by regional council Karlsruhe, Germany: AZ 

35-9185.81/G-10/16), male RccHan:Wistar rats at the age of 6 wk derived from Envigo 

(Pforzheim, Germany) were randomly distributed into treatment and control group and were 

acclimatized to the housing room and the scientists for one week before the beginning of the 

experiment. The vapor exposure treatment was performed as reported previously (Gilpin et 

al., 2008; Meinhardt et al., 2013; Vendruscolo & Roberts, 2014). At the beginning of the 

experiment, the weight difference between the treatment groups was not significant 

(PD=184.08±2 g; Ctr=190.67±8 g, n=16/group). Throughout the complete experiment, both 

groups received ad libitum access to food and water. In the CIE treatment, which endured 

seven weeks in total, animals were exposed to ethanol (VWR, Darmstadt, Germany, purity: 

96%) vaporized air for 16 h per day. For the remaining 8 hours, the animals were exposed to 

pure air to recover from the treatment. Control animals were housed under equal conditions, 

but did not receive ethanol-vaporized air at any timepoint. To maintain the optimum ethanol 

concentration in the vapor chambers, blood alcohol concentrations (BAC) were determined 

twice per week, directly after the end of the exposure cycle. Therefore, approximately 10 µl 

blood was taken from the tail tips of the animals and afterwards the samples were centrifuged 

and the plasma was inserted in the Analox system (Analox, Stokesley, UK) to estimate the BAC 

of the exposed animals. According to these measurements, the ethanol vapor treatment was 

adjusted to maintain the animals’ BAC between 150 and 300 mg/dl throughout the whole 

exposure time. Seven hours after the end of the last vapor exposure cycle, the withdrawal 

scores of both, ethanol-vapor-exposed and control animals were determined by a previously 

reported method (Macey et al., 1996). Therefore, in a blinded examination process, the 

aspects of abnormal gait, vocalization, ventral limb retraction and tremors were measured. A 

value of 0 indicates no noticeable behavior, while a value of 2 indicates highly noticeable 

behavior. Each criterion was evaluated separately, and the animals were grouped based on 

the overall withdrawal score, which represents the sum of the four measures. Afterward, both 

groups were left without any treatment for three consecutive weeks, before they were 

sacrificed using isoflurane as short-term anesthesia and a guillotine for effective brain 

removal. At timepoint of death, the PD group weighted 395.09±5 g and control group 

466.52±8 g. All rats included in this study were sacrificed at the same timepoint (2 h before 

the end of the active cycle; light on: 3 am, lights off: 3 pm; ZT22), and the procedure of 

sacrifice was performed with alternating exposed and control individuals. Directly after 
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decapitation and consecutive brain removal, the brains were frozen in isopentane and stored 

at -80°C immediately. The rats with the highest withdrawal score in the PD group (scorePD=3-

6; 1x6, 2x4, 1x3) and the lowest withdrawal score in the Ctr group (scoreCtr= 0) were chosen 

for sample preparation for the snRNA-Seq experiment. Afterward, the brain regions DMS and 

DLS were punched bilaterally and collected, respectively, in Eppendorf tubes until further use. 

A brief overview of the experimental design can be extracted from Figure 5A.  

 

2.3.2 Tissue preparation for single nuclei RNA sequencing 

This project was focused on observing cell type-specific alterations in the DMS. Therefore, 

this region was punched out using a micro-punching tool on 10 µm brain slices. Since the 

brains were fresh frozen in -80°C directly after sacrifice of the animals, single nuclei RNA-Seq 

(snRNA-Seq) was performed instead of single cell RNA-Seq (scRNA-Seq). Hence, the first step 

was isolating the nuclei from the frozen brain tissue. This step turned out to be challenging, 

since the isolation of nuclei requires delicate sample handling and specific adjustments due 

to the instability of nuclei when isolated from the initial cell. Therefore, it was necessary to 

test a variety of previously well-established protocols to isolate cells for their suitability on 

nuclei. In the end, we decided to use the 10X Genomics Chromium Nuclei Isolation Kit for 

single cell 3’ and 5’ gene expression assays (10X Genomics, Pleasanton, CA, USA), as one of 

the main advantages is the standardized processing across batches. Briefly, the frozen tissue 

was first shortly acclimatized to the crushed ice temperature and then homogenized in pre-

cooled lysis buffer using one pestle per sample. After centrifugation to pellet the isolated 

nuclei, debris removal, followed by several washing steps, was performed until a nuclei 

suspension of good-quality nuclei with a low number of debris was obtained. Since I aimed 

for a recovery of 10,000 nuclei per sample for the sequencing, I loaded 20,000 nuclei per 

sample to the 10X Chromium controller for GEM generation (Figure 5) as the first step of the 

snRNA-Seq library preparation protocol. 

 

2.3.3 snRNA-Seq library preparation and sequencing 

Library preparation of the RNA from isolated nuclei for snRNA-Seq was performed according 

to the 10X Genomics Chromium Next GEM Single Cell 3’ Kit v3.1 user protocol. Briefly, the 

library preparation procedure consists of the generation of so-called gel beads in emulsion 
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(GEMs) due to the droplet-based methodology (Figure 5B), which consist of the fusion of one 

10X gel bead to one nucleus and contain the important barcodes for capturing the nuclei and 

also the individual molecule to enable correction of inconsistent amplification in the follow-

up PCR steps. Once the beads have fused with the nuclei using the 10X Controller (10X 

Genomics, Pleasanton, CA, USA) to form the GEMs, and the reverse transcription has taken 

place, the GEMs are broken up to release the constructed cDNA, including the barcodes 

coming from the GEMs. Afterward, adaptor ligation, fractionation and amplification are 

performed until the library is complete for sequencing. Due to previous experience with RNA-

Seq experiments in the alcohol field, we were expecting a high number of lowly abundant 

genes in the snRNA-Seq experiment. Hence, we set the sequencing depth of the Illumina 

NovaSeq 6000 on a S2 100 flow cell to 50,000 reads per nucleus, for 10,000 nuclei per sample. 

Sequencing was performed at the Life & Brain GmbH at the University of Bonn under the 

leadership of Dr. Stefanie Heilmann-Heimbach. Figure 5 depicts the experimental design and 

droplet-based methodology of the 10X Genomics platform for 3’ snRNA-Seq.  

 

 
Figure 5: Workflow of the snRNA-Seq experiment on PD rat tissue of the DMS. 
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Parts adapted from www.10Xgenomics.org. A) Rats receive vaporized ethanol for 7 weeks daily in a chronic intermittent 
exposure pattern, while control rats are exposed to air. After 3 weeks of abstinence the animals are sacrificed and tissue from 
the dorsomedial striatum (DMS) is extracted by micro punctures and nuclei are extracted for snRNA-Seq. B) Workflow of 
snRNA-Seq by 10X Genomics. The extracted nuclei are brought together with 10x barcoded gel beads to form gel beads in 
emulsion (GEMs), which contain one nucleus fused with one gel bead in a lipid droplet. The number of gel beads is a multiple 
of the number of extracted nuclei that are entered in this fusion process, to prevent doublet formation, which would consist 
of more than one nucleus fused with the same gel bead. Within the GEMs reverse transcription of the nucleic RNA into cDNA 
takes place by which the 10X barcode as well as the unique molecular identifier (UMI) are attached to each cDNA molecule. 
10x barcodes are individual for each gel bead, which is enabling to obtain information from each captured nucleus in the 
analysis. The UMI is unique for each molecule and is used in the analysis to correct for amplification bias during the PCR 
amplification steps of the library generation. 

 

2.3.4 Data analysis 

Data analysis was performed using the 10X Genomics Cell Ranger pipeline to pre-process the 

raw data. Then, a first observation of the reads mapped to the genome was performed with 

the 10X Loupe Browser software, and eventually the analysis was performed using the 

statistical software R with the respective packages for snRNA-Seq analysis.  

Since the raw data obtained from the sequencing center in Bonn was already in the required 

fastq-format, the first step of the data pre-processing consisted of aligning the raw reads to 

the rat genome. To do so, a custom-made reference genome was developed using the mkref 

pipeline and the Rnor 6.0 genome for Rattus norvegicus. This step was required because the 

default genome set provided by 10X Genomics exclusively contains the human and the mouse 

genome. Subsequently, the sequence reads of the samples were mapped to the genome by 

the 10X cellranger count command, which additionally performed filtering, barcode counting, 

and UMI counting. This pipeline generates feature-barcode matrices, determines cell-

clusters, and performs gene expression analysis by applying the 10X barcodes (depicted in 

Figure 5). The output web summary files were examined to receive feedback on the efficacy 

of the genome mapping procedure and overall sequencing performance. Finally, the 

cellranger aggr command is used to have one combined file including every sample in one 

genome-mapped output file by normalizing the runs to the same sequencing depth and then 

recomputing the feature-barcode matrices and gene expression analysis across all samples. 

This file was then uploaded into the Loupe Browser software for a first examination of the 

outcome data.  

For the more advanced follow-up analysis, the statistical analysis software R and the packages 

Seurat v4 (Hao et al., 2021), tidyverse v.2.0, and magrittr v.2.0.3 were applied to perform QC, 

sample integration, batch correction, normalization and filtering, principal component 



 
 

42 

analysis (PCA), data visualization, clustering, cluster calling/cell-type identification, and 

downstream analysis including GSEA.  

During the QC, nuclei with more than 5% of mitochondrial reads as well as nuclei with less 

than 200 UMIs were filtered out. As input, the separate Cell Ranger files, with one file 

representing one sample and animal, respectively, was used. Before filtering, 1,006-4,110 

nuclei per sample (nPD=2,965-3,190 nuclei/sample, median= 3,100 nuclei/sample, total= 

12,403 nuclei; nCtr= 1,006-4,110 nuclei/sample, median= 2,744 nuclei/sample, total= 10,979 

nuclei) were identified with 152,591-201,713 reads per nucleus (nPD=152,591-166,880 

reads/sample, median= 157,006 reads/sample; nCtr= 156,123-201,173 reads/sample, 

median= 273,344 reads/sample) and 935-2,880 median genes captured per nucleus (nPD= 

935-1,978 genes/nucleus, median= 1,290 genes/nucleus; nCtr= 1,988-2,880 genes/nucleus, 

median= 2,449 genes/nucleus). The final number of reads per nucleus was three times higher 

than it was initially set up, as we aimed for 50,000 reads per nucleus. Since the set up was 

estimated for a total number of 10,000 nuclei per sample, whereby eventually, I only obtained 

one third of this aimed number of nuclei, the sequencing depth per nucleus increased 

accordingly. After QC, in total 11,819 nuclei remained, which consisted of 6,404 nuclei from 

control and 5,415 nuclei from PD rats. Subsequently, the Seurat Objects of each sample were 

integrated into one combined object with the Seurat scTransform function. For 

dimensionality reduction, the first 40 principal components were included in the uniform 

manifold approximation and projection (UMAP). For cluster calling, the clusters were tested 

for cell type- markers, based on the literature, describing cell type-specific experiments in 

rats, mice, and humans. Once the clusters were identified, DEGs were estimated using the 

Seurat function FindMarkers per cell type/cluster using the Wilcox test to estimate the 

significant difference in GEx between the two treatment groups. GSEA was performed using 

the singleseqgset package v.0.1.1.9000.   

 

2.4 Study 4: Gene expression of COVID-19-related genes across different ethanol 

treatment paradigms 

As stated in the introductory part, the COVID-19 pandemic had a high impact on the global 

population on both a physical and mental health level. However, the effect of chronic alcohol 

consumption on the overall propensity to become infected with SARS-CoV2 and to develop 
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severe disease outcomes, has not been extensively studied. Therefore, we generated target 

gene expression data from three cohorts with different treatments of ethanol intake: the sub-

chronic, the abstinent, and the non-abstinent alcohol paradigm. These treatments were 

diverse in route of application and duration to mimic diverse ethanol intake behaviors. Since 

the abstinent and non-abstinent groups underwent ethanol-vapor treatment as described 

detailed in Section 2.3.1, this procedure will be briefly described in this section. The data of 

this project is published in Alcohol: Clinical and Experimental Research (Friske et al., 2023), 

and a comprehensive review targeting the potential influencing factors of chronic alcohol 

consumption and AUD on the COVID-19 infection propensity and disease severity has been 

published by us, in addition (Friske & Spanagel, 2023). 

 

2.4.1 Sub-chronic ethanol IP treatment 

Male RccHan:Wistar rats (Envigo, Ettlingen, Germany; n=12) at the age of seven weeks were 

randomly distributed in two categories, with three animals per cage, each and were 

acclimatized to the housing conditions and the scientists for one week. Throughout the whole 

treatment, both groups had ad libitum access to food and water. At the beginning of the intra-

peritoneal (IP) treatment, T and C animals weighed 242.78 ± 5 g and 235.62 ± 4 g (mean ± SE), 

respectively. The ethanol treatment group received ethanol injections twice-daily (1.5 g/kg; 

intraperitoneal (IP); Ethanol supplied from VWR, Darmstadt, Germany, purity: 96%) for two 

weeks consecutively. At the same time, control animals received IP injections containing 

corresponding volumes of saline. The injections were given 2 h before the beginning of the 

active cycle and 6 h after the first injection. On the last day of treatment, 6 h after the second 

IP injection (ZT22), the animals were euthanized with isoflurane (CP-Pharma, Burgdorf, 

Germany; purity: 1ml/ml) and sacrificed by decapitation (weight T: 296.43 ± 8 g, C: 322.33 ± 

12 g). Immediately after, lung, liver, ileum, kidney, and heart were dissected, flash-frozen in 

isopentane and stored at -80°C until further use. The time of sacrifice was chosen based on 

the circadian regulation of the Ace2 gene expression, which peaks at ZT22. In addition, it was 

of great importance to ensure that the ethanol from the last injection was completely 

metabolized. A detailed overview of the whole experimental procedure is depicted in Figure 

6. The included experimental procedures were approved by the regional council Karlsruhe, 

Germany (license: AZ 35-9185.81/G-208/16) and performed according to the European and 

German guidelines. 
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Figure 6: Illustrated description of the sub-chronic ethanol IP treatment in male Wistar rats.  

According to the timetable, the animals arrived in the laboratory at the age of 7 weeks. The two weeks ethanol IP treatment 
started after one week of acclimatization to the housing and handling conditions. For molecular analysis, lung, heart, ileum, 
liver, and kidney were dissected 6 h after the last injection and afterwards stored at -80°C until RNA extraction was 
accomplished. The figure is based on Friske et al. (2023).  

 

2.4.2 Chronic intermittent ethanol vapor exposure 

The procedure to generate the PD phenotype was followed, as described in Section 2.3.1. In 

addition, the non-abstinence group was included, whereby the animals underwent the same 

schedule of vapor exposure but were sacrificed during the last day of vapor treatment and 

consequently, did not undergo any abstinence phase after the vapor treatment. Since these 

animals were sacrificed two hours before the end of the last vapor exposure, withdrawal 

scores of all groups were measured one day before the last exposure cycle, according to 

section 2.3.1. All groups had ad libitum access to water and food throughout the whole 

procedure. In the following, the PD phenotype will be called “abstinence group” to 

appropriately point out the two different treatment strategies of the vapor experiment. The 

animals of each group were sacrificed at the same time point of the circadian cycle, which is 

also similar to the time point of sacrifice in the sub-chronic IP treatment (ZT22). Throughout 

the vapor treatment, one animal died, resulting in a total sample size of 5 + 6 animals in the 

non-abstinence group and 6 + 6 animals in the abstinence group. Figure 7 is depicting a 

detailed overview of the experimental procedure.  

6 h after last 
injection: Organ
collection

Lung Heart Ileum

Liver Kidney

1,5 g/kg Saline

Group housing &
acclimatization

7th week 8th-10th week 10th week

Ethanol IP injection, twice
per day; 2 weeks in total
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Figure 7: Graphical description of the two vapor treatment groups and their respective control groups.  

Top: Experimental procedure of vapor exposure, sacrifice and organ collection. After one week of acclimatization to housing 
conditions and the scientists, the animals were exposed to ethanol vapor for seven weeks consecutively. The non-abstinence 
group was sacrificed throughout the last exposure cycle, whereas the non-abstinence group was sacrificed after three weeks 
of abstinence at the same circadian timepoint. Bottom: Detailed description of the ethanol vapor treatment. The animals 
were exposed for 16 h daily for seven weeks. One exposure cycle ended with the end of the active cycle. Animals were 
sacrificed two hours before end of the active cycle both (ZT22). This timepoint was chosen to match the sub-chronic group 
from experiment 2.4.1. The dissected organs were flash-frozen in isopentane and stored at -80°C until further use. The figure 
is based on Friske et al. (2023).   

 

2.4.3 RNA extraction and RT-qPCR 

The fresh frozen organs kidney, lung, heart, liver, ileum, and brain of the three treatment 

groups and their respective controls were used for RNA extraction using Trizol (Thermo Fisher, 

Waltham, MA, USA) and the RNeasy MicroElute RNA extraction kit (Qiagen, Hilden, Germany). 

Reverse transcription was performed using the High- Capacity cDNA Reverse Transcription Kit 

(Thermo Fisher, Waltham, MA, USA), before the samples were randomly distributed on RT-

qPCR plates to measure RNA expression levels of Ace2, Tmprss2, Mas and Gapdh as 

housekeeping gene (primer sequences are listed in Table 8). RT-qPCR was performed with 

three technical replicates, and outliers were defined as deviation of greater than 5% from the 

mean of the triplicates.  
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Table 8: Primer pair constitution of the three COVID-19 target genes Ace2, Tmprss2 and Mas and the housekeeping gene 
Gapdh for normalization of the target gene expressions.  

Each gene primer consists of one forward and one reverse sequence 

Gene Sequence forward Sequence reverse Product 

length  

Ace2 5’-TGCGTATGAATGGACCGA-3’ 5’-CAGGATAACAATGCCAACCAC-3’ 388 bp 

Tmprss2 5’-GGTTTGGGCACATAGG-3’ 5’-CACAGGCAATGGGTAGTGTTC-3’ 251 bp 

Mas 5’-CCCAAGCACCAGTCGGCATTC-3’ 5’-AGGCCCATGTGTTCTTCCGTA-3’ 229 bp 

Gapdh 5ʹ-CATGAGAAGTATGACAACAGCCT-3ʹ 5ʹ-AGTCCTTCCACGATACCAAAGT-3 113 bp 

 

2.4.4 In-situ hybridization in rat brain tissue 

To measure the gene expression across a variety of brain regions, in situ hybridization on 

10 µm thick coronal sections was performed as previously demonstrated (Uhrig et al., 2017). 

The 18 brain regions of interest, covered the following regions: cingulate cortex (Cg), 

infralimbic cortex (IL), prelimbic cortex (PrL), orbitofrontal cortex (OF), caudate putamen 

(CPu), nucleus accumbens core (AcbC) and shell (AcbSh), paraventricular nucleus (PVN), cornu 

ammonis area 1 (CA1), cornu ammonis area 3 (CA3), cornu ammonis area 4 (CA4), dentate 

gyrus (DG), basolateral amygdala (BLA), central amygdala (CeA), basomedial amygdala (BMA), 

medial amygdala (MeA), ventral tegmental area (VTA), nucleus tractus solitarii (NTS). The 

slices, representing the respective areas of interest, were collected using the rat brain atlas 

of Paxinos and Wilkins (Paxinos & Watson, 1998). For appropriate analysis of the expression 

patterns, the Allen Brain Atlas was used (https://mouse.brain-map.org/gene/show/30018). 

  

2.4.5 Statistical analysis 

Data analysis for RT-qPCR was performed for each target gene separately, considering the 

individual organs as factor. When observing the Ct values of the housekeeping genes, we 

discovered that ß-Actin showed organ- and treatment-specific expression changes. 

Therefore, this gene did not serve as a housekeeping gene in this study and was excluded 

from the analysis. Hence, we solely included Gapdh to normalize the gene expression analysis 

of the target genes. dCt values, defined by the difference between the gene of interest and 

the housekeeping gene, were calculated, normal distribution was observed, and extreme 

outliers were excluded, defined by greater than ±3x interquartile range. Linear Mixed Model 

(LMM) was utilized to test differences in dCt expression values in an organ-wise expression 
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comparison of the treatment groups. LMM was chosen over repeated measure ANOVA, since 

for LMM, covariance structures, that best fit the dataset, can be modeled, which is ensuring 

appropriate analysis of longitudinal data (Gueorguieva & Krystal, 2004). The categorical 

factors were represented by groups, whereas the organ was chosen for the repeated factors. 

Maximum Likelihood (ML) estimation was applied, since random effects were excluded in the 

analysis model (Feld, 2013). Due to the lowest BIC value, first-order autoregressive (AR(1)) 

covariance or heterogeneous autoregressive ARH(1) covariance was applied (Wolfinger, 

1996). In addition to the peripheral organs, data derived from the PFC and the olfactory bulb 

were analyzed, using LMM, with treatment group as categorical factors and brain region as 

repeated factors. Follow-up Fisher LSD post-hoc test was conducted, regardless of the 

significance of the interaction of a significant main effect, to maintain the exploratory aspect 

of this study and eventually, to obtain as much information about the data as possible. 

Additionally, effect sizes represented by Cohen’s d were reported for every organ and brain 

region, that showed significant treatment-specific outcome after the post-hoc test.  

For the RNA in-situ hybridization experiment, data analysis was conducted using multiple t-

tests. Input values were obtained in Nanocurie per gram (nCi/g), via conversion of the final 

mean gray values, using the software MCID Analysis 7.1. Extreme biological outliers, defined 

by greater than ±3x interquartile range, were excluded. Technical outliers were defined by 

greater than ±2x standard deviation. Further information can be obtained from Table 8. 

