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Abstract

Measurement of pulmonary ventilation and perfusion has significant clinical value
for the diagnosis and monitoring of prevalent lung diseases. To this end, non-con-
trast-enhanced MRI techniques have emerged as a promising alternative to scinti-
graphical measurements, computed tomography, and contrast-enhanced MRI. Al-
though these techniques allow the acquisition of both structural and functional infor-
mation in the same scan session, they are prone to robustness issues related to imag-
ing artifacts and post-processing techniques, limiting their clinical utilization. In this
work, new acquisition and post-processing techniques were introduced for improv-
ing the robustness of non-contrast-enhanced MRI based functional lung imaging.
Furthermore, pulmonary functional maps were acquired in 2-year-old congenital
diaphragmatic hernia (CDH) patients to demonstrate the feasibility of non-contrast-
enhanced MRI methods for functional lung imaging.

In the first study, a multi-acquisition framework was developed to improve ro-
bustness against field inhomogeneity artifacts. This method was evaluated at 1.5T
and 3T field strengths via acquisitions obtained from healthy volunteers. The re-
sults demonstrate that the proposed acquisition framework significantly improved
ventilation map homogeneity (p < 0.05).

In the second study, a post-processing method based on dynamic mode decom-
position (DMD) was developed to accurately identify dominant spatiotemporal pat-
terns in the acquisitions. This method was demonstrated on digital lung phantoms
and in vivo acquisitions. The findings indicate that the proposed method led to a
significant reduction in dispersion of estimated ventilation and perfusion map am-
plitudes across different number of measurements when compared with competing
methods (p < 0.05).

In the third study, the free-breathing non-contrast-enhanced dynamic acquisi-
tions were obtained from 2-year-old patients after CDH repair, and then processed
using the DMD to obtain pulmonary functional maps. Afterwards, functional differ-
ences between ipsilateral and contralateral lungs were assessed and compared with
results obtained using contrast-enhanced MRI measurements. The results demon-
strate that pulmonary ventilation and perfusion maps can be generated from dy-
namic acquisitions successfully without the need for ionizing radiation or contrast
agents. Furthermore, lung perfusion parameters obtained with DMD MRI correlate
very strongly with parameters obtained using dynamic contrast-enhanced MRI.

In conclusion, the presented work improves the robustness and accuracy of non-
contrast-enhanced functional lung imaging using MRI. Overall, the methods intro-
duced in this work may serve as a valuable tool in the clinical adaptation of non-
contrast-enhanced imaging methods and may be used for longitudinal assessments
of pulmonary functional changes.
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Zusammenfassung

Die Messung der Lungenventilation und -perfusion ist von erheblichem klinischen
Wert für die Diagnose und Überwachung häufiger Lungenerkrankungen. Die nicht
kontrastmittelverstärkte MRT hat sich als vielversprechende Alternative zu szinti-
graphischen Messungen, Computertomographie und kontrastmittelverstärkter MRT
erwiesen. Obwohl diese Technik die Erfassung sowohl struktureller als auch funk-
tioneller Informationen in derselben Scansitzung ermöglicht, ist sie nicht sonderlich
robust in Bezug auf Bildartefakte und Postprocessing-Techniken, was ihre klinis-
che Anwendung einschränkt. In dieser Arbeit wurden neue Bildaufnahme- und
Postprocessing-Techniken entwickelt, welche die Robustheit der nicht kontrastmit-
telverstärkten MRT-basierten funktionellen Lungenbildgebung verbessern. Darüber
hinaus wurden Lungenfunktionskarten von 2-jährigen Patienten mit kongenitaler
Zwerchfellhernie (CDH) erstellt, um die Durchführbarkeit von nicht kontrastmit-
telverstärkten MRT-Methoden für die funktionelle Lungenbildgebung zu demonstri-
eren.

Im ersten Teil dieser Arbeit wurde ein Multi-Erfassungs-Framework entwickelt,
um die Bildaufnahme robuster gegenüber Feldinhomogenitätsartefakten zu machen.
Diese Methode wurde bei Feldstärken von 1.5T und 3T anhand von Aufnahmen
gesunder Probanden evaluiert. Es konnte gezeigt werden, dass das neu entwickelte
Framework zur Bildaufnahme die Homogenität der Ventilationskarte signifikant
verbessert (p < 0.05).

Im zweiten Teil dieser Arbeit wurde eine Postprocessing-Methode auf Basis der
Dynamic Mode Decomposition (DMD) entwickelt, um dominante räumlich-zeitliche
Muster in den Aufnahmen präzise zu identifizieren. Diese Methode wurde anhand
digitaler Lungenphantome und in vivo-Messungen evaluiert. Verglichen mit her-
kömmlichen Methoden führte die hier entworfene Methode zu einer signifikanten
Reduktion der Streuung der geschätzten Amplituden von Ventilations- und Perfus-
ion-Karten bei unterschiedlicher Anzahl von Messungen (p < 0.05).

Im dritten Teil dieser Arbeit wurden nicht kontrastmittelverstärkte dynamische
Aufnahmen bei freier Atmung in 2-jährigen Patienten nach CDH-Reparatur durchge-
führt und anschließend mit Hilfe von DMD verarbeitet, um pulmonale Funktion-
skarten zu erstellen. Danach wurden funktionelle Unterschiede zwischen ipsilat-
eralen und kontralateralen Lungen ausgewertet und mit Ergebnissen von kontrast-
mittelverstärkten MRT-Messungen verglichen. Es konnte gezeigt werden, dass aus
den dynamischen Aufnahmen pulmonale Ventilations- und Perfusion-Karten erzeugt
werden können ohne den Gebrauch von ionisierender Strahlung oder Kontrastmit-
teln. Darüber hinaus korrelieren Lungenperfusion-Parameter, die mit DMD MRT
gemessen wurden, stark mit Parametern, die mittels dynamischer kontrastmittelver-
stärkter MRT gemessen wurden.

Zusammenfassend verbessert die vorgestellte Arbeit die Robustheit und Genau-
igkeit der nicht kontrastmittelverstärkten funktionellen Lungenbildgebung mittels
MRT. Die hier eingeführten Methoden können als wertvolles Instrument bei der
klinischen Anwendung von nicht kontrastmittelverstärkten Bildgebungsmethoden
dienen und können für longitudinale Bewertungen von pulmonalen Funktionsän-
derungen verwendet werden.
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Chapter 1

Introduction

1.1 Motivation

Lung imaging plays a critical role in the diagnosis and monitoring of prevalent
lung diseases. Alongside chest radiography, which serves as the most commonly
employed initial screening method for chest abnormalities, and computed tomog-
raphy (CT), which remains the preferred approach for cross-sectional and three-
dimensional imaging of the lungs (Biederer, 2018), magnetic resonance imaging
(MRI) is emerging as a viable alternative and a complementary method for the evalu-
ation of pulmonary disorders. Indeed, it is the most recent modality to be integrated
into clinical practice for lung imaging (Biederer et al., 2012a; Miller et al., 2014), and
thereby holds a great potential in the assessment of pulmonary disorders.

Compared to other imaging modalities, MRI offers a crucial advantage owing
to its capability of acquiring both structural and functional information in the same
scan session (Biederer et al., 2012a; Bieri, 2013). While radionuclide-based scintigra-
phy and single-photon emission computed tomography (SPECT) can be utilized to
obtain pulmonary functional information, capturing regional distribution of ventila-
tion (V), perfusion (Q), and ventilation-to-perfusion (V/Q) mismatch, they lack the
ability to obtain morphological information. On the other hand, CT-based measure-
ments can provide structural information at high spatial resolutions, yet they are not
capable of generating functional images (Biederer, 2018). While lung imaging using
MRI remains challenging due to inherent low-proton density of lung tissue, the con-
tinuous motion of the lung, and very fast signal decay, with recent improvements
in image quality and robustness, images with submillimetre resolution can be now
acquired with MRI (Tiddens et al., 2018), and functional information can be obtained
with and without the use of contrast agents (Bauman et al., 2009).

Moreover, current clinical evidence indicates that omitting functional scans is as-
sociated with a higher risk of misdiagnosis of lung diseases, such as pulmonary em-
bolism caused by COVID-19 (Le Roux, Le Gal, and Salaun, 2020). However, safety
concerns regarding the radiation exposure limits the application of radionuclide-
based imaging methods as well as CT-based imaging; whereas recent evidence of
gadolinium deposition limits the application of dynamic contrast enhanced MRI
methods (Gulani et al., 2017). These limitations are particularly important for the
imaging of children, where repeated radiation exposure or invasive administration
of intravenous contrast agents remains a strong consideration (Walkup, Higano, and
Woods, 2019). Additionally, in cases with chronic morbidities, regular examinations
might be needed for the longitudinal assessment of these patients. As such, alter-
native methods for obtaining functional information without the radiation burden
or contrast agents are of great importance, and MRI is set to become the preferred
modality in cases where minimizing exposure to harmful ionizing radiation or con-
trast agents is of utmost importance.
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To this end, several non-contrast-enhanced functional lung imaging methods
have been proposed to evaluate regional distribution of ventilation and perfusion
by exploiting periodic signal changes associated with respiration and cardiac pul-
sation (Bauman et al., 2009; Kjørstad et al., 2015). However, balanced steady state
free precession (bSSFP) pulse sequence used for obtaining dynamic acquisitions in
these techniques is known to be sensitive to the field inhomogeneities (Cukur, 2015).
Moreover, Fourier decomposition and matrix pencil decomposition techniques used
for spectrally analyzing the data suffer from the amplitude and frequency estimation
issues (Bondesson et al., 2019). Lastly, these non-contrast-enhanced MRI methods for
obtaining regional ventilation and perfusion information have not been investigated
in CDH patients.

The aims of this thesis are to improve the robustness of non-contrast-enhanced
functional lung imaging and to demonstrate its feasibility in pediatric patients. To
achieve these objectives, a multiple-acquisition bSSFP method with phase-cycling
scheme is introduced to improve the bSSFP sequence’s robustness against commonly
observed field inhomogeneity artifacts, and a novel post-processing method is devel-
oped for accurately estimating pulmonary ventilation and perfusion related signal
changes in dynamic acquisitions. Furthermore, the non-contrast-enhanced MRI ac-
quisitions are demonstrated as a viable option for functional lung imaging in 2-year-
old children after congenital diaphragmatic hernia repair.

1.2 Outline

This thesis is written cumulatively. As such, Chapters 3, 4, and 5 are self-contained
scientific studies that have distinct sections dedicated to introduction, materials and
methods, discussion, and conclusion.

Chapter 2 serves as an introduction to the fundamentals of nuclear magnetic reso-
nance (NMR) and the principles of magnetic resonance imaging (MRI). Additionally,
it offers an overview of pulmonary physiology with a special focus on congenital di-
aphragmatic hernia (CDH), followed by a brief overview of proton MRI of the lung.

In Chapter 3, an image acquisition technique based on phase-cycled bSSFP imag-
ing is presented to improve the robustness against field inhomogeneity artifacts.
This technique is demonstrated on healthy volunteers at 1.5T and 3T field strengths,
where results indicate significantly improved ventilation map homogeneity at both
field strengths.

Chapter 4 presents a robust post-processing technique based on dynamic mode
decomposition (DMD) to obtain pulmonary functional maps robustly and accurately
from dynamic acquisitions. This technique is demonstrated on healthy volunteers
at 1.5T field strength and it displays reduced variations in estimated amplitudes
compared to Fourier decomposition and matrix pencil decomposition methods.

Chapter 5 showcases the application of DMD technique to dynamic bSSFP ac-
quisitions obtained at 1.5T field strength from 2-year-old CDH patients after patch
repair. Here, ventilation and perfusion maps are obtained successfully without the
need for ionizing radiation or intravenous contrast agents. Moreover, the pulmonary
perfusion results obtained with the DMD method are demonstrated to correlate
very strongly with perfusion parameters obtained using dynamic contrast-enhanced
MRI.

Finally, Chapter 6 provides an overarching summary of this thesis, while Chapter
7 outlines future research directions.
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Chapter 2

Theoretical Background

The present chapter covers the fundamentals of nuclear magnetic resonance (NMR)
and the principles of magnetic resonance imaging (MRI), followed by an overview
of pulmonary physiology, with a special focus on congenital diaphragmatic hernia
(CDH), as well as a review of the proton MRI of the lung. A more thorough ex-
planation of NMR and MRI can be found in (Brown et al., 2014; Zhi-Pei Liang and
Lauterbur, 2000). A more detailed overview of pulmonary physiology can be found
in (West and Luks, 2016; Michael A. Grippi et al., 2015).

2.1 Nuclear Magnetic Resonance

The purpose of this section is to provide an overview of fundamentals regarding
nuclear magnetic resonance. Although a rigorous description of the MR physics re-
quires quantum mechanics, the underlying principles of MRI can be described using
classical vector models, because MRI deals with the collective behavior of a large en-
semble of nuclei present in macroscopic scale (Nishimura, 1996; Zhi-Pei Liang and
Lauterbur, 2000).

2.1.1 Nuclear Spin

Magnetic resonance imaging is possible due to a physical phenomenon called nu-
clear magnetic resonance (NMR). A fundamental property of nuclei is that, nuclei with
either an odd atomic number or an odd mass number (e.g., hydrogen (1H) with one
proton) possess a nuclear spin angular momentum J⃗, also called spin. Although
nuclear spin is truly characterized by quantum mechanics, these nucleons can be
visualized as spinning charged spheres.

A nucleus with nonzero spin creates a magnetic field around it, giving rise to a
small magnetic moment µ⃗. The magnetic moment is related to spin angular momen-
tum by:

µ⃗ = γ J⃗ rad/s/T (2.1)

where γ is the gyromagnetic ratio and depends on the particle or nucleus. A related
constant is ’gamma-bar’, and defined as −γ = γ/2π (MHz/T). The magnitude of the
magnetic moment is |⃗µ| = γh̄

√
I(I + 1), where h̄ is Planck’s constant divided by 2π

and I is the nuclear spin quantum number (Zhi-Pei Liang and Lauterbur, 2000). The
spin quantum number takes half-integer or integer values (e.g., I = 0, 1/2, 1, 3/2, ...)
and a nucleus is NMR-active only for I ̸= 0. A spin system with I = 1/2 (e.g., 1H,
13C, 19F, and 31P nuclei) is called a spin-1/2 system. Properties of some NMR-active
nuclei are listed in Table 2.1.
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TABLE 2.1: List of some NMR-active nuclei. Data in the table are
adapted from Brown et al., 2014. Relative abundance values are given
for the human body with 1 M = 1 mol/L. A negative −γ indicates that

the magnetic moment is anti-parallel to the angular momentum.

Nucleus Spin I −γ (MHz/T) Abundance
1H 1/2 42.58 88 M
17O 5/2 -5.77 17 mM
19F 1/2 40.08 4 µM

23Na 3/2 11.27 80 mM
31P 1/2 17.25 75 mM

Although the magnitude of µ⃗ is certain regardless of the conditions, there is no
preferred orientation in the absence of an external magnetic field due to thermal ran-
dom motion. Therefore, in the absence of an external magnetic field, the randomly
oriented nuclear spins cancel each other out and no net magnetic field exists around
a macroscopic object. However, in the presence of an external magnetic field, the
spins tend to align in the direction of this field and become macroscopically magne-
tized. This direction of applied field is conventionally called the z-direction or lon-
gitudinal direction, and the external magnetic field is expressed in laboratory frame
as:

B⃗0 = B0 k⃗ (2.2)

Based on the quantum model, a magnetic moment vector can point in one of a
discrete set of orientations. Accordingly, in the presence of a B0 field, the z-compo-
nent of µ⃗ is given by (Zhi-Pei Liang and Lauterbur, 2000):

µz = γmI h̄ (2.3)

where mI is called the magnetic quantum number and mI = {−I,−I + 1, ..., I}. For
a spin-1/2 system, I = 1/2 and mI = ±1/2, this implies that magnetization can
take one of two possible orientations relative to the z-direction. In particular, it can
be θ = 54.74◦ off z-direction indicating pointing up (spin up or parallel), which is the
low energy state, or it can be θ = 125.26◦ off z-direction indicating pointing down
(spin down or antiparallel), as illustrated in Figure 2.1.

Assuming µ⃗ is a classical magnetic moment vector without mutual interactions,
it would experience a torque from the external magnetic field, which is given by
µ⃗ × B0 k⃗. This is equivalent to the rate of change in its angular momentum and can
be described as:

d⃗J
dt

= µ⃗ × B0 k⃗ (2.4)

Using the relation between magnetic moment and spin angular momentum in Equa-
tion 2.1 yields:

dµ⃗

dt
= γµ⃗ × B0⃗k (2.5)
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With the initial magnetization conditions of µxy(0) and µz(0), the solution to the
Equation 2.5 is expressed by:{

µxy(t) = µxy(0)e−iγB0t

µz(t) = µz(0)
(2.6)

which describes a precession of µ⃗ around B0 with an angular frequency:

ω0 = γB0 (2.7)

which is known as the Larmor frequency, and the precession occurs in the clockwise
direction when viewed against the direction of the magnetic field, as illustrated in
Figure 2.1.

FIGURE 2.1: (A) Nuclear magnetic moment vectors aligned in the di-
rection of an external magnetic field. (B) The precession of the mag-
netic moment vector is clockwise when observed against the direction

of the magnetic field.

2.1.2 Macroscopic Magnetization

When an external static magnetic field B⃗0 is applied to a specific spin system within
a volume of material, the collective behavior of the spin system can be modeled us-
ing a macroscopic (bulk) magnetization vector M⃗, which is the vector sum of all the
individual magnetic moments. Let µ⃗n be the magnetic moment of the nth nuclear
spin, and NS be the total number of spins in the object. Then, the macroscopic mag-
netization can be defined as:

M⃗ =
NS

∑
n=1

µ⃗n (2.8)

Considering a spin-1/2 system, µ⃗n can take either spin-up or spin-down state.
Spins in different states possess different energy of interaction with B⃗0, which is
given based on quantum theory by (Zhi-Pei Liang and Lauterbur, 2000):

E = −µ⃗ · B⃗0 = −µzB0 = −γh̄mI B0 (2.9)

Accordingly, for spin-up systems with mI = 1/2, this would yield:

E↑ = −1
2

γh̄B0 (2.10)
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and for spin-down systems with mI = −1/2, this would yield:

E↓ =
1
2

γh̄B0 (2.11)

Note that the energy levels indicate that the spin-up state is the lower energy state,
whereas the spin-down state is the higher energy state (Zhi-Pei Liang and Lauterbur,
2000); and the energy difference between the states is:

∆E = E↓ − E↑ = γh̄B0 = h̄ω0 (2.12)

The phenomenon of splitting in the nuclear energy levels is referred to as the Zeeman
effect, as illustrated in Figure 2.2. Note that the frequency associated with transition
between the states in Equation 2.12 is the Larmor frequency.

FIGURE 2.2: Zeeman splitting for a spin-1/2 system. The spin in the
spin-up (parallel) state is in the lower energy state.

The ratio of two spin populations is related to their energy difference and this
can be defined according to Boltzmann distribution as:

N↑
N↓

= exp
(

∆E
kT

)
(2.13)

where N↑ and N↓ is the number of spins in the spin-up an spin-down states, respec-
tively, k is the Boltzmann constant (1.38 × 10−23 J/K), and T is the absolute temper-
ature. Using first order Taylor series expansion, Equation 2.13 can be approximated
as:

N↑
N↓

≈ 1 +
γh̄B0

kT
(2.14)

and subsequently,

N↑ − N↓ ≈ NS
γh̄B0

2kT
(2.15)

Note that Equation 2.15 indicates an excess of spins in the spin-up state (with lower
energy and higher stability) (Zhi-Pei Liang and Lauterbur, 2000); therefore an un-
even spin distribution between two spin systems. At human body temperature
(T ≈ 310 K) and for a magnetic field strength B0 = 1 T, the ratio of spins is about
1.0000066 = 6.6 parts per million (ppm). This implies that a fractional population
difference (N↑ − N↓)/NS ≈ 3 × 10−6 or approximately an excess of 3 out of 106
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spins. Nevertheless, macroscopically, this difference generates an observable mag-
netization.

The resulting macroscopic magnetization vector M⃗ can be written as:

M⃗ = Mx i⃗ + My j⃗ + Mz k⃗

=

(
NS

∑
n=1

µx,n

)
i⃗ +

(
NS

∑
n=1

µy,n

)
j⃗ +

(
NS

∑
n=1

µz,n

)
k⃗

(2.16)

with the macroscopic magnetization vector being projected onto x-, y-, and z-axes; i⃗,
j⃗ and k⃗ are the unit vectors. Here, note that the projections onto x- and y-axes are
zero due to the random phase (Zhi-Pei Liang and Lauterbur, 2000). Therefore, the
macroscopic magnetization in Equation 2.16 can be simplified using Equation 2.3 as:

M⃗ =

(
N↑

∑
n=1

1
2

γh̄ −
N↓

∑
n=1

1
2

γh̄

)
k⃗ =

1
2
(N↑ − N↓)γh̄⃗k (2.17)

Equation 2.17 implies that the macroscopic magnetization vector has the same direc-
tion as B⃗0, and using Equation 2.15, it can be shown that its magnitude is:

|M⃗| = M0
z =

γ2h̄2B0NS

4kT
(2.18)

for a spin-1/2 system. For a spin-I system, it is given as (Zhi-Pei Liang and Lauter-
bur, 2000):

M0
z =

γ2h̄2B0NSI(I+1)
3kT

(2.19)

Here, note that the magnitude of M⃗ depends on B0 and NS; indicating that both
stronger magnets and higher number of spins produce a larger magnitude.

2.1.3 RF Excitation

In the presence of a static external B⃗0 field, a macroscopic magnetization M⃗ is gener-
ated along the direction of the field. However; at thermal equilibrium, the transverse
component of the magnetization, M⃗xy, is zero due to the random phase. To generate
a detectable signal, the magnetization must be tipped away from the B⃗0 direction,
such that it produces a detectable changing magnetic flux in the receiver coils (via
Faraday’s law of induction). To this end, a radio frequency (RF) magnetic pulse de-
noted as B⃗1 tuned to the resonant frequency is applied perpendicularly to B⃗0. Even
though weak RF fields are used on human imaging systems, they are still able to
rotate the magnetization away from its alignment with B⃗0, and this rotation is most
efficient when the resonance condition is satisfied.

According to Planck’s law, the energy carried by the electromagnetic radiation of
frequency ωr f can be defined as:

Er f = h̄ωr f (2.20)

To induce a coherent transition of spins between the energy states (Zhi-Pei Liang and
Lauterbur, 2000), the radiation energy must match the energy difference ∆E = h̄ω0
(Equation 2.12). Accordingly,

ωr f = ω0 (2.21)
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Equation 2.21 implies that the B⃗1 field is most efficient when the applied RF fre-
quency matches the Larmor frequency, and this condition is known as the resonance
condition.

Typically, the B⃗1 field (RF pulse) has a very short duration and oscillates in the
RF range. Assuming that the carrier frequency is close to Larmor frequency, it can
be characterized as (Zhi-Pei Liang and Lauterbur, 2000):

B⃗1 = Be
1(t)[cos(ωr f t + ϕ)⃗i − sin(ωr f t + ϕ)⃗j] (2.22)

where Be
1 is the envelope function, ωr f is the carrier frequency, and ϕ is the phase

angle. For brevity, B⃗1 in Equation 2.22 can also be written in the complex exponential
notation as:

B⃗1 = Be
1(t)e

−i(ωr f t+ϕ) (2.23)

A useful definition is the flip angle, which describes the rotation angle of the mag-
netization with respect to the z-axis in the rotating frame of reference1. The flip angle
depends on the magnitude of the RF pulse as well as its duration (τ) and is given by:

α =
∫ τ

0
γBe

1(t)dt (2.24)

Following the excitation with the RF pulse, the magnetization will continue to
precess about the z-axis. This transverse magnetization induces a change in the flux
ΦB in the receiver coils via Faraday’s law of induction, thereby generates a small
electromotive force (EMF) ϵ:

ϵ = −dΦB

dt
= − d

dt

∫
vol

B⃗r · M⃗(r, t)dt (2.25)

where B⃗r is the laboratory frame magnetic field at location r, produced by a unit
current flowing in the receive coil. The resulting electromotive force, or voltage, lays
the foundation for the detection of MR signal detection.