The sample sizes for each treatment were estimated in advance by the power analysis method 

G*Power. The corresponding Cohen’s d was calculated for two-tailed unpaired t-test with α 

= 0.05 and power = 0.8 in order to obtain an effect size of Cohen’s d of 2.0. Statistical analysis 

as well as graphical visualization of the data were conducted with IBM SPSS Statistics 27 and 

GraphPad Prism 8.4.3.  
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3. Results 

3.1 Study 1: Epigenetic and transcriptomic signatures of human post-mortem brain 

tissue using bulk seq approaches 

3.1.1 Epigenetic signatures of human post-mortem brain tissue result in the highest 

number of altered methylation sites and regions in the VS and CN  

In this study, we performed epigenome-wide association analysis on five brain regions 

derived from human post-mortem brain tissue of AUD patients and matched control 

individuals: ACC, Brodmann Area 9 (BA9), as part of the dorsolateral PFC, CN, VS, and the PUT. 

The results of this project have already been published (Zillich et al., 2022a). While I 

performed sample preparation, Lea Zillich (Department of Genetic Epidemiology in 

Psychiatry, ZI Mannheim) analyzed the data. The identification of epigenome-wide significant 

methylation sites (DMS, Table 9) resulted in 18 DMS in the VS, and two CpG sites in the CN. 

The remaining three regions, BA9, ACC, and PUT, did not show any epigenome-wide 

significant DMS. Two significant CpG-sites located in PIEZO2 and GLANT9, respectively, were 

additionally found to be differentially methylated in the CN with a nominal p value of ≤0.023. 

When comparing the results with a previously published epigenome-wide association study 

(EWAS) of peripheral blood (Witt et al., 2020), three epigenome-wide significant CpG-sites 

from the VS were significantly overlapping with the findings in blood: cg27512762 (PCAT29 

gene), cg06427508 (KLHL6 gene), and cg02849689 (non-coding position).  

Table 9: Overview of the significant DMS in CN and VS.  

ES= Effect size; Std Err= Standard Error; FDR= FDR-corrected p value; n.c.= non-coding position. Since the methylation 
detection was performed in two batches, the direction of the respective methylation sites is represented with two arrows.   

Chr Position CpG-Site Gene 

symbol 

ES Std Err P value FDR Region 

15 78729669 cg04214706 IREB2 -0.39 0.07 7.6e-08 0.03 CN 

5 74633012 cg26685658 HMGCR -5.92 1.11 8.5e-08 0.03 CN 

8 117961971 cg17163967 SLC30A8 0.50 0.09 1.1e-08 0.007 VS 

1 178998656 cg23933289 FAM20B 0.27 0.05 2.4e-08 0.008 VS 

15 69908472 cg27512762 PCAT29 0.17 0.03 6.8e-08 0.016 VS 

7 1008720 cg02028351 COX19 0.18 0.03 1.3e-07 0.017 VS 

16 68563886 cg02941431 n.c. -0.25 0.05 1.3e-07 0.017 VS 

3 183274235 cg06427508 KLHL6 0.38 0.07 1.4e-07 0.017 VS 

12 132882652 cg16767842 GALNT9 0.24 0.05 1.7e-07 0.017 VS 
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16 4901809 cg02741291 UBN1 0.58 0.11 2.6e-07 0.023 VS 

16 1946176 cg10824492 n.c. -0.15 0.03 3.4e-07 0.026 VS 

19 35168316 cg18564234 SCH1B2P; 

ZNF302 

-0.78 0.15 4.1e-07 0.029 VS 

13 73687406 cg06630619 n.c. -0.43 0.09 4.8e-07 0.03 VS 

11 1215457 cg23618269 MUC5AC -0.43 0.09 5.4e-07 0.03 VS 

14 96177134 cg13545750 TCL1A -0.23 0.05 7.2e-07 0.039 VS 

5 79331052 cg04360099 THBS4 0.30 0.06 1.0e-06 0.048 VS 

6 29400397 cg26754552 n.c. 0.28 0.06 9.9e-06 0.048 VS 

11 59390857 cg02849689 n.c. -0.29 0.06 1.2e-06 0.048 VS 

18 11147785 cg12049992 PIEZO2 -0.28 0.06 1.2e-06 0.048 VS 

17 18210650 cg16021181 TOP3A -0.31 0.06 1.1e-06 0.048 VS 

 

The determination of differentially methylated regions (DMRs) resulted in ten DMRs for the 

CN, where the three hits with the lowest p values were annotated to DDAH2, CCDC152, and 

CAMSAP1 (Table 10). The VS showed six DMRs, with the genes TMEM232, FANCD20S, and 

HM13 representing the regions with the lowest p values. One DMR was found in the ACC, 

which is associated with the HCG9 gene, while no DMR was detected in PUT or BA9. For the 

purpose of validation, the DMR in the DDAH2 gene in the CN was replicated using 

pyrosequencing (cg04074004: t(76.77)=2.39, p=0.019). Additionally, the gene expression of 

this gene was measured using RT-qPCR to explore the effect of this DMR on the transcriptomic 

level. However, there was no significant differential expression of DDAH2 in the CN observed.  

Table 10: Overview of the significant DMRs in the CN, VS, and ACC.  

Chr= Chromosome; Start= Starting sequence for sequencing; End= End sequence for sequencing; N= number of probes; Gene= 
Gene Symbol describing the gene represented by the respective sequence reads. 

Chr Start End N  CpG-Site Gene  Z_p Sidak p Region 

6 31696063 31696520 17 cg08550588 DDAH2 1.9e-20 2.8e-17 CN 

5 42756786 42757024 6 cg18472410 CCDC152 3.1e-11 9.1e-08 CN 

9 138800324 138800391 3 cg00022024 CAMSAP1 2.8e-10 2.9e-06 CN 

6 55039232 55039383 4 cg10725720 HCRTR2 1.1e-08 5.3e-05 CN 

3 10149974 10150225 7 cg00166722 FANCD2OS 1.6e-07 0.0004 CN 

3 49459909 49460058 5 cg21926782 AMT; NICN1 1.6e-07 0.0007 CN 

3 170136766 170136921 4 cg02241055 CLDN11 4.4e-07 0.002 CN 

2 175190675 175190822 4 cg02216981 LINC01305 5.1e-07 0.002 CN 
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1 15272238 15272384 5 cg11648522 KAZN 5.9e-07 0.003 CN 

14 67940414 67940426 2 cg06215536 TMEM229B 5.7e-08 0.003 CN 

16 68270252 68270388 6 cg04513006 ESRP2 7.7e-07 0.004 CN 

5 110062343 110062730 11 cg23279021 TMEM232 4.0e-11 7.3e-08 VS 

3 10149963 10150225 8 cg10729496 FANCD2OS 8.4e-10 2.2e-06 VS 

20 30135144 30135292 5 cg15815607 HM13 3.6e-08 0.0002 VS 

15 22833149 22833309 6 cg07959104 TUBGCP5 5.2e-07 0.002 VS 

17 18210638 18210651 2 cg03540694 TOP3A 6.2e-07 0.03 VS 

7 99765805 99765819 2 cg18810646 GAL3ST4 6.8e-07 0.03 VS 

6 29943401 29943426 4 cg23244913 HCG9 1.2e-10 3.3e-06 ACC 

 

GO-Analysis in CN revealed association with “homophilic cell adhesion via plasma-membrane 

adhesion molecules” (p=5.37e-6, q=0.12) and “cell-cell adhesion via plasma-membrane 

adhesion molecules” (p=1.68e-5, q=0.19) and in the VS “Lsm 1-7 Pat2 complex” (p=6.49e-5, 

q»1). However, none of these pathways remained significant after correction for multiple 

testing.  

Since the initial methylation analyses showed significant results only in the CN and VS, 

WGCNA of these two regions exclusively will be described here. WGCNA identified 15 

modules for CN (median size= 965 CpG sites, range: 49- 10330 CpG sites per module), with 

the module “black” having the strongest association with AUD. The CpG sites of this module 

were additionally enriched for the GO term “PML body” (p=0.001) and “G-rich strand 

telomeric DNA binding” (p=0.001). In the VS, 14 modules were identified with a median size 

of 611 CpG sites (range: 38-12721 CpG sites per module), where the “purple” module had the 

strongest association with AUD. In addition, the CpG sites of this module were enriched for 

“regulation of T-cell proliferation” (p=4.32e-6), “regulation of leukocyte cell-cell adhesion” 

(p=6.83e-6) and other immune system-related pathways.  

 

3.1.2 Transcriptomic signatures of human post-mortem brain tissue  

We observed the gene expression (GEx) in human post-mortem brain tissue derived from 

three striatal regions: VS, CN, and PUT. The outcome of this Multiomics study, including the 

findings from Section 3.1.1, is published in Translational Psychiatry (Zillich et al., 2022b). While 

I performed sample preparation, Lea Zillich (Department of Genetic Epidemiology in 
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Psychiatry, ZI Mannheim) analyzed the data. In the CN, 49 genes resulted as significantly 

dysregulated (FDR<0.05), while in the PUT, one gene was found significantly altered, and in 

the VS, none were below the threshold of FDR<0.05. Interestingly, in the CN ¾ of the 

significant DEGs were up-regulated, with the lowest FDR for TTLL4 (FDR= 0.0005). Among the 

significantly down-regulated genes in the CN GATA2 (FDR= 0.0091) represented the lowest 

FDR corrected value. In the PUT, the only gene with an FDR corrected p value <0.05 was DES 

(FDR=0.0486), which was found to be down-regulated. Even though in the VS, no gene 

reached FDR<0.05, three genes were close to significance. CLPB, ARHGEF15, and CHRNA9 

reached an FDR-corrected p value of 0.065, and all three genes were down-regulated in the 

AUD samples. Since the resulted genes had on average high p values, a less conservative FDR-

corrected p value cut-off of 0.25 was chosen for the downstream analysis and the comparison 

across the striatal brain regions. Therefore, ARHGEF15 has been found to be the only common 

DEG across the three regions and was consistently up-regulated.  
Table 11: Significant differentially expressed genes (DEGs) resulting from the RNA-Seq experiment in the striatal regions VS, 
CN, and PUT with a significance threshold of FDR<0.05.  

For CN 49 DEGs were identified, for PUT one. Due to space reasons, for CN only the top 10 DEGs are listed in this table. Data 
is also reported in Zillich et al., 2022b.  

Gene Symbol Log2FC P value FDR Brain Region 

TTLL4 0.11 2.3e-08 0.0005 CN 

GATA2 -0.27 8.6e-07 0.009 CN 

CNOT10 0.06 1.3e-06 0.009 CN 

CDHR3 0.19 1.9e-06 0.011 CN 

SLC26A5 0.28 3.8e-06 0.016 CN 

ASTL 1.01 6.8e-06 0.024 CN 

HSPA6 0.98 8.9e-06 0.027 CN 

LGR6 0.64 1.2e-05 0.031 CN 

EGFL7 -0.22 2.0e-05 0.037 CN 

RIPPLY2 -0.15 2.1e-05 0.037 CN 

DES -0.86 2.6e-06 0.0486 PUT 

 

For downstream analysis, GSEA was performed with all DEGs having an FDR<0.25. In this 

analysis, only the PUT showed significant enrichment in GO-terms and Hallmark gene-sets 

with FDR<0.05, which resulted in significant enrichment for “adaptive immune response” 

(FDR=0.006) and “acute inflammatory response to antigenic stimuli” (FDR=0.006).  Cell type 
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enrichment analysis resulted in significant results in the CN exclusively, where the up-

regulated DEGs were enriched for astrocytes (FDR=7e-6) and the down-regulated DEGs were 

enriched for endothelial cells (FDR=2e-7). WGCNA analysis identified the highest number of 

modules for the PUT, with 25 modules representing a median size of 249 genes with a range 

between 33 and 5381 per module. The strongest correlation with AUD status was found in 

the “e-PUT-black” module (r=0.41, p=2.31e-4). In the CN, 21 modules were identified with 

median size of 352 genes per module (range from 64 to 7259 genes), where the strongest 

association with AUD was shown in the “e-CN-magenta module”, represented by 328 genes 

(r=0.42, p=2.89e-4). 16 modules were identified in VS (median size 429 genes, range: 35-9708 

genes per module) and the “e-VS-pink module” was associated with AUD (r=0.41, p=0.009). 

The gene STAT3 was represented within all the three modules “e- PUT-black”, “e-CN-

magenta”, and “e-VS-pink”, which led to the identification as conserved hub node across the 

three striatal regions. Gene network analysis, considering the in total 174 shared genes across 

the modules of the three brain regions, STAT3, TP53, ICAM1, MYC, and NFKBIA were the most 

significant hub nodes of the network representing conserved nodes across the observed 

striatal regions. 

Table 12: Genes commonly significantly dysregulated in both omics layer methylation and GEx with a significance threshold 
of FDR<0.25 in the gene expression analysis.  

Significant findings were detected in the CN solely. Values are represented as ES meth. (=effect size of methylation) for 
methylation or log2FC (log2 fold change) for gene expression with the respective p value and FDR corrected p value.  

Gene Symbol ES meth. P value FDR Log2FC P value FDR 

ERMAP 0.3 8.2e-05 0.273 0.07 1.6e-02 0.243 

IP6K2 0.2 4.0e-04 0.436 -0.05 1.7e-02 0.247 

BRD2 -7.69 2.9e-04 0.409 0.06 8.3e-03 0.188 

FAM299B -0.34 5.5e-04 0.462 0.09 1.4e-02 0.225 

DYNLT1 0.61 2.8e-04 0.405 0.10 8.5e-03 0.189 

KLHL7 5.26 4.7e-04 0.449 -0.05 6.3e-04 0.078 

C9orf34 -0.29 9.3e-04 0.535 0.22 4.2e-03 0.143 

PFKFB3 3.03 9.7e-04 0.544 0.13 2.6e-03 0.120 

HIPK3 0.39 8.9e-04 0.531 0.05 1.1e-02 0.205 

SAC3D1 -0.13 7.6e-04 0.509 -0.12 3.2e-03 0.129 

TMEM10 -0.14 4.8e-04 0.449 -0.18 2.5e-03 0.119 

ZNF295-AS1 0.19 1.3e-04 0.319 0.33 1.4e-04 0.0511 
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When considering the genes that were commonly significantly dysregulated in GEx as well as 

methylation analyses, the CN was the only brain region that showed overlapping genes (n= 

12 genes). WGCNA considering both the methylation and GEx analysis outcome, resulted in a 

significant overlap between GEx module “e-CN-magenta” and the methylation modules “m-

CN-red” (p=0.003) and “m-CN-midnightblue” (p=0.014). When considering the WGCNA 

modules of GEx and methylation in the VS, the module “e-VS-salmon” had significant overlap 

with the methylation module “m-VS-turquoise” (p=0.003). In the PUT none of the GEx and 

methylation patterns showed significant overlap.  

            

3.2 Study 2: Meta-analysis of transcriptome-wide sequencing approaches across 

four species 

This study aimed to perform a meta-analysis of transcriptome-wide datasets derived from 

previously published human post-mortem brain as well as animal models of alcohol 

dependence. Therefore, the brain regions PFC, NAc and AMY were investigated, since the 

number of studies identified by systematic literature screening led to the scope of the study 

(Figure 3). In addition, previous research has pointed out, that these brain regions have high 

relevance in AUD (Figure 1). For the PFC, the species human, mouse, rat, and monkey were 

analyzed, while for NAc and AMY, there were no sufficient numbers of monkey datasets 

identified. A preliminary version of this study can be found at bioRxiv (Friske et al., 2022). In 

addition, the human meta-analysis was conducted together with Maximilian Haas –who I 

supervised throughout his Bachelor thesis– and is published as his Bachelor thesis.  

 

3.2.1 Meta-Analysis in the PFC of four species  

Comparison of DEGs derived from the original datasets result in high heterogeneity across 

studies. 

After systematic literature screening of the rodent studies, six datasets derived from four 

studies were conducted (Meinhardt et al., 2013; Osterndorff-Kahanek et al., 2015; Smith et 

al., 2016; M. L. Smith et al., 2020), which resulted in a total of 106 individuals (Figure 3A, Table 

3). When observing the reported significant DEGs with a significance threshold of FDR <0.1, 

three original datasets detected DEGs (Smith et al., 2016, 72h abstinence; Smith et al, 2016, 

7d abstinence; Smith et al., 2020) (Figure 8A). In comparison to the rodent meta-analysis, 
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seven genes were commonly significant across these three original datasets and the meta-

analysis, namely 4921534E14RIK (FDRMA=5.82e-05), 9430092D12RIK (FDRMA=1.71e-07), 

Fgf16 (FDRMA=0.049), H4c9 (FDRMA=5.59e-07), Nid2 (FDRMA=0.0001), Slc30a5 (FDRMA=0.042), 

and Spata48 (FDRMA=0.0007). In addition, between 16-51 % of the identified DEGs from the 

original datasets overlapped with at least one other dataset, which describes a high 

heterogeneity across the individual datasets; especially when considering, that only half of 

the datasets in total identified any significantly altered transcripts. Hereby, it has to be 

addressed, that the two datasets derived from Smith et al., 2016 have a notably higher 

amount of shared DEGs (n=184 DEGs) than the dataset from Smith et al., 2020 (n= 11-32 

DEGs). The two datasets derived from Smith et al., 2016 had both the same ethanol exposure 

duration, but differing abstinence periods, since this study was investigating a time-course 

analysis, considering diverse abstinence periods after a common exposure length (Smith et 

al., 2016). The three original datasets that reported significant DEGs were derived from mice, 

which leads to the hypothesis that the result of the rodent meta-analysis might be primarily 

driven by the mouse species. Therefore, a subgroup analysis was performed by considering 

the datasets from the rat and mouse species separately and then comparing these results 

with the rodent meta-analysis.  
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Figure 8: Venn Diagrams comparing significant DEGs (FDR<0.1) found in the PFC from original studies and different species-
specific meta-analyses.  

A) Rodent meta-analysis. Comparison of DEGs from original rodent studies with the rodent meta-analysis. The original 
studies that identified significant DEGs were all derived from mouse brain tissue. B) Sub-group analysis considering rat and 
mouse datasets separately. According to the overall number of DEGs derived from this species-specific meta-analysis and the 
respective overlap with the rodent meta-analysis, it can be concluded that the mouse datasets (n=4) contribute to a higher 
extend to the overall outcome of the rodent meta-analysis than the rat datasets (n=2). C) Human meta-analysis. DEGs of 
original studies from human post-mortem brain tissue and the results of the human meta-analysis. No gene was found to be 
commonly dysregulated across in all studies. 217 genes were uniquely identified as DEGs by the meta-analysis, which have 
not been found to be significantly dysregulated in any of the original datasets. D) Monkey meta-analysis. Three out of the 
four identified studies reported significantly altered transcripts, whereby most of these genes do not overlap with any of the 
other studies. The meta-analysis resulted in 1532 DEGs, whereby 35 DEGs were uniquely identified. E) Cross-species 
comparison. Comparison of the DEGs derived from the species-specific meta-analyses in rodents, mice, humans and monkeys. 
One DEG is conserved throughout all species, namely Hsd11b1. This gene is down-regulated in human, rodent and mouse 
meta-analysis and up-regulated in monkey meta-analysis. F) Molecular validation of top finding Hsd11b1. Validation of 
Hsd11b1 down-regulation in an independent human brain sample cohort by performing RT-qPCR of Hsd11b1 mRNA in human 
brain tissue from AUD (n=73) and control (n=80) samples derived from both the NSWBTRC Sydney. The significant down-
regulation of this gene, as identified in the meta-analysis could be successfully replicated by this sample set (FC= 0.76, p= 
0.0002). Overall, only studies that reported significant DEGs (FDR<0.1) appear in the venn diagrams, whereas for the meta-
analysis, all datasets were included, regardless of the presence of significant results. Further information about the top 10 
DEGs as well as the enriched pathways can be drawn from Table 13-15 and Table 16-18, respectively.  
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Table 13: Top 10 DEGs identified by rodent meta-analysis in the PFC, sorted by FDR-corrected p value.  

MedianFC= median fold-change; FDR= FDR-corrected p value; PropData=Proportion Data, describes the proportion of 
datasets that detected the gene in the experiment; CI= consistency index.  

Gene MedianFC p value FDR PropData CI 

9430092d12Rik -0.33 7.9e-12 1.7e-07 0.5 1.0 

492153e14Rik -0.48 5.4e-09 5.8e-05 0.5 1.0 

D5ertd163e -0.28 9.4e-09 6.8e-05 0.5 1.0 

Sox14 0.53 2.4e-08 0.00013 0.5 0.67 

Fam243 -0.25 4.8e-08 0.00017 0.5 1.0 

Nid2 0.14 4.7e-08 0.00017 0.83 1.0 

Pkp1 -0.46 1.72e-07 0.0005 0.5 1.0 

C78704 -0.23 2.2e-07 0.0006 0.5 1.0 

D730005E14Rik 0.21 3.12e-07 0.0007 0.5 0.67 

Spata48 -0.25 3.27e-07 0.0007 0.5 0.67 

 

Table 14: Top 10 DEGs identified by human meta-analysis in the PFC, sorted by FDR-corrected p value.  

MedianFC= median fold-change; FDR= FDR-corrected p value; PropData=Proportion Data, describes the proportion of 
datasets that detected the gene in the experiment; CI= consistency index.  

Gene MedianFC p value FDR PropData CI 

KCNK10 0.19 2.49e-10 2.17e-06 0.625 1.0 

MT1X 0.59 8.42e-11 2.17e-06 0.75 0.83 

MGEA5 0.20 1.94e-10 2.17e-06 0.625 1.0 

ODC1 0.18 1.94e-09 1.26e-05 0.75 0.83 

IFITM3 0.36 2.68e-09 1.40e-05 0.875 0.71 

GPR85 -0.22 7.96e-09 3.47e-05 0.625 0.8 

KCNJ16 -0.25 9.49e-09 3.55e-05 0.875 1.0 

RERGL -0.45 2.24e-08 7.31e-05 0.625 0.8 

ANGPTL4 0.37 3.97e-08 9.43e-05 0.875 0.86 

RASD1 0.27 5.92e-08 0.0001 1.0 0.75 

 

 

 

Table 15: Top 10 DEGs identified by monkey meta-analysis in the PFC, sorted by FDR-corrected p value.  