2.1.4 Free Precession and Relaxation

After a spin has been perturbed from the thermal equilibrium via an RF excitation
(e.g., an RF pulse with flip angle of 90◦ would rotate the magnetization to lie com-
pletely in the x-y plane), it will return to its equilibrium state (along the z-axis) given
the external force is removed and sufficient time has passed. This process is charac-
terized by the precession of M⃗ around B0, and is called free precession.

Furthermore, note that this process implies a decay in the transverse component
of the magnetization (Mxy), called transverse relaxation, and a regrowth in the lon-
gitudinal component of magnetization (Mz), called longitudinal relaxation. Both of
these relaxations are attributed to the existence of time-dependent microscopic mag-
netic fields that surround a nucleus (Zhi-Pei Liang and Lauterbur, 2000), and two
important time constants, T1 and T2, characterize this return to the equilibrium state
(Nishimura, 1996).

1The rotating frame of reference is a coordinate system that rotates clockwise along a fixed axis with
an angular frequency. A Larmor-rotating frame is a rotating frame that rotates in the transverse plane
with Larmor frequency, and x′, y′, and z′ are used to denote the three orthogonal axes in this rotating
frame.
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Longitudinal Relaxation

The longitudinal relaxation, or spin-lattice relaxation, is characterized in the Larmor-
rotating frame as the following process:

dMz′

dt
= −Mz′ − M0

z
T1

(2.26)

Solving Equation 2.26 results in:

Mz′(t) = M0
z(1 − e−t/T1) + Mz′(0+)e−t/T1 (2.27)

where, Mz′(0+) = M0
z cos α is the longitudinal magnetization immediately after the

RF pulse, and M0
z is the longitudinal magnetization at the thermal equilibrium.

The T1 time constant characterizes the return of magnetization to thermal equi-
librium in the direction of B0 (Figure 2.3), and involves an energy exchange between
the nuclei and the surrounding lattice. This process is due to the preference of a
lower energy state, and the spins transfer energy to their environment in the form of
heat. Here, note that the T1 time constant is defined as the time interval for Mz′ to
regain approximately 63% of its thermal equilibrium value (Mz′(T1) ≈ 63%M0

z), and
it is dependent on the field strength.

Transverse Relaxation

The transverse relaxation, or spin-spin relaxation, is characterized in the Larmor-rotat-
ing frame as the following process:

dMx′y′

dt
= −

Mx′y′

T2
(2.28)

Solving Equation 2.28 results in:

Mx′y′(t) = Mx′y′(0+)e−t/T2 (2.29)

where, Mx′y′(0+) = M0
z sin α is the transverse magnetization immediately after the

RF pulse.
The T2 time constant characterizes the decay of the transverse magnetization,

and involves an energy exchange between neighboring spins. Microscopically, the
Brownian motion causes fluctuations in the local magnetic fields, leading to a broad-
ening of the spins’ resonant frequencies. The frequency variations over time cause a
transverse decay due to spins losing their relative phase coherence (dephasing). Here,
note that the T2 time constant is defined as the time interval for Mx′y′ to fall to ap-
proximately 37% of its initial value (Mx′y′(T2) ≈ 37%Mx′y′(0+)).

The T1 and T2 relaxation times depend on tissue composition, structure, and sur-
roundings. In biological tissues, T1 is longer than T2, and relaxation times for 1H
nuclei in various biological tissues are given in Table 2.2.

In reality, the transverse magnetization decays more rapidly than T2 (Figure 2.3).
This is due to local and static inhomogeneities in the magnetic field. To characterize
the signal decay, T∗

2 time constant is commonly used, which satisfies T2 > T∗
2 (Prince

and Links, 2015). In cases where the field inhomogeneity follows a Lorentzian spin
density distribution (Zhi-Pei Liang and Lauterbur, 2000), the relationship between
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TABLE 2.2: List of approximate T1 and T2 relaxation times for various
biological tissues at 1.5 T field strength. Data in the table are adapted
from (Bernstein, King, and Zhou, 2004). *T1 value for blood is given

for arterial blood, whereas T2 value is given for venous blood.

Tissue T1 (ms) T2 (ms)

Brain white matter 790 90
Brain gray matter 920 100

Cerebrospinal fluid (CSF) 4000 2000
Blood* 1200 50
Liver 490 40
Lung 830 80

Myocardium 870 60
Skeletal muscle 870 50

Lipids 260 80

the transverse relaxation constants is:

1
T∗

2
=

1
T2

+
1
T′

2
(2.30)

where 1/T′
2 = γ∆B0, and the loss of transverse magnetization due to T′

2 is recover-
able (Brown et al., 2014).

Overall, the dephasing causes a loss of coherence in the RF wave induced by the
spin system, and therefore a loss in the received signal. The resultant time signal
detected in the receiver coil is called a free induction decay (FID).

FIGURE 2.3: (A) Longitudinal (T1) relaxation process. (B) Transverse
(T2 and T∗

2 ) relaxation processes.

2.1.5 Bloch Equation

In general, the time-dependent behavior of nuclear magnetization M⃗ in the presence
of magnetic field B⃗(t) can be described by the Bloch equation, given by:

dM⃗
dt

= γM⃗ × B⃗ −
Mx⃗i + My⃗ j

T2
− (Mz − M0

z )⃗k
T1

(2.31)
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which can be expressed as the following in the rotating frame (Zhi-Pei Liang and
Lauterbur, 2000):

∂M⃗
∂t

= γM⃗rot × B⃗e f f −
Mx′⃗ i′ + My′ j⃗′

T2
− (Mz′ − M0

z)k⃗′

T1
(2.32)

where M⃗rot = Rz(ωt)M⃗, is the magnetization in the rotating frame; Rz denotes the
rotation matrix in the clockwise direction; B⃗e f f = B⃗rot + ω⃗/γ, is the effective mag-
netic field; and B⃗rot = Rz(ωt)B⃗.

Note that the Bloch equation above states that, when the relaxation terms are
ignored, the time rate of change of M⃗ is proportional to the cross-product M⃗ × γB⃗.
Since the cross-product gives a vector that is perpendicular to M⃗ and B⃗, the rate
of change will be also perpendicular to these fields, implying the angle between M⃗
and B⃗ does not change. Recalling Equation 2.23 and assuming ϕ = 0 with Be

1 as
rectangular function with amplitude B1 and duration τ would yield a B⃗1(t) field in
the direction of x’ in the rotating frame. This excitation would cause the precession
of M⃗ in the clockwise direction in the y’-z’ plane, as illustrated in Figure 2.4. This
type of motion is called forced precession and can be derived using the Bloch equation.
Equivalently, this evolution can be visualized as a spiral from the z-axis to x-y plane
in clockwise orientation in the laboratory frame as illustrated in Figure 2.4.

FIGURE 2.4: (A) In response to a rotating RF field, the magnetization
vector M⃗ precesses around the x’-axis in the rotating frame. (B) In the

laboratory frame, the actual motion of M⃗ is a spiral.

In MR imaging, B⃗ consists of three different magnetic fields (Nishimura, 1996):
first, the main static field, B⃗0; second, the radio frequency fields, B⃗1(t) used for exci-
tation; and third, gradient fields, G⃗(t) that are used for spatial encoding.

2.1.6 Gradient Fields

As evident from Larmor equation (Equation 2.7), when spins from a sample of in-
terest are in a static magnetic field B0 in the z-direction, then all of the spins in the
sample will possess the same resonance frequency ω0 = γB0. Since the RF pulses
can only be frequency selective and the RF coil hardware encompasses the entire
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region of interest, it is not possible to excite a selected portion of the object. There-
fore, it would not be possible to distinguish between generated signals coming from
different spatial locations.

In order to make RF pulses spatially selective, it is necessary to introduce a
spatially-dependent magnetic field in addition to B0. This is achieved by creating
a gradient field G⃗ via gradient coils, which create temporary changes in the mag-
nitude of B0. In MRI systems there are usually three orthogonal gradient coils to
encompass each of the physical x, y, and z-directions, and the respective gradient
field magnitudes are denoted by Gx, Gy, and Gz. When all three of the gradients
coils are utilized, the main field is given by:

B⃗ = (B0 + Gxx + Gyy + Gzz) k⃗ (2.33)

One important remark from Equation 2.33 is that the gradient coils do not change the
direction of the magnetic field but they change the magnitude of the field along one
axis (e.g., Gx = dB/dx). Another important remark is that the resonant frequency of
the nuclei changes instantaneously when the field strength changes, and the change
in frequency is proportional to the applied field strength (Nishimura, 1996).

2.1.7 Off-Resonance Sources

Larmor equation (Equation 2.7) states the resonance frequency depends on the gyro-
magnetic ratio and the strength of magnetic field. Here, it might be assumed that the
Larmor frequency is constant for a given spin system, since the B0 field is supposed
to have a constant magnitude and the γ is nuclei specific. However, in practice, a
spin system can display a range of resonance frequencies, due to three main rea-
sons: main field inhomogeneities, susceptibility induced field variations, and chemi-
cal shift effects (Nishimura, 1996). These deviations from the resonant frequency are
often referred as off-resonance conditions.

In MR imaging applications, the magnet design and calibrations allow very ho-
mogeneous main fields, and with the use of auxiliary shim coils, inhomogeneities
can be kept under a few ppm over a 30 cm diameter spherical volume (Brown et al.,
2014).

Magnetic susceptibility refers to a material property that changes the magnetic
field inside the material, relative to the surrounding field. Even when a sample is
placed in a perfectly homogeneous external magnetic field, resonant frequency dif-
ferences may exist due to sample induced B0 variations arising from the differences
in bulk magnetic susceptibility χ within the sample. The field inhomogeneity de-
pends on the geometry and susceptibility differences between materials, and the
magnetic field in presence of susceptibility can be modeled as (Prince and Links,
2015):

B̂0 = B0(1 + χ) (2.34)

Materials are categorized as: diamagnetic for χ < 0, which slightly decrease the
field (e.g., water); paramagnetic for χ > 0 which slightly increase the field (e.g.,
air); ferromagnetic for χ ≫ 0 (e.g., iron) which strongly increase the field. Due to the
abundance of water (diamagnetic) in tissues, the body is mostly diamagnetic (Brown
et al., 2014). In MR imaging applications, the resultant inhomogeneity is most severe
at tissue boundaries, such as air-tissue boundaries in the lung parenchyma.

Chemical shift refers to a change in the Larmor frequency due to the different
chemical environments nuclei are attached to in a chemically heterogeneous sample.
Since each nucleus of a molecule is surrounded by orbiting electrons with their own
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weak magnetic fields, these electrons can shield the nucleus to the effects of main
magnetic field to a varying degree. As a result, the effective magnetic field observed
by the nucleus is given by:

B̂0 = B0(1 − δ) (2.35)

where δ is the shielding constant. Accordingly, the resonance frequency for the nu-
cleus is:

ω̂0 = ω0 − ∆ω = ω0(1 − δ) = γB0(1 − δ) (2.36)

Chemical shift is usually on the order of a few ppm. A well known example is the 1H
nuclei in fat (CH2), which are shifted down by 3.35 ppm from those in water (H2O);
which at 1.5T, corresponds to a shift of Larmor frequency by -214 Hz.

2.2 Magnetic Resonance Imaging

2.2.1 Signal Equation and k-Space

In MRI systems, the receive coil is designed to detect flux changes in the transverse
plane. Assuming uniform receiver coil sensitivity for the entire volume, the received
time signal sr(t) would be derived from the contributions of all precessing transverse
magnetization in the volume, which can be written as (Nishimura, 1996):

sr(t) =
∫

vol
M(r, t) dV

=
∫

x

∫
y

∫
z

M(x, y, z, t) dx dy dz
(2.37)

The received signal from the excited plane can be written as:

s(t) =
∫

x

∫
y

m(x, y)e−i2π[kx(t)x+ky(t)y] dx dy (2.38)

with

kx(t) = −γ
∫ t

0
Gx(τ) dτ

ky(t) = −γ
∫ t

0
Gy(τ) dτ

(2.39)

and is commonly referred to as signal equation. The signal equation states that the
received baseband signal from a plane is the integral of magnetization multiplied by
a spatially-dependent phase factor. Assuming that linear gradient fields are applied,
the resultant phase modulation would also vary linearly. Furthermore, note that the
double integral in the signal equation can be interpreted as a 2D Fourier transform
of m(x, y):

M(kx, ky) =
∫

x

∫
y

m(x, y)e−i2π(kxx+kyy) dx dy (2.40)

therefore indicating the following relationship:

s(t) = M
(
kx(t), ky(t)

)
(2.41)

As indicated by Equation 2.41, at any given time t, s(t) depends on the 2D Fourier
transform of m(x, y) at some spatial frequency (Nishimura, 1996). In MRI literature,
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the Fourier space is usually referred to as k-space2. As such, the recorded signal
s(t) maps the trajectory through k-space as determined by the time integrals of the
applied gradients.

2.2.2 Signal Localization

In practice, it is necessary to differentiate signals coming from different parts of an
object of interest. The main types of spatial localization methods are selective excita-
tion/reception and spatial encoding. In both methods, localization is achieved using the
gradient fields to encode spatial position by changing the Larmor frequency and the
phase of the transverse magnetization.

Slice Selection

In MRI, it is possible to excite and receive signal from a selected slice (2D imaging) or
a volume (3D imaging). In 2D imaging, slice selection is performed using a gradient
field and a shaped RF pulse to selectively excite spins in a desired slice. Recall from
Section 2.1.6 that a linear gradient field is defined as a magnetic field that points
in the direction of z-axis with linearly varying magnitude along a selected gradient
direction, µG. As such, the slice selection gradient can be denoted as:

Gss = (Gx, Gy, Gz) = GssµG (2.42)

Without the loss of generality, consider a rectangular spatial selection function
along z-direction centered at z0 with slice thickness ∆z:

ps(z) = ⊓
(

z − z0

∆z

)
(2.43)

This would necessitate the application of Gss = (0, 0, Gz), which yields a Larmor
frequency that is a function of z:

ω(z) = ω0 + γGzz (2.44)

or

f (z) = f0 + −γGzz
= −γ(B0 + Gzz)

(2.45)

Subsequently, the desired frequency selection function becomes:

p( f ) = ⊓
(

f − fc

∆ f

)
(2.46)

where fc = f0 + −γGzz0 is the RF center frequency, and ∆ f = −γGz∆z is the RF fre-
quency range, and is illustrated in Figure 2.5. The RF center frequency is related
to excitation frequency as ωr f = 2π fc. Accordingly, by setting three parameters
(z-gradient strength, RF center frequency, and RF frequency range), it is possible to
control both the slice position z0 and slice thickness ∆z.

2This convention arises from physics literature, where the wave number k represents a spatial fre-
quency (Prince and Links, 2015).
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FIGURE 2.5: Desired slice is selected by application of a slice selection
gradient and excitation with an appropriate RF pulse.

Spatial Information Encoding

Following the activation of a region by a selective or a non-selective pulse, spatial
information can be encoded into the signal during the free precession period (Zhi-
Pei Liang and Lauterbur, 2000). As a result of the complex exponential nature of the
MR signal, spatial information can be encoded in two ways: frequency encoding and
phase encoding.

Frequency Encoding

Without the loss of generality, consider an idealized homogeneous object with spin
density ρ(x) while omitting the relaxation effects. The magnetic field observed by
the object after the excitation under homogeneous B0 and a linear gradient field Gxx
can be described at position x as:

ω(x) = ω0 + γGxx (2.47)

The corresponding received signal from the object can be written as:

S(t) =
∫

object
dS(x, t)

=
∫ ∞

−∞
Aρ(x)e−iγ(B0+Gxx)tdx

= A
[∫ ∞

−∞
ρ(x)e−iγ(Gxx)tdx

]
e−iω0t

(2.48)

where A is a scaling constant representing different gain terms. The measured signal
in Equation 2.48 is said to be frequency-encoded since the oscillation frequency of the
signal is linearly dependent on the spatial location, and the gradient Gx is called
frequency encoding gradient.
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Phase Encoding

Similar to frequency encoding, consider the local signal after an RF pulse where a
gradient Gx is applied for a short duration Tp and then turned off. In this case, the
local signal can we written as:

dS(x, t) =

{
ρ(x)e−iγ(B0+Gxx)t 0 ≤ t ≤ Tp

ρ(x)e−iγGxxTp e−iγB0t Tp ≤ t
(2.49)

Accordingly, the local signal for the time interval 0 ≤ t ≤ Tp is frequency-encoded.
As a result, when the gradient is switched off, signals at different spatial locations
have accumulated different phase angles. In other words, after the preparatory pe-
riod, the received signal would contain location-dependent phase as:

ϕ(x) = −γGxxTp (2.50)

Here, note that the accumulated phase is linearly dependent on the spatial location,
and therefore the signal is said to be phase-encoded. Similarly, the gradient Gx is
referred to as phase encoding gradient.

In MRI, 3D imaging can be achieved using multiple methods, where multi-slice
imaging is the direct extension of 2D imaging. Nevertheless, true 3D imaging (volu-
metric imaging) can be achieved by using non-selective RF pulses for signal genera-
tion and spatially encoding all three dimensions. In practice, this is usually achieved
by frequency-encoding in one dimension while the other two dimensions are phase-
encoded.

Echoes

In the rotating frame of reference, the phase accrual due to off-resonance and applied
gradient fields can be written as (Nishimura, 1996):

ϕ(x, y, z, t) =
∫ t

0
ω(x, y, z, τ)dτ

= ωE(x, y, z)t + ωcst + γ
∫ t

0
G(τ) · r dτ

(2.51)

where the phase accrual with time can be comprised into three groups: inhomo-
geneity, chemical shift, and gradient fields. As the spatially-dependent phase accu-
mulates over time, the signal amplitude decays at a faster rate due to dephasing.
However, an interesting phenomenon is that, these space-variant phase shifts can
be removed momentarily to improve the signal amplitude. The resulting signal is
known as an echo, and a distinguishing feature of an echo signal compared to an
FID signal is the "two-sidedness" of an echo, where one side is due to refocusing of
the phase whereas the other side is from the dephasing (Zhi-Pei Liang and Lauter-
bur, 2000). An echo signal can be generated using two fundamental methods. In
spin echo methods, multiple RF pulses are used for undoing the phase shifts occur-
ring from field inhomogeneities and chemical shift effects. In gradient echo methods,
gradient fields are reversed for undoing the phase shifts from gradient fields.
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2.2.3 Sampling Requirements

Proper image formation in MRI depends on the appropriate coverage of k-space.
Assuming a 2D Cartesian readout with highest sampled spatial frequencies kxmax
and kymax and sampling periods of ∆kx and ∆ky, the sampled signal M̂(kx, ky) can be
written as (Nishimura, 1996):

M̂(kx, ky) = M(kx, ky) · (
1

∆kx ∆ky
) 2X(

kx

∆kx
,

ky

∆ky
) · 2 ⊓ (

kx

Wkx

,
ky

Wky

) (2.52)

where 2X is 2D sampling function (2D Shah function), 2⊓ is 2D rect function and
the k-space widths (Wky , Wky) are defined as:

Wkx = 2(kxmax + ∆kx/2)
Wky = 2(kymax + ∆ky/2)

(2.53)

Here, note that the boundaries of the rect function lie a half sample period over
the spatial frequency limits on each side. Consequently, the sampled signal can be
expressed in the image domain as:

m̂(x, y) = m(x, y) ∗ ∗2X(∆kxx, ∆kyy) ∗ ∗ WkxWky sinc(Wkx x) sinc(Wky y) (2.54)

where ∗∗ represents 2D convolution operation.

Field of View

From Equation 2.54, it can be observed that the convolution operation with the pe-
riodic sampling function leads to periodic replications of the sample in the image
domain3. This convolution operation of m(x, y) with 2X(∆kxx, ∆kyy) implies that
replications of m(x, y) would occur at intervals of 1/∆kx in the x-direction and of
1/∆ky in the y-direction.

Since the analog-to-digital converter (ADC) uses an anti-aliasing filter, the sep-
aration between these periodic replications effectively determines the field-of-view
(FOV) in the image. This process is illustrated in Figure 2.6. As such, the FOV can
be described as:

FOVx =
1

∆kx

FOVy =
1

∆ky

(2.55)

Now assume that the ADC acquires samples with a sampling period of ∆t with a
readout gradient amplitude of Gx. Then the step size along the frequency-encoding
direction can be written as:

∆kx = −γGx∆t (2.56)

Along the phase encoding direction, the sampling period depends on the incremen-
tal gradient area determined by the incremental gradient amplitude of Gyi with a
fixed phase-encoding duration of τy. Then the step size along the phase-encoding
direction can be written as:

∆ky = −γGyiτy (2.57)

3A more detailed explanation of this is well-known relationship of sampling of continuous-time
signals can be found in (Oppenheim, Schafer, and Buck, 1999).
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Accordingly, the FOV can be expressed as:

FOVx =
1

−γGx∆t

FOVy =
1

−γGyiτy

(2.58)

FIGURE 2.6: Sampling in k-space and corresponding replication in
image domain.

Spatial Resolution

As evident from Equation 2.54, the sinc function limits the spatial resolution of the
sampled image, depending on the highest sampled spatial frequencies kxmax and
kymax. By approximating the full width at half maximum (FWHM) of a sinc function
as one half of the interval between first two zero crossings, and defining δx and δy as
the spatial resolution, we can write:

δx =
1

Wkx

=
1

∆kx Nre

δy =
1

Wky

=
1

∆kyNpe

(2.59)

where Nre and Npe denote the number of samples in the readout and phase encod-
ing directions, respectively. Assuming that the number of samples is large, we can
simplify k-space widths as:

Wkx ≈ 2kxmax

Wky ≈ 2kymax
(2.60)

and the spatial resolution expression can be simplified as:

δx =
1

2kxmax

δy =
1

2kymax

(2.61)
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Noise Considerations

Like any other measurement system, the MR signals detected by the receiver coils
contain an undesirable component that is referred to as noise. In imaging applica-
tions, noise characteristics and signal-to-noise ratio (SNR) levels are prominent mea-
sures of image quality. In MRI, analysis of SNR is complicated due to numerous
dependencies (Nishimura, 1996). Nevertheless, the SNR considerations in MRI can
be divided into two main categories: instrumental parameters (e.g., B0 field, receiver
coil geometry) and imaging sequence parameters (e.g., flip angle, spatial resolution).

In MRI, the dominant noise is thermal in origin. The Brownian motion of elec-
trons or ions in a conductor, which predominantly arises from the electrolytes in the
sample, results in random electrical fluctuations, and is often called resistor noise or
Johnson noise (Nishimura, 1996; Prince and Links, 2015). The variance of this noise
can be characterized as:

σ2 =
2kTR
TADC

(2.62)

where k is the Boltzmann constant, T is temperature, R is the effective electrical
resistance, and TADC is the total readout time. Here, the effective resistance includes
both the resistance associated with the receiver coil and the resistance associated
with the sample. Since the control over sample temperature is limited, noise levels
can be decreased by control of R and TADC.

Often, the resistance in RF coil and electronics can be neglected since it is much
smaller compared to that of the body. When the body is approximated as a solenoid,
the associated resistance can be calculated as (Prince and Links, 2015):

R =
π3 µ2

0 f 2
0 N2 L r4

0
2ρ

(2.63)

where the permeability constant is µ2
0 = 4π × 10−7 Wb/(A·m), f0 is the Larmor

frequency, N is the number of turns per unit length, L is the total length, r0 is the
radius, and ρ is the resistivity of the body. Although it can be observed from Equa-
tion 2.63 reducing the Larmor frequency would reduce the resistance, it would not
improve the image quality since the NMR signal would reduce faster, resulting in a
degradation of image quality (Prince and Links, 2015).