MedianFC= median fold-change; FDR= FDR-corrected p value; PropData=Proportion Data, describes the proportion of 
datasets that detected the gene in the experiment; CI= consistency index.  

Gene MedianFC p value FDR PropData CI 

DUSP4 1.18 1.05e-34 3.68e-30 0.75 1.0 
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SPRY2 0.17 2.9e-14 5.08e-10 0.75 1.0 

DUSP6 0.39 1.53e-10 6.61e-07 1.0 1.0 

SPRY4 0.42 1.53e-10 6.61e-07 1.0 0.75 

TRIM63 -0.27 1.7e-10 6.61e-07 0.75 1.0 

CHORDC1 0.26 2.74e-09 7.36e-06 1.0 1.0 

SPRYD3 -0.15 3.61e-08 5.74e-05 1.0 0.75 

FLNA -0.25 4.18e-08 6.09e-05 1.0 1.0 

BHLHE40 0.39 5.09e-08 6.85e-05 1.0 1.0 

CTDSPL -0.26 8.89e-08 9.72e-05 0.75 1.0 

 

Table 16: Pathway enrichment analysis of the rodent PFC meta-analysis results using the Reactome database with a p value 
cut-off of FDR<0.2.  

ES= Enrichment score; NES= normalized enrichment score. 

Pathway ES NES p value  FDR 

Formation of the cornified envelope -0.741 -1.798 8.1e-05 0.07 

Keratinization -0.706 -1.796 0.0001 0.07 

Deposits of new CENPA-containing 

nucleosomes at the centromere 

-0.798 -1.749 0.0006 0.123 

Nucleosome assembly -0.749 -1.749 0.0007 0.123 

Chromatin modifying enzymes -0.639 -1.639 0.0005 0.123 

Chromatin organization -0.615 -1.639 0.0005 0.123 

Nonhomologous End-Joining (NHEJ) -0.799 -1.775 0.0008 0.124 

RMTs methylate histone arginines -0.802 -1.721 0.001 0.124 

HDR through homologous recombination (HRR) or single 

strand annealing (SSA) 

-0.662 -1.684 0.001 0.124 

Homology directed repair -0.659 -1.678 0.0009 0.124 

 

Table 17: Pathway enrichment analysis of the human PFC meta-analysis results using the Reactome database with a p value 
cut-off of FDR<0.2.  

ES= Enrichment score; NES= normalized enrichment score. 

Pathway ES NES p value  FDR 

Innate immune system 0.642 1.547 4e-06 0.004 

Neutrophil degranulation 0.683 1.618 5e-05 0.017 

Cytokine signaling in immune system 0.652 1.566 4e-05 0.017 

Antimicrobial peptides 0.96 1.657 0.0001 0.028 

Cellular responses to stimuli 0.612 1.471 0.0002 0.037 

Platelet degranulation 0.803 1.736 0.0004 0.057 



 
 

58 

ER-Phagosome pathway 0.827 1.695 0.0005 0.057 

Interleukin-10 signaling 0.881 1.683 0.0005 0.057 

Hemostasis 0.633 1.518 0.0004 0.057 

Response to elevated platelet cytosolic Ca2+ 0.781 1.701 0.0009 0.081 

 

Table 18: Top 10 findings of the pathway enrichment analysis of the monkey PFC meta-analysis results using the Reactome 
database with a p value cut-off of FDR<0.2.  

Since the reactome database does not contain information about the monkey species, I first converted the DEGs derived from 
the meta-analysis in their human orthologs and run the reactome approach afterwards. ES= Enrichment score. 

Pathway ES NES p value  FDR 

Extracellular matrix organization -0.6 -1.946 2.5e-05 0.022 

Collagen chain trimerization -0.829 -1.985 5.5e-05 0.025 

NCAM1 interactions -0.79 1.968 0.0001 0.025 

Muscle contraction -0.613 -1.875 9.6e-05 0.025 

ECM proteoglycans -0.716 -1.983 0.0002 0.046 

NCAM signaling for neurite out-growth -0.726 -1.941 0.0003 0.046 

Smooth muscle contraction -0.793 -1.909 0.0003 0.046 

Interleukin-17 signaling 0.923 2.238 0.0007 0.06 

Integrin cell surface interactions -0.699 -1.923 0.0006 0.06 

Collagen biosynthesis and modifying enzymes -0.761 -1.912 0.0006 0.06 

 

     



 
 

59 

 
Figure 9: STRING network analysis.  

Due to comprehensibility, only a representative cutout of networks representing nodes with the highest degree of connections 
are presented per species. As input served the interaction of the significant DEGs (FDR<0.1) identified by rodent (A), mouse 
(B), human (C), and monkey (D) meta-analysis. A) Representative cutout of the rodent analysis, including top 10 proteins with 
the highest degree of connections, such as DDX56 (n=6), RPL8 (n=5), NGDN (n=5) and DHX34 (n=4). B) Representative cutout 
of the mouse analysis including top 10 proteins with the highest degree of connections, such as JUN (n=26), TBX21 (n=13), 
CCL2 (n=12) and TLR9 (n=12). C) Representative cutout of the human analysis including top 10 proteins with the highest 
degree of connections, such as JUN (n=30), ERBB2 (n=27), CCND1 (n=21) and TLR2 (n= 14). D) Representative cutout of the 
monkey analysis. As depicted in the figure, the density of nodes is too high to identify strongly interacting proteins by eye. 
The proteins with the highest degree of connections are AKT1 (n=109), POLR2A (n=91), CUL1 (n=78) and ISG15 (n=77).  

 

Rodent meta-analysis identified 520 significant DEGs, while the outcome seems to be 

mainly driven by the datasets derived from the mouse species.  

The rodent meta-analysis identified an overall number of 520 genes that were significantly 

dysregulated in the PD phenotype, when considering an FDR threshold of <0.1. Furthermore, 

124 DEGs were solely identified by combining the datasets, which corresponds to 24% of all 

significant genes identified by the meta-analysis. When considering the original datasets with 

significant findings, the highest overlap with the meta-analysis results was detected for the 

Smith et al., 2020 datasets (72h: n=172 DEGs, 33% of DEGs of MA; 7d: n=249, 48% of DEGs of 

A

C D

B
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MA), while the least overlap was found for Smith et al., 2020 (n=112, 22% of DEGs of MA). 

GSEA pointed towards dysregulation of chromatin organization and maintenance, as well as 

apoptotic processes. STRING protein-network analysis was conducted to identify potentially 

high interconnected genes on the protein level, considering the identified DEGs of the meta-

analysis with an FDR threshold <0.1. Ddx56 was identified as the highest interconnected DEG 

for the rodent outcome (Figure 9A). However, the node degree, which is calculated by the 

number of connections to other nodes, to describe the interaction of the respective protein 

with the other proteins of the dataset, is comparably low in respect to the mouse, human and 

monkey STRING analysis result (Figure 9 B-D).  

As mentioned above, the observation of DEGs in the original datasets led to the hypothesis 

that the mice data might generally have a higher contribution to the outcome of the rodent 

meta-analysis results. Therefore, I performed a subgroup-analysis considering mouse and rat 

data, separately (Figure 8B). Mouse meta-analysis resulted in 678 DEGs with an overlap of 

68% with the rodent meta-analysis results. Rat-specific meta-analysis led to 2 DEGs with an 

50% overlap with the rodent meta-analysis and 0% overlap with the mouse-specific meta-

analysis (Figure 8B). The high number of common DEGs between the mouse-specific meta-

analysis and the rodent meta-analysis, while rat-specific meta-analysis is leading to a limited 

number of results, strengthens the hypothesis, that the results of the rodent meta-analysis 

are strongly driven by the mouse datasets. However, it has to be recognized that the number 

of rat datasets (n=2) is comparably low. Since mouse-specific meta-analysis resulted in an 

additional interesting outcome, we included these results in the cross-species comparison 

approach, that will be described further in the following paragraphs. 

 

In the human PFC, 370 DEGs were identified from which 217 DEGs were not identified by 

the original studies.  

For the human meta-analysis of the PFC, eight datasets (Farris et al., 2015; Hade et al., 2021; 

Kapoor et al., 2019; Liu et al., 2006; Manzardo et al., 2013; Ponomarev et al., 2012; X. Rao et 

al., 2021; Wang et al., 2013) resulting in 380 samples were included (Figure 3D, Table 4), 

whereby four of these studies reported significantly altered genes (Figure 8C). Notably, no 

common DEG was identified across these four datasets, and only one gene was identified as 

significant in two datasets –Kapoor et al. (2019) and Farris et al. (2015)– and was significant 

in the meta-analysis, as well. Any other overlap was solely identified between one original 
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dataset and the meta-analysis. The portion of DEGs identified in the original studies that were 

overlapping with the meta-analysis outcome ranged from 0-52 %, whereby Kapoor et al. 

(2019) showed the highest overlap, while the remaining studies had 0-15 % overlap (Figure 

8C).  

 
Figure 10: Leave-one-out (LOO) meta-analysis.  

Kapoor et al. (2019) showed the highest overlap of DEGs with the meta-analysis outcome (Figure 8C) and also the biggest 
sample size. Therefore, a LOO meta-analysis was performed to estimate the potential bias introduced by this study. It was 
assumed that, if the LOO meta-analysis represents a subset of the meta-analysis outcome, Kapoor et al. (2019) does not 
introduce a significant bias to the overall findings, but does contribute to additional findings that are pronounced by the 
increased sample size.   

Since Kapoor et al. (2019) had the highest overlap with the meta-analysis results and also the 

biggest sample size (Figure 8C, Table 4), which is more than double the sample size of the 

other datasets included, it was hypothesized that this study might contribute significantly 

stronger to the outcome of the human meta-analysis outcome than the remaining datasets. 

Therefore, a leave-one-out (LOO) meta-analysis was performed by excluding the Kapoor et al. 

(2019) dataset in a separate meta-analysis and comparing the outcome with the human meta-

analysis result (Figure 10). It was assumed, that, if the LOO meta-analysis represents a subset 

of the total human meta-analysis, the dataset from Kapoor et al. (2019) does not introduce a 

pronounced bias to the overall human meta-analysis outcome. As depicted in Figure 10, the 

outcome of the LOO meta-analysis does represent a subset of the human meta-analysis with 

a 100% overlap, which leads to the conclusion, that the inclusion of the dataset from Kapoor 

et al. (2019) does not lead to a warped result, but does enable the detection of additional 

DEGs that would not have been detected without increasing the sample size to this extent. 

However, the number of DEGs identified by the LOO meta-analysis are only 5% of the DEGs 

identified by the human meta-analysis (DEGsMA=358, DEGsLOO=18). Next, the potential 

enrichment of the 370 significant DEGs from the meta-analysis in biological pathways was 
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investigated. Hereby, basic cell membrane functions, such as ether lipid metabolism and 

linoleic acid metabolism, immune system-related components, mineral absorption as well as 

ErbB signaling, and COVID-19-relevant processes, were enriched (Table 17). STRING analysis 

pointed towards a high cross-interaction of Jun, Erbb2, and Ccnd1, with a number of 

connections per node between 21 and 30 (Figure 9C). The human meta-analysis results were 

the only output with a significant enrichment of the DEGs in specific cell types, which resulted 

in astrocytes (FDR=7.57e-07), endothelial cells (FDR=1.76e-05), and inhibitory neurons 

(FDR=0.0013).  

 

Meta-analysis of the monkey PFC resulted in 1532 DEGs with 35 genes uniquely identified 

by this approach.  

Systematic literature screening identified two datasets from monkey PFC tissue (Bogenpohl 

et al., 2019; Walter et al., 2020). In addition, Prof. Robert Hitzemann and Prof. Suzanne Fei 

from the OHSU Oregon (USA) provided us with two unpublished datasets, which increased 

the sample size to 90 individuals in total (Figure 3C). By observing the original datasets of the 

monkey PFC (Figure 8D), it is apparent, that the overall number of DEGs is higher than in the 

datasets derived from rodents and humans. While rodent and human datasets identified 

between 1-892 DEGs, the monkey studies reported a maximum number of 7,329 DEGs. 

Therefore, it is not surprising, that the meta-analysis of the monkey datasets resulted in 1,532 

DEGs. Additionally, the overlap with at least one original dataset is comparably higher than in 

the other species with only 35 genes (=2% of the overall meta-analysis outcome) uniquely 

identified by the monkey meta-analysis. The tremendously increased number of DEGs for 

both, the original datasets and the monkey meta-analysis, might be explained by the 

timepoint of tissue collection. For most of the included datasets, the monkeys were still 

intoxicated when they were sacrificed (Table 5), and it is known, that the alcohol intoxication 

state causes an acute alteration of multiple transcripts, which do not sustain after extended 

abstinence (Smith et al., 2016). GSEA resulted in cell adhesion, immune signaling, and muscle 

contraction being significantly enriched in the PFC of the alcohol-dependent monkeys (Table 

18). STRING protein network analysis showed the highest interactions for AKT1, POLR2A, and 

CUL1. 
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Cross-species comparison in the PFC across four species suggests that HSD11B1 

dysregulation might be conserved for the alcohol dependent phenotype.  

Since the subgroup analysis of the rodent data pointed towards a high number of DEGs 

derived from the mouse species (Figure 8B), the mouse-specific meta-analysis was added as 

a fourth dataset in the cross-species comparative approach (Figure 8E). When observing the 

Venn Diagram, it is notable, that a higher number of DEGs from the human meta-analysis 

overlap with the monkey meta-analysis (n=37, 10 %) than with the rodent (n=4, 1 %) or mouse 

(n=4, 1 %) meta-analysis. The overlap of human and rodent meta-analysis results in four 

common DEGs: one commonly down-regulated, HSD11B1 (FDRrodents= 0.001, FDRhumans= 

0.001), two commonly up-regulated genes, ITM2C (FDRrodents= 0.09, FDRhumans= 0.053) and 

RNF122 (FDRrodents= 0.16, FDRhumans= 0.07), and one inconsistently regulated gene, which was 

down-regulated in rodents and up-regulated in humans, RAB26 (FDRrodents= 0.03, FDRhumans= 

0.09). Three additional genes were commonly significant in the mouse and human meta-

analysis, namely TSPAN12 (FDRmice= 0.058, FDRhumans= 0.029), EVA1C (FDRmice= 0.098, 

FDRhumans= 0.02), and JUN (FDRmice= 0.03, FDRhumans= 0.079). Interestingly, JUN was also found 

to be the highest interacting gene in the STRING analysis for both, mice and humans (Figures 

9B&C). When considering all species, one gene was significant among all of them, which is 

HSD11B1 (FDRrodents= 0.001, FDRmice= 0.027, FDRhumans= 0.001, FDRmonkeys= 0.059). The fold-

change direction of this gene was negative in rodent (medianFC= -0.02), mouse (medianFC= -

0.32) and human (medianFC= -0.19) meta-analysis and positive in the monkey meta-analysis 

(medianFC= 0.79). The opposite direction of HSD11B1 in the monkey species might be 

explained by the lack of abstinence in most of the included individuals, which leads to the 

hypothesis, that the direction of the dysregulation of HSD11B1 might be depending on the 

state of intoxication. However, these data suggest that HSD11B1 might be relevant for the 

alcohol dependent phenotype, regardless of species and treatment paradigm. Since the 

chosen meta- analytical approach was Stouffer’s p value combination, an effect size 

estimation is not included, which points out the importance to validate the findings of the 

analysis. Therefore, I investigated the validation of the down-regulated HSD11B1 in our in-

house sample of human post-mortem brain tissue of the PFC in a total sample size of n=153 

(Figure 8F). The significant down-regulation of HSD11B1 in the PFC was replicated (FC= 0.76, 

FDR= 0.0002) and in addition, the previously reported up-regulation in brain tissue depending 

on age, which has been associated with cognitive decline (Bini et al., 2020; Gregory et al., 
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2020), was also found in this sample. However, when considering age as a cofactor, HSD11B1 

remains significantly down-regulated, irrespective of the age of the individuals.  

When comparing the downstream analyses across the species, it is apparent that each species 

shows its own pronounced emphasis of dysregulated pathways (Table 16-18). However, some 

common phenomena can be observed, such as immune-regulatory pathways that appear to 

be significantly impaired in both, the human and monkey species (Table 17&18).   

 

3.2.2 Meta-Analysis in the NAc and the AMY of ethanol exposed rodent and human AUD 

patient samples 

The brain regions NAc and AMY were meta-analyzed, since systematic literature screening 

was resulting in a sufficient number of studies for these brain regions in rodents and humans. 

Including these brain regions was considered to add value to the analyses in a brain region-

specific, but also in a brain-wide manner, leading to region-specific as well as brain-wide 

signatures.  

 

 
Figure 11: Venn Diagrams comparing significant DEGs (FDR<0.1) found in the NAc and AMY from the original studies and the 
meta-analyses.  

In both, the NAc as well as the AMY, I did not identify any DEGs in rodents in both, the original data as well as the meta-
analysis outcomes. Also, subgroup-analysis considering datasets derived from mice and rats separately, did not result in any 
significant DEGs. A) Human meta-analyses of the NAc found nine DEGs (FDR<0.1) with no overlapping gene between the 
meta-analysis and the included studies. B) Human meta-analysis of the AMY identified 130 DEGs with nine DEGs commonly 
appearing in Rao et al. (2021), Ponomarev et al. (2012) and the meta-analysis.  
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Table 19: Top 9 DEGs identified by human meta-analysis of the NAc, sorted by FDR-corrected p value.  

MedianFC= median fold-change; FDR= FDR-corrected p value; PropData= Proportion Data, describes the proportion of 
datasets that detected the gene in the experiment; CI= consistency index.  

Gene MedianFC p value FDR PropData CI 

ENPEP 0.68 1.12e-07 0.003 1.0 1.0 

SERPINA3 0.68 7.79e-06 0.045 1.0 1.0 

SLC7A2 0.27 2.77e-05 0.09 1.0 1.0 

EDN1 0.84 4.64e-05 0.09 0.84 1.0 

IL1R2 1.12 3.16e-05 0.09 1.0 1.0 

ANXA1 0.98 3.49e-05 0.09 1.0 1.0 

MCL1 0.3 4.06e-05 0.09 1.0 1.0 

S100A8 0.91 6.11e-05 0.09 1.0 1.0 

CEBPD 0.39 6.03e-05 0.09 1.0 1.0 

 

Table 20: Top 10 DEGs identified by human meta-analysis of the AMY, sorted by FDR-corrected p value.  

MedianFC= median fold-change; FDR= FDR-corrected p value; PropData=Proportion Data, describes the proportion of 
datasets that detected the gene in the experiment; CI= consistency index.  

Gene MedianFC p value FDR PropData CI 

GADD45A 0.67 3.71e-08 0.0004 1.0 1.0 

TIMP1 1.07 7.26e-08 0.0004 1.0 1.0 

SERPINA3 1.99 3.65e-07 0.0009 1.0 1.0 

ANGPTL4 0.97 6.95e-07 0.001 1.0 1.0 

MDK 0.65 6.3e-07 0.001 1.0 1.0 

MT1X 0.85 1.81e-06 0.003 1.0 1.0 

EMP1 1.02 3.13e-06 0.003 1.0 1.0 

SERPING1 0.39 3.84e-06 0.004 1.0 1.0 

HMGB2 0.35 5.99e-06 0.005 1.0 1.0 

IFITM3 0.76 7.06e-06 0.006 1.0 1.0 

 

Table 21: Pathway enrichment analysis of the human NAc meta-analysis results using the Reactome database with an input 
p value cut-off of FDR<0.2.  

ES= Enrichment score NES= normalized enrichment score. 

Pathway ES NES p value  FDR 

Neutrophil degranulation 0.813 1.65 1.57e-05 0.004 

Immune system 0.698 1.44 1.06e-05 0.004 

Signaling by Interleukins 0.806 1.63 0.0001 0.019 

Cytokine Signaling in Immune system 0.76 1.55 0.0001 0.019 
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Translation -0.603 -1.79 0.0002 0.028 

Hemostasis 0.789 1.59 0.0004 0.039 

Innate immune system 0.729 1.49 0.0005 0.042 

Ion channel transport -0.658 -1.75 0.004 0.2 

Platelet degranulation 0.87 1.57 0.003 0.2 

Response to elevated platelet cytosolic Ca2+ 0.87 1.57 0.003 0.2 

 

Table 22: Pathway enrichment analysis of the human AMY meta-analysis results using the Reactome database with a p value 
cut-off of FDR<0.2. 

 ES= Enrichment score; NES= normalized enrichment score. 

Pathway ES NES p value  FDR 

Interleukin-4 and Interleukin-13 signaling 0.88 1.67 9.49e-05 0.04 

Signaling by Interleukins 0.74 1.52 0.0001 0.04 

Cytokine Signaling in Immune system 0.71 1.47 7.6e-05 0.04 

Hemostasis 0.69 1.43 0.0002 0.06 

Cellular responses to stimuli 0.65 1.34 0.0004 0.08 

Platelet degranulation 0.82 1.59 0.0006 0.11 

Resolution of D-Loop Structures -0.88 -1.88 0.001 0.11 

Resolution of D-loop Structures through Holliday Junction 

Intermediates 

-0.88 -1.88 0.001 0.11 

Response to elevated platelet cytosolic Ca2+ 0.81 1.59 0.001 0.11 

Apoptotic cleavage of cellular proteins 0.91 1.58 0.001 0.11 

 

Rodent and human Meta-analysis in NAc suggests a less important meaning of this brain 

region for long-term alcohol dependence. 