A useful and commonly used measure for image quality is signal-to-noise ratio. A
commonly used definition of SNR is:

SNR =
µ

σ
(2.64)

where µ is the mean signal amplitude and σ is the standard deviation of noise. An
important relationship can be observed between the SNR and B0 field. It can be
shown that the SNR is proportional to the main magnetic field as (Nishimura, 1996):

SNR ∝
B2

0√
αB1/2

0 + βB2
0

(2.65)

where the receiver coil noise is proportional to B1/2
0 , the noise from the sample is

proportional to B2
0, and α and β are constant terms. Therefore, if the primary source
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of noise is due to coil resistance, then:

SNR ∝
B2

0√
B1/2

0

= B7/4
0 (2.66)

whereas when the primary source of noise is due to sample resistance (as in most
cases), then:

SNR ∝
B2

0√
B2

0

= B0 (2.67)

However, note that other factors such as T1 relaxation time also depend on B0, lead-
ing to a complex relationship between field strength and image quality. For example,
with increasing B0, T1 relaxation time also lengthens; thereby reduces the signal and
contrast in imaging applications (Nishimura, 1996).

2.3 Pulmonary Physiology

The purpose of this section is to provide an overview of the structures and the func-
tions of the respiratory system as well as congenital diaphragmatic hernia. For a
more detailed description of pulmonary physiology, please see (West and Luks, 2016;
Levitzky, 2018; Cloutier, 2019; Michael A. Grippi et al., 2015).

2.3.1 Overview of the respiratory system

The respiratory system is composed of the lungs, the upper and lower airways,
the chest wall, the pulmonary circulation, and parts of central nervous system con-
cerned with the regulation of respiration (Cloutier, 2019). The lungs are a pair of
cone-shaped organs, separated from each other by the mediastinum, an area that
contains heart and its large vessels, trachea (windpipe), esophagus, thymus and
lymph nodes (Ionescu, 2013). The lungs have sections, called lobes; the right lung
has three lobes (superior, middle and inferior) and the left lung has two lobes (supe-
rior and inferior). The chest wall consists of muscles of respiration (e.g., diaphragm)
and the rib cage (Levitzky, 2018).

The development of the human lung starts at week-4 of gestation with the ap-
pearance of the tracheal outgrowth from the foregut and extends into early child-
hood (Mullassery and Smith, 2015). The alveolization begins approx. at week-30,
and extends to the first few years of life until the growth of chest wall is finished
around the age of 8 years (Keijzer and Puri, 2010). Currently, it is accepted that
the number of airway generations is completed at birth, but over 85% of the alveoli
are formed after birth (Mullassery and Smith, 2015). This means that the lungs are
immature at birth, and lung parenchyma contains several generations of transitory
ducts that end in saccules, which later develop into alveoli.

The main function of the respiratory system is to allow oxygen to move from the
environment into the tissues, and remove carbon dioxide produced by the cellular
metabolism from the body. In addition to the gas exchange, other functions of respi-
ratory system include acid-base balance, pulmonary defense and metabolism, and
handling of bio-active materials (Levitzky, 2018).
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Airways

The breathed air enters the respiratory system through the nasopharynx when in-
haled with nose or oropharynx when inhaled with mouth. From there, the air trav-
els down the throat through the glottis, the larynx (voice box), enters the tracheo-
bronchial tree, passes through conducting airways and ultimately reaches the alveoli,
where it comes into contact with venous blood at the pulmonary capillaries (Lev-
itzky, 2018). The structures starting from the nose to the larynx constitutes the upper
airways, whereas the trachea, the bronchial structures and the alveolus constitutes
the lower airways.

FIGURE 2.7: Modeling of airway generations in human lung accord-
ing to Weibel’s lung model. In adults, air may pass through between

10 to 23 generations on its way to alveoli.

The tracheobronchial tree is an arrangement of branching tubes, that begins at
the larynx and terminates at the alveoli in the peripheral of the lungs. The trachea,
which originates at the inferior edge of the larynx has been designated as generation 0
(denoted with Z) in Weibel’s model, and at the carina it divides into the right and left
main bronchus (Z=1), that penetrate lung parenchyma (tissue of the lung) (Cloutier,
2019). Main bronchi divide into lobar bronchi (secondary bronchi, Z=2), where right
main bronchus subdivides into three, delivering air to the three lobes (superior, mid-
dle and inferior) of the right lung; whereas the left main bronchus subdivides into
two, delivering air to the two lobes (superior and inferior) of the left lung (West and
Luks, 2016; Cloutier, 2019). Roughly, in the first six generation, the number of air-
ways doubles in every generation. Beyond the sixth generation, branching becomes
asymmetric in branching number, angle, and size (Cloutier, 2019). Therefore, air
may pass through as few as 10 or as many as 23 generations from trachea to the alve-
oli. A schematic representation of airway generations according to Weibel’s model
is illustrated in 2.7.
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The airways starting from the nose and ending with the terminal bronchioles are
known as the conducting airways. The conducting airways generally constitute the
first 16 generations of airways and lead inspired air to gas-exchanging units, and
contain no alveoli. As a result, they are incapable of gas exchange and constitute the
anatomic dead space. The dead space refers to areas of lung that receive ventilation
but no blood flow, and in normal individuals has a volume around 150 mL (West
and Luks, 2016). The alveoli start to appear in respiratory bronchioles (Generations
17-19), which constitute the transitional zone, and increase in number, ending with
alveloar ducts and alveolar sacs (Generations 19-23) (Michael A. Grippi et al., 2015;
Levitzky, 2018). This alveolated region of the lung is referred to as the respiratory
zone, has a volume around 3 L in adults during rest (West and Luks, 2016), and is
the site of gas exchange. The portion of lung distal to a terminal bronchiole forms
acinus, an anatomical unit where the alveoli are located (West and Luks, 2016), and
is illustrated in Figure 2.8.

FIGURE 2.8: Schematics of the (A) lungs and (B) pulmonary acinus.

Alveolar-Capillary Unit

Gas exchange occurs in small polyhedral air sacs called alveoli, through a dense
network of capillaries and the alveoli, called the alveolar-capillary network (Cloutier,
2019). In adults, it is estimated that there are approx. 400 million alveoli with a size of
250 µm, which are completely surrounded by capillaries, and 280 billion capillaries
in the lung (Michael A. Grippi et al., 2015; Levitzky, 2018). Accordingly, there are
roughly 1000 pulmonary capillaries per alveolus. As a result, a vast area of contact
is present between alveoli and pulmonary capillaries for gas exchange; nearly a 100
m2 of surface area within a space of 5 mm in length (Cloutier, 2019).

The barrier to gas exchange between the alveoli and pulmonary capillaries is
about 1 µm in thickness (Cloutier, 2019) and consists of an endothelium lining the
capillaries, an epithelium lining the airspaces, and an interstitial layer to house the
connective tissue fibers (Michael A. Grippi et al., 2015). Via diffusion from an area of
high partial pressure to low partial pressure, the oxygen from the inhaled air passes
through the alveolar walls into the plasma and red blood cells, whereas the reverse
occurs for carbon dioxide.

Pulmonary Circulation

Similar to the airways, pulmonary blood vessels also form a series of branching
tubes from the pulmonary artery to the capillaries and back to the pulmonary veins
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(Levitzky, 2018). The pulmonary circulation brings the deoxygenated blood from the
right ventricle to the alveoli. The capillaries that surround the alveoli has a diame-
ter around 7 µm, just enough for a red blood cell to pass through (West and Luks,
2016). In the capillaries, the red blood cells flow through in a single file order, which
creates an efficient arrangement for gas exchange (Cloutier, 2019). When the gas
exchange is complete, the oxygenated blood returns to the left side of the heart for
systemic circulation. At resting heart rate, it takes a red blood cell about 5 seconds to
travel through the pulmonary circulation, and about 0.75 seconds to travel through
pulmonary capillaries (Levitzky, 2018). Overall, the pulmonary capillary bed is the
largest vascular bed in the body (Cloutier, 2019).

Muscles of Respiration

The lungs are not capable of inflating themselves; the forces for lung inflation are
generated by the muscles of respiration.

The muscles of inspiration help increase the volume of thoracic cavity, and in-
clude the diaphragm, the major muscle of respiration; external intercostal muscles,
which pull the ribs upward and forward during inspiration; scalene muscles, which
elevate the sternocleidomastoid; the alae nasi, which cause nasal flaring; small mus-
cles in the neck and head; the trapezius; and the muscles of the vertebral (Levitzky,
2018; Cloutier, 2019).

Expiration during quiet breathing (i.e., tidal volume breathing) is passive, and
no respiratory muscles contract. Nevertheless, active expiration occurs during ac-
tive exercise, speech, expiratory phase of coughing or sneezing, or hyperventilation
(Levitzky, 2018; Cloutier, 2019). The main muscles of expiration are the muscles of
the abdominal wall (i.e., the rectus abdominis, the external and internal oblique, and
the transversus abdominis); and the internal intercostal muscles, which pull the ribs
downward and inward.

Among these, the diaphragm is the primary muscle of respiration. Diaphragm is
a dome-shaped muscle with an approx. 250 cm2 surface area that separates the tho-
rax from the abdominal cavity (Levitzky, 2018). The contraction of the diaphragm
causes the dome to descend into the abdominal cavity, resulting in an elongated
thorax with increased volume. As such, on inhalation the diaphragm induces a neg-
ative pressure to help draw air into the lungs, and on exhalation the diaphragm
helps to expel air by relaxation (Keijzer and Puri, 2010). During quiet breathing,
the diaphragm moves approx. 1 cm, but during a deep inspiration, it can move as
much as 10 cm (Cloutier, 2019). In adults, the diaphragm is responsible for about
two-thirds of the air that enters the lung during tidal breathing in supine position,
and about one-third to one-half in upright position (Levitzky, 2018).

Mechanics of Breathing

For air to move in and out of the lungs requires a pressure difference between the
atmosphere and the alveoli. Under normal conditions, the inspiration is achieved
by lowering the alveolar pressure below the atmospheric pressure (Levitzky, 2018).
With the pressure difference, airflow occurs towards the lungs. This movement is
controlled by the mechanical properties of the lung as well as the chest wall. The
mechanics of the lung are composed of the combined mechanical properties of air-
ways, lung parenchyma, interstitial matrix, alveolar surface and pulmonary circu-
lation; whereas the mechanics of chest wall includes the properties all structures
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outside the lungs that move during breathing, such as the rib cage, diaphragm, ab-
dominal cavity, and abdominal muscles (Cloutier, 2019). As such, the interaction
between the lungs and the chest wall determines the lung volumes. Some of the im-
portant lung volumes and capacities are illustrated in Figure 2.9. Although here the
inspiratory and expiratory phases in tidal breathing are shown with equal durations,
the expiratory phase is usually two to three times longer than the inspiratory phase
(Levitzky, 2018). An important aspect the lung volume is that, the measurement of
lung volume can be used to detect and follow up disease progression.

FIGURE 2.9: Various lung volumes and capacities. Inspiratory and
expiratory phase in tidal breathing are shown equal durations for il-

lustrative purposes.

Ventilation-Perfusion Relationships

Lung ventilation (V̇) and perfusion (Q̇) are essential elements in the primary func-
tion of the lung. Nevertheless, when analyzed individually, they are insufficient in
ensuring normal gas exchange (Cloutier, 2019). The passive diffusion of oxygen and
carbon dioxide across the alveolar-capillary barrier occurs according to their con-
centration differences. For successful gas exchange, these concentration differences
have to be maintained by ventilation of the alveoli and perfusion of the pulmonary
capillaries. Therefore the ratio of ventilation to perfusion (V̇/Q̇) is the major deter-
minant in the assessment of gas exchange.

In healthy adults, the alveolar ventilation is around 4 L/min, and pulmonary
blood flow is around 5 L/min, indicating an overall ratio of V̇/Q̇ ≈ 0.8 (Levitzky,
2018). In cases where there is a mismatch between the ventilation and perfusion, this
would lead to impairment of both O2 and CO2 transfer.

Nevertheless, it should be noted that, a normal V̇/Q̇ ratio does not mean the
ventilation and perfusion in the gas exchange unit is normal. A region with reduced
ventilation and perfusion might still display a normal V̇/Q̇ ratio. Furthermore, re-
gional differences in ventilation and perfusion are present in healthy individuals,
due to gravitational effects as well as structural effects. For example, in the stand-
ing position, going from the top to the bottom of the lung, the perfusion increases
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more rapidly than ventilation. Meaning that, the V̇/Q̇ ratio at the top of the lung is
higher compared to the bottom of the lung. As a results, a wide range of localized
V̇/Q̇ ratios can be observed in healthy lungs, and V̇/Q̇ ratios between 0.8 to 1.2 are
considered normal (Levitzky, 2018).

2.3.2 Congenital Diaphragmatic Hernia

Congenital diaphragmatic hernia (CDH) is a rare disease, which occurs in 1 in 2000-
5000 live births (Oluyomi-Obi, Van Mieghem, and Ryan, 2017). CDH is a develop-
mental defect, characterized by herniation of abdominal organs into the thoracic cav-
ity and consequently, to impairment of lung development, followed by hypoplasia
of the pulmonary parenchyma and vasculature, and persistent pulmonary hyper-
tension (Keijzer and Puri, 2010; Weidner et al., 2014). A chest radiography acquired
from an infant with CDH is displayed on Figure 2.10.

Although advances in understanding and treatment have improved survival
rates, CDH remains to cause significant mortality and morbidity (Wong et al., 2018).
A wide range of morbidities can be observed after CDH repair, such as neurocog-
nitive delay, hearing loss, chest wall deformity, or hernia recurrence (Section on
Surgery and the Committee on Fetus and Newborn, 2008). Furthermore, infants
with large defects, those who have received extracorporeal membrane oxygenation
(ECMO) support, or those with a patch repair are at the highest risk (Section on
Surgery and the Committee on Fetus and Newborn, 2008). Therefore newborns with
CDH, especially patients with heightened risk, are recommended to receive care in
specialized centers with periodic follow-up programs to identify and treat the po-
tential development of deformities (Weis et al., 2016b; Hollinger, Harting, and Lally,
2017).

FIGURE 2.10: Chest radiography acquired from a female infant with
congenital diaphragmatic hernia reveals multiple loops of bowel oc-
cupying the left hemithorax, which shifts the cardiothymic structures
to the right. Reproduced with permission from (Klein and Sirota,

2017), copyright Massachusetts Medical Society.
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Accordingly, being able to reliably identify high-risk patients, and routine follow-
up of these patients remain critical in improving long-term patient outcome. To this
end, many different follow-up programs have been established (Morini, Valfrè, and
Bagolan, 2017). However, most follow-up schemes require compliance of the pa-
tients; therefore they are not feasible in younger children. Furthermore, most of the
programs include chest radiographs, which provide limited information about mor-
phological changes; computed tomography (CT) scans which provide tomographic
images but limited functional information; spirometry and multiple-breath washout
measurements which provide information on the overall pulmonary function only;
or nuclear medicine techniques such as planar scintigraphy or single-photon emis-
sion computerized tomography (SPECT), which require injection and/or inhalation
of radioactive tracers (Björkman et al., 2011; Lederlin et al., 2013; Morini, Valfrè, and
Bagolan, 2017). Moreover, routine application of CT and SPECT in infants has been
limited due to high radiation doses, lack of the tracers, and requirement for patient
cooperation (Björkman et al., 2011).

To overcome the limitations arising from these imaging modalities, MRI based
lung imaging has been developed as a radiation-free alternative(Zöllner et al., 2012).
In addition, MRI based imaging offers the advantage of acquiring lung morphology
and function during the same scanning session.

2.4 MRI of the Lung

The physical properties of the lungs are different compared to other tissue types
present in the body. At total lung capacity, the lung fills the entire chest cavity, and
can reach up to 6 L in volume, of which approx. 80% is air, 10% is blood and the re-
maining 10% is tissue (Michael A. Grippi et al., 2015). As a result, lungs have a low
tissue density, approx. 0.1-0.3 gr/cm3 (Schneider, Bortfeld, and Schlegel, 2000; Itoh,
Nishino, and Hatabu, 2004; IT’IS Foundation, 2018). This means that lungs have
an a priori low proton density compared to other body parts. Consequently, NMR
signal level from the lung is approx. ten-fold lower compared to neighboring tis-
sue types (Wild et al., 2012a). Moreover, multiple tissue-air and liquid-air interfaces
present in the lungs lead to prominent susceptibility variations and local magnetic
field inhomogeneities. These contribute to very short T∗

2 relaxation times. Approxi-
mate relaxation times for lung tissue at various field strengths are given in Table 2.3.
Apart from these, it is known that the gravitational effects as well as respiratory state
can cause significant changes in the relaxation times in the lung parenchyma (Stadler
et al., 2005; Hahn et al., 2020). Furthermore, thoracic organs are in continuous mo-
tion induced by the respiration and cardiac pulsation. Thus, MR-based imaging of
the lung parenchyma becomes highly challenging.

TABLE 2.3: List of approximate T1, T2, and T∗
2 relaxation times for

lung parenchyma at various field strengths. Data in the table are
adapted from (Nichols and Paschal, 2008; Yu, Xue, and Song, 2011;

Campbell-Washburn et al., 2019).

Field Strength T1 (ms) T2 (ms) T∗
2 (ms)

0.55 T 971 61 10
1.5 T 1171 41 2.11
3 T 1374 - 0.74
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Nevertheless, with recent developments, MRI of the lung is becoming an impor-
tant tool for both research and clinical applications. MRI measurements are currently
seen as either the first choice of modality or a supplementary modality to chest ra-
diography and CT (Biederer et al., 2012b), and with improved robustness it may be-
come the preferred modality in the diagnosis of pulmonary diseases. Furthermore,
in cases where exposure to ionizing radiation is to be avoided, such as in children,
pregnant patients, or patients who require frequent follow-up examinations, MRI is
becoming an important tool for clinical applications (Biederer, 2018). In addition to
the lack of ionizing radiation, MRI further benefits from the superior soft tissue con-
trast, the ability to generate dynamic images for studying respiratory dynamics and
functional images to assess pulmonary functions.

It is known that pathological conditions in the lung change the parenchymal
structure, resulting in either an increase in lung density (e.g., fluid accumulation in-
side the alveolar space), or a decrease in lung density (e.g., air trapping) (Biederer et
al., 2012a). Since the MR signal is proportional to the tissue density, these changes in
tissue density enables the diagnosis of pulmonary diseases. Furthermore, changes
in the lung perfusion (e.g., pulmonary embolism) also results in a change in the
MR signal, thus enables the detection of macro-vascular pathologies (Biederer et al.,
2012a). To this end, many methods have been developed to detect parenchymal
changes, and these methods can be roughly grouped in two based on the use of con-
trast agents as: contrast-enhanced methods and non-contrast-enhanced methods.

2.4.1 Contrast-Enhanced Lung Imaging

As a result of the challenges originating from significant susceptibility differences,
long T1 and short T2 relaxation times, lung MRI methods based on contrast agents
have received a great interest; such as dynamic contrast-enhanced (DCE) MRI, hy-
perpolarized (HP) noble gas imaging, oxygen-enhanced imaging (Molinari et al.,
2008), Fluorine-19 (19F) MRI (Neal et al., 2019), or aerosolized gadoliniumbased
nanoparticle imaging (Crémillieux et al., 2019). Among these methods, DCE MRI
and HP gas imaging has received much attention and clinical application.

Dynamic contrast enhanced (DCE) studies use intravenously injected contrast
agent bolus to create a differentiation between the pulmonary arteries and lung pa-
renchyma (Hui et al., 2005). Due to the short pulmonary transit time of the bolus,
DCE-based perfusion studies require high temporal resolution, usually in the order
of 1-3 seconds (Attenberger et al., 2009). With parallel imaging and other k-space ac-
quisition strategies, such as view-sharing or partial Fourier acquisition, DCE-based
techniques have been successfully utilized to assess pulmonary perfusion in both
adult and pediatric patients, including CDH patients (Attenberger et al., 2009; Zöll-
ner et al., 2012; Weidner et al., 2014; Groß et al., 2021). Nevertheless, safety concerns
regarding the use of gadolinium-based contrast agents, the added cost involved with
contrast administration, the potential technical issues such as mistimed contrast bo-
lus injection, and non-repeatability of these measurements have limited the applica-
tion of DCE-based studies (Edelman and Koktzoglou, 2019).

On the other hand, hyperpolarized imaging techniques utilize externally admin-
istered inhalative tracers as contrast agents. HP MRI of lung tissue has been initially
demonstrated in 1994 by Alber et al. using hyperpolarized 129Xe in mouse (Albert
et al., 1994), followed by hyperpolarized 3He imaging in guinea pig (Middleton et
al., 1995). By 1996, researchers have successfully demonstrated the utility of hyper-
polarized MR imaging for lung imaging in humans, first with volunteers (Ebert et
al., 1996; Bachert et al., 1996) and then with patients (Kauczor et al., 1996). Since
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FIGURE 2.11: Representative 1H, 3He, and 129Xe acquisitions from
(i) healthy volunteer, (ii) non-small-cell lung cancer patient, and (iii)
chronic obstructive pulmonary disease patient. Reproduced from
(Stewart et al., 2018), used under Creative Commons CC-BY license.

then, many studies have demonstrated the usefulness of hyperpolarized imaging,
and the summary of the current state of hyperpolarized imaging can be found in the
following articles (Kruger et al., 2016; Ebner et al., 2017; Stewart et al., 2018). Rep-
resentative images obtained with 1H, 3He, and 129Xe are illustrated in Figure 2.11.
Despite its advantages, the clinical adaption of hyperpolarized imaging has been
limited due to numerous factors. Additional hardware and personnel requirements
for the sophisticated polarization process, need for multinuclear RF hardware (Wild
et al., 2012a), shortage of global 3He supplies leading to high scan costs (Kruger et al.,
2016), general anesthetic properties and short T1 duration of the 129Xe (Bachert et al.,
1996), technical difficulties in delivering breathable concentrations of gas and oxy-
gen to patients (Möller et al., 2002), and depletion of the polarization after excitation
(Bachert et al., 1996; Möller et al., 2002) can be listed as a few.

2.4.2 Non-contrast-Enhanced Lung Imaging

In part because of the challenges and drawbacks associated with contrast-enhanced
imaging, non-contrast-enhanced methods received a renewed interest as an alterna-
tive in lung imaging. Performance increases in gradient systems as well as advanced
acquisition techniques and post-processing techniques improved the outlook of pul-
monary MRI, while enabling high resolution structural imaging as well as functional
imaging (Möller et al., 2002).

Compared to the mostly diamagnetic biological tissues, air is paramagnetic. This
leads to a bulk magnetic susceptibility difference of ∆χ = 9 ppm (Bergin, Pauly, and
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Macovski, 1991; Saritas, Holdsworth, and Bammer, 2014) at lung-air interfaces. As
a result, the numerous air-tissue interfaces create highly inhomogeneous local mag-
netic field gradients, leading to a rapid dephasing, which is measured to be around 2
ms at 1.5 T, and below 1 ms at 3 T field strengths. Thus gradient echo-based imaging
applications require pulse sequences to have short echo times to overcome this limi-
tation arising from the short T∗

2 relaxation time (Wild et al., 2012a). With modern MR
systems equipped with gradient systems capable of generating gradient strengths
up to 80 mT/m with slew rates of 200 mT/m/ms (Fischer and Eberlein, 2013), the
usage of gradient echo (GRE) sequences with very short echo times is possible in
addition to spin echo (SE) sequences and ultrashort echo time (UTE) sequences. A
more detailed list of suggested protocols with respective clinical applications can be
found in the following consensus article (Biederer et al., 2012a) or in the following
book chapter (Biederer, 2018).

Spin Echo-Based Sequences

Spin echo-based techniques utilize 180◦ refocusing RF pulses to make the sequence
relatively insensitive to magnetic field inhomogeneities and susceptibility effects
present in the lungs (Hatabu et al., 1999). In addition, techniques such as fast spin
echo (FSE, also known as turbo spin echo imaging) which utilize long echo trains
with multiple 180◦-pulses to acquire data from several k-space lines in a single 90◦-
excitation or single-shot methods that obtain data from all k-space lines with a single
90◦-excitation can be utilized in conjunction with constrained reconstruction tech-
niques (e.g., partial Fourier) to reduce acquisition time in SE imaging. As such T2-
weighted single-shot SE methods with partial Fourier acquisition4 have been used
for detecting infiltrates, masses and nodular lesions with high fluid content (Biederer
et al., 2012a). However, due to T2 blurring and low acquisition efficiency, finer pul-
monary structures may not be depictable (Johnson et al., 2013); and the 180◦ refocus-
ing pulses lead to high specific absorption rates (SAR) (Bieri, 2013).

Ultrashort Echo Time-based Sequences

Ultrashort echo time (UTE) pulse sequences have been suggested for imaging very
short T2 species (Pauly et al., 1989), where they commonly employ half-pulse RF
excitations with a non-Cartesian radial readout scheme to cover central k-space re-
gions almost immediately after the excitation (Bergin, Pauly, and Macovski, 1991).
UTE sequences utilize free induction decay sampling instead of an echo, resulting in
a center-out k-space trajectory (Johnson et al., 2013; Yang et al., 2020). This enables
the acquisition of the signal with limited amount of T2 and T∗

2 decays, by reducing
the echo time (TE) to be less that 200 µs (Torres et al., 2019). Here, it should be noted
that, different echo time definitions may be used for UTE sequences (Weiger and
Pruessmann, 2019). A commonly used definition is the time between center of RF
pulse and the start of the data sampling (Hatabu et al., 2020).

UTE imaging has received a great interest for pulmonary imaging applications.
Recently, UTE has been successfully applied in diagnosing of pulmonary diseases
from neonatal to adult patients (Higano et al., 2017; Walkup, Higano, and Woods,
2019); and has been shown to perform similar diagnosing performance in diseases,
such as non-small cell lung cancer or COVID-19, when compared with CT-based
imaging (Lee et al., 2019; Yang et al., 2020). Furthermore, recent studies have dis-
played functional information obtained at 3 T with UTE-based acquisitions (Mendes

4Some vendor-specific implementations are: HASTE (Siemens), UFSE (Philips), SS-FSE (GE).
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Pereira et al., 2019; Balasch et al., 2020). However, UTE sequences are prone to im-
age artifacts and possess reduced sampling efficiency compared to Cartesian read-
outs (Bieri, 2013). In addition, to reduce respiratory motion in UTE imaging, many
studies rely on single breath-holds; which may not be feasible for all patient groups
(Balasch et al., 2020). Apart from these, the current 3D UTE approaches are not capa-
ble of detecting signal variations caused by inflow effects of unsaturated spins; and
hence, unable to detect perfusion related information (Mendes Pereira et al., 2019).

Gradient Echo-Based Sequences

Gradient echo-based techniques can achieve fast acquisition times, because the exci-
tation pulses typically utilize flip angles less than 90◦ and they do not have the 180◦

refocusing RF pulses. As a result, short echo times (TE) can be prescribed, while the
usage of low flip angles permits most of the longitudinal magnetization to remain
undisturbed, and therefore shortens the time for T1 recovery (Bernstein, King, and
Zhou, 2004). After the application of a sufficient and periodic sequence of RF pulses
and gradients, the magnetization reaches a dynamic equilibrium called steady-state,
and the time taken to reach a steady-state is called transient-state (Hargreaves et al.,
2001). This concept of dynamic equilibrium has been first introduced by Carr in 1958
(Carr, 1958), and is called steady-state free precession (SSFP) (Scheffler and Lehnhardt,
2003). With SSFP sequences, different steady-states can be reached by applying dif-
ferent gradient switching patterns or with different RF pulse phases (Bieri and Schef-
fler, 2013). Broadly SSFP methods can be classified into two groups: the incoherent
imaging, where the transverse magnetization is disrupted via spoiling; and coherent
imaging, where the gradient-induced dephasing within a TR is exactly zero (all three
gradient axes are balanced) to refocus magnetization (Scheffler and Lehnhardt, 2003;
Bieri, 2013).

For pulmonary imaging, the most commonly used incoherent steady-state GRE
imaging techniques are the T1-weighted RF spoiled GRE imaging5 and 3D T1-weight-
ed GRE imaging with view sharing6. These methods have been used for detect-
ing small solid lesions and airspace diseases, obtaining high resolution angiograms
and/or first pass lung perfusion, and respiratory mechanics (Fischer et al., 2014;
Biederer, 2018; Serai et al., 2020).

Similarly, the coherent imaging technique called balanced SSFP7 (bSSFP) with
T2/T1-weighted contrast has been extensively used for pulmonary imaging. This
method has been used including, but not limited to, detecting pulmonary fibrosis,
embolism, solid legions, bright blood imaging, respiratory mechanics and functional
information (Bauman et al., 2009; Rajaram et al., 2012; Serai et al., 2020).

2.4.3 Balanced Steady Steady-State Free Precession Imaging

Balanced steady steady-state free precession (bSSFP) is a coherent imaging tech-
nique (pulse sequence) that enables rapid imaging with high signal-to-noise ratio.
In bSSFP, both the longitudinal and transverse components of the magnetization
reach some steady-state value as a result of the quick succession of RF pulses, which
prevents the magnetization from returning to thermal equilibrium.

The magnetization in this dynamic equilibrium is a superposition of different
longitudinal and transversal states and can be characterized analytically (Lauzon

5Some vendor-specific implementations are: FLASH (Siemens), T1-FFE (Philips), SPGR (GE).
6Some vendor-specific implementations are: TWIST (Siemens), TRAK (Philips), TRICKS (GE).
7Some vendor-specific implementations are: TrueFISP, (Siemens), b-FFE (Philips), FIESTA (GE).
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and Frayne, 2009b). In general, the RF pulses are assumed to be quasi-instantaneous
with flip angle α, and the magnetization is allowed to accumulate a resonance offset
angle (also called as precession angle) β (in radians) within any TR. More specifi-
cally, β = 2π(δCS + −γ∆B0) · TR − ϕRF; meaning that phase accrual over a single TR
depends on the chemical shifts of the species, the B0 field inhomogeneity, and phase
increment of RF excitation in successive TRs (Lauzon and Frayne, 2009b). Here note
that, because the measured signal is stemming from different transversal and longi-
tudinal magnetization states, the measured signal depends not only on the preces-
sion angle ϕ, but also on tissue properties such as relaxation times T1 and T2, as well
as sequence parameters such as α, TE, and TR (Bieri and Scheffler, 2013).

Following a transient phase, the time evolution of magnetization in bSSFP exper-
iments reaches a steady state value, where the steady state value displays a strong
dependence as a function of the precession angle (Bieri and Scheffler, 2013). The
characteristic bSSFP profiles are illustrated for lung parenchyma and lipid tissue in
Figure 2.12. Here, note that the maximum steady-state signal is not achievable at

FIGURE 2.12: The characteristic bSSFP off-resonance signal profiles
for (A) lung parenchyma and (B) lipid tissue at different flip angles.
Shapes of the signal profiles are a strong function of T2/T1 and α,
and the optimal flip angle depends on the tissue relaxation properties.
The simulation parameters: TE/TR=1/2 ms; T1 = 1100 and T2 = 40
for lung parenchyma; T1 = 300 and T2 = 80 for lipid tissue. No-
tice the scale difference between the plots, indicating a difference in

achievable signal level from different tissue types.

on-resonance condition (β = 0). Off-resonances lead to periodic modulations in the
steady-state signal, leading to the characteristic bSSFP frequency response (Bieri and
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Scheffler, 2013). The high signal regions are commonly referred to as the pass-band
region; whereas the low signal regions are referred to as the stop-band region. In the
acquired image, the stop-band regions correspond to voxels with precession angles
that are close to β = ±2kπ, k ∈ N, giving rise to dark bands also known as banding
artifacts.

Despite its advantages, the bSSFP sequence is limited by its sensitivity to local
field variations (Bangerter et al., 2004). Magnetic field inhomogeneities routinely en-
countered in practice cause signal voids (i.e., banding artifacts) (Cukur, 2015). These
characteristic banding artifacts appear in areas of large field variations due to the
strong dependence of signal strength on local resonant frequency (Bangerter et al.,
2004). In the case of lung imaging, the paramagnetic nature of air and diamagnetic
nature of biological tissues lead to bulk magnetic susceptibility differences (Saritas,
Holdsworth, and Bammer, 2014), and a static local field gradient is formed at each
air-tissue interface (Wild et al., 2012a). As a result, the multiple air-tissue interfaces
present in the airways and alveoli in the lungs lead to prominent susceptibility dif-
ferences and create highly inhomogeneous local magnetic field gradients. Conse-
quently, this phenomena hinders the bSSFP-based rapid imaging of lung tissues.

2.4.4 Non-contrast-Enhanced Functional Lung Imaging

As aforementioned, the gas concentration differences in the lungs have to be main-
tained via ventilation and perfusion for successful gas exchange. In the presence of
pulmonary diseases, varying degrees of ventilation and perfusion abnormalities can
be observed in the lungs, such as reduced pulmonary perfusion in CDH patients
(Weis et al., 2016b). As such, the evaluation of pulmonary functions has important
clinical value for the assessment of prevalent lung diseases.

To this end, many non-contrast-enhanced MRI methods have been developed
to acquire information on regional pulmonary functions. Initial studies at low field
strengths showed the potential of proton-based MRI for obtaining ventilation infor-
mation via dynamic acquisitions (Zapke et al., 2006; Deimling et al., 2008). These
methods demonstrated the signal intensity changes associated with pulmonary func-
tions during free breathing. In (Bauman et al., 2009), the dynamic acquisition strat-
egy was extended to 1.5 T with non-rigid registration strategies, and it was demon-
strated to reliably obtain ventilation and perfusion information using Fourier anal-
ysis in the temporal domain. This method, called Fourier Decomposition (FD), en-
abled the indirect measurement for regional ventilation and perfusion during free-
breathing via fast bSSFP acquisitions without the administration of contrast agents.
Thereafter, the Fourier Decomposition method was validated in both animal experi-
ments and human patients against other imaging modalities (Bauman, Pusterla, and
Bieri, 2016), and more advanced derivations of the method was developed to im-
prove the robustness of the spectral analysis (Bauman and Bieri, 2017; Bondesson
et al., 2019).

Besides the FD method, a self-gated approach based on spoiled GRE imaging
called self-gated non-contrast-enhanced functional lung imaging (SENCEFUL) was
demonstrated to perform reliably by respiratory gating and data binning accord-
ing to respiratory and cardiac phases (Fischer et al., 2014). This idea was further
improved by transferring the data binning strategy to individual images and cre-
ating synthesized respiratory and cardiac cycles to generate phase-resolved func-
tional lung (PREFUL) images (Voskrebenzev et al., 2018). Overall, these methods
have shown good agreement with other techniques such as hyperpolarized imaging
and have shown promise for clinical use (Voskrebenzev and Vogel-Claussen, 2020).
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Lastly, two recent studies (Mendes Pereira et al., 2019; Balasch et al., 2020) have dis-
played functional information obtained at 3 T with UTE-based acquisitions.

In addition to these acquisition techniques, quantification methods were pro-
posed to improve the reliability of non-contrast-enhanced imaging techniques. In
(Kjørstad et al., 2014b), a quantification method for ventilation maps was developed
using the baseline signal (zero-frequency or DC component) in addition to the local
parenchymal density changes. In (Kjørstad et al., 2014b), a method for perfusion
quantification was proposed by utilizing the pulmonary blood flow in fully blood-
filled voxels as a reference. Although these methods was demonstrated to be useful
(Kjørstad et al., 2015; Ljimani et al., 2021), the quantification results can be effected
by the underlying differences in tissue relaxation between field strengths. Therefore,
it might be necessary to obtain relaxometric measurements (e.g., T1 and T2 maps
for T2/T1-weighted bSSFP images) for robust quantification, especially at different
field strengths. Although an efficient pulmonary relaxometry methods was previ-
ously proposed (Bauman et al., 2017), this method requires breath-holding, which
may not be achievable by all patient groups. Furthermore, this method has not been
demonstrated at 3 T field strength, with possible limitations arising from SAR con-
straints as well as increased susceptibility effects.

2.4.5 Challenges in Adaptations to Higher Field Strengths

While clinical 3T scanners are now widely available and scanner with even higher
field strength are being introduced for clinical imaging (Ertürk et al., 2017; Sadeghi-
Tarakameh et al., 2020), these systems create challenges for lung MR imaging. Mov-
ing to higher static magnetic field strengths can increase the intrinsic SNR; but the
SNR gain comes at the expense of increased tissue heating, B0 inhomogeneity, RF
field inhomogeneity, increased T1 relaxation time, reduced T∗

2 relaxation time, and
increased SAR in the tissue. Specifically, in biological tissues, the tissue suscepti-
bility scales with B0, leading to a degradation in B0 homogeneity (Wiesinger et al.,
2006); and the SAR is proportional to the square of magnetic field strength, meaning
that it would quadruple when the field strength is doubled (Chang et al., 2008). In
addition, the local magnetic field inhomogeneities arising from multiple air-tissue
and air-liquid interfaces at the alveoli result in rapid dephasing of the signal with
short T∗

2 values, which further shortens at high field strengths; and therefore limits
the available SNR. While it may be desirable to use higher receiver bandwidths to
account for enhanced line broadening and image blurring stemming from the sus-
ceptibility related effects, usage of higher bandwidths also increases the noise levels,
and nearly offsets the SNR gain at 3 T (Yu, Xue, and Song, 2011). For fast imaging
techniques, such as echo planar imaging (EPI) or bSSFP pulse sequences, B0 inhomo-
geneity results in distortions or signal losses in the form of band artifacts. Therefore,
the extension of lung imaging to higher field strengths has been limited.

Another difficulty arises from the poor visualization of the lungs. In typical tho-
racic images, the signals from the muscle and fat tissues dominate the lung signal,
which can hinder the visualization of the lungs and can degrade the image quality
in parallel imaging reconstructions. These effects are heightened when the thorax
is imaged at higher field strengths. As most studies have focused on increasing the
available SNR from the lung parenchyma with short echo times, these also lead to
a concomitant increase in surrounding tissue SNR. Therefore, suppression of signal
contributions from surrounding tissues (e.g., fat or muscle) can improve the over-
all contrast and visualization of the lung parenchyma (Mai, Knight-Scott, and Berr,
1999), at the expense of increased measurement time.
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In (Fink et al., 2007), a comparative study between 1.5 T and 3 T was carried to an-
alyze five different pulse sequences for lung MRI. Here the authors imaged porcine
lungs as well as four healthy volunteers with inspiratory breath-hold, and concluded
that the imaging characteristics between different pulse sequences did not differ be-
tween field strengths. Although lung pathology was successfully visualized at 3 T,
the authors also noted the image quality was inferior compared to 1.5 T. In another
study (Attenberger et al., 2009), the authors compared contrast-enhanced pulmonary
perfusion MRI at 1.5 T and 3 T using a 3D single-shot spoiled GRE sequence during
inspiratory breath-hold. Here, the authors noted that at 3 T, SNR obtained from
pulmonary vessels was significantly increased compared to 1.5 T; however, the SNR
of the lung parenchyma was significantly lower. While the authors noted that the
differences between two field strengths did not affect the quantitative perfusion pa-
rameters, they suggested 1.5 T as their preferred field strength for pulmonary MRI.
Lastly, in (Chassagnon et al., 2019) the authors compared a prototype free-breathing
UTE sequence at 1.5 T and 3 T field strengths. In this work, the authors observed
that the overall image quality at 3 T was poorer compared to that at 1.5 T, with lower
SNR and CNR, and reduced visibility of subsegmental bronchi.

2.4.6 Challenges in Pediatric Imaging

Pulmonary morbidity in infants and young children may arise from many sources,
and due to the high rates of pulmonary morbidity in the population of admitted
patients (Hahn et al., 2020), pulmonary imaging techniques stand to offer crucial
benefit in the assessment and follow-up of pulmonary diseases (Zanette et al., 2022).
Chest radiography is commonly utilized as the first-line imaging modality, but it
lacks tomographic resolution (Walkup, Higano, and Woods, 2019); CT scans offer
submillimeter in-plane image resolution, but concerns regarding the ionizing radia-
tion limits its clinical value (Higano et al., 2017). Particularly for infants and children
with chronic morbidities who require routine follow-up examinations, ionizing radi-
ation associated with CT carries significant risk and hampers CT’s usefulness for
longitudinal studies (Walkup, Higano, and Woods, 2019). Therefore, radiation-free
alternative modalities are desired for pediatric pulmonary imaging; and MRI is par-
ticularly appropriate for evaluating pulmonary diseases in pediatric patients, since
it is a non-ionizing and tomographic modality.

However, there are multiple challenges for MRI-based pediatric pulmonary imag-
ing. In addition to technical difficulties, such as low proton density or susceptibility
artifacts, successful MRI acquisitions require significant patient cooperation. For
diagnostic-quality images, patients are required to remain still during the entire ex-
amination, and breath-holding might be necessary for thoracic imaging. However,
children are less likely to follow breathing maneuvers and are less likely to tolerate
MRI examination conditions, including acoustic noise and being in a confined space
(Janos et al., 2019). Furthermore, breath-hold imaging is commonly not feasible for
children below the age of 6 due to the lack of ability to comply with breathing in-
structions (Biederer et al., 2012a). As such, sedation or general anesthesia is used
in many pediatric imaging cases (Biederer et al., 2012a). Yet, due to rising concerns
over the effects of anesthesia in children, it is desirable to reduce or eliminate the
time spend under anesthesia (Walkup, Higano, and Woods, 2019); which necessi-
tates faster protocols and overall shorter examination times.

A second characteristic feature of the pediatric setting is the large variability in
patient physiology. Protocols have to be readjusted for FOV, slice thickness, and in-
plane resolution depending on the patient’s body size (Biederer et al., 2012a), which
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complicates protocol setups. Moreover, smaller body sizes of pediatric patients com-
pared to adults lead to higher in-plane resolution requirements. To achieve higher
spatial resolutions, stronger gradient fields are required. Yet, safety limitations may
prevent the use of high gradient slew rates. Consequently this can lead to unde-
sirable increases in achievable minimum echo times, resulting in a decrease in the
signal level due to relaxation effects. Furthermore, the respiratory rates and heart
rates in humans are known to vary with age (Fleming et al., 2011). For example, typ-
ical respiratory and cardiac rates for 2-year-old children are around 30 breaths per
minute and 120 beats per minute, respectively; compared to 12 breaths per minute
and 60 beats per minute in adults; which indicates a roughly two-fold difference.
Consequently, this necessitates the need for higher temporal resolutions with the
imaging protocols.

Lastly, commonly utilized pulse sequences with high in-plane resolutions require
long acquisition times, which may become impractical in the lungs due to motion ar-
tifacts. Although gating approaches such as respiratory gating with respiratory bel-
lows might be useful for motion compensation in adults, triggering or prospective
gating methods increase acquisitions times (Biederer, 2018). Consequently, these
techniques may not be desirable in pediatric patients, particularly in very small chil-
dren, due to the use of anesthesia. Instead, fast image acquisition techniques, such
as T1-weighted spoiled GRE imaging or bSSFP imaging, are needed to compensate
for motion effects during free breathing without needing any compliance from the
patients, special breathing maneuvers, or increase in the overall scan session dura-
tion.
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Chapter 3

Phase-cycled balanced SSFP
imaging for non-contrast-enhanced
functional lung imaging

This chapter is based on the following publication: Efe Ilicak, Safa Ozdemir, Lothar
R. Schad, Meike Weis, Stefan o. Schoenberg, Frank G. Zöllner, Jascha Zapp. "Phase-
cycled balanced SSFP imaging for non-contrast-enhanced functional lung imaging."
Magnetic Resonance in Medicine. 2022 Oct; 88(4): 1764-1774. doi:10.1002/mrm.29302.

3.1 Introduction

Functional lung imaging is of great importance for diagnosis and follow-up of preva-
lent lung diseases (Bauman and Bieri, 2017; Bauman, Pusterla, and Bieri, 2016). To
this end, novel non-contrast-enhanced MRI methods have been proposed to acquire
regional pulmonary functions as well as morphological information without the use
of ionizing radiation (Weis et al., 2016a; Zöllner et al., 2012) such as Fourier de-
composition (FD)(Bauman et al., 2009; Kjørstad et al., 2015), self-gated non-contrast-
enhanced functional lung imaging (Fischer et al., 2014), perfusion-weighted phase-
resolved functional lung (Behrendt et al., 2020), or ultrashort TE-based techniques
(Tibiletti et al., 2016; Feng et al., 2018; Delacoste et al., 2019; Balasch et al., 2020).

Fourier decomposition MRI provides regional perfusion and ventilation infor-
mation by acquiring a series of 2D images during free breathing to capture periodic
signal variations associated with perfusion and ventilation (Bauman et al., 2009).
Originally developed using balanced SSFP sequence (bSSFP) due to its high SNR
for short TRs (Bangerter et al., 2004), this technique can be used with other imag-
ing sequences (Bauman, Pusterla, and Bieri, 2016; Bauman, Pusterla, and Bieri, 2019;
Schönfeld et al., 2015; Corteville et al., 2015). Nevertheless, the bSSFP sequence
provides higher SNR compared with other sequences (Bauman, Pusterla, and Bieri,
2019), and it has shown promise for clinical use (Capaldi et al., 2015; Bauman et al.,
2013; Nyilas et al., 2017; Nyilas et al., 2019; Kaireit et al., 2018).

However, the bSSFP sequence is known to be sensitive to magnetic field inho-
mogeneities. Multiple lung-air interfaces presented by the airways as well as tis-
sues outside the lung lead to prominent susceptibility differences and local mag-
netic field inhomogeneity (Wild et al., 2012b; Saritas, Holdsworth, and Bammer,
2014; Deppe et al., 2009; Kurz et al., 2021). This, in turn, creates regions with large
off-resonant frequencies and results in local signal losses and signal inhomogene-
ity in bSSFP acquisitions, also known as banding artifacts (Scheffler and Lehnhardt,
2003; Cukur, 2015; Bieri and Scheffler, 2013; Çukur, Lustig, and Nishimura, 2008).
As such, these signal inhomogeneities and artifacts can be misinterpreted and may

https://doi.org/10.1002/mrm.29302
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cause misdiagnosis (Deppe et al., 2009; Sá et al., 2014; Heidenreich et al., 2020).
Although dedicated pulse sequences with shortened TR or improved SNR perfor-
mance have been previously proposed (Bauman, Pusterla, and Bieri, 2016; Corteville
et al., 2015), these methods modify durations of excitation and spatial encoding to-
ward scanner-specific hardware limits, hindering widespread clinical use. Moreover,
the wider availability of clinical 3T scanners and the growing trend toward higher
field strengths further limit the adoption of FD MRI due to more pronounced band-
ing artifacts (Bauman, Pusterla, and Bieri, 2019).

Several methods were previously proposed to alleviate banding artifacts in dif-
ferent bSSFP imaging applications (Atiyah, Keith, and Fallone, 2010; Roeloffs et al.,
2019; Hilbert et al., 2018; Çukur, 2016), with multiple-acquisition method being the
most common (Cukur, 2015). In multi-acquisition bSSFP, multiple RF phase incre-
ments are used to alter the location of banding artifacts (Ilicak et al., 2017; Elliott et
al., 2007), and obtained images are combined afterward to suppress the banding arti-
facts (Çukur, Lustig, and Nishimura, 2008). A common tradeoff associated with this
method is the increase in number of acquisitions. In this regard, FD MRI becomes
a natural candidate, as it depends on the acquisition of multiple images, usually in
the order of hundreds (Bauman et al., 2009).

Here, we propose a new technique that improves robustness against field inho-
mogeneities in FD MRI by incorporating multiple RF phase cycle increments into
bSSFP acquisitions (Ilicak et al., 2021). By changing the RF phase increments dur-
ing the dynamic acquisition (hereafter referred to as phase-cycled acquisition), we
are able to obtain images with spatially shifted banding artifacts. These images are
then grouped and processed with FD MRI, and the generated functional maps are
combined to improve robustness against banding artifacts. To this end, we compare
the robustness against field inhomogeneities of the phase-cycled acquisitions to the
conventional acquisitions by means of functional map homogeneity. In addition, we
demonstrate results for in vivo functional lung imaging both at the commonly used
field strengths of 1.5 T and at 3 T, where the adaption of FD MRI has been limited
due to stronger banding artifacts.