Rodent PD samples were conducted from five datasets coming from four studies (Meinhardt 

et al., 2013; Osterndorff-Kahanek et al., 2015; Smith et al., 2016; M. L. Smith et al., 2020), 

which results in 77 individuals in total, whereby all of these studies were already included in 

the meta-analysis of the PFC (Figure 3B, Table 3). When observing DEGs across the original 

datasets, it is notable, that none of the datasets reported significant DEGs and combining 

these datasets in the meta-analysis, still no gene appeared to be significantly altered. In 

human post-mortem brain tissue of the NAc, three datasets with a total number of 241 

samples were included in the analysis (Drake et al., 2020; X. Rao et al., 2021; Zillich et al., 

2022b) (Figure 3D, Table 4). Among these, the RNA-Seq dataset conducted in Study 1, which 

is Zillich et al. (2022b), was included as well. In the human studies, it was of notice that the 



 
 

67 

number of significant DEGs in the original datasets was low with 3 to 12 DEGs. In the meta-

analysis, nine DEGs appeared significant with no overlapping gene being commonly 

dysregulated with one of the studies as well as there were no commonly dysregulated 

transcripts between Rao et al. (2021) and Zillich et al. (2022b) (Figure 11A). The observation 

of transcriptomic signatures in rodent and human post-mortem brain tissue of the NAc results 

in little to none dysregulated transcripts, which suggests that the mRNA expression in the NAc 

seems to be less vulnerable to long-term alcohol consumption followed by prolonged 

abstinence. However, GSEA of the human meta-analysis outcome pointed towards 

significantly dysregulated pathways with a major focus on immune-regulatory pathways, such 

as cytokine signaling, interleukin signaling and the innate immune system (Table 21).  

 

In the AMY, human meta-analysis showed strong alterations, while in the PD rodent 

studies, the data suggests limited relevance of this region on the transcriptome-wide level. 

The number of identified datasets targeting transcriptome-wide sequencing in the AMY was 

six for rodents (Meinhardt et al., 2013; Osterndorff-Kahanek et al., 2015; Smith et al., 2016; 

M. L. Smith et al., 2020) with a sample size of 88 individuals and two for humans (Ponomarev 

et al., 2012; X. Rao et al., 2021) with 92 samples included. The rodent datasets were derived 

from the studies already identified for PFC and NAc. As reported for the NAc analysis, also in 

the AMY, the original datasets from rodents did not report any significantly altered 

transcripts. However, the human studies identified 95 (Rao et al., 2021) and 1133 (Ponomarev 

et al., 2012) DEGs, respectively (FDR< 0.1). The meta-analysis of the rodent datasets did not 

result in any significant DEGs, considering a significance threshold of FDR< 0.1, while the 

meta-analysis of human AMY brought up 130 DEGs (FDR< 0.1) with 32 unique DEGs, 67 DEGs 

overlapping with Ponomarev et al. (2012), and 25 DEGs overlapping with Rao et al. (2021) 

(Figure 11B). In addition, nine DEGs appeared significantly in both, the original datasets and 

the meta-analysis, namely ANGPTL4 (medianFCMA= 0.97, FDRMA= 0.001), GADD45A 

(medianFCMA= 0.67, FDRMA= 0.0004), IFITM3 (medianFCMA= 0.76, FDRMA= 0.0056), LMNA 

(medianFCMA= 0.38, FDRMA= 0.021), MAL (medianFCMA= 0.31, FDRMA= 0.092), MT1X 

(medianFCMA= 0.85, FDRMA= 0.0025), S100A6 (medianFCMA= 0.65, FDRMA= 0.0086), SERPINA3 

(medianFCMA= 1.99, FDRMA= 0.0009), and TIMP1 (medianFCMA= 1.07, FDRMA= 0.0004). GSEA 

pointed towards dysregulation of immune signaling pathways, mainly containing interleukin 

signaling processes (Table 22). 
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Comparing the meta-analyses from the rodent and human AMY suggests that the PD animal 

model is leaking translatability to the patient situation in this brain region. Since all included 

original datasets in the rodent AMY reported no significantly altered transcripts and the meta-

analytic approach could not identify significant DEGs either, this strengthens the finding on 

two levels of statistical power. However, the observation of the human post-mortem AMY 

samples indicates that the AMY is a brain region that might be sensitive to AUD on the 

transcriptomic level, even when the patient has been abstinent for years before the timepoint 

of death.   

 

Intra-species comparison in humans across three brain regions suggests SERPINA3 as a 

potential new biomarker for AUD. 

Since the meta-analysis of the post-mortem brain samples from human AUD patients resulted 

in significant DEGs in all three brain regions observed, an intra-species comparison was 

performed to estimate potentially commonly dysregulated genes across these regions, which 

might suggest a new biomarker for AUD diagnosis. Indeed, one gene appears consistently up-

regulated in the PFC, NAc and AMY, which is SERPINA3 (FDRPFC= 0.0001, FDRNAc= 0.045, 

FDRAMY= 0.0009). Further support comes from previous human studies, that found this gene 

to be up-regulated in the hippocampus and blood from AUD patients (McClintick et al., 2013; 

B. Zhang et al., 2021), which provides further evidence, that SERPINA3 might be a new 

potential biomarker for AUD. However, Zhang et al. (2021) additionally indicated, that 

SERPINA3 might not imply information regarding the relapse potential of the individual 

patients.   
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Figure 12: Human intra-species comparison considering the meta-analysis outcomes from PFC, NAc and AMY.  

Across all three brain regions, one DEGs was commonly up-regulated, which is Serpina3. Additional overlaps between brain 
regions: NAc-AMY: EDN1 (FDRAMY=0.048, FDRNAc=0.098), SLC7A2 (FDRAMY=0.093, FDRNAc=0.098); PFC-NAc: CEBPD 
(FDRPFC=0.049, FDRNAc=0.098); PFC-AMY: ALDF1L1 (FDRPFC=0.0004, FDRAMY=0.042), ANGPtl4 (FDRPFC=9.43e-05, 
FDRAMY=0.001), ARRDC3 (FDRPFC=0.0001, FDRAMY=0.044), C1ORF54 (FDRPFC=0.0006, FDRAMY=0.042), CDKN1A (FDRPFC=0.0027, 
FDRAMY=0.074), CHST3 (FDRPFC=0.0019, FDRAMY=0.017), CRISPLD2 (FDRPFC=0.023, FDRAMY=0.099), DCXR (FDRPFC=0.0019, 
FDRAMY=0.048), FKBP5 (FDRPFC=0.012, FDRAMY=0.066), GADD45A (FDRPFC=0.00029, FDRAMY=0.0004), GADD45B (FDRPFC=0.022, 
FDRAMY=0.042), GPX3 (FDRPFC=0.056, FDRAMY=0.026), HMGB2 (FDRPFC=0.0006, FDRAMY=0.005), HMGN2 (FDRPFC=0.0006, 
FDRAMY=0.005), IFITM3 (FDRPFC=1.4e-05, FDRAMY=0.0056), ITGB4 (FDRPFC=0.0002, FDRAMY=0.042), JARID2 (FDRPFC=0.022, 
FDRAMY=0.086), KCNK10 (FDRPFC=2.17e-06, FDRAMY=0.051), MDK (FDRPFC=0.0023, FDRAMY=0.0014), MT1X (FDRPFC=2.17e-06, 
FDRAMY=0.0025), ODC1 (FDRPFC=1.27e-05, FDRAMY=0.019), PDPR (FDRPFC=0.056, FDRAMY=0.065), POLR38 (FDRPFC=0.026, 
FDRAMY=0.079), RASSF4 (FDRPFC=0.013, FDRAMY=0.065), ROBO3 (FDRPFC=0.065, FDRAMY=0.019), S100A6 (FDRPFC=0.0018, 
FDRAMY=0.0087), SDSL (FDRPFC=0.082, FDRAMY=0.087), SERPING1 (FDRPFC=0.0002, FDRAMY=0.0041), SHISA5 (FDRPFC=0.012, 
FDRAMY=0.087), SLC6A8 (FDRPFC=0.011, FDRAMY=0.012), TIMP1 (FDRPFC=0.0005, FDRAMY=0.0004), ZBTB16 (FDRPFC=0.059, 
FDRAMY=0.038), ZNF395 (FDRPFC=0.0059, FDRAMY=0.079), ZNF559 (FDRPFC=0.067, FDRAMY=0.048).  

 
3.3 Study 3: Single nuclei RNA sequencing in the DMS of PD rats 

The habit formation theory suggests that the striatum, mainly the DMS and DLS, is a central 

brain region involved in the development of addictive behavior (Balleine & O'Doherty, 2010; 

Chen et al., 2011; Lipton et al., 2019). In addition, the outcome of Study 1 strongly pointed 

towards the importance of the CN particularly, which is reflected by the DMS in rats, for the 

alcohol dependent phenotype. Therefore, as a first step to understanding the cell interaction 

processes that might underlie these alterations seen in the CN of the AUD patients, I observed 

the transcriptomic changes in the DMS of PD rats and matched alcohol naïve-control rats 

using snRNA-Seq. In combination with the behavioral data conducted by Francesco Giannone 

(Institute of Psychopharmacology, CIMH Mannheim), we aimed to identify cell types that 

might explain the behavioral outcome of the animals. In this thesis, however, exclusively the 

preliminary results derived from the first snRNA-Seq trial cohort of the DMS will be presented 

and discussed.  
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snRNA-Seq in the DMS of PD rats resulted in 16 distinct clusters. 

When it comes to snSeq experiments, the nuclei isolation technique is probably the most 

delicate step in the sample processing procedure, which is reflected by the number of nuclei 

isolation protocols and further adaptations of these that have been published so far (Alvarez 

et al., 2023; Krishnaswami et al., 2016; Matson et al., 2018; Nadelmann et al., 2021). With the 

development of the nuclei isolation kit from 10X Genomics, which was released in the first 

half of 2022, it was possible to harmonize the nuclei isolation procedure even across several 

batches, which yielded to a high quality across samples due to the standardized procedure 

and chemicals (https://www.10xgenomics.com/products/nuclei-isolation). Therefore, after 

several trials of using FACS sorting as well as manual nuclei isolation protocols, I eventually 

applied the nuclei isolation kit for this experiment. Especially with respect to further 

experiments that are planned for this project to expand the sample size and for intra-species 

comparisons, including additional brain regions, the involvement of a standardized procedure 

reduced potential batch effects that might occur due to differing sample preparation time 

points. However, once isolated from the tissue and the cells, nuclei and their respective RNAs 

are quite unstable since they tend to lyse rapidly after isolation (Hancock & Hadj-Sahraoui, 

2009). This effect is something I also encountered during the analysis of these data. While I 

included 20,000 nuclei per sample for the GEM generation to end up with a recovery of 10,000 

nuclei for the sequencing, only around 2,000 nuclei per sample remained after QC of the Seq 

data. When observing the cell clustering depending on the treatment (Figure 13A), there 

seem to be no striking differences in the general clustering between PD and control rats. 

However, when observing the cell type-specific outcomes and the percentage reflecting the 

contribution of the treatment groups to each cell type (Figure 13B, Table 23), it is apparent 

that there might be treatment-specific differences and furthermore, these differences might 

lead to a treatment-specific vulnerability to cell degradation. Since for both treatment groups, 

oligodendrocytes made up the cell population with the highest proportion of nuclei (%Ctr= 

24.8, %PD= 17.8; Table 23), already the cell population with the second-highest appearance 

rate is differing (Ctr: D2-MSN, %Ctr=18.3; PD: Pyramidal cells, %PD=16.7, Table 23). When 

observing additional cell types identified in this dataset, it is apparent that the distribution of 

nuclei varies between the PD and Ctr group. This effect is pronounced the strongest in 

Neurons_1 and Neurons_2, where the difference in proportion of nuclei per cell type between 

the treatment groups is 2-4x with a higher proportion in the PD group. After the nuclei 
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isolation procedure, degradation processes were initiated due to unexpected delays during 

the cell counting. Therefore, these data on the differing distribution of propensity across the 

cell types might suggest a treatment-specific vulnerability of certain cell types to degradation 

processes.          

 

 
Figure 13: snRNA-Seq of the DMS of PD rats.  

A) Clustering respective the treatment condition. PD rats (exposed) are highlighted in turquoise and control rats (control) in 
red. The general clustering seems to be common across the treatment groups. B) Cluster calling resulted in 16 distinct cell 
type clusters. In general, around 1,800 nuclei per sample passed the QC of the analysis of the Seq raw data. Neurons_1-_3 
reflect clusters that were positive for general neuronal marker, but no further specification could be made. Further description 
of the treatment-specific distribution of these cell types can be extracted from Table 23. 

According to the literature, MSN are the leading neuronal cell population of the striatum, with 

more than 90% of all neurons in this brain region (Gokce et al., 2016). In general, around 70% 

of the nuclei in my sample are made up by neurons. However, MSN only made up 35% of this 

population (Figure 13B, Table 23). In addition, the neuronal population with the highest 

appearance rate across the dataset is pyramidal cells, which is also the most abundant 

neuronal population in the PD group, while in the Ctr group, D2-MSN are the neuronal cell 

type with the highest proportion of nuclei. Oligodendrocytes –the glia cells with the generally 

highest abundance in the rodent brain (Valerio-Gomes et al., 2018)– are the cell type with the 

highest proportion in both PD and Ctr rats.  
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Table 23: Distribution of nuclei per cell type.  

The number of nuclei is represented as the total sum of nuclei per cell type (Sum), the percentage in respect to the total 
number of nuclei (%) and their distribution in the control and PD group with the respective proportion (%Ctr, %PD). Already 
during sample processing, one sample of the PD group resulted in a drastically reduced number of nuclei, which might explain 
the difference in the overall number of nuclei in the PD group in respect to the Ctr group. Neurons_1-_3 reflect clusters that 
were positive for general neuronal marker, but no further specification could be made.  

Cluster Sum % SumCtr %Ctr SumPD %PD n(DEGs) 

Oligodendrocytes 2550 19 1587 24.8 963 17.8 36 

Pyramidal cells 2025 17 1120 17.5 905 16.7 11 

D2_MSN 1984 16.7 1172 18.3 812 14.9 11 

Neurons_1 1349 11.4 463 7.2 886 16.4 13 

Microglia 901 7.6 420 6.6 481 7.7 333 

Astrocytes 693 5.8 383 5.9 310 5.7 14 

D1-MSN 661 5.6 389 6.1 272 5.0 9 

Neurons_2 612 5.2 160 2.5 452 8.3 187 

Oligodendrocyte 

precursor cells   

360 3.0 186 2.9 174 3.2 2 

Interneurons 313 2.6 183 2.9 130 2.4 1 

Neurons_3 305 2.6 169 2.6 136 2.5 0 

Endothelial cells 100 <1 37 <1 63 1.2 0 

Sensory neurons 99 <1 53 <1 46 <1 0 

Cholinergic neurons 67 <1 36 <1 31 <1 0 

Ependymal cells 58 <1 21 <1 37 <1 0 

Trigeminal neurons 42 <1 25 <1 17 <1 0 

Total 11.819  6.404  5.415   

 

GEx analysis considering the transcripts per cell type, resulted in microglia, neurons_2, and 

oligodendrocytes as the cell types with remarkable alterations in mRNA expression 

considering the comparison between PD and Ctr rats (Figure 14, Table 23-26) with 333 DEGs 

in microglia, 187 DEGs in neurons_2 and 36 DEGs in oligodendrocytes. Among the Top 10 

DEGs for microglia (Table 24, Figure 14A), most of the genes are associated with synaptic 

transmission and signaling. In neurons_2 (Table 25, Figure 14B), the most dysregulated 

transcripts are involved in neuroimmune pathways and basic cellular regulatory mechanisms. 

The Top 10 DEGs identified in oligodendrocytes (Table 26, Figure 14C) pointed towards a 

potential alteration in neuronal migration.   
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Figure 14: Distribution of the DEGs in Oligodendrocytes and Microglia, Neurons_2 and Oligodendrocytes.  

Since microglia (A), neurons_2 (B) and oligodendrocytes (C) were the cell types with the highest number of DEGs identified in 
the analysis, the respective distribution of the DEGs per cell type in up- and down-regulated genes is presented in this figure. 
A) GEx analysis in microglia resulted in 333 DEGs with log2FC > 0.25 and FDR<0.05. B) GEx analysis in neurons_2 resulted in 
187 DEGs with log2FC > 0.25 and FDR<0.05. C) GEx analysis in oligodendrocytes resulted in 36 DEGs with log2FC > 0.25 and 
FDR<0.05. Further information can be drawn from Figure 13 and Table 23-26.  

 

Table 24: Top 10 DEGs identified in Microglia.  

In addition to Figure 14, the Top 10 DEGs dysregulated in PD rats compared to alcohol naïve control rats are represented with 
the respective foldchange (Avg_log2FC), p value and FDR-corrected p value. DEGs were estimated by the Wilcox test. 

Gene Avg_log2FC p value p_adjust 

Rgd1565158 0.29 9.18e-25 1.94e-20 

Clstn2 0.47 3.07e-16 6.49e-12 

Kcnc2 0.49 6.43e-16 1.36e-11 

Asci2 0.59 7.46e-16 1.58e-11 

Nxph1 0.90 9.52e-16 2.02e-11 

Ensrnog00000071072 -0.69 1.24e-15 2.62e-11 

Egfeem1 0.69 7.43e-15 1.57e-10 

Ralyl 0.84 1.51e-14 3.19e-10 

Nkain3 0.73 1.86e-14 3.93e-10 

Il1rapl2 0.67 9.59e-14 2.03e-09 

 

Table 25: Top 10 DEGs identified in Neurons_2.  

In addition to Figure 14, the Top 10 DEGs dysregulated in PD rats compared to alcohol naïve control rats are represented with 
the respective foldchange (Avg_log2FC), p value and FDR-corrected p value. DEGs were estimated by the Wilcox test. 

Gene Avg_log2FC p value p_adjust 

Prdm16 1.31 1.02e-21 2.16e-17 

Trpc4 1.21 3.89e-18 8.23e-14 

Mgat4c -0.95 2.14e-17 4.53e-13 
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Ano2 1.29 9.45e-17 2.00e-12 

Slc8a1 1.06 1.79e-16 3.78e-12 

Ppp3cA 0.71 5.31e-16 1.12e-11 

Lzts1 0.98 6.55e-16 1.39e-11 

Celf2 0.83 9.94e-16 2.11e-11 

Runxlt1 -0.69 4.69e-15 9.93e-11 

Scn9a -0.77 5.53e-15 1.17e-10 

 

Table 26: Top 10 DEGs identified in Oligodendrocytes.  

In addition to Figure 14, the Top 10 DEGs dysregulated in PD rats compared to alcohol naïve control rats are represented with 
the respective foldchange (Avg_log2FC), p value and FDR-corrected p value. DEGs were estimated by the Wilcox test. 

Gene Avg_log2FC p value p-adjust 

Jhy -0.48 7.26e-28 1.54e-23 

Ensrnog00000062930 0.62 7.74e-24 1.64e-19 

Calm1.1 0.53 5.19e-19 1.09e-14 

Srgap1 0.42 1.94e-18 4.1e-14 

Apoe 0.49 4.33e-17 9.16e-13 

Pbld1 -0.32 1.41e-16 2.98e-12 

Sntg1 -0.29 1.26e-15 2.66e-11 

Kcip1 -0.36 1.52e-15 3.21e-11 

Spock3 -0.27 1.45e-14 3.07e-10 

Hbb-b1 0.54 6.94e-14 1.47e-09 

 

GSEA of the DEGs per cell type showed the highest enrichment score for immune pathways 

and mitochondrial regulatory pathways (e.g., “mitochondrial protein containing complex” 

(z=-5.29), “mitochondrial electron transport NADH to ubiquinone” (z=-5.17)) in microglia, for 

neuronal signaling (e.g., “ligand gated anion channel activity” (z=5.51), “serotonin release” 

(z=4.18)) in neurons_2 and epigenetic and transcriptomic regulation (e.g., “mRNA splicing” 

(z=6.59), “metabolism of RNA” (z=6.22); “H3K4ME2 & H3K27ME3” (z=-6.71), “H3K4ME3 & 

H3K27ME3” (z=-6.59)) for oligodendrocytes. In addition, since microglia are the cell type with 

the highest number of DEGs identified, the top 20 up-regulated pathways were compared 

across microglia, neurons_2 and oligodendrocytes (Figure 15). The majority of these 

pathways belong to neuroimmune regulation processes such as toll-like receptor signaling, 

interferons, and T-cell differentiation. Interestingly, all the shown pathways were 

dysregulated in the opposite direction in neurons_2. In oligodendrocytes, three pathways 



 
 

75 

slightly went in the same direction as seen in microglia, seven pathways showed no strong 

tendency in any direction, and ten pathways are regulated in the opposite direction. In 

general, when observing the top 20 up-regulated pathways in microglia, it seems like the 

neurons_2 and the oligodendrocytes cluster are more similar to each other than the microglia 

cluster.  

 

Figure 15: GSEA of the three cell types with the highest number of DEGs.  

Since microglia showed the highest number of altered transcripts, for this representation the top up-regulated GSEA results 
(z-scores) of this cell type are shown as a reference and the corresponding outcome for the respective pathways in neurons_2 
and oligodendrocytes are shown beside.  

 

3.4 Study 4: Gene expression of COVID-19-related genes across different ethanol 

treatment paradigms 

As mentioned in the introductory section, the COVID-19 pandemic had a tremendous impact 

on the global health system. However, the potential correlation between alcohol abuse and 

COVID-19 infection propensity as well as disease severity has not been extensively studied at 

this time. Studies 1-3 pointed repeatedly towards a major role of dysregulated immune 

pathways in AUD, which suggests a potential vulnerability to infectious diseases in general. 

Therefore, I investigated this research question to contribute further insights into the 
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potential risk of AUD patients and people with risky alcohol consumption for a severe COVID-

19 infection. The findings of this project are also described in Friske et al. (2023). Additionally, 

we contributed to this topic with a narrative review (Friske & Spanagel, 2023).  

 

3.4.1 Ace2 gene expression is up-regulated in different chronic ethanol treatment 

paradigms 

The cell surface receptor ACE2 is the first interaction point of the SARS-CoV2 infection cascade 

(Zamorano Cuervo & Grandvaux, 2020). Hence, I tested the three animal models of chronic 

ethanol intake –repeated intermittent ethanol IP injections (sub-chronic treatment), chronic 

intermittent ethanol vapor exposure (non-abstinent treatment), and the PD model (abstinent 

treatment) (additional information about the treatment in Section 2.4)– for Ace2 GEx in five 

different organs (Figure 16). In the sub-chronic treatment, organ-specific changes were 

analyzed using LMM analysis and resulted in a significant group x organ interaction 

(F[4,47]=3.596, p=0.012) and the follow-up post-hoc test pointed towards significant up-

regulation of Ace2 in the liver (p=0.002, d=1.57) and lung (p=0.003, d=2.23) of the treatment 

group (Figure 15A).  

 
Figure 16: Gene expression of Ace2 across five organs derived from three animal models.  

A) Sub-chronic model, B) non-abstinent model, C) abstinent model and respective untreated control rats. Gene expression 
was measured via RT-qPCR and the organs liver, lung, ileum, kidney and heart were analyzed, based on previous literature 
describing these organs as particularly vulnerable to SARS-CoV2 infection and showing high levels of Ace2 expression.  The 
analysis was performed using LMM and follow-up post-hoc test. The difference between treatment (“T”) and control (“C”) 
group is indicated as mean ± SE. The main finding of this experiment was a consistent significant up-regulation of Ace2 in the 
lung across all treatment groups. 

In the two treatment groups that received chronic intermittent ethanol vapor for seven 

consecutive weeks, in the non-abstinence condition, the main effect of group was significant 

(F[1,12]=10.624, p=0.007] without interaction, which indicated an overall increase of Ace2 in 

the treatment group. A subsequent post-hoc test revealed a significant effect in the lung 

(p=0.032, d=1.36) and in the ileum (p=0.039, d=1.31) (Figure 16B). The PD model (abstinent 
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treatment) showed a significant group x organ interaction (F[4,30]=3.105, p=0.030) and 

follow-up post-hoc test resulted in increased Ace2 GEx in the lung (p=0.046, d=1.10) and the 

kidney (p=0.005, d=1.52) (Figure 16C). 

Taken together, the observation of Ace2 GEx across three different chronic ethanol treatment 

paradigms resulted in a consistent up-regulation in the lung regardless of the treatment, 

which suggests that this organ might be more vulnerable to SARS-CoV2 infection in chronic 

alcohol consumption. Additionally, some organs showed specific changes in the expression 

pattern due to the route of administration. Therefore, the diverse pharmacokinetics of IP and 

vapor/air treatment might cause organ-specific outcomes.  

 

3.4.2 Potential hyper-activation of the ACE2/Ang(1-7)/Mas cascade in abstinence  

Due to the complexity of the SARS-CoV2 infection route, ACE2 is not the only important target 

to focus on. TMPRSS2 is accompanying ACE2 to facilitate cell entry since this protein is 

cleaving the S2 spike protein to enable the virus to cross the extracellular membrane. As a 

first fight-back mechanism of the infected cell, the ACE2/Ang(1-7)/Mas cascade is activated 

to eliminate the virus. Therefore, the above-mentioned animal samples were tested for 

Tmprss2 and Mas GEx. The sub-chronic treatment as well as the PD model did not show 

significant differences comparing the treatment and untreated control groups (Figures 

17A&C), whereas in the non-abstinence group, Tmprss2 was significantly up-regulated in the 

comparison of groups (F[1,14]=5.618, p=0.033), but without any organ-specific effect (Figure 

16B). Since the non-abstinence group represents the only treatment where the animals had 

still significant BACs at time point of death (274 ± 11 (SE) mg/dl), this effect might contribute 

to the elevated Tmprss2 GEx and therefore, acute ethanol intoxication might have a direct 

impact on the Tmprss2 levels in the organism. To add further evidence to this hypothesis, 

single acute ethanol IP injections of low (0.5 g(kg), moderate (1.5 g/kg) or high (3.0 g/kg) 

concentrations were administered, and the Tmprss2 GEx was observed in the same five 

organs. Indeed, Tmprss2 mRNA expression was organ-specifically affected depending on the 

administered dose, where the Tmprss2 gene was increased in the liver of animals with the 

highest dose and in the lung of animals that received a moderate ethanol challenge.   
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Figure 17: Gene expression of Tmprss2 and Mas across five organs derived from three animal models. 

A) Sub-chronic model, B) non-abstinent model, C) abstinent model and respective untreated control rats. Gene expression 
was measured via RT-qPCR and the organs liver, lung, ileum, kidney and heart were analyzed, based on previous literature 
describing these organs as particularly vulnerable to SARS-CoV2 infection and showing high levels of Ace2 expression.  The 
analysis was performed using LMM and follow-up post-hoc test. The difference between treatment (“T”) and control (“C”) 
group is indicated as mean ± SE. The main finding of this experiment was a treatment-specific, but organ-unspecific up-
regulation of Tmprss2 due to absence of abstinence and a treatment-specific up-regulation of Mas due to abstinence in the 
ileum. 

The GEx of Mas showed a significant main effect of group in the sub-chronic (group x organ: 

F[4,47]=3.029, p=0.026] and the abstinent treatment [group x organ: F[1,12]=20.797, 

p=0.001), whereby in both treatment groups the ileum was significantly up-regulated (post-

hoc test sub-chronic: p=0.001, d=2.23; abstinent: p=0.012, d=1.17). In addition, in the sub-

chronic group, the liver was significantly up-regulated (p=0.039, d=1.6), as was the heart in 

the abstinence groups (p=0.020, d=1.03). No significant differences between the treatment 

and control group were detected in the non-abstinence vapor treatment (Figure 17D-F). Since 

the two groups that showed significantly elevated levels of Mas GEx included an abstinence 

phase after long-term ethanol exposure, while long-term ethanol exposure per se does not 

seem to have significant effects, the detected changes in Mas mRNA expression might be 

related to this abstinence period. These results suggest that during abstinence after long-term 

alcohol intake, the anti-inflammatory response via the ACE2/Ang(1-7)/Mas cascade might be 

hyper-activated.   
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3.4.3 Brain-wide cross-section analyses results in potentially reduced vulnerability for 

brain tissue to alcohol-induced changes of SARS-CoV2 infection-relevant genes 

Due to several previous reports on the long-term consequences of COVID-19 infection on the 

nervous system (Ellul et al., 2020; Liu et al., 2021; Pajo et al., 2021), we eventually observed 

the GEx patterns of Ace2, Tmprss2 and Mas in animals with long-term ethanol vapor exposure 

across twenty different brain regions using RT-qPCR and in situ RNA hybridization (Figure 18). 

Since chronic intermittent ethanol exposure has been shown to result in long-lasting, 

tremendous molecular changes in brain tissue, we focused this experiment solely on the 

vapor treatment. Interestingly, the olfactory bulb was the only brain region that showed a 

treatment-specific effect on the GEx, where we found significant down-regulation of Mas 

mRNA in the non-abstinent vapor animals (group x region interaction: F[1, 10)=9.188, 

p=0.012; post-hoc test: p=0.002, d=1.68)(Figure 18). Since Mas is one of the initial factors in 

the anti-inflammatory response of the cell, this finding suggests that chronic ethanol intake 

without abstinence might reduce the ACE2/Ang(1-7)/Mas cascade in the olfactory bulb, which 

might contribute to a higher risk of anosmia. However, the mRNA expression of the three 

target genes was unaffected in any other tested condition or brain region. Taken together, 

these findings suggest that the olfactory is the most important brain region to consider as 

vulnerable to COVID-19 infection and severity with respect to chronic alcohol intake.  

 

 
Figure 18: Cross-sectional exploration of Ace2, Tmprss2 and Mas gene expression in the brain.  
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RT-qPCR measured expression of the three target genes in olfactory bulb and prefrontal cortex (A-F), while in situ 
hybridization was used to detect mRNA signals of Tmprss2 and Mas in 16 brain regions (G&H). Since the detected signal for 
Ace2 mRNA was too low in the regions captured by in situ hybridization, the analysis was impossible to lead to meaningful 
results. Expression values for both, RT-qPCR and in situ hybridization are shown as mean ± SE. Solely in the olfactory bulb of 
non-abstinent vapor treated rats a significant down-regulation of Mas was detected, whereas in all other brain regions and 
treatment conditions none of the target genes were significantly altered. 
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4. Discussion 

4.1 Discussion Study 1: Epigenetic and transcriptomic signatures of human post-

mortem brain tissue using bulk seq approaches 

The aim of this study was to identify dysregulated genes and pathways due to severe AUD in 

human post-mortem brain tissue on both the epigenomics and transcriptomics levels. 

Therefore, these two layers were observed and combined to eventually identify interactions 

between DNA methylation and GEx. For DNA methylation, five brain regions were observed: 

dlPFC/BA9, ACC, VS, PUT, and CN. RNA-Seq was performed in the three striatal regions VS, 

PUT, and CN. The main findings of this study are: i) the VS showed the highest impairment on 

the methylation level with 18 DMSs, while BA9 and PUT did not show any significant 

alteration; ii) on the level of DMRs, BA9 and PUT did not show any significant difference 

between AUD cases and controls. iii) On the transcriptional level, CN showed the highest 

number of DEGs (n=49), while in the PUT one DEG and in the VS, no significantly altered gene 

was identified. iv) In the multi-omics approach, only the CN showed common significantly 

dysregulated genes both on the epigenomic and transcriptomic levels.  

 

On the epigenomics level, only VS and CN showed significant alterations in CpG-site 

methylation patterns. 

When observing the identification of DMSs in the included prefrontal and striatal brain 

regions, the VS resulted in the highest number of DMS (n=18; Table 9). Interestingly, half of 

these sites were hyper- and half hypomethylated, compared to control individuals. The 

remaining brain regions showed only a limited number of DMSs, with a range between zero 

and two sites per brain region. Of these 18 hits in the VS, two sites overlapped with the CN, 

which are located in GALNT9 and PIEZO2. GALNT9 is involved in the O-glycosylation process, 

and previous studies have suggested its expression as a potential prognostic marker for 

neuroblastoma therapy (Berois et al., 2013). AUD patients are known to have a generally 

higher propensity for cancer as a comorbidity (Rumgay et al., 2021; Varela-Rey et al., 2013). 

This correlation of AUD with comorbid cancer diseases is further supported by the findings of 

the overlap of the DMS between the findings of the CN and peripheral blood, since both 

PCAT29 and KLHL6 have been attributed to cancer in previous research (Choi et al., 2019; 

Jiang et al., 2022). The PIEZO2 gene encodes for a stretch-gated ion channel with high 
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occurrence in somatosensory neurons, and its dysfunction was associated with loss of 

proprioception (Nagel & Chesler, 2022). Even though, to my knowledge, this gene has not 

been identified in addiction research before, proprioception is a general phenomenon 

observed during the alcohol intoxication state. Additionally, the general tendency toward 

somatosensory impairment in AUD patients has been demonstrated before (Spindler et al., 

2021). The most significant findings in the VS were SLC30A8 (hypermethylated), FAM20B 

(hypermethylated), and PCAT29 (indistinct). The SLC30A8 gene belongs to a family encoding 

for zinc transporters, and this gene in particular has been found to be associated with type 2 

diabetes (Bosma et al., 2019), and the SLC30 genes showed significant expression alteration 

in Parkinson’s disease (Bosomworth et al., 2013). The kinase encoded by FAM20B is involved 

in proteoglycan synthesis, and its function is conserved across species (Worby et al., 2021). 

Previous studies mostly identified its involvement in dental growth (Lei et al., 2021; Vogel et 

al., 2012). Hence, the potential impact on AUD patients on a neuronal level requires further 

investigation. PCAT29 encodes a long noncoding RNA (lncRNA) that was previously suggested 

to play a role in neuroblastoma and other tumors (Bao et al., 2021; Mishra et al., 2019) and 

major depressive disorders (MDD) (Seki et al., 2019). Therefore, this result adds to the already 

mentioned predisposition of AUD patients to additional comorbidities. 

In comparison to a previous methylation study in human AUD blood (Witt et al., 2020), in total 

three DMSs were overlapping between the CN and the blood samples, which are cg27512762 

(PCAT29), cg06427508 (KLHL6), and cg02849689 (not annotated to any gene). The 

comparison to blood samples is of high interest since, for molecular diagnostics and studies 

on the living patient, blood is one of the very few organs that can be observed. Therefore, the 

overlap between brain samples from human post-mortem brains and blood from alive 

patients could deliver input for direct prediction of processes in the brain underlying changes 

in the methylation pattern of the patient, e.g., during treatment trials. 

 

When considering DMRs, CN and VS seem to be the most important regions, while 

methylation patterns in ACC, BA9 and PUT are nearly unaffected by AUD. 

On the level of DMRs, the striatal regions CN and VS represented the highest number of 

significantly altered methylation regions, while in ACC, one DMR and in BA9 and PUT none 

were detected as significant for the alcohol dependent phenotype. In the CN, the most 

significant findings were annotated in DDAH2, CCDC152 and CAMSAP1 (Table 10). DDAH2 
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encodes for a subtype of dimethylaminohydrolases, which are generally known to regulate 

the production of nitric oxide. DDAH2 has previously been suggested to be impaired in a 

number of psychiatric disorders, such as bipolar disorders and schizophrenia (Kozlova et al., 

2022; Pineda-Cirera et al., 2022). Previous studies have additionally reported an association 

of DDAH2 with sleep disturbances (Amrouni et al., 2011; Xiao et al., 2019), and impaired sleep 

quality, insomnia, and alterations in the circadian rhythm are well-known phenomena 

observed in AUD patients (Koob & Colrain, 2020; Ma et al., 2015; Meinhardt et al., 2022; 

Spanagel et al., 2005). Interestingly, methylation of a SNP in this gene was found to have the 

opposite effect on its GEx (Pineda-Cirera et al., 2022). However, when we validated this 

finding using pyrosequencing of the CpG-site in DDAH2 with the highest significance, we were 

able to replicate the DMR, but when we followed up on the transcription level, we did not 

observe any significant alteration of the mRNA transcript of this gene. CCDC152 is a just 

recently discovered lncRNA, that is encoded in the antisense region encoding for the SELENOP 

gene (Mita et al., 2021). Expression of this lncRNA results in direct inhibition of the translation 

of the SELENOP protein. SELENOP functions as a selenoprotein that is widely expressed in the 

brain and has been shown to be sensitive to ER stress (Zhang & Song, 2021). In addition, 

SELENOP is involved in neuronal signaling and neuroinflammation and has been associated 

with neurodegenerative diseases such as Alzheimer’s disease (Du et al., 2014; Solovyev, 

2020). The CAMSAP1 gene and the respective protein have a critical role in neuronal 

differentiation and polarity, and therefore, impairment of this gene has been suggested to 

lead to neuronal migration disorder, aging, and intellectual disability (Al-Kasbi et al., 2022; Hu 

et al., 2018; Khalaf-Nazzal et al., 2022; Zhou et al., 2020). The top hits in the VS were assigned 

to TMEM232, FANCD2OS, and HM13. Also, these three genes have not been associated with 

AUD or other addictive disorders so far. TMEM232 was previously studied primarily in context 

with atopic dermatitis (Han et al., 2023; Shen et al., 2015; Zheng et al., 2021). However, a 

DMR in this gene has been associated with Alzheimer’s disease (Pathak et al., 2019), and a 

DMS was associated with multiple sclerosis (Souren et al., 2019), which points towards an 

important role of this gene in CNS-related diseases as well. The gene FANCD2OS, also known 

as C3orf24, seems to be not frequently targeted in research. However, a study focusing on 

multiple system atrophy found a DMS in this gene being associated with this disease 

(Bettencourt et al., 2020). HM13 has been characterized as a tumor-proliferating factor in 

glioblastoma (Wei et al., 2017) and was additionally associated with intellectual disability 
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(Kolarova et al., 2015). In the ACC, one DMR was identified, which is positioned in the HCG9 

gene. This gene encodes for a lncRNA that has been found previously to be linked to 

psychiatric disorders. A study on post-mortem brain tissue of bipolar as well as schizophrenic 

patients demonstrated not only alterations in the methylation pattern of this gene but also 

additional epigenetic modifications, such as epigenetic age effects (Pal et al., 2016). For 

bipolar disorder, the correlation of HCG9 hypomethylation has been detected by other 

laboratories as well (Kaminsky et al., 2012; Kato & Iwamoto, 2014). Considering the high rate 

of cooccurrence between AUD and bipolar disorders (Nery et al., 2013; Scott et al., 2023), 

these results might point towards potential genetic commonalities across these psychiatric 

disorders. 

Bottom line, the DMRs identified as most significantly associated with AUD warrant further 

research in both the field of AUD and in basic neurobiology to fully understand their role in 

health and disease. However, the findings strengthen the link between AUD and its most 

common comorbidities, such as neurodegenerative disorders, sleep disturbances, and cancer. 

It is apparent that neither BA9 nor PUT show any significant alterations in the methylation 

pattern due to the alcohol-dependent phenotype. However, when considering another study 

that focused on smoking-related methylation within the same samples that were also 

analyzed in this study, these brain regions did not show any DMS and very few DMRs due to 

smoking (Zillich et al., 2022c), which leads to the conclusion that on the DNA methylation 

level, the brain regions BA9 and PUT seem to be less vulnerable to alcohol (and smoking)-

related methylation pattern changes. Interestingly, when observing DNA methylation 

patterns in the BA9 due to Cocaine Use Disorder (Poisel et al., 2023), the impact of this drug 

on DNA methylation seems to be more striking, at least at the level of DMRs. Therefore, the 

addiction-related impact on the DNA methylation patterns might not only be brain region-

specific but also substance-specific.  

Epigenomic studies deliver insights into disease-specific methylation patterns to predict their 

importance in regulatory processes of transcription, but they are also a valuable outcome for 

molecular diagnostics. Since, especially in psychiatric research, diagnostics are often not 

straight-forward (Smoller et al., 2019), additional molecular evidence for determining the 

patient’s diagnosis can be helpful. However, there are several concerns about epigenomic 

studies in general that should be addressed in the experimental design and the interpretation 

of the results (Longley et al., 2021). First, when considering epigenomic signatures, DNA 
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methylation is only one part of epigenetics, and therefore, these analyses do not represent 

the full picture of epigenetic modifications and regulations in AUD. Within the DNA 

methylation processes, there is an important distinction between methylation and 

hydroxymethylation, which was not considered in this study. In addition, further epigenetic 

processes, such as ncRNAs, histone modifications, and transcription factor binding, have been 

proven to be highly important in addictive behavior (Robison & Nestler, 2011; Stewart et al., 

2021). Another interesting epigenetic mechanism that has just recently been discovered is 

that neurotransmitters, such as dopamine and serotonin, can bind to histones via 

transglutaminase type 2 to regulate neuronal transcription (Rossin et al., 2023). Especially the 

so-called dopaminylation seems to play a particular role in addiction, as demonstrated for 

cocaine and heroin abuse (Blum et al., 2022; Fulton et al., 2022; Lepack et al., 2020; Stewart 

et al., 2023).  

In comparison to previous DNA methylation studies in AUD post-mortem brains, this study 

adds to the heterogeneity of the findings (Clark et al., 2022; Gatta et al., 2021; Hagerty et al., 

2016; Jarczak et al., 2023; Manzardo et al., 2012; Meng et al., 2021; Wang et al., 2016). Nearly 

none of the previously detected genes have been found in additional AUD-related studies, 

and therefore, a concrete picture of methylation processes being dysregulated in AUD cannot 

be drawn yet. This conclusion might be as frustrating as it is comprehensible, since epigenetic 

signatures can be highly modified by environmental factors (Ladd-Acosta & Fallin, 2016; Law 

& Holland, 2019; Schiele & Domschke, 2018), and patients’ environmental situations might 

have been quite diverse throughout their lives. Therefore, bigger sample sizes and meta-

studies are warranted to combine these heterogeneous findings into a clearer outcome.  

 

Transcriptomic signatures in the striatum reveal a high number of significant DEGs in the 

CN, while the VS shows no significant alterations in gene expression levels. 

RNA-Seq in the three striatal regions VS, CN and PUT revealed 49 DEGs in the CN with the 

majority of genes being significantly up-regulated and 1 DEG in PUT, that was significantly 

down-regulated in AUD patients compared to matched control individuals (Table 11). The VS 

did not show any significant DEGs at a threshold of FDR<0.05. The three genes with the 

highest significance in the CN are TTLL4, GATA2, and CNOT10. TTLL4 functions as a 

polyglutamase, which is mainly involved in post-translational modification (van Dijk et al., 

2008) and has previously been associated with neurodegeneration (Mahalingan et al., 2020; 
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Wu et al., 2022). GATA2 is a zinc finger transcription factor that is crucial for neuronal 

development, and patients with GATA2 deficiency suffer from a variety of pulmonary and 

immune disorders (Hsu et al., 2015). In a brain-specific manner, this gene has been found to 

be involved in REM-sleep regulation, Alzheimer’s disease, and brain cancer (Abyadeh et al., 

2022; Fu et al., 2020; Kirjavainen et al., 2022). As part of the principal deadenylation complex, 

CNOT10 is involved in mRNA degradation control (Fadda et al., 2013). However, no 

association with brain-related diseases has been reported yet, which suggests, that the 

remaining components of the deadenylation complex might compensate for the 

dysregulation of CNOT10. In the PUT, DES was significantly down-regulated. This gene has 

been reported in context with mesenchymal tumor markers (Sloan et al., 2021; Truong et al., 

1990). In context with AUD, it was found altered in the heart tissue of AUD patients (Deliu et 

al., 2017; Richardson et al., 1998), but so far, no study has reported dysregulation of this gene 

in the brain tissue of AUD or alcohol-dependent animal models.  