3.2 Methods

3.2.1 Fourier decomposition MRI

In conventional FD MRI, 2D bSSFP sequence with single RF phase increment (here-
after referred to as single-phase acquisition) constitutes the basis of the time-resolved
acquisitions to assess the signal variations arising from respiratory and cardiac cy-
cles (Bauman et al., 2009). Conventionally, a total of K images are acquired with a
frame rate of 3-4 images per second during free breathing (Bauman, Pusterla, and
Bieri, 2019), and registered using a nonrigid registration software (Ljimani et al.,
2021) to align lung structures, thus enabling the observation of regional parenchy-
mal density changes. Thereafter, temporal Fourier transform is used to spectrally
analyze and obtain the signal changes corresponding to respiratory and cardiac fre-
quencies, resulting in ventilation-weighted and perfusion-weighted maps.

3.2.2 Phase-cycled bSSFP

In contemporary phase-cycled bSSFP, N images are acquired with different RF phase
cycle increments ∆ϕn with n ∈ [1 N] (Cukur, 2015; Lauzon and Frayne, 2009a) (see
Section 3.6 for a detailed expression of acquired bSSFP signal). The goal of phase



3.2. Methods 41

cycling is to take advantage of 2π-periodic spectral profile of bSSFP signal with re-
spect to off-resonance. By changing the phase increment ∆ϕn between [0 2π), spa-
tially shifted banding artifacts can be obtained across the FOV. Accordingly, each
phase-cycled acquisition can be interpreted as an artifact-free image (S0) multiplied
by a respective bSSFP profile, resulting in Sn = Cn · S0 (Ilicak et al., 2017) (similar to
spatial encoding achieved via receiver coil arrays).

3.2.3 Adaptation of phase-cycled bSSFP for FD MRI

In the case of phase-cycled FD MRI, each of the K images can be acquired with a
different phase cycle increment, creating the possibility of N = K different bSSFP
profiles, at the expense of transient-state behavior. Regardless, these bSSFP profiles
would act as a spatial encoding, and in the frequency spectrum of the time series,
this would create an additional frequency peak corresponding to the rate of change
in phase cycling.

In this work, a block-wise phase-cycling scheme was used with N = 4 differ-
ent phase cycles (Benkert et al., 2015), in which phase increments were selected as
∆ϕ = 0, π/2, π, 3π/2. An overview of the acquisition scheme and postprocessing
for phase-cycled FD MRI is shown in Figure 3.1. In this scheme, K/4 images are
acquired for each phase cycle consecutively before changing the phase increment.
Block-wise scheme was selected due to the transient-state behavior of the bSSFP sig-
nal (Bauman et al., 2009), and to make image registration less error prone to varying
banding artifacts.

FIGURE 3.1: Overview of the proposed method. Phase-cycled Fourier
decomposition MRI uses balanced SSFP (bSSFP) acquisitions with dif-
ferent RF phase increments during free breathing. Images acquired
with different phase-cycle increments are then individually processed
with Fourier decomposition MRI to obtain respective functional
maps. Afterward, quantitative maps are generated and large ves-
sels are excluded. Finally, individual functional maps are weighted-

combined to obtain final functional maps.

To enable a careful comparison between single phase with phase-cycled acqui-
sitions, manufacturer-provided bSSFP pulse sequence was modified to acquire K
images with a single RF phase increment ∆ϕ = π, followed by K images acquired
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with N = 4 different phase increments during a single runtime with identical se-
quence parameters. Additionally, pause between measurements and slice thickness
limitations were modified to have better control over temporal resolution and SNR
(Bauman et al., 2009), without changing the durations of excitation or spatial encod-
ing.

3.2.4 Data acquisitions

The MRI experiments were performed using a 1.5T and a 3T scanner (Magnetom
Aera and Magnetom Skyra, Siemens Healthineers, Erlangen, Germany). Five healthy
volunteers (ages 19-29; 3 female, 2 male) underwent free-breathing MRI scans in
supine position after obtaining written informed consent. The sequence parameters
at 1.5T (3T) consisted of TE/TR=0.80/1.88 (1.02/2.31) ms and acquisition time=174
(188) seconds. For each volunteer, a total of 560 images were acquired: 280 im-
ages using single RF phase increment followed by 280 images with phase cycling
scheme. The rest of the parameters at both field strengths were as follows: slice thick-
ness=15 mm, pause between measurements=200 ms, α=50◦, FOV=450×450 mm2,
matrix=128×128 (scanner interpolated to 256×256), asymmetric echo readout, par-
tial Fourier=6/8, bandwidth=1302 Hz/px, and parallel imaging with GRAPPA fac-
tor 3 using 24 integrated phase-encoding lines as the autocalibration region in each
image.

3.2.5 Image postprocessing and analyses

Phase-cycled acquisitions were divided into four different subgroups (SGs) based
on their RF phase-cycle increment. The initial six images of each subgroup were
discarded to eliminate transient state behavior (Bauman et al., 2009). Subgroups
were then registered using a prototype nonrigid registration software, fMRLung 3.0
(Siemens Corporate Research, Princeton, NJ, USA) (Chefd’Hotel, Hermosillo, and
Faugeras, 2001; Chefd’hotel, Hermosillo, and Faugeras, 2002). A reference image of
each subgroup was chosen as the image closest to the average signal intensity of that
subgroup.

The FD analysis of the registered time-series data was performed voxel-wise to
estimate signal modulations caused by the respiratory and cardiac cycles (denoted
with FDV and FDQ, respectively). To reduce the variability of estimated ventilation
amplitude (Bauman and Bieri, 2017), a Savitzky-Golay filter was used to truncate
the time series into complete respiratory cycles (Fischer et al., 2014). Afterward,
quantitative ventilation and perfusion maps were generated for individual SGs. The
quantitative ventilation map (V Map) was calculated as follows:

V =
FDV

FDDC + FDV/2 − BG
· fV ml/min/ml (3.1)

where FDDC is the DC component of the time series; BG is the average of back-
ground noise estimate (η) from a region containing air; and fV is number of breaths
per minute (Bauman and Bieri, 2017; Kjørstad et al., 2015). The quantitative perfu-
sion map (Q Map) was calculated as:

Q =
FDQ

FDQ(blood)
· fQ

2
ml/min/ml (3.2)
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where FDQ is the whole perfusion-weighted image obtained via the FD analysis;
FDQ(blood) is the perfusion amplitude measured in a voxel completely filled with
blood; and fQ is the number of heart beats per minute (Bauman and Bieri, 2017;
Kjørstad et al., 2015). The combined functional maps were obtained from quantified
functional maps of individual SGs by segmenting lung parenchyma with exclusion
of large vessels, and combining maps via a linear weighted combination method, in
which the weights were proportional to estimated SNR (i.e., maximal ratio combin-
ing) (Barrow, 1963) in the lung parenchyma. The lung segmentation was performed
semi-automatically using a region-growing algorithm (Dirk-Jan Kroon, 2021), and
if needed, the region of interests were corrected manually (Heidenreich et al., 2020).
The air region was selected based on manual regions of interest (see Figure 3.5), and
same regions of interest were assigned across all acquisitions. To ensure fair compar-
ison, the single-phase acquisitions were processed identically to phase-cycled acqui-
sitions by separating the block of 280 images into four different SGs and following
the same postprocessing steps to obtain individual and combined functional maps.

To assess the image and functional map quality, we performed SNR, contrast-to-
noise ratio (CNR), and coefficient of variation (CV) analyses. The SNR and CNR
analyses were performed to ensure that phase-cycled acquisitions were able to ob-
tain similar image and functional map quality compared with single-phase acquisi-
tions, whereas the CV analysis was performed to assess the functional map homo-
geneity.

The SNR was estimated on registered image series using the power spectrum
of the time-series signal (Bauman, Pusterla, and Bieri, 2019). For the noise estimate
(η), frequency components above f =1.4 Hz were selected, as they did not include
components from respiratory or cardiac cycles. As such, SNR was estimated voxel-
wise as follows:

SNRMap =

√
P0/Ksg

η
(3.3)

where P0 represents the DC component of the power spectrum (f =0 Hz), and Ksg rep-
resents the number of images in the subgroup. The obtained SNRMap was smoothed
using a 2D Gaussian filter, and then averaged over the region containing lung paren-
chyma to obtain parenchymal SNR estimate (SNRL) (Bauman, Pusterla, and Bieri,
2019). The CNR of the lung parenchyma was calculated on ventilation-weighted
and perfusion-weighted maps obtained from the FD method (Bauman, Pusterla,
and Bieri, 2019). The CNR was defined as a ratio of mean functional amplitudes
within the lung parenchyma (FDV(lung), FDQ(lung)) and the region containing air
(FDV(air), FDQ(air)), as follows:

CNRV =
µ(FDV(lung))
µ(FDV(air))

, CNRQ =
µ(FDQ(lung))
µ(FDQ(air))

(3.4)

Finally, to assess functional map homogeneity, CV was defined as the ratio of
SD to mean functional amplitudes within the lung parenchyma obtained from the
quantified functional maps (V(lung),Q(lung)), as follows (Tedjasaputra et al., 2013;
Stadler et al., 2005):

CVV =
σ(V(lung))
µ(V(lung))

, CVQ =
σ(Q(lung))
µ(Q(lung))

(3.5)

For statistical analysis, the distributions of quantitative metrics were evaluated
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for normality using Kolmogorov-Smirnov test. When data were not normally dis-
tributed, paired Wilcoxon signed-rank test was used; otherwise, paired t-test was
used. Differences were considered statistically significant when p < 0.05.

3.3 Results

Representative quantitative ventilation maps obtained from a volunteer at 1.5T and
3 T are shown in Figure 3.2, in addition to difference maps between individual SGs
and combined maps. At both field strengths, ventilation maps of individual SGs,
including the conventional ∆ϕ = π acquisition, display local signal losses as well as
inhomogeneity across the parenchyma. In comparison, the combined maps reduce
the local signal losses and display more homogeneous ventilation values.

FIGURE 3.2: Quantitative ventilation maps (denoted as V Map) ob-
tained from individual subgroups (SGs) and their combination are
shown for a volunteer, overlaid on representative cross sections at
1.5T and 3T with respective CV (in units of 10−2) values. In addition,
difference maps between subgroups (SGs) and combined map and
mean absolute error (MAE, in units of 10−2) values are displayed. At
both field strengths, local signal losses (orange arrows highlight for
conventional ∆ϕ = π acquisition) and signal inhomogeneity is ob-
served across the SGs. In comparison, the combined maps reduce
local signal losses while improving map homogeneity across lung pa-

renchyma.



3.3. Results 45

Representative quantitative perfusion maps obtained from a different volunteer
at 1.5T and 3T are shown in Figure 3.3, in addition to difference maps between in-
dividual and combined maps. Although the combined maps at both field strengths
suffer from reduced perfusion signal intensity compared with ∆ϕ = π acquisitions,
they are still able to display small vascular structures and parenchymal perfusion
values. Additionally at 3 T, all SGs suffer from local signal losses due to stronger
banding artifacts. In contrast, the combined map is able to improve robustness
against these signal losses.

FIGURE 3.3: Quantitative perfusion maps (denoted as Q Map) ob-
tained from individual SGs and their combinations are shown for a
volunteer, overlaid on representative cross sections at 1.5T and 3T
with respective CV (in units of 10−2) values. In addition, difference
maps between SGs and combined map and MAEs (in units of 10−2)
are displayed. At 3 T, individual SGs suffer from local signal losses
within the lung parenchyma, as visible in the difference maps. In
comparison, the combined maps reduce local signal losses while pro-

viding increased map homogeneity.

The corresponding SNRL and CNR measurements are presented in Tables 3.1
and 3.2. At 1.5T, the ∆ϕ = π acquisitions provide the highest mean SNRL, whereas
the ∆ϕ = 0 acquisitions perform the worst. Nevertheless, for combined measure-
ments, SNRL difference between acquisition methods is not significant (p ≥ 0.05).
Similarly, for combined measurements, CNRV and CNRQ differences between the
two methods are not significant. At 3T, for each subgroup and method (except for
SG1 of phase-cycled acquisition), SNRL values are lower compared with 1.5T due to
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TABLE 3.1: Parenchymal SNR of registered images and CNR mea-
surements obtained from functional maps for individual subgroups
(SGs) and for both methods at 1.5T and 3T field strengths. Metrics are
reported separately for each subgroup as mean±std across 5 subjects.

1.5 Tesla
Single-Phase SG 1 SG 2 SG 3 SG 4

SNRL 40.7±9.8 39.1±6.3 38.3±5.6 41.8±8.3
CNRV 28.9±12.8 30.3±14.6 33.5±18.2 26.0±11.1
CNRQ 10.3±2.5 11.8±3.1 12.7±4.7 13.0±4.6

Phase-Cycled SG 1 SG 2 SG 3 SG 4
SNRL 12.1±4.0 20.6±7.3 35.5±7.2 29.4±4.0
CNRV 21.5±10.6 24.3±14.3 31.6±17.7 31.7±14.2
CNRQ 21.6±6.2 14.7±3.8 11.5±3.8 14.4±4.4

3 Tesla
Single-Phase SG 1 SG 2 SG 3 SG 4

SNRL 14.0±5.3 13.2±3.5 12.1±2.8 13.4±3.6
CNRV 21.5±10.0 22.1±10.5 24.2±10.6 23.3±11.0
CNRQ 19.2±6.3 16.2±3.4 15.2±2.2 17.9±4.4

Phase-Cycled SG 1 SG 2 SG 3 SG 4
SNRL 12.2±1.5 10.1±2.1 13.1±2.6 16.0±3.6
CNRV 24.5±8.1 15.7±4.9 19.3±7.0 30.5±11.8
CNRQ 19.4±3.4 14.4±2.8 15.1±2.1 19.4±3.5

increased susceptibility effects. For the combined measurements, the SNRL, CNRV ,
and CNRQ differences between both methods are not significant, respectively. Taken
together, these results suggest that phase-cycled acquisitions do not suffer from re-
duced bSSFP pass-band efficiency compared with single-phase acquisitions.

Figure 3.4 displays the combined functional maps overlaid on top of combined
cross-sections at 1.5T and 3T for again a different volunteer. At both field strengths,
the phase-cycled acquisitions are able to suppress local signal losses in ventilation
maps more successfully compared with single-phase acquisitions. Regarding per-
fusion maps, phase-cycled acquisitions are able to display prominent structures at
both field strengths, and at 3T, phase-cycled acquisition provides better depiction of
parenchymal perfusion compared with single-phase acquisition.

Homogeneity assessments of combined functional maps are listed in Table 3.3.
In terms of ventilation map assessments, CV values at both field strengths show
that phase-cycled acquisitions significantly improve the ventilation map homogene-
ity compared with the conventional single-phase acquisitions (p < 0.05). In terms
of perfusion map assessments, although we observe a tendency toward lower CV
values at 3T for phase-cycled acquisitions, we do not observe a significant difference
between the two methods at both field strengths.
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TABLE 3.2: Parenchymal SNR and CNR measurements obtained from
the combined measurements at 1.5T and 3T field strengths. For the
combined SNRL measurements, normalized registered images of in-
dividual subgroups were analyzed and weighted combined with re-
spect to the estimated SNR. For the combined CNR measurements, in-
dividual functional maps (FDV and FDQ) were weighted combined
with respected to estimated SNR and corrected for the number of
breaths and heart beats per minute ( fV and fQ), but were not quan-
tified according to Equations 3.1 and 3.2 in order to avoid amplified
signal levels in the air regions. Metrics are reported as mean±std

across 5 subjects.

1.5 Tesla Single-Phase Phase-Cycled
SNRL 40.7±5.1 34.4±4.5
CNRV 30.0±14.3 29.7±14.0
CNRQ 11.9±3.4 14.3±4.1

3 Tesla Single-Phase Phase-Cycled
SNRL 13.5±4.0 14.1±2.4
CNRV 22.8±10.2 22.7±6.4
CNRQ 17.2±3.9 17.2±1.8

TABLE 3.3: Coefficient of variation (CV in units of 10−2) measure-
ments of combined functional maps are reported at 1.5T and 3T field
strengths. Metrics are reported for each combined functional map as
mean±std across 5 subjects, * and ** denotes significant differences

(p < 0.05) between respective groups.

Ventilation - CVV

1.5T
Single-Phase 39.9±5.2*
Phase-Cycled 29.7±2.6*

3T
Single-Phase 49.5±3.7**
Phase-Cycled 37.5±3.1**

Perfusion - CVQ

1.5T
Single-Phase 54.0±5.2
Phase-Cycled 55.3±4.9

3T
Single-Phase 95.8±15.3
Phase-Cycled 84.5±6.7
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FIGURE 3.4: Combined functional maps of SGs for both methods
overlaid on combined cross section at 1.5T and 3T. At both field
strengths, the quantitative ventilation maps (denoted as V Map) ob-
tained from phase-cycled acquisitions show robustness against local
signal losses (orange arrows) compared with single-phase acquisi-
tions. Regarding perfusion maps (denoted as Q Map), phase-cycled
acquisitions display slightly reduced signal levels compared with
single-phase acquisitions, due to averaging of multiple phase cycles,
including acquisitions with suboptimal SNR. Nevertheless, phase-
cycled acquisitions are able to reproduce prominent structures (teal
arrows) at both field strengths and improve parenchymal perfusion

depiction at 3T.

3.4 Discussion

In this work, phase-cycled bSSFP acquisitions were investigated for functional lung
imaging at 1.5 T and 3 T field strengths. As demonstrated, magnetic field inhomo-
geneities can cause signal losses in the bSSFP-based FD MRI technique, resulting in
inhomogeneous functional maps. By using RF phase cycling, the spatial location
of these signal losses can be shifted, resulting in robustness against field inhomo-
geneities in combined maps. Our results indicate that, compared with the conven-
tional acquisition, phase-cycled acquisitions show improved robustness against field
inhomogeneities while significantly improving ventilation map homogeneity at both
field strengths.

The reduced mean SNRL values for phase-cycled acquisitions compared with
single-phase acquisitions at 1.5 T can be explained by the frequency response of
bSSFP, as the conventional ∆ϕ = π acquisitions shift the center of pass band to
achieve the highest steady-state signal (Bieri and Scheffler, 2013). Nevertheless, this
reduction in SNRL is not statistically significant at both field strengths. Also, note
that with increased field inhomogeneity and susceptibility effects at 3 T, the single-
phase acquisition is not able to achieve center-of-pass-band consistently across lung
parenchyma, as indicated by the reduced differences of SNRL values between acqui-
sitions with different phase increments. Regarding the limited improvement in CVQ
values, one possible explanation is the continuous flow of unsaturated blood into
the imaging slice. The inflowing blood would be in the transient state compared
with the steady state reached in pulmonary parenchyma (Scheffler and Lehnhardt,
2003); thus, phase cycling would have limited effect on blood and hence on perfu-
sion maps.
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In this work, quantitative maps obtained with different field strengths are dis-
played for different scales for better visualization. Although our quantitative venti-
lation and perfusion values at both field strengths are in agreement with previous
studies (Bauman, Pusterla, and Bieri, 2019; Glandorf et al., 2020), the scaling was
done to partially overcome the limitations arising from the quantification methods.
The ventilation quantification method developed by Zapke et al. (Zapke et al., 2006)
models the relative proton density change but omits tissue relaxation differences.
Similarly, the perfusion quantification method developed by Kjørstad et al. (Kjørstad
et al., 2014a) neglects the differences between blood and lung relaxation (Fischer et
al., 2008). However, even when the influence of respiratory state on tissue relaxation
parameters is ignored (Stadler et al., 2005), the image contrast (eg, T2/T1 weight-
ing for bSSFP) would affect the quantification results, leading to a bias depending
on field strength and sequence parameters (eg, TE, TR, flip angle). We speculate
that the significantly higher quantitative perfusion results observed by Behrendt et
al. (Behrendt et al., 2020) compared with dynamic contrast-enhanced MRI, and the
poor reproducibility of quantitative ventilation and perfusion values between 1.5 T
and 3 T stated by Glandorf et al. (Glandorf et al., 2020) are also due to the omission
of tissue-relaxation terms in the quantification step. To overcome this problem, fur-
ther studies are needed to develop quantification methods that take tissue-relaxation
properties into account.

A possible limitation of the phase-cycling scheme stems from the transient behav-
ior observed in the received bSSFP signal. To alleviate this, the initial six images in
every subgroup were excluded as previously suggested (Bauman et al., 2009). This
equates to a loss of about 2 s of acquisition time per phase-cycle increment (i.e., an ad-
ditional 6 s of excluded acquisition time compared with conventional acquisitions).
For this reason, the phase-cycled FD method suffers from a lower scan efficiency
compared with the conventional FD method. Please note that for successful applica-
tions of FD MRI, multiple respiratory and cardiac cycles are needed to be captured
with sufficient temporal resolution (Ilicak et al., 2019a) and commonly, images in the
order of hundreds are acquired for FD-MRI applications (Bauman and Bieri, 2017;
Ljimani et al., 2021). Here, the total number of acquisitions prescribed was within
the range of values previously used for conventional acquisition studies (Bondes-
son et al., 2019), and no additional time was required to accommodate additional
phase cycle increments. Another limitation of the current implementation originates
from the phase cycle increments used in this study. Here, we selected the commonly
used equispaced phase increments across [0 2π) (Benkert et al., 2015). As our obser-
vations indicate, this phase cycling scheme might be suboptimal for lung imaging,
and future investigations are warranted to improve signal characteristics at differ-
ent field strengths. Finally, this study was limited to a small sample size of healthy
subjects, and further investigations might be needed to determine the sensitivity of
the phase-cycled acquisition scheme to clinically relevant ventilation and perfusion
abnormalities.

Several different approaches were previously proposed for improving 2D func-
tional lung imaging. Recently, spoiled gradient echo-based acquisitions displayed
favorable results (Bauman, Pusterla, and Bieri, 2019; Voskrebenzev et al., 2017). Nev-
ertheless, the SSFP-based techniques should yield higher SNR compared with these
techniques (Bauman, Pusterla, and Bieri, 2019). Another strategy, termed as uf-SSFP,
aims to reduce durations of excitation and spatial encoding to achieve very short TE
and TR (Bauman, Pusterla, and Bieri, 2016; Bieri, 2013). While this pulse sequence
has shown improved results compared with bSSFP sequence, field inhomogeneity
artifacts at 3 T still hinder its usability.
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The proposed strategy can be advanced along several lines. First, the pulse se-
quence optimization procedures of uf-SSFP can be combined with phase cycling to
further improve robustness against field inhomogeneities, while improving paren-
chymal signal intensity (Bieri, 2013). Second, here we used the conventional FD ap-
proach to obtain functional maps. Instead, more advanced methods can be used to
improve the postprocessing (Bauman and Bieri, 2017; Bondesson et al., 2019). Third,
we did not analyze the V/Q ratio due to inherent issues arising from the quantifica-
tion techniques. Nevertheless, with improved quantification methods, MRI-based
V/Q imaging may become a viable alternative for detecting V/Q abnormalities
(Björkman et al., 2011) and pulmonary diseases (Le Roux, Le Gal, and Salaun, 2020).
Finally, because this study focused on obtaining functional maps, banding artifact
correction was not implemented on the time-resolved images. In cases in which
banding artifacts cause notable errors, such as during nonrigid image registration,
more sophisticated techniques can be leveraged for artifact suppression before FD
analysis (Biyik, Ilicak, and Çukur, 2018). Nevertheless, the weighted combination of
functional maps acts as a method to mitigate the effects stemming from field inho-
mogeneities (Bangerter et al., 2004), and although more sophisticated combination
techniques have been previously suggested (Çukur, Lustig, and Nishimura, 2008),
the combination method was used to preserve the linearity in quantified functional
maps.

3.5 Conclusions

In this work, we have proposed an alternative acquisition scheme for non-contrast-
enhanced functional lung imaging. The method uses RF phase cycling during acqui-
sition to obtain multiple images with different signal characteristics. Although the
phase-cycled acquisition suffers from lower scan efficiency compared with single-
phase acquisition, it improves robustness against local signal losses, and signifi-
cantly improves ventilation map homogeneity at both field strengths. Overall, phase-
cycled acquisition demonstrates improved robustness against magnetic field inho-
mogeneities at both field strengths, and may serve as a valuable tool in the clinical
adaptation of FD MRI at 3 T field strength.

3.6 Appendix

MRI signal acquired at spatial location r for nth phase cycled increment can be ex-
pressed as (Cukur, 2015):

Sn = M(r)
ei(ϕ(r)+∆ϕn)TE/TR · (1 − A(r)e−i(ϕ(r)+∆ϕn))

1 − B(r)cos(ϕ(r) + ∆ϕn)
(3.6)

where TE is the echo time, TR is the repetition time, ϕ(r) is the phase accrual over a
single TR due to off-resonance, and ∆ϕn is the RF phase cycle increment. The terms
M(r), A(r), and B(r) are defined as (Cukur, 2015):

M(r) =
iM0e−TE/T2(r)(1 − E1(r))sinα

1 − E1(r)cosα − (E1(r)− cosα)E2
2(r)

(3.7)

A(r) = E2(r) (3.8)
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B(r) =
E2(r)(1 − E1(r))(1 + cosα)

1 − E1(r)cosα − (E1(r)− cosα)E2
2(r)

(3.9)

where M0 is the equilibrium magnetization, α is the flip angle, E1(r) = e−TR/T1(r),
E2(r) = e−TR/T2(r), T1(r), and T2(r) denote longitudinal and transverse relaxation
times, respectively. Note that in Equation 3.6, the terms M, A, B depend on sequence
and tissue relaxation parameters, but do not depend on off-resonance or phase incre-
ments (Biyik, Ilicak, and Çukur, 2018).

FIGURE 3.5: For the selection of air region, manual ROIs were used.
The selected ROIs are displayed in color blue, overlaid on representa-
tive magnitude images in grayscale. Same ROIs were assigned for all

subjects and at both field strengths.
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Chapter 4

Dynamic mode decomposition of
dynamic MRI for assessment of
pulmonary ventilation and
perfusion

This chapter is based on the following publication: Efe Ilicak, Safa Ozdemir, Jascha
Zapp, Lothar R. Schad, Frank G. Zöllner. "Dynamic Mode Decomposition of Dy-
namic MRI for Assessment of Pulmonary Ventilation and Perfusion." Magnetic Reso-
nance in Medicine. 2023 Aug; 90(2): 761- 769. doi:10.1002/mrm.29656.

4.1 Introduction

Fourier decomposition (FD) (Bauman et al., 2009) and related methods such as self-
gated non-contrast-enhanced functional lung imaging (SENCEFUL) (Fischer et al.,
2014) or phase-resolved functional lung imaging (PREFUL) (Voskrebenzev et al.,
2018) have been demonstrated as viable options for obtaining regional pulmonary
ventilation and perfusion information during free-breathing and without the use of
contrast agents (Ljimani et al., 2021). These methods make use of the periodic sig-
nal changes associated with proton density changes due to respiration (Zapke et
al., 2006) and flow of unsaturated spins due to pulsation (Risse and Bauman, 2016).
In order to identify regional ventilation and perfusion related signal changes, these
methods combine nonrigid registration of dynamic acquisitions with either spectral
analysis based on temporal Fourier transform (Bauman et al., 2009) or synthetization
of complete respiratory and cardiac cycles via sorting and interpolation (Voskreben-
zev et al., 2018).

Previous studies have successfully implemented Fourier transform-based tech-
niques to obtain local pulmonary functions for diagnostic purposes, such as in cys-
tic fibrosis (Nyilas et al., 2017) or chronic obstructive pulmonary disease patients
(Behrendt et al., 2020). More recently, modifications to the FD approach have been
proposed to improve functional image quality. These include nonuniform Fourier-
based approach to improve robustness against frequency variations (Bondesson et
al., 2019); respiratory and cardiac phase estimation methods, such as self-gating ap-
proaches to achieve k-space based phase estimation with data binning (Fischer et al.,
2014; Mendes Pereira et al., 2019), or image-domain based phase estimation with
fitting of images onto a single sine wave (Voskrebenzev et al., 2018; Behrendt et
al., 2020). While these methods have shown improved image quality compared to
the original FD technique, these approaches require multi-step post-processing with
multiple filtering operations followed by the temporal Fourier analysis. Moreover,

https://doi.org/10.1002/mrm.29656
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the Fourier transform of incomplete time-series is known to cause spectral distor-
tions (Lin et al., 1997), which can lead to erroneous estimation of signal amplitudes.
As such, these methods can suffer from the amplitude and frequency estimation is-
sues (Bondesson et al., 2019).

To improve the robustness of amplitude and frequency estimation, modifications
to the FD method such as truncation of acquisitions into complete time-series (Ilicak
et al., 2022b); and more advanced techniques such as matrix pencil (MP) decompo-
sition (Bauman and Bieri, 2017) which rely on Hankel matrix structure have been
previously proposed. Yet, the truncation method decreases the scan efficiency by
excluding collected measurements during post-processing; whereas the MP imple-
mentation described previously (Bauman and Bieri, 2017) requires a multi-step ap-
proach with low-pass and high-pass filtering operations before the spectral analysis.
Moreover, the MP technique is not capable of estimating frequencies and amplitudes
simultaneously (Pogorelyuk and Rowley, 2018), and is not capable of obtaining the
dynamic system matrix (Alassaf and Fan, 2021).

Here, we propose a new technique based on dynamic mode decomposition
(DMD) to identify dominant spatiotemporal features from the registered dynamic
images. Compared to other techniques, a unique advantage of DMD is its ability
identify system matrix, which provides a matrix representation of the underlying
dynamics (Kutz et al., 2016). As such, DMD is able to extract physically interpretable
spatiotemporal features (Kutz et al., 2016). To demonstrate the proposed approach,
comprehensive evaluations were performed across phantom simulations and in vivo
volunteer measurements.

4.2 Methods

4.2.1 DMD

Originally proposed by the fluid mechanics community to decompose complex flow
fields, the DMD is a relatively new data-driven method for modal analysis of time-
series acquisitions (Schmid et al., 2011). More broadly, it has been successfully
demonstrated in various fields ranging from power systems analysis (Alassaf and
Fan, 2021) to medical imaging (Groun et al., 2022; Tirunagari et al., 2017), to identify
dominant spatiotemporal coherent structures.

DMD is a data-driven method, which relies on measurements (also called snap-
shots) collected from a dynamic system. More specifically, consider measurement of
a discrete-time dynamic system that is sampled with fixed sampling rate ∆t, so that
samples xk are collected at regular time intervals as xk = x(k · ∆t) where x ∈ Rn,
k = 1, 2, ..., m, and m is the number of measurements. The sequential measurements
xk and xk+1 are assumed to be related by a linear operator as:

xk+1 = Axk (4.1)

where the operator A ∈ Rn×n is the linearized dynamics matrix which maps the re-
lationship between the sequential measurements. The DMD algorithm constructs
a low-rank approximation of A that minimizes ||xk+1 − Axk||2 for samples k =
1, 2, ..., m− 1, which can be identified from the given measurements (Kutz et al., 2016;
Proctor, Brunton, and Kutz, 2016).
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To reduce the errors in this approximation, it is possible to arrange the m mea-
surements into two large data matrices as:

X =

 | | | |
x1 x2 ... xm−2 xm−1
| | | |

 , X′ =

 | | | |
x2 x3 ... xm−1 xm
| | | |

 (4.2)

where X′ is the time-shifted measurement matrix of X. The mapping operator be-
tween these rearranged matrices can be defined as:

A = X′X† (4.3)

where (·)† is the Moore-Penrose pseudoinverse, and this solution minimizes ||X′ −
AX||F, with || · ||F denoting Frobenius norm (Tu et al., 2014). The DMD of data
pair (X, X′) is given by the eigendecomposition of A, where the DMD modes and
eigenvalues are the eigenvectors and eigenvalues of A, respectively (Tu et al., 2014).

However, in practice it may be difficult to compute the eigendecomposition of
matrix A when its dimension n is large. Instead, the DMD can be efficiently ob-
tained without an explicit representation of A (Tu et al., 2014). For this, rank-reduced
representation can be accurately obtained via singular value decomposition (SVD).
First, the rank-r approximation of X can be obtained with SVD as X ≈ UΣV∗, where
(·)∗ denotes the conjugate transpose, U ∈ Cn×r, Σ ∈ Cr×r, V ∈ Cm×r, and n ≫ r.
Subsequently, an approximation of the mapping operator can be defined as:

A ≈ Ã ∆
= U∗AU = U∗X′X†U = U∗X′VΣ−1 (4.4)

where Ã ∈ Rr×r defines a low dimensional representation the dynamic system ma-
trix. Following, the eigendecomposition of Ã defined by ÃW = WΛ is carried out,
where columns of W ∈ Cr×r are the eigenvectors and Λ ∈ Cr×r is a diagonal matrix
containing eigenvalues. Last, the eigendecomposition of full-dimensional A can be
reconstructed using W and Λ. In particular, the eigenvalues of A and Ã are equiva-
lent and the dynamic modes of A can be computed as (Tu et al., 2014):

Φ = X′VΣ−1W (4.5)

As such, DMD allows for the efficient analysis of underlying system properties such
as oscillation frequencies and amplitudes of each mode, without explicitly comput-
ing the full-dimensional operator A.

4.2.2 DMD of the Respiratory Signal and Image Analyses

In non-contrast-enhanced functional lung imaging, dynamic images of the lungs are
obtained with fast acquisition methods. Conventionally, images in the order of hun-
dreds are acquired with a frame rate of three to four images per second during free
breathing to capture signal variations arising from respiration and cardiac pulsation.
Afterward, the lung structures are aligned using non-rigid registration, enabling the
observation of regional signal changes. Here, the non-rigid registrations were accom-
plished using fMRLung 3.0 software (Siemens Corporate Research) (Chefd’Hotel,
Hermosillo, and Faugeras, 2001; Chefd’hotel, Hermosillo, and Faugeras, 2002).

For the application of DMD in functional imaging, each frame of the m measure-
ments with nX × nY = n pixels are vectorized, resulting in m vectors with size n × 1.
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Here, to further improve the noise resilience and to prevent rank deficiency limita-
tions (Tu et al., 2014), DMD was implemented with data stacking. In data stacking,
multiple time-shifted copies of the data are stacked into a larger augmented matrix
to increase the rank of the measurement matrix. As such, data stacking helps miti-
gate rank deficiencies (Rot, Horvat, and Kosec, 2022) and can improve the accuracy
of the reduced-order system in extraction of information (Alassaf and Fan, 2021). Af-
terward, r = 15 most dominant modes were identified with DMD, and the signal
modulations caused by ventilation and perfusion were obtained as:

Svent =
v

∑
k=1

bkϕk, Sper f =
q

∑
k=1

bkϕk (4.6)

where v and q indicate the number of identified respiratory and cardiac frequencies,
bk is the respective DMD mode amplitude, and ϕk is the respective DMD mode. Ex-
emplary DMD modes obtained from a volunteer measurement are displayed in Fig-
ure 4.1 with their respective frequencies and mode amplitudes. Last, fractional venti-
lation map (hereafter referred to as ventilation map) and normalized perfusion map
(hereafter referred to as perfusion map) were calculated as previously explained (Ili-
cak et al., 2022b; Kjørstad et al., 2014b). In this work, perfusion maps were normal-
ized using the 99th percentile of voxels inside an area encompassing lungs including
large vessels.

To comparatively demonstrate the performance of DMD, same dynamic acqui-
sitions were processed using conventional FD and MP decompositions. For the
FD method, scanner-reconstructed images were processed as previously described
(Bauman et al., 2009), without the additional Hann filtering. For the MP method a
reduced-rank MP decomposition was implemented to improve its robustness against
noise described (Sarkar and Pereira, 1995). The input signal of MP was obtained
from the summation of center of the images (Bauman and Bieri, 2017) without the
low-pass and high-pass filtering operations. The MP rank was selected automati-
cally (Sarkar and Pereira, 1995) and pencil parameter was set as L = m/2 to ap-
proach Cramér-Rao bound (Trinh and Overbye, 2019). For quantitative comparisons,
mean functional map values over the lung parenchyma were calculated to assess
dependency on the number of measurements. To this end, functional maps were ob-
tained from measurement sets with varying lengths ℓ, where ℓ ∈ [50 m] and the sets
included measurements between [1 ℓ]. Then, the mean functional values were calcu-
lated over regions of interest (ROIs) encapsulating the lung parenchyma. The ROIs
were obtained semi-automatically from magnitude images (Dirk-Jan Kroon, 2021),
and if needed, were manually corrected. Differences between the dispersions of the
mean values were assessed using Ansari-Bradley test (Ansari and Bradley, 1960) and
were considered significant when p < 0.05.

4.2.3 Phantom Simulations

Simulations were performed on a digital lung phantom to assess the accuracy of
the mean functional map amplitudes using different decomposition methods. To
this end, the phantom was generated for m = 480 measurements and with three
tissue types: background, large vessels, and lung parenchyma. For parenchymal
tissue, ventilation and perfusion related signal variations were simulated according
to modified Lujan formulation as described previously (Bauman and Bieri, 2017);
whereas for large vessels only perfusion related signal variations were simulated.
The phantom was evaluated for two cases: (i) a noise-free case with fixed respiratory
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FIGURE 4.1: Representative DMD modes obtained from a volunteer
measurement. The modes are obtained from a rank-15 approxima-
tion. Here, only a single component of complex conjugate pairs is
displayed. The corresponding mode frequencies ( f ) and mode am-
plitudes (b) are also displayed overlaid on the modes. The DMD
algorithm provides physically interpretable results while identifying
dominant spatiotemporal features; such as ventilation and perfusion
related signal variations together with secondary motions or harmon-
ics. Here, mode with f = 0.41 Hz was associated with ventilation re-
lated signal changes, whereas modes with f = 1.05 Hz and f = 1.18

Hz were associated with perfusion related signal changes.

and cardiac frequencies at fV = 0.2 Hz and fQ = 1.0 Hz; respectively, to replicate an
idealized case, and (ii) a noisy case with varying respiratory and cardiac frequencies
to replicate a more realistic acquisition. For the second case, separate noise instances
with a bivariate Gaussian distribution were added to simulated magnitude images
to attain acquisition SNR=50 for parenchymal tissues (Ilicak et al., 2017; Bauman,
Pusterla, and Bieri, 2019). To create varying frequencies, the simulations started
with a section at fV = 0.2 Hz and fQ = 1.0 Hz and and ended with a section at fV =
0.18 Hz and fQ = 0.9 Hz. Between these sections of constant frequencies, a linear
decrease in respiration and cardiac frequencies was prescribed for a duration of 20
samples. The generated phantoms and the simulated signals for lung parenchyma
are displayed in Figure 4.2.
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FIGURE 4.2: (A) A noise-free digital phantom was generated with
three different tissue types for m = 480 different measurements. Sig-
nal changes associated with ventilation and perfusion were simulated
in parenchymal tissues, whereas for large vessel structures, perfusion
related signal changes were simulated. (B) Signal changes across m
are shown for a pixel in the parenchymal tissue (shown in (A) with
red crosshair). (C) Ventilation and perfusion values were estimated
using FD, MP, and DMD for measurement sets with different lengths,
ℓ ∈ [50 480], and the mean values were obtained by averaging across
parenchymal tissues. (D) For a more realistic case, bivariate Gaussian
noise was added to the phantom, and respiratory and cardiac frequen-
cies were varied. (E) Frequencies were linearly decreased during a 20-
sample duration (shown with gray zone). The signal changes across
m are shown for a pixel in parenchymal tissue (shown in (D) with red
crosshair). (F) Ventilation and perfusion values were estimated using
FD, MP, and DMD for measurement sets with ℓ ∈ [50 480], and mean

values were obtained by averaging across parenchymal tissues.

4.2.4 MRI Data Acquisitions

All volunteer measurements were performed on a 1.5T scanner (Magnetom Aera,
Siemens Healthineers, Erlangen, Germany) using a conventional 2D bSSFP pulse se-
quence. Five healthy volunteers underwent free breathing MRI scans in supine po-
sition after obtaining written informed consent, and the imaging protocols were ap-
proved by the local ethics committee. A single slice location was imaged in coronal
orientation for each volunteer, and the slices were positioned posterior to the heart.
The sequence parameters consisted of FOV=450×450 mm2, 15 mm slice thickness,
TE/TR=0.80/1.88 ms, α=50◦, matrix size = 128×128 (256×256 with scanner interpo-
lation), parallel imaging with GRAPPA factor 3 with 24 integrated calibration lines,
asymmetric echo readout, partial Fourier=6/8, bandwidth=1302 Hz/px. The over-
all acquisition rate was 3.2 images/s with a 200 ms pause between measurements.
The initial six images were omitted to eliminate transient state behavior (Bauman et
al., 2009), and the remaining 250 images were analyzed to generate ventilation and
perfusion maps.
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4.3 Results

The proposed method is first demonstrated on simulated phantom measurements.
Mean ventilation and perfusion amplitudes estimated with FD, MP, and DMD us-
ing varying ℓ are shown in Figure 4.2. We observe that even under idealistic con-
ditions without frequency variations or noise, the FD method shows dependency
on ℓ. In comparison, both MP and DMD are able to extract amplitude information
successfully without showing such a dependency. However, under more realistic
conditions, we observe that MP method is not able to estimate the amplitudes suc-
cessfully, resulting in erroneous estimation of ventilation and perfusion values. In
comparison, DMD is able to extract both of these values more robustly compared
to both FD and MP methods. In particular, we observed that DMD significantly
reduced variations in estimated amplitude in ventilation maps (p < 0.05), and sig-
nificantly reduced variations in perfusion maps after the shift in cardiac frequency
(p < 0.05).

Next, we demonstrated DMD on in vivo bSSFP measurements. Representative
mean ventilation and perfusion amplitudes estimated with FD, MP, and DMD across
ℓ are shown for a volunteer in Figure 4.3. As expected, FD method shows a clear
dependence on ℓ which leads to oscillations in the estimated amplitudes. The MP re-
duces this dependency; yet it suffers from inconsistencies across different ℓ, leading
to sudden deviations in the estimated amplitudes. In contrast, DMD methods yields
noticeably improved ventilation and perfusion estimation and further reduces the
variations due to differences in ℓ.

FIGURE 4.3: Mean ventilation and perfusion results from a volunteer
were calculated over the lung parenchyma across measurement sets
with different lengths ℓ ∈ [50 250]. (A) The selected ROI (displayed
in white) encapsulating the lung parenchyma is shown overlaid on
a representative bSSFP magnitude image. The mean ventilation and
perfusion results are displayed in (B) and (C), respectively. FD shows
a dependency on ℓ, resulting in oscillations in estimated amplitudes.
MP decreases this dependency on ℓ and reduces the associated os-
cillations; however, it occasionally manifests sudden inconsistencies
along consecutive measurements in the estimation of amplitudes. In
contrast, the proposed DMD method further reduces the oscillatory
behavior, and can estimate respective amplitudes robustly across dif-

ferent ℓ.

Figure 4.4 depicts ventilation and perfusion maps obtained from a volunteer for
ℓ = 174, 175, 176 to show functional map consistency across measurements with
sequential lengths. Maps obtained with FD shows a dependence on , which results
in inconsistent estimation of ventilation values. Furthermore, for ℓ perfusion map
suffers from deteriorated image quality. The MP reduces the variations observed
in FD, yet it suffers from inconsistencies in amplitude estimations, as observed in
the ventilation map for ℓ = 176. In contrast, the proposed DMD method reliably
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obtains ventilation and perfusion maps and displays consistent amplitudes across
sequential ℓ.

FIGURE 4.4: (A) Ventilation and (B) perfusion maps obtained from a
volunteer for three sequential ℓ. Additionally, the mean ventilation
and perfusion values are calculated over lung parenchyma (shown
in white) and displayed overlaid on respective maps (mean values
are scaled by a factor of 100 for better visualization). Similarly, ven-
tilation map differences (C) and perfusion map differences (D) are
illustrated to highlight the spatial differences between DMD and com-
peting methods. Functional maps obtained with FD leads to stability
issues in estimated amplitudes depending on ℓ; and maps obtained
with MP indicate inconsistent estimation of amplitudes, as evident in
the ventilation map for ℓ = 176. In comparison, DMD displays con-

sistent results in both ventilation and perfusion maps across all ℓ.

The mean ventilation and perfusion values obtained using FD, MP, and DMD av-
eraged over ℓ are listed for all volunteers in Table 4.1. Overall, we observe that DMD
can reduce the variations in estimated amplitudes in both ventilation and perfusion
maps. In particular, employing the DMD resulted in significantly lower dispersion
in both ventilation and perfusion map amplitudes (except for perfusion values of
Volunteer 3) when compared with MP (p < 0.05).

4.4 Discussion

Here, DMD algorithm was investigated to obtain regional pulmonary ventilation
and perfusion information from dynamic acquisitions. Our results indicate that
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TABLE 4.1: Mean and standard deviation across different measure-
ment lengths ℓ ∈ [50 250] of average ventilation and perfusion values
estimated with FD, MP and DMD methods for all volunteers. The
average functional values at each ℓ are calculated over ROIs encom-
passing lung parenchyma, and the values are scaled by a factor of 100

for better visualization of differences.

Mean Ventilation [ml/ml×100]
Volunteer FD MP DMD

1 4.20±2.20 7.74±2.00 12.43±0.65
2 5.86±2.94 15.81±8.10 11.11±2.13
3 6.95±3.79 10.55±9.91 11.87±0.31
4 9.80±5.24 25.31±21.19 15.99±2.00
5 5.21±2.93 9.89±4.21 8.67±0.29

Mean Perfusion [normalized×100]
Volunteer FD MP DMD

1 10.45±0.61 12.45±0.59 10.55±0.43
2 11.33±1.75 9.23±1.90 9.35±0.51
3 12.35±2.22 12.89±2.71 13.74±2.67
4 13.78±2.59 13.28±3.93 11.57±0.63
5 10.63±1.95 9.76±1.25 10.18±0.08

DMD is capable of successfully estimating functional information across different
number of measurements, while significantly reducing variations in estimated map
amplitudes. Additionally, our results suggest that DMD can generate functional
maps consistently for lower values of ℓ, which may potentially reduce scan times.
Nonetheless, this study focused on healthy volunteers; therefore, further investiga-
tions are needed to assess the lower limits of ℓ for diagnostic image quality in clinical
populations.

Regarding the performance differences between MP and DMD, under specific
conditions the MP and DMD methods are expected to produce the same results
(Pogorelyuk and Rowley, 2018). An example of this can be seen in the noise-free
phantom with constant frequencies in Figure 4.2. Nevertheless, under more real-
istic conditions, we observe that DMD can estimate respective amplitudes and fre-
quencies more robustly, which can be explained by the differences in the input data.
While the DMD method is able to utilize the complete measurements in the vector-
ized form, the MP method requires the summation of a central portion of the image,
leading to reduction in the available information.

Despite the linearity assumption between sequential measurements, DMD has
been linked to nonlinear dynamics via Koopman operator theory (Proctor, Brunton,
and Kutz, 2016). More specifically, it has been shown that the DMD algorithm is ca-
pable of approximating the modes of infinite-dimensional linear Koopman operator,
which can be defined to represent the dynamics of any nonlinear system (Kutz et al.,
2016; Mohapatra and Overbye, 2016). Therefore, for a nonlinear dynamic system,
the DMD algorithm provides a linear mapping that best approximates the nonlinear
dynamics (Schmid et al., 2011; Rot, Horvat, and Kosec, 2022). As such, DMD can be
utilized to analyze a nonlinear system (Tu et al., 2014), as it might be the case for in
vivo ventilation and perfusion measurements (Bondesson et al., 2019).

In this work, the DMD was utilized with a fixed rank to identify dominant modes.
While the implementation of DMD with r = 15 was able to identify ventilation and
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perfusion related changes in all volunteers, higher rank values might be needed to
identify spatiotemporal patterns in more complex breathing and/or cardiac patterns.
Therefore, future investigations are warranted to adaptively adjust the rank value
based on the input data.