In general, it is worth mentioning that the effect sizes of the GEx, measured as log2FC, are 

comparably low, with most of the DEGs having a log2FC <0.5, while, e.g., in GEx studies in the 

cancer research field, usually significant genes are considered with a log2FC>2.0 (Gobin et al., 

2019; Pido et al., 2021). Nevertheless, these small effect sizes detected in this study are in line 

with previous transcriptome-wide sequencing studies in AUD (Ferguson et al., 2022a) and 

respective animal models (Saba et al., 2015; Tabakoff et al., 2009), suggesting that the impact 

of chronic alcohol consumption on AUD might rather cause alterations of multiple genes 

simultaneously, which suggests addressing the focus of future research should be more on 

network and pathway interactions. Rather than target gene studies, to observe the underlying 

mechanisms of AUD and eventually, identify new target approaches for 

psychopharmacotherapy. The findings of the GO-term and KEGG-pathway enrichment 

analyses of this study support this conclusion. Even though focusing on single genes, neither 

the VS nor the PUT reached a significant number of DEGs, enrichment analyses showed 

significant results, which were mainly pointing towards an impairment of immune system-

related pathways.    

 

Multi-omics data integration in striatal regions shows gene expression regulation on the 

epigenomic and transcriptomic levels in the CN. 



 
 

87 

When comparing the methylation and GEx, signatures due to AUD, the CN was the only region 

of the three striatal brain regions observed that represented an overlap of genes being altered 

on both levels (Table 12). The 12 overlapping genes are functionally involved in cell adhesion, 

apoptosis, and basic energy-generating metabolisms, such as gluconeogenesis. Out of these 

genes, PFKFB3 has been previously observed in context with chronic ethanol exposure in 

mice, where its GEx was significantly increased (Morris et al., 2022). Additional studies have 

identified PFKFB3 and HIPK3 with brain tumors and the promotion of glioma progression 

(Alvarez et al., 2021; Han et al., 2021; Hu & Zhang, 2019). Among these 12 genes, DYNLT1 and 

KLHL7 have been associated with neurodegenerative diseases like Huntington’s and 

Parkinson’s disease (Murthy et al., 2017; Rosseto et al., 2021).  

In the PUT as well as in the VS, no overlap of genes with altered methylation or transcriptome 

profiles was observed. When considering the limited to none observed number of genes with 

significant alterations within one of the two omics layers, this finding does not come as a 

surprise. 

Even though the overlap of the two omics layers was identified in only one of the three brain 

regions in the striatum, it has to be considered that this study was only focusing on one 

subtype of epigenomics. Therefore, by considering the additional types of epigenetic 

sequencing approaches targeting ncRNAs, miRNAs, histone modifications, and DNA 

hydroxymethylation, a more extensive picture of the dysregulated epigenetic mechanisms 

and their potential overlap with other omics layers would result. Due to the nature of bulk 

sequencing approaches, cell type-specific effects might potentially be evened out since a bulk 

approach considers the tissue as an average of the cell types. Therefore, I strongly suggest 

further studies in human post-mortem brain tissue on a single cell level to obtain deeper 

insights with more sensitive data to describe the molecular basis of AUD in the brain. 

However, a previous study focusing on DNA methylation and the effects of alterations on the 

respective transcript suggests that mainly DNA hypomethylation and the resulting increase in 

GEx could be of particular interest to describe the consequences of epigenetic alteration in 

the alcohol dependent phenotype and its potential as a therapeutic approach (Ponomarev et 

al., 2012). 
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4.1.1 Summary 

This study investigated the methylation and transcriptomic patterns in human post-mortem 

brain tissue from several brain regions in both, a separate and integrated manner. DNA-

methylation analysis revealed the highest number of DMSs and DMRs in the CN, which is 

consistent with the findings from RNA-Seq in the same human post-mortem brain tissue. ACC 

showed moderately altered methylation patterns, while in both BA9 and PUT, no gene was 

significantly differently methylated. Significant DMSs and DMRs led to alterations in genes 

relevant for sleep regulation, neurodegenerative diseases, and psychiatric disorders, which is 

in line with previous research describing comorbidities in AUD patents. In the RNA-Seq 

approach in the three striatal regions CN, VS, and PUT within the same patients that were 

included for the DNA methylation analysis, VS and PUT showed limited to no alterations due 

to the AUD phenotype when focusing on significant differential expression of single genes. 

The most significant DEGs in the CN were associated with dysregulated immune pathways, 

neurodegenerative diseases, and cancer-relevant pathways. Multiomics data integration 

resulted in 12 genes being commonly altered within the CN on both levels, methylation and 

GEx, while neither PUT nor VS had any overlap across significant alterations on both omics 

layers. Observing these two omics layers, the PUT seems to be less vulnerable to methylation 

as well as GEx alterations due to chronic alcohol consumption and AUD. On the other side, 

the CN showed the highest number of modified methylation sites and regions and also the 

highest number of significant DEGs, which strongly suggests further research on the CN in 

terms of additional omics layer observations and alcohol-dependent behavior. In addition, 

especially the hits from the DNA methylation analysis led to a number of genes that have not 

been described in the research field of AUD yet, which suggests further investigations to 

understand the role of these genes in the brain and especially in AUD.  

 
 

4.2 Discussion Study 2: Meta-analysis of transcriptome-wide sequencing 

approaches across four species 

This study represents the first transcriptome-wide meta-analysis of brain samples derived 

from AUD patients and PD animals. Especially the translational aspect, including four species 

–human, rat, mouse, and monkey– and multiple brain regions, provides high evidence not 

only in a comparative manner but also for each area of these preclinical domains, in its own 
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right. By considering the increased statistical power as well as the heterogeneity that comes 

with including individuals from multiple studies, I was able to identify commonly dysregulated 

genes and pathways across three brain regions that provide high relevance for the AUD 

research. The main findings of this study describe: i) a high overall heterogeneity across the 

original studies that were included in the meta-analyses; ii) Hsd11b1 seems to be relevant for 

the alcohol-dependent phenotype throughout the investigated species; iii) the NAc is 

potentially less vulnerable to long-term alcohol intake followed by prolonged abstinence and 

iv) the transcriptomic signatures in the human AMY warrant an optimized treatment of the 

rodent PD model to provide translatability in this brain region to the alterations observed in 

patients.   

 

The observation of the gene expression profiles of the included datasets results in high 

overall heterogeneity across the original studies.  

When observing the DEGs identified by the included datasets from the different studies, I did 

not identify any gene that was commonly significantly altered across all the datasets, which 

points towards a high heterogeneity across the datasets. The general aspect of performing 

meta-analyses is to observe an effect across several original studies, considering potential 

heterogeneity introduced by, e.g., diverse study designs, and including a larger sample size 

for the analysis to increase statistical power. One of the major advantages of animal 

experiments is that multiple paradigms can be controlled throughout the experiment. 

However, since all the included individuals were outbred animals, the genotype also varied, 

which might have had an additional influence on the transcriptomic profile (Fotsing et al., 

2019; Heap et al., 2009; Philibert et al., 2008). The varying study designs of the included 

original studies, such as the differences in the alcohol exposure paradigm, including the 

duration of abstinence before the sacrifice of the animals, might additionally contribute to 

the heterogeneous DEG distribution among these studies. Also, it is known that mice and rats 

show differing transcriptomic patterns in response to alcohol exposure (Contet, 2012). 

Additionally, individuals derived from different breeders can vary genetically and 

physiologically. It has been shown in the past that the microbiome has an impact on gene 

expression in the brain via the gut-brain-axis (Margolis et al., 2021) and that the microbiome 

of laboratory animals is influenced by a variety of factors (Ericsson & Franklin, 2021). Based 

on the inclusion of datasets derived from different laboratories, the treatment conditions of 
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the animal experiment, and the sample treatment for the mRNA sequencing approach were 

diverse, which could have contributed to the high heterogeneity detected in the mRNA 

expression profiles. Also, the assays to measure transcriptome-wide mRNA expression were 

heterogeneous. While all the included rodent studies and the majority of the human studies 

chose microarray as a detection method, the time span of the data collection of the studies 

is around seven years, which is already long enough to represent the different standards of 

transcriptome-wide sequencing approaches since this is a very rapidly developing technique 

with a variety of approaches (Venkatasubbarao, 2004). Nevertheless, the observed 

heterogeneity across the original studies points out the importance of this meta-analysis: 

genes identified as significantly altered, despite these inter-study variances, represent targets 

of particular interest, as their dysregulation was detected regardless of the above-mentioned 

aspects of heterogeneity. Also, in the clinical situation of human AUD patients and in the 

human post-mortem brain samples analyzed in pre-clinical experiments, the background of 

the patients varies in terms of years of alcohol drinking and relapse phases, environment, 

genotype, microbiome, period of abstinence before death, and psychological aspects that all 

have an impact on the transcriptomic profile. Therefore, observing transcriptomic changes 

with a heterogeneous sample background delivers new promising targets that might be 

representative for a broader population of the alcohol dependent phenotype and might 

potentially be useful for the development of promising AUD treatments.  

 

The rodent meta-analysis in the PFC resulted in 519 DEGs, of which 124 DEGs were uniquely 

identified by this approach. 

When considering the overlap across the original studies, it is noticeable that only half of the 

included datasets reported significantly altered transcripts and that these were derived from 

two studies which were both conducted in the same laboratory, in the same species, and even 

by the same scientist (Figure 8A, Table 3) (Smith et al., 2016; M. L. Smith et al., 2020). 

Therefore, the above-mentioned potential resources of heterogeneity were reduced since 

the laboratory conditions as well as the bias due to the individual scientist and the animal 

batches were absent. 

For the rodent meta-analysis, I included six datasets with a total of 98 individuals. The 

outcome resulted in 519 DEGs (FDR <0.1) with 124 genes that did not overlap with any of the 

findings, which represents a unique outcome due to the meta-analytic approach. As a 
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principle of meta-analysis, an overlap of the identified DEGs with DEGs from the original 

datasets but also unique DEGs as outcome fits the expectation of a common meta-analysis 

output, which is aiming to partially replicate previous findings but also identify new genes by 

increasing sample size and statistical power. GSEA resulted in mostly chromatin-modifying-

related terms (Table 16). As identified in Study 1 of this thesis, AUD causes changes in the 

methylation pattern, which can result in altered chromatin accessibility and structure (Caiafa 

& Zampieri, 2005; Meng et al., 2015). Therefore, it is not surprising to observe a link between 

chromatin modification and the GEx pattern, and even further, these results might suggest a 

connection between DNA methylation, chromatin remodeling, and eventually, altered GEx. 

As already reported in Study 1 of this thesis, the absolute numbers of the resulting fold-

changes are rather low. However, it has been suggested that the threshold set for a fold-

change to have biological relevance might differ across research areas, which led to the 

suggestion to set a generalized threshold for the significance of the fold-change depending 

on the research question (McCarthy & Smyth, 2009). The small effect sizes in the GEx suggest 

that even though AUD affects a variety of genes, due to the small effect sizes, it might be 

more considered targeting gene co-expression networks and pathways than single genes for 

understanding the molecular pathology of AUD (Ferguson et al., 2019; Ponomarev et al., 

2012).  

Since all included datasets are derived from microarray experiments, which are known to 

have reduced sensitivity compared to RNA-Seq –as stated in the Methods section of this 

thesis– there might be a bias towards lowly abundant genes. Therefore, it is of great 

importance to include further studies applying RNA-Seq to add additional reliable information 

regarding lowly abundant transcripts.  

 

Subgroup analysis in the rodent species suggests that the rodent meta-analysis outcome is 

mainly driven by the mouse species. 

Since four out of the six included datasets were derived from C57BL/6J mice and the 

remaining two datasets studied Wistar rats, I aimed to further explore how these two rodent 

species influenced the outcome of the meta-analysis. Therefore, I performed a subgroup 

analysis by splitting the datasets according to the respective rodent species, which resulted 

in 2 DEGs for the rats and 678 DEGs for the mice (Figure 8B). In comparison to the rodent 

meta-analysis, the overlap with the rat subgroup analysis was 50%, and the overlap with the 
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mouse subgroup analysis was 68%. The very limited number of DEGs in the Wistar rats might 

be explained by the absence of significantly altered transcripts in the included original 

datasets, while in contrast, in the mouse datasets, three out of four datasets showed multiple 

significant DEGs. On the genomic level, the mouse and rat species have a more than 90% 

overlap in nucleotide and amino acid sequence (Wolfe & Sharp, 1993). However, when it 

comes to alcohol-related behavior, species-specific differences can be seen. E.g., the alcohol 

deprivation effect (ADE) model, which is a model of relapse behavior, describes the increase 

in alcohol intake after an abstinence (deprivation) period, and this effect is increasing in 

intensity with increasing number of deprivation events (Spanagel & Hölter, 1999). This model 

has persistent findings in rats, while in mice, the ADE seems to be fading with an increasing 

number of deprivation periods (Vengeliene et al., 2014). In addition, a recent cluster and 

meta-analysis on stress-induced alcohol consumption in mice and rats showed that stressors 

enhance home cage alcohol drinking in rats, while in mice, a demonstration of stress-induced 

elevated alcohol intake was absent (Noori et al., 2014). Generally, the comparability of these 

two rodent species seems to depend on the treatment paradigm (Gomez et al., 2015; 

Vengeliene et al., 2009), which suggests that the species should be chosen with respect to the 

research question and outcome aims.  

STRING network analysis resulted in Jun being the highest connected protein in the mouse, 

as well as the human meta-analysis (Figure 9). Generally, Jun genes are part of the Fos/Jun 

immediate early gene family that has been associated with neuronal activity and is closely 

linked to cFos (Morgan & Curran, 1991) – a gene that has been extensively observed in 

addiction research (Korber & Sommer, 2022). Previous neurobiological studies reported Jun 

to be altered after cocaine intake (McClung & Nestler, 2003; Moratalla et al., 1993; Xu, 2008), 

as well as after ethanol intake, where the increased expression of Jun was associated with 

attenuation of baroreflex sensitivity (Wang & Abdel-Rahman, 2004). In addition, 

dysregulation of Jun has been found in inflammation, neurodegeneration, and cancer types 

(Shaulian, 2010), which are comorbid conditions, that are often seen in AUD (de la Monte & 

Kril, 2014; de Menezes et al., 2013; Mayfield & Harris, 2017). 

 

Human meta-analysis led to 367 DEGs, which were mainly enriched in immune-regulatory 

pathways. 
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In total, six datasets resulting in 380 samples were included in the human meta-analysis 

(Figure 3D, Table 4). When overserving the DEGs of these studies, four datasets detected 

significant DEGs with the highest number of DEGs in Kapoor et al. (2019) (n=260) (Figure 8C). 

Since this study also contributed with the highest number of samples, the LOO study (Figure 

10) was performed to identify the potential bias that was introduced by this dataset. Since 

the LOO meta-analysis and the human meta-analysis, including Kapoor et al. (2019), share the 

majority of DEGs, it was hypothesized that there was a considerably low bias introduced by 

the Kapoor et al. (2019) dataset.  

The human meta-analysis resulted in 367 DEGs with 217 unique altered transcripts. When 

comparing the total number of identified DEGs across the rodent, human, and monkey 

species, the human meta-analysis outcome represents the smallest number of significant 

genes (Figure 8). As described in the study demographics of the human datasets (Table 4), the 

majority of the samples were derived from the NSWTRC at the University of Sydney, Australia. 

Since the tissue derived from one individual serves for several laboratories to study, there 

might be a potential overlap regarding the individuals across the studies, which might have 

influenced the number of DEGs in the meta-analysis outcome. Unfortunately, to date, it is not 

possible to estimate the impact of this potential bias since the individual case IDs are not 

officially reported in the respective studies due to ethical agreements with the brain bank.  

Among the top 10 DEGs of the human meta-analysis (Table 14), Angptl4 has been described 

in AUD research before, where it has been identified as a significant component in the gene 

x alcohol interaction of alcohol effects on plasma lipid levels (Wang et al., 2020). FITM3, which 

was up-regulated in the meta-analysis outcome, has also been found to be up-regulated in 

the PFC of schizophrenic patients, and furthermore, it has been attributed to the 

dysregulation of PFC functions in these patients (Arion et al., 2007). KCNJ16, down-regulated 

in the meta-analysis, has also been found to be down-regulated in a previous study on PTSD 

cases with comorbid MDD and was positively correlated with RNA age (Zhao et al., 2022). 

Since the latter two genes are involved in common comorbidities of AUD, such as 

schizophrenia, PTSD, and MDD (Debell et al., 2014; Gielen et al., 2012), these findings 

highlight the connection between AUD and other mental health disorders, which is generally 

estimated to be more than 50% (AshaRani et al., 2022; Yang et al., 2018). 

Pathway enrichment analysis pointed towards an enrichment in immune-regulatory 

pathways, such as the innate immune system, the ER-Phagosome pathway, cytokine 
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signaling, and IL-10 signaling (Table 17). These findings add further evidence to the 

importance of dysregulated immune pathways as a driving force in AUD, as described 

previously (Crews & Vetreno, 2016; Mayfield & Harris, 2017). Cell type enrichment analysis 

revealed the relevance of astrocytes, endothelial cells, and inhibitory neurons in the 

investigated tissue. Previous snRNA-Seq studies pointed towards the relevance of astrocytes 

(Brenner et al., 2020), D1- and D2-MSN (van den Oord et al., 2023), and GABAergic neurons 

(Dilly et al., 2022) in the alcohol dependent-phenotype. In Study 1 of this thesis, cell-type 

enrichment analysis of the bulk GEx data also resulted in significant enrichment in astrocytes 

and endothelial cells in the CN (Zillich et al., 2022b). Therefore, these cell types might have an 

overarching role in the brains of AUD patients. 

 

Monkey meta-analysis in the PFC resulted in a higher number of DEGs compared to humans 

and rodents but a lower number of unique genes. 

Four datasets comprising 90 individuals were included in the monkey meta-analysis of the 

PFC. Interestingly, the number of significant DEGs (n=1532 DEGs) was notably higher 

compared to the human (n= 367 DEGs) and rodent species (n= 519 DEGs), which might be 

explained by the fact that most of the studies included were sacrificing the monkeys while 

they were still intoxicated (Table 5). Therefore, these data not only represent the effects of 

prolonged alcohol consumption, which in the monkeys was designed with duration periods 

of at least 6 to 12 months, but also the transcriptomic signatures of alcohol intoxication, which 

are known to differ due to the abstinence phase (Hashimoto et al., 2017; Mayfield, 2017; 

Mulligan et al., 2017). Hence, the elevated number of significantly altered transcripts in 

comparison to humans and rodents might be caused by the state of intoxication. In addition, 

for monkey transcriptomic analysis, internal controls represented by biopsies before the 

onset of drinking were used to normalize the transcriptomic signals. This method is strikingly 

different from the usage of external controls as applied in the rodent and human studies, 

where age matched control individuals were used as comparisons. Previous studies report 

that the difference between biopsy and autopsy samples per se might be negligible (Bolliger 

et al., 2010; Castensson et al., 2000). However, the time-dependent component that comes 

with biopsy sampling before the onset of drinking and the comparison to the necropsy after 

the end of the treatment (Somel et al., 2006), as well as the potential differences that might 

come from considering different individuals for normalizing, might still play an important role 
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in respect to the tissue collection of the other species included in this study. However, even 

though the number of total DEGs is higher than in the other species included in this study, the 

number of uniquely identified transcripts is comparably low. Meta-analysis in humans and 

rodents identified 217 and 124 unique DEGs, respectively, but monkey meta-analysis in the 

PFC resulted in 35 unique DEGs. While half of the human as well as the rodent original studies 

reported significant transcripts, in the monkey studies three out of four studies reported 

significant DEGs (Figure 8). Therefore, the proportion of original datasets, that found 

significantly altered transcripts, was higher for the monkeys, compared to the other species, 

and also, the number of commonly identified DEGs across these studies was higher, leading 

to a higher homogeneity across the datasets. When observing the Top 10 DEGs of the monkey 

meta-analysis outcome, some prominent genes discovered in, e.g., the cancer field, were 

represented. In regard to alcohol abuse, the circadian clock gene BHLHE40 might be the most 

interesting finding. This gene has been found to be dysregulated in muscle tissue after alcohol 

bingeing, which contributed to a major impairment in the core molecular clock of the 

individuals (Tice et al., 2021). Another interesting finding is the down-regulated expression of 

SPRY2, which is a direct inhibitor of ERK. A recent study demonstrated that SPRY2 is directly 

regulated by miR-27a in human monocytes, which induces monocyte activation and 

polarization initiated by alcohol (Saha et al., 2015). Another study focusing on MAPKs, 

including ERK, suggested that the MAPKs inhibitor DUSP4, which was up-regulated in the 

monkey meta-analysis, is interacting with miR-26a to enhance alcohol-induced liver injury 

(Han et al., 2015). Therefore, both of the latter mentioned genes underline the hypothesis 

that miRNAs might play a major role in alcohol-induced dysregulation, including liver and 

brain injury (Gorini et al., 2013; Nunez et al., 2013; Rutledge & Im, 2021). Furthermore, the 

data derived from this study points towards the involvement of MAPKs in these processes. 

When looking at the cross-species overlap, according to the number of common DEGs, the 

monkey species had a higher overlap with the human species than with the rodents, which is 

what would be expected from the evolutionary point of these species.  

Bottom line, even though the monkey species represented the smallest number of studies 

and individuals for the meta-analysis, the findings contribute important additional findings to 

better understanding the alcohol-dependent phenotype.  
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Cross-species comparison in the PFC suggests HSD11B1 dysregulation as a conserved 

phenomenon for the alcohol-dependent phenotype. 