The DMD algorithm is known to have limitations in characterizing transient time
phenomena (Kutz et al., 2016). While the DMD algorithm is able to provide accurate
assessment during continuous respiration and cardiac pulsation, it is important to
note that breath holding maneuvers may affect the results. Additionally, DMD is
computationally more intensive than FD or MP methods. Despite this, DMD analy-
sis of an in vivo dataset with 250 measurements lasts approximately 5 seconds, and
remains shorter than the computing times required for non-rigid registration (Lji-
mani et al., 2021).

Regarding the pulse sequence selection, the proposed method was demonstrated
on dynamic images obtained using the conventional 2D balanced SSFP (bSSFP) pulse
sequence due to its wide availability. Nevertheless, the DMD algorithm is inde-
pendent of the underlying pulse sequence and can be utilized with other pulse se-
quences capable of dynamic acquisition, such as standard or transient spoiled gradi-
ent echo (GRE) (Voskrebenzev et al., 2018; Bauman, Pusterla, and Bieri, 2019), ultra-
fast SSFP (Bauman, Pusterla, and Bieri, 2016), tiny golden angle UTE (Balasch et al.,
2020), or multi-acquisition bSSFP (Ilicak et al., 2022b).

Last, the proposed method can be advanced by incorporating additional priors to
DMD. Recently, extensions to DMD have been proposed to improve the eigenvalue
prediction, such as forward-backward algorithm (Dawson et al., 2016) to improve
noise resilience, multiresolution DMD algorithm to sift out information at differ-
ent time-scales (Kutz, Fu, and Brunton, 2016) akin to low-rank plus sparse meth-
ods (Otazo, Candès, and Sodickson, 2015; Ilicak, Saritas, and Çukur, 2022), or com-
pressed sensing DMD algorithms (Jovanović, Schmid, and Nichols, 2014; Bai et al.,
2020) to relax sampling requirements. These extensions can be incorporated to ex-
ploit the low-rank and sparsity properties present in the dynamic lung MR images
(Ilicak et al., 2019b; Ilicak et al., 2020) to further improve the performance of DMD
algorithm.

4.5 Conclusion

We have presented a data-driven method for obtaining regional pulmonary ventila-
tion and perfusion information from a series of dynamic acquisitions. The proposed
method employs DMD to robustly identify dominant coherent spatiotemporal fea-
tures. Compared to FD and MP methods, it improves the accuracy in the estimation
of ventilation and perfusion related signal changes. Overall, DMD method is demon-
strated to be a viable option for spectral analysis in dynamic MR acquisitions and
may advance the diagnostic potential of non-contrast-enhanced pulmonary func-
tional imaging.

4.6 Appendix

The DMD algorithm for functional lung imaging and simulated phantom data is
openly available at https://github.com/EfeIlicak/DMD_Lung.

https://github.com/EfeIlicak/DMD_Lung
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Chapter 5

Functional lung imaging of
2-year-old children after congenital
diaphragmatic hernia repair using
dynamic mode decomposition

This chapter is based on the following manuscript submitted to European Radiology
on 19.04.2023: Efe Ilicak1, Greta Thater1, Safa Ozdemir, Jascha Zapp, Lothar R. Schad,
Stefan O. Schoenberg, Frank G. Zöllner2, Meike Weis2. "Functional lung imaging
of 2-year-old children after congenital diaphragmatic hernia repair using dynamic
mode decomposition."

5.1 Introduction

Congenital diaphragmatic hernia (CDH) belongs to rare diseases and is caused by
a developmental defect, which occurs in 1 of 2000-5000 live births (Oluyomi-Obi,
Van Mieghem, and Ryan, 2017). CDH is characterized by herniation of abdominal
organs into the thoracic cavity and results in impaired lung development, followed
by irreversible hypoplasia of the pulmonary parenchyma and vasculature (Weidner
et al., 2014). Although advances in understanding and treatment have improved sur-
vival rates, CDH remains to cause significant morbidity and mortality (Wong et al.,
2018; IJsselstijn et al., 2018). Since lung morbidity can show a wide range of severity
after CDH repair, periodic structured follow-up programs in specialized centres are
strongly recommended to identify and treat the development of functionally signifi-
cant deformities to extend the patients life expectancies (Section on Surgery and the
Committee on Fetus and Newborn, 2008; Lewis et al., 2022).

To obtain pulmonary functional information, several studies have suggested the
use of scintigraphical measurements (Hayward et al., 2007; Okuyama et al., 2006).
With scintigraphy, regional distribution of ventilation (V), perfusion (Q), and their
mismatch in CDH patients can be quantified (Hayward et al., 2007; Björkman et al.,
2011; Dao et al., 2020). In these studies, it has been demonstrated that lung per-
fusion is significantly reduced in the affected ipsilateral lung in comparison to the
contralateral lung, and ventilation/perfusion (V/Q) mismatch continues to worsen
after CDH repair. Therefore, many centres recommend scintigraphical V/Q mea-
surements to predict long-term pulmonary morbidity and functional outcome (Dao
et al., 2020; Sanchez-Crespo, 2019). However, scintigraphical measurements do not

1Efe Ilicak and Greta Thater contributed equally to this work.
2Frank G. Zöllner and Meike Weis contributed equally to this work.
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offer morphological information and impose a radiation burden on patients. Sub-
sequently, safety concerns regarding repeated radiation exposure and the need for
childrens cooperation in the administration of radioactive gases have limited the
application of scintigraphy imaging in pediatric patients (Sanchez-Crespo, 2019).

Other studies have recommended using MRI scans to evaluate the degree of
structural damage and grade lung function morbidity without the need for ionizing
radiation (Abolmaali et al., 2010; Zöllner et al., 2012; Walkup, Higano, and Woods,
2019; Zanette et al., 2022). With dynamic contrast-enhanced (DCE) MRI, quantita-
tive lung perfusion parameters, such as pulmonary blood flow (PBF) or pulmonary
blood volume (PBV) can be measured in addition to morphological imaging during
the same examination (Weidner et al., 2014). In DCE-based studies (Weidner et al.,
2014; Weis et al., 2016b; Groß et al., 2021), it has been shown that the affected lung
displays impaired perfusion after CDH repair. More specifically, restricted lung de-
velopment is reflected by lower PBF and PBV values in the ipsilateral lung, and
perfusion differences between ipsilateral and contralateral lungs are observable. Al-
though DCE-based studies have shown promising results, growing concerns about
the safety of gadoliniumbased contrast agents and the inability to repeat measure-
ments in cases of patient motion or technical difficulties limit the usefulness of DCE-
based imaging (Edelman and Koktzoglou, 2019).

As an alternative to the DCE-based methods, non-contrast-enhanced methods
have been developed to evaluate lung function by exploiting periodic signal inten-
sity changes associated with ventilation and perfusion (Bauman et al., 2009; Bauman
and Bieri, 2017; Klimeš et al., 2019). Recently, these methods have been utilized to
investigate lung function in adults (Kunz et al., 2021) and in pediatric patients with
cystic fibrosis (Nyilas et al., 2019; Nyilas et al., 2017; Couch et al., 2021). However,
these techniques have not been investigated in CDH patients.

The aims of this study are twofold. First, we investigate the feasibility of a non-
contrast-enhanced MRI method for obtaining ventilation and perfusion values in
2-year-old patients after CDH repair. To this end, we use commonly available 2D
balanced steady-state free precession (bSSFP) pulse sequence to acquire dynamic
acquisitions together with a recently developed post-processing method called dy-
namic mode decomposition (DMD) to obtain pulmonary functional maps. Second,
we investigate whether there are observable differences between the ipsilateral and
contralateral sides with the DMD MRI method. Furthermore, we identify whether
there is a relationship in perfusion ratios of lungs between DMD-based perfusion
imaging and DCE-based perfusion imaging.

5.2 Materials and methods

5.2.1 Patients

Fifteen patients after CDH repair were investigated in our department according to
the local follow-up program, in which an MRI examination is included at the age
of two years. Detailed patient demographics are listed in Table 5.1. For all children,
written informed consent was obtained from the parents. The study was approved
by the local research ethics committee. The non-contrast-enhanced protocols were
added to the end of the follow-up procedure before the contrast-enhanced acquisi-
tions. Among the patient population, four were measured with Protocol A, two were
measured with Protocol B, and nine were measured with both protocols (see below
for protocol details).
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TABLE 5.1: Patient demographics.

Patient
No.

CDH
Location

ECMO
Status

Protocol Sex
Age

(weeks)
Weight

(kg)
Height

(cm)
1 Left No A Female 101 11.4 84
2 Left Yes A Female 104 7.7 80
3 Left Yes A & B Male 115 19 106
4 Right Yes A Female 108 9.5 85
5 Left Yes A & B Male 105 12.8 86
6 Left Yes A & B Female 109 11.6 83
7 Left No A & B Female 107 11.7 93
8 Left Yes A Female 109 10 92
9 Left Yes A & B Male 106 15 93

10 Right No A & B Female 103 10.3 83
11 Left No A & B Female 103 9.6 83
12 Left No A & B Female 116 11 85
13 Right Yes A & B Male 117 10 68
14 Left No B Female 109 13.5 120
15 Right Yes B Male 105 10.7 88

5.2.2 DMD-based Functional Pulmonary MRI

Non-contrast-enhanced functional lung imaging methods rely on dynamic acqui-
sitions to capture signal variations arising from respiration and cardiac pulsation.
To this end, imaging protocols with sufficiently high temporal resolution are em-
ployed during free-breathing to enable the observation of periodic signal variations.
As such, ventilation- and perfusion-weighted information can be obtained without
breathing manoeuvres or administration of contrast agents. Commonly, 2D bSSFP
or gradient echo-based pulse sequences are used for rapidly acquiring lung images,
and afterwards, lung structures are aligned using non-rigid registration software
(Ljimani et al., 2021). Subsequently, registered time-series images are analysed to
obtain regional ventilation and perfusion information.

In this work, a recently developed publicly available method based on DMD is
utilized to analyse the time-series data to obtain functional maps robustly from dy-
namic acquisitions (Ilicak et al., 2023). In essence, DMD is a data-driven modal de-
composition algorithm capable of identifying dominant spatiotemporal structures
latent within time-series data (Tu et al., 2014; Kutz et al., 2016; Kunert-Graf et al.,
2019). As such, DMD can determine the underlying oscillation frequencies and am-
plitudes in dynamic MR acquisitions, rendering it suitable for the identification of
ventilation- and perfusion-related signal changes. With DMD MRI, dynamic MR
images are analysed to identify ventilation and perfusion modes, and the ensuing
fractional ventilation and normalized perfusion maps are calculated as previously
explained (Ilicak et al., 2023). The overall workflow is illustrated in Figure 5.1.

5.2.3 MRI Protocols

MRI examinations were performed using a 1.5T system (Magnetom Aera, Siemens
Healthineers, Germany). A combination of spine array, head-neck coil, and body
phased-array coil was used. Patients underwent free-breathing MRI scans in supine
position after an anaesthetist, who was present during the whole examination, has
performed sedation using propofol. The lung function was assessed using a DMD
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FIGURE 5.1: Workflow of the DMD MRI method. (a) Dynamic acqui-
sitions are obtained during free-breathing to capture signal variations
stemming from respiration and pulsation. (b) Lung structures are
aligned using a non-rigid registration technique to enable the obser-
vation of regional parenchymal signal changes. Movements across
measurements for a region (displayed with green line) before and
after registration are also shown below acquisitions. (c) Registered
time-series images are analysed using dynamic mode decomposition
(DMD), and modes related to ventilation (displayed with blue boxes)
and perfusion (displayed with red boxes) are identified. (d) Using
these identified modes, ventilation and perfusion maps are calculated.
Overall, functional maps can be obtained from dynamic acquisitions
without the need for breathing manoeuvres or administration of con-

trast agents.

MRI, as well as DCE-based perfusion imaging. For DMD MRI, dynamic images of
the lung were acquired using bSSFP sequences adapted to accommodate pediatric
patients with smaller field-of-view (FOV) and higher temporal resolution require-
ments; whereas for the DCE method, images were acquired using time-resolved
angiography with stochastic trajectories (TWIST) sequence as previously described
(Weidner et al., 2014).

For non-contrast-enhanced imaging, two different bSSFP protocols (Table 5.2)
were utilized to image at a single location. Protocol A was acquired using a larger
FOV to improve the SNR characteristics and to maximize temporal resolution,
whereas Protocol B was using a smaller FOV with a higher in-plane resolution, at the
expense of SNR and temporal resolution. For both protocols, acquired slices were
positioned posterior to the heart in the anterior-posterior dimension. The following
parameters were common between protocols: flip angle α = 50◦, pause between
measurements=0.07 s, phase partial Fourier=6/8, parallel imaging with GRAPPA
factor 3 using 24 integrated autocalibration lines. For both protocols, the initial
six images were discarded due to transient state effects (Bauman et al., 2009), and
the remaining 274 images were analysed to obtain functional maps. Image registra-
tion was performed using a prototype non-rigid registration software, fMRLung 3.0
(Siemens Corporate Research, Princeton, NJ, USA) (Chefd’Hotel, Hermosillo, and
Faugeras, 2001; Chefd’hotel, Hermosillo, and Faugeras, 2002).

DCE-based perfusion imaging was performed after the bSSFP acquisitions, us-
ing TWIST sequence with the following parameters: FOV=416×416 mm2, voxel res-
olution = 1.9×1.9 mm2, slice thickness=2 mm, TE/TR=0.86/2.94 ms/ms, α = 30◦,
56 slices per slab, view-sharing of 17% in the central and 20% in the outer region,
parallel imaging with GRAPPA factor 2 in both phase encoding directions using
24 integrated autocalibration lines, temporal resolution of 1.5 s. Contrast agent
(Dotarem, Guerbet) was administered after the acquisition of five baseline images,
with a dosage of 0.05 mmol/kg body weight, diluted with the same volume of
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TABLE 5.2: Relevant parameter list of two different bSSFP protocols
used for imaging. *Voxel resolution with interpolation.

Protocol A Protocol B
FOV (mm×mm) 384×384 280×280
Voxel Resolution* (mm×mm) 1.5×1.5 1.1×1.1
Slice Thickness (mm) 12 12
TE/TR (ms/ms) 0.90/2.12 0.99/2.31
Acquisition Rate (images/s) 5.14 4.87

sodium chloride and followed by a sodium chloride bolus of 10 mL. Perfusion quan-
tification was done using deconvolution approach with an in-house certified OsiriX
plugin (Zöllner et al., 2016) as previously described (Groß et al., 2021).

5.2.4 Data Analyses

To investigate image quality, quantitative analyses were performed on the magni-
tude images and functional maps. To this end, regions of interest (ROIs) containing
lung parenchyma were manually segmented from magnitude images while exclud-
ing large vessels, and the quantitative metrics were calculated from the ROIs. The
bSSFP protocols were compared using signal-to-noise ratio (SNR) and contrast-to-
noise ratio (CNR) analyses. The SNR values were estimated on registered magni-
tude images based on the power spectrum of the time-series (Bauman, Pusterla, and
Bieri, 2019), and frequencies above 2.2 Hz were considered noise. The CNR values
were calculated on ventilation and perfusion maps and were defined as the ratio of
mean functional amplitudes within the lung parenchyma and a homogeneous back-
ground region selected within liver tissue.

To investigate functional differences between lungs, ventilation and perfusion
ratios between the ipsilateral and contralateral lungs (denoted as VRatio and QRatio
respectively) were calculated. For this purpose, mean functional values within the
ROIs were obtained for each lung (Kassner et al., 2018), and the ratios between the
ipsilateral and contralateral lungs were calculated. Additionally, linear correlations
and agreements between VRatio and QRatio values obtained with Protocol A and Pro-
tocol B were assessed.

TWIST-based pulmonary perfusion was analysed by manually segmenting both
lungs separately for each slice, while leaving out the mediastinal structures. The ar-
terial input function was derived from a ROI placed in the main stem of pulmonary
artery and the quantitative pulmonary blood volume (PBV) and pulmonary blood
flow (PBF) parameters were calculated cumulatively from the segmented slices.

Lastly, DMD-based perfusion results were compared with TWIST-based PBF val-
ues to investigate the agreement between these methods. For this purpose, linear cor-
relations, and agreements between TWIST-based perfusion ratio PBFRatio and DMD-
based perfusion ratio values (QRatio) obtained with both protocols were assessed.

5.2.5 Statistical Analyses

For statistical analysis, all data were evaluated using the Kolmogorov-Smirnov test
to check for normality. Subsequently, the differences in SNR, CNR, and functional
ratios between Protocol A and Protocol B were compared using the Wilcoxon-Mann-
Whitney test. The differences in DMD-based functional values between ipsilateral
and contralateral lungs, as well as differences between DMD-based perfusion and
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TABLE 5.3: Quantitative measurements obtained from acquisition
Protocol A. The average values are reported as mean ± standard de-

viation across patients.

Patient No. SNR CNRVent CNRPer f VRatio QRatio
1 49.49±17.32 7.52 2.07 0.63 0.62
2 60.22±25.61 5.72 6.43 0.55 0.87
3 79.56±37.62 16.26 8.35 0.73 0.82
4 31.49±12.83 15.09 3.05 0.93 0.71
5 32.99±14.49 14.73 5.32 0.57 0.75
6 32.04±16.17 13.47 5.71 0.75 0.61
7 38.32±13.63 14.56 9.46 0.94 1.38
8 25.14±10.28 10.71 4.23 0.88 0.69
9 33.41±11.56 12.27 5.84 0.93 0.65

10 33.47±13.56 3.83 4.87 0.93 0.47
11 47.27±16.74 10.06 5.40 0.85 0.56
12 47.43±21.70 9.88 6.82 1.15 0.43
13 39.30±12.86 7.08 5.05 1.11 0.60

Average 42.32±14.71 10.86±3.95 5.58±1.97 0.84±0.19 0.70±0.24

TWIST-based perfusion ratios were compared using paired two-sided Wilcoxon
signed rank tests. To assess linear correlations and agreements between functional
ratios, Pearsons correlation and Bland-Altman analyses were performed, where the
biases were assessed using t-test. In all tests, p < 0.05 was considered to be statis-
tically significant. The resulting correlation coefficient (r) was interpreted as: 0.00-
0.19 negligible; 0.20-0.39 weak correlation; 0.40-0.59 moderate correlation; 0.60-0.79
strong correlation; and 0.80-1.00 very strong correlation. All statistical analyses were
performed using MATLAB (MathWorks, Natick, MA, USA).

5.3 Results

5.3.1 Feasibility of pediatric DMD MRI

Representative cross-sections of bSSFP acquisitions obtained using both protocols
are shown in Figure 5.2 for a patient with left-sided herniation and extracorporeal
membrane oxygenation therapy (ECMO) treatment. Additionally, frequency spec-
trums calculated from registered images using the mean signal intensity are also
displayed. As illustrated, both protocols can distinguish frequency peaks associated
with respiratory and cardiac cycles. The SNR and CNR values of protocols are listed
in Tables 5.3 and 5.4 for Protocol A and Protocol B, respectively. As expected, Pro-
tocol A results in higher SNR values compared to Protocol B; nonetheless, SNR and
CNR differences between the protocols are not significant.

Figure 5.3 depicts exemplary modes obtained with the DMD from a patient mea-
surement using Protocol A. Respective mode frequencies and mode amplitudes are
also displayed overlaid on the modes. In our study cohort, ventilation frequencies
ranged between 0.25-0.59 Hz, and perfusion frequencies ranged between 1.40-2.13
Hz. Overall, DMD analysis successfully identified dominant spatiotemporal fea-
tures such as ventilation- and perfusion-related signal changes in all patients.
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FIGURE 5.2: Exemplary magnitude images and frequency spectrums
calculated from the acquisitions obtained with (a) Protocol A, and (b)
Protocol B, from a CDH patient with left-sided hernia and ECMO
treatment. The magnitude images are scaled to better visualize lung
parenchyma. Both protocols are able to successfully detect frequency
peaks associated with respiration (∼ 0.35 Hz) and cardiac pulsation

(∼ 1.55 Hz).

5.3.2 DMD MRI-based pulmonary functional parameters

Illustrative ventilation and perfusion maps obtained from a patient are shown in
Figure 5.4 for both protocols. Additionally, violin plots of functional values are pre-
sented to illustrate the distribution differences between ipsilateral and contralateral
lungs. For both protocols, functional maps are successfully obtained using DMD
analysis and differences between ipsilateral and contralateral lungs are visible. Nev-
ertheless, when the bSSFP protocols are compared, Protocol B is able to display finer
structures owing to its higher spatial resolution.

The ipsilateral to contralateral ventilation (VRatio) and perfusion (QRatio) ratios
obtained with DMD MRI are reported in Tables 5.3 and 5.4. The mean fractional
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TABLE 5.4: Quantitative measurements obtained from acquisition
Protocol B. The average values are reported as mean ± standard de-

viation across patients.

Patient No. SNR CNRVent CNRPer f VRatio QRatio
3 41.44±17.42 18.63 3.92 0.70 0.83
5 24.05±13.82 11.87 3.96 0.51 0.77
6 19.37±11.01 13.39 5.27 0.75 0.70
7 27.01±10.32 10.35 9.77 1.05 1.24
9 27.90±12.43 11.75 5.25 0.95 0.54

10 33.13±20.61 5.37 4.21 0.88 0.50
11 39.61±16.54 5.44 5.71 0.79 0.64
12 35.34±18.96 7.98 4.25 1.13 0.44
13 32.58±12.28 9.48 8.70 0.95 0.57
14 36.13±10.36 15.77 7.36 0.89 0.92
15 24.31±11.75 16.07 4.41 1.02 0.71

Average 30.99±6.99 11.46±4.31 5.71±2.02 0.88±0.18 0.72±0.23

ventilation and normalized perfusion values obtained with DMD MRI for ipsilat-
eral and contralateral lungs are reported in Tables 5.5 and 5.6 for Protocol A and B,
respectively. On average, VRatio and QRatio values are below 1, indicating reduced
pulmonary functions in the ipsilateral lung compared to contralateral lung. Specif-
ically, the VRatio values for Protocol A and Protocol B are 0.84±0.19 and 0.88±0.18,
respectively. Similarly, the QRatio values for Protocol A and Protocol B are 0.70±0.24
and 0.72±0.23. Moreover, our results indicate that for both protocols the ventilation
and perfusion reductions observed in the ipsilateral lungs are statistically significant.

The Pearsons correlation and Bland-Altman analyses of functional ratios
obtained through DMD MRI with Protocol A and Protocol B are visualized in Figure
5.5. For both VRatio and QRatio, we observe a very strong correlation (r = 0.92 for
ventilation ratios, and r = 0.97 for perfusion ratios) and a close agreement between
two protocols without a significant bias or systematic difference.

5.3.3 TWIST-based pulmonary perfusion parameters

PBV and PBF parameters of ipsilateral and contralateral lungs as well as their ratios
(PBVRatio and PBFRatio) obtained through TWIST method are reported in Table 5.7.
Overall, the PBVRatio is 0.68±0.19, and PBFRatio ratio is 0.68±0.17, and both values
indicate significantly lower perfusion in the ipsilateral lungs.

5.3.4 Comparisons between DMD-based perfusion and TWIST-based
perfusion

A comparison of the DMD-based perfusion maps and the TWIST-based perfusion
map is provided in Figure 5.6 for a patient with left-sided herniation with ECMO
therapy. Additionally, ventilation maps obtained with DMD MRI are also displayed.
For both methods, the reduction of perfusion values in the ipsilateral lung can be
observed visually and quantitatively.

Pearsons correlation and Bland-Altman analyses between QRatio and PBFRatio
are visualized in Figure 5.7. Correlation coefficients are r = 0.89 for Protocol A,
and r = 0.90 for Protocol B, indicating very strong correlations between QRatio and
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TABLE 5.5: Mean fractional ventilation (V, scaled by a factor of 100 for
better visualization) and normalized perfusion (Q) results calculated
over ipsilateral (VIpsi, QIpsi) and contralateral (VCont, QCont) lungs
from images obtained with Protocol A. Their ratios (VRatio and QRatio)
are also reported. The average values are reported as mean ± stan-

dard deviation across patients.