When comparing the four species-specific meta-analyses targeting mice, rodents, monkeys, 

and humans (Figure 8E), it is noticeable that the number of overlapping DEGs across these 

species is the highest between humans and monkeys, which reflects the closer evolutionary 

relationship. In addition, one transcript was commonly altered across all four species-specific 

outcomes and, hence, suggests a conserved target for the alcohol-dependent phenotype, 

which is Hsd11b1. In humans as well as in rodents and in the mouse-specific analysis, this 

transcript was found to be significantly down-regulated, while in monkeys, HSD11B1 was up-

regulated. The opposite regulation observed in the monkeys might be caused by the 

intoxication status of the animals at the time point of death, while the rodents as well as the 

humans underwent an abstinence period, before they died. HSD11B1 encodes for the enzyme 

ß11-HSD1, which is known to catalyze the first reaction step of cortisol anabolism, where 

cortisone is metabolized to cortisol. Therefore, a reduced mRNA expression of HSD11B1 

might result in down-regulated ß11-HSD1 protein levels, which might eventually lead to lower 

cortisol levels due to limited anabolism of cortisol to the active glucocorticoid cortisone 

(Holmes & Seckl, 2006; Wyrwoll et al., 2011). AUD is known to be associated with stressful 

events that lead to increased cortisol levels in the plasma as well as in several brain regions 

(Stephens & Wand, 2012), and elevated cortisol concentrations are one of the key aspects of 

acute and long-term withdrawal (Anderson et al., 2016; Becker, 2017; Heilig & Koob, 2007). 

Hence, it might be expected that HSD11B1 would be up-regulated as a potential explanation 

of the accumulation of cortisol after prolonged alcohol consumption. Furthermore, the up-

regulation of this transcript was found in the liver of alcohol dependent individuals (Ahmed 

et al., 2008; Meng et al., 2013). Generally, Hsd11b1 expression in the blood and brain tissue 

of CIE mice was suggested as a predictive factor for the identification of the alcohol-

dependent phenotype (Ferguson et al., 2022b). Since the meta-analytic approach selected for 

this study is based on p value combinations, the direction of dysregulation was considered a 

secondary outcome. Therefore, I validated the finding of the down-regulated HSD11B1 mRNA 

levels by RT-qPCR in the human post-mortem brains of our in-house sample, and I was able 

to confirm both the significance and the direction of the dysregulation of this transcript 

(Figure 8F). In addition, since the majority of the human post-mortem studies included in this 

analysis comprised tissue derived from the NSWTRC at the University of Sydney, Australia, a 
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potential over-representation of individuals across these datasets might occur. To date, we 

cannot estimate the exact overlap of individuals across these studies, since the case IDs are 

not publicly shared. However, I need to assume that a certain degree of bias due to over-

represented individuals might be present in my dataset, which underlines the importance of 

validation experiments of promising target genes in a separate human cohort. Since stress-

related processes are mainly mediated by other brain regions, e.g., the extended amygdala, 

it might be reasonable that HSD11B1 has a different function in the PFC. Indeed, the ß11-

HSD1 enzyme is not only involved in the anabolism of cortisol but also in the generation of 

active glucocorticoids (Tomlinson et al., 2004). Therefore, even though previous systemic 

experiments suggest ß11-HSD inhibitors as potential treatment approaches for AUD (Sanna 

et al., 2016), the function of this transcript in the PFC might differ. Furthermore, the effect of 

down-regulated HSD11B1 could be a compensatory mechanism initiated by increasing 

cortisol levels in the alcohol-dependent phenotype. Eventually, it is not clear what the 

alterations on the transcriptomic level mean for the functional protein. It might also well be 

that the decrease in HSD11B1 mRNA activates post-transcriptional processes, resulting in an 

over-expression of the ß11-HSD1 protein or an increased activity of the enzyme.  

 

Transcriptomic signatures in the NAc seem to be less vulnerable to long-term alcohol 

dependence with protracted abstinence in both human and rodent samples.  

The NAc is generally known for processing pleasurable feelings and initiating behavior in a 

goal-directed manner (Floresco, 2015). Therefore, its role in alcohol consumption and the 

development of addictive behavior has been discussed extensively (Boileau et al., 2003; Chen 

et al., 2011; Ho et al., 2018; Scofield et al., 2016; Spiga et al., 2014). These studies suggest 

that mainly during the acquisition phase, where alcohol consumption is driven by its 

pleasurable and rewarding properties, but also in acute withdrawal, the NAc plays a key role. 

When it comes to molecular observations on the transcriptome-wide level in long-term 

abstinent individuals, previous studies have reported only a limited number of significantly 

altered transcripts in the NAc (Meinhardt et al., 2013; Meinhardt et al., 2015; Osterndorff-

Kahanek et al., 2015; X. Rao et al., 2021; Smith et al., 2016; M. L. Smith et al., 2020; Zillich et 

al., 2022b). Therefore, it is not surprising that in the meta-analysis, both the human meta-

analysis and the meta-analysis in the PD rodents, did not result in a high number of 

significantly altered transcripts, as the included individuals experienced prolonged abstinence 
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before the time point of death (Table 3). Since the PD rodent model shows comparable 

outcomes to the human results, this also confirms the translational properties of this animal 

model to the patient situation on a molecular level. Additionally, these findings are in line 

with the outcome of Study 1 of this thesis, where the VS –embedding the NAc–showed no 

significant DEGs as well as no overlapping genes in the data integration of methylome- and 

transcriptome-wide data derived from human post-mortem brain tissue (Zillich et al., 2022b). 

However, when considering only methylome-wide data, the VS was among the brain regions 

with the highest number of DMPs and DMRs (Zillich et al., 2022a), which suggests that these 

alterations observed at the methylation pattern might have limited impact on transcriptomic 

alterations. Previous studies reported strong alterations in the transcriptomic profile of the 

NAc after acute alcohol consumption but loss of these effects after chronic treatment (Contet, 

2012; Kerns et al., 2005; Melendez et al., 2012; Repunte-Canonigo et al., 2007). And even 

further, these studies suggest that the PFC plays an important role in transcriptomic 

alterations after chronic alcohol treatment, which is in line with the high number of DEGs in 

the meta-analyses of the PFC (Figure 8). Finally, this leads to the conclusion that on the 

transcriptome-wide level, the NAc might not be a highly vulnerable brain region of the long-

term alcohol dependent phenotype, which was observed in a species-overarching manner. 

However, the division of NAc core and shell might be taken into consideration when 

examining alcohol dependent behavior since previously there have been distinct differences 

described (Barker et al., 2015). 

 

In the AMY, the PD model in rodents seems to lack translatability.  

The AMY is a highly stress-sensitive brain region (W. H. Zhang et al., 2021), and AUD is a 

mental health disorder that is driven by stressful events, especially during the withdrawal and 

relapse phases but also in the initiation phase, when alcohol is often used as a coping strategy 

(Flook et al., 2023; Heilig, 2023; Moonat & Pandey, 2012). Hence, the findings in the human 

post-mortem brain of the AMY fit the expectation of high alterations in the transcriptome of 

AUD patients (Figure 11B). However, in the rodents, no significant transcript appeared to be 

significantly impacted, regardless of considering the rodent species as one or analyzing the 

subgroups of rats and mice separately. This comes as a surprise since the rodent CIE model 

has been reported to show sensitivity to stress (Heilig & Koob, 2007). However, the alcohol-

associated stress mechanisms do not only involve the AMY but also the bed nucleus of the 
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stria terminalis (BNST) and the HPA axis. In addition, the AMY is a very heterogeneous brain 

region, consisting of multiple nuclei (AbuHasan et al., 2023), and based on the reported 

methodologies of the included studies for this meta-analysis, it is not exactly clear which 

nucleus was extracted for the gene expression analyses. Therefore, the analysis of the rodent 

AMY datasets might represent an average across several nuclei of the AMY, which might even 

out potential subregion-specific effects, or the studies might be focusing on a nucleus that 

might not be affected by alcohol dependence. Since the animals comprised in the AMY 

analysis were exposed to CIE vapor for 4-8 weeks, with partially 4 days of 16 h exposure per 

week, this treatment paradigm might not be intense enough to induce long-term alterations 

of the AMY transcriptomic profile. Therefore, based on the outcome of my analysis, I suggest 

adjustments to the exposure paradigm to a daily exposure of 16 h per day and an increasing 

number of exposure days per cycle to ensure consistent effects in the AMY.  

 

Human intra-species comparison resulted in SERPINA3 being identified as a new potential 

biomarker for AUD. 

Since in the human species, significant DEGs were retrieved for all three brain regions, PFC, 

NAc and AMY, an intra-species comparison was performed to detect potentially conserved 

transcripts that are consistently altered in the human brain (Figure 12), which pointed 

towards a consistent up-regulation of SERPINA3. Additionally, previous studies have found 

SERPINA3 to be upregulated in the hippocampus as well as the plasma of AUD patients 

(McClintick et al., 2013; B. Zhang et al., 2021), which suggests SERPINA3 as a prospective 

biomarker for AUD. SERPINA3 has been associated with glioblastoma and other cancer types 

(Norton et al., 2021; Soman & Asha Nair, 2022), cardiovascular diseases (L. Zhao et al., 2020), 

Alzheimer’s disease (Kenigsbuch et al., 2022; N. Zhao et al., 2020), and progressing Multiple 

Sclerosis (Fissolo et al., 2021). The corresponding protein SERPINA3 is considered an acute-

phase inflammatory component and has the biological functions of inhibiting cellular growth, 

proliferation, and differentiation as well as anti-apoptotic properties by interacting with, e.g., 

the MAPK/ERK1/2 pathway (de Mezer et al., 2023). In psychiatric research, SERPINA3 was 

mainly associated with schizophrenia, where it was suggested to initiate dysfunctions of the 

blood-brain barrier and the innate immune system (Horvath & Mirnics, 2014; Murphy et al., 

2020; Trepanier et al., 2016; Zhu et al., 2022). This gene is known to be an astrocyte-specific 

marker (Baker et al., 2007), and the role of astrocytes in AUD is currently under investigation 
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since the immune-modulatory effects of alcohol are suggested to be at least partially 

dedicated to the impairment of this cell type in particular (Adermark & Bowers, 2016; Linker 

et al., 2019). As discussed in the sections above, astrocytes have been repeatedly shown to 

be relevant in AUD. The consistent up-regulation of SERPINA3 might lead to a prospective 

biomarker, which would enhance the molecular tools for AUD diagnosis. Biomarkers can 

provide a basis for personalized medicine, such as in cancer therapy, where the evaluation of 

biomarkers is one of the initial steps for the diagnosis and therapy plan (Hristova & Chan, 

2019). In AUD research, previous investigations to determine molecular biomarkers have 

been made. However, there is still not enough data to identify molecular biomarkers for the 

main important aspects of AUD, such as treatment response prediction, prediction of at-risk 

individuals, or to subclassify patients (Ferguson et al., 2022a). In direct comparison to cancer 

research, the limited number of biomarkers and the lack of precision-based therapeutics in 

AUD might be explained at least partially by limited access to study samples and small funding 

budgets (Kranzler et al., 2017). As already stated in the introductory section of this thesis, the 

AUD research area is lacking successful pharmacotherapy, which might be due to the general 

underrepresentation of personalized medicine approaches and corresponding studies in this 

research area, which is highly warranted in such a heterogeneous disease phenotype (Lohoff, 

2020; Ragia & Manolopoulos, 2017). In addition, according to DSM-V diagnostics, AUD is sub-

classified as mild, moderate, and severe (American Psychiatric Association, 2013). Previous 

studies have shown that the amount of alcohol consumed, level of response to alcohol, and 

additional paradigms that describe the risk and severity of AUD also lead to distinct 

transcriptomic patterns, which is further pointing towards the necessity of personalized 

medicine (Mulligan et al., 2006; Schuckit et al., 2004). Since AUD patients have a high rate of 

comorbid mental health disorders such as depression, schizophrenia, bipolar disorder, and 

anxiety, the interaction of these components needs to be addressed to find the best suiting 

treatment for the individual patient (AshaRani et al., 2022; Castillo-Carniglia et al., 2019; 

Cornelius et al., 2003; Debell et al., 2014; Yang et al., 2018).  

On the level of GSEA, several pathways were commonly dysregulated across the three brain 

regions, which are mainly related to cytokine signaling, hemostasis, and response to elevated 

platelet cytosolic Ca2+ (Tables 17, 21, 22). However, in respect to the pathway enrichment 

analysis, the NAc and the AMY show a higher degree of commonality than with the PFC, since 

additionally, further immune-signaling aspects, mainly with respect to interleukins, are 
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significantly altered. These results contribute to previous studies that have pointed strongly 

towards the importance of immune-signaling pathways as the main influencing factors in 

excessive alcohol consumption and AUD (Mayfield & Harris, 2017).  

 

Transcriptome-wide meta-analysis is a promising tool to predict new targets to study new 

effective treatment directions for AUD and other diseases. 

Meta-analytic approaches are increasingly being implemented in diverse research areas. Not 

only meta-analyses of binary outcomes derived from clinical studies or preclinical behavioral 

experiments but also sequencing data from genome-, methylome-, transcriptome-, and 

proteome-wide approaches are combined to increase statistical power for the identification 

of new molecular risk factors and mechanisms underlying diverse diseases. Especially, when 

considering the high degree of heterogeneity across the original datasets, meta-analyses can 

build a new, reliable basis for future research. This type of analysis is also in line with the 3R 

principles (Russell & Burch, 1959) and contributes significantly to reducing, replacing, and 

refining future animal experiments (Avey et al., 2015; Clavert & Duhamel, 2013). Since the 

methodologies of transcriptome-wide sequencing approaches were established, numerous 

studies applying these techniques in the addiction research area have been conducted. 

Mainly microarray, but also more and more RNA-Seq data were obtained to elucidate 

transcriptional alterations in the brain that might explain the basic principles of alcohol 

dependence. These findings were predominantly pointing towards immune system-, 

neuronal dysfunction, and signaling-related pathways (Farris et al., 2015; Murano et al., 2017; 

Warden et al., 2016). However, the components at the single-gene level of these significantly 

altered pathways are diverse across these studies. This suggests that even though the general 

pathways that are affected by alcohol abuse might be solid, the key players in these pathways 

still require identification. In addition, research on sex-specific effects in AUD is a frequently 

discussed topic, as there is lacking data from female animals as well as female AUD patients 

(Agabio et al., 2017; Ruiz & Oscar-Berman, 2013). While in clinical research, the number of 

studies that include women is drastically increasing, preclinical research is still barely 

considering both sexes in behavioral and molecular experiments (Li et al., 2021). This is also 

reflected in the data of this thesis, since in the rodent studies, there was no dataset observing 

females (Table 3), and in the human post-mortem studies, the number of women was highly 

limited, as well (Table 4). Considering that women tend to develop AUD faster than men and 
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are more likely to suffer from the medical consequences of chronic alcohol abuse (Agabio et 

al., 2017), this points strongly towards sex-specific differences that are required to be 

understood in detail to provide appropriate treatment in a more personalized way.  

 

4.2.1 Summary 

This study does not only represent the first transcriptome-wide meta-analysis in the alcohol-

dependent brain but also demonstrates a novel approach to finding conserved signatures 

across multiple species to provide promising targets to investigate both in preclinical and 

clinical studies. As the main findings, I found that in the PFC, HSD11B1 was commonly 

dysregulated across all four species observed. In addition, the transcriptomic signatures in the 

NAc seem to be less vulnerable to dysregulation due to AUD and long-term ethanol exposure 

with protracted abstinence. The results in the AMY referred to a lack of translatability 

between the human post-mortem brain tissue and the animal model of alcohol dependence, 

as in the human brain a high number of DEGs were identified, while the animal data showed 

no altered transcripts. Therefore, the treatment paradigm might need further adjustment to 

provide translational input to the patient’s situation. In the intra-species comparison of the 

human findings in the PFC, NAc and AMY, SERPINA3 was commonly up-regulated through all 

three brain regions. In combination with previous studies from hippocampus and plasma 

samples, this finding suggests SERPINA3 as a novel biomarker for AUD. Bottom line, the 

findings of this study provide a profound basis for follow-up studies on the behavioral as well 

as the molecular level in both a species-specific a translational cross-species manner to 

understand the relevance of these targets in AUD in greater detail. However, especially in 

terms of sex-specific outcomes, additional primary studies, considering both male and female 

sex, need to be conducted to enable meta-studies with a reliable sex-specific statement since 

female sex is currently strongly underrepresented in most of the AUD studies.  

 

4.3 Discussion Study 3: Single nuclei RNA sequencing in PD rat tissue 

As demonstrated in previous sections of this thesis, the PD rat model is a frequently and long-

term studied animal model of alcohol dependence that is induced by CIE, and it has also 

proven validity in translational aspects of AUD research (Meinhardt & Sommer, 2015). 

However, when it comes to the latest cutting-edge techniques of molecular analyses, there is 
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still a big research gap that requires investigation to understand this model in detail. As 

suggested in Study 1, the CN, which corresponds to the DMS in rats, plays an essential role 

when it comes to epigenetic and transcriptomic alterations in the human post-mortem brain. 

Therefore, this study contributes to disentangle the cellular compartments that might play an 

important role in AUD in the DMS and, furthermore, will deliver potential new routes to 

investigate the understanding of alcohol dependent behavior. The main findings of this study 

are: i) the cell types with the highest number of altered transcripts in the PD rats are microglia, 

neurons, and oligodendrocytes. ii) These DEGs are cell type-specifically enriched in different 

biological processes, and iii) chronic exposure to alcohol might cause a cell type-specific 

vulnerability to degradation processes.  

 

First preliminary snRNA-Seq data in the DMS of PD rats suggests a cell type- and treatment-

specific vulnerability to degradation as well as an overall reduced stability of nuclei in the 

PD group. 

When it comes to snSeq experiments, the nuclei isolation technique is probably the most 

delicate step in the sample processing procedure, and a number of nuclei isolation protocols 

and further adaptations of these have been published, so far (Alvarez et al., 2023; 

Krishnaswami et al., 2016; Matson et al., 2018). With the development of the nuclei isolation 

kit, that was released by 10X Genomics in 2022, it was possible to homogenize this step with 

a bench-marked kit which enabled reproducible outcomes even throughout several sample 

batches with the additional advantage of decreased sample handling time.  

With the establishment of snSeq approaches, not only the sample size as the number of 

individuals but also the number of cells or nuclei need to be taken into account to interpret 

the meaningfulness of the outcome. Therefore, the sample size as well as the number of 

nuclei to aim for strongly depend on the complexity and heterogeneity of the tissue. (Haque 

et al., 2017). In this first dataset of four PD rats and four matched controls, the average 

number of nuclei was around 1,800 nuclei per sample (Figure 13), which is considerably low 

compared to previous studies (Brenner et al., 2020; Dilly et al., 2022). Even though I aimed 

for a nuclei recovery of 10,000 nuclei per sample, many nuclei were not transformed into 

GEMs –probably due to degradation– and additionally, a high number of nuclei was filtered 

out during the QC steps of the analysis due to low fragment reads in general or a low number 

of unique genes. Interestingly, the overview of the proportion of nuclei per cell type differed 
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between the treatment groups (Table 23). While oligodendrocytes made up the cell type with 

the highest proportion of nuclei for both of the treatments, the further distribution of the 

number of nuclei was diverse. For PD rats, the cell types with the second and third-highest 

number of nuclei were pyramidal cells and neurons_1. In the control rats, the cell type with 

the second-highest degree of nuclei was D2-MSN, followed by pyramidal cells. A previous 

study on isolated mouse oligodendrocytes demonstrated that ethanol, even at high 

concentrations, does not impair the viability of these cells (Coutts & Harrison, 2015), which 

might support the finding of no treatment-specific alterations in nuclei degradation within 

this cell type. In addition, this study suggested that the demyelination processes observed in 

AUD might be primarily due to acetaldehyde, which occurs during ethanol digestion, rather 

than ethanol itself.  

The reduced number of total nuclei in the PD rats might partially be explained by treatment-

specific influences on the overall stability of the nuclei. Chronic alcohol intake has been 

previously shown to have a tremendous impact on the general composition of the brain tissue 

by reducing gray and white matter (Monnig et al., 2013; Spindler et al., 2021). Furthermore, 

the apoptotic effects of alcohol on brain cells have been demonstrated repeatedly (Han et al., 

2005; Hernandez et al., 2016; Sokolowski et al., 2014). Therefore, these data add to the 

previously reported apoptosis-inducing properties of chronic alcohol intoxication and AUD. 

However, since the overall number of nuclei observed is rather low, an increase in the sample 

size is required to confirm these preliminary findings.  

 

Microglia, Oligodendrocytes and the neuronal subtype neurons_2 show the highest degree 

of altered transcripts across all identified clusters.  

GEx analysis in the identified cell types pointed towards a particular relevance for microglia, 

oligodendrocytes and neurons_2, since these clusters revealed the highest number of 

significantly altered transcripts (Tables 23-26, Figure 14). When observing the Top 10 genes 

within these cell types, some genes have already been proven to have relevance in addiction. 

The pain-associated gene Scn9a, which was down-regulated in the neuron_2 cluster (FC=-

0.77, padj=1.17e-10) (Table 25, Figure 14B), was shown to be strongly associated with the 

alcohol dependent phenotype across several animal models of alcohol dependence (Muir et 

al., 2023). Ppp3ca, which was up-regulated in neurons_2 (FC=0.71, padj=1.12e-11), is involved 

in brain plasticity and has been found in a recent cross-species meta-analysis of genome-wide 
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expression studies (GWES) on cocaine addiction, including human, mouse, and rat datasets, 

to be significantly associated with cocaine misuse (Forero & Gonzalez-Giraldo, 2020). 

Furthermore, the relevance of TRP channels in psychiatric disorders has been discussed 

previously, and Trpc4, which was significantly up-regulated in the top 10 DEGs of the 

neurons_2 cluster in this study (FC=1.21, padj=8.23e-14), has been associated with anxiety and 

depressive disorders (Naziroglu & Demirdas, 2015). In oligodendrocytes, the ApoE gene, 

which encodes for an apolipoprotein, was significantly up-regulated (FC= 0.49, padj=9.16e-13) 

(Table 26, Figure 14C). This gene has been examined in AUD before; however, to my 

knowledge, its expression has been solely measured in plasma so far. Nevertheless, the 

plasma expression of ApoE was positively associated with alcohol consumption (Wilkens et 

al., 2023), and up-regulated ApoE in AUD patients undergoing early abstinence was linked to 

cognitive impairments (Escudero et al., 2023). For the top 10 DEGs identified in microglia, no 

transcript has been previously reported to be associated with AUD or other addictive 

disorders.     

As already discussed in Study 1 and 2 of this thesis, the fold-changes of the significantly 

altered transcripts are comparably low. Since Study 1 and 2 focus on bulk expression data, it 

is worth mentioning, that the same phenomenon can be seen at the single cell level as well. 

Furthermore, the previously published snRNA-Seq data in pre-clinical AUD research reported 

rather small effect sizes (Brenner et al., 2020; Dilly et al., 2022), which is demonstrating that 

the overall influence of alcohol on particular transcripts is rather small in both bulk and single 

cell resolution.    

GSEA of the three cell types with the highest number of DEGs displayed dysregulated 

pathways in a cell type-specific manner. Microglia were negatively enriched for mitochondrial 

regulation pathways and positively enriched for immune responses. Neurons_2 were mainly 

associated with dysregulated neuronal signaling pathways, which supports previous findings 

on the impairment of neurotransmitter release and neuronal activity in AUD (Li et al., 2019; 

Ward et al., 2009). Interestingly, in oligodendrocytes, GSEA suggests a down-regulation of 

epigenetic processes and an up-regulation of transcriptional processes. Therefore, this finding 

does not only support the findings from Studies 1 & 2, but is also in line with the general 

knowledge of biology, describing the potential influence of decreased methylation levels on 

increased transcriptional processes (Migliori et al., 2010).  
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The majority of the top 20 up-regulated pathways in microglia are neuroimmune regulation 

processes, which highlights the importance of microglia in the neuroimmune response to 

chronic alcohol abuse and furthermore supports the previous findings, also described in Study 

1 & 2 of this thesis, that AUD is causing an impairment of the neuroimmune system. 

 

These first preliminary data from the PD rat model contribute to previous findings from 

snRNA-Seq in the addiction field.  

As stated in the introductory section of this thesis, single cell techniques are becoming the 

leading, cutting-edge method in molecular analysis of GEx. However, in the field of addiction 

research, only a limited number of scSeq studies have been conducted so far. But still, cell 

type-specific dysregulation has been determined, e.g., from bulk data, by observing the 

transcripts that are known to have a cell type-specific expression pattern. As already shown 

in Study 1, cell type enrichment analysis pointed towards an important role for astrocytes and 

endothelial cells in the CN of deceased AUD patients. In the snRNA-Seq dataset derived from 

the DMS of PD rats, a small degree of altered transcripts was detected in astrocytes but none 

in endothelial cells. However, the overall number of both of these cell types, but especially of 

endothelial cells, was very limited, which does not provide a fundamental basis to draw final 

conclusions on the potential involvement of these cell types in the DMS of the PD model. 

Study 2 suggested that mainly inhibitory neurons but also astrocytes and endothelial cells, 

might play a role in the transcriptomic alterations seen in AUD. Therefore, the findings from 

Study 1 & 2 are somehow overlapping. However, the additional involvement of inhibitory 

neurons shown in Study 2 might underline the findings of the neurons_2 cluster that was 

found to have the second-highest number of DEGs in the snRNA-Seq experiment.  

The cell types with the highest number of detected nuclei and altered transcripts were 

microglia, oligonucleotides, and neurons. A previous study examining the interaction 

between epigenetic and transcriptomic regulatory mechanisms on the bulk expression level, 

highlighted an activation of microglia led by an up-regulation of microglia-specific marker 

genes (Ponomarev et al., 2012). Microglia and their function in the AUD-specific impairment 

of neuroimmune regulation have been repeatedly demonstrated (Holloway et al., 2023; Wei 

et al., 2023). Furthermore, the potential role of microglia dysfunction in alcohol-induced 

neurogenesis and neurodegeneration has been discussed repeatedly (Anand et al., 2023; 

Kalinin et al., 2018). Therefore, the high number of DEGs observed in neurons and microglia 
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in the dataset of this study gives additional evidence to the interaction between these two 

cell types in AUD. Previous snRNA-Seq studies on the alcohol-dependent phenotype also point 

out the particular relevance of neuronal cells, mainly GABAergic neurons, as well as microglia 

(Brenner et al., 2020; Dilly et al., 2022). However, these studies were conducted in the PFC 

and AMY, and the cell type composition changes across brain regions. In the NAc, so far two 

studies have been conducted studying snRNA-Seq in an addiction context. Both of these 

reported high alterations in D1- and D2-MSN as well as microglia and oligodendrocytes (Savell 

et al., 2020; van den Oord et al., 2023). Since van den Oord et al. (2023) were focusing on 

human post-mortem brain tissue, they were using the second human dataset of the PFC 

derived from Brenner et al. (2020) to find potential overlaps across the brain regions, and it 

was possible to replicate DEGs within the same cell type across these datasets. Savell et al. 

(2020) conducted the snRNA-Seq data as the starting point of the study to then follow up the 

behavioral relevance of the determined DEGs in MSNs of cocaine intake. This elegant study 

demonstrated on a sex-specific level that immediate early genes in MSNs might drive the 

response to acute cocaine intake in both male and female rats. However, in astrocytes, the 

authors found sex-specific signatures, leading to the conclusion that sex differences might be 

observed in a cell type-specific manner.     

Oligodendrocytes are glia cells that are involved in myelination formation and maintenance 

at neuronal axons (Simons & Nave, 2015). Therefore, the repeatedly demonstrated 

transcriptomic alteration in this cell type, which is also supported by the dataset of this study 

(Brenner et al., 2020; Dilly et al., 2022; van den Oord et al., 2023), might contribute to the 

proneness to neurodegenerative processes, eventually leading to neurodegenerative 

diseases such as Alzheimer’s and Parkinson’s disease (Chandrashekar et al., 2023; Sanna et 

al., 2023; Zhang et al., 2022). 

Bottom line, these preliminary snRNA-Seq data of the DMS from PD rats point towards a 

pronounced role of microglia, neurons, and oligodendrocytes, which adds further evidence 

to the so far limited amount of published scSeq data. However, the expansion of the sample 

size in regard to number of individuals but also the number of nuclei is of great importance 

to give evidence to these preliminary findings and be able to identify the cell clusters with 

greater confidence. 
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4.3.1 Summary  

This study describes the first preliminary data of snRNA-Seq in the DMS of PD rats. This model 

is frequently used to examine alcohol-dependent behavior, which highlights the importance 

of obtaining cell type-specific outcomes to understand this phenotype to a greater extent. 

The main findings of this study constitute the highest number of DEGs in microglia, neurons, 

and oligodendrocytes. The majority of the top 20 up-regulated pathways are neuroimmune 

regulation processes, which emphasizes the importance of microglia in the neuroimmune 

response to chronic alcohol abuse and furthermore supports the previous findings, also 

described in Study 1 & 2 of this thesis, that AUD is causing an impairment of the neuroimmune 

system. 

Since, during the analysis, a much lower number of nuclei was obtained than expected, I 

additionally observed how specific cellular populations are affected by this degradation 

process. Indeed, there was a treatment- and cell type-specific effect of vulnerability to cellular 

degradation discovered. This effect was suggestively pronounced to be strongest in neurons 

and pyramidal cells. Therefore, this preliminary dataset does not only provide cell types and 

target genes to follow up on but also suggests that chronic exposure to alcohol decreases 

cellular stability and therefore increases the vulnerability to degradation processes in a cell 

type-specific manner.  

 

4.4 Discussion Study 4: Gene expression of COVID-19-related genes across different 

ethanol treatment paradigms 

Alcohol consumption and AUD per se have been previously shown to reduce the activity and 

capability of the immune system and were suggested as a risk factor for several diseases 

affecting the immune system (Ferguson et al., 2022b; Warden et al., 2020; Zuluaga et al., 

2016). In regard to the COVID-19 pandemic, the current state of research does not deliver a 

clear-cut conclusion whether above-average drinking and AUD should be considered risk 

factors. Therefore, this study aimed to contribute important data to determine above-

average alcohol consumption and AUD as potential risk factors for COVID-19. The main 

findings of this study are: (i) the observed SARS-CoV2 infection-relevant genes Ace2, Tmprss2, 

and Mas are dysregulated organ-specifically in peripheral organs where Ace2 is consistently 

up-regulated in the lung throughout all observed treatment paradigms, which might lead to 
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increased levels of ACE2 protein and therefore an increased stochastic probability of the virus 

entering the cells in the lung. (ii) Up-regulation of Mas GEx due to abstinence in the treatment 

paradigm may lead to a hyper-activated anti-inflammatory response initiated by the 

ACE2/Ang(1-7)/Mas cascade, which may be interpreted as a protective factor for COVID-19 

disease severity. (iii) The olfactory bulb was the only brain region showing significant 

alterations in the GEx pattern of the target genes, where Mas expression levels significantly 

declined. This opposite effect to the observations in the peripheral organs suggests a 

potential increased risk for anosmia during and after SARS-CoV2 infection.  

 

Increased Ace2 mRNA expression might lead to a higher probability of virus entry due to a 

rising ACE2 receptor presence on the cell surface. 

Previously, substance use disorders (SUDs) such as opioid use disorders and smoking have 

been in focus during the COVID-19 pandemic, where increased infection probability as well 

as a higher risk of worse prognosis and mortality have been reported (Baillargeon et al., 2021; 

Patanavanich & Glantz, 2021; Wang et al., 2021). These SUD patient studies have shown up-

regulated Ace2 expression levels in several organs (Althobaiti et al., 2020; J. C. Smith et al., 

2020; Wei & Shah, 2020). Therefore, our findings are in line with those of other SUDs, which 

indicates that AUD and chronic alcohol consumption might be considered risk factors for 

severe COVID-19 as well. In addition, most of the AUD patients also consume cigarrets on a 

regular basis (Bobo & Husten, 2000). Since smoking has already been classified high-risk factor 

for severe COVID-19 early in the pandemic, AUD patients are at even higher risk considering 

their comorbid smoking. In addition, the lung is the most vulnerable organ for SARS-CoV2 

infection since it is the first point of contact with the virus via its main route of infection (Jiang 

et al., 2020), and increased expression levels of Ace2 in specific organs have been shown to 

lead to an increased infection probability in these organs (He et al., 2021). However, as soon 

as the cells are infected by the SARS-CoV2 virus, a decline in Ace2 expression levels takes place 

due to the internalization process during virus entry, which also affects the ACE2 receptor as 

it is a membrane surface protein. These reduced ACE2 levels induce an imbalance in the 

ACE2/Ang(1-7)/Mas cascade and an increased activitiy of its counterplayer pathway, the 

ACE/AngII/AT1R cascade, which causes inflammation and oxidative stress and, in the worst 

case, can lead to acute respiratory distress sysndome (Richardson et al.), systemic organ 

failure and death (Kaseb et al., 2021). The expression levels of Ace2 were interpreted 
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controversely in the literature when it came to COVID-19 risk factors. Therefore, in risk groups 

of severe COVID-19 such as diabetic and obese patients, Ace2 expression levels have been 

shown to be increased, induced by pro-inflammatory states (Gkogkou et al., 2020). However, 

increased Ace2 expression levels could provide a molecular explanation for epidemiological 

findings resulting in a higher infection propensity and worsened prognosis in AUD patients. 

Interestlingly, the number of alcoholic drinks per week has previously been correltated to 

ARDS during and after COVID-19 (Lassen et al., 2021). In addition, AUD patients have been 

reported to have an increased risk of hospitalization due to COVID-19 (Allen et al., 2021), 

prolonged hospital stays, and complications (Varela Rodriguez et al., 2021). The well-known 

general impairment in the innate and adaptive immune system due to long-term alcohol 

consumption (Kershaw & Guidot, 2008; Simou et al., 2018) certainly delivers additional 

evidence to conclude that above-guideline drinking in a chronic manner could represent a risk 

factor for infectious diseases such as COVID-19.  

 

Tmprss2 expression levels are consistently up-regulated across the models, which might 

result in accelerated virus infiltration.  

The detected overall up-regulation of Tmprss2 GEx in the absence of abstinence suggests that 

expression of this gene is dysregulated by the presence of blood alcohol concentration. The 

up-regulation of Tmprss2 mRNA might lead to accelerated virus infiltration since this gene is 

involved in the first step of virus entry, where SARS-CoV2 binds to the cell membrane and S2 

spike proteins are cleaved to enable the virus to enter (Hoffmann et al., 2020). To underline 

the importance of this gene even further, previous research has suggested TMPRSS2 

inhibitors as therapeutic approaches against COVID-19 (Hoffmann et al., 2020; McKee et al., 

2020; Zununi Vahed et al., 2020).  

 

The Mas mRNA is opposingly dysregulated in peripheral organs and brain tissue.  

Once SARS-CoV2 has entered the cells and replicated, the anti-inflammatory ACE2/Ang(1-

7)/Mas cascade is activated, and Mas is one of the key players in this pathway (Gheblawi et 

al., 2020). Therefore, up-regulation of Mas has been suggested as a potential protective factor 

against severe complications during COVID-19. In our study, we identified a treatment-

specific up-regulation of Mas due to the abstinence period after chronic alcohol intake, which 

appeared consistently in the ileum. The digestive system, including the ileum, has been shown 
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to be particularly vulnerable to COVID-19 consequences since patients with SARS-CoV2 

infection often report nausea, vomiting, and diarrhea, which occur mainly at the beginning of 

the disease (Gu et al., 2020; Kotfis & Skonieczna-Zydecka, 2020). These studies also suggest 

the gastrointestinal tract as an alternative route of infection for COVID-19. Hence, this finding 

of up-regulation of Mas mRNA in the sub-chronic and PD cohorts suggests partial protection 

against certain side effects from SARS-CoV2 affecting the gastrointestinal tract.  

In the brain, Mas was specifically downregulated in the olfactory bulb, while any other brain 

region did not show significant differences in the GEx of the detected target genes. This effect 

might lead to decreased activity of this anti-inflammatory response to the virus infection in 

the olfactory bulb, and therefore represents a potential predisposition to anosmia. Previous 

studies support the finding that the olfactory bulb is strongly impaired in rodents with 

prenatal or neonatal alcohol exposure (Akers et al., 2011; Burke et al., 2016; Chen et al., 

1999), as well as adult rodents with a history of chronic alcohol intake (Collins et al., 1998; 

Gericke et al., 2006; Penland et al., 2001). Overall, the observations in 18 brain regions suggest 

that brain tissue in general, except the olfactory bulb, seems to be less vulnerable to COVID-

19 infection. The rodent brain generally has low expression levels of the observed COVID-19 

marker genes, despite a high expression of Ace2 in the olfactory bulb, which supports the 

findings of this study (https://mouse.brain-map.org/gene/show/45849).  

 

4.4.1 Summary 

This study focused on the expression of SARS-CoV2 infection-relevant genes Ace2, Tmprss2, 

and Mas in diverse chronic ethanol treatment groups in six different organs: the brain, liver, 

kidney, lung, ileum, and heart. While Ace2 was consistently up-regulated in the lung across 

all treatment paradigms, Tmprss2, and Mas showed treatment-specific outcomes. The main 

findings of this study suggest an increased propensity for COVID-19 infection and severe 

disease progression, including anosmia, in patients with long-term alcohol intake. In addition, 

these patients might suffer from additional side effects of COVID-19, depending on their 

blood alcohol concentration during the progression of the infection. These findings are in line 

with epidemiological data that reported an increased risk of COVID-19 infection in general as 

well as complications and mortality in AUD patients and patients with a history of above-

guideline drinking. Nevertheless, additional studies need to be conducted to fully understand 

the impact of chronic alcohol intake on infectious diseases such as COVID-19, since the 
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observed AUD cohorts are usually statistically underrepresented in the reported studies. 

Especially the sex-specific aspect needs to be further elucidated. However, it has been shown 

that during the pandemic, some people increased their alcohol consumption, which will have 

a long-lasting effect on the global health system.  

 

5. Concluding remarks 

The aim of this thesis was to contribute molecular examinations on a transcriptome-wide 

level in human post-mortem brain tissue as well as in the brain of the PD rat model by applying 

cutting-edge techniques, such as RNA-Seq, transcriptome-wide meta-analysis, and snRNA-

Seq on thirteen brain regions in total. Commonly identified DEGs, pathways, and networks 

strongly suggest targets for further investigation. Since this thesis was observing 

transcriptomic changes across a variety of brain regions, this data points towards brain 

regions that should be further investigated but also brain regions that might not be highly 

relevant for the alcohol-dependent phenotype describing long-term alcohol abuse and 

prolonged abstinence.  

On the bulk expression level, Studies 1 & 2 pointed out the limited relevance of the ventral 

striatum, embedding the NAc, for the long-term abstinent phenotype, as both human post-

mortem brain and tissue derived from the PD rodent model did not yield a notable number 

of altered transcripts. Furthermore, the CN, which was analyzed in Study 1 on both the 

methylation and the transcription level was identified as the major striatal region that is 

dysregulated in this specific phenotype on both levels of investigation. Dysregulated genes in 

this brain region suggested dysregulated immune pathways, as well as an increased potential 

for neurodegenerative diseases and cancer. Since, especially on the DNA methylation level, a 

number of genes were observed that have not been reported in context with AUD before, 

these findings point towards further functional investigations on relevant features of the 

alcohol-dependent phenotype such as craving and relapse.  

Study 2 examined the transcriptome-wide alterations in human post-mortem brain and the 

PD animal model in a meta-analytic approach. Here, the PFC was the brain region with the 

highest number of altered transcripts for all the examined species: rat, mouse, human, and 

monkey. Furthermore, HSD11B1 has been identified as commonly dysregulated in the PFC 

across all these species, suggesting that this gene might play a particular role for the alcohol-
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dependent phenotype. The intra-species comparison in humans comparing the meta-analysis 

findings of PFC, NAc and AMY, led to a new potential biomarker, namely SERPINA3, which was 

found to be up-regulated consistently across these regions and in addition has also been 

reported to be up-regulated by previous studies focusing on the hippocampus and plasma of 

AUD patients. 

When I further investigated the CN, which is referred to as the DMS in rodents, in Study 3 by 

applying snRNA-Seq in the DMS of PD rats, oligodendrocytes, microglia, and a neuronal 

subtype were suggested to play a particular role in the transcriptomic signatures that endure 

protracted abstinence. GSEA showed distinct patterns of dysregulated pathways in a cell type-

specific way. The DEGs in microglia were enriched for neuroimmune processes, which added 

evidence to the alterations in the CN of the human post-mortem brain detected in Study 1. 

Additionally, DEGs in oligodendrocytes were positively enriched in transcriptional processes 

and negatively enriched in epigenetic processes, pointing towards an interfering mechanism 

between epigenetic and transcriptomic processes, as already seen in the CN in Study 1. 

In Studies 1-3 pathway analyses repeatedly resulted in dysregulated immune functions, which 

led to the question whether AUD might represent a potential risk factor for SARS-CoV2 

infection, especially since this study was conducted during the COVID-19 pandemic. Indeed, 

Study 4 demonstrated that Ace2 gene expression was consistently up-regulated in the lungs 

of three rat models of long-term alcohol intake, which suggested that this organ is particularly 

vulnerable to SARS-CoV2 infection, when alcohol has been consumed in a sub-chronic or 

chronic manner. Since this virus is primarily entering the system via the lungs, this finding was 

interpreted as a potential risk factor for an increased SARS-CoV2 infection rate and severe 

disease progression. Furthermore, Mas, the gene involved in the initiation of the anti-

inflammatory response cascade to oppose the viral infection, was down-regulated in the 

olfactory bulb, which might point towards an increased risk for long-term consequences of 

COVID-19, such as anosmia.   

In summary, this multi-modal study, including a variety of techniques to investigate 

transcriptional regulation underlying AUD across multiple brain regions, represents a 

comprehensive overview of altered transcripts, networks, and pathways that might build the 

basis for follow-up studies on a molecular as well as the behavioral level.    
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6. Outlook 

The findings of this thesis form the basis for several follow-up studies on different levels. The 

meta-analysis results suggest immune-regulatory processes as well as HSD11B1 in the PFC are 

significantly altered by AUD. Therefore, further studies that will look into addiction-relevant 

behaviors in PD rats when targeting these molecules might deliver further functional insights 

and will also reveal their potential therapeutic role. Additionally, SERPINA3 was identified as 

a molecular biomarker for AUD since it appeared to be consistently up-regulated in all 

observed human post-mortem brain regions, as well as in other previous studies focusing on 

blood samples and the hippocampus of deceased AUD patients. Since the diagnostics of 

mental disorders in general is facing limitations, such as, e.g., subjective assessment tools in 

the most common diagnostic tools DSM and ICD, and their overall lacking sensitivity (Gauld, 

2022; Norris et al., 2016), molecular biomarkers are of great importance to support the 

diagnostic process. Therefore, this study contributes to improving the diagnostic conditions 

of AUD in clinics by suggesting SERPINA3 as a potential molecular biomarker.  

Especially the findings derived from the comparative meta-analyses in different species and 

brain regions can serve as an excellent basis for follow-up studies. The robustness of this 

study, by including a significantly higher number of individuals than single laboratory 

experiments can afford and by considering the heterogeneity that comes from diverse 

experimental designs and conditions, provides a profound basis to explore the behavioral 

meaning of these transcriptomic changes. In addition, this study also provides insights into 

the translatability of the animal models to the patient situation and can provide suggestions 

for optimization of the models. Hence, we hope that this study will serve as a lively dataset 

that will be extended over time to potentially identify even more commonly dysregulated 

transcripts across species.  
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