Patient No.
VIpsi

[ml/ml×100]
VCont

[ml/ml×100]
VRatio

1 6.40±5.27 10.17±3.93 0.63
2 1.85±1.30 3.37±2.48 0.55
3 5.12±2.59 7.02±3.39 0.73
4 5.28±2.98 5.65±2.16 0.93
5 6.09±2.92 10.75±3.99 0.57
6 4.98±2.33 6.63±2.91 0.75
7 5.11±2.15 5.45±3.28 0.94
8 7.03±3.22 7.99±3.84 0.88
9 7.54±4.21 8.09±4.39 0.93

10 7.68±5.54 8.25±2.93 0.93
11 7.28±3.01 8.53±4.67 0.85
12 5.56±2.41 4.85±2.55 1.15
13 6.01±2.35 5.39±2.03 1.11

Average 5.84±1.54 7.09±2.14 0.84±0.19

Patient No.
QIpsi

[normalized]
QCont

[normalized]
QRatio

1 0.11±0.07 0.17±0.10 0.62
2 0.27±0.23 0.31±0.19 0.87
3 0.26±0.20 0.32±0.14 0.82
4 0.24±0.13 0.34±0.25 0.71
5 0.27±0.16 0.36±0.16 0.75
6 0.27±0.15 0.45±0.13 0.61
7 0.35±0.16 0.25±0.13 1.38
8 0.24±0.15 0.34±0.17 0.69
9 0.37±0.20 0.56±0.19 0.65

10 0.13±0.08 0.27±0.14 0.47
11 0.26±0.19 0.46±0.15 0.56
12 0.22±0.15 0.50±0.20 0.43
13 0.38±0.17 0.63±0.21 0.60

Average 0.26±0.08 0.38±0.13 0.70±0.24



72
Chapter 5. Functional lung imaging of 2-year-old children after congenital

diaphragmatic hernia repair using dynamic mode decomposition

TABLE 5.6: Mean fractional ventilation (V, scaled by a factor of 100 for
better visualization) and normalized perfusion (Q) results calculated
over ipsilateral (VIpsi, QIpsi) and contralateral (VCont, QCont) lungs
from images obtained with Protocol B. Their ratios (VRatio and QRatio)
are also reported. The average values are reported as mean ± stan-

dard deviation across patients.

Patient No.
VIpsi

[ml/ml×100]
VCont

[ml/ml×100]
VRatio

3 4.81±2.57 6.84±3.52 0.70
5 5.48±2.44 10.72±4.25 0.51
6 8.07±3.73 10.82±5.39 0.75
7 8.05±3.55 7.65±5.10 1.05
9 7.50±4.16 7.87±4.09 0.95
10 7.66±4.92 8.69±3.19 0.88
11 13.75±5.98 17.46±6.61 0.79
12 8.05±3.65 7.11±3.67 1.13
13 10.05±4.59 10.56±3.56 0.95
14 5.69±2.08 6.37±2.69 0.89
15 8.74±4.13 8.58±4.63 1.02

Average 7.98±2.45 9.33±3.12 0.88±0.18

Patient No.
QIpsi

[normalized]
QCont

[normalized]
QRatio

3 0.13±0.11 0.16±0.06 0.83
5 0.15±0.09 0.19±0.11 0.77
6 0.18±0.11 0.26±0.10 0.70
7 0.22±0.11 0.17±0.09 1.24
9 0.22±0.13 0.41±0.16 0.54
10 0.09±0.08 0.19±0.09 0.50
11 0.19±0.19 0.29±0.10 0.64
12 0.15±0.12 0.33±0.13 0.44
13 0.26±0.13 0.45±0.18 0.57
14 0.21±0.18 0.22±0.09 0.92
15 0.14±0.10 0.20±0.16 0.71

Average 0.18±0.05 0.26±0.10 0.72±0.23
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TABLE 5.7: Perfusion parameters obtained through DCE-based
TWIST protocol.

Patient No.
PBVIpsi

[ml/100ml]
PBVCont

[ml/100ml]
PBVRatio

1 7.93±4.76 13.95±6.67 0.57
2 6.55±3.85 8.67±5.41 0.76
3 19.29±16.40 19.56±9.02 0.99
4 12.54±8.15 26.76±13.97 0.47
5 6.65±6.77 13.10±10.06 0.51
6 9.49±5.85 16.40±8.61 0.58
7 15.27±5.99 13.15±7.06 1.16
8 4.91±3.90 9.64±6.72 0.51
9 8.10±5.10 11.85±6.48 0.68
10 9.75±6.74 13.59±6.51 0.72
11 8.23±5.30 12.86±6.70 0.64
12 8.57±4.88 13.73±6.72 0.62
13 10.13±7.32 16.94±8.37 0.60
14 13.96±5.67 17.08±7.69 0.82
15 7.22±4.26 12.06±5.03 0.60

Average 9.91±3.84 14.62±4.40 0.68±0.19

Patient No.
PBFIpsi

[ml/100ml/min]
PBFCont

[ml/100ml/min]
PBFRatio

1 99.58±54.97 175.57±81.57 0.57
2 83.61±45.24 110.90±58.64 0.75
3 193.21±89.47 250.67±115.46 0.77
4 282.69±185.67 390.96±242.15 0.72
5 106.92±101.01 176.95±163.59 0.60
6 138.05±77.94 234.64±111.30 0.59
7 158.77±66.57 131.78±66.26 1.20
8 43.31±36.40 95.19±6.54 0.45
9 52.84±35.05 84.94±48.18 0.62
10 50.55±34.85 83.38±42.84 0.61
11 59.14±38.75 102.06±53.98 0.58
12 78.08±45.39 133.47±69.82 0.59
13 100.26±55.57 163.72±77.59 0.61
14 157.74±65.67 195.50±81.92 0.81
15 70.72±40.23 99.24±42.75 0.71

Average 111.70±65.17 161.93±82.61 0.68±0.17
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FIGURE 5.3: Exemplary dominant modes obtained with the DMD
analysis from measurements of a patient with left-sided herniation
and ECMO treatment. Here, the dynamic images are obtained with
Protocol A, and non-rigid registration is completed before the DMD
analysis. The mode frequencies ( f ) and mode amplitudes (b) asso-
ciated with the individual modes are also displayed overlaid on the
modes. The DMD analysis identifies coherent spatiotemporal struc-
tures in the dynamic acquisitions, such as signal variations caused by
respiration and pulsation, as well as secondary motions or harmonics.
For this patient, modes related to pulmonary ventilation (mode with
f = 0.40 Hz) and perfusion (mode with f = 1.51 Hz) were selected
and used for the calculation of fractional ventilation and normalized

perfusion maps.

PBFRatio for both protocols. Bland-Altman plots demonstrate a close agreement be-
tween QRatio and PBFRatio, with reproducibility coefficient (RPC) RPC = 0.22 for
Protocol A, and RPC = 0.20 for Protocol B, and without a significant bias or system-
atic difference for both protocols.

5.4 Discussion

Currently, pediatric lung MRI studies mainly focus on structural abnormalities, and
only a limited number of studies have investigated pulmonary functions (Dyke et
al., 2023; Weis et al., 2016a). A crucial constraint is that pediatric patients typi-
cally exhibit faster cardiac and respiratory rates (Fleming et al., 2011), necessitat-
ing faster pulse sequences. Moreover, a reduced FOV is required for imaging pedi-
atric patients, which limits the minimum achievable echo time (Ljimani et al., 2021),
and thereby reduces the attainable SNR. Nevertheless, our results indicate that pul-
monary functional imaging of 2-year-old CDH patients can be achieved at 1.5T field
strength using bSSFP protocols.
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FIGURE 5.4: Exemplary fractional ventilation and normalized perfu-
sion maps obtained through DMD MRI of a patient with right-sided
herniation and without ECMO therapy obtained with (a) Protocol A,
and (b) Protocol B. The maps are cropped to the region of interest
for visualization purposes. Next to the maps, violin plots depict the
distribution of functional values of each lung. For both protocols, dif-
ferences between ipsilateral and contralateral lungs are discernible in
both ventilation and perfusion maps, as well as the accompanying vi-
olin plots, which imply impaired lung function in the ipsilateral lung

relative to the contralateral lung.

A key advantage of DMD MRI is its ability to generate both ventilation and per-
fusion maps from the same acquisition without any radiation burden or adminis-
tration of intravenous contrast agents (Weidner et al., 2014; Sanchez-Crespo, 2019).
Consequently, unlike SPECT or DCE MRI, DMD MRI can be repeated in cases where
images are rendered non-diagnostic due to patient motion or technical difficulties
(Edelman and Koktzoglou, 2019). Furthermore, it allows more frequent imaging in
patients needing special care and can enable the safer investigation of longitudinal
trends of pulmonary ventilation and perfusion (Dao et al., 2020). Thus, it may im-
prove our understanding of disease progression.

Our results indicate that both bSSFP protocols can acquire temporal features with
success, and the trade-offs associated with Protocol B do not compromise the func-
tional image quality. A possible explanation for the poorer CNR performance of
Protocol A, despite its better SNR performance, is the partial volume effects, which
may result in the blurring of features. Nevertheless, we propose the use of Protocol
B due to its higher in-plane resolution in future studies.

Our results indicate that the VRatio values are higher than other ratios calculated
between ipsilateral and contralateral lungs. A possible explanation for this could be
the sensitivity of bSSFP pulse sequences to magnetic field inhomogeneities. Recently,
it was shown that functional maps obtained via conventional bSSFP acquisitions suf-
fer from banding artefacts, resulting in inhomogeneous ventilation maps (Ilicak et
al., 2022b). To overcome this, more advanced techniques can be utilized during ac-
quisitions (Ilicak et al., 2022b; Bauman, Pusterla, and Bieri, 2016). Nevertheless, our
results indicate that the ventilation differences between the ipsilateral and contralat-
eral lungs are still significant. Additionally, ventilation of ipsilateral lung seems to be
less affected after CDH than perfusion, underlying the hypothesis that lung vessels
are affected by CDH associated lung hypoplasia.

Here, we were not able to compare the DMD MRI-based VRatio and QRatio values
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FIGURE 5.5: Pearsons correlation and Bland-Altman analyses of func-
tional ratios obtained through DMD MRI with Protocol A and Pro-
tocol B. VRatio and QRatio values obtained with two non-contrast-
enhanced bSSFP protocols display a very strong correlation and a
close agreement with each other without any systematic differences.

with a healthy cohort, and the contralateral lungs were assumed to be relatively nor-
mal (Björkman et al., 2011). Previous studies with CDH patients have reported sim-
ilar results when comparing ipsilateral lung to the contralateral lung using scintig-
raphy (Stefanutti et al., 2004; Muratore et al., 2001), SPECT (Björkman et al., 2011;
Sanchez-Crespo, 2019), and DCE MRI (Weidner et al., 2014; Weis et al., 2016b; Groß
et al., 2021). The VRatio and QRatio results reported in this study are in line with
those observations. Additionally, when compared with the DCE method, we have
observed a very strong agreement between QRatio and PBFRatio values obtained from
the same patients.

In the current study, the bSSFP acquisitions were limited to a single slice posi-
tion due to scan time constraints. In future work, multiple slice locations could be
acquired using a single protocol to increase lung volume coverage. Additionally,
thinner slices may be required to offset the partial volume effects at the expense of
SNR. To this end, recent developments incorporating low-rank priors during image
reconstruction (Ilicak, Saritas, and Çukur, 2022) showed promising results in func-
tional lung imaging (Ilicak et al., 2022a). Another limitation of the study arises from
the inherent issues associated with the quantification methods (Ilicak et al., 2022b);



5.4. Discussion 77

FIGURE 5.6: Representative magnitude images from bSSFP protocols,
along with normalized perfusion, and fractional ventilation maps ob-
tained through DMD MRI from a patient with left sided hernia and
ECMO therapy. Additionally, a representative magnitude image and
PBF map obtained from TWIST protocol for the same patient from a
similar slice location are displayed. For visualization purposes, all
functional maps are cropped to the region of interest. Overall, re-
ductions in the ipsilateral lung can be observed visually, and can be
confirmed by the resulting quantitative ratios (displayed overlaid on
functional maps). Although the TWIST-based method can generate
quantitative PBF maps, DMD MRI does not require the administra-
tion of contrast agents and is also capable of generating ventilation

maps.

consequently, V/Q maps were not calculated. While improved quantification meth-
ods are warranted, DMD MRI can become a useful tool for analysing V/Q mismatch
associated with CDH (Hayward et al., 2007; Okuyama et al., 2006; Dao et al., 2020;
Dassios et al., 2022).

In summary, we have successfully demonstrated the ability to measure pulmonary
functional information in 2-year-old CDH patients. Our approach involved analysing
free-breathing dynamic bSSFP acquisitions through DMD to obtain ventilation and
perfusion maps, without the need for ionizing radiation or exposure to contrast
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FIGURE 5.7: Pearsons correlation and Bland-Altman analyses be-
tween perfusion ratios obtained via TWIST (PBFRatio) and DMD MRI
(QRatio) for (a) Protocol A and (b) Protocol B. For both protocols, we
observe a very strong correlation without any significant bias or sys-
tematic difference. (r, Pearsons correlation coefficient; RPC, repro-

ducibility coefficient.)

agents. Our results are in line with previously reported values obtained with differ-
ent modalities. Moreover, DMD-based perfusion results reported here demonstrate
a very strong agreement with the perfusion results obtained through the TWIST
method. Overall, DMD MRI is a promising tool for the analysis of pulmonary func-
tion in pediatric CDH patients and may be used for longitudinal assessments of
pulmonary functional changes.
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Summary

The measurement of pulmonary ventilation and perfusion without the use of con-
trast agents is highly valuable for the diagnosis and monitoring of prevalent lung
diseases. To this end, non-contrast-enhanced MRI is an emerging alternative to
scintigraphical measurements, computed tomography, and contrast-enhanced MRI.
Although non-contrast-enhanced MRI methods enable the acquisition of both struc-
tural and functional information in the same scan session, they suffer from robust-
ness issues associated with imaging artifacts and post-processing techniques. As
such, there has been limited clinical utilization of these methods.

The aim of this thesis was to improve the robustness of non-contrast-enhanced
functional lung imaging and to showcase its capabilities in the assessment of in 2-
year old congenital diaphragmatic hernia patients after patch repair. In Chapter
3, a robust alternative acquisition framework for non-contrast-enhanced functional
lung imaging was presented. In Chapter 4, a new analysis method was presented
for improved accuracy in the estimation of pulmonary ventilation and perfusion
related signal changes. In Chapter 5, the analysis method developed in Chapter
4 was demonstrated for obtaining pulmonary functional information in 2-year-old
CDH patients after patch repair.

In the following paragraphs, a comprehensive overview of each study is pre-
sented in detail.

Phase–cycled balanced SSFP imaging for non-contrast-enhanced functional lung
imaging,
Magnetic Resonance in Medicine, doi:10.1002/mrm.29302.

In Chapter 3, a multiple-acquisition bSSFP acquisition framework based on RF
phase cycling was developed as an alternative in Fourier decomposition MRI for
improved robustness against field inhomogeneities. Here, 2D dynamic lung images
were obtained from 5 healthy volunteers at 1.5T and 3T field strengths using a bSSFP
pulse sequence with N = 4 different RF phase increments. These images were then
compared to those obtained using conventional bSSFP acquisitions with a single RF
phase increment. For a fair comparison, both acquisitions were divided into four
subgroups, and subgroups were post-processed identically.

At both field strengths, functional maps obtained from individual subgroups dis-
played local signal losses as well as inhomogeneities across the lung parenchyma.
Nevertheless, when the subgroups were combined, we observed more homogeneous
functional maps and improved robustness against signal voids for phase-cycled ac-
quisitions. To quantitatively assess functional map homogeneity, coefficient of vari-
ation (CV) analysis was performed. The CV values of combined ventilation maps
resulted in 29.7 ± 2.6 at 1.5T and 37.5 ± 3.1 at 3T for phase-cycled acquisitions, com-
pared with 39.9 ± 5.2 at 1.5T and 49.5 ± 3.7 at 3T for conventional acquisitions. The
CV values of combined perfusion maps resulted in 55.3± 4.9 at 1.5T and 84.5± 6.7 at

https://doi.org/10.1002/mrm.29302
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3T for phase-cycled acquisitions, compared with 54.0 ± 5.2 at 1.5T and 95.8 ± 15.3 at
3T for conventional acquisitions. Overall, our results indicate that phase-cycled ac-
quisitions improve robustness against field inhomogeneity artifacts and significantly
improve (p < 0.05) ventilation map homogeneity.

Dynamic mode decomposition of dynamic MRI for assessment of pulmonary ven-
tilation and perfusion,
Magnetic Resonance in Medicine, doi:10.1002/mrm.29656.

In Chapter 4, a new technique based on dynamic mode decomposition (DMD)
is proposed to robustly identify dominant spatiotemporal features latent within the
dynamic images. To this end, pulmonary fractional ventilation and normalized per-
fusion maps were obtained from digital lung phantoms as well as dynamic acquisi-
tions of 5 healthy volunteers. The performance of the DMD method was compared
with conventional Fourier decomposition (FD) and matrix pencil (MP) methods.
Mean functional map values within the lung parenchyma were calculated across
varying number of measurements to assess the methods’ accuracy.

The mean ventilation and perfusion amplitudes estimated from simulated phan-
tom measurements displayed that DMD significantly reduced variations in estimated
amplitude in ventilation maps (p < 0.05), and significantly reduced variations in per-
fusion maps after the shift in cardiac frequency (p < 0.05). Similarly, results obtained
from the in vivo measurements demonstrated that DMD noticeably improved ven-
tilation and perfusion estimation, and mitigated amplitude inconsistencies across
different number of measurements. In particular, DMD was shown to display sig-
nificantly lower dispersion in both ventilation and perfusion map amplitudes when
compared with MP (p < 0.05). In conclusion, the DMD method is demonstrated to
be a viable option for robust spectral analysis in dynamic MR acquisitions.

Functional lung imaging of 2-year-old children after congenital diaphragmatic
hernia repair using dynamic mode decomposition,
Submitted to European Radiology on 19.04.2023.

In Chapter 5, we demonstrated that pulmonary ventilation and perfusion infor-
mation can be obtained in 2-year-old patients after CDH repair, without the need for
ionizing radiation or contrast agents. This was achieved by utilizing free-breathing
non-contrast-enhanced MRI acquisitions together with DMD analysis to obtain pul-
monary functional maps. Moreover, two different bSSFP protocols were prescribed,
and ventilation and perfusion ratios of ipsilateral to contralateral lungs were ob-
tained to evaluate functional differences between the lungs. The functional ratio
results were then compared using Pearson’s correlation and Bland-Altman analy-
ses. These analyses were done between bSSFP protocols, and between DMD-based
perfusion ratios and perfusion parameters obtained using contrast-enhanced MRI.

The ipsilateral to contralateral ventilation and perfusion ratios were 0.84 ± 0.19
and 0.70± 0.24 for Protocol A, and 0.88± 0.18 and 0.72± 0.23 for Protocol B, indicat-
ing reduced functional results on the ipsilateral side. Furthermore, a close agreement
between two bSSFP protocols was observed without a significant bias or systematic
difference with r = 0.92 for ventilation ratios, and r = 0.97 for perfusion ratios.
More importantly, a very strong positive correlation and close agreement between
DMD MRI-based perfusion values and DCE MRI-based perfusion parameters were
observed for both protocols with r = 0.89 for Protocol A, and r = 0.90 for Protocol B.
Overall, DMD MRI holds great promise as a tool for analyzing pulmonary function
in pediatric patients and has the potential to be used for longitudinal assessments of
pulmonary functional changes.

https://doi.org/10.1002/mrm.29656
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Outlook

A major limitation for non-contrast-enhanced functional lung imaging stems from
the inherent problems associated with the quantification techniques. In the work
of (Zapke et al., 2006), ventilation information is extracted via the signal differences
between expiration and inspiration. However, this model excludes the tissue re-
laxation differences between expiration and inspiration (Stadler et al., 2005). More-
over, the ventilation quantification methods developed by (Kjørstad et al., 2014b)
and (Bauman and Bieri, 2017) utilize the zero frequency component together with
the signal differences to obtain fractional ventilation maps. However, both of these
methods neglect the effects of image contrast in the zero frequency image. Similarly,
the quantitative lung perfusion method developed in (Kjørstad et al., 2014a) uses
a modified version of the model developed in (Buxton et al., 1998) for arterial spin
labeling (ASL). Nevertheless, the original model includes a correction factor "q", that
accounts for the differences of blood and tissue relaxation times. While this factor
can be assumed as q = 1 in ASL methods (Buxton et al., 1998; Fischer et al., 2008),
this might not be correct for other acquisition techniques. As such, the underlying
image contrast would affect the quantified perfusion results. Consequently, these
ventilation and perfusion quantification methods not only display a dependence on
field strength, but also on acquisition parameters such as the prescribed pulse se-
quence (e.g., bSSFP, GRE, etc.) or pulse sequence parameters (e.g., flip angle, TE, TR,
etc.). Therefore, further studies are needed to develop quantification methods that
take image contrast and tissue relaxation into account.

In Chapter 3, an RF phase cycling strategy was demonstrated to increase the ro-
bustness against field inhomogeneity artifacts and to improve the functional map
homogeneity. While this method was evaluated using acquisitions from healthy vol-
unteers, its application in the imaging of patients with pulmonary diseases remains
an open problem. Furthermore, the phase cycling scheme with four equispaced
phase increments might be suboptimal for lung imaging. Subsequently, acquisitions
with additional phase increments and their combinations should be investigated to
improve the image quality.

The post-processing method introduced in Chapter 4 was demonstrated to per-
form more reliably compared to conventional methods such as Fourier decomposi-
tion and matrix pencil decomposition methods. Nevertheless, DMD algorithm is
known to have limitations in characterizing transient time phenomena (Schmid et
al., 2011), such as sharp breath-holding maneuvers. To overcome this limitation,
a multiresolution DMD algorithm was recently proposed (Kutz, Fu, and Brunton,
2016). Here, the dynamic system is iteratively decomposed using shorter measure-
ment windows, and the DMD modes are extracted from slow to increasingly fast
time scales. This recursive sampling structure enables a better analysis of high fre-
quency features; therefore, it might enable a better representation of transient state
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behavior. Another limitation of the DMD arises from its sensitivity to rank deficien-
cies (Tu et al., 2014). While the method described in Chapter 4 incorporated data
stacking to mitigate rank deficiency limitations, more advanced methods such as
forward/backward DMD can be implemented to further improve the performance
of DMD MRI (Dawson et al., 2016). In forward/backward DMD, the measurement
matrices X and X′ are swapped to compute the an additional DMD on data pair
(X′, X), meaning that a mapping operator Ab is estimated for the backward dynamic
system. By using a combination of the forward and backward mapping operators,
the robustness against rank deficiencies, and noise resilience of DMD algorithm can
be increased; and accordingly, the accuracy of eigenvalue estimation can be further
improved.

Lastly, in previous conference abstracts (Ilicak et al., 2019b; Ilicak et al., 2020),
we have displayed that the dynamic lung acquisitions can benefit from sparse re-
construction techniques. Specifically, in (Ilicak et al., 2019b) it was shown that com-
pressibility of lung images can be exploited through compressed sensing reconstruc-
tions, allowing for higher undersampling ratios during acquisition. Consequently,
temporal resolution of free-breathing non-contrast-enhanced acquisitions can be im-
proved without compromising image quality. Thereafter, in (Ilicak et al., 2020), low-
rank and locally low-rank reconstruction techniques were demonstrated to further
improve the image quality in compressed sensing reconstructions by incorporating
spatial sparsity terms in addition to temporal sparsity terms. While both of these
studies were done retrospectively on dynamic acquisitions obtained from healthy
volunteers, more detailed analyses are warranted to explore the limitations of com-
pressed sensing reconstructions. In particular, the regularization parameter selection
during the reconstructions, and the optimization of k-space sampling trajectories in
functional lung imaging remains open problems. To this end, stochastic greedy algo-
rithms (Sanchez et al., 2020) or deep learning frameworks (Bahadir et al., 2020) could
be employed for sampling pattern optimization, and automated parameter selection
strategies might be deployed for regularization parameter selection (Shahdloo et al.,
2019; Ilicak, Saritas, and Çukur, 2022).
